A paciars

RTE-A

System Design Manual

Software Services and Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 92077-90013 Printed in U.S.A. April 1995
E0495 Seventh Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1983, 1985-1987, 1989-1990, 1992-1993, 1995 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-in-
serted update information. New editions of this manual will contain new information, as well as all updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File. (The Manual Numbering File is included with your software. It consists of an
“M” followed by a five digit product number.)

Second Edition Jun 1983 File System & VC+ Enhancement
Third Edition Jan 1985 System Module Partitioning &
User-Definable Directory Search Path
Enhancements
Update 1 Jan 1986 ...
Reprint Jan 1986 Update 1 Incorporated
Fourth Edition Aug 1987 Revision 5000 (Software Update 5.1)
Update 1 Jan 1989 Software Revision 5.1 (5010)
Update2 July 1990 Software Revision 5.2 (5020)
Fifth Edition Dec 1992 Software Revision 6.0 (6000)
Sixth Edition Nov 1993 Software Revision 6.1 (6100)
Seventh Edition Apr 1995 Software Revision 6.2 (6200)

3/4

Preface

This manual describes the RTE-A Operating System. It is designed to provide information that
will help you to configure a new operating system and to troubleshoot system difficulties.

Who should read this manual?
Anyone requiring information on system data structures, system memory utilization, functions

performed by system modules, and other system generation and system installation
considerations.

5/6

Table of Contents

Chapter 1
System Overview
INtroductiono e 1-1
Program Management e 1-2
Real-Time and Background Programs i, 1-3
Large Programsttt e e 1-4
Program Swappingt e 1-5
Program Development i e 1-5
Memory Managementoutnt ittt e 1-6
Program Partitions i 1-6
System COMMON . ..ottt ettt e et e e e ettt 1-6
System Available Memory (SAM)t 1-7
Extended System Available Memory (XSAM)ot 1-7
System Tableso e 1-8
User INteractionoo. ittt e e e 1-9
System Boot Up e 1-10
I/O Managementttt e e 1-11
I/O DIIVETS .ottt 1-12
/O Bufferingo 1-13
I/JO Without Wait 1-13
Direct MEmOTY ACCESS . ..ottt et e e e e e e e 1-14
Buffer Limits 1-14
Disk Mappingot e 1-15
File Managementttt e e 1-15
Serial and Random File Accessot 1-16
Shared Files o 1-17
Disk Volumes 1-17
FMGR File Securityottt e 1-18
FMGR File Cartrid@escuutiniit et et 1-18
Chapter 2
Memory Management
INtroductiono e 2-1
Dynamic Mapping SySte€mttt e 2-1
User Partitionst e e 2-3
Power Fail Storage Areaottt e 2-7
System Available Memory (SAM)ttt e 2-7
SAM Managementttt e 2-8
/O Buffering 2-9
Class I/O ... 2-9
String Passageot 2-10
SPoOl NOES . ..o 2-10
Typical SAM Requirementc.uiiniinninnen i, 2-10
Extended System Available Memory (XSAM) 2-10
SIgnals .. 2-11
UDSP/LU Bit Maps . . . oottt e e e e 2-11

Prototype ID Segments i e 2-12

System Message Block e 2-12
System Common Partitionc.iiiiti i e 2-13
System Tablest e 2-13
OS/Driver Partition 2-14
System Partitiono e 2-14
Privileged and Non-Partitioned Drivers oo, 2-14
Non-Partitioned System Modules 2-15
Chapter 3
Programs and Partitions
Program Priority Boundary 3-1
Partition Assignment for Real-Time Programs 3-1
Partition Assignment for Background Programs oL 3-2
TIMESHCING . . oottt e e e e e 3-2
Program Overlaysot 3-3
CDS Program SErUCLUTEottt ettt et e e et et et et 3-3
Shared Programs oot e 3-4
Managing User Partitionsttt it 3-5
Allocating Reserved Partitions i 3-5
Allocating Dynamic MEmOTIYc.iintin it 3-5
First Choice 3-6
Second ChOICEttt e e 3-6
Restarts e 3-7
Program Loading and Swappingi it e 3-8
Program Partition Deadlock 3-8
Chapter 4
System Boot-Up
BOOTEX FUNCLIONS . ..ttt ittt e e e e e e e et 4-2
Start-Up Program Functions i e 4-2
Chapter 5
Operating System Modules
INtroductiono e 5-1
BID R P . .. 5-1
B Y S A 5-3
ABORT .. 5-3
AL A RM 5-3
CDSEFH .. 5-4
CHECK . .. e e 5-4
CLAS S . o 5-4
DS 5-4
BNV RN L e 5-5
ERLOG . .o 5-5
EXEC e 5-5
DD s e 5-5
IOMO D . 5-6

TO R . 5-6
LOAD .. 5-6
LOCK .. 5-7
M A P S .. 5-7
M A P L 5-7
MEM RY . 5-7
M S G B .. 5-8
OPMSG . .o 5-8
PE R R . 5-8
PROGS .. 5-8
RITOA . . 5-8
S A L 5-9
SCHED . .. 5-9
SEC O . 5-9
SIGN L . . 5-9
SPOO L .. e 5-9
ST AT 5-10
STRING ..o e e 5-10
SY COM . . 5-10
TIME . . 5-11
UL .o e 5-11
VO R L 5-11
VE M A L 5-11
XOMNDD .o 5-11
RPL Modules e 5-12
Modules for A900 with %2ENVRN or Networking Products 5-13
Optional Modules e 5-13
Partitionable Modules e 5-14
The OS/Driver Partitiont 5-15
0 2 £ PP 5-15
Chapter 6
System Symbols and List Structures
System Symbolso e 6-1
LSS ot 6-2
Linear Linked Listst e e e 6-3
Circular Linked Listsottt e e 6-3
Lists with Offset Pointers i 6-4
Linear Doubly Linked Listsot 6-5
Circular Doubly Linked Lists i i 6-5
Chapter 7
I/0O Drivers
Chapter 8
System Common/Shared Subroutines
System COMMON . . .ottt ettt e e e e ettt ettt 8-1
Synchronizing Programs e 8-2
Generating System COMMONttt ittt e et 8-2

Relocation of Programs Using System Commono .. 8-3
Shared Subroutines i 8-4
Level 3 Shared Subroutines i 8-4
Level 2 Shared Subroutines i 8-4
Level 1 Shared Subroutines i 8-5
Guidelines for Using Shared Subroutines i, 8-5
Chapter 9
System Base Page and Link Words
System Base Page Format 9-1
Link Wordso 9-3
Generator Current Page Linking i 9-4
Base Page LinKing 9-5
Current Page Links in CDS Programsottt 9-5
Chapter 10
File System
File System Organizationoouuniininiiuneeineineineennenn. 10-1
FMP ROULINESttt e 10-2
Directory Organizationeueune ittt ettt 10-2
Disk Managementttt e 10-4
Record Lengths e 10-5
Symbolic Link Files (VC+ only) ...ttt i 10-5
FMGR FIlES . ..ot e 10-6
FMGR Cartrid@esottt e e e e e e 10-7
Differences between FMGR and RTE-A Files o oo, 10-7
RemoOte ACCESS . . oot 10-8
Chapter 11
System Tables
ID Segment e 11-2
ID Segment EXtEnsiOnst e 11-10
Resource Number Table o i e 11-11
Logical Unit Table e e e e 11-11
Device Table (DVT) oo e 11-12
Interface Table oo 11-14
Map Set Tableo e 11-19
Interrupt Table o 11-20
Class Table 11-21
Swap Descriptor Table e 11-22
Shareable EMA Table 11-23
SHEMA Association BIocks i 11-25
Cartridge DIr€CtOryttt e e e 11-26
Memory DeSCIiPtOrso vttt e e e e 11-27
Memory Descriptor Variables 11-27
Dynamic Memory Descriptorsoouiinninii i 11-28
Reserved Partition Memory Descriptorsc.ovvuneintnin i, 11-30
Shared Program Table o e 11-31

10

Multiuser Tableo 11-32

UserID Table e 11-32
Initial Entryo 11-34
LU Access Table and UDSP 11-35
Useof IDTable e 11-36
User ID Table Modification oot 11-37
Useof LUAccess Table e 11-37
Use of UDSPTable o e 11-37
User Configuration File i 11-37
Block 1 (Unique User Information) 11-39
Block 2—N (User. Group Information), 11-40
Group Configuration File 11-40
BloCk 1 .. 11-41
Blocks 2-N ..o 11-42
MASTERGROUP File e 11-42
MASTERACCOUNT File ...ttt 11-43
CDS TabIES . . oottt e e e 11-44
Language Message Address Table i 11-45
Chapter 12
FMP Tables
Disk Volume Header e e 12-1
Directory StruCturettt e e e e e 12-2
Root Directory Header/Trailer o i 12-4
Root Directory Entryo e 12-5
Directory Header/Trailer it 12-6
File Bntry . ..o 12-7
Subdirectory Entry o e 12-8
Extent Bntry e 12-9
Disk File DCB e e e 12-10
DCB Definitions for Type 12 Disk Files o .. 12-11
Device File DCB e 12-12
FMGR DIrectOriesttt et 12-13
FMGR Cartridge File Directory 12-13
FMGR Cartridge Header i i 12-13
FMGR Disk File Entry i e 12-14
FMGR File Extent Entry 12-15
Non-Disk File Entry e 12-16
FMGR Purged File Entry i 12-16
FMGR End-of-Directory Entry 12-16
Appendix A
Snapshot File Format
Header Record e e A-2
Total Entries (Word 1)o e A-2
System Entries (Word 2)t A-2
non-CDS System Libraries (Word 3)o A-3
SLCOM (WOrd 4) .o ee e e e e e e e e e e e A-3
SBCOM (WOTd 5) o oottt e e e e e e A-3
First Word Available After Common (Word 6)t .. A-3
System RPL Checksum (Word 7)o e A-3

11

Labeled Common Links On Base Page (Word 8) A-3

System ID Checksum (Word 9) e A-3

Labeled System Common Checksum (Word 10)t A-3

of CDS System Libraries (Word 11) i, A-3

Record # of first non-CDS Library Entry (Word 14) A-3

Record # of first CDS Library Entry (Word 15), A-4

Record # of first Base Page Entry (Word 17) i .. A-4
System ENtri€sottt e A-4

Word Contentsc..uiii i A-4
System LADTari€s oottt e e A-5

Word Contentsoui it A-5
Labeled Common Base Page Links A-5

Word Contentst A-5

Link Addressot A-5

List of lllustrations

Figure 1-1 Program Scheduling and Execution 1-2
Figure 1-2 Program Overlays i e 1-4
Figure 1-3 CDS Program Segmentsc.iuuiiniininenninenneneneennn. 1-4
Figure 2-1 Physical Memory 2-2
Figure 2-2 User Partition Memory Mapot 2-4
Figure 2-3 CDS Data Partitionot 2-4
Figure 2-4 CDS Code Partitioncouuiiinii i 2-5
Figure 2-5 System Linking of Free Memory in SAM 2-8
Figure 2-6 System Common Partition Memory Map 2-13
Figure 2-7 System Tables and Entry Points, 2-13
Figure 2-8 System Logical and Physical Partitions 2-15
Figure 3-1 Shared Programs i 3-4
Figure 6-1 System Pointer $IDA 6-2
Figure 6-2 Example of Linear Linked List 6-3
Figure 6-3 Example of Circular Linked List 6-4
Figure 6-4 Example of List with Offset Pointer 6-4
Figure 6-5 Example of Linear Doubly Linked List 6-5
Figure 6-6 Example of Circular Doubly Linked List 6-5
Figure 7-1 IJORequest Path 7-1
Figure 7-2 Buffered Request Exampleco i 7-2
Figure 7-3 Request Listson DVT and IFT o .. 7-3
Figure 9-1 Memory Map of System Base Page 9-1
Figure 9-2 Memory Usage for Current Page Links 9-4
Figure 11-1 ID Segment Format for Non-CDS Programs 11-3
Figure 11-2 ID Segment Format for CDS Programs 11-4
Figure 11-3 Words Appended to ID Segment Image In Type 6 File 11-9
Figure 11-4 Short ID Segment Format 11-9
Figure 11-5 Format of ID Segment Extension 11-10
Figure 11-6 Resource Number Table Format 11-11
Figure 11-7 LU Table Format i, 11-11
Figure 11-8 Device Table Format i i, 11-12
Figure 11-9 Interface Table Format 11-15
Figure 11-10 I/O Control Block i 11-17
Figure 11-11 Formatof Map SetTable 11-19
Figure 11-12 Interrupt Table Format iiiii.. 11-20
Figure 11-13 Trap Cells and the Interrupt Table 11-20

12

Figure 11-14
Figure 11-15
Figure 11-16
Figure 11-17
Figure 11-18
Figure 11-19
Figure 11-20
Figure 11-21
Figure 11-22
Figure 11-23
Figure 11-24
Figure 11-25
Figure 11-26
Figure 11-27
Figure 11-28
Figure 11-29
Figure 11-30
Figure 12-1

Figure 12-2

Figure 12-3

Figure 12-4

Figure 12-5

Figure 12-6

Figure 12-7

Figure 12-8

Figure 12-9

Figure 12-10
Figure 12-11
Figure 12-12
Figure 12-13
Figure 12-14
Figure 12-15

Table 1-1
Table 1-2
Table 5-1
Table 5-2
Table 8-1
Table 8-2
Table 8-3
Table 8-4

Class Table Format it 11-21
Class ID Word Formato i, 11-22
Swap Descriptor Table Format 11-22
Format of Shareable EMA Table i, 11-23
Format of SHEMA Association Block 11-25
Cartridge Directory Format 11-26
Dynamic Memory Descriptor Format 11-29
Format of Reserved Partition Memory Descriptor 11-30
Shared Program Table Format 11-31
User ID Table Entryot 11-33
UDSP Table Format, 11-35
User Configuration File 11-38
Group Configuration File Format 11-41
MASTERGROUP File Format oo, 11-42
MASTERACCOUNT File Format oo, 11-43
Code Segment and Segment Replacement Tables 11-44
Language Message Table Format 11-45
Disk Volume Header Format 12-1
Directory Structureoouiin i e 12-3
Root Directory Header/Trailer oo, 12-4
Root Directory Entry Format i ... 12-5
Directory Header/Trailer Format 12-6
File Entryo e 12-8
Subdirectory Entry 12-8
Extent Entry o 12-9
Disk File DCB e e 12-10
Disk File DCB for Type 12 Filescoo ... 12-11
Device File DCB e e e 12-12
FMGR Cartridge Header 12-13
Disk File Entry e 12-14
FMGR File Extent Entry 12-15
Non-Disk File Entry i 12-16
Tables
File TYpes oot e 1-16
FMGR File Protectioncoiiiiiiiiiiiiiiiiniinnnn. 1-18
EXEC Requests and Processor Modules 5-2
RTE-ARPLFIlest 5-12
Shared Subroutine Format - Levels3and2 8-6
Level 2 Subroutine with Parameters 8-7
Format of Level 1 Shared Subroutine 8-7
Level 3 Subroutine with Parameters 8-8

13

System Overview

Introduction

This chapter gives an overview of the RTE-A Operating System. It introduces the various
structures used by the A-Series computer software. The computer software is Real-Time Executive
(RTE) software that can be divided into two categories: operating system and user tasks.

The operating system is the software that manages the hardware, including the various
input/output (I/O) devices such as the user terminals, printers, and disks. Software that falls into
the second category is concerned with a particular application or job to be performed.

A real-time operating system, such as RTE-A, is designed for a wide variety of tasks. The system
permits tasks to be prioritized and allows tasks whose purpose is computation or display to co-exist
in the system with other tasks whose purpose is to control and react to measurements from
instruments. In addition, the number of simultaneous tasks permitted is not limited to the number
of user terminals. Thus, the real-time system enables the computer to respond to real-time stimuli
such as those in the measurement and control environment.

The RTE-A Operating System is more than just a computational resource; it is a task manager as
well. Thus the term executive is included in the name, Real-Time Executive operating system.

The fundamental unit of tasks (that is, the lowest level of user software managed by the system) is
the program. Therefore, task management reduces to program management.

The basic functions of the operating system are:

Program Management
Input/Output (I/O) Management
Memory Management

These functions are accomplished with extensive use of system tables. Tables in the system
maintain information about programs, I/O devices, system lists, and swap areas on a disk. The
lists link together those programs or I/O devices that are in a similar state.

Two important tables at this level are the program table (known in the system as the ID segment)
and the Device Table (DVT). An ID segment exists for each program that is ready to run and a
DVT exists for every device. Much of the job of the RTE-A Operating System is to examine and
change entries in the tables and link the tables into different lists as needed.

System Overview 1-1

Program Management

Program scheduling, execution, and the various program states are shown in Figure 1-1. A
program can be in one of the following states:

Dormant
Scheduled
Executing
Suspended

A dormant program is inactive in the system. It is moved out of the dormant state by being
scheduled, placed in a list waiting to be run. The program to be run next is dispatched and
executed. The cause of change of state from the dormant state may be:

A user request

A system request

A program request

An external event (for example, key pressed or relay closed)
Time to run (based on a system clock)

All programs are given a priority level, which is a number from 1 to 32767, with number 1 being
the highest priority. The schedule list is ordered by priority such that the program with the highest
priority (lowest number) is always at the top of the list.

The system has a clock that “ticks” at intervals of 10 milliseconds. At least every tick (it may be
more often), the system checks the priority of the executing program (if any) against the priority of
the program at the top of the schedule list. The highest priority program is put into the executing
state and is dispatched.

Suspend/
Wait
List

Execute
(Done) State

Dormant SPcheduIed
State rograms
List

Figure 1-1. Program Scheduling and Execution

1-2 System Overview

In the process of executing, the program may make a system request for a resource not
immediately available. For example, it may make a write request to the line printer while the
printer is busy with another request. Whenever a desired resource is not available, the program is
suspended until the resource becomes available. So, the program is taken out of the executing
state and placed into the suspend/wait list (which is broken down into several lists according to the
reason for suspension/wait).

After processing any request, successful or not, the system always returns to the schedule list for
the next program to be placed in the executing state. Thus, lower priority programs are permitted
to execute during the time that higher priority programs are suspended. However, when the
reason for suspension of the higher priority programs no longer exists, the lower priority program
is suspended and the higher priority program is allowed to continue execution.

Since programs may schedule other programs, all it takes to start any process is a single program.
The RTE-A Operating System allows the user to specify any program to be automatically
scheduled when the system is booted up. The system may or may not require any attention from a
user other than to turn on the power switch. The program scheduled at boot up may perform the
designated function and there is no need for any further user interface.

At the other end of the scale is the general purpose system, which is used to develop programs and
to implement systems such as the one mentioned above. A system can be used for both real-time
applications (that is, time dependent) and non time-critical functions (such as compiling
programs) by managing program priorities.

Real-Time and Background Programs

In RTE-A, real-time programs are generally those that must respond quickly to an instrument or
any external event. Background programs are those that are not time-critical. The difference,
however, is more than response to real-time stimuli.

To understand the difference between real-time and background programs, it is necessary to first
define program swapping. Program swapping is a capability that allows programs to execute in the
same portion of memory (the partition). Swapping is a system option. If available, then a
program in a partition may be suspended and moved to the disk and another program allowed to
use the partition. Later, the first program may be moved back to memory and allowed to
complete. From the time a program begins until the time it finishes, it is not guaranteed exclusive
use of the memory partition it runs in. Refer to the Program Swapping section in this chapter for
more information.

In RTE-A, the distinction between a real-time program and a background program is
accomplished through the priority that is assigned to the program. At generation time a priority
swap boundary is defined. As a result, priority swapped programs (real-time programs) tend to
stay in memory partitions. These programs can be removed only for higher priority real-time
programs to provide the quick response needed for real-time activities.

Programs with priorities below the priority swap boundary are background programs that are

swapped normally. That is, background programs contend on a priority basis for memory
partitions.

System Overview 1-3

Large Programs

Large programs can be handled with program overlays. The use of program overlays is one means
of making efficient use of memory in systems without the Code and Data Separation (CDS)
program feature provided in the optional HP 92078A Virtual Code+ (VC+) Package. Compilers
and other large programs are divided into overlays. Programs with overlays in the system may run
as either background or real-time programs. In systems with VC+, the CDS feature can be used
to divide the large program into segments automatically.

The large non-CDS program is divided into a program main and two or more program overlays.
The main and each overlay initially reside in separate areas on the disk. The main is loaded from
the disk at the start of the program area. The main, in the course of execution, may make a system
request to cause an overlay to be loaded into memory in the area behind the main. Program
overlays are illustrated in Figure 1-2. When the program code in the current overlay has finished
execution, it may return to the main or request that another overlay be loaded. Overlays may vary
in size.

High Memory
Program Program
Overlay Area\ Overlay Program Program g
> Area Overlay Overlay Overlay
Program
Main

Figure 1-2. Program Overlays

In systems with VC+, the CDS feature can be used to divide the large program into segments
automatically. Large CDS programs also can be segmented manually using LINK commands.
The large CDS program is divided into code segments, which execute in a code partition, and a
separate data partition. Each code segment is loaded into memory in a code block in the code
partition as shown in Figure 1-3.

Physical Memory Program File
T Code Block X Code Segment N
Code
Partition
l Code Block 0 [Code Segment 1
— | Code Segment 0
Data Partition |([¢————| Data Segment

Figure 1-3. CDS Program Segments

1-4 System Overview

Program Swapping

Program swapping is a technique used to allow executing programs to share memory. When one
program suspends, or when its allotted time (timeslice) is complete, it can be swapped out,
together with the data, to the swap area on disk. Then, another program can be copied in from the
swap area if it has been swapped out, or from the disk if it has just been scheduled.

For a CDS program, when it is suspended or its timeslice is complete, the data may be swapped
out so that another program can be loaded. The code portion of the program may be overwritten
without swapping in order to load another program from the disk.

The algorithms that control the search for memory for a program being dispatched use the
reserved memory-descriptor table and the dynamic memory-descriptor list. Refer to the reserved
partition and dynamic memory allocation sections in Chapter 3 for details.

To swap a program means to move a program from memory to a temporary (swap file) area of the
disk and move another program from the disk into the partition. The swap area is constructed by
the BOOTEX program and the size is defaulted to 32 pages times the number of ID segments
generated. Programs in the scheduled list appear to be running concurrently, although only one
program is executing at any one time.

When the program is swapped out to the disk, it is a snapshot or an image of the program as it

existed in memory. When it is swapped back from the disk, memory and CPU registers are
restored to the same conditions as existed before the swap, and it is allowed to continue execution.

Program Development

In any operating system, program development requires a basic set of software tools. The
software tools required and those available in RTE-A are given below.

1. A text editor, EDIT, to create and modify source files. The source files are written in the
language chosen for the program development.

2. An assembler or compiler; for example, FORTRAN or Pascal compiler. (Macro/1000
assembler is also available.) This determines the language in which the program is written.

The compiler or assembler accepts the source file as input and produces two output files:

a. A listing of the program, along with any error messages.

b. The program in relocatable binary code. This code is not executable in the system.
3. A process for producing a load module (that is, a file that is an executable program).
4. A debugger, Symbolic Debug/1000, to troubleshoot the program if any problem occurs.
In RTE-A, all executable programs are placed in program files by the LINK program. LINK
accepts a command file that contains, among other instructions, the input relocatable files and
what files to search for external references (to link modules together). The program file produced
by LINK contains a memory image of the program as it will appear when it is actually loaded into

memory. The file is loaded into memory when the program is run by a command available in the
Command Interpreter (CI) program or scheduled by an EXEC call.

System Overview 1-5

The first five characters of the file name normally become the name of the program when it is
loaded. However, the operator command RP can be used to set up multiple ID segments
(program tables) that identify the same program file with different names. That is, the name in
the ID segment is the program name, which may be different from the name of the file containing
that program.

Memory Management

Computer memory is one of the most valuable resources to be managed by the operating system.
Memory partitions, which are overlayable, make efficient use of memory space. Partitions are
made up of several contiguous pages of memory. Available memory also limits the maximum
program size of non-segmented (or non-overlayable) programs.

The RTE-A Operating System has a combination of fixed (called reserved) and dynamic memory
partitions. Only a program that is assigned to a reserved partition runs in that partition. Dynamic
partitions are created as needed from an area in memory called the dynamic memory pool. Refer
to Chapter 3 for more information on managing user partitions.

Program Partitions

User programs run in memory partitions, each partition occupied by one program at a time. With
the swapping option configured in the system, multiple programs may be swapped back and forth
between memory partitions and disk files.

System Common

System common refers to a shared data area. It may be shared by two or more programs. There
are two types of system common:

—Blank (unnamed)
—Labeled

Blank common is a storage area that is initialized to zeroes by the generator. Any names given to
the individual memory locations in blank common are unknown to the system itself.

Labeled common, however, is accessed by reference to the particular label or name assigned to
the storage area. There may be several names, representing one or more words of computer
memory. The purpose of system common is to contain subroutines and/or data to be shared by
two or more programs. Blank common, together with labeled common, makes up the block of
memory called system common. Values in labeled common may be initialized only at generation
time.

A program common area is also possible and should not be confused with system common.
Program common is also a shared data area but it may be shared only by the various parts of a
single program; that is, it is not shared by more than one program. Program common may also be
divided into a blank and labeled area.

1-6 System Overview

Whenever the size or content of system common is changed by the generator, all programs that
access that area should be checked to see if they require modification. All programs using system
common should be linked again when system common changes.

System Available Memory (SAM)

System Available Memory (SAM) is a block of memory that the system uses to implement system
requests that require memory space. SAM is used in the system for:

1. I/O Buffering
This is discussed in detail in the I/O Management section.
2. String Passage

String refers to a number of ASCII characters addressed to a program when it is scheduled.
The string generally contains parameters to be decoded by the program.

3. C(Class I/O

Class I/O is used to provide optional buffering of input and output requests and to provide
program-to-program communication.

The maximum size of SAM is determined at generation or bootup time. When a request is made
that requires memory, a contiguous block of memory locations is taken from SAM and allocated
for the request. When the request completes, the block is linked back to any adjacent free blocks
of SAM and is linked into the free SAM list. Thus the size of SAM is dynamic and, at times, the
largest contiguous block may be smaller than the total number of words available.

Programs making a request that requires SAM when none is available become memory suspended.
All memory suspended programs are in one list, which is ordered by program priority. When
memory is available, the program at the top of the list is permitted to execute if there is enough
memory to meet its requirements.

Extended System Available Memory (XSAM)

Extended System Available Memory (XSAM) is very similar to SAM. In fact it is possible to have
SAM and XSAM use the same block of memory (see the System Generation and Installation
manual for more detail). XSAM is used for memory requests that typically stay around longer
than I/O requests. One ID segment extension is allocated from the beginning of XSAM for each
ID segment in the system. XSAM is also used by:

1. Signals
XSAM is used in different manners for signals. Every program that receives signals must

have a Signal Control Block (SCB) and every signal that is generated uses a Signal Queue
Block (SQB). Also timer signals are queued in XSAM until they expire.

System Overview 1-7

UDSPs and LU access tables

User Defined Search Paths and LU access tables are stored together in one block of memory
per session. UDSPs tell the system where to look for commands that have been given. LU
access tables tell the system to which LUs a session can have access.

Prototype ID segments

The list of proto ID segments is kept in XSAM. Program ID segments are created quickly by
duplicating the appropriate proto ID.

SHEMA table entries and SHEMA Association Blocks

These are data structures related to shared memory areas.

The management of SAM and XSAM is identical. If SAM and XSAM occupy the same block of
memory, there is only one free list that describes the free memory of both.

System Tables

The purpose of the tables found in the memory map of the RTE-A system is briefly described
below. Details are given in Chapter 11 of this manual.

1.

Program Table (ID Segment)

The program table is commonly referred to as the ID segment. Each program must have an
ID segment before it can be scheduled. The ID segment identifies the program by name and
shows where it is in memory. If it is a disk resident program, it also identifies its location on
the disk. Several words are used for temporary storage by the system. For example, some
words are used to identify the state of the program (such as scheduled or suspended) and to
link the program in a list with other programs in the same state. There is also an ID segment
extension residing in XSAM for each ID segment; these hold less-frequently accessed data.

Several tables are related to I/O management. These are discussed below.

a. The Logical Unit Table (LUT) associates the LU to which a program makes a request to
the actual device. In fact, each entry in the LU table points to a particular DVT (device
table).

b. A Device Table (DVT) exists for each I/O device. The DVT identifies the device and its
state. The user request is inserted in the DVT prior to execution of the device driver.
Status information is passed back through the DVT when the request is completed.

c. An Interface Table (IFT) exists for each interface card in the computer. The IFT is used
to keep track of the current I/O request in progress. Several DVTs may be linked to a
single IFT, just as several devices may be cabled to one interface card.

d. The interrupt table is used by the system to identify which driver should handle the
interrupt. It specifies the IFT to be called to service the interrupt.

Class Numbers

Class numbers are used to implement buffering of input requests and to permit
program-to-program communication.

A table of class numbers is kept by the system and assigned to programs as they are
requested. Class numbers permit a variation of the normal I/O operation, one that is
associated with the program that makes the actual request. The concept of class I/O is to

1-8 System Overview

associate the request with a class number instead of the program. The class number may be
shared by several programs.

The actual class request is made in two steps: initiation of the request and completion of the
request. The same program or different programs can perform the two separate operations.

The I/O operations done on behalf of a specific class number are available only to those
programs that recognize the number. Thus different classes are isolated from one another.

A version of class I/O is called mailbox I/O. Mailbox I/O permits direct program-to-program
communication through the system buffer area.

4. Resource Numbers

A resource number table is kept by the system and resource numbers are assigned to
programs as they are requested. Resource numbers are useful only if they are shared by
cooperating programs. A resource number is typically claimed by a program prior to an
operation that requires coordination between programs. For example, if two programs are
updating the same file, each program attempts to claim the resource number prior to the
update. If the number is not already used, the program proceeds with the update. If another
program already claimed the number, then the program is forced to wait until the number is
released by the program using it.

5. Swap Descriptor

The swap descriptor table is a linked list of free swap areas of the swap file. It is used by the
dispatcher to locate an area of sufficient size to swap a program from memory to disk.

User Interaction

Since a system may be configured without any user terminal, it is up to the person who configures
the system to permit user interaction.

There are two uses for a terminal on the system:

1. One terminal may function as the virtual control panel (VCP). A switch on the interface card
for that terminal identifies it as the VCP.

2. The terminal may function as the communications device between a person and the operating
system or between a person and a user program.

The distinction is whether communication is with the computer itself or with the software running
in the computer. In VCP mode, the user effectively halts the computer. A user can display and
change the contents of registers and memory locations, and control execution from the VCP mode.
This is similar to a diagnostic mode although its use does not imply anything wrong with the
computer.

If a terminal has its interface card selected to operate as the VCP, then the VCP mode is entered
by pressing the BREAK key. Depending upon how the internal switches are set on the computer,
the power up sequence may also put the terminal in the VCP mode. The user then can start the
system via commands entered at the terminal. The terminal may then be used by the operating
system and user programs.

System Overview 1-9

Although the terminal (in the VCP mode) always responds to user input on the keyboard, other
terminals in the system do not respond unless they have been enabled. A terminal can be enabled
either by an user command or a request from a user program. The enable command (or request)
is passed to the I/O driver for the terminal and is accompanied by an user interface program name
(according to the request).

If a terminal has been enabled, the user presses any key to gain the attention of the driver. The
driver first attempts to schedule the user interface program (if any). If that fails, a second
interface program is scheduled. If that fails, then the user interacts directly with the system.
Otherwise, the user interacts with the program that was successfully scheduled for the terminal.

The choice of program to interact with the user can cover a wide range. It may be a program to
monitor a test sequence. It may be simply a program providing additional commands to the
system. A single program may be duplicated and given a unique name for each terminal, or a
different program enabled for each terminal. Thus, each terminal may have the same or different
capabilities.

The normal user interface program is the Command Interpreter program (CI). It can be
scheduled automatically to handle all user requests. Capabilities provided by this program are
described in the RTE-A User’s Manual.

Direct interaction with the system provides a fairly limited set of capabilities. This is the base
level of interaction necessitated by some system problem. A duplicate copy of the Command
Interpreter is run to allow entry of a single request, usually running of a program to inquire the
system status. This program terminates after every command. Hence, in a multiuser environment
provided by VC+, it may be used from several terminals with no competition among different
users.

Another user interface program called FMGR is provided. This program is mainly used to handle
FMGR files. Unless indicated otherwise, all operator commands and files referenced in this
manual are associated with the Command Interpreter.

System Boot Up

The term boot up means the process of getting the system to run when power is turned on. Boot
up may be automatic, which is convenient if the system does not have a system console. In this
case, the internal switches in the computer determine the device from which the system is loaded
into memory. The same set of switches also selects whether the system automatically begins
operation or waits for the user.

The computer has two modes in which it communicates with the system console:

1. The virtual control panel mode, in which the console is acting as the control panel on the
computer itself. In early computers, direct control of the computer was implemented by a set
of switches and indicator lamps on the front panel. The only control on the A-Series
computer is the front panel power on/off switch.

2. The run mode, in which the user software has control. In this case, user software means the
RTE-A Operating System and all user programs managed by the system.

1-10 System Overview

In the virtual control panel mode, the user has the choice of loading the operating system into
memory from one of several devices that may be available:

Flexible disk

Hard disk

Another computer through a network link
Magnetic tape

PROM 1/O interface card

Several different systems (that is, different user-defined configurations of RTE-A) may reside on
the same disk. The user can select which system is to be used. This permits switching the
computer quickly from one application to another.

Space can be reserved for BOOTEX on the first track of every disk logical unit when it is
initialized. BOOTEX is the boot extension that the Virtual Control Panel (VCP) program brings
into memory when it loads or boots from disk.

When brought into memory, BOOTEX searches the disk LU for the file name passed to it from
VCP. The default name is /SYSTEM/BOOT.CMD (or SYSTEM for a FMGR bootable LU).
However, this file can be either a system file or a command file. If it is a system file, it is loaded
into memory and control is transferred to it. If the file is not a system file, BOOTEX assumes it is
a command file containing commands that specify the names of the system and snapshot files on
the disk, how to divide up the memory partitions, which disk volumes to mount, and other
BOOTEX commands. If the specified file is not found (or never specified), BOOTEX runs
interactively and prompts the user at the VCP terminal with the following prompt:

BOOTEX:

When the END command is encountered either in the command file or input from the user,
BOOTEX loads in and transfers control to the system, which comes up running.

/O Management

All input/output (I/O) takes place through the software I/O drivers that are included in the system.
The program must make an I/O request to the system in order to access the devices controlled by
the drivers. The I/O drivers actually operate the interface cards physically connected by cables to
the devices.

Three types of I/O requests are possible:
Read
Write
Control

A control request usually specifies a function to be performed by the device. For example, the
function code 4 (octal) addressed to the cartridge tape causes the tape to be rewound.

An I/O request is addressed to a logical unit (LU), not an actual device. The LU is a decimal
number from 1 to 255. For example, a FORTRAN statement such as:

WRI TE (6,*) 'HELLO
is addressed to LU 6.

System Overview 1-11

When the system is generated, each device is assigned an LU. This provides device independence.
(In systems with VC+, the LU redirection feature can be used to change the association between
an output device and LU.) For example, the program may use LU 6 to print a report. But the user
can redirect LU 6 to be a cassette tape unit and store the output on cassette tape.

LU 1 is special. By convention, it refers to a user terminal; even if there are several different
users, each can refer to the respective terminal as LU 1. This applies only to LU 1; other LUs are
common to all users.

1/O Drivers

I/O drivers are software modules that provide a uniform programmatic interface to the hardware.
The use of drivers allows writing of programs that read and write to many different types of
peripheral devices without any concern for device protocols, record blocking, and other interfacing
requirements. The I/O drivers are the parts of the system that directly control the devices
connected to the system.

The LU table is used by the system to determine the actual I/O driver to be called. Entries in the
table refer to another set of tables, the device tables (DVTs). There is one DVT per device on the
system. Information about the user request is transferred to the DVT by the system prior to
calling the driver. When the driver finishes the request, the status of the device is passed back
through the DVT.

Although it appears as one to the request, most drivers are in two parts; the device driver and the
interface driver. The interface driver handles the actual I/O transfer. The device driver is
associated with a particular device and formats the request for that specific device. The interface
driver can handle any device that can be cabled to the actual interface card. Thus the device driver
is similar to an interpreter.

For every interface card, there is an interface table (IFT), just as there is a DVT for every device.
Multiple devices may be linked to the same interface by linking their DVTs to the IFT. This is
similar to linking the actual devices through a single cable, such as the case with the HP-IB.

The major requirements of the driver are:
1. To start the device
2. To respond to the completion of a data transfer

The data is actually transferred in a block of words (or bytes) by the hardware and this transfer is
independent of computer processing. That is, a program may be running at the same time that
data is going out of computer memory or into computer memory.

Since the computer proceeds independently of the data transfer, an interrupt is used to notify the
system when the transfer is complete. An interrupt causes the computer to stop whatever it is
doing and go to a predefined location in memory associated with the interface card that caused the
interrupt. The predefined location is called a trap cell and is a memory address on the base page.

Trap cells for standard I/O drivers contain an instruction to go to a central interrupt control
routine in the operating system. The system uses an interrupt table to determine how to process
the interrupt. Generally for I/O interrupts, the interrupt table identifies the driver associated with
that trap cell. The operating system then calls the driver to finish processing. When all processing
is completed, the system returns to dispatch the program that is at the top of the schedule list.

1-12 System Overview

The program dispatched may or may not be the same program that was interrupted. During the
waiting period, another program may have been running (the interrupted program, perhaps).
When the request completes and a suspended program is rescheduled, it may be of a higher or a
lower priority than the interrupted program; the higher priority program is always dispatched (put
into the executing state).

I/0 Buffering

When an I/O request is made to the system, a buffer in the user program is specified. A buffer is a
data array. It may contain the data that the system sends out to a device or it can be the storage
area in which data is placed on a read request. This user buffer is the only buffer about which the
driver needs to know.

The request itself is defined to be buffered if the data goes through an intermediate area, the
system buffer. For a buffered output request, the contents of the user buffer are moved to the
system buffer and the driver takes the data from the system buffer. For a buffered input, the
driver moves the data into the system buffer; when input is complete, the contents of the system
buffer are moved to the user buffer.

One reason for buffering is to make it possible for the program to continue operation before fully
completing the I/O request; that is, I/O without wait. This is because the user buffer is released
immediately on buffered output and is not required on input until the read request is completed.
Therefore, there may not be any need to suspend the program (that is, take it out of the schedule
list).

The use of a system buffer, which contains the actual input/output data being transferred, also
makes it possible to swap the program making the I/O request. When a program is swapped out to
the disk and another program brought in to use the same partition of memory, no area of that user
program partition can be used by the swapped out program. Buffering in system memory is the
mechanism that permits a program to be swapped while the I/O request is being serviced.

The system buffer is an area of memory that is allocated to the system at the time it is configured.
This area is called system available memory (SAM). When an individual request is made that
requires system memory, a portion of SAM is temporarily allocated for that purpose. When the
request is completed, the memory is returned to SAM.

I/0 Without Wait

It is not always desirable to do I/O without wait. For example, if reading data from a device, the
next action of the program may depend on the data. In fact, this is usually the case with input.
Even if the data itself is not examined as it is read, the program must acknowledge when the end
of data is reached.

The opposite situation is true on output. If a program is printing a report, there is no need to wait
for a line to be actually printed before the program is allowed to continue. In fact, the program
could format the next line of output during the time the previous line is being printed. Then the
next output request can be made as soon as the previous request is finished. This makes the
program run faster and also keeps the printer as busy as possible, both desirable goals.

System Overview 1-13

For these reasons, the system makes the default mode to be I/O without wait for output and I/O
with wait on input. However, the programmer may choose to reverse the default mode by
changing the program to make a variation of the standard I/O request or by making a class I/O
request.

The capability to do I/O without wait would be severely limited without a method of permitting
multiple requests to be pending on the I/O device. That is, what happens when a program makes a
request to a device that is already busy.

When a request is made to a device, the information about the request is inserted into a control
block, which is a table in memory. If the request is buffered, then the control block is allocated
from SAM. If the request is unbuffered (and not class), the program must wait for I/O completion
and so the necessary information is stored in the ID segment (program table) and the ID segment
contains the control block.

The ID segment (with the control block) or the SAM control block is then added to a list and
attached to the DVT for the appropriate device. Many I/O requests may be in the list already; a
new one is simply added on. As one request is completed, the system simply passes on the next
request to the driver associated with that DVT.

Direct Memory Access

Direct Memory Access (DMA) allows the CPU to perform other tasks concurrently with one or
more I/O transactions. Each I/O transaction needs to have a map set associated with it. The map
set controls which 64K byte block of memory the data is placed in.

The DMA transfer uses map sets as follows:
— Map set 0 is used if the I/O is from the system partition.
— Map set 4 if the I/O is from a buffered request because SAM is used for the buffer.

— A map set allocated from the port map pool (map sets 8 through 31) is used if the request
is nonbuffered and the data is in a user partition. The current user’s map set is copied
into the allocated port map. The allocated port map is returned to the port map pool
when the request is completed. If all port maps are in use, the program that issued the
request is suspended until a map becomes available.

Buffer Limits

In order to permit programs to run as fast as possible, all output should be buffered, linking up
new requests to the device (through the DVT of the driver). However, every buffered request uses
up some of the available memory in SAM (and requires some system overhead). Also, most
programs can supply data to a device faster than the device can handle it. Therefore, a limit is
placed upon the sum total of all buffered requests that can be linked to a DVT at any one time.

There is an upper buffer limit and a lower buffer limit. They work in unison as follows:
1. When a program makes an I/O request that is buffered, the system checks the sum of all

requests currently linked to the device. If the sum exceeds the upper limit, the program is
suspended and not permitted to make the request.

1-14 System Overview

2. When the sum of the requests falls below the lower limit, all programs suspended for
exceeding the upper limit are rescheduled and permitted to repeat their requests.

Buffer limits are set when configuring the system.

The system does not check the amount of SAM available if the priority of the requesting program
is between 1 and 40. SAM can be used up quickly in this case.

Disk Mapping

As with all I/O devices, a read/write request to a disk is actually addressed to a logical unit (LU)
instead of the actual device. However, depending upon the amount of disk space available, several
LUs may be assigned to a single disk drive, with each LU pointing to a separate area. This
division into several LUs is known as mapping the disk.

Some disks (for example, flexible diskettes) are mapped on a physical basis, although this is not
required by the system. That is, each diskette is assigned an LU number. This is reasonable
because of the amount of file space available on a diskette. A hard disk has much greater space on
a single physical disk. Since there is no physical basis for subdividing the large disk, a mapping
table is used.

A disk that is mapped is treated as several devices instead of a single device. Each LU that refers
to a different area of the disk becomes a separate device and has a device table (DVT), as do other
devices in the system. The portion of the disk associated with that LU is recorded in the DVT.
Thus, there is no single, unified table describing the usage of the disk. Instead the information is
scattered among all the LUs that refer to the disk. Each LU is considered a disk volume, which is
also known as a disk cartridge, when dealing with the FMGR files. (Refer to the FMGR File
Cartridges section in this chapter for more information.) This mapping arrangement is set or
determined at the time the system is configured.

File Management

In the operating system, disk space is managed by a file management package or file system that
allows user programs to define the disk area needed and to protect it or share it with other
programs and the system itself. It also eliminates the need for programs to consider the
characteristics of the disk since the method of access is the same regardless of disk type.

A file is a collection of records that may be of variable length or fixed length. Files may also be of
fixed or variable length. In addition to the fixed and variable length files, a third category is the
type 0 files, which are used to read or write to non-disk devices as if they were actually files. The
file categories, types, and their descriptions are given in Table 1-1.

The file size is initially defined at the time the file is created. Creation of a file means that an

entry is made in a file directory with the file name, file type extension, type, and size. The
directory entry also reserves a portion of the disk for that file.

System Overview 1-15

Table 1-1. File Types

Category Type Description
Symbolic link -1 Pointer to another file descriptor
Control of Device 0 Non-disk device
Control length, 1 Fixed length 128 word records
random access 2 Fixed user-defined record length
Variable length, 3 Variable length records; any data type
sequential access 4 Source program file; ASCII
or ASCII data file
5 Object program file; relocatable binary
6 Executable program; memory image code
7 Object program file; absolute binary
8 Type 8 and higher files are user-defined data
formats with the following exceptions
12 Byte stream file
6004 CALLS catalog file

The files are organized in directories created for each user. They can be organized in a
hierarchical manner with directories nested within directories. The nested directories are called
subdirectories. Protection is associated with each directory (or subdirectory) that can be defined
to control user access to the files.

In order to read from or write to a file, it must first be opened. A file is automatically opened
when it is first created but may then be closed and reopened later. While the file is opened, the
program calls subroutines from the file management package to read or write records in the file.

If a program writing to a file attempts to write past the last record, the file management package
automatically extends the size of the file. Each file extension creates or modifies an entry in the
file directory and allocates more disk space to the file. This additional space is known as a file
extent. The extent may be located anywhere on the disk volume where there is sufficient space,
not necessarily contiguous to the original file or the previous file extent. Up to 32767 file extents
are permitted on the original file.

When a file is purged, the file space and the directory may be re-used when a new file is created.
If for some reason the disk needs to be packed, the MPACK program is used to pack the disk
volume. Refer to the RTE-A User’s Manual for details.

Serial and Random File Access

Random access means that a record may be read/written independently of the surrounding
records. Even though a disk may be accessed in a random manner, the individual records in a file
may be accessed randomly only if the records are fixed length. Files that have variable length
records must be accessed in a serial manner.

1-16 System Overview

Records in the file (or in each extent) follow each other in sequence on the disk; that is, the second
record in the file follows the first record, and so forth. If any given record is to be replaced or
updated, then the new record does not interfere with the surrounding records if it takes the same
amount of space on the disk.

If a file has variable length records, updating a record in that file requires reading through all
records before the one to be updated. For example, if the update is to be made to record 10,000, it
takes a considerable length of time for the program to reach that record. Then, should the update
to this record increase the record size, more processing must take place. First, the original file is
copied to a second file, up to the record that is to be updated. Then the updated record is written
to the second file and the remainder of the original file is copied into the second file behind it. At
the end, the second file may be copied back to the original file and then purged. However, if the
information does not have to be accessed constantly, then variable length records can be used to
conserve disk space. For example, the source code for a program is stored in a file type with
variable length records.

A file with fixed length records may take more space since some records may contain less data
than others (some may be empty); but the advantage is fast access. In order to reach record
10000, all that is necessary is to determine the record length, multiply by 10000 and offset from the
beginning of the file.

Shared Files

Any file may be simultaneously opened to any number of programs, except for FMGR files, which
are limited to seven programs. Alternately, it may be opened exclusively, thereby locking out
other programs until the program closes the file, which releases it.

Programs accessing a shared file may be performing read, write, or a combination of both. If a
shared file is to be read only, the file may contain fixed or variable length records. If it is to be
updated, it must be of a file type with fixed length records; otherwise it is impossible to prevent the
file from being corrupted, since each program may maintain a different position in the file. In
addition, some method of preventing two programs from accessing the same record at the same
time must be used. This problem is solved by the use of resource numbers, a feature provided by
the operating system.

Disk Volumes

File space can be modularized in units of disk volumes in the file system. A disk volume may exist
for every logical unit (LU) that refers to a disk. A simple example would be a dual flexible disk
drive, which is capable of physically containing two diskettes.

The presence of each diskette is not automatically known to the file system. It must first be
mounted, which means that it is added to a master list of available volumes and a check made to
ensure that it has valid file directories. This is a logical mount, since it does not involve moving
any equipment. However, the diskette must be physically in the correct position before it can be
mounted.

When a disk volume is no longer needed, it is dismounted, which takes it out of the master list.

System Overview 1-17

FMGR File Security

For a system containing files managed with the FMGR program, the file descriptor includes a file
security code. The file security code can be used to protect the file from being overwritten,
accidentally purged or even examined unless the security code is specified. The security code is
necessary because FMGR files do not have ownership read/write protection as do other files. It is
stored in a single 16-bit word in the directory entry and can be any of the items shown in Table 1-2.

Table 1-2. FMGR File Protection

Security Code Protection
Zero (Null) No protection
Positive integer or two Protect against accidental purge and file
ASCII characters overwrite. Only read access without code.
Negative integer Protect against accidental purge. No read
or write access without code.

FMGR File Cartridges

In the FMGR file system, the disk volumes are called cartridges. Each cartridge has its own
directory of files that are present on that cartridge. A file cannot cross a cartridge boundary. This
makes each cartridge independent of other cartridges.

A file cartridge has two identifiers, which are contained in the directory of that cartridge:

1. A cartridge number. This number is unique in the master list (you cannot have two cartridges
with the same number). The number is an integer from 1 to 32,767 or two ASCII characters.

2. A cartridge label. This is a six character ASCII name and need not be unique in the master
list.

Both the cartridge number and label may be assigned or changed by an operator command. As an
example of usage, a cartridge number might be chosen to correspond to a project number and a
cartridge label chosen to be the name of the individual to whom the cartridge belongs.

Since file cartridges are independent, a file name is unique only to the cartridge. That is, the same
file can appear on different cartridges.

The identifier for a file is a namr. A file namr can be a negative logical unit number or a file
descriptor. A file descriptor has the following format:

<file name>:<security code>:<cartridge number or —lu>:type:size

1-18 System Overview

For example,
MYFI LE: JB: 1313: 4: 516

where MYFILE = file name
JB = file security code
1313 = cartridge number

The disk logical unit associated with the file cartridge may be given in place of the cartridge
number, in which case the number appears as negative. However, the cartridge number is a more
reasonable choice for programs since the cartridge number can remain the same from system to
system.

When a FMGR file is purged, the file space and the directory may be re-used when a new file of
the exact size as the purged file is created. Otherwise, to recover used space, the disk must be
packed with the FMGR PK command. Refer to the FMGR program description in the RTE-A
User’s Manual for details.

System Overview 1-19

Memory Management

Introduction

This chapter discusses how the RTE-A Operating System manages the computer memory. A
physical memory map is shown in Figure 2-1.

The physical computer memory is categorized as follows:

User Partitions (Dynamic and Reserved)
Power Fail Storage Area

System Available Memory

Extended System Available Memory
System Message Block

System Common Partition

System Tables

OS/Driver Partition

System Partition

The User Partitions make up user memory. User programs reside in this area. The rest of
physical memory, called system memory, contains the operating system and necessary
components. No part of system memory is ever swapped to secondary memory (disk). RTE-A
uses the Dynamic Mapping System to allow users access to a maximum of 32M bytes of physical
memory

Dynamic Mapping System

The Dynamic Mapping System (DMS) is a scheme used in the 16-bit HP 1000 A-Series computers
to allow users access of up to 32M bytes of physical memory. Only 64k bytes of physical memory
can be accessed at one time. The DMS scheme maps the portion of the necessary physical
memory into 64k bytes of logical memory. This is implemented via 32 sets of 32 map registers. A
separate special-purpose register called the working map register holds the map set number that is
currently active, indicating which physical memory pages are used for fetch, read, and write
instructions.

Memory Management 2-1

Dynamic User Partition End of Physical Memory

Area

Reserved User Partition
< #n

User Memory

Reserved User Partition
#1

(Power Fail Storage Area

System Available Memory

Extended System
Available Memory

System Message Block

System Common Partition

System Memory
System Tables

OS/Driver Partition #n

OS/Driver Partition #1

address = 00000B

\ System Partition

Figure 2-1. Physical Memory

In RTE-A, the following convention is used in the DMS:

Map 0 : Operating System (not including system common)

Map 1 : System Messages Block

Map 2 : User Program (or CDS Program Data)

Map 3 : CDS programs: User Program (Code). Non-CDS: Reserved

Map 4 : SAM

Map 5 : Reserved

Map 6 : Reserved for NS-ARPA/1000 and ARPA/1000

Map 7 : Auxiliary Map

Maps 8-31: Port Maps
The operating system is always mapped into map set 0, which is modified only when mapping a
driver into the driver partition. When the operating system is executing, the working map register

is map set 0 and when a program is executing, it is map set 2. For CDS programs, the user
program is mapped into map set 2 (data) and map set 3 (code).

2-2 Memory Management

If SAM and XSAM occupy the same block of memory, map 4 is used to refer to XSAM and SAM;
map 5 is unused in this case. Because of this, there is a variable $XSMAP in VCTR that should
always be used to access XSAM. It contains the map number (4 or 5).

The operating system accesses its messages and SAM through special cross-map instructions that
allow access to a different map set. Map set 7 allows the user program and port maps to remain
unaltered during non-DMA I/O. This auxiliary map is primarily used by device drivers when the
interface drivers are concurrently using the port map.

The 24 port map sets (8-31) are dynamically allocated and deallocated as needed for the 48
(maximum) I/O channels. This provides up to 24 channels of concurrent DMA.

User Partitions

User partitions are blocks of physical memory reserved for programs. The operating system
allows for both reserved and dynamically allocated user partitions. The system allows multiple
programs to exist simultaneously in memory, and to compete for CPU time on the basis of
priority. Each program executes during the time that all higher priority programs (if any) are
waiting for I/O completion or for some other event to occur.

In systems with a disk, there may be more active programs than the number that can be
simultaneously in main memory. Programs with lower priority may be copied to disk (swapped)
together with any data they have accumulated, to allow higher priority programs to be loaded into
main memory for execution.

Program swapping may occur many times in one execution of the program; this can severely affect
the performance of the program. Care should be taken to ensure that active real-time programs
are assigned to their own reserved partitions, or that there is sufficient dynamic memory available
for the real-time programs to remain in the dynamic memory area without swapping among
themselves.

In a system with VC+, a CDS program has at least two partitions, one for program code and one
for data. In this case, the term user partition applies to data partition unless noted otherwise. The
code partition contains only program code plus code page 0 that is reserved for system use.

A typical user partition (reserved or dynamic) is shown in Figure 2-2. Items shown in this figure
are described in the following paragraphs.

For RTE-A systems with VC+ using CDS programs, the user partition for CDS programs is shown
in Figures 2-3 and 2-4.

Memory Management 2-3

*

Physical Partition

EMA/Working Set
(May be up to 1,023

pages)

Logical Partition

Heap Area

MSEG (if used)

Program Overlay Area

Heap Area (if used)

Program Overlay Area

Main Program

Main Program

Page 0

System Common
(if used)

* indicates page boundary

Page 0

31 pages
Maximum

Figure 2-2. User Partition Memory Map

Physical Partition

Logical Partition

MSEG

EMA/Working Set
(If used)

Heap Area
(if used)

Heap Area

Stack

Stack

Globals & non-CDS
code if used

Globals & non-CDS
code if used

Page 0

System Common
(if used)

* indicates page boundary

Page 0

Figure 2-3. CDS Data Partition

2-4 Memory Management

Physical Partition Logical Partition
End of code partition

Code Segment

Block n .
Max size: (31*128)+1 pages

Code Segment Block 1

Code Segment Block 0 Code Segment Block X

Code Page 0 Code Page 0

* indicates page boundary

Figure 2-4. CDS Code Partition
VMA/EMA Mapping Area

The VMA/EMA mapping area belongs to the program that specifies it. VMA/EMA
subroutines manage the mapping area, using the upper two pages of logical memory to map
in VMA/EMA data from physical memory.

Program Available Memory

The size of a program may be declared to be larger than the actual size of the program. It
can be done interactively with an operator command or when the program is relocated. The
SZ or DT command can be used for non-CDS or CDS programs respectively. The additional
declared memory can be used as buffer space. To do so, the program calls LIMEM or EXEC
26, to determine the starting address and size of the area, and to inform the system of the
need to swap the extended area.

Overlay Area

A large non-CDS program may be separated into a main program and related overlays,
thereby allowing it to execute in a partition smaller than its total size. While such a program
is executing, its main is kept in the partition continuously, and its overlays are loaded from
the disk as required via a call to SEGLD. A newly loaded overlay is written over the
previously loaded overlay without saving any data that may have been accumulated in the
overlay area. Therefore, overlays should keep all global data in the main program area.

Main Program

The total size of the main program (non-CDS), the largest segment, and any appended
subroutines may be as large as 32k or as small as 2k (including the base page). Any logical
pages in the 32k-word logical address space that are not required for proper execution of the
program are write protected. This prevents a user program from accidentally modifying its
own code or data.

Memory Management 2-5

System Common
System common does not physically reside in any user partition. It occupies a special
partition that is mapped to those programs that request access at relocation time. Refer to
Chapter 8 of this manual for more information.

Page 0

The following locations in the user base page (page 0 in the data partition) are reserved for
the indicated values:

loc O = Starting physical page of partition
1 = Not used
2 = X-Register save word
3 = Y-Register save word
4 = $VMAS or $EMAS or O (virtual or extended nenory
faul t - handl er address)
5 = Page table (PTE) physical page hi gh-order word
6 = PTE index for unbuffered class VNVAI O
7 = Oiginal Z-buffer request address
10 = wuser data map save area - register O
11 = . - register 1
12 . . . 2
47 . register 31

50- 107 Not used

110 = CS-node (bit 15), Q Register (bit 14-0) save area
111 = Z- Regi ster save area (upper stack bounds)

112 = CS/ Q Register initial value

113 = Z-Register initial value

114 = PTE physi cal page | ow order word

115 . reserved for future usage

140

141- 1777 are used for the user program base page | i nks.

For CDS prograns, the locations reserved are as foll ows:

loc O = Starting physical page of data partition
1 = Starting physical page of code partition
2 = X-Register save word
3 = Y-Register save word
4 = $VMAS or $EMAS or O (virtual or extended nenory
faul t - handl er address)
5 = Page table (PTE) physical page hi gh-order word
6 = PTE index for unbuffered class VNMAI O
7 = Oiginal Z-buffer request address
10 = User data map save area - register O
11 = . - register 1
12 . . . 2
47 . . register 31
50 = User code map save area - register O
51
52
107 . . . register 31
110 = CS-nmode (bit 15), Q Register (bit 14-0) save area

2-6 Memory Management

111 Z- Regi ster save area (upper stack bounds)

112 = CS/Q Register initial value
113 = Z-Register initial value
114 = PTE physical page | ow order word
115 . reserved for future usage
140 . .
141 = Copy of Code Segment Tabl e skel eton indicating
. | ocation of all code segments on disk
(0 - 512 words | ong)
1141 (naxinuni
1142 = Used by | oader for user base page |inks
generated for non-CDS code
1777

Power Fail Storage Area

A page of physical memory is reserved for use by the power fail driver (ID*43). The page number
is stored in system entry point $PFMP.

If the power fail driver is not included when the system is generated, a page is not allocated. The
unallocated page is included in the user partition area.

System Available Memory (SAM)

System Available Memory (SAM) is a block of memory managed by the system for the following
purposes:

I/O Buffering
Class 1/O
String Passage
Spool Nodes

This block of memory is not in the system logical memory; it is accessed through map set 4. Using
the dynamic mapping system for SAM releases the system logical address space for other uses (for
example, larger system tables and more I/O drivers). It also allows a maximum of 32763 words of

SAM. The size of SAM can affect program performance in the system: the larger the size of SAM,
the better the program performance.

Programs making requests that require memory are placed in the memory suspend list (ordered by
program priority) if there is not enough SAM to meet the need. When some amount of SAM is
returned, programs whose request requires an amount of SAM less than or equal to the amount
returned are re-dispatched.

The following sections describe how SAM is managed and provide some guidelines for
determining how much SAM is required during system configuration.

Memory Management 2-7

SAM Management

At system bootup, SAM is one contiguous block of memory. When system memory is required,

the SAM module in the system is called to allocate a portion of SAM. If there is not currently a
contiguous section of SAM large enough to meet the need, the program is placed in the memory
suspend list.

When the system is done with the allocated portion of SAM, it calls the SAM module again to
return the memory to the free list. Portions of the original contiguous block of SAM may be in use
at any one time and they may be returned in an arbitrary order. This results in fragmenting the
contiguous block into several blocks of SAM. Each free block is linked to the next block in the
manner indicated in Figure 2-5. Note that two words of overhead are needed to keep track of
each block of SAM.

When called upon to allocate a free block of SAM, the SAM module allocates the required block
from the first block that can meet the need. The newly allocated block is taken from the existing
block (at the high end of memory) and any remaining memory is linked into the free list.

When memory is returned to SAM, the SAM module checks if it is contiguous with the bottom of
any free block. If so, the two blocks are joined and linked as one block in the free SAM list. No
attempt is made to order the blocks by size in this linked list.

The size of the largest free block is maintained in word 0 of SAM. This location contains the
one’s-complement of the size of the largest free block.

L)_ System Pointer (Memory Location 1 of SAM)

Size = N1 I Size = N2 J+ Size = N3
Address @—— Address @—— 77777B

N1-2 N2 -2 N3 -2
free words of free words of free words
memory memory of memory
(Last free
block of
memory)

Figure 2-5. System Linking of Free Memory in SAM

Each block of SAM requested by the system is larger than the size of the user data (for example,
an I/O buffer, a runstring or a class buffer) by an amount that depends upon the actual use. The
additional memory is used for header information to keep track of the data. For example, a block
of SAM used to construct a buffered request to a driver contains information such as the type of
request and the buffer size as well as the user data. The overhead for each of the four uses of
SAM is as follows:

I/O Buffering: 16 words
Class I/O: 16 words

2-8 Memory Management

String Passage: 3 words
Spool Nodes: 1 word

To determine the total number of words of memory for SAM at generation time, we may consider
each of the four needs separately.

I/0 Buffering

Each DVT in the system may have a list of requests linked to it. The number of words linked to
each may exceed the upper buffer limit for the DVT, since only the length of the current list is
checked when adding new requests. However, for the purpose of estimating SAM usage, assume
that the maximum words linked on each DVT is equal to the upper buffer limit. Since the buffer
limit can be set independently for each DVT and the choice of limits depends upon the
application, this can be quite complex.

One way to start is to adopt a goal of two buffers linked to each DVT simultaneously. The buffer
limits would then be set accordingly for each device.

The largest typical buffer length would probably be for the disk, which is about 129 words for a
read or write operation. However, disks are not buffered because of possible disk read/write
conflicts and because of the size requirement for each disk. Only a few disk LUs would take up
most of the SAM available. Therefore, the disk need not be a consideration when calculating the
size of SAM.

For terminals, assume a typical buffer length of 150 characters (75 words), approximately 150
words for two buffers. The buffer size must be multiples of 16. If the upper buffer limit for each
terminal were set at 200, then up to 275 words (200 + 75 = 275) could be accumulated on each
terminal at any one time.

The buffer length for a printer could use the same figure as calculated for the terminal. Thus, if
we had one disk, three terminals, and a printer on the system, allocate 1000 words just for
automatic buffering. Fewer words might suffice provided that fewer than the two buffers are
actually accumulated for each device at any one time.

Class I/O

Class I/O is used by optional HP software products such as the networking products. Before
system configuration, the information on SAM recommendations for each of these products must
be determined and the actual figures added to the amount of SAM needed for the system.

The amount of SAM required for class I/O calls is totally dependent upon the way the programs
making the calls are written. The system permits any size user buffer for class calls, up to the
maximum size of SAM. Therefore, programs are normally written to ensure that class buffers do
not remain in SAM for an extended period of time. This requires some sort of sychronization.
Class I/O calls are described in the RTE-A Programmer’s Reference Manual.

Another user of class I/O is the HP-supplied subroutines REIO and XREIO. These subroutines
are used to translate an EXEC input request into a class read, followed by a class get. This
suspends the program until the request completes but makes it swappable during the delay.
However, if the LOAD module (which controls program swapping) and the CLASS module are
not generated into the system, these calls are treated as an ordinary EXEC read request. For a

Memory Management 2-9

system that has three terminals with one read request pending at each, an allocation of 250 words
of SAM is recommended.

String Passage

If the STRNG module is included in the system, then the runstring is saved in SAM when the
program is scheduled. The first EXEC 14 request causes the memory saved for the string to be
deallocated. This normally happens early in the program so that the string is removed quickly.

In the worst case, all of the programs in the scheduled list at one time would have their runstrings

in memory. Typically, a runstring would be about 80 characters or 40 words. Multiply this by the
number of programs that would accept runstrings to get the total SAM requirement.

Spool Nodes
Spool Nodes are linked off a DVT when there is spooling occurring on the device associated with

the DVT. The spool node contains the number of the session that enabled spooling, the spool
code or redirection LU, and other required information.

Typical SAM Requirement

In a small system (without subsystems that require large amounts of SAM), the total number of
words required for SAM might be:

I/O Buffering = 600 words
Class I/O = 400 words
String Passage = 500 words
Spool Nodes = 80 words
Total = 1580 words required for this system

Because SAM is allocated in increments of pages, 2048 words are allocated. If you are in doubt as
to the size of SAM required, it is better to overestimate than to underestimate. More SAM allows
more activities to occur simultaneously; not enough SAM decreases system performance.

Extended System Available Memory (XSAM)

Extended System Available Memory (XSAM) is very similar to SAM. It is used for the following
purposes:

ID segment extensions SHEMA table entries
Signals SHEMA Association Blocks
UDSPs and LU access tables

2-10 Memory Management

The management of SAM and XSAM is identical because of the fact that they can reside in the
same block of memory. There are differences that arise because of the fact that they can share the
same memory or can use separate blocks of memory. These are as follows:

Amount of memory used:

Shared: Up to 32763 words for both SAM and XSAM.
Separate: Up to 32763 words for each SAM and XSAM.

Map used to reference XSAM:

Shared: Use map 4.
Separate: Use map 5 ($XSMAP in VCTR contains the map number for XSAM in the
current system).
Free list:

Shared: There is only one free list for both SAM and XSAM. It starts at memory
location 1 in map 4.

Separate: SAM has a free list in map 4 and XSAM has a free list in map 5. Both start
at memory location 1.

If a program makes a request that requires XSAM and not enough is available, it is placed in the
XSAM memory suspend list always; this is true even if SAM and XSAM share memory.

XSAM is used for signals, UDSP/LU access tables, and the prototype ID list. Descriptions of how
it is used for these applications are given in the following sections. XSAM is also used for
shareable EMA table entries and SHEMA Association Blocks as described in Chapter 11.

Signals

Every program that receives signals has a Signal Control Block (SCB). It contains information
necessary for signal operation and resides in XSAM. The signal buffer limits, active signal,
blocked signals mask and pointers for queued signals are examples of the information contained in
the SCB. The pointers that reside in the SCB point to Signal Queue Blocks (SQBs) that also
reside in XSAM. There is one pointer in the SCB per signal number. If a pointer is nonzero it
points to a SQB that contains the Signal Dependent Data for that signal. There is also one pointer
that is used to point to SOBs that have been pre-allocated. An example of this is for class
completion signals. The SQB is allocated when the class write (read, control, or read/write)
request is made, even though it is not needed until the request completes. Additionally, when a
timer signal is started, a block is built in XSAM that describes the signal. The system maintains
the list and delivers a signal when the timer expires.

UDSP/LU Bit Maps

The table containing the User-definable Directory Search Path (UDSP) definitions for a session is
kept in a block of SAM. LOGON allocates the SAM block when a user logs on, and places the
address of the block in the user ID table.

The amount of SAM allocated for a UDSP is determined by the UDSP definition in the user
account file. The values are set when a user’s account is created or modified.

Memory Management 2-11

At the front of the UDSP are 16 words used for the LU access table. Each bit represents one LU.
If the bit is set, the user can access the LU. If the bit is not set, the I/O system prevents the user
from accessing that LU.

Prototype ID Segments

The list containing the prototype ID segments (proto IDs) defined in the system is kept in XSAM.
When a user RP’s a program with the “D” option to create a proto ID segment, the system
allocates a block of XSAM, sets up the proto ID and puts it in the proto ID list.

The amount of XSAM allocated for a proto ID is 37 or 38 words (due to the XSAM
management/allocation scheme).

The proto ID segment has the following format:

$DUPL —— pointer to next proto ID (or 0)

size of this proto ID (37 or 38)

ID word 7

ID word 36

ID extension word 1

ID extension word 5

$DUPL is a pointer to the first proto ID segment.

Note that words 1 through 6, and words 37 through 45, are NOT saved.

The system maintains the list and uses the proto IDs to create program ID segments when
appropriate. Proto IDs are removed from the list when a user issues an OF command with the
“D” option. The list can be displayed with WH using the “D” option.

System Message Block

The system message block is a data structure that contains system messages and information that
specifies how many numbers/ASCII strings are embedded and where. Each time the system wants
to print a message it calls a routine ($SPRMG) that integrates any numeric/ASCII tokens into the
string and then prints it. The message block is accessed through map set 1. Refer to the Language
Message Table description in Chapter 11.

2-12 Memory Management

System Common Partition

The system common partition may range in size from zero to thirty pages. When a program
accesses system common, this partition is mapped into the user logical map. It does not reside in
the program partition in physical memory. However, the combined size of system common and
the largest program that accesses system common must not be more than 32 pages. The system
common partition is shown in Figure 2-6. For more information, refer to Chapter 8 of this
manual.

In Figure 2-6, $BCOM and $LCOM are system entry points that contain the logical starting
address of blank and labeled common, respectively.

Blank Common $BCOM

Labeled Common $LCOM (Logical address = 02000B)

*

* indicates page boundary

Figure 2-6. System Common Partition Memory Map

System Tables

The operating system is designed for maximum flexibility in the number and type of devices that it
can control, and in the number of programs and memory partitions that may be required to
accomplish the intended applications. In order to provide flexibility, and at the same time
minimize system memory requirements, variable length tables are used to configure the operating
system. The various system tables and their entry points are shown in Figure 2-7, and are
described in more detail in Chapter 11.

Device Tables $DVTA
Interface Tables SIFTA
* Logical Unit Table SLUTA
Interrupt Table SINTA
* Class Table $CLTA
* Resource Number Table $RNTA
* ID Segments $IDA
* Memory Descriptor Table $SMEM
* Swap Descriptor Table $FSWP
* Shared Programs Table $SPTB
* System Memory Block $SMB
Multiuser Table $UIDA

Figure 2-7. System Tables and Entry Points

Memory Management 2-13

When allocating space in system memory for the tables, the system first checks the end of the
system partition. Because the OS/driver partitions must start on a page boundary, there may be
unused space between the end of the system partition and the start of the OS/driver partitions.
Tables marked with an asterisk are put in this space if they fit. Otherwise tables are put in the next
available space in system memory allocated for system tables, beginning with Device Tables.

OS/Driver Partition

The OS/Driver partition is a contiguous set of pages in the system logical memory map. The size
of this partition is the same as that of the largest OS/Driver partition defined at generation time.
As a partitioned system routine or driver is about to be called, the system maps the appropriate
OS/Driver partition into this logical address space for subsequent access. Note that privileged
drivers and non-mappable drivers must be loaded with the non-partitioned system modules.

Chapter 5 contains a detailed discussion of partitionable modules.

System Partition

The system partition is the area of memory reserved for the operating system modules that cannot
be located in a partition, and the device and interface drivers that do not support driver
partitioning. Figure 2-8 shows how physical memory maps into the system partition.

In RTE-A, SAM and system messages are in physical address space and are mapped and accessed
through separate maps.

Privileged and Non-Partitioned Drivers

The I/O drivers are the parts of the system that directly control the devices connected to the
system. Drivers are software modules that provide a uniform programmatic interface to the
hardware. The use of drivers allows writing of programs that read and write to many different
types of peripheral devices without any concern for device protocols, record blocking, and other
interfacing requirements.

Privileged drivers are drivers whose interrupts are not processed by the RTE-A Operating System.

Such drivers offer improved response time but must perform their own internal housekeeping.
Refer to Chapter 7 for more information on drivers.

2-14 Memory Management

Physical Partition Logical Partition
upper
System Tables memory
OS/Driver Partition #n
OS/Driver Partition #2
System Tables
OS/Driver Partition #1
OS/Driver Partition
Privileged and Privileged and
Non-Partitioned Drivers Non-Partitioned Drivers
Non-Partitioned System Non-Partitioned System
Modules Modules
lower
System Base Page memory System Base Page

Figure 2-8. System Logical and Physical Partitions

Non-Partitioned System Modules

The system modules coordinate and govern the functions of the various programs and drivers.
The operating system is designed to maximize the use of system resources such as main and
secondary (disk) memory, CPU, and peripheral devices.

At the same time, it allocates these resources according to the priority of the requesting process.
The RTE-A Operating System includes modules that handle CPU interrupts and 1/O control,
memory management, program loading and swapping, EXEC calls, and a small set of commands.

Some system modules can be placed in OS/Driver partitions to reduce the number of logical pages
required for system modules (and thus increase the number of logical pages available for system
tables.)

Chapter 5 contains detailed descriptions of the system modules. The descriptions indicate the
function of the module and whether or not the module is partitionable.

Memory Management 2-15

Programs and Partitions

This chapter describes how the RTE-A Operating System manages programs and partitions.
Throughout this chapter, references are made to Code and Data Separation (CDS) programs that
are provided in VC+. If you do not have CDS programs, ignore all CDS references.

Program Priority Boundary

The generator BG command sets the priority boundary (N) between real-time and background
programs. Real-time programs are defined as those programs whose priority is higher than the
boundary (priorities 1 to N-1). Background programs are defined as those programs whose
priority is equal to or lower than the boundary (priorities N to 32767).

The labels real-time and background apply only to programs, not to partitions. A given partition
can at one moment contain a real-time program, and at another moment a background program.
The states of user partitions are listed and described below.

State 0 - Unoccupied reserved (fixed) partition, or a block of free memory in the dynamic
area.

State 1 - Occupied by a swappable background program.
State 2 - Occupied by a swappable real-time program.

State 3 - Shareable EMA area, or an area occupied by a non-swappable program (a program
that executed an EXEC 22 request, or is I/O suspended with a buffer within the user
partition).

Partition Assignment for Real-Time Programs

When a real-time program not in memory is scheduled for execution, a partition is assigned based
on the following criteria; the partition must be in state 0, 1, or 2; the partition must be large
enough to hold the program; and the partition must not be occupied by a higher priority real-time
program.

A partition in state 1 is not used if it is possible to use a partition in state 0. Likewise a partition in
state 2 is not used if it is possible to use a partition in state 0 or 1. A partition in state 3 is not
used.

Programs and Partitions 3-1

If the program is assigned to a particular partition, it runs only in the reserved partition to which it
is assigned; otherwise, a partition is allocated from the free dynamic memory. If there is
insufficient free memory, one or more other programs are swapped out of dynamic memory to
make room for the program.

The system does not swap a real-time program if it can make room for the program by swapping
background programs. Once a real-time program is in memory, it is never swapped to disk unless
a higher priority real-time program requires the partition in which it resides, or it is suspended
(non-scheduled) and a lower-priority program cannot execute unless the suspended real-time
program is swapped to disk.

Partition Assignment for Background Programs

When a background program not in memory is scheduled for execution, the partition assigned is
selected from a partition of sufficient size that is in state 0, 1, or 2.

A partition in state 1 is not used if it is possible to use a partition in state 0. If it is not possible to
use a partition in state 0 or 1, a partition in state 2 is used. A partition in state 3 is not used.

If the program is assigned, it runs only in the reserved partition to which it is assigned; otherwise, a
partition is formed for the program out of free dynamic memory. If there is insufficient memory,
one or more other programs are swapped out of dynamic memory to make room for the program.
No real-time programs are swapped out if swapping only background programs provides enough
memory.

Timeslicing

At generation time, a timeslicing boundary and a timeslicing quantum number are established for
the system. Programs with a priority lower than the timeslice boundary are subject to timeslicing.
Only programs of equal priority are actually affected by timeslicing, and the timeslice quantum is
equal for all programs below the timeslice boundary regardless of their priority.

As an example, suppose the timeslicing boundary (which is different from the background priority
boundary) is set at 30. Two background programs at priority 35 are timesliced, and share CPU
time equally. But if the priorities of these two programs are 35 and 40, the program at priority 35
runs until it is suspended before the program at 40 executes. This is because only programs of
equal priority are actually affected by timeslicing. If the program at priority 35 is compute bound
and never gets I/O suspended, then the program at priority 40 does not execute until the program
at priority 35 terminates.

As another example, suppose four programs are competing for CPU time. Their priorities are 40,
40, 50, and 50. The two at priority 40 timeslice and, as an example, use up 76 percent of the CPU
time. They are suspended for the other 24 percent of the time. The two programs at priority 50
then timeslice the remaining 24 percent of the CPU time.

3-2 Programs and P artitions

If the above programs are actually four copies of the same program, then the two at priority 50
require more than 24 percent of the CPU (more than 12 percent each). Therefore, because of
timeslicing, two of the four programs get all the CPU time needed (38 percent each), and the
other two are forced to share what remains (12 percent each).

Program Overlays

A large non-CDS program may be separated into a main program and related overlays, thereby
allowing it to execute in a partition smaller than its total size. While a large program with overlays
is executing, its main is kept in the partition continuously and its overlays are loaded from the disk
via a SEGLD or EXEC 8 call, as required. A newly-loaded overlay replaces the previous overlay
without saving any data that may have been accumulated in the overlay area. Therefore, overlays
should keep any global data in the main program area.

Program overlays are identified with short ID segments. One short ID segment is required for
each program overlay. The short ID segment is created automatically by LINK and located in the
program file, and is loaded and swapped with program main. Short ID segments are positioned
between the program main and the overlay area in the program file.

CDS Program Structure

In RTE-A systems with VC+, CDS programs have separate code and data partitions. When a
CDS program is linked, LINK puts all the code together and all the data together. Both code and
data are stored in the program file on disk. When the program is executed, the operating system
allocates two separate partitions for the program: one for code and one for data.

The first page, page 0, is used by the system for a special purpose. A maximum number of 31
logical pages is available for use for code or data. If the code requires more memory than 31
pages, then it is divided into code segments. Each code segment is 31 pages or less. A program
may use up to 128 code segments, up to 3968 pages of code are allowed. If more than 31 pages of
memory is needed for data, then Virtual Memory Areas (VMA) or Extended Memory Areas
(EMA) may be used. (Refer to the RTE-A Programmer’s Reference Manual for information on
EMA and VMA programming.) The memory required for program data, including EMA if used,
is called the data partition. The size of the data partition is controlled by LINK or by the operator
DT command.

Code segments are created when a program is linked, either automatically by LINK or by specific
LINK commands (refer to the RTE-A LINK User’s Manual for details). If automatic
segmentation is used, the LINK accumulates the program code until 31 pages are filled. A
subroutine cannot be broken apart and the pieces placed in two different segments. Code
segments are sized as close to 31 pages long as possible. User created code segments must be
from 2 to 31 pages long.

When the program is executed, the operating system allocates a partition to contain the code. The
code partition in physical memory may contain some or all of the code segments. The partition is
divided into subdivisions called segment blocks. Each segment block is large enough to hold the
largest code segment of the program. The code partition also includes code page 0, which is
reserved for system use. The CDS program code partition map is shown in Figure 2-4.

Programs and Partitions 3-3

The code partition may contain one or more segment blocks. When the program executes, the
code segments are loaded from the program file on disk into a segment block as they are needed.
When all the segment blocks contain code segments and another segment is referenced, the
operating system overlays one of the segment blocks with the new segment. (The segment
replacement algorithm is described later.) The more segment blocks that are in the code partition,
the more code segments that can be kept in memory. Since loading a segment from disk is
relatively slow, making the code partition larger decreases the execution time. The size of the
code partition is controlled by the CD command, which is either entered when the program is
linked or used as an operator command.

Shared Programs

The following description on shared programs is applicable only if your system has VC+. Shared
programs are CDS programs that share one code partition while using separate data partitions,
see Figure 3-1 for a typical illustration.

Data Partition
Code Partition (Program A)

Data Partition
(Program B)

Data Partition
(Program C)

Figure 3-1. Shared Programs

Shared programs are implemented by using a shared program table. There is an entry for each
shared program in this table containing information such as the disk address, in-use count,
in-system count, Memory Descriptor (MD) pointer and ID segment list pointer of the shared
programs.

A program is designated as a shared program only at the time it is linked with LINK. When the
program is RP’d, the shared program table is scanned to determine if an entry exists for this
program. If so, the in-system count is incremented; otherwise, an entry is established. During
dispatch, the shared program table entry in-use count is incremented. If the program is the first of
the shared programs to be dispatched, the code partition is loaded into memory. All code
segments of a shared program must be in memory at all times during program execution. The data
is loaded into another partition and the program is ready to execute.

During the abort/terminate processing, the following events occur: the data partition is
deallocated; the in-use count is decremented; and, if it is zero, the code partition is deallocated. If
there is no RP’d shared program, indicated by a zero in-system count, the shared program table
entry is cleared.

3-4 Programs and P artitions

Managing User Partitions

The RTE-A Operating System manages memory using fixed (called reserved) and dynamic
memory partitions. The reserved partitions are used by programs specifically assigned to them.
The dynamic memory is divided into partitions that are allocated to programs as needed.

When the operating system needs to load or swap-in a program that is not assigned to a reserved
partition, it uses the first suitable free block of dynamic memory it finds. If a free block of
sufficient size is not available, the operating system searches for a suitable set of non-free blocks of
dynamic memory.

The operating system allows programs not assigned to reserved partitions to share dynamic
memory on a priority basis, loading and swapping programs into areas of memory that are
unoccupied or are occupied by dormant or terminated programs. Swapping is handled using a
series of algorithms that combine speed and efficient use of memory.

Allocating Reserved Partitions

In allocating a reserved partition, the system (dispatcher) first checks if the partition is free when a
program assigned to a reserved partition is not in memory but is to be executed. If so, the system
loads the new program from disk into the reserved partition, and modifies the reserved partition
Memory Descriptor (MD) to point to the program ID segment. If the reserved partition is in use
as shareable EMA, then the new program cannot run until all programs using the shareable EMA
have terminated, since shareable EMA is never swapped out of memory.

If the reserved partition is occupied by a program, then the occupant must be of either lower or
equal priority, or higher priority but not running, in order to swap in another program. The
system checks the reserved partition MD for the status of the occupant, and makes the swap if the
occupant is swappable. A program is not swappable if it is memory locked (EXEC 22 call) or is in
the process of doing nonbuffered I/O. If the program in memory is not swappable, the new
program must wait until the status of the program in memory changes.

Note that even if the program in memory is real-time and of higher priority than a waiting
program, it can still be swapped out by the system. This provision prevents deadlocks; for
example, consider what could occur if a real-time program (PROGR) in a reserved partition
scheduled with wait a background program (PROGB) that was assigned to the same reserved
partition. If the system were not allowed to swap out the occupant, neither program would be able
to run, and a deadlock would result.

On the other hand, this implies that for programs assigned to a reserved partition, the real-time
fence has no meaning; any program in a reserved partition that is non-scheduled (blocked) may be
swapped out for a lower priority program. This consideration should be kept in mind when
assigning programs for which real-time response is desired to reserved partitions.

Allocating Dynamic Memory

Swapping a program into dynamic memory is not quite as straightforward as swapping into
reserved partitions. In order to complete the swap, the system must find an area of memory of
sufficient size that is either unoccupied or occupied by one or more programs that are in a
swappable state. Since more than one program may have to be swapped out in order to make

Programs and Partitions 3-5

room for the new program, and since one program can change state while the system is swapping
another, the search algorithms are more complicated than those for reserved partition swapping.
The search sequence is described in the following paragraphs.

First Choice

First, the system searches the Memory Descriptor (MD) list for a free block of memory of
sufficient size to contain the new program. This is a search of the free dynamic memory list, which
is the doubly-linked circular list of dynamic memory descriptors. This list is unordered. The
system makes a first-fit search, starting at free MD list head SFREM.

If a free block of dynamic memory is found, a block of the proper size needed is allocated for the
program, then the free dynamic memory list and the adjacent memory list are adjusted, and the
system copies the program from its memory-image file or from the swap area on disk into the
newly created dynamic partition.

If a suitable free block of dynamic memory is not found, the system notes the size of the largest
free block, which was found during the search of free memory descriptors on the list.

Second Choice

If a suitable portion of free memory is not found, the system makes a second search on the
adjacent MD list, starting at a cyclical start-search point, pointed to by system variable $STMD.
Any set of contiguous blocks that does not include a block in use as a shareable EMA area, or a
block holding a program doing nonbuffered I/O or having executed an EXEC 22, is a usable set of
blocks, if the total size of the blocks is as large or larger than the new program.

If at any point in this dynamic memory search, a usable set of blocks is found that includes only
one block occupied by a program, the system proceeds to make the swap if the program in memory
is:

a. A background program,

b. Not scheduled,

c. No more than double the size of the new program, and

d. Not larger than 32k.

If such a set of blocks is found, it is immediately chosen for use.

As long as no set of blocks meeting these criteria is found, the search continues. In addition to the
immediate-usage test, each set of blocks is examined in order to locate the best set of blocks (in
case the immediate-usage test is not met).

For the purpose of selecting the best set, a set of blocks that does not include real-time programs
is always better than a set occupied by real-time programs, regardless of the number of occupants
or their size. This is the only way in which the memory management system treats real-time
programs differently from background programs. A real-time program in the dynamic memory
area may be swapped out for a lower priority program (real-time or background), but only if there
is no way that room can be made in memory by swapping only background programs.

3-6 Programs and P artitions

If there is more than one set of blocks containing no real-time programs, the third search
algorithm compares these sets, giving them weight according to which set could be swapped in the
least time. This depends on the number of occupants and their size. It takes more time to swap
out several small programs than a single large program. To make its decisions, the system
establishes a weight for each set of blocks. This weight is the product of the number of pages to be
swapped by the number of programs to be swapped. The set of blocks with the lower weight is
considered better.

Knowing the best set of blocks, the system now swaps out the first occupant and clears the
memory-resident bit in its ID segment so the dispatcher does not try to run the swapped-out
program.

The system swaps out the occupants of the set of blocks one at a time. Each of the remaining
blocks in the set is examined after each swap to verify that the occupant to be swapped is still
swappable. This swappable check covers the possibility that one of the occupants could have
executed, entering a non-swappable state, while a previous occupant was being swapped.

Note that as programs are swapped out they have their memory-resident bits cleared, but they are
not actually moved out of memory.

When all occupants have been swapped out, the memory area is released and a new partition for

the new program is formed out of the resulting free block. The system then swaps-in the program
from the swap file or copies it from its memory-image file on disk.

Restarts

When system status changes because of an asynchronous event and the set of blocks is not usable
anymore, a cleanup must be performed. The system deletes all records of the previously
performed search and starts a new search on the next entry.

Cleanup occurs when:

a. A program terminates, freeing a block of memory that is suitable for the newcomer.

b. When a program that has been swapped out and marked not to run changes state via some
asynchronous event and becomes the highest priority program in the schedule list.

c. When a program to be loaded or swapped in is taken off the schedule list due to an operator
command, an EXEC 6 call, or a similar terminating event.

d. When the swap file runs out of space in a multiple swap-out sequence.

Programs and Partitions 3-7

Program Loading and Swapping

A program in memory is overlaid by another program when it terminates. It must be reloaded for
execution again. To avoid reloading a program into memory before every run, it can be terminated
saving resources or serially reusable.

When rescheduling a program that terminated saving resources, execution continues from the
point at which it terminated. It can be swapped out if the need arises, then swapped back in when
it is rescheduled. For CDS programs, the data partition can be swapped out and/or the code
partition overlaid if the need arises. The data partition is swapped in and the code partition
reloaded from the program file when the program is rescheduled.

If a program is dormant and has performed a serially-reusable termination, its partition can be
overlaid by another program. This type of termination should be used only with disk-resident
programs that can initialize their own buffers or storage locations. After a serially reusable
termination, a program is reloaded from disk if its partition has been overlaid.

A program that terminates serially reusable starts execution at its primary entry point when
rescheduled. If the need arises, it is overlaid without swapping out (either the code or the data
partition for CDS programs) and a fresh copy of the program file is brought into memory when the
program is rescheduled.

If the program terminates neither saving resources nor serially reusable, the system clears the
memory-resident bit, resets the memory descriptor pointer in the ID segment, and releases the
program partition. For CDS programs, the system clears the memory-resident bits for both the
code and data partitions, resets the memory descriptor pointers in the ID segment and releases
the partitions the program is using. For shared CDS programs, the system clears the code
partition only when the in-use count reaches zero. The program file then must be copied into
memory before the program can execute again.

Programs in a memory-based system are booted into memory along with the operating system
(merged via the program BUILD). These programs are not associated with the original load
medium at run time (the disk LU in the ID segment is zero). These programs are not reloaded
each time they execute nor can they be swapped to disk.

Program Partition Deadlock

Program partition deadlock is a situation where a program cannot be allocated all the dynamic
memory partitions it needs because of the manner in which partitions are allocated. Programs
that require more than one memory partition are those that use shareable EMA (one partition for
the program and one or more for the shareable EMA), CDS programs (two partitions), and CDS
programs using shareable EMA (three or more partitions). A deadlock occurs if the first partition
is allocated in the middle of the free dynamic memory pool, leaving the remaining free areas too
small for the remaining partition(s).

For example, suppose a program needs a 30-page and a 20-page partition and the 30-page
partition is allocated near the middle of a 50-page free dynamic memory, leaving a 15-page and a
5-page free area. Both areas are then too small for the 20-page partition needed by the program,
and thus causing a program partition deadlock.

3-8 Programs and P artitions

An algorithm to prevent such a deadlock is embedded in the dynamic memory searches. Checks
are made whenever a possible position for a partition is considered, whether it is a block of free
memory or a set of usable block containing swappable and overlayable programs. The possible
positions for the remaining partitions needed by the program are determined, and the memory
searches verify that the partitions do indeed fit into those positions. It is important to understand
that this check deals only with “good” dynamic memory, not the bad pages downed due to parity
error. The current use of the memory (for example, shareable EMA, program, and free) is not
relevant. If the memory is in use for shareable EMA, the deadlock check passes (if the needed
partition fits), but the memory searches are not able to allocate the partition since shareable EMA
is always locked into memory until all programs that are accessing it terminate. The deadlock
simply assures that the needed partitions fit into memory, regardless of the current status of the
memory.

When a deadlock is detected, the program is aborted and an error (SC09) displayed. If this
occurs, reduce your program size.

Programs and Partitions 3-9

System Boot-Up

The normal boot-up sequence for disk-based systems is as follows:

1.

The Virtual Control Panel (VCP), a program in the VCP/Loader ROMs (on the processor
card), reads the first file on the disk into memory. This file should contain a BOOTEX
program that has been correctly initialized by the INSTL program.

The VCP uses your boot command string to decide where to find BOOTEX. For example,
the string %BDC2027 specifies HP-IB address 2, disk surface 0, select code 27 (2027 is the
default string.) BOOTEX must be the first file, because the VCP does not know anything
about the file system.

INSTL is used to set up some information in the BOOTEX file describing the disk from
which BOOTEX was loaded. INSTL can also copy BOOTEX to the right place.

BOOTEX reads a file on the disk. This file can either be a type 4 ASCII command file or a
type 1 system file. The name of the file may be specified via a command issued to the VCP.
For example, %BDC2027 selects file /SYSTEM/BOOT.CMD, which is the default command
file name. If the bootable LU is a FMGR LU, the default file is SYSTEM. If the file is a
type 4 command file, BOOTEX executes the sequence of commands included in the
command file, then brings the desired operating system into memory and starts it up. If the
specified file is a type 1 system file, BOOTEX brings the operating system into memory and
starts it up.

Note that it is possible to have different command files on the disk to bring up different
versions of the operating system, or to initialize the system in different ways. Since BOOTEX
can access different command files, it is easy to keep several different system files around.

The operating system dispatches a user-specified start-up program to perform system
initialization. This program may start the execution of any other desired programs.

System Boot-Up 4-1

BOOTEX Functions

The BOOTEX program may perform the following functions, as directed by the command file:

1.
2.

Mount any disk LUs that are needed for system initialization.

Initialize the swap file area. This involves creating the swap file if it does not exist, or finding
it on the disk if it does.

Define certain system tables, such as the memory descriptor table.

Restore the ID segment used by certain programs, such as terminal handling programs
(typically CI) and the directory manager program D.RTR.

Assign programs to reserved partitions.
Define reserved partitions.
Specify a system start-up program to execute immediately on boot completion. For

disk-based systems, the normal start-up program is CI. CI can be scheduled on boot-up and
directed to execute the commands in a file.

Start-Up Program Functions

When initializing your system, you may want your start-up program to perform some of the
following functions:

1.
2.

4-2

Initialize any subsystems; for example, networking.

Initialize any peripheral devices that must be set to a known state before application
programs start executing, such as terminals connected via the multiplexer card.

Start-up any of your application programs by using CI XQ or RU commands, or EXEC
program scheduling requests from a user-written start-up program.

Write a message to the attached terminals, to inform users that system initialization is
complete.

System Boot-Up

Operating System Modules

Introduction

This chapter contains a description of all the RTE-A Operating System modules. The only
modules that are required for an operational system are VCTR, EXEC, RTIOA, IOMOD,
ABORT, IORQ, MAPS, PROGS, SAM, UTIL, and the correct RPL module plus one I/O driver
for a network or terminal interface to the system. The remaining system modules are optional;
each adds additional capabilities to the system.

To aid in understanding the consequences of including or omitting a given module, Table 5-1 shows
a summary of EXEC requests and the modules in which they are processed. If the necessary
module is omitted, the EXEC request is not available for this operating system, and a a call to it
causes an error.

To implement the modularity described above, a library of dummy modules is used. This library,
$SYSA, contains routines that satisfy the references made to the omitted modules. These routines
also handle the request being made to the module.

In some cases, the dummy module issues an error message indicating that a certain command does
not exist. In other cases, it may replace the call to the routine with a NOP (no operation)
instruction or it may even abort the program that made the illegal request and continue normal
system operation.

$IDRPL

$IDRPL is a partitionable system module. $IDRPL contains the code to:

get ID segment addresses of programs

create program ID segments

set up and search the proto ID list in XSAM

create and remove proto IDs

duplicate program ID segments from program ID segments and proto IDs.

If $IDRPL is not specified, a dummy module ($ID..) from the dummy library (§SYSA) is
automatically included. It only gets the ID segment address of a program. If a program requests
any other functions, it causes an error message.

Operating System Modules 5-1

Table 5-1. EXEC Requests and Processor Modules

EXEC Code Meaning Processor Module

1 I/0 Read IORQ

2 1/0 Write IORQ

3 1/0 Control IORQ

4 — not available —

5 — not available —

6 Program termination ABORT

7 Program suspend ABORT

8 load program segment LOAD

9 Schedule with wait SCHED
10 Schedule program SCHED
11 Request system time TIME
12 Time schedule TIME
13 I/O status IORQ
14 String passage STRN
15 — not available —
16 — not available —
17 Class read CLASS
18 Class write CLASS
19 Class control CLASS
20 Class write/read CLASS
21 Class get CLASS
22 Define Swappability MEMRY
23 Queue schedule w/wait SCHED
24 Queue schedule w/o wait SCHED
25 — not available —
26 Memory Status STAT
27 — not available —
28 , — not available —
290 Locate program UTIL
30 , Lock LU LOCK
31 ., Allocate class number CLASS
32 Lock resource number LOCK
33 xx Determine effective LU STAT
34 #NQUE and #RQUE DSQ
35 Interface driver entry RTIOA
37 Signals SIGNL
38 Timers ALARM
39 Environment Block Access ENVRN

29 - IDGET
30 - LURQ
31-CLRQ
32 - RNRQ

* indicates EXEC codes used only by library subroutines:

** indicates EXEC code used only by DS software.

Operating System Modules

$SYSA

This is the dummy library to be searched to resolve any references to modules that have been
omitted from the system relocation. The dummy modules use the first three characters of the
name of the real module followed by two periods. For example, the dummy module TIM.. takes
the place of the module TIME.

To distinguish between the real modules and the dummy modules, system entry points called
module flags are used. In each module, the module flag $.xxx (where xxx represents the first three
characters of the real module name) is set to zero in the real module and to —1 in the dummy
module. For example, to test whether the real CLASS module or the dummy CLASS module is
included in the system, the following sequence of instructions could be used:

XLA1 $.CLA Load A-Register with $.CLA

SZA
JMP DUM Here if the dummy CLASS module is available

JMP REAL Here if the real CLASS module is available

These modules may also be differentiated at link time. In each of the real modules, the module
flag $$xxx exists. (Again, xxx are the first three characters in the name of the real module.) This
flag does not exist in each of the dummy modules. In order to use this feature, simply reference
this module flag if your program must use the real module. LINK finds an undefined external
reference if the dummy module is included in the system and does not link the program.

Below is a description of the system modules with the capabilities provided by each one. If a

module is omitted, and the dummy module is used, the corresponding capabilities are not included
in the system.

ABORT

ABORT is a required system module. ABORT contains the code for handling EXEC 6 (stop
program execution) and EXEC 7 (program suspend) requests, as well as program abort
processing. ABORT is a partitionable module.

ALARM

ALARM is a partitionable module that is required when using interval timers. ALARM contains
all the routines necessary to set, query, and modify interval timers.

If ALARM is not specified, a dummy module (ALA..) from the dummy system library ($SYSA) is
automatically included .

Operating System Modules 5-3

CDSFH

CDSFH is a partitionable module that is used only in systems with VC+. This module is required
for use with CDS programs and must be included in system generation.

If CDSFH is not specified, a dummy module (CDS..) from the dummy system library (§SYSA) is
automatically included. This is the case for all HP 92077A systems.

CHECK

CHECK is a partitionable module that is required when using SECURITY/1000.

If CHECK is not specified, a dummy module (CHE..) from the dummy system library (§SYSA) is
automatically included.

CLASS

CLASS is a partitionable module that permits processing the class I/O calls associated with the
following EXEC request calls:

17 = Class read

18 = Class write

19 = Class control

20 = Class write/read

21 = Class get

31 = Allocate class number (CLRQ)

The dummy CLASS module (CLA..) aborts any program that makes one of the above requests
and causes an error message.

DSQ

DSQ is a partitionable module that must be relocated during system generation if the system
includes NS-ARPA/1000 or ARPA/1000. DSQ is used to re-queue requests between the various
DS monitor programs.

If the dummy DSQ module (DSQ..) is used in a system with the networking software listed above,
an error is issued.

5-4 Operating System Modules

ENVRN

ENVRN is a partitionable module that is required for access to the Environment Variable Block
via the EXEC(39, ...) interface.

A program that attempts to call EXEC(39, ...) when the dummy ENVRN module (ENV..) is in the
system receives an OP39 EXEC error code.

If you are using an A900 processor, please refer to the “Modules for A900 with %2ENVRN or
Networking Products” section in this chapter for information on how to get ENVRN into your
system.

ERLOG

ERLOG outputs error messages to the user terminal (the terminal LU number is stored in the
program ID segment). ERLOG gets the System Language Number (SLN) from DVT24 and uses
the number as an index to the Language Message Address table (SLMAT). The Language
Message Address table contains the logical address of the system message block from which the
error message is to be extracted. If the no-abort bit is not set when the program aborts, the
program is aborted after the messages are issued.

The dummy ERLOG module (ERL..) does not output any message. Otherwise, it takes the same
actions as the complete system module.

EXEC

EXEC is a required system module. All EXEC requests are routed through this module. The
EXEC module also contains the code for the initial processing of most interrupts (TBG, MP, UIT,
I/0). EXEC may, in turn, pass the requests to other modules.

EXEC also processes privileged mode operations (GOPRYV, $LIBR, $LIBX, Dispatchlock,
Dispatchunlock, $SJSx).

ID*43

ID*43 is called the power fail driver module. Unlike other drivers it does not handle an interface
card. It provides the capability to save the state of the computer upon power failure and restore it
upon recovery of power. Additional processing is provided through the optional AUTOR program
if it is available. (AUTOR is not required for power fail recovery.)

AUTOR aborts any pending requests on terminal MUX LUs (MUX interface card with device
type 0, 5, or 12) and sends a power failed message to all terminal LUs. AUTOR must be RP’d in
the welcome file. The AUTOR program is supplied in source form, and can be modified by the
user to provide customized power fail recovery.

The dummy module (POW..) causes the system to halt with the T-Register equal to a HLT 4.

Operating System Modules 5-5

IOMOD

IOMOD is a required system module. It contains several subroutines needed for I/O operations.
These subroutines are used by the operating system as well as the I/O drivers.

IORQ

IORAQ is a required system module. IORQ is also a partitionable module. All normal I/O
requests are handled within this module. However, both IOMOD and RTIOA must be present to
actually perform I/O. EXEC request calls processed by IORQ are:

1 = Read

2 = Write

3 = Control
13 = Status

The following EXEC request calls cause IORQ to transfer control to the optional CLASS module.
The dummy CLASS module causes the program making these requests to abort.

17 = Class read

18 = Class write

19 = Class control
20 = Class write-read

The class get request (EXEC 21) is also processed in the CLASS module but is routed to the
module directly from EXEC.

LOAD

This module enables a program to be loaded from a disk, and handles program swapping. LOAD
is a partitionable module.

LOAD processes EXEC 8 (overlay load) requests.

The dummy LOAD module (LOA..) causes an error message and aborts any program that makes
the above requests. Program swapping does not occur.

5-6 Operating System Modules

LOCK

LOCK is a partitionable module that handles LU and resource number locks. It is called by
subroutines LURQ and RNRQ. Also, when a program aborts, LOCK is called to release any
locally allocated LU locks and/or resource numbers.

The dummy LOCK module (LOC..) treats any LU lock request or resource number lock as an
error, and treats any request to clean up LU or resource number locks as an NOP (no operation).

MAPOS

This module contains routines that control access to partitioned system modules. MAPOS is
required only in systems that have system modules residing in OS/Driver partitions. It is not
required or needed in any other systems.

MAPOS is not a partitionable module; it must be relocated during the system relocation phase of
the generator.

There is no dummy MAPOS module because systems without system modules in the OS/Driver
partition never reference any MAPOS routines.

MAPS

MAPS is a required system module. MAPS contains the code dealing with the dynamic mapping
system for programs, OS/Driver partitions, and I/O.

MEMRY

This module searches for memory to run a program, allocates partitions, manages the internal
Tables that describe memory, and processes the EXEC 22 call that changes the status of a
partition. MEMRY is a partitionable module.

The dummy MEMRY module (MEM..) contains minimal functionality to allow a memory-based

system (a system created by BUILD where all programs are memory-resident) to execute
properly. An EXEC 22 request does not have any effect.

Operating System Modules 5-7

MSGTB

The MSGTB module contains pointers to the messages printed by RTE-A in response to operator
commands such as SZ, or in response to some error. This module is used with the system message
blocks that contain the actual message text.

If the dummy MSGTB module (MSG..) is used, no messages are printed. Be aware that this can
cause confusion because errors are not reported.

OPMSG

This module contains operator messages required by the modules SYCOM, XCMND, and STAT.

The dummy OPMSG module (OPM..) returns a “??” if any of the operator messages is called for.

PERR

PERR is automatically invoked when a memory parity error is detected. It determines whether or
not the parity error is reproducible. It marks the bad memory pages as unusable (down) when
necessary and prints a message on the system console. PERR is a partitionable module.

If a dummy module (PER..) is used and a parity error occurs, the system halts with the T-Register
equal to a HLT 5 error.

PROGS

PROGS is a required system module. PROGS contains the code that deals with scheduling
programs and program state changes.

RTIOA

RTIOA is a required system module. RTTOA contains the code for the logical and physical drivers
that provide the interface to device and interface drivers. RTIOA also contains XSIO, the
operating system I/O request processor.

5-8 Operating System Modules

SAM

SAM is a required system module. This module allocates and deallocates portions of system
available memory (SAM) and extended system available memory (XSAM).

SCHED

This module enables a program to schedule another program. The following request codes are
processed:

9 = Schedule with wait

10 = Schedule without wait

23 = Queue schedule with wait

24 = Queue schedule without wait

The dummy SCHED module (SCH..) causes an error message and aborts the program making the
above request unless the no-abort bit is set.

SECOS

SECOS is a partitionable module that is required when using SECURITY/1000.

If SECOS is not specified, a dummy module (SEC..) from the dummy system library (§SYSA) is
automatically included.

SIGNL

SIGNL is a partitionable module that is required when using signals. SIGNL contains all the
routines necessary for delivering, receiving, and controlling signals.

If SIGNL is not specified, a dummy module (SIG..) from the dummy system library ($SYSA) is
automatically included.

SPOOL

SPOQOL is used only in systems with VC+; it contains subroutines that are used by the spool
system programs. There are no user-callable subroutines or EXEC request processors in SPOOL.

During system generation for a system with VC+, SPOOL is included. For a system without
VC+, a dummy module, “SPO..” is included in $SYSA.

Operating System Modules 5-9

STAT

This module provides an extension of the operator commands found in SYCOM. STAT is a
partitionable module.

The commands provided by this module are:

DS = Device status
PS = Program status

This module also processes the memory status request and effective LU request:

EXEC 26 = Memory status (LIMEM)
EXEC 33 = Effective LU

The dummy STAT module (STA..) prints ILLEGAL COMMAND if this command is attempted.

STRNG

STRNG permits the runstring to be saved in SAM (program writing to the scheduling program)
and a runstring to be picked up from a scheduling program or from the operator. STRNG
processes the EXEC 14 request code.

If the dummy STRNG module (STR..) is used, then an EXEC call to pick up the runstring
produces the following values in the registers upon return to the program:

A =1 (No runstring)
B = 0 (Size of string)

An EXEC call to write a string to a scheduling program with the dummy STRNG produces a SC10
error (insufficient memory).

SYCOM

SYCOM parses all system level operator commands and processes them by passing the command
parameters to the appropriate routine. In addition to these command processing functions, this
module executes the following operator commands:

EX = No operation

OF = Program termination
UP = Set device up

RU = Run program

XQ = Execute program

The dummy SYCOM module (SYC..) does not read operator input and ignores MESSS calls.

5-10 Operating System Modules

TIME

TIME is a partitionable module that allows a program to request the system time and to time
schedule another program or itself. TIME processes the following EXEC calls:

11 = Read time
12 = Time schedule a program

The dummy TIME module (TIM..) treats request EXEC 11 as a NOP (no operation), allowing the
program to continue with its parameters unchanged. However, it causes an error message for

EXEC 12 and aborts the program making the request. The system time may not be changed or
displayed; all requests are ignored.

UTIL

UTIL is a required system module. UTIL contains the startup code, many system variables,
unpartitionable parts of partitioned modules, and utility routines used in other parts of the
operating system.

VCTR

VCTR is a required system module. VCTR contains many system entry points (for example,
constants, variables, and arrays). This module must be relocated first in system generation.

When a program is linked and all system references are resolved in the VCTR module, the
program’s ID segment is modified at link time to indicate that this program is transportable.

VEMA

This module provides the capability to perform VMAIO system calls. It must be included in any
system that may execute a program that makes VMAIO calls. VEMA is a partitionable module.
Some programs that utilize VMAIO are D.RTR, TF, ASAVE, and FST.

If the dummy VEMA module (VEM..) is used, a program issuing a VMAIO call is aborted with a
VM92 (VMA not available) error.

XCMND

This module provides an extension to the operator commands found in the SYCOM module.
XCMND is a partitionable module.

Operating System Modules 5-11

The commands provided by this module are:

AS = Assign program to a reserved partition
BR = Set break flag in program’s ID segment

CD = Display or change code partition size of CDS program
Set device down
Display or change data partition size of CDS program

GO = Resume program
PR = Change program priority
SS = Suspend program

%)
N
I

Display or change program size

UL = Unlock a shareable EMA partition
VS = Display or change program VMA size
WS = Display or change program working-set size

If the dummy XCMND module (XCM..) is used, the message ILLEGAL COMMAND is issued if
any of the above commands are attempted.

RPL Modules

The RPL module contains the special microcoded instruction formats. One RPL module is
required in the RTE-A Operating System. You should choose one from the list shown in Table 5-2,
based on the type of processor and features used in your system.

Table 5-2. RTE-A RPL Files

Double Precision .
Processor CDS Floating Point RPL File
A400 no no %RPL40
no yes %RPL41
yes no %RPL42
yes yes %RPL43
A600 no no %RPL60
A600+ no yes %RPL61
yes yes %RPL63
A700 no no %RPL70
no yes (HWFP)* %RPL71
yes no %RPL72
yes yes (HWFP)* %RPI73
A900 no yes %RPL90
yes yes %RPL91
Refer to the following para-
graph for more information.
A990 no yes RPL_A990.REL
yes yes RPL_A990 CDS.REL

* HWFP — Hardware Floating Point Card must be installed in the system.

5-12 Operating System Modules

Modules for A900 with %ENVRN or Networking Products

If you are using the %2ENVRN module or any of networking products NS-ARPA/1000,

ARPA/1000, or X.25 on an A900 processor, then you will need to relocate additional modules
depending on the revision code of the firmware installed on the processor. If your firmware is
Rev. 4 or later, then the firmware equivalents may be used by relocating the following module:

/RTE_A/RPL_A900_REV4.REL

For earlier firmware revisions, the software equivalent modules must be used. These are found in
the file:

/RTE_A/XMB.REL

XMB.REL contains the software for six cross-map move byte instructions that are not in the A900
RPL files %RPL90 or %RPLI1. These instructions are listed below next to the modules which
call them:

ENVRN —- .mb01, .mb10, .mb12, .mb21
IDZ00 —— .mb02, .mb12
DDX00 —- .mb01, .mb02, .mb10, .mb12

(.MB20 is also included in XMB.REL but it is not required by the operating system.)

All six routines may be relocated by relocating XMB.REL. However, memory space may be
conserved by relocating only those that are necessary for your system. For example, the following
command will relocate only the .MBO01 software from the MB01 module:

RE,/RTE_A/XMB.REL,MBO01

If the proper modules are not relocated, an undefined external error is displayed. Descriptions of
the mbxx cross-map move byte instructions are given in your HP 1000 A-Series Computer
Reference Manual.

Optional Modules

The RTE-A Operating System has optional modules that can be specified when the system is
generated. Some of these optional modules are dependent on other optional modules. All are
dependent on the required modules. The chart below lists both the required and optional modules
that can be used to create different configurations of RTE-A.

If any of the modules are omitted, the dummy library, $SYSA, must be searched. Also, if any
system modules are relocated in the Operating System Driver Partition Area, $SYSA must be
searched after the non-partitioned modules have been relocated and before relocating the
partitioned modules. If no system modules are being relocated in the Operating System Driver
Partition Area, $SYSA should be searched before beginning driver partition relocation.

REQUI RED SYSTEM MODULES: ABORT, EXEC, |1OMOD, | ORQ MAPS, PROGS, RPLXxX,
RTI OA, SAM UTIL, VCTR, $SYSA, driver.

OPTI ONAL SYSTEM MODULES: $I DRPL, ALARM CDSFH, CHECK, CLASS, DSQ ENVRN,
ERLOG, ID. 43, LOAD, LOCK, MAPGS, MEMRY, MSGIB,
OPMSG, PERR, SCHED, SECOS, SIGN\L, SPOCL, STAT,
STRNG, SyCov TI Mg, VEMA, XCVND.

Operating System Modules 5-13

The following is a small sample of possible RTE-A configurations that can be created by adding
different optional modules. The list shows four systems with increasing functionality.

M ni sys : A non-CDS nenory based systemthat executes
a start up program

Smallsys : A non-CDS systemwith the ability to | oad,
swap and schedul e prograns.

Medsys : A CDS based systemwi th ability to | oad, swap
and schedul e progranms. Also includes
nodul es necessary for use of the optional
DS |ink software.

Largesys : A full featured systemwth all nodul es
i ncl uded.

To generate these systems, different optional modules are used. The following chart shows which
modules can be used to create the configurations listed. Note that all systems must include the
required modules.

* RTE-A OPTIONAL MODULES *

MINSYS SMALLSYS MEDSYS LARGESYS
$IDRPL X X X
CDSFH X X
CHECK X
CLASS X X X
DSQ X X
ENVRN X X
ERLOG X X X
ID*43 X
LOAD X X X
LOCK X X
MAPOS X X X
MEMRY X X X
MSGTB X X X
OPMSG X X
PERR X
SIGNL X X X
SCHED X X X
SECOS X
SPOOL X X
STAT X X X
STRNG X X X
SYCOM X X X
TIME X X
VEMA X X
XCMND X X X
ALARM X X X

Partitionable Modules

Partitionable system modules allow RTE-A to logically address more than 32K words (32 pages) of
RTE-A code and/or data. The system modules to be placed in an OS/Driver partition are defined
when the system is generated.

5-14 Operating System Modules

Not all system modules can be placed in an OS/Driver partition; some system modules contain
routines that must reside in logical memory at all times. These modules are non-partitionable and
the generator reports an error if one is relocated into the OS/Driver partition area. The system
module descriptions in this chapter indicate which modules are partitionable; see the System
Generation and Installation Manual for further information.

Partitioned system modules and I/O drivers are mapped into the logical address space reserved for
the OS/Driver partition as the modules and drivers are needed. Reducing the amount of logical
address space required for system modules and I/O drivers allows more system tables to be
generated. The additional table space increases the overhead involved in manipulating the
dynamic memory maps; therefore, partitioning more code and/or data increases the amount of
logical address space available, but degrades system performance.

A system in which many system modules are partitioned can contain more ID segments, IFT5, and
DVTs than an unpartitioned system. For example, if a large number of programs (ID segments)
and/or devices (IFTs and DVTs) are required, all partitionable drivers and system modules can be
placed in OS/Driver partitions. This system supports the devices or programs, but its performance
is degraded. If few devices and/or programs are required, a system with minimal driver and
system module partitioning can be generated and system performance is not affected.

The OS/Driver Partition

The OS/Driver partition is a contiguous set of pages in the system logical memory map. The size
of this partition is the same as the size of the largest OS/Driver partition that is defined at
generation time. When a partitioned system module or driver is called, the system maps the
appropriate OS/Driver partition into this logical address space.

A system module located in an OS/Driver partition is called a partitioned module. Routines
contained in the module are called partitioned routines. Partitionable system modules contain
special information about the routines in them that is used by the generator when it puts the
module in an OS/Driver partition.

Some system modules contain routines that must reside in memory at all times. These modules
are non-partitionable and the generator reports an error if one is relocated into the OS/Driver
partition area. Specific information about partitionable and non-partitionable system modules can
be found in the RTE-A System Generation and Installation Manual.

Tags

An interface routine, called a tag, is used to enter a partitioned system routine. The tag saves
information about the currently mapped OS/Driver partition, copies any parameters into the tag,
alters the physical mapping registers to point to the OS/Driver partition that contains the called
system routine, and transfers to the routine. The routine then retrieves any parameters from the
tag, not from the original routine call.

The tags are created by the generator and are located in the tag area, a group of contiguous words

in the non-partitioned portion of system memory. The generator automatically changes calls to
partitioned system routines to enter the tag associated with the routine.

Operating System Modules 5-15

System Symbols and List Structures

The RTE-A software system depends upon various tables and lists (and sometimes lists of tables)
to perform memory and program management tasks. The location of most of these tables and lists
can be found from the symbols reported in the generation map or from the snapshot file produced
by the generator. (Appendix A contains a description of the snapshot file format.)

A table is a group of contiguous memory locations that contain related information. For example,
the swap descriptor table describes the location of free areas of the swap file; this table is
described in Chapter 11 of this manual. Most tables consist of multiple entries, where each entry
is a table itself. For example, the Interface Table (IFT) consists of entries of about nine words
each. Associated with each table are several entry points that contain information about the table:
the starting address, the number of entries, and the number of words (memory location) in each
entry.

An entry point is a symbol associated with a certain memory location. Entry points are used for
holding information (for example, the number of entries in a table, system checksum value, and
current time), holding the address of a subroutine, and so forth. When the system is generated,
the location of each entry point and its symbol are placed in the snapshot file.

System Symbols

Most symbols belonging to the system start with the dollar sign character ($). These entry points
may refer to pointers, counters, buffers, subroutine entry points (called via JSB), or code entry
points (called via JMP). Only special instructions are capable of examining or modifying system
data structures or executing system code from the user area. As additional protection against
accidental modification of the operating system, those instructions that store into the system or
jump into system code may only be executed with memory protect disabled. The mechanism for
temporarily disabling memory protect is described in Chapter 8.

System pointers are entry points that contain the address of a table or other data structure. For

example, the system entry point $IDA contains the address of the first ID segment, and is
therefore a pointer. This is illustrated in Figure 6-1.

System Symbols and List Structures 6-1

ID Segments

v

$IDA address

Figure 6-1. System Pointer $IDA

For example, if the generation listing shows the entry
$IDA 2066
and the contents of location 2066B is 34402B, then the first ID segment starts at location 34402B.

Counters are used to keep track of such things as the number of elements in a table or the length
of the table. These are used in conjunction with pointers and addresses in order to access specific
elements of specific tables.

System subroutine and code entry points are used by the operating system to jump between
modules.

The operating system also contains a few fixed-length buffers and Tables that are not defined by
the generator, such as the system command parsing buffer $PB.

The system also contains five user-definable entry points, SCSTM1 through $CSTMS. These
variables are initially zero and are not used by the system. They are defined in VCTR so that any
program that references them may be transportable. These entries may be used by customers’
drivers or applications.

Lists

In the operating system, the following forms of linked lists are used: linear linked lists, circular
linked lists, linked lists using offset pointers, linear doubly linked lists, and circular doubly linked
lists. The five forms of linked lists are described in the following paragraphs.

6-2 System Symbols and List Structures

Linear Linked Lists

A linear list generally has a list head. This is a word in memory that is a pointer to the first
element in the list. Then each of the elements, which may be tables or lists themselves, contains
pointers that reference the next element in the list. The last element in the list contains a flag to
show that it is the last element. This may be a zero or a negative one or some other value that is
not a legal address.

One such list in the operating system is the scheduled list. This list is shown below in Figure 6-2.
It has a list head, $SC, that points to the first word of the ID segment for the first program in the
scheduled list. This word in the ID segment is the link word that contains the address of the ID
segment of the next program to be scheduled and so on. The last ID segment in the list has a 0 in
its link word to indicate that the end of the list has been reached. For example, the scheduled list
in Figure 6-2 includes PROGA and PROGB, but not PROGC.

ID Segments
prt to PROGB

PROGA

v

$SC address

PROGC

ol - .
A

PROGB

Figure 6-2. Example of Linear Linked List

Circular Linked Lists

In the circular linked lists are elements each containing a pointer to the next element in the list
just as with the linear list. The last element points back to the first element of the list. This allows
all of the elements to be accessed in turn. A sample circular linked list is shown in Figure 6-3.

The node list is one example of a circular linked list. This is a list that links together the Device

Tables (DVT) for devices that must be accessed serially, such as the LUs of an HP 7908 disk drive.
Each disk LU on the HP 7908 drive must be accessed serially.

System Symbols and List Structures 6-3

$DV3 address

—>

DVT1 DVT2
(disk LU 16) (disk LU 17)
address) address
DVT4 DVT3
(disk LU 19) (disk LU 18)
address ¢ address

Figure 6-3. Example of Circular Linked List

Lists with Offset Pointers

Generally, linear and circular lists are structured so that the pointer (or link word) for a given
element contains the address of the pointer of the next element in the list. This allows the list to
be traversed quite easily because the link word of any element points to the link word for the next
element. In some cases, the pointers for the list do not point at the link word of the next element.
In these cases, the link word is offset from the referenced word by a specific number of words.
This form of linking allows easy access to the particular word in the element referenced. An
example of this type of linked list is the circular DVT list. This list contains, as elements, all of the

DV'Ts connected to a particular IFT. The links are shown in Figure 6-4.

IFT

Link

$IFT5

I

DVT 1

DVT 2

Circular DVT list

DVT 4

v

DVT 3

A

Figure 6-4. Example of List with Offset Pointer

6-4 System Symbols and List Structures

Linear Doubly Linked Lists

A linear doubly linked list is useful because elements from the list can be inserted or deleted
easily. The memory descriptor adjacency list is an example of a linear doubly linked list, shown in

Figure 6-5 with list head SMEM.

MD 1

MD 2 MD 2

$MEM —>»| Address |—>»

0 «<—| Prev MD

Prev MD | «—| Prev MD

Next MD —>

Next MD —>» [Next MD [—>» 0

Figure 6-5. Example of Linear Doubly Linked List

Circular Doubly Linked Lists

The circular doubly linked lists allow list searches to begin anywhere in the list. The Memory

Descriptor (MD) free list is an example of a circular doubly linked list, shown in Figure 6-6. The

list head is $SFREM.

MD 1

MD 2 MD 2

$FREM—>| Address [—>»

A

Prev MD |¢«—

Prev MD | «—| Prev MD j¢—

Next MD —>» | Next MD

|—? Next MD —>»

Figure 6-6. Example of Circular Doubly Linked List

System Symbols and List Structures

6-5

1/O Drivers

A user program performs I/O requests (read, write or control) by issuing EXEC requests to the
system with the proper request code. In the case of FORTRAN programs, this is transparent to
the program; READ and WRITE statements are implemented by EXEC requests made by the
FORTRAN formatter subroutine. (This routine is appended to the user program when it is
relocated.) These requests are handled by special routines, called drivers, that convert the
programmatic request into a form usable by the device.

There is a driver for each device and interface card. Device drivers are routines that process
requests for specific devices, converting the request to a form suitable to that device. This request
is passed along to an interface driver, which communicates the request to the appropriate interface
card and thereby to the device. Simple devices (such as some HP-IB devices) may not require a
device driver, in which case the interface driver handles the request without a device driver.

The path from request to action is illustrated in Figure 7-1.

(If no device driver) I/O Interface
Request _l,| Device » Interface | —> Device
Driver Driver

Device Specific _T j

Interface Specific

Figure 7-1. 1/0 Request Path

Associated with these drivers are various tables, which are explained more fully in Chapter 11.
These tables are used to handle the requests in the manner described below.

Each request references a logical unit (LU). The system uses the LU Table (LUT) to map each
logical unit to the Device Table (DVT) for the requested device. A control block, containing the
request code, and other information needed by the driver, is then built and linked to the DVT.
Several control blocks may be linked to a single DVT.

1/O Drivers 7-1

LUT _ DVT (no list) SAM

i’ Control First
— 3| Block Request Pending
(data)
DVT
(two requests)
Control <« Second
> Block Request Pending
(data)

| .

Figure 7-2. Buffered Request Example

If the request is buffered, the control block includes the user buffer and is built within SAM. To
control the amount of SAM used by any device, the upper buffer limit is used as an upper bound
on the total size of all the buffers linked on any one DVT at any one time. If the request is not
buffered, the program ID segment contains the control block. Figure 7-2 illustrates a request to a
buffered device, where two control blocks are shown linked to one DVT:

As requests are completed, the I/O request queue is relinked to skip the control blocks for the
completed requests. When a request reaches the list head, the necessary information is copied
from the control block to the DVT. The control block itself remains linked to the DVT until the
request completes.

Each interface card also has an Interface Table (IFT) and an interface driver. The IFT is linked to
all the DV for devices interfacing via this card. All the DV on each IFT are in a circular DVT
list.

The relationship of the control block to the DVT and IFT, and the DVT to the IFT for pending

requests is shown in Figure 7-3. In this figure, since all DV'Ts shown are linked to the same IFT,
they also appear in a circular DVT list that is not shown.

7-2 1/O Drivers

LUT

Control
Block ID Segment
A
— List of DVT List of DVT
(2 requests) (one request)
Control Block Control Block
A A
List on DVT
(one non-buffered re-
l quest)
DVT DVT DVT
— Active > Active —> Active
Request Request Request
Device Device Device
Driver Driver Driver
. . —>
Pending Request List Interface
< IFT Driver
3 1/O Card

Figure 7-3. Request Lists on DVT and IFT

1/O Drivers

7-3

System Common/Shared Subroutines

System Common

Common refers to a means of sharing data or, in some cases, subroutines. Various types of
common are used in FORTRAN and Macro programs. FORTRAN and Macro users are familiar
with labeled common, which comes from using named common in FORTRAN, or EXT, ENT and
ALLOC statements in Macro. Blank common is unlabeled common; this is also available to
Macro users, though it is used less frequently. Common can be grouped into two major categories,
local and system; each category may have labeled and blank commons. When common is used to
share information between subroutines in a program it is called local common; when it is used to
share information between programs it is called system common.

Local common is not dealt with here; it is discussed in the FORTRAN and Macro manuals.

Blank system common is an area set up during system generation. When you link a program, you
can make any blank common used in the program refer to the blank system common. This is a
simple way to share data when there is only a small number of programs involved. However, there
are problems if two conflicting sets of programs want to share data in this way.

Labeled system common is more flexible. At system generation time, a set of code modules is
placed in labeled common. This is usually just a set of FORTRAN named common blocks, or a
module containing Macro storage areas with entry points. The entry points and common blocks
found in labeled system common areas are put into the snapshot file. LINK uses these entry
points and common blocks when you link a program and specity the LC option. The LC option
allows access to labeled system common. Several sets of programs can use system common in this
way, as long as the names used do not conflict.

Whenever a program uses any blank or labeled system common, all of system common is made
available to it. This can be inconvenient, as it reduces logical address space and program size.
Several HP products make use of labeled system common; for example, DS/1000-IV. Any
applications that use blank or labeled system common bring in DS table areas if they were
included in the system generation.

System common is most useful for sharing small amounts of data, as they decrease program size.
These areas are best reserved for frequently used data that must be accessed very quickly. Access
to areas in common is as fast as access to any normal variable.

When there is a large amount of data (more than several pages) to share, shareable EMA access is
the preferred choice. Shareable EMA can be many, many pages (including one page reserved for
the page table), and are easy to use from a high-level language; refer to the RTE-A Programmer’s
Reference Manual for details. Access to shareable EMA variables is typically 5 to 10 times longer

System Common/Shared Subroutines 8-1

than access to local data (or common). Note however that nonbuffered and buffered I/O to and
from EMA is allowed, and incurs no performance degradation. This makes shareable EMA
suitable for use as a common data buffer area.

Synchronizing Programs

Whenever data is shared, the programs sharing the data must be written carefully to avoid race
conditions when data is being read and written simultaneously by different programs. There are
several techniques for avoiding race conditions; one of the best techniques uses resource numbers.
Refer to the description of RNRQ in the RTE-A Programmer’s Reference Manual for using
resource numbers to control access to shared data.

The RTE-A Operating System provides several other mechanisms for controlling process
execution. These are the system subroutines $LIBR, $LIBX, .ZPRV, and .ZRNT, and so are most
suitable for use from Macro subroutines.

Subroutine $LIBR disables the interrupt system, allowing the calling program full access to the
operating system except to make EXEC calls, including processes that can cause violations. The
interrupt system remains off until the program calls $LIBX.

Subroutine .ZPRV must be in labeled system common; it prevents any other program from
executing until the calling program calls $LIBX. This is a way to prevent race conditions, because
no other program can run until the calling program is done. Subroutine .ZPRV leaves interrupts
on; protection violations abort the calling program.

Subroutine .ZRNT is useful only when executable subroutines are placed in labeled system
common. It ensures mutual exclusion of access to the subroutine, so only one program uses the
subroutine at any time. Placing subroutines in system common is NOT recommended, as it makes
the application harder to understand. The only benefit of placing subroutines in labeled system
common is a small amount of physical memory savings, which is probably not worth the trouble
this technique can cause. Also, a .ZRNT subroutine placed in system common cannot be called by
a PCAL instruction (by CDS code), only via a JSB instruction (by non-CDS code). An interface
subroutine in non-CDS code can be used.

Generating System Common

Labeled system common is produced by relocating a module (or several modules) at the
appropriate point in the generation process. Access to labeled system common is by entry points
declared in the module. Any module type may be relocated in labeled system common. The
determination of whether program or system common is used by the program is made at when the
program is linked.

8-2 System Common/Shared Subroutines

For example:

MACRO
NAM DATA, 30 THI' S MODULE GCES | NTO LABELED COVMON
ENT Al, A2, A3

Al NOP LABEL ACCESSI BLE BY PROGRAM

A2 NOP LABEL ACCESSI BLE BY PROGRAM

A3 NOP LABEL ACCESSI BLE BY PROGRAM
END

Blank system common is a reserved block of consecutive memory locations. The block is
initialized to zero by the generator. There is no label associated with blank common. The system
merely keeps track of it as the common area.

The following Generator command declares 40 words of system blank common to the generator:

COoM 40
An example of a FORTRAN program that accesses both types of common:

$ALI AS /Al/, NOALLOCATE
PROGRAM SAVER(4, 89) , SAMPLE PROGRAM TO USE COMVON
COMMON/ Al/ SAVE1L, SAVE2, SAVES3
COVMON | AL, 1 A2, | A3, | A4
SAVEL = |A1 * A2 + |A3 * | A4
END

When this program is linked using the LC and SC LINK commands, the program takes the first
four words of blank system common and puts the result of the calculation into location SAVEL1 in
labeled system common. Note that the FORTRAN variable referencing A1 may be any legal
name but that the name of the common block (in this case A1) must correspond to the name of
the entry point given in the module relocated in labeled common. Also, because of the way the
module DATA was written, SAVE2 corresponds to A2 and SAVE3 corresponds to A3.

Relocation of Programs Using System Common

All programs calling for blank common are assumed to mean local common unless changed by the
SC command in the LINK command file.

Similarly, labeled common is assumed to be local to the program unless the LC command is
specified. If the LC command is not specified, the required modules are appended to the program
if they exist in the user modules or system libraries searched, or LINK reports the symbols as
undefined external references.

Whenever the size or content of system common is changed via the generator, all programs that

access this area should be examined to see whether they need corresponding modifications to their
source code. Additionally, these programs are required to be linked again.

System Common/Shared Subroutines 8-3

Shared Subroutines

Using shared subroutines is one of two ways a program can operate in privileged mode. (The
other method is explained in the Privileged Operation chapter of the RTE-A Programmer’s
Reference Manual.)

Shared subroutines must be used with caution. You have to be very careful of what you call at
what time. Program errors are timing-dependent and almost impossible to reproduce.

A shareable subroutine in RTE-A must be generated into system common. Notice that the
generator and LINK modify the code according to whether the subroutine is actually placed in
system common where it is shared by calling programs or merely appended to each program that
uses it; that is, the entry points .ZRNT and .ZPRV are dummy instructions to the generator or
LINK. Whenever LINK encounters a JSB .ZRNT or JSB .ZPRV instruction, the instruction is
replaced by the RSS instruction. The generator replaces the calls to .ZRNT and .ZPRV with calls
to SLIBR. A parameter passed to $LIBR determines whether the call is:

Level 1 subroutine - Privileged subroutine coded using $LIBR
Level 2 subroutine - Privileged subroutine coded using .ZPRV
Level 3 subroutine - Reentrant subroutine coded using .ZRNT

Level 1 should be used sparingly, since normal I/O interrupts and memory protect are completely
disabled while the subroutine is executing. However, while the level 1 subroutine is executing,
privileged interrupts may be serviced. The three levels of shared subroutines are described in the
following paragraphs. The formats of the three levels of shared subroutines are shown in Tables
8-1 through 8-4.

Level 3 Shared Subroutines

Level 3 subroutines have the least impact upon other programs. The call may be interrupted and
other programs may be dispatched. If, however, another program attempts to call this subroutine
before it has been exited by the first program, the second program is shared-resource (SR)
suspended until this resource becomes available.

Level 3 subroutines may call any other subroutines in any level. During the operation of a level 3
subroutine, memory protect is enabled. I/O instructions and instructions that store or jump into
the system partition are not allowed. The interrupt system is on, allowing normal I/O interrupts to
occur.

Level 3 subroutines may not be called via a PCAL instruction. Thus, level 3 subroutines are not

accessible from CDS code. These subroutines must be called via a JSB instruction (non-CDS
code).

Level 2 Shared Subroutines

While a level 2 subroutine is in operation, no other program can be dispatched. All other
programs must wait for the subroutine to complete. The SS and PR user commands have no effect
until the subroutine exit is made.

8-4 System Common/Shared Subroutines

A level 2 subroutine can call other level 2 subroutines or level 1 subroutines. It also can make
EXEC, MESSS, and LURQ type calls if the no-suspend option is specified. This is because a
program must never be suspended while it is executing a level 2 subroutine. (Suspended status
includes LU lock suspend, program wait suspend, I/O suspend, and time suspend.) If the
subroutine makes an EXEC call, which would normally cause the program to be suspended, the
program is aborted with an SR error. It may not call level 3 subroutines. During the operation of
a level 2 subroutine, memory protect is enabled. I/O instructions and instructions that store or
jump into the system partition are not allowed. During its operation, the normal interrupt system
is on and normal interrupts may occur.

Level 1 Shared Subroutines

While a level 1 subroutine is executing, normal I/O interrupts are off; only privileged interrupts
are serviced. The level 1 subroutine has total control of the computer and the subroutine has the
same privileges as the operating system itself. An improperly coded level 1 subroutine can crash
the system.

A level 1 subroutine may call other level 1 or 2 subroutines but may not call any level 3
subroutines, EXEC, MESSS, LURQ, or any type 7 (utility) subroutines. If a level 1 subroutine
calls a level 2 subroutine, the system treats the level 2 subroutine as if it were a level 1 subroutine;
that is, interrupts are off and MP is disabled.

During the operation of a level 1 subroutine, the normal I/O interrupts are turned off and memory
protect is disabled.

Guidelines for Using Shared Subroutines
The hierarchy of the levels is shown below:

Level 3 may call level 3, 2 or 1

Level 2 may call level 2 or 1

Level 1 may call level 2 or 1

If a subroutine calls another subroutine at the wrong level, the program is aborted with the SR
error message.

Note Because of the impact upon other programes, it is important to restrict the
amount of time spent in any shared subroutine. A good rule of thumb is to limit
level 1 and level 2 subroutines to 1 millisecond. Level 3 subroutines may be
longer, but remember that a low priority program calling a level 3 subroutine
can hold off a higher priority program that calls the same subroutine.

The generator modifies the subroutine if it is placed in system common. LINK replaces the call
with an RSS instruction.

System Common/Shared Subroutines 8-5

When using the exit sequence through $LIBX, the actual return address is in TDB+2, placed there
by call to $LIBR. Therefore, if adjusting the return address, increment both the contents of SUB
and TDB+2 by the same amount. Only one of SUB or TDB+2 is actually used for finding the
return address, according to whether or not the subroutine is in system common.

Table 8-1. Shared Subroutine Format - Levels 3 and 2

Level 3 Subroutines - No Parameters

Assembled form In System Common Appended to program

TDB NOP TDB NOP TDB NOP
DEC n+3 DEC n+3 DEC n+3
NOP NOP NOP
TEMPS BSS n TEMPS BSS n TEMPS BSS n
SUB NOP SUB NOP SUB NOP
JSB .ZRNT JSB $LIBR RSS
DEF EXIT DEF TDB DEF EXIT
EXIT JMP SUB,I EXIT JSB $LIBX EXIT JMP SUB,I
DEF TDB DEF TDB DEF TDB
DEC 0 DEC 0 DECO

Level 2 Subroutines - No Parameters

Assembled form

In System Common

Appended to program

TEMPS BSS n TEMPS BSSn TEMPS BSSn
SUB NOP SUB NOP SUB NOP
JSB .ZPRV JSB $LIBR RSS
DEF EXIT DEC —1 DEF EXIT
EXIT JMP SUB,| EXIT JSB $LIBX EXIT JMP SUB,|
DEF SUB DEF SUB,| DEF SUBI
8-6 System Common/Shared Subroutines

Table 8-2. Level 2 Subroutine with Parameters

Level 2 Subroutines with Parameters

TEMPS BSS m
PARMS BSS n

TEMP VARIABLES USED BY SUB
PARAMETER ADDR PICKED UP BY .ENTP

SUB NOP
JSB .ZPRV
DEF EXIT
JSB ENTP BRING IN PARAMETER ADDRESSES AND
DEF PARMS ADJUST RETURN ADDRESS IN ENTRY POINT
EXIT JMP SUB|
DEF SUB
In System Common Appended to Program:
TEMPS BSSm TEMPS BSSm
PARMS BSSn PARMS BSSn
SUB NOP SUB NOP
JSB $LIBR RSS
DEC —1 DEF EXIT
JSB .ENTP JSB ENTP
DEF PARMS DEF PARMS
EXIT JSB $LIBX EXIT JMP SUB,|
DEF SUB,| POINTS TO RTN DEF SUB

Table 8-3. Format of Level 1 Shared Subroutine

No Parameters Called with Parameters
SuB NOP TEMPS BSSn PARAMETER ADRES-
JSB $LIBR SESSUB NOP
NOP JSB $LIBR
: NOP
JSB .ENTP
: DEF PARMS
EXIT JSB $LIBX :
DEF SUB EXIT JSB $LIBX
DEF SUB
Note: The level 1 subroutine is not modified by either the generator or LINK.

System Common/Shared Subroutines

8-7

Table 8-4. Level 3 Subroutine with Parameters

Level 3 Subroutine with Parameters

TDB NOP
DEC m+n+3

SuUB NOP
JSB .ZRNT
DEF EXIT
JSB .ENTP
DEF PARMS

TINE

EXIT JMP SUB,|
DEF TDB
DEC 0

NOP IF IN COMMON, SYSTEM STORES RETURN ADDR HERE
TEMPS BSS m TEMP VARIABLES USED BY SUB
PARMS BSS n PARAMETER ADDR PICKED UP BY .ENTP

STA TDB+2 UPDATE RETURN ADDR IN CASE THIS SUBROU-
GETS PLACED IN COMMON

In System Common:

Appended to Program:

TDB NOP
DEC m+n+3
NOP

TEMPS BSS m

PARMS BSS n

SUB NOP
JSB $LIBR
DEF TDB
JSB .ENTP
DEF PARMS
STA TDB+2 UPDATE RETURN

EXIT :JSB $LIBX EXIT THRU TDB+2
DEF TDB
DEC 0

TDB NOP
DEC m+n+3
NOP

TEMPS BSS m

PARMS BSS n

SUB NOP
RSS
DEF EXIT
JSB .ENTP
DEF PARMS
STA TDB+2 NO EFFECT

EXIT :JSB SUB,I EXIT THRU SUB
DEF TDB
DEC 0

8-8 System Common/Shared Subroutines

System Base Page and Link Words

This chapter describes the system base page and memory links. The system base page is an area of
the system partition that contains link addresses for the operating system. Memory linking is
accomplished with a link word generated by the RTAGN program to access a location on another
page via a link on the same page (current page linking) or base page (base page linking).

System Base Page Format

The system base page contains interrupt vectors as well as link addresses for the operating system.
The format of the system base page is shown in Figure 9-1 and described in the following
paragraphs.

VCP/Loader ROM

Temporary Storage $FWSY (address = 02000B)

$ROM (address = 01700B)

Links

(address = 00112B)
System Q, Z-Registers (address = 00110B)
Reserved (address = 00103B)
Rev. code of BOOTEX (address = 00102B)
Rev. code of BUILD (address = 00101B)

Rev. code of RTAGN (address = 00100B)

Interrupt Trap Cells

(address = 00004B)
Address of $STRT/PTE info (address = 00003B)

Current PTE info (address = 00002B)
System A, B-Registers

(address = 00000B)

Figure 9-1. Memory Map of System Base Page

System Base Page and Link Words 9-1

VCP/Loader ROM Temporary Storage

The HP 1000 A-Series computer has no switches or lights on its front panel for examining or
modifying memory and hardware registers. Instead, a program that resides in ROM on the
processor board allows a normal user terminal to function as a virtual control panel (VCP).
The same ROMs also contain the programs needed to load the operating system into main
memory from a disk or other secondary storage, and to perform the CPU/memory/backplane
selftest. The last 64 words of system base page are reserved for temporary storage for the
VCP/loader programs.

Interrupt Trap Cells

Trap cells are memory locations that contain instructions to be executed whenever an
interrupt occurs on a select code that is numerically equal to the address of the trap cell.

Some trap cells are used by I/O device interfaces to request service by the corresponding
software drivers. Others are reserved for interrupts that are generated by the CPU itself:

Select Code
4B Power fail auto restart, and system initialization flag
5B CPU parity error (PE)
6B Time Base Generator/system clock (TBG)
7B Memory Protect (MP)
10B Unimplemented Instruction (UIT)
11B Reserved
12B EMA/VMA Page Fault
13B Code Segment Fault (CDS programs only)
14B-17B Reserved
20B-77B I/O Interrupts

In the case of an I/O device, an interrupt is usually generated when a read or write request
completes. The service routine $CIC, in the system module RTIOA, handles all
non-privileged drivers. In $CIC, an LIA 4 instruction determines which select code created
the interrupt. The select code is used to index into the interrupt table, which contains the
address of the interface table (IFT) associated with the driver for that interface card or an ID
segment address of a program to schedule. In most cases, the interrupt table contains an IFT
address. The IFT is used to identify the interface driver, which is to be entered by the system
after setting up some pointers that may be used by the driver.

Power Fail Trap Cell/System Initialization Flag

System base page location 4 is used as a flag by the boot loader in case of power failure
during the boot process. After the operating system has been initialized, it is changed from a
zero to a subroutine call to the power fail restart routine, if the power fail driver is generated
into the system. If the value of location 4 is zero when CPU power is restored (and the
content of memory has been preserved by the battery backup) then the operating system had

9-2 System Base Page and Link Words

not been completely loaded and initialized. In this case, the operating system code in
memory is incomplete, and cannot be restarted. Instead, either the boot load is restarted, or
the VCP is entered, depending on the position of the processor card switches.

Address of $STRT

Location 3 contains the address of the RTE-A startup routine, $STRT. The system generator
places a JMP 3.i instruction in location 2. When the system is booted, the VCP transfers
control to location 2 after loading the system into memory. After system initialization, this
word is reused to hold information about the current program’s PTE.

Current PTE Information

Locations 2 and 3 on the system base page are used as a communication area for the
VMA/EMA microcode. When a program that uses VMA/EMA is dispatched, the operating
system puts information about the location of the page table (PTE) associated with the
program into these locations. The VMA/EMA microcode uses this information to access the
page table of the program.

Link Words

A link word is created by the RTAGN program whenever a one-word memory reference
instruction accesses a location not on the same page as the instruction. This is required because
these memory reference instructions contain only a 10-bit field for the address to be referenced,
the remaining bits being used for the OP code of the instruction itself. These 10 bits allow 1024
words of memory, or one page, to be directly accessed by this instruction.

In the above case, the generator changes the instruction to an indirect reference (the sign bit is
set) to a link word on the same page (current page link) or on the base page (base page link). The
linkage editor (LINK) also creates link words for programs that it links.

The link word contains the 15-bit address of the location to be accessed. A 15-bit address allows 5
bits to be used as a logical page number (accessing 32 pages), and 10 bits to be used for the word
offset on the page (1024 words per page).

For example, if the instruction is an LDA at location 2020 and the location to access (load into the
A-Register) is 4000B, then the generator can use either of the following.

Base Page Linking Current Page Linking
Location Contents Location Contents
Base Page _0300 4000 «— BP link 0300 2277
Page 2 2010 777 2010 4000 <— CP Link
2020 160300 «— LDA DATA 2020 162010 «<— LDA DATA
Page 3 4000 xxxx €— DATA 4000 xxxx €— DATA

where ?7?7?? indicates that the contents are irrelevant.

System Base Page and Link Words 9-3

Note that the LDA instruction format is:

I 110 OPa XXX XXX XXX
T— a = Memory address
P = 0 for base page link

P = 1 for current page link

0 for direct addressing
1 for indirect addressing

I=
I=

Generator Current Page Linking

The generator can be told to use either base page links or current page links. If current page
linking is specified, some base page links may have to be allocated by the program due to the
following factors:

1. If a module crosses more than one page boundary, any links generated by the portion of the
module that completely fills a page must be put on base page.

2. The links required for references to other pages are estimated before the module is
relocated. In some cases, the estimate may not be large enough and any links over the
estimate must go to the base page.

Figure 9-2 shows how memory is used for current page links.

A

Page Boundary
(high memory)

Backward Links
(for second module)

Second
Module

A

Page Boundary

Forward Links
(for second module)

No forward links allocated if

Backward Links module fits on one page
(for first module) since:
mn _(x/2,0) _
First h -
Module

A

Page Boundary
(low memory)

Figure 9-2. Memory Usage for Current Page Links

9-4 System Base Page and Link Words

The algorithm for estimating the number of forward links that may be required is:

nmn (x/2, vy)

h
mn = function to take the mninum of the two val ues
x = nunber of words left on the page at start of process
y = nunber of words of nodule on the next page
h = a constant (currently 16)

The algorithm assumes an even distribution of the references requiring the formation of links. In
some cases, this may cause an overestimate of the links required and some of the forward link area
may be unused. In other cases, the algorithm may underestimate the requirement and then base
page links have to be generated for the overflow.

The start of the backward link area is computed by adding the size of the module (known from the
NAM record) to the starting address of the relocated module. The size of this area is equal to the
number of links required by the portion of the module relocated on this page. The relocation of
the next module starts immediately after the last link generated.

Base Page Linking

During the relocation process, LINK creates base page links (only in the data partition of CDS
programs), and the generator creates some base page links whether or not current page linking
was specified. If current page linking was specified, significantly fewer base page links are
generated than if base page linking was specified.

During system common relocation, any base page links required are allocated starting from the
top of the user base page (location 1777B) down toward low memory. The links are stored in the
snapshot file, not in the system file. They are copied into the base page link area of each program
that accesses system common as it is relocated.

Links required by operating system modules and drivers are allocated starting from the
VCP/Loader temporary storage area in system base page (location 1700B) toward the lower
boundary (location 112B).

Current Page Links in CDS Programs

Base page links are not possible in the code segments of CDS programs. This is because what
were formerly base page references would now be interpreted by the hardware as locations on the
stack in the data partition. Therefore the loader must generate current page links for all Memory
Reference Group (MRG) instructions that access locations in the data partition that are not
locations on the stack in the data partition. All the links on each page are contiguous. The link
area is placed between modules whenever possible, however, it can be placed in a module at a
location designated by the language processor. Refer to the Macro/1000 Reference manual for a
discussion of the BREAK pseudo-op. The size of the link area can be influenced by commands
given to LINK.

System Base Page and Link Words 9-5

File System

This chapter describes how the file system is implemented in the RTE-A Operating System. Topics
contained in this chapter are:

e File System Organization
e FMP Routines

e Directory Organization

e Disk Management

e FMGR Files

e Remote File Access

e Spool System Interaction (VC+ only)

File System Organization

The file system consists of File System Package (FMP) routines, program D.RTR, additional
programs supporting remote file access, and disk data. Programs such as CI or TF are users of the
file system and are not part of the file system.

The file system provides disk storage for data and facilitates access and maintenance of the files in
the file system. It handles allocating disk space to files, maintains directories containing file
names and other information, and provides the means for moving data into and out of files.

The FMP routines are used in the file system to provide fast and simple file access. These
routines are front-ends to the directory manager D.RTR, which is the main program of the file
system operations.

Several of the FMP routines use a Data Control Block (DCB) to record information about an
open file. The DCB is contained in the program to improve the performance of read, write and
position operations. The DCB consists mostly of information needed to read and write the disk,
plus a packing buffer to facilitate extracting data that is not on a block boundary.

Most of the file system work is done in D.RTR. This program is scheduled by the FMP routines.
D.RTR is the only program allowed to change information in the directory. If several programs all
need to schedule D.RTR at once, all but one of them has to wait. This ensures mutual exclusion of
access to directories. D.RTR performs as much as possible of the uncommonly used calls (such as

File System 10-1

rename) in order to reduce logical and physical memory requirements in systems with many
programs.

D.RTR maintains all of the long-term information about the file system on disk, maintaining file
system integrity through system shutdowns and crashes. The most important tables are the file
directories and the space management tables. These tables contain all of the information that is
known about a file, directory, or disk volume.

Besides the main function of managing disk files, the file system provides access to devices through
the same calls that are used to access disks. This provides a large degree of device independence
when dealing with common devices such as terminals and printers. Device management is
handled mostly by the FMP routines, although D.RTR does create the DCB for a device-open call.

The file system also uses a technique for using the hierarchical file system calls to access files
located on remote systems connected through the Distributed System DS/1000-1V or
NS-ARPA/1000. The file system implements this through two programs that communicate over
the DS link. These programs handle reading and writing data across DS, as well as handling
remote D.RTR calls and DS concerns. Remote access is described later in this chapter.

FMP Routines

There are approximately 80 File Management Package (FMP) routines. With a few exceptions,
the names of these routines begin with the letters FMP. These routines can access all features of
the file system.

Most FMP routines are small and simple because they are interfaces to D.RTR functions (for
example, DCB headers are set up by D.RTR). FMP routines that must be fast, such as FmpRead
and FmpWrite, do not interface with D.RTR.

Directory Organization

Directories are the central file system data structure. Directories maintain the file system state
across system halts and crashes. All information pertaining to a file is kept in a directory.
Directories may be included in other directories; these are considered subdirectories. Nesting of
subdirectories is allowed to provide a hierarchical file system structure. At the top is a root
directory that contains only unique global directories. There is one root directory per disk volume.

Mounting a disk volume makes directories on that volume accessible. All global directories on
that volume are made known to the system when a volume is mounted. Global directory names
must be unique in the file system. Files in a directory are not identified by disk volume.

D.RTR uses its free space for a global directory/open file table. Each global directory is stored in
an abbreviated form that takes up five words for each entry. An entry for an open file takes up six
words in the table. The non-CDS version of D.RTR has enough free space to support
approximately 180 global directories and 180 open files. If you want to reduce the number of
global directories on your system, you can use the MO operator command to convert global
directories to subdirectories. This would allow more files to be open at the same time. Note that
there is one entry in the table used for each open file/program pair; 200 programs opening one file

10-2 File System

is the same as one program opening 200 files. The CDS version of D.RTR should be used by
systems that have a large number of global directories and/or require a large number of open files
to be handled by the system.

The CDS version of D.RTR offers a number of advantages over the non-CDS version. The CDS
version can be configured at link time to tailor the free memory usage according to the system’s
needs. The file “ddmax.mac” can be modified and compiled to reflect the system’s global
directory requirements. The relocatable output can then be used when linking the CDS version of
D.RTR. Symbolic links are only supported on systems that have a CDS D.RTR. This version of
D.RTR also supports the use of the 40b/41b control requests to control the removeable media
status of the SCSI magneto-optical drives. Depending on the generation parameters, you may
elect to have D.RTR spin down or eject the removeable media when the media is no longer in use
as an RTE-A file system. By default, the file “ddmax.mac” sets up a global directory/open file
table that can support up to 200 global directories and 200 open files. The SCSI 40b/41b
functionality is disabled by default.

Each directory consists of a doubly linked set of disk blocks containing entries for files, extents,
and subdirectories. Each of these entries is 32 words. In addition, 32 words at the beginning and
end of each directory are used for bookkeeping information. Directories are extendable, although
performance is improved when they are kept to a small number of extents; 32 words are also
needed at the beginning and end of each extent of the directory.

Each file is kept as a single file entry in a single directory. The file entry contains the file name,
information about the disk space used by the file, and other information such as time stamps and
protection.

Purged files are flagged by a bit in the directory entry. When a file is purged, the directory entry is
marked as purged, and its disk space is marked as free. The file can be unpurged until its
directory entry or disk file space is allocated to a file or extent. Note that it is possible that a
purged file has its space allocated to a new file, then the new file is purged; now the first file
appears to be recoverable but actually is not. This situation is rare, but it can be confusing when it
does occur.

Files are extended when necessary to hold additional data. Sequential files always have extents at
least as large as the main file, but the extent size is doubled for extent number 4, 6, 8§ and so on.
For example, the first 10 extents of a 1-block file have size 1,1,1,1,2,2,4,4,8,8 blocks. This prevents
having files with large numbers of extents, which slows access. Random access files always have
extents the same size as the file did when it was created, but there can be missing extents. Files
with missing extents are known as sparse files, and serve to conserve disk space. VMA backing
store files are the only common type of sparse file because no disk space is required for records
that are never accessed.

Information about open files is maintained by D.RTR. Each time a program opens a file, D.RTR
records the file directory address and the calling program’s ID segment number in an internal
table. This table is checked at each open to ensure that for an exclusive open, only the calling
program is opening this file, and that only the calling program is purging the opened file or
dismounting the volume. The limit to the number of programs that can open a file or to the
number of files that a program can open is dependent on both the size of the global directory/open
file table and the number of global directories that exist on the system.

Each ID segment contains a bit that indicates whether the open file table has been scanned since
the last time that ID segment was recycled for use by a new program. The RTE-A system clears
this bit and D.RTR sets the bit after scanning the open flag table and flushing any flags that
belonged to the previous occupant of that ID segment. Obsolete flags are also flushed when found
by the checks made when opening a file or dismounting a disk volume.

File System 10-3

Disk Management

Disks are divided into volumes and each volume is assigned a logical unit number. There can be
one or more LUs per disk drive. When a disk volume is mounted, everything physically located on
that LU is available. This may include a large number of directories. Volumes are completely
self-contained, and never reference other volumes. This allows each volume to be dismounted
independently of other volumes.

The last track of a volume contains a volume header, which points to the other tables located on
the volume. The volume header is the location where disk cartridges used by the FMGR files can
be differentiated from the disk volumes used by the hierarchical file system. It is the only data on
the disk that has a fixed location that cannot be changed.

The volume header identifies the storage allocation unit for the volume. This storage allocation
unit is typically one block (256 bytes), but in some situations it is more than one block. This occurs
because the file system maintains a bit map for each volume identifying whether each allocation
unit is used or free. The corresponding bit is set when the block is used, cleared when the block is
free.

The bit map table is kept relatively small to decrease the time to find free space, and it allows the
whole table to fit in memory at the same time. D.RTR has an 8k word buffer available, which is
128k bits. The allocation unit for disk space is chosen to keep the bit map size at 8k words or less.
Thus this unit is one block for volumes up to 128k blocks, two blocks for up to 256k, four blocks for
up to 512k, and so forth. Here is a table of disk volume size in MBytes, blocks, and allocation unit
size:

MBytes Blocks Allocation Unit
16 64k 1
50 200k 2
120 480k 4
400 1600k 16

Using larger allocation units wastes disk space when creating files, extents, or directories smaller
than one allocation unit. In most cases this is not a problem; however, the drive can be subdivided
into several smaller volumes if problems occur.

A small number of large volumes is recommended. This allows allocating files from a common
pool of free space, thus making efficient use of space. Otherwise, errors may occur when one
volume is out of space while there is a large amount of empty space on other volumes on the same
disk drive. Having a small number of volumes increases the options available with the operator
MO command and reduces the system table size. When a large volume is out of space, it may take
longer for the MPACK utility to compact the files on it.

Files are always allocated as contiguous groups of one or more blocks. Allocation is done via first
fit, starting at block zero on the disk. This tends to increase locality while keeping fragmentation
to a tolerable level. Files can be placed at a desired location by allocating the lower numbered
blocks to a file temporarily, then creating the file. If the desired number of contiguous blocks
cannot be found, the file is not created. Space is reclaimed immediately when files are purged.
Using the bit map table, holes can be automatically merged into bigger holes as space becomes
available.

10-4 File System

Record Lengths

Excepting type 6 and type 12 files, the file types 3 and above have record length information stored
with the data. There is a record length word before and after each record. The length word
consists of the number of bytes in the record rotated right one place. This means that the sign bit
of the word is set for odd byte length records and cleared for even byte length records.

This format allows reading disk files from previous RTE systems that stored record lengths in
words. However, it causes problems when moving files from RTE-A to these systems (for
example, RTE-6/VM, RTE-IVB, or RTE-XL). If you must move a file to any of these systems,
make sure that all record lengths are even. Otherwise, programs such as FC that copy disk images
will copy data with record lengths that cannot be read correctly by the previous RTE systems.

One way to move a file to any of the previous RTE systems is to copy it to a FMGR disk cartridge.
Then use EDIT to open the file for editing and replace it with the ER command. EDIT makes all
byte lengths an even number when it writes to a FMGR disk. Now you can move the file with FC
to the destination system.

Symbolic Link Files (VC+ only)

A symbolic link is a file whose contents is a file descriptor that points to a device, another file, or a
directory. This file descriptor can be specified by either a relative (../dir/file’) or absolute
(’/dir/file’) path name. If a symbolic link to a relative path name is encountered during path name
resolution, the contents of the symbolic link replace the symbolic link component and is expanded
into the path name being resolved. If a symbolic link to an absolute path name is encountered, the
contents of the symbolic link replaces all components up to and including the symbolic link and is
expanded into the remainder of the path name. All symbolic links are resolved in this manner
except when the symbolic link is the last component of a file descriptor which is passed to one of
the following FMP calls:

FmpPurge,
FmpRename,
FmpSetOwner,
FmpSetProtection,
FmpReadLink, and
FmpMakeSLink.

With these calls, the symbolic link itself is accessed or affected.

A symbolic link may refer to any arbitrary path name and may span different LUs. Symbolic link
files may be FMGR files. Links to FMGR directories, FMGR files, and FMGR type 0 files are
not supported. The path name may point to another symbolic link. Thus it is possible that a
symbolic link points to itself or another symbolic link in such a way that it forms a closed loop.
D.RTR limits the number of symbolic links it traverses while translating a path name so that it can
detect this situation. When D.RTR traverses more than eight symbolic links, an FMP —260 error
is reported. The protection and ownership of a symbolic link is ignored by the system. The
protection and the ownership of the actual file being accessed is still checked by the system.

File System 10-5

Symbolic links may be used to access remote files using DS transparency. There are some
restrictions that apply when using symbolic links to remote files :

— A user’s working directory may not be set to a remote directory.
— Remote type 6 files cannot be executed.

— Remote access of a symbolic link that points to another
remote file is not supported. Attempts to access the
remote symbolic link result in FMP error —262.

— FMP masking does not recursively search subdirectories that are linked to a remote
directory. Masking recursively searches a remote directory when the search starts at the
remote directory.

For example :
The directory /home.dir contains two files. A local subdirectory "local.dir’ and a symbolic link
to a remote directory ‘remote.dir’. The command ’dl /home/@.ftn.s’ recursively searches only
the "local’ subdirectory for the files with the ’.ftn’ type extension. However, the command ’dl
/home/remote/@.ftn.s’ recursively searches the remote directory for the desired files.

Symbolic links that point to a directory must have a ".DIR’ type extension.

Given the path name /e/i/x/o, where x is a symbolic link to ../e/i.dir, the original path name would
be interpreted as /e/i/../e/i/o. If, instead, x were a symbolic link to an absolute path name such as
/w/h.dir, the same path name would be interpreted as /w/h/o.

Symbolic links can be used to shorten the path name required for frequently used files or
directories. They can also be used when certain applications require files to be in specific
directories. Symbolic links can make it appear as though files from several volumes are all under
the same directory tree.

The LNS utility is used to create symbolic link files. Refer to the RTE-A User’s Manual for a
detailed description of the LNS program.

FMGR Files

The FMP routines and D.RTR support, to a certain extent, the existing FMGR files that are
different from those created in the hierarchical file system. In the FMGR file system, each
volume has only one directory; collectively the pair is known as a disk cartridge. The directory
contains less information than the CI file system directory. For example, the file names are
restricted to six characters and there are no time stamps. Because of these and other restrictions,
the FMP routines are not always able to perform their designated functions on FMGR files. The
following paragraphs describe how the FMGR disk cartridges are supported. Refer to the RTE-A
User’s Manual for a detailed description of the FMGR program.

10-6 File System

FMGR Cartridges

There is a cartridge list that indicates the cartridges mounted at any one time. This is used to find
the LU associated with a particular cartridge name, or Cartridge Reference Number (CRN). The
FMP routines go to the cartridge list when there is no directory on a normal volume that has the
required name. If there is a CRN with the required name, the subroutines try to find the file on
that CRN. CRN zero means search all of the FMGR cartridges in the order they appear in the
cartridge list. Note that there may be a directory with the same name as a CRN; the file system
does not prohibit this, but you should watch out for it, as it can cause confusion.
The following functions can be used with files on FMGR cartridges:

Open Cose Create Purge Rename Size Truncate

All CI commands that make these types of calls also work, such as LI, DL, CR, and PU. Other
types of calls, such as UNPU or PROT, do not work, and return an error.

Differences between FMGR and RTE-A Files

Files on FMGR cartridges observe a different set of rules. The following are the major
differences that apply to FMGR files:

Names limited to six characters.

No file type extension.

Periods, slashes, and brackets are not treated as special characters.
One directory per volume, not automatically extendible.
No subdirectories.

No time stamps or backup bit.

No record count, record length, or EOF pointer.
Unpurge is not available.

Open flags maintained on disk.

Limit of seven programs opening a file concurrently.

A program can exclusively open a file already open to it.

No protection information, except a 16-bit security code that must be matched to write to the
file if it is positive, or to open the file if it is negative.

Disk space is not managed with a bit map; instead, a next track and sector pointer is
maintained, and space is reused when a purged entry exactly matches the required size.

File size —1 means all of the space left on the cartridge.

Type zero files that describe a device are available.

File System 10-7

Remote Access

Systems with the DS/1000-1V can take advantage of access to hierarchical files on remote systems,
owned by other accounts, or both. The following paragraphs describe how remote access is
implemented.

Remote access is implemented by a small amount of code in FMP and D.RTR, and by two monitor
programs that communicate through low-level services of DS/1000-IV. Remote access is indicated
through special characters appearing in the file name; the name

File.ext::Dir[PAL/light]>System

indicates a file on node System, owned by user PAL with password light. When D.RTR gets a
request to access a file with either an account name or node name or number in it, it tells FMP to
reroute the schedule request to the monitor DSRTR. DSRTR figures out which node to send the
request to, and maintains internal information needed to keep track of this request. In particular,
for open requests, DSRTR replaces the first word of the DCB with a connection number. This
number is flagged by D.RTR, which tells FMP to reroute all access to the DCB through DSRTR.

DSRTR communicates with a remote monitor called TRFAS; TRFAS receives a DS message and
schedules D.RTR on the remote system, returning any parameters to DSRTR. TRFAS can also
handle requests to read or write to the disk, or to log on or off. DS routes requests to the local
TREFAS if an account was specified with no remote node.

A connection password is used to verify that TRFAS has not been restarted due to system restart.
If DSRTR ever presents the wrong connection password, TRFAS assumes its system has been
restarted and rejects the request, because the file system may have changed. While TRFAS is
running, all files opened by it are recorded by D.RTR at the remote system. TRFAS does not
know anything about the open files, as it maintains no state, but tries to close a file on request.
This is useful if the local system goes down, or if a program gets OF’d without closing a file;
otherwise, the files stay open to TRFAS.

10-8 File System

System Tables

This chapter describes the system tables and their formats. The system tables are:
ID Segments
Resource Number Table
Logical Unit Table
Device Table
Interface Table
Map Set Table
Interrupt Table
Class Table
Swap Descriptor Table
Shareable EMA Table
SHEMA Association Blocks
Cartridge Directory
Memory Descriptor Table
Shared Program Table
Multiuser Tables
CDS Tables
Language Message Table

For information on the system security tables, refer to the RTE-A System Manager’s Manual, part
number 92077-90056.

System Tables 11-1

ID Segment

An ID segment is a 45-word array that contains program identification information. It contains
the name, status, size, and location of the program, as well as temporary storage for use by the
operating system when the program suspends.

Space for ID segments is allocated during system generation. The ID segment is initialized when
the program is connected to the system. This is done by the BUILD program for memory-based
systems, or by the BOOTEX program and user RU/XQ/RP commands for disk-based systems.

Some of the words can have two meanings: some entries in the ID segment of a
Code-and-Data-Separation (CDS) program contain different values than the ID segment of a
non-CDS program. The code-block-size field in word 26 (bits 4-0) distinguishes the two types; the
value of this field is zero for non-CDS programs and non-zero for CDS programs. The two
formats are shown in Figures 11-1 and 11-2 and are described below.

NO TAG shows the words appended to the ID segment image in the type 6 file header created by
LINK. They are used by IDRPL but are not included in the ID segment in memory. Parameter T
(bit 0) in word 65 indicates transportability; if T is zero, the program is not transportable. If the
T-bit is set, the type 6 file can be executed on a system with a different generation. If the T-bit is
not set, the checksums in the type 6 file must match the checksums of the destination system in
order to execute the program.

Short ID segments are 8-word arrays used to identify non-CDS program overlays. One short ID
segment is used for each overlay. The short ID segment format is shown in NO TAG.

11-2 System Tables

O©CO~NOUITRWNE

15| 14| 13| 12| 11| 10| 9| 8 | 7| 6| 5| 4| 3| 2] 1|0

$XQr List Linkage

$TMPL TEMP 1

$TMP2 TEMP 2

$TMP3 TEMP 3

$TVP4 TEMP 4

$TMPS TEMP 5

$PRI O Program Priority

$GPCNT] GCOPRV nesti ng count

$SUSP Poi nt_of Suspensi on

$A A- Regi ster _at Suspensi on

$B B- Regi st er at Suspensi on

$EO E| C| debug code | | 0
$N1. 2 Nane (1st character) Nane (2nd character)
$N3. 4 Nane (3rd character) Nane (4th character)
$N5. F Nane (5th character) Fat her’'s | D seqgnment nunber
$STAT MRD| NA| ST| BR| SC| 1D DS| OFf SS|MD| Status

$TLNK Tine List Link WD

$RES R] Rsltn | T] Miltiple for Resol ution

$TI ML Low order 16 bits execution tine

$TI MR Hi gh order 16 bits execution tine

$TI CK Ti meslice O ock

$H GH Hi gh main nenory address + 1

$CSEG Current overlay high address + 1

$SEGS Nunber of overl ays Current overlay nunber
$HI BP AM Si ze of data seg-1 H gh base page address

$PART Program | oad bl ock nunber | Debug | 0

$TRAK Program | oad track nunber

$DI SK Undefi ned X Disk LU for program | oad
$CON Sequence nunb | x | 1 SVISR Termnal LU

$TDB Tenporary Data Block (TDB) List Head

$NVD AD| Poi nter to nenpry descriptor of data partition
$SWP (Page offset of data partition in swap file) + 1
$EMAS XE EMAV WS size (including PTE)

$IDNBR___FAl PPl CBl SPl KL| FW VM SO | D segment nunber -1
$MBEG NS| MSEG | og page TM Si ze of NMSEG x | LE| SN SD
$HSEG H ghest overlay address+l (sane as 22 if unsegnent ed)
$VWAP Copy of user™s WWAP

$CVD Undef i ned

$1 OCT DVT pointer if |ID segnment in use as |/ O bl ock
$OMNR Pointer to user ID table entry

$LCNT # of RNs owned and | ocked | # of LUs |ocked to program
$Ul O Nonbuffered 1/ O reguest count

$10 Pending 1/O list head

$CPUH CPU usage count (high order word)

$CPUL CPU usage count (low order word)

Equi val ent nanmes: (23) $CSEG=$SHPT; (26) $PART=$BLK#; (31) $MD=$DMD
* — words in a prototype |ID segnent

E o S . . N I N TR T T N

Figure 11-1. ID Segment Format for Non-CDS Programs

System Tables

11-3

15|

14] 13| 12| 11| 10l 9| 8| 7| 6] 5] 4] 3] 2] 1] O

Li st Li nkage

TEMP 1

TEMP 2

TEMP 3

TEMP 4

TEMP 5

Program Priority

GOPRV nesting count

OCO~NOUTAWNER
©+
3
s

Pol nt _of Suspensi on

A- Regi ster_at _Suspensi on

B- Regi ster at Suspensi on

E |C| debug code | O
Nane (1st character) Nane (2nd character)
Name (3rd character) Name (4th character)
Name (5th character) Father’s I D segnent nunber
MRD| NA| ST| BR| SC| 1D DS OF SS|MD Status
Tine List Link Wrd
R| Rsltn | T Mul tiple for Resol ution
Low order 16 bits execution tine
H gh order 16 bits execution tine
Tineslice dock
Link word from shared programtable entry
S Shared programtable pointer (0 if not shared)
X Nunber of code segnents -1] x | Executing seg # at susp.
AM Si ze of data seg-1 H gh base page address
Program | oad bl ock nunber | New debug | Code bl ock size
Program | oad track nunber
AL| Bl ocks in code partition D sk LU for program |l oad
Sequence nunb [X I SV[SR Termnal LU
Tenporary Data Block (TDB) List Head
AD| Poi nter to nenory descriptor of data partition
(Page offset of data partition in swap file) + 1
XE EMAN W5 si ze (i ncludi ng PTE)
FAl PP] CBl SP| KL|] FW VM SO I D segnent nunber -1
NS| MSEG | og page TM Si ze of NBEG | x | LE] SN SD
MRC| M_C| Reserve| Data seqg mn pgs-1 Initial code seg nunber
Copy of user’s WAP
AC| Pointer to nenory descriptor of code partition
DVT pointer if ID segnent in use as |1/0O block
Pointer to user IDtable entry
of RNs owned or | ocked [# of LUs | ocked to program

41 $LCNT

42 $U O

Nonbuffered |1/0O request count

43 $1 0

Pending I/O |i1st head

44 $CPUH

CPU usage count (high order word)

45 $CPUL

CPU usage count (1l ow order word)

Entry points have the same nanmes as shown in Figure 11-1.

* — words in a prototype |ID segnent

E o R B . B R N N T R T R T R I R N

Figure 11-2. ID Segment Format for CDS Programs

11-4 System Tables

In addition to the ID segment itself:

$IDA is a pointer to the first ID segment.
$ID# contains the number of ID segments.
$IDSZ contains the size of each ID segment in memory (45 words at Rev. 6000).

In Figures 11-1 and 11-2, the first column numbers indicate the word number. Those that are not
self explanatory are listed and described below (x indicates a reserved bit).

Words 2 - 6: Temporary information storage recoverable by RMPAR. This information is

Word 8:
Word 12:

Word 16:

modified by each EXEC request. The I/O control block for nonbuffered I/O
requests is built here.

Nesting count of GOPRV/UNPRYV calls made by program

E = E-Register at suspension
O = O-Register at suspension
C = C-Register at suspension

Debug Code = Debug Reason Code

MRD= Set if the program is in memory. For CDS programs, this is set if the data is in
memory.

NA = No-abort.This is set to the sign bit of the control word in an EXEC request.

ST = Set when a string in SAM is created for program. System clears on next EXEC
request (releasing string) or subroutine SAVST clears.

BR = Break bit. Set by user break and may be tested (and cleared) by function
IFBRK.

SC = If set, program accesses system common.
ID = If set, the ID segment is deallocated when the program terminates.
DS = If set, the program has DS/1000 resources locked.

OF = If set, this is an instruction to the system to set the program dormant at the
earliest opportunity.

SS = If set, this is an instruction to the system to suspend the program at the earliest
opportunity.

MLD=If set, the program has executed an EXEC 22 request and is locked in memory
(not swappable). For CDS programs, this bit represents the data segment’s
memory locked status.

System Tables 11-5

The following is a list the program states related to the possible values (in octal) of the status bits
(5 through 0) of $STAT:

Program State $STAT

Dormant 0
Dormant saving resources 0
Dormant and in time list 0
Program abort in process 1
I/O suspend 2
Program wait suspend 3
Operator suspend 6

7

Pause

Waiting for signal 10
Signal buffer limit suspend 46
Time suspend 47
Locked device suspend 50
Resource number suspend 51
Class 1/O suspend 52
Queue suspend 53
Down device suspend 54
I/O buffer limit suspend 55
Load suspend 56
Shared subroutine suspend 57
Scheduled 60
System available memory suspend 61
Spool suspend 62
Extended system available memory suspend 63
Word 18: R = Program has been time-scheduled relatively (not absolutely). Valid only when T

is set.
Rsltn = Resolution in:
00 = Milliseconds 10=Minutes
01 = Seconds 11=Hours
T = Program is in the time list.

Word 22: For non-CDS programs: High main memory address + 1
(bits 0 - 15)

For CDS programs: Link word from shared program table entry
(Valid only if ID segment Word 23, bit 15 is set.)

Word 23: For CDS programs:

S = Setif program is shared (bit 15) and bits 0-14 contains the shared program
table pointer.

Word 24: For CDS programs:

Bit 15 and bit 8 are reserved.

Bits 8-14 represent number of code segments in program

Bits 0-6 represent executing code segment number at suspension. Numbers are 1-128;
above values are 0-127.

11-6 System Tables

Word 25: AM = data segment (bit 15).

Set if any free memory within the partition must be swapped with the program. The
LINK or operator SZ command results in the setting of this bit. For CDS programs,
this applies only to the data partition.

Bits 10-14 = data segment size —1 pages (CDS)
= program size —1 (non-CDS)
Word 26: Bits 0-4 used in CDS programs to indicate size of code segment block in pages; for
non-CDS programs, value is zero.
Bits 5-6 are used by Symbolic Debug.

Word 28: For CDS programs:

AL = all code segments are memory-resident (bit 15).
(mandatory for shared programs)

Bits 8-14 = number of code segment blocks in code partition.
Word 29: SR = Set if program terminated serially reuseable (bit 8)
SV = Set if program terminated saving resources (bit 9)
10 = Set during processing of VMA 1/O or nonbuffered EXEC call (bit 10)
DB = Symbolic Debug bit (bit 11 set)
Word 31: AD = Assigned bit indicating data is assigned to a reserved partition (bit 15 set)
Word 32: Page offset in swap file + 1 (bits 0 - 15)
Word 33: XE = 1 if the program is a Large or Extended model EMA/VMA program.
Word 34: FA = Program has made file access (bit 15 set)
PP = Primary program in session (bit 14 set)
CB = Program in Gocrit State (bit 13 set)
SP = System process if set (bit 12)
KL = Program may be OF’d by any user (bit 11 set)

FW = Program is scheduled with wait by another program that is waiting for its
termination (bit 10 set)

VM = Program is a VMA program.

SO = Program is SHEMA-only.

Word 35: Logical start page of MSEG (bits 10 - 14)
TMR timer bit; timer signal processing (bit 9)
Size of MSEG (bits 4 - 8)
LE = Program uses Large model EMA or VMA.
SN = Program is allocating memory for a secondary SHEMA.
SD = Signal to be delivered.

Word 36: For non-CDS programs:
Highest overlay address + 1 (bits 0 - 15);
if no overlays, then Word 36 is equal to Word 22

System Tables 11-7

Word 37:
Word 38:

Word 39:

Word 40:
Word 41:

Word 42:
Word 43:

For CDS programs:
MRC = Code in memory (bit 15 set)

MLC = If bit 14 set, the program has executed an EXEC 22 request and the code
segment is locked in memory (not swappable).

Bits 12-13 = reserved
Bits 7-11 = Minimum size of data segment in pages
Bits 0-6 = Initial code segment number

Copy of user’s working map register at suspension

Not used in non-CDS programs

For CDS programs:

AC = Code partition assigned to a reserved partition (bit 15 set)

Bits 0-14 = Pointer to code partition memory descriptor

Back pointer to DVT associated with normal nonbuffered I/O request by the program
(a word to serve this function also was added to the other I/O request blocks)

Address of entry in user ID table

Bits 8-15 = Number of resource numbers locally owned or locked by this program
Bits 0-7 = Number of LUs locked by this program

Count of nonbuffered I/O requests

List head of pending I/O list; used for abort processing

Words 44-45: CPU usage count; used for accounting and METER

11-8 System Tables

46
47
48

thru

15| 14| 13| 12| 11] 10/ 91 8| 71 6|1 51 41 31 21 1] 0
Hi ghest overlay address + 1
Shareable EMA reserved partition nunber, it assi gned
Shareabl e EMA area | abel, 16 characters
(zero if no shareabl e EVMA used)

Virtual nmenory size — 1 (in pages)

X | Oig CPLV | Rqus CPLV | Prog CPLV
Primary Entry Poi nt

Syst em checksum val ue (sane _as val ue at $CKSM

Syst em common checksum (sanme as val ue at $SCCK)

I D checksum val ue (sum of Wirds 1 through 60)

Normal primary entry point

Debug primary entry point

RPL checksum

(reserved) | T
System checksum of origi nal system

$BPLO

$BPHI Transportability information

$TRLO

$TRH

Figure 11-3. Words Appended to ID Segment Image In Type 6 File

15 |14 [13(12 (11109 |8 |7 | 6| 5|1 43| 2(1 | O
1 Name (1st character) Name (2nd character)
2 Name (3rd character) Name (4th character)
3 Name (5th character) Base page block offset
4 Overlay entry point
5 High main address + 1
6 Reserved High base page address
7 Block offset of overlay
8 Checksum (sum of Words 1 through 7)

$SISZ = size in words of each short ID segment

Figure 11-4. Short ID Segment Format

System Tables

11-9

ID Segment Extensions

One ID segment extension exists for each ID segment defined in the system. The memory for all
of the ID segment extensions is allocated as a block of XSAM at system startup time. The block
starts at XSAM address 3. Each extension consists of the number of words given by entry point
$IDXSZ in $VCTR. Entry point $IDEXT holds the XSAM address of the ID segment extension
for the currently executing program. The ID segment extension format appears in Figure 11-5.

15| 14| 13] 12| 11] 100 9|1 8| 7] 6| 5] 41 3] 2] 1]0
0 $SHEMA SA| SAB or SHEMA table pointer, or O if not SHEMA
1 $VMVAS VMA size =1, or 0 if not VMA
2 $CPLV X | Oig CPLV | Rqus CPLV | Prog CPLV
3 $SA\L Pointer to Signal Control Block in XSAM
4 $PENT Primary entry point address

Figure 11-5. Format of ID Segment Extension

Word 0: SA = 0 if bits 0—14 point to a SHEMA table entry in XSAM or are zero, indicating
that this program does not use SHEMA.

SA = 1 if bits 0—14 point to a SHEMA Association Block (SAB) in XSAM, describing
multiple SHEMA associations.

Bits 0—14 point to either a SHEMA table entry or a SHEMA Association Block in
XSAM, or are zero if the program does not use SHEMA.

Word 2: Org CPLV = Capability assigned at link time (bits 10—14)
Rqus CPLV = Required user capability level (bits 5—9)
Prog CPLV = Current program capability level (bits 0—4)

Word 3: Pointer to the program’s Signal Control Block in XSAM, or zero if the program does
not use signals.

11-10 System Tables

Resource Number Table

The Resource Number Table is an array in memory that contains information pertaining to the
allocation, deallocation, ownership, and locked status of resource numbers. Space for the table is
allocated by the generator, which also sets the first word of the array to the length of the table.

The resource table format is shown in Figure 11-6. This table is used whenever any program
makes a call to RNRQ.

Number of Resource Numbers (n)
RN #1 Owner ID Segment No. Locker ID Segment No.
RN #2 Owner ID Segment No. Locker ID Segment No.)
RN #n Owner ID Segment No. Locker ID Segment No.)

Figure 11-6. Resource Number Table Format

The pointer to the length word of the resource number table is SRNTA. In the table itself, an
entry of 377 (octal) for either the owner or locker field indicates that the number is globally owned
or locked. The entry contains an ID segment number if the number is locally owned or locked.

An entry of zero for either the owner or locker field indicates that the number is not owned or not

locked.

Logical Unit Table

The Logical Unit Table (LUT) is a table that maps logical unit numbers to the appropriate device
table. In the table, each word is indexed by an LU number and contains the address of the DVT
associated with that LU number. This table is set up by the generator. There may be up to 255
logical units in the system. The format of the logical unit table is shown in Figure 11-7. The
pointer to the first word of the LU table is SLUTA and $LUT# contains the number of entries in
the LUT.

DVT Address LU 1
DVT Address LU 2

Note: Entry of zero assigns LU
to null device.

DVT Address LU n

Figure 11-7. LU Table Format

System Tables 11-11

Device Table (DVT)

The Device Table (DVT) is a table in memory that contains device-specific information such as the
driver to be used to communicate with the device, the device status, the device time out and buffer
limit values, and other device parameters. This table is used to identify each device to the system.
The LU number of each device is linked to the DVT for that device. The DVT is then used in
managing the requests to the particular device.

Each device has a DVT, which is created at generation and which is linked to the other DV'Ts on
the same interface as well as to the interface table itself. A few of the parameters (for example,
the buffer limits and timeout) may be altered on-line with operator commands. Figure 11-8 shows
the device table format. The entry points pointing to the currently active DVT are set up by the
operating system before the device driver is called.

15| 14| 13| 12| 11 10, 9| 8| 7| 6| 5] 4| 3] 2| 1] 0
$DVT1 DVT Link Word
$ODVT2 | Q| Request Initiation List
$DVT3 | N | Gircul ar Node Li st
$DVT4 | P | Gircul ar DVT List
$DVT5 X | Address of Interface Table
$DVT6 AV | Devi ce Type | St at us | E
$DVT7 Syst em Fl ags | LU Lock Fl ag | Al RS
$DVT8 | B | Buffer Limit Accumul ator
$DVT9 | S| (H gh-Low)/16 | Low Buff Limit/16
$DVT10 X Starting Physical Page
$DVT11 Ti meout List Linkage
$DVT12 Devi ce Driver Timeout C ock
$DVT13 Interface Driver Timeout Val ue
$DVT14 Device Driver Entry Address
$DVT15 TY | UE Z | Subf uncti on | NBl x| L] UJ RQ
$DVT16 Request Paraneter #1 / Error Code with D F
$DVT17 Request Paraneter #2 [/ Transm ssion Log
$DVT18 Request Paraneter #3 / Extended Status #1
$DVT19 Request Paraneter #4 /| Extended Status #2
$DVT20 | | | Driver Conmunication | Device Priority
$DVT21 | # Driver Paraneters | # Ext ensi on Words
$DVT22 DVT Extensi on Address
$DVT23 Driver Partition Physical Page
$DVT24 | M| PAl x | WA Reserved | SLN
$DVT25 Spool Node Li st
$DVTP Start of Driver Parameter Area

Start of DVT Extension Area (storage)

1112

Figure 11-8. Device Table Format

System Tables

The pointer to the first DVT is $DVTA,; the number of DVT entries is contained in $DVT#, and
the size of each DVT in $DVSZ. The parameters shown in Figure 11-8 are explained below (x
indicates a reserved bit).

Word2: Q= Queuing option of I/O requests to the DVT. If 0, then queuing by program
priority is specified. If 1, then queuing is FIFO (first in, first out).

Word 3: N = Node status bit. If 0, then this DVT is not busy. If 1, then this DVT is busy.
This bit is used in determining whether a request from another DVT on the
same node list may be acted on.

Word 4: P = Power fail service flag. If 0, do not call the associated driver on power fail. If
1, call this driver on power fail to allow it to perform any power fail operations
necessary for its devices.

Word 6: AV = Availability field:
0 Device is available.
1 Device is down.
2 Device is busy.
3 Device is down and busy.
Word 7 A = Abort bit. If 1, the system is in the process of aborting the pending request.
RS = Request status:
0 Request queued on IFT (request initiation list).
1 Request queued on IFT (current head of list).
2 Request queued on IFT request complete list.

3 Request queued on DVT request complete list.
Word 8: B = Buffering option. If 0, the device is nonbuffered; if 1, the device is buffered.
Word9: S = Buffering status bit. If 1, the request has exceeded the upper buffer limit.

Word 10: Starting physical page of the I/O transfer. The first map register may be set to this
value. In the case of VMALIO, this value is not relevant (bits 0-13).

Word 14: Entry address of the device driver. If 0, the device does not have a device driver.
Word 15: TY = Request type.

0 User program request

1 Buffered user program request

2 System I/O request

3 Class I/O request

UE = User error bit, specified in EXEC request.

Z = Double buffer bit, specified in EXEC request.

NB = Nonbuffered bit, specified in EXEC request.

L = If set, the data is in the user partition. If clear, the data is in the system
partition, or in SAM for buffered or CLASS requests.

System Tables 11-13

UD = If set, bypass the device driver (call only the interface driver). Specified in
EXEC request.

RQ = Request type, specified in EXEC request code:
0 Multibuffered request

1 Read request, Write/Read request

2 Write request

3 Control request
Word 20: I = Initial request bit. If 1, this is the first time the driver has serviced this device.
Word 23: Starting physical page of the driver partition where the device driver resides. If 0, then
the driver is not in a partition.
Word 24: M = Location of the I/O control block pointed to by $DVT2. If 0, it is in the system
map; otherwise, it is in SAM.
PA = Pseudo abort bit. If 1, pseudo abort is active.

WA = Waiting to abort bit. If 1, an abort request is pending.

SLN = System language number (0-7). This 3-bit field defaults to zero during system
generation.

Word 25: Spool node list pointer into SAM. Non-zero indicates spooling or LU redirection is in
effect for this device.

Interface Table

The Interface Table (IFT) is a memory resident table that contains interface-specific information.
It identifies the interface to the system. Each IFT handles all the interface I/O requests made as a
result of an I/O request made by a program to a device. This table contains such information as
the interface driver, the select code, and the interface type for a particular interface. This table is
created and initialized by the generator during the table generation phase. The format of the IFT
is shown in Figure 11-9. The entry points to the IFT are set up by the operating system before
control is transferred to the interface driver.

11-14 System Tables

15|14 (13 12 (11 |10 |9 |8 |7 [6 |5 |4 | 3| 2| 1] O
SIF1 Timeout List Linkage
$IF2 Timeout Clock
SIF3| Q Request List Linkage
$IF4 Interface Driver Entry Address
$IF5 Device Table Address ($DVT1)
SIF6| AV Interface Type WA| x [I/O Select Code
SIF7 System Flags F | M| # Words IFT Extension
$IF8 Driver Partition Physical Page
$IF9 | MA| x | ML OH MQ Reserved Map Set Num
SIFTX Start of IFT Extension (Storage)
/I/ 4

Figure 11-9. Interface Table Format

The pointer to the first IFT is $IFTA; the number of IFT entries is contained in $IFT#, and the
size of each IFT in $IFSZ. The parameters in Figure 11-9 are described below (x indicates a
reserved bit).

Word 3:

Word 6:

Word 7:

Word 8:

Word 9:

Q = Queuing option of the DV'Ts with active requests. If 0, the requests are queued
by device priority. If 1, the requests are queued in a FIFO manner.

AV = Availability field:

0 Interface is available.

1 Interface is locked to DVT.
2 Interface is busy.

3 Interface is locked and busy.

WA = Waiting to abort bit. If 1, an abort request is pending.

F = First entry bit. If 1, this is the first time the driver has serviced a request on this
IFT.
M = If 1, the interface driver is responsible for de-queuing the list.

The starting physical page of the partition where the interface driver resides. If zero,
then the interface driver is not in a partition.

Contains flags dealing with the mapping of I/O channels into map sets.
MA = Map allocated bit. If 1, a map set is allocated for this I/O channel.

ML = Map locked bit. If 1, the system deallocation routine SMSRTN does not
deallocate the map set. If 0, the map is dynamically allocated and deallocated.

System Tables 11-15

OH = On hold bit. Contains a copy of the H bit from the system flags area of IFT7.
This bit is copied when 1/O is suspended to wait on a map set.

MQ = Map set queued bit. If 1, this request is in the map set suspend queue and waits
until a map set is available.

Map Set Num = The number of the map set that is allocated for this I/O channel. If
the MA bit is clear, this field is meaningless.

1/0 Control Blocks

Each I/O request has a block of memory associated with it that defines the request. This block is
known as a control block. These blocks have different formats and are located in different places
depending on whether the request was a normal, buffered, system, or class request. The format
for each kind is shown in Figure 11-10. Note that the control block format is similar for each of
the different requests.

The XSIO control block contains words that are not necessary for any of the other requests. A
short description of the remaining words follows:

*kk Word 1 *k%k

List Linkage = Links the control block onto a DVT. DVT2 points to the first control block
and the last block will have this word equal to zero. If this is a class request,
this word can also be used to link the request into a class number’s
completed class queue. There can be a queue for each of the class numbers
that starts at word 1 of a class number’s entry in the class table. In this case
the list is terminated with the class status word for this class number. This
word has the same format as word 1 of the class table would have if the
class was only allocated. See the description of the class table elsewhere in
this chapter.

*kk Word 2 *k%
Control Word = Same as DVT15 except that the L bit is not defined. See the “Device Table

(DVT)” section in this chapter for more detail.

*** Words 3 through 6 ***

Parameters = The active request parameter area.

*kk Word 7 *k%

Priority The priority of the program that made the request.

11-16 System Tables

Normal Request

System Request

Stored in ID Segment Word Stored in XSIO Block
startling at $XQT
—1 LU
0 Completion Address
I/O List Linkage 1 I/O List Linkage
I/O Control Address 2 I/0 Control Word
PRAMT1 / Buffer Address 3 PRAMT1 / Buffer Address
PRAM2 / Buffer Length 4 PRAM2 / Buffer Length
PRAMS3 / Z-Buffer Address 5 PRAMS3 / Z-Buffer Address
PRAM4 / Z-Buffer Length 6 PRAM4 / Z-Buffer Length
Priority 7 Priority
8 Starting Physical P age of Data
9 Status Return
10 Transmission Log
1 * 1st Extended Status
12 * 2nd Extended Status
13 * 3rd Extended Status
Buffered Request TY =1 Class Request TY =3
Stored in SAM Word Stored in SAM

I/O List Linkage

I/0 Control Word

PRAMT1 / Buffer Address
PRAM2 / Buffer Length
PRAMS3 / Z-Buffer Address
PRAM4 / Z-Buffer Length
Priority

I/O Block Length

ID Segment and Run Numbers
Undefined
Undefined
Undefined
Undefined
ID Segment F orward Pointer
ID Segment Backward P ointer
DVT Address
Data

°

°

°

e 0o 2ttt
NOOPRWN—=-O0OOONOOODRWN =

I/O List Linkage

I/0 Control Word

PRAMT1 / Buffer Address
PRAM2 / Buffer Length
PRAMS3 / Z-Buffer Address
PRAM4 / Z-Buffer Length
Priority

I/O Block Length

Class Information

User Defined Value

ID Segment Address
VMAIO Control Wrod
VMAIO Z-Buffer Address

ID Segment F orward Pointer
ID Segment Backward P ointer
DVT Address/Previous Length
Data

°

°

°

Last Word of Data Block Last Word of Data
Length
* |f the “X” bit of the LU word is set
110 15114 (13 | 12 | 11 10 91 8 7 6 5 4 3 2 1 0
Control
Word TY UE z Subfunction NB 0 ub RQ

Figure 11-10. 1/O Control Block

System Tables

1117

*kk Word 8 *k%k
Block Length

*kk Word 9 *k%k

If class, Class
Information

If buffered, ID
Segment and
Run Numbers

*x% Word 10 ***

User Defined
Value

*xk Word 11 ***

ID Segment
Address

*xk Word 12 ***

VMAIO
Control Word

*x% Word 13 ***
VMAIO

Z-Buffer Address

The length of the entire control block, (including the buffer area at the end
of the block) if it exists. Block Length — 16 = Buffer Length.

Same as the class parameter that is passed to EXEC except that

the NW bit in bit 15 is replaced with the FL bit. If the FL bit is set, the
class completion code will flush this class. The 13-bit class number that is
passed to EXEC contains the actual class number in the low eight bits and
the low five bits of the ID segment number of the allocating program in the
top five bits.

Contains the ID segment number of the program that made the
request with the sequence number (word 29 of the ID segment)
merged into the high four bits.

The user defined value that is passed in the EXEC class request.

Address of the ID segment of the program that made the class
request.

If NV (bit 15 of this word) is set, the request is for nonbuffered
class VMAIO and the low ten bits contain the low ten bits of the virtual
page in which the buffer starts.

If VMAIO, contains the Z-Buffer address.

*** Words 14 and 15 ***

ID Segment
Pointers

Forward Pointer

Backward
Pointer

11-18

These words make up a doubly linked list that links an ID

segment to all active buffered and class requests that the program has
made. This list is used to abort all of a programs buffered and class I/O
requests, if the program aborts.

Word 43 of the ID segment will point to the forward pointer of the request
most recently made by the program. This word will contain either the
address of the next forward pointer or a zero signifying the end of the list.

This word will contain either a pointer to the next backward
pointer with bit 15 set, or a pointer to word 43 of the ID segment with bit 15
clear.

System Tables

*xx Word 16 ***
DVT Address

Previous Length

Points to the first word of the DVT that this request is queued on.

When the request completes, the original request length is gotten from
word 4 of the control block and saved here for re-thread purposes.

*** Word 17 through Block Length ***

Data = If this is a buffered or a buffered class request, then this area will be used as
the buffer for the request. If a Z-buffer is specified for the request, it will
also be in this area (immediately following the regular buffer).

Map Set Table

The Map Set Table is 24 words long. Each entry represents one map set. The entries are for map
sets 8 through 31. The format of the map set table is shown in Figure 11-11.

The information in the entry for each map set depends on bit 15 (not available bit) and can be one
of the following:
State 1:If a map set is available, then:
Bit15=0
Bits 0-14 = Pointer to next free map set. The value is zero if end of list.
State 2:If a map set is in use, then:
Bit15 =1
Bits 0-14 = Pointer to IFT that is using the map set.

Word 0 | NA Pointer to next free map or to IFT
Word 1 | NA Pointer to next free map or to IFT
RN #n | NA Pointer to next free map or to IFT

Figure 11-11. Format of Map Set Table

System Tables 11-19

Interrupt Table

The Interrupt Table specifies the IFT that is to be called to service an interrupt from a select code.
The interrupt table is set up by the generator. The format of the interrupt table is shown in
Figure 11-12.

Select Code
IFT A

20 ddress or 0 To get entry (example):

21 IFT Address or O
LDB SC Get select code

. ADB $INTA Add pointer

LDA B,I Get entry

77 IFT Address or 0

Figure 11-12. Interrupt Table Format

The pointer to the first interrupt table address (select code 20B) is $INTA and the number of
interrupt table entries is in $INT#.

The table contains 48 words. Entries corresponding to select codes not defined during system
generation contain a zero. If an interrupt occurs from an undefined select code, the system issues
the error message “Illegal interrupt on select code xx”.

If an entry point of a privileged driver is specified to handle the interrupts from a given select
code, the interrupt table is bypassed. A JSB to this entry point is placed in the trap cell for that
select code and a zero is placed in the interrupt table word for this select code, as shown in
Figure 11-12. The trap cell and interrupt table entry mapping is shown in Figure 11-13.

Memory
Location __ Trap Cells Interrupt Table
20B JSB.$CIC > IFT A address
21B JSB.$CIC > IFT B address
22B JSB.$CIC > IFT C address
23B JSB.$CIC > IFT D address
24B JSB.PIL.XX 0

. Privileged Driver with Entry Point
i P1.XX

Figure 11-13. Trap Cells and the Interrupt Table

11-20 System Tables

Class Table

The Class Table contains information on the allocation, deallocation, and ownership of class
numbers. It is a two word per entry table. Space for this table is allocated by the generator in
response to the CLASS,n command. The class table format is shown in Figure 11-14.

n = No. of entries (len = 2n+1)

Class 1

Class 2

Word 1

Class n

Class 1

Class 2

Word 2

— 5=

Class n

Figure 11-14. Class Table Format

$CLTA is a pointer to the first word of the class table.

Word 1
Contents Meaning
0 Class number is free
positive Address of queue of completed class I/O requests
negative Class ID word
Word 2
Contents Meaning
0 Class number free or not assigned ownership
positive ID segment number of class number owner
negative Class number in process of being flushed and deallocated by the

system.
The class ID word is either an entry in the table (if there are no completed requests) or it is at the

end of the completed class queue. Each SAM block in the queue is linked via the first word of the
block. Figure 11-15 shows the format of the class ID word (x indicates a reserved bit).

System Tables 11-21

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Low 5 bits of ID .

1 w X segment number No. pending class requests (0-255)

A A

Some program suspended waiting for class completion

Designates entry as Class ID word

Figure 11-15. Class ID Word Format

Swap Descriptor Table

The system contains the following information about the swap file:

$SWLU : LU of swapping disk
BLK/T : Number of 128-word blocks per track

These values and the swap area descriptors are set up by BOOTEX. The free areas of the swap
file are described by a linked list of free swap area descriptors, linked in order of the position of
the swap areas on disk. This Swap Descriptor Table format is shown in Figure 11-16.

Word 0

Word 1

Word 2

Link Word

Page offset into swap area

Size of free swap area in pages

Figure 11-16. Swap Descriptor Table Format

The following values are used in conjunction with this table:

$SWPS:

$FSWP:
$UFSD:

Pointer to free swap area descriptor prior to the one at which to start a search
for a free area.

Head of the free swap area descriptor list.

Head of the unused free swap area descriptor list.

When the dispatcher determines that a program is to be swapped out, it starts searching for a large
enough free space at the free swap area descriptor pointed to by $SSWPS.

When the first large area of sufficient size is found, word 32 in the ID segment (page offset in swap
file + 1) is set to the value of word 1 of the free swap area descriptor plus one. Word 1 of the free

swap area descriptor is incremented by the size of the program to be swapped. Word 2 of the free

swap area descriptor is decremented by the size of the program to be swapped.

If word 2 is reduced to zero, then this free swap area descriptor is removed from the list and put
into the list of unused free swap area descriptors (the link word of the descriptor pointed to by
$SWPS is set to the link word value of the unused descriptor).

11-22 System Tables

Note that during the search phase, if the end of the list is encountered, the search is restarted at
the head of the list. Also, if the first free swap area descriptor is the one found, and if it becomes
unused, then the list head $SFSWP is updated.

If a swap area of large enough size cannot be found, then the message, “No room in swap file!!!” is
printed to the system console. A maximum of 50 such messages are printed during a system
bootup.

Shareable EMA Table

A shareable EMA table entry describes a shareable EMA, or SHEMA, in the system. Each entry
is allocated in XSAM. Entry point $ShemaTbl in $VCTR contains the XSAM address of the first
entry in the list, or zero if no SHEMA table entries currently exist. The SHEMA table entry
format is given in Figure 11-17.

15| 14| 13| 12| 11] 10 9|1 8| 7|1 6|1 51 41 31 21 1] 0
0 XSAM address of the next SHEMA table entry., or zero
1 LK IX IN ILl reserved | SHEMVA # for LENA | XX
2 XSAM address of previous SHEMA table entry, or zero
3 Al l ocation
4-11 SHEMA | abel
16 characters, bl ank-extended
12 |# in system (# |Ds) | I n-use count (# active)
Figure 11-17. Format of Shareable EMA Table
Word 1: LK = 1 if SHEMA partition is locked
IX = 1 if SHEMA partition has been initialized as an Extended SHEMA, or as a Large
SHEMAfIL =1
IN = 1 if SHEMA partition has been initialized as a Normal SHEMA
IL = 1 if SHEMA partition has been initialized as a Large SHEMA, in which case IX
will also be = 1
XX = 1if an extra word of XSAM was allocated for this SHEMA table entry (that is, 14

words were allocated)

For Large EMA programs only, “SHEMA # for LEMA” is set to the EMA segment
number minus one for which this SHEMA has been initialized.

Word 3: Specifies the allocation of the area:

0 = Shareable EMA partition is not allocated; it is to be allocated from dynamic

memory

System Tables 11-23

1-1023 = Shareable EMA partition is not allocated; it is to be allocated in this reserved
partition number

1024 and above =
Shareable EMA partition is allocated; this word holds the address of the
Memory Descriptor (MD) for the partition

Word 12: The “# in system” count tells how many programs are RP’ed that use the SHEMA.

The “in-use count” tells how many of the RP’ed program are active, that is, not in the
dormant state.

The IX, IL, and IN flags tell whether a SHEMA partition has been initialized, and if so under
which model it has been initialized. Once the SHEMA partition is initialized under one of these
three models then only programs of the same model may use the partition until the partition is
deallocated. Any program not conforming to the same model that attempts to access the partition
will be aborted with an EM90 error.

The “SHEMA # for LEMA” field appears in the SHEMA table to allow the system to check that a
Large-model program attaching the SHEMA is attaching it at the same EMA segment for which it
has been initialized. An attempt by a Large-model program to attach the SHEMA at an EMA
segment other than the segment for which it has been initialized will incur an RteAllocShema
error. This restriction is necessary because of the format of the EMA page table (PTE) used by the
Normal and Large models.

Whenever a program using a particular shareable EMA area is restored in memory with the RP
command, the system creates a table entry for the area used by the program, unless an entry for
the area already exists. In the former case, the system sets the number-in-system field to 1 and
sets the use count to zero. In the latter case, the system increments the number-in-system count by
one.

Whenever a program is removed from the system (for example, by an OEprog,ID command), the
number-in-system count is decremented by one. When the count reaches zero, the system
deallocates the table entry, unless the area is locked, as described below.

Whenever a program is scheduled using a shareable EMA area, the system increments the use
count in the appropriate EMA table entry, provided the program did not previously terminate
saving resources. Conversely, whenever a program is terminated other than saving resources, the
system decrements the use count in the appropriate EMA table entry.

Whenever the use count goes from zero to one, the system allocates the shareable EMA partition
in memory. Whenever the use count goes from one to zero, the system deallocates (releases) the
shareable EMA partition, unless the area is locked.

A shareable EMA area may be locked via a LKEMA subroutine call by a program using the area.
The LKEMA subroutine sets the LK bit in the appropriate shareable EMA table entry. When it is
locked, a shareable EMA partition is not deallocated when the use count (number of active
programs using the area) goes to zero.

A shareable EMA area may be unlocked via a ULEMA subroutine call or via the UL operator
command. Such a subroutine call or unlock command clears the LK bit in the appropriate
shareable EMA table entry. If the use count is zero, the shareable EMA partition is deallocated
at this point. If the number-in-system count is also zero, the table entry is also deallocated.

11-24 System Tables

SHEMA Association Blocks

A SHEMA Association Block, or SAB, is created when a program attaches a secondary SHEMA
to itself via the RteAllocShema routine. This data structure informs RTE of all the SHEMA
attachments that exist for the program.

SABs are allocated dynamically out of XSAM as needed. Each SAB describes up to 8 SHEMA
attachments. When another attachment is to be described and all 8 SAB entries are full, another
SAB is allocated and linked to the previous one. The format for each SAB is given in Figure 11-18.

15| 14| 13| 12| 11| 10] 9| 8| 7| 6| 5| 4] 3| 2] 1] 0
0 SX| pointer to next SAB, or O for end of Iist
1 pointer to SHEMA table entry, or O if unused
2 poi nter to SHEMA table entry, or 0 if unused
}(5 nore identical words in between)
8 pointer to SHEVA table entry, or O if unused

Figure 11-18. Format of SHEMA Association Block

Word 0: SX = 1 if an extra word was allocated in XSAM for the SAB

Bits 0—14 contain the XSAM address of the next SAB in the list for the associated
program, or zero if this is the last SAB for the program.

Words 1-8: Each word contains the XSAM address of a SHEMA Table Entry that the
associated program has attached to itself, or zero if the SAB entry is unused.

At startup of a Large or Extended E/VMA program, the $SHEMA ID segment extension word
points either to the SHEMA table entry for the primary SHEMA of a SHEMA-only program, or is
zero if local E/VMA used. In either case, the SA bit of the $SHEMA word is clear.

The first time the RteAllocShema routine is called to allocate a secondary SHEMA to the
program, RteAllocShema:

1. Allocates an SAB. All 8 SHEMA table pointer words are zeroed.

2. 1If the $SSHEMA word is non-zero then that value is copied into the first SHEMA table pointer
word of the SAB (word 1).

3. The pointer to the new SHEMA table entry being allocated is placed in the next available
SHEMA table pointer word in the SAB.

4. The $SHEMA word becomes a pointer to the SAB with the SA bit set. Subsequent

allocations fill successive words in the SAB until all 8 entries are used, at which time another
SAB is allocated and linked to the old SAB.

System Tables 11-25

Cartridge Directory

The Cartridge Directory contains disk cartridge identification information for all of the currently
mounted disks. It is mainly useful for determining the search order for FMGR disks and for
determining what disks were mounted when the system was last running. This table can be read by
using the FMGR subroutine FSTAT.

This table is maintained in the first two blocks of the swap file. It has room for only 63 disk LUs;
the last entry is never used, and marks the end of the table. Disk LUs with FMGR directories
appear as indicated in this table; disk LUs in the hierarchical file system appear with cartridge
number of zero. The cartridge directory format is shown in Figure 11-19.

Lock LU
Last Track ‘:|
First Entry
Cartridge number =
Seq Owner
Lock LU =]
Last Track L
Nth Entry
Cartridge number I
Seq Owner =
0 =
0
0 _ First free entry
0 =
0 End of table

Figure 11-19. Cartridge Directory Format

A disk cartridge is temporarily locked during a mount, dismount, pack, or initialize operation. If a
cartridge does not have a valid directory on the last track when it is mounted, it remains locked
until it is initialized or dismounted.

The lock flag is an eight-bit field containing the ID segment number of the program that has the

LU locked, or zero if the LU is not locked. The sequence number field is a four-bit field
containing the sequence number for the locking program,; it is ignored if the LU is not locked.

11-26 System Tables

Memory Descriptors

In the area of memory set aside for running user programs, a block of memory is any series of
contiguous pages. These blocks of memory are fixed in size, location, and number in the reserved
partition area, but variable in size, location, and number in the dynamic memory area.

To keep track of the user program area, the operating system sets up, for each block of memory, a
Memory Descriptor (MD) in the reserved-partition MD table or one of the dynamic MD lists.
The system allocates dynamic MDs as they are needed to describe the dynamic memory area.
Space for memory descriptors is allocated by RTAGN.

The reserved partition MD table consists of four-word descriptors containing the size, location,
and status of the reserved partitions. The dynamic MD lists are linked lists of seven-word
descriptors containing the size, location, and status of blocks of dynamic memory. A reserved
partition MD is made up of words 0, 1, 2, and 3 of the dynamic MD.

Memory Descriptor Variables

System variables contain information the system needs to manage reserved and dynamic memory.
System variable $RPTN heads the reserved-partition MD table, while $MEM heads the dynamic
adjacency-MD list, which describes the status of all non-reserved user program memory.

Dynamic memory is further described by the free-MD list headed by SFREM. All memory
descriptors not currently in use to describe a memory block are linked together in the unused-MD
list, headed by §UMD. The remaining MD system variables provide summary information:

$RPT# = Number of reserved partitions.

$LGST = Size of current largest free block in the free list. Zero implies that the size of
the current largest block is unknown.

$LGS1, $LGS2, $LGS3 = Sizes of the three largest available blocks of dynamic memory.
The system uses the information in these variables and in variables $STL1,
$STL2, and $STL3 to perform deadlock avoidance checks.

$STL1, $STL2, $STL3 = Starting pages of the blocks described by $L.GS1, $L.GS2, and
$LGS3.

$RPTN = Reserved partition MD table head. Reserved partition MDs are contiguous in
memory, starting at SRPTN.

$FREM = Free-MD list head; points to some MD in the free list; linked through
next-free-block pointer entry of each MD in the list, and back linked through
the previous-free-block pointer entry of each MD in the free-MD list. If
$FREM is equal to zero, there are no free blocks of dynamic memory.

$MEM = Adjacency-MD list head; linked through the next-adjacent-block pointer entry
of each MD; back-linked through the previous-adjacent-block pointer entry in
each MD; list is in order of position of blocks in memory. Zero implies that
there is no dynamic memory.

$MDS# = Total number of dynamic MDs.

System Tables 11-27

$UMD = Unused-MD list head; points to some dynamic memory descriptor that is not in
use, and therefore is available to describe a new block of dynamic memory set
up by the system. Word 0 of each unused MD points to another unused MD,
with word 0 of the last unused MD set to zero. Thus, §UMD points to a
singly-linked list of unused memory descriptors.

$RMDS = Size of reserved MD in words.

$SZDY = Number of pages of memory in the dynamic area.

Dynamic Memory Descriptors

The dynamic MD lists are the adjacency list, the free list, and the unused list. Each dynamic MD,
describing a block of dynamic memory, is in a linear doubly linked adjacency list headed by the
pointer SMEM. This adjacency MD list is backward linked through the previous-adjacent-block
pointer in each MD and forward linked through the next-adjacent-block pointer of each MD. Any
two MDs that are next to each other in the adjacency-MD list describe blocks of memory that are
also next to each other.

To enable the system to find blocks of free memory without having to scan the entire
adjacency-MD list, each dynamic MD that describes a block of free memory is also in a doubly and
circularly linked free list headed by the pointer SFREM. This free-MD list is backward linked
through the previous-free-block pointer of each MD in the free list, and forward linked through
the next-free-block pointer of each MD in the free list.

Whenever the system needs a new MD for a newly created dynamic partition, it selects one from
the unused-MD list, enters the data describing the partition, and links the MD into the adjacency
list.

Each dynamic MD consists of seven words, where words 0, 1 and 2 describe the size, location, and
status of the block of memory. If the block is free, word 2 is negative and points to the previous
free block. Word 3 is the memory block information word. Word 4 is the next-free-block pointer,
while words 5 and 6 are the adjacency-MD list pointers, in the format shown in Figure 11-20.

11-28 System Tables

15|14 (13 (12|11 |10| 9|8 |7 [6 |5 |4 | 3| 2| 1] O
Word 0 Number of pages in block
Word 1 Starting page of block
Word2 | 0 ID Segment address of occupant

0 00000B = In use as s%rareable EMA partition

1 77777B = Partitigg bad (unusable)

1 Pointer to pre\(/)irous free block
Word 3 | C/D Reserved 10| LK| OV
Word 4 Pointer to next free block

Priority o?gccupant

Word 5 Pointer to MD of previous adjacent block
Word 6 Pointer to MD of next adjacent block

Figure 11-20. Dynamic Memory Descriptor Format

The entries of Figure 11-20 are described below:

Word 0:
Word 1:
Word 2:

Word 3:

Number of pages in the block of memory.
The starting page of the block.

If the block described is occupied, then bit 15 is zero, and the remainder of the word
points to the ID segment of the program occupying the block, unless the block is in use
as a shareable EMA area, in which case the remainder of the word is set to all zeros.

If the value of the whole word is —1 (all bits set), then the block described is bad
(parity error detected). If the sign bit is set but the remainder of the bits are not all
set, then the block is free (no occupant, not a shareable EMA partition, and not bad),
and bits 0-14 point to the MD describing the previous free block in the free memory
list.

Note that if there is only one free block, then the MD describing this block has this
word and word 4 pointing to itself, since the free list is circularly linked.

Word 3 contains information about the state of the block described by the MD.

Bit 14 - 15 (CDS only) 00 if data partition
10 if code partition
11 if shared code partition

Bit 3 - 13 reserved

Bit 2 This bit is set if the partition is holding data, nonbuffered I/O is in progress and
the partition must not be swapped.

System Tables 11-29

Word 4:

Word 5:

Word 6:

For CDS programs, this bit is set if the partition is holding code, and has been overlaid
and reloaded from the disk program file since last execution of program.

Bit 1 This bit is set if the partition is locked due to an EXEC 22 lock call, in use as
shareable EMA, or the block is bad.

Bit 0 This bit is set if the partition is overlayable.
If no status bits (0-2) are set, the partition is swappable.

If the block is free (word 2 negative, but not equal to —1) then word 4 points to the
MD of the next free block of memory. If the block is occupied (word 2, bit 15 = 0),
then the block is not linked into the free list, and word 4 is the priority of the program
running in the block. If the block is bad (word 2 = —1), this word is meaningless.

A pointer to the MD describing the adjacent block of memory in the backward
direction. Zero in this word means there is no previous block of dynamic memory.

A pointer describing the MD of the adjacent block of memory in the forward direction.
Zero in this word means there is no next adjacent block of dynamic memory. Thus, the
dynamic memory descriptors form a linear doubly linked list of blocks (free, allocated
or bad) ordered by position of the blocks in memory.

Reserved Partition Memory Descriptors

The reserved partition memory descriptors (MDs) are maintained separately from the dynamic
memory MDs. Forward and back link words (words 4, 5, and 6) of the reserved partition MDs do
not exist. The format of the reserved partition descriptor is shown in Figure 11-21.

15|14 (13 (12|11 |10 |9 |8 |7 [6 |54 |3 | 2| 1] O
Word 0 Number of pages in block
Word 1 Starting page of block
Word2 | 0 ID Segment address of occupant
0 00000B = In use as s%rareable EMA partition
1 00000B = Ig;rtition free
1 77777B = Partitigg bad (unusable)
Word 3 | C/D Reserved 10| LK| OV

Figure 11-21. Format of Reserved Partition Memory Descriptor

There is no explicit linking of reserved partition MDs. They lie in contiguous memory starting at
$RPTN. They are referenced by number, where the number describes both the position of the
reserved partition MD in the reserved partition MD table and the position of the block of
memory described, with relation to the other reserved partitions.

Thus, the sequential number of a given reserved partition is the same as the sequential number of
its MD. For example, if the operating system ends at physical page 31, and there are two reserved

11-30 System Tables

partitions, each five pages in size, then reserved partition 1 will be pages 32 through 36, and will be
described by the first MD in the reserved partition MD table. Similarly, reserved partition 2 will
be pages 37 through 41, and will be described by the second MD in the reserved partition MD
table.

On bootup, immediately following the last reserved partition MD will be a MD for the first block
of dynamic memory. Continuing the example above, initially there will be only one dynamic
memory MD, describing a free block starting at page 42 and extending to the end of physical
memory. $FREM and $MEM will both point to this MD; the adjacent pointer in this MD will be
zero; the free list pointers will both point to the MD itself.

Immediately following the free memory MD will be a linked list of unused MDs, headed by
$UMD, linked through the word 0 of each of the MDs in the list, and terminated by a link word of
ZEeT0.

By default, the total number of MDs is at least one more than four times the number of ID
segments for system using CDS programs (and one more than twice the number of ID segments
for systems using non-CDS programs). This is done to keep track of code, data partition, and
holes between them. Note, however, that this is guaranteed to always be enough MDs only if no
reserved partitions are defined, there are no bad blocks, and there is no shareable EMA allocated.

Shared Program Table

The shared program table are used to implement shared programs. Space for the shared program
table is reserved at system generation when the maximum number of shared programs is specified.
Each set of shared programs has its own shared program table entry. The format of the table is
shown in Figure 11-22.

Word 0 Disk LU Block #
Word 1 Track number

Word 2 In-system count In-use count
Word 3 MD pointer to code partition
Word 4 Shared program list pointer

Figure 11-22. Shared Program Table Format

The address of the first shared program table entry is in $SPTB and the number of shared
programs is in $SPR#. The table entries are as follows:

Words 0-1: These two words contain the program disk address that uniquely identifies the
program. The disk LU is bits 8-15 and the block number is bits 0-7 of word 0.

System Tables 11-31

Word 2: In-system count (bits 8-15) is the number of existing ID segments that are
related to this shared program.

In-use count (bits 0-7) is the number of active program related to this shared
program (active programs are either non-dormant or dormant after terminating
saving resources).

Word 3: Pointer to the memory descriptor (MD) for the code partition for this shared
program. If 0, a code partition has not been allocated.

Word 4: Pointer to the first program in the linked list for this shared program entry. The
linked list uses word 22 of the ID segment for CDS programs (see Figure 11-2).

Multiuser Table

The following paragraphs describe the table and files used in the multiuser environment in RTE-A
systems with VC+. The information provided includes the user ID table, the user configuration
file, and the master account file. If your system does not have the VC+ option, skip these
paragraphs.

User ID Table

The user ID table is a memory-resident table containing all pertinent user identification data. It
keeps a record of all users logged on to the system. Each time a user logs on, an entry is made to
this table. When that user logs off the system, the entry is released for use with another user that
is logging onto the system.

The user ID table is associated with the following system variables:

$UIDA - Address of the first word of the user ID table. Note the first entry is reserved
for the system.

$UID# - Number of user ID entries

$USZ - Size of user ID entry

$#CUS - Number of currently logged on users

$OWNR - Word 40 of the program ID segment points to the first word of the user entry

The format of the user ID table entry is given in Figure 11-23. The content of the user ID entry is
described on the following diagram.

11-32 System Tables

Words 1-8 User logon name (16 characters max)
Word 9 S Session sequence number Status
Word 10-11 Pointer to working directory or —1 if none
Word 12 Terminal LU of the user or session #
Word 13 L Number of User Programs Counter
Word 14 User identification number
Saved password for the LOGON program or logon time in
Word 15-16 :
seconds since Jan 1, 1970 for logged on user
Word 17-18 Session CPU usage in tens of milliseconds
Word 19 Address of UDSP table in XSAM
Word 20 ID segment address of the first session program
Word 21 Group ID number User Capability Level
Word 22 Reserved for future use
Figure 11-23. User ID Table Entry
Words 1-8: User log-on name, 16 characters maximum; matched with the user

Word 9:

Words 10-11:

Word 12:

Word 13: L =

configuration file and filled into the table by LOGON.

A flag word obtained from the user configuration file and filled into the table
by LOGON.

superuser bit (bit 15); set if this entry is for a superuser.
Session sequence number (bits 4-14) is used to identify the session
Status bits (0-3) are filled in by LOGON

this is a free entry

non-interactive session

active session

this session set up programmatically.
Program counter (word 13) may be zero.
transition state, waiting for password

~ RO

Working directory pointer; a double integer calculated by the LOGON
program.

The session number is calculated by the LOGON program and filled into the
table.

Logoff program/command file bit (bit 15); set if there is a logoff program or
command file defined for this entry. The user programs counter is incremented

System Tables 11-33

when a program is scheduled and decremented when a program becomes
dormant (bits 0-14).

Word 14: The user identification number assigned by the system is obtained from the
user configuration file.

Words 15-16: The user password obtained from the configuration file is temporarily saved
here if the password is not entered with the user’s name. The LOGON
program prompts for the password and compare the two values. If the values
are the same, words 15 and 16 are replaced with the current time in seconds
since January 1, 1970.

Words 17-18: These words contain the value of this session’s CPU usage in tens of
milliseconds. When a program from this session terminates, its CPU usage is
added to this value.

Word 19: The address of the User-Definable Directory Search Path (UDSP) table in
XSAM. LOGON allocates space for the table in SAM when a user logs on. If
there is not enough XSAM for the table, this word is set to zero. This address is
also used to locate the LU access table, which sits directly above the UDSP in

XSAM.

Word 20: The address of the ID segment of the program that was executed when a user
logs on; filled in by the LOGON program.

Word 21: The user capability level (bits 0-4) and the group ID (bits 5-15) of the group with
which the user is associated for this session.

Word 22: spare

Initial Entry

Data in the user ID table is obtained initially from the user logon entry and then from the group
and user configuration files set up in the system. Entries are made to the table by the LOGON
program.

The logon name supplied by the user is matched with the user configuration file and filled into the
table by the LOGON program. LOGON also performs the following functions:

e The group configuration file is opened using the supplied group name or the default group
name (if no group name is supplied) in the user configuration file.

e The group resource limits are checked to make sure they have not been exceeded.

e The session LU access table is constructed by computing the inclusive OR of the user and
group access tables. The terminal LU must be in the session LU access table for the user to
log on.

e The resource limits for the user in the group are checked to make sure they have not been
exceeded.

e After the user’s password is checked, the session’s logon time is placed in words 15 and 16.
e Information obtained from the user configuration file is filled into the flag word (word 9).

e The appropriate status bits are set.

11-34 System Tables

e The pointer to the working directory is calculated and written into words 10 and 11. This
pointer is also modified by the file system when the working directory is changed.

e The terminal LU is placed in word 12.

e The user program counter is incremented when a program is scheduled or time scheduled;
and decremented when a program becomes dormant or leaves the time scheduled list.

e The user identification number assigned by the system is placed in word 14.
e A chunk of XSAM is allocated for the UDSP table and the LU access table.

e The starting address of the UDSP table is placed in word 19. This address is used to access
both the table and the access table.

e Word 21 is filled with the user’s capability level, bits 0-4, and the group identification number
assigned by the system, bits 5-15.

LU Access Table and UDSP

Space for the LU access table and the User-definable Directory Search Path (UDSP) table is
allocated in XSAM by LOGON when a user logs on. The LU access table sits above the UDSP
table. The starting address of the UDSP table is placed into word 19 or the user ID table entry.
The size of the table is determined by word 20 in the user configuration file. The format of the
UDSP table is shown in Figure 11-24.

Word 1 Length of SAM block

Word 2 UDSP depth No. of UDSPs

Words 3 - 4 Home directory entry

Words 5 - 6 UDSP #1, entry #1

Words 7 - 8 UDSP #1, entry #2

Words m,m+1 UDSP #n, entry #1

Words m+2,m+3 UDSP #n, entry #2
1 - 1
4 : 4

Figure 11-24. UDSP Table Format

Word 1: Amount of SAM allocated for the UDSP table

Word 2: UDSP depth (bits 8-15) is the maximum number of entries the user can define
in a User-Definable Directory Search Path

System Tables 11-35

Number of UDSPs (bits 0-7) is the maximum number of User-Definable
Directory Search Paths that the user can define

Words 3-4: Two word pointer to the home directory (UDSP #0)

The remaining entries in the table (word 5 through the end of the table) are two-word directory
pointers to a specific UDSP entry. For example, words 5 and 6 are a two word pointer to entry
one of UDSP #1.

Space for the Session LU access table is allocated in XSAM above the UDSP table when a user
logs on. The pointer to the UDSP table in word 19 of the user ID table entry is used to located the
LU access table (address of the UDSP table minus sixteen). LOGON creates the session LU
access table by performing an inclusive OR of the user and group access tables with which the user
associated at logon. It is comprised of 16 words where bit 0 of word 1 corresponds to LU 0, bit 0
of word 2 corresponds to LU 16, bit 0 or word 3 corresponds to LU 32, and so on.

The total length of the XSAM block is 16 words for the LU access table plus the value in word 1.
The length stored in word 1 is determined by the following calculation.

length = (number of UDSPs * depth * 2) + 4 words

Note that the length that is stored may be one word larger than is indicated by the above
calculation because of the way XSAM is allocated.

If the account does not have a UDSP defined, the UDSP table consists of the first four words. If
LOGON cannot find enough XSAM to build the complete table and LU access table, it tries to
build the minimum sized table (4 words) and access table (16 words) and outputs a warning
message. If this occurs, only the home directory can be used.

If there is not enough XSAM for a 4-word table and 16-word access table, the user is informed and
the session is aborted (that is, logon is denied). The singled exception is user
MANAGER>SYSTEM. If there is not enough XSAM for the minimum table and access table
when MANAGER.SYSTEM logs on, LOGON does not try to build the table and access table.
The address word (word 19) in the user ID table entry is set to zero. This is interpreted as the
user having no working directory and access to all LUs.

Use of ID Table

The user ID table is used by the operating system and the file system. Other system programs and
user written utilities may also access the appropriate data required in this table; for example, the
WHZAT program. The operating system uses the following information:

Superuser (bit 15, word 9)

The number of user programs (word 13)

The status bits (bits 0-3, word 9)

CPU usage (words 17-18)

Address of UDSP table (word 19) is used to locate the LU access table
User capability level (bits 0-4, word 21)

The file system uses the following information:

User identification number (word 14)
Default directory (words 10, 11)

11-36 System Tables

Superuser (bit 15, word 9)

UDSP table address (word 19), UDSP table, and LU access table
Group identification number (bits 5-15, word 21)

User capability level (bits 0-4, word 21)

User ID Table Modification

The user ID table entries are modified only when certain data is being changed. As the number of
user programs changes, the operating system changes the user program counter (word 13). The
file system, the program D.RTR, and the operator working directory (WD) command can change
the default directory field (words 10 and 11). When a program terminates, the system adds the
amount of CPU time used by the program to the user’s accumulating CPU usage (words 17-18).

Use of LU Access Table

The LU access table is used by the file system and the operating system. The SESLU utility is
used to modify entries in the access table. D.RTR uses the access table to determine whether or
not a user has access to an LU. For all I/O requests, the modules IORQ and LOCK in the
operating system check the access table to determine whether the user has access to the requested

Use of UDSP Table

The User-definable Directory Search Path (UDSP) table is used by the file system, primarily by
PATH and D.RTR. The PATH command modifies entries in the table and D.RTR uses the table
to search for a file using a defined UDSP.

User Configuration File

The user configuration file is a type 1, fixed record length (128 word), extendible file that contains
information about a user that is defined in the system and can log on. The name of the file
corresponds to the user’s logon name. The file resides on the USERS directory, which should be
write protected for security reasons.

The information in the configuration file is filled in during the creation of a new user account by
the System Manager, a superuser (Security/1000 is turned off), or a user with the required
capability (Security/1000 is turned on). The user identification number is assigned by the system
when the account is created.

Information in the configuration file may be modified by the owner of the account, the System
Manager, a superuser (Security/1000 is turned off), or a user with the required capability
(Security/1000 is turned on). If Security/1000 is not being used, the owner is allowed to modify all
user configuration file information except (if not a superuser) the superuser bit and the accounting
limits. If Security/1000 is turned on, the owners’ capability levels determine what information can
be modified.

System Tables 11-37

15|14 |13 |12 |11 |10 |9 |8 | 7| 6| 5] 4| 3| 2| 1]

Block 1 Word Content
1-15 User’s Real Name (30 characters max)
16 S| Reserved for future use
17-18 Encoded Password (14 chars max) or a constant
19 User Identification Number
20 UDSP depth | Number of UDSPs
21-60 Program to run at logon (80 chars max)
61-92 Working Directory name (64 chars max) or —1
93-94 Last logoff time, in seconds since Jan 1, 1970
95-96 Cumulative connect time in seconds
97-98 Cumulative CPU usage in tens of milliseconds
99 Reserved for future use User capability level
100-115 LU access table
116 Block number of the first block in the user’s group list
117 Number of entries (records) in the group list
118 Index from the base of the group list to the record of the default
logon group
119-120 Last Logon Time, in seconds since Jan 1, 1970
121 Group ID number last logged on with
122 LU last logged onto
123 | EVB size in pages
124 to
126 Reserved for future use
127 Conversion word; (—1 if file in new format)
128 Check sum of all previous words
Blocks 2-N 1-8 Group Name (16 characters max)
-Or.
Word one equals 0; signals empty block
9-10 Cumulative CPU usage in tens of milliseconds for the user in this
group
11-12 Cumulative connect time in seconds for the user in this group
13-14 CPU usage limit for the user in this group
15-16 Connect time limit for the user in this group
17-56 Program to run at logon (80 characters max)
57-96 Program/command file to run at logoff (80 characters max)
97-128 Working directory name (64 chars max) or —1
Figure 11-25. User Configuration File
11-38 System Tables

Block 1 (Unique User Information)

Words 1-15:
Word 16:

Words 17-18:
Word 19:
Word 20:

Words 21-60:

Words 61-92:

Words 93-94:

Words 95-96:

Words 97-98:

Words 99:

Words 100-115:

Word 116:

Word 117:

Word 118:

Words 119-120:

Word 121:
Word 122:
Word 123:

Words 124-126:

Word 127:

Word 128:

User’s real name (30 characters maximum)

S = superuser bit (bit 15); set if the entry is for a superuser.
Reserved for future use (bits 0-14)

User’s password (16 characters maximum) encoded in 32 bits
The user identification number assigned by the system

UDSP depth (bits 8—15) is the maximum number of entries the user can define
in a User-Definable Directory Search Path.

Number of UDSPs (bits 0—7) is the maximum number of User-Definable
Directory Search Paths the user can define.

Runstring of the program to be executed when the user logs on associated with
the group NOGROUP (80 characters maximum)

Directory to be the user’s working directory at logon (64 characters maximum)
or —1 if no working directory at logon when the user associates himself with the
group NOGROUP

User’s last logoff time in seconds since January 1, 1970 (part of multiuser
accounting information)

Cumulative logon time in seconds for the user in all groups (part of multiuser
accounting information)

Cumulative CPU usage in tens of milliseconds for the user in all groups (part of
multiuser accounting information)

User capability level for the user in all groups he/she is a member of (bits 0-4)
Reserved for future use (bits 5-15)

LU access table; used to limit user’s access to LUs

Block number of the first block in the user’s group list (this allows for more
user description blocks if they are ever needed)

Number of entries (records) in the user’s group list. This includes used as well
as empty records

Index from the base of the group list to the record of the default logon group
User’s last logon time in seconds since January 1, 1970

Group Identification Number that the user was associated with at the last logon
LU that the user was last logged onto

The size of the user’s Environment Variable Block (EVB) in pages (bits 0 — 5)
Reserved for future use

Code word; —1 signals that the User Configuration file has been converted to
the new form

Checksum: sum of words 1 thru 127; used to ensure that this file is a user
configuration file and has been tampered with

System Tables 11-39

Block 2—N (User. Group Information)

Words 1-8: Group name (16 characters maximum) to which user belongs
- OI‘ -
Word 1 = 0; signals that this is an empty entry

Words 9-10: Cumulative CPU usage in tens of milliseconds for the user in this group (part
of multiuser/group accounting information)

Words 11-12: Cumulative connect time in seconds for the user in this group (part of
multiuser/group accounting information)

Words 13-14: CPU usage limit in tens of milliseconds for the user in this group (part of
multiuser/group accounting information)

Words 15-16: Connect time limit in seconds for the user in this group (part of
multiuser/group accounting information)

Words 17-56: Runstring of program to be executed when the user logs on associated with this
group (80 characters maximum)

Words 57-96: Program or command file to be run when the user logs off from a session
associated with this group (80 characters maximum)

Words 97-128: Directory to be the user’s working directory at logon when he associates himself
with this group (64 characters maximum)

Group Configuration File

The group configuration file is a type 1, fixed record length (128 words), extendible file that
contains information about a group that is defined in the system. Block one contains the definition
of the group’s resources. Blocks 2 through N contain records that form a list of the group’s
members. Each user record contains the user logon name of the member and an index into the
group records in the user’s configuration file, which enables the system to locate the appropriate
group record quickly. If word one of the eight-word user record is 0, the record is empty. The
group configuration file resides on the USERS directory and its name corresponds to the group’s
logon name with the type extension .GRP to distinguish it from the user configuration files on
USERS.

The information in the group configuration file is filled in by the System Manager, a superuser
(Security/1000 is turned off) or a user with high enough capability (Security/1000 is turned on)
during the creation of anew group account with the GRoup and User Management Program
(GRUMP). When the new group is created the system assigns the group identification number
using the GROUPACCOUNT file. Information in the file may be modified through GRUMP by
the System manager, a superuser (Security/1000 is turned off), or a user with high enough
capability (Security/1000 is turned on).

11-40 System Tables

Block 1 Word Content
1 Group Identification Number
2-3 Cumulative CPU Usage in Tens of Milliseconds
4-5 Cumulative Connect Time in Seconds
6-7 CPU Usage Limit in Tens of Milliseconds
8-9 Connect Time Limit in Seconds
10-25 LU access table
26 Block number of the first block in the group members list
27 Number of entries in the list of members
28 Reserved for future use
127
128 Checksum of all previous words
Block 2-N | Word Content
1-8 User Logon Name of Member 1 (16 Chars Max)
- Or -
Word one equals 0: signals an empty record
9 Index into Member 1’s User Configuration File group list
10-17 User Logon Name of Member 2 (16 Chars Max)
- Or -
Word one equals 0; signals an empty record
18 Index into Member 2’s User Configuration File group list
127-128 Reserved for future use
Figure 11-26. Group Configuration File Format
Block 1
Words 1: The group identification number assigned by the system. This can be a
maximum of 2047, with Group ID 0 always being that of NOGROUP and ID 2
being that of the group SYSTEM.
Words 2-3: A cumulative total of CPU usage in tens of milliseconds for the whole group.
(part of group accounting information)
Words 4-5: A cumulative total of connect time in seconds for the whole group. (part of
group accounting information)
Words 6-7: CPU usage limit in tens of milliseconds for the whole group. (part of group
accounting information)
Words 8-9: Connect time limit in seconds for the whole group. (part of group accounting

information)

System Tables 11-41

Words 10-25: LU access table; enables group members to access LU’s/devices.

Word 26: Block number of the first block in the group members list.

Word 27: Number of entries in the list of members. (includes used and empty records)
Words 28-127: Reserved for future use

Word 128: Checksum: sum of words 1 through 127; used to ensure that this is a group

configuration file and has not been tampered with

Blocks 2-N

Each block contains a maximum of 14 user records. Words 127 and 128 are not used; thus no user
records span block boundaries.

User records are 9 words consisting of:

Words 1-8: User logon name of member (16 characters maximum)

Word 9: Index into members user configuration file group list (from the base of the list).
Used to find the record in the user configuration file corresponding to this
group quickly

- OI‘ -
Word 1: equals 0; signals that it is an empty record

MASTERGROUP File

The MASTERGROUP file is a protected file on the USERS directory containing system
information and the logon name of all the groups on the system. This is a type 2, fixed record
length (8 words), extendible file. The first record contains the last group identification number
assigned by the system. The second through the last record contain the logon name of each group
defined in the system. A group’s identification number is its corresponding record number in the
MASTERGROUP file, with the maximum group ID number being 2047. The contents of the
record is the group’s logon name (maximum of 16 characters). This file makes determination of
the group logon name from the group ID number easy. The format of the MASTERGROUP file
is shown below.

Record Content
1 Word 1 contains the last assigned group ID
2 Logon name corresponding to group ID 2
n Logon name corresponding to group ID n

Figure 11-27. MASTERGROUP File Format

11-42 System Tables

Note:
1. Group ID number zero is always associated with the group NOGROUP.
2. Group ID number two is always associated with the group SYSTEM.

3. The maximum group ID number is 2047. They can be reused but this should be done with
caution, because there is no utility at the present time to go out and remove the group ID, of
the purged group, from the file system. Thus, a new group could inherit the file access rights
of the group that previously had the group identification number, which were not intended for
the new group.

At the present time, bit 15 of word 1 the record in the MASTERGROUP file is set when the
group with that identification number is purged and that flags the group ID as reusable. Note
that this may change in the future.

MASTERACCOUNT File

The MASTERACCOUNT file is a protected system file on the USERS directory. This file is
created by GRUMP during the initialization phase. It contains the logon names and
corresponding user IDs for all users on the system. It is a type 2, fixed record length, extendible
file. The format of the MASTERACCOUNT file is shown in Figure 11-28.

record 1 Word 1 last assignhed user ID number

record 2 Name=system; user ID #2; reserved for system

record 3 Logon name; user ID #3; System Manager only

record 4 Logon name corresponding to user ID #4

record 5 Logon name corresponding to user ID #5

record n Logon name corresponding to user ID #n

Figure 11-28. MASTERACCOUNT File Format

The first record contains system information. Each of the remaining records contains the logon
name of a system user. The user identification number is the record number in the
MASTERACCOUNT file. Each record contains the user logon name (maximum of 16
characters). For example, the logon name of user ID 26 is in record 26 of the
MASTERACCOUNT file. Each user is assigned a unique ID number when the account is

System Tables 11-43

created. It is therefore easy to determine owner names through the MASTERACCOUNT file.
This file is never searched because users may have been deleted and new users aborted at
creation. If there is a need for determining the name of any user, use the user ID number.
Subroutine IDtoOwner can be used for this purpose.

The second record is reserved for system use and has the name SYSTEM.

The third record is reserved for the System Manager and has the name MANAGER. MANAGER
is the first user created by the GRoup and User Management Program during user account
initialization. The remaining records are used for other system users.

CDS Tables

In RTE-A systems with VC+, a Code Segment Table (CST) and a Segment Replacement Table
(SRT) are contained in page 0 of the user partition. The CST and SRT formats are shown in
Figure 11-29.

block n
Segment Segment # of current code segment in block 2 SRT entry 2
Replacement
Table Segment # of current code segment in block 1 SRT entry 1
Segment # of current code segment in block 0 SRT entry 0
Segment Replace Table pointer
1000B
Up to 128 CST entries
d segment length Word 3
dbf ab| reserve (in 128-word blocks) or
Code Start track of Segment
Segment 9 Word 2
Table Disk LU Start block of Segment Word 1
Start physical page
PA | ML number of segment Word 0

Figure 11-29. Code Segment and Segment Replacement Tables

11-44 System Tables

In the Code Segment Table,

db = Bits 15 and 14 are used by the
ab Symbolic Debug/1000.

PA = Bit 15 is 0 if segment is in memory, 1 if segment is absent.

ML = Bit 14 is 1 if segment is locked (by the LINK ML command)

Language Message Address Table

$LMAT is a table of eight words containing the logical address pointers into the system message
map (map 1) of the eight system message blocks relocated by the generator. $LMAT resides in
module ERLOG. The pointer to the first word of the language message table is SLMA, which
resides in module VCTR.

If less than eight system message blocks are generated into the system, the remainder of the table
defaults to the logical address of system message block 0.

Figure 11-30 shows the format of the Language Message Address table.

Word 0 Addr of system message block 0 (SLN = 0)
Word 1 Addr of system message block 1 (SLN = 1)
/l/ /l/
/4 Ve
Word 7 Addr of system message block 7 (SLN = 7)

Figure 11-30. Language Message Table Format

System Tables 11-45

FMP Tables

This chapter describes the various tables used by the File Management Package (FMP). Included
are the formats for disk volume header, directories, subdirectories, Data Control Block (DCB),
and other table entries. Also included in this chapter are those tables used by the FMGR files.

Disk Volume Header

The disk volume header is found in sector zero of the last track on the LU. It is used to indicate

that this is a disk volume in the RTE-A file system and to store information pertinent to that
physical portion of the disk. The format of the disk volume header is shown in Figure 12-1.

Word: 1 8
Uppercase ASCIl “VOLUME HEADER” (no parity)
Word: 9 10 11 12 13 16
~ bit map blk # Res | Flag [Unused
Word: 17 24
Unused
Word: 25 32
Unused
Word: 33 35 36 40
Unused ~root dir
Word: 41 4
Unused
Word: 49 56
Unused
Word: 57 64
Unused

Figure 12-1. Disk Volume Header Format

FMP Tables

1241

The disk volume header has 64 words. The bit map field of the header (words 9 and 10) contains

the block address of the bit map, bits 0 through 23 with remaining bits set to zero. Word 11 stores
the number of blocks represented by a bit in the bit map. Word 12 is the reserve field that shows

the number of blocks marked as reserved in the bit map. Only one reserved area can be defined,

starting at block zero. These blocks are not referenced by any file.

Bit 0 of word 13 is a flag that defines the meaning of words 7 and 8 of the root directory header.
When bit 0 is set, the root directory contains a pointer back to the volume header. Words 35 and
36 of the volume header contain the block address of the root directory, a directory that contains
only unique global directories. This entry is used to find the root directory for that LU.

Directory Structure

Directories are linked sets of disk blocks that contain directory entries. Each directory entry
consists of 32 words, and contains a flag to tell what type of entry it is. Note that any directory
entry can be unused at any time. Directories are extendable, and extents are linked together as a
doubly linked list. The directory structure shown in Figure 12-2 assumes the first part of the
directory is n blocks big, and the first extent is x blocks big.

Note that directory entries in the root directory (and subdirectory entries anywhere) appear as
files of type extension .DIR.

Directory searches are just linear searches that start at the beginning of the directory and continue
until the file is found, or until an available entry or the last directory trailer is found. The search
can pass over purged file and extent entries, and can cross extents.

There are some cases where the user will want the path name that corresponds to a given directory
address. This can be done by doing a backward search of the directory to get the directory name,
and following the subdirectory chain if necessary.

The directory structure is shown in Figure 12-2. In the illustration, the first word of each entry is
the flag word, and bits 0-3 define a type code for this entry:

empty; no files follow
directory header

directory trailer

file entry

extent entry

purged file entry

purged extent entry

empty, but files may follow
-15: not currently used

PRINPERND

12-2 FMP Tables

Entry

Directory Header

File or extent entry

File or extent entry

A w N

File or extent entry

4n-3

File or extent entry

4n-2

File or extent entry

4n-1

File or extent entry

4n

Directory Trailer

4n+1

Directory Header

4n+2

File or extent entry

4n+3

File or extent entry

4n+4

File or extent entry

4(n+x)-3

File or extent entry

4(n+x)-2

File or extent entry

4(n+x)-1

File or extent entry

4(n+x)

Directory Trailer

«— Block
Boundary

«— Block
Boundary

EXTENT

Figure 12-2. Directory Structure

FMP Tables

12-3

Root Directory Header/Trailer

The root directory contains the global directories found on an LU. The root directory header is
the same as any other directory header except that fields, such as owner, that have no meaning are
left zero.

There is no limit on the number of global directories other than the limits of D.RTR (see
Chapter 10, “Directory Organization”); the global directory table on disk is expanded as necessary
to accommodate the additional entries in the same way that any other directory is expanded.

The format of the root directory header/trailer is shown in Figure 12-3. The flag word indicates if
the entry is a header (flag = 1) or a trailer (flag = 2). In addition, the flag word contains
protection bits (see explanation under Directory Header/Trailer). The size word contains the
number of blocks in this root directory table. The tag field (words 3 and 4) contains a unique bit
pattern to help recreate the disk.

Words 5 and 6 is a field that contains a null (—1) for the first header and the last trailer, otherwise
it is the block address of the previous header or next trailer. The block address is contained in bits
0 through 23 of this field.

When bit 0 of word 13 of the volume header is set, words 7 and 8 contain the negative block
address of the volume header. If bit 0 is not set, words 7 and 8 are not used.

Word: 1 2 3 4 5 6 7 8
flag size tag ~ other — ~volhead

Word: 9 16
Unused

Word: 17 18 24
owner| group Unused

Word: 25 32
Unused

Figure 12-3. Root Directory Header/Trailer

12-4 FMP Tables

Root Directory Entry

Root directory entries associate directory names with the disk address of the directory. All entries
in the root directory are global directories for that LU. These entries are similar to subdirectory
and file entries. Figure 12-4 shows the root directory entry format

The flag word is set to 3 for used entries. The directory field has a block address in bits 0 through

23, with remaining bits zero.

Word: 1 2 3 4 5 6 7 8
flag 2 ~ directory | size 32 -1 -1

Word: 9 16

16-character name

Word: 17 18 19 20 21 22 23 24
DIR create time access time update time

Word: 25 32

Unused

Figure 12-4. Root Directory Entry Format

FMP Tables

12-5

Directory Header/Trailer

The format of the directory header/trailer is shown in Figure 12-5. The ~ parent and owner fields
are used only in the first header. Other fields are contained in all headers and trailers.

The flag field (word 1) contains the in-use code previously defined (in bits 0 through 3, 1 for
header or 2 for trailer). In addition, this word has protection bits in the first header: owner read,
bit 7; owner write, bit 6; group read, bit 11; group write, bit 10; others read, bit 5; and others write,
bit 4. Bit 8 is set if the directory needs to be backed up.

Word 2 is the size word that shows the number of blocks in this directory.

The tag field contains a double integer with a distinctive bit pattern to allow some
reconstruction/verification of trashed disks.

The ~ other field contains the double integer block pointer to the previous or next part of this
directory, or null (—1) if none. The block number is in bits 0 through 23 with remaining bits set to
Z€eT0.

The ~ parent field contains the double integer block pointer to the directory of this subdirectory;
null (—1) if no this is not a subdirectory. The block number is in bits 0 through 23 with remaining
bits set to zero.

The owner field contains a 16-bit identification number. This number identifies the owner of this
directory. The group field contains a 16-bit identification number that identifies the owner’s

group.

Word: 1 2 3 4 5 6 7 8

flag size tag ~ other ~ parent
Word: 9 16
16-character name

Word: 17 18 19 24
Owner | Group | Not currently used
Word: 25 32

Not currently used

Figure 12-5. Directory Header/Trailer Format

12-6 FMP Tables

File Entry

The file entry in the directory is shown in Figure 12-6. The various fields are explained below.

The flag field contains the following information:

Bits 0-3 = 3 if file exists
Sifitis purged
Bit 4 = Set if non-owners have write access
Bit 5 = Set if non-owners have read access
Bit 6 = Set if owner has write access
Bit 7 = Set if owner has read access
Bit 8 = Set if the file needs to be backed up
Bit 9 = Set if the file is temporary
Bit 10 = Set if group members have write access
Bit 11 = Set if group members have read access

The type field shows the FMP file type, value is a positive number.

The ~ file field shows the block address of file data in bits 0 through 23, with the remaining bits set
to zero.

The size field shows the size of the data pointed to by " file. If positive, it is the number of blocks;
if negative, it is the number of 128-block chunks. Note that this is not exactly the same as in the
FMGR directory.

The reclen field shows the record length in words. For type 2 files this is the fixed record length;
for type 3 and above files (except for type 12), this is the longest record length. The reclen field is
undefined for type 12 files.

The ~ extent field contains the double integer directory entry pointer to the first extent block for
this file. This field contains the block address in bits 2 through 25; the entry in the block is in bits 0
and 1; the remaining bits are set to zero.

The type ext field contains the 4-character file type extension.

The file time stamp fields, create time, access time, and update time, show time in seconds since
January 1, 1970. Time in each field is indicated by a double integer.

The nblocks field contains a double integer number that shows the blocks of disk space used by the
file, including all extents.

The ~ eof field contains a double integer word pointer to the eof mark in the file. For types 1, 2,
and 6 files, the eof mark is the word after the highest numbered extent. For type 12 files, the ™ eof
field contains a double integer byte pointer to the eof that is rotated right one place.

The nrecords field shows the number of records in the file. The nrecords field is undefined for
type 12 files.

FMP Tables 12-7

The openflag field is the multi-computer open flag. This word is currently not used

Word: 1 2 3 4 5 6 7 8
flag type ~file size reclen ~ extent

Word: 9 16

16-character name

Word: 17 18 19 20 21 22 23 24
type ext. create time access time update time

Word: 25 26 27 28 29 30 31 32
nblocks ~ eof nrecords openflag

Figure 12-6. File Entry

Subdirectory Entry

The subdirectory entry is shown in Figure 12-7. The flag field contains a use code in bits 0 through
3, set to 3 if used. The protection bits are not used and therefore are set to zero.

The ~ directory field contains the block address of the subdirectory. Bits 0 through 23 are used
for the address, other bits are set to zero.

The size field indicates the size of the subdirectory in blocks.

Word: 1 2 3 4 5 6 7 8
flag 2 ~directory| size | 32 -1 -1

Word: 9 16
16-character name

Word: 17 18 19 24
DIR timestamps

Word: 25 32
Unused

Figure 12-7. Subdirectory Entry

12-8 FMP Tables

Extent Entry

The extent entry format is shown in Figure 12-8. The flag field contains a use code in bits 0
through 3. A value of 4 indicates an extent block, value of 6 for purged extent block. There are no

protection bits.

The ~ extl through ~ ext9 fields contain double integer block pointers to nine extents for this file;
extents 1-9 in first extent entry, 10-18 in second, etc. The block address is in bits 0 through 23 with
remaining bits set to zero.

The sizel-size9 fields show the size of each extent. If the file is a type 3, then the format is the

same as the main file entry. If this is a type 1 or 2 file, then this is the extent number, which can be

up to 32767.

The ~ previous field contains a double integer directory entry pointer to the previous extent entry,

or to the main file directory entry if this is the first extent entry. The block address is in bits 2

through 25; the block offset is in bits 0 and 1.

The ~ next field contains a double integer directory entry pointer to the next extent entry. If this
is the last extent entry, it is a null (—1). The block address is in bits 2 through 25, block offset in

bits 0 and 1.
Word: 1 2 3 4 5 6 7
flag ~ ext1 sizet ~ext2 size2
Word: 8 9 10 11 12 13 14 15 16
~ ext3 size3 ~ ext4 size4 ~ extb sizeb5
Word: 17 18 19 20 21 22 23 24
~ ext6 Size6 ~ ext7 size7 ~ ext8
Word: 25 26 27 28 29 30 31 32
size8 ~ext9 size9 ~ previous ~ next

Figure 12-8. Extent Entry

FMP Tables

12-9

Disk File DCB

The disk file Data Control Block (DCB) format is shown in Figure 12-9. Explanation of the DCB
words is given below with the bit numbers shown in angle brackets. (The disk file Data Control
Block format for a type 12 file is shown in Figure 12-10.)

Word 0: <13-15>: 16-word entry offset
<7-12> : Directory sector
<6> : File opened by DS transparency software
<0-5> : LU

Word 5: Size in sectors (+) or —(128-block) chunks

Word 7: <15> : Write allowed <14>: Buffer partially full
<7-13> : DCB buffer size in blocks

<6> : File modified <5>: Extents not allowed
<4> : Read allowed <3>: Update mode

<2> : Data in buffer <1>: EOF read

<0> . Data to be written

Word 12: Index of current word in zero-based DCB array.

Word Directory offset/sector/lu

1 Directory track

2 File type

3 Extent base track

4 Extent base sector

5 File size

6 Type 2 record length

7 DCB size and flags

8 Sectors per track

9 Program ID segment address
10 Current position track
11 Current position sector
12 Index of current word
13 32-bit record number
14
15 Extent number

Figure 12-9. Disk File DCB

12-10 FMP Tables

DCB Definitions for Type 12 Disk Files

The Data Control Block (DCB) definitions for a type 12 disk files are given below with the bit
numbers shown in angle brackets. The disk file Data Control Block format for a type 12 file is
shown in Figure 12-10.

Word 4: <8-15>: Extension of word 6; that is, the block number in the file of where the EOF
is located
Extent base sector

<0-7> :
Word 6:

Word 12:

When the EOF flag bit is clear in word 15, word 6 is a pointer to the

block containing the EOF. This is a 24-bit quantity; the lower 16 bits are
located here in word 6, the remaining 8 bits are located in the high byte of
word 4.

When the EOF flag bit is set in word 15, word 6 is a pointer to the location
of the EOF within the DCB buffer. This is a byte offset (rotated right one

bit).

Index of the current byte rotated right one bit

Word 15: <15> : EOF flag bit
<0-14>: Extent number
Word Directory offset/sector/lu
1 Directory track
2 File type
3 Extent base track
4 EOF offset / Extent base sector
5 File size
6 EOF offset
7 DCB size and flags
8 Sectors per track
9 Program ID segment address
10 Current position track
11 Current position sector
12 Index of current byte, rotated right one bit
13 32-bit record number
14
15 EOF flag / Extent number

Figure 12-10. Disk File DCB for Type 12 Files

FMP Tables

12-11

Device File DCB

The device file DCB is shown in Figure 12-11. The word format is:

Word 5: <15>: Backspace legal
: <0>: Forward space legal

Word 7: <15>: Write allowed
: <4>: Read allowed
:<1>: EOF read

Word 0 0
1 0
2 File type (0)
3 XLUEX LU word
4 XLUEX function word
5 Spacing flags
6 EOF function code
7 Read/write flags
8 0
9 Program ID segment address
10 0
11 0
12 0
13 32-bit record number
14
15 0

Figure 12-11. Device File DCB

12-12 FMP Tables

FMGR Directories

This section describes the format of directories on FMGR disk cartridges.

FMGR Cartridge File Directory

The file directory for a disk cartridge starts on the last track of the cartridge (at sector 0) and
extends towards lower numbered tracks. Each block of the directory (128 words) contains eight
entries, and each entry contains 16 words of information. The directory blocks are staggered to
accommodate FMGR directories. The sector address for a given directory block is given by the
formula:

sector = (block * 14) MOD (sectors/track)

The first entry of the file directory is the cartridge header. It contains information about the
structure of the cartridge, such as size label and next available space. Successive entries contain
information about contiguous segments of data tracks on the cartridge. These entries can describe
disk files, file extents, purged files, non-disk files and the end-of-directory.

FMGR Cartridge Header

This entry contains information concerning the cartridge structure. It is characterized by the sign
bit of word 0 set to 1. The format of this entry is shown in Figure 12-12.

of 1 name: cartridge label (6 chars)
1 name crn: Cartridge Reference Number
2 frstr: First available FMP track
3 crn R: Reserved
4 P nexsc: Next available sector
sc/tr: Sectors per track
5 R nexsc lastr: Last available FMP track
6 R sc/tr (+1)
7 lastr n#trk: negative number of directory tracks
8 n#trk nextr: Next available track
9 badtr: Bad track list (6 words)
nextr
10 badtr
11
12
13
14
15

Figure 12-12. FMGR Cartridge Header

FMP Tables 12-13

FMGR Disk File Entry

This entry type contains information concerning a disk file main extent. It is characterized by the
sign bit of word 0 set to 0, word 3 set to non-zero, and the high byte of word 5 set to 0. The entry
format is shown in Figure 12-13.

of o name: file name (6 chars)

1 name type: File type (int)

2 track: Starting track

3 type ext: Extent number (main = 0)
4 track sectr: Starting sector

5 oxt [sectr size: Extent size (+s§ctors or —sectors *256)
6 size recin: Recor_d length (in words)
- recin seccd: Security code

8 seccd flags: open flags (7 words)

9 flags
10
11
12
13
14
15

Figure 12-13. Disk File Entry

12-14 FMP Tables

FMGR File Extent Entry

This entry type contains information concerning an extent of a disk file. It is characterized by the
sign bit of word 0 set to 0, word 3 set to non-zero, and the high byte of word 5 set to non-zero. The
entry format is shown in Figure 12-14.

0] o
1 name
2
3 X name: file name (6 chars)
4 track X: Not used
S ext sectr track: Starting track
6 size ext: Extent number
7 X sectr: Starting sector
8 size: Extent size (in sectors)
9 X: Not used
10
11
12
13
14
15

Figure 12-14. FMGR File Extent Entry

FMP Tables 12-15

Non-Disk File Entry

This entry type contains information concerning a non-disk file (LU). It is characterized by the
sign bit of word 0 set to 0, and word 3 set to 0. The format is shown in Figure 12-15.

0] o
1 name
2
3 0 name: file name (6 chars)
4| acscd LU
5| eofcd LU
6 spcod
7 rwcod acscd: Device access subfunction
8 seccd LU: Device logical unit number
9 flag eofcd: EOF subfunction
10 spcod: Spacing subfunction
rwcod: Read/write subfunction
B seccd: Security code
12 (int or 2 chars)
13 flags: Open flags (7 words)
14
15

Figure 12-15. Non-Disk File Entry

FMGR Purged File Entry

This entry type indicates that a file has been purged, but its space has not been reclaimed yet. It is
characterized by word 0 set to —1.

FMGR End-of-Directory Entry

This entry indicates the logical end of the file directory. It is characterized by word 0 set to 0.

12-16 FMP Tables

Snapshot File Format

The snapshot file is a type 3 variable length file consisting of four major sections:

1.
2.
3.
4.

A header record with information about system configuration.
A list of the names, values, and types of the system entries.
A list of system library files named at generation.

A memory image of the labeled common base page link area.

The format of the snapshot file is as follows:

Header Record

RPLs and absolute

entries

System Memory
and
System Partition

entries

Labeled System

Common entries

non-CDS System Libraries
CDS System Libraries

Labeled Common

Base Page Link

Snapshot File Format

A-1

Header Record

The Header Record section of the snapshot file contains information about the configuration of
the system. The format of the Header Record is as follows:

Word Contents

1 # Total Entries
2 # System Entries
3 # non-CDS System Libraries
4 $LCOM
5 $BCOM
6 First Word Available after Common
7 System RPL Checksum
8 # Labeled Common links on base page
9 System ID checksum
10 Labeled System Common Checksum
11 # CDS System Libraries
12 Spare
13 Spare
14 Record # of first non-CDS Library Entry
15 Record # of first CDS Library Entry
16 Spare
17 Record # of first Base Page Entry
18 Spare
19 Spare
20 Checksum of Words 1 through 19

Total Entries (Word 1)

The total number of symbol entries in the snapshot file. This number includes labeled common
entries and system entries.

System Entries (Word 2)

The number of symbols in the snapshot file that are defined by the generator while relocating the
system. The number may include system RPLs, ABS, and system memory symbols. These sym-

bols are the first listed in the system entries section of the snapshot file. This number includes all
entry points not defined in the system common relocation phase.

A-2 Snapshot File Format

non-CDS System Libraries (Word 3)

The number of system libraries that LINK searches when relocating non-CDS programs.

$LCOM (Word 4)

The logical address of the start of labeled common. The address is always 2000B.

$BCOM (Word 5)

The logical address of the start of blank system common.

First Word Available After Common (Word 6)

The logical address of the first word available for relocation when a user program accesses system
common.

System RPL Checksum (Word 7)

A rotating checksum of the RPL and ABS entries defined when relocating the operating system.
The checksum does not include RPLs or absolutes defined when relocating the labeled common
area.

Labeled Common Links On Base Page (Word 8)

The number of words of labeled common links on the base page. These links are provided to the
linkage editor (LINK) for inclusion on the base page of any program referencing labeled system
common.

System ID Checksum (Word 9)

A checksum of system memory and system partition symbols.

Labeled System Common Checksum (Word 10)
A rotating checksum of the symbols in the snapshot file defined when relocating labeled system
common. The checksum includes the logical starting address of blank, labeled, and program

spaces when system common is accessed. The checksum is used to detect any change to the system
common area of the operating system.

of CDS System Libraries (Word 11)

The number of system libraries that LINK searches when relocating CDS programs.

Record # of first non-CDS Library Entry (Word 14)

The record number of the first non-CDS library entry record in the snapshot file.

Snapshot File Format A-3

Record # of first CDS Library Entry (Word 15)

The record number of the first CDS library entry record in the snapshot file.

Record # of first Base Page Entry (Word 17)

The record number of the first record in the snapshot file containing labeled common base page
links.

System Entries

The System Entries section of the snapshot file contains a list of names, values, and types of the
system entries. The format of the System Entries area is as follows:

Word Contents

1 Length of symbol name (in words)
2 1st character 2nd character
3 3rd character 4th character
4 5th character 6th character
N Entry point type

N+1 Entry value

Entry point type can have the following values:
Type Location of Symbol

System memory and system partition
System common

Absolute

Replacement (RPL)

A WO

A-4 Snapshot File Format

System Libraries

The System Libraries section of the snapshot file contains the names of the non-CDS and CDS
system libraries defined when the system was generated. The format of the System Libraries sec-

tion is as follows:

Word Contents

1

1st character

2nd character

2

3rd character

4th character

3

5th character

6th character

32

63rd character

64th character

Labeled Common Base Page Links

The Labeled Common Base Page Links section of the snapshot file contains a memory image of

the labeled common base page area. The format of the Labeled Common Base Links section is as

follows:

Word Contents

Link Address

1

value 1777B
value 17768
value 1775B
value 140B

Snapshot File Format

A-5

Index

Symbols

.ZPRYV, 8-4
.ZRNT, 8-4
$IDRPL, 5-1
$LIBR, 8-2, 8-4
$SYSA, 5-3, 5-13
%ENVRN, 5-13
%RPLI0, 5-5
%RPLI1, 5-5

A

A-Register, 5-3
ABORT, 5-3
ALARM, 5-3
allocating
dynamic memory, 3-5
reserved partitions, 3-5
AUTOR routine, 5-5

B

background
partitions, 3-2
programs, 1-3, 3-1, 3-2
base page, 9-2
linking, 9-5
links, 9-4, 9-5
links, allocation, 9-5
system, 9-1
user, 9-5
blank program common, 8-1
blank system common, 8-1, 8-3
BOOTEX, 4-1, 11-2
functions, 4-2
prompt, 1-11
BREAK Key, 1-9
buffer
limits, 1-14
system buffer, 1-9, 1-13
user buffer, 1-13
buffered 1/O, 1-13
buffered I/O request, 2-8
BUILD, 3-8, 11-2
busy device, 1-14

o

cartridge directory, 11-26
cartridge mount/dismount, 1-17
CDS
program current page links, 9-5
program structure, 3-3

tables, 11-44
CDSFH, 5-4
CHECK, 5-4
chunks, 12-7
circular doubly linked lists, 6-5
circular linked lists, 6-3
CLASS, 5-4
module, 5-4
class
I/0O, 1-7, 2-9
numbers, 1-8
table, 11-21
code, segments, 3-3
Code Segment Table (CST), 11-44
common
partition, 2-13
program relocation using, 8-3
system, 2-6
types, 8-1
CST, 11-44
format, 11-44
current page links, 9-4

D

D.RTR, 10-1, 10-2
data control block (DCB), 12-10
data transfer, 1-12
deadlock prevention algorithm, 3-9
device
driver, 1-12
file DCB, 12-12
independence, 1-12
independent programming, 1-12
linking, 1-12
table, 1-12, 11-12
format, 11-12

differences between FMGR and RTE-A files, 10-7

direct memory access, 1-14
directory

header/trailer, 12-6

organization, 10-2

structure, 12-2

trailer, 12-2
directory/directories, 1-16, 1-17

FMGR, 12-13

FMGR cartridge file, 12-13
disk

file, DCB (data control block), 12-10

logical unit, 1-17, 1-18
management, 10-4
mapping, 1-15

type 12 files, DCB definitions, 12-11

volume, 1-15, 1-16, 1-17, 1-18

Index-1

volume header, 12-1
dispatching, 1-13
dormant program, 1-2
driver partition, 2-14
drivers, priveleged, 11-20
DSQ, 5-4
dummy library, 5-13
$SYSA, 5-13
DVT, 1-8, 1-12, 1-14, 2-9, 11-12
dynamic
mapping system, 2-1
memory descriptors, 11-27, 11-28
memory swapping, 3-6

E

EMA, 3-3

EMA/VMA models, 11-23

ENVRN, 5-5

ERLOG, 5-5

EXEC, 5-5

EXEC calls, 2-9

EXEC module, 5-5

EXEC requests. See EXEC calls
extended system available memory, 1-7
extended system available memory (XSAM), 2-10
extent entry, 12-9

F

file
access, 1-16
directory, 1-15
entry, 12-7
extension, 1-16
FMGR, 10-6
group configuration, 11-40
management, 1-15
MASTERACCOUNT, 11-43
MASTERGROUP, 11-42
namr, 1-18
protection, 1-18
size, 1-15
space, 1-16, 1-17, 1-19
subdirectory entry, 12-8
symbolic link, 10-5
system, 10-1
types, 1-15
file system, organization, 10-1
firmware, Rev. 4, 5-13
FMGR
cartridge file directory, 12-13
cartridge header, 12-13
cartridge label, 1-18
cartridge number, 1-18
cartridges, 10-7
directories, 12-13
disk file entry, 12-14
end-of-directory entry, 12-16
file cartridges, 1-18

Index-2

file extent entry, 12-15
file security, 1-18, 1-19
files, 10-6
non-disk file entry, 12-16
purged file entry, 12-16
FMP routines, 10-2
FMP tables, 12-1

G

general purpose system, 1-3

generating system common, 8-2

generator current page linking, 9-4

global directory, 10-2

group configuration file, 11-40

guidelines for using shared subroutines, 8-5

I/0
buffering, 2-9
buffering requirements, 2-9
completion, 1-14
control blocks, 11-16

driver, 1-10
drivers, 1-12, 7-1
list, 1-1

management, 1-7, 1-11
request, 1-11, 1-13
suspend, 1-14
without wait, 1-13
1D
segment, 1-8, 11-2
extensions, 11-10
format, 11-2
table, use of, 11-36
1D.43, 5-5
drivers, 5-5
IFT, 1-8, 11-14
IFT (interface table), 9-2
INSTL, 4-1
interface
driver, 1-12
table, 1-8, 11-14
interrupt table, 1-8, 1-12, 11-20
trap cells, 11-20
interrupts
I/Oa 9'2
trap cells, 9-2
IOMOD, 5-6
IORQ, 5-6

L

labeled program common, 8-1

labeled system common, 8-1

language message address table, 11-45
large programs, 1-4

level 3, 8-5

library $SYSA (dummy), 5-3

LIMEM, 2-5
linear doubly linked lists, 6-5
linear linked lists, 6-3
link words, 9-3
linked lists, 1-9
links
allocation, 9-5
base page, 9-4, 9-5
current page, 9-4
memory (SAM), 2-8
required by modules and drivers, 9-5
symbolic, 10-5
lists, 6-2
circular doubly linked, 6-5
circular linked, 6-3
linear doubly linked, 6-5
linear linked, 6-3
memory suspend, 2-11
with offset pointers, 6-4
LOAD, 5-6
LOAD module, 2-9
loader ROM, 9-2
LOCK, 5-7
logical unit, 1-8
logical unit table (LUT), 11-11
LU access table, 11-35
LU table, 1-8, 1-12

mailbox I/O, 1-9
main program, 2-5
map, memory (system common partition), 2-13
map set table, 11-19

format of, 11-19
MAPOS, 5-7
MAPS, 5-7
master account file, 11-32
MASTERACCOUNT file, 11-43
MASTERGROUP file, 11-42
memory

descriptor variables, 11-27

descriptors, 11-27

management, 1-1, 1-6, 2-1, 2-15

mapping, 2-13

partitions, 1-3, 1-6

differences, 1-3

system common partition map, 2-13
MEMRY, 5-7
minimum system requirements, 5-1
models, EMA/VMA, 11-23
module

$SYSA, 5-1, 5-13

CDSFH, 5-4

CLA ... (dummy), 5-4

CLASS, 2-9

ERL, 5-5

ERLOG ... (dummy), 5-5

flags, 5-3

ID.43, 5-5

LOA ... (dummy), 5-6
LOAD, 5-6
LOC ... (dummy), 5-7
LOCK, 5-7
MEM, 5-7
MEMRY, 5-7
OPM ... (dummy), 5-8
OPMSG, 5-8
PERR, 5-8
POW ... (dummy), 5-5
SAM, 5-9
SCH ... (dummy), 5-9
SCHED, 5-9
SPOOL, 5-9
STA ... (dummy), 5-10
STAT, 5-10
STR ... (dummy), 5-10
STRNG, 5-10
SYC ... (dummy), 5-10
SYCOM, 5-10
TIM ... (dummy), 5-11
TIME, 5-11
XCM ... (dummy), 5-12
XCMND, 5-11
MP (memory protect), 9-2
MSGTB, 5-8
MSGTB module, 5-8
multiple devices, 1-12
multiuser table, 11-32

N

NAM record, 9-5

named common, 1-6

namr, 1-18

networking, 5-13
non-partitioned drivers, 2-14

o)

operating system modules, 5-1
OPMSG, 5-8

optional system modules, 5-13
OS partition, 2-15

OS/Driver partition, 5-14, 5-15
overlay area, 2-5

P

page
0,3-3
table, 9-3
partition
assignment for background programs, 3-2
assignment for real-time programs, 3-1
memory descriptors, 11-27, 11-32
release of, 3-7
states, 3-1
partitionable modules, 5-13, 5-14
partitioning, 5-13

Index-3

PE (parity error), 9-2
PERR, 5-8
power fail, 9-2
power fail driver (ID.43), 5-5
power fail storage area, 2-7
preventing program partition deadlock, 3-9
priority
boundary, 3-1
real-time programs, 3-7
program, 1-2
background, 3-1
BUILD, 3-8
common, 1-6
communication, 1-9
development, 1-5
dispatching, 1-9
interrupt, 1-12
load and swap, 3-8
management, 1-1, 1-2
overlay, 1-4, 3-3
partition assignment for background, 3-2
partition assignment for real-time, 3-1
partition deadlock, 3-8
partitions, 1-6
priorities, 1-3
real-time, 3-1
real-time priority, 3-5
suspension, 1-3
swapping, 1-3, 1-5
table, 1-6, 1-8
transportability, 11-9
programs and partitions, 3-1
PROGS, 5-8
prototype ID segments, 2-12
PTE, 9-3
PTE page, 9-3

R

random file access, 1-16
real-time
executive, 1-1
programs, 1-3
systems, 1-1
record lengths, 10-5
relocation using system common, 8-3
remote access, 10-8

reserved partition memory descriptors, 11-27,

11-30
resource number table, 1-9, 11-11
resource numbers, 1-9
rev. 4 firmware, 5-13
RNRQ, 11-11
ROM loader, 9-2
root directory
entry, 12-4, 12-5
header, 12-4
trailer, 12-4
RPL modules, 5-12
RTIOA, 5-8

Index-4

RTIOA module, 5-8
run mode, 1-10

S
SAM, 5-9

See also System Available Memory (SAM)

class I/O requirements, 2-9
management, 2-8
string passage requirements, 2-10
SCHED, 5-9
schedule list, 1-2
SECOS, 5-9
selftest, 9-2
serial file access, 1-16
sharecable EMA table, 11-23
shared
files, 1-17
program table, 11-31
programs, 3-4
subroutines
hierarchy, 8-5
level 1, 8-5
level 2, 8-4
level 3, 8-4
SHEMA, association blocks, 11-25
SHEMA (shareable EMA), 11-23
signal control block (SCB), 2-11
signals, 2-11
SIGNL, 5-9
snapshot file
format, A-1
header record, A-2
labeled common base page links, A-5
system entries, A-4
system libraries, A-5
SPOOL, 5-9
spool nodes, 2-10
SRT (segment replacement table), 11-44
start-up program functions, 4-2
STAT, 5-10
string passage, 1-7
STRNG, 5-10
subdirectories, 1-16
swap descriptor table, 11-22
swapping, 1-3, 1-5
SYCOM, 5-10
symbolic links, 10-5
synchronizing programs, 8-2
system
base page format, 9-1
boot-up, 1-10, 4-1
clock, 1-2
common, 1-6
common changes, 1-7
common/shared subroutines, 8-1
initialization flag, 9-2
message block, 2-12
minimum requirements, 5-1
modules, 2-14, 2-15

overview, 1-1 temporary storage of VCP/loader programs, 9-2

partition, 2-14 text editor, 1-5
symbols and list structures, 6-1 TIME, 5-11
table $LMAT, 11-45 timeslicing, 3-2
tables, 1-8, 2-7, 2-13, 11-1 trap cells, 1-12, 11-20
System Available Memory (SAM), 1-7, 2-7 type 12 files, DCB definitions, 12-11
overhead, 2-8 typical SAM requirement, 2-10
purposes, 2-7, 2-10
size, 2-7 U
system commands
AS, 5-12 UDSP table, 11-35, 11-37
BR, 5-12 UDSP/LU bit maps, 2-11
CD, 5-12 UIT (unimplemented instruction), 9-2
DN, 5-12 unimplemented instruction, 9-2
DT, 5-12 use
GO, 5-12 of LU Access Table, 11-37
PR, 5-12 of UDSP table, 11-37
SS, 5-12 user
SZ,5-12 configuration file, 11-37
UL, 5-12 ID table, 11-32, 11-36
VS, 5-12 ID table modification, 11-37
WS, 5-12 interaction, 1-9
partitions, 2-3
T managing, 3-5
) User-definable Directory Search Path (UDSP),
T-bit, 11-2 2-11
table User-definable Directory Search Path (USDP)
class, 11-21 table, 11-37
code segment, 11-44 UTIL, 5-11

device (DVT), 11-12
FMP tables, 12-1
1/O control block, 11-17 \
interface, 11-14

interrupt, 11-20

language message address, 11-45

VCP. See virtual control panel
VCP (virtual control panel), 9-2

jang [VCP mode, 1-9

ogical unit, 11-11 VCTR, 5-11

LU access, 11-35 VEMA, 5-11

map set, 11-19 virtual control panel, 1-9, 9-2
memory descriptor, 11-29, 11-30 VMA, 3-3

multiuser, 11-32

resource number, 11-11
segment replacement, 11-44
shareable EMA, 11-23

VMA/EMA mapping area, 2-5
volume header, 12-1

shared program, 11-31 w

swap descriptor, 11-22 oo

UDSP, 11-35 wait list, 1-3

use of ID table, 11-36

user ID, 11-32 X
tags, 5-15
task priority, 1-1 XCMND, 5-11
TBG (time base generator), 9-2 XSAM, 1-7, 2-10

Index-5

	Title Page
	Preface
	Table of Contents
	Chapter 1 - System Overview
	Chapter 2 - Memory Management
	Chapter 3 - Programs and Partitions
	Chapter 4 - System Boot-up
	Chapter 5 - Operating System Modules
	Chapter 6 - System Symbols and List Structures
	Chapter 7 - I/O Drivers
	Chapter 8 - System Common/Shared Subroutines
	Chapter 9 - System Base Page and Link Words
	Chapter 10 - File System
	Chapter 11 - System Tables
	Chapter 12 - FMP Tables
	Appendix A - Snapshot File Format
	Index

