(40 HEWLETT

PACKARD

RTE-A Programmer’s

Reference Manual

Software Services and Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 92077-90007 Printed in U.S.A. April 1995
E0495 Eighth Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1983, 1985 - 1987, 1989, 1990, 1992, 1993, 1995 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-in-
serted update information. New editions of this manual will contain new information, as well as all updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File. (The Manual Numbering File is included with your software. It consists of an

“M” followed by a five digit product number.)

Second Edition Jun 1983
Update 1 Dec 1983
Reprint Dec 1983
Third Edition Jan 1985
Update 1 Jan 1986
Reprint Jan 1986
Update2 Oct 1986
Reprint Oct 1986
Fourth Edition Aug 1987 Rev
Fifth Edition Jan 1989 Rev.
Update 1 Jul 1990 Rev.
Sixth Edition Dec 1992 Rev
Seventh Edition Nov 1993 Rev
Eighth Edition Apr 1995 Rev

3/4

FmOpenScratch, Program Examples

Update 1 Incorporated

Update 2 Incorporated
Software Update 5.0)
Software Update 5.1

Software Update 6.1
Software Update 6.2

(
: (
. 5020 (Software Update 5.2
(
(
(

)
)
Software Update 6.0)
)
)

Preface

This manual describes the RTE-A Operating System services available to user programs. It ex-
plains the subroutine calls in detail and shows their formats. It also describes how to use Virtual
Code Plus (VC+), product number HP 92078A, from user programs. This manual is the primary
reference source for programmers who will write and maintain software under an RTE-A Oper-

ating System. If the programmer does not have RTE training or experience, Hewlett-Packard’s
customer training courses are recommended.

Chapter 1 Introduces the RTE-A services available to user programs, VC+, and system sub-
routine calls.

Chapter 2 Describes resource management and logical unit locks.

Chapter 3 Explains the standard I/O requests.

Chapter 4 Explains Class I/O requests.

Chapter 5 Describes scheduling and control of programs from within user programs.

Chapter 6 Explains time scheduling of programs from within user programs, and how to
read the system time.

Chapter 7 Describes how to pass parameters between user programs, and how to use the
data type conversion routines.

Chapter 8 Describes how to call FMP routines from user programs.

Chapter 9 Explains how to use the Virtual Memory Area (VMA), Extended Memory Area
(EMA), and VMA Mapping Management subroutines.

Chapter 10 Describes how to use the Code and Data Separation (CDS) features of VC+.

Chapter 11 Explains how to use the spooling features of VC+.

Chapter 12 Describes Privileged Operation.

Chapter 13 Explains RTE-A Signals.

Chapter 14 D?lscribes programmatic access of CI environment variables using the EXEC 39
call.

Appendix A Explains the EXEC call error messages.

Appendix B Describes how to convert FMGR calls to FMP calls.

Appendix C Describes the FMGR routines.

Appendix D Shows the HP Character set.

Appendix E Lists the RTE-A program types and how they are handled by the operating sys-
tem.

Appendix F Describes how the RTE-A file system cleans up open files.

Appendix G Describes how to convert programs to allow support of type 12 (byte stream) files.

NOTE: File management information in this manual is based on the File Management

Package (FMP). Refer to the RTE-A User’s Manual, part number 92077-90002,
for details of the Command Interpreter hierarchical file system.

5/6

Table of Contents

Chapter 1

Introduction

OVETVIEW . o ottt ettt e 1-1
Executive Communicationc.uiuniierninennrnenenenennenennns 1-2
File Management Package i 1-2
System Library e 1-3

EXEC and System Library Call Formats i, 1-3
Call Statement CONVENtioNSueuitnnetn ettt i, 1-3
A-, B-, X-,and Y-Register Usageovuninnn it 1-4
A- and B-Register Return Values i 1-4
EXEC Error Processingttt et 1-4

Functional Grouping of Library Routines 1-7

Chapter 2

Resource Management

Resource Sharing with RNRQ e 2-1
The RNRQ Call e e 2-3
Order of Precedencet i 2-4
Resource Number Considerationsc.uiuieineinniinenennennnen.. 2-5
Race Conditionst 2-6
Deadly Embrace 2-7

LURQ (Logical Unit LOCK) . ..ottt e e 2-8
LURQ Parameterst e i i 2-9
Deadly Embraceooii i e 2-10

LIMEM (Find Memory LimitS)uuuuuiiiiiii i 2-13
LIMEM Calls ...t e e e e e e 2-13
LIMEM Detailsttt e 2-14

Chapter 3

Standard 1/0

Standard I/O Requests o i e e 3-1
Handling Device Errorsttt 3-2
/O and SWapping oottt e 3-2

EXECland2 (Read and Writ€)oiiuniiinini it 3-3
Read/Write Parametersc.iuiin i et 3-4
Read/Write Requestst e e e 3-5
A- and B-Register Returns i 3-5
EXEC EXamplesottt et e e 3-6

SYCON (Write Message to System Console)ooiiiiinniiiiinneennnnn.. 3-7

EXEC 3 (I/O Device COntrol)uui ittt i 3-8
I/O Device Control Parametersoouiiniinin i, 3-9
A-and B-Register Returns i e 3-9

REIO (Buffered I/O)ot 3-10

XLUEX (I/0O Extended Logical Unit EXEC) i, 3-10

XREIO (Extended REIO) e e 3-11

AbortRq (Abort Current Request)oo oo 3-11

EXEC 13 (Device Status) vttt ettt et e e e e e et e 3-12

Device Status Parameterst e 3-13
A-and B-Register Returns i e 3-16
EXEC Status Examplesot 3-16
RMPAR (Extended Status)oouiiin e e 3-17
Extended Status Example i 3-18
Chapter 4
Class /0
Class /O Operationovtu ittt e e e e 4-3
Buffered and Nonbuffered Class I/O i i 4-4
Class I/O Programming Examples ot 4-5
CLRQ (Class Management Request)uiiuniinineineiineineennn.. 4-8
Class Management Parameterst iiiniinnennnen.. 4-8
CLRQ ProCessing . . .« .vvuttt ettt et et e e et e 4-10
Exampleo 4-10
EXEC 17, 18, 20 (Class Read, Write, Write/Read)o .. 4-11
Read, Write, Write/Read Parametersot innnnennn. 4-12
A-and B-Register Returns i e 4-13
Class WIIteot e e e 4-14
Class Reado. i 4-14
Class Write/Read i 4-15
EXEC 21 (Class I/O Get) .. e 4-18
Class Get Call Parametersoouiirniuntne i, 4-18
A-and B-Register Returns i e 4-21
Class I/O Get Call Commentsiiiiiiiiniiin e, 4-21
EXEC 19 (Class I/O Device Control)oiiiiiiii i, 4-22
Class I/O Control Parametersttt 4-22
A-and B-Register Returns i 4-24
Class I/O Rethread Requesto e 4-25
Class Rethread Usesot e i 4-25
Class I/O Rethread Parametersttt 4-26
Class Rethread Procedures i 4-28
Class Rethread Example o e e 4-29
Chapter 5
Program Control
EXEC 8 (Overlay Load)ooui e i 5-2
Overlay Load Parametersouuiiniiniin ittt 5-2
A-and B-Register Returns i 5-3
SEGLD (Overlay Load)cooumniii e 5-3
SEGRT (Return to Main from Overlay)c..o ... 5-4
CHNGPR (Change Program Priority)o i, 5-4
EXEC 6 (Stop Program Execution) iiiiiinniiiiiiinneinnn... 5-5
Stop Program Execution Parameters o i 5-5
Stop Program Execution Example i 5-7
EXEC 7 (Program Suspend)oiiiiniiiiti i 5-8
EXEC9, 10, 23, 24 (Program Scheduling)t .. 5-8
Program Scheduling Differences i i 5-9
Program Scheduling Parameters i 5-9
A-and B-Register Returns i e 5-10
Optional Parametersttt e e 5-11
Program Scheduling Example i 5-12

EXEC 22 (Program Swapping Control)ttt 5-13

EXEC 26 (Memory Size ReqUeSst)ovtutii i 5-14
Parameter Relationships 5-15
A-and B-Register Returns i 5-15
Memory Size Request Example i 5-15

EXEC 29 (Retrieve ID Segment Address)couuuiniiiiiiinneeennnnn... 5-16

Chapter 6

Time Operation Requests

A-and B-Register Returns 6-1

EXEC 11 (Time-Retrieval Request)oiiiiiiiiiiiiiii ... 6-1

EXEC 12 (Initial Offset Scheduling) i 6-2
Initial Offset Scheduling Parameters i, 6-2
Initial Offset Scheduling Examples o i, 6-3

EXEC 12 (Scheduling Absolute Start Time)o o ... 6-4
Absolute Start Time Parameters i, 6-5
Absolute Start Time Examples 6-6

FTIME (Formatted ASCII Time MeSSage) vuueetmmine et 6-7

HpGetTZ (Get System Time-Zone Offset) 6-7

SETTM (Set System Time) ootttti et een 6-8

Chapter 7

Parameter Passing and Conversion

PRTN and PRTM (Parameter Return) iiiiiiiniiiiiiineeen. 7-1

RMPAR (Recover Parameters)uuuuuuiiiiiiiiiiiiaa... 7-2

EXEC 14 (String Passage Call) oot 7-3
String Passage Parameters e 7-3
A-and B-Register Returns i 7-4
String Passage Procedures 7-4

GETST (Recover Parameter String)uiuuneinineinn e, 7-5

PARSE (Parse Input Buffer) i 7-7

INPRS (Inverse Parse)ouuui i 7-8

CPUID (Get CPU Identification)ouuuiieittminne i, 7-9

LOGLU (Get LU of Invoking Terminal)o .. 7-9

LUTRU (Returns True System Logical Unit) 7-9

EQLU (Interrupting LU QUETIY)vt it e 7-10

CNUMD, CNUMO, KCVT (Binary to ASCII Conversion)coueeeeenn... 7-11

IFBRK (Breakflag Test)ouuiiimiit e 7-11

IFTTY (Interactive LU Test)ttt e e 7-12

MESSS (Message Processor Interface) 7-12

LOGIT (Send Logging MESSage) vttt ettt e 7-13

RteErrLogging (Is Error Logging On?) ... oot 7-13

PNAME (Retrieve Program Name)ottt 7-14

IDGET (Retrieve ID Segment Address)oooiiiiiiiiiiii... 7-14

IDINFO (Return ID Segment Information) ciiiiiiiiin.... 7-15

KHAR (Character Manipulators)uuuuiiiiiiiiiiiiiaa... 7-17
SETSB (Set Up Source Buffer)o i 7-17
SETDB (Set Up Destination Buffer) 7-17
KHAR (Subroutine to Get Next Character)c.coiiiiiiiineeenn. 7-18
CPUT (Put Character into Buffer) i ... 7-18
ZPUT (Store a Character String)oouuieiiineiineenneennneennn. 7-18
Character Manipulation Example i 7-19

Chapter 8
FMP Routines

General Considerationsottt
FMP Calling Sequence and Parameters
Data Control Block (DCB)ttt
File DeSCriptorsttt e e e e e e
Character Stringsottt e e e
File Descriptorsin Pascal i i i

File Descriptors in Macrot
Error Returns
Transferring Data toand from Files i i
Descriptions of FMP Routines it
Calc_Dest NAmME . ..ottt e e e e
DebOPen . ..o
FattenMask oo
FmpAccessTime i e e
FmpAppend
FmpBitBucket
FmpBuildHierarch
FmpBuildName
FmpBuildPath
FmpCloneName e e
FmpClose
FmpControl
FpCopy . . oot e e
FmpCreateDIr e
FmpCreateTime e
FmpDcbPurge
FmpDeviCe
FmpDismount
FmpEndMask
FmpEoOf ...
FmpError ...
FmpExpandSize
FmpFileName
FmpEpos ..o
FmpHierarchName i
FmpInfo
FmpInitMask
FmpInteractive
FmploOptions e e
FmploStatus
FmpLastFileName
FmpList . ..o
FopListX Lo
FmpLu ..o
FmpMakeSLink
FmpMaskName i e e
FmpMount
FmpNextMask
FmpOpen
C OPLION ettt e et e e e e e e e e

D Option ..ottt e

E Option ...t e

10

OOOOOOOOCIBOOOOOOOOO
oA NHE DN

L OPHON . .o e 8-43

L Option ..o e 8-43

N OPLON ..ottt e e e e e 8-43

QOPLION ..ttt 8-43

S OPtION ..ttt 8-43

T OPLON ..ttt e e e 8-43

U OPLON ..ottt e e e e e e e e e 8-44

XOPHON .« ettt et e e e e e e e e e e 8-44

N OPHON .ot e 8-44
FmpOpenFiles 8-45
FmpOpenScratch 8-45
FmpOpenTemp 8-47
FmpOwner 8-48
FmpPackSize 8-49
FmpPagedDevWriteo o 8-49
FmpPagedWrite e 8-50
FmpPaginator e 8-51
FmpParseName 8-52
FmpParsePath 8-53
FmpPosition 8-55
FmpPost ... o 8-56
FmpPostEof 8-56
FmpProtectiont 8-57
FmpPurge o 8-57
FmpRawMove 8-58
FmpRead 8-58
FmpReadLink o 8-60
FmpReadString 8-60
FmpRecordCount i 8-61
FmpRecordLen i 8-62
FmpRename 8-63
FmpReportError 8-64
FmpRewindo 8-64
FmpRpProgram 8-65
FmpRunProgram 8-67
FmpRWBItS ..o 8-68
FmpSetDcbInfo 8-68
FmpSetDirInfo 8-69
FmpSetEof 8-70
FmpSetFpos . ..o 8-70
FmpSetloOptions 8-71
FmpSetOwner e 8-72
FmpSetPosition 8-72
FmpSetProtection i 8-73
FmpSetWord 8-74
FmpSetWorkingDir 8-75
FmpShortName i 8-75
FmpSize . ..o 8-76
FmpStandardName i 8-76
FmpTruncate 8-77
FmpUdSpENtryo 8-78
FmpUdspInfo 8-78
FmpUniqueName i e 8-79
FmpUnPurge 8-79

11

FmpUpdateTime e e e
FmpWorkingDiro
FmpWrite ..o
FmpWriteStringo
MaskDiscLu . ..o
MaskIs DS ..
MaskMatchLevel
MaskOIdFile e e
MaskOpenld e
MaskOWnerlds
MaskSeCUTItyttt
WildCardMask e
Using the FMP Routines with DS
Special Purpose DS Communication Routines
DSCLOSECON . ..ottt
DsDcebWOrd . ..o e
DsDiscInfoo e
DsDiscRead e
DSEstat .. e
DsNOdeNUMDET e e e
DsOPenCon e
DsSetDcbWordo e
Example Programs for FMP Routines i i i,
Read/Write Example o e
Mask Example
Advanced FMP Example e

Chapter 9
VMA and EMA Programming

Virtual Memory Area (VMA)t e
Extended Memory Area (EMA) o it
Using Shareable EMA o
Shareable EMA Program Considerations,
Partition Considerationsoiuuniiinntinint i
Shareable EMA Partitionst
System Common and SHEMA Examplesc.. ...
Programming with VMA and EMA
The Three Models of EMA/VMA
Declaring Extended Memory Area (EMA) ...t ..
Allocating Secondary SHEMA Areasoouuiiiiniiiniinnennnn.
EMA/VMA Subroutinesouuiimiti ittt
Information Subroutines
EMAST (Return Information on VMA and EMA)
VMAST (Return Size of VMA and EMA) i,
RteExtendedEV (Check EMA/VMA Capability)

I/O Management Subroutinesoouiiuieiiiennenneennen..
VMAIO (Perform Large VMA or EMA Data Transfers)

EIOSZ (Determine Maximum Length of Transfer)
LOCKVMA, LOCKVMABUF, LOCKVMA2BUF (Lock VMA Pages/Buffers)
Shareable EMA Subroutines
LKEMA/ULEMA (Lock/Unlock a Shareable EMA Partition)
RteAllocShema (Attach a Secondary SHEMA)
RteReturnShema (Detach a Secondary SHEMA)
Example Program of Secondary SHEMA

12

RteRenameShema (Rename SHEMA Label)
RtePrimeShInfo (Return Primary SHEMA Information)
VMA File Subroutines,
VMAOPEN (Open a VMA Backing Store File)
VMAPURGE (Purge VMA Backing Store File)
VMAPOST (Post Working Set to Disk),
VMACLOSE (Close the VMA Backing Store File)
VMAREAD (Read Data from a File into VMA/EMA)
VMAWRITE (Write Data from VMA/EMAtoaFile)
Example Using VMA File Subroutines
FMGR VMA File Routines i
CREVM (Create a VMA Backing Store File)
OPNVM (Open a VMA Backing Store File)
PURVM (Purge VMA Backing Store File)t
PSTVM (Post Working Set to Disk) ..o ..
CLSVM (Close the VMA Backing Store File)
VREAD (Read Data from a File toa VMA/EMA)
VWRIT (Write Data from VMA/EMA toaFile)
VMA/EMA Mapping Management Subroutines
IMAP

ESEG .
LBP, .LBPR Subroutineo i
LPX, LPXR Subroutineo.iniini i
EMIO Subroutine

Chapter 10
CDS Programming

CDS Programsot
Code Partitionottt
Data Partitionottt
Stack & Heap Ar€aottt e e e e e
Mixing CDS Code and Non-CDS Codeottt
Converting Programs to CDS e
General Considerations vttt ettt e e e
NO AutomatiC CONVETSION . . v vttt ettt et et e e et et et
FORTRAN CONVETISION &+« vttt vttt ettt et et et et et
Pascal CONVETSION ..ottt ittt e e e e e e e e e e e
No More Data Spaceoii i e

Chapter 11
Programmatic Spooling

Spool System EXEC Calls e e
Start or Redirect Spooling on Logical Unit
Stop Spooling on Logical Unit
Output File to Logical Unit i
Initialize the Spool System i
Terminate the Spool System i
Purge a Spool File o
Restart a Spool File

13

el e e S G S G S g ey
OOOOOIOOOOOO
B Fo) Ne RV, RV, RV, RV, JUS RIS RN

Uy Ny G W N\ N W QW

el el
DN R WWN -

Retrieve Spool File Status e 11-6

Retrieve Line Length of all Files i, 11-7
Start/Stop Error Loggingt e 11-7
Returned Parameters i 11-8
SPOOLINFO.SPL Record Formato, 11-9
Chapter 12
Privileged Operation
GOPRYV and UNPRV . .. e 12-1
DispatchLock/DispatchUnlock i e 12-2
SLIBR/SLIBX .. 12-3
Guidelines for Privileged Operationc..ouiiiiiiniiniinnnennnnn. 12-4
Chapter 13
RTE-A Signals
Introduction to Signals 13-1
Available Signals 13-1
Program Violation — SgIVio 13-2
Timer Completed — SgIAIrmo e 13-3
User Definable — SglUsrl and SglUsr2 13-3
Class I/O Completion — SglIO i i 13-4
Signal Service SUDTOULINESttt e e 13-5
SEIACHION . . . e 13-6
SgIBIOCKo 13-6
SglHandler 13-7
Sl .o 13-7
SILIMIL . . .o e e 13-8
Sl ONGIMP .. e 13-9
SgIPAUSE . .o 13-9
S S et M ..o e 13-10
SgISetMask e 13-10
Signal Handler e 13-11
Buffer Descriptorst e 13-11
Environment Buffer 13-12
Signal Buffer 13-12
Hardware Status Saving i e 13-13
Reentrant Subroutines o 13-13
Exiting the Signal Handler i 13-14
Blocking Signals 13-15
Sending Signalsot e 13-15
A Simple Use of Signals i e 13-16
Signals Sent from User Program to User Program 13-20
Program Example Using SglSetImpo i 13-24
Timer Signals 13-26
Signal Handler for Timer Signals i i i, 13-26
Functional Characteristicsttt i i 13-26
Using Timer Signals e 13-26
Timer Subroutine Calling Sequencesttt 13-27
SetTIMET . .. 13-27
KillTIMET . ..o e e e e e 13-27
QUETYTIMET . oottt e e e e 13-27
EXEC 38 .ot 13-28
Parameter Relationships i 13-28

14

A-and B-Registers 13-29

Interval Timer Example i 13-29
Chapter 14
Programmatic Environment Variable Access
EXEC 39 Call ...t e e e e e e 14-1
Getting the Value of a Variable i 14-2
Setting a Variable e 14-2
Deleting a Variable i e 14-3
Retrieving the Modification Countttt i, 14-3
A-Register Return e 14-4
EVB Blocks and Programmatic Sessions, 14-5
Appendix A
Error Messages
Group IL Brrorso e e e e e e A-1
Memory Protect Violationst e A-2
SR EITOIS .. A-3
Dispatching Errors e A-4
Group III Errors . ..ot e e e e e e A-4
Option EIrors . ..o e A-6
I/O EBrIrors ..o A-7
Group IV Halt Errors e e e A-8
Group V Interrupt Errorsot A-9
Group VI Device Driver EIrorsot e i A-10
Group VII Parity Errors e e et A-10
Group VIII VMA/EMA EITOTS . .ttt ittt ettt e e et e e e ee e A-11
FMP Error Codest e e A-14
Appendix B
Converting FMGR File Calls
General Considerationsttt e B-1
File and Directory Namesttt e et B-1
Namr Calls and Stringsttt e et B-2
Openand Openf Calls e e e B-4
Readf and Writf Calls i e B-6
Close Calls B-7
Creatand Crets Calls i i B-8
Aposn, Locf, and Posnt Calls i B-9
Purge and Namf Calls i e B-11
Extended Calls oo B-11
Other Calls e B-11
FMP CallssEFMGR Files e e B-12
Standard Type EXtensionsttt B-13
Appendix C
FMGR Calls
APOSN (Position a Disk File)o e C-1
CLOSE (Close @ File) . ..ottt e e e C-2
CRDC (Dismount a Cartrid@e)vuuunttte ettt i C3

15

CREAT (Create a File)o ot it e e C-4
CRETS (Create a Scratch Disk File)o i C-5
CRMC (Mount a Cartridge to the System)ciiiiiiiiiinineennn.. C-6
EAPOS (Extended Range Positioning)ottt .. C-7
ECLOS (Extended ClOSE) . .« v v vttt et et e e e et e et e C-7
ECREA (Extended File Create)c.uuuiiiiiminn .. C-8
ELOCEF (Extended LOCEF)ottt e e i C-9
EPOSN (Extended Range Positioning)c..ouuuuiiiiniiiinenneennnn. C-10
EREAD (Extended Range Read)o .. C-10
EWRIT (Extended File Write)t e C-11
FCONT (Type 0 File Control)ouiiini e C-11
FSTAT (Retrieve System Cartridge List)cooiiiiniiiiiiiiiiiiin... C-12
IDCBS (Retrieve Number of DCB Words) ..., C-13
INAMR (Rebuild Namr String)ottt e C-13
LOCEF (Retrieve Information on Open File) i .. C-14
NAMF (Rename a File) e C-15
NAMR (Parse an AITAY)o o vuute ettt et e e e et e e e C-16
OPEN (Open a File)o e e C-18
OPEN OPLIONS ..ottt ettt et et e e e e e e e i C-19
Exclusive/Non-exclusive Open (Ebit) C-19
Update Open (U bit)t e e C-20
Access Function Override (F-bit) i C-21
Type 1 Access (T-bit) ..ot e C-21
OPENF (Open a File or DeVICe)o vttt ittt et C-22
OPENF OPLIONS . .ottt ettt e e et e e et it C-23
POSNT (Position a File) e e C-25
Positioning Non-Disk Files (Type 0) ...t .. C-25
Positioning Random-Access Files (Types land2) C-25
Positioning Sequential-Access Files (Type 3 and Above) C-25
POST (Postthe DCBtoaFile)c.oiuiii i C-26
PURGE (Remove a File) e C-26
Recovery of File Area Following PURGE C-27
READF (Read a File Record) i C-27
Relation of il to File Typeot e C-27
RWNDF (Rewind a File or Device)ouuiiiiiiiii . C-30
WRITF (Write a Record to a File or Device)ooiiiiiiinniiinn. .. C-30
Relation of il to File Typec.oioii i C-30
Positioning with num e C-32
XQPRG (Load and Execute a Program)ciiiiiiiiiniiniinennnen.. C-32
XQTIM (Time Schedule a Program)t C-34
Resolution code iresot C-34
Time parameter array itimeoueuttneene e en .. C-34
Appendix D
HP Character Set
Appendix E
Program Types for RTE-A

16

Appendix F
Cleaning Up Open Files

Definition of Temporary Files i F-1
How Clean-Up IS DONeottt F-2
CLEIles ..o e F-2
Cl Temporary Files e e e F-2
FMGR Fileso e F-3
FMGR Temporary Files i F-4
Appendix G
Converting Programs for Type 12 Support
FmpRead and FmpWrite G-1
FmpFpos and FmpSetFpos o G-1
Other Affected Calls i e G-2
Size Constraints and SUFMP G-3
List of lllustrations
Figure 2-1 Program A, Deadly Embrace Example 2-11
Figure 2-2 Program B, Deadly Embrace Example 2-12
Figure 2-3 WH During Deadly Embrace o i, 2-12
Figure 4-1 Program-to-Program Communication 4-16
Figure 4-2 ClassI/OtoaTerminal i, 4-17
Figure 8-1 Logical Transfer Between Disk File and Buffers 8-9
Figure 8-2 Data Transfers with Type 1 Fileso ... 8-9
Figure 9-1 VMA Memory Structureoovvii it 9-4
Figure 9-2 VMA/EMA and Memory Structure, 9-47
Figure 10-1 A CDS Program in Logical Memory oooo.. 10-4
Figure C-1 Writingtoa File C-20
Figure C-2 ~ Reading Type 1 Files with il Greater Than 128 C-28
Figure C-3 ~ Writing a Type 1 File with il Greater Than 128 C-31
Tables
Table 8-1 File Manipulation FMP Routines 8-10
Table 8-2 Directory Access FMP Routine oiii.. 8-11
Table 8-3 Masking FMP Routines, 8-12
Table 8-4 Device FMP Routines, 8-12
Table 8-5 Parsing FMP Routines i 8-13
Table 8-6 Utility FMP Routinest 8-13
Table 9-1 VMA and EMA Termsttt 9-2
Table 9-2 Features of the Three EMA/VMA Models 9-15
Table 9-3 VMA/EMA Mapping Management Subroutines 9-46
Table 13-1 Signal TYpes . ..ot e 13-2

17

Table 13-2
Table C-1
Table C-2
Table C-3
Table C-4
Table C-5
Table D-1
Table D-1
Table D-1
Table D-1
Table D-2
Table E-1

Signal Subroutines i 13-5
The istat Parameter Format (FSTAT Call) C-12
OPENF Defaultso e C-24
Relation Between Parameters nur and ir (POSNT Call) C-25
Effect of il Parameter in READF C-28
Effect of il Parameter in WRITF C-31
Hewlett-Packard Character Set for Computer Systems D-2
Hewlett-Packard Character Set for Computer Systems (continued) D-3
Hewlett-Packard Character Set for Computer Systems (continued) D-4
Hewlett-Packard Character Set for Computer Systems (continued) D-5
HP 7970B BCD-ASCII COnversionc...ooeuuneeunneennnenn. D-6
RTE-A Program TYpeso coe i E-1

18

Introduction

RTE-A is the Real-Time Executive operating system for HP A-Series computers. The RTE-A
Operating System coordinates requests for system services and resources and allocates them to
the requesting programs as necessary. Requests for system resources can be made interactively,
using the operator commands described in the RTE-A User’s Manual, part number 92077-90002,
or from your programs, using the operating system subroutine calls described in this manual.
Located at the end of this chapter, is a functional listing of the subroutines available with RTE-A.

Overview

The RTE-A Operating System services described in this manual are summarized below:

Executive Communication (EXEC) calls, the communication link between your programs
and most system services.

Program Segmentation: separation of a large program into several sections of code to allow
it to execute in a memory partition smaller than its total size. Program segmentation can be
implemented transparently by the Code and Data Separation (CDS) feature in VC+ or from
a program using an EXEC call.

Resource Management: a system that lets cooperating programs share system resources,
such as files and peripherals.

Class I/O: a scheme to permit a program to continue execution while its I/O requests are
being processed and to facilitate program-to-program communication.

Program Scheduling and control from within your programs, with multiprogramming, so
several programs can be active at once, and time-slicing, so computation-heavy programs do
not monopolize the CPU.

Partitioned Memory that uses the hardware Dynamic Mapping System (DMS) to control
access to as much as 24 Mbytes of memory.

Extended Memory Area (EMA): allows your programs to store and access very large data
arrays. Data in the EMA can be shared among programs.

Demand-Paged Virtual Memory that produces programs that can access data structures as
large as 128 MBytes.

These RTE-A features and services are accessed by your programs using EXEC, File
Management Package (FMP), and System Library calls.

Introduction 1-1

Executive Communication

EXEC calls are the line of communication between executing programs and system services.
EXEC calls are coded directly into your programs. They have a structured format with optional
parameters that define the function of the call.

Through EXEC calls, your program can:

Perform input and output operations
Terminate or suspend itself

Load one of its segments

Schedule other programs
Time-schedule other programs
Recover its scheduling string

Read the system time

Obtain partition status information
Control swapping

Obtain information about memory

File Management Package

The File Management Package (FMP) lets your programs manipulate I/O devices and disk files.
There are two ways to access FMP: using the interactive Command Interpreter (CI), as
described in the RTE-A User’s Manual, part number 92077-90002, or using FMP calls from your
programs, as described in Chapter 8 of this manual.

The FMP library contains routines that can be called from your programs to create, access, or
purge disk or non-disk files. Even at the simplest level, FMP calls let your programs:

Create disk files

Open and close files

Read from and write to files

Move a pointer within a file record
Purge disk files

Obtain pointer position and file status
Rename files

Read a disk cartridge list

Change the working directory
Read file time stamps

Perform masked file searches

You can access FMGR files (files from other RTE operating systems) interactively, using the CI
or FMGR commands described in the RTE-A User’s Manual; FMGR files can also be accessed
from your programs, using the FMP calls described in Chapter 8 of this manual or the FMGR
calls described in Appendix C.

1-2 Introduction

System Library

The system library, part of the RTE-A Operating System, is a collection of relocatable routines
that act as the interface between your programs and some system services. Some important
RTE-A services are accessed by system library routine calls. The following system library
routines are described in this manual:

e Resource management (Chapter 2)
e Parameter passing (Chapter 7)
e VMA and EMA programming (Chapter 9)

The system library also contains general-purpose routines that perform valuable services, such
as:

Re-entrant I/O processing

Data conversion and string manipulation
System status query

Session environment services

Located at the end of this chapter, is a functional listing of the library routines available with
RTE-A. Many of the routines listed there are described in detail in the RTE-A « RTE-6/VM
Relocatable Libraries Reference Manual, part number 92077-90037.

EXEC and System Library Call Formats

All EXEC and system library calls must conform to the formats described in this section. The
calls are shown in the format used in FORTRAN and Pascal.

Call Statement Conventions

Square brackets ([]) indicate optional parameters, as in the notation
[, praml1[, pram2[, pram3[, pram4]]]]

in which there are four optional parameters. Parameters are always separated by a single
comma. Optional parameters that are not used can be left out of the call, unless one of the
following optional parameters is used, as in the following example:

Call format: CALL EXEC(ecode[, praml[, pram2[, pram3[, pram4]] 1])
Actual call: CALL EXEC(CCDE, 0, 0, VALUE)

The parameters praml and pram2 are not needed in the actual call, so their places are held by
zeroes. The place of pram4 need not be held.

All EXEC calls require the first parameter, ecode, to identify the function of the call. In RTE-A
manuals, EXEC calls are identified by the ecode parameter, as in EXEC 6, which means an
EXEC call with ecode = 6. Bits 15 and 14 of ecode are used for the no-abort and no suspend
options described in the EXEC Error Processing section. All other bits are significant and
should be set to zero to prevent unexpected results.

Introduction 1-3

A-, B-, X-, and Y-Register Usage

The A-, B-, X-, and Y-Registers are not normally used by the high-level source code of programs.
These registers are normally used by the macrocode generated by compilers. While the
programmer can determine the current value of the A- and B-Registers with the ABREG
subroutine, these registers should not be used to hold user data. Most system calls, such as
EXEC, modify the A-, B-, X-, and Y-Registers.

A- and B-Register Return Values

EXEC calls return information to the A- and B-Registers. Information requested by EXEC calls
is usually returned to the B-Register. In FORTRAN and Pascal, use the ABREG subroutine to
read the A- and B-Registers into two variables in a program. The calling sequence is:

CALL ABRE(J areg, breg)

areg and breg are one-word integer variables that receive the contents of the A- and B-Registers.

Note To receive correct data, the A- and B-Registers must not be changed between
completion of the EXEC call and the ABREG call. The status is guaranteed
to be correct if the ABREG call immediately follows the EXEC call. The
variables being passed must be simple variables (no array or structure
elements).

The A-, B-, X-, Y-, E-, and O-Registers may be altered by EXEC and system
library calls and the values in these registers are undefined after execution of the
call (unless specifically stated). If the values in these registers are to be
preserved, then the registers should be saved by the programmer before using a
system call.

EXEC Error Processing

Errors can occur in EXEC calls because illegal parameter values are passed, non-existent
programs are scheduled, devices are not ready, security violations are detected, or parameters
are left out.

Depending on the severity of the error, and upon the type of error processing selected by the
calling program, the operating system may retry the failed request, suspend the calling program
until the request can be completed, alert the program of the error, or abort the program.

The calling program is suspended when an I/O operation cannot be completed due to a
temporary condition, such as a locked LU. The program is not aborted, and no error message is
generated, but execution is suspended until the request can be completed.

The highest bits (14 and 15) of ecode select the no-suspend and no-abort error processing
options. If no-suspend (bit 14) is set, the program is not suspended by a down device or a locked

1-4 Introduction

LU; however, a program can still be I/O or buffer limit suspended. A code indicating the nature
of the temporary error is stored in the A- and B-Registers, and the program continues. If
no-abort (bit 15) is set, the program is not aborted by serious errors. Again, a code indicating the
nature of the error is stored in the A- and B-Registers, and control is passed back to the calling
program.

The contents of the registers can then be read with the ABREG subroutine. The code is four
ASCII characters, stored in the two registers.

The following are examples of EXEC calls that request program error processing:

IMPLICIT | NTEGER (A-2)

ECODE = 17 + 40000B I 40000B: Bit 14 = 1, no-suspend
CALL EXEC (ECODE, ...) ! 17 requests EXEC 17

ECODE = 9 + 100000B I 100000B: Bit 15 = 1, no-abort
CALL EXEC (ECODE, ...) ! 9 requests EXEC 9

ECtDE = 2 + 140000B I 140000B: no-abort and no-suspend

CALL EXEC (ECODE, ...) ! 2 requests EXEC 2

When no-suspend or no-abort is selected, EXEC uses a special error return to indicate that an
error occurred, and to permit error processing within the calling program. When an error occurs
on an EXEC call with the no-abort or no-suspend bit set, the EXEC call returns to the statement
immediately after the EXEC call. This instruction should be a branch instruction to an error
handling routine that will service the error.

If no error occurs, EXEC returns to one location past the error return, usually with information
returned by the EXEC call stored in the A- and B-Registers. This type of return occurs only
when no-abort or no-suspend is specified, as shown in the following example:

j sb exec

def *+5

def =b140001 I Set no-abort and no-suspend bits

def =d1

def buffer

def buflen
errrtnjnp execerror ' If error, junp to execerror
okrtn ... ' If no error, continue

Introduction 1-5

EXEC error handling is easy to use from FORTRAN, and works in the same way as other
alternate returns do. The following sample program demonstrates the use of the no-abort error
alternate return:

IMPLICIT | NTEGER (A-2)

CALL EXEC (100001B, 1, buffer,len, *777)
C return here for no error

C exec error handling section
777 CALL ABREG (A, B)
IF (A .eq. 2hlO .and. B .eq. 2h04) then
WRI TE(1,*) 1004 error in EXEC call!’

FORTRAN recognizes all EXEC calls, and returns to the alternate return label number (the last
parameter of the EXEC call) when an error occurs. Other routines can use this alternate return
convention for errors, but FORTRAN does not recognize the alternate return label unless the
$ALIAS compiler directive is used. Refer to the FORTRAN 77 Reference Manual, part number
92836-90001, for more information. Pascal programmers can also use the $ALIAS compiler
directive to make no-abort calls; refer to the Pascal manual for more information.

The following EXEC errors always abort the calling program, regardless of the error processing
options selected. The most common EXEC error is RQ. Appendix A describes the EXEC error
messages.

Error

Code Error Type

LD Segment load failed

MP Memory Protect

PE CPU Memory Parity Error

RQ Request Code

SR EXEC call executed in a privileged subroutine

If Class I/O is being used, the no-wait bit (bit 15) of the CLASS parameter can be used with the
no-suspend bit of ecode to control error processing. Refer to the Class I/O Operation section,
Chapter 4, for more information.

1-6 Introduction

Functional Grouping of Library Routines

RTE-A is delivered with a collection of relocatable subroutines. This group of subroutines
interfaces user programs with system services. The following pages contain a listing of those
subroutines. The detailed description of each subroutine can be found in this manual or in the
RTE-A » RTE-6/VM Relocatable Libraries Reference Manual, part number 92077-90037. The
functional listing given here indicates the page number on which the subroutine is documented.
The subroutines documented in the RTE-A ® RTE-6/VM Relocatable Libraries Reference Manual
are indicated in the listing by the mnemonic “re/”, for example “rel-7-16” refers you to page 7-16
of the RTE-A RTE-6/VM Relocatable Libraries Reference Manual.

The subroutines listed in this chapter are organized into the following functional groups:

ASCII/Integer Conversion
Bit Map Manipulation
Buffer and String Manipulation
Integer Buffer Routines
Character String Routines
HpCrt and HpZ Buffer Routines
Character Buffer Manipulation
Command Stack
Error Handling
Interprocess Communication
Class I/0
Parameter Passing
Programmatic Environment Variable Access
Signals
I/O
Machine-level Access
Math
Absolute Value Subroutines
Complex Number Arithmetic Subroutines
Double Integer Utilities
Exponents, Logs, and Roots
HP 1000/IEEE Floating Point Conversion Subroutines
Number Conversion Subroutines
Real Number Arithmetic Subroutines
Trigonometry Subroutines
VIS Subroutines
Miscellaneous Subroutines
Multiuser
Parsing Routines
Privileged Operation
Program Control
Resource Management
System Status
Time Operations

Introduction 1-7

.FMUI

.FMUO

.FMUP

.FMUR
CNUMD
CNUMO
DecimalToDint
DecimalTolnt
DintToDecimal
DintToDecimalr
DintToOctal
DintToOctalr
HexTolnt
HpZBinc
HpZBino
HpZDecc
HpZDeco
HpZDecv
HpZDicv
HpZDParse
HpZGetNumB2
HpZGetNumB4
HpZGetNumD2
HpZGetNumD4
HpZGetNumO2
HpZGetNumO4
HpZGetNumX
HpZHexc
HpZHexi
HpZHexo
HpZOctc
HpZOctd
HpZOcto
HpZOctv
HpZParse
HpZRomanNumeral
HpZUdeco
HpZUdecv

INPRS
IntString
IntToDecimal
IntToDecimalr
IntToHex
IntToHexR
IntToOctal
IntToOctalr
KCVT
OctalToDint
OctalTolnt
PARSE

Introduction

ASCII/INTEGER CONVERSION SUBROUTINES

ASCII digit to internal numeric conversion

Numeric to ASCII conversion

Internal to normal format conversion

Rounding of digit string produced by .FMUO

Convert unsigned 16-bit integer to ASCII decimal

Convert unsigned 16-bit integer to ASCII octal

ASCII to double integer

ASCII to single integer

Double integer to ASCII

Double integer to ASCII

Double integer to octal

Double integer to octal

ASCII hexadecimal to single integer

Convert a number to binary

Convert value to its binary ASCII representation

Convert a number to ASCII numerals

Convert an integer*2 number to ASCII decimal representation
Convert an integer*2 number to ASCII decimal representation
Convert double integer value to ASCII decimal representation
Parse the next occurring token in the input buffer

Convert number in input buffer to integer*2 decimal or octal
Convert number in input buffer to integer*4 decimal or octal
Convert number in input buffer to integer*2 decimal

Convert number in input buffer to integer*4 decimal

Convert number in input buffer to integer*2 octal

Convert number in input buffer to integer*4 octal

Convert digits to internal representation

Convert a number to hexadecimal

Parse hexadecimal ASCII integers

Convert an integer*2 number to hexadecimal

Convert a value to its octal ASCII representation

Convert a double integer value to its octal ASCII representation
Convert the passed value to its octal ASCII representation
Convert the passed value to its octal ASCII representation
Parse routine for 16-character parameters

Convert a value to its Roman numeral equivalent

Convert integer*2 number to unsigned decimal representation
Convert integer*2 number to unsigned decimal representation,
suppressing leading zeros

Inverse parse; convert buffer to original ASCII form

Integer to ASCII

Integer to ASCII

Integer to ASCII

Integer to ASCII hexadecimal

Integer to ASCII hexadecimal with right justification

Integer to octal

Integer to octal

Convert positive integer to base 10; return last 2 ASCII digits
ASCII digit to internal numeric conversion

ASCII to integer

Parse ASCII input buffer

rel-5-32
rel-5-32
rel-5-32
rel-5-34
7-11

7-11
rel-7-21
rel-7-22
rel-7-22
rel-7-23
rel-7-23
rel-7-24
rel-7-29
rel-12-42
rel-12-42
rel-12-43
rel-12-42
rel-12-42
rel-12-44
rel-12-45
rel-12-53
rel-12-53
rel-12-53
rel-12-53
rel-12-53
rel-12-53
rel-12-55
rel-12-56
rel-12-57
rel-12-58
rel-12-68
rel-12-68
rel-12-69
rel-12-69
rel-12-71
rel-12-77
rel-12-78

rel-12-79
7-8
rel-7-31
rel-7-32
rel-7-32
rel-7-33
rel-7-33
rel-7-34
rel-7-34
7-11
rel-7-37
rel-7-38
7-7

ChangeBits
CheckBits
ClearBitMap
FindBits
GetBitMap
HpZDumpBitMap
PutBitMap
SetBitMap
Test_SetBitMap
TestBitMap

BIT MAP MANIPULATION

Change bits in a bit map

Check bits in a bit map

Clear specified bit in a bit map

Find free bits

Retrieve a bit from a bit map

Display a bit map; useful for debugging

Copy a bit to a bit map

Set a bit in the buffer

Test if a bit is set in the buffer, then if it is not, set bit
Test if a bit is set in the buffer

BUFFER AND STRING MANIPULATION

Character String Routines

BlankString
CaseFold
CharfFill
Concat
ConcatSpace
LastMatch
MinStrDsc

RexBuildPattern
RexBuildSubst
RexExchange
RexMatch
SplitCommand
SplitString
StrDsc
StringCopy
TrimLen

Determine blank character string

Convert a character string from lowercase to uppercase

Fill string with characters

Concatenate strings

Concatenate strings with n spaces between strings

Return last occurrence of a character

Construct a string descriptor that describes a trimmed substring
of the string that is passed to it

Build pattern for use by RexMatch and RexExchange

Build regular substitution string for use by RexExchange
Replace occurrences of pattern built by RexBuildPattern
Determine if string contains pattern built by RexBuildPattern
Parse a string

Parse a string

Construct a character string descriptor

Copy one string to another

Remove trailing blanks

HpCrt and HpZ Buffer Routines

HpCrtCRC16_F
HpCrtCRC16_S
HpCrtParityChk
HpCrtParityGen
HpCrtStripChar
HpCrtStripCntrls
HpZAscii64
HpZAscii95
HpZAsciiHpEnh
HpZAsciiMne3
HpZAsciiMne4

HpZBackSpacelbuf

HpZBinc
HpZBino
HpZDecc
HpZDeco
HpZDecv
HpZDefIBuf
HpZDefIString
HpZDefOBuf
HpZDicv
HpZDParse
HpZDumpBuffer

Cyclic Redundancy Check

Cyclic Redundancy Check

Perform a parity check on a data buffer

Compute and set the parity bits in a data buffer

Delete characters from a buffer

Delete non-displayable characters from a string

Move characters from input buffer to output buffer

Move characters from input buffer to output buffer

Move characters from input buffer to output buffer

Translate characters in input buffer into output buffer
Translate characters in input buffer into output buffer

Back up the input buffer pointer

Convert a number to binary

Convert a number to its binary ASCII representation

Convert a number to ASCII numerals

Convert an integer*2 number to ASCII decimal representation
Convert an integer*2 number to ASCII decimal representation
Declare the attributes of the input buffer

Define a string as the input for the HpZ routines

Define the output buffer for the HpZ routines

Convert double integer value to ASCII decimal representation
Parse the next occurring token in the input buffer

Dump a buffer in different formats; useful for debugging

rel-7-2
rel-7-2
rel-12-2
rel-7-3
rel-12-8
rel-12-48
rel-12-82
rel-12-84
rel-12-86
rel-12-85

rel-7-4
rel-7-5
rel-7-5
rel-7-20
rel-7-20
rel-7-35

rel-12-82
rel-7-42
rel-7-42
rel-7-43
rel-7-44
rel-7-47
rel-7-48
rel-7-49
rel-7-50
rel-7-52

rel-12-13
rel-12-13
rel-12-22
rel-12-23
rel-12-31
rel-12-31
rel-12-38
rel-12-38
rel-12-39
rel-12-40
rel-12-41
rel-12-41
rel-12-42
rel-12-42
rel-12-43
rel-12-42
rel-12-42
rel-12-43
rel-12-44
rel-12-44
rel-12-44
rel-12-45
rel-12-49

Introduction 1-9

HpZFieldDefine

HpZFmpWrite
HpZGetNextChar
HpZGetNextStrDsc
HpZGetNextToken
HpZGetNumB2
HpZGetNumB4
HpZGetNumD2
HpZGetNumD4
HpZGetNumO2
HpZGetNumO4
HpZGetNumStrDsc
HpZGetNumX
HpZGetRemStrDsc

HpZHexc
HpZHexi
HpZHexo
HpZIBufRemain

HpZIBufReset
HpZIBufUsed
HpZIBufUseStrDsc

HpZInsertAtF ront
HpZmbt
HpZMesss
HpZMoveString
HpZmvc

HpZmvs
HpZmvs_Control
HpZmvs_Escape
HpZmvs_Large

HpZNIsMvs
HpZNIsSubset
HpZOBufReset
HpZOBufUsed
HpZOBufUseStrDsc
HpZOctc

HpZOctd

HpZOcto

HpZOctv
HpZPadToCount
HpZPadToPosition
HpZParse
HpZPeekNextChar
HpZPlural
HpZPopObuf
HpZPushObuf
HpZReScan
HpZRomanNumeral
HpZsbt
HpZStripBlanks
HpZUdeco
HpZUdecv

HpZWriteExec14

Introduction

Issue escape sequences to define a field in a block mode screen
and optionally set display enhancements

Write current contents of output buffer to the file specified
Extract the next character from the input buffer

Build a string descriptor for the next token in the input buffer
Copy the next token in the input buffer to the output string
Convert number in input buffer to integer*2 decimal or octal
Convert number in input buffer to integer*4 decimal or octal
Convert number in input buffer to integer*2 decimal

Convert number in input buffer to integer*4 decimal

Convert number in input buffer to integer*2 octal

Convert number in input buffer to integer*4 octal

Return a string descriptor

Convert digits to internal representation

Return a string descriptor to the portion of the HpZ input buffer
that has not yet been consumed by other HpZ calls

Convert a number to hexadecimal

Parse hexadecimal ASCII integers

Convert an integer*2 number to hexadecimal

Return number of bytes remaining from current position to end
of the input buffer

Reset the current input position to the start of the input buffer
Return the current byte offset in the input buffer

Return a string descriptor for the portion of the input buffer
that has already been passed over

Insert data in front of the data currently in the buffer

Copy bytes from an integer buffer to the output buffer

Send a command to the operator interface section of the OS
Copy strings without FORTRAN limitations

Copy characters from an integer buffer to the output buffer
Copy a string to the current position in the output buffer

Move the string passed by the user to the output buffer

Move the string passed by the user to the output buffer

Create large characters in a 3-by-3 character cell using line segments
in the HP 264x alternate character set

Move an NLS string to the output buffer

Set up the linkage from NLS to HpZ routines

Reset the current position to the start of the output buffer
Return the current byte offset in the output buffer

Return the current byte offset in the output buffer

Convert a value to its octal ASCII representation

Convert a double integer value to its octal ASCII representation
Convert the passed value to its octal ASCII representation
Convert the passed value to its octal ASCII representation
Add the specified number of blanks to the output buffer

Add blanks to output buffer until desired position is reached
Parse routine for 16-character parameters

Same as HpZGetNextChar but does not consume the character
Conditionally make a string plural depending on count

Inverse of the HpZPushObuf routine

Declare a new output buffer for the HpZ routines

Reset internal pointers used by HpZ routines

Convert a value to its roman numeral equivalent

Store the lower byte of the passed value into the output buffer
Adjust internal pointer to output buffer to “erase” trailing blanks
Convert integer*2 number to unsigned decimal representation
Convert integer*2 number to unsigned decimal representation,
suppressing leading zeros

Perform an EXEC 14 call from the HpZ mini-formatter

rel-12-50
rel-12-51
rel-12-51
rel-12-52
rel-12-52
rel-12-53
rel-12-53
rel-12-53
rel-12-53
rel-12-53
rel-12-53
rel-12-54
rel-12-55

rel-12-56
rel-12-56
rel-12-57
rel-12-58

rel-12-58
rel-12-58
rel-12-58

rel-12-59
rel-12-60
rel-12-60
rel-12-61
rel-12-62
rel-12-62
rel-12-63
rel-12-64
rel-12-65

rel-12-65
rel-12-66
rel-12-66
rel-12-66
rel-12-67
rel-12-67
rel-12-68
rel-12-68
rel-12-69
rel-12-69
rel-12-70
rel-12-70
rel-12-71
rel-12-51
rel-12-73
rel-12-75
rel-12-75
rel-12-76
rel-12-77
rel-12-78
rel-12-78
rel-12-78

rel-12-79
rel-12-79

HpZWriteLU
HpZWriteToString
HpZWriteXLU

Write current contents of the output buffer to the LU specified
Copy the contents of the output buffer to a string
Write current contents of the output buffer to the LU specified

Integer Buffer Routines

.CFER

.CPM

.DFER

XFER
CharsMatch
CLCUC
ClearBuffer
CompareBufs
CompareWords
CompressAsciiRLE
CPUT
ExpandAsciiRLE

FillBuffer
FirstCharacter
GetByte
GetDibit
GetNibble
GetString
INAMR
JSCOM
KHAR
MoveWords
NAMR
PutByte
PutDibit
PutinCommas
PutNibble
SETDB
SETSB
SFILL

SGET
SMOVE
SPUT
StrDsc
SZONE
Test_PutByte
ZPUT

COMMAND STACK

CmndStackinit
CmndStackMarks
CmndStackPush
CmndStackRestore
CmndStackRstrP
CmndStackSaveP
CmndStackScreen
CmndStackStore
CmndStackUnmark
HpReadCmndo
HpStartCmndo
HpStopCmndo
RteShellRead

Move four words from address x to address y (complex transfer)
Compare two single integer arguments

Move three words from one address to another (extended real transfer)
Move three words from address x to address y (extended real transfer)

Compare characters in arrays

Convert an integer buffer from lowercase to uppercase

Zero a passed buffer

Compare two buffers and return offset

Compare two buffers for equality

Move bytes from the input to the output buffer

Put character in destination buffer set up by SETDB

Process run length encoded ASCII data to expand it back to
the original uncompressed contents

Fill a buffer with null characters or a specified value

Return the first character of a buffer

Retrieve a byte from a packed array of bytes

Retrieve a bit pair from a packed array

Retrieve 4 bits from a packed array

Copy a string or a constructed string descriptor

Inverse parse of 10-word parameter buffer generated by NAMR
Compare substrings in two integer buffers

Get next character from source buffer set up by SETSB
Move words

Read input buffer, produce 10-word parameter buffer

Copy a byte to a packed array of bytes

Copy a bit pair to a packed array of bit pairs

Prepare a string for parsing

Copy 4 bits to a packed array

Set up character string destination buffer for KHAR, CPUT, ZPUT
Set up character string source buffer for KHAR, CPUT, ZPUT
Fill area in a substring array with a specified character

Get a specified character from a substring in an integer buffer
Move data from one integer buffer string to another

Put a specified character in an integer buffer substring
Construct a character string descriptor

Find the zone punch of a character

Copy a byte into an array with a test for zero

Store character string in destination buffer set up by SETDB

Initialize command stack

Check for marked lines

Add line to command stack

Restore command stack

Restore command stack

Save command stack

Do stack interactions with user

Store command stack contents in a file
Remove marks from command stack lines
Request CMNDO to read from user’s terminal
Enable a CMNDO slave monitor

Terminate CMNDO slave monitor

Read from terminal and enable command line editing

Introduction

rel-12-79
rel-12-80
rel-12-79

rel-3-69
rel-3-75
rel-3-80
rel-3-127
rel-7-6
rel-7-7
rel-7-6
rel-12-3
rel-12-3
rel-12-4
7-18

rel-12-5
rel-12-7
rel-12-7
rel-12-8
rel-12-9
rel-12-9
rel-12-11
rel-5-11
rel-10-7
7-18
rel-7-36
rel-5-18
rel-12-83
rel-12-83
rel-7-39
rel-12-84
7-17
7-17
rel-10-9
rel-10-10
rel-10-11
rel-10-13
rel-7-49
rel-10-14
rel-12-85
7-18

rel-7-12
rel-7-13
rel-7-13
rel-7-14
rel-7-15
rel-7-15
rel-7-16
rel-7-17
rel-7-17

rel-7-9

rel-7-8
rel-7-10
rel-7-45

1-11

ERROR HANDLING

1/0

112

PAUS
ERO.E
ERRO
ERRLU
FTRAP
IND.E
PAU.E
RT_ER
RTRAP

.TAPE
AbortRq
ABREG
AccessLU
BlockToDisc
CLRQ
DiscSize
DiscToBlock
EQLU

EXEC 1
EXEC 2
EXEC 3
EXEC 13
EXEC 17
EXEC 18
EXEC 19
EXEC 20
EXEC 21
FakeSpStatus
HpCrtCharMode

HpCrtCheckStraps
HpCrtGetCursor
HpCrtGetCursorXY
HpCriGetffield_|

HpCriGetfield S

HpCrtGetLine_Pos
HpCrtGetMenultem
HpCrtHardReset
HpCrtLineMode
HpCrtMenu
HpCrtNIsMenu
HpCrtNIsXMenu
HpCrtPageMode
HpCrtQTDPort7
HpCrtReadChar
HpCrtReadPage
HpCrtRestorePort
HpCrtSavePort
HpCrtSchedProg
HpCrtSchedProg_S
HpCrtScreenSize
HpCrtSendChar
HpCrtSSRCDriver

Introduction

Halt program execution and print message
Specify the LU for printing library error messages
Print four-character error code on list device
Change LU for printing library error messages
Traps FORTRAN runtime errors

Select output LU for error messages

Select output LU for PAUSE messages

Formats and prints runtime errors

Traps FORTRAN runtime errors

Rewind, backspace, or EOF operation on mag tape unit
Abort current request

Obtain contents of A- and B-Registers

Check for LU access

Convert block to track and sector

Class management request

Returns tracks and sectors per track

Convert track and sector to block

Return LU of interrupting device that scheduled program
Read data from device

Write data to device

Perform I/O device control operation

Get device status

Class read request

Class write request

Class 1/O device control request

Class write/read request

Class I/0 Get

Return port status similar to a special status read

Sends the escape sequences to the terminal that place it in line mode,

character mode with forms disabled

Check port and terminal for availability of screen mode operation
Returns the coordinates of the cursor of an HP CRT

Returns the coordinates of the cursor of an HP CRT

Retrieve the Nth field from an integer*2 buffer that contains the data

read from an HP terminal in block page mode

Retrieve the Nth field from an integer*2 buffer that contains the data

read from an HP terminal in block page mode

Return cursor position, contents of line, and delimiter

Return a menu item from the screen

Perform a hard reset on an HP terminal

Send escape sequences to terminal for block line mode

Used to print multiple character strings to an LU

Perform HpCrtMenu function from the NLS module

Perform HpCrtXMenu function from the NLS module

Send escape sequence to terminal to place in block page mode
Return LU of port 7 when given LU of one of the other ports
Read directly from LU to character data type variable

Perform page mode write/read call

Reset port to conditions in effect when HpCrtSavePort was called
Read current state of port driven

Pass name of program to scheduled upon interrupt

Pass name of program to scheduled upon interrupt

Return width and height of an HP terminal screen

Call EXEC to print a FTN7X character variable or literal
Determine if driver for LU will respond to a special status read

rel-5-38
rel-5-3
rel-5-5
rel-5-4
rel-5-6
rel-5-14
rel-5-22
rel-5-26
rel-5-6

rel-5-40
3-11
rel-5-2, 12-1
rel-6-2
rel-7-4
4-8
rel-7-25
rel-7-24
7-10
3-3

3-3

3-8
3-12
4-11
4-11
4-22
4-11
4-18
rel-12-6

rel-12-11
rel-12-12
rel-12-14
rel-12-15

rel-12-16

rel-12-17
rel-12-18
rel-12-19
rel-12-19
rel-12-20
rel-12-20
rel-12-21
rel-12-21
rel-12-22
rel-12-23
rel-12-24
rel-12-25
rel-12-26
rel-12-26
rel-12-27
rel-12-27
rel-12-27
rel-12-28
rel-12-29

Introduction

HpCrtSSRCDriver? Determine if driver for LU will respond to a special status read rel-12-29
HpCrtStatus Perform XLUEX write/read call to read status of an HP terminal rel-12-30
HpCrtXMenu Print multiple character strings to an LU rel-12-32
HpCrtXReadChar Input directly from an LU to a character data type variable rel-12-32
HpCrtXSendChar Call EXEC to print a FTN7X character variable or literal rel-12-33
HpZDumpBuffer Dump a buffer in different formats; useful for debugging rel-12-49
HpZPrintPort Display port status using a special status read rel-12-74
HpZQandA Ask a question and read reply rel-12-76
HpZWriteLU Write current contents of the output buffer to the LU specified rel-12-79
HpZWriteXLU Write current contents of the output buffer to the LU specified rel-12-79
HpZYesOrNo Ask question to be answered with a yes or no reply rel-12-80
IFTTY Determine if an LU is interactive 7-12
LOGIT Log message in error log file and display on terminal 7-13
LOGLU Get LU of invoking terminal 79
LUTRU Return true system LU associated with session LU 7-9
MAGTP Perform utility functions on magnetic tape unit rel-5-17
ProgramTerminal Return program’s terminal LU rel-7-39
PTAPE Position magnetic tape rel-5-24
REIO Buffered I/O 3-10
RMPAR Get extended status 3-17; rel-5-25
RteErrLogging Determine if error logging is on or off 7-13
RteShellRead Read from terminal and enable command line editing rel-7-45
SYCON Write message to system console 3-7; rel-6-18
VMAIO Perform large VMA or EMA data transfer 9-21
XLUEX Extended LU EXEC call 3-10
XREIO Extended LU REIO call 3-11
INTERPROCESS COMMUNICATION
Class 1/0. See “Class I/0” chapter
Parameter Passing
EXEC 14 Retrieve or pass string from or to calling program 7-3
Fgetopt Get a runstring option rel-7-26
GetRedirection Extract1/O redirection commands rel-7-28
GetRunString Retrieve runstring used to schedule program rel-12-10
GETST Recover parameter string 7-5; rel-5-9
HpZWriteExec14 Perform an EXEC 14 call from the HpZ mini-formatter rel-12-79
PRTM Pass 4 parameters back to parent program 7-1
PRTN Pass 5 parameters back to parent program 7-1
RMPAR Retrieve parameters passed to program 7-2; rel-5-25
Programmatic Environment Variable Access
EXEC 39 Programmatic environmentvariable access 14-1
Signals
KillTimer Cancel currenttimer 13-27
QueryTimer Return number of ticks remaining before timer signal is to be generated 13-27
SetTimer Establish a new timer or reset an existing timer 13-27
SglAction Return integer specifying action to take 13-6
SglBlock Return previous set of masked signals and block signals 13-6
SglHandler Set the signal handler address 13-7
SglKill Send a signal to a program 13-7
SglLimit Set the signal buffer limits 13-8
SglLongdmp Jump to the supplied environment 13-9
SglPause Wait for a signal to be delivered to the program 13-9
SglSetdmp Set an environment 13-10
SglSetMask Block signals and return previous set of masked signals 13-10

MACHINE-LEVEL ACCESS

..MAP
.ENTC and .ENTN

.ENTP and .ENTR
.GOTO

.MAP

.MPY

.PCAD

$SETP

%SSW

ABREG
AddressOf
IGET and IXGET
ISSR

ISSW

OVF
ReadA990Clock
WriteA990Clock

MATH

1-14

.ABS
%ABS
%BS
ABS
CABS
DABS
DIM
IABS
IDIM

..CCM
.CADD
.CDBL
.CDIV
.CMPY
.CSuUB
AIMAG
CMPLX
CONJG
REAL

JSCOM
SA2DE
SADD
SCARY
SD1D2
SD2D1
SDCAR

Introduction

Compute address of specified element of a 2- or 3-dimensional array

Transfer true address of parameters from calling sequence into a
subroutine; adjust return address to true return point
Transfer true address of parameters from calling sequence into a
subroutine; adjust return address to true return point

Transfer control to the location indicated by a FORTRAN computed

GOTO statement

Return actual address of a particular element of a two-dimensional

FORTRAN array

Replace the subroutine call with the hardware instructions to
multiply by integer i and j

Return true address of parameter passed to a subroutine
Set up a list of pointers

Set sign bit of A-Register according to bit n of switch register
Obtain contents of A- and B-Registers

Return direct address

Read contents of a memory address

Set S-Register to value n

Set sign bit of A-Register according to bit n of switch register
Set sign bit of A-Register according to overflow bit

Read the calendar clock of the A990

Set the calendar clock on the A990

Absolute Value Subroutines

Absolute value (double real)
(Call-by-name) IABS
(Call-by-name) ABS

Absolute value (real)

Absolute value (complex)
Absolute value (extended real)
Positive difference (real)
Absolute value (integer)
Positive difference (integer)

Complex Number Arithmetic Subroutines

Complement (complex)

Complex add

Extract the real part of a complex number in extended real form
Complex divide

Complex multiply

Complex subtract

Extract imaginary part of complex (real)

Combine real and imaginary complex

Form conjugate of complex

Extract the real part of a complex

Decimal String Arithmetic Subroutines

Compare two substrings

Convert substring in A2 format to decimal
Perform a decimal add of two substrings
Examine D2 decimal substring for carries
Convert substring in D1 format to D2
Convert substring in D2 format to D1
Examine D1 decimal substring for carries

rel-5-41
rel-5-28
rel-5-29
rel-5-35
rel-5-36

rel-3-102
rel-5-39
rel-5-42
rel-5-43
rel-5-2, 12-1
rel-7-1
rel-5-10
rel-5-15
rel-5-16
rel-5-21
rel-7-40
rel-7-54

rel-3-62
rel-3-146
rel-3-150
rel-3-2
rel-3-12
rel-3-20
rel-3-27
rel-3-43
rel-3-45

rel-3-132
rel-3-66
rel-3-67
rel-3-68
rel-3-72
rel-3-76
rel-3-3
rel-3-15
rel-3-16
rel-3-53

rel-10-7
rel-10-31
rel-10-17
rel-10-33
rel-10-37
rel-10-38
rel-10-34

SDEA2
SDIV
SEDIT
SFILL
SGET
SMOVE
SMPY
SPUT
SSIGN
SSuUB
SZONE

Convert substring in decimal format to A2
Perform a decimal division of two substrings
Edit data in substring array

Fill area in a substring array with a specified character
Get a specified character from a substring
Move data from one string to another

Perform a decimal multiply of two substrings
Put a specified character in a substring

Find the sign of a number

Perform a decimal subtraction of two substrings
Find the zone punch of a character

Double Integer Utilities

.DADS
.DCO
.DDE
.DDI
.DDIR
.DDS
.DIN
.DIS
.DMP
.DNG
.FIXD
.FLTD
.TFTD
.TFXD
XFTD
XFXD
FLTDR

Double integer add and subtract
Compare two double integers

Decrement double integer

Double integer divide

Double integer divide

Double integer decrement and skip if zero
Increment double integer

Double integer increment and skip if zero
Double integer multiply

Negate double integer

Convert real to double integer

Convert double integer to real

Convert double integer to double real
Convert double real to double integer
Convert double integer to extended real
Convert extended real to double integer
Convert double-length record number to real

Exponents, Logs, and Roots

.CTOI
.DTOD
.DTOI
.DTOR
.EXP
.FPWR
TOI
.LOG
.LOGO
.PWR2
.RTOD
.RTOI
.RTOR
.RTOT
.SQRT
.TPWR
.TTOI
.TTOR
JTOT
$EXP
$LOG
$LOGT
$SQRT
%LOG
%LOGT
%QRT
%XP

Raise complex to integer power

Raise extended real to extended real power
Raise extended real to integer power

Raise extended real to real power; extended real result
Raise e to double real power

Raise real to integer power

Raise integer to integer power

Natural log (double real)

Base 10 log (double real)

Multiply a real by 2 raised to integer power
Raise real to extended real power; extended real result
Raise real to integer power

Raise real to real power

Raise real to double real power

Square root (double real)

Raise double real to unsigned power

Raise double real to integer power

Raise double real to real power

Raise double real to double real power

Raise e to extended real power; no error return
Natural log (extended real); no error return
Base 10 log (extended real); no error return
Square root (extended real); no error return
Natural log (real; call-by-name)

Base 10 log (real; call-by-name)

Square root (real; call-by-name)

Raise e to real power; call-by-name

rel-10-36
rel-10-19
rel-10-28

rel-10-9
rel-10-10
rel-10-11
rel-10-22
rel-10-13
rel-10-40
rel-10-26
rel-10-14

rel-4-3
rel-4-4
rel-4-5
rel-4-6
rel-4-6
rel-4-7
rel-4-8
rel-4-9
rel-4-10
rel-4-11
rel-4-12
rel-4-13
rel-4-14
rel-4-15
rel-4-16
rel-4-17
rel-4-2

rel-3-78
rel-3-83
rel-3-84
rel-3-85
rel-3-86
rel-3-91
rel-3-96
rel-3-97
rel-3-98
rel-3-105
rel-3-106
rel-3-107
rel-3-108
rel-3-109
rel-3-112
rel-3-120
rel-3-121
rel-3-122
rel-3-123
rel-3-141
rel-3-142
rel-3-143
rel-3-144
rel-3-156
rel-3-157
rel-3-162
rel-3-165

Introduction 1-15

1-16

[EXP
/EXTH
/LOG
/LOGO
/SQRT
ALOG
ALOGT
CEXP
CLOG
CSQRT
DEXP
DLOG
DLOGT
DSQRT
EXP
SQRT

.EXP with no error return
2**n*2**z (small double real z)
.LOG with no error return
.LOGO with no error return
.SQRT with no error return
Natural log (real)

Base 10 log (real)

Raise e to complex power
Natural log (complex)

Complex square root (complex)
Extended real e (extended real)
Natural log (extended real)
Base 10 log (extended real)
Square root (extended real)
Raise e to real power

Square root (real)

HP 1000/IEEE Floating Point Conversion Subroutines

DFCHI
DFCIH
FCHI
FCIH

Number Conversion

.BLE
.CINT
.CMRS
.CTBL
.DCPX
.DINT
.DTBL
ICPX
.IDBL
AENT
ITBL
.NGL
.PACK
.TCPX
.TDBL
TINT
%FIX
%INT
%LOAT
%NT
/CMRT
/TINT
AINT
AMOD
DBLE
DDINT
DMOD
ENTIE
FLOAT
IDINT
IFIX
INT
MOD
SNGL
SNGM
SPOLY

Introduction

HP 1000 double precision to IEEE
IEEE double precision to HP 1000
HP 1000 single precision to IEEE
IEEE single precision to HP 1000

Subroutines

Convert real to double real

Convert complex to integer

Reduce argument for SIN, COS, TAN, EXP

Convert complex real to double real

Convert extended real to complex

Convert extended real to integer

Convert extended real to double real

Convert integer to complex

Convert integer to extended real

Greatest integer no greater than given real x

Convert integer to double real

Convert double real to real

Convert signed mantissa of real into normalized real format
Convert double real to complex real

Convert double real to extended real without rounding
Convert double real to integer

Convert real to integer; call-by-name

Truncate real; call-by-name

Convert integer to real; call-by-name

Truncate real to integer; call-by-name

Range reduction for .SIN, .COS, .TAN, .EXP, and .TANH
Convert double precision to integer

Truncate (real)

x modulo y (real x and y)

Convert real to extended real

Truncate (extended real)

X modulo y (extended real x and y)

Greatest integer not greater than given real

Convert integer to real

Truncate extended real to integer

Convert real to integer

Truncate real to integer j

i modulo j (integer i and j)

Convert extended real to real

Convert extended real to real without rounding
Evaluate the quotient of two polynomials in single precision

rel-3-169
rel-3-170
rel-3-171
rel-3-172
rel-3-174
rel-3-5
rel-3-6
rel-3-13
rel-3-14
rel-3-19
rel-3-26
rel-3-28
rel-3-29
rel-3-36
rel-3-41
rel-3-59

rel-11-1
rel-11-2
rel-11-2
rel-11-3

rel-3-65
rel-3-71
rel-3-73
rel-3-77
rel-3-79
rel-3-81
rel-3-82
rel-3-92
rel-3-93
rel-3-94
rel-3-95
rel-3-103
rel-3-104
rel-3-116
rel-3-117
rel-3-119
rel-3-151
rel-3-154
rel-3-155
rel-3-158
rel-3-168
rel-3-176
rel-3-4
rel-3-9
rel-3-23
rel-3-25
rel-3-31
rel-3-39
rel-3-42
rel-3-46
rel-3-47
rel-3-48
rel-3-52
rel-3-56
rel-3-57
rel-3-58

Real Number Arithmetic Subroutines

..DCM
..DLC
..FCM
..TCM
.DTBL
.FDV
.FLUN
.FMP
.MANT
.MAX1 and .MIN1
.MOD
.SIGN
.TADD
.TDBL
.IDIV
TINT
.TMPY
.TSUB
.XCOM
XDIV
XMPY
XPAK
YINT
%IGN
/ATLG
DSIGN
ENTIX
SIGN

Complement (extended real)

Load and complement (real)

Complement (real)

Negate (double real)

Convert extended real to double real

Real divide

Unpack (real); place exponent in A-Register, lower mantissa in B-Register
Real multiply

Extract mantissa of real x

Find the maximum (or minimum) of a list of double reals
Double real remainder of real divide

Transfer sign of one double real to another

Double real add

Convert double real to extended real with rounding
Double real divide

Convert double real to integer

Double real multiply

Double real subtract

Complement extended real unpacked mantissa in place
Extended real divide

Extended real multiply

Normalize, round, and pack with the exponent an extended real mantissa
Truncate fractional part of double real

Transfer sign of real or integer to real

Compute (1—x)/(1+x) (double precision)

Transfer sign of one extended real to another

Greatest integer no greater than given extended real; result is extended real

Transfer sign of real or integer to real

Trigonometry Subroutines

.ATAN
ATN2
.COS
.SIN
.TAN
.TANH
$TAN
%AN
%ANH
%IN
%0S
%TAN
/COS
/SIN
/TAN
ATAN
ATAN2
COoSs
CSNCS
DATAN
DATN2
DCOS
DSIN
DTAN
DTANH
SIN
TAN
TANH

Arctangent (double real)
Arctangent double real quotient
Cosine (double real)

Sine (double real)

Tangent (double real)

Hyperbolic tangent (double real)
DTAN with no error return
Tangent (real); call-by-name
Hyperbolic tangent (real); call-by-name
Sine (real); call-by-name

Cosine (real); call-by-name
Arctangent (real); call-by-name
.COS with no error return

.SIN with no error return

.TAN with no error return
Arctangent (real)

Arctangent (real)

Cosine (real)

Complex sine or cosine (complex)
Arctangent (extended real)
Arctangent (extended real x, double real y)
Cosine (extended real)

Sine (extended real)

Tangent (extended real)
Hyperbolic tangent (real)

Sine (real)

Tangent (real)

Hyperbolic tangent (real)

Introduction

rel-3-133
rel-3-134
rel-3-135
rel-3-136

rel-3-82

rel-3-88

rel-3-89

rel-3-90

rel-3-99
rel-3-100
rel-3-101
rel-3-110
rel-3-113
rel-3-117
rel-3-113
rel-3-119
rel-3-113
rel-3-113
rel-3-125
rel-3-126
rel-3-128
rel-3-129
rel-3-131
rel-3-152
rel-3-166

rel-3-34

rel-3-40

rel-3-54

rel-3-63
rel-3-64
rel-3-74
rel-3-111
rel-3-114
rel-3-115
rel-3-145
rel-3-147
rel-3-149
rel-3-153
rel-3-160
rel-3-164
rel-3-167
rel-3-173
rel-3-175
rel-3-10
rel-3-11
rel-3-17
rel-3-18
rel-3-21
rel-3-22
rel-3-24
rel-3-35
rel-3-37
rel-3-38
rel-3-55
rel-3-60
rel-3-61

117

1-18

VIS Subroutines

DVABS
DVADD
DVDIV
DVDOT
DVMAB
DVMAX
DVMIB
DVMIN
DVMOV
DVMPY
DVNRM
DVPIV
DVSAD
DVSDV
DVSMY
DVSSB
DvSuB
DVSUM
DVSWP
DVWMV
DWABS
DWADD
DWDIV
DWDOT
DWMAB
DWMAX
DWMIB
DWMIN
DWMOV
DWMPY
DWNRM
DWPIV
DWSAD
DWSDV
DWSMY
DWSSB
DWSUB
DWSUM
DWSWP
DWVMV
VABS
VADD
VDIV
VDOT
VMAB
VMAX
VMIB
VMIN
VMOV
VMPY
VNRM
VPIV
VSAD
VSDV
VSMY
VSSB
VSUB
VSUM

Introduction

Absolute value routine (double precision)
Vector add (double precision)

Vector divide (double precision)

Vector dot product routine (double real)
Vector largest value (absolute) (double real)
Vector largest value (double real)

Vector smallest value (absolute) (double real)
Vector smallest value (double real)

Vector move routine (double real)

Vector multiply (double real)

Vector sum (absolute) routine (double real)
Vector pivot routine (double real)
Vector-scalar add (double real)
Vector-scalar divide (double real)
Vector-scalar multiply (double real)
Vector-scalar subtract (double real)

Vector subtract (double real)

Vector sum routine (double real)

Vector copy routine (double real)

Vector non-EMA to EMA move routine (EMA double real)

Absolute value routine (EMA double real)

Vector add (EMA double real)

Vector divide (EMA double real)

Vector dot product routine (EMA double real)
Vector largest value (absolute) (EMA double real)
Vector largest value (EMA double real)

Vector smallest value (absolute) (EMA double real)
Vector smallest value (EMA double real)

Vector move routine (EMA double real)

Vector multiply (EMA double real)

Vector sum (absolute) routine (EMA double real)
Vector pivot routine (EMA double real)
Vector-scalar add (EMA double real)
Vector-scalar divide (EMA double real)
Vector-scalar multiply (EMA double real)
Vector-scalar subtract (EMA double real)

Vector subtract (EMA double real)

Vector sum routine (EMA double real)

Vector copy routine (EMA double real)

Vector EMA to non-EMA move routine (double real)
Absolute value routine (single precision)

Vector add (single precision)

Vector divide (single precision)

Vector dot product routine (single precision)
Vector largest value (absolute) (single precision)
Vector largest value (single precision)

Vector smallest value (absolute) (single precision)
Vector smallest value (single precision)

Vector move routine (single precision)

Vector multiply (single precision)

Vector sum (absolute) routine (single precision)
Vector pivot routine (single precision)
Vector-scalar add (single precision)

Vector-scalar divide (single precision)
Vector-scalar multiply (single precision)
Vector-scalar subtract (single precision)

Vector subtract (single precision)

Vector sum routine (single precision)

rel-8-13

rel-8-9

rel-8-9
rel-8-17
rel-8-20
rel-8-20
rel-8-20
rel-8-20
rel-8-24

rel-8-9
rel-8-14
rel-8-18
rel-8-11
rel-8-11
rel-8-11
rel-8-11

rel-8-9
rel-8-14
rel-8-24
rel-8-26
rel-8-13

rel-8-9

rel-8-9
rel-8-17
rel-8-20
rel-8-20
rel-8-20
rel-8-20
rel-8-24

rel-8-9
rel-8-14
rel-8-18
rel-8-11
rel-8-11
rel-8-11
rel-8-11

rel-8-9
rel-8-14
rel-8-24
rel-8-26
rel-8-13

rel-8-9

rel-8-9
rel-8-17
rel-8-20
rel-8-20
rel-8-20
rel-8-20
rel-8-24

rel-8-9
rel-8-14
rel-8-18
rel-8-11
rel-8-11
rel-8-11
rel-8-11

rel-8-9
rel-8-14

VSWP
VWMOV
WABS
WADD
WDIV
WDOT
WMAB
WMAX
WMIB
WMIN
WMOV
WMPY
WNRM
WPIV
WSAD
WSDV
WSMY
WSSB
WSUB
WSUM
WSWP
WVMOV

Vector copy routine (single precision)

Vector non-EMA to EMA move routine (single precision)
Absolute value routine (EMA single precision)

Vector add (EMA single precision)

Vector divide (EMA single precision)

Vector dot product routine (EMA single precision)
Vector largest value (absolute) (EMA single precision)
Vector largest value (EMA single precision)

Vector smallest value (absolute) (EMA single precision)
Vector smallest value (EMA single precision)

Vector move routine (EMA single precision)

Vector multiply (EMA single precision)

Vector sum (absolute) routine (EMA single precision)
Vector pivot routine (EMA single precision)
Vector-scalar add (EMA single precision)

Vector-scalar divide (EMA single precision)
Vector-scalar multiply (EMA single precision)
Vector-scalar subtract (EMA single precision)

Vector subtract (EMA single precision)

Vector sum routine (EMA single precision)

Vector copy routine (EMA single precision)

Vector EMA to non-EMA copy routine (single precision)

Miscellaneous Math Subroutines

..TCM
.CFER
.CHEB
.FLUN
.MANT
.TENT
XFER
%AND
%0R
%0T
%SIGN
DPOLY
IAND
IOR
ISIGN
IXOR

XPOLY and .XPLY

MULTIUSER

AccessLU
ATACH
ATCRT
CLGOF
CLGON
DTACH
FromSySession
GetAcctinfo
GetOwnerNum
GetResetinfo
GETSN
GPNAM
GroupTold
IdToGroup
IdToOwner

Negate (double real)

Move four words from address x to address y (complex transfer)
Evaluate Chebyshev series

Unpack (real); place exponent in A-Register, lower mantissa in B-Register
Extract mantissa of real x

Find the greatest integer i less than or equal to a double real

Move three words from address x to address y (extended real transfer)
Logical product (two integers); call-by-name

Logical inclusive OR (two integers); call-by-name

Complement (integer); call-by-name

Transfer sign of real or integer z to integer i; call-by-name

Evaluate quotient of two polynomials (double precision)

Logical product (two integers)

Logical inclusive OR (two integers)

Transfer sign of real or integer z to integer i

Exclusive OR (integer)

Evaluate extended real polynomial

Check for LU access

Attach calling program to a session

Attach to CRT

Call LOGOF

Call LOGON

Detach from session

Check system session

Access user and group accounting

Return owner ID

Access and clear multiuser account

Get session number

Return group name

Return group ID number given group name
Return group name given group ID number
Return user name

Introduction

rel-8-24
rel-8-26
rel-8-13

rel-8-9

rel-8-9
rel-8-17
rel-8-20
rel-8-20
rel-8-20
rel-8-20
rel-8-24

rel-8-9
rel-8-14
rel-8-18
rel-8-11
rel-8-11
rel-8-11
rel-8-11

rel-8-9
rel-8-14
rel-8-24
rel-8-26

rel-3-136
rel-3-69
rel-3-70
rel-3-89
rel-3-99
rel-3-118
rel-3-127
rel-3-148
rel-3-159
rel-3-161
rel-3-163
rel-3-32
rel-3-44
rel-3-49
rel-3-50
rel-3-51
rel-3-130

rel-6-2
rel-6-3
rel-6-4
rel-6-5
rel-6-6
rel-6-7
rel-6-8
rel-6-8
rel-6-10
rel-6-10
rel-6-11
rel-6-11
rel-6-12
rel-6-12
rel-6-13

1-19

LUSES

Member
OwnerTold
ProglsSuper
ResetAcctTotals
RTNSN
SessnToOwnerName
SetAcctLimits
SuperUser
SYCON
SystemProcess
UserlsSuper
USNAM
USNUM
VFNAM

PARSING

HpZDParse
HpZParse
INAMR

INPRS

NAMR

PARSE
SplitCommand
SplitString

$LIBR

$LIBX
DispatchLock
DispatchUnlock
GOPRV
UNPRV

PROGRAM CONTROL

CHNGPR

EXEC 6

EXEC 7

EXEC 8

EXEC 9

EXEC 10

EXEC 22

EXEC 23

EXEC 24

EXEC 26

EXEC 29
GetFatherldNum
HpLowerCaseName
HpZMesss
IdAddToName
IdAddToNumber
IDCLR

IDGET

IDINFO
IdNumberToAdd
MESSS

Introduction

Return user table address

Determine if user is in group

Return user ID

Determine if program is a super program
Reset user and group accounting totals
Return session number

Return user name

Set user and group accounting limits
Check for or if superuser

Write a message to the system console
Check for or if system process

Check for or if superuser

Return user name

Return session number

Verify user name

Parse the next occurring token in the input buffer

Parse routine for 16-character parameters

Inverse parse of 10-word parameter buffer generated by NAMR
Inverse parse; convert buffer to original ASCII form

Read input buffer, produce 10-word parameter buffer

Parse ASCII input buffer

Parse a string

Parse a string

PRIVILEGED OPERATION

Go privileged (highest level)

Resume normal operation after calling $LIBR

Prevent all other user programs from executing

Remove lock set by DispatchLock

Go privileged; disable normal memory protect mechanism
Resume normal operation after calling GOPRV

Change program priority

Stop program execution

Suspend program execution

Load program overlay

Immediate program scheduling with wait

Immediate program scheduling without wait

Lock program into memory so it cannot be swapped
Queue program scheduling with wait

Queue program scheduling without wait

Return memory limits of the partition of calling program
Retrieve ID segment of specified program

Return father ID segment number

Change the name of the program that calls it to lowercase
Send a command to the operator interface section of the OS
Convert ID segment address to program name and LU number
Convert ID segment address to segment number
Deallocate ID segment

Retrieve ID segment of specified program

Return ID segment information

Convert ID segment number to segment address

Process base set commands

rel-6-13
rel-6-13
rel-6-14
rel-6-14
rel-6-15
rel-6-16
rel-6-16
rel-6-17
rel-6-18
rel-6-18
rel-6-19
rel-6-19
rel-6-19
rel-6-20
rel-6-20

rel-12-45
rel-12-71
rel-5-11
7-8
rel-5-18
7-7
rel-7-47
rel-7-48

123
123
122
122
12-1
12-1

5-4

55

5-8

5-2

5-8

5-8
5-13
5-8

5-8
5-14
5-16
rel-7-28
rel-12-33
rel-12-61
rel-7-30
rel-7-30
rel-7-30
7-14
7-15
rel-7-31
7-12

MyldAdd
PNAME
ProgramPriority
SEGLD
SEGRT

LIMEM

LuLocked
LURQ

RNRQ
SetPriority
WhoLockedLu
WholLockedRn

SYSTEM STATUS

.OPSY
CPUID
HpRte6
HpRteA
HpZMesss
IFBRK
MESSS
Saminfo

TIME OPERATIONS

DayTime
ElapsedTime
ETime

EXEC 11

EXEC 12

FTIME
GetRteTime
HMSCtoRteTime
HpGetTZ
InvSeconds
KillTimer
LeapYear
NumericTime
QueryTimer
ResetTimer
RteDateToYrDoy
RteTimeToHMSC
Seconds
SetTimer

SETTM

TIMEF

TIMEI and TIMEO
TimeNow
YrDoyToMonDom
YrDoyToRteDate

Return segment address

Return program name

Return program priority

Load program overlay; allows use of SEGRT and debug
Return to main from overlay

RESOURCE MANAGEMENT

Return starting location and size of memory area between
end of program or stack area and end of program partition
Report is passed LU is locked

Give program exclusive access to an 1/O device

Allocate and manage resource numbers

Set the priority of the currently executing program

Return ID segment address of program that locked LU
Return ID segment address of program that locked the
specified resource number

Determine which operating system is in control

Get CPU identification

Determine if calling program is running on RTE-6/VM
Determine if calling program is running on RTE-A

Send a command to the operator interface section of the OS
Test break flag and clear if set

Process base set commands

Return number of free words in SAM or XSAM

Return ASCII time string

Number of milliseconds since last time recorded by ResetTimer
Number of centiseconds since specified base time

Retrieve current time

Schedule program at specified time interval

Return ASCII message giving time and date

Read the system clock in three-word format

Convert Hr-Min-Sec-Centisec to RTE time format

Return local time-zone offset from Coordinated Universal Time (UTC)
Perform conversion that is the inverse of the Seconds routine

Cancel current timer

Test a given year to see if it is a leap year

Return numeric ASCII time string

Return number of ticks remaining before timer signal is to be generated
Reset timer used by ElapsedTime routine

Convert from RTE combined year/day format to year and day
Convert centiseconds since midnight to Hr-Min-Sec-Centisec
Convert a time buffer to seconds since January 1, 1970

Establish a new timer or reset an existing timer

Set system time

Format time

Measure difference between time in and time out

Number of seconds since midnight January 1, 1970

Convert year and day of year to day of month, month, and day of week
Convert year and cardinal day to RTE format

rel-7-36

7-14; rel-5-23
rel-7-38

5-3

5-4

2-13
rel-7-36
2-8

2-1
rel-12-84
rel-7-53

rel-7-53

rel-5-37
7-9
rel-12-34
rel-12-34
rel-12-61
7-11
7-12
rel-7-46

rel-7-21
rel-7-25
rel-7-25
6-1

6-2

6-7
rel-7-29
rel-7-29
6-7
rel-7-35
13-27
rel-7-35
rel-7-37
13-27
rel-7-40
rel-7-44
rel-7-46
rel-7-47
13-27
6-8
rel-7-51
rel-5-27
rel-7-52
rel-7-54
rel-7-55

Introduction 1-21

Resource Management

RTE-A has several mechanisms to control system resources. Some resource management
features are:

e Exclusive use by a program of a subroutine, an area of memory, a disk file, or even the
operating system itself.

e Exclusive use of a peripheral device, such as a printer or HP-IB device.
e Access to the memory between the end of a program and the end of its partition.

e Synchronization of resource access by a group of cooperating programs.

Two of the main mechanisms for resource management are resource numbers (RNs) and LU
locks. RNs indicate when one of several cooperating programs is accessing a system resource
that cannot be shared, so that the programs can coordinate their accesses. RNs cannot stop
programs from failing to cooperate. That is the job of LU locks. When a program needs
exclusive access to an LU or a file, the program locks the LU or opens the file in exclusive mode.
Until the locking program either terminates, or unlocks the LU or closes the file, the LU or file
is unavailable to other programs.

Resource Sharing with RNRQ

The RNRAQ call allocates and manages resource numbers (RNs). System resources are areas
within files, I/O devices, areas of memory, even other programs or operating system routines;
anything that several programs might share.

You can think of RN as flags, like semaphore flags (on some operating systems, RNs are called
semaphores). When a program possesses one of the flags, the programs with which it cooperates
know that the shared resource is being used. Because the programs cooperate, they will not try
to use the resource until it is free. RNs cannot prevent programs from failing to cooperate, but
they do give programs a mechanism for cooperation.

It is important to remember that RNs are never associated with specific system resources. It is
entirely a function of the cooperating programs. If the programs share one or more files, then
the RN indicates which program is accessing the file or files. If the programs share an I/O device,
an RN can be used to indicate which program is writing to the device.

Often, several programs need to share a resource, but only one at a time should use it. An
example is a data base file, where several programs can write to it or read from it, but only one at

Resource Management 2-1

a time should access it. Reading programs should always read from a stable file, and writing
programs should not try to write to the same area as another program.

RNs are most useful when:

e Two or more programs use the same subroutine or change the contents of a disk file or area

in memory

® One or more programs make decisions based upon the contents of a file or memory area that
can be changed by any other program

The following terms have special meanings when used to describe RN resource management:

Allocate:

Deallocate:

Lock:

Unlock:

assign an RN to a program. RNs are allocated when a program makes an RNRQ
allocation call. There are two kinds of allocation: local or global. A locally
allocated RN belongs to the program that made the RNRQ call and can be
deallocated only by this program. The system automatically deallocates locally
allocated RNs when the calling program terminates. Other programs can use a
locally allocated RN only if the original program gives them access to the RN;
however, these programs cannot deallocate the RN. Globally allocated RNs can
be used by any program and be deallocated by any program; they are not
automatically deallocated.

free an RN to the system by ending the RN’s association with a program.

prevent other cooperating programs from trying to use a resource. An RN can be
locked to only one program at a time. There are two kinds of locks: local and
global. A local lock can be unlocked only by the original locking program. A
global lock can be unlocked by any program.

release an RN to indicate to a cooperating program that a shared resource is now
available.

RNs are managed by the RNRQ subroutine. RNRQ asks the operating system to allocate or
lock an RN to the calling program, or to deallocate or unlock an RN. The calling program owns
a locally allocated RN until the program terminates, or deallocates or unlocks the RN. The
program can pass the resource number to other cooperating programs that need to use the

resource.

2-2 Resource Management

The RNRQ Call

The calling sequence for RNRQ is:

CALL RNRQ cntwd, rn, stat)

where:
cntwd is a one-word integer variable that specifies the function of the RNRQ call:
Function Bit Octal value
No-wait 15 100000
No-abort 14 40000
Deallocate RN 5 40
Allocate globally 4 20
Allocate locally 3 10
Unlock 2 4
Lock globally 1 2
Lock locally 0 1
m is a one-word integer that returns the allocated RN on allocation requests, or
specifies the RN for lock, unlock, or deallocation requests. A returned value
of zero indicates that an RN was not allocated.
stat is a one-word integer that returns the status of the RN:

invalid request

RN deallocated as requested

RN allocated/unlocked as requested

RN locked locally to calling program as requested

RN locked globally as requested

no RN available now

RN not allocated or requested RN locked to another program
requested RN is locked globally

N PRV RER O

For example, the following program fragment contains RNRQ calls that allocate an RN locally,
lock it locally so that the program can let its cooperating programs know that the shared resource
is being used, unlock the RN to free it for the other programs, and deallocate the RN.

CNTWD = 10B I allocate locally
CALL RNRQ(CNTWD, RN, STAT)
CNTWD = 1 I lock locally

CALL RNRQ CNTWD, RN, STAT)
use. the resource

CNTVD = 4 I unl ock the RN

CALL RNRQ CNTWD, RN, STAT)
CNTWD = 40B | deall ocate the RN

CALL RNRQ(CNTWD, RN, STAT)

Resource Management 2-3

If the RN is locked to another program when the second allocate request is made, the program is
suspended because the no wait bit is not set. If the no wait bit is set, the program continues, with
the value 6 returned in the STAT parameter, and the value 0 returned in the RN parameter.
Note that if the RN is already locked to the calling program, the call returns successfully.

The no-abort bit alters the error return point of the call when an error occurs:

$ALI AS RNRQ NOABORT
CALL RNRQ CNTWD, RN, STAT, *888)

The no-abort error return is established by setting bit 14 to 1 in the request control word
(CNTWD). This causes the system to take the error branch if an error occurs. If no error occurs,
the system returns normally, and the calling program continues. The $ALIAS directive is
necessary to use the error return with system library calls.

Order of Precedence

More than one bit in cntwd can be set at a time. When several bits are set, the selected functions
are executed in the following order:

1. Local allocate (bit 3)
or
Global allocate (bit 4)

2. Deallocate (bit 5) and return

3. Local lock (bit 0)
or
Global lock (bit 1)

4. Unlock (bit 2) and return

Only one of each of the choices for steps one and three is executed — if local locking or
allocation is selected, global allocation or locking is not allowed. A single call may allocate,
deallocate, lock, and unlock an RN.

The number of available RN is fixed at system generation. If a program requests an RN when
no more are available and the no wait bit is not set, the program is suspended until an RN is free.
If the no wait bit is set, an RN is not allocated; therefore, the system returns a zero in the RN
parameter, and the value 4 in the STAT parameter.

If the allocation is successful, the system returns the number of the allocated RN in the RN
parameter. The allocated RN then is used in lock and unlock requests by cooperating programs
to indicate when the shared resource is being used.

2-4 Resource Management

Resource Number Considerations

The three most important facts to remember when using RNs are as follows:

1. The association between an RN and a shared resource exists only in the programs that use
the resource. The RN is associated only with the program to which it is allocated.

Upon request, the system allocates RNs, locks them to programs and prevents other
programs from locking the same RN, unlocks and deallocates RNs, suspends programs that
request RNs when there are none left and reschedules them when RNs are available, and
enforces the local and global allocation rules. The system does not enforce the association of
RNs and resources.

2. All programs that access a shared resource must cooperate with each other using the RNs.
The programs must agree on the RN-to-resource associations and must not access the
resource when another program has locked an RN. The programs must lock an RN before
accessing its resource to let cooperating programs know that the resource is being used and
unlock the RN when finished to make the resource available to the other programs.

3. Unless the program is terminated saving resources, the system automatically unlocks all RNs
that are locally locked when the calling program is aborted or terminated.

RNs can control access to a single file or to a group of files. To use as few RNs as possible, you
can use one RN to control access to a group of files. While this method does make RNs
available to other programs, it can be inefficient because the RN for the entire group of files is
locked when any of the files is accessed. Programs may have to wait for the RN to be unlocked
even if the file the program needs is not busy. If a separate RN is used for each file, less time is
lost waiting because only when two programs need the same file is there a conflict. If such a
conflict seems likely, the system manager should make a large number of resource numbers
available at system generation to make the use of RNs more efficient.

You should decide whether execution speed or the availability of RNs is more important when
deciding whether to use one or several RNs for a group of files. A single RN should always be
used for a group of files if all of files must be updated before any of the files are accessed by
other programs.

The system does not always allocate RNs in the same order from one series of RNRQ calls to
another. The RNs that are assigned can be changed by other programs that use the RNs, by
modifications in the system initialization, and by a new system generation. Therefore, your
programs should always check with the program that makes the RNRQ calls to find out which
RNs represent which resources. A program cannot assume that RN 6, for example, always
represent the same file.

For each application that uses RNs, an RN initialization program can be run to allocate RNs for
the application. The RNs can be stored in a file or a memory common block, or the RNs can be
passed directly to the application programs.

Resource Management 2-5

Race Conditions

Sometimes programs that share a file or system common variables execute correctly when run
independently, but do not execute correctly when run simultaneously. The intermittent errors
that can occur when the programs interfere with each other are called race conditions. Race
condition errors are often difficult to solve because they are sensitive to timing, and, therefore,
hard to reproduce.

The following example shows how a race condition can occur:

PROGRAM A PROGRAM B
COVWON J COVVON J
IF(J.EQ 2) J=J+1 IF(J.EQ 2) J=J+3

Programs A and B share the system common variable J. J is set to 2 before A or B execute.
Program A begins execution but is interrupted by the higher-priority program B after executing
the IF statement but before executing the statement J = J + 1. Because J is still 2, program B
executes its IF statement and J = J + 3. Program B continues with its other tasks and
terminates. Program A then continues, and executes the statementJ = J + 1.

If program A ran alone, it would terminate with J = 3. If program B ran alone, it would
terminate with J = 5. Together, programs A and B terminate with J = 6. Any other program
that uses J (perhaps the program that initialized J to the value of 2 and scheduled programs A
and B) does not get the expected results.

Program priority cannot be relied upon to avoid race conditions. There are many conditions
under which low-priority programs and higher-priority programs can interfere with one another.
The correct way to avoid race conditions is to use RNs to help the programs coordinate their
accesses to data.

2-6 Resource Management

Deadly Embrace

There is a condition related to race conditions that is known as a deadly embrace. The following
sequence describes the steps that cause a deadly embrace:

1.
2.
3.
4.

Program A successfully locks RN 5 to indicate that it needs to access a data file.
Program B successfully locks RN 7 to indicate that it needs to access the printer.
Program A tries to lock RN 7 to indicate that it needs to access the printer.

Program B tries to lock RN 5 to read data from the file, but is suspended because RN 5 is
locked to program A.

Deadly embrace conditions are easier to discover and repeat than race conditions. Deadly
embrace is also easily avoided:

If several files are to be updated together, all of their RNs should be successfully locked
before any file is updated.

When two or more RNs are to be simultaneously locked, use lock requests with no wait for
the second and subsequent requests. This prevents the calling program from being
suspended by the system with one or more RNs locked to it. It is best to avoid having RNs
locked to a suspended program.

The calling program should continue to try the lock until the RN is free. The calling program
can access the resources when all necessary RNs are locked.

In many applications, it is important to keep as many RNs free as possible. While the calling
program waits for a locked RN to become available, the program should unlock any RNs that
it had locked, so the RNs can be used by other programs. When the RN the calling program

needs is free, the RNs released by the program can be locked again.

In summary, if a program must lock more than one RN and finds one or more of the RNs
already locked, the program should release the RNs that it has already locked (if necessary), wait
for the RN to become available, and again try to lock all needed RNs. The program must not
fully or partially update any files, unless all the RNs locked that control access to the file and any
related files that must be updated simultaneously are locked.

Resource Management 2-7

LURQ (Logical Unit Lock)

The LURQ subroutine lets a program have exclusive access to an I/O device. The calling
sequence is:

CALL LURQ option[, luary[, numlus| , keynum]]1])

where:
option is a one-word integer variable that determines whether the LURQ call locks or
unlocks LUs.
luary is an integer array of LUs to be locked or unlocked.

numlus is a one-word integer variable that specifies the number of LUs in LUARY.

keynum is a one-word integer variable that returns a key number to let the calling
program share its locked LU with other programs.

Returns:

A-Register: 0 = lock successful.
1 = one or more LUs are already locked.

This request gives the calling program exclusive access to an LU until the program removes the
lock. Any program that tries to use or lock the locked LU is suspended until the lock is removed.
The locking program can pass its key number to other programs to let them use the locked LU.
The other programs can then access the device by specifying the key number in their standard
and class I/O calls.

LU locks remain in effect until the calling program terminates or unlocks the LUs, unless the
program terminates saving resources, in which case the locks remain in effect. The LU locks
only can be removed by running the calling program again to unlock the locked LUs.

Caution 1t is legal to lock the disk that contains the swap file and program files. If the
disk is locked, RTE-A cannot swap programs out of memory, or load programs

or program segments from disk into memory. All programs that need to use
the disk are LU lock suspended until the disk LU is unlocked.

2-8 Resource Management

LURQ Parameters

The option parameter can be set to any of the following values to select the lock or unlock
functions:

0XX001B Lock with wait. Lock the LUs specified in luary and numlus, but suspend the
calling program if any of the LUs in luary are locked to other programs. As
the other programs unlock the needed LUs, the system locks them to the
calling program. When all of the requested LUs are locked, the calling
program is automatically rescheduled. If omitted, numlus defaults to 1,
meaning that only the first LU in luary is locked.

Note If the calling program has any LUs already locked, the lock with wait call
unlocks them, and then locks the LUs in luary. To prevent locks from being
lost, use the lock without wait option.

1XX001B Lock without wait. Lock the LUs specified by luary and numlus, unless any of
the specified LUs are already locked to another program. If any are, return
without locking any of the LUs. The A-Register contains the value 1 after
such a call to indicate that at least one LU was already locked.

0XX000B Unlock the LUs specified in the luary and numlus parameters. If omitted,
numlus defaults to 1 meaning that only the first entry in /uary is unlocked.

1XX000B Unlock all LUs locked by the calling program. The luary and numlus
parameters are ignored; therefore, they can be left out of the call.

In all of the above, the value of XX depends on the setting of bits 10, 12, and 14. The meaning of
these bits is described below.

Bit 14: No-abort option. If an error occurs in processing the LURQ call, return to the program
for error processing.

$ALI AS LURQ noabort

LUARY(1) = 6
OPTI ON = 040001B
CALL LURQ (OPTI ON, LUARY, 1, *100)

The $ALIAS compiler directive (required in FORTRAN programs for no-abort error
processing), the no-abort bit, and the *100 special error return label cause a return to the main
program at the statement labeled 100 for error processing.

The program is aborted if the no-abort bit is not set and an error occurs in processing the LURQ
call.

Bit 12: LU 1 override option. If this bit is set, the system LU 1 is locked instead of the session
LU 1.

Resource Management 2-9

Bit 10: Spool node lock override option. Spooling or I/O redirection in effect for any LUs is
overridden and the specified LUs are locked. If your system does not have spooling, bit 10 is
undefined.

When bit 10 is not set, spooling or redirection is observed. If LU 6 is redirected to LU 8, then a
lock or unlock request for LU 6 locks LU 8. If LU 6 is spooled, then the lock or unlock request
for LU 6 locks the spool file, not LU 6. LU 6 is not affected.

luary is an integer array of LU numbers to be locked or unlocked.

numlus specifies the number of LUs in luary. If omitted, numlus defaults to 1 meaning that
only the first entry in luary is locked or unlocked. The value of numlus must not
exceed the size of luary.

keynum returns the key number for the lock to the calling program. The returned value can
be passed to other programs to allow access to a locked device.

Unlike RNs, LU locks do not require program cooperation. The system establishes direct
associations between locks and LUs, and does not permit programs to ignore the LU locks.

Deadly Embrace

When two or more programs employ LU locking, a condition known as a deadly embrace or
deadlock can occur. The following example shows how a deadly embrace can occur:

1. Program A locks LU 8, the magnetic tape, and begins to read from it. Program A is I/O
suspended while the read proceeds.

2. Program B locks LU 6, the line printer, and tries to lock LU 8, which is already locked by
program A. The system suspends program B to wait for LU 8 to be unlocked.

3. The read request to the magnetic tape completes. Program A is rescheduled, and tries to
lock LU 6 to print the data from the magnetic tape. LU 6 is already locked by program B, so
the system suspends program A to wait for LU 6 to be unlocked.

4. The programs are now in a deadly embrace, because each is suspended, waiting for the other
to unlock an LU. Neither can unlock the LUSs, so both are hung until you intervene.

Deadly embrace can be avoided easily by performing all LU locks in a single LURQ call before
accessing the devices. With this technique, there is no time that the program is suspended with
locked LUSs; either it is suspended or it is running with all its LUs locked.

Figures 2-1 through 2-3 show programs A and B, and their deadly embrace.

2-10 Resource Management

O0000000

C(1)

C(2)

C(3)

C(4)

PROGRAM A
| MPLI CI T | NTEGER (A-2)

DI MENSI ON LUARY (2), | NBUF(40)
DATA NAME /' B '/

Read data fromthe mag tape, and
di splay the data on the printer.

(1) Lock the mag tape (LU8) and
schedul e program B

(2) Read the data

(3) Lock the line printer (LU 6)

(4) Print the data

OPTI ON = 100001B
LUARY(1) = 8

CALL LURQ (OPTION, LUARY(1), 1)

CALL EXEC (10, NAME)
CALL EXEC (1, LUARY(1), |NBUF

LUARY(2) = 6

CALL LURQ (OPTION, LUARY(2), 1)

WRI TE (LUARY(2), 6) | NBUF

NAVE(1)

40)

FORMAT (“Mag tape info is ”/,40A2)

END

Figure 2-1. Program A, Deadly Embrace Example

Resource Management

2-11

PROGRAM B (3, 70)
| MPLICI T | NTEGER (A-2)
DI MENSI ON LUARY(2), | NBUF(40)
C Read data fromthe mag tape and
C di splay the data on the printer.
C
C (1) Lock the line printer (LU 6)
C (2) Lock the mag tape (LU 8)
C (3) Read the data
C (4) Print the data
OPTI ON = 100001B
LUARY(1) = 6
C(1)
CALL LURQ (OPTION, LUARY(2), 1)
C(2)
LUARY(2) = 8
CALL LURQ (OPTION, LUARY(2), 1)
C(3)
CALL EXEC (1, 8, |INBUF, 40)
C(4)
WRI TE (LUARY(2), 6) | NBUF
6 FORMAT (“Mag tape info is”/, 40A2)
END

Figure 2-2. Program B, Deadly Embrace Example

Cl > wh

Program DataPartition CodePartition

Nane Pr PC Seg Size Status Size Status Program Status

Sessi on 46 Super user NMANAGER

cl 51 24301 32 in waiting for WH

VWH 5 6336 12 in schedul ed

B 70 0 4 in dor mant

Tue Mar 1, 1983 11:42 am

Cl>xg a

Cl > wh

Program DataPartition CodePartition

Nane Pr PC Seg Size Status Size Status Program Status

Sessi on 46 Super user NMANAGER

cl 51 24301 32 in waiting for WH

VWH 5 6336 12 in schedul ed

B 70 43372 4 in | ockd dev susp on lu 8
LU 8 is locked to A

A 99 45273 4 in | ockd dev susp on lu 6

LUG6 is |l ocked to B
** Deadl ock* *

Tue Mar 1, 1983 11:42 am

Figure 2-3. WH During Deadly Embrace

2-12 Resource Management

LIMEM (Find Memory Limits)

LIMEM returns the starting location and size of the memory area between the end of the
program or its stack area and the end of the program partition. LIMEM lets the program use
this spare memory. Note that the size of the memory area returned by LIMEM does not include
any EMA memory that the program may have.

For programs that use the code and data separation features of VC+ (CDS programs), the
memory area reported by LIMEM begins after the stack area in the data segment partition. The
size of the area is determined by the size of the data partition selected when the program was
linked, not by the physical size of the memory partition in which the program is actually
executing.

For non-CDS programs, the area reported by LIMEM begins after the end of the calling
program. Its size is also determined by the size of the partition selected when the program was
linked.

For both CDS and non-CDS programs, the physical memory partition in which the program
executes can be larger than the program size set when the program was linked.

LIMEM Calls

For CDS programs, the format is as follows:

CALL LI MEM code, fwam, words)

where:
code is ignored.
fwam is a one-word integer variable that returns the address of the first word after the
end of the stack area in the data partition.
words is a one-word integer variable that returns the size of the area between fwam and

the end of the data partition, expressed in words.

For non-CDS programs without overlays, the format is as follows:

CALL LI MEM code, fwam, words)

where:
code is ignored.
fwam is a one-word integer variable that returns the address of the first word after the
end of the program code.
words is a one-word integer variable that returns the size of the area between fwam and

the end of the program partition, expressed in words.

Resource Management 2-13

For non-CDS programs with overlays, the format is as follows:

CALL LI MEM code, fwam, words[, curnt[, cwrds]])

where:

code is ignored.

fwam is a one-word integer variable that returns the address of the first word after the
end of the longest program overlay.

words is a one-word integer variable that returns the size of the area between FWAM
and the end of the program partition, expressed in words.
FWAM and WORDS describe the largest area that is guaranteed to be free at all
times of the program’s execution.

curnt is a one-word integer variable that returns the address of the first word after the
end of the current overlay.

cwrds is a one-word integer variable that returns the size of the area that begins at curnt,

expressed in words.

curnt and cwrds describe the area of memory that is guaranteed to be free only
while the current overlay is executing.

Do not use the same variable for any of the following parameters: fwam, words, and curnt. If the
same variable is used in any combination of the three, then incorrect results occur. The
calculation of cwrds is dependent on all three.

Do not use the LIMEM subroutine in Pascal programs. The LIMEM subroutine interferes with
Pascal’s use of the Heap/Stack area.

LIMEM Details

The size of the area of memory reported by LIMEM is determined by the size of the partition
that was specified or defaulted when the program was linked. The size of the partition in which
the program actually executes does not determine the amount of available memory. The
memory that exists between the end of the partition size set at link time and the end of the actual
partition is not available to the program.

LIMEM does not change the size of the program or its partition. LIMEM only reports the
location and size of the available memory. For CDS programs, the program size is set by the
LINK HE command, and can be changed by the DT operator command after the program has
been linked and restored by the RP operator command.

LIMEM uses an EXEC 26 call to determine the memory information.

2-14 Resource Management

Standard 1/O

Standard I/O Requests

In general, all program requests for standard I/O operations are coded according to formal call
sequences shown in Chapter 1. These EXEC and system library calls provide for nonbuffered or
buffered data transfers as well as I/O control and status requests. The following is a summary of
requests used in the standard I/O function group.

Note All parameters are single-word integers or, when specified in the call
description, integer arrays (buffers).

Standard I/O requests can be made in one of two forms: buffered or nonbuffered. Nonbuffered
I/O requests allow the calling program to operate synchronously with its requests. This allows all
available I/O status associated with a particular request to be returned to and acted upon by the
calling program. Programs issuing requests to nonbuffered devices are suspended for the
duration of the request. Suspended programs cannot be swapped. This is always true for read
requests because the data transfer is from the device to your program buffer.

A program can establish nonbuffered operation for any I/O requests it issues. This request is
made through a special control parameter bit, (bit 14 in cntwd), which overrides whether or not
the device was specified as a buffered device when the system was generated. (Note that this
does not affect the buffered operation of requests from other programs.)

When a program is guaranteed a nonbuffered operation, bit 13 in the control word can be set to
allow the total error handling/recovery procedures to be defined and handled by your program.

It is helpful to use bits 13 and 14 together because status information and device error conditions
are not available using buffered operations. By setting bits 13 and 14 at the same time, you
ensure nonbuffered operation and can obtain device status and error information.

Standard I/0 3-1

As a general rule, buffered operation on a device is used unless any of the following conditions
are true:

e The request is a read.

e The device was specified as nonbuffered when the system was generated.
e Bit 14 in the control word parameter is set on the request.

e There will never be enough SAM available for the request.

e There is not enough SAM currently available and the no-suspend bit was set in the ECODE
for the request.

Buffered write and control requests offer the advantage of continuing execution of the calling
program in parallel with the I/O operation. In addition, the program remains swappable while
the buffered operation progresses. This means that the calling program is capable of continued
execution without a need for returned status from these I/O requests.

Returned device status often includes transmission log, error status, and available device status.

You should understand buffer limits when using buffered 1/O, especially if large buffers are used;
buffer limits are discussed in the RTE-A System Design Manual, part number 92077-90013.

Handling Device Errors

You can use Standard I/O in two ways to handle device errors. The first way is to let the
operating system take care of the device error. When the operating system handles device
errors, the following actions are taken:

1. The device is downed.
2. 1/O is suspended.
3. You are alerted.

After the device problem has been corrected, you can up the device, which reissues the
suspended request and resumes I/O operations. Using buffered I/O, your program is allowed to
continue its execution during this I/O error recovery process.

The second way to handle device errors is to set bits 13 and 14 in the control word parameter. In
this case, your program can interrogate the device. The device is not downed, the I/O request is
not suspended, and you are not alerted. Programs using this method to handle device errors
should be designed to perform some type of device diagnostics. In general, your program needs
to check the A- and B-Registers to determine if an error occurs. Note that the error return, even
if specified, will not be taken.

I/0 and Swapping

Disk-resident programs performing I/O are swappable under any one of the following conditions:
e The request is a control request with no buffer.

e The device is buffered, the request is for output or control.

e The device is down.

e The LU is locked to another program.

3-2 Standard 1/O0

EXEC 1 and 2 (Read and Write)

EXEC 1 and 2 allow the reading or writing of a specified number of words or characters to a

device.

CALL EXEC(ecode, cntwd, bufr, bufin[, pram3[, pram4[, 0, 0, keynum]]])

where:

ecode

bufr

bufln

pram3
pram4

keynum

cntwd

is the request code: 1 for read, 2 for write.

is the buffer. For read operations (ecode=1), this is the array where the system
returns data. For write operations (ecode=2), bufr is the array containing the
data to be written.

is the buffer length. A positive value indicates the number of words; a negative
value is the number of characters in bufr. When an array of type REAL is
transmitted, the buffer length must be the total number of two-byte words
required, which is two times the array length for standard precision or four times
the array length for double precision. bufln must be set to zero when pram3 and
pram4 are used to pass commands for direct I/O.

is an optional parameter or optional buffer.
is an optional parameter or optional buffer length.

is the key number of the locked LU, corresponding to the keynum parameter
returned by LURQ. See LURQ in Chapter 2 for more details.

is the control word:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BB|NB|UE| Z X |TR|] X | EC| X Bl LU

BB is the device driver bypass bit

NB forces nonbuffered operation

UE allows your program to handle device errors

Z specifies optional parameters pram3 and pram4 as a buffer and buffer length

TR establishes transparency mode in effect

EC establishes echo of input

BI selects ASCII or binary data transfer

LU selects device by logical unit number in the range 0-63. For LUs > 63, use
XLUEX.

X is defined for the appropriate driver

Standard I/O 3-3

Read/Write Parameters

In the cntwd control word:

LU

BI

EC

TR

UE

NB

BB

(bits 0-5) is the logical unit number of the device where data is read from or written
to. The range is from 0 through 63, inclusive. (LU 0 is the bit bucket.) For logical
units greater than 63, refer to the XLUEX call later in this chapter.

(bit 6) indicates whether binary (BI=1) or ASCII information (BI=0) is to be
transmitted.

(bit 8) indicates if echo is in effect. For echo mode (EC=1), keyboard input is
displayed as received. This is the normal mode of operation for terminal type
devices. For non-echo mode (EC=0), keyboard input is not displayed.

(bit 10) indicates whether transparency mode is in effect. When TR=0, the
transparency mode is turned off, and terminators and/or embedded control
characters may be removed or added by the driver on input or output (for example, a
carriage return/linefeed may be added on a write to a terminal). When TR=1, the
transparency mode is turned on and driver addition or removal of information is
prohibited.

(bit 12) when set, indicates that optional parameters pram3 and pram4 specity a
buffer and buffer length where special additional driver/device information can be
supplied. If the Z bit is set, the program is not swappable. See description of pram3
and pram4 below.

(bit 13) is the user error-handling bit. When set (UE=1), it overrides normal
operating system handling of device errors. If a device error occurs, the calling
program is allowed to resume execution, the device is not downed, and a message is
not displayed on the system console. If not set (UE=0) and a device error occurs, the
device is downed, IO is suspended, and a message is displayed on the system console.

(bit 14) is the nonbuffered bit. If set (NB=1), the associated request operates in
nonbuffered mode. It should be set whenever the UE bit (bit 13 in the control word)
is set.

(bit 15) is the device driver bypass bit. If set (BB=1) the device driver is bypassed.
In general, you should not set this bit.

(bits 7, 9, 11) are defined for the appropriate driver. Refer to the RTE-A Driver
Reference Manual, part number 92077-90011, for details.

3-4 Standard 1/O

Optional parameters are:

pram3 and pram4 supply additional information depending upon the requirements of the driver.
When the Z bit is set in the control word, pram3 and pram4 are used to define
the Z-buffer. pram3 defines the Z-buffer and pram4 defines its length. If the
request is to a disk-type device (driver types 30 through 37), pram3 and pram4
must be specified even if the device driver is bypassed; otherwise, an 1001
error occurs. Note that when pram3 and pram4 are used to pass commands,
bufin must be set to 0. Refer to the RTE-A Driver Reference Manual for details
on the use of these parameters.

0 (zero in an EXEC 1 or 2 call sequence is a formal placeholder that must be supplied
when the keynum parameter is needed.

keynum is a key number assigned by the system to a locked LU when a request is
made using the LURQ call. This value is returned from the LURQ request
and can be supplied in EXEC 1 and 2 requests to allow access to a locked
device. Thus a locked LU can be shared among cooperating programs. Note
that the program that issued the LURQ request is never required to supply
this parameter when making its own I/O request. (See the LURQ section in
Chapter 2.)

Read/Write Requests

Requests for data transfers to any device always require the first four parameters, thus
identifying the transfer direction, the device and its control details, and the data buffer and
length. The remaining parameters are optional. The need and use of parameters pram3 and
pram4 are dictated by the specific device or driver called upon to perform the I/O operation. For
example, a disk driver can be expected to use pram3 and pram4 as simple parameters defining
disk track and sector. Access to the HP-IB driver might use pram3 and pram4 as a command
buffer, and buffer length defining general HP-IB commands. For any read/write request, pram3
and pram4, as needed, always supply information from the calling program to the I/O device
driver. Specific details will be found in the RTE-A Driver Reference Manual.

A- and B-Register Returns

The operating system puts end-of-operation information for reads and nonbuffered writes in the
A- and B-Registers. The A-Register contains word 6 of the DVT (see the EXEC 13 status
section for details of this word).

The B-Register contains a positive number that is the number of words or characters (depending
upon program specification) actually transmitted. Thus, you can find the number of words or
characters received on any input request by getting the contents of the B-Register. The number
in the B-Register is always positive.

If, in the EXEC call, bufln is a negative number, the content of the B-Register is the number of
characters received. If bufln is the positive number, the B-Register contains the number of words
entered.

The registers are meaningless in output requests to a buffered device. If the system reads a
record that is shorter than the original buffered request length, the unused portion of the user

Standard I/O0 3-5

buffer may have been modified by the request. (The extent and nature of the modification
depends on which device and driver are used.) This implies that a buffer should not be
pre-initialized unless the device type and driver characteristics are known.

EXEC Examples

This example illustrates an EXEC 1 read. The various options used are:

1. Setting the Z bit in the control word to make the request a write/read, or write/write request.

2. Setting the echo bit in the control word so that the information typed in will be echoed at the
terminal.

3. Setting the LU (bits 0-5) where the read operation will take place.

Write/read is useful for writing a prompt to the display terminal before reading the response into
the data buffer. Both of these operations can be accomplished in the same call.

When the EXEC request executes, the word “PROMPT>>” appears on the terminal. The
driver then echoes the characters typed in and, upon receiving a carriage return, reads up to 80
characters.

| MPLICI T | NTEGER (A-2)

DI MENSI ON BUFR (40), PRMI (4)

DATA PRMI /' PROWPT>>'/

C SE.T THE | NPUT BUFFER LENGITH TO ALLOW FOR 80 CHARACTER
BUFLN = -80

C SET THE QUTPUT BUFFER LENGTH (PRMILN) TO PRI NT 8 CHARACTER
PRMILN = -8

CALL EXEC (1, 010401B, BUFR, BUFLN, PRMI, PRMILN)

END

The example below illustrates the use of EXEC 2 write. The routine writes a buffer of 40 words
maximum to LU 11. The program reports the number of words that were actually written to the
device and checks for errors and reports them.

PROGRAM EX2

IMPLICI T I NTEGER (A-2)

DI MENSI ON BUFR(40)

C SET THE NO-ABORT BIT TO CATCH ERRORS
CWITE TO LU 11
C SET THE nonbuffered BIT TO MAKE TRANSM SSI ON LOG RETURN VALI D

VWRI TS
CNTVD

2 + 100000B
11 + 40000B

3-6 Standard I/O

CALL EXEC(WRI TS, CNTWD, BUFR, 40, *9999)

C CHECK STATUS....(A REG CONTAINS DVT WORD 6, B TRANSM SSI ON LOG
CALL ABREG (A B)
WRI TE(1,1) B

1 FORVAT(“NUVBER OF WORDS ACTUALLY WRI TTEN ", I 3)

9999 CALL ABREG(A, B)
WRITE(1,2) A B

2 FORMAT(“ERROR ON VRITE = ", A2, A2)
END

An example of a block mode enabled page read is given in Appendix F of the RTE-A Driver
Reference Manual, part number 92077-90011.

SYCON (Write Message to System Console)

The SYCON subroutine writes a message to the system console (System LU 1).
CALL SYCON(ibuf, ilen)

where:

ibuf s the buffer that contains the message to be written.

ilen is the length of ibuf; a positive value indicates the number of words and a negative
value indicates the number of characters.

This routine overrides LU mapping and writes directly to system LU 1.

The Macro calling sequence is as follows:

EXT SYCON
JSB SYCON
DEF RTN
DEF | BUF
DEF | LEN

RTN

Standard 1/0 3-7

EXEC 3 (I/O Device Control)

The EXEC 3 control call carries out various I/O control operations, such as backspace, write
end-of-file, and rewind.

Various device control operations are accomplished through specific I/O control requests. This
includes, for example, such operations as clear or reset device, or backspace record. All control
requests require the first two parameters (ecode and cntwd) to identify the device and the desired
control functions.

The remaining parameters (praml through pram4) are optional, depending upon the needs of a
device. If the I/O device is not buffered, the program is placed in the I/O suspend list until the
control operation is complete.

For specific device control information, refer to the RTE-A Driver Reference Manual, part number
92077-90011.

CALL EXEC(ecode, cntwd[, praml[, pram2[, pram3[, pram4[, 0, O, keynum]1]111])

where:
ecode is 3 for an I/O device control request.
cntwd is the control word:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BB|NB|UE| Z FUNCTION LU
BB is the driver bypass bit
NB forces nonbuffered operation
UE allows your program to handle device errors
V4 specifies optional parameters pram3/4 as the Z-buffer and
Z-buffer length respectively.
FUNCTION specifies desired control function; see comments below.
LU selects device by logical unit in the range of 0-63. For logical units
greater than 63, use XLUEX call.
praml,
pram2 are optional parameters.
pram3,
pram4 are optional parameters or the optional buffer and buffer length.
0,0 are formal placeholders required if parameter keynum is used.

keynum is the key number of the locked LU.

3-8 Standard I/O

1/O Device Control Parameters

cntwd (the control word) is essentially the same as in the EXEC 1 and 2 read and write call. The
Z bit and optional parameters praml through pram4 are driver-dependent. If needed by the
driver, praml and pram?2 are sent. If the Z bit is set, pram3 and pram4 specify the Z buffer.
pram3 defines the buffer and pram4 is the buffer length passed to the driver as required. Refer
to the RTE-A Driver Reference Manual for more information.

If the device or request is nonbuffered and the Z bit is set, the program is not swappable.

The exception to EXEC 3’s similarity with EXEC 1 and 2 is the FUNCTION field (bits 6-11) in
cntwd. 'To determine the function codes defined for a particular device see the appropriate driver
in the RTE-A Driver Reference Manual.

Optional parameters are:

praml - pram4 are driver-dependent parameters. Their use can vary considerably. With a
control request of function code 23, for instance, praml indicates enabling or
disabling of an asynchronous interrupt response. See the appropriate section
of the RTE-A Driver Reference Manual for details of the contents of each
optional parameter.

keynum is a key number assigned by the system to a locked LU when a request is
made via the LURQ call. This value is returned from the LURQ request and
can be supplied in the above 1/O requests to allow access to a locked device.
Thus a locked LU can be shared among cooperating programs. Note that the
program that issued the LURQ request is never required to supply this
parameter when making an I/O request. See the LURQ section in Chapter 2.

A- and B-Register Returns

End of operation status for a nonbuffered request is returned in the registers as follows:

A-Register = Device status found in DVT word 6 (see EXEC 13 status section)
B-Register = Device status found in DVT word 17

Standard I/O0 3-9

REIO (Buffered 1/0)

REIO allows a program to be swapped while waiting for input or output. It is used exactly the
same way that EXEC is used for request codes 1, 2, and 3, with the same parameters and return
values. The advantage of REIO over standard EXEC I/O calls is that REIO uses Class I/O to
force buffering on input from a buffered or nonbuffered device. Note that output requests to a
nonbuffered device are not changed into a buffered request.

If the Class option is not included as part of the operating system or if there is not enough SAM
available for the request, REIO calls become standard EXEC calls and the standard EXEC call
restrictions apply.

XLUEX (I/O Extended Logical Unit EXEC)

In RTE-A, there may be up to 255 logical units. With standard EXEC calls, logical unit numbers
greater than 63 may not be specified. The XLUEX (extended logical unit EXEC) subroutine
solves this problem, by splitting the control word in an I/O EXEC request into a double word
quantity, as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cntwd |OV|[OS| O |WT reserved logical unit # word 1

same as cntwd in EXEC call reserved word 2

If the OV bit is set, then LU mapping is overridden; thus, a write to LU 1 will go to system LU 1
(typically the system console), and not to the scheduling terminal.

If the OS bit is set, spooling to the logical unit is overridden; therefore, even if spooling to an LU
is active, all writes to that LU go directly to the logical unit.

If the WT bit is set, the I/O operation writes through any pending read operation on the device.
The read operation is aborted and restarted after the write operation completes. This allows a
program to output urgent messages immediately and not wait until the read operation completes.
When using write-through-pending-reads on buffered devices, you should understand how to use
buffer limits, especially if large buffers are used or if numerous requests are sent to the devices.
Buffer limits are discussed in the RTE-A System Design Manual, part number 92077-90013.

Bits 6-15 of cntwd word 2 are identical to bits 6-15 of the cntwd for the EXEC call.

All parameters in an XLUEX call are identical to those in a standard EXEC call, except for the
cntwd parameter. XLUEX calls are functionally equivalent to EXEC calls, unless the OV, OS, or
WT bit is set.

When programming in FORTRAN and Pascal, it is suggested that the XLUEX cntwd be defined
as an array of two single-word integers, with the LU number in the first word.

XLUEX should be called with ecode equal to 1, 2, 3, 13, 17, 18, 19, or 20. It is suggested that all
new programs be written using XLUEX for these EXEC calls in order to access logical units
greater than 63.

3-10 Standard I/O

This example accepts input from a terminal at LU 68 using an XLUEX call with the echo bit set.

PROGRAM XLTST
| MPLICI T | NTEGER (A-2)
DI MENSI ON BUFR (40), CNTWD (2)

BUFLEN=40

ECODE=1 + 100000B

CNTWD (1) = 68

CNTWD (2) = 400B

CALL XLUEX (ECODE, CNTWD, BUFR, BUFLEN, * 100)

C SUCCESSFUL READ

C ERROR OCCURRED IN READ CALL
100 CALL ABREG (A B)

END

XREIO (Extended REIO)

XREIO allows for up to 255 logical units by having an extended (double word) cntwd. All other
parameters and function of XREIO are identical to REIO. The format of the cntwd is the same
as XLUEX.

AbortRq (Abort Current Request)

This subroutine aborts the current request (at the head of the queue) on the specified LU.
AbortRq has the same effect as the “CN,/lu,AB” command.

CALL Abort Rq(u)
AbortRq returns status in the A-Register as follows:
status = AbortRq

where status is:

0000000 if request was successful and there are no more pending requests on the LU.
OXXXXX if request was successful and there are pending requests on the LU.
177777 if request was unsuccessful for any reason such as:

1) illegal LU (LU < 0 or LU > max LU;
2) LU not assigned;
3) no requests pending on the LU.

Standard I/O0 3-11

EXEC 13 (Device Status)

The status of I/O operations is maintained by the operating system within the actual device and
interface tables for each device in the system. Generally this information can be viewed as a
momentary view of an I/O operation, in that the state of I/O conditions is constantly changing.
The returned status consists of operating system maintained information and driver supplied
information.

The operating system information is dynamic and reflects the state of events at the precise
instant that the status request is executed. The driver-supplied information, on the other hand,
normally reflects conditions as they existed at the time of the previous request. The calling
program is not I/O suspended when the call is made, as this call is not an actual request to the
driver.

If you want to keep the dynamic status from constantly changing, the device should be locked.
See the LURQ section in Chapter 2 for more information on locking an LU.

The following steps might be done to ensure stable device status:

1. Lock the device
2. Check the device status
3. Perform the appropriate action on the device

4. Unlock the device
The EXEC 13 status request calling sequence is:

CALL EXEC(ecode, cntwd, statl[, stat2[, stat3[, stat4]]])

where:
ecode is 13 for a device status request.
cntwd is the control word:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 z 0 LU
statl is the returned device status (DVT word 6):

For DDCO00/DDCO01 Serial Drivers DVT6 is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AV DEVICE TYPE EOF| BR|EOM LD| OF | PF| TO | E

For all other drivers DVT6 is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AV DEVICE TYPE EOF| DB|EOM SOM SE X E

3-12 Standard I/O

stat2 is the returned interface status (IFT word 6)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AV INTERFACE TYPE X I/O SELECT CODE

stat3 and stat4 are:
It Z = 0, returned driver parameter words 1 and 2.

If Z = 1, buffer and length where information from the driver parameter area is
returned.

Device Status Parameters

Two areas of cntwd (the control word) are valid for this call. Bits 0-5 specify the LU from which
to receive status information. Bit 12, the Z bit, defines the usage of stat3 and stat4.

If the Z bit is zero (0) and if stat3 and stat4 are included in the call, they respectively contain
driver parameter words 1 and 2 from the DVT area.

If the Z bit is set to one (1) and if stat3 and stat4 are included in the call, they respectively define
a buffer and buffer length. In this way, any number of driver parameters can be obtained from
the DVT area.

All other bits in the control word have no meaning for this call.

statl is the returned device status word (DVT word 6) which provides information on the
particular device’s state. Note that this same information is provided at the end of
any nonbuffered READ, WRITE, or CONTROL request in the A-Register. The
fields of this word have the following meanings:

For DDC00/DDCO01 Serial Drivers:
AV is the device availability:

= driver is free to process a new request

device has been set down by you or the driver

driver is currently processing an I/O request

down but busy with a request (normally only occurs if you down an active
device)

0
1
2
3

Standard I/0 3-13

DEVICE TYPE
is a logical 6-bit value used to describe the type of device associated with the
current DVT. All device type values are initially established at generation.
Shown below are the device types for the devices which may be included in a
typical system:

Type Device
Number Type

00-07 Terminal

12 Line Printer

20 264x Minicartridge
23 Magnetic Tape

24 Streaming Tape Drive

26 CS/80 Tape Drive

30 Floppy Disk

31 Mirrored Disk

32 MAC Disk

33 CS/80 Disk

34 Short Cylinder MAC Disk
35 Multi-CPU MAC Disk

36 PROM

37 HPIB

41 Writable control store
50-60 A/D or Parallel card

64 Multipoint slave

66 DS/1000-1V PSI card
70-77 Instrument

The remaining device status bits are as follows:

EOF s set if end-of-file condition has been detected (set by CTU drivers only).
BR is set if a break character is detected on the received data line.

EOM s set if end-of-medium has or will position past the physical media, such as

attempting to write 2 disk tracks with only 1 remaining (set by detection of
EOT in normal ASCII read).

LD is set if the communication line is down, valid for modem lines after first
connect. Also, it is set if there is a speed sensing failure for ID400/ and
1D800/801.

OF is set if there is an overflow error; the application is losing data.

PF is set if there is a parity error or frame error in the data.

TO is set if there is a timeout by the device driver.

E is an error flag that is set if any DVT16 error bits are set.

3-14 Standard 1/O

For all other drivers:

AV

as described previously for the DDC00/DDCO01 Serial Drivers.

DEVICE TYPE

as described previously for the DDC00/DDCO01 Serial Drivers.

The remaining device status bits are as follows:

EOF
DB

EOM

SOM

SE

X

is set if end-of-file condition has been detected.

is set if the device is busy. This would indicate that the device is performing
some function which prevents other operations from starting, such as
cartridge tape rewind.

is set if end-of-medium has or will position past the physical media, such as
attempting to write 2 disk tracks with only 1 remaining.

is the start-of-medium indicator, set to indicate the media is at the start of
the recording area.

is a “soft” error indicator, set when some difficulty has been encountered
during the eventual successful completion of a request. This bit would be
set, for example, if a successful disk read had been performed but one or
more retries had been necessary to read the data.

is an error flag, set whenever a driver signifies a “hard” error condition
which prevents the completion of a request (such as timeout, not ready, and
write protected). For any error of this nature, the appropriate error
message is displayed on the system console (unless the UE bit is set). See
the section on RMPAR. Whether the device has also been set down or not
can be determined by examining the AV bits (15 and 14), described
previously.

is where driver or device dependent status information is returned.

Optional parameters are:

stat2 is the returned interface status which provides the following information:

AV is the interface availability:

0

1
2
3

free, no operation is in progress

locked to a device driver for future (momentary) operation
busy with a device driver request

locked to a device driver and busy with a request

Standard I/0 3-15

stat3,
stat4

INTERFACE TYPE
is a logical 6-bit value used to describe the I/O interface card that a device or a set
of devices are connected to. All interface type values are initially established at
generation. The interface types for a typical system are:

Type Interface
Number Type

00 Asynchronous serial interface card
27 Integrated disk

36 PROM

37 HP-IB

50 Parallel interface card

66 Network interface card

I/0 SELECT CODE
is the particular interface card to be addressed. This is set on the card by switches
and is an input to the generator.

X is reserved.

are optional parameters that can be used to return specific device configuration
information from the $DVTP area of the device table (DVT). When these
parameters are supplied in the status call sequence and Z=0, then the first word of
$DVTP area is returned at stat3, and the 2nd word of $DVTP is returned at stat4. If
Z=1, then stat3 and stat4 describe the Z-buffer and buffer length. star4 number of
DVTP words are returned in the Z-buffer area stat3.

A- and B-Register Returns

The returned contents of the A- and B-Registers are undefined if the request is successful. Error
information is returned to the A- and B-Registers for unsuccessful calls.

EXEC Status Examples

The following examples show legal formats for some status calls.

| MPLICI' T | NTECER(A- 2)

CALL EXEC(13, 1, STAT1, STAT2)

CALL EXEC(13, 6, STAT1, STAT2, STAT3)

CALL EXEC(13, 10007B, STAT1, STAT2, BUFR, BUFLN)

The next two examples are illegal call formats. This is because the Z bit is set in the control
word and thus the driver expects a buffer and buffer length to be defined.

CALL EXEC(13, 10007B, STAT1)

CALL EXEC(13, 10007B, STAT1, STAT2, BUFR)

3-16 Standard I/O

RMPAR (Extended Status)

In addition to the general status provided through EXEC 13 requests, special extended
driver/device status is sometimes available depending upon the nature of the device driver.
When applicable, this information can be recovered by a call to the subroutine RMPAR
immediately after a nonbuffered READ, WRITE, or CONTROL request.

At completion of a nonbuffered I/O request, the system moves driver-provided information from
words 16 through 19 of the device table (DVT) to the temporary word locations in the ID
segment of the calling program. Because these temporary words are used for many purposes, the
validity of this information is maintained only as long as the calling program does not cause the
temporary words to be overwritten. The words will not be overwritten if the call to RMPAR
immediately follows the I/O request.

Call sequence is as follows:

| MPLI CI T | NTEGER(A- 2)
DI MENSI ON xstat(5)

CALL EXEC(1 or 2 or 3, ...)
CALL RMPAR(xstat)

The information returned in the xstat array is as follows:

15 14 13 . . 7 6 5 4 3 2 1 0
xstat(1) = $DV16 =| X | X ERR CODE
xstat(2) = $DV17 = TRANSMISSION LOG
xstat(3) = $DV18 = EXTENDED STATUS
xstat(4) = $DV19 = EXTENDED STATUS
xstat(5) is not used
X is a reserved driver/system interchange area.

ERR CODE
is a 6-bit error indication describing the particular type of device error detected.
Note that any time ERR CODE is set to a non-zero value, the E-bit returned in the
device status word (in the A-Register after every I/O request or stat! from the EXEC
13 status request) is set. Error codes are:

Error Meaning

0 No Error

1 Illegal Request
2 Not Ready

3 Timeout

Standard I/O0 3-17

End of Tape

Transmission Error (Parity)

Write Protected

Addressing Error (HP-IB)

Serial Poll Failure (HP-IB)

Group Poll Failure

Fault (Such as Disk)

Data Communication Error

Generation Error (Check DVTX or DVTP)
13-19 Reserved

20-59 Driver Definable Error Condition (Refer to the RTE-A Driver Reference
Manual)

Do BYwao v i

TRANSMISSION LOG
is the number of actual words or characters transmitted for a read or write request.
TRANSMISSION LOG is meaningless for a control request. This is the same
information returned in the B-Register after any nonbuffered I/O request.

EXTENDED STATUS
is up to 32 bits of device-dependent information as available from a driver or device.

See the RTE-A Driver Reference Manual for specific details.

Extended Status Example

Extended Status is always device/driver dependent and reflects the device/driver status as a result
of an operation. For example, if an EXEC 1 read request to a terminal is followed immediately
by a call to RMPAR, as in:

CALL EXEC(1, ...)
CALL RMPAR(XSTAT)

Then the returned status might be:

XSTAT(1) = 0 (no error)

XSTAT(2) = TRANSMISSION LOG equals 40 meaning that 40 words or 80 characters
were transmitted to the computer.

XSTAT(3) = Reflects the asynchronous serial interface card status. This status is valid at
the completion of any control request, unsuccessful read or write request,
and timeout or abort. The format of this word can be found in the RTE-A
Driver Reference Manual.

XSTAT(4) = Contains a copy of the last ASIC control word transmitted to the ASIC card.

XSTAT(5) = Not used.

3-18 Standard I/O

Class 1/0

The Class I/O feature of the operating system is implemented by a special set of EXEC I/O and
system library calls. Class I/O calls provide programs with I/O and communication capabilities
that are not available with the Standard I/O EXEC calls. The features provided by Class 1/O are:

I/O without wait Allows a program to continue executing concurrently with its own
input operation (Class Read) or output operation to any device
(Class Write).

Mailbox 1/O Allows cooperating programs to communicate by controlled access
to a data buffer.

Data passage synchronization Prevents communicating programs from processing incomplete or
non-updated data; a program can suspend itself until it receives a
signal indicating that valid data is available from another program.

I/O control without wait Allows a program to initiate a control operation on an I/O device
and continue executing without waiting for the control operation to
complete.

Class buffer rethreading Allows you to move class buffers from one completed class queue to

another from within your program without using additional SAM or
memory-allocation or word-moving overhead.

Class I/O uses a buffer with an associated access key, called a class number.

Class I/O uses SAM and not system or local common when performing standard
program-to-program communication.

Class I/O is double-call I/O because one call is necessary to initiate the operation and another is
necessary to complete it. The initiation call (Class Read, Write, Write/Read, or Control) places
request parameters, plus data if required, in the class buffer in SAM. The completion call (Class
Get) retrieves the data, if data exists, and optionally releases the request.

The class number must be used as a parameter in the Get call, thereby ensuring only authorized
programs (programs that know the class number) can access the buffer. If a program other than
the program that initiated the I/O operation wishes to retrieve the results, the class number must
be made available to the retrieving program using system or local common, a command string, or
an EXEC call. Once a Class I/O operation is initiated, the calling program has the option of
either continuing with its execution or waiting for the operation to complete.

A class number is allocated when a program issues an EXEC 17, 18, 19, or 20, or a CLRQ request
and requests a class number by setting the CLASS parameter to zero. The class number remains
allocated until it is implicitly deallocated or until the program that allocated it terminates. The

Class I/0 4-1

class number should always be deallocated when it is no longer needed, freeing it for use by other
programs. The maximum number of class numbers, 1 through 255, is established at system
generation (refer to the RTE-A System Generation and Installation Manual, part number
92077-90034). Programs can allocate more than one class number.

A buffer in SAM is allocated each time a Class I/O operation is initiated. The buffer contains the
request and optional data. When the operation is completed (using the Get call), the buffer is
released or retained according to the setting of the save buffer bit in the CLASS parameter.

When a Class I/O request is made (such as Read or Write), it is associated with the specified class
number and queued on the I/O device. This is the pending class request. The request remains
pending until the driver has received the request and processed it accordingly.

When the driver has completed the specified operation, the request is linked to the completed
class queue associated with the class number. The results of the operation are then available to
the calling program (or another program) via a Get call. Note that this technique (pending and
complete) allows more than one buffer to be associated with the same class number. In other
words, a program can make multiple requests specifying the same class number, or a program can
have more than one class number allocated to itself.

The following terms have special meanings when used to describe Class 1/O:

Class Number: The access key used to access class buffers on this class number.

Class Users: Programs that use the class number.

Class Request: An access to a logical unit number or mailbox I/O with a class
number.

Class Members: Logical unit numbers that are currently being accessed on behalf of

a class number. Completion of access removes the association
between class number and logical unit number. Completion of
access is when the driver completes the request.

Pending Class Requests: The set of incomplete Class I/O buffers referencing the class
number and queued on I/O devices.

Class Queue (Completed): The set of all completed class buffers on the class number. The
structure is first in, first out.

Rethread Buffer: The buffer that is being moved from one completed class queue to
become completed on another class number.

For I/O without wait operations, data can be read from or written to an I/O device by transferring
the data to the buffer in SAM or by locking the user data area into memory for the duration of the
I/O operation. The calling program can continue execution of other tasks without waiting for the
I/O transfer to complete, suspend until the data transfer is complete, or terminate itself (releasing
system services to other waiting programs).

The program recovers the results of its Class I/O call by later issuing a Class I/O Get call. If the
results are not present, the calling program can either wait or return to execute more code before
re-issuing the Class Get call.

A simple example of I/O without wait would be a program that issues a Class I/O Read call in its
code, followed by a series of other coded operations. While these following operations were being
executed, the system simultaneously could be reading the data into the allocated keyed buffer.
The calling program would issue a Class I/O Get call to determine if the I/O was complete and to
fetch the data from the buffer, if necessary.

4-2 Class 1/O

Class 1/0 Operation

The system handles a Class I/O call in the following manner:

1.

6.

When the class user issues a Class I/O call (and the call is received), the system allocates a
buffer from System Available Memory (SAM) and puts the call information in the header
(first 16 words) of the buffer. The call is placed in the I/O queue on the device and the system
returns control to the class user.

If this is the only call pending on the DVT, the driver is called immediately; otherwise, the
system returns control to the class user and links the request on the DVT according to
program priority.

If buffer space is not available, the class user is memory suspended unless the no-wait bit (bit
15) of the CLASS parameter is set. If the no-wait bit is set, control returns to the class user
with the A-Register containing —2 (no memory available). If the program is suspended, no
memory will be granted to lower priority programs until this program’s Class I/O request is
satisfied.

If a program requests an amount of memory that is greater than the amount of System
Available Memory (SAM), the program is aborted with an 1004 error return, unless the
no-abort bit is set.

If a Class Number is not available or the I/O device is down, the class user is placed in the
appropriate wait list until the condition changes.

If the call is successful, the A-Register will contain zero on return to the program.

If the request is buffered and is either a Write or Write/Read call, the buffer area furnished by the
system is filled with data from the calling program. The buffer is then linked (pending) on the
DVT initiation list specified by the logical unit number.

After the driver receives the Class I/O call (in the form of a standard I/O call) and completes, the
system will:

1.

Release the data buffer portion of the request if a buffered Write call and the save buffer bit in
the CLASS parameter is not set. The header is retained for the Get call.

Queue the class buffer in the completed class queue.

If a Get call is pending on the class number, reschedule the calling program. (This means that
if the calling program issues a Class Get call or examines the completed class queue before the
driver completes, you have effectively beat the system to the completed class queue.) Note
that the program that issued the Class I/O call and the program that issued the Class Get call
do not have to be the same program.

When you issue the Get call, the completed class queue is checked and only one of the following
paths is taken:

1.

If the completed class queue is non-empty, the data (if any) is returned. The calling program
has the option of leaving the class buffer in the completed Class Queue so the header and any
data in the buffer are not lost. In this case, a subsequent Get call with the same class number

Class I/O 4-3

obtains the same data. Optionally, the calling program can de-queue and release the class
buffer and release the class number back to the system.

2. If the completed class queue is empty (for example, a Get is issued before the Class I/O
operation is completed), the calling program is suspended in the Class I/O suspend list (status
= CL) and a marker so stating is entered in the completed Class Queue header. If desired,
the program can set the no-wait bit to avoid suspension. In any case, when a completed
request is queued on the class, any program waiting for this class is automatically rescheduled.
Note that only one program can be waiting for any given class at any instant. If a second
program attempts a Get call on the same class number before the first one has been satisfied,
the second program is aborted (I/O error I010). The programs involved can avoid being
aborted by setting the no-abort bit (bit 15) in the ecode parameter of the Get call. from which
it read the data.

Buffered and Nonbuffered Class I/O

It is possible to force a Class I/O request to be nonbuffered by setting the nonbuffered bit (bit 14)
in the control word parameter of the request; however, to use all features of Class I/O, including
program-program communication, the requests must be buffered. Also, a program that uses
buffered I/O is swappable while the I/O is taking place. If nonbuffered I/O is used, the program’s
data space will be locked in memory to guarantee that the buffer will not be swapped out while the
I/O is taking place. Nonbuffered Class I/O, however, uses less SAM and is faster because your
program’s data does not have to be copied to or from SAM.

You should be aware of the following differences between buffered and nonbuffered Class I/O:

When a buffered Class Read request is made, the buffer that is supplied in the call (bufr) is not
used. Instead, the data obtained from the read is placed in the buffer that is specified by the
Class Get call. When a nonbuffered Class Read is made, the buffer that is specified in the
read request contains the data.

When a nonbuffered request is made, data is not returned by the Class Get associated with the
request because the data came from or went directly to the buffer specified on the original
request. This is true even if the SB (save class buffer) bit in the class parameter is set because
there is no data in SAM to save. The Get is only used to determine when the I/O operation is
complete, the status, and the transmission length.

Because the I/O is taking place directly to or from the user buffer when nonbuffered Class I/O
is being done, the buffer should not be accessed until the I/O has completed.

4-4 Class /O

Class I/O Programming Examples

The following four programs illustrate class I/O calls between two pairs of Pascal and FORTRAN
programs. The first program schedules the second program in each of these program pairs with a
unique class number so that the second program can access the buffer in SAM. RTE-A handles
class I/O in Pascal and FORTRAN similarly. Pascal programs, however, require external EXEC

calls; FORTRAN programs do not. The program pair that follows is written in Pascal.

Program 1

PROGRAM EXMP1(i nput, out put);
TYPE
int = -32768..32767;

btype = array [1..10] of char;

ntype = packed array [1..6] of char;

string = packed array [1..12] of char;
VAR

i bufr : btype;

name : ntype;

class, buflen, icode : int;

i @ integer;
runstr : string
PROCEDURE EXEC 20 $ALIAS EXEC $
(1 CODE, ICNVD : INT; IBUFR : btype; BUFLN, | OP1,10P2,class : int);
EXTERNAL;
{Exec 20 call —class write/read}
PROCEDURE EXEC 9 $ALIAS ' EXEC $
(ICODE : int; NAME : ntype; CLASS, duni, dun?, dunB, dumd : int;
runst : string; bufln : int); EXTERNAL;

{ Exec 9 call - schedule a programwi thout wait }
BEG N
runstr := 'ru,exnp2,1,1’;
name :='EXMP2’ ;
FOR1 :=1to 10 DO
ibufr[i] :="1; {lnitialize the buffer}
class := 0;{Set class to zero, so the systent

{can all ocate a unique class nunber}
buflen : = 10;
i code : = 20;
{PLACE THE DATA OF 'I BUFR | NTO A BUFFER | N SAM }
ALONG WTH I TS CLASS NUMBER }
exec 20(ic0de 0,i bufr, buflen, 0,0, class);
{ SCHEDULE ' EXMP2’ AND SEND I T THE CLASS NUMBER}
icode : = 9;
exec_9(i code, nane, cl ass, 0,0,0, 0, runstr, -12);
END.

Class I/O

4-5

Program 2
PROGRAM EXMP2(i nput , out put) ;

TYPE
int = —-32768..32767;
btype = array [1..10] of char
ptype = packed array [1..5] of
i bufr bt ype;
class, buflen, icode : int;
pram : ptype;
i : integer;

PROCEDURE EXEC 21 $ALIAS ' EXEC $
(1 CODE, CLASS : int; |BUFR :
{Exec 21 call - class get}

PROCEDURE PARAMS $ALI AS ' RMPAR $
(pram: ptype); EXTERNAL
{Pick up the paraneters sent fromthe ’'father’ prograni

BEG N
par anms(pranj;
buflen : = 10;
i code := 21;
class := prani1];

END.

4-6

int;

bt ype;

BUFLN : int);

{Prani 1] contains the class nunber}

{GET THE DATA FROM SAM AND PUT I T I NTO ' | BUFR }

exec_21(icode, cl ass, i bufr, buflen);

{PRINT THE DATA AND CHECK FOR CORRECTNESS}

write(
FOR |

"The buffer read-in is

= 1to 10 DO
wite(ibufr[i]);

Class I/O

")

EXTERNAL,;

The program pair that follows is written in FORTRAN.

Program 3

FTN7X, L

PROGRAM CLI OL
| MPLI CI T | NTEGER(A- 2)

DI MENSI ON IBUFR(10) NAVE(3)
DATA NAVE/ ' CLI C2

C
C INTIALI ZE THE BUFFER
C
DO 10,1=1, 10
|BUFR(1) = 1
10 CONTI NUE
C
C SINCE WE SET CLASS TO ZERO, THEN THE SYSTEM W LL
C ALLOCATE A UNI QUE CLASS NUMBER, |IF ONE IS AVAI LABLE
C
CLASS = 0
BUFLEN = 10
C
C CLASS READ WRI TE CALL PLACES THE DATA IN ' | BUFR
C INTO A BUFFER I N SAM ALONG WTH I TS CLASS NUVBER
C
CALL EXEC(20, 0, | BUFR, BUFLEN, 0, 0, CLASS)
C
C SCHEDULE 'CLI 2" W THOUT WAI'T, PASSI NG THE CLASS NUMBER
C
| CODE = 9
CALL EXEC(| CODE, NAME, CLASS)
C
END
Program 4
FTN7X, L
PROGRAM CLI C2
| MPLICI T | NTEGER(A-Z
DI MENSI ON | BUFR(10) , PRAM 5)
C
C PICK UP THE PARAMETERS PASSED FROM ' CLI QL'
C PRAM 1) CONTAINS THE CLASS NUMBER
C
CALL RVPAR(PRAM)
BUFLEN = 10
C
C CET THE DATA FROM SAM AND PLACE IT IN ' | BUFR
C
CALL EXEC(21, PRAM 1), | BUFR, BUFLEN)
C
C W TE QUT THE BUFFER TO SEE | F WE PI CKED UP THE CORRECT
C DATA
C
WRI TE(1, *) (1 BUFR(1), | =1, 10)
C

END

Class I/O

4-7

CLRQ (Class Management Request)

The CLRQ subroutine allows the assignment of ownership to a class number. If the calling
program terminates or aborts without cleaning up the class numbers and class buffers assigned to
it, the system deallocates these resources.

This routine also allows programmatic flushing of pending class buffers on an LU or flushing of all
class buffers (pending or completed) with deallocation of the class resource itself.

CALL CLRQ func, class[, praml])
where:

func is the class management control function word; its values are 1, 2, or 3 with
optional bits set:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NW|[NA| X [SD reserved func

NW is the no-wait bit.
NA is the no-abort bit.
SD is the save data bit.

class is the class number.

praml is a call-dependent parameter used to describe a program name or LU.

Class Management Parameters

Two bits in the func parameter can be set to allow more control over the process and to obtain
error information from the registers.

Bit 15 is the no-wait bit. If set, the program is not suspended if a class number is not available
when the CLRQ request is made. The A-Register is set to —1 if a class number is not available, or
set to 0 (zero) if the request completed without error.

Bit 14 is the no-abort bit. It operates similarly to the no-abort bit in the ecode parameter of the
EXEC calls. If this bit is set, the program continues if an error is made in the calling sequence of
CLRQ, or some other programming error occurs. If set, the A- and B-Registers contain an ASCII
error message. The A-Register contains the first two ASCII characters and the B-Register
contains the second two ASCII characters of the four-character message.

Bit 12 is the save data bit. It provides for the graceful handling of data read from a MUX when a
CLRQ (3) is executed to deallocate (flush) a class request on an LU. If bit 12 is set in the CLRQ
(3) request (func = 010003B) and the request is the current request on the LU, RTE-A tests
whether DMA is in progress for the request. If it is, the CLRQ (3) request is ignored because
valid type-ahead data would be lost if the request’s class buffer is flushed. When the current
request is completed normally, all other pending requests are deallocated (flushed). By setting bit
12, you can prevent valid type-ahead data from being flushed. Setting bit 12 allows true
Write-thru-Pending capability with no data loss on the MUX.

4-8 Class|/O

func

class

praml

values and their meanings are:

func =1

func =2

func =3

means class ownership is assigned. If praml contains the name of a
program, the program is assigned ownership of the class specified in class.
If pram1 is zero, no ownership is assigned. If praml is defaulted (omitted
from the call), the calling program is assigned ownership. If class is zero, a
new class number is allocated by the call. The system deallocates the class
number and its associated buffers when the program owning the class
number becomes dormant.

flushes class requests and deallocates the class specified in class. All
non-active pending requests are deallocated. Abort requests are issued by
the system for all active I/O requests, and the buffer is deallocated at the
completion of the abort processing. All previously completed requests are
immediately deallocated. The class table entry is flagged so that no new
requests will be issued on the class. An I/O error (I000) is returned to
programs that do issue a request on the class after the class table entry is
flagged. When the pending class request count in the class table entry
reaches zero, the system deallocates the class. Note that pram! is not used.

flushes class requests on the LU designated by prami. The system looks at
the class table entry specified in class. Non-active requests on class that are
pending on the LU specified in pramI are deallocated. If a request is
active, an abort request is issued by the system. The buffer is deallocated
when the active EXEC request completes. The class number is not
deallocated nor are completed class buffers affected.

is the class number that can be owned by a program. The class number format is the
same as in the EXEC 17, 18, 19, and 20 requests. This parameter works in conjunction
with func and pramI. For example, when this parameter is zero and func is 1 then a
new class number is assigned to the calling program. This new class number is
returned in class.

is an optional parameter that works with func and class in a number of ways. See the
above func and class descriptions for details.

Class /0 4-9

CLRQ Processing

The system checks all terminating and aborting programs for class ownership. If ownership exists,
all completed class request buffers are deallocated. If the program terminates without terminating
its I/O requests (such as a program that does a Class Read and then terminates), the pending class
requests are allowed to complete normally. If I/O is to be aborted, all non-active pending requests
are flushed, and the drivers are issued an abort request for all active requests. In the latter case,
the buffer and the class are automatically deallocated by the system when abort processing has
completed.

Example

The following example allocates two class numbers, assigning the first to the calling program and
the second to the program called P2. (P2 must have an ID segment or an SCO5 error will result.)
The no-abort bit is set in the function parameter to prevent the program from being aborted. An
error return routine should always be specified if the no-abort or no-suspend bits are set.

$ALI AS CLRQ NOABORT
PROGRAM ALLOC
| MPLI CI T | NTEGER (A-2)
DI MENSI ON PRAML (3)
DATA PRAML/ ' P2’ /

CLASL = 0
FUNC =1

C ALLOCATE FI RST CLASS NUMBER TO THE CALLI NG PROGRAM
CALL CLRQ (FUNC + 40000B, CLAS1, *100)
CALL ABREG(ERROR, B)

C CHECK ERRCR
|F (ERROR . NE. 0) GO TO 100
C NOW ALLOCATE THE 2ND CLASS NUMBER, ASSIGNING I T TO P2
CLAS2 = 0
CALL CLRQ (FUNC + 40000B, CLAS2, PRAML, *100)
CALL ABREG(ERROR, B)

C CHECK ERROR
IF (ERROR . NE. 0) GO TO 100

100 CONTI NUE
C ERROR PROCESSI NG HERE

END

4-10 Classl/O

EXEC 17, 18, 20 (Class Read, Write, Write/Read)

EXEC 17, 18, and 20 transfer information to or from an external I/O device or another program.
Depending upon parameter specifications, the calling program is not suspended while the call

completes.

CALL EXEC(ecode, cntwd, bufr, bufin, pram3, pram4, class[, uv[, keynum] |)

where:

ecode

cntwd

bufr
bufln

pram3,
pram4
class

uy

keynum

is 17 for Class Read, 18 for Class Write, and 20 for Class Write/Read.

is the control word. For all three calls, the format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BBI|NB|UE| 2z | X |TR| X [EC| X | BI LU

BB is the device driver bypass bit

NB forces nonbuffered operation

UE allows your program to handle device errors

Z indicates pram3 and pram4 are buffer and buffer length respectively

TR indicates transparency mode

EC allows echo of input

BI indicates ASCII or binary data transfers

LU selects the device by LU number from range 0-63. An LU of zero indicates
a program-to-program data transfer. For LUs greater than 63 use XLUEX
call.

X is defined for the appropriate driver

is the user-defined integer array used as a read/write buffer.

is the length of bufr. A positive value indicates the number of words; a negative
value is the number of characters.

are two parameters retrieved by the Class I/O Get call, which can be acted upon by
the device driver.

is the class number, which is initially set to zero to inform the system that the
program wants a class number issued.

is a user-defined variable maintained by the system and returned in the Class Get
call. If the request is a class rethread, this variable represents the oclas parameter.

is the key number for a locked LU.

Class I/0 4-11

Read, Write, Write/Read Parameters

ecode

cntwd

bufr

bufiln

pram3,
pram4

class

is described in the ECODE section of Chapter 1.

is the control word, and is exactly the same as cntwd in EXEC 1 and 2 (standard
read/write). The EXEC 17, 18, and 20 calls can only reference LU numbers up to 63.
The XLUEX call described in Chapter 3 should be used in new applications because it
can reference LU numbers up to 255, inclusive.

specifies the user buffer where data will be transferred for a Class Write or Write/Read
request. For a buffered Class Read, this parameter is not used, but must be supplied in
the call sequence. See the example at the end of this section.

specifies the length of the transfer, which must not exceed the size of bufr. If positive,
bufln indicates the number of words in bufr; if negative, bufln specifies the number of
characters in bufr.

are parameters whose format depends upon the state of the Z-bit in cntwd.

If Z = 0, pram3 and pram4 are integers; if Z = 1, pram3 is the name of a buffer, and
pram4 is its length. When the class request is made to an actual device (non-zero LU),
these parameters may provide special additional information about the nature of the
I/O operation to the driver. As in standard I/O requests, the details defined here are
described in the RTE-A Driver Reference Manual. When these are not used by a driver
or when program-to-program communication is being used (LU=0), these parameters
can be used by the calling program to pass information between a Class I/O and a Class
Get request.

is the class word parameter used by a program or programs to coordinate the various
Class I/O and Get operations. A class number is assigned by the system to the
program, generally on the first Class I/O or CLRQ request issued. This is controlled
by the calling program according to the content of the class parameter:

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NW| SB | RT CLASS NUMBER

NW is the no-wait bit. If the no-wait bit is set and SAM or a class number is
unavailable, the calling program is not suspended. Information returned in
the A-Register indicates the action taken by the system. The A-Register
should be checked for the status of the call if the no-wait bit is set.

A-Register
value Meaning
0 Request successful (no error)
-1 No class number currently available
-2 No memory now, buffer limit exceeded, or pending count is
already 255
SB is the save class buffer bit. When set, the system saves the data buffers

allocated by a Class Write request for future processing by a Class Get. For
Read and Write/Read calls, this bit has no significance.

4-12 Class /O

uy

keynum

RT is the rethread class bit which allows Class I/O buffer rethreading on the
class buffer at the head of the class completion queue. When RT is set to 1,
the call becomes a rethread request rather than the standard call specified
by ecode. This bit is not examined unless the uv parameter is supplied.
Normal class users do not require this ability, so normal requests have RT
equal to zero. Refer to the Class Rethread Request section for details on
the use of this option.

CLASS NUMBER
returns a class number assigned by the system. If a class number is to be
allocated, this parameter must be set to zero in the EXEC call. The
returned class number is used in later class calls.

is an optional parameter which, in general, provides for user-defined information
passing between a Class I/O request and a Class Get request. The system only
maintains this information and does not act upon it. An exception exists, however,
when a class rethread request occurs (bit RT=1 in class). In this case, uv is used to
define one of the pair of class queues. See the section on Class Rethread Requests.

is an optional parameter that contains a key number assigned by the system to a locked
LU when a request is made via the LURQ call. This value is returned from the LURQ
request and can be supplied in the above I/O requests to allow access to a locked
device. Thus a locked LU can be shared among cooperating programs. Note that the
program that originally issued the LURQ request is not required to supply this
parameter when making an I/O request to the locked device. Refer to the LURQ
section in Chapter 2.

A- and B-Register Returns

When a program issues a Class I/O call, the system allocates a buffer from System Available
Memory and puts the call in this buffer. The call is queued and the system returns control to the
program. If memory is not available, three possible conditions exist:

1. The program is requesting more memory space than will ever be available. In this case, the
program is aborted with an 1004 error unless the no-abort bit was set in the ecode parameter.
If the no-abort option was used, the A-Register contains “IO” and the B-Register contains an
ASCII “04”.

2. The program is requesting a reasonable amount of memory but the system must wait until
memory is returned before it can satisfy the calling program. The program is suspended unless
the no-wait bit is set, in which case a return is made with the A-Register set to —2.

3. If the buffer limit is exceeded, the program will be suspended until this condition clears. If the
no-wait bit in the class parameter is set, the program is not suspended, and the A-Register is
set to —2.

If the pending count is already 255, the program will be suspended until this condition clears. If
the no-wait bit in the class parameter is set, the program is not suspended and the A-Register is set

to —2.

When a program issues a Class I/O call, the system uses LU 0 (the “bit bucket”). If LU 0 is not in
the session LU access table, the program is aborted with an SC03 error, unless the no-abort bit is

Class I/0O 4-13

set in the ecode parameter. If the no-abort option is used, the A-Register contains “SC” and the
B-Register contains ASCII “03”.

The A-Register will contain —1 if the no-wait bit was set and the program tried to allocate a class
number with no class numbers available. The A-Register will contain zero if the request was
successful.

The returned content of the B-Register is meaningless. Error information is returned to the A-
and B-Registers for unsuccessful calls.

Class Write

The general flow of a Class Write operation is as follows:

1.

Your program places data in bufr, specifies data length in bufin, and issues an EXEC 18 call
specifying a previously allocated class number in class (if class = 0, a class number is allocated,
if available).

The system allocates a buffer in SAM (if available) large enough for the header information.
If the request is buffered (NB = 0), additional space is allocated to contain bufr, and bufr is
copied into SAM. If the request is nonbuffered, the program’s data area is locked into
memory. The calling program continues executing or suspends itself with a Class Get call to
the class number.

The request is linked (according to program priority) on the DVT associated with the LU
number specified in cntwd.

When the driver completes the control operation, the data portion of the class buffer, if any, is
released to the system (SAM) unless the save-buffer bit in the class parameter is set. The
buffer is linked into the completed class queue. Any program suspended by a previous Get
call (EXEC 21) is rescheduled. Refer to EXEC 21 Class Get section for details associated
with the Get call.

Class Read

The general flow of a Class Read operation is as follows:

1.

Your program issues an EXEC 17 call specifying a previously allocated class number in class (if
class = 0, a class number will be allocated, if available). The amount of data to be transferred
from the external I/O device to a buffer in SAM is specified in bufin.

The system allocates a buffer in SAM (if available) large enough for the header information.
If the request is buffered (NB = 0), additional space is allocated to contain bufr and then bufr
is copied into SAM. If the request is nonbuffered, the program’s data area is locked into
memory. The calling program continues executing or suspends itself with an EXEC 21 Class
Get call to the class number.

The request is then queued (according to the calling program’s priority) on the DVT
associated with the LU specified in cntwd.

When the driver completes the transfer of data from the external I/O device to the buffer in
SAM, the buffer is linked into the completed class queue. A program suspended by a previous
Get call (EXEC 21) will be rescheduled. Refer to EXEC 21 Class Get for details concerning
the Get call.

4-14 Classl/O

Class Write/Read

The general flow of a Class Write/Read request has characteristics of both the Class Write and
Class Read calls described earlier. A Write/Read call functions like a Class Write except that the
driver receives a Read request code and the buffer is not released on I/O completion, but instead
is saved with its header in the completed class queue.

The buffered Class Write/Read call with LU equal to 0 is used for program-to-program
communication. The data is transferred from the program’s buffer into the class buffer and
written to LU O (the bit bucket). The data is retained in the completed class queue to be
recovered by an EXEC 21 (Get) call from another program. Note that a nonbuffered Class
Write/Read with LU equal to 0 is not practical because only the header is in the buffer in SAM.
The program’s data cannot be recovered.

Figure 4-1 is a sample of communication between two programs. The sequence of events shown in
the figure are described below:

1. Program PROGA issues a Class I/O call with the class number parameter set to zero and the
logical unit number portion of the control word parameter set to zero. This causes the system
to allocate a class number (if available) and the request to immediately be placed on the class
completion queue. (Logical unit zero implies immediate completion.)

2. When the Write/Read call completes, PROGA's data will have been placed in the class buffer.

3. PROGA then schedules PROGB (the program receiving the data) and passes PROGB the
class number as a parameter.

4. 'When PROGB executes, it picks up the class number by calling the system library routine
RMPAR. Then using this class number, it issues a Class I/O Get call to the class. PROGA’s
data is then passed from the class buffer to PROGB’s buffer.

Note that if PROGA terminates before PROGB issues the Get call, the request will have already
been flushed. This means that PROGB’s class number is no longer valid.

Figure 4-2 is an example of Class I/O to a terminal.

Class I/0 4-15

0O0o0

O0o0

o000 000

PROGRAM PROGA
| NTEGER BUFR(32), NAVE(3) , CLASS
DATA NAVE/ ' PROGB' /

DO CLASS WRI TE/ READ TO LU ZERO, PROGRAM TO PROGRAM
COVMUNI CATI ON

CLASS=0
CALL EXEC(20, 0, BUFR, —64, 0, 0, CLASS)

SCHEDULE PROGB AND PASS CLASS NUMBER.
CALL EXEC(9, NAVE, CLASS)
END

PROGRAM PROGB
| NTEGER BUFR(32), PRAM 5)

GET THE CLASS NUMBER BY CALLI NG SYSTEM SUBROUTI NE
RMPAR AND SAVE THE CLASS NUMBER I N PRAM 1)

CALL RMPAR(PRAM)

ACCEPT DATA FROM PROGA USI NG CLASS GET CALL
AND RELEASE CLASS NUMBER AND CLASS BUFFER.

CALL EXEC(21, PRAM 1), BUFR 32)
END

Figure 4-1. Program-to-Program Communication

4-16

Class I/O

FTN7X, L
I MPLI CI' T NONE

THI S EXAMPLE PROGRAM FOR CLASS 1/ O TO A TERM NAL W LL:
1) I SSUE A CLASS READ FROM THE USERS TERM NAL
2) LOOP ON A CLASS GET
A) |F THE GET FAILS, | NCREMENT A COUNTER
B) IF THE GET COVPLETES, WRI TE OUT THE COUNTER AND QUI T

* %k 3k X X

TH S DEMONSTRATES THAT THE PROGRAM IS CARRYI NG OUT OTHER TASKS
* VWH LE THE READ |I'S PENDI NG WHEN THE READ COVPLETES, THE PROGRAM
* DETECTS | T AND FI NI SHES.

| NTEGER BLEN, NOWAI T, ECHO
PARAVETER (BLEN=32, NOWAI T=100000B, ECHO=400B)

| NTEGER | NBUFF(BLEN), CLASS, AREG BREG
| NTEGER* 4 COUNT

DATA COUNT/ 1/, CLASS/ 0/

* | SSUE A CLASS READ TO THE USERS TERM NAL. SYSTEM W LL RETURN
* THE CLASS NUMBER | N CLASS.

CALL EXEC(17, 1+ECHO, |NBUFF, BLEN, 0, 0, CLASS)
DO WHI LE(. TRUE.)
* | SSUE A CLASS GET W THOUT WAI T. CHECK A-REG FOR COVPLETI ON.

CALL EXEC(21, CLASS+NOWAI T, |NBUFF, BLEN)
CALL ABREG(AREG, BREG)

* WHEN THE READ COVPLETES, THE GET WLL RETURN O IN BI T 15 AND
* WRI TE OUT THE COUNT. OTHERW SE, | NCREMENT COUNT, CONTI NUE LOOPI NG
| F (AREG . GE. 0) THEN
WRI TE(1, *)” COUNT = ', COUNT
STOP
ENDI F
COUNT = COUNT + 1
ENDDO
END

Figure 4-2. Class I/O to a Terminal

Class 1/0 4-17

EXEC 21 (Class I/O Get)

EXEC 21 Class Get completes the data transfer (between the system and a program) that was
previously initiated by a Class Read, Write, Write/Read or Control request.

CALL EXEC(ecode, class, bufr, bufin[, rtnl[, rtn2[, rtn3[, uwv[, 0] 1111)

where:
ecode is 21 for a Class I/O Get.
class is the class number. Its format is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NW| SB | SC CLASS NUMBER
NW is the no-wait bit
SB is the save class buffer bit
SC is the save class number bit
CLASS NUMBER s the class number returned from CLRQ with class=0, or
EXEC 17, 18, 19, or 20
bufr is the user-defined integer array where information will be transferred.
bufin is the length of bufr. If positive, length is number of words; if negative, length is
number of characters.
rtnl corresponds to pram3 from a read or write call, and pram1 from a control call.
rn2 corresponds to pram4 from a read or write call. rn2 corresponds to DVT word 17,
after driver modification, for a control call.
rtn3 is the request code passed to the driver on an initial read, write, or control call.
See below.
uy is the user-defined variable returned from a previous read, write, or control call.
to is the class timeout or wait time.

Class Get Call Parameters

ecode

class

4-18

is described in the ECODE section of Chapter 1.

coordinates various Class I/O and Get operations. A class is assigned by the system to
the program, generally on the first Class I/O or CLRQ request issued. This is
controlled by the calling program as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NW| SB | SC CLASS NUMBER
NW is the no-wait bit. When set, the calling program is not suspended if the

Class I/O

completed class queue is empty. Information describing the action taken by
the system is returned in the A- and B-Registers.

bufr

bufin

If the no-wait bit was set and no requests were completed, the A-Register
will have bit 15 set to 1 to indicate that the queue was empty, and will
contain the negative of the number of pending requests minus one.

SB is the save class buffer bit. When set, it saves the class buffer at the head of
the completed class queue for future processing by a Class Get. As long as
the SB bit is set, the program receives the same data on subsequent Gets as
it received in the first SB-set Class Get. If the SB option is not set, the
buffer and class header will be released back to the system when the Class
Get completes. If the original class request was nonbuffered, then setting
the SB bit in a Class Get is not very useful. The header is saved, but the
data is not present for the Class Gets.

SC is the save class number bit. When used in a Class Get call, setting SC to 1
will save the class number for use in future class requests. If SCis 0, the
class number will be deallocated when the Get call completes if there are
no pending or completed buffers on the Class. If SB is set to 1, the class
number will not be deallocated regardless of the state of SC.

CLASS NUMBER
is the access key number that must be used in a Class Get to access the class
buffer.

is the buffer to receive data. There are several buffer considerations when using the
Class Get call:

If the original request was nonbuffered, then data is not returned by the Class Get.
Instead, the data has already been placed in the buffer that was specified on the
original request.

If the original request was buffered, then the number of words returned to bufr is the
lesser of:

— The number requested (bufln specified in the Get call).

— The number in the completed class data buffer being retrieved (bufin
specified in the original request).

If the original request was made with the Z-bit set in cntwd, the returned value of rtnl
is undefined.

The Z-buffer is returned only if the original request was a Read, Write/Read, or Write
request (with the SB bit set in the class parameter). Note that bufln must allow for the
length of the Z-buffer; that is, bufln = length of original data + length of Z-buffer.

The remaining words in bufr, if any, past the number indicated by the transmission log
(B-Register) or bufln, whichever is smaller, are undefined. If a Z-buffer is also
returned, the words remaining past the end of the Z-buffer are undefined.

defines the length of the data record to be retrieved; allow for the data type. If the
data record contains type REAL values, two words per data item are required. If the
data contains double-precision data, four words per data item are required. If the
amount of data to be retrieved is greater than bufln, only the amount defined by bufin

Class 1/0 4-19

is returned. The transmission log, however, will indicate the actual amount of data
transmitted. This might be useful if the SB bit is set.

Optional parameters are:

rtnl

rtn2

rtn3

uy

to

4-20

is an optional parameter to obtain data passed in the pram3 optional parameter of a
previous Class I/O Read, Write, Write/Read or Control call. Generally this data is the
information passed to the driver in the original request.

is an optional parameter to obtain data passed in the pram4 optional parameter of a
previous Class I/O Read, Write, or Write/Read call. Generally this data would be
information passed to the driver in the original request. rtn2 is used to obtain DVT
word 17, after driver modification, for a previous class control call. Note that there is
not a standard for the value a driver puts in DVT word 17 (see the RTE-A Driver
Reference Manual, part number 92077-90011).

contains one of three values if included in the Get call. It can be used to inform the
program making the Get call what type of operation was done to obtain the data that
the program is now receiving via the Get call. The three values possible are:

1 if call was 17 or 20 (Read or Write/Read)
2 if call was 18 (Write)
3 if call was 19 (Control)

is an optional parameter that provides for user-defined information passed between a
Class I/O request and a Class Get request. The system maintains this information and
does not act upon it. (An exception exists, however, when a class rethread request
occurs with RT=1 in class. In this case, uv defines one of the pair of class queues.
Refer to the section on Class Rethread Requests for details.)

One example of its use in a Get call is that program A reads data from an LU and
needs to pass this LU to program B. Program A places in uv the destination LU
number of the Write/Read call; program B retrieves the LU number from uv.

is an optional parameter that provides a timeout of the Class Get. If no data is
available after fo x 10ms, the Class Get times out. The timeout is indicated in the
A-Register on return. fo may be any value from 1 to 65535.

Class I/O

A- and B-Register Returns

The A- and B-Registers after the return from a successful Get call contain the following.

If a return is made with class completion data, then:

If A=-32768 (100000B), then the Get has timed out.
Bit 15, 14 of the A-Register = 0

A-Register = device status word 6 of the Device Table (DVT); refer to the RTE-A Driver
Reference Manual, part number 92077-90011.

B-Register = transmission log indicating the positive number of words or characters
transmitted to the system buffer during the Class Read, Write or Write/Read.
That is, the B-Register contains the number of words transferred in the Class
Read, Write, or Write/Read, but not the Class Get, unless bufln is large
enough to hold all the data transmitted.

If a return is made without class completion data, then:

Bit 15, 14 of the A-Register = 1,0

A-Register = the ones complement (—n—1) of the number of requests made to the class
but not yet serviced by the driver (pending class requests).

B-Register = meaningless

Class I/O Get Call Comments

One of the features of the Get call is that one or more programs waiting for system resources can
suspend themselves without CPU overhead or program overhead such as polling. A program can
perform a Get on a class number associated with a device or another program and put itself to
sleep. The program will only be awakened when there is something to process. The desired data
will be resident in the program’s buffer. After the data is processed, the program can put itself to
sleep again with another Get.

When the calling program issues a Class Get call, the program is telling the system that it is ready
to accept returned data from a Class Read call or remove a completed Class Write or Control call
from the completed class list. If the driver has not yet completed (the Get call got to the
completed class before the system did), the calling program is suspended (status = CL) and a
marker stating this is entered in the class queue header. When the driver completes, the program
is automatically rescheduled. If desired, the program can set the no-wait bit in the class parameter
to avoid suspension.

Note that if a Get call is made before the Class Read, Write, or Control call is made, the Get
deallocates the class number and immediately returns. If your application requires this type of call
to suspend and wait until a request is made and completes, you must set the Save Class bit.

Class 1/0 4-21

EXEC 19 (Class 1/O Device Control)

An EXEC 19 call carries out various I/O control operations such as backspace, write end-of-file,
and rewind. The calling program does not wait for the operation to be completed.

CALL EXEC(ecode, cntwd, praml, class| , pram2[, pram3[, pram4[, w[, keynum]1]1]1]1)

where:
ecode is 19 for Class I/O device control.
cntwd is the control word. Its format is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BB|NB|UE| Z FUNCTION LU
BB bypasses the device driver
NB forces nonbuffered operation
UE allows your program to handle device errors
Z specifies optional parameters pram3 and pram4 as a buffer and buffer
length respectively
FUNCTION
is the set of device functions
LU selects device by logical unit
praml is a user-defined parameter.
class is the class number.
pram?2 is an optional parameter for certain control functions.
pram3, are optional parameters to be used as an optional buffer and buffer length if the

pram4 Z-bit is set.
uy is an optional user-defined parameter that can be retrieved in a future Class Get.

keynum is an optional parameter representing the locked LU’s key number.

Class I/O Control Parameters

Note that with the exception of the class, pram1 and pram2 parameters, this call format is identical
to the standard I/O Control Call. Refer to Class I/O Get for additional information.

ecode is described in the ECODE section of Chapter 1.

cntwd for this call is essentially the same as in the standard I/O EXEC 3 call. The EXEC 19
call can reference LU numbers up to 63. Use XLUEX to access LU numbers up to
255. The Z-bit and optional parameters praml through pram4 are driver-dependent.
If needed by the driver, praml and pram?2 are sent. If the Z-bit is set, parameters
pram3 and pram4 specify a buffer and buffer length (the Z-buffer) to be passed to the
driver as required; refer to the RTE-A Driver Reference Manual. The exception in the
control word is the FUNCTION field (bits 6-11). Specific details on available
functions are found in the pertinent driver section of the RTE-A Driver Reference
Manual.

4-22 Class 1/O

class

is the class word parameter used by a program or programs to coordinate various Class
I/O and Get operations. A class number is assigned by the system to the program,
generally on the first Class I/O or CLRQ request issued. This is controlled by the
calling program as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NW| SB | RT CLASS NUMBER

NW is the no-wait bit. If set, the calling program does not become suspended if
SAM or a class number is unavailable. Information returned in the
A-Register indicates the action taken by the system. The A-Register should
be checked for the status of the call:

A-Register
value Meaning
0 Request successful (no error)
-1 No class number currently available
-2 No memory now, buffer limit exceeded, or pending count is
already 255

SB is the save class buffer bit.
RT is the rethread class bit which allows Class I/O buffer rethreading on the

class buffer at the head of the class completion queue. When RT is 1, the
call becomes a Rethread Request rather than the standard call specified by
ecode. This bit is not examined unless the uv parameter is supplied.
Although the SB and RT bits can be set on class control requests, the bits
are ignored.

CLASS NUMBER
is set to 0 to obtain a class number. The system then allocates a class
number (if one is available) to the calling program. The number is returned
in this same parameter when the request completes and is used thereafter,
bits 12-0 unaltered, for later class calls.

Optional parameters are:

praml -
pram4

uy

are driver-dependent parameters. Their use can vary considerably. For example, by
specifying a control request with a FUNCTION code of 23, pram1 indicates enabling or
disabling of an asynchronous interrupt response. Refer to the RTE-A Driver Reference
Manual for specific details on the contents of each optional parameter.

is an optional parameter which, in general, provides user-defined information passed
between a Class I/O request and a Class Get request. The system maintains this
information and does not act upon it. For example, program A reads data from an LU
and must pass the LU to program B. Program A sets the value of uv equal to the LU
number in the Write/Read call that it made. Program B obtains the LU number in the
uy parameter. Note that this parameter takes on a different meaning if RT'=1 in the
class parameter. Refer to the Rethread section.

Class 1/0 4-23

keynum s a key number assigned by the system to a locked LU when a locking request is made
via the LURQ call. This value is returned from LURQ and can be supplied in the
above I/O requests to allow access to a locked device. Thus a locked LU can be shared
among cooperating programs. Refer to the LURQ section in Chapter 2 for more
detail. The program that originates the LURQ request need not supply this parameter
when making an I/O request to the locked device.

A- and B-Register Returns

When a program issues a Class I/O call, the system allocates a buffer from System Available
Memory and puts the call in this buffer. The call is queued and the system returns control to the
program. If memory is not available, three possible conditions exist:

1. The program is requesting more memory space than will ever be available. In this case, the
program is aborted with a 1004 error, unless the no-abort bit was set in the ecode parameter.
If the no-abort option was used, the A-Register contains “IO” and the B-Register contains an
ASCII “04”.

2. The program is requesting a reasonable amount of memory but the system must wait until
memory is returned before it can satisfy the calling program. The program is suspended unless
the no-wait bit is set, in which case a return is made with the A-Register set to —2.

3. If the buffer limit is exceeded, the program will be suspended until this condition clears. If the
no-wait bit in the class parameter is set, the program is not suspended and the A-Register is set
to —2.

If the pending count is already 255, the program will be suspended until this condition clears. If
the no-wait bit in the class parameter is set, the program is not suspended and the A-Register is set
to —2.

When a program issues a Class I/O call, the system uses LU 0 (the “bit bucket”). If LU 0 is not in
the session LU access table, the program is aborted with an SC03 error, unless the no-abort bit is
set in the ecode parameter. If the no-abort option is used, the A-Register contains “SC” and the
B-Register contains ASCII “03”.

The A-Register contains —1 if the no-wait bit was set and the program tried to allocate a class
number with no class numbers available. The A-Register contains zero if the request was
successful.

If the no-wait bit is clear then the A-Register will contain the class number.

The returned content of the B-Register is meaningless. Error information is returned to the A-
and B-Registers for unsuccessful calls (refer to EXEC Error Processing in Chapter 1).

4-24 Class /O

Class 1/0 Rethread Request

As previously indicated, any of the Class I/O requests (except Class Get) can be used for the
special class rethread operation. Under this circumstance a prior class I/O request that is
completed (in the completed class queue) can be removed from one class queue and added to
another. This can save considerable overhead where request re-transmission or the broadcasting
of a request is desirable within a program. The rethread request modifies the normal Class I/O
call sequence as described in the Class I/O Rethread Parameters section.

Class Rethread Uses

Class buffer rethreading is a convenient way to handle class buffers without the cost of excessive
system overhead for allocating memory and moving words. Some possible uses include the

following:

e Re-using buffers passed via program-to-program communication (EXEC 20).

e A convenient method to “cycle through” the buffers in their respective completed class
queue(s). Essentially, the program rethreads the buffers to its own queue (oclas = class);
rethreading places the rethread buffer specified via oclas at the end of the completed class
queue specified in class.

e “Broadcasting” class-buffered messages to multiple LUs without having to allocate SAM and
move words on each request.

CALL EXEC(ecode, cntwd, bufr, bufin, pram3, pram4, class, oclas[, keynum])

where:

ecode

cntwd

bufr

bufln

pram3,
pram4

class

oclas

keynum

is 17, 18, or 20 for a class rethread request.

is the control word. Its format is described in the following section. Its Z-bit
condition must be the same in the original and rethread request.

is the user buffer; part or all of the class buffer may be overwritten with new data
that is placed in this buffer.

is the above buffer’s length. bufln must not exceed the rethread buffer length. To
leave the buffer in the completed class queue unaltered, set bufln to zero.

are parameters that replace those in the previously-defined buffer header if the
Z-bit is zero. If the Z-bit equals 1, these parameters can be used to overwrite part
or all of the Z-buffer. To prevent the Z-buffer in the completed class queue from
being overwritten, set pram4 to zero and the Z-bit to 1.

is the class number. Its RT bit (bit 13) is set, indicating rethreading is desired.

is the old class word identifying the completed class queue where the rethread
buffer will be removed.

is the key number of the locked LUj it is used to access a locked LU.

Class I/O0 4-25

Class 1/0O Rethread Parameters

ecode

cntwd

bufr

bufln

class

is described in the ECODE section of Chapter 1. For the rethread request, ecode
should generally match the type of the request that was INITIALLY used to obtain the
rethread buffer.

is exactly the same as in the Class Read, Write, Write/Read calls.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Z | 0]|TR| O |EC]| O | BI LU

If the Z-bit is 0, parameters pram3 and pram4 replace those that were defined
previously in the rethread buffer header. If the Z-bit is 1, these parameters specify a
buffer and buffer length respectively and can be used to overwrite all or part of the
Z-buffer that was originally allocated in the initial call.

If the Z-bit setting does not match the setting in the original request, an 1004 error
results.

contains data to overwrite the rethread buffer. The rethread data buffer is unaltered if
the bufr length parameter (bufin) is zero; if it is zero, bufr is ignored. If bufln does not
equal zero, bufln words or characters will be overwritten from bufr to the rethread
buffer.

determines whether the rethread buffer will be overwritten. If bufln is zero, the
rethread buffer is moved unaltered. A non-zero bufin specifies how much of bufr will
overwrite the rethread buffer: a positive amount specifies the number of words, and a
negative amount indicates the number of characters.

If the Z-bit is set and pram4 is zero, the driver buffer specified in pram3 will be
transferred unaltered. If pram4 does not equal zero, then pram4 words or characters
will be overwritten from pram3 to the Z-buffer part of the rethread buffer.

is the class word parameter used by a program or programs to coordinate various Class
I/O and Get operations. A class number is assigned by the system to the program,
generally on the first Class I/O or CLRQ request issued. When the RT bit is set to 1, it
indicates rethreading is desired. The class number (bits 0-12) within this parameter
identifies the class queue on which the rethread buffer will be attached. This
information, in conjunction with the information in oclas, enables rethreading to be
accomplished. Note that if the class number is zero, a new class number is allocated by
the system.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NW| SB | RT CLASS NUMBER

4-26 Class /O

NW is the no-wait bit. If set, the calling program does not become suspended if
SAM or a class number is unavailable. The A-Register should be checked
for the status of the call:

A-Register
value Meaning
0 Request successful (no error)
-1 No class number currently available
SB is the save class buffer bit. When set, the write buffers issued from a Class

request are saved for future processing by a Class Get. Refer to the Class
I/O Get Call section.

RT is the rethread class bit which allows Class I/O buffer rethreading on any
Class I/O request. It MUST be set to one to indicate a rethread operation.

To obtain a class number from the system, the CLASS NUMBER field (bits
0-12) is set to 0. The system then allocates a class number (if one is
available) to the calling program. The number is returned in this same
parameter when the request completes and is used thereafter, bits 0-12
unaltered, for later class calls.

This allows the moving of a previously issued class request buffer from one
class queue to another. This very sophisticated request requires that
special attention be given to the overall program(s) activity with class
requests.

It also modifies the normal Class I/O request call sequence requiring strict
adherence to special parameter details. Normal class users would not
require this ability and would operate with RT=0.

Note

The NW, SB, and RT bits are modified by the system after a class rethread
request, and, therefore, must be set up before each call is made.

oclas

keynum

is an old class word identifying the completed class queue from which the class buffer
will be removed. Note that if a uv parameter was supplied in a previous request in the
rethread buffer, it will also be maintained on the new class queue (class), and can be

recovered later using a Class Get. Only the class number field of oclas is meaningful.

If the no-abort bit is not set and the completed class queue is empty, then the program
will be aborted with an 1004 error.

is a key number assigned by the system to a locked LU when a request is made via the
LURAQ call. This value is returned from the LURQ request and can be supplied in the
above I/O requests to allow access to a locked device. Thus a locked LU can be shared
among cooperating programs.

The program that originally issued the LURQ request is not required to supply the
keynum parameter when making an I/O request to the locked device. Refer to the
LURAQ section in Chapter 2 for more details.

Class I/0 4-27

Class Rethread Procedures

The general flow of the Class rethread request is best shown in terms of a hypothetical example:

Programs A, B and C all have buffers in the completed class queue. Assume program A knows the
class numbers programs B and C used to access their respective class buffers. Program A now
wants to rethread B’s and C’s buffers to its completed class queue on its class number. Program A
needs to do the following:

1.
2.
3.

Set the RT bit in program A’s class word to indicate rethreading is desired.
Set oclas to program B’s class number. Bits 15, 14, and 13 are not checked.

Set bufln to zero to rethread the buffer exactly as it currently stands. To insert new information
into program B’s buffer, bufr should contain the new information and bufln should contain
bufr’s length. bufr’s length must not exceed the length of program B’s buffer which is now the
rethread buffer. In other words, program A cannot overwrite more information in program
B’s buffer than was originally allocated to program B.

Issue the rethread call; program B’s buffer (the rethread buffer) will be added to the end of
program A’s class number completed class queue.

Repeat steps 2 through 4, putting program C’s Class Number in oclas and taking the
appropriate action at step 4. Repeat until all desired buffers are rethreaded.

4-28 Class I/O

Class Rethread Example

The following three programs illustrate class rethreading.

O0o0

O0000

PROGRAM THRED 3, 89)

| MPLI CI T | NTEGER (A-2)

| NTEGER BUFA (5), BUFB (5), BUFC (5), NUMB (15),
MYNAM 3)

DATA CLASS/ 0/, CLASA/ 0/, CLASB/ 0/, CLASC 0f
DATA NumB/ ™ '/

DATA BUFA/" MESSAGE 1’/
DATA BUFB/ ' MESSAGE 2’ /
DATA BUFC/ " MESSAGE 3’/

ASSI GN CLASS NUMBERS TO PROGRAM GETEM

CALL CLRQ (1, CLASS, 6HGETEM)
CALL CLRQ (1, CLASA, 6HCGETEM)
CALL CLRQ (1, CLASB, 6HGETEM)
CALL CLRQ (1, CLASC, 6HGETEM)

PI CK UP MY OAN NAME AND DI SPLAY | T

CALL PNAME (MYNAM)
CALL EXEC (2, 1, M\YNAM 3)

CALL CNUNMD (CLASS, NUVB)

CALL CNUNMD (CLASA, NUMB(5))
CALL CNUNMD (CLASB, NUMB(9))
CALL CNUNMD (CLASC, NUMB(13))

DI SPLAY ALL FOUR CLASS NUMBERS
CALL EXEC (2, 1, NUVB, 15)

PASS THREE BUFFERS W TH " TAGGED" MESSACES. TAG IS
FI RST PARAMETER (1,2 OR 3) AND | NDI CATES THE ULTI MATE
DESTI NATI ON (PROGA, PROGB CR PROGC) .

CALL EXEC (20, 0, BUFA, 5, 1, 0, CLASS)
CALL EXEC (20, 0, BUFB, 5, 2, 0, CLASS)
CALL EXEC (20, 0, BUFC, 5, 3, 0, CLASS)

NOW SCHEDULE THE FOUR PROGRAMS. PROGA, PROGB AND PROGC
NEED KNOW ONLY THEI R OAN CLASS NUMBERS. CGETEM KNOWS ALL
THE NUMBERS. CGETEM W LL RETHREAD THE BUFFERS I T GETS
ON NUMBER CLASS TO CLASA, CLASB OR CLASC (ACCORDI NG TO
THE FI RST PARANMETER) .

CALL EXEC (10, 6HGETEM , CLASS, CLASA, CLASB, CLASC)
CALL EXEC (10, 6HPROGA , CLASA)

CALL EXEC (10, 6HPROGB , CLASB)

CALL EXEC (10, 6HPROGC , CLASC)

END

PROGRAM GETEM 3, 88), Get O ass Buffers and
Reroute ' Em
| MPLICI T | NTEGER (A-2)

Class I/O

4-29

| NTEGER CLAS(5), BUFR (10)
EQUI VALENCE (CLASS, CLAS(1)),
> (CLASA, CLAS(2)),

> (CLASB, CLAS(3)),

> (CLASC, CLAS(4))

C SC = SAVE CLASS BI T, WHEN USED W TH CLASS GET.
C SB = SAVE BUFFER. | F NOT SAVED (1.E. DEALLOCATED FROM SAM
C ON CLASS CET), THEN IT CAN T BE RETHREADED.

DATA SC/ 20000B/, SB/ 40000B/, RT/ 200008/

CALL RWVPAR (CLAS)

10 CALL EXEC(21, SC+SB+CLASS, BUFR, 10, RL, R2)
CALL EXEC(20, 0, BUFR, 0, R1, R2, CLAS(R1+1) +RT, CLASS)
GO TO 10

C IN TH S EXAMPLE, CGETEM AND THE THREE PROCGRAMS PROGA,
C PROGB AND PROGC WLL WAIT "FOREVER® FOR MORE MESSAGES
C TO ARRIVE ON CLASS. NOTE: |F GETEM IS ABORTED, THEN
C PROGA, PROGB AND PROGC W LL BE ABORTED ALSO, SI NCE

C GETEM OMNS ALL THE CLASS NUMBERS.

END

PROGRAM PROGA(3, 88), Di spl ay Buffers Passed by Mbnitor
| MPLICI T | NTEGER (A-2Z)

| NTEGER CLASS(5), BUFR (10)

DATA BUFR/ 3*2H ,2H ,6*2H /

DATA SC/ 200008/

IN TH'S EXAMPLE, PROGA, PROGB AND PROGC ARE | DENTI CAL.
ONCE PROGA | S A TYPE 6 FILE, DO THE FOLLOW NG

: RP, PROGA
: RP, PROGA, PROCGB
: RP, PROGA, PROGC

O000000

CALL RMPAR (CLASS)
CALL PNAME (BUFR)
10 CALL EXEC (21, CLASS+SC, BUFR(5), 10, R1, R2)
CALL ABREG (A, LEN)
CALL EXEC (2, 1, BUFR LEN+4)
GO TO 10
END

4-30 Class|1/O

Program Control

Program Control functions provided within the system consist of program loading and scheduling.
These multiprogramming activities are controlled by you but supervised by the system. These
requests offer a number of features:

e Program overlay loading.
e Program scheduling, with or without wait.

e Queued scheduling with or without wait.

These control functions provide programmatic loading and scheduling of real-time programs with
fast response time.

The option of scheduling with or without wait allows programs to react to real-time events
synchronously or asynchronously. Simply by selection of EXEC parameters, the scheduling
program waits for the scheduled program to complete, or proceeds with its own processing while
the system takes care of executing the scheduled program.

If the calling program requests a scheduling with wait, it does not continue executing until the
scheduled program completes. If the calling program requests a scheduling without wait, it
continues execution immediately, regardless of the action the system takes with respect to the
request. If the scheduled program is available, it executes in conformance with the request. If the
scheduled program is not available, the system issues an error message.

Program Control 5-1

EXEC 8 (Overlay Load)

Note The EXEC 8 Overlay Load call is for use only with non-CDS programs. It does
not apply to CDS programs, so an EXEC 8 call from such a program causes an
SCO06 error. Control returns to the instruction following the call only if the
no-abort bit is set and an error that causes an abort occurs. See ecode in
Chapter 1 for details on setting the no-abort bit.

An EXEC 8 request loads a program overlay (background or real-time) of the calling program
from disk into memory, and transfers control to the overlay’s entry point. The overlays occupy an
area in memory provided by the program.

CALL EXEC(ecode, NAME] , praml[, pram2[, pram3[, pram4[, pram5]1]111])
where:

ecode is 8 for an overlay load request.

NAME is a three-word integer array in which the overlay name must appear in all
uppercase and as:

NAME(1) = 1st two characters
NAME(2) = 2nd two characters
NAME(3) = last character in upper 8 bits (the lower byte is not significant)

praml -
pram5 are optional user-defined parameters.

Completion of the request passes control over to the loaded program overlay.

Overlay Load Parameters

ecode is described in the ECODE section of Chapter 1.

NAME is the five-character name (in uppercase) of the overlay. If the overlay name has less
than five characters, the name must be padded with blanks to fill out the remaining

letters.
praml - are optional user-defined parameters of type INTEGER, and are used to pass
pramb parameters to an overlay. Their use can vary considerably. Such diverse things as array

addresses, LU numbers, or program names can be passed using one or more of these
parameters. Their advantage is that Common (Program or System) is not used, nor
are any special declarations necessary. To retrieve these parameters, a call in the
overlay to the system library subroutine RMPAR is necessary. See the RMPAR section
in Chapter 7 for details on calling RMPAR.

5-2 Program Control

A- and B-Register Returns

On overlay entry, the registers are set as follows:

A = Address of the (overlay’s) short ID segment

B = Address of the parameter list

If an overlay load attempt is made on a overlay that does not exist or does not have an ID
segment, an SCO5 error results and is contained in the A- and B-Registers as follows:

A = The two ASCII characters “SC” (51503 octal)
B = The two ASCII characters “05” (30065 octal)

If an overlay load attempt is made from a CDS program (on a system with the VC+ Enhancement
Package), an SC06 error results. The A- and B-Registers will contain:

A = The two ASCII characters “SC” (51503 octal)
B = The two ASCII characters “06” (30066 octal)

SEGLD (Overlay Load)

SEGLD loads an overlay of the calling program from disk into an overlay area in memory
provided by the program, and transfers control to the overlay’s entry point. It is an alternative to
EXEC 8 that allows use of SEGRT and Symbolic Debug. It should not be used in CDS programs,
or an error will occur.

CALL SEG.D(NAME, ierr[, praml[, pram2[, pram3[, pram4[, pram5]]]1]1])

where:

NAME is a three-word array containing the five-character overlay name:

NAME(1) = 1st two characters
NAME(2) = 2nd two characters
NAME(3) = last character in upper 8 bits (the lower byte is not significant)

ierr is an error return; its value is —6 if the overlay cannot be loaded or if the calling
program is a CDS program.

praml - are optional user-defined parameters of type INTEGER, and are used to pass

pramb parameters to an overlay. Their use can vary considerably. Such diverse things as
array addresses, LU numbers, or program names can be passed using one or more
of these parameters. Their advantage is that Common (Program or System) is not
used, nor are any special declarations necessary. To retrieve these parameters, a
call in the overlay to the system library subroutine RMPAR is necessary. See the
RMPAR section in Chapter 7 for details on calling RMPAR.

SEGLD loads overlays via an executive request. Control returns to the calling routine if the
segment cannot be loaded (ierr will be equal to —6) or if the overlay calls SEGRT (ierr will equal
Zero).

Program Control 5-3

SEGRT (Return to Main from Overlay)

SEGRT allows an overlay that was called from the main program via a SEGLD request to return
to the instruction after the SEGLD request.

Note SEGRT is provided for use in conjunction with SEGLD. Only non-CDS
programs using SEGLD style segmentation should use these calls.

CALL SEGRT()

There are restrictions on the use of SEGRT:

1. SEGRT can only be used if the overlay was loaded by a SEGLD request.
2. The overlay must have been loaded from the main, not another overlay.

3. SEGRT can only return to the main, not another overlay.

CHNGPR (Change Program Priority)

CHNGPR sets the priority of the calling program to the value specified. For a description of
priorities see the description of the PR command in the RTE-A User’s Manual, part number
92077-90002.

ierr = CHNGPR(prio)

where:
lerr is an error return. If the value of PRIO is not between 1 and 32767, inclusive, ierr
will be less than zero; otherwise ierr will be set to zero.
prio is the priority to be assigned to the calling program. It should be an integer

variable with a value between 1 and 32767, inclusive.

5-4 Program Control

EXEC 6 (Stop Program Execution)

EXEC 6 terminates the calling program or another program subordinate to the calling program.

CALL EXEC(ecodel , progl , type[, praml[, pram?2[, pram3[, pram4[, pram51]111111)

where:
ecode

prog

hype

praml -
pramb

is 6 to stop program execution.

is zero or a three-word integer array. To terminate the calling program, set prog to
zero. To terminate a subordinate (child) program, use the name of a three-word
character array containing the name of the program to be terminated. The entire
program name must be specified in uppercase.

is an optional parameter indicating the type of termination. Possible values are:

= terminate serially reusable

normal completion (default)

make the program dormant, save resources.

normal completion and remove program from time list.

same as 2, and also remove program’s ID segment from system.

W= O~
I

Note that types 2 and 3 are considered abnormal terminations by the parent
program if the child was scheduled with wait. See the following discussion of
EXEC 9, 10, 23, and 24.

are optional integer parameters that may be specified if the calling program is
terminating itself, that is, prog is zero. These values become the default parameters
to the program when it is next scheduled, if it is scheduled without parameters.

Stop Program Execution Parameters

ecode is described in the ECODE section of Chapter 1.

type specifies the type of termination to use. Zero is the normal (default) termination. Results of
this option are:

1. The next time the program executes, it will start from its primary entry point (not the location
following the EXEC call).

2. 1If the EXEC 6 call was made from a re-entrant subroutine, the subroutine is unlocked.

3. If a string was passed to the program and the program never requested the string with EXEC
14 call, the string’s memory space is returned to SAM.

4. Any devices the program locked with the system library routine LURQ are unlocked (see the
LURAQ section in Chapter 2 for more information).

5. Any resource numbers that are locally locked to the program are unlocked (see the RNRQ
section in Chapter 2).

Program Control 5-5

6. Any resource numbers that are locally allocated to the program are deallocated (see the
RNRAQ section in Chapter 2).

7. If the program owns an I/O class number or numbers, its class requests are flushed and its
class buffers and class number(s) are deallocated. From a user program, this is done with a
CLRQ request (see the CLRQ section in Chapter 4).

8. Any programs that are queue suspended (QU) or wait suspended (WT) for this program are
resumed. See the section on EXEC 9, 10, 23, and 24.

9. The memory occupied by the program is released and made available for any other use.

10. If the program was originally loaded from a memory-image (type 6) program file, it will be
reloaded from the same file when it is scheduled again.

11. The ID segment and its program space are deallocated if the program was flagged as
temporary by the RU or XQ command or by an IDCLR call. See the RTE-A User’s Manual
for details of the RU and XQ commands. See the IDCLR section in the RTE-A/RTE-6/VM
Relocatable Libraries Reference Manual, part number 92077-90037, for more information on
IDCLR.

A termination with fype = 1 terminates saving resources and is the same as an EXEC 7 (pause)
request, with the following exceptions:

1. The program is put in the dormant (OF) state, and the SV bit is set. This allows it to be
scheduled by an XQ, RU, or AT command, an EXEC 9, 10, 12, 23, or 24 request, a driver, or
an interrupt. Note that the SV bit is cleared when the program is rescheduled.

FmpRunProgram calls can also be used to schedule the program. However, the :IH option
should be used with the program’s name (for example, PROG:IH) so that the program is not
cloned.

2. If the program terminates itself, then any programs queue suspended (QU) or wait suspended
(WT) for this program are resumed. See EXEC 9, 10, 23, and 24 for more information on
queue scheduling and wait scheduling. If the program schedules a child program and then
terminates that child program saving resources, then programs queue suspended or wait
suspended on the child are not resumed.

3. No other program can be loaded into the memory area until the dormant program has been
swapped out. When the dormant program is next scheduled, it will not be loaded into memory
from the program file. Instead, it will be loaded from the swap area if not still in memory. It
will continue execution at the next instruction after the EXEC 6 call with fype equal to 1.

A termination with fype = —1 terminates serially reusable. When rescheduled, the program is not
loaded from disk if it is still in memory. Serially reusable completion should be used only with
programs (if stored on disk) that can initialize their own buffers or storage locations. The program
must be able to maintain the integrity of its data since its partition (and data) may be overlaid by
another program. If the operating system needs the program’s memory area for other purposes,
the program is not swapped out to disk, but is simply overlaid.

A termination with fype = 2 is identical to a termination with zype = 0, except that the program is
removed from the time list. A termination with fype = 3 is identical to a termination with type = 2,
except that the ID segment of the program is removed from the system. A termination with type =

5-6 Program Control

2 or type = 3 is considered an abnormal termination by the parent program if the calling program
was scheduled with wait. See the discussion of EXEC 9, 10, 23, and 24.

The parameters praml through pram$, if given, are placed into the temporary words $TMP1
through $TMP5 of the calling program’s ID segment. These values become the default
parameters retrieved by a call to the RMPAR routine when the program next executes. This
feature is typically used by a program in the time list to pass parameters to itself on its next
execution. If the program is scheduled by a means that passes a new set of parameters then these
default values are lost. The FmpRunProgram routine and both the CI and the system RU and XQ
commands always pass a new set of parameters, even if no parameters are specified in the
runstring. If new parameters are specified in an EXEC 9, 10, 23, or 24 call then the default
parameters are lost. Note that these default parameters may be defined only when a program
terminates itself.

Stop Program Execution Example

The following example illustrates the use of two of the options for EXEC 6.

PROGRAM ENDD
I MPLICI T | NTEGER (A-2)
DI MENSI ON' PRAM 5)

C SUSPEND YOURSELF AND PI CK UP PARAMETERS ON THE NEXT RUN.
CALL EXEC (6, 0, 1)

C PROCGRAM | S SUSPENDED AT THI'S PO NT. NEXT EXECUTI ON W LL
C CONTI NUE FROM THI S PO NT.

C PICK UP PARANETERS
CALL RMVPAR(PRAM)

C NOW TERM NATE AND RELEASE RESOURCES.
CALL EXEC(6)
END

Program Control 5-7

EXEC 7 (Program Suspend)

EXEC 7 suspends execution of the calling program until it is restarted by a GO operator request.
CALL EXEC(7)

When the program is restarted by a GO command the B-Register contains the address of a
five-word array set by the GO command. A call to the RMPAR system library subroutine can load
these parameters, providing the RMPAR call occurs immediately following the EXEC 7 request.
Another alternative is to call the system library routine GETST to retrieve the GO command
string. For details on GETST, see Chapter 7.

If no parameters were passed to the program with the GO command, a call to RMPAR returns
zero in every parameter.

The FORTRAN library subroutine .PAUS, which is automatically called by a FORTRAN PAUSE
statement, generates the program suspend EXEC 7 call. In addition, it logs the pause and any
supplied number on the scheduling terminal.

EXEC 9, 10, 23, 24 (Program Scheduling)

The EXEC 9, 10, 23, and 24 calls schedule a program for execution and pass up to five parameters
and a buffer to the scheduled program.

Program schedule calls are similar to the RU or XQ operator commands. The programs to be
scheduled must already have an assigned ID segment in order to execute. If a program lacks an
ID segment, the FmpRunProgram call can be used to assign an ID segment and schedule the
program.

CALL EXEC(ecode, NAME] , praml[, ... [, pram5[, bufr, bufin] 11])

where:

ecode is 9 for immediate schedule with wait
10 for immediate schedule without wait
23 for queue schedule with wait
24 for queue schedule without wait

NAME is a three-word integer array containing the five-character program name which
must appear in all uppercase and as:

NAME(1) = 1st two characters
NAME(2) = 2nd two characters
NAME(3) = last character in upper 8 bits (the lower byte is not significant)

praml -

pramb are five optional integer parameters.

bufr is where data to be sent to or received from the child program is placed. (A
program scheduled as a result of an EXEC call is called a child program.)

bufin is the length of bufr. A positive number is the number of words; a negative number

indicates the number of characters.

5-8 Program Control

Program Scheduling Differences

The program that issues the EXEC 9, 10, 23, or 24 request is known as the parent. The program
scheduled as a result of the EXEC call is the child.

Assume that program PARNT schedules program CHILD:

With an EXEC 9, PARNT waits until CHILD is finished executing before continuing its own
execution. PARNT is wait suspended (WT) until CHILD has finished. This is known as
scheduling with wait.

With an EXEC 10, PARNT schedules CHILD and then immediately continues its own
execution. This is known as scheduling without wait.

With an EXEC 23, if CHILD is already executing, PARNT waits in a queue until CHILD is
finished, then schedules CHILD. PARNT waits again until CHILD has finished before
continuing its own execution. PARNT is queue suspended (QU) until CHILD executes. This
is known as queue scheduling with wait.

With EXEC 24, if CHILD is already executing, PARNT waits in a queue until CHILD is
finished, then schedules CHILD and immediately continues its own execution. PARNT is
queue suspended (QU) until CHILD executes. This is known as queue scheduling without
wait.

Program Scheduling Parameters

The ecode parameter determines whether or not the calling program (parent) waits, and whether
the parent’s schedule request will be queued until the requested program (child) becomes
dormant.

When a program that has been scheduled with wait (EXEC 9 or 23) completes, the parent
program can recover the system’s copy of optional parameter praml to determine whether or not
the child terminated normally.

Abnormal termination of the child is caused by any of the following conditions:

a. System abort of program.

b. An OF operator command.

c. Child program performed an EXEC (6,0,2) or EXEC (6,0,3) self-termination call. (Refer
to “Exec 6 Stop Program Execution.”)

Abnormal termination causes the system’s copy of optional parameter 1 to be set to —32768
(100000 octal). This occurs even if the child program attempted to pass back parameters via
PRTN. The parent can recover the system’s copy of optional parameter 1 by calling RMPAR.

If the child program terminated normally and no parameters are passed back via PRTN, the value
of all parameters returned by RMPAR are zero. Otherwise, the RMPAR-returned values will be
those passed back from the child’s PRTN call. The PRTN subroutine allows child programs to
pass parameters back to their parent programs; it is described in Chapter 7.

An ecode of 9 (schedule with wait) causes the system to put the parent in a wait status. If required,
the parent may be swapped by the system in order to run another program. The child runs at its

Program Control 5-9

own priority, which may be greater than, less than, or equal to that of the parent. Only when the
child terminates does the system resume execution of the parent at the point immediately
following the program schedule call.

All schedule combinations are legal: a background (BG) program can schedule a real-time (RT)
program, a RT program can schedule a BG program, a RT program can schedule a RT program,
and a BG program can schedule a BG program.

An ecode of 10 (schedule without wait) also schedules the child according to its priority. The
parent continues at its own priority without waiting for the child to terminate. Note that an ecode
of 9 or 10 will not schedule a child program if it is busy (not dormant).

An ecode of 23 or 24 functions similar to an ecode of 9 or 10 except that the system places the
parent program in a queue if the child is not dormant. The queue means that if the child is not
dormant, the potential parent is suspended until the child may be scheduled by this parent. When
the potential child can be scheduled, the request is reissued and execution proceeds as in EXEC 9
or 10.

Setting the no-suspend bit (bit 14) prevents the parent program from being SAM suspended when
insufficient SAM is available.

As in all EXEC calls, the no-abort/no-suspend option is available by setting bit 15 or bit 14
respectively of the ecode parameter.

A- and B-Register Returns
Returns from EXEC 9 or 10 requests:

If a child program is dormant, it is scheduled and a zero value is returned to the calling
program in the A-Register. If the child is not dormant, it is not scheduled by these calls and
the program status (a non-zero value) is returned to the calling program in the A-Register.

Returns from EXEC 23 or 24 requests:
Zero is returned in the A-Register to indicate that the EXEC 23 or 24 request succeeded.

In each type of scheduling request, B-Register returns have no special meaning.

5-10 Program Control

Optional Parameters

A call to RMPAR as the first executable statement in the child program transfers parameters
praml through pram5 to a specified five-word array within the called program. For example:

PROGRAM CHI LD
| NTEGER PRAM (5)
CALL RVPAR (PRAM

Note that PRAM is a maximum of five words.

For schedule with wait requests (ecode = 9 or 23), the child program may pass back five words to
the parent by calling the PRTN library routine. For example:

PROGRAM DAUTR
| NTEGER PASBAK(5)

CALL PRTN (PASBAK)
CALL EXEC (6)
END

The parent may recover these parameters by calling RMPAR immediately after the child call. If
the parent program needs to examine the A- and B-Register values (for example, on a return from
an EXEC 9 or 10 request), then immediately after the child call, the parent should issue a call to
ABREG followed by a call to RMPAR.

If the optional buffer bufr is included in the parent program’s scheduling call, the buffer is moved
to System Available Memory and assigned to the child. The child can recover the buffer by using
the GETST subroutine or the string passage EXEC 14 call.

Caution If the bufr string is picked up with a GETST call, make sure the string’s structure
conforms to that required by GETST. (The string should be preceded by two
commas because GETST performs an EXEC 14 and returns everything after the
second comma up to the end of the string.)

The parent program is memory-suspended if there is not enough System Available Memory to
currently hold the buffer. The parent is aborted and a SC10 error is returned if there will never be
enough System Available Memory for the buffer. The parent will not abort if the no-abort bit (bit
15 in ecode) is set. The length of the string is limited only by the amount of usable System
Available Memory.

Program Control 5-11

Program Scheduling Example

The following program will schedule a number of child programs, some with wait (EXEC 9 or 23),
others without wait (EXEC 10 or 24).

PROGRAM PATER ()

I MPLICI T | NTEGER (A-2)

DI MENSI ON BACK(5), PRAM5), NAME(3), BUFR(40)
DATA NAVE/’ P1'/

* Al programs to be schedul ed have an
* assigned |ID segnent already
C
C Schedule w thout wait, EXEC 10
C Set the no-abort bit in case the child programisn’t dormant
*
CALL EXEC (10 + 100000B, NAME, *1000)
50 CALL ABREG (A, B) I A-reg = 0 for success
IF (A .NE. 0) GOTO 100 I if fail, queue schedule P1
C
C Schedule with wait, EXEC 9
C
NAME = 2HP2 I schedule P2 w thout wait
CALL EXEC (9 + 100000B, NAME, *1000)
60 CALL ABREG (A, B) I A-reg = 0 for success
IF (A .NE. 0) GOTO 200
*
* child P2 passes back 3 paraneters and a buffer;
* the third paraneter is the Iength of the buffer.
*
CALL RMPAR (BACK) I get 3 paraneters
RD =1 ' enabl e EXEC 14 read
CALL EXEC (14, RD, BUFR, BACK(3)) ! get buffer
CALL ABREG (A, B) I B-reg is transm ssion |og
WRITE (1, '("True buffer length =", 12)’') B
CALL EXEC (6) I normal term nation here

C
C P1 wasn’t dormant; so queue schedule without wait,
C EXEC 24
C
100 WRITE (1, '("Waiting for 7, 3A2)’) NAME
CALL EXEC (24, NAME) I try scheduling Pl again
GOrTO 50 I until successfu
C
C P2 wasn't dormant; so queue schedule with wait, EXEC 23
C
200 WRITE (1, '("Wiiting for 7, 3A2)’) NAME

CALL EXEC (23, NAME) I try scheduling P2 again
GOTO 60 I until successfu

C

C Error handler for initial scheduling attenpts

C

1000 WRITE (1, '("Cannot schedule ", 3A2, /,
> "possibly no ID segnent.”)’) NAME
END

5-12 Program Control

EXEC 22 (Program Swapping Control)

An EXEC 22 request allows its calling program to lock itself into memory so it cannot be swapped,
even by a program of higher priority.

A non-CDS program consists of one partition (referred to as a data partition); so only the options
for the data partition are legal. A CDS program (only in the VC+ environment) consists of two
partitions, a data partition and a code partition, so all swapping options are legal.

In the following list, options 0 and 1 apply to both RTE-A and the VC+ Enhancement Package.
Options 2 and 3 apply only to VC+ Enhancement Package.

CALL EXEC(ecode, option)

where:
ecode is 22 to alter swapping.
option specifies the alteration:

0 indicates that the data partition can be swapped
1 indicates that the data partition cannot be swapped
2 indicates that the code partition can be overlaid
3 indicates that the code partition cannot be overlaid

A call to EXEC 22 sets the appropriate lock bit in the calling program’s ID segment (word 16, bit
6 for the data partition; word 36, bit 14 for the code partition, and the lock bit in the partition’s
Memory Descriptor Status word). The dispatcher examines this status bit before overlaying a
partition. If this bit is set then the partition will not be overlaid, even if a higher priority program
would normally be swapped into its partition. If the option specified is not 0, 1, 2 or 3 or if a
non-CDS program attempts to lock or unlock a code partition, an SC02 error results.

Program Control 5-13

EXEC 26 (Memory Size Request)

EXEC 26 returns the memory limits of the partition the calling program occupies while executing.
For CDS programs running in the VC+ environment, a call to EXEC 26 returns the memory
limits of the area in the data partition between the upper stack limit (Z-Register) and the end of
the partition (not including EMA or MSEG if used). Refer to the chapter on CDS programming
for a description of the data partition. For a non-CDS program, the limits of the area in the
program partition between the end of the program (main if not segmented, largest segment if
segmented) and the end of the partition are returned (not including EMA or MSEG if used).

CALL EXEC(ecode, fword, nwords, Ipart[, umap[, cmap]])

where:

ecode

fword

nwords

Ipart

umap

cmap

is 26 for a memory size request.

returns the address of the first available word behind the calling program. This is
the address of the last word of the program, plus the length of the segment space,
plus one.

For CDS programs, fword returns the address of the first available word beyond the
area which is reserved for the stack in the data partition. This is the value of the
current stack size limit (Z-Register) plus a stack overflow buffer zone of 265 words.

returns the number of words available between the last word of the program and
the last word of the program address space.

For CDS programs, nwords returns the number of words available between the
stack bounds and the last word of the data partition, excluding any VMA/EMA
area. This number can be changed by the operator DT command or the LINK HE
command.

returns the length in pages of the partition occupied by the program, including the
user base page. For CDS programs, /part is the length in pages of the partition
occupied by the program’s data segment, including page 0. This may include the
EMA area or the working-set area, if the program uses VMA or non-shareable
EMA.

for non-CDS programs, an optional 32-word array that returns a copy of the
currently enabled user map. For CDS programs, umap contains the current user
data map.

an optional 32-word array that returns a copy of the current user code map. cmap
is used only for CDS programs.

5-14 Program Control

Parameter Relationships

The executive (EXEC) calculates nwords by subtracting fword from the address of the last word of
the program’s logical address space. The logical address space is determined at when the program
is linked. It can be the size of the program, the size determined by the size override option in the
LINK or operator SZ command. The partition in which the program resides, in turn, may be
equal to or larger than the program’s logical address space. In VC+ Enhancement Package, the
EXEC calculates nwords by subtracting fword from the address of the last word of the data
segment size. The size is determined at link time either by default or by the LINK HE command.
The default is the stack bound value, rounded up to the next page boundary. If the HE command
is used, the size of the data segment may be increased by word increments. The operator DT
command may be used to change the data partition size by page increments rounded up to the next
page boundary.

A- and B-Register Returns

For successful EXEC 26 calls, the A-Register and B-Register contents are unchanged. For
unsuccessful calls, the A- and B-Registers return error information, described under Error
Processing in Chapter 1.

Memory Size Request Example

The following FORTRAN example calls EXEC with ecode 26 to determine the size of the unused
portion of its logical address space. The program passes the address of the first word and the size

of the available space to a user-written routine (USER) that uses the space for temporary data
storage.

PROGRAM DYALC
IMPLICIT I NTECER (A-2)

DI MENSI ON UMAP(32)

ECCDE=26
CALL EXEC(ECODE, FWORD, NWORDS, LPART, UVAP)

CALL USER(FWWORD, NWORDS)

Program Control 5-15

EXEC 29 (Retrieve ID Segment Address)

EXEC 29 scans the ID segments in the system for a specified program.

CALL EXEC(ecode, name, session, idaddr| , search_flag))

where:

ecode

name

session

idaddr

is 29 to retrieve an ID segment address.

is a three-word integer buffer that contains the name of the program whose ID
segment address is to be retrieved. The first unoccupied ID segment may be found
by setting each element of name to zero.

is the number of the session with which name is associated. Unlike the IDGET
routine, this parameter does not default to the caller’s session. Setting session to 0
specifies the system session. This parameter is ignored if any of the following
conditions are found to be true:

e name is all zeroes,

» search_flag is specified and has the sign bit set,

* name specifies a program that is a system process or is in the system session.

is set by EXEC 29 to the ID segment address of the program that was found. If a
matching program is not found, idaddr is set to 0.

search_flag if specified, and the sign bit of this parameter is set, it indicates that the session

parameter does not have to match for an ID segment to match.

5-16 Program Control

Time Operation Requests

Time Operation Requests can be divided into two categories:
1. Obtaining the time from the real-time system clock (in two possible formats).

2. Scheduling the calling program or other programs by putting them in the time list. Programs
are scheduled to execute once or a number of times with a specified time interval elapsing
between each execution. The initial starting time for the program may also vary; it can be
offset from the current time or it can be an absolute time such as 1:37:30 AM.

The real-time clock operates with 10-millisecond resolution, which allows that level of precision to
be achieved in time operations. Initial time is established through the use of the TM operator
command. Refer to the RTE-A User’s Manual, part number 92077-90002, for details on TM.

A- and B-Register Returns

For EXEC 11 and EXEC 12 calls, the returned contents of the A- and B-Registers are
meaningless if the call is successful. Error information is returned to the A- and B-Registers for
unsuccessful calls.

EXEC 11 (Time-Retrieval Request)

EXEC 11 retrieves the current time from the real-time clock. The time is returned as a series of
integers.

CALL EXEC(ecode, timel , year])

where:
ecode is 11 for a time-retrieval request.
time is a five-word integer array where the time value is returned.
year is an optional parameter where the year is returned.

ecode is described in the ECODE section of Chapter 1.

The array time contains the time on a 24-hour clock, with the day of the year in the last word.
Values are returned as integers:

time(1) = Tens of milliseconds

time(2) = Seconds

time(3) = Minutes

time(4) = Hours (0 to 23)

time(5) = Day of the year (such as 117)

Time Operation Requests 6-1

The hours are returned in 24-hour format: midnight is 0, 2 AM is 2, and 5 PM is returned as 17.
Note that subtracting 12 from a 24-hour time (if it is greater than 12) yields its equivalent 12-hour
PM value.

The optional parameter YEAR contains a four-digit year as set by the TM command (such as
1982).

The EXEC 11 call is similar in function to the TM operator command. Refer to the RTE-A User’s
Manual for more details on TM.

EXEC 12 (Initial Offset Scheduling)

An EXEC 12 call schedules a program for execution at specified time intervals, starting after an
initial offset delay. The system places the specified program in the time list and then returns to
the calling program.

CALL EXEC(ecode, NAME, units, often, delay)

where:

ecode is 12 to schedule a program after an initial offset.

NAME is a three-word array containing the name of the program (in uppercase) to be put
in the time list.

units is the resolution code that specifies the time units; it requires the parameter often.
The values of units mean:

0 = remove from time list
1 = tens of milliseconds

2 = seconds
3 = minutes
4 = hours

If parameter units is equal to zero, parameters often and delay are optional.

often is the execution multiple, specifying the time interval between runs of a program
run repeatedly. It is used in conjunction with units. Its value may be 0 through
4095.

delay is the initial offset. It is a negative number indicating the starting time of the first

execution (not zero). A delay of greater than 24 hours is reduced to modulo 24
hours; for example 36 hours is reduced to 12 hours.

Initial Offset Scheduling Parameters

ecode is described in the ECODE section of Chapter 1.

NAME is a three-word integer array containing the five-character name of the program (in
uppercase) to be put in the time list. The program name occupies two ASCII

6-2 Time Operation Requests

characters per word with the last byte as a blank (a word-for-word description of
NAME is in the EXEC 8 section of Chapter 5). The calling program may put itself in
the time list by setting NAME to zero. Any other program may be put in the time list
as long as it has an ID segment already assigned to it.

If NAME is zero, the calling program is suspended and then resumed after the delay
indicated by delay and units. While the program is suspended, it is put in the
time-suspend list, and cannot be scheduled by an operator command or another
program. When the delay has elapsed, execution resumes with the instruction after the
EXEC 12 call. In this case, the often parameter is ignored.

NAME may also be set to one (1). The functionality is the same as when NAME is zero
except that the program is also resumed if the system time changes.

units specifies the time element involved, or resolution code. units in conjunction with the
parameter often specifies the time between each execution of the program indicated in
the parameter NAME. For example, if units is 3 (indicating minutes) and often is 7,
then the program specified in NAME will run every 7 minutes. If units is 0, the
program specified in NAME is removed from the time list and the remaining EXEC 12
parameters are ignored.

often indicates the time between each execution of NAME. 1t is used in conjunction with
units. For instance, if units is 2 (meaning seconds), an often value of 30 causes NAME
to be executed every 30 seconds. An often value of zero causes NAME to be executed
once.

delay is the initial offset, used in conjunction with units, to specify when NAME will initially
execute. It is always a negative number.

Initial Offset Scheduling Examples

The Timed Execution EXEC 12 call is similar to the AT operator request. Refer to the RTE-A
User’s Manual for details on the AT command. This form of the EXEC 12 call schedules a
program in various ways:

1. RUN ONCE — Execute the program in NAME once, 45 minutes from the current time, and
then remove it from the time list.

units = 3 (minutes)
often = 0 (run once)
delay = —45 (run after 45 minutes have elapsed from the current time)

2. RUN REPEATEDLY — 8 hours from the current time, when the program NAME is dormant,
it will execute, go dormant, and then re-execute every 24 hours. The program NAME will
remain in the time list indefinitely.

units = 4 (hours)
often = 24 (run every 24 hours)
delay = —8 (run after 8 hours have elapsed from the current time)

3. REMOVE PROGRAM FROM THE TIME LIST — If units is zero, the program in NAME
(or the calling program if NAME is zero) is removed from the time list. The remaining
parameters are ignored.

Note that an EXEC 6 termination, type=2 or fype=3, removes the calling program from the time
list. If the system time is changed while one or more programs are time scheduled by initial offset,
the execution time of the programs are altered to be consistent with the new system time.

Time Operation Requests 6-3

EXEC 12 (Scheduling Absolute Start Time)

Another form of the EXEC 12 call schedules a program for execution at specified time intervals,
starting at a particular absolute time. The system places the specified program in the time list and
returns to the calling program.

The value of hour determines whether this call is an initial-offset EXEC 12 or an
absolute-start-time EXEC 12. If hour (or delay) is negative, the call is interpreted as an initial
offset call: hour or delay is used to specify the delay and any remaining parameters such as min,
sec, and msec are ignored. If hour is positive, the call is interpreted as an absolute start time call:
hour, min, sec, and msec define the starting time.

CALL EXEC(ecode[, NAME] , units[, often[, hour[, min[, sec[, msec]1]11111)
where:

ecode is 12 to schedule a program after an absolute starting time.
NAME is a three-word array containing the name of the program to be put in the time list.

units is the resolution code specifying time units, and is used with often. Its possible
values mean:

0 = remove from time list
1 = tens of milliseconds
2 = seconds

3 = minutes

4 = hours

often is the execution multiple, specifying the time interval between runs of a program
run repeately. It is used in conjunction with units. Its value may be 0 through
4095.

The following parameters collectively specify the starting time:

hour is the starting hour, 0 to 23.

min is the starting minute.

sec is the starting second.

msec is the starting tens of milliseconds.

Parameters that are omitted default to zero.

6-4 Time Operation Requests

Absolute Start Time Parameters

ecode

NAME

units

often

hour,
min,
sec, and
msec

is described in the ECODE section of Chapter 1.

is a three-word integer array containing the five-character name of the program to be
put in the time list. The program name occupies two ASCII characters per word with
the last byte as a blank (a word-for-word description of NAME is in the EXEC 8
section of Chapter 5).

If NAME is zero, the calling program is suspended and then resumed at the time
indicated by hour, min, sec, and msec. While suspended, the program is put in the
time-suspend list and cannot be scheduled by an operator command or another
program. At the specified time, execution resumes at the instruction after the EXEC
12 call. If NAME is zero, the often parameter is ignored.

NAME may also be set to one (1). The functionality is the same as when NAME is zero
except that the program is also resumed if the system time changes.

Any other program may be put in the time list as long as it has an ID segment already
assigned to it.

specifies the time element involved, or resolution code. units in conjunction with the
parameter often specifies the time between each execution of the program indicated in
the parameter NAME. For example, if units is 3 (indicating minutes) and often is 7,
then the program specified in NAME will run every 7 minutes. If units is 0, the
program specified in NAME is removed from the time list and the remaining EXEC 12
parameters are ignored.

indicates the time between each execution of NAME. 1t is used in conjunction with
units. For instance, if units is 2 (meaning seconds), an often value of 30 causes NAME
to be executed every 30 seconds. An often value of zero causes NAME to be executed
once.

together specify the absolute starting time for the program’s execution. hour is in
24-hour time format; in other words, 9 in the morning is indicated with 9, and 2 in the
afternoon is indicated with 14. To convert 12-hour times (such as 6 PM) to 24-hour
format (hour 18), add 12 to 12-hour PM times. AM times are the same in either
format. If the system time is changed while an absolutely-time-scheduled program is
waiting to execute, its execution time is not changed. However, repeated executions of
absolutely-time-scheduled programs are treated as offsets from the initial execution
and such program execution times are adjusted if the system time is changed. The
hour, min, sec, and msec parameters must be positive values. When RTE-A checks the
range of these parameters, it issues an SCO?2 error if they are negative or out of range.

Time Operation Requests 6-5

Absolute Start Time Examples

The timed-scheduling EXEC call is similar to the CI command AT (refer to the RTE-A User’s
Manual). This call differs from the initial offset version only in that a specific future starting time
is specified instead of a delay. For example, if the current time is 2 PM (1400 hours) and the
program should run at 3:45 PM (1545 hours), use:

hour = 15
min = 45
sec = 0
msec = 0

This call can schedule a program in various ways:

1. RUN ONCE — After the program to be scheduled is dormant, execute it once and then
remove it from the time list. units may be any valid non-zero integer in this case; its exact
value is not meaningful. Use:

units = 3 (any non-zero)

often = 0 (run once)

hour = 0 (midnight)

min = 0 (absolute starting time
sec = 0 is 100 milliseconds
msec = 10 after midnight)

2. RUN REPEATEDLY — After the program to be scheduled is dormant, it will execute, go
dormant, and then re-execute every 15 minutes. The program will remain in the time list
indefinitely:

units = 3 (minutes)

ofttn. = 15 (run every 15 minutes)
hour = 6 (program’s

min = 15 first runis

sec = 50 50 seconds past

msec = 0 6:15 AM)

The program may be scheduled by the operator or another program while it is dormant and in

the time list.

3. TIME SUSPEND — If NAME is zero, the calling program is immediately time (TM)
suspended. The program is suspended until the absolute time specified elapses. Then it
resumes execution at the instruction following the EXEC call. While the program is time
suspended, that program cannot be scheduled by the operator or another program, and it is
not put in the time schedule list. However, if the program is cloneable, then a copy of the
same program can be scheduled.

4. REMOVE PROGRAM FROM TIME LIST — If units is zero, the program named in NAME
(or the calling program if NAME is 0) is removed from the time list. Any remaining
parameters are ignored.

6-6 Time Operation Requests

FTIME (Formatted ASCII Time Message)

FTIME returns to the calling program a 15-word (30-character) ASCII message showing the time,
day, and date.

CALL FTI ME(bufy)

where:

bufr is a 15-word integer buffer to which FTIME returns the ASCII time string.
FTIME returns a string in the form:

1:27 PM MON., 15 FEB., 1982

Each word of bufr contains two ASCII characters.

All characters, including numbers, are in ASCII format. The day and month fields will contain 4
characters (such as in TUE. or SEPT).

HpGetTZ (Get System Time-Zone Offset)

This function returns the current setting of the $SYSTZ value in the system. This value contains
the offset from Coordinated Universal Time (UTC) for the local time zone, and also contains a
flag that is set if the local time zone is in daylight savings time.

flag = HPGet Tz(dst, minutes)

Logi cal *2 flag, dst
I nt eger * 2 minutes

where:
flag is FALSE if $SYSTZ has never been set.
dst is TRUE if the daylight savings time bit is set.

minutes is the offset from UTC in minutes. Negative numbers indicate locales east of the
prime meridian.

The SYSTZ utility must be used to set or change $SYSTZ. (Refer to the RTE-A User’s Manual,
part number 92077-90002, for more information about the SYSTZ utility.)

Time Operation Requests 6-7

SETTM (Set System Time)

A program may change the system time by calling the SETTM system subroutine:

error = SETTM hour, minute, second, month, day, year)

where:
hour is 0 to 23 month is 1 to 12
minute is 0 to 59 day is 1 to 31
second is 0 to 59 year is 1976 to 2037

SETTM and each of the parameters including the return parameter, error, are single-word
integers. All parameters are required. The hour must be given as 0 through 23, so 12:01 AM
would be represented as hour=0, minute=1 and 11:05 PM would be hour=23, minute=5. The year
may not be less than 1976. Possible return values for error are as follows:

0 No error, time is changed
-1 Illegal parameter value
—1713 Security violation (based on the capability required for the TM command.)

The system time can be changed even if there are time-scheduled programs in the system.
Programs that were scheduled absolutely (to run at a particular time) will run at that time. For
example, if the current time is 1:00 PM, and a program is scheduled to run at 2:00 PM, and the
system time is changed to 3:00 PM, the program will execute at 2:00 PM the following day.
Programs which were scheduled relatively (to run after a certain period of time passes) will still
run when the time period has passed, regardless of how the system time changed. For example, if
at 10:00 AM a program is scheduled to run in 1 hour, and then the system time is changed to 8:00
AM, the program will run at 9:00 AM, 1 hour after it was scheduled.

6-8 Time Operation Requests

Parameter Passing and Conversion

The subroutines in this chapter pass and retrieve parameters between programs, or convert one
type of data into another. In FORTRAN, routines called as functions should be declared as
integers unless otherwise stated.

Note Parameters for parsing routines are delimited by commas unless otherwise
noted. CI replaces one or more blanks in a parameter string with a comma
unless the string is quoted.

PRTN and PRTM (Parameter Return)

These two routines pass parameters to the program that scheduled it with wait (refer to EXEC 9
and 23 in Chapter 5 for more information on scheduling with wait). The scheduling program
may recover these parameters with RMPAR. The PRTN subroutine passes five parameters;
PRTM passes four parameters.

CALL PRTN(prams)

where:
prams is a five-word integer array. Up to five parameters can be passed in prams.
Note The PRTM routine is provided for compatibility with the RTE-6/VM

Operating System. In RTE-6/VM, the wait flag is not cleared when you use
PRTM. In RTE-A, the wait flag is not cleared for either PRTN or PRTM.

To pass parameters with PRTM, you place the values in array elements 1 through 4; however,
these values will be parameters 2 through 5 when the parameters are recovered by RMPAR. The
first parameter will be undefined.

Parameter Passing and Conversion 7-1

RMPAR (Recover Parameters)

RMPAR is a general purpose request used to recover parameters passed to the calling program.
These parameters may originate from a number of sources: operator run commands (RU, XQ,
ON, GO), program scheduling requests (EXEC 6, 7, 9, 10, 23, 24), or information passed by
some drivers after an nonbuffered read, write, or control (EXEC 1, 2, 3) request. For recovery
of runstring or scheduling parameters, a call to RMPAR should be the first executable instruction
of the program. This is necessary because its parameter storage area is used by each EXEC
request.

CALL RMPAR(prams)

where:

prams is a five-word integer array where up to five parameters will be returned.

A- and B-Registers are meaningless upon return from RMPAR.

If at least one but fewer than 5 parameters are passed from the operator runstring or from the
parent scheduling program and a RMPAR request is made, the non-supplied parameter positions
return zero. If no parameters are passed, the first element in the array will contain the LU of the
scheduling device.

For example:
Cl > XQ PROGA 1, , 2 or CALL EXEC(9, PROGA, 1, 0, 2)
causes PROGA to become scheduled with 3 parameters. When PROGA executes the request:

| NTEGER ARRAY(5)
CALL RMPAR(ARRAY)

Then: ARRAY(1) =1
ARRAY(2) =0
ARRAY(3) =2
ARRAY(4) =0
ARRAY(5) =0

Parsing of ASCII strings passed by the XQ, RU, ON, and GO commands (or a MESSS call) is
according to the rules documented with the PARSE subroutine. Only the first two characters of
an ASCII parameter are passed by RMPAR.

7-2 Parameter Passing and Conventions

EXEC 14 (String Passage Call)

EXEC 14 retrieves the command string that scheduled the program or passes a buffer back to
the scheduling program. For command string retrieval, the EXEC 14 call should be made before
any EXEC program schedule requests and before any FMP calls. Command strings are
discussed in the RTE-A User’s Manual, part number 92077-90002.

CALL EXEC(ecode, rcode, bufr, bufin| , prams])

where:
ecode is 14 for string passage.
rcode is the retrieve or write code:
1 = retrieve parameter string or buffer
2 = write buffer to “parent”
3 = write buffer to calling program.
bufr is the integer buffer where the string is placed.
bufin is the length of the above buffer, specified as either positive number of words or
the negative number of characters. Recommended length is 128 words (256
characters).
prams is an optional five-integer array, used when writing a buffer to yourself, placed in

the program’s temporary area for later retrieval by a RMPAR call.

String Passage Parameters

ecode

rcode

bufr

bufln

is described in Chapter 1.

is the Retrieve or Write code. When the first option is used (rcode = 1), this parameter
indicates that the command string passed by an RU, XQ, ON, or GO operator command,
or the bufr passed by an EXEC 9, 10, 23, or 24 schedule call is to be retrieved by the
calling program. When the second option is used (rcode = 2), this parameter indicates
that the string information contained in the parameters bufr and bufln is to be passed to
the “parent” program. The parent is the program that scheduled the calling program.
The third option (rcode = 3) is identical to the second option, except the string is written
to the calling program. Refer to the Procedures section below for more details.

is the user-defined buffer where the string is either retrieved or placed. The action is
determined by rcode above.

contains the length of bufr, expressed in positive words or negative characters. If rcode =
1 and the string is longer than bufln, only bufin words or characters are transmitted. If an
odd number of characters are requested in a retrieve operation, the right half of the last
word is undefined.

Parameter Passing and Conversion 7-3

A- and B-Register Returns

Upon return from a retrieve operation, the A-Register contains status information: 0 if the
operation was successful or 1 if no string was found. The B-Register is a positive number giving
the number of words (or characters) transmitted. If the string is longer than bufr, only bufln
words or characters are transmitted.

String Passage Procedures

The command string retrieved is exactly like the string used in scheduling the program via RU,
ON, GO commands, or EXEC 9, 10, 23, or 24. The block of System Available Memory (SAM)
used to store the command string is released by this call or when the calling program goes
dormant. Parsing of the returned string is left to the calling program. The system library routine
GETST can be used to recover the parameter string portion of the command string.

If the write parameter string option is used, the call returns any block of system available
memory associated with the program and allocates a new block for the program into which the
string will be stored. If the string is being written to the parent, the parent has to have scheduled
the child with wait option.

If no memory is currently available, the calling program is memory suspended. If there will
never be enough memory and bit 15 of ecode is not set, the calling program is aborted with an
SC10 error.

If there is no parent when rcode=2, execution continues at the return point with the A-Register
equal to 1. If the write parameter operation was successful, the A-Register is set to 0.

Example:
RU, PROGX, ABCDSTRI NG

where RU, PROGX, ABCDSTRI NG is returned to BUFR by “CALL EXEC(14, 1, BUFR, 10) ;
and ABCDSTRI NG is returned by “GETST”.

7-4 Parameter Passing and Conventions

GETST (Recover Parameter String)

GETST recovers the parameter string from a program’s command string storage area. The
parameter string is defined as all the characters following the second comma in the command
string. For parameter string recovery, GETST must be called before any EXEC program
schedule requests and before any FMP calls. Refer to the RTE-A User’s Manual for a discussion
of command strings.

CALL GETST(bufr, bufin, tlog)

where:
bufr is the user-defined buffer large enough to hold the parameter string.
bufln is the length of bufr, expressed as a positive number of words or negative number
of characters. Recommended length is the maximum of 40 words or 80
characters.
tlog returns a positive integer giving the number of words (or characters) actually

transmitted into bufr. tlog never returns an integer greater than the value of bufin.

The A- and B-Registers are undefined after a return from GETST. Note that if RMPAR is used,
it must be called before GETST.

When an odd number of characters is specified, an extra space is transmitted in the right half of
the last word.

This subroutine performs a function similar to an EXEC 14 call.

Note A string retrieved with GETST must be structured so that two leading commas
exist in the string. GETST discards the information preceding the two commas
and returns the string following them.

Parameter Passing and Conversion 7-5

Example:

This example and corresponding output shows the differences between EXEC 14 and GETST, as
well as demonstrating the use of GETST.

PROGRAM EXAML
| MPLI CI T | NTEGER (A-2)
DI MENSI ON BUFRL (40)
C GET THE RUNSTRI NG

CALL EXEC (14, 1, BUFRL, 40)
CALL ABREG A, LEN)

WRITE (1,1) (BUFRL(1),1=1,LEN)
1 FORVAT ("The runstring is: ", 40A2)
END
PROGRAM EXAML
| MPLI CI' T | NTEGER (A-2)
DI MENSI ON BUFR2 (40)
C CET THE PARAMETER STRING W TH GETST
CALL CETST (BUFR2, 40, TLOG)
WRI TE (1,2) (BUFR2(1),1=1, TLOG

2 FORVAT(” Parameter part is: ”,40A2)
END

Output:

The runstring is: RU EXAM, P1, P2, P3, P4, P5, P6
Parameter part is: Pl,P2,P3, P4, P5, P6

7-6 Parameter Passing and Conventions

PARSE (Parse Input Buffer)

PARSE allows a program to parse an ASCII string.

CALL PARSE(bufr, crent, rbufr)

where:
bufr is an integer user-defined buffer where the string to be parsed is placed.
crent is an integer variable that specifies the number of characters in bufr.
rbufr is the integer receiving buffer. The result of the parse of the string in bufr is

stored in rbufr. rbufr is always 33 words long.

The result of parsing the ASCII string in bufr is stored in rbufr. A set of 4 words in rbufr is used
to describe each parameter that is parsed. The set is:

Word Entry

1 FLAG WORD 0 = parameter is null
1 = parameter is a numeric
2 = parameter is ASCII

2 VALUE(1) 0 if null; parameter value if numeric; first 2 characters if
ASCIL

3 VALUE(2) 0 if null or numeric, else the 3rd and 4th characters.

4 VALUE(3) 0 if null or numeric, else the 5th and 6th characters.

This subroutine can parse up to eight parameters.

The rbufr parameter is initialized to 0 before parsing the string bufr. Word 33 of rbufr will be set
to the number of parameters in the string.

One or more non-digit characters in the parameter (except a trailing “B” or leading “—") makes
a parameter ASCII. A leading “+” is considered a non-digit ASCII character, and makes the
parameter ASCIL.

The PARSE routine ignores all blanks and uses commas to delimit parameters. ASCII
parameters are padded to six characters with blanks. If more than 6 characters are present, the
leftmost 6 are returned. Numbers may be negative (with a leading “—") and/or octal (trailing
“B”). If a parameter starts with a number and you want the parameter to be parsed as ASCII,
then any letter except “B” should appear as the last character in the string, as follows:

123c, LWI9, TEST

The result is that the first parameter is parsed as 4 ASCII characters, not as one hundred
twenty-three. The application program must discard the “dummy” character.

Parameter Passing and Conversion 7-7

INPRS (Inverse Parse)

INPRS converts a buffer of data back into its original ASCII form.

CALL | NPRS(rbufr, pnum)

where:
rbufr is an integer buffer containing the parsed string.
phum is the number of parameters parsed. If the parsed buffer rbufr (returned from

PARSE) is used, then rbufr(33) contains the number of parameters parsed.

INPRS is the inverse of PARSE. The calling program passes to INPRS a buffer in the format
returned by the PARSE routine. INPRS then reformats the buffer into an ASCII string that is
syntactically equivalent (under the rules of PARSE) to a buffer that may have been passed to
PARSE to form rbufr. The length of the ASCII string in characters will be eight times the
number of parameters. For example, if there were 4 parameters in the string, then INPRS would
return an ASCII string 32 characters in length.

The following example illustrates the use of PARSE and INPRS:

PROGRAM | MP
I MPLICI T | NTEGER (A-2)
| NTEGER GET(40)
| NTEGER PBUF(33), PBUF2(33)
C GET THE PARAMETER STRI NG
CALL GETST (GET, -80, TLOG)
CPRINT IT
CALL EXEC (2, 1, GET, -TLOG)
CPARSE I T
CALL PARSE(GET, TLOG, PBUF)
C COPY THE RESULT TO A SECOND BUFFER
DO 50, | =1, 33
PBUF2(|) =PBUF(1)
50 CONTI NUE
C | NVERSE PARSE THE SECOND BUFFER
CALL | NPRS(PBUF2, PBUF2(33))
CPRINT THE TWO BUFFERS | N OCTAL
DO 60 |=1, 33
WRI TE (1,100) PBUF(I), PBUF2(I)
100 FORMAT(2010)
60 CONTI NUE
CPRINT THE RESULT
C SYNTACTI CALLY EQUI VALENT TO ORI Gl NAL
CALL EXEC(2, 1, PBUF2, PBUF2(33) *(-8))

END

7-8 Parameter Passing and Conventions

CPUID (Get CPU Identification)

CPUID returns a value indicating the type of CPU that is being used.
icou = CPU IX)
icpu will be set to one of the following values:

ICPU CPU Type

2 A600

3 A700

4 A900

5 A600+

7 A400
10 A990

LOGLU (Get LU of Invoking Terminal)

LOGLU returns an LU number suitable for use in EXEC calls to the terminal. In RTE-A, this
value is always 1; but in other RTE operating systems it may be different.

lu = LOGY(reallu)

On return, /u contains a 1. reallu contains the real LU number of the scheduling terminal; this
may be up to 255.

LUTRU (Returns True System Logical Unit)

The LUTRU subroutine returns the true system LU number associated with a session LU.
CALL LUTRU(seslu, syslu)

or
syslu = LUTRU(seslu)

where:
seslu is the session logical unit number to be checked.

syslu s the system LU is returned here.

If seslu is not equal to 1 (that is, not in session), syslu is set equal to seslu.
The Macro/1000 calling sequence is as follows:

EXT LUTRU

JSB LUTRU

DEF RTN

DEF SESLU

DEF SYSLU
RTN

Parameter Passing and Conversion 7-9

EQLU (Interrupting LU Query)

EQLU returns the LU of the interrupting device that scheduled the program.

lu = EQLU(zlu)
where:
lu is set to the first LU number assigned to the Device Reference Table (DVT) if the

LU was found, or zero if an LU referring to the DVT was not found.

zlu is the same as the LU parameter. It must be supplied when the call is made.

When a driver detects an interrupt from a device and schedules a program as a result of that
interrupt, the driver provides the scheduled program an easy method of obtaining the LU of that
device. The driver passes the LU as the first scheduling parameter. The system library routine
EQLU will provide the LU of the interrupting device.

Note The RTE-A Driver Reference Manual, part number 92077-90011, explains how
to enable or disable program scheduling on interrupt, as well as additional
values that may be passed by certain drivers.

7-10 Parameter Passing and Conventions

CNUMD, CNUMO, KCVT (Binary to ASCII Conversion)
CNUMD, CNUMO, and KCVT convert a positive integer binary number to ASCII.

CALL CNUMDX(numb, bufr) (for decimal)

CALL CNUMX numb, bufr) (for octal)

digits = KCVT(numb)

where:
numb is an unsigned 16-bit integer number that will be converted to ASCII format in
the specified number base. Variables may also be used in numb.
bufr is a three-word integer array where the ASCII representation of numb will be
stored (six characters maximum).
digits is the one-word destination (ASCII) buffer.

CNUMD converts an unsigned 16-bit integer to ASCII decimal (base ten) representation.
CNUMO converts an unsigned 16-bit integer to ASCII octal (base eight) representation. KCVT
is a function that converts a positive integer number to base ten and returns the last two
equivalent ASCII digits:

J = 32767
DIG TS = KCVT(J)

DI A TS will contain the two ASCII characters “67”.

The range of numbers that these routines accept are from 0 to 65535 decimal and 0 to 177777
octal. Leading zeros are converted to spaces.

IFBRK (Breakflag Test)

IFBRK tests the break flag and clears it if it is set. (Also refer to the BR operator command in
the RTE-A User’s Manual, part number 92077-90002.) IFBRK returns zero if flag not set. If flag
is set, IFBRK returns —1. Two common uses are:

|F (IFBRK() .LT. 0) GOTO 10

or
ibk = 1 FBRK()
where:
ibk is a one-word variable containing a returned value of 0 (if the break flag is not

set) or —1 (if the break flag is set).
In the first format, 10 is the branch taken if the break flag is set. The flag will be cleared.

Parameter Passing and Conversion 7-11

IFTTY (Interactive LU Test)

IFTTY ascertains whether or not a logical unit (LU) is interactive.
int = | FTTY(lu)

where:
lu is the number of the logical unit being tested.

The call returns the following:

int or A-Register = —1 if [u is interactive
= 0 iflu is NOT interactive

MESSS (Message Processor Interface)

MESSS processes all base set commands that can be entered at the system prompt. MESSS lets
your programs access the base set commands; refer to the RTE-A User’s Manual for a description
of which commands are base set commands.

ic = MESSS(bufr, count| , lu])

where:

bufr is an integer buffer that must be at least 72 characters (36 words) in length. The
command string is placed here before the call, and the string is overlaid by any
returned error or status message. Parameters in the command string must be
separated by commas.

ic is the negative character count of the returned message in bufr if it is returned
here, or 0 if no returned message.

count is the integer value containing the character count for the above bufr.

lu is an optional parameter.

The command is placed in bufr and the number of characters in bufr is placed in count.
Command formats and possible error and status messages are described in the RTE-A User’s
Manual.

The value of ic on return will be zero if there is no response, or the negative character count if
there is a message from the system. Any message will be in bufr; note this overwrites the
previous contents of bufr.

The [u parameter is optional. It has meaning only for the RU or XQ requests. When lu is
included in the MESSS call, it is like adding “/ /u” to the program name when issuing the
command interactively.

The passed LU is returned as the LOGLU value for the scheduled program and the program
runs in that session; the program gets the session LU for LOGLU in all cases. All EXEC calls to

7-12 Parameter Passing and Conventions

LU 1 will be directed to this LU. When both /session and [u are passed, the /session overrides
the LU.

The program is run in the specified session (or your session, if no session is specified) and must
be available in the specified session. Otherwise, a message is returned that reads:

No I D segnent for this program Try RP, program

If the first parameter in the runstring is defaulted (as in RU,PROGZ,,PRAM2,PRAM3,...), it is
replaced by the value lu. If RMPAR is used to pick up the parameters, the first parameter will
be the value of lu.

If the lu parameter is not supplied, the terminal LU of the calling program is used.

LOGIT (Send Logging Message)

LOGIT logs a message in the error logging file. The calling sequence is:

ierr = LOQ T(string, string_len)

where:
string is an integer buffer up to 128 words long that contains the ASCII string to be
logged.
string_len is the integer number of words in the string.
ierr is an integer variable that is set to a negative value if the call fails. Note that a

positive value does not guarantee that the message was logged.

Note that the message is not logged unless the spool error logging option is enabled. See routine
RteErrLogging to determine if error logging is enabled.

RteErrLogging (Is Error Logging On?)

This routine may be used to programmatically determine if error logging is on or off. The calling
sequence is:

onoff = RteErrLoggi ng()

| ogi cal onoff, RteErrLogging

where:

onoff returns TRUE (negative value) if error logging is enabled, or FALSE (zero) if
disabled.

Parameter Passing and Conversion 7-13

PNAME (Retrieve Program Name)

PNAME returns the program’s name into a three-word buffer. The name in the ID segment is
normally the name given in the PROGRAM statement or NAM record, but may have been
altered by renaming the program file, by using the rename option of the RP command, or
through program cloning.

CALL PNAME(bufr)

where:

bufr is a three-word integer buffer that returns the program’s clone name.

IDGET (Retrieve ID Segment Address)

IDGET retrieves the ID segment address of a specified program.

idaddr = | DGET(namel , session_number])

where:
idaddr is set by IDGET to the address of the program’s ID segment given in the
parameter name, or to zero if the program does not have an ID segment
in memory.
name is a three-word integer buffer with a program name in it. To find the ID

segment address of the first unoccupied ID segment (the ID segment with
the lowest address), set the name parameter to nulls, that is, each array
element contains the value zero. In this case, the session_number
parameter is ignored.

session_number if specified, designates the session number associated with the program.
It makes it possible to distinguish between programs with the same name.
This optional parameter defaults to the calling program’s session number,
and is only used in systems with the VC+ System Enhancement Package.
Setting session_number to 0 specifies the system session. This parameter
is ignored if either of the following conditions are found to be true:

e name is all zeroes,
* name specifies a program that is a system process or is in the system
session.

The EXEC 29 call is an alternative method of obtaining the ID segment address of a specified
program. It has the additional benefit of being able to scan the system for a given program name
regardless of the session number. The EXEC 29 call is documented in Chapter 5.

7-14 Parameter Passing and Conventions

IDINFO (Return ID Segment Information)

IDINFO returns information about the program whose ID segment address is passed to it.
IDINFO also can return the state of the program, equivalent state in RTE-6/VM, and the
parent’s ID segment address.

lerr =
where:

lerr

idaddr
pname

astat

mefstat

pidaddr

| DI NFQ(idaddr, pname, astat, mefstat, pidaddr)

is set to a negative value if an invalid ID segment address is given or if the ID
segment currently does not contain a program. If the address is valid, ierr is set to
zero or a positive value.

specifies the address of the ID segment.

is a three-word integer array that is set to the name of the program. The name is
padded with spaces.

is the state of the program. This value is returned only if astat is zero when
IDINFO is called; otherwise, the value in astat remains unchanged.

is the state of the program if the program was running on an RTE-6/VM type
system. This value is returned only if mefstat is zero when IDINFO is called;
otherwise, the value in mefstat remains unchanged.

is the address of the waiting parent’s ID segment address. If the parent is waiting,
the value returned in pidaddr is the negative of the parent’s ID segment address.
If the parent is not waiting, the value returned in pidaddr is positive. A value is
returned in pidaddr only if the parameter is set to zero when IDINFO is called;
otherwise, the value in pidaddr remains unchanged.

The list of possible values (in octal) for astat and mefstat follow:

Program State astat mefstat
Dormant 0 0
Dormant saving resources 0 140000
Dormant and in time list 0 100000
Program abort in process 1 -1
I/O suspend 2 2
Program wait suspend 3 3
Operator suspend 6 6
Pause 7 6
Waiting for signal 10 3
Signal buffer limit suspend 46 3
Time suspend 47 100000
Locked device suspend 50 3
Resource number suspend 51 3
Class 1/O suspend 52 3
Queue suspend 53 3

Parameter Passing and Conversion 7-15

Down device suspend 54 3
I/O buffer limit suspend 55 3
Load suspend 56 2
Shared subroutine suspend 57 1
Scheduled 60 1
System Available memory suspend 61 4
Spool suspend 62 3
Extended system available memory suspend 63 4

To ensure that the information remains unchanged between the time IDINFO is called and the
returned information is used, the calling program should use privileged operation (see
Chapter 12).

7-16 Parameter Passing and Conventions

KHAR (Character Manipulators)

The following routines are all part of the system library module KHAR. These routines allow a
FORTRAN programmer to build and break apart character strings that are contained in integer
variables. Note that FORTRAN does provide a character data type, which you will want to use
in most cases, but does not work with EXEC calls or these subroutines.

To use the character string routines, source and destination buffers must first be set up. This is
accomplished by calling the routines SETSB and SETDB, respectively. After the buffers are set
up, the routines KHAR, CPUT, and ZPUT are used to manipulate characters between the
source and destination buffer.

SETSB (Set Up Source Buffer)

SETSB sets up the character string source buffer and its limits.

CALL SETSB(bufr, chpos, bufin)

where:
bufr is an integer buffer where the string to be examined is placed.
chpos is the current character position. This variable is updated by the routine KHAR.
It should be initialized to 1 to indicate the first character in bufr. The first
character in buffer is assumed to be in the left half of the first word of bufr.
bufin is an integer defining the number of characters in bufr.

SETDB (Set Up Destination Buffer)

SETDB sets up the character string destination buffer.
CALL SETDB(dbufr, chcent)

where:
dbufr is the integer destination buffer where parts of the source buffer will be placed by
the routines CPUT and ZPUT.
chent is the character count indicating the number of characters in dbufr. This variable

should be initialized to 0 (zero) before calling CPUT or ZPUT. CPUT and
ZPUT update the character count in the variable chcnt.

No test is done to see if chent exceeds the dimensions of dbufr. chcent may be directly
decremented to delete characters, or set to zero to clear the buffer.

Parameter Passing and Conversion 7-17

KHAR (Subroutine to Get Next Character)

KHAR gets the next character from the source buffer.

char = KHAR(dchar)

where:
char is an integer variable where the character will be returned.
dchar is the same as char.

Both char and dchar will be zero if there are no more characters in the source buffer. The
character that is returned is placed in the left half of the word with a blank padded in the right
half.

KHAR increments the variable chpos that contains the current character position in the source
buffer.

CPUT (Put Character into Buffer)

CPUT puts the specified character in the destination buffer.
CALL CPUT(char)

where:

char is the character to be put in the destination buffer. The character should be in the
left byte (FORTRAN 1H format).

CPUT increments the variable chcnt to indicate the number of characters in the destination
buffer.

ZPUT (Store a Character String)

ZPUT stores a character string in the destination buffer.

CALL ZPUT(zbufr, frstc, noc)

where:
zbufr is the integer buffer containing the string to be stored in the destination buffer.
frstc is the position of the first character to be put in the destination buffer.
noc is the number of characters to be put in the destination buffer.

ZPUT increments the variable chcnt to indicate the number of characters in the destination
buffer.

7-18 Parameter Passing and Conventions

Character Manipulation Example

The following section of code uses most of the KHAR character routines. The code builds a
string of the form “RU, RUN57, MSTOUT: : RT, 57 ” from the strings MASOUT, ACRN, and

BUFFER. Notice the use of the function KHAR as an argument to CPUT.

MPOS
M.I M
NPOS
CALL
CALL

1

6

= 24

SETSB(MASQUT, MPCS, M.IM
SETDB(BUFFER, NPOS)

C STRI NG NOW LOCKS LI KE ”"RU, RUN57”; PUT IN THE COVWA AND

CBU LD THE
CALL

MASTER FI LE NAME.
CPUT(1H,)

DO 660 J = 1,6
CALL CPUT(KHAR (KH))
660 CONTI NUE

CNOW PUT I N COLONS AND THE CARTRI DGE REF NUMBER

CALL
CALL
MPOS
M.I M
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CPUT(1H:)
CPUT(1H:)

SETSB(ACRN, MPOS, MLI M)
CPUT(KHAR (KH)
CPUT(KHAR (KH)
CPUT(KHAR (KH)
CPUT(KHAR (KH)
CPUT(KHAR (KH)
CPUT(KHAR (KH)

N N e N e N

Parameter Passing and Conversion 7-19

FMP Routines

The File Management Package (FMP) is a set of routines that manage disk files for RTE-A. FMP
calls from a program can open, close, position, read from and write to files, and perform a number
of sophisticated file manipulation tasks.

FMP can be called from FORTRAN, Pascal, Macro, or other languages that support subroutine
calls. All calling sequences use the .ENTR routine, which is described in the RTE-A/RTE-6/VM
Relocatable Libraries Reference Manual, part number 92077-90037.

FMP is analogous to the File Manager (FMGR) on other RTE operating systems. Appendix B of
this manual is a guide to converting FMGR calls to FMP calls, in order to move software from
another RTE operating system to RTE-A.

General Considerations

Most FMP calls access files or file directories. Files contain programs or data; file directories
identify and describe files. Refer to the Manipulating Files chapter of the RTE-A User’s Manual
for a detailed description of files, directories, and the file descriptor parameters.

The following calls allow your program to create or delete files or directories, and read or write at
various locations in the files. They permit access to information in directories, including type and
location information about specific files. Most programs are limited to the calls that access data in
files or purge files. Some programs can use the additional higher-level calls. For FMP calls at any
level, there is full security and error checking.

FMP Calling Sequence and Parameters

All parameters are required in every FMP call unless the parameter is explicitly documented to be
optional. Omitting non-optional parameters causes unpredictable results. (Note that a parameter
that is not used but is required must still have a valid value.) Most of the FMP routines can be
called as integer functions as well as subroutines. When called as functions, they return values to
program variables. When called as subroutines, the function value is returned in the A-Register.
In FORTRAN, FMP routines called as integer functions must be declared as integers. The FMP
routine names are shown in uppercase and lowercase letters throughout this manual to make it
easier to identify their functions, but they can be specified in either case in your program.

The FMP parameters common to most calls, such as the Data Control Block (DCB)), file
descriptor, and error code, are described in the following sections.

FMP Routines 8-1

Data Control Block (DCB)

A Data Control Block (DCB) is an integer array, defined by the calling program, that FMP uses to
keep information about a file open to the program. A program may have several files open at
once, and there must be a DCB for every open file, so the program should define several arrays to
contain the DCBs. The FmpOpen routine sets up the DCB contents. Once a file is open, FMP
refers to the DCB for file information. The DCB array must be defined as a minimum of 144
words in length. Its contents are maintained entirely by FMP and must not be modified by your
program.

The first 16 words of the DCB contain file control information used by the FMP routines. The
remaining words are used as a buffer to minimize the number of data transfers to disk. The
smallest buffer permitted is one 128-word block. Larger DCB buffers must be a multiple of 128
words (128, 256, 384, and so on), up to a maximum of 127 blocks. The buffer size is independent
of the file; a file created with a DCB buffer of 127 blocks can later be accessed with a DCB buffer
of 128 words. The buffer only serves to reduce the number of disk accesses. File types 0 and 1 do
not require buffers, so a DCB of only 16 words can be used.

File Descriptors

Files are specified by file descriptors, which can contain a file name and an optional file type
extension, directory and optional subdirectory information, and a number of optional file type,
size, and DS location parameters. File descriptors contain fields for all of the RTE File Manager
(FMGR) namr parameters, so files from other RTE operating systems are compatible with FMP
on RTE-A.

Refer to the RTE-A User’s Manual for a full explanation of file descriptors. The following is a
brief description. There are three formats for file descriptors:

1. filnam: sc: crn: type: size: reclen
2. | dirl subl filename. file_type extension. qual: : : type: size: reclen[user] >node

3. subl filename. file_type_extension. qual: : dir: type: size: reclen| user] >node

where:

dir A global directory name of up to 16 characters. The name must conform to the file
name convention.

In the second format, the directory name is surrounded by slashes (/), and must
appear first in the directory path. If the leading slash is omitted, the first entry is
assumed to be a subdirectory.

In the third format, the directory name follows the two colons after the file name.
Subdirectories may be specified in the third format. This parameter is optional
when creating a file descriptor and defaults to the working directory.

sub One or more subdirectory names of up to 16 characters each. The naming rules for
file names apply to subdirectories. In the second or third format, each subdirectory
name is followed by a slash (/). In the second format the subdirectory entries may

8-2 FMP Routines

filename

filnam

follow the directory entry in the directory path; in the third format, the
subdirectories, if any, make up the entire directory path. As many subdirectories as
necessary may appear, with the limitation that the entire file descriptor cannot be
longer than 63 characters. This parameter is optional when creating a file

descriptor. The alternate directory specifiers “.”, “..”, and “#n” may be used in file
descriptors used in the FMP routines.

An FMP file name of up to 16 characters. The file name must conform to the
naming conventions described in the RTE-A User’s Manual.

A FMGR file name of up to six characters; used only in the first format type, for
FMGR files. The naming conventions are the same as for FMP file names.

file_type_extension

qual

sc

crn

ype

size
reclen

user

(Optional) A period followed by one to four characters; it is used to describe the
type of information in the file.

(Optional) Mask qualifier, separated from the file type extension by a period.
Mask qualifiers are described in detail in the RTE-A User’s Manual.

(Optional) A positive integer, a negative integer, or two ASCII characters that
conform to the file name conventions. A positive integer other than zero or two
ASCII characters protects the file from write attempts. A negative integer provides
read and write protection. Used only in the first format, for FMGR files.

(Optional) A positive cartridge reference number, the negative logical unit number,
or two ASCII characters that conform to the file name conventions. Used only in
the first format, for FMGR files.

(Optional) The RTE file types are as follows:
—1 Symbolic link file.

I/O device (non-disk file); variable length records.

o

Random access file; fixed length 128-word records.

Random access file; fixed length user-defined records.

Sequential access file; variable length records; can be ASCII or binary.
ASCII text file; similar to type 3 file.

Relocatable binary file; similar to type 3 file.

Memory-image program file; accessed like a type 1 file.

Absolute binary program file; similar to type 3 file.

® 9 O A W N~

and above: user-defined file types, accessed like type 3 files. Special
processing based on file type must be supplied by the application program.

12 Byte stream file. Refer to Appendix G for details on type 12 file support.
(Optional) The number of blocks in the file.
(Optional) For type 2 files, specifies the length of the records in the file.

(Optional) The user account name under which the file exists; delimited by square
brackets. Used only in systems with the VC+ package.

FMP Routines 8-3

node (Optional) The DS node where the file resides; preceded by a right angle bracket
(>). Used only in systems with the VC+ package.

The first format is the same as a FMGR file descriptor and is used to access files stored in the
FMGR file system. The second and third formats are for files stored in an FMP system.

When creating any of these three types of file descriptors, the only parameter required is the file
name. When accessing existing CI files, the correct directory/subdirectory path and file type
extension must be specified. The optional parameters are used when necessary to more
specifically identify a file. Leading (dir and subdir) parameters can be omitted if not required.
Trailing (for example, type and size) parameters can also be omitted if not required, but
placeholders must be used when parameters are defaulted between specified parameters.

Placeholders and parameter omission are shown in the following examples:

1. / pubs/ manual / dever eaux. t xt:::4: 24[dave] >111
2. manual / dever eaux. t xt. T: : pubs: 4: 24[dave] >111

3. manual / devereaux. txt:::::[dave] >111

All three examples specify the same file. The first uses a leading directory and subdirectory
parameter, but omits the mask qualifier and record length fields. The second uses a trailing
directory parameter and a leading subdirectory parameter. It specifies all but the record length
field. The first two are examples of the second and third file descriptor formats. The third
example specifies the file name and file type extension, defaults the directory, type, and size, omits
the record length, and specifies the user and DS node.

When the directory and subdirectories are defaulted, the second and third file descriptor formats
are the same, because they only differ in their directory specifications.

Character Strings

The FMP calls pass file names as character strings. This eliminates the need to count characters
or treat characters as integers. The character strings are stored in the FORTRAN 77 character
string format, which is described in the FORTRAN 77 Reference Manual, part number 92836-90001.

The FMP routines are coded in FORTRAN 77, so the character strings are treated as fixed-length
strings, and are padded or truncated from right to left to fit target strings. Character strings
should be left-justified. Zero-length strings are not permitted, so null strings are filled with blanks.
Note that nulls in a character string (integer value of zero) are not treated as blanks but are
treated as non-blank ASCII characters.

Character strings are not automatically initialized to blanks but are initialized to nulls instead.
Therefore, you must ensure that character strings are initialized to blanks. You can use a data
statement or blank fill the buffer before the FMP call. For example, in the call
“FnpRpProgranm(fil e, rpnane, opti ons, error) ”, blank fill the return buffer before the
FMP call as follows:

’ ’

rpnanme =

Compilers (such as Pascal) or assemblers that do not use the FORTRAN 77 character string
format must create a file descriptor in a format that the program can manage and that FMP can
use.

8-4 FMP Routines

File Descriptors in Pascal

Pascal supports a variable length character string format that can communicate with FMP routines
when used with the Pascal FIXED_STRING compiler option. The Pascal character string format
is not directly compatible with the FORTRAN 77 character string format. The Pascal PACKED
ARRAY OF CHAR is not compatible with the FORTRAN 77 character string format.

The FIXED_STRING compiler option indicates that string parameters of procedures or functions
declared EXTERNAL should be converted from the Pascal variable length character string format
to the FORTRAN 77 character string format before being passed.

The current length of the Pascal variable length character string is used as the maximum length of
the FORTRAN 77 character string that is passed to the EXTERNAL routine.

Strings that are passed from your program to FMP should have a current length that indicates to
FMP the part of the string FMP wants. The current length can include trailing blanks but should
not include uninitialized areas of the string.

Strings that FMP sets to an initial value and passes back to your program should have a current
length large enough to hold the number of characters expected from FMP (usually a maximum of
63 characters). The length must be greater than zero; FMP truncates or blank pads as necessary.
The contents of the string within the current length do not need to be initialized.

Strings that your program passes to FMP and that FMP modifies and returns should have a
current length large enough to hold the number of characters expected from FMP. The strings
must be blank padded from the end of the data being passed to FMP, out to the current length.

The following Pascal program uses FIXED_STRING to call FMP routines. Note that while a
constant is used as the file name to the FmpOpen call, any Pascal string variable or expression
with a length less than or equal to the length of the string type PATH could be used. Also, note
that anywhere FMP expects a FORTRAN 77 character string parameter, a Pascal string type must
be specified in the EXTERNAL declaration and the FIXED_STRING compiler option must be in
the ON state.

PROGRAM f nmpexanpl e;

CONST

max_file_path = 63;

dcb_words = 144;

wel cone _file = '/ SYSTEM VWELCOME. CMD' ;
TYPE

INT = -32768..32767,

PATH = STRING [max_file_path];

DCB = ARRAY [1..dcb_words] OF INT;
VAR

error_nunber: | NT;

error_message: PATH,

file_dcb: DCB;

term nal : TEXT;

$FI XED_STRI NG ON$

PROCEDURE FrpQpen
(VAR dcb: DCB;

FMP Routines 8-5

VAR err: | NT;
nane: PATH;
opt s: PATH;
buf s: I NT); EXTERNAL

PROCEDURE FnpErr or
(err: | NT;
VAR nmess: PATH); EXTERNAL

$FI XED_STRI NG OFF$

BEGQ N
rewite (termnal, *1', 'NOCCTL');

FmpQpen (file_dcb, error_number, welcone_file, "ROS, 1);

{Check for error on open. If error occurred, make the }
{current length long enough to hold the nessage, get the}
{error nessage from FWMP, trim bl ank paddi ng, and displ ay}
{the nmessage on the term nal

IF error_nunber < 0 THEN BEG N
setstrlen (error_nessage, strmax (error_mnessage));
FrnpError (error_nunber, error_nessage);

error_message := strrtrim (error_nessage);
witeln (termnal, welcone_file,
(', error_nessage,’)’);

END

ELSE BEG N

END;

END.

File Descriptors in Macro

This section describes how to call the StrDsc subroutine from a Macro program to convert
character string file descriptors to a format that can be processed by the program and used by
FMP.

All FMP calls that take a character string require the caller to pass a file descriptor. FORTRAN
77 does this automatically, but Macro users must set up and pass their own file descriptors. Note
that these FMP calls do not work when a buffer of characters is passed as a parameter when a
string is expected.

The StrDsc subroutine returns a two-word descriptor that describes a character buffer of a
specified length, beginning at a specified character position. The characters in the buffer are
numbered from 1 to the number of characters. The resulting two-word descriptor can be passed as
an input or output parameter anywhere a FORTRAN 77 character string parameter is required.
The string is transferred to and from the buffer described by the two-word descriptor. StrDsc is
described in the RTE-A/RTE-6/VM Relocatable Libraries Reference Manual, part number
92077-90037.

8-6 FMP Routines

The following example opens a file with a known name and options string:

ext FnmpOpen, StrDsc

* Kk ok

Create a file descriptor for the name

jsb StrDsc
def *+4

def nbuffer
def =di

def =d19

dst fil enane

And the options string

jsb StrDsc
def *+4
def obuffer
def =d1
def =d3
dst options

Open the file

j sb FnpQOpen
def *+6

def dcb

def err

def fil enane
def options
def =di

*

* Constants and data
*
nbuffer asc 10, WELCOVME. CMD: : SYSTEM
obuffer asc 2, ROCS
filename bss 2
options bss 2
dcb bss 144

Note that

j sb FnpOpen

def *+6

def dcb

def err

def nbuffer ; wong!

def obuffer ; also wong!
def =di

does not work with nbuf f er and obuf f er declared as above.

FMP Routines 8-7

Because f i | enane and opt i ons define string constants, the string descriptors could be defined
as follows:

filename dec 20 ;string byte length
dbl nbuffer ;string byte address
options dec 4 ;string byte length
dbl obuffer ;string byte address

The two words associated with f i | enanme and opt i ons must appear in the order shown. If
string descriptors are defined in this manner, the StrDsc routine is not necessary.

Error Returns

Errors can occur on FMP calls; for example, it is an error to try to open a non-existent file. The
error is returned as a negative value, either as the function return value or in an error parameter.
The error value can be passed to an error processing or reporting subroutine in your program.
The error return values are listed in Appendix A. The FMP routines must be declared as integer
functions in FORTRAN to receive the correct error code as the function return value.

Transferring Data to and from Files

In addition to the Data Control Block, a user buffer must be defined in the calling program for
transferring individual records to and from files. Records to be sent to files must be stored in the
user buffer before a write call. Records read from files are returned to the user buffer. The
relationship between the user buffer, the Data Control Block buffer, and a disk file is illustrated in
Figure 8-1.

Each call that reads or writes a record transfers one record between the user buffer and the Data
Control Block buffer. Such transfers within memory are known as logical reads or writes.

A physical read or write transfers a block of data between the disk file and the Data Control Block
buffer. A physical write is performed automatically when the DCB bulffer is full, when a file is
closed, or when a request for a physical write is made with the FmpPost call.

On a read request, a block of data is physically read into the DCB buffer from the disk only if the
entire requested record is not already in the buffer. If a needed record is not already within the
DCB bulffer, (see record 7 in Figure 8-1), then FMP performs physical reads or writes of blocks
until the entire record has been transferred.

For type 1 file accesses, the intermediate transfer to the DCB buffer is omitted and each 128-word
record is transferred directly between the user buffer and the file as shown in Figure 8-2. Such
accesses are faster than transfers through the DCB buffer.

Non-disk (type 0) file reads and writes also bypass the DCB buffer. Records in type O files are
written or read directly to or from the device identified as a type 0 file. Words, rather than
records, are the units of type 0 transfers to accommodate the record lengths of various devices.

8-8 FMP Routines

Memory

I .
128-Word DCB Buffer Disk

/ Record 1

Record 2

20-Word User Buff / Record 3
ord User Buffer ; B 4

-
1 Record %» Record 4 -a—p| 128-Word Block
>

A Record 5

\
\\ Record 6
\ 1st 8 Words

Record 7
Logical Read/Write /

Physical
Read/Write

Figure 8-1. Logical Transfer Between Disk File and Buffers

Memory Disk
|l |l
| | | |
User Buffer Type 1 File
1 Record = 128 Words [*® P 1 Record = 128 Words

Figure 8-2. Data Transfers with Type 1 Files

FMP Routines 8-9

Descriptions of FMP Routines

This section contains descriptions of all FMP routines; the routines are listed alphabetically.
Tables 8-1 through 8-6 present functional groupings of the routines.

Table 8-1. File Manipulation FMP Routines

FMP Routine Purpose

FmpOpen Opens a file for access

FmpOpenScratch Opens file on scratch directory

FmpOpenTemp Opens a temporary file

FmpClose Closes a file to end access

FmpRead Reads from a file

FmpReadString Reads a character string from a file

FmpWrite Writes to a file

FmpPagedWrite Writes to a file, calling FmpPaginator to break output
into screen pages for terminal devices

FmpWriteString Writes a character string to a file

FmpFpos Returns the current file position

FmpSetFpos Changes the file position

FmpPosition Returns the current file position (except in type 12 files)

FmpRewind Sets file position to the first word of the file

FmpSetPosition Changes the file position (except in type 12 files)

FmpSetWord Changes the file position

FmpAppend Positions a file to the EOF mark

FmpSetEof Sets EOF mark at the current position

FmpPost Posts data to the file

FmpTruncate Truncates the file

FmpSetDcblinfo Changes information in the DCB

DcbOpen Indicates if a DCB is open

FmpMakeSLink Creates a symbolic link file.

FmpReadLink Reads the contents of a symbolic link file.

8-10 FMP Routines

Table 8-2. Directory Access FMP Routine

FMP Routine Purpose

FmpCreateDir Creates a directory

FmpWorkingDir Returns the working directory
FmpSetWorkingDir Changes the working directory

Fmplnfo Returns the directory information for the file
FmpSetDirlnfo Changes information in a directory
FmpMount Mounts a volume

FmpDismount

FmpFileName
FmpOpenFiles

FmpOwner
FmpSetOwner

FmpCreateTime
FmpAccessTime
FmpUpdateTime

FmpRecordCount
FmpRecordLen

FmpProtection
FmpSetProtection

FmpEof
FmpPostEof

FmpSize

FmpRename
FmpPurge
FmpDcbPurge
FmpUnPurge

FmpUdsplnfo
FmpUdspEntry

Dismounts a volume

Returns the full path name of a file
Indicates which files in a directory are open

Returns the name of the directory owner
Changes the name of the directory owner

Returns the time that the file was created
Returns the time of the last access
Returns the time of the last update

Returns the number of records in the file
Returns the length of the longest record in the file

Returns the access available to file or directory
Changes the access to a file or directory

Returns the position of the EOF mark
Posts the EOF position and the number of records from the DCB
to the directory entry

Returns the physical size of the file

Changes the file name
Purges a file

Purges an open file
Restores a purged file

Returns current UDSP information for the session
Returns the directory name in specified UDSP entry

FMP Routines

8-11

Table 8-3. Masking FMP Routines

FMP Routine Purpose

FmplnitMask Initializes data structures for the FMP mask calls
FmpNextMask Returns the directory entry for the next matching file in the directory
FmpMaskName Builds a full name for a file matching the mask

FmpEndMask Closes the files associated with a mask search
WildCardMask Checks for wildcard characters in a mask

FattenMask Modifies the mask

MaskOIdFile Determines if a specified file is an FMGR file
MaskMatchLevel Returns the directory level of the last file matched
MaskDiscLu Returns the disk LU of the last file returned by FmpNextMask
MaskOpenld Returns the D.RTR open flag of the last file returned by

MaskOwnerlds

MaskSecurity

Calc_Dest_Name

FmpNextMask
Returns the owner and group IDs for the last file returned by
FmpNextMask

Returns the security code of the last file returned by FmpNextMask

Creates a destination file name from a file name, match level, and
destination mask

Table 8-4. Device FMP Routines

FMP Routine Purpose

FmpBitBucket Determines whether type 0 file is LU 0

FmpDevice Indicates whether a DCB is associated with a device file
Fmplnteractive Indicates whether a DCB is associated with an interactive device
FmploOptions Returns the 1/O options word

FmpSetloOptions Changes the 1/0O options word

FmploStatus Returns the A- and B-Register values of last I/O request
FmpControl Issues a control request to an LU

FmpLu Returns the LU of the file or device

FmpPagedDevWrite Performs XLUEX(2) write to interactive device, with page breaking

8-12

FMP Routines

Table 8-5. Parsing FMP Routines

FMP Routine

Purpose

FmpBuildHierarch
FmpBuildName
FmpBuildPath
FmpHierarchName
FmpStandardName
FmpLastFileName
FmpParseName
FmpParsePath
FmpShortName

FmpUniqueName

Builds a file descriptor in hierarchical format from its
component fields

Builds a file descriptor from its component fields

Builds a file descriptor that includes hierarchical directory
information and file masks from its component fields

Converts a file descriptor to hierarchical format
Converts a file descriptor to the standard format

Returns the last file name in a path

Parses a file descriptor into its component fields

Parses a file descriptor that includes hierarchical directory
information and file masks into its component fields

Returns the shortened version of a file descriptor

Creates and returns a unique file name

Table 8-6. Utility FMP Routines

FMP Routine Purpose

DcbOpen Indicates whether a DCB is open

FmpCopy Copies a file to another file

FmplList Lists a file to a specified LU

FmpError Returns an error message for an FMP error code
FmpReportError Prints an error message for an FMP error on LU 1
FmpExpandSize Unpacks file size word to double integer
FmpPackSize Packs double integer file size into one word
FmpCloneName Generates program clone names
FmpRpProgram Restores a program,

FmpRunProgram Schedules a program

FmpRwBiIts Checks a string for the letters R and W

FmpPaginator

Prompts for pagebreaks for FmpList, FmpPagedWrite, and
FmpPagedDevWrite routines.

FMP Routines

8-13

Calc_Dest_Name

Calc_Dest_Name generates a full destination file name.

CALL Cal c_Dest _Nane(sourcename, matchlevel, destmask, destname)

character*(*) sourcename, destmask, destname
i nt eger*2 matchlevel

where:

sourcename is a character string that specifies a full source file descriptor.

matchlevel is an integer that specifies the number of the directory level in which the last
file was matched as returned by MaskMatchLevel.

destmask is a character string that specifies the destination mask.

destname is a character string that returns the full destination file descriptor.

Calc_Dest_Name uses a file name, its matchlevel (returned by the MaskMatchLevel routine), and
a destination mask, and generates a full destination file name. If the destination mask contains an
“@?” 1in the file name or file type extension fields, then the sourcename values of those fields are
used. The Command Interpreter (CI) CO and MO commands use Calc_Dest_Name generated
destination names.

DcbhOpen

DcbOpen returns an integer value that indicates whether or not the specified DCB is open.

error = DcbQOpen(dcb, error)

integer*2 dcb(*), error

where:
dcb is an integer array containing the DCB for the file.
error is an integer indicating the status of the DCB. If the DCB is open, error is set to

zero. If the DCB is not open, error is set to a negative error code.

8-14 FMP Routines

FattenMask

FattenMask modifies the mask parameter by adding the character “@” to the name or file type
extension if it is implied by the mask.

CALL FattenMask(mask, how)

character*(*) mask
i nteger*2 how

where:
mask is a character string specifying the mask to be modified.
how is an integer specifying how the mask is to be modified. If bit 0 is set, a “D” is

appended to the qualifier. If bit 1 is set and the mask is blank, “@?” is not
inserted in either the name or file type extension.

If the name field of mask is blank, the “@?” character replaces the blank. If the name field ends
with “@” and the file type extension is omitted, then a file type extension of “.@” is inserted. If
the mask is a global directory in the form /global, the file type extension .DIR is appended because
it is the only file type extension possible for a global directory.

The overall purpose of this call is to make implied constructs such as /DIR/ explicit, by converting
them to the fuller /DIR/@.@.D described in the last paragraph.

FmpAccessTime

FmpAccessTime returns the time of the last access for the named file. The file does not have to
be open, and it is not opened to read the access time.

error = FnpAccessTi ne(filedescriptor, time[, slink])
character*(*) filedescriptor
i nteger*2 error

i nt eger*4 time
| ogi cal slink

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

filedescriptor is a character string that specifies the name of the file.

time is a double integer that returns the time of the last access expressed as the
number of seconds since Jan 1, 1970.

slink is an optional boolean variable that indicates whether to return the access time
of a symbolic link or the file that it references. The possible values are as
follows:

TRUE (negative value)
Return the access time of the symbolic link file.

FALSE (non-negative value)
Return the access time of the file referenced by the symbolic link (this is
the default).

FMP Routines 8-15

The access time is changed when a file is opened. It is not affected by calls that do not open the
file, such as FmpRead or FmpClose. Access time is generally used to check activity on a file;
inactive files that have outlived their usefulness, are often purged to make room for other files.

Routines are available to convert the returned time to an ASCII string. Usually, however, the
returned time is compared to other times in the same format, so it may not be necessary to convert
the returned time.

FmpAppend

FmpAppend positions a file of type 3 or above to the end-of-file mark to prepare for adding
records to the file.

error = FnpAppend(dcb, error)

integer*2 dcb(*), error

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

The file must be open for write access, and must be a type 3 or above file; FmpAppend has no
effect on device files, or type 1 and 2 files. FMGR files must be open for write and read access.

The effect of FmpAppend is the same as calling FmpEof and using the returned value in an
FmpSetPosition call to position the file to the EOF. FmpAppend removes one step from the
process.

Note that FmpEof uses the EOF position in the directory entry. Therefore, it is possible for this
value to be incorrect if the program that is writing to the file is terminated before it is able to post
the new EOF position with an FmpClose or FmpSetEof call.

FmpBitBucket

FmpBitBucket determines if the type 0 file associated with the specified DCB is LU 0 (the bit
bucket).

bool = FnpBit Bucket (dcb)

| ogi cal bool
i nteger*2 dcb(*)

where:
dcb is an integer array containing the DCB for the type O file.
bool is a flag that is set to TRUE (negative value) if the DCB is open and associated

with a type 0 file, and the device is LU 0; otherwise, bool is set to FALSE
(non-negative value).

8-16 FMP Routines

error =

character*(*) filedescriptor,

FmpBuildHierarch

FmpBuildHierarch constructs a file descriptor in the hierarchical format.

FrpBui | dHi er ar ch(filedescriptor, dirpath, name, typex, qual, sc, type, size, rl, ds)

dirpath, name, typex, qual, ds

i nteger*2 sc, type, size, 1l
where:

filedescriptor is a 63-character string that returns the file descriptor.

dirpath is a character string specifying the directory/subdirectory path. dirpath can be a
maximum of 63 characters.

name is a character string specifying the file name. name can be a maximum of 63
characters.

typex is a character string specifying the file type extension. fypex can be a maximum
of 4 characters.

qual is a character string specifying the mask qualifier. qual can be a maximum of 40
characters.

sc is an integer that specifies the security code of a FMGR file.

type is an integer that specifies the file type.

size is an integer that specifies the size of the file in blocks.

rl is an integer that specifies record length.

ds is a character string that specifies the DS node name, a user name, or both. ds
can be a maximum of 63 characters.

error is an integer error return. The only possible error is —231 (string too long)

which is returned if the string will not fit in the file descriptor. If the call was
successful, error returns a non-negative value.

The dirpath parameter must conform to the following conventions:

e The global directory and each subdirectory name be followed by a slash (/).
e dirpath must begin with a slash except in the following cases:

— If the file descriptor is specified relative to the working directory and one or more
subdirectories are specified, dirpath must begin with the name of the highest-level
subdirectory (for example, SUBDIR1/SUBDIR?2).

— If the file descriptor is specified relative to the working directory and no subdirectories are
specified, dirpath must be blank.

If any of the component fields are zero or blank, the corresponding field in the filedescriptor
parameter is left empty, with any necessary placeholders. All delimiters except those in the DS
field are automatically inserted. The ds delimiters must be included in the ds parameter string.
Trailing fields that are zero or blank are omitted without placeholders. There is no error detection
for the component fields, so illegal parameters generate an illegal file descriptor.

FMP Routines 8-17

FmpBuildName

FmpBuildName creates a file descriptor from its component fields. It is the inverse of
FmpParseName. Its call sequence is the same as FmpParseName, but the component fields are
specified, and the file descriptor is returned.

error = FnpBui | dNane(filedescriptor, name, typex, sc, dir, type, size, rl, ds)

character*(*) filedescriptor, name, typex, dir, ds
i nteger*2 sc, type, size, 1l

where:
filedescriptor is a 63-character string that returns the file descriptor.

name is a character string that specifies subdirectories (if any) and the file name.
name can be a maximum of 63 characters.

typex is a character string that specifies the file type extension. typex can be a
maximum of 4 characters.

sc is an integer that specifies the security code of a FMGR file.

dir is a character string that specifies the global directory name. dir can be a
maximum of 16 characters.

type is an integer that specifies the file type.

size is an integer that specifies the size of the file in blocks.

rl is an integer that specifies record length.

ds is a character string that specifies the DS node name, a user name, or both. ds

can be a maximum of 63 characters.

error is an integer error return. The only possible error is —231 (string too long)
which is returned if the string will not fit in the file descriptor.

If any of the component fields are zero or blank, the corresponding field in the filedescriptor
parameter is left empty, with any necessary placeholders. All delimiters except those in the DS
field are automatically inserted. The DS delimiters must be included in the ds parameter string.
Trailing fields that are zero or blank are omitted without placeholders. There is no error detection
for the component fields, so illegal parameters generate an illegal file descriptor.

FmpBuildName example:
Assume that name = SANJOSE and dir = Cl Tl ES.
error = FnpBuil dNanme(fdesc, nane, "txt’,0,dir,4,24,0," ")

f desc returns SANJOSE. TXT: : CI TI ES: 4: 24 .

8-18 FMP Routines

FmpBuildPath

FmpBuildPath constructs a file descriptor from its component fields. It is similar to
FmpBuildName, except that it more conveniently constructs file descriptors that contain
hierarchical directory information, and it permits creation of file descriptors that contain a file
mask qualifier. It is also similar to FmpBuildHierarch except that it creates file descriptors in the
standard format, described in the FmpStandardName section.

error = FnpBui | dPat h(filedescriptor, dirpath, name, typex, qual, sc, type, size, rl, ds)

character*(*) filedescriptor, dirpath, name, typex, qual, ds
i nteger*2 sc, type, size, 1l

where:

filedescriptor is a 63-character string that returns the file descriptor.

dirpath is a character string that specifies the directory/subdirectory path. dirpath can
be a maximum of 63 characters.

name is a character string that specifies the file name. name can be a maximum of 16
characters.

typex is a character string that specifies the file type extension. typex can be a

maximum of 4 characters.

qual is a character string that specifies the mask qualifier. qual can be a maximum
of 40 characters.

sc is an integer that specifies the security code of an FMGR file.

type is an integer that specifies the file type.

size is an integer that specifies the size of the file in blocks.

rl is an integer that specifies record length.

ds is a character string that specifies the DS node name, a user name, or both. ds

can be a maximum of 63 characters.

error is an integer error return. The only possible error is —231 (string too long)
which is returned if the string will not fit in the file descriptor.

The dirpath parameter must conform to the following conventions:
e The global directory and each subdirectory name must be followed by a slash (/).
e dirpath must begin with a slash, except in the following cases:

— If the file descriptor is specified relative to the working directory and one or more
subdirectories are specified, dirpath must begin with the name of the highest-level
subdirectory, as in SUBDIR1/SUBDIR?2/.

— If the file descriptor is specified relative to the working directory and no subdirectories are
specified, dirpath must be blank.

FMP Routines 8-19

If any of the component fields are zero or blank, the corresponding field in the filedescriptor
parameter is left empty, with any necessary placeholders. All delimiters except those in the ds and
dirpath fields are automatically inserted. The DS and hierarchical directory path delimiters must
be included in the ds and dirpath parameters. Trailing fields that are zero or blank are omitted
without placeholders. There is no error detection for the specified parameters, so illegal
parameters generate an illegal file descriptor.

FmpBuildPath is the inverse of FmpParsePath. It has the same calling sequence, and uses the
same parameters, except that the component fields are specified and a file descriptor is built and
returned.

FmpBuildPath example:
Path = /CI TIES/ CALIFORNIA/, file = @ qual = D

CALL FnpBui | dPat h(fdesc, path,file,”’ TXT ,’ D ,0,4,24,0,")
f desc returns/ Cl TI ES/ CALI FORNI A/ @ TXT. D: : : 4: 24

FmpCloneName

FmpCloneName generates program clone names that can be used by FmpRpProgram.

CALL Fnpd oneNane(name, init)

character*(*) name

| ogi cal init
where:
name is a character string that specifies the program name to be cloned. The specified

name is modified by the system and returned to the calling program.

init is a logical indicating whether the current call is the first call to FmpCloneName.

Before calling FmpCloneName for the first time, set the init parameter to TRUE (negative value).
When the call is executed, FmpCloneName resets the value to FALSE (non-negative value).

The sequence of names generated by FmpCloneName is as follows (PROG is the original program
name):

PROG PRO A, PROB, ..., PROZ PROAA, PROAB, ..., PROZZ

FmpCloneName can be called in a loop to generate program names until a name that does not
already exist on the system is found. This name then can be used in an FmpRpProgram call to RP
a program.

8-20 FMP Routines

FmpClose

FmpClose closes a file, and removes its entry from the FMP open file table.

error = FnpCl ose(dcbh, error)

integer*2 dcb(*), error

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

If the program wrote data to the file while it was open, the FmpClose call sets the time of last
update to the system time when the file is closed. It also sets the backup bit in the directory.
FmpClose also sets the end-of-file position in the directory to the file position at the time of the
close, if the DCB specified a sequential file positioned at EOF. If FmpClose finds the DCB not
open, no error will be returned and the error parameter will be zero.

Files should be closed after a program’s access is finished, to make sure that all writes are posted
to the disk, and to unlock files or devices to make them available to other programs. It is good
practice to close files after access is finished, whether or not write accesses were performed.

FmpControl

FmpControl performs an I/O device control (EXEC 3) request on the LU associated with a device
file DCB.

error = FrpCont r ol (dcb, error, praml, pram2, pram3, pram4)

integer*2 dcb(*), error, praml, pram2, pram3, pram4

where:
dcb is an integer array containing the DCB of a device file.
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
praml is the control word (cntwd) of the EXEC call.
pram2 - are integers that can be passed as parameters to the EXEC call. The resulting
pram4 EXEC call is equivalent to the following:

CALL EXEC(3, cntwd, pram2, pram3, pram4)

where cntwd contains the function code and the device LU associated with the
DCB.

FMP Routines 8-21

FmpCopy

FmpCopy copies one file to another.
error = FnpCopy(namel, errl, name2, err2, buffer, buflen, options)

character*(*) mnamel, name2, options
i nteger*2 buffer(*), buflen, errl, err2

where:
namel is a character string that specifies the source file or logical unit.
errl is an integer that returns errors associated with namel.
name2 is a character string that specifies the destination file or logical unit.
err2 is an integer that returns errors associated with name?2.
buffer is an integer buffer that contains the source and destination DCBs and DCB
buffers. buffer must be a minimum of 288 words in length.
buflen is an integer that specifies the length of the buffer in words. buflen must be set to

at least 288 words.

options is a character string that specifies the data transfer mode if the source or
destination is a device, as well as manipulation of the source and destination files.
options can be set to any of the following values, either singly or in combination
(such as PD):

A ASCII

Binary

Clear backup bit on source

Overwrite existing file

Inhibit LU locking of non-interactive devices
Source does not have carriage control

Purge source after copy

Quiet; do not record access time on source
Preserve directory information (timestamps, protection, and backup bit) of
the source file

Truncate destination to length of valid data
Replace duplicate file if update time is older

cH «»womwz—oaw

FmpCopy works for all file types, including type 6 files, and type 1 or 2 files with missing extents.
It uses the most efficient copy operation that works for the given files.

The calling program must specify a work buffer to contain the source and destination file DCBs
and transferred records. The buffer must be at least large enough to contain two DCBs of 16
words each, plus two 128-word (one block) DCB buffers. The minimum buffer size, thus, is
(2*16) + (2 * 128) = 288 words. The larger the buffer is, the faster the copy operation can
execute. Larger buffers must be larger by 128-word increments.

8-22 FMP Routines

When using FmpCopy to copy a type 2 file to a device or to copy from a device to a type 2 file, the
work buffer must be at least large enough to contain the following:

— two DCBs of 16 words each,
— one 128-word DCB buffer for the source file, and
— one record buffer the size of the type 2 record length.

Therefore, the minimum buffer size, in words, is (2 * 16) + 128 + the record length. For optimal
performance the work buffer should be made as large as possible. Type 2 files with a record length
of 16384 words or greater cannot be transferred to or from devices. (File to file transfers are
permitted.)

When copying from a device to another device or from a device to a type 1 file, the work buffer is
divided into two DCBs of 16 words each and a record buffer. When the record length of the
source device is larger than the record buffer, the records are truncated. It is the caller’s
responsibility to ensure that the work buffer is large enough to contain the two DCBs and a record
buffer large enough to contain the maximum record length on the source device. (FmpCopy
cannot determine the maximum record length on a source device and also cannot detect when a
record from the source device is being truncated.)

Regardless of the size of the work buffer specified, FmpCopy truncates any records read from a
source device that have a record length greater than 32512 bytes.

The A and B options are used only when the source or destination is a device. If the destination is
a device or a type 3 or 4 file, and the source is a device, the default option is A. In all other cases,
the default option is B.

If the destination name does not specify a file type, the source file type is used. If the source is a
device and the A option is in effect, the default destination type is 3; if the B option is in effect, the
default destination type is 6.

If the destination name does not specify a size, the total size of the source file (the sum of the sizes
of the main and all its extents) is used. As a result, the destination file does not have any extents.
If the source is a device, the default size is 24 blocks.

If the destination name does not specify a record length, the record length of the source file is
used. If the source record length is greater than 128 words, the record length of the destination file
is truncated to 128 words.

FmpCopy tests the break flag while copying. If it finds it set, it stops copying and reports error
—235 (Break Detected). If the calling program uses the break flag, it should use the error
indication to detect breaks when FmpCopy is used.

If either errl or err2 contains an error code, the same error code is returned in error. If error = 0,
then neither errl nor err2 contains an error code.

The Q option is used when the user does not want to have the access time of the file updated.
With the Q option, there is no attempt to update the access time. The Q option is useful when
copying from a file residing on a write-protected disk. Normally, the file system would attempt to
update the file access time when opening the file and, because the LU is write-protected, the CO
command would fail.

The protection of the destination file will be that of the source file provided the source is not an
LU or a FMGR file and the caller is the owner of the destination directory. Otherwise, the
destination file will have the protection of the directory into which it is copied.

The S option allows you to save directory information (timestamps, protection, and backup bit) of
the source file.

FMP Routines 8-23

The T option allows you to copy a file that has wasted space into a new file as a perfect fit. The
end-of-file directory information of the source file is used to determine how many blocks of valid
data to copy to the destination file. This option has no effect on type 1, 2, and 6 files and FMGR
files.

The U option allows you to overwrite the destination file only if the destination file’s update time
is older than that of the source. Because FMGR files do not have update times, they are
considered the oldest.

FmpCreateDir

FmpCreateDir creates a directory.

error = FnpCreat eDi r (name, lu)

character*(*) name
i nteger*2 lu

where:
name is a character string specifying the name of the directory to be created.
lu is an integer specifying the disk LU on which to create the directory.

A global directory is specified by a name beginning with “::” or “/”, as in ::USERS or /USERS. A
subdirectory is specified with its parent directory, separated by “::”, as in SUBDIR::USERS or
/DIR/SUBDIR. The parent directory must already exist.

The calling program can specify a size (::DIRNAME::12), to a maximum of 64 blocks. The default
size is the number of blocks per track on the disk LU.

Subdirectories are placed on the same LU as their parent directory. Global directories are placed
on the specified LU. If LU 0 is specified, the global directory is created on the same LU as the
working directory, if any, or on the lowest numbered disk LU on which directories can be created.

The default protection for a global directory is RW/R/R. The default protection for a subdirectory
is the protection of the directory in which it is created.

FmpCreateTime

FmpCreateTime returns the time of creation for the named file. The file is not opened in the
process.

error = FnpCr eat eTi me(filedescriptor, time| , slink])
character*(*) filedescriptor

i nteger*4 time
| ogi cal slink

where:

filedescriptor is a character string that specifies the name of the file.

8-24 FMP Routines

time is a double integer that returns the time that the file was created, expressed in
seconds since January 1, 1970.

slink is an optional boolean variable that indicates whether to return the create time
of a symbolic link or the file that it references. The possible values are as
follows:

TRUE (negative value)
Return the create time of the symbolic link file.

FALSE (non-negative value)
Return the create time of the file referenced by the symbolic link
(default).

The create time is set when the file is created, and is never changed afterwards, except by the
FmpSetDirlnfo routine.

Routines are available to convert the returned time to an ASCII string. Usually, however, the
returned time is compared to other times in the same format, so the calling program may not have
to convert the format.

FmpDcbPurge

FmpDcbPurge closes and purges the open file associated with the given DCB.
error = FnpDcbPur ge(dcb)

i nteger*2 error, dcb(*)

where:
error is an integer that returns a negative code if an error occurs.
dcb is an integer array containing the open DCB for the file.

FmpDcbPurge performs the combined functions of FmpClose and FmpPurge. This routine is
useful where it is important that there be no time lag between the time the file is closed and the
time it is purged. This routine prevents re-opening or moving a file after it is closed but before it
is purged.

FmpDevice

FmpDevice indicates whether the specified DCB is associated with a device file.

flag = FnpDevi ce(dcb)

| ogi cal flag
i nteger*2 dcb(*)
where:
flag is a boolean set to TRUE (negative value) if the specified DCB is associated with a
device file. flag is set to FALSE (non-negative value) if the DCB is associated with
a disk file or is not open.
dcb is an integer array containing the DCB for the file.

FMP Routines 8-25

FmpDismount

FmpDismount dismounts a disk volume.
error = FnpDi snmount (lu)

i nteger*2 error, lu

where:
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
lu is an integer that specifies the LU of the disk volume.

Global and subdirectories on the specified LU are made unavailable, and the disk is removed from
the cartridge list.

If there are any open files, RP’d programs, working directories, or directories contained in a
UDSP on the volume, D.RTR reports an error identifying the first such conflict that it finds.

FmpEndMask

FmpEndMask closes the files associated with a mask search.
CALL FnpEndMask(dirdcb)
i nteger*2 dirdeb(*)

where:

dirdcb is an integer array initialized by FmpInitMask.

FmpEndMask should always be called after a masked search terminates. If it is not called,
directories may be left open to your program after the search ends.

8-26 FMP Routines

FmpEof

FmpEof returns the current word position of the end-of-file mark for the specified file.
error = FnpEof (filedescriptor, eofpos| , slink])

i nteger*2 error
character*(*) filedescriptor
i nt eger*4 eofpos

| ogi cal slink

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

filedescriptor is a character string specifying the name of the file.
eofpos is an integer that returns the end-of-file position from the file’s directory entry.

slink is an optional boolean variable that indicates whether to return the word
position of the EOF of a symbolic link or the file that it references. The
possible values are as follows:

TRUE (negative value)
Return the word position of the EOF of the symbolic link file.

FALSE (non-negative value)
Return the word position of the EOF of the file referenced by the
symbolic link (this is the default).

The first word in the file is word 0, so if eofpos = 0 for a file of type 3 or above, the file is empty.
For type 1 or 2 files, eofpos is the word position of the last word in the main file area, or of the
highest numbered extent, if any, plus 1. For type 12 files, eofpos is the number of bytes in the file,
rotated right one place. (For odd byte length files, the sign bit will be set.)

If the file is currently open, the returned value may not be accurate because the program that has
it open may have added to the file without updating the EOF position in the directory entry. The
EQF position in the directory entry is set by an FmpClose or FmpSetEof call.

FMP Routines 8-27

FmpError

FmpError returns a string that describes the error identified by the error parameter. FmpError
should be used to report errors to ensure consistent error reporting.

CALL FnpErr or (error, message)

character*(*) message
i nteger*2 error

where:

error is an integer that specifies the error code.

message is a character string variable that returns an error message (for example,
“NO SUCH FI LE” or “CANNOT PURGE FI LE”).

The list of possible messages is given in Appendix A. The maximum error description length is 40
characters. If there is not a defined error message for the error identified by the error parameter,
a generic error message in the form “FMP error —xxx” is issued by the system.

The system program D.ERR generates the text of FMP error messages. If an FMP error occurs
and the system cannot find D.ERR, the following message is generated:

(warni ng —-250) FMP error xxx

The error code —250 indicates that D.ERR was not available and xxx is the FMP error that
occurred.

FmpError should be used by programs that need more flexible error processing than is provided
by FmpReportError.
FmpExpandSize

FmpExpandSize unpacks the size word into a double integer value that specified the number of
blocks in the file.

blocks = FnpExpandSi ze(size)

i nteger*2 size
i nt eger*4 blocks

where:
blocks is a double integer indicating the number of blocks in the file.
size is an integer indicating the size of the file, in one word.

If size > 0, then the number is not changed. If size < 0, it is multiplied by —128.

For FMGR files, the packed size must be divided by 2 if it is positive, before the call to
FmpExpandSize. If the size parameter of a FMGR file is negative, it works just as an FMP file
size.

8-28 FMP Routines

FmpFileName

FmpFileName returns the full file descriptor of the file associated with the specified DCB.

error = FnpFi | eName(dcb, error, filedescriptor)

integer*2 dcb(*), error
character*(*) filedescriptor

where:
dcb is an integer array containing the DCB for the specified file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

filedescriptor is a character string that returns the name of the file associated with the
specified DCB. The file descriptor includes the full directory path, and file
type, size, and (for type 2 files) record length, returned in decimal ASCII. The
size is the total size of the file, including extents. For remote files, the file
descriptor includes the user name and remote node name.

The normal string assignment rules apply to the returned string, although FmpFileName never
returns a file descriptor longer than 64 characters. The file descriptor is truncated to fit in 64
characters, even if it causes an incorrect name to be returned by truncating part of the file name or
the directory name.

FmpFileName can be used to return the file descriptor of an open file for use in other calls that
need a file descriptor, or for use in error reporting routines. The DCB must be open when the call
is made.

FmpFpos

FmpFpos returns the current record number and reports the internal file position in a format that
can be used later by FmpSetFpos.

error = FnpFpos(dcb, error, record, position)

integer*2 dcb(*), error
i nteger*4 record, position

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
record is a double integer that returns the current record number.

position is a double integer that returns the current internal file position.

Refer to the FmpSetFpos section of this chapter for a description of how the current record and
internal file position are used to change the file position.

FMP Routines 8-29

Each record in a file is numbered. The first is number one, and the others are numbered
consecutively. As the file is read or as information is written to it, the current position is
incremented. It is also changed by the FmpSetFpos and FmpRewind routines.

For fixed record length files, the function ((record number —1) * (record size)) indicates the
internal file position. The current record position does not identify an exact byte location in
variable record length files.

The internal file position specifies the current byte offset from the first byte of the file, rotated one
place. Only type 12 files can be positioned at an odd byte position. The first byte of a file is
position zero. The internal position does not depend on actual disk location of the file, so
positions can be used even after a file is moved or copied. This value is meaningless for device
files.

FmpFpos along with FmpSetFpos can be used to manipulate or to move around in a file in a
manner other than sequentially.

FmpHierarchName

FmpHierachName converts a file descriptor to the hierarchical format, in which leading
(/DIR/FILE) directory notation, rather than trailing (FILE::DIR), is always used.

error = FnpH er ar chNane(filedescriptor)

character*(*) filedescriptor

where:

filedescriptor is a character string containing the file descriptor to be converted.

error is an integer error return. The only possible error is —231 (string too long)
which is returned if the string will not fit in the file descriptor. If the call was
successful, error returns a non-negative value.

Hierarchical names are much easier to use in programs that manipulate hierarchical directory
structures. They cannot be used for FMGR files, however, so programs that must process FMGR
files should call FmpStandardName to convert names to the FMGR-compatible standard format
before passing the file descriptor to routines such as FmpOpen.

8-30 FMP Routines

Fmpinfo

Fmplnfo returns a copy of the directory entry for the file specified by the DCB. It allows the
calling program to get all of the information in the directory with minimum delay. This call should
not be used unless absolutely necessary because it is likely to be affected by future changes to the
directory structure.

error = Fnpl nf o(dcb, error, info, flag)

integer*2 dcb(*), error, info(32), flag

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or non-negative
code if no error occurs.
info is a 32-word integer array into which the directory information is returned. For
FMGR, only the first 16 words are used; the last 16 words are zeros.
flag is an integer flag that returns the file-system type; 0 for FMGR files and one
(1) for FMP files.
FmplnitMask

FmplnitMask initializes the buffers, pointers, and control constructs used by FmpNextMask to
select file names according to a file mask.

error = Fnpl ni t Mask(dirdceb, error, mask, diropenname, dcblen, [msc])

i nteger*2 dirdcb(*), error, dcblen, msc
character*(*) mask, diropennam

where:
dirdcb is a control array of at least 372 words to be used only with FmpNextMask. A
value of dirdchb longer than 372 words, up to 8308 words, may be provided to
improve masking performance.
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
mask is a character string that specifies a set of files. The mask format is:

dirpathl name. typex. qual: sc: dir: type: size: rl
diropenname is the returned character string directory path.
dcblen is the length of dirdcb in words.

msc is the system security code. If specified, the routine MaskSecurity and
FmpMaskName will return the security codes for FMGR files even if the
security code was not specified in the original mask.

FMP Routines 8-31

The dirdcb and diropenname parameters must not be altered between the FmpInitMask call and
the FmpNextMask calls that follow.

The program example at the end of this chapter shows how FmpInitMask, FmpNextMask,
FmpMaskName, FmpLastFileName, and FmpEndMask are related and work together.

The fields in the mask qualifier of particular interest to FmplInitMask are dir, dirpath, and qual.
Using the dir and dirpath information, the appropriate directory is opened in preparation for
checking entries. If the search qualifier (qual) is included, its state is recorded to allow
FmpNextMask to perform the search in the correct order. For a complete description of the mask
qualifier, see the RTE-A User’s Manual, part number 92077-90002.

Fmplinteractive

Fmplnteractive returns a boolean value that reports whether or not the specified DCB is
associated with an interactive device.

flag = Fnpl nteractive(dcbh)

| ogi cal flag
i nteger*2 dcb(*)
where:
flag is a boolean variable that is set to TRUE (negative value) if the specified DCB is
associated with an interactive device. flag is set to FALSE (non-negative value) if
the specified DCB is not associated with an interactive device.
dcb is an integer array containing the DCB for the file.
FmploOptions

FmploOptions returns the 16-bit I/O option word for the specified DCB.

error = Fnpl oOpt i ons(dcb, error, options)

i nteger*2 dcb(*), error, options

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

options is an integer that returns the 16-bit I/O option word.

The upper ten bits of the option word correspond to the upper ten bits of cntwd used in EXEC
calls. The returned option word is described in the Standard I/O chapter of this manual.

The value returned is undefined if the DCB does not represent a device file.

8-32 FMP Routines

FmploStatus

FmploStatus returns the values in the A- and B-Registers after the last I/O request.

CALL Fnpl oSt at us(areg, breg)

i nteger*2 areg, breg

where:
areg is a one-word integer containing the value of the A-Register.
breg is a one-word integer containing the value of the B-Register.

Because it does not specify a DCB, FmploStatus returns the values of the A- and B-Registers
saved after the last FmpRead or FmpWrite I/O request. The status information in the registers is
guaranteed to be accurate only if FmploStatus is called immediately after the I/O operation that
posted status in the registers.

The value returned is the status and transmission log of a successful request, or a two-word error
return for an unsuccessful request. Unsuccessful requests are identified by an error code = —17.

FmpLastFileName

FmpLastFileName extracts the file name from the passed file descriptor.

CALL FnpLast Fi | eNane(filedescriptor, lastname)

character*(*) filedescriptor, lastname

where:

filedescriptor is a character string that specifies the complete file descriptor.

lastname is the file name portion of filedescriptor. The file name is identified as the
characters between the slash after the directory path (if any) and the first
period or colon.

For example, “FripLast Fi | eName(’ SUB/ FI LE. TXT: :: 3', | ast) ”
returns “Fl LE”.

FMP Routines 8-33

FmplList

FmpList lists a file to the specified LU.

error = FnpLi st (filedescriptor, lu, option, recl, rec2)

character*(*) filedescriptor, option
i nteger*4 recl, rec2
i nteger*2 error, lu

where:

error

filedescriptor
lu

option

recl

rec2

is an integer that returns a negative code if an error occurs or zero if no error
occurs.

is a character string that specifies the name of the file.
is an integer that specifies the output LU.

is a character string that selects the output format and options. The values are
as follows:

ASCII output

Binary output displayed as octal

File has FORTRAN carriage control characters in column 1

Count lines longer than 80 characters as multiple lines for page breaking
Quiet; do not record access time of file

Truncate trailing blanks on lines

HOZ O W >

File types 0, 3, and 4 default to A; all other file types default to B.
is a double integer that specifies the first record to be listed.

is a double integer that specifies the last record to be listed.

If both recl and rec2 are set to 0, the entire file is listed.

By default, the listing to an interactive device pauses after printing one page of output. For
sessions that have $LINES defined in their Environment Variable Block (EVB), the number of
lines per page will be the value of $LINES minus 2. When $LINES is not defined in the EVB, the
number of lines per page will be 22.

When FmpList pauses, it prompts you for one of five legal responses. The responses may be
preceded by a number from 1 to 32767 called n:

aorq
<space>
<cr>
+

|y
z

Abort the listing

List another page

List the remainder of the file without pausing

List one more line or skip » lines and list 1 more

Set page size to n and list another page

Suspend calling program (restart with the system GO command)

For additional information, refer to the FmpPaginator routine in this manual.

If the LU is not interactive, the listing does not pause.

8-34 FMP Routines

FmpList is limited by buffer constraints to lines up to 256 bytes long. See FmpListX for longer
lines.

The Q option is used when the user does not want to have the access time of the file updated.
With this option, there is no attempt to update the access time. The Q option is useful when
listing a file residing on a write-protected directory. Normally, the file system attempts to update
the file access time and because the directory is write protected, the LI command will fail.

The Q option may be combined with either the A or B option; for example: option =’ BQ .

FmpListX

FmpListX, the extended version of FmpList, lists a file to the specified file or LU. This version
allows the caller to provide a buffer so that lines longer than 256 bytes can be listed. This also
allows the listing to be sent to a file, not just an LU.

error = FnpLi st X(sourcefile, destfile, options, startrec, endrec, buffer, maxlength)

character*(*) sourcefile, destfile, options
i nt eger*2 buffer(*) , maxlength, error
i nt eger *4 startrec, endrec

where:

sourcefile is the name of the file to be listed.
destfile is the name of the destination listing file.

options is the character string that selects the output format and options. The values are as
follows:

ASCII output

Binary output displayed as octal

File has FORTRAN carriage control characters in column 1

Count lines longer than 80 characters as multiple line for page breaking
Quiet; do not record access time of file

Truncate trailing blanks on line

HOZ QW >

File types 0, 3, and 4 default to A; all other file types default to B.
startrec is the first record number to be listed.
endrec is the last record number to be listed.
buffer is the buffer for transporting records between sourcefile and destfile.

maxlength is the maximum number of bytes that may be contained in buffer.

If both startrec and endrec are set to 0, the entire file is listed.

By default, the listing to an interactive device pauses after printing one page of output. For
sessions that have $LINES defined in their Environment Variable Block (EVB), the number of
lines per page will be the value of SLINES minus 2. When $LINES is not defined in the EVB, the
number of lines per page will be 22.

FMP Routines 8-35

When FmpListX pauses, it prompts you for one of five legal responses. The responses may be
preceded by a number from 1 to 32767 called n:

aorq Abort the listing
<space> List another page
<cr> List the remainder of the file without pausing
+ List one more line or skip # lines and list 1 more
p Set page size to n and list another page
z Suspend calling program (restart with the system GO command)

For additional information, refer to the FmpPaginator routine in this manual.
If the LU is not interactive, the listing does not pause.

The Q option is used when the user does not want to have the access time of the file updated.
With the Q option, there is no attempt to update the access time. The Q option is useful when
listing a file residing on a write-protected directory. Normally, the file system would attempt to
update the file access time and, because the directory is write-protected, the LI command would
fail.

FmpLu

FmpLu returns the LU of the file or device associated with the specified DCB.
lu = FrpLu(dcb)

integer*2 dcb(*), lu

where:
dcb is an integer array containing the DCB for the file.
lu is an integer indicating the LU number of the file or device associated with the

specified DCB.

If the DCB is associated with a type zero file, the value returned in the /u parameter is the number
of the device LU. If the DCB is associated with a disk file, the value returned is the LU of the disk
on which the file resides. If the specified DCB is not open, a —11 (DCB not open error) error is
returned.

8-36 FMP Routines

FmpMakeSLink

FmpMakeSLink creates a symbolic link file with the name specified in symlink. The contents of
the link is the path specified in fdesc. The file named in symlink must not already exist.

error = FnpMakeSLi nk(dcb, error, fdesc, symlink)

integer*2 dcb(*), error
character*(*) fdesc, symlink

where:
dcb is a 16-word integer array to contain the DCB of the symbolic link being created.
error is an integer that returns a negative code if an error occurs.
fdesc is a character string that contains the path name to be used as the contents of the

symbolic link being created.

symlink is a character string that contains the name of the symbolic link file to be created.

Symbolic links may point to either FMP files, FMP directories, or device LU numbers. When
creating a link to a file or directory, the fdesc parameter must be in hierarchical format. The
symbolic link file being created cannot be a FMGR file.

FmpMaskName

FmpMaskName builds a full file descriptor from the entry and curpath parameters returned by a
call to FmpNextMask.

CALL FnpMaskNane(dirdch, newname, entry, curpath)

character*(*) mnewname, curpath
i nteger*2 dirdcb(*), entry(32)

where:
dirdcb is a control array, initialized by FmpInitMask.
newname is a character string that returns the file descriptor.
curpath is a character string directory path returned by FmpNextMask.

entry is a 32-word directory entry returned by FmpNextMask.

The file descriptor returned to newname includes all of the fields specified by entry (name, file type
extension, full directory specification, type, size and record length). Null fields are omitted in the
file descriptor.

The names generated by FmpMaskName often exceed the 63-character file system limit because
the names include the type, size, and at least four colons.

FMP Routines 8-37

FmpMount

FmpMount mounts a disk volume.

error = FnpMount (lu, flag, blks)

integer*2 lu, flag, blks

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

lu is an integer that specifies the system LU of the disk.

flag is an integer that determines whether to initialize the disk before mounting it. The
values of flag are:
0 Do not initialize before mounting.
1 Initialize if the disk does not have a valid directory.
2 Initialize disk before mounting.

blks is an integer that specifies the number of blocks to leave free at the beginning of

the volume. These blocks are never allocated to files or directories; they are used
to contain bootable programs such as BOOTEX or an offline utility.

When a volume is mounted, the disk becomes available to the system, global directories can be
made available, and the disk space can be used by its owner. An entry is made in the cartridge list
to let the system remount the volume automatically after a system shutdown.

It is an error to mount a disk that is already mounted, or to try to mount a non-disk LU.

8-38 FMP Routines

FmpNextMask

FmpNextMask returns the directory entry for the next file in the directory.

more = FnpNext Mask(dirdcb, error, curpath, entry)

| ogi cal more
i nteger*2 dirdcb(*), error, entry(32)
character*(*) curpath

where:

more is a boolean variable that indicates whether the search can continue. It is set
TRUE (negative value) if there is another entry to be searched, whether or not an
error occurred. If it is TRUE and an error has occurred, the current entry is not
valid. It is set FALSE (non-negative value) if an error occurred that prevents
successful continuation of the current search process.

dirdcb is a control array, initialized by FmpInitMask.

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

curpath is the returned character string directory path.

entry is a 32-word array that returns the directory entry for each file found.

For recoverable errors, the calling program can determine the response, and terminate or
continue the search.

When the search is complete, error returns a 0 and more is FALSE.

As the search changes directories, curpath is updated to reflect the new path. curpath can be used
by the calling program when the desired file is found. Errors reported by FmpNextMask are
associated with curpath; they report errors in accessing the directory in curpath.

FmpNextMask tests the program’s break flag (IFBRK) and if set, it returns error —235 (Break
Detected). Thus, if your program also calls IFBRK, the break flag may have been cleared by
FmpNextMask.

FmpEndMask should be called after a mask search terminates. If FmpEndMask is not called,
directories may be left open to your program after the search ends.

FMP Routines 8-39

FmpOpen

FmpOpen opens the named file with the specified options. Files must be opened before any
operation that accesses their contents can be performed. Once opened, a file can be accessed until
it is closed by FmpClose. When a file is opened, it is positioned to the first word in the file, at
record number 1. FmpOpen cannot open FMGR type 0 files.

type = FrpQpen(dcb, error, filedescriptor, options, buffers)

integer*2 dcb(*), error, buffers
character*(*) filedescriptor, options

where:
type

dch

error

filedescriptor

options

is a non-negative integer that returns the type of the opened file. If an error
occurs, type returns a negative error code. Note that when symbolic link files
are opened with the L option, #ype returns the value 32767.

is an integer array to contain the DCB for the file. The array must be at least
16 words long to contain file control information. For access to type 0 or 1
files, this minimum size is all that is required. For access to other type files, at
least one DCB buffer of 128 words should also be allocated in dcb. 1If the DCB
is associated with an open file, it is first closed. If it is not associated with an
open file, the first 16 words of the DCB should be initialized to zeros before
calling FmpOpen so that it is not misinterpreted by FmpOpen. After a call to
FmpClose, the DCB is sufficiently initialized.

is an integer that returns a negative code if an error occurs or returns the type
of open file if the call is successful.

is a character string that specifies the name of the file or the LU number of a
device. The device in this case is referred to as a type 0 file even though no real
file exists on disk.

is a character string that selects options for opening the file. The options are
selected by the letters in the following list:

Access Mode:

R Open for reading
W Open for writing
File Existence:
C Create a new file
0] Open an existing file
Miscellaneous:
D File descriptor specifies a directory
E Force LU locking of interactive devices
F Force type to 1 for nonbuffered access
I Inhibit LU locking of non-interactive devices
L Open symbolic links
N File does not contain carriage control
Q Open file quickly, do not record access time
S Open a shared file
T File is temporary
U Open in update mode
X Access extents in type 1 or 2 file
n Use UDSP #n when searching for the file (n = 0,...,8)

8-40 FMP Routines

The options can be specified in any order, and in uppercase or lowercase
characters. Any combination of options is legal, but the options should be
grouped by type for readability.

buffers is an integer between 1 and 127 that specifies the size of the DCB buffer,
expressed as the number of 128-word buffers in the user array dcb, in addition
to the 16-word file control information area. The larger the DCB buffer, the
faster sequential file accesses can execute. The user array dch must contain at
least as many 128-word buffers as the parameter buffers indicates, or the file
system may overwrite your program. The entire DCB buffer is used unless it is
larger than the size of the accessed file or extent. Type 0 and 1 files (including
files forced to type 1) do not use the DCB buffers, so the DCB need only have
room for 16 words of file control information.

If the file being opened is on a FMGR cartridge, the file descriptor must be in the file::dir format.
Also, a file being created on a FMGR cartridge is always opened exclusively.

FmpOpen updates the time of last access, unless the Q option is selected. FmpOpen sets the time
of creation and time of last update for files that it creates.

The DCB specified in the call is closed before it is used for the file to be opened, even if it had last
been used for the same file. Re-opening a file (to change the access options, for example)
momentarily closes the file.

If the file descriptor specifies an LU number or a symbolic link to an LU number, FmpOpen
assigns a DCB to the specified device. The device is referred to as a type 0 file, even though no
real file exists on disk.

If the device is opened exclusively, the LU is locked unless the device is interactive. FmpOpen
sets flags and option bits in the DCB according to the device type (that is, terminals are opened for
read and write access, but line printers are open for write access only). The I/O options can be
changed with the FmpSetloOptions routine. An example of FmpOpen is as follows:

type = FnpOpen(dcb, error,’ DATABASE. DB’ ,’ rwso’, 8)

This call opens the existing file DATABASE. DB for shared read and write access, with a DCB
buffer 1024 words (8 * 128) in length. The file must exist, because the create option is not
selected. Your programs must coordinate shared write access.

Some examples of option combinations are:
To open an existing file for shared read access, specify ' ROS' .

To create a new file for exclusive write access, specify * WC' . The O option can be specified at
the same time as the C option for output files to create a new file if the specified file does not
exist, or to overwrite an existing file. As a result, the C option should be used only for output
files, not for sequential read files, because it can overwrite the file when it opens it. Note that
because creating a file implies write access to the file, the W option always must be specified
with the C option.

To create a temporary write/read scratch file, specify * WRCT" .

The calling program must have access privileges to all files that it tries to open. An error is
generated if a program tries to access a file in a way that is not specified by the open request
options, such as writing to a file that is opened only for reading. Changing the protection for a
file after it is open to one or more programs has no effect on their access to the file.

FMP Routines 8-41

C Option
The C option creates a file. The W option also must be specified because creating a file implies
write access. If you do not specify the W option, error —203 (Did not ask to write) is returned.

FmpOpen can be used to create any type of file. The filedescriptor parameter must specify the file
name, type, directory, and all other file information. To create a file of type 2, with 200 blocks of
records that are 10 words in length, the following file descriptor is used:

FI LE. DAT: : DI RECTORY: 2: 200: 10

FmpBuildName or FmpBuildPath can be called to create a file descriptor from a file name and
integer file information.

Note If the O and C options are specified and the file already exists, all of the
information in the file descriptor after the directory is ignored, the existing file
is opened and, for a variable length record file, the EOF mark is placed at the
beginning of the file to make the file empty. The type of the existing file is
unchanged; it is returned as a function value.

If only the file name and directory are specified, the file system will default to type 3. The default
size for FMGR files is 24 blocks. For hierarchical files, the default size is either 24 blocks or 32
blocks depending on the size of the disk volume where the file is being created. For disk volumes
greater than 256 Megabytes, the default size is 32 blocks.

Files larger than 32767 (16383 blocks) sectors are created by specifying the size as a negative
number of 128-block “chunks”. A file of 128000 blocks is specified with a size of —1000. Positive
numbers larger than 32767 are meaningless, but do not cause an error.

If a size of —1 is specified when creating a FMGR file, the rest of the space on the FMGR
cartridge is used, up to a maximum of 16383 blocks.

D Option

The D option allows the filedescriptor parameter to specify a directory rather than a file. It is used
by programs that scan directories. Directories are usually read as type 2 files with 32-word
records. Directories cannot be opened for write access.

E Option

The E option is used only for device files associated with interactive devices. When specified on
exclusive opens, the LU of the interactive device will be locked.

F Option

The F option forces a file to type 1 for nonbuffered access, which ignores record marks. This
option does not change the file type or extents of the file. The fype parameter of FmpOpen
returns the correct file type regardless of whether the F option is specified for the file.

Type 1 access is faster because a block of data is transferred directly from the disk to the user
buffer (ibuf); the DCB buffer is bypassed. The calling program is responsible for calculating
record length and accessing entire records.

An error occurs if you specity the F option for a device file.

8-42 FMP Routines

I Option

The I option inhibits LU locking of non-interactive devices when opened exclusively.

L Option

The L option only applies when opening a symbolic link file. If the L option is specified, the
symbolic link file itself is opened. Note that to change the contents of a symbolic link, the
symbolic link file should be purged and recreated with the FmpMakeSlink call.

N Option

The N option is used only for device files associated with line printers. If FmpWrite or
FmpWriteString are used with the N option specified, the first byte in the record is NOT used for
carriage control and will be printed. Without the N option, the first character is assumed to be a
carriage control character and it will not be printed.

Q Option

The Q option opens a file quickly, without recording the access time. This is useful when a file is
opened repeatedly, which makes the access time unimportant. It is also used when the system
time is not set.

S Option
The S option opens a file for shared access. By default, files are opened exclusively; no other
program can access the file as long as it is opened exclusively to another program.

If a file is opened for reading only, it should be opened for shared access to allow other programs
to read from the file at the same time.

No program can exclusively open a file that is already open for shared access.

T Option
The T option creates temporary files. These files are flagged as temporary files in the directory
and should be purged by the calling program when no longer needed.

FMP automatically purges temporary files if a calling program creates and opens exclusively a
temporary file, and terminates without closing the temporary file. The temporary file is purged
the next time FMP scans its internal file table; for example, FMP scans its internal file table when
a program accesses a file for the first time.

Temporary files that are closed by FmpClose are not automatically purged. You can make a
temporary file permanent by opening the file without specifying the T option.

You can use the temporary flag to clean up after a system failure by using the masking T option
with the PU command (PU @.@.T).

The T option is ignored for FMGR files.

FMP Routines 8-43

U Option

The U option reads the block containing the record to be updated into the DCB before the record
is modified. This prevents existing records in the block from being destroyed.

Update mode is automatically in effect when a type 2 file is opened for write access. The U option
must be specified in all other circumstances; for example, modifying a record in the middle of a
sequential file.

Update mode is not related to the time of last update found in other FMP routines.

X Option

All file types can be extended to allocate additional disk space when the file becomes full. The X
option is not required for sequential files, because they are automatically extended, but it is
necessary for random access (type 1, 2, or 6) files, so that they can be extended when the last
record of the existing file is filled. Some programs cannot automatically access extents for type 1
and 2 files; the X option allows them to access the extents. Type 6 files are program files, so they
should not be extended.

n Option

The number 7 specifies the number of the User-Definable Directory Search Path (UDSP) to be
used in searching for the file. n can be set to a value from zero to 8, inclusive.

The n option is ignored if directory information is included in the file descriptor; FmpOpen
searches only the directory specified in the file descriptor.

If the file descriptor does not include directory information, FmpOpen searches each directory in
the specified UDSP until the file is found. If the file is not found, a —6 (No such file) error is
returned.

If the UDSP specified with the n option does not exist, a —247 (UDSP not defined) error is
returned.

Refer to the PATH command in the RTE-A User’s Manual, part number 92077-90002, for more
information on UDSPs.

8-44 FMP Routines

FmpOpenFiles

FmpOpenFiles finds open files in a directory.
error = FnpQpenFi | es(dcb, error, loc, flag)

integer*2 dcb(*), error, loc, flag

where:

dcb is an integer array containing the DCB for the file.

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

loc is an integer that returns the directory position of an open file. The calling
program initializes it to zero to indicate that this is the first call. Each time this
routine is called, the location and flag value for one file are returned in the loc and
flag parameters.

flag is an integer that returns the ID segment number of the program that opened the

file (in bits 0-7) and the exclusive open bit (in bit 15).

The location is returned as a record number in a type 2 file (the directory). loc = 1 is the first
32-word entry in the file, the directory header. flag contains the ID segment number of the
program that opened the file in bits 0-7, and the exclusive open bit in bit 15.

Locations are returned in ascending order. Only one flag is returned per file, so there is no way to
tell how many programs are sharing an open file. When all of the open files in the directory have
been reported, loc is returned as —1.

FmpOpenScratch

FmpOpenScratch is an interface to the FmpOpen routine. FmpOpenScratch standardizes the
search path used in the creation of scratch files.

type = FnpOpenScr at ch(dcb, error, filedescriptor, options, buffers, nameused)

integer*2 dcb(*), error, buffers
character*(*) filedescriptor, options, nameused

where:

type is a non-negative integer that returns the type of the opened file. If an error
occurs, fype returns a negative error code.

dcb is an integer array to contain the DCB for the file. The array must be at least 16
words long to contain file control information. For access to type 0 or 1 files, this
minimum size is all that is required. For access to other type files, at least one
DCB butffer of 128 words should also be allocated in dcb.

error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

FMP Routines 8-45

filedescriptor is a character string specifying the name of the file.

options is a character string that selects options for opening the file. Options are the
same as the options for FmpOpen with the addition of the following option:

Z Use file name as prefix for FmpUniqueName

The options can be specified in any order, and in uppercase or lowercase
characters. Any combination of options is legal, but the options should be
grouped by type for readability.

buffers is an integer between 1 and 127 that specifies the size of the DCB buffer,
expressed as the number of 128-word buffers in the user array dcb, in addition
to the 16-word file control information area. The larger the DCB buffer, the
faster sequential file accesses can execute. The user array dch must contain at
least as many 128-word buffers as the parameter buffers indicates, or the file
system may overwrite your program. The entire DCB buffer is used unless it is
larger than the size of the accessed file or extent. Type 0 and 1 files (including
files forced to type 1) do not use the DCB buffers, so the DCB need only have
room for 16 words of file control information.

nameused is a character string that returns the complete file descriptor of the scratch file
that was opened. The returned file descriptor includes the full directory path,
file type, and file size. Record length in decimal ASCII is also returned for type
2 files. The file size is the total size of the file, including extents. For remote
files, the file descriptor includes the user name and remote node number.

If a directory is specified in the filedescriptor parameter, then FmpOpenScratch calls FmpOpen
using that directory. If no directory is given, FmpOpenScratch calls FmpOpen one or more times
using the standard sequence to find a scratch directory. FmpOpenScratch:

1. tries the directory /SCRATCH first. If an error occurs (such as ‘no such directory’), then it

2. tries FMGR cartridge specified by entry point $SCRN. This entry point contains a FMGR
disk LU defined at bootup to be used as a scratch cartridge. The BOOTEX command, SC,
sets the value of $SCRN. If any error occurs (such as ‘cartridge full’), then it

3. tries the default directory (‘ ’). FmpOpen then uses either the calling programs working
directory or, if there is no working directory, the first available FMGR cartridge.

With the exception of the Z option and the nameused parameter, the parameters for
FmpOpenScratch are identical to FmpOpen parameters.

The Z option causes the routine to take the file name from the file descriptor given, and use it as a
prefix to generate a unique name using the FmpUniqueName routine (refer to the description of
this routine documented later in this chapter). For example, if the file descriptor is

"TEST: :: 4: 5" , with the Z option in the options parameter, FmpOpenScratch calls
FmpUniqueName with the name “TEST” as the prefix. The unique name that results is used in
the FmpOpen call.

FmpOpenScratch calls FmpFileName which builds the actual file descriptor. The file descriptor is
returned in the nameused parameter. (For details refer to the description of FmpFileName.)
Note that FmpOpenScratch uses this parameter to build the file descriptor that it uses in the
FmpOpen call; therefore, the size of the variable passed should equal the size of the maximum file
descriptor allowed (63 characters).

8-46 FMP Routines

All parameters except nameused are passed by the FmpOpenScratch routine to FmpOpen. The
FmpOpen routine returns any values directly to the routine calling FmpOpenScratch. The value
of the FmpOpenScratch function is either the file type (if no error occurs), or the error (as
returned by FmpOpen). This calling sequence is identical to the FmpOpen calling sequence.
Therefore, you should be able to use this routine as a direct replacement for the FmpOpen call in
situations where the scratch directory is used.

FmpOpenTemp

FmpOpenTemp interfaces with the FmpOpen routine to open or create a temporary file.
type = FnpQpenTenp(dch, error, name, options, buffers)

i nteger*2 type, dcb(*), error, buffers
character*(*) options, name

where:
type is a non-negative integer that returns the type of the opened file. If an error
occurs, fype returns a negative error code.
dcb is an integer array to contain the DCB for the file (see the dcb description under
the FmpOpen call).
error is an integer that returns a negative code if an error occurs.
name is a character string specifying characters to be included in the file name. The file

name is generated by taking this string adding a string of 4 digits made up of the
system CPU number and the ID segment number of the program; this number will
be unique for each program. The name is constructed based on where the file
exists or is to be created, whether it is a FMGR cartridge or a CI volume, as
follows:

FMGR the digits appear first, followed by the first two characters of the
specified name string.

CI the name string appears first, followed by the string of digits.

The result is a temporary file name on a FMGR cartridge (files whose names start
with a leading digit are treated as temporary files), or a temporary file on a CI
volume (files created with the T option are treated as temporary). The 4 digits in
the file name are unique for the program. If the program is going to create more
than one file, the name strings specified must be carefully chosen so as to make the
files unique.

options is a character string that selects options for opening the file. Options are the same

as the options for FmpOpen except that the T option is automatically added if not
specified.

FMP Routines 8-47

buffers is an integer between 1 and 127 that specifies the size of the DCB buffer (see the
description under the FmpOpen call).

If a directory is specified along with the file name string, that directory is used for
the file. If no directory is specified, a directory or cartridge is chosen as follows:

1. If a scratch cartridge is defined for the system (specified by the FMGR VL or
BOOTEX SS command), that cartridge is used.

2. Otherwise, if /SCRATCH exists, that directory is used.
3. Otherwise, if a working directory is defined, that is used.
4. Otherwise, the first available FMGR cartridge with sufficient space is used.

The file name is constructed based on whether the location selected is a FMGR cartridge (1 or 4)
or a CI volume (2 or 3).

If the file is created with this call, it is considered temporary, that is, if the program fails to close
the file or aborts without closing the file, the file will be purged at a later time. A temporary
FMGR file is purged when the file system finds the file while looking through the cartridge
directory for some other purpose; a temporary CI file is purged during the periodic consistency
check done against CI open flags.

FmpOwner

FmpOwner returns the name of the owner of the specified directory.

error = FnpOwner (dir, owner)

character*(*) dir, owner

where:
dir is a character string that specifies the name of the directory or the number of the
CI volume.
owner is a character string that returns the logon name of the user who owns this directory
or volume.

8-48 FMP Routines

FmpPackSize

FmpPackSize packs the double integer file size into a single word.

size = FrpPackSi ze(doublesize)

i nteger*2 size
i nt eger *4 doublesize

where:
size is an integer that returns the file size in one word.

doublesize is a double integer specifying the file size.

If doublesize is less than 16384, there is no change. If doublesize is greater than 16383, it is rounded
up to the nearest multiple of 128 and divided by 128, and the sign is changed. No overflow check is
made. Refer to the FmpExpandSize routine for a description of special considerations for FMGR
size parameters.

Because of overflow problems and rounding errors,
size = FnpPackSi ze(FnpExpandSi ze(size))
is an identity for all values of size, but
doublesize = FnpExpandSi ze(FnpPackSi ze(doublesize))

is not always an identity.

FmpPagedDevWrite

FmpPagedDevWrite performs an XLUEX(2) write to a device with page breaking for interactive
devices. See the FmpPaginator description for more information on page breaking.

status = FnpPagedDevW i t e(cntwd, buffer, length, pageinfo)
i nteger*2 status, cntwd(2), buffer(*), length, pageinfo(0: 4)
where:
cntwd is a two-word XLUEX control word describing the LU (0..255) to be written to.
buffer is an integer array containing the data to be transferred.

length is an integer holding the positive number of words or the negative number of bytes
to be transferred from the buffer.

pageinfo is a five-word array holding paging information for FmpPaginator (see the
discussion of that routine for more information).

status returns zero (0) if ready for another line, or one (1) if you want to abort the listing.

FMP Routines 8-49

FmpPagedWrite

FmpPagedWrite writes data to a file of any type if it is opened for write access. FmpPagedWrite is
similar to FmpWrite (described in a subsequent section), but it calls FmpPaginator to break the
output into screen pages for terminal devices. See the description of FmpPaginator for more
information on page breaking.

status = FnpPagedW it e(dcbh, error, buffer, length, pageinfo)

i nteger*2 status, dcb(*), error, buffer(*), length, pageinfo(0: 4)

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
buffer is the name of a word-aligned buffer that contains the data to be transferred.
length is the number of bytes to write; it is interpreted as an unsigned one-word integer

from 0 to 65534. For values larger than 32767, set length to the desired number of
bytes minus 65534.

pageinfo is a five-word array that holds paging information for FmpPaginator (see that
routine for details). If the first word is zero, the default values are filled in for each
word on the first call.

status is an integer that returns one of the following:

zero (0) if ready for another line to be sent
one (1) if you want to abort the listing
negative ~ FMP error code

8-50 FMP Routines

FmpPaginator

FmpPaginator prompts for page breaks for the FmpList, FmpPagedWrite, and
FmpPagedDevWrite routines. FmpPaginator does not transfer data to be listed; it simply prompts
and interprets the response. FmpPaginator assumes that the LU parameter describes a terminal
device and is called before a line of text is about to be sent to that device.

status = FnpPagi nat or (lu, pageinfo)
i nteger*2 status, Ilu, pageinfo(0: 4)
where:

lu is an integer containing the LU number (0..255) to prompt to.

pageinfo is a five-word array that holds the following information:

word usage
0 page size in lines or zero if default values are desired
1 lines to print before page break, or —1 if no paging is desired
2 address of prompt buffer
3 length of prompt buffer in bytes
4 flags: Dbit meaning (if set)
15 current page is not to be printed

0 use unbuffered I/O
If the first word (page size) is zero, the default values are filled in for each word on
the first call:

word default value

0 $LINES minus 2 if $LINES is defined in the EVB,
or 22 if $LINES is not defined in the EVB.

1 same value as word 0
2 address of string “More...”
3 7 characters (length of above string)
4 zero (no special flags set)
status returns one of the following:
0 if it is okay to list the next line
1 if you want to abort the listing
2 if you want to continue the listing but skip this line

FmpPaginator checks word 1 of pageinfo to see if paging is enabled. If so, that line count is
decremented. If the line count is greater than zero, FmpPaginator returns zero (it is okay to list
another line). When the line count reaches zero, the prompt pointed to by words 2 and 3 of
pageinfo is displayed and your response is read. The responses may be preceded by a number from
1 to 32767, called n, in these valid response descriptions:

character action
<space> list another page, or another # lines, if given
<return> list the rest of the text without paging
AorQ abort listing (return 1)
+ list one more line or skip # lines and list 1 more
P set page size to n and list another page
Z suspend calling program (restart with the system GO command)

FMP Routines 8-51

FmpParseName

FmpParseName parses the specified file descriptor into its component fields. It is similar to
FmpParsePath.

CALL FnpPar seNane(filedescriptor, name, typex, sc, dir, type, size, rl, ds)

character*(*) filedescriptor, name, typex, dir, ds
i nteger*2 sc, type, size, 1l

where:
filedescriptor is a 63-character string that specifies the file descriptor to be parsed.

name is a character string that returns the subdirectories (if any) and the file name.
name can be up to 63 characters in length.

typex is a character string that returns the file type extension. typex can be up to 4
characters in length.

sc is an integer that returns the security code.

dir is a character string that returns the global directory name. dir can be up to 16
characters in length.

type is an integer that returns the FMP file type.

size is an integer that returns the file size in blocks.

rl is an integer that returns the record length.

ds is a character string that returns the DS node name, user account name, or

both. ds can be up to 63 characters in length. Refer to the DS File Access
section of the RTE-A User’s Manual, part number 92077-90002, for a
description of the DS node name and user account name.

FmpParseName should be used to upgrade programs designed to manipulate FMGR files to
RTE-A, or in new programs when the hierarchical and file masking features of FmpParsePath are
not required. The differences between FmpParseName and FmpParsePath are described in the
FmpParsePath section of this chapter.

FmpParseName converts the character string input fields of the filedescriptor parameter into
integers when necessary, as for the type and size fields. When characters appear in numeric fields,
they are returned as packed ASCII. For example, if the security code in the filedescriptor
parameter is “DH?”, the returned sc parameter is 17480. Character fields are returned just as they
appear in filedescriptor. Numeric fields omitted in the filedescriptor parameter are returned as
zeroes; omitted character fields are returned as blanks. No error checking is made on filedescriptor
or the returned parameters.

For example, assume that f desc = SANJOSE. TXT: : CI TI ES: 4: 24 .
CALL FmpPar seNane(fdesc,fil e, ext,sc,dir,type,size,reclen,ds)

file
si ze

SANJCOSE, ext = TXT, sc
24, reclen = 0, and ds

0, dir = CITIES, type = 4,
bl ank.

8-52 FMP Routines

FmpParseName is not designed to parse file descriptors with hierarchical directory paths (that is
the function of FmpParsePath), but it can parse them, with the following limitations.

When a leading directory and subdirectories are specified, the directory name is returned to dir,
and the rest of the directory path and file name is returned in the name parameter. For example:

Iffdesc = /C TIES/ CALI FORNI A/ SANJCSE. TXT: : : 4: 24

CALL FmpPar seNane(f desc, nane, ext, sc, dir,type, size, recl en, ds)

nane = CALI FORNI A/ SANJOSE, ext = TXT, sc = 0, dir = CI TIES,
type = 4, size = 24, reclen = 0, and ds = * ”
FmpParsePath

FmpParsePath parses the specified file descriptor into its component fields. It is similar to
FmpParseName, except that it parses hierarchical directory paths in a way that is more convenient
for you to use programmatically, and parses file descriptors that contain a mask qualifier field.

CALL FnpPar sePat h(filedescriptor, dirpath, name, typex, qual, sc, type, size, rl, ds)

character*(*) filedescriptor, dirpath, name, typex, qual, ds
i nteger*2 sc, type, size, 1l

where:
filedescriptor is a 63-character string that specifies the file descriptor to be parsed.

dirpath is a character string that returns the hierarchical directory path. dirpath can be
a maximum of 63 characters.

name is a character string that returns the file name. name can be a maximum of 16
characters. name does not return any part of the hierarchical directory
information.

typex is a character string that returns the file type extension. typex can be a

maximum of 4 characters.

qual is a character string mask qualifier. qual can be a maximum of 40 characters.
sc is an integer that returns the security code.

type is an integer that returns the FMP file type.

size is an integer that returns file size in blocks.

rl is an integer that returns the record length.

ds is a character string that returns the DS node name, user account name, or

both. DS can be a maximum of 63 characters. Refer to the DS File Access
section of the RTE-A User’s Manual, part number 92077-90002, for a
description of the DS node name and user account name.

FMP Routines 8-53

FmpParsePath should be used when writing new programs that will use the hierarchical file system
features, and must be used if file masking is required. Refer to the RTE-A User’s Manual and to
the FMP mask routines described in this chapter for more information about file masking.

The hierarchical directory path (returned in dirpath) is defined as everything that appears to the
left of the first character of the file name. All of the directory information in the filedescriptor
parameter is combined and returned in dirpath. If filedescriptor uses the trailing directory
notation, as in FILE::GLB, FmpParsePath converts filedescriptor to the leading (hierarchical)
notation, as in /GLB/FILE, and returns the directory path in dirpath.

Qual permits FmpParsePath to correctly parse file descriptors that contain masks. Mask qualifiers
are described in the RTE-A User’s Manual.

FmpParsePath differs from FmpParseName in two main ways:

e FmpParsePath parses file descriptors with file masks as well as regular file names, and includes
the qual parameter to return the mask qualifier field.

e FmpParsePath parses hierarchical directory path information in a more convenient way for
you to use programmatically. All of the directory information in the filedescriptor parameter is
returned in dirpath, never in the name parameter as with FmpParseName.

The following examples illustrate these differences:

Input FmpParsePath Output FmpParseName Output
filedescriptor dirpath name typex dir name typex
/GLB/SUB/FILE.FTN /GLB/SUB/ FILE FIN GLB SUB/FILE FIN
SUB/FILE.FTN::GLB /GLB/SUB/ FILE FIN GLB SUB/FILE FIN
/GLB/SUB.DIR /GLB/ SUB DIR GLB SUB DIR
/GLB.DIR / GLB DIR GLB blank blank
/GLB/ /GLB blank blank GLB blank blank
:GLB /GLB/ blank blank GLB blank blank
S1/S2/FILE.REL S1/82/ FILE REL blank S1/S2/FILE REL
FILE.REL blank FILE REL blank FILE REL

The following is an example of how FmpParsePath parses a full file descriptor:

Fil edesc = CALI FORNI A/ SANJOSE. TXT. T: 23: Cl TI ES: 2: 24: 32[PLANNER] >SYS3

CALL FnpParsePat h(fil edesc, pat h, nane, extn, qual , sc, type, si ze, rl, ds)

Path = /Cl Tl ES/ CALI FORNI A/
name = SANJCSE

extn = TXT

qual =T

sc = 23

type = 2

size = 24

ri = 32

ds = [PLANNER] >SYS3.

8-54 FMP Routines

FmpPosition

FmpPosition returns the current record number and reports the internal file position in a format
that can be used later by FmpSetPosition.

error = FnpPosi ti on(dcb, error, record, position)

integer*2 dcb(*), error
i nt eger*4 record, position

where:
record is a double integer that returns the current record number.
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

position is a double integer that returns the current internal file position.

Refer to the FmpSetPosition section of this chapter for a description of how the current record
and internal file position are used to change the file position.

Each record in a file is numbered. The first is number one, and the others are numbered
consecutively. As the file is read or as information is written to it, the current position is
incremented. It is also changed by the FmpSetPosition and FmpRewind routines.

For fixed record length files, the function ((record number —1) * (record size)) indicates the
internal file position. The current record position does not identify an exact byte location in
variable record length files.

The internal file position specifies the current word offset from the first word of the file. The first
word of a file is position zero. The internal position does not depend on actual disk location of the
file, so positions can be used even after a file is moved or copied. This value is meaningless for
device files.

FmpPosition along with FmpSetPosition can be used to manipulate or to move around in a file in a
manner other than sequentially.

Note that FmpPosition does not return the position of type 12 files. The FmpFpos and
FmpSetFpos routines should be used when type 12 access is required.

FMP Routines 8-55

FmpPost

FmpPost posts the data in the DCB buffer into the disk file if the data has been changed. Other
programs can then access the information by reading the disk file. FmpPost is also used to back up
the DCB butffer into the disk file in case the program is aborted. When the DCB buffer is posted,
the data in the buffer is invalidated, so the next read call reads the disk file, not the DCB buffer.

error = FnpPost (dcb, error)

integer*2 dcb(*), error

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

FmpPost is used to coordinate shared write access to a file. Resource numbers are often used with
FmpPost to coordinate the sharing of write access. Refer to the RNRQ section of the Resource
Management chapter for more information about resource numbering. Each of a group of
cooperating programs that accesses the shared file should perform the following sequence:

1. Lock the file’s resource number

2. Access the file

3. Call FmpPost to post the data in the disk file
4. Unlock the resource number

FmpPostEof

FmpPostEof posts the EOF position of a file, the number of records, and the record length from
the DCB to the directory entry for that file. The update time and access time for the file are also
updated.

error = FnpPost Eof (dcb, error)

i nteger*2 dcb(*), error

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs.

The file must be a variable length file that is currently being written to and positioned at EOF.
This routine does not post the data buffer in the DCB to the disk file. The FmpPost routine
should be used for that purpose.

8-56 FMP Routines

FmpProtection

FmpProtection returns the access rights of the owner and others to the specified file or directory.

error = FnpPr ot ect i on(filedescriptor, owneraccess, othersaccess| , groupaccess))

character*(*) filedescriptor, owneraccess, othersaccess, groupaccess

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

filedescriptor is a character string specifying the name of the file or the number of the CI
volume.

owneraccess is a character string that returns the access rights of the owner of the
file/directory/volume.

othersaccess is a character string that returns the access rights of all other users of the
file/directory/volume.

groupaccess is a character string that returns the access rights of members of the owner’s
group to the file/directory/volume.

The access rights are returned as ASCII “R” for read access, “W” for write access, or “RW” for
both. “N” is returned when read and write access is denied.

The owner of a directory or of a volume is the user who creates it or is assigned ownership via the
FmpSetOwner routine. The owner of a directory owns all of the files within it.

FmpPurge

FmpPurge purges the file specified by the file descriptor, marking the directory entry as purged, to
free disk space allocated to the file. The file must exist, must not be open, and must not be an
RP’d program. The calling program must have write access to the directory, but not necessarily
write access to the file.

error = FnpPur ge(filedescriptor)

character*(*) filedescriptor
where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

filedescriptor is a character string specifying the name of the file.

The file descriptor can specify a directory by specifying it as ::NAME or SUB.DIR (note the .DIR

file type extension). If the directory contains anything other than purged files, it cannot be purged.
Purged files can be unpurged with the FmpUnPurge routine, unless their disk space or directory is
overwritten.

FMP Routines 8-57

FmpRawMove

FmpRawMove reads or writes data to a disk file starting at a specified internal file position.

length = FrpRawibve(dch, error, position, buffer, maxlength, how)

where:
length is an integer that returns the number of words successfully transferred to or from
the disk file.
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.
position is a double integer specifying the desired internal file position.

buffer is a word-aligned integer buffer that either contains the data to be transferred
(how = 2) or returns the data being transferred (how = 1).

maxlength is an integer that contains the number of words to be transferred.

how is an integer that specifies the direction of the transfer.

1 Read data from the file into buffer.
2 Write data from buffer into the file.

The internal file position after the call is undefined. It is the caller’s responsibility to reset the
internal file position after the call.

FmpRead
FmpRead reads data from a file of any type. FmpRead reads the record at the current file

position. The file positioning routines described in this chapter explain how to change the current
file position. The file must be opened for read access before FmpRead is called.

length = FnpRead(dcb, error, buffer, maxlength)

integer*2 dcb(*), error, buffer(*), maxlength

where:
length is an integer that returns the number of bytes actually read, or a negative error
code. If the call reads more than 32767 bytes, the return length may be negative
even though no error occurs; in such cases error should be compared to the length
return. If they match, an error has probably occurred.
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

8-58 FMP Routines

buffer is an integer array that returns the data being transferred. The buffer is
word-aligned.

maxlength is a one-word integer that contains the maximum number of bytes to transfer. The
maxlength parameter is treated as an unsigned single integer from 0 to 65534.
Values larger than 32767 are expressed as negative numbers equal to the number of
bytes to be transferred minus 65536; for example, 40000 bytes is expressed as
—25536 (40000 — 65536 = —25536).

If an odd number of bytes are transferred, the lower byte of the word containing
the last byte is undefined. The requested transfer length can be longer or shorter
than the actual length of the record, but the number of bytes read never exceeds
maxlength.

The file position is set to the beginning of the next record even if some of the data that was read
does not fit into the user buffer.

For sequential files (type 3 and above), one variable-length record is transferred from the current
file position. The DCB buffer is used during the transfer. The record length is maintained with
the record; if for some reason the record length information is invalid, error —5 is returned.
When end-of-file is reached, the returned length is —1; an error is not returned. If your program
attempts to read past the end-of-file, error —12 is returned (the returned length is —12).

For type 2 files, one fixed-length record is transferred, using the file record length, which is always
an even number of bytes. The DCB buffer is used during the transfer. There is no end-of-file
mark; if a program tries to read past the end-of-file, the actual length of the record is returned,
and no error is indicated, but subsequent reads will report an error.

For type 1 files (or files forced to type 1), multiple records may be read, depending on maxlength.
The data is read directly into the user buffer, without using the DCB buffer. Type 1 files are
always positioned at a block boundary, so they behave like files with 128-word records. Type 1 files
behave like type 2 files when the end-of-file mark is encountered.

For type 0 (device) files, one record is read. The data is read directly into the user buffer, without
using the DCB buffer. End-of-file is set if the end-of-file or end-of-medium bits are set in the
returned status following the read. The returned length is —1. The control-D character is the
end-of-file mark for reads from a terminal; zero-length reads are not treated as the end-of-file.
No more than 32767 bytes can be read from type 0 (device) files.

For type 12 (byte stream) files, FmpRead uses the line feed character as a record separator.
FmpRead returns the data from the current position up to and not including the next line feed
character. The position is then advanced past the line feed character. To position type 12 files, the
FmpSetFpos and FmpFpos routines must be used.

FMP Routines 8-59

FmpReadLink

FmpReadLink opens a symbolic link file, returns the contents of the file, and closes the file.
error = FnpReadLi nk(dcb, error, symlink, fdesc)

integer*2 dcb(*), error
character*(*) symlink, fdesc
| ogi cal error

where:
error is an integer that returns a negative code if an error occurs.
dcb is a 16-word integer array containing the DCB of the symbolic link file being

accessed.

symlink is a character string containing the name of the symbolic link file.

fdesc is a character string that returns the contents of the symbolic link file named in
symlink.
FmpReadString

FmpReadString is an integer function that allows reading character from a file.

length = FrpReadSt ri ng(dcb, error, string)

i nteger*2 length, dcb(*), error
character*(*) string

where:

length is an integer that returns the positive number of bytes transferred, or a negative
error code. length cannot be more than 256 because the data must pass through an
internal buffer that is 256 bytes.

dcb is an integer array containing the DCB for the file.

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

string is a character string of up to 256 bytes into which data is transferred. The string

cannot be more than 256 bytes because the data passes through an internal buffer
that is 256 bytes. If string is longer than 256 bytes, an error code is returned in the
error parameter.

FmpReadString is similar to FmpRead, except the data is returned in the string parameter. The
returned length is the length of the record read; it may be less than the actual length of the string
parameter, but never more. The string is filled with blanks if the record is shorter than the string.

8-60 FMP Routines

FmpRecordCount

FmpRecordCount returns the number of records in the specified file.

error = FnpRecor dCount (filedescriptor, nrecords| , slink))

character*(*) filedescriptor
i nt eger*4 nrecords
| ogi cal slink

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

filedescriptor is a character string specifying the name of the file.
nrecords is a double integer that returns the number of records in the file.

slink is an optional boolean variable that indicates whether to return the number of
records in a symbolic link file or the file that it references. The possible values
are as follows:

TRUE (negative value)
Return the number of records in the symbolic link file.

FALSE (non-negative value)
Return the number of records in the file referenced by the symbolic
link (this is the default).

For type 1 and 2 files, FmpRecordCount returns the maximum number of records that can fit in
the file, not the actual number of records currently in the file. For type 3 files and above, nrecords
is the number of records before the end-of-file; however, if the file is currently open for writing,
nrecords may not reflect the actual record count because write requests that have not been posted
may not be present in the file.

FMP Routines 8-61

FmpRecordLen

FmpRecordLen returns the length of the longest record in a file.

error = FnpRecor dLen(filedescriptor, len[, slink])

character*(*) filedescriptor
i nteger*2 len
| ogi cal slink

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

filedescriptor is a character string specifying the name of the file.
len is an integer that returns the length of the longest record in the file.

slink is an optional boolean variable that indicates whether to return the length of
the longest record in a symbolic link file or the file that it references. The
possible values are as follows:

TRUE (negative value)
Return the length of the longest record in the symbolic link file.

FALSE (non-negative value)
Return the length of the longest record in the file referenced by the
symbolic link (this is the default).

For a type 1 or 2 file, FmpRecordLen returns the fixed record length in words, that was defined
when the file was created. For type 3 files and above, it returns the length, in words, of the longest
variable-length records in the file.

Note The length returned for type 3 or above files is actually the length of the longest
record ever written to the file, even if that longest record has been overwritten.

8-62 FMP Routines

FmpRename

FmpRename changes the name of the specified file.

error = FnpRenane(namel, errl, name2, err2)

i nteger*2 errl, er2
character*(*) namel, name2

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

namel is a character string specifying the name of the existing file. The file must be
closed.

errl is an integer that returns any error associated with namel.

name2 is a character string specifying the new name for the file.

err2 is an integer that returns any error associated with name?2.

The file specified by namel must exist, and must not be open. It may, however, be an active
program. name2 must not already exist in the directory.

The calling program must have write access to the directory containing the file to be renamed, and
to the directory that will contain the file after the rename, if it is not the same as the original
directory.

FmpRename can change any combination of the file name, its file type extension, or directory.
The security code and size cannot be changed. If they are specified in name2, they are ignored.
The new file name (name2) must specify the desired security code and directory; they cannot be
defaulted to match the security and directory of namel.

The file type and record length of a fixed record-length file (type 1 or 2) can be changed by
specifying the type and record length in the name2 parameter. The record length of a type 1 file is
always 128 words. Note that you cannot change the type of a fixed record-length file to the type of
a variable record-length file. You can change the file type of a variable record-length file (type 3
and above) as long as the new file type is also type 3 and above.

If the directory name is changed, the file directory entry is moved to the new directory, but the
actual file data is not moved. The new directory must be on the same LU as the original. namel
and name?2 can specify directories as either ::NAME or /NAME.DIR (note the .DIR file type
extension). It is possible to convert subdirectories into global directories, or vice versa. If the
working directory is renamed, it remains the working directory, but under the new name. err/
returns errors associated with namel and err2 returns errors associated with name2. If either errl
or err2 contains an error code, the same error code is returned in error. If error = 0, then neither
errl nor err2 contains an error code.

FMP Routines 8-63

FmpReportError

FmpReportError prints an error message at your terminal (LU 1).

CALL FnpReport Error (error, filedescriptor)

character*(*) filedescriptor
i nteger*2 error

where:

error is an integer that specifies the error code whose message is to be written to
your terminal.

filedescriptor is a character string that specifies the name of the file.

The printed message consists of the message returned by FmpError, followed by the passed file
name; for example:

No such file FILE. EXT::USER

If it is necessary to print the message somewhere other than on LU 1, you should use FmpError to
retrieve the error text and write the message to the desired file or device.

Note FmpReportError uses an EXEC call with the no-suspend bit cleared; therefore,
FmpReportError suspends your program if your terminal is down or has an LU
lock on it. If you do not want your program suspended, use FmpError and
perform your own I/O error processing.

FmpRewind

FmpRewind positions the file specified by the DCB to the first word in the file. For disk files this
is equivalent to an FmpSetPosition call with position set to zero. For device files, a rewind control
call is issued.

error = FnpRew nd(dcb, error)
i nteger*2 dcb(*), error

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

8-64 FMP Routines

FmpRpProgram

FmpRpProgram restores a program from a type 6 file, creating a program or prototype ID
segment for the program in the operating system.

error = FnpRpPr ogr an{ filedescriptor, rpname, options, error)

character*(*) filedescriptor, rpname, options
i nteger*2 error

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

filedescriptor is a character string that specifies the name of the type 6 file.

rpname is a character string that either specifies the program name or returns it: if
rpname is specified, the specified name is used; if rpname is blank, the name
assigned by the system is returned. The returned name is the first five
characters of filedescriptor (minus the directory path and file type extension).
Note that the string must be initialized to blanks if a program name is not
specified. Refer to the Character Strings section of this chapter for details.

options A character string that contains “C”, “D”, “P”, or both “C” and “P” to select
either of the following options:

C (clone) Create a clone name if the specified or assigned name already is
assigned to an RP’d program. The program is not cloned if:

e rpname is not blank and there is already a program with the specified
name RP’d in your session or in the system session. Error —239 is
returned in this case.

e there is already a “system utility” program with the assigned or
specified name RP’d in any session, including the system session. A
system utility is a program loaded using the LINK SU command to
inhibit cloning. Either error —239 or —251 is returned in this case.

® filedescriptor does not include a directory path and there is already a
program with the assigned name permanently RP’d and dormant in
your session or the system session. Error —239 is returned in this case.

D (duplicate) Create a prototype ID segment, not a program ID segment, for
the program file.

P (permanent) Do not release the ID segment when the RP’d program
completes.

FMP Routines 8-65

If FmpRpProgram needs to clone, it will replace the fourth and fifth characters of the program
name with “.A”. If that name is also taken, it will use “.B”, and so forth.

If the RPL checksum of the type 6 file does not match the system, the checksum of the file is
changed, and the program is RP’d, but FmpRpProgram returns error —240 (RPL checksum
changed). This error is a warning. The program performing the FmpRpProgram call may choose
to issue a warning if this error is returned. This is considered good programming practice because
the error may indicate that the type 6 file was linked for another system with an incompatible set
of microcode RPLs. In such a situation, the RP’d program will likely incur a UT (Unimplemented
Instruction) violation when it executes a microcode instruction not present on the current host. In
any case, the program issuing the FmpRpProgram call may safely ignore the —240 error.

A program may use FmpRpProgram to create a temporary ID segment for a type 6 file. In this
case, the RP’d program should be scheduled with an EXEC call, not with an FmpRunProgram call
nor by an operator entering an RU command from the console. Both FmpRunProgram and the
RU command use FmpRpProgram to create an ID segment. FmpRpProgram will not use the
temporary ID segment created by the previous FmpRpProgram call. Instead, FmpRpProgram will
create a new ID segment, and the original ‘temporary’ ID segment will not be purged when the
program completes. If, on the other hand, an EXEC call is used, the temporary ID segment will
be used. When the program completes, the temporary bit in the ID segment is checked and the
ID segment will be purged.

The process by which FmpRpProgram determines the program to restore is the same as that used
by the CI RP command. See the RTE-A User’s Manual, part number 92077-90002, for a
description of the RP command.

8-66 FMP Routines

FmpRunProgram

FmpRunProgram executes a program.
error = FnpRunPr ogr an(string, prams, runname| , alterstring])
character*(*) string, runname

i nteger*2 error, prams(5)
| ogi cal alterstring

where:
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
string is a character string that specifies a runstring. If the string does not begin with RU
or XQ, FmpRunProgram inserts RU so the program can correctly parse the
runstring. If XQ is specified, the program is executed without wait.
prams is an integer array that returns the RMPAR parameters from the program when it

completes. If string specifies XQ, prams is meaningless.
runname is a character string that returns the true name used to schedule the program.

alterstring is an optional boolean variable indicating how FmpRunProgram is to handle the
string parameter. The possible values are as follows:

TRUE (negative value)
The string is converted to uppercase and each group of one or more
consecutive blanks is converted to a comma (this is the default).

FALSE (non-negative value)
The string is not altered.

If a program with the same name and session ID already exists then an attempt is made to create a
clone name by replacing the last two characters with “.A”. If that fails, “.B” is tried and so on. If
“:IH” follows the program name (for example, RU,PROG:IH), cloning is inhibited.

The process by which FmpRunProgram determines the program to schedule is the same as that
used by the CI RU command. See the RTE-A User’s Manual, part number 92077-90002, for a
description of the RU command.

FMP Routines 8-67

FmpRwBits

FmpRwBits is an integer function that determines whether the returned string of the
FmpProtection routine indicates read or write access availability, and whether an options list for
FmpOpen contains read or write access requests.

rwbits = FrnpRwWBI t s(string)

character*(*) string
where:

rwbits is an integer that indicates read or write access availability for the string returned
by FmpProtection, and read or write access requests for the options list of
FmpOpen. FmpRwBits returns one of four values, depending upon whether or not
the string parameter contains the uppercase letters R or W. The values for rwbits
are as follows:

0 Neither W nor R present
1 W but not R present

2 R but not W present

3 R and W present

string is a character string. string can be a maximum of 256 bytes.

In the string parameter, the R and W can be in any order and other characters can be present.

FmpSetDcblinfo

FmpSetDcblInfo changes information in the DCB.

error = FnpSet Dbl nf o(dceb, error, records, eofpos, reclen)

integer*2 dcb(*), error, reclen
i nt eger*4 records, eofpos

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.
records is a double integer that specifies the number of records in the file plus 1.
eofpos is a double integer that specifies the current internal file position.
reclen is an integer that specifies the length, in words, of the longest record.

FmpSetDcblInfo should be called only when a file of type 3 or above that has been forced to type 1
in the FmpOpen call is copied. The DCB for the copied file contains information for a type 1,
rather than a type 3 file. FmpSetDcblInfo can be used to change the DCB information to reflect
the fact that the file is really of type 3 or above. The call should be used with care, and only by
users with a detailed knowledge of DCB information.

8-68 FMP Routines

The records and eofpos parameters correspond to the current record and internal file position
parameters of the FmpSetPosition routine.

Do not read or write any more data from the DCB after using this routine; call FmpClose to close
the DCB, then FmpOpen to re-open it for further access.

FmpSetDirinfo

FmpSetDirInfo changes file directory information.
error = FnpSet Di r | nf o(dch, error, ctime, atime, utime, bbit, prot| , option])
integer*2 dcb(*), err, bbit, prot

i nteger*4 ctime, atime, utime
character*(*) option

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
ctime is a double integer specifying the create time.
atime is a double integer specifying the access time.
utime is a double integer specifying the update time.
bbit is an integer specifying the backup bit.
prot is an integer specifying the new protection for the file, where:
Bit 0 = 1 general user may write
Bit 1 = 1 general user may read
Bit 2 = 1 owner may write
Bit 3 = 1 owner may read
Bit 6 = group may write only if G specified in option string
Bit 7 = group may read only if G specified in option string
Any bit set to zero denies the permission associated with that bit.
option is an optional string that determines the interpretation of the prot parameter.

G = prot contains valid group bits. If G is not specified, or if the parameter is not
present, the group bits (bits 6 and 7) of the prot parameter are ignored. In
this case, the general user bits (bits 0 and 1) are used for group bits.

The calling program can change the create, access, and update time stamps, set or reset the
backup bit, and change the file protection.

If a supplied parameter is negative, the corresponding value in the directory entry is not changed.

If the calling program owns the file, it also can set the file protection to the lower 4 bits of prot.
prot is ignored if the calling program is not the owner.

Do not read or write any more data from the DCB after using this routine.
FmpSetDirInfo should be called after FmpSetDcbInfo if both are to be called.

FMP Routines 8-69

FmpSetEof

FmpSetEof sets the end-of-file to the current position in a sequential file, or issues an end-of-file
control request for a device file. It has no effect on type 1 and 2 files.

error = FnpSet Eof (dcb, error)

integer*2 dcb(*), error

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

FmpSetEof is not required in normal operation because the end-of-file is set automatically
following writes to sequential files that are not opened in the update mode. It should be used only
to reset the end-of-file mark in files opened in the update mode, and for writing to device files that
require an explicit end-of-file control request, such as magnetic tapes. It does not remove any
other EOF marks in the file, so it cannot be used to expand a file; it can be used only to make the
file smaller.

FmpSetFpos

FmpSetFpos sets or changes the current file position. The position can be set either to a record
number or to an internal file position.

error = FrpSet Fpos(dcb, error, record, position)

i nteger*2 dcb(*), error
i nteger*4 record, position

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or non-negative if no
€ITOr OCCurs.
record is a double integer that specifies the desired record number.

position is a double integer that specifies the desired internal file position.

All files can be positioned to a particular record number. All disk files can be positioned to an
internal file position as returned by FmpFpos. For fixed record length files, the record number
and internal file positions are related by the function ((record_number—1) * record_size). For
sequential files there is no such correlation because the records are variable in length.

Positioning sequential and device files by record number is very slow because it requires starting at
the first record and stepping through to the desired record. Positioning by internal position is
much faster for sequential files, but the position must be at the start of a record because read and

8-70 FMP Routines

write calls depend upon being at the beginning of a record. FmpFpos can be called to return the
position of the start of a record to pass it to FmpSetFpos.

If the position parameter is not equal to —1, FmpSetFpos interprets it as the desired internal file
position. The passed record number is saved as the current record number for later use, with the
exception of type 1 and 2 files where the record number is always forced to represent the position
according to the function mentioned above. Be aware that if the record number is not accurate to
the true position, then upon closing the file, the directory entry will contain the same inaccuracy.

If the position parameter is a double integer, positioning occurs by record. Device files are always
positioned by record number only, regardless of the internal position value. Double integer
variables should be used for the record number and internal position for device files because they
are often large numbers.

Although FmpSetFpos is usually called to position a file to a location already in the file, it can be
used to create extents in a file opened for writing. Positioning a type 1 or 2 file can create an
extent, but it can create a sparse file, which has missing extents between the file and a full extent.
If a read request tries to access a record in one of the missing extents, an error occurs. Positioning
a file of type 3 or above creates an extent without skipping extents, even if the file is forced to type
1 by the F option in the FmpOpen call.

FmpSetloOptions

FmpSetloOptions changes the I/O option word for the specified DCB.

error = FnpSet | oOpt i ons(dch, error, options)

i nteger*2 dcb(*), error, options

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

options is an integer that returns the 16-bit I/O options word.

Once changed, the new options remain in effect until another FmpSetloOptions call (or an
FmpOpen call). The options word is described in the Standard I/O chapter of this manual. All of
the options except the Z-bit can be set, because the FmpSetloOptions call does not permit a Z
buffer to be sent.

The call is ignored if the DCB is not open to a device file. FmpSetIoOptions should not be called
under normal operation; in most cases, you should allow the file system to set the I/O option word.

FMP Routines 8-71

FmpSetOwner

FmpSetOwner changes the owner of a directory or CI volume to the specified user. You must be
the current owner or a superuser.

error = FnpSet Omer (dir, errl, owner, err2)

character*(*) dir, owner
i nteger*2 errl, er2

where:
dir is a character string that specifies the name of the directory or the number of the
CI volume whose owner is being changed.
errl is an integer that returns errors associated with dir.
owner is a character string that specifies the name of new owner of the directory.
err2 is an integer that returns errors associated with owner.

If either errl or err2 contains an error code, the same code is returned in error. If error = 0, then
neither errl nor err2 contains an error code.

FmpSetPosition

FmpSetPosition sets or changes the current file position. The position can be set either to a
record number or to an internal file position.

error = FnpSet Posi ti on(dcb, error, record, position)

integer*2 dcb(*), error
i nteger*4 record, position

where:
error is an integer that returns a negative code if an error occurs or non-negative if no
EITOr OCCUuTrs.
dcb is an integer array containing the DCB for the file.
record is a double integer that specifies the desired record number.

position is a double integer that specifies the desired internal file position.

All files can be positioned to a particular record number. All disk files can be positioned to an
internal file position as returned by FmpPosition. For fixed record length files, the record number
and internal file positions are related by the function ((record_number—1) * record_size). For
sequential files there is no such correlation because the records are variable in length.

Positioning sequential and device files by record number is very slow because it requires starting at
the first record and stepping through to the desired record. Positioning by internal position is

8-72 FMP Routines

much faster for sequential files, but the position must be at the start of a record because read and
write calls depend upon being at the beginning of a record. FmpPosition can be called to return
the position of the start of a record to pass it to FmpSetPosition.

If the position parameter is positive, FmpSetPosition interprets it as the desired internal file
position. The passed record number is saved as the current record number for later use, with the
exception of type 1 and 2 files where the record number is always forced to represent the position
according to the function mentioned above. Be aware that if the record number is not accurate to
the true position, then upon closing the file, the directory entry will contain the same inaccuracy.

If the position parameter is negative, positioning occurs by record. Device files are always
positioned by record number only, regardless of the internal position value. Double integer
variables should be used for the record number and internal position for device files because they
are often large numbers.

Although FmpSetPosition is usually called to position a file to a location already in the file, it can
be used to create extents in a file opened for writing. Positioning a type 1 or 2 file can create an
extent, but it can create a sparse file, which has missing extents between the file and a full extent.
If a read request tries to access a record in one of the missing extents, an error occurs. Positioning
a file of type 3 or above creates an extent without skipping extents, even if the file is forced to type
1 by the F option in the FmpOpen call.

Note that FmpSetPosition cannot position type 12 files. The FmpSetFpos routine should be used
when type 12 access is required.

FmpSetProtection

FmpSetProtection allows the owner of a file, directory, or CI volume to change the access rights to
the file or directory.

error = FnpSet Pr ot ect i on(filedescriptor, owneraccess, othersaccess| , groupaccess])
character*(*) filedescriptor, owneraccess, othersaccess, groupaccess

where:

filedescriptor specifies the name of the file or the CI volume number.
owneraccess specifies the access rights of the owner of the file/directory/volume.
othersaccess specifies the access rights of other users of the file/directory/volume.

groupaccess is an optional character string specifying the access rights of members of the
owner’s group to the file/directory/volume.

The access rights are specified as ASCII “R” for read access, “W” for write access, or “RW” for
both. The suggested setting is “RW” for owner, “R” for others.

When the access rights to a directory are changed, the access rights to files or subdirectories
already in it are not changed, but new files or subdirectories created in it receive the new access
rights. If the groupaccess parameter is not specified, the group access rights will not be changed.

FMP Routines 8-73

The owner of a directory is the user who creates it or is assigned ownership via the FmpSetOwner
routine. The owner of a directory owns all the files in it.

To prevent owners from being locked out of their own directories, owners do not need write access
to a directory to change its protection. A superuser can change protection on any file or directory.
A file’s protection status can be changed while it is open, because protection status is only checked
when the file is opened. Files that already have the file open are not affected by the protection
change.

FmpSetWord

FmpSetWord positions a disk file to a specified internal position in the file.

error = FrpSet Wor d(dcb, error, position, how)

i nteger*2 dcb(*), error, how
i nt eger*4 position

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.
position is a double integer specifying the desired internal file position.

how is an integer that specifies whether the file system should create an extent to
contain the new position if it is outside the existing file area. how can be set to the
following values:

1 Extent creation is not permitted; the usual setting for read operations that
must only access existing file areas.

2 Extent creation is permitted.

FmpSetWord is a special case of the FmpSetPosition routine, and should be used only to minimize
code size. FmpSetPosition is the general purpose positioning routine, and uses more code space.

FmpSetWord works exactly as FmpSetPosition does when it is called to position a file by internal
file position, rather than by record. FmpSetWord does not update the record number in the DCB,
so once it has been called, positioning by records must not be attempted. It also does not record
the end-of-file position when a position beyond the existing end-of-file is selected without extent
creation enabled, nor does it reset the end-of-file condition if a position before the end-of-file is
selected. Its only advantage is that it does not add to the code size of the calling program, because
it is used by FmpRead and FmpWrite, so it is already part of the code.

8-74 FMP Routines

FmpSetWorkingDir

FmpSetWorkingDir changes or sets the working directory for you. The working directory can be a
global directory or a subdirectory. Setting the working directory changes the working directory for
all programs in the current session. It should be used with caution.

error = FnpSet Wor ki ngDi r (directory)

character*(*) directory
i nteger*2 error

where:
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
directory is a character string that specifies the working directory.

If the directory is specified as the character string’ 0’ (zero), then you have no working directory
until another call is made to establish one. This is useful in changing the search behavior for files
when no directory is specified. If there is no working directory, the FMP calls can search FMGR

disks for a specified file.

If the directory name is longer than 63 characters, error —15 is returned.

FmpShortName

FmpShortName returns the file descriptor for the file associated with the specified DCB.

error = FnpShor t Name(dcb, error, filedescriptor)

character*(*) filedescriptor
i nteger*2 dcb(*), error

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error

occurs.

filedescriptor is a character string that returns the name of the file.

The returned file descriptor is not a full file descriptor; it does not include the file type, size, or
record length. FmpShortName is similar to FmpFileName, described in this chapter, except that it
returns a truncated file descriptor.

FMP Routines 8-75

FmpSize

FmpSize returns the physical size of the file in blocks.
error = FnpSi ze(filedescriptor, size[, slink])
character*(*) filedescriptor
i nteger*4 size
| ogi cal slink

where:

filedescriptor is a character string specifying the name of the file.

size is a double integer that returns the physical size of the file in blocks.

slink is an optional boolean variable that indicates whether to return the physical size
of the symbolic link file or the file that it references. The possible values are as
follows:

TRUE (negative value)
Return the physical size of the symbolic link file.

FALSE (non-negative value)
Return the physical size of the file referenced by the symbolic link (this is
the default).

The physical size of a file is the number of blocks of disk space it occupies, including extents.

FmpStandardName

FmpStandardName converts a file descriptor to the standard format.

error = FnpSt andar dNane(filedescriptor)

character*(*) filedescriptor

where:

filedescriptor is a character string that specifies the name of the file.

error is an integer error return. The only possible error is —231 (string too long)
which is returned if the string will not fit in the file descriptor.

The standard format uses the trailing directory notation, as in FILE.FTN::DIR. If the specified
file descriptor includes subdirectories, it uses the hierarchical format, with a leading directory
path, as in /DIR/SUB/FILE.FTN. If the file descriptor refers to a global directory, it also uses the
hierarchical format, as in /GLB.DIR.

The standard is convenient for users familiar with FMGR files because the “::” notation is used
whenever the file descriptor does not include a hierarchical directory structure.

8-76 FMP Routines

FmpTruncate
FmpTruncate releases some of the disk space allocated to a file. The file must be opened for
writing.

error = FnpTruncat e(dcb, error, blocks)

integer*2 dcb(*), error
i nt eger*4 blocks

where:
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
blocks is a double integer specifying the minimum number of blocks to which the file is to

be truncated.

The file specified by DCB is truncated to no less than the specified double integer number of
blocks. More blocks than this may actually remain, depending on internal considerations. Files
are never truncated to less than one block. It is the responsibility of the calling program to make
sure that valid data is not truncated. The EOF mark should be in the area that remains after
truncation. You should close the file after it is truncated.

For example, if, after performing sequential writes to a variable-length record file (type 3 and
above), you want to truncate the space beyond the current EOF mark, you can use the following
(assuming the file is positioned at EOF mark):

Call FnpPosition(dch,error,record, position)
if (error.1t.0) ...

bl ocks = (position + 128)/128

Call FmpTruncat e(dch, error, bl ocks)

if (error.1t.0) ...

Call Fnpd ose(dch, error)

The calculation “position + 128” includes one word for the EOF mark, and rounds up the position
so that all words in the current block are included. Dividing by 128 converts the number of words
to number of blocks.

The previous example cannot be used to truncate type 12 files. The following example will
truncate all file types.

call FnpFpos(dcb, error, record, position)
if (error.lt.0)

c for variable record length files, add one word for the EOF
c mar ker ,

if(file_type.ge.3.and.file_type.ne.12) position = position + 1
c convert the position to bytes, and bytes to bl ock,

bl ocks = (ishftc(position, 1, 32) + 257) / 256
call FnpTruncate(dcb, error, blocks)

if (error.lt.0) ...

call Fnpd ose(dcb, error)

In this example, the Fortran ISHFTC intrinsic rotates the internal file position one place to the
left. This converts the internal file position to bytes. For type 12 files, the internal file position is
returned as the byte offset rotated right one place. For types other than 12, the internal file
position is returned as the word offset. Since this is always a positive value, rotating the value will
be the same as converting words to bytes.

FMP Routines 8-77

FmpUdspEntry

FmpUdspEntry returns the directory name for the specified entry and User-Definable Directory
Search Path (UDSP).

error = FrnpUdspENt ry(udspnum, entnum, dirname, error)

i nteger*2 udspnum, entnum, error
character*(*) dirname

where:
udspnum is an integer that specifies the UDSP number.
entnum is an integer that specifies the entry for the UDSP number.

dirname is a character string that returns the directory name for the specified entry in the
specified UDSP.

error is an integer that returns one of the following values:

0 No error occurred
—1 Not under session control
—2 UDSP tables not set up correctly
—247 If the entry is undefined, or if udspnum and entnum are out of
bounds with the definition for the session.

FmpUdspinfo

FmpUdsplnfo returns the current User-Definable Directory Search Path (UDSP) information for
your session.

error = FrpUdspl nf o(udsps, depth, next, error)

i nt eger*2 error, udsps, depth, next

where:
udsps is an integer that returns the number of UDSPs defined for the current session.
depth is an integer that returns the UDSP depth defined for the current session.
next is an integer that returns the next available UDSP. next is set to zero if all UDSPs
are defined.
error An integer that returns one of the following values:

0 No error occurred
—1 Not under session control
—2 UDSP tables not set up correctly

8-78 FMP Routines

FmpUniqueName

FmpUniqueName creates a 16-character file name that should be unique within a system that does
not contain files from another system.

CALL FrpUni queNane(prefix, uniquename)

character*(*) prefix, uniquename

where:

prefix is a character string specifying a prefix for the file name.

uniquename is a character string that returns the generated file name.

The name is created by appending a reading of eleven characters from the system clock to a
user-supplied prefix. The clock reading is expressed as a string of hex digits. A typical
uniquename is “TEMP7C43E20FF21”. If the user-supplied prefix is less than five characters, the
file name is padded with blanks on the right. If the prefix is greater than five characters, the file
name is truncated on the right.

If the file may be transferred to a FMGR directory, the prefix should be chosen to minimize the
chance of a duplicate file name when uniquename is truncated to six characters.

FmpUnPurge

FmpUnPurge restores a purged file. The file must have existed and been purged, and its disk
space must not have been allocated to another file.

error = FrpUnPur ge(filedescriptor)

character*(*) filedescriptor

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

filedescriptor is a character string specifying the name of the file to be unpurged.

FmpUnPurge verifies the directory entry for the file and any extents, and ensures that none of its
disk space has been allocated to another file. If it passes both tests, FmpUnPurge reallocates all
of its space and converts its directory entries back to the normal status. The file’s protection, time
stamps, and other attributes are restored exactly as they were at the time that the file was purged.

Directories cannot be unpurged.

If several purged files have the same name, it is difficult to determine which is to be unpurged.
The result of an FmpUnPurge call is not defined.

Files cannot be unpurged if a file already exists with the same name; the existing file must be
renamed first.

FMP Routines 8-79

FmpUpdateTime

FmpUpdateTime returns the time of the last update for the named file. The file is not opened in
the process.

error = FrpUpdat eTi me(filedescriptor, time| , slink])

character*(*) filedescriptor
i nt eger*4 time
| ogi cal slink

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

filedescriptor is a character string specifying the name of the file.

time is a double integer that returns the time of the last update expressed in seconds
since January 1, 1970.

slink is an optional boolean variable that indicates whether to return the time of the
last update of the symbolic link file or the file that it references. The possible
values are as follows:

TRUE (negative value)
Return the time of the last update of the symbolic link file.

FALSE (non-negative value)
Return the time of the last update of the file referenced by the symbolic
link (this is the default).

The update time is set when a file is closed, but only if the file was changed while it was open.

Routines are available to convert the time value to an ASCII string. Usually, however, the
returned time is compared to times in the same format, so the calling program may not have to
convert the format.

8-80 FMP Routines

FmpWorkingDir

FmpWorkingDir returns the name of your current working directory. The current working
directory can be either a global directory or a subdirectory.

error = FrpWor ki ngDi r (directory [, format])

character*(*) directory
i nteger*2 error, format

where:

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

directory is a character string that returns the name of the current working directory.

format is an optional integer parameter that defines the format of the directory string
being returned. Possible values for format and their definitions are:

0 (default) if a working directory is a global directory, it is returned in the
trailing directory format (::dir); otherwise, the working directory is
returned in hierarchical format with no trailing slash.

1 the working directory is returned in hierarchical format with no trailing
slash.

2 the working directory is returned in hierarchical format with a trailing
slash.

The returned name is in a format suitable for passing to other routines, such as
FmpSetWorkingDir.

If the name contains more than 63 characters, the name is truncated to 63 characters and an error

is returned.

If there is no working directory, then an error is returned and the name is undefined.

FMP Routines

8-81

FmpWrite

FmpWrite writes data to a file of any type. The file must be opened for write access.

length = FnpW i t e(dcb, error, buffer, maxlength)

i nteger*2 length, dcb(*), error, buffer(*), maxlength

where:

length is an integer that returns the number of bytes actually transferred, or a negative
error code. If more than 32767 bytes are transferred, the returned length is a
negative number. If this negative number is equal to the value of the error
parameter, an error has probably occurred.

dcb is an integer array containing the DCB for the file.

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

buffer is the name of a word-aligned buffer that contains the data to be transferred.

maxlength is the maximum number of bytes to write; it is interpreted as an unsigned one-word
integer from 0 to 65534. For values larger than 32767, set maxlength to the desired
maximum number of bytes minus 65536; for example, 40000 bytes is expressed as
—25536 (40000 — 65536 = —25536).

FmpWrite writes data at the current position of the file. The file position can be set by other FMP
routines, such as FmpSetPosition and FmpAppend.

For sequential (type 3 or above) files, one record is written. The DCB buffer is used during the
transfer. If the file is not opened in update mode, the entire record is transferred and an
end-of-file mark is written after it. If the file is opened in update mode, then the length
transferred will be the shorter of the existing and supplied record lengths. No end-of-file mark is
written.

For type 2 files, one record is written, using the shorter of the defined and supplied record lengths.
The DCB buffer is used for the transfer.

For type 1 files (and files forced to type 1), multiple records may be written, depending on the
supplied record length. The data is transferred directly from the user buffer to the disk. The
returned length is rounded up to an even number if necessary.

For type zero (device) files, one record is transferred. The data is written directly from the user
buffer to the device. No more than 32767 bytes can be transferred with one call.

For type 12 (byte stream) files, FmpWrite appends a line feed character after every record that is
written. To position type 12 files, the FmpSetFpos and FmpFpos routines must be used.

8-82 FMP Routines

FmpWriteString

FmpWriteString is similar to FmpWrite, except that the data to be transferred is supplied in the
string parameter.

length = FnpW i teString(dcb, error, string)

i nteger*2 length, dcb(*), error
character*(*) string

where:
length is an integer that returns the length of the record written to the file, or a negative
error code. It may be less than the actual string length, but never longer.
dcb is an integer array containing the DCB for the file.
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
string is a character string of up to 256 bytes from which data is transferred. The string
parameter cannot be greater than 256 bytes because the data must pass through an
internal buffer of 256 bytes. If string is longer than this limit, an error is returned.
MaskDiscLu

MaskDiscLu returns the disk LU of the last file returned by FmpNextMask. It can also be used to
obtain the DS connection number.

disklu = MaskDi scLu(dirdcb)
i nt eger*2 disklu, dirdchb(*)
where:
dirdcb is a control array, initialized by FmpInitMask
The following declarations can be used to get the DS connection number:
i nteger*4 MaskDi scLu, RTNVAL
integer*2 dirdcv(*), diskLu, DSnum
integer*2 Irtnval (2)

equi val ence (I RTNVAL, RTNVAL, diskLu),
(1 RTNVAL(2) , DShum)

RTNVAL = MaskDi scLu(dirdch)

FMP Routines 8-83

MasklsDS

MaskIsDS is a logical function that determines if masking is searching a remote file system.

bool = Maskl sDS(dirdch| , dsinfo])

| ogi cal bool
i nteger*2 dirdeb(*)
character*(*) dsinfo

where:

bool is a boolean variable that returns TRUE (negative value) if masking is searching a
remote file system; otherwise, bool returns FALSE (non-negative value).

dirdcb is a control array, initialized by FmpInitMask.

dsinfo is an optional character string that returns the DS information of the mask. For
example, the remote user account name, node name, or both, along with the
required delimiters are returned, as in “>27”, “>SYS3”, “[USER]”, and
“>SYS3[USER/PASSWORD]”.

MaskMatchLevel

MaskMatchLevel is an integer function that returns the number of the directory level in which the
last file was matched.

matchlevel = MaskMat chLevel (dirdch)

i nt eger *2 matchlevel, dirdcb(*)

where:
matchlevel is an integer set to the number of the directory level containing the last file that
was matched.
dirdcb is an integer array initialized by FmpInitMask.

For example, if the search mask is /GLOBAL.DIR.D and the matched file is
/GLOBAL/SUBDIR/FILE, then matchlevel returns 2, to indicate that the file is nested two levels
below the global directory. This value can help in creating new names for copy or rename
operations, although Calc_Dest_Name is more commonly used for that function.

8-84 FMP Routines

MaskOldFile

MaskOIldFile is a boolean function that checks if the last file returned by FmpNextMask is a
FMGR file.

bool = MaskQ dFi | e(dirdch)
i nteger*2 dirdcb(*)
| ogi cal bool

where:

bool is a boolean variable that is set to TRUE (negative value) if the last file returned by
FmpNextMask is a FMGR file; otherwise, bool is set to FALSE (non-negative).

dirdcb is an integer array initialized by FmpInitMask.

MaskOpenld

MaskOpenld is an integer function that returns the D.RTR open flag of the last file returned by
FmpNextMask.

openid = MaskOpenl d(dirdcb)

i nt eger*2 openid, dirdcb(*)
where:

openid is an integer that returns the ID number of the program that has the file open. If
the file is not open, openid is set to zero. If the file is open, the ID number of a
program that has the file open is returned in bits 0 through 7, and the value of the
exclusive bit is returned in bit 15.

dirdcb is an integer array initialized by FmpInitMask.

The returned program may not be the only program that has the file open. Refer to the
FmpOpenFiles routine description for more information on the format of the open flag.

MaskOwnerlds

MaskOwnerlds returns the owner and group IDs for the last file returned by FmpNextMask.
CALL MaskOmner | ds(dirdch, ownerid, groupid)

i nteger*2 dirdcb(*), ownerid, groupid

where:
dirdcb is a control array, initialized by FmpInitMask.
ownerid is the integer ID number of the file’s owner.

groupid is the integer ID of the file owner’s group.

The ownerid and groupid parameters along with the DS Connection number can be used with
DsIdToOwner and DsIdToGroup to obtain the ASCII owner and group names. The DS
connection can be obtained from MaskDiscLu.

FMP Routines 8-85

MaskSecurity

MaskSecurity is an integer function that returns the security code of the last file returned by
FmpNextMask, if the file is a FMGR file. For FMP files, it returns zero.

seccode = MaskSecur i ty(dirdcb)
i nt eger*2 seccode, dirdchb(*)
where:

seccode is an integer that returns the security code of the last file returned by
FmpNextMask, if the file is a FMGR file. For FMP files, seccode is set to zero.

dirdcb is an integer array initialized by FmpInitMask.

WildCardMask

WildCardMask checks the mask for wildcard characters.
wild = W | dCar dMask(mask)

| ogi cal wild
character*(*) mask

where:
mask is a character string that contains the mask to be checked.
wild is a boolean indicating the presence of a wildcard character. The wild parameter

returns one of the following values:

TRUE (a negative value)
The mask contains a wildcard character (“@” or “—"), or the mask qualifier
contains any of the search directives (“d”, “e”, or “s”), or the specified mask
can refer to more than one file for another reason.

FALSE (non-negative value)
The mask cannot refer to more than one file.

If WildCardMask returns FALSE, there is no need to use the mask search routines to find a
specific file; it is faster to use the specified mask to open and access the file directly.

8-86 FMP Routines

Using the FMP Routines with DS

All of the FMP calls that use a filedescriptor parameter can access files over DS, except
FmpRunProgram, FmpSetWorkingDir, and FmpSetOwner because they perform system functions
that should not be performed from a remote system.

The file descriptor must contain 63 or fewer characters, including the remote user account name
and node specifications. As a result, there may be some files that cannot be accessed over DS
because they have a long file name or directory path that cannot fit with the DS information into
the 63-character file descriptor.

The name building and parsing routines return the DS field as their last parameter. The returned
DS field contains the DS delimiters. If a file is located in a remote system, the name returned by
FmpFileName includes the node name.

Some of the FMP routines do not perform exactly the same over DS as they do on a single system.
The limitations are as follows:

e FmpOpen does not use a DCB buffer larger than 8 blocks (1024 words), even if a larger buffer
is specified.

e FmpOpen cannot open an LU at a remote system. It returns an error if such an attempt is
made.

e FmpOpenFiles can only identify the program that has a file open if the program and the file
are on the same system. If a file is open via DS, FmpOpenFiles reports that it is open, but
cannot report the name of the program that has it open, because all files opened via DS are
opened by the TRFAS program.

e Files opened exclusively via DS are honored, except for FMGR files.

Special Purpose DS Communication Routines

The following calls permit your programs to perform special functions, all with DS transparency.
They allow you to establish connections to accounts at remote systems.

Note The following routines are internal FMP routines, so they should be used with
caution. For example, it is possible to inadvertently close the wrong file by
passing an incorrect connection number.

All of the variables used by the special purpose routines are single integers, except as noted.

FMP Routines 8-87

DsCloseCon

DsCloseCon closes a connection opened by DsOpenCon.

error = DsCl oseCon(conn)

i nteger*2 error, conn

where:
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
conn is an integer that specifies the connection number.

It is important to close connections when the DS operations are completed, because only 64
connections are available, and they are not automatically released when the calling program
terminates or when the DS operations complete.

DsDcbWord

DsDcbWord returns the first word of the DCB as it would appear if the file associated with it was
not opened through DS.

error = DsDcbWor d(conn, word)

i nteger*2 conn, word

where:
conn is an integer that specifies the connection number.
word is an integer that returns the first word of the DCB.

DS transparency is implemented by replacing the first word of the DCB with the negative
connection number. A DCB associated with a file over DS is detected by examining bit 6 of the
first word of the DCB, but that practice is not recommended.

8-88 FMP Routines

DsDisclnfo

DsDiscInfo returns the number of tracks and blocks per track of the specified disk volume on the
system associated with the connection number.

error = DsDi scl nf o(conn, lu, ntracks, bpert)

i nteger*2 error, conn, lu, ntracks, bpert

where:
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
conn is an integer that specifies the connection number.
lu is an integer that specifies the LU of the disk volume about which the track and
blocks per track information is wanted.
ntracks is an integer that returns the number of tracks for the specified disk volume.
bpert is an integer that returns the number of blocks per track of the specified disk
volume.
DsDiscRead

DsDiscRead reads the disk on the system specified by the connection number.

error = DsDi scRead(conn, buf, len, track, sector)

i nteger*2 buf(*), error, conn, len, track, sector

where:

error

conn
buf

len

track

sector

is an integer that returns a negative code if an error occurs or zero if no error
occurs.

is an integer that specifies the connection number.
is an integer array that returns data from the disk.

is an integer that specifies the number of words of data to be read. A maximum of
1024 words can be read.

is an integer that specifies the track from which to read.

is an integer that specifies the sector from which to read (64 words per sector).

The first word of the DCB that contains conn must first be set by DsSetDcbWord.

This routine should be used only by users with a detailed knowledge of DCBs and their contents.

FMP Routines 8-89

DsFstat

DsFstat performs an FSTAT call for the system associated with the specified connection number.

error = DsFst at (conn, buffer, len[, iform|[, iop]])

i nt eger*2 buffer(256), error, len, iform, iop

where:
error is an integer that returns a negative code if an error occurs or zero if no error
occurs.
conn is an integer that specifies the connection number.
buffer is an integer array that returns the status of the cartridges.
len is an integer that specifies the length of the buffer in words.

The iform and iop parameters are optional parameters that are used only when the remote node is
an RTE-6/VM system. These parameters are identical to the iform and iop parameters in the
FSTAT call for RTE-6/VM (see the RTE-6/VM Programmer’s Reference Manual, part number
92084-90005, for a description).

DsNodeNumber

DsNodeNumber returns the node number associated with the specified file.

node = DsNodeNunber (filedescriptor)

character*(*) filedescriptor
i nteger*2 node

where:

node is an integer that returns the number of the node associated with the specified
file. A zero is returned if the file is not remote.

filedescriptor is a 63-character string that specifies the name of a file.

8-90 FMP Routines

DsOpenCon

DsOpenCon opens a connection to the remote user account/node specified.

error = DsQpenCon(string, conn)

i nteger*2 error, conn
character*(*) string

where:

string is a character string that specifies the remote user account name, node name, or
both, along with the required delimiters, as in “>27”, “>SYS3”, “[USER]”, and
“>SYS3[USER/PASSWORDY]”. string must not contain a file name, only DS
information.

conn is an integer that returns the connection number.

error is an integer that returns a negative code if an error occurs or zero if no error
occurs.

The connection number returned by DsOpenCon is used in the other DS communication routines
to identify the connection.

DsSetDcbWord

DsSetDcbWord changes the first word of the DCB to make the DsDiscRead routine work.
error = DsSet DcbWor d(conn, word)

i nteger*2 error, conn, word

where:
error is an integer that returns a negative code if an error occurs or a zero if no error
occurs.
conn is an integer that specifies the connection number.
word is an integer that specifies the word to be changed.

This routine should be used only by users with a detailed knowledge of DCBs and their contents.

FMP Routines 8-91

Example Programs for FMP Routines

Three sample programs follow. The first program simply demonstrates the use of the simplest
(open, close, read, write) FMP routines. The second shows how file masking, a somewhat more
advanced FMP function, is used. The third combines many of the FMP routines in an advanced

application.

Read/Write Example

The following program copies one file into another, one record at a time. It illustrates the use of

FmpOpen, FmpRead, FmpWrite, and FmpClose, as well as FmpReportError.

ftn7x, s
pr ogr am copy
inmplicit integer(a-z)

o

Programto copy a file to another file.

i nteger dcb1(528), dcb2(528), buffer(128)
character filel*30,fil e2*30

¢ Open the source and destination files;
c use large DCBs to go fast.

call fparm(filel,file2)
typel = FnpOpen(dcbl,err,filel, ros’, 4)
if (err .1t. 0) goto 10

type2 = FnpOpen(dcbh2,err,file2,’ woc’, 4)
if (err .1t. 0) goto 20

C copy the data

do while (.true.)
| en = FnpRead(dcbl, err, buffer, 256)

c look for errors and end-of-file

if (err .1t. 0) goto 10
if (len .eq. -1) goto 30

¢ none of those, so wite the record.

call FmpWite(dcb2,err,buffer,|en)
if (err .1t. 0) goto 20
enddo

c come here to report errors

10 call FrmpReportError(err,filel)
goto 30
20 call FrmpReportError(err,file2)

c cone here to close files and quit

30 call Fmpd ose(dchbl, err)
call Fmpd ose(dch2,err)
stop
end

8-92 FMP Routines

Mask Example

The following program shows how FmplInitMask, FmpNextMask, and FmpMaskName can be used
to generate a list of files that match a mask.

ftn7x,1,s

o

program fil es
inmplicit integer (a-z)

files lists the names of files that match the mask

i nteger dirdcb(372), entry(32)
character curpath*(63), newnane*(63), nask*(63)
| ogi cal FrpNext Mask

get the mask
cal | fparm mask)
initialize the directory dcb, report errors

i f (FnplnitMask(dirdcb, err, mask, curpath,372).1t. 0) then
call FrmpReportError(err, mask)
stop

endi f

while errors are nonfatal, print name of file

do whil e (FrpNext Mask(dirdch,err, curpath,entry))
if (err .1t. 0) then
call FnpReportError(err, curpath)
el se
call FrpMaskNane(dirdcb, newnane, entry, cur pat h)
wite(l,*) newnane
endi f
enddo

if search ended with error, print error

if (err .1t. 0) then
call FnpReportError(err, curpath)
endi f

end mask search
cal | FrpEndMask(dirdchb)

stop
end

FMP Routines 8-93

Advanced FMP Example

The following is a much larger program that builds a data base and writes records to it.

In the example, FmpUniqueName is called to create a unique file name for the data base in the
directory “CRDB” with a file type extension of “DAT”. The program illustrates name building,
file positioning, and many other less-frequently used FMP routines. The database built here is

simply a type 2 file, it should not be confused with an Image data base.

ftn7x,s

8-94

program crdb
inmplicit integer(a-z)

Programto create a database in a type 2 file
par amet er (recordl en=30)
par amet er (recordbytes=2*recordl en)
paranmeter (fil esize=24)
i nteger dcb(144), buffer(recordl en)
character nane*63, asciitinme*28, charbuffer*(recordbytes)
character tenpname*16

Not e use of double integers for tines, record nunbers
integer*4 time, currec

Al ow "charbuffer” as the string version of "buffer”
equi val ence (buffer, charbuffer)

Make up the namne
call FrmpUni queNane(’ D, t enpnane)
call FnpBui | dNane(nane, t enpnane, ' DAT’ , 0,’ CRDB', 2,

* filesize, recordlen,’ ")
nanel en = trim en(nane)

Open the database for read, wite; create it; update is inplicit.

call FmpQpen(dcb, err, nanme,’ RAC' , 1)
if (err .1t. 0) goto 20

Print the file name, and when it was created
err = FnpCreat eTi ne(nane, time)
if (err .1t. 0) goto 20

call daytime(tine,asciitine)
wite(l,*) 'File ', nane(1l: nanel en),

created ',asciitinme
Loop on addi ng records
do while (.true.)

See which record nunmber to change

FMP Routines

5 wite(l,*) 'Record to add? _’
read(1, *, end=10, err=10) currec

¢ Position to this record (allow FMP to trap bad record nunber)

call FnmpSet Position(dchb,err, currec, -1J)
if (err .eq. —-12) then
wite(l,*) 'That record does not exist’
goto 5
endi f
if (err .1t. 0) goto 20

c Get a value for the record

wite(l,*) 'Enter record contents:
read(1,’ (a)’) charbuffer

c Put it inthe file

call FnmpSet Position(dchb, err, currec, -1J)
if (err .1t. 0) goto 20

call FmpWite(dchb, err, buffer,recordbytes)
if (err .1t. 0) goto 20

¢ Post the file to show what to do if this is shared access

call FmpPost (dcb, err)
if (err .1t. 0) goto 20
enddo

¢ Cone here when the |last record is entered

10 wite(1,*) Al done
goto 30

c Come here to report errors
20 call FnpReportError(err, name)
¢ Cone here to close file, purge it, and quit

30 call Fnpd ose(dchb, err)
err = FnpPurge(nane)
if (err .1t. 0) then
call FrmpReportError(err, nanme)
endi f
stop
end

FMP Routines 8-95

VMA and EMA Programming

Both the Virtual Memory Area (VMA) and Extended Memory Area (EMA) features of RTE-A
allow applications to manage large data arrays. Both features permit the amount of data used by a
program to exceed the 32-page maximum size of logical memory.

VMA implements a demand-paged virtual memory subsystem that allows your application
programs to access data areas as large as 65,536 pages. The program data resides on disk, and the
operating system swaps pages of data into memory as they are needed.

EMA implements a subset of VMA where data resides entirely in physical memory, that is, the
data is not swapped between disk and memory. Use of EMA rather than VMA may result in a
great increase in program speed by avoiding disk I/O.

EMA data can be shared by other programs; VMA data, on the other hand, is not shareable. A
VMA or EMA variable cannot be used as a parameter in an EXEC or FMP call. However, there
are VMA/EMA subroutines that provide these EXEC and FMP functions with VMA/EMA
variables. See the section on General Purpose VMA/EMA subroutines.

The large arrays are managed via the VMA/EMA software and firmware. VMA, EMA, and
shareable EMA are all declared in the same manner in the source program; the distinction is
made when linking the program.

. VMA and EMA Terms

VMA and EMA Programming 9-1

Term

Description

Logical Memory

Physical Memory

Virtual Memory
Area (VMA)

Extended Memory
Area (EMA)

Virtual Memory
Mapping Segment
(VSEG)

Mapping Segment
Size (MSEG)

Page Table (PTE)

Page Fault

Working Set

Backing Store File

The 32-page address space described by the currently enabled memory
map; can be any of the possible pages in physical memory.

The actual semiconductor memory installed in the computer.

An area on disk that can be used to extend main memory. This disk
memory can contain very large data arrays accessible to your programs.
Data in disk memory (virtual data) can be accessed via a simple program
statement (I=J (5000), for example). The operating system makes disk
memory look like logical memory to the program.

A subset of virtual memory. This is an area of physical memory that
extends beyond the logical address space of the program, and can be
used for large data arrays.

The last two pages of the user logical address space. The VMA/EMA
firmware uses these two pages to map in VMA or EMA data accessed
by your program.

The guaranteed maximum VMA or EMA size (in pages) that can be
present in the user program logical address space. The maximum size
pertains regardless of page boundaries. The maximum number of EMA
pages that can be mapped into the user logical address space is the
MSEG size plus one.

The MSEG area is the last (MSEG size + 1) logical pages of the user map.
The extra page is known as the spillover page. Some routines, such as
MMAP and .ESEG, start mapping at the start of the MSEG area, rather than
only in the VSEG area. They are software routines that make special micro-
code calls to do the mapping.

A data structure that indicates to the firmware which pages of the VMA data
are currently in physical memory, and where they are located.

Condition that occurs when the page table indicates that the requested
data does not reside in physical memory.

The portion of virtual data that is currently in physical memory.

The file on disk used for storage of the virtual data.

9-2 VMA and EMA Programming

Virtual Memory Area (VMA)

VMA handles large data arrays by storing the data on disk, maintaining a portion of the data in
physical memory as the data is used by the program. The portion of VMA data that resides in
physical memory is known as the “working set”. The portion that is stored on disk resides in an
FMP file called the “backing store”. Up to 65,536 pages of data can be accessed this way.

The location of the working set in physical memory is within the program’s partition, immediately
after the program’s in-memory image. For CDS programs, the working set is within the data
partition, just after the pages used for the data segment. The working set contains both VMA data
pages and pages devoted to the VMA page table (PTE). The PTE is a data structure that
indicates which VMA data pages are currently in physical memory, and in which physical pages.
NO TAG shows the memory placement of the working set.

When a program is first dispatched, none of the VMA data resides in the working set. For the
program to access a VMA data element, the data must reside in physical memory. The
VMA/EMA software and firmware routines transfer data between the backing store and the
working set and map data residing in the working set into the program’s logical address space.

A virtual memory array or variable is declared in the program as an EMA array or variable.
When the program is linked, use the LINK VM command to use the VMA subsystem, rather than
EMA. The size of the working set and of the virtual memory area on disk are set by using LINK
commands. The default sizes of the working set and the virtual memory are 32 and 8192 pages,
respectively. These values can also be modified using the WS and VS RTE commands.

There are two modes of VMA operation. The default mode of operation is used when a program
creates a large amount of temporary data. In this mode, the backing store is uninitialized at the
beginning of program execution and purged after the program terminates. During program
execution, VMA data is placed in the working set. The data is posted to the backing store file on a
page-by-page basis only when the amount of data created exceeds the working set size. In this
way, disk space for the backing store file is allocated only as it is needed.

An alternate mode of VMA operation can be used for programs that create a large amount of data
that will be used later, or programs using a large amount of existing data. In this mode, the
program calls a subroutine to create a named backing store file or to open an existing file to be
used as the backing store file. The backing store file can be manipulated using VMA file
subroutines discussed later in this chapter.

In this alternate mode, when the program references a VMA data element not currently in the
working set, the pages containing the VMA data are swapped from the backing store file into the
program’s working set. If the working set is full and the data does not currently reside in the
working set, one page of the working set is flushed to the disk, and the requested page of data is
swapped into that page.

In high level languages, after your program indicates which arrays are to be treated as VMA or
EMA, the compiler automatically emits calls to the VMA/EMA software and firmware routines.
For a Macro/1000 program, explicit calls to the VMA/EMA subroutines must be made in order to
map in data.

VMA and EMA Programming 9-3

9-4 VMA and EMA Programming

Lan ~
A
Extended A Page 31
Memory Area
(EMA) - —.VSEG.—- —
or
Progr_am
Partition Working Set
(for VMA) MSEG + 1
Y
Program
Y
Page 0
N N
Physical Logica|
Memory Memory
. VMA Memory Structure

Extended Memory Area (EMA)

EMA is a subset of VMA. With EMA, however, all the program data resides in physical memory.
You can think of EMA as a special case of VMA where the working set is large enough to
accomodate all data pages, and therefore the backing store file is not necessary. EMA data is
mapped into logical memory via the EMA software and firmware routines.

The Extended Memory Area resides within the program’s partition, just after the program itself.
For CDS programs, the EMA area is in the data partition. Figure 9-1 shows the structure of
physical and logical memory. EMA makes use of a page table (PTE), just as VMA does. For an
EMA area, the PTE indicates to the firmware that each data page resides in memory.

Using Shareable EMA

EMA data may be either local, meaning it is accessible only to the program that declared it, or
shared between multiple programs. Shareable EMA allows large amounts of data to be shared
easily among programs. Programs that use shareable EMA can be written the same as programs
using local EMA data. At LINK time, a program’s EMA data can be declared as shareable by
using the LINK SH command. Note that VMA data cannot be shared, and that programs
compiled by FTN4X or ADA cannot use shareable EMA.

A shareable EMA program requires an additional partition available at execution time for the
EMA data. The shared EMA data is placed in a separate EMA partition in the dynamic memory
area or in a reserved partition, as specified at link time. The label associated with the area is
specified at link time. EMA data residing in this partition can be shared by up to 255 different
programs at once. This is done by declaring the same shareable EMA label at link time for each
program. Note that each of the programs accessing the shareable EMA partition must declare the
EMA partition exactly the same. For example, if an EMA partition contains six arrays, then all
programs accessing the partition must contain identical declarations for each of the six arrays.

Once a shareable EMA program is dispatched and the shareable EMA partition is set up, that
partition will not be released until all the EMA programs using that partition for data have
terminated. The system keeps an active count of the number of programs using each shareable
EMA partition. As more programs are scheduled that use the data area, the count increases. As
these programs terminate, the count decreases. When the count reaches 0, the partition is
released to the free memory pool, unless the partition is locked, as with a LKEMA subroutine call.

Note that if a program terminates saving resources, the shareable EMA partition (a resource) is
not released, and the active count does not decrease.

In some cases, you may wish to leave the partition as a shareable EMA partition, even when all
programs accessing the area are dormant. In this case, use the subroutine LKEMA to lock the
shareable EMA partition as a data area. The partition will then remain a reserved data area until
the system routine ULEMA is called to unlock the shareable EMA partition or the operator
enters the UL system command to forcibly unlock the partition, and the active user count is zero
or drops to zero.

The section on Programming with VMA and EMA describes the LKEMA and ULEMA library
routines.

Resource numbers, described in Chapter 2, can be used to synchronize the use of shareable EMA
data. Coordination of multiple programs updating the SHEMA must be performed by your
programs.

VMA and EMA Programming 9-5

Shareable EMA Program Considerations

At link time, a program’s EMA data can be declared as shareable data by using the LINK SH
command:

SH, label[, <reserved partition number>]

The specified label may be any sixteen ASCII characters starting with a non-numeric character.
Another program for which you specify the same label will use the same shareable EMA partition
when it executes. If a reserved partition number is not specified, the shareable EMA is allocated
in dynamic memory. At most, 255 programs can use the same shareable EMA area at one time.

For each shareable EMA area, there is an entry in a shareable EMA table that resides in
Extended System Available Memory (XSAM). The maximum number of entries in this table is
dependent on the amount of free XSAM available. When an ID segment or prototype ID segment
is created for a shareable EMA program, the operating system also creates an entry in the
shareable EMA table for the appropriate label, provided there is not already an entry for that
label in the table.

If there is already an entry for the shareable EMA label, then the “in-system” count in that entry is
incremented by one. The maximum number of RP’ed programs using the same shareable EMA
area is 255. If there is not already an entry for the label and there is space in XSAM for a new
entry, then an entry is made, and the count for that label entry is set to one. If there is no room in
XSAM and there is not yet an entry for the label, then an error is issued.

When an ID segment for a shareable EMA program is deallocated from the system (an
OEprog,ID command will do this), the “in-system” count in the shareable EMA table entry is
decremented. If the count reaches zero, then, provided the shareable EMA area is not locked, the
table entry is deallocated and the shareable EMA area is no longer known to the system.

9-6 VMA and EMA Programming

Partition Considerations

A VMA or EMA program can run in the dynamic memory area or can be assigned to a reserved
partition. A shareable EMA program can also run in the dynamic memory area or in a reserved
partition. If an EMA program uses shareable EMA, the shareable EMA can be specified in the
LINK SH command to be allocated in a reserved partition. If no reserved partition number is
specified in the LINK SH command, the shareable EMA area will be allocated in the dynamic
memory area.

If two programs declare the same shareable EMA label, and only one specifies that the shareable
EMA area should go into some reserved partition, then the shareable EMA area may or may not
be set up in a reserved partition. The system allocates the shareable EMA table entry when it sets
up the ID segment for the program requesting shareable EMA. This entry holds information
about where the shareable EMA area is to be allocated. Whether or not the EMA area is in a
reserved partition depends upon which program is set up first. The same holds true for two
programs declaring the same shareable EMA label but specifying different reserved partitions for
the shareable EMA area.

Note that a program cannot run in the same reserved partition as that allocated to its shareable
EMA. An attempt to do so will result in an EM91 abort when the program is run.

The shareable EMA area is allocated when the first program using it is scheduled and dispatched.
The size of the area allocated is dependent upon the EMA size declared by this program. A
program scheduled later that declares a larger EMA size will abort with an EM 90 error;
therefore, it is best that all programs using a common shareable EMA have the same EMA size
(use the LINK EM command).

Shareable EMA Partitions

Shareable EMA labels are defined at link time and the associated partitions are created when the
program is run, not at generation or reconfiguration time. Once a shareable EMA area is set up,
whether it is in the dynamic area or in a reserved partition, it is not swappable, and it is not
deallocated until the number of active (non-dormant) programs using it reaches zero (unless the
area is locked).

It is highly recommended that all programs using the same shareable EMA area declare the same
EMA size and location (reserved partition number or dynamic memory) when the programs are
linked. This precaution will prevent any EM90 or EM91 errors at dispatch time.

VMA and EMA Programming 9-7

System Common and SHEMA Examples

This section shows program examples, in both FTN7X and Pascal, that communicate using shared
EMA. The following two FORTRAN programs illustrate a simple exchange of data using
SHEMA. The shared variables must be declared in a labeled common block and the common
block must be declared in the SEMA statement. Note that the common block names in the two
programs do not have to be identical.

Program 1

FTN7X, L
$EMN BI G
PROGRAM SHARL
COVMON / Bl G | ARRAY(100)
DI MENSI ON | NAM 3)
DATA | NAM 6HSHAR2 /
C
C INTIALI ZE THE ARRAY
C
DO 10 =1, 100
| ARRAY(1) =1
10 CONTI NUE

C
C LOCK THE SHAREABLE EMA PARTI T1 ON
C

CALL LKEMA

SCHEDULE * SHAR2' W THOUT WAI T

OO0

| CODE=9
CALL EXEC(| CODE, | NAM)
END

Program 2

FTN7X, L
$EMN LARG
PROGRAM SHAR2
COVMON / LARG | ARRAY(100)

PRI NT QUT THE ARRAY

OO0

WRI TE(1, *)’ THE ARRAY
WRI TE(1, *) (1 ARRAY(1),

S’

|
| =1, 100)

UNLOCK THE PARTI Tl ON

CALL ULEMA

O 000

END

The following two Pascal programs demonstrate how the pointer to a shared data item located in
system common passes information between two programs with access to the same SHEMA
partition area. The programmer must declare the SHEMA partition area with the LINK SH
command and use the routines Pas.A1SharedSize and Pas.A1SetShared located in the Pascal
library to access the SHEMA partition.

9-8 VMA and EMA Programming

Program 3

$HEAP 28
PROGRAM progl(| NPUT, OUTPUT);

TYPE i nt —-32768. . 32767,
bi g array [1..100] of int;
bi gptr = ”~big;
com = record
bi ggy : bigptr;
end;
conmptr = “com

VAR i, sizeblank : int;
si zeshared, start, heap_stack : | NTEGER
bi ggyptr : bigptr;
commy : conptr;

FUNCTI ON shar edsi ze $ALI AS ' Pas. AlSharedSi ze' $: | NTEGER, EXTERNAL;
{ Returns the size of the SHEMA Partition that the program has access to }

FUNCTI ON set shared $ALI AS ' Pas. AlSet Shared’ $

(start, heap_stack : INTEGER) : BOOLEAN, EXTERNAL;
{ Sets heap/stack area to begin at the specified address
{ ("start’), and to extend for specified nunber of words
{ (" heap_stack’). A true value returned indicates that
{ pointer has been set to the specified area.

FUNCTI ON common_bl ank $ALI AS ' Pas. Bl ankCon2’ $: conptr; EXTERNAL;

{ Returns a pointer to the system comon area }

FUNCTI ON bl ank_si ze $ALIAS ' Pas. Bl ankSi ze’$: int; EXTERNAL;

{ Returns the size of blank conmon area }

BEG N
si zebl ank : = bl ank_si ze; { Get size of blank
| F sizeblank <> 0 THEN BEG N { common area If not
si zeshared : = sharedsize; { equal to zero, then
| F sizeshared <> 0 THEN BEG N { Get size of shareable EVA
{} { I'f SHEMA not equal
conmy := comon_bl ank; { Get pointer to sys comopn area
| F (setshared(0, 150)) THEN BEG N { Set up heap stack area
NEW (bi ggyptr);
W TH comy” do
bi ggy : = biggyptr;
FORi := 1 TO 100 DO
bi ggyptr”[i] = 1; { Initialize the array
END ELSE
VWRI TELN(’ heap stack setup failure’');
END ELSE
VWRI TELN(’ no access to shema’);
END ELSE
VRI TELN(’ no conmon avail able’);
END.

VMA and EMA Programming

}
}
}
}
}

}
}

9-9

Program 4

$HEAP 28
PROGRAM prog2(| NPUT, OUTPUT);

TYPE i nt —-32768. . 32767,
bi g array [1..100] of int;
bi gptr = ”~big;
com = RECORD
bi ggy : bigptr;

conmptr = “com

VAR i, sizeblank : int;
si zeshared, start, heap_stack : | NTEGER

comy : conptr;

FUNCTI ON shar edsi ze $ALI AS ' Pas. AlSharedSi ze' $: | NTEGER, EXTERNAL;
{ Returns the size of the SHEMA Partition that the program has access to}

FUNCTI ON set shared $ALI AS ' Pas. AlSet Shared’ $

(start, heap_stack : INTEGER) : BOOLEAN, EXTERNAL;
{ Sets heap/stack area to begin at the specified address (’start’), and }
{ to extend for specified nunber of words (' heap_stack’). A true value }
{ turned indicates rethat pointer has been set to the specified area. }

FUNCTI ON conmmon_bl ank $ALI AS ' Pas. Bl ankCon2’ $: conptr;
EXTERNAL;

{ Returns a pointer to the system comon area }

FUNCTI ON bl ank_si ze $ALIAS ' Pas. Bl ankSi ze’$: int; EXTERNAL;

{ Returns the size of blank system conmon }

BEG N
si zebl ank : = bl ank_si ze; { Get size of blank conmon area }
| F sizebl ank <> 0 THEN BEG N { I'f not equal to zero, then }
si zeshared : = sharedsi ze; { Get size of shareable ENMA }
| F sizeshared <> 0 THEN BEG N{ If SHEMA not equal to zero, then }
{} { }
conmy : = comon_bl ank; { Gets pointer to sys conmon area }
| F (setshared(151,200)) THEN BEA N { Set up heap/stack area }
FORi := 1 TO 100 DO
VRI TELN(commy”. bi ggy”[i]); { Wite out the array }
END ELSE
VWRI TELN(’ heap stack setup failure');
END ELSE
VWRI TELN(’ no access to shema’);
END ELSE
VRI TELN(’ no conmon avail able’);

END.

9-10 VMA and EMA Programming

Class 1/O calls, program to program communication, also pass information between programs.
The first Pascal program in this next program pair passes data to a buffer in SAM with a class
number that it shares with the second program. The second program now has access to the buffer
and awaits action by the first. Note: Pascal programs have EXEC calls declared as externals;
FORTRAN programs do not.

Program 5

$HEAP 2%

Program | OSHL (I NPUT, QUTPUT) ;

TYPE
int = -32768..32767;
ntype = packed array [1..6] of char;
string = packed array [1..12] of char;
btype = array [1..10] of char;
buf ptr = ~btype;

VAR

i bufr : bufptr;
runstr : string;

nane . ntype;
cl ass, icode, buflen : int;
i, start, heap_stack, shemasize : integer

FUNCTI ON shar edsi ze $ALI AS ' Pas. AlSharedSize' $: | NTEGER ; EXTERNAL;
{ Returns size of the SHEMA Partition that the program has access to. }

FUNCTI ON set shared $ALI AS ' Pas. AlSet Shared’ $

(start, heap_stack : INTEGER) : BOOLEAN, EXTERNAL;
{ Sets heap/stack area to begin at the specified address (’start’), and }
{ to extend for specified nunmber of words (' heap_stack’). A true value }
{ returned indicates that pointer has been set to the specified area. }

PROCEDURE exec_9 $ALIAS ' EXEC $
(icode : int; name : ntype; class, dunl, dun?, dunB, dumt : int;
runst : string; buflen : int); EXTERNAL;

{ Exec 9 call —inmmedi ate schedule a programw thout wait }

PROCEDURE exec_20 $ALI AS ' EXEC $
(icode, icnwd : int; ibufr : bufptr; buflen,iopl,iop2,class : int);
EXTERNAL;
{ Exec 20 call —class wite/read }

PROCEDURE | ock $ALI AS ' LKEMA' $; EXTERNAL;
{ Lock the SHEMA partition, so only the schedul ed program }
{ can access it }

BEG N
runstr := 'ru,iosh2,1,1";
name :="'|OSH2' ;
{}
shenmasi ze : = sharedsi ze; { Get the size of SHEMA }
| F shemasi ze <> 0 THEN BEG N { If SHEMA not equal to }
{ zero, then }
| F (setshared(0,25)) THEN BEA N { Set up the heap/stack area }
new(i bufr);
FOR1 :=1 TO 10 DO

VMA and EMA Programming 9-11

ibufrrfi] :="1";

{}

class := 0 { Set class to zero, so the system }
{} { can allocate a unique class nunber }
buflen : = 10;

i code : = 20;

{ PLACE THE DATA OF 'IBUFR | NTO A BUFFER I N SAM ALONG }
{ WTHITS CLASS NUMBER }

exec_20(i code, 0, i bufr, bufl en, 0, 0, cl ass);

{ LOCK THE SHEMA PARTI TI ON }

| ock;

{ SCHEDULE ' | GSH2' AND SEND | T THE CLASS NUMBER }

icode : = 9;
exec_9(i code, nane, cl ass, 0,0,0,0, runstr,-12);

{}
END ELSE
VWRI TELN(’ heap stack setup failure');
END ELSE
WRI TELN(' no access to shema');

{}
END.

Program 6

$HEAP 2%
PROGRAM | OSH2 (| NPUT, OUTPUT) ;

TYPE
int = -32768..32767;
btype = array [1..10] of char
ptype = array [1..5] of int;
buf ptr = ~btype;

VAR
i bufr : bufptr;
class, icode, buflen : int;
i, start, heap_stack, shemasize : integer

pram : ptype;

FUNCTI ON shar edsi ze $ALI AS ' Pas. AlSharedSize' $: | NTEGER ; EXTERNAL;
{ Returns the size of the SHEMA Partition that the program has access to }

FUNCTI ON set shared $ALI AS ' Pas. AlSet Shared’ $

(start, heap_stack : INTEGER) : BOOLEAN, EXTERNAL;
{ Sets heap/stack area to begin at the specified address (’start’), and }
{ to extend for specified nunber of words (' heap_stack’). A true value }
{ returned indicates that pointer has been set to the specified area. }

PROCEDURE exec_21 $ALI AS ' EXEC $
(icode, class : int; ibufr : bufptr; buflen :int); EXTERNAL;
{ Exec 21 call —class get }

9-12 VMA and EMA Programming

PROCEDURE unl ock $ALI AS ' ULEMA' $; EXTERNAL;
{ Unlock the SHEMA partition }

PROCEDURE par ans $ALI AS ' RVPAR $
(pram: ptype); EXTERNAL;
{ Pick up the paranmeters sent fron the 'father’ program}

BEG N

END.

par ams(pranj ; { pranil1l] contains the class numnber

{}

shenmasi ze : = sharedsi ze;

{ Get the size of SHEMA

| F shemasi ze <> 0 THEN BEG N { If SHEMA not

{}

| F (setshared(26,50)) THEN BEG N { Set

equal to zero, then

{}

buflen := 10;

i code := 21;
class := prani1];

{ GET THE DATA FROM SAM AND PUT IT IN ' | BUFR

exec_21(icode, cl ass, i bufr, buflen);
{ PRINT OQUT THE BUFFER AND CHECK | T FOR CORRECTNESS}
wite(’ The buffer read-inis ');
FOR1 :=1 TO 10 DO
wite(ibufr”[i]);
{ UNLOCK THE SHEMA PARTI Tl ON }

unl ock;

{}
END ELSE
VWRI TELN(’ heap stack setup failure');

END ELSE
WRI TELN(' no access to shema');

up the heap/stack area

}
}
}
}
}

VMA and EMA Programming

9-13

Programming with VMA and EMA

Programming with VMA and EMA is available in FORTRAN, Pascal/1000, Macro/1000, and
C/1000. In every VMA or EMA program, an extended memory area must be declared. This area
can be subdivided using multiple labeled common blocks and array declarations.

In FORTRAN, Pascal/1000, and C/1000, calls to the VMA/EMA mapping subroutines are made
without explicit user action (they are automatically emitted by the compiler). The VMA/EMA
mapping subroutines described later in this chapter must be called from Macro/1000 programs in
order to map in data. Additional VMA/EMA subroutines are summarized and described in this
section. VMA and EMA errors that can be reported by the VMA/EMA subroutines are listed in
Appendix A.

EMA programs compiled or assembled on RTE operating systems other than RTE-A or
RTE-6/VM are not supported by the RTE-A Operating System. These EMA programs must be
re-compiled or re-assembled before loading and executing so that calls to the RTE-A VMA/EMA
mapping subroutines will be generated.

Programs that create default backing store files must have the scratch cartridge designated or the
working directory assigned.

Programs that rely only on the external VMA/EMA features of RTE-6/VM will run in an identical
manner on RTE-A.

All VMA/EMA subroutine call descriptions use the FORTRAN subroutine call format. If desired,
the description of general formats included in the Relocatable Libraries Reference Manual, part
number 92077-90037, can be consulted to convert the calls to FORTRAN functions, Pascal/1000,
or Macro/1000 formats. In FORTRAN, routines called as functions should be declared as single
integers unless otherwise stated. To convert the calls to the C/1000 calling sequence, refer to the
C/1000 Reference Manual, part number 92571-90001.

The Three Models of EMA/VMA

The discussion of EMA and VMA up to this point has concentrated on what is known as the
“Normal model” of EMA/VMA. There are actually three models of EMA/VMA: Normal, Large,
and Extended.

The Normal EMA/VMA model describes the model to which most EMA/VMA programs
conform. This model is used by programs that do not need access to multiple shared EMAs, or to
both a local and a shared EMA, and do not require an EMA or working set size greater than 1022
pages. This model is also backward-compatible with the RTE-6/VM EMA/VMA scheme. The
Normal model is available on all A-Series processors.

The Large EMA/VMA model is used by programs that must access multiple shared EMAs, or
both a local EMA/VMA and a shared EMA. The maximum size of a Large model EMA or
working set remains at 1022 pages. The Large model is available on all A-Series processors.

The Extended EMA/VMA model is available only on the A990 CPU with the “Extended VMA”
firmware (A990 firmware revision 10 or later). You may also have A990 revision 9 firmware and
use the DOWNLOAD utility to download the Extended VMA firmware with RTE-A revision 6000
or later. Refer to the RTE-A Generation and Installation Manual, part number 92077-90034, for
information on the DOWNLOAD utility. The Extended EMA/VMA model offers the
functionality of the Large model, but it increases the maximum size of an EMA or working set to
32,733 pages.

9-14 VMA and EMA Programming

The appropriate EMA/VMA model is chosen at link time. The EM and VM LINK commands
accept an option which selects the Large or Extended EMA/VMA model, rather than the default
of Normal EMA/VMA. The features of the three models are summarized in NO TAG. The
“Number of pages of PTE overhead per program” feature refers to PTE pages devoted to the
program, as opposed to PTE pages devoted to an EMA/WS area used by the program, which is
given by the last line. For example, a Normal model SHEMA program contains no PTE pages in
the program partition, but the SHEMA partition contains one PTE page. A Large model VMA
program contains 2 PTE pages in the program partition: one for the program, and one for the
working set.

. Features of the Three EMA/VMA Models

Feat EMA/VMA Model

eature Normal Large Extended
Maximum size of any one EMA in pages 1022 1022 32733
Maximum size of a VMA working set in pages 1022 1022 32733
Maximum number of SHEMAs a program may access 1 64 64
Number of SHEMAs accessible when local EMA/VMA used 0 63 63
Number of pages of PTE overhead per program 0 1 2
Number of pages of PTE overhead per EMA or WS * 1 1 1/1024
* “1/1024” indicates that there is one PTE page for every 1024 data pages.

Declaring Extended Memory Area (EMA)

The first step in programming with VMA and EMA is to declare an extended memory area. Note
that the VMA programs are identical to EMA programs until link time.

The FORTRAN $EMA directive or EMA statement may be used to specify that data is to reside
in VMA or EMA. See the FORTRAN 77 Reference Manual, part number 92836-90001, for more
information.

An EMA can be declared in Pascal by using the HEAP and, optionally, the EMA compiler
options. Refer to the Pascal/1000 Reference Manual, part number 92833-90005.

An EMA can be declared in a Macro/1000 program using the EMA and ALLOC pseudo
instructions. Refer to the Macro/1000 Reference Manual, part number 92059-90001.

An EMA can be declard in a C/1000 program using the “ema” pragma. Refer to the C/1000
Reference Manual, part number 92571-90001.

VMA and EMA Programming 9-15

Allocating Secondary SHEMA Areas

Large and Extended model programs may access more than one shared EMA (SHEMA), and may
access SHEMAs when a local EMA/VMA is declared as well. These programs declare EMA,
either local or shared, or VMA just as Normal model programs do. But a Large or Extended
model program may call library routine RteAllocShema, discussed in a later section, to
programmatically attach SHEMAs to itself. The “local” area, which may be a SHEMA, is called
the “primary” area, and the programmatically-attached SHEMAs are known as “secondary”
SHEMAs.

At the time a Normal, Large, or Extended EMA program is initially scheduled, RTE-A sets up the
named SHEMA area for those programs loaded with the LINK “SH” command. Large and
Extended SHEMA programs (which are often called “SHEMA-only” programs) may also allocate
extra SHEMAs via the RteAllocShema routine mentioned above.

When a secondary SHEMA is allocated to a program, some portion of the program’s EMA/VMA
address space is used to refer to that SHEMA. That is, some range of EMA/VMA addresses will
access data in the SHEMA. Due to the format of the underlying page tables, SHEMAs are
attached at 1024-page boundaries in a program’s EMA/VMA address space. A program’s primary
EMA/VMA area always starts at EMA/VMA page 0. Assuming that the local area is less than
1024 pages in size, the first EMA/VMA page at which a secondary SHEMA may be attached is
page 1024, the next is page 2048, and so on.

Because EMA/VMA addresses can reference up to 65,536 (64K) pages, the maximum number of
SHEMAs that may be attached to a program is 64. To attach all 64, the program must be a
SHEMA-only program, because all available 1024-page ranges are used for SHEMA. Similarly, a
program that declares a local EMA/VMA may attach up to 63 SHEMAs. If the size of any
SHEMA or the local EMA/VMA area exceeds 1024 pages then that area occupies more than one
1024-page range in the program’s address space, and reduces the number of SHEMAs that may be
attached to the program. These 1024-page ranges are sometimes referred to as “EMA segments”
and each has a number from 1 to 64.

For example, consider a program with an EMA area of 32 pages that attaches a secondary
SHEMA of 5 pages at page 1024 in its EMA address space. References to EMA pages 0 through
31 access the local EMA area, pages 32 through 1023 are illegal, and pages 1024 through 1028
access the SHEMA. References to the remaining pages, 1029 through 65535, are also illegal.

9-16 VMA and EMA Programming

EMA/VMA Subroutines

The EMA/VMA subroutines described in the following sections provide size information about
EMA and VMA, manage I/O transfers, and lock or unlock a shareable EMA partition. These
subroutines can be divided into functional groups as follows:

Information Subroutines:

EMAST Returns general information about VMA and EMA.
VMAST Returns size of VMA and EMA.
RteExtendedEV ~ Checks if the CPU has extended EMA/VMA capability.

I/O Management Subroutines:

VMAIO Performs VMA and EMA 1/O data transfers to or from an LU.

EIOSZ Determines the maximum guaranteed length of data transfer using
VMAIO.

LOCKVMA Locks from 1 to 64 VMA pages.

LOCKVMABUF Locks a single VMA buffer.
LOCKVMA2BUF Locks two VMA buffers.

Shareable EMA Subroutines:

LKEMA Locks a shareable EMA partition.

ULEMA Unlocks a shareable EMA partition.

RteAllocShema Attaches a shared EMA to the program.

RteReturnShema Detaches a shared EMA from the program.

RteRenameShema Renames a shared EMA label.

RtePrimeShInfo Returns information about the primary SHEMA of a SHEMA-only

program.
VMA File Subroutines:
VMAOPEN Creates/opens backing store file.
VMAPURGE Purges the backing store file.
VMAPOST Posts the working set to the backing store file.
VMACLOSE Posts the working set and closes the backing store file.
VMAREAD Reads data from the data file into VMA and EMA.
VMAWRITE Writes data from the VMA or EMA to a data file.
FMGR VMA Subroutines:
CREVM Creates backing store file.
OPNVM Opens the backing store file.
PURVM Purges the backing store file.
PSTVM Posts the working set to the backing store file.
CLSVM Posts the working set and closes the backing store file.
VREAD Reads data from a data file into the VMA and EMA.
VWRIT Writes data from the VMA or EMA to a data file.
VMA/EMA Mapping Management Subroutines:
IMAP Resolves address of array element and maps into logical memory.
IRES Resolves address of array element (does not map).
JMAP Resolves address of array element and maps; double integer.
JRES Resolves address of array element (does not map); double integer.
MMAP Maps consecutive pages of EMA/VMA into logical memory.
.ESEG Maps several pages of EMA/VMA into logical memory.

VMA and EMA Programming 9-17

.LBP, LBPR Converts a virtual address to a logical address.
.LPX, .LPXR Converts a virtual address and an offset to a logical address.
.EMIO Maps in up to MSEG size buffer that can then be used for I/O.

Information Subroutines

EMAST (Return Information on VMA and EMA)

The EMAST subroutine returns information about the VMA or EMA of the calling program.
CALL EMAST(nema, nmseg, imseg| , iws])

where:
nema is total page size of VMA or EMA (not including page tables).
nmseg is total page size of mapping segment (MSEG), excluding the spillover page.
imseg is starting logical page of MSEG.

iws is working set page size (optional parameter). For an EMA program, this value is
the same as nema.

An error is returned if a VMA or EMA is not defined in the calling program.
Upon return:

A-Register = 0 if normal return
—1 if error occurred

B-Register = 0 if a Normal model program
1 if a Large model program
2 if an Extended model program

Example: Check the various size parameters for the VMA program EMST.

$EMA (BI G 0)
PROGRAM ENST
COMMON / Bl G | ARRAY (250000)

éALL EMAST (NEMA, NMBEG, | MBEG, | W6)

9-18 VMA and EMA Programming

VMAST (Return Size of VMA and EMA)

The VMAST subroutine determines if the calling program uses VMA or EMA and returns the
size of VMA or EMA.

CALL VMAST(ivma, isize)

where:
ivma indicates whether the calling program is VMA or EMA:
—2 = Not a VMA or EMA program
0 = EMA program
1 = VMA program
isize is the VMA or EMA size in pages. If the program is not a VMA or EMA program,

a zero is returned.
Upon return:

A-Register = 0 if it is a Normal model program
1 ifitis a Large model program
2 ifitis an Extended model program

Example: Use the VMAST routine to determine if the program is a VMA or EMA program and
its VMA or EMA size.

$EMA (BI G 0)
PROGRAM VVBT
COMMON/ Bl G/ | ARRAY (12500)

CALL VMAST (I VMA | Sl ZE)
I F (1VMR) 200, 50, 100
50 WRITE (1,’ (”EMA PROGRAM)’)

100 WRITE (1,’ ("VMA PROGRAM)’)

200 WRITE (1, '(”NOT VMA EMA PROGRAM)’)

VMA and EMA Programming 9-19

RteExtendedEV (Check EMA/VMA Capability)

The RteExtendedEV routine checks if the CPU has Extended EMA/VMA capability.
extended_ucode = Rt eExtendedEV()

| ogi cal *2 Rt eExt endedEV, extended_ucode

where:

extended_ucode is .TRUE. if the CPU has Extended EMA/VMA microcode.

An Extended-model application may call this routine prior to EMA/VMA access in order to
determine whether or not Extended EMA/VMA is available. If not, the application can then issue
an error and gracefully decline to continue execution. An attempt to access Extended EMA/VMA
on a CPU that does not have the appropriate firmware receives an EM80 or VMS0 violation.

Extended EMA/VMA capability is determined by the following:
1. The CPU must be an A990.

2. The firmware revision ID (product #0) must be 9 or greater.

3. If the firmware is revision 9, then microcode of revision 10 or greater must be downloaded into
control store. The DOWNLOAD program must have been run to download the file
REV10UPGRADE.MIC after the system was booted. The DOWNLOAD program sets RTE
entry point $A990_CSID to the revision of microcode downloaded into control store.
RteExtendedEV checks that entry point for a nonzero value.

9-20 VMA and EMA Programming

I/0 Management Subroutines

VMAIO (Perform Large VMA or EMA Data Transfers)

The VMALIO subroutine allows your program to perform large (up to 32 pages) I/O transfers
to/from the VMA or EMA and any I/O device.

For a non-class I/O operation (ecode equals 1 or 2), the format is:
CALL VMAI ((ecode, cntrl, ibuff, ilen[, pram3[, pram4]])
For a class I/O operation (ecode equals 17, 18 or 20), the format is:
CALL VMAI ((ecode, cntrl, ibuff, ilen, pram3, pram4, class[, uv[, keynum]])
Finally, for a class Get operation (ecode equals 21), the format is:
CALL VMAI ((ecode, class, ibuff, ilen[, rtnl[, rtn2[, ntn3[, uv]1]11])
where:
ecode is any of the following standard EXEC I/O request codes:

1 Read
2 Write
17 Class Read
18 Class Write
20 Class Write/Read
21 Class Get

No other values should be used for ecode with VMAIO.

cntrl is a two-word quantity with the following format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OV|OS| X |WT Reserved LU Number

BB|NB|UE| Z | X |[TR| X [EC| X | BI Reserved

LU Number (Bits 0-7)
is the logical unit number of the device that data is to be transferred to or from.

Bits 6-13 and 15 of word 2 of CNTRL are identical to the corresponding bits of the
EXEC 1 or 2 cntwd.

NB forces nonbuffered operation. For ecode equal to 1 or 2, NB should be set to 0
because all requests are unbuffered. For ecode equal to 17, 18, 20, or 21, NB is
set as follows:

0 Request is buffered. If the value of ILEN is greater than the amount of
SAM in the system, an 1004 error occurs.

1 Request is nonbuffered.

VMA and EMA Programming 9-21

ibuff is a two-word quantity in double integer format (most significant word first, least

significant word last). This represents the VMA/EMA word offset to the start of
the buffer to be transferred.

Note This offset is automatically set up by the FORTRAN compiler when the call to
VMAIO is made and the buffer is in the VMA/EMA area. Refer to the
FORTRAN Reference Manual, part number 92836-90001.

ilen is the length of ibuff; positive number of words or negative number of characters.
Note that the length of the transfer cannot be specified as a negative number of
characters if the character count exceeds 32767 characters. Use a positive number
of words should this situation arise. Note that the length of ibuff cannot be greater
than the EMA or Working Set size.

Note The maximum transfer length is 32 pages, or 100000B words. A value of
100000B in this parameter is treated as a positive word count rather than a
negative character count. Remember that 32 pages can only be transferred
when the transfer starts at the beginning of a physical page. It is, however,
always possible to transfer up to 31 pages.

pram3 is an optional parameter or optional buffer, as in the EXEC 1 or 2 call.

pram4 is an optional parameter or optional buffer length.

class is the class number. This parameter is the same as the class parameter for a Class
I/O EXEC call.

uy is the user-defined variable returned from a previous read or write.

keynum is the key number of the locked LU. The key number is returned in the keynum
parameter of the LURQ call. See Chapter 2 for more details.

rtnl corresponds to pram3 for a read or write call.

rn2 corresponds to pram4 for a read or write call.

rn3 is the request code passed to the driver on an initial read or write as follows:

1 Call was 17 or 20 (Read or Write/Read)
2 Call was 18 (Write)

Because a VMA or EMA variable cannot be used as a parameter in an EXEC call, VMAIO is
available to handle I/O for a VMA or EMA buffer. The VMA or EMA 1/O buffer to be
transferred need not be mapped into the user logical address space prior to the request. The
buffer is automatically mapped. The only requirement is that the number of pages required to
map the buffer must be less than 32.

9-22 VMA and EMA Programming

Two restrictions apply if a nonbuffered class VMAIO request is made.

1. If the program uses EMA, then EMA accesses may be made during the I/O, but the actual
EMA buffer area within which I/O is proceeding must not be modified until the I/O is
complete or unpredictable results will occur.

2. If the program uses VMA, then either no VMA accesses may be made during the I/O, or the
pages that hold the buffer must be locked into memory prior to the VMA accesses. If you
perform VMA accesses without locking the buffer space, unpredictable I/O results will occur.

Error messages that occur due to execution of the VMAIO subroutine are contained in
Appendix A.

If the calling program is not a VMA or EMA program, the program will abort with an EM81 error
unless the noabort bit is set.

Example: Read from the terminal into a VMA array.

$ALI AS VMAI O, NOABORT

$EMA (BI G, 0)
PROGRAM VM O
COVMON/ Bl G/ | ARRAY (50000)
DI MENSI ON | CNVD (2)

C
C READ FROM THE TERM NAL
C
| CODE=1+100000B
| CNVD(1) =1
| NV 2) =0
| LEN=250
CALL VMAI O (I CODE, | CNWD, | ARRAY, | LEN, * 100)
C

C RETURN HERE | F NO ERROR

100 .ERRCR PROCESSI NG ROUTI NE

VMA and EMA Programming 9-23

EIOSZ (Determine Maximum Length of Transfer)

The maximum guaranteed buffer length possible for a large VMA or EMA 1/O transfer can be
obtained by calling the subroutine EIOSZ. In RTE-A, the size returned is always 100000B words.
This routine is provided for RTE-6/VM compatibility.

CALL El OSZ(isize)
or
isize = EI O8Z()

where:

isize is set to the maximum length available in words. This value is always 100000B. The
maximum length is also returned in the A-Register if the call is successful. This
routine need never be called. It is provided for RTE-6/VM compatibility. On
return, the A-Register = —1 if an error occurs (that is, not VMA or EMA
program). If the call is successful, the A-Register will indicate the maximum length
available for transfer in words (100000B).

Example: Determine the maximum buffer length available to transfer the VMA array using the
VMAIO subroutine.

$EMA (BI G 0)
PROGRAM ESZ
COMMON/ Bl G/ | ARRAY (500000)

CALL El 0sZ(1SI ZE)

C USE VMAI O TO TRANSFER DATA W TH

C BUFFER LENGTH <= | SI ZE
LOCKVMA, LOCKVMABUF, LOCKVMA2BUF (Lock VMA Pages/Buffers)
These routines lock and unlock pages and buffers in virtual memory.

error = LOCKVMA(ipages, inumpg)

error LOCKVVABUF(ibuff, ilen)

error = LOCKVMA2BUF(ibufl, ilenl, ibuf2, ilen2)

where:

ipages is the name of an array containing the page numbers of the virtual pages to be
locked. IPAGES can contain a maximum of 64 page numbers. Each page number
in the array is unsigned and one word in length and in the range 1 through 64.

inumpg is the number of pages specified in IPAGES.

ibuff, ibufl, and ibuf2
are two-word quantities in double integer format (most significant word first, least
significant word last) that represent the VMA offset to the start of the buffer to be
transferred. Note that this offset is set up automatically by the FORTRAN
compiler when the VMA lock call is made and the buffer is in the VMA area.
(Refer to the FORTRAN Reference Manual.) The value must be in the defined
range of virtual memory unless the associated buffer length is set to zero.

9-24 VMA and EMA Programming

ilen, ilenl, and ilen2
are one-word buffer lengths. A positive value indicates the number of words in the
buffer and a negative value indicates the number of bytes in the buffer. (100000B is
equal to 32768 words.) A buffer cannot be larger than 32 pages.

error indicates whether or not the call was successful. The possible values for error are as
follows:

0 The pages/buffers were locked successfully
—82 The specified page numbers or buffer is out of bounds
—89 ipages is not in the range 0 to 64, inclusive, or the specified buffer is too
large.

All pages can be unlocked by calling LOCKVMA with ipages equal to zero, LOCKVMABUF with
ilen equal to zero, or LOCKVMAZ2BUF with ilen! and ilen2 equal to zero.

A call to any of these three routines unlocks all previously locked pages.
Any error return unlocks any previously locked pages.

If virtual memory will be accessed while I/O is in progress, virtual pages must be locked before no
wait VMAIO (using VMA) is performed.

When using LOCKVMA, the first inumpg page numbers in ipages must be in defined virtual
memory. Only these pages are checked for validity.

For double buffering using VMAIO and VMA, both buffers must be locked so that pages from one
buffer are not paged out when I/O is started on the second buffer.

A program that uses a VMA lock routine and terminates serial reusable must unlock all pages
either immediately after beginning execution and before accessing VMA, or before terminating
serial reusable. If this is not done and the program is re-executed, VMA pages may be left locked
from a previous VMA lock call.

A program should not lock more than the number of pages in its working set minus one. When a
page fault occurs, the page that caused the fault and the next page are brought into memory. If
the program has locked exactly the number of pages in its working set, there may not be space for
both pages (a VMS83 error occurs).

VMA and EMA Programming 9-25

Shareable EMA Subroutines

LKEMA/ULEMA (Lock/Unlock a Shareable EMA Partition)

The subroutines LKEMA and ULEMA allow a primary shareable EMA partition (that was
specified at link time) to be locked and unlocked by the calling program. Locking a shareable
EMA partition ensures that the partition is reserved as a data area, which prevents execution of
user programs in the partition. These subroutines must be called from a program that is using the
shareable EMA partition to be locked or unlocked as a primary area.

CALL LKEMA
or
CALL ULEMA

These subroutine calls are ignored if the program does not use shareable EMA. If LKEMA is
called to lock a shareable EMA partition which is already locked, the call is ignored. If ULEMA
is called to unlock a shareable EMA partition that is not locked, the call is also ignored.

Normally, a shareable EMA partition is released once the number of programs actively using it
drops to 0. If this partition is locked, it is not released for use by other programs until it is
unlocked, either through the ULEMA system library subroutine or by using the UL system
command.

Example: PROGI places data into a shareable EMA partition, locks the partition, and time
schedules PROG2. PROG?2 prints the data from the shareable EMA partition and unlocks the
partition.

$EMA (BI G, 0)
PROGRAM PROGL
COVMON/ Bl G/ | ARRAY (50000)
DI MENSI ON | NAM (3), | C\NVD (2)
DATA | NAM 6HPROG2 /

C
C ENTER DATA FROM THE TERM NAL | NTO THE
C EMA ARRAY (Shareable EMA PARTI TI ON)
C
| CODE=1
| CNWD (1) =1
| LEN=25000
CALL VMAI O (I CODE, | CNWD, | ARRAY, | LEN)
C
C LOCK THE PARTI TI ON
C
CALL LKEMA
C
C SCHEDULE PROG2
C
| CODE=12
CALL EXEC (I CODE, | NAM 3, 0, —5)
END

9-26 VMA and EMA Programming

$EMA (BI G 0)
PROGRAM PROG2
COWWON Bl G JARRAY (25000)
DI MENSI ON | C\VD (2)

O000

DI SPLAY DATA (FROM Shar eabl e EMA PARTI Tl ON)
ON THE TERM NAL

| CODE=2
| CN\D (1) =1
| LEN=25000
CALL VMAI O (| CODE, | CNVID, JARRAY, | LEN)

OO0

UNLOCK THE PARTI TI ON

CALL ULEMA
END

RteAllocShema (Attach a Secondary SHEMA)

The RteAllocShema routine is called by a Large or Extended model program to attach a
secondary shared EMA (SHEMA) to itself. The calling sequence is:

error = Rt eAl | ocShema(shemalabel, pagesize, startaddr, flags)

character shemalabel* 16
i nteger*2 pagesize
i nteger*4 startaddr, flags

i nt eger

where:

error

shemalabel is a character string that specifies the label of the SHEMA. Up to the first 16

pagesize

characters of the label are significant.

Generally, this parameter should not specify a string that contains lowercase
letters, spaces, or commas. This restriction allows the system UL command to
unlock the partition. If you want to prevent the UL command from unlocking this
partition, make sure that you have at least one lowercase letter, space, or comma in
the first 16 characters of shemalabel.

is a single word integer specifying the number of EMA data pages desired. For
Large model programs, this value cannot be greater than 1023; for Extended model
programs, it cannot be greater than 32735.

If the SHEMA partition has not yet been allocated, it will be created large enough
to accommodate this many data pages (plus overhead for page tables). Normally,
this value must be less than or equal to the number of EMA data pages

VMA and EMA Programming 9-27

startaddr

error

flags

9-28

accomodated by the existing SHEMA partition, if it has already been allocated.
However, if the ES bit is set in the flags word and the partition has already been
allocated, then this parameter returns the existing size of the SHEMA.

is the double-word starting EMA address at which the SHEMA should be attached

in your program’s EMA address space. This value may name any address in the
1024 pages of the first EMA segment to which the SHEMA should be attached.

where:

is a single-word integer indicating the error return as follows:

SHEMA successfully attached

The calling program is not Large or Extended model EMA/VMA

The attachment address is invalid

The named SHEMA is already initialized for a different model

The pagesize parameter is invalid or larger than the existing SHEMA
An attachment EMA segment is already in use; startaddr is wrong
Insufficient free XSAM for a new SHEMA table or SHEMA Association
Block (SAB)

Named SHEMA is already in use by 255 programs

The reserved partition number in flags is out of range

The RTE memory manager failed to allocate memory for the SHEMA
SHEMA existence conflicts with flags specified

The SHEMA is initialized for a different EMA segment (Large model only)

The A- and B-Registers contain a 4-character abort code returned by the
RTE-A memory manager when memory allocation for the SHEMA was
attempted. Usually this is the “SC09” error — insufficient memory for the
requested SHEMA size.

is a double-word integer with the following bit definitions:

15 14 13 12 11 10 0
LK | DC| DR | ES zero word 1

Reserved partition number for new SHEMA, or 0 word 2

LK =1 if the SHEMA partition should be “locked”, such that the partition is

not released when the in-use count = 0.

DC =1 if anew SHEMA should not be created; error —10 is returned if the

named SHEMA does not exist.

DR =1 if an existing SHEMA should not be reused; error —10 is returned if the

named SHEMA already exists.

if your program wishes to adopt an existing SHEMA size. If the
SHEMA partition has already been allocated, then the same number of
EMA data pages for which the partition has been created will be claimed
from the calling program’s EMA space. In this case, the value of

VMA and EMA Programming

pagesize is ignored, and the existing size is returned in that parameter. If
the partition has not yet been allocated then it will be created now; the
value of pagesize dictates the size of the new partition as usual.

A SHEMA table entry for the named SHEMA is created if none exists. The SHEMA partition is
allocated and the page tables in that SHEMA partition are initialized if not already.

Usually, the name of the first variable in a common block relocated to the proper EMA segment is
given for the startaddr parameter. For more information, see the discussion of the ES command in
the RTE-A LINK User’s Manual, part number 92077-90035.

A program calling RteAllocShema must have a Large or Extended model “primary” EMA or
VMA defined, which may itself be a shared EMA. The attachment EMA/VMA address must be
above the last address used by the primary area. For example, a program that uses the default
VMA size of 8192 pages must attach any secondary SHEMAs at EMA segment 9 or above.

A SHEMA attached in this manner is automatically “returned” to the system if the calling
program aborts. The program may also request that the SHEMA be detached programmatically
by calling the RteReturnShema routine.

When RteAllocShema returns, user map page 31 is undefined.

RteReturnShema (Detach a Secondary SHEMA)

The RteReturnShema routine is called by a Large or Extended model program to detach a
secondary SHEMA that has been allocated via RteAllocShema. The calling sequence is:

error = rtereturnshenma(startaddr, flags)

i nt eger*4 startaddr
i nteger*2 flags, error

where:

startaddr is the double-word starting EMA address at which the SHEMA was attached in
your program’s EMA address space.

error is a single-word integer indicating the error return as follows:

0 SHEMA successfully detached
—1 The program is not Large or Extended model EMA/VMA
—2 The attachment address is invalid or does not have a secondary SHEMA
attached to it

flags is a single-word integer with the following bit definitions:
15 14 13 Ca 0
LK | UL zero
where:

LK =1 if the SHEMA should be “locked”, such that the partition is not released
when the in-use count equals 0 and the SHEMA table entry is not
released when the in-system count equals 0.

VMA and EMA Programming 9-29

UL =1 if the SHEMA should be “unlocked”, such that the partition is released
when the in-use count equals 0 and the SHEMA table entry is released
when the in-system count equals 0.

RteReturnShema detaches the SHEMA from each EMA segment of the calling program’s
EMA/VMA address space to which it was attached, freeing those EMA segments for reuse in a
subsequent RteAllocShema call, if desired. After this call successfully completes, any attempt to
use an EMA/VMA address that formerly referenced the returned SHEMA will cause an EMS82 or
VMS?2 error. If the same SHEMA has been attached multiple times to the calling program, then
only the attachment specified by startaddr is returned. However, any data items in the SHEMA
that were mapped into your program’s MSEG/VSEG area before the call are unmapped.
Therefore, they must be remapped using the alternate attachment point before use.

The in-use and in-system counts for the returned SHEMA are decremented. If the SHEMA is
unlocked and the in-system count reaches zero, the SHEMA partition is deallocated. If the
SHEMA is unlocked and the in-use count reaches zero, the SHEMA table entry is deallocated.

When RteReturnShema returns, data map page 31 is undefined. Additionally, any pages in the
program’s data map that pointed to the partition for the SHEMA being returned are unmapped
and are set to be read and write protected.

Example Program of Secondary SHEMA

This section provides an example program that shows the use of RteAllocShema and
RteReturnShema for a secondary SHEMA. Also provided is the associated link command file.

$ema / shemal/
$ema / shema2/
$ema / shema3/
program shenma
inmplicit none
integer*2 iflags(2), |ock, unlock, error
i nteger*2 RteAll ocShema, RteReturnShema
i nteger*4 flags
i nteger*2 arrayl1(1024, 10), array2(1024, 30), array3(1024, 40)
conmon /shemal/arrayl, /shema2/array2, /shema3/array3
equi val ence (iflags, fl ags)
dat a | ock/ 100000B/, unl ock/ 0400008/

i flags(1) = Iock

iflags(2) =0

error = = RteAll ocShema(’ Shema2’', 30, array2, flags)

if (error.ne.0) wite(l,’ (“Allocating (2) error = ",15)") error
error = = RteAll ocShema(’ Shema3', 40, array3, flags)

if (error.ne.0) wite(l,” (“Allocating (3) error = ",15)") error
pause

i flags(1) = unlock

error = = RteReturnShena(array2, flags)

if (error.ne.0) wite(l, (“Returning (2) error = ",15)") error
error = = RteReturnShena(array3, flags)

if (error.ne.0) wite(l, (“Returning (3) error = ",15)") error
end

9-30 VMA and EMA Programming

The associated link command file for the preceding example program is as follows:

em, |

sh, sheml
es shemn2 2
es shemn3 3
re, shenma. rel
en

RteRenameShema (Rename SHEMA Label)

This routine renames an existing SHEMA label to a new name. The SHEMA may be in use at the
time it is renamed. The calling sequence is:

error = Rt eRenaneShenma(oldname, newname, flags)

char act er oldname* 16, newname* 16
i nt eger flags, error

where:
oldname is a character string containing the name of the SHEMA to be renamed.
newname is a character string containing the new name to be assigned to the SHEMA.
flags is a single-word integer, which currently must be zero.

Error returns are as follows:

0 SHEMA successfully renamed
—1 Old SHEMA name not found
—2 New SHEMA name is already in use (note that it is not an error to
“rename” a SHEMA to its own existing name)

This routine changes the label in the SHEMA table entry for the named SHEMA. Once a
SHEMA is successfully renamed, all further access to the SHEMA must be made under the new
name. This routine may be called by non-EMA/VMA programs.

RtePrimeShinfo (Return Primary SHEMA Information)

The RtePrimeShInfo routine returns primary SHEMA information about a SHEMA-only
program. This routine may be called by a Normal, Large, or Extended model program.

error = Rt ePri meShl nf o(label, locked)

character*16 label
| ogi cal *2 locked

i nt eger*2 Rt ePri meShl nf o, error
where:
label returns the 16-character label of the primary SHEMA.
locked returns .TRUE. (100000b) if the SHEMA is locked, otherwise returns .FALSE.
(Ob).
error returns: 0 if no errors occurred.

—1 if the program is not a SHEMA-only program.

VMA and EMA Programming 9-31

The B-Register returns the size of the Primary SHEMA partition, including all PTE pages and
EMA data pages.

VMA File Subroutines

The demand-paged virtual memory system transparently manipulates the working set and backing
store file for you; however, VMA file subroutines are available to allow you to create, open, or
close the virtual memory backing store file with various options. This allows your program to
create or use an existing file as the backing store file in a wide variety of ways instead of the
standard default ways of the virtual memory system. The backing store file must be a type 2 file
with record length of 1024 words.

If you do not specify a VMA backing store file, one will be created for you. The directory on
which it is created is chosen in the following manner.

1. If the system scratch cartridge number ($SCRN) is not zero, the VMA backing store file is
created there.

2. If the scratch cartridge number is zero and the directory /SSCRATCH/ exists, the VMA backing
store file is created in the directory /SCRATCHy.

3. If the scratch cartridge number is zero and the directory /SCRATCH/ does not exist, the VMA
backing store file is created in your current working directory unless your current working
directory is zero. If your working directory is zero, the VMA backing store file is placed on the
first FMGR cartridge having sufficient space.

Default VMA backing store files on CI volumes are named as follows:
VMennn. VVA

Default VMA backing store files on FMGR cartridge are named as follows:
nnncVM

where:

nnn is the ID segment number of the VMA program.

c is the CPU number (value of the $CPU entry point).

The default backing store file is type 2, with 256-block increments. The backing store file is
automatically purged.

Using the VMA file subroutines, you can declare an existing file as the backing store file. This
provides you with the option of having initialized virtual memory (refer to the VMAOPEN
subroutine). In addition, you can declare the backing store file to be read only in order to prevent
inadvertent changes to the file. The VMA file cannot be created via DS on a remote node.

All subroutine descriptions in this section use the FORTRAN subroutine call format. If desired,
the format can be converted to Pascal/1000 or Macro/1000 subroutine calls using the general call
formats described in Chapter 2. To call the VMA file subroutines, the program must be a VMA
program. Appendix A contains a list of possible VMA errors.

9-32 VMA and EMA Programming

VMAOPEN (Open a VMA Backing Store File)

The VMAOPEN subroutine opens the named backing store file with the specified options.
CALL VMACPEN(ierr, name, ioptn)

where:
ierr is error return. A zero is returned to indicate a successful call.
name is the filedescriptor, a character string of 63 or fewer characters. Any DS
information is ignored.
ioptn are file options. A character string list of one-letter options (uppercase or

lowercase) selected from the following set:

Open for reading

Open for writing

OK to open an existing backing store file
OK to create a new backing store file
Open shared

Open in update mode

OK to access an/or create extents

File is temporary

Defer create/open until required

<HXcvnogw

If the backing store file already exists, it must be a type 2 file, or an error is returned. If the
backing store file does not exist and the C option is specified, a type 2 file is created with the
record length equal to 1024 words. If the X option is also specified, as many extents as necessary
are created to contain the VMA array. Files opened by the VMAOPEN subroutine should be
closed with the VMACLOSE subroutine. If the contents of the working set is to be written to the
file, use the VMAPOST or VMACLOSE subroutine described later in this chapter. A backing
store file may be opened only once within a program; after the backing store file has been closed
or purged, any further attempts to use VMAOPEN cause the program to abort.

To create a backing store file that is automatically purged after the program terminates, the
temporary and create options must be specified (TC). If the T option is specified, the shared open
option (S) cannot be specified. Other options may be used.

If the create (C) option and the temporary file (T) option are specified, and the name is all blanks,
then a default VMA backing store file is created as specified in the last section. To force the
creation of a default backing store file when the program starts instead of deferring its creation
until the working set is full, use the blank name without the defer (V) option.

If the extents (X) option is not specified, the size of the backing store file is created with sufficient
size to hold the number of pages specified by the program’s virtual size (VS). If you specify a file
size parameter, it must be at least equal to the program’s virtual size.

If the extents option is specified, the initial size of the default backing store file equals the number
of blocks required for 1/256th of the number of pages specified by the program’s VS size, or 32
pages, which ever is larger. If you specity a file size, it must be at least this large.

Note that if the backing store file is created on a FMGR cartridge, it is automatically purged only
if VMAOPEN is allowed to form the name.

VMA and EMA Programming 9-33

Temporary files on a CI volume closed by VMACLOSE are not automatically purged. You can
make a temporary file permanent by opening the file without specifying the T option.

To clean up after a system failure, you can use the masking T option with the PU command (PU

@.@.T).

The backing store file is considered to be initialized only if opened in the update mode (the U
option of the IOPTN parameter), thus allowing you to modify existing data in the backing store
file. When this VMA array is first accessed, the corresponding data in the backing store file is
swapped into the working set. If the update option was not specified, the backing store file is
considered to contain uninitialized data. In this case, pages from the backing store file are not
swapped into memory until a page of the working set has been swapped to the disk.

Normal Return: Upon normal return, the ierr parameter and the A-Register are zero. However, if
the deferred create option was specified, it is possible that the file cannot be created. This error
shows up when creation of the backing store becomes necessary.

Error Returns: When an error occurs during the subroutine call, a negative error code is returned
in the ierr parameter and in the A-Register.

Example: Open the VMA backing store file called TSTDTA when required for updating. If the
file does not exist, create it.

$EMA (BI G 0)
PROGRAM VMTS1
COMMON/ Bl G/ | ELEMB (65535)
CHARACTER | NAMF63, | OPTN*4
| NTEGER*4 | ELEVB
DATA | NAM * TSTDTA: : VMADI RECT’ /

C
C OPEN THE VMA FI LE.
C SET I OPTN FOR UPDATE MODE AND
C CREATE (W TH EXTENTS) | F NECESSARY
C
| OPTN = " CUXO
lERR = 0O
C

CALL VMAOPEN(I ERR, | NAM | OPTN)
| F (1 ERR NE. 0) GOTO 300

C MNAN PULATE THE VVA ARRAY IN THE FI LE TSTDTA

300 I error nessage

9-34 VMA and EMA Programming

VMAPURGE (Purge VMA Backing Store File)

The VMAPURGE subroutine can be called to purge the backing store file.
CALL VNAPURCE
VMAPURGE purges a file opened or created and opened by VMAOPEN, or a backing store file
created by the system.
If called prior to the opening of a backing store file, VMAPURGE will take no action.

VMAPURGE can be used only on an open backing store file. Once VMAPURGE has been
called after the opening of the backing store file, further VMA accesses are illegal (the program
will abort when the system attempts to access the backing store file).

Example: Purge the VMA file created by the VMAOPEN call.

$EMA (BI G 0)
PROGRAM VMT'S2
COMMON/ Bl G/ | ELEMB (65535)
CHARACTER | NAM 63
| NTEGER* 4 | ELENVB

C CREATE VMA FI LE

C MAN PULATE FI LE

CALL VNMAPURGE ' PURGE THE SCRATCH VMA FI LE
' NO FURTHER VMA ACCESSES ARE LEGAL

VMAPOST (Post Working Set to Disk)

The subroutine VMAPOST can be called at anytime to post the entire working set (the pages of
VMA data that are presently in memory) to the VMA backing store file. Note that the page table
is left unchanged (all virtual pages in memory will still be in memory). If the file is opened with
the read-only option, no posting will occur.

CALL VMAPOST

If you opened or created your own backing store file using the VMAOPEN subroutine, the
VMAPOST or VMACLOSE subroutine should be called at the end of the program to guarantee
that the virtual memory currently in memory (the working set) is posted to the disk.

VMA and EMA Programming 9-35

VMACLOSE (Close the VMA Backing Store File)

The VMACLOSE subroutine posts all pages of the working set in memory to the VMA backing
store file on disk and executes an FMPCLOSE on the VMA backing store file. If the default
VMA backing store file is opened or created on the system scratch cartridge or your working
directory, it is purged after program completion.

CALL VMACLOSE

If you opened or created your own backing store file using the VMAOPEN subroutine, the
VMAPOST or VMACLOSE subroutine should be called at the end of the program to guarantee
that the virtual memory currently in memory (the working set) is posted to the disk. If the file is
opened with the read-only option, no posting occurs.

VMACLOSE can be used only on an open backing store file. Once VMACLOSE has been called
after the opening of the backing store file, further VMA accesses are illegal and will cause the
calling program to abort.

Example: Close the VMA file opened by the VMAOPEN call.

$EMA (BI G 0)
PROGRAM VMTS3
COMMON/ Bl G/ | ELEMB (65535)
CHARACTER | NAM 63
| NTEGER*4 | ELEVB

I OPEN THE VMA FI LE
I UPDATE THE FI LE

CALL VNMACLGOSE I CLOSE THE VMA FI LE

VMAREAD (Read Data from a File into VMA/EMA)

The VMAREAD subroutine allows your program to read records from a data file into a VMA or
EMA array. This subroutine is similar to the FMPREAD call.

ilen = VMAREAD(idcb, ierr, iarray, idl)

where:
ilen is the data length read (in bytes). A one-word variable in which the actual number
of bytes read or a negative error code is returned. If more than 32767 bytes were
read, the returned length will be negative; in such cases, the error variable should
be checked.
idcb is the Data Control Block (DCB). An array of 144+n words where 7 is positive or

zero; previously specified in a create or open operation.

9-36 VMA and EMA Programming

lerr

iarray

idl

is error return. A one-word variable in which a non-zero error code is returned for
unsuccessful calls. Zero is returned for successful calls. The following values will
be returned in ierr:

0 = normal return
—243 = request parameter error
—244 = VMA/EMA mapping error
<0 = FMP error

is the data transfer destination start address in VMA/EMA. This is a two-word
variable representing the offset from the start of the buffer to be transferred. This
offset is automatically set up by the FORTRAN compiler when the call to
VMAREAD is made and the array is in the VMA/EMA area. This value must be
positive.

is the data length requested (in bytes). A one-word variable that specifies the
number of bytes to be read. If the file is not type 1, the length of the request can
not exceed the minimum of the size of MSEG and the size of the working set. This
parameter is the same as the maxlength parameter of the FMPREAD call.

Type 1 files and large MSEGs provide a very high throughput of data. If the file is not type 1 (or
opened as type 1), the length of the request cannot exceed the size of the MSEG.

Example: Read data from the file ‘FNAME’ into the EMA array of the program.

$EMA (AREA, 0)

OO0 OO0

OO0

PROGRAM VMI'S4
COWWON AREA/ | ARRAY (200, 200) !I ARRAY |'S AN EMA ARRAY
CHARACTER | NAM 63
DI MENSI ON | DCB (144)
DATA | NAM ' FNANME' /
OPEN FI LE FNAVE
FTYPE = FMPOPEN (1 DCB, | ERR | NAM’ RO)
| F (1ERR LE.0) GO TO 100
READ FROM FI LE | NTO | ARRAY
| LEN = VMAREAD(| DCB, | ERR, | ARRAY, 256)
| F (1 ERR NE.0) GO TO 100
CLOSE FILE FNAMVE

| ERR = FMPCLOSE(| DCB, | ERR)
IF (I ERR NE.O) GO TO 100

STOP

100 WRITE (1,900) IERR I ERROR HANDLER
900 FORMAT ("ERROR CODE = ", 15)

VMA and EMA Programming 9-37

VMAWRITE (Write Data from VMA/EMA to a File)

The VMAWRITE subroutine allows your program to write a record of data from a VMA or EMA
array into a data file. This subroutine is similar to the FMPWRITE call.

ilen = VNAWRI TE(idcb, ierr, iarray, idl)

where:

idcb is the Data Control Block (DCB). An array of 144+n words where # is positive or
zero; previously specified in a create or open operation.

ierr is the error return. A one-word variable in which a non-zero error code is returned
for unsuccessful calls. Zero is returned for successful calls. The following values
are returned in ierr:

0 = normal return
—243 = request parameter error
—244 = VMA/EMA mapping error
<0 = FMP error

iarray is the data transfer destination start address in VMA/EMA. This is a two-word
variable representing the offset from the start of the buffer to be transferred. This
offset is automatically set up by the FORTRAN compiler when the call to
VMAWRITE is made and the array is in the VMA/EMA area. This value must be
positive.

idl is the data length requested. A one-word variable that specifies the number of
bytes to be written. If the file is not type 1, the length of the request cannot exceed
the minimum of the size of MSEG and the size of the working set. This parameter
is the same as the maxlength parameter of the FMPWRITE call.

ilen is the number of bytes actually transferred, or a negative error code. If more than

32767 bytes are transferred, the returned length will be negative; in such cases, the
error variable should be checked.

Type 1 files and large MSEGs provide a very high throughput of data. If the file is not type 1 (or
opened as type 1), the length of the request cannot exceed the size of the MSEG.

9-38 VMA and EMA Programming

Example: Write from the VMA array, IARRAY, to the file FNAME.

$EMA (AREA)
PROGRAM VMI'S4
COVVON/ AREA/ | ARRAY (20000) !1ARRAY IS A VMA ARRAY
CHARACTER | NAM 63
DI MENSI ON | DCB (144)
DATA | NAM ' FNANE' /

C

C OPEN FILE FNAME

C
CALL FMPOPEN(I DCB, | ERR, | NAM ' RWOX' , 1)
| F (1ERR LE.0) GO TO 100

C

C WRITE VMA | ARRAY TO FILE

C
| LEN = VMAWRI TE(1 DCB, | ERR, | ARRAY, 256)
| F (1ERR NE.0) GO TO 100

C

C CLOSE FILE FNAME

C

CALL FMPCLCSE (1DCB, | ERR) ! CLOSE FILE FNAME
| F (1ERR NE.0) GO TO 100

STCOP
100 error processing

VMA and EMA Programming 9-39

Example Using VMA File Subroutines

The following example demonstrates the use of VMA file subroutines in a program. The program
uses an existing file as a backing store file and adds data from a data file to the VMA array.

$EMA (BI G, 0)

C
C
C

OO0 OO0 OO0

OO0

OO0

PROGRAM VMAEX (), Il lustrates VMA File Manipul ation

This program opens the existing file VMDATA (type 2, 1024 words
per record) as the backing store file, and allows you to
add data froma data file (type 1) to the VMA backing store file.
COVMON Bl G | ARRAY (2048) , JARRAY (2500)
DI MENSI ON | DCB (144)
CHARACTER | NAMF63, JNAMF63, | OPTN*5
DATA | NAM ' VVDATA' /, JNAM ' DATA' /

Open the backing store file in update node

| OPTN = * RWUOX
CALL VMAOPEN(I ERR, | NAM | OPTN)
IF (ERR .NE. 0) GO TO 1000

Open the data file

| OPTN = "ROS '
CALL FMPOPEN(I DCB, | ERR, JNAM | OPTN, 1)
IF (IERR .LE. 0) GO TO 1000

Read fromthe data file into the VMA array JARRAY

50 ILEN = VMAREAD (I DCB, | ERR, JARRAY, 256)
IF (IERR . EQ -12) GO TO 100 I check for end of file
IF (IERR .NE. 0) GO TO 50

Here the end of the data file was reached.
Cl ose the backing store and data files

100 CALL VMACLOSE
CALL FMPCLCSE (I DCB, | ERR)
IF (ERR .LT. 0) GO TO 1000
STOP

Error processing here

1000 WRITE (1,’ ("VMA file error ", 16)’) IERR

STOP

1200 WRITE (1, ("FMP error ", 16)") IERR

END

9-40 VMA and EMA Programming

FMGR VMA File Routines

The following VMA file routines allow your program to manipulate the backing store file. These
calls apply only for FMGR files. Note that these calls cannot be used in Large or Extended model
programs. They are provided for compatibility with existing Normal model programs only.

CREVM (Create a VMA Backing Store File)

Your program can create the backing store file with several options to be used by the virtual
memory system by calling the CREVM subroutine.

CALL CREVM name, ierr, ioptn, isc, icr)

where:
name is the file name. A three-word array containing the ASCII name of the file to be
created.
ierr is for error return. A one-word variable that contains a zero for successful calls.
ioptn specifies the file options. The file options can be set as follows:
Bit 0 = 0 name and bit 1 are ignored.
Bit 0 = 1 A non-scratch file (file name) is to be created and used as the backing
store file.
Bit 1 =1 File is to be opened if the create fails due to a duplicate file error.
Bit 2 = 1 File create is to be deferred until the working set needs to be written to
the file.
Bit 3 = 1 File extents are not to be addressed or created.
isc is the file security code.
icr is the file cartridge reference number (CRN).

When a file name is specified in the CREVM subroutine, the created file is opened for updating
and is then closed at program completion. The CREVM subroutine creates a type 2 file in
256-block increments, with record length equal to 1024 words, creating as many extents as
necessary to contain the VMA array.

If the contents of the working set is to be saved in this backing store file, use the PSTVM or
CLSVM subroutine described later in this section. If a file name is not specified (or bit 0=0), the
default VMA scratch file is created. This default file is purged at program completion only.

Normal Return: Upon normal return the ierr parameter and the A-Register are zero. However, if
the deferred create option was specified, it is possible that the file cannot be created. This error
will show up when creation of the backing store becomes necessary.

Error Returns: When an error occurs during the subroutine call, a negative error code is returned
in the ierr parameter and in the A-Register. The returned error code may be in the negative 200
range because VMA is able to access CI volume files.

VMA and EMA Programming 9-41

OPNVM (Open a VMA Backing Store File)

The OPNVM subroutine allows the program to specify the backing store file to be opened in a
variety of ways by the virtual memory system.

CALL OPNVM name, ierr, ioptn, isc, icr)

where:

name is the file name. Three-word array containing the ASCII name of the file to be
opened.

ierr is error return. A zero is returned to indicate a successful call.

ioptn specifies the file options. The file options can be set as follows:
If bit 0 = 1, the file is to be opened for non-exclusive use.
If bit 1 = 1, the file is to be opened for update (refer to the comments below).
If bit 2 = 1, the file open is to be deferred until required.
If bit 3 = 1, the file extents are not to be addressed or created.
If bit 4 = 1, the disk file is opened for read-only access.

isc is the file security code. The contents of ISC must be equal to the security code of
the file being opened, except if for read only access.

icr is the file cartridge reference number (CRN).

The backing store file opened by the OPNVM subroutine must be a type 2 file, or an error will be
returned. Files opened by OPNVM should be closed with the CLSVM subroutine. If the contents
of the working set is to be written to the file, use the PSTVM or CLSVM subroutine described
later in this chapter.

The backing store file is considered to be initialized only if opened in the update mode (bit 1 of
the IOPTN parameter set), thus allowing your program to modify existing data in the backing
store file. When this VMA array is first accessed, the corresponding data in the backing store file
is swapped into the working set. If the update bit is not set, the backing store file is considered to
contain uninitialized data. In this case, pages from the backing store file are not swapped into
memory until a page of the working set has been swapped to the disk.

Normal and Error Returns: Normal and error returns are the same as those for the CREVM
subroutine.

9-42 VMA and EMA Programming

PURVM (Purge VMA Backing Store File)

The subroutine PURVM can be called to purge the backing store file.
CALL PURVM
PURVM purges a file opened by OPNVM, a file opened or created and opened by CREVM, or a
backing store file created by the system.
If PURVM is called prior to the opening of any backing store file, the subroutine takes no action.

Once PURVM has been called after the opening of the backing store file, further VMA accesses
are illegal (the program will abort when the system attempts to access the backing store file).

PSTVM (Post Working Set to Disk)

The subroutine PSTVM can be called at anytime to post the entire working set (the pages of VMA
data that are presently in memory) to the VMA backing store file. Note that the page table is left
unchanged (all virtual pages in memory are still in memory). If the file is opened with the
read-only option, no posting occurs.

CALL PSTVM

If you opened or created your own backing store file using the OPNVM or CREVM subroutines,
the PSTVM or CLSVM subroutine should be called at the end of the program to guarantee that
the virtual memory currently in memory (the working set) is posted to the disk.

CLSVM (Close the VMA Backing Store File)

The CLSVM subroutine posts all pages of the working set in memory to the VMA backing store
file on disk and executes an FMP close on the VMA backing store file. If the default VMA
backing store file is opened or created, it is purged after program completion.

CALL CLSWM

If you opened or created your own backing store file using the OPNVM or CREVM subroutines,
the PSTVM or CLSVM subroutine should be called at the end of the program to guarantee that
the virtual memory currently in memory (the working set) is posted to the disk. If the file is
opened with the read-only option, no posting will occur.

VMA and EMA Programming 9-43

VREAD (Read Data from a File to a VMA/EMA)

The VREAD subroutine allows your program to read records from a FMGR data file into a VMA
or EMA array. This subroutine is similar to the FMGR READF call.

CALL VREAD(idch, ierr, iarray, idl[, ilen[, inum]])

where:

idch

lerr

iarray

idl

ilen

num

is the Data Control Block (DCB). An array of 144+n words where 7 is positive or
zero; previously specified in a create or open operation.

is the error return. A one-word variable in which a non-zero error code is returned
for unsuccessful calls. Zero is returned for successful calls. The following values
are returned in IERR:

0 = normal return
—243 = request parameter error
—244 = VMA/EMA mapping error
<0 = FMP error

is the data transfer destination start address in VMA/EMA. This is a two-word
variable representing the offset from the start of the buffer to be transferred. This
offset is automatically set up by the FORTRAN compiler when the call to VREAD
is made and the array is in the VMA/EMA area. This value must be positive.

is the data length requested. A one-word variable that specifies the positive
number of words to be read. If the file is not type 1 or 2, the length of the request
cannot exceed the minimum of the size of MSEG and the size of the working set.
For type 1 files only, the idl parameter is considered unsigned (no sign bit) to allow
for a maximum data length of 65535.

is the data length read. An optional one-word variable in which the actual number
of words read is returned. Set in the same manner as the len parameter in a
READF call.

is the record number. An optional one-word variable used to specify the record
number to be read (if positive) or the number of records to backspace (if negative).
Used only for type 1 or 2 files. If omitted, the record at the current position is
read. For further information on positioning with inum, refer to the READF call.

Type 1 files and large MSEGs provide a very high throughput of data. If the file is not type 1 (or
opened as type 1), the length of the request cannot exceed the size of the MSEG.

9-44 VMA and EMA Programming

VWRIT (Write Data from VMA/EMA to a File)

The VWRIT subroutine allows your program to write a record of data from a VMA or EMA array
into a FMGR data file. This subroutine is similar to the FMGR WRITF call.

CALL VI T(idcb, ierr, iarray, idl[, inum])

where:

idch

lerr

iarray

idl

num

is the Data Control Block (DCB). An array of 144+n words where # is positive or
zero; previously specified in a create or open operation.

is the error return. A one-word variable in which a non-zero error code is returned
for unsuccessful calls. Zero is returned for successful calls. The following values
are returned in ierr:

0 = normal return
—243 = request parameter error
—244 = VMA/EMA mapping error
<0 = FMP error

is the data transfer destination start address in VMA/EMA. This is a two-word
variable representing the offset from the start of the buffer to be transferred. This
offset is automatically set up by the FORTRAN compiler when the call to VWRIT
is made and the array is in the VMA/EMA area. This value must be positive.

is the data length requested. A one-word variable that specifies the positive
number of words to be read. If the file is not type 1 or 2, the length of the request
cannot exceed the minimum of the size of MSEG and the size of the working set.
This parameter is the same as the IL parameter of the WRITF call for values
greater than or equal to zero. For type 1 files only, the idl parameter is considered
unsigned (no sign bit) to allow for a maximum data length of 65535.

is the record number. An optional one-word variable word to specify the record
number to be written (if positive) or the number of records to backspace (if
negative). Used only for type 1 or 2 files. If omitted, the record at the current
position is read. For further information on positioning with inum, refer to the
WRITF call.

Type 1 files and large MSEGs provide a very high throughput of data. If the file is not type 1 (or
opened as type 1), the length of the request cannot exceed the size of the MSEG.

VMA and EMA Programming 9-45

VMA/EMA Mapping Management Subroutines

This section discusses available VMA mapping subroutines. These subroutines are used by HP
compilers to access VMA data. The VMA/EMA mapping subroutines handle the mapping of
VMA/EMA data into the program’s logical address space. FORTRAN and Pascal programs do not
need to make explicit calls to the mapping subroutines when accessing VMA/EMA data; the code
calling the mapping subroutines is emitted automatically by the compilers. However, Macro/1000
programs must make calls to the mapping subroutines when accessing VMA/EMA data.

NO TAG summarizes the VMA/EMA mapping subroutines described in this chapter. These
subroutines are in firmware on RTE-6/VM and RTE-A Systems.

As discussed previously, in order to access VMA/EMA data it must be mapped into the program’s
logical address space. The physical pages in memory containing the VMA data are mapped by the
VMA/EMA firmware routines into the two page virtual memory mapping segment (VSEG) of the
program’s logical address space. The VSEG is located in the last two pages of the user logical
map as shown in Figure 9-3. The software mapping routines use the MSEG to map data into
logical memory as shown in NO TAG.

The VMA/EMA Mapping Management Subroutines may modify the A-, B-, E-, O-, X-, and
Y-Registers because the microcode uses these registers to pass page fault information to the VMA
handler. The computer reference manual for your CPU contains details about how the registers
are used.

. VMA/EMA Mapping Management Subroutines

Subroutine Description

IMAP Resolves address of an array element with one-word integer subscripts
and maps it into logical memory.

IRES Resolves address of an array element with one-word integer subscripts
(does not map).

JMAP Resolves address of an array element with double integer subscripts and
maps it into logical memory.

JRES Resolves address of an array element with double integer subscripts
(does not map).

MMAP Maps consecutive pages of VMA/EMA into logical memory.

.ESEG Maps several pages of VMA/EMA (not necessarily contiguous) into log-
ical memory.

.LBP Converts a virtual address to a logical address.

.LBPR Converts a virtual address to a logical address.

.LPX Converts a virtual address and an offset to a logical address.

.LPXR Converts a virtual address and an offset to a logical address.

.EMIO Maps in up to MSEG size buffer that can then be used for I/O. VMAIO

and VREAD/VWRIT are the preferred routines for handling VMA/EMA 1/0.

9-46 VMA and EMA Programming

Extended
Memory Area
(EMA)

Program or

Partition

Working Set
(for VMA)

A Logical
Page 31
- =.VSEG.- -

MSEG + 1

Program

Logical
Page 0

Physical
Memory

Logical
Memory

. VMA/EMA and Memory Structure

VMA and EMA Programming

9-47

IMAP

The .IMAP subroutine resolves an address of an array element with a one-word integer subscript
in a VMA or EMA array and maps the element into logical memory. .IMAP returns the logical
address of the referenced element.

The .IMAP subroutine maps two pages of physical memory in the logical address space of the
program into the VSEG.

IMAP maps in the page containing the element and the following page, if the following page is in
the VMA or EMA. This allows for multi-word array elements. If the element is in the last page
of VMA or EMA, that physical page will be mapped through the first page of the VSEG, and the
second page of the VSEG will be set read/write protected.

The Macro/1000 calling sequence is:

EXT .1 MAP

JSB .| VAP

DEF TABLE Address of table containing array parameters.
DEF An Address of nth subscript value.

DEF An-1 Address of (n-1) subscript value.

DEF A2 Address of 2nd subscript value.

DEF Al Address of 1st subscript value.

RTN normal return

Normal Return: On a normal return, the B-Register contains the logical address of the element
referenced. The A-Register is undefined on return.

Subroutine .IMAP aborts with an error (VMS2) if the element address for an VMA or EMA
variable does not fall within the VMA/EMA bounds. Other errors which may cause the program
to abort are described in Appendix A.

Table: A table of array parameters containing the number of dimensions in the array; the number
of elements in every dimension (upper bound-lower bound + 1); and the number of words per
element.

For VMA/EMA arrays, a two-word offset value is required at the end of the table. The use of this
offset enables several arrays to be defined in the same VMA/EMA. The offset is a double
precision integer value with the high bits (bits 16-31) in offset word 1 and the low bits (bits 0-15) in
word 2.

The lower bound of each dimension of the array is zero.

The number of words per element must be between 1 and 1024.

9-48 VMA and EMA Programming

The content and structure of TABLE is as follows:

TABLE DEC Number of dimensions
DEC D(n-1) Number of elements in the (n—1) dimension.
DEC D(n-2)
DEC D(1) Number of elements in the first dimension.
DEC Number of words per element.
BSS 2 Offset word in double integer format (most
significant word first, least significant
word last).

The .IMAP subroutine assumes the array is stored in column-major order.

If the virtual address is a negative value (bit 31=1), then the lower word (bits 15-0) contains a
logical address and the B-Register will be returned by .IMAP as the logical address with
indirection resolved.

.IRES

The .IRES subroutine resolves an address of an array element with a one-word integer subscript in
a VMA or EMA array. The .IRES subroutine is similar to the IMAP subroutine except the
element is not mapped into logical memory.

The Macro/1000 calling sequence is:

EXT . I RES

JSB . I RES

DEF TABLE Address of table containing array parameters.
DEF An Address of nth subscript value.

DEF An-1 Address of (n—1) subscript value.

DEF A2 Address of 2nd subscript value.

DEF Al Address of 1st subscript value.

RTN normal return

Normal Return: On a normal return, the A- and B-Registers contain the offset of the array
element into the EMA or VMA in double integer format (most significant word in the A-Register,
least significant word in the B-Register).

The TABLE for .IRES has the same contents and structure as the TABLE for .IMAP.

Any error detected causes the program to be aborted. Possible errors are described in
Appendix A.

VMA and EMA Programming 9-49

JMAP

The .JMAP subroutine resolves an address of an array element with a double-integer subscript in
either a VMA or EMA array and maps the element into logical memory. .JMAP sets up the last
two user logical map registers (VSEG) and the B-Register to access the required array element.
The .JMAP subroutine is similar in function to the .IMAP subroutine. Any error detected causes
the program to abort. The possible errors are described in Appendix A.

The Macro/1000 calling sequence is:

EXT . JMVAP

JSB . IMAP

DEF TABLE Address of the array description table.
DEF An Address of nth subscript value.

DEF A(n-1) Address of (n—1) subscript value.
DEF Al Address of 1st subscript value.

RTN normal return

Normal Return: On a normal return, the VMA or EMA array element resides in physical
memory, the last two user map registers (VSEG) point to that element, and the B-Register
contains the logical address of the element. The A-Register is undefined on return.

The TABLE of array parameters is the same as .IMAP, except it has the following structure:

TABLE DEC Number of dimensions.
DEC D(n-1) Number of elements in (n-1) dimension (High Bits)
DEC D(n-1) Number of elements in (n-1) dimension (Low Bits)
DEC D(1) Number of elements in first dimension (High Bits)
DEC D(1) Number of elements in first dimension (Low Bits)
DEC Number of words per element.
BSS 2 Offset word in double integer format.

If the VMA array element does not exist in physical memory and the working set is full, the
VMA/EMA software is called to swap a page out of the working set and move into physical
memory the desired virtual memory page (and the following page). The data in memory can then
be managed via the VMA/EMA subroutines.

If the virtual address is a negative value (bit 31=1), then the lower word (bits 15-0) contains a
logical address and the B-Register will be returned by .JMAP as the logical address with
indirection resolved.

9-50 VMA and EMA Programming

JRES

The .JRES subroutine resolves an address of an array element with a double-integer subscript in
either a VMA or EMA array. The .JRES subroutine is similar to the .JMAP subroutine except the
element is not mapped into logical memory.

The Macro/1000 calling sequence is:

EXT .JRES

JSB . JRES

DEF TABLE Address of table containing array parameters.
DEF An Address of nth subscript value.

DEF An-1 Address of (n—1) subscript value.

DEF A2 Address of 2nd subscript value.

DEF Al Address of 1st subscript value.

RTN normal return

Normal Return: On a normal return, the A- and B-Registers contain the offset of the array
element into the VMA or EMA in double integer format (most significant bit in the A-Register,
least significant bit in the B-Register).

The TABLE for .JRES has the same contents and structure as the TABLE for .JMAP.

VMA and EMA Programming 9-51

MMAP

MMAP is a subroutine that maps a buffer in VMA/EMA into the mapping segment area of the
logical address space of a program. It is callable from both Macro/1000, FORTRAN, and
Pascal/1000 programs. MMAP starts mapping at the starting logical page of the mapping segment
area (bits 10-19 in the 36th word of the ID segment). The maximum buffer size that may be
requested with MMAP is the size of MSEG (31 minus the starting logical page of MSEG). If the
working set size is less than this value, then the working set size minus 1 becomes the maximum
buffer size that can be mapped.

MMAP will map one more page than the number of pages requested. This is done so that to map
in a buffer, you need know only the VMA/EMA page number in which the buffer starts, and the
size of the buffer rounded up to an integer number of pages. Thus, a two-page buffer starting at
any location within a page in VMA/EMA will be guaranteed to be completely mapped in by an
MMAP call specitying the starting page and NPGS value of 2.

If the extra page mapped in by MMAP is the last+1 page of VMA/EMA, then the page mapped in
is read/write protected. If the number of pages to be mapped is 0, MMAP will map in one page.

You cannot assume that previous mapped in data is still in logical memory if calls to other
mapping routines have been made after the call to MMAP.

The FORTRAN calling sequence is:
CALL MVAP(ipgs, npgs)

where:
ipgs is VMA/EMA page holding start of buffer to map (where the first page in VMA or
EMA is page 0).
npgs is the number of pages (rounded up) in buffer to be mapped.

The Macro/1000 calling sequence is:

EXT MVAP

JSB MVAP

DEF RTN

DEF | PGS

DEF NPGS
RTN return point

Upon return:

0 if normal return
—1 if an error occurred.

A-Register

9-52 VMA and EMA Programming

MMAP returns an error under any of the following conditions:

1. ipgs or npgs is negative.

2. npgs is greater than the maximum number of mappable pages (described above).
3. All npgs to be mapped do not fall within VMA/EMA bounds.

4. EMA was not declared in the calling program.

5. Last page of requested npgs is past the end of VMA/EMA.

The Pascal/1000 calling sequence (for MMAP) can be derived from the EXEC Procedure Call
Format previously described in Chapter 2.

.ESEG

The .ESEG subroutine maps several pages of VMA/EMA (not necessarily contiguous) into the
mapping segment area of the logical address space of a program.

The Macro/1000 calling sequence is:
EXT . ESEG

LDB <number> Number of map registers to modify.

JSB . ESEG
DEF *+2 Error return point (not used).
DEF PBUFR Table of pages to map.

RTN error return (Not used.)
RTN+1 normal return Normal return point.

The table of pages to map, PBUFR, is defined as follows:

PBUFR DEC <1st page> First VMA/EMA page to map.
DEC <2nd page> Second VMA/EMA page to map.

DEC <l ast page> Last page to map.

Normal Return: Upon successful return, all the VMA/EMA pages are mapped into logical
memory and the B-Register equals the logical address of the starting page of MSEG. Any error
causes the program to abort.

The maximum number of pages that can be mapped with .ESEG is MSEG size + 1.

VMA and EMA Programming 9-53

.LBP, .LBPR Subroutine

The .LBP and .LBPR subroutines convert a virtual address to a logical address mapping the word
pointed to into logical memory.

The Macro/1000 calling sequence is:

EXT .LBP EXT .LBPR
DLD pontr or JSB . LBPR
JSB . LBP DEF pontr
where:
pontr is the double-integer pointer (high word first) containing the virtual address.

Normal Return: Upon a normal return the B-Register contains the logical address, and the
A-Register contains the page number in physical memory of the data.

If the pontr is a negative value (bit 31=1), then the lower word (bits 15-0) contains a logical
address, and the B-Register is returned as this logical address with any indirection resolved.

.LPX, .LPXR Subroutine

The .LPX and .LPXR subroutines convert a virtual address plus an offset to a logical address
mapping the word pointed to into logical memory.

The Macro/1000 calling sequence is:

EXT .LPX EXT . LPXR
DLD pontr or JSB . LPXR
JSB . LPX DEF pontr
DEF ofset DEF ofset
where:
pontr is the double-integer pointer containing the virtual address.
ofset is the double-integer offset from the virtual address.

Normal Return: Upon a normal return, the B-Register contains the logical address and the
A-Register contains the page number in physical memory of the data.

If pontr + ofset is a negative value (bit 31=1), then the lower word (bits 15-0) contains a logical
address, and the B-Register is returned as this logical address with any indirection resolved.

9-54 VMA and EMA Programming

.EMIO Subroutine

The .EMIO subroutine is available for compatibility purposes with pre-RTE-6/VM EMA
programs. The preferred method of doing I/O to VMA/EMA in RTE-A is with the VMAIO or
VREAD/VWRIT routines.

Subroutine .EMIO is a subroutine used only in a VMA/EMA environment to ensure that a buffer
to be accessed is entirely within the logical address space of the program. It will call MMAP (if
appropriate) to alter the logical address space to contain the buffer, or if this is impossible it will
return with an error.

The buffer length plus the offset between the start of the buffer and its page boundary must be less
than or equal to the mapping segment size + 1 (in words). To ensure this, it is recommended that
the buffer length be less than or equal to (MSEG size) pages. If the buffer length is larger, the
VMALIO subroutine should be called to perform the I/O transfer.

Subroutine .EMIO maps the special mapping segment if necessary and returns with the logical
address of the start of the buffer in the B-Register.

The MACRO/1000 calling sequence is:

EXT .EM O

JSB .EM O

DEF RTN address for error-return

DEF BUFL number of words in the buffer

DEF TABLE table containing array parameters
DEF An subscript value for nth dimension
DEF An-1 subscript value for (n-1) dimension
DEF A2 subscript value for 2nd dimension
DEF Al subscript value for 1st dimension

RTN error return
normal return

The content and structure of TABLE is as follows:

Number of Dimensions

—L(n)
d(n—1)
—-L(n-1)
d(n-2)

—L(2)

d(1)

—L(1)

Number of words per element
Offset word 1 (bits 15-0)
Offset word 2 (bits 31-16)

VMA and EMA Programming 9-55

where:

L(i) is the lower bound of the ith dimension.
d(i) is the number of elements in the ith dimension.

Normal Return: When .EMIO makes a normal return, the B-Register contains the logical address
of the element. The contents of the A-Register is undefined.

Error Return: .EMIO makes an error return at location RTN with the A-Register containing “16”
(ASCII) and the B-Register containing “EM” (ASCII). If the relocatable subroutine ERRO is
called to handle the error, the following message is sent to LU 6:

name 16- EM @ address

where:

name is the name of the program.

address is the location from which ERRO was called.

Subroutine .EMIO makes an error return under any of the following conditions:
1. The buffer length is negative.

2. An EMA is not declared in the calling program.

3. A subscript is negative.

4. The buffer length plus the page offset of the start of the buffer is greater than the mapping
segment size+1 (in words).

9-56 VMA and EMA Programming

CDS Programming

With the VC+ Enhancement Package (HP 92078A), the RTE-A Operating System can manage
large programs. A Code and Data Separated (CDS) scheme is used to allow up to 7.9 MBytes of
program code.

CDS Programs

The source code of a large CDS program does not appear segmented. In order to create a CDS
program, this source code must be compiled or assembled with the CDS Compiler option. The
CDS compiler option signals the compiler or assembler to create CDS relocatable code which
contains separable code and data structures.

The CDS relocatable code is then linked. LINK creates a type 6 file for the program with the code
and data separated. If there is more than 32K words of code, LINK can automatically create code
segments. Data segments are always created, whether or not >32K. Procedure modules are
placed in the different code segments. Each CDS program can have up to 128 code segments and
one data segment. The maximum size of a code or data segment is 31 pages.

The code and data for a CDS program reside in different partitions. The code contains the
machine instructions that are executed by the computer; the data is the information that is acted
upon by the computer, according to the code instructions. The code does not change as the
program executes; the data does.

When the program is executed, the code segments are loaded into a code partition and the data
segment is loaded into the data partition. Two different Dynamic Mapping System (DMS) map
sets are used for CDS programs: one for the code and one for the data. The VMA/EMA area is
in the data partition, except for shareable EMA which is in its own partition.

Non-CDS programs (or programs that were compiled on other versions of RTE) can be reloaded
for RTE-A and will execute in a data partition. Programs can often be changed to run in CDS
mode without change to the source program, except the addition of the CDS compiler option.

CDS programs can be shared by several users at the same time. The code partition of a shared
program is shared, while each copy of the program has its own data partition. Programs are
specified as shared programs at link time via the LINK SP command.

CDS Programming 10-1

Code Partition

The code partition of a program is an area of memory reserved by RTE-A for the program’s code
segments. See Figure 10-1 for an illustration of a code partition. The size of the code partition is
fixed when the program is first dispatched and cannot be changed while the program is running.

The content of the code partition never changes during the execution of a program, but the data
partition does. The code that is stored in memory is identical to the disk copy from which it was
loaded. Because code partitions never change, they can be overlaid at any time and later restored
by copying from the original on the disk. Data partitions, on the other hand, are subject to
constant change during program execution, and must be saved on disk if their memory is needed
by another program.

The code partition may contain only one code segment or all of the code segments for the
program. The code partition is divided into code blocks. The size of each code block is at least
the size of the largest code segment. One code segment from the type 6 disk file executes in each
code block of the code partition. The default partition size is equal to the sum of all of the code
blocks in the program. The LINK CD command or the CI CZ command can be used to modify
the number of code blocks in the code partition. A CDS program may have more code segments
than there are code blocks in its partition.

Each code partition has one page (page 0) dedicated for use by the system. This primarily
contains information about which code segments are in memory, where they are in memory, and
which code segments are on disk and where they are on disk. Refer to the RTE-A System Design
Manual, part number 92077-90013, for a detailed discussion of the Code Partition Page 0.

If a program consists of five code segments that are 5, 5, 4, 3, and 2 pages in length, the code block
size is 5 pages, large enough to hold the longest code segment. As a result, the program partition
contains 5 code blocks of 5 pages each, plus one page of system information, or 26 pages. The
number of code blocks in the program can be set when the program is linked or after the program
is RP’d. Memory is used more efficiently if all of the segments are of roughly equal size.

If the code partition does not contain a code segment when it is needed, the segment must be
loaded from the disk. If all of the code blocks in the partition are already full, one of them is
overlaid by the segment that is loaded. For a shared program, all of the code segments must be
present in the partition at all times during program execution. (Using the LINK SP command sets
a bit in the ID segment which causes this to happen.)

At link time, you can declare any of your code segments to be memory locked. This means that
these code segments will never be overlaid by another code segment. There must be at least one
free code block for the non memory-locked segments.

Modules (for example, FORTRAN subroutines) are not permitted to cross segment boundaries.
A subroutine can call another subroutine regardless of what segment the other subroutine is in.
All parameters are passed through the stack.

The number of code blocks does not affect the logical operation of the program, but it does affect
execution speed. The more code blocks a program has (up to the number of code segments it has)
the faster it can run. This is because it is much slower to bring a code segment in from disk than to
remap a code segment already in memory. The only advantage of having fewer code blocks than
code segments is the saving of physical memory.

10-2 CDS Programming

Data Partition

All of the data that a program uses is mapped into its logical data space. In addition, any
non-CDS code that a CDS program references resides in the data partition. System common is
mapped into the data partition logical memory, but does not physically reside in the data partition.
Refer to Figure 10-1 for an illustration of a data partition.

Stack & Heap Area

The stack is that portion of the data partition used for parameter passing and procedure local
variables. A procedure local variable is one which is used only within a particular procedure and is
placed on the stack (procedure is synonymous with subroutine and function). Each time a CDS
program makes a procedure call, a stack frame is created for the procedure to hold its parameters
and variables.

The initial value of these kinds of variables is indeterminate. That is, upon entry to a procedure,
space is allocated for them on the stack, and the initial value of the stack variables is whatever
value happened to be in that location. This has implications for programmers who assume that
local variables will have the same value upon re-entry to a subroutine. Some implementations of a
language may support this and some may not.

For CDS programs, local arrays which are passed cannot exceed the stack frame address space of
1018 words. You must get these arrays out of the limited address space of the stack frame. In
Pascal, this means the arrays should be in global space, while in FORTRAN, either labeled
common or the SAVE statement will work. Also in FORTRAN, if the local array is completely
above the 1K address limit of the stack frame, the compiler will compute and pass the data relative
address to the subroutine. To do this, equivalence the data arrays in such a way that they are
preceded by 1024 words. For example:

integer fill(1024)
real dat a(2000)
equi val ence (fill(1024), data(l))

The fill array may be used for other functions as long as it is not passed into the subroutine.

The stack frame also contains links to the calling procedure. When a procedure returns to the
calling procedure, its stack frame is returned to free space and the calling procedure resumes
execution at the location following the call.

Heap space is that area of memory between the last memory location allowed for the stack and the
end of memory (or MSEG, if any). This area is accessed from Pascal as the Heap 1 area; it is
allocated by “new” statements and released by “dispose” statements. It is not recommended that
this space be accessed from FORTRAN, however, its location can be determined using the
LIMEM subroutine. FORTRAN programs that used LIMEM in earlier RTE’s will, however,
continue to work.

CDS Programming 10-3

VSEG/MSEG

Heap Area

Code Block N Stack Area

Static Data
and
Non-CDS Code

System Common
Code Block 0 (if accessed)

Code Page 0 Data Base Page

Code Partition Data Partition

Figure 10-1. A CDS Program in Logical Memory

Refer to the RTE-A System Design Manual, part number 92077-90013, for a detailed description of
the contents of the Code and Data Partition.

10-4 CDS Programming

Mixing CDS Code and Non-CDS Code

CDS and non-CDS code can be mixed in the same FORTRAN program. However, certain
restrictions apply. CDS code can call non-CDS code, but non-CDS code can never call CDS code.
Once the non-CDS code is called, it cannot call CDS code, only other non-CDS code. When the
non-CDS code completes, control returns to the CDS code.

One implication of this restriction is that programs must be converted from non-CDS to CDS in a
top-down fashion. That is, the main must be converted before any subroutines which it calls, a
subroutine must be converted before converting any subroutines which it calls, and so on.

Pascal programs must contain either all CDS or all non-CDS code.

Converting Programs to CDS

This section explains the main concerns with converting a FORTRAN or Pascal program to CDS.
In most cases, the conversion is not difficult.

General Considerations

The compiler must be given the instructions to produce CDS relocatable code. This is in the form
of the compiler option $CDS ON. Refer to the language reference manual for details.

Before starting conversion, assemble a set of test inputs and results which are known to be good
and on which the program can be run after conversion to ensure compliance.

No Automatic Conversion

Conversions do not always work automatically, even though the program is written in standard
FORTRAN or Pascal. Programmers often make use of implementation dependent features of the
machine or language which they are using. This is because standards for languages allow the
implementors of those languages to make certain decisions for themselves as to how features will
work.

The behavior of local variables must be carefully considered for conversion to CDS. Local
variables are those defined within a subroutine or function. They are not available to the main
program or other subroutines. In FORTRAN, according to the ANSI standard, upon return from
a subroutine, all the local variables become undefined unless specified in SAVE statements. When
the subroutine is entered again, the value of these local variables depends on whether the program
is CDS or not. In a non-CDS program on an HP 1000, they contain the same values that they had
when the subroutine ended. In a CDS program, they contain whatever value is left on the stack.
Also, in a CDS program, local variables are not necessarily initialized to zero, as they are in
non-CDS programs.

CDS Programming 10-5

FORTRAN Conversion

If the program to be converted relies on values being saved between invocations of subroutines, it
is safest to take precautions. The precaution to take is to put a ‘SAVE’ statement in every suspect
subroutine. This causes all the variables to be placed in static data space and means that their
values will be saved between invocations of the subroutine. This precaution has the disadvantage
of permanently allocating space for these variables; if there is not enough data space, this could be
a problem. The best solution is to ‘SAVE’ only those variables whose values are relied on to be the
same.

If the program to be converted relies on values being initialized to zero, it is best to use a DATA
statement to explicitly initialize them.

Programs that use assigned GOTO statements to enter or exit a subroutine should be changed by
replacing the GOTO statements with alternate returns from the subroutine.

If the program opens files using a DCB on the stack, it is best to explicitly set the first sixteen
words of the DCB to zero before opening the file.

If there are subroutine calls within the program that do not specify all the subroutine parameters,
the omitted variables are not initialized, so they should be explicitly set to zero.

Pascal Conversion

If the program to be converted relies on values being saved between invocations of procedures,
those variables should be made global. If the program also relies on the variables being initialized
to zero, they should be made global and explicitly initialized to zero.

10-6 CDS Programming

No More Data Space

A CDS program may have up to 31 pages available for storage of data if EMA is not used. Data
space is a limited resource for CDS programs. When a CDS program runs out of data space,
either LINK reports that there is no more memory in the data segment, or the system reports a
run-time error due to a stack overflow for the program.

Make sure that the stack overflow is not caused by a programming error, such as a runaway
recursive routine, and check that the data partition is 32 pages long, including the data base page.
If the stack overflow is caused by a programming error, correct the error and run the program
again. If the stack overflow is caused by a data partition of less than 32 pages, increase the data
space. To increase the data space, use the CI DT command documented in the RTE-A User’s
Manual, part number 92077-90002, or the LINK “SZ” or “HE” command documented in the
RTE-A LINK User’s Manual, part number 92077-90035.

If the memory or stack overflow is not eliminated, there are four strategies to eliminate it:

1. Move as much data as possible into EMA.
2. Move as much data as possible from static storage to the stack.
3. Convert non-CDS code (which resides in the data partition) to CDS code (which does not).

4. Rewrite the program so that it requires less data.

The first strategy is usually very effective in programs which have large arrays not already in EMA.
Placing arrays in EMA removes them from the logical address space and frees it up for static
variables, stack space, and so on. The disadvantage of this strategy is that there is some loss of
execution speed. The advantages are that it is effective and easy. In Pascal, using EMA requires
the Heap 2 compiler option; refer to the Pascal Reference Manual, part number 92833-90005, for
details. In FORTRAN, using EMA requires the EMA compiler option; refer to the FORTRAN 77
Reference Manual, part number 92836-90001, for details.

The second strategy can be effective on FORTRAN programs which were converted with the
SAVE compiler directive. The technique of the second strategy is to remove some of the SAVE
directives so that fewer variables are stored in the static space. The SAVE directives that are
deleted must be carefully chosen, because SAVEd variables retain their value between subroutine
calls, but local stack variables do not.

The third strategy is very effective if the source code is available to be converted to CDS. Refer to
the Converting Programs to CDS section of this chapter.

CDS Programming 10-7

Programmatic Spooling

This chapter applies only to operating systems with the VC+ Enhancement Package. Spooling
using the CI SP command is described in the RTE-A Print and Spooling Reference Manual, part
number 92077-90248.

A series of EXEC schedule calls are supported to allow a program to control or communicate with
the spool system. These calls schedule the SMP program and pass a command parameter, a spool
LU, and optionally, extra data to qualify a command. This chapter describes each call in detail.

Spooling of an LU is flagged in the system by linking a ‘spool node’ to the DVT connected to the
LU. If the LU is not assigned a DVT, the DVT for LU 0 is used. Thus, all unassigned LUs are
available as spool LUs. The ‘spool node’ contains information to show the node to which the LU
belongs. If several LUs point to the same DVT (as is the case for unassigned LUs), the system can
properly direct the current caller’s request.

The ‘spool node’ also contains a reference to the User ID entry for the user who set up the node.
Thus only programs in the requesting session will ‘see’ the ‘spool node’. When a session is moved
to the background as a result of an EX command to CI with active programs in the session, the
‘spool nodes’ move to the background session. When the session program count goes to zero, any
remaining ‘spool nodes’ are removed and the controlling program (usually SPGET) is notified.
The net effect is that an SPOF is done for each LU with a ‘spool node’ in the terminating session.

Spool System EXEC Calls

The following explains the supported EXEC schedule calls to control or communicate with the
spool system. The meanings of the return parameters are explained in the section following this.

The Start Spooling on Logical Unit and Output File to Logical Unit calls described on the
following pages allow you to supply a program name (in words 32 through 34 of CONBUF) to be
scheduled when spooling completes. This specified program is scheduled after the spool system
purges the spool file (if it is a default file) but before the spool system purges the spool file’s entry
from its control file. Since non-default spool files are not automatically output, the SPOF option
or its programmatic equivalent, would schedule the program.

SPGET (running in the system session) RP’s the program using FmpRpProgram. This means that
the program must already exist in the system session, must exist with the given name on a FMGR
cartridge, or must exist with the .RUN type extension on the /PROGRAMS directory.

Before scheduling the program, SPGET attaches to the CRT (ATCRT) of the session that set up
the spool. This LU is then available to the program for messages and error reporting on LU 1.
Because the program is RP’d using FmpRpProgram with no options, it will have the same

Programmatic Spooling 11-1

five-character name as the program and its ID segment will be released when it terminates. The
program is scheduled with queue and without wait and the 41-word spoolinfo control file record is
passed to the program as a runstring. The format of the spoolinfo record is given at the end of this
section.

The value 0 may not be passed in an LU parameter to refer to LU 0. The value —32768 may be
passed instead to refer to LU 0.
Start or Redirect Spooling on Logical Unit

To begin spooling on a logical unit or redirect spooling to another LU, use the following calls:

CALL EXEC(23, ismp, icommand, islu, opts, lud, 0, conbuf, 35)
CALL RMPAR(status)

where:

icommand equals 0.

ismp is a 3-word integer array containing the name ‘SMP’.
islu is the spool logical unit, that is, the LU the program will address.
opts is a single-word bit mask. The bits are numbered from 0 to 15 (right to left) and

are defined as follows (the options to the SP ON and LI commands that correspond
to these functions are given in parenthesis):

bit meaning when set
no carriage control (NC)

no form feed (NF)
keep control headers (KC)
purge file when done (PU)
print banner page (BP)
suspend before and after printing (SS)
6-14 reserved; set to zero
15 do not chain LU redirections (DC)

lud non-zero specifies logical unit redirection to this LU (word 0 of conbuf must also
equal zero).

DNk WNo—ROoO

conbuf is a 35-word integer array that contains spool information as follows:

Words 0-31 = the file name descriptor blank filled. If Word 0 = 0, a default
spool file is used.

Words 32-34 = the program name to schedule when spooling completes.
If Word 32 = 0, no program name is specified.
status is a 5-word integer array. Word 0 contains the spool error code. See Returned

Parameters section in this chapter for a listing of possible error codes.
You may wish to ensure that there is no I/O activity involving the LU to be spooled before issuing
these calls.

After performing these calls, use an EXEC 14 call to retrieve the name of the spool file assigned
to you. This name is needed to perform some of the other programmatic spooling calls. The
effect of these calls is the same as the CI command SPON. See the RTE-A Print and Spooling
Reference Manual, part number 92077-90248, for a description of the SP command.

11-2 Programmatic Spooling

Stop Spooling on Logical Unit
To stop spooling to an LU and begin output, use the following calls:

CALL EXEC(23, ismp, icommand, ilu[, isess])
CALL RMPAR(status)

where:

icommand equals 4.

ismp is a 3-word integer array containing the name ‘SMP’.

islu is the spool logical unit.

isess is an integer containing the session number, or zero for your session.

status is a 5-word integer array. Word 0 contains the spool error code. See Returned

Parameters section in this chapter for a listing of possible error codes.

The effect of these calls is the same as the CI command SPOF (see the RTE-A Print and Spooling
Reference Manual, part number 92077-90248).

Output File to Logical Unit

To queue a file for output to an LU, use the following calls:

CALL EXEC(23, ismp, icommand, islu, opts, 0, 0, conbuf, 37)
CALL RMPAR(status)

where:

icommand equals 11.

ismp is a 3-word integer array containing the name ‘SMP’.
islu is the spool logical unit.
opts is a single-word bit mask. The bits are numbered from 0 to 15 (right to left) and

are defined as follows (the options to the SP ON and LI commands that correspond
to these functions are given in parenthesis):

bit meaning when set
no carriage control (NC)

no form feed (NF)
keep control headers (KC)
purge file when done (PU)
print banner page (BP)
suspend before and after printing (SS)
6-14 reserved; set to zero
15 do not chain LU redirections (DC)

conbuf is a 37-word integer array that contains spool information. The contents of conbuf
are as follows:

DNk W —OoO

Words 0-31 = the file name descriptor blank filled.

Programmatic Spooling 11-3

Words 32-34

the program name to schedule when output completes. If
Word 32 = 0, no program name is specified.

Words 35-36 = the number of lines in the file.

status is a 5-word integer array. Word 0 contains spool error code. See Returned
Parameters section in this chapter for a listing of possible error codes.

The effect of these calls is the same as the CI command SPLI (see the RTE-A Print and Spooling
Reference Manual, part number 92077-90248).

Initialize the Spool System

To initialize the spool system, use the following calls:

CALL EXEC(23, ismp, icommand)
CALL RMPAR(status)

where:

icommand equals 12.
ismp is a 3-word integer array containing the name ‘SMP’.

status is a 5-word integer array. Word 0 contains the spool error code. See Returned
Parameters section in this chapter for a listing of possible error codes.

The effect of these calls is the same as the CI command SPIN (see the RTE-A Print and Spooling
Reference Manual).

Terminate the Spool System

To terminate the spool system, use the following calls:

CALL EXEC(23, ismp, icommand)| , iok])
CALL RMPAR(status)

where:

icommand equals 13.
ismp is a 3-word integer array containing the name ‘SMP’.

iok is an integer not equal to 0 if the spool system should be shut down even if spool
files are active.

status is a 5-word integer array. Word 0 contains the spool error code. See Returned
Parameters section in this chapter for a listing of possible error codes.

The effect of these calls is the same as the CI command SPQU (see the RTE-A Print and Spooling
Reference Manual). The calling program must be scheduled by a superuser.

11-4 Programmatic Spooling

Purge a Spool File

To stop a spool file’s activity and purge it if it is a default spool file, or if the PU option was
specified when the spool file was created, use the following calls:

CALL EXEC(23, ismp, icommand, islu, 0, 0, O, conbuf, 32)
CALL RMPAR(status)

where:
icommand equals 14.
ismp is a 3-word integer array containing the name ‘SMP’.
islu is the spool logical unit.

conbuf is a 32-word integer array containing spool information. The content of conbuf is
as follows:

Words 0-31 = the file name descriptor blank filled.

status is a 5-word integer array. Word 0 contains the spool error code. See Returned
Parameters section in this chapter for a listing of possible error codes.

The effect of these calls is the same as the CI command SPPU (see the RTE-A Print and Spooling
Reference Manual, part number 92077-90248).

Restart a Spool File

To stop a spool file’s activity and restart it from the start of the file, use the following calls:

CALL EXEC(23, ismp, icommand, islu, r, 0, O, conbuf, 32)
CALL RMPAR(status)

where:

icommand equals 15.

ismp is a 3-word integer array containing the name ‘SMP’.
islu is a spool logical unit.
r is a positive/negative records to restart (relative to current file position) or 0 to

restart at the start of file.
conbuf is a 32-word integer array containing spool information as follows:
Words 0-31 = the file name descriptor blank filled.

status is a 5-word integer array. Word 0 contains the spool error code. See Returned
Parameters section in this chapter for a listing of possible error codes.

These calls provide the same capability as the SBRE command (see the RTE-A Print and Spooling
Reference Manual).

Programmatic Spooling 11-5

Retrieve Spool File Status

To acquire status of a spool file, use the following calls:

CALL EXEC(23, ismp, icommand, islu, 0, 0, O, conbuf, 32)
CALL RMPAR(status)

where:

icommand equals 16.
ismp is a 3-word array containing the name ‘SMP’.
islu is a spool logical unit.

conbuf is a 32-word integer array containing spool information. The contents of conbuf are
as follows:

Words 0-31 = the file name descriptor blank filled.
status is a 5-word integer array where:

Word 0 = the spool error code (0 is normal) (See Returned Parameters section
in this chapter.)

Word 1 = bit 15 = 1 if file is OUTSPOOLXxx; otherwise 0.
bit 14 = not applicable.
bit 13 = 1 if number of pending lines is greater than 65535.
bits 12-8 = status, where: outputting
queued for outputting
active
to be purged
to be restarted
shutdown spool system
waiting on downed device

NN A W= O

bits 7-0

spooled logical unit.

Word 2 = bits 15-8 link (if queued).

bits 7-0 Session ID entry number of originating session.
Word 3 = the number of lines left in the file to output.
Word 4 = the file status, in the same format as Word 40 of the SPOOLINFO.SPL

record format defined at the end of this chapter.

The effect of these calls is the same as performing the CI command SPST for a single file; this
capability is not available in the interactive mode. See the RTE-A Print and Spooling Reference
Manual, part number 92077-90248, for a description of the CI SP command.

11-6 Programmatic Spooling

Retrieve Line Length of all Files

To retrieve the number of lines pending on a particular LU, use the following calls:

CALL EXEC(23, ismp, icommand, islu)
CALL RMPAR(status)

where:

icommand equals 17.

ismp is a 3-word integer array containing the name ‘SMP’.
islu is the spool logical unit.
status is a 5-word integer array that contains the following:
Word0 = the spool error code (0 is normal) (See Returned Parameters

section in this chapter.)

Words 1-2 the number of lines left to output queued on the spool logical unit.

This capability is not available at the interactive level.

Start/Stop Error Logging

To initiate error logging to a file or terminate error logging, use the following calls:

CALL EXEC(23, ismp, icommand, state, 0, 0, 0, conbuf, 32)
CALL RMPAR(status)

where:

icommand equals 19.
ismp is a 3-word integer array containing the name ‘SMP’.
state equals 0 to end error logging or 1 to begin error logging.

conbuf is a 32-word integer array that contains spool information. The contents of conbuf
are as follows:

Words 0-31 = the file descriptor blank filled to receive error logging. This name
must be supplied even if state = 0.

status is a 5-word integer array. Word 0 contains the spool error code. See Returned
Parameters section in this chapter for a listing of possible error codes.

The effect of this call is the same as the CI command SP,LO (see the RTE-A Print and Spooling
Reference Manual, part number 92077-90248). The calling program must have originated from a
superuser account.

Programmatic Spooling 11-7

Returned Parameters

SMP returns a status from each EXEC schedule call to indicate success or failure. This status is
accessible by a RMPAR call immediately following the EXEC schedule call. The error code may
be found in the first parameter and has the following meaning:

parameter =

OO NP W —O

37
100
101
102
103
104

No error. Logical unit/spool operation was acceptable.
Invalid parameter of the ON command.

Spool system not initialized.

SPGET is not dormant! Use OESPGET.

Internal spool file could not be RP’d!

A type 6 file could not be opened.

Too many spool files allocated already.

Can’t open/purge spool file. No action taken!

No such spool logical unit found.

Filename/logical unit already active.

Invalid parameter of the PU command.

Invalid parameter of the OF command.

Invalid parameter of the RE command.

No such file found.

Invalid parameter of the LI command.

No SAM available for spool node.

LU redirection already active on this LU.

Illegal logical unit, which includes LU 1, your session terminal LU, and
any LUs for device types 30b through 37b (disks and HP-IB bus controller).
No such spool command.

Spool system already initialized.

No class/rn number available.

SPGET must be sized larger!!

Parameter exceeds 64 characters.

Invalid parameter of the LO command.

Error logging already active.

Error logging is not active.

You must be a superuser to perform this command.

Cannot shut down spool until all spool activity stops; use “QU OK” to override.
Cannot create SPOOL directory.

Reserved

Reserved

Spool module not generated into operating system.

Spooling on LU locked to a program.

An operation is already pending on this file.

LU to be set up is locked to a program in the caller’s session.
Unknown error from the system spool set up call.

Session not found.

Attach (and the command) failed because SP exists in the target session.
Unknown/illegal command parameter.

Illegal CONBUF length.

Unable to schedule SP program.

Spool system down.

Unknown file name or logical unit.

11-8 Programmatic Spooling

SPOOLINFO.SPL Record Format

The SPOOLINFO.SPL record is passed to the program that is scheduled when spooling
completes. The program can be specified by Start Spooling on Logical Unit or Output File to
Logical Unit calls.

Word
0 64-character
: spool file name
31
32 D Status dest. LU
. session ID
33 link entry number
34
number of lines in file
35 (double integer)
36 restart line count
37
38 program name to schedule
on spool completion
39
40 spool file information
41 Owner ID
Words 0-31 = 64-character spool filename. This name is created in one of two ways:

— The user specifies it in the SPON command.

— The default file name OUTSPOOLxx is used where xx is the entry number
(record number) in the SPOOLINFO.SPL file. Note that record 1 in
SPOOLINFO.SPL is used for global spooling information, therefore, the
records for the spool files start at record 2 and go up to record n+1, where
n is the maximum number of spool files.

Word 32 = bit 15 (D-bit) = 1 if the file name is a default name (OUTSPOOLxx.SPL)

bits 14-8 = the status of the spool file where:

0 outputting

1 = queued for outputting
2 = active

3 = tobe purged

4 = to be restarted

5 = reserved

6 = waiting on down device

Programmatic Spooling 11-9

bits 7-0 = the spooled LU, that is, the LU to which the spool file will be output.

bits 15-8 = the output queue information where:

end of queue
next SPOOLINFO record in queue (only valid if status = 0 or 1)

bits 7-0 = the session ID entry number of the session (system session ID is 0).

the number of lines (records) in the file (this number refers to the

number of I/O requests made to the file).

the number of lines to restart the spool file if status = 4 (to be restarted).

program name to schedule upon spool output completion (used

by programmatic interface).

if the file was listed (LI, FILENAME).
if the NC option was specified.

if an operation is already pending on a spool file, for example,
someone did a SPPU . file. This allows the spool system to
process one command without someone entering another.

if the NF option was specified.
if the KC option was specified or this is a default spool file.
if the PU option was specified or this is a default spool file.
if the BP option was specified.

if the SS option was specified.

Word 33 =
0
nonzero
Words 34-35 =
Word 36 =
Words 37-39 =
Word 40 = file type information:
bitl5 = 1
bit1l4 = 1
bit13 = 1
bit12 = 1
bitll = 1
bit10 = 1
bit9 = 1
bit8 = 1
Word 41 = Owner ID
11-10 Programmatic Spooling

Privileged Operation

In normal operation, RTE-A protects all user programs from one another and protects the
operating system from user programs. User programs do not interfere with each other; that is,
your program cannot inhibit another user program from executing nor can it access memory
occupied by any other user program. User programs do not have the capability to interfere with
the operating system’s execution and cannot access and modify the system tables. If any user
program attempts to violate this protection, the operating system aborts the program and reports
a Memory Protect (MP) violation.

In certain unusual circumstances a very powerful user program may find it necessary to disable
RTE-A’s normal protection mechanisms in order to accomplish a particular task. Executing with
protection disabled is called privileged operation.

An example of a program that operates in privileged mode is WH, the system status utility. In
order for WH to present a consistent view of system status, it momentarily disables RTE and all
other user programs from executing and takes a snapshot of system tables. If WH executed in
normal operation mode, the system tables could change while being read by WH, which would
make the status information unreliable.

You must use the privileged operation mode with care because disabling the protection
mechanism can create problems in your system. Privileged programs that are coded improperly
can easily corrupt RTE-A and other user programs, and crash the system. Even properly coded
programs can degrade system performance seriously if RTE-A is disabled for long periods of
time.

GOPRYV and UNPRV

GOPRY disables the normal Memory Protect mechanism and allows your program to write into
protected memory areas or execute privileged instructions. Any program that modifies system
tables or alters Dynamic Mapping System registers can use this call. (DMS registers and
privileged instructions are explained in the hardware reference manuals.) Normal operation is
resumed by calling UNPRV.

When using GOPRY, you must exercise caution if your program executes I/O instructions
because your program can still be interrupted. An I/O interrupt causes the Global Register to be
enabled with the select code of the I/O card that just interrupted. Therefore, after the interrupt
is serviced, it is likely that the Global Register will be set to a different select code than the one
that the user wants. It is recommended that you use $LIBR for privileged code that executes I/O
instructions.

Privileged Operation 12-1

Calling GOPRYV does not stop RTE-A or other programs from executing. Normal system
operation is affected only if your program deliberately uses its privilege to do so. For example,
normal system operation is affected if your program alters the list of scheduled programs or
executes a halt instruction.

The privileged program is still under the control of RTE-A and, therefore, is subject to
time-slicing, swapping, and other operating system controlled operations. EXEC calls and other
system calls can be made while GOPRYV privileged operation is in effect.

A CDS program should not execute any subroutine calls while GOPRYV is in effect because
GOPRY disables the stack overflow detection feature for CDS programs. If your CDS program
calls GOPRYV and then causes a stack overflow, the error cannot be detected.

GOPRYV and UNPRYV are callable from MACRO as well as high-level languages:

from MACRO: from FORTRAN:
(non- CDS) (CDS)

JSB GOPRV PCAL GOPRV, 0, 0, 0 CALL GOPRV()
DEF *+1 . .

JSB UNPRV PCAL UNPRV, 0, 0, 0 CALL UNPRV()
DEF *+1

DispatchLock/DispatchUnlock

DispatchLock allows your program to prevent all other user programs from executing. The most
common reason for this is allocating/using an unprotected resource for which many programs
may be competing simultaneously. Such a section of code is called a critical section, which
protects a critical resource. RTE-A also provides other mechanisms, such as resource numbers,
for protecting critical resources.

A program is dispatch locked when it prevents the execution of all other programs. In RTE-A, a
program can use either .ZPRV or DispatchLock to become dispatch locked. .ZPRYV is valid only
in subroutines located in system common. Functionally, .ZPRV and DispatchLock are identical.
Chapter 8 of the RTE-A System Design Manual, part Number 92077-90013, contains a description
of .ZPRV.

Only one program at a time can be dispatch locked because after one program becomes dispatch
locked, all other programs are not eligible for execution and, therefore, cannot make
DispatchLock requests.

A dispatch locked program cannot access protected memory or execute privileged instructions.
RTE-A is not disabled and continues to control the dispatch locked program.

12-2 Priveleged Operation

Because a critical section should not be interrupted, off (OF) and suspend (SS) commands do
not immediately affect dispatch locked programs — the program is not aborted or suspended
until it becomes dispatch unlocked. Therefore, the only way to stop a dispatch locked program
that is looping infinitely is to reboot the system.

A dispatch locked program can make EXEC calls and other system calls. However, because it is
the only program RTE-A will consider for execution, a dispatch locked program can never
become suspended. If it did, there would be no program eligible for execution.

RTE-A aborts a dispatch locked program and issues an SR error if the program makes a request
that would normally cause it to become suspended. There are many causes for suspension; for
example, the program issues an EXEC 7 call, a device is down or locked, or the program
requests to wait for I/O to complete. A non-CDS dispatch locked program should not make an
EXEC 8 call and a multi-segment dispatch locked program CDS program should not execute
PCALLS because the program would be suspended waiting for an overlay or CDS segment,
respectively, to be loaded from disc.

DispatchLock and DispatchUnlock are callable from MACRO as well as high-level languages:

from Macro: from FORTRAN:
(non- CDS) (CDS)
JSB Di spat chl ock PCAL Di spatchLock, 0,0,0 Call DispatchLock()
def *+1 . .

JSB Di spat chUnl ock PCAL Di spat chUnLock, 0, 0, 0 C;al | Di spat chUnl ock()
def *+1

$SLIBR/$SLIBX

$LIBR provides the ultimate level of privilege. A program that calls SLIBR controls the system;
RTE-A, other user programs, normal I/O interrupts, and Memory Protect are all disabled.
Privileged I/O interrupts are serviced. Any TBG ticks occurring after a program calls $LIBR are
not serviced until the program calls $LIBX to terminate its privilege.

EXEC calls and other system calls cannot be made while a program controls the system because
$LIBR disables RTE-A.

When a shared subroutine in system common calls $LIBR, the subroutine is called a level 1
subroutine. Shared subroutines are discussed in chapter 8 of the RTE-A System Design Manual,
part number 92077-90013.

Privileged Operation 12-3

The calling sequence for $LIBR and $LIBX is as follows:

From Macro (CDS or non-CDS):

jsb $LIBR
dec O

j sb $LI BX

def retadr
retadr def return
return .

Guidelines for Privileged Operation

The following guidelines should be observed when privileged routines are used:

All privileged programs should be coded with care because an improperly coded program can
easily crash the system.

Because of the impact on system performance, I/O interrupts, and other programs, privileged
operation should be limited to 1 millisecond.

If you use Symbolic Debug/1000 to debug programs that contain privileged sections, setting
breakpoints or attempting to monitor program execution in the privileged section will cause
the system to crash.

If the working map is changed while in a privileged routine, it must be restored to its
previous value before entering the operating system or using FORTRAN I/O; otherwise, the
system can crash.

When using GOPRY, you must exercise caution if your program executes I/O instructions
because your program can still be interrupted. It is recommended that you use $LIBR for
privileged code that executes I/O instructions.

The system calls to invoke the various privilege levels can be nested if you observe several
restrictions. If any of the following restrictions are violated the program is aborted with an
SR (subroutine) error:

— Any privileged call can be nested with calls of the same type.

— A dispatch locked program can make EXEC, CLRQ, and LURQ calls, and call GOPRV
and $LIBR.

— After calling GOPRY, a program can make EXEC, CLRQ, and LURAQ calls, and call
DispatchLock and $LIBR.

— After calling $LIBR, a program cannot call EXEC, CLRQ, LURQ, DispatchLock, or
GOPRV.

12-4 Priveleged Operation

RTE-A Signals

Introduction to Signals

Signals are the software parallel to hardware interrupts. They provide a mechanism for the
operating system or other programs to communicate to a program. This is accomplished by
separating the program that is to receive signals into two parts: the main program and a signal
handler. Typically, the main program executes until a signal is delivered. At that time, the
operating system, or another program, calls the signal handler by using signal routines, passing it
the signal number and a block of data that is signal dependent. The handler uses this information
to determine what action to take and it informs the operating system when it completes the
action. When the signal handler was invoked, the operating system supplied it with information
about the interrupted environment of the main program. This information is used to restore the
environment of the main program and resume the main program’s execution.

If it is not possible to service a signal because the main program is in a critical region, the signal
handler can set a flag that the main program can check when it is beyond the critical region.

Available Signals

There are five signals supported in RTE-A. Three of the signals correspond to program
violations, I/O completions, and timer completions. The other two supported signals are user
definable.

NO TAG summarizes the main characteristics of each signal. Note that for each signal there is a
number, a mnemonic, and a default action. The signal number is the value passed to the signal
subroutines to represent a particular signal, while the mnemonic represents the signal within
documentation. A program may define constants with the mnemonic names whose values are the
signal numbers. The default action is the action taken when a program without a signal handler
receives a signal. With the exception of SglAlrm, data is sent along with each signal indicating
additional information about the signal.

Note that higher priority is given to signals with lower signal numbers. Thus, if signals are
blocked and a SglAlrm signal and a SglIO signal have been queued, the signal handler will
receive the SglAlrm signal first when the signals are released.

Signal Types

RTE-A Signals 13-1

Default Data Sent by the
Type Num| Mnemonic| Action Operating System Priority
Program Violation 4 SglVio Abort Violation Type High
Timer Completion 14 SglAlrm Abort None .
User Definable 16 SglUsrl Abort User Definable
User Definable 17 SglUsr2 Abort User Definable .
Class I/O Completion | 22 Sgllo Ignore I/O Request Data Low

Program Violation — SglVio

When a program has generated a violation such as a memory protect, the operating system sends
the SglVio signal to that program. The default action for this signal is to abort the program. This
means that if a SglVio is sent by the operating system to a program without a handler, the
program aborts with a message such as:

KRSTN aborted at address 3203 Reason is M Current segnment= 0
A= 40556 B= 62145 X= 71163 Y= 67556 E= 0 0= 0 W/WAP= 106002
I nstruction=102077 Z= 0 & 0 CS nmode=0OF

MP = Menory protect (I/Oinstruction or store/junp to protected nenory)

If this signal is sent by the operating system to a program with a signal handler, the handler
receives a signal number of four (SglVio) and the signal dependent data is two words containing
four ASCII characters. These characters are used to identify the type of error that occurred.
Some possible values are: MP followed by two spaces, SC04, or LUOO. Note that these are the
same abbreviations that RTE-A reports when it aborts a program that does not have a signal
handler. See the RTE-A Quick Reference Guide, part number 92077-90020, or Appendix A of this
manual for a list of possible errors. A program violation signal is delivered whenever RTE-A
attempts to abort a program that has a signal handler, except when the program is aborting
because of a parity error (PE), load error (LD), or a swap error (SW). In these cases, the
program is aborted in the same manner as if it did not have a handler.

If this signal is sent by a user program to a program with a signal handler, the handler will
receive a signal number of four and the signal dependent data will be determined by the sending
program.

If a SglVio is sent by a user program to a program without a handler, the program to which the
signal was sent aborts with an SGO07 violation:

DL aborted at address 52516 Reason is SQ@07 Current segnment= 0
A= 52506 B= 123 X= 0 Y= 357 E=0 0=0 WWAP= 106002
I nstruction=177777 Z= 0 & 0 CS nmode=0OF

SA7 = Unexpected signal received.

13-2 RTE-A Signals

Timer Completed — SglAirm

The operating system sends a SglAlrm signal when an interval timer expires. The timer intervals
are set by an application using the timer services documented later in this chapter.

The default action for this signal is to abort the program. If either the operating system or a user
program sends SglAlrm to a program that does not have a signal handler, the receiving program
is aborted with an SGO07 error, in the manner described in the discussion of SglVio. If SglAlrm is
sent to a handler, signal 14 is indicated, there is no signal dependent data sent by the operating
system.

User Definable — SglUsr1 and SglUsr2

These signals are usually used when one program wants to send a signal to another program.
The operating system does not send either SglUsr1 or SglUsr2. A typical application for SglUsr1
and SglUsr2 is program to program communication.

For example, assume the program CNSMR wants the program SERVR to retrieve information
from a database and return it to CNSMR. CNSMR and SERVR would be written with signal
handlers. When CNSMR wanted information, it would send SglUsr1 (signal number 16) to
SERVR. The signal dependent data contains a request for the information, the name of the
requesting program (CNSMR), and the requesting program’s session number. CNSMR sends its
name and session number so that SERVR knows where to send the requested data. Upon
receipt of the request, SERVR acquires the information from the database and then sends a
SglUsr1 (signal number 16) to CNSMR with the requested database information in the signal
dependent data.

The default action for this signal is to abort the program. If a user program sends SglUsr1 or
SglUsr2 to a program that does not have a handler, the receiving program is aborted with a SG07
error. The discussion of SglVio contains details of default actions.

RTE-A Signals 13-3

Class I/O Completion — SgllO

SglIO is sent by the operating system to a program when a class I/O operation initiated by a
program is complete.

The default action for this signal is to ignore it. This means that if SgIIO (signal number 22) is
sent by either the operating system or a user program to a program that does not have a handler,
no action is taken by the operating system, that is, the program is not aborted. If this signal is
sent by the operating system to a program with a signal handler, the signal dependent data
consists of six words containing information about the original class request.

The formats of the original class requests are:
For EXEC 17,18 and 20:

EXEC(ecode, cntwd, bufr, bufln, pram3, pram4, class[, uv[, keynum]])
and for EXEC 19:
EXEC(19, cntwd, praml, class| , pram2[, pram3[, pram4[, uv[, keynum]]1]11])

The following describes the six words of signal dependent data:

Word Contents Corresponds to
1 class number class parameter, the top three bits are
undefined
2 transmission log length of completed request, corresponds

to the value returned in the B-Register for
EXEC 21 (Class get)

pram3 pram3 parameter in EXEC call
4 pram4 pram4 parameter in EXEC call
request type dependent upon ecode in EXEC call:

1 if ecode was 17 (class read)

2 if ecode was 18 (class write)

3 if ecode was 19 (class control)

1 if ecode was 20 (class write/read)

In addition, the sign bit will be set if the request
is being flushed.

6 user defined value uv parameter in EXEC call

For more detail on class requests, refer to the chapter on Class I/O.

13-4 RTE-A Signals

Signal Service Subroutines

This section describes the subroutines provided for interfacing to the signal services. The use of
the signal service subroutines are demonstrated in subsequent sections that describe the signal
handler and discuss the sending and blocking of signals.

The calls are described in the format of normal subroutines, which have the advantage of being
readable. However, EXEC 37 calls may also be used. EXEC 37 calls have the advantages of
speed, reentrancy, and the no-abort and no-suspend options. Values for all of the parameters
must be present in the call. Integers are 16 bits and double integers are 32 bits.

Note that the signal service subroutines that perform equivalent EXEC 37 calls do not set the
no-abort or the no-suspend bits. The EXEC call format must be used if either of these functions
are desired.

If a signal service subroutine call or an EXEC 37 call without the no-abort bit set encounters an
error, the program receives a violation. If the no-abort bit is set and an error occurs, the
4-character error code is returned in the A- and B-Registers. If no error occurs, zero is returned
in the A-Register.

NO TAG lists the signal subroutines and the equivalent EXEC 37 calls.

A description of the signal error codes is located in Appendix A, Group III errors.

Signal Subroutines

Subroutine Equivalent EXEC 37 Call

SglHandler(handler)
SglLimit(lo,hi,rtlo,rthi)
SglKill(name,ses,sig,buf,len)

37,1,handler)
37,2,l0,hi,rtlo,rthi)

37,3,name,ses,sig,buf,len)

(
(
(
(
(
(
(
(

SglSetMask(mask) 37,4,1,mask)
SglIBlock(mask) 37,4,2,mask)
SglPause(mask) 37,4,3,mask)
SglLongJmp(env) 37,5,env)
SglSetdmp(env) 37,6,env)
SglAction(sig) none

RTE-A Signals 13-5

SglAction

SglAction, when it is passed a signal number in sig, returns an integer value signifying the action
to be taken.

action = Sgl Acti on(sig)

where:
action is an integer specifying the action to take.
sig is an integer signifying the signal number.

Usually, a signal handler cannot handle all the possible signal types it might receive. When an
unexpected signal arrives, the handler needs to know the action to take. SglAction may be called
to determine the action. If the bottom bit of the returned value is set, the meaning is that the
RTE-A operating system is capable of delivering this signal. If the top bit is set, the meaning is
that the default action is to ignore the signal, that is, simply to return to the interrupted
environment instead of aborting the program.

For example, SglAction will return with the top bit set (that is, ignore) for a class completion
signal but it would be clear (that is, abort) for a program violation signal.

There is no equivalent EXEC call for SglAction.

SgiBlock

SglBlock is a double integer function that returns the previous set of masked signals and blocks
signals in addition to the current signals.

oldmask = Sgl Bl ock(mask)

where:

oldmask is a double integer that returns the previous set of masked signals.

mask is a double integer that contains a mask of signals that are to be blocked from
delivery.

This call is equivalent to making the set of currently blocked signals equal to the existing set
logically OR’ed with Mask. See SglSetMask to set the blocked mask to Mask without OR’ing
mask with the current mask.

The equivalent EXEC call sequence is (37,4,2,mask).

Note SglVio signals should not be blocked under normal circumstances. Doing so
will cause an excessive amount of XSAM to be used for queuing SglVio signals
if RTE-A tries to abort the program.

13-6 RTE-A Signals

SglHandler

SglHandler sets the signal handler address.
CALL Sgl Handl er (handler)

where:

handler is a pointer to the handler routine.

If an error occurs, none of the signal environment is initialized.
The equivalent EXEC call sequence is (37,1,handler).

SglKill
SglKill sends a signal to a program.
CALL Sgl Ki || (name, ses, sig, buf, len)

where:
name is a three-word integer buffer that specifies the name of the program that is to
receive the signal.
ses is an integer identifying the session the program is in.
sig is an integer specifying the signal that is to be sent. If sig is zero, error checking is
performed on the other parameters. The following are valid signal numbers.
Signal Number Signal Type
4 Program Violation
14 Timer Completed
16 User Definable
17 User Definable
22 Class I/O Completion
buf is an integer buffer containing the signal dependent buffer that should be passed
to the program.
len is an integer identifying the length of the signal dependent buffer in bytes.

If sig is invalid (less than one or greater than 32), an SG02 error results.

If name and ses define a program that does not exist, an SG08 error occurs. If they point to a
program that is not part of your session and your session does not have the capability to send
signals across session boundaries, then an SGO05 error occurs.

If there is insufficient XSAM to satisfy the request, the sending program is suspended unless the
nosuspend bit was set. If this is the case, an SG04 error is returned.

If the signal buffer limit has been reached for the receiving program, the sending program will be
signal buffer limit suspended unless the nosuspend bit was set, if the nosuspend bit was set, an
SGO06 error occurs.

The equivalent EXEC call sequence is (37,3,name,ses,sig,buf,len).

RTE-A Signals 13-7

SglLimit
SglLimit sets the signal buffer limits.

CALL Sgl Li it (lo, hi, rtlo, rthi)

where:
lo is an integer specifying the lower buffer limit for the program receiving signals.
hi is an integer specifying the upper buffer limit for the program receiving signals.
rtlo is the same as lo but applies to real-time programs (priority < 40).
rthi is the same as hi but applies to real-time programs (priority < 40).

If a program calls SglKill to deliver a signal and if queuing that signal causes the total amount of
XSAM used for queuing signals for the receiving program to be greater than 4i, then all future
SglKill calls will be blocked by the signal buffer limit, suspending the sending program or
returning SGO6 errors if the nosuspend bit was set. This state remains until the total amount of
XSAM used is less than lo, then all suspended programs are resumed.

Each signal uses 2 words of XSAM for a header plus the amount of XSAM required to store the
signal dependent data. If 4i and lo are zero, buffer limits are removed and all of XSAM may be
used for signals, this should not normally be done because all of XSAM could conceivably be
used up.

If there is an error in one of the limits, such as /i < lo, for example, an SG02 error code is
returned. Note that the operating system stores the values in a compressed format. Because of
this compression, the values are rounded, the lower limit becomes lo div 16 * 16 and the upper
limit becomes (hi — lo) div 16 * 16. This may cause nonzero buffer limits to be rounded to zero.
As a result, the following conditions result in an SG02 error:

hi > 6112, or, hi — lo > 2032

The default amounts are based on the amount of XSAM in the system. These values are
approximately:

lo: 1/32 of XSAM

hi: 1/64 of XSAM + lo
rtlo: 1/8 of XSAM

rthi: 1/16 of XSAM + rtlo

The equivalent EXEC call sequence is (37,2,l0,hi,rtlo,rthi).

13-8 RTE-A Signals

SglLongJdmp
SglLongJmp jumps to supplied environment.

CALL Sgl LongJdnp(env)

where:

eny is a three-word integer array containing information set up by a SglSetJmp call or
by the operating system calling a signal handler.

SglLongJmp preserves the value of all registers except the PC-, C-, and Q-Registers.
The equivalent EXEC call sequence is (37,5,env).

SglPause

SglPause waits for a signal to be delivered to the program. SglPause returns when a signal is
delivered and the signal handler returns to the interrupted code.

CALL Sgl Pause(mask)

where:

mask is a double integer specifying the signals that should be blocked from delivery
while the program is paused.

The mask parameter allows you to unblock a set of signals and then wait for at least one of those
signals to arrive as an “atomic” operation. This means that no signals may be delivered in
between the operations of unblocking and waiting for a signal, guaranteeing that no signals will
be “missed” by the waiting operation.

When SglPause returns, the signal mask is restored to the value it had before SglPause was
called.

The equivalent EXEC call sequence is (37,4,3,mask).

RTE-A Signals 13-9

SqglSetdmp

SglSetJmp sets an environment.

rtntype = Sgl Set Inp(env)

where:
rtntype is an integer that returns 0 when SglSetJmp returns after setting an environment,
or returns the contents of the A-Register at the time that environment is jumped
to via SglLongJmp.
eny is a three-word integer array returning information about the present

environment including the PC with a CDS mode indicator, the active code
segment, and the current stack register (Q).

When a SglLongJmp is executed that jumps back to the environment saved by SglSetJmp, the
effect is as if the SglSetJmp call returns again. The contents of the A-Register at the time the
SgllongJmp is executed is returned in the rtntype variable. If the A-Register is non-zero at the
time of the SglLongJmp call, then the code following the SglSetJmp call can distinguish which
type of return is made: a return from the SglSetJmp call or from a SglLongJmp call. See the
section, “Program Example Using SglSetJmp” later in this chapter for an example.

The equivalent EXEC call sequence is (37,6,env).

SglSetMask

SglSetMask is a double integer function that blocks signals and returns the previous set of
masked signals.

oldmask = Sgl Set Mask(mask)

where:

oldmask is a double integer that returns the previous set of masked signals.

mask is a double integer that contains the mask of the signals that are to be blocked.

Unlike the SgIBlock call, which adds signals to be blocked to the current set of blocked signals,
the SglSetMask call sets the blocked signals mask to mask. That is, any signals not specified in
mask will no longer be blocked.

The equivalent EXEC call sequence is (37,4,1,mask).

Note SglVio signals should not be blocked under normal circumstances. Doing so
causes an excessive amount of XSAM to be used for queuing SglVio signals if
RTE-A tries to abort the program.

13-10 RTE-A Signals

Signal Handler

A signal handler must be a non-CDS routine written in Macro. The main program informs the
operating system of the address of a signal handler using the subroutine SglHandler or the
equivalent EXEC (37,1,handler) call. The operating system then calls the handler when a signal
is being sent to a program. The signal may be from the operating system itself or from another
program.

The handler determines what actions are to be taken depending on the signal. The handler must
also determine if the action can be taken immediately. For instance, the main program may be
in a critical region and can take delivery of the signal only when it is beyond that region. This
means the handler must set a flag that the main program can check once it is beyond the critical
region.

Buffer Descriptors

The signal handler has two buffer descriptors preceding the entry point. The first buffer
descriptor contains the description of the save area for the program’s environment at the time it
was interrupted. This allows for resumption of the program at the point of interruption. The
second buffer descriptor describes the save area for the signal dependent data.

The following is an example of the declaration of buffer descriptors:

EnvBuf equ *

PC bss 1 : Envi r onnent

Q bss 1 X

CodeSeg bss 1 ; Save Area (43 Wrds)

PTE Page bss 1 ;

Dat aMaps bss 32 X

StartPage bss 1 ;

St at us bss 1 ;

| DTenps bss 5 ;(to save the I D tenp words)
Si gBuf equ * ; Signal Buffer

Si gNum bss 1 ; Signal Nunber

Lengt h bss 1 ; Si gnal Dependent Data byte |ength
Dat a bss 6 ; Si gnal Dependent Data

; The following are the buffer descriptors.
; They nust immediately precede the signal handler’s entry point.

def EnvBuf ;pointer to environment buffer

dec 43 ;length of env buf in words

def SigBuf ;pointer to signal buffer

dec 8 ;1 ength of signal buffer in words
Handl er dst AB ; begi nning of handler...

RTE-A Signals 13-11

Environment Buffer

The environment buffer describes the interrupted environment at the time the signal is delivered
and is made up of seven parts:

1. The program counter, with the CDS indicator in the sign bit (set if CDS mode is on);
2. The Q register (the stack pointer);

The code segment number;

The physical page number of the PTE;

The program’s map set registers for the data segment;

A

The starting physical page of the data partition;

The program’s state.

The first three words of the environment buffer consisting of program counter, the stack pointer,
and the code segment are essential to allow the main program to resume execution at the point it
left off. This information is passed in an EXEC call equivalent to the SgllLongJmp subroutine
when the handler returns execution to the main program. If the extra five words (words 39
through 43) of the environment buffer are declared, RTE-A also restores the $TMP1 through
$TMPS5 words of the ID segment when the program resumes. The remaining information is not
essential and is available for the signal handler to use if desired.

Signal Buffer

The signal buffer contains the signal dependent data and consists of three parts:

1. The number of the signal that is being handled.
2. The length of the signal dependent data that could be returned, in bytes.

3. The signal dependent data.

The length in bytes of the signal dependent data that could be returned is stored in the second
word of the signal buffer. This length tells the handler how much of the signal dependent data
buffer is valid.

The length value stored here could be greater than the length of the buffer. For example,
assume the length set in the buffer descriptor is 40 bytes (20 words), and the signal wants to send
39 bytes of signal dependent data. Only the first 36 bytes of data would be in the buffer because
two words (four bytes) of the buffer are used for the signal number and the signal length. Even
though the length word in the signal buffer would still be set to 39, only as much data as was
specified in the buffer descriptor will be transferred.

13-12 RTE-A Signals

Hardware Status Saving

In addition to having the environment and signal buffer descriptors, the signal handler must save
the state of the hardware registers. This ensures that when execution returns from the handler to
the main program, the contents of the A-, B-, E-, O-, X-, and Y-Registers match the contents at
the time of interruption. Saving of the register contents is performed at the beginning of the
handler, as in the following example:

Handl er dst ABSave ; begi nni ng of handl er
; Save AB,E, O XY
era,als
soc
i na
sta EOSave
stx XSave
sty YSave ...

Reentrant Subroutines

The signal subroutines are not reentrant. The signal handler should be written in the equivalent
EXEC 37 calls instead of normal subroutines because the EXEC calls are reentrant.

Note Calling non-reentrant subroutines from a signal handler may cause loss of data
or worse. Problems can occur when the main program is executing within a
non-reentrant subroutine and it is signalled by its signal handler which invokes
the same subroutine.

RTE-A Signals 13-13

Exiting the Signal Handler

To exit the signal handler use the EXEC (37,5,env) call after restoring the program’s hardware
register status.

return |dy YSave iRestore Y
| dx XSave iRestore X
| db ECSave iRestore E & O
clo
slb,elb
sto
dsd ABSave iRestore A & B
j sb ; Long Jump
def *+4 ; back to
def =37 ; interrupted
def =5 ; environnent

def EnvBuf

The env parameter should contain the first three words of the environment buffer that was saved
when the signal handler was called, this enables the main program to resume at the point it was
interrupted. Until the handler has been exited by using the EXEC (37,5,env) call, no new signals
are given to the handler.

If a signal has interrupted an EXEC call, the EXEC call is restarted when the handler executes a
SglLongJmp. One exception to this is when a signal has interrupted a time suspend request, the
SgllongJmp subroutine causes the time suspension to be terminated. A signal is not delivered if
a program is paused, operator suspended, program wait suspended, or I/O suspended until the
program is scheduled.

13-14 RTE-A Signals

Blocking Signals

The main program must be able to continue uninterrupted in certain critical periods of
execution. To do this, the program needs the capability to block the delivery of signals.

The subroutines SglSetMask and SglBlock and their EXEC call equivalents are available to
specify which signals are to be blocked from delivery. The signals to be blocked are specified in
the mask parameter of the subroutines. Signal number i is blocked if bit i—1 is set in mask,
where the bits are numbered from 0 to 31, bit 0 being the least significant bit. The mask
parameter is stored in standard double integer format, with the first word in memory containing
the most significant bits. See NO TAG for a list of signal numbers. The following FORTRAN
statement sets the bit for signal i:

mask = ibset(mask,i—-1) (where mask has been declared as an integer*4)

SglPause can be used to unblock and wait for a signal. Previously blocked signals may be
unblocked by setting mask to zero in a SglSetMask call. The subroutine SgiBlock(mask) is used
to add signals, by using a logical OR statement, to an existing set of blocked signals.

The operating system queues the blocked signals in XSAM until the signals are unblocked. Once
unblocked, the signals are released for delivery in FIFO order according to their priority. For
example, the operating system releases all signal 4’s, then all signal 14’s and so on.

Sending Signals

There are two ways a signal can be sent to a program. First, the operating system can send a
signal to a program because an asynchronous event has occurred, and second, a program can
send a signal to itself or to another program. The following sections describe these two ways of
sending signals.

RTE-A Signals 13-15

A Simple Use of Signals

This section lists two very short programs, one with a signal handler, and one without. The
programs create an RQ violation by making an EXEC call without parameters. The comparison
of the two programs demonstrate the use of signals and the handler. The first version, rql, has
no handler.

ftn7x,q,c
program rql

C Create an RQ violation
call exec(0)

end

When the above program is executed, the following message is issued to the screen:

RQ aborted at address 2003 Reason is RQ Current segment=

A= 0 B= 55025 X= 40 VY= 55737 E=1 O= 0 WWAP= 106002
I nstruction=100700 Z= 0 @& 0 CS node=OF

RQ = Bad or too many EXEC paraneter(s)

The following example illustrates a simple but effective use of signals with a signal handler. The
signal handler code follows the discussion of the rq2 program.

ftn7x,q,c,
program rq2
inplicit none
ext ernal handl er

C Set up a signal handl er
call exec(37, 1, handl er)

C Create an RQ violation
call exec(0)

end

After rq2 sets up a signal handler and makes an EXEC call without any parameters, a SglVio
signal is sent from the operating system to rq2’s handler. When rq2 is run, the following message
is printed:

Unexpected fatal signal received
Si gnal nunber = 4.

Because the handler for rq2 is written to expect a SglUsr1 signal, the SglVio signal is unexpected.
The handler prints a message and reports that it received signal number four.

13-16 RTE-A Signals

The following typical handler is used by the rq2 program.

macro, g, c, s

nam handl er
ent handl er
ext exec, Sgl Action, Kcvt

: Pointers to the buffers for

RTE- A.

Note that these nust

; imediately precede the entry point to the handl er

def EnvBuf

abs EnvEnd- EnvBuf

def Si gBuf

abs Si gEnd- Si gBuf
handl er equ *

dst ABSave

Note that in this handler
to be saved,
only nodifies A and B).
code is |ater
era, als
socC
i na
sta
St X
sty

ECSave
XSave
YSave

Si gNum
=d16
expect ed
unexpect

; Received an expected signal
expected nop

YSave
XSave
ECSave

return |dy
| dx
| db
clo
slb,elb
sto
dl d ABSave
Exec
*+4
=d37
=db
Env Buf

jsb
def
def
def
def

; Received an unexpected signal,
unexpect jsb Sgl Action
def *+2

X, Y, E and O don’t
because they are not
This code is only here in case
added that does make use of

;Pointer to the environnment buffer
; Length of the environment buffer
;Pointer to the SDD buffer

;Length of the SDD buffer

; Signal Handl er entry point

:Save A and B

really need
used anywhere (Sgl Action

t hese registers.
; Save E & O

: Save X

; Save Y

; Get the signal nunber.
;Was it Sgl Usr1?

. Yes.

; Unexpected signal .

take care of it.

:Restore Y
:Restore X
iRestore E & O

:Restore A & B

; Long Junp

; back to

; interrupted
;environnent

find out appropriate action

RTE-A Signals 13-17

def
ssa
Jmp

def
def

sta

jsb
def
def
def
def
def

| da
cpa
rss
Jnp

dl d
dst

jsb
def
def
def
def
def

NotVio |jsb
def
def
def

Msg asc
oct
asc

Si gNum

;1f the top bit is set,

return ; ignore the signal

Kcvt ; Convert signal nunber

; Al t hough Kcvt is not
;. and execution is not

*+2
Si gNum

AscNum

Exec :Wite out error.
*+5

=d1
Msg
MsgLen

Si gNum ; Was the signal a Sgl Vi o?

=d4
Not Vi o

Si ghat a ; Yes, copy the error code

Reason ; into the nessage.

Exec ;Wite out why we were aborted.

~k+5
=d2
=d1
Msgl
MsgLen

Exec ; QUi t
*+3
=d6
=do0

17, Unexpected fatal signal received.
6412
8, Si gnal nunber =

AscNum bss 1

asc

oct
MsgLen abs
Msgl asc

1,.
6412
MsgLen- Msg
8, Type of error: ”

Reason bss 2

asc
oct
MsglLen abs

1,”.
6412
MsglLen-Msgl

13-18 RTE-A Signals

to ASCI |
reentrant,
the handler is going to term nate
going to
return to the handl er.

. Define the buffer for

EnvBuf equ *
PC bss 1
Q bss 1
CodeSeg bss 1
EnvEnd equ *
; Define the buffer
Si gBuf equ *
Si gNum bss 1
SigLen bss 1
Si gData bss 2
SigEnd equ *
ABSave Dbss 2
ECSave bss 1
XSSave bss 1
YSave bss 1
end

t he envi ronnent

to be placed in.

t he signal —dependent data (SDD).

RTE-A Signals

13-19

Signals Sent from User Program to User Program

The two programs that follow use signals for inter-process communication. The main programs
are written in FORTRAN. Each uses a signal handler written in Macro. These examples use
signal subroutines to set up, block, release, send, and wait for signals. Only the important
portions of the handlers are presented.

The program CNSMR reads data from the terminal and sends it to another program SERVR.
SERVR processes the data and returns the result to CNSMR. The data and the result are sent
from program to program within the buf parameter of either the SglKill subroutine or the
equivalent EXEC call.

Both CNSMR and SERVR programs begin by blocking SglUsr1 using SglSetMask so that at the
appropriate time, they can employ SglPause to receive the SglUsr1 signal when ready.

Next, each program employs the SglHandler subroutine to set up a signal handler, the handlers
are written to perform the default action for all signals except for SglUsr1, the expected signal.
Both handlers define the buffers for the interrupted program environments. They also define the
buffers for the signal dependent data (SDD) sent as a parameter in the SglKill subroutine along
with the signal number and buffer length.

CNSMR prompts the user to interactively enter values for the three integer variables: operand,
datal, and data2. These values become the signal dependent data carried in the buf parameter
of the SgIKill subroutine along with the name of the program SERVR and its session. The
program SERVR is the program to receive the signal and to process the signal dependent data.
After calling SglKill, CNSMR calls SglPause to unblock the SglUsr1 signal and wait to receive
the result of the processed data from SERVR.

ftn7x,q,s
program cnsnr
inmplicit none
i nteger Sgl Usrl
parameter (Sgl Usr1=16)
external handl er

i nteger*4 mask, ol dvask, Sgl Set Mask

i nteger Sgl Pause, Sgl Handl er, UsNum

| ogi cal running

integer result, MyNane, Session, operand, datal, data2, buf(7)
common /result/ result

equi val ence (buf (1), MyNane), (buf(4), Session)

equi val ence (buf(5), operand), (buf(6),datal), (buf(7),data2)

C Bl ock signal Sgl Usrl
mask = 2j ** (SglUsrl — 1)
ol dMask = Sgl Set Mask(mask)

C Set up a signal handler
if (Sgl Handl er (handler) .ne. 0) then
stop 'CNSMR Sgl Handl er failed, termnating.’
end if

13-20 RTE-A Signals

Session = UsNun()
call PNane (M/Nane)
running = . TRUE
do while (running)
wite (1,*) ">~
read (1,*) operand, datal, dataz
if (operand .eq. 0) then
runni ng = . FALSE
else if (operand .eq. -1) then
runni ng = . FALSE
call SglKill (5hSERVR, Session, Sgl Usr 1, buf, 14)

el se

call SglKill (5hSERVR, Session, Sgl Usr 1, buf, 14)
C Wait for a SglUsrl
i f (Sgl Pause(ol dvask) .ne. 0) then
stop ' CNSMR: Sgl Pause failed, termnating.’

end if
wite (1,*) "Result =", result

end if

end do

end

CNSMR waits for the result sent by SERVR in a SglUsr1 signal. The following is a segment of
CNSMR’s signal handler that will receive and handle the expected signal.

| da Si gNum ; Get the signal nunber.
cpa =d16 ;Was it Sgl Usr1?

j mp expected ;Yes.

j mp unexpect ; Unexpect ed signal .

; Received an expected signal, take care of it.
expected | da Sigbhata
sta Resul t

CNSMR’s handler defines a common area for result so the main program can access it.

result al l oc common, 1

RTE-A Signals 13-21

The program SERVR defines a common data area, SigBuf, which it shares with its signal handler
and into which is placed the signal dependent data sent in the buf parameter by CNSMR.

ftn7x,q,s
program servr
inplicit none
i nteger Sgl Usrl1, noabort
paraneter (Sgl Usr1=16, noabort=100000b)
external handl er

i nteger*4 mask, ol dvask, Sgl Set Mask
i nt eger Sgl Pause, Sgl Handl er

| ogi cal running, trySignal

integer result, a, b

character*2 aStr, bStr

equi val ence (a,aStr), (b,bStr)

i nt eger signum siglen

conmon / Si gBuf/ signum siglen

i nt eger sender(3), session

comon / Si gBuf/ sender, session

i nteger action, datal, data2

common / SigBuf/ action, datal, data2

C Bl ock signal Sgl Usrl
mask = 2j ** (SglUsrl — 1)
ol dMask = Sgl Set Mask(mask)

C Set up a signal handl er
if (Sgl Handl er (handler) .ne. 0) then
stop 'SERVR Sgl Handl er failed, term nating.’
end if

running = . TRUE
do while (running)
C Wait for a Sgl Usrl
if (Sgl Pause(ol dvask) .ne. 0) then
stop 'SERVR Sgl Pause failed, term nating.’
end if

if (SigLken .1t. 14) then
wite (1,*) 'SERVR Not enough data
el se
trySignal = . TRUE.
if (action .eq. -1) then
running = . FALSE
trySignal = .FALSE
else if (action .eq. 1) then
result = datal + data2
else if (action .eq. 2) then
result = datal — data2
else if (action .eq. 3) then
result = datal * data2

13-22 RTE-A Signals

else if (action .eq. 4) then
result = datal / data2
el se

wite (1,*) 'SERVR Bad request.’
trySignal = .FALSE
end if

if (trySignal) then
call exec
(37+noabort, 3, sender, sessi on, 16, resul t, 2, *100)

goto 200
100 call abreg(a,b)

wite (1,%*)

+ "SERVR. SglKill failed, reason = ', aStr, bStr
200 end if
end if
end do
end

After SERVR has set up a signal handler, it uses the SglPause function to unblock and wait for a
SglUsr1 signal. When its handler receives the expected signal, control passes to SERVR. Notice
that the handler does not have to take any action because the operating system has already
placed the information in the common area. More information on the common area will follow.
The following is a segment of SERVR’s signal handler that receives and handles an expected

signal.

[da Si gNum ; Get the signal nunber.
cpa =d16 ;Was it Sgl Usr1?

j mp expected ;Yes.

j mp unexpect ; Unexpect ed signal .

; Received an expected signal, SDD data already transferred, return
expected nop

SERVR’s handler also defines the buffer for the signal dependent data, compare this section to
the part of SERVR where the common variables are declared.

; Define the buffer for the signal dependent data (SDD).
Si gBuf al l oc conmon, 9

SigNum equ SigBuf+0

Si gLen equ Si gBuf +1

Sender equ Si gBuf +2 : The name of the sender,

RTE-A Signals 13-23

Session equ SigBuf+5 : their session nunber,
Action equ Si gBuf +6 ; and what to do.

Dat al equ Si gBuf +7

Dat a2 equ Si gBuf +8

Si gEnd equ Si gBuf +9

SERVR obtains the signal dependent data from the common data area and computes a result.
Then SERVR returns the result as the signal dependent data parameter in the EXEC call
equivalent to the SgIKill subroutine. SERVR uses an EXEC call so that the noabort option bit
can be set.

CNSMR prints the result to the screen and returns with the prompt. The user can enter —1 as
the operand variable (in addition to any other values for datal and data2) to stop CNSMR and
SERVR.

Program Example Using SglSetdmp

Signals can be used to develop a program that allows a series of executable steps to be attempted
until one is successful. The following FORTRAN program example, ft, and its associated signal
handler demonstrate this. The SglSetJmp subroutine is used in conjunction with the EXEC call
equivalent of the SglLongJmp subroutine.

For example, if the first program step should generate an error, such as by making an EXEC call
without parameters, a SglVio signal is sent to the program’s handler. The handler returns
control to the program to attempt the next program step.

ftn7x,q,s
program ft
inmplicit none
ext ernal handl er

i nteger Sgl SetJnp, Sgl Handl er
i nt eger env(3)
conmon /env/env

C Set up a signal handler
if (Sgl Handl er (handler) .ne. 0) then
stop ' SERVR Sgl Handler failed, term nating.’
end if

C Save the environment
if (Sgl SetJmp(env) .eq. 0) then
wite (1,*) *Trying nethod 1’
call exec(0)
wite (1,*) 'Method one succeeded
el se
wite (1,*) *Trying nethod 2’

13-24 RTE-A Signals

wite (1,*) 'Method two succeeded
end if
end

The example program begins by setting up a signal handler. The SglSetJmp function returns a
value of zero so the program proceeds to make an exec(0) call that results in the SglVio signal
being sent by the operating system.

The handler is written to expect a SglVio signal. The handler alters the contents of the
A-register so that when the program resumes execution, the SglSetJmp function appears to
return a non-zero value causing execution to resume at the else statement.

[da Si gNum ; Get the signal nunber.
cpa =d4 ;s it Sgl Vi o?

rss . Yes.

j mp unexpect ; Unexpect ed si gnal

| da Si gDat a ; RQ error?

cpa =s’' RQ

rss . Yes.

j mp unexpect

; Received an expected signal, take care of it.

expected | da =d1 ; Put a nonzero value in A so the main
; can tell that we aren’t Sgl SetJnp
j sb Exec ; Return back to the saved environnent.
def *+4
def =d37
def =d5
def Env

The handler for ft also defines env to be found in the common area.

env al |l oc commmon, 3

When the expected SglVio signal is received, the EXEC equivalent to SglLongJmp is performed
without first restoring the interrupted environment and without specifying the environment
buffer that was given to the handler when it was called. Instead, the environment buffer that was
saved by SglSetJmp is specified. This allows transfer of control to another part of the program.

RTE-A Signals 13-25

Timer Signals

The timer signal provides each program with one interval timer. This timer acts as a sort of
alarm clock which, at the end of the specified interval, notifies the program that its timer has
expired. Each individual program’s timer interval is absolute. A program’s timer is still active
when the program is in a suspended state.

Signal Handler for Timer Signals

The signal handler is the routine to which the operating system passes control when the timer
interval has expired. If no handler exists when a timer expires, the system aborts the program
with an SG07 (Unexpected Signal) error code.

Functional Characteristics

The timer signal gives the user the following functionality:

1. The ability to set a timer for a program.

2. The ability to examine the amount of time remaining for the current interval.

3. The ability to modify the timer interval of a program, that is, to reset the interval.

4. The ability to cancel the current interval before the signal handler is entered.

Using Timer Signals

The first step in using timer signals is to inform the operating system of the address of a signal
handler that is to be set up. Using EXEC (37,1,handler) or the SglHandler(handler) subroutine
establishes the handler.

Once the signal handler is set up, a timer with the desired interval can be set up using the
SetTimer subroutine. The program’s execution continues until the timer has expired, whereupon
the operating system passes control to the signal handler. The timer can be reset from the signal
handler with an EXEC 38 call.

13-26 RTE-A Signals

Timer Subroutine Calling Sequences

This section describes the interfacing routines to the timer signal. In the following section, an
integer is assumed to be 16 bits, a double integer is assumed to be 32 bits.

SetTimer

SetTimer is an integer function that establishes a new timer or resets an existing timer. SetTimer
returns zero if no error occurs, —1 if no interval is specified.

error = Set Ti mer (interval)

where:

interval ~is a double integer indicating the number of ticks between 0 and 232—1 before the
signal is generated. Each timer tick takes 10 ms. An interval of zero causes a
timer signal immediately.

A program can have only one active timer in effect at any time. The caller will be XSAM
suspended if there is insufficient XSAM to create a new timer. You can use the EXEC call
interface with the no-suspend bit set to prevent XSAM suspension.

KillTimer

KillTimer is an integer function that cancels the current timer for the calling program. It returns
zero if the timer is canceled, —1 if no timer exists for the calling program.

error = Kill Timer()

QueryTimer

QueryTimer is an integer function that returns the number of ticks remaining before a timer
signal is to be generated for the calling program. It returns zero if no error occurs, —1 if no
timer exists for the calling program.

error = QueryTi mer (ticks)
where:

ticks is a double integer that, upon return, contains the number of ticks remaining for
the calling program’s interval. Each tick has a value of 10 ms.

RTE-A Signals 13-27

EXEC 38

An EXEC 38 call sets up and modifies an interval timer for the calling program. The system
sets, resets, queries or kills an interval timer for the caller.

CALL EXEC(ecode, option, interval)

where:
ecode is 38 for all interval timer related system calls.
option is an integer variable that specifies the type of timer operation to perform. The

values of option are as follows:

0 = SetTimer/ResetTimer
This indicates that the caller wishes to set up a new timer or reset an existing
timer. If no interval timer exists when the call is made, a new interval timer
is created. Otherwise, the existing timer is reset.

1 = QueryTimer

This specifies that the caller wishes to know how many ticks remain before an
interval timer expires (if one exists).

2 = KillTimer
This specifies that the current interval timer be terminated (if one exists)
without entering the signal handler.

interval s a double integer that is set to the duration (number of ticks) of the timer in the
case of SetTimer calls. It should be set to zero for KillTimer calls. QueryTimer
calls return the number of ticks until the timer expires in this variable.

Parameter Relationships

When a SetTimer operation is performed (option = 0) and no XSAM is available, the caller is
XSAM suspended (state 63b) until enough XSAM becomes available to establish the timer. As
in all EXEC calls, the no-abort/no-suspend options are available by setting the appropriate bits
of the ecode parameter.

If no XSAM is available and the no-suspend bit was set, the call aborts with an SG04 error. If
any of the three parameters are missing (ecode, option, or interval), the call aborts with an RQ00
abort code.

A SetTimer call with a length of zero (option = 0, interval = 0), generates a timer signal instantly.
No timer is set up. Instead, the signal handler is entered immediately.

13-28 RTE-A Signals

A- and B-Registers

For successful EXEC 38 calls, the A-Register and B-Register contents are unchanged. For

unsuccessful calls, the A- and B-Registers return error information. This information is

described in the EXEC Error Processing section in the Introduction chapter in this manual.

Interval Timer Example

The following example illustrates the use of timer signals. The program prints a stream of X’s to
the terminal (LU 1) until the timer expires. Once the timer expires, a timer signal is generated
and the signal handler is entered. Here the timer is reset and the handler prints the letter 'O’ to
the screen. Below is the code for the example described above. The main routine is coded in

FORTRAN. The signal handler must be coded in Macro.
ftn7x,q,s, mt

program exanpl e

implicit integer (a-z)
external C ock

| ogical ifbrk
o Set up a signal handler for the tinmer signal. Wen a tiner
c expires, it wll enter the handler at the entry point called
c CLOCK.

call Exec (37,1, dock) I Set up a signal handler
o Set an interval timer for 100 ticks. Each tick takes 10nms so
c the interval here is 100*10nms or 1 second.

call Exec (38,0,100j) I Set a tinmer with 1 sec. delay
c At this point, the programgoes into a loop printing Xs to
c the screen until the timer expires (1 sec.) later. Once
c the timer expires, the signal handler CLOCK is entered. Here
c the timer is reset and an Ois printed to the screen

do while (.not. ifbrk())

call Exec (2,2001b, 1hX, -1) ! Print a streamof X's

end do

end
*
* This section starts the Signal Handl er used by the above
* FORTRAN exanpl e program

RTE-A Signals 13-29

macro, g, c, s

nam cl ock
ent cl ock
ext Exec
EnvBuf equ * ; Place to save environnment while in signal
PC bss 1 : handl er
Q bss 1
CodeSeg bss 1

SigNum bss 3

def EnvBuf
dec 3
def SigNum
dec 3

*

* Enter here when timer expires.

*

d ock dst ABSave :Save A, B, EfL O X Y
era,als
soc
i na
sta EQCSave
stx XSave
sty YSave

[da Si gNum ; Make sure its a tinmer signa
cpa =di14 ;1 f timer,
rss ; dooit.

hit 77b ; Gener at es unexpected signal

j sb Exec ; Reset the tinmer for 1 sec.
def *+4

def =d38

def =dO

def dd100

j sb Exec ;Print out an 'O to the screen
def *+5

def =d2

def =b2001

def MsG

13-30 RTE-A Signals

dd100

M5G

ABSave
ECSave
XSave
YSave

def

| dx
| dy
| db
clo
sl b,
sto
did

jsb
def
def
def
def

dec
dec
asc

bss
bss
bss
bss

end

=d1

XSave ;Restore the registers before returning

YSave
ECSave

elb

ABSave

Exec ; Long Junp back to the main program

*+4
=d37
=d5
EnvBuf

0 ; doubl e integer value of 100
100
1,0

PR RPN

RTE-A Signals

13-31

Programmatic
Environment Variable Access

Environment variables allow programs within a session to share variables with CI and other
programs. Setting environment variables from CI is described in detail in the RTE-A User’s
Manual, part number 92077-90002. This chapter describes how these environment variables can
be accessed programmatically with an EXEC 39 call. Refer to the RTE-A User’s Manual for a list
and definition of predefined environment variables.

EXEC 39 Call

User programs can access individual environment (exported) variables by name by issuing an
EXEC 39 call. The following are the four subfunction codes (the second parameter of the
EXEC 39) and are described in the following sections:

code =1 Get the value of an environment variable.
code = 2 Set an environment variable to a given value.
code = 3 Delete an environment variable.

code =4 Retrieve the modification count.

Environment variable names are described using FORTRAN string descriptors in parameters
name and value in the EXEC 39 call. The variable name starts at the first byte and ends at the
character before the first space, the thirty-second character, or the length given in the string
descriptor, whichever comes first. For the name parameter, a zero-length string descriptor or a
name that starts with a space causes an EV02 error (illegal parameter value). When used as a
name, the entire string descriptor may not be used.

Programmatic Environment Variable Access 14-1

Getting the Value of a Variable

An EXEC 39 call with the second parameter equal to 1 retrieves the value of an environment
variable that has been set by a previous EXEC 39 call (see the Setting a Variable section) or by the
SET command from CIL.

CALL EXEC(39, 1, name, value)

where:
name is a FORTRAN string descriptor that specifies the name of the variable to be re-
trieved.
value is a FORTRAN string descriptor that receives the blank-filled value of the named
variable.
Returns:

A-Register = status information; see the A-Register Return section at the end of this chapter.

B-Register = if the call was successful, the actual length, in characters, of value is returned.
Otherwise, it equals zero.

Setting a Variable

An EXEC 39 call with the second parameter equal to 2 sets an environment variable to a given
value.

CALL EXEC(39, 2, name, value)

where:
name is a FORTRAN string descriptor that specifies the name of the variable to be de-
fined.
value is a FORTRAN string descriptor that specifies the value that should be assigned to
the named variable.
Returns:

A-Register = status information; see the A-Register Return section at the end of this chapter.

B-Register = undefined.

Caution CI also stores aliases and functions in the Environment Variable Block (EVB).
The aliases and functions are distinguished from environment variables by a ‘7’
after the alias or function name. Using an EXEC 39 call to set a variable name
that has a colon in the name, produces unpredictable results in CI.

14-2 Programmatic Environment Variable Access

Deleting a Variable

An EXEC 39 call with the second parameter equal to 3 deletes an environment variable that has
been set by a previous EXEC 39 call (see the Setting a Variable section) or by the SET command
from CIL

CALL EXEC(39, 3, name)

where:
name is a FORTRAN string descriptor that specifies the name of the variable to be
deleted.
Returns:

A-Register = status information; see the A-Register Return section at the end of this chapter.

B-Register = undefined.

Retrieving the Modification Count

An EXEC 39 call with the second parameter equal to 4 returns the modification count in the
B-Register.

CALL EXEC(39, 4)

Returns:

A-Register = status information; see the A-Register Return section at the end of this chapter.

B-Register = the modification count.

The modification count is incremented when a program begins to write into the environment
variable block and again when it finishes. This is useful for a program that keeps track of the
values of a large number of environment variables. The program would get the modification count
before it gets the value of an environment variable and then can get the modification count again
later to see if any values have changed. If the value of the modification count is different, one or
more variables have been changed and/or deleted. The program should then retrieve values again
for all environment variables of interest.

An even modification count indicates a stable environment. If the modification count is odd, this
indicates that the environment variable block has been locked (via the resource number) by a
program in order to change it.

Programmatic Environment Variable Access 14-3

A-Register Return

After an EXEC 39 call, the A-Register contains status information. The possible values of the
A-Register and their definitions are:

0 Operation successful.

1 Operation successful except that the buffer for value provided by the calling
program was not large enough to hold the entire value of the environment variable.
The B-Register contains the length of the actual value of the environment variable
that resides in the environment variable block.

2 Named variable not found.
Session does not contain an environment variable block.

4 There is no space left in the environment variable block to store the variable. If
EXEC(39, 2, ...) is called to set an environment variable and this error occurs, the
variable retains its prior value.

2hEV An EXEC error has occurred. The remainder of the error code is in the
B-Register.

2hOP %ENVRN is not generated into the system. The B-Register contains 2h39.

There are five possible EXEC errors:
OP39 9%ENVRN is not generated into the system.

EVO00 Invalid environment variable block.
EVO01 Incorrect number of parameters.
EV02 Illegal parameter value.

EV04 Environment variable block is busy (no-suspend bit set).

These errors can be trapped by the calling program by setting the no-abort bit. The alternate
return from EXEC will be taken and the A- and B-Registers will contain the first two and last two
ASCII characters of the EXEC error code respectively.

If a program is already accessing the environment variable block when an EXEC 39 call is made by
a second program, the second program will be resource number suspended. When the first
program finishes accessing the environment variable block, the second program will be scheduled
again. To avoid being suspended, both the no-suspend and no-abort bits in the ecode parameter
should be set. This causes the alternate return to be taken if the program would normally have
been suspended. In this case, the A- and B-Registers contain the error code EV04.

14-4 Programmatic Environment Variable Access

EVB Blocks and Programmatic Sessions

Environment Variable Blocks can also be made available to programmatic sessions. Programs

requiring an EVB must indicate this to LOGON. This is done by setting the sign bit of the session

number that is passed to CLGON.

For example, in the code:

error
error

Get SN(SesNum)
cl gon(buffer, Buf Len, SesNum err or)

you could either do:
error = clgon(buffer, Buf Len, 100000b+SesNum err or)
or

sgnses = 100000b+SesNum
error = clgon(buffer, BufLen, Sgnses, error)
The user in buf f er would be logged on with an EVB assigned to the session.

For more information on the CLGON utility, refer to the RTE-A * RTE-6/VM Relocatable
Libraries Reference Manual, part number 92077-90037.

Programmatic Environment Variable Access

14-5

Error Messages

This appendix contains EXEC call, operating system, and FMP error codes. For language or
subsystem error codes, refer to the manual for that language or subsystem.

When the system discovers an Executive (EXEC) error, it normally terminates the program,
releases system resources assigned to the program, issues an error message to the system console
and to the error log file if used, then proceeds to execute the next program in the scheduled list.

The user may specify the no-abort bit for some EXEC error conditions. See the parameter ecode
in an EXEC request description for a detailed discussion of this option.

The error messages described below are those that may occur while accessing the Executive.
They are grouped according to type.

The format of an EXEC error message is as follows:

PROG aborted at address 26606 Reason is RQ Current segnment= 0
A=100700 B= 0 X= 0 Y= 0 E= 1 O 0 WWAP=106002
Instruction=177777 = 0 Z= 0 CS node=CF

RQ = bad or too many EXEC paraneters

This error message gives the program name, location, reason the program aborted, and contents
of the program registers.

Group I error messages are errors returned by an operator command or MESSS call. These
errors are described in the RTE-A User’s Manual, part number 92077-90002.

Note: Displayed values of X, Y, Z, and Q-Registers and CS-Mode for LD, SW, and parity errors
are not valid.

Group Il Errors

Group II errors are not affected by the no-abort bit in the ecode parameter in EXEC calls.

An EXEC request that has an illegal request code or that has more than eight parameters is
rejected. The message:

PROG aborted at address 26606 Reason is RQ Current segnent= 0
A= 3 B= 1401 X= 0 Y= 0 E= 1 0= 0 WVAP= 102100
Instruction=177777 Z= 0 & 0 CS node=0CF

RQ = bad or too many EXEC paraneters

This error message gives the program name, location, reason the program aborted, and contents
of the program registers.

Error Messages A-1

An RQ error also can occur if the no-abort is not set and a program issues an REIO or XREIO
request to a disk LU without specifying the track and sector parameters.

If an instruction in a user program is executed which the computer does not recognize, the
program is aborted, and an error message in the above format is printed on the user terminal.
The error message is in the format shown above, except for the reason code and text:

U uninmplenmented instruction in user area

The execution of an unimplemented instruction is most commonly caused by one of the following
problems:

1. The program was coded for an HP 1000 computer with a greater instruction set. (Many of
these instructions can be simulated by software subroutine calls as described in the
Macro/1000 Reference Manual, part number 92059-90001.)

2. The program has a logic error causing it to execute data.

If a disk read or write request fails repeatedly (5 times consecutively) on a program load or swap,
the program is aborted and the message: (in the format shown under RQ, with the following
reason code and text)

LD disk tried five times to load program/segment and failed
or
SW disk tried five times to swap program and failed

is displayed on the user terminal. LD indicates that the program load (possibly a segment load
or swap in) failed. SW indicates that the program swap out failed.

Memory Protect Violations
The operating system is protected by a hardware memory protect. Any instruction that attempts
to modify memory on a write-protected page, is rejected.

This causes a memory protect interrupt and the program is aborted and the following message is
displayed on the system console.

PETST aborted at address 26606 Reason is MP Current segnment = 0

A= 3 B= 1401 X= 0 Y= 0 E= 1 0= 0 WVAP= 102100
Instruction=177777 Z= 0 & 0 CS node=0OF
where:
VP = memory protect error; I/O instruction or store/jump to protected memory
address = the offending program counter value
segnment = the number of the most recently loaded segment, or zero for non-segmented
programs.

A memory protect abort also occurs when a program attempts to execute a privileged instruction
(STC, HLT, OTA, etc.) without calling $LIBR first.

Attempting to cross store (JSB or .XSA) before calling $LIBR also results in a memory protect
abort. The routine IXPUT calls $LIBR before performing its cross store, so you do need not to
call $LIBR before using IXPUT.

A-2 Error Messages

SR Errors

In this section, the following definitions apply:

A Level 1 ($LIBR) routine operates with the interrupt and memory protect system off and is
generally used to modify the operating system tables. (Modifying the operating system is not
recommended.) A level 1 routine is sometimes called a privileged routine. Normally, execution
time should be limited to a few milliseconds.

A Level 2 routine calls the routine .ZPRV or DispatchLock to keep other programs from calling
the routine while it is executing. A level 2 routine is sometimes called a privileged routine.
Normally execution time should be limited to a few milliseconds.

A Level 3 routine calls .ZRNT to keep other programs from interfering with the routines
execution. A level 3 is sometimes called a re-entrant routine. It must be coded in assembly
language as a type 6 module. One copy of the routine may be placed in system common (when
the system is generated) to be shared by all the programs in the system. Level 3 routines cannot
be called from CDS code.

A Level 4 routine is not shareable, and must be appended to each program that calls it. A level 4
routine may be coded in assembly language, FORTRAN, or Pascal as a type 7 module. A level 4
routine is sometimes called a utility routine. Main programs are also considered to be level 4.

The following list shows system subroutine levels; level 4 subroutines are not listed.

Subroutine Level Subroutine Level
CLRQ 3 IXPUT 1
CNUMD 2 KCVT 2
CNUMO 2 LIMEM 1
DTACH 2 LURQ 3
EQTRQ 1 PARSE 2
EXEC 3 PRTM 1
IDCLR 1 PRTN 1
INPRS 2 RNRQ 3
IPUT 1 SAVST 1
IXGET 1 TMVAL 1

If a program attempts to call a routine that is on a higher numbered level than the currently
executing routine, the program is aborted (exception: level 1 routines may call level 2 routines)
and the following message is displayed:

PROG aborted at address 26606 Reason is SR Current segment= 0
A= 3 B= 1401 X= 0 Y= 0 E= 1 0= 0 WWAP= 102100
I nstruction=177777 Z= 0 @& 0 CS npde=0OF

SR = privileged subroutine call error

Incorrect coding of shareable subroutines can also cause this error.

An SR error also occurs if a level 1 or 2 CDS routine causes a code segment fault while it is
privileged.

Error Messages A-3

Dispatching Errors

Two errors can occur when you load a program into memory in order to run it. The system
aborts the program and prints one of the following error messages to the scheduling terminal.

SC09 Program too large to fit in largest usable block of dynamic memory ever available.

EM90 Shareable EMA size for program is larger than the shareable EMA area that has
already been allocated.

The second message indicates that another program using the same shareable EMA has already
run and that the shareable EMA was allocated according to its size need. To avoid this problem,
specify the same EMA size to all programs using the same shareable EMA area, either to LINK
or by operator command.

Group Ill Errors

Errors in this group are affected by the no-abort (NA) bit in the EXEC request that caused the
error as follows:

1. NA bit clear: the program is aborted. The following message is printed on the invoking
terminal:

PROG aborted at address 26606 Reason is RNO2 Current segnent= 0
A= 3 B= 1401 X= 0 Y= 0 E= 1 0= 0 WWVAP=102100
Instruction=177777 Z= 0 & 0 CS node=0CF

RNO2 = undefined resource nunber

2. NA bit set: The program is not aborted. A four-character ASCII message is returned in the
A- and B-Registers. The first two characters will be in the A-Register and the second two in
the B-Register. The possible error message is shown in the pages following. The return
address to the program is specified in the word following the JSB EXEC. (If no error occurs,
the return address is one greater than the address specified in the call.) No message is
displayed on the console. In FORTRAN the modified error return is handled as described in
the EXEC Call Error Returns section in Chapter 1.

The following lists relate errors to the program calls that may cause them.

Error Meaning EXEC Calls
SC01 Not enough parameters for EXEC schedule call 11,14
SC02 Illegal parameter value in EXEC schedule call 12,14
SC03 SECURITY VIOLATION detected:
Insufficient capability to schedule program 9,10,12,23,24
or
Attempted to access an LU that is not in the 1,2,3,17,18,19
session LU access table 20

A-4 Error Messages

Error Meaning EXEC Calls

SC04 Illegal buffer or not a son in EXEC schedule call. 6,8,9,10,11,
12,14,23,24

SCO05 EXEC schedule call; program PROGA not found. 8,9,10,12,
23,24

SC06 Overlay attempted from a CDS program. 8

SC09 Program is too large to fit in memory.

SC10 Not enough SAM to pass string parameter. 9,10,14,23,24

SC15 Not enough memory (SAM) to pass string. 9,10,14,23,24

(No-suspend bit set)

The following messages apply to all programs:

Error Meaning Call
RNOO No option bits set in call; RNRQ
RNO02 Undefined resource number RNRQ
RNO03 Can not clear RN not locked to a program or RNRQ
invalid RN.
LUO02 Illegal logical unit: LURQ
CLO1 Illegal class number or no class table CLRQ
CL02 Illegal class number or no class table CLRQ

CDS (Code and Data Separation) errors:

Error Meaning
CS00 CDS software not installed.
CS01 Segment load requested by instruction in data segment.

CS02 CST index out of bounds.

CS03 Invalid SST entry.

CS04 Too many indirects.

CS05 CDS program is corrupt, internal error found.

CS06 Stack overflow. Link program with more stack space.

Environment Variable Block Errors: The following errors can be caused by EXEC 39 calls which
are discussed in Chapter 14:

Error Meaning

EV00 Invalid environment variable block.

EV01 Incorrect number of parameters.

EV02 Illegal parameter value.

EV04 Environment variable block is busy (no-suspend bit set).

Error Messages A-5

Signal Errors: The following errors are used for signals which are discussed in Chapter 13:

Error Meaning

SGO1 Illegal number of parameters on an EXEC call.
SG02 Illegal parameter on an EXEC call.

SGO03 Cannot use SglPause while in handler.

SG04 Not enough XSAM at this time. May occur when calling
SglHandler.

SGO05 Not enough capability to deliver the signal when using SglKill.
SG06 Buffer limit suspended when using SglKill.

Error Meaning

SG07 Unexpected signal received.
SGO08 No such program as identified by a call to SglKill.

SG09 Illegal buffer descriptors when the operating system attempted to
deliver a signal. Not possible to trap with no-abort.

Option Errors

Depending on the installation and application, the operating system can be generated with a
number of optional modules. These modules enable certain EXEC calls to become executable.
If the system returns a no EXEC capability regenerate RTE-A with the specified module. Refer
to the RTE-A System Design Manual, part number 92077-90013, for details on the specified
module.

Requests to these optional EXEC calls which have not been included in the system will result in
an error message of the following form:

No EXEC nn capability
where:

nn is the number of the EXEC called.

These errors can be trapped by the program by setting the no-abort bit in the ECODE parameter
of the EXEC call. If the no-abort bit is set, the error will be returned to the program, instead of
causing the program to be aborted.

A-6 Error Messages

1/O Errors

The errors below cause the program to be aborted unless the no-abort option was used in the

EXEC call.
1000

1001

1002
1004

1007

1010

1011

1012

1013
1014

Illegal EXEC call Class Number. Either the user has not yet received a valid class
number by setting the CLASS parameter to zero or the class number was passed to
another program, and the passer has been aborted, or the system has no Class Table.

Not enough parameters in EXEC call, I/O call, or illegal access to the disk, or illegal
disk subfunction specified for a non-disk device.

Illegal logical unit or Class call to disk in EXEC call or illegal class request to disk.

Illegal buffer address in EXEC I/O call. If the buffer address and its length are either
above or below the program area then the address is an illegal address. This error
also occurs if the Class request is for more memory than will ever be available in
SAM.

The Z-bit in a rethread request does not match the Z-bit setting in the original
request.

The rethread buffer length is greater than the buffer length in the original request.
This applies to the Z-buffer length as well.

No rethread buffers exist when the rethread request was made. The class defined by
the parameter OCLAS was not valid.

Driver has rejected EXEC call. The driver was requested to perform an action on a
device that was incorrect for the device or driver.

Illegal Class Get; two gets by two programs at once. This condition can happen when
two different programs both attempt a Class Get on the same class number at the
same time. The first request is satisfied while the second is aborted.

Attempt to input from spooled logical unit. While spooling, a program made an
EXEC 1, 17, 20, or 3 (with a subfunction of 6; that is, a dynamic status request)
request to the spooled device.

I/O request denied; session user has attempted to access an LU that is not listed in
the session user’s LU access table defined by GRUMP.

LU is locked.
LU is down.

Error Messages A-7

Group 1V Halt Errors

Halt (HLT) instructions indicate a serious violation of the integrity of the operating system.
Sometimes they indicate that the CPU has failed. However, they could indicate that user-written
software (driver, privileged subroutine, etc.) has damaged the operating system integrity or has
inadequately performed required (driver) system housekeeping. If these halts occur, check out
your hardware and software with the appropriate diagnostics.

When a halt is executed, the Virtual Control Panel (VCP) is invoked. It displays the message:

PXXXXXX AXXXXXX BXXXXXX MKXxxxXx T1020nn

where nn is the halt number.

The following HLTs may occur:

HLT 0

HLT 1

HLT 2

HLT 3

HLT 4

HLT 5

HLT 26

HLT 27

HLT 42

Either BOOTEX has not initialized the system or else there are more than 8 pages of
OS/Driver partition space. You should run BOOTEX to initialize the system
properly or else decrease the size of the OS/Driver partition space.

The system has not been initialized by the BOOTEX program.

A privileged routine has executed location 2. This may occur if data is executed or a
link is set to zero.

A Group II or III error has occurred when no program was executing, or when
executing location 5 (parity error handling) when a parity error has not occurred.

A CPU power failure has occurred and the power fail driver was not included in the
system.

If the CPU is an A400, A600, A600+ or A700, a CPU parity error has occurred in the
system, system common areas of memory, or unused partition. If the CPU is an A900
or A990, any parity error causes a HLT 5. If the parity error handling module
(PERR) was not specified at generation time, any parity error will cause a HLT 5.
The B-Register will contain the page number, and the A-Register will contain the
parity error location.

BOOTEX cannot boot the system. This may be caused by a missing system or snap
file. The halt message will most likely be preceded by a message that gives more
information.

Memory management or program management tables have been corrupted, and the
system cannot continue. The system must be rebooted.

An internal error occurred when a port map for a driver was being allocated or
deallocated. The system must be rebooted.

A-8 Error Messages

Group V Interrupt Errors

When an interrupt occurs on a channel for which there is no driver, the interrupt flag is cleared,
and the message is displayed (xx is the select code):

Illegal interrupt from SCxx

This message is reported when an interrupt occurs from a select code which is not in RTEs table
of select codes that are supposed to interrupt. This usually indicates that there was a generation
error in select code specification.

At generation time, a program can be set up to handle an interrupt directly. Whenever the
interrupt occurs, RTTOA attempts to schedule the program. If the program is already busy, the
message:

Unabl e to schedul e program PROGN on interrupt to driver

is reported. This indicates the RTEs interrupt table specifies a program to run on interrupt but
that program was not dormant when the interrupt came in.

Error Messages A-9

Group VI Device Driver Errors

The following I/O errors can occur when a particular device driver detects an error condition.
The format of the error message is:

I /O Device Error on LU xx error_description

where:

XX = the logical unit number

error_description = one of the following:

I/ O request error

Devi ce not ready

Devi ce tined out

End of tape detected
Transm ssion error

Device is wite protected
Addr essing error

Serial poll error

G oup poll error

Drive fault

Dat a communi cati on error
Device information specified at generation tine is wong

Special Driver Defined Error =yy
where yy is driver specific. This error is reported when the system does not
recognize the error reported by the driver. Refer to the section for your
driver in the RTE-A Driver Reference Manual, part number 92077-90011, for
specific error information.

Request has been fl ushed
Reported in addition to the above messages when the offending I/O request
will not be retried.

Group VIl Parity Errors

If a CPU parity error occurs in the mapped part of memory (in a partition not in the system
common nor in the system area), the system will abort the program that encountered the parity
error and issue the following message:

Parity Error occurred at physical page 132 page address 63
Pages actually marked bad (downed) = 2
PE = Parity Error in User code or data space

If a parity error occurs in the system or common area or out of a user partition which has I/O
outputting from it, or if the parity error handling module (PERR) was not specified when the
system was generated, a HLT 5 will occur with B = bad page and A = location of the PE on the
bad page.

A-10 Error Messages

Group VIII VMA/EMA Errors

There are several types of VMA/EMA errors. In the first category are run-time errors generated
by a VMA/EMA subroutine/microcode call which always result in a program abort. In the
second category are run-time errors generated by a VMA/EMA subroutine/microcode call which
will always return to the user with some kind of error indicator. In a third category are run-time
errors which are no-abort-bit sensitive; VMAIO is the only VMA/EMA routine of this type.
Finally, there are dispatching errors (EM90, EM91) that can occur when the dispatcher is
attempting to run a program that uses shareable EMA.

VMA/EMA errors that cause the program to abort have the same format as the MP error and
look like:

VIMKX or EMx

where:

XX is an FMP error number (if xx is less than 80). FMP reports the error as a negative
number and VMA/EMA reports the last two digits of that number.

It is possible that VMA/EMA will report different FMP errors by the same
VMA/EMA error; for example, either FMP—006 (No such file) or FMP—206
(Directory read protected) is reported as VM06. The VMxx error reported depends
on the context. Examine the current status of the system to determine which of the
several possible FMP errors may have been reported.

VMO1 Disk error.
VMO02 Duplicate file name.

VMO05 Backing store file created with less than 256 blocks of memory or file extent cannot
be created when read only access has been specified to the VMA file. X-register
equals the requested page ID that caused the problem.

VMO06 File not found or directory read protected.

VMO7 Illegal security code or illegal write on LU 2 or 3 or directory write protected.
VMO8 File open or cartridge containing file is locked.

VM09 No such directory (FMP-209).

VM12 File extent cannot be created when read only access has been specified to the VMA
file. X-Register equals requested page that caused problem.

VM13 Specified cartridge is locked.
VM14 Directory full.
VM15 Illegal file name.

VM19 Illegal access on a system disk.

Error Messages A-11

VM20
VM21
VM22
VM32
VM33
VM46
VMS80

VMS1

VMS2

VMS3

VM84

VM85

VMS86

VMB87

VMS88

VM89
VMO0

VM1

A-12

An array is specified with incorrect subscripts.

MSEG in the SEMA or $VMA directive is not specified correctly.
The program is not an VMA/EMA program.

Cartridge not found.

Not enough room on cartridge.

Greater than 255 file extents on the VMA file.

VMA system is corrupt. Self checks on the data structure did not pass a sanity check,
therefore the system aborted. Probable cause is by a program exceeding a
non-VMA/EMA array boundary.

Program is not a VMA program. Relink the program using the LINK VM command.

The requested page is beyond the maximum page specified for VMA or the disk file
is not big enough. A VMA array boundary has been exceeded in your program. The
X-reg is requested page number (in octal), Y-reg is logical address to map in the
requested page, abort address is address of the instruction causing the problem,
where first page of VMA/EMA is page 0.

All pages locked. This will occur when your working set is not large enough to
support the size of MSEG that you require in your program. Increase your working
set size with the operator WS command.

File type not = 2 or record length not = 1024 words. The file specified in the
OPNVM or CREVM call was not type 2 with record length = 1024 words.

Scratch file cannot be purged. This error should occur only when the scratch file to
be used by VMA is in use by another program. See the system manager to correct
the program.

Access to VMA system after the VMA file has been closed. Revise program to not
access the VMA area after a CLSVM or PURVM call has been made.

MSEG is too small. This is an error from the .ESEG routine when the number of
map registers specified is too large for the MSEG in the program space or the
number of pages specified to be mapped was zero. The program must be revised to
use less MSEG area or make the MSEG bigger.

Cannot respecify the VMA file. Revise the program to call the OPNVM or CREVM
routine no more than one time, if the first time was successful.

Transfer too large for VMAIO.

Shareable EMA size for program is larger than the shareable EMA area already
allocated.

Program and shareable VMA/EMA area are assigned to the same partition; or, a
program is assigned to a reserved partition in which the program’s VMA/EMA area
has already been allocated.

Error Messages

VM92
EMS80

EMS&1

EMS2

EMS&7

EMS&9
EM90

EM91

EM92

VMA or VMALIO not available.

EMA system is corrupt. Self checks on the data structure did not pass a sanity check,
therefore the system aborted. Probable cause is by a program exceeding a non-EMA
array boundary.

This program is not an EMA program. Link the program again using the LINK EM
command.

The requested page is beyond the maximum page specified for the EMA system. An
EMA array boundary has been exceeded. Probable bug in your program. The X-reg
= requested page number (in octal), Y-reg = logical address to map in the requested
page, abort address = address of the instruction causing the program, where first
page of VMA/EMA is page 0.

MSEG is too small. This is an error from the .ESEG routine when the number of
map registers specified is too large for the MSEG in the program space or the
number of pages specified to be mapped was zero. The program must be revised to
use less MSEG area or make the MSEG bigger.

Transfer too large for VMAIO.

Shareable EMA size for program is larger than the shareable EMA area that has
already been allocated. This is an error detected on an attempt by the dispatcher to
run the program; some other program using the same shareable EMA area has
already been run, and the shareable area was allocated according to its size need. On
detection, the program is made dormant and the error message given.

Program and shareable EMA area are assigned to same partition or program is
assigned to a reserved partition in which program’s shareable EMA area has already
been allocated.

EMA not available.

Error Messages A-13

FMP Error Codes

—-001

—-002

-003

—-004

—005

—006

—-007

—-008

—-009

-010

-011

-012

A-14

Disk error!

The disk is down; try again and then report it to the system manager of facility.

File already exists

A file already exists with specified name; repeat with new name or purge existing file.
Backspace illegal

Attempt was made to backspace a device (or type 0 file) that cannot be backspaced,
check device type.

Record size illegal
Attempt to create a type 2 file with a zero record length.
Bad record length

Attempt to read or position to a record not written, or on update to write an illegal
record length; check position or size parameters.

No such file
Attempt to access a file that cannot be found. Check the file name or cartridge number.
Incorrect security code

Attempt to access a file without the correct security code. Use the correct code or do not
access file.

File is already open

Attempt to open file already open exclusively or open to eight programs or cartridge
containing file is locked; use CL or DL to locate lock.

Must not be a device

Type 0 files cannot be positioned or be forced to type 1; check file type.
Not enough parameters

Required parameters omitted from call; enter the parameters.

DCB is not open

Attempt to access an unopened DCB. Check error code on open attempt.
lllegal file position

Attempt to read or write or position beyond the file boundaries; check record position
parameters, result depends on file type & call.

Error Messages

—013 Disk is locked
Cartridge is locked; initialize cartridge if not initialized, otherwise, keep trying.
—014 Directory is full

No more room in file directory; purge files and pack directory if possible, or try another
cartridge.

—015 lllegal name
File name does not conform to syntax rules; correct name.
—016 Size = 0 or illegal type O file access

Wrong type code supplied; attempt to create or purge type 0 file or create O-length file;
check size and type parameters.

—017 Device I/O failed

Attempt to read/write or position type 0 file that does not support the operation; check
file parameters, namr.

—018 lllegal LU.
Attempt to access an undefined LU.
—030 Value too large for parameter
Value is greater than legal maximum.
—032 No such cartridge
Specified cartridge is not mounted. Check disk specification in call.
—033 Ran out of disk space

Disk specified for a disk file has insufficient room for file create. Could occur during a
WRITF if an extent is being created.

—034 Disk is already mounted

Disk is mounted as an FMGR or hierarchical volume.
—035 Already 63 disks mounted to system

Only 63 disk LUs may by mounted at one time.
—036 Lock error on device

A call to OPEN or OPENF specified exclusive use of a device which was already locked
or no resource numbers were available. Try again or request nonexclusive use.

—037 Program is active
A request to purge an active type 6 file was requested by PURGE. The program must be

offed before the file can be purged. The swap file cannot be purged if swapping is
enabled.

Error Messages A-15

—-038

—-046

-049

-050

—-051

—-053

—-054

—055

—-056

—-057

A-16

lllegal scratch file number
The legal range of scratch file numbers is 0-99. Check your program.
More than 255 extents

An attempt to create more than 255 extents was made. Use a file with a larger initial
size.

Copy verify failed

The verify option of the COPYF routine detected a discrepancy while verifying a transfer
of data. Check the file for correctness.

No files found

A “=" was specified in a namr, but there were no files matching the mask. Check the
mask for correctness.

Directory is empty

The specified directory contains no files.

Program assigned to bad partition

The program (for non-CDS programs) or the data partition (for CDS programs) is
assigned to a reserved partition which is “bad” due to a parity error in the partition or a
reserved partition which is undefined. Use the AS command to re-assign the program (or
the AS command with the “D” option to re-assign the data partition) to a good partition.
Partition too small for program

The program (for non-CDS programs) or the data partition (for CDS programs) is
assigned to a reserved partition which is not large enough to hold the program or data
partition. The program or data partition must be assigned to a larger reserved partition
or dynamic memory.

No room in shareable EMA table

Insufficient free XSAM exists to create SHEMA table entry.

SHEMA assigned to non-existent partition

The shareable EMA area used by the program is assigned to a reserved partition which
was not defined (by the AS or RV command) at system bootup time. The program must
be reloaded to change the shareable EMA assign number or the system must be rebooted
to define the partition. (Remember that the first program RP’d that uses a shareable
EMA area determines where it is allocated. Perhaps another program that uses the
shareable EMA area could be RP’d first.)

Partition too small for shareable EMA

The shareable EMA area used by the program is assigned to a reserved partition which is

not large enough to hold it. If all the programs that access the shareable EMA area do
not specify the same shareable EMA size, this error could result.

Error Messages

—-058

-059

—-060

—-063

—-064

—-068

—-099

-101

-102

-103

Program assigned to SHEMA partition

The program (for non-CDS programs) or data partition of the program (for CDS
programs) is assigned to the same reserved partition as the shareable EMA area the
program accesses. Both must be in memory for the program to run, so one must be
re-assigned to a different reserved partition or dynamic memory. This error could result
if the first program that uses that shareable EMA area assigns it to a reserved partition in
which a second program that accesses it is assigned to run.

Already 255 programs using SHEMA area

There are already 255 programs RP’d that access the shareable EMA area specified by
the program.

Code & data assigned to same partition

Both the code partition and the data partition are assigned to the same reserved
partition. They must be in distinct partitions. This error applies only to operating
systems with VC+ Enhancement Package.

Code assigned to non-existent partition

The code partition of the program is assigned to a reserved partition which is “bad” due
to a parity error in the partition or a reserved partition which is undefined. Use the AS
command with the “C” option to re-assign the code partition to a good partition or
dynamic memory.

Partition too small for code segment

The program’s code partition is assigned to a reserved partition which is not large enough
to hold it. The code partition must be assigned to a larger reserved partition or dynamic
memory.

Code assigned to shareable EMA partition

The program’s code partition is assigned to the same reserved partition as the shareable
EMA area the program accesses. Both must be in memory for the program to run, so
one must be re-assigned to a different reserved partition or dynamic memory. This error
could result if the first program that uses that shareable EMA area assigns the area to a
reserved partition in which the code partition of a second program that accesses it is
assigned to run.

D.RTR EXEC request aborted

D.RTR has tried something unreasonable, probably because the cartridge list has been
corrupted.

lllegal parameter in D.RTR call

Possible operator error; recheck previous entries for illegal or misplaced parameters.
D.RTR not available

D.RTR is not RP’d or has been offed; system should be rebooted.

Directory is corrupt

During a directory lock done by MC, DC, IN, PK, CR, or PU, the directory is scanned for
internal consistency. If this occurs, copy the files to another disk, or just store the ones
you need.

Error Messages A-17

-104

-105

-108

-200

—201

—-202

—-203

—-204

—205

—-206

—-207

—-208

A-18

Missing extent

A request was made for a file extent which was missing from the file. The file is probably
corrupt. Purge the file.

D.RTR must be sized up

D.RTR uses free space for open flags and global directories, and must be sized up when
loaded.

lllegal number of sectors/track

The disk LU being mounted has a defined number of sectors per track greater than 128.
No working directory

Returned by FmpWorkingDir when there is no working directory established, and by
Z?;?;tes .other calls when a file name is specified with no directory but no working directory

Directory not empty

Directories can only be purged when they are empty. To purge the directory, purge the
remaining files (use a wildcard purge).

Did not ask to read

This file is read-protected. Specify the R option in the open request.

Did not ask to write

This file is write-protected. Specify the W option in the open request.

File read protected

This file is read-protected or is a write-only device. Change the protection on the file.
File write protected

This file is write-protected or is a read-only device. Either the file has write protection
set (in which case you should change the protection on the file), or it has a positive
security code which needs to be specified correctly in the open call.

Directory read protected

One of the directories needed to access the file is read-protected. Change its protection.

Directory write protected

The directory containing the file is write-protected, so you cannot change its properties,
purge it, or rename it.

Duplicate directory name

That name already being used. Be sure the directory is being created where you expect it
to be.

Error Messages

-209

-210

-211

-212

-213

-214

-215

—-216

-217

—-218

No such directory

One directory needed to find the file does not exist. Its name may be misspelled, or the
working directory may be wrong.

Unpurge failed

Disk space or a directory entry occupied by the purged file has been reclaimed, so the file
cannot be unpurged. Not repairable.

Directories not on same LU

Rename operations do not move data, and data must be on the same LU as the directory,
so rename operations can only rename a file into a directory on the same LU as it was
originally.

Cannot change that property

Rename operations cannot change whether the file is a directory, nor can they change the
file type, size, or record length.

Too many open files

D.RTR has no room to record the open flag for this file. Close some files or dismount a
volume for temporary relief; a long-term solution is to size D.RTR larger, open fewer
files, or have fewer global directories.

Disk not mounted

The indicated volume was not mounted, so it cannot be dismounted and directories
cannot be created on it.

Too many directories

D.RTR has no room to record this global directory; this error can occur on mount or
directory create. Close some files or dismount a volume for temporary relief; a
long-term solution is to size D.RTR larger, open fewer files, or have fewer global
directories. Perhaps some global directories can be renamed as subdirectories.

You do not own

Only the file owner can change its protection information, and only the directory owner
can change the file owner. Superusers do not get this error; become a superuser to avoid
this problem.

Bad directory block

Tag fields in the directory do not match, indicating a corrupt disk or working directory
pointer. Change working directories. If that fails, investigate the situation with the file
system status utility.

Must specify an LU

FmpCreateDir could not determine where to create this directory. Either supply an LU,
or set the working directory to a directory on the LU where the new directory is to be
created.

Error Messages A-19

-219

—-220

—-221

—222

—-223

—224

—-225

—226

—-227

—228

—-229

-230

A-20

No remote access

The passed name or DCB indicates that this file is located on a (possibly) remote system,
so it must be routed through the DS transparency software before it is usable.

DSRTR not available

The DS transparency source monitor is not RP’d, so DS transparency does not work. RP
DSRTR.

Files are open on LU

This LU cannot be dismounted because one or more files are open. The name of the first
open file is printed by D.RTR.

LU has old directory

This LU has an old directory, and FmpMount was not told to re-initialize old directories.
lllegal DCB buffer size

DCB buffer sizes must be in the range one to 127 blocks, except for type zero and one
files, which ignore the size. This error is also returned by routines such as FmpCopy
when the passed buffer is too small.

No free ID segments

Cannot restore the program, due to lack of ID segments. Remove programs that are no
longer needed.

Program is busy

FmpRunProgram reports that the program named in the XQ command is busy.
Program aborted

The program was OF’d or aborted before it ran to completion.

Program doesn’t fit in partition (SC08/09)

The program is too big for available memory or the partition to which it is assigned.
Unassign the program or assign it to a bigger partition.

No SAM to pass string (SC10)

The system does not have enough SAM to pass runstrings. Rebooting may help if SAM is
fragmented, or you may need to regenerate the system to allocate more SAM.

Active working directory
Tried to purge a working directory or dismount a disk containing a working directory.
lllegal use of directory

A directory was used illegally (e.g., to create a file).

Error Messages

—-231

—-232

—-233

—234

—-235

—-236

—-237

—-238

-239

—-240

-241

String is too long

A string longer than 256 bytes was passed to FmpReadString or FmpWriteString.
Unknown for FMGR file

Requested unavailable information (e.g., time stamp) about an old file.
No such user

User name not found by FmpSetOwner.

Size mismatch on copy

Source and destination file sizes for FmpCopy are incompatible.
Break flag detected

An FMP routine detected a break sent by the BR command.

You are not a superuser

Normal user used a command reserved for the superuser.

Must not be remote

A file was specified with a remote system name or account in a situation where such
names are illegal. This error is reported even if the node specifies (or defaults to) the
local system.

lllegal program file
The file named is illegal because:
— It is not a program file.

— It accesses system entry points outside the table in % VCTR and is being RP’d to a
system other than the one for which it is linked.

— It was linked with an incompatible version of % VCTR.
Program name exists

Cannot RP program with that name because another program already has it. OF the old
program with the ID parameter, or choose another name for the new program.

Changed RPL checksum

The program file was linked with a snap file that specified different microcoded
instructions (RPLs), or the same instructions in a different order. If the program uses
nonexistent instructions, it aborts with the message UI (unimplemented instruction), and
the program file changes to prevent this error from being reported again on the current
system. (This change to the program file does not solve the problem, but the program
may work anyway.)

Can only run unshared

Shared program cannot be run because there is no room in the shared program table.
Use LINK to make the program unshared, OF programs to make room in the shared
table, or regenerate the system with more shared program entries.

Error Messages A-21

—-242

—-243

—244

—245

—246

—-247

—248

—-249

-250

—251

—252

—-253

A-22

Disk /O failed

D.RTR got an EXEC error when attempting to access a disk LU.
Parameter error

An actual parameter has an unreasonable value.

Mapping error

An error occurred while a VMA file routine was mapping VMA.
System can’t do CDS

Tried to RP a CDS program on a non-CDS system.

System common changed

Tried to RP a program that defines system common differently than it is defined on the
current system.

UDSP not defined
The UDSP is not defined because of one the following reasons:
— None of the entries in the UDSP have been defined.
— The requested UDSP number and entry has not been defined.
— The given UDSP number and entry is beyond the bounds defined for the account.
Invalid directory address found
UDSP tables are corrupt.
SECURITY VIOLATION detected

The Security/1000 subsystem has detected an attempt by the user or program to perform
a function for which the user or program has insufficient capability.

D.ERR not available

The system program D.ERR, which is used to generate FMP error messages, cannot be
scheduled because D.ERR was not RP’d or it was OF’d. You should RP D.ERR.

Program name exists in another session

An attempt has been made to RP a program in the system session while a program of the
same name is already RP’d in another session.

Disk LU is down
D.RTR tried to access a disk LU that is down.
Disk LU is locked

D.RTR tried to access a disk LU that is locked to another program.

Error Messages

—254 No such group
Group name not found by FmpSetOwner.
—255 User is not in group
The user is not in the group specified as the user group parameter for FmpSetOwner.
—256 No such session
From FmpRpProgram.
—257 No such program
From FmpRpProgram.
—258 No SAM for Proto ID
Not enough SAM/XSAM to create a proto ID segment. Rebooting may help if
SAM/XSAM is fragmented, or you may need to regenerate the system to allocate more
SAM/XSAM.

—260 Too many symbolic links in path

D.RTR traversed more than 8 symbolic links. This is probably a closed symbolic link
loop.

—261 Symbolic link results in illegal path

Symbolic link interpretation yields a path name greater than 63 characters. Symbolic
links that contain relative path names can be changed to absolute paths.

—262 Symbolic link must not be remote
An attempt was made to access a symbolic link on a remote system and the remote
symbolic link referred to a remote file. Create a symbolic link on the local system that
refers to the destination of the remote symbolic link being accessed.

—263 System does not support symbolic links
An attempt was made to create a symbolic link on a system that does not support
symbolic links. A CDS version of D.RTR is required and programs accessing symbolic
links must be linked with either $SSFMP or $SCDS.

—264 lllegal file type

An attempt was made to access a type 12 file from a program or system that does not
support type 12 files. The program must be linked with the SUFMP or $UCDS library.

—270 Update time already current

From FmpCopy.

Error Messages A-23

The following error codes reflect errors in DS transparency software.

—300 lllegal remote access

Usually means an internal error. Either an invalid connection number was specified, or
an invalid request was routed to the DS transparency software.

—301 Too many remote connections

No more than 64 files can be open at remote systems at any one time. Each open file
requires a connection. You can reclaim connections by closing files.

—302 No such node

The local system does not know anything about the node number or the name specified.
It may not be in the NRV.

—303 Too many sessions

Cannot log on the remote system because too many other sessions are already logged on.
—304 No such account

No user has that name.
—305 Incorrect password

The correct password was not supplied.
—306 Can’t access account

A logon error occurred that was not one of the above three.
—307 Transfer is too long

A request was made to DSRTR to transfer more than 1024 words.
—308 Connection broken

The remote system monitor TRFAS was restarted since the connection was open.

A-24 Error Messages

The following errors are reported by DS software; see the DS manuals for more details.

—310 DS is not initialized [DS00]

DS has not been started with DINIT
—311 DS link is not connected [DS01]

Hardware problem.
—312 Remote system doesn’t respond [DS05]

Other system is probably down, or not running DS.
—313 No TRFAS at remote system [DS06]

Remote monitor TRFAS is not RP’d at remote system.
—315 DS error DSXX(X), node YY

Something happened not included in the above. The DS error code is reported.

FMP Errors 401 — 410 are related to native language support utilities. If your system does not
have the native language support utilities, the following errors may still occur if the message
catalog file on the system for a utility is not of the same revision as the utility itself.

—401 Message number not found in catalog

—402 Message too big for message buffer

Error Messages A-25

Converting FMGR File Calls

This appendix describes a step-by-step procedure to convert FMGR calls to FMP calls. FMGR
calls are equivalent to the FMP calls of other RTE operating systems. The conversion
procedures have been written to assist in converting programs that may be unfamiliar to the user.

General Considerations

File system calls usually make up a small percentage of a program, so the conversion effort is
minimal since in most cases the program logic should not have to be changed.

Many of the FMGR calls will still work although it is recommended that programs be converted
to allow full usage of the enhancements available with the FMP calls.

Programs that are to be transportable to other RTE operating systems should follow a different
approach that is discussed later in this chapter.

Note The FMP calls do not have optional parameters. All parameters in the FMP
calls must be supplied.

File and Directory Names

File and directory names can contain up to 63 characters, allowing for a full name including all
directories and the ASCII versions of type, size, and so on. For example:

/ POPULATI ON/ CI TI ES/ CALI FORNI A/ SANJCSE. TXT: : : 4: 24 (48 characters)

File names should be stored in 32-word character buffers if they are supplied as input to the
program. This ensures consistency between programs. Because names are passed as character
strings, it is possible to use a smaller buffer for file names that are embedded in the program.
FMP calls work with unparsed names, so the 32-word buffer replaces the 10-word namr used by
FMGR.

Converting FMGR File Calls B -1

Global directory names contain up to 16 characters, and can be stored in 8-word character
buffers. A subdirectory is treated as part of the file name by the supplied parsing routines. The
global directory name can be specified as a prefix, as in the following example:

SOURCE/ CMDS: : USER: 3 or / USER/ SOURCE/ CVDS: : : 3

Constructs such as /FILE::DIR produce undefined results.

The directory name can appear in either of two places: to the left of any subdirectories or after
two colons to the right of the file name. Use the following conventions to determine where to
print the directory name:

e If no subdirectories are specified, print the directory name after the two colons, as in
GRIDLOCK.RUN::PROGRAMS.

e If one or more subdirectories are specified, print the directory name as a prefix to the
subdirectory name, as in /FAMILY/GENUS/SPECIES. TXT.

It is recommended to use file names in FMP calls after the file is opened because many of the
FMP calls work with file names. File names are also useful in reporting errors.

Namr Calls and Strings

Namr calls that parse file names must be replaced, but be careful not to change namr calls used
for different purposes. Namr calls that are used only to set up calls to Open, Create, and Purge
can be removed, as the new equivalents of these calls do not require parsed file names. Calls
that break apart file names for purposes of examining individual components can be replaced
with a call to FmpParseName in most cases. FmpParseName does not indicate what type the
subfields were and does not parse up to a comma the way that Namr does.

FmpParseName does not completely replace Namr. Other useful routines include: SplitString,
which divides a character string at a blank or comma, and DecimalTolnt, which converts a
character string to a single integer. Fparm does runstring parsing, returning the file names in a
runstring as separated character variables. (Fparm is not available to Pascal users.) These
routines can be found in the RTE-A « RTE-6/VM Relocatable Libraries Reference Manual, part
number 92077-90037.

B-2 Converting FMGR File Calls

Examples:

Here is an example of code that opens two files whose names are passed in the runstring:

call getst(buffer,-80,!Ien)

start =1

if (nanr(pbuf, buffer,len,start) .It. 0) goto 900
typel = open(dcbl, err, pbuf, 0, pbuf (5), pbuf(6))

if (err .It. 0) goto 920

i f (nanr(pbuf, buffer,len,start) .I1t. 0) goto 900
type2 = open(dcb2, err, pbuf, 0, pbuf (5), pbuf(6))

if (err .1t. 0) goto 920

This can be replaced by:
filel =" ~
filea ="~
call fparnm(filel, file2)
if (filel .eq. * ' .or. file2 .eq’ ') goto 900

typel = fnpopen(dcbl,err,filel,’ro’ ,1)
if (err .It. 0) goto 920
type2 = fnpopen(dcb2,err,file2,’ro’,1)
if (err .1t. 0) goto 920

Note that Namr was not used.

The next example shows a sequence without character strings. It illustrates constructing string
descriptors, which are the double integer (integer*4) variables in the following example. The
function STRDSC takes parameters of buffer, starting character, and number of characters, and
returns a string descriptor. Here it is used to create string descriptors for the file name and
option strings (a constant ‘ROS’):

i nteger*4 strdsc,string,filel, file2, options

call getst(buffer,—-80,1en)

string=strdsc(buffer,1,Ien)

filel=strdsc(bufferl, 1, 64)

file2=strdsc(buffer2,1, 64)

call splitstring(string,filel,string)

call splitstring(string,file2,string)

if (blankstring(filel) .ne. O .or. blankstring(file2) .ne. 0))
goto 900

options = strdsc(3hRGCS, 1, 3)

typel = fnpopen(dchl,err,filel, options,1)

if (err .It. 0) goto 920

type2 = fnpopen(dch2,err,file2, options,1)

if (err .1t. 0) goto 920

String descriptors describe strings by identifying where they can be found and how big they are.
Once a string descriptor is set up, it can be used indefinitely. The buffer it points to can be
changed through the string descriptor or through direct changes. In the above example,
‘splitstring’ changes the referenced buffer, and ‘blankstring’ tests for an all blank string.

Converting FMGR File Calls B-3

The file system assigns default values for type and size when the file is created. The following
example shows how the user would change the type and size values. In the example, the code
sequence, constructs the name of a debug file from the name of a type 6 file, according to the
following rule: if the type 6 file name has a .RUN type extension, create a file with the same
name and a .DBG extension; otherwise, create a file with the same name but insert an at sign
(@) in front of it, because this is a FMGR file. Make the file type 1, block size 96:

character pnanme*64, nane*64, dir*16, typex*4, ds*64

call fnpparsenane(pnane, nane, typex, sc,dir, d, d, d, ds)
if (typex .eq. 'RUN) then
call fnpbuil dnane(pnane, nanme,’ DBG , sc, dir, 1, 96, 0, ds)
el se
call fnpbuil dname(pnane,’ @// nane, typex, sc,dir, 1, 96,0, ds)
endi f

Open and Openf Calls

All Open and Openf calls are replaced by FmpOpen calls. Considerations include file name
parsing and character string handling, described above. Beyond that, the user should be aware of
how options and buffer sizes are specified. For example, the FMGR call:

type = open(dch, err, pbuf, 0, pbuf (5), pbuf (6), 256)

specifies exclusive open for reading and writing (assuming the security code matches), with no
other unusual options. It uses a 256-word DCB buffer, so the DCB should be declared as
256+16=272 words.

To get the same effect with FMP calls, the call would be:
type = fnpopen(dch,err,nanme,’ rw’, 2)

Note that character options ‘rwo’ have been specified. Reading and writing are specified by ‘Tw’.
The ‘0’ option means it is okay to open a FMGR file, but not to create a new one. (This is
discussed more under create.) Other options available and their octal equivalents in the option
word of the old open call are:

[

1: shared access: ‘s
2: update mode: ‘v’
4: force to type 1: ‘f
10: supply subfunction: no equivalent, see FmpSetIoOptions
20: (not defined)
40: permit extents: ‘X

o

B-4 Converting FMGR File Calls

The option word must be specified in an FMP call. In upgrading a call, start with ‘rwo’, then add
the other options as necessary to get the way the call used to look. For example, an option word
45B: open, permitting type 1 and 2 extents, forced to type 1 and shared, would be option word
‘rwoxfs’. The option characters can come in any order. If it is known that the file will be used
only for reading or only for writing, omit the ‘W’ or ‘r’ respectively. Use the shared option if the
file will be read only; it should not be used for writing unless the user provides his or her own
synchronization.

Note that the buffer size is specified in blocks, rather than in words. The buffer size to supply is
the old one divided by 128:

type = fnpopen(dch, err, name, options, 256/ 128)

This parameter must be supplied; if the FMGR call did not supply a buffer size, use a value of 1.
FmpOpen works like Openf when a logical unit number is passed in, but the logical unit number
must be a string. For example,

type = fnpopen(dcb,err,’ 6, wo' ,1)
is correct, but

type = fnpopen(dcb,err,6,”w’, 1)

does not work, because the logical unit number is an integer, not an ASCII string. If the logical
unit is non-interactive, FmpOpen will try a logical unit lock with wait unless the file is opened
shared.

Note that FMP files can be opened to a large number of programs (more than 7), but there must
be room in the internal table of D.RTR for the open flag. If there is not room, the open will fail.
One program can have the same file open several times (if each open call specifies a shared
open). Repeated, exclusive opens of the same program work on FMGR files, but not on FMP
files.

Converting FMGR File Calls B-5

Readf and Writf Calls

For sequential files (type 3 and above, and type 0), Readf calls are replaced by FmpRead calls,
and Writf calls are replaced by FmpWrite calls. They work much as the FMGR calls work,
except that lengths are passed in and returned as byte lengths, not word lengths. The length read
is returned only as a function value, so calling FmpRead as a subroutine will probably not
produce the desired results.

For example:

call readf(dcbl, err,buffer, 128, 1 en)
if (err .It. 0) goto 900

call witf(dcb2,err,buffer,!|en)

if (err .1t. 0) goto 910

is replaced by

len = fnpread(dcbl, err, buffer, 256)
if (err .It. 0) goto 900
call frpwrite(dcb2,err,buffer,!|en)
if (err .1t. 0) goto 910

Now len is in bytes. If the program is expecting to use words, you can either change the program
to deal with byte lengths (including odd byte lengths), or you can convert len to words:

if (len .ne. -1) len = (len+l)/2

End-of-file is reported as err = 0, len = —1. Do not try to use FmpWrite with a length of —1 to
write an explicit end-of-file, as this will write 0 bytes (see below).

For random access files (type 1 and 2), Readf and Writf calls are converted to an FmpPosition
call followed by an FmpRead or FmpWrite call. The straightforward way to do this is to position
via (double-integer) record number; this is requested by using an internal position parameter of
(double-integer) —1. (See FmpSetPosition for details.)

For example:

call readf(dcbl,err,buffer,I|en, dunmy,rrec)
if (err .1t. 0) goto 900

call writf(dcb2,err,buffer,len, wec)

if (err .1t. 0) goto 910

is replaced by

integer*4 drec

drec = rrec

call fnpsetposition(dcbl, err,drec,-1J)
if (err .It. 0) goto 900

call fnpread(dcbl, err,buffer,len*2)

if (err .It. 0) goto 900

drec = wec

B-6 Converting FMGR File Calls

call fnpsetposition(dcb2,err,drec,-1J)
if (err .1t. 0) goto 910

call frpwite(dcb2,err,buffer,|en*2)
if (err .1t. 0) goto 910

The user should be careful not to pass single integers to FmpSetPosition. A called subroutine
cannot determine what kind of integer was passed, so FmpSetPosition will use the single integer
as the upper half of a double integer.

Close Calls

Non-truncating calls to Close can simply be replaced by calls to FmpClose:
call close(dcb) — call fnpclose(dch,err)

Pass the error parameter, even if no error can occur. Fmpclose stores a value through the error
parameter.

Truncating closes require two or three calls, depending on whether or not the user knows the
truncation size. The sequence to truncate a file at the current position used to be:

call locf(dch,err,rec, block, of fset, size)
if (err .1t. 0) goto 900

t bl ocks = (size/2) - (block+1)

call close(dch, err,tbl ocks)

if (err .1t. 0) goto 900

Now it is:

i nteger*4 record, position, newsize

call fnpposition(dchb,err,record, position)

if (err .1t. 0) goto 900

newsi ze = (position+127)/128 for type 3, (position/128)+1
call frnptruncate(dch, err, newsi ze)

if (err .1t. 0) goto 900

call fnpclose(dcb,err)

if (err .1t. 0) goto 900

Note that the old way specified the number of blocks to truncate, while the new way specifies the
desired file size. The new way truncates extra extents, which was not possible before. All sizes
are double integers. There is no call provided for this sequence because it is not common.

Note that truncating to zero size does not purge the file. It leaves a one-block file.

Converting FMGR File Calls B-7

Creat and Crets Calls

All Creat and Crets calls are replaced by FmpOpen calls that specify the ‘c’ option, meaning it is
okay to create the file. Refer to the description above about Open and Openf to get the basics.
Additional size, type, and record length information is passed as ASCII, appended to the name;
FmpBuildName is useful for creating ASCII strings. Refer to the example under file name
parsing for more information.

Any options used in an open call can be specified when creating a file. Previously, ‘creat’ set up
default options of nonshared update mode, so to create the old environment, use the string

< b

rwcu .

For example:

call creat(dcb, err, pbuf, pbuf (8), pbuf (7), pbuf(5), pbuf(6))
if (err .1t. 0) goto 900

is replaced by
call frnpopen(dch, err,name,’ rwecu’, 1)

This will give an error —2 if the file exists. The user can specify both ‘0’ and ‘c’; this will open the
existing file, or create a new one if necessary. Note that this sequence of creates followed by
opens can be replaced by a single FmpOpen call:

call creat(dch, err, pbuf, 24, 3, pbuf (5), pbuf (6), 256)
if (err .eq. —-2) then

call open(dcb, err, pbuf, 0, pbuf (5), pbuf (6), 256)
endi f
if (err .1t. 0) goto 900

is replaced by

call frnpopen(dch, err, name,’ rwoc’, 2)
if (err .1t. 0) goto 900

Support for scratch files consists of a way to create a name that is unique and a bit that indicates
that this file is not important. The program that creates the scratch file has the responsibility to
purge it when it is done. The file system does not automatically purge scratch files, although a
wildcard purge of all scratch files can be specified. This eases the problem of having scratch files
disappear when they are closed briefly.

To create an extendible type 1 scratch file with a starting size of 24 blocks, the old sequence
would have been:

call crets(dcb,err, 0, nane, 243, 1, sc, cr)
if (err .It. 0) goto 900

call open(dch, err, name, 40b, sc, cr)

if (err .It. 0) goto 900

This is replaced by:

call fnpuni quenane(’ TEVP , nane)
call fnpopen(dcb,err,nane//’:::1:24" " rwtx’ ,1)
if (err .It. 0) goto 900

B-8 Converting FMGR File Calls

The ‘t’ option specifies this is a scratch file. Note that this file goes on the working directory.
This only causes a problem if the working directory is currently on a small or slow disk, when a
larger or faster disk is available elsewhere. One possible solution is to create the file on
directory SCRATCH or some such special name, then try again on the working directory if the
special directory does not exist.

In this example, the unique name has a prefix “TEMP’. This is of no special significance, except
that some prefix must be supplied to keep the name from seeming to be a number. If there is a
chance, the scratch file will go on an old cartridge, then the prefix should be short (one
character) to keep from getting duplicate six-character names. In any case, the name must be
kept around to purge the file.

Aposn, Locf, and Posnt Calls

File positioning is also discussed in the section covering random access Readfs and Writfs.
Aposn and Locf position by internal file pointers, while Posnt positions by record number. These
functions are performed with FmpPosition and FmpSetPosition for FMP files.

Two position pointers are maintained for open disk files: a record number and an internal file
position. The internal file position is the word offset from the first word of the file. To record
the current record number and internal file position, use FmpPosition. Note that it always
returns double integer values, even if single integers were passed. For example, the call:

call | ocf(dchb,err,record, bl ock, of fset)
if (err .1t. 0) goto 900

is replaced with

integer*4 drecord, dposition
call fnpposition(dch,err,drecord, dposition)
if (err .1t. 0) goto 900

The new internal position value is related to the old value: position = block * 128 + offset.

Use caution when changing Locf calls. They contain a lot of information, and it is not always
easy to tell what is used and what is not. FmpPosition only returns file position. Other Locf
information includes:

e FmpSize returns the total size of the file in blocks, rather than the size of the main part of the
file in sectors.

e FmpEof indicates how much of the file is being used.
e FmpRecordLength returns file record length.

e FmpOpen returns file type when it opens the file.

There is no FMP call to return the logical unit of a file, because the logical unit cannot be used in
place of the directory name.

Converting FMGR File Calls B -9

To restore file position to a place recorded with FmpPosition, use FmpSetPosition. For example:

call aposn(dch, err,record, bl ock, of fset)
if (err .1t. 0) goto 900

is replaced by

integer*4 drecord, dposition
call fnpsetposition(dcb,err,drecord, dposition)
if (err .1t. 0) goto 900

This works for any type disk file. FmpSetPosition knows to use the internal position recorded by
FmpPosition because the passed position is a non-negative value. If the position is negative, it is
ignored and positioning is done by record number (see below). The record number parameter is
only used to set up the record number in the DCB for use later by calls that position by record
number.

FmpSetPosition is also used to position files by record number. Positioning type 1 and 2 files has
already been discussed under Readf and Writf. Positioning type 0 and type 3 and above files was
formerly done by Posnt. Posnt could position to an absolute record number, or to a record
number relative to the current position. FmpSetPosition always positions to an absolute record
number, however, relative positioning can be achieved by first using FmpPosition to see where
you are, then adding the offset to get the absolute record number. (FmpSetPosition always
positions relative to the current record number in the DCB, so if this is wrong you will not end up
at the right absolute record number.) Remember that positioning sequential files by record
number can be very slow.

For example, to position to absolute record 100, then skip backward 10 records:

call posnt(dchb,err, 100, 1)
if (err .It. 0) goto 900

call posnt(dchb,err,-10,0)
if (err .1t. 0) goto 900

This is replaced by:

i nteger*4 drecord, dposition
call fnpsetposition(dcb,err, 100J,-1J)
if (err .It. 0) goto 900

call fnpposition(dch,err,drecord, dposition)
if (err .It. 0) goto 900
call fnpsetposition(dcb,err,drecord-10,-1J)
if (err .It. 0) goto 900

The —1J parameter passed as the file position indicates only the record number is to be used for
positioning, as with type 1 and 2 files.

B-10 Converting FMGR File Calls

Purge and Namf Calls

Purge calls are replaced by FmpPurge calls, and Namf calls are replaced by FmpRename calls.
The FMP calls do not work if the file is open to anyone, including the caller, so the file should be
closed first. These calls do not require the caller to pass in a DCB.

Examples:

call purge(dcb, err, pbuf, pbuf (5), pbuf(6))
if (err .1t. 0) goto 900

is replaced by

call fnpclose(dch,err)
err = fnppurge(nane)
if (err .1t. 0) goto 900

and

call nanf (dchb, err, pbuf, newnane, pbuf (5), pbuf (6))
if (err .1t. 0) goto 900

is replaced by

call fnpcl ose(dch,err)
err = fnprenane(ol dnane, err 1, newnane, err 2)
if (err .1t. 0) goto 900

Extended Calls

Extended calls (calls that start with E, for example, Eread, Ewrit, and Ecrea) are replaced in the
same way as their non-extended equivalents. The FMP calls work with large files as a standard
feature.

The creation of a file larger than 32767 blocks is slightly complicated. The user must pass in an
ASCII file size that is the negative number of 128-block “chunks” in the file, so that a 50000
block file would be represented as —(50000+127/128) = FOO:::—391. This will really create a
50048-block file. Maximum file size is 32767 * 128 blocks, which is about 4 million blocks or 1
billion bytes.

Other Calls

FMP calls exist that perform the functions done by Rwndf, Post, and Fcont. Their names are
FmpRewind, FmpPost, and FmpControl, respectively. Their use is not illustrated here, but is
described in the section of this manual covering FMP routines.

Converting FMGR File Calls B -11

FMP Calls/FMGR Files

This section describes what happens when an FMP call refers to a FMGR file.

This combination provides the same level of service as is obtained with FMGR calls referring to
FMGR files. The caller can open, create, purge, and so on, files on old volumes. This is
straightforward if the cartridge is specified, and if there is no new directory with this name. The
cartridge can be specified as + CRN or —LU.

The following happens in cases other than the above:

If there is a new directory with the same name as an old cartridge, that cartridge cannot be
accessed via the FMP calls, although it can be with FMGR calls. (FMP calls first check new
directories, while FMGR calls first check old cartridges.) In general, it is confusing to have new
directories with the same name as an old cartridge, so it is not recommended (although it is
allowed).

If the directory is not specified: FOO or FOO:::3, and the user has a working directory, only that
directory is searched. If the directory is explicitly specified as 0: FOO::0 or FOO::0:3, or if the
directory is unspecified and the user has no working directory, then all of the old cartridges
mounted to this user are searched. This is the only way to get a multiple disk search with the
FMP calls, and it only searches old cartridges.

Calls that specify a file name only work with FMGR files if the information is available in the old
directory. Thus, a user can get the name of a FMGR file, but cannot get the timestamps or
position of end-of-file. In the latter cases, the old cartridges are not even searched, even if an
old cartridge name is specified. Here is a summary:

These calls pass file names and work with FMGR files:
FmpOpen, FmpProtection, FmpPurge, FmpRename, and FmpSize

These calls pass file names and do not work with FMGR files:

FmpAccessTime, FmpCreateDir, FmpCreateTime, FmpEof,
FmpRecordcount, FmpRecordLen, FmpSetOwner, FmpSetProtection,
FmpSetWorkingDir, FmpUnpurge, FmpUpdateTime

These calls do not pass file names, but do not work with FMGR files:
FmpOpenFiles, FmpSetDirInfo

Other calls that do not pass file names work with FMGR files.

Note If the directory name is found on an old cartridge, then the old rules for
parsing namrs apply. Periods (.) and slashes (/) in names are not significant on
old directories. The name is truncated to six characters.

Accesses to old directories use the old rules for things like open flags and extent creation. The
same protection checks (for example, security code) are made, although it is not guaranteed that

B-12 Converting FMGR File Calls

all invalid requests will be caught (such as illegal characters in file names.) Old error codes are
returned when appropriate.

Calls that specify a DCB work regardless of whether the file is old or new, including read, write,

position, and so on. This includes files with extents and files with odd byte length records.

Standard Type Extensions

The following is a list of the standard type extensions.

.C
.cmd
.dat
.dbg
dir
.doc
.err
ftn
ftni
.h
hlp
Jib
Jdod
Ist
.mac
.maci
.map
.merg
.mlb
.mrg
.mnf
.pas
.pasi
.rel
.run
.snp
.spl
stk
.SYS
xt

C source file

command file

data file

debug file

directory of subdirectory entry
document file

eror message file

FORTRAN source file

fortran source include file

C include file

help file

indexed library of relocatables
LINK command file

listing

Macro source file

Macro source include file
loader map listing

merge file for relocatables without headers
Macro library file

library merge file for relocatables with headers
manual numbering file

Pascal source file

Pascal source include file
relocatable (binary) file
program file

system snapshot file

spooling system file

command stack file

system file

text file

Converting FMGR File Calls

B-13

FMGR Calls

In addition to the FMP calls described earlier in this manual, there are other calls which work
only with FMGR files. They use six character names, 2 character CRN’s, etc. This chapter gives
a detailed description of the FMGR routines. They are included here for compatibility only, and
are not recommended for use in new applications. The routines are given in alphabetical order.

For each routine the FORTRAN calling sequence is shown. In FORTRAN, routines called as
functions should be declared as single integers unless otherwise stated. See the Program Calls
section for the general form of the Assembly Language calling sequence. All parameters are
assumed to be integer variables unless otherwise noted.

APOSN (Position a Disk File)

This routine is called to position any disk file to a specific record. The record location may be
determined by a prior call to LOCE.

APOSN is intended to position sequential files with variable length records prior to a read or
write request. It may be used to position random access files with fixed length records (types 1
and 2) but it must not be used to position non-disk files (type 0). POSNT may be used to
position type 0 files.

CALL APOSN(idcb, ierr, irec, irb, ioff)

where:

idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.

ierr is for error return; 1-word variable in which negative error code is returned.

irec is the next record; 1-word variable set to number of next sequential record; may
have been determined by a previous call to LOCE. Next record number must be
in the range 1 to 32767.

irb is the next block; optional 1-word variable set to next block number; may have
been determined by a previous call to LOCF; omitted only for files with
fixed-length records. Next block number must be 16383 or less.

ioff is the next word; optional 1-word variable set to number of next sequential word

in block (DCB); may have been determined by a previous call to LOCF; omitted
only for files with fixed-length records. Next word number must be in the range
of 0 to 127.

FMGR Calls C-1

The record position parameters (irb, ioff) determine the position within the file of the record irec.
They contain the block number and the word offset within the block where the record begins.

irec must be set; if not set to a specific record number by user, it may be set to a value returned
by a call to LOCE. The three values irec, irb, and ioff may all be retrieved through LOCE. This
permits the resetting of the file location to its position when LOCF was called.

Note Whenever a file with variable-length records is positioned, the two optional
parameters irb and ioff must be included.

CLOSE (Close a File)

To close a file after use, call the CLOSE routine. The file remains in the system available to
other programs following the close; the Data Control Block is freed for association with other
files. A disk file opened for exclusive use of the calling program may be truncated to its actual
length.

CALL CLOSE(idcb, ierr, itrun)

where:
idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.
ierr is the error return; a 1-word variable in which negative error code is returned if
truncation is unsuccessful; required only when ifrun is specified.
itrun indicates truncation; optional 1-word variable containing integer number of

blocks to be deleted from the file at closing. If omitted or zero, the file is closed
without truncation; if negative, only extents are truncated. itrun must be less than
16384 blocks.

Type 0 files: If the file being closed is a type 0 file, CLOSE will attempt to unlock it.

File Truncation

When a file has been created with more blocks than are actually needed to accommodate the
data in it, it can be truncated at closing to save disk space.

A file may be truncated only if:
e The file is a disk file.
e The current position is in the main file, not in an extent.
e The file is not open to another program.

e The number of blocks deleted is less than or equal to the total number of blocks in the file.

C-2 FMGR Calls

If all these conditions are met, the value of ifrun can be a:

positive integer — to specify the number of blocks to be deleted from the end of a main file;
any extents are automatically truncated; if equal to the total number of blocks in the file, the
file is purged.

negative integer — to specify that any extents be deleted from the file; the main file is not
affected.

The value of itrun when positive can be calculated from information returned by a previous call
to LOCE, assuming the current position is at the end-of-file. In this case, the last block number
written or read (irb+1) is subtracted from the total blocks with which the file was created (jsize/2)
and assigned to itrun. When negative, itrun can be any value. The number of extents need not be
known. If the file is currently positioned in an extent, it can be re-positioned to the main file
with RWNDE

A zero value for ifrun is exactly the same as omitting this parameter; a standard closing is
performed with no truncation.

CRDC (Dismount a Cartridge)

This routine dismounts a cartridge from the system.

ierr = CRDC(icr)
where:
icr is the cartridge identifier; a 1-word variable containing a positive cartridge

reference number or negative logical unit number of the cartridge to be
dismounted; must be mounted.

ierr is the error return code; 1-word variable will contain zero if no error was
detected, or the FMP or FMGR error which was detected.

The cartridge will not be dismounted if it has an active program file (type 6) residing on it, or if it
is locked to another program. Note that CRDC can return both positive and negative error
codes.

FMGR Calls C-3

CREAT (Create a File)

CREAT creates a file. It makes an entry in the file directory for the file and allocates disk space
for the data.

Following execution of CREAT, the file is left open in the update mode for exclusive use of the
program performing the call. If you want the file open in any other mode or for more than one
program, use the OPEN call. Note, however, that it is not necessary to change the open mode

for sequential access to the created file.

CALL CREAT(idcb, ierr, name, isize, itype, isecu, icr, idcbs)

where:

idcb is the Data Control Block; an array of 144 + (n * 128) words where n is positive
or 0.

ierr is the error return; 1-word variable in which a negative error code is returned. If
there is no error, it is set to the number of 64-word sectors (twice the number of
128-word blocks) in the created file.

name is a 3-word array containing the file name.

isize is the file size, maximum 16383 blocks; a 2-word array with number of blocks in
first word; if —1, rest of cartridge is allocated to file; second word, used only for
type 2 files, contains record length in words.

itype is the file type; 1-word integer variable in range 1-32767; types 1-7 are defined by
FMP (see following), higher types are special purpose files defined by the user.

isecu is the security code; optional 1-word variable in range —32768 through 32767; if
omitted, value is set to zero and file is not protected; positive value sets write
protection only; negative sets read and write protection.

icr is the cartridge reference; optional 1-word variable; if omitted, space for the file
will be allocated on the first cartridge having enough room; if positive, cartridge is
identified by its cartridge reference number, if negative, by its logical unit
number.

idcbs is the DCB buffer size; optional 1-word variable; number of words in DCB buffer

if larger than 128; if omitted, FMP assumes DCB size (control words + buffer) is
144 words regardless of idcb dimensions.

When the exact size of the file is not known, an indefinite size can be specified by setting isize to
—1. The rest of the cartridge, but not more than 16383 blocks, is allocated to the file in this case.
Any area that is unused may be returned by using the itrun parameter when the file is closed.
(Refer to CLOSE.) Note that a file using all the remaining cartridge is not extendible since a file
may not cross cartridge boundaries.

When any file of type 3 or greater is created, CREAT writes an EOF mark at beginning of the
file. As records are written to the file, an EOF is automatically written following the last record.

C-4 FMGR Calls

CRETS (Create a Scratch Disk File)

CRETS creates a temporary or scratch disk file; that is, it creates a file with a unique name and
makes an entry in the File Directory for the file and allocates disk space to the file. This call
only creates scratch files. Two of the optional parameters are 32-bit integers.

Following execution of CRETS, the file is left open in the update mode for exclusive use of the
program performing the call. When terminating access to the file, use PURGE to purge the file.
If the information in the file is to be made available for normal use, change the name of the file
using the NAMEF call, or copy the information to another file.

The file directory manager automatically cleans up scratch files that are no longer in use. This
happens after the creating program closes the scratch file or terminates. On the next search
through the file directory, the directory manager removes the file.

CALL CRETS(idch, ierr, num, name, isize, itype, isecu, icr, idcbs, jsize)

where:

idch

lerr
num

name

isize

itype

isecu

icr

idcbs

is the Data Control Block; an array of 144 + (n * 128) words where n is positive
Or Zero.

is for error return; one-word variable in which a negative error code is returned.
is the scratch file number between 0 and 99.

is the created file name, a 3-word array into which CRETS returns the name of
the file it has created. Save this if you will be using NAMF or PURGE.

is the file size; optional array of two 32-bit integers, with number of blocks in first
element; if —1, rest of cartridge is allocated to file; second element, used only for
type 2 files, contains record length in words. If omitted, the file is created with 24
blocks.

is the file type; optional 1-word variable in range 1-32767; types 0-7 are defined by
FMP (see following) higher types are user-defined files; if omitted, the file is
created type 3.

is the security code; optional 1-word variable in range —32768 to +32767; if
omitted, value is set to zero and file is not protected; positive value sets write
protection only; negative value sets read and write protection.

is the cartridge reference; optional 1-word variable; if omitted, space for the file
will be allocated to to the first cartridge having enough room; if positive cartridge
is identified by the cartridge reference number, if negative, by the logical unit
number.

is the DCB buffer size; optional 1-word variable; number of words in DCB buffer

if larger than 128; if omitted, FMP assumes DCB size (control words + buffer) is
144 words regardless of idcb dimensions.

FMGR Calls C-5

jsize is the actual file size; optional 32-bit integer variable; actual created file size (in
sectors) is returned here if call is successful.

When the exact size of the file is not known, an indefinite size can be specified by setting isize to
—1. The rest of the cartridge is allocated to the file in this case. Any area that is unused may be
returned by using the itrun parameter when the file is closed. (Refer to the CLOSE section.)

The default for this parameter is 24 blocks.

When any file of type 3 or greater is created, FMP writes an EOF mark at the beginning of the
file. As records are written to the file, the EOF is moved automatically to follow the last record.

CRMC (Mount a Cartridge to the System)

This routine mounts a cartridge to the system.

ierr = CRMC(lu, [Istrk])

where:

lu is the cartridge logical unit number; 1-word variable; the positive or negative
logical unit number of the cartridge to be mounted; must not be zero or already
be mounted.

Istrk is the last FMP track; optional 1-word variable; the last track available for FMP
use on the cartridge; if omitted, the last physical track on device containing the
cartridge is used.

lerr is for error return; 1-word variable in which the FMP or FMGR error code is

returned.

This routine also checks to see if the cartridge being mounted has a corrupt directory. If a
corrupt directory is detected, a FMGR-103 error is returned in the A-Register, and the cartridge
will be mounted, but locked to the program.

Note that CRMC will return both positive and negative error codes. For example, a FMGR 012
error will be returned if a duplicate cartridge mount attempt is made.

C-6 FMGR Calls

EAPOS (Extended Range Positioning)

The EAPOS routine is the extended range version of APOSN.

CALL EAPOS(idcb, ierr, irec, irb, ioff)

where:
idch
lerr
irec

irb

ioff

is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
or Zero.

is for error return; 1-word variable in which negative error code is returned.
is the next record; 32-bit integer variable; next sequential record number.

is the next block; optional 32-bit integer variable; block number containing next
sequential record; omitted only for random access files.

is the next word; optional 1-word variable; offset within block containing next
sequential record; must be in the range 0 to 127; omitted only for random access
files.

Refer to APOSN for a description of EAPOS parameters and its sequence of operation.

ECLOS (Extended Close)

The ECLOS routine is the extended range version of CLOSE.

CALL ECLOS(idcb, ierr, itrun)

where:

idch

lerr

itrun

is the Data Control Block; an array of 144 + (n * 128) words, where n is positive
OT ZEero.

is for error return; 1-word variable in which negative error code is returned.

is the truncation value; optional 32-bit integer; number of blocks to be deleted
from the main file at closing; if negative, only extents are truncated; if omitted or
zero, the file is closed without truncation.

See the CLOSE section for discussion of truncation and sequence of operations.

FMGR Calls C-7

ECREA (Extended File Create)

ECREA is the extended range version of CREAT.

CALL ECREA(idcb, ierr, name, isize, itype, isecu, icr, idcbs, jsize)

where:

idch

lerr
name

isize

itype

isecu

icr

idcbs

Jjsize

is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
or Zero.

is for error return; a 1-word variable in which a negative error code is returned.
is a 3-word array containing the file name.

is the file size; array of two 32-bit integers; first element contains the number of
blocks; if set to —1, the rest of the cartridge is allocated to the file; second
element is used only for type 2 files and contains the record length.

is the file type; 1-word integer variable in range 1-32767; types 1-7 are defined by
FMP, higher types are special purpose files defined by the user.

is the security code; optional 1-word variable in range —32768 to +32767; if
omitted, code is set to zero and file is not protected; positive value sets write
protection only; negative value sets read and write protection.

is the cartridge reference; optional 1-word variable; if omitted, space for the file
will be allocated to the first cartridge having enough room; if positive, cartridge is
identified by the cartridge reference number; if negative, by the logical unit
number.

is the DCB buffer size; optional 1-word variable; number of words in DCB buffer
if larger than 128; if omitted, FMP assumes DCB size (control words + buffer) is
144 words regardless of idcb dimensions.

is the actual file size; optional 32-bit integer; actual file size created in sectors is
returned here if call is successful.

C-8 FMGR Calls

ELOCF (Extended LOCF)

ELOCEF is the extended range version of LOCE.

CALL ELQOCF(idcb, ierr, irec, irb, ioff, jsec, jlu, jty, jrec)

where:

idch

lerr

irec

irb

jsec

jlu

v

jrec

is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
or Zero.

is for error return; 1-word variable in which negative error code is returned.

is the next record; 32-bit integer variable in which the next sequential record
number is returned.

is the next block; optional 32-bit integer variable in which the block number
containing the next sequential record is returned.

is the next word; optional 1-word variable in which the word offset within the
block containing the next sequential record is returned; not returned for type 0
files; range O through 127.

is the actual file size; Optional 32-bit integer variable in which the file size in
sectors is returned; not returned for type 0 files.

is the logical unit; optional 1-word variable in which logical unit to which file is
allocated is returned.

is the file type; optional 1-word variable in which file type at open is returned.

is the record size; optional 1-word variable in which record size of type 1 or type 2
files or read/write code of type 0 files is returned; not applicable to files with
variable length records (type 3 and above).

For disk files parameters irec, irb and ioff contain the current position within the file. These
parameters may be passed directly to EAPOS whenever the user wants to position the file back
to this location. Note that ELOCF and EAPOS must be used together because for each, the
record number and relative block position are 32-bit integer variables.

For further discussion of ELOCF functions and its sequence of operation, refer to the section on

LOCF.

FMGR Calls C-9

EPOSN (Extended Range Positioning)

The EPOSN routine is the extended range version of POSNT.
CALL EPOSN(idch, ierr, nur, ir)

where:

idchb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.

ierr is for error return; 1-word variable in which negative error code is returned.

nur is the number of records; 32-bit integer variable specifying the number of records
to position forward if positive, backward if negative; if IR is included as a
non-zero value, nur specifies the record number to which the file is positioned.

ir is an optional 1-word variable set to indicate that nur is interpreted as a record

number; if omitted or zero, nur is treated as number of records to space forward
or backward. Refer to the section on OPEN.

For further discussion of EPOSN functions and sequence of operations, refer to the POSNT
section.

EREAD (Extended Range Read)

The EREAD routine is the extended range version of READF.
CALL EREAD(idcb, ierr, ibuf, il, len, num)

where:

idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.

ierr is for error return; 1-word variable in which negative error code is returned.

ibuf is the user buffer; array into which record is read; it should be large enough to
contain the record.

il is the length in words; optional 1-word variable specifying number of words to be
read; should not be omitted for type 0 files. For other files, one record is read if il
is omitted; if i/ is specified, it is a good idea to make it the same size as ibuf.
Refer to READF for details of il use.

len is the number of words read; optional 1-word variable in which actual number of
words read is returned; set to —1 if end-of-file is read; if omitted, information not
supplied.

num is the record number; optional 32-bit integer variable set to the record number to

be read if positive, number of records to backspace if negative; used only for type
1 and type 2 files; if omitted, record at current position is read.

num specifies the number of the record to be read, or the number of records to be backspaced
before the read, if negative. Records are numbered sequentially; the first record is number 1.
For further discussion of parameters and read capabilities, refer to READE

C-10 FMGR Calls

EWRIT (Extended File Write)

The EWRIT routine is the extended range version of WRITFE.
CALL EWRI T(idcb, ierr, ibuf, il, num)

where:

idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.

ierr is for error return; 1-word variable in which negative error code is returned.

ibuf is the user buffer; array containing the record to be written; should be large
enough to contain the largest record to be written.

il is the length in words; optional 1-word variable specifying number of words to be
written; if omitted, one record is written to type 1 and 2 files, zero-length record
to all other file types. Refer to section WRITF for details of il use.

num is the record number; optional 32-bit integer variable containing record number

to be written if positive, number of records to backspace if negative; used only for
type 1 and 2 files; if omitted, record is written to current file position.

For further discussion of write capabilities and sequence of operations, refer to the WRITF
routine section.

FCONT (Type 0 File Control)

This routine controls input/output functions on a peripheral device. The on a peripheral device.
The device must have been opened with OPENE. The call has no effect on other file types. It
performs the same functions as the EXEC I/O CONTROL call (EXEC 3), such as backspacing,
rewinding, and writing end-of-file on cartridge tape, and controlling line spacing and top-of-form
on a line printer.

CALL FCONT(idch, ierr, icnwd, iprml, iprm2, iprm3, iprm4)

where:
idchb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.
ierr is for error return; 1-word variable in which negative error code is returned, or

zero if successful.

See the EXEC 3 call in Chapter 3 of this manual for a detailed description of the other
parameters. Appropriate values for several of these parameters depend on the device; these
values may be found in the RTE-A Driver Reference Manual, part number 92077-90011.

On completion of the FCONT call, the A-Register contains an EXEC error code and the
B-Register contains device status. From FORTRAN or Pascal, these values are retrieved by a
call to the system library routine ABREG.

FMGR Calls C-11

FSTAT (Retrieve System Cartridge List)

This routine returns an array containing the system cartridge list. For each mounted cartridge,
its logical unit number, last FMP track, cartridge reference number, and if a program has locked
the cartridge, the program’s open flag are returned.

lerr
where:
lerr

istat

ilen

FSTAT (istat, ilen)

is the error return code; 1-word variable in which negative error code is returned.

is the returned cartridge list; array in which the system cartridge list is returned,
using 4 words per cartridge; see table below. istat must be at least as large as ilen.

is the length in words of istat; Optional 1-word variable; if omitted, 125 words will
be used. If istat does not contain zero as a terminator, then the entire directory
may not have been returned.

FSTAT returns either the full cartridge list or the number of words specified by ilen, whichever is

smaller.

The format of istat is shown in Table C-1.
Table C-1. The istat Parameter Format (FSTAT Call)

Word Contents Cartridge

1 Logical unit number First cartridge in directory

2 Last FMP track

3 Cartridge reference number

4 Open flag of locking program or
0 if not locked

5 Logical unit number or 0 if no Remaining cartridges
more disks

125 0 (terminates list)

C-12 FMGR Calls

IDCBS (Retrieve Number of DCB Words)

This function returns the number of words in a Data Control Block actually used by the File
Management Package for data transfer and file control.

isize = | DCBS(idcb)

where:
isize is the returned DCB buffer size; actual size of data control block array in use.
idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive

or zero.

When a Data Control Block larger than 144 words is specified for the file at open or creation, the
File Management Package may not use the entire DCB buffer area. The actual size used
depends on the file size as well as the requested buffer size (refer to the Data Control Block
section). This call returns the actual Data Control Block size: the DCB packing buffer used plus
16 control words.

INAMR (Rebuild Namr String)

INAMR is the inverse of the NAMR routine. It builds a character string in the NAMR format
from an input array (parameter buffer). See the NAMR routine for more information.

CALL | NAMVR(ipbuf, ubuf, maxb, istart)

where:
ipbuf is the parameter buffer; 10-word array in which the namr parameters are stored;
same format as the parameter buffer for the NAMR routine.
ubuf is the returned user buffer; output array that will contain the character string
generated by INAMR.
maxb is the ubuf length in characters; 1-word variable.
istart is the starting character position; 1-word variable; the position within the user

buffer to start the namr string.

The value of istart is updated at the end of the INAMR routine. An empty ubuf array should
start with istart = 0. Because istart is modified by this routine, it should be passed as a variable,
not as a constant.

FMGR Calls C-13

LOCF (Retrieve Information on Open File)

A call to this routine retrieves status and location information on an open file. The information
is obtained from the Data Control Block control words for the file. The minimum information
returned is the next record number; all other information is optional.

CALL LCOCF(idch, ierr, irec, irb, ioff, jsec, jlu, jty, jrec)

where:

idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.

ierr is for error return; 1-word variable in which negative error code is returned.

irec is the next record; 1-word variable in which number of next sequential record is
returned. Will be in range 1 through 32767.

irb is the next block; optional 1-word variable in which next block number is
returned; not returned for type 0 files; includes extents if file was extended. Will
be in range 0 through 16383.

ioff is the next word; optional 1-word variable in which number of next word in block
(DCB) is returned; not returned for type 0 files. ioff will be in range 0 through
127.

jsec is the actual File size; optional 1-word variable in which number of sectors in file
at creation is returned; not returned for type 0 files; jsec/2 provides number of
blocks. Will be in range 2 through 32767 and will be even.

jlu is the logical unit; optional 1-word variable in which logical unit to which file is
allocated is returned.

jty is the file type; optional 1-word variable in which file type at open is returned.

jrec is the record size; optional 1-word variable in which record size of type 1 and 2

files or read/write code for type 0 files is returned; not applicable to files with
variable length records (type 3 and above).

Location Information

Together, irec, irb, and ioff provide the current position within a disk file; they are not set for
non-disk files. The values in these parameters may be passed directly to APOSN (see its section)
to position the file to this location. The values returned in irb and ioff give the exact physical
location of the record pointer in the file.

irec numbers records starting with 1 for the first record, 2 for the second, and so forth. irec alone
is sufficient to find the location of type 1 files.

irb numbers the blocks of the file relative to the start of file: 0 for the first block in the file, 1 for
the second, and so forth. If the file is extendible (type 3 and above), irb includes extent
information and is specified as:

(blocks in main file * extent #) + (block # in current extent)

C-14 FMGR Calls

The range of irb is 0 through 16383.
ioff numbers the words within a block, beginning with word zero. The range of ioff is 0 through
127.

Status Information

jsec (file size) is the actual size of a file or its extent; it is always an even number of sectors with
two 64-word sectors for each 128-word block in a disk file. It is not applicable to non-disk files.
jlu is the logical unit to which a file, disk or non-disk is allocated.

jty is the file type of the file; if forced to type 1 at open, then 1 is returned.

jrec is the record size of the file; it is meaningful for type 2 files only; it is specified at creation.
For type 1 files, whether actual or forced to type 1 at open, jrec is set to 128 on the first read or
write access.

For type 0 files, jrec specifies the read/write access code:

bit 15 = 1 indicates read access
bit 0 = 1 indicates write access

NAMF (Rename a File)

This routine renames an existing file. If the file was created with a security code, this code must
be specified. If the file is open, it is closed and then renamed.

CALL NANF(idch, ierr, name, nname, isecu, icr)

where:

idcb is the Data Control Block; an array of 144 + (n * 128) words, where n is positive
OT ZEero.

ierr is for error return; 1-word variable in which negative error code is returned.

name is the file name; 3-word array containing ASCII file name.

nname is the new file name; 3-word array containing ASCII file name to replace name as
the file name.

isecu is the security code; optional 1-word variable in range 0 through +/— 32767;
omitted only if file name was created without a security code or with a zero code;
if specified, the code must match.

icr is the cartridge reference; optional 1-word variable in the range 0 through 32767;

if zero or omitted, the first file found with given name will be renamed if the
security code matches; if specified, only a file on the specified cartridge is
renamed.

A file will not be renamed if:
e the file is an active program file.

e the file is open to another program.

FMGR Calls C-15

NAMR (Parse an Array)

The NAMR routine parses an array (buffer) of any length and returns up to seven
subparameters.

CALL NAMR(ipbuf, ubuf, maxb, istart)

where:
ipbuf is the parameter buffer; 10-word array in which up to seven subparameters are
returned from the input string.
ubuf is the user buffer; input array to be parsed.
maxb is the ubuf length in characters; 1-word variable.
istart is the starting character position; 1-word variable; will be updated with each call

to NAMR.

NAMR was originally designed for parsing FMGR file namrs, but it can be used to parse other
arrays as well.

NAMR parses the character string between the starting character position (istart) and the next
comma (,). Up to seven subparameters, delimited by colons (:), are derived from the character
string. The first subparameter may be up to three words long; the remaining subparameters may
be only one word long. Each subparameter may be type 0 (null), type 1 (integer numeric), or
type 3 (ASCII); these correspond to the FMGR global parameter types. istart will then be
updated to point at the character following the comma, so that a subsequent NAMR call will
parse the next substring.

The ten-word output array (parameter buffer) has the following structure:
Words 1 through 3 constitute the first subparameter
Word 1: If type = 0, word 1 has a value of 0.

If type = 1, word 1 is a 16-bit twos-complement number.
If type = 3, word 1 contains characters 1 and 2.

Word 2: If type = 0 or 1, word 2 has a value of 0.
If type = 3, word 2 contains characters 3 and 4 or trailing blanks.
Word 3: If type = 0 or 1, word 3 has a value of 0.

If type = 3, word 3 contains characters 5 and 6 or trailing blanks.

C-16 FMGR Calls

Word 4 gives the parameter types of all seven subparameters, in two-bit pairs. Values of the
two-bit pairs are:

0 = null

1 = integer numeric

2 = (no meaning assigned)
3 = ASCII

Bits 0 and 1 give the type of the first subparameter.

Bits 2 and 3 give the type of the second subparameter.
Bits 4 and 5 give the type of the third subparameter.

Bits 6 and 7 give the type of the fourth subparameter.
Bits 8 and 9 give the type of the fifth subparameter.

Bits 10 and 11 give the type of the sixth subparameter.
Bits 12 and 13 give the type of the seventh subparameter.

Words 5 through 10 have the format of word 1. They are (items in parentheses are the
corresponding file namr subparameters):

Word 5 is the 2nd subparameter (security code).
Word 6 is the 3rd subparameter (cartridge reference).
Word 7 is the 4th subparameter (file type).

Word 8 is the 5th subparameter (file size).

Word 9 is the 6th subparameter (record size).

Word 10 is the 7th subparameter.

On return, a negative value in the A-Register indicates something was parsed.

FMGR Calls C-17

OPEN (Open a File)

OPEN opens a file for read or write access. The file must have been created prior to the OPEN
call. It may be a disk or non-disk (type 0) file. If the specified Data Control Block is already
associated with an open file, that file is closed and the specified file is opened.

Files may be opened for exclusive use of the calling program, or for non-exclusive use of up to
seven programs. A file may be opened for update or for standard sequential write. Non-disk
(Type 0) files may be opened with a function code specified at creation or a function specified in
the OPEN call.

When a file is opened, it is positioned at the first record in the file.
CALL OPEN(idcb, ierr, name, ioptn, isecu, icr, idcbs)
where:

idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
or Zero.

ierr is for error return; 1-word variable in which negative error code is returned if
unsuccessful, file type if successful.

name is the file name; 3-word array containing ASCII file name.

ioptn are the open options; optional 1-word variable set to octal value to specify
non-standard opens. If omitted or set to zero, the file is opened by default as
follows:

— Exclusive use ; only the calling program has access to the file.

— Standard sequential output; each record is written following the last,
destroying any data beyond the record being written.

— File type defined for file at creation is used for access.
— Type 0 files use function code defined at creation.

To open a file with other options, set ioptn as described below under OPEN
Options.

isecu is the security code; optional 1-word variable; must be specified to open a file that
was created with a negative security code or to write on a file protected with a
positive code; may be omitted if the file was not protected at creation.

icr is the cartridge reference; optional 1-word variable; if set, FMP searches only that
cartridge for the file; if omitted it searches cartridges in the cartridge list order
and opens the first file found with the specified name.

idcbs is the DCB buffer size; optional 1-word variable; number of words in the DCB
buffer if larger than 128; if omitted, FMP assumes that DCB size (control words
+ buffer) is 144 words, regardless of idcb dimension. The DCB buffer is not used
for access to type 0 and type 1 files.

C-18 FMGR Calls

OPEN Options

The ioptn parameter is defined as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X|]TR] O|EC|] O |BI|EX] O] F| T U E

—— FUNCTION CODE —

TYPE 0 OPTIONS
The following bits may be set for any file type:

E (bit 0) = 0 File opened exclusively for this program. If the file is a type 0 file, it is locked.

1 File may be shared by up to seven programs.
U (bit 1) = 0 File opened for standard (non-update) write.
1 File opened for update.
T (bit 2) = 0 Use file type defined at creation.
1 File type is forced to type 1.

The following bits are used for type 0 files only (they are ignored when opening other file types):

F (bit 3) = 0 Use function code defined at creation.
1 Use function code defined in bits 6-10 of ioptn.

EX (bit5) = 1 Permits extents on type 1 and 2 files.
0 No extents on type 1 and 2 files.

Bits 6 through 10 correspond exactly to the function code used for the read or write EXEC calls
(EXEC 1 or EXEC 2).

X (bit 11) is defined for the appropriate driver. Refer to the RTE-A Driver Reference Manual,
part number 92077-90011, for details.

All other bits should be set to zero.

If bits are set in the ioptn parameter, their value must be expressed as an octal or decimal
number. For example, if you want to open a file for non-exclusive use and force type 1 access to
the file, you would set bits 0 and 2. This would result in a binary value of 101, which would have
to be converted to an octal value (5B) or a decimal value (5) before it was passed as a parameter
to OPEN.

Exclusive/Non-exclusive Open (E bit)

By default, a file is opened for exclusive use of the calling program. An exclusive open is granted
to only one program at a time. If the call is rejected because the file is open to another program,
you must make the call again; it is not stacked by FMP. Exclusive open is useful in order to
prevent one or more programs from destructively interfering with each other. If the file opened
is a type O file and the device is not interactive, the LU is locked.

If more than one program needs to access the file, it should be opened non-exclusively by setting
the ioptn E bit. A file may be open to as many as seven programs at one time. A non-exclusive
open will not be granted if the file is already opened exclusively.

An active program file cannot be opened exclusively.

FMGR Calls C-19

Update Open (U bit)

In update mode (when the U bit is set) the block containing the record to be written is read into
the DCB buffer before the record is written. This is sometimes useful when you are writing
records into the middle of existing data, as we shall describe below. Update mode has no effect
on reading records.

When you write a record, FMP puts it into the proper position in the DCB buffer, so that when
the buffer is posted to the disk file the record is placed in the position that you specified in your
WRITF call. That is, FMP is smart enough to make sure that the record you write ends up in the
right place in the file; this is true whether the file was opened in update mode or in non-update
mode. The difference between the two modes shows up in the records surrounding the ones that
you write.

Figure C-1 shows how the record that you write from your user buffer goes into the DCB buffer
and then into the disk file. The + marks represent the other records in the DCB buffer. When
your new record gets posted to the file the entire buffer is posted, both the record you have just
written and the other records that were in the block at the same time. In update mode, FMP fills
the DCB buffer with the block that contains the record that you are about to over-write. If, for
example, you were going to re-write record 6 in update mode, FMP would read into the buffer
the block that contained, say, records 5, 6, 7, and 8. Then, after you re-wrote record 6, records 5,
7, and 8 would be posted to the disk file along with the new record 6.

1
2
3
4
5 — 5
| record | —6 record — 6 record
7 —> 7
8 — 8
User Buffer DCB Buffer 9
10
11
12
Disk File

Figure C-1. Writing to a File

In non-update mode, FMP does not read anything into the DCB buffer before writing your
record, so you might not get the results you were expecting. To continue the example, if the DCB
buffer contained records 1, 2, 3, and 4 before you re-wrote record 6 in non-update mode, FMP
would leave those records in place while it wrote the new record 6. The DCB buffer would then
contain records 1, 6, 3, and 4, and these records would end up in the disk file when the buffer was
posted.

The end result would be that the file contained records 1, 6, 3, and 4 where you expected to see
records 5, 6, 7, and 8. Note that in non-update mode you still get the record written into the right
position in the file; it’s just that you might fill the rest of that block with garbage.

If you use update mode when you do not need it, you will spend extra time doing unneeded disk
fetches. The recommendations below will help you to open files for efficient access.

C-20 FMGR Calls

Update mode should be used to write to type 2 files. A type 2 file should be opened in standard
mode only when originally writing the file or adding new data at the end of the existing data and
before the end of the file, and then only if the file is to be written sequentially.

Update mode is ignored for type 1 files. Although, like type 2, they are designed for random
access with fixed length records and the end-of-file in the last word of the last block, each record
is the same length as the block transferred so that there is no danger of writing over existing
records.

For type 3 and above files, update mode is not generally used; most writes are sequential with an
end-of-file mark written after each record. These files should be opened for update only if a
record previously written to the file is being modified. In this case, care must be taken not to
change the length of the modified record. If you attempt to change it, a —005 error is issued.
Regardless of the mode of open (update or standard) a record written beyond the end-of-file
replaces the end-of-file and is followed by a new end-of-file.

Access Function Override (F-bit)

Some devices require a specific set of options for access. You may override the access function
defined at creation (or OPENF) by setting the ioptn F bit, and setting bits 6 through 11 to the
desired access function. The function code, as used by EXEC 1 and 2, is described in Chapter 3.

Type 1 Access (T-bit)

Any disk file may be forced to type 1 access by setting the ioptn T bit. Type 1 access is faster
because it bypasses the Data Control Block buffer and transfers data directly to the user buffer
defined as ibuf in a READF or WRITF call. The file type defined at creation is not affected; the
file is treated as type 1 only for the duration of this open. You are responsible for any packing or
unpacking of records in files forced to type 1. That is, if the records are less than 128 words, you
must determine the start and end of each record. Refer to READF and WRITF for particulars
of type 1 access.

FMGR Calls C-21

OPENF (Open a File or Device)

A call to OPENF opens a file or device for access; if you are opening a file, it must have been
created prior to the OPENF call. The file opened may be a disk or non-disk (type 0) file. If a
logical unit number is passed in the first word of the file namr, a DCB is created to allow type 0
access. In this case, no type 0 file is necessary and none is created by the call.

Generally, OPEN should be used when you are dealing exclusively with disk files, as it is smaller
than OPENFE. OPENF should be used when you are dealing with devices, as it allows you to
open a device without first creating it as a type O file. If you might be dealing with either disk
files or device, use OPENF.

Files may be opened for exclusive use of the calling program or for non-exclusive use of up to
seven programs. A file may be opened for update or for standard sequential write. Type O files
may be opened with a function code specified at creation, or a function code specified in the
OPENF call.

When a file is opened, it is positioned at the first record in the file.
CALL OPENF(idcb, ierr, name, ioptn, isecu, icr, idcbs)
where:

idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
or Zero.

ierr is for error return; 1-word variable in which negative error code is returned if
unsuccessful, file type if successful.

name is the file name or logical unit number; either a 3-word array containing an ASCII
file name or an 1-word variable containing a logical unit number.

ioptn are the open options; optional 1-word variable set to octal value to specify
non-standard opens. If omitted or set to zero, the file is opened by default as
follows:

— Exclusive use; only the calling program has access to the file.

— Standard sequential output; each record is written following the last,
destroying any data beyond the record being written.

— File type defined for file at creation is used for access.
— Type 0 files use function code defined at creation.

To open a file with other options, set ioptn as described below under
OPENF Options.

isecu is the security code; optional 1-word variable; must be specified to open a file that
was created with a negative security code or to write on a file protected with a
positive code; may be omitted if the file was not protected at creation.

icr is the cartridge reference; optional 1-word variable; if set, FMP searches that
cartridge for the file; if omitted, it searches cartridges in the cartridge directory
order and opens the first file found with the specified name.

C-22 FMGR Calls

idcbs is the DCB buffer size; optional 1-word variable; set to number of words in the
DCB buffer if larger than 128; if omitted, FMP assumes that DCB size (control
words + buffer) is 144 words, regardless of idch dimension.

OPENF Options

The ioptn parameter is defined as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X|]TR] O|EC|] O |BI|EX] O] F| T U E

—— FUNCTION CODE —

TYPE 0 OPTIONS

The following bits may be set for any file type:

E (bit 0) = 0 File opened exclusively for this program. If the file is type 0, then the device is
locked.
1 File may be shared by up to seven programs

U (bit 1) = 0 File opened for standard (non-update) write
1 File opened for update

T (bit 2) = 0 Use file type defined at creation
1 File type is forced to type 1

The following bits are used for type 0 files only (they are ignored when opening other file types):

F (bit 3) = 0 Use function code defined at creation
1 Use function code defined in bits 6-10 of ioptn

EX (bit5) = 1 Permits extents on type 1 and 2 files.
0 No extents on type 1 and 2 files.

Bits 6-10 correspond exactly to the function code used for the EXEC 1 or 2 call.

X (bit 11) is defined for the appropriate driver. Refer to the RTE-A Driver Reference Manual,
part number 92077-90011, for details.

All other bits should be set to zero.

For further explanation of OPENF parameters, see the OPEN call.
Table C-2. OPENF Defaults

FMGR Calls C-23

Device EOF Read/
Device Type Code Spacing Write Comments
“Bit Bucket” 0 PA WR
Interactive 00-07 PA BO If option parameter is 0,
Devices then echo bit is set.
Plotter 10-11 PA BO
Graphics Display
Printer 12-13 PA BO
Card Reader 14 EO BO
Card Punch 15 EO BO
Mag Tape Cassette 20-23 EO BO BO
Disks 30-37 Disks are accessible
only via named files.
Various 40-77 EO BO BO
EOF Code Spacing Read/Write
EO = subfunction 100 FS forward space RE read
(end-of-file mark) BS backspace WR write
PA = subfunction 1100 BO both BO both

(page eject)

C-24 FMGR Calls

POSNT (Position a File)

This routine positions a file relative to the current file position or to a specified record number.
It can be used to position all file types.

CALL POSNT(idcbh, ierr, nur, ir)
where:

ideb is the Data Control Block; an array of 144 + (n * 128) words, where n is positive or
Zero.

ierr is for error return; 1-word variable in which negative FMP error code is returned.

nur is the number of records; 1-word variable specifying the number of records to position
forward if positive, backward if negative; if ir is included as a non-zero value, nur
specifies the record number to which the file is positioned. nur must be 32767 of less.

ir is an optional 1-word variable set to indicate that nur is interpreted as a record
number; if ir is omitted or set to zero, nur is treated as the number of records to space
forward or backward. Refer to Table C-3, below.

Table C-3. Relation Between Parameters nur and ir (POSNT Call)

ir = 0 or Omitted ir#0
nur Relative Position Absolute Position
nur >0 Position forward number Position to record number
of records specified. specified.
nur =0 No operation. No operation.
nur < 0 Position backward number Error.
of records specified.

Positioning Non-Disk Files (Type 0)
When the file is a non-disk device, the forward or backward positioning specified by nur must be
legal for the device.

To forward position a type 0 file, the records are read until one less than the specified number of
records is read or an EOF is read. In every case, an EOF terminates positioning.

When backspacing a type 0 file, the first record backspaced over may be an EOF. If an EOF is
encountered other than as the first record backspaced over, an error (—12) is returned and the
call terminates after forward spacing to position the file immediately after the EOF.
Positioning Random-Access Files (Types 1 and 2)

POSNT may be used to position these file types; however, file positioning for random access files
can be specified in the read or write requests and POSNT may not be necessary.

Positioning Sequential-Access Files (Type 3 and Above)

These files are treated as magnetic tape files. To be correct, a backspace should be issued after
an EOF is read and before continuing to write on the file. This action writes the next record over
the EOF allowing a correct extension of the file for either disk or magnetic tape files.

FMGR Calls C-25

POST (Post the DCB to a File)

This routine is called to post (write) the contents of the Data Control Block buffer to a disk file
(type 2 or above). Normally, this is done by the system when the buffer is full or the file is
closed. POST provides direct control over the physical write to disk, assures that the next read is
from disk, and can be used in a special case to save records in a file opened for non-exclusive use.

CALL POST(idcb, ierr)

where:
idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
OT ZEero.
ierr is for Error return; optional 1-word variable in which negative error code is

returned; should be omitted only if A-Register is tested for errors.

This call is ignored for all files of type 0 or 1 since transfers to these files are always direct,
bypassing the Data Control Block buffer.

PURGE (Remove a File)

A call to PURGE removes the named file from the system along with any extents associated with
the file. When a file is purged, the file directory entry is no longer available. If the file was
open, it is closed, freeing the Data Control Block. A file that is open to any program other than
the calling program cannot be purged until it is closed.

CALL PURCE(idch, ierr, name, isecu, icr)

where:

idchb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.

ierr is for error return; 1-word variable in which negative error code is returned.

name is the file name; 3-word array containing ASCII file name.

isecu is the security code; optional 1-word variable; must be specified if file was created
with a security code; otherwise, may be omitted.

icr is the cartridge reference; optional 1-word variable; if specified, FMP purges

named file on specified cartridge. If omitted, FMP searches cartridges in
cartridge directory order and purges the first file found with the specified name.

A file will not be purged if:
e the file is open to another program

e the file is an active program file (type 6)

C-26 FMGR Calls

Recovery of File Area Following PURGE

The area on disk occupied by a purged file is returned to the file system automatically only if the
purged file is the last file on the cartridge. If the file is followed by other files, the cartridge must
be packed in order to recover the file space. Packing is accomplished with the PK FMGR
command (refer to the RTE-A User’s Manual, part number 92077-90002, for a description of
FMGR). If you create a new file that is exactly the same size as a purged file, the new file will
replace the purged file.

READF (Read a File Record)

This routine transfers a record from an open file to the user buffer. Either one full record or a
specified number of words is read. For sequential access files (type 0, 3 and above) the record
read will be the record at which the file is currently positioned, or for random access files (type 1
and 2), it may be any specified record.

CALL READF(idcb, ierr, ibuf, il, len, num)

where:

idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.

ierr is for error return; 1-word variable in which negative error code is returned.

ibuf is the user buffer; array into which the record is read; it should be large enough to
contain the record; if i/ is specified, buffer should be of length il.

il is the length in words; optional 1-word variable specifying number of words to be
read; should not be omitted for type 0 files; for other files, 1 record is read if il is
omitted. Refer to Table C-4, below, for details of i/ use.

len is the number of words read; optional 1-word variable in which actual number of
words read is returned; set to —1 if end-of-file is read; if omitted, information is
not supplied.

num is the record number; optional 1-word variable set to record number to be read if

positive, to number of records to backspace if negative; used only for type 1 and 2
files; if omitted, record at current position is read.

Relation of il to File Type

It is a good idea to specify il for non-disk file (type 0) and it doesn’t hurt to specify it for other
file types. If you do not know the length of a disk file record, i/ can be specified as the user
buffer length to prevent reads beyond the user buffer. If the record is shorter than i/, the exact
record length is read for files with types 2, 3 and above. Table C-4 illustrates the effect of i/
depending on file type.

FMGR Calls C-27

Figure C-2 illustrates a type 1 file read. The file is read directly into the user buffer when the
number of words specified in i/ is greater than the 128 words expected for a type 1 file. Other file
types may be forced to type 1 access at open in order to benefit from this type of transfer.

Table C-4. Effect of il Parameter in READF

il Value File Type 0 File Type 1 File Type > 1
il >0 Up to il words are Exactly il words are Up to il words are
read; if record length read; i/l may be read; if actual record
defined for the file more or less than length is less than i,
is less than i/, one a 128-word record. one record is read.

record is read.

il=0 Zero-length record No action. (Zero- Record is skipped and
(not is read; usually length record is counted as read.
recommended) record is skipped read, no position
and counted as read. | change.)
il omitted Zero-length record is | 128-word record is Actual record length is
read; usually record read. read.

is skipped and
counted as read.

il<0 Up to -il characters No action. Undefined.
(not recommended) | are read.

TYPE 1 FILE
USER BUFFER
256 256 f--------------
— 150 150 =

150
WORDS

ACTUALLY — 128 — il=150
READ

(len=150) -

Figure C-2. Reading Type 1 Files with il Greater Than 128

C-28 FMGR Calls

Using len

Upon completion of a read, the actual number of words transferred to the user buffer is returned
in len. If, however, the number of words in len is equal to i/, more words may actually have been
in the disk record. This is because len is never set to a value greater than il.

To illustrate, suppose il is specified as 80 words. If 10 words are transferred, then len is set to 10.
But whether 80 or more words are in the record, len is still set to 80, the value of il.

len can be used to test for possible overflow of the user buffer. Except for type 1 files, the user
buffer and i/ can be specified one word larger than the largest expected record. If, when tested,
len equals this size, it is a good indication that the record read was too large for the buffer. Do
no use this test for type 1 files since exactly i/ words are read for this file type.

Another use of len is to test for end-of-file in all file types except 1 and 2. For types 1 and 2, an
end-of-file is reported as an error in ierr. Depending on file type, reading an end-of-file results in
the following:

Type 0:
len is set to —1 when EOF is read; no error occurs and access may continue beyond the end
of file.

Type 1 and 2:
ierr is set to —12 indicating an error. Access is not permitted beyond the end of file.

Type 3 and greater than 3:

len is set to —1 for the first EOF read; no error occurs but an attempt to read past the EOF
causes an error (ierr= —12); you may not read past the end-of-file, but you may write beyond
it. After EOF is read, the POSNT routine should be used to backspace one record before
writing.

Note that length words in variable-length records (file types 3 and above) are not transferred to
the user buffer and are not counted in len.

num is used only to position random access files (types 1 and 2); it may be specified for other file
types, but is ignored. If positive, num specifies the record number of the record to be read:
records are numbered from the first record in the file starting with 1 and proceeding sequentially
up to a maximum of 32767. If negative, num specifies the number of records to backspace from
the current position in the file.

To illustrate, assume the type 1 or 2 file is positioned at the beginning of record 4:

1. If num=0 or is omitted, read record 4.
2. If num=6, read record 6.
3. If num=-3, read record 1.

FMGR Calls C-29

RWNDF (Rewind a File or Device)

This routine rewinds a non-disk file (type 0) or positions a disk file to the first record in the file.

CALL RWNDF(idcb, ierr)

where:
idchb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.
ierr is for error return; 1-word variable in which negative error code is returned; may

be omitted if A-Register is to be checked for errors.

If the rewind cannot take place, the call is completed with the file position unchanged; no error is
indicated. The rewind will not take place if, for instance, the file being rewound is a paper tape
punch, the line printer, or some other device that cannot be positioned in reverse.

WRITF (Write a Record to a File or Device)

WRITF transfers a record from the user’s buffer to an open file. For non-disk files (type 0) and
sequential access files (type 3 and above), a specified number of words is written. Type 1 random
access files are written in multiples of 128 words. Type 2 random access files are written in
records whose length was specified at creation.

CALL WRI TF(idcb, ierr, ibuf, il, num)

where:

idcb is the Data Control Block; an array of 144 + (n * 128) words, where 7 is positive
Or Z€ro.

ierr is for error return; 1-word variable in which negative error code is returned.

ibuf is the user buffer; array containing the record to be written; should be large
enough to contain the largest record to be written.

il is the length in words; optional 1-word variable specifying number of words to be
written; if omitted, one record is written to type 1 and 2 files, zero-length record
to other file types. Refer to Table C-5 for details of i/ use.

num is the record number; optional 1-word variable containing record number to be

written if positive, number of records to backspace if negative; used only for type
1 and 2 files; if omitted or 0, record is written to current file position.

Relation of il to File Type

il should be specified for all but type 2 files and may be specified for all files. It is ignored by
type 2 files but can be used with type 1 files to write more than one 128-word record at a time.
For sequential access files (type 3 and above), it is essential to specify record length in il.
Omitting i/ for these file types is the same as setting i/ to 0: a zero-length record is written. Refer
to Table C-5 for other effects of il.

C-30 FMGR Calls

Table C-5. Effect of il Parameter in WRITF

il Value Type 0 Type 1 Type 2 Type >2
il >0 Exactly il il is rounded il is ignored; Exactly il words
words are up to 128 or file-defined are written.
written. a multiple record length
of 128. is written.
il=0 Zero-length No action. il is ignored; Zero-length
record is file-defined record is
written. record length written.
is written.
il Zero-length 128 words il is ignored; Zero-length
omitted record is are written. file-defined record is
written. record length written.
is written.
il = -1 End-of-file No action. No action. End-of-file
is written. is written.
il < -1 il is treated No action. No action. Undefined.
(not as a character
recommended) count.

il can also be used to write an end-of-file on non-disk files (type 0) and sequential access files
(type 3 and above). An attempt to write an end-of-file to a random access file (type 1 or 2) is
ignored; no error is indicated.

When writing to a type 1 file, i/ is rounded up so that a multiple of 128 words is always
transferred. When reading, the user buffer need be no larger than the length specified in i/; only
the requested number of word are transferred. Figure C-3 illustrates a write to a type 1 file with
il = 150 words. In this case, 256 words (the shaded area) are actually transferred. Other file
types may be forced to type 1 access at open in order to benefit from this type of transfer.

TYPE 1 FILE
USER BUFFER
256 256 7
GARBAGE > GARBAGE
— 150 150
256
> — WORDS
GOOD GOOD ACTUALLY
il=150"] 128 WRITTEN
DATA N DATA
| 1 1 _

Figure C-3. Writing a Type 1 File with i/ Greater Than 128

FMGR Calls C-31

Positioning with num

num is used only to position random-access file (types 1 and 2); if specified for other file types, it
is ignored. If positive, num causes a write to the specified record number; records are numbered
relative to the start of the file beginning with 1. When negative, num specifies the number of
records to backspace from the current file position.

To illustrate, assume the file is positioned at the beginning of record 5.

1. If num=0 or is omitted, record 5 is written.
2. If num=6, record number 6 is written.
3. If num=-3, record number 2 is written.

Note Although it is possible to rewrite specific records in files of type 3 and above,
great care must be taken. If the length of the existing record and that of the
replacing record are not identical, the integrity of the file is destroyed.

XQPRG (Load and Execute a Program)

A call to XQPRG will execute a program. XQPRG checks to see whether the program occupies
an ID segment, sets up an ID segment if necessary, and executes the program. If XQPRG sets
up an ID segment, the ID segment is released after the program terminates.

CALL XQPRG idch, icode, name, ifive, ibuf, il, iprtn, ierr, isecu, icr)

where:

idchb is the Data Control Block; 144-word array for use by XQPRG.

icode is the EXEC request code; 1-word variable used to schedule the program (9, 10,
23, or 24).

name is the program name; 3-word array; contains 5-character program name or
6-character program file name.

ifive are the scheduling parameters; optional 5-word array to be passed to program.

ibuf is the user buffer; optional array to be passed to program.

il is the user buffer length; optional 1-word variable; if positive, contains length in
words; if negative, contains length in characters.

iprtn are the return parameters; optional 5-word array passed back from the program.

ierr is for error return; optional 1-word variable in which error code is returned; see

below for details.

C-32 FMGR Calls

isecu

icr

is the security code; optional 1-word variable; must be specified to execute
program in file created with a negative security code.

is the cartridge reference; optional 1-word variable; if zero, the first file found
with the specified name will be executed; if set only the file on the specified
cartridge will be executed.

icode is similar to the EXEC schedule request code. It is:

9 for immediate schedule with wait.
This is the same as the RU operator command if the program is dormant. If the program is
already executing, an error is returned.

10 for immediate schedule without wait.
This is the same as the XQ operator command if the program is dormant. If the program is
already executing, an error is returned.

23 for queue schedule with wait.
Same as the RU operator command.

24 for queue schedule without wait.
Same as the XQ operator command.

lerr error codes returned are:

0=
1=
2 =
3 =

Successful execution, no scheduling errors

Duplicate program name (iprtn(1) = 0)

No ID segments available (iprtn(1) = 14)

Program not found (iprtn(1) = —6 or —32)

File open error other than program not found (iprtn(1) = FMP error number)
File close error (iprtn(1) = FMP error number)

RP error other than duplicate program name or no ID segments available
(iprtn(1) = FMP error number)

Program busy (iprtn(1) = 0)

Program was scheduled, but then aborted (iprtn(1) = 100000B)

Scheduling error other than “program not found” (iprtn(1) = ASCII “SC” code
(‘04,10°).)

Illegal icode parameter (should be 9, 10, 23, 24, or 28).

Not enough parameters

FMGR Calls C-33

XQTIM (Time Schedule a Program)

The XQTIM routine allows you to schedule a program for timed execution. XQTIM checks to
see whether the program has an ID segment, sets up an ID segment if necessary, and schedules
the program for timed execution. If XQTIM sets up the ID segment, the ID segment is released
when the program is removed from the time list.

CALL XQTl M idcb, ierr, name, isecu, icr, ires, mult, itime)

where:

idcb is the Data Control Block; 144-word array for use by XQTIM.

ierr is for error return; 1-word variable in which the error code is returned.

name is the program name; 3-word array; contains either a 5-character program name
or 6-character program file name.

isecu is the security code; optional 1-word variable; must be specified to execute a
program contained in a file created with a negative security code; may be omitted
if the file was not protected at creation time.

icr is the cartridge reference; optional 1-word variable; if set, FMP searches that
cartridge for the file; if omitted, it searches cartridge in the cartridge list order
and executes the first file found with the specified name.

ires is the resolution code; optional 1-word variable; if omitted, zero is used.

mult is the resolution multiple; optional 1-word variable; program will be scheduled
every ires * mult time intervals; if omitted, zero is used.

itime are the time parameters; optional 4-word array; specifies either absolute or

relative starting time for program execution.

Resolution code ires

This parameter specifies the time interval resolution to be used to schedule the program. The
possible values are:

hours

minutes

seconds

tens of milliseconds
remove from time list

S—= N WA

Time parameter array itime

This parameter specifies either the absolute time (in hours, minutes and seconds) or the relative
time (in ires units) from now (the XQTIM call) the program is to start executing. The format is:
Absolute starting time:

Word 1 = hours

Word 2 = minutes

Word 3 = seconds

Word 4 = tens of milliseconds

Relative starting time:

Word 1 = —offset; must be negative; program begins execution res*offset from now.
Words 2 through 4 are ignored.

C-34 FMGR Calls

HP Character Set

Effect of Control Key * M
-—000-037B—»- | «+—040-077B—»- | «—100-137B—- | w1 40-177B—>|
1

765: O00 O01 O‘10 01‘1 100 10‘1 1 0 1‘1‘1
Bits Col.

0 1 2 3 4 5 6 7
4 3 2 1 |Row
o|0|0]O 0 NUL | DLE SP 0 @ P p
0|00 1 SOH | DC1 ! 1 A Q a
o|o|1{o0 2 STX | DC2 ? 2 B R b r
0|0 |11 3 ETX | DC3 # 3 C S c s
o|1]o0fo0 4 EOT | DC4 $ 4 D T d t
01|01 5 ENQ | NAK % 5 E u e u
o|1]1{o0 6 ACK | SYN & 6 F \" f v
0|1(1][1 7 BEL | ETB ’ 7 G w g w
110(0]|0 8 BS | CAN (8 H X h X
1]10(0]|1 9 HT EM) 9 | Y i y
110(1]0 10 LF SuB * J z j z
1(0]1]1 11 VT ESC + ; K [k {
1{1]{olo| 12 FF FS , < L \ | |
11|01]| 13 CR | GS - = M] m }
1(1(1]0 14 SO RS > N ~ n ~
11|11 15 sl us / ? o] _ o | DEL

—
32 Control Upshifted
Codes Lowercase
+—— 64 Character Set
, % e e :

Example: The representation for the character “K” (column 4, row 11) is
Bit 76 54321
Binary 1 0 01 0 1 1
Octal 1 1 3

Note: * Depressing the Control Key while typing an uppercase letter produces the corresponding
control code on most terminals. For example, Control-H is a backspace.

HP Character Set D-1

. Hewlett-Packard Character Set for Computer Systems

This table shows Hewlett-Packard’s implementation of ANS X3.4-1968 (USASCII) and ANS X3.32-1973. Some devices
may substitute alternate characters from those shown in this chart (for example, Line Drawing Set or Scandinavian
font). Consult the manual for your device.

The left and right byte columns show the octal patterns in a 16-bit word when the character occupies bits 8 to 14 (left
byte) or 0 to 6 (right byte) and the rest of the bits are zero. To find the pattern of two characters in the same word, add
the two values. For example, “AB” produces the octal pattern 040502. (The parity bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are character codes.

. Octal Values
Decimal Mnemonic | Graphic? Meaning
Value Left Byte | Right Byte

0 000000 000000 NUL Ny Null

1 000400 000001 SOH Sy Start of Heading

2 001000 000002 STX Sx Start of Text

3 001400 000003 EXT Ex End of Text

4 002000 000004 EOT Et End of Transmission

5 002400 000005 ENQ Eq Enquiry

6 003000 000006 ACK Ak Acknowledge

7 003400 000007 BEL JAN Bell, Attention Signall

8 004000 000010 BS Bs Backspace

9 004400 000011 HT Ht Horizontal Tabulation
10 005000 000012 LF Le Line Feed
11 005400 000013 VT V1 Vertical Tabulation
12 006000 000014 FF Fe Form Feed
13 006400 000015 CR Cr Carriage Return
14 007000 000016 SO So Shift Out Alternate
15 007400 000017 Sl S Shift In] Character Set
16 010000 000020 DLE D, Data Link Escape
17 010400 000021 DC1 D, Device Control 1 (X-ON)
18 011000 000022 DC2 D» Device Control 2 (TAPE)
19 011400 000023 DC3 D3 Device Control 3 (X-OFF)
20 012000 000024 DC4 D4 Device Control 4 (TAPE)
21 012400 000025 NAK Nk Negative Acknowledge
22 013000 000026 SYN Sy Synchronous Idle
23 013400 000027 ETB Eg End of Transmission Block
24 014000 000030 CAN Cn Cancel
25 014400 000031 EM Em End of Medium
26 015000 000032 SuUB Sg Substitute
27 015400 000033 ESC Ec Escape?
28 016000 000034 FS Fs File Separator
29 016400 000035 GS Gs Group Separator
30 017000 000036 RS Rs Record Separator
31 017400 000037 us Us Unit Separator

127 077400 000177 DEL [] Delete. Rubout3

D-2 HP Character Set

. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
32 020000 000040 Space, Blank
33 020400 000041 ! Exclamation Point
34 021000 000042 ? Quotation Mark
35 021400 000043 # Number Sign, Pound Sign
36 022000 000044 $ Dollar Sign
37 022400 000045 % Percent
38 023000 000046 & Ampersand, And Sign
39 023400 000047 ’ Apostrophe, Acute Accent
40 024000 000050 (Left (opening) Parenthesis
41 024400 000051) Right (closing) Parenthesis
42 025000 000052 * Asterisk, Star
43 025400 000053 + Plus
44 026000 000054 , Comma, Cedilla
45 026400 000055 - Hyphen, Minus, Dash
46 027000 000056 . Period, Decimal Point
47 027400 000057 / Slash, Slant
48 030000 000060 0 \
49 030400 000061 1
50 031000 000062 2
51 031400 000063 3
52 032000 000064 4
53 032400 000065 5 } Digits, Numbers
54 033000 000066 6
55 033400 000067 7
56 034000 000070 8
57 034400 000071 9 }
58 035000 000072 : Colon
59 035400 000073 ; Semicolon
60 036000 000074 < Less Than
61 036400 000075 = Equals
62 037000 000076 > Greater Than
63 037400 000077 ? Question Mark

HP Character Set

. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
64 040000 000100 @ Commercial At
65 040400 000101 A
66 041000 000102 B
67 041400 000103 C
68 042000 000104 D
69 042400 000105 E
70 043000 000106 F
71 043400 000107 G
72 044000 000110 H
73 044400 000111 I
74 045000 000112 J
75 045400 000113 K
76 046000 000114 L
77 046400 000115 M
78 047000 000116 N Uppercase Letters
79 047400 000117 @)
80 050000 000120 P
81 050400 000121 Q
82 051000 000122 R
83 051400 000123 S
84 052000 000124 T
85 052400 000125 U
86 053000 000126 \
87 053400 000127 W
88 054000 000130 X
89 054400 000131 Y
90 055000 000132 z
91 055400 000133 [Left (opening) Bracket
92 056000 000134 \ Backslash. Reverse Slant
93 056400 000135 1 Right (closing) Bracket
94 057000 000136 ~1 Caret. Circumflex: Up Arrow*
95 057400 000137 _+ Underline: Back Arrow*

D-4 HP Character Set

. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
96 060000 000140 f Grave Accent®
97 060400 000141 a
98 061000 000142 b
99 061400 000143 c
100 062000 000144 d
101 062400 000145 e
102 063000 000146 f
103 063400 000147 o]
104 064000 000150 h
105 064400 000151 i
106 065000 000152 j
107 065400 000153 k
108 066000 000154 I
109 066400 000155 m
110 067000 000156 n Lowercase Letters®
111 067400 000157 o]
112 070000 000160 p
113 070400 000161 q
114 071000 000162 r
115 071400 000163 S
116 072000 000164 t
117 072400 000165 u
118 073000 000166 \Y
119 073400 0oo167 w
120 074000 000170 X
121 074400 000171 y
122 075000 000172 z
123 075400 000173 { Left (opening) Brace®
124 076000 000174 | Vertical Line®
125 076400 000175 } Right (closing) Brace®
126 077000 000176 ~ Tilde, Overline®

Note 1: This is the standard display representation. The software and hardware in your system determine if the
control code is displayed, executed, or ignored. Some devices display all control codes as “@” or space.

Note 2: Escape is the first character of a special control sequence. For example, ESC followed by ‘J” clears the dis-
play on an HP 2640 terminal.

Note 3: Delete may be displayed as “_”, “@”, or space.

Note 4: Normally, the caret and underline are displayed. Some devices substitute the up arrow and the back arrow.

Note 5: Some devices upshift lowercase letters and symbols (‘ through ™) to the corresponding uppercase
character (@ through *). For example, the left brace would be converted to a left bracket.

HP Character Set D-5

. HP 7970B BCD-ASCII Conversion

AscCll Ascli

Smbol | (octal Code) | ESUMaIRL || SmbOl | (ocial Goae) | ERuialent
(space) 20 040 @ 14 100
! 52 041 A 61 101
” 37 042 B 62 102
13 043 C 63 103
$ 53 044 D 64 104
% 57 045 E 65 105
& t 046 F 66 106
’ 35 047 G 67 107
(34 050 H 70 110
) 74 051 | 71 111
* 54 052 J 41 112
+ 60 053 K 42 113
, 33 054 L 43 114
- 40 055 M 44 115
: 73 056 N 45 116
/ 21 057 o 46 117
0 12 060 P 47 120
1 01 061 Q 50 121
2 02 062 R 51 122
3 03 063 S 22 123
4 04 064 T 23 124
5 05 065 U 24 125
6 06 066 v 25 126
7 07 067 w 26 127
8 10 070 X 27 130
9 11 071 Y 30 131
15 072 Z 31 132
; 56 073 [75 133
< 76 074 \ 36 134
= 17 075] 55 135
> 16 076 1 77 136
? 72 077 — 32 137

t The ASCII code 046 is converted to the BCD code for a space (20) when writing data onto a 7-track tape.

D-6

HP Character Set

Program Types for RTE-A

This appendix lists the program type codes defined for RTE-A. These codes appear in the
“program type” field of XNAM relocatable records. Thus, each module in a relocatable file
contains a program type code. Despite the name “program type”, these codes appear in
subroutine modules and all other relocatable modules. Most RTE-A compilers allow the
program type code associated with a routine to be specified in the source code of the routine;
refer to the appropriate compiler reference manual for more information.

. RTE-A Program Types

Type Description
0 RTE operating system routine.

2,3,4,6 Program main. The four type values are for compatibility with RTE-6/VM; no

special processing based on these values is performed on RTE-A.

7 Subroutine.
8 Microcode definition module.
30 Module to be relocated into system common during system generation.

Note: All other types have no processing defined.

Program Types for RTE-A E-1

Cleaning Up Open Files

If a program opens a file and terminates (or is aborted) without closing the file, the file is left
open. The file system (specifically D.RTR) attempts to clean up open files automatically. How
this is done depends on whether the file is a CI or FMGR file, and whether or not it is a
temporary file.

Definition of Temporary Files

Temporary CI files and temporary FMGR files are implemented differently. A temporary file is
defined as a file to be used for only a limited amount of time and then purged. Normally, a

program closes and purges the file itself, but if the program terminates before it can do that, the
system purges it automatically. A VMA backing store file is a good example of a temporary file.

A temporary file under FMGR is defined simply as a file whose name starts with a digit (0—9).
Such files can only be created using the FMGR file system routine CRETS or the CI routine
FmpOpenTemp.

A temporary file under CI is defined as a file that was created with the T option in the FmpOpen
call and has not been closed since creation.

The major difference between the two is this: the FMGR temporary file is considered temporary
even after it is closed, the CI temporary file is no longer considered temporary if it is closed. This
means that the FMGR temporary file may be purged by D.RTR anytime the creating program is
no longer using the file, whether the program closed the file or terminated leaving it open.
D.RTR will only purge the CI temporary file if the file is left open by its creating program and
the creating program is no longer running, if the creating program closes the file, the file is no
longer considered a temporary file. This means that if another program opens the same file
(with or without the T option in FmpOpen), and aborts without closing the file, the file is not be
purged automatically because it lost its temporary status when it was closed by the creating
program.

Two notes about CI temporary files:

1. The file is created with the T option which sets the T flag in the directory entry. Masking has
a T qualifier, which makes it possible to purge all such files using the CI PU command like
this: PU,@.@.T

2. [If afile that has the T flag set is re-opened by a program that does not have the T option in
the FmpOpen call, the T flag is removed from the directory entry. Conversely, if a file
without the T flag set is re-opened by a program using the T option, the T flag is set in the
directory. The rule is that the T flag in the directory is set or cleared according to the
FmpOpen option string used by the last program to open the file.

Cleaning Up Open Files F-1

How Clean-Up Is Done

The following is a description of how clean—up is done for files that are left open. The four
possible cases are:

1. normal CI files

2. temporary CI files

3. normal FMGR files

4. temporary FMGR files

Cl Files

Open flags for CI files are maintained in free space in D.RTR’s memory. There is no limit to the
number of open flags per file (except for the physical limit of D.RTR’s memory). In the open
flag is a pointer to the file, a pointer to the ID segment of the program that opened the file, and
a set status bits which include a bit indicating if the T option was used in the FmpOpen call and a
bit indicating if the file was created with the FmpOpen call.

Also associated with open files is the FS bit in a program’s ID segment. This bit is maintained
jointly by the system and D.RTR. When a program makes it first call to D.RTR, the FS bit is set.
When the program terminates, the bit is cleared.

When a program makes an FmpOpen call, D.RTR sets up an open flag for that file in memory
and, if this is the first D.RTR call the program has made, D.RTR sets the FS bit in the program’s
ID segment. When the program makes an FmpClose call, the open flag is removed from
memory, closing the file. If the program terminates without closing the file, then the open flag
points to an ID segment that has the FS bit cleared as a result of the program’s termination.
This open flag is now considered invalid.

Whenever any program on the system makes its first call to D.RTR, two things happen:

1. D.RTR
scans all open flags in its memory to see if any are invalid. If an invalid open flag is found,
the flag is removed, thus closing the file.

2. D.RTR
sets the FS bit in the program’s ID segment to indicate that this program has made a D.RTR
call.

Note that this scan is done every time any program makes its first call to D.RTR, that is, its FS bit
is clear. This means that invalid open flags are cleared sometime after they become invalid, but
the timing depends on FMP activity on the system.

Cl Temporary Files

CI temporary files are closed in the same way as normal files, with the following addition: if,
when D.RTR finds an invalid open flag and determines that this open flag came from the
FmpOpen that created the file, and that the T option was used in that FmpOpen call, then the file
is purged.

Note the restriction that the file is purged only if the invalid open flag that is found is from the
FmpOpen call that created the file. If FmpOpen is called just to open an already existing file,
the file is not purged automatically, even if the T option is used.

F-2 Cleaning Up Open Files

FMGR Files

Open flags for FMGR files are maintained in the file’s directory entry on disk. There is room for
one to seven open flags per file. Included in the open flag is a pointer to the ID segment of the
program that opened the file and a value called a sequence counter. This sequence counter is a
number from 0 to 31 and is taken from the ID segment of the opening program. The sequence
counter in the ID segment is managed by the operating system and is incremented whenever a
program using the ID segment terminates or is aborted.

When a FMGR file is opened, the open flag is created using the current sequence counter value
from the calling program’s ID segment, and the flag is placed into the file’s directory entry on
disc. When the program makes an FmpClose (or FMGR CLOSE) call, the flag word is removed
from the directory entry, thus closing the file.

If the program terminates without closing the file, the open flag remains in the directory entry on
disc. At this point, however, the sequence counter in the ID segment has been incremented
because the program terminated and it no longer matches the sequence counter in the open flag.
The open flag is now considered invalid.

D.RTR closes an open flag whenever it finds one while it is scanning the directory. D.RTR scans
directories for various reasons, such as opening, creating, and purging files, locking, mounting,
and dismounting cartgridges, and so on. When D.RTR finds an open flag, it first checks to see if
the program in the associated ID segment is dormant. If it is, it removes the open flag. If the
program is not dormant, D.RTR compares the sequence counter in the open flag with the one in
the ID segment. If they don’t match, it removes the open flag.

To clean up an open flag left behind by a program, D.RTR can be forced to scan the directory in
several different ways. A simple file opening action on the cartridge (such as listing a file) causes
D.RTR to scan the directory. However, it scans only until it finds the file to open.

If the invalid flag is further down the directory, D.RTR won’t find and clear it.

The following are some of the actions that cause a complete directory scan by D.RTR:

e (Create/Rename file — scans for a duplicate file name.
e Purge file — scans the directory looking for extents.
e Pack/Lock/Dismount cartridge — scans for any open or RP’d files.

e FMGR DL command — this forces a scan because the FMGR DL command requests a
cartridge lock followed immediately by an unlock, this is done with the explicit purpose of
forcing D.RTR to clean up invalid open flags.

The FMGR DL command is the most common way of forcing D.RTR to clean up invalid open
flags. Note that the CI DL command does not do this because it does not do the cartridge
lock/unlock sequence.

Also, because the sequence counter has only 16 potential values, it is possible (though unlikely)
that programs will have run in an ID segment and terminated 16 times before the open flag is
checked. This would cause the sequence counter to roll over to the original value, and the open
flag would look valid. This open flag cannot be cleared until the program residing in the ID
segment terminates, thus incrementing the sequence counter and making the open flag invalid.

Cleaning Up Open Files F-3

FMGR Temporary Files

FMGR temporary files are closed in the same manner as normal FMGR files except that once
the file is closed, it is a candidate for automatic purging. The file is not purged right away.
Instead, the sequence is like this:

Assume D.RTR is scanning a directory for some operation, for example, a file rename. In the
process of scanning, it finds a temporary file with an invalid open flag. The open flag is cleared
as a normal invalid open flag and D.RTR makes a note of where the temporary file entry is.
After the file rename is completed, just before D.RTR returns to the user, it returns and purges
the temporary file.

The one exception to this pattern is during a file creation: if D.RTR finds a temporary file during
the scan for a duplicate name, D.RTR purges it before the file creation is actually done to insure
the most space possible is available for the new file.

The important point is that D.RTR remembers only one temporary file per directory scan. That
is, if D.RTR comes across a second temporary file later in the scan, it will ignore the earlier file it
found and remember the new one. The result is that D.RTR will purge only one temporary file
at a time per directory scan.

F-4 Cleaning Up Open Files

Converting Programs for Type 12 Support

This appendix describes the steps necessary to convert application programs to allow support of
type 12 (byte stream) files. All files that are created by the HP 1000 file server are created as type
12 files. (See the File Server Reference Guide for NS-ARPA/1000 and ARPA/1000, part number
91790-90054, for more information on the HP 1000 file server and type 12 files.) Applications that
intend to position within type 12 files, or make FMP calls that return or specify an internal file
position, are most affected.

FmpRead and FmpWrite

The FMP library allows most RTE programs to read and write type 12 files with little or no
modification. When FmpRead is used to read a type 12 file, the call returns the data from the
current position up to the next line feed. The position is then advanced to the character after the
line feed. FmpWrite adds a line feed to the file after writing the data buffer.

FmpFpos and FmpSetFpos

Of most significance to FMP when accessing type 12 files is that it must keep track of a byte offset
instead of a word offset. The FmpFpos and FmpSetFpos file positioning calls allow FMP to
accomplish this.

In the FmpFpos and FmpSetFpos calls, the internal file position is defined as the byte offset (32
bits) rotated right one bit. To set position by record, the internal position must be set to —1J

(32 bits —1) in the call to FmpSetFpos. This is slightly different than FmpSetPosition where
positioning by record is enabled by setting the sign bit of the internal position parameter.

For most programs, all calls to FmpPosition can be changed to FmpFpos and calls to
FmpSetPosition can be changed to FmpSetFpos. There are a few cases to watch out for:

cal | FrpSet Posi tion(dcb, error, record, —record) ! only sign bit,
or

cal | FrpSet Position(dcbh, error, record, —1) I not a double,
should be changed to:

cal | FrpSet FPos(dcbh, error, record, —1J)

Converting Programs for Type 12 File Support G-1

Other problems can occur when the position as returned by FmpPosition is assumed to be in
words. This is commonly used when truncating a file to the current position by making a call to
FmpPosition followed by a call to FmpTruncate:

cal | FrpPosi tion(dch, error, record, position)
bl ocks = (position + 128)/ 128
cal | FrpTruncat e(dcb, error, blocks)

can be changed to:

cal | FrpFPos(dcb, error, record, position)
bl ocks = (i shftc(position, 1,32) + 256)/ 256
cal | FrpTruncat e(dcb, error, blocks)

Other Affected Calls

In all the FMP calls where the internal position of a file is returned or specified, type 12 files use
the rotated byte position. For example, FmpEof and FmpSetDCBInfo return the eof position in
this manner.

G-2 Converting Programs for Type 12 File Support

Size Constraints and $UFMP

Library $UFMP is the FMP library that supports symbolic links and type 12 files. The following
table describes the alternative actions you can take if you have problems linking your program with

$UFMP:

Condition

Recommended Action

Application does not link with SUFMP due to
size constraints.

If the application does not need to access
type 12 files, just relink the program using
$SFMP or $FMR

If you have not changed the calls FmpPosition
and FmpSetPosition, the application is getting
both old and new positioning calls in its code
space. Changing the old positioning calls to
FmpFpos and FmpSetFpos may enable the
application to link.

If changing FmpPosition and FmpSetPosition
calls to FmpFpos and FmpSetFpos calls does
not enable your program to link, you may:

a) re-segment,
b) convert the program to CDS, or

c) relink with $SFMP or $FMP and decide not
to access type 12 files.

If need be, the CO and CP commands can
be used to copy a type 12 file to a type 4 file.
For example,

Cl> cp file.ftn newfile.ftn:::4

Converting Programs for Type 12 File Support

G-3

Index

Symbols

.EMIO subroutine, 9-55
.ESEG subroutine, 9-53
IMAP, 9-48

IRES, 9-49

JMAP subroutine, 9-50

JRES subroutine, 9-51

.LBP, .LBPR subroutines, 9-54
.LPX, .LPXR subroutines, 9-54
$A990_CSID entry point, 9-20
$EMA statement, 9-15

$LIBR, 12-3

$LIBX, 12-3

$LINES variable, 8-34, 8-35, 8-51
$TMP1 through $TMPS5, 5-7
$UFMP, G-3

A

A- and B-Register returns, 7-4

EXEC 1 and 2, 3-5

EXEC 10, 5-10

EXEC 14, 7-3

EXEC 17, 4-13

EXEC 18, 4-13

EXEC 19, 4-24

EXEC 20, 4-13

EXEC 21, 4-21

EXEC 23, 5-10

EXEC 24, 5-10

EXEC 26, 5-15

EXEC 3, 3-9

EXEC S8, 5-3

EXEC9, 5-10

signal subroutines, 13-5
A990 firmware, upgrade for EMA/VMA, 9-14
abort, I/O request, programmatic, 3-11
AbortRq call, 3-11
allocating, secondary SHEMA areas, 9-16
APOSN (position a disk file) routine, C-1
APOSN (postition disk file) routine, B-9
A-Register, return, 1-4

environment variable block, 14-4

B-Register return value, 1-4
backing store file, 9-2
bit bucket, 4-13, 4-22
breakflag test, IFBRK routine, 7-11
buffer

DCB, 8-2

user, 8-8
buffered 1/O, 4-4

REIO routine, 3-10
buffered operation, 3-2

Cc

Calc_Dest_Name, 8-14
call formats
EXEC, 1-3
system library, 1-3
CD (code segment) command, 10-2
CDS
code mixing, 10-5
converting programs to, 10-5
FORTRAN conversion to, 10-6
no automatic conversion, 10-5
no more data space, 10-7
non-CDS code mixing, 10-5
Pascal conversion to, 10-6
programming, 10-1
programs, 10-1
CHNGPR, change program priority, 5-4
ClI files, accessing, 8-4
Class Get
See also EXEC 21
parameters, 4-18
Class 1/0, 4-1
buffer use, 4-25
buffered, 4-4
completion (SglIO), 13-4
control parameters, 4-26
Get call format, 4-11
nonbuffered, 4-4
operation, 4-3
programming examples, 4-5
Read call format, 4-14
rethread example, 4-29
rethread request format, 4-25
rethread uses, 4-25
terms, 4-2
Write call format, 4-14
Write/Read call format, 4-15
class number
A-Register returns after acquiring, 4-14
Class Get, 4-19
in a rethread request, 4-28
class parameter
EXEC 17, 4-11
EXEC 18, 4-11
EXEC 20, 4-11
cleaning up open files, F-1
how clean-up is done, F-2
ClI files, F-2
CI temporary files, F-2
FMGR files, F-3
FMGR temporary files, F-4

Index-1

CLGON, and EVBs for programmatic sessions,
14-5

clock, real-time operation, 6-1

CLOSE (close a file), B-7, C-2

CLRQ
class management request format, 4-8
example, 4-10
parameters, 4-8
processing, 4-10
system library routine, 5-6

CLSVM, 9-43

CNUMD, CNUMO, DCVT, binary to ASCII con-

version, 7-11
code and data separation (CDS). See CDS
code partition, 10-2
code segment errors, A-5
command
AT, 5-6
OF, 5-6
RU, 5-6, 5-8
TM™, 6-1, 6-2, 6-6
XQ, 5-6, 5-8
control word, parameter
EXEC 13, 3-12
rethread request, 4-25
converting, programs to CDS, 10-5
FORTRAN, 10-6
general considerations, 10-5
not automatic, 10-5
Pascal, 10-6
converting FMGR file calls, B-1
CPUID, get CPU identification, 7-9
CPUT, put character into buffer, 7-18
CRDC (dismount a cartridge), C-3
CREAT (create a file), B-8, C-4
CRETS (create a scratch disk file), B-8, C-5
CREVM, 9-41
CRMC (mount a cartridge to the system), C-6

D

data control block (DCB), 8-2
data partition, 10-3
data passage synchronization, 4-1
data space, CDS, 10-7
DCB. See data control block
DcbOpen, 8-14
dead lock. See deadly embrace
deadly embrace

and LURQ, 2-10

and RNRQ, 2-7
declaring, EMA, 9-15
DELAY in EXEC 12, 6-2
device

driver errors, A-10

error recover, 3-2

errors, 3-2

status, 3-2, 3-12
DispatchLock, 12-2
DispatchUnlock, 12-2
DOWNLOAD program, 9-14, 9-20

Index-2

DS, 8-2

and FMP calls, 8-87

and FMP routines, 8-87

node, 8-4

user, 8-3
DsCloseCon, 8-88
DsDcbWord, 8-88
DsDiscInfo, 8-89
DsDiscRead, 8-89
DsFstat, 8-90
DsNodeNumber, 8-90
DsOpenCon, 8-91
DsSetDcbWord, 8-91

E

EAPOS (extended range positioning), C-7
ECLOS (extended close), C-7
ECODE
in EXEC 22, 5-13
in EXEC 26, 5-14
in EXEC 8§, 5-2
in EXEC 9, 10, 23, 24, 5-8
EIOSZ subroutine, 9-24
ELOCF (extended LOCF), C-9
EMA
declaration, 9-15
programming, 9-15
shareable EMA, 9-5, 9-6
EMA/VMA
firmware, A990 upgrade, 9-14
models, 9-14
subroutines, 9-17
FMGR VMA subroutines, 9-17
I/O management subroutines, 9-17, 9-21
information subroutines, 9-17, 9-18
mapping management subroutines, 9-17
shareable EMA subroutines, 9-17, 9-26
VMA file subroutines, 9-17
EMA/VMA programming, 9-1
EMAST subroutine, 9-18
environment buffer, RTE-A signals, 13-12
environment variable access
A-Register return, 14-4
deleting a variable, 14-3
from programmatic sessions, 14-5
getting the value of a variable, 14-2
retrieving modification count, 14-3
setting a variable, 14-2
EPOSN (extended range positioning), C-10
EQLU, interrupting LU query, 7-10
EREAD (extended range read), C-10
error
code segment, A-5
codes, 8-8
FMP, A-14
VMA/EMA, A-11
dispatching, A-4
Group II, A-1
Group 111, A-4
Group IV halt, A-8

Group V interrupt, A-9 A- and B-Register returns, 7-4

Group VI device driver, A-10 parameters, 7-3
Group VII parity, A-10 procedures, 7-4
Group VIII VMA/EMA, A-11 string passage call, 7-3
handling, signal subroutines, 13-5 usage, 7-4
I/O, A-7 EXEC 17
1000, 4-9 A- and B-Register returns, 4-13
1004, 4-3, 4-13, 4-24, 4-26, 4-27 call format, 4-11
1010, 4-4 key word parameter, 4-11
logging parameters, 4-12
determine if enabled, 7-13 UV user variable, 4-13
start/stop, 11-7 EXEC 18
memory protect, A-2 A-and B-Register returns, 4-13
messages, A-1 call format, 4-11
option, A-6 key word parameter, 4-11
returns on FMP calls, 8-8 parameters, 4-12
SCO03, A-4 UV user variable, 4-13
SCO0s, 5-3 EXEC 19
SCoe6, 5-3 A- and B-Register returns, 4-24
SC10, 5-11, 7-4 control call format, 4-22
SR, A-3 1/O device control, 4-22
EVO02 error, 14-1 optional parameters, 4-23
EWRIT (extended file write), C-11 parameters, 4-22
example EXEC 20
Class I/O programming examples, 4-5 A- and B-Register returns, 4-13
Class I/O to a terminal, 4-17 call format, 4-11
class rethread, 4-29 key word parameter, 4-11
CLRQ, 4-10 parameters, 4-12
EXEC 12 UV user variable, 4-13
absolute start time, 6-6 EXEC 21
initial offset scheduling, 6-3 A- and B-Register returns, 4-21
EXEC 6, 5-7, 5-15 Class I/O Get, 4-18
EXEC9, 10, 23, 24, 5-12 optional parameters, 4-20
GETST, 7-6 parameters, 4-18
RMPAR usage, 7-2 SC save class bit, 4-19
using VMA file subroutines, 9-40 transmission log, 4-19
EXEC EXEC 22, program swapping control, 5-13
call formats, 1-3 EXEC 23, 5-9
call spooling, 11-1 EXEC 24, 5-9
error processing, 1-4 EXEC 26
EXEC 1 and 2 A- and B-Register returns, 5-15
A- and B-Register returns, 3-5 memory size request, 5-14
optional parameters, 3-5 parameter relationships, 5-15
read and write request, 3-3 EXEC 29, retrieve ID segment address, 5-16
read/write parameters, 3-4 EXEC3
read/write request, 3-5 A- and B-Register returns, 3-9
EXEC 11 1/O device control, 3-8
parameters, 6-1 I/O device control parameters, 3-9
time-retrieval request, 6-1 optional parameters, 3-9
EXEC 12 EXEC 37, 13-5
initial offset scheduling, 6-2 See also RTE-A signals
parameters, 6-2 EXEC 38, 13-28
timed execution, absolute start time, 6-4 See also Timer signals
timed execution, initial offset, 6-2 A- and B-Register returns, 13-29
EXEC 13 parameter relationships, 13-28
A- and B-Register returns, 3-16 EXEC 39, 14-1
device status, 3-12 EXEC6
device status parameters, 3-13 call format, 5-5
optional parameters, 3-15 optional parameters, 5-5
status request, 3-13 parameters, 5-5
EXEC 14 stop program execution, 5-5

Index-3

EXEC 7, program suspend, 5-8
EXEC 8§
A- and B-Register returns, 5-3
overlay load, 5-2
parameters, 5-2
EXEC9, 10, 23, 24
A- and B-Register returns, 5-10
optional parameters, 5-11
parameters, 5-9
program schedule calls, 5-8
scheduling differences, 5-9
extended
EMA/VMA model, 9-14
REIO call (XREIO), 3-11
extended memory area. See EMA
extensions, file type, B-13

F

FattenMask, 8-15
FCONT (Type 0 file control), C-11
file
descriptor, 8-2
in Macro, 8-6
in Pascal, 8-5
directory, 8-1
file and directory names, B-1
File Manager (FMGR), 8-1
file support, type 12 files, G-1
file type extensions, B-13
files, 8-1

firmware, EMA/VMA for A990, 9-14

fixed-length strings, 8-4

FMGR calls, C-1
APOSN, C-1
CLOSE, C-2
CRDC, C-3
CREAT, C-4
general considerations, B-1

FMGR files, B-12
CRETS, C-5
CRMC, C-6
EAPOS, C-7
ECLOS, C-7

ECREA (extended file create), C-8

ELOCF, C-9
EPOSN, C-10
EREAD, C-10
EWRIT, C-11
FCONT, C-11
FSTAT, C-12
IDCBS, C-13
INAMR, C-13
LOCF, C-14
NAME, C-15
NAMR, C-16
OPEN, C-18
OPENF, C-22
POSNT, C-25
POST, C-26
PURGE, C-26

Index-4

READE, C-27
RWNDE, C-30
WRITE, C-30
XQPRG, C-32
XQTIM, C-34
FMGR VMA file routines, 9-41
CLSVM, 9-43
CREVM, 9-41
OPNVM, 9-42
PSTVM, 9-43
PURVM, 9-43
VREAD, 9-44
VWRIT, 9-45
FMP
calls, error returns, 8-8
calls and DS, 8-87
calls and FMGR files, B-12
error codes, A-14
example
advanced, 8-94
mask, 8-93
programs, 8-92
read/write, 8-92
FMP routines, 8-1
calling sequence and parameters, 8-1
descriptions of, 8-10
example programs, 8-92
advanced FMP, 8-94
mask, 8-93
read/write, 8-92
use with DS, 8-87
FmpAccessTime, 8-15
FmpAppend, 8-16
FmpBitBucket, 8-16
FmpBuildHierarch, 8-17
FmpBuildName, 8-18
FmpBuildPath, 8-19
FmpCloneName, 8-20
FmpClose, 8-21
FmpControl, 8-21
FmpCopy, 8-22
A option, 8-22
B option, 8-22
C option, 8-22
D option, 8-22
N option, 8-22
P option, 8-22
Q option, 8-22
T option, 8-22
U option, 8-22
FmpCreateDir, 8-24
FmpCreateTime, 8-24
FmpDcbPurge, 8-25
FmpDevice, 8-25
FmpDismount, 8-26
FmpEndMask, 8-26
FmpEof, 8-27
FmpError, 8-28
FmpExpandSize, 8-28
FmpFileName, 8-29
FmpFpos, 8-29, G-1

FmpHierarchName, 8-30
Fmplnfo, 8-31
FmplnitMask, 8-31
Fmplnteractive, 8-32
FmploOptions, 8-32
FmploStatus, 8-33
FmpLastFileName, 8-33
FmpList, 8-34
FmpListX, 8-35
FmpLu, 8-36
FmpMakeSLink, 8-37
FmpMaskName, 8-37
FmpMount, 8-38
FmpNextMask, 8-39
FmpOpen, 8-40

C option, 8-42

D option, 8-42

E option, 8-42

F option, 8-42

I option, 8-43

L option, 8-43

N option, 8-43

n option, 8-44

Q option, 8-43

S option, 8-43

T option, 8-43

U option, 8-44

X option, 8-44
FmpOpenFiles, 8-45
FmpOpenScratch, 8-45
FmpOpenTemp, 8-47
FmpOwner, 8-48
FmpPackSize, 8-49

FmpPagedDevWrite, 8-49

FmpPagedWrite, 8-50
FmpPaginator, 8-51
FmpParseName, 8-52
FmpParsePath, 8-53
FmpPosition, 8-55
FmpPost, 8-56
FmpPostEof, 8-56
FmpProtection, 8-57
FmpPurge, 8-57
FmpRawMove, 8-58
FmpRead, 8-58
FmpReadLink, 8-60
FmpReadString, 8-60
FmpRecordCount, 8-61
FmpRecordLen, 8-62
FmpRename, 8-63
FmpReportError, 8-64
FmpRewind, 8-64
FmpRpProgram, 8-65
FmpRunProgram, 8-67
FmpRwBits, 8-68
FmpSetDcblnfo, 8-68
FmpSetDirlnfo, 8-69
FmpSetEof, 8-70
FmpSetFpos, 8-70, G-1
FmpSetloOptions, 8-71
FmpSetOwner, 8-72

FmpSetPosition, 8-72

FmpSetProtection, 8-73

FmpSetWord, 8-74

FmpSetWorkingDir, 8-75

FmpShortName, 8-75

FmpSize, 8-76

FmpStandardName, 8-76

FmpTruncate, 8-77

FmpUdspEntry, 8-78

FmpUdsplnfo, 8-78

FmpUniqueName, 8-79

FmpUnPurge, 8-79

FmpUpdateTime, 8-80

FmpWorkingDir, 8-81

FmpWrite, 8-82

FmpWriteString, 8-83

formatted ASCII time message, FTIME, 6-7
FORTRAN, conversion to CDS, 10-6
FSTAT (retrieve system cartridge list), C-12
FTIME, formatted ASCII time message, 6-7

G

GETST, 5-11

recover parameter string, 7-5
GOPRY, 12-1
Group II errors, A-1
Group III errors, A-4
Group IV halt errors, A-8
Group V interrupt errors, A-9
Group VI device driver errors, A-10
Group VIII errors, A-11

H

HLT errors, A-8
hours in EXEC 12, 6-5
HpGetTZ, get system time-zone offset, 6-7

1/O
and swapping, 3-2
control with EXEC, 3-1
errors, A-7

extended logical unit EXEC (XLUEX), 3-10

requests nonbuffered, 3-1

transfers to/from the VMA/EMA, 9-21, 9-24

without wait
advantages, 4-2
definition, 4-1
ID, segment, 8-65
address, retrieving (EXEC 29), 5-16

IDCBS (retireve number of DCB words), C-13

IDGET, retrieve ID segment address, 7-14
IDINFO, return ID segment information, 7-15
IFBRK, break test, 7-11

IFTTY, interactive LU test, 7-12
INAMR routine, C-13

initial offset, EXEC 12, 6-2
initializing, spool system, 11-4

Index-5

INPRS, inverse parse buffer conversion, 7-8 MaskOIldFile, 8-85
MaskOpenld, 8-85

K MaskOwnerlds, 8-85
MaskSecurity, 8-86
KCVT binary to ASCII conversion, 7-11 memory protect errors, A-2
KEYNUM memory size, request, EXEC 26, 5-14
Class I/O rethread request, 4-25 MESSS, message processor interface, 7-12
EXEC 17, 4-11 midnight 24-hour format for EXEC 12, 6-2
EXEC 18, 4-11 mixing
EXEC 19, 4-22 CDS code, 10-5
EXEC 20, 4-11 non-CDS code, 10-5
KHAR MMAP subroutine, 9-52
character manipulators, 7-17 models, EMA/VMA, 9-14
get next character, 7-18 modification count, 14-3
KillTimer, 13-27
N
L name in EXEC 12, 6-2, 6-4
large EMA/VMA model, 9-14 NAMF (rename a file), B-11, C-15
level 1 routines, definition, A-3 namr
level 2 routines, definition, A-3 calls, B-2
level 3 routines, definition, A-3 strings, B-2
level 4 routines, definition, A-3 NAMR routine, C-16
LIMEM no-abort bit, A-4
calls, 2-13 clear error return, A-6
details, 2-14 ECODE parameter, 4-13, 4-22
find memory limits, 2-13 errors Group 111, A-4
LKEMA subroutine, 9-5, 9-26 in EXEC error returns, A-1
LOCEF routine, B-9, C-14 LURQ, 2-9
locking, VMA pages/buffers, 9-24 signal subroutines, 13-5
LOCKVMA subroutine, 9-24 no-suspend bit, signal subroutines, 13-5
LOCKVMA2BUF subroutine, 9-24 no-wait bit definition, 4-3
LOCKVMABUEF subroutine, 9-24 nonbuffered I/O, 3-1
logging non-disk (type 0) files, 8-8
determining if enabled, 7-13 normal EMA/VMA model, 9-14
messages, send, 7-13 number conversion, 7-11
logical NW no-wait bit
memory, 9-2 class get, 4-27
read, 8-8 Class I/O operation, 4-3
transfer, 8-8 CLRQ, 4-8
logical unit. See LU definition, 4-3
LOGTIT, send logging message, 7-13 EXEC 17, 4-12
LOGLU, get LU of invoking terminal, 7-9 EXEC 18, 4-12
LU EXEC 19, 4-23
lock, LURQ, 2-8 EXEC 20, 4-12
locking, A-7 EXEC 21, 4-18
output file to, 11-3
start or redirect spooling, 11-2 o
stop spooling, 11-3
LURQ, 2-8, 5-5 OCLAS, definition, 4-25
and deadly embrace, 2-10 often in EXEC 12, 6-3, 6-4
parameters, 2-9 open files, cleaning up, F-1
OPEN routine, B-4, C-18
M OPENF routine, B-4, C-22
OPNVM, 9-42
Macro, 8-6 option errors, A-6
mailbox I/O, definition, 4-1 optional parameters
mapping segment size (MSEG), 9-2 EXEC 1 and 2, 3-5
MaskDiscLu, 8-83 EXEC 19, 4-23
MaskIsDS, 8-84 EXEC 21, 4-20
MaskMatchL evel, 8-84 EXEC 3, 3-9

Index-6

EXEC 6, 5-5
EXEC 8§, 5-2
EXEC 9, 10, 23, 24, 5-11
SEGLD, 5-3
order of precedence RNRQ control word, 2-4
overlay
load
EXEC 8§, 5-2
SEGLD, 5-3
loading, 5-1

P

page

fault, 9-2, 9-25

table, 9-2
parameter, passing and conversion, 7-1
parameters

CLRQ, 4-8

EXEC 1 and 2, 3-4

EXEC 11, 6-1

EXEC 12, 6-2

EXEC9, 10, 23, 24, 5-9

LURQ, 2-9

status request, 3-12
parity, error, A-10
PARSE

parse a parameter, 7-7

parse input buffer, 7-7
partition

code, 10-2

data, 10-3

program considerations, 9-6

shareable EMA, 9-5
Pascal, conversion, CDS, 10-6
physical, read, 8-8
PNAME, 7-14
polling, 4-21
POSNT routine, B-9, C-25
POST (post the DCB to a file), C-26
primary entry point, 5-5
privileged operation, 12-1

guidelines, 12-4

nesting, 12-4

system impact, 12-4
program

control, 5-1

ID segment, 8-65

name with PNAME, 7-14

types, E-1

violation, SglVio, 13-2
program-to-program communication, 4-11, 4-15
programmatic abort, 3-11

programmatic environment variable access, 14-1
A-Register return, 14-4
deleting a variable, 14-3
getting the value of a variable, 14-2
retrieving modification count, 14-3
setting a variable, 14-2

programmatic spooling, 11-1

programming with VMA and EMA, 9-14

prototype ID segments, 8-65

PRTM, 7-1

PRTN, 7-1

PSTVM, 9-43

PURGE routine, B-11, C-26

purging, a spool file, 11-5

PURVM, 9-43

Q

QueryTimer, 13-27
queue suspended (QU), 5-6
queued program scheduling, 5-1

R

race conditions and RNRQ, 2-6
RBUFR
in INPRS, 7-8
in PARSE, 7-7
RCODE EXEC 14, 7-3
READF routine, B-6, C-27
real values in user buffer and buffer length, 4-19
real-time, clock, operation, 6-1
register
A-and B-Register return values, 1-4
usage, 1-4
REIO (buffered 1/0), 3-10
resource management, 2-1
resource number, considerations, 2-5
resource sharing with RNRQ, 2-1
restart a spool file, 11-5
rethread bit, 4-18, 4-27
rethread request, 4-25
format, 4-26
parameters, 4-26
retrieve line length of all files, 11-7
retrieve spool file status, 11-6
RMPAR
in EXEC 9, 10, 23, 24, 5-11
recover parameters, 7-2
system library routine, 5-2
RN. See resource number
RNRQ, 2-1
and race conditions, 2-6
control word, 2-4
deadly embrace, 2-7
order of precedence, 2-4
resource number considerations, 2-5
sequence, 2-3
RT rethread bit, 4-18, 4-27
RTE-A signals, 13-1
available, 13-1

Index-7

blocking signals, 13-15 program considerations, 9-6

environment buffer, 13-12 using, 9-5
introduction to, 13-1 SHEMA. See shareable EMA
sending signals, 13-15 signal service subroutines, 13-5, 13-6
SgllO (Class 1/O completion), 13-4 A- and B-Register returns, 13-5
SglVio — program violation, 13-2 error handling, 13-5
timer completed — SglAlrm, 13-3 no-abort/no-suspend bits, 13-5
Timer subroutine calling sequences, 13-27 signals. See RTE-A signals
user definable (SglUsr1 and SglUsr2), 13-3 sleep and Class Get, 4-21
RTE-A spool file
overview, 1-1 purge, 11-5
VC+ System Extension Package, 10-1 restart, 11-5
RteAllocShema, 9-27, 9-30 status retrieve, 11-6
RteErrLogging, 7-13 spool system
RteExtendedEYV, 9-20 EXEC calls, 11-1
RtePrimeShInfo, 9-31 initialize, 11-4
RteRenameShema, 9-31 terminate, 11-4
RteReturnShema, 9-29, 9-30 SPOOLINFO record format, 11-9
RTN1 optional parameter EXEC 21, 4-18 spooling
RTN2 optional parameter EXEC 21, 4-18 initialize, 11-4
RTN3 optional parameter EXEC 21, 4-18 output, 11-3
RWNDF (rewind a file or device), C-30 programmatic, 11-1
purge, 11-5
restart, 11-5
S retrieve file status, 11-6
SB save class buffer bit retrieve line length of all files, 11-7
Class Get, 4-27 returned parameters, 11-8
EXEC 17, 4-12 start, 11-2 .
EXEC 18, 4-12 s:Ear‘[/slt?p3 error logging, 11-7
- stop, 11-
E§58 %g’ i_%g system EXEC calls, 11-1
EXEC 21: 4-19 terminate, 11-4

SR error, A-3

SC save class number bit, 4-19 stack and heap area, 10-3

scheduling, a program, 5-1

secondary SHEMA areas, 9-16 standard I/O requests, 3-1
security violations, 1-4, A-4 start[stop error logging, 11-7
SEGLD starting, spooling, 11-2

optional parameters, 5-3 §¥2¥%’ g'g

overlay load, 5-3 >
SEGRT S;TAT.3 and STAT4 parameters, 3-16

details, 5-4 StoppIng :

return to main from overlay, 5-4 a program, using EXEC 6, 5-7
set the passage, EXEC 14, 7-3

3 string passage, , 7-

Syr;fgniettl‘;fg SAE6TTM’ 63 subroutine, VMA/EMA, 9-14

SETDB, set up destination buffer, 7-17 suspended

queue (QU), 5-6

SETSB, set up source buffer, 7-17 wait (WT), 5-6

SetTimer, 13-27

SETTM, set system time, 6-8 swapping, blocking of, 5-13

SglAlrm (timer completed), 13-3 SYCON, 3-7

SglIO (Class 1/O completion), 13-4 System Available Memory (SAM), 5-5
SglUsr1 and SglUsr2 (user definable), 13-3 system common, and SHEMA examples, 9-8
SglVio (program violation), 13-2 system library, 1-3

SH (shareable EMA) command, LINK utility, 9-7 call formats, 1-3

shareable EMA, 9-5 system time, 6-8

allocating secondary, 9-16 system time-zone offset, 6-7

declaration, 9-6

partition T
considerations, 9-7
lock—LKEMA subroutine, 9-26 temporary files, definition of, F-1
unlock—ULEMA subroutine, 9-26 terminating, spool system, 11-4

Index-8

termination, abnormal, 5-9
time

operation requests, 6-1

return to calling program, FTIME, 6-7
time-zone offset, 6-7
timeout, parameter, Class Get, 4-18
timer

completed (SglAlrm), 13-3

signals, 13-26

See also EXEC 38

subroutine, calling sequences, 13-27
transferring, data to/from files, 8-8
transmission log, EXEC 21, 4-19
type 12 file support, G-1
type extensions, B-13

U

ULEMA, 9-5
unlock a shareable EMA partition, 9-26
units in EXEC 12, 6-2, 6-5
UNPRY, 12-1
user, buffer, 8-8
UV user variable
EXEC 17, 4-11
EXEC 18, 4-11
EXEC 20, 4-11
EXEC 21, 4-18

\'}

VC+ System Extension Package, 10-1
virtual memory
1/O transfers, 9-21
initialized, 9-32
mapping segments (MSEG,VSEG), 9-2
page fault, 9-2
page table, 9-2
working set, 9-2
virtual memory area. See VMA
VMA file subroutines, 9-32
examples, 9-40

VMACLOSE, 9-36
VMAOPEN, 9-33
VMAPOST, 9-35
VMAPURGE, 9-35
VMAREAD, 9-36
VMAWRITE, 9-38
VMA routines, FMGR VMA file routines, 9-41
VMA/EMA
firmware, A990 upgrade, 9-14
models, 9-14
programming, 9-1
VMA/EMA mapping mgmt. subroutines, 9-46,
9-51, 9-52, 9-53
.EMIO, 9-55
IMAP, 9-48
IRES, 9-49
JMAP, 9-50
.LBP, .LBPR, 9-54
.LPX, .LPXR, 9-54
VMAIO subroutine, 9-21
VMAST subroutine, 9-19
VREAD subroutine, 9-44
VWRIT subroutine, 9-45

w

wait, WT suspended, 5-6, 5-9

WildCardMask, 8-86

working set, 9-2

WRITF (write a record to a file or device), C-30
WRITF routine, B-6

X

XLUEX (I/O extended logical unit EXEC), 3-10
XQPRG (load and execute a program), C-32
XQTIM (time schedule a program), C-34
XREIO (extended REIO), 3-11

y4
ZPUT, store a character string, 7-18

Index-9

	Title Page
	Preface
	Table of Contents
	Chapter 1 - Introduction
	Functional Grouping of Library Routines
	ASCII/Integer conversion subroutines
	Bit Map Manipulation
	Buffer and String Manipulation
	Command Stack
	Error Handling
	I/O
	Interprocess Communication
	Machine-Level Access
	Math
	Multiuser
	Parsing
	Privileged Operation
	Program Control
	Resource Management
	System Status
	Time Operations

	Chapter 2 - Resource Management
	Chapter 3 - Standard I/O
	Chapter 4 - Class I/O
	Chapter 5 - Program Control
	Chapter 6 - Time Operation Requests
	Chapter 7 - Parameter Passing and Conversion
	Chapter 8 - FMP Routines
	Chapter 9 - VMA and EMA Programming
	Chapter 10 - CDS Programming
	Chapter 11 - Programmatic Spooling
	Chapter 12 - Privileged Operation
	Chapter 13 - RTE-A Signals
	Chapter 14 - Programmatic Environment Variable Access
	Appendix A - Error Messages
	Appendix B - Converting FMGR File Calls
	Appendix C - FMGR Calls
	Appendix D - HP Character Set
	Appendix E - Program Types for RTE-A
	Appendix F - Cleaning Up Open Files
	Appendix G - Converting Programs for Type 12 Support
	Index

