A paciars

RTE-A

Driver Designer’s Manual

Software Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 92077-90019 Printed in U.S.A. January 1989
u0790 Update 1 July 1990

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1983 — 1987, 1989, 1990 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-in-
serted update information. New editions of this manual will contain new information, as well as all updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File or the Computer User’s Documentation Index. (The Manual Numbering File
is included with your software. It consists of an “M” followed by a five digit product number.)

First Edition Feb, 1982
Second Edition Jun, 1988
Update 1 Jan, 1985 Clarification of Short DMA Transfers
Reprint Jan, 1985 Update 1 Incorporated
Update 2 Jan, 1986 Manual Enhancement
Reprint Jan, 1986 Update 2 Incorporated
Update 3 Aug, 1987 ..
Third Edition Jan, 1989 Software Revision 5.1 (5010)
Update 1 July, 1990 Software Revision 5.2 (5020)
Reprint July, 1990 Update 1 Incorporated and index revised

3/4

Preface

This manual will help you to modify an existing HP driver or to write a new driver for an I/O card
or device.

To best use this manual, you should know HP assembly language, HP 1000 computers, and should
be able to make effective use of the RTE-A I/O Control Technical Specifications and system
listings. You may not need these documents, but if the driver is complex, a thorough knowledge of
the operating system (as it applies to I/O) may be needed to debug the driver.

To make this document as self-contained as possible, it contains some information that may also
be found elsewhere. For example, the section on I/O Card Programming duplicates some
information found in the A-Series I/O Interfacing Guide.

5/6

Table of Contents

Chapter 1

Introduction

User I/O ReqUESESottt e e e e et et e 1-2

Device-Interface Separationt 1-3

I/O Request INteractionc.uiuiunnnt et e 1-4

Driver Names and Module Type i e 1-7

Driver Type Codesttt e 1-8
Device DIIVEr o 1-8
Interface Driver i 1-9

Driver Entry Points 1-9

GEN Pseudo InStructiont i 1-10

Chapter 2

System 1/O Tables

Logical Unit Table LUT i e 2-3

Device Table DVT 2-3

Interface Table IFT e e 2-13

Interrupt Table INTA e e e e 2-15

Map Set Table MST o 2-15

Table POINterso 2-16

Chapter 3

Device Driver

System-Driver Interface i 3-1

Entry Dir€Ctives oottt e e e e 3-3
Initiate New Request e e 3-3
Resume Interrupt Processingt 3-3
Continue Processingottt e e 3-4
Timeout Processingt i e e 3-4
AbBOTt ReqUESt . ..o e 3-4
Power-Fail Restart 3-5

Driver EXit 3-5
System Flagso 3-6

Sample Device DIIVETttt 3-7

Chapter 4

Interface Driver

Entry DIrectivesttt e 4-3
Initiate New Request e 4-3
Continue Processingoouiiuit it e 4-3
Timeout Processingt e e e 4-4

7 Update 1

ADbOIt ReqUESt . ..ot
Power-Fail Restart i e e
Driver EXit
System Flagso
Sample Interface Driver e

Chapter 5
General Driver Concerns

I/O Request Parameters i
Zero-Length Requestsot e e e
Ilegal REqUESESottt e e e e e e
Posting Statust e
Posting Errorsot e
Driver Partitioningottt

Chapter 6
Device and Interface Driver Interactions

Parameter Passing Between Drivers i
Multibuffered Request e
I/O Table Reference e
Asynchronous I/O and Polling i i

Chapter 7
Callable System Routines

$DIOC: Set Up DVT Or IFT ...ttt ettt et
$DVLU: Compute LU From DVT e
SUPIO: Up DEVICE ..ottt ettt e et e e e e e
$Uplft: Up all LUs referring to this IFT
$DMPR: DMA Parity EITOrttt
$XQSB: Program Schedulingt
Mapping Considerationsutuit ettt et
$SETM: Set Up Map Registersouiuuineitiiie i
$READ: Read Data Word/Map Selectedcooiiiiiiiinneiinnnn..
$WRIT: Write Data Word/Map Selectedc.coiiiiiiiiiineennn..
$ONER: Read One Word Without Setup,
$ONEW: Write One Word Without Setup,
$SETR: Set Port Map . ..ottt e e
$SELR: Select Port Map Number i
$MSALC: Allocate Additional Map Setsovuitiiine i
$MSRTN: Deallocate a Map Setoouriniiiiii i
$CLWRT: Class I/O from a DIiverouuuiiiniiiiiiiiiiiiiinnn..

Chapter 8
Privileged Drivers

Chapter 9
I/0 Card Programming

8 Update 1

I e B B B e e N e B N N N N N Y
OOV INIAADNUNUN KWW -

N
—_

The Global RegiSterot e e 9-2
Virtual Control Panel Register i e 9-3
Card Re@ISIEIS . vttt ettt e 9-4
DMA REQISTEIS . ottt ettt et e e e e e e e e e 9-5

DMA INnitiationttt e e e 9-6

DMA Terminationttt 9-7

DMA Control and Flag Bits i i 9-8

List of lllustrations
Figure 1-1. User /O Requestst i 1-2
Figure 1-2. I/O Request Interactionc.iiiuiiniinenennnnennenn. 1-4
Figure 2-1. Request Listson DVT and IFT o i, 2-2
Figure 2-2. Format of the Logical UnitTable 2-3
Figure 2-3. Format of the Device Table i .. 2-4
Figure 2-4. Format of the Interface Table 2-13
Tables

Table 5-1. Error Codes and their Meaningsc.oouiiniininnennennnen.. 5-7
Table 8-1. Global Values/Entry Points Needed by a Privileged Driver 8-2

9 Update 1

Introduction

A program is allowed to do I/O (input/output) transfers only under the supervision of the
operating system. While a user program is executing, the memory protect feature is on. This
feature serves the dual function of protecting the operating system from inadvertent destruction by
a user program and also insures that the operating system itself controls all I/O transfers. Any
program that attempts an I/O instruction while the memory protect feature is on will cause an
interrupt, suspending the program and transferring control to the system. The system then aborts
the offending program.

All I/O requests are made to the system through EXEC calls, which are requests to the operating
system. When a program which makes an EXEC request is loaded, the JSB EXEC instruction is
replaced by an unimplemented instruction. The unimplemented instruction is trapped by the
system and tested against an instruction chosen to represent the EXEC request. If it passes the
test, and if the parameters in the request are valid, the request is processed. Otherwise, the
program may be aborted. (It is possible to specify “no abort” in some cases.)

I/O requests are sorted out (through the request code) and processed by the operating system
modules called RTTOA and IOMOD. These two modules work together, and are referred to
jointly as RTIOA. One of the several functions of RTTOA is to relate the logical unit referenced
by the user request to a physical device, which it does through the LUT (Logical Unit Table). The
user request is then put into the form of a table called the I/O control block.

The information set up in the control block is processed for the I/O operation by operating system
modules called drivers. Drivers may be divided into two modules; a module that deals with the
device and a module that deals with the I/O card. Together they perform the single function of
implementing the I/O request made by the user program and formatted by the system.

Prior to entering the driver, the system takes the information from the control block and puts it
into another table, called the driver’s DVT (Device Table). The request in the DVT is processed
by the driver to perform the desired action (input, output or control). All information pertaining
to the operation of a specific request is maintained in the DVT, which therefore becomes the
primary directing force of driver operations.

Data is usually transferred under DMA (direct memory access). With DMA, an entire buffer is
transmitted before the computer receives an interrupt signifying completion. Alternately, a driver
may set up a card to create an interrupt per word/byte. In either case, once the transfer is set up,
it proceeds on an interrupt basis. When the device is not ready to make an actual transfer, other
processing takes place. When an interrupt occurs, the driver is entered (under system control) to
take the proper action.

When a user request is received by the system, it may not be possible to initiate the operation
immediately, since another request may be in progress. In this case the I/O control block is linked

Introduction 1-1

to previous blocks in a list. The list itself is linked to the DVT of the driver. When the driver is
finished processing one request, the system sets it up for the next request.

I/O requests are generally linked to the driver in order of the priority of the program making the
request.

User I/O Requests

The several requests associated with I/O are given below. Not all of these requests reach the
driver. Those requests that are processed by the driver are indicated.

Function Request Code Seen by the Driver

READ 1 1

WRITE 2 2

CONTROL 3 3

STATUS 13 NONE

CLASS READ 17 1 (READ)

CLASS WRITE 18 2 (WRITE)

CLASS CONTROL 19 3 (CONTROL)

CLASS WRITE/READ 20 1 (READ)

CLASS GET 21 NONE

LU LOCK NONE NONE CALL LURQ (......)

CLEAR CLASS NONE NONE CALL CLRAQ (......)
L88-323

Figure 1-1. User I/O Requests

The driver processes only three basic requests:

1. Input
2. Output
3. Control

Consistent with this philosophy, class I/O requests also reduce to the basic three. The driver does
have a means of identifying a class request through certain bits recorded in the DVT, but this is not
normally a driver concern.

There are two types of status requests. The “static” status request (request code 13) does not
cause the driver to be entered and so the actual device is not accessed. The status is that taken
from the DVT and represents the status upon last I/O completion. The “dynamic” status is
implemented through a control request (request code 3, subfunction 6) and thus causes the driver
to be entered. The driver must recognize a subfunction code which differentiates the dynamic
status request from other control requests.

1-2 Introduction

Device-Interface Separation

A driver may be broken down into two parts (the device driver and the interface driver) or remain
as a single driver (the interface driver). A device driver is not required, or useful, if the interface
card is used to control a single device or identical devices. The device driver proves most useful
when there are several possible device types cabled to the same interface type, for example, the
HP-IB.

The device driver, when present, formats the output buffers or interprets the incoming buffers
according to the characteristics of the device. If the device driver is absent, as in minimum-sized
systems, then the individual programs must perform the interpretation functions that would
normally be done by the device driver.

The interface driver may perform some functions other than I/O, although they should not be
device-specific. For example, it may append an EOR (end-of-record) character to output or it may
translate all characters into a specific code (such as binary-coded decimal). It may recognize
special characters and manipulate the data accordingly or it may transmit all characters
unchanged.

One advantage of this approach is that the characteristics of the device may be changed by
accessing the device driver only. For example, the number of lines/page on a line printer could be
changed by a control request with a subfunction defining the number of lines. This could be done
even if the interface card was busy with another device at the time.

Another advantage is the ease by which new devices may be connected to the I/O cards. Using an
existing interface driver, one need only write the device driver to handle the characteristics of that
new device.

Even though there are some advantages to separating the characteristics of the device and the
interface and breaking the driver into two parts, this separation is not always recommended. For
specialized I/O interface situations, it may be preferable that a single interface driver be designed
to handle both the device and the interface.

Introduction 1-3

I/0 Request Interaction

Figure 1-2 (below) is a simplified representation of how the user request interacts with the drivers.

User Request

Device Device
Initiate Done
Device Wait
Device Device Driver
Timeout
Interface Interface
Initiate Done Device
Resume
Interface .
Timeout Interface Driver
Interface Interface
Wait Continue

Interface Card

L88-324

Figure 1-2. 1/0 Request Interaction

These interactions are described in more detail below. Although the diagram shows several
reasons for entering a driver, the driver is always entered at the same place, whatever the reason.
The reason for entering the driver is contained in a code in the A register. This code is the entry
“directive.” Exit from the the driver is to a different return point, according to the type of exit.

DEVICE INITIATE (DI): This is the starting point for processing all EXEC and XSIO calls,
assuming that a device driver exists.

DEVICE DONE (DD): This exit completes the active request.

DEVICE RESUME (DR) calls the device driver to finish processing an asynchronous interrupt
detected by the interface driver.

DEVICE WAIT (DW): This exit permits the device driver to await the completion of some timed
action. It may also be used to indicate completion of asynchronous processing begun through a
resume entrance.

DEVICE TIMEOUT (DTO): A request on the device has timed out (perhaps a failure). The
device driver may use timeouts for the purpose of issuing periodic requests to the interface driver.
For example, to check the status of a communications line.

1-4 Introduction

INTERFACE INITIATE (II): This entry indicates the start of a request on the I/O card.

INTERFACE DONE (ID): This exit indicates the completion of a request started on the I/O
card.

INTERFACE CONTINUE (IC): This is the continuation entry into the driver caused by an
interrupt. This includes asynchronous interrupts. For example, an SRQ interrupt on the HPIB is
an asynchronous interrupt.

INTERFACE WAIT (IW): The driver takes this exit to wait for an interrupt or timeout.

INTERFACE TIME OUT (ITO): This entry indicates an expected interrupt was not received in
the allotted time.

“Asynchronous interrupt,” as used in this manual, means an interrupt that occurs when the I/O
card is not busy with a user or system I/O request. The I/O card is usually idle, and has been
armed to recognize asynchronous interrupts, such as are generated when a user strikes a terminal
key when no read is pending on the I/O card. An “expected interrupt,” on the other hand, is one
which signals the completion (or continuation) of a request from the system or a program.

When the system enters a driver, I/O interrupts are in a “hold-off” state. They are enabled only
for the time base generator (TBG) and privileged drivers in the system. Since an entry to a
non-privileged driver is always controlled by the system, a driver may call upon subroutines within
the operating system. Several subroutines are supplied to make certain tasks easier for the driver
and to avoid the duplication of functions from driver to driver.

There is no direct path between the device driver and the interface driver. For example, the
device driver never directly calls the interface driver. Both modules are entered only by the
system and each module returns to the system. Communication between the device driver and the
interface driver may take place through a parameter area located in the DVT for that device.

A DVT always exists even though a device driver is not required. The request is always formatted
in the DVT and status information passed back in the DVT, whether or not a device driver exists.

When a request is made by the user or the system, it is formatted into a table called the I/O
control block and linked to the DVT. Several requests may already be in the linked list — the
newest request is added on. When a request reaches the head of the initiation list, the system
takes the information out of the control block and places it into the DVT. The normal flow is then
as follows:

1. The device driver decodes the request which has been placed in its DVT and formats a
request for the interface driver and stores it in the DVT. Upon exit, the device driver notifies
the system that this is an “interface initiate” exit.

The system takes the device drivers request and links it to the interface driver through the
DVT.

2. When the request reaches the list head, the system enters the interface driver with a signal to
begin the new request. The interface driver has a table called the IFT (InterFace Table)
which links it to the driver’s DVT. The interface driver picks up the request from the DVT
and initiates an actual I/O sequence to the interface card. It then takes a “wait” exit to the
system.

Introduction 1-5

3. When an interrupt occurs, it is trapped by the system. The system enters the interface driver
with a “continue” directive. Normally, the interrupt signifies the completion of a block
transfer under DMA. In this case, the interface driver would post status information in the
DVT and take a “done” exit.

4. The system then enters the device driver with a “continue” directive. The device driver may
interpret the information received from the interface driver and reformat it for the device. It
then indicates a “done” status and returns to the system.

5. If another control block is linked up to the DVT its data is moved to the DVT and the device
driver is entered for the next request.

Many complexities can arise in the above sequence. For example, a device driver may break a
single user request into several requests upon the interface driver. Assume that the request is a
disk read operation. This may be broken into at least two parts; a seek and then the actual read
when the head reaches the proper cylinder. After the seek operation, the interface driver would
be “done.” But the device driver would not be done with the user request and hence would format
another request to the interface driver.

The interface driver has no knowledge that it is doing a read operation or even that it is
communicating with a disk drive. It is merely passing information back and forth. The only errors
it handles are those dealing strictly with the interface card.

The device driver, on the other hand, knows that it is communicating to a disk and what control
words or buffers are required for each request. It also knows to make certain checks on the
parameters that are specific to the device. For example, it may check that a disk sector number is
valid.

The “resume” exit from the interface driver and the “resume” entry into the device driver are used
together, similar to interface done and device continue. The resume is used when the interface
driver has received an asynchronous interrupt which requires interpretation. Generally, this
means that an interrupt has occurred from a device that was previously armed to recognize
asynchronous interrupts. This may happen, for example, when a user strikes a key at a terminal to
gain attention.

1-6 Introduction

Driver Names and Module Type

The driver name is the symbol that is given in the NAM record in the source code. For example,
ID.00 in the following:

MACRQO, L
NAM 1 D. 00, O

The module type is 0 (zero) and is the parameter which follows the comma in the NAM record.
Module type 0 identifies the driver as part of the operating system itself.

The convention for naming device and interface drivers is:

DDxnn is for Device Drivers
IDxyy is for Interface Drivers

X represents the Oiginator Code.
nn is the Device Driver Type, a nunber.
yy is the Interface Driver Type, a nunber.

When choosing the originator code, note that the period (.) and asterisk (*) and letters of the
alphabet are reserved for drivers which originate from Hewlett-Packard. Customers may use any
of the following special symbols:

bt # s % A ?

For example, DD$12 or ID!37. Other symbols are not legal in filenames.

The convention HP uses to refer to driver names has been changed from DD.nn to DD*nn. The
HP driver relocatable filenames of the form %DD.nn have also been changed from %DD.nn to
%DD*nn. HP driver names in the NAM statement (DD.nn) and driver entry points (DD.nn)
remain the same.

DD*nn Referenced driver name
%DD*nn Driver relocatable name
DD.nn Driver name in NAM statement
DD.nn Driver entry point

Introduction 1-7

Driver Type Codes

Device Driver

Device driver type codes are arranged by functional groupings as below. The type code is placed
in DVT6 by the generator. The default by the generator is the field “nn” in the driver’s entry point
(as in DD.nn) but the type code can be changed at generation time. A user program may examine
device type to determine what requests to issue. A multi-device driver can examine device type to
determine what specific device to operate.

Category Type Device to be Driven
Keyboard Functions 00-05 Interactive point-to-point terminals
00—07 octal 07 Multipoint data link
System Peripherals 10B—-11B Plotters, graphics display
10—17 octal 12B-13B Printers

14B-17B (reserved)
serial recording Devices 20B-24B Mag tape, cassette
20—-27 octal 25B (reserved)

26B CS/80 tape

27B (reserved)
Random Recording
Devices 30B Floppy disk
30—36 octal 32B CD disk

33B CS/80 disk

36B PROM
HP-IB (37 octal) 37B HP-IB interface bus
CPU Functions and 40B—43B PROM 1/O, WCS, powerfalil, etc.
Misc. Peripherals 44B—-47B Badge reader, strip printers,
40—47 octal light pen, etc.
Digital/Analog 50B-53B Parallel interface card, etc.
50—57 octal 54B—-57B A/D, D/A
Data Communications 60B—-62B Data comm., MUX, etc.
60—67 octal 63B—64B (reserved)

65B—67B DS network, etc.
Instrument and Test 70B-75B Instruments
70—77 octal 76B—77B Diagnostics

1-8 Introduction

Interface Driver

The interface type for driver with entry point ID.yy defaults to “yy” and may be changed at
generation time. Interface types are defined as follows:

00-07 Communication (hardwire or remote) interface cards, RS232
10-17B Digital I/O cards

20-27B Dedicated peripheral controller

30-37B General purpose I/O card, for example, HP-IB

40—-47B Special processor functions. 1D.43 reserved for power fail
50-57B Digital/Analog I/O

60—-67B Network Communications

70-77B Instrument Controllers

Driver Entry Points

Entry points must agree with the name of the driver. Except for privileged drivers, the entry point
should be the same as the driver name itself. For example:

MACRO, L
NAM | D. 00, O

ENT 1 D. 00

Privileged drivers have two entry points. For normal system entries, the entry point should be the
same as for a standard driver. For privileged interrupt entry, use:

Pl . xx

For example:

MACRO R L * THHS IS THE START OF A PRI VI LEGED DRI VER *
NAM | D. 51
ENT ID. 51, PI.51

Introduction 1-9

GEN Pseudo Instruction

The assembler provides the capability of passing instructions from the source code to the
generator. This is done with the GEN pseudo instructions, called “pseudo” because they do not
produce actual CPU instructions.

For example:
GEN 10, EID. 37, QU PR, TX: 124

which specifies that the driver has entry point ID.37, priority queuing of requests and an extension
area of 124 words. The number after the GEN instruction (in this case 10) indicates the number
of words (2 characters/word) in the following string. The last character will be set to a space
character if not specified.

With the exception of the “E” shown in the entry point name, all instructions in the GEN record
are exactly the same format as would be given in the answer file to the generator. For example,

GEN 10, DP: 2: FM GR 20040B: 0

which sets driver parameters 2, 3, 4 and 5 to FM, GR, <two spaces>, and 0.

The GEN instructions provide default parameters for the driver and make it easier to prepare the
answer file. Any parameters given in the answer file will override similar commands given in the
GEN instructions. For example, a different extension area size could be specified.

Any number of GEN instructions can appear in the driver.

1-10 Introduction

System 1/O Tables

The system I/O tables provide an area of memory for storing and passing information about the
I/O structure and I/O activity. These tables reside in and are maintained by the operating system.
A summary of these tables is given below:

LUT Logical Unit Table Relates logical units to device tables.

DVT Device Table Maintains information about the I/O request and
the physical device.

IFT Interface Table Maintains information for an interface card.

INTA Interrupt Table Relates interrupts from interface cards to

interface tables.

MST Map Set Table Maintains information for correlating map sets to
select codes.

Each of the tables above is built by the system generator. In some cases, as in the DVT and IFT,
only part of the table is initialized by the generator. The contents of each table and how they are
used will be discussed in this chapter.

There is a DVT entry for every device and an IFT entry for every interface card recognized by the
system.

Normally, the only I/O tables referenced by the driver are the IFT and the DVT.
Figure 2-1 shows the interaction between the LUT, the DV'Ts and the IFTs.

System I/O Tables 2-1

CALL EXEC

Cntrl Blk Cntrl Blk
List on DVT List on DVT
Cntrl Blk Cntrl Blk
/ \ Cntrl Blk
» F —>
DVT DVT DVT
Active Req Active Req Active Req
Device Device Device
Driver Driver Driver
———
IFT Int_erface
Driver
188325 /0 Card

Figure 2-1. Request Lists on DVT and IFT

(There may be several IFTs in the system but only one is shown for clarity.)

2-2 System I/O Tables

Logical Unit Table LUT

The Logical Unit Table (LUT) is a variable length table built by the system generator. The LUT
relates the logical unit (LU) in the user request (EXEC call) to the DVT. Its format is:

<addr ess of sone DVT>
<addr ess of sone DVT>
<addr ess of sone DVT>

'<address of sone DVT>

L88-326

Figure 2-2. Format of the Logical Unit Table

The logical unit is used as an index into the table. For example, for arbitrary logical unit LU X:

Pointer = (X — 1) + address of LUT
DVT address = contents of pointer

A pointer to the LUT and the number of entries in the LUT are globals located in RTIOA (see
section on Table Pointers). The size of the LUT and its entries are set up by the system generator.
The entries are modifiable on-line with an operator command and thus their direct use by any
driver should be avoided, where possible.

More than one LU can point to the same DVT. An LU can also be assigned to zero (the bit
bucket), in which case the corresponding entry in the LUT is zero.

Device Table DVT

The device table (DVT) is a variable-length table constructed by the system generator for each
device in the system. It is the area from which the system communicates to the device driver
information about the request. The system uses the DVT as a storage area for list link words,
DVT status indicators and other system concerns. The device driver uses it for device dependent
storage and a communication area to the interface driver. The interface driver may store device
status in the DVT upon completion of a request.

Every device to be accessed by an LU must have a DVT. If no device driver exists, it is the
responsibility of the interface driver to retrieve and post information in the DVT.

The format of the DVT is given in Figure 2-3.

System I/O Tables 2-3

System

Pointer
Name [15|14[13]|12][11]|10]| o] 8| 7| 6] 5] 4|3 2] 1] 0
DVT1 $DVA DVT Link Word
DVT2 $Dv2 Q Request Initiation List
DVT3 $DV3 N Circular Node List
DVT4 $DV4 P Circular DVT List
DVT5 $DV5 X Address of Interface Table
DVT6 $DV6 AV | Device Type | Status | E
DVT7 $DV7 System Flags | LU Lock Flag (Res #) | Al Rs
DVT8 $DvV8 B Buffer Limit Accumulator
DVT9 $DV9) (High-Low)/16 Low Buff Limit/16
DVT10 $DV10 RESERVED Starting Physical Page
DVT11 $DV11 Timeout List Linkage
DVT12 $DV12 Device Driver Timeout Clock
DVT13 $DV13 Interface Driver Timeout Value
DVT14 $DV14 Device Driver Entry Address
DVT15 $DV15 TY |[UE| z| Subfunction | x | L[BB] RQ
DVT16 $DV16 Request Parameter #1 / Error code with D,F
DVT17 $DV17 Request Parameter #2 / Transmission Log
DVT18 $Dvi8 Request Parameter #3 / Extended Status #1
DVT19 $DV19 Request Parameter #4 / Extended Status #2
DVT20 $DV20 I Driver Communication | Device Priority
DVT21 $DV21 # Driver Parameters | # Extension Words
DVT22 $Dv22 DVT Extension Address
DVT23 $DV23 Starting Physical Page of Driver
DVT24 $DV24 M | Reserved
DVT25 $DV25 Spool Node List Pointer
DVP1 $DVP — Start of Driver Parameter Area —
DvXi1 | Start of DVT Extension Area (Storage)

L88-327
Figure 2-3. Format of the Device Table

DVT1 is the DVT link word, used by the system to put the DVT into various lists. For example,
device driver requests passed to the interface driver (initiate exit) are linked via this word to word
3 of the IFT. Itis set to —1 if not linked into any list.

DVT2 is the request initiation list. I/O control blocks built by the system as a result of a user
request are linked to this word. It may be examined by a driver (device or interface) to determine
if a request is currently in progress. Its contents will be 0 if no requests are pending.

The Q bit is set to 0 by the generator as a default to indicate that the request list is ordered by
priority. The driver may change Q to 1 to indicate a FIFO list is desired (first in, first out) via
a GEN instruction.

2-4 System I/O Tables

DVT3 is the circular node list. This word links all DV'Ts which share a common node. A node
connects all devices which cannot operate concurrently. An example is the keyboard/display and
the mini-cassette drives on a 26XX terminal. Access to any of these features of the terminal
excludes access to other features on that node at the same time. This list is set up by the
generator.
If a device on a node is busy, then the node itself is busy and no other devices on the node can
be accessed. New requests are held off until the node is free. The N bit indicates the activity
on the node. N=0 indicates node available; N=1 means the node is busy. The system sets
this bit to 1 when it initiates a new request and it should not be changed by the driver.

When initiating a new request, the system checks the N bits on all the DVI5 in the circular
node list. One busy bit (there should not be more than 1) is sufficient to hold of the request
until the node is not busy.

Devices in the node list share a common DVT extension, which is as large as the largest
extension needed by any of the devices. The driver parameter area is not shared, but remains
unique to each device.

If there is only a single DVT on the node, this word points to itself. Otherwise, it points to
word 3 of the next DVT.

DVT4 is the circular DVT list. This word links all DVT’s that point to the same IFT, that is, it
connects all device drivers with a common interface driver. It may be used by both the device
drivers and the interface drivers. See the section on asynchronous I/O and polling in Chapter 6 for
more information.
If there is only one DVT connected to the IFT (no circular list), then this word points to itself.
Otherwise, it points to word 1 of the next DVT.

The P bit is for power fail. If the device driver wishes to handle power fail, it should set the P
bit to 1. The generator defaults this bit to 0.

DVTS5 is the IFT address. This is the address of the associated IFT. Bit 15 is reserved for future
use and should not be changed by a driver.

DVT6 is Availability/Device Type/Status:

AV DEVICE TYPE STATUS E

L88-330

AV is availability. This is the current status of the DVT and is used by the system for I/O
control. It may be examined by an operator command or by a driver to determine if a request
is in progress.

AV Meaning

00 The DVT is available for a new request to be initiated.

01 The associated device is “down.” New requests will be I/O suspended.

10 The DVT is busy with a request. New requests may be pending, linked through DVT2.
11 The DVT is both down and busy.

System I/O Tables 2-5

DEVICE TYPE is a two-digit octal value used to describe the type of device associated with
the DVT. The type is entered as a generator input or defaults to the driver number (see the
section on Naming & Type Conventions).

A driver may use the type code to make decisions on what action to take in otherwise
ambiguous situations.

In the absence of a device driver, the generator will default the device type to 70B.

STATUS is a general device status word reflecting the state of the device as posted by the
driver upon last access. The bits have defined meaning as follows and should be so used by

the driver:
7 6 5 4 3 2 1 0
EOF DB EOM BOM SE DF DF E
Set by driver, as needed Ssét?rln

L88-329

EOF is End Of File. Used for mini-cassette tapes, magnetic tapes, card readers, etc.
EOF = 1 when condition is true.

DB is Device Busy. Indicates that the device is performing a function which prevents
other operations from starting, for example, mag tape rewind. DB = 1 when condition is
true.

EOM is End Of Medium. Set when the current request has positioned (or will position)
the physical medium past the maximum limit. For example, write 2 disk tracks when
only 1 track remains to be used.

BOM is Beginning of Medium. When set, indicates that the medium is at the start of the
recording area.

SE is Soft Error. An error occurred which caused the driver to attempt an error
recovery operation. The E bit may or may not be set, depending upon whether or not
the operation was eventually successful.

DF is Driver Definable.

E is an Error indicator set by system if the driver sets any error code in DVT16. Drivers
should not change this bit.

DVT7 is System Flags/LU Lock Flag/Request Status:

SYSTEM FLAGS LU LOCK FLAG (ID #) A | RS

L88-331

SYSTEM FLAGS are reserved for use by the operating system. These bits are updated by the
system on each exit from the driver. The system flag bits are copied from bits 4 through 0 of
the A register, which must be set by the driver prior to exit.

2-6 System I/O Tables

The meaning of these bits is given here in brief. They are covered more completely in
the section on System-Driver Interface:

Type of Bit Number
Driver Exit 15 14 13 12 11

e
=
2
o
g0 e
o OO
>—<>o
T T T
= =

= Set timeout on device request.

= Hold off new device request.
Abort request on interface driver.
Report illegal resume entry.

= Lock interface driver to this driver.
M = Maintain previous lock (if any).

==

LU LOCK FLAG is set by the system in response to an LU lock request. It consists of the ID
segment number of the program which succeeded in gaining the lock. This field is zero if the
device is not locked.

The A bit is a flag set by the system to indicate an abort is in progress. This flag will remain
set from the time the device driver is notified of abort until abort processing is complete, at
which time the bit will be set to 0 by the system.

RS, the Request State, is the status of the current DVT request. The driver may find it useful
to examine the request state, for example, when it is called upon to abort the last request.

If 0, the DVT request is linked on the IFT. Interface driver processing on this request
has not yet begun.

If 1, the DVT request is linked at the IFT head. It is currently being processed by the
interface driver.

If 2, the DVT request is linked for interface done. The interface driver has completed
the current DVT request. The driver will never see RS = 2.

If 3, the DVT request is linked for device done. The device driver has completed the
current user request. The driver will never see RS = 3.

If there is no pending request (no list on DVT?2), then the request state is invalid and should
not be examined. This could occur, for example, if a “resume” entry is made into a terminal
driver as a result of someone striking the keyboard.

DVTS8 is Buffer Accumulator. If buffering is in effect, then this word is the total length of all
buffered requests currently queued on the DVT. In addition, class requests, are always included in
the accumulator.

The B bit (15) is set if the device is buffered.

DVT?9 is Buffer Limits. This word stores the upper (HL) and lower (LL) buffer limits for the
DVT. HL is a positive 16-bit value defining the limit above which requests will become suspended.
LL is also a positive 16-bit value. When the accumulated count in DVTS falls below LL, programs

System I/O Tables 2-7

suspended for making a request when the accumulator was above the upper limit are allowed to
repeat their requests.

To preserve table space, the values are stored as (HL-LL)/16 and LL/16. Buffer limits may
also be changed by an operator command.

The S bit (15) is set if the device is buffer limited. When the limit is in effect, no new requests
may be linked to the DVT. Programs which make buffered requests or class requests are, in
this case, buffer-limit suspended.

DVT10 is the starting physical page of the partition containing the data for the I/O request. This
page number is adjusted for system common when necessary.

DVT11 is Timeout List Linkage. This word is used to link all the DV'T5s and IFTs timeout clocks in
a linked list. This list is ordered by timeout sequence, that is, the DVT which could time out first
appears first in the list.

The end of the list is terminated by zero (0) in word 11. If the DVT is not in the timeout list,
then this word is set to minus one (—1).

DVT12 is the Timeout Clock. This word is a negative value, in tens of milliseconds, which is the
running timeout clock for the device driver. This value plus any other timeouts before this one in
the linked list is the current timeout value for a particular DVT.

DVT12 is initialized to 0 by the generator. The device driver must insert a negative value into
DVT12 on each request if it wants timeout. In addition, it must set the “T” bit in the A
register upon exit.

On the initiate exit, the timeout clock starts when the request is initiated on the interface
driver. On the wait or done exit the clock starts when the exit is made. The clock is cleared
on entry to the device driver.

DVT13 is a default timeout value for the interface driver when processing requests for this device.

The value is negative and given in tens of milliseconds. This value is put into IFT2 when the
device driver request is initiated on the interface driver. The timeout clock starts when the
interface driver returns to the system with the “T” bit in the A register set. It stops when the
interface driver is reentered.

Timeout may be changed by the “TO” operator command.

DVT14 is Device Driver Address. This word is the address of the entry point for the associated
device driver. This is 0 if no device driver exists. This address will not be used if the user request
specifies that the device driver be bypassed (bit 15 set to 1 in user request).

DVT1S5 is Subfunction/Request Code. This word contains information about the user’s request.
Bits marked with an X are reserved for use by the system:

TY| UE| Z | SUBFUNCTION| X X L BB | RQ

L88-332

SUBFUNCTION is derived from the ICNWD parameter of an EXEC request and provides
control information about the request. The subfunction request is used differently according
to whether the request is read/write (request code 1/2) or control (request code 3).

2-8 System I/O Tables

FOR READ OR WRI TE REQUESTS (RQ = 1 or 2):

In order to provide device I/O transparency, particular control bits should be used to
implement certain functions if applicable for the device. If these functions are not
applicable for a device these bits, or combinations thereof may be used as desired.

Expansion of SUBFUNCTION for a read/write request:

11 10 9 8 7 6 Bit Number

DF | TR DF EC | DF BI Mnemonic

L88-333

DF is driver definable.

TR, if 1/0, means transparency mode is/is not in effect. For nontransparency mode,
terminators and/or embedded control characters may be removed or added by the driver
on input or output. An example is a the “CRLF” on a write to a CRT. When
transparency mode is in effect, driver addition or removal of information is restricted.
Refer to the DD.00 section of the Driver Reference Manual.

EC, if 1/0, indicates echo mode is/is not in effect. For echo mode the keyboard input is
to be displayed as received. This is the normal mode of operation.

BI, if 1/0, means binary/ASCII information is to be transmitted. Refer to the DD.00
section of the Driver Reference Manual.

The subfunction bits should all be set to 1 if and only if the target device is a disk (type
30-37).

FOR CONTROL REQUESTS (RQ = 3)

For control requests, the SUBFUNCTION field should follow the conventions below.
Note that “(Tape)” stands for a tape unit (cassette drives or mag tape).

Code Action

00 Clear device

01 Write end-of-file (Tape)

02 Backspace one record (Tape)

03 Forward space one record (Tape)
04 Rewind (Tape)

05 Rewind standby (Tape)

06 Dynamic status

07 Set end-of media

10B Set beginning of media

System I/O Tables 2-9

11B List output line spacing (space no. of lines in positive optional
parameters) or form feed (optional parameter is negative).

12B Write gap (Tape)

13B Forward space file (Tape)
14B Backward space file (Tape)
15B Conditional form feed

16B Go to remote

17B Go to local

20B Enable program scheduling. Allows interrupt to schedule a
program

21B Disable (inhibit) scheduling of program

22B Set timeout. The optional parameter is set as the new interface
timeout interval

23B Expect asynchronous interrupt
(optional parameter = 0/1 = enable/disable)

24B Set device address (subchannel)
25B Driver definable

26B Driver definable

27B Driver definable

30-37B Reserved for system expansion
40-77B Driver definable

RQ is the request code:

RQ Request type
0 Multibuffered
1 Read

2 Write

3 Control

TY, or request type, is additional information which is normally of no interest to the driver.

TY Request type
0 Normal

1 Buffered

2 System

3 Class

2-10 System I/O Tables

The Z bit is the double buffer bit. If Z = 0, then DVT18 and DVT19 are simple parameters
(no additional buffer). Z=1 designates that DVT18 is a second buffer address and DVT19 its
length. This is applicable for read, write and control requests.

The UE bit is the user error bit. If the UE bit is set, the calling program is expected to
process the device errors that occur. The program should examine status, and error returns in
the A-Register and extended status which are accessible through a RMPAR call. The
RMPAR call should be made to an unbuffered device. The UE is 0, the system provides
normal error handling.

The UE bit is not functionally equivalent to the NS bit, which is described in the RTE-A
Programmer’s Reference Manual. Setting the UE bit only instructs the system to return error
information to the calling program; the program is expected to process the returned error
information.

The BB bit is set to bypass the device driver. If the user has specified in the request that the
device driver not be called, then this bit is set to 1 by the system. This means that the

interface driver is called, bypassing the device driver. The driver need not be aware of this
bit.

This bit will also be set if the device driver has been called for abort processing and has
rejected the request as illegal.

The L bit is used by the system on read/write requests to indicate the source of data. 1
indicates that the data buffer is in the user or SAM map; 0 indicates the data is in the system
map. This bit must be saved in its exact position in order for the driver to access any data in
the buffer passed to it in DVT16 (see Chapter 7, Callable System Routines, for a description
of SREAD, $WRIT, $ONER, or SONEW).

DVT16 is Request Parameter 1. This word serves two independent functions. On entering the
driver, this word is the user’s buffer starting address (RQ=1 or 2) or optional control parameter
(RQ=3). (NOTE: The buffer address must be used in conjunction with the SREAD, $ONER,
$WRIT, or SONEW subroutines to access data in the data buffer. It cannot be used as the
absolute address, however it can be used for calculating the relative address of any place in the
buffer.) On exit, the driver reports error conditions in DVT16.

DVT17 is Request Parameter 2. This word serves two independent functions. Entering the driver,
this word is the number of words (if positive) or characters (if negative) to be transmitted, or is an
optional control parameter. On exit, the driver posts a positive transmission log in either words or
characters depending on the original request. If a negative number of bytes was requested, a
positive number of bytes is posted in the transmission log. The maximum range on these
parameters is +32768 words (100000B) or —32767 bytes (100001B).

DVT18 is Request Parameter 3. This word may serve three distinct functions. If the Z bit in
DVT15 is 0, then on an input request, it is another control parameter. If Z = 1 (control buffer),
then DVT18 is a buffer address. This second buffer, in addition to DVT16, could be used for
extended control information. The same rules for buffer access (see DVT16) apply.
Upon returning to the system, DVT18 may contain device dependent error/status
information. See the section (chapter 5) on Posting Errors for additional information.

DVT19 is request Parameter 4. This word is like DVT18 except that if Z=1 it is the length in
words (+) or characters (—) of the buffer at DVT18.

System I/O Tables 2-11

DVT?20 contains the Initial Entry Flag, the Driver Communication Flags and the Device Priority:

The I bit is set to 1 by the generator for use by the driver as a “first entry” flag. If the driver
takes any special action on first entry, it should clear this bit so that the action is not repeated
on subsequent entries.

DRIVER COMMUNICATION FLAGS are nine bits through which the device and interface
driver may pass information or maintain common status information which both drivers
require. The generator will set these bits to zero.

DEVICE PRIORITY (0-63) is the priority assigned to this DVT for linking purposes on the
IFT. Default linking is FIFO (priority ignored) unless the interface driver changes its Q bit
(IFT3, Figure 2-4) to specify priority linking.

DVT21 is the Number of Driver Parameters (bits 15 to 9) and Number of Extension Words (bits 8
to 0). The driver may wish to check the number of extension words assigned on first entry to
ensure that it does not overlay an area of memory not available to it.

DVT22 is DVT Extension Address. This is the address of the first word of the DVT extension.
The extension is a storage area for the device driver and should be used to store any temporary
data needed to control a particular device. This extension lets a single device driver support
several similar devices.

The DVT extension is not contiguous to the rest of the DVT.

Devices linked together in the circular node list (DVT3) share a common extension.
Therefore, drivers should not expect data in the extension area from a previous request to be
valid.

DVT?23 is the starting physical page number of the device driver if it was generated into a driver
partition. The partitioned driver must be mapped into the system before being called. If the
driver was not generated into a partition, DVT23 = 0.

DVTP is Driver Parameter Area. Driver parameters are configuration type variables for the
device driver. They may be set at generation time or optionally by a driver control request. A
typical driver parameter is the device HPIB address.

The generator will set all driver parameters not specified at generation time to zero.

DVT24: If the M bit = 1, the current linked control block is located in SAM; otherwise, the M bit
= 0. Bits 0—14 are reserved.

DVT25 points to the spool node list if the device is being spooled. If DVT25=0, the device is not
being spooled.

2-12 System I/O Tables

Interface Table IFT

The interface table (IFT) is a variable length table constructed by the generator for each I/O card
in the system. It is primarily a storage area for system I/O concerns, although the interface driver
may examine the contents. The IFT extension is used by the interface driver for storage.

The format of the interface table (IFT) is shown below. In the discussion which follows, the
generator-initialized values are indicated.

System
Pointer
Name [45|14[13|12[11]|10| o] 8| 7| 6| 5] 4[3] 2| 1] 0
IFT1 SIF1 Timeout List Linkage
IFT2 $IF2 Timeout Clock
IFT3 $IF3 Q| Request List Linkage
IFT4 $IF4 Interface Driver Entry Address
IFT5 $IF5 Device Table Address ($DVT1)
IFT6 $IF6 AV | Interface Type | x x | 1/0 select code
IFT7 $IF7 System Flags | F| M| # words IFT Extension
IFT8 $IF8 Starting Physical Page of Driver
IFT9 $IF9 MA| X [ML|OH|MQ X X X X X X | Map Set Number
IFTX SIFX Start of IFT Extension (Storage)

L88-328

Figure 2-4. Format of the Interface Table

IFT1 is the Timeout List Linkage. DV'Ts and IFTs may be linked together in the timeout list. If
this IFT is in the list, the contents of IFT1 point to the next IFT1 or DVT11. The list terminates in
0. If this IFT is not in the list, IFT1 is set to —1 (initial value by generator).

IFT2 is Timeout Clock. If active, this is a negative number indicating TBG ticks (10 millisecond
intervals). It is not the actual timeout value when the timeout is active.

Default timeout values for the interface driver are established in the DVT (see DVT13). The
default value is stored in IFT2 upon entry to the interface driver. The interface driver can
change the timeout value by changing IFT2.

IFT3 is Request List Linkage. If active, bits 14 to 0 are the address of word 1 on some DVT. If
inactive, bits 14 to 0 are set to 0 (initial value by generator).
The Q bit is defaulted to 1 by the generator to indicate a FIFO list (queue). If priority linking
is desired, the default may be changed at generation time.
IFT4 is the Interface Driver Entry Address. Set by generator and not changeable.

IFTS is Device Table Address. Set by generator to word 1 of some DVT. May be changed on-line
by the LA (logical assignment) operator command. The result of the LA command may be to
clear this word to zero if no DVTs remain assigned to the IFT.

System I/O Tables 2-13

When the interface driver makes a resume or done exit, the system knows what device driver
to enter to resume or continue the request by the contents of IFT5. Thus the interface driver
may wish to control this word. See section on Asynchronous I/O and Polling.

IFT6 is Interface card characteristics.

AV is Availability, the current status of the I/O interface. It is used by the system for I/O
control.

AV Meaning

00 IFT available

01 IFT locked to some DVT. No other DVT5s can get to the head of the list
until the lock is released.

10 IFT is busy.

11 IFT is busy and is locked.

INTERFACE TYPE identifies the type of I/O interface card which the interface driver is
using. The generator defaults this value to the two octal digits within the interface driver
name.

I/O SELECT CODE is set on the interface card itself by switches and is an input to the
generator.

IFT7 contains the System Flags and the Extension Length.

2-14

SYSTEM FLAGS are five bits used to store temporary flags. It is used by the system and not
needed by the driver. The bits are defined below in brief. They are covered more completely
in the section on System-Driver Interface:

Type of Bit Number

Driver Exit 15 14 13 12 11
Done QDO HT
Initiate 0 0I HT
Resume 0 0 0 HT

H = Hold off new interface driver request.
T = Set timeout on interface request.

I = Report illegal interrupt.
Q = Inhibit advance to next request on IFT3.
D = Defer entrance to the device driver.

The EXTENSION LENGTH may be checked by the driver to insure that it is sufficient.
Otherwise the driver may overlay an area of memory not allocated to it. The length is an
input to the generator.

The F bit is set to 1 by the generator for use by the driver as a “first entry” flag. If the driver
takes any special action on first entry, it should clear this bit so that the action is not repeated
on subsequent entries.

The M bit is set to 1 if the driver manages its own timeout queuing and dequeuing.

The bits marked “X” are reserved.

System 1/O Tables

IFTS is the starting physical page of the interface driver if the driver was generated into a driver
partition. The partitioned driver must be mapped into the system before being called. If the
driver was not generated into a partition, IFT8 = 0.

IFT9 contains flags that deal with mapping I/O channels into map sets.
The MA bit, when set, indicates that a map set is allocated for this I/O channel.

The ML bit allows a map set to be locked to an I/O channel. When this bit is set, the system
mapset deallocation routine, SMSRTN, will not deallocate the map set.

The OH bit is used by RTE-A to store the state of the hold flag when an I/O request is
map-set suspended.

If the MQ bit is set, the I/O request associated with this IFT is on the map-set suspend queue.

The Map Set Number, if the MA bit is set, will be the number of the map set that is allocated
for this I/O channel. If the MA bit is clear, this field will be meaningless.

The bits marked X are reserved.

IFTX is IFT Extension. The interface driver should use this area for storage of all temporary data
associated with a particular I/O card. This area should also be used for any short DMA transfers
instead of doing I/O directly from the driver code space. A single interface driver may use several
IFTs, hence support several distinct (identical) I/O cards.

Interrupt Table INTA

The interrupt table is of variable length and built by the system generator. It consists of one word
entries for each processor 1/O select code (channel). The first entry is for select code 20. The
one-word entries are defined as follows:
+IFT address Address of the IFT corresponding to the interrupting select code.
The system gains access to the interface driver via the IFT.
Zero Interrupt not expected (illegal) on this select code. Indicates
generation or hardware failure.

Map Set Table MST

Map Set Table MST contains 24 words, each entry representing one of the map sets (numbered 8
through 31). The meaning of each entry depends on the state of bit 15:

Bit 15 Map Set Meaning of Bits 14—0
0 Available Pointer to next free map (0 if end of list).
1 Not Available Pointer to IFT that is using map set.

System I/O Tables 2-15

Table Pointers

Global pointers are located in the system to permit access to the I/O tables. They are:
LOGICAL UNIT TABLE (LUT)

$LUTA Address of first word of logical unit table.
SLUT# Number of defined logical units (entries) within the table.
DEVICE TABLE (DVT)
$DVTA Address of first DVT table entry.
$DVT# Number of defined DV'Ts.
$DV1 Word 1
$DV2 2
$DV3 3
$DV4 4
$DV5 5
$DV6 6
$DV7 7
$DV8 8
$DV9 9
$DV10 10 Together, $DV1 through $DV25
$DV11 11 specify the address of the
$DV12 12 word in the current DVT.
$DV13 13
$DV14 14
$DV15 15
$DV16 16
$DV17 17
$DV18 18
$DV19 19
$DV20 20
$DV21 21
$DV22 22
$DV23 23
$DV24 24

$DV25 Word 25
$DVTP Address of current DVT parameter area.

INTERFACE TABLE (IFT)
$1 FTA Address of first IFT.

$I FT# Number of defined IFTs.

2-16 System I/O Tables

$IF1 Wrd 1

$I F2 2

$I F3 3 Together, $IF1 through $1F9
$I F4 4 specify the address of the

$I F5 5 current IFT.

$1 F6 6

$I F7 7

$1 F8
$IF9 Word 9

$1 FTX Address of current IFT extension.

(o]

Each word in the current DVT and IFT can be accessed by adding a word count to a pointer to the
first word, but the use of pointers to the words makes references to them easier to recognize in
code, and it eliminates the need to use temporary variables to store the value of the word count
plus the pointer.

The pointers to the current IFT or DVT are set up by the system prior to entering the driver.

INTERRUPT TABLE (INTA)

$INTA Contains a list of numbers used to find interface driver entry points for
interrupt processing. When the system recognizes an interrupt from an
interface card, it adds the interface card select code to the INTA entry for that
select code to form the address of the interface driver interrupt entry point.

SINT# Number of defined entries in the interrupt table.

The method used by the system to index to the proper location in the interrupt table is:
LIB 4 GET | NTERRUPTI NG SELECT CODE

ADB $I NTA I NDEX TO PROPER ENTRY

The first user select code which can cause an interrupt is 20B.
If the value of the associated entry in the interrupt table is zero, then the message:
Illegal interrupt from SCnn

is printed on the console.

Map Set Table (Mst)
$MST Contains the data for determining the current state of a map set.

SMST# Contains the total number of map sets (24).

$MSFRE Points to the first free entry on the map-set free list linked within the map set
table (SMST). If no map sets are available, this entry will be zero.

$MSA Points to the location where map set number 0 ($MST-8) would be stored if it
were in the map set table.

System I/O Tables 2-17

Device Driver

System-Driver Interface

The system enters the device driver as indicated below. The address of the driver is picked up
from the DVT.

All pointers to the DVT, as described in the chapter on System I/O Tables, are set prior to entering
the driver. The registers and calling sequence are:

A-Register = Entry Directive (bits 2-0)

B-Register = DVT Address

JSB DD.XX

P+1 done

P+2 interface initiate
P+3 wait

On exit, bits 4-0 of the A-Register are placed in bits 15-11 of DVT7 (the System Flags area).

The various entry directives and their codes in the A-Register (binary) are:
Code Meaning

000 Abort

001 Initiate
010 Continue
011 Time Out
100 Power Fail
101 Resume

The driver should mask off the high order bits of the A-Register, as they are reserved for future
changes.

Device Driver 3-1

The driver must increment its return address, stored at its entry point, to the proper exit as
follows:

Source Code Meaning A-Register on Exit
JMP DD.nn,I Request complete 000HT

P+1 return on device driver.

ISZ DD.nn Initiate request LOAHT

JMP DD.nn,I on interface driver.

P+2 return

ISZ DD.nn Wait for resume MOIHT

ISZ DD.nn entry from interface

JMP DD.nn,I driver or device

P+3 return timeout.

Upon exit from the driver, bits 0-4 of the A-Register are stored in the system flags area of DVT7.
The meanings of the bits, if set, are:

T = Set timeout on device driver request.

H = Hold off new device driver request initiation.
A = Abort request on interface driver.

I = Report illegal resume entry.

L = Lock interface driver to this device driver.

M = Maintain previous lock (if any).

If the interface driver is locked, the DVT will remain at the head of the IFT upon an interface
done exit. This prevents interleaving of requests from multiple DVTs on the same IFT.

The H bit holds off all initiate entries from RTE-A. Therefore, if the H bit is set on a done exit,
the driver must plan on subsequent entry by device timeout or asynchronous resume.

3-2 Device Driver

Entry Directives

The system will set up the pointers to the DVT before entering the driver. If the device driver
wishes to access the IFT, it should call the routine $DIOC (described in Chapter 7).

Upon entry, the directive code will be in the A-Register bits 2-0. The driver should mask off the
high order bits as they are reserved for future use. The DVT address will be in the B-Register.

Initiate New Request

Upon entry, bits 2-0 of the A-Register equal 001.

This entry is made when a new request is to be started. The request code (for read, write or
control) is in DVT15 with parameters in DVT16 through DVT19. Additional information may be
contained in the driver parameter area. The driver should first determine whether or not the
request is applicable (for instance, a read request on a printer makes no sense) and, if not
applicable, make an error exit.

Then the parameters may be checked against the device characteristics. For example, a read
request to a disk may contain a track number that is outside the range. If so, the driver should
make an error exit.

Illegal requests may be ignored by the driver by making an immediate normal completion exit.

If a legal request and device operation is required, the device driver formats one or more requests
for the interface driver and makes an “interface initiate” exit. All information about the request
to the interface driver must be contained in some area commonly agreed upon, typically the driver
communication area in DVT20 or the DVT extension. Examination or modification of request
data buffers should always take place through system supplied I/O system routines. (See the
section on Mapping Considerations.)

Prior to making a request on the interface driver, the device driver may change the request by
altering the request parameters. Or it may set bits in the driver communication area of DVT20 as
flags to the interface driver.

Resume Interrupt Processing

Upon entry, bits 2-0 of the A-Register equal 101.

This entry is made because the system has received a “resume” exit from the interface driver; the
device driver is called to resume processing. A possible reason for the interrupt is that someone
struck a key at a terminal upon which there was no pending read request.

Typically, the resume exit is used to distinguish an asynchronous interrupt from an expected
interrupt, which uses the continue entry. In the usual case the driver should take a 'wait’ exit after
a resume entry.

Device Driver 3-3

Continue Processing

Upon entry, bits 2-0 of the A-Register = 010.

This entry is made to continue the processing of the current request which the device driver has
made upon the interface driver (always synchronous with what the device driver is doing).

The interface driver is done with the request. The device may initiate another request upon the
interface driver or complete the request by making a done exit.

The driver might make another request, for example, in the case of a device requiring some
extended protocol. In the case of the HP terminals, before sending/receiving data to/from the
terminal the driver first sends an ENQ (enquiry) character. When the terminal is able to respond,
it sends back an ACK (acknowledge). The ENQ/ACK handshake is given to the interface driver as
one request; when it completes, the actual output buffer is given to the interface driver in another
request.

Timeout Processing

Upon entry, bits 2-0 of the A-Register equal 011.
This entry is made when the clock in DVT12 completes the timeout period.

The timeout period for a device driver cannot be established at generation time. It is enabled by
the driver setting the timeout bit in the A-Register on exit and its value determined by the contents
of DVT12 at that time. The value should be a negative number whose absolute value indicates the
number of Time Base ticks desired. Each tick is .01 second and so the time in seconds is found by
dividing the value by 100. DVT12 is cleared by the system prior to entering the driver.

The clock starts immediately upon done or wait exit. If the exit is to initiate a request on the
interface driver, then the clock starts upon entry to the interface driver.

The action taken on timeout may vary greatly from device to device. For example, a
communications terminal driver may wish to keep itself in the timeout list until a “line open”
condition is detected. Thus, it might call the interface driver upon receiving timeout to detect the
open condition. If not received, it would, again, set itself up for timeout.

Device timeout may easily be confused with the timeout of the interface request but it is not the
same. The default timeout value for the interface is taken from DVT13, and is unique to each
device request on the interface driver. An interface timeout causes entry into the interface driver,
and a device timeout causes entry into the device driver.

Abort Request

Upon entry, bits 2-0 of the A-Register equal 000.

The device driver may be called to abort the current request if an I/O request is in progress and
the program is aborted. The device driver must terminate the request as rapidly as possible within
the limits of the device.

Prior to entering the driver (device or interface) the “A” bit in DVT7 is set to indicate that abort
processing is in progress. It will be reset when abort processing is completed by the drivers.

3-4 Device Driver

The device driver may find it useful to examine IFT5 (backward reference to current DVT), IFT6
(availability field) and DVT7 (device request status, RS) in order to decide what action is
appropriate.

The request to be aborted may be in process by the interface driver (RS=1) or it may simply be in
the list (RS=0). For example, a poll request may be active on several devices on the HP-IB.

There are several possible options open to the device driver. It may:

1. Initiate an abort request on the interface driver. The request will take precedence over any
request on the interface driver now in progress for that device.

2. Defer abort processing until the request completes. An abort may not be in the best interest
of the device being controlled.

3. Allow the system to be totally responsible for abort processing on the interface driver by
rejecting the abort request as “illegal”. Normally, a request which is rejected as illegal causes
an error message but if the abort request is rejected by the device driver, no message is issued.
The abort request is passed on to the interface driver.

If the device driver elects to take the “wait” exit, then the system will ensure that timeout is active.
If no timeout is specified by the driver, then a default of 1 second will be supplied. The driver will
be entered again at the end of the timeout, or at the completion of the request. If the timeout

occurs, the driver may check the “A” bit in DVT7 to determine that abort processing is in progress.

Abort processing completes when the device driver makes a done exit.

Power-Fail Restart

Upon entry, bits 2-0 of the A-Register are set to 100.

The device driver will be called on power-fail restart only if it has indicated that it should be
called. The driver indicated that it should be called to process power-fail restarts by setting P bit
in DVT4. If the driver processes power-fail, then it will be called upon every power failure, but
only if it was busy at the time the failure occurred.

Driver Exit

Upon driver exit, there are three concerns:

1. Setting of system flags through bits in the A-Register.
2. Posting status in the DVT.
3. Posting any errors, in addition to status.

Gy

The system flags are set regardless of whether the exit is to indicate “done,” “interface initiate” or
“wait.” However, status and errors are posted only on the done exit.

Device Driver 3-5

It is important to remember that the status of the transfer of data and any transfer errors should
be posted by the interface driver. The device driver handles only device-dependent status and
EITorS.

The topics of status and error posting are common to both the device driver and the interface
driver and so they are covered in the chapter on General Driver Concerns.

System Flags

The three possible exit sequences from the device driver are given below. For each exit, bits 4-0 of
the A-Register have the meaning indicated. The B-Register is meaningless.

The system takes the contents of A-Register bits 4 through 0 and places them in the system flags
area of DVT7.

A-Register Bit: 4 |1 3|2 110
P + 1 “Done” O|JOfO | H|T
P + 2 “Initiate” L{O|JA|H|T
P + 3 “Wait” M[O| I|H|T

L88-334

T means set timeout. If set, the system will enter the device driver in the timeout list. See
Timeout Processing.

H means hold. If set, the system will delay calling the device driver to start a new request.
The driver normally sets this bit only to allow it to process interrupts through the resume
entry, with device timeout in effect.

A means abort. If set, the system will call the interface driver with an abort directive.
I indicates illegal resume entry. If set, the system will issue an error message of the form:

Il1legal interrupt from LU nn octal

where nn is the current logical unit nunber pointing to the DVT.

The bit should only be set in the case of an illegal resume entry.

L means lock IFT to DVT. If set, the DVT will remain at the head of the IFT upon “interface
done.” This prevents interleaved requests from several device drivers on one interface driver. Not
every driver will encounter situations where it is necessary to use this bit.
A side benefit of the lock is that the DVT will not be unlinked and relinked to the interface
driver as one request completes and another is initiated. Thus, if the device driver knows that
it has several requests to execute at “high speed,” it may lock the IFT to reduce overhead.

M means maintain lock. On subsequent exits from the driver, a previously locked IFT will remain
locked only if this bit remains set to 1. Note that an IFT will never remain locked on a device
done exit.

The illegal interrupt on LU nn message is also produced when the device driver takes a "Done’ exit
when no request is active on the DVT.

3-6 Device Driver

Sample Device Driver

This section contains a listing for a sample terminal driver. Many of the features of the driver are
not explained in detail in the manual because they are not essential to the structure of the driver.
That is, there are many different ways the same result could be achieved and this listing represents

one programmer’s approach.

Although this sample driver has been tested, it is not guaranteed to correspond to the code in any
driver shipped with the system. It is included here only as an example.

ASMB, R L, C
*
* NANME: DD. 20
* SQURCE: 92077-18727 REPLACI NG XL VERSI ON 92071-18084
* RELOC: 92077-16727 REPLACI NG XL VERSI ON 92071-16084
* PGVR: T. A L.
*
* khkkkhhhkkhhhkhkkhhhkkhhhhdhhkhhhhdhdxkhdhhdhdxddhhkdhdxkddhdkdhdxddx*dh*x*dx***x*%x
* * (O COPYR GHT HEW.ETT-PACKARD COVMPANY 1980. ALL RI GHTS *

* * RESERVED. NO PART

OF TH S PROGRAM MAY BE PHOTOCOPI ED, *

* * REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUACGE W THOUT*

* * THE PRI OR WRI TTEN CONSENT OF HEWLETT-PACKARD COVPANY. *
* khhkkkhhhkkhhhkhkkhhhkkhhhhdhhhkhdhhdhdxkhdhhdhdxkddhddhdxkddhddhdxkddx*dh*x*dx***x*%x
*
*
NAM DD. 20, 0 92077-16727 REV. 2441 <881012. 1510>
*
*
ENT DD. 20
EXT $DV6, $DV15, $DV16, $DV17, $DV18, $DV19, $DV22
EXT $DVTP, $CVT3, $CVT, SONER, $ONEW $DV1, . MWW
*
GEN 1, PA
GEN 19, EDD. 20, TX: 45, TGO 3000, DT: 20B, QU: FI
GEN 2,DX: 1
*
GEN 7, M645: 1,DP: 1: 1
GEN 7, M2645: 2, DP: 1: 2
*
GEN 7, M64X: 1,DP: 1: 1
GEN 7, M64X: 2, DP: 1: 2
*
000000 A EQU 0
000001 B EQU 1
*
00000 000000 DD.20 NCP
00001 070030R STA DI REC SAVE DI RECTI VE
00002 015175R JSB SETAD SETUP EXTENSI ON ADDR PTR S
00003 060030R LDA DI REC GET DI RECTI VE

Device Driver

3-7

00004
00005
00006

*

010025R
002002
024013R

* ABORT *

*

00007
00010
00011
00012

*

*

00013
00014
00015
00016
00017
00020
00021

00022
00023
00024
00025
00026
00027
00030

*

*

* I NITI ATI ON *

*

00031
00032
00033
00034
00035
00036
00037
00040
00041
00042
00043
00044
00045
00046
00047
00050
00051

171260R
060457R
015155R
025130R

050022R
024031R
050023R
025164R
050024R
025130R
025121R

000001
000002
000003
000007
177767
177765
000000

061240R
171246R
061214R
171247R
160010X
030230R
171250R
160002X
171261R
014642R
161261R
010024R
050024R
024420R
160001X
010411R
170001X

3-8 Device Driver

B1
B2
B3
B7

ML1
DI REC

INIT

SZA
JwP

STA
LDA
JSB
JwP

LDA
STA

STA
LDA
I OR
STA
LDA
STA
JSB
LDA
AND
CPA
JwP
LDA
AND
STA

B7
ABORT?

0 NO

DVX14, | ZERO CHARACTER ACCUMULATOR

B4 CALL | NTERFACE DRI VER

CEXIT W TH ABORT CODE

DDCMV2 DEVI CE COMPLETE

B1 | NI TI ATE?

INIT YES

B2 CONTI NUATI ON?

CONT YES

B3 TI MEQUT?

DDCMV2 YES, DEVI CE COWPLETE

DDCOM DEVI CE COMPLETE

1

2

3

7

-9

~11
DI RECTI VE

ESCC GET <ESCc> LOCK KEYBOARD

DVX4, | SAVE I T

ESC& GET <ESC&>

DVXG5, | SAVE I T

$DVTP, | GET CTU (1 OR 2)

PLU MERGE <p60>

DVXG6, | SAVE <p61 OR p62>

$DV15, | GET SUBFUNCTI ON

DVX15, | SAVE I T

ASCWI ASCI| WRI TE (SYSTEM ADDR. SPACE)

DVX15, | GET RQ

B3

B3 CONTROL REQUEST?

CNTRL YES

$DV6, | GET DEVI CE STATUS

LBYTE REMOVE OLD STATUS

$DV6, |

00052
00053
00054
00055
00056
00057
00060
00061
00062
00063
00064
00065
00066
00067
00070
00071
00072

*

*

161261R
010227R
171261R
010024R
164003X
175244R
065246R
174003X
164004X
175255R
006020

024070R
007004

005000

175245R
050022R
024240R

* WRI TE REQUEST *

*

00073
00074
00075
00076
00077
00100
00101
00102
00103
00104
00105
00106
00107
00110
00111
00112
00113
00114
00115
00116
00117
00120
00121
00122
00123
00124

*

00125

161245R WRI TE
003004
165261R
005727
005200
006020
002001
040023R
065120R
044000
006020
002003
024454R
002300
014011X
061232R
030012X
171251R
060012X
171252R
061233R
171253R
060027R
170004X
002404
015155R

015060R

LDB
STB
LDB
STB
LDB
STB
SSB
JwP
CMB,
BLS
STB
CPA
JwP

LDA

LDB
BLF,
RBL

SSB
RSS
ADA
LDB

DVX15, |
ECHO
DVX15, |
B3
$DV16, |
DvX2, |
DvXx4
$DV16, |
$DV17, |
DvX11, |

*+3
| NB

DVX3, |
B1
READ

DVX3, |
I NA
DVX15, |
BLF

B2
Me57

ADB A

SSB
SZA,
JwP
CCE
JSB
LDA
I OR
STA
LDA
STA

RSS
ERROR

$CVT3
DN

$CVT+1
DVX7, |
$CVT+2
DVX8, |

LDA W

STA
LDA
STA
CLA,
JSB

JSB

DVX9, |
M1
$DV17, |
I NA
CEXIT

FPORT

GET SUBFUNCTI ON
REMOVE ECHO BIT 8

SAVE | NI TI AL SUBFUNCTI ON M NUS ECHO BI T

GET RQ
GET BUFFER ADDR

SAVE | NI TI AL ADDR.

GET ESC SEQUENCE ADDR.

SAVE I T

GET XLOG

SAVE | NI TI AL XLOG (—CHARS OR +WORDS)
CHARACTERS?

YES, SAVE THEM

NO, CONVERT TO

— CHARACTERS

SAVE —CHAR LENGTH

READ REQUEST?

YES

GET —CHAR LENGTH
MAKE CHARACTERS POSI TI VE
GET SUBFUNCTI ON

ASCl | ?
NO, CHARACTER LENGTH OK
YES, ADD TWD TO LENGTH FOR ' CRLF

LENGTH > 2567

ZERO XLOG?

YES, |LLEGAL REQUEST ERROR
E=1 FOR DECI MAL

CONVERT +CHAR S TO ASCI |

SAVE <dSPACE OR NUMBER>

SAVE <NUMBER> TO WRI TE

CGET <W

SAVE <W

BUFFER LENGTH

ALLOW TI MEQUT

I NI TI ATE WRI TE ESCAPE SEQUENCE

FLUSH PORT BUFFERS FOR MJX

Device Driver

3-9

00126
*

00127
00130
00131
00132
00133

015155R

065234R
174006X
161261R
020024R
010237R

00134 170002X

00135
00136
00137
00140
00141
00142
00143
00144
*

00145
00146
00147
00150
00151
00152
*

00153
00154
00155
00156
00157
00160
00161
00162
00163
00164
00165
00166
*

00167
00170
00171
00172
00173
00174
00175
00176
00177
00200
00201

*

061262R
170003X
003400
170004X
002400
170005X
002004
015155R

006400
161262R
010411R
050236R
002001
024130R

161261R
010226R
030225R
170002X
161244R
170003X
161245R
170004X
002400

170005X
002004

015155R

160004X
171260R
014204R
015155R
006400

161256R
010411R
050232R
024202R
175260R
014662R

RACK

3-10 Device Driver

JSB

LDB
STB
LDA
XOR
AND

CEXIT

ENQ
$DV19, |
DVX15, |
B3
SBIT

STA $DV15, |

LDA
STA
CCA
STA
CLA
STA
I NA
JSB

CLB
LDA
AND
CPA
RSS
JwP

LDA

I OR
STA
LDA
STA
LDA
STA
CLA
STA
I NA
JSB

LDA
STA
JSB
JSB
CLB
LDA

CPA
JwP
STB
JSB

DvX16
$DV16, |

$DV17, |
$DV18, |

CEXIT

DvX16, |
LBYTE
ACK

RACK

DVX15, |
CBI T7

Bl T8

$DV15, |
DvX2, |
$DV16, |
DVX3, |
$DV17, |

$DV18, |
CEXIT

$DV17, |
DvX14, |
STAT
CEXIT

DvX12, |
LBYTE
S

DONE
DvX14, |
DYST

I NI TI ATE CNTRL REQ 26B FOR MJX

GET ENQUI RY
SAVE ' ENQ OR ZERO

GET RQ

MAKE SURE | TS A ASCI| READ
(SYSTEM ADDR. SPACE)

SAVE I T

GET 1 BYTE READ ADDRESS
SAVE I T

BUFFER LENGTH

SAVE I T

ZERO ASI C CONTRCL WORD
ALLOW TI MEQUT
SEND ' ENQ , READ ' ACK

CLEAR ’ ENQ
GET BYTE READ

REMOVE LOW BYTE

' ACK RECEI VED?

YES, CONTI NUE

NO, RETRY FOR ACK ONLY

GET SUBFUNCTI ON
ADD ’ CRLF’

SET ’ DI SABLE HANDSHAKE BI T FOR MUX
(USER ADDR SPACE)

GET I NI TI AL BUFFER ADDRESS

SAVE I T

GET INITI AL BUFFER LENGTH

SAVE I T

ZERO ASI C CONTRCL WORD
ALLOW TI MEQUT
I NI TI ATE WRI TE

GET XLOG (+CHAR S)
SAVE | N EXTENSI ON
SETUP FOR 2 CHAR READ
SEND DC1, READ’'S OR'F
ZERO ERROR CODE

GET COWPLETI ON STATUS
REMOVE LOW BYTE
SUCCESSFUL?

YES (B=ERROR CCDE)

NO, ZERO XLOG

GET DYNAM C STATUS

00202
00203
*

00204
00205
00206
00207
00210
00211
00212
00213
00214
00215

174003X DONE
025121R

000000

061256R
170003X
060231R
170004X
161261R
010661R
002004

010237R
170002X

STAT

00216 002400

00217
00220
00221
00222
00223

*

*

00224
00225
00226
00227
00230
00231
00232
00233
00234
00235
00236
00237

*

*

170005X
060407R
170006X
002404

124204R

000100
000400
177577
177377 ECHO
070060 PLU
177776 M2
051400 S
140001 | LREQ
017015 RS.CR
006415 CR CR
003000 ACK
177767 SBIT

Bl T6
Bl T8
CBI T7

* READ REQUEST *

*

00240
00241
00242
00243
00244
00245
00246
00247
00250
00251
00252

*

060024R READ
006003
024525R
061235R
171251R
061236R
171252R
060026R
170004X
002404
015155R

STB $DV16, |
JivP DDCOM

NOP
LDA DVX12
STA $DV16, |
LDA M2

STA $DV17, |
LDA DVX15, |
AND RQASC

| NA

AND SBI T
STA $DV15, |

CLA

STA $DV18, |
LDA DC1
STA $DV19, |
CLA, I NA
JWVP STAT, |

OCT 100
OCT 400
OCT 177577
CCT 177377
CCT 70060
DEC -2
51400
140001
17015
6415
3000
177767

LDA B3
SZB, RSS
JVWP FSRF
LDA S2
STA DVX7, |
LDA R

STA DVX8, |
LDA M
STA $DV17, |
CLA, I NA
JSB CEXI T

SETUP ERROR CCDE
DEVI CE COVPLETE

SETUP FOR 2 CHAR READ
GET READ ADDRESS

SAVE I T

BUFFER LENGTH

SAVE I T

GET RQ

MAKE SURE | TS A ASCI |
RQ=1

(SYSTEM ADDR. SPACE)
SAVE I T

READ

ZERO ASI C CONTRCL WORD
SETUP DC1

I N OPTI ONAL PARAMETER
ALLOW TI MEQUT

RETURN

BI NARY BI T 6

" DI SABLE HANDSHAKE'
ADD ' CRLF

ZERO ECHO BI T 8
<p60>

BIT

<S>

| LLEGAL REQUEST

RECORD SEPERATOR CARRI DGE RETURN
CARRI AGE RETURN CARRI AGE RETURN
" ACKNOW_EDGE’

ZERO S BIT (BIT 3)

ZERO XLOG?

YES, FORWARD SPACE ONE RECORD
GET <s2>

SAVE I T

CGET <R>

SAVE I T

BUFFER LENGTH

SAVE I T

ALLOW TI MEQUT

SEND READ ESCAPE SEUQENCE

Device Driver

3-11

00253
00254

00255
00256
00257
00260
00261
00262
00263
00264
00265
00266
00267
00270
00271
00272

00273
00274
00275
00276
00277
00300
00301
00302
00303
00304
00305
00306
00307
00310
00311
00312
00313
00314
00315
00316
00317
00320
00321
00322
00323
00324
00325
00326
00327
00330
00331

3-12 Device Driver

015060R
015155R

060407R
170006X
161261R
030224R
010237R
170002X
061262R
170003X
060654R
170004X
060410R
170005X
002404

015155R

002400
164004X
054022R
024256R
165261R
174002X
165262R
054234R
024414R
054235R
024414R
170005X
161244R
170003X
161262R
165263R
005700
100104
005700
100104
001700
101104
003007
024414R
070001
007004
103101
175257R
145245R
102301
006021

JSB
JSB

LDA
STA
LDA
I OR

STA
LDA
STA
LDA
STA
LDA
STA
CLA,
JSB

CLA
LDB
CPB
JwP
LDB
STB
LDB
CPB
JwP
CPB
JwP
STA
LDA
STA
LDA
LDB
BLF

BLF

STA

CLO
STB

SGs
SSB,

FPORT FLUSH PORT BUFFERS FOR MUX

CEXIT I NI TI ATE CNTRL REQ 26B FOR MUX

DC1 SETUP FOR

$DV19, | DCl CODE | N UPPER BYTE

DVX15, | GET INI TI AL SUBFUNCTI ON

BI T6 SET BI NARY BI T

SBI T (SYSTEM ADDR. SPACE)

$DV15, | SAVE I T

DVX16 GET DRI VER EXTENSI ON ADDR

$DV16, | SAVE I T

VB BUFFER LENGTH

$DV17, | SAVE I T

B1415 SETUP FOR SPECI AL CHAR (CR)

$DV18, | I N ASI C CONTROL WORD

| NA ALLOW TI MEQUT

CEXI T SEND DC1, READ 5 BYTES
ZERO ASI C CONTROL WWORD

$DV17, | GET XLOG (+CHARS)

B1 ASYNCHRONOUS | NTERRUPT RECEI VED?

READ5 YES, TRY AGAIN (REQ FOR MUX)

DVX15, | GET I NI TI AL SUBFUNCTI ON

$DV15, | (USER ADDR SPACE)

DVX16, | GET LAST CHARACTERS READ

RS. CR RSCR?

ZEROL YES, END OF READ

CR CR CRCR?

ZEROL YES, RETURN KEY STRUCK

$DV18, | SAVE ASI C CONTROL WORD

DVX2, | GET I NI TI AL BUFFER ADDR

$DV16, | SAVE I T

DVX16, | GET FI RST AND SECOND BYTES

DVX17, | GET THI RD AND FOURTH BYTES
MERGE THE FOUR

4 BYTES | N ORDER
TO FIND

4 BUFFER LENGTH

4

| NA, SZA, RSS BUFFER LENGTH ZERO?

ZEROL YES, READ STATUS

B SAVE LENGTH

| NB MAKE LENGTH PCSI TI VE (+CHAR S)
CLEAR OVERFLOW

DVX13, | SAVE REQUEST LENGTH (+CHARS)

DVX3, | ADD ORI Gl ONAL LENGTH (-CHAR S)
SKI P OVERFLOW SET

RSS REQUEST LENGTH >= BUFFER LENGTH?

00332
00333
00334
00335
00336
00337
00340
00341
00342
*

00343
00344
00345
00346
00347
00350
00351
00352
00353
00354
00355
00356
00357
00360
00361

161245R
170004X
006020
006400
060407R
030001
170006X
002404
015155R

160002X
101046
164004X
000010
024357R
161257R
040405R
141245R
002003
044405R
002020
044231R
006020
006400
175260R

00362 004065

00363
00364
00365
00366
00367
00370
00371
00372
00373
00374
00375
00376
00377
00400
00401
00402
00403
00404
*

00405
00406
00407
00410

145266R
002041

025121R
075213R
014013X
101261R
100015X
010411R
164002X
005727

005200

006021

030406R
065213R
014014X
101261R
100015X
025121R

177777
000040
010400
140000

XLOG

ML
B40
DC1

LDA DVX3, |
STA $DV17, |
SSB

CLB

LDA DC1
IOR B

STA $DV19, |
CLA, I NA
JSB CEXIT

LDA $DV15, |
LSR 6

LDB $DV17, |
SLA

JMP XLOG
LDA DVX13, |
ADA ML

ADA DVX3, |
SZA, RSS
ADB ML

SSA

ADB M2

SSB

CLB

STB DVX14, |
CLE, ERB
ADB DVX20, |
SEZ, RSS
JivP DDCOM
STB TEMP
JSB $ONER
DEF DVX15, |
DEF $DV1, |
AND LBYTE
LDB $DV15, |
BLF, BLF
RBL

SSB, RSS

| OR B40
LDB TEMP
JSB $ONEW
DEF DVX15, |
DEF $DV1, |
JivP DDCOM

DEC -1
CCT 40
CCT 10400

B1415 COCT 140000

YES, USE BUFFER LENGTH
SAVE LENGTH (—CHARS)

REMAI NI NG LENGTH POSI Tl VE?

NO, ZERO | NTERRUPTS TO BI T BUCKET
DCl | N UPPER BYTE

MERGE REMAI NI NG | NTERRUPTS TO BI T BUCKET

SAVE DC1 + | NTERRUPTS TO BI T BUCKET
ALLOW TI MEQUT
SEND DC1, READ DVT17 BYTES

GET SUBFUNCTI ON

GET XLOG (+CHARS)

ASCI | ?

NO, DO NOT ADJUST XLOG
YES, GET REQUEST LENGTH (+CHARS)
SUBTRACT ONE

ADD BUFFER LENGTH (—CHARS)
(RL-1) = BL?

YES, XLOG = XLOG -1

(RL-1) < BL?

YES, XLOG = XLOG — 2

XLOG NEGATI VE?

YES, ZERO XLOG

SAVE XLOG (+CHAR S)

E=0/1, ODD/ EVEN

FIND LAST CHAR ADDR

LAST CHAR EVEN?

NO, DEVI CE COVPLETE

SAVE CHARACTER ADDR PTR
YES, GET LAST WORD

REMOVE LOWER BYTE (SPEC CHAR)
GET SUBFUNCTI ON

Bl NARY?

NO, PAD WTH A BLANK
GET CHARACTER ADDR PTR
RESTORE WORD

DEVI CE COVPLETE

DCl CODE | N UPPER BYTE
SPECI AL CHAR (CR)

Device Driver

3-13

00411 177400 LBYTE OCT 177400

*

*

LONER BYTE MASK

* ZERO LENGTH READ/ DYNAM C STATUS SETUP

*

00412
00413
00414
00415
00416
00417

*

*

060232R TI CST
002001
171260R ZEROL
171256R
014662R
024202R

* CONTROL REQUEST *

*

00420
00421
00422
00423
00424
00425
00426
00427
00430
00431
00432
00433
00434
00435
00436
00437

161261R CNTRL
101046
010467R
002003
024503R
050022R
024503R
050023R
024530R
050024R
024525R
050457R
024503R
050460R
024503R
050461R

00440 024412R

00441
00442
00443
00444
00445
00446
00447
00450
00451
00452
00453
00454
00455
00456
*

00457
00460

050462R
024473R
050463R
024525R
050464R
024530R
050465R
024503R
050466R
025072R
002401 ZERR
060233R ERROR
170003X
025130R

000004 B4
000005 BS

3-14 Device Driver

LDA S

RSS

STA DVX14, |
STA DVX12, |
JSB DYST
JVP DONE

LDA DVX15, |
LSR 6
AND B77
SZA, RSS
JVP RW
CPA Bl
JVWP RW
CPA B2
JWVP BSRF
CPA B3
JWP FSRF
CPA B4
JVWP RW
CPA B5
JVWP RW
CPA B6
JWP TI CST
CPA B10
JWP ECF
CPA B13
JVWP FSRF
CPA B14
JWVP BSRF
CPA B26
JVWP RW
CPA B27
JWVP ABSF
CLA, RSS
LDA | LREQ
STA $DV16, |
JvP DDCWVR

CCT 4
CCT 5

CGET <S>

ZERO XLOG

SAVE <S> OR NON <S>
GET DYNAM C STATUS
DONE (B=ERROR CODE)

GET
SUBFUNCTI ON

RESET CTU?

YES, DO REW ND

VWRI TE ECF?

YES

BACKSPACE 1 RECORD?
YES

FORWARD SPACE 1 RECCRD?
YES

REW ND?

YES

REW ND?

YES

DYNAM C STATUS?

YES

VWRI TE EOF | F NOT PREV. WRI TTEN
YES

FORWARD SPACE 1 FILE?

YES

BACKSPACE 1 FI LE?

YES

VWRI TE END OF DATA (ECD)?

YES

LOCATE ABSOLUTE FI LE | PRAML?
YES

ZERO ERROR CODE

ILL. REQ DON T DOWN DO FLUSH
SAVE ERRCR CODE

DEVI CE COVPLETI ON

00461 000006 B6 CCT 6

00462 000010 B1O CCT 10
00463 000013 B13 OCT 13
00464 000014 B14 CCT 14
00465 000026 B26 OCT 26
00466 000027 B27 oCT 27
00467 000077 B77 oCT 77
00470 000200 B200 OCT 200
00471 000320 B320 OCT 320

00472 007700 B7700 OCT 7700

*

* END OF FILE (FUNCTION CODE = 10) *

*

00473 060232R EOF LDA S GET <S> I N UPPER BYTE
00474 171256R STA DVX12, | SET TO SUCCESSFUL

00475 014662R JSB DYST GET DYNAM C STATUS

00476 160001X LDA $DV6, | GET DEVI CE STATUS

00477 010471R AND B320

00500 002002 SZA AT ECF, LP, OR REW NDI NG?
00501 024453R JVWP ZERR YES, DO NOT WRI TE EOF
00502 002404 CLA, I NA WRI TE ECF

*

* REW NDY WRI TE ECF/ WRI TE EOD (FUNCTI ON CODE = 1,4,5 OR 26) *

*

00503 065216R RW LDB WO REW ND

00504 050022R CPA Bl VWRI TE ECF?

00505 065221R LDB U5 YES

00506 050465R CPA B26 VWRI TE ECD?

00507 065222R LDB U6 YES

00510 175251R STB DVX7, | SAVE <u0 OR u5 OR u6>
00511 065217R LDB C

00512 175252R STB DVX8, | SAVE " C

00513 064026R LDB M

00514 174004X STB $DV17, | BUFFER LENGTH

00515 065246R SEND LDB DvX4 GET ESCAPE SEQUENCE ADDR.
00516 174003X STB $DV16, | SAVE | T

00517 002404 CLA, I NA ALLOW TI MEQUT

00520 015155R SEND1 JSB CEXIT I NI TI ATE REQUEST

*

00521 014204R JSB STAT SETUP FOR 2 CHAR READ
00522 015155R JSB CEXI T SEND DC1, READ'S OR'F
00523 014662R JSB DYST GET DYNAM C STATUS

00524 024202R JVP DONE DONE (B=ERROR CODE)

*

* FORWARD/ BACKWARD SPACE N RECORD/ FI LE (FUNCTION CODE = 2,3,13 OR 14) *

*

00525 065224R FSRF LDB ONEP FORWARD SPACE ONE RECORD FI LE
00526 014616R JSB FBRF SETUP ESCAPE SEQUENCE
00527 024520R JWVP SEND1 DOIT

Device Driver 3-15

00530
00531
00532

00533
00534
00535

00536
00537
00540
00541
00542
00543
00544
00545
00546
00547
00550
00551
00552

00553
00554
00555

00556
00557
00560
00561
00562
00563
00564
00565
00566
00567
00570

00571
00572
00573
00574
00575
00576
00577
00600
00601

065224R BSRF LDB
014616R JSB
015155R JSB
014204R JSB
015155R JSB
014662R JSB
160001X LDA
011043R AND
002002 SZA
024202R JwP
160001X LDA
011044R AND
002003 SZA,
024571R JwP
014642R BS2R JSB
065225R LDB
060023R LDA
014616R JSB
015155R JSB
014204R JSB
015155R JSB
014662R JSB
160001X LDA
011043R AND
002002 SZA
024202R JwP
160001X LDA
011044R AND
002002 SZA
024202R JwP
014642R JSB
060024R LDA
024525R JwP
161261R RECFL LDA
010472R AND
050470R CPA
024202R JwP
014642R JSB
065224R LDB
060024R LDA
014616R JSB
015155R JSB

3-16 Device Driver

ONEP
FBRF
CEXI T

STAT
CEXIT
DYST

$DV6, |
Bl T4

DONE
$DV6, |
Bl T7
RSS
RECFL
ASCWI
TWOP
B2
FBRF
CEXIT

STAT
CEXIT
DYST

$DV6, |
Bl T4

DONE
$DV6, |
Bl T7

DONE
ASCWI
B3
FSRF

DVX15,
B7700
B200
DONE
ASCWI
ONEP
B3
FBRF
CEXIT

BACKSPACE ONE RECORD FI LE
SETUP ESCAPE SEQUENCE
DOIT

SETUP FOR 2 CHAR READ
SEND DC1, READ 'S OR'F
GET DYNAM C STATUS

GET STATUS
GET LOAD POINT BIT

AT LOAD PO NT?

YES, DONE (B=ERROR CCDE)

GET STATUS

GET ECF BIT

AT EOF?

NO, CHECK FOR RECORD OR FI LE
ASCI| WRI TE (SYSTEM ADDR. SPACE)

BACKSPACE TWDO RECORDS
SETUP ESCAPE SEQUENCE
DOIT

SETUP FOR 2 CHAR READ
SEND DC1, READ'S OR'F
GET DYNAM C STATUS

GET STATUS
GET LOAD POINT BIT

AT LOAD PO NT?

YES, DONE (B=ERROR CCDE)

GET STATUS

GET ECF BIT

AT EOF?

YES, DONE (B=ERROR CCDE)

ASCI| WRI TE (SYSTEM ADDR. SPACE)
FORWARD SPACE ONE RECORD

DOIT

GET I NI TI AL SUBFUNCTI ON

BACKSPACE ONE RECORD?
YES, DONE (B=ERROR CCDE)
ASCI| WRI TE (SYSTEM ADDR. SPACE)
NO, THEN FORWARD SPACE

ONE RECORD
SETUP ESCAPE SEQUENCE
DOIT

00602
00603
00604
*

00605
00606
00607
00610
00611
*

00612
00613
00614

*

00615
*

00616
00617
00620
00621
00622
00623
00624
00625
00626
00627
00630
00631
00632
00633
00634
00635
00636
00637
00640
00641

*

014204R
015155R
014662R

014642R
065224R
060464R
014616R
015155R

014204R
015155R
014662R

024546R

000000

175252R
065223R
050023R
065227R
050464R
065227R
175251R
065226R
050463R
065230R
050464R
065230R
175253R
064657R
174004X
065246R
174003X
002404

124616R

* ASCl I WRITE

*

00642
00643
00644
00645
00646
00647
00650
00651
00652
00653

000000

161261R
010661R
030660R
010237R
170002X
002400

170005X
170006X
124642R

JSB
JSB
JSB

JSB
LDB
LDA
JSB
JSB

JSB
JSB
JSB

JwP

FBRF NOP
STB
LDB
CPA
LDB
CPA
LDB
STB
LDB
CPA
LDB
CPA
LDB
STB
LDB
STB
LDB
STB

CLA,

JwP

STAT
CEXIT
DYST

ASCWI
ONEP
B14
FBRF
CEXIT

STAT
CEXIT
DYST

BS2R

DvX8, |
UFRWD
B2
UBKWD
B14
UBKWD
DVX7, |
ONEC
B13
TWOC
B14
TWOC
DVX9, |
ML2
$DV17, |
DvX4
$DV16, |
I NA
FBRF, |

SUBROUTI NE *

ASCWI NCP
LDA
AND
I OR
AND
STA
CLA
STA
STA
JwP

DVX15, |
RQASC
B602
SBI T
$DV15, |

$DV18, |
$DV19, |
ASCWI, |

SETUP FOR 2 CHAR READ
SEND DC1, READ 'S OR'F
GET DYNAM C STATUS

ASCI I WRI TE (SYSTEM ADDR. SPACE)
BACKSPACE ONE FI LE

SETUP ESCAPE SEQUENCE
DOIT

SETUP FOR 2 CHAR READ
SEND DC1, READ 'S OR'F
GET DYNAM C STATUS

BACKSPACE TWDO RECORDS

SPACE N RECORDS/ FI LES
SAVE <Np>

FORWARD SPACE?
NO, BACKSPACE

BACKSPACE
SAVE <u+ OR u—>

RECORD?
NO, FILE

FI LE
SAVE <1C OR 2C

BUFFER LENGTH

GET ESCAPE SEQUENCE ADDR
SAVE | T

ALLOW TI MEQUT

RETURN

GET SUBFUNCTI ON
CLEAR BI TS 6,7,8 & RQ

MAKE SURE | TS A ASCI| WRI TE
(SYSTEM ADDR. SPACE)
INHI BI T ’ CRLF

ZERO ASI C CONTRCL WORD

ZERO OPTI ONAL PARAMETER
RETURN

Device Driver

3-17

*

00654
00655
00656
00657
00660
00661

*

177773
177771
177770
177764
000602
177074

Vb DEC -5
Vg DEC -7
MB DEC -8
ML2 DEC -12
B602 COCT 602
RQASC CCT 177074

ASCI | WRI TE,
ZERO BITS 6,7,8 & RQ

* DYNAM C STATUS (FUNCTI ON CCDE = 6) *

*

00662
00663
00664
00665
00666
00667
00670
00671
00672
00673
00674
00675
*

00676
00677
00700
00701
00702
00703
00704
00705
00706
00707
00710
00711
00712
*

00713
00714
00715
*

00716
00717
00720
00721
00722
00723
00724
00725

3-18

000000 DYST NoOP

060662R
171267R
014642R
061237R
171251R
060655R
170004X
061246R
170003X
002404

015155R

160002X
020024R
170002X
061262R
170003X
060656R
170004X
060407R
170006X
002400

170005X
002004

015155R

160001X
010411R
170001X

161264R
165265R
005700
100110
001700
101110
011054R
170005X

Device Driver

LDA DYST
STA DVvX21, |
JSB ASCWI
LDA UP

STA DVX7, |
LDA M/

STA $DV17, 1
LDA DVX4
STA $DV16, |
CLA, I NA
JSB CEXI T

LDA $DV15, |
XOR B3

STA $DV15, |
LDA DVX16
STA $DV16, |
LDA MB

STA $DV17, |
LDA DC1
STA $DV19, |
CLA

STA $DV18, |
I NA

JSB CEXI T

LDA $DV6, |
AND LBYTE
STA $DV6, |

LDA DVX18, |
LDB DVX19, |
BLF

RRL 8

ALF

RRR 8

AND B7777
STA $DV18, |

STORE RETURN ADDRESS
AT DvX21
ASCI I WRI TE (SYSTEM ADDR. SPACE)

SAVE <M>

BUFFER LENGTH

SAVE | T

GET ESCAPE SEQUENCE ADDR
SAVE | T

ALLOW TI MEQUT

SEND STATUS ESCAPE SEQUENCE

MAKE SURE

ITS A

ASCI | READ

GET READ ADDR

SAVE | T

BUFFER LENGTH

SAVE | T

SETUP DC1 CCDE

I N OPTI ONAL PARAMETER

ZERO ASI C CONTRCL WORD
ALLOW TI MEQUT
SEND DC1, READ 8 BYTES STATUS

GET DEVI CE STATUS
REMOVE OLD STATUS

GET STATUS BYTES 0 & 1
GET STATUS BYTE 2
MERGE THE

THREE BYTES

TO FORM

STATUS WORD

REMOVE UPPER FOUR BI TS
SAVE STATUS WORD

I NHI BI T ENQ-ACK FOR MJX

*

* EXAM NE STATUS *

*

00726
00727
00730

064457R
010224R
002002

00731 015036R

00732
00733
00734
00735
00736
00737
00740
00741
00742
00743
00744
00745
00746
00747
00750
00751
00752
00753
00754
00755
00756
00757
00760
00761
00762
00763
00764
00765
00766
00767
00770
00771
00772
00773
00774
00775
00776
00777
01000
01001
01002
01003

064462R
160005X
010462R
002002

015036R
064224R
160005X
011043R
002002

015036R
160005X
000010

024753R
160001X
030023R
011057R
170001X
160005X
011052R
065044R
002002

015036R
160005X
011050R
065043R
002002

015036R
160005X
011047R
064406R
002002

015036R
064023R
160005X
002011

025014R
064461R
031270R
002007

025014R
064460R
160005X

CON

LDB B4

AND BI T6
SZA

JSB DV6ER
LDB B10
LDA $DV18, |
AND B10
SZA

JSB DV6ER
LDB BI T6
LDA $DV18, |
AND BI T4
SZA

JSB DV6ER
LDA $DV18, |
SLA

JWVP CON
LDA $DV6, |
| OR B2

AND CBI T6
STA $DV6, |
LDA $DV18, |
AND B5002
LDB BI T7
SZA

JSB DV6ER
LDA $DV18, |
AND B2000
LDB BI T4
SZA

JSB DV6ER
LDA $DV18, |
AND B1002
LDB B40
SZA

JSB DV6ER
LDB B2

LDA $DV18, |
SLA, RSS
JWP ERR
LDB B6

| OR =B177277
I NA, SZA, RSS
JWP ERR
LDB B5

LDA $DV18, |

SET BIT 2

GET WRI TE PROTECT BIT
WRI TE PROTECT?

YES, SET "W I N DV6
SET BIT 3

GET STATUS WORD

GET SOFT ERROR BI T
SOFT ERRCR?

YES, SET 'SE' IN DV6
SET BIT 6

GET STATUS WORD

GET TAPE BUSY BIT
TAPE BUSY?

YES, SET 'DB" I N DV6
GET STATUS WORD

TAPE | NSERTED?

YES, CONTI NUE

GET DEVI CE STATUS
SET "OF' IN DV6
CLEAR ' DB’ | N DV6
SAVE NEW STATUS

GET STATUS WORD

GET EOF, EOT & EOV BITS
SET BIT 7

ECF, EOCT, OR EOV?
YES, SET "EOF I N DV6
GET STATUS WORD

GET LOAD PO NT BIT
SET BIT 4

LCAD PO NT?

YES, SET 'BOM | N DV6
GET STATUS WORD

GET EOT & EOV BITS
SET BIT 5

ECT OR EOV?

YES, SET "EOM | N DV6
NR ERRCR MESSAGE

GET STATUS WORD

TAPE | NSERTED?

NO, SET 'NR DvV16=2
WP ERROR MESSAGE

VWRI TE PROT & WRI TE ERR SET?
YES, SET 'W' DV16=6

PE ERRCR MESSAGE

GET STATUS WORD

Device Driver

3-19

01004 011045R AND B444

01005 002002 SZA WRI TE ERR, RD ERR OR HARD ERR?
01006 025014R JWP ERR YES, SET 'PE' DV16=5
01007 064457R LDB B4 ET ERRCOR MESSAGE

01010 160005X LDA $DV18, | GET STATUS WORD

01011 011046R AND B1000 GET EOT BIT

01012 002003 SZA, RSS ECT?

01013 006400 CLB NO, SET DvV16=0

01014 161256R ERR LDA DvX12, | GET 'S ,'’U OR'F

01015 002003 SZA, RSS ZERO LENGTH READ?

01016 025024R JVWP ZLNRD YES, CHECK STATUS BI TS
01017 010411R AND LBYTE REMOVE LOW BYTE

01020 050232R CPA S SUCCESSFUL?

01021 025031R JVP SUCCS YES

01022 051056R CPA U USER | NTERRUPT?

01023 065055R LDB RTRY YES, RESTART

01024 160005X ZLNRD LDA $DV18, | GET STATUS

01025 011053R AND B7467 MASK SFT ERR, WRT PROT, CVND EXECUTI ON
01026 051051R CPA B4001 ECF, TAPE | NSERTED SET?
01027 006400 CLB YES, ZERO ERROR CODE
01030 050024R CPA B3 EQV, TAPE | NSERTED SET?
01031 006400 SUCCS CLB YES, ZERO ERROR CODE
01032 006002 SZB ANY ERRCRS?

01033 024202R JVP DONE YES, DONE (B=ERRCR CCODE)
01034 161267R LDA DVX21, | GET RETURN ADDRESS
01035 124000 JVP A | RETURN

*

01036 000000 DVG6ER NOP

01037 160001X LDA $DV6, | GET DEVI CE STATUS

01040 030001 IOR B ADD STATUS BI T

01041 170001X STA $Dv6, | SAVE NEW STATUS

01042 125036R JWP DVGER, | RETURN

*

01043 000020 BIT4 OCT 20 "BOM BIT

01044 000200 BIT7 OCT 200 "EOF BIT

01045 000444 B444 COCT 444 "WRITE ERR ,’ RD ERR ," HARD ERR BI TS
01046 001000 B1000 OCT 1000 "EOT" BIT

01047 001002 B1002 OCT 1002 "EOT" ," EOV' BITS

01050 002000 B2000 OCT 2000 "LOAD PONT" BIT

01051 004001 B4001 OCT 4001 "EOF ' Tl BITS

01052 005002 B5002 OCT 5002 "EOF ,’ EOI",” EOV' BITS

01053 007467 B7467 OCT 7467 MASK "SE'," W' ,’ CE' BITS

01054 007777 B7777 OCT 7777

01055 100077 RTRY OCT 100077 DON' T DOAMW DON' T FLUSH, RESTART
01056 052400 U CCT 52400 "U, USER | NTERRUPT

01057 177677 CBIT6 OCT 177677 CLEAR BIT 6

*

*

* FLUSH PORT BUFFERS FOR MJX (FUNCTI ON CCDE = 26) *

3-20 Device Driver

01060
01061
01062
01063
01064
01065
01066
01067

01070
01071

*

*

000000 FPORT NOP

161261R LDA DVX15, |
011070R AND SUBFN
031071R | OR B2603
170002X STA $DV15, |
002404 CLA, I NA
170003X STA $DV16, |
125060R JWP FPORT, |
170000 SUBFN CCT 170000

002603 B2603 OCT 2603

SETUP SUBFUNCTI ON
FLUSH PORT BUFFERS
FOR MJX.
SAVE | T

1ST PARAMETER = 1
RETURN

CLEAR SUBFUN & RQ
CNTRL REQ (FC=26B)

* LOCATE ABSCLUTE FI LE | PRML (FUNCTI ON CCDE = 27) *

*

01072 160003X ABSF LDA $DV1i6, |
01073 002020 SSA

01074 025130R JvP DDCWVR
01075 065120R LDB M257
01076 044000 ADB A
01077 006021 SSB, RSS
01100 025130R JvP DDCWVR
01101 002300 CCE

01102 014011X JSB $CVT3
01103 061231R LDA UN
01104 030012X | OR $CVT+1
01105 171251R STA DVX7, |
01106 060012X LDA $CVT+2
01107 171252R STA DVX8, |
01110 061220R LDA P2
01111 171253R STA DVX9, |
01112 061217R LDA C
01113 171254R STA DvVX10, |
01114 061117R LDA ML3
01115 170004X STA $DV17, |
01116 024515R JWVP SEND

*

01117 177763 ML3 DEC -13
01120 177377 WM57 DEC -257

*

*

01121 161260R DDCOM LDA DvX14, |
01122 002004 I NA

01123 001100 ARS

01124 165255R LDB DVX11, |
01125 006020 SSB

01126 161260R LDA DVX14, |
01127 170004X STA $DV17, |

GET ABSOLUTE FI LE
NEGATI VE FI LE #?

YES, DEVI CE COVPLETE

FI LE > 256

YES, DEVI CE COVPLETE
E=1 FOR DECI MAL FILE #
CONVERT FI LE # TO ASCI |

SAVE <uSPACE OR NUMBER>

SAVE FI LE NUMBER

SAVE <p2>

SAVE <C

BUFFER LENGTH

GET TOTAL XLOG (+CHARS)
ROUNDOFF

CONVERT TO WORDS

GET ORI G ONAL XLOG
WORDS?

NO, SAVE CHAR S

YES, SAVE WORDS

Device Driver

3-21

01130 060003X DDCM2 LDA $DV16 ADDR OF | NFO

01131 065262R LDB DVX16 ADDR TO SAVE IT

01132 014016X JSB . MWW SAVE $DV16, $Dv17, $DV18 & $DV19
01133 000457R DEF B4 I N EXTENSI ON

01134 000000 NCP

01135 061241R LDA ESCB GET <ESCb> UNLOCK KEYBOARD
01136 171246R STA DVX4, | SAVE | T

01137 014642R JSB ASCWI ASCI I WRI TE (SYSTEM ADDR. SPACE)
01140 061246R LDA DVX4 ESCAPE SEQUENCE ADDRESS

01141 170003X STA $DV16, | SAVE | T

01142 060231R LDA M2 BUFFER LENGTH

01143 170004X STA $DV17, | SAVE | T

01144 002404 CLA, I NA ALLOW TI MEQUT

01145 015155R JSB CEXI T I NI TI ATE UNLOCK KEYBQOARD

01146 061262R LDA DVX16 ADDR OF | NFO

01147 064003X LDB $DV16 ADDR TO RESTORE I T

01150 014016X JSB . MWW RESTORE $Dv16, $Dv17, $DV18 & $DV19
01151 000457R DEF B4 FROM EXTENSI ON

01152 000000 NOP

*

01153 002400 CLA

01154 124000R JwvP DD. 20, | DEVI CE COVPLETE

*
*

* CONTI NUATION EXIT *

*

01155 000000 CEXIT NCP

01156 065155R LDB CEXIT STORE RETURN ADDR

01157 175243R STB DVX1, | AT DvX1

01160 164003X LDB $DV16, | GET BUFFER ADDR

01161 175266R STB DVX20, | SAVE ADDR OF CURRENT READ
01162 034000R I SZ DD. 20

01163 124000R JwvP DD. 20, | I NTERFACE | NI TI ATE

*
*

* CONTI NUATI ON *

*

01164 160003X CONT LDA $DV1i6, | GET ERROR CCDE

01165 010467R AND B77

01166 165246R LDB DVX4, | KEYBOARD JUST

01167 055241R CPB ESCB UNLOCKED?

01170 025173R JVP CONT2 YES, DEVI CE COVPLETE
01171 002002 SZA ANY ERRCRS?

01172 025130R JvP DDCWVR YES, DEVI CE COVPLETE
01173 165243R CONT2 LDB DVX1, |

01174 124001 JWP B, | CONTI NUE REQUEST

*

*

* ROUTI NE FOR DEFI NI NG STORAGE | N DEVI CE DVR EXT. *

3-22 Device Driver

01175
01176
01177
01200
01201
01202
01203
01204
01205
01206
01207
01210
01211

01212
01213

* ESC&

000000 SETAD NoP

160007X
051243R
125175R
065212R
075213R
065242R
170001

002004

006004

035213R
025204R
125175R

LDA
CPA
JwP
LDB
STB
LDB
STA
I NA
I NB
| SZ
JwP
JwP

177753 D.21 DEC
000000 TEMP NOP

$DV22, |
DvX1
SETAD, |
D. 21
TEMP
DvX

B, |

TEMP
SETAD, |

=21

GET ADDR PO NTI NG TO ADDR OF DVT EXT

EXTENS|I ON SETUP?
YES, RETURN
SET FOR 21 M SC. STORAGE

SETUP
DVvX1-DvX21

ADDRESS
PO NTERS

RETURN

TEMPORARY STORACE

REW NDY WRI TE ECF/ WRI TE EQD

* p1(P2)
* Uo(Us) (UB)

* C

01214
01215
01216
01217

01220
01221
01222

* ESC&

015446
070061
072460
041400

070062
072465
072466

ESC&

P1
uo
C

P2
us
U6

CCT
CCT
CCT
CCT
CCT
CCT

q

15446
70061
72460
41400

70062
72465
72466

khkhkkhkhkkhkhkhkhkhkhkhhhkhhhkrkhkr*x

<ESC&>
<pl>
<u0>
<C

<p2>
<ub>
<u6>

FORWARDY BACKWARD SPACE 1 RECORD FI LE

* P1(P2)
* UFRWD(UBK\D)
* ONEP OR TWOP
* ONEC(TWOC)

01223
01224
01225
01226
*

01227
01230

*

072453
030560
031160
030503

072455
031103

UFRWD CCT 72453
ONEP OCT 30560
TWOP OCT 31160
ONEC OCT 30503

UBKWD CCT 72455
TWOC OCT 31103

khkhkkhkhkhkhkhhhkhhhkhhhhhhhhkhhhkhkhkrkkhrx*x*

<y+>
<lp>
<2p>
<1C

<uy->
<2C

Device Driver

3-23

* FIND THE NTH FILE ON CTU (1 OR 2)

* ES(:& khkkhkkhkkhkhhhkhhhkhhhkhhhhhkhhhkhhhkrrkhkrxx*

* p1(P2)

* UN

* P2

e

*

01231 072400 UN OCT 72400 <u >

*

* WRI TE N BYTES TO CTU (1 CR 2)

* ES(.\BL kkkkkhhkhkhkhkkkhkhkkhhhkhkhkkkkk k k k k*k*x

* p1(P2)

* DN

* W

*

01232 062000 DN OCT 62000 <d >
01233 053400 W OCT 53400 <
01234 002400 ENQ OCT 2400 <ENQ>
*

* READ FROM CTU (1 OR 2) TO COMPUTER
* ES(:& kkkhkkhkhkhkhkhkkhkkkhhhhkhkhkhkhhkhhkhk khkhkkkkkkk k%%
* p1(P2)

* S2

* R

*

01235 071462 S2 OCT 71462 <s2>
01236 051000 R OCT 51000 <R>

*

* FETCH STATUS OF CTU (1 OR 2)

* ES(:& kkkkkhkhkhkhkhkkhhkhkhhkhkhkkhkkkkk k k khkhk*xk*x

* p1(P2)

*UP

*

01237 057000 UP QCT 57000 <r>

*

* LOCK/ UNLOCK KEYBOARD

* ES(I: kkkkkhkhkhkhkhkkkhkkhkhk khkhkk*x*x

* ESCB

*

01240 015543 ESCC OCT 15543 <ESCc>
01241 015542 ESCB OCT 15542 <ESCb>

*

* EXTENSI ON FOR M SC. STORAGE *

*

01242 001243R DVX DEF DVX1

01243 000000 DVX1 NOCP CONTI NUATI ON ADDR
01244 000000 DVX2 NOP BUFF ADDR OF CURRENT REQUEST
01245 000000 DVX3 NOCP BUFF LENGTH (—CHAR S)

3-24 Device Driver

01246
01247
01250
01251
01252
01253
01254
01255
01256
01257
01260
01261
01262
01263
01264
01265
01266
01267

*

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

DvXx4
DVX5
DVX6
DVX7
DVX8
DVX9
DvX10
DvX11
DvX12
DvX13
DvX14
DvX15
DvX16
DvX17
DvX18
DvX19
DVvX20
DvX21

* DRI VER PARAMETER STORAGE *

*
*
*

*

01270

* — Volatile reference (store,

$CVT .
$CVT3
$DV1 .
$DV15

$DV16
$DV17
$DV18

$DV19
$DV22
$DV6 .

$DVTP
$ONER
$SONEW
. MWW
A ..
ABSF .
ACK

$DVTP

177277

CTU LEFT OR RI GHT

END

127
125*
318
80
320
94
268*
694
98
249*
560*
152*

j np,

ESCc OR ESCb

ESC&
P1(P2)

REMAI NI NG
CONTROL
ESCAPE
SEQUENCE

I NI TI AL LENGTH

ADDRESS OF ' S

(RIFI

REQUEST LENGTH (+CHARS)
CHARACTER ACCUMULATOR

I NI TI AL SUBFUNCTI ON
BUFFER ADDR

FOR
1-8

BYTE READ
ADDR OF CURRENT READ
CONTI NUATI ON ADDR FOR DYNAM C STATUS

129
702*
328
146*
526*
97*
379*
727
134*
256
713*
172*
588
628
204*

89*
570*

743*
654*

call.

)
704

166*
554
148*
419*
736*
150*
287*
726*
202*
593
633
241>

400
600

698

706

200*
556*
168*
515*
742
170*
298
738*
251*
597
645
292*

442
603*

245* 260*
683*

188* 193*
550* 558*

756 765

176 195*
417* 513*
266* 528*
604 609
529* 562*
446 460
657 659*

296

247>
685*

233*
548*

564*
614

464

Device Driver 3-25

ASCWI

Bl .
B10

B1000

B1002
B13
B14

B1415

B200 .

B2000

B2603

3-26 Device Driver

.521:
34:

. 385:
. 665:
. 666:
. 386:
. 387:
. 334:

. 391:
. 667:
. 388:
. 689:
. 389:
64:

. 392:
. 382:
. 332:
. 668:
. 664:
. 383:
. 669:
. 384:
. 536:

. 670:
. 390:
. 393:
.671:
. 662:
. 2009:
. 663:
. 210:
. 450:
. 434:
. 805:
. 674:
. 211:
. 753:

. 350:
604:
765:
LT172:
. 218:
. 792:
333:

727
720

841
- 188:

. 656:

82*
734*
279*

53
367
634
615
369
371
250

55
474
610
373
682
375

57
469
401

48
324
647
629
363
605
365
524

41
646
352
473
578
443
243
447
165
496*
358*
414
602
164

49*
238*

454*
566*

86*
599*
56*
769*
264
782
203
19*
50*
59*
38*
126
184*
652*
586*

450*
291

105
587

507
488
118

411

84
478
361
616
627

623

766

461
584
465

372*
710

136*
253*

457*

240

748*
58*

189*
40

345*

591*

468*
658

257
589

503
357

85
555

583

594
592
606

139*
294>

480*

290

758*
380*
314*

426*

596*

476*

773*
355

509
452

93
649

632

611

154*
421*

483*

561

759*
696*
329*

445*

608*

486*

785*
409

501

144

730

174*
424*

490*

700*

463*

613*

530*

601

225

744

179*
436*

493*

771*

467*

618*

544*

619

359

235*
439*
552*

475*

660*

DvX .

DVX1 .

DvX10
DvX11
DvX12
DvX13
DvX14
DvX15

DvX16

DvX17
DvX18
DvX19

DVvX20
DvX21
DVX3 .
DvX4 .

DVX5 .
DVX6 .
DVX7 .
DVX8 .
DVX9 .
DYST .

ECHO .
ENQ
EOF
ERR

ESC& .
ESCB .
ESCC .
FBRF .
FPORT
FSRF .
| LREQ
INIT .
LBYTE

. 870:
. 871:
. 880:
. 881:
. 882:
. 883:
. 884:
. 885:

. 886:
. 887:

. 875:

784
755*
711*
99*
181
282*
47*
81*
196
552
147
741
270
572
573
95*
312
543*
104*

43*
378
54*
88
302
133
512
712
194
119
248
547
559
232
506
430
Synbol
708
78
230
161*

772

723
192
301
177*

242
680
157

167
757*
653
111

229*
231*
511*
344>
542

626*

768
435*

237*
360*

158
305

307
697

416
434

not referenced

780

343*
185*
259
246

267

169
418

413*
415*
709*
399*

631*

453*
686*
370*

182

737

477

870

398*

310*
92*

317

261

283
514

505*
499*

425*

479*

470*

319

487

637
342*
113
327

269

286
549

546*
707*

440*

489*

569

720
143
350

557

303
733*

705*

458*

517*

640

725
163
472

728

735

484*

Device Driver

3-27

. 225:
. 241:
.472:
. 537:
. 217:
. 672:
. 408:
. 215:
. 851:
. 220:
. 418:
.421:
. 778:
. 191:
. 688:
. 650:
. 793:
. 340:
. 824:
. 820:
. 673:
. 804:
. 808:
. 809:
. 823:
. 818:
. 833:
. 859:
. 842:
B
. 308:
. 342:
377
. 645:

/1000 Rev. 5000 870612

3-28

Device Driver

106*
258*
449*
197
262
644
354*
183
228
145
714*
432*
39*
178*
681
642*
315*
366*
508
451
643
408
410
412
502
500
703
545
131

300*
263*
403*
639*

Synbol

523
356* 362*
340 397
199 244
781* 790*
206* 423*
325 783*
510
504

not referenced

265* 278*

No errors found

364* 374*
641

525

438* 456* 482*

788*

492*

Interface Driver

The system enters the interface driver as indicated below. The address of the driver is picked up
from the IFT.

All pointers to the IFT, as described in the chapter on System I/O Tables, are set prior to
entering the driver. The registers and calling sequence are (global register = select code and
global register enabled):

B-Register = DVT Address

A-Register: Bits 2-0 = Entry Directive, as below:

JSB ID.nn
P+1 done
P+2 wait
P+3 resume

Although not normally needed, the driver can determine the select code for the interface card by
an LIA 2 instruction.

The various entry directives and their codes in the A-Register are:
Code Meaning

000
001
010
011
100

Abort
Initiate
Continue
Time Out
Power Fail

Interface Driver 4-1

The driver must increment its return address, stored at its entry point, to the proper exit as

follows:
Source Code

JMP ID.XX,1
P+1 return

ISZ ID. XX
JMP ID.XX 1
P+2 return

ISZ ID. XX
ISZ ID. XX
JMP ID.XX 1
P+3 return

Meaning

Request complete
on interface driver.

Wait for next
interrupt or
timeout.

Resume processing in
the device driver. An
interrupt has occurred
from a device whose
driver is not at the
request list head (IFT3).

A-Register on Exit

QDOHT

00IHT

000HT

The P+3 return from the interface driver essentially means that the interface driver does not
have enough information to completely process the interrupt. Therefore, it must call upon the

device driver.

Upon exit from the driver bits 0-4 of the A-Register are stored in the system flags area of IFT7.
The meanings of the bits are:

Q = Do not advance to next request on list.

D = Defer entering device driver (pseudo done).

I = Report illegal interrupt.

H = Assert or maintain hold on new request initiation.
T = Set timeout on device request.

4-2 Interface Driver

Entry Directives

The system will set up the pointers to the IFT before entering the driver. The system will also
set up the pointers to the DVT if this is an “initiate” or “abort” entry. For other entry directives,
the driver may set up pointers to the DVT by calling system routine $DIOC (as required).

Upon entry, the directive code will be in the A-Register bits 2-0 and the DVT address will be in
the B-Register.

The global register for the select code given in the IFT is enabled prior to the entry of the
interface driver by the system. The select code (if needed) can be found by reading the global
register (LIA 2 instruction).

Initiate New Request

Upon entry, bits 2-0 of the A-Register equal 001.

The purpose of this directive is to start a new request. The request code is in DVT15 with
parameters in DVT16 through DVT19.

The driver parameter area (starting at DVTP) and the driver communication area of DVT20
may also contain useful information for processing the request.

Unless the interface driver can complete the request immediately, it should make a “wait” exit
after initializing the I/O operation. It should expect a “continue” entry to process the next
interrupt, which will normally be a DMA completion.

Continue Processing

Upon entry, bits 2-0 of the A-Register equal 010.

The purpose of this directive is to handle an interrupt, which usually will indicate DMA
completion. The driver might chose to issue a new command which would lead to another
interrupt or complete the request and take the “done” exit.

Upon receiving this directive, the driver should immediately test and clear both flag 30 and flag
23. The system itself takes no action on the flags.

1. Flag 30 is the interface card flag and is cleared with a CLF 30. Either the interface flag or
the DMA flag 21 may be used to indicate completion.

2. Flag 23 is set if one or more of the following flags are set:

Flag 20, indicating end of DMA chained list.
Flag 21, indicating DMA completion.
Flag 22, indicating a DMA parity error.

A CLF 23 will clear flags 20, 21, and 22.

Interface Driver 4-3

Timeout Processing

Upon entry, bits 2-0 of the A-Register equal 011.
The interface driver is called for timeout when the working clock in IFT2 is incremented to zero.

The working clock is initialized by the system upon every entry to the interface driver. It is set to
the value taken from DVT13.

The clock is used only if the interface driver sets the T bit in the A-Register upon exit. If it is
enabled by this bit, then the clock starts ticking upon exit from the interface driver.

Abort Request

Upon entry, bits 2-0 of the A-Register equal 000.

Prior to entering the driver (device or interface) the “A” bit in DVT7 is set to indicate that abort
processing is in progress. It will be reset when abort processing is completed by the drivers.

For requests which are busy, the device driver is given first chance at abort processing. If the
device driver is entered and handles the request, then the interface driver will be called for abort
processing only if the device driver makes an “initiate exit” with the abort request in the
A-Register.

If the user request specifies that the device driver is bypassed (bit 15 in the control word) or no
device driver exists, then the system initiates the abort request on the interface driver. The
system will also initiate this request if the device driver treats the abort request as an “illegal
request.”

The intent of the abort request is to stop the operation on the I/O card as soon as possible. This
may result in unpredictable device action. Therefore it is best if the action is initiated only upon
the decision of the device driver. In any case, it is the responsibility of the interface driver to
return the I/O card to a known state after completing the abort.

When done with abort processing, the driver should take the “done” exit.

Power-Fail Restart

Upon entry, bits 2-0 of the A-Register equal 100.

The interface driver will always be called upon power-fail restart. Hence every interface driver
must be coded to accept such an entry directive (although it may choose to ignore it).

The interface driver will always be called prior to the device driver when power-fail processing is
to be done. The device driver will be called after the interface driver only if the P bit is set in
DVT4.

4-4 Interface Driver

Driver Exit

Upon driver exit, there are three concerns:

1. Setting of system flags through bits in the A-Register.
2. Posting status in the DVT.

3. Posting any errors, in addition to status.

2 <

The system flags are set regardless of whether the exit is to indicate “done,” “wait” or “resume”.

However, status and errors are posted only on the done exit.

It is important to remember that the status of the transfer of data and any transfer errors should
be posted by the interface driver. The device driver handles only device-dependent status and
EITOorS.

The topics of status and error posting are common to both the device driver and the interface
driver and so they are covered in a separate chapter of this manual.

System Flags

The three possible exit sequences from the interface driver are given below. For each exit, bits
4-0 of the A-Register have the meaning indicated. The B-Register is meaningless.

The system takes the contents of A-Register bits 4 through 0 and places them in the system flags
area of IFT7.

A-Register Bit: 4 | 3|2 110
P + 1 “Done” Q| D|O | H|T
P + 2 “Wait” OO I[H|T
P + 3 “Resume” O|O0O|O|H|T

L88-334A

T means set timeout. If set, the system will enter the interface driver in the timeout list. See
Timeout Processing.

H means hold. If set, the system will delay calling the interface driver to start a new request. It
is recommended that the driver set this bit when it exits with DMA active for the user’s buffer.
This prevents the DMA port map register from being altered while DMA is in progress.

If the hold is made on a “done” exit, a “continue” entry will be made to the device driver,
just as if the hold was not made. This puts the IFT in a non-busy state in which the driver is
waiting for expected interrupts. For example, the driver might be waiting for a response to a
serial poll on the HPIB. When it comes, the interrupt causes a “continue” entry. The driver
can easily identify the reason for the entry because the IFT is not busy.

Interface Driver 4-5

I indicates an illegal interrupt. If set, the system will issue an error message of the form:
Il'legal interrupt from SC nn octa

where nn is the select code on which the interrupt occurred.

Q is request advance inhibit. If set, then the current DVT remains at the head of the request list
on IFT3. Requests linked on other DVTs will be held off. (See Figure 2-1 for more on DVT/IFT
linking.) Note that, even if the Q bit is zero, the request will remain at the head of the list if the
IFT is locked to the DVT.

D defers entry to device driver. If set, then the continue entry to the device driver will not be
made; hence the request completion will be delayed. This is a “pseudo done” exit.
If the driver sets the D bit, then it must keep track of the request and complete it later, if
needed. The action taken by the system is simply to avoid the continue entry into the device
driver.

Normally, if D is set, then Q is not set, permitting advance to the next request. Thus,
requests from multiple devices may be made on the interface driver before any are
completed. This may be valuable if the requests take a long time to complete.

The use of this bit implies timeout control by the interface driver. See the section on
Asychronous I/O and Polling.

4-6 Interface Driver

Sample Interface Driver

This section contains a listing for a sample interface driver. Many of the features of the driver

are not explained in detail in the manual because they are not essential to the structure of the

driver. That is, there are many different ways the same result could be achieved and this listing
represents one programmer’s approach.

Although this sample driver has been tested, it is not guaranteed to correspond to the code in

any driver shipped with the system. It is included here only as an example.

ASMB, R L, C
*
* NAME: 1D.01
* SOURCE: 92077-18390
* RELOC: 92077-16390
* PGWVR T.AL, BAC
*
* khkkkhhkkhhhkhkhhhkkhhhhkhhhxkhdhhhhhdxkdhhhdhdxddhhdhdxddhxddhdxddxddh*xddx*d,*x*%x
* * (C) COPYRI GHT HEW ETT-PACKARD COVPANY 1982. ALL RI GHTS *
* * RESERVED. NO PART OF THI'S PROGRAM MAY BE PHOTOCOPI ED, *
* * REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE W THOUT*
* * THE PRI OR WRI TTEN CONSENT OF HEW.ETT-PACKARD COVPANY. *
* khkkkhhhkkhhhkhkhhhkkhhhhkhhhxkhhhhdhdxkhdhhhhdxkddhhkdhdxkddhxddhdxddx*dh*x*dkx*k,*x*%x
*
NAM | D. 01,0 92077-16390 REV. 2327 <881110.1042>
*
ENT | D. 01
EXT $| FTX, $DV15, $DV16, $DV17, $DV18, $DV19, $XQEB, $I F
EXT $I F1, $I F5, $I F6, $DI OC, $LUTA, $DVPR, $SELR, $DVTP
*
GEN 1, PA
GEN 10, EI D. 01, TX: 33, 1 T: 01B
*
000000 A EQU 0
000001 B EQU 1
*
00000 000000 |D.01 NOP
k_k_k_k_Kk_Kk_Kk_k_k_k_K_Kk_Kk_Kk_k_*_*_K_Kk_K*_k_k_*_*_K_K_K*_k_*_*_*_*_*_*
00001 010203R AND B7 *BC*
00002 071024R STA DIR *BC*
00003 002404 CLA, | NA *BC*
00004 164012X LDB $| F5,1 GET DVT ADDRESS * BC*
00005 014014X JSB $DI OC SET UP POl NTERS * BC*
*
00006 064001X LDB $| FTX GET | NTERFACE DRI VER STORAGE ADDR
00007 074777R STB DMAAD SAVE | T
00010 044205R ADB D13 COMPUTE BREAK FLAG ADDR
00011 075000R STB BRKFL SAVE | T
00012 006004 | NB COMPUTE PARI TY CHECK FLAG ADDR
00013 075001R STB PCHKB SAVE I T
00014 006004 | NB COMPUTE | GNORE | NPUT FLAG ADDR
00015 075002R STB | GNOR SAVE I T
00016 006004 | NB COMPUTE BI T BUCKET ADDR
00017 075003R STB BI TBK SAVE I T

Interface Driver

4-7

00020 006004
00021 075004R
00022 006004
00023 075005R
00024 006004
00025 075006R
00026 006004
00027 075007R
00030 006004
00031 075010R
00032 006004
00033 075011R
00034 006004
00035 075012R
00036 006004
00037 075013R
00040 006004
00041 075014R
00042 006004
00043 075015R
00044 006004
00045 075016R
00046 006004
00047 075017R
00050 006004
00051 075020R

00052 006004
00053 075021R
00054 060740R
00055 170001

00056 006004
00057 075022R
00060 060741R
00061 170001

00062 006004
00063 075023R
00064 060742R
00065 170001

00066 061024R
00067 171016R
00070 102532

00071 171013R
00072 160002X
00073 011703R
00074 171014R

00075 161004R
00076 002021
00077 024155

4-8 Interface Driver

I NB
STB
I NB
STB
I NB
STB
I NB
STB
I NB
STB
I NB
STB
I NB
STB
I NB
STB
I NB
STB
I NB
STB
I NB
STB
I NB
STB
I NB
STB

I NB
STB
LDA
STA

I NB
STB
LDA
STA

I NB
STB
LDA
STA

LDA
STA
LI A
STA
LDA
AND
STA

LDA

SSA,

JwP

WD18A
WD19A
WD20A
WD21A
WD22A
WD23A
SAVEA
STSSS

WL 8

DI REC
STRA

STRB

CRLFA
CRLFX
B, |

ESCA
ESCX
B, |

DC1A
DC1X
B, |

D R
Dl REC, |
32B
STSSS, |
$DV15, |
=B7703

RQ |

WD18A, |
RSS
B. 1

..... DO | NPUT SCREENS. .

MODEM STATUS WORD ADDRESS
RETRY RESUME ADDRESS
\
\
> MODEM ALARM PROGRAM NAME
//
LOGLU FOR ALARM PROG
TEMP A-REG STORAGE
CARD STATUS SNAP SHOT

REQUEST WORD

ENTRY DI RECTI VE
TEMP STORACGE

| FTX WD31
MOVE CRLF CODE TO EXTENSI ON
I N CASE DRI VER GETS MAPPED OUT

| FTX WD32
MOVE ESCA CODE TO EXTENTI ON
I N CASE DRI VER GETS MAPPED OUT

| FTX WD33
MOVE DC1 CODE TO EXTENTI ON
I N CASE DRI VER GETS MAPPED OUT

SAVE A SNAP SHOT OF CARD STATUS
SAVE REQUEST | NFORMATI ON

NOT VALID I F PF OR CONT ENTRY!
GET MODEM CNTL WD

MODEM ENVI RONVENT?
NO, GO ARCUND

ONCE ARMED FOR | NCOW NG CALL, DON T ALLOW ANY
DRI VER ENTRYS BUT CNTL32/31, PF, T/ O OR CONTI NUE

>>>r> Prr> PPy

*BC
BC
*BC
*BC
*BC
*BC
*BC
BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC

83BC
83BC
83BC
83BC

83BC
83BC
83BC
83BC

83BC
83BC
83BC
83BC

*BC
*BC
BC
*BC
BC
*BC
BC

*BC
*BC
*BC

*
*

00100 161004R LDA WD18A, | *BC

00101 011677R AND =B2000 * BC*
00102 002003 SZA, RSS ARMED FOR AN | NCOVWM NG CALL? * BC*
00103 024152R JWP B. 01 NO, NOT THE CASE. GO AROUND * BC*
00104 161016R LDA DI REC, | GET DRI VER ENTRY DI RECTI VE * BC*
00105 050715R CPA B3 T/ O? * BC*
00106 024152R JWP B. 01 YES, ALLOWIT * BC*
00107 051657R CPA =B4 PF ENTRY? * BC*
00110 024152R JWP B. 01 YES, ALLOWIT * BC*
00111 051655R CPA =B2 CONTI NUATI ON ENTRY? * BC*
00112 002001 RSS YES, LOOK CLOSER * BC*
00113 024121R JVP B. 015 NO , GO TO NEXT CHECK * BC*
00114 161013R LDA STSSS, | * BC*
00115 011665R AND =B100 DUE TO A MODEM STATUS CHANGE? * BC*
00116 002002 SZA * BC*
00117 025135R IVP OL. 4 NO, ARM AGAI N FOR DI AL-I N * BC*
00120 024152R JWP B.O1 YES, ALLOW ENTRY * BC*
*

00121 161016R B. 015 LDA DI REC, | * BC*
00122 051654R CPA =Bl INIT ENTRY? * BC*
00123 002001 RSS YES, LOOK CLOSER * BC*
00124 024132R JVP B.016 NO, FLUSH * BC*
00125 161014R LDA RQ | * BC*
00126 051701R CPA =B3203 CNTL 327 * BC*
00127 002001 RSS YES * BC*
00130 051700R CPA =B3103 CNTL 312 * BC*
00131 024152R JWP B. 01 YES, ALLOWIT * BC*
*

* |F THE USER HAS ACTI VATED THE BENI GN BI T AND FMGR

* WAS ACTIVE ON A MODEM TERM NAL THAT DI SCONNECTED,

* | TS AUTO PROVPT UPON RETURN WLL CAUSE ID.01 TO DO

* AND ENDLESS STREAM OF FLUSHES UNTIL THE NEXT DI AL-IN.

*

*

00132 060151R B. 016 LDA Bl17 HOLD OFF NEXT FLUSH FOR 1.5 SEC *BC*
00133 171005R STA WD19A, | SAVE RETURN ADDRESS *BC
00134 161004R LDA WD18A, | RESET CNTR, SET RETRY BIT *BC*
00135 011731R AND =B177400 *BC
00136 031667R | OR =B200 *BC
00137 171004R STA WD18A, | *BC
00140 061734R LDA =D-150 *BC
00141 025254R JVP WL A *BC
00142 161004R B. 017 LDA WD18A, | RESET RETRY BI T *BC
00143 011731R AND =B177400 *BC
00144 171004R STA WD18A, | *BC
00145 060200R LDA ABRTE FLUSH, DON' T DOWN DVT *BC
00146 170003X STA $DV16, | *BC
00147 002400 CLA *BC
00150 124000R JwP 1 D. 01,1 *BC

00151 000142R B17 DEF B. 017
*

*

00152 060545R B. 01 LDA B2000 I F I'N MODEM ENVI RONMVENT, CHANGE B2000
USED

00153 031670R | OR =B240 IN DMA READ QUAD TO B2240 *BC
00154 002001 RSS *BC
00155 061025R B.1 LDA B2K | F NOT, LEAVE AS B2000 *BC

Interface Driver 4-9

00156 070545R STA
00157 161016R LDA
k_k_Kk_k_Kk_Kk_k_k_*k_Kk_*k_*k_*k__*k__k__*k__
*k_k_Kk_*k_*k_*k_* * _*%
00160 064200R LDB
00161 002003 SZA,
00162 024725R P
*

X _k_Kk_k_Kk_*k_k_*k_*k_*k_*k__%
00163 050715R CPA
00164 024723R P
*

00165 161004R LDA
00166 011731R AND
00167 171004R STA
00170 161016R LDA
X _Kk_Kk_k_Kk_*k_k*_*k_*k_*_*k__%
00171 050201R CPA
00172 024206R P
00173 015433R JsB
00174 161016R LDA
00175 050202R CPA
00176 024553R P
*

* PONERFAI L *

*

00177 024560R P
*

00200 140077 ABRTE OCT
00201 000001 Bl OCT
00202 000002 B2 OCT
00203 000007 B7 OCT
00204 003000 B3000 OCT
00205 000015 D13 DEC
*

*

* | NI TI ATI ON *

*

00206 002400 INIT CLA
00207 171002R STA
00210 160002X LDA
00211 010715R AND
00212 050715R CPA
00213 024472R P
*

* BUI LD DEFAULT CONTROL
*

00214 160005X LDA
00215 011726R AND
*

00216 165004R LDB
00217 006020 SSB
00220 011732R AND
*

00221 164002X LDB
00222 030466R | OR
00223 004032 SLB
00224 020204R XOR
00225 005727 BLF

4-10

Interface Driver

ABRTE DON T DOAN DO FLUSH, NO MESSAGE
RSS ABORT?

ABORT YES
k_k_Kk_k_Kk_k_Kk_Kk_k_Kk_*k_k_*k_k_k_*k_*k_*k_k__*k__%__%
B3 TI MEQUT?

TI MOT YES

WD18A, | | F NOT T/ O ENTRY,

=B177400 RESET RETRY COUNTER

WD18A, |

DI REC, |

X _k_Kk_k_Kh_k_Kk_Kk_k_Kk_*k_k_*k_k_*k_*k_*k_*k_*k_*_%__%
Bl I NI TI ATE?

INIT YES

M5CNG PF OR MODEM FAI L?

Dl REC, | RESTORE DI RECTI VE

B2 CONTI NUATI ON?

CONT YES

PWRFL PONERFAI L

140077 ABCRT ERROR CODE

1

2

7

3000

13

| GNOR, | ZERO | GNORE | NPUT FLAG

$DV15, | GET RQ

B3

B3 CONTROL REQUEST?

CNTRL YES

WORD *

$DV18, |
=B174377

WD18A, |
=B177407

$DV15, |
B1000
RBL
B3000
BLF

RESTORE A REG

Kk _k_k_Kk_k_k_Kk_Kk_*_K*_k_*_*_*_*k_%

I F MODEM ENVI RONMVENT

GET USER CONTRCL WORD
ZERO XM T, RCV & CHLN BITS

FORCE BI TS 3-7 TO ZERO ALSO

GET SUBFUNCTI ON & RQ

SET XMT, BIT 9

VWRI TE REQUEST?

NO, SET RCV, BIT 10
SHI FT Bl NARY-ASC! |

BIT

*BC
*BC

BC
BC

BC
BC
BC
BC

BC
BC
BC

00226
*

00227
00230
00231
00232
00233
00234
00235
00236
*

00237
00240
00241
00242
00243
00244
*

*

006020

024236R
164020X
005200

006020

024236R
121001R
024237R
030465R

015546R
170005X
160002X
164004X
000010

024370R

SET8
SET7

* WRI TE REQUEST *
*

00245
00246
00247
00250
*

00251
00252
00253
00254
00255
00256
00257
00260
00261
*

00262
00263
00264
00265
*

160002X
010463R
002003

024262R

006003

024720R
014743R
100002X
071400

100005X
100003X
100004X
024342R

160002X
010467R
002002

024311R

Bl NRY

ASCl |

* CHARACTER MCDE *

*

00266
00267
00270
00271
00272
00273
00274
00275
00276
00277
00300
00301
*

00302
00303
00304

160002X
010464R
002002

024251R
006003

024302R
014743R
100002X
171400

100005X
100003X
100004X

014743R
001032R
071400

CRLF1

Bl NARY?

SET8
$DVTP, |

SET8
PCHKEB, |
SET7
Bl T8

MDI NT

$DV18, |
$DV15, |
$DV17, |

READ

$DV15, |
Bl T6
RSS
ASCl |

RSS
ZLOG
QUAD
$DV15,
71400
$DV18,
$DV16,
$DV17,
ID.10

$DV15, |
Bl T11

ASBLK

$DV15, |
Bl T7

Bl NRY
RSS
CRLF1
QUAD
$DV15,
171400
$DV18,
$DV16,
$DV17,

QUAD
ZERO
71400

YES

GET TERM NAL CONFI GURATI ON WORD
GET ASCIlI BIT

8 BI T ASCI| ENABLED?

YES

7 BIT ASCII. ADD ERROR CHECKI NG
NO

INT | F MODEM CHANGES | F MDM EN *BC*
SAVE CARD CONTROL WORD

GET RQ

GET TRANSM SSI ON LOG

READ REQUEST?

YES

CHECK FOR BI NARY/ ASC

ASCl | ?
YES

Bl NARY ZERO XLOG?
YES, | NTERFACE COVPLETE
BUI LD DATA QUAD, NO ' CRLF

DVA CONTROL WORD
CARD CONTROL WORD
BUFFER ADDRESS
BUFFER LENGTH
SEND DATA

GET SUBFUNCTI ON

GET ESC BACKARROW BI T
PERFORM ESC BACKARROW?
YES

CHECK FOR ' CRLF’

ADD CRLF?

NO

ASCl | ZERO XLOG?
YES

BUI LD DATA QUAD
DVA CONTROL WORD
ASI C CONTROL WORD
BUFFER ADDRESS
BUFFER LENGTH

BUI LD ' CRLF' QUAD

DVA CONTROL WORD

Interface Driver

00305
00306
00307
00310
*

100005X
001021R
000460R
024342R

* BLOCK MODE *

*

00311
00312
00313
00314
00315
00316
00317
00320
*

00321
00322
00323
00324
*

00325
00326
00327
00330
00331
00332
00333
*

00334
00335
00336
00337
00340
00341
*

*

006003 ASBLK
024321R
014743R
100002X
171400
100005X
100003X
100004X

160002X CRLFQ
010464R
002002
024334R

014743R
001032R
071400

100005X
001021R
000462R
024342R

014743R NOCR
001032R
071400
100005X
001022R
000461R

* START DMA *

*

00342
00343
00344
00345
00346
*BC
00347
*BC
00350
00351
00352
00353
00354
00355
*

00356
00357
00360
00361
00362

4-12

002404 1D. 10
034000R
107721 WDQUT
107723
171012R

102531

011671R
102631
161012R
006400
106624
103730

064001X
006004
106620
103720
124000R

Interface Driver

$DV18, |
CRLFA
e
ID.10

RSS
CRLFQ
QUAD
$DV15,
171400
$DV18,
$DV16,
$DV17,

$DV15, |
Bl T7

NCCR

QUAD
ZERO
71400
$DV18,
CRLFA
VB
ID.10

QUAD
ZERO
71400
$DV18,
ESCA
MB

I NA

I D. 01
21B, C
23B, C
SAVEA, |

31B
=B377
31B
SAVEA, |

24B
30B, C

$I FTX
20B

20B, C
I D.01, I

ASI C CONTROL WORD
CRLF ADDRESS
BUFFER LENGTH
SEND DATA

ASCl | ZERO XLOG?
YES, OUTPUT CRLF
BUI LD DATA QUAD

DVA CONTROL WORD
ASI C CONTROL WORD
BUFFER ADDRESS
BUFFER LENGTH

CHECK FOR ' CRLF

ADD CRLF?
NO

BUI LD ' CRLF ESC DCl’ QUAD

DVA CONTROL WORD
ASI C CONTROL WORD
CRLF ADDRESS
BUFFER LENGTH
SEND DATA

BUI LD ' ESC DC1’ QUAD

DVA CONTROL WORD
ASI C CONTROL WORD
ESC ADDRESS
BUFFER LENGTH

ALLOW TI MEQUT

SETUP FOR | NTERFACE CONTI NUE

SUSPEND AND

TERM NATE DVA OPERATI ON

| F MODEM | NT" S WERE ENABLED, DON T CHN

KEEP SAME DTR, RTS STATE IN CNTL REG

* BC
* BC
* BC

CLEAR BREAK FLAG

ENABLE BREAK

GET QUAD

STARTI NG ADDRESS

START DNVA
| NTERFACE COMPLETE/ CONTI NUE

*

00363 103730 WAIT STC 30B,C

00364 002404 CLA, I NA ALLOW TI MEQUT
00365 171000R STA BRKFL, | SET BREAK FLAG
00366 034000R ISZ 1D 01

00367 124000R JwP 1D. 01,1 | NTERFACE CONTI NUE
*

*

* READ REQUEST *

*

00370 006003 READ SZB, RSS ZERO XLCOG?

00371 024720R JWP ZLOG YES, | NTERFACE COVPLETE

00372 160006X LDA $DV19, | GET OPTI ONAL PARAMETER

00373 010470R AND LBYTE REMOVE LOWER BYTE

00374 002003 SZA, RSS H BYTE > 07

00375 024411R JWVP READB NO, CHECK LOW BYTE

00376 160005X LDA $DV18, | GET ASI C CONTROL WORD

00377 011676R AND =B1377 REMOVE RCV & ECHO BI TS *BC
00400 030466R | OR B1000O SET XM T BIT

00401 015546R JSB MDI NT *BC
00402 070737R STA TEMP SAVE ASI C CONTROL WORD

00403 014743R JSB QUAD BUI LD WRI TE QUAD

00404 001032R DEF ZERO

00405 171400 CCT 171400 DVA CONTROL WORD

00406 000737R DEF TEMP CARD CONTROL WORD

00407 000006X DEF $DV19 OPTI ONAL PARAMETER ADDR

00410 000457R DEF ML BUFFER LENGTH

*

00411 160006X READB LDA $DV19, | GET OPTI ONAL PARAMETER

00412 010471R AND HBYTE REMOVE HI GH BYTE

00413 002003 SZA, RSS LOW BYTE ZERO?

00414 024450R JWVP READQ YES, BU LD READ QUAD

00415 002021 SSA, RSS PCSI TI VE NUMBER?

00416 003004 CMVA, | NA YES, MAKE NEGATI VE

00417 002004 I NA SUBTRACT ONE

00420 171002R STA | G\OR, | SAVE | N EXTENSI ON

00421 014743R JSB QUAD BUI LD READ QUAD

00422 100002X DEF $DV15, |

00423 171600 CCT 171600 DVA CONTROL WORD

00424 100005X DEF $DV18, | CARD CONTROL WORD

00425 100003X DEF $DV16, | BUFFER ADDRESS

00426 100004X DEF $DV17, | BUFFER LENGTH

*

00427 161002R LDA | GNOR, | GET NUMBER OF | NTERRUPTS TO | GNORE
00430 002003 SZA, RSS ZERO?

00431 024441R JWP READ1 YES, READ ONE BYTE I NTO BI T BUCKET
*

00432 014743R JSB QUAD BUI LD BI T BUCKET QUAD

00433 100002X DEF $DV15, |

00434 071000 CCT 71000 DVA CONTROL WORD

00435 100005X DEF $DV18, | CARD CONTROL WORD

00436 100003X DEF $DV16, | BUFFER ADDRESS

00437 101002R DEF | GNOR, | BUFFER LENGTH

00440 024342R JWw ID.10 SEND DATA

*

00441 014743R READ1 JSB QUAD BUI LD READ BYTE QUAD

00442 001032R DEF ZERO

00443 071600 CCT 71600 DVA CONTROL WORD

00444 000545R DEF B2000 ASI C CONTROL WORD (B2240 | F MDM *BC*

Interface Driver 4-13

00445
00446
00447
*

00450
00451
00452
00453
00454
00455
00456
*

*

00457
00460
00461
00462
00463
00464
00465
00466
00467
00470
00471
*

*

* CONTROL REQUEST *

*

00472
00473
00474
00475
00476
00477
00500
00501
00502

001003R
000457R
024342R

014743R
100002X
071600

100005X
100003X
100004X
024342R

177777
177776
177775
177773
000100
000200
000400
001000
004000
177400
000377

DEF
DEF
IVP
READQ JSB
DEF
ocT
DEF
DEF
DEF
IVP
ML ocT
MR oCcT
MB oCcT
VB oCcT
BIT6 OCT
BIT7 OCT
BIT8 OCT
B1000 OCT
BI T11 OCT
LBYTE OCT
HBYTE OCT

Bl TBK
ML
ID.10

QUAD
$DV15,
71600
$DV18,
$DV16,
$DV17,
ID.10

-1
-2
-3
-5
100
200
400
1000
4000
177400
377

$DV15, |
6

B77

B6

Bl T BUCKET ADDRESS
READ BYTE

BUI LD READ QUAD
DVA CONTROL WORD
CARD CONTROL WORD

BUFFER ADDRESS
BUFFER LENGTH

SEND DATA

BIT 6, "BINARY-ASCI|” BIT
BIT 7, "CRLF" BIT

BIT 8 "CHLN BIT

BIT9, "XMT" BIT

BIT 11, "ESC' BIT
LONER BYTE MASK
H GH BYTE MASK

GET
SUBFUNCTI ON

DYNAM C STATUS?

YES

ENABLE/ DI SABLE ERROR CHECKI NG
YES

CONTROL ASYNCHRONOUS | NT. ?
YES

Kk _k_k_Kk_k_k_Kk_Kk_*_K*_Kk_*_*_*_*k__%

OPEN MODEM LI NE?
YES
CLOSE MODEM LI NE?
YES

h_k_k_Kk_Kk_k_Kk_Kk_k_k_*_k_*_*_*k__*%

160002X CNTRL LDA
101046 LSR
010515R AND
050512R CPA
024520R JwP
050514R CPA
024522R JwP
050513R CPA
024527R JwP
k_k_Kk_k_Kk_*k_*k_*%k_*
050516R CPA
025033R JwP
050517R CPA
025200R JwP
*k_k_Kk_k_Kk_*k_*_*k__*%
002400 DONE CLA
170003X STA
124000R JwP
000006 BG6 CCT
000023 B23 CCT
000043 B43 CoCT
000077 B77 CCT
000031 B31 CCT
000032 B32 CCT

| GNOR
$DV16, |
I D. 01, I

* DYNAM C STATUS (FUNCTI ON CODE =6)

*

00520 014641R DYNAM JSB STAT

00521

4-14

024507R

Interface Driver

JwP

DONE

REQUEST
CLEAR ERROR CODE
| NTERFACE COVPLETI ON

*

BC
BC
BC
BC

BC
BC

READ ASI C STATUS & OUTPUT CNTRL WRD

| NTERFACE COVPLETE

* F X

*

00522 160003X PCHK LDA
00523 010526R AND
00524 171001R STA
00525 024713R JwP
*

00526 030000 PMASK OCT
*

*

$DV16, |
PMASK
PCHKEB, |
| DCOM

30000

ENABLE/ DI SABLE ERRCR (FUNCTI ON CODE = 43) *

GET PARAMETER

MASK PARI TY & FRAM NG ERROR
SAVE I N PARI TY CHECK FLAG

| NTERFACE COVPLETE

MASK PARI TY & FRAM NG ERROR BI TS

* ENABLE ASYNCHRONOUS | NTERRUPT (FUNCTI ON CCDE = 23) *

*

00527 160003X CASYN LDA
00530 002002 SZA
00531 024547R JwP
00532 160012X LDA
00533 170001X LU1 STA
*

00534 014743R EASYN JSB
00535 001032R DEF
00536 061600 CCT
00537 000545R DEF
00540 001003R DEF
00541 000457R DEF
00542 002400 CLA
00543 171003R STA
00544 024344R JwP
*

00545 002000 B2000 OCT
00546 000022 DC2 CCT
*

*

* DI SABLE ASYNCHRONCUS

*

00547 002400 DASYN CLA

00550 170001X STA
00551 170003X STA
00552 024705R JwP
*

*

* CONTI NUATI ON *

*

00553 102524 CONT LIA
00554 002003 SZA,
00555 024571R JwP
00556 002400 CLA
00557 102624 OTA
*

00560 164013X PWRFL LDB
00561 006021 SSB
00562 024701R JwP
00563 060736R LDA
00564 170003X STA
00565 107721 CLC
00566 107723 CLC
00567 014641R JSB
00570 024713R JwP

$DV16, |

DASYN
$IF5, 1
$IFTX |

QUAD
ZERO
61600
B2000
Bl TBK
ML

Bl TBK, |
WDQUT

2000
22

GET PARAMETER

ENABLE ASYNC | NT.

NO

SAVE DVT RESUME ADDR
I N DVT EXTENSI ON

BUI LD READ QUAD

DVA CNTRL WRD DO NOT WRI TE RESI DUE! ! !
ASI C CONTROL WORD (B2240 | F VDM *BC*
Bl T BUCKET ADDRESS

1 BYTE

DI SABLE Tl MEQUT

I NI TI ALI ZE BI T BUCKET

SEND DATA

BIT 10, RCV
DC2 | N LONER BYTE

| NTERRUPT (FUNCTI ON CODE = 23) *

$IFTX |
$DV16, |
LUCHK

24B
RSS
CONT1

24B

$I1 F6, |
RSS
BRK
BREAK
$DV16, |
21B, C
23B, C
STAT

| DCOM

ZERO DVT RESUME ADDR
I N DVT EXTENSI ON
ZERO ERROR CODE
CHECK FOR LUF1

FRONT PANEL | NTERRUPT?
NO, CONTI NUE

YES, ZERO

SELECT CODE 24

GET AVAI LABI LI TY

BUSY?

NO, CHECK FOR ASYNC CONDI TI ON

DON' T DO DON T FLUSH, RESTART NO MESS
ERROR CODE

SUSPEND AND

TERM NATE DVA OPERATI ON

READ ASI C STATUS & OUTPUT CNTRL WRD

| NTERFACE COVPLETE

Interface Driver 4-15

*

00571
00572
00573
00574
00575
00576
00577
00600
00601
00602
00603
00604
00529
00605
00606
00607
00610
00611
00612
00613
*

00614
00615
00616
00617
00620
00621
00622
00623
00624
00625
00626
00627
00630
00631
00632
00633
00634
00635
*

00636
00637
00640
*

*

* READ ASI C STATUS *

*

00641
00642
00643
00644
00645
00646
00647
*

00650

00651
00652

4-16

102222 CONT1 SFC 22B

024016X
160013X
002020
024650R
034000R
160001X
002002
024605R
015374R
060716R
124000R
*

170012X CONT4
165003R
101050
054546R
024614R
034000R
024534R

014743R HOLD
001032R
171400
000466R
001023R
000457R
014743R
001032R
171600
000545R
001003R
000457R
014743R
001032R
071400
000466R
001023R
000457R

060715R
171003R
024344R

000000 STAT
102531
170006X
102532
131000R
170005X
124641R

014641R TI CST

002020
024663R

Interface Driver

JwP
LDA
SSA
JwP
| SZ
LDA
SZA
JwP
JSB
LDA
JwP

STA
LDB
LSR
CPB
JwP
| SZ
JwP

NCP
LI A
STA
LI A

STA
JwP

JSB
SSA
JwP

$DVPR
$I1 F6, |

TI CST
I D. 01
$IFTX |

CONT4
CLC

B4

I D. 01, I

$I F5, |
Bl TBK, |
8

DC2
HOLD

I D. 01
EASYN

QUAD
ZERO
171400
B1000
DCLA DCl
ML

QUAD
ZERO
171600
B2000

Bl TBK

ML

QUAD
ZERO
71400
B1000
DCLA

ML

B3
Bl TBK, |
WDQUT

READ
31B
$DV19, |
32B
BRKFL, |
$DV18, |
STAT, |

STAT
TLOG

DVA COVPLETI ON?

NO, MEMORY ERROR

GET AVAI LABI LI TY

BUSY?

YES

NO, SETUP FOR CONTI NUE

GET DVT RESUME ADDR
ASYNCHRONQUS | NT. ENABLED?
YES

CLEAR | NTERRUPT FLAG , STCP DNVA
REPORT AN | LLEGAL | NTERRUPT
| NTERFACE CONTI NUE

SAVE DVT RESUME ADDR

CHECK | F BLOCK MODE ENABLED
SHI FT TO LONER BYTE

BLOCK MODE?

YES

DEVI CE RESUME

ENABLE ASYNCHRONQOUS | NT.

BUI LD DC1 QUAD

DVA CONTROL WORD
ASI C CONTROL WORD
ADDRESS

1 BYTE

BUI LD READ QUAD

DVA CONTROL WORD

ASI C CONTROL WORD (B2240 | F MDM

Bl T BUCKET ADDRESS
1 BYTE
BUI LD ' DC1" QUAD

DVA CONTROL WORD
ASI C CONTROL WORD
BUFFER ADDRESS
BUFFER LENGTH

ASSERT HOLD & TI MEQUT
SEND DATA

ASI C STATUS & OUTPUT CNTRL WRD
READ OQUTPUT CONTROL WORD

SAVE | T

READ ASI C STATUS WORD

MERGE BREAK FLAG | NTO STATUS
SAVE | T

RETURN

BC

BC

READ ASI C STATUS & OUTPUT CNTRL WRD

VAL DATA BI T SET?
YES, | GNOR ERROR BI TS

00653 001200 RAL
00654 002020 SSA

00655 024363R IVMP VWAIT
00656 010735R AND EMASK
00657 002003 SZA, RSS
00660 024663R IVP TLOG
00661 064717R LDB B5
00662 024726R JVP TDVA
*

00663 103123 TLOG CLF 23B
00664 102523 LI A 23B
00665 164004X LDB $DV17,
00666 006020 SSB

00667 007005 CMB, | NB, RSS
00670 005000 BLS

00671 040001 ADA B
00672 164004X LDB $DV17,
00673 006021 SSB, RSS
00674 001100 ARS

00675 006400 CLB

00676 170004X STA $DV17,
00677 174003X STB $DV16,
00700 024702R IMP ASYNC
*

00701 034000R BRK 1SZ ID. 01
*

00702 164001X ASYNC LDB $I FTX, |
00703 006002 SzB

00704 024534R JMP EASYN
00705 160012X LUCHK LDA $I F5,
00706 150015X CPA SLUTA, |
00707 024533R IVP LUL
00710 002400 CLA

00711 102631 OTA 31B
00712 107730 CLC 30B, C
00713 002400 | DCOM CLA

00714 124000R JVP I D. 01,
*

00715 000003 B3 OCT 3
00716 000004 B4 OCT 4
00717 000005 B5 OCT 5 *

*

* ZERO TRANSM SSI ON LOG *

*

00720 174003X ZLOG STB $DV16,
00721 014641R JSB STAT
00722 024702R IMP ASYNC
*

*

* T| MEQUT *

*

00723 015401R TI MOT JSB W15
00724 064715R LDB B3
00725 014641R ABORT JSB STAT
00726 174003X TDMA STB $DV16,
00727 006400 CLB

00730 174004X STB $DV17,
00731 107721 CLC 21B, C

BREAK BI T SET?

YES, WAIT FOR DMA COVPLETI ON
CHECK FRAM NG, PARI TY & OVERRUN
ZERO?

YES, NO ERROR

NO, TRANSM SSI ON ERROR

TERM NATE DVA OPERATI ON

CLEAR FLAGS 20, 21 & 22

READ REMAI NI NG CHARACTERS (NEG)
GET BUFFER LENGTH

ARE THEY CHARACTERS?

YES

MULTI PLY WORDS BY 2

FI ND ACTUAL CHARACTER COUNT (PCS)
GET BUFFER LENGTH

ARE THEY CHARACTERS?

NO, DI VIDE CHARS. BY 2

SAVE AS + CHARS COR + WORDS
SETUP ERROR CCDE
ENABLE ASYNCHRONOUS | NTERRUPT

EXIT WAIT FOR VALI D REQUEST

GET DVT RESUME ADDR
WAS ASYNCHRONQUS | NT. ENABLED?
YES, RE-ENABLE | NTERRUPT

LU=17?
YES, RE-ENABLE | NTERRUPT
*BC

DI SABLE PE & OE INT' S
DI SABLE BREAK

| NTERFACE COVPLETI ON

ERROR CODE
READ ASI C STATUS & OUTPUT CNTRL WRD
ENABLE ASYNCHRONOUS | NTERRUPT

CHECK 2S RETRY SI TUATI ON *BC*
TI MEQUT ERROR *BC
READ ASI C STATUS & OUTPUT CNTRL WRD
CREATE ERROR CODE

ZERO TRANSM SSI ON LOG
SUSPEND AND

Interface Driver 4-17

00732
00733

* 0k X X ok

00734
*

*

00735
00736
00737
00740

107723
106632

CLC
ors

23B, C TERM NATE DVA OPERATI ON
32B RESET ASI C CARD

NOTE: FOR FUTURE REFRENCE, >100 MS MJUST BE ALLOAED BETWEEN

A CARD RESET AND QUTPUT DWVA (RESET DOESN' T COWVPLETE FOR

18 CYCLES)
024702R

070000 EMASK
100077 BREAK
000000 TEMP

006412 CRLFX

A. 83BC

00741

015537 ESCX

A. 83BC

00742

010400 DC1X

A. 83BC
*

*

* BU LD DATA QUAD *

*

00743
00744
00745
00746
00747
00750
00751
00752
00753
00754
00755
00756
00757
00760
00761
00762
00763
00764
*

*

00765
00766
00767
00770
00771
00772
00773
00774
00775
00776
*

*

00777
01000
01001
01002

4-18

000000 QUAD
160743R
064011X
034743R
014017X
130743R
034777R
170777R
014765R
014765R
014765R
034743R
006020
124743R
005000
007004
174777R
124743R

000000 NEXT
034777R
034743R
064743R
164001
005275
024771R
164001
174777R
124765R

000000 DMAAD
000000 BRKFL
000000 PCHKB
000000 | GNOR

Interface Driver

JMP ASYNC ENABLE ASYNCHRONOUS | NTERRUPT
OCT 70000 MASK FRAM NG, PARI TY & OVERRUN
OCT 100077 DON T DOAN DON' T FLUSH, RESTART NO MESS
NOP TEMPORARY STORAGE

OCT 6412 " CRLF’

OCT 15537 ' ESC

OCT 10400 ' DCL’

NOP

LDA QUAD, |

LDB $I F1

| SZ QUAD

JSB $SELR SET RELOCATI ON REG STER

| OR QUAD, | MERGE RELOCATI ON REG. NUMBER
| SZ DVRAD

STA DVAAD, | DMVA CONTROL WORD

JSB NEXT ASI C CONTROL WORD

JSB NEXT BUFFER ADDRESS

JSB NEXT BUFFER LENGTH

| SZ QUAD FI X RETURN ADDRESS

SSB CHARACTERS?

JVP QUAD, | YES, QUAD COMPLETE

BLS NO, SAVE

CMB, | NB BUFFER LENGTH

STB DMAAD, | I N CHARACTERS

JVP QUAD, | QUAD COVPLETE

NOP

| SZ DVAAD

| SZ QUAD

LDB QUAD

LDB B, |

RBL, CLE, SLB, ERB

IVP *-2

LDB B, |

STB DMAAD, |

JVP NEXT, |

NOP DVT RESUME ADDR PTR

NOP BREAK FLAG

NOP PARI TY CHECK FLAG

NOP | GNORE | NPUT FLAG

000000

Bl TBK

L I R R

*

01033
01034
01035
01036
01037
01040
01041
01042
01043
01044
*

* |F
*

01045
01046
01047
01050
01051
01052
01053
01054
01055
01056

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

000000
002000

000000
000000
000000
000000
000000

161004R OLI NE LDA WD18A, |

011705R
171004R
160003X
006400

011721R
101046

031711R
131004R
171004R

AND =B20000
STA WD18A, |
LDA $DV16, |

AND =B140000
LSR 6

| OR =B100000
| OR WD18A, |
STA WD18A, |

MODEM STATUS WORD ADDRESSES
RETRY RESUME ADDRESS
\

> MODEM ALARM PROGRAM NAME
/ ADDRESSES
ALARM PROG LOGLU ADDRESS

STATUS SNAP SHOT ADDRESS
REQJEST n n n
\ml 8 n n n
ENTRY DI RECTI VE ”
TEMP STORACGE ”

OLINE — OPEN A MODEM LI NE (I F NOT ALREADY OPEN)
SUPPLY AN ALARM PROGRAM NAME
(OR ATTEMPT TO DEFAULT TO AN OLD ONE)

MAKE SURE RESULTI NG ALARM PROG IS REALLY THERE

DROP ALL BITS BUT 13
I N WD18

UPDATE BIT 8,9 FROM PARML
(BENIGN BI T, AUTO MANUAL ANSVEER)
SET " MODEM ENVI RONVENT BI T”

PROG NAME SUPPLI ED, SAVE | N WD20-22, OTHERW SE LEAVE ALONE

160004X
002003

025060R
015604R
171006R
160005X
015604R
171007R
160006X
015604R

LDA $DV17, |
SZA, RSS
JWP QL. 2
JSB SPACE
STA WD20A, |
LDA $DV18, |
JSB SPACE
STA WD21A, |
LDA $DV19, |
JSB SPACE

NEW NAME SUPPLI ED?
NGO, GO ARCUND

YES, SAVE I T
SUBSTI TUTE SPACES FOR ANY 0’ S

>>>

BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
83BC

. 83BC
. 83BC

BC
BC
BC

BC
BC
BC
BC
BC

BC
BC
BC
BC
BC
BC
BC
BC
BC
BC

BC
BC
BC
BC
BC
BC
BC
BC
BC
BC

Interface Driver 4-19

01057 171010R STA WD22A, | *BC

01060 160003X OL.2 LDA $DV16,1 NO. SAVE LOGLU FOR ALARM PROG * BC*
01061 171011R STA VD23A, | * BC*
*

01062 161004R LDA WD18A, | LINE ALREADY OPEN? * BC*
01063 011705R AND =B20000 * BC*
01064 002003 SZA, RSS * BC*
01065 025076R JVWP QL. 25 NO, GO ARQUND * BC*

*

01066 161011R LDA WD23A, | * BC*
01067 011702R AND =B4000 * BC*
01070 070001 STA B * BC*
01071 161004R LDA WD18A, | YES, EXIT NOW UNLESS MANUAL * BC*
01072 011673R AND =B1000 ANSWER OR W23 BIT 11 SPECIFIED *BC*
01073 030001 IR B * BC*
01074 002003 SZA, RSS * BC*
01075 024507R JMP DONE YES, LEAVE. * BC*

*

01076 161006R OL.25 LDA WD20A,1 DID WE END UP WTH A NAME? * BC*
01077 002003 SZA, RSS * BC*
01100 015163R JSB GVUP NO. G VE UP? * BC*

*

01101 161004R LDA VD18A, | * BC*
01102 171012R STA SAVEA, | SAVE WD18 AS IT IS * BC*
01103 160012X LDA $I F5, | " DVT RESUME ADDRESS * BC*
01104 170001X STA $I FTX, | * BC*
01105 015306R JSB SP SEE | F PROG | S REALLY THERE! * BC*
01106 161012R LDA SAVEA, | | GUESS I T WAS! * BC*
01107 171004R STA WDL8A, | RESTORE W18 THE VAY | T WAS * BC*
01110 171015R OL.3 STA W8, | SAVE WD18 * BC*

*

* NOTE: BEFORE ENTERING AT OL.3 WD18A, | MUST BE IN A

*

01111 015177R JSB CL HANG UP PHONE LI NE * BC*
01112 161015R LDA W8, | RESTORE WD18 * BC*
01113 171004R STA WDL8A, | * BC*
01114 010466R AND B1000 BIT 9 SET? * BC*
01115 002002 SZA * BC*
01116 025137R JVP QL. M YES, MANUAL CONNECT | N PROGRESS *BC*
01117 161004R LDA WDL8A, | NO, AUTOMATIC * BC*

*

* PRI ME CARD FOR | NTERRUPT UPON "1 NCOM NG CALL”
* W THOUT A DVA READ

*

01120 011672R AND =B400 PRSERVE ONLY BENI GN BI' T *BC
01121 031715R | OR =B102000 SET BITS 15,10 *BC
01122 171004R STA WD18A, | *BC
01123 061671R LDA =B377 *BC
01124 170005X STA $DV18, | SAVE CNTL WD USED *BC
01125 102631 OTA 31B SEND CNTL WD TO 12005B *BC
* *BCk
01126 102532 LI A 32B TO AVO D A CONTI NOUS LOCP DUE TO *BC*
01127 011674R AND =B1030 HARDWARE PROBLEM DON T ARM FOR *BC*
01130 051674R CPA =B1030 I NTERRUPT | F STATUS | SN T OK *BC
01131 002001 RSS ALL 1S K SO SKI P *BC
01132 025420R JWP DI E SOVETHI NG | S WRONG, SO G VE UP *BC*
* *BCk
01133 103730 STC 30B, C ENABLE | NTERRUPT ON CHANGE *BC*
01134 024507R JVP DONE EXIT *BC

4-20 Interface Driver

*

01135 161004R OL. 4 LDA

01136
*

025110R

* MANUAL ANSWER

*

01137
01140
01141
01142
01143
01144
01145
01146
01147
01150
01151
01152
01153
01154
01155
01156
01157
01160

161004R OL. M
011672R
031723R
171004R
002400
170005X
102631
002001
015240R OL. RT
161013R
011674R
002002
025147R
161004R
011714R
031705R
171004R
002400
171005R
024534R

ALARM PROGRAM

*
* SUBROUTI NE GVUP
*
*

RETURN. | F NOT,

01163
01164
01165
01166
01167
01170
01171
01172
01173
01174
01175
01176
* _k _*%
*

000000 GVUP
171017R
161011R
011710R
002002
025175R
161011R
011705R
002003
025420R
161017R GV. 1
125163R

Kk _k_k_Kk_k_k_Kk_Kk_k_k_k_k_k_K*_k_*_K*_Kk_*_k_k_k_k_*k_k_*_*_*_*_*__*%

JwP

Kk _k_k_Kh_k_k_Kk_Kk_k_k_Kk_k_k_k_k_*_*_k_*_*_*k_*k_*%_%

WD18A, |
a. 3

WD18A, |
=B400
=B141000
WD18A, |

$DV18, |
31B

WI2Ss
STSSS, |
=B1030

QL. RT
VWD18A, |
=B100400
=B20000
WD18A, |

VWD19A, |
EASYN

SET BITS 9, 14

ACTI VATE DTR, RTS, DI SABLE INT" S

TRY ONCE BEFORE WAI TI NG

VWAIT FOR 2 SEC

GET CARD STATUS

BI TS 3, 4,9=07?

CONNECTI ON COVPLETED?

NO, TRY AGAIN

YES, RESET BITS 14,7,9 SET 13

CLEAR RETRY RESUME ADDRESS
ENABLE KEY STRI KE | NTERRUPT

I'S CALLED | F HAVI NG TROUBLE SCEDULI NG THE
GVUP CHECKS USER PARML BI TS 14/13. |F SET,
G VE UP AND JUMP TO "DI E”.

NCP
STA
LDA
AND

STRA, |
VD23A, |
=B40000

Gv. 1
VD23A, |
=B20000
RSS

D E
STRA, |
GVUP, |

SAVE A
BENI GN BI T SET?

YES, RETURN
NO.

BIT 13 SET?
NO, 4 VE UP
RESTORE A
RETURN

* CNTL 32, CLINE — CLOSE THE LI NE
* (DCESN T ALTER A PREVI QUSLY STORED ALARM PROGRAM NANME)

*

01177
01200
01201
01202
01203
01204
01205
01206
01207
01210

000000 CL NOP

161004R CLI NE LDA WD18A, |
002021 SSA, RSS
024507R JVP DONE
015625R JSB FC
015560R JSB C3X
161004R LDA WD18A, |
011717R AND =B110400
031716R | OR =B110013
171004R STA WD18A, |

JSB ENTRY PO NT
GET MODEM CNTL WD
| GNORE | F NOT' MODEM ENVI RONMENT

CHECK FOR FORCED CLEANUP
CHECK FOR CURRENT CONNECTI ON

RESET BI TS 14, 13, 11, 10, 7-0
SET BIT 12,15,3,1,0
ALLOW ONLY 8 SEC.

*BC
*BC

*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
BC
*BC
*BC
*BC
*BC
BC
BC

BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC

BC
BC
BC
BC
BC
BC
BC
BC
BC
BC

Interface Driver

4-21

*

01211 015374R JSB CLC DI SABLE | NTERRUPTS, STOP DMVA * BC*
*

* DROP DTR, RTS SIGNALS TO MODEM

*

01212 060715R LDA B3 SET DTR, RTS OFF (OFF=1) * BC*
01213 170005X STA $DV18, | * BC*
01214 102631 OTA 31B * BC*
01215 102532 LIA 32B GET FRESH STATUS * BC*
*

01216 025221R JWP CL. 2 TRY ONCE BEFORE WAI TI NG * BC*
*

* G VE MODEM 8 SEC. TOTAL TO COVPLETE DI SCONNECT

*

01217 015240R CL.1 JSB WI2S WAI T 2 SEC. * BC*
*

01220 161013R LDA STSSS,| GET 12005B STATUS REG * BC*
01221 011675R CL.2 AND =B1070 BITS 3,4,5,9=1 ? * BC*
01222 051675R CPA =B1070 * BC*
01223 002001 RSS YES, SKIP * BC*
01224 025217R JWP CL. 1 NO, TRY AGAIN * BC*
*

*

01225 002400 CLA ZERO DVT RESUME ADDRESS, RETRY RESUME
ADDRESS

01226 065177R LDB CL UNLESS ENTERED BY JSB * BC*
01227 006002 SzB * BC*
01230 025236R JVP CL. 3 YES, JUST RETURN * BC*
01231 170001X STA $I FTX, | * BC*
01232 171005R STA WD19A, | * BC*
01233 171004R STA WD18A, | * BC*
01234 171006R STA WD20A, | ERASE ALARM PROGRAM NAMVE * BC*
01235 024507R JVP DONE NO ERROR- DONE EXI T * BC*
*

01236 071177R CL.3 STA CL ZERO RETURN ADDRESS * BC*
01237 124001 IVP B, | RETURN * BC*
h_k_k_k_Kk_Kk_Kk_k_k_k_K_Kk_Kk_Kk_k_*_*_K_Kk_K*_k_Kk_*_*_K_K_K*_k_*_*_*_*_*_*
k_k_k_k_Kk_Kh_k_k_k_k_K_Kk_Kk_k_k_k_*_K_Kk_K*_k_k_*_*_K_K_K*_k_*_*_*_*_*_*

*

* SUBROUTI NE WI2S (MJUST BE CALLED BY JSB, BUT DOESN T RETURN)

* TAKE A 2 SEC. T/O DRIVER EXI T

*

01240 000000 WI2S NOP GET RESUME ADDRESS, SAVE IN WD19 *BC*
01241 061240R LDA WI2S * BC*
01242 171005R STA WD19A, | * BC*
*

* | F RETRY CNTR=17 TAKE ERROR BRANCH, OTHERW SE CONTI NUE

*

01243 161004R LDA VDL8A, | GET MODEM CONTROL WD * BC*
01244 011661R AND =B17 MASK FOR RETRY COUNTER * BC*
01245 051661R CPA =B17 RETRY LIM T REACHED? * BC*
01246 025262R JVP RTERR YES, BRANCH * BC*
*

01247 161004R LDA VDL8A, | SET BIT 7 "RETRY WAI T ACTI VE" * BC*
01250 031667R | OR =B200 * BC*
01251 171004R STA WD18A, | * BC*
*

* TAKE A 2 SEC

T/O EXIT (HOLD OFF NEW REQUESTS)

* W TH | NTERRUPTS DI SABLED

4-22

Interface Driver

*

01252 015374R JSB CLC DI SABLE | NTERRUPTS, STCOP DNVA *BC*
*

01253 061733R LDA =D-200 SET T/ 0O FOR 2 SEC * BC*
01254 170010X WI. A STA $IF2,1 * BC*
*

01255 060715R LDA B3 HOLD NEW REQUESTS, T/ O ACTI VE * BC*
01256 034000R I1SZ 1D 01 VAITEXIT * BC*
01257 006400 CLB ZERO DVT16, EXIT * BC*
01260 174003X STB $DV16, | * BC*
01261 124000R JWVP ID. 01,1 EXIT DRIVER (T/ O * BC*
*

* RTERR — RETRY LI M T EXCEEDED CCTAL 17

*

01262 161004R RTERR LDA WD18A, | * BC*
01263 011702R AND =B4000 I S REASON FOR ERROR * BC*
01264 002003 SZA, RSS COULD NOT SCHEDULE ALARM PROG? * BC*
01265 025270R JVWP RT. 1 * BC*
01266 015163R JSB GVUP YES. d VE UP? * BC*
01267 025364R JVP SP. 3 NO, RETURN TO SPROG * BC*
*

01270 065662R RT.1 LDB =B20 CHECK BIT 14 * BC*
01271 161004R LDA WD18A, | * BC*
01272 011710R AND =B40000 * BC*
01273 051710R CPA =B40000 CONNECT T/ O? * BC*
01274 002001 RSS YES, USE 1 FOR ERROR CODE * BC*
01275 065663R LDB =B40 NO, USE 2 FOR ERROR CODE * BC*
* MERGE ERROR CODE (1IN B) | NTO WD18

*

01276 161004R LDA WD18A, | * BC*
01277 011735R AND =B177600 CLEAR RETRY CNTR TOO * BC*
01300 030001 IOR B * BC*
01301 171004R STA WD18A, | * BC*
*

01302 015306R JSB SP SCHEDULE ALARM PROGRAM * BC*
* (WLL NOT RETURN | F DI SCONNECT TI ME QUT)

01303 161004R LDA WD18A, | SET FOR AUTO ANSVER REDI AL * BC*
01304 011727R AND =B176777 * BC*
01305 025110R JWVP QL. 3 * BC*
h_k_k_Kk_Kk_k_k_k_Kk_Kk_Kk_k_K_Kh_Kk_k_*_K_Kh_k_k_*_Kh_k_k_*_K_Kk_k_*_*_K_*_%
h_k_k_Kk_Kk_k_k_k_Kh_Kk_k_k_K_Kh_k_k_*_Kh_Kh_k_k_*_Kh_Kk_*_*_K_Kk_k_*_*_K_*_x%

*

* SUBRQOUTI NE SPROG ENTRY — JMP SPROG (OR JSB SP)

* SCHEDULE PROGRAM NAME CONTAI NED | N WD20A-22A, |

*

01306 000000 SP NOP WLL BE O UNLESS CAME FROM QLI NE * BC*
01307 161006R SPROG LDA WD20A, | GET LETTER 1 OF PROG NAME * BC*
01310 002002 SZA EMPTY? * BC*
01311 025314R JVMP SP. 0O NO GO AROGUND * BC*
01312 015163R JSB GVUP YES. 4 VE UP? * BC*
01313 125306R JVP SP, | NO RETURN * BC*
*

01314 161004R SP.0 LDA WD18A, | NO SET SCHED ATTEMPT BI T * BC*
01315 031702R I OR =B4000 * BC*
01316 171004R STA WD18A, | * BC*
*

* SET UP PARAMETERS AND SCHED ALARM PROG

*

01317 102531 LI A 31B TURN OFF DTR *BC*

Interface Driver 4-23

01320
01321
01322
*

01323
01324
01325
01326
01327
01330
01331
*

01332
01333
01334
01335
01336
01337
*

01340
01341
01342
01343
01344
01345
01346
*

01347
01350
01351
01352
*

* ON RETURN A

4-24

011656R
031656R
102631

065711R
161004R
011672R
002003

002001

065712R
075026R

161004R
011666R
006400
101024
031026R
071026R

161013R
071027R
160001X
071030R
161011R
011671R
071031R

014007X
101006R
001026R
000000

> >
v

050457R
002001

025360R
015163R
025364R

002003 SP. 25
025364R
015240R
025307R

161004R SP. 3
011725R
171004R
061026R
011660R
051655R
025420R
125306R

Kk _k_k_Kh_k_k_Kk_Kk_k_Kk_k_k_k_Kk_k_k_k_k_k_k_k_*_k_k_*_*_*k_*_*_*%__%

Interface Driver

AND =B3

| OR =B3

OTA 31B

LDB =B100000

LDA WD18A, |

AND =B400 BENI GN ERR PROC. BIT SET?
SZA, RSS

RSS NO, DRCP BIT 6 IN SCHED PARM 1
LDB =B100100 YES, SET BIT 6

STB PARML

LDA WD18A, | EXTRACT ERROR CODE
AND =B160 AND PUT I N PARML

CLB

ASR 4

| OR PARML SET UP ERROR WD

STA PARML STUFF I N PARML

LDA STSSS, | GET CARD STATUS

STA PARM2 STUFF | NTO PARMR

LDA $I FTX, | GET DVT RESUME ADDRESS
STA PARM STUFF PARMB

LDA VWWD23A, | GET ALARM PROG LOGLU
AND =B377 MASK LOAER BI TS

STA PARM4 STUFF PARWA

JSB $X(QsB SCHEDULE ALARM PROGRAM
DEF VWD20A, |

DEF PARML

DEC 0O

-1 I F PROG NOT' FOUND

0 I F PROG BUSY
0 SUCCESSFUL SCHEDULE

CPA ML PROG FOUND?

RSS NO

JWP SP. 25 YES, GO ARCUND

JSB GVUP G VE UP?

JWP SP. 3 NO, RETURN

SZA, RSS SUCCESSFUL SCHEDULE?
JWP SP. 3 YES

JSB WI2S NO WAIT 2 SEC

JWP SPROG TRY AGAI N

LDA WD18A, |

AND =B173400 RESET BITS 11,7, 6-0
STA WD18A, |

LDA PARML

AND =B7

CPA =B2 DI SCONNECT T/ O?

JWP DI E YES, HWPRCBLEM 4 VE UP
JWP SP, | NO EXIT

*BC
*BC
*BC

*BC

BC

*BC
*BC
*BC
*BC

*BC
*BC
*BC
*BC
*BC
*BC

*BC
*BC
BC
*BC
*BC
*BC
*BC

*BC
*BC
*BC
*BC

*BC
*BC
*BC
*BC
*BC

BC
*BC
*BC
*BC

*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC

* F X

*

01374
01375
01376
01377
01400

*

000000
107730
107721
107723
125374R

CLC
CLC
CLC
CLC

Kk _k_k_Kk_k_*_K*_k_*_*%_%

NCP

30B, C
21B, C
23B, C

SUBROUTI NE CLC DCES A CLC XX, C ON 30, 21, 23
DI SABLE | NTERRUPTS AND STOP DNVA

*
*
* W15 — | NTERCEPT TI MEQUT RETRYS AND BRANCH ACCORDI NGLY
*
*

ENTRY — JSB W15 AFTER A T/ O DRI VER ENTRY
EXIT — EIl THER AT P+1 OR PRE-DEFI NED RESUME ADDRESS

01401 000000 W15 NOP * BC*
01402 171012R STA SAVEA, | SAVE A REG * BC*
01403 161004R LDA WD18A, | GET MODEM CNTL * BC*
01404 011713R AND =B100200 BIT 15,7 MODEM & RETRY ACTI VE? *BC*
01405 051713R CPA =B100200 * BC*
01406 025411R JVMP WI'15A YES, EXIT AT RESUVE ADDRESS | N WD19A, |
01407 161012R LDA SAVEA, | NO RESTORE A REG & RETURN * BC*
01410 125401R JWVP WI'15,1 P+1 EXIT *BC*
*

01411 165005R WI'15A LDB WD19A, | GET RESUME ADDRESS * BC*
01412 161004R LDA WD18A, | BUVP COUNTER * BC*
01413 002004 I NA * BC*
01414 171004R STA WD18A, | * BC*
01415 006002 SZB I F B=0 SOVETH NGS VERY WRONG, SO HALT
01416 124001 JVP B, | LEAVE AT RESUVE EXI T * BC*
01417 102024 HLT 24B *BC*
h_k_k_Kk_Kk_k_k_k_Kh_Kk_k_k_K_Kh_k_k_*_Kh_h_k_*_K_Kh_k_k_*_K_*_k_*_*_*_*_x%

*

*

*

h_k_k_Kk_Kk_k_k_k_Kh_Kk_k_k_K_Kh_k_*_*_Kh_Kk_k_*_K_Kk_k_*_*_K_*_k_*_*_*_*_x%

*

* SUBRQUTI NE DI E — DI SABLE | NTERRUPTS AND TAKE T/ O ERROR

* EXIT (THE RESULTI NG ERR21 SI GNI FI ES A PROBLEM

* SCHEDULI NG AN ALARM PROGRAM

*

01420 015374R DI E JSB CLC DI SABLE | NTERRUPTS, STOP DMVA * BC*
01421 102531 LI A 31B DROP DTR ON CARD * BC*
01422 011656R AND =B3 TO PREVENT DIAL I N * BC*
01423 031656R I OR =B3 * BC*
01424 102631 OTA 31B * BC*
01425 002400 CLA * BC*
01426 171004R STA WD18A, | CLEAR MODEM CNTL WD * BC*
01427 171005R STA WD19A, | " RESUME ADDRESS * BC*
* PUT ERROR CCODE I N DVT16, FLUSH THE REQUEST

01430 065722R LDB =B140025 *BC*
01431 174003X STB $DV16, | POST ERR21 STATUS *BC*
01432 124000R JWP I D. 01,1 DONE EXI T (A=0) *BC*

k_k_k_Kk_Kk_k_Kk_Kk_k_k_Kk_k_*_K*_k_*_K*_K*_*_K*_K*_k_*_Kk_k_*_*_*k_*_*_*_*_*_*%

Interface Driver 4-25

h_k_k_Kk_Kk_k_k_k_Kk_Kk_k_k_K_Kh_Kk_k_*_K_Kh_Kk_k_*_Kh_Kk_k_*_K_Kk_k_*_*_K_*_%

*

* SUBRQUTI NE MSCNG — CHECK FOR MODEM STATUS CHANGE

* ENTRY — JSB MSCNG (MAY OR MAY NOT RETURN)

*

01433 000000 MSCNG NOP *BC*
01434 161004R LDA WD18A, | GET MODEM CNTL WD *BC*
01435 002021 SSA, RSS MODEM ENVI RONMVEN *BC*
01436 125433R JMP NMBCNG | NO RETURN *BC*
*

01437 161016R LDA DI REC, | YES *BC*
01440 050716R CPA B4 PONER FAI L? *BC*
01441 025542R JMP M PF YES, BRANCH *BC*
*

01442 161013R LDA STSSS, | NO GET 12005B STATUS *BC*
01443 011665R AND =B100 MODEM STATUS CHANGE? (0) *BC*
01444 002002 SZA *BC*
01445 125433R JMP NMBCNG | NO, RETURN *BC*
*

* MODEM STATUS CHANGE | NTERRUPT HAS OCCURED

*

*

01446 161004R LDA WD18A, | *BC*
01447 011677R AND =B2000 VWERE WE ARMED *BC*
01450 002003 SZA, RSS FOR AN | NCOWM NG CALL? *BC*
01451 025505R JVP MHT NO , GO AROGUND *BC*
* * BCx
01452 161013R LDA STSSS, | YES, GET STATUS *BC*
01453 011663R AND =B40 *BC*
01454 002002 SZA "I NCOM NG CALL"? (0) *BC*
01455 025135R JWP QL. 4 NO, HANG UP, RE-ARM *BC*
*

01456 102531 LI A 31B YES, ACTI VATE DTR, RS SI GNALS (0) *BC*
01457 011737R AND =B177774 *BC*
01460 170005X STA $Dv18, | *BC*
01461 102631 OTA 31B SEND TO CARD *BC*
*

01462 161004R LDA WD18A, | SI GNAL " CONNECT | N PROGRESS” *BC*
01463 031710R I OR =B40000 *BC*
01464 011724R AND =B141600 NO LONGER " ARMED FOR | NCOM NG CALL

01465 171004R STA WD18A, | *BC*
*

01466 015240R M RT JSB WI2S WAIT 2 SEC *BC
01467 161013R LDA STSSS, | CGET STATUS *BC*
01470 011663R AND =B40 5=17 *BC*
01471 002003 SZA, RSS *BC*
01472 025466R JMP M RT NO WAI T SOVE MORE *BC*
01473 161013R LDA STSSS, | *BC*
01474 011674R AND =B1030 *BC*
01475 002002 SZA 3,4, 9=0? *BC*
01476 025466R JMP M RT NO WAI T SOVE MORE *BC*
*

01477 161004R LDA WD18A, | YES! DROP ALL BUT 15,8 *BC*
01500 011714R AND =B100400 *BC*
01501 031705R I OR =B20000 *BC*
01502 171004R STA WD18A, | *BC*

4-26 Interface Driver

01503
*

01504
*

024534R
001516R

* MUST BE A

*

01505
01506
01507
01510
01511
01512
01513
01514
01515
*

01516
01517
01520
01521
*

01522
01523
01524
01525
*

01526
01527
01530
01531
01532
*

01533
01534
01535
01536
01537
01540
01541
*

01542

161004R
011720R
031667R
171004R
015374R
061504R
171005R
061736R
025254R

161013R
011663R
002003

025533R

161013R
011674R
002002

025533R

161004R
011720R
171004R
103730

024560R

161004R
011714R
031706R
171004R
015306R
161004R
025110R

161004R
011714R
031665R
025536R

JWVP EASYN

M RED DEF M RES

TAKE CNTL23 PATH

H T OR LI NE DI SCONNECT!

MHT

M RES

ERR3

ERR31

M PF

LDA WD18A, |
AND =B120400
| OR =B200
STA WD18A, |
JSB CLC

LDA M RED
STA WD19A, |
LDA =D-30
JVP WL A

LDA STSSS, |
AND =B40
SZA, RSS
JVP ERR3

LDA STSSS, |
AND =B1030

JVP ERR3

LDA WD18A, |
AND =B120400
STA WD18A, |
STC 30B, C
JVP PWRFL

LDA WD18A, |
AND =B100400
| OR =B20060
STA WD18A, |
JSB SP

LDA WD18A, |
JwP QL. 3

LDA WD18A, |
AND =B100400
| OR =B100
JWP ERR31

Kk _k_k_Kk_k_k_K*_Kk_*_*_*k_*_%

7 & 5 TO 12005B CNTL WORD

AT ENTRY (JSB MDI NT)

000000 MDI NT NOP

171012R
161004R
002021

025556R
161012R
031670R

STA SAVEA, |
LDA WD18A, |
SSA, RSS
JWP MD. EX
LDA SAVEA, |
| OR =B240

*
*
* SUBROUTI NE MDINT — | F IN A MODEM ENVI RONVENT ADDS BI TS
*
*
*

SET BIT 7, RESET RETRY CNTR

SAVE | T
DI SABLE | NTERRUPTS, STCP DNVA
SET UP RESUME ADDRESS

SET UP 300MB T/ O WAI T
DO I T (RESUME AT M RES)

NO MORE CHANCES, ALL OK YET?

BIT 5 SET?
NO

YES, SO FAR, SO GOOD
3, 4, 9=07?

NO

YES, ALL IS FORG VEN
DROP BIT 7-0

RE-ENABLE | NTERRUPTS
RESTART REQUEST

SET ERROR CCDE 3 & BIT 13
CLEAR OTHERS

SCHEDULE ALARM PROGRAM RESET
USI NG CLD VALUES

PUT ERROR CODE 4 | N W18

A=CURRENT CNTL WD
A=CORRECT CNTL WD

GET MODEM CNTL WD
MODEM ENVI RONMENT?
NO EXIT

YES

ADD BITS 7,5

*BC

*BC

*BC
BC
*BC
*BC
BC
*BC
*BC
*BC
*BC

BC
*BC
*BC
*BC

*BC
*BC
*BC
*BC

*BC
*BC
*BC
*BC
*BC

BC
*BC
*BC
*BC
BC
*BC
*BC

BC
*BC
*BC
*BC

BC
BC
BC
BC
BC
BC
BC

Interface Driver 4-27

01555

171012R

STA

SAVEA, |

01556 161012R MD. EX LDA SAVEA, |

MDI NT, |

RETURN

h_k_k_Kk_k_k_Kk_Kk_k_k_Kk_k_k_Kk_k_k_Kk_Kk_*_K*_Kk_*_k_Kk_k_k_*_*k_*_*_*k_*_*%_%

01557 125546R IWP
*

* C3X

*

*

* SEND A ”LI NE LOSS’
*

*

01560 000000 C3X NOP
01561 161016R LDA
01562 051654R CPA
01563 002001 RSS
01564 125560R IWP
01565 161004R LDA
01566 011705R AND
01567 002002 SZA
01570 025576R IWP
01571 161004R LDA
01572 011677R AND
01573 051677R CPA
01574 002001 RSS
01575 125560R IWP
*

01576 161004R C3X1 LDA
01577 011720R AND
01600 031664R | OR
01601 171004R STA
01602 015306R JSB
01603 125560R WP
*

*

*

*

*

* SUBROUTI NE ” SPA

*

* A-REG STER

* A SPACE.

*

01604 000000 SPACE NOP
01605 171017R STA
01606 011671R AND
01607 002002 SZA
01610 025614R IWP
*

01611 161017R LDA
01612 031663R | OR
01613 171017R STA
01614 161017R SPA. 1 LDA
01615 011731R AND
01616 002002 SZA
01617 025623R IWP
*

01620 161017R LDA
01621 031705R | OR
01622 171017R STA

4-28

| F ALREADY PRI MED FOR AUTO-ANSVER

OR | F VALI D CONNECTI ON HAS ALREADY BEEN
ESTABLI SHED AND CNTL 32/31 RQ COVES I N,

CODE TO ALARM PROG

BEFORE RESETTI NG THE LI NE

Interface Driver

DI REC, |
=B1

C3X, |
WD18A, |
=B20000

G3X1

WD18A, |
=B2000
=B2000

C3X |

WD18A, |
=B120400
=B60
WD18A, |
SP

C3X |

UNLESS THIS IS AN | NI TI ATE
ENTRY, LEAVE

ITISN T, LEAVE
VALI D CONN ALREADY ESTABLI SHED?

YES
NO, AUTO ARMED ?

YES, KEEP GO NG

NO EXIT

YES

PUT LINE LOSS ERRCR CODE | N WD18

SCHED ALARM PROG
EXIT

Kk _k_k_Kk_k_k_Kk_Kk_k_k_Kk_k_k_k_k_k_*k_k_*_*_k_*_*_*k_%

" WLL CHECK THE TWO ASCI |

ENTRY
STRA, |
=B377

SPA. 1

STRA, |
=B40
STRA, |
STRA, |
=B177400

SPA. 2
STRA, |

=B20000
STRA, |

CHARACTERS | N THE UPPER AND LOAER BYTE OF THE
I F EI THER IS ZERO, SUBSTI TUTE

SAVE A

FI RST CHECK LOWER BYTE (MASK UPPER)

07?
NO, GO CHECK HI GH BYTE

FETCH WORD AGAI N
ADD ACSI | " SPACE"
SAVE | T

FETCH WORD

MASK OFF LOAER BYTE
0?

NO LEAVE

YES
ADD AN ASCI | " SPACE”

*BC
*BC
*BC

BC
BC
BC
BC
BC

BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC

BC
BC
BC
BC
BC

BC
BC
BC
BC
BC
BC
BC

BC
BC
BC

01623 161017R SPA. 2 LDA STRA |

01624

L I S I . N N I R

*

01625
01626
01627
01630
01631
01632
*

01633
01634
01635
01636
*

01637
01640
01641
01642
*

01643
01644
01645
01646
*

01647
01650
01651
*

01652
01653
* _*%

*

L R R R

125604R

JwP

FC (FORCE CLEANUP)

SPACE, |

EXIT

Kk _k_k_Kk_k_k_Kk_Kk_k_k_Kk_k_k_Kk_k_*_*k_*k_*_*_*k_*_*_*%_*%

IF BENIGN BIT SET AND CNTL 32
COMVES | N WHI LE

A) USER I'S VALI DLY CONNECTED OR

B) PORT IS PRI MED FOR AUTO-ANSVEER
. AND.
CNTL 31 PRAML BIT 12=1

FORCE BENI GN BI T LOW AND CAUSE ACTI VE
PROGRAMS TO BE CLEANED UP BY ALARM PROG

000000
171012R
161011R
011704R
002002
025652R

161014R
051701R
002001

025652R

161004R
011672R
002003

025652R

161004R
011707R
002003

025652R

161004R
011730R
171004R

161012R
125625R

FC

FC. EX

LDA

SZA,
JwP

LDA
AND
STA

LDA
JwP

SAVEA, |
VD23A, |
=B10000

FC. EX

RQ |
=B3203

FC. EX

WD18A, |
=B400
RSS

FC. EX

WD18A, |
=B22000
RSS

FC. EX

WD18A, |
=B177377
WD18A, |

SAVEA, |
FC |

SAVE A-REG
BIT 12 CLEAR?
NO EXIT

YES.
CNTL 32 REQUEST?

NO EXIT

YES

BIT 8 SET?

NO, EXI'T

El THER 13 OR 10 SET?
NO EXIT

ALL TESTS PASSED SO
DROP BENI GN BI' T

RESTORE A-REG

Kk _k_k_Kk_k_k_Kk_Kk_k_Kk_Kk_k_k_k_k_*_*_k_*_*_*_*_%

WORD

WORD
WORD
WORD
WORD

WORD

[N

o aRkwn

| NTERFACE STORACE *

DVA CW

DVA CONTROL WORD
CARD CONTROL WORD
BUFFER ADDRESS
— BUFFER LENGTH (CHAR) /

DVT RESUME ADDRESS

\
\ 1ST QUAD
/

\

*BC
*BC

BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC
BC

BC
BC
BC
BC

BC
BC
BC
BC

BC
BC
BC

BC
BC

Interface Driver

4-29

CARD CW
BUF ADDR
BUF LENGTH

DVA CW
CARD CW
BUF ADDR
BUF LENGTH

b B T R

BREAKFLAG

ERROR CHECKI NG FLAG
| GNORE | NPUT FLAG
Bl T BUCKET

*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
*BC
A. 83
A. 83
A. 83

RETRY RESUME ADDRESS
20: \

22: |

SAVEA
STSSS
RQ
WL 8

DI REC
STRA
STRB

" CRLF
" ESC
’ mll

EE I B I A R B . R N N S N

01654
01655
01656
01657
01660
01661
01662
01663
01664
01665
01666
01667
01670
01671
01672
01673
01674
01675
01676
01677
01700
01701
01702
01703
01704
01705
01706
01707

000001
000002
000003
000004
000007
000017
000020
000040
000060
000100
000160
000200
000240
000377
000400
001000
001030
001070
001377
002000
003103
003203
004000
007703
010000
020000
020060
022000

4-30 Interface Driver

SOSDSS5553353D5555555355555>>

> MODEM ALARM PROGRAM NAME 9:
ALARM PROG LOALU, R/ D, FC, HU

\ 2ND QUAD
/
/

\
\ 3RD QUAD
/ .

/ BIT: MEANI NG (\\D18)

: MODEM ENVI RONMENT

: CONNECT | N PROGRESS

: CONNECTI ON ESTABLI SHED
: DI SCON. | N PROG

: ATTEMPTI NG PROG SCHED
: ARVED FOR | NCOM CALL
1/0 NMAN AUTO ANSVER

8: BENI GN ERR PROCESSI NG

7: RETRY WAI T ACTI VE

6-4: NO ERR, CONN T/ O (0-4)

: DI SCON T/ O, LI NE LCSS, PF
3-0: RETRY COUNTER

01710 040000
01711 100000
01712 100100
01713 100200
01714 100400
01715 102000
01716 110013
01717 110400
01720 120400
01721 140000
01722 140025
01723 141000
01724 141600
01725 173400
01726 174377
01727 176777
01730 177377
01731 177400
01732 177407
01733 177470
01734 177552
01735 177600
01736 177742
01737 177774
END
* — Volatile reference (store, jnp, call...)
$DI CC . 19: 33*
$DVPR . 19: 518*
$DV15 . 18: 91 203 217 235 243 251 258 265
272 291 297 375 386 402 425
$DV16 . 18: 152* 254 275 294 378 389 405 441*
460 470 494* 511* 596* 620 630* 730
751 937* 1100*
$DV17 . 18: 236 255 276 295 379 406 586 591
595* 632* 740
$DV18 . 18: 210 234* 253 274 281 293 305 313
354 377 388 404 569* 745 798*
820* 875* 1138*
$DV19 . 18: 350 363 366 566* 748
$DVTP . 19: 225
$IF1 . 19: 656
$IF2 . 18: 932*
$IF5 . 19: 32 473 530* 604 774
$IF6 . 19: 507 519
$IFTX . 18: 35 333 474* 493* 523 601 775*
896* 1009
$LUTA . 19: 605
$SELR . 19: 658*
$XQSB . 18: 1015*
A. .. 24: Synbol not referenced
ABORT . 629: 168*
ABRTE . 190: 151 166
ASBLK . 288: 261*
ASCl | . 258: 246*
ASYNC . 601: 597* 622* 641*

Interface Driver 4-31

4-32

Interface Driver

25:

. 158:
124:
140:

. 148:

.161:
191:
417:
155:
192:
486:
445:
710:
613:

194:
448:
449:
614:
446:
615:
444:
193:
447:
248:
418:
414:
415:
416:
690:

645:
599:
. 687:
1231:
1246:
470:
859:
883:
886:
902:
1051:
860:
425:
501:
517:
530:
278:
705:
297:
647:
195:
492:
707:
649:
. 487:
1090:
. 709:

75*

109*
117*
127*
155
97*
179
218
140
183
158
432
161
111

80*
764
112*

356

162*

171
934

1115

298
397

341*

1235*

893

870*

282

542

850*
87

85* 590 678
903* 959 1078*

114* 122* 132*
541 553 786
396 479 547
204 205 557
480 483* 531
568
1244* 1251*

902*

929 1055* 1090*
306

554
1041*

681

628

548

1170*

761*

874

558*

Dl REC .

SPERELELL

L

=
Y

aR

702:

686:
440:
454:
476:
. 644:
1192:

1195

706:
648:
1298:
1324:
851:
841:
420:
538:

320:
610:
689:
201:
419:
474:
. 604:
1166:
1200:
1162:
1176:
1146:
410:
411:
412:
. 413:
1221:
1213:
1109:
674:
310:
751:
768:
779:
810:
815:
823:
727:
712:
713:
714:
715:
460:
688:
465:
507:
654:

66* 88* 110
1114 1232

36* 660* 661*
455* 766* 808*
429*

536* 603* 834~
578
1179* 1184~
1203*

78* 314

79

863* 1325*
1303* 1308* 1313*
846*

770* 852* 946*
367

534*

17* 154* 321*
522* 528*
1101*

256* 284* 308*
463* 515*

42* 202* 373*
180*

351

606*
495*
1129*
1116*
1171
1162
1150* 1154~

364 398 481
283

315

307
1217*

233* 357* 1222*
181* 1112* 1121*
662* 663* 664*
300*

742*

757*

811* 966* 1198*
121* 1134*

788*

827*

436*

998* 1004 1005*
1008*
1010*
1013*

431*

40* 229 462*
461

188* 1190*

250 271* 278*

374* 385*
550* 655 657*

124 163 177

670* 675* 682*

862* 900*
1160*
1318*
978* 1027*

337* 342* 343*

535* 599* 611* 935*

391* 399* 407*

381 390

543 549 555
683*

1017 1038

290* 302* 310*

393* 401* 476* 538*

659 665* 667*

Interface Driver

182

442*
938*

1024

359*
544*
671*

4-33

676* 677

READ 348: 238*

READL 393: 383*

READB 366: 353*

READQ 401: 369*

rRQO. 700 62* 93* 128 1305

RT.2 949: 045*

RTERR 942: 920*

SAVEA 698 58* 324* 328 773* 777 1065* 1070
1214* 1218 1220* 1221 1299* 1324

SET7 233: 230%

SET8 231: 224% 228*

sP. 974 T776* 962* 979* 1042* 1196* 1250*

skO. 981l 977

skP.25 1030: 1026*

sk.3. 1035 947* 1028* 1031*

SPAL 1271: 1266*

SPA.2 1279: 1274*

SPACE 1262: 743* 746* 749* 1280*

SPROG. 975 1033*

STAT 564: 454* 514* 570* 572* 621* 629*

STRA 17083 68* 842* 851 1263* 1268 1270* 1271
1276 1278* 1279

SstTRB. 704 70*

STSsss. 699 60* 90* 118 824 885 1007 1118
1131 1147 1151 1176 1181

Tmva 630: 582

TEMP 646: 358* 362

mesr. 5720 521*

TT™MOT 627: 172*

e, 584 574% 580*

ws 701 64* 779* 784

WAIT. 339 577*

W18A 692 46* 95 106 142 145* 148 150* 174

176* 213 727 729* 735 736* 754
762 772 778* 785* 789 796* 810
815 818* 828 831* 860 865 868*
898* 917 922 924* 942 950 957
960* 964 981 983* 993 1000 1035

1037* 1066 1074 1076* 1096* 1110 1126

1141 1144* 1156 1159* 1166 1169* 1186

1188* 1192 1195* 1197 1200 1215 1236

1240 1246 1249* 1310 1315 1320 1322*

WD19A 693: 48* 141* 833* 897* 913* 1073 1097* 1172*

WD20A 694: 50* 744* 768 899* 975 1016

W21A 695: 52* 747*

WD22A 696: 54* 750*

WD23A 697: 56* 752* 759 843 847 1011 1300

WwaodT 322: 484F 559*

WAL oo 0 L0 09820 147 1174*

wras 1064: 627* 1071*

WIrisaA1073: 1069*

wa2s911: 823* 883* 912 1032* 1146*

ZERO.716: 279 303 311 360 394 477 539
545 551

LG 620 249* 349*

Macr o/ 1000 Rev. 5000 870612 : No errors found

4-34 Interface Driver

General Driver Concerns

I/O Request Parameters

The I/O request parameters issued by the user are supplied to the driver in the DVT as shown
below. The driver parameter area of the DVT may also contain information about the device
that is not specific to the current request. If the interface driver is being called, the driver
communication flags in DVT20 may also have meaning.

DVT15 Z | Subfunction L RQ
DVT16 Request Parameter 1
DVT17 Request Parameter 2
DVT18 Request Parameter 3
DVT19 Request Parameter 4

L88-335

DVT1S5 is the control word for an I/O request. The Z bit interacts with the RQ bits, and is
described below with RQ.

The SUBFUNCTION format in DVT15 is:

11110 9| 8| 7| 6

X|[TR| X|EC| X | BI

L88-336

The bits marked “X” are driver-defined.
TR is transparency mode. 0 is off; 1 is on.
EC is to echo input: 0 indicates no echo; 1 sets echo on.

Bl is the data format: 0 indicates ASCII; 1 indicates binary.

General Driver Concerns 5-1

Bits 11 through 6 (all SUBFUNCTION bits) must be set to 1 if and only if the device type is
30-37 (disks).

BI and TR operate together to specify a set of data handling circumstances for special
characters and EOR (end of record) processing. These conventions are explained in the
Driver Reference Manual.

It is not necessary for all drivers to support the full set of variances possible. However,
when it is desirable to handle one or more of these conditions, they should be implemented
according the beyond those described can be controlled by the X bits.

L is the mapping location of the buffer. 0 indicates the system map; 1 indicates the user map.
L=1 may also indicate the System Available Memory (SAM) map. Drivers must, therefore,
never try to find data buffers on their own. They should use SREAD/$WRIT or
$ONER/$ONEW. See Chapter 7 for more information about this pair of routines.

In DVT15, RQ is the request code itself. It equals 1 for a read request, 2 for write, and 3 for
control.

The Z bit, when set, indicates that Parameters 3/4 describes a buffer/buffer length. The Z bit
may be used for any RQ (1, 2 or 3).

The interaction between the Z bit and the request code RQ is:

RQ=1or2 RQ =3
Z=0 Z=1 Z=0 Z=1
Parm 1 Buf Addr Buf Addr | Simple Var Simple Var
Parm 2 | Buf Len Buf Len Simple Var Simple Var
Parm 3 | Simple Var Buf Addr | Simple Var Buf Addr
Parm 4 | Simple Var Buf Len Simple Var Buf Len

L88-337

For an RQ of 1 or 2 (read or write), Parameters 1 and 2 describe an input buffer in which the
driver transfers data. Parameter 1 is the data buffer address and Parameter 2 is the length of the
buffer. If data is to be accessed in the buffer, the SREAD and $WRIT subroutines must be used.

For an RQ of 3 (control) or 0 (multibuffered request), the user-specified buffer provides
information to be acted upon by the driver. (An RQ of 0 is covered in the Device/Interface
Driver Interactions chapter, under the Multibuffered Request section.)

5-2 General Driver Concerns

To demonstrate some of the possible usages of these optional parameters:

The DD.00 terminal device driver supports a WRITE/READ request. If RQ is 1 (read) and
Zis 1:

Parameter 1 is the input buffer address
Parameter 2 is the input buffer length
Parameter 3 is the output buffer address
Parameter 4 is the output buffer length

DD.30 is the disk device driver. It uses optional parameters to define track and sector. If
RQ s 1 or 2 (read or write) and Z is 0:

Parameter 1 is the input buffer address
Parameter 2 is the input buffer length
Parameter 3 is the track

Parameter 4 is the sector

Zero-Length Requests

As a general rule, a zero length request should provide the end-of-record handling condition,
which would normally be supplied if data were actually transferred. Thus, according to the
TR/BI modes of operation, the general circumstances are as follows. As before, drivers are
expected to support these operations only where useful.

TR BI Action on Input Action on Output

00 Return zero trans- Issue CRLF and/or EOR
mission log and exit. line signal.

01 Same as above. Issue EOR line signal,

if available.

10 Same as above Return zero transmission
log and exit.

11 No operation. No operation.

General Driver Concerns 5-3

lllegal Requests

Illegal requests are generally handled according to the following rules:

1.

If a driver receives an illegal READ/WRITE requests, the standard procedure to reject the
request is:

a. Seterror code 1 in DVT16.
b. Make a “done” exit, which completes the request.

If a driver receives an unsupported zero length read/write request, the driver should ignore
the request.

a. Seterror code 0 in DVT16.
b. Make a “done” exit, which completes the request.

Unsupported control requests should be handled in the same way as unsupported zero
length read/write requests.

Posting Status

Status can have several meanings:

1.

Status associated with the request.

On a read, as an example, a program may need to know how many bytes or words were read.
This number is the transmission log. The transmission log is posted in DVT17, generally by
the interface driver.

Status associated with the device.

For example, a cassette tape may be at the end of the usable area after a request.

There is a possible error associated with the request, even if it completes successfully. For
example, the request may have succeeded after a number of attempts (as determined by the
driver).

Errors will be covered partially in this section and in more detail in the following section.

Status is posted in the DVT upon completion of a request. Either the device driver or the
interface driver may post status; any non device-dependent status is posted by the interface
driver. It is also important to remember that an interface driver may be called directly by a
program and so it should post as much information as possible.

There are two places in the DVT to post status: bits 1-7 of DVT6 (the status byte) and all of
DVT18 and DVT19 (the extended status). The bits in DVT6 are general in nature and may be
interpreted generally without regard to the actual device. DVT18 and DVT19, however, provide
device-dependent information or else may help interpret or modify the meaning of the bits in

5-4 General Driver Concerns

DVT6. The status byte in DVT6 includes an error bit (E, bit 0) which is controlled by the system,
not the driver. The E bit is set if the driver posts an error code in DVT16 prior to exit. The E bit
is cleared on initiation of a new request.

The extended status words may provide detail about an error condition. For example, the error
code in DVT16 may be a 7 (address error), while information in DVT18 might indicate that the
cause of the address error was an incorrect sector address. The extended status could also be
used to record operable but degrading device conditions, such as seek retry counts, etc.

The format of the DVT6 status byte is given below. There is no defined format for the extended
status words DVT18 and DVT19.

7 6 5| 4 3 21 1 0 | Bit number

EOF| DB |[EOM|BOM| SE | DF | DF| E Mnemonic

L88-338

Bits 7 through 0 are set by the driver as needed. The E bit is set by the system.

EOF is End Of File. Use for mini-cassette tapes, card readers, etc. EOF = 1 when
condition is true.

DB is Device Busy. Indicates that the device is performing a function which prevents other
operations from starting, such as tape rewind. DB = 1 when condition is true.

EOM is End Of Medium. Set when the current request has positioned (or will position) the
physical medium past the maximum limit (for instance, trying to write 2 disk tracks when
only 1 track remains for use).

Note If the EOM bit is set, it is generally a good idea to set the EOF bit also. This
ensures FMP compatibility.

BOM is Beginning of Medium. When set, indicates that the medium is at the start of the
recording area.

SE is Soft Error. An error occurred which caused the driver to attempt an error recovery
operation. The E bit may or may not be set, depending upon whether or not the operation
was eventually successful.

DF is Driver Definable.

E is an Error Indicator set by system if the driver sets any error code in DVT16. Drivers
should not change this bit.

The status byte is accessible to a program by either making an exec request (an EXEC 3 on
LU+600B) or by checking the A-register after non-buffered requests.

Extended status is recovered through a call to RMPAR immediately following a non-buffered
request.

General Driver Concerns 5-5

Posting Errors

Errors are reported in the DVT by the device driver, or the interface driver, or both, according to
the design on the drivers. If you are writing a device driver to work with an existing interface
driver (or vice versa), you must have a knowledge of how the other driver interacts with the DVT.

Drivers report errors by storing error codes in DVT16 bits 0-5. After the driver exits, the system
will check these bits and, if they are not zero, will set the E bit (any error) in DVT6.

Error codes 1-12 will result in pre-defined error mnemonics being issued by the system.
Otherwise, the system will merely report the error number, which may be unique to the device.
The error code is also accessible programmatically with a status request.

The default action taken by the system is to down the DVT on the error exit, making it
unavailable for new requests until it is upped. However, the driver can override the default by
setting bit 15 in DVT16, as illustrated below.

When a down DVT is brought up, the request which caused the error is normally re-initiated on
the device driver. The driver may also override this restart by setting bit 14 in DVT16. This will
cause the request to be flushed from the I/O queue (removed from the linked request list).

DVT16 format upon driver exit:

15 | 14 5|14]...]1]0

D| F Error Code

L88-339

D is the DVT down bit. If D=1, then the DVT is not set down on an error; if D=0, the
DVT is set down on an error.

F is the flush bit. 1 indicates flush the request; 0 means don’t flush it.
Default: Both bits zero (set the DVT down and do not flush the request.

The D and F bits will be ignored by the system if the error code is zero.

Other combinations of the D and F bits and their meanings are:

DF

01 Set the device down, and flush the request. The request is “finished” in the sense that
the system will not repeat the request on the driver when the device is upped. This
implies that the request actually successfully completed. However, during its activity
some other error circumstance was discovered which requires operator intervention.

11 Do not set the device down but flush the request. This is provided as a soft error
reporting condition. The request has completed successfully after having some
difficulty (such as disk retries). This condition is also forced by the system if the caller
set the UE bit (normal requests only).

5-6 General Driver Concerns

1 0 Do not set the device down, and do not flush the request. The resulting action is to
restart the request. This, in combination with error code 63 (77 octal) is used in
driver-directed power fail recovery. The request is automatically restarted by a new
initiate entry.

The case where both bits are zero is most common. For example, if a line printer is out of paper,
it is best to set the device down but not flush the request. When the device is set down, the
program making the request is suspended.

When new paper is installed, the operator can set the device up and the request will complete.
Programs which make new requests on the device while it is down will be suspended until the
condition is corrected and the device is upped.

The device driver may put itself in the time list and up itself when it finds the condition
corrected. See section on system callable routines.

A driver would normally instruct the system to flush the request only if the request was illegal
(such as illegal track specified on a disk read/write), since re-initiating the request would lead to
the same error.

The effect of setting the error code in bits 5-0 of DV16 is shown in Table 5-1 below.

Table 5-1. Error Codes and their Meanings

Error Code (Decimal) Meaning

No Error

lllegal Request

Not Ready

Time Out

End of Tape
Transmission Error

Write Protected

Address Error

Serial Poll Failure (HPIB)
Group Poll Failure (HPIB)

OCoONOOUOP~WN-—=O

10
11
12
13 to 20
2110 59
60 to 62
63

Fault

Data Communication Error
Insufficient DVTX or DVTP
Reserved

Driver Definable

Reserved

Restart if D=1, F=0

Error code 63 is unique, since it permits the request to be re-initiated with no error message
even though the driver made an error exit. However, to cause automatic restart, the driver must
set the D bit (do not set the DVT down).

The following message is reported when a device error occurs. The first two lines always appear.
The last two appear only when the device is set down or the request is flushed.

General Driver Concerns 5-7

I/ O Device Error on LUnn The reason is:

<nmeani ng> (From Tabl e 5-1)
Devi ce has been downed (use UP to try recovery)
Request has been fl ushed

Driver Partitioning

In order for a driver to be generated into a partition during system generation, it must contain
the gen record GEN PARTITIONABLE. This record implies that the driver will be mappable
during system execution. The term mappable means that the driver does not perform DMA to
or from its code space. It is, however, proper to perform DMA from a table, such as the DVT or
IFT, or from the user buffer. The DMA control words must not be part of the driver’s code
space. They should be in the DVT or IFT extension area, usually the IFT area.

5-8 General Driver Concerns

Device and Interface Driver Interactions

Parameter Passing Between Drivers

All communication between device/interface driver pairs is via the DVT. Information passed to
the device driver about the user’s request is contained in DVT15-DVT19. The device driver will
examine the request parameters and may replace one or more of them with its request on the
interface driver.

When the interface driver completes, it posts status in DVT6, error code (if any) in DVT16 and
transmission log (positive number of bytes or words transmitted) in DVT17. Extended status
information (if any) should be stored in DVT18 and DVT19. The device driver may again modify
the DVT before completing the request. For example, the extended status information may have
more meaning when considered in terms of the actual device and may cause the device driver to
reinitiate the request on the interface driver. This permits the device driver to handle error
recovery procedures.

Generally, the interface driver should operate on the DVT as if the device driver did not exist.
(This may not be feasible in some cases.) If there is a need for direct communication between the
device driver and the interface driver, this is accomplished through the driver communication bits
in DVT?20.

Multibuffered Request

The multibuffered request (RQ=0) is a chain of requests built by the device driver and passed to
the interface driver. The device driver will never receive a request of this type. This capability
permits the device driver to break up a complex request into a series of simpler operations.

The interface driver is initiated once, to begin the chain and the request is not complete until the
chain completes. The interface driver uses the chain to build a chained DMA request. For a
discussion of DMA chaining, see the chapter on I/O Card Processing.

The format of the multibuffered request is defined totally by the interface driver and no standard
is enforced regarding format. In the following discussion, an approach is discussed but other
approaches are equally valid.

The device driver builds the request chain in the DVT extension and sets the RQ field (DVT15) to
0 prior to initiating the interface driver. The address of the chain (in this case the DVT extension)
is put into DVT16 and the total length of the chain in DVT17 as a negative link count. DVT18 and
DVT19 may be used to pass additional control information to the interface driver.

Device and Interface Driver Interactions 6-1

When a device driver is making multibuffered request links, it is responsible for setting the L bit to
the correct value for each link. Each link normally corresponds to 1 DMA request. If a link
represents the request data buffer, then the L bit should be set to the same value as the L bit in
DVT15. If a link represents data from the driver’s own area (the driver extension area) then the L
bit should be set to zero.

Each link in the chain uses the following format:

15|14 [13|12][11[10] o] 8| 7| 6| 5] 4|3 2] 1] 0
LEN Z| Subfunction 0 0 [L|[O] RQ
Buffer Address
Buffer Length
Control Word
Control Word

» LINK

L88-340

LEN is the length of link in chain (1 to 5 words).
RQ is the request type for this link (1 for read, 2 for write, and 3 for control).

Z is the control buffer bit. If present, 4th and 5th word of link are address and length of a control
buffer.

L is the location (system/user) bit, defining whether data is in the system or user map.

I/O Table Reference

The system sets up pointers to the words in the DVT prior to entering the device driver. Also it
sets up pointers to the IFT prior to entering the interface driver.

There are times however when the device driver will wish to reference entries in the IFT or the
interface driver will wish to reference entries in the DVT. To reduce overhead, the system does
not set up the pointers for such a cross reference (except on Interface Initiate and Abort) and so
the driver must do this for itself.

A system subroutine, $DIOC, facilitates access by a driver to any DVT or IFT. This routine can be
called by either the device or the interface driver. After calling this routine with the appropriate
control parameters, the driver may directly access the DVT or IFT words by loading the word
indirectly. See the chapter on Callable System Routines for more information on $DIOC.

If a single address is all that is needed, it may be more efficient for the driver to compute the
address needed rather than call upon $DIOC.

6-2 Device and Interface Driver Interactions

Asynchronous |I/O and Polling

In any truly asynchronous transfer, the time interval between operations is variable and may be
quite lengthy.

One such instance is a read or write request to a disk. The request will have two basic
components: the seek-to-cylinder and the actual transfer of data. If the objective is to use the I/O
card efficiently in the case where there may be many devices on the bus (as an HP-IB), then it is
desirable to permit additional requests to be handled by the interface driver between the seek and
the data transfer.

Another instance is in the polling of devices on the bus. It is desirable to initiate a poll request to
several devices as quickly as possible, without waiting for each device to respond. Then the
responses can be serviced as they come in. In the meantime, other requests should be permitted
on the bus.

A third example applies to handling of terminals. A terminal should be able to respond an
operator attention key and also be used for programmatic I/O. However, a terminal must be
specifically enabled to permit recognition of an operator attention key. The enable request must
complete so that programmatic requests are not held off.

To implement this feature, the interface driver must accomplish a “pseudo done” exit, which must
be recognized by a co-operating device driver. The device driver then waits for “true done” (the
seek has completed or the polled device responded).

For “pseudo done” the interface driver adds to an internal list the DVT address which must be
used when the device makes a response. It then makes a “done” exit. As far as the system is
concerned, the request is actually done and new requests may be started on the interface driver —
this is important to keep the interface card as busy as possible.

In making the “done” exit, the interface driver may set the D bit in the system flags to defer calling
the device driver. This would introduce the necessity for the interface driver to manage the
timeouts, however. The default condition (D bit clear) will result in the continue entry to the
device driver whose DVT is given in IFT5 and is a simpler situation for the driver to handle.

When an interrupt occurs and the device driver is entered, it recognizes, by the nature of the
request and (possibly) the driver communication flags in DVT20, that the request is either actually
complete or still in progress. If not complete, then the device driver makes a “wait” exit.

When the device makes the desired response, the interface driver consults its list to identify the
device driver that should handle the request. It then places the correct DVT address in IFTS. It
may then call system subroutine $DIOC to set up the pointers to the DVT and, possibly, set a flag
in the driver communication area. It, again, makes a “done” exit, which causes a continue entry to
the same device driver as previously. This time, however, the device driver handles it as a
completion of the original request and makes a device done exit. (See the Callable System
Routines for more on $DIOC.)

The device done exit causes the rescheduling of any program waiting upon the request. Therefore,
there is no “pseudo done” for the device driver.

Device and Interface Driver Interactions 6-3

Callable System Routines

$DIOC: Set Up DVT or IFT

Subroutine $DIOC may be used by either a device driver or an interface driver as follows:

A-Register Bits = 2 110 A = Advance DVT ref at IFT5
I = Setup IFT address pointers
Al 1lDp D = Setup DVT address pointers

88-341

B Reg = DVT Address

JSB $DI CC
Return: P+1 Regi st ers meani ngl ess

If used by the device driver then only the I bit makes sense on entry to $DIOC. The device driver
might wish to set up the IFT pointers so that it could place some value(s) in the IFT extension (for
example) prior to an “initiate” exit.

If used by the interface driver, then either “A” or “D” may be used or both may be set. “I” may be
set but makes no sense (because the IFT addresses are already set up). If both “A” and “D” are
set, the advance to the next DVT in the circular list is made prior to setting up the DVT pointers,
so that the pointers refer to the next DVT. “A” by itself merely changes the contents of IFTS to the
address of the next DVT.

Since the circular list pointer will point to itself if there is no circular list, the routine will work
properly even if there is only one DVT attached to the IFT.

Callable System Routines 7-1

$DVLU: Compute LU From DVT

$DVLU finds the first logical unit number associated with the DVT. The calling sequence is:
B- Regi ster = DVT Address

JSB $DVLU
Return: P+1

A- Regi ster has LU nunber (or zero if no LU assigned)
B and E registers unchanged

$UPIO: Up Device

$UPIO is not a closed subroutine™; it is accessed by a JMP instruction rather than a JSB.

The driver jumps to $SUPIO to “up” a device whose DVT pointers have been previously set up. All
programs waiting on the downed device will be rescheduled by the system.
All requests in the queue will be allowed to continue.

* In this context, closed subroutines return to the caller. Routines that are not closed do
not return.

Note Drivers should not jump to $UPIO if the device is busy. Also, they should
ensure that “hold” in the system flags was not left set from a previous exit. This
is to ensure that the driver will be re-entered.

$Uplft: Up all LUs referring to this IFT

$Uplft is not a closed subroutine®; it is accessed by a JMP instruction rather than a JSB. The
driver jumps to $UplIft to "up” all devices whose DVT refer to the currently set up Ift. The result
is the same as calling $UPIO for each DVT that refers to this Ift. This call is intended to be used
by interface drivers for devices such as disks that have several DV referring to the same physical
device.
* In this context, closed subroutines return to the caller. Routines that are not closed do
not return.

7-2 Callable System Routines Update 1

$DMPR: DMA Parity Error

If a DMA parity error is received by the driver, it may enter the system with a JMP to $DMPR to
allow the system to process the error.

If the parity error occurs in the operating system area, the system will execute a HLT instruction.
The A-Register will contain the failing page address, and the B-Register will contain the physical
page number.

If the parity error occurs in a user partition and the error is a hard parity error, the partition is
downed, a message is given to the system console, and processing resumes.

$XQSB: Program Scheduling

$XQSB may be used by a device driver to schedule a program, pass it up to five parameters, and
also change the terminal logical unit stored in the ID segment.

The calling sequence is:

JSB $XQSB

DEF <Program Nanme in 3-word buffer>
DEF <5-word paraneter buffer>

DEC <new | ogi cal unit>

Return: P+4

Program not found A=-1 B=20

Program busy A> 0 B = I D address
Successful schedule A = 0 B = I D address

If the program is busy, the A-Register will contain the status bits from ID segment word 16.

The parameter address in the 5-word parameter buffer should be direct or indirect to a list of five
parameter addresses.

If the logical unit passed is zero, then the terminal LU is not changed in the ID segment.

RTE drivers used to follow a recommended convention in using the five-word buffer as follows:
Word 1 is the LU of the device from which the schedule attempt was initiated.

Word 2 is an arbitrary value taken from the control request 20B when used to setup the
program to schedule on asynchronous interrupt.

Words 3 to 5 are one to three words of device driver status information which may be used by
the scheduled program.

The current convention (Rev 4.1 or later) is as follows:

1. LU

2. 0 or =1 O for primary program; —1 for secondary
3. DVT 6 Word

4. 0 (Spare)

5. 121217B

Callable System Routines 7-3

Adherence to these recommendations will permit automatic trap handling in BASIC/1000D and
BASIC/1000L.

On systems using Security/1000, drivers calling the $XQSB routine for purposes other than
scheduling a program on unsolicited interrupt may lock up. (For example, a driver may call an
update program every time it exits.)

Driver lock up can be prevented by using one of the following procedures:

4. The driver can set the value of the executing session number (operating system parameter
$XQSN) to zero prior to calling the $XQSB routine. If $XQSB is set to zero, the capability
level defaults to the session capability level.

5. If unable to modify the driver source code, use the LINK PC command when linking the
program, and specify a value of zero for the RQUSCPLYV parameter. This sets the required
user capability level to zero.

Mapping Considerations

The operation of a system with mapping (such as RTE-A) requires special procedures for data
manipulation as well as DMA configuration. At times, drivers must examine and/or modify an I/O
request’s buffer. The data buffer may or may not be mapped in. To make mapping as transparent
as possible to the driver writer, the operating system includes a set of subroutines that allow the
driver to read or write into the data buffer without having to consider mapping. HP strongly
advises that all drivers use the subroutines described below.

In A-Series systems:

1. The Operating System is always mapped.

2. The user map (map set 2 or 3) is mapped if data is in the user space.

3. SAM is always mapped (map set 4).

4. The auxiliary map (map set 7) is used so that the user map is not modified.

5. Twenty-four port maps (map sets 8 through 31) are available for DMA, and are dynamically
allocated and deallocated between the 48 I/O channels as needed.

The following lists all of the map set assignments:

0 System
1 System/message processor
2 User data

3 User code

4 SAM

5 (reserved)

6 DS

7 Auxiliary

8-31 Port maps for DMA access

7-4 Callable System Routines

The L bit referenced below is normally found in DVT15, but can be found in the control word for
a multibuffered request. In both cases, the L bit has the same function. Device drivers should set
the L bit in multibuffered request control word to indicate which data buffer is being referenced,
the original request data buffer, or a data buffer from the driver’s area. If the data buffer is in the
driver code space (as in a non-partionable driver) or in the driver extension area (as in a
partitionable driver), the L bit should be zero. If it is the original request data buffer, this bit
should be set the same as the L bit in DVT15.

There are three sets of mapping routines described below. They are $SSETM/$READ/$WRIT,
$ONER/$SONEW, and $SMSALC/$MSRTN. The first set is reccommended, because each call to
$ONER/$ONEW takes as long as a call to $SETM plus SREAD/$WRIT. $SETM must be called
before calling SREAD/$WRIT, but it must be called only once per entry and it does not have to be
called at all during initialization. $MSALC and $MSRTN are used from within a driver for
allocating multiple map sets for a driver and also by the I/O system for allocating map sets.

$SETM: Set Up Map Registers

$SETM sets up the map registers for the SREAD and the SWRIT subroutines. The
$SETM/$READ/$WRIT set of routines is useful if the driver has to manipulate more than one
data word between driver entry and driver exit. $SETM does not need to be called if the driver
was entered with an initiation directive because the map registers are set up automatically by the
system. In all other cases, if a driver is to use SREAD or $WRIT, this routine should be called
first.

The calling sequence is:
B- Regi ster = DVT address

JSB $SETM
Return: P+1 A and B unchanged

$READ: Read Data Word/Map Selected

$READ allows the driver to read one word from the data buffer, but assumes that all map
registers have been set up prior to this call. This routine, in conjunction with $SETM, should be
used if more than one word needs to be read. If a driver has been entered with an “initiate”
entrance, this routine can be used without a call to $SETM, because the system has already set up
the maps.

The calling sequence is:

B- Regi ster = | ogical address
(base address provided in request plus offset)

JSB $READ
DEF (word containing L bit in bit 3)
Return: P+2 A = Data val ue; B, E unchanged

Callable System Routines 7-5

SWRIT: Write Data Word/Map Selected

$WRIT is the converse of SREAD: it writes one word into the data buffer. If a driver has been
entered with an “initiate” entrance, this routine can be used without a call to $SETM, because the
has previously set up the maps. In all other cases SSETM must be called to set up the maps.

The calling sequence is:
A-Regi ster = Data value to be stored
B- Regi ster = Logical Address
(base address provided in request plus offset)

JSB $WRI T
DEF (word containing L bit in bit 3)
Return: P+2 A, B, E unchanged

$SONER: Read One Word Without Setup

$ONER allows the driver to read one word from the data buffer. This is useful if the interface
driver is resumed, but does not want to go through the overhead of setting up the complete map
set. This routine should never be used if the driver has been entered on an Initiate entrance,
because the maps have already been set up by the system. $READ should be used in place of this
routine.

Calling sequence is as follows:

B- Regi ster = | ogical address of word to read
(base address provided in request plus offset)

JSB $ONER

DEF (word containing L bit in bit 3)

DEF (DVT)

Return: P+3 A = data read; B, E unchanged

7-6 Callable System Routines

SONEW: Write One Word Without Setup

$ONEW allows the driver to write into the data buffer. Again, this routine should not be called if
the driver has been entered on an initiate entrance, because the maps have already been set up by
the system. $WRIT should be used in its place.

Calling sequence is as follows:
A-Register = Value to be witten
B- Regi ster = Logical Address
(base address provided in request plus offset)

JSB $ONEW

DEF (word containing L bit in bit 3)
DEF (DVT)

Return: P+3 A, B, E all unchanged

$SETR: Set Port Map

$SETR sets the port map for a request in the DVT. This is useful for setting up the correct port
map for the DMA transfer to and from the user buffer. $SETR does not need to be called on
request initiation; the driver is entered with the correct port map setting. On any other entry (that
is, asynchronous interrupt which must initiate a DMA request), this routine should be called.

The port map is returned in the A-Register, and should be OR’d into the DMA control word of the
quad that does the actual data transmission. This routine makes a call to $SELR to obtain the
port map number, so both need not be called consecutively (see below).

B- Regi ster = DVT address

JSB $SETR

Return: P+1 B= starting physical page of transfer
A= port map nunber

For example: JSB $SETR
I OR CNTZ1

This would logically OR the port map into the DMA control word.

Callable System Routines 7-7

$SELR: Select Port Map Number

$SELR is used to find out what map set an I/O channel should use for DMA. $SELR will check to
see if the I/O is coming from the system or SAM map. If so, and the driver is not going to change
the mapping registers, SSELR will return a 0 for the system map or a 4 for the SAM map.
Otherwise, it will check to see if a port map has been allocated for this channel. If one has been,
that port map number will be returned to the caller. In case a port map needs to be allocated,
$MSALC will be called to get one. If no map sets are available, the I/O will be suspended until a
map becomes available.

This subroutine must be used when setting up the DMA control register (register 21, see Chapter
9, I/O Card Programming) for the actual data transfer to or from the user’s buffer. The number
returned should be OR’d into the control word and stored in the self-configuration quad or output
directly to register 21. The relocation number in this case is zero. $SELR can be used only if the
driver has been entered with an Initiate entrance. In all other cases, $SETR should be used.

The calling sequence is:

A-Regi ster = address of word containing L bit in bit 3
B- Regi ster = | FT address

JSB $SELR

Return: P+1 A = port map nunber

For example: JSB $SELR
| OR CNTZ1

This would logically OR the port map number into the DMA control word.

7-8 Callable System Routines

SMSALC: Allocate Additional Map Sets

$MSALC allows a driver to allocate additional map sets for setting up multiple DMA transfers.

Use $SELR or $SETR to get the first map set, but use SMSALC to allocate any map sets after
that. See $SELR, above, for a description of setting the DMA quad.

The calling sequence is:

A- Regi ster = I FT address
JSB $MBALC

Return: P+1 A
Return: P+2 A

-1, no port map avail able
al l ocated port map nunber

For example:

LDA | FTA

JSB $MSALC
JMP NOVB

STA MapSet Num
I OR CNTZ1

SMSRTN: Deallocate a Map Set

$MSRTN is used to deallocate a map set that has been allocated using SMSALC.

The calling sequence is:

A- Regi ster = | FT address

B- Regi ster = Nunmber of port map to return

JSB $MBRTN

Return: P+1 Error, port map did not belong to the |IFT specified
Return: P+2 Success

For example:

LDA | FTA

LDB MapSet Num
JSB $MBRTN
JMP ERROR
JMP SUCCESS

Callable System Routines

7-9

SCLWRT: Class I/O from a Driver

This driver callable subroutine allows a driver writer to either initiate a class request, or to deliver
a buffer of data to a class completion queue. This subroutine accepts calls in two forms which are
described separately below.

Form 1, deliver a buffer to a class completion queue:

This form allocates memory from SAM (system available memory), initializes it as a class request,
copies the data from the driver to the class buffer, and then queues the buffer on the class
completion queue.

DBuf f oct MapReg this describes where the data is |ocated
def Message

e other code

Il da =L(DBuff) A = an address of a buffer descriptor
ldb d assNuner B = a previously allocated class nunber,
; usually this has been passed
; to the driver in a control request

jsb $CAA Wt i nvoke the routine
def Length passing the length of the buffer (+words/-bytes)
def Cval ues and a pointer to the call value array

ssa the call returns here,

jmp Qops the A-Register has the status

e other code

Cval ues oct ccc control word (see bel ow)
oct nnn tag word
oct optl option word 1 (see Z-Bit section bel ow)
oct opt2 option word 2
Message bss xx The data to be sent
A- Regi ster return val ues:
0 —— success
-3 —— no SAM avail abl e
-4 —— class nodule not gen’ed into the system
-5 —— class queue is in buffer limt state
-6 —— bad class nunber

7-10 Callable System Routines Update 1

Form 2, initiate a class request on an LU:

This form allocates memory from SAM, initializes it as a class request, and then queues the
request on the DVT of an LU.

DBuf f oct MapReg this describes where the data is |ocated
def Message

e other code

I da =LuNunber A =an LU in the range 1...255

ldb d assNuner B a previously allocated class nunber,
; usually this has been passed
; to the driver in a control request

jsb $CA Wt i nvoke the routine
def Length passing the length of the buffer (+words/-bytes)
def Cval ues and a pointer to the call value array

ssa the call returns here,
jmp CQops the A-Register has the status

e other code

Cval ues oct ccc control word (see bel ow)
oct nnn tag word
oct optl option word 1 (see Z-Bit section bel ow)
oct opt2 option word 2
Message bss xx The data to be sent
A- Regi ster return val ues:
0 —— success
-1 —— call initiation collision
-2 —— bad LU nunber
-3 —— no SAM avail abl e
-4 —— class nodule not gen’ed into the system
-5 —— class queue is in buffer limt state
-6 —— bad class nunber

If this request is directed to an idle LU, then the I/O request must be initiated when the driver
exits. To do this, the system points the DVT request queue word to the class buffer and then puts
the DVT address into a system flag. The system flag word can contain only one value, so if the
driver encounters two idle LUs, it will receive error —1. If the request is directed to a busy LU,
the request is simply added to the end of the DVT request queue and there is no need to set the
system flag word. Thus, the only way that the —1 error can be generated is if the driver tries to
initiate calls on multiple LUs in a single pass through the driver.

Update 1 Callable System Routines 7-11

The form of the control word expected is close to that as seen by drivers in DVT word 15:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLO 0 0 Z Subfunction Bits 0 0 0 DB RQ
Bits 0,1 (RQ) Request Code Bits
00 — not valid
01 — read
10 — write
11 — control
Bit 2 (DB) Driver Bypass Bit

0 — enter the device driver
1 — bypass the device driver,
send the request directly to the interface driver

Bits 6—11 Standard Subfunction Bits,
the interpretation of these bits is driver dependent

Bit 12 (Z2) Double Buffer Bit
0 — no double buffer
1 — build the class request with a ‘Z’ buffer in it.
(This is not very useful, as no data is put in the buffer.)

Bit 15 (CLO) Class Limit Override
0 — See if the given class number is in buffer limit suspend state.
If it is, return —5 error.
1 — Do not check for buffer limit suspend.

7-12 Callable System Routines Update 1

Privileged Drivers

A privileged driver is a special interface driver which is permitted to interrupt the operating
system and other lower priority privileged drivers.

Privileged drivers have two entry points:

1. ID.yy, the standard entry point for any interface driver.
2. Plyy, the privileged entry point.

The generator places a JSB to the privileged entry point (through a link word) in the trap cell for
the driver’s select code. When the interrupt occurs, the driver is entered without the knowledge of
the operating system.

For the standard entry point, the driver is written like any other interface driver. This entry is
under control of the operating system and used to initiate the request.

On privileged entry, the driver must save the present state of the processor (register values,
memory protect fence, etc.) and restore it prior to exit.

Because a privileged driver can interrupt the system, the driver may not use any system routines in
its privileged section. If it must post any information in the DVT or IFT, it must have
previously-saved pointers to the correct addresses, which can be easily obtained when the request
is initiated. The driver must also perform mapping functions, if the data needs to be examined.
Because this storage is local to the driver, any privileged driver that handles more than one select
code will have to manage separate storage areas for each select code.

Generally privileged drivers must disable interrupts for part of their operations. The interrupts
should be enabled whenever possible to permit interrupts by higher-priority privileged select codes
to be quickly serviced.

The method of returning from a continuation entry will depend upon whether more entries are
expected or the request is done. For a done exit, it will also depend upon whether the system or a
program was interrupted. In the latter case, the system may be entered by the driver to complete
done processing. Otherwise, done processing is deferred by placing the IFT on a privileged done
list for the system to process at the earliest opportunity.

If a program (rather than the system) is interrupted, the driver may enter the system directly to
complete done processing. Prior to exit, however, it must set up the register values and the point
of suspension of the program that was interrupted; see the table below.

Table 8-1 lists the global values and entry points which must be accessed by the privileged driver to
perform the save-and-restore tasks normally performed by the system.

The following program listing shows how the save-and-restore tasks are performed in a privileged
driver. The sample driver controls the general purpose interface card. The driver is not a
Hewlett-Packard product, and it does not represent current programming standards. It is included
only to show how a privileged driver performs tasks normally performed by the system.

Privileged Drivers 8-1

Table 8-1. Global Values/Entry Points Needed by a Privileged Driver

Entry Point Meaning
$SUSPI P Register
$A,l A Register
$B,I B Register
$CQ C and Q Registers
$EO,I E and O Registers
$X X Register
Y Y Register
$Z Z Register
SMPTF Memory Protect Flag (0 = on)
$PDON Privileged Driver Done Exit (if MPTF off)
$PIMK Privileged Interrupts Mask value
$Q.PV Head of privileged drivers done list
SWMAP| Enabled memory maps

8-2 Privileged Drivers

ASMB,
*

M

* % X X F

*

RL,C
NAM | D. 51 781009
CROCI RCU T PRI VI LEGED DRI VER FOR H STOGRAMM NG

DESI GNED TO SERVE AS AN EXAMPLE OF PRI VI LEGED DRI VERS

ENT I D 51, PI.51

EXT $A, $B, $EO $SUSP

EXT $PI MK, $MPTF, $Q PV, $WAP

EXT, $1 F7, $DV15, $DV16, $DV17, $DV18, $DSV19

EXT, $PDON, . XJCQ, . SI MP, . Cl @A, . CZA, $WWAP, $X, $Y, $Z, $CQ

suP
*
ID.51 NOP ENTERED FROM | OC
AND B7
CPA BL
IV INT NEW REQUEST | NI TI ATI ON
*
CPA B3
JNP TMOUT TI MEQUT
* TREAT AS AN ABORT
JNP DONEX TAKE PHY DONE EXI T
SPC 3
* REQUEST I NI TI ATI ON
INIT LDA $DV16
STA DVT16 SAVE ADDR OF DVT16
LDA $DV15, |
AND B3
CPA B3 CONTROL REQUEST?
JNP CNTRL YES
CPA B2 VRI TE?
JMP REJCT YES, REQUEST ERROR
SKP
*
* H STOGRAM REQUESTS HAVE THI S FORMAT:
* JSB EXEC
* DEF *+7
* DEF .1 READ
* DEF LU LU OF PRI VI LEGED M CROCI RCUI T DVR
* DEF BUFR ADDR FOR HI STOGRAM RESULTS
* DEF LEN S| ZE OF HI STOGRAM BUFFER
* DEF ADDR 1ST CORE LOCATI ON TO HI STOGRAM
* DEF #1 NVD # OF WORDS PER HI STOGRAM BUFR CELL
*
* THE AREA OF OORE HI STOGRAMVED W LL BE FROM (ADDR) TO
* (ADDR)+(# N\WD) * (LEN-1)—1. THE FI RST WORD OF THE HI STOGRAM
* BUFFER RECEI VES THE NUMBER OF "HI TS’ OUTSI DE OF THE ABOVE
* RANGE. WHEN ANY CELL REACHES 177777B, IT IS NO LONGER
* BUWPED, HENCE THI S VALUE REPRESENTS OVERFLOW
*

CCA

ADA $DV17, | SI ZE OF BUFFER-1

MPY $DV19, | TI MES # WORDS PER CELL
SZB, RSS

CMVA, SSA, | NA, RSS NEGATE

JWP REJCT ERROR | F <0 OR >>32767

Privileged Drivers

8-3

STA NRANG
LDA $DV19, |
STA #WD
LDA $DVie, |
STA BUFAD
LDA $Dv18, |
CMVA, | NA
STA NEGAD
DLD #MEAS
DST MEASX
LDA $I F7
STA | FT7
LDA $I FTX
STA I FTX

ISZ 1D. 51
STC 30B, C
CLA

JWP I D. 51,1
SKP

Pl .51 NOP

*

8-4

CLC 4

JSB . SI WP
DEF WVAP
DST ASV

LDA $MPTF
STA MPFSV
| SZ $MPTF
LIA 2

STA GLOBL
LIA 4

OrTA 2,C
LIAO

STA | NTMASK

LDA $PI MK
OTA O

NCP

STC 4

LDA NEGAD
ADA PI .51
SSA

JWP QUTRG
LDB 0O

ADB NRANG
SSB, RSS
JWP QUTRG
CLB

Privileged Drivers

SAVE FOR RANGE CHECKI NG
WS PER CELL

GET H STOGRAM BUFR ADDR
SAVE LOCALLY
GET CORE ADDRESS

— CORE ADDR FOR RANGE CHECK
NEG # OF H STOGRAMS (2 WORD)

ADDR OF | FT7
SAVE LOCALLY
ADDR OF | FTX
SAVE LOCALLY

NOW START PHOTOREADER TO CAUSE PRI VI LEGED | NTERRUPTS

TAKE PHYSI CAL CONTI NUE EXI T

NO T. O
EXIT

THIS IS THE PRI VI LEGED | NTERRUPT SECTION CF | D. 51

TURN-CFF EVERYBCDY
SAVE

VORKI NG VAP

SAVE REGS

SAVE E&O
SAVE Q

SAVE Z
GET MEMORY PROTECT STATE

FLAG THAT MEM PROTECT | S OFF
READ GLOBAL REG STER

GET | NTERRUPTI NG S. C.
SET & ENABLE GLOBAL REG

MASK ALL BUT

PRI VI LEGED | NTERRUPTS
** TEMP
REENABLE | NTERRUPTS

H STOGRAMM NG UPDATE

| NTERRUPTED LOG-1ST HI STOGRAM LCOC
QUTSI DE OF RANGE?

YES

OFFSET

BEYOND UPPER LI M T?
YES

DIV #WD

ADA BUFAD ADDRESS HI STOGRAM BUFFER
I NA, RSS
QUTRG LDA BUFAD QUT-OF—RANGE, USE 1ST LOC
LDB O, | GET CURRENT CONTENTS OF CELL
I NB, SZB BUW I T, SKIP | F OVERFLOW
STB 0, | NON-OVERFLOW CELL=CELL+1
*
| SZ MEASX+1 COUNT TOTAL
JVP PCONT
| SZ MEASX I NCR UPPER WORD OF COUNT
JVP PCONT
SPC 2

EEE I

TOTAL # OF H STOGRAM5S HAS OCCURRED, COVPLETE NOW

CLC 30B, C CLEAR CARD
SPC 2

THE BELOW CODE SERVES AS AN EXAMPLE OF HOW PRI VI LEGED DRI VERS

MAY COWPLETE A REQUEST TO THE OPERATI NG SYSTEM W TH M NI MUM LATENCY
SPC 1

CLC 4 | NTERRUPTS OFF
UPDATE SYSTEM FLAGS — "T" WOULD BE MEANI NGLESS
LDB | FT7 ADDR OF | FT7
LDA 1,1 GET IFT WD 7
AND =B3777 CLEAR BI TS 15-11
STA 1,1 SYS. FLAGS ALL ZERO
CLA
STA DVT16, | POST GOOD COVPLETI ON
CPA MPFSV WAS SYSTEM | NTERRUPTED?

JIVP PDNOW NO, WE CAN ENTER I T NOwW

ENQUEUE THI S I FT ON "$Q PV’ QUEUE OF PRI VI LEGED | FTS REQUI RI NG
PHYSI CAL DONE PROCESSI NG SO THAT 1/ O SYSTEM WLL PERFORM A P. D.
FOR THI S | FT RATHER THAN RETURN | MVEDI ATELY TO USER PROGRAM
VWHEN THE CURRENT SYSTEM PROCESS COMPLETES.

LDB | FTX PO NT TO | FT EXTENSI ON

LDA $Q PV GET CURRENT HEAD OF $Q PV’ QUEUE

STB $Q PV PUT OUR | FT AT HEAD — LI FO

STA 1,1 LI NK TO NEXT GOES I N | FT EXT WD #1
RESTR LDA EOSV

cLO

SLA, ELA RESTORE E

STO SET O

LDA GLOBL

OTA 2,C RESTORE/ ENABLE GLOBAL REG

LDA MPFSV

STA $MPTF RESTORE M P. FLAG

LDB ASV+1 RESTORE B REG

LDA | NTMASK

* % kX 3k X F

NOTE THAT SERVI CI NG OF A TBG TI ME Tl CK MAY
DELAY THE | NTERRUPTED PRI VI LEGED DRI VER.

IF THHS IS A PROBLEM THE PRI VI LEGED DRI VER
SHOULD RUN W TH | NTERRUPTS OFF. THE TBG Tl CK
W LL THEN BE DELAYED (NOT LOST).

OTA O UNVASK ALL | NTERRUPTS

Privileged Drivers

8-5

LDA ASV

STC 4 | NTERRUPTS ON
JSB . XJCQ

DEF WWAP

DEF Pl.51,1 RETURN TO PO NT OF | NTERRUPTI ON
DEF QSAV

HERE WHEN MEMORY PROTECT WAS ON SO THAT 1/ O SYSTEM
CAN BE ENTERED DI RECTLY FOR PHYSI CAL DONE

E I S

PDNOW ADB N6 PO NT TO | FT WORD 1
LDA ASV SAVE NMACHI NE STATE
STA $A | ON | NTERRUPT I N
LDA ASV+1 | D SEGVENT OF
STA $B, | CURRENTLY EXECUTI NG

PUT LOCAL STATE WHERE RTE CAN FIND I T

CXA
STA $X SAVE X & Y IN
CYA USER BASE PAGE
STA $Y
LDA QSAV
STA $CQ
LDA ZSAV
STA $Z SAVE Z-REG STER FI RST AND RESTORE
LDA WWAP SAVE WWAP
STA SWWAP, |
LDA ECSV
STA $EQ, |
LDA Pl .51 SET PO NT OF
STA $SUSP,| PGV SUSPENSI ON
* ENTER | OC WTH B REG STER PO NTING TO THE | FT WORD 1
STC 4 | NTERRUPTS ON
JVP $PDON PROCESS PHYSI CAL DONE NOW
SPC 4
PCONT CLC 4 | NTERRUPT SYSTEM OFF
STC 30B, C RESTART PR
JMP RESTR RESTORE REGS & EXI T
SKP

*

* HERE FOR CONTROL REQUESTS
*
CNTRL LDA $DV15, |
AND B7700
CPA B4000 FUNC 40 TO SET SIZE OF HI STOGRAM
JVP SETSZ

REJCT LDA BN7 =140001 REQUEST ERROR
JVP DONEX+1

SETSZ LDA $DV16, |
CVA
LDB $DV17, | DOUBLE WORD | NTEGER
CMB, | NB, SZB, RSS
I NA
DST #MEAS — HI STOGRAM CNT (2 WORD)

DONEX CLA
STA DVT16, | SET ERROR CCDE

8-6 Privileged Drivers

CLC 30B, C ENSURE PR DI SABLED
CLA
JWP I D. 51,1 PHYSI CAL DONE EXI T
SPC 3

* TI ME=QUT

TMOUT LDA B3
JVP DONEX+1 RETURN ERROR 3
SPC 3

* DATA AREA

| FT7 NOP

I FTX NOP

DVT16 NOP

BUFAD NOP

NEGAD NOP

3+
2
0
@)
oo
[eNe]

~NWN -

4000
7700

C -6
BN7 CCT 140001

ASV BSS 2
*

Privileged Drivers

8-7

I/0 Card Programming

This chapter briefly describes how the system performs I/O. For more detailed information, refer
to the Operating & Reference Manual for the A-Series processor.

Two kinds of I/O programming are possible: interrupt per word or byte and interrupt per block.
The latter uses DMA (direct memory access).

I/O instructions are executed by an I/O microprocessor chip common to every I/O card. The
central processor and the I/O chip communicate along the backplane bus. When communication
takes place, the I/O chip and the central processor operate as a single computer to process I/O
transfers through an I/O channel.

The two-digit octal select code represents the address of the I/O interface card on the backplane
and is the basis for linking the main processor with a particular I/O card. Bits 5-0 of an I/O
instruction may reference either the select code or a register on the I/O chip, depending on the
state of the global register and the actual value in bits 5-0.

Select codes 20B through 77B are available to I/O drivers. The choice of which select code to use
(controlled by jumper on the interface) depends on the following:

1. The privileged interrupt mask controls a group of four select codes with a single bit.
Therefore, the generator will report an error if a normal and privileged driver are assigned to
the same bit in the mask.

2. Conventions established for use at the local site.

Each interface card contains the I/O chip common to all I/O cards, and card logic unique to the
function of the card. The I/O driver communicates with the card logic by accessing registers on the
I/O chip. The chip manages the card logic to enable data transfers in the DMA mode or in the
interrupt per byte or word mode.

The select code field in an I/O instruction can specify the chip register. Each register has
associated with it a control bit and a flag bit (these are 1-bit registers) to manage the direction of
data flow. Generally, the control bit is set to indicate that the driver is ready, and the flag is set to
indicate that the device is ready. Usually, the flag is cleared by the driver when the transfer is
initiated: when the device finishes, the flag is set by the device (or the I/O chip) to generate an
interrupt. The flag may also be set by the driver to abort or suspend a transfer.

The registers are numbered 0 through 77 octal, but only the following registers are of interest to
the 1/O driver:

1. Global Register: register 02. When the global register is enabled, its contents specify an
interface card which is to process I/O instructions whose select code is in the range 20B-77B.

2. Virtual Control Panel: register 24. This register is used to indicate the use of the card by the
Virtual Control Panel code.

1/0 Card Programming 9-1

3. Card Registers: registers 30, 31, 32. The card registers control the card logic which is unique
to the function of the card.

4. DMA Registers: registers 20, 21, 22, 23. These registers are used to manage block transfers
to and from memory.

The I/O chip will always recognize select codes 02 and 03, regardless of the state of the global
register. In addition, with the global register disabled, the chip will recognize instructions
addressed to its own select code.

The system’s standard interface drivers (that is, non-privileged drivers) are always entered by the
system with the global register set and enabled for the select code taken from the IFT. Therefore,
those drivers need not concern themselves with register 02.

The card registers (30, 31, 32) are accessed in the same manner for each card. The contents and
meaning of these registers is unique to the card function.

Handling of the DMA registers is nearly the same for every card. The differences are for the
convenience of the driver, rather than required by the card.

The card registers and the DMA registers are described separately in the following sections.

The Global Register

The global register is 6 bits wide and is designed to contain a select code. The register is loaded
and read by the instructions:

OTA/B 2 Load Global Register from A/B

LIAB 2 Read Global Register into A/B
LIAB 2,C Read and clear the flag
MAB 2 Merge with A/B Register
MA'B 2,C Merge and clear the flag

The value loaded into the global register must be in the range 20B-74B; else the interface card will
go into a diagnostic mode.
The global register is enabled/disabled by:

CLF 2 Enable Global Register
STF 2 Disable Global Register

and tested with:

SES 2 Skip if the flag set
SFC2 Skip if the flag clear

All I/O chips recognize select code 2, regardless of the state of register 02. When register 02 is
disabled, however, the I/O chip will recognize only register 02 and the register corresponding to its
own select code.

When the global register is enabled, the select code is used to indicate a register in the range
20B-74B. However, not all of these registers have defined usage.

Hewlett-Packard interface cards and RTE-A interface drivers are designed to be used only with
the global register enabled.

9-2 1/0O Card Programming

Virtual Control Panel Register

Register 24 is used by the Virtual Control Panel to indicate that it has used that I/O card. This
register will be set equal to minus one (—1) prior to exit from the VCP program. This value
signals the driver to restart any request which may have been aborted as a result of the VCP
operation.

The control and flag bits are set on the I/O cards used. Thus, upon return to the operating system,
an interrupt will occur. If the select code is used by a driver in the system, then a continue entry
will be made into the interface driver to service the interrupt. If no driver uses the select code, the
interrupt is ignored by the system.

Drivers which use register 24 include terminal drivers that can process the keyboard used by the
VCP program and any boot devices which may be referenced by the VCP program. For example,
since a boot may occur over the network interface, then the driver for the network interface card
should use register 24.

Below is an example of the procedure the driver should follow to use register 24:

LI A 24B

CONT SZA, RSS REMOTE CONTROL | NTERRUPT?
JMP CONT1 NO. CONTI NUE PROCESSI NG
CLA YES.
OTA 24B CLEAR | NDI CATOR REG STER

*

* PERFORM ESSENTI ALLY THE SAME PRCCESS AS | F
* A PONER- FAI L RESTART. EXAMPLE BELOW

*

PWRFL LDB $I FS, | GET AVAI LABI LI TY
SSB, RSS BUSY?
JMP BRK NO. RESET ANY ASYNCH | NTERRUPTS EXPECTED.
LDA REDO RESTART REQUEST | N PROGRESS
STA $DV16,1 DON T DOWN, DON T FLUSH, NO ERR MESS
CLC ZIB, C
CLC 23B,C TERM ANY DVA SO NO CONFLI CT ON REENTRY
JSB STAT
CLA SYSTEM FLAGS = 0
JW ID.XX | "DONE' EXIT.

*

REDO OCT 100077 "D’ BIT + ERROR CODE 63

*

CONT1 EQU *

* NORMAL PROCESSI NG CONTI NUE HERE
Prior to exit, the driver should always clear register 24. To accomplish this:

CLA
OTA 24B

1/0 Card Programming 9-3

Card Registers

The interface card registers, 30, 31, and 32, are accessed only with the global register enabled.
The instruction set is given below with XX representing the register number 30 to 32.

LIA B XX Move card register to A/B register
LIA/B XX C Move and clear the flag

M A/ B XX Merge card register into A/IB register
M A/ B XX C Merge and clear the flag

SFS XX Skip if the flag set

SFC XX Skip if the flag clear

STC XX Set device control

STC XX, C Set control and clear flag

STF XX Set the flag

CLF XX Clear the flag

Register 30 stores data. An OTA sends data to the card; an LIA removes a data word from the
card.

Register 31 is for card control. An OTA sends a word to the card which “configures” it.
Configuration affects the way the card handles data and is analogous to setting jumpers on the
interface card.

An LIA 32 instruction reads the card status, which may include device status as well, depending on
the card.

Register 32 is not used on all I/O cards. Where used, it is specific to the card. The following
examples illustrate how to use the card registers.

USING THE CARD REGISTERS FOR INPUT

The operations below assume that the global register is set up and enabled.

LDA CNTRL Get control word
OTA 31B Qut put to card
STC 30B, C Start device

The FLAG on the data register (30) is set when the device is ready with data. In addition, FLAG
30 is the flag for the entire interface card and may, therefore, generate interrupts, if they are
enabled. FLAG 30 may also be tested under program control as follows:

SFS 30B Wait for data flag ready
JWP *-1
LI A 30B Now get data

The FLAG remains set until reset under program control, which is normally done when a new
operation is started. To initiate another input:

STC 30B, C

When the final value has been read, the interface should be set to a known state by:
CLC 30B,C

which clears the card control and flag.

9-4 1/O Card Programming

USING THE CARD REGISTERS FOR OUTPUT

The operations below assume that the global register has been set up and enabled.
LDA CNTRL Get control word

OTA 31B Qutput to card
LDA DATA, | Get first data word
OTA 30B Send to card

STC 30B, C Start the card going

When the data transfer is complete, FLAG 30 will be set and may generate an interrupt or be
tested in the same manner as discussed under INPUT. To start the next transfer:

| SZ DATA Increment the data pointer
LDA DATA, I Get next data word
OTA 30B Send to the card

STC 30B, C Restart the device

Again, at completion the card should be reset as follows:
CLC 30B,C Clear card control and flag bits

DMA Registers

Incorporated into every I/O chip is the ability to transfer data directly to or from memory. All

necessary control logic and registers are contained in the I/O chip to supervise the memory

transaction. The I/O chip and logic circuits on the interface card interact to manage the flow of

data and control signals.
There are four DMA control registers on the I/O chip:

Reg# Purpose

20 DMA Self-Configuration Register
21 DMA Control Register

22 Address Register

23 Data Count Register

The self-configuration feature permits DMA transfers to be chained together. The individual

transfers are described by triplets (or quadruplets) in processor memory. When using the DMA
chaining feature, only the address of the first chain needs to be given to the I/O chip. When one

transfer completes, the next is initiated automatically with very little overhead.

1/0 Card Programming

9-5

DMA Initiation

The I/O sequence required to initiate a non-chained DMA transfer is as follows:

LDB $DV1 SET THE PORT NAP

JSB $SETR

IOR CNTL GET DVMA CONTROL WORD

OTA 21B QUTPUT TO CONTROL REG STER

LDA ADDR GET ADDRESS OF MEMORY BLOCK

OTA 22B OQUTPUT TO DVA ADDRESS REG STER

LDA CNT GET DATA COUNT

OTA 23B QUTPUT TO DATA COUNT REG STER

STC 21B, C START DVA AND CLEAR | NTERRUPT FLAG

CNTL BSS 1 SET UP BY PROGRAM TO DESCRI BE TRANSFER
ADDR DEF BUFR PO NTS TO STORAGE
CNT BSS 1 DATA COUNT STORED HERE AS NEGATI VE VALUE

The data count is initialized to the negative of the word count or the byte count, according to bit 13
in the control word.

The sequence needed to initialize a chained transfer is even simpler:

LDA PNTR GET ADDRESS OF CHAIN
OTA 20B TELL IT TOI/OCHP
STC 20B, C CLEAR | NTERRUPT FLAG AND START CHAI N

A sample chain is given below. The example also illustrates the bits in the DMA control word.

CONT
DEVCM
BYTE
RES

ClI NT
REM
FOUR
AUTO
I'N

RELCC .
*

*

PNTR

*
BUFR
CNT1

*

CNT2

EQU 100000B CONTI NUE SELF- CONFI GURATI ON CHAI' N

EQU 040000B | SSUE DEV COM PULSE AFTER EA WD BYTE

EQU 020000B DATA COUNT IS I N BYTES

EQU 010000B OVERVRI TE DATA COUNT W TH RESI DUE AT END

EQU 004000B INH BI T DVA | NTERRUPT FLAG

EQU 002000B USE REMOTE MEMORY

EQU 001000B THIS LINK I S A QUADRUPLET

EQU 000400B DON' T WAIT FOR SRQ FROM DEVI CE

EQU 000200B TRANSFER IS TO MEMORY FROM DEVI CE

MUST BE OR ED | NTO CONTRCL WORD BEFORE
STARTI NG THE TRANSFER

DEF BUFR

ABS CONT+AUTO+RELOC DVA CONTROL: OQUTPUT TRI PLET
DEF DATA ADDRESS OF MEMORY BLOCK

DEC -10 NEG OF WORD COUNT | N DATA

ABS CONT+AUTO+I N+RELCC DVMA CONTRCL: | NPUT TRI PLET
DEF | NPT ADDRESS OF | NPUT BUFFER

DEC -10 NEG # WORDS | N | NPUT BUFFER

ABS BYTE+AUTO+FOUR+RELOC DMA CONTRCL: LAST LINK I'S QUADRUP.

DEF CTRL THIS IS A CONTROL WORD FOR 1/ O CARD
DEF DONE ADDRESS COF LAST BLOCK

9-6 1/O Card Programming

DEF CNT3 BYTE COUNT OF BLOCK AT DONE BUFFER

*

DATA BSS 10 QUTPUT DATA BUFFER
I NPT BSS 15 | NPUT DATA BUFFER

DONE BSS 5 FI NAL BUFFER | N CHAI N

The chain is “self-configuring” because the I/O chip takes over loading its registers 21, 22 and 23
from the consecutive memory locations beginning at the pointer which is put in register 20. As
each memory location is accessed, the value of register 20 is incremented by the I/O chip. The
new value in register 20 is used as the address of the next memory read.

If the “FOUR?” bit is set in the DMA control word, then the second word in the link is loaded into
chip register 31, the card control word. Subsequent words are loaded into registers 21, 22, and 23
— the same as for the triplet.

The self-configuration timing is variable, according to whether the DMA interrupt flag is on or off,
and whether this is an initial configuration (top of chain) or a reconfiguration (subsequent link in
chain). The hardware manual should be consulted for actual times. However, the
self-configuration will always execute faster than the equivalent loading of registers 21, 22 and 23
by the driver itself.

DMA Termination

A DMA transfer can terminate from several causes:

1. The data count goes from —1 to 0. This means that the I/O chip has completed the number of
I/O cycles specified in register 23. It does not mean all cycles resulted in a successful memory
access. For example, if several high-speed synchronous devices are competing for memory, a
lower priority interface may experience a DMA overrun.

2. End-of-transmission. This is determined by the individual interface card, which may
recognize a record terminator. For example, an input from a terminal may complete with a
carriage return — regardless of data count specified in register 23. The transfer will never
exceed the DMA count.

3. Memory parity error during DMA input transfer.

In addition, the I/O driver can programmatically suspend or abort a DMA operation. This may be
desirable when the driver is called upon to perform the abort function. This feature will be
described further in the section on DMA Flags.

The “residue” (DMA count at completion) may be read from the chip register 23 (LIA/B 23). In
addition, if the RES bit is set in the DMA control word, the residue will be written into the same
word from which data count was taken (chained operation only). Assuming no parity error or
device error, the residue can be used to determine the actual number of words/bytes transferred
on output or input.

/0 Card Programming 9-7

DMA Control and Flag Bits

The 1/O instructions that permit the driver to manage the control and flag bits for each of registers
20 through 23 follow, with descriptions of their functions.

Reg Instr Meaning

20 STC Enable DMA self-configuration logic
CLC Suspend self-configuration logic
STF Set self-configuration flag
CLF Clear self-configuration flag
SFS Test flag
21 STC Enable non-chained transfer
CLC Suspend current DMA operation
STF Set DMA flag
CLF Clear DMA flag
SFS Test if DMA flag set (operation complete)
22 STC Not implemented; NOP
CLC Abort current DMA operation, proceed to next
self-configured operation
STF Set DMA parity error flag
CLF Clear DMA parity error flag
SFS Test if DMA parity error
23 STC Not implemented; NOP
CLC Abort self-configuration and any transfer in progress
STF Set all three flags: 20, 21 and 22
CLF Clear all three flags: 20, 21 and 22
SES Test if any of three flags set (20, 21 and 22)

When an operation is suspended, it “pauses,” and may be restarted with the appropriate STC
instruction. If the device is synchronous, however, the effect of the pause may be lost data. This is
commonly called a “DMA overrun,” which means that the computer did not process the transfer
before the next piece of information was presented. DMA overruns may also occur if several
DMA transfers are in progress and high-priority select codes hold off transfers from low priority
synchronous devices.

At the end of a DMA transfer, up to 5 flags may be set as follows:

Flag 20: Set upon completion of the last link in a chained transfer. Flag 20 is set if the
residue has gone to zero. The occurrence of flag 20 will also set flag 21.

Flag 21: Set upon completion of a block transfer except when using self-configuration.
Like flag 20, it means that the residue has gone to zero. If self-configuration
is in effect, the flag 21 is set by the occurrence of flag 20.

Flag 22: Set if a memory parity error occurred on DMA output from memory. Unlike
flags 20 and 21, flag 22 is not inhibited by the CINT bit in the DMA control

Flag 23: This is an inclusive OR of flags 20, 21 and 22.

Flag 30: Set at completion of DMA transfer only if this is a feature of the card. Some

cards use this flag only for non-DMA transfers.

9-8 1/O Card Programming

Index

Symbols

$CLWRT, 7-10
$DIOC, 7-1
$DMPR, 7-3
$DVLU, 7-2
$MSALC, 7-9
$MSRTN, 7-9
$ONER, 7-6
SONEW, 7-7
$READ, 7-5
$SELR, 7-8
$SETM, 7-5
$SETR, 7-7

abort, 4-4
abort bit, 3-4
allocate additional map sets, MSALC, 7-9
asynchronous interrupt, 3-2
defined, 1-5
response to attention, 6-3

B

buffer limit, 2-7
See also S bit

Cc

card registers, 9-2

circular DVT list, 2-5

circular node list, 2-12

class I/O from a driver, SCLWRT, 7-10
CLWRT, 7-10

compute LU from DVT, $DVLU, 7-2
control requests, 2-9

control word, 5-1

D

deallocate a map set, SMSRTN, 7-9
device

availability, 2-5

priority, 2-4, 2-12, 2-13

status, 2-5, 2-6

type, 2-6

up, 7-2

device driver
entry and exit, 3-1
exit flags, 3-2
purpose, 1-3
device table, 1-1, 2-1, 2-3
extension, 2-5
format of, 2-4
DIOC, 7-1
direct memory access. See DMA
DMA
chaining, 6-1, 9-7
control and flag bits, 9-8
initialization, 9-6
overrun, 9-7, 9-8
parity error, SDMPR, 7-3
registers, 9-5
residue, 9-7
self-configuration, 9-5, 9-7
termination, 9-7
DMPR, 7-3
double buffering, 2-11
See also Z bit
down device, 5-6
driver
entry points, 1-9
interaction with user request, 1-5
NAM record, 1-7
parameter area, 2-12
parameters, 1-10, 3-3, 5-1
requests, 1-2
type codes, 1-8
DVLU, 7-2
DVT. See device table
dynamic status. See status requests

E

end-of-record, 5-2
end-of-transmission, 9-7
error
bit, 2-11, 5-5
codes, table of, 5-7
handling, 3-5, 4-5, 5-4, 5-6, 6-1
messages, avoidance of, 5-7
number, 5-6
soft error, 2-6, 5-5

F

FIFO linking, 2-4
flush, 5-6

Update 1 Index-1

G
GEN instruction, 1-10

generation defaults. See GEN instruction

global register, 9-1, 9-2, 9-5

I bit, 2-12
I/O under program control, 9-4
IFT. See interface table
illegal requests, 5-4
initial entry, 2-14
interface
card, characters, 2-14
driver, purpose, 1-3
lock, 3-6
type, 2-14
interface table, 2-13
extension, 2-15
format of, 2-13
interrupt table, 2-1
format of, 2-15

L

L bit, 2-11, 6-2, 7-5

lock. See interface lock

logical unit table, 1-1, 2-1
format of, 2-3

LUT. See logical unit table

map registers set up, 7-5
map set table, 2-1
format of, 2-15
mapping considerations, 7-4
memory protect, 1-1
MSALC, 7-9
MSRTN, 7-9
multibuffered request, 6-1
format of, 6-1

N

N bit, 2-5
names. See driver NAM record
node busy bit, 2-5

(o)

one word read
$ONER, 7-6
$READ, 7-5
one word write
$ONEW, 7-7
$WRIT, 7-6
ONER, 7-6
ONEW, 7-7

Index-2

P

P bit, 2-5

parameter
checking, 3-3
passing, 6-1

parity error, 7-3, 9-7
pointer set-up, 6-2, 7-1
polling, 6-3
port map
selection, 7-8
set up, 7-7
power fail, 3-5, 4-4
privileged driver
entry points, 8-1
processing, 8-1
system entry points, 8-1
trap cells, 8-1
privileged interrupt mask, 9-1

program scheduling, $XQSB, 7-3

pseudo done, 4-6, 6-3

Q
Q bit, 2-4, 2-13

R
READ, 7-5

read data word/map selected, SREAD, 7-5
read one word without setup, $ONER, 7-6

request
advance inhibit, 4-6
code subfunction, 2-8
control block, 1-1
delay, 3-6, 4-6
flush, 5-6
initiation list, 2-4
interaction, 1-4
length, 2-11
linking, 1-1
parameters, 2-11
types, 5-1

restart, 5-7

routines
$CLWRT, 7-10
$DIOC, 7-1
$DMPR, 7-3
$DVLU, 7-2
$MSALC, 7-9
$MSRTN, 7-9
$ONER, 7-6
$ONEW, 7-7
$READ, 7-5
$SELR, 7-8
$SETM, 7-5
$SETR, 7-7

Update 1

S

S bit, 2-8

scheduling programs, 7-3

select code, 2-14, 9-1, 9-2
in I/O instruction, 9-1

select port map number, $SELR, 7-8

SELR, 7-8
set port map, $SETR, 7-7
set up DVT or IFT, $DIOC, 7-1
set up map registers, $SETM, 7-5
SETM, 7-5
SETR, 7-7
status, 1-2, 3-5, 5-4

extended, 6-1

of interface card, 9-4
status byte, format of, 5-5
system flags, 2-14, 3-5, 3-6, 4-5

T

table

pointers, 2-16

reference by driver, 6-2
terminal, driver, 6-3
time base generator (TBG), 1-5
timeout, 2-13, 4-4, 4-6

of device, 3-4

Update 1

transmission log, 5-4, 6-1
definition, 5-4

U

up all LUs referring to this IFT, Uplft, 7-2
up device, $UPIO, 7-2

Uplft, 7-2

UPIO, 7-2

user request, 6-1

\'

virtual control panel, 9-3
impact upon drivers, 9-3

w

WRIT, 7-6
write data word/map selected, SWRIT, 7-6
write one word without setup, SONEW, 7-7

X
XQSB, 7-3

z

Z bit, 2-11, 5-2, 6-2
zero length records, 5-3

Index-3

Manual Part No. 92077-90019

Printed in U.S.A. January 1989 7] HEWLETT
10790 /2 oackaro

	Title page
	Preface
	Table of Contents
	Chapter 1 - Introduction
	Chapter 2 - System I/O Tables
	Chapter 3 - Device Driver
	Chapter 4 - Interface Driver
	Chapter 5 - General Driver Concerns
	Chapter 6 - Device and Interface Driver Interactions
	Chapter 7 - Callable System Routines
	Chapter 8 - Privileged Drivers
	Chapter 9 - I/O Card Programming
	Index

