A paciars

RTE-A LINK

User’s Manual

Software Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 92077-90035 Printed in U.S.A. November 1993
E1193 Fifth Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1983, 1985 - 1987, 1990, 1992, 1993 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-in-
serted update information. New editions of this manual will contain new information, as well as all updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File or the Computer User’s Documentation Index. (The Manual Numbering File
is included with your software. It consists of an “M” followed by a five digit product number.)

Edition1 Jun 1983 ...
Editon2 Jan 1985 Added IF, MS, NA, OR, PA, TR Commands

Update 1 Jan 1986 Added RM Command
Reprint Jan 1986 Update 1 incorporated
Edition3 Aug 1987 Rev. 5000 (Software Update 5.0)

Update 1 Jul 1990 Rev. 5020 (Software Update 5.2)
Edition4 Dec 1992 Rev. 6000 (Software Update 6.0)
Edition5 Nov 1993 Rev. 6100 (Software Update 6.1)

3/4

Preface

This manual is a tutorial guide and reference for users of the RTE-A linkage editor program
LINK. It is assumed that you know how to edit and compile programs in the RTE-A Operating
System.

Chapter 1 Provides a description of LINK, its features and capabilities, and how it fits into
the RTE-A program development cycle. Several examples are given to illustrate
how LINK works.

Chapter 2 Describes the various ways in which LINK can be run. It includes descriptions of

the LINK runstring, runstring options, file type extensions, and command files.

Chapter 3 Describes the LINK commands. The command syntax and a brief description for
each command are provided. The commands are given in alphabetical order.
This chapter can be used as a reference section.

Chapter 4 Describes advanced LINK concepts for experienced LINK users. A section is in-
cluded to show how to optimize the performance of LINK by merging and index-
ing libraries. Sample load maps are also provided and discussed.

Chapter 5 Describes how LINK and LINDX are installed.

Appendix A Provides a description of the LINK error messages.

Appendix B Provides information on running LINK under the File Manager Program
(FMGR).

5/6

Table of Contents

Chapter 1

Introduction

What is LINK? ..o 1-1

What is a Library? 1-2

Indexing Libraries 1-2

Using LINK ..o e e e e 1-2

LINK EXamplesottt e e e e e e e e 1-3

Chapter 2

Running LINK

Using LINK Runstring Optionsounitnttnn ittt 2-1
Runstring Optionsttt e e e e e 2-2
LINK File Type EXtensionsttt 2-3
Examples of LINK Runstrings 2-4

Running LINK Interactively e 2-4
Getting Helpo 2-4
Example of an Interactive LINK Session oa... 2-5

Using the Command Stack i e 2-6
$VISUAL Command Editing 2-6
CI-Style Command Editing e 2-6

Using LINK Command Files i i 2-7
Examples of LINK Command Files i ... 2-7

Using the Default Directory Path 2-8

Using the $SLINK Environment Variable it 2-9

Chapter 3

LINK Commands

Descriptions of LINK Commands i, 3-1
AB (ADOTt) ottt e 3-4
AL (All Memory Locked) oot 3-4
AS (Assign Partition)ttt 3-4
BP (Report Base Page Usage) ...ttt 3-5
CD (Code Se@MENt) ...ttt ettt e e e e e e e 3-5
CR (Specity VMA Backing Store File) i, 3-6
DB (DBUGR) ..ot 3-6
DE (DebuUg) ..ottt e 3-6
DI (Display) . ..ottt e 3-6
DM (Debug MONItOr) ...ttt e 3-7
DP (Do NOt PUIge) ...ttt e e 3-7
EC (EChO) ..ottt e 3-8
EM (Extended MemoOTry ACCESS) ..t vvuettie ettt ettt 3-8
EN (End) ..o 3-9
ES (EMA SegMent)ottt ettt e 3-9
FO (FOTCE) ..ttt e e e 3-10
HE (Heap Ar€a)ttt e e e e 3-10

IF (Conditional Execution of LINK) 3-11

LC (Labeled System COMMON)ouunntttn ettt et 3-11
|30 0 5103 2) 3-12
LK (REINK) .« o vve e 3-12
LL (LiSt OPtON) v vttt ittt e et e e e e e e e e 3-13
LO (List Program Attributes)ovuiuirt it 3-13
MA (Send Load Map to Terminal) it .. 3-13
ML (Memory Locked)c.uiii i 3-14
MS (Multiple Search)t 3-14
NA (NAME) .« .ottt e e e e e e e e 3-15
NS (NeW SEZMENt) . .. oottt ettt et e e e e e e 3-15
OR (Order EMA AT€a) ...ttt e 3-15
OS (Operator Suspend)ouuunnt i e 3-16
OU (OULPUL) .« vttt ettt e e e et e e e e e e e e e e e e e 3-16
PA (Page Align EMA AT€A) ...ttt e 3-17
PC (Set Program Capability)ouiiiiiiiiiii ... 3-17
PR (Priority) . ..ottt 3-18
PS (Page Align OVerlays)oouuuiiinnet e 3-18
RE (RelOCate) ...ttt e 3-18
RM (Relocate Module)couunit e 3-19
RO (REOTAET) ..ottt e e e 3-20
SC (System COMMON) . ..ottt ettt et e et e e e 3-20
SE (Search)o 3-20
SH (Shareable EMA) o e 3-21
SN (Snapshot)o 3-21
SP (Shareable Program)oiiiiniiiiii i 3-22
ST (StaCk) o v vttt e 3-22
SU (System ULILItY)ttt e e 3-23
SZ (S1ZE) o v ettt 3-23
TR (Transfer)t e 3-24
VM (Virtual MemOTy SiZ€) . .« vttt ettt e e e 3-24
WD (Default Working Directory)couuuiniiiiiiineeiiiinneennn. 3-25
WS (Working Set Size of VMA)o 3-26
FLCOMMENT) oo v ettt ettt e e e e e e e e e e e 3-26
D (HeID) oot 3-26
Chapter 4

Advanced Concepts

Merging and Indexing Libraries i

File Naming Defaults

Linking Files for Different Target Systems -
Reducing Base Page Links i e -
System Common AIlOCAtIONttt e e e -
VMA/EMA AIOCAtIONttt et e -
MSEG AIlOCAtION ...ttt e -
CDS Program Space Allocation Considerationsoouiiiinneenn... -
Using EMA and Librariesot e e e e -

LIN DD X

Snapshot File

PRARRARRAARADAEDLRA
V0 N N N N YO VO I O T NS 1 NS N JECINCILIN

Relocatable Files e -
LINK Command Files i -
Library Fileso e -
Program Files i e -

List Files . ..ot e 4-5
Runstring Defaults 4-5
Remote Files 4-5
Error Reporting on Default Names o .. 4-6
RelnKingot 4-6
Relinking CDS Programsiiiiini it 4-7
Searching for Block Data Subroutines i i 4-8
Using CI Command Filesto Run LINK i 4-8
Relocation Sequencet e 4-9
CDS Library Considerationseuueennetnetneee e 4-10
Manual Program Segmentationttt 4-11
Example Non-CDS Program LINK Session i, 4-11
Non-CDS Program Load Map Discussionc.oiuiiininenneineennen.. 4-14
Example CDS Program LINK Session i, 4-15
Example CDS Program Load Map Discussion, 4-16
Security/1000 4-17
Time and Space Considerationsc.uttnttun ettt 4-18
Chapter 5
Installation Guide
Installing LINK and LINDX e 5-1
Increasing System SECUrityttt i e 5-1
Using RTE-A LINK on RTE-6/VM 5-2
Appendix A
Error Messages
Appendix B
Using LINK with FMGR
Running LINK Interactively B-1
LINK RUDSEIING . . oottt e e e e e e e e e e B-1
LINK Command Files e B-2
Using FMGR Transfer Filesto Run LINKo o B-4
Tables
Table 3-1 LINK Command Summaryc.ooeuiiiiiininnnennennnnn. 3-2

Introduction

This chapter provides an overview for users who have little experience in linking programs on the
RTE-A Operating System. It describes LINK, the linking process, and how LINK fits into the
RTE-A program development cycle.

What is LINK?

LINK is the linkage editor for RTE-A. LINK collects relocatable files and library routines into a
runnable program file. LINK allows you to change certain attributes of program files, such as
program priority, program size, and Virtual Memory Area/Extended Memory Area (VMA/EMA)
specifications.

Running LINK is an important step in the development cycle of all programs. The steps in the
program development cycle for RTE-A are listed below. Note that LINK is not involved when you
use the BASIC Interpreter because the interpreter does not produce relocatable code.

RTE-A Program Development Cycle

1. Plan your program.
Create or modify the files containing the source code for your program using an editor.
Compile or assemble the source code using the appropriate language processor.

Use LINK to create a program file containing executable code.

A

Execute your program. Test and debug the program as needed. Symbolic Debug can be used
with FORTRAN, Pascal, Macro, HP C/1000, and compiled BASIC programs.

6. Repeat steps 2 through 5 until your program executes correctly.

Introduction 11

What is a Library?

A library is a relocatable file containing a number of modules, such as subroutines. LINK
searches libraries to locate all externals (items referenced but not defined by your program). You
can use the libraries supplied with your RTE-A system and create your own libraries.

When the system is generated, the System Manager can designate any libraries that are used by
most programs as system libraries. System libraries are automatically searched by LINK when
your program is linked.

LINK searches other libraries if you specify the names of the libraries when running LINK. LINK
searches the libraries you specity before searching system libraries. In general, you want LINK to
search the user-specified libraries first because subroutines in these libraries may reference
subroutines in the system libraries.

Indexing Libraries

Searching libraries is often the most time-consuming part of linking a program. You can reduce
the amount of search time by indexing libraries. An indexed library contains an index at the
beginning of the file that indicates the name and location of each subroutine in the library.
Chapter 4 contains a discussion on indexing libraries.

Using LINK

You can specify commands for LINK from three different sources:
e A CI (or FMGR) LINK runstring

® An interactive LINK session

o A LINK command file

You can use any combination of these three sources to run LINK. For example, a LINK command
file can be specified as part of a LINK runstring or during an interactive LINK session.

Regardless of the method you choose, LINK requires the same input and gives you the same
output. The following figure illustrates input to and output from LINK:

relocatable
files
program

shapshot file
file - o

LINK . IlstI!Ie |
system and (optional)
user libraries — debug f
command file (optional)
(optional)

The snapshot file contains information about the operating system that LINK needs to produce
the program file. If you do not specity a snapshot file, LINK uses the snapshot file for your
system. Chapter 4 contains more information on the snapshot file.

1-2 Introduction

LINK Examples

The easiest way to specify commands to LINK is to enter a runstring similar to the following:
Cl> link myprog.rel

In this example, LINK relocates the file MYPROG.REL, searches the system libraries to resolve
undefined external references and creates a program file containing executable code. The name of
the program file is based on the PROGRAM statement in the source code (or NAM statement in
Macro/1000). Therefore, if the name of the program is MYPROG, the name of the program file

is MYPROG.RUN.

The following interactive LINK session gives the same result:

Cl > link (Run LINK interactively)
link version 6100 Use ? for help

link: re myprog.rel (Relocate file MYPROG.REL)
[ink: en (End LINK session)

If you want to link PROG1.REL, which calls subroutines in library MYLIB.LIB, you can enter the
following LINK runstring:

Cl> link progl.rel nylib.lib

Or, you can run LINK interactively as follows:

Cl > link (Run LINK interactively)
link version 6100 Use ? for help

link: re progl.rel (Relocate file PROG1.REL)
link: i nylib.lib (Define library MYLIB.LIB)
['ink: en (End LINK session)

In both these examples, LINK searches library MYLIB.LIB in addition to the system libraries
when creating the program file.

Introduction 1-3

Running LINK

This chapter describes how to specify options and commands to LINK from a runstring, interactive
session, or LINK command file. All examples are shown using the Command Interpreter (CI).
Appendix B describes using LINK from FMGR.

Using LINK Runstring Options

The LINK runstring allows you to specify many LINK options in an easy to use format. To use the
LINK runstring, enter the following:

Cl > link <file name>.rel [parameters]

The optional parameters can be LINK runstring options and file names with a file type extension.
Both are explained in detail in following sections.

The rules for using the LINK runstring are as follows:

e Delimiters between file names and parameters can be either commas or blanks. (Commas are
required if LINK is run from FMGR.)

e A maximum of 255 characters, including delimiters, is allowed in the runstring.
e The file names specified in the runstring must include the file type extensions described in the
section “LINK File Type Extensions”. (Optionally, the file names can use the prefixes shown

in the LINK Runstring section in Appendix B.)

e Uppercase and lowercase letters can be used. All characters are converted to uppercase
internally.

Running LINK 2-1

Runstring Options

LINK options entered in the runstring are prefixed by the plus (+) character. The options that
can be used in the runstring are as follows (Chapter 3 contains detailed descriptions of the LINK
commands that correspond to these options):

+B Batch mode; LINK never goes interactive. If LINK reaches a point at which
it would normally go interactive, it aborts instead.

+CR: file| crn Specify scratch disk file or cartridge (for VMA backing store file).

+DE Create Symbolic Debug file for relocatable files included in the runstring.
+DM Set Debug Monitor mode.
+DP Prohibit purging of existing program file.

+E cmd| cmd... Execute LINK commands from the runstring. If given, this must be the last
option in the runstring; the remainder of the runstring is a series of LINK
commands, separated by vertical bars (|). These commands are executed
before interactive commands or transfer file commands are executed.

+EC Echo commands, all input commands are sent to list file or device.

+LC Use labeled system common.

+LL: file| lu Specify list file or LU to which messages and the load map are sent.

+MA Display load map on terminal.

+RO Reorder modules in the data segment to reduce base page links.

+SC Use blank system common.

+SP Declare program as shareable (CDS programs only).

+SU[: OF] Specify a system utility. The optional OF parameter indicates that any user

can remove the program from physical memory.

+SZ: [+] pages Set non-CDS program to specified number of pages in physical memory.
Pages can be set to a value between 1 and 32, inclusive.

+WO : / dir] | @dsinfo]]
Set the LINK working directory for file references. See the WD command
description in Chapter 3 for more information.

The colon is required when the CR, LL, SU:OF, or SZ option is used in the runstring. The LINK
runstring options can be entered in any order, with the exception of the E option. Because the LC
and SC options are mutually exclusive, only one should be entered in the runstring. If both are
entered, the last one specified is used.

2-2 Running LINK

LINK File Type Extensions

In the runstring, LINK uses the file type extensions to identify the file types. When LINK is
executing, various files are read, searched, and created. The file type extensions are as follows:

. REL Relocatable file (input to LINK)

. Rann Relocatable file where nnn is 3 integers (input to LINK)
.LIB Library file (input to LINK)

. SNP Snapshot file (input to LINK)

. LOD LINK command file (input to LINK)

. VAP List file (output by LINK)

. RUN Program file (output by LINK)

. DBG Debug file (output by LINK)

Relocatable files (. REL and . Rnnn) are files produced by the compiler or assembler that LINK
uses to produce the program files.

Library files (. LI B) are searched to resolve undefined external references made in the relocatable
files.

The snapshot file (. SNP) contains information about the operating system on which the program
is to run.

The command file (. LOD) contains LINK commands and is used to direct the execution of LINK.

The list file (. MAP) contains a listing of the load map and LINK session, and is output by LINK, if
specified.

The program file (. RUN) contains the executable code.
The debug file (. DBG) allows you to use Symbolic Debug when running the program.

Only one each of the following types is allowed: . MAR, . RUN, . DBG, and . SNP. Multiple
relocatable, library, and command files are allowed. Multiple command files are processed in the
order given. For example, consider the following runstring:

Cl> link job.rel job2.lod jobl.lod

In this example, the file JOB.REL is relocated. The order in which the command files appear in
the runstring determines the order of execution; therefore, JOB2.LOD is executed before
JOB1.LOD.

Running LINK 2-3

Examples of LINK Runstrings

The following are examples of the LINK runstring:

Cl> link part.map +ec +sz:32 partl.rel part2.rel part3.rel partd.re

This runstring relocates the four modules, PART1, PART2, PART3, and PART4, and lists the
load map to file PARTMAP. The EC option echoes the LINK commands to file PARTMAP,
and the SZ option sizes the program to 32 pages.

Cl> link +lc /circle/area.rel /circle/area.lib /prog/area.run +dp

This runstring relocates file /CIRCLE/AREA.REL. LINK searches library
/CIRCLE/AREAL.LIB to resolve undefined external references and produces program file
AREA .RUN on directory PROG. The LC option specifies that AREA.RUN uses labeled
system common during execution. The DP option prohibits LINK from overwriting
/PROG/AREA.RUN if the file exists. If the file does exist, LINK issues a warning and aborts.

Cl> link +wd /invention/nother.lod>star +e vm,|l|ws 10

This runstring transfers to LINK command file MOTHER.LOD on directory /INVENTION of
DS node STAR. All relocatable, library, and transfer files will be searched for in that directory
on that node. The program will be a Large VMA program with a working set size of 10 pages.

Running LINK Interactively

Running LINK interactively allows you to use the more powerful features of LINK. To begin an
interactive LINK session, enter the following:

Cl > |ink [parameters]

The optional parameters can be any valid LINK runstring command or file name with any file type
extension except .REL.

LINK responds by displaying a one-line message followed by the LINK prompt:

link version 6100 Use ? for help
i nk:

You may enter only one LINK command per line. If you enter more than one command per line,
only the first command is executed. Chapter 3 contains descriptions of all LINK commands.

If you do not specity the file type extensions, the extensions are defaulted to those recognized by
LINK as described in the LINK File Type Extensions section of this chapter.

Getting Help
If you need help any time during an interactive LINK session, enter a question mark and LINK

displays a syntax summary of the LINK commands. A question mark followed by a LINK
command (?,command) displays a more detailed description of the specified LINK command.

2-4 Running LINK

Example of an Interactive LINK Session

The following is an example of an interactive LINK session (user input is underlined):

Cl> link +cr:nyscratch

link version 6100 Use ? for

link: re area.rel
AREA
link: di_
Undef i ned synbol s:
PERI M . NFEX EXEC
SQUARE RADI . DTA.
link: re square.rel
SQUARE
link: re circle.rel
Cl RCLE
link: se nylib.lib
TRI AN PERI M RADI
link: di_
Undefi ned synbol s:
EXNT . NFEX EXEC
link: en

hel p
.ElO Cd RCLE
.ElO . FI ON

(Run LINK interactively and use
MYSCRATCH as scratch file)
(Relocate file AREA.REL)
(Display undefined externals)
.FION TR AN
(Relocate file SQUARE.REL)
(Relocate file CIRCLE.REL)
(Search library MYLIB.LIB)
(Display undefined externals)

. DTA.
(End LINK session)

In the above example, LINK relocates three modules and searches a user-specified library and the
system libraries to resolve undefined external references. Assuming the name of the program is
AREA, LINK writes the executable code to file AREA.RUN; the file is created if it does not exist
or, the contents are overwritten if the file does exist. The CR command is used as an optional
runstring parameter to specify a scratch file.

After you enter the EN command, LINK creates a load map that is displayed at your terminal.
See Chapter 4 for detailed information on the load map. (You can use the LL command to direct
the load map to a different device or to a file.)

Running LINK 2-5

Using the Command Stack

As command lines are entered at the terminal keyboard, they are saved in a stack for future
reference or editing and reuse. The number of command lines saved depends on the number of
characters in each saved line. You can expect approximately 40 lines to be saved. If the stack is
full, the oldest commands in the stack are removed to make room for the new command.
Duplicated commands are removed from the stack.

$VISUAL Command Editing

For VC+ systems, LINK supports the §VISUAL command editing modes (for example, EMACS
or VI) through use of the CMNDO monitor. If CMNDO is used, LINK saves and restores its
command stack from file LINK.STK in your home directory, if the file exists. To use this feature,
make sure your home directory is set, using the PATH program to set UDSP #0, and create file
LINK.STK in that directory as a type 3 or 4 file.

To use CMNDO, set the SCMNDO_LINK or §CMNDO environment variable by entering one of
the following commands from CI (and restart LINK):

Cl> set —x CVNDO LINK = T Use CMNDO from LINK, but not other utilities.
or

Cl> set —x CVNDO = T Use CMNDO from all utilities that support it.
If you have SCMNDO set to TRUE but do not wish to use CMNDO from LINK enter:

Cl> set —x CMNDO LINK = F

Refer to the “Command Editing” chapter in the RTE-A User’s Manual, part number 92077-90002,
for more information on the $VISUAL command editing modes and the CMNDO monitor.

CI-Style Command Editing

LINK contains built-in support for the CI-style command stack. Command stack accessing is
performed using the / (slash) command. Entering a slash causes up to the last 20 commands to be
displayed on your terminal. You can then use the terminal’s cursor movement keys and local
editing keys to move to one of the displayed commands and edit it. After selecting one of the
commands, and possibly modifying it, pressing carriage return causes LINK to execute it. An
example is below (user input is underlined):

link version 6100 Use ? for help
link: ws 32

link: debug

li

No such file TEXT. REL
Working directory: /JDJ/ CDS
Mbdul e not rel ocated

link: //

—001/ 003— Commands:

re test < the cursor was moved to this line
TEST TEST10 and the TEXT was changed to TEST.
i nk:

2-6 Running LINK

There are additional ways to display and select commands from the command stack. For a
complete description, see the RTE-A User’s Manual. Note that LINK does not have the capability
to save and restore commands across successive runs.

Using LINK Command Files

Using a command file to run LINK allows you to link your program continually without
re-entering the same LINK commands. All LINK commands that are available in an interactive
LINK session can be used in a LINK command file.

There are two ways to use LINK command files. One way is to specify the command file name in
the LINK runstring:

Cl > |ink <command file>. | od [parameters]

The .LOD file type extension is required and indicates to LINK the specified file contains LINK
commands. You also can enter other runstring commands or file names with the command file
name. All runstring options are processed, regardless of their order, before the command file is
read.

The second way to use LINK command files is to use the TR command during an interactive
LINK session:

l'ink: tr <command file>. | od

LINK transfers control to the command file and processes all the LINK commands in the file. If
the command file does not contain the EN command, control returns to the interactive session
after LINK processes the last command in the file.

Examples of LINK Command Files

In the first example, file EMAJOB.REL is relocated, user-specified library VMALB.LIB is
searched for undefined externals, the working set size is set to 100 pages, and VMA size is set to
1400 pages. The EC command is included to echo the LINK commands at the terminal. The
program file is EMAJOB.RUN on directory MYDIR. If the file already exists, it is overwritten;
otherwise, the file is created.

ec
re emajob.rel
[i vmalb.lib
ws 100
vm 1400

en /nydir/emjob.run

Running LINK 2-7

The following LINK command file loads the four modules of PART. The result is identical to that
of the first runstring given in the section, Examples of LINK Runstrings. The LL. command is
equivalent to specifying a file with type extension .MAP in the LINK runstring.

ec
11 part. map
sz 32

re partl.rel
re part2.rel
re part3.rel
re part4.rel
en

The result of the following command file is identical to the result of the second runstring given in
the section “Examples of LINK Runstrings”. The OU command prohibits LINK from overwriting
an existing program file. If the program file specified already exists, LINK issues a warning and
aborts. Other specifications are the same: labeled common is used, the library is AREA.LIB on
directory CIRCLE, and the program file is AREA.RUN on directory PROG.

| c

re /circlelarea.rel
ou /prog/area.run
i /circlelarea.lib
en

Using the Default Directory Path

LINK can provide a default directory and node name to be used whenever LINK opens files. It
can be used both in the runstring and interactively. For example, the runstring:

C> link +wd:/utilities/util/ @96 util.lod

causes LINK to use the file /UTILITIES/UTIL/UTIL.LOD>96 as the LINK command file. Each
RE command in this file also has this directory and node name appended to it, provided that the
specified relocatable file name does not have a directory or node name.

The WD command allows you to create a LINK command file to load a program locally without
setting the default directory path, or remotely from another system by setting the default directory
path. Remotely refers to running LINK on a system different from the one on which the LINK
command file resides. In this case, you would use the local snap file and library files, and remotely
access the relocatable needed to link your program.

2-8 Running LINK

Using the $LINK Environment Variable

On VC+ systems, environment variable $LINK may be set to a runstring to automatically prepend
to each LINK runstring. For example, the CI command:

Cl> set —x link = ginger.snp +de

causes snap file GINGER.SNP to be used for all loading and for symbolic debug information files
to automatically be produced. The CI command:

Cl> set —x link = +wd: #3
causes LINK to use UDSP #3 for all file searches.

Running LINK 2-9

LINK Commands

This chapter contains descriptions of all LINK commands. Table 3-1 lists the LINK commands
and indicates which commands can be used in a runstring, interactive session (or command file),
and relinking session. The table also shows which commands can be used with CDS and non-CDS
programs.

Descriptions of LINK Commands

Descriptions of the LINK commands are in alphabetical order.

Commas or blanks can be used as delimiters. (The syntax descriptions in this chapter use
commas.)

Parameters described with two or more words are shown in angle brackets; for example,
<partition #>.

In the syntax descriptions, brackets indicate optional parameters; for example, SN[, filedescriptor]
means that the command can be specified with or without a file descriptor.

In the syntax descriptions, commands that can be used in the LINK runstring are shown with the +
sign in the command syntax. Certain commands require the colon as a parameter delimiter in the
runstring, but a comma or blank is required interactively or in a command file.

If you are running LINK interactively or from a LINK command file, you can enter only one
command per line. If you enter two commands, only the first is executed; the second command is
ignored. For example, if you enter DEEN, the DE command is executed but the EN command is
ignored.

LINK Commands 3-1

Table 3-1. LINK Command Summary

Run- | Inter- Non-

Command Description string | active| Relink | CDS CDS
AB Abort LINK X X X X
AL[,UN] Lock or unlock all code segments X X X

in memory
BP Report Base Page links X X X X
AS, <partition #> [,C | D] Assign partition number X X X X
CD,blocks Set number of code segment blocks X X X
CR:filedescriptor [C | D] Specify scratch file name or cartridge X X X
DB Append DBUGR subroutine X X
DE Create Symbolic Debug/1000 file X X X X
DI Display undefined external references X X X
DM Sets Debug Monitor mode X X X X X
DP Prohibit purging of program file X X X
EC Echo input to list file or list device X X X X X
EM,pages [,model] Specify number of pages for EMA X X X X
EN[,filedescriptor] End command input, specify X X X X

program file
ES,commonblock,emaseg Relocate a common block to start of X X X

an EMA segment
FO Force linking of a program X X X
HE[,words] Set number of words in heap area X X X
IF A | 6 <link command> Conditionally execute a LINK command X X X
LC Specify use of labeled system common X X X X
LI filedescriptor Define a library file X X X
LK filedescriptor Relink and change program attributes X X X X
LL,filedescriptor | Iu Specify list file or device for load map X X X X X
LO List program attributes during relinking X X X
MA List load map at terminal X X X
ML, <segment #>[,UN] _Lock or unlock a code segment X X X

in memory
MS filedescriptor Multiple search library file X X X

3-2

LINK Commands

Table 3-1. LINK Command Summary (continued)

Run- | Inter- Non-
Command Description string | active| Relink | CDS CDS
NAT[filedescriptor] Set name of program file and X X X
check validity
NS[,pages] Start a new code segment X X
OR,<emaarea> Order EMA area X X X
(O] Operator suspend X X X X
OU, filedescriptor Set name of program file X X X
PA Page align next EMA area X X X
PC,progcplv[,rquscplv] Specify a program’s capability level X X X X
PR, priority Set program priority X X X X
PS Start overlays at page boundary X X
RE,filedescriptor Relocate a file X X X
RM filedescriptorsymbol Relocate a module X X
RO Rearrange modules to reduce base X X X X
page links

SC Specify use of system common X X X X
SE[,filedescriptor] Search file for external references X X X
SH,label[, <partition #>] Allow use of shareable EMA partition X X X X
SN[,filedescriptor] Define or display snapshot file name X X X
SP[,UN] Declare program to be shareable X X X
STwords Set size of stack area X X X

SUI[,OF] Specify a system utility X X X X
SZ,[+]pages Specify size of program file X X X X
TR, filedescriptor Specify LINK command file X X X X
VM[,pages] [,model] Specify size of virtual memory area X X X X
WS[,pages] Specify working set size VMA X X X X
WDI,DIRECTORY] Set default directory X X X X

*

?[,<linkcommand>]

/[stack commands]

Specify a comment line

Display help information

Display command stack

Used to comment LINK command files

Used during any interactive LINK
session

Used during any interactive LINK
session

LINK Commands

3-3

AB (Abort)

Purpose: Aborts LINK immediately.
Syntax: AB
Remarks: When aborted, LINK closes all open files and does not create a program file.

The AB command can be used during relinking.

AL (All Memory Locked)

Purpose: Declares that all code segments are locked into memory before the program is
executed. (For CDS programs only.)

Syntax: AL
AL[, UN] (Relinking syntax)

Parameters: UN Unlocks memory.

Remarks: The AL command overrides the ML command.
You can use the AL command during relinking to set the memory-lock flag in the
program file to either on or off. When the memory-lock flag is set to off, any code

segment memory-lock flags, which are set using the ML command, become
effective.

AS (Assign Partition)

Purpose: Assigns a partition where the program resides.
Syntax: AS, <partition #>[, C| D

Parameters: partition # Specifies the number of the partition in which the program resides. The
partition number can be set to a value between 1 and 1023, inclusive. If
omitted, LINK uses the value of 0, which cancels any partition number
defined previously in the LINK session.

C or D Optional parameter for CDS programs only. C indicates that the code
partition is assigned to the specified partition number. D indicates that
the data segment is assigned to the specified partition number.

Remarks: If you specify the optional parameter (C or D) for a non-CDS program, the value is
ignored.

The AS command can be used during relinking.

3-4 LINK Commands

BP (Report Base Page Usage)

Purpose: Report the number of base page links used by non-CDS modules.

Syntax: BP
+BP (in runstring)

Remarks: The BP command causes LINK to emit an additional line into the load map for
some of the modules relocated. This line reports how many base page links are
used by the module. The form of the line is:

*bp: rel= 2. int= 5. ext= 3.
This reports that the module relocated 2 (decimal) words onto base page, that 5
base page links are needed for addresses that are internal to the module itself, and
that 3 new base page links are needed to reach addresses that are external to the
module. If the module does not use any base page links, the *bp line is not
reported.

CD (Code Segment)

Purpose: Sets the number of code segment blocks allocated to the code partition. (For CDS
programs only.)

Syntax: CD, blocks

Parameters: blocks Specifies the number of code segment blocks. Blocks can be set to a value

between 1 and 128, inclusive.

Remarks: If the number of code segment blocks is less than the number of memory locked

code segments previously specified with the ML command, LINK issues an error.
If you enter the CD command before any ML commands and specify fewer code
segment blocks than memory locked code segments, LINK does not detect the
error until you enter the EN command.

This command does not affect the behavior of the program, but can affect
performance.

If this command is omitted, LINK places all program code segments in one code
block.

The CD command can be used during relinking.

LINK Commands 3-5

CR (Specify VMA Backing Store File)

Purpose: Allows you to specify the scratch file or cartridge to be used by LINK.

Syntax: +CR: filedescriptor| crn (in runstring)

Parameters: filedescriptor ~ Specifies the name of the LINK backing store file.
crn Specifies the FMGR cartridge where LINK puts the backing store

file.

Remarks: The CR command is valid only in the LINK runstring. If you omit this command,
LINK creates a default backing store file. LINK purges the backing store file
before finishing the linking process.

DB (DBUGR)

Purpose: Appends the DBUGR subroutine to the program file.

Syntax: DB

Remarks: The DB command allows you to use DBUGR to debug your program. This
command is provided for backward compatibility. Refer to the RTE-6/VM Debug
Subroutine Reference Manual, part number 92084-90014, for information on the
DBUGR program.

DE (Debug)

Purpose: Allows debugging of the program with the Symbolic Debug/1000 program available
with purchase of the HP 92860A Symbolic Debug/1000 product.

Syntax: DE
+DE (in runstring)

Remarks: LINK creates a file with file type extension .DBG (for example, TESTDBG)
containing debug information. LINK places the debug file in the same directory as
the program file. LINK overwrites an existing file with the same name.

DE must be specified before any modules are relocated.

DI (Display)

Purpose: Displays undefined external references.

Syntax: Di

Remarks: To satisfy undefined externals, use the LI, MS, RE, or SE command. To ignore

undefined external references and force linking of the program, use the FO
command.

3-6 LINK Commands

DM (Debug Monitor)

Purpose:

Syntax:

Parameters:

Remarks:

Turns on debug monitor mode.

DM

+DM (in runstring)

DM , OF] (relink syntax)

OF Turns off debug monitor mode. It is only valid during relinking.

If the debug monitor mode is turned on, programs that are about to be aborted
(due to some program violation) are operator suspended instead, allowing you to
debug the program using Symbolic Debug/1000 and to examine the state of the
program that caused the program violation.

The DM command can be issued independently of the DE command, but if you
want to use the debugger, you must also issue the DE command.

For example, assume your program aborts. You can relink your program using the
DM command and execute your program again. The program then becomes
operator suspended. Now use Debug to adopt the program:

RU, DEBUG, —-D, son. dbg son:ih

Remember, the DE command must have been issued when the program was
initially linked.

See the discussion of the —D option in the Symbolic Debug/1000 User’s Manual,
part number 92860-90001, for additional information.

DP (Do Not Purge)

Purpose:
Syntax:

Remarks:

Prohibits purging of an existing program file.

+DP (in runstring)

The DP command is valid only in the LINK runstring.

If there is an existing program file, LINK issues a warning and aborts. You should
specify a different program file name, rename the existing program file, or remove

the DP command and run LINK again.

The EN or NA command, with the filedescriptor parameter specified, overrides the
DP command.

LINK Commands 3-7

EC (Echo)
Purpose: Echoes input from LINK command file to the list file or list device.
Syntax: EC
+EC (in runstring)
Remarks: This command is useful for debugging LINK command files.

The EC command can be used during relinking.

EM (Extended Memory Access)

Purpose: Specifies the number of Extended Memory Area (EMA) pages.
Syntax: EM , pages] [, model]
Parameters: pages Specifies the minimum number of pages in EMA. Pages can be set to a

value between 2 and 1022, inclusive, for Normal and Large model
programs; between 2 and 32733 for Extended model. Refer to the
RTE-A Programmer’s Reference Manual, part number 92077-90007, for a
description of the EMA models.

model Specifies the EMA model as follows:

L Use Large EMA model.
X Use Extended EMA model.

If a model is not specified, the Normal EMA model is used.

Remarks: If the EM command is omitted and EMA is used by your program, LINK uses the
number of EMA pages calculated by the compiler.

If your program uses EMA and you enter the EM command, LINK compares the
number of EMA pages calculated by the compiler and the number of pages you
specified with the EM command, and uses the larger value.

The EM command can be used during relinking. However, only the “pages”
parameter may be specified; the EMA model may not be changed.

3-8 LINK Commands

EN (End)

Purpose:
Syntax:

Parameters:

Remarks:

Ends LINK.
EN , filedescriptor]

filedescriptor Specifies the name of the program file. If you omit this parameter,
LINK uses either the file name previously specified by the OU or
NA command, or the program name found in the PROGRAM
statement in the source file (or NAM statement in Macro).

The EN command indicates to LINK that the command mode has ended and the
linking process can be completed. If you include the filedescriptor parameter, the
specified file is used as the program file. If the file already exists as a program file,
LINK overwrites the existing file.

A file name specified with the EN command overrides a file name specified with
the NA and OU commands, or the program name specified in the program
statement. A file name specified with the EN command does not override a file
name with the .RUN file type extension specified in the LINK runstring.

If the EN command is used to end a relinking session in which changes were made,
LINK modifies the program file. The filedescriptor parameter is ignored, if
specified; LINK always modifies the program file specified in the LK command.

After entering EN and setting undefined externals, no new overlays can be
relocated. They generate illegal relocatable messages.

ES (EMA Segment)

Purpose:

Syntax:

Parameters:

Remarks:

This command relocates a common block to the start of an EMA segment, for
use in programs that call the RteAllocShema routine to attach shared EMA
areas.

ES, commonblock, emaseg

commonblock The name of the common block that should be relocated to the
given EMA segment.

emaseg An EMA segment number from 1 to 64.

This command allows a FORTRAN program to declare a common block that
defines the contents of a shared EMA area attached to the program via the
RteAllocShema routine. LINK relocates the addresses of the variables in the
named common block to the given EMA segment, that is, to the proper 1024-page
boundary of the program’s EMA address space. See the EMA/VMA Programming
chapter of the RTE-A Programmer’s Reference Manual, part number 92077-90007,
for more information on the RteAllocShema routine.

The first variable in the common block can be passed as the “starting address”
parameter to the RteAllocShema routine. Therefore, the program need not
contain a “hard coded” starting EMA address; the choice of EMA segment number
is determined in the LINK command file.

LINK Commands 3-9

FO (Force)

Purpose:
Syntax:

Remarks:

For example, a FORTRAN program may declare:

$ema / bat/

cbn‘rmn [bat/ chain, puller

The LINK command “es bat 2” relocates the EMA address of variable “chain” to
the start of the second 1024-page range of the program’s EMA space, address
4000000 octal or 1048576 decimal. The address of variable “puller” is relocated to
appear immediately after “chain”. This program can contain a statement of form:

error = rteall ocshema(’ BAT , 1, chain,0j)

This call possibly creates and attaches a shared EMA with label “BAT” to the
program’s EMA address space. The point of attachment in the program’s EMA
address space begins at the EMA address to which the variable named “chain” has
been relocated by the “ES” command.

Forces linking of a program or an overlay.
FO

This command links a program or an overlay even if there are undefined external
references. All undefined externals are set to zero and ignored, but are still listed
to the list device or list file. Results are unpredictable if an undefined external is

referenced during execution.

HE (Heap Area)

Purpose:
Syntax:

Parameters:

Remarks:

Sets the size of the heap area. (For CDS programs only.)
HE[, words]

words Specifies the number of words in the heap area. Words can be set to a
value between 4 and the remainder of the data partition. If this
parameter is omitted, LINK uses the value of 4.

FORTRAN programs use the LIMEM system subroutine and Pascal programs use
the HEAP 1 compiler directive to reference the heap area. (LIMEM is described
in the RTE-A/RTE-6/VM Relocatable Libraries Reference Manual, part number
92077-90037.) The heap area is included in the data partition. If the data partition
reaches the maximum of 32 pages, space is taken from the stack area if possible, to
satisty the HE request.

If the HE command is omitted, LINK uses the value of 4.

The HE command can be used during relinking. See the section on Relinking CDS
Programs in Chapter 4 for more details.

3-10 LINK Commands

IF (Conditional Execution of LINK)

Purpose: Allows a command in a LINK command file to be executed depending on whether
the RTE-A or RTE-6/VM LINK program is being used.

Syntax: | F Al 6 <linkcommand>

Parameters: Aor6 Specifies RTE-A (A) or RTE-6/VM (6) LINK.
link command Specifies a valid RTE-A or RTE-6/VM LINK command.

Remarks: The IF command is useful in command files that are used to link programs for both
RTE-A and RTE-6/VM systems. The command allows the correct

system-dependent modules to be relocated. For example,

re testprog.rel

if ali liba.lib
if 61i lib6.1ib
en

RTE-A LINK searches LIBA.LIB and RTE-6/VM LINK searches LIB6.LIB.

LC (Labeled System Common)

Purpose: Specifies that the program uses labeled system common.
Syntax: LC
+LC (in runstring)

Remarks: You can use labeled system common to store subroutines or data that is shared by
several programs. The LC command instructs LINK to search the snapshot file for
labeled system common entry points before searching system libraries or libraries
specified with the LI command. Labeled system common entry points do not
supersede entry points previously resolved with the SE, MS, or RE commands;
however, such conflicts are reported.

LINK Commands 3-11

LI (Library)

Purpose: Defines a library file that LINK searches immediately preceding the search of the
snapshot file and system libraries.

Syntax: LI, filedescriptor

Parameters: filedescriptor ~ Specifies the library file to be searched.

Remarks: LINK searches the libraries specified with the LI command after you enter the EN
command. These libraries are searched before the snapshot file and system
libraries, and in the order in which you entered the names.

The libraries are searched linearly only one time; therefore, if the LI command is
used for an unindexed library, backward references in the file are not resolved. It
is recommended that you use the MS command for searching unindexed libraries.
The LI command and libraries specified in the LINK runstring can be used to
search a maximum of 10 libraries during one LINK session.

LK (Relink)

Purpose: Relinks a program. (Allows you to change program attributes in a previously
linked program file.)

Syntax: LK, filedescriptor

Parameters: filedescriptor ~ Specifies the name of the program file to be relinked.

Remarks: The LK command is used to specify a program file in which various program

attributes are to be changed. Commands that can be used are as follows:

AB Abort relinking, do not modify program file.
AL Lock or unlock code segments in memory.
AS Assign partition number.

CD Specify number of code blocks.

DM Set/reset Debug Monitor mode.

EC Echo command file to list device or file.
EM Set EMA size.

EN End relinking, modify program file.

HE Set size of heap area.

LL Set list device or file.

LO Examine program attributes.

ML Memory lock specified code segment.
09 Operator suspends LINK.

PC Set a program’s capabilities.

PR Set program priority.

SH Specify SHEMA block.

SP Specify program as shareable.

ST Set size of stack area.

SZ Set program partition size.

TR Transfer control to command file.

VM Specify VMA backing store file size.
W6 Set VMA working set size.

3-12 LINK Commands

LL (List Option)

Purpose:

Syntax:

Parameters:

Remarks:

Specifies the list file or the LU number of the list device to which LINK sends
messages and the load map.

LL, filedescriptor| Iu

+LL: filedescriptor| lu (in runstring)

filedescriptor ~ Specifies the name of the list file.

lu Specifies the LU number of the list device.

If you specify the name of an existing file, the existing name must include type
extension .MAP; otherwise, an error occurs. Also, if you specify the name of an

existing file, the contents of the file are overwritten.

If you specify a new file name and do not include a type extension, LINK appends
the type extension .MAP to the file name.

The LL command can be used during relinking.

LO (List Program Attributes)

Purpose:
Syntax:

Remarks:

Lists program attributes during relinking.
LO

The LO command can be used to list the current values of the program attributes
only when you are relinking the program.

MA (Send Load Map to Terminal)

Purpose:
Syntax:

Remarks:

Directs LINK to list the load map at your terminal.
+MA (in runstring)

The MA command can be used only in the LINK runstring.

LINK Commands 3-13

ML (Memory Locked)

Purpose:

Syntax:

Parameters:

Remarks:

Declares that the specified code segment is to be memory locked or unlocked. (For
CDS programs only.)

M.

M., <segment #>[, UN| (Relinking syntax)

segment # Specifies the number of the segment to be locked or unlocked in
memory.
UN Unlocks the segment specified.

This command does not affect program behavior but can affect program
performance.

The ML command can be used during relinking.

MS (Multiple Search)

Purpose:
Syntax:
Parameters:

Remarks:

Searches a library file.
MBS, filedescriptor
filedescriptor Specifies the name of the library file to be searched.

Each subroutine in the library file is searched sequentially. If an external reference
can be resolved, the subroutine is included in the program file.

If any external references are resolved during the search, the file is searched again
to resolve any backward references from the subroutine that was just included in
the program file. This process is repeated until no additional references can be
resolved.

A more efficient approach to searching unindexed libraries is to use LINDX to
index the file, and then use the LI or SE command to search the file.

3-14 LINK Commands

NA (Name)

Purpose:
Syntax:

Parameters:

Remarks:

Sets the program file name. The name is tested immediately for validity.

NA[, filedescriptor]

filedescriptor ~ Specifies the name to be tested for validity and used for the
program file name. If you omit this parameter, LINK tests for
validity the name specified in the PROGRAM statement in the
source file (or NAM statement in Macro), in a previously entered
OU command, or in the LINK runstring ((RUN file type extension).

If you enter a name that is not valid, a warning message is displayed. If the name is
valid, it is used to create the program file. A file name specified in the EN
command overrides the name specified in the NA command.

NS (New Segment)

Purpose:
Syntax:

Parameters:

Remarks:

Starts a new code segment. (For CDS programs only.)
NS[, pages]

pages Specifies the maximum number of pages in a code segment. Pages
can be set to a value between 1 and 31 pages, inclusive. If this
parameter is omitted, LINK uses the value of 30.

LINK starts a new segment every time the specified number of pages is reached.

The command does not affect program behavior but can affect program
performance.

OR (Order EMA Area)

Purpose:
Syntax:
Parameters:

Remarks:

Allows you to specify the order in which EMA areas are allocated.
OR, <ema areal>, <ema area2>.
ema area Specifies the name of an EMA area declared in the source file.

Multiple OR commands can be specified in one LINK session. The EMA area
names listed in the first OR command are placed before the names listed in the
second OR command, and so forth.

If an EMA area name is specified more than once, the first occurrence is used. If
you specify the name of an EMA area that does not exist, LINK issues a warning
and ignores the name.

If the command is not specified, LINK chooses the order in which the EMA areas
are allocated. You cannot order EMA common blocks that are declared in a block
data subprogram.

You can use the PA command with the OR command to specify that an EMA area
is to begin on a page boundary. The first EMA area always begins on a page
boundary.

LINK Commands 3-15

OS (Operator Suspend)

Purpose:
Syntax:

Remarks:

Allows you to suspend LINK.

cs

LINK remains suspended until you enter the system GO command. While LINK is
suspended, you have access to CM. You may want to suspend LINK and use CM

to display a directory list or run another program.

The OS command can be used during relinking.

OU (Output)

Purpose:
Syntax:
Parameters:

Remarks:

Specifies the name of the program file.
QU, filedescriptor
filedescriptor Specifies the name of the program file.

The OU command prevents LINK from automatically purging an existing program
file. After you enter the EN command, LINK issues a warning and aborts if the file
already exists. You can either rename the existing program file or use a different
program file name.

The name entered with the OU command is not checked for validity until you end
LINK. If the name is invalid, LINK issues an error message. You have to run
LINK, re-enter your LINK commands, and use a valid file name. If you want to
check the validity of the name before ending LINK, enter the NA command
without parameters.

Specifying a file descriptor with the EN command overrides the name specified
with the OU command.

3-16 LINK Commands

PA (Page Align EMA Area)

Purpose:

Syntax:

Remarks:

Starts the next Extended Memory Area (EMA) specified with an OR command on
an even page boundary.

PA

The PA command is useful if a single VMA/EMA transfer of more than 31 pages is
done in the program. In this case, the area should start on a page boundary to
avoid mapping problems.

The first EMA area always begins on a page boundary; therefore, this command is
useful only if used with the OR command. For example,

or, enmal, ema2, ema3
pa

or, ema4d

pa

or, enab

In this example, the PA and OR commands are used to force EMA4 and EMAS to
begin on a page boundary. EMAT1 also begins on a page boundary because it is the
first EMA area relocated.

PC (Set Program Capability)

Purpose:

Syntax:

Parameters:

Remarks:

Sets the capability of the program to be linked and, optionally, sets the capability
needed by a user to run the program.

PC, progeplv[, rquscplv]
progeply Specifies the capability level assigned to the program.

rquscplv Specifies the capability level required by a user to run a program. If
omitted, LINK defaults rquscplv to 0.

This command is used in conjunction with Security/1000. Security need not be on

for this command to be issued. If this command is omitted, LINK sets the program
capability level and the user capability level to zero.

LINK Commands 3-17

PR (Priority)

Purpose:
Syntax:

Parameters:

Remarks:

Sets the priority of the program.

PR, priority

priority Specifies program priority. The priority can be set to a value
between 1 and 32767, inclusive, with 1 being the highest priority and
32767 the lowest.

This command overrides the priority set in the PROGRAM statement in the source
file. If this command is omitted and the priority was not set in the source file,
LINK sets the program priority to 99.

The PR command can be used during relinking.

PS (Page Align Overlays)

Purpose: Starts overlays at a page boundary. (For non-CDS programs only.)

Syntax: PS

Remarks: The PS command may reduce the number of pages that must be swapped when an
overlay is loaded. The command may increase the program partition size.

RE (Relocate)

Purpose: Relocates a file as part of the program.

Syntax: RE, filedescriptor

Parameters: filedescriptor ~ Specifies the file to be included as part of the program.

Remarks: The relocatable file specified may contain a program, program overlays,

procedures, or block data (FORTRAN).

3-18 LINK Commands

RM (Relocate Module)

Purpose:
Syntax:

Parameters:

Remarks:

Extracts a single module from a file and relocates the module as part of a program.

RM filedescriptor, symbolname

filedescriptor Specifies the file that contains the module to be relocated. The file

can contain one or more modules and should be indexed for
optimum performance.

symbolname Specifies an entry point for the module to be relocated. Often the

entry point name is the same as the module name; however, a
module can have several entry points.

If the symbol is not found, LINK reports “module not relocated”.

This command gives you more control over the selection of modules than the SE or
LI commands. The RM command is most useful in the two following specific
applications:

1.

The RM command can be used when you want to use a software version of a
machine instruction. For example, the following command instructs LINK to
search /LIBRARIES/$MATH for the entry point .ENTR, and relocate this
module into the program (note that this produces Warning 141: RPL replaced).

RM /LI BRARI ES/ $VATH . ENTR

The RM command can be used when you have a file that contains two or more
modules that share a common entry point but also have individual entry points
different from the shared entry points. For example, if the file LIB contains
module RTA with entry points SUBR and SUBA, and module RT6 with entry
points SUBR and SUB6, the following LINK commands can be included in a
LINK command file to relocate the proper module and associated entry point.

RE PROG

IF A RMLIB SUBA
IF 6 RM LIB SUB6
EN

LINK Commands 3-19

RO (Reorder)

Purpose:

Syntax:

Remarks:

Rearranges the order of the modules in the program.
RO
+RO (in runstring)

For non-CDS programs, the RO command reorders the modules to reduce the
number of base page links.

For CDS programs, the RO command reorders the non-CDS modules in the data
segment. CDS modules in the code segment are not reordered because they use
current page linking.

SC (System Common)

Purpose: Specifies that all references to blank common in the program are placed in blank
system common.

Syntax: SC
+SC (in runstring)

Remarks: This command allows programs to share data.

SE (Search)

Purpose: Searches a library file to satisfy undefined external references.

Syntax: SE[, filedescriptor]

Parameters: filedescriptor ~ Specifies name of the library file to be searched. If you omit this

parameter, LINK searches the system library files.
Remarks: If the filedescriptor parameter is specified, LINK searches that particular file

immediately. If an external reference can be resolved, the procedure is included in
the program file. All backward references in the library are satisfied if the library
is indexed. A warning is issued when an unindexed library is searched. The SE
command cannot be used without a parameter to search the system library after an
overlay is relocated. To do so would cause all system library routines to be loaded
in the overlay.

The SE command can be used to search unindexed libraries; however, the search
does not resolve any backward references in the file. It is recommended that you
use LINDX to index the unindexed library, and then use the LI or SE command to
search the library.

3-20 LINK Commands

SH (Shareable EMA)

Purpose:

Syntax:

Parameters:

Remarks:

Specifies that the EMA data resides in the shareable EMA partition specified. Use
of this command makes the program a “SHEMA-only” program.

SH, label[, <partition #>]

label Specifies the name of the partition (maximum of sixteen
characters).
partition # Specifies a reserved partition number. Partition number can be set

to a value between 0 and 1023. If this parameter is omitted, LINK
uses the value of 0 (not reserved).

The shareable partition is labeled with the specified label when the program is
loaded into memory. All programs sharing the EMA partition must use the same
label.

If a partition number is not specified but another program already has allocated the
partition, the existing partition is used. If a partition number is not specified and

the EMA partition does not exist, a partition is allocated in dynamic memory.

Only one shareable EMA area can be specified per program. The last SH,<label>
command specified overrides any previous ones.

The SH command can be used during relinking.

SN (Snapshot)

Purpose:
Syntax:

Parameters:

Remarks:

Defines or displays the name of the snapshot file.
SN[, filedescriptor]

filedescriptor ~ Specifies the snapshot file. If this parameter is omitted, the
snapshot file name is listed to the list device or list file.

The snapshot file is used to resolve system labels and entry points.

The SN command must be entered before any RE commands.

If you omit the SN command, LINK searches for a snapshot file to use as a default.
LINK first searches for file SNAPSNP::SYSTEM. LINK next searches for file

SNAP::0, and, finally, file SNAP.SNP on your working directory (if you have a
working directory).

LINK Commands 3-21

SP (Shareable Program)

Purpose: Declares a program to be shareable. (For CDS programs only.)
Syntax: SP

SP[, UN| Relinking syntax

+SP (in runstring)

Parameters: UN Declares the program to be unshareable during relinking.

Remarks: The SP command sets a flag in the program file that indicates to the system that
the program is shareable.

During relinking, you can use this command to set or unset the shareable program
flag in the program file.

ST (Stack)
Purpose: Sets the size of the stack area. (For CDS programs only.)
Syntax: ST, [+| -] words

Parameters: words Specifies the number of words in the stack area. Words can be set to any
value between 6 and a maximum number that is dependent on the heap size
and MSEG usage.

If the number of words specified is preceded by a plus (+) or a minus (—),
then words is added to or subtracted from the default number of words
estimated by LINK.

Remarks: The stack area is included in the data partition. If the maximum of 32 pages in the
data partition has been reached, increasing the stack area decreases the amount of
heap area, if possible.

If you omit this command, LINK estimates the amount of stack space needed by
your program based on compiler generated information in the relocatable files.
However, this estimate may be insufficient. If your program incurs a CS06
violation, this may indicate that LINK’s estimate was too small.

The ST command can be used during relinking.

3-22 LINK Commands

SU (System Utility)

Purpose:

Syntax:

Parameters:

Remarks:

SZ (Size)

Purpose:

Syntax:

Parameters:

Remarks:

Declares the program to be a system utility.

SU, OF]
+SU[: OF] (in runstring)
OF Specifies that any user can remove the program. If this parameter is

omitted, only a superuser can remove the program. If the program is
RP’d but not active at logoff, the program’s ID segment is removed.

The SU command is used for frequently used system utilities. A system utility
cannot be cloned.

This command is useful for programs that use a lot of system resources or
monopolize one particular system resource because the restriction on cloning
prevents multiple copies of the program from running simultaneously.

If a program is loaded as a system utility, it should normally be RP’d as a
permanent program, that is, the “T” option should not be specified in the RP
command or FmpRpProgram call. This should be done because if the system
utility is executing while another program attempts to schedule it, that program will
queue-suspend on the system utility. If the system utility is not permanently RP’d,
its ID segment is removed as soon as it terminates. This will cause the
queue-suspended scheduler to receive an SCO5 violation because the program to be
scheduled no longer exists.

Specifies the number of physical memory pages required to run the program. For
CDS programs, this command specifies the number of data partition pages.

SZ, pages or SZ, +pages
+SZ: pages or +SZ: +pages (in runstring)
pages Specifies either the number of pages in the program partition or, if you

include the plus sign, the number of pages to be added to the minimum
number of pages required by the program. Pages can be set to a value
between 2 and 32, inclusive.

This command allows the program to use space beyond its program boundary. The
size of system common area is not counted in the size specification of the program.
If the number of pages specified is larger than the number of pages available, the
available pages are used. If this command is omitted, the minimum number of
pages required by the program is used.

The SZ command can be used during relinking on non-CDS programs only.

LINK Commands 3-23

TR (Transfer)

Purpose:
Syntax:

Parameters:

Remarks:

Transfers control to a file containing LINK commands.
TR, filedescriptor

filedescriptor Specifies the name of the command file. If you do not specify the
file type extension, LINK assumes the .LOD file type extension.

Control is transferred to the specified file. Control returns to the point of transfer
unless LINK aborts or is terminated while the command file is executing.

A maximum of 128 command files can be used in one LINK session. Command
files can be nested.

The TR command can be used during relinking.

VM (Virtual Memory Size)

Purpose:

Syntax:

Parameters:

Remarks:

Indicates that the program is a Virtual Memory Area (VMA) program and
specifies the size of the VMA backing store file. For backward compatibility, this
command may also be entered as VS.

VM , pages] [, model]

pages Specifies the maximum number of pages in the virtual backing store
file. Pages can be set to a value between 32 and 65536, inclusive. If
this parameter is omitted, LINK uses the value of 8192.

model Specifies the VMA model as follows:

L Use Large VMA model. Refer to the RTE-A Programmer’s
Reference Manual, part number 92077-90007, for a description of
the VMA models.

X Use Extended VMA model.
If a model is not specified, the Normal VMA model is used.
The file is allocated on disk when the VMA working set cannot hold more data.

The file grows in size as needed, but does not exceed the limit imposed by the VM
command.

Although LINK allows 65536 pages (128 Mbytes) of virtual space, the volume on
which the backing store file is created may limit the maximum size.

The VM command can be used during relinking. However, the VMA model
cannot be changed during relinking.

3-24 LINK Commands

WD (Default Working Directory)

Purpose:

Syntax:

Parameters:

Remarks:

Provide a default directory and node name to be used when LINK opens files.

WD directory| | @ dsinfo]
+WD| : directory[| @dsinfo]] (in runstring)

directory Specifies the default directory path to use when opening a file. If this
parameter starts with a / (slash), then the path starts at the global
directory. Otherwise the path is relative to the current session’s
working directory.

@ A placeholder for the file name.

dsinfo The DS transparency specifier of a remote node and optional user
logon of the following form:

node[userl password)]
The default working directory is applied to the file open operation for all RE, RM,
SE, LI, and TR commands. The directory can contain subdirectories, and can be
relative (that is, “../”) path. The directory and node name parts are defaulted
separately. For LI library files, the defaulted values used are those in effect when

the EN (end) command is issued, and not the values in effect when the LI
command is issued.

In the runstring, if the + WD option is used in front of the file descriptor of a .LOD
file, the default directory path becomes the same as the one used by the .LOD file.
For example, the runstring:

Cl>1link +wd /utilities/util/util.lod>96
causes LINK to set its default directory path to:

[UTI LI TI ES/ UTI L/ @96

There is no nesting of default working directories. That is, if one is specified in a
TR file, then it continues to be used even after the command file returns.

LINK Commands 3-25

WS (Working Set Size of VMA)

Purpose:
Syntax:

Parameters:

Remarks:

Specifies the working set size of VMA.
W5[, pages]

pages Specifies the number of pages in the working set. Pages can be set to a
value between 2 and 1022, inclusive, for Normal and Large model
programs, and between 2 and 32733 for Extended model programs. If
this parameter is omitted, LINK uses the value of 32. (Refer to the
RTE-A User’s Manual for descriptions of EMA models.)

The number of pages specified in the WS command does not include the number of
page table (PTE) pages required:

Normal 1
Large 2
Extended 2 + 1 per 1,024 data pages

The WS command can be used during relinking.

* (Comment)

Purpose:
Syntax:

Remarks:

? (Help)

Purpose:
Syntax:

Parameters:

Remarks:

Allows entry of comments.

*

When the asterisk (*) is the first character in a line, LINK ignores the entire line.
The asterisk can be used to add comments to a LINK command file.

Displays help information.
?[, link command)]

link command Specifies the LINK command for which you want information. If
this parameter is omitted, LINK displays a summary of all
commands.

The question mark (?) can be entered during an interactive LINK session any time
you need help with a LINK command or want to see a syntax summary of all LINK
commands.

3-26 LINK Commands

Advanced Concepts

This chapter describes some features and functions of LINK that are useful for experienced LINK
users. Two sample load maps are provided at the end of this chapter to illustrate LINK features.

Linking Files for Different Target Systems

In RTE-A, the system snapshot file, which is created when the system is generated, contains a
description of the operating system (defined system libraries, boundaries, and entry points). Each
RTE-A system has a unique snapshot file. LINK uses the snapshot file to reference operating
system related information and for automatic searching of system libraries.

To specify the name of the snapshot file to be referenced, use the SN command, or specify the
name of the snapshot file in the runstring.

Reducing Base Page Links

The number of links on the base page can be reduced by reordering the sequence in which the
modules are relocated. Use the RO (reorder) command to reorder the modules. Reordering is
necessary when the base page link area overflows. Base page links are used by modules in the
data segment in CDS programs and by non-CDS programs. See the RTE-A System Design Manual,
part number 92077-90013, for more information on base page links.

System Common Allocation

System common is an area of memory that is accessible to more than one program. Therefore,
information can be stored in this area by one program, then used later by other programs in a
predetermined manner. The LC and SC commands can be used to access system common. Refer
to the RTE-A System Design Manual for more details on using system common.

Advanced Concepts 4-1

VMA/EMA Allocation

When you specify Virtual Memory Area (VMA) or Extended Memory Area (EMA), LINK
allocates a minimum of two pages for the EMA area (or VMA working set) plus the required
number of pages for the page table. The default order for mapping labeled common blocks into a
program is not specified. It is not necessarily dependent on the order of the common statements
declared in the program. The ordering may change with different revisions of LINK or the
compiler. If the ordering is important, as with Shared EMA, use LINK’s OR (Order EMA Area)
command to specify the EMA common block order.

MSEG Allocation

The mapping segment (MSEG) is the part of the EMA area or VMA working set that is logically
visible (mapped in) to your program at one time. If you use a compiler option to specify a size for
MSEG, LINK allocates the specified number of pages plus an additional spillover page. If you do
not specify a size for MSEG (and do not specify a program size), LINK allocates all available
remaining program (data segment) space to MSEG.

CDS Program Space Allocation Considerations

The data segment contains the following:
e Base page

e System common

e Stack area

e Heap area

e Global data

e Non-CDS code

e MSEG

A maximum of 32 pages is allowed. If the data segment has reached the maximum of 32 pages,
none of the above areas can be increased unless the size of another area is decreased. LINK
issues an error message and aborts if it cannot decrease the size of any area in the data segment.

Using EMA and Libraries

If your program uses library modules that use EMA and are the only modules in the program that
use EMA, you must inform LINK that the program requires EMA. Because LINK needs to know
whether or not a program requires EMA before it starts the search sequence, you must use the
EM (or VM) command before the EN command. Otherwise, when LINK encounters a library
module that uses EMA during the library search sequence, the message “Library routine uses
EMA?” (fatal error 120) is issued.

4-2 Advanced Concepts

Merging and Indexing Libraries

For high-speed performance using LINK, it is recommended that you always merge and index your
library files and relocatable files containing external modules into large indexed library files. If
you index your libraries, LINK finds all backward references.

When generating a new system, the system manager should merge any commonly used libraries
and current system libraries into one library, and index the merged library.

If using modules from many different libraries, you should merge the modules into one library,
then index the library to eliminate repeated searches for backward references.

When you run MERGE, the resulting merged library is not indexed, even if the individual libraries
that form the input to MERGE are indexed. After merging, you must run LINDX on the merged
file in order to reindex them. See the RTE-A Utilities Manual, 92077-90004, for a detailed
description of the MERGE utility.

LINDX

LINDX indexes libraries. The format of the LINDX command is as follows:

LI NDX, <input file>, <output file>[, +NL] [, +L listfile]

where:
input file is the file to be indexed.
output file is the file to which the indexed library is written. It must be different from the
input file.
+NL specifies no list of entry points.

+L listfile sends the entry point listing to the specified file.

LINDX reads the specified input file, then copies the contents to the output file and includes an
index of the modules at the beginning. When searching the library, LINK uses the index to quickly
access the names and locations of modules in the library file. If there is no type extension
specified in the input file name, LINDX uses .LIB.

When indexing a file, LINDX indicates if duplicate entries occur and indexes only one of the entry
points. The other module is written to the indexed library but cannot be accessed because it is not
listed in the index.

Advanced Concepts 4-3

File Naming Defaults

You may choose to default all or part of a file name. The defaults LINK uses depend on whether
you have a working directory, whether you have specified a directory or FMGR cartridge, whether
you have specified a file type extension, and what command the file is associated with. LINK
chooses the first one that works from the naming defaults given below.

Snapshot File

If a snapshot file is not specified, LINK searches for the snapshot file in the following sequence:

SNAP. SNP: : SYSTEM on directory /SSYSTEM
SNAP: : 0 on a FMGR cartridge
SNAP. SNP on working directory (if you have a working directory)

Relocatable Files

If a file type extension or directory is not specified, LINK searches for relocatable files in the
following sequence:

<filename>
<filename>. REL on working directory

LINK Command Files

If a file type extension or directory is not specified, LINK searches for the LINK command file in
the following sequence:

<filename>
<filename>. LOD on working directory

Library Files

If a file type extension or directory is not specified, LINK searches for library files in the following
sequence:

<filename>

<filename>. LI B on working directory
<filename>. L| B: : LI BRARI ES on directory /LIBRARIES

4-4 Advanced Concepts

Program Files

If the program name is not specified, LINK takes the name from the relocatable module that
contains the primary entry point.

If a directory is not specified and you have a working directory, the file is placed on the working
directory. If a directory is not specified and you do not have a working directory, the file is placed
on the first FMGR cartridge.

If a file type extension is not specified and the file is being placed on a new directory, the file type
extension .RUN is given to the file. If a program file with the same name already exists, LINK, by
default, purges the file before creating the new one. You can use either the OU or DP command
to inhibit purging of an existing program file.

List Files

If a directory is not specified, the list file is placed on the working directory. If there is no working
directory, the list file is placed on the first FMGR cartridge.

If a file type extension is not given and the list file is to reside in a new directory, the file type
extension .MAP is used.

Runstring Defaults

If you have a working directory, any file in the runstring without a directory specification is
assumed to be in the working directory. Any file in a different directory must include the directory
name in the file descriptor.

If you do not have a working directory, any file in the runstring without a directory specification
are searched for on the FMGR cartridges in the order the cartridges are mounted.

Any default file type extensions must conform to the standard convention described in the LINK
File Type Extension section in Chapter 2. Otherwise, LINK may misinterpret the file contents; for
example, file type extension .RUN indicates a program file and .REL indicates a relocatable file.

Remote Files

LINK does not supply default file type extensions or directory paths when accessing files using DS
transparency. You must specify the entire file descriptor.

For example (user input is underlined):

link: re,area.rel::nydir>5003
AREA

link: se,libry>5003

File not found: LI BRY>5003

link: se,libry.lib::systenr5003
SUB1 SUB2 SUB3

In this example, LINK issued an error message for the first SE command because the entire file
descriptor for the remote file was not specified.

Advanced Concepts 4-5

Error Reporting on Default Names

If LINK creates default names when looking for a file and an error occurs, the error is reported on
the last name LINK tried. This most commonly occurs when the file is not found.

For example (user input is underlined):

link: re,area
AREA

link: se,libry
File not found: LI BRY. LI B: : LI BRARI ES

In this example, LINK searched first for LIBRY, then LIBRY.LIB on the working directory, then
for LIBRY.LIB::LIBRARIES. Because LINK could not find any of the names, it reported the
error as having occurred on the last one it tried.

Relinking

During relinking, you can permanently change certain attributes of programs that have already
been linked. Because relinking operates directly on the program file, this process cannot be used
if the program file is being used (for example, the program is running).

Relinking is faster than linking the program again. The following LINK commands can be used
during relinking:

AB Abort relinking, do not modify program file
AL Lock or unlock all code segments in memory
AS Assign the program to a partition

CD Specify the number of code segment blocks
DM Set/reset Debug Monitor mode

EC Echo command file to list device or file

EM Set EMA size

EN End relinking, modify program file

HE Set size of heap area

LL Set list device or file

LO Examine program attributes

ML Memory lock specified code segment

os Operator suspends LINK

PC Set program’s capability level

PR Set program priority

SH Specify SHEMA block

SP Specify program as shareable

ST Set size of stack area

SZ Set program as shareable

TR Transfer control to LINK command file
VM Set VMA backing store file size

W5 Set VMA working set size

Chapter 3 contains detailed information on these commands.

4-6 Advanced Concepts

To relink a program, run LINK interactively or from a command file and use the LK command to
begin the relinking session. The LK command gives you access to the commands listed above.
During relinking you can use the LO command to examine the current program attributes.

When you finish making changes, enter the EN command to end the relinking session with LINK
modifying the program file, or enter the AB command to end the relinking session without LINK
modifying the program file.

The following is an example of starting a relinking session:

link: Ik area

Ready to nodify AREA

Use LO to exam ne program attributes
i nk:

If you enter a command other than a valid relink command, LINK displays one of the following
messages:

Not a legal command in relink node: <command entered>
or

Unknown conmmand; use ? for help

Relinking CDS Programs

While relinking CDS programs, an ST (stack size) command that increases the stack size first
makes the data partition larger to accommodate the larger stack space. After the data partition
reaches its maximum size, the heap space is reduced to accommodate the larger stack. An ST
command that reduces the stack size may reduce the partition size.

After an ST command, any extra space required to round up the partition to a page boundary is
allocated to the heap. However, if the heap is the minimum size of 4 words, then any extra space
is allocated to the stack.

An HE (heap size) command that increases the heap space first makes the data partition larger to
accommodate the larger heap space. After the data partition reaches its maximum size, the stack
space is reduced to accommodate the larger heap. An HE command that reduces the heap size
may reduced the partition size. After an HE command, any extra space required to round up the
partition to a page boundary is allocated to the stack.

As a relinking example, to specify as much stack as possible and 4K words of heap, use:

[ink: Tk
l'ink: st 32000
l'ink: he 4096

The ST command first increases the data partition to the maximum size, and reduce the heap to its
minimum size. Then the HE command causes the stack to be reduced to accommodate the
required 4K heap size.

Note that LINK does not issue warnings when it reduces the sizes you specify. You should use the
LO command to check that the resulting stack and heap sizes are what you expect.

Advanced Concepts 4-7

Searching for Block Data Subroutines

Block data subprograms (FORTRAN) can be picked up in library searches. A block data
subprogram matches named common in an explicitly relocated module. However, if both a block
data subprogram and a subroutine that uses common blocks initialized by that subprogram are
placed into a library with LINDX, the block data subprogram and the subroutine require the
following FORTRAN declaration:

$ALI AS / COMMON_BLOCK_NAME/, NOALLOCATE

Using Cl Command Files to Run LINK

During program development, you can use a command file to link and run the application
program after each change to the program. By using CI positional variables ($1 through $9), you
can write one command file for all occasions.

When LINK finishes, it places information into the predefined variables, SRETURN1 through
$RETURNS and $SRETURN_S, and indicates whether an error occurred. At completion, the
predefined variables contain the following:

$RETURNI: characters 1 and 2 of the program name
$RETURN?2: characters 3 and 4 of the program name

$RETURNS3: characters 5 and 6 of the program name

$RETURN4: 0 if the link was successful
—1000 if the user aborted the link
nnn if the link was unsuccessful, where nnn is the
fatal error code as summarized in Appendix A

$RETURNS: unused (blanks)

$RETURN_S: file descriptor for the program file

The following is a sample command file for linking and, if the link is successful, running the
program:

LI NK $1. REL

IF is $returnd eq O
THEN $1

FI

RETURN

If the name of the command file is LINKR, the following command executes LINKR (EXAMPLE
is the name of the relocatable file):

Cl > linkr exanple

4-8 Advanced Concepts

Relocation Sequence

LINK uses the following sequence when relocating modules:

1.

Before any relocatable modules are processed, all RPLs in the snapshot file are entered into
LINK’s symbol table as defined symbols. These RPLs specify the machine instructions needed
to run the program created by LINK.

Relocatable modules are then processed in the order they are encountered. The RE, RM, SE,
or MS commands can be used to relocate modules.

RE command: All modules in the specified file are immediately relocated.
RM command: Only the module with the specified entry point is relocated.

SE command: All modules in the specified file that satisfy undefined external references
are relocated. If the file is indexed, all backward references within the file
are resolved; otherwise, the file is searched linearly only once.

MS command: Similar to the SE command, except that the file is searched multiple times
until no more modules are relocated (all backward references have been
resolved).

After LINK has finished relocating modules and the EN command is given, LINK attempts to
satisfy undefined external references. Files are searched in the following sequence:

1.
2.

4,

System labeled common is searched, if it has been specified using the LC command.

Libraries specified with the LI command are searched in the order given. If the file is indexed,
all backward references within the file are resolved; otherwise, the file is searched linearly only
once.

Each system library is searched to resolve backward references. If a CDS program is being
linked and CDS system libraries exist for the target system, the CDS libraries are searched;
otherwise, the non-CDS system libraries are searched.

The snapshot file is searched to resolve system references.

For non-CDS overlay programs, the sequence described above has several implications. Keep the
following in mind when linking an overlay program:

A subroutine called by more than one overlay must be relocated with either the main or each
overlay that calls it, or it must reside in a library to be searched.

Subroutines relocated with the main are not linked into program overlays.
Any subroutines relocated before the first program overlay are linked into the main program.

Any subroutines relocated after the first overlay and before the second overlay are linked into
the first overlay.

Similarly, any subroutines relocated between overlays are linked into the preceding overlay,
and subroutines relocated after the last overlay are linked into the last overlay.

Advanced Concepts 4-9

If undefined externals are reported after EN is entered, a new overlay cannot be relocated to
satisfy the undefined externals. This generates fatal error 108.

Subroutines must be relocated with the overlays (or the main) to which they belong, or in a library
to be searched.

Note If you have used other RTE loaders, this may not be the search sequence to which
you are accustomed. The most important differences are that when using LINK,
subroutines are loaded with the overlay and libraries cannot be concatenated to the
end of the overlay relocatable file.

If the relocatable file you are linking was produced for another RTE system and contains an
overlay relocatable program, you may have to change it if any of the following is true:

e Subroutines called from an overlay are not relocated directly after that overlay, nor in the
main, nor in a library. That is, the relocatable file resides with the relocatable for another
overlay or in a library appended to the file to be linked.

e Subroutines called from the main are not relocated in an overlay or directly after the main.
That is, the relocatable resides in a library appended to the file to be linked.

The most important class of file that meets these requirements is an overlay program with libraries
concatenated to the end of the file. Such files must be changed in some combination of the
following ways to be linked:

e Each subroutine called by more than one overlay must have a copy immediately following each
calling overlay in the file, or must reside in a library searched by LINK, or must reside in the
main.

e Any subroutine called by the main must reside directly after the main or in an overlay or in a
library searched by LINK. Note that subroutines residing in an overlay are linked into that
overlay and not with the main.

CDS Library Considerations

In VC+ systems, two sets of libraries can be specified; CDS libraries and non-CDS libraries. The
CDS libraries are searched only when the program being relocated is a CDS program.

If a program has a CDS main and a non-CDS subroutine that calls an FMP subroutine, you must
explicitly search library $BIGLB (LL$BIGLB). If $BIGLB, which contains non-CDS versions of
the FMP subroutines, is not searched explicitly, the CDS version of the FMP subroutine is taken
from library $BGCDS. LINK issues an error because a non-CDS subroutine is illegally calling a
CDS FMP subroutine.

Separate versions of the FORTRAN formatter routines with different names exist for CDS and
non-CDS code. As a result, searching $BIGLB does not pull in non-CDS versions of the
FORTRAN formatter when CDS is on.

4-10 Advanced Concepts

Manual Program Segmentation

LINK provides automatic segmentation for CDS programs, which provides good performance for
the majority of programs. Most users do not need to be concerned with program segmentation.
However, in some cases, manual segmentation can improve user program performance. This
section is for users who want to gain as much performance as possible by manually segmenting
their programs.

The goal in manual segmentation is to reduce the number of procedure calls from one segment to
another. This is because cross-segment calls require more time than in-segment calls.
Cross-segment calls to segments residing on the disk are very costly, because the segment must be
brought in from the disk; therefore, the number of calls made to segments on the disk should be
reduced. Under automatic segmentation LINK sets the code partition size so that all segments
can reside in memory simultaneously. Here are some general rules for achieving higher program
performance by manual segmentation:

e Group routines that call each other frequently into the same segment using the NS command.
e (Create as few segments as possible.

e Allow as many code segment blocks in the code partition as possible with the CD command.

The ML command can be used to keep a particular segment in memory. There is no advantage to
this unless the CD command has been used to reduce the number of segment blocks to less than
the number of segments.

Example Non-CDS Program LINK Session

A non-CDS program called EMATX that has two overlays, OVER1 and OVER?2, is being linked
with a command file. The command file and the load map produced by LINK are shown below.
Lines have been deleted from the listing; only the pertinent sections of the maps are displayed.

The names and addresses of each EMA area declared in the program are listed before the load
map. This information is useful when trying to trace VMA/EMA problems.

The load map shows name, size, and address of each module linked with the program. This
information is useful if the system aborts the program and displays the address of the offending
instruction.

As each module is relocated, the module name is printed to the screen or list file, with up to ten
names per line. Each of the module names is printed. After the EN command is entered, LINK
searches libraries and displays the names of the required modules it finds. A sample display
format is shown below:

(name) (start address) (length) (comment)
El O 3337 43. 24998-1X329 REV. xxxx 910303

The module name is .EIO, with a starting address of 3337 octal. The number 43 is the decimal
representation of the length of the module in words. LINK uses a period at the end of all numbers
to indicate decimal representation. The rest of the line is reserved for comments supplied by the
module.

Advanced Concepts 4-11

LINK concludes the load map with information showing the program name, size, and other
information.

In the following example, LINK displays information in the load map indicating that this program
needs six pages for the program and 64 pages to hold the EMA area. Therefore, 71 pages
(6+64+1) are needed for execution. The extra page is added because every EMA program
requires one page of overhead.

When LINK reports the program size in the summary line, it is reporting the number of pages
needed for the program’s data partition. This number is not the same as the page number of the
highest used data space address when system common is used.

The contents of the command file are as follows:

(@]

o

ok ok k(D Ok Ok Ok *
(] [l

(9]
=)

LINK command file to |ink EMATX,
which is an overlay EMA program

Specify list file
emat x. map
Specify ‘Reorder’ comrand

Rel ocat e

emat x. r el

Term nate relocation and specify programfile
emat x. run: : dougl

The list file produced is as follows:

4-12

*

ro

*

re

en

9: 04 am Mar 22, 1991
Specify ‘Reorder’ comrmand

Rel ocat e
emat x. r el

EMATS

OVER1

OVER2

Term nate relocation and specify programfile

emat x. run: : dougl

EMAS SINIT VMAST PNAME SEGLD XREIO REIO LOGLU $CVT1
$CVI3 .EIO .FMN .FMCN .FMCV .FMFP .FM O .FMJ . FMO?
.FMER .FMEB .OPN? .FION .UFMP .1CER PAU. E ERO E
IFBRK . 110 .EXIT .1CCL .1 COCM

IFBRK .10 .EXIT .1OCCL .1 COCM

EMA areas Starting Address

AREA2 0
AREA4 41740
AREA3 62760
AREA1 110200

Advanced Concepts

EMATS 2000 99. EMA test for LINK <920222.1049>

$SENVAS 2143 101. 92077-1X039 REV. 2326 <850222. 1049>
SINIT 2310 86. 92077-1X040 REV.2213 811120
VVAST 2436 35. 92077-1X041 REV. 2213 811105
PNAME 2501 24. 92071-1X210 REV. 2041 800409
SEG.D 2531 47. 92077-1X105 REV. 2226 <850222. 1049>
XREI O 2610 139. 92077-1X422 REV. 2326 <850222. 1049>
REI O 3023 131. 92071-1X212 REV. 2041 800501
LOGLU 3226 20. 92077-1X205 REV. 2326 <850222. 1049>
$CVT1 3252 7. 92071-1X321 REV. 2041 800530
$CVT3 3261 46. 92071-1X322 REV. 2041 800530
.El O 3337 43. 24998-1X329 REV. 2226 820503
.FM N 3412 176. 24998-1X344 REV. XXXX 830316
. FMCN 3672 50. 24998-1X345 REV. 2226 820107
. FMCV 4000 667. 24998-1X333 REV. XXXX 821014
. FMFP 6000 676. 24998-1X346 REV. 2226 820426
.FM O 5233 147. 24998-1X348 REV. XXXX 830316
. FMUI 10000 603. 24998-1X349 REV. 2140 810416
. FMO? 5456 50. 24998-1X351 REV. 2140 810415
. FMER 5540 42. 24998-1X352 REV. 2226 820412
. FM3B 7244 175. 24998-1X353 REV. XXXX 830316
. OPN? 3754 20. 24998-1X325 REV. 2101 800803
. FI ON 5612 22. 24998-1X355 REV. 2226 820426
. UFMP 5640 14. 24998-1X296 REV. 2226 820426
.1 CER 7523 102. 24998-1X321 REV. 2140 810506
PAU. E 5656 1. 24998-1X254 REV. 2001 750701
ERO. E 5657 1. 24998-1X249 REV. 2001 750701

Overlay OVER1
OVER1L 12000 64.

| FBRK 12100 23. 92071-1X199 REV. 2041 800409
10 12127 129. 24998-1X343 REV. XXXX 821213
JEXIT 12330 44. 24998-1X320 REV. 2101 800731
.1 OCL 12404 66. 24998-1X305 REV. 2101 800731
.1 OCCM 12506 36. 24998-1X327 REV. 2101 801007

Overlay OVER2
OVER2 12000 82.

| FBRK 12122 23. 92071-1X199 REV. 2041 800409
10 12151 129. 24998-1X343 REV. XXXX 821213
JEXIT 12352 44. 24998-1X320 REV. 2101 800731
.1 OCL 12426 66. 24998-1X305 REV. 2101 800731
.1 CCM 12530 36. 24998-1X327 REV. 2101 801007
Mai n 2000 - 11777 4096. words
Overlay OVER1 12000 - 12551 362. words
Overlay OVER2 12000 - 12573 380. words

Program EMATX. RUN: : DOUG.: 6: 63 ready; 6 pages, 64 pages EMA
9: 04 am Mar 22, 1991
Runnabl e only on an RTE-A system

Advanced Concepts 4-13

Non-CDS Program Load Map Discussion

The following paragraphs explain some features of LINK that may cause some confusion for users
of other RTE loaders. These areas are covered in the form of questions and answers.

Why are the addresses not in order?

The addresses are often in order: However, in this case, the RO command was used, which caused
LINK to reorder the modules in an attempt to reduce base page links. LINK displays the modules
in the order processed.

What is the significance of the overlays starting at 12000?

Address 12000 is a page boundary. Overlays always start on the next page boundary following the
main when the RO command is used.

With overlays starting at a page boundary, is the space between the end of the main and the
beginning of the overlays wasted?

Yes. Some memory is unused on almost every page with reordering. However, the amount lost is
small and is almost always less than previous loaders lost with current page linking.

Why is there an overlap of the two overlay addresses?

The overlays use the same address space. They are mutually exclusive. When one is in memory,
the other cannot be in memory. When the user program calls SEGLD (overlay loader), the code
of the appropriate overlay is brought in and overlays whatever is in memory at those addresses.
Each overlay always has the same starting address as every other overlay in that program.

Why isn’t there any free memory displayed in the load map?

Free memory is the memory left between the end of the user program and the end of the partition.
This memory cannot be accessed unless the SZ command has been entered. LINK, therefore,
does not report it unless this command is used.

4-14 Advanced Concepts

Example CDS Program LINK Session

An example CDS program is linked with the command file shown below. The load map is
discussed in the following paragraphs.

The LINK command file is as follows:

*

* LINK command file to link
* an EMA CDS program

*

* Specify list file

11 emats. map

* Specify relocatable file

re emats.rel

* Specify program file

en /dougl/emats.run

The resulting load map is as follows:

9:23 am Mar 22, 1991
Purging old file:
Load map:
Code segnent 0: 2 pages
Dat a Code
Address size Address si ze
ENMATS
2000 7. 2601 249.
DI SKSI ZE
2007 13. <no code>
. ASKD
2024 40. <no code>
$EMAS
2074 101. <no code>
SINT
2241 86. <no code>
VVAST
2367 35. <no code>
(Lines omitted)
| FBRK
3146 23. <no code>
LOGLU
3175 20. <no code>
$CVT1
3221 7. <no code>
$CVT3
3230 46. <no code>
I'El O
3306 45, <no code>
I NFEX
3363 42. 3172
TRACE_BACK
3435 48. 3332

EMATS. RUN: : DOUGL: 6: 65

EMA test for

92077- 1X505
92077-1X512
92077-1X039
92077-1X040
92077- 1X041

92071- 1X199

92077- 1X205

92071- 1X321

92071- 1X322

24998- 1Xyyy

24998- 1Xyyy
96.

676.

LI NK <850222. 1049>

REV.
REV.
REV.
REV.
REV.

REV.
REV.
REV.
REV.
REV.

rev.

2326
2326
2326
2213
2213

2041
2326
2041
2041
22727

XXXX

Advanced Concepts

<850222. 1049>
<850222. 1049>
<850222. 1049>
811120
811105

800409
<850222. 1049>
800530
800530
821216
830201

4-15

SNUMO

3515 2. 5225 219.
.EIO 24998-1X329 REV. 2226 820503
3517 43. <no code>

(Lines omitted)

Nunber of segnents 1 Segnent si ze 2
Code partition size 3

Data segnent size 7 Data partition size 72
St ack area 12015 15363 1767.

Heap area 15774 15777 4,

EMA area 64 pages

Program EMATS. RUN: : DOUG.: 7: 64 ready; 7 pages, 64 pages EMA
9:24 am Mar 22, 1991
Runnabl e only on an RTE-A system

Example CDS Program Load Map Discussion

A load map for a CDS program consists of segment headers, module entries, and the attribute
summary.

The segment header is a single line that gives the segment number and the pages of code linked
into that segment. Here is the corresponding line from the above example:

Code segnent 0: 2 pages

A module entry normally consists of two lines. The first line gives the module name, and any
comment associated with that module. The second line gives the data address where the module
starts, the amount of data there, the code address where the module starts, and the amount of
code there. The amount of code does not include any current page link areas. A module entry
can also include a current page link area descriptor. This occurs only in multi-page modules that
include current page areas within their boundaries. Following is an example of a module entry
with current page link descriptor:

TMPUPD 92091- 16001 REV. 2201 <850222. 1049>
3162 82. 5466 4645.
CP Link address information (Physical address — transform =
Physical Xform Modul e Modul e rel ative address)
5466 5466 0
6047 5610 361
10003 5732 2173
12037 6054 4105
14034 6176 5760

The column labeled “Module” gives module relative code addresses. The column labeled
“Physical” gives segment relative code addresses. The information in this table can be useful if
your program should unexpectedly abort because the system returns a code address as the point of
violation. For example, assume that a MP violation occurred at code address 10007 in the segment

4-16 Advanced Concepts

containing TMPUPD. To determine your module relative address you would subtract the
transform 5732; for example, 10007 — 5732 = 2055 octal. This module relative address can be
used in combination with a listing of the module (for example, a “Q” listing in FTN7X) to
determine the offending instruction.

The link summary occurs at the end of the load map and includes information on the total amount
of data space used, the size of the data partition needed, the number and size of the code
segments, and the size of the code partition needed. The summary also includes the starting and
ending points of the stack and heap areas. The gap between the stack and the heap areas is a
264-word overflow buffer created by LINK.

Security/1000

Certain LINK commands are protected by Security/1000. A user’s capability level must be greater
than some value set by the system manager in the security tables to issue the command. The
system manager sets the capability level for the following commands:

PR Set priority

09) Operator suspend

LC Use labeled system common
SC Use system common

SH Use shareable EMA

The PR command has two additional levels of protection, L1 and L2. A capability level greater
than the value of L2 allows a user to set any priority. A capability level between the value of L1
and L2 allows a user to set priorities greater than or equal to 51. A capability level with a value
less than L1 allows the user to set priorities greater than or equal to 99. An attempt to set
priorities higher than allowed results in an error message indicating the user has insufficient
capability.

For example, assume your capability level is 19 and L1 and L2 are set to 10 and 20, respectively.
You can set a program’s priority to be greater than or equal to 51 when linking or relinking it.

If, for another example, your capability is 10 and L1 and L2 are set to 11 and to 16, respectively,
you can set a program’s priority when linking or relinking to be greater than or equal to 99.

The PC command is also protected. You can set the capability level of the program (progeplv) or
that needed by a user (rquscplv) to be only as high as your capability level. For example, if 15 is
your capability level, 15 is the highest you can set either the program’s capability level or the
needed user capability level.

Security/1000 and the %SECON security feature may co-exist, but Security/1000 checks are
performed first.

Advanced Concepts 4-17

Time and Space Considerations

LINK is a VMA program; its working set size (WS) dictates its performance. LINK runs fast with
a large WS and slow with a small WS. If LINK is running too slow, relink LINK, giving it a larger
WS.

If necessary, LINK also creates a VMA backing store file. It first attempts to place it on the
FMGR cartridge specified with the SC command during bootup. If no SC command was given, it
tries to place it in the /SSCRATCH directory. If /SSCRATCH does not exist, it places it in the
working directory. If no WD is set, it then attempts to place it in the first cartridge on the
cartridge list with room enough for the first extent. You can use the CR command to explicitly
specify a location for the backing store file.

4-18 Advanced Concepts

Installation Guide

This chapter describes how to install LINK and LINDX, and how to increase system security.
LINK and LINDX are supplied as type 6 files on the Primary System. Relocatables are supplied
also.

Installing LINK and LINDX

File /RTE-A/LINK.LOD is used to install LINK. The default WS size is 128 pages and the default
VMA size is 8192 pages. The minimum value that WS can be set to is 21. The minimum value
that VM can be set to is 2046.

If LINK is too big to fit in memory, as indicated by an SC09 error when you run it, then reduce the
WS size using the following steps:

1. Make a copy of LINK.RUN (it can be any name; we will refer to it as FOO.RUN).
2. RP FOO.

3. Reduce WS size of FOO using WS FOO <n>, where <n> is some value that allows FOO to
run.

4. Run FOO and re-link LINK.RUN. Set the WS size of LINK.RUN to a value that allows it to
run.

Increasing System Security

The System Manager can install LINK with the SECURITY ON feature. This feature allows only
superusers to link programs having priorities between 1 and 98.

To set the SECURITY ON feature, relocate %2SECON (92077-16783) before %LINKA as shown
in the command file for installing LINK.

Installation Guide 5-1

Using RTE-A LINK on RTE-6/VM

To install RTE-A LINK on an RTE-6/VM system:

Modify the LINK.LOD file to relocate the RTE-A file SCOMPT, which contains compatibility
versions of several RTE-A routines. Then use the installation information given on the
preceding page and rename the program (for example, LINKA) to avoid having two files
named LINK on your system.

Copy the system snapshot file produced by the RTE-A generator to your RTE-6/VM system.
You must explicitly specify the RTE-A system snapshot file whenever you run RTE-A LINK on
RTE-6/VM. Otherwise, RTE-A LINK uses the system snapshot default file defined for your
RTE-6/VM system.

All libraries and files that RTE-A LINK needs must be present on your RTE-6/VM system.
Copy these libraries and files to your RTE-6/VM system.

Now you can use RTE-A LINK on your RTE-6/VM system to produce program files that can be
copied over to and run on an RTE-A system (the program files produced by RTE-A LINK do not
run on your RTE-6/VM system).

The LINDX program is available on both RTE-A and RTE-6/VM. If LINDX already exists on
your RTE-6/VM system, you can use this copy of the program.

5-2 Installation Guide

Error Messages

When you run LINK, error messages can come from either LINK or from the file management
package (FMP). Refer to the RTE-A Programmer’s Reference Manual, part number 92077-90007,
for the FMP error message format.

Fatal error messages from LINK have the following form:

message
<additional information>
Fatal error nnn — Link terminated

message A brief description of the error.
additional information A supplementary explanation of the error.
nnn A three-digit number, 100 or higher.

When a fatal error occurs, LINK displays an error message and terminates. Some errors are
recoverable. In these cases, LINK displays a warning message. The message format is similar to
that of the error format described above with the word “Warning” preceding the error message.

Warning nnn: message

However, certain warnings can become fatal if the corrective action cannot be taken, such as in a
non-interactive situation. If such errors occur while processing a command file, LINK considers
them as fatal errors and terminates.

LINK also displays messages in explanation of some FMP errors in addition to the error or
warning code message.

The rest of this section contains expanded descriptions of each LINK error message.

Unexpected eof from command file
Last module relocated: <module name>
Fatal Error 100 — Link terminated

More commands are required to link the program than are in the command file. This
often happens in combination with some other error. For example, your program may
have undefined externals (for which an error is generated), and then LINK goes back to
the command file for more commands. If there are none, LINK aborts with error 100.

Error 101 — Not used

Error Messages A-1

Error 102 — Not used

Warning 103: Too many libraries

The maximum number of user libraries that can be specified using the LI command or
specifying libraries in the LINK runstring is ten (10).

Warning 104: Can’t change snap now

Once the RE command is given, the snapshot file cannot be changed.
Error 105 — Not used
Warning 106: lllegal name

Names cannot be numeric.

Legal: A324 FORTY
Not legal: 1234 —18

No modules relocated
Fatal Error 107 — Link terminated

The EN command was given, but there is nothing to relocate.

Module not relocated
Last module relocated: <module name>
Fatal Error 108 — Link terminated

LINK was unable to relocate the given module. This often happens because the given
module was not a relocatable module (for example, the given file is a program file). This
also occurs when attempting to relocate a new segment after EN has been entered.

Warning 109: lllegal sum of checksums

This relocatable has a checksum error; the source should be recompiled to repair the
error.

lllegal relocatable (Ext)
Last module relocated: <module name>
Fatal Error 110 — Link terminated

A relocatable record contains a reference to a non-existent external.

lllegal relocatable (EMA)
Last module relocated: <module name>
Fatal Error 111 — Link terminated

A relocatable record contains an illegal reference to EMA.

lllegal relocatable (MR)
Last module relocated: <module name>
Fatal Error 112 — Link terminated

A relocatable record contains a reference to a non-existent relocatable space. See the
Macro/1000 Reference Manual, part number 92059-90001, for information on relocatable
space.

A-2 Error Messages

lllegal relocatable (RPL)
Last module relocated: <module name>
Fatal Error 113 — Link terminated

A relocatable record contains an RPL longer than one word.

Warning 114: Record ignored

LINK has encountered a relocatable it recognizes but does not use.
Error 115 — Not used

Out of table space
Last module relocated: <module name>
Fatal Error 116 — Link terminated

Size up LINK as large as possible (preferably 30 pages). It needs more room for an
internal table. Otherwise, reduce the size of indexed libraries.

Allocate type mismatch

Last module relocated: <module name>
Last reference: <symbol name>

Fatal Error 117 — Link terminated

The specified symbol has been assigned two different data area allocation types; for
example, EMA in one program unit and named common in another. Types must match.

Symbol table overflow — reduce number of symbols
Last module relocated: <module name>
Fatal Error 118 — Link terminated

LINK has run out of space in which to put all the symbols in your program. There is a
maximum of 64K symbols allowed.

lllegal EMA record combination
Last module relocated: <module name>
Fatal Error 119 — Link terminated

Two relocatable records have given conflicting EMA directives. Usually this occurs when
some of the relocatables were generated by an (old) language processor not supported on
RTE-A. Recompile the source, generating all new relocatables.

Library routine needs EMA
Fatal Error 120 — Link terminated

The EM command was not specified and the main program did not declare any EMA
arrays, but a library routine uses EMA. The program should be linked again, this time
specifying the EM (or VM) command.

Relocation into system common illegal
Last module relocated: <module name> Address: <address of violation>
Fatal Error 121 — Link terminated

An attempt was made to relocate code or data into the system common area. LINK
cannot do this. Your source code must be corrected, recompiled, and linked again.

Error Messages A-3

lllegal system reference
Last module relocated: <module name> Address: <address of violation>
Fatal Error 122 — Link terminated

An attempt was made to reference a system entry point with a one-word instruction.
Because a system entry point cannot be mapped into a user program, this cannot work. A
two-word instruction (for example, XLA) must be used.

Legal: XLA $CON DEF $CON
Illegal: LDA $CON JSB $CON

Unimplemented relocatable record type
Last module relocated: <module name>
Fatal Error 124 — Link terminated

Future versions of LINK may accept these relocatables, but currently they are not
processed by LINK.

Ran out of base page links
Last module relocated: <module name>
Fatal Error 125 — Link terminated

This problem can be caused by either relocation of excessive amounts of data on base page,
or by the creation of too many base page links by LINK.

There are three things to try when solving this problem. First, try the RO command in
your LINK command file. This does not require recompilation; LINK attempts to reduce
the number of base page links it generates. When using RO, it is best to relocate the large
modules first to reduce the amount of wasted memory.

Second, you can try reorganizing your source code into smaller modules (non-CDS only).
This type of structure tends to generate fewer base page links, and also allows the RO
command to proceed more efficiently.

Third, if you are relocating data on the base page, consider moving all or as much of it as
possible off of the base page.

Error 126 — Not used

Warning 127: There are undefined symbols

Your program has asked for symbols (for example, subroutines) which you have not
relocated with the program.

You must relocate the appropriate modules or search the appropriate libraries to find
these modules.

More common declared than system common available
Last module relocated: <module name>
Fatal Error 128 — Link terminated

You have specified to LINK that this program uses system common. However, there is less
system common than this program needs.

A-4 Error Messages

Overlay base page entry
Last module relocated: <module name>
Fatal Error 129 — Link terminated

Relocation onto base page was attempted in an overlay. All relocation onto base page
must be done in the main.

Data segment is too large
Last module relocated: <module name>
Fatal Error 130 — Link terminated

CDS programs: Your program needs more logical address space in the data segment than
is available. Generated data, non-CDS routines, heap, stack, and MSEG total to more
than 32 pages. You must reduce the size of one of these quantities. This can be done by:
converting non-CDS routines to CDS, moving static data to EMA, or reducing the size of
MSEG, heap, or the stack.

Non-CDS programs: Your program needs more logical address space than is available.
Generated code of (main + longest overlay + MSEG + system common specified) is
greater than 32 pages. You must reduce the size of one of these quantities. This can be
done by: moving code from one overlay to another, moving arrays to EMA, using a smaller
MSEQG, converting a non-overlay program to an overlay program or removing system
common. Often the best solution is to convert your non-CDS program to CDS.

This error may occur if you use LINK with an unsupported compiler, such as FTN4 or
ALGOL. In this case, the error occurs because the module being relocated has a length
value (word 7 of the NAM record) of 177777B, which indicates that the module length was
unknown when the source file was compiled. LINK does not support this type of NAM
record.

Warning 131: Snap file must be type 3

The snapshot file must be type 3.

Too many system libraries
Last module relocated: <module name>
Fatal Error 132 — Link terminated

Too many system libraries have been generated into your system. The maximum number
allowed is 64.

This program has no main
Last module relocated: <module name>
Fatal Error 133 — Link terminated

You must relocate a main with every program.

Warning 134: Program file not type 6

The given program name is not a program file: therefore LINK does not purge it. You
must give LINK a different file name in which to place the program.

Error Messages A-5

System has too many BP links
Last module relocated: <module name>
Fatal Error 135 — Link terminated

Your snapshot file is corrupt. You must get a new copy and link again.

Bad labeled common links in snap file

Last module relocated: <module name>

Fatal Error 136 — Link terminated
Your snapshot file is corrupt. You must get a new copy of your snapshot file and link
again.

Error 137 — Not used

Corrupt snap file

Last module relocated: <module name>

Fatal Error 138 — Link terminated
Your snapshot file is corrupt. You must get a new copy of your snapshot file and link
again.

Warning 139: Duplicate entry point: <entry point name>

Relocation of modules containing identical entry points was attempted. Either the same
module was relocated twice, or two modules have identical entry points. Either eliminate
the redundant module or change the entry point names.

Warning 140: Conflict with system labeled common: <entry point name>

A module that contains an entry point with the same name as an entry point in system
labeled common has been relocated. In this case, portions of system labeled common are
inaccessible to the program, even if it was linked using the LC command.

Warning 141: RPL value replaced: <RPL name>

This is a special case of duplicate entry points. A module that contains an RPL or entry
point with the same name as a previously defined RPL has been relocated.

This warning usually occurs when a machine instruction, that is defined as an RPL in the
snapshot file, is replaced by a software routine with the same name.

The Macro/1000 Reference Manual, part number 92059-90001, contains a description of
RPLs.

Error 142 — Not used
Error 143 — Not used
Error 144 — Not used

Error 145 — Not used

A-6 Error Messages

Warning 146: Program name already exists

The OU command was used to specify the program file or the DP runstring command was
used, which prevents automatic purging of the program file.

Error loading overlay LINKn
Last module relocated: <module name>
Fatal Error 147 — Link terminated

LINK is unable to run because it cannot draw the given overlay into memory. LINK is
probably corrupt, or was installed with an incorrect version of SEGLD.

Warning 148: Reducing MSEG from X to Y pages to allow program to fit.

The size of your program (data segment if a CDS program is being loaded) plus the
specified MSEG size plus one for the spillover page is too large. However, by reducing the
MSERG size it is possible to load your program. The MSEG size is never reduced to less
than one page. If your program can run with the reported MSEG size than no action is
necessary. If your program requires more than the reported MSEG size then you must
reduce the size of your program and reload it.

Warning 149: System labeled common matched an allocated symbol

A module which contains named common was relocated. The named common matched
system labeled common and the system labeled common was used. There is no problem if
this was the intent. To eliminate the warnings, use $ALIAS /A1/, noallocate, where Al is
the named system common label.

The following example shows the correct approach for accessing system common:
$ALI AS / Al/, noal | ocat e
Program mai n

inmplicit integer (a-2z)
conmon /Al/vl,v2,v3

end
and assume the module relocated in system common looks like:

NAM DATA, 30
ENT Al

Al BSS 3

END

In this case /Al/ in your program matches with Al in system common and no warning is
generated.

Error Messages A-7

Warning 150: File not indexed, search proceeding on <filename>

This file was specified as library. but it is not indexed. LINK is proceeding to search it
anyway. Searches of indexed and unindexed libraries do NOT always produce the same
results.

Searches are order dependent. and backward references are not picked up in unindexed
library searches.

The indexing utility is called LINDX, and is discussed in this manual.

Attempted to assign a label to a non-code space address
Last Module relocated: <module name>
Fatal Error 151 — Link terminated

The given module has attempted to generate a code label to a location in non-code space.
This can be caused by passing a procedure as a parameter, where the passing procedure is
in code, and the passed procedure is in data space.

The solution is to move the passed procedure to code space or move the passing procedure
to data space.

Unrecognized label type
Last module relocated: <module name>
Fatal Error 152 — Link terminated

The named module has attempted to generate a label of undefined type. From
Macro/1000 this can be done by an incorrect LABEL or PCAL statement.

Ran out of STT entries
Last module relocated: <module name>
Fatal Error 153 — Link terminated

Each code segment can have a maximum of 255 entry points in the STT (Segment Transfer
Table).

Use the NS command in the LINK command file immediately before the given module to
solve this problem. This causes LINK to generate a new segment, with space for 255 new
STT entries.

Unimplemented PCAL type
Last module relocated: <module name>
Fatal Error 154 — Link terminated

A non-existent PCAL type was specified. In Macro/1000, this would happen by giving an
improper PCAL.

Correct your source code, recompile, and link again.

Unsupported PCAL to an RPL
Last module relocated: <module name>
Fatal Error 155 — Link terminated

A PCAL to an RPL specified an illegal call sequence. In Macro/1000, this could happen by
giving an improper PCAL. The only legal calling sequences in combination with RPLs are
unspecified, ENTR, .ENTN, and PCAL (that is. 0. 1. 2. and 3. respectively).

Correct your source code, recompile, and link again.

A-8 Error Messages

Error 156 — Not Used

PCALS only legal from code
Last module relocated: <module name>
Fatal Error 157 — Link terminated

A PCAL has been specified in the data segment. This can happen from Macro/1000 by
forgetting to use the RELOC code pseudo op.

Correct source code, recompile, and link again.

Cannot mix CDS code and overlays
Last module relocated: <module name>
Fatal Error 158 — Link terminated

An overlay (type 5 program) was specified in a CDS program. Overlays are not allowed in
CDS programs.

Warning 159: Not an RTE-A program file

The file specified for relinking is not a valid program file. This error may occur if you
attempted to relink a program that was linked originally with a previous revision of LINK.

Error 161 — Not Used

Attempt to relocate a JSB in code space
Last module relocated: <module name> Address : <location>
Fatal Error 162 — Link terminated

This can happen in Macro/1000 by forgetting to use the RELOC DATA pseudo operation
before generating data. In this case, correct your source, recompile, and link again.

Another case in which this happens is when the language processor has used a JSB to
microcode, but a software equivalent has been relocated with the program. In this case,
you must remove the software equivalent and reinstall.

Module will not fit in one code block
Last module relocated: <module name>
Fatal Error 163 — Link terminated

This module is so large it will not fit into one code block.

You can solve this by either using the NS command to make your code blocks larger or
reducing the size of your module.

Error 164 — Not used

This system not set up for CDS programs
Last module relocated: <module name>
Fatal Error 165 — Link terminated

You have attempted to link a CDS program on a system that does not have CDS
capabilities.

Check the snapshot file to ensure that it was generated for a CDS system.

Error Messages A-9

lllegal reference to code
Last module relocated: <module name> Address : <location>
Fatal Error 166 — Link terminated

A reference to code was specified which cannot be executed.
Macro/1000 example (program fragment):

rel oc code
f ool dec 8

f oo | da fool
sta fool <«—— illegal statement

In this example, the program attempts to use code space as data space, which is not
possible.

The source code must be corrected, recompiled, and linked again.

Warning 167: Too late for DB command

The DB command must be given before any overlays are relocated.

Warning 168: Unable to create debug file

The DE command was specified, but the debug file associated with your program could not
be created. You are not able to use Symbolic Debug with your program because of this.

Warning 169: Force loading

You have specified the FO command in your command file. Any references to symbols
that have been forced have unpredictable results.

Warning 170: Too late for LK command

The LK command cannot be used with any relocation commands.

Warning 171: Too late for LK command

The LK command cannot be used with any relocation commands.

Not enough BREAK records in relocatable
Last module relocated: <module name>
Fatal Error 172 — Link terminated

The language processor has not supplied enough BREAK records in the named module.
In Macro/1000, the programmer has responsibility for placing BREAK records in his code.
Higher level languages take care of this for the user.

The source code must be corrected by placing BREAK records no more than 512 words
apart. Recompile and link again.

A-10 Error Messages

Warning 173: EMA size reduced to 1022 pages

Your program has specified more than 1022 pages of EMA, which is the maximum for
Normal and Large model programs. If you need more than 1022 pages, you must use
VMA or the Extended model of EMA. See the VM and WS commands for VMA usage.

Error 174 — Not Used

lllegal CDS and Non-CDS combination
Last module relocated: <module name>
Fatal Error 175 — Link terminated

You have used commands or relocatables which imply that your program is both CDS and
non-CDS. For example, you may have specified the PS command and then relocated a
CDS module, or you may have relocated a non-CDS main with CDS subroutines.

Too many code segments. Maximum is 128
Last module relocated: <module name>
Fatal Error 176 — Link terminated

The number of code segments sometimes can be reduced by rearranging the order in which
modules are relocated, so that there is less space wasted in each segment, or by reducing
the number of NS commands used.

Too many TR files. Maximum is 128.
Last module relocated: <module name>
Fatal Error 177 — Link terminated

This error can be caused by recursion (the command file transferred to itself).

Program name not usable.
Last module relocated: <module name>
Fatal Error 178 — Link terminated

A program name may not be usable for any of the following reasons:

— The program file exists and the OU command was used
— The program name is illegal
— The program file exists and is in use

Warning 179: lllegal relocatable record — record ignored

LINK has encountered a relocatable record that has an illegal format. The record is
ignored.

Warning 180: lllegal backing store file specified

The backing store file or cartridge specified is invalid. The default backing store file is
used.

Warning 181: lllegal snap file specified — trying defaults

The snapshot file specified was not found. The snapshot file defaults are tried.

Error Messages A-11

Unsupported PCAL to non-CDS code
Last module relocated: <module name>
Fatal Error 182 — Link terminated

A PCAL to non-CDS code used an illegal call sequence. In Macro, this occurs when an
improper PCAL is specified. The only legal calling sequences in combination with
non-CDS code are unspecified, .ENTR, .ENTN, and PCAL (that is. 0. 1. 2. and 3.
respectively).

Correct your source code, recompile, and link again.

Warning 183: EMA area specified does not exists: <EMA area>

The EMA area specified in the last OR command has already been ordered. The current
OR command is ignored.

Warning 184: EMA area specified does not exist: <EMA area>

The EMA area specified in an OR command was not found when the program was
relocated. Make sure all EMA area names are correct.

Warning 185: No system libraries searched

Either there are no system libraries, or the program being relocated is non-CDS and the
non-CDS system libraries were not specified when the system was generated.

Warning 186: Conflict between named common and library routine

A library routine is not relocated because a named common of the same name already
exists. This does not necessarily indicate an error. This warning is useful in case a user has
declared a common block, giving it a name that is also a system library name. LINK does
not relocate the system routine. When the routine is called, the data in the common block
is executed, usually resulting in an MP or UL

Warning 187: Conflict between entry point and named common

An entry point name conflicts with a named common; that is, the entry point name is the
same as the label of the named common. LINK uses the entry point name and ignores the
named common. While not necessarily an error, this warning is useful in case a user
relocates a subroutine with the same name as the named common. Because the named
common does not exist, the subroutine is overwritten when the user intends to write to his
common block.

Warning 188: <command> command is now obsolete

The given command is no longer supported (LINK simply ignores the command).

Warning 189: Insufficient capability to execute <command> command

When Security/1000 is turned on, this warning may be issued indicating that the user’s
capability is not high enough to issue the command. LINK ignores the command.

A-12 Error Messages

lllegal reference to a non-data space address
Last module relocated: <module name> Address: <addr>
Fatal Error 190 — Link terminated

An attempt was made to relocate memory reference instructions which accessed neither
code nor data space. <module name> is the name of the module where it happened and
<addr> is the relative module address of the instruction. For example, consider the
following macro fragment:

nam t estene
ent testennm
emal abel alloc emm, 100 ;allocate 100 words of EMA

testema nop
| da ;this instruction generates a 190 error
; becuase EMA is being referenced.

ehd

lllegal DEF to a non-data, non-code space address
Last module relocated: <module name> address: <addr>
Fatal Error 191 — Link terminated

An attempt to relocate a DEF to an illegal memory type was made, <module name> is the
module containing the bogus DEF and <addr> is the module relative address containing
the offending DEF.

Warning 192: “de” found after modules already relocated

A “DE” command, which causes Symbolic Debug information to be produced, was found
after modules had already been relocated. Thus, debug information will be missing for the
modules relocated before the “DE” command was found.

Code space JMP instruction to a non-code space address
Last module relocated: <module name> address: <addr>
Fatal Error 193 — Link terminated

A JMP was attempted to a non-code space address. Code space JMP’s may only go to
other code space addresses. <module name> is the name of the module where the JMP
instruction was seen, and <addr> is the module relative address of the offending JMP.

Byte pointer to a non-data, non-code space address
Last module relocated: <module name> address: <addr>
Fatal Error 194 — Link terminated

A byte pointer referenced a non-code, non-data address. All memory references using a
byte pointer must be either to code or data space. <module name> is the name of the
module containing the bad reference and <addr> is the module relative address of the
offending instruction.

Error Messages A-13

Warning 195: No CDS system libraries found in snap file

The snap file used to load a CDS program does not specify any CDS system libraries to be
searched. Only non-CDS system libraries will be searched, possibly causing the data
partition to become too large. This warning may indicate a problem with your system
generation answer file.

Unknown relocation space in XDBL record
Last module relocated: <module name> address: <addr>
Fatal Error 196 — Link terminated

An attempt was made to relocate into an illegal memory space. <module name> is the
name of the module containing the bad code and <addr> is the module relative address of
the offending instruction.

Unsupported EMA address in symbolic debug record
Last module relocated: <module name>
Fatal Error 197 — Link terminated

There is an illegal reference to EMA in a debug record, probably due to a problem with
the debugger.

Double load immediate supported only in CDS code
Last module relocated: <module name> address: <addr>
Fatal Error 198 — Link terminated

A double load immediate instruction was placed in non-CDS code. These instructions are
only legal from CDS code.

Ran out of space in VMA, relink LINK and size up VMA
Last module relocated: <module name>
Fatal Error 199 — Link terminated

The combined size of the internal data structures of LINK and the size of the relocatables
have exceeded the current VMA size. Re-link LINK and size up VMA.

Symbol relative code relocation not allowed
Last module relocated: <module name>
Fatal Error 200 — Link terminated

An attempt was made to relocate a module relative to an external symbol. This is illegal
and is probably due to the language processor.

Module is too big
Last module relocated: <module name>
Fatal Error 201 — Link terminated

CDS module <module name> is too big to be relocated. It must be reduced in size.

Module contains too may entry points
Last module relocated: <module name>
Fatal Error 202 — Link terminated

CDS module contains more than 255 entry points; a segment can have no more than 255
entry points. Reduce the number of entry points in the module.

A-14 Error Messages

lllegal relocatable; CDS module size conflicts with header
Last module relocated: <module name>
Fatal Error 203 — Link terminated

The size of the module given in the NAM record does not match the size actually seen; this
is a problem with the compiler.

lllegal literal code reference outside of module
Last module relocated: <module name>
Fatal Error 204 — Link terminated

A literal code reference outside of a CDS module was made. For example, assume you
have the following macro fragment:

Nam t mac
cds on
ent tnac

rel oc code
t mac nop
Ida =Ltmac-1 ;this is illegal since an address is being
:referenced before the start of the code
:for this nodul e

lllegal Pcal to external+offset, no STT entry
Last module relocated: <module name>
Fatal Error 205 — Link terminated

A Pcal to an external+offset was made where no entry point was declared for the offset,
and the destination module is in another segment. For example, consider the following
Macro main and subroutine:

name main

cds on
ent main

rel oc code
mai n pcal subl1+3,0,0

end main

nam subl ;this subroutine sits in a different segnent
cds on

maclib ' $cdslb::libraries’

ent subl

rel oc code
subl entry
cax

jmp finis
dest entry

finis exit
end

The Pcal in the main would generate error 205. To fix it, you would declare ‘dest’ as an
entry point. Also note that the ‘entry’ macro must be used at each entry point.

Error Messages A-15

Error 206 — Initial stack frame does not fit by <size> words

The initial CDS stack frame does not fit in the program’s data segment, either because the
stack frame is too large or because the data segment is full. LINK must be able to fit at
least the main program routine’s stack frame into the data segment to create a legal
program. The size reported is the number of words by which the frame overflows the data
segment. Loading will eventually abort with fatal error 130 (data segment is too large).
You may be able to correct this error by decreasing the stack requirements of the program.

Error 207 — Program/data segment is too large by <size> words

The non-CDS program, including the largest segment, or the CDS data segment is too
large for a 32-page partition, minus the minimum 2 pages needed for the MSEG, if used.
The size reported indicates the number of words by which the program or data segment is
too large. This value may not be the full amount by which the address space is overflowed
if LINK has previously truncated modules and other relocated objects to fit within the
maximum address of 77777b. Other error messages and the partial load map will provide
more information on what caused the overflow. Loading will eventually abort with fatal
error 130 (program or data segment is too large).

Error 208 — Segment <name> does not fit with main in 32K by <size> words

A-16

The named non-CDS segment and the main program cannot fit together in a 32-page
partition by the displayed number of words. Error 207 will also be generated, possibly
indicating an even larger number of words due to other pages needed, such as for the
MSEG area.

Error Messages

Using LINK with FMGR

This appendix describes how to run LINK from FMGR. Before running FMGR, set the working
directory to zero so that the file searches follow the disk mounting order as shown in the FMGR
cartridge list.

To set the working directory to zero, enter the following CI command:

Cl>wd O

Running LINK Interactively

To run LINK interactively from the keyboard, enter the following:

FMGR : ru,link
link Rev.6.1 Use ? for help
i nk:

The LINK commands can be entered one at a time after the LINK prompt. The order in which
you enter the commands may make a difference in the linking process.

A sample LINK interactive session is shown in Chapter 2.

LINK Runstring

Files and runstring options can be included in the LINK runstring. Including the delimiters, 72
characters are allowed. In the runstring, LINK enforces the following file descriptor prefix
conventions:

% Relocatable file (%LKST::MC)
$ Library file (SLKST::MC)
Command file (#LKST::MC)

Using LINK with FMGR B-1

Only one each of the following is allowed in the runstring:
“or” List file ("LKST::MC or 'LKST::MC)
a Output file (a can be any letter, FLKST)
~ Snap file (~ LKST::MC)

In the following example, %JOB is relocated using $JOBLB and $JOBL2 as libraries. The
program file is JOB1 and the list file is ’JOB. The commas shown are required.

FMGR : ru,link,%ob $joblb jobl::cr 'job $jobl2

Parameters after “link,” can be in any order. Uppercase or lowercase letters are acceptable in the
runstring. Blanks or commas can be used as delimiters for file descriptors. Colons must be used
to delimit parameters as shown, including any that are omitted before the last parameter used.

The options that can be used in the LINK runstring are described in Chapter 2.

The following example illustrates the use of the LINK runstring. The runstring relocates the three
modules of LKST from cartridge L1, listing to file 'LKST on cartridge DL. The EC option echoes
the LINK commands to the list file. The SZ option sizes the program to 32 pages.

FMGR : ru,link, Ikst::dl,+ec, +sz:32, % ksta::|l1,%kstb::11,%Wkstc::11

The following example relocates LCDE, overwriting the program file on T6, if it exists. The LC
option accesses labeled system common. LINK uses library SLCDE for searches.

FMGR : ru,link,+lc,%cde::gr,$lcde::gr,lcde::t6

LINK Command Files

To run LINK using command files, the command file names must be specified in the runstring. All
runstring options are processed before the command files are read, regardless of their order.

FMER : ru, link, #<command file>

Command file names must begin with the # sign. The following examples show the use of LINK
command files.

The file #EMATS loads program EMATS, overlaying the EMATS file on cartridge DL, if it
exists, by specifying the program file name as a parameter of the END command. File ™~ SNP.W is
the snapshot file, and the library to search for external references is $VMALB. The VMA size is
1400 pages, and the working set size is 100 pages:

i $vmal b
ws 100

vm 1400

re %emats
sn “snp.w
en mats::dl

B-2 Using LINK with FMGR

The following command file loads the three overlays of LKST. The result is identical to that of the
runstring given in the previous section. The equivalent LI, EC, SZ, and RE commands are
included:

[, 1 kst::dl
ec

sz, 32
re,%ksta::I1
re,%ksth::11
re,%kstc::11
en

The following command file is equivalent to the LCDE runstring given in the previous section,
except that the command file does not overwrite the program file if it exists, because the name of
the program file is given in an OU command. Other specifications are the same: labeled common
is specified, the library is $LCDE on cartridge GR, and the program file is LCDE on cartridge T6:

lc
re %cde::gr
ou,lcde::t6
se, $l cde: : gr
en

The following command file uses the RO command. The only advantage to the RO command is
that it reduces the number of base page links required. It is used here because without the RO
command this program does not link due to base page overflow (fatal error 125). The command
file defaults the program file descriptor, allowing LINK to construct it from the NAM record of
the first main module with a transfer address:

ro
re, %ovbse
en

Using LINK with FMGR B-3

Using FMGR Transfer Files to Run LINK

During program development, you can use a transfer file to link and run the application program
after each change to the program. By using FMGR global parameters, you can write one transfer
file for all occasions.

When LINK finishes, it places information into the global parameter area and indicates if an error
occurred. At completion, the global parameter area contains the following:

1P:

2P:

3P:

4P:

characters 1 and 2 of the program name

characters 3 and 4 of the program name

characters 5 and 6 of the program name

0
—1000
nnn

if the link was successful

if the user aborted the link

if the link was unsuccessful, where nnn is the fatal error code as
summarized in Appendix A

SP: unused (blanks)

Using the global parameters, you can link and run a program from a transfer file after determining
if the link was successful. The following is a sample transfer file for linking and, if the link is
successful, running the program:

"RU, LI NK, 1G

I1F 4P, EQ O, 1

TR

:RU, 10G

TR

If the name of the transfer file is TRANS, the following command executes TRANS:

FMER

tr, trans, #exanp, exanp

B-4 Using LINK with FMGR

Index

Symbols

? (help) command, 3-26

$CMNDO environment variable, 2-6
$CMNDO_LINK environment variable, 2-6
$LINK environment variable, 2-9

* (comment) command, 3-26

A

AB (abort) command, 3-4
aborting, LINK, 3-4
AL (all memory locked) command, 3-4
AS (assign partition) command, 3-4
assign

code partition, 3-4

data partition, 3-4

B

block data subroutines, 4-8
BP (report base page usage), 3-5

Cc

CD (code segment) command, 3-5
CDS
code segment block assignment, 3-5
library considerations, 4-10
load map overview, 4-16
changing, stack area size, 3-22
CMNDO monitor, 2-6
code partition, assigning, 3-4
command file, examples, 2-7
command stack, 2-6
Comment (*) command, 3-26
comment line, 3-26
common
allocation, 4-1
definition of, 4-1
system, 4-1
conditional execution of LINK command, 3-11
CR (specify VMA backing store file) command,
3-6

D

data partition, assigning, 3-4

DB (DBUGR) command, 3-6

DE (Debug) command, 3-6

declaring
program to be a system utility, 3-23
shareable program, 3-22

default

directory path, 2-8

file naming, 4-4

library file search sequence, 4-4
DI (display) command, 3-6
directory path, default, 2-8
DM (debug monitor) command, 3-7
DP (do not purge) command, 3-7

E
EC (echo) command, 3-8

EM (extended memory access) command, 3-8

EMA
allocation of, 4-2
area page align, 3-17
EN (end) command, 3-9
environment variable
$CMNDO, 2-6
$CMNDO_LINK, 2-6
$LINK, 2-9
error messages, LINK, A-1
error reporting, on default names, 4-6
ES (EMA segment) command, 3-9
example
CDS program link, 4-15
non-CDS program load map, 4-11

F

file naming, defaults, 4-4
FO (force) command, 3-10

G

global parameter area, B-4
global parameters, B-4

H

HE (Heap area) command, 3-10
help, 2-4

Help (?) command, 3-26
high-speed linking, 4-3, 4-18

IF (conditional execution) command, 3-11
indexing libraries, 1-2, 4-3
installing
LINDX, 5-1
LINK, 5-1
interactive LINK commands, 3-1

Index-1

L OS (Operator Suspend), 3-16
OU (Output), 3-16
PA (Page Align EMA Area), 3-17
LC (labeled system command) command, 3-11 g g)2
LI (gibrary) cgrnmand, 3-12) PC (Set Program Capability), 3-17
library PR (Set Priority), 3-18
description, 1-2 PS (Page Align Overlays), 3-18
file search sequence, default, 4-4 RE (Relocate), 3-18
indexing, 1-2 RM (Relocate Module), 3-19
LINDX RO (Reorder), 3-20
installing, 5-1 SC (System Common), 3-20
runstring, 4-3 SE (Search), 3-20
LINK SH (Shareable EMA), 3-21
SN (Snapshot), 3-21

command editing, 2-6 SP (Shareable Program), 3-22

command file search sequence, default, 4-4
command files a ST (Stack), 3-22
examples, 2-7 SU (System Utility), 3-23
use of, 1-2, 2-7, B-2 SZ (Size), 3-23
description, 1-1 TR (Transfer), 3-24
examples, 1-3 VM (Virtual Memory Size), 3-24
file type extensions, 2-1, 2-3 VS (Virtual Memory Size), 3-24
interactive, 1-2 WD (Default Working Directory), 3-25
runstring ’ WS (Working Set Size of VMA), 3-26
examples, 2-4 linking, for a target system, 4-1

i} links, reducing base page, 4-1
from FMGX, B-1 list file, defaults, 4-5
ptions, S .
use of, 1-2, 2-1 listing, program attributes, 3-13

LK (relink) command, 3-12

specifying commands, 1-2 LL (list option) command, 3-13

summary, 4-17

LINK commands, 3-1 LO (list program attributes) command, 3-13
? (Help), 3-26 load map J
* (Comment), 3-26 command, 3-13
AB (Abort), 3-4 discussion, 4-15
AL (All Memory Locked), 3-4 loading, overlay programs, 4-9
AS (Assign Partition), 3-4 locking memory, 3-4, 3-14

BP (Report Base Page Usage), 3-5

CD (Code Segment), 3-5

CR (Specify VMA Backing Store File), 3-6 M
DB (DBUGR), 3-6

DE (Debug), 3-6

DI (Display), 3-6

DM (Debug Monitor), 3-7
DP (Do Not Purge), 3-7
EC (Echo), 3-8 module entry, 4-16

EM (Extended Memory Access), 3-8 MS (multipllz search) command, 3-14

EN (End), 3-9 . X
ES (EMA Segment), 3-9 MSEG, allocation of, 4-2

FO (Force), 3-10
HE (Heap Area), 3-10

MA (send load map to terminal) command, 3-13
manual program segmentation, 4-11

merging, libraries, 4-3

ML (memory locked) command, 3-14

IF (Conditional Execution of LINK), 3-11 N

LC (Labeled System Common), 3-11

LI (Library), 3-12 NA (name) command, 3-15

LK (Relink), 3-12 NS (new segment) command, 3-15

LL (List Option), 3-13
LO (List Program Attributes), 3-13
MA (Send Load Map to Terminal), 3-13

ML (Memory Locked), 3-14 0

MS (Multiple Search), 3-14

NA (Name), 3-15 OR (order EMA area) command, 3-15
NS (New Segment), 3-15 OS (operator suspend) command, 3-16
OR (Order EMA Area), 3-15 OU (output) command, 3-16

Index-2

P sharecable EMA, declaration, 3-21
SN (snapshot file) command, LINK utility, 3-21
snapshot file

definition of, 4-1

search sequence, default, 4-4

PA (page align EMA area) command, 3-17
parameters, global area, B-4
PC (set program capability) command, 3-17

positional variables, 4-8 use of, 1-2
PR (set priority) command, LINK utility, 3-18 SP (shareable program) command, 3-22
priority, setting program, using LINK, 3-18 space
program allocation command usage, 4-2
development, cycle, 1-1 allocation considerations, 4-2
file search sequence, 4-5 specifying
default, 4-5 scratch file, 3-6

scratch LU, 3-6

system utility, 3-23
ST (set stack area size) command, 3-22
stack area, changing size, 3-22

program capability, setting, using LINK, 3-17
PS (page align overlays) command, 3-18

R SU (system utility) command, 3-23
symbolic debugging, 3-7
RE (relocate) command, LINK utility, 3-18 system

common, 4-1

security, 5-1

snapshot file, definition of, 4-1

utility, declaring program to be system utility,

relinking, 4-6

LK command, 3-12
relocatable, file, search sequence, default, 4-4
relocation, sequence, 4-9

remote file, access, within LINK, 4-5 3-23 .
removing SZ (size) command, LINK utility, 3-23
system utilities, 3-23
working directory, B-1 T

reordering modules, 4-1
RM (relocate module) command, 3-19
RO (reorder) command, 3-20
running, LINK, 2-1
interactively, 2-4, B-1
runstring
defaults, 4-5
examples, 2-5 U
options, 2-2

terminating, LINK, 3-4

time and space considerations, 4-18

TR (transfer) command, LINK utility, 3-24
transfer files, B-4

undefined external reference search sequence, 4-9
unlock, memory, 3-14
S using
CDS system libraries, 4-10
EMA and libraries, 4-2
FMGR transfer files to run LINK, B-4
LINK with FMGR, B-1
RTE-A LINK on RTE-6/VM, 5-2
utility, system, 3-23

SC (system common) command, 3-20
scratch cartridge command, 3-6
scratch file, specifying, 3-6
scratch file command, 3-6
scratch LU, specifying, 3-6
SE (search) command, 3-20
search sequence, 4-3, 4-9, 4-10
searching, libraries
LI command, 3-12
MS command, 3-14
SE command, 3-20
Security/1000, 4-17
segment header, 4-16
setting w
new code segment length, 3-15
priority of program, using LINK, 3-18 WD (working directory) command, LINK utility,
program capability level, using LINK, 3-17 3-25
stack area size, 3-22 working directory, setting default for LINK, 3-25

\'}

VM (virtual memory size) command, 3-24
VMA, allocation of, 4-2
VS (virtual memory size) command, 3-24

virtual memory size, 3-24
SH (shareable EMA) command, 3-21

working set, size, specifying, 3-26
WS (working set size of VMA) command, 3-26

Index-3

	Title page
	Preface
	Table of Contents
	Chapter 1 - Introduction
	Chapter 2 - Running Link
	Chapter 3 - LINK Commands
	Chapter 4 - Advanced Concepts
	Chapter 5 - Installation Guide
	Appendix A - Error Messages
	Appendix B - Using LINK with FMGR
	Index

