(40 HEWLETT

PACKARD

Macro/1000

Reference Manual

RTE-A ¢« RTE-6/VM
HP 1000 Computer Systems

Manual Part No. 92059-90001
E1292

Software Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Printed in U.S.A. December 1992
Third Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1981 - 1987, 1992 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be
added. Thus, the reprinted copy will be identical in content to prior printings of the same edition with its
user-inserted update information. New editions of this manual will contain new information, as well as all

updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File or the Computer User’'s Documentation Index. (The Manual Numbering File

is included with your software. It consists of an “M” followed by a five digit product number.)

First Edition Oct
Update 1 Apr
Update 2 Jul

Reprint Jul
Update 3 Jun

Reprint Jun
Update 4 Dec

Reprint Dec
Update 5 Oct

Reprint Oct
Update 6 Jan

Reprint Jan
Update 7 Jan

Reprint Jan

Second Edition............... Aug

Third Edition Dec

1981
1982
1982
1982 Updates 1 & 2 Incorporated
1983
1983 ...l Update 3 Incorporated
1983
1983 ... Update 4 Incorporated
1984 Manual Errata
1984 Update 5 Incorporated
1985 Update Operation, Installation
1985 ... Update 6 Incorporated
1986 Manual Enhancements
1986 Update 7 Incorporated
1987 Rev. 5000 (Software Update 5.0)
1992 Rev. 6000 (Software Update 6.0)

3/4

Preface

This manual describes the Macro/1000 Assembly Language Product for HP 1000 RTE-based op-
erating systems. You should be aware of which operating system you are using and the machine
on which the object code produced by Macro/1000 is to be executed.

The user of this manual is assumed to have an in-depth knowledge of assembler programming
and of the HP 1000 E/F-, and A-Series machine instruction sets.

Chapter 1

Chapter 2
Chapter 3

Chapter 4

Chapter 5

Introduces Macro/1000, discusses backward compatibility, and relocatability.
It also presents some sample assembler code and lists programming aids.

Describes the source statement format.

Briefly describes all available machine instructions. This chapter should be
used with the computer Operating and Reference Manual for your model
computer which will explain the specific machine instructions available on
that machine.

Describes all assembler instructions, commonly called pseudo operations or
pseudo opcodes. Conditional assembly, and assembly-time variables are also
discussed here.

Describes the Macro/1000 language and how to create and access macro defi-
nitions. Macro libraries are also discussed.

Also included are the following Appendices:

Appendix A
Appendix B

Appendix C
Appendix D
Appendix E
Appendix F

Appendix G
Appendix H
Appendix I

Appendix J

Appendix K
Appendix L
Appendix M
Appendix N
Appendix O

Assembler Error Messages

Macro/1000 Instruction Set

HP 1000 Computer Instruction Set (Octal Opcode)
HP 1000 Computer Base and Extended Instruction Sets
Macro/1000 Assembler Operations

Cross Reference Table Generator

HP Character Set

Relocatable Record Formats

Implementation Notes

Backward Compatible Constructs

System Assembly-Time Variables

HP 1000 Macro Library

CDS Assembly Language Programming
CDSONOFF Macro Library

Program Types

5/6

Table of Contents

Chapter 1
Introducing the Macro Assembler
Compatibilitiest e 1-2
Backward Compatibilityot . 1-2
Relocatabilityt 1-3
Machines with Microcoding Capabilities, 1-3
Programming Process 1-4
List Outputot 1-6
Symbol Table Output e 1-9
Cross-Reference 1-9
Macro Assembler Languagettt e 1-10
Programming AidSt 1-10
Symbolic ADAIesSIngottt e e 1-10
Program Relocation and Relocatable Spaces 1-10
Assembly-Time Variables i e 1-12
Conditional AssembIlyttt e 1-12
Multiple Modules o e 1-13
INCLUDE Statementiuuiiniiii i, 1-13
Listing Control e 1-13
Chapter 2
Coding Format
The Source Statementttt 2-1
Label Field o 2-4
Opcode Field e 2-5
Operand Field e 2-5
ToImS ..o 2-6
Symbolic Termsot 2-6
Numeric Terms 2-6
ASEETISK oo 2-7
Assembly-Time Variables i 2-7
Literals . ..o 2-8
Literals in CDS o 2-9
EXPIessionsttt e 2-10
Operator Precedencet 2-10
Absolute and Relocatable Expressionsc.oiiiiiiiin.... 2-10
Legal Uses of EXPressionsovuetn ittt 2-11
Comment Field 2-12
Indirect Addressing Indicatorttt 2-13
Statement Length e 2-14
Statement ContinuUAtioOniiuiiin ittt 2-14

Chapter 3
Machine Instructions

Memory Reference

3-2
Word, Byte, and Bit Processing 3-3
Register Reference i e 3-5
Shift-Rotate Groupt e e 3-5
AIter-SKIp GIroupottt e e 3-8
Index Register GIroupttt e e e e e i 3-9
No-Operation INStructionottt e 3-10
Extended Arithmetic Group (EAG) e 3-11
Input/Output, Overflow, and Halt 3-12
Floating Point e 3-14
Dynamic Mapping System Instructionsc..ouiiiininneneennen.. 3-15
CDS OPCOAES . v ettt et e e e e e e e e e 3-17
HP 1000 A- and E/F-Series Replacements iiiiiiiinineennen.. 3-17
Replacement Formats e 3-18
Chapter 4
Assembler Instructions
Assembler Control e 4-2
N A 4-4
ORG . 4-7
OIS . 4-8
RELOC . oo e 4-9
Non-CDS EnvirOnmentc.uuunttnntnn et 4-9
CDS Environmentoutuiti ettt 4-11
OR R 4-12
EN D .o 4-12
Multiple Modules e 4-13
INCLUDE .. e e e 4-15
Loader and Generator Controlttt 4-17
LD . 4-17
GEN L 4-18
BREAK .. 4-18
Program Linkaget e 4-19
ENT, EXT, SEXT, and WEXTo i 4-19
ALLAS o 4-21
ALLOC . . 4-22
R . 4-24
Assembly Listing Controlt e 4-25
... 4-25
HE DD 4-26
SUBHEAD . .. e 4-27
LIS T e 4-29
S P 4-31
P C 4-32
SU P 4-32
UN S 4-33
Storage ALlOCAtIONttt 4-34
B S L 4-34
MSEG .o 4-34

ASC 4-35
BY T o 4-36
DEC . 4-37
Integer NUmMDeTS oot e e e 4-37
Floating-Point Numbers it 4-37
DE X . 4-37
DY .o 4-38
50 4-38
LI o 4-39
O CT . 4-39
Address and Symbol Definition i 4-40
DEF . 4-40
DD EF . 4-41
ABS 4-42
EQU o 4-43
DBL and DBR 4-44
LOADREQC . .. 4-46
Declaring Assembly-Time Variables i, 4-47
Substituting Values for Assembly-Time Variables 4-47
ILOCAL, IGLOBAL, CLOCAL, CGLOBAL 4-48
ISET, CSET . oot e e e 4-50
EXPIesSIONS . ..ttt ettt e e e e e 4-51
Assembly-Time EXPressionso.uoenninninenei i 4-52
The OPeratorsttt e e e e ettt 4-54
UnAry OPETatorSttt e ettt e e e e ettt 4-55
NEGAte (=) « ettt ettt e e 4-55
Integer Equivalent of a Character (ICH:) 4-55
Length Operator ((L:) ..o e e 4-55
Memory Relocatability (MR:) ... 4-56
Logical Negation (NOT:) oo e 4-56
Substring Operator (:S:)ttt 4-57
Symbol ID (:SY:) .ot 4-58
Type Operator ((T:) ..o 4-58
Uppercase Operator ((UC:)oiiunit e 4-58
Arithmetic OPeratorsttt ettt 4-59
(ASH: and :LSH: ... 4-59
MO DD . 4-60
RO T L 4-60
Comparison OPETAtOrSttt ettt et e e et enns 4-61
Logical Operatorsttt e et 4-61
Concatenationttt 4-62
Conditional Assembly e 4-63
AIF, AELSEIF, and AWHILE Operandsc.ciiiiiiiiiiinnenn... 4-63
Using AIF and AELSEIF i e 4-64
Using AWHILE e e 4-65
REPEAT and ENDREP e 4-66
MNOTE .. 4-67

Chapter 5
Using Macros

Example of a MaCrot e 5-2

Calling MACIOS . ..t vttt ettt e e e e e e e e 5-3
Using Macro Librariesot e e 5-3

Writing Macro Definitions i 5-4
The Macro Statementttt i e 5-4
The Macro Name Statementttt 5-4
The Macro Body 5-5
COMMENLS . . o ettt ettt e e e e e e e e e e e e e e e e e e e 5-6
The ENDMAC Statemento .ottt ettt e e et 5-7

Macro Parameterst 5-7
Formal Macro Parametersottt 5-7
Actual Macro Parametersiii i e 5-9
Default Parameterst e 5-10

Nested MaCTOS . .ottt e e e e e e e e 5-11
Redefinition of Opcodesttt e 5-11
ReCUISION ..o e 5-13

Creating Macro Libraries 5-15
DELETE and EXTRACTot e e e 5-16
Procedure to Create a Macro Libraryo i, 5-17

Appendix A

Assembler Error Messages

INtroductiono A-1

Error Numbers/Descriptionsouuuiinniint i A-1

Appendix B

Macro/1000 Instruction Set

INtroductiono e B-1

Machine INStrucCtions ittt it ettt e e et B-2
Memory Reference Instructionsttt B-2
Word, Byte and Bit Processingo B-3
NO-OPEIAtiONttt ettt et e e e e e e e B-3
Register Reference, Shift/Rotate Group B-4
Register Reference, Alter/Skip Group B-6
Extended Instruction Group (Index Register Manipulation) B-7
Input/Output, Overflow, and Halt B-9
Extended Arithmetic Unit i B-11
Floating-Point Instructionsiiniinninin e, B-11
Dynamic Mapping SyStemoou it B-12
CDS COde . o v vttt B-13

Pseudo Operationsttt e B-14
Assembler Control e B-14
Loader and Generator Controlttt B-14
Program Linkage e B-14
Listing Controlt e e e e B-15
Storage ALlOCAtIONttt e B-15
Constant Definitiono . e e B-15

10

Address and Symbol Definition i
Assembly-Time Variable Declaration o ...
Conditional Assemblyt e
Macro Definition i
Error Reporting e
CDS Control . ..ot
Backward Compatibilityc.o oo
Miscellaneous Other e

Appendix C
HP 1000 Computer Instruction Set (Octal Opcode)

Instruction Mnemonics in ASCIIbetical Ordero ...
Instruction Mnemonics in Opcode (Octal) Ordercoiiiiiiieennn...

Appendix D
HP 1000 Computer Base and Extended Instruction Sets

Appendix E
Macro/1000 Assembler Operations

Macro Control Statementt e
Runstring Parameterst e
Default Output File Formats i
EXampleso
Messages During Assemblyt
Installing Macro/1000 e e

Using Old Macro Librariesttt e e

Appendix F
Cross-Reference Table Generator

Appendix G
HP Character Set

Appendix H
Relocatable Record Formats

11

M SEG .. H-9
DB . H-10
XD B . H-11
RPL H-13
EN D H-14
XEND L H-15
GEN H-16
LOD H-16
DEBUG .. H-17
LIND E X . H-19
IND X R . H-21

Appendix |
Implementation Notes

Appendix J

Backward Compatible Constructs

Assembler Control Statementttt e J-1

Indirection Indicator e J-1

Clear Flag Indicatoroouioniinii et ens J-1

OId Literal COnSIITUCES . . .ot vv ettt e et e e e e e et e ens J-2

Old Pseudo OpCodes oottt e e e e e e e e e J-2
OR B .. J-2
OR R J-3
IEN, IFX, and XIF .. oo e et e e e e e J-3
RE P J-5
COM . J-6
EM A J-7
UN L .o e J-10
LS T J-10
MIC . J-10
RAM J-11

Appendix K

System Assembly-Time Variables

0 K-1

& ERROR .. K-1

QD ATE .. e K-2

& RST and & RS2 ... K-2

& RE P . K-3

& PCOUNT . K-3

QL PARM [it K-3

12

Appendix L
HP 1000 Macro Library

What the System Macros Do
A Macro Example e
Descriptions of System Macroso.uiiniinnitn ittt
Subroutine OpPerationseuntinttnnenn et
Macro ENTRY ...
Macro EXIT ...
Macro CALL ...
Runtime ConditionalS e
Macro IF ...
Macro ELSE
Macro ELSEIF
Macro ENDIF ...
Arithmetic OPerationsottt et et
Macro AD DD ...
Macro SUBTRACT e i
Macro MAX ..
Macro MIN ...

Bit Operationsttt e
Macro SETBIT . ..o
Macro CLEARBIT e e e
Macro TESTBIT e i
Macro FIELD e
S S ot
Macro ROTATE e e e e
Macro ASHIE T ... e
Macro LSHIFET . ..o e e e
Macro RESOLVE
Text DefinitiOnottt e e e e e e
Macro TEXT ...
Macro MESSAGE
Communication with RTEo e e
Macro TY PE . ..
Macro STOP

Appendix M
CDS Assembly Language Programming

INtrodUucCtionot e
A Brief Outline of CDS Featuresottt e e e e
Assembly Language CONStIUCtSouuttnn ittt e
Syntax of Commandso e
CDS Commandttt

P AL . .
Example Macro of ENTRY with PCAL

RELOC Commanduuuiit it e e e e
LABEL Commandottt ettt e e e e
BREAK Commandoiuti it e e e e
Some USeful MacCIOS . .o vttt ettt e e e e e e e
What iS @ Macro? . ..ot

P AL ..o

13

'l el el el ol ol ol el ol ol el
NoXe R RN NV NV I N G NN

LOCAL . M-10
EXIT oo M-10
Program Examples M-11
General Example M-11
Example of LABEL Statement e, M-13
Appendix N
CDSONOFF Macro Library
INtroductiono e N-1
CDS/Non-CDS Differencesoouiiniinint i, N-1
Calls . e N-1
Data and Stringsoi it e N-2
Philosophy . . . oo N-2
Macro Call SEqUENCESo vttt e N-2
Initializationt e N-2
NEWSUB .o N-3
TRACEBACK . .. e N-4
Entry Macrosttt e e N-4
ENT RY oo N-4
OENT RY oo N-4
DLENT RY .. N-5
LOADPARMADD ... e e N-5
DENT RY .o N-6
BUMPEXIT ... e N-6
EXIT, EXITL, EXIT2 ..ot e e i N-6
CALL SUMIMATLY . . ettt ittt e e et e e e e e e ettt e et et N-7
CALL, LCALL . ..ot e e e e N-7
DCALL . .o N-8
P AL .. N-8
DLCALL . .. N-8
UCALL . N-8
DUCALL .. e e N-9
Strings and Data e N-9
EMPTYSTRING . .. e e e e N-9
STRING .o e e e N-9
The MOVE and COMPARE MacCrosuueuieuneunennennenneen.. N-10
MOVECODETODATA ...t e e N-10
MOVEWORDS .. N-10
MOVEBY T TES .. N-10
COMPAREWORDS . .. e N-11
COMPAREBYTES ... e e N-11
LOCAL ..o N-11
BREAK . o N-12
RELOC .o N-12
EN D .o N-13
Appendix O
Program Types

14

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 3-1
Figure 3-2
Figure 4-1
Figure 4-2
Figure 5-1
Figure H-1
Figure H-2
Figure H-3
Figure H-4
Figure H-5
Figure H-6
Figure H-7
Figure H-8
Figure H-9
Figure H-10
Figure H-11
Figure H-12
Figure H-13
Figure H-14
Figure H-15
Figure H-16
Figure H-17
Figure H-18
Figure H-19
Figure J-1

Table C-1
Table C-2
Table D-1
Table D-2
Table D-3
Table G-1
Table G-2
Table O-1
Table O-2
Table O-3

List of lllustrations

Source Code Example o i

1-4
Assembly Process 1-5
Assembled Listing Of Sample Code 1-7
Listing Fields i 1-7
Sample Symbol Table Listing 1-9
Instructions of the Shift-Rotate Group 3-6
HP 1000 Replacement Formats, 3-18
A View of the User’s Map in Logical Memory 4-2
Byte Addressingt 4-44
Recursion Example i 5-14
NAM Record H-2
Extended NAM Record (XNAM)ottt H-3
ENT Record e H-4
Extended ENT Record (XENT) ..o, H-5
EXT Record H-6
Extended EXT Record (XEXT) ...ttt H-7
ALLOCATE Recordoiiii e H-8
EMA Recordt H-9
MSEG Record H-9
DBL Record H-10
Extended DBL record (XDBL), H-11
RPL Record H-13
END Record H-14
Extended END Record (XEND), H-15
GENRecord H-16
LOD Recordooii e e H-16
DEBUG Recordo e e H-17
LINDEX Recordooiuuiiiiii i H-19
INDXR Recordc..uiiii e H-21
Pictorial Explanation of Elements Being Addressed J-9

Tables

Instruction Mnemonics in ASClIbetical Order C-2
Instruction Mnemonics in Opcode (Octal) Order C-12
Base Set of Instruction Codeso D-2
Summary of Extended Set of Instruction Codes for A-Series Computers D-3
Additional Instruction Codes for A990 Computers D-6
Hewlett-Packard Character Set for Computer Systems G-2
HP 7970B BCD-ASCII CONversionc..oueeuuneiunnennnnnn. G-6
Program TYpescoiii i e O-1
Program Type Handling Under RTE-6/VM 0-2
Program Type Handling Under RTE-A 0-4

15

Introducing the Macro Assembler

Macro/1000 permits you to use all supported machine instructions for HP 1000 Computers. The
Macro/1000 Assembler (MACRO) translates symbolic source language into machine code for exe-
cution on the computer. The source language provides mnemonic operation codes (opcodes), as-
sembler-directing pseudo operations, and symbolic addressing. The assembled program can be
absolute or relocatable.

Macro/1000 provides for macro calls and macro definitions. A macro definition associates a name
with a group of assembler statements. When the assembler reaches a macro call statement, it ex-
pands the macro, replacing it with the source statements of the macro definition.

Why use macros? You can write a macro definition to perform a redundant section of code. The
macro definitions can be general enough to perform a section of code with many different vari-
ables, both integer and string. An example of this would be a macro to generate the EXEC calling
sequence. In the source code, just the macro call statement would appear, not the entire EXEC
call. Another application would be to have several programs use the same macro. If the code re-
quired to perform the macro changes, then only the macro needs to be changed and the modules
reassembled.

The source code can be assembled as a complete entity or it can be subdivided into several
relocatable subroutines (or a main program and several subroutines). They can be assembled
separately or all together in the same source file.

MACRO can read the source input from a disk file or an input device. The resultant relocatable
or absolute object program is output to a disk file or an output device.

Absolute code can be loaded by the Bootstrap Loader. There are no intermediate steps needed to
prepare the code before it is executed.

Introducing the Macro Assembler 1-1

Compatibilities
Backward Compatibility

Macro/1000 has a control statement option that will provide complete backward compatibility with
HP ASMB Assembly Language. You can specify ASMB in the control statement, or you can spec-
ify MACRO. Macro/1000 acts differently depending on what you specify.

If you specify ASMB in the control statement, Macro/1000 behaves in the same manner as the
ASMB Assembly Language. Macro defining abilities are available, but because the ASMB func-
tion of Macro/1000 does not recognize “&-variables” as assembly-time variables or macro parame-
ters, the usefulness of macros is limited.

If MACRO is specified in the control statement, Macro/1000 then behaves as shown in this man-
ual. MACRO produces extended relocatable records. If you have code written in ASMB and wish
to run Macro/1000 with MACRO specified in the control string, be aware that Macro/1000 re-
serves some characters for special purposes:

— MACRO assigns to A the value 0 (A EQU O)

B — MACRO assigns to B the value 1 (B EQU 1)

/ — (slash) divide

& — (ampersand) designates the start of an assembly-time variable (ATV) or macro
parameter.

— (colon) designates an attribute

\ — (back slash) line continuation
[,] — (brackets) designates an assembly-time array
=,<,> — (equal to, greater than, less than) used as comparison operators.

— (single quote) designates a character string

@ — (at-sign) designates indirect addressing

The entire instruction set of HP ASMB Assembly Language is supported on Macro/1000, however,
some of the Macro instructions supersede the Assembler instructions. Appendix J (Backward
Compatible Constructs) of this manual explains these instructions.

1-2 Introducing the Macro Assembler

Relocatability

MACRO produces code in a form that is ready to be relocated. This form is made up of extended
relocatable records. The name “extended record” comes from the fact that EXT and ENT names
may have up to 16 characters plus the fact that MACRO produces some relocatable records that
ASMB does not. Appendix H defines the format of all relocatable records.

The loader or generator that you use must be able to accept extended records or you must convert
the extended records into non-extended relocatable format. Non-extended relocatable records can
be produced by using OLDRE, a program that truncates extended records and flags incompatible
records. Schedule OLDRE independently of Macro/1000. Refer to your Ultilities manual for de-
tails about OLDRE.

Note The relocatable records produced by MACRO are compatible only with RTE
loaders that accept extended relocatable records. The use of these records with
other loaders or older RTE generators will cause unpredictable results.
OLDRE must be executed with the file containing extended records before they
can be loaded by loaders that do not accept extended records, or generated us-
ing older RTE generators.

Machines with Microcoding Capabilities

Some HP 1000 machines have software equivalents for instructions that are implemented in
microcode in others. For example, some floating point instructions are microcoded in some CPUs
and not others.

The instruction “.PWR2” (power of 2) is not microcoded in the A600. Therefore, MACRO gener-
ates a JSB to a location external to the program. When the relocatable code is loaded, the loader
determines whether or not there is microcode for the instruction and replaces the JSB with a
microcode instruction or a JSB to the software routine. Appendix C of this manual defines the
instructions that have software equivalents on a particular machine. Refer to the Operating and
Reference Manual for your machine for more information.

MACRO will replace an instruction with microcode if requested. The ‘I’ option in the control
statement (discussed in Appendix E) causes MACRO to generate microcode replacements for
these instructions. You may specify the ‘I’ option if your machine has microcoding. Note that, in
general, the software is more flexible if the ‘I’ option is not used, since the loader can then tailor
the module to fit the hardware at load time.

Introducing the Macro Assembler 1-3

Programming Process

The programming process consists of creating a source file, assembling the source file to produce
relocatable code, loading the relocatable code, and then executing the program. A sample source
file is shown in Figure 1-1. This file is a simple routine which counts the number of ones in the
A-Register. Note that the source code of a module must have the following statements, depending
on whether the module is relocatable or absolute:

Relocatable Control Statement Absolute Control Statement
NAM statement ORG statement
END statement END statement
MACRO R L, T
NAM COUNT
ENT COUNT
Subroutine to count the no. of set bits in the
; A-Register
COUNT NOP ; subroutine entry point.
CLB ; clear B-Register (B used to
count # of 1's).
LDX =D16 load 16 into X-Register.
repeat SLA skip if bit 0 of A-Reg is on.

| NB yes, add 1 to count in B.

RAL rotate A-Register left 1.

DSX decrement X, skip if 0, done?

JMP repeat not done, repeat.

JVP @COUNT return to main program
nunber of 1's in B-Register.

END

Figure 1-1. Source Code Example

The control statement (MACRO,R,L,T) contains a set of options. In this example, the R
(relocatable source), L (output to a list file), and T (list symbol table) options have been chosen.
More information on the control statement is found in Appendix E.

The NAM/ORG statement immediately follows the control statement (except for comments, a
HED or SUBHEAD statement, macro definition, or conditional assembly). The NAM statement
indicates the origin of a relocatable program, an ORG statement indicates the origin of an abso-
lute program.

The END statement is the last statement of the module and may contain a transfer address for the
start of a relocatable program. The END statement, however, can be followed by conditional as-
sembly or other statements that do not produce code. There can also be another module or NAM-
END pair.

1-4 Introducing the Macro Assembler

After you create a file that has MACRO source statements, it is ready to be assembled. MACRO
assembles your file by doing the following:

e expands macros,

e checks for syntax errors in the source statements,

e creates the list file, and

e creates relocatable code.

The relocatable code produced by MACRO is then ready to be loaded using the loader program,
LINK. LINK produces memory image code that the computer can execute. The whole process is

illustrated in Figure 1-2.

In the process, MACRO produces a listing of the code as well as a symbol table. These listings are
explained below.

MACRO, LT RU,MACRO,AAA MAG.AAA LSTAAA REL MACRO
NAM AAA P ASSEMBLER [P AAAREL
AAA -
END AAA ¢
SOURCE—+AAA MAC st
FILE RELOCATABLE—» AAAREL
LISTAAA LST

AAAREL |_RU.LINK.AAA.REL RU,AAA

¢ LINK —» AAARUN —— EXECUTION

RELOCATABLE— AAA.REL MEMORY IMAGE
CODE— AAA.RUN

Figure 1-2. Assembly Process

Introducing the Macro Assembler 1-5

List Output

Figure 1-3 shows the assembled listing of the sample code. The header contains a sequential page
number and time of day information. Figure 1-4 defines the fields in the listing, using lines 12 and
17 for illustration.

The relocation or external symbol that indicates the type of relocation to be done for the operand
field are as follows:

Symbol Type of Relocation
Blank Absolute

R Program relocatable

C Common relocatable

X External symbol

B Base page relocatable

S Substitution code

E Extended Memory Area

Vv SAVE relocatable area

In a CDS environment (see Appendix M for details and refer to the appropriate programmer’s
reference manual to see if your machine has these features) the relocation type symbols are:

Blank absolute
c code
d data
s static
1 local
X external
e ema
C Common

A plus (+) in column 21 indicates the code came from a macro expansion. A minus (—) marks
code that appeared in conditional assembly statements that did not get assembled. The last sec-
tion of this chapter has a brief paragraph about conditional assembly.

Lines consisting entirely of comments using a semicolon (;) in the first non-blank column show the
source statement sequence number in the first five columns and the comment beginning in column
22.

Lines consisting entirely of comments using an asterisk (*) in column 1 show the statement num-
ber in the first five columns and the comment beginning in column 7.

1-6 Introducing the Macro Assembler

PAGEH 1 COUNT. MAC: : MANUAL 11: 01 AM WED., 27 MAY , 1987

00001 MACRO R L, T
00002 NAM COUNT
00003 ENT COUNT
00004 ;
00005 ; subroutine to count the no. of set bits
00006 ; in the A-Register
00007 ;
00008 00000 000000 COUNT NOP ; Subroutine entry point.
00009 00001 006400 CLB ;clear B-Reg (B used to
00010 ;count # of 1's).
00011 00002 014001X LDX =D16 ;load 16 into X-Reg

00003 000012R
00012 00004 000010 repeat SLA ;skip if bit 0 of A-Reg is O.
00013 00005 006004 | NB ;on yes, add 1 to count in B
00014 00006 001200 RAL ;Rotate A-Reg left 1.
00015 00007 014002X DSX ;decrement X, skip if 0, done?
00016 00010 024004R JWP repeat ;not done, repeat.
00017 00011 124000R JVMP @OUNT ;return to main program
00018 ;nunber of 1's in B-Reg

00012 000020 END

Macro: Macro/ 1000 Rev. 5000 870429 : No errors found

Figure 1-3. Assembled Listing Of Sample Code

00012 00004 000010 repeat SLA ;skip if bit O of AAReg is O.
00017 00011 124000R JVMP @OUNT ;return to main program

A A A A A L
L comments
operand field

operation (op) code
— label field

L— relocation or external symbol

— object code in octal

— location in octal

— source statement sequence number

Figure 1-4. Listing Fields

Introducing the Macro Assembler

For each error found in the source code, MACRO prints an error message. A caret () points to
the location at which MACRO found the error. Immediately after the error is the following mes-
sage:

nnn >> <text>

and at the end of the code:

ERROR nnn in line LLL <macro |ine # mmm> <Include file # >

where:
nnn is the error number.
<text> is an explanation of the error.
LLL is the line number where the error occurred.
mmm is the line number inside of a macro definition where the error occurred. This
phrase is printed only if an error occurred inside the macro.
il is the file number of the included file. This phrase is printed only if an error oc-

curred inside of the include file. In this case LLL is the included file’s line number.

The format of the error messages makes locating them very easy. You can scan the list file for
“>>” (using the Editor) to show any error messages. Knowing the line numbers of the errors
(given at the end of the listing), you can find the specific errors. After the error list, the number
and text of each error is repeated for each unique error number reported in the error list.

1-8 Introducing the Macro Assembler

Symbol Table Output

Figure 1-5 shows the symbol table listing produced when the example source code was assembled.
A symbol table contains all of the symbols and their relocation type created during the assembly in
alphabetic order. Columns 8 through 23 contain the name of the label. Columns 34 through 39
contain the value of the label. Column 40 specifies the type of relocation for the operand field.

. DSX 000002X (External Synbol |D#)

. LDX 000001X ” ” ”

A 000000 (Absol ute nenory | ocation)

B 000001 ” ” ”

COUNT 000000R (Rel ocat abl e menory reference)
REPEAT 000004R ” ” ”

Figure 1-5. Sample Symbol Table Listing

Note The symbols

% RELOC **
* % % CRG * % %
* % % mB * k%%
* % % mR *k k%

may appear in the symbol table output if statements by the same name appear in
the source. These symbols are put in the symbol table to facilitate their appear-
ance in the cross-reference and will always have the value 0. These symbols are
not legal Macro/1000 symbols and do not conflict with any legal symbols.

Cross-Reference

The cross-reference table generator is useful for larger programs. Not only are the symbols defin-
ing addresses given, but also the addresses where the symbols are used or changed. To have the
cross-reference table listed after the assembly, specify the ‘C’ option in the control statement. Ap-
pendix F of this manual details the output of the cross-reference table generator.

Introducing the Macro Assembler 1-9

Macro Assembler Language

MACRO language consists of the following opcodes:

e Machine instructions, which instruct the machine to do something such as manipulate registers
or send flags to the operating system.

e Assembler instructions, which instruct MACRO to do something such as create space for a
value or specify a listing option.

e Macro calls which cause the code of a macro definition to be generated at that point in the
code.

Programming Aids

Macro/1000 provides many tools to aid the programmer:

Symbolic Addressing

A symbol represents the address for a word in memory. A symbol is defined when it is used as:

a label for a location in the program,

e aname of a common storage arca,

e the label of a data storage area or constant,
e the label of an absolute or relocatable value, or
e alocation external to the program.

Through use of arithmetic operations, symbols can be combined with other symbols or numbers to
form an expression that can identify another location in memory. Symbols that appear in operand
field expressions but are not defined and symbols that are defined more than once are flagged as
errors by the assembler.

Program Relocation and Relocatable Spaces

Relocatable records produced by MACRO are assigned absolute addresses by the loader. The as-
sembler assumes a starting location of 0 for relocatable code. This is called the relative origin.
The loader determines the absolute origin of the code and then relocates the remainder of it with
respect to its absolute origin. In other words, the value of the absolute origin is added to each
relocatable address to produce the absolute address.

1-10 Introducing the Macro Assembler

Macro/1000 has six different types of relocatable spaces:

e program relocatable,

e Dbase page relocatable,

e EMA relocatable,

o SAVE relocatable,

e common relocatable, and

e Jabeled common relocatable.

In the CDS environment (see Appendix M for details and refer to the programmer’s reference

manual for your computer to see if your machine has these features) the available spaces are as
follows:

e code
e data
e static
e Jocal
e EMA

e common
o labeled common relocatable

Each space has its own relative origin. Also, each space has its own counter. A counter assigns
consecutive memory addresses to source statements within its relocatable space.

For example, source statements in the main portion of a block of code will be in the program
relocatable space. The assembler assigns the first statement to be the program relative origin and
maintains the block of code with the program location counter.

The initial value of the program location counter is established according to the use of either the
NAM or ORG pseudo opcode at the start of the program. The NAM opcode causes the program
location counter to be set to zero for a relocatable program, the ORG opcode specifies the abso-
lute starting location for an absolute program.

A relocatable program may specify that certain operations or data areas be allocated to different
relocatable spaces. For example, through the RELOC command, a data area is specified to be in
the common relocatable space. That common area has its own relative origin and is maintained by
the common location counter.

Another type of memory space to be considered is “absolute” space. This refers to a program and
its data which is loaded directly into memory for sole occupancy of the HP 1000. This is usually
accomplished by a bootstrap loader taking the code directly from a device such as cassette tape or
standard magnetic tape. These programs must load and run entirely on their own, that is, no ex-
ternal address fix-up is done by the loader, and no program relocation is done by the operating
system.

Introducing the Macro Assembler 1-11

Therefore all addresses which you set up in your program are absolute and fixed, hence the term
“absolute program”.

A common example of an absolute program is |BCKUP, an offline backup and restore utility pro-
gram which is distributed by Hewlett-Packard with the RTE-6/VM operating system.

Assembly-Time Variables

Assembly-time variables (ATVs) are variables whose values are defined, manipulated and used at
assembly-time. Therefore, they do not take up space in relocatable code. As the source file is be-
ing assembled, the current value of the ATV is substituted into the code. For example:

&1 |1 GOBAL O ;. set &P1 to O.
REPEAT 5 ; Start REPEAT | oop.
DEC &P1
&P1 | SET &P1+1 : alter the val ues of &P1.
ENDREP

will generate:

DEC O
DEC 1
DEC 2
DEC 3
DEC 4

ATVs can be used as flags and counters which direct the assembler in processing the user’s pro-
gram.

The value assigned to an assembly-time variable may take on one of two types: integer or charac-
ter. They may be of local scope (local only to a macro definition, REPEAT or AWHILE loop) or
global scope (global to the entire source file).

Conditional Assembly

Conditional assembly allows you, along with using assembly-time variables, to assemble only cer-
tain portions of your program. For example, suppose a program has an error reporting section
that does not need to be assembled all the time. You can designate an ATV as a flag, then, de-
pending on the value of the flag, the error reporting section may or may not be assembled.

1-12 Introducing the Macro Assembler

Multiple Modules

The ability to have more than one module in one file means that a main routine and its subrou-
tines can be assembled and loaded together. Combining this concept with conditional assembly
gives the option of assembling only certain modules.

INCLUDE Statement

The INCLUDE statement causes the assembler to continue assembling from the source code file
specified in the operand field. When MACRO encounters the INCLUDE statement, it begins the
line numbering for the listing at line number one again. When the end of this file is reached, as-
sembly continues at the statement following the INCLUDE in the original file.

Listing Control

Macro/1000 has a full set of listing control pseudo operators. Among these are commands to sup-
press the listing of macro expansions, suppress additional code line listings, skip to the top of the
next page, or specify a heading or subheading. The pseudo opcode, LIST, has a keyword parame-
ter to do many of the above options. Another pseudo opcode, COL, controls the columns in which
the mnemonic, operand, and comments start in the assembled listing.

Introducing the Macro Assembler 1-13

Coding Format

The source code for an assembly language program consists of a series of source statements. The
formats of the source statements are described in this chapter. First, the parts of a source state-
ment are introduced. Then each part, or field, is discussed in detail. Finally, the methods used to
combine these fields into valid source statements are presented.

The Source Statement

A statement within a Macro/1000 source program can contain a maximum of four parts known as
fields: the label field, opcode field, operand field and comment field.

Other than the label field, which must begin in the first column of the statement, the column in
which a field begins is not important, except that column one must be blank if there is no label.
However, the fields used in a statement must appear in the following order.

1. label
2. opcode
3. operand

4. comment

Separate the label, opcode and operand fields by at least one space. Separate the comment field
from the other fields by a semicolon.

The label field allows a statement to be associated with a symbolic name. Labels are optional. If a
label is used in a statement, this statement can then be accessed by other statements within the
program. For example, a section of code which processes errors encountered by the program
might begin with the statement:

error.process cpa bit field

By assigning the label ‘error.process’ to the statement, other statements can access this section of
code by referring to that label.

Coding Format 2-1

The opcode field holds mnemonic groups of characters that describe actions to be performed. For
example, the statement:

cla
clears the A-Register.

The operand field provides information required by an opcode to complete its action. In the state-
ment:

jnp error.process

the opcode field contains the opcode ‘jmp’ which tells the program to continue processing the
statements at the location specified by the following operand field. In this case, the location is
specified by the label name ‘error.process’.

The comment field is an optional field you can use to clarify the meaning of a statement or a sec-
tion of source code. Identify the comment field by an asterisk (*) in the first column or by a semi-
colon (;) elsewhere in the statement. The asterisk denotes the entire statement as a comment; the
semicolon denotes all remaining characters in the statement as a comment.

In addition to source code format, the following example illustrates parameter passing and indirect
addressing. The calling sequence to this subroutine is JSB CONVT followed by DEF BUFF;
where BUFF contains the ASCII value to convert. The binary value is returned to the calling pro-
gram in the A-Register.

2-2 Coding Format

JSB CONVT
DEF BUFF

STA Bl NVALUE

;

) R, L

NAM CONVT
ENT CONVT

* % ok ok X

CONVT NOP

LDA @CONVT

STA
| SZ
| SZ
LDA
AND
STA
LDA
AND

PNTR
CONVT
PNTR
@PNTR
MASK
TOTAL
@PNTR
TVASK

ALF, ALF
MPY TEN

ADA
STA
LDA
ADA
STA
LDA
AND
MPY
ADA
STA
LDA
AND

ALF,

MPY
ADA

JMP @CONVT

*

TOTAL
TOTAL
PNTR
=D-1
PNTR
@PNTR
MASK
HUND
TOTAL
TOTAL
@PNTR
TVASK
ALF
THOU
TOTAL

Subroutine to convert a positive four digit nunber fromits
ASCIlI forminto the corresponding binary value. The A-Register
contains the binary value on return to the calling program

subroutine entry point

get the address of the ASCI| val ue
save in PNTR

increment return address

set pointer to address of the second word
put this word in the A-Register

mask out the upper four bits

save the result in TOTAL

get the second word again

mask out the |lower four bits

rotate the A-Register

mul tiply by 10

add TOTAL to the A-Register

save the result back into TOTAL

get back the address of the second word
decrenment this address

store the address back into PNTR

put the first word in the A-Register
mask out the upper four bits

mul tiply by 100

add TOTAL to the A-Register

save the result back into TOTAL

get the first word again

mask out the |lower four bits

rotate the A-Register

mul tiply by 1000

add TOTAL to the A-Register

return to the calling program

* Local constants and Vari abl es

*

TEN DEC
HUND DEC
THOU DEC
MASK OCT

10
100
1000
17

TMASK OCT 7400

PNTR BSS
TOTAL BSS
END

1
1

Coding Format

2-3

Label Field

The optional label field identifies the statement. It is used as a reference point by other state-
ments in the program which need to access the contents of the location represented by the label.

The label field starts in column one of the statement and is terminated by at least one space.

A label can have one to sixteen characters. The starting character can be any of the following:

A-Z
a-z — mapped to uppercase
! — exclamation point
" — double quote
$ - dollar sign
% — percent sign
A — up carat
? — question mark
. — period
— pound sign
{} - Dbraces
— underscore

2

The next 15 characters in the label may be any of the starting characters, the digits 0-9, or the “at

sign (@).

If you enter a label of more than sixteen characters, the Macro Assembler will flag this condition
as an error.

Examples of legal labels:
check. overfl ow
i dsegnent
?LI STFLAG
Al” $9%9.

Examples of illegal labels:

3abcd starts with a number
abcdef ghi j kIl mopq greater than 16 characters
@ dnmem character ‘@’ is not allowed as a starting character

The Macro Assembler defines the labels A and B for you. They have absolute values of 0 and 1,
respectively. You cannot redefine them.

2-4 Coding Format

Opcode Field

An opcode is a group of characters which specifies an action to be performed by the assembler.
An opcode may be a machine instruction, an assembler instruction, or a macro call.

Machine instructions are commands to the assembler to put a binary machine instruction into a
memory location. They are discussed briefly in Chapter 3 and are discussed in detail in the Com-
puter Reference Manual for your computer.

Assembler Instructions are commands to the assembler to fill memory locations with octal values.
They are generally referred to as pseudo operations and are discussed in Chapter 4.

A macro call tells the assembler to substitute a specified set of machine instructions and pseudo
operations. For more details refer to Chapter 5.

The opcode field follows the label field and is separated from it by at least one space. If there is
no label, the opcode can begin anywhere after column one.

Operand Field

The meaning and format of the operand field depends upon the type of opcode used in the source
statement. An operand can be a single value (term) or it can contain a combination of these,
joined by operators (an expression).

The operand field follows the opcode field separated by at least one space.

Examples:

JVMP found. error ;transfer control to location 'found.error’.

JMP found. error+5 ;transfer control to 5 | ocations past
;" found.error’.

LDA 1717B ;load register A with contents of nenory
:location 1717 octal.

Discretion should be used in the placement of a comma in the operand field. A blank space is
treated as the beginning of a comment field unless it is preceded by a comma. The use of a semi-
colon as a comment delimiter, as shown above, may or may not be required. (See the section
titled “Comment Field” in this chapter for more information.)

Coding Format 2-5

Terms

Terms appear in the operand field of a source statement and are used in the source program to
represent values. In Macro/1000 there are several types of terms: symbolic terms, numeric terms,
the asterisk, assembly-time variables, and literals.

Symbolic Terms
A symbolic term must be a symbol that is defined elsewhere in one of the following ways:

e As alabel in the label field of a machine instruction or a macro call,

e Asalabel in the label field of a BSS, ASC, DEC, DEX, OCT, DEE, DDEE, BYT, ABS, EQU,
DBL, or DBR assembler instruction,

e Asaname in the operand field of an EXT assembler instruction.

The value of a symbolic term is absolute or relocatable depending on the assembly option you se-
lect. Macro assigns a value to a symbol as it appears in one of the above fields of a statement. If a
program is to be loaded in absolute form, the values assigned by Macro remain fixed. If the pro-
gram is to be relocated, the actual value of a label is established on loading. A symbol may be as-
signed an absolute value through use of the EQU pseudo opcode.

A symbolic term may be preceded by a minus sign. If preceded by a plus or no sign, the symbol
refers to its associated value. If preceded by a minus sign, the symbol refers to the two’s comple-
ment of its associated value.

Examples:
LDA Al1234 ; valid operand
ADA B.1 ; valid operand
JMP ENTRY ; valid operand

Numeric Terms

A numeric term may be a decimal or octal integer. A decimal number is represented by one to ten
digits within the range -2,147,483,648 to 2,147,483,647. An octal number is represented by one to
eleven digits followed by the letter B (0 to 37777777777B).

For a memory reference instruction in an absolute program, the maximum value of a numeric op-
erand depends on the type of machine instruction or pseudo operation. Numeric operands are
absolute. Their value is not altered by the assembler or the loader.

Examples:
MAX DEC 32767 ; define maxi num
TBL BSS 100 ; reserve array
WCS EQU 10B ; define 1/0 select code

DMX DDEF 2147483647 maxi mrum posi tive doubl e integer

2-6 Coding Format

Asterisk

An asterisk (*) that appears in the operand field alone or next to an arithmetic operator refers to
the value in the current location counter at the time the source program statement is encountered.

If assembly is taking place in the program relocatable space, then an asterisk refers to the program
relocatable counter. If in the base page space, then an asterisk refers to the base page counter,
and so on. If the asterisk appears in between two numeric or symbolic terms, then it is interpreted
as the multiplication operator.

Example:

JSB EXEC
DEF *+2 : location of return

Assembly-Time Variables

Assembly-time variables (ATVs) are variables whose values are defined, manipulated, and used at
assembly time. There is no space allocated for their values in the object code, their values are
known only to the assembler as it processes the source program. The assembler scans each line of
source code and substitutes the value of any assembly-time variable occurring outside of the com-
ment field.

Assembly-time variable names can be from 1 to 16 characters long. The first character must al-
ways be an ampersand (&). The next characters, if present, can be any combination of letters
(A-Z or a-z — lowercase mapped to upper), and digits.

By convention, system assembly-time variables begin with the character sequence “&.”. (Refer to
Appendix K for more information on system assembly-time variables.) The assembler will not
mark an error if you declare user assembly-time variables starting with “&.”. However, if you de-
clare a variable that is the same as a system variable, an error will result. To ensure future com-
patibility, you are strongly encouraged NOT to declare assembly-time variables starting with “&.”.

The value assigned to an assembly-time variable can be type integer or type character. A type in-
teger assembly-time variable has a value ranging from -32768 to +32767, while a type character
consists of from 0 to 80 ASCII characters.

Refer to Chapter 4 for information on declaring assembly-time variables and changing their val-
ues.

Coding Format 2-7

Literals

Literal values can be specified as operands in relocatable or absolute programs. The assembler
converts the literal to its binary value, assigns an address to it, and substitutes this address as the
operand. Locations assigned to literals are those immediately following the last location used by
the module, or by locations immediately following usage of the LIT or LITF command.

To specity a literal, use an equal sign and a one-character identifier defining the type of literal.
Specify the actual literal value immediately following this identifier; no spaces may intervene. The
identifiers are:

=A A two ASClI-character string, no quotes.

=B An octal integer, one to six digits between 0 and 7, resulting in an octal value be-
tween 0 and 177777B.

=D A decimal integer, in the range -32768 to 32767.

=F A glgoating point number, any positive or negative real number in the range 10738 to

10°°.
=J Same as =L except that it generates a 32-bit result.
=L An expression which, when evaluated, will result in an absolute, external, or single

word relocatable value. All symbols appearing in the expression must be defined
before they are used with this construct. The one exception is when the literal ap-
pears in the opcode of a memory reference instruction in CDS code space. (See
the subsection in this chapter titled “Legal Uses of Expressions™.)

=R A right-justified, zero-filled ASCII character.

=S A string surrounded by single quotes.

If you use the same literal in more than one instruction or if different literals have the same value
(for example, =B100 and =D64), only one value is generated, and all instructions using these
literals refer to the same location. Literals can be specified only in the following memory
reference, register reference, EAU, and pseudo opcodes:

ADA CPB LDX
ADB DDEF LDY

ADX D Vv MBT This group can use:
ADY I OR MPY =A =B =D =L =R =§,
AND JRS MW however, =S must be 1 or 2 characters.

CBS LDA SBS
CBT LDB TBS

cwwv XOR

CPA

DLD FDV FSB This group can use:

FMVP FAD =F =J =S with 3 or 4 characters.
DEF DBL DBR This group can use any literal.

2-8 Coding Format

Examples:

LDA =D7980 ; A-Register is |loaded with the binary
; equival ent of 7980.
|OR =B777 ; Inclusive ORis performed with the
; contents of A-Register and 777B.
LDB =LZETZ-ZOOWi+68 ; B-Register is |loaded with the absolute

; value resulting fromthe given
; expression.
LDA =L(ARRAY) ; Load A-Register with the address of
; ARRAY.
; NOTE: Parentheses are for clarity, they
X are not required.

FMP =F39.75 ; Contents of the A- and B-Register get
; multiplied by 39.75.
STR DEF =S'long string’ ; Address of string put into menory.
M N DEF =D-32768 ; Address of smallest decimal integer is
; put in nmenory.
LDA =RA ; The lower byte of the A-Register
; contains 101 octal — the ASCII val ue

; of “A’; the upper byte contains zeros.

Literals in CDS
Literals referenced by:

LDA
LDB
I OR

instructions in CODE space (that is, after a RELOC CODE) generate special relocatable record
entries. These entries cause the loader to allocate the value required in a link area in code space
where they can be directly accessed by the instruction. DLD is actually converted to LDA, LDB
by the loader. The listing for these references will show an address of 0 and will not appear in the
literal pool (unless they are also referenced by some other instruction).

Coding Format 2-9

Expressions

An expression is a combination of terms and operators that can be resolved to a value. There are
several types of operators that can be used to form arithmetic expressions in Macro/1000.

unary operators - (negate)
: SY: (symbol ID)
MR (memory relocatability)
I CH: (integer value of a character)

arithmetic operators * (multiply)
/ (divide)
+ (add)

(subtract)

The unary operator :SY: returns, as an absolute value, the symbol ID of the expression it operates
on. This is the same number as in the external and allocate records for the symbol. If the expres-
sion does not reference an external or allocate symbol, 0 is returned.

The unary operator :MR: returns, as an absolute value, the relocatability of its operand as follows:

0 = Absolute

1 = Program relocatable

2 = Base page relocatable

3 = Common relocatable

4 = Pure code relocatable (CDS only)
5 = EMA relocatable

6 = SAVE relocatable

7 = External

9 = Allocate EMA

10 = Allocate SAVE

12 = Allocate common

20 = Two or more of the above

Operator Precedence
Conventionally, expressions are evaluated from left to right in the statement. However, unary op-

erations and operations within parentheses are performed with a higher precedence than any
other operations.

Absolute and Relocatable Expressions

An expression is absolute if its value is unaffected by program relocation. An expression is
relocatable if its value changes according to the location in which the program is loaded.

In an absolute program, all expressions are absolute. In a relocatable program, an expression may

be program relocatable, common relocatable, base page relocatable, or absolute, depending on the
definition of the terms, and the operators composing it.

2-10 Coding Format

If both terms on an expression of the form:
T1 operator T2

are absolute, the result of the expression will also be absolute. If one term is relocatable and the
other is absolute, the result will be a relocatable term.

Legal Uses of Expressions
An expression may have relocatability in the following spaces:
Program
Base page
Common
Code
Local EMA

Save
One external space

Each of these relocatabilities may be multiple and either positive or negative. For example:

Given the following symbols:
RELOC PROGRAM
PROG EQU *
w EQU *+10
RELOC BASE
BASE EQU *
RELOC SAVE
SAVE EQU *
EXT1 ALLOC COVMON, 20
EXT EXT2
Then:
PROG + BASE — SAVE
has: +1 relocatability in the program and base page spaces, and —1 relocatability in the save
space.

EXT1 + EXT2

is illegal because it has relocatability in more than one external space (ALLOCs are external).

PROG + PROG + EXT1

has +2 relocatability in the program space and +1 in the external space EXT1.

Coding Format 2-11

Any legal expression may be used in an EQU pseudo opcode. However, use of expressions (or
EQUate symbols) with relocability in more than one space is restricted as follows:

1. The expressions for
DEF
DDEF
=L
=J

may have relocatability in O or 1 spaces and that relocatability must be in the range —8 through
+7. Therefore, it follows that:

DEF w+w (+2) islegal. (an example of a byte address)

DEF -w (—=1) is the negative of w.

DEF —w-w (—2) is the negative byte address of w.

DDEF wHw (+2) EMA byte address.

2. The opcodes DBL and DBR imply relocatability (of +2) is to be imposed on their expressions.

These expressions must have relocatability in 0 or 1 spaces and the relocatability value must be
—1 or 1. For example,

DBL —w
is the negative of the byte address of the left-hand byte of word w.

No other opcodes may have expressions with relocatability in more than one space and that relo-
catability must be 1. Absolute expressions must not have relocatability in any space. For example,

LDA wHw

is illegal because it has +2 relocatability.

Comment Field

The comment field allows you to transcribe notes on the program that will be listed with source
language coding on the output produced by the Assembler.

The semicolon is a comment delimiter. In some places it is required, but is optional as a starting
character on most comments. If a semicolon appears as the first nonblank character on a line, the
entire line is taken as a comment. The opcodes on which it is required are:

END (required only if the entry point is not specified)

AIF, AWHILE, REPEAT, and all macro calls

IGLOBAL, CGLOBAL, ILOCAL, CLOCAL, ISET, and CSET

HLT (required when no select code is given)

MIC instruction calls

2-12 Coding Format

A blank space in the operand field is also treated as a comment delimiter unless the blank space is
preceded by a comma. Note the following distinction in the placement of a comma and blank
space:

EXT syml, syn® sym?2 is treated as a second operand in this line
EXT syml ,syn® sym?2 is treated as a comment in this line
An asterisk (*) appearing as the first character on a line also denotes the entire line as a comment.

Within a macro definition, lines beginning with .* are treated as comments and are not expanded
with the rest of the macro when it is called. Also refer to Chapter 5.

On the list output, statements consisting entirely of comments started by a semicolon begin in col-
umn 22. A comment starting with an asterisk in column one starts in column 8 on the listing. If
any statement exceeds 128 characters because of this relocation, characters beyond that limit will
not appear on the listing. If any line is longer than 120 characters after string substitution occurs,
an error will result.

Indirect Addressing Indicator

The HP 1000 Series computers provide a hardware indirect addressing capability for memory ref-
erence instructions. The operand portion of an indirect instruction contains the address of an-
other location. The secondary location can be the operand or it can be indirect also and give yet
another location, and so forth. The chaining ceases when a location is encountered that does not
contain an indirect address.

To specify indirect addressing in Macro/1000, prefix the memory reference with an “at” sign (@).
The actual address of the instruction is typically given in a DEF pseudo opcode. This pseudo op-
eration may also be used to indicate further levels of indirect addressing.

Example:
AB LDA @AM : The value 10 is | oaded
SAM DEF @ROGER ; into the A-Register.

ROGER DEF BOB
BOB DEC 10

A relocatable assembly language program can be designed without concern for the pages in which
it will be stored, indirect addressing is not required in the source language. When the program is
loaded, the loader provides indirect addressing whenever it detects an operand which does not fall
in the current page or the base page. The loader substitutes an indirect reference to a program
link location (established by the loader in either the base page or the current page) and then stores
a direct address in the particular program link location. If the program link location is in the base
page, references to the same operand from other pages will be via the same link location.

Coding Format 2-13

Statement Length

A source line may contain up to 128 characters including spaces, before a statement continuation
marker is required.

If no continuation marker is found before the line exceeds 128 characters, the line is truncated
without warning.

If the statement length is zero, the Macro Assembler generates a new number for that line and
treats it as a comment.

Statement Continuation

To continue a statement onto the next line, use the backslash character (\) after the last character
on the line that you wish the assembler to recognize as an operand. The assembler then reads the
next line to continue the statement. Any leading blanks on that line will be ignored. Anything on
a line after a backslash is considered to be a comment.

The backslash is not permitted in the label or the opcode field. Line continuation is not permissi-
ble in the middle of a string, assembly-time variable name, user label, integer or array reference.
If a backslash appears in a string (that is, surrounded by single quotes), it does not cause line con-
tinuation.

Example:
MYMACRO HAS, \ Exanpl e of
A, \'a continuing
LOT, \macro call

OF, PARAMETERS ; st at enent

2-14 Coding Format

Machine Instructions

Machine instructions are the object code generated by the Assembler. Each instruction corre-
sponds to a mnemonic operation code (opcode) and, usually, an operand. An assembly-language
program statement contains a machine instruction, and may or may not start with a label, by which
it can be referenced from other statements in the program.

Machine instructions are briefly discussed in this chapter. Refer to the appropriate computer Op-
erating and Reference Manual for a full description of each machine instruction.

The following notations are used in the description of machine instructions and throughout the
remainder of this manual:

label ~ Optional statement label.

m Memory location: an expression that evaluates to a symbolic address or that may be
resolved to a symbolic address through various levels of indirection.

@ Indirect addressing indicator.

sc Select code: an expression that evaluates to an integer within the range of 0 to 63.

C Clear interrupt flag indicator.

Where operands are shown stacked vertically, only one operand may be used.
The machine instructions are classified as follows:

Memory Reference

Word, Byte and Bit Processing
Register Reference

Index Register

No-Operation

Extended Arithmetic
Input/Output, Overflow and Halt
Floating Point

Dynamic Mapping System

Machine Instructions 3-1

Memory Reference

The memory reference instructions perform arithmetic, logical, and jump operations on the con-
tents of memory locations and the registers. Statements containing these opcodes can take one of
two syntactical forms, depending on the opcode used.

The first form is:

m
[lable] opcode § ©@n [; comments]
literal

Opcodes that require this form are:

ADA — Add the contents of m to A.
ADB — Add the contents of m to B.

AND - Logical “and” of the operand value and the contents of A are placed in A.

CPA — Compare the value of the operand with the contents of A. If they differ, skip the
next single word instruction.

CPB - Perform the same operations as CPA on the contents of the B-Register.

IOR - Inclusive “or” the operand value and the bits in A. Place the result in A.

LDA — Load A with the contents of m.

LDB - Load B with the contents of m.

XOR — Exclusive “or” the operand value and the bits in A. Place the result in A.

Only =S, =D, =B, =A, and =L literals are accepted with these opcodes.

The second form is:

m
[lable] opcode { @n } [; comments]

Opcodes that require this form are:

ISZ — Increment, then skip if the result is zero.
JMP - Jump to m.
JSB — Jump to subroutine. Return to address following that stored in m. Execution pro-

ceeds at location following m. A return to the main program sequence will be ef-
fected by a JMP indirect through location m.

STA - Store contents of A in the address specified by operand.
STB — Store contents of B in the address specified by operand.

3-2 Machine Instructions

Word, Byte, and Bit Processing

Note Instructions in this group are implemented by calls to external subroutines un-
less the ‘I’ option is used in the Macro statement. Refer to Appendix E for de-
tails on the ‘I’ option.

The word-processing instructions move a series of data words from one array in memory to an-
other or compare (word by word) the contents of two arrays in memory. The word-processing in-
structions are MVW and CMW.

The byte-processing instructions copy a data byte from memory into the A-Register, copy a series
of data bytes from one array in memory to another, compare (byte-by-byte) the contents of two
arrays in memory, or scan an array in memory for particular data bytes. The byte address occupies
16 bits: bits 1-15 indicate the address of the word containing the byte, and bit 0 indicates a high
order byte (bit is clear) or low order byte (bit is set). The byte-processing instructions are LBT,
SBT, MBT, CBT, and SFB.

The bit-processing instructions selectively test, set, or clear bits in a memory location according to
the contents of a mask. The bit-processing instructions are TBS, SBS, and CBS.

The word, bytes, and bit processing instructions can take one of three syntactical forms.

The first of these forms is:

m
[lable] opcode § ©@n [; comments]
literal

Opcodes that require this form are:

CBT - Compare bytes beginning at byte address in A to the bytes beginning at byte ad-
dress in B. The number of bytes to be compared is indicated by the value of the
operand. Comparison stops when either the first unequal byte is reached, or the
number of bytes specified by operand has been compared.

If both arrays are equal, execution proceeds at the next word following the instruc-
tion. If the array specified by A is less than the second array, execution proceeds at
the second word following the instruction. If array specified by A is greater than
the second array, execution proceeds at the third word following the instruction.

After execution, register A contains the address of the byte in the first array where
comparison stopped, and B contains its original value, incremented by the number
of bytes compared.

CMW — Compare words beginning at the address in A to the words beginning at the address
in B. Neither address may be indirect. Number of words to be compared is indi-
cated by the operand value. Comparison stops when either first unequal word is
reached, or number of words specified by operand has been compared.

If both arrays are equal, execution proceeds at word following instruction. If array
specified by A is less than second array, execution proceeds at second word follow-
ing instruction. If array specified by A is greater than second array, execution pro-
ceeds at third word following instruction.

After execution, the A-Register contains the address of the word in the first array,
where comparison stopped, and the B-Register contains the original value, incre-
mented by the number of words compared.

Machine Instructions 3-3

MBT — Move bytes beginning at the byte address in A to the byte address in B. The oper-
and specifies the number of bytes to be moved. A and B are incremented by the
number of bytes moved.

MVW — Move words beginning at the address stored in A to the address in B. Neither ad-
dress may be indirect. The operand specifies the number of words to be moved. A
and B are incremented by the number of words moved.

Note Refer to the pseudo opcodes DBL and DBR in Chapter 4 for more information
on byte addressing.

The second syntactical form is:
[lable] opcode [; comments]
Opcodes that require this form are:

LBT - Load byte from the byte address contained in B into the lowest eight bits of A, and
increment B.

SBT — Store the byte contained in the lowest eight bits of A into the byte address con-
tained in B, and increment B.

SFB — Scan for byte. A contains a test byte in bits 0-7 and a termination byte in bits 8-15.
The beginning address of the array to be scanned is stored in B. The array is
scanned until a byte matches either the test or termination byte. If a byte in the
array matches the test byte, execution proceeds at the next sequential location, and
B will contain the address of the byte matching the test byte.

If a byte in the array matches the termination byte, the instruction will skip one
word upon exit, and B will contain the address of the byte matching the termination
byte, plus one.

The third syntactical form is:

m m
[lable] opcode § ©@n @n [; comments]

literal

with at least one blank between operands.
Opcodes that require this form are:

CBS - Clear the bits contained in the address of the second operand that corresponds to
the bits that have been set in the value of the first operand.

SBS — Set the bits contained in the address of the second operand that corresponds to the
bits that have been set in the value of the first operand.

TBS — Test the bits contained in the address of the second operand with the bit mask
specified by the first operand. Only the bits that are set in the bit mask are tested.
If all the bits tested are 1’s, the next instruction is obeyed; otherwise, the next in-
struction is skipped.

3-4 Machine Instructions

Register Reference

The register reference instructions are used to test and manipulate the contents of registers.
These instructions can be divided into two groups, the shift-rotate group and the alter-skip group.

Shift-Rotate Group

The shift-rotate instructions are listed and briefly described below. These instructions are illus-
trated in Figure 3-1.

ALF

ALR
ALS
ARS

BLF

BLR
BLS
BRS

CLE

ELA
ELB
ERA
ERB

LAE
LBE

RAL
RAR
RBL
RBR

SAE
SBE

SLA
SLB

Rotate A left four bits.

Shift A left one bit, clear sign, zero to least significant bit.
Shift A left one bit, zero to least significant bit; sign unaltered.
Shift A right one bit, extend sign; sign unaltered.

Rotate B left four bits.

Shift B left one bit, clear sign, zero to least significant bit.
Shift B left one bit, zero to least significant bit; sign unaltered.
Shift B right one bit, extend sign; sign unaltered.

Clear E to zero.

Rotate E and A left one bit.
Rotate E and B left one bit.
Rotate E and A right one bit.
Rotate E and B right one bit.

Copy the low-order bit of A into E; A is unchanged.
Copy the low-order bit of B into E; B is unchanged.

Rotate A left one bit.
Rotate A right one bit.
Rotate B left one bit.
Rotate B right one bit.

Copy the sign bit of A into E; A is unchanged.
Copy the sign bit of B into E; B is unchanged.

Skip the next single-word instruction if the least significant bit in A is zero.
Skip the next single-word instruction if the least significant bit in B is zero.

Machine Instructions

3-5

O\(\(\ A- or B-Register (\(\(\0
ALS 15[14[13[12] 11]10] o[8[7[6[5[4 [3] 2]1 [0
BLS
Oy e Was
ARS 15 _
BRS
RAL ¢ ¢ ¢
RBL 15 5
RAR Y RN
RBR 15 5
Y ({ O
ALR 15 _
BLR
ERA Y Y
ERB 15 0
E
TR an e
ELB 15 5
E
ALF e
ALF 15141312T11109876543210/
£\
LAE 15 .
LBE
E Y,
SAE
SBE 15 5
> E

Figure 3-1. Instructions of the Shift-Rotate Group

3-6 Machine Instructions

The opcodes within the shift-rotate group can be combined as follows:

[ALs | [ALS]
[label] ARS [, CLE] [, SLA] , ARS [;comments]

RAL , RAL
RAR , RAR
ALR } , ALR
ALF CALF |
ERA , ERA
ELA , ELA
SAE , SAE
LAE , LAE

\ Y \ |

— - — -
BLS , BLS
[label] BRS [,CLE] [, SLB] 'BRS [;comments]

RBL , RBL
RBR , RBR
BLR } { ,BLR }
BLF , BLF
ERB , ERB
ELB , ELB
SBE , SBE

\ LBE | \ , LBE |

Where the parameters are shown stacked, only one can be used. The brackets ([]) indicate op-
tional parameters.

CLE, SLA, or SLB appearing alone or in any valid combination with each other are assumed to be
a shift-rotate machine instruction, even though they are also in the alter-skip group.

At least one and up to four of the shift-rotate instructions are included in one statement. Instruc-

tions referring to the A-Register cannot be combined in the same statement with those referring to
the B-Register.

Machine Instructions 3-7

Alter-Skip Group

The instructions in the alter-skip group are:

CCA
CCB
CCE

CLA
CLB
CLE

CMA
CMB
CME

INA
INB

RSS

SEZ
SLA
SLB

SSA
SSB

SZA
SZB

Clear, then complement A (set to ones).
Clear, then complement B (set to ones).
Clear, then complement E.

Clear A.
Clear B.
Clear E.

Complement A.
Complement B.
Complement E.

Increment A by one.
Increment B by one.

Reverse the sense of the skip instruction; if no skip instruction precedes RSS in the
statement, skip the next instruction.

Skip next single-word instruction if E is zero.
Skip if least significant bit of A is zero.

Skip if least significant bit of B is zero.

Skip if A is positive.

Skip if B is positive.

Skip if contents of A equals zero.

Skip if contents of B equals zero.

Operands within the alter-skip group can be combined as follows:

‘ [, SEZ] CMVE [,SSA] [,SLA] [,INA] [,SZA] [, RSS]

! [, SEZ] OFE [,SSB] [,SLB] [,INB] [,SzB] [,RSS|

At least one and up to eight of the alter-skip instructions are included in one statement. Instruc-
tions referring to the A-Register cannot be combined in the same statement with those referring to
the B-Register. When two or more skip opcodes are combined in a single operation, a skip occurs
if any one of the conditions exists. If a statement with RSS also includes both SSA and SLA (or
SSB and SLB), a skip occurs only when the sign and least significant bit are both set (1).

3-8 Machine Instructions

Index Register Group

The index register group contains 32 instructions that perform various operations involving the use

of index registers, X and Y. Statements containing opcodes from this group can take on one of

four syntactical forms.

The first form using index register opcodes is:

[label]l opcode [; comments]

Opcodes that require this form are:

CAX
CAY

CBX
CBY

CXA
CXB

CYA
CYB

DSX
DSY

ISX
ISY

XAX
XAY

XBX
XBY

copy A to X.
copy Ato Y.

copy B to X.
copy Bto Y.

Copy X to A.
Copy X to B.

Copy Y to A.
Copy Y to B.

Decrement X, skip next instruction if result is 0.
Decrement Y, skip next instruction if result is 0.

Increment X, skip next instruction if result is 0.
Increment Y, skip next instruction if result is 0.

Exchange A and X.
Exchange A and Y.

Exchange B and X.
Exchange B and Y.

The second form is:

m
[lable] opcode § ©@n [; comments]

literal

Opcodes that require this form are:

ADX
ADY

LDX
LDY

Add value of operand to X.
Add value of operand to Y.

Load X with value of literal or contents of address specified by operand.
Load Y with value of literal or contents of address specified by operand.

The third form is:

m
[lable] opcode { @n } [; comments]

Machine Instructions

3-9

Opcodes that require this form are:

JLA° — Jump and load A.

JLB — Jump and load B.

JLY — Jump and load Y.

LAX — Load A from memory indexed by X.

LBX - Load B from memory indexed by X.

LAY - Load A from memory indexed by Y.

LBY - Load B from memory indexed by Y.

SAX — Store A into memory indexed by X.

SBX — Store B into memory indexed by X

SAY - Store A into memory indexed by Y.

SBY - Store B into memory indexed by Y.

STX — Store X into address specified by operand.
STY - Store Y into address specified by operand

The fourth statement form using index register opcodes is:
[labell opcode m [; comments]
The opcode using this form is:

JPY — Jump indexed by Y.

No-Operation Instruction

When a no-operation instruction is encountered in a program, no action takes place, the computer
goes on to the next instruction. A full memory cycle is used in executing a no-operation instruc-
tion.

This instruction can be used in conjunction with the ISZ instruction to perform an increment op-
eration.

General Form:

[label] NOP [; comments]

3-10 Machine Instructions

Extended Arithmetic Group (EAG)

The instructions in this group perform extended arithmetic operations on double-word values.

The contents of the A- and B-Registers must be swapped if the results of the instruction (for exam-
ple, MPY) are to be subsquently used in a double integer instruction. The A990 computer is an
exception because it has a double integer arithemetic group of instructions (for example, MPYD,
DIVD, etc.).

Statements containing opcodes from this group have one of four syntactical forms.

The first form is:

m
[lable] opcode § ©@n [; comments]
literal

Opcodes that require this form are:

DIV - Divide the 32-bit integer contents of B (high-order bits) and A (low-order bits) by
the value of the literal, or by the contents of the address specified by the operand.
The quotient is stored in A and the remainder is stored in B.

DIVD - Same as DIV, except that A contains the high-order bits and B contains the low-

order bits.

DLD - Load the contents of the location specified by the operand and the contents of the
following location into A and B, respectively.

MPY — Multiply the contents of A by the value of the literal or by the contents of the ad-

dress specified by the operand. The result is a 32-bit integer, with the high-order
bits in the B-Register and the low-order bits in the A-Register.

MPYD — Same as MPY, except that the high-order bits of the result are in the A-Register
and the low-order bits are in the B-Register.

The second form is:

[lable] DST { nén } [; comments]

This instruction stores the contents of A and B into the address specified by the operand and the
following address.

DIV, DIVD, DLD, DST, MPY, and MPYD result in two machine words, one word for the opcode
and one for the operand.
The third form is:

[label] opcode n [; comments)
The six extended arithmetic register reference instructions provide shifting operations on the com-
bined contents of B- and A-Registers. The B-Register contains the left (most-significant) bits, and

the A-Register contains the right (least-significant) bits.

In these instructions, the range of n is from 1 to 16 bits.

Machine Instructions 3-11

Opcodes that require this form are:

ASL — Arithmetically shift B and A left n bits. The sign bit (bit 15 of B) is unaltered.
Least significant bits are zeroed.

ASR — Arithmetically shift B and A right » bits. The sign bit (bit 15 of B) is extended.

LSR — Logically shift B and A right n bits. The most significant bits are zeroed.

LSL — Logically shift B and A left n bits. The least significant bits are zeroed.

RRL - Rotate B and A left n bits.
RRR - Rotate B and A right n bits.

The last form of the Extended Arithmetic Group is:

SWP [; comments]

This instruction exchanges the contents of A and B.

Input/Output, Overflow, and Halt

The input/output instructions allow you to transfer data to and from an external device via a
buffer, to enable or disable external interrupts, and to check the status of I/O devices and opera-
tions. A subset of these instructions permits checking for an arithmetic overflow condition.

Unlike memory reference instructions, I/O instructions cannot use indirect links.

Input/output instructions require the designation of a select code, sc, which indicates one of 64 in-
put/output channels or functions. Expressions used to represent select codes (channel numbers)
must have a value of less than 64.

The select code can be a label previously defined as an external symbol by an EXT pseudo opcode.
In such a case, the entry point referred to by the pseudo operation must be an absolute value less
than 64. Any other value will be flagged as an error.

Instructions that transfer data between the A- or B-Register and a buffer access the switch register
when the select code is 1. The character C appended to such an instruction clears the overflow bit
after the transfer from the switch register is complete. For all other select codes C clears the flag
bit on the device.

For example:
LI AC 24

will perform the same action as:
LIA 24

but will also clear the flag bit on select code 24.

The character C can be appended to the following opcodes:

CLC MIA OTB SOC
LIA MIB CLO SOS
LIB OTA STC HLT

3-12 Machine Instructions

Non-privileged programs can only use sc = 1 (switch register).
Statements containing opcodes from this group can take on one of three syntactical forms.
The first form is:
[label]l opcode sc [; comments]
The opcodes that require this form are:
CLC - Clear the I/O control bit for the channel specified by sc. If sc = 0, the control bits

for all channels are cleared to zero, all devices are disconnected. If sc = 1, this
statement is treated as a NOP.

CLF - Clear the flag bit to zero for the channel indicated by sc. If sc = 0, the interrupt
system is disabled. If sc = 1, the overflow bit is cleared to zero.

LIA — Load the contents of the I/O buffer indicated by sc into A.

LIB — Load the contents of the I/O buffer indicated by sc into B.

MIA — Merge (inclusive “or”) the contents of the I/O buffer indicated by sc into A.

MIB — Merge (inclusive “or”) the contents of the I/O buffer indicated by sc into B.

OTA — Output the contents of A to the I/O buffer indicated by sc.

OTB - Output the contents of B to the I/O buffer indicated by sc.

SFC — Skip the next single-word instruction if the flag bit for channel sc is clear. If sc = 1,
the overflow bit is tested. If sc = 0, the status of the interrupt system is tested.

SES — Skip the next single-word instruction if the flag bit for channel sc is set. If sc = 1,

the overflow is tested. If sc = 0, the status of the interrupt system is tested.

STC — Set I/O control bit for channel specified by sc. STC transfers or enables transfer of
data from an input device to the buffer or to an output device from the buffer. If sc
= 1 the statement is treated as a NOP.

STF - Set the flag bit of the channel indicated by sc. If sc = 0 the interrupt system is en-
abled. If sc = 1, the overflow bit is set.

The second form is:
[label]l opcode [; comments]
Opcodes that require this form are:

CLO - C(Clear the overflow bit.

STO - Set overflow bit.
SOC - Skip the next single-word instruction if the overflow bit is clear.
SOS - Skip the next single-word instruction if the overflow bit is set.

The last statement form of this group is:

[label] HLT [sc[; comments]]
or
[label] HLTC [sc] [; comments]

This instruction halts the computer in privileged mode. If not privileged mode, the instruction
generates a memory protect.

If you use neither the select code nor the C option, you cannot use the comments portion of the
instruction.

Machine Instructions 3-13

Floating Point

The instructions in this group perform arithmetic operations on floating-point operands. These
instructions make calls to arithmetic subroutines. The operand field can contain any relocatable
expression or absolute expression resulting in a value of less than 2000 octal.

The statements containing these opcodes can take one of two syntactical forms.

The first form is:

m
[lable] opcode [@n } [; comments]
=Fn

Opcodes that require this form are:

FAD - Add the two-word floating-point quantity in A and B to the two-word floating-point
quantity in the address specified by the operand and its following location or to the
quantity defined by the literal. The result is stored in A and B.

FDV — Divide the two-word floating-point quantity in A and B by the two-word floating-
point quantity in the address specified by the operand and its following location or
by the quantity defined by the literal. The result is stored in A and B.

FMP — Multiply the two-word floating-point quantity in A and B by the two-word floating-
point quantity in the address specified by the operand and its following location or
by the quantity defined by the literal. The result is stored in A and B.

FSB — Subtract the two-word floating-point quantity in the address specified by the oper-
and and its following location or by the quantity defined by the literal from the two-
word floating-point quantity defined in registers A and B. The result is stored in A
and B.

The second form is:
[label]l opcode [; comments]

Opcodes that use this form are:

FIX — Convert the floating-point number contained in A and B to an integer. The result
is returned in A. After execution, the contents of B are meaningless.

FLT — Convert the integer in A to a floating-point number. The result is returned in A
and B.

3-14 Machine Instructions

Dynamic Mapping System Instructions

If the computer on which the object program is to be run is an E- or F-Series and includes a Dy-
namic Mapping System, you can use any of the following group of instructions. These instructions
may not be legal on your HP 1000. Consult your hardware manual.

Statements containing opcodes from this group can take one of three syntactical forms.

The first form is:

m m
[lable] opcode § ©@n @n [; comments]
literal

The instruction that requires this form is:

JRS — Jump to the location specified by the second operand and restore status. The first
operand contains the address of the status word in memory (or the value of the
status word if the operand is a literal).

Operands are separated by a space.
Another form is:

[label]l opcode [; comments]

Opcodes that require this form are:

LFA — Load the contents of the A-Register into the base page fence register.

LFB — Load the contents of the B-Register into the base page fence register.

MBF — Move bytes using the alternate program map for source reads and the current en-
abled map for destination writes.

MBI — Move bytes using the currently enabled map for source reads and the alternate pro-

gram map for destination writes.

MBW — Move bytes with both the source and destination addresses established through the
alternate program map.
For MBE, MBI and MBW), the A-Register contains the source-byte address and the
B-Register contains the destination-byte address. Both addresses must be even
numbers. The X-Register contains the number of bytes to be moved.

MWF — Move words using the alternate program map for source reads and the currently
enabled map for destination writes.
MWI — Move words using the currently enabled map for source reads and the alternate

program map for destination writes.

MWW — Move words with both the source and destination addresses established through the
alternate program map.
For MWE, MWI and MWW, the A-Register contains the source address and the
B-Register contains the destination address. The X-Register contains the number
of words to be moved.

PAA — Transfer the 32 Port-A map registers to or from memory according to the address
in the A-Register.

PAB — Transfer the 32 Port-A map registers to or from memory according to the address
in the B-Register.

PBS — Transfer the 32 Port-B map registers to or from memory according to the address in
the A-Register.

PBB — Transfer the 32 Port-B map registers to or from according to the address in the B-
Register.

Machine Instructions 3-15

RSA
RSB
RVA
RVB

SYA
SYB

USA
USB

XMA
XMB
XMM
XMS

Read the contents of the MEM status register into the A-Register.
Read the contents of the MEM status register into the B-Register.
Read the contents of the MEM violation register into the A-Register.
Read the contents of the MEM violation register into the B-Register.

Transfer contents of the system map registers to or from memory, using the A-Reg-
ister.
Transfer contents of the system map registers to or from memory, using the B-Reg-
ister.

Load or store the user map according to the contents of the A-Register.
Load or store the user map according to the contents of the B-Register.

Transfer a copy of the system or user map into the Port-A or Port-B map as deter-
mined by the control word in the A-Register.

Transfer a copy of the system or user map into the Port-A or Port-B map as deter-
mined by the control word in the B-Register.

Transfer a number of words from sequential memory locations to sequential map
registers, or from map to memory.

Transfer a number of words to sequential map registers.

The last form is:

m
[lable] opcode { @n } [; comments]

Opcodes that require this form are:

DJP
DJS

SJP
SJS

SSM
uUJP

uJsS
XCA

XCB

XLA
XLB

XSA

XSB

Disable MEM and jump.
Disable MEM and jump to subroutine.

Translate all programmed memory references using system map.
Translate all programmed memory references using system map.

Store contents of the MEM status register into the addressed memory location.

Specifies that the MEM hardware will use the user map for translating all pro-
grammed memory references. Indirect references are resolved in the current map
before accessing the alternate map.

Enable user map and jump to subroutine.

Compare the contents of the A-Register with the contents of the addressed mem-
ory location in the alternate map. Skip next word if contents are unequal.
Compare the contents of the B-Register with the contents of the addressed mem-
ory location in the alternate map. Skip next word if contents are unequal.

Load the contents of the specified memory location in the alternate map into the
A-Register.
Load the contents of the specified memory location in the alternate map into the
B-Register.

Store the contents of the A-Register into the addressed memory location in the al-
ternate map. The previous contents of the memory cell are lost, the A-Register
contents are not altered.

Store the contents of the B-Register into the addressed memory location in the al-
ternate map. The previous contents of the memory cell are lost, the B-Register
contents are not altered.

3-16 Machine Instructions

CDS Opcodes

The instructions in this group are available only on machines that support code and data separa-
tion (CDS). Consult the appropriate hardware and programmer’s reference manuals to see if you
can use these features. Appendix M of this manual explains the CDS environment in more detail.

PCAL — Call a subroutine.

HP 1000 A- and E/F-Series Replacements

The following list represents the instructions that are implemented by calls to external subroutines
(unless the ‘T" option is used in the Macro statement, see Appendix E).

ONE-WORD

. CAX . MBF
. CAY . M\F
.CBX . ISX
.CBY .ISY
. CXA . LBT
. CXB . SBT
. CYA . SFB
. CYB . XAX
. DSX . XAY
. DSY . XBX
. FI X . XBY

TWO-WORD
. ADX . MPY
. ADY . MPYD
DIV . SAX
. DI'VD . SAY
.DLD . SBX
.DST . SBY
.FAD .STX
.FDV . STY
. FVMP . XSA
.FSB . XSB
.JLA . XLA
.JLB . XLB
.JLY . XCB
. JPY
. LAX
. LAY
. LBX
. LBY
. LDX
. LDY

THREE-WORD
(2 operand) (1 operand)
. CBS . CBT
. SBS . CMWV
. TBS . MBT

. MBW

Machine Instructions 3-17

Replacement Formats

The name of the software subroutine is formed by preceding the instruction mnemonic with a pe-
riod (decimal point). The calling sequence is transformed as shown in Figure 3-2. All instructions
that are recoded to use the software implementation will be declared as external to the program by
the Assembler.

1-word instructions:
LABEL XYZ COMVENTS

is editedto —» LABEL JSB. XYZ COMMENTS

2-word instructions:
LABEL XYZ <oper and> COVVENTS

is editedto — LABEL JSB. XYZ COWMENTS
DEF <oper and>

3-word instructions (CBT, CMW, MBT, MVW):
LABEL MBT <oper and> COVVENTS
is editedto — LABEL JSB. MBT COMMENTS

DEF <oper and>
DEC 0

3-word instructions (CBS, SBS, TBS):
LABEL CBS <operand 1> <operand 2> COWENTS
is edited to — LABEL JSB. CBS COMMENTS

DEF <operand 1>
DEF <operand 2>

Figure 3-2. HP 1000 Replacement Formats

3-18 Machine Instructions

Assembler Instructions

This chapter describes Assembler instructions, also known as pseudo operations or pseudo op-
codes. The term “pseudo” means that these operations are not really machine instructions but
instructions used to control the assembly process. For example, they indicate to the Assembler
where the program starts or how many words to reserve for an array. Assembler instructions per-
form the following functions:

Assembler Control:
Specifies the start and end of a program, assigns blocks of code or data to a memory space,
and determines how to include source files in the pending file.

Loader and Generator Control:
Passes commands to the loader or the generator.

Program Linkage:
Enables communication among subroutines or between a main program and its subrou-
tines.

List Control:
Determines the list output format.

Storage Allocation:
Reserves memory for data or for work area.

Constant Definition:
Defines constants and controls placement of literal values.

Address and Symbol Definition:
Defines and generates 16-bit and 32-bit addresses and equates values with symbols.

Declaring Assembly-Time Variables:
Declares or alters assembly-time variables.

Conditional Assembly:

Allows assembly on only specified sections of code or repeatedly assembles a set of instruc-
tions, takes advantage of declaring user-defined errors.

Assembler Instructions 4-1

Assembler Control

The Assembler control instructions establish and alter the location counters of memory spaces.
Before discussing these instructions, the memory spaces and their contents are explained below.

A memory space is an area in computer memory designated by the user to hold executable code or
data depending on the application. Each memory space has its own counter that is maintained in
the same way as is the program location counter.

The six memory spaces are:

program relocatable
base page relocatable
EMA relocatable
SAVE relocatable
common relocatable
labeled common

A labeled common space is maintained for each labeled common referenced by the module.

The six spaces are shown below in a view of the user’s logical memory map.

32K

EMA
ALLOC EMA

MSeg

Free Space

Segment

Common

Labeled
Commons

Save Areas

Main Program and
Subroutines

Base Page

These areas are allocated and ar-
ranged by the loader and may be
anywhere above the base page
and below the segment areas.

Program relocatable.

Base page relocatable.

Figure 4-1. A View of the User’s Map in Logical Memory

4-2 Assembler Instructions

Refer to “Program Relocation and Relocatable Spaces” in Chapter 1 for more information about
these memory spaces.

In a CDS environment (consult the appropriate programmer’s reference manual), the memory
spaces are:

code

data

static

local

EMA

common

labeled common

Appendix M outlines the user’s logical memory map for CDS programming.
The user program resides in the program relocatable space.
Base page relocatable space is in the base page.

The EMA relocatable space holds data reserved for use by EMA. An MSEG space is a place to
hold a small section (two or more pages) of a large EMA array. It can be thought of as a “win-
dow” into an EMA array because the MSEG section can be manipulated to point to all of the ar-
ray in physical memory. For more information on EMA programming, refer to the Programmer’s
Reference Manual.

The SAVE relocatable space holds variables in much the same way as common holds data. The
difference is that variables in common space are free to be changed by other subroutines and seg-
ments. Only the subroutine or segment that placed a variable in SAVE space can access it. Even
if the segment is overlayed by another segment, the variables in SAVE space are not changed.
SAVE spaces may be linked to more than one module if the spaces are allocated with the ALLOC
instruction. You must declare how many words of SAVE to reserve at load time.

The common relocatable space holds variables declared to be common.

The labeled common space holds variables declared to be in that labeled common. Each labeled
common has its own location counter.

The Assembler control instructions discussed in this section are:

NAM
ORG
RELOC
ORR
END

Assembler Instructions 4-3

NAM

NAM namel , type[, priority[, resolution, multiple[, hours[, minutes[, seconds
[, milliseconds] 11]1]] [comments]

The NAM statement designates the start of a relocatable program. It contains optional parame-
ters defining attributes of the program. These parameters are passed to the loader (see Appendix
H for the format of the NAM record).

The parameters of the operand are optional except for the name, but must be used in the order
listed, and must be separated by commas. Also, to specify any particular parameter those preced-
ing it must also be specified, or a comma must be used as a placeholder.

where:
name

bpe

priority

resolution

multiple

hours,
minutes,
seconds,
milliseconds

comments

name of program, up to five characters, may be any legal label.

program type 1-8, 13, 14, 15, 30, 512 (refer to Appendix O for a definition of
program types).

program priority number (1 to 32767, default = 99).

resolution code; specifies units to be used with the multiple parameter.

1 = 10’s of milliseconds
2 = seconds

3 = minutes

4 = hours

execution multiple integer (0-4095) that specifies the time interval between
runs for programs that run repeatedly. To be used with the resolution parame-
ter. A zero value indicates the program is to be run at once.

specifies the time the program will first run.

comments that will appear in the NAM record in the relocatable file. The com-
ments must be preceded by a space.

4-4 Assembler Instructions

Note

The five instructions SKP, HED, SUBHEAD, NAM, or after an END all cause
the next line output to the list file to be preceded by:

1. A form feed: one in column one,
2. A page head, and
3. The currently active HED and SUBHEAD lines (if any).

The SPC instruction may also force this condition.

The NAM statement is always listed but SKP, HED, and SUBHEAD statements
are only listed if they are in error.

This means that HED and SUBHEAD lines may be put above the NAM by
entering them prior to NAM in the source file.

For example:

END

END HED ...
SUBHEAD . . .

NAM . .. NAM . ..

HED ... :

SUBHEAD . . .
will put the NAM statement on a will put the NAM under the HED
page by itself with no HED or and SUBHEAD and continue the
SUBHEAD. program on the same page.

Because no action is actually taken until a line is sent to the LIST file, the order of
instructions is irrelevant. For example, in the absence of listing lines, the order of
instructions in the following three groups is irrelevant:

HED SKP
SUBHEAD SUBHEAD HED
SKP HED SUBHEAD

Comments after an END and before a following NAM statement will appear with
the module containing the END statement.

A typical NAM statement will look like this:

NAM XYZ, 3

Example: The following is one way to time-schedule a program. The resolution code is 3 (time
unit is minutes) and the multiplier is 10. This means the program will run every 10 minutes. The
program is declared to be type 2 (real time disk resident) with priority 50.

NAM repet, 2,50, 3,10 Runs every 10 mi nutes.

Assembler Instructions 4-5

The comment field can begin after any parameter. A blank within the parameter field will termi-
nate the field and cause Macro/1000 to recognize the next entry as the comment field. Macro/1000
will report an error for a comment field that extends beyond column 128. It is placed in the NAM
relocatable record and is kept with the NAM record through the loading process. String substitu-
tion is performed on the comment field. Any assembly-time variables after a semicolon or sur-
rounded by single quotes will not be evaluated.

For example, the following declares a program named PROG to be type 3 (background disk-resi-
dent) with priority 99. The space terminates the parameters field and begins the comment field.
The source statement is the NAM statement input to the assembler and the loader listing is the
output from LINK.

source statement:

NAM PROG 3,99 Program that does many things.

loader listing:
Cl > LI NK, PROG REL

PROG 40012 3994. Program that does nmany things.

You can have assembly-time variables within the comments field. Two system assembly-time vari-
ables are specifically set aside for use in the NAM statement, & DATE and &.DTIME. They
cause the system date and time to be printed in the following format:

& DATE — yymodd
&. DTI ME — yymodd.hh:mm
where:
»y is the year
mo is the month
dd is the day
hh is the hour
mm is the minutes.

Each time a module using one of these ATVs is assembled, it is time stamped. The following
NAM statement has a time stamp on it, using the system date (&.DATE) assembly-time variable.
It was last updated on August 13, 1980.

source statement:

NAM suprt Support routine #5317. Date & DATE

listing after assembly:

NAM suprt Support routine #5317. Date 800813

4-6 Assembler Instructions

ORG

ORG operand [; comments]
The ORG statement:

e Defines the origin of an absolute program, or

e Defines the origin of subsequent sections of an absolute or relocatable program.

An absolute program must begin with an ORG statement. ORG statements may be used else-
where in the program to define the starting addresses for portions of code. All instructions follow-
ing an ORG statement are assembled at consecutive addresses starting with the value of the ex-
pression in the operand field.

The operand field specifies the initial setting of the program location counter. It may contain:

e an integer,

e an absolute symbol previously defined,

e an assembly-time variable previously defined, or

® an expression.

If the ORG statement appears within an absolute program, any type of expression is legal, if the

ORG statement appears within a relocatable program, common relocatable expressions should be
used only to specify non-code generation constructs (for example, BSS or EQU, etc.).

ORG to ALLOC symbols will take the symbol value of 0 rather than the previous high water mark
(highest address), that is:

AB ALLOC conmmon, 40

ORG AB
ORG AB + 20
ORGs to ALLOC common allow the common to be initialized.
Example:
NAM MAIN
INNT BSS 1 Initialization section.
I @NT
ORG INT ;Set a relocatable origin at INT.
DATA BSS 50 :Reserve room here for data.
ORR
MAI N NOP ;Main program starts here.
JSB INT G to initialization section.
LDA FOO ;W may now overlay the initialization
STA DATA :section.
STB DATA+1
END MAI N

In the preceding example, the block of code starting with INIT serves two purposes. It is an in-
itialization routine for this program, and it is also an area to hold data. ORG INIT sets the origin
of a relocatable space at relocatable location INIT.

Assembler Instructions 4-7

Example:

NAM BUFFR
ENT BUFFR

Buff.size EQU 128 :Declare the buffer size and

BUFFR BSS Buff.size ;reserve that many words for it.
ORG BUFFR ; Set the absolute base at top of buffer.
ABS Buff.size ;The first word of the buffer is the size.
ORR ; Term nat e absol ute space.
END

The routine BUFFR creates an area of Buff.size (128) words. The first word in the buffer is its
length.

CDS

CDS keyword [; comments]

The CDS statement instructs the assembler that your programs will be executing in a CDS (code
and data separation) environment. This environment is described in Appendix M.

The keywords are:

ON turn on the CDS features of the assembler and prepare code to execute in the CDS
environment.

OFF s included here for completeness. Omitting the CDS statement produces the same
result.

4-8 Assembler Instructions

RELOC

RELOC keyword [; comments]

The RELOC statement allows you to designate the relocation space in which the statements code
or data is to be assembled. In a particular relocation space the initial RELOC starts at zero, while
subsequent RELOC statements (to the same space) pickup at the address where its predecessor
completed. ORG’s into or within a relocation space go to the designated address.

In response to each RELOC, ORG, ORB, and at an END statement, two things happen:

1. The relocation address is checked to see if it is the highest yet received (the high water mark)
for that relocation space. If it is at the high water mark, it is saved for comparison with subse-
quent RELOC: to that space.

2. The relocation space is checked to ascertain if the space used exceeds the space available. For
ALLOC space this is the size declared, while for program space it is 32768.

Non-CDS Environment

In the non-CDS programming environment, the operand can be one of the following six keywords.
Only the first three characters of the keyword are required:

ALLOCname Assembles the following code or data in the ALLOC space. This code (or data)
was previously defined with name as its label.

This is how ALLOC common is initialized in Macro/1000. Note that certain load-
ers (for example, the RTE-6/VM generator) require that such modules be of the
type 512 plus the standard type (usually 7). When this is the case, the NAM re-
cord should be:

NAM K, 519 ;set 512 + 7 type.

Any ALLOC space can be RELOCed into and any code can be generated in this
space. The loader will not handle anything other than absolute data in the EMA

space.
BASE Assembles the following data onto the base page.
COVMON Assembles the following data into the unnamed common space.
EMVA Reserves the space that follows RELOC instruction in EMA. This is a special

case of the RELOC command. Any labels in this space are local names used to
refer to local EMA via DDEF statements since they represent 32-bit values.

PROG Assembles the following code or data into the program relocation space.

SAVE Assembles the following data into the SAVE relocation space.

If no RELOC space is specified, the assembler assembles the code or data into the program relo-
cation space.

The scope of the RELOC statement is terminated when another RELOC statement is used.

See the introduction to assembler control pseudo ops for more information about memory spaces.

Assembler Instructions 4-9

Within the COMMON relocation space, no code generation or initialization is permitted:

NAM FQOO
RELOC COMMVON
LDA A ; 1llegal. Gener at es code.
DEF * ; illegal
ABS 2 ; i1l egal
FOO BSS 10 ; legal. No code generated.
This error may be detected at load time.
Example using RELOC statement:
NAM MAIN
RELOC COMMVON
X BSS 10 ;. Reserve words in conmon.
Y BSS 10
RELCC SAVE
FLAG DEC 1 ; This goes in the SAVE space.
RELCC PROG
MAI'N NOCP ; The program starts here.
END MAIN

4-10 Assembler Instructions

CDS Environment

In a CDS environment, the operand can be, in addition to PROG, COMMON, BASE, SAVE,
EMA, one of the following four keywords:

CODE

DATA

LOCAL

STATIC

Assembles the following instructions into code space. This area is reserved for exe-
cutable instructions.

Assembles the following data declaration statements (for example, DEC, ASC,
BSS) into the data area.

Assembles the following space allocation statements (BSS only) into the local area.
This area holds the values of variables that are local to a subroutine. They are ac-
tive and accessible only when that subroutine has been called. The values cannot
be initialized (such as with the DEC or ASC statement) and are of undefined value
when the subroutine is entered. Local space is allocated off the stack on subrou-
tine entry.

Assembles the ensuing data declaration statements (for example, DEC, ASC, BSS)
into the STATIC data area. A static variable is local to a subroutine, but, unlike
LOCAL area values, its value is preserved from one call to the next. This area is
analogous to the SAVE area in a non-CDS environment.

Refer to Appendix M for examples of the use of each of these areas.

For example:

X

RELOC COVMON
BSS 10

is equivalent to the FORTRAN statements:

COWDN X(10)
| NTEGER X

that is, local, blank common, and CDS usage.

Assembler Instructions 4-11

ORR

ORR [; comments]

The ORR statement terminates the absolute or relocatable mode set by an ORG statement.
This statement has no label and no operand.

More than one ORG statement may occur before an ORR is used. If so, when the ORR s en-
countered, the memory space specified before the first ORG statement will take precedence.

If more than one ORR appears after an intervening ORG, an error occurs.

Example:
RELOC PROG
FI RST NOP
ORG FI RST +2500 ;Set an origin in Relocatable space.
ORG FI RST +2900 ;Set another origin in Rel ocatable space.
ORR ; Back to program rel ocatabl e space.
END

END [operand] [; comments]

The END statement terminates the program module. It marks the physical end of the set of
source language statements whose name is indicated on the preceding NAM statement. It does
not, however, mark the end of the source input, this is indicated by the EOF (end of file).

The operand field contains a name appearing as a statement label in the current program, or it
may be blank, if, however, the pending module is the main program, the operand field must be
specified. The name identifies the transfer address (where program execution is to begin). In gen-
eral, only one module in a program or overlay segment should contain a transfer address.

4-12 Assembler Instructions

Note The five instructions SKP, HED, SUBHEAD, NAM, or after an END all cause
the next line output to the list file to be preceded by:

1. A form feed: one in column one,
2. A page head, and
3. The currently active HED and SUBHEAD lines (if any).

The SPC instruction may also force this condition.

The NAM statement is always listed but SKP, HED, and SUBHEAD statements
are only listed if they are in error.

This means that HED and SUBHEAD lines may be put above the NAM by
entering them prior to NAM in the source file.

For example:

END

END HED ...
SUBHEAD . . .

NAM . .. NAM . ..

HED ... :

SUBHEAD . . .
will put the NAM statement on a will put the NAM under the HED
page by itself with no HED or and SUBHEAD and continue the
SUBHEAD. program on the same page.

Because no action is actually taken until a line is sent to the LIST file, the order of
instructions is irrelevant. For example, in the absence of listing lines, the order of
instructions in the following three groups is irrelevant:

HED SKP
SUBHEAD SUBHEAD HED
SKP HED SUBHEAD

Comments after an END and before a following NAM statement will appear with
the module containing the END statement.

Multiple Modules

Any number of modules (defined as a set of assembly statements starting with a NAM and ending
with an END) may be concatenated in one file and assembled together. Only one control state-
ment is allowed per file. When a NAM statement is encountered, Macro/1000 clears its symbol
tables and prepares to assemble this new module.

Macro definitions, assembly-time variable values, conditional assembly, and MACLIB declara-
tions exist for the entire file, while user labels, RELOC declarations, and local data are recognized
only within the module in which they are defined. Only conditional assembly statements, macro
definitions, assembly-time variable declaration statements, comments, blank lines, or a NAM
statement may follow an END statement.

Absolute programs must be contained in one module.

Assembler Instructions 4-13

Example:

MACRO, L, R

MACRO

TYPE &M5G ; macro to type a nessage to the term nal
: macro definitions can cone before NAM
; statenents and nust be defi ned before
; they are used.

EXT EXEC

JSB EXEC

DEF *+5

DEF =D2 ; EXEC 2, output.

DEF =D1 ; To LU 1.

DEF =S&NM5G ; Define the nessage.

DEF =L-: L: &G ; Pass the negative # of characters.

ENDMAC

MACRO

QUT ; Macro to call exit.

EXT EXEC

JSB EXEC

DEF *+2

DEF =D6

ENDMAC

Fi rst nodul e

NAM fir st
EXT second
First NOP ; Entry point of first nodule.

TYPE "H there #1' ; Call the Macro defined above.

JSB second

END first ; 'first’ is the transfer address, it
; defines the executable start of this
; nodul e.
: Second nodul e

NAM second ;

ENT second ;

Second NOP ; Entry point of second nodul e.

TYPE '"H there #2' ; Call the sane Macro defined above.

QT X

END ;

4-14 Assembler Instructions

INCLUDE

I NCLUDE filedescriptor

The INCLUDE pseudo opcode causes the assembler to continue assembly from the file specified
in the operand field.

The operand field contains the RTE file name of the file to be included. The file name can be rep-
resented by a single assembly time variable, macro parameter, or can be explicitly entered. The
operand will be folded to uppercase.

The following description of INCLUDE applies to all cases except that of macro library building.
For information on INCLUDE in a macro library environment, refer to the “Creating Macro Li-
braries” section in Chapter 5.

To include a file whose name starts with an ampersand (&), the file name must be surrounded by
single quotes:

I NCLUDE ’ &FI LE: : CR

The included file must consist of legal source code and may contain INCLUDE pseudo opcodes.
These are referred to as nested include files. Only five levels of nesting are allowed.

When the assembler encounters the INCLUDE statement, it begins the line numbering for the
listing at line number one and appends the letter I to the line number (the number of the current
source line is saved). A file number is appended to the page number in the listing. This is done so
that any errors found in this file will reflect the actual line number of the include file for easy cor-
rection.

When the end of the included file is reached, assembly continues at the statement following the
INCLUDE statement in the file where it appeared. The line numbers resume from the
INCLUDE statement.

If the filedescriptor does not specify a path, MACRO will search the directory that contains the
source file.

The comment field is not allowed.

Assembler Instructions 4-15

Example:

NAM TEST
| NCLUDE DATA: : CR

; Include a file here that contains data initialization,
; storage areas, and common decl arati ons.

TEST NOP
END TEST

This is what will be assembled:

NAM TEST
’; fromfile DATA

RELOC COMVON
ABC DEC 10, 20, 30, 40, 50
ARRAM BSS 50

RELOC PROG
LU DEC 1
TEST NOP

END TEST

4-16 Assembler Instructions

Loader and Generator Control

This section covers two special pseudo opcodes, LOD and GEN. They are not instructions to the
assembler. They are a means to pass commands from the assembler to certain loaders or genera-
tors. Consult your Programmer’s Reference Manual or Loader Manual for further detailed infor-
mation.

LOD

LOD n, string [; comments]

The LOD statement is an instruction to the loader.

When some loaders encounter a LOD statement, they perform the function defined by the oper-
and field.

The operand has two parts:

n — an expression which defines the number of words in the character string (two char-
acters per word).

string — any legal loader command allowed before the SEarch or RElocate commands.
(Refer to your Loader Reference Manual for details.)

Example:
MACRO, L, R
NAM LOAD
LOD 3,0P,DB ;tell the | oader to append DBUGR to this
; program
LOD 3,SZ,32 ;size this programto 32 pages.
LOAD NOP ;program starts here.
END LOAD
Note If the length expression n is not a simple ATV or number, then string substitu-

tion is done on the whole LOD statement including the comments. In general,
errors are ignored; however, MACRO insists on matched quotes and will re-
move unmatched quotes from quoted strings. For more information on string
substitutions, see Concatination later in this chapter.

Assembler Instructions 4-17

GEN

GEN n, string [; comments]

The GEN statement passes an instruction string to some generators. The instruction is contained
in the string portion of the operand.

The operand contains two portions:

n — The number of words in the string.
string — The instruction to the generator.
Example:
MACRO, L, R
NAM dri vr
GEN 11, EDD. 00, TX: 15, TG 32000
drivr NOP ; program begi ns here.
END dri vr
Note If the length expression n is not a simple ATV or number, then string substitu-

tion is done on the whole LOD statement including the comments. In general,
errors are ignored; however, MACRO insists on matched quotes and will re-
move unmatched quotes from quoted strings. For more information on string
substitutions, see Concatination later in this chapter.

BREAK

BREAK [; comments]

The BREAK command is for use in CDS programming only. It indicates those parts of a CDS
program at which natural breaks occur. The loader uses BREAK to construct current page links
for off page references. This instruction is required at least every 511 words of code in CDS pro-
grams only. See Appendix M for guidelines and examples.

4-18 Assembler Instructions

Program Linkage

The linking pseudo operations provide a means for communication between a main program and
its subroutines or among several subroutines to be run as a single program. These instructions
may be used only in a relocatable program. The following pseudo opcodes are discussed in this
section:

ENT
EXT
SEXT
WEXT
ALLOC
RPL

ENT, EXT, SEXT, and WEXT

ENT name[=" alias’ | [, name[= alias’] . . . [; comments]]
EXT name[=" alias’ | [, name[= alias’] . . . [; comments] |
SEXT name[= alias’ | [, name[=" alias’ | . . . [; comments]]
VEXT name[=’ alias’ | [, name[=" alias’]| . . . [; comments]]

The ENT pseudo opcode declares entry points that are to be defined in the module. Each name is
a symbol, usually a data-type statement or a NOP that is assigned as a label for some statement in
the program. Entry points allow another module to refer to this module. All entry points must be
defined in the module.

The EXT pseudo opcode declares that symbols used in this module are to be linked to an external
routine. The symbols must be defined as entry points in another module. They may appear in
memory reference instructions, certain I/O instructions, or EQU or DEF pseudo opcodes. An ex-
ternal symbol can be used with a + (plus) or — (minus) offset or specified as indirect.

The SEXT (soft external) pseudo opcode is useful in defining call macros when the same macro
can be used to call an internal or external subroutine. This instruction tells MACRO that, if the
symbol is not defined in the module, the symbol is external.

The WEXT (weak external) pseudo opcode sets the “w” (weak external) flag in the external re-
cords. Some linkers recognize this flag as an indication that the defining entry point is to be pro-
cessed, if encountered, but not searched for (in a library) and not reported as an undefined if not
satisfactory.

The operand field contains:

name is the name of the entry point (for ENT) or the name of a label external to this pro-
gram (for EXT). Any number of ENT names and up to 2047 EXT names can be
specified per module by the user.

= alias’ gives the entry point or external label another name. See the discussion that fol-
lows.

You may have more than one EXT statement in a module containing the same symbol. Likewise,
you may have more than one ENT statement in a module pointing to the same symbol. Each du-
plicate ENT or EXT statement is ignored.

Assembler Instructions 4-19

EXT and ENT Example:

NAM MAI N
EXT subrouti ne
MAI N NOP

JSB subrouti ne
END MAI N

NAM SUB

ENT subrouti ne
subr outi ne NOP

JII\/P @ubrouti ne

END

SEXT Example:

CALL FOO A B, C

SEXT FOO
JSB FOO
DEF *+4

JSB . ENTR

4-20 Assembler Instructions

Decl are 'subroutine’ to be external.

Junp to subroutine.

Decl are 'subroutine’ to be an entry
point in this program

Junp back to main.

Alias

There are some cases in which you may wish to refer to an external routine whose name may not
be a legal label in the Macro/1000 language. You may also wish to define an entry point bearing
an illegal label for reference by other programs. To do this, you may equate a legal label to an ille-
gal label:

ENT LEGAL=" $/ OOP’
Since $/OOP is an illegal label in Macro/1000, it cannot be referenced. External routines can gain
entry to this routine by using $/OOP, it is the actual entry point. The name for only this module is
‘LEGAL.

ENT LEGAL=" $/ OOP
LEGAL NOP ; entry point

In the same manner, you can use the alias option on external declarations:

Example:

EXT GOOD=" #[LAB’
JSB GOOD ; Calls the external routine, #[LAB.

where:
#[LAB is a label in an external routine.
GOCD is the symbol that is to be used to reference the routine.

Assembler Instructions 4-21

ALLOC

label ALLCC keyword, #words [, MSEG size] [; comments]

The ALLOC pseudo opcode allocates or sets up a link to a globally accessible named EMA space
or a SAVE space.

The label is the name of the EMA, SAVE, or COMMON space.
The keyword can be one of three words:

EMA If the keyword is EMA, the following parameter specifies how many words are to
be in this space. The third parameter is optional and is the MSEG size in pages.
MACRO keeps track of the MSEG sizes and passes the largest size to the loader.

SAVE If the keyword is SAVE, specify how many words are to be in this space.

COMVON If the keyword is COMMON, specify how many words are to be in this space. This
common block can be linked to a FORTRAN named common block.

The EMA instruction cannot be used in the same program as the ALLOC EMA or RELOC EMA
commands. Appendix J has information on the EMA instruction.

Through the use of the ALLOC command, values in the EMA, SAVE, or the COMMON space
can be shared between modules.

An ALLOC statement may specify zero words. If RELOC ALLOC to the space is then done,
MACRO will keep track of the highest word generated and use that value as the size.

Example:

COM ALLOCC COMMVON, O

RELOC ALLOC, COM
COML BSS 40

ORR > return to program space

RELOC ALLOC, COM

COVP REPEAT 40
oCT 0
ENDREP

ORR

MACRO will generate an 80-word ALLOCate common named ‘COM’ and will fill the last 40
words with zeroes.

4-22 Assembler Instructions

Example:

NAM MAIN
Q ALLOC EMA, 50000, 2

EVA. ADDR DDEF Q

GSAV ALLOC SAVE, 100 :
END ’

’ NAM SUBR

o) ALLOC EMA, 50000, 2 :

GSAV ALLOC SAVE, 100 Z

END

Declare Q to be a 50000 word
array in EMA

Reserve 100 words of SAVE
space.

Declare Qto be in EMA

Sanme EMA as declared in MAIN
Shared with MAIN, and any
other nodule that declares it.
Same SAVE space as in MAIN

Note the following difference between ALLOC and RELOC:

globally declares SAVE, EMA, or COMMON spaces, that is, modules may be

locally declares SAVE, EMA, PROG, etc. spaces, that is, external modules do not

Use EMA space.
Reserve 20000 locally accessible
EMA | ocati ons.

QEMA in SUBR is a different
space than CQEMA in MAIN.

EMA

ALLOC
linked to the same space.
RELOC
have direct access to the local spaces.
Example:
NAM MAI N
RELOC ENA ;
QEMA BSS 20000 ;
END ’
’ NAM SUBR
RELOC ENA ;
QEMA BSS 20000 ;
END

A common use of ALLOC is in a construct like:

Q ALLOC COWVMON, 100

which is equivalent to FORTRAN:

COWDN / Q ARRAY(100)
| NTEGER ARRAY

Assembler Instructions 4-23

RPL

label RPL instruction_word [, value] [; comments]

The RPL pseudo opcode defines a code replacement record for the RTE system generator or RTE
relocating loader.

The label is the mnemonic for the instruction to be replaced by microcode.

The operand is the value of the microcoded instruction word. The operand may also contain a
second word that makes up a code replacement value of two words.

Examples:

.FAD RPL 105000B
.VSUB RPL 1014608, 40B ; This is a two—word repl acenent.

Wherever the loader or generator encounters a JSB .FAD, it is replaced by the octal representa-
tion of the machine instruction (105000B). There are some constraints:

e The instruction to be replaced must be a memory reference instruction (that is, JSB) or a DEF.
e The operand of the memory reference instruction or DEF must be an external reference.

e The RPL statement must be in a module separate from the memory reference instructions or
DEF.

A two-word RPL will cause the referencing instruction and the next word to be replaced with the
microcode replacement.

Example:

NAM RPLAC
. FAD RPL 105000B

END

Next subroutine:

NAM SEG
EXT . FAD
JSB . FAD
END

When this program is loaded, instead of JSB .FAD (whose instruction code in octal is 14XXX), an
instruction code of 1050008 is relocated.

4-24 Assembler Instructions

Assembly Listing Control

The assembly listing control pseudo opcodes regulate the assembly listing output.

The following pseudo opcodes are discussed in this section:

COL

HED

LIST

SKP

SPC
SUBHEAD
SUP

UNS

COL

COL column#, column#, column# [; comments]
The COL pseudo opcode allows you to determine in which columns of the listing the opcode, op-
erand, and comment fields will appear.

The operand field contains three parameters. The first parameter specifies the starting column of
the opcode field in the listing. It must be greater than 1 and must be less than the second parame-
ter.

The second parameter specifies the starting column of the operand field in the listing. It must be
less than the third parameter.

The third parameter specifies the starting column of the comment field in the listing.

The parameters can have values from 2 to 128. These column numbers are relative to the starting
column of the legal field in the listing.

If any of the statement fields is large enough that it prevents the following field from beginning in
the column specified, a blank is inserted between the fields.

This instruction may appear anywhere in the source, but will be overridden by column indicators in
a macro statement.

Example:
COL 23, 32, 37

requests the opcode to be listed in column 23, the operand in column 32, and the comment in col-
umn 37.

Assembler Instructions 4-25

HED

HED heading

The HED pseudo opcode specifies a heading to be printed at the top of each page of the source
program listing. This header is printed in addition to the standard header printed by Macro/1000.

The operand field contains a string of up to 56 ASCII characters that will be printed as a heading
at the top of each page of the source program listings.

When a HED pseudo opcode occurs in a program, the heading will be printed on the following
page, below the standard heading printed by Macro/1000. The heading will appear at the top of
each successive page, until changed by another HED instruction.

Note The five instructions SKP, HED, SUBHEAD, NAM, or after an END all cause
the next line output to the list file to be preceded by:

1. A form feed: one in column one,
2. A page head, and
3. The currently active HED and SUBHEAD lines (if any).

The SPC instruction may also force this condition.

The NAM statement is always listed but SKP, HED, and SUBHEAD statements
are only listed if they are in error.

This means that HED and SUBHEAD lines may be put above the NAM by
entering them prior to NAM in the source file.

For example:

END

END HED ...
SUBHEAD . . .

NAM . .. NAM . ..

HED ... :

SUBHEAD . . .
will put the NAM statement on a will put the NAM under the HED
page by itself with no HED or and SUBHEAD and continue the
SUBHEAD. program on the same page.

Because no action is actually taken until a line is sent to the LIST file, the order of
instructions is irrelevant. For example, in the absence of listing lines, the order of
instructions in the following three groups is irrelevant:

HED SKP
SUBHEAD SUBHEAD HED
SKP HED SUBHEAD

Comments after an END and before a following NAM statement will appear with
the module containing the END statement.

4-26 Assembler Instructions

Example:

MACRO L, R

NAM S2317

HED Support Subroutine #2317
S2317 NOP

END

Causes the second page of the listing to appear:

PAGE#2 S2317. MAC: : MANUAL 4:46 PM TUE, 8 DEC 1987
Support Subroutine #2317

00004 00000 00000 s2317 nop
00005 end

SUBHEAD

SUBHEAD subheading

The SUBHEAD pseudo opcode specifies a subheading to be printed on the listing, and creates a
table of contents at the end of the listing.

The operand field contains a string of 56 ASCII characters to be used as the subheading. This
string will be printed on the page following the one in which the command appears. The subhead-
ing will appear on the line following the heading (if a heading exists) or immediately below the
standard macro heading.

A table of contents is created at the end of the listing and contains all subheads and the pages on
which they occur (except for macro library runs). This table will be in ASCII collating sequence
order. Case is not shifted for this sort.

Example:
MACRO L, R
NAM S2317
HED Support Subroutine #2317
SUBHEAD i nteger to real conversion

S2317 NOP
END
Causes the second page of the listing to appear:

PAGE#2 S2317. MAC: : MANUAL 4:46 PM TUE, 8 DEC 1987
Support Subroutine #2317
integer to real conversion

00005 00000 00000 s2317 nop
00006 end

At the end of the listing, the following would appear:
Page # Subhead

2 integer to real conversion

Assembler Instructions 4-27

Note The five instructions SKP, HED, SUBHEAD, NAM, or after an END all cause
the next line output to the list file to be preceded by:

1. A form feed: one in column one,
2. A page head, and
3. The currently active HED and SUBHEAD lines (if any).

The SPC instruction may also force this condition.

The NAM statement is always listed but SKP, HED, and SUBHEAD statements
are only listed if they are in error.

This means that HED and SUBHEAD lines may be put above the NAM by
entering them prior to NAM in the source file.

For example:

END

END HED ...
SUBHEAD . . .

NAM . .. NAM . ..

HED ... :

SUBHEAD . . .
will put the NAM statement on a will put the NAM under the HED
page by itself with no HED or and SUBHEAD and continue the
SUBHEAD. program on the same page.

Because no action is actually taken until a line is sent to the LIST file, the order of
instructions is irrelevant. For example, in the absence of listing lines, the order of
instructions in the following three groups is irrelevant:

HED SKP
SUBHEAD SUBHEAD HED
SKP HED SUBHEAD

Comments after an END and before a following NAM statement will appear with
the module containing the END statement.

4-28 Assembler Instructions

LIST

LI ST keyword [; comments]

The LIST pseudo opcode alters the current listing state.

The operand field contains a keyword that defines what the new state will be. The keywords which
may appear in the operand are:

BACK

LONG

VEDI UM

SHORT

This operand instructs Macro/1000 to restore the prior listing state in effect when
the last non-BACK list command, which changed the list state, was executed.

All lines of code that appear in the source and any lines in macro expansions and
repeated statements appear. All conditional assembly statements are listed. This
mode is best for debugging macros and usages of conditional assembly.

This operand instructs Macro/1000 to begin listing all lines that contain executable
statements. No conditional assembly statements appear. Any repeated lines of
code are listed. This mode is best used with low-level debuggers since the listing
matches the generated code the most.

This operand suppresses the assembly listing, beginning with the ‘LIST OFF’
pseudo opcode and continuing until the listing is resumed by a ‘LIST ON’, ‘LIST
SHORT’, ‘LIST MEDIUM’, or ‘LIST LONG’. Any diagnostic messages encoun-
tered by Macro/1000 while the listing is off will be printed. The source statement
sequence numbers are incremented for instructions skipped.

This operand instructs Macro/1000 to begin listing the source. If a previous part of
the source has been listed, the listing will resume in that state. If no previous part
of the source has been listed, the current listing state will be defaulted to ‘SHORT".

This operand instructs Macro/1000 to begin an abbreviated listing of the source.
No macro definitions or conditional assembly statements appear. No macro expan-
sions appear in the listing, only the macro call statement. This is the default listing
mode. It is best suited for following general program flow.

A count is kept of the number of times the listing has been initiated through the use of the ‘LIST
ON’, ‘LIST SHORT’, ‘LIST MEDIUM'’ or ‘LIST LONG’ instructions, or ‘L’ parameter of the con-
trol statement. Also, a count is maintained of the number of ‘LIST OFF’ instructions.

To entirely suppress the listing, the number of ‘LIST OFF’ instructions must equal the number of
times the listing has been initiated. Likewise, to resume listing, the total number of times the list-
ing has been initiated, must be greater than the total number of ‘LIST OFF’ instructions.

Assembler Instructions 4-29

Example:

MACRO, R, L

Listing mode is defaulted to short, do not list this macro definition:

MACRO
TEST
ENDVAC
LI ST MEDI UM ; List only assenbled instructions
; in conditional assenbly.
AlF & RS1 = &K
NAM PROGA
PROGA NOP
END PROGA
AENDI F

This is what is listed when run with the following runstring:

RU, MACRO, PROGA. MAC, 1, —, , , & RS1=" K

PAGE#

00001
00002
00003
00004
00009
00011
00012
00014
00015
00016
00017
00018

Macr o:

PROGA. MAC: : MANUAL 2:54 PM THU., 26 MAR , 1981

MACRO L, R
; Listing node is defaulted to short,
: do not list this macro definition:

; in conditional assenbly.

NAM PROGA
00000 000000 PROGA NOP
00001 000000 :

END PROGA

No errors total

4-30 Assembler Instructions

SKP

SKP [; comments]

The SKP pseudo opcode is a page advance to the list device. The source program listing continues
printing at the top of the following page. The SKP instruction is not listed, but the source line se-
quence number is incremented for each SKP.

Note The five instructions SKP, HED, SUBHEAD, NAM, or after an END all cause
the next line output to the list file to be preceded by:

1. A form feed: one in column one,
2. A page head, and
3. The currently active HED and SUBHEAD lines (if any).

The SPC instruction may also force this condition.

The NAM statement is always listed but SKP, HED, and SUBHEAD statements
are only listed if they are in error.

This means that HED and SUBHEAD lines may be put above the NAM by
entering them prior to NAM in the source file.

For example:

END

END HED ...
SUBHEAD . . .

NAM . .. NAM . ..

HED ... :

SUBHEAD . . .
will put the NAM statement on a will put the NAM under the HED
page by itself with no HED or and SUBHEAD and continue the
SUBHEAD. program on the same page.

Because no action is actually taken until a line is sent to the LIST file, the order of
instructions is irrelevant. For example, in the absence of listing lines, the order of
instructions in the following three groups is irrelevant:

HED SKP
SUBHEAD SUBHEAD HED
SKP HED SUBHEAD

Comments after an END and before a following NAM statement will appear with
the module containing the END statement.

Example:

SKP
ROUT NOP ; Start of a routine.

The heading (via the HED pseudo opcode) and the subheading (via the SUBHEAD pseudo op-
code) are printed at the top of the next page.

Assembler Instructions 4-31

SPC

SPC n, [m] [; comments]
The SPC pseudo opcode causes a specified number of lines to be skipped in the source program
listing.
The operand field can contain two parameters.

The first parameter is an absolute expression, n, which specifies the number of lines to be skipped.
If the bottom of the page would be reached before n lines have been skipped, the output listing
will continue printing at the top of the next page as if a SKP instruction had been seen. See the
previous note for comments related to interaction with other instructions.

The second optional parameter contains an absolute expression, m, the number of lines which
must be left on the bottom of the page after n lines have been skipped. If the m value is present,
and less than m lines would be left on the page after » lines had been skipped, the output listing
will continue printing at the top of the next page.

Example:
SPC 5,6

means to skip 5 lines and there must be 6 lines left at the bottom of the page.
Do not use the comma unless you use the second parameter:

SPC 5, ; error: trailing comma ill egal.

SUP

SUP [; comments]

The SUP pseudo opcode causes only the first line of code to be listed for those instructions that
generate multiple lines. The additional lines generated by the instruction are suppressed until the
UNS or the END pseudo opcode is encountered.

Instructions that generate more than one word of code, and are affected by the SUP pseudo op-
code are:

ADX DJS LBX SBX
ADY DLD LBY SBY
ASC DST LDX SJP
BYT FAD LDY SJS
CBS FDV MBT STX
CBT FMP MPY STY
CMW FSB MVW TBS
DEC JLY ocCT UJP
DEY JPY SAX uJS
DEX LAX SAY XMM
DJP LAY SBS XMS

The SUP pseudo opcode can also be used to suppress the printing of literals at the end of the
source program listing and to suppress the printing of offset values for memory reference instruc-
tions that refer to external symbols with offsets.

4-32 Assembler Instructions

Example:

ASC 4, H there

will list this code:

044151 ASC 4,H there

020164
064145
051145
while:
SUP
ASC 4, H there
UNS
will list:
SUP
044151 ASC 4,H there
UNS
UNS

UNS [; comments]

The UNS pseudo opcode causes Macro/1000 to resume the printing of lines suppressed by a SUP
instruction.

Assembler Instructions 4-33

Storage Allocation

The storage allocation pseudo operations reserve a block of memory for data or for a work area.

The pseudo opcodes covered in this section are:

BSS
MSEG

BSS

label BSS #words [; comments]

The BSS pseudo opcode reserves up to 32767 words in memory as designated in the operand. The
words are reserved in continuous locations in the memory space last declared in the RELOC state-
ment, or in program relocatable space if no RELOC is used.

If the last RELOC space declared were EMA relocatable space or ALLOC EMA, you could spec-
ify up to 2147483647 (231—1) words in memory.

The label, if specified, is the name assigned to the storage space and represents the address of the
first word.

The operand can be any expression that results in a positive integer. This integer defines how
many words are to be reserved for this space. Any symbols used in the operand must have been
previously defined.

Example: Using arrays

ARRAY BSS 100 ; Declare a 100-el enent array.
poi nt er DEF ARRAY ; Pointer into array.
LDA ARRAY+3 ; Load the fourth elenent of the array.
MSEG

MSEG size [; comments]

The MSEG pseudo opcode declares the MSEG size for EMA references.

The label field is accepted on this statement, but any references to label will point to the statement
following label.

The size is an integer from 1 to 31 representing the number of pages of the MSEG. It can be an
EQU value. Macro/1000 keeps track of the MSEG sizes requested and passes the largest size on
to the loader.

4-34 Assembler Instructions

Example:

MSEG 10 ; Decl are MSEG size of 10 pages.
MSEG 2 ; Decl are MSEG size of 2 pages.

For this program, the loader would set aside 10 pages for the MSEG space. For more information
on EMA programming, refer to the Programmer’s Reference Manual.

Constant Definition

The constant definition pseudo operations store one or more constant values into consecutive
words of the object program. By assigning labels to statements containing these opcodes, other
statements can access the constant values.

The following pseudo opcodes are discussed in this section:

ASC
BYT
DEC
DEX
DEY
LIT
LITF
OoCT

ASC

[labell] ASC n, string [; comments]
The ASC pseudo opcode enters a string of ASCII characters into consecutive words of the object
programs.
The label field can contain a label that represents the address of the first two characters.
The operand field contains two parameters separated by a comma.

The first parameter, n, is an expression resulting in an unsigned decimal value. This parameter
determines the number of words used to store the ASCII characters.

The second parameter is a group of ASCII characters to be stored. Anything in the operand field
following 2n characters is treated as a comment. If the end of the statement is reached before 2n
characters have been read, the remaining characters are assumed to be blanks and are stored as
such. This statement cannot be continued.

To store code for non-printing ASCII symbols (for example, CR and LF), use the OCT pseudo op-
code.

Note If the length expression # is not a simple ATV or number, then string substitu-
tion is done on the whole ASC statement including the comments. In general,
errors are ignored; however, MACRO insists on matched quotes and will re-
move quotes from quoted strings. For more information on string substitutions,
see Concatination later in this chapter.

Assembler Instructions 4-35

Example 1:

ASC 4,"H there’

Example 2: Use the length attribute (:L:) to find the length of a string.

&G CGE.OBAL 'Hi there’
ASC : L: &VBEG+1/ 2, &MSEG

BYT

[label] BYT constant[, constant, . ..] [; comments]

The BYT pseudo opcode generates octal constants in consecutive byte locations of memory.
The label field can contain a label representing the word address of the first constant.

The operand field contains one or more octal constants. These constants must consist of one to
three octal digits within the range of 0 to 377, and can be signed. If a constant is unsigned, it is as-
sumed to be positive. If the constant is negative, the two’s complement of the absolute value is
stored. Since the constants are octal, the letter B must not be used.

If the operand field contains an odd number of constants, bits 0-7 of the final word generated are
clear (zeros).

Example: Define an array of octal byte constants.

ARRAY BYT 1,4,7,12,15, 20

4-36 Assembler Instructions

DEC

[label] DEC constant| , constant, . ..] [; comments]

The DEC pseudo opcode enters one or more decimal constants into consecutive words of the ob-
ject program.

The label field can contain a label representing the address of the first constant.

The operand field must contain one or more decimal constants. The constants can be either inte-
ger or floating point, and may be signed. (If no sign is specified, the constant is assumed to be
positive.)

Integer Numbers

An integer number must be in the range of -32768 to 32767 and is stored in one word.

Floating-Point Numbers

A floating-point number has two components: a fraction, n, and a signed exponent, e. The float-
ing point number must be in the range of:

1.469368X10E—39 to 1.701412X10E38

and have one of the following formats:

n.n n. nEe
n. n. Ee
. nEe
nEke
DEX
[label] DEX constant[, constant, . ..] [; comments]

The DEX pseudo opcode enters a string of extended precision constants into consecutive words of
the object program.

The label field can contain a label representing the address of the first constant.

The operand field must contain one or more decimal constants. The constants can be integer or
real but are stored in three consecutive words of memory as extended-precision floating-point
numbers.

Assembler Instructions 4-37

DEY

[label] DEY constant[, constant, . ..] [; comments]

The DEY pseudo opcode enters one or more double-precision decimal constants into consecutive
words of the object program. It is similar to the DEX pseudo opcode but stores each constant into
four words of memory rather than three.

The label field can contain a label representing the address of the first constant.

The operand field must contain one or more decimal constants. The constants can be integer or
real, but are stored in four consecutive words of memory as double-precision floating-point num-
bers.

LIT

LI T [; comments]
The LIT command specifies where the literal block is placed by Macro/1000. If you do not use this
command, MACRO stores the literals at the end of the program.

When the first LIT command is encountered in a program, all literals used in the program up to
that point are stored after it.

Any literals used after the appearance of the LIT command, and not previously defined, are stored
at the end of the program, or following a subsequent LIT command.

Example:
LDA =D5
ADA =D7
JMP OVER
LIT
The values of the literals =D5 and =D7 will be stored in the

next two words.

OVER LDA =D5 ; This literal is stored above.
LDA =D9 ; This literal is stored at the end of the program

Example:

EMA2 ALLOC EMA 60000
: ; get doubl e-integer constant

DLD D400

JSB . DAD

DEF VAR ; add VAR address to it
D400 DDEF 400 ; doubl e-i nteger constant

VAR DDEF EVMA2+4400

4-38 Assembler Instructions

LITF

LITF [; comments]

The LITF pseudo opcode is similar to the LIT pseudo opcode (except that MACRO forgets all
LITs defined to this point). LITF specifies where the literals used in a program will be stored. If
the command is not used, the literals will be placed at the end of the program.

When the LITF command is encountered, all literals defined between the last LITF (or beginning
of program) and this LITF will be stored following this LITF command (unless they were defined

by an intervening LIT). Then MACRO forgets about all prior definitions. As a result, subsequent
literals will be assigned locations later in the program, even if used prior to LITE

Example:
LDA =D5
LI T
ADA =D7
JMP OVER
LI TF

: The literal =D7 is stored in the next word.

OVER LDA =D5 ; These two literals are stored either at the end
ADA =D7 ; of the programor after the next LIT or LITF
; Statenent.
OCT
[label] OCT constant[, constant, . ..] [; comments]

The OCT pseudo opcode enters one or more octal constants into consecutive words of the object
program.

The label field can contain a label representing the address of the first constant.

The operand field contains one or more octal constants. Each octal constant consists of one to 6
octal digits (range of 0 to 177777) and can be signed. If the sign is negative, the two’s complement
of the absolute value is stored. If the constant is unsigned, the sign is assumed to be positive.

The letter B must not be used after the constant in the operand field, it is significant only when
defining an octal term in an instruction other than OCT or BYT.

Example: Define an array of octal constants.

CCT 4, 40, 400, 4000, 40000, 100000

Assembler Instructions 4-39

Address and Symbol Definition

The pseudo operations in this group generate word and byte addresses, or assign a value to a sym-
bol used as an operand elsewhere in the program.

The pseudo opcodes covered in this section are:

DEF
DDEF
ABS
EQU
DBL
DBR

DEF

label DEF operand [; comments]

The DEF pseudo opcode generates one word of memory as a 15-bit address.
The label corresponds to the address at which the DEF resides.
The operand field can be any of the following:

e A relocatable or an absolute expression in a relocatable program. (See the subsection of
Chapter 2 titled “Legal Uses of Expressions™.)

e An external reference.

e A literal.

e A positive expression in an absolute program.
Operands referring to EMA are not permitted.

The address generated by the DEF pseudo opcode can be used as the object of an indirect address
found elsewhere in the source program. The expression in the operand can itself be indirect and
make reference to another DEF statement in the source program.

Example:
LDA @YM ; Load A-Register with the value at the address
. ; pointed to by SYM (@is the indirect address
. ; indicator).
SYM DEF NUM : The 15-bit address of NUMis stored here.
NUM DEC 10 : This is the final address, 10 is |oaded in

the A-Register.

The operand can be an external routine.

Example:
EXT SQRT ; SQRT is an external routine.
JSB @XSQ ; Get the square root routine.

XSQ DEF SQRT ; After the indirect is resolved, the 15-bit
; address stored here — the address of SQRT, is
; the object of the JSB.

4-40 Assembler Instructions

The DEF pseudo opcode can also be used to hold subroutine parameters following the JSB.

Example:
EXT subrouti ne
JSB subroutine
DEF P1 ; The 15-bit address of Pl and P2 are stored
DEF P2 . here.
P1I DEC 10
P2 DEC 11
ENT subrouti ne
subrouti ne NOP ;: The return address is stored here.
LDA @ubrouti ne : Load the address of P1.
STA addr ess ; Keep it.
LDA @ddr ess : Load the value of P1.
DDEF

label DDEF operand [; comments]

The DDEF pseudo opcode generates a 32-bit (double-word) relocatable address. The first word is
the low-order bits of a 32-bit EMA relocatable address, the second word is the high-order bits.
Note that this is the correct order for double-integer math and FORTRAN routines, but is the in-
correct order for the Extended Arithmetic Group instructions. (Refer to Chapter 3 of this manual
for details of the EAG instructions.)

The label can be used as an operand in a memory reference instruction. It will represent a 16-bit
address at which a 32-bit address resides.

The operand field can be:

e A relocatable or an absolute expression in a relocatable program. (See the subsection of
Chapter 2 titled “Legal Uses of Expressions™.)

e An operand of the EXT pseudo opcode.
o A label of RELOC EMA or ALLOC EMA block.
e A double-word constant.

The 32-bit address cannot be indirect.

For labels defined using the RELOC EMA or ALLOC EMA statements, the value generated is a
true 32-bit address since EMA is being referenced. For any other type of label, the result is a word
of zeros followed by a 16-bit address.

Assembler Instructions 4-41

ABS

integer)
[label] ABS absolute expression } [+ comments]

The ABS pseudo opcode defines a 16-bit absolute value.

The label is optional. If specified, it represents the value defined by the operand.

The operand can be any absolute expression. Any single symbols of an expression must be defined
as absolute elsewhere in the program.

Examples:
AB EQU 35 Assigns the value of 35 to the synbol AB
MB5 ABS —AB MB5 contai ns —-35.

P70 ABS AB+AB P70 contains 70.

P35 ABS AB P35 cont ai ns 35.
MB6 ABS —36 © MB6 contains —36.

4-42 Assembler Instructions

EQU

label EQU operand [; comments]

The EQU pseudo opcode assigns to the symbol in the label field the value represented by the op-
erand field.

The label field can be any legal symbol.

The operand field can be any legal expression. The value of the expression can be common, base
page, SAVE, external or program relocatable as well as absolute, or any arithmetic combination of
these values. The expression can be negative. It cannot be indirect.

The EQU instruction can be used to give a value to a symbol.

Symbols appearing in the operand field must be previously defined in the source program. Dupli-
cate EQU statements aree ignored.

The EQU statement does not result in a machine instruction. Once a label has been equated to a
value by use of EQU, its value cannot be changed.

For example, if you wish TABLE.A and TABLE.B to occupy contiguous memory locations, you
could reserve 5 locations for each table with separate BSS statements. However, to protect against
accidentally inserting another value between tables, the following is recommended:

Tabl e. A BSS 10 ;. Defines a 10 word tabl e, TABLE. A
Tabl e. B EQU TABLE. A+5 ; Equates words 6 through 10 of TABLE. A
;. and TABLE. B.
LDA TABLE. B+1 ;. Sane as LDA TABLE. A+6
Example:
Y EQU *
X NOP

Now X and Y are equivalenced; that is, they are symbols for the same location.
Two EQU statements are implicit in every Macro/1000 program. They are:

A EQ 0
B EQU 1

A and B are reserved symbols representing the A- and B-Registers. These symbols cannot be al-
tered.

Assembler Instructions 4-43

DBL and DBR

label DBL operand [; comments]
label DBR operand [; comments]

The DBR and DBL pseudo opcodes define byte addresses. They each generate one word of mem-
ory that contains a 16-bit byte address.

The label is the name of the location containing the byte address. The generated word may be ref-
erenced (via label) in the operand field of memory reference instructions elsewhere in the program
for the purpose of loading or storing byte addresses.

The operand can be:

e A literal.
e A positive expression in an absolute program.

e An absolute or relocatable expression in a relocatable program. (See the subsection of
Chapter 2 titled “Legal Uses of Expressions”.)

o A reference to an external.
e A reference to a relocatable space.

Indirect addressing cannot be used.

For DBL, the byte address being defined is the left half (bits 8-15) of the word location declared in
the operand.

For DBR, the byte address being defined is the right half (bits 0-7) of the word location declared
in the operand.

A byte address is defined as two times the word address of the memory location containing the
particular byte. Figure 4-2 illustrates byte addressing for a portion of memory.

Byte address 0 Byte address 1

word address 0

word address 1

A\
\\

A\
A\

A\
A\

word address 53

Byte address 126 Byte address 127

Figure 4-2. Byte Addressing

If the byte location is the left half of the memory location, bit 0 of the byte address is 0; if the byte
location is the right half of the memory location, bit 0 is 1.

Note Take care when using the label of a DBL or DBR pseudo opcode as an indirect
address elsewhere in the source program. You must keep track of whether you
are using word addresses or byte addresses.

4-44 Assembler Instructions

Example:

byte.1 DBL word
byte.2 DBR word

word BSS 1

If ‘word’ is at the relocatable address 2002B, then ‘byte.1’ will contain the relocatable value 4004B
and ‘byte.2’ will contain the relocatable value 4005B.

Example: Move the bytes in one array to another.

addressl DBL byte.array.1 ; Generate a byte address.
byte.array.1 BYT 1,2,3,4,5,6,7,10 ; Define an array.
addr ess2 DBL byte.array. 2 ; Define another byte address.

byte.array.2 BSS 4
LDA addressl

Destination array.

Load the byte address of

the array.

Load the byte address of

t he destination array.

Move 8 bytes. After the
nmove is complete the A- and
B- Regi sters contain the byte
addresses of the arrays.

LDB address?

MBT =D8

Example: Convert a byte address to a word address.

LDA byt e. address ; Load the byte address.
CLE, ERA ; Shift right.

; The A-Regi ster now contains
; the word address of the byte.

Assembler Instructions 4-45

LOADREC

LOADREC expl[,exp2 ...]

The LOADREC opcode is designed primarily to support preprocessors such as PASCAL which
will use it to pass debug and other information. This opcode allows you to generate arbitrary relo-
catable records. These records may be used as input to a debugger or as code generation records.
To be useful, the resulting record must conform to what the loader expects. Normally, this means
one of the record structures as found in Appendix H.

The following rules apply:

expl Must result in an absolute value. Its double word result is used to bump the program
counter for the current Reloc space. The value does not appear in the record itself. This
number may be 0.

exp2 Notused. Goes into word 1 (word count) of the record. (See explanation below.)
exp3 Becomes word 2 (checksum) of the record. (See explanation below.)

exp4 Not used. Goes into word 3 of the record.

exp5 Becomes word 4 of the record.

exp6 ...expn Become words 5 through n—1 of the record.

When the record is completed, word 1 is changed to the correct record word count (see
Appendix H). The record checksum is then computed and put into word 2 of the record as re-
quired by the standard record format.

The maximum size of a record is 127 words so only the first 128 expressions will be processed.
The expressions may result in other than absolute values. Only the low order 16 bits of the expres-

sion value, however, will be put into the record. If the high order part is desired, the expression
should be logically shifted right by 16 bits (:Ish:—16).

4-46 Assembler Instructions

Declaring Assembly-Time Variables

An assembly-time variable (ATV) must be declared before it is used. For this purpose use one of
the ATV manipulation pseudo opcodes IGLOBAL, ILOCAL, CGLOBAL, or CLOCAL. By
specifying the number and size of elements, you can declare assembly-time arrays. The value of an
ATV can be changed by using a CSET or ISET statement. This section discusses these six state-
ments.

In contrast, a macro parameter can be assigned a value when the macro that references that pa-
rameter is called. Once a parameter is defined, it cannot be changed. For more details on macro
parameters, refer to Chapter 5.

Assembly-time variables and formal macro parameters begin with an ampersand (&). They can be
up to 16 characters in length. The range of integer ATVs is -32768 to 32767. They are denoted by
the beginning “&” character.

System assembly-time variables are denoted by the beginning “&.” characters. Some system ATVs
are available for you to use. These are discussed in Appendix K.

Substituting Values for Assembly-Time Variables

An assembly-time variable or macro parameter has a value substituted for it everywhere it appears
except when it appears in any of the following:

e Column one of an ATV manipulation pseduo opcode.

e In the comments field, except that of the NAM, LOD, GEN, and ASC statement.

e In the macro parameter field of the macro name statement.

e In macro definitions (values will be substituted for the ATV when the macro is called).

e In REPEAT and AWHILE loops (values will be substituted when the loops are expanded).

e Between pairs of single quotes.

Assembler Instructions 4-47

ILOCAL, IGLOBAL, CLOCAL, CGLOBAL

These pseudo opcodes assign initial value to assembly-time variables. The label is an assembly-
time variable. The num and size parameters are optional.

label [num, size] | LOCAL integer expression [; comments]
label [num, size] | GLOBAL assembly-time variable [; comments]
label [num, size] CLOCAL character expression [; comments]
label [num, size] CGELOBAL assembly-time variable [; comments]
where:
num is a single integer value that corresponds to the number of elements in an array. A
zero value for num can be present only in CGLOBAL or CLOCAL statements.
size is the size of each element. For type integer, the size is 1 and need not be speci-
fied. For character strings, the size is the maximum number of characters in each
element. If omitted, the value can never exceed the number of characters of the
original value appearing in the operand field. For instance, a variable could be de-
clared as a string that will be set to a longer string later. Default size is 1.
Note If these parameters are input, they must be input using brackets, as shown in the

following examples.

Examples of labels:

&st at us
&string[0, 10]

&array[3, 1]

&strings|[3, 5]

an assembly-time variable of type character or type integer.
a string of up to 10 characters.

an array of three elements, each one character long or an array
of 3 single integers.

an array of 3 strings, each up to 5 characters long.

The opcode declares the type of the assembly-time variable:

ILOCAL type integer and local scope.
IGLOBAL type integer and global scope.
CLOCAL type character and local scope.
CGLOBAL type character and global scope.

The operand, or the value assigned to an assembly-time variable, can be an integer expression or it
can be a character expression.

An assembly-time variable can take on one of two possible scopes: global or local.

A global assembly-time variable can be referenced throughout a module and throughout a multi-
module file including the macros called by the module. Its value can be changed, tested or used

anywhere in the module, except in macros that declare local assembly-time variables of the same
name as the global or have parameters of that name.

4-48 Assembler Instructions

Local assembly-time variables can be declared only in macro definitions, REPEAT and AWHILE
loops. They are valid only within the macro in which they are defined and within the inner macros
called by that macro. If an inner macro declares an assembly-time variable of the same name as
one declared in an outer macro, the declaration in the inner macro is effective for that inner mac-
ro only.

Example:
MACRO
OQUTER
&var | LOCAL O ; Declare a |ocal assenbly-tine variable.
: : Set its initial value to O.
LDA =D&var ; Use &var. Zero gets substituted for it.
| NNER1 ; Call macro | NNER1, defined bel ow.
LDA =D&var ; &var has sane val ue as above. It has
; ; not been changed by macro | NNER1.
| NNER2 ; Call macro | NNER2, defined bel ow.
LDA =D&var ; &var gets a 4 substituted for it.
; ; It was changed by I NNER2 which decl ared
: : no &ar of its own.
ENDVAC
MACRO X
| NNER1 :
&var | LOCAL 1 ;. Declare &ar of value 1.
LDA =D&var ; Use &var — a one gets substituted for it.
ENDVAC
MACRO
| NNER2
&var | SET 4 ; Change val ue of &var declared in OUTER
ENDIVAC

In this example, two different assembly-time variables by the name &var are used. In macro
OUTER, the value that &var had before INNERI1 is the same value it has after INNERI1 is called.
The value declared for &var in INNERT1 is only effective for the macro INNER1. However, in the
macro INNER2, no assembly-time variable by the name of &var was declared. Therefore, the
value of the &var declared in OUTER will change after INNER?2 is executed.

Assembly-time arrays are initialized by listing integer or character expressions separated by com-
mas. A count parameter surrounded by square brackets is optionally used to indicate a repetition
of initial values.

Example:

&Y | GLOBAL 10
&X[10,1] I GLOBAL [3]7,[2]3232, 12, 101B, [2] -&Y+8, 10

In this example, &X is declared to be a global array of type integer. The values are:
7,7,7,3232,3232,12,101B,-2,-2,10.

To reference an element of an assembly-time array, designate only that element. For instance, to
reference the sixth element of the array defined above, specify &X[6].

Example:
&X[6] | SET 7

A type-character assembly-time variable is assigned a value by setting it to a character string. A
character expression is a set of character strings or assembly-time variables concatenated together.

Assembler Instructions 4-49

Examples:

&Z[5, 3] CGLOBAL 'abc’,’'def’,’ghi’,’jkl’,” mo’
; & contains five 3-character strings

&A CLOCAL ' aaa’
&B CLOCAL &A' bbb’ ; &B contai ns 'aaabbb’
ISET, CSET

label | SET integer expression [; comments]

label CSET character expression [; comments]

The ISET and CSET pseudo opcodes change the value of a type-integer or type-character assem-
bly-time variable.

The label is a legal assembly-time variable symbol that was previously declared with an ILOCAL,
IGLOBAL, CLOCAL, or CGLOBAL pseudo opcode.

The operand is an integer expression (for ISET) or a character expression (for CSET).

Examples:
&P1 | GLOBAL 1 . &P1 is declared to be value 1.
&P1 | SET 8+&P1 ; Change the value of &P1 to 9.
&c1[0,5] CLOCAL '(O’ ; Reserve space for 5 characters.
&cl CSET '’ abcde’ ; Change the value of &cl to ’abcde’.

The assembler performs string substitution for the entire operand field, substituting assembly-time
variables and macro parameters for the actual values. See the beginning of this section for rules
on when to substitute what value. The operand is then interpreted as an integer expression or a
character string.

Example:
&A | GLOBAL -12 ; Declare an integer ATV.
& I LOCAL O ; Decl are anot her integer ATV.

&B | SET 4+(:L: &) ; &B is changed to 4+3 (length of &A).

4-50 Assembler Instructions

Expressions

An expression is a combination of terms and operators that can be resolved to a value. There are
several types of operators that can be used to form expressions in Macro/1000:

unary operators —,:ICH:, :L:, :MR:, :NOT, :S:, :SY:, :T:, and :UC:
arithmetic operators * /[, +, —, :ASH:, :LSH:, :MOD:, :ROT:
comparison operators =,>=,<=,<> >and <

logical operator :AND:, :OR:

Concatenation is also an operation in Macro/1000.

The operators :ICH:, :L:, :S:, :T:, and :UC: are macro pass operators. They are expanded at the
same time that ATVs are expanded. This expansion occurs before any other operation or expres-
sion evaluation.

The remaining operators are unique to:

e The macro expansion pass or
e The assembly pass or

e Are available in both passes.

However, the operators are different in that macro pass numeric expressions are evaluated to 16
bits while assembly pass expressions are evaluated to 32 bits. Macro pass expressions are those
that appear in the following statements:

IGLOBAL ISET
ILOCAL CSET
CGLOBAL AIF
CLOCAL AELSEIF
REPEAT AWHILE

All other expressions are assembly pass expressions.

Assembler Instructions 4-51

Assembly-Time Expressions

Assembly time expressions are evaluated to 32 bits. Each expression results in a value (32-bit
signed integer) and zero or more sets of relocation space attributes. There are six relocation
spaces:

program
base page (in CDS this is the LOCAL space)
common

pure code (CDS only)

EMA

save

In addition there are any number of external spaces. These are referenced by the following in-
structions:

ALLOC EMA
ALLOC SAVE
ALLOC COMMON
EXT

The external spaces all have symbol id numbers assigned to them when they are first encountered
by MACRO.

The result of an expression may have at most one external symbol id number in its relocation
space attribute list. In addition, it may have any number of the six relocation spaces in its reloca-
tion space attribute. A count is kept of the relocatability in each relocation space. This count in-
creases if a member from that space is added to the expression and decreases if a member is sub-
tracted from that space.

For example, if:

rel oc program
prog equ *+10

rel oc base
base equ *

rel oc common
com equ *

reloc ema
ema equ *

rel oc save
save equ *

ext ext

and COMBO is defined as:
COMBO equ prog+base+comtema+savet+ext

COMBO has relocatability of +1 in each of the following spaces:

program
base page
common
EMA
save
external

4-52 Assembler Instructions

As another example:

prog2 equ prog+prog
has relocatability of +2 in the program space (and zero or none in all others).

rel oc program
progl equ prog2-*

has relocatability of +1 in program space (the —* decreased it by 1).

Note that in all cases, the expression also resulted in a value that was the indicated sum or differ-
ences of the values of the terms involved.

The result of any expression can always be saved in an equate (EQU) symbol as per COMBO
above. Other than this, there are restrictions on the relocatability of expressions depending on the
opcode with which they appear. These restrictions are as follows:

1. All expressions and partial expressions may have relocatability in at most 1 external space.
They may, however, have multiple relocatability in that space, therefore:

ext bar
f oo al l oc conmon, 10

*

good equ foo+foo Doubl e relocatability in external space
foo, OK
Bad, only one external space allowed in an

expr essi on

bad equ foo+tbar

2. Defs and implied defs (from =L literals) must have expressions that exist in at most one
relocatable space, however, the relocatability in that space can be in the range —8 to +7, inclu-
sive.

3. DBL and DBR expressions may be in at most one relocation space and must have
relocatability in that space of —1 to +1, inclusive.

4. All other opcodes restrict their expressions to have either 0 or 1 relocatability in at most one
space. (Some, such as ABS, are more restrictive.)

Assembler Instructions 4-53

Examples:

ext bar
f oo asc 10, A string of char.

def foo+foo ; byte address of string foo.

dbl foo sane as above.

def foo+foo+l byte address of space after the Ain
string foo.

| db =l (foo+foo) ; byte address of foo to B-Register
ddb =| (-f oo—-fo0) ; subtract byte address of foo.
Idb =| (bar+bar) ; byte address of external bar

ada =| (—bar) ; subtract address of bar

In summary, assembly time expressions may refer to, at most, one external. In addition, they may
refer to multiple non-external relocation spaces a multiple number of times. The result of any
such expression may be saved by means of an EQU instruction, however, code production limits
the number of relocation spaces to, at most, one for all code producing instructions. Further, with
the exception of DEFs and implied defs (from the =L literal), multiple relocation in a space is not
allowed. For DEFs and implied DEFs, the multiple is limited to —8 to +7, inclusive.

As a practical matter, the only common use for multiple relocatability is in dealing with byte ad-
dresses and in doing assembly time negation of addresses.

The Operators
The following operators are available only in macro pass expressions:
= <>
>= >
<= <

The following operators are available only in assembly time expressions:

:MR:
:SY:
The following operators are available either in macro or assembly passes:
+ :AND: :NOT:
- :ASH: :OR:
* :LSH: :ROT:
/ :MOD:

Parentheses () may be used in any expression. Expressions are evaluated left-to-right with paren-
theses dictating the only precedence.

4-54 Assembler Instructions

Unary Operators

The unary operators are:

- (negate)

ICH: (integer equivalent of character)
:L: (Iength)

:MR: (memory relocatability)

:NOT: (negate)

:S: (substring)

:SY: (symbol ID)

:T: (type)

:UC: (upper case)

Negate (-)
The negate operand (—) causes an arithmetic negation (two’s complement) of a number.
Examples:

CPA
| engt h DEF

B-10
D-8

Integer Equivalent of a Character (:ICH:)

:ICH: takes one or two characters and converts them into their integer equivalents as follows:
LDA = L(—ICH "A") ;get negative of "A’

For a more detailed use of :ICH:, refer to the SQUZ macro code in Chapter 5.

Length Operator (:L:)

The length operator is replaced by the length of the string contained in the assembly-time variable
that follows it. An integer always results from the use of the length attribute.

If you use a type integer assembly-time variable with this operator, then the result is the number of
significant digits in its value.

Example:

&LENGTH | GLOBAL O
&LENGTH | SET :L: &VESSAGE ; &LENGTH is set to nunber of

; characters in &VESSAGE.

JSB EXEC

DEF *+5 : return address
DEF =D2 ; EXEC 2 - out put
DEF =D1

DEF =S&VESSAGE ; string to be output
DEF =L-& ENGIH ; negative nunber of characters in
; string.

Assembler Instructions 4-55

Memory Relocatability (:MR:)

The unary operator :MR: returns the relocatability of its operand as an absolute value, as follows:

0 = Absolute

1 = Program relocatable
2 = Base page relocatable
3 = Common relocatable

4 = Pure code relocatable (CDS only)
5 = EMA relocatable

6 = SAVE relocatable

7 = External

9 = Allocate EMA

10 = Allocate SAVE

12 = Allocate common

20 = Two or more of the above

Logical Negation (:NOT:)

The :NOT: operator performs a logical negation on a number; that is, each bit in the representa-
tion of the number is complemented (ones complement).

Example:
&NUM | GLOBAL O : Declare ATV and initialize to O.
&NOTNUM | GLOBAL : NOT: &NUM : &NOTNUM i s decl ared and
Al F (:NOT: &P1) <3 ; initialized to —1.
LDA =L (: NOT: 10) ; gets -11

4-56 Assembler Instructions

Substring Operator (:S:)

The substring operator is replaced at assembly time by a portion of a type-character assembly-time
variable, macro parameter, or string. The operator looks like this:

. St [start, num] &atv

where:
start is the relative place of the starting character.
num is the number of characters desired.
&atv is a type character assembly-time variable.

start and num can be integers or assembly-time variables of type integer. They cannot be ATV ar-
ray references or expressions. Start must be positive and less than or equal to the length of &atv.

For instance, :S:[2,7]&string means starting with the second character of &string, pull out the next
seven characters to make a substring.

Note The substring operator will consume strings that follow it up to another operator
or to the end of the line, as follows:

:s:[1, 2] WHAT' & WHO WHEN

results in: “\H'

while: ©s:[1, 2] “WHAT” : uc: &WHO* WHEN'

where: &NHO is “HM

results in: “WWHHI MAHEN"

Example:
&substring[0, 19] CGLOBAL * XXXXXXXXX' ; declare variable
; to hold substring.

&string CGLOBAL 'Macro Assenbler’ ; declare string
&substring CSET S [7,9]&string ; substring is now

“Assenbl er”.

Assembler Instructions 4-57

Symbol ID (:SY:)

The unary operator :SY: returns, as an absolute value, the symbol ID of the expression it operates
on.

This is the same number as in the external and allocate records for the symbol.

If the expression does not reference an external or allocate symbol, 0 is returned.

Type Operator (:T:)

The type operator is replaced by the current type of the assembly-time variable that follows it. A
character string always results from use of the type operator. The possible types are:

e [— Type integer

e C — Type character

e U — Undeclared

Examples:
&TYPE CGE.OBAL ' : Decl aration of &TYPE
& NT | GLOBAL 'O’ ; Declaration of integer & NT
&TYPE CSET :T: & NT : The character ATV &TYPE is set to

: the character '1’ since & NT is
; of type integer.

AlF T &XYZ=" W’
&XYZ CGELOBAL ' XXX
AELSE
&XYZ CSET ' XXX
AENDI F

Uppercase Operator (:UC:)

The uppercase operator maps a character string to all uppercase. It precedes a character string or
assembly-time variable. The assembler substitutes uppercase letters for any lowercase letters en-
countered in the string. Special characters do not change.

Example:
&upper . case[0,5] CLOCAL “0” ; declaration of ATV to hold uppercase
; string.

& ower . case CLOCAL *“Thi nk”
&upper . case CSET : UC: & ower.case ; ATV now contains “TH NK’

4-58 Assembler Instructions

Arithmetic Operators

There are eight arithmetic operators:

* :ASH:
/ :LSH:
+ :MOD:
- :ROT:

When appearing in the operand field as operators, the arithmetic operators *, /, +, and — perform
multiplication, division, addition, and subtraction on numerical values. When used in assembly
time expressions, the + and — operators accept any operands. All other operators in this group
require both operands to be absolute.

:ASH: and :LSH:

The :ASH: operator performs an arithmetic shift and the :LSH: operator performs a logical shift.
They are used in expressions of the form:

value : ASH: number
value : LSH: number

where:

value is the value of the word to be shifted.

number is the number of bits to be shifted in the word, positive for a left shift, negative for a
right shift. In macro pass expressions, these are 16-bit operators, while in Assem-
bly pass expressions, they are 32-bit operators.

Examples:

&NUML | GLOBAL 100005B ; Declaration of &NUML
&NUML | SET &NUML: ASH: 3 &NUML now equal s 100050B.
&NUM2 | GLOBAL 100005B Decl aration of &NUM2.
&NUM2 | SET &NUMR: LSH: 3 &NUM2 now equal s 000050B.
foo EQU BAR LSH: &I T

Assembler Instructions 4-59

:MOD:
The :MOD: operator calculates the modulus of a value. It is used in expressions of the form:

number: MOD: divisor

where:

number and divisor are integer values.

The value of the expression is the remainder when number is divided by divisor.

Example:
&RESI DUE | GLOBAL 37 : Declare and initialize &RESI|I DUE.
&MVODULUS | GLOBAL 5 : Declare and initialize &MODULUS.

&REL. POS | GLOBAL &RESI DUE: MOD: &MODULUS ; Decl are &REP.PCS and initialize
; to 37 MOD 5 (value of 2).

:ROT:

The :ROT: operator rotates the word used to represent a value. It is used in expressions of the
form:

value: ROT: number

where:
value is the value to be rotated.

number is the number of bits to be rotated. A negative value specifies rotate right, a posi-
tive value specifies rotate left. In macro pass expressions, 16 bits are rotated, while
in Assembly pass expressions, 32 bits are rotated.

Example:

&ROT | GLOBAL 7 ; &ROT is declared and rotated right
&ROT | SET &ROT: ROT: -2 ; two bits.
ABS f oo: ROT: 3

4-60 Assembler Instructions

Comparison Operators

The comparison operators are:

= (equal to)
>= (greater than or equal to)
<= (less than or equal to)
<> (not equal to)

> (greater than)

< (less than)

Operators = and <> serve for both integer and string comparison. The Assembler determines
which type of comparison to perform by the type of the first operand encountered in the expres-
sion. For example, if the first operand is a string, the remaining operands are interpreted as
strings, also. Similarly, if the first operand is an integer, the Assembler interprets all other oper-
ands as type integer.

The result of a comparison operand is 1 if the comparison is true, or 0 if it is false. In this way the
logical operations can be applied to comparison operations.

Examples:

AE &X=10
AELSEI F &X=100

AENDI F

Logical Operators
The logical operators are:
:AND: (logical AND)
:OR: (logical OR)
These operators make comparisons and perform 16-bit logical operations. The result of a logical

operation is 1 if true, and 0 if false. In macro pass expressions, these are 16-bit operators. In As-
sembly pass expressions, they are 32-bit operators, and both operands must be absolute.

Examples:
Al F (8X>=0) : AND: (&X<10)
AELSEI F (8X>=10) :AND: (&X<20)

AENDI F
LDA f oo: AND: bar

Assembler Instructions 4-61

Concatenation

The Assembler substitutes the actual value of an assembly-time variable for every occurrence of it
in a label, opcode, or operand. This is called string substitution. In Macro/1000, a string is de-
fined as a set of characters, sometimes surrounded by single quotes. Type-character assembly-time
variables are symbols representing character strings. When two character strings, or their symbols,
are placed immediately adjacent to each other, concatenation occurs.

The Assembler removes all single quotes (except two in a row) in a string before it tries to ascer-
tain meaning from the statement.

Concatenation is allowed anywhere in a program, including macro definitions.
Example:

&stringl CLOCAL ’This string’

&string2 CLOCAL 'that one’

&string3 CLOCAL &stringl joined with "&string2

Now &string3 contains “This string joined with that one”.

Example:

&wor d1 CLOCAL 'one and’
&wor d2 CLOCAL ' two’
&wor d12 CLOCAL &wordlé&word2 ; &wrdl2 contains “one and two”

Example:

® CLOCAL A
LD® address ; instruction assenbl ed as LDA.

This example illustrates string substitution capabilities. No quotes are needed for the characters
LD because they appear on the left side of the second string.

Characters appearing to the right of an assembly-time variable must be in single quotes:
&string CLOCAL &word’right side of ATV

Example:
&num | LOCAL 2

LDA =D&num

This example illustrates the capability of using string substitution with literals.

4-62 Assembler Instructions

Conditional Assembly

Conditional assembly pseudo operations are commands to the assembler telling it:

e to either ignore or assemble a set of statements depending on some condition (AIF, AELSEIF,
AELSE, AENDIF).

e to assemble a set of statements while some condition is true (AWHILE, AENDWHILE).

Also discussed in this section is MNOTE, the pseudo opcode to declare user-defined errors, and
REPEAT AND ENDREDP, which allow you to assemble a set of instructions a specific number of
times.

The format for AIF, AELSEIF, and AWHILE pseudo opcodes is:

opcode operand | ; comments]

The format for AELSE, AENDIE and AENDWHILE pseudo opcodes is:

opcode [; comments)

AIF, AELSEIF, and AWHILE Operands

The operand of AIF, AELSEIF, AWHILE consists of:

e Assembly-time variables
e integer constants

o characters

and operators:

® unary: - (negate) :NOT: (logical negate)
L (length attribute) :T: (type attribute)
:S: (substring) :UC: (uppercase)
:ICH: (character to integer)

e arithmetic: * (multiply) :ROT: (rotate)
/ (divide) :MOD: (modulo function)
+ (add) :LSH: (logical shift)
- (subtract) :ASH: (arithmetic shift)

e logical : :AND: (logical AND) :OR: (logical OR)

e comparison = (equal) <> (not equal)
>= (greater than or equal) > (greater than)
<= (less than or equal) < (less than)

The operand can be either a character or an integer expression. The type of the first element de-
termines the type of the expression.

Assembler Instructions 4-63

The following operators can be used with integer expressions:

<= >= < >
:ROT: :LSH: :ASH: :MOD:
:AND: :OR: :NOT: :ICH:

The following can be used with either integer or character expressions.

T :L: :S: = <>

Evaluation of Expressions

The operand of the AIF, AELSEIF, and AWHILE pseudo opcodes must evaluate to an integer. A
non-zero value is interpreted as true, zero value is interpreted as false. In this case, the boolean
operations can be applied to comparison operations.

Examples:
AlF 1 : Uncondi tional true.
AELSEI F &X=5 ; If & is 5, the expression &=5 is eval uated

; as value 1 and is therefore true.
AWH LE (&X=10): OR (&Y=5)
In the last example, the comparison result of &X=10 (0 or 1) is logically ORed with the compari-

son result of &Y=5 (0 or 1), giving a 0 or 1 final value to the operand.
More legal operands:

AWHI LE —5>=(&X+1)
AELSEI F (:L:&P1=12): AND: (&P2="string’)

Examples of illegal operands:

AlF &X=+5 ; Plus is not a unary operator.
AWH LE (&X+2=(&Y+4) ; Unmat ched parent hesi s.

Using AIF and AELSEIF

If the operand field of an AIF or AELSEIF statement evaluates to a non-zero value, MACRO as-
sembles all of the code following it until an AELSE, AELSEIF, or AENDIF is encountered.

If the operand field of an AIF or AELSEIF statement evaluates to a value 0, and an AELSE or
AELSEIF is present, MACRO ignores all of the code between the two statements. Assembly will
begin at the AELSE or AELSEIF statement. If an AELSE or AELSEIF is not present, MACRO
ignores all of the code up to the AENDIF statement.

An AIF statement must appear before any AELSE, AELSEIF, or AENDIF statements. Only one
AELSE may appear after an AIF or AELSEIE. There must be one and only one AENDIF for
each AIF statement.

Nesting of AIF statements is permitted to 16 levels. This nesting limit is global, that is, if the level
is at 14 and a macro call is made to a macro that does two more AIFs, an error results. Keep this
in mind when coding recursive macros.

4-64 Assembler Instructions

Example 1:

AlF &debugflag = "ON ; If flag is on, then assenble the call
VWRI TE tenpl, tenp2 . to the macro WRI TE.
AENDI F
Example 2:

Depending on the value of the &status, one of the following sections of code will be assembled:

Al F &st at us=1 : &status is one,

TYPECHECK P1, P2 : call macro TYPECHECK.
AELSEI F &st at us=2 &status is two,

JMP NEXT. SECTI ON junp to next section.
AELSEI F &st at us=3 &status is three,

QUT. BUFFER buf f er call macro QUT. BUFFER

AELSE If &status is not 1, 2, or 3
ERROR &st at us assenble the call to nmacro ERROR
AENDI F
Using AWHILE

MACRO continues to assemble the lines of code between AWHILE and AENDWHILE state-
ments until the operand of the AWHILE is evaluated to a 0 (false condition). Make sure that the
operand of the AWHILE eventually evaluates to 0 or the assembler will be in an infinite loop.

AWHILE statements can be nested to a level of five deep. This nesting limit is global, that is, if
the level is at 3 and a macro call is made to a macro that does two more AWHILEs, an error re-
sults. Keep this in mind when coding recursive macros.

Examples:
asciitab EQU *
&X | GLOBAL 64
AVH LE &X < 90
&X | SET &X+1
DEC &X
AENDWHI LE

is the same as typing:

asciitab DEC 65
DEC 66
DEC 67
DEC 90
If a local assembly-time variable is declared inside an AWHILE loop, it is local only to that loop, it
is not known to the code outside of the loop.

You may use the system assembly-time variable, & REP in AWHILE loops. The original & REP
value is 1, and it is incremented by 1 each time the loop is repeated.

Assembler Instructions 4-65

REPEAT and ENDREP

REPEAT #repetitions [; comments]

ENDREP [; comments]

The REPEAT pseudo opcode commands the assembler to repeatedly assemble a set of instruc-
tions a fixed number of times. The set of instructions is terminated by the ENDREP statement.

The operand is an integer expression giving the number of times the set is to be repeated. The in-
teger expression may include assembly time variables and macro parameters.

REPEAT loops may be nested to a level of five deep.

Example:

REPEAT &X+1
DEC -1
DEC 0
ENDREP

If &X=2, this is what would be assembled:

DEC -1
DEC 0
DEC -1
DEC 0
DEC -1
DEC 0

The maximum combined depth of REPEAT and AWHILE loops is five. For example:

AVH LE &t rue
REPEAT 2
REPEAT 3
REPEAT 4
AVH LE &R5
AENDVHI LE
AENDREP
ENDREP
ENDREP
AENDVHI LE

If a local assembly-time variable is declared inside a REPEAT loop, it is local only to that loop, it
is not known to the code outside the loop.

You can use the system assembly-time variable &.REP in REPEAT loops. The original & REP
value is 1, and it is incremented by 1 each time the loop is repeated.

4-66 Assembler Instructions

MNOTE

MNOTE string_expression
The MNOTE pseudo opcode allows you to create user-defined errors by flagging the line as an
error, causing an error message to be listed with the list file and incrementing the MACRO error

count. string_expression is the message to be listed. The constraints on the string expression are
the same as those for the CGLOBAL command.

Example:

AlF (®>'A') : AND: (®<>'B')
MNOTE ’ Regi ster should be A or B, not '®
AELSE
AENDI F
The following might appear in the listing (assumes ®=Q):
MNOTE Regi ster should be A or B, not Q

60>> User-defined error

Assembler Instructions 4-67

Using Macros

The Macro/1000 macro language is the set of statements that allow you to define and access mac-
ros as well as create macro libraries. A macro is a representation of a sequence of instructions
called a macro definition. When a macro call statement is encountered at assembly-time, it is re-
placed by the instructions in the macro definition. A macro may be called by many programs and
many times within a program.

Macros are different from subroutines. A macro is replaced by its expanded form at assembly-
time. Therefore the code is generated for the statements of a macro definition every time the
macro is called. Code for a subroutine is generated once and causes a break in program flow at
execution time.

A macro must be defined before it is called in a program. You can define a macro by including the
definition in the program, by referencing an INCLUDE file, by declaring a macro library, or by
calling another macro that provides the definition. Macros can be nested to any level within mac-
ro definitions.

Topics covered in this chapter are:

e Example of a macro.
e (alling macros.

e Writing macro definitions, including macro statement formats, special considerations of
comments and listing options within the definition, and redefinition of opcodes.

e Macro parameters, including how to pass and receive information to and from macro calls,
formal, actual, and default parameters.

e Nesting macros.

e (Creating macro libraries, including how to create and access macro libraries.

Using Macros 5-1

Example of a Macro

Suppose you would like to move the contents of one memory location to another location and you
do not want to write the instructions every time you want the move. You can define and call a
macro to eliminate the repetition of the instructions. The macro definition in this case would be:

1. MACRO

2. MOVEM &from,&to
3. LDA &from

4. STA &to

5. ENDMAC

The macro statement (1) designates the start of a macro definition.

The second statement is the macro name statement. MOVEM is the name you have given to the
macro. It uses two parameters, &from and &to. These are called formal macro parameters and
will be replaced by actual values when the macro is invoked. Macro parameters are discussed later
in this chapter.

The body of the macro definition (3 and 4) contains two statements, the LDA and STA instruc-
tions. The operands are the formal parameters. They, too, are replaced with actual values when
the macro is invoked. The body of a macro can contain any number of statements.

The ENDMAC statement (5) terminates a macro definition.

After the macro has been defined, it can be invoked with a macro call statement such as:

MOVEM addr essl, addr ess?

The code that Macro/1000 will generate is this:

LDA addressl
STA address?

By convention, macros are defined at the beginning of a source file; however, definitions can actu-
ally be anywhere in the source code, provided the macro is defined before it is called.

5-2 Using Macros

Calling Macros

The format of the macro call statement is:
[labell] name [parameter list] [; comments]
The label is an optional parameter and is treated in the same way as a formal parameter, if it is
defined in the macro.
The name identifies the macro to be called as specified in the macro definition.

The optional parameter list can contain one or more actual parameters. These parameters will
replace the formal parameters of the macro definition when the macro is expanded. Formal and
actual parameters are discussed later in this chapter.

Actual parameters are treated as character strings. Their usage is determined by the macro defini-
tion.

The macro call statement always appears in the listing, the expanded code appears only if in long
or medium listing mode.

From the previous example, the macro call statement is:

MOVEM address1, address2

where MOVEM is the name of the macro definition, and address1 and address2 make up the pa-
rameter list.

Using Macro Libraries

The macro to be called may have been previously defined in the source code, or its definition may
be contained in a macro library.

Before a macro contained in a macro library can be accessed, a MACLIB statement which refer-
ences that library must appear in the program. This informs MACRO to search that library if a
macro which has not been defined in the program is encountered.

The format of the MACLIB statement is:
[label] MACLI B filedescriptor

No label is required. If specified, it is ignored.

The operand field contains an RTE file name. The file name can be represented by a single as-
sembly-time variable, a macro parameter, or can be entered explicitly. No line-continuation mark-
ers are permitted and, since no concatenation is performed on the statement, only one assembly-
time variable is permitted.

In the CI file-system environment, MACRO will default to user-defined search path 3 (refer to the
UDSP description in the CI User’s Manual for details on UDSPs). If this fails, MACRO then
searches the directory that contains the source file.

Once you have entered the MACLIB statement, you can call any macros contained in the same
library.

Using Macros 5-3

If a macro that has been defined in the source code has the same name as a macro contained in
the macro library, then any calls to that macro will refer to the macro defined in the source code.
However, you cannot call a library macro and then define another macro with the same name.

Libraries are searched in the order they are referenced by MACLIB statements within the source
code.

Writing Macro Definitions

A macro definition is a set of statements consisting of a macro statement, a macro name state-
ment, the macro body, and the ENDMAC statement.

The Macro Statement

The MACRO statement indicates the beginning of the macro definition, and is the first statement
of every macro definition. The format is:

MACRO [n, n, n]
The label field is ignored.

The operand field is optional and specifies in which columns the fields will begin when the macro
is expanded. If an operand appears in the statement, it must contain three integers, separated by
commas, that indicate the starting columns of the opcode, operand, and comment field, respec-
tively.

No error will result if the substituted value crosses a field boundary during a macro expansion.
When a field, as specified by the parameters, is not large enough, it will be extended and other
fields may be shifted to accommodate the change. For example, if the opcode field is specified to
start at column 5 and the label is 6 characters long, the opcode field will begin at column 8.

The Macro Name Statement

The macro name statement assigns a symbolic name to a macro through which the macro can be
referenced. This statement also defines the list of formal macro parameters.

It must be the second statement of every macro definition.
The format of this statement is:

[labell] name [parameter list] [; comments]

If a label is used, it must begin in column one.

A macro name must start with an alphabetic character or a period (.) and can be followed by one
to 15 alphanumeric characters. If a macro is being defined within the body of another macro, the
macro name can be an assembly-time variable or a macro parameter.

The parameter list is a set of one or more macro parameters and their optional default values,
separated by commas.

The parameters included in a name statement, in both the label and parameter list, are called
formal parameters. The formal parameters are assigned values when the macro is called. Macro
parameters are discussed in more detail in the following section of this chapter.

5-4 Using Macros

The Macro Body

The macro body is one or more assembly-language statements that are generated each time a mac-
ro is called.

The following is an example of a macro definition:

MACRO 7,12,21 : MACRO st at enent
& abel MOVE &from &t o :Macro nane stat enment
& abel LDA &from ; Macro body stat enent
STA &to ; Macro body statenent
ENDMAC . ENDMAC st at enent

The macro name statement in this example indicates that the macro is to be invoked with three
parameters in the parameter list (one is a label parameter).

The macro body can use these parameters to perform its actions.

When the macro is called, the formal parameters &label, &to, and &from in the body will be re-
placed by the values specified in the call.

For example, if the macro call statement:

HERE MOVE ADDR1, ADDR2

is encountered, the formal parameters &label, &from, and &to are replaced by the symbols
HERE, ADDRI1, and ADDR2. The assembly language statements generated are:

HERE LDA ADDR1
STA ADDR2

If the following macro call statement is encountered:

LL32 MOVE ADDR1+CFFSET, ADDR2+OFFSET

the assembly language statements generated are:

LL32 LDA ADDR1+OFFSET
STA ADDR2+COFFSET

It is important to remember that labels occurring in statements in the macro body are generated
each time the macro is expanded. To avoid having the same label generated each time the macro
is expanded, system assembly-time variables can be used to generate unique labels. System assem-
bly-time variables are discussed in Appendix K.

The previous example is another method of ensuring that a unique label will be generated in each
expansion. It defines labels in a macro definition as macro parameters such that the unique label
names are assigned on each call.

You do not need to declare a label parameter on the macro name statement if you only need to
declare a label for the first executable word of the macro. The above examples have labels for il-
lustration purposes. The following example illustrates how to define a label for the first word of a
macro.

Using Macros 5-5

Example:

MACRO
MOVE &FROM &TO
LDA &FROM
STA &TO
ENDMAC

Now call the macro as follows:

LABEL MOVE ADDR1, ADDR2
or
LABEL EQU *

MOVE ADDR1, ADDR2

and any references to LABEL will reference the word containing LDA ADDRI.

Comments

A comment statement that starts with an asterisk in column one will appear in the listing along
with the other statements that come from the macro definition. A comment statement that starts
with a period in column one, immediately followed by an asterisk, will not appear when the macro
is expanded.

For example, when the macro MIN is defined, several comments are included before the macro

name statement to provide information about the macro. To avoid unnecessary repetition of these
comments each time the macro is expanded, they begin with a period followed by an asterisk:

MACRO

R R R b S Sk Sk Sk S Sk S S I R I Sk Sk S S Sk I R R Ik kS I Sk S Sk S Sk S S I I kS

* This macro returns the mnimum of two nunbers *
.* in the A-Register. *
* Creation date: 6/17/92 Date changed: 7/3/92 *
* WARNI NG - There is no check for overflow *
_***

MN &P1, &P2
*Conput e m ni mum nunber

LDA &P2

CMA, | NA

ADA &P1

SSA, RSS

CLA

ADA &P2
*M ni rum nunber is now contained in the A-Register

ENDVAC

When this macro is expanded in a medium or long listing the two comments that are within the
body will appear along with the rest of the code being generated.

5-6 Using Macros

The ENDMAC Statement

The ENDMAC statement signifies the end of a macro definition. It must be the last statement in
every macro definition. The format of this statement is:

ENDVAC [; comments]

Macro Parameters

Information is passed from a macro call to the macro definition through macro parameters. A for-
mal Macro ENDMAC statement macro parameter is a symbol in a macro definition that can be
assigned values by corresponding actual parameters in a macro call. An actual macro parameter is
a value that is passed to a macro definition.

Formal Macro Parameters

A macro parameters formal macro parameter appears in the macro name statement and then can
be accessed throughout the macro definition. It must start with an ampersand (&) and can be fol-
lowed by one to fifteen alphanumeric characters.

A macro parameter cannot be changed by an ISET or CSET instruction. It is always of type char-
acter.

Formal parameters can appear in the label field of the macro name statement. They are treated
as regular formal parameters. Any formal parameter can appear in the label field in the body of
the macro.

Valid formal parameters:

&VARI ABLE &16B &32767
&Vari ABl e &X25f 1 &l abel

Note that lowercase characters are mapped to uppercase characters. From the example above,
&VARIABLE and &VariABIle are the same parameters.

Invalid formal parameters:

ADDR1 first character not an ampersand

&XYZ* 17 quotes are illegal

&abcdef ghi j kI mop more than 15 characters after ampersand
&Price$3. 40 dollar sign is illegal

Using Macros 5-7

When MACRO encounters an assembly-time variable or macro parameter in a macro expansion,
the order of selection to determine what value is to be substituted for the ATV or macro
parameter is:

. Formal macro parameters inside of the macro expansion.
2. Assembly-time variables declared to be local for the pending macro expansion.
3. Assembly-time variables declared to be local in a macro that called this pending macro.

4. Assembly-time variables declared to be global.

Example:

MACRO

TYPE &nmessage
EXT EXEC
JSB EXEC
DEF *+5
DEF =D2 ; EXEC 2, out put
DEF =D1 ;to LU 1
DEF =S&nmessage ;
DEF =L-:L: &message ;negative # of characters

ENDVAC

The macro TYPE prints an ASCII string to the operator’s terminal. It has one formal parameter,
&message. The parameter tells EXEC the actual string, then tells how many characters are in the
string.

Example:
MACRO
&l abel | NCRE &address, &i ncrenent. val ue
&l abel LDA &addr ess
ADA =D& ncrenent . val ue
STA &addr ess
ENDVAC

The macro INCRE increments the contents of an address by a specific value. The formal parame-
ters are &label, &address, and &increment.value.

If you were to have a label in the macro body and you were to call a macro more than once, you
would get a duplicate label name. To avoid duplicate label names, use the system assembly-time
variable &.Q, which generates a unique number every time the macro is called. Append &.Q to a
symbol name such as:

LABEL&. Q
Given that LABEL&.Q is a label within a macro, the first time that macro is called, LABELO is

generated. The second time, LABELL1 is generated, and so on. Any references to that label must
be within the macro.

5-8 Using Macros

Actual Macro Parameters

An actual macro parameter appears in a macro call statement. It contains 0 to 80 ASCII charac-
ters optionally surrounded by quotes. If a parameter contains a:

comma,
blank,
semicolon,
backslash, or
ampersand,

it must be surrounded by single quotes. A zero-length parameter is represented by two adjacent
single quotes. Actual macro parameters are always type character.

If a character string contains a single quote, the string must be surrounded by single quotes and
two single quotes are required in the string for one to be passed as part of the string. Therefore,
to produce a single quote by itself, four single quotes are required.

Actual parameters can appear in the label field of the macro call statement. They follow all the
rules of other actual parameters. The parameters in the label field are treated one of two ways
depending on the situation at the macro name statement. If a formal parameter appears in the
label field of the macro name, then the parameter is taken purely as a parameter to be used as a
label or in an operand in the macro definition. If the definition does not have a formal parameter
in the label field of the name statement and a label appears in the label field of the call statement,
then it is taken as a label. The label refers to the value of the location counter when the

macro call is made. If the macro does not change the location space with an ORB, ORR, ORG, or
RELOC statement, this will be the first word of the expanded macro.

Examples of valid actual parameters:
i ncrenent . val ue periods are legal
" NEW Numi blanks are legal, if the parameter is surrounded by single quotes.
348 numbers are legal; this is interpreted as "348’.

) ’

character string of length zero.

#one All special characters are legal; parameters containing any special

STOP! characters listed above must be surrounded by single quotes.

&abc assembly-time variables or macro formal parameters must be previously
defined.

" &abc’ passing the string ’&abc’ rather than the variable &abc.

Num NEW commas are not allowed unless the parameter is surrounded by single

quotes; this is interpreted as two parameters.

"Don’’'t Care’ pass the string Don’t Care. Notice that it takes two quotes for one to be
passed as part of the string.

character string of one single quote. Notice that four single quotes pro-
duce one quote.

Using Macros 5-9

Example:
TYPE 'H there’

which calls the macro TYPE (defined in the previous section), has an actual parameter, "Hi there’.

&g CGLOBAL "Hi there’
TYPE &nsg
produces the same results as the example above.
&g CGLOBAL "Hi there’
TYPE ' &ns(Q’

passes the string ’&msg’ to TYPE, not the contents of variable &msg.

Example:
HERE | NCRE NOWORDS, 2

calls the macro INCRE (defined in the previous section) and asks it to increment the contents of
NOWORDS by 2. The actual parameter HERE is used as a label within the macro.

Default Parameters

Any formal parameter may have a default value appended to it. A default value is used when no
actual parameter appears in the macro call statement. For instance, &value’=D5’ is a formal
macro parameter with a default value of ’=D5’. If there is no default value for a formal parame-
ter on the macro name statement and that parameter is defaulted in the call statement, a zero-
length string will be used as the actual parameter.

Example:
MACRO
ADDEM &addr 1, &val ue’ =D5’ , &addr 2
LDA &addr1
ADA &val ue
STA &addr 2
ENDVAC

If no value for &value appears in the macro call statement the default value ’=D5’ is used.

The macro call statement using the default value must leave a space for it. For example, this is a
sample macro call statement for the macro ADDEM:

ADDEM fieldl,,field2

The commas are required to indicate the second parameter is defaulted.

Example:
MACRO
&l abel MOVE & rom &t o, ® A’
&l abel LD® &f rom
ST® &to
ENDMAC

5-10 Using Macros

All of these macro call statements produce the same assembled code:

HERE MOVE fieldl,field2 or
HERE MOVE fieldl,field2, or
HERE MOVE fieldl,field2, A

The assembler code generated for all of the above statements is:

HERE LDA fieldl
STA field2

Nested Macros

Macros that have been defined within the body of another macro are called nested macros. Mac-
ros can be called from within other macros (nested macro calls); therefore, it is possible to write a
macro definition that is entirely made up of macro calls.

Redefinition of Opcodes

An opcode can be redefined as a macro by using the opcode mnemonic as a macro name in a
macro definition. For example:

MACRO
MPY &PARL
JSB MULTI
DEF MULTI RTN&. Q
DEF &PARL
MULTI RTN& Q EQU *
ENDMAC

To use a redefined opcode as the actual opcode (and not as the macro you changed it to) use the
:OP: operator. This is a unary operator used in the opcode field, preceding the opcode. It tells
the assembler that the characters that follow should be interpreted as an opcode, not as a macro.

For example, to use the MPY opcode after you have defined it:

LABEL : OP: MPY VALUE

The :OP: operator applies to the entire opcode field. If :OP: appears before a line containing sev-
eral opcodes (from the alter-skip or shift-rotate group), all will be interpreted as regular opcodes,
even though several may have been redefined as macros.

If more than one opcode appearing on a line has been redefined as a macro, and no :OP: operator
is used, the first opcode is expanded as a macro, and the remaining opcodes are ignored. For
example, if the opcodes CMA and INA have been redefined as macros, the statement:

:OP: CVA, | NA

Using Macros 5-11

would cause both opcodes to be treated as regular opcodes. However, the statement:

CVA, | NA

will cause the macro CMA to be expanded, and the opcode INA to be ignored.
The following example illustrates the use of the :ICH: operator as well as other constructs.

The following macro is used to generate squoze code for an instruction symbol table. Squoze code
is radix 40 (50b), where we assign the value 0 to blank, 1-10 to 0-9, 11-36 to A-Z, 37,38,39 to ., §,
and _.

This macro generates a one or two word (two if three or more characters) squoze code symbol,
followed by the opcode. The symbol table scanner knows there is a second word if the third char-
acter in the first word is not blank.

MACRO
I NST &SYM &OP

*

*

* L # S % & () *o+ -

&SQTBL[64] | GLOBAL 0,[3]-1, 38,[9]-1, \
37,-1, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, \
[7] -1, 11, 12, 13, 14, 15, 16, 17, 18, 19, \
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, \
34, 35, 36, [4] -1, 39

*

*

&N ILOCAL :L:&SYM

& 6] ILOCAL [6]0
&X[6] ILOCAL [6]0
&J ILOCAL 0
&SYN CLOCAL &SYM
*

AVHI LE &N>0
&J I SET :I1CH.:S:[&N, 1] : UC. &SYN-37B ; integer value of char |ess 37B
* ; entry 1 in table is for blank
& &N | SET &SQTBL[&J] ; get squoze code for char.

&X[&N] I SET 1 Not e occurrence

&N | SET &N-1
AENDVH LE
*
* Want cl1 for one char., cl1*40+c2 for two, and (c1*40+c2)*40+c3 for three.
* Note, expression analyzer is strictly left to right, not precedence.
*

ABS &C] 1] * (&X[2] * 39+1) +&C] 2] * (&X[3] *39+1) +&][3]

AlF :1:&ym> 2 ; Need second word only if nore than 2 char.
ABS &(4] * (&X[5] *39+1) +&(5] * (&X[6] *39+1) +&(6]
AENDI F
OCT &OP ; include the opcode
ENDVAC

5-12 Using Macros

Recursion

A macro can invoke itself by being called from within its own definition.

Example:
MACRO, | =I
MACRO
FACT &num
Al F &nunx>0
&Pr oduct | SET &Pr oduct * &Num

&New. Num | LOCAL &Num 1
FACT &New. Num
AENDI F
ENDVAC
Nam USE. FACT

Thi s nodul e exerci ses nacro recursion

&Product | GLOBAL 1

FACT 5
Dec &Pr oduct
End

The macro FACT calculates the factorial of its parameter, by invoking itself using consecutively
smaller parameters. The assembly-time variable &Product accumulates the factorial value, and
the assembly-time variable &New.Num holds the decremented value used in the recursive call.
Figure 5-1 contains a partial listing of a program in which the macro FACT is called with an actual
parameter whose value is 5.

When using recursion, it is important to remember that a limit must be reached at which point the
recursion must stop. In this example, conditional assembly stops the recursion when the macro is
called with a parameter equal to zero.

Note that since macro parameters have only one value associated with them, calling the macro
with a different actual value will change the value of the parameter in all levels of recursion.

Cross-recursion can occur if a macro invokes a second macro which, in turn, invokes the first. The
same restrictions apply to this type of recursion, and again, you must ensure that the process will
stop at some point.

Also note that the nesting level of AIFs (16) and AWHILEs (5) must not be exceeded. In the
above macro, a call with 17 would exceed the AIF nest limit of 16.

Using Macros 5-13

PAGE# 1 FACT: MAC: : MANUALS 8:51 AM TUE., 1 SEPT, 1987

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011~

MACRO, | =I

&Pr oduct
&New. Num

MACRO

FACT &num

Al F &unk>0
| SET &Pr oduct * &Num
| LOCAL &Nunm+-1
FACT &New. Num
AENDI F
ENDVAC
Nam USE. FACT

00012~ Thi s npdul e exerci ses nmacro recursion

00013*

00014

00015 00000
00015

00015

00015

00015 00000
00015

00015

00015

00015 00000
00015

00015

00015

00015 00000
00015

00015

00015

00015 00000
00015

00015

00015

00015 00000
00015

00015

00015

00015

00015

00015

00015

00015

00015

00015

00016 00000 000170
00017

Macro: Macro/ 1000

&Pr oduct

+
+&Pr oduct
+&New. Num
+
+
+&Pr oduct
+&New. Num
+
=+
+&Pr oduct
+&New. Num
+
=+
+&Pr oduct
+&New. Num
=+
+
+&Pr oduct
+&New. Num
+
+
—&Pr oduct
—&New. Num

+ 4+ 4+ + + +

| GLOBAL 1
FACT "5
AlF "5 <> 0

| SET 1*5

| LOCAL 5-1

FACT "4
AlF "4 <> 0

| SET 5*4

| LOCAL 4-1

FACT '3
AlF '3 <> 0

| SET 20*3

| LOCAL 3-1

FACT 12
AlF '2"<>' 0

| SET 60*2

| LOCAL 2-1

FACT "
AlF '1'<>' 0

| SET 120*1

| LOCAL 1-1

FACT o
AlF "0 <> 0

| SET &Pr oduct * &Num
| LOCAL &Num+-1
FACT &New. Num

AENDI F

AENDI F

AENDI F

AENDI F

AENDI F

AENDI F

Dec 120

End

Rev. 5000 870429 : No errors found

5-14

Using Macros

Figure 5-1. Recursion Example

Creating Macro Libraries

A macro library is a file consisting of macro definitions specially formatted for fast and easy access
by MACRO. You can create a macro library by putting macro definitions in a file, specitying ‘M’
in the control statement, and running the file through the MACRO. By referencing the library in a
source file with a MACLIB statement, you can access all the macros in that library.

Note that a maximum of five macro libraries is allowed per program.

The ‘M’ option in the control statement tells the assembler to create a macro library. No
relocatable code is generated by the assembler in this mode. In this case the third parameter on
the runstring specifies the name of a macro library and not the relocatable file name.

The “T” option in the control statement takes on a new meaning when used with the ‘M’ option.
“T” normally means to list the symbol table, when used with ‘M’, it causes a list of all the macro
names in the library to be placed in the list file.

In the Macro Library creation mode, the number of opcodes available (outside of the macros) is
limited to the following:

INCLUDE
MACLIB
DELETE
EXTRACT
SUBHEAD
HED

SKP

SPC

Except for DELETE and EXTRACT (described below), all of these opcodes are similar to those
of the same name discussed elsewhere in this manual, however, the following differences do exist:

1. No ATVs are allowed, therefore, there are no string substitutions done.

2. Only one level of INCLUDE is allowed, however, the INCLUDE file may have one or more
MACLIB request.

Using Macros 5-15

DELETE and EXTRACT

DELETE name[, name] [, name] . . . [name] [; comments]

EXTRACT namel[, name] [, name] . . . [name] [; comments]

EXTRACT or DELETE statements must immediately follow an INCLUDE or MACLIB state-
ment. While as many EXTRACT or DELETE statements as needed may be used, they must all
be either EXTRACTs or DELETESs. That is, both EXTRACT and DELETE may not appear after
the same INCLUDE or MACLIB statement.

The macros named in EXTRACT statements are (if found) included in the library being built,
while all other macros in the INCLUDE or MACLIB file are excluded.

The macros named in DELETE statements are excluded from the library being built, but all the
other macros in the INCLUDE or MACLIB file are included.

The domain of the EXTRACT and DELETE statements is the INCLUDE or MACLIB file they
appear in. For example, an INCLUDE vy file that refers to a MACLIB containing the macro
‘CALL may extract call as follows:

| NCLUDE y
EXTRACT CALL

where y might, for example, be SMACLB or $CDSLB.

Note Some caution is required so that macros called by the extracted macro are also
extracted.

The EXTRACT and DELETE statements make it easy to edit a macro library even if you don’t
have a copy of source available to you.

5-16 Using Macros

Procedure to Create a Macro Library

The following is a procedure to follow to create a macro library. Some sample macros are pro-
vided.

First, create the source file. The following is an example:

MACRO, M L
MACRO
STOP ;. macro to call exit.
EXT EXEC
JSB EXEC
DEF *+2
DEF =D6
ENDVAC
MACRO
| NCRA &addr 1, &val ue, &addr 2
LDA &addr 1
ADA &val ue
STA &addr 2

MOVE &from &t o
LDA &from
STA &t o

ENDVAC

The source file was created with the name &LIB. Schedule Macro/1000 this way:
RU, MACRO, &LI B, 1, $LI B

MACRO places the macros in the file $LIB. Any of the macros in that file can be accessed by an-
other program via the MACLIB $LIB statement.

Example:

Macros obtained from an INCLUDE or MACLIB file, are listed to the list file (if listing is on).
This is a way to get a listing from a MACLIB file, even without the source listings. The following:

MACRO, M L
MACLI B $MACLI B
END

will produce a listing of SMACLIB.

Using Macros 5-17

Assembler Error Messages

Introduction

This appendix contains assembler error messages that Macro/1000 could issue as it assembles a
source file. When Macro/1000 detects an error, it prints the error number and description on the
list device or file. At the end of compilation, Macro/1000 prints an error summary including the
line numbers where errors occurred and the total number of errors encountered.

Error conditions are returned through the P-type FMGR global 1P. See the Terminal User’s
Manual for more information on P-type globals. In CI, this variable is referred to as RETURNI.

If there are any errors, and Macro/1000 was asked to produce a binary file, it will purge that file.

Error Numbers/Descriptions

The following is a description of the Macro/1000 error messages in numerical order.

Error # Description

1 >> ||l egal file nanr

2 >> | nclude files may not be nested past five (one in maclib build) deep
3 >> Undefined Macro error code. Try RU, MACRO, -1

4 >> (Opcode illegal in absolute assenbly

5 >> (eater than 1/4 nillion synbols used. Can’t give synbol table dunp
6 >> MACLIB file nust be type 1.

7 >> Synbol table paging file overfl ow

8 >> |Internediate data file overflow.

11 >> Corrupt nacro library file.

12 >> Include file can’t be type 1,2, or 5.

14 >> Illegal listing file type.

21 >> Add macro library. Try: 'MACRO, -3,, <maclib>’

47 >> SEXT external may not be used in a pass two expression

48 >> MWW MBT, CMN and CBT are illegal opcodes in CDS code space.

Assembler Error Messages

A-1

Error #

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
151
152
153
154
155

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

Description

Mat chi ng quote not found.

Conmas are allowed only in ASG and SRG i nstructi on opcodes.

Thi s pseudo op nmust appear before any code or data is assenbl ed.
End of file found before AENDI F in AlF statenent

AELSE found before AIF. This line gets ignored

AENDI F found outside of AIF statenment. This |ine gets ignored
AELSEI F found after AELSE. This line gets ignored

Only one AELSE all owed per AIF statenment. This |line gets ignored
Illegal use of AELSEIF. This line gets ignored

Al Fs nested past 16 deep. This line gets ignored

IFNs or IFZs may not be nested. This line gets ignored

User —defined error

XIF found outside of IFNIFZ statement. Line ignored

No correspondi ng MACRO, REPEAT or AVWH LE

II'legal to use ENT and RPL to define two word RPL val ues

End of file found before AENDWH LE or ENDREP

& PRAM n] index mssing or out of range.

Assenbly tinme variable or nacro paraneter has nore than 16 characters
Il egal assenbly tine variable name

Syntax error in assenbly time array : &nane[di nension, si ze]

ATV array subscript must be integer > 0

Length of string > size specified in ATV array. Truncated

The "count” field in assenbly tine array nmust be integer >0
Mssing ']’ in operand field of assenbly tinme array

Syntax error in operand field of assenbly time array decl aration
Not enough initial values for assenbly tine array

Doubly decl ared assenbly tinme variable nane

Label in I SET, I GLOBAL or |LOCAL statenent does not start with '&
Unrecogni zed ' & variable

ATV used in a | SET or CSET statenent has not been defined

ATV is defined as an array but not used as an array

Ref erenci ng an el enent outside the dimension defined by ATV array
String | onger than maxi mum specified in declaration. Truncated
Result of ILOCAL, or IGLOBAL is not an integer, default to O

ATV array size nust be <= 80 and > 0

Array subscript nust be surrounded by square brackets

Array subscript may not itself be an array

Conparison is not allowed in ATV nmani pul ation

Type conflict in I SET or CSET statenent; value of ATV is unchanged
Di nensi on or size of element in ATV array cannot be <= 0

| LOCAL or CLOCAL nust be declared inside a macro cal

Array subscript nust be single integer or integer variable

Si ze specified in | GLOBAL and I LOCAL is ignored, default to one word
Too many elements in ATV array decl aration; excess ignored

No operand in CG.OBAL/CLOCAL, default to null string

Il egal colum indicator on MACRO st at enent
Macro name missing frommacro definition
Macro nanme can only contain A-Z, a-z, 0-9, or
Macro by this name al ready defined

" ENDVAC st atenent mi ssing

A-2 Assembler Error Messages

Error #

156
157
158
159
160
161
162
163
164
165
166
167
168
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

Description

String nust be <= 80 character, truncated

Illegal formal macro paraneter

Default value too long for listing

Formal parameter nmust start with ' &

Il egal actual macro paraneter

Too many paraneters for this macro cal

Repeats may not be nested nore than five deep

Expressi on on REPEAT or REP nust have positive integer result
Il egal expression on AWH LE st at enent

Expressi on on AWHI LE nust have | ess than 80 characters
More than 100 EXTRACT/ DELETE macros for this file

Can not use both EXTRACT and DELETE foll owi ng | NCLUDE or MACLI B
Only five macro libraries allowed per program

Opcode ni ssing

Line too long after string substitution

Col umm i ndi cators should be three integers separated by comas
Mhemoni ¢ field | onger than 16 characters

END st at emrent mi ssi ng

Mhemoni ¢ col umm must start past columm 1

Col um indicators nust |eave roomfor next field

Comment field nust start before colum 128

Label |onger than 16 characters

Illegal character in | abe

Il egal character in opcode field

Opcode illegal in this type of assenbly

Operand field m ssing

Opcode not recogni zed

Undef i ned symbol

Too many nested parentheses. Limt is 10

I nconpl ete expression in operand field

String encountered in an integer expression, default to O
RPL | abel cannot be used in operand field

(" or integer nust be preceded by an operator

Syntax error in expression

Integer divide results in overfl ow

& variable nust follow :L:,:S: or :T: operators

Il egal use of :T: operator

:NOT: nust be followed by a type integer variable

Syntax error in substring :S:[var,var]string

Nunber in substring nust be >= 1

Lengt h of substring exceeds current length of string

")’ encountered w thout corresponding ’'(’

")’ must be preceded by an integer result

I nt eger exceeds range -32768 to 32767

Substring construct may not be nested

Substring starting character exceeds string | ength
Result of expression must be within 0 to 32767

ASCI| string in GEN and LOD record nmust be <= 125 words
Legal string conpare operators are = and <>

Li ne continuation nmay not start before the operand field

Assembler Error Messages

Error #

238
239
240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

Description

Duplicate | abel definition

Il egal operator in expression

Operand must be integer or absol ute expression

Undefined entry point

Only one operand can be rel ocatabl e

Il egal character in expression

Result of an EQU expressi on cannot be indirect

Illegal floating point number construct

String in expression nmust be less than 5 characters |ong

BASE page or LOCAL address is not in range O to 1023

Doubl e i nteger overfl ow

Illegal colum indicator in COL statenent

Keyword must be ON, OFF, BACK, SHORT, MEDI UM or LONG

Cctal integers can not contain an 8 or 9

Literals not legal on this opcode

Expect ed ALLCcat e, BASE, CODE, COM\Vbn, DATA, LOCAL, PROGr am SAVE, or STATi c
ORR nust appear before this opcode

ORR found before correspondi ng ORG or ORB

Operand rmust be absol ute or rel ocatabl e expression

Vari abl e not found

Legal literals are =A, =B, =D, =F, =J, =L, =R and =S

I nt eger expected

String expected

Label mi ssing

Doubly defined entry point nane

Il egal value for entry point

Result of expression nust be absol ute integer val ue

Expression contains two different externals

Two consecutive REP statenents encountered

End of file encountered foll ow ng REP statenent

Comment field nmust be separated fromoperand field by blank or ';
Expr esssi on cannot exist in nore than one rel ocatabl e space
Label ignored

Syntax error in MC statenent

Duplicate name for MCro code instruction

Dupl i cat e NAM st at enrent

Keyword must be EMA, SAVE, or COVVON

MBEG size nust be >= 1 and <= 31

Syntax error in ALLCC

EMA and ALLOC EMA or MSEG cannot be used in the same program
Dupl i cate EMA st at enment

Label |onger than five characters in EMA statenent

Nunber of pages specified or MSEG size out of range in EMA statenent
Syntax error in EMA statenent

Result in operand field cannot be type RPL, or ENA

Local EMA | abel may only be used in a DDEF st atenent

DBL/ DBR cannot be indirect

Il egal opcode combi nation

Il egal data

Byt e val ue overfl ow, nust be between -377B and 377B

A-4 Assembler Error Messages

Error #

290
291
292
293
294
295
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

Description

Not enough paraneters in m crocode cal

Literals are not allowed in microcode cal

Expression in RAM pseudo op nust be between 0 and 377B

Result of expression in DDEF cannot be RPL or indirect

Synbol after RELOC ALLOC nust be an ALLOC synbol .

Rel ocati on space just closed is too small for the code generated.
EXT/ ENT statenent error

Il egal symbol in EXT/ENT

Doubl y defined entry point

Illegal character in Alias field

Illegal character in Info field

EXT & ENT may not reference the sane synbo

Info or alias field on reference to existing synbol

Nurmber of externals exceeds 2047

Too many paraneter types in info field

I/ O sel ect code nust be absolute, >0, <64

COM operand field error

COM al | ocation nust be absolute and greater than zero

COM st atenent contains illegal synbol

COM statenent |legal only in programrel ocati on space

RPL nanmes linmted to five characters

EMA val ue not all owed here

Operand must be positive, absolute, and |less than or equal to 16
Subhead paraneter must be | ess than 81 characters

Nane used both for |abel and for external replacenent opcode

Il egal program nane

Only =F, =J or =S(3+ chars.) literal allowed on this opcode

Only =A =B, =D, =L, =R, or =S(1-2 chars) literal allowed on this opcode
NAM comment may not exceed 73 characters in |length

EQUs may not be negative when 'ASMB' is the control statenent
BSS, COM RELOC, ORB, ORG or machi ne insts. may not appear before NAM
NAM or ORG statenment m ssing

=L/ =J synbols nust be previously defined unless MRG in CDS code space
Il egal relocatable record encountered at address

O f page reference in an MR instruction found at address

Corrupt record found in relocatable file at address

Assembler Error Messages

A-5

Macro/1000 Instruction Set

Introduction

This appendix summarizes the machine instructions and pseudo operations of Macro/1000 in the
following order:

Machine Instructions

Memory Reference Instructions

Word, Byte and Bit Processing
No-operation

Register Reference/Shift-Rotate Group
Register Reference/Alter-Skip Group
Extended Instruction Group (Index Register Manipulation)
Input/Output

Overflow

Halt

Extended Arithmetic Unit
Floating-Point Instructions

Dynamic Mapping Instructions

CDS Code

Pseudo Operations

Assembler Control

Loader and Generator Instructions
Program Linkage

Listing Control

Storage Allocation

Constant Definition

Address and Symbol Definition
Assembly-Time Variable Declaration
Conditional Assembly

Macro Definition

Error Reporting

CDS Control

Backward Compatibility
Miscellaneous Other

Macro/1000 Instruction Set B -1

The notations used in this section are:

m — memory address
[] — optional portion of field
(@ — indirect address indicator

Isb — least significant bit (bit 0)

Refer to the appropriate computer reference manual for the base set of instructions available in

s liochte

A-Register
B-Register
E-Register
X-Register
Y-Register

each of the processors used in the HP 1000 computer systems.

Machine Instructions

Memory Reference Instructions
Opcode Instructions

ADA Add to A.

ADB Add to B.

LDA Load into A.

LDB Load into B.
STA Store from A.
STB Store from B.

AND Logical “AND” to A.
CPA Compare to A, skip if unequal.
CPB Compare to B, skip if unequal.
XOR Exclusive “OR” to A.

IOR Inclusive “OR” to A.

ISZ Increment, then skip if zero.
JMP Jump.

JSB Jump to subroutine.

B-2 Macro/1000 Instruction Set

Operand Format
[@]m or literal.
[@]m or literal.
(@
(@
[
[
(@
(@
(@

[@]m or literal.

m or literal.

m or literal.

®

B

®

B

m or literal.
m or literal.

m or literal.

m or literal.

]
]
]
]
Jm.
Jm.
]
]
]
]
]
Jm.
Jm.
Jm.

Word, Byte and Bit Processing

Opcode
CMW

MVW

CBT

LBT

MBT

SBT

SFB

CBS

SBS

TBS

Instructions

Compare words; A and B contain
addresses of word arrays.

Move words; A contains start
of source, B contains start
of destination.

Compare bytes; A and B contain
addresses of byte arrays.

Load byte defined in B to
lower byte of A.

Move bytes; A contains start
of source, B contains start of
destination.

Store lower byte of A into byte
address defined in B.

Scan array defined by B for
upper and lower byte of A.

Clear bits as per mask.

Set bits as per mask.

Test bits as per mask.

No-Operation

NOP

No-operation, skip to next.

Operand Format

[@]m or literal is number
of words to compare.

[@]m or literal is number
of words to move.

[@]m or literal is number
of bytes to compare.

No operand.

[@]m or literal is number
of bytes to move.

No operand.

No operand.

Operand 1—
Operand 2—
Operand 1—
Operand 2—
Operand 1—
Operand 2—

[@]m or literal
(mask).
[@]m.

[@]m or literal
(mask).
[@]m.

[@]m or literal
(mask).
[@]m.

Macro/1000 Instruction Set

Register Reference, Shift/Rotate Group

Opcode Instructions

ALF Rotate A left four bits. (No operands in this group.)
BLF Rotate B left four bits.

ELA Rotate E and A left one bit.

ELB Rotate E and B left one bit.

ERA Rotate E and A right one bit.

ERB Rotate E and B right one bit.

RAL Rotate A left one bit.

RAR Rotate A right one bit.

RBL Rotate B left one bit.

RBR Rotate B right one bit.

ALR Shift A left one bit, clear sign, clear Isb.

ALS Shift A left one bit, clear Isb.

ARS Shift A right one bit, extend sign, sign unaltered.
BLR Shift B left one bit, clear sign, clear Isb.

BLS Shift B left one bit, clear Isb.

BRS Shift B right one bit, extend sign, sign unaltered.
CLE Clear E.

LAE Copy Isb of A to E, A is unchanged.

LBE Copy Isb of B to E, B is unchanged.
SAE Copy sign of A into E, A is unchanged.
SBE Copy sign of B into E, B is unchanged.
SLA Skip if Isb of A is zero.

SLB Skip if Isb of B is zero.

B-4 Macro/1000 Instruction Set

Shift/Rotate instructions can be combined as follows:

ALS
ARS

4 ALR
ALF
ERA
ELA
SAE
LAE

A-Register Instructions

\

[,CLE] [, SLA]

(

\

, ALS
, ARS
, RAL
, RAR
, ALR
, ALF
, ERA
, ELA
, SAE
, LAE

BLS
BRS
RBL
RBR
BLR
BLF
ERB
ELB
SBE
LBE

B-Register Instructions

) (

} [, CLE] [, SLB]| {

1 \

, BLS
, BRS
, RBL
, RBR
, BLR
, BLF
, ERB
, ELB
, SBE
, LBE

Macro/1000 Instruction Set

B-5

Register Reference, Alter/Skip Group

Opcode
CCA
CCB
CCE
CLA
CLB
CLE
CMA
CMB
CME
INA

INB
RSS

SEZ
SLA

SLB
SSA
SSB

SZA
SZB

Instructions

Clear and complement A.

Clear and complement B.

Clear and complement E.

Clear A.
Clear B.
Clear E.

Complement A.
Complement B.

Complement E.

Increment A by one.

Increment B by one.

Reverse the sense of the skip;
if used as a single instruction,

(No operands in this group.)

unconditionally skip the next instruction.

Skip if E is zero.
Skip if Isb of A is zero.
Skip if Isb of B is zero.

Skip if sign of A is zero.

Skip if sign of B is zero.

Skip if A is zero.
Skip if B is zero.

Alter/skip instructions can be combined as follows:

(

CLA
CVA
CCA

CLB

N

[, SEZ]

[, SEZ]

r

B-6 Macro/1000 Instruction Set

, CLE
, CME
, CCE

[,SSA] [,SLA] [,INA] [,SZA [,RSS|

[,SSB] [,SLB] [,INB] [,SzB] [,RSS|

Extended Instruction Group (Index Register Manipulation)

Opcode
ADX
ADY
LAX
LAY
LBX
LBY
LDX
LDY
SAX
SAY
SBX
SBY
STX
STY
CAX
CAY
CBX
CBY
CXA
CXB
CYA
CYB

Instructions
Add to X.
Addto Y.

Load A indexed by X.
Load A indexed by Y.
Load B indexed by X.
Load B indexed by Y.

Load into X.
Load into Y.

Store A indexed by X.
Store A indexed by Y.
Store B indexed by X.
Store B indexed by Y.

Store X.

Store Y.

Copy A to X.
Copy AtoY.
Copy B to X.
CopyBtoY.
Copy X to A.
Copy X to B.
Copy Y to A.
Copy Y to B.

Operand Format
[@]m or literal.

[@]m or literal.

[
[
[

=

® ®

=

®

=

®

=

m or literal.

@

®

2

®

2

®

2

®

2

®

2

®

2

]
]
]
]
]
]
@]m or literal.
]
]
]
]
]
]
]

[
[
[
[
[
[
[
[
[

(No operands in this group.)

Macro/1000 Instruction Set

B-7

Opcode Instructions

XAY
XBX
XBY

DSX
DSY
ISX
ISY
JLA
JLB
JLY
JPY

B-8

Exchange X and A.
Exchange Y and A.
Exchange X and B.
Exchange Y and B.

Decrement X by one.
Decrement Y by one.
Increment X by one.
Increment Y by one.
Jump and load A.
Jump and load B.
Jump and load Y.
Jump indexed by Y.

Macro/1000 Instruction Set

Operand Format

(No operands in this group.)

No operand.
No operand.
No operand.
No operand.
[@]m
[@]m
[@]m

m

Input/Output, Overflow, and Halt

Opcode

LIA
LIAC

LIB

LIBC

MIA

MIAC

MIB
MIBC

Instructions
Load A with I/O buffer.

Load A with 1/O buffer and
clear flag bit.

Load B with I/O buffer.
Load B with I/O buffer and
clear flag bit.

Merge A with I/O buffer.

Merge A with I/O buffer and
clear flag bit.

Merge B with I/O buffer.

Merge B with I/O buffer and
clear flag bit.

Operand Format
Select code.

Select code.

Select code.

Select code.

Select code.

Select code

Select code.

Select code.

Macro/1000 Instruction Set

B-9

Opcode
OTA
OTAC

OTB
OTBC

CLC
CLCC
CLF
SFC
SFS
STC
STCC
STF
CLO
SOC
SOCC
SOS
SOSC
STO
HLT
HLTC

B-10

Instructions
Output A to I/O buffer.

Output A to I/O buffer and
clear flag bit.

Output B to I/O buffer.

Output B to I/O buffer and
clear flag bit.

Clear I/O control bit.

Clear 1/O control bit and flag bit.
Clear 1/O flag bit.

Skip if I/O control bit is zero.
Skip if I/O control bit is one.

Set I/O control bit.

Set I/O control bit, clear flag bit.
Set I/O flag bit.

Clear Overflow bit.

Skip if Overflow bit is zero.

Skip if Overflow bit is zero, clear flag.

Skip if Overflow bit is one.

Skip if Overflow bit is one, clear flag.
Set Overflow bit.

Halt the computer.

Halt the computer, clear flag bit.

Macro/1000 Instruction Set

Operand Format

Select code.

Select code.

Select code.

Select code.

Select code.
Select code.
Select code.
Select code.
Select code.
Select code.
Select code.
Select code.
No operand.
No operand.
No operand.
No operand.
No operand.

No operand.

Select code of flag bit.

Select code.

Extended Arithmetic Unit
Opcode Instructions

DLD Load A and B.

DST Store A and B.

MPY Multiply with A.

MPYD Multiply with A, double format.
DIV Divide with A and B.

DIVD Divide with A and B, double format.

ASL Arithmetic shift A and B left.
ASR Arithmetic shift A and B right.
LSL Logically shift A and B left.
LSR Logically shift A and B right.

RRL Rotate A and B left.
RRR Rotate A and B right.
SWP Swap A and B.

Floating-Point Instructions
Opcode Instructions

FAD Floating point add to A and B.
FDV Floating point divide to A and B.

FIX Convert floating point to fixed point.

FLT Convert fixed point to floating point.

FMP Floating point multiply to A and B.
FSB Floating point subtract to A and B.

Operand Format

[@]m or literal.

®

=

@]m or literal.
(@

[@]m or literal.

]
]
]
Jm or literal.

]

[@]m or literal.

integer, number of bits to shift.
integer, number of bits to shift.
integer, number of bits to shift.

integer, number of bits to shift.

integer, number of bits to rotate.

integer, number of bits to rotate.

No operand.

Operand Format

[@]m or floating point literal.
[@]m or floating point literal.
No operand.

No operand.

Macro/1000 Instruction Set

Dynamic Mapping System

Opcode

DJP
DJS
SJP

SJS

UJP
UJS
JRS

LFA
LFB
PAA
PAB
PBA
PBB
SYA
SYB
USA
USB
SSM
MBF
MBI
MBW
MWF
MWI

Instructions

Disable MEM and jump.

Disable MEM, jump to subroutine.

Enable system map and jump.
Enable sys map, jump subroutine.
Enable user map and jump.
Enable user map jump subroutine.

Jump and restore status.

Load fence from A.

Load fence from B.

Load/store Port A map per A.
Load/store Port A map per B.
Load/store Port B map per A.
Load/store Port B map per B.
Load/store system map per A.
Load/store system map per B.
Load/store user map per A.
Load/store user map per B.
Store status register in memory.
Move bytes from alternate map.
Move bytes into alternate map.
Move bytes within alternate map.
Move words from alternate map.

Move words into alternate map.

B-12 Macro/1000 Instruction Set

Operand Format

®

2

[

5

®

5

[
[

® ®

5

[
(@
[@]m.

]
]
]
]
]

5

operand 1—[@]m or literal.
operand 2—[@]|m.

No operand.
No operand.
No operand.
No operand.
No operand.
No operand.
No operand.
No operand.
No operand.
No operand.
[@]m.

No operand.
No operand.
No operand.
No operand.

No operand.

Opcode Instructions

MWW Move words within alt. map.
RSA Read status register into A.
RSB Read status register into B.
RVA Read violation register into A.
RVB Read violation register into B.
XCA Cross compare A.

XCB Cross compare B.

XLA Cross load A.

XLB Cross load B.

XSA Cross store A.

XSB Cross store B.

XMA Transfer maps internally per A.
XMB Transfer maps internally per B.
XMM Transfer map or memory.
XMS Transfer maps sequentially.
CDS Code

PCAL Procedure call.

Operand Format
No operand.
No operand.
No operand.
No operand

No operand.

®

=

5

® ®

®
8

5

5

®

(@]
(@]
(@]
(@]
(@]
(@]

@

No operand.

5

No operand.
No operand.

No operand.

Name and call sequence
parameters.

Macro/1000 Instruction Set

B-13

Pseudo Operations

Assembler Control

Opcode Instructions

NAM Name relocatable program.
ORG Establish program origin.

ORR Reset program location counter.
END Terminate program.

RELOC Specify memory space.

INCLUDE Include a source file in this
assembly.

DELETE Delete listed macros from

included macro file.

EXTRACT Include only named macros from
included macro file.

Loader and Generator Control

Opcode Instructions
LOD Define loader record.
GEN Define generation record.

Program Linkage

ENT Define entry point.
EXT Define external routine.
WEXT Define external routine.
RPL Replace instruction.
ALLOC Allocate memory space.

B-14 Macro/1000 Instruction Set

Operand Format

Name plus optional parameters.
Absolute expression.

No operand.

Name of program starting location.
Keyword.

Name of source file.

Macro name list.

Macro name list.

Operand Format

Number of characters followed by
loader record.

Number of characters followed by
generation record.

name[="alias’][,name...]
name[="alias’][,name...]
name[="alias’][,name...]
Value of microcode.

Keyword.

Listing Control

Opcode
COL

HED

LIST

SKP

SPC
SUBHEAD
SUP

UNS

Instructions

Specify column numbers.
Print heading at top of page.
Specify list option.

Skip to top of next page.

Skip n lines of listing.

Specify a subhead at top of page.

Suppress extended code list.

Resume extended code list.

Storage Allocation

Opcode
BSS
MSEG

Instructions
Reserve storage area.

Reserve MSEG size for EMA.

Constant Definition

Opcode
ASC
BYT
DEC
DEX
DEY
LIT
LITF
oCT

Instructions

Generate ASCII characters.
Define octal byte constants.
Define decimal constants.
Define 3-word constants.
Define 4-word constants.
Control placement of literals.
Control placement of literals.

Define an octal constant.

Operand Format

3 integers each a column number.

Heading.
Keyword.
No operand.
No operand.
Subheading.
No operand.

No operand.

Operand Format

Integer is number of words to reserve.

Integer is size in pages.

Operand Format
Number of words, string.
Octal constants.
Decimal constants.
Decimal constants.
Decimal constants.

No operand.

No operand.

Octal constants.

Macro/1000 Instruction Set

Address and Symbol Definition

Opcode Instructions

DEF Generate 15-bit address.
DDEF Generate 32-bit address.
ABS Define absolute value.
EQU Equate value to label.
DBL Define left byte address.
DBR Define right byte address.

Assembly-Time Variable Declaration
Opcode Instructions

CLOCAL Declare local character ATV.
CGLOBAL Declare global character ATV.
CSET Change character ATV.

ILOCAL Declare local integer ATV.
IGLOBAL Declare global integer ATV.

ISET Change integer ATV.

B-16 Macro/1000 Instruction Set

Operand Format
[@]m or literal.
m.

Absolute value.
m.

m or literal.

m or literal.

Operand Format
Character expression.
Character expression.
Character expression.
Integer expression.
Integer expression.

Integer expression.

Conditional Assembly

Opcode Instructions
AELSE AIF construct.
AELSEIF AIF construct.
AENDIF End AIF construct.

AENDWHILE End AWHILE loop.

AIF Start AIF construct.
AWHILE Start AWHILE loop.
ENDREP End REPEAT loop.
REPEAT Start REPEAT loop.

Macro Definition

Opcode Instructions

MACRO Start macro definition.
ENDMAC End macro definition.
MACLIB Specify macro library.

Error Reporting

Opcode Instructions

MNOTE Note error condition.
CDS Control

Opcode Instructions

CDS Turn on/off CDS mode
BREAK Generate break record
LABEL Define CDS label

Operand Format

No operand.
Assembly-time expression.
No operand.

No operand.
Assembly-time expression.
Assembly-time expression.
No operand.

Assembly-time expression.

Operand Format

Integers specifying column numbers.

No operand.

Name of macro library.

Operand Format

Character expression.

Operand Format
Keyword.
No operand.

Name of a procedure.

Macro/1000 Instruction Set

Backward Compatibility

Opcode
ORB
ORR
IFN
IFZ
XIF
REP
COM
EMA
UNL
LST
MIC
RAM

Instructions

Relocate code to base page
Return to previous relocation space
Conditional assembly
Conditional assembly
Conditional assembly
Repeat following line
Blank common

Old EMA declaration
Turn off listing

Turn on listing

Define micro opcode

Define micro opcode

Miscellaneous Other

Opcode

Instructions

LOADREC Generate arbitrary relocatable

B-18 Macro/1000 Instruction Set

Operand Format
No operand.

No operand.

No operand.

No operand.

No operand.
Count expression.
Name (size) list.
Size, MSEG.
No operand.

No operand.

No operand.

No operand.

Operand Format

Integer expressions.

HP 1000 Computer Instruction Set
(Octal Opcode)

Table C-1 is a listing of the instruction mnemonics that are available on the HP 1000 series of com-
puters in “ASClIIbetical” order. That is, mnemonics with dollar sign ($) leading characters are
listed first, mnemonics with dot (.) leading characters are listed next, and so forth. Table C-2is a
listing of instruction mnemonics in opcode (octal) order.

No single, definitive guideline exists as to when an instruction mnemonic is preceded with a dot.
In many cases, the same mnemonic may be used with or without a dot (denoted with an asterisk in
Tables C-1 and C-2). It cannot be assumed, in all cases, that a mnemonic without a dot and the
same mnemonic with a dot will relate to the same instruction. As an example, XADD and .XADD
represent two entirely different instructions. In general, if an instruction is recognized by Mac-
ro/1000 or is user-callable from FORTRAN, it is not preceded by a dot. Instructions not recog-
nized by Macro/1000 are generally preceded by a dot. In other instances, the only rationale for the
presence (or absence) of a leading dot is historical precedence.

In some cases, an instruction may be represented by as many as three mnemonics.

Instruction Mnemonics in ASCllbetical Order

Table C-1 was taken primarily from the Replace Instruction (RPL) files for both the RTE-A and
RTE-6/VM operating systems. A mnemonic may appear in the “All 1000s” column if the opcode
of the instruction it represents is the same in all computers (CPUs and SPUs) in which the instruc-
tion is implemented. It should be noted, however, that this does not mean that all HP 1000 com-
puters can execute the instruction. As an example, the tangent function (TAN) is not implemented
on A400, A600, A600+, or E-Series computers but the opcode of the instruction is 105320 (octal)
on all computers in which it is implemented.

Some instructions have been implemented only on later versions of a computer series (for exam-
ple, the F-Series). Special or custom firmware (for example, double integer and third-party firm-
ware) is not included in Table C-1.

Note The instruction set listed in each computer series reference manual takes prece-
dence over Table C-1 and therefore should be considered as the ultimate source
for instruction sets.

HP 1000 Computer Instruction Set (Octal Opcode) C -1

Table C-1. Instruction Mnemonics in ASClibetical Order (sheet 1 of 9)

HP 1000 Computer Series

Mnemonic

All 1000s All A A990 E,F E F
SLIBR - 100701 - - 105340 | 105340
$LIBX - 100702 - - 105341 105341
$LOC - - - - 105241 105241
$PRIV - 100711 - - - -
$SETP 105227 - - - - -
$SJP - 100703 - - - -
$SJS0 - 100704 - - - -
$SJS1 - 100705 - - - -
$SJS2 - 100706 - - - -
$SJS3 - 100707 - - - -
..DCM - - - 105216 - -
..FCM - 105232 - - - 105232
..MAP - - - 105222 - -
.TCM 105233 - - - - -
ADQA - 101413 - - - -
.ADQB - 105413 - - - -
ADX * 105746 - - - - -
ADY * 105756 - - - - -
.BLE - 105207 - - - 105207
.CACQ - 101407 - - - -
.CBCQ - 105407 - - - -
.CAX * 101741 - - - - -
.CAY * 101751 - - - - -
.CBS * 105774 - - - - -
.CBT * 105766 - - - - -
.CBX * 105741 - - - - -
.CBY * 105751 - - - - -
.CAZ - 101411 - - - -
.CBzZ - 105411 - - - -
.CCQA - 101406 - - - -
.CCQB - 105406 - - - -
.CFER 105231 - - - - -
.CIQA - 101412 - - - -
.ClIQB - 105412 - - - -
.CMwW * 105776 - - - - -
.CPM - 105236 - - 105352 | 105352
.CPU - 105300 - - - -
.CPUID - 105300 - - - -
.CXA * 101744 - - - - -
Note: * May be used with or without a leading dot

C-2 HP 1000 Computer Instruction Set (Octal Opcode)

Table C-1. Instruction Mnemonics in ASCllbetical Order (sheet 2 of 9)

HP 1000 Computer Series

Mnemonic

All 1000s All A A990 E,F E F
.CXB * 105744 - - - - -
.CYA * 101754 - - - - -
.CYB * 105754 - - - - -
.CZA - 101410 - - - -
.CZB - 105410 - — - -
.DAD - 105014 - - 105321 105014
.DCO - 105204 - - 105324 105204
.DDE - 105211 - - 105331 105211
.DDI - 105074 - - 105325 105074
.DDIR - 105134 - - 105326 105134
.DDS - 105213 - - 105333 105213
.DFER 105205 - - - - -
.DIN - 105210 - - 105330 105210
DINT - - - - - 105101
.DIS - 105212 - - 105332 105212
DIV * 100400 - - - - -
.DIVD * - - 104100 — - -
.DLD * 104200 - - - - -
.DMP - 105054 - - 105322 105054
.DNG - 105203 - - 105323 105203
.DSB - 105034 - - 105327 105034
.DSBR - 105114 - - 105334 105114
.DSPI - - - - 105357 105357
.DST * 104400 - - - - -
.DSX * 105761 - — - - -
.DSY * 105771 - - - - -
.DSZ - - 105222 - - -
.DVCT - - - - - 105460-000NNO
.ENTC - 105235 - — 105356 105356
.ENTN - 105234 - - 105354 105354
.ENTP 105224 - - — - -
.ENTR 105223 - - - - -
ETEQ — - - - 105353 105353
EXITO - 105417 - - — -
EXIT1 - 105415 — - - -
EXIT2 - 105416 — - - -
.FAD * 105000 - - - - -
FDV * 105060 - - - - -
FIX * 105100 - - - - -
.FIXD 105104 - - - - -

Notes: * May be used with or without a leading dot
N Any octal numeric

HP 1000 Computer Instruction Set (Octal Opcode)

Table C-1. Instruction Mnemonics in ASClibetical Order (sheet 3 of 9)

HP 1000 Computer Series

Mnemonic

All 1000s All A A990 E,F E F
FLT 105120 - - - - -
.FLTD 105124 - - - - -
.FLUN 105226 - - - - -
FMP * 105040 - - - - -
FNW - - - - 105345 | 105345
.FPWR 105334 - - - - -
.FSB * 105020 - - - - -
.FWID - 105301 - - - -
.GOTO - - - 105221 - -
IDBL - - - - - 105121
IMAP 105250 - - - - -
IMAR - - - - 105251 105251
IRES - 105244 - - - -
IRT - - - - 105346 | 105346
ISX * 105760 - - - - -
ASY * 105770 - - - - -
TBL - 105122 - - - 105122
JLA * - 100600 - - - -
JLB * - 104600 - - - -
JLY * 105762 - - - - -
JMAP - 105252 - - 105252 | 105252
JMAR - - - - 105253 | 105253
JPY * 105772 - - - - -
JRES - 105245 - - - -
.LAX * 101742 - - - - -
LAY * 101752 - - - - -
.LBP - 105257 - - 105257 | 105257
.LBPC - - 105247 - - -
.LBPR - 105256 - - 105256 | 105256
BT * 105763 - - - - -
.LBX * 105742 - - - - -
.LBY * 105752 - - - - -
.LDMP - 105702 - - - -
LDX * 105745 - - - - -
LDY * 105755 - - - - -
.LFA - - - 101727 - -
Note: * May be used with or without a leading dot

c-4

HP 1000 Computer Instruction Set (Octal Opcode)

Table C-1. Instruction Mnemonics in ASClibetical Order (sheet 4 of 9)

HP 1000 Computer Series

Mnemonic
All 1000s All A A990 E,F E F

.LLS - - - - 105347 105347
.LPMR — 105700 - — - -
.LPX — 105255 - - 105255 105255
.LPXR — 105254 — - 105254 105254
.LWD1 — 105704 - — - -
.LWD2 — 105705 - — - -
.LXMP — — 105712 — - -
LXMR — — 105714 — - -
.MBO00 — 101727 - - - -
.MBO1 — 101730 - - - -
.MB02 — 101731 — — - -
.MB10 — 101732 — - - -
.MB11 — 101733 — - - -
.MB12 — 101734 — - - -
.MB20 — 101735 - — - -
.MB21 — 101736 - — - -
.MB22 — 101737 — — - -
.MBF * — 101732 — 105703 - -
MBI * — 101730 — 105702 - -
.MBT * 105765 - — - - -
.MBW * — 101733 — 105704 - -
.MPY * 100200 — - - - -
.MPYD * — — 104000 - - -
.MVW * 105777 - - - - -
.MWO00 — 105727 — - - -
.MWO01 — 105730 - - - -
.MW02 — 105731 — - - -
.MW10 — 105732 — - - -
MW11 — 105733 - — - -
.MW12 — 105734 - — - -
.MW20 — 105735 - — - -
.Mw21 — 105736 - — - -
.Mw22 — 105737 - - - -
.MWF * — 105732 - 105706 - -
MwI * — 105730 - 105705 - -
MWW * — 105733 — 105707 - -
.NGL 105214 — - - - -
.PAA — — — 101712 - -
.PACK 105230 - — - - -
.PBA — — — 101713 - -

Note: * May be used with or without a leading dot

HP 1000 Computer Instruction Set (Octal Opcode)

C-5

C-6

Table C-1. Instruction Mnemonics in ASClibetical Order (sheet 5 of 9)

HP 1000 Computer Series

Mnemonic

All 1000s All A A990 E,F E F
.PCALI - 105400 - - - -
.PCALN - 105404 - - - -
.PCALR - 105403 - - - -
.PCALV - 105402 - - - -
.PCALX - 105401 - - - -
.PMAP 105240 - - - - -
.PWR2 105225 - - - - -
.RCS - - 105305 - - -
.RSA - - - 101730 - -
.RTC - - 105311 - - -
.RTM - - 105307 - - -
.RVA - - - 101731 - -
.SAX * 101740 - - - - -
SAY * 101750 - - - - -
.SBS * 105773 - - - - -
.SBT * 105764 - - - - -
.SBX * 105740 - - - - -
.SBY * 105750 - - - - -
.SDSP - 105405 - - - -
.SETP 105227 - - - - -
.SFB * 105767 - - - - -
.SIMP - 105707 - - - -
.SIP - 105303 - - 105350 | 105350
.SPMR - 105701 - - - -
.STIO - - - - 105344 | 105344
.STMP - 105703 - - - -
STX * 105743 - - - - -
STY * 105753 - - - - -
.SWMP - 105706 - - - -
.SXMP - - 105713 - - -
.SXMR - - 105715 - - -
.SYA - - - 101710 - -
.TADD - 105002 - - - 105002
.IBS * 105775 - - - - -
.TDIV - 105062 - - - 105062
.TFTD - 105126 - - - 105126
TFTS - 105122 - - - 105122
.TFXD - 105106 - - - 105106
.TFXS - 105102 - - - 105102
.TICK - - - - 105342 | 105342
TINT - 105102 - - - 105102
Note: * May be used with or without a leading dot

HP 1000 Computer Instruction Set (Octal Opcode)

Table C-1. Instruction Mnemonics in ASClibetical Order (sheet 6 of 9)

Mnemonic

HP 1000 Computer Series

All 1000s

All A

A990 E,F

F

.TMPY
.TNAM
.TPWR
.TSUB
.USA

VECT
WCS
WFI

WTC
WTM
XADD
XAX
XAY
XBX
XBY
XCA
XCA1
XCA2
XCB *
XCB1

XCB2
XCOM
XDIV

XFER
XFTD
XFTS
XFXD
XFXS
XJCQ
XJMP
XLA

XLA1

XLA2

XLB

XLB1

XLB2

XMPY
XPAK
XSA *
XSA1

XSA2

* ¥ * * *

105335

101747
101757
105747
105757
101726

105726

105220

101724

105724

101725

105042

105022

105302

101726
101723
105726
105723

105711
105710
101724
101721
105724
105721

101725
101722

-~ 101711

105304 -

105310 -
105306 -

- 105206

105343

105203

105042
105343

105022

101460-000NNO

105001

105061
105125
105121
105105
105101

105041

Notes:

* May be used with or without a leading dot
N Any octal numeric

HP 1000 Computer Instruction Set (Octal Opcode)

C-7

Table C-1. Instruction Mnemonics in ASClibetical Order (sheet 7 of 9)

HP 1000 Computer Series

Mnemonic

All 1000s All A A990 E,F E F
XSB * 105725 - - - — —
.XSB1 - 105725 - - - -
.XSB2 - 105722 - - - -
XSUB - - - - 105214 | 105021
.YLD - - - - 105351 105351
.ZFER - 105237 - - - -
/ATLG 105333 - - - - -
/CMRT 105332 - - — — —
ADA 04(0nn)NNN - - - - -
ADA ° 14(0nn)NNN - - - - -
ADB 04(1nn)NNN - - - - -
ADB ° 14(1nn)NNN - - - - -
ALOG 105322 - - - — —
ALOGT 105327 - - — — —
AND 01(0nn)NNN - - - - -
AND ° 11(0nn)NNN - - - - -
ASL 100020...0037 - - — — —
ASLD - - 104040...057 - - -
ASR 101020...1037 - - - - —
ASRD - - 104060...077 - - -
ATAN 105323 - — — — -
CLC 10(01n)7NN - - - - -
CLF 10(n11)1NN - - - - -
CLo 103101 - - - — —
COSs 105324 - - - — —
CPA 05(0nn)NNN - - - - -
CPA ° 15(0nn)NNN - - - - -
CPB 05(1nn)NNN - - — - -
CPB ° 15(1nn)NNN - - - - -
DBLE — — - 105201 - -
DDINT - - - 105217 - -
DPOLY 105331 - — — — —
DVABS - 105123 - - - 105462
DVADD - 105021 - - - 105460-000000
DVDIV - 105025 - - - 105460-000060
DVDOT - 105130 - - - 105465
DVMAB - 105132 - - - 105467
DVMAX - 105131 - - - 105466
DVMIB - 105135 - - - 105471
DVMIN - 105133 - - - 105470
DVMOV - 105136 - - - 105472
DVMPY - 105024 - - - 105460-000040
Notes: * May be used with or without a leading dot

* Indirect addressing

n
N

Any binary numeric
Any octal numeric

C-8

HP 1000 Computer Instruction Set (Octal Opcode)

Table C-1. Instruction Mnemonics in ASClibetical Order (sheet 8 of 9)

HP 1000 Computer Series

Mnemonic

All 1000s All A A990 E,F E F
DVNRM - 105127 - - - 105464
DVPIV - 105121 - - - 105461
DVSAD - 105026 - - - 105460-000400
DVSDV - 105031 - - - 105460-000460
DVSMY - 105030 - - - 105460-000440
DVSSB - 105027 - - - 105460-000420
DVSUB - 105023 - - - 105460-000020
DVSUM - 105125 - - - 105463
DVSWP - 105137 - - - 105473
EXP 105326 - - - - -
FLOAT 105120 - - - - -
HLT 10(n1n)ONN - - - - -
IFIX 105100 - - - - -
IOR 03(0nn)NNN - - - - -
IOR * 13(0nn)NNN - - - - -
ISZ 03(1nn)NNN - - - - -
ISz * 13(1nn)NNN - - - - -
JMP 02(1nn)NNN - - - - -
JMP * 12(1nn)NNN - - - - -
JSB 01(1nn)NNN - - - - -
JSB ° 11(1nn)NNN - - - - -
LDA 06(0nn)NNN - - - - -
LDA ° 16(0nn)NNN - - - - -
LDB 06(1nn)NNN - - - - -
LDB * 16(1nn)NNN - - - - -
LIA 1025NN - - - - -
LIAC 1035NN - - - - -
LIB 1065NN - - - - -
LIBC 1075NN - - - - -
LSL 100040...0057 - - - - -
LSLD - - 100060...077 - - -
LSR 101040...1057 - - - - -
LSRD - - 101060...077 - - -
MIA 1024NN - - - - -
MIAC 1034NN - - - - -
MIB 1064NN - - - - -
MIBC 1074NN - - - - -
OTA 10(01n)6NN - - - - -
oTB 10(11n)6NN - - - - -
RRL 100100...0117 - - - - -
RRR 101100...1117 - - - - -
SFC 10(n1n)2NN - - - - -
SFS 10(n1n)3NN - - - - -

Notes: ¢ Indirect addressing
n Any binary numeric
N Any octal numeric

HP 1000 Computer Instruction Set (Octal Opcode) C-9

Table C-1. Instruction Mnemonics in ASClibetical Order (sheet 9 of 9)

HP 1000 Computer Series

Mnemonic

All 1000s All A A990 E,F E F
SIN 105325 - - - - -
SNGL - - - 105202 - -
SOC 102201 - - - - -
SOCC 103201 - - - - -
SOS 102301 - - - - -
SOSC 103301 - - - - -
SQRT 105321 - - - - -
STA 07(0nn)NNN - - - - -
STA ° 17(0nn)NNN - - - - -
STB 07(1nn)NNN - - - - -
STB °* 17(1nn)NNN - - - - -
STC 10(11n)7NN - - - - -
STF 10(n10)1NN - - - - -
STO 102101 - - - - -
TAN 105320 - - - - -
TANH 105330 - - - - -
VABS - 105103 - - - 101462
VADD - 105001 - - - 101460-000000
VDIV - 105005 - - - 101460-000060
VDOT - 105110 - - - 101465
VMAB - 105112 - - - 101467
VMAX - 105111 - - - 101466
VMIB - 105115 - - - 101471
VMIN - 105113 - - - 101470
VMOV - 105116 - - - 101472
VMPY - 105004 - - - 101460-000040
VNRM - 105107 - - - 101464
VPIV - 105101 - - - 101461
XOR 02(0nn)NNN - - - - -
VSAD - 105006 - - - 101460-000400
VSDV - 105011 - - - 101460-000460
VSMY - 105010 - - - 101460-000440
VSSB - 105007 - - - 101460-000420
VSUB - 105003 - - - 101460-000020
VSUM - 105105 - - - 101463
VSWP - 105117 - - - 101473
XADD - - - - 105207 -
XDIV - - - - 105212 -
XLUEX - 100710 - - - -
XMA - - - 101722 - -
XMPY - - - - 105211 -
Notes: * Indirect addressing

n Any binary numeric
N Any octal numeric

C-10 HP 1000 Computer Instruction Set (Octal Opcode)

Instruction Mnemonics in Opcode (Octal) Order

In general, A-Series computer (CPU and SPU) instructions which are not implemented (denoted
with a dash in Table C-2) will cause an unimplemented instruction trap when executed. Note that
RTE-A uses the following unimplemented instructions as traps:

EXEC 100700
$LIBR 100701
$LIBX 100702
$SJP 100703
$SJISO 100704
$SJSI 100705
$SJS2 100706
$SJS3 100707
XLUEX 100710
$PRIV 100711

Most unimplemented instructions on the E/F-Series computers are no-ops. Some, however, will
produce unpredictable results while others may cause the computer to hang. None of the
unimplemented instructions are useful.

Note The instruction set listed in each computer series reference manual takes prece-
dence over Table C-2 and, therefore, should be considered as the ultimate
source for instruction sets.

HP 1000 Computer Instruction Set (Octal Opcode) C -11

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 1 of 11)

HP 1000 Computer Series

OPCODE

(OCTAL) A400 | A600 | A600+| A700 | A900 | A990 E F
01(0nn)NNN AND AND AND AND AND AND AND AND
01(1nn)NNN JSB JSB JSB JSB JSB JSB JSB JSB
02(0nn)NNN XOR XOR XOR XOR XOR XOR XOR XOR
02(1nn)NNN JMP JMP JMP JMP JMP JMP JMP JMP
03(0nn)NNN IOR IOR IOR IOR IOR IOR IOR IOR
03(1nn)NNN ISZ ISZ ISZ ISZ ISZ ISZ ISZ ISZ
04(0nn)NNN ADA ADA ADA ADA ADA ADA ADA ADA
04(1nn)NNN ADB ADB ADB ADB ADB ADB ADB ADB
05(0nn)NNN CPA CPA CPA CPA CPA CPA CPA CPA
05(1nn)NNN CPB CPB CPB CPB CPB CPB CPB CPB
06(0nn)NNN LDA LDA LDA LDA LDA LDA LDA LDA
06(1nn)NNN LDB LDB LDB LDB LDB LDB LDB LDB
07(0nn)NNN STA STA STA STA STA STA STA STA
07(1nn)NNN STB STB STB STB STB STB STB STB
100000...017 - - - - - - - -
100020...037 ASL ASL ASL ASL ASL ASL ASL ASL
100040...057 LSL LSL LSL LSL LSL LSL LSL LSL
100060...077 - - - - LSLD | — -
100100...117 RRL RRL RRL RRL RRL RRL RRL RRL
100120...177 - - - - - - - -
100200 MPY * | MPY * | MPY * | MPY * | MPY * | MPY * | MPY * | MPY *
100201...377 - - - - - - - -
100400 DIV* |DIV* |[DV* |[DV* |DV* |DIV* [DV* |DIV *
100401...577 - — — — — — — —
100600 JLA * | JLA * |[JLA * [JLA * [JLA * |JLA * | - -
100601...777 - - - - - - - -
10(01n)7NN CLC CLC CLC CLC CLC CLC CLC CLC
10(n11)INN CLF CLF CLF CLF CLF CLF CLF CLF
10(01n)6NN OTA OTA OTA OTA OTA OTA OTA OTA
10(11n)6NN OTB OTB OTB OoTB OTB OTB OTB OTB
10(n10)1NN STF STF STF STF STF STF STF STF
10(11n)7NN STC STC STC STC STC STC STC STC
101000...017 - - - - - - - -
101020...037 ASR ASR ASR ASR ASR ASR ASR ASR
101040...057 LSR LSR LSR LSR LSR LSR LSR LSR
101060...077 - - - - - LSRD | — -
101100...117 RRR RRR RRR RRR RRR RRR RRR RRR
101120...405 - - - - - - - -
101406 .CCQA | — .CCQA | .CCQA | .CCQA |.CCQA | - -

Notes: * May be used with or without a leading dot
n Any binary numeric
N Any octal numeric

C-12

HP 1000 Computer Instruction Set (Octal Opcode)

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 2 of 11)

OPCODE HP 1000 Computer Series
(OCTAL) A400 | A600 | A600+| A700 | A900 | A990 E F
101407 .CACQ | - .CACQ [.CACQ | .CACQ | .CACQ | - -
101410 .CZA - .CZA .CZA .CZA .CZA - -
101411 .CAZ - .CAZ .CAZ .CAZ .CAZ - -
101412 .CIQA | - .CIQA | .CIQA | .CIQA | .CIQA | - -
101413 ADQA | — ADQA | .ADQA | .ADQA | .ADQA | - -
101414...457 - - - - - - - -
101460— - - - - - - - .VECT
—000000 - - - - - - - VADD
—000020 - - - - - - - VSUB
—000040 - - - - - - - VMPY
—000060 - - - - - - - VDIV
—000400 - - - - - - - VSAD
—000420 - - - - - - - VSSB
—000440 - - - - - - - VSMY
—000460 - - - - - - - VSDV
101461 - - - - - - - VPIV
101462 - - - - - - - VABS
101463 - - - - - - - VSUM
101464 - - - - - - - VNRM
101465 - - - - - - - VDOT
101466 - - - - - - - VMAX
101467 - - - - - - - VMAB
101470 - - - - - - - VMIN
101471 - - - - - - - VMIB
101472 - - - - - - - VMOV
101473 - - - - - - - VSWP
101474...677 - - - - - - - -
101700...707 - - - — — — — —
101010 - - - - - - .SYA .SYA
101711 - - - - - - .USA .USA
101712 - - - - - - .PAA .PAA
101713 - - - - - - .PBA .PBA
101714...715 - - — — — — — —
101716 - - - - XLAB - — —
101717...720 - - — — — — — —
101721 XLA2 XLA2 XLA2 XLA2 XLA2 XLA2 - -
101722 XSA2 XSA2 XSA2 XSA2 XSA2 XSA2 [XMA XMA
101723 XCA2 | XCA2 | XCA2 | XCA2 | XCA2 | XCA2 | - -
101724 XLA1 XLA1 XLA1 XLA1 XLA1 XLA1 XLA * | XLA *
101725 XSA1 XSA1 XSA1 XSA1 XSA1 XSA1 XSA * | XSA *
101726 XCA1 XCA1 XCA1 XCA1 XCA1 XCA1 XCA * | XCA *
101727 .MB0OO | .MB0OO | .MBOO | .MBOO | .MBOO | .MBOO | .LFA .LFA
101730 .MBO01 .MBO01 .MBO01 .MBO01 MBO1 MBO1 .RSA .RSA
Note: * May be used with or without a leading dot
HP 1000 Computer Instruction Set (Octal Opcode) C-13

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 3 of 11)

HP 1000 Computer Series

OPCODE

(OCTAL) A400 | A600 | A600+| A700 | A900 | A990 E F
101731 MB02 | .MB02 | .MB02 | .MB02 | .MB02 | .MB02 | .RVA | .RVA
101732 .MB10 | .MB10 | .MB10 | .MB10 | .MB10 | .MB10 | — -
101733 MB11 | .MB11 | .MB11 | .MB11 | .MB11 | .MB11 | — -
101734 MB12 | .MB12 | .MB12 | .MB12 | .MB12 | .MB12 | — -
101735 .MB20 | .MB20 | .MB20 | .MB20 | .MB20 | .MB20 | — -
101736 MB21 | .MB21 | .MB21 | .MB21 | .MB21 | .MB21 | — -
101737 MB22 | .MB22 | .MB22 | .MB22 | .MB22 | .MB22 | — -
101740 SAX * | SAX * | SAX * | SAX * | SAX * | SAX * | SAX * | SAX *
101741 CAX * | CAX * | CAX * | CAX * | CAX * | CAX * | CAX * | CAX *
101742 LAX * | LAX * | LAX * | LAX * | LAX * | LAX * | LAX * | LAX *
101743 - - - - - - - -
101744 CXA * | CXA * | CXA * | CXA * | CXA * | CXA * | CXA * | CXA *
101745 - - - - - - - -
101746 - - - - - - - -
101747 XAX * | XAX * | XAX * | XAX * | XAX * | XAX * | XAX * | XAX *
101750 SAY * | SAY * | SAY * | SAY * | SAY * | SAY * | SAY * | SAY *
101751 CAY * | CAY * | CAY * | CAY * | CAY * | CAY * | CAY * | CAY *
101752 LAY * | LAY * | LAY * | LAY * | LAY * | LAY * | LAY * | LAY *
101753 - - - - - - - -
101754 CYA * | CYA * | CYA * | CYA * |CYA * | CYA * | CYA * | CYA *
101755 - - - - - - - -
101756 - - - - - - - -
101757 XAY * | XAY * | XAY * | XAY * | XAY * | XAY * | XAY * | XAY *
101760...777 || — - - - - - - -
102101 STO STO STO STO STO STO STO STO
102201 SOC |SOC |SOC |[SoC |SOC |Soc |soc | soc
102301 S0OS S0S S0OS S0OS S0S S0OS S0OS S0S
1024NN MIA MIA MIA MIA MIA MIA MIA MIA
1025NN LIA LIA LIA LIA LIA LIA LIA LIA
103101 CLO CLO CLO CLO CLO CLO CLO CLO
104000 - - - - - MPYD | — -
104001...037 || — - - - - - - -
104040...057 || — - - - - ASLD | - -
104060...077 || — - - - - ASRD | - -
104100 - - - - - DIVD | — -
104101..177 || — - - - - - - -
104200 DLD * |DLD * | DLD * | DLD * | DLD * | DLD * | DLD * | DLD *
104201...377 || — - - - - - - -
104400 DST * | DST * | DST * | DST * | DST * | DST * | DST * | DST *
104401..577 || — - - - - - - -

Note: * May be used with or without a leading dot

C-14

HP 1000 Computer Instruction Set (Octal Opcode)

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 4 of 11)

HP 1000 Computer Series
OPCODE
(OCTAL) A400 | A600 | A600+| A700 | A900 | A990 E F
104600 JLB * | JLB * | JLB * | JLB * [JLB * | JLB *
104601....777 || — - - - - - - -
105000 FAD * | FAD * | FAD * | FAD * |FAD * | FAD * | FAD * | FAD *
105001 - - - VADD* |VADD | VADD | — XADD
105002 - .TADD* | TADD | .TADD | — .TADD
105003 - - - vsSuB* [vsSuB | VSUB | - -
105004 - - - VMPY+ |VMPY | VMPY | — -
105005 - - - VvDIV¥ |VvDIV | VDIV - -
105006 - - - VSAD* |VSAD | VSAD | — -
105007 - - - VSSB |VSSB | VSSB | — -
105010 - - - VSMY# |VSMY | vSmY | — -
105011 - - - vSDV¥ |vsSDV | vsSDv | — -
105012 - - - - - - - -
105013 - - - - - - - -
105014 DAD | DAD | .DAD | .DAD |.DAD | .DAD | - DADT
105015 - - - - - - - -
105016 - - - - - - - -
105017 - - - - - - - -
105020 FSB * | FSB * | FSB * | FSB * |FSB * | FSB * | FSB * | FSB *
105021 - - - DVADD?# DVADD| DVADD| — XSUB
105022 TSUB | — TSUB | .TSUB* |.TSUB | .TSUB | — .TSUB
105023 - - - DVSUB# DVSUB| DVSUB| — -
105024 - - - DVMPY?# DVMPY| DVMPY| — -
105025 - - - DVDIV* [DVDIV | DVDIV | — -
105026 - - - DVSAD*| DVSAD| DVSAD| — -
105027 - - - DVSSB*¥| DVSSB| DVSSB| — -
105030 - - - DVSMY?# DVSMY| DVSMY| — -
105031 - - - DVSDV#| DVSDV| DVSDV| — -
105032 - - - - - - - -
105033 - - - - - - - -
105034 DSB | DSB | .DSB | .DSB |.DSB | .DSB | - .DSBT
105035 - - - - - - - -
105036 - - - - - - - -
105037 - - - - - - - -
105040 FMP * | FMP *| FMP * | FMP * |FMP * | FMP * | FMP * | FMP *
105041 - - - - - - - XMPY
105042 TIMPY | — TMPY | TMPY* | TMPY | .TMPY | — TMPY
105043 - - - - - - - -
105044 - - - - - - - -
105045 - - - - - - - -
105046 - - - - - - - -
Notes: * May be used with or without a leading dot

F-Series with date code later than 1920 (firmware revision > 2)
A700 Series with hardware floating point

HP 1000 Computer Instruction Set (Octal Opcode)

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 5 of 11)

OPCODE HP 1000 Computer Series
(OCTAL) A400 | A600 | A600+| A700 | A900 | A990 E F
105047 - - - - - - - -
105050 - - - - - - - -
105051 - - - - - - - -
105052 - - - - - - - -
105053 - - - - - - - -
105054 DMP | - DMP | .DMP | .DMP | DMP | — DMPT
105055 - - - - - - - -
105056 - - - - - - - -
105057 - - - - - - - -
105060 FDV * | FDV * | FDV * | FDV * | FDV * | FDV * | FDV * | FDV *
105061 - - - - - - - XDIV
105062 IDIV | - IDIV | TDIVF | TDIV | .TDIV | - TVID
105063 - - - - - - - -
105064 - - - - - - - -
105065 - - - - - - - -
105066 - - - - - - - -
105067 - - - - - - - -
105070 - - - - - - - -
105071 - - - - - - - -
105072 - - - - - - - -
105073 - - - - - - - -
105074 .DDI - DDI DDI .DDI .DDI - DDIT
105075 - - - - - - - -
105076 - - - - - - - -
105077 - - - - - - - -
105100 FIX* |FIX* |FIX* [FIX* |FIX* [FIX* |FIX* |FIX*
105101 - - - VPRIV | VPIV | VPIV - XFXS
- DINT
105102 TINT | - TINT | TINT | .TINT |.TINT | - TINT
TFXS | - TFXS | TFXS* | TFXS | .TFXS | - TFXS
105103 - - - VABSY | VABS | VABS | — -
105104 FIXD | - FIXD | .FIXD* | FIXD | .FIXD | - FIXD
105105 - - - VSUM* | VSUM | VSUM | — XFXD
105106 TFXD | - TFXD | .TFXD¥| .TFXD | .TFXD | - TFXD
105107 - - - VNRM*| VNRM | VNRM | — -
105110 - - - VvDOT# | VDOT | VDOT | — -
105111 - - - VMAX¥ | VMAX | VMAX | — -
105112 - - - VMAB* | VMAB | VMAB | — -
105113 - - - VMIN* | VMIN | VMIN | — -
105114 .DSBR | .DSBR | .DSBR | .DSBR | .DSBR | .DSBR | — .DSBRT
105115 - - - VMIB¥ | VMIB | VMIB | — -
105116 - - - VMOV# | VMOV | VMOV | — -
Notes: * May be used with or without a leading dot

F-Series with date code later than 1920 (firmware revision > 2)
A700 Series with hardware floating point

C-16

HP 1000 Computer Instruction Set (Octal Opcode)

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 6 of 11)

HP 1000 Computer Series

OPCODE
(OCTAL) A400 | A600 | A600+| A700 A900 | A990 E F
105117 - - - VSWP* | VSWP | VSWP | — -
105120 FLT * | FLT * | FLT * |FLT * |FLT * |FLT * |FLT* |FLT*
105121 - - - DVPIV* | DVPIV | DVPIV | — XFTS
- IDBL
105122 ITBL | — JTBL | UTBL* | JUTBL | UTBL | - ITBL
TFTS | - TFTS | TFTS* | TFTS | .TFTS | - TFTS
105123 - - - DVABS*| DVABS | DVABS | — -
105124 FLTD | - FLTD | .FLTD¥ | .FLTD | .FLTD | - FLTD
105125 - - - DVSUM¥ DVSUM| DVSUM| — XFTD
105126 .TFTD - JdFTD .II-ILJ¢ JdFTD JdFTD - .TFTD
105127 - - - DVNRMY DVNRM| DVNRM| — -
105130 - - - DVDOT?# DVDOT | DVDOT | — -
105131 - - - DVMAX# DVMAX | DVMAX | — -
105132 - - - DVMAB¥ DVMAB | DVMAB| — -
105133 - - - DVMIN* | DVMIN | DVMIN | — -
105134 DDR | — DDIR | .DDIR | .DDIR |.DDIR | - .DDIRT
105135 - - - DVMIB* | DVMIB | DVMIB | — -
105136 - - - DVMOVY DVMOV| DVMOV| — -
105137 - - - DVSWPH DVSWP| DVSWP| — -
105140...177| — - - - - - - -
105200 - - - - - - - -
105201 - - - - - - DBLE | DBLE
105202 - - - - - - SNGL | SNGL
105203 DNG | DNG | .DNG | .DNG |.DNG |.DNG | XMPY | .DNGT
105204 DCO |.bcO |.bco |.bco |.bco |.bco | .xpbwv |.ocof
105205 .DFER | .DFER | .DFER | .DFER | .DFER | .DFER | .DFER | .DFER
105206 - - - - - - XPAK | XPAK
105207 BLE - BLE BLE* | BLE BLE | XADD | .BLET
105210 DIN DIN DIN DIN DIN DIN XSUB | .DINT
105211 DDE | .DDE | .DDE | .DDE DDE | .DDE | XMPY | .DDET
105212 DIS DIS DIS DIS DIS DIS XDIV | .DIST
105213 DDS | .DDS | .DDS | .DDS DDS | .DDS | .XADD | .DDST
105214 NGL | - NGL | NGL¥ | NGL | .NGL | XSuB | .NGLT
105215 - - - - - - XCOM | .XCOM
105216 - - - - - - .DCM | ..DCM
105217 - - - - - - DDINT | DDINT
105220 XFER | XFER | XFER | XFER | XFER | XFER | XFER | .XFER
105221 - - - - - - .GOTO | .GOTO
105222 - - - - - DSZ | .MAP | .MAP
105223 ENTR | .ENTR | .ENTR | .ENTR | .ENTR | .ENTR | .ENTR | .ENTR
105224 ENTP | .ENTP | .ENTP | .ENTP | .ENTP | .ENTP | .ENTP | .ENTP
105225 PWR2 | — PWR2 | PWR2 | .PWR2 | .PWR2 | .PWR2 | .PWR2
Notes: * May be used with or without a leading dot

F-Series with date code later than 1920 (firmware revision > 2)
¥ A700 Series with hardware floating point

HP 1000 Computer Instruction Set (Octal Opcode)

C-17

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 7 of 11)

HP 1000 Computer Series

OPCODE
(OCTAL) A400 | A600 | A600+| A700 | A900 | A990 E F
105226 FLUN | — FLUN | .FLUN | .FLUN |.FLUN |.FLUN | .FLUN
105227 SETP | .SETP |.SETP | .SETP |.SETP |.SETP | $SETP | $SETP
105230 PACK PPACK | .PACK | .PACK | .PACK |.PACK | .PACK
105231 .CFER | .CFER | .CFER | .CFER |.CFER |.CFER |.CFER | .CFER
105232 .FCM | .FCM |.FCM |.FCM |.FCM |.FCM | - .Fcmt
105233 .TCM | - .TCM | .TCM* | .TCM |.TCM | - .Tcmt
105234 EENTN | .ENTN | .ENTN | .ENTN |.ENTN | .ENTN | — -
105235 EENTC | .ENTC | .ENTC | .ENTC | .ENTC | .ENTC | - -
105236 CPM |.CPM |.CPM |.CPM |.CPM |.CPM |- -
105237 ZFER | .ZFER | .ZFER | .ZFER | .ZFER | .ZFER -
105240 PMAP | PMAP | .PMAP | .PMAP | .PMAP | .PMAP | .PMAP | .PMAP
105241 - - - - - - $LOC | $LOC
105242 - - - - - - - -
105243 - - - - - - - -
105244 IRES |.RES |.RES |.IRES |.RES |.RES |- -
105245 JRES | — JRES | JRES | .JRES | .JRES | - -
105246 - - - - - - - -
105247 - - - - - LBPC | — -
105250 IMAP | .IMAP | .IMAP | .IMAP | .IMAP | .IMAP |.IMAP | .IMAP
105251 - - - - - - IMAR | .IMAR
105252 JVMAP | — JMAP | JMAP | JMAP | JMAP | JMAP | JMAP
105253 - - - - - - JMAR | .JMAR
105254 LPXR |.LPXR |.LPXR |.LPXR | .LPXR | .LPXR |.LPXR | .LPXR
105255 LPX LPX LPX LPX LPX LPXR | .LPX LPX
105256 LBPR | .LBPR |.LBPR |.LBPR |.LBPR | .LBPR |.LBPR | .LBPR
105257 LBP LBP LBP LBP LBP LBP LBP LBP
105260 - - - - - - - -
105300 CPUID | .CPUID | .CPUID | .CPUID | .CPUID | .CPUID | .CPUID | .CPUID
.CPU | .CPU CPU |.CPU |.CPU |.CPU |- -
105301 FWID |.FWID |.FWID |.FWID |.FWID | .FWID |.FWID | .FWID
105302 WFI \WFI WFI \WFI \WFI \WFI - -
105303 SIP SIP SIP SIP SIP SIP - -
105304 - - - - - WCS | - -
105305 - - - - - RCS | - -
105306 - - - - - WTM | — -
105307 - - - - - RTM | - -
105310 - - - - - WTC | - -
105311 - - - - - RTC | - -
105312 - - - - - - - -
105313 - - - - - - - -
105314 - - - - - - - -
105315 - - - - - - - -

Note: T F-Series with date code later than 1920 (firmware revision > 2)

A700 Series with hardware floating point

HP 1000 Computer Instruction Set (Octal Opcode)

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 8 of 11)

OPCODE HP 1000 Computer Series

(OCTAL) A400 | A600 | A600+| A700 | A900 | A990 E F
105316 - - - - - - - -
105317 - - - - - - - -
105320 - - - TAN* | TAN TAN self-test | TAN
105321 - - - SQRT* | SQRT | SQRT |.DAD | SQRT
105322 - - - ALOG* | ALOG | ALOG | .DMP |ALOG
105323 - - - ATAN¥ | ATAN | ATAN | DNG |ATAN
105324 - - - cost | cos | cos .DCO | CcOoSs
105325 - - - SIN¥ SIN SIN .DDI SIN
105326 - - - Exp# EXP EXP DDIR | EXP
105327 - - - ALOGT*| ALOGT | ALOGT | .DSB | ALOGT
105330 - - - TANH*¥ | TANH | TANH | .DIN TANH
105331 - - - DPOLY*#| DPOLY | DPOLY | .DDE | DPOLYT
105332 - - - /CMRT#| /CMRT | /CMRT | .DIS JCMRTT
105333 - - - /ATLG* | /ATLG | /ATLG | ..DDS |/ATLGT
105334 - - - FRWR*| .FPWR | .FPWR | .DSBR | .FPWRT
105335 - - - TPWR*| TPWR | .TPWR | — TPWRT
105336 - - - - - - - -
105337 - - - - - - - -
105340 - - - - - - $LIBR | $LIBR
105341 - - - - - - $LIBX | $LIBX
105342 - - - - - - TICK | .TICK
105343 - - - - - - TNAM | . TNAM
105344 - - - - - - STIO | .STIO
105345 - - - - - - FNW | FNW
105346 - - - - - - JIRT JIRT
105347 - - - - - - LLS LLS
105350 - - - - - - SIP SIP
105351 - - - - - - YLD YLD
105352 - - - - - - .CPM | .CPM
105353 - - - - - - ETEQ | .ETEQ
105354 - - - - - - ENTN | .ENTN
105355 - - - - - - self-test | self-test
105356 - - - - - - ENTC | .ENTC
105357 - - - - - - .DSPI | .DSPI
105360...377 | — - - - - - - -
105400 PCALI | — PCALI | .PCALI | .PCALI | .PCALI | — -
105401 PCALX| — PCALX| .PCALX | .PCALX| .PCALX | — -
105402 PCALV| — PCALV| .PCALV | .PCALV| .PCALV | — -
105403 PCALR| — PCALR| .PCALR | .PCALR| .PCALR| — -
105404 PCALN| — PCALN| .PCALN | .PCALN| .PCALN| — -
105405 .SDSP | — .SDSP | .SDSP | .SDSP | .SDSP | — -
105406 .CCQB | — .CCQB | .cCQB | .ccaB | .ccaB | - -
Notes: T F-Series with date code later than 1920 (firmware revision > 2)

A700 Series with hardware floating point

HP 1000 Computer Instruction Set (Octal Opcode)

Cc-19

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 9 of 11)

OPCODE HP 1000 Computer Series
(OCTAL) A400 | A600 | A600+| A700 | A900 | A990 E F
105407 .CBCQ | — .CBCQ | .CBCQ | .CBCQ | .CBCQ - -
105410 .CZB - .CZB .CZB .CZB .CZB - -
105411 .CBZ - .CBZ .CBZ .CBZ .CBZ - -
105412 .ClaB | — .ClQB | .CIQB | .CIQB | .CclQB - -
105413 ADQB | — ADQB | .ADQB | .ADQB | .ADQB — -
105414 - - - - - - - -
105415 EXIT1 | — EXIT1 | EXITT1 | .EXIT1 | .EXIT1 - -
105416 EXIT2 | — EXIT2 | EXIT2 | .EXIT2 | .EXIT2 - -
105417 EXITO | — .EXITO | .EXITO | .EXITO | .EXITO - -
105420...457 - - - - - - - -
105460— - - - - - - - .DVCT
—000000 || — - - - - - - DVADD
—000020 | — - - - - - - DvVSuB
—000040 | — - - - - - - DVMPY
—000060 || — - - - - - - DVDIV
—000400 | — - - - - - - DVSAD
—000420 || — - - - - - - DVSSB
—000440 || — - - - - - - DVSMY
—000460 | — - - - - - - DVSDV
—105461 || — - - - - - - DVPIV
—105462 | — - - - - - - DVABS
—105463 | — - - - - - - DVSUM
—105464 | — - - - - - - DVNRM
—105465 || — - - - - - - DVDOT
105466 - - - - - - - DVMAX
105467 - - - - - - - DVMAB
105470 - - - - - - - DVMIN
105471 - - - - - - - DVMIB
105472 - - - - - - - DVMOV
105473 - - - - - - - DVSWP
105474...477 - - - - - - - —
105500...677 - - - - - - - -
105700 .LPMR | .LPMR | .LPMR | .LPMR | .LPMR | .LPMR - -
105701 .SPMR | .SPMR | .SPMR | .SPMR | .SPMR | .SPMR - —
105702 .LDMP | .LDMP | .LDMP | .LDMP | .LDMP | .LDMP MBI * | MBI *
105703 STMP | .STMP | .STMP | .STMP | .STMP | .STMP MBF * [MBF *
105704 .LWD1 | .LWD1 | .LWD1 | .LWD1 | .LWD1 | .LWD1 MBW *| MBW *
105705 .LwbD2 | .L.wD2 | .LWD2 | .LWD2 | .LWD2 | .LWD2 MWI * | MWI *
105706 .SWMP | .SWMP | .SWMP | .SWMP | .SWMP | .SWMP MWF * | MWF *
105707 .SIMP .SIMP .SIMP .SIMP .SIMP .SIMP MWW * MWW *
105710 XIMP | XIJMP | XJMP | XJMP | XJMP | XJMP SYB SYB
105711 XJCQ | XJCQ | .XJCQ | XJCQ | .XJCQ | .XJCQ usSB usB
Note: * May be used with or without a leading dot

C-20 HP 1000 Computer Instruction Set (Octal Opcode)

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 10 of 11)

OPCODE HP 1000 Computer Series

(OCTAL) A400 | A600 | A600+| A700 | A900 | A990 E F
105712 - - - - - ..XMP | PAB PAB
105713 - - - - - .SXMP | PBB PBB
105714 - - - - - LXMR | SSM SSM
105715 - - - - - .SXMR | JRS JRS
105716 - - - - XLBB - - -
105717 - - - - - - - -
105720 - - - - - - XMM XMM
105721 XLB2 XLB2 XLB2 XLB2 XLB2 XLB2 XMS XMS
105722 .XSB2 .XSB2 .XSB2 .XSB2 .XSB2 XSB2 | XMB XMB
105723 XCB2 | .XCB2 | .XCB2 | .XCB2 | .XCB2 |.XCB2 | - -
105724 XLB1 XLB1 XLB1 XLB1 XLB1 XLB1 XLB * [XLB *
105725 .XSB1 .XSB1 .XSB1 .XSB1 .XSB1 .XSB1 XSB * | XSB *
105726 XCBH1 XCBH1 XCB1 XCB1 XCB1 XCBH1 XCB * | XCB *
105727 .MWO00 | .MWO00 | .MWO00 | .MWO00 | .MWO00 | .MWO0O | LFB LFB
105730 .MWo01 | .MWO01 | .MWO01 | .MWO1 | .MWO1 | .MWO1 | RSB RSB
105731 .MWO02 | .MWO02 | .MWO02 | .MWO02 [.MWO02 [.MWO02 [RVB RvVB
105732 .MW10 | .MW10 | .MW10 | .MW10 | .MW10 [.MW10 | DHP DHP
105733 MW11 | MW11 | MW11 | MW11 | MW11 [MW11 [DJS DJS
105734 MW12 | MW12 | MW12 [MW12 [MW12 | MW12 | SJP SJP
105735 .MW20 | .MW20 | MW20 | .MW20 [.MW20 | .MW20 | SJS SJS
105736 .MW21 | MW21 | MW21 | MW21 | MW21 | MW21 | UJB uJB
105737 MW22 | . MW22 | MW22 | . MW22 | .MW22 | .MW22 [UJS uJds
105740 SBX * |SBX * |SBX * |SBX * |SBX * |SBX * | SBX * | SBX *
105741 CBX * |CBX * |CBX * |CBX * |CBX * |CBX * |CBX * |CBX *
105742 LBX * |LBX * |LBX * |LBX * |LBX * [LBX * [LBX * [LBX *
105743 STX * |STX * | STX * | STX * | STX * | STX * | STX * | STX *
105744 CXB * |CXB * |CXB * |CXB * |CXB * |CXB * |CXB * |CXB *
105745 LDX * |LDX * |LDX * |LDX * |LDX * |LDX * |LDX * |LDX *
105746 ADX * | ADX * | ADX * | ADX * | ADX * | ADX * | ADX * | ADX *
105747 XBX * [XBX * [XBX * [XBX * | XBX * | XBX * | XBX * | XBX *
105750 SBY * | SBY * | SBY * | SBY * | SBY SBY * | SBY * | SBY *
105751 CBY * |CBY * |CBY * |CBY * |CBY * |CBY * |CBY * |CBY *
105752 LBY * |LBY * |LBY * |LBY * |LBY * |LBY * |LBY * |[LBY *
105753 STY * | STY * | STY * | STY * |STY * |STY * | STY * |STY *
105754 cyB * |CYB * |CYB * |CYB * |CYB * |CYB * |CYB * |CYB *
105755 LDY * | LDY * |LDY * |LDY * |LDY * |LDY * |LDY * |LDY *
105756 ADY * | ADY * | ADY * | ADY * | ADY * | ADY * | ADY * | ADY *
105757 XBY * | XBY * | XBY * | XBY * | XBY * | XBY * | XBY * | XBY *
105760 ISX * ISX * ISX * ISX * ISX * ISX * ISX * ISX *
Note: * May be used with or without a leading dot

HP 1000 Computer Instruction Set (Octal Opcode) C -21

C-22

Table C-2. Instruction Mnemonics in Opcode (Octal) Order (sheet 11 of 11)

HP 1000 Computer Series
OPCODE
(OCTAL) A400 | A600 | A600+| A700 | A900 | A990 E F
105761 DSX * |DSX * |DSX * |DSX * | DSX * | DSX * | DSX * | DSX *
105762 JLY * JLY * JLY * JLY * JLY * JLY * JLY * JLY *
105763 LBT * | LBT * |LBT * |(LBT * (LBT * |LBT * |LBT * |LBT *
105764 SBT * |SBT * |SBT * |SBT * |SBT * | SBT * | SBT * | SBT *
105765 MBT * | MBT * | MBT * | MBT * { MBT * | MBT * | MBT * | MBT *
105766 CBT * |CBT * |CBT * |CBT * |CBT * |CBT * |CBT * | CBT *
105767 SFB * |SFB * |SFB * |SFB * |SFB * |SFB * | SFB * | SFB *
105770 ISY * ISY * ISY * ISY * ISY * ISY * ISY * ISY *
105771 DSY * | DSY * | DSY * | DSY * | DSY * | DSY * | DSY * | DSY *
105772 JPY * [JPY * [JPY * [JPY * | JPY * | JPY * | JPY * | JPY *
105773 SBS * [SBS * [SBS * [SBS * [SBS * [SBS * [SBS * | SBS *
105774 CcBs *|{CBS *|[CBS *(CBS * |CBS * [CBS * [CBS * | CBS *
105775 TBS * |TBS * |TBS * |TBS * |TBS * |TBS * | TBS * | TBS *
105776 CMW *| CMW *| CMW *| CMW *| CMW *| CMW *| CMW *| CMW *
105777 MVW *| MVW *| MVW *| MVW *[MVW *| MVW *| MVW *| MVW *
1064NN MIB MIB MIB MIB MIB MIB MIB MIB
1065NN LIB LIB LIB LIB LIB LIB LIB LIB
11(0nn)NNN AND ° |AND ®° |AND ®° |AND ° |AND °®° |AND °® |AND °® | AND °*
11(1nn)NNN || JSB ° [JSB ° [JSB ° [JSB ° [JSB ° [JSB ° |JSB ° |JSB °
12(1nn)NNN JMP * [JMP * [JMP * [JMP * [JMP * [JMP * [JMP °* |JMP °
13(0nn)NNN IOR ° IOR ° IOR ° IOR ° IOR ° IOR ° IOR ° IOR °
13(1nn)NNN ISZ ° ISZ ° ISZ ° ISZ ° ISZ ° ISZ ° ISZ ° ISZ °
14(0nn)NNN ADA ° | ADA ° | ADA ° | ADA ° | ADA ° | ADA ° [ADA ° | ADA °
14(1nn)NNN ADB °* |ADB * |ADB * |ADB * |ADB * |ADB * |ADB * | ADB °
15(0nn)NNN CPA * |CPA* |CPA*® |CPA° |CPA* |CPA* |CPA * |CPA°
15(1nn)NNN CPB* |CPB*° |CPB* |CPB* |CPB*° |CPB *® |CPB *° |CPB °
16(0nn)NNN LDA ° |LDA ° |LDA ° |LDA ° |LDA ° |LDA ° |LDA ° |LDA °
16(1nn)NNN LDB * |LDB * |LDB *° |LDB ° |LDB LDB ° | LDB LDB °
17(0nn)NNN STA ° |STA ° |STA ® |STA * |STA ° |STA ° |STA * |STA °
17(1nn)NNN STB*® |STB*® |STB * |STB *° |STB * |STB * |STB * | STB °
Notes: n Any binary numeric

N Any octal numeric

*

May be used with or without a leading dot

Indirect addressing

HP 1000 Computer Instruction Set (Octal Opcode)

HP 1000 Computer Base and Extended
Instruction Sets

Table D-1 is a listing of the base set of instructions (binary). Table D-2 presents a summary of the
extended set of instructions for A-Series Computers. Table D-3 lists additional instructions for the

A990 Computer.

Note The instruction set listed in each computer series reference manual takes prece-
dence over these tables and should, therefore, be considered as the ultimate
source for instruction sets.

HP 1000 Computer Base and Extended Instruction Sets D -1

Table D-1. Base Set of Instruction Codes

15 14 13 12 | 11 10 9| 8 7 6| 5 4 3| 2 1 0
D/l AND 001 0 Z/C Memory Address »>
D/l XOR 010 0 Z/C
D/l IOR 011 0 Z/C
D/l JSB 001 1 Z/C
D/l JMP 010 1 Z/C
D/l ISz 011 1 Z/C
D/l AD* 100 AB Z/C
D/l CcP* 101 AB Z/C
D/l LD* 110 AB Z/C
D/l ST* 111 AB Z/C
15 14 13 12 | 11 10 918 7 6| 5 4 3| 2 1 0
0 SRG 000 A/B 0 D/E *LS 000 TCLE D/E *LS 000
A/B 0 D/E *RS 001 D/E %SL* *RS 001
A/B 0 D/E R*L 010 D/E R*L 010
A/B 0 D/E R*R 011 D/E R*R 011
A/B 0 D/E| *R 100 D/E *LR 100
A/B 0 D/E ER* 101 D/E ER* 101
A/B 0 D/E EL* 110 D/E EL* 110
A/B 0 D/E *LF 111 D/E *LF 111
A/B 0 0 L*E 101 0 L*E 101
A/B 0 0 S*E 110 0 S*E 110
000 NOP 000 000 NOP 000
15 14 13 12 | 11 10 918 7 6| 5 4 3| 2 1 0
0 ASG 000 A/B 1 CL* o1 CLE 01 SEZ Ss* SL* IN* SZ* RSS
A/B CM* 10| CME 10
A/B CC* 11 CCE 11
15 14 13 12 | 11 10 9|8 7 6| 5 4 3| 2 1 0
1 10G 000 1 H/C HLT 000 @ SelectCode ———————®¥
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS 011
A/B 1 H/C MI* 100
A/B 1 H/C LI* 101
A/B 1 H/C OT* 110
0 1 H/C STC 111
1 1 H/C CLC 111
1 0 STO 001 000 001
1 1 CLO 001 000 001
1 H/C SOC 010 000 001
1 H/C SOS 011 000 001
15 14 13 12 | 11 10 9|8 7 6| 5 4 3| 2 1 0
1 EAG 000 MPY** 000 010 000 000
DIV** 000 100 000 000
.MPYD**+ 100 000 000 000
.DIVD**+ 100 001 000 000
DLD** 100 010 000 000
DST** 100 100 000 000
ASR 001 000 0 1
ASL 000 000 0 1
LSR 001 000 1 0
LSL 000 000 1 0
RRR 001 001 0 0 Number
RRL 000 001 0 0 Of Bits
LSRD+t 001 000 1 1
LSLD+ 000 000 1 1
ASRD+ 100 000 1 1
ASLDY 100 000 1 0
Notes: D/I, A/B, Z/C, D/E, H/C coded: 0/1. TCLE: Only this bit is required.
* = Aor B, according to bit 11. tSL*: Only this bit and bit 11
** Second word is Memory Address. (A/B as applicable) are required.
+ A990 only.
D-2 HP 1000 Computer Base and Extended Instruction Sets

Table D-2. Summary of Extended Set of Instruction Codes for A-Series Computers (sheet 1 of 3)

1514 13 12 |11 10 9 | 8 7 6 4 2
110]0 R n|{njn n n
R G Opcode
Block Instruction Group
0 0 100NNN Extended Arithmetic
0 1 101NNN Extended Arithmetic, Code & Data Separation, and Index Register Insts.
1 0 104NNN Extended Arithmetic
1 1 105NNN Dynamic Mapping System, Virtual Memory Access, Scientific Instruction
Set, Code & Data Separation , and Index Register Instructions.
100NNN Opcode Block
100000...100017 1 000 000 000 00n nnn -
100020...100037 1 000 000 000 01n nnn ASL
100040...100057 1 000 000 000 10n nnn LSL
100060...100077 1 000 000 000 11n nnn LSLD
100100...100117 1 000 000 000 01n nnn RRL
100120...100177 -
100200 1 000 000 010 000 000 MPY
100201...100377 -
100400 1 000 000 100 000 000 DIV
100401...100577 -
100600 1 000 000 110 000 000 JLA
100601...100777 -
101NNN Opcode Block
101000...101017 1 000 001 000 00n nnn -
101020...101037 1 000 001 000 O1n nnn ASR
101040...101057 1 000 001 000 10n nnn LSR
101060...101077 1 000 001 000 11n nnn LSRD
101100...101117 1 000 001 001 00n nnn RRR
101120...101177 -
101200...101377 1 000 001 01n nnn nnn -
Np 0 1 2 3 4 5 7
10140N - - - - - .CCQA |.CACQ
10141N CzZA CAZ .CIQA .ADQA - - -
10142N - - - - - -
10143N - - - - - -
10144N - - - - - -
10145N - - - - - -
10146N - - - - - -
10147N - - - - - -
Notes: n Binary numeric
N Octal numeric
HP 1000 Computer Base and Extended Instruction Sets D -3

Table D-2. Summary of Extended Set of Instruction Codes for A-Series Computers (sheet 2 of 3)

101NNN Opcode Block (continued)

Np> 0 1 2 3 4 5 7
101500...101677 | — - - - - - —
10170N — — — — - - —
10171N - - - — — — —
10172N — XLA2 XSA2 XCA2 XLA1 XSA1 XCA1 MBO0O
10173N MBO1 MBO02 MB10 MB11 MB12 MB20 MB21 MB22
10174N SAX CAX LAX - CXA - XAX
10175N SAY CAY LAY — CYA — XAY
10176N — — — — - - —
10177N - - - — — — —

104NNN Opcode Block
104000 1 000 100 000 000 000 .MPYD
104001...104037 —
104040...104057 1 000 100 000 11n nnn ASLD
104060...104077 1 000 100 000 11n nnn ASRD
104100 1 000 100 001 000 000 .DIVD
104101...104177 —
104200 1 000 100 010 000 000 DLD
104201...104377 —
104400 1 000 100 100 000 000 DST
104401...104577 —
104600 1 000 100 110 000 000 JLB
104601...104777 —

105NNN Opcode Block
Np> 0 1 2 3 4 5 6 7
10500N FAD VADD .TADD |[VSUB VMPY VDIV VSAD VSSB
10501N VSMY | VSDV - - .DAD - - -
10502N FSB DVADD | .TSUB DVSUB | DVMPY | DVDIV DVSAD | DVSSB
10503N DVSMY | DVSDV | — - .DSB — - -
10504N FMP — .TMPY - — — — -
10505N — — — — DMP — - -
10506N FDV — .TDIV - — — — -
10507N — — — — .DDI - - —
10510N FIX VPIV .TFXS VABS .FIXD VSUM .TFXD VNRM
10511N VDOT | VMAX VMAB VMIN .DSBR | VMIB VMOV | VSWP
10512N FLT DVPIV TFTS DVABS | .FLTD DVSUM | .TFTD DVNRM
10513N DVDOT | DVMAX | DVMAB | DVMIN DDIR DVMIB DVMOV | DVSWP
10514N - - - — — — — —
10515N - - - - - - - —
10516N - - - - - - — —
10517N - - - — — — — —

Notes: n Binary numeric
N Octal numeric
* Place holder for .XLAB (future)
D-4 HP 1000 Computer Base and Extended Instruction Sets

Table D-2. Summary of Extended Set of Instruction Codes for A-Series Computers (sheet 3 of 3)

105NNN Opcode Block (continued)

Np 0 1 2 3 4 5 6 7
10520N - - - .DNG .DCO .DFER - .BLE
10521N .DIN .DDE .DIS .DDS .NGL - - -
10522N XFER - .DSZ .ENTR .ENTP .PWR2 .FLUN SETP
10523N .PACK | .CFER ..FCM .TCM .ENTN .ENTC .CPM ZFER
10524N .PMAP | — - - IRES JRES - .LBPC
10525N .IMAP - JMAP - .LPXR .LPX .LBPR .LBP
10526N - - - - - - - -
10527N — — — — — - - -
10530N .CPUID | .FWID WFI .SIP WCS .RCS WTM .RTM
10531N WTC .RTC - - — — — —
10532N TAN SQRT ALOG ATAN COoSs SIN EXP ALOGT
10533N TANH DPOLY | /CMRT | /ATLG .FPWR .TPWR — —
10534N - - — — — — - -
10535N — - - - - — — —
10536N — - - - - — — —
10537N - - — — — — - -
10540N .PCALI | .PCALX | .PCALV | .PCALR | .PCALN. | .SDSP .CCQB | .CBCQ
10541N .CZB .CBZ .ClQB ADQB - EXIT1 EXIT2 .EXITO
10542N - - - - - - - -
10543N - - - - - - - -
10544N - - - - - - - -
10545N - - - - - - - -
10546N - - - - - - - -
10547N - - - - - - - -
105500..105677 | — - - — — — — —
10570N .LPMR | .SPMR .LDMP STMP .LWD1 .LWD2 SWMP | .SIMP
10571N XJMP XJCQ LXMP .SXMP .LXMR .SXMR * -
10572N - XLB2 .XSB2 XCB2 XLB1 .XSB1 XCB1 .MWO00
10573N .MWO01 | .MWO02 .MW10 | .MW11 .MW12 .MW20 .MW21 .Mw22
10574N SBX CBX LBX STX CXB LDX ADX XBX
10575N SBY CBY LBY STY CYB LDY ADY XBY
10576N ISX DSX JLY LBT SBT MBT CBT SFB
10577N ISY DSY JPY SBS CBS TBS CMW MVW
Notes: n Binary numeric

N Octal numeric
Place holder for .XLBB (future)

*

HP 1000 Computer Base and Extended Instruction Sets D -5

Table D-3. Additional Instruction Codes for A990 Computers

Opcode (octal)

Mnemonic

Description of Instruction

100060...100077
101060...101077
104000
104100
104040...104057
104060...104077
105222
105247
105304
105305
105306
105307
105310
105311
105712
105713
105714
105715

LSLD
LSRD
.MPYD
.DIVD
ASLD
ASRD
.DSzZ
.LBPC
WCS
.RCS
WTM
.RTM
WTC
.RTC
LXMP
.SXMP
LXMR
.SXMR

LSL double integer format
LSR double integer format
Multiply, double integer format
Divide, double integer format
ASL, double integer format
ASR, double integer format
16-bit decrement and skip on zero
LBD with byte pointers

Write control store

Read control store

Write timer register

Read timer register

Write clock chip register

Read clock chip register

Load extended map set

Store extended map set

Load extended map register
Store extended map register

D-6 HP 1000 Computer Base and Extended Instruction Sets

Macro/1000 Assembler Operations

This appendix describes the Macro/1000 assembler (MACRO) operations. MACRO can be run
interactively from an input device or through a command file to translate source programs into
absolute or relocatable code. The absolute or relocatable form of the output is specified either
in the runstring or in the macro control statement in the source program.

Macro Control Statement

The macro control statement must be the first statement in the source program, of the form:
MACRO, pl,p2,p3,...,pn

Commas are required to separate the order-independent options. Options specified in the con-
trol statement can be overridden by options specified in the runstring. Except when the ‘M’ op-
tion is given, the control statement may be continued on a continuation line if necessary.

A Absolute assembly. The addresses generated by the assembler are interpreted as ab-
solute locations in memory. The program is a complete entity; no external symbols,
common storage references, or entry points are included. Note that an absolute pro-
gram cannot execute on RTE. (See note 1.)

R Relocatable assembly. The object program can be loaded anywhere in memory. All
operands that refer to memory locations are adjusted as the program is loaded. Ex-
ternal symbols, entry points and common storage references are allowed in the pro-
gram. (See note 1.)

M Macro Library creation. Create a macro library and place in the destination file
specified in the runstring. The destination file must be Type 1. (See note 2.)

L List output. Output an object code listing of the program to the list file or device.
The listing includes both the opcode and the address of the operand if it is a memory
reference instruction. (See notes 3 and 4.)

There are three suboptions with the L option:

=S Short listing. No macro expansion, no conditional assembly.
=M Medium listing. Expand macros, no conditional assembly.
=L Long listing. Expand macros, include conditional assembly.

When the suboptions are included, they must be given as L=S (no space between the
option and the suboption characters).

Macro/1000 Assembler Operations E -1

Q

T

C

List output. Output only the operand address for single-word memory reference in-
structions; that is, only the unrelocated address and not the opcode. The entire in-
struction will be listed otherwise. The suboptions =S, =M, and =L are also permit-
ted with this option. (See notes 3 and 4.)

Symbol Table. Include a listing of the symbol table in the output. When used with
the M option, specifies inclusion of all macro library names in the list file.

Cross-Reference Table. Include the cross-reference table in the listing. This table
provides all references to statement labels, all external symbols and all user-defined
opcodes, together with the source file line numbers at which they are defined and ref-
erenced.

Generate Microcode Instructions. This option overrides the Macro/1000 code-gener-
ating feature that generates a JSB for all microcode instructions. For example, with-
out this option, Macro/1000 would generate code for a “JSB .LBT” when it encoun-
ters the LBT opcode. The I option specifies that the microcode call for such instruc-
tions is to be generated. Refer to Chapter 3 for a description of the instructions this
option affects. (In general the software is more flexible if the I option is not used, as
the loader can then tailor the module to fit the hardware at load time.)

Note

If this option is used, Macro/1000 will generate opcodes for the M/E/F-Series
computers. These opcodes may or may not be identical to A-Series opcodes.
See Appendix C and D for the differences in opcodes which exist between
these computer series.

E-2

O

S

N,Z

D

PB,
EX

Invoke the OLDRE utility. This option converts the format of the relocatable output
file of Macro/1000 to be compatible with earlier RTE systems and generators. The
OLDRE utility must be loaded on your system for this option to work. Refer to the
Utility Programs Reference Manual for more information on OLDRE.

Enables symbolic debug mode. Must be loaded by LINK. Refer to the Symbolic
Debug/1000 User’s Manual, part number 92860-90001, for details on the debugger.

Selective Assembly. These options are included for backward compatibility with
ASMB. A description of their use is contained in Appendix J.

Ignore; this option is for future reference.

Ignore; these options are included for backward compatibility with ASMB.

+DC=<851002

Software date code to be installed in word 24 of the NAM records of all modules
processed under this control statement. The date is of the form <YYMMDD, where
< is optional, Y'Y is the last two digits of the calendar year, MM is the month and
DD is the day of the month. The date is converted to the number of days since Janu-
ary 1, 1970 and put in the NAM record. This code is intended to allow high level
compilers (such as Pascal) to put their revision level in the relocatable. This parame-
ter cannot be overridden in the runstring.

Macro/1000 Assembler Operations

+SF=filedescriptor
Normally MACRO puts the source file descriptor in the NAM record. This control
causes MACRO to put ‘file descriptor’ in the NAM record instead. This code is in-
tended to allow high level compilers (such as Pascal) to put the actual source file de-
scriptor in the NAM record. The file descriptor is used by such routines as DEBUG.
This parameter cannot be overridden in the runstring.

Note 1. Options A and R are mutually exclusive. Both may not appear in the
control statement. If neither A nor R is specified, R is assumed.
2. Only the L,Q, and T options can be used with the M option.
If both L and Q are specified, the last one specified is used.
4. If no suboptions are used with the L or Q options, =S is assumed.

w

Macro/1000 Assembler Operations E -3

Runstring Parameters

Call MACRO with the following runstring, using commas as placeholders if you omit a parame-
ter in the runstring:

E-4

[RU,] MACRO, sourcel , list[, dest [, & RS1=stringl

source

list

dest

, & RS2=string?2
, WORK=filedescriptor
, OPT=opt
, LI NES=pg
, opt
L. P8 44

The source file to be assembled is the only required parameter. Source may be a
file, an interactive device LU, or the LU of a non-interactive device such as a
magnetic tape or a cartridge tape unit. If source is a file and it is not found and
has no type extension, MACRO appends .MAC and tries again.

The file name or device LU to which the listing is directed. If the file does not
exist, it is created. If this parameter is omitted, no listing is produced. Enter a
dash (=) or an at sign (@) in this position to default the list parameter. The de-
faults are described in the section on Default Output File Formats.

If this parameter is defaulted, the source file name must be of the form &NAME
(& as the first character) or NAME.MAC (.MAC type extension). File names of
any other form are rejected by MACRO, aborting the assembly.

The file name or device LU to which the binary output is directed. If the file does
not exist, it is created. The dest parameter may be defaulted by entering a dash
(=) or an at sign (@) in this position. Refer to the section Default Output File
Formats for more information.

If this parameter is defaulted, the source file name must be of the form &NAME
(& as the first character) or NAME.MAC (.MAC type extension). File names of
any other form are rejected by MACRO, aborting the assembly.

Macro/1000 Assembler Operations

The following parameters may appear in any order:

rg
LI NES=pg

opt
OPT=opt

& RS1=
& RS2=

Is a decimal number specifying the number of lines per page for the
list device. If this parameter is omitted, the page size defaults to 55 lines.

Can be any of the options (except the ignored options) that are allowed
in the control statement, and will override those options. In the runstring, the
options must be specified without intervening commas (as RLTC).

An override option, P, also is allowed in the runstring. This option, which
must be the only one specified in the string, directs that only the object code
and error messages will be output, with no further action by MACRO.

Assign character values to global system assembly-time variables of
the same names in the source program. If the characters include a blank or a
comma, the string must be surrounded with single quotes.

Specifies a filedescriptor that will be used to build the scratch file-descriptor.
The scratch files are created on the specified directory and are of the speci-
fied size. If this parameter is omitted, 96-block files are created on the system
directory /SCRATCH. Refer to the Default Output File Formats section for
more information.

Macro/1000 Assembler Operations E-5

Default Output File Formats

When the list or destination filedescriptors are defaulted, MACRO constructs file names as fol-
lows:

Source List Destination
Filedescriptor File File
&name " name $name (Macro Library)

Y%mame (Relocatable code)
I name (Absolute code)

name. NAC name. LST ~ name. MLB (Macro Library)
name. REL (Relocatable code)
name. ABS (Absolute code)

File attributes can be specified by expanding the default characters @ or — to include the desired
attributes. For example:

[ASRELS/ —: :::40

specifies the directory pathname /A3RELS, defaults the output file name to that of the source
under the above transform rules, and specifies the file size as 40 blocks. Remember that when
the name is defaulted, the source file name must be of the form &name or name MAC. Any
other file name format is rejected by

MACRO.

If not provided, file attributes other than type and size default to those of the source filedescrip-
tor. Size defaults to 48 blocks. The type field is always forced to:

Type
3 List file
1 Macro Library file
5 Relocatable code file
7 Absolute code file

When the source filedescriptor is of the form name.MAC, you can both default the list and/or
destination file names and suppress the addition of the type extension by entering the default as:

RU, MACRO, SOURCE. MAC, —. , —

Placing the period after the dash tells MACRO to construct a filedescriptor with the same attrib-
utes as the source filedescriptor, but with a null type extension. In the above example, the list
file will be named SOURCE and the destination filedescriptor will default to SOURCE.MLB,
SOURCE.REL, or SOURCE.ABS as appropriate.

MACRO builds a type 3 work file (IF) to hold the source file and flags, a type 1 file (SW) to hold
tables and, if the destination is an absolute code file, a type 5 file (AB) to hold the intermediate
results of the translation. When the work file (WORK=) option is omitted, they are created as
96-block files on the system directory /SCRATCH. The WORK= option allows you to specify a
different directory and/or file size.

E-6 Macro/1000 Assembler Operations

Examples

1.

RU, MACRO, &PROGA, —, —

This example schedules MACRO to assemble the source code in file &PROGA. The list file
name defaults to 'PROGA, and the destination file defaults to %PROGA. The type of the
output (relocatable or absolute) is as defined in the source program MACRO control state-
ment.

RU, MACRO, &FI LE, —, —, ,, & RS1=1, & RS2=2
The source file contains the code:
MACRO, L, T, R
NAM FI LE

Al F & RS1=1

: *assenble this section of code
AELSEI F & RS2=2

: *assenbl e this section of code

AENDI F
END FILE

The defaults are as in example 1. The &.RS1 and &.RS2 flags are set and will result in as-
sembling the flagged areas of code.

MACRQO, &FI L2, —, —, , , & RS1=&FI LE3

The source file contains the code:

MACRO, L, T, R
NAM FI LE2
I NCLUDE &. RS1 *assenbl e &FI LE3

END FILE

In this example, the &.RS1 flag identifies &FILE3. This file will be assembled when the
source is assembled by MACRO.

MACRO, &fil 1:sc:50,‘list::55,— ,a

In this example, the list file is specified as "LIST and will be placed on disk volume 55. The
destination file will default to !FIL1:sc:50. The A option specifies an absolute code file.

Macro/1000 Assembler Operations E-7

E-8

MACRO abcd. nac

This example schedules MACRO to assemble source file ABCD.MAC, defaulting the list file
to the interactive input device (generally your terminal), and defaulting to 55 lines per page.
No destination file is generated. Note that the runstring can be entered in either uppercase
or lowercase letters.

RU MACRO ABCD. MAC, @, @ 28, ACL=L

This example schedules MACRO to assemble source file ABCD.MAC, directing the output
to list file ABCD with no type extension (period entered following the defaulting “@” char-
acter), and the destination to absolute code file ABCD.ABS (default extension, A option
given). The number of lines per page is specified as 28. The L=L option specifies a long list-
ing, with macros and the conditional assembly expanded. The C option specifies inclusion of
the cross-reference table in the list file.

RU, MACRO, ABCD. MAC, —, EFGH, , TQC

This example schedules MACRO to assemble source file ABCD.MAC, defaulting the list file
to ABCD.LST, and specifying the destination file as EFGH. The option T directs that a sym-
bol table is to be listed in the list file; option Q directs that the memory reference instructions
in the object code listing are to appear as addresses only (no opcode listing); option C directs
that a cross-reference table is to be listed in the list file.

MACRO, & NT4, /LI STDIR @: :: 200, / RELDSC @, , WORK=/ BI GSCR/ : : : : 2000

This example schedules MACRO to assemble source file &INT4, defaulting the list file name
but specifying the directory /LISTDIR and the file size of 200 blocks. The destination
filedescriptor is defaulted, but the directory /RELDSC is specified. The work files, each 2000
blocks in size, will be created in directory /BIGSCR. These files will be named IFnnnn, to
hold the source file and flags, and SWnnnn, to hold tables. The nnnn is replaced with a
unique name generated by MACRO to specifically identify the files.

Macro/1000 Assembler Operations

Messages During Assembly

Macro/1000 searches for the source file under the filedescriptor given in the runstring. If the file
does not exist, Macro/1000 issues the message:

Macro: No such file Fi | e = <filedescriptor>

If the type extension in the filedescriptor is blank, Macro/1000 first searches under the
filedescriptor, and then searches under the filedescriptor with a .MAC type extension. If the
source file does not exist, the following message is issued:

Macro: No such file File = <file>. MAC

The .MAC type extension will always appear in the message in this case.

If the macro message catalog file does not exist, Macro/1000 attempts to create it on the
/SYSTEM directory or on the default FMGR disk, if there is no system directory. If this direc-
tory is write-protected to the user, this will fail with the appropriate error message. In this case,
the system manager should install the message catalog file as specified in the next section,
“Installing Macro/1000.”

If an error is found in the assembler control statement or the runstring, Macro/1000 aborts the
assembly after issuing the following message to your interactive input device:

Il'legal option in runstring or control statenent

If a system error occurs during the assembly, Macro/1000 issues the appropriate error message,
identifies the file being processed when the error occurs, and aborts.

At the end of the assembly, Macro/1000 issues the message:
Macro/ 1000 Rev.5000 870429 : No errors found
or issues the following error status messages:
Error eee i ne nn <macro line # mmm> <include fi

nli le #
Error eee in line nn <macro line # mmm> <include file # >
Error eee in line nn <macro line # mmm> <include file # i

Macro/1000 Assembler Operations E -9

Following these messages, Macro/1000 prints an error description (see Appendix A for format)
for each unique error number (eee) appearing in the status messages.

Macr o/ 1000 Rev. 5000 870429 : xx errors found

where:
eee is the error number.
nn is the line number at which the error was detected.

mmm is the line number of the macro definition at which the error occurred. This phrase is
included only if an error occurs inside the macro definition.

1173 is the file number of an included file. This phrase is included only if an error occurs
inside an include file. In this case, the nn represents the include file line number.

XX is the total error count.

Macro/1000 returns the number of errors to the program that scheduled the assembler as the
first return parameter. This parameter can be retrieved through a call to the library subroutine
RMPAR. For CI users, this is RETURNI1. For FMGR users, this is 1P.

E-10 Macro/1000 Assembler Operations

Installing Macro/1000

Macro/1000 can be installed online using the transfer file # MACRO as:
RU, LI NK, #MACRO

When first run, Macro/1000 creates its message catalog file. To do this, it must be run with the
capability to create a file on the /SYSTEM directory or the default FMGR cartridge if there is no
system directory. To just create the file, you may run Macro/1000 as follows:

RU, MACRO, -1

This forces the message catalog file to be created or recreated. To list the message catalog file,
run Macro/1000 as follows:

RU, MACRO, -2, listfile

The message catalog file is named MACROrev.ERR where rev is the current revision code (for
example, MACROS5000.ERR). When you install a new revision of Macro/1000, you may want to
purge the old message catalog file.

If there is no /SYSTEM directory, the message catalog file name is M.Emn, where m is the major
revision number (5 in the example) and # is the minor rev number. The minor rev number is the
third digit of the four-digit revision code (0 in the example).

Using Old Macro Libraries

Macro/1000, as of revision 6.0, verifies that macro libraries were processed with a MACRO
which has the same opcodes as the using MACRO. This is important since redefined opcodes
must be in the same place in the opcode table. Error 21 results if this verification fails.

The —3 option allows you to recompile old macro libraries. This option may also be used to get
a listing of a macro library. The command, using the —3 option, is:

RU, MACRO, -3, listfile, maclibfile

The file “MACLIBFILE” will be reprocessed in place and will have the correct duplicate opcode
flags for use with the Macro/1000 version doing the reprocessing. Note that the opcode revision
used to verify a macro library may vary from or change with the Macro/1000 revision.

The file "M ACLB is supplied for use with Macro/1000. This file is the source of the macros de-
scribed in Appendix K. To install this file, run Macro/1000 against it with the command:

RU, MACRO, “ MACLB, list, mlib

where:
list is the list filedescriptor or device to which you want the listing to be directed, or 0
if no listing is desired.
mlib is the filedescriptor for the macro library. A recommended descriptor is:

MACLI B. M_B: : LI BRARI ES

Macro/1000 Assembler Operations E-11

To use the MACLIB.MLB file (or any other macro library), your source code must include the
line:

MACLI B filedescriptor

In searching for the file in the CI file-system environment, MACRO will default to user-defined
search path 3 (refer to the UDSP description in the CI User’s Manual). If this fails, MACRO
then searches the same directory that contains the source file.

If your system supports VC+, you also should have the file ’CDSLB. Install this file in the di-
rectory LIBRARIES as described above for "MACLB, with the recommended file name
CDSLB.MLB.

You should also install the CDSONOFF macro library in the directory, LIBRARIES. The rec-
ommended name is SCDSONOFEMLB. $CDSONOFEMLB does an include operation on
"MACLB so this library must also be available to MACRO when building the CDSONOFF li-
brary.

Note that if the utility OLDREC is required for your system, it should also be loaded.

E-12 Macro/1000 Assembler Operations

Cross-Reference Table Generator

The cross-reference table generator routine processes a macro assembler source program and pro-
vides a list of all symbols and symbol references used within the program. To cause MACRO to
print the cross-reference table, specify the assembly option ‘C’ on the MACRO control statement.
Each symbol that is defined in a source file will be listed in the cross-reference table. A sample
cross-reference listing is given on the following page.

The table entry format is:

symbol sdl (i)]: seI[*] sr2[*] sP3[*] ... sm[*]
where:

symbol is a label found in the assembled file.

sd[(i)] is the statement number in decimal where symbol is defined. If defined in an in-
clude file, i is the include file number.

st [*] is a statement number where symbol is referenced. The asterisk [*] means that the
reference was volatile; that is, the symbol may be altered. Some examples of a
volatile reference at a statement are “STA symbol” or “JMP label”, where symbol
and label are likely to change because of that statement.

The statements:

A EQ O
B EQU 1

are included in every source file that MACRO assembles, and are listed in the Cross-Reference
Table with SD=0.

If the symbol is not referenced in the file, the message:
synbol not referenced

is printed after the defining statement number. If a symbol is defined more than once, all defini-
tions will appear in the cross-reference.

Note The symbols *** RELOC **

will appear in the cross-reference table output if statements by the same name
appear in the source.

Cross-Reference Table Generator F-1

PAGE# 1 OPERM MAC: : MAC 12:14 PM THU., 28 MAY , 1987
00001 macro,q,r,c
00002 nam operm
00003 macl i b $nmacl b
00004 ;
00005 ;
00006 i ncl ude data
00001 ;
00002 : Dat a Secti on
00003 ;
000041 00000 000007 init oct 7 : define two variables, init
000051 00001 change bss 1 ; and change
000061 00002 000004 not.used dec 4 : not.used is not referenced
000071 00000 rel oc cormon ; use commmon
000081 00000 abc bss 10 ; and define an array
00007 ;
00008 00003 rel oc prog
00009 00003 000000 operm nop
00010 00004 O0O0000OR lda init ; init is referenced here
00011 00005 001300 rar
00012 00006 000001R sta change ; change is altered here
00013 00007 000014R | db =d6 ; use alitera
00014 00010 000011R jmp over ; over is a volatile reference
00015 ;
00016 ;
00017 00011 000000 over nop ; over is defined here
00018 00012 call "exec’ =d6 ; call macro to exit
00014 000006

00019 end operm
PAGE# 2 OPERM MAC: : MAC 12:14 PM THU., 28 MAY , 1987
* — Volatile reference (store, jnmp, call...)

**x RELOC **7(1): 8

A0 Synbol not referenced

ABC8(1): Synbol not referenced

B0 Synbol not referenced

CHANGE5(1): 12*

EXEC. 18 18*

INNT . . . L4(1): 10

NOT. USED . . .6(1): Synbol not referenced

OPERM9 19*

OVER . 17: 14*

Macr o/ 1000 Rev. 5000 870429 : No errors found

F-2 Cross-Reference Table Generator

HP Character Set

Effect of Control Key * M
-—000-037B—»- | «+—040-077B—»- | «—100-137B—- | w1 40-177B—>|
1

765: O00 O01 O‘10 01‘1 100 10‘1 1 0 1‘1‘1
Bits Col.

0 1 2 3 4 5 6 7
4 3 2 1 |Row
o|0|0]O 0 NUL | DLE SP 0 @ P p
0|00 1 SOH | DC1 ! 1 A Q a
o|o|1{o0 2 STX | DC2 ? 2 B R b r
0|0 |11 3 ETX | DC3 # 3 C S c s
o|1]o0fo0 4 EOT | DC4 $ 4 D T d t
01|01 5 ENQ | NAK % 5 E u e u
o|1]1{o0 6 ACK | SYN & 6 F \" f v
0|1(1][1 7 BEL | ETB ’ 7 G w g w
110(0]|0 8 BS | CAN (8 H X h X
1]10(0]|1 9 HT EM) 9 | Y i y
110(1]0 10 LF SuB * J Y4 j z
1(0]1]1 11 VT ESC + ; K [k {
1{1]{olo| 12 FF FS , < L \ | |
11|01]| 13 CR | GS - = M] m }
1(1(1]0 14 SO RS > N ~ n ~
11|11 15 sl us / ? o] _ o | DEL

—
32 Control Upshifted
Codes Lowercase
+—— 64 Character Set
, % e e :

Example: The representation for the character “K” (column 4, row 11) is
Bit 76 54321
Binary 1 0 01 0 1 1
Octal 1 1 3

Note: * Depressing the Control Key while typing an uppercase letter produces the corresponding
control code on most terminals. For example, Control-H is a backspace.

HP Character Set

G-1

Table G-1. Hewlett-Packard Character Set for Computer Systems

This table shows Hewlett-Packard’s implementation of ANS X3.4-1968 (USASCII) and ANS X3.32-1973. Some devices
may substitute alternate characters from those shown in this chart (for example, Line Drawing Set or Scandinavian
font). Consult the manual for your device.

The left and right byte columns show the octal patterns in a 16-bit word when the character occupies bits 8 to 14 (left
byte) or 0 to 6 (right byte) and the rest of the bits are zero. To find the pattern of two characters in the same word, add
the two values. For example, “AB” produces the octal pattern 040502. (The parity bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are character codes.

. Octal Values
Decimal Mnemonic | Graphic? Meaning
Value Left Byte | Right Byte

0 000000 000000 NUL Ny Null

1 000400 000001 SOH Sy Start of Heading

2 001000 000002 STX Sx Start of Text

3 001400 000003 EXT Ex End of Text

4 002000 000004 EOT Et End of Transmission

5 002400 000005 ENQ Eq Enquiry

6 003000 000006 ACK Ak Acknowledge

7 003400 000007 BEL JAN Bell, Attention Signall

8 004000 000010 BS Bs Backspace

9 004400 000011 HT Ht Horizontal Tabulation
10 005000 000012 LF Le Line Feed
11 005400 000013 VT V1 Vertical Tabulation
12 006000 000014 FF Fe Form Feed
13 006400 000015 CR Cr Carriage Return
14 007000 000016 SO So Shift Out Alternate
15 007400 000017 Sl S Shift In] Character Set
16 010000 000020 DLE D, Data Link Escape
17 010400 000021 DC1 D, Device Control 1 (X-ON)
18 011000 000022 DC2 D» Device Control 2 (TAPE)
19 011400 000023 DC3 D3 Device Control 3 (X-OFF)
20 012000 000024 DC4 D4 Device Control 4 (TAPE)
21 012400 000025 NAK Nk Negative Acknowledge
22 013000 000026 SYN Sy Synchronous Idle
23 013400 000027 ETB Eg End of Transmission Block
24 014000 000030 CAN Cn Cancel
25 014400 000031 EM Em End of Medium
26 015000 000032 SuUB Sg Substitute
27 015400 000033 ESC Ec Escape?
28 016000 000034 FS Fs File Separator
29 016400 000035 GS Gs Group Separator
30 017000 000036 RS Rs Record Separator
31 017400 000037 us Us Unit Separator

127 077400 000177 DEL [] Delete. Rubout3

G-2 HP Character Set

Table G-1. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
32 020000 000040 Space, Blank
33 020400 000041 ! Exclamation Point
34 021000 000042 ? Quotation Mark
35 021400 000043 # Number Sign, Pound Sign
36 022000 000044 $ Dollar Sign
37 022400 000045 % Percent
38 023000 000046 & Ampersand, And Sign
39 023400 000047 ’ Apostrophe, Acute Accent
40 024000 000050 (Left (opening) Parenthesis
41 024400 000051) Right (closing) Parenthesis
42 025000 000052 * Asterisk, Star
43 025400 000053 + Plus
44 026000 000054 , Comma, Cedilla
45 026400 000055 - Hyphen, Minus, Dash
46 027000 000056 . Period, Decimal Point
47 027400 000057 / Slash, Slant
48 030000 000060 0 \
49 030400 000061 1
50 031000 000062 2
51 031400 000063 3
52 032000 000064 4
53 032400 000065 5 } Digits, Numbers
54 033000 000066 6
55 033400 000067 7
56 034000 000070 8
57 034400 000071 9 }
58 035000 000072 : Colon
59 035400 000073 ; Semicolon
60 036000 000074 < Less Than
61 036400 000075 = Equals
62 037000 000076 > Greater Than
63 037400 000077 ? Question Mark

HP Character Set

G-3

Table G-1. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
64 040000 000100 @ Commercial At
65 040400 000101 A
66 041000 000102 B
67 041400 000103 C
68 042000 000104 D
69 042400 000105 E
70 043000 000106 F
71 043400 000107 G
72 044000 000110 H
73 044400 000111 I
74 045000 000112 J
75 045400 000113 K
76 046000 000114 L
77 046400 000115 M
78 047000 000116 N Upper Case Letters
79 047400 000117 @)
80 050000 000120 P
81 050400 000121 Q
82 051000 000122 R
83 051400 000123 S
84 052000 000124 T
85 052400 000125 U
86 053000 000126 \
87 053400 000127 W
88 054000 000130 X
89 054400 000131 Y
90 055000 000132 z
91 055400 000133 [Left (opening) Bracket
92 056000 000134 \ Backslash. Reverse Slant
93 056400 000135 1 Right (closing) Bracket
94 057000 000136 ~1 Caret. Circumflex: Up Arrow*
95 057400 000137 +— Underline: Back Arrow*

G-4 HP Character Set

Table G-1. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
96 060000 000140 f Grave Accent®
97 060400 000141 a
98 061000 000142 b
99 061400 000143 c
100 062000 000144 d
101 062400 000145 e
102 063000 000146 f
103 063400 000147 o]
104 064000 000150 h
105 064400 000151 i
106 065000 000152 j
107 065400 000153 k
108 066000 000154 I
109 066400 000155 m
110 067000 000156 n Lower Case Letters®
111 067400 000157 o]
112 070000 000160 p
113 070400 000161 q
114 071000 000162 r
115 071400 000163 S
116 072000 000164 t
117 072400 000165 u
118 073000 000166 \Y
119 073400 0oo167 w
120 074000 000170 X
121 074400 000171 y
122 075000 000172 z
123 075400 000173 { Left (opening) Brace®
124 076000 000174 | Vertical Line®
125 076400 000175 } Right (closing) Brace®
126 077000 000176 ~ Tilde, Overline®

Note 1: This is the standard display representation. The software and hardware in your system determine if the
control code is displayed, executed, or ignored. Some devices display all control codes as “@” or space.

Note 2: Escape is the first character of a special control sequence. For example, ESC followed by ‘J” clears the dis-
play on an HP 2640 terminal.

Note 3: Delete may be displayed as “_”, “@”, or space.

Note 4: Normally, the caret and underline are displayed. Some devices substitute the up arrow and the back arrow.

Note 5: Some devices upshift lowercase letters and symbols (‘ through ™) to the corresponding uppercase
character (@ through ™). For example, the left brace would be converted to a left bracket.

HP Character Set G-5

Table G-2. HP 7970B BCD-ASCII Conversion

BCD ASCII BCD ASCII

Smbol | (octal Code) | ESUMaIRL || SmbOl | (ocial Goae) | ERuialent
(space) 20 040 @ 14 100
! 52 041 A 61 101
” 37 042 B 62 102
13 043 C 63 103
$ 53 044 D 64 104
% 57 045 E 65 105
& 11 046 F 66 106
’ 35 047 G 67 107
(34 050 H 70 110
) 74 051 | 71 111
* 54 052 J 41 112
+ 60 053 K 42 113
, 33 054 L 43 114
- 40 055 M 44 115
. 73 056 N 45 116
/ 21 057 0 46 117
0 12 060 P 47 120
1 01 061 Q 50 121
2 02 062 R 51 122
3 03 063 S 22 123
4 04 064 T 23 124
5 05 065 U 24 125
6 06 066 v 25 126
7 07 067 w 26 127
8 10 070 X 27 130
9 11 071 Y 30 131
15 072 Z 31 132
; 56 073 [75 133
< 76 074 \ 36 134
= 17 075] 55 135
> 16 076 1 77 136
? 72 077 — 32 137

Note 1: 1The ASCII code 046 is converted to the BCD code for a space (20) when writing data onto a 7-track tape.

G-6

HP Character Set

Relocatable Record Formats

This appendix identifies the format of the various relocatable records. Macro/1000 generates only
those records identified by a “7” in bits 13-15 of the record ident (word 2) except for the lindex
records (generated by LINDX) and the indxr records (generated by INDXR). These are called
extended relocatable records.

OLDRE converts these records, if possible, to records that have record idents other than 7 in bits

13—15. All loaders recognize OLDRE type records, but all loaders do not recognize extended
relocatable records.

Relocatable Record Format H-1

NAM

H-2

1514 13 12|11 10 9|8 7 6|5 4 3
1 Record length <Zero>
2 1 <Zero>
3 Checksum
4
5 B Symbol
6 <Blank>
7 | KN Program size
8 Base page size
9 Common size

10 Program type
11 Priority
12 Resolution code
13 Execution multiple
14 Hours
15 Minutes
16 Seconds
17 10s of milliseconds
18
= Comment (variable length) 4

\\

Relocatable Record F ormat

Figure H-1. NAM Record

Record ident

KN:

0 - Size known
1 - Size uknown

XNAM

o © 0o N o o »~» 0 N =

[T) T | T e S e T T T T S S Y
N = O O 0o N OO o » ON =

15

14 13 12|11 10 9|8 7 6|5 4 3 |2 1

Record length <Zero>

Subtype = 1 Offset of size word

Checksum

Local EMA size

Save size

KN

Program size

Base page size

Common size

Program type

Priority

Resolution code

Execution multiple

Hours

Minutes

Seconds

10’s of milliseconds

Pure code size

Year of compilation

Julian day Hour

Minutes Seconds

Literal count

Figure H-2. Extended NAM Record (XNAM)

Record ident

KN:
0 - Size known
1 - Size unknown

C:
0 - Not CDS
1 - CDS module

Relocatable Record Format H-3

XNAM (continued)

15|14 13 12(11 10 9(8 7 6 (5 4 3 (2 1 O

23 Revision of producer (days since 1970)

24 Revision of preprocessor or —1 (days since 1970)
25 Words of comment Words in symbol
26

A\
\\

A\
\\

Symbol (variable length)

\\

Comment (variable length)

A\
A\
\\

Length of file name (—bytes)

A\
\\

A\
\\

Source file name (variable length)

Figure H-2. Extended NAM Record (XNAM) (continued)

ENT

i5(14 13 12|11 10 9|8 7 6|5 4 3|2 1 O
1 Record length <Zero>
2 2 <Zero> Entry count Record ident
3 Checksum
4
5 First symbol
6 B <Zero> R
7 Unrelocated address (or replacement value)
= Entry count - 1 repeats of above 4 word group 2

Figure H-3. ENT Record

H-4 Relocatable Record F ormat

XENT

15|14 13 12|11 10 9 (8 7

5 4 3|2

Record length

<Zero>

Record ident

7 Subtype = 2 Entry count
Checksum
E Symbol ID number MR

Unrelocated value or offset

E: EMA (MR=5)
MR:
0 — absolute
1 — program
2 — base page

3 — common

Words in info block

Words in symbol

4 — pure code
5 — local EMA

o N o o M~ W N

A\

Symbol (variable length)

A\

6 — SAVE area

\\

A\

-
-

Match info block (variable length)

cond |
1

\\

entry point characteristics like
parameter count/type and version num-
ber

A\

\\

A\

\\

entry count -1 additional packets each
4 + words in info block + words in symbol

words long

A\

\\

Figure H-4. Extended ENT Record (XENT)

Relocatable Record Format H-5

EXT

15|14 13 12(11 10 9(8 7 6 (5 4 3 (2 1 O

1 Record length <Zero>

1 <Zero> Entry count Record ident

Checksum

First Symbol

[o) I &) IR NN ¢S B \¢]

Symbol ID Number

\\

2 Entry count -1 repeats of above 3 word group 5

Figure H-5. EXT Record

H-6 Relocatable Record F ormat

XEXT

15|14 13 12(11 10 9(8 7 6 (5 4 3|2 1 O

1 Record length <Zero>

7 Subtype = 4 Entry count Record ident

Checksum

w <Zero> Symbol ID number W : weak external

Words in info block Words in symbol

[o) I &) IR NN ¢S B \¢]

\\
\\

” Symbol (variable length)

A\

Match Info block (variable length)
cond entry point characteristics like
1 parameter count/type and version number

A\
\\
\\

A\
\\

Entry count -1 repeats each of length
2 + words in info block + words in symbol

A\
\\

A\
\\

Figure H-6. Extended EXT Record (XEXT)

Relocatable Record Format H-7

ALLOCATE

H-8

1514 13 12|11 10 9|8 7 5 4 3 2
1 Record length <Zero>
2 7 Subtype = 11B Entry count
3 Checksum
4| <Zero> Type Symbol ID number
5 Words in info block Words in symbol
j — Block size (words) to allocate —
0

A\

Symbol (variable length)

A\

A\

\\

\\

Match Info block (variable length)
L condl entry point characteristics like J
T T parameter count/type and version number 7
Entry count -1 entries each of length

- 4 + words in info block + words in symbol p’

type =0 Named COMMON (program allocate)

type =1 Named SAVE COMMON (SAVE allocate)

type =2 Named EMA COMMON (EMA allocate)

type =3 Reserved

Figure H-7. ALLOCATE Record

Relocatable Record F ormat

Record ident

EMA

MSEG

N oo o~ WM

15(14 13 12|11 10 9|8 7 6|5 4 3 | 2
Record length <Zero>
6 <Zero> EMA size (in pages)
Checksum
B Symbol
Symbol ID number
<Zero> MSEG size
Figure H-8. EMA Record
15(14 13 12|11 10 9|18 7 6|5 4 3 | 2
Record length <Zero>
7 Subtype = 10B MSEG size
Checksum

Figure H-9. MSEG Record

Relocatable Record Format

Record ident

MSEG size: 1-29

H-9

DBL

15(14 13 1211 10 9|8 7 6|5 4 3|2 1 0] ZC:
0 = basepage
1 Record length <Zero> 1 = program
2 3 <Zero> Z/C Word count g — ggrsnorlr%i
3 Checksum MR:
= progra
4 Unrelocated load address ? — E;sgerpr:ge
5| 1stR 2nd R 3rd R 4th R 5thR | 0 2 = common
3 = absolute
16-bit absolute value R=0
| 15-bit program relocatable address R=1
| 15-bit base page relocatable address R=2
| 15-bit common relocatable address R=3
| Opcode <Zero> Symbol ID number R=4
I Opcode <Zero> Symbol ID number MR
R=5
Unrelocated value or offset
6th R 7th R 8th R 9th R 10th R 0
<Zero> MR
R=6
Relocatable address LR
1 1

Figure H-10. DBL Record

H-10 Relocatable Record F ormat

XDBL

N o o~ WwoN

15

14 13 12|11 10 9|8 7 6

5 4 3|2 1

Record length

<Zero>

7 Subtype = 3

<Zero>

Checksum

Symbol ID number

MR

Unrelocated load address

Words to relocate

No. of “R” values

1st R 2nd R

3rd R

4th R

Absolute value

Program relocatable value

Base page relocatable value

Common relocatable value

5th R 6th R

7th R

8th R

Opcode

Symbol ID number

Pure code relocatable value

MPY/Symbol ID number

MR/MPY

Unrelocated value or offset

SAVE data relocatable value

9th R 10th R

11th R

12th R

Opcode <Zero> MPY

Unrelocated value or offset

B.

R

. 0 — no break
1 — break allowed

ecord ident

MR:

x IV T T

0 — absolute
1 — program
2 — base page
3 — common
4 — pure code
5 — local EMA
6 — SAVE area

I I I
- O

Il
w N

R=4

)

;

Figure H-11. Extended DBL record (XDBL)

Relocatable Record F ormat

=5

R =6 (2-wd. add.)

7

indirect
R = 8 (mem. ref.)

H-11

XDBL (continued)

\\

15(14 13 12|11 10 9|8 7 6|5 4 3|2 1 O
0 Symbol ID number MR
Unrelocated value or offset LR
I Opcode Symbol ID number
<Zero> MPY M MR
Unrelocated value or offset
I Symbol ID number MR
Actual count Call sequence PCAL type
Unrelocated value or offset
I Symbol ID number MR
<Zero> Ibl type
Unrelocated value or offset
F MPY/Symbol ID number MR/MPY
— Unrelocated value or offset —

T

TFor R6 and R13:

If F=1 then

high 4 bits of field [7] is MPY
field 2] is MR
symbol ID=0
else if field [1] = 0 then
field 2] is MPY
field] is symbol ID => MR

else

symbol ID = 0

MPY = 1

MR = field

Figure H-11.

Relocatable Record F ormat

Extended DBL Record (XDBL) (continued)

Byte addr.)

- left
1 - right

R=10
M:1 - immediate
0 - mem. ref.

R =11
PCAL: 0 - constant
1 - variable

R=12

Call seq.: 0 - unspec.
1-.ENTR
2 - .ENTN

R = 13T (DLD=J)
Ibl type: 0 - unspec.
1 - internal
2 - extrenal

MPY:
signed 4-bit integer

RPL

15|14 13 12(11 10 9(8 7 6 (5 4 3|2 1 O

1 Record length <Zero>
2 7 Subtype = 6 Entry count Record ident
3 Checksum
4 <Zero> No. of words to replace
5 Words in info field Words in symbol
j — Replacement value (variable length) —
10
2 Symbol (variable length) =
Match Info block (variable length)

entry point characteristics like

L cond J {
1 parameter count/type and version number

A\
\\

A\
A\

Entry count - 1 entries each of length
2 + no. words to replace + words in info field p’
+ words in symbol

A\
\\
A\

Figure H-12. RPL Record

Relocatable Record Format H-13

END

H-14

i5(14 13 12|11 10 9|8 7 6| 5 4 3
1 Record length <Zero>
2 5 <Zero>
3 Checksum
4 0 Unrelocated transfer address

WN—=-O

Relocatable Record F ormat

Figure H-13. END Record

. 0 - no xfer.add.

1 - xfer. add.
= program
= base page
= common
= absolute

XEND

15|14 13 12|11 10 9|8 7 6| 5 4 3 2 1
1 Record length <Zero>
2 7 Subtype = 5 Record ident
3 Checksum MR:
0 - absolute
4 Checksum of checksums 1 - program
5 <Zero> Trans type g (l:)grsnemp:r?e
6| 0 Symbol ID number MR 4 - pure code
5 - local EMA
7 Unrelocated value or offset 6 - SAVE area
8 T
- 2 Trans type:
T T 0 - no add.
1 - tran. add.

Figure H-14. Extended END Record (XEND)

Relocatable Record Format H-15

GEN

1514 13 12|11 10 9|8 7 6|5 4 3 2
1 Record length <Zero>
2 Subtype = 0 <Zero>
3 Checksum

Packed ASCII string

\

Figure H-15. GEN Record

LOD
15114 13 12|11 10 9|8 7 6| 5 4 3 2
1 Record length <Zero>
2 Subtype = 24B <Zero>
3 Checksum

Packed ASCII string

\

H-16

Figure H-16. LOD Record

Relocatable Record F ormat

Record ident

Record ident

DEBUG

DEBUG line number record:

1514 13 12|11 10 9|8 7 6|5 4 3 2
1 Record length <Zero>
2 Subtype = 12B 0
3 Checksum
4 <Zero> Number of chunks
:15

Each entry or chunk has the following format:

15

14 13 12|11 10

9

8 7 6

\\

Starting line number

Substmt no. Offset count + 1
MR
Relocatable address of first line
S Offset S Offset
S Offset S Offset
1 1
DEBUG symbol table record:
15|14 13 12(11 10 9(8 7 6|5 4 3|2 1
1 Record length <Zero>
2 Subtype = 12B 1
3 Checksum
4 Entry count = no. of entries in this record
1

Figure H-17. DEBUG Record

Relocatable Record Format

Record ident

Record ident

H-17

DEBUG (continued)

Each entry has the following format:

15114 13 12|11 10 9| 8 65 4 3|2 1 0
Symbol ID number MR Address descriptor
(2 words if EMA)
Relocatable address or offset or zero
Info count Symbol count Counts word
2 The symbol’s string (symbol count words) -
A | Parmacc Parmord Type number
Structure information words Info field
- or — Info count long
= array information words =
DEBUG array sub part:
15(14 13 12|11 10 9| 8 65 4 3|2 1 0
AD words DD words Lengths words
- Address Descriptor (AD words) —
El Base DimRep |[RC|OV| Al | O Dimensions DD header
- Dimensions Descriptors (DD words) 2
Elindex Optional
Arindex Optional

Figure H-17. DEBUG Record (continued)

Relocatable Record F ormat

T

-~

LINDEX

-~

ir

N\

\\

15|14 13 1211 10 9(8 7 6|5 4 3|2
1 Record length <Zero>
2 Subtype = 44B <Zero>
3 Checksum
4 Sub type

:r

For the various sub types we have the following:

15|14 13 1211 10 9(8 7 6|5 4 3|2
4 Sub type —1
5 Block number of first index rec.
6 0

15{14 13 1211 10 9(8 7 6|5 4 3|2
4 Sub type -2
5 0
6 0

Figure H-18. LINDEX Record

Relocatable Record Format

Record ident

Sub type:
0 - fill record
—1 - ptr. to index
—2 - end of lib.
>0 - index re-
cord

(First record
in the file)

(This record
seems to have
Nno purpose)

(Appears after
last module)

H-19

LINDEX (continued)

15114 13 12{11 10 9 (8 7 5 4 32 1 0
(This record fills
out the last
library block so
4 Sub type 0 that the index will
0 to n fill words of 0 start on a block
boundry)
This index itself:
15114 13 12{11 10 9 (8 7 5 4 32 1 0
4 No. of entries this block
5 No. of modules refed. Ent. pt. length (bytes) (sub type >0)
If ent. pt. length
6) ent. type fills odd
— Ent. pt. name of no. of bytes given above 1 byte, else it is low
Ao l_. T part of next word.
Ent. type Ent. type:
Block address of module or RP value 1 - ?{tgL entry
Offset in block of module or 0 5 - allocate data
Index block no. Index block offset No. of modules
P & L refed. of these
7 Index block no. T Index block offset T (may be 0)
Next entry or O fill to 126
T T

H-20

Figure H-18. LINDEX Record (continued)

Relocatable Record F ormat

INDXR

Index Pointer Record:

15|14 13 12|11 10 9 (8 7 6 | 5

4 3|2

1 Record length

<Zero>

7 Subtype = 44B

<Zero>

Checksum

Record number of index

Block number of index

[o) I &) IR~ NN ¢S I \¢]

Offset in block of index

For the index itself we have the following:

Index Module Record:

1514 13 12|11 10 9 (8 7 6 | 5

4 3|2

1 Record length

<Zero>

7 Subtype = 44B

<Zero>

Checksum

A W DN

1 No. words in name

= Module name variable length

A\

Record number of module

Block number of module

Offset in block of module

Figure H-19. INDXR Record

Record ident

First record in an
Indxr indexed file.

Record ident

The sign bit indi-
cates a module re-
cord. Following will
be the entry points
for this module.

Relocatable Record Format H-21

INDXR (continued)

Index entry point record:

15(14 13 12|11 10 9(8 7 6|5 4 3|2 1 0

1 Record length <Zero>

2 7 Subtype = 44B <Zero> Record ident

3 Checksum

410 No. words in entry point symbol The sign bit = 0
indicates an entry

L . . L point record.

= Entry point name variable length 2 Several may be in
the same record.

L The above length and symbol words y

T are repeated as needed 1

Figure H-19. INDXR Record (continued)

H-22 Relocatable Record F ormat

Implementation Notes

The following tasks are performed on each pass of MACRO.

Pass 1: (macro pass)

1.

N

o *® N 0NA W

Macro definition and expansion.

Conditional assembly.

Assembly-time variable manipulation. (GLOBAL, LOCAL, and SET statements.)
String substitution and concatenation.

INCLUDE

Repetition statements. (REP, REPEAT, AWHILE.)

MACLIB

Selective assembly (IFN,IFZ) is performed.

Prepare intermediate file for Pass 2 containing all of the code that is to be executed, and no-
tation pertaining to what will be listed in the final pass.

Pass 2: (assembly pass 1)

1.
2.

User labels entered into symbol table, along with relocatable values.

Literals are processed, put into literals table, and space allocated for the literals block. The
LIT command is processed.

EQUs put into symbol table.

Each opcode is examined for its length, so that the program relocation counter can be main-
tained. ORB, ORG, and RELOC are processed.

MIC instruction is processed, so the length of any user-defined instruction is known.
The file produced on Pass 1 is left for Pass 3 unchanged.

The symbol table is preserved for Pass 3.

Implementation Notes I-1

Pass 3: (assembly pass 2)
1. Code is generated for each machine opcode.
Literals are processed and values placed in literals block.

Listing file is produced.

e

Code substitution for the MIC and RAM instruction is performed.

Pass 4: (cross reference pass)
This pass is optional, and is specified by the use of the C parameter on the Control Statement.

1. Produce a cross reference table, and append it to the users listing.

Pass 5:
This pass is optional, depending on whether the user requires absolute assembly or not.

1. Convert the relocatable records produced into an absolute form. This must be done since
absolute programs are produced in the same way relocatables are.

I-2 Implementation Notes

Backward Compatible Constructs

This section contains constructs of Macro/1000 that exist to support backward compatibility with
earlier HP assemblers. An alternate way to use all of these constructs is described in the main
body of this manual.

Assembler Control Statement

Macro/1000 allows the old control statement ASMB instead of MACRO to be used. All assem-
bly option parameters described in Appendix E may be on this statement in addition to the ones
described below:

N, Z Selective Assembly Options: parameters govern the state of the IFN/IFZ options (see be-
low).

P Override Option: used as an override option when MACRO is invoked. It has no effect when
specified in the control statement of an assembly language program. This option was used to
make the previous assembler backward compatible to the one before it.

B, E X, Ignored if Specified: included here for reasons of backward compatibility.

Indirection Indicator

To maintain backward compatibility, the letter I can be appended to a label to indicate indirec-
tion. It is separated from the label by a comma. If an indirect label is used as a parameter to a
macro and the indirection indicator is ‘,I’, then Macro/1000 will interpret the ‘I’ as the next pa-
rameter in the macro’s parameter list. User’s who use ,I’ are cautioned to watch for opcodes
that are redefined as macros.

The new way to indicate indirection is to append @ (at sign) to the label.

Clear Flag Indicator

The old way of indicating that the flag should be cleared on an I/O instruction is maintained for
old code. You can append a ‘,C’ to the operand in the I/O instructions. The ‘C’ is then not
needed on the opcode. The new way to set the clear flag is to append the ‘C’ to the opcode itself.

Backward Compatible Constructs J-1

Old Literal Constructs

The =A literal places ASCII characters into the literals table. The new way to do this is by use
of the =S literal.

Old Pseudo Opcodes

The pseudo opcodes discussed in this section are:

CRB XIF UNL
ORR REP LST
| FN coM MC
| FZ EVA RAM

ORB
Syntax:
ORB [; comments]

ORB defines the portion of a relocatable program that must be assigned to the base page by
Macro/1000. The label field (if given) is ignored and the statement requires no operand. All
statements that follow the ORB statement are assigned contiguous locations in the base page.
Assignment to the base page terminates when

Macro/1000 detects an ORG, ORR, RELOC, or END statement.

When more than one ORB is used in a program, each ORB causes Macro/1000 to resume assign-
ing base page locations at the address following the last assigned base page location. For exam-

ple:

NAM PROG ; Assign zero as relative starting location for
: ; program PROG
d?B Assign all followi ng statenents to base page.
| AREA BSS 100 ; Reserve 100 words on base page.
d?R ; Continue main program
d?B ; Resune assignnent at next available | ocation

; on base page.

d?R ; Continue main program

An ORB statement in an absolute program has no significance and is flagged as an error.

The new way to assemble onto base page is to replace the ORB statement with a RELOC BASE
statement.

J-2 Backward Compatible Constructs

ORR

Syntax:
ORR [; comments]

ORR resets the program location counter to the value existing when an ORG, or ORB instruc-
tion was encountered. For example:

NAM RSET ; Set PLC to value of zero, assign RSET as
FI RST ADA ; nanme of program
ADA CTRL ; Assune PLC at FI RST+2280.
ORG FI RST+2926 ; Save PLC val ue of FIRST+2280 and set PLC to
: ;. FI RST+2926.
Ji\/P EVEN+1 ; Assune PLC at FI RST+3004.
ORR . Reset PLC to FI RST+2280.

More than one ORG statement can occur before an ORR. If so, when the ORR is encountered
the program location counter is reset to the value it contained when the first ORG of the set oc-
curred. For example:

NAM RSET . Set PLC to zero.
FI RST ADA

LDA WZ . Assume PLC at Fl RST+2250.
ORG FI RST+2250 : Set PLC to Fl RST+2500.
LDB ERA . Assunme PLC at FI RST+2750.
ORG FI RST+2900 : Set PLC to Fl RST+2900.
CLE . Assume PLC at FI RST+2920.
ORR © Reset PLC to FI RST+2250.

If a second ORR appears before an intervening ORG or ORB the second ORR is ignored.

The new way to perform an ORR is to use the RELOC command with the appropriate keyword
(PROG, COMMON, BASE, EMA, SAVE, and CODE).

IFN, IFX, and XIF
Syntax:

| FN [; comments]
| FX [; comments]
XI'F [; comments]

The IFN and IFZ pseudo opcodes cause the inclusion of instructions in a program provided that
either an ‘N’ or ‘Z’, respectively, is specified as a parameter for the control statement (discussed
earlier in this Appendix). The IFN or IFZ instruction precedes the set of statements that are to
be included. The pseudo instruction XIF serves as a terminator to both the set of statements and
the assembly.

| EN
Xl F

Backward Compatible Constructs J-3

All source language statements appearing between the IFN and the XIF pseudo opcodes are in-
cluded in the program if the character ‘N’ is specified on the control statement.

All source language statements appearing between the IFZ and XIF pseudo instructions are in-
cluded in the program if the character ‘Z’ is specified on the control statement.

| FZz

X F
When neither letter is included in the control statement, the related set of statements appears on
the assembler output listing if the LIST LONG option is used. However, these statements are
not assembled.
Any number of IFN-XIF and IFZ-XIF sets can appear in a program; however, they cannot over-
lap. An IFZ or IFN intervening between an IFZ or IFN and the XIF terminator results in a di-
agnostic being issued during compilation; the second pseudo instruction is ignored.
Both IFN-XIF and IFZ-XIF pseudo codes can be used in the program; however, only one type
will be selected in a single assembly. Therefore, if both characters ‘N’ and ‘2’ appear in the con-
trol statement, the character listed last will determine the set of coding that is to be assembled.
A more general way of doing conditional assembly is through the AIF statement. The selection
may be done in the runstring by initializing the system runstring assembly-time variables, and us-
ing those variables in AIF statements.

For example:

:RU, ASMB, &S, —, —, , N

NAM TEST
| FN
sequence of statenents
Xl F
END

This can be accomplished in following way:

:RU, MACRQ, &S, —, —,,, & RS1=N ("N is the initial value for & RS1)

NAM TEST

AlF &RSL = 'N
sequence of statenents

AENDI F

END

J-4 Backward Compatible Constructs

REP
Syntax:
[label] REP n [; comments]

The REP pseudo opcode causes the repetition of the statement immediately following it a speci-
fied number of times.

The statement following the REP in the source program is repeated n times. n may be any abso-
lute expression. Comment is ignored and the instruction following the comment is repeated.

A label specified in the REP pseudo opcode is assigned to the first repetition of the statement.
A label should not be part of the instruction to be repeated, as it would result in a double defined
symbol error.

Example:
CLA
TRIPL REP 3
ADA DATA

This would generate the following:

CLA Clear the A-Register; The content of DATA
TRI PL ADA DATA is tripled and stored in the A-Register.

ADA DATA

ADA DATA

Example:

FI LL REP 100B
NOP

This loads 100B memory locations with the NOP instruction. The first location is labeled FILL.

Do not mix the REP statement with new macro constructs. Macro calls must not be the state-
ments to be repeated with the REP.

The new way of doing this is through use of the REPEAT statement.

Backward Compatible Constructs J-5

COM
Syntax:

COM namel| (sizel)][, name2[(size2)], . .., namen| (sizen)]][; comments]

COM reserves a block of storage locations that can be used in common by several subprograms.
Each name identifies a segment of the block for the subprogram in which the COM statement
appears. The sizes are the number of words allotted to the related segments. The size is speci-
fied as an octal or decimal integer. If the size is omitted, it is assumed to be 1.

Any number of COM statements can appear in a subprogram. Storage locations are assigned
contiguously. The length of the block is equal to the sum of the lengths of all segments named in
all COM statements in the subprogram.

To refer to the common block, other subprograms must also include a COM statement. The seg-
ment names and sizes may be the same or they may differ. Regardless of the names and sizes
specified in the separate subprograms, there is only one common block for the combined set. It
has the same relative origin; the content of the n word or common storage is the same for all
subprograms. For example:

PROGL COM ADDRL(5), ADDR2(5) , ADDR3(5)
LDA ADDR2+1 ; Pick up second word of array ADDR2.
END

PROG2 COM AAA(2), AAB(2), AAC, AADY 10)

LDA AAD+1 ; Pick up second word of array ADD.
Organization of Common Block
PROGI1 PROG2 Common
name name block
ADDRI1 AAA location 1
location 2
AAB location 3
location 4
AAC location 5
ADDR?2 AAD location 6
location 7
location 8
location 9
location 10
ADDR3 location 11

location 12
location 13
location 14
location 15

The segment names that appear in the COM statements can be used in the operand fields of

DEF, ABS, EQU, ENT or any memory reference statement; they cannot be used as labels else-
where in the program.

J-6 Backward Compatible Constructs

The loader establishes the origin of the common block; the origin cannot be set by the ORG
pseudo opcode. All references to the common area are relocatable.

Two or more subprograms can declare common blocks that differ in size. The subprogram that
defines the largest block must be the first submitted for loading.

The new way to perform the COM is through the use of the RELOC COMMON statement, fol-
lowed by BSS’s.

EMA
The new way to declare EMA space is to use the ALLOC EMA statement.
Syntax:

label ENA ml, m2 [; comments]

The EMA pseudo opcode defines an extended memory area (EMA) where m! is the EMA size
in pages and m2 is the mapping segment (MSEG) size in pages. Operands mI and m2 must be
expressions that evaluate to non-relocatable integers: m/ must be in the range 0 to 1023 inclu-
sive and m2 must be in the range 0 to 31 inclusive. If m2 evaluates to 0, the maximum possible
size for MSEG will be assigned at load time.

The EMA pseudo opcode can be used only in a relocatable program. Only one EMA pseudo
opcode is allowed.

THE EMA COMMAND CANNOT BE USED IN THE SAME PROGRAM WITH A RELOC
EMA COMMAND OR AN ALLOC EMA COMMAND. An EMA pseudo opcode must have
been assigned to the storage area. This label represents the logical address of the first word in
the MSEG and is determined at load time. EMA labels can appear in memory reference state-
ments, and in EQU or DEF pseudo opcodes.

References to EMA labels are processed at load time as indirect addresses through a base page
link. EMA labels can be referenced in other subprograms or segments by declaring them as ex-
ternals in the other subprograms or segments. Do not declare them as entry points in the pro-
gram in which they appear.

The following restrictions apply to the use of EMA labels:

1. EMA labels cannot be used with an offset.

2. EMA labels cannot be used with indirect.

3. EMA labels cannot appear in an ENT or COM statement in the same subprogram.

Backward Compatible Constructs J-7

The following example illustrates the use of a twenty-page EMA that has a five-page mapping
segment. The program first calls the EMAST subroutine to return the needed EMA informa-
tion. The program then calls MMAP to map the third MSEG into its logical address space. The
address of the starting logical page of MSEG is then converted into a word address. Lastly, the
program stores the value at the start of the third MSEG into word 1028 of the third MSEG and
terminates. Refer to Figure J-1 for a pictorial explanation of the elements that are being ad-

dressed.

NAM

ENT

EXT

EXT
EMALB EMA
*

EMAPR, 3

EMAPR

MVAP

EMAST

20,5 ; 20 pages of EMA, 5 pages per mappi ng segnent (MSEG

* Call MVAP to map third MSEG i nto prograns | ogical address space.

*

EMAPR JSB
DEF
DEF
DEF
DEF

*

EMAST

RTN

NEMA ; Total size of EMA (returned).

NPGS ; Total size of MSEG (returned).

| MSEG ; Starting |ogical page of MSEG (returned).

* Call EMAST to return information about the program s EMA

*

RTN JSB
DEF
DEF
DEF
RTN2 LDB
BLF,
BLS,
LDA
ADB
STA
JSB

| PGS DEC
NPGS BSS
| MSEG BSS
NEVA BSS

MVAP

RTN2

IPGS ; Ofset in pages of MSEG bei ng mapped.

NPGS ; Nunmber of pages in MSEG

| MSEG

BLF ; Convert the page address into a word address.
BLS

@ ; Load A-Reg with the address of the 1st word of MSEG
=D1027

@ ; Store A-Reg into the 1028th word of current MSEG
EXEC ; Term nate program

*+2

=D6

10

1

1

1

EMAPR

J-8 Backward Compatible Constructs

Five
Pages

Forty

|
Pages T

Five
Pages

Five
Pages

<
)

\(

1028t Word; Offset
Passed to Subroutine

:‘_.

Main Program Stores
This Word into 1028t
Word of the MSEG

Logical Memory

Figure J-1. Pictorial Explanation of Elements Being Addressed

Backward Compatible Constructs

J-9

UNL
Syntax:
UNL [; comments]

List output is suppressed from the assembly listing, beginning with the UNL pseudo opcode and
continuing for all instructions and comments until either an LST or an END pseudo opcode is
encountered. Diagnostic messages for errors encountered by Macro/1000 will be printed, how-
ever. The source statement sequence numbers (printed in columns 1-5 of the source program
listing) are incremented for the instructions skipped.

The new way to do this is by using the LIST OFF command.

LST
Syntax:
LST [; comments]

The LST pseudo opcode causes the source program listing, terminated by a UNL, or a LIST
OFF command to be resumed.

A UNL following a UNL, an LST following an LST, and an LST not preceded by a UNL are not
considered errors by Macro/1000. Macro/1000 counts the number of LST and UNL statements it
encounters. Only when the count is equal will it change the current listing state. In other words,
if the program has three LST statements with no UNL statements in between them, only after
the fourth UNL statement is given will the listing be turned off.

The new way to do this is by using the LIST command.

MIC
Syntax:
M C opcode, fcode, pnum [; comments]

The MIC pseudo opcode allows you to define your own instructions. The opcode is a 1- to
16-character mnemonic, fcode is an instruction code, and pnum declares how many (0-7) parame-
ter addresses are to be associated with the newly-defined instruction.

Both fcode and pnum may be expressions that generate an absolute result. A user-defined in-
struction must not appear in the source program prior to the MIC pseudo opcode that defines it.
When the user-defined mnemonic is used later in the source program, the specified number of
parameter addresses (pnum) is supplied in the operand field of the user-defined instruction,
separated by spaces.

The parameter addresses can be any addressable values, relocatable and/or indirect. The pa-
rameters cannot be literals, assembly-time variables, or macro parameters.

All three operands (opcode, fcode, and pnum) must be supplied in the MIC pseudo opcode in

order for the specified instruction to be defined. If pnum is zero, it must be expressly declared as
such (not omitted).

J-10 Backward Compatible Constructs

Example — “Jump to Microprogram”

The MIC pseudo opcode is primarily intended to facilitate the passing of control from an assem-
bly language program to a user’s microprogram residing in Read Only Memory (ROM) or
Writable Control Store (WCS). Ordinarily, to do this you must include an OCT 101xxx or OCT
105xxx statement (where xxx is 140 through 737) at the point in the source program where the
jump is to occur. If parameters are to be passed, they are usually defined as constants (via OCT,
DEC, DEX, DEY, or DEF statements) immediately following the OCT 105xxx statement.

With the MIC pseudo opcode, you can define a source-language instruction that passes a series
of additional parameters to a microprogram beyond those pointed to by the user-defined instruc-
tion. The parameters must be defined as constants (via OCT, DEC, DEX, DEY, or DEF state-
ments) immediately following each use of the user-defined instruction.

Example — Microprogram Example

For example, assume that the first two parameters to be passed from the assembly-language pro-
gram to your microprogram reside in memory locations PARM1 and PARM?2, and that the third
parameter resides in the memory location pointed to by ADR. Also assume that the octal code
for transferring control to the particular microprogram is 105240B.

The following statement defines a source-language instruction that passes control and three pa-
rameter addresses to the microprogram.

M C ABC, 1052408B, 3

Whenever you want to pass control from the assembly-language program to the microprogram,
you can use the following user-defined instruction in the source program:

ABC PARML PARM2 ADR

The new way to do this is with the RPL instruction.

RAM
Syntax:
RAM m|[; comments]

An alternate but somewhat restricted way to access microprogrammed functions from the As-
sembler language is by employing the RAM (Random Access Memory) pseudo opcode. The
RAM pseudo opcode generates an executable machine instruction which when executed will
cause a jump to microcode. The high order bits of the instruction are 105 octal and low order
bits are the octal value of m. m must evaluate to an absolute expression in the range 0 to 377 oc-
tal.

Example, the following lines of assembly code:

RAM B16
Bl16 EQU 16B

generate this octal object code:

105016

Backward Compatible Constructs J-11

System Assembly-Time Variables

The assembler declares system assembly-time variables (ATVs) whose values are available to you,
and in some cases, they can be altered. All system ATVs start with ampersand period (&.). The
period distinguishes them from other assembly-time variables; therefore, do not use a period as
the first character after the & in your own variable names.

The following are the system assembly-time variables:

& Q & RS1 & REP
& ERROR & RS2 &. PCOUNT
& PARM

& DATE (6-character date in form YYMVDD)

&.Q

&.Q is a unique number of type integer. It is local to the macro within which it is used and con-
tains a unique number for each separate macro. Every time a macro is called, &.Q is incre-
mented, thus making it unique from the last time that macro was called.

It can be used in macros that define labels to avoid creating a doubly defined symbol.

Example:
MACRO
TEST &P1, &P2
JW L& Q
L& Q NOP
ENDVAC

Like all type-integer assembly-time variables, leading zeros are suppressed when substitution is
done. For instance, the example above could generate a label ‘72’ but not ‘L0072’.

&.ERROR

& .ERROR contains the assembly error count and is a type-integer global. Everytime an assem-
bler error is detected, & ERROR is incremented by one.

Like any assembly-time variable, its value can be changed with an ISET statement. Using condi-
tional assembly, some condition could be tested and, if true, & ERROR could be incremented.

System Assembly-Time Variables K-1

Example:

MACRO
CoPY &P1
Al F 16>=&P1
& ERROR | SET & ERROR+1
*<<< paraneter to macro COPY must be < 16 characters
AENDI F

ENDMAC
Notice the comment; this line will be output to the list file if LIST LONG is specified.
If & ERROR is changed while assembling is taking place, the line:
User-defined errors detected

is listed at the end of the list file.

The pseudo opcode MNOTE will increment & ERROR automatically and print out an ASCII
string in the program listing. See the description of MNOTE in Chapter 4.

&.DATE

&.DATE is a type character ATV that represents the date. The six-character variable takes the
form yymmdd.

&.RS1 and &.RS2

&.RS1 and &.RS2 are type-character global assembly-time variables. They can be used as op-
tional parameters in the MACRO runstring as follows:

Cl > MACRO, PROG MAC, —, —,, , & RS1="A’",
and then in the program, they can be tested:
Al F & RS1="A
AELSE
AENDI F

If no values are entered, & .RS1 and &.RS2 are initialized to a string length of zero. These vari-
ables can be changed by means of the CSET statement.

K-2 System Assembly-Time Variables

&.REP

&.REP is a type-integer ATV that is local to an AWHILE or REPEAT loop. It is a count of the
number of times the loop has been repeated.

Example:
&SEE | GLOBAL 0
AVHI LE &SEE < 5
&SEE | SET & REP
AENDVHI LE

& PCOUNT

& .PCOUNT is an integer ATV that is local to the macro it appears in. It contains the number of
valid actual macro parameters that appeared on the macro call statement that called this macro.
Formal parameters that have default values and are defaulted on the call are counted in

& .PCOUNT. The label parameter is counted.

For example, a macro call statement that defaults two parameters:
COPY 12,, ABC, & NT, , -1

the macro name statement:
COPY &P1, &P2, &P3, &P4, &P5’ =D6’ , &P6

&.PCOUNT contains 5, since five parameters are used.

&.PARM []

& .PARM [n] refers to the nth parameter in the current macro expansion. n may be any legal (sys-
tem conforming) Assembly Time Variable (ATV) array index. It is an error if n<0 or
n>&.PCOUNT. If the label parameter is present, it is one; otherwise, the first parameter is the
one following the macro name.

Following is an example, using & PCOUNT and &.PARM:

MACRO

Cal I &WHO, &P1, &P2, &P3, &P4, &P5, &P6, &P7, &P8, &P9, &P10
AlF & PCOUNT = 0O

MNOTE Cal | WHO??

AENDI F
EXT &WHO
JSB &WHO
DEF *+& PCOUNT
&l ILOCAL 2 ; First Call Index

AWM LE & <= & PCOUNT
DEF & PARM &l]
&l | SET &l +1
AEND VHI LE
END MAC

System Assembly-Time Variables K-3

HP 1000 Macro Library

This appendix describes the macros available in the HP 1000 Macro Library. These are macros
for commonly used operations such as calling and defining subroutines that use .ENTR, and exe-
cuting conditional branches. This chapter describes what these macros are, what they do, and
how best to use them.

What the System Macros Do

The macros included in the library all have a number of things in common. They are usable in a
wide range of programs, they hide some of the details of HP 1000 assembly programming, and
they generate assembly-language statements that get the job done in an efficient way. Most of
the macros use conditional assembly to generate the best sequence of instructions possible given
the information available at assembly time.

Most of the macros have parameters that specify memory locations (variables, literals, etc.) or
registers to use in the macro expansion. Occasionally, though, a parameter is just a number, like
an amount to shift or a bit position to test. It is important to understand what a particular pa-
rameter is used for, so that you do not use a 1 where you wanted an =D1 (the first a number, the
second a memory location). Note that when a parameter specifies a register name, it must be
either Aor B, not 0, 1, X, Y, etc.

These macros generate assembly code that uses only those instructions found on all HP 1000s:
those in the memory-reference group, shift-rotate group, alter-skip group and instructions involv-
ing long shifts. The arithmetic macros do 16-bit integer arithmetic only, and they do not check
for overflow. Some of these macros generate literals. The descriptions include sample gener-
ated code sequences, these sequences are specific to the parameters supplied, and to this version
of the library. HP reserves the right to change the sequences generated as long as the external
effects of the macros remain substantially the same.

Some of the macros generate labels or call other, inner macros to get things done. To avoid con-
flicts, do not use long labels that start with a lot of strange characters, like #!#ELSE23. Do not
use macros whose names start with a period, like .DOIFERROR, and global assembly-time vari-
ables whose names start with &., like & IFLEVEL.

The descriptions of the macros include a summary of which registers may be changed. The E

and O flags are always indeterminate after executing code generated by a macro; use these at
your own risk. None of the macros touch X or Y.

HP 1000 Macro Library L-1

The following is a list of all system macros described in this appendix in order of appearance:

ENTRY
EXIT
CALL

IF
ELSE
ELSEIF
ENDIF

ADD
SUBTRACT
MAX

MIN

SETBIT
CLEARBIT
TESTBIT
FIELD

ROTATE
ASHIFT
LSHIFT
RESOLVE

TEXT
MESSAGE

TYPE
STOP

L-2 HP 1000 Macro Library

A Macro Example

The best way to explain how to use the macro library is to give an example. The following exam-
ple shows using the library macros ENTRY, IF, ENDIF, and EXIT to write a Fortran-callable
move words routine which uses MVW. The macros will be explained in detail later; only their
context will be examined here.

1 macro, 1

2 nam mvw, 7, 99 FORTRAN-cal | abl e . MWW &. dat e

3 macl i b $MACLB

4 G_OBALS

5 *

6 * Routine to allow FORTRAN (or pascal, etc.) to use the
7 * mcrocoded . MWW wor d- nover. Paraneter are source,

8 * destination, nunmber of words.

9 *
10 nmvw ENTRY “source, "destinati on, ~count
11 | F @count, >, =d0 ; positive counts only
12 | da ~source
13 | db ~destination
14 mvw @ count
15 ENDI F
16 EXIT
17 end

For this example, all references to system macros are in capital letters. Line 3 specifies using the
system macro library SMACLB.

Line 4 calls the macro GLOBALS; this is a macro to define global assembly-time variables,
which several of the macros use. It is best always to include this call to GLOBALS. If you ever
get strange error messages from system macros, check that you have not left this out.

Note that you only need to have one MACLIB and one GLOBALS statement per file, even if
you have multiple modules in one file. These statements work across module boundaries.

Line 10 is a call to ENTRY. It defines a routine MVW that should use the .ENTR entry se-
quence. It passes three parameters, called ~ source, ~ destination and ~ count. These names
start with a carat (™) as reminders that they are just pointers to the real arguments to the sub-
routine. ENTRY reserves locations for the parameters and return address, and calls ENTR. It
also generates the ENT MVW to make this a callable subroutine.

Line 11 is a run-time IF macro, not to be confused with the assembly-time AIF pseudo opcode.
It specifies that the lines following the IF macro and preceding the ENDIF macro should be exe-
cuted only if the count passed was a positive number. The MVW routine requires a positive
number for the count.

Lines 12, 13, and 14 are executed only if the count is greater than zero (@ ™ count means to use
~ count indirectly). Otherwise the code will jump to line 15. The commas around the condition
enable the Macro Assembler (MACRO) to separate the parameters.

Line 15 is an ENDIF macro that generates a label for the jump generated by the IF macro.

Line 16 is an EXIT macro which generates the subroutine return instruction JMP @MVW.

HP 1000 Macro Library L-3

While using the system macro library, you might want to take advantage of the listing options in
Macro/1000:

LI ST short lists only the macro calls.
LI ST medi um includes the generated code and the calls to macros internal to the library.

LI ST | ong gives the complete text of all macros.

Descriptions of System Macros

In the following descriptions, macro names are in uppercase, parameters are in italics, optional
parameters are in brackets. Three dots indicate continued parameters.

Subroutine Operations
Macro ENTRY

subroutinename ENTRY [parameterl, . . ., parameterl0)]

Macro ENTRY generates the . ENTR entry sequence for subroutines. subroutinename is de-
clared an entry point. Destroys A and B. Refer to the EXIT macro regarding scope rules for
ENTRY and EXIT. Up to ten parameters are allowed. After execution, pointers are set up to
the parameters passed to the subroutine.

Example:

InitializeData ENTRY “buffer,~inputlu

generates:
~Apuf fer NOP
Ainputlu NOP

ENT InitializeData
InitializeData NOP

EXT . ENTR
JSB . ENTR
DEF ~buffer

L-4 HP 1000 Macro Library

Macro EXIT

EXIT
Macro EXIT generates the subroutine return jump appropriate for the most recent ENTRY.
“Most recent” refers to the order in which the subroutines appear in the source, not the order in
which they were called.
For example, following the previous example for ENTRY, the statement:

EXIT

generates:

JVP @nitializeData

Macro CALL

CALL subroutine[, parameterl, . . . , parameterl(]

Macro CALL generates a call to an external subroutine, using the .ENTR calling sequence. Up
to ten parameters are allowed. No registers are changed.

Example:
CALL Nanr, pbuf, @buffer,len,start
generates:

EXT Nant
JSB Namr
DEF *+5
DEF pbuf
DEF @buffer
DEF | en
DEF start

Other forms of this macro are available which do not include the DEF to the return address (“di-
rect” call), or which do not put an EXT on the subroutine name (“local” call):

Macro name DEF return? EXT on label?
CALL yes yes
DCALL no yes
LCALL yes no
DLCALL no no

HP 1000 Macro Library L-5

Runtime Conditionals
Macro IF
| F operandl, comparison, operand2

Macro IF generates a jump to a label if the comparison indicated is false. (The label is gener-
ated by ELSE, ELSEIF, or ENDIF also.)

operandl can be a memory location or a register. If it is a memory location, the A-Register will
be used for the comparison.

comparison specifies one of the six conditions below. Either the alphabetic (FORTRAN:-like) or
symbolic (Pascal-like) coding can be used.

operand?2 should specify a memory location. The case of operand2 being =DO0 is a special case,
and causes efficient code to be generated. See the second example below.

Comparisons other than equality tests will probably generate a subtract to check the condition;
this will change the register. The operands must be 16-bit integers, no overflow test is done.

IFs can be nested up to ten deep; this is discussed in more detail later.

Comparison Alpha Sym Register changed?
equal EQ = no
not equal NE <> no
greater than GT > yes
less than LT < yes
greater than or equal GE >= yes
less than or equal LE <= yes
Example:
| F B, LT, BAZ
generates:
CwvB
ADB BAZ
SSB
JMP nane
Example:

| F Lengt h, <>=d0
generates:

LDA Length
SZA, RSS
JMP anot her name

IF is used with the macros, ELSE, ELSEIF, and ENDIFE. IF generates a jump to a label which
will be right after the next ELSE, ELSEIF, or ENDIFE. These macros communicate these labels
through global assembly-time variables. You declared these labels at the beginning of the pro-
gram with the GLOBALS macro.

L-6 HP 1000 Macro Library

Macro ELSE
ELSE

Macro ELSE generates a jump to a label that will be defined by ENDIE, then defines the label
that the previous IF macro referred to. Does not affect any registers.

Example:
ELSE
generates:

JMP anot her name
nanme EQU *

ELSE is used in conjunction with IF and ENDIFE. For example:

| F A LT, Tabl esi ze

ELSE

ENDI F
The dots indicate omitted statements. This example causes the group of statements between the
IF and ELSE macros to execute only if the content of the A-Register is less than the content of
location Tablesize when the comparison code actually EXECUTES. If A is equal to or greater

than Tablesize, the block of code between the ELSE and the ENDIF executes. The code before
the IF and after the ENDIF executes in either case.

HP 1000 Macro Library L-7

Macro ELSEIF

ELSEI F operandl, comparison, operand?2
Macro ELSEIF generates an ELSE followed by an IE with the IF using the supplied operands
and comparison. They are exactly the same as they are on an IF macro. ELSEIF does not in-
crease the nesting level. This means that many blocks of code can be separated by ELSEIFs
without requiring a separate IF-ELSEIF pair for each. Otherwise it behaves as an ELSE fol-
lowed by an IE. It must be followed at some point by an ELSE or an ENDIFE
Example:

IF AEQ’'=S'"RE "’ ; be careful passing quoted string
(could use =A literal here, too)

...do RE command. .
ELSEIF A EQ ' =S ' SE "’
...do SE conmmand. ..
ELSE note that elses are optional

...here if we didn't want to do the others...

ENDI F
generates:
CPA =S' RF X | F
IJMP *+42
JMWP test?2
..do RE conmmand. .
JVP endoftests : ELSEI F
test2 CPA =S SF
IJMP *+42
JMP test3
...do SE command. .
JVP endoftests ;. ELSE
test3 EQU *
...here if we didn't want to do the others...
endoftests EQU * ; ENDIF

L-8 HP 1000 Macro Library

Macro ENDIF

ENDI F

Macro ENDIF generates the label of the instruction to which an IF, ELSE or ELSEIF jumps.
The ENDIF macro does not generate any code, but causes a return to the next outer nesting
level.

Example:
IF Error, >=, =d0
I F Length, =, =d-1 ; note nested if
...have end of file...
ELSE
... do sonething
ENDI F X return to outer nesting |eve
ELSE
... have negative error code...
ENDI F

In the above example, the end-of-file test is made only if the error code is not negative. Nesting
is limited to ten levels; ELSEIF can be used to keep nesting levels from getting out of hand.

HP 1000 Macro Library L-9

Arithmetic Operations
Macro ADD

ADD source, amount| , destination)

Macro ADD generates code to add amount, which is a memory location, to source, which is a
memory location or register. If a memory location is specified, the A-Register is used for the add
if a register is needed. The result is left in the register used, unless a destination to store to is
provided. As always, it works only with 16-bit integers, and does not check for overflow.

Example:

ADD Val ue, =d4, NewVal ue

generates:
LDA Val ue
ADA =d4

STA Newval ue
Example:

ADD Loc, =d1, Loc
generates:

I SZ Loc ; no register needed!
NOP

Macro SUBTRACT
SUBTRACT source, amount[, destination]

Macro SUBTRACT generates code to subtract amount, which is a memory location, from source,
which is memory location or a register. If a memory location is specified, the A-Register is used

for the operation. The result is left in the register used, unless a destination is specified. It uses

16-bit integers, and does not check for overflow.

Example:
SUBTRACT @Poi nter, =d16
generates:

LDA =d-16
ADA @Poi nt er

Example:
SUBTRACT Val ue, Base, O f set
generates:

LDA Base
CVA, | NA
ADA Val ue
STA O f set

L-10 HP 1000 Macro Library

Macro MAX
MAX' operandl, operand?

Macro MAX generates code to find the maximum of the two memory locations operandl and

operand2. The A-Register is used in the computation, so it will not do the right thing if the A-
Register is used as either operand. The result is left in the A-Register. It uses 16-bit integers,
and does not check for overflow.

Example:

MAX Suppl yVol t age, =d500

generates:
LDA Suppl yVol t age
CVA, | NA
ADA =d500
SSA
CLA

ADA Suppl yVol t age

Macro MIN

M N operandl, operand?
Macro MIN generates code to find the minimum of the two memory locations operandl and
operand2. The A-Register is used in the computation, so it will not do the right thing if the

A-Register is used as either operand. The result is left in the A-Register. It uses 16-bit integers,
and does not check for overflow.

Example:
M N Suppl yVol t age, =d500
generates:

LDA Suppl yVol t age

CVA, | NA
ADA =d500
SSA, RSS
CLA

ADA Suppl yVol t age

HP 1000 Macro Library L-11

Bit Operations
Macro SETBIT
SETBI T bitnumber
Macro SETBIT generates code to set bit bitnumber in the A-Register. bitnumber should be just

an ordinary number, not a memory location. Bit 0 is the least significant bit, and bit 15 is the
most significant (the sign bit). The IOR instruction is used to set the bit.

Example:
SETBIT 6
generates:
| OR =D64

Macro CLEARBIT
CLEARBI T bitnumber| , register]

Macro CLEARBIT generates code to clear the specified bit in the A-Register, or if bitnumber is
0 or 15, the B-Register can be specified as the register to use. bitnumber must be just a number,
not a memory location. Bit 0 is the least significant bit, and bit 15 is the most significant (the sign
bit). It uses the AND instruction or an SRG instruction to clear the bit.

Example:
CLEARBIT 9
generates:
AND =D-513
Example:

CLEARBIT 15,B
generates:

ELB, CLE, ERB

L-12 HP 1000 Macro Library

Macro TESTBIT

TESTBI T location, bitnumber, value, instruction

Macro TESTBIT generates code to execute the specified instruction only if the bitnumber in the
location specified is currently equal to value.

location is either a memory location or a register. If it is a memory location, the A-Register is
used for the test; if it is the B-Register, and the specified bit cannot be tested easily, the A-Regis-
ter will be used. (In short, this macro destroys the A-Register.)

bitnumber is the bit to test, and is a number from 0 to 15. Bit 0 is the least significant, and bit 15
is the most significant (the sign bit).

value is the bit value to test for; it is either 0 (a number), or is any other value, meaning non-zero.
instruction is a statement to execute if the specified bit has the specified value. It will almost al-
ways be a jump instruction, and so will have to be in quotes: ’JMP target’. The instruction cannot
have a label.
Example:

TESTBIT A 4,0, IMP AVAY
generates:

AND =D16

SZA, RSS

JMP AVAY
Example:

TESTBIT B, 0,1, ALF, ALFF ; ALF is in quotes to defeat comm

generates:

SLB
ALF, ALF

HP 1000 Macro Library L-13

Macro FIELD
FI ELD location, startbit, fieldwidth

Macro FIELD generates code to isolate fieldwidth bits starting at bit startbit from location, leav-
ing them right-justified in the A-Register.

location can be a memory location or a register; the A-Register is used for the operation in any
case.

startbit is a number from 0 to 15; bit 0 is the least significant bit, and bit 15 is the most significant
bit (sign bit). This is the right-most bit of the bit field desired.

fieldwidth is a number specifying how many bits wide the field should be. startbit + fieldwidth
must not be greater than 16.

Example:

FIELD A 8,8 ; extract upper byte
generates:

ALF, ALF ; rotate 8

AND =D255 ;and mask
Example:

FI ELD EQT5, 14, 2
generates:
LDA EQTS

RAL, RAL
AND =D3 ; keep only availability code.

L-14 HP 1000 Macro Library

Shifts
Macro ROTATE

ROTATE location, distance
Macro ROTATE generates code to do rotation of location by distance bits.

location can be a memory location or a register; if a memory location is specified, the A-Register
is used to do the rotate. The result is left in the register used.

distance is the number of bits to rotate. It is a number from —16 to +16. Positive numbers mean
rotate left, negative numbers mean rotate right. 16 bits are rotated.

The other register is never touched, regardless of distance; all rotates can be done in one or two
instructions (not counting the initial load).

Example:

ROTATE B, 4
generates:

BLF
Example:

ROTATE Fl ag, -3
generates:

LDA Fl ag

RAR, RAR
RAR

Macro ASHIFT
ASHI FT location, distance

Macro ASHIFT generates code to do an arithmetic shift of location by distance bits. (Arithmetic
shifts propagate the sign bit.)

location can be a memory location or a register. If a memory location is specified, the B-Register
is used to do the shift. The result is left in the register used.

distance is the number of bits to shift. It is a number from —16 to +16. Positive numbers mean
shift left, and negative numbers mean shift right. 16 bits are shifted.

If the distance to shift is greater than 2 or less than —2, the content of the other register is de-
stroyed.

HP 1000 Macro Library L-15

Example:
ASH FT B, 4
generates:

CLA
ASL 4 : result in B

Example:
ASH FT A, -2
generates:

ARS, ARS

Macro LSHIFT

LSHI FT location, distance
Macro LSHIFT generates code to do a logical shift of location by distance bits. Location can be a
memory location or a register; if a memory location is specified, the B-Register is used to do the

shift. The result is left in the register used.

distance is the number of bits to shift. It is a number from —16 to +16. Positive numbers mean
shift left, and negative numbers mean shift right. 16 bits are shifted.

If the distance to shift is greater than 2 or less than —3, the content of the other register will be
destroyed.

Example:
LSH FT B, 4
generates:

CLA
LSL 4 X result in B

Example:
LSH FT A, -2
generates:

CLE, ERA
ARS

L-16 HP 1000 Macro Library

Macro RESOLVE

RESOLVE register
Macro RESOLVE generates code to do resolution of indirects on an address in the A- or B-Reg-
ister. It assumes register contains a pointer to a DEF. It is designed for use in parameter passing
on direct calls that do not want to use .ENTR.
Example:

RESOLVE A
generates:

LDA @\

RAL, CLE, SLA, ERA
JMP *-2

Text Definition

Macro TEXT
TEXT string

Macro TEXT generates an ASC pseudo opcode for the given quoted string. Designed to be used
in the data definition part of a program.

Example:
TEXT 'Hello, how are you?’
generates:

ASC 10, Hel 1 o, how are you?

Macro MESSAGE

VESSAGE pointer, text
Macro MESSAGE generates a block of memory containing the length of the given string in
words, followed by the string. pointer is a pointer to the length word. This is designed for calls to
output routines that need a string length (WRITE, EXEC).
Example:

MESSAGE “errmsg,’ No such file’
generates:

Nerrmsg DEF *+1

DEC 6
ASC 6, No such file

HP 1000 Macro Library L-17

Communication with RTE

Macro TYPE

TYPE message
Macro TYPE generates an EXEC 2 call to send a message to the terminal. It uses LU 1 as the
terminal to talk to, so it is useful mostly in systems with a session monitor. message is a quoted
string.

Example:

TYPE 'All tests conpleted. Everything OK!

generates:
EXT EXEC
JSB EXEC
DEF +*5
DEF =D2
DEF =D1
DEF =S Al tests conpleted. Everything OK!’
DEF =L-36
Macro STOP
STOP

Macro STOP generates an EXEC 6 call to stop the current program. This is a normal stop, and
releases resources, etc.

Example:
STOP
generates:
JSB EXEC

DEF *+2
DEF =D6

L-18 HP 1000 Macro Library

CDS Assembly Language Programming

Introduction

This appendix contains some suggestions for the assembly language programmer who wishes to
use the HP 1000 features commonly called CDS (code and data separation) programming.
These features include, as well as the separation of code and data, an improved local variable
scheme that supports recursion and reentrance, plus a code segmentation scheme that allows
greater speed and flexibility than previous methods. It is necessary, however, that a minimal en-
hancement to existing assembly code be performed to make optimal use of these features.

The first part of this appendix contains a brief description of what the CDS architectural en-
hancements mean to the assembly language programmer, and introduces some terms to be used
later. For more advanced issues, it is suggested that you consult the hardware manuals and the
programmer’s reference manual for your particular HP 1000 computer model number.

The next part of this appendix contains descriptions of the assembly language constructs relevant
to the CDS programmer.

The rest contains some examples, and outlines some useful macros supplied by Hewlett-Packard
to simplify the programmer’s job.

A Brief Outline of CDS Features

To the assembly language programmer without CDS features, the HP 1000 target machine might
appear something like this:

address 0 base page

memory
available
for
programs and
data

32767

CDS Assembly Language Programming M-1

In this model, the programmer sees an area of 32767 words available for program space. One
page, or 1024 words, of that is required for a base page, and some of the rest may be required by
the operating system. The main feature of this model is that the program’s code and data are
intertwined together into this memory area. This means, for example, that the local variables for
a subroutine reside often within a few addresses of the instructions that manipulate them. It also
means that code can accidentally get altered even though the programmer thinks data is being
manipulated. In addition, in a segmented program the data for the subroutines in a segment can
get destroyed when a new segment is brought into memory.

In the CDS model of memory, the programmer sees two separate areas of 32767 words — one
for code and one for data:

CODE AREA DATA AREA
reserved reserved
memory memory
available available

for for
CODE DATA

The programmer can think of the CODE area as one that contains values that don’t change (like
instructions and some constants), and the DATA area as one that contains values that may
change. The HP 1000 CPU knows that instructions that affect data (like LDA or STA) should
use the DATA area when they are executed, but instructions that affect the CODE area (like
JMP or SSA) should be performed on addresses in the code space. Note that any CODE that is
self-modifying must be executed in the DATA space. This includes old-style HP 1000 subroutines
that are accessed by the JSB instruction.

It is the programmer’s responsibility to decide which parts of the program should be put into
data and which into code. This document may help a little but is meant to supplement what you
will find in the appropriate programmer’s reference manual. This appendix outlines some of the
assembly language commands that tell the assembler where the programmer wants these parts of
the program placed.

M-2 CDS Assembly Language Programming

Assembly Language Constructs

This section describes some of the opcodes and pseudo opcodes available to the CDS program-
mer. Some examples appear in the next section.

Syntax of Commands
CDS keyword

where:

keyword is ON or OFF

PCAL SubName, ParameterCount, CallingSequence PcalType
where:
SubName is the name of the subroutine.
ParameterCount is the number of parameters passed.
unspecified
.ENTR

0
1:
2: .ENTN
3: standard PCAL

CallingSequence is

PcalType is 0: Normal
1: procedure passed as param

RELOC keyword

where:
keyword is CODE, DATA, LOCAL, STATIC, PROG, COMMON, SAVE,
EMA, or BASE.
LABEL ProcName
where:
ProcName is the name of the procedure referenced.
BREAK ... (no operand)

CDS Assembly Language Programming M-3

CDS Command

The CDS command is a pseudo opcode that instructs the assembler that your code is intended to
run on a CDS machine. This command should appear in every module of your program that will
be loaded into the CDS environment. The command takes one operand:

CDS ON ; comments

If a label appears on this command, it is ignored. The keyword operand ON (lowercase or up-
percase is allowed) enables all of the CDS features of the assembler.

The CDS command must appear in your source before any opcodes or pseudo opcodes that gen-
erate code or data. It is suggested that you place this command immediately after the NAM
statement in your source program.

PCAL

The PCAL opcode calls a subroutine. When in CDS mode, the JSB, ENTR, .ENTP, .ENTN,
and .ENTC instructions should never be used. The PCAL instruction, when executed, sets up a
CDS standard call to the subroutine specified, handles all of the parameters passed, and allo-
cates memory for local variables (in what is called an “activation record”). The command takes
four parameters. Only the first one is required.

PCAL SubName, #Parameters, CallingSequence, Pcallype

where:
SubName is the name of the subroutine being called.
#Parameters is the count of the number of parameters passed.

CallingSequence is an integer value describing the type of PCAL to make:
0 — unspecified Standard calling sequence filled in by LINK.

1 .ENTR — The .ENTR form of PCAL emulates old .ENTR
calls for routines in the data segment. This is
for calling old subroutines that you have not
converted to take advantage of CDS features.

2 .ENTN — The .ENTN form of PCAL emulates old .ENTN
calls for routines in the data segment.

3 PCAL - This is the standard calling sequence when you
are calling from a CDS subroutine to another
CDS subroutine. It is expected that most PCAL
instructions you use will contain this flag.

PcalType When the address of the subroutine to be called is passed to the call-
ing subroutine as a parameter (that is, a “variable procedure”), this
flag is 1. Otherwise, it is 0.

It is strongly suggested that you use PCALL, the macro supplied by HP, to perform subroutine
calls in your code. This command has a simpler set of rules and allows a greater flexibility. (Re-
fer to “PCALL” later in this appendix.)

M-4 CDS Assembly Language Programming

Parameter passing is done by following the PCAL instruction with a list of DEFs to the parame-
ters to be passed. This imposes a stricter set of calling sequence rules than offered by the JSB
instruction. All parameters must be passed in this manner. The called subroutine cannot get the
value of anything passed it by simply loading through the return address indirect.

Example:
FORTRAN: Non- CDS styl e: CDS styl e:
Call Subr(P1, P2, P3) Jsb Subr PCAL Subr, 3,3,0
def *+4 def P1
def P1 def P2
def P2 def P3
def P3

Again, use the PCALL macro to make parameter passing a little easier than this.

CDS Assembly Language Programming M-5

Example Macro of ENTRY with PCAL

macro, mil,t

E R R R N I G

Ro
£
m

&NANVE

&FP1

&FP2

&FP3

&FP4

&FP5

&FP6

&FP7

&FP8

ENTRY macro comments

Brief Description: This nacro sets up a subroutine that
will be called using the standard calling format for
CDS (PCALL SUBR address, DEF Pl1, DEF P2, etc.).
It gives the subroutine formal paraneters nanes. The
CDS hardware automatically fills the actual paraneter
value in at run tine.

Regi sters Affected: all are cl obbered

Unusual Side Effects/ M scellaneous Notes: None so far

Par anet er s:
&NAME i s the subroutine nane
&FP1, &FP2, ..., & P10 are the formal paraneters of the
subroutine

Alternate Calling Formats/ Default Paraneters: My be
called with 2 to 10 of the nmacro paraneters &Pl to
&FP10; the ones not used will default to '’

MACRO
ENTRY &FP1, &FP2, &FP3, &FP4, &FP5, &FP6, &FP7, &FP8, &FP9, &FP10
AlF : T: & Local MacroUsed <> ' U
Al F & Local MacroUsed <> 'Used | ast on END
MNOTE ' The LOCAL st atenent should not be used before
ENTRY’
AENDI F
AENDI F
RELOC LOCAL
ENT &NAME
DEF ! #! Local Count
BSS 5
AlF &P1 <> '’
NOP
AENDI F
AlF &FP2 <> '’
NOP
AENDI F
AlF &P3 <> '’
NOP
AENDI F
AlF &P4 <> '’
NOP
AENDI F
AlF &P5 <> '’
NOP
AENDI F
AlF &P6 <> '’
NOP
AENDI F
AlF &FP7 <> '’
NOP
AENDI F
AlF &P8 <> '’
NOP
AENDI F
AlF &FP9 <> '’

M-6 CDS Assembly Language Programming

&FP9

&FP10

* % X X X X

EE I R I I N I

&L nane

NCP

AENDI F

Al F &FP10 <> '
NCP

AENDI F

ENDVAC

EXIT macro conments

Brief description: This nacro exits a subroutine that has
been entered with the ENTRY nacro.

Regi sters Affected: none

MACRO
EXIT
OCT 105417 : octal instruction for EXIT

LOCAL macro comrents

Brief description: This macro is used to declare the nanes
and sizes of the local variables in a CDS user’s program
It is used both to assure that the users will not try to
initialize their variables (either overtly like
"FOO DEC 12' or accidently like 'FOO NOP") and to assure
that no locals precede the ENTRY macro. This is done via
an assenbly tine variable.

Only data is generated.

The current relocation space counter is nodified to be
LOCAL.

MACRO
LOCAL &si ze
AlF : T: & Local MacroUsed = ' U

&. Local MacroUsed CA.OBAL ' Used | ast on LOCAL’

AELSE
&. Local Macr oUsed CSET "Used | ast on LOCAL’
AENDI F
RELOC LOCAL
&Lnane bss &size
ENDVAC
* END macro comment s
* Brief description: Used only to set up the variable
* | #! Local Count to contain a count of the nunber of |oca
* words used by the program This is put into the first
*

word of the code via the ENTRY nmcro.

MACRO
END
RELOC LOCAL

I #! Local Count equ *

AlF : T: & Local MacroUsed <> ' U

&. Local MacroUsed CSET ' Used | ast on END

AENDI F
: OP: END
ENDIVAC
END

CDS Assembly Language Programming M-7

RELOC Command

The RELOC command instructs the assembler as to whether the opcodes following it are to be
assembled into the code space, data space, or are local or static variables. It is with this com-
mand that the separation of code and data can be achieved. Although there are a total of nine
keywords legal on this command, only four are relevent to CDS programming:

CODE instructs the assembler that all of the instructions following are to be assembled into
the code space.

DATA instructs the assembler that the following values are to be put into the data space.

LOCAL defines local variables for your subroutine. The number of words must not exceed
1024 words. All values placed in variables that reside in the LOCAL area are lost
when the subroutine is exited, that is, they are not preserved from one call to the
next.

STATIC is also used to define local variables. However, the value of variables put into this
space is preserved from one subroutine call to the next.

When CDS is turned on, the keywords PROG, COMMON, SAVE, and EMA are still legal.
PROG is the same as DATA in CDS programming, and BASE is illegal.

For examples of RELOC, refer to “Program Examples” later in this appendix.

LABEL Command

The LABEL pseudo opcode allows “variable procedures” calls. This opcode is present for com-
pleteness but is not expected to be used by the typical assembly language program. A variable
procedure is one whose label has been passed to the current procedure as a parameter. Refer to
“Example of LABEL Statement” later in this appendix.

LABEL VarParam

where:

VarParam is the name of a procedure.

The LABEL pseudo opcode generates a one-word label that may be used with a PCAL opcode
where PCAL is set to 1.

BREAK Command

The BREAK pseudo opcode indicates those parts of your program at which natural breaks in the
flow of the program occur. It is used by the loader to construct current page links for off-page
references. This instruction must be used at least every 511 words of code. Here are some
guidelines:

1. A break should not be placed where it might be executed.
2. An indexed jump must never cross a break.

3. A skip instruction must never cross a break.

There must be a BREAK command every 511 words, it is suggested that you put one approxi-
mately every 100 lines of code.

M-8 CDS Assembly Language Programming

Some Useful Macros

This section contains descriptions of how to use some macros that are provided by HP to make
your programming job easier.

What is a Macro?

A macro can be thought of as a new pseudo opcode or opcode that is not normally built into the
assembler, one that does something special. By writing macros, the programmer can make a set
of customized opcodes. Many of the so-called “opcodes” that are useful to the CDS programmer
are really customized macros written for you by HP. You can gain access to these macros by plac-
ing the MACLIB command into your code before you use any of the special opcodes. See your
system manager for the name of the macro library file that goes with this command.

This macro library can be used with any other macro libraries you may wish to use, but the par-
ticular MACLIB command for these special opcodes must appear first.

PCALL

The PCALL macro generates the code to perform a subroutine call. It is the CDS equivalent of
the JSB instruction. The PCALL macro allows you to specify the subroutine you wish to call, and
the names of the parameters to be passed, all in one line of code. Example:

PCALL SubName, PI, P2, P3

where:
SubName is the name of the subroutine called.
P1.,P2.P3 are the parameters to be passed. Up to 10 parameters can appear on the
PCALL macro.
ENTRY

The ENTRY macro marks the start of a subroutine. It is used in place of the JSB .ENTR in non-
CDS programs. This macro contains the name of the subroutine and the names of the parame-
ters the subroutine takes. Example:

SubName ENTRY X1, X2, X3

where:
SubName is the name of the subroutine that is being defined here. Note that the name
starts in column 1 of the assembly language source.
X1,X2.X3 are local names that are assigned to the parameters.

No RELOC LOCAL commands or LOCAL macro calls (see below) can be used before this
macro.

CDS Assembly Language Programming M-9

LOCAL

The LOCAL macro declares the names and sizes of all of the local variables to be used by this
subroutine. Remember that the values of these variables are undefined when the subroutine ex-
its, and therefore are not preserved from one call of the subroutine to another. The macro con-
tains the name of a variable and the number of words of memory it should occupy.
Example:

MyVar LOCAL 2

In this example, the variable Mylar occupies two words in the local variable space. This macro
should not appear before the ENTRY macro.

EXIT

The EXIT macro marks a subroutine return. When executed, control is transferred back to the
subroutine that called this one. This macro is analogous to JMP SubName,l used in non-CDS
assembly language programs.

Example:

EXIT

M-10 CDS Assembly Language Programming

Program Examples

This section contains examples of assembly language code written to use the CDS features.
Wherever possible, the new macros shown above were used.

The following piece of code contains a main program that initializes some global variables and
calls some subroutines. The main feature illustrated here is the way subroutines get called and
parameters, local and global variables get set up.

General Example
NAM Mai nProg, 4 CDS denp program

MACLI B ' . CDMAC: : crn’ : allows access to CDS nacros
CDS ON ;. remnds the assenbler that this is a
; CDS program

EXT Subr1, Subr2

; Data declaration section. Declare some global data to be used
; by other subroutines.

RELCC DATA ; assenble the follow ng opcodes in the DATA area
ENT G obl
G obl BSS 1 ; value to be filled in when program runs
ENT G ob2
G ob2 DEC 23 ; value initialized at assenbly tine
Mlat al BSS 100 ; this data is local to MainProg but wl|
Mlat a2 BSS 200 ; be passed as a paraneter

; Data all set up. Now assenble the follow ng opcodes
; in the CODE area

RELCC code
Mai nProg ; program starts here.
LDA =d10 ; put some values into MainProg’ s data
STA Mlat al
LDA =d20

STA Mlat a2

P'CALL Subr1, Mdlatal, Mlat a2
PCALL Subr2, =D23

END Mai nProg

CDS Assembly Language Programming M-11

NAM Subr 1
ENT Subr 1
EXT d obl ; allows access to the globals

CDS on

; Start of subroutine. Declare the nanmes of the paraneters first
: and then the nanmes and sizes of the |ocal variables.

Subr 1 ENTRY P1, P2 : local nanes for Mlatal and Mlat a2 above
Subr L1 LOCAL 2 ; 2 words long; initial value is undefined

Subr L2 LOCAL 1
: Variables are all decl ared. Start the code.

LDA @1 ; A-Register gets the value 10.
STA SubrL2 ; access locals normally
LDA G obl ; access globals normally
EXIT : return to caller
END
NAM Subr 2
ENT Subr 2
CDS ON

; Declare the locals and the nanmes of the paraneters
Subr 2 ENTRY Const
Subr2L1 LOCAL 2
; This subroutine will have sone |ocal data whose val ue renains
; preserved fromone call to the next. This goes in the static
; data area.
RELOC STATIC
Subr 2L2 BSS 12
; Start the code
RELOC code
LDA @const ; A-Register gets the 23 passed above.
EXI T

END

M-12 CDS Assembly Language Programming

Example of LABEL Statement
This statement is not commonly used in typical assembly language programs. This opcode is pre-

sent for completeness, and for any high level language processors that may generate assembly
code.

In the following example, the subroutine SQRT is passed as a parameter to the subroutine
CALLER, which then calls SIN as a variable procedure.

NAM Fat her Rout i ne
MACLI B * $CDSLB: : crn’

EXT SQRT

Var LABEL SORT
PCALL Caller, Var
END
NAM Cal | er

Cal | er ENTRY Var Param
P'CAL @/ar Param 1, 3,1
END

CDS Assembly Language Programming M-13

CDSONOFF Macro Library

Introduction

This macro library is designed to facilitate writing “good” assembly code that may be used in
either the CDS or non-CDS environment. It is written so that all modules (that is, NAM/END
pairs) in a file will be compiled with CDS on or off. In other words, the library does not support a
file containing some CDS modules along with some non-CDS modules.

The problems addressed by this macro library are:

e Local and global subroutine call and entry sequences including optional parameters
e Alternate returns (p+1, 2, etc.)

e String descriptor definition

e Relocation space changes

In addition, a trace back macro is provided to generate the code needed to identify the module to
the FTN run time error trace back facility.

CDS/Non-CDS Differences
Calls

Subroutine call sequences are different in CDS because the JSB (which modifies its target ad-
dress) cannot be used except to call routines in data space. Therefore, the calls in CDS and non-
CDS are different. Likewise, the entry sequences required for the two modes differ. This is fur-
ther confused if you want to have one or more optional parameters. The code to set up optional
parameters is quite different in the two modes.

Local Subroutines (routines within the same NAM/END pair) must be called with JLY, JLA, or
JLB in CDS instead of the JSB used in non-CDS routines. This means that their exit code must
also be different. Likewise, bumping the return address is different. A further complication arises
when parameters are to be passed to local routines. The best way to do this is to use registers, but
in some cases, DEFs may be needed. The standard memory reference instruction may not address
the DEF because it is in code space. It is accessible, however, with cross map instructions.

CDSONOFF Macro Library N-1

The MVW (move words) and the MBT (move bytes) instructions are not available in CDS code
space, but there are move word and move byte instructions that are available. On the other hand,
the CMW (compare words) and CBT (compare byte) instructions are neither available in CDS
code space nor are there available replacements. To handle these problems, move words, move
bytes, compare words, and compare bytes macros are provided. The compare instructions work by
calling a data space routine to execute the actual instruction.

Data and Strings

In CDS mode, good code uses as few words of STATIC area as possible. This dictates that most
working variables should be put in local space and initialized from code space. Since this is a re-
quirement that is not present in non-CDS mode, macros are provided to initialize and set up
strings and string descriptors.

Philosophy

This macro library allows you to write code that could be compiled to run in CDS mode or, by us-
ing a simple MACRO runtime parameter, compiled to run in non-CDS mode. The requirements
of the two modes are different and some errors that are possible in one mode may not matter in
the other.

The macros do most error checking for both modes regardless of the mode. This means that once
your code is working in one mode, it should be very close to working in the other mode. Most of
the macros check everything that is passed and indicate any errors. They also talk to each other so
that if, for example, you code the ENTRY for subroutine PUT to expect a JLY call and then code
the CALL to use JLB, an error will be produced regardless of which occurs first, the ENTRY or
the CALL.

This macro library includes all of the standard macro library (SMACLB), with the exception of
those macros that are expanded in scope here. Code written to use those macros need not be

changed to use this library, except that the GLOBALS macro should not be called, nor should that
library be included with this one.

Macro Call Sequences
Initialization

This library should be included with MACLIB $CDSONOFF. The macro CDSONOFF should be
invoked before the first NAM in the source.

CDSONOFF {(%Ség:'\'F } [, maxocals] [, coll] [,col2] [, col3]

This macro sets up the library to do either a CDS run or a non-CDS run. It also defines some
GLOBAL ATVs, calls the standard MACLB GLOBALS macro, and sets up column formatting.

The first parameter is required and must be spelled out in full: CDSON or CDSOFE. This pa-
rameter should be either &.RS1 or &.RS2 to allow CDS selection from the MACRO runstring.

N-2 CDSONOFF Macro Library

maxlocals defaults to 50 and defines the size, the GLOBAL ATV arrays &.LOCALS, &.LOCALD,
and & LOCALE. You should increase this number only after one of these arrays overflows.

coll, col2, and col3 define the three column parameters for the COL and MACRO opcodes. They
default to 10, 15, and 31. Columns can be turned off in the program (but not for macro-generated
code) by specifying coll as 0. Normally macros are expanded using the same columns as the code
except that the opcode is indented by 1.

The following ATVs are defined here:

Name Type Modifiable Comments
& ISCDS I NO 1 if CDSON, else 0.
&.SPACE C NO "CM’ if current relocation space is

COMMON else the first two characters of
the current relocation space.

&.COL1 I YES current Column specifications
&.COL2 I YES for macro calls.
&.COL3 I YES

NEWSUB

NEWSUB [max_parms)

This macro must be called after each NAM statement and before the first code in the module. It
resets GLOBAL ATVs used to track subroutine calls and LOCAL space usage.

max_parms, if coded, defines the highest number of parameters to expect on subsequent ENTRY
and OENTRY calls in this module. If it is not coded, the first occurrence of ENTRY, OENTRY,
or END defines the amount of LOCAL space required (in CDS mode) for parameters. Local
declarations are deferred until the first ENTRY, OENTRY, or END. This means that local labels
are not defined until after the deferral and could cause errors in the assembly pass if any of these
local variables are referred to before definition in a context that requires them to be defined.

The cases where max_parms should be coded are as follows:

e There are no OENTRY or ENTRY calls. Presumably, this is a main and max_parms can be set
to 0.

e An ENTRY or OENTRY other than the first requires more parameters than the first ENTRY
or OENTRY.

e Code prior to the first entry requires LOCAL labels to be defined.
If max_parms is coded and is too small, an error is noted by ENTRY or OENTRY. If exactly

max_parms parameters are not required by at least one OENTRY or ENTRY call in the module,
an error will be noted by the END macro.

CDSONOFF Macro Library N-3

TRACEBACK

TRACEBACK name
If used, this macro should be called immediately after the NEWSUB macro. name should be the
module name or primary entry point name. This macro does nothing in non-CDS mode. In CDS
mode, it generates code that allows the FORTRAN run time error routine to identify and print the
module name if it is in the call sequence that resulted in the run time error. If the module and
those it calls do not reference the FORTRAN run time error routine (!NFEX or !EXIT), the

TRACEBACK macro should not be called. Otherwise, it is recommended. The cost in code space
is the name string storage + 7 words. One word is also used at the end of the LOCAL area.

Entry Macros

There are four ENTRY macros:
ENTRY — Entry for calls from other modules. Call with CALL macro.

OENTRY - Same as entry but sets up optional parameters. Call with CALL macro.

DLENTRY — Direct local ENTRY for internal calls from within this module. Call with DLCALL
macro.

DENTRY — Direct ENTRY for calls where no return address is passed. Call with DLCALL
macro.

ENTRY
name ENTRY [pI[, ...[p20] ...]]

name is declared as an entry point for the module that supports the standard FORTRAN calling
sequence. Up to 20 parameters can be handled.

If used in CDS mode, LOCAL space is set up and any deferred local definitions are flushed. If
TRACEBACK was called, TRACEBACK code is generated to put a name pointer on the stack. If
not in CDS mode, a .ENTR call is made to set up the parameter addresses. In either case, the pa-
rameter addresses are available under the given names, that is:

LDA p1 gets the address of the passed-in parameter p1.
LDA @p] gets its value, etc.

OENTRY

name COENTRY no-optional [,pl ... [,p20] ...]
This entry is the same as ENTRY above except that extra code is generated to ensure that the last
no-optional parameter addresses will be zero if they are not supplied. This code is always depend-

ent only on the OENTRY code and thus is reliable in a memory-resident environment, even if the
program is aborted within the module.

N-4 CDSONOFF Macro Library

You can test if a parameter is supplied by looking at the address. If the address is 0, the parameter
was not supplied.

For one- or two-word parameters, the following parameter fetch is recommended.

One-word parameter

LDA Default parameter
LDA @pn Get parm. If not supplied, gets A.
Two-word parameters

DLD Default
DLD @pn

These sequences depend on the addressability of the A- and B-Registers as memory locations
0 and 1.

DLENTRY

name DLENTRY [reg [,exit reg [,pl....[,p20] ... 1]]

DLENTRY defines a Direct Local ENTRY for name. In non-CDS mode, this results in:
name NOP

In CDS mode, it results in:
name EQU *

and optionally stores the call register for the EXIT call.

reg is the call register and, if supplied, must be A, B, or Y. reg must be supplied if name has not yet
been called using the DLCALL macro. If reg is supplied and there was a prior DLCALL refer-
ence to name, reg must be the same as appeared in the DLCALL.

”

exit_reg is the exit register. It may be ”” (zero-length string), A, B, or any valid expression that
defines a memory location to hold the return address.

If exit_reg is absent, reg is assumed to be the exit register. If exit_reg is “—" (a minus sign), a
LOCAL is allocated and the call register is saved at that location. For all other cases, the call reg-
ister is saved at exit_reg.

LOADPARMADD
LOADPARMADD reg
This macro is legal only in a subroutine entered with the DLENTRY macro. It returns in reg (A or
B) the contents of memory pointed to by the current exit_reg (see DLENTRY). If in CDS mode, a
cross load is done.
Code generated:
1 word, if not CDS

2 words, if CDS and <exit reg> <> “Y”
3 words, if CDS and <exit reg> = “Y”

CDSONOFF Macro Library N-5

DENTRY
name DENTRY [pI[, ...[,p20] ... 1]
This macro generates entry sequences for direct calls (see DCALL). In CDS code space, this is

the same as ENTRY. If not in code space (that is, DATA space or not CDS), the sequence gener-
ated is:

P1 NOP
Pn NOP
name NOP
ENT name
EXT . ENTN
JSB . ENTN
DEF P1
If no parameters are passed, the generated code is:
ENT name
name NOP
BUMPEXIT
BUVPEXI T

The BUMPEXIT macro advances the return address of the subroutine it occurs within. This must
be a subroutine entered with ENTRY, OENTRY, DLENTRY, or DENTRY. For LOCAL CDS
subroutines (DLENTRY), the exit register is bumped. The macro always generates exactly one
word of code.

EXIT, EXIT1, EXIT2

These macros exit (return from) the last subroutine entered with ENTRY, OENTRY, or
DLENTRY.

EXIT exits to the caller at P+1
EXlI T1 exits to the caller at P+2
EXI T2 exits to the caller at P+3

The actual exit point is affected by BUMPEXIT also, so that a BUMPEXIT call followed by EX-
IT2 will exit at P+4.

The EXIT macro generates one word of code except for the case of a Direct Local subroutine call
with the Y-Register and returning with it (that is, exit_regis Y).

EXIT1 and EXIT2 generate a variable number of words of code depending on what is required.
LOADPARMADD reg
This macro is legal only in a subroutine entered with the DLENTRY macro. It returns in reg (A or

B) the contents of memory pointed to by the current exit_reg (see DLENTRY). If in CDS mode, a
cross load is done.

N-6 CDSONOFF Macro Library

Code generated:

1 word, if not CDS
2 words, if CDS and <exit reg> <> “Y”
3 words, if CDS and <exit reg> = “Y”

CALL Summary

CALL -
LCALL -

DCALL
PCALL -

DLCALL

UCALL -
DUCALL -

Standard FORTRAN:-like call to an external.
Standard FORTRAN:-like call to an internal routine.
Same as CALL but no return address defined.

Generate PCALL only. Not recommended since there is no non-CDS form, use
CALL.

Direct Local CALL to an internal subroutine.
Standard call (with return address defined) to a routine that is known to be RPed.*

Direct call (no return address defined) to a routine that is known to be RPed.*

* “Known to be RPed” applies to calls from CDS code space; thus, UCALL EXEC is legal even
though the non-CDS code might run on RTE-6/VM where EXEC is not RPed.

CALL, LCALL

CALL name [,pl ... [,p20 1]]
LCALL name [,pl ... [,p20]]

This call generates the standard FORTRAN call sequence to name, passing up to 20 parameters.
name may be in either CODE or DATA space in CDS mode. For CALL, name must not be local
(the macro generates an EXT to name). For LCALL, name must be defined locally.

CDSONOFF Macro Library N-7

DCALL
DCALL name [,pl...[, p20]]

This call generates a direct call to the external routine name. Note that direct calls do not contain
DEEFS to the return address. name may be in either CODE or DATA space in CDS mode.

PCALL
PCALL name [,pl...[, p20]]

This call is provided for backward compatibility with the old CDSLB macro library. It only calls
CDS routines from CDS code. If called in non-CDS mode, it will note the error.

DLCALL
DLCALL name [, call reg[,pl...[,p20] 1 1]

DLCALL is to be used to call local subroutines. name is the name of the subroutine and should be
defined with a DLENTRY call in the same NAM/END module.

[call reg] is the register to use to call name in CDS mode. It must be A, B, or Y. call_reg is op-
tional only if this is not the first DLCALL to name and names’s DLENTRY has not yet been proc-
essed. If call reg is optional and is provided, it must match the first definition.

Defs to pI to p20, if supplied, are generated after the call code. These defs must be accessed with
the LOADPARMADD macro since in CDS mode they are not in DATA space.

DLCALL generates a one-word call plus the required parameter DEFS in non-CDS mode.
DLCALL generates a two-word call plus the required parameter DEFS in CDS mode.

UCALL
UCALL name [,pl...[p20]]
This macro in all cases generates a:
JSB nane
DEF RTN
DEF p1
iIFpn
This is a valid CDS call only if name is an RPL entry. That is, name is really a machine instruction

in CSD code. In non-CDS code, name can be a standard subroutine. EXEC in RTE-A and
RTE-6/VM satisfies this condition and should be called in this way.

N-8 CDSONOFF Macro Library

DUCALL
DUCALL name [,pl...[, p20]]

This macro is the same as UCALL except that the DEF RTN is omitted. This macro should be
used only where the routine name is RPed in a CDS environment (that is, name is a machine in-
struction.)

Strings and Data
EMPTYSTRING

EMPTYSTRI NG bytesize [, L]

This macro builds a FORTRAN string descriptor to an empty string of length byfesize bytes. If the
current relocation space is not CODE, the result is:

name DEC byt esi ze
DBL *+1
BSS (bytesize+1)/2

If the current relocation space is CODE, local space is allocated for the description and deferred
initialization code is generated. This macro should be called out of line (that is, it is not executa-
ble), so the initialization code is deferred until the INITSTRINGS macro is called. In all cases,
the string itself is located at name +2.

Unless [L] is coded as the second parameter, the initialize code will build a DATA relative address
(not a Q relative address). If [L] (the letter L) is coded, the byte address will be Q relative. Note
that Q relative byte addresses cannot usefully be passed to external subroutines.

STRING
STRI NG fext

This macro generates a string descriptor for the string fext and initializes the string to text. If the
current code space is not CODE, the macro produces:

name DEC :L:text (Iength of text in bytes)
DBL *+1
ASC (:L:text+1)/2, text

If the code space is CODE, local space is allocated, and initialize code is generated by a call to the
EMPTYSTRING macro. Deferred code is then generated to initialize the string with fext. The
text, if more than four bytes in length, is put in line at the location of the call to STRING. This
macro generates in-line data and must not be executed. The deferred code will be put in line on
the next call to INITSTRINGS. If fext is four bytes or less, SBT, STA, or DST instructions, as ap-
propriate for the size, are used and the actual data is obtained by using literals.

CDSONOFF Macro Library N-9

The MOVE and COMPARE Macros

The MOVECODETODATA, MOVEWORDS, MOVEBYTES, and COMPARE macros all re-
quire three parameters. These are expected to be addresses such that LDA arg would get the
proper thing to the register. Checks are made to see if A or B or both are passed and the code
generated is adjusted to suit. In general, the macros can generate the best code if you let them
load the registers. Of course, if the register is already loaded from the prior code sequence, code
A or B in the proper area.

MOVECODETODATA
MOVECODETODATA from, to, count

This macro generates in-line code to move count words from from in CODE space to to in DATA
space. The fo address may be in either LOCAL or STATIC space. In non-CDS mode, this macro
generates a simple move words. If count is a literal (for example, =D10), the macro will avoid the
LDX instruction in order to save DATA space. The parameters may be A, B, or any memory ref-
erence. For fo and from these should be defs to the areas to move to/from (=L(fo) is OK) as long
as to is defined).

count is assumed to be the address of the actual count (that is, =D10 or TEN, where TEN DEC 10
exists somewhere in DATA space). If count refers to A or B in a non-CDS environment, a location
is allocated, and the register is stored. For moves of 2 words or less, you should use:

DLD =S (or =J) for two words
DST
or
LDA =S (or =D or =B) for one word
STA
MOVEWORDS

MOVEWORDS from, to, count

This macro generates in-line code to move count words from from in data space to fo in data space.
In CDS code space, the X-Register is used for the count. In all cases, A and B will end up being
from+count and to+count. In CDS code space, the addresses are adjusted to base relativity (see
the MWO0O instruction).

MOVEBYTES
MOVEBYTES from, to, count

This macro generates in-line code to move count bytes from from in data space to to in data space.
In CDS code space, the X-Register is used for the count. In all cases, A and B will end up being
from+count and to+count. In CDS code space, the addresses are adjusted to base relativity (see
the MBOO instruction). Note that from and fo are to be byte addresses. You may code
=L(foo+foo) or A or B. If A or B is coded, it is assumed that the address is in the specified regis-
ter. The macro will move it if it is the wrong register.

N-10 CDSONOFF Macro Library

COMPAREWORDS
COVPAREWCRDS argl, arg2, count

This macro generates in-line code to compare count words at argl in data space to arg2 in data
space. In CDS code space, this macro generates a call to a data space routine to do the actual
compare. Addresses are adjusted for base relativity and, on exit, are as the CMW instruction

leaves them. If count is =d1 or =bl, the CPM instruction is used.

Note This macro, in code space, has a high overhead. The execution time is increased
as if an additional 15-17 words were compared.

COMPAREBYTES
COVPAREBYTES count [, BASECK]

This macro generates in-line code to compare count bytes at A-reg in data space to B-reg in data
space. In CDS code space, this macro generates a call to a data space routine to do the actual
compare. Addresses are adjusted for base relativity and on exit are as the CBT instruction leaves
them. This macro expects A and B to contain the byte addresses of the strings to be compared.
Except for adjusting for base relativity, it leaves A and B as the CBT instruction does. In code
space, this macro generates code that uses the E-Register.

If the BASEOK parameter is coded as exactly ‘BASEOK’ (lowercase is ok), the macro does not
generate code to correct byte addresses that point at the local space. This saves considerable time
and also saves the E-Register.

Note This macro, in code space, has a high overhead. The execution time is increased
as if an additional 40-41 bytes were compared. If BASEOK is coded, this over-
head is cut to 19-20 equivalent bytes.

LOCAL
name LOCAL size
In non-CDS mode, this macro builds the deferred line:
name BSS size
The deferred lines will be produced in the order given at the next BREAK or END macro call. In
CDS mode, if the max number of call parameters is known (that is, it was given in NEWSUB or on

ENTRY, or OENTRY has been processed), this macro generates:

name EQU ... +n

CDSONOFF Macro Library N-11

Where # is the next available location in local space. This macro keeps track of n, advancing it by
size on each call. If the maximum number of call parameters is not known, a deferred line is gen-
erated as above, starting with n=0.

These lines will be generated by the first call to ENTRY, OENTRY, or END, which will affix +mp
to the end where mp is max parameters. <...> is defined by NEWSUB to be the first LOCAL.

BREAK
BREAK

This macro should be called whenever a place outside of the execution path is reached. In CDS
mode, it generates a :OP: BREAK and, in non-CDS mode, it generates a LIT opcode and flushes
deferred data declarations from prior LOCAL calls. In non-CDS mode, data labels are defined
for pass two by LOCAL calls as needed, followed by a :OP: BREAK call. The LOCAL calls are
executable (that is, no code is put in line) while the BREAK macro is not.

RELOC
RELQOC space[, ALLOC, name]

This macro traps all RELOC requests. Since CODE, DATA, and STATIC are only allowed in
CDS assemblies, if the current option is CDSOFE, this macro changes the RELOC requests as fol-
lows:

RELOC CODE to RELOC PROG
RELOC DATA to RELOC PROG
RELOC STATIC to RELOC SAVE

In this regard, modules should be written as if they are to run in CDS mode; that is, the standard
RELOC commands should be given for CDS mode. The RELOC macro also keeps track of the
current space for other macros that need to know the relocation space to generate correct code.

In particular, the xCALL, xENTRY, and xXSTRING macros need this information.

Note Since in non-CDS, both CODE and DATA are in the same relocation space, you
should not attempt to execute through a RELOC DATA.

For example:

| da foo

sta bar

rel oc data : In CDS node this works fine, but
foo dec 432 ; in non-CDS node, this line will be executed
bar bss 1 ;. as wll this one.

rel oc code
sta foobar

N-12 CDSONOFF Macro Library

END
END [label]

In addition to doing the normal :OP: END operations, this macro completes the ENTRY,
OENTRY, and DENTRY number of locals requirement, flushes any deferred locals, and calls
BREAK to flush any deferred non-CDS variables. It will indicate an error if label is empty, and no
ENTRY, OENTRY, or DENTRY has been seen. Also, if NEWSUB declared the number of pa-
rameters and no ENTRY, OENTRY, or DENTRY used all of them, an error is indicated.

CDSONOFF Macro Library N-13

Program Types

This appendix defines all of the program types used with the RTE-6/VM and RTE-A operating
systems (Table O-1). Tables O-2 and O-3 describe the ways in which the program types are han-
dled by each operating system.

Table O-1. Program Types

Type Description
0 System program or driver
1 Memory-resident program
2 Real time program (uses RT or BG partitions)
3 Background disk-resident (uses BG partitions only)
4 Large background disk-resident (uses BG partition only)
5 Segment or overlay (BG or RT, determined by the program main)
6 Extended background (RTE-6/VM), or library routine that becomes part of MR library if
referenced by MR program
7 Disk-resident library routine, appended to calling program
8 Deletion of program or routine. If module is main program, it is dropped from generation.
If module is a subroutine, RTxGN appends it to programs referencing module, then drops
it from system generation. (Essentially an online load)
9 Memory-resident with BG common (reversed common)
10 Real-time with BG common (reversed common)
11 Background with RT common (reversed common)
12 Large background with RT common (reversed common)
13 Table Area Il module, recommended for HP use only
14 Type 6 library module,forced into MR library
15 Table Area | module, recommended for HP use only
16 Slow boot (reconfigurator only)
18 Real-time mapped with SSGA access
19 Background mapped with SSGA access
20 Large background mapped with SSGA access
21-24 Not used
25 MR, accessing BG common + SSGA
26 RT, accessing BG common + SSGA
27 BG, accessing RT common + SSGA
28 LB, accessing RT common + SSGA
29 Not used
30 SSGA resident table or module
31-79 Not used (See notes 2 and 3)
519 BLOCK DATA subprogram (Special type)

Program Types O-1

Table 0-1. Program Types (continued)

Notes: 1. Abbreviations used:
MR = Memory-Resident
RT = Real-Time
LB = Large Background (RTE-6/VM only)
EB = Extended Background (RTE-6/VM only)
SSGA = SubSystem Global Area (Named system common)

2. Adding 80 to any executable program type code causes the program to be sched-
uled automatically at bootup by RTE-6/VM.

Only one program may be designated with the +80 type code addition. It may only
be added in the parameter phase of generation, and not as a compiled program
type code.

3. Adding 128 to any executable program type code specifies that the program is not
to be renamed by FMGR if the ID segment was created by an RP command.

4. Types 0 through 5 are generally program mains with primary entry points.

Table O-2. Program Type Handling Under RTE-6/VM

Type Description

0 RT6GN loads into system area. LOADR loads as Type 3. LINK loads as Type 6.

1 If a program main, RT6GN loads into memory-resident area. LOADR forces to Type 3.
RT6GN loads in RT disk-resident area. LOADR forces to Type 3. LINK forces to Type 2.
RT6GN, LOADR, LINK load into BG disk-resident area.

RT6GN and LINK load as per type. LOADR loads as Type 3.

RT6GN, LOADR, LINK treat as a segment.

o o b~ W N

(Can be a program main or a subroutine.) If a subroutine called by a memory-resident
program, relocated into a memory-resident library during generation. After loading,
becomes Type 7. If a program main, LINK and RT6GN treat as Extended BG program.

0-2 Program Types

Table 0-2. Program Type Handling Under RTE-6/VM (continued)

Type Handling

Note: Types 7 through 519 should be subroutines.

7 RT6GN can put in system library.

8 If a main, deleted from system during generation. If a subroutine, used to satisfy
external references during generation, but not loaded into relocatable library of
disk. If a main, LOADR treats as Type 3, LINK treats as Type 6. If not a main,
LINK and LOADR treat as Type 7.

9-12 Generated per program type, with accesses as defined.

13 (Pointers and system values defined at generation.) Table Area Il is a combination
of relocated Type 13 modules and system tables built by generator.

14 (Must NOT be a program main.) After memory-resident loading, becomes Type 7.
15 (System entry points must be in system and user maps.) Table Area lis a
combination of these relocated Type 15 modules and /O tables built by generator.
16-20 Generated per program type, with accesses as defined.
25-28 Generated per program type, with accesses as defined.
30 (Should NOT be program mains.) RT6GN loads in SSGA. LOADR, LINK treat as
Type 7.
519 Block Data subprogram. Module contains data only.

Notes: 1. In some cases the primary type code may be expanded by adding 8, 16, 24, or 512
to the number.

2. Refer also to the RTE-6/VM Programmer’s Reference Manual for more information on
program types.

Program Types

0-3

Table O-3. Program Type Handling Under RTE-A

Type Handling
0-4 No meaning.
5 RTAGN recognizes as a segment and declares it illegal. LINK treats as a segment.
6 RTAGN excludes fixed (relocated) occurrences from generator snap file.
7 RTAGN can put in system library.
8-13 No meaning.
14 (Must NOT be program main.) After memory-resident loading, become Type 7.
15-28 No meaning.
30 (Should NOT be program main.) RTAGN loads in SSGA. LINK treats as Type 7.
519 No meaning.
O-4 Program Types

Index

Symbols

:AND: (logical AND), 4-61
:ASH:, 4-59

:L: (length attribute), 4-55
:LSH:, 4-59

:MOD:, 4-59

:NOT:, 4-55

:0P;, 5-11

:OR: (logical OR), 4-61
:ROT:, 4-59

:S: (substring), 4-55

:T: (type attribute), 4-55
:UC: (uppercase attribute), 4-55
"MACLB library, E-11
&.DATE, K-2

& ERROR, K-1

& .PARM, K-3

& .PCOUNT, K-3

&.Q, K-1

&.REP, K-3

&.RS1 and &.RS2, K-2
&.RS1=, E-5

&.RS2=, E-5

&Q, 5-8

#MACRO, E-11

@ default character, E-4
— default character, E-4
/SCRATCH directory, E-6

A

A option, E-1
ABS, 4-40, 4-42, B-16
absolute
assembly, E-1
code, 1-1
expressions, 2-10
programs, 2-10, 4-7, 4-13
value, 4-42
actual macro parameters, 5-3, 5-9
ADA, 3-2, B-2
ADB, 3-2, B-2
ADD (system macro), L-10

address and symbol, definition, B-16
address definition, instructions, 4-1, 4-40, B-16

ADX, 3-9, B-7

ADY, 3-9

AEFELSE, 4-63, B-17
AELSEIF, 4-63, B-17
AENDIF, 4-63, B-17
AENDWHILE, 4-63, B-17
AIF, 4-63, B-17

ALF, 3-5, B-4
alias, 4-19, 4-21
ALLOC, 4-19, 4-22, 4-23, 4-41, B-14
ALLOC command, 4-9
ALLOCATE, H-8
ALR, 3-5, B4
ALS, 3-5, B4
alter-skip group, 3-8, B-6
AND, 3-2, B-2
arithmetic negation, 4-55
arithmetic operators, 2-10, 4-51, 4-59, 4-63
arrays, assembly time, 4-49
ARS, 3-5, B4
ASC, 4-35, B-15
ASCII characters, 4-35
ASHIFT (system macro), L-15
ASL, 3-12, B-11
ASMB assembly language, 1-2
ASR, 3-12, B-11
assembler
control instructions, 4-1, 4-2, 4-3
instructions, 1-10, B-14
pseudo ops, 4-1
assembly language
constructs, M-3
programming, M-1
assembly listing control instructions, 4-25
assembly time
arrays, 4-49
global variable, 4-48
local variables, 4-49
variable declaration, 4-1, 4-47, B-16
variable value substitution, 4-47
variables (ATVs), 1-12, 2-7, 4-47, 4-48, K-1
asterisk, 2-7
AWHILE, 4-63, 4-65, B-17

B option, E-2
backslash, 2-14
backward compatibility, 1-2, B-18, J-1
constructs, J-1
option, E-2
base page
data, 4-9
relocatable space, 1-11, 4-3
binary codes, D-1
bit processing, 3-3
BLEF, 3-5, B-4
BLR, 3-5, B-4
BLS, 3-5, B4
body of the macro definition, 5-2

Index-1

BREAK command, 4-18, B-17, M-8
BREAK macro, N-12

BRS, 3-5, B4

BSS, 4-34, B-15

BUMPEXIT macro, N-6

BYT, 4-35, 4-36, B-15

byte processing, 3-3, 4-44

Cc

C option, E-2
CALL macro, L-2, L-5, N-7
CALL subroutine operations, L-4
CALL summary

CALL, N-7

DCALL, N-7

DLCALL, N-7

DUCALL, N-7

LCALL, N-7

PCALL, N-7

UCALL, N-7
calling macros, 5-1, 5-3
CAX, 3- 9 B-7

CDS, 4- 8, B- 17
assembly language
constructs, M-3
programming, M-1
command, M-4
data and strings, N-2
definition, M-1
environment, 4-11
features, M-1
opcodes, 3-17
program examples, M-11
strings and data, N-9
CDS control, B-17
CDS/non-CDS subroutine calls, N-1
CDSONOFF macro library, N-1
CDSONOFF strings and data
BREAK macro, N-12
COMPARE macro, N-10
COMPAREBYTES macro, N-11
COMPAREWORDS macro, N-11
EMPTYSTRING macro, N-9
END macro, N-13
LOCAL macro, N-11
MOVE macro, N-10
MOVEBYTES macro, N-10

MOVECODETODATA macro, N-10

MOVEWORDS macro, N-10

Index-2

RELOC macro, N-12

STRING macro, N-9
CGLOBAL, 4-48, 4-50, B-16
CLA, 3-8, B-6
CLB, 3-8, B-6
CLC, 3-13, B-10
CLCC, B-10
CLE, 3-5, 3-8, B-4, B-6
clear flag indicator, J-1
CLEARBIT (system macro), L-2, L-12
CLF, 3-13, B-10
CLO, 3-13, B-10
CLOCAL, 4-48, 4-50, B-16
CMA, 3-8, B-6
CMB, 3-8, B-6
CME, 3-8, B-6
CMW, 3-3, B-3
code and data separation programming, M-1
COL, 4-25, B-15
COM, B-18, J-6
comment

delimiter

semicolon, 2-12
space, 2-13

field, 1-6, 2-1, 2-2, 2-12

in macro definition, 5-6
COMMON relocatable space, 1-11, 4-3, 4-9, 4-22
COMPARE macro, N-10
COMPAREBYTES macro, N-11
COMPAREWORDS macro, N-11
comparison operators, 4-51, 4-61, 4-63
concatenation, 4-51
conditional assembly, 1-12, 4-1, 4-63, B-17
constant definition, instructions, 4-1, 4-35, B-15
control statement, 1-2, 1-3, 5-15, E-1, J-1
CPA, 3-2, B-2
CPB, 3-2, B-2
creating macro libraries

control statement, E-1

description, 5-1, 5-15

M option, 5-15

macro, 5-15

T Option, 5-15
cross-reference table, 1-9

generator, F-1

listing, E-2
CSET, 4-50, B-16

D option, E-2
data and strmgs, -2
DBL, 3-4, 4-40, 4-44,
DBR 3- 4 4-40, 4-44,
DCALL N-8

16, H-10

B-
B-16

DDEEF, 4-40, 4-41, B-16

DEC, 4-35, 4-37, B-15

decimal constants, 4-37, 4-38

decimal integer, 4-37

declaring assembly-time variables, 4-1, 4-47

DEEF, 4-40, B-16

default macro parameters, 5-10

default output file formats, E-6

DELETE, 5-16, B-14

DENTRY macro, N-6

descriptions of system macros, L-4

DEX, 4-35, 4-37, B-15

DEY, 4-35, 4-38, B-15

DIV, 3-11, B-11

DIVD, 3-11, B-11

DJP, 3-16, B-12

DIJS, 3-16, B-12

DLCALL, N-8

DLD, 3-11, B-11

DLENTRY macro, N-5

DST, B-11

DSX, 3-9, B-8

DSY, 3-9, B-8

DUCALL, N-9

dynamic mapping system, B-12
instructions, 3-15

E

ELA, 3-5, B4
ELB, 3-5, B-4
ELSE (system macro), L-7
ELSEIF (system macro), L-8
EMA, 4-9, B-18, H-9, J-7
EMA programming, 4-35
EMA relocatable space, 1-11, 4-3, 4-22, 4-34, 4-41
EMPTYSTRING macro, N-9
END, 1-4, 4-3, 4-32, B-14
END command, 4-12, 4-13
END macro, N-13
ENDIF (system macro), L-9
ENDMACG, 5-2, 5-7, B-17
ENDREP, 4-63, 4-66, B-17
ENT, 4-19, B-14
ENTRY macro, L-2, L-4, M-9, N-4
entry macros
BUMPEXIT, N-6
DENTRY, N-6
DLENTRY, N-5
ENTRY, N-4
EXIT, EXIT1, EXIT2, N-6
OENTRY, N4
ENTRY subroutine operations, L-4
EQU, 4-40, 4-43, B-16
ERA, 3-5, B-4
ERB, 3-5, B-4
error messages

assembly, E-9

runstring/control statement, E-9
error reporting, 1-8, B-17
evaluation of expressions, 4-64
example of a macro, 5-2

examples of the Macro/1000 runstring, E-7

EXIT macro, L-2, L-5, M-10, N-6
EXIT subroutine operations, L-4
EXIT1 macro, N-6
EXIT?2 macro, N-6
expressions
definition, 2-10
legal use of, 2-11
operators, 2-5, 4-51
using assembly-time variables, 4-52
EXT, 4-19, B-14, H-6
extended
arithmetic group, 3-11
arithmetic unit, B-11
instruction group, B-7
precision constants, 4-37
relocatable records, 1-2, 1-3
EXTRACT, 5-16, B-14

F

F option, E-2
FAD, 3-14, B-11
FDV, 3-14, B-11
FIELD (system macro), L-2, L-14
file attribute specification, E-6
FIX, 3-14, B-11
floating point
instructions, 3-14, B-11
number, 4-37
FLT, 3-14, B-11
FMP, 3-14, B-11
formal macro parameters, 5-3, 5-4, 5-7
FSB, 3-14, B-11

G

GEN command, 4-18, B-14
generate microcode instructions, E-2
generator control, B-14
instructions, 4-1, 4-17
generator routine, F-1
global assembly-time variable, 4-48

H

halt instruction, 3-12, B-9
heading, 4-26

HED, 4-25, 4-26, B-15
HLT, 3-13, B-10

HLTC, B-10

Index-3

I option, E-2

IF (system macro), L-6

IFN, B-18, J-3

IFX, J-3

IFZ, B-18

IGLOBAL, 4-48, 4-50, B-16
ILOCAL, 4-48, 4-50, B-16
implementation notes, I-1

INA, 3-8, B-6

INB, 3-8, B-6

INCLUDE, B-14

INCLUDE statement, 1-13, 4-15, 5-1
index register instructions, 3-9, B-7

indirection addressing indicator, 2-13, 3-1, J-1

initialization, macro call sequences, N-2
input/output
instructions, 3-12, B-9
overflow and halt, B-9
inserting MACLIB in source code, E-12
installing Macro/1000, E-11
integer
comparison, 4-61
numbers, 4-37
invoking OLDRE, E-2
IOR, 3-2, B-2
ISET 4- 50 B-16

L option, E-1

LABEL, B-17

LABEL command, M-8

label field, 2-1, 2-4, 5-4, 5-7, 5-9
LABEL statement, M-13

labeled common relocatable space, 1-11
LAE, 3-5, B4

LAX, 3-10, B-7

LAY, 3-10, B-7

LBD, 3-2

LBE, 3-5, B-4

LBEF, B-12
LBT, 3-4, B-
LBX, 3-10,

3
0, B-
LBY, 3-10, B-

7
7

Index-4

LCALL, N-7

LDA, 3-2, B-2

LDB, B-2

LDX, 3-9, B-7

LDY, 3-9, B-7
length attribute, 4-55
LFA, 3-15, B-12
LFB, 3-15

LIA, 3-13, B-9
LIAC, B-9

LIB, 3-13

LIBC, B-9

library creation, E-1
LIST, 4-25, 4-29, B-15
list output, 1-6, E-1

listing control, instructions, 1-13, 4-1, 4-25, B-15

LIT, 2-8, 4-35, 4-38, B-15
literal values, 2-8, 4-38
literals

Il
mow >
N
So % o

el
po o B8
Go 00 P ®©

L S T
=
()
1

-
[~—
—
dwn
Nut\s
> &

, 4-35, 4-39, B-15
loader
and generator control, B-14
control instructions, 4-1, 4-17
LOADPARMADD macro, N-5
LOADREC, 4-46, B-18
local assembly time variable, 4-49
LOCAL macro, M-10, N-11
LOD, B-14
LOD command, 4-17
logical
negation, 4-56
operators, 4-51, 4-61, 4-63
LSHIFT (system macro), L-16
LSL, 3-12, B-11
LSR, 3-12, B-11
LST, B-18, J-10

M option 5-15, E-1
machine instructions, 1-10, 2-5
MACLIB statement, 4-13, 5-3,
MACLIB.MLB, E-12
MACLIBFILE file, E-11
macro
body, 5-5
call sequences
initialization, N-2
NEWSUB, N-3
TRACKBACK, N-4
call statement, 1-1, 1-10, 5-1, 5-2, 5-3

3-1, B2
5-15, B-17

2

macro (continued)
calling, 5-1, 5-3
definition, 1-1, 1-10, 2-5, 5-1, 5-2, B-17, M-9
ENDMAC statement, 5-7
example, 5-2
libraries
creating, 5-1
delete, 5-16
description, 5-1, 5-3
extract, 5-16
extract and delete, 5-16
filedescriptor, E-11
old, E-11
name statement, 5-2, 5-4
names list (T option), 5-15
nesting, 5-1
parameters, 4-47, 5-1, 5-4, 5-7
MACRO statement, 5-2, 5-4, B-17
MAX (system macro), L-11
MBEF, B-12
MBI, 3-15, B-12
MBT, 3-4, B-3
MBW), 3-15, B-12
memory
reference instructions, 3-2, B-2
relocatability, 4-56
spaces, 4-2
MESSAGE (system macro), L-17
MFB, 3-15
MIA, 3-13, B-9
MIAC, B-9
MIB, 3-13, B-9
MIBC, B-9
MIC, B-18, J-10
microcode replacements, 1-3, 4-24
microcoding capabilities, 1-3
MIN (system macro), L-11
MNOTE, 4-63, 4-67, B-17
MOD, 4-60
MOVE macro, N-10
MOVEBYTES macro, N-10
MOVECODETODATA macro, N-10
MOVEWORDS macro, N-10
MPY, 3-11, B-11
MPYD, 3-11, B-11
MSEG, 4-34, B-15
multiple modules, 1-13, 4-13
MVW, 3-4, B-3
MWE, 3-15, B-12
MWI, 3-15, B-12
MWW, 3-15, B-13

N

N option, E-2
NAM, B-14
NAM statement, 1-4, 4-3, 4-4, 4-13

negate operand, 4-55

nesting of macro definitions, 5-1, 5-11
NEWSUB, N-3

no-operation instruction, 3-10, B-3
non-extended relocatable records, 1-2
non-CDS environment, 4-9

NOP, 3-10, B-3

null type extension, E-6

numeric terms, 2-6

(o)

O option, E-2
OCT, 4-35, 4-39, B-15
octal constants, 4-36, 4-39
OENTRY macro, N-4
old literal constructs, J-2
old pseudo opcodes, J-2
OLDRE, 1-3
OLDRE option, E-2
online loading of Macro/1000, E-11
opcode field, 2-1, 2-2, 2-5
operand field, 2-1, 2-2, 2-5, 2-6
operator precedence, 2-10
ORB, B-18, J-2
ORG, 4-3, 4-7, B-14
ORR, 4-3, B-14, B-18, J-3
ORR command, 4-12
OTA, 3-13, B-10
OTAC, B-10
OTB, 3-13, B-10
OTBC, B-10
output file
construction defaults, E-6
size defaults, E-6
type defaults, E-6
output lines per page, default, E-5
overflow bit, 3-12, 3-13, B-9
override option, E-5

P

P option, E-2, E-5
PAA, 3-15, B-12
PAB, 3-15, B-12
parameters, runstring, E-4
PBA, B-12
PBB, 3-15, B-12
PBS, 3-15
PCAL, B-13
PCAL opcode, M-4
PCALL macro, M-9, N-8
program link instructions, 4-1, 4-19, B-14
program location counter, 1-11, 4-2
program relocatable
counter, 2-7
space, 1-11, 4-3, 4-9, 4-34
program relocation, 1-10

Index-5

program types RVA, 3-16, B-13
3-16, B-13

RTE-6/VM, O-1 RVB, 3-16, B-
RTE-A, O-1
programming aids, 1-10 S
pseudo operations, 2-5, 4-1, B-14
SAE, 3-5, B4
SAVE relocatable space, 1-11, 4-3, 4-9, 4-22
Q SAX, 3-10, B-7
. SAY, 3-10, B-7
Q option, E-2 SBE. 3-5, B-4
SBS, 3-4, B-3
R SBT, 3-4, B-3
SBX, 3-10, B-7
R option, E-1 SBY, 3-10, B-7
RAL, 3-5, B4 searching for source file, E-9
RAM, B-18§, J-11 selective assembly options N,Z, E-2
RAR, 3-5, B-4 SETBIT (system macro), L-2, L-12
RBL, 3-5, B-4 SEXT, 4-19
RBR, 3-5, B-4 SEZ, 3-8, B-6
recursion, 5-13 SFB, 3-4, B-3
redefinition of opcodes, 5-11 SFC, 3-13, B-10
register reference SFS, 3-13, B-10
alter-skip group, 3-5, 3-8, B-6 shift-rotate group, 3-5, B-4
shift-rotate group, 3-5, B-4 SJP, 3-16, B-12
RELOC, 1-11, 4-3, 4-13, 4-23, 4-34, 4-41, B-14 SJS, 3-16, B-12
RELOC command, 4-9, M-8 SKP, 4-25, 4-31, B-15
RELOC macro, N-12 SLA, 3-5, 3-8, B-4, B-6
relocatable SLB, 3-5, 3-8, B-4, B-6
assembly, E-1 SOC, 3-13, B-10
code, 1-4 SOCC, B-10
expressions, 2-10 SOS, 3-13, B-10
extended records, 1-2, 1-3 SOSC, B-10
non-extended records, 1-2, 1-3 source
program, 4-4 file, 1-4
record formats, H-1 filedescriptor requirements, E-4
space statements, 2-1
base page, 1-11 SPC, 4-25, 4-32, B-15
common, 1-11 specify null type extension, E-6
EMA, 1-11 specify selected file attributes, E-6
labeled common, 1-11 SSA, 3-8, B-6
program, 1-11 SSB, 3-8, B-6
SAVE, 1-11 SSM, 3-16, B-12
REP, B-18, J-5 STA, 3-2, B-2
REPEAT, 4-63, 4-66, B-17 statement continuation, 2-14
replacement formats, 3-18 statement length, 2-14
RESOLVE (system macro), L-17 STB, 3-2, B-2
ROTATE (system macro), L-15 STC, 3-13, B-10
RPL, 4-19, 4-24, B-14, H-13, H-15 STCC, B-10
RRL, 3-12, B-11 STE, 3-13, B-10
RRR, 3-12, B-11 STO, 3-13, B-10
RSA, 3-16, B-13 STOP (system macro), L-18
RSB, 3-16, B-13 storage allocation, 4-1, 4-34, B-15
RSS, 3-8, B-6 string comparison, 4-61
RTE-6/VM program types, O-1 STRING macro, N-9
RTE-A program types, O-1 STX, 3-10, B-7
running Macro/1000, E-4 STY, 3-10, B-7
runstring SUBHEAD, 4-25, 4-27, B-15
examples, E-7 subheading, 4-27
parameters, E-4 subroutine calls, CDS/non-CDS, N-1

Index-6

subroutine operations
CALL, L-4
ENTRY, L-4
EXIT, L-4
substring operator, 4-57
SUBTRACT (system macro), L-10
SUP, 4-25, 4-32, 4-33, B-15
SWP, B-11
SYA, 3-16, B-12
SYB, 3-16, B-12
symbol
definition instructions, 4-1, 4-40, B-16
ID, 4-58
listing table, E-2
table, 1-9
symbolic
addressing, 1-10
terms, 2-6
system assembly time variables, K-1
system macros
descriptions, L-4
library, L-1
SZA, 3-8, B-6
SZB, 3-8, B-6

T

T option, 5-15, E-2

TBS, 3-4, B-3

terms, 2-5, 2-6

TESTBIT (system macro), L-2, L-13
TEXT (system macro), L-17

text and message, text definition, L.-17
TRACEBACK, N-4

transfer file # MACRO, E-11

TYPE (system macro), L-18

TYPE and STOP, communication with RTE, L-18
type operator, 4-58

U

UCALL, N-8
UJP, 3-16, B-12
ulJs, 3-16, B-12
unary operator
:ICH:, 2-10
:MR:, 2-10

:SY:, 2-10

— negate, 2-10

description, 4-51, 4-63
UNL, B-18, J-10
UNS, 4-25, 4-32, 4-33, B-15
uppercase operator, 4-58
USA, 3-16, B-12
USB, 3-16, B-12
using AIF and AELSEIF, 4-64
using macro libraries, 5-3

w

WEXT, 4-19
what the system macros do, L-1
word
byte and bit processing, B-3
processing, 3-3, B-3
work file defaults, E-6
WORK=work file specification, E-5
writing macro definitions, 5-1, 5-4

X

X option, E-2
XAX, 3-9, B-8
XAY, 3-9, B-8
XBX, 3-9, B-8
XBY, 3-9, B-8
XCA, 3-16, B-13
XCB, 3-16, B-13
XDBL, H-11
XEXT, H-7
XIF, B-18, J-3
XLA, 3-16, B-13
XLB, 3-16, B-13

XMA, 3-16, B-13
XMB, 3-16, B-13
XMM, B-13
XMS, 3-16, B-13
XOR, 3-2, B-2
XSA, 3-16, B-13
XSB, 3-16, B-13

y4
Z option, E-2

Index-7

	Title Page
	Preface
	Table of Contents
	Chapter 1 - Introducing the Macro Assembler
	Chapter 2 - Coding Format
	Chapter 3 - Machine Instructions
	Chapter 4 - Assembler Instructions
	Chapter 5 - Using Macros
	Appendix A - Assembler Error Messages
	Appendix B - Macro/1000 Instruction Set
	Appendix C - HP 1000 Computer Instruction Set
	Appendix D - HP 1000 Computer Base and Extended Instruction Sets
	Appendix E - Macro/1000 Assembler Operations
	Appendix F - Cross-Reference Table Generator
	Appendix G - HP Character Set
	Appendix H - Relocatable Record Formats
	Appendix I - Implementation Notes
	Appendix J - Backward Compatible Constructs
	Appendix K - System Assembly-Time Variables
	Appendix L - HP 1000 Macro Library
	Appendix M - CDS Assembly Language Programming
	Appendix N - CDSONOFF Macro Library
	Appendix O - Program Types
	Index

