KA cacicaro

BSD IPC Reference Manual

for NS-ARPA/1000 and ARPA/1000

Software Services and Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 91790-90060 Printed in U.S.A. April 1995
E0495 Fourth Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1991-1993, 1995 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-in-
serted update information. New editions of this manual will contain new information, as well as all updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File. (The Manual Numbering File is included with your software. It consists of an
“M” followed by a five digit product number.)

First Edition Aug 1991 Rev. 5.24/5240
Second Edition Dec 1992, Rev. 6.0/6000
Third Edition Nov 1993 iiiii... Rev. 6.1/6100
Fourth Edition Apr 1995 ... Rev. 6.2/6200

3/4

Preface

Hewlett-Packard NS-ARPA/1000 and ARPA/1000 network software products allow HP computer
systems to communicate with other systems providing ARPA services and TCP/IP protocols. The
BSD IPC functionality of NS-ARPA/1000 and ARPA/1000 provides the capability for remote
process communication.

Audience

The BSD IPC Reference Manual for NS-ARPA/1000 and ARPA/1000 is the primary reference
source for programmers who will be writing or maintaining programs on NS-ARPA/1000 and
ARPA/1000 that use Berkeley Software Distribution Interprocess Communication (BSD IPC).
The BSD IPC Reference Manual should also be read by Network Managers so that they will have
a clear understanding of the full implications of various NS-ARPA/1000 and ARPA/1000
functions and features.

Assumptions

This manual is intended for experienced programmers, familiar with the RTE-A operating
system. For those operations that deal with HP 9000 systems, a working knowledge of the
HP-UX operating system is also recommended. Network Managers, who have responsibility for
generating and initializing nodes and configuring networks, should consult the ARPA/1000 Node
Manager’s Manual, part number 98170-90001, or both the NS-ARPA/1000 Generation and
Initialization Manual, part number 91790-90030, and the NS-4ARPA/1000 Maintenance and
Principles of Operation Manual, part number 91790-90031.

Organization

Section 1 Introduction—presents an overview of NS-ARPA/1000 and ARPA/1000,
introducing their User Services, which includes BSD IPC.

Section 2 BSD IPC Concepts—defines the terms and concepts commonly used in
BSD IPC.

Section 3 Using BSD IPC—describes the steps to set up a BSD IPC connection,

transfer data, and shut down the connection.

Section 4 BSD IPC Calls—provides reference information on each BSD IPC call,
arranged in alphabetical order.

Section 5 BSD IPC Utilities—provides reference information on each BSD IPC
utility available on the HP 1000, arranged in alphabetical order.

Section 6 Socket Descriptor Utilities—provides reference information on the socket
descriptor utilities which allows operation on the socket descriptor
bitmasks, arranged in alphabetical order.

Section 7 Advanced Topics—covers socket options and nonblocking I/O on the
HP 1000.

Appendix A Example Programs—provides example programs in C, Pascal, and
FORTRAN using BSD IPC.

Appendix B Database and Header Files—describes and lists the database and header
files used in BSD IPC for programming in C, Pascal, and FORTRAN.

Appendix C Error Messages—provides a list of error messages for BSD IPC.

Appendix D Definition of Terms—defines NS-ARPA/1000 and ARPA/1000 BSD IPC
terms.

Guide to NS-ARPA/1000 Manuals
The following are brief descriptions of the manuals included with the NS-ARPA/1000 product.
91790-90060 BSD IPC Reference Manual for NS-ARPA/1000 and ARPA/1000

Describes Berkeley Software Distribution Interprocess Communication (BSD IPC) on the
HP 1000. BSD IPC on the HP 1000 offers a programmatic interface on the HP 1000 for
multi-vendor connectivity to systems that offers BSD IPC 4.3.

91790-90020 NS-ARPA/1000 User/Programmer Reference Manual

Describes the user-level services provided by NS-ARPA/1000. The NS services are network file
transfer (NFT), network interprocess communication (NetIPC), and remote program
management (RPM). The ARPA services are TELNET and FTP. Because these are interactive
and programmatic services, this manual is intended for interactive users as well as programmers.
It should also be read by Network Managers before designing an NS-ARPA/1000network so that
they will have a clear understanding of the full implications of various NS-ARPA/1000 functions
and features.

91790-90050 NS-ARPA/1000 DS/1000-IV Compatible Services Reference Manual

Describes the user-level services provided by the DS/1000-1V backward compatible services.
These services are Remote File Access (RFA), DEXEC, REMAT, RMOTE,
program-to-program communication (PTOP), utility subroutines, remote I/O mapping, remote
system download to memory-based DS/1000-IV nodes only, and remote virtual control panel.

91790-90030 NS-ARPA/1000 Generation and Initialization Manual

Describes the tasks required to install, generate, and initialize NS-ARPA/1000. This manual is
intended for the Network Manager. Before reading this manual, the Network Manager should
read the NS-ARPA/1000 User/Programmer Reference Manual to gain an understanding of the
NS-ARPA/1000 user-level services. The Network Manager should also be familiar with the
RTE-A operating system and system generation procedure.

91790-90031 NS-ARPA/1000 Maintenance and Principles of Operation Manual

Describes the NS-ARPA/1000 network maintenance utilities, troubleshooting techniques, and the
internal operation of NS-ARPA/1000. The Network Manager should use this manual in
conjunction with the NS-4RPA/1000 Generation and Initialization Manual. This manual may also
be used by advanced users to troubleshoot their applications.

91790-90040 NS-ARPA/1000 Quick Reference Guide

Lists and briefly describes the interactive and programmatic services described in the
NS-ARPA/1000 User/Programmer Reference Manual and the NS-ARPA/1000 DS/1000-1V
Compatible Services Reference Manual. The purpose of this guide is to provide a quick reference
for users who are already familiar with the concepts and syntax presented in those two manuals.

The NS-ARPA/1000 Quick Reference Guide also contains abbreviated syntax for certain programs
and utilities described in the NS-ARPA/1000 Generation and Initialization Manual and the
NS-ARPA/1000 Maintenance and Principles of Operation Manual. For your convenience, the
NS-ARPA/1000 Quick Reference Guide also contains a master index of NS-ARPA/1000 manuals.
This is a combined index from the NS-ARPA/1000 manuals to help you find information that may
be in more than one manual.

91790-90045 NS-ARPA/1000 Error Message and Recovery Manual

Lists and explains, in tabular form, all of the error codes and messages that can be generated by
NS-ARPA/1000. This manual should be consulted by programmers and users who will be writing
or maintaining programs for NS-ARPA/1000 systems. Because it contains error messages
generated by the NS-ARPA/1000 initialization program NSINIT and other network management
programs, it should be consulted by Network Managers.

91790-90054 File Server Reference Guide for NS-ARPA/1000 and ARPA/1000

Describes information on using and administering the HP 1000 file server, including runstring
parameters, files needed for configuration, troubleshooting guidelines, and error messages.

5958-8523 NS Message Formats Reference Manual

Describes data communication messages and headers passed between computer systems
communicating over Distributed System (DS) and Network Services (NS) links.

5958-8563 NS Cross-System NFT Reference Manual

Provides cross-system NFT information. It is a generic manual that is a secondary reference
source for programmers and operators who will be using NFT on NS-ARPA/1000, NS3000/V,
NS3000/XL, NS/9000, NS for the DEC VAX* computer, and PC (PC NFT on HP OfficeShare
Network). Information provided in this manual includes file name and login syntax at all of the
systems on which NS NFT is implemented, a brief description of the file systems used by each of
these computers, and end-to-end mapping information for each supported source/target
configuration.

“DEC and VAX are U.S. registered trademarks of Digital Equipment Corporation.

Guide to ARPA/1000 Manuals

The following are brief descriptions of the manuals included with the ARPA/1000 product.

91790-90060 BSD IPC Reference Manual for NS-ARPA/1000 and ARPA/1000

Describes Berkeley Software Distribution Interprocess Communication (BSD IPC) on the
HP 1000. BSD IPC on the HP 1000 offers a programmatic interface on the HP 1000 for
multi-vendor connectivity to systems that offers BSD IPC 4.3.

98170-90001 ARPA/1000 Node Manager’s Manual

Provides the information required to configure, generate, initialize, and maintain HP 1000 nodes
in an ARPA network. The Network Manager should use this manual in conjunction with the
ARPA/1000 User’s Manual, part number 98170-90002, which describes the ARPA Services
supported on the HP 1000.

98170-90002 ARPA/1000 User’s Manual

Describes the user-level services provided by ARPA/1000. The ARPA services are TELNET and
FTP. Because these are interactive and programmatic services, this manual is intended for
interactive users as well as programmers. This manual also contains the error messages you
might encounter when using ARPA/1000.

91790-90054 File Server Reference Guide for NS-ARPA/1000 and ARPA/1000

Describes information on using and administering the HP 1000 file server, including runstring
parameters, files needed for configuration, troubleshooting guidelines, and error messages.

Conventions Used in this Manual

NOTATION DESCRIPTION

nonitalics Words in syntax statements that are not in italics must be entered exactly
as shown. Punctuation characters other than brackets, braces, and ellipses
must also be entered exactly as shown. For example:

EXIT;

italics Words in syntax statements that are in italics denote a parameter that
must be replaced by a user-supplied variable. For example:

CLOSE filename

[] An element inside brackets in a syntax statement is optional. Several
elements stacked inside brackets means the user may select any one or
none of these elements. For example:

I:‘;‘:l User may select A or B or neither.

{ } When several elements are stacked within braces in a syntax statement,
the user must select one of those elements. For example:

A
{B} User must select A or B or C.
C

A horizontal ellipsis in a syntax statement indicates that a previous
element may be repeated. For example:

[, itemname] . ..;

In addition, vertical and horizontal ellipses may be used in examples to
indicate that portions of the example have been omitted.

, A shaded delimiter preceding a parameter in a syntax statement indicates
that the delimiter must be supplied whenever (a) that parameter is
included or (b) that parameter is omitted and any other parameter that
follows is included. For example:

itema [, itemb] [, itemc]
means that the following are allowed:

itema

itema, itemb
itema, itemb, itemc
itema, , itemc

underlining

—

CONTROLfchar

When necessary for clarity, the symbol A may be used in a syntax
statement to indicate a required blank or an exact number of blanks. For
example:

SET [(modifier)]A(variable) ;

When necessary for clarity in an example, user input may be underlined.
For example:

NEW NAME? ALPHA

Brackets, braces or ellipses appearing in syntax or format statements that
must be entered as shown will be underlined. For example:

LET var|[[subscript]] = value

Output and input/output parameters are underlined. A notation in the
description of each parameter distinguishes input/output from output
parameters. For example:

CREATE (parml,parm2,flags,error)

The symbol : may be used to indicate a key on the terminal’s
keyboard. For example, indicates the carriage return key.

Control characters are indicated by followed by the character.
For example, [CONTROLJY means the user presses the control key and the
character Y simultaneously.

10

Table of Contents

Chapter 1
Introduction
Multi-Vendor Connectivitiesoou ettt et e 1-2
Chapter 2
BSD IPC Concepts
SOCK S o .ttt 2-1
Transport Layer Protocols o i 2-2
TP e 2-2
U P L 2-2
Stream SOCKELS oo 2-2
Address Bindingoo i 2-3
The Client-Server Model 2-3
Establishing @ CONnection ittt e e 2-5
Sending and Receiving Data Over a Connection, 2-9
Terminating the Connectionottt 2-10
Chapter 3
Using BSD IPC
Preparing Socket AdAressesiiiiiii i e 3-2
Declaring an Address Variable (Sockaddr in) oo, 3-3
G SyntaX . .ttt 3-4
Pascal Syntax e 3-4
FORTRAN SyNtaxoouinititt ittt i 3-5
Getting the Port Number for the Desired Service 3-5
Assigning the IP Address for the Server i i 3-6
Getting the Remote Host’s Internet Address, 3-7
Setup for the Servero e 3-7
Setting Up a Socket AdAressovuitn it e e 3-8
Creating @ SOCKEtot 3-8
Binding an Address to a Socket 3-8
Setting Up a Listen Queue (Stream Sockets Only) 3-9
Accepting a Connection (Stream Sockets Only) oo, 3-9
Setup for the CLent e e e e 3-10
Setting Up the Socket Address ...t i 3-10
Creating a SOCKet ot e 3-11
Binding an Address to a Socket (Datagram Sockets Only) 3-11
Requesting a Connection (Stream Sockets Only) 3-11
Sending and Receiving Data — Stream Sockets i .. 3-12
Sending Data — Stream Sockets 3-12
Receiving Data — Stream Socketst 3-13
Sending and Receiving Vectored Data — Stream Sockets 3-13
Sending and Receiving Data — Datagram Sockets, 3-14
Sending Data — Datagram Socketst 3-14
Receiving Data — Datagram Socketsc.oo i, 3-14
Closing the CONNECtiONttt e e e 3-15
Working with Pointers in Pascal and FORTRAN 3-16

11

Byte AdrOf() Function o e 3-16

AddressOf() Functionot 3-16
EXample: .. 3-16
Data Types in C, Pascal, FORTRAN e 3-17
BSD IPC Header Files o e 3-18
Libraries for Linking BSD IPC Programs 3-18
Errno and Errno Returns 3-19
For C Programmerso ottt it 3-19
For Pascal Programmers ittt 3-19
For FORTRAN Programmersieuiniinineinenennenennenns 3-19
Scheduling BSD IPC Programsc.iiniiiii it 3-20
Remote HP 1000 BSD IPC Processot 3-20
Remote HP-UX and UNIX BSD IPC Processcoooiiiiiinienn... 3-21
Remote PCBSD IPC Processt e 3-21
Chapter 4
BSD IPC Calls
ACCEPL() oottt 4-3
DINA() .« e ettt 4-6
o0 018 S 1 () P 4-8
(3011 () PSP 4-11
ZEtSOCKOPT() .« v vttt 4-13
HISTEI() - v ettt et e 4-16
TECV()+t e ettt e e e e e e e e e 4-18
TECVITOMI() oottt e e 4-21
TEOVINSE() « e vttt e ettt e e e e e e e e e e e e e 4-23
TEOVINMSE() + e vttt et e ettt e e e e e e e e e e 4-23
SCLECE() « v vt ettt e 4-27
SEIA() + ettt e e 4-31
SEIA() + ettt e e e e 4-31
SEIAMSE() .+ o v vttt et e 4-34
SENAMSE() o e vttt et e 4-34
SEIALO() - vt ettt e 4-38
SEESOCKOPL() + v ettt et et 4-40
ShUtdOWN() oo o 4-43
SOCKEE() - ettt ettt e 4-45
Chapter 5
HP 1000 BSD IPC Utilities
Special ConsSiderations uutunt ittt e e 5-1
Releasing Dynamically Allocated Memory, 5-1
eNANOSTENT() . ..ottt 5-8
ENANELENE() . o\ttt et 5-9
ENAPTOLOCTIL() & v v ettt et et e e e e e e e e e e e e 5-10
ENASETVENL() .« . vttt ettt ettt e e e e e e e e e e e 5-11
gethostbyaddr()t 5-12
gethostbyname()ot 5-14
ZethOSTENL() ..ottt 5-16
getlocalNname()ttt 5-18
getnetbyaddr() e 5-19
etnetbyname()t 5-21
GEINEIENT() .« .ottt ettt et e e e e e e e 5-23
CEPEEINAME() . .ottt t ettt ettt e e e e e e e e e e e 5-25
CEtPrOtODYNAME() .+« o v vttt et ettt e e e e e e e e 5-26

12

getprotobynumMber() 5-28

ZEIPTOLOCIIL() . vttt ettt ettt et e e e e e e e e 5-30
ZELSEIVDYNAME() . o v vttt ettt e e e e e e 5-32
ZEtSETVDYPOTIT() . .ottt 5-34
ZEESETVEIIL() « . v vttt ettt e e e e e e e e e e e e e 5-36
ZetSOCKNAME() o vttt ittt et e 5-38
REONI() ..ttt 5-39
EOMS() - . oottt 5-40
INEt addr() ..ottt e 5-41
et Inaof()o 5-42
inet_makeaddr() 5-43
et NETOT() « o v vttt 5-44
INEt_NEIWOTK() - .ottt e e 5-45
0T A 1110 - 1) PSP 5-46
NEONI() ..ot 5-47
NEORS() « ettt et e 5-48
SEROSIENL() . o o vttt 5-49
SELNETEIL() .« o vttt ettt 5-50
SEEPTOLOCIIE() « « v v v e ettt et et e e et e e e e e e 5-51
SELSEIVETIE() o v v vttt e ettt e e e e e e e e e e e 5-52
Chapter 6
HP 1000 Socket Descriptor Utilities
FD_CLR() + et ettt e e e e e e e e e e e e e e e 6-2
FD _ISSET() vt vttt e e e e e e e e e 6-3
FD SET() .« ovtii et e e 6-4
FD _ZERO() . o ettt et e et e e e e e e e 6-5
Chapter 7
Advanced Topics
Setting and Getting Socket Optionsttt e e 7-1
NonBlocking I/O e 7-2
Appendix A
Example Programs
Example Server Programin C A-1
Example Client Program in C. i A-5
Example Server Program in Pascal i A-9
Example Client Programin Pascal i A-15
Example Server Program in FORTRAN i A-22
Example Client Program in FORTRAN i A-27
Example Server Load File A-33
Example Client Load File e e A-34
Appendix B
Database and Header Files
Database Files B-1
fete/hosts File B-2
Parameters ... B-2
Jete/metworks File oo B-4
Parameters B-4

13

fete/protocols Fileo B-6
Parameters B-6
Jete/services File oo B-8
Parameters B-8
BSD IPC Header Fileso. . i e B-10
Header Files for C Programmingottt B-10
<errno.h> Include File for C........ i B-11
<fentlLh> Include File for C i B-13
<inh>Include File for C....... B-14
<netdb.h> Include File for C i B-17
<socket.h> Include File for C i i, B-18
<types.h> Include File for C i B-22
Header Files for Pascal Programming i, B-24
Header File for FORTRAN Programming, B-35
Appendix C
Error Messages
Appendix D
Definition of Terms
Address Family Type o D-1
Internet Dot Notation i i e D-1
IP AdAresso D-2
IP Addresses, with Subnetting D-3
IP Addresses, ASSIZNINGouu ittt e e e e D-6
Port Number D-7
Socket AdAIesst D-8
SOCKEt TYPC oottt e D-8
List of lllustrations
Figure 2-1 A Process with a Socket Created oii... 2-1
Figure 2-2 A Socket with a Bound Address i, 2-3
Figure 2-3 Client-Server in a Pre-Connection State 2-6
Figure 2-4 Client-Server at Time of Connection Request 2-7
Figure 2-5 Client-Server When Connection is Established 2-8
Figure 2-6 Data Transfer Between Two BSD IPC Processes 2-9
Figure 2-7 Terminating a BSD IPC Connection, 2-10
Figure 3-1 Direct Assignment of Port Number (C Programming Example) 3-5
Figure 3-2 Port Number Assignment with getservbyname()
(C Programming Example) i 3-6
Figure 4-1 BSD IPC Calls—Summary Flowchart 4-2
Figure 4-2 Vectored Data 4-24
Figure 4-3 Vectored Data 4-35
Figure B-1 Template /etc/hosts File i B-3
Figure B-2 Template /etc/networks File i L B-5
Figure B-3 Template /etc/protocols File i, B-7
Figure B-4 Template /etc/services File i .. B-9
Figure D-1 Subnetted Network Example D-6

14

Table 1-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 4-1
Table 5-1
Table 6-1
Table B-1
Table D-1
Table D-2

Tables

Supported BSD IPC Connectivities on the HP 1000 1-2
Building a BSD IPC Connectioncoiiiiiini... 3-1
Using Datagram Socketsttt 3-2
Data Types in C, Pascal, and FORTRAN 3-17
BSD IPCHeader Files i, 3-18
Building a BSD IPC Connectionc..ooiiiniinnennenn.... 4-1
Berkeley Socket Utilitiesoovt i 5-6
Berkeley Socket Descriptor Utilitiesccoooiiiiinen. .. 6-1
Header Files for C Programming B-10
IP Address CIassesoovvii it D-3
Subnet Addressing Example i D-4

15

Introduction

This manual describes the HP 1000 implementation of 4.3 Berkeley Software Distribution
Interprocess Communication (BSD IPC). BSD IPC is a set of programming development tools
for interprocess communication, originally developed by the University of California at Berkeley
(UCB).

BSD IPC allows you to create distributed applications that pass data between programs (on the
same computer or on separate computers on the network) by using a set of library calls. These
library calls, when used in the correct sequence, allow you to create communication endpoints
called sockets and transfer data between them.

The best examples of how BSD IPC can be used are the ARPA/Berkeley Services commonly used
on UNIX* systems. Using BSD IPC, you can write your own distributed application programs to
do a variety of tasks. For example, you can write distributed application programs to

e access a remote database
e access multiple computers at one time

e spread subtasks across several hosts

Note BSD IPC programs must be compiled with CDS on.

Multi-Vendor Connectivities

BSD IPC is offered as part of NS-ARPA/1000 and ARPA/1000, which provide the following
industry standard ARPA/Berkeley services: BSD IPC, TELNET, and FTP.

BSD IPC provides a programmatic interface for multi-vendor connectivities between the HP 1000
and other machines that support 4.3 BSD IPC. TELNET and FTP provide virtual terminal
connection and file transfer capabilities, respectively. TELNET and FTP are covered in the
NS-ARPA/1000 User/Programmer Reference Manual and the ARPA/1000 User’s Manual.

*UNIX® is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

Introduction 1-1

BSD IPC Concepts

This section provides definitions of terms and concepts used in HP 1000 BSD IPC.

Sockets

BSD IPC processes communicate with each other via sockets. Sockets are local data structures
with associated resources used for interprocess communication. Sockets are analogous to Class
Numbers on the RTE-A system, allowing different processes to exchange data. These processes
may reside on the same machine or on two different machines.

Sockets are communication endpoints. A pair of connected sockets sets up communication
between two processes.

The socket () call is used to create a socket. The call returns a socket descriptor, which is used to
identify the socket and is used in all subsequent socket-related BSD IPC calls. Socket descriptors
are usually small integers.

Each socket has an assigned socket structure which is used to store data on the socket; such as the
socket type, socket options, socket error conditions, and so on.

Process

so_type

so_options

socket
structure

Figure 2-1. A Process with a Socket Created

BSD IPC Concepts 2-1

Transport Layer Protocols

There are two Internet transport layer protocols that can be used with BSD IPC. They are TCP,
which implements stream sockets, and UDP, which implements datagram sockets.

TCP

The Transmission Control Protocol (TCP) provides the underlying communication support for
stream sockets. TCP is used to implement reliable, sequenced, flow-controlled, two-way
communication based on byte streams.

With stream sockets, there are no end-of-message or end-of-data markers. This means that data
received by an individual receiving call may not be equivalent to data sent by an individual sending
call. In fact, the data received may contain part of the data or a multiple set of data sent by
multiple sending calls. Although no attempt is made to preserve boundaries between data sent at
different times, the data received will always be in the correct order (that is, in the order that it
was sent).

UDP

The User Datagram Protocol (UDP) provides the underlying communication support for
datagram sockets. UDP is an unreliable protocol. A process receiving messages on a datagram
socket could find messages duplicated, out-of-sequence, or missing. Messages retain their record
boundaries and are sent as individually addressed packets. UDP does not employ the concept of a
connection between the communicating sockets.

Stream Sockets

Data transfer between an HP 1000 BSD IPC process and another BSD IPC process is in stream
mode. In stream mode, data is transmitted in a stream of bytes; there are no end-of-message or
end-of-data markers. This means that data received by an individual receiving call may not be
equivalent to data sent by an individual sending call. In fact, the data received may contain part of
the data or a multiple set of data sent by multiple sending calls. Although no attempt is made to
preserve boundaries between data sent at different times, the data received will always be in the
correct order (e.g., in the order that it was sent).

You may specify the maximum number of bytes that you are willing to send or receive through a
parameter in the sending and receiving calls. For more information about manipulating the length
of data sent and received, refer to the send () and recv () calls in Section 4, “BSD IPC Calls.”

Stream mode adheres to the Transport Layer’s Transmission Control Protocol (TCP).

2-2 BSD IPC Concepts

Address Binding

Before a socket can be accessed across the network, it must be bound to an address. The bind ()
call is used to establish a socket’s unique address. The address bound to a socket consists of the
following fields:

® Socket address family type; e.g., the Internet (AF_INET) address family.

The socket address family type defines the address format to be used for the socket. HP 1000
BSD IPC only supports the Internet (AF_INET) address family type which uses an address
format of 16 bytes.

o Port number of the service used.

Each service on your system has an assigned port number, stored in the /etc/services
file. The port number allows you to specify the service used by your process.

e [nternet (IP) address of the host.

The IP address distinguishes your node from other nodes on the network.

For more information about socket addresses and the fields in these addresses, refer to “Preparing
Socket Addresses” in Section 3. The /etc/services file is covered in Appendix B.

Process
AF_INET
////////;ort Number
bound & IP Address
socket

socket
structure

Figure 2-2. A Socket with a Bound Address

The Client-Server Model

Typical BSD IPC applications consist of two separate processes; one process (the client) requests a
connection and the other process (the server) accepts it.

The server process creates a socket, binds an address to it, and sets up a mechanism, called a /listen
queue, for receiving connection requests.

The client process creates a socket and requests a connection to the server.

BSD IPC Concepts 2-3

Once the server receives a connection request from the client, it creates another socket with all the
same characteristics as the original server socket and establishes connection between the new
server socket and the client socket. The original server socket continues to listen for more
connection requests.

After a connection is established between the server and client, full-duplex (two-way)
communication can occur between the two sockets, in a peer-to-peer manner. The distinction
between client and server processes ceases to exist. Either process can send and receive data, and
shut down the connection.

The next subsection shows the steps of the Client-Server Model in establishing connection.

2-4 BSD IPC Concepts

Establishing a Connection

The following steps are used to establish connection between two BSD IPC processes.

1.

N

® Ny kW

The server creates a socket using the socket () call.

The server binds an address to the newly-created socket with the bind () call.

The server issues a 1isten () call to build a listen queue for the socket.

The server issues an accept () call and waits for a connection request from the client.
The client creates a socket using the socket () call.

The client requests connection to the specified server with a connect () call.

The server receives the connection request in the listen queue.

The server unblocks when it receives a connection request from the client process. The
accept () call creates a new socket for the connection and returns the socket descriptor for
the new socket.

The server establishes a connection to the client with the new socket that has all the
characteristics of the original socket. Connection between the client and server has been
established, and both processes can send and receive data as equal peers.

10. The original server socket continues to listen for more connection requests.

The following figures provide conceptual views of the client-server model at three different stages
of establishing a connection. The steps that have been accomplished at each stage are listed below
each figure.

BSD IPC Concepts 2-5

2-6

Client

socket
structure

Socket
A

5. Client creates a socket.

Server

bound
socket B

listen
queue |-

socket
structure

Socket
B

Server creates a socket.
Server binds an address to
its socket.
Server sets up the listen
qgueue.
Server waits for connection
requests.

Figure 2-3. Client-Server in a Pre-Connection State

BSD IPC Concepts

bound
socket A
T - ‘c?n.nectiorl
req,Jest T - -
socket
structure
Socket
A

Client makes a connection 7.

request

Client

Server

bound &
listening
socket B

b

listen
queue [—T-
socket
structure
Socket
B

Server receives the
connection request in the
listen queue.

Figure 2-4. Client-Server at Time of Connection Request

BSD IPC Concepts

2-7

Client Server

bound
socket C

bound &

socket

bound structure 118tenlng
socket A socket B
listen
queue [—T
socket socket
structure structure
Socket Socket
A c

8. Server accepts the connection
request.

9. Server establishes a connection
to the client with a new server
socket that has all the
characteristics of the original
socket.

10. Original server socket continues
to listen for more connection
requests.

Figure 2-5. Client-Server When Connection is Established

2-8 BSD IPC Concepts

Sending and Receiving Data Over a Connection

Once connection is established between the client and server processes, both processes can send
and receive data as equal peers. The send () call is used to send data, and the recv () call is
used to receive data.

Depending on the need of your application, you can determine the pattern of data flow between
the client and server processes.

For the following figure, note that Process A and Process B can be either the client or server
process.

Process A Process B
bound bound
socket socket

dat
< — >
transfer
socket socket
structure structure

~

* Sends data with send (* Receives data with recv ().

Figure 2-6. Data Transfer Between Two BSD IPC Processes

BSD IPC Concepts

2-9

Terminating the Connection

Either the client or the server can terminate the connection.

The shutdown () call closes a socket and shuts down the connection gracefully. This means that
the application process need not worry about loss of data within the network. The transport
protocol will deliver all the data to the receiver, even when the sender socket has already been
shutdown.

The best way to end a session without losing data is summarized below:

1. With the send () call, the sending side sends an “I am finished” message. This message is
defined by the application designer.

2. The receiving side reads this “I am finished” message with the recv () call. It finishes up any
unfinished tasks (e.g., sends remaining data).

3. The receiving side sends a “I am finished” message and shuts down its socket with the
shutdown () call.

4. The sending side receives the “I am finished” message.
5. The sending side frees its socket resources by issuing a shutdown () call.

When a process terminates, all its open sockets are closed.

The following figure illustrates the steps for terminating a connection. Note that Process A and
Process B can be either the client or server.

Process A Process B
bound bound
socket socket

connection

‘(/// shutdown.\\\\‘

socket socket
structure structure
Socket Socket
A B
1. Sends “I am finished”. —_———> 2. Receivesg “I am finished”.
Finishes up.
<———— 3. Sends “I am finished”.
4. Receives “I am finished” Issues shutdown () .
notification.

5. 1Issues shutdown ().

Figure 2-7. Terminating a BSD IPC Connection

2-10 BSD IPC Concepts

Using BSD IPC

This section describes the steps involved in using BSD IPC on the HP 1000. The following topics
are covered in this section.

Preparing Socket Addresses for the Server and Client

Establishing Connection for the Server
Establishing Connection for the Client
Sending and Receiving Data

Terminating the Connection

Working with Pointers in Pascal and FORTRAN
Data Types for Programming in C, Pascal, and FORTRAN

BSD IPC Header Files
Libraries for Linking BSD IPC Programs
Errno and errno Returns

Scheduling BSD IPC Programs

Table 3-1 lists the calls involved in creating, using, and terminating a BSD IPC connection with
stream sockets, and Table 3-2 lists the calls used for datagram sockets.

Table 3-1. Building a BSD IPC Connection

Server Process

Client Process

1. socket () creates a socket 1. socket () creates a socket
2. bind () binds an address (See note below) 2. bind () binds an address (See note below)
3. listen() sets up a listen queue
4. accept () waits & accepts a connection
5. connect () requests a connection

6. send () sends data 6. send () sends data

recv () receives data recv () receives data

sendmsg () sends vectored data sendmsg () sends vectored data

recvmsg () receives vectored data recvmsg () receives vectored data
7. shutdown () shuts down a connection 7. shutdown () shuts down a connection

Note: bind () is necessary only if the application process wants to bind its socket to a specific port number. Most server
processes would use bind () to bind a well-known port number to their socket so that client processes can access these server
sockets.

Using BSD IPC ~ 3-1

Usually, the server process is scheduled first. It creates a socket, binds an address to the socket,
sets up a listen queue, and waits for requests from client processes.

The client process creates a socket and requests connection to the server. Once the server accepts
the request, full-duplex connection is established between the two processes and the distinction
between client and server can cease to exist. Both peer processes can send and receive data, as
well as terminate the connection.

With datagram sockets there is no concept of a connection between the client and server
processes. A client initiates a transaction by sending a datagram to the server. Both processes can
send and receive datagrams to complete the transaction.

Table 3-2. Using Datagram Sockets

Server Process Client Process

1. socket () creates a socket 1. socket () creates a socket

2. bind () binds an address (See note below) 2. bind () binds an address (See note below)

3. recvfrom() waits and receives datagram

4. sendto () sends datagram

5. sendto () sends datagram 5. sendto () sends datagram
recvirom() receives datagram recvirom() receives datagram
6. shutdown () releases a socket 6. shutdown () releases a socket

Note: bind () is necessary only if the application process wants to bind its socket to a specific port number. Most server
processes would use bind () to bind a well-known port number to their socket so that client processes can access these server
sockets.

Preparing Socket Addresses

Before you can begin to create a connection, you need to establish the correct socket addresses.
For the server process, you need to set up a local socket address, which is then used in the

bind () call to bind the address to the local socket. For the client process, you need to set up a
socket address for the remote (server) process and use it in the connect () call, so as to specify
which server process to connect to.

BSD IPC uses an address variable type sockaddr in to store socket addresses. A socket
address consists of three fields:

e socket address family type (AF_INET)

e port number of service used

e [P address of the node
Preparing a socket address consists of the following steps:

e declaring an address variable (sockaddr in) suitable for storing a socket address

e getting the port number of the desired service

3-2 Using BSD IPC

e assigning an IP address (server only)

e getting the remote host’s IP address (client only)

These steps are covered here.

Declaring an Address Variable (Sockaddr_in)

Addressing information for both the client and server is contained in a variable of sockaddr in
type, which is an addressing variable used by the Internet family.

For C programming, sockaddr_in is a structure defined in the include file <in.h>. For Pascal
and FORTRAN, sockaddr_in is a record type defined in SOCKET . PAST and SOCKET.FTNI,

respectively.

sockaddr_in consists of the following fields which are used by BSD IPC:

sockaddr_ in

sin family

sin port
sin addr
sin zero

sin family

sin port

sin addr

sin zero

Specifies the address family. It must be set to AF INET, for Internet
address family.

The address family specifies which type of addressing format is used in the
socket addresses. AF_INET uses the sockaddr in address format.
Refer to “Address Family Type” in the Glossary for more information.

Specifies the port number of the service to be used by the process.

See the next subsection, “Getting the Port Number for the Desired
Service,” on how to obtain a port number for your BSD IPC process.

Specifies the Internet (IP) address. The IP address specifies the node on
which the process resides.

When you prepare a socket address for a server, you need to assign the 1P
address of the local host to this field.

On the client process, you need to assign the IP address of the peer (server)
process in this field to specify which server to connect to in the connect ()
call. Refer to “Getting the Remote Host’s Internet Address” later in this
section for more information.

Sin addr is actually a structure of type in addr.

Padding field. Reserved for future use.

The sockaddr in and in addr structures are shown here for C, Pascal, and FORTRAN

programming.

Using BSD IPC 3-3

C Syntax

struct sockaddr in ({

short sin family;
u_short sin port;

struct in addr sin_addr;
char sin zero([8];

Vi

struct in addr {
union {
struct { u char s bl,s b2,s b3,s b4;} S un b;
struct { u short s wl,s w2; } S un w;
u long S addr;
} S un;

}i

Pascal Syntax

sockaddr in = RECORD
CASE INTEGER OF
1 : (intl : int);
2 : (sin family : int;
sin port : int;
sin addr : 1in addr;
sin zero : PACKED ARRAY [1..8] of char
END;

in_addr = PACKED RECORD
CASE INTEGER OF

1 : (intl : int) ;

2 |
s bl : CHAR;
s b2 : CHAR;
s b3 : CHAR;
s b4 : CHAR;

3 ¢ (s wl : int;
s_ w2 : int);
4 : (S_addr : long);
END;

3-4 Using BSD IPC

FORTRAN Syntax

INTEGER SOCKADDR_IN(8)
INTEGER SIN FAMILY,SIN PORT
INTEGER*4 SIN ADDR

CHARACTER SIN ZERO* (8)

EQUIVALENCE (SOCKADDR IN(1),SIN FAMILY)
EQUIVALENCE (SOCKADDR IN(2),SIN PORT)
EQUIVALENCE (SOCKADDR IN(3),SIN ADDR)
EQUIVALENCE (SOCKADDR IN(5),SIN ZERO)

INTEGER IN ADDR(2)

INTEGER S _W1,S W2

INTEGER*4 S ADDR

EQUIVALENCE (IN ADDR(1),S W1,S ADDR)
EQUIVALENCE (IN ADDR(2),S _W2)

The server uses the sockaddr in address variable in its bind () call to bind an address to its
socket and in the accept () call to determine the address of the client.

The client process uses the sockaddr in address variable in the connect () call to specify
which server to connect to. The client process need not explicitly bind an address to its local
socket with the bind () call, because the connect () call binds a random address to the client
socket. To find out the assigned address, use get sockname () after the connect () call.

For more information on the bind () and connect () calls, refer to Section 4, “BSD IPC Calls.”
For information on the get sockname () utility, refer to Section 5, “BSD IPC Ultilities.”

Getting the Port Number for the Desired Service

The port number specifies which service is used by the process. Both the client and server
processes need to assign a port number as part of its socket address (see address variable
sockaddr_in in the previous subsection).

The port number may be hard coded and directly assigned to the socket address in the program.
(See Figure 3-1 below.) The other way is to get the port number of well-known services from the
database file called /etc/services by using the getservbyname () function, then assign the
returned port number to the socket address. (See Figure 3-2 below.)

#define SERVER PORT 1000 /* server port address */
struct sockaddr in myaddr; /* for local socket addr */

myaddr.sin port = SERVER_PORT;

Figure 3-1. Direct Assignment of Port Number (C Programming Example)

Using BSD IPC 3-5

struct sockaddr in myaddr; /* for local socket addr */

Sp = getservbyname (“example”, tcp);

if (sp==NULL)
fprintf (stderr, “%S:host not found”, argv[0]);
exit (1) ;

}

myaddr.sin port = sp->s port;

Figure 3-2. Port Number Assignment with getservbyname () (C Programming Example)

The getservbyname () call and its parameters are summarized below.

service = getservbyname (name, proto)
name Specify a valid service name.
proto Specify the transport protocol to be used. Use “tcp” or 0 if TCP is the only

protocol for the service.

service Output variable which contains the port number for the specified service.
The variable is defined as of the servent structure type, which has a field
called s port that contains the port number. Refer to the
getservbyname () call in Section 5, “BSD IPC Utilities” for more
information.

Note The /etc/services file contains a list of services and their corresponding
port numbers that are available on the system. If the service is not already in
/etc/services, you must add it. The /etc/services file should exist on
both the client and server hosts. For more information on /etc/services
refer to Appendix B, “Database and Header Files.”

Assigning the IP Address for the Server

The third field in the socket address is the IP address of the node. The IP address is assigned to
the sin addr field in the socket address.

For the server process, you may assign a specific local IP address or assign 0 to this field.
Assigning a specific local IP address means that this server process will listen on that TP
connection. Assigning a 0 means that the server process will listen on all network connections
coming through all its LAN cards.

3-6 Using BSD IPC

Getting the Remote Host’s Internet Address

The client process needs to set up a socket address for the peer (server) process. This socket
address is used in the connect () call to specify which server to connect to.

This socket address, therefore, should contain addressing information on the server process. In
order to get the server’s IP address, use gethostbyname () , which returns the IP address of a
given host name. You then assign this IP address to the IP address field in the socket address.

Gethostbyname () obtains the IP address of the given host from a database file called
/etc/hosts. For more information on /etc/hosts, refer to Appendix B, “Database and
Header Files.”

Gethostbyname () and its parameters are summarized here.

host = gethostbyname (name)
name Pointer to a character string containing a valid host’s name.
host Output variable which contains the IP address of the specified host’s name.

The variable is of the hostent structure type, which has a field called
h addr 1list that points to a list of IP addresses. Refer to
gethostbyname in Section 5, “BSD IPC Ultilities,” for more information.

The gethostbyname () function is used in the client process to get the remote host’s IP address,
which is then assigned to the socket address structure used for the peer (server) process. The
client process then uses this socket address in the connect () call to request connection to the
specified server.

Setup for the Server

This subsection discusses in detail the actions taken by a server process prior to exchanging data.
It discusses the calls the server executes and describes the parameters to these calls. Complete
information on each call can be found in Section 4, “BSD IPC Calls,” where the calls are discussed
in alphabetical order. Example server programs in C, Pascal, and FORTRAN are provided in
Appendix A, “Example Programs.”

In the simplest case, there are five steps that the server process must complete before exchanging
data with a client:

1. Set up the socket address for the server process. (Stream or datagram sockets.)
2. Create a socket with socket () . (Stream or datagram sockets.)

3. Bind the socket address set up in Step 1 to the new socket with bind (). (Stream or
datagram sockets.)

4. Add alisten queue to the socket with 1isten (). (Stream sockets only.)
5. Wait for an incoming request with accept () . (Stream sockets only.)

These steps are described below.

Using BSD IPC 3-7

Setting Up a Socket Address

You need to set up a socket address structure for the server process. Follow the steps here:

1. Declare an address variable of type sockaddr in.
2. Get the port number for the service provided by the server process.
3. Assign an IP address to the server process.

These steps were described in the previous subsection, “Preparing Socket Addresses.”

Creating a Socket

The server process must call socket () to create a BSD IPC socket. This must be done before
any other BSD IPC call is executed.

The socket () call and its parameters are described here.

socket = socket(af, type, protocol)
af Identifies the address family for the socket being created. It must be
AF_INET.
type Specifies the type of socket being created. It must be SOCK STREAM or

SOCK_DGRAM.

protocol Specifies the underlying protocol to be used. 0 causes the default protocol
to be used. The defaults are IPROTO_TCP for SOCK STREAM type and
IPROTO UDP for SOCK DGRAM type.

socket If the call completes successfully, socket contains the socket descriptor
for the newly-created socket. If the call encounters an error, -1 is returned
in socket, and errno contains the error code.

The socket descriptor returned by socket () references the newly-created socket. This
descriptor is used by subsequent BSD IPC calls to establish a connection.

Refer to the socket () call in Section 4, “BSD IPC Calls,” for more information.

Binding an Address to a Socket

After the server process has created a socket, the server must call bind () to associate a socket
address to the socket. Until an address is bound to the server socket, other processes have no way
to reference it.

The bind () call and its parameters are described here.

bind (socket, addr, addrlen)

socket Specifies the socket descriptor of the local socket.

3-8 Using BSD IPC

addr Specifies the socket address to be bound to the socket.

addrlen Specifies the length of the socket address. It is the size of variable
sockaddr_ in.

Refer to the bind () call in Section 4, “BSD IPC Calls,” for more information about binding a
socket address.

Setting Up a Listen Queue (Stream Sockets Only)

After the server process has an address bound to it, it must call 1isten () to set up a queue that
accepts incoming connection requests. The server cannot respond to a connection request until it
has executed 1isten ().

The 1isten () call and its parameters are described here.

listen (socket, backlog)

socket Specifies the socket descriptor of local socket.

backlog Specifies the maximum number of connection requests allowed in the
queue at any time. Further incoming connection requests are rejected.
Valid range: 1to 5.

Refer to the 1isten () call in Section 4, “BSD IPC Calls,” for more information.

Accepting a Connection (Stream Sockets Only)

The server can accept any connection requests that enters its queue after it executes 1isten () .
The server issues the accept () call and waits for a connection request. Accept () blocks until
there is a connection request from a client process in the queue. Accept () then creates a new
socket for the connection and returns the socket descriptor for the new socket. The new socket

e s created with the same properties as the old socket
e has the same local port number as the old socket
e is connected to the client process’ socket.

The accept () call and its parameters are described here.

newsocket = accept (socket, addr, addrlen)
socket Specifies the socket descriptor used in a previous listen () call.
addr Specifies the socket address structure to contain the socket address of the

client process.

addrlen Specifies the length of addr.

Using BSD IPC 3-9

newsocket New socket created by accept () . If the call encounters an error, -1 is
returned in newsocket, and errno contains the error code.

There is no way for the server process to indicate which requests it can accept. It must accept all
requests or none. Your server process can keep track of which process a connection is from by
examining the address returned by accept () . Once you have this address, you can use
gethostbyaddr () to get the host name. You can close down the connection if you do not want
the server process to communicate with that particular host or port.

There is an option for the server process to return immediately after it issues the accept () call if
there are no connection requests pending. Refer to “Nonblocking I/O” in Section 7, “Advanced
Topics.”

Setup for the Client

This section discusses in detail the actions taken by a client process prior to exchanging data with a
server process. It discusses the calls the client executes and describes the parameters to these
calls. Complete information about each call can be found in Section 4, “BSD IPC Calls,” where
the calls are arranged in alphabetical order.

The three steps that the client process must take are

1. Set up the socket address structure for the peer (server) process.
2. Create a socket with the socket () call.
3. Bind socket to an address. (Datagram sockets only.)

4. Make a connection request with the connect () call, using the address structure set up in
Step 1 to specify which server process to connect to. (Stream sockets only.)

These steps are described below.

Setting Up the Socket Address

You need to set up a socket address structure to specify the server process that you want to
connect to. To do so, follow the steps here:

1. Declare an address variable of type sockaddr in.
2. Specity the port number of the service with get servbyname () .
3. Get the server process’ host IP address with gethostbyname () .

These steps are described in detail in the previous subsection, “Preparing Socket Addresses.”

3-10 Using BSD IPC

Creating a Socket

Similar to the server process, the client process must also call socket () to create a BSD IPC
socket. The socket must be created before the client can request a connection to the server
process.

For a client process, the socket () call and its parameters are identical to those used by the
server process when it creates a socket. Refer to “Creating a Socket” for the server process earlier
in this section.

The socket descriptor for the newly-created socket should be used in the connect () call to
establish connection to the server and in subsequent data transmission.

Binding an Address to a Socket (Datagram Sockets Only)

After the server process has created a socket, the server must call bind () to associate a socket
address to the socket. Until an address is bound to the server socket, other processes have no way
to reference it.

The bind () call and its parameters are described here.

bind (socket, addr, addrlen)

socket Specifies the socket descriptor of the local socket.
addr Specifies the socket address to be bound to the socket.
addrlen Specifies the length of the socket address. It is the size of variable

sockaddr in.

Refer to the bind () call in Section 4, “BSD IPC Calls,” for more information about binding a
socket address.

Requesting a Connection (Stream Sockets Only)

The client process requests a connection to the server with the connect () call. The server must
be prepared to accept the connection—in other words, the server must have

e created a socket

e bound an address to the socket

e set up a listen queue

e issued an accept () call, waiting for a connection request.
The connect () call and its parameters are described below.

connect (socket, addr, addrlen)

socket Specifies the socket descriptor of local socket requesting a connection.

Using BSD IPC ~ 3-11

addr Specifies the socket address of the server socket to which the client wants to
connect.

addrlen Size of address structure addr.

Connect () initiates a connection and blocks if the connection is not ready, unless you are using
nonblocking I/O. (For information on nonblocking I/O, refer to Section 7, “Advanced Topics.”)
When the connection is ready, the client process completes its connect () call.

As soon as the connect () call returns, the client process can send data. Local client IP and port
number are bound when connect () is executed if you have not already bound them explicitly.
These address values are chosen by the local host. To get the assigned address, use
getsockname () .

Sending and Receiving Data — Stream Sockets

After the connect () and accept () calls are successfully executed, the connection is
established and data can be sent and received between the two socket endpoints.

Sending Data — Stream Sockets

The send () call is used to send data. Both the client and server socket can send data. The
send () call and its parameters are described here.

count = send (socket, buffer, len, flags)
count Number of bytes sent.
socket Socket descriptor of socket on which data will be sent.
buffer Buffer of data to be sent.
len Size of buffer, in bytes.
flags Optional flags. Currently, there are no flags supported on the HP 1000.

Send () blocks if there is no space available to hold the data to be sent, unless you are using
nonblocking I/O. (For information on nonblocking I/O, refer to Section 7, “Advanced Topics.”)

Refer to the send () call in Section 4, “BSD IPC Calls,” for more information about sending data.

3-12 Using BSD IPC

Receiving Data — Stream Sockets

The recv () call is used to receive data. Both client and server socket can receive data. The
recv () call and its parameters are described here.

count = recv (socket, buffer, len, flags)
count Number of bytes received.
socket Socket descriptor of socket from which data will be received.
buffer Buffer that is to receive data.
len Size of data buffer, in bytes.
flags Optional flags.

MSG_ PEEK copies data into buffer, but does not discard data afterwards.

Recv () blocks until there is at least one byte of data to be received, unless you are using
nonblocking I/O. (For information on nonblocking I/O, refer to Section 7, “Advanced Topics.”)
The host does not wait for 1en bytes of data to be available; if less than Ien bytes are available,
that number of bytes is received.

No more than len bytes of data are received. If there are more than 1en bytes of data on the
socket, the remaining bytes are received on the next recv () call.

Use the MSG_PEEK option to preview incoming data. If this option is set on a recv () call, any
data returned remains in the socket buffer as though it had not been read yet. The next recv ()
call returns the same data.

Refer to the recv () call in Section 4, “BSD IPC Calls,” for more information on receiving data.

Sending and Receiving Vectored Data — Stream Sockets

BSD IPC provides the sendmsg () call to send vectored data and the recvmsg () call to receive
vectored data. For more information on these two calls and on vectored data, refer to
recvmsg () and sendmsg () in Section 4, “BSD IPC Calls.”

Using BSD IPC 3-13

Sending and Receiving Data — Datagram Sockets

After the bind () call is successfully executed, data can be sent and received between the two
socket endpoints.

Sending Data — Datagram Sockets

The sendto () call is used to send datagrams. Both the client and server socket can send data.
The sendto () call and its parameters are described here.

count = sendto (socket, buffer, len, flags, addr, addrlen)
count Number of bytes sent.
socket Socket descriptor of socket on which data will be sent.
buffer Buffer of data to be sent.
len Size of buffer, in bytes.
flags Optional flags. Currently, there are no flags supported on the HP 1000.
addr Specifies the destination socket address for the data.
addrlen Size of address structure addr.

Refer to the sendto () call in Section 4, “BSD IPC Calls,” for more information about sending
data.

Receiving Data — Datagram Sockets

The recvErom () call is used to receive datagrams. Both client and server sockets can receive
data. The recvfrom() call and its parameters are described here.

count = recvirom (socket, buffer, len, flags, addr, addrlen)
count Number of bytes received.
socket Socket descriptor of socket from which data will be received.
buffer Buffer that is to receive data.
len Size of data buffer, in bytes.
flags Optional flag.

MSG_ PEEK copies data into buffer, but does not discard data afterwards.

addr Returns address of socket that sent datagram.
addrlen Size of address structure addr.

3-14 Using BSD IPC

Recvfrom () blocks I/O until there is a datagram to be received, unless you are using
nonblocking I/O. (For information on nonblocking I/O, refer to Section 7, “Advanced Topics”.)

No more than Ien bytes of data are received. If the datagram is longer than 1en bytes, the
remaining bytes are discarded.

Use the MSG PEEK option to preview incoming data. If this option is set on a recvfrom () call,
any data returned remains in the socket buffer as though it had not been read yet. The next
recvirom () call returns the same data.

Refer to the recvfrom () call in Section 4, “BSD IPC Calls,” for more information on receiving
data.

Closing the Connection

To terminate the connection between stream sockets, either the client or server process can use
the shutdown () call. The shutdown () call closes a socket and shuts down the connection. For
datagram sockets, the shutdown () call is used only to close the socket, not shut down the
connection.

The shutdown () call and its parameters are described here.

shutdown (socket, how)

socket The socket descriptor of the socket to be shut down.
how The type of shutdown to take place.

0 disallows any more receives on the socket.
1 disallows any more sends from the socket.
2 disallows any more sends and receives.

Using BSD IPC 3-15

Working with Pointers in Pascal and FORTRAN

BSD IPC uses C programming language semantics. Many of the parameters in the BSD IPC calls
use pointers to access data. Consequently, we provide two routines for Pascal and FORTRAN
users to handle pointers: ByteAdrOf () and AddressOf () .

ByteAdrOf() Function

The ByteAdrOf () function can be used to obtain the byte address of data objects that are
accessed by character pointers in C (char *variable).

The ByteAdrOf () routine has the following format:

ByteAdrOf (firstobjword, offset)
firstobjword Name of the first (16-bit) word of the data object.

offset Offset from the beginning of the data object. May be positive or negative.
(The first byte of a data object resides at offset zero.)

AddressOf() Function

The RTE-A routine AddressOf () can be used to obtain the addresses of data objects that are
accessed by pointers other than character pointers in C. The AddressOf () routine has the
following format:

AddressOf (firstobjword)
firstobjword Name of the first (16-bit) word of the data object.

Note The ByteAdrOf () and AddressOf () functions provide Pascal and
FORTRAN users the capability to pass an address where a pointer would be
used in the C-language.

Example:

C format:

getsockopt (socket, level, optname, optval, optlen)

int socket, level, optname;
char *optval;
int *optlen;

3-16 Using BSD IPC

Pascal and FORTRAN usage:

getsockopt (socket,
AddressOf (optlen))

level, optname,

ByteAdrOf (optval, offset)

Data Types in C, Pascal, FORTRAN

The syntax shown for BSD IPC calls uses C programming language syntax. The following table

provides the equivalent data types used for Pascal and FORTRAN. The data structures and
records are shown in full (with their fields) in the respective C, Pascal, and FORTRAN header
files provided in Appendix B, “Database and Header Files.”

Table 3-3. Data Types in C, Pascal, and FORTRAN

C Pascal FORTRAN
int —32768..32767 INTEGER
char CHAR CHARACTER
long INTEGER INTEGER*4
short —32768..32767 INTEGER*2
u_long INTEGER INTEGER*4
u_short 0...65535 INTEGER*2
fd_set fd_setType = RECORD INTEGER*4 FD_SETTYPE

struct sockaddr_in

sockaddr_in = RECORD

INTEGER SOCKADDR_IN(8)

struct in_addr

in_addr = PACKED RECORD

INTEGER IN_ADDR(2)

struct msghdr

msghdr = RECORD

INTEGER MSGHDR(6)

struct iovec

iovec = RECORD

INTEGER MSG_IOVEC

struct hostent

hostent = RECORD

INTEGER HOSTENT(5)

struct netent

netent = RECORD

INTEGER NETENT(5)

struct protoent

protoent = RECORD

INTEGER PROTOENT(3)

struct servent

servent = RECORD

INTEGER SERVENT(4)

struct timeval

timeval = RECORD

INTEGER*4 TIMEVAL(2)

struct fd_set

fd_setType = RECORD

INTEGER*4 FD_SETTYPE

Using BSD IPC

3-17

BSD IPC Header Files

Header files provide standard definition of macros and variables used in programming. BSD IPC
provides header files for C, Pascal, and FORTRAN. Information on header files is provided in
Appendix B, “Database and Header Files.”

Table 3-4 lists the header files that need to be included in the BSD IPC programs.

Table 3-4. BSD IPC Header Files

C Pascal FORTRAN
<types.h> SOCKET .PASI SOCKET .FTNI
<socket .h>
<in.h>
<netdb.h>
<fcntl.h>

Libraries for Linking BSD IPC Programs

HP 1000 NetIPC programs should be compiled and linked as CDS programs. Refer to the RTE-A
Programmer’s Reference Manual, part number 92077-90007, and RTE-A Link User’s Manual, part
number 92077-90035, for more information on CDS programs. After the program is linked, an
RTE executable file (type 6) is ready to be scheduled.

There are two sets of libraries to consider when linking BSD IPC programs:

e HpC.LIB. The HP 92078A Virtual Code+ (VC+) product provides a C support library
called HPC.LIB. During installation, it is copied to /LIBRARIES/HPC.LIB. Those users
who do not have a standard C library may use this library to link BSD IPC programs. Refer
to the subsection, “ERRNO and ERRNO Returns,” later in this section for information on
linking BSD IPC programs to resolve the errno variable.

® BIGNS CDS.LIB. The /LIBRARIES/BIGNS CDS.LIB library is created by merging other
libraries. This is usually done through the command file, INSTALL NS1000.CMD or
INSTALL ARPA.CMD.

For NS-ARPA/1000 only, note the following:
Because of an entry point conflict between the BSD IPC library and the RTE-MPE
backward compatible services library, only one of these libraries is merged to create
BIGNS CDS.LIB. If your BIGNS CDS.LIB is created with no RTE-MPE backward
compatible services access, then the BSD IPC library (BSD_CDS.LIB) is part of
BIGNS CDS.LIB. Refer to the “Building NS-ARPA Libraries” subsection in the
NS-ARPA/1000 Generation and Initialization Manual, part number 91790-90030, for
further explanation.

If your BIGNS CDS.LIB is created for RTE-MPE backward compatible services, you
will have to search BSD CDS.LIB first to resolve external references for BSD IPC.
Then search BIGNS CDS.LIB (which is the default and done automatically).

3-18 Using BSD IPC

Errno and Errno Returns

Errno is a standard error variable used in UNIX programming. For portability, the C library
(HPC.LIB) also returns error values in a global variable called errno. In order to resolve
references to this errno variable, programmers on the HP 1000 must perform the following steps:

For C Programmers
1. Put the following include file statement in the include section of the program.

#include <errno.hs>

2. Search the C library (either your own C library or HPC.LIB) during the linking phase.

For Pascal Programmers
1. Include the following compiler directive in the IMPORT section of the program or module.

SEARCH ’'errnodec.rel’ SERRNODEC

The relocatable errnodec.rel is provided with the product in the /NS1000/REL
directory. It is recommended that the network manager copy this file into a directory that is
in the standard search path of the SSEARCH directive. (Look at $SEARCH in the Pascal
manual for more information.)

2. In the linking phase to resolve the external reference for errno, do one of the following:

a. Relocate errnodec.rel along with the main program.

b. Search the C library (either your own C library or HPC.LIB).

For FORTRAN Programmers

1. In the linking phase to resolve the external reference for errno, do one of the following:

a. Relocate errnodec.rel along with the main program. Errnodec.rel isa
relocatable file provided with the product in the /NS1000/REL directory.

b. Search the C library (either your own C library or HPC.LIB).

Using BSD IPC 3-19

Scheduling BSD IPC Programs

BSD IPC itself does not include a call to schedule a peer process. The method used to schedule a
remote BSD IPC process depends on the types of systems involved. These methods are discussed
here.

Remote HP 1000 BSD IPC Process

There are at least six different ways (listed below) to schedule a remote HP 1000 BSD IPC process
from another HP 1000 node. A remote HP 1000 BSD IPC process must be ready to execute by
being an RTE type 6 file.

® Remote Process Management (RPM). NS-ARPA/1000 only. The RPMCreate call
programmatically schedules a program. RPM is an NS Common Service and is described in
the NS-ARPA/1000 User/Programmer Reference Manual, part number 91790-90020.

® Program-to-Program communication (PTOP). NS-ARPA/1000 only. The POPEN call
programmatically schedules a program. PTOP is a DS/1000-IV Compatible Service and is
described in the NS-ARPA/1000 DS/1000-1V Compatible Services Reference Manual, part
number 91790-90050.

o Distributed EXEC (DEXEC). NS-ARPA/1000 only. One of the DEXEC scheduling calls, such
as DEXEC9, 10, 12, 23, 24, programmatically schedules a program. DEXEC is a DS/1000-1V
Compatible Service and is described in the NS-ARPA/1000 DS/1000-1V Compatible Services
Reference Manual.

o REMAT. NS-ARPA/1000 only. The REMAT QU (queue schedule a program without wait)
command interactively schedules a program. REMAT is a DS/1000-IV Compatible Service
and is described in the NS-ARPA/1000 DS/1000-1V Compatible Services Reference Manual.

o TELNET virtual terminal. Logon remotely with TELNET and use the RTE X0 (schedule a
program without wait) command to interactively schedule a program. TELNET is an ARPA
Service and is described in the NS-ARPA/1000 User/Programmer Reference Manual and in the
ARPA/1000 User’s Manual.

o RTE WELCOME file. The WELCOME file can have RTE run commands to schedule
programs after system boot up. Refer to the RTE-A System Generation and Installation
Manual, part number 92077-90034, for information about booting up the RTE system and
about the WELCOME file.

You cannot use any of the above NS-ARPA and DS/1000-IV compatible services to schedule a
remote HP 1000 process from a non-HP 1000 node. These services are not provided with
cross-system support.

Remote HP 1000 processes that are to work with non-HP 1000 processes can be manually started
or can be programs that are started at system start up.

e To manually start up a BSD IPC program, simply logon to the HP 1000 system and run the
BSD IPC program with the RTE XQ (run program without wait) command.

e To have the BSD IPC program execute at system start up, put the RTE XQ command in the
WELCOME file.

3-20 Using BSD IPC

The XQ command is explained in the RTE-A User’s Manual, part number 92077-90002.

Remote HP-UX and UNIX BSD IPC Process

Remote HP 9000 processes can be manually started or can be scheduled by daemons that are
started at system start up. In HP-UX a daemon is a process that runs continuously and usually
performs system administrative tasks. Although a daemon runs continuously, it performs actions
upon an event happening or at designated times.

To manually start up a BSD IPC program, simply logon to the HP 9000 system and run the BSD
IPC program. HP recommends that you write a BSD IPC daemon to schedule your BSD IPC
programs. You can start the daemon at system start up by placing it in your /etc/netlinkrc
file. Refer to the HP 9000 LAN software installation documentation for more information about
this file and system start up.

Remote PC BSD IPC Process

To manually start up a PC BSD IPC program, enter the BSD IPC program name at the MS-DOS*
prompt.

To execute from within MS-Windows, copy the BSD IPC program files to your Windows directory
and double click with the mouse on the executable file.

*MS-DOS is a U.S. registered trademark of Microsoft Corporation.

Using BSD IPC 3-21

BSD IPC Calls

This section provides reference information on the BSD IPC calls. The calls are arranged in
alphabetical order for easy referencing. Table 4-1 lists the calls covered in this section. Figure 4-1
on the following page shows a summary flowchart of BSD IPC calls used by a server process and
client process.

Table 4-1. Building a BSD IPC Connection

BSD IPC Call Description
accept () Accepts a connection on a socket.
bind () Binds an address to a socket.
connect () Initiates a connection on a socket.
fentl () Provides socket option control.
getsockopt () Returns current socket options.
listen() Listens for a connection on a socket.
recv () Receives a message from a stream socket.
recvirom () Receives a message from a datagram socket.
recvmsg () Receives vectored data from a stream socket.
select () Provides synchronous socket 1/O multiplexing.
send () Sends message to a stream socket.
sendmsg () Sends vectored data to a stream socket.
sendto () Sends message to a datagram socket.
setsockopt () Sets socket options.
shutdown () Shuts down a socket.
socket () Creates a socket, an endpoint for communication.

Caution The command syntax shown in this section uses C programming syntax.
Table 3-3 in the previous section provides equivalent data types for Pascal and
FORTRAN programming.

BSD IPC Calls 4-1

BSD IPC Calls—Summary Flowchart

Server Client
socket () socket ()
bind ()
listen()
accept ()
(blocks until connection
request comes from client) v
connection request connect ()
<
connection establishment >
A\ 4 A\ 4
send () send ()
recv () < > recv ()
sendmsg () data transfer sendmsg ()
recvmsg () recvmsg ()
shutdown () shutdown ()

Figure 4-1. BSD IPC Calls—Summary Flowchart

4-2 BSD IPC Calls

accept()

Accepts a connection on a socket and creates a new socket. The call returns the new socket
descriptor. The accept () call is used by the server process to wait for and accept a connection
request from the client process. This call is used for stream sockets only.

Syntax
newsocket = accept (socket, addr, addrlen)
int newsocket, socket, *addrlen;
struct sockaddr in *addr;
Parameters
newsocket New socket descriptor created by accept (). If the call is successful, the
value returned is an integer equal to or greater than 0. If the call fails, it
returns -1.
socket Original socket descriptor, created by a previous socket () call.
addr Pointer to address structure. The address structure should be of
sockaddr in type, which is described in “Preparing Socket Addresses” in
Section 3.
On return, this structure contains the socket address of the client process
that is connected to the server’s new socket.
addrlen Pointer to an integer variable that contains the length, in bytes, of the

address structure specified by addr (e.g., length of structure
sockaddr_in, which is 16 bytes).

On return, addrlen contains the length, in bytes, of the actual client
socket address returned in addr.

Discussion

Accept () is used by the server to accept connection requests from client processes. A client
process requests a connection to the server process with the connect () call. These connection
requests are entered into the server’s listen queue. The server process can accept any connection
requests that enter its queue after it executes listen (). Accept () extracts the first connection
on the queue of pending connections, creates a new socket for the connection, and returns the
socket descriptor for the new socket. The new socket

e s created with the same properties as the old socket
e has the same bound port number as the old socket

e is connected to the client process’ socket

BSD IPC Calls 4-3

accept()

Accept () blocks until there is a connection request from a client process in the queue, unless
you are using nonblocking I/O.

If you are using nonblocking I/O and no pending connections are present on the queue,
accept () returns -1 in newsocket and errno contains an EAGAIN error. The original
socket, socket, remains open. It is possible to determine if a listening socket has pending
connection requests ready for an accept () call by using select () for reading. Refer to
select () for more information.

Nonblocking I/O is specified with the O NONBLOCK flag setting in the fcnt1 () call. Refer to
fentl () for more information. Nonblocking I/O is covered in Section 7 “Advanced Topics.”

There is no way for the server process to indicate which requests it can accept. It must accept all
requests or none. Your server process can keep track of which process a connection request is
from by examining the address returned by accept () . Once you have this address (e.g., the
addr parameter), you can use gethostbyaddr () to get the host name. You can close down the
connection if you do not want the server process to communicate with that particular client host or
port.

If the size of the client’s socket address is greater than the value of addrlen, then only the first
addrlen bytes of the client’s address will be returned in the socket address structure pointed by
addr.

HP 1000 Specific Information

BSD IPC uses C programming semantics. Many of the parameters in the BSD IPC calls use
pointers to variables. Consequently, two routines are provided for Pascal and FORTRAN users to
handle pointers.

e The ByteAdrOf () function can be used to obtain the byte address of data objects that are
accessed by character pointers in C (that is, char *variable).

e The RTE-A routine AddressOf () is used to obtain the address of data objects that are
accessed by pointers other than character pointers (e.g., int *variable).

Use the AddressOf () function to obtain the addr and addrlen pointers.

Refer to “Working With Pointers in Pascal and FORTRAN” in Section 3 for more information on
pointers.

4-4 BSD IPC Calls

Error Returns

accept()

If accept () returns -1 in newsocket, the call has failed. The global variable errno provides
information on the cause of the call’s failure. The following table lists possible error returns from

the accept () call.

Error Mnemonic Meaning

[EINTERR] This error requires HP notification.

[EAGAIN] Nonblocking /O is enabled and no connection is
present to be accepted.

[EINVAL] One of the following occurred:

The value of addrlen is less than zero.

The socket was not created by the socket () call;
thus, it is not of the Berkeley Socket type.

The socket has already been shutdown.

The socket is not ready to accept connections yet. A
listen () call must be done before an accept () call.

[EMFILE] The maximum number of socket descriptors for this
process are already currently open.

[ENOTSOCK] The socket descriptor, socket, is not a valid socket
descriptor.

[EOPNOTSUPP] The socket descriptor, socket, is not a valid listen
socket.

[ENOBUFS] No buffer space is available. The accept () call
cannot be completed. The queued socket’s
connect () request is aborted.

[EHOSTDOWN] The network software on the local host is not running.

BSD IPC Calls

4-5

bind ()

Binds the specified socket address to the socket.

Syntax
result = bind(socket, addr, addrlen)
int result, socket, addrlen;

struct sockaddr in *addr;

Parameters

result 0 if bind () is successful.
-1 if a failure occurs.

socket Socket descriptor of a local socket.

addr Pointer to socket address structure that is to be bound to socket.
The socket address should use a structure of sockaddr_ in type, which is
described in “Preparing Socket Addresses” in Section 3.

addrlen Length (in bytes) of the socket address structure (e.g., size of structure

sockaddr in, which is 16 bytes). Addr should be at least 16 bytes.

Discussion

Bind () assigns the address specified in addr to the specified socket, socket.

Set up the address structure with a local address before you make the bind () call. The address
structure should be of type sockaddr in. For more information on setting up a socket address,
refer to “Preparing Socket Addresses” in Section 3.

The socket address contains three addressing fields:

e The address family type.
e The server’s port number.
e The server’s IP address. (The IP address field is currently ignored by the bind call.)

The address family type should be AF_INET.

If the port number field (sin port) in the socket address structure is defaulted to 0, the system
will assign a unique port number for the socket. Port numbers from 1 to 1023 are reserved for
SUpETUSETS.

Caution For stream sockets, the client process need not explicitly bind an address to its
local socket with the bind () call, because the connect () call binds a random

4-6 BSD IPC Calls

bind ()

address to the client socket. To find out the assigned address, use getsock -
name () after the connect () call.

HP 1000 Specific Information

BSD IPC uses C programming semantics. Many of the parameters in the BSD IPC calls use
pointers to variables. Consequently, two routines are provided for Pascal and FORTRAN users to
handle pointers.

e The ByteAdrOf () function can be used to obtain the byte address of data objects which are
accessed by character pointers in C (that is, char *variable).

e The RTE-A routine AddressOf () is used to obtain the address of data objects which are
accessed by pointers other than character pointers.

Use the AddressOf () function to obtain the addr pointer.

Refer to “Working With Pointers in Pascal and FORTRAN” in Section 3 for more information on
pointers.

Error Returns

If bind () returns -1, the call has failed. The global variable errno provides information on the
cause of the call’s failure. The following table lists possible error returns from the bind () call.

Error Mnemonic Meaning
[EINTERR] This error requires HP notification.
[EINVAL] The socket is already bound to an address, the socket has

been shut down, addrlen is an invalid value, or socket is not
a Berkeley socket.

[ENOTSOCK] The socket descriptor, socket, is not a valid socket
descriptor.

[EOPNOTSUPP] The socket is not of a type that supports address binding.

[EAFNOSUPPORT] Requested address does not match the address family of this
socket.

[EADDRINUSE] The specified address is already in use. Use the

SO _REUSEADDR option in setsockopt () to force binding of
the socket to the specified address.

[EADDRNOTAVAIL] |The specified address is invalid or not available from the local
machine, or it is a reserved port available only to superusers.

[EHOSTDOWN] The network software on the system is not running.

BSD IPC Calls 4-7

connect()

Initiates a connection request on a socket. This call is issued by the client process to connect to a
specified server process. The connect () call is used for stream sockets only.

Syntax
result = connect (socket, addr, addrlen)
int result, socket, addrlen;

struct sockaddr in *addr;

Parameters

result 0 if connect () is successful.
-1 if a failure occurs.

socket Socket descriptor of a local socket requesting a connection.

addr Pointer to a structure containing the socket address of the remote (server)
socket to which the connection is to be established. The socket address
should be of sockaddr in type, which is described in “Preparing Socket
Addresses” in Section 3.

addrlen Length, in bytes, of the address structure specified by addr (e.g., length of
structure sockaddr_in, which is 16 bytes). Addrlen should be at least
16 bytes.

Discussion

The connect () call normally blocks until the connection completes, unless nonblocking mode is
enabled.

In nonblocking mode if the connection cannot be completed immediately, connect () returns an
EINPROGRESS error. In this case, the select () call can be used on the socket to determine if
the connection has completed by selecting it for write. Refer to the select () call for more
information.

Nonblocking mode is enabled by setting the O NONBLOCK flag in the fcnt1l () call. For more
information on nonblocking I/O, refer to Section 7, “Advanced Topics.”

If the client socket does not already have a socket address bound to it, the connect () call will
bind a random address to the client socket. To find the assigned address, use get sockname ()
after the connect () call.

Each connection between a client and server process is uniquely identified by the following
5-tuples: <domain, client TCP port address, client IP address, server TCP port address, server 1P
address>. If there is already a connection on the client system that is a duplicate of the one just
requested, then the connect () call will return an EADDRINUSE error. This is because BSD IPC

4-8 BSD IPC Calls

connect()

does not allow duplicate connections between two pairs of client-server sockets with the same
socket addresses. There will be no way to differentiate these two associations.

HP 1000 Specific Information

Although the user has already been allocated a socket, via the socket () call, an EMFILE error
indicating that there are no sockets in the system for the process could be returned, because an
extra socket is needed for internal use during connection establishment.

BSD IPC uses C programming semantics. Many of the parameters in the BSD IPC calls use
pointers to variables. Consequently, two routines are provided for Pascal and FORTRAN users to
handle pointers.

e The ByteAdrOf () function can be used to obtain the byte address of data objects which are
accessed by character pointers in C (for example, char *variable).

e The RTE-A routine AddressOf () is used to obtain the address of data objects which are
accessed by pointers other than character pointers.

Use the AddressOf () function to obtain the addr pointer.

Refer to “Working With Pointers in Pascal and FORTRAN” in Section 3 for more information on
pointers.

Error Returns

If connect () returns -1, the call has failed. The global variable errno provides information on
the cause of the call’s failure. The following table lists possible error returns from the
connect () call

Error Mnemonic Meaning

[EINTERR] This error requires HP notification.

[EINVAL] The socket has already been shut down, has a 1isten ()
active on it, or is not a BSD IPC socket. Or, addrlenis a bad
value.

[EMFILE] The system limit of socket descriptors has been exceeded.
This could happen since sockets need to be created for
internal use.

[ENOTSOCK] socket is not a valid socket descriptor.

[EOPNOTSUPP] A connect () attempt was made on a socket type which
does not support this call.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used
with this socket.

[EADDRINUSE] The address is already in use.

[EADDRNOTAVAIL] [The specified address is not a valid server port address.

[ENOBUFS] No buffer space is available. The connect () call has failed.

BSD IPC Calls 4-9

connect()

4-10

Error Mnemonic

Meaning

[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without establishing a
connection. Backlog on the server may be full.

[ECONNREFUSED] The attempt to connect was rejected by the server.

[EINPROGRESS] Nonblocking /O is enabled using 0 NONBLOCK and the

connection has been initiated. This is not a failure. Use
select () to find out when the connection is complete.

BSD IPC Calls

fentl()

Provides socket I/O control. Can be used to set nonblocking I/O mode for the specified socket.

Syntax
result = fcntl (socket,
int socket, cmd;

long result, status;

Parameters

result

socket

cmd

status

cmd, status)

0if fentl () is successful.
-1 if a failure occurs.

Socket descriptor of a local socket.

Command to get or set socket status. The possible values for cmd are:

F_GETFL

F_SETFL

Get the socket status. The status value is returned in
status.

Set the status to value as specified in status. The only
status setting currently supported is O NONBLOCK.

Specify the socket status. It is a 32-bit data type, each bit of which
represents a characteristic of the socket. Setting and unsetting the bit in
this parameter sets or unsets the socket characteristic, respectively.

For F_SETFL, fcntl () sets the current status to the value specified in

status.

The currently supported value for status is:

0_NONBLOCK

This option designates the socket as nonblocking. A
request on a nonblocking socket that cannot complete
immediately returns to the caller and sets errno to
EAGAIN. This option affects the following calls:
accept (), connect (), recv (), recvfrom() , and
send (). In a nonblocking connect () call, the errno
value returned is set to EINPROGRESS instead of
EAGATIN.

BSD IPC Calls 4-11

fentl()

Discussion

Fcntl () is a function that returns the value in a 32-bit integer.

Fcentl () with F GETFL is used to get the current status of the socket. Fentl () with F_ SETFL
is used to set the status of the socket. The only status option currently supported on the

HP 1000 BSD IPC is nonblocking mode. Nonblocking mode specifies that the socket does not
block (wait) for an I/O event but returns immediately, with an error condition if the event cannot
complete. For more information on nonblocking mode, refer to Section 7, “Advanced Topics”.

Sockets are created in blocking mode by default.

Error Returns

If the fcntl () call is successful, it returns the settings of the requested flags in a 32-bit integer,
status. Ifit failed, it returns a -1. The global variable errno provides information on the
cause of the call’s failure. The following table lists possible error returns from the fcntl () call.

Error Mnemonic Meaning

[EINVAL] The specified socket is not a BSD IPC socket.
[ENOTSOCK] socket is not a valid socket descriptor.
[EOPNOTSUPP] An invalid cmd or status value was used.
[EHOSTDOWN] The network software is not running on the local host.

4-12 BSD IPC Calls

Returns status of current socket options.

Syntax

result =

int result,

getsockopt()

getsockopt (socket, level, optname, optval, optlen)

socket, level, optname;

char *optval;
int *optlen;

Parameters

result

socket

level

optname

0 if getsockopt () is successful.
-1 if a failure occurs.

Socket descriptor of a local socket.

The protocol level at which the socket option resides.

To specity “socket” level, Ievel should be SOL SOCKET.

To specity “TCP” level, 1evel should be IPPROTO_ TCP.

Socket option name.

The following options are supported for “socket” level (SOL_SOCKET)

options:

SO _KEEPALIVE

SO REUSEADDR

(Toggle option) Sets a timer for 90 minutes for
connected sockets. After 90 minutes expire, and if the
connection has been idle during this period,

SO _KEEPALIVE forces a transmission every 60 seconds
for up to 7 minutes, after which the idle connection is
shut down. In summary, SO KEEPALIVE allows an idle
period of 97 minutes before connection shutdown. If
this option is toggled off, an indefinite idle time is
allowed. This option is set by default.

(Toggle option) Allows local socket address reuse. This
allows multiple sockets to be bound to the same local
port address.

This option modifies the rules used by bind () to
validate local addresses. SO_REUSEADDR allows more
than one socket to be bound to the same port number at
the same time; however, it only allows one single socket
to be actively listening for connection requests on the
port number. The host will still check at connection
time to be sure any other socket with the same local

BSD IPC Calls 4-13

getsockopt()

address and local port does not have the same remote
address and remote port. Connect () fails if the
uniqueness requirement is violated.

SO_RCVBUF Returns the buffer size of a socket’s receive socket
buffer. The default buffer size is 4096 bytes. A stream
socket’s buffer size can be increased or decreased only
prior to establishing a connection.

SO_SNDBUF Returns the buffer size of a socket’s send socket buffer.
The default buffer size is 4096 bytes. A stream socket’s
buffer size can be increased or decreased only prior to
establishing a connection.

The following options are supported for “TCP” level (IPPROTO_TCP)
options:

TCP_MAXSEG Returns the maximum segment size in use for the socket.
The value for this option can only be examined, it cannot
be set. If the socket is not yet connected, TCP returns a
default size of 512 bytes.

TCP_NODELAY (Toggle option) Instructs TCP to send data as soon as it
receives it and to bypass the buffering algorithm that
tries to avoid numerous small packets from being sent to
the network.

optval Byte pointer to a variable into which an option value is returned. optval
returns a NULL if the option information is not of interest and not to be
passed to the calling process. Although optval is typed as (char *), the
value that it points to is not terminated by \ 0.

optlen Pointer to a variable containing the maximum number of bytes to be
returned by optval.

On return, it contains the actual number of bytes returned by optval.

Discussion

To get the status of current socket options, use getsockopt () . To set socket options, use
setsockopt () .

There are two kinds of socket options: boolean (toggle) options and non-boolean options.

Boolean options are options that can be set on or off. To determine whether or not a boolean
option is set, use getsockopt () with the desired option specified in optname. If the option is
set, getsockopt () returns without an error. If the boolean option is not set, get sockopt ()
returns -1 and errno is set to ENOPROTOOPT. The currently supported boolean options are:
SO _KEEPALIVE, SO _REUSEADDR, and TCP_NODELAY.

4-14 BSD IPC Calls

getsockopt()

Non-boolean options contain specific values. Non-boolean options use optval and optlen to
pass information. On return, the character array pointed to by optval contains the value of the
specified option or NULL if the option information is not of interest. Optlen points to an
integer that contains the actual number of bytes of option information in the character array
pointed to by optval.

HP 1000 Specific Information

The SO_LINGER option (available on HP-UX) is not provided on the HP 1000.

BSD IPC uses C programming semantics. Many of the parameters in the BSD IPC calls use
pointers to variables. Consequently, two routines are provided for Pascal and FORTRAN users to
handle pointers.

e The ByteAdrOf () function can be used to obtain the byte address of data objects that are
accessed by character pointers in C (that is, char *variable).

e The RTE-A routine AddressOf () is used to obtain the address of data objects that are
accessed by pointers other than character pointers.

Use the ByteAdrOf () function to obtain the optval pointer. Use the AddressOf () function
to obtain the optlen pointer.

Refer to “Working With Pointers in Pascal and FORTRAN” in Section 3 for more information on
pointers.

Error Returns

If the getsockopt () call fails, it returns a -1. The global variable errno provides information
on the cause of the call’s failure. The following table lists possible error returns from the
getsockopt () call

Error Mnemonic Meaning

[EINTERR] This error requires HP notification.

[EFAULT] The optval or optlen parameter is not valid.

[EINVAL] The specified option is unknown at the socket level or the

socket has been shut down, or the specified socket is not a
BSD IPC socket.

[ENOTSOCK] socket is not a valid socket.
[ENOPROTOOPT] The requested socket option is currently not set.
[EHOSTDOWN] The network software on the local host is not running.

BSD IPC Calls 4-15

listen()

Sets up a listen queue for the specified socket on the server process and listens for connection
requests. The 1isten () call is used for stream sockets only.

Syntax
result = listen(socket, backlog)

int result, socket, backlog;

Parameters

result 0if listen () is successful.
-1 if a failure occurs.

socket Socket descriptor of a local socket.

backlog Defines the maximum allowable length of the queue for pending
connections. The current valid range for backlogis 1 to 5. If any other
value is specified, the system automatically assigns the closest value within
range. If the queue is greater than the backlog, additional incoming
requests will be rejected.

Discussion

To accept connections, a socket is first created with the socket () call, a queue for incoming
connections is set up with the 1isten () call, and then connection is accepted with the
accept () call

If a socket has not been bound to a local port before the 1isten () call is invoked, the system
automatically binds a local port for the socket to listen on. You can find out the assigned port
number with the get sockname () utility. In this case, you must provide a way to notify this port
number to client processes so they can specify it in their connection request calls to the server.

Error Returns
If the 1isten () call is successful, it returns a 0. If it failed, it returns a -1. The global variable

errno provides information on the cause of the call’s failure. The following table lists possible
error returns from the listen () call.

4-16 BSD IPC Calls

listen()

Error Mnemonic Meaning

[EINTERR] This error requires HP notification.

[EINVAL] The socket has been shut down or is already connected, or it
is not a BSD IPC socket.

[EMFILE] Currently, there are no resources available.

[ENOTSOCK] socket is not a valid socket descriptor.

[EOPNOTSUPP] The socket is not of a type that supports the 1isten () call.
It is not a BSD IPC socket.

[EADDRINUSE] There is already another socket that is listening on the same
port address.

[EHOSTDOWN] The network software is not running on the local host.

BSD IPC Calls

4-17

recv()

Receives data from a socket. The recv () call may be used by both the server and client
processes. This call is used for stream sockets only.

Syntax

count= recv(socket, buffer, len, flags)

int count, socket, len;
char *buffer;

long flags;

Parameters

count Returns the number of bytes actually received.
Returns 0 if the remote process has gracefully shut down and there is no
more data in the receive buffer.
Returns -1 if the call encounters an error.

socket Socket descriptor of the local socket receiving data.

buffer Byte pointer to the data buffer.

len Maximum number of bytes that will be returned into the buffer referenced
by buffer. No more than Ien bytes of data are received. If there are
more than Ien bytes of data on the socket, the remaining bytes are
received on the next recv () .

flags Optional flag options. The currently supported values for f1ags are:
0 No option.
MSG_ PEEK Option to preview incoming data. If this option is set on

the recv () call, any data returned remains in the
socket buffer as though it had not been read yet. The
next recv () call returns the same data.

Discussion

The recv () calls may only be used after connection has been established between two processes.

There is no concept of message boundaries for HP 1000 BSD IPC sockets. Data is returned to the
user on the recv () call as soon as it becomes available. If no data is available to be received,
recv () waits for data to arrive, unless nonblocking I/O is enabled. Recv () does not wait for
len bytes to be available; if less than 1en bytes are available, that number of bytes is received.

4-18 BSD IPC Calls

recv()

If the connection has been gracefully released by the remote side, and all the data has been
received by the user, then recv () will return 0.

If nonblocking I/O is enabled, the recv () request will complete in one of three ways:

e If there is enough data available to satisfy the entire request, recv () will complete
successfully, having read 1en bytes of data in the buffer.

e If there is not enough data available to satisfy the entire request, recv () will complete
successfully, having read as much data as possible, and returns the number of bytes it was able
to read.

e If there is no data available, recv () will return -1 with errno set to EAGAIN.

Nonblocking I/O is enabled by setting flag option O NONBLOCK using fcntl () .

By selecting the socket for read indication, the select () call may be used to determine when a
socket has data available to be read by a recv () call. See the select () call for more
information.

Caution Because BSD IPC uses 16-bit addressing, BSD IPC cannot access data with
32-bit addressing. Therefore, data in EMA (Extended Memory Area) cannot be
accessed directly.

HP 1000 Specific Information

e Recv () requires the pointer to the data structure buffer to be a byte pointer. Pascal and
FORTRAN users will have to use the routine ByteAdrOf () in order to get the byte address
of the start of the data. For more information, refer to “Working With Pointers in Pascal and
FORTRAN” in Section 3.

e Recv () onthe HP 1000 supports the MSG PEEK option. Recv () on the HP-UX supports
the MSG_PEEK and MSG_OOB options.

e The HP 1000 currently does not support signals; hence, if a connection is terminated, the
recv () call returns -1.

Error Returns

If the recv () call is successful, it returns the number of bytes received. If it failed, it returns a
-1. The global variable errno provides information on the cause of the call’s failure. The
following table lists possible error returns from the recv () call.

BSD IPC Calls 4-19

recv()

4-20

Error Mnemonic Meaning
[EINTERR] This error requires HP notification.
[EINVAL] Invalid 1en value <0. Or, the socket is not a BSD IPC
socket.
[ENOTSOCK] The socket parameter is not a valid socket descriptor.
[ECONNRESET] Connection aborted by the remote process.
[ENOTCONN] socket has not yet been connected.

[ESHUTDOWN] The socket has already been shutdown for receiving data.
[EREMOTERELEASE] The remote side has done a send shutdown; hence, there
will be no more data to receive.

[EHOSTDOWN] The network software is not running on the local host.
[EINPROGRESS] Connection has not yet been established.
BSD IPC Calls

recvfrom()

Receives datagrams from a socket. The recvfrom () call may be used by both the server and
client processes.

Syntax
count= recvfrom(socket, buffer, len, flags, addr, addrlen)
int count, socket, len, *addrlen;
char *puffer
long flags;

struct sockaddr in *addr;

Parameters

count Returns the number of bytes actually received.
Returns -1 if the call encounters an error.

socket Socket descriptor of the local socket receiving data.

buffer Byte pointer to the data buffer.

len Maximum number of bytes that will be returned into the buffer referenced
by buffer. No more than Ien bytes of data are received. If the next
datagram is larger than len bytes, the remaining bytes are discarded.

flags Optional flag options. The currently supported values for f1ags are:

0 No option.

MSG PEEK Option to preview incoming data. If this option is set on
the recvfrom() call, any data returned remains in the
socket buffer as though it had not been read yet. The
next recvirom () call returns the same data.

addr Pointer to a structure containing the socket address of the remote socket
which sent the data. The socket address will be of sockaddr in type,

which is described in “Preparing Socket Addresses” in Section 3.

addrlen Length, in bytes, of the returned address structure.

Discussion

The recvfrom () call may only be used after the socket has been bound to an address by
bind ().

If no data is available to be received, recvfrom () waits for data to arrive, unless nonblocking
I/O is enabled.

BSD IPC Calls 4-21

recvfrom()

If nonblocking I/O is enabled, the recvfrom () request will complete in one of two ways:

1. If there is a datagram available to satisfy the request, recvfrom () will complete
successfully.

2. [If there is no data available, recvfrom () will return -1 with errno set to EAGAIN.

Nonblocking I/O is enabled by setting flag option O_NONBLOCK using fcntl () .

By selecting the socket for read indication, the select () call may be used to determine when a
socket has data available to be read by a recvfrom () call. See the select () call for more
information.

Caution Because BSD IPC uses 16-bit addressing, BSD IPC cannot access data with
32-bit addressing. Therefore, data in EMA (Extended Memory Area) cannot be
accessed directly.

HP 1000 Specific Information

e Recvfrom() requires the pointer to the data structure buffer to be a byte pointer. Pascal
and FORTRAN users will have to use the routine ByteAdrOf () in order to get the byte
address of the start of the data. For more information, refer to “Working with Pointers in
Pascal and FORTRAN” in Section 3.

e Recvfrom() on the HP 1000 supports the MSG PEEK option.

Error Returns

If the recvfrom () call is successful, it returns the number of bytes received. If it failed, it
returns a -1. The global variable errno provides information on the cause of the call’s failure.
The following table lists possible error returns from the recvfrom () call.

Error Mnemonic Meaning
[EINTERR] This error requires HP notification.
[EINVAL] Invalid 1en value <0. Or, the socket is not a BSD IPC
datagram-type socket.
[ENOTSOCK] The socket parameter is not a valid socket descriptor.
[EHOSTDOWN] The network software is not running on the local host.

4-22 BSD IPC Calls

recvmsg()

Receives vectored data on a socket. This call may be used by both the server and client processes.
The recvmsg () call is used for stream sockets only.

Syntax

count= recvmsg (socket, msg, flags)

int count, socket;
struct msghdr *msg;
long flags;
Parameters
count Returns the number of bytes received.

Returns 0 if the remote process has gracefully shut down and there is no
more data in the receive buffer.

Returns -1 if the call encounters an error.
socket Socket descriptor of a local socket that is receiving the data.

msg A pointer to the data structure, msghdr, which has two fields called
msg iov and msg iovlen. Msg iov is a pointer to an array of data
elements, and msg iovlen contains the number of data elements in the
array. See “Discussion” below for more information.

flags The currently supported values for f1ags are:
0 No option.
MSG_ PEEK Option to preview incoming data. If this option is set on

the recv () call, any data returned remains in the
socket buffer as though it had not been read yet. The
next recv () call returns the same data.

Discussion

Recvmsg () facilitates the receiving of vectored data. Unlike a data buffer, which is a structure
containing actual data, a data vector is a structure that can describe several data objects. The
description of each object consists of a byte address and a length. The byte address describes
where the object is located and the length indicates how much data the object contains. Any kind
of data object (arrays, portions of arrays, records, simple variables, etc.) can be described by a data
vector.

When a data vector is used to identify data to be sent, it describes where the data is located. This
is referred to as a gathered write. When a data vector is used to identify data to be received, it
describes where the data is to be placed. This is referred to as a scattered read.

BSD IPC Calls 4-23

recvmsg()

Using data vectors may be more efficient than using data buffers in certain circumstances. For
example, a process that receives data from several different buffers must call recv () several
times, or copy the data into a packing buffer prior to receiving it. However, if you use
recvmsg () you may describe all of the buffers in one recvmsg () call.

Figure 4-2 is an example of a data vector and the data objects that it represents. The data vector
describes the characters “HERE IS THE DATA.”

DATA VECTOR DATA OBJECTS
BYTE
16000 [ADDRESS Tzlzlz i
8 LENGTH
16000 16002 16004 16006
BYTE
16223 ADDRESS Tlalz N
5 LENGTH
16222 16224 6226 16228
BYTE
17542 | ADDRESS sl slalcla 1.
4 LENGTH i
17540 17542 17544 17546

Figure 4-2. Vectored Data

Each data object is described by a byte address and a length. Each byte address/length pair of a
data vector is stored in a structure of iovec type.

The parameter in the recvmsg () call relevant to vectored data is msg, which is a pointer to the
msghdr structure. Within this msghdr structure are two fields: msg iov and msg iovlen,
which are used for vectored data. Msg iov is a pointer to an array of iovec records.

Msg iovlen contains the number of iovec elements in the array. Each iovec element
contains the starting byte address of data to be received in iov_base and the number of bytes to
be received in this data vector in iov_len.

The msghdr and iovec structures are shown below for C, Pascal, and FORTRAN.

C
struct msghdr

caddr t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg iov; /* scatter/gather array */
int msg iovlen; /* # elements in msg iov */
caddr t msg accrights; /* access rights sent/rec’d */
int msg_accrightslen;

}i

struct iovec {
char *iov base; /* starting byte address of buffer */
int iov_len; /* size of buffer in bytes */

Vi

4-24 BSD IPC Calls

recvmsg()

Pascal

msghdr = RECORD
CASE INTEGER OF
1 : (intl : int);

2 : (msg_name : int; { Byte pointer to caddr t }
msg_namelen : int;
msg iov : int; { Word pointer to iovec }
msg _iovlen : int;
msg accrights : int; { Byte pointer to caddr t}

msg_accrightslen : int);
END;

iovec = RECORD

iov base : int; { Byte pointer }
iov_len : int;
END;
FORTRAN

INTEGER MSGHDR (6)

INTEGER MSG NAME,MSG NAMELEN,MSG IOV,MSG IOVLEN
INTEGER MSG ACCRIGHTS,MSG ACCRIGHTSLEN
EQUIVALENCE (MSGHDR (1) ,6MSG NAME)

EQUIVALENCE (MSGHDR (2) ,MSG NAMELEN)

EQUIVALENCE (MSGHDR (3) ,MSG IOV)

EQUIVALENCE (MSGHDR (4),MSG IOVLEN)

EQUIVALENCE (MSGHDR (5),MSG ACCRIGHTS)

EQUIVALENCE (MSGHDR (6),MSG ACCRIGHTSLEN)

INTEGER IOVEC(2)

INTEGER IOV_BASE, IOV_LEN

EQUIVALENCE (IOV_BASE,IOVEC(1l)), (IOV_LEN, IOVEC(2))

In order to use a data vector of 5 vectors, you should declare the following array of iovec records
(shown below in C programming format):

struct iovec data buffer([5];
In our example, since msg_iov is a pointer to the beginning of the iovec array:
msg _iov = &data_buffer[0];

Msg iovlen is the number of relevant elements of the iovec array. So, if we wanted to use
only the first 3 array elements of the iovec array, set msg_iovlen = 3.

If a connection has been gracefully released by the remote process and all the data has been
received by the user, then recvmsg () returns a 0.

BSD IPC Calls 4-25

recvmsg()

HP 1000 Specific Information

Recvmsg () on the HP 1000 supports the MSG PEEK flag, while HP-UX supports MSG_PEEK
and MSG_0OB flag options.

HP 1000 currently does not support signals.

BSD IPC uses C programming semantics. Many of the parameters in the BSD IPC calls use
pointers to variables. Consequently, two routines are provided for Pascal and FORTRAN
users to handle pointers.

The ByteAdrOf () function can be used to obtain the byte address of data objects which are
accessed by character pointers in C (for example, char *variable).

The RTE-A routine AddressOf () is used to obtain the address of data objects which are
accessed by pointers other than character pointers.

Use the AddressOf () function to obtain the msg pointer. Use the ByteAdrOf () function
to obtain the data address to be put in the iovec element.

Refer to “Working with Pointers in Pascal and FORTRAN” in Section 3 for more information
on pointers.

Caution Because BSD IPC uses 16-bit addressing, BSD IPC cannot access data with

32-bit addressing. Therefore, data in Extended Memory Area (EMA) cannot be
accessed directly.

Error Returns

If the recvmsg () call is successful, it returns the number of bytes sent. If it failed, it returns a
-1. The global variable errno provides information on the cause of the call’s failure. The
following table lists possible error returns from the recvmsg () call.

4-26

Error Mnemonic Meaning
[EINTERR] This error requires HP notification.
[EINVAL] Invalid msg iovlen value. The maximum iovec

elements allowed is 16.
[ENOTSOCK] The socket parameter is not a valid socket descriptor.
[ECONNRESET] Connection aborted by the remote process.
[ENOTCONN] socket has not yet been connected.
[ESHUTDOWN] The socket has already been shutdown for receives.
[EHOSTDOWN] The network software is not running on the local host.
[EINPROGRESS] The connection has not been established.
[EREMOTERELEASE] The remote side has done a shutdown.
BSD IPC Calls

select()

Provides synchronous socket I/O multiplexing.

Syntax
result = select (count, reads, writes, exceptions, timeout)
int result, count;
fd set *reads, *writes, *exceptions;

struct timeval *timeout;

Parameters

result Returns the number of socket descriptors contained in the select () call
bitmasks.

-1 means an error has occurred.
0 means the time limit has expired and all the bitmasks are cleared.

count Specifies the number of sockets for select () to examine. Select ()
examines socket descriptors from 0 to (count-1). Currently, users are
allowed a maximum of 31 socket descriptors, so the valid range for count is
1 to 31. Since socket descriptors are numbered starting with 0, callers
should specify count as their highest socket descriptor + 1. (Note:
count specifies the number of socket descriptors for selection. Hence, a
count of 5 means that the select () call will examine socket descriptors
from 0 through 4.)

reads Pointer to a bitmask to specify which socket descriptors (from 0 to
count -1) to select for reading. Set the bitmask to 0 with FD_ZERO if no
descriptors need to be selected for reads.

On return, it contains a pointer to the bitmask specifying which socket
descriptors (from 0 to count -1) are ready for reading.

Use the FD_SET macro and £d_set variable type to set the socket
descriptors for reads before you issue the select () call. After issuing
select (), use FD_ISSET to test for the bits in the bitmask. Refer to
Section 6, “Socket Descriptor Utilities,” for more information on clearing,
setting, and testing the bits in the bitmasks.

writes Pointer to a bitmask to specify which socket descriptors (from 0 to
count -1) to select for writing. Set the bitmask to 0 with FD_ZERO if no
descriptors need to be selected for writes.

On return, it contains a pointer to the bitmask specifying which socket
descriptors (from 0 to count -1) are ready for writing.

BSD IPC Calls 4-27

select()

Use the FD_SET macro and £d_set variable type to set the socket
descriptors for writes before you issue the select () call. After issuing
select (), use FD_ISSET to test for the bits in the bitmask. Refer to
Section 6, “Socket Descriptor Utilities,” for more information on clearing,
setting, and testing the bits in the bitmasks.

exceptions Pointer to a bitmask to specify which socket descriptor (from 0 to
count-1) to select for exceptional conditions. Set the bitmask to 0 with
FD_ ZERO if no descriptors need to be selected for exceptions.

On return, it contains a pointer to the bitmask specifying which socket
descriptors (from 0 to count-1) have an exceptional condition pending.

Use the FD_SET macro and £d_set variable type to set the socket
descriptors for exceptions before you issue the select () call. After
issuing select (), use FD ISSET to test for the bits in the bitmask. Refer
to Section 6, “Socket Descriptor Ultilities,” for more information on
clearing, setting, and testing the bits in the bitmasks.

The currently supported condition is when connections get terminated.

timeout Pointer to the t imeval structure which specifies the interval in which to
examine the socket descriptors. The timeval structure contains two
fields: tv_sec and tv_usec.

The timeout parameter works as follows:

If both tv_sec and tv_usec are 0, select () returns immediately after
checking the descriptors.

If either tv_sec or tv_usec is non-zero, then select () returns when
one of the specified descriptors is ready for I/O, but select () does not
wait beyond the specified amount of time (in number of seconds and
microseconds).

If the timeval pointer itself is 0, then select () waits indefinitely and
returns only when one of the selected descriptors is ready for 1/O.

Discussion

The select () call can be used to avoid a situation in which a program blocks while waiting for
an event to occur on a socket and holds up processing of the program.

The select () call is used to wait for any one of multiple events to occur and to notify the
process when any or all of the events occur. For example, the select () call can be used to check
if data is available to be received for a socket before issuing the recv () call; hence, avoiding a
block on recv () .

4-28 BSD IPC Calls

select()

To use select (), follow the procedure below:

1. Define a variable of type £d_set for a bitmask to be used in the select () call
2. Clear all bits in the specified bitmask with FD_ZERO.

3. Use FD_SET to set the bit corresponding to a specific socket descriptor in the bitmask. Set
the bits for the sockets that you want to select (for example, to select for readiness for
reading).

4. Use the bitmask in the select () call.
5. Check result to see if the select () call returned successfully or an error.

6. Once select () returns successfully, use FD ISSET to test if a specified bit in a bitmask is
set (for example, if the socket corresponding to the bit is ready for reads).

7. The process can then proceed to handle the specified event.

Socket descriptor, s, is represented in the bitmask by bit (1 << (s MOD 32)).

When select () completes successfully, it returns the three bit masks modified as follows: for
each socket descriptor less than or equal to (count-1), the corresponding bit in each mask is set
if the bit was set upon entry and the socket descriptor is ready for reading, writing, or has an
exception condition pending.

Any or all of reads, writes, and exceptions may be given as 0 if no socket descriptors are of
interest. If all the masks are given as 0 and timeout is not zero, select () blocks for the time
specified. If all the masks are given as 0, and timeout is also zero, select () returns an error.

Bitmask Routines

It is recommended that the following routines be used to set, clear, or examine the bitmasks.

FD_ ZERO Procedure to clear all bits in the specified bitmask.

It is recommended that the bits be cleared in all bitmasks before using them;
otherwise, you may get unexpected results.

FD SET Procedure to turn on the specified socket’s bit in the bitmask.

FD CLR Procedure to turn off the specified socket’s bit in the bitmask.

FD ISSET Function to test the specified socket’s bit, socket, in the bitmask,
bitmask.

Refer to Section 6, “Socket Descriptor Utilities,” for detailed information about these bitmask
routines.

BSD IPC Calls 4-29

select()

HP 1000 Specific Information

1. The HP 1000 does not support signals. Hence, it is recommended that programs always set
the exceptions select bit in order to be informed about unexpected events.

2. In UNIX, if all the bitmasks are set to 0 and timeout is a zero pointer, then select ()
blocks until interrupted by a signal. Since RTE-A signals are currently not supported in the
HP 1000 network, this setting is disallowed, and select () will return an error.

3. Both C and Pascal programmers must be careful about setting the appropriate bit in the
bitmask. Select () expects the bitmasks to be set with the highest socket descriptor at the
MSB of the bitmask word. Use of the bitmask utilities described above is strongly
recommended.

4. Pascal and FORTRAN users must use the AddressOf () function to get the pointers for
reads, writes, exceptions, and timeout. For more information on pointers, refer to
“Working with Pointers in Pascal and FORTRAN,” in Section 3.

Error Returns

If the select () call is successful, it returns the number of descriptors contained in the bitmasks.
If the time limit expired, then select () returns 0 and all the bitmasks are cleared.

If select () failed, it returns a -1. The global variable errno provides information on the
cause of the call’s failure. The following table lists possible error returns from the select () call

Error Mnemonic Meaning
[EINTERR] This error requires HP notification.
[EINVAL] Invalid timeval variable used for timeout; or,

the value of count is not valid; or,

one or more of the socket descriptors in the bitmasks
were invalid; or,

the socket is not in a state that permits the type of select
desired for that socket.

[EHOSTDOWN] The network software on the local host is not running.

[EREMOTERELEASE] The remote side has shut down.

4-30 BSD IPC Calls

send()

Sends data on a socket. This call may be used by both the server and client processes. The
send () call is used for stream sockets only.

Syntax

count = send(socket, buffer, len, flags)

int count, socket, len;
char *buffer;

long flags;

Parameters

count Returns the number of bytes actually sent. Returns -1 if the call
encounters an error.

socket Socket descriptor of a local socket that is sending the data.

buffer Byte pointer to a buffer which contains the data to be sent.

len Number of bytes that need to be sent from the data buffer.
In blocking mode, there is no restriction on the size of data to be sent
except for that imposed by the system, which currently is 32767 bytes.
In nonblocking mode, if the data is too long to pass atomically through the
underlying protocol, the message is not transmitted, -1 is returned, and
errno is set to EMSGSIZE.

flags Currently there are no supported options.

Discussion

The send () calls may only be used after connection has been established between two processes.

Send () blocks until the specified number of bytes have been queued to be sent, unless
nonblocking I/O is enabled.

If nonblocking I/O is enabled, the send () call will complete in one of three ways:

If there is enough space available in the system to buffer all the data, send () will complete
successfully, having written out all of the data, and return the number of bytes written.

If there is not enough space in the buffer to write out the entire request, send () will
complete successfully, having written as much data as possible, and return the number of
bytes it was able to write.

If there is no space in the system to buffer any of the data, send () will return -1, having
written no data, with errno set to EAGAIN.

BSD IPC Calls 4-31

send()

Nonblocking I/O is enabled by setting flag option O NONBLOCK using fcntl ().

By selecting the socket for write indication, the select () call may be used to determine when a
socket has data available to be sent by a subsequent send () call. See the select () call for
more information.

Caution Because BSD IPC uses 16-bit addressing, BSD IPC cannot access data with
32-bit addressing. Therefore, data in Extended Memory Area (EMA) cannot be
accessed directly.

HP 1000 Specific Information

e Send() requires the pointer to the data structure buffer to be a byte pointer. Pascal and
FORTRAN users will have to use the ByteAdrOf routine to get the byte address of the start
of the data. For more information on pointers, refer to “Working with Pointers in Pascal and
FORTRAN” in Section 3.

e Send () on the HP 1000 does not support any flags.

e HP 1000 currently does not support signals. If a send () is attempted on a socket which has
lost its connection to its peer, send () returns a -1 with errno set to EPIPE.

Error Returns

If the send () call is successful, it returns the number of bytes sent. If it failed, it returns a -1.
The global variable errno provides information on the cause of the call’s failure. The following
table lists possible error returns from the send () call.

Error Mnemonic Meaning
[EINTERR] This error requires HP notification.
[EAGAIN] In nonblocking mode, the socket does not have space to

accept any data at all.

[EINVAL] The len parameter contains a bad value. The input value for
len must be equal to or greater than zero. Or, the socket is
not a BSD IPC socket.

[EPIPE] An attempt was made to send on a socket whose connection
has been shutdown by the remote peer.
[EMSGSIZE] In nonblocking mode, the socket requires that messages be

sent atomically, and the message size exceeded the
outbound buffer size.

[ENOTSOCK] The socket parameter is not a valid socket descriptor.
[EOPNOTSUPP] An invalid flag was specified. No flags are supported
currently.

4-32 BSD IPC Calls

send()

Error Mnemonic

Meaning

[ENOTCONN] A send () on a socket that is not connected, or a send () on
a socket that has not completed the connect sequence with
its peer, or is no longer connected to its peer.

[ESHUTDOWN] The socket has already been shutdown for send.

[EHOSTDOWN] The network software on the local host is not running.

[EINPROGRESS] Connection has not been fully established yet.

BSD IPC Calls

4-33

sendmsg()

Sends vectored data on a socket. This call may be used by both the server and client processes.
The sendmsg () call is used for stream sockets only.

Syntax
count = sendmsg(socket, msg, flags)
int count, socket;
struct msghdr msg;
long flags;
Parameters
count Returns the number of bytes actually sent.
Returns -1 if the call encounters an error.
socket Socket descriptor of a local socket that is sending the data.
msg Pointer to a msghdr structure, which has two fields called msg iov and
msg iovlen. Msg iov is a pointer to an array of data elements, and
msg iovlen contains the number of data elements in the array. See
“Discussion” below for more information.
flags Currently there are no supported flags options.

Discussion

Sendmsg () facilitates the sending of vectored data. Unlike a data buffer, which is a structure
containing actual data, a data vector is a structure that can describe several data objects. The
description of each object consists of a byte address and a length. The byte address describes
where the object is located and the length indicates how much data the object contains. Any kind
of data object (arrays, portions of arrays, records, simple variables, etc.) can be described by a data
vector.

When a data vector is used to identify data to be sent, it describes where the data is located. This
is referred to as a gathered write. When a data vector is used to identify data to be received, it
describes where the data is to be placed. This is referred to as a scattered read.

Using data vectors may be more efficient than using data buffers in certain circumstances. For
example, a process that sends data from several different buffers must call send () several times,
or copy the data into a packing buffer prior to sending it. However, if you use sendmsg () you
may describe all of the buffers in one sendmsg () call.

Figure 4-3 is an example of a data vector and the data objects that it represents. The data vector
describes the characters “HERE IS THE DATA.”

4-34 BSD IPC Calls

DATA VECTOR

16000

8

16223

17542

BYTE
ADDRESS

LENGTH

BYTE
ADDRESS

LENGTH

BYTE
ADDRESS

LENGTH

sendmsg()

DATA OBJECTS

H R|E I]Ss
16000 16002 16004 16006

X H|E DIY|Y
16222 16224 6226 16228

% A|T]|A 3%
17540 17542 17544 17546

Figure 4-3. Vectored Data

Each data object is described by a byte address and a length. Each byte address/length pair of a
data vector for sendmsg () is stored in a structure of iovec type.

The parameter in a sendmsg () call relevant to vectored data is msg, which is a pointer to the
msghdr structure. Within this msghdr structure are two fields: msg iov and msg iovlen,
which are used for vectored data. Msg iov is a pointer to an array of iovec records.

Msg iovlen contains the number of iovec elements in the array. Each iovec element
contains the starting byte address of data to be sent in iov_base and the number of bytes to be
sent in this data vector in iov_len.

The msghdr and iovec structures are shown here in C, Pascal, and FORTRAN.

C
struct msghdr

caddr_t msg_name;
int msg_namelen;
struct iovec *msg iov;
int msg iovlen;
caddr_t msg_accrights;
int msg_accrightslen;

}i

struct iovec {
char *iov base;
int iov_len;

Vi

/*
/*
/*
/*
/*

optional address */

size of address */
scatter/gather array */

elements in msg iov */
access rights sent/rec’d */

/* starting byte address of buffer */
/* size of buffer in bytes */

BSD IPC Calls 4-35

sendmsg()

Pascal

msghdr = RECORD
CASE INTEGER OF

1 : (intl : int);

2 : (msg_name : int; { Byte pointer to caddr t }
msg_namelen : int;
msg iov : int; { Word pointer to iovec }
msg iovlen : int;
msg accrights : int; { Byte pointer to caddr t}

msg_accrightslen : int);
END;

iovec = RECORD

iov base : int; { Byte pointer }
iov_len : int;
END;
FORTRAN
INTEGER MSGHDR (6)
INTEGER MSG NAME,MSG NAMELEN,MSG IOV,MSG IOVLEN

INTEGER MSG ACCRIGHTS,MSG ACCRIGHTSLEN
EQUIVALENCE (MSGHDR (1) ,6MSG NAME)

EQUIVALENCE (MSGHDR (2) ,MSG NAMELEN)
EQUIVALENCE (MSGHDR (3),MSG IOV)
EQUIVALENCE (MSGHDR (4),MSG IOVLEN)
EQUIVALENCE (MSGHDR (5),MSG ACCRIGHTS)
EQUIVALENCE (MSGHDR (6),MSG ACCRIGHTSLEN)
INTEGER IOVEC(2)

INTEGER IOV_BASE, IOV_LEN

EQUIVALENCE (IOV_BASE,IOVEC (1)), (IOV_LEN, IOVEC(2))

In order to use a data vector of 5 vectors, you should declare the following array of iovec records
(shown below in C programming format):

struct iovec data buffer([5];
In our example, since msg_iov is a pointer to the beginning of the iovec array:
msg_iov = &data_buffer[0];

Msg iovlen is the number of relevant elements of the iovec array. So, if we wanted to use
only the first 3 array elements of the iovec array, set msg_iovlen to 3.

Caution Because BSD IPC uses 16-bit addressing, BSD IPC cannot access data with
32-bit addressing. Therefore, data in Extended Memory Area (EMA) cannot be
accessed directly.

4-36 BSD IPC Calls

sendmsg()

HP 1000 Specific Information

e Sendmsg () currently does not support any flag options, while HP-UX supports MSG_OOB.

e HP 1000 currently does not support signals. If sendmsg () attempts a send on a socket that
has lost its connection to its peer, sendmsg () returns -1 with errno set to EPIPE.

e BSD IPC uses C programming semantics. Many of the parameters in the BSD IPC calls use
pointers to variables. Consequently, two routines are provided for Pascal and FORTRAN

users to handle pointers.

The ByteAdrOf () function can be used to obtain the byte address of data objects which are
accessed by character pointers in C (that is, char *variable).

The RTE-A routine AddressOf () is used to obtain the address of data objects which are
accessed by pointers other than character pointers.

Use the AddressOf () function to obtain the msg pointer. Use the ByteAdrOf () function
to obtain the data address to be put in the iovec element.

Refer to “Working with Pointers in Pascal and FORTRAN” in Section 3 for more information

on pointers.

Error Returns

If the sendmsg () call is successful, it returns the number of bytes sent. If it failed, it returns a

-1. The global variable errno provides information on the cause of the call’s failure. The

following table lists possible error returns from the sendmsg () call.

Error Mnemonic Meaning

[EINTERR] This error requires HP notification.

[EINVAL] The msg _iovlen is invalid. The maximum number of iovec
elements is 16.

[EPIPE] An attempt was made to send on a socket that was
connected, but the connection has been shutdown either by
the remote peer or by this side of the connection.

[EMSGSIZE] The socket requires that messages be sent atomically, and
the message size exceeded the outbound buffer size.

[ENOTSOCK] The socket parameter is not a valid socket descriptor.

[EOPNOTSUPP] An invalid flag was specified. No flags are supported
currently.

[ENOTCONN] A send () on a socket that is not connected, or a send () on
a socket that has not completed the connect sequence with
its peer, or is no longer connected to its peer.

[EHOSTDOWN] The network software on the local host is not running.

BSD IPC Calls

4-37

sendto()

Sends data on a socket. The sendto () call may be used by both the server and client processes.

Syntax
count = sendto(socket, buffer, len, flags, addr, addrlen)
int count, socket, len, addrlen;
char *buffer;
long flags;

struct sockaddr in *addr;

Parameters

count Returns the number of bytes actually sent. Returns -1 if the call
encounters an error.

socket Socket descriptor of a local socket that is sending the data.

buffer Byte pointer to a buffer which contains the data to be sent.

len Number of bytes that need to be sent from the data buffer. The size of data
that can be sent is limited to 32767 bytes. However, the HP 1000 cannot
receive UDP datagrams larger than 9216 bytes.

flags Currently there are no supported options.

addr Pointer to a structure containing the address of the remote socket to which
the data will be sent. The socket address should be of sockaddr in type,
which is described in “Preparing Socket Addresses” in Section 3.

addrlen Length, in bytes, of the address structure specified by addr (for example,

length of structure sockaddr in, which is 16 bytes). Addrlen should be
at least 16 bytes.

Discussion

The sendto () call may only be used after the socket has been bound to an address by bind () .

Caution Because BSD IPC uses 16-bit addressing, BSD IPC cannot access data with
32-bit addressing. Therefore, data in Extended Memory Area (EMA) cannot be
accessed directly.

4-38 BSD IPC Calls

HP 1000 Specific Information

Sendto () requires the pointer to the data structure buffer to be a byte pointer. Pascal and

sendto()

FORTRAN users will have to use the ByteAdrOf routine to get the byte address of the start of
the data. For more information on pointers, refer to “Working with Pointers in Pascal and

FORTRAN” in Section 3.

Sendto () on the HP 1000 does not support any £lags.

Error Returns

If the sendto () call is successful, it returns the number of bytes sent. If it failed, it returns a - 1.
The global variable errno provides information on the cause of the call’s failure. The following
table lists possible error returns from the sendto () call.

Error Mnemonic Meaning

[EINTERR] This error requires HP notification.

[EINVAL] Invalid 1en value <0. Or, the socket is not a BSD IPC
datagram-type socket.

[ENOTSOCK] The socket parameter is not a valid socket descriptor.

[EOPNOTSUPP] An invalid flag was specified. No flags are currently
supported.

[EHOSTDOWN] The network software on the local host is not running.

[EHOSTUNREACH] There is no route to the host.

BSD IPC Calls

4-39

setsockopt()

Sets socket options.

Syntax
result = setsockopt (socket, level, optname, optval,

int result, socket, level, optname, optlen;
char *optval;

optlen)

Parameters
result 0 if setsockopt () is successful.
-1 if a failure occurs.
socket Socket descriptor of a local socket.
level The protocol level at which the socket option resides.
To specity “socket” level, Ievel should be SOL SOCKET.
To specity “TCP” level, 1evel should be IPPROTO_ TCP.
optname Socket option name.

The following options are supported for “socket” level (SOL_SOCKET)

options:

SO KEEPALIVE (Toggle option) Sets a timer for 90 minutes for
connected sockets. After 90 minutes expire, and if the
connection has been idle during this period,

SO _KEEPALIVE forces a transmission every 60 seconds
for up to 7 minutes, after which the idle connection is
shut down. In summary, SO KEEPALIVE allows an idle
period of 97 minutes before connection shutdown. If
this option is toggled off, an indefinite idle time is
allowed. This option is set by default.

SO REUSEADDR (Toggle option) Allows local socket address reuse. This
allows multiple sockets to be bound to the same local

port address.

4-40 BSD IPC Calls

setsockopt()

This option modifies the rules used by bind () to
validate local addresses. SO_REUSEADDR allows more
than one socket to be bound to the same port number at
the same time; however, it only allows one single socket
to be actively listening for connection requests on the
port number. The host will still check at connection
time to be sure any other socket with the same local
address and local port does not have the same remote
address and remote port. Connect () fails if the
uniqueness requirement is violated.

SO_RCVBUF Changes the buffer size of a socket’s receive socket
buffer. The default buffer size is 4096 bytes. The
maximum buffer size is 32766 bytes. A stream socket’s
buffer size can be increased or decreased only prior to
establishing a connection.

SO_SNDBUF Changes the buffer size of a socket’s send socket buffer.
The default buffer size is 4096 bytes. The maximum
buffer size is 32766 bytes. A stream socket’s buffer size
can be increased or decreased only prior to establishing
a connection.

The following options are supported for “TCP” level (IPPROTO_TCP)
options:

TCP_MAXSEG Returns the maximum segment size in use for the socket.
The value for this option can only be examined, it cannot
be set. If the socket is not yet connected, TCP returns a
default size of 512 bytes.

TCP_NODELAY (Toggle option) Instructs TCP to send data as soon as it
receives it and to bypass the buffering algorithm that
tries to avoid numerous small packets from being sent
over the network.

optval Byte pointer to a value or boolean flag for the specified option.

(Since optval is a byte pointer, Pascal and FORTRAN users should use
the ByteAdrOf () function to get the byte address of the option value.)
Although optval is a byte pointer, the value itself is not terminated by a

\ 0.
optlen Size, in bytes, of optval.
Discussion
To get the status of current socket options, use getsockopt () . To set socket options, use

setsockopt () .

BSD IPC Calls 4-41

setsockopt()

There are two kinds of socket options: boolean (toggle) options and non-boolean options.

Boolean options are options that can be set on or off. To set a boolean option, set the value of
optval to a non-zero value. To turn off an option, set the value of optval to 0. Currently the
supported boolean options are: SO KEEPALIVE, SO REUSEADDR, and TCP_NODELAY.

Non-boolean options contain specific values. Non-boolean options use optval and optlen to
pass information. The parameter optval is a pointer to a character array that specifies the value
for the option. The parameter optlen specifies the size, in bytes, of optval.

HP 1000 Specific Information

1. HP 1000 does not allow socket buffer size to be changed after a connection is established. On
the HP-UX system, the buffer size can be increased after the connection is established.

2. The SO_LINGER option (available in HP-UX) is not provided on the HP 1000.

3. BSD IPC uses C programming semantics. Many of the parameters in the BSD IPC calls use
pointers to variables. Consequently, two routines are provided for Pascal and FORTRAN
users to handle pointers.

The ByteAdrOf () function can be used to obtain the byte address of data objects which are
accessed by character pointers in C (that is, char *variable).

The RTE-A routine AddressOf () is used to obtain the address of data objects which are
accessed by pointers other than character pointers.

Use the ByteAdrOf () function to obtain the byte pointer for optval.

Refer to “Working with Pointers in Pascal and FORTRAN” in Section 3 for more information
on pointers.

Error Returns

If the setsockopt () call is successful, it returns a 0. If it failed, it returns a -1. The global
variable errno provides information on the cause of the call’s failure. The following table lists
possible error returns from the setsockopt () call.

Error Mnemonic Meaning

[EFAULT] The optval or optlen parameter is not valid.

[EINVAL] The specified option level is unknown. Or the socket is not a
BSD IPC socket.

[ENOTSOCK] socket is not a valid socket.

[EOPNOTSUPP] Unknown option was specified.

[EISCONN] A connection has already been established for the socket.
The send and receive buffer sizes for the socket can only be
changed prior to establishing a connection.

[EHOSTDOWN] The network software on the local host is not running.

4-42 BSD IPC Calls

shutdown()

Shuts down a socket. This call may be used by either the server or client process.

Syntax
result = shutdown (socket, how)

int result, socket, how;

Parameters
result 0 if shutdown () is successful.
-1 if a failure occurs.
socket Socket descriptor of local socket to be shut down.
how Method of shutdown, as follows:

0 Disallows further receives.

Once the socket has been shut down for receives, all
further recv () calls return -1, with errno set to
ESHUTDOWN.

1 Disallows further sends.

Once the socket has been shut down for sends, all
further send () calls return -1, with errno set to
ESHUTDOWN.

2 Disallows further sends and receives.

Discussion

Multiple shutdowns on a connected socket or shutdown on a socket that is not connected will
return errors.

For SOCK_STREAM sockets, a shutdown results in the connection being closed gracefully. This
means that although the shutdown () call returns immediately, the Transport layer will make a
best effort to get any buffered data across to the remote side in the right sequence.

If a shutdown () is performed on a socket that has a 1isten () pending on it, that socket
becomes fully shutdown when how equals 1.

The best way to shut down and end a session without losing data is summarized below:

1. With the send () call, the sending side sends an “I am finished” message. This message is
defined by the application designer.

BSD IPC Calls 4-43

shutdown()

2. The receiving side reads this “I am finished” message with the recv () call. It finishes up any
unfinished tasks (e.g., sends remaining data).

3. The receiving side sends “I am finished” message with send () and shuts down its socket with
the shutdown () call.

4. The sending side receives the “I am finished” message.
5. The sending side frees its socket resources by issuing a shutdown () call.

For datagram sockets, shutdown () only releases the socket. There is no connection to shut
down. The parameter how should be set to 2.

HP 1000 Specific Information

1. HP 1000 will release the socket descriptor when both the send and receive sides of the
connection are closed. This can be done via separate shutdown calls that close the send and
receive sides of the connection or by setting how to 2 in a single call. UNIX does not release
the socket descriptor when the socket is completely shutdown through this call. A call to
close () must be invoked to clear the UNIX socket descriptor.

2. Once the receive side is shut down, all further recv () calls on the HP 1000 socket will return
an error. UNIX returns an EOF condition.

3. Once the send side is shut down, all further send () calls on the HP 1000 socket will return
an ESHUTDOWN error. No signal is sent to the process. UNIX, however, sends the SIGPIPE
signal.

Error Returns

If the shutdown () call is successful, it returns 0. If it failed, it returns a -1. The global variable
errno provides information on the cause of the call’s failure. The following table lists possible
error returns from the shutdown () call.

Error Mnemonic Meaning

[EINVAL] The specified socket is not a BSD IPC socket.
[ENOTSOCK] The socket parameter is not a valid socket descriptor.
[ESHUTDOWN] The network software on the local host is not running.

4-44 BSD IPC Calls

socket()

Creates a socket, an endpoint for communication, and returns a socket descriptor for the socket.
This must be the first BSD IPC call used in the process. Both server and client processes need to
create a socket with the socket () call.

Syntax
socket = socket(af, type, protocol)

int socket, af, type protocol;

Parameters

socket Socket descriptor for the newly-created socket. It is an integer with a valid
range of 0 to 30.

This socket descriptor is used in subsequent BSD IPC calls to reference this
socket.

If the call fails, a -1 is returned in socket and the global variable errno
contains the error code.

af Address family for the socket being created. It must be set to AF_INET, for
Internet address family.

The address family defines the address format used in socket operations.
The AF_INET address family uses an address structure (sockaddr in) of
16 bytes. Refer to “Address Family” in the Glossary for more information.

type Type of socket being created. It must be set to SOCK STREAM or
SOCK_DGRAM.

The socket type specifies the semantics of communication for the socket. A
SOCK_STREAM type provides sequenced, reliable, two-way, connection-based
bytes streams. Refer to “Socket Type” in Appendix D for more information.

protocol Underlying protocol to be used. 0 causes the system to choose a protocol
type to use.

Discussion

Sockets of SOCK STREAM type are full-duplex byte streams. A stream socket must be in a
connected state before any data can be sent or received on it. A connection to another socket is
created with the connect () call on the client side and a corresponding accept () call on the
server side. Once connected, data can be transferred using the send () and recv () calls. When
a session has been completed, a shutdown () call can be performed.

BSD IPC Calls 4-45

socket()

Transmission Control Protocol (TCP), the communication protocol used to implement
SOCK_STREAM for AF_INET sockets, ensures that data is not lost or duplicated. If a peer has
buffer space for data and the data cannot be transmitted within a reasonable length of time, the
connection is considered broken and the next recv () call indicates an error with errno set to
ETIMEDOUT.

If the socket level option SO KEEPALIVE is set, the TCP protocol keeps inactive socket
connections, which have been idle for a period of 90 minutes, active by forcing transmission every
60 seconds for up to 7 minutes. These transmissions are not visible to users, and cannot be read by
arecv () call. The SO KEEPALIVE option can be set for a socket via the setsockopt () call,
described earlier in this section.

An error is indicated if no response can be elicited on an otherwise idle connection for an
extended period (e.g., 6 minutes). An EPIPE error is returned in errno if a process sends on a
broken stream. Zero bytes read is returned if a process tries to receive on a broken stream.

Error Returns

If the socket () call is successful, it returns an integer between 0 and 30 in socket, specifying
the socket descriptor. If it failed, it returns a -1. The global variable errno provides information
on the cause of the call’s failure. The following table lists possible error returns from the

socket () call.

Error Mnemonic Meaning
[ENFILE] Currently there are no resources available.
[EMFILE] The per-process socket descriptor table is full.

[EPROTONOSUPPORT] The specified protocol is not supported.

[ESOCKTNOSUPPORT] The specified socket type is not supported in this address

family.

[EAFNOSUPPORT] The specified address family is not supported on this
version of the system.

[ENOBUFS] No buffer space is available. The socket cannot be
created.

[EHOSTDOWN] The network software is not running on the local host.

4-46 BSD IPC Calls

HP 1000 BSD IPC Utilities

This section provides reference information on Berkeley Socket utilities supported on the
HP 1000. These Berkeley Socket utilities are used to

e Manipulate and return information on the following database files: /etc/hosts,
/etc/networks, /etc/protocols, and /etc/services.

e Obtain the socket address of the local and peer sockets.

e Manipulate Internet (IP) addresses and ASCII strings that represent IP addresses in Internet

“dot” notation.

e Convert bytes from network order to host order and vice versa. (HP 1000, HP 9000, and
TCP/IP protocols all use network order. These functions are provided for portability.)

Special Considerations

In order to successfully use the Berkeley Socket (BSD IPC) utilities, you must be aware of the
following:

e The /ETC directory must be created before you run the BSD IPC utilities.

e Most of the utilities return pointers to structures that are dynamically allocated. If any of
these functions that allocate dynamic memory are called repeatedly without freeing the
allocated memory, they will eventually fail and return a null pointer. See the following
discussion on “Releasing Dynamically Allocated Memory” for more information.

Releasing Dynamically Allocated Memory

The BSD IPC utility functions that allocate dynamic memory include:

gethostbyaddr getnetbyaddr getprotobyname getservbyname
gethostbyname getnetbyname getprotobynumber getservbyport
gethostent getnetent getprotent getservent

inet ntoa

HP 1000 BSD IPC Utilities

5-1

In order to release space dynamically allocated by the above utility functions, use free () from
the standard C library (generally found in HPC.LIB).

FORTRAN program fragments showing how to free the memory used by the specified BSD IPC
utility functions above are given in the following subsection. FORTRAN users must be careful to
always pass a byte address to free (). When free () is called from FORTRAN, there is no
automatic type casting on the pointer parameter as done in C programming.

Examples

The FORTRAN program fragment below shows how to release the memory dynamically allocated
for the hostent structure. Functions that return a pointer to a hostent structure are
gethostbyaddr, gethostbyname, and gethostent.

Salias /MEM/ = 0
include socket.ftni
common /MEM/ MEM(0:1)
integer*2 ptr, hostptr, netptr, protoptr, servptr, char ptr

hostptr = gethostent () ! get hostent struct

. ! free hostent struct
ptr = MEM (hostptr+1) ! h aliases array

do while (MEM(ptr) .ne. 0)
call free (MEM (ptr))
ptr = ptr + 1

end do

ptr = MEM (hostptr+4) ! h addr list array
do while (MEM(ptr) .ne. 0)

call free (MEM (ptr))

ptr = ptr + 1
end do

call free (MEM (hostptr)) ! h name

call free(MEM(hostptr+1l)*2) ! h aliases
call free (MEM(hostptr+4) *2) ! h addr list
call free (hostptr*2) ! hostent

5-2 HP 1000 BSD IPC Utilities

Salias /MEM/ = 0

include socket.ftni
common /MEM/ MEM(0:1)
integer*2 ptr, hostptr,

netptr = getnetent ()

ptr = MEM (netptr+1)

do while (MEM(ptr) .ne. 0)
call free (MEM (ptr))
ptr = ptr + 1

end do

call free (MEM (netptr))
call free (MEM (netptr+1l) *2)
call free (netptr*2)

netptr,

The FORTRAN example below shows how to release the memory dynamically allocated for the
netent structure. Functions that return a pointer to a netent structure are getnetbyaddr,
getnetbyname, and getnetent.

protoptr, servptr,

get netent struct
free netent struct
n aliases array

n_name
n _aliases
netent

HP 1000 BSD IPC Utilities

char ptr

5-3

The FORTRAN example below shows how to release the memory dynamically allocated for the
protoent structure. Functions that return a pointer to a protoent structure are
getprotobyname, getprotobynumber, and getprotoent.

Salias /MEM/ = O
include socket.ftni
common /MEM/ MEM(0:1)
integer*2 ptr, hostptr, netptr, protoptr, servptr, char ptr

protoptr = getprotoent () ! get protoent struct
. ! free protoent struct
ptr = MEM(protoptr+1) ! p aliases array

do while (MEM(ptr) .ne. 0)
call free (MEM (ptr))
ptr = ptr + 1

end do

call free (MEM (protoptr)) ! p_name
call free (MEM (protoptr+l) *2) ! p_aliases
call free (protoptr*2) | protoent

5-4 HP 1000 BSD IPC Utilities

The FORTRAN example below shows how to release the memory dynamically allocated for the

servent structure. Functions that return a pointer to a servent structure are
getservbyname, getservbyport, and getservent.

Salias /MEM/ = O
include socket.ftni
common /MEM/ MEM(0:1)
integer*2 ptr, hostptr,

servptr = getservent ()

ptr = MEM (servptr+1l)

do while (MEM(ptr) .ne. 0)
call free (MEM (ptr))
ptr = ptr + 1

end do

call free
call free
call free
call free

MEM (servptr))

MEM (servptr+1) *2)
MEM (servptr+3))
servptr*2)

~ e~ o~

netptr,

— e— em e—

protoptr, servptr,

get servent struct
free servent struct
s_aliases array

S_name
s_aliases
S_proto
servent

The FORTRAN example below shows how to release the memory dynamically allocated by

inet ntoa.

Salias /MEM/ = O
include socket.ftni
common /MEM/ MEM(0:1)
integer*2 ptr, hostptr,

char ptr =

call free(char ptr)

inet ntoa(ipaddr)

netptr,

protoptr, servptr,

HP 1000 BSD IPC Utilities

char ptr

char ptr

5-5

The utilities described in this section are in alphabetical order for easy referencing. Table 5-1 lists
the utilities covered in this section.

Table 5-1. Berkeley Socket Utilities

BSD IPC Utilities

Description

endhostent () Closes the /etc/hosts file.

endnetent () Closes the /etc/networks file.

endprotoent () Closes the /etc/protocols file.

endservent () Closes the /etc/services file.

gethostbyaddr () Returns host information from the specified IP address.

gethostbyname () Returns host information from the specified host.

gethostent () Reads the next line of the /etc/hosts file and returns host information.

getlocalname () Returns the name of the host/local system.

getnetbyaddr () Returns network information of the specified network address.

getnetbyname () Returns network information of the specified network.

getnetent () Reads the next line of the /etc/networks file and returns network
information.

getpeername () Returns the address of the peer socket that is connected to the specified
local socket.

getprotobyname () Returns protocol information of the specified protocol name.

getprotobynumber () Returns protocol information of the specified protocol number.

getprotoent () Reads the next line of the /etc/protocols and returns protocol
information.

getservbyname () Returns service information of the specified service name.

getserbyport () Returns service information of the specified port number.

getservent () Reads the next line of the /etc/services file and returns service
information.

getsockname () Returns the socket address of the specified local socket.

htonl () Converts a 32-bit quantity from host order to network order.

htons () Converts a 16-bit quantity from host order to network order.

inet addr ()

Interprets character strings representing numbers in the Internet standard
“dot” notation, and returns numbers suitable for use as Internet (IP)
addresses.

inet lnaof ()

Breaks apart Internet (IP) addresses, and returns the local node address
portion.

inet makeaddr ()

Constructs an Internet (IP) address from an Internet network number and
a local node address.

inet netof ()

Breaks apart the Internet (IP) address, and returns the network number.

inet network ()

Interprets character strings representing numbers in the Internet standard
“dot” notation, and returns numbers suitable for use as Internet network
numbers.

5-6 HP 1000 BSD IPC Utilities

BSD IPC Utilities

Description

inet ntoa()

Takes an Internet address and returns an ASCII string representing the
address in “dot” notation.

ntohl () Converts a 32-bit quantity from network order to host order.
ntohs () Converts a 16-bit quantity from network order to host order.
sethostent () Opens and rewinds the /etc/hosts file.

setnetend () Opens and rewinds the /etc/networks file.
setprotoent () Opens and rewinds the /etc/protocols file.
setservent () Opens and rewinds the /etc/services file.

HP 1000 BSD IPC Utilities

5-7

endhostent()

Closes the /etc/hosts file.

Syntax
result= endhostent ()

int result

Parameters

result 0 if the call is successful.
-1 if a failure occurs.

Discussion

Endhostent () is one of the Berkeley Socket utilities used to manipulate the /etc/hosts file.
The following utilities manipulate the /etc/hosts file.

e endhostent () —closes the /etc/hosts file.
® gethostbyaddr () —returns host information from the specified IP address.
® gethostbyname—returns host information from the specified host name.

® gethostent () —reads the next line of the /etc/hosts file and returns host information
on that host.

® sethostent () —opens and rewinds the /etc/hosts file.

5-8 HP 1000 BSD IPC Utilities

endnetent()

Closes the /etc/networks file.

Syntax
result= endnetent ()

int result

Parameters

result 0 if the call is successful.
-1 if a failure occurs.

Discussion

Endnetent () is one of the Berkeley Socket utilities used to manipulate the /etc/networks
file. The following utilities also manipulate the /etc/networks file.

® getnetbyaddr () —sequentially searches from the beginning of the /etc/networks file
until a network number matches the specified parameter or until EOF is encountered.

® getnetbyname () —sequentially searches from the beginning of the /etc/networks file
until a network name or alias matches the specified parameter or until EOF is encountered.

® getnetent () —returns the next line of the entry from the /etc/networks file, opening
the file if necessary.

® setnetent () —opens and rewinds the /etc/networks file.

HP 1000 BSD IPC Utilities 5-9

endprotoent()

Closes the /etc/protocols file.

Syntax
result= endprotoent ()

int result

Parameters

result 0 if the call is successful.
-1 if a failure occurs.

Discussion

Endprotoent () is one of the Berkeley Socket utilities used to manipulate the
/etc/protocols file. The following utilities also manipulate the /etc/protocols file.

® getprotobyname () —sequentially searches from the beginning of the /etc/protocols
file until a protocol name or alias matches the specified parameter or until EOF is
encountered.

® getprotobynumber () —sequentially searches from the beginning of the

/etc/protocols file until a protocol number matches the specified parameter or until
EOQF is encountered.

® getprotoent () —returns the next line of the entry from the /etc/protocols file,
opening the file if necessary.

® setprotoent () —opens and rewinds the /etc/protocols file.

5-10 HP 1000 BSD IPC Utilities

endservent()

Closes the /etc/services file.

Syntax
result= endservent ()

int result

Parameters

result 0 if the call is successful.
-1 if a failure occurs.

Discussion

Endservent () is one of the Berkeley Socket utilities used to manipulate the /etc/services
file. The following utilities also manipulate the /etc/services file.

® getservbyname () —sequentially searches from the beginning of the /etc/services file
until a service name or alias matches the specified parameter or until EOF is encountered.

® getservbyport () —sequentially searches from the beginning of the /etc/services file
until a port number matches the specified parameter or until EOF is encountered.

® getservent () —returns the next line of the entry from the /etc/services file, opening
the file if necessary.

® setservent () —opens and rewinds the /etc/services file.

HP 1000 BSD IPC Utilities 5-11

gethostbyaddr()

Returns host information on the host with the specified IP address.

Syntax
host = gethostbyaddr (addr, len, type)

struct hostent *host;

char *addr;
int len, type;
Parameters
host Pointer to hostent structure that contains the host information.

The hostent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct hostent {

char *h name; /* official name of host */

char **h aliases; /* alias list */

int h addrtype; /* host address type = AF INET */
int h length; /* length of address = 4 bytes */

char **h addr list; /* list of addresses */
/* NULL terminates the list */

Vi

addr Character pointer to a variable that contains the IP address of the host.
The IP address must be in network order (that is, bytes ordered from left to
right).

len Number of bytes of an IP address.

type The type of socket address family used. Must be set to AF_INET.

Discussion

Gethostbyname () and gethostbyaddr () both return a pointer to a structure of type
hostent, which contains the broken-out fields of a line in the /etc/hosts file.
Gethostbyaddr () sequentially searches the /etc/hosts file for an IP address matching the
one specified in addr or until EOF is encountered.

Gethostbyname () sequentially searches from the beginning of the file until a host name
(among either the official names or the aliases) matches the specified parameter or until EOF.
Names are matched in a case-insensitive manner.

5-12 HP 1000 BSD IPC Utilities

gethostbyaddr()

Pascal and FORTRAN programs need to use the ByteAdrOf () function to get the character
pointer to the 32-bit IP address, addr.

Refer to Appendix B, “Database and Header Files,” for detailed information on the /etc/hosts
file.

Error Returns

If successful, gethostbyaddr () returns a pointer to the requested hostent structure. It
returns NULL if the addr parameter cannot be found in the /etc/hosts file, or if addr or len
is invalid.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

HP 1000 BSD IPC Utilities 5-13

gethostbyname()

Returns host information on the host with the specified host name.

Syntax

host = gethostbyname (name)

struct hostent *host;

char *name ;
Parameters
host Pointer to the hostent structure that contains host information.

The hostent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct hostent {

char *h name; /* official name of host */

char **h aliases; /* alias list */

int h addrtype; /* host address type = AF INET */
int h length; /* length of address = 4 bytes */

char **h addr list; /* list of addresses */
/* NULL terminates the list */

}i

name Pointer to string that contains the name of the host about whom you need
to obtain information. Terminate the string with the \ 0 character.

Discussion

Gethostbyname () and gethostbyaddr () both return a pointer to a structure of type
hostent, which contains the broken-out fields of the /etc/hosts file. Names are matched in a
case-insensitive manner.

Gethostbyname () sequentially searches from the beginning of the file until a host name
(among either the official names or the aliases) matches the specified parameter in or until EOF.
gethostbyaddr () sequentially searches the /etc/hosts file for an IP address matching the
one specified in addr.

Pascal and FORTRAN programs need to use the ByteAdrOf () function to get the character
pointer for name.

Refer to Appendix B, “Database and Header Files,” for detailed information on the /etc/hosts
file.

5-14 HP 1000 BSD IPC Utilities

gethostbyname()

Error Returns

If successful, gethostbyname () returns a pointer to the requested hostent structure. It
returns NULL if the host name cannot be found in the /etc/hosts file.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

HP 1000 BSD IPC Utilities 5-15

gethostent()

Reads the next line of the /etc/hosts file and returns the host information.

Syntax
host = gethostent ()

struct hostent *host;

Parameters

host Pointer to a hostent structure containing host information.

The hostent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct hostent {

char *h name; /* official name of host */

char **h aliases; /* alias list */

int h addrtype; /* host address type = AF INET */
int h length; /* length of address = 4 bytes */

char **h addr list; /* list of addresses */
/* NULL terminates the list */

}i

Gethostent () , gethostbyaddr () , and gethostbyname each return a pointer to a
structure of type hostent, which contains the broken-out fields of a line in the network database
file, /etc/hosts.

Gethostent () is one of the Berkeley Socket utilities used to manipulate the /etc/hosts file.
The following utilities manipulate the /etc/hosts file.

e endhostent () —closes the /etc/hosts file.
® gethostbyaddr () —returns host information from the specified IP address.
® gethostbyname—returns host information from the specified host name.

® gethostent () —reads the next line of the /etc/hosts file and returns host information
on that host.

® sethostent () —opens and rewinds the /etc/hosts file.

5-16 HP 1000 BSD IPC Utilities

gethostent()

Error Returns

Gethostent () returns a null pointer (0) on EOF or when it is unable to open the /etc/hosts
file.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

HP 1000 BSD IPC Utilities 5-17

getlocalname()

Returns the name of the host/local system.

Syntax
error = getlocalname (hostname)

character* (*) hostname;

integer*2 error;
Parameters
hostname Returns a FORTRAN character string for the local node name.
error Is an integer that returns 0 for success or non-zero if the network is down.

Discussion

The hostname string returned by getlocalname () is limited to 50 characters.

Note that the syntax is defined for FORTRAN. Character strings need special attention when they
are passed between C, FORTRAN, and Pascal programs. To understand the differences between
C, FORTRAN, and Pascal character strings, refer to the following manuals:

HP C/1000 Reference Manual, part number 92571-90001;
FORTRAN 77 Reference Manual, part number 92836-90001;
Pascal/1000 Reference Manual, part number 92833-90001.

Discussion on character strings is also available in the RTE-A Programmer’s Reference Manual, part
number 92077-90007.

5-18 HP 1000 BSD IPC Utilities

getnetbyaddr()

Returns network information on the specified network number.

Syntax
network = getnetbyaddr (net, type)

struct netent *network;

long net;
int type;
Parameters
network Pointer to a netent structure that contains network information returned

by getnetbyaddr () .

The netent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct netent {
char *n name; /* official name of net */
char **n aliases ; /* alias list */
int n_addrtype; /* net address type */
unsigned long n net; /* network # */
}i
net Network number from which to get network information.
type The socket address family type. It must be set to AF_INET.

Discussion

Getnetbyaddr () , getnetbyname () , and getnetent () each return a pointer to a structure
of type netent, which contains the broken-out fields of a line in the network database file,
/etc/networks.

Getnetbyaddr () sequentially searches from the beginning of the /etc/networks file until a
network number matching its parameter net is found, or until EOF is encountered. The
parameter net for the network number must be in network order (that is, bytes ordered from left
to right).

Getnetbyaddr () is one of the Berkeley Socket utilities used to manipulate the
/etc/networks file. The following utilities also manipulate the /etc/networks file.

® endnetent () —closes the /etc/networks file.

® getnetbyname () —sequentially searches from the beginning of the /etc/networks file
until a network name or alias matches the specified parameter or until EOF is encountered.

HP 1000 BSD IPC Utilities 5-19

getnetbyaddr()

® getnetent () —returns the next line of the entry from the /etc/networks file, opening
the file if necessary.

® setnetent () —opens and rewinds the /etc/networks file.

Refer to Appendix B, “Database and Header Files,” for detailed information on the
/etc/networks file.

Error Returns

Getnetbyaddr () returns a null pointer (0) on EOF or when it is unable to open the
/etc/networks file. Getnetbyaddr () also returns a null pointer if the parameter type is
invalid (that is, it is not set to “AF INET”).

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

5-20 HP 1000 BSD IPC Utilities

getnetbyname()

Returns network information on the specified network name.

Syntax
network = getnetbyname (name)

struct netent *network;

char *name ;
Parameters
network Pointer to a netent structure that contains network information returned

by getnetbyname () .

The netent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct netent {
char *n name; /* official name of net */
char **n aliases ; /* alias list */
int n_addrtype; /* net address type */
unsigned long n net; /* network # */
}i
name Pointer to string that contains the network name from which to get network

information. Terminate the name string with the character \ 0.

Discussion

Getnetbyname () , getnetbyaddr () , and getnetent () each return a pointer to a structure
of type netent, which contains the broken-out fields of a line in the network database file,
/etc/networks.

Getnetbyname sequentially searches from the beginning of the /etc/networks file until a
network name (among either the official names or the aliases) matches the specified parameter
name, or until EOF is encountered.

Pascal and FORTRAN programs need to use the ByteAdrOf () function to get the character
pointer to name.

Getnetbyname () is one of the Berkeley Socket utilities used to manipulate the
/etc/networks file. The following utilities also manipulate the /etc/networks file.

® endnetent () —closes the /etc/networks file.

® getnetbyaddr () —sequentially searches from the beginning of the /etc/networks file
until a network number matches the specified parameter or until EOF is encountered.

HP 1000 BSD IPC Utilities 5-21

getnetbyname()

® getnetent () —returns the next line of the entry from the /etc/networks file, opening
the file if necessary.

® setnetent () —opens and rewinds the /etc/networks file.

Refer to Appendix B, “Database and Header Files,” for detailed information on the
/etc/networks file.

Error Returns

Getnetbyname () returns a null pointer (0) on EOF or when it is unable to open the
/etc/networks file.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

5-22 HP 1000 BSD IPC Utilities

getnetent()

Reads the next line of the /etc/networks file and returns the network information.

Syntax
network = getnetent ()

struct netent *network;

Parameters

network Pointer to a netent structure that contains network information returned

by getnetent () .

The netent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct netent {
char *n_name; /*
char **n aliases ; /*
int n_addrtype; /*
unsigned long n net; /*

Discussion

official name of net */
alias list */

net address type */
network # */

Getnetent (), getnetbyaddr () , and getnetbyname () each return a pointer to a structure
of type netent, which contains the broken-out fields of a line in the network database file,

/etc/networks.

Getnetent () is one of the Berkeley Socket utilities used to manipulate the /etc/networks
file. The following utilities also manipulate the /etc/networks file.

® endnetent () —closes the /etc/networks file.

® getnetbyaddr () —sequentially searches from the beginning of the /etc/networks file
until a network number matches the specified parameter or until EOF is encountered.

® getnetbyname () —sequentially searches from the beginning of the /etc/networks file
until a network name or alias matches the specified parameter or until EOF is encountered.

® setnetent () —opens and rewinds the /etc/networks file.

Refer to Appendix B, “Database and Header Files,” for detailed information on the

/etc/networks file.

HP 1000 BSD IPC Utilities 5-23

getnetent()

Error Returns

Getnetent () returns a null pointer (0) on EOF or when it is unable to open the
/etc/networks file.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

5-24 HP 1000 BSD IPC Utilities

getpeername()

Returns the socket address of the peer socket connected to the specified local socket.

Syntax
result = getpeername (socket, addr, addrlen)
int result, socket, *addrlen;

struct sockaddr in *addr;

Parameters

result 0 if the call is successful.
-1 if a failure occurs.

socket Socket descriptor of a local socket.

addr Pointer to an address structure that contains the socket address of the peer
socket that is connected to socket. The address structure should be of
sockaddr_in type, which is described in “Preparing Socket Address
Variables” in Section 3.

addrlen Pointer to an integer variable that contains the length, in bytes, of the

address structure specified by addr (for example, length of structure
sockaddr_in, which is 16 bytes).

On return, pointer to an integer variable that contains the actual length of
the peer socket address. If addr does not point to enough space to contain
the whole socket address of the peer socket, only the first addrlen bytes
of the address are filled in the structure pointed to by addr.

Discussion

Pascal and FORTRAN programs need to use the AddressOf () function to get the pointer to
addr and addrlen.

Error Returns

If getpeername () is successful, 0 is returned. If the call fails, -1 is returned and errno
contains the cause of the failure. The following table lists possible error returns from the
getpeername () call.

Error Mnemonic Meaning
[ENOTSOCK] Socket is not a valid socket descriptor.
[ENOTCONN] Socket is not connected to a peer socket.
[EHOSTDOWN] The network software on the local host is not running.

HP 1000 BSD IPC Utilities 5-25

getprotobyname()

Returns protocol information on the specified protocol name.

Syntax
protocol = getprotobyname (name)

struct protoent “*protocol;

char *name;
Parameters
protocol Pointer to a protoent structure that contains the protocol information

returned by getprotobyname () .

The protoent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct protoent {
char *p name; /* official protocol name */
char **p aliases; /* alias list */
int p_proto; /* protocol # */
}i
name Pointer to string that contains the protocol name from which to get protocol

information. It can be either an official protocol name or an alias.
Terminate the string with the character \ 0.

Discussion

Getprotoent () , getprotobynumber () , and getprotobyname () each return a pointer to
a structure of type protoent, which contains the broken-out fields of a line in the network
protocol database file, /etc/protocols.

Getprotobyname () sequentially searches from the beginning of the /etc/protocols file
until a matching protocol name or alias is found, or until EOF is encountered.

Pascal and FORTRAN programs need to use the ByteAdrOf () function to get the character
pointer to name.

Getprotobyname () is one of the Berkeley Socket utilities used to manipulate the
/etc/protocols file. The following utilities also manipulate the /etc/protocols file.

e endprotoent () —closes the /etc/protocols file.

® getprotobynumber () —sequentially searches from the beginning of the
/etc/protocols file until a protocol number matches the specified parameter or until
EOF is encountered.

5-26 HP 1000 BSD IPC Utilities

getprotobyname()

® getprotoent () —returns the next line of the entry from the /etc/protocols file,
opening the file if necessary.

® setprotoent () —opens and rewinds the /etc/protocols file.

Refer to Appendix B, “Database and Header Files,” for detailed information on the
/etc/protocols file.

Error Returns

Getprotobyname () returns a null pointer (0) on EOF or when it is unable to open
/etc/protocols file.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

HP 1000 BSD IPC Utilities 5-27

getprotobynumber()

Returns protocol information on the specified protocol number.

Syntax

protocol = getprotobynumber (protonumb)

struct protoent “*protocol;

int protonumb ;
Parameters
protocol Pointer to a protoent structure that contains protocol information

returned by getprotobynumber () .

The protoent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct protoent {
char *p name; /* official protocol name */
char **p aliases; /* alias list */
int p_proto; /* protocol # */
}i
protonumb Protocol number from which to get protocol information.

Discussion

Getprotoent () , getprotobynumber () , and getprotobyname () each return a pointer to
a structure of type protoent, which contains the broken-out fields of a line in the network
protocol database file, /etc/protocols.

Getprotobynumber () sequentially searches from the beginning of file /etc/protocols
until a matching protocol number is found, or until EOF is encountered.

Getprotobynumber () is one of the Berkeley Socket utilities used to manipulate the
/etc/protocols file. The following utilities also manipulate the /etc/protocols file.

e endprotoent () —closes the /etc/protocols file.

® getprotobyname () —sequentially searches from the beginning of the /etc/protocols
file until a protocol name or alias matches the specified parameter or until EOF is
encountered.

® getprotoent () —returns the next line of the entry from the /etc/protocols file,

opening the file if necessary.

® setprotoent () —opens and rewinds the /etc/protocols file.

5-28 HP 1000 BSD IPC Utilities

getprotobynumber()

Refer to Appendix B, “Database and Header Files,” for detailed information on the
/etc/protocols file.

Error Returns

Getprotobynumber () returns a null pointer (0) on EOF or when it is unable to open
/etc/protocols file.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

HP 1000 BSD IPC Utilities 5-29

getprotoent()

Reads the next line of the /etc/protocols file and returns the protocol information.

Syntax

protocol = getprotoent ()

struct protoent *protocol;

Parameters

protocol Pointer to a protoent structure that contains protocol information
returned by getprotoent () .

The protoent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct protoent {
char *p name; /* official protocol name */
char **p aliases; /* alias list */
int p_proto; /* protocol # */

}i

Discussion

Getprotoent () , getprotobynumber () , and getprotobyname () each return a pointer to
a structure of type protoent, which contains the broken-out fields of a line in the network
protocol database file, /etc/protocols.

Getprotoent () reads the next line of the /etc/protocols file, opening the file if necessary.

Getprotoent () is one of the Berkeley Socket utilities used to manipulate the
/etc/protocols file. The following utilities also manipulate the /etc/protocols file.

e endprotoent () —closes the /etc/protocols file.

® getprotobyname () —sequentially searches from the beginning of the /etc/protocols
file until a protocol name or alias matches the specified parameter or until EOF is
encountered.

® getprotobynumber () —sequentially searches from the beginning of the

/etc/protocols file until a protocol number matches the specified parameter or until
EOF is encountered.

® setprotoent () —opens and rewinds the /etc/protocols file.

Refer to Appendix B, “Database and Header Files,” for detailed information on the
/etc/protocols file.

5-30 HP 1000 BSD IPC Utilities

getprotoent()

Error Returns

Getprotoent () returns a null pointer (0) on EOF or when it is unable to open the
/etc/protocols file.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

HP 1000 BSD IPC Utilities 5-31

getservbyname()

Returns service information on the specified service name.

Syntax
service = getservbyname (name, proto)

struct servent *sgervice;

char *name, *proto;
Parameters
service Pointer to a servent structure that contains service information returned

by getservbyname () .

The servent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct servent {

char *s name; /* official service name */
char **s aliases; /* alias list */
int s_port; /* port #, network byte order */
char *s proto; /* protocol to use */
}
name Pointer to string that contains the service name from which to get

information on the service. It can be either an official service name or an
alias. Terminate the string with the character \ 0.

proto Pointer to string that contains the name of the transport protocol to use
when contacting the service. Use “tcp” or 0 if TCP is the only protocol for
the service. (Remember to terminate the string with the character \ 0.)

Discussion

Getservent () , getservbyname () , and getservbyport () each return a pointer to a
structure of type servent, which contains the broken-out fields of a line in the network services
database file, /etc/services.

Getservbyname () sequentially searches from the beginning of the /etc/services file until
a matching service name or alias is found, or until EOF is encountered. If a non-NULL protocol
name is also supplied in proto (for example, “tcp”), the search must also match the specified
protocol name.

Pascal and FORTRAN programs need to use the ByteAdrOf () function to get the character
pointers to name and proto.

5-32 HP 1000 BSD IPC Utilities

getservbyname()

Getservbyname () is one of the Berkeley Socket utilities used to manipulate the
/etc/services file. The following utilities also manipulate the /etc/services file.

® endservent () —closes the /etc/services file.

® getservbyport () —sequentially searches from the beginning of the /etc/services file
until a port number matches the specified parameter or until EOF is encountered.

® getservent () —returns the next line of the entry from the /etc/services file, opening
the file if necessary.

® setservent () —opens and rewinds the /etc/services file.

Refer to Appendix B, “Database and Header Files,” for detailed information on the
/etc/services file.

Error Returns

Getservbyname () returns a null pointer (0) on EOF or when it is unable to open
/etc/services file.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

HP 1000 BSD IPC Utilities 5-33

getservbyport()

Returns service information on the specified port number.

Syntax
service = getservbyport (port, proto)

struct servent *sgervice;

int port;
char *proto;
Parameters
service Pointer to a servent structure that contains service information returned

by getservbyname () .

The servent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET.FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct servent {

char *s name; /* official service name */
char **g aliases; /* alias list */
int s _port; /* port #, network byte order */
char *s proto; /* protocol to use */
}
port Port number from which to get information on the service.
proto Pointer to string that contains the name of the transport protocol to use

when contacting the service. Use “tcp” or 0 if TCP is the only protocol for
the service. Terminate string with character \ 0.

Set this value to NULL if you do not want to specify any specific protocol.

Discussion

Getservent () , getservbyname () , and getservbyport () each return a pointer to a
structure of type servent, which contains the broken-out fields of a line in the network services
database file, /etc/services.

Getservbyport () sequentially searches from the beginning of the /etc/services file until
a matching port number is found, or until EOF is encountered. If a non-NULL protocol name is
also supplied in proto (for example, “tcp”), the search must also match the specified protocol
name.

Pascal and FORTRAN programs need to use the ByteAdrOf () function to get the character
pointer to proto.

5-34 HP 1000 BSD IPC Utilities

getservbyport()

Getservbyport () is one of the Berkeley Socket utilities used to manipulate the
/etc/services file. The following utilities also manipulate the /etc/services file.

® endservent () —closes the /etc/services file.

® getservbyname () —sequentially searches from the beginning of the /etc/services file
until a service name or alias matches the specified parameter or until EOF is encountered.

® getservent () —returns the next line of the entry from the /etc/services file, opening
the file if necessary.

® setservent () —opens and rewinds the /etc/services file.

Refer to Appendix B, “Database and Header Files,” for detailed information on the
/etc/services file.

Error Returns

Getservbyport () returns a null pointer (0) on EOF or when it is unable to open
/etc/services file.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

HP 1000 BSD IPC Utilities 5-35

getservent()

Reads the next line of the /etc/services file and returns information on the service.

Syntax
service = getservent ()

struct servent *sgervice;

Parameters

service Pointer to a servent structure that contains service information returned
by getservent () .

The servent structure is defined in the include files <netdb.h>,
SOCKET.PASI, and SOCKET . FTNI, for C, Pascal, and FORTRAN
programs, respectively. It is shown below in C programming format.

struct servent {

char *s name; /* official service name */

char **g aliases; /* alias list */

int s _port; /* port #, network byte order */
char *s proto; /* protocol to use */

Discussion

Getservent () , getservbyname () , and getservbyport () each return a pointer to a
structure of type servent, which contains the broken-out fields of a line in the network services

database file, /etc/services.
Getservent () reads the next line of the /etc/services file, opening the file if necessary.

Getservent () is one of the Berkeley Socket utilities used to manipulate the /etc/services
file. The following utilities also manipulate the /etc/services file.

® endservent () —closes the /etc/services file.

® getservbyname () —sequentially searches from the beginning of the /etc/services file
until a service name or alias matches the specified parameter or until EOF is encountered.

® getservbyport () —sequentially searches from the beginning of the /etc/services file
until a port number matches the specified parameter or until EOF is encountered.

® setservent () —opens and rewinds the /etc/services file.

Refer to Appendix B, “Database and Header Files,” for detailed information on the
/etc/services file.

5-36 HP 1000 BSD IPC Utilities

getservent()

Error Returns

Getservent () returns a null pointer (0) on EOF or when it is unable to open /etc/services
file.

Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

HP 1000 BSD IPC Utilities 5-37

getsockname()

Returns the socket address of the specified local socket.

Syntax
result = getsockname (socket, addr, addrlen)
int result, socket, *addrlen;

struct sockaddr in *addr;

Parameters

result 0 if the call is successful.
-1 if a failure occurs.

socket Socket descriptor of a local socket.

addr Pointer to a socket address variable to contain the address of the specified
socket. The socket address should be of sockaddr in type, which is
described in “Preparing Socket Address Variables” in Section 3.
On return, the socket address structure will contain the local socket address
information.

addrlen Pointer to an integer variable that contains the length, in bytes, of the

address structure specified by addr (for example, length of structure
sockaddr_in, which is 16 bytes).

On return, it is the pointer to an integer that contains the actual length of
the socket address returned in addr. If addr does not point to enough
space to contain the whole address of the socket, only the first addrlen
bytes of the address are returned.

Getsockname () is used to find the socket address of a local socket. To obtain the socket
address of the peer socket, use getpeername () .

Sometimes in a client process, the local socket’s address is assigned randomly by the connect ()
call, instead of bound explicitly by bind () . In this case, getsockname () can be used to find
the socket address of the local socket.

Pascal and FORTRAN programs need to use the AddressOf () function to get the pointers to
addr and addrlen.

Error Returns

If the call is successful, 0 is returned. If the call failed, -1 is returned and the error code is stored
in errno. The following table lists possible error returns from get sockname () .

Error Mnemonic Meaning
[ENOTSOCK] Socket is not a valid socket descriptor.
[EHOSTDOWN] The network software on the local host is not running.

5-38 HP 1000 BSD IPC Utilities

htonli()

Converts a 32-bit quantity from host order to network order.

Syntax
netlong = htonl (hostlong)

u long netlong, hostlong;

Parameters
netlong 32-bit integer in network order, returned by htonl () .
hostlong 32-bit integer in host order.

Discussion

There are four routines to convert an integer from network order to host order and vice versa.

e htonl () —converts a 32-bit integer from host order to network order.
e htons () —converts a 16-bit integer from host order to network order.
e ntohl () —converts a 32-bit integer from network order to host order.
e ntohs () —converts a 16-bit integer from network order to host order.

HP 1000 BSD IPC Utilities 5-39

htons()

Converts a 16-bit quantity from host order to network order.

Syntax
netshort = htons (hostshort)

u_short netshort, hostshort;

Parameters
netshort 16-bit integer in network order, returned by htons () .
hostshort 16-bit integer in host order.

Discussion

There are four routines to convert an integer from network order to host order and vice versa.

e htonl () —converts a 32-bit integer from host order to network order.
e htons () —converts a 16-bit integer from host order to network order.
e ntohl () —converts a 32-bit integer from network order to host order.
e ntohs () —converts a 16-bit integer from network order to host order.

5-40 HP 1000 BSD IPC Utilities

inet_addr()

Interprets character strings representing numbers in the Internet standard “dot” notation, and
returns numbers suitable for use as Internet (IP) addresses.

Syntax
IPaddr = inet addr(string)

struct in addr IPaddr;

char *string;
Parameters
IPaddr Internet (IP) address returned by inet addr () .
string Pointer to a character string representing numbers expressed in the Internet

standard “dot” notation, such as: “192.41.233.2”. Terminate the string with
the character \ 0.

Discussion

The routine inet addr () converts character strings to 32-bit Internet (IP) addresses. The
routine inet ntoa () does the reverse conversion; it converts a 32-bit IP address to an ASCII
string in “dot” notation.

The return value of inet addr (), IPaddr, may be assigned to an address structure (or record)
of type in addr, which is an address variable used to store IP addresses for the Internet family.
Refer to “Preparing Socket Addresses” in Section 3 for more information on the in addr
address structure.

Pascal and FORTRAN programs need to use the ByteAdrOf () function to get the character
pointer to string.

Refer to “IP Address” in Appendix D for more information on the IP address and its formats.

Note All IP addresses are returned in network order (bytes ordered from left to
right). All network numbers and local node address portions are returned as
machine format integer values. Bytes in HP-UX systems are ordered from left
to right.

Error Returns

The value -1 is returned by inet addr () for malformed requests.

HP 1000 BSD IPC Utilities 5-41

inet_Inaof()

Breaks apart an IP address and returns the node address portion of the IP address.

Syntax
node = inet 1lnaof (IPaddr)
u_long node;

struct in addr IPaddr;

Parameters
node Node address portion of the IP address returned by inet 1naof ().
IPaddr IP address of a host. IP addresses for the Internet family are stored in an

address variable of type in addr. Refer to “Preparing Socket Addresses”
in Section 3 for more information about in_addr.

Discussion

An IP address consists of two parts: the network address and the node address of a host. The
routine inet 1lnaof () breaks apart an IP address and returns the node address portion of the IP
address. The routine inet netof () breaks apart an IP address and returns the network address
portion of the IP address.

The network portion of the IP address returned is based on the Class A, B, C categorization of 1P
addresses and does not include subnet masks.

Refer to “IP Address” in Appendix D for more information on the IP address and its components.

Note All IP addresses are returned in network order (bytes ordered from left to
right). All network numbers and local node address portions are returned as
machine format integer values. Bytes in HP-UX systems are ordered from left
to right.

5-42 HP 1000 BSD IPC Utilities

inet_makeaddr()

Constructs an Internet (IP) address from an Internet network address and a local node address.

Syntax

IPaddr = inet makeaddr (net, node)

struct in addr IPaddr;

u_ long net, node;
Parameters
IPaddr Internet (IP) address constructed from the specified network address and

node address.

IP addresses for the Internet family are stored in an address variable of
type in_addr. Refer to “Preparing Socket Addresses” in Section 3 for
more information on in addr.

net Internet network number that defines the network on which a node resides.
The network number makes up a portion of an IP address.

node Internet node address that defines the address of a node within a network.
The node address makes up a portion of an IP address.

Discussion

An IP address consists of two parts: the network address and the node address of a host. The
routine inet makeaddr () takes a network address and a node address and constructs an IP
address.

Refer to “IP Address” in Appendix D for more information on the IP address and its components.

Note All IP addresses are returned in network order (bytes ordered from left to
right). All network numbers and local node address portions are returned as
machine format integer values. Bytes in HP-UX systems are ordered from left
to right.

HP 1000 BSD IPC Utilities 5-43

inet_netof()

Breaks apart an IP address and returns the network address portion of the IP address.

Syntax
network = inet netof (IPaddr)
u_long network;

struct in addr IPaddr;

Parameters
network Network address portion of the IP address returned by inet netof () .
IPaddr IP address of the local host. IP addresses for the Internet family are stored

in an address variable of type in addr. Refer to “Preparing Socket
Address Variables” in Section 3 for more information about in addr.

Discussion

An IP address consists of two parts: the network address and the node address of a host. The
routine inet netof () breaks apart an IP address and returns the network address portion of the
IP address. The routine inet 1naof () breaks apart an IP address and returns the node address
portion of the IP address.

Refer to “IP Address” in Appendix D for more information on the IP address and its components.

Note All IP addresses are returned in network order (bytes ordered from left to
right). All network numbers and local node address portions are returned as
machine format integer values. Bytes in HP-UX systems are ordered from left
to right.

5-44 HP 1000 BSD IPC Utilities

inet_network()

Interprets character strings representing numbers in the Internet standard “dot” notation, and
returns numbers suitable for use as Internet network numbers.

Syntax
network = inet network(string)

struct in addr network;

char *string;
Parameters
network Internet network number returned by inet network () .
string Pointer to character string representing numbers expressed in the Internet

standard “dot” notation, such as: “192.41.233.2”. Terminate the string with
the character \ 0.

See “Internet Dot Notation” in Appendix D for more information on dot
notation.

Discussion

The routine inet network () converts character strings to Internet network numbers, suitable
for use as part of an Internet (IP) address. The routine inet addr () converts character strings
to 32-bit whole IP addresses.

Pascal and FORTRAN programs need to use the ByteAdrOf () function to get the character
pointer to string.

Refer to “IP Address” in Appendix D for more information on the IP address and its formats.

Note All IP addresses are returned in network order (bytes ordered from left to
right). All network numbers and local node address portions are returned as
machine format integer values. Bytes in HP-UX systems are ordered from left
to right.

Error Returns

The value -1 is returned by inet addr () for malformed requests.

HP 1000 BSD IPC Utilities 5-45

inet_ntoa()

Takes an Internet (IP) address and returns an ASCII string representing the address in “dot”
notation.

Syntax
string = inet ntoa (IPaddr)
char *string;

struct in addr IPaddr;

Parameters

string Returns pointer to character string (byte address) representing numbers
expressed in the Internet standard “dot” notation, such as: “192.41.233.2”.
The string is terminated with character \ 0.
See “Internet Dot Notation” in Appendix D for more information on dot
notation.

IPaddr Internet (IP) address. IP addresses for the Internet family are stored in an

2

address variable of type in_addr. Refer to “Preparing Socket Addresses
in Section 3 for more information about in_addr.

Discussion
The routine inet ntoa () converts IP addresses to ASCII strings representing IP addresses in

“dot” notation. The routine inet addr () does the reverse conversion; it converts an ASCII
string representing IP address in “dot” notation to an IP address.

Pascal and FORTRAN programs cannot directly access the string built by inet ntoaf() .

Refer to “IP Address” in Appendix D for more information on IP addresses, and “Internet Dot
Notation” for more information on Internet dot notation.

Error Returns

The value -1 is returned by inet addr () for malformed requests.
Releasing Memory

Refer to “Releasing Dynamically Allocated Memory” earlier in this section for information on
releasing memory allocated by this call.

5-46 HP 1000 BSD IPC Utilities

ntohl()

Converts a 32-bit quantity from network order to host order.

Syntax
hostlong = ntohl (netlong)

u long hostlong, netlong;

Parameters
hostlong 32-bit integer in host order, returned by ntohl () .
netlong 32-bit integer in network order.

Discussion

There are four routines to convert an integer from network order to host order and vice versa.

e htonl () —converts a 32-bit integer from host order to network order.
e htons () —converts a 16-bit integer from host order to network order.
e ntohl () —converts a 32-bit integer from network order to host order.
e ntohs () —converts a 16-bit integer from network order to host order.

HP 1000 BSD IPC Utilities 5-47

ntohs()

Converts a 16-bit quantity from network order to host order.

Syntax
hostshort = ntohs (netshort)

u_short hostshort, netshort;

Parameters
hostshort 16-bit integer in host order, returned by ntohs () .
netshort 16-bit integer in network order.

Discussion

There are four routines to convert an integer from network order to host order and vice versa.

e htonl () —converts a 32-bit integer from host order to network order.
e htons () —converts a 16-bit integer from host order to network order.
e ntohl () —converts a 32-bit integer from network order to host order.
e ntohs () —converts a 16-bit integer from network order to host order.

5-48 HP 1000 BSD IPC Utilities

Opens and rewinds the /etc/hosts file.

Syntax

result = sethostent (stayopen)

int result, stayopen;

sethostent()

Parameters
result 0 if the call is successful.
-1 if a failure occurs.
stayopen A zero value closes the /etc/hosts file after each call to the file by one

of the following calls: gethostbyaddr () , gethostbyname, and

gethostent () .

A non-zero value leaves the /etc/services file open after a
gethostbyaddr () , gethostbyname () , or gethostent () call. This
allows the next gethostent () to read from the next line of the
/etc/hosts file rather than from the beginning of the file.

Discussion

Sethostent () is one of the Berkeley Socket utilities used to manipulate the /etc/hosts file.
The following utilities manipulate the /etc/hosts file. The /etc/hosts file is used by the

following BSD IPC utilities:

e endhostent () —closes the /etc/hosts file.

® gethostbyaddr () —returns host information from the specified IP address.

® gethostbyname—returns host information from the specified host name.

® gethostent () —reads the next line of the /etc/hosts file and returns host information

on that host.

® sethostent () —opens and rewinds the /etc/hosts file.

Error Returns

Sethostent () returns -1 when it is unable to open the /etc/hosts file.

HP 1000 BSD IPC Utilities

5-49

setnetent()

Opens and rewinds the /etc/networks file.

Syntax

result = setnetent (stayopen)

int result, stayopen;

Parameters

result 0 if the call is successful.
-1 if a failure occurs.

stayopen A zero value closes the /etc/networks file after each call to the file by
one of the following calls: getnetbyaddr () , getnetbyname () , and

getnetent () .

A non-zero value leaves the /etc/services file open after a
getnetbyaddr () , getnetbyname () , or getnetent () call. This
allows the next getnetent () to read from the next line of the
/etc/networks file rather than from the beginning of the file.

Discussion

Setnetent () is one of the Berkeley Socket utilities used to manipulate the /etc/networks
file. The following utilities also manipulate the /etc/networks file.

® endnetent () —closes the /etc/networks file.

® getnetbyaddr () —sequentially searches from the beginning of the /etc/networks file
until a network number matches the specified parameter or until EOF is encountered.

® getnetbyname () —sequentially searches from the beginning of the /etc/networks file
until a network name or alias matches the specified parameter or until EOF is encountered.

® getnetent () —returns the next line of the entry from the /etc/networks file, opening

the file if necessary.

Error Returns

Setnetent () returns a -1 when it is unable to open the /etc/networks file.

5-50 HP 1000 BSD IPC Utilities

Opens and rewinds the /etc/protocols file.

Syntax

result = setprotoent (stayopen)

int result, stayopen;

setprotoent()

Parameters
result 0 if the call is successful.
-1 if a failure occurs.
stayopen A zero value closes the /etc/protocols file after each call to the file by

one of the following calls: getprotobyname () , getprotobynumber () ,

and getprotoent () .

A non-zero value leaves the /etc/protocols file open after a
getprotobyname () , getprotobynumber () , or getprotoent ()
call. This allows the next getprotoent () to read from the next line of
the /etc/protocols file rather than from the beginning of the file.

Discussion

Setprotoent () is one of the Berkeley Socket utilities used to manipulate the
/etc/protocols file. The following utilities also manipulate the /etc/protocols file.

e endprotoent () —closes the /etc/protocols file.

® getprotobyname () —sequentially searches from the beginning of the /etc/protocols
file until a protocol name or alias matches the specified parameter or until EOF is
encountered.

® getprotobynumber () —sequentially searches from the beginning of the

/etc/protocols file until a protocol number matches the specified parameter or until

EOF is encountered.

® getprotoent () —returns the next line of the entry from the /etc/protocols file,

opening the file if necessary.

Error Returns

Setprotoent () returns a -1 when it is unable to open the /etc/protocols file.

HP 1000 BSD IPC Utilities 5-51

setservent()

Opens and rewinds the /etc/services file.

Syntax

result = setservent (stayopen)

int result, stayopen;

Parameters

result 0 if the call is successful.
-1 if a failure occurs.

stayopen A zero value closes the /etc/services file after each call to the file by
one of the following calls: getservbyname () , getservbyport () , and

getservent () .

A non-zero value leaves the /etc/services file open after a
getservbyname () , getservbyport () , or getservent () call. This
allows the next getservent () to read from the next line of the
/etc/services file rather than from the beginning of the file.

Discussion

Setservent () is one of the Berkeley Socket utilities used to manipulate the /etc/services
file. The following utilities also manipulate the /etc/services file.

® endservent () —closes the /etc/services file.

® getservbyname () —sequentially searches from the beginning of the /etc/services file
until a service name or alias matches the specified parameter or until EOF is encountered.

® getservbyport () —sequentially searches from the beginning of the /etc/services file
until a port number matches the specified parameter or until EOF is encountered.

® getservent () —returns the next line of the entry from the /etc/services file, opening

the file if necessary.

Error Returns

Setservent () returns a -1 when it is unable to open the /etc/services file.

5-52 HP 1000 BSD IPC Utilities

HP 1000 Socket Descriptor Utilities

This section provides reference information on socket descriptor utilities, which operate on socket
descriptor bitmasks. Socket descriptor bitmasks are used by the select () call to specify which
sockets are ready for reading, writing, or have exceptional conditions pending.

The socket descriptor utilities are provided as procedures or functions for Pascal and FORTRAN
users and as macros in the include files for C users.

Table 6-1 lists the utilities covered in this section.

Table 6-1. Berkeley Socket Descriptor Utilities

BSD IPC Utilities Description
FD CLR() Clears the socket descriptor bit in the bitmask.
FD ISSET () Test whether the socket descriptor bit is set in the bitmask.
FD SET () Sets the socket descriptor bit in the bitmask.
FD_ ZERO() Clears the entire bitmask.

Refer to the select () call in Section 4 for more information on how the socket descriptor
bitmasks and the socket descriptor utilities are used for synchronous I/O multiplexing.

Note The bitmasks are stored in a special data type defined as £d_set. Refer to the
header files for C (types.h), Pascal (SOCKET.PASTI), and FORTRAN
(SOCKET.FTNI) in Appendix B, “Database and Header Files,” to see the
structure of data type £d_set.

HP 1000 Socket Descriptor Utilities 6-1

FD_CLR()

Clears the specified socket descriptor’s bit in the bitmask.

Syntax

FD CLR (socket, bitmask)

int socket ;
fd set *bitmask;

Parameters
socket Socket descriptor of a local socket.
bitmask Pointer to a variable of £d_set type which contains the bitmask of the

socket descriptors.

Discussion

FD CLR() clears only the bit corresponding to the socket descriptor, socket, in the specified
bitmask.

HP 1000 Specific Information

e The FD CLR () call is provided as a preprocessor macro for C users and as a procedure call
for Pascal and FORTRAN users.

e Since there is no return value, users will have to be careful about passing a valid socket
descriptor to this routine. Any socket descriptor, socket, outside the range of 0 to 30 will be
silently rounded to the closest value in the range.

e Pascal and FORTRAN users need to use the AddressOf () function to get the pointer to the
bitmask.

6-2 HP 1000 Socket Descriptor Utilities

FD_ISSET()

Tests whether the specified socket descriptor’s bit is set in the specified bitmask.

Syntax

result = FD ISSET (socket, bitmask)

int result, socket;
fd set *bitmask;

Parameters

result Result of FD_ISSET () call.
result = 1 means the bit is set for the specified socket descriptor,
socket. Otherwise, result = 0.

socket Socket descriptor of a local socket.

bitmask Pointer to a £d_set variable type which contains the bitmask of the socket

descriptors.

Discussion

FD ISSET () tests whether the bit corresponding to the socket descriptor socket is set in the
specified bitmask. If set, FD ISSET () returns the value 1 (boolean TRUE for Pascal),
otherwise, it returns 0 (boolean FALSE for Pascal).

HP 1000 Specific Information

e This call is provided as a preprocessor macro for C users and as a function call for Pascal and
FORTRAN users.

e Users must be careful about passing a valid socket descriptor to this routine. Any socket
descriptor outside the range of 0 to 30 will be silently rounded to the closest value in the
range.

e Pascal users should declare this function as returning a boolean value.

e Pascal and FORTRAN users need to use the AddressOf () function to get the pointer to the
bitmask.

HP 1000 Socket Descriptor Utilities 6-3

FD_SET()

Sets the specified socket descriptor’s bit in the bitmask.

Syntax
FD SET (socket, bitmask)

int socket;
fd set *bitmask;

Parameters
socket Socket descriptor of a local socket.
bitmask Pointer to a variable of type £d_set which contains the bitmask of the

socket descriptors.

Discussion

FD SET () sets the bit corresponding to the socket descriptor, socket, in the specified
bitmask. This bitmask can then be used in a select () call. Select () calls are used to
provide synchronous socket I/O multiplexing. Refer to the select () call in Section 4 for more
information.

Note that FD__SET () does not clear the bitmask before setting the bit corresponding to the socket
descriptor, socket.

HP 1000 Specific Information

e The FD SET () call is provided as a preprocessor macro for C users and as a procedure call
for Pascal and FORTRAN users.

e Since there is no return value, users will have to be careful about passing a valid socket
descriptor to this routine. Any socket descriptor, socket, outside the range of 0 to 30 will be
silently rounded to the closest value in the range.

e Pascal and FORTRAN users need to use the AddressOf () function to get the pointer to the
bitmask.

6-4 HP 1000 Socket Descriptor Utilities

FD_ZERO()

Clears the entire bitmask.

Syntax
FD ZERO (bitmask)

fd set *bitmask;

Parameters

bitmask Pointer to a variable of type £d_set which contains the bitmask of the
socket descriptors.

Discussion

FD ZERO () clears all the bits in the specified bitmask. Itis recommended that you clear the
entire bitmask before using it, to ensure that the right bits are set when the bitmask is used.

To clear specific bits in a bitmask, use FD_CLR () .

HP 1000 Specific Information

e The FD ZERO () callis provided as a preprocessor macro for C users and as a procedure call
for Pascal and FORTRAN users.

e Since there is no return value, users will have to be careful about passing a valid socket
descriptor to this routine. Any socket descriptor, socket, outside the range of 0 to 30 will be
silently rounded to the closest value in the range.

e Pascal and FORTRAN users need to use the AddressOf () function to get the pointer to the
bitmask.

HP 1000 Socket Descriptor Utilities 6-5

Advanced Topics

This section covers advanced topics for programming with BSD IPC on HP 1000. This section
explains the following:

e Setting and Getting Socket Options.
e Nonblocking I/O.

Setting and Getting Socket Options

The operation of sockets is controlled by socket level options. The socket options are defined in
the include files <socket .h>, SOCKET .PASI, and SOCKET .FTNI, for C, Pascal, and
FORTRAN programs, respectively. (These files are shown in Appendix B, “Database and Header
Files.”)

You can get the current status of an option with the getsockopt () call, and you can set the
value of an option with the setsockopt () call. The following socket options are currently
supported on HP 1000 BSD IPC:

SO _KEEPALIVE Sets a timer for 90 minutes for connected sockets. After 90 minutes expires
and if the connection has been idle for this period, SO KEEPALIVE forces
a transmission every 60 seconds, for up to 7 minutes, after which the idle
connection is shutdown. If this option is toggled off, an indefinite idle time
is allowed. This option is set by default.

SO_RCVBUF Changes the buffer size of a socket’s receive socket buffer. The default
buffer size is 4096 bytes. The buffer size can only be changed before
connection is established.

SO _REUSEADDR Allows local address reuse. This allows multiple sockets to be bound to the
same local port number.

SO_SNDBUF Changes the buffer size of a socket’s send socket buffer. The default buffer
size is 4096 bytes. The buffer size can only be changed before connection is
established.

The getsockopt () and setsockopt () calls are covered in Section 4, “BSD IPC Calls.”

Note The SO_LINGER option (available on HP-UX) is not provided on the HP 1000.

Advanced Topics 7-1

NonBlocking I/O

Sockets are created in blocking mode by default. You can specify that a socket be put in
nonblocking mode by using the fcntl () call with the status flag set to O NONBLOCK. (See
fentl () call in Section 4 for more information.)

If a socket is in nonblocking mode, the following calls are affected:

accept ()

connect ()

recv ()

Accept () is used by a listening server process to accept a connection
request from a client process. Normally, in blocking mode, accept ()
blocks until there is a connection request from a client process.

If you are in nonblocking mode and no pending connections are present on
the queue, accept () returns -1 in newsocket and errno contains an
EAGAIN error.

It is possible to determine if a listening socket has pending connection
requests ready for an accept () call by using select () for reading.

The connect () call is used by a client process to initiate a connection
request to the server process. The connect () call normally blocks until
the connection completes.

In nonblocking mode, if the connection cannot be completed immediately,
it returns an EINPROGRESS error in errno. In this case, the select ()
call can be used to determine if the connection has completed by selecting it
for write.

Normally, in blocking mode, if no data is available to be received, recv ()
blocks and waits for data to arrive.

If nonblocking I/O is enabled, the recv () request will complete in one of
three ways:

1. If there is enough data to satisfy the entire request, recv () will
complete successfully, having read the entire data in the buffer.

2. If there is not enough data available to satisfy the entire request,
recv () will complete successfully, having read as much data as
possible and returns the number of bytes it was able to read.

3. [If there is no data available, recv () will return -1, with errno set
to EAGAIN.

By selecting the socket for read indication, the select () call may be used
to determine when a socket has data available to be read by a recv () .

7-2 Advanced Topics

send () Normally, in blocking mode, send () blocks until the specified number of
bytes have been queued to be sent.

If nonblocking mode is used, send () will complete in one of three ways:

1. If there is enough space available in the system to buffer all the
data, send () will complete successfully, having written out all of
the data, and return the number of bytes written.

2. If there is not enough space in the buffer to write out the entire
request, send () will complete successfully, having written as much
data as possible, and return the number of bytes it was able to write.

3. [If there is no space in the system to buffer any of the data, send ()
will return -1, having written no data, with errno set to EAGAIN.

By selecting the socket for write indication, the select () call may be used
to determine when a socket has data available to be sent by a subsequent
send () call.

Advanced Topics 7-3

Example Programs

This appendix contains example BSD IPC programs. It provides example server programs and
client programs written in C, Pascal, and FORTRAN. Example load files are also included.

Example Server Program in C

/* BSDSERVER.C 91790-18296 REV.6200 <940914.1450>

*

P T TR T S S N 3

/

#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
#define
#define

To link this program,

NAME : BSDSERVER.C
SOURCE : 91790-18296

bsdserver

<types.h>
<socket.h>
<in.h>
<stdio.h>
<time.h>
<fcntl.h>
<errno.h>

SERVER PORT 20000
BUFLEN 7500
SETSOCKLEN 7500
AF INETLEN 16
BACKLOG 3

void cleanup () ;

main (argc, argv)

int

argc;

char *argvl(];

/*
/*
/*
/*
/*

This is a server example program for BSD sockets.
See the program ”"bsdclient.c”
This program creates a socket,
waits for a connection from the client, receives and echoes data
over the socket connection to the client.

for the client example.
binds it to a well known port,

see the attached ”"bsdserver.lod” file.
To run this program, use the following command:

server port address */

max bytes received */

send, recv buffer size for setsockopt ()
length of internet address structure */
max connections on listen socket */

Example Programs

*/

A-1

struct sockaddr in addr;

int af, type, proto;

int sd, b, 1, al, sl, sss, ssr, r, S;
int addrlen;

int nfds;

fd set readfds, writefds, exceptfds;
char buf [BUFLEN] ;

int opt;

int optlen;

int totalr;

long flags;

/* Create a socket */

af = AF INET; /* domain */

type = SOCK_STREAM; /* type of socket */
proto = IPPROTO_TCP; /* protocol */

sd = socket (af, type, proto);

if (sd == -1)

{

fprintf (stdout,”%s: Socket error %d\n”,argv[0],errno) ;
exit () ;

}

/* Set send and receive buffer size */

opt = SETSOCKLEN;

optlen = 2;

sss = setsockopt (sd, SOL _SOCKET, SO_SNDBUF, (char *) (&opt) ,optlen) ;

if (sss == -1)

{
fprintf (stdout, ”%s: Setsockopt sendbuf error %d\n”,argv[0],errno);
cleanup (sd, -1);

}

ssr = setsockopt (sd, SOL SOCKET, SO_RCVBUF, (char *) (&opt) ,optlen) ;

if (ssr == -1)

{
fprintf (stdout, ”%s: Setsockopt recvbuf error %d\n”,argv[0],errno);
cleanup (sd, -1);

}

/* Bind the socket to a local port address */
addr.sin family = af;

addr.sin port = SERVER PORT;
addrlen = AF INETLEN;
b = bind(sd, &addr,addrlen) ;

if (b == -1)

{

fprintf (stdout,”%s: Bind error %d\n”, argv[0],errno);
cleanup (sd, -1);

}

/* Set up the socket in listen mode so as to be able */
/* to receive connection requests. */

A-2 Example Programs

1 = listen (sd, BACKLOG) ;
if (1 == -1)

fprintf (stdout,”%s: Listen error %d\n”,argv[0], errno);
cleanup (sd, -1);

}

/* Accept incoming connection */

addrlen = sizeof (addr) ;

al = accept(sd, &addr, &addrlen);

if (al == -1)

{
fprintf (stdout,”%s: Accept error %d\n”,argv([0],errno) ;
cleanup (sd, -1);

}

totalr = 0;
while (totalr < BUFLEN)
{
nfds = al + 1;
FD ZERO (&readfds) ;
FD_ ZERO (&writefds) ;
FD ZERO (&exceptfds) ;
FD SET (al, &readfds);
FD SET (al, &exceptfds) ;
sl = select (nfds, &readfds, &writefds, &exceptfds, (struct timeval *)

NULL) ;

if (sl == -1)

{

fprintf (stdout,”%s: Select error %d\n”,argv[0],errno) ;
break;

/* Check if socket is exceptional selected */
if (FD_ISSET (al, &exceptfds))

fprintf (stdout, ”%s: Unexpected exceptional signal\n”,argv[0]);
break;

/* Check if socket is read selected */
if (FD ISSET(al,&readfds))

flags = 0; /* clear all the flags */

/* Receive data from client */
if ((r = recv(al, &buf [totalr],BUFLEN-totalr,flags)) == -1)

{

fprintf (stdout,”%s: Recv error %d\n”,argv[0],errno);
break;

}

/* Print out the data received */
buf [r-1] = "\0’;
fprintf (stdout, "Received: len = %d, string = %$s\n”,r,buf);

Example Programs

totalr += r;

} /* end of if read selected */
} /* end of while */

/* Send data back to the client */
if ((s = send(al, &buf[0], totalr,flags)) == -1)

{
}

cleanup (sd, al) ;

fprintf (stdout,”%s: Send error %d\n”,argv[0],errno);

} /* end of main */

/**/

void cleanup(sl,s2)
int s1,s2;

{

/* Shut down connected socket */
if (82 1= -1)
if (shutdown(s2, 0) == -1)
fprintf (stdout, ”%s: Shutdown (a) error\n”,errno) ;

/* Shut down listened socket */
if (shutdown(s1, 0) == -1)

fprintf (stdout,”%s: Shutdown (sd) error\n”,errno);

exit () ;

A-4 Example Programs

Example Client Program in C

/

R T T T S S S S S S R S S T S S S

/

BSDCLIENT.C 91790-18295 REV.6200 <940914.1449>

NAME : BSDCLIENT.C
SOURCE : 91790-18295

This is a client example program for BSD sockets.

See the program ”"bsdserver.c” for the server example.

This program takes the name of a remote system as an argument.

The routine gethostbyname () is used to resolve the IP address of the
server machine. A socket is created, binded to a known port.

After establishing a connection with the server, an initialized buffer of
BUFLEN bytes is sent to the server which will be echoed back and compared
to the input buffer. TIf the sent and received buffers are identical,

a match message will be printed on the screen, otherwise a mismatch
message along with the sent and received buffers will be printed.

To link this program, see the attached ”"bsdclient.lod” file.
To run this program:
- make sure that the remote node exist in the file ”/etc/hosts”,
- start the server program on the remote node,
- start this program by typing in the string: ”"bsdclient nodename”.

#include <types.h>
#include <socket.hs>
#include <in.h>
#include <stdio.h>
#include <fcntl.hs>
#include <time.h>
#include <errno.h>
#include <netdb.h>
#include <string.h>

#define CLIENT PORT 20001 /* client port address */

#define SERVER PORT 20000 /* server port address */

#define BUFLEN 7500 /* data buffer size */

#define SETSOCKLEN 7500 /* send, recv buffer size for setsockopt() */
#define AF INETLEN 16 /* length of internet address structure */

void cleanup () ;

main (argc,argv)
int argc;
char *argvl(];

{

struct sockaddr in addr;
struct hostent *hostEntry;
int addrlen;

int af, type, proto;

Example Programs A-5

int sd, b, ¢, sss, ssr, s, r;
char sbuf [BUFLEN] ;

char rbuf [BUFLEN] ;

char *rhost;

char ready;

int opt;

int optlen;

int i, j, totalr;

long flags;

/* Remind user to start server process */
fprintf (stdout, ”"Have you started the server program? (y/n): ”);
fscanf (stdin, "%c”, &ready) ;
if (ready != 'y’)
fprintf (stdout, "Start server program then restart client\n”);
exit () ;

}

/* Get remote host name from run string */
if (argc < 2)

fprintf (stdout, ”“Usage: %s remote hostname\n”, argv[0]);
else

rhost = argv([l];

/* Use gethostbyname () to look up the remote host in /etc/hosts file */

if (! (hostEntry = gethostbyname (rhost)))

{

fprintf (stdout, ”%s: Gethostbyname error \n”,argvI[0]);
exit () ;

}

/* Create a socket */

af = AF INET; /* domain */

type = SOCK_STREAM; /* type of socket */
proto = IPPROTO_TCP; /* protocol*/

sd = socket (af, type, proto);

if (sd == -1)

{

fprintf (stdout,”%s: Socket error %d\n”,argv[0],errno) ;
exit () ;

}

/* Set send and receive buffer size */

opt = SETSOCKLEN;

optlen = 2;

sss = setsockopt (sd, SOL_SOCKET, SO_SNDBUF, (char *) (&opt) ,optlen) ;

if (sss == -1)

{
fprintf (stdout, ”%s: Setsockopt sendbuf error %d\n”,argv([0],errno);
cleanup (sd) ;

A-6 Example Programs

ssr = setsockopt (sd, SOL SOCKET, SO_RCVBUF, (char *) (&opt) ,optlen) ;
if (ssr == -1)

{

fprintf (stdout, ”%s: Setsockopt recvbuf error %d\n”,argv([0],errno);

cleanup (sd) ;

}

/* Bind the socket to a local port address */
addr.sin family = af;

addr.sin port = CLIENT PORT;
addrlen = AF INETLEN;
b = bind(sd, &addr,addrlen) ;

if (b == -1)

{

fprintf (stdout,”%s: Bind error %d\n”,argv[0],errno);
cleanup (sd) ;

}

/* Set up address structure and connect to remote host */
addr.sin port = SERVER PORT;

/* Now insert IP address of remote host from hostent structure. */
/* Note the casting operations done in order to obtain a 32 bit */
/* IP address from a char pointer. */
addr.sin addr.s _addr = * (u_long *) * (hostEntry->h addr list);
c = connect (sd, &addr, addrlen) ;
if (¢ == -1)
{
fprintf (stdout,”%s: Connect error %d\n”,argvI[0],errno);
cleanup (sd) ;

}

/* Initialize the data buffer before sending */
for (1 = 0; 1 < (BUFLEN - 1); i++)

{

sbuf[1] = (1 % 75) + 48;
}
sbuf [i] = "\0’;
flags = 0; /* initialize flags to 0 */

/* Send data to server */
if ((s = send(sd, &sbuf [0] ,BUFLEN, flags)) == -1)

{

fprintf (stdout,”%s: Send error %d\n”,argv[0],errno);
cleanup (sd) ;

}

/* Receive data from the server */
totalr = 0;
while (totalr < BUFLEN)
if ((r = recv(sd, &rbuf [totalr],BUFLEN-totalr,flags)) == -1)

fprintf (stdout,”%s: Recv error %d\n”,argv[0],errno);

Example Programs

cleanup (sd) ;

}

totalr += r;

}

/* NULL terminate the sent and received strings */
sbuf [s-1] = "\0’;
rbuf [totalr-1] = "\0’;

if (!strcmp (sbuf, rbuf))

{
}

else

{

fprintf (stdout, “sent and received data MATCHED\n”) ;

fprintf (stdout, “sent and received data MISMATCHED\n”) ;
fprintf (stdout,”Sent: len = %d, string = %s\n”,s,sbuf);
fprintf (stdout, "Received: len = %d, string = %$s\n”,totalr,rbuf) ;

}
cleanup (sd) ;
} /* end of main */

/**/

void cleanup (sd)
int sd;

{

/* Shutdown the socket */
if (shutdown(sd,2) == -1)
fprintf (stdout,”%s: Shutdown error\n”,errno);

exit () ;

A-8 Example Programs

Example Server Program in Pascal

{

Pascal compiler options }

$PASCAL ’91790-18293 REV.6200 <940914.1500>'
$CDS ON ¢

$DEBUG ONS

SLINESIZE 708

e L e e e e)

NAME: BSDSERVER
SOURCE: 91790-18293
RELOC: NONE

PGMR: RR

This program is the server example program for BSD socket.
A socket is created and binded to a well known port,
the socket waits for a connection from the client and echoes all

the data that is received over the socket connection from the client.

To link this program, see the attached ”"bsdserver.lod” file.

}

PROGRAM bsdserver (input, output) ;

LABEL 99;

IMPORT

e R A e e Lt T

e L e e b Y P

This is the file that needs to be searched in order to
resolve references to ERRNO and ERRNO2. The file is

called errnodec.rel and is shipped with the product

in the /NS1000/REL directory. The network manager will

have to copy this file from the /NS1000/REL directory to

the /INCLUDES directory or the /LIBRARIES directory in order
for the search to be successful in the default case.

Look at the $SEARCHS compiler directive notes in the
Pascal/1000 manual.

Ssearch ’'errnodec.rel’$ errnodec;

This is the include file for Berkeley sockets. It contains

all the data structures and constant definitions needed for
sockets programming. It is shipped as /NS1000/INCLUDE/socket.pasi.
The network manager will need to copy this file into the

include search path as defined in the $INCLUDE directive in the
Pascal/1000 manual. The recommended target directory is /INCLUDES.
For the alpha sites, the install nsl1000.cmd file copies this

file into the /INCLUDE directory. Note that this is the C

include directory and NOT the Pascal one which is /INCLUDES.

}

$include 'socket.pasi’s$

CONST

SERV_PORT = 2000; { Server port number }

Example Programs

NUMCONN = 3; { Max number of outstanding connections }
NULL PTR = O; { for infinite timeout value }
SETSOCKLEN = 7000; { amount of data to be received }
RCVLEN = 7000;
TYPE

CharArrayType = PACKED ARRAY [1..RCVLEN] of CHAR;

DataType = RECORD
CASE INTEGER OF
1: (int1l : int) ;
2: (bytes : CharArrayType) ;
END;
OptType = RECORD
CASE INTEGER OF
1: (intl : int) ;
2: (bytes : PACKED ARRAY [1..4] OF CHAR) ;
END;
VAR
af : int;
so_type : int;
protocol : int;
addr : sockaddr in;
addrlen : u_short;
sd : int;
sss,ssr,b,1,c,a,sl,sh : int;
optlen : int;
opt : OptType;
rmask, wmask, emask : £d _setType;
s,r,flags : int;
rdata : Datatype;

This is an include file for all the socket calls in terms
of the data structures described in the socket.pasi file.
This file is shipped as /NS1000/INCLUDE/extcalls.pasi.
The network manager will have to copy it into an include
directory search path as for the socket.pasi file above.

P R e)

}

SINCLUDE 'extcalls.pasi’ $

STITLE ’'FORWARD DECLARATIONS'’, PAGES

PROCEDURE cleanup
(sd, a : int);
FORWARD;

{ Procedure to set up the connection to server }

A-10 Example Programs

PROCEDURE setup;

VAR

len : int;
BEGIN
af := AF_INET;
so_type := SOCK_STREAM;
protocol := IPPROTO TCP;
addrlen := 16;

addr.sin family AF_INET;

{ create the socket }

sd := socket (af,so_type,protocol) ;
IF (sd = -1) THEN
BEGIN
writeln (output,’ Socket: errno = ’',errno,’ errno2 = ',errno2);
GOTO 99;
END;

{ set socket send buffer size }
optlen := 2;
opt.intl := SETSOCKLEN;
sss := setsockopt (sd, SOL_SOCKET, SO _SNDBUF, ByteAdrOf (opt.intl,0),optlen) ;
IF (sss = -1) THEN
BEGIN
writeln (output,’ SetSockOptSnd: errno= ’,errno,’ errno2= ',errno2);
cleanup (sd, -1) ;
END;

{ set socket receive buffer size }
optlen := 2;
opt.intl := SETSOCKLEN;
ssr := setsockopt (sd, SOL_SOCKET, SO RCVBUF, ByteAdrOf (opt.intl,0),optlen) ;
IF (ssr = -1) THEN
BEGIN
writeln (output,’ SetSockOptRcv: errno= ’',errno,’ errno2= ',errno2);
cleanup (sd, -1) ;
END;

{ Bind the listening socket to a known port address }

addr.sin port := SERV_PORT;
b := bind(sd,AddressOf (addr.intl) ,addrlen) ;
IF (b = -1) THEN
BEGIN
writeln (output,’ Bind: errno = ’,errno,’ errno2 = ',errno2);
cleanup (sd, -1) ;
END;

{ set up the socket to accept incoming connections }

1 := listen(sd,NUMCONN) ;
IF (1 = -1) THEN
BEGIN

Example Programs A-11

writeln (output,’ Listen: errno = ’',errno,’ errno2 = ',errno2);
cleanup (sd, -1) ;
END;

{ Block until a connection request comes in }

len := addrlen; { type coercion }
a := accept(sd,AddressOf (addr.intl) ,AddressOf (len)) ;
IF (a = -1) THEN
BEGIN
writeln (output,’ Accept: errno = ’',errno,’ errno2 = ',errno2);
cleanup (sd, -1) ;
END;

{ Procedure to receive and echo data back }

PROCEDURE recv_send;

VAR
totalr : int;
BEGIN
totalr := 0;
WHILE (totalr < RCVLEN) DO
BEGIN
{ set up bitmasks to wait for data }
FD ZERO (AddressOf (rmask.intl)) ;
FD ZERO (AddressOf (wmask.intl)) ;
FD ZERO (AddressOf (emask.intl)) ;
FD SET (a,AddressOf (rmask.intl)) ;
FD SET (a,AddressOf (emask.intl)) ;
{ select on the accepted connection for a read. }
{ The count parameter should be one plus the }
{ max socket descriptor value. We are interested }
{ in sd. hence, count should be sd + 1. }
sl := select(a + 1,AddressOf (rmask.intl),
AddressOf (wmask.intl),
AddressOf (emask.intl),
NULL_ PTR) ;
IF (sl = -1) THEN
BEGIN
writeln (output,’ Select: errno = ’,errno,’ errno2 =
' ,errno2) ;

cleanup (sd, a) ;
END;

{ Check to see if the socket is exceptional selected }
IF (FD _ISSET (a,AddressOf (emask.intl))) THEN
BEGIN
writeln (output, 'Select: UNEXPECTED EXC SIGNAL') ;
cleanup (sd, a) ;
END;

A-12 Example Programs

{ If the socket is read selected, receive data }

IF (FD _ISSET (a,AddressOf (rmask.intl))) THEN
BEGIN
{ receive data from client }
flags := 0;
r :=
recv (a,ByteAdrOf (rdata.intl, totalr) ,RCVLEN-totalr, flags) ;
totalr := totalr + r;
IF (r = -1) THEN
BEGIN

writeln (output, 'Recv: errno=’,errno,’errno2=',errno2) ;

cleanup (sd, a) ;
END;

{ Print out the data received }

writeln (output,’ Number of bytes receive:’,r);
writeln (output,’ Receive:’);

writeln (output, rdata.bytes);

writeln;
END; { IF read selected }

END; { end while }

{ Send back the data received }

flags := 0;
s := send(a,ByteAdrOf (rdata.intl,0) ,RCVLEN, flags) ;
IF (s = -1) THEN

writeln (output, 'Send: errno=’,errno,’errno2=',errno2) ;

END; { recv send }

{ Procedure to cleanup - shut down socket }
PROCEDURE cleanup(sd, a : int);

BEGIN

{ close the connection }
IF (a <> -1) THEN

BEGIN
sh := shutdown (a,0) ;
IF (sh = -1) THEN
writeln (output,’ Shutdown (a) :errno=',errno,’'errno2=',errno2) ;
END;
{ close the connection }
sh := shutdown (sd, 0) ;
IF (sh = -1) THEN
(sd) : errno = ’,errno,’ errno2 = ’',errno2);

writeln (output,’ Shutdown

GOTO 99;

END; { procedure cleanup }

{ Main program }

Example Programs A-13

BEGIN
{ listen on a known port number and accept

{ incoming connection requests.

{1

setup;

{ Send data to the remote port }
recv_send;

{ done }
cleanup (sd, a) ;

99:

END.

A-14 Example Programs

Example Client Program in Pascal

{

Pascal compiler options }

$PASCAL ’91790-18292 REV.6200 <940914.1500>'
$CDS ON ¢

$DEBUG ONS

SLINESIZE 708

e R e e m L e L e L T e)

NAME: BSDCLIENT
SOURCE: 91790-18292
RELOC: NONE

PGMR: RR

This program is the client example program for BSD socket.
See the program ”"bsdserver.pas” for the server example.
This program prompts the user for the name of the server machine.

The routine gethostbyname () is used to resolve the IP address of the

server machine. A socket is created, binded to a known port.

After establishing a connection with the server, an initialized data

buffer is sent to the server which will be echoed back and compared

to the input buffer. If the sent and received buffers are identical,

a match message will be printed on the screen, otherwise a mismatch
message along with the sent and received buffers will be output.

To link this program, see the attached ”"bsdclient.lod” file.

To run this program:
- make sure that the remote node exists in the file ”/etc/hosts”,
- start the server program on the remote node,
- start this program by typing in the string: ”bsdclient”.

PROGRAM bsdclient (input, output) ;

LABEL 99;

IMPORT

e L e e e Tan T

et tae Yan s W

This is the file that needs to be searched in order to
resolve references to ERRNO and ERRNO2. The file is

called errnodec.rel and is shipped with the product

in the /NS1000/REL directory. The network manager will

have to copy this file from the /NS1000/REL directory to

the /INCLUDES directory or the /LIBRARIES directory in order
for the search to be successful in the default case.

Look at the $SEARCHS compiler directive notes in the
Pascal/1000 manual.

Ssearch ’'errnodec.rel’$ errnodec;
This is the include file for Berkeley sockets. It contains
all the data structures and constant definitions needed for

sockets programming. It is shipped as /NS1000/INCLUDE/socket.pasi.
The network manager will need to copy this file into the

Example Programs

A-15

include search

For the alpha
file into the

e L e T

}

Sinclude ’sock

CONST
C_PORT
SERV_PORT
NULL_ PTR
SENLEN
SETSOCKLEN =
INETLEN =

TYPE
StrType
InetArrayType
CharArrayType

DataType =
CASE INTEGER
1: (int1l
2: (bytes

END;

inetStrType =
CASE INTEGER
1: (intl:
2: (str:
END;

lptrType = *
iptrType = *

SomePtrType =
CASE INTEGER

1: (intl

2: (iptr
(1lptr
(cptr
(hptr

[S2 I V8]

END;

Unsignedl6Typ
CASE INTEGER
1: (intl
2: (hiword
loword
END;

OptType =
CASE INTEGER

path as defined in the $INCLUDE directive in the

Pascal/1000 manual. The recommended target directory is /INCLUDES.

sites, the install ns1000.cmd file copies this
/INCLUDE directory. Note that this is the C

include directory and NOT the Pascal one which is /INCLUDES.

et.pasi’$

2001; { Local port number }

2000; { Remote port number }

0; { for infinite timeout value }
7000; { size of data buffer in send }
7000; { amount of data to be received }
40; { length of inetstr }

= String[20];

= PACKED ARRAY [1..INETLEN] of CHAR;
= PACKED ARRAY [1..SENLEN] of CHAR;

RECORD

OF
int) ;
CharArrayType) ;

RECORD

OF

int) ;
InetArrayType) ;

long;
int;

RECORD
OF
: int) ;

iptrType) ;
lptrType) ;

int) ;
HostentptrType) ;

e = RECORD

OF
integer) ;
int;
int) ;

RECORD
OF

A-16 Example Programs

1: (int1l : int) ;

2: (bytes : PACKED ARRAY [1..4] OF CHAR) ;

END;

VAR
af : int;
so_type : int;
protocol : int;
sd,sss,ssr,b,1,c,sh : int;
addr : sockaddr_ in;
addrlen : u_short;
ipaddr : in addr;
s,r,len, flags : int;
optlen : int;
opt : OptType;
sdata, rdata : DataType;
Zerop : SomePtrType;
inetp : SomePtrType;
inetstr : inetStrType;
h : HostentPtrType;
tlog : int;
prmpt : StrType;
hoststr : StrType;
tempvar : UnsignedléeType;

This is the include file for all the socket calls in terms
of the data structures described in the socket.pasi file.
This file is shipped as /NS1000/INCLUDE/extcalls.pasi.

The network manager will have to copy it into an include
directory serach path as for the socket.pasi file above.

P L e)

}

SINCLUDE 'extcalls.pasi’ $
STITLE ’'FORWARD DECLARATIONS’, PAGES

}
{ FORWARD DECLARATIONS }
}

PROCEDURE cleanup;
FORWARD;

{ Procedure to get hostname and set up the IP address }
PROCEDURE get param;

CONST

BLANK =" 7
VAR

i : int;
BEGIN

{ Remind user to start the server program }

SetStrlen (prmpt, 0) ;

writeln (output, 'Have you started the server program?(y/n): _');

Example Programs A-17

A-18

readln (input, prmpt) ;
IF (prmpt <> ’y’) THEN
BEGIN
writeln (output, 'Start server program and restart client’);
GOTO 99;
END;

{ Prompt user for the hostname }

SetStrlen (hoststr,0) ;

writeln (output, 'Enter remote host name :');
readln (input, hoststr) ;

hoststr := Strrtrim(Strltrim(hoststr));

i := strpos (hoststr, BLANK) ;

{ Convert the Pascal string into a C-style string }
IF (i <> 0) THEN
BEGIN
strmove ((i - 1),hoststr,1l,inetstr.str,1);
{ Now end the string with a C-style NULL character }
inetstr.str[i] := chr(0);
END
ELSE
BEGIN
strmove (strlen (hoststr) , hoststr,1l,inetstr.str,1);
{ Now end the string with a C-style NULL character }
inetstr.str[strlen (hoststr) + 1] := chr(0);
END;

{ Map the hostname to the IP address with gethostbyname. }
{ This call looks at /ETC/HOSTS. }
{ A char pointer is required, so use ByteAdrOf (). }
{ This is defined in "extcalls.pasi”. }
h

:= gethostbyname (ByteAdrOf (inetstr.intl,0)) ;
zerop.hptr := h;
IF (zerop.intl = NULL PTR) THEN

BEGIN
writeln (output, 'Error in gethostbyname’) ;
GOTO 99;
END;
af := AF INET;
so_type := SOCK_STREAM;
protocol := IPPROTO TCP;
addrlen := 16;

addr.sin family

AF_INET;

Here we need to do a little manipulation in order to
extract the host IP address. h addr list in the hostent
structure is a pointer to an integer array of character
pointers which in turn point to the 32 bit IP address.
So, first we’ll extract the integer pointer.

e Yane Yatn P e
e e o e

inetp.intl := h”*.h addr list;

{ Dereference this to get the character pointer to the IP address. }

Example Programs

inetp.intl := inetp.iptr”;

Divide this value by 2, since this is a character pointer and }
we really want to dereference the IP address which is a 32 bit }
integer. Incidentally, we are also guaranteed that the IP }
address will be stored in a location that is word aligned. }
To avoid sign extension for address manipulation, tempvar is used. }

tempvar.hiword 0;
tempvar.loword inetp.intl;
inetp.intl := tempvar.intl DIV 2;

{ Now dereference this to get the IP address }
ipaddr.S addr := inetp.lptr™;

END; { get param }

{ Procedure to setup the connection }

PROCEDURE setup;

BEGIN
{ create the socket }
sd := socket (af,so_type,protocol) ;
IF (sd = -1) THEN
BEGIN
writeln (output,’ Socket: errno = ’',errno,’ errno2 = ',errno2);
GOTO 99;
END;

{ set socket send buffer size }
optlen := 2;
opt.intl := SETSOCKLEN;
sss := setsockopt (sd, SOL_SOCKET, SO _SNDBUF, ByteAdrOf (opt.intl,0),optlen) ;
IF (sss = -1) THEN
BEGIN
writeln (output,’ SetSockOptSnd: errno= ’',errno,’ errnol2s=
' ,errno2) ;
cleanup;
END;

{ set socket receive buffer size }
optlen := 2;
opt.intl := SETSOCKLEN;
ssr := setsockopt (sd,SOL_SOCKET, SO RCVBUF, ByteAdrOf (opt.intl,0),optlen) ;
IF (ssr = -1) THEN
BEGIN
writeln (output,’ SetSockOptRcv: errno= ',errno,’ errnols=
' ,errno2) ;
cleanup;
END;

{ bind the socket to a port address }
addr.sin port := C_PORT;
b := bind(sd,AddressOf (addr.intl) ,baddrlen) ;

Example Programs A-19

IF (b = -1) THEN
BEGIN
writeln (output,’ Bind: errno = ’,errno,’ errno2 =
cleanup;
END;
{Cconnect it to the remote side }
addr.sin port := SERV_PORT;
addr.sin addr := ipaddr;
c := connect (sd,AddressOf (addr.intl) ,addrlen) ;
IF (¢ = -1) THEN
BEGIN
writeln (output,’ Connect: errno = ’,errno,’ errno2
cleanup;
END;
END; { procedure setup }

{ Procedure to send and receive data

PROCEDURE send recv;

VAR
i,j,totalr int;
BEGIN
{ Initialize send data buffer }
FOR i := 1 TO (SENLEN -1) DO
BEGIN
j := (1 mod 75) + 48;
sdata.bytes[i] := chr(j);

END;

{ send data to server }

flags := 0;
s := send(sd,ByteAdrOf (sdata.intl, 0),SENLEN, flags) ;
IF (s = -1) THEN
BEGIN
writeln (output,’ Send: errno =
cleanup;
END;

}

! ,errno,’

{ Receive data echoed from server }

totalr := 0;
WHILE (totalr < SENLEN)
BEGIN
flags :=
r :=
IF (r =
BEGIN

DO

0;

-1) THEN

writeln (output, 'Recv:errno =

cleanup;
END;
totalr := totalr + r;
END; { while loop }

A-20 Example Programs

errno2 =

" ,errno2) ;

" ,errno2) ;

! ,errno2) ;

recv (sd, ByteAdrOf (rdata.intl, totalr), SENLEN-totalr, flags) ;

! ,errno, ’'errno2=',errno2) ;

{ Compare receive and send buffers }
IF (rdata.bytes = sdata.bytes) THEN

BEGIN
writeln (output, 'Send and Receive data MATCHED') ;

END

ELSE

BEGIN
writeln (output, 'Send and Receive data MISMATCHED') ;
writeln (output,’ Send: len = ', s);
writeln (output,’ Send data :’,sdata.bytes);
writeln;
writeln (output,’ Receive: len = ', r);
writeln (output,’ Recv data:’,rdata.bytes);
writeln;

END;

END; { procedure send recv }

{ Procedure to cleanup - shut down socket }

PROCEDURE cleanup;
BEGIN

sh := shutdown(sd,2);
IF (sh = -1) THEN
writeln (output,’ Shutdown (sd): errno = ’',errno,’ errno2 = ’',errno2);

GOTO 99;

END; { procedure cleanup }

{ Main program }

BEGIN
{ get the hostname and set up IP address }
get param;

{ set up the connection to the server }
setup;

{ receive data from the remote side }
send _recv;

{ done }
cleanup;
99:

END.

Example Programs A-21

Example Server Program in FORTRAN

FTIN77,L,S
Scds on
Sfiles(1,1)
PROGRAM BSDSERVER (4,99),91790-18291 REV.6200 <930517.1000>
c
c NAME: BSDSERVER
c SOURCE: 91790-18291
c RELOC: NONE
c PGMR: RR
c
C This program is the server example program for BSD socket.
c A socket is created and binded to a well known port,
c the socket waits for a connection from the client and echoes all
c the data that is received over the socket connection from the client.
c After all the data is received the socket is shut down and the program
c exits.
c
C To link this program, see the attached ”"bsdserver.lod” file.
c
IMPLICIT None
c Include the FORTRAN header file for Berkeley Sockets here.
SLIST OFF
INCLUDE socket.ftni
SLIST ON
c VARIABLE DECLARATIONS:
INTEGER NULL
PARAMETER (NULL = 0)
c SOCKET ()
INTEGER AF
INTEGER SO TYPE
INTEGER PROTO
INTEGER SD
c BIND() : SERV_PORT is the server port address
INTEGER SERV_PORT
PARAMETER (SERV_PORT = 10000)
INTEGER ADDRLEN
INTEGER B
INTEGER*4 FLAGS
c LISTEN ()
INTEGER BACKLOG
INTEGER L
c ACCEPT ()
INTEGER A
A-22 Example Programs

(@!

SETSOCKOPT ()

INTEGER SSS

INTEGER SSR

INTEGER SETSOCKLEN $ PARAMETER (SETSOCKLEN = 7000)
INTEGER OPTLEN

INTEGER*2 OPTINT

RECV ()
INTEGER BUF_ WORDLEN $ PARAMETER (BUF WORDLEN = 3500)
INTEGER BUF BYTELEN $ PARAMETER (BUF BYTELEN = 7000)

INTEGER*2 RDATA (BUF WORDLEN)
INTEGER OFFSET
INTEGER R

SEND ()

CHARACTER SDATA (BUF_BYTELEN)
EQUIVALENCE (SDATA, RDATA)
INTEGER*2 1

INTEGER S

BITMASK routines and SELECT ()
INTEGER*4 RMAP

INTEGER*4 WMAP

INTEGER*4 EMAP

INTEGER SE

INTEGER*4 LONGNULL

PARAMETER (LONGNULL = 0)

SHUTDOWN ()
INTEGER SH

CHARACTER BLANK*1

Create a socket for the client. The value returned will
be used in the bind local to bind the client to a specific
port and then in a connect call to connect to the server.
AF = AF INET
SO TYPE = SOCK STREAM
PROTO = IPPROTO_TCP
SD = SOCKET (AF,SO_TYPE, PROTO)
IF (SD .EQ. -1) THEN

WRITE(1,*) ’'BSDSERVER : Error in Socket’, errno

STOP
ENDIF

Set the socket send buffer size.

OPTLEN = 2

OPTINT = SETSOCKLEN

SSS = SETSOCKOPT (SD, SOL_SOCKET, SO_SNDBUF,

+ ByteAdrOf (OPTINT, 0) ,OPTLEN)

IF (SSS .EQ. -1) THEN

WRITE(1,*) ’'BSDCLIENT : Error in Setsockopt Send’, errno
STOP

ENDIF

Example Programs

A-23

(@!

NN NA

NN NA

A-24

Set the socket receive buffer size.

OPTLEN = 2

OPTINT = SETSOCKLEN

SSR = SETSOCKOPT (SD, SOL_SOCKET, SO_RCVBUF,

+ ByteAdrOf (OPTINT, 0) , OPTLEN)

IF (SSR .EQ. -1) THEN

WRITE(1,*) ’'BSDCLIENT : Error in Setsockopt Receive’, errno
STOP

ENDIF

Bind the socket to a specific port address. This is not
necessary but is shown as an example. Use the socket
descriptor obtained from a previous socket () call.

SIN FAMILY = AF INET

SIN PORT = SERV_PORT

ADDRLEN = 16

B = BIND(SD, AddressOf (SOCKADDR IN) , ADDRLEN)

IF (B .EQ. -1) THEN
WRITE(1,*) ’'BSDSERVER : Error in Bind’, errno
GOTO 99

ENDIF

Ready the socket for accepting incoming connection requests
BACKLOG = 3
L = LISTEN (SD,BACKLOG)
IF (L .EQ. -1) THEN
WRITE(1,*) ’‘BSDSERVER : Error in Listen’, errno
GOTO 99
ENDIF

Accept incoming connections
ADDRLEN = 16
A = ACCEPT (SD,AddressOf (SOCKADDR IN) ,AddressOf (ADDRLEN))
IF (A .EQ. -1) THEN
WRITE(1,*) ’'BSDSERVER : Error in accept’, errno
GOTO 99
ENDIF

If we have come this far, then the connection has been
established and we are ready to receive data

Loop until receive all data.

OFFSET = 0
DO WHILE (OFFSET .LT. BUF BYTELEN)
CALL FD_ZERO (AddressOf (RMAP))
CALL FD_ZERO (AddressOf (WMAP)
CALL FD_ZERO (AddressOf (EMAP)
CALL FD_SET (A,AddressOf (RMAP
CALL FD_SET (A,AddressOf (EMAP

)
)

—_ — — —

Select on the accepted connection for a read
or an exceptional signal indefinitely. The
count parameter should be (A+1l) since

the count for the socket descriptors starts

Example Programs

88

from 0.

SE = SELECT (A + 1,AddressOf (RMAP),
AddressOf (WMAP) ,
AddressOf (EMAP) ,
LONGNULL)
IF (SE .EQ. -1) THEN
WRITE(1,*) ’'BSDSERVER : Error in select’, errno
GOTO 88
ENDIF

If the exceptional bit is set then the client has
shutdown and so, let’s get rid of our sockets also.

IF (FD_ISSET(A,AddressOf (EMAP)) .GT. 0) THEN
GOTO 88
ENDIF

Data is first received by the server
on the newly established connection.

IF (FD_ISSET(A,AddressOf(RMAP)) .GT. 0) THEN
FLAGS = 0
R = RECV(A,ByteAdrOf (RDATA, OFFSET) , SETSOCKLEN-OFFSET, FLAGS)
IF (R .EQ. -1) THEN
WRITE(1,*) ’'BSDSERVER : Error in recv’, errno

GOTO 88
ENDIF

ENDIF
WRITE(1,*) ’'receive: '
WRITE(1,*) ’'len = '
WRITE(1,*) R
WRITE(1,*) ’'string = '’
WRITE (1, (35A2)') (RDATA (1), i=1,BUF_WORDLEN)
OFFSET = OFFSET + R
WRITE(1,*) 'offset : ' , OFFSET

END DO

Now send the data back to the client

FLAGS = 0

OFFSET = 0

S = SEND(A,ByteAdrOf(RDATA,OFFSET),BUF_BYTELEN,FLAGS)

IF (S .EQ. -1) THEN
WRITE(1,*) ’'BSDSERVER : Error in send’, errno
GOTO 88

ENDIF

Shut down sockets before exit

SH = SHUTDOWN (A, 0)
IF (SH .EQ. -1) THEN

WRITE(1,*) ’'BSDSERVER : Error in shutdown (A)’, errno
ENDIF

Example Programs

A-25

99

A-26

SH = SHUTDOWN (SD, 0)

IF (SH .EQ. -1) THEN
WRITE (1, *) ’'BSDSERVER

ENDIF

END

Example Programs

Error in shutdown (SD) ',

errno

Example Client Program in FORTRAN

FITN77,L,S
Scds on
Sfiles(1,1)

PROGRAM BSDCLIENT (4,99),91790-18290 REV.6200 <940914.1500>

NAME: BSDCLIENT
SOURCE: 91790-18290
RELOC: NONE

PGMR: RR

This program is the client examples program for BSD socket.

See the program ”"bsdserver.ftn” for the server example.

This program takes the name of a remote system as an argument.

The routine gethostbyname () is used to resolve the IP address of the
server machine. A socket is created, binded to a known port.

After establishing a connection with the server, an initialized data
buffer is sent to the server which will be echoed back and compared
to the input buffer. TIf the sent and received buffers are identical,
a match message will be printed on the screen, otherwise a mismatch
message along with the sent and received buffers will be printed.

To link this program, see the attached ”bsdclient.lod” file.
To run this program:
- make sure that the remote node exists in the file ”/etc/hosts”,
- start the server program on the remote node,
- start this program by typing in the string: ”"bsdclient nodename”.

A special technique is used to dereference pointers. This
basically involves declaring the entire data segment as an array
and accessing it as such. So in order to dereference a pointer,
the pointer is simply used as an index into the array
mentioned above and its value is obtained. For example, to
declare the array, use the alias directive to name an array

as a common block starting from absolute address 0. This

is followed by a COMMON declaration of the same name.

The elements of this common block need to be declared as

an array. Since FORTRAN does not perform array bounds

checking, this array can then be indexed with any value.

(See the chapter on Using FORTRAN 77 in the FORTRAN reference
manual for more details).

In order to obtain the double word value from an array declared
as single word elements, we need to use the ”.DLD” instruction.
Since this is not a FORTRAN symbol, it is aliased to an
acceptable symbol.

Alias the ”.DLD” RTE-A instruction to dld in order to
obtain the 32 bit IP address from the memory array whose elements
are declared as 16 bit integers.

NN NN NN NN NI NI NI NO NI N NI NI NI NI NI N NININOI NI NI NI NN NI NINOI NI NI NI NI NI N NI NI NI NONONONS!

Example Programs A-27

Salias dld = ’.DLD’,direct

S$LIST

SLIST

NN NOAN

IMPLICIT None

Include the FORTRAN header file for Berkeley Sockets here.
OFF

INCLUDE socket.ftni

ON

VARIABLE DECLARATIONS:
INTEGER NULL
PARAMETER (NULL = 0)
INTEGER HOSTPTR
INTEGER*4 IPADDR

In order to dereference pointers, declare MEM to be a common
block starting from absolute address 0 and consisting of

an array of 16 bit elements. FORTRAN does not do array bounds
checking. Hence, to dereference any pointer,”p”, simply

use MEM (p) .

Salias /MEM/ = 0

A-28

COMMON /MEM/MEM (0:1)
INTEGER MEM
INTEGER*4 DLD

SOCKET ()

INTEGER AF
INTEGER SO TYPE
INTEGER PROTO
INTEGER SD

BIND() : C PORT is the client port address
INTEGER C_PORT

PARAMETER (C_PORT = 10001)

INTEGER ADDRLEN

INTEGER B

CONNECT () : SERV_PORT is the server port address
INTEGER SERV_PORT

PARAMETER (SERV_PORT = 10000)

INTEGER C

SETSOCKOPT ()

INTEGER SSS

INTEGER SSR

INTEGER SETSOCKLEN $ PARAMETER (SETSOCKLEN = 7000)
INTEGER OPTLEN

INTEGER*2 OPTINT

SEND ()
INTEGER BUF_ WORDLEN $ PARAMETER (BUF WORDLEN = 3500)
INTEGER BUF BYTELEN $ PARAMETER (BUF BYTELEN = 7000)

INTEGER*2 SDATA (BUF WORDLEN)
CHARACTER sbuffer (BUF_BYTELEN)
EQUIVALENCE (sbuffer, SDATA)

Example Programs

NN NOAN

INTEGER OFFSET
INTEGER S
INTEGER*2 1
INTEGER*4 FLAGS

RECV ()
INTEGER*2 RDATA (BUF_ WORDLEN)
INTEGER R

SHUTDOWN ()
INTEGER SH

CHARACTER YES*1
CHARACTER prmt*1

FOR GETST CALL:

INTEGER*2 maxlen

INTEGER*2 tlog

INTEGER*2 nodename (32)

CHARACTER cname (64)

EQUIVALENCE (nodename (1),cname (1))
DATA YES/'y’'/

Remind the user to start the server program
WRITE(1,*) ’‘Have you started the server program?(y/n): '
READ (1, ’(Al)’) prmt
IF (prmt .NE. YES) THEN
WRITE (1,*) ’'Start server program and restart client’
STOP
ENDIF

Get remote host name from command string

maxlen = -48

CALL GETST (nodename,maxlen, tlog)

IF (tlog .EQ. 0) THEN
WRITE (1,*) ’'BSDclient : Usage: ru,BSDCLIENT nodename’
STOP

ENDIF

Null terminate the nodename string
The BSD IPC utilities require a null-terminated string.
cname (tlog+1l) = CHAR(0)

Use gethostbyname to get a pointer to hostent.

HOSTPTR = GETHOSTBYNAME (ByteAdrOf (nodename (1) ,0))

IF (HOSTPTR .EQ. NULL) THEN
WRITE(1,*) ’'BSDCLIENT : Error in Gethostbyname’, errno
STOP

ENDIF

HOSTPTR is a pointer to a structure of type HOSTENT.
Since FORTRAN does not allow structures, we use

offsets to obtain values from the fields of the
structure. First we need to get the value stored in the
H ADDR_LIST field. Since it is the fourth field

Example Programs

A-29

N e OO NN NN NI NI NI N NN NI NN NI NOINOINOINOINONOINONONONP!

[@N@!

A-30

in the hostent structure and each field is a 16 bit
integer,

X = MEM (HOSTPTR + 4)
gives the value of H ADDR LIST in X. This in turn is a
pointer to an array of pointers. Each element in the
array points to an IP address. We are interested
in only the first one. So,

Y = MEM (X),
gives us this pointer to the IP address. Since
the IP address must also be guaranteed to be word aligned,
we can obtain the word address from Y by simply using the
logical shift. Note that logical shift must be used here
instead of division by 2 since Y is a 16 bit integer and
sign extend could occur when the double load instruction
is used to access the 32 IP address. The logical
shift (ishft), shift right one bit to accomplish the task.
Hence,

Z = ishft(y, -1)
gives the word aligned pointer to the IP address.
We can now access the 32 bit IP address from the two memory
locations : MEM(Z) and MEM(Z + 1). However, it
is simpler to use the double load instruction which
transfers a 32 bit quantity. Hence,

IPADDR = DLD(MEM(Z)),
should return the 32 bit IP address in IPADDR which
has been declared as INTEGER*4. Putting it all
together, we get:

IPADDR = DLD (MEM (ISHFT (MEM (MEM (HOSTPTR + 4)),-1)))

IPADDR = DLD (MEM (ISHFT (MEM (MEM (HOSTPTR + 4)),-1)))

Create a socket for the client. The value returned will
be used in the bind local to bind the client to a specific
port and then in a connect call to connect to the server.
AF = AF INET
SO TYPE = SOCK STREAM
PROTO = IPPROTO_TCP
SD = SOCKET (AF,SO_TYPE, PROTO)
IF (SD .EQ. -1) THEN

WRITE(1,*) ’'BSDCLIENT : Error in Socket’, errno

STOP
ENDIF

Set the socket send buffer size.
OPTLEN = 2
OPTINT = SETSOCKLEN
SSS = SETSOCKOPT (SD, SOL_SOCKET, SO_SNDBUF,
ByteAdrOf (OPTINT, 0) ,OPTLEN)
IF (SSS .EQ. -1) THEN
WRITE(1,*) ’'BSDCLIENT : Error in Setsockopt Send’, errno
STOP
ENDIF

Example Programs

(@!

(@!

10

Set the socket recv buffer size.

OPTLEN = 2

OPTINT = SETSOCKLEN

SSR = SETSOCKOPT (SD, SOL_SOCKET, SO_RCVBUF,

+ ByteAdrOf (OPTINT, 0) , OPTLEN)

IF (SSR .EQ. -1) THEN

WRITE(1,*) ’'BSDCLIENT : Error in Setsockopt Receive’, errno
STOP

ENDIF

Bind the socket to a specific port address. This is not
necessary but is shown as an example. Use the socket
descriptor obtained from a previous socket () call.

SIN FAMILY = AF INET

SIN PORT = C _PORT

ADDRLEN = 16

B = BIND(SD, AddressOf (SOCKADDR IN) , ADDRLEN)

IF (B .EQ. -1) THEN
WRITE(1,*) ’'BSDCLIENT : Error in Bind’, errno
GOTO 99

ENDIF

Connect to the server
SIN FAMILY = AF INET

SIN PORT = SERV_PORT
SIN ADDR = IPADDR
ADDRLEN 16

C = CONNECT(SD,AddreSSOf(SOCKADDR_IN),AddressOf(ADDRLEN))
IF (C .EQ. -1) THEN
WRITE(1,*) ’‘BSDCLIENT : Error in connect’, errno
GOTO 99
ENDIF

If we have come this far, then the connection has been
established and we are ready to send and receive data

Initialize the data buffer.

DO 10 i = 1,BUF BYTELEN, 1
sbuffer (i) = CHAR(MOD(i,75) + 48)
CONTINUE

Data is sent to server on the newly established connection.

FLAGS 0
OFFSET = 0
S = SEND(SD,ByteAdrOf(SDATA,OFFSET),BUF_BYTELEN,FLAGS)
IF (S .EQ. -1) THEN
WRITE(1,*) ’'BSDCLIENT : Error in send’, errno
GOTO 99
ENDIF

Loop until receives all data.

OFFSET = 0

Example Programs

A-31

DO WHILE (OFFSET .LT. BUF_BYTELEN)
FLAGS = 0
R = RECV(SD,ByteAdrOf(RDATA,OFFSET),BUF_BYTELEN—OFFSET,FLAGS)
IF (R .EQ. -1) THEN
WRITE(1,*) ’'BSDCLIENT : Error in recv’, errno
GOTO 99
ENDIF
OFFSET = OFFSET + R
END DO

C Check for data mismatch
IF (SDATA .EQ. RDATA) THEN
WRITE(1,*) ’‘send and receive data MATCHED’

C Print out data sent
WRITE(1,*) ’'send’
WRITE(1,*) ’'len = '
WRITE(1,*) S
WRITE(1,*) ’'string = '’
WRITE(1,’ (35A2)’) (SDATA(i), i=1,BUF_WORDLEN)
ELSE

WRITE(1,*) ’‘send and receive data MISMATCHED’

c Print out data sent
WRITE(1,*) ’'send’
WRITE(1,*) ’'len = '
WRITE(1,*) S
WRITE(1,*) ’'string = '’
WRITE (1, ' (35A2)’) (SDATA (i), i=1,BUF_WORDLEN)
c Print out data receive
WRITE (1, *) ’'receive’
WRITE(1,*) ’'len = '
WRITE(1,*) R
WRITE(1,*) ’'string = '’
WRITE (1, ' (35A2)’) (RDATA(1i), i=1,BUF_WORDLEN)
ENDIF
C Shutdown socket before exit
99 SH = SHUTDOWN (SD, 2)

IF (SH .EQ. -1) THEN
WRITE(1,*) ’'BSDCLIENT : Error in shutdown’, errno
ENDIF

END

A-32 Example Programs

Example Server Load File

*

BSDSERVER.LOD 91790-17111 REV.6200 <941003.0908>

khkkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhhkhkkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhkkkhkhkkhkkkkkkkkx*x*

*

*

*

LINK COMMAND FILE FOR BSDSERVER EXAMPLE

khkkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhhkhkkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkkkhkkkhkkk,kkk,kkx**

*

*

*

*

(c) COPYRIGHT HEWLETT PACKARD COMPANY 1988. ALL RIGHTS
RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WI
THE PRIOR WRITTEN CONSENT OF HEWLETT-PACKARD COMPANY.

*
*

THOUT =*

*

kkhkkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhhkhkkhkhkkhkkkkk,kkkkkkx**

* ok kX

kkhkkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhkhkkhhkhkkhhkhkkhhkkhkhkhkkhkhkhkkhkhkhkhkhkhkkhkhkhkkhkhkkhkhkkhkkk,kk,kkkk,kk*x*

*

ec
1i
1i
1i
st
re
en

NAME : BSDSERVER.LOD
SOURCE: 91790-17111 (load file)
RELOC. : NONE

/libraries/bsd cds.lib
/libraries/hpc.lib
/libraries/bigns cds.lib
10000

bsdserver.rel
bsdserver.run

*

*
*
*
*
*

Example Programs

A-33

Example Client Load File

* BSDCLIENT.LOD 91790-17110 REV.6200 <941003.0910>

R R R R R RS EEEEEEEEEEEEEEEEEEEEEE S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
*

* LINK COMMAND FILE FOR BSDCLIENT EXAMPLE

*

khkkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhhkhkkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkkkhkkkhkkk,kkk,kkx**

* (c) COPYRIGHT HEWLETT PACKARD COMPANY 1988. ALL RIGHTS *
* RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED, *
* REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT *
* THE PRIOR WRITTEN CONSENT OF HEWLETT-PACKARD COMPANY. *
EEEE RS EEEREEEEEEEEEEEEEEE]
* *
* NAME: BSDCLIENT.LOD *
* SOURCE: 91790-17110 (load file) *
* RELOC.: NONE *
* *
EEEE RS EEEREEEEEEEEEEEEEEE]

*

ec
1i /libraries/bsd cds.lib
1li /libraries/hpc.lib

1i /libraries/bigns cds.lib
st 16000

re bsdclient.rel

en bsdclient.run

A-34 Example Programs

Database and Header Files

This appendix describes the database and header files used in BSD IPC for C, Pascal, and
FORTRAN programming.

HP 1000 BSD IPC provides several database files for static lookup and compatibility with
UNIX-based BSD IPC programming.

Header files provide standard definition of macros and variables used in programming. The
sources of the header files used in BSD IPC are listed in this appendix for easy referencing.

Database Files

The database files needed for BSD IPC are:
® /etc/hosts

® /etc/networks
® /etc/protocols
® /etc/services

These database files are described below.

Note Template files for the four database files are provided in the product tape under
either the /NS1000/EXAMPLES subdirectory or the /ARPA1000/EXAMPLES
subdirectory. The network manager should modify them to fit your local node’s
configuration, and move them to the /ETC directory on your system.

Database and Header Files B -1

/etc/hosts File

The /etc/hosts file contains a list of accessible hosts. The /etc/hosts file associates IP
addresses with mnemonic host names and alias names. It contains the names of other nodes in the
network with which your local system can communicate.

When creating an /etc/hosts file, you can either enter the known nodes in the format shown
below, or copy the file from another node and modify it. A template /etc/hosts file is
provided in /NS1000/EXAMPLES /hosts file, shown in Figure B-1 below.

Each node in the /etc/hosts file has a one line entry. Each entry in the file must be in the
following format:

IP address host [aliases]

Parameters

IP address The IP address that uniquely identifies the node. IP_address must be in
internet “dot” notation: e.g., 192.6.1.1. Refer to “IP Addresses” in the
Glossary for more information on IP Addresses.

host Name of the host. Host name can contain any printable character except
spaces, newline, or the comment character (#). Naming Convention: The
first nine characters should be unique for each network host.

aliases Common name or names for the node. An alias is a substitute for host.

Aliases are optional and are separated by spaces. Naming Convention:
The first nine characters should be unique for each network host.

The /etc/hosts file is used by the following BSD IPC utilities:

e endhostent () —which closes the /etc/hosts file.

® gethostbyaddr () —which returns host information from the specified IP address.
® gethostbyname () —which returns host information from the specified host name.
® gethostent () —which reads the next line of the /etc/hosts file and returns host

information on that host.
® sethostent () —which opens and rewinds the /etc/hosts file.

For more information about these utilities, refer to Section 5, “BSD IPC Utilities.”

B-2 Database and Header Files

HOSTS 91790-18298 REV.6100 <930928.1544>
SOURCE: 91790-18298

This is an example /ETC/HOSTS file. The format of this file is:
<IP address> <namel> <name2>

The <IP address> must be in dotted decimal notation. The

names are simple ASCII strings separated by blanks. The first name
is the official name of the host and all other names on the same
line are considered aliases for the same host. All characters after
the comment character “#” and up to the end of the line

are ignored when processing this file

with the Berkeley utility routines.

FH o H o H H H H HH HHHH H

15.10.56.1 hostl aliasll aliasl2 aliasl3 # hostl and its aliases
15.10.56.2 host2 alias2l1 alias22 alias23 # host2 and its aliases

Figure B-1. Template /etc/hosts File

Database and Header Files B-3

/etc/networks File

The /etc/networks file associates network addresses with mnemonic names and alias names.
The /etc/networks file contains the name and address of known internet networks with which
your local host can communicate. The network address is the part of an IP address that defines to
which network a host belongs. Refer to “IP Addresses” in the glossary for more information.

You must create and configure this file for your local host if you want to use symbolic network
names instead of addresses. A template /etc/networks file is provided in
/NS1000/EXAMPLES/networks file, shown in Figure B-2 below.

Each network has a one line entry in the /etc/networks file, in the following format.

network name network address [aliases]

Parameters

network name Name of the internet network. Network names can contain any printable
character except spaces, newline, or the comment character (#).

network address Network address that uniquely identifies the network. The network address
must be in “dot” notation. See “IP Addresses” in the Glossary for more
information on network addresses.

aliases Common name or names for the network. An alias is a substitute for
network name. Aliases are optional.

The /etc/networks file is used by the following BSD IPC utilities:

® getnetent () —reads the next line of /etc/networks file and returns network
information on that network.

® getnetbyaddr () —returns network information on the specified network number.
® getnetbyname () —returns network information on the specified network name.

® setnetent () —opens and rewinds the /etc/networks file.

e endnetent () —closes the /etc/networks file.

For more information about these utilities, refer to Section 5, “BSD IPC Utilities.”

B-4 Database and Header Files

H o H o H H H HHH HHH

NETWORKS 91790-18299 REV.6100 <930928.1545>
SOURCE: 91790-18299

This is an example file for /ETC/NETWORKS.

The form for each entry is:
<official network name> <network number> <aliases>

The network number must be in dotted decimal notation and must
reflect only the network portion of an IP address.

The comment character is “#”. All characters after the comment
character are ignored up to the end of the line. The protocol
name to be provided with the port number is optional.

loop 192 .46 .4 testlan
local 15 locallan

Figure B-2. Template /etc/networks File

Database and Header Files

B-5

/etc/protocols File
The /etc/protocols file contains the names and protocol numbers of all the protocols known
to the local host.

A template /etc/protocols file is provided in the /NS1000/EXAMPLES /protocols file,
shown in Figure B-3 below. Each protocol has a one line entry in the /etc/protocols file, in
the following format.

protocol name protocol number [aliases]

Parameters

protocol name Name of the protocol. Protocol names can contain any printable character
except spaces, newline, or the comment character (#). Example: tcp.

protocol number Protocol number that identifies this protocol.

aliases Common name or names for the protocol. An alias is a substitute for
protocol name. Aliases are optional.

The /etc/protocols file is used by the following BSD IPC utilities:

® getprotoent () —reads the next line of /etc/protocols file and returns protocol
information on that entry.

® getprotobynumber () —returns protocol information on the specified protocol number.
® getprotobyname () —returns protocol information on the specified protocol name.

® setprotoent () —opens and rewinds the /etc/protocols file.

e endprotoent () —closes the /etc/protocols file.

For more information about these utilities, refer to Section 5, “BSD IPC Utilities.”

B-6 Database and Header Files

S HHHH HHHHH

PROTOCOLS 91790-18300 REV.6100 <931001.1004>
SOURCE: 91790-18300
This is an example file for /ETC/PROTOCOLS.

The form for each entry is:
<official protocol name> <protocol number> <aliases>

The comment character is “#”. All characters after the comment
character are ignored up to the end of the line. The protocol

name to be provided with the port number is optional.

Internet (IP) protocols

icmp 1 ICMP # internet control message protocol
tcp 6 TCP # transmission control protocol
udp 17 UDP # user datagram protocol

Figure B-3. Template /etc/protocols File

Database and Header Files

B-7

/etc/services File

The /etc/services file associates port numbers with mnemonic service names and alias
names. The /etc/services file contains the names, protocol names, and port numbers of all
services known to the local host.

You must configure this file for your local host. A template /etc/services file is provided in
file /NS1000/EXAMPLES/services, as shown in Figure B-4 below. Each service has a one line
entry in the /etc/services file, in the following format.

service name portnumber/protocol [aliases]

Parameters

service name Name of the service. Service names can contain any printable character
except spaces, newline, or the comment character (#).

portnumber Port number of the service. All requests for this service must use this port
number.

protocol Name of the protocol that the service uses. The protocol name is separated
from the port number by a slash (e.g., 514/tcp).
The protocol name is also listed in the /etc/protocols file.

aliases Common name or names for the service. An alias is a substitute for

service name. Aliases are optional.

The /etc/services file is used by the following BSD IPC utilities:

getservent () —reads the next line of /etc/services file and returns service
information on that entry.

getservbyport () —returns service information on the specified port number.
getservbyname () —returns service information on the specified service name.
setservent () —opens and rewinds the /etc/services file.

endservent () —closes the /etc/services file.

For more information about these utilities, refer to Section 5, “BSD IPC Utilities.”

B-8 Database and Header Files

H oH H H H H H H

<service>
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp
time 37/tcp

printer 515/tcp

SERVICES 91790-18301 REV.6200 <941109.1843>
SOURCE: 91790-18301

This file is an example of the /ETC/SERVICES file.

This file maps service names to TCP protocol addresses (”"ports”).
The format for each entry is:

<portnumbers>/<protocols> <aliasess>
File Transfer Protocol
TELNET virtual terminal
mail # Simple Mail Transfer Protocol
timeserver # Time
spooler # Remote print spooling

Figure B-4. Template /etc/services File

Database and Header Files

B-9

BSD IPC Header Files

Header files provides standard definitions of macros and variables used in programming. HP 1000
BSD IPC supplies several header files for programming in C, Pascal, and FORTRAN. These
header files can be found in the /NS1000/INCLUDE directory. As part of installation, these
header files are copies over to the /INCLUDE directory on the system, if it exists.

Header Files for C Programming

HP 1000 BSD IPC provides several header files for programming in C. Table B-1 lists the
C program header files and their uses.

Table B-1. Header Files for C Programming

Header File Use
<errno.h> Defines the error codes and error mnemonics for HP 1000 BSD IPC.
<fentl.hs Defines the parameter values for fcntl ().
<in.h> Defines standard values used for TCP/IP and Internet addressing.
<netdb.h> Defines the data structures (hostent, netent, protoent, and servent)

used for the database files (/etc/hosts, /etc/networks,
/etc/protocols, and /etc/services), respectively.

<socket .h> Defines standard values used for BSD IPC sockets.

<types.h> Defines the data types used for BSD IPC programming.

The source code for these header files are listed on the following pages.

B-10 Database and Header Files

<errno.h> Include File for C

/* IN.H 91790-18302 REV.6200 <950120.1054>

*

* NAME ERRNO.H

* SOURCE : 91790-18302

*

* Error number/name header file

*/

/* From C compiler */
extern int errno; /* global error location */
extern int errno2; /* RTE error number */
#ifndef errheader
#define errheader
#define ENFILE 1 /* file table overflow */
#define EFNAME 2 /* missing/invalid file name */
#define EOPTIONS 3 /* fopen options are bad */
#define ENOENT 4 /* undefined file/directory */
#define ECREATE 5 /* could not create file */
#define EREAD1 6 /* can’'t read after write without seek */
#define EREAD2 7 /* attempted read of write only file */
#define EREAD3 8 /* can’'t write after read without seek */
#define EREAD4 9 /* can’'t write to read only file */
#define ENOBUF 10 /* can’'t allocate IO buffer from heap */
#define EREADERR 11 /* RTE says there is an error */
#define E2BIG 12 /* arg list for spawns > 255 bytes */
#define EINVAL 13 /* invalid modefalg for spawns */
#define ENOEXEC 14 /* not executable or invalid format */
#define ENOMEM 15 /* not enough memory for runstring */
#ifndef EDOM
#define EDOM 100
#endif
#ifndef ERANGE
#define ERANGE 101
#endif

/* Added for BSD IPC */

#define EINTR 201
#define EAGAIN 202
#define EFAULT 203
#define EMFILE 204
#define EPIPE 205
#define EMSGSIZE 215
#define ENOTSOCK 216
#define EDESTADDRREQ 217
#define EPROTOTYPE 219
#define ENOPROTOOPT 220

Database and Header Files

B -11

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#endif

EPROTONOSUPPORT
ESOCKTNOSUPPORT
EOPNOTSUPP
EAFNOSUPPORT
EADDRINUSE
EADDRNOTAVAIL
ECONNRESET
ENOBUFS

EISCONN
ENOTCONN
ESHUTDOWN
ETIMEDOUT
ECONNREFUSED
EREMOTERELEASE
EHOSTDOWN
EHOSTUNREACH
EALREADY
EINPROGRESS
EWOULDBLOCK
EINTERR

221
222
223
225
226
227
232
233
234
235
236
238
239
240
241
242
244
245
246
299

B-12 Database and Header Files

<fcntl.h> Include File for C

/* FCNTL.H 91790-18285 REV.5240 <910328.1746>

*

(c) COPYRIGHT HEWLETT PACKARD COMPANY 1986. ALL RIGHTS
RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
THE PRIOR WRITTEN CONSENT OF THE HEWLETT-PACKARD COMPANY.

P T

~ *
* ~

*

NAME : FCNTL.H
* SOURCE : 91790-18285
*/

#ifndef SYS FCNTL_ INCLUDED
#define SYS FCNTL_ INCLUDED

/* cmd values for fcntl() */

define F_GETFD 1 /* Get file descriptor flags */
define F_SETFD 2 /* Set file descriptor flags */
define F _GETFL 3 /* Get file flags */

define F _SETFL 4 /* Set file flags */

/* Socket Status Flags Used for fcntl() */

define O NONBLOCK 0200000 /* No delay */

#endif /* SYS FCNTL INCLUDED */

Database and Header Files B -13

<in.h> Include File for C

/* IN.H 91790-18283 REV.5240 <910328.1746>

*

*

* (c) COPYRIGHT HEWLETT PACKARD COMPANY 1986. ALL RIGHTS

* RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,

* REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT

* THE PRIOR WRITTEN CONSENT OF THE HEWLETT-PACKARD COMPANY.

*

* -

*/

/*

* NAME : IN.H

* SOURCE : 91790-18283

*/

#ifndef SYS IN INCLUDED /* allow multiple includes of this file */
#define SYS IN INCLUDED /* without causing compilation errors */
/*

* Protocol numbers defined for use in the IP header protocol field.

*/

#define IPPROTO ICMP 1 /* control message protocol */
#define IPPROTO GGP 3 /* gateway”2 (deprecated) */
#define IPPROTO TCP 6 /* tcp */
#define IPPROTO EGP 8 /* exterior gateway protocol¥*/
#define IPPROTO PUP 12 /* pup */
#define IPPROTO UDP 17 /* user datagram protocol */
#define IPPROTO HELLO 63 /* exterior gateway protocol¥*/
#define IPPROTO ND 77 /* UNOFFICIAL net disk proto*/
#define IPPROTO_PXP 241 /* HPPXP */
#define IPPROTO RAWIP 253 /* raw packet to IP*/
#define IPPROTO RAWIF 254 /* raw packet to interface */
#define IPPROTO RAW 255 /* raw protocol packet */
#define IPPROTO MAX 256
/*

* Port/socket numbers: network standard functions

*

/
#define IPPORT ECHO 7
#define IPPORT DISCARD 9
#define IPPORT SYSTAT 11
#define IPPORT DAYTIME 13
#define IPPORT NETSTAT 15
#define IPPORT FTP 21
#define IPPORT TELNET 23
#define IPPORT SMTP 25
#define IPPORT TIMESERVER 37

B-14 Database and Header Files

#define
#define

/*

IPPORT NAMESERVER
IPPORT WHOIS

* UNIX TCP sockets

*/
#define
#define
#define
#define

/*

IPPORT EXECSERVER

IPPORT LOGINSERVER

IPPORT CMDSERVER
IPPORT EFSSERVER

42
43

512
513
514
520

* Ports < IPPORT RESERVED are reserved for

* privileged processes

*/
#define

IPPORT RESERVED

struct in_addr ({

union {

(e.g.

root) .

1024

struct { u char s bl,s b2,s b3,s b4; } S un b;
struct { u short s wl,s w2; } S un w;
u long S addr;

} S un;

#define s_addr S un.S_addr
#define s_host S un.S un b.s b2 /* host on imp */

/* can be used for most tcp & ip code */

.s_bl /* network */
.S_w2 /* imp */

.s_b4 /* imp # */

.s_b3 /* logical host */

* Definitions of bits in internet address integers.

#define s_net S un.S un
#define s imp S un.S un
#define s impno S un.S un
#define s 1h S un.S un |
/*

*/
#define IN CLASSA(1i)
#define IN CLASSA NET
#define IN CLASSA NSHIFT
#define IN CLASSA HOST
#define IN CLASSB(1i)
#define IN CLASSB NET
#define IN CLASSB NSHIFT
#define IN CLASSB HOST
#define IN CLASSC (i)
#define IN CLASSC NET
#define IN CLASSC NSHIFT
#define IN CLASSC_HOST
#define INADDR_ANY
#define INADDR BROADCAST
#define IN MASK (i) \

((IN_CLASSC(1i))

((((long) (1)) &0x80000000)==0)
0x££000000

24

OXO0FfEfFEE

((((long) (1)) &0xc0000000)==0x80000000)
Oxf£££0000

16

0x0000ffff

((((long) (1)) &0xc0000000)==0xc0000000)
OxEff£f££00

8

0x000000f£

(u_long) 0x00000000
(u long) OXEEffEffEff /* must be masked */

? IN CLASSC NET \

Database and Header Files B-15

((IN_CLASSB(i)) ? IN CLASSB NET \
IN CLASSA_NET))

struct sockaddr in {

short sin family;
u_short sin port;
struct in addr sin_addr;
char sin zero([8];
}i
/*
* Macros for number representation conversion.
*/
#define ntohl (x) (x)
#define ntohs (x) (x)
#define htonl (x) (x)
#define htons (x) (x)
#endif /* not SYS IN INCLUDED */

B-16 Database and Header Files

<netdb.h> Include File for C

/* NETDB.H 91790-18282 REV.5240 <910402.1332>

*

*

*
* (c) COPYRIGHT HEWLETT PACKARD COMPANY 1986. ALL RIGHTS
* RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
* REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
* THE PRIOR WRITTEN CONSENT OF THE HEWLETT-PACKARD COMPANY .
*
e,
*/
/*
* NAME : NETDB.H
* SOURCE : 91750-18282
*/
struct hostent {
char *h name; /* official name of host */
char **h aliases; /* alias list */
int h addrtype; /* host address type */
int h length; /* length of address */
char **h addr list; /* list of addresses from name server */
/*

* Agssumption here is that a network number
* fits in 32 bits

*/

struct netent {
char *n_name; /* official name of net */
char **n aliases ; /* alias list */
int n_addrtype; /* net address type */
unsigned long n net; /* network # */

}i

struct servent {
char *s name; /* official service name */
char **s aliases; /* alias list */
int s _port; /* port # */
char *s proto; /* protocol to use */

}i

struct protoent {
char *p name; /* official protocol name */
char **p aliases; /* alias list */
int p_proto; /* protocol # */

}i

Database and Header Files

B -17

<socket.h> Include File for C

SOCKET.H 91790-18281 REV.6200 <950323.1000>

~
*

*

(c) COPYRIGHT HEWLETT PACKARD COMPANY 1991. ALL RIGHTS
RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
THE PRIOR WRITTEN CONSENT OF THE HEWLETT-PACKARD COMPANY.

P N T

*/
/*

* NAME : SOCKET.H

SOURCE : 91790-18281

*/
#ifndef SYS SOCKET INCLUDED /* allow multiple includes of this file */
#define _SYS SOCKET INCLUDED /* without causing compilation errors */
/*

* Types

*/
#define SOCK_STREAM 1 /* stream socket */
#define SOCK_DGRAM 2 /* datagram socket */
#define SOCK_RAW 3 /* raw-protocol interface */
#define SOCK_RDM 4 /* reliably-delivered message */
#define SOCK_SEQPACKET 5 /* sequenced packet stream */

/*

* Option flags per-socket.

*/
#define SO_DEBUG 0x01 /* turn on debugging info recording */
#define SO_REUSEADDR 0x04 /* allow local address reuse */
#define SO _KEEPALIVE 0x08 /* keep connections alive */
#define SO_DONTROUTE 0x10 /* just use interface addresses */
#define SO_BROADCAST 0x20 /* permit sending of broadcast msgs */
#define SO_SNDBUF 0x1001 /* send buffer size */
#define SO _RCVBUF 0x1002 /* receive buffer size */

/*

* Address families.

*/

#define AF_UNSPEC 0 /* unspecified */

#define AF UNIX 1 /* local to host (pipes, portals) */
#define AF_INET 2 /* internetwork: UDP, TCP, etc. */
#define AF IMPLINK 3 /* arpanet imp addresses */

#define AF PUP 4 /* pup protocols: e.g. BSP */

#define AF_CHAOS 5 /* mit CHAOS protocols */

#define AF NS 6 /* XEROX NS protocols */

B-18 Database and Header Files

#define
#define
#define
#define
#define
#define
#define
#define

#define SOCK ADDR_DATA LEN
#define SOCK ADDR DATA OFF

AF_NBS
AF_ECMA
AF_DATAKIT
AF_CCITT
AF_SNA

AF 8023

AF OSI
AF_OSI_TEST

struct sockaddr {

u_short
char

}i

sa_ family;

10
11
12
13
14

14

sizeof (u_short)

/* nbs protocols */

/* european computer manufacturers */
/* datakit protocols */

/* CCITT protocols, X.25 etc */

/* IBM SNA */

/* raw IEEE 802.3 */

/* length of sa data */
/* offset to sa data */

/* address family */

sa_data[SOCK ADDR DATA LEN] ;
/* up to 14 bytes of direct address */

struct sockproto {

u_short
u_short

}i
/*

* Protocol
*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

* Level number for

*/
#define

/*

sp_family;

sp_protocol;

families,

PF_UNSPEC
PF_UNIX
PF_INET
PF_IMPLINK
PF_PUP
PF_CHAOS
PF_NS
PF_NBS
PF_ECMA
PF_DATAKIT
PF_CCITT
PF_SNA
PF_8023
PF_0OSI
PF_OSI_TEST

SOL_SOCKET

AF_UNSPEC
AF _UNIX

AF _INET
AF_IMPLINK
AF_PUP
AF_CHAOS
AF NS
AF_NBS
AF_ECMA

AF _DATAKIT
AF _CCITT
AF_SNA

AF 8023
AF_OSI
AF_OSI_TEST

(get/set) sockopt ()

Oxffff

/* address family */
/* protocol */

same as address families for now.

to apply to socket itself.

/* options for socket level */

* Maximum queue length specifiable by listen.

*/
#define

SOMAXCONN

struct msghdr {

caddr_t
int

msg_name;
msg namelen;

/*
/*

optional address */
size of address */

Database and Header Files

B-19

struct iovec *msg iov; /* scatter/gather array */

int msg iovlen; /* # elements in msg iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen;
#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_PEEK 0x2 /* peek at incoming message */
#define MSG_DONTROUTE 0x4 /* send without using routing tables */
#define MSG MAXIOVLEN 16

/*

* User settable options (used with setsockopt) .

*/
#define TCP_NODELAY
#define TCP_MAXSEG

/* BSDIPC system callsg */
extern int accept();
extern int bind() ;

extern int connect () ;
extern u long fcntl();
extern int getpeername () ;
extern int getsockname () ;
extern int getsockopt () ;
extern int setsockopt () ;
extern int listen();
extern int recv();

extern int recvmsg() ;
extern int recvfrom() ;
extern int send() ;

extern int sendmsg() ;
extern int sendto() ;
extern int shutdown () ;
extern int socket () ;

/* BSDIPC libary routines

0x01 /* don’'t delay send to coalesce */
0x02 /* set Maximum segment size */
*/

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

struct hostent *gethostent () ;
struct hostent *gethostbyname /() ;
struct hostent *gethostbyaddr () ;
int sethostent () ;

int endhostent () ;

struct netent *getnetent();
struct netent *getnetbyname() ;
struct netent *getnetbyaddr () ;
int setnetent () ;

int endnetent () ;

struct protoent *getprotoent() ;

struct protoent *getprotobyname () ;
struct protoent *getprotobynumber () ;

int setprotoent () ;
int endprotoent () ;

B-20 Database and Header Files

extern struct servent *getservent () ;
extern struct servent *getservbyname () ;
extern struct servent *getservbyport () ;
extern int setservent () ;
extern int endservent () ;
extern u long inet addr();
extern u_long inet network() ;
extern char *inet ntoa() ;
extern struct in addr inet makeaddr() ;
extern u long inet Ilnaof () ;
extern u long inet netof () ;

#endif /* not _SYS SOCKET INCLUDED */

Database and Header Files B -21

<types.h> Include File for C

/* TYPES.H 91790-18280 REV.6100 <930928.1551>

*

(c) COPYRIGHT HEWLETT PACKARD COMPANY 1986. ALL RIGHTS
RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
THE PRIOR WRITTEN CONSENT OF THE HEWLETT-PACKARD COMPANY.

P T

* NAME : TYPES.H
SOURCE : 91790-18280
*/

#ifndef SYS TYPES INCLUDED
#fdefine SYS TYPES INCLUDED

typedef char *caddr_ t;

typedef unsigned char u_char;

typedef unsigned short u_short;

typedef unsigned int u_int;

typedef unsigned long u_long;

/*
* these macros are used for select(). select() uses bit masks of socket
* descriptors in longs. These macros manipulate such bit fields.
*/

ffdefine FD_ SETSIZE 32

typedef long fd mask;
#define NFDBITS (sizeof (fd mask) * 8) /* 8 bits per byte */
#define howmany (x,y) (((x)+((y)-1))/(y))
typedef struct fd set {
fd mask fds_bits[howmany(FD_SETSIZE, NFDBITS)] ;

} £d set;
#define FD_SET (n,p) ((p)->fds bits[(n)/NFDBITS] |= (1 << ((n) % NFDBITS)))
#define FD CLR(n,p) ((p)->fds _bits[(n) /NFDBITS] &= ~(1 << ((n) % NFDBITS)))
#define FD ISSET(n,p) ((p)->fds bits[(n) /NFDBITS] & (1 << ((n) % NFDBITS)))
#define FD_ ZERO (p) memset ((char *) (p), (char) 0, sizeof(*(p)))
/*

* Define timeval structure to be used in select ().

*/
struct timeval {

unsigned longtv_sec; /* seconds */

longtv_usec; /* and microseconds */

}i

B-22 Database and Header Files

/*
* Define iovec structure to be used in sendmsg() and recvmsg() .
*/
struct iovec {
caddr t idiov _base;
int iov_len;

}i

f#endif /* _SYS TYPES INCLUDED */

Database and Header Files B -23

Header Files for Pascal Programming

Two header files are provided BSD IPC programming in Pascal, EXTCALLS . PAST and
SOCKET.PASI.

The following is the SOCKET . PAST file:
{ SOCKET.PAST 91790-18278 REV.6200 <950120.1055> }

(c) COPYRIGHT HEWLETT PACKARD COMPANY 1991. ALL RIGHTS
RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
THE PRIOR WRITTEN CONSENT OF THE HEWLETT-PACKARD COMPANY.

{ NAME : SOCKET.PASI
{ SOURCE : 91790-18278

{1
{##H# I Types D)

CONST
MAX 16 = 32767;
TYPE
short = —-32768..32767;
int = —-32768..32767;
long = INTEGER;
u_char = 0..255;
u_short = short;
u_long = long;
iovec = RECORD
iov_base : int; { Byte pointer }
iov_len : int;
END;
timeval = RECORD

CASE INTEGER OF
1: (intl : int);
2: (tv_sec : long;
tv_usec : long) ;

END;
fd setType = RECORD
CASE INTEGER OF
1: (intl : int) ;
2: (bitmask : INTEGER) ;
END;

{HHHHHHHHH#HE Socket . h HHEHHH#HAHH)

B-24 Database and Header Files

CONST

SOCK_STREAM = 1;
SOCK_DGRAM = 2;
SOCK_RAW = 3;

{ option Flags }

{ Address families }

AF UNSPEC = 0;

AF UNIX = 1;

AF _INET = 2;

AF_OSI = 13;
CONST

SOCK_ADDR_DATA LEN
SOCK_ADDR_WORD OFF
SOCK_ADDR_BYTE OFF

TYPE
sockaddr =
CASE INTEGER OF
1: (intl int) ;
2: (sa_family
sa data
END;

sockproto = PACKED
CASE INTEGER OF
1: (intl int) ;
2: (sp_family
sp_protocol
END;

{ Protocol Families }

CONST
PF_UNSPEC
PF_UNIX
PF_INET

AF_UNS

{ Flags for RECV and
CONST
MSG_0OB =
MSG_PEEK =
MSG DONTROUTE =

{ Getsockopt level }
CONST
SOL_SOCKET

PACKED RECORD

int;
PACKED ARRAY [1..SOCK_ADDR_DATA_LEN]

of CHAR) ;
RECORD

{ Address family }
{ Protocol }

int;
int) ;

PEC ;

AF UNIX
AF_INET

SEND calls }
1;

2;
4;

_1;

{ Socket level options }

CONST
SO _REUSEADDR
SO _KEEPALIVE
SO_SNDBUF
SO_RCVBUF

4;
8;
hex1(71001") ;
hex1(71002") ;

Database and Header Files

B-25

{ TCP level options }
TCP_NODELAY =

1;
TCP_MAXSEG = 2;

{ Declarations for SENDMSG and RECVMSG }

TYPE
msghdr = RECORD
CASE INTEGER OF
1 : (intl : int);
2 : (msg_name
msg_namelen
msg_ iov

msg iovlen
msg accrights
msg_accrightslen

END;

int;
int;
int;
int;
int;
int) ;

{HHHHHHHEHHEAEE In . h FHEHTHHETEREE)

CONST
IPPROTO_TCP = 6; { Tcp }
TYPE
in addr = PACKED RECORD
CASE INTEGER OF
1 : (intl int);
2
s bl : CHAR;
s b2 : CHAR;
s b3 : CHAR;
s b4 : CHAR)
3 : (s wl int;
s w2 int) ;
4 : (S_addr long) ;
END;
sockaddr in = RECORD
CASE INTEGER OF

1 : (intl int);

2 : (sin_ family int;
sin port int;
sin_ addr in addr;
sin zero PACKED ARRAY

END;

{HHHHHHHHHHHAEHE fontl . h HHHHFEEEE]

{ Command options }
CONST
F_GETFL 3;
F SETFL = 4;

{ Command arguments }

B-26 Database and Header Files

{ Byte pointer to caddr t }
{ Word pointer to iovec }

{ Byte pointer to caddr t}

.8] of char);

CONST
O _NONBLOCK = octal(’200000") ;

{HHHHHHHHHHHAES netdb. h HEHHHFHRHHE]

TYPE
hostent = RECORD
CASE INTEGER OF
1 : (intl : int);
2 : (h name : int; { Byte pointer }
h aliases : int; { Word pointer to byte address array |}
h addrtype : int;
h length : int;
h addr list : int); { Word pointer to word address array }
END;

hostentPtrType = “hostent;

netent = RECORD
CASE INTEGER OF
1 : (intl : int);
2 : (n_name : int; { Byte pointer }
n aliases : int; { Word pointer to byte address array}
n_addrType : int;
n net : long) ;
END;

netentPtrType = “netent;

protoent = RECORD
CASE INTEGER OF
1 : (intl : int);
2 : (p_name : int; { Byte pointer }
p aliases : int; { Word pointer to byte address array |}
p_proto : int);
END;

protoentPtrType = “protoent;

servent = RECORD
CASE INTEGER OF

1 : (intl : int);
2 : (s _name : int; { Byte pointer }
s aliases : int; { Word pointer to byte address array |}
s_port : int;
s_proto : int); { Byte pointer }
END;

serventPtrtype = “servent;

{ S errno. h HEHHHHEHHEE)

CONST
ENFILE = 1;
EINVAL = 13;
EINTR = 201;
EAGAIN = 202;

Database and Header Files B -27

EFAULT = 203;

EMFILE = 204;
EPIPE = 205;
EMSGSIZE = 215;
ENOTSOCK = 216;
EDESTADDRREQ = 217;
EPROTOTYPE = 219;
ENOPROTOOPT = 220;
EPROTONOSUPPORT = 221;
ESOCKTNOSUPPORT = 222;
EOPNOTSUPP = 223;
EAFNOSUPPORT = 225;
EADDRINUSE = 226;
EADDRNOTAVAIL = 227;
ECONNRESET = 232;
ENOBUFS = 233;
EISCONN = 234;
ENOTCONN = 235;
ESHUTDOWN = 236;
ETIMEDOUT = 238;
ECONNREFUSED = 239;
EREMOTERELEASE = 240;
EHOSTDOWN = 241;
EHOSTUNREACH = 242;
EALREADY = 244;
EINPROGRESS = 245;
EWOULDBLOCK = 246;
EINTERR = 299;

B-28 Database and Header Files

The following is the source of EXTCALLS . PAST.

{ EXTCALLS.PASI 91790-18279 REV.6200 <950331.0841> }

(c) COPYRIGHT HEWLETT PACKARD COMPANY 1986. ALL RIGHTS
RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
THE PRIOR WRITTEN CONSENT OF THE HEWLETT-PACKARD COMPANY.

NAME : EXTCALLS.PASI
SOURCE : 91790-18279

This file contains the Pascal external declarations for the Berkeley
Socket routines. Use this as an include file in the Pascal main
program after the VAR decalartions.

L L e e Ran P

——

Socket routines

e Y R

}

FUNCTION Accept

(callsd : int;
paddr : int; { Word pointer }
paddrlen : int { Word pointer }) : int;
EXTERNAL;

FUNCTION Bind

(sd : int;
paddr : int; { Word pointer }
addrlen : int) : int;
EXTERNAL;

FUNCTION Connect

(srcsd : int;
paddr : int; { Word pointer }
addrlen : int) : int;

EXTERNAL;

FUNCTION fcntl

(sd : int;
cmd : int;
arg : long) : long;

EXTERNAL;

FUNCTION getpeername

(sd : int;
paddr : int; { Word pointer }
paddrlen : int { Word pointer }) : int;

EXTERNAL;

Database and Header Files

B-29

FUNCTION getsockname

(sd : int;
paddr : int; { Word pointer }
paddrlen : int { Word pointer })

EXTERNAL;

FUNCTION getsockopt

(sd : int;
level : int;
optname : int;
pbyte : int; { Byte pointer }
poptlen : int { Word pointer })

EXTERNAL;

FUNCTION Listen
(sd : int;
backlog : int) : int;
EXTERNAL;

FUNCTION recv

(sd : int;
pbyte : int; { Byte pointer }
dlen : int;
flags : long): int;

EXTERNAL;

FUNCTION recvmsg

(sd : int;
pmsg : int; { Word pointer }
flags : long): int;

EXTERNAL;

FUNCTION recvfrom

(socket : int;
buffer : int;
len : int;
flags : long;
from : int;
fromlen : int): int;

EXTERNAL;

FUNCTION Select

(sdbound : int;
pcreadmap : int; { Word pointer }
pcwritemap : int; { Word pointer }
pcexceptmap: int; { Word pointer }
ptimeval : int { Word pointer }):
EXTERNAL;
FUNCTION Send
(sd : int;
pbyte : int; { Byte pointer }
dlen : int;
flags : long) : int;

B-30 Database and Header Files

int;

int;

int;

EXTERNAL;

FUNCTION sendmsg
(sd
pmsg
flags
EXTERNAL;

FUNCTION sendto
(socket

buffer
len
flags
tohost
tolen

EXTERNAL;

FUNCTION setsockopt
(sd
level
optname
pbyte
optlen
EXTERNAL;

FUNCTION Shutdown
(sd
how
EXTERNAL;

FUNCTION Socket
(af
socket kind
protocol
EXTERNAL;

INET routines

Pt tae Yan s W

}

FUNCTION inet addr
(cp
EXTERNAL;

FUNCTION inet 1lnaof
(ipaddr
EXTERNAL;

FUNCTION inet makeaddr

(netaddr
hostaddr
EXTERNAL;

int;
int;

long):

int;
int;
int;
long;
int;

int):

int;
int;
int;
int;
int)

int;

{ Word pointer }

int;

int;

{ Byte pointer }

int;

int): int;

int;
int;
int)

FHEFHHHHHAHHHH A A

FHESHH AR HHH A A

int

in addr) :

long;

int;

{ Byte pointer }): in addr;

long;

long) : in_addr;

Database and Header Files

B -31

FUNCTION inet netof
(ipaddr : in addr): long;
EXTERNAL;

FUNCTION inet network

(cp : int { Byte pointer }): long;

EXTERNAL;

FUNCTION inet ntoa

(ipaddr : in addr) : int; { Byte pointer }

EXTERNAL;

A HH ST H
GETSERV* routines
AU HH ST H

et Ve P

}

FUNCTION getservent : ServentPtrType;
EXTERNAL;

FUNCTION getservbyname

(name : int; { Byte pointer }
proto : int { Byte pointer }):
EXTERNAL;

FUNCTION getservbyport

(port : int;
proto : int { Byte pointer }):
EXTERNAL;

FUNCTION setservent
(stayopen : int): int;
EXTERNAL;

FUNCTION endservent: ServentPtrType;
EXTERNAL;

{ HHEHEHHHHEHEHE
{ GETPROTO* routines

{ HHEHEHHHHEHE
{}

FUNCTION getprotoent : ProtoentPtrType;
EXTERNAL;

FUNCTION getprotobyname

(name : int { Byte pointer }):

EXTERNAL;

FUNCTION getprotobynumber
(proto : int) : ProtoentPtrType;
EXTERNAL;

FUNCTION setprotoent

(stayopen : int): int;
EXTERNAL;

B-32 Database and Header Files

ServentPtrType;

ServentPtrType;

ProtoentPtrType;

FUNCTION endprotoent:
EXTERNAL;

ProtoentPtrType;

{ HHEHEHHHHEHE
{ GETNET* routines

{ HHEHEHHHHEHEHE
{}

FUNCTION getnetent
EXTERNAL;

NetentPtrType;

FUNCTION getnetbyname
(name : int
EXTERNAL;

FUNCTION getnetbyaddr

(net long;
family int) : NetentPtrType;
EXTERNAL;
FUNCTION setnetent
(stayopen int) : int;
EXTERNAL;
FUNCTION endnetent: NetentPtrType;

EXTERNAL;

AU HH ST H
GETHOST* routines
AU HH ST H

et Y Yan s W

}

FUNCTION gethostent
EXTERNAL;

HostentPtrType;

FUNCTION gethostbyname
(name : int
EXTERNAL;

FUNCTION gethostbyaddr

(hostaddr: int; { Byte pointer }
len int;
family int) : HostentPtrType;
EXTERNAL;
FUNCTION sethostent
(stayopen int) : int;
EXTERNAL;
FUNCTION endhostent: HostentPtrType;

EXTERNAL;

{ Byte pointer }):

{ Byte pointer }):

NetentPtrType;

HostentPtrType;

Database and Header Files

B-33

FHEFHHHHHA R H A A

Bitmask manipulation routines

{
{
{ S
{1

PROCEDURE FD_SET

(sd : int;
pbitmask : int
EXTERNAL;
PROCEDURE FD_ CLR
(sd : int;
pbitmask : int
EXTERNAL;
FUNCTION FD ISSET
(sd int;
pbitmask int
EXTERNAL;
PROCEDURE FD_ZERO
(pbitmask : int

EXTERNAL;
FHEFHHHHHAHHHH A A

{

{ Miscellaneous routines
{ HHEHEHHHHEHEHE
{1

PROCEDURE free

(ptr int) ;
EXTERNAL;
FUNCTION ByteAdrOf
(VAR int1l int;
offset int) :
EXTERNAL;
FUNCTION AddressOf
(VAR int1l int) :
EXTERNAL;

B-34 Database and Header Files

int;

int;

Word pointer

Word pointer

Word pointer }): BOOLEAN;

Word pointer

{ Byte pointer }

{ Word pointer }

Header File for FORTRAN Programming

One header file, SOCKET . FTNTI, is provided for BSD IPC programming in FORTRAN.

C SOCKET.FTNI 91790-18288 REV.6200 <941115.1711>

C
C

C (c) COPYRIGHT HEWLETT PACKARD COMPANY 1991. ALL RIGHTS

C RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,

C REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
C THE PRIOR WRITTEN CONSENT OF THE HEWLETT-PACKARD COMPANY.

C

C
c NAME : SOCKET.FTNI

c SOURCE : 91790-18288

C HHHdRHH AR HH AR HHARE ERRNO . H ######H##H
SALIAS /ERRNO/='ERRNO’ ,NOALLOCATE
SALIAS /ERRNO2/='ERRNO2’ ,NOALLOCATE

INTEGER ERRNO, ERRNO2
COMMON /ERRNO/ ERRNO
COMMON /ERRNO/ ERRNO2

C HHHARHH AR HH AR HH AR TYPES . H ######H##H

INTEGER IOVEC (2)
INTEGER IOV_BASE, IOV_LEN
EQUIVALENCE (IOV_BASE,IOVEC(1l)), (IOV_LEN, IOVEC(2))

INTEGER*4 TIMEVAL (2)
INTEGER*4 TV_SEC,TV_USEC
EQUIVALENCE (TIMEVAL(1l),TV_SEC), (TIMEVAL(2),TV_USEC)

INTEGER*4 FD SETTYPE
INTEGER*4 BITMASK
EQUIVALENCE (FD SETTYPE, BITMASK)

C HHHAHHHAHHHHHHHHHHE SOCKET . H ########
INTEGER SOCK_STREAM $ PARAMETER (SOCK STREAM
INTEGER SOCK _DGRAM $ PARAMETER (SOCK DGRAM

o
N

INTEGER SOCK_RAW $ PARAMETER (SOCK RAW = 3)
INTEGER AF UNSPEC SPARAMETER (AF UNSPEC = 0)
INTEGER AF UNIX SPARAMETER (AF UNIX 1)
INTEGER AF INET SPARAMETER (AF INET = 2)
INTEGER AF OSI SPARAMETER (AF_ OSI = 13)
INTEGER SOCK_ADDR DATA LEN

PARAMETER (SOCK ADDR DATA LEN = 14)

INTEGER SOCK _ADDR WORD OFF
PARAMETER (SOCK ADDR WORD OFF = 1)
INTEGER SOCK _ADDR BYTE OFF
PARAMETER (SOCK ADDR BYTE OFF = 2)

Database and Header Files

B -35

B-36

INTEGER
INTEGER

SOCKADDR ((SOCK_ADDR DATA LEN + 1)/2)

SA FAMILY

CHARACTER SA DATA* (SOCK ADDR_DATA LEN)

EQUIVALENCE (SOCKADDR (1) ,SA FAMILY)

EQUIVALENCE (SOCKADDR(2),SA DATA)

INTEGER SOCKPROTO (2)

INTEGER SP FAMILY

INTEGER SP PROTOCOL

EQUIVALENCE (SOCKPROTO (1) ,SP_FAMILY), (SOCKPROTO,SP PROTOCOL)
INTEGER PF UNSPEC $ PARAMETER (PF_UNSPEC = AF UNSPEC)
INTEGER PF UNIX $ PARAMETER (PF_UNIX = AF UNIX)
INTEGER PF INET $ PARAMETER (PF_INET = AF INET)
INTEGER MSG OOB $ PARAMETER (MSG_OOB = 1)
INTEGER MSG_ PEEK $ PARAMETER (MSG PEEK = 2)
INTEGER MSG DONTROUTE $ PARAMETER (MSG_DONTROUTE = 4)
INTEGER SOL_SOCKET $ PARAMETER (SOL_SOCKET = -1)
INTEGER SO _REUSEADDR $ PARAMETER (SO REUSEADDR = 4)
INTEGER SO _KEEPALIVE $ PARAMETER (SO KEEPALIVE = 8)
INTEGER SO _SNDBUF $ PARAMETER (SO_SNDBUF = 4097)
INTEGER SO _RCVBUF $ PARAMETER (SO_RCVBUF = 4098)
INTEGER TCP_NODELAY $ PARAMETER (TCP_NODELAY = 1)
INTEGER TCP_MAXSEG $ PARAMETER (TCP_MAXSEG = 2)
INTEGER MSGHDR (6)

INTEGER MSG NAME,MSG NAMELEN,MSG IOV,MSG IOVLEN
INTEGER MSG ACCRIGHTS,MSG ACCRIGHTSLEN

EQUIVALENCE (MSGHDR (1) ,MSG_NAME)

EQUIVALENCE (MSGHDR (2),MSG_NAMELEN)

EQUIVALENCE (MSGHDR (3),MSG_IOV)

EQUIVALENCE (MSGHDR (4),MSG_IOVLEN)

EQUIVALENCE (MSGHDR (5),MSG_ACCRIGHTS)

EQUIVALENCE (MSGHDR (6),MSG_ACCRIGHTSLEN)

INTEGER IPPROTO_TCP $ PARAMETER (IPPROTO TCP = 6)
INTEGER IPPROTO_UDP $ PARAMETER (IPPROTO UDP = 17)
INTEGER IN ADDR(2)

INTEGER S W1,S W2

INTEGER*4 S ADDR

EQUIVALENCE
EQUIVALENCE (IN ADDR(2),S |
INTEGER SOCKADDR_IN(8)

INTEGER

SIN FAMILY,SIN P

INTEGER*4 SIN ADDR
CHARACTER SIN ZERO* (8)

EQUIVALENCE
EQUIVALENCE

Database and Header Files

(IN_ADDR (1) ,S_W1,S_ADDR)

W2)

ORT

(SOCKADDR_IN(1),SIN FAMILY)
(SOCKADDR_IN(2),SIN PORT)

EQUIVALENCE

(SOCKADDR_IN(3),SIN ADDR)

EQUIVALENCE (SOCKADDR IN(5),SIN ZERO)
INTEGER F GETFL $ PARAMETER (F _GETFL = 3)
INTEGER F SETFL $ PARAMETER (F _SETFL = 4)
INTEGER*4 O _NONBLOCK

PARAMETER (O _NONBLOCK = 65536)
INTEGER HOSTENT (5)

INTEGER H NAME,H ALIASES,H ADDRTYPE
INTEGER H LENGTH,H ADDR LIST
EQUIVALENCE (HOSTENT (1) ,H NAME)
EQUIVALENCE (HOSTENT (2) ,H ALIASES)
EQUIVALENCE (HOSTENT (3),H ADDRTYPE)
EQUIVALENCE (HOSTENT (4) ,H LENGTH)
EQUIVALENCE (HOSTENT (5),H ADDR LIST)
INTEGER NETENT (5)

INTEGER N NAME,N ALIASES,N ADDRTYPE
INTEGER*4 N NET

EQUIVALENCE (NETENT (1) ,N NAME)
EQUIVALENCE (NETENT (2),N ALIASES)
EQUIVALENCE (NETENT (3),N ADDRTYPE)
EQUIVALENCE (NETENT (4),N NET)

INTEGER PROTOENT (3)

INTEGER P NAME, P ALIASES,P PROTO

EQUIVALENCE (PROTOENT (1) ,P_ NAME)
EQUIVALENCE (PROTOENT (2),P ALIASES)
EQUIVALENCE (PROTOENT (3),P_ PROTO)

INTEGER SERVENT (4)

INTEGER S NAME,S ALIASES,S PORT,S PROTO
EQUIVALENCE (SERVENT (1),S NAME)
EQUIVALENCE (SERVENT (2),S ALIASES)
EQUIVALENCE (SERVENT (3),S PORT)
EQUIVALENCE (SERVENT (4),S PROTO)

RHHdHHH A HH A HHAH#HE ERRNO . H ########H#HH

INTEGER ENFILE SPARAMETER (ENFILE = 1)

INTEGER EINVAL SPARAMETER (EINVAL = 13)
INTEGER EINTR SPARAMETER (EINTR = 201)
INTEGER EAGAIN SPARAMETER (EAGAIN = 202)
INTEGER EFAULT SPARAMETER (EFAULT = 203)
INTEGER EMFILE SPARAMETER (EMFILE = 204)
INTEGER EPIPE SPARAMETER (EPIPE = 205)
INTEGER EMSGSIZE SPARAMETER (EMSGSIZE = 215)
INTEGER ENOTSOCK SPARAMETER (ENOTSOCK = 216)
INTEGER EDESTADDRREQ SPARAMETER (EDESTADDRREQ = 217)
INTEGER EPROTOTYPE SPARAMETER (EPROTOTYPE = 219)
INTEGER ENOPROTOOPT SPARAMETER (ENOPROTOOPT = 220)
INTEGER EPROTONOSUPPORT $PARAMETER (EPROTONOSUPPORT = 221)
INTEGER ESOCKTNOSUPPORT $PARAMETER (ESOCKTNOSUPPORT = 222)

Database and Header Files

B -37

C TYPE ALL THE SOCKET FUNCTIONS

c

c

B-38

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

EOPNOTSUPP
EAFNOSUPPORT
EADDRINUSE
EADDRNOTAVAIL
ECONNRESET
ENOBUFS
EISCONN
ENOTCONN
ESHUTDOWN
ETIMEDOUT
ECONNREFUSED
EREMOTERELEASE
EHOSTDOWN
EHOSTUNREACH
EALREADY
EINPROGRESS
EWOULDBLOCK
EINTERR

ACCEPT
BIND
CONNECT

*4 FCNTL
GETPEERNAME
GETSOCKNAME
GETSOCKOPT
LISTEN
RECV
RECVFROM
RECVMSG
SELECT
SEND
SENDTO
SENDMSG
SETSOCKOPT
SHUTDOWN
SOCKET

SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER
SPARAMETER

EOPNOTSUPP
EAFNOSUPPORT
EADDRINUSE
EADDRNOTAVAIL
ECONNRESET
ENOBUFS
EISCONN
ENOTCONN
ESHUTDOWN
ETIMEDOUT
ECONNREFUSED

EHOSTDOWN
EHOSTUNREACH
EALREADY
EINPROGRESS
EWOULDBLOCK
EINTERR

e~~~ e~ e~~~ e~~~ o~~~ o~~~ o~ —~

EREMOTERELEASE

TYPE ALL THE INET* FUNCTIONS

INTEGER*4 INET ADDR
INTEGER*4 INET LNAOF
INTEGER*4 INET MAKEADDR
INTEGER*4 INET NETOF
INTEGER*4 INET NETWORK
INTEGER INET NTOA

TYPE ALL THE GETSERV* FUNCTIONS

INTEGER GETSERVENT
INTEGER GETSERVBYNAME
INTEGER GETSERVBYPORT
INTEGER SETSERVENT
INTEGER ENDSERVENT

Database and Header Files

TYPE ALL THE
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

TYPE ALL THE
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

TYPE ALL THE
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

TYPE ALL THE
INTEGER
INTEGER
INTEGER
INTEGER

GETPROTO* FUNCTIONS
GETPROTOENT
GETPROTOBYNAME
GETPROTOBYNUMBER
SETPROTOENT
ENDPROTOENT

GETNET* FUNCTIONS
GETNETENT
GETNETBYNAME
GETNETBYADDR
SETNETENT
ENDNETENT

GETHOST* FUNCTIONS
GETHOSTENT
GETHOSTBYNAME
GETHOSTBYADDR
SETHOSTENT
ENDHOSTENT

BITMASK FUNCTIONS
FD_SET

FD_CLR

FD_ISSET

FD_ZERO

MISCELLANEOUS ROUTINES

INTEGER
INTEGER
INTEGER

FREE
BYTEADROF

ADDRESSOF

Database and Header Files

B -39

Error Messages

Errno is a standard error variable used in UNIX programming. For portability, the C library
(HPC.LIB) also returns error values in a global variable called errno. This appendix contains
the list of error messages for HP 1000 BSD IPC.

Value of
errno

Error Mnemonic

Meaning

[ENFILE]

Currently there are no resources available.

13

[EINVAL]

One of the following occurred:

The value of a specified parameter is invalid.

The socket is not a BSD IPC socket.

The socket has already been shut down.

The socket is not ready to accept connections yet. A
listen () call must be done before an accept () call.
The socket is already bound to an address.

202

[EAGAIN]

Nonblocking I/O is enabled and:

1. for accept (), no connection is present to be
accepted.

2. for send (), the socket does not have space to
accept any data at all.

203

[EEFAULT]

For getsockopt () and setsockopt (), the optval or
optlen parameter is not valid.

204

[EMFILE]

The maximum number of socket descriptors for this
process are already currently open. This could happen
since sockets need to be created for internal use.

205

[EPIPE]

An attempt was made to send on a socket whose
connection has been shut down by the remote peer
process.

215

[EMSGSIZE]

In nonblocking mode, the socket requires that messages
be sent atomically, and the message size exceeded the
outbound buffer size.

216

[ENOTSOCK]

The socket descriptor, socket, is not a valid socket
descriptor.

220

[ENOPROTOOPT]

The requested socket option is currently not set.

221

[EPROTONOSUPPORT]

The specified protocol is not supported.

222

[ESOCKTNOSUPPORT]

The specified socket type is not supported in this address
family.

Error Messages C-1

Value of Error Mnemonic Meaning
errno

223 [EOPNOTSUPP] The socket descriptor, socket, does not support this call
or a parameter in this call.

225 [EAFNOSUPPORT] Addresses in the specified address family cannot be used
with this socket.

226 [EADDRINUSE] The specified address is already in use.

227 [EADDRNOTAVATIL] The specified address is invalid or not available.

232 [ECONNRESET] Connection has been aborted by the remote process.

233 [ENOBUFS] No buffer space is available. The call cannot be
completed.

234 [EISCONN] The socket is already connected.

235 [ENOTCONN] The socket has not been connected yet.

236 [ESHUTDOWN] The network software on the system is not running. Or the
socket has already been shut down for send or receive.

238 [ETIMEDOUT] Connection establishment timeout without establishing a
connection.

239 [ECONNREFUSED] The attempt to connect was rejected by the server.

240 [EREMOTERELEASE] The remote side has done a send shutdown; hence, there
will be no more data to receive.

241 [EHOSTDOWN] The network software on the local host is not running.

242 [EHOSTUNREACH] The network software was unable to determine a route to
the destination host.

245 [EINPROGRESS] Nonblocking I/O is enabled and the connection has been
initiated. This is not a failure. Use select () to find out
when the connection is complete.

299 [EINTERR] This error requires HP notification.

C-2 Error Messages

Definition of Terms

Address Family Type

The socket address family type defines the address format to be used for the socket. The two
address families provided for BSD IPC are:

e AF INET: the Internet address family, which defines an address structure (sockaddr in)
of 16 bytes. AF INET is the only address family type currently supported on the HP 1000
BSD IPC.

e AF UNIX: the UNIX Domain address family, which defines an address structure of 110
bytes. AF UNIX is used within a single machine, usually running UNIX operating system.

Internet Dot Notation

Specifies the format in which Internet (IP) addresses are specified. IP addresses using the “dot”
notation take one of the following forms:

.b.c.d
.b.c
.b

VIR TR

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right,
to the four bytes of an Internet (IP) address.

When a three-part address is specified, the last part is interpreted as a 16-bit quantity and placed
in the right most two bytes of the network address. This makes the three-part address format
convenient for specifying Class B network addresses as “128.net.host”.

When a two-part address is supplied, the last part is interpreted as a 24-bit quantity and placed in
the rightmost three bytes of the network address. This makes the two-part address format
convenient for specifying Class A network addresses as “net.host”.

When only one part is given, the value is stored directly in the network address without any byte
rearrangement.

All numbers supplied as parts in a “dot” notation may be decimal, octal, or hexadecimal, as
specified in the C language (i.e., 0X or Ox implies hexadecimal; a leading 0 implies octal;
otherwise, the number is interpreted as decimal).

Definition of Terms D-1

IP Address

Also known as Internet Addresses. 1P addresses are used in the internet network to identify a node
within the network.

An IP address consists of two parts: a network address, which identifies the network; and a node
address, which identifies a node within a network. A network address is concatenated with a node
address to form the IP address and uniquely identify a node within a network within an internet.

If you have several networks, you may want to consider using subnetting. In this case, an IP
address has three parts: a network number, a subnet number, and a node number. Using subnet
addressing is optional. Refer to “IP Addresses with Subnetting” after reading the following IP
addressing information.

There are three IP address classes, each accommodating a different number of network and node
addresses. The address classes are defined by the most significant bits of the address, as follows:

Class A address—

31 24
crrrrerprrerererrrrererrerer

! !

Network Addr. Node Address

Class B address—

3130 16 0
crerrererrrreprrrtrrererrrre

! -

1{0

Network Address Node Address
Class C address—
31 29 8 0
T T T T T T T T T T T T T T T T T T T TTTTTT]
A AEEEE RN EREENE R NENE RN

! !

Network Address Node Address

The address classes can also be broken down by address ranges. IP addresses are typically
represented by converting the bits to decimal values an octet (8 bits) at a time, and separating each
octet’s decimal value by a period (.). Therefore, IP addresses are typically of the following
form:

nnn.nnn.nnn.nnmn

where nnn is a number from 000 to 255, inclusive.

D-2 Definition of Terms

Table D-1 lists the number of networks and nodes and the address ranges for each address class.

Table D-1. IP Address Classes

Class Networks Nodes per Network Address Range
A 127 16777215 000.000.000.000*—127.255.255.255
B 16383 65535 128.000.000.000—191.255.255.255
C 2097151 255 192.000.000.000—223.255.255.255
Reserved - - 224.000.000.000—255.255.255.255*
*Do not assign the network and node addresses to all zeros or all ones; they are reserved. The address of all ones
(255.255.255.255) is used internally for broadcasting.

To determine a network address and node address from an IP address, you must separate the
network and node address fields. For example, the bit representation of IP address
192.006.001.001 is separated as follows:

indicates
Class C address

i1100000O0.00O0OO00O110.000O0O0001.0O0O0O0OO0OO0O01
| J | J

v v

Network Address = 192.006.001 Node Address = 001

IP Addresses, with Subnetting

Subnetting is an optional addressing scheme that allows you to partition the node address portion
of an internet address (IP address) into discrete subnetworks. The term, subnetted network, is
sometimes used for a subnetwork.

The node address is divided into a subnet number and a node number to identify the node within
this subnetwork. The network address portion of the IP address remains unchanged.

IP Address = Network Address + Node Address

= Network Address + (Subnet Number + Node Number)

A subnetted network can communicate with a non-subnetted network.

Subnetting allows you to use one network address for two or more physically distinct networks.
For example, if you have a large installation with many interconnected nodes, you could run into
hardware configuration restrictions or performance degradation if you tried to place all nodes on
the same physical network. With subnetting, you can install several smaller physical networks
(connected via gateways) and have them all share the same network address. You then use
different subnet addresses for each of these physical networks. Each network would actually be a
subnetwork. In summary, a network address would identify a group of networks, and the subnet
numbers identify the subnetworks.

Definition of Terms D-3

Because subnetting allows you to use fewer network addresses, you may hide the internal structure
of your company’s networks. So, instead of assigning different network addresses to each physical
network, a company needs only one network address. People outside the company need only
know one network address to be able to send to any node in the company.

Subnet numbers are used like network numbers to distinguish each subnetwork. All nodes on the
same physical LAN are assigned the same subnet number. Nodes on a different LAN have a
separate subnet number. If the two networks are connected via a gateway and are to be subnetted,
then each node in both networks will share the same network address.

Determining the number of subnetworks and the number of nodes in each subnetwork depends on
how many bits are used in the node address portion of the IP address. For example, a Class C IP
address uses 8 bits for the node address portion. Of these 8 bits, if 3 bits are used for subnet
numbers, then we can have 7 subnetworks and 29 nodes per subnetwork. Node addresses of all
zeros (000.000.000.000) or all ones (255.255.255.255) are reserved and are not allowed.

Class C address—

31 29 8 0
rrrrerrerrrerrrerrrrerrfrrrrer

0
Lttt

! !

24-Bit Network Address Subnet and Node Numbers

11

Table D-2 lists the valid IP addresses for up to 7 subnetworks and 29 nodes per subnetwork.

Table D-2. Subnet Addressing Example

Subnet Address Subnet Address IP Address Range
(binary) (decimal)

000 0 000.000.000.000 is reserved and cannot be used

001 1 n.n.n.33—n.n.n.62

010 2 n.n.n.65—n.n.n.94

011 3 n.n.n.97—n.n.n.126

100 4 n.n.n.129—n.n.n.158

101 5 n.n.n.161—n.n.n.190

110 6 n.n.n.193—n.n.n.222

111 7 n.n.n.225—n.n.n.254
255.255.255.255 is reserved and cannot be used; it is
used internally for broadcasting

The vital part of subnetting is the 32-bit subnet mask. The subnet mask specifies the portion of the
node address used to identify the subnet number. The remaining part of the node address is used
to identify the node on that particular subnetwork.

D-4 Definition of Terms

Bits, in the subnet mask, are set to 0 for the node number and 1 for the network address and
subnet number. For the above example of a Class C IP address, the subnet mask would be as
follows:

Class C address with subnet mask of 255.255.255.224 decimal—

11111111 11111111 11111111 11100000
|] |]

! vy

24-bit Network Address Subnet Node
Number Number

In another example, given a Class B IP address with the following subnet mask means that the first
two octets of the IP address identifies the main network, the third octet is the subnet number and
the fourth octet identifies the node number:

Class B address—

11111111 11111111 11111111 00O0O0O0OOO
L] L] L]

! ! !

Network Address Subnet Number Node Number

All nodes in a subnetwork must use the same subnet mask.
The following example shows four subnetworks sharing a Class C address of 192.006.012.
Subnetwork A nodes: 192.006.012.034 and 192.006.012.035

gateway node: G1 at 192.006.012.033 and 192.006.012.129
Subnet number = 1 (001 in binary)

Node address range = 33-62

Subnet mask = 255.255.255.224

Subnetwork B nodes: 192.006.012.067 and 192.006.012.066

gateway node: G2 at 192.006.012.065 and 192.006.012.130
Subnet number = 2 (010 in binary)

Node address range = 65-95

Subnet mask = 255.255.255.224

Subnetwork C nodes: 192.006.012.098 and 192.006.012.099

gateway node: G3 at 192.006.012.097 and 192.006.012.131
Subnet number = 3 (011 in binary)

Node address range = 97-127

Subnet mask = 255.255.255.224

Subnetwork D gateway nodes: G1, G2, and G3 at 192.006.012.129, 192.006.012.131, and
192.006.012.130

Subnet number = 4 (100 in binary)

Node address range = 129-158
Subnet mask = 255.255.255.224

Definition of Terms D-5

192.006.012.034 192.006.012.035 192.006.012.098 192.006.012.099

Subnetwork A Subnetwork C

192.006.012.033 192.006.012.097

192.006.012.131
192.006.012.129

Subnetwork D

192.006.012.130

192.006.012.067 @9 192.006.012.066

192.006.012.065

Subnetwork B

Figure D-1. Subnetted Network Example

IP Addresses, Assigning

You must assign an IP address as follows:

e You must assign an IP address for each NS-ARPA node in your network except nodes that only
use DS/1000-1V Compatible Services.

e Do not assign any nodes with a reserved address of all zeros or all ones (see Table D-1).

e If a node is a member of more than one network, you must assign that node an IP address for
each network of which it is a member.

When assigning IP addresses, you must determine network and node addresses, as described
below.

To assign IP network addresses, follow these rules:

e Each network has a unique network address throughout the internet.

o All nodes in a network must have the same network address.

D-6 Definition of Terms

e If a node belongs to more than one network, it must have one and only one IP address for
each network to which it belongs.

e Do not assign any networks with a reserved network address of all zeros or all ones (see
Table D-1).

HP has obtained a block of Class C network addresses from DARPA to assign to HP customers.
You can obtain Class C addresses that are unique within the ARPANET by contacting HP at the
following address:

Network Administration Office, Dept. NET
Information Networks Division
Hewlett-Packard Company

19420 Homestead Road

Cupertino, California 95014

Note Although any address assigned from HP is unique within DARPA's ARPANET,
this does not imply that your system is compatible with nor supported on the
ARPANET.

If you attempt to communicate with external networks, you should consider the
security risks of external networks accessing your network.

The IP addresses used in this manual are given as examples only. Do not use these
addresses in your network.

To assign IP node addresses, follow these rules:

e Node addresses must be unique within each network, but they do not have to be unique
throughout the internet. For example, you could have a node with node address 55 in
Network 18 and a node with node address 55 in Network 21. You can assign node addresses
according to your own needs, but they must be within the ranges for the IP address class that
you are using.

e Do not assign any nodes with a reserved node address of all zeros or all ones (see Table D-1).

e If nodes support DS/1000-IV Compatible Services (RTE-RTE) or have RTR LlIs, you may
want to assign node addresses that are unique throughout the network and that correspond to
the Router/1000 addresses.

Port Number

Port numbers are 16-bit integer numbers used to identify the services (user processes) on your
system. The /etc/services file contains a list of services that are available on your
NS-ARPA/1000 system. Each service has an assigned port number.

There are two types of port numbers: well-known port numbers and ephemeral (short-lived) port
numbers. Well-known port numbers are Internet-specific port numbers which are used in the

Definition of Terms D-7

industry to identify standard server programs, such as FTP. For example, FTP servers are assigned
the well-known port number 21.

Because well-known port numbers are assigned to specific server processes, they are reserved and
cannot be used by user programs. Port numbers 1-1023 are reserved and can only by used by
superusers.

Ephemeral port numbers are used for client processes, because they are assigned to the processes
only for the duration of the processes’ run time. For a client process, you can use port number
“0”, and your host will automatically assign an available port number. To find out the assigned
port number, use get sockname () .

Socket Address

The socket address is used to identify a BSD IPC socket on the HP 1000. The address is bound to
a socket by the bind () call. A socket need to have a bound address before other processes can
reference it and communicate with it. Socket addresses for HP 1000 BSD IPC are stored in a data
variable of sockaddr in type. The socket address consists of three fields:

e Address Family Type—AF INET
e Port Number

e [P Address

Socket Type

Socket type defines the type of socket used. HP 1000 BSD IPC only supports socket type
SOCK_STREAM, which defines a stream socket.

Socket types used in BSD IPC include
® SOCK-STREAM—stream socket.

® SOCK DGRAM—datagram socket.
® SOCK RAW—raw socket.

® SOCK SEQPACKET—sequenced packet socket

D-8 Definition of Terms

Index

Symbols setsockopt(), 4-40
hutd , 4-43

Jetc/hosts file, 3-7, 5-8, 5-16, 5-49, B-1, B-2 socket() 0. o
/etc/networks file, 5-9, 5-19, 5-21, 5-23, 5-50, B-1, surnmargl 4-1

B-4 BSD IPC utilities, 5-1
/ et]c?fpgotocols file, 5-10, 5-26, 5-28, 5-30, 5-51, B-1, releasing dynamically allocated memory, 5-1

- ial considerations, 5-1

Jete/services file, 2-3, 3-5, 5-11, 5-32, 5-34, 5-36, byte address pointers, 3.1

5-52, B-1, B-8 ’

ByteAdrOf -1
<errno.h> file, B-10, B-11 yte AdrOf(), 3-16

<fentl.h> file, B-10, B-13
<in.h> file, B-10, B-14 c
<netdb.h> file, B-10, B-17 i -
<socket.h> file, B-10, B-18 Sﬁgagfggﬁﬁii;ﬁ_ﬁo
<types.h> file, B-10, B-22 char data type, 3-17
client, setup, 3-10
A client process, 2-3
client-server model, 2-3
accept(), 2-5, 3-1, 3-9, 4-3, 7-2 command summary, 3-1, 3-2
accepting connection request, 4-3 concepts, 2-1
address connect(), 2-5, 3-1, 3-5, 3-7, 3-11, 4-8, 7-2
network, D-6 connection acceptance, server, 3-9
node, D-7 connection establishment, 2-5
address binding, 2-3 connection requesting, client, 3-11
address variable, 3-3 connection requesting from client, 4-8
address variable type, 3-2 connection requests, acceptance, 3-9
AddressOf(), 3-16 connection shutdown, 4-43
AF _INET, 2-3, 3-3, 3-8 connection termination, 2-10, 3-15
connectivity matrix, 1-2

bind(), 2-3, 2-5, 3-1, 3-2, 3-5, 3-8, 3-11, 4-6
binding address, 3-8, 3-11 data parameter
binding socket addresses, 4-6 byte address manipulation, 4-24, 4-35
bitmask data buffer, 4-23, 4-35
clearing, 6-2, 6-5 vectored data, 4-24, 4-35
for socket descriptors, 6-1 data transfer, 2-9, 3-12, 4-18, 4-21, 4-23, 4-31, 4-34,
setting bits, 6-4 4-38
testing bits on, 6-3 data types, 3-17
BSD IPC calls data vector, 4-23, 4-34
accept(), 4-3
bind(), 4-6 E
connect(), 4-8

D

fentl(), 4-11
flowchart, 4-2
getsockopt(), 4-13
listen(), 4-16
recv(), 4-18
recvirom(), 4-21
recvmsg(), 4-23
select(), 4-27, 4-32
send(), 4-31
sendmsg(), 4-34
sendto(), 4-38

endhostent(), 5-8, B-2
endnetent(), 5-9, B-4
endprotoent(), 5-10, B-6
endservent(), 5-11, B-8
errno global variable, C-1
errno.h file, B-10, B-11
error messages, C-1
example, load file

client, A-34

server, A-33
example program

Index-1

C client, A-5 inet_netof(), 5-44

C server, A-1 inet_network(), 5-45
FORTRAN client, A-27 inet_ntoa(), 5-46
FORTRAN server, A-22 int data type, 3-17
Pascal client, A-15 internet address, 2-3, 3-3, 3-7, 3-8
Pascal server, A-9 iovec structure, 4-25
EXTCALL.PASI file, B-24 IP address, 2-3, 3-2, 3-3, 3-7, 3-8, 5-41, 5-42, 5-43,
5-44, 5-45, 5-46

subnetting, D-3

F IP address of remote host, 3-7
fentlh file, B-10, B-13
fentl(), 4-11 L
FD_CLR(), 6-1, 6-2 o
FD_ISSET(), 6-1, 6-3 libraries, 3-18
fd_set data type, 3 17, 6-1 listen for connection request, 4-16
FD _SET(), 6-1, 6-4 listen queue, 2-3, 3-9, 4-16
FD_ZERO(), 6-1, 6-5 listen(), 2-5, 3-1, 3-9, 4-16
FORTRAN header file, B-35 loading BSD IPC programs, 3-18

long data type, 3-17
G M
gathered write, 4-23, 4-34 msehd

¢hdr structure, 4-25

g::ﬁg:tgziﬁg{éz) 3319 55 11 ’}}33 22 multi-vendor connectivities, 1-2
gethostent(), 5-16, B-2 *
getlocalname(), 518 N
getnetbyaddr(), 5-19, B-4 . i i

network address, D-6

network information, 5-50

network order, 5-39, 5-40, 5-47, 5-48
node address, D-7

nonblocking I/O, 4-11, 4-12, 7-2
ntohl(), 5-47

ntohs(), 5-48

getnetent(), 5-23, B-4
getpeername(), 5-25
getprotobyname(), 5-26, B-6
getprotobynumber(), 5-28, B-6
getprotoent(), 5-30, B-6
getservbyname(), 3-5, 5-32, B-8
getservbyport(), 5-34, B-8
getservent(), 5-36, B-8
getsockname(), 3-5, 5-38 o

getsockopt(), 4-13 O_NONBLOCK option, 4-11
overview, 1-1

H
header file P
for FORTRAN, B-35 Pascal header file, B-24
for Pagcal, B-24 pointers, 3-16
header files, B-1, B-10 port number, 2-3, 3-3, 3-5, 3-8
host information, 5-49 protocol, 3-8
host name, gethostnamebyaddr(), 3-10 protocol information, 5-26, 5-28, 5-30, 5-51
host order, 5-39, 5-40, 5-47, 5-48 protocols, transport layer, 2-2

hostent structure, 3-7
htonl(), 5-39
htons(), 5-40 R

receiving data, 2-9, 4-18, 4-21
| datagram sockets, 3-14
stream sockets, 3-13

in.h file, B-10, B-14 receiving vectored data, 4-23

in_addr structure, 3-3 recv(), 2-9, 3-1, 3-13, 4-18, 7-2

inet_addr(), 5-41 recvirom(), 3-2, 4-21

inet_Inaof(), 5-42 recvmsg(), 3-1, 4-23

inet_makeaddr(), 5-43 releasing dynamically allocated memory, 5-1

Index-2

examples, 5-2

S

scattered read, 4-23, 4-34
scheduling BSD IPC programs, 3-20
select(), 4-27, 6-1
send(), 2-9, 3-1, 3-12, 4-31, 7-3
sending data, 2-9, 4-31, 4-38

datagram sockets, 3-14

stream sockets, 3-12
sending vectored data, 4-34
sendmsg(), 3-1, 4-34
sendto(), 3-2, 4-38
server

accepting a connection, 3-9

setup, 3-7
server process, 2-3
service information, 5-32, 5-34, 5-52
sethostent(), 5-49, B-2
setnetent(), 5-50, B-4
setprotoent(), B-6
setservent(), 5-52, B-8
setsockopt(), 4-40
setup

client, 3-10

server, 3-7
short data type, 3-17
shutdown connection, 4-43
shutdown(), 2-10, 3-1, 3-2, 3-15, 4-
SO_KEEPALIVE option, 4-40, 7-1
SO_RCVBUF option, 4-14, 4-41
SO_RECVBUF options, 7- 1
SO_REUSEADDR option, 4-13, 4-
SO_SNDBUF option, 4-14, 4-41, 7-1
sockaddr_in structure, 3-2, 3 3, 3-8
socket

creating, 4-45

local, 5-38

peer, 5-25
socket address, 3-2, 3-3

setting up, 3-8, 3-10
socket address family type, 2-3, 3-3
socket descriptor bitmask, 6-1

43

40, 7-1

socket descriptors, 2-1
socket options, 4-13, 4-40, 7-1
socket structures, 2-1
SOCKET.FTNI file, B-35
socket.h file, B-10, B-18
SOCKET.PASI file, B-24
socket(), 2-5, 3-1, 3-2, 3-8, 4-45
sockets, 2-1
binding address, 3-8, 3-11
creating, 3-8
stream mode, 2-2
stream sockets, 2-2
subnet mask, D-4
subnetting, D-2
IP address, D-3
subnet mask, D-4
subnetwork, D-3
subnetwork, D-3
subnetting, D-3
synchronous socket 1/O multiplexing, 4-27

T

TCP (Transmission Control Protocol), 2-2
TCP_MAXSEG option, 4-14, 4-41
TCP_NODELAY option, 4- 14 4-41
Transmission Control Protocol (TCP), 2-2
transport layer protocols, 2-2

types.h file, B-10, B-22

U

u_long data type, 3-17
u_short data type, 3-17
UDP (User Datagram Protocol), 2-2
User Datagram Protocol (UDP), 2-2

\'}
vectored data, 4-24, 4-35

w

word address pointers, 3-16

Index-3

	Title page
	Preface
	Table of Contents
	Chapter 1 - Introduction
	Chapter 2 - BSD IPC Concepts
	Chapter 3 - Using BSD IPC
	Chapter 4 - BSD IPC Calls
	Chapter 5 - HP 1000 BSD IPC Utilities
	Chapter 5 - HP 1000 Socket Descriptor Utilities
	Chapter 7 - Advanced Topics
	Appendix A - Example Programs
	Appendix B - Database and Header Files
	Appendix C - Error Messages
	Appendix D - Definition of Terms
	Index

