READER COMMENT SHEET

HP 1000 Computers

RTE-A « RTE-6/VM Relocatable Libraries
Reference Manual

92077-90037 November 1993

We welcome your evaluation of this manual. Your comments and suggestions help us to improve our publi-
cations. Please explain your answers under comments, below, and use additional pages if necessary.

Is this manual technically accurate? Oves O NoO
Are the concepts and wording easy to understand? Ovyes O No
Is the format of this manual convenient in size, arrangement, and readability? Oves O nNo
Comments:

This form requires no postage stamp if mailed in the U.S. For locations outside the U.S., your local
HP representative will ensure that your comments are forwarded.

FROM: Date

Name:

Company:

Address:

FOLD FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
BUSINESS REPLY MAIL —
FIRST CLASS PERMIT NO. 1070 CUPERTINO, CA =
.]
POSTAGE WILL BE PAID BY ADDRES SEE E—
.]
.]
LEARNING PRODUCTS MANAGER pre—
HEWLETT-PACKARD COMPANY ——
.]
SOFTWARE TECHNOLOGY DIVISION
11000 N. WOLFE ROAD
CUPERTINO, CA 95014-9804
"IIIIIIIII"IIIIII"IIH"IIllIllIl"lllIllI"IlllI
FOLD FOLD

Please tape closed

A paciars

RTE-A / RTE-6/VM
Relocatable Libraries

Reference Manual

Software Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 92077-90037 Printed in U.S.A. November 1993
E1193 Sixth Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1983, 1985 - 1987, 1989, 1990, 1992, 1993 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-in-
serted update information. New editions of this manual will contain new information, as well as all updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File or the Computer User’s Documentation Index. (The Manual Numbering File
is included with your software. It consists of an “M” followed by a five digit product number.)

Edition1 Jun 19883 ...
Editon2 Dec 1983 Combine RTE-A and RTE-6/VM

Update 1 Jan 1985
Reprint Jan 1985 Update 1 incorporated

Update2 Jan 1986 ...
Reprint Jan 1986 Update 2 incorporated
Edition3 Aug 1987 Rev. 5000 (Software Update 5.0)
Edition4, Jan 1989 Rev. 5010 (Software Update 5.1)

Update 1 Jul 1990 Rev. 5020 (Software Update 5.2)
Edition5, Dec 1992 Rev. 6000 (Software Update 6.0)
Edition6 Nov 1993 Rev. 6100 (Software Update 6.1)

3/4

Preface

This manual is a programmer’s guide to subroutines contained in the RTE-A or RTE-6/VM Op-
erating System and describes the following libraries:

$MATH Mathematics Library

$SYSLB System Routines Library

%DECAR Decimal String Arithmetic Routines Library

$VLB6B Software Equivalents Library for VIS

$VLBA1 Vector Instruction Set Firmware Interface Library for RTE-A

$VLB6A Vector Instruction Set Firmware Interface Library for RTE-6/VM

In addition, many of the utility and status subroutines are contained in the $FMP (RTE-A) and
$FMP6 (RTE-6/VM) libraries.

Other collections of HP relocatable subroutines for more general use are grouped into other li-

braries distributed with the RTE Operating System. In addition, many RTE subsystems and lan-
guages, such as Pascal/1000 and Spooling, include subroutines that can be of general use. Refer

to the appropriate subsystem and language manuals for more information.

Note

All references to RTE pertain to both RTE-A and RTE-6/VM, except where
specifically noted.

How This Manual is Organized

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Chapter 6

Contains a functional listing of all RTE subroutines.

Describes subroutine calling conventions.

Provides an alphabetical grouping of the mathematical subroutines.
Provides an alphabetical grouping of the double integer subroutines.

Describes other system library routines useful on some subsystems, others main-
tained for backward compatibility, some general utilities, and CTU manipulation
routines.

Describes subroutines, available only with the HP 92078A product for RTE-A
(the Virtual Code + or VC+ system extension package), that provide program-
matic access to the multiuser handling system. This allows programs to set up
and remove sessions, attach and detach from them, and convert between names,
user numbers and session numbers.

Chapter 7 Describes utility and status subroutines.

Chapter 8 Describes the Vector Instruction Set (VIS).
Chapter 9 Describes how to use VIS.

Chapter 10 Describes the decimal string arithmetic subroutines.
Chapter 11 ~ Describes the floating point conversion subroutines.
Chapter 12 Describes the HpCrt library routines.

Appendix A Provides a functional grouping of library routines.

Table of Contents

Chapter 1
Functional Grouping of Library Routines

Chapter 2
Calling Conventions

.ENTR Call Sequence (Non-CDS)ttt e
Default Parametersttt e e
Alternate Returnst e
“Direct” Calls . ..ot

PCAL Call Sequence (CDS) ...ttt e e e

The Stack e

Character Strings and EMA Variables i

Microcoded Routines (RPLS)t e
Fast FORTRAN Processor (FFP) e

Routines Callable from FORTRAN e

Routines Callable from PASCAL e

Chapter 3
Mathematical Subroutines

AMAXO0, MAX0, AMINO, MINO o
AMAX1, MAXT, AMINI, MINT ...

EI B2 B2 B B2 B2 B2 B2 B2 B2 b9
NN VNN R WWN -

NeNo N No WU, IR RS I O

DLOG .. 3-28
DLOGT . . 3-29
DMAXIT, DMINI ... e e 3-30
DM O . 3-31
DPOLY .. 3-32
DSIGN L 3-34
DSIN 3-35
DS ORT . 3-36
DT AN L 3-37
DT ANH . . 3-38
ENTIE . ..o 3-39
ENT X 3-40
EX P o 3-41
FLO AT .. 3-42
A BS 3-43
FAND .o 3-44
DI . 3-45
DI T 3-46
TR X 3-47
IN T 3-48
IOR 3-49
IS IGN 3-50
DX O R 3-51
MO . 3-52
REAL 3-53
SIGN 3-54
SIN L 3-55
SNGL 3-56
SN GM 3-57
SPOLY .. 3-58
SORT . 3-59
AN 3-60
TANH .. 3-61
ABS . 3-62
AT AN 3-63
AN 3-64
BLE 3-65
CADDD 3-66
CD B . 3-67
DIV 3-68
CEER . 3-69
CHEB . . 3-70
CIN T L 3-71
O Y 3-72
CM RS 3-73
COS 3-74
CPM 3-75
CSUB . 3-76
G BL . 3-77
O 1) 3-78
DO X 3-79
DEER .. 3-80

DI BL .. 3-82
DT OD . 3-83
DT Ol .. 3-84
DT OR 3-85
EX P 3-86
FAD, FSB ... 3-87
BV 3-88
FLUN 3-89
M 3-90
FPW R 3-91
IO X 3-92
DD B . 3-93
IEN T e 3-94
T BL . 3-95
IT O 3-96
LOG . 3-97
LOGO . 3-98
MAN T 3-99
MAXT, MINT . 3-100
MO . 3-101
MY 3-102
NG 3-103
PACK 3-104
PW R 3-105
RTOD .. 3-106
R OI . 3-107
RTOR . 3-108
RO . 3-109
SIGN L 3-110
SN 3-111
SORT 3-112
TADD, .TSUB, . TMPY, .TDIV e 3-113
AN 3-114
TANH .. 3-115
TP X o 3-116
D BL .. 3-117
TENT 3-118
TN T 3-119
TP W R 3-120
T OI 3-121
T OR 3-122
O 3-123
XADD, XSUB .. 3-124
XOOM o 3-125
XDIV 3-126
XEER 3-127
XM Y 3-128
XA K 3-129
XPLY, XPOLY .o 3-130
YN T 3-131
L 3-132
DM 3-133

FOM oottt e e e 3-135

TOM ottt et et 3-136
OO 3-137
FEXP 3-138
2 10 1 3-139
A SIN e 3-140
SEXP .ottt e 3-141
SLOG .ttt et 3-142
] 170 1 2 3-143
] 0) 24 3-144
STAN Lottt 3-145
TOABSo 3-146
ToAN ..o e 3-147
ToOAND ... et e 3-148
GoANH ...t e 3-149
TOBS . . e 3-150
73 3l b G 3-151
7 (€) [3-152
GOIN . e e e 3-153
3 1.\ A 3-154
OLIOAT . . oo e e e e e 3-155
DOLIOG .. .o e et et e 3-156
73 501 K 3-157
N\ N 3-158
0] 2 S 3-159
T0OS . e e 3-160
10 5 N 3-161
0] 24 K 3-162
ToSIGN ..o ettt 3-163
TOTAN ottt 3-164
DoXP . e 3-165
JATLG .« .ottt et e e e e e e 3-166
JCOS et 3-167
JOMRT ottt e e e e e 3-168
JEXP oot 3-169
2 1 & (S 3-170
JLOG .ttt e e e e e 3-171
JLOGO .ttt et e et e e e e e e e 3-172
JSIN ot e 3-173
JSQRT ..ttt et e e 3-174
TTAN e e 3-175
JTINT Lo e e e et et e e e e e e e e 3-176
Chapter 4
Double Integer Subroutines
Format of ROULINES i e e et et 4-1
FLTDR ..ottt ettt et e e e e e e e e 4-2
DADS . 4-3
157010 4-4
DDE .. 4-5
D) 0] A 5] 5) 1 S 4-6
DS 4-7

10

IS o e 4-9
DM P o 4-10
DN G . 4-11
FIX D o 4-12
B D .o 4-13
TETD ..o 4-14
T XD .ot 4-15
XE T D .o e 4-16
XX D ot 4-17
Chapter 5
Utility Subroutines
Format of ROULINES . .. oottt e e e e e e e e e e e 5-1
ABREG . .. 5-2
EROLE . o 5-3
ER R LU . oo e 5-4
ER RO . .ot 5-5
FTRAP, RTRAP e e e 5-6
GET ST .. 5-9
IGET, IXGET . . o 5-10
INAM R . 5-11
IND L E .o e 5-14
IS S R ot 5-15
IS S W 5-16
MAGTP . .o 5-17
N AM R .o 5-18
OV e 5-21
PAULE .o 5-22
PN AME .. 5-23
P oA PE . . . 5-24
RM P A R . .o 5-25
R B R L 5-26
TIMEIL TIMEO e e e e 5-27
ENTC and ENTIN oo e e e e e e e e e e 5-28
ENTP and ENTR . oo e e e e e 5-29
FMUI, FMUOQO, FMUP e 5-32
FMUR .o 5-34
GOTO o e 5-35
M A P . 5-36
O S Y .o 5-37
PAUS e 5-38
PCAD ..o 5-39
TAPE ..o 5-40
M A P o 5-41
BT ..o 5-42
oS S W . o 5-43

11

Chapter 6
Subroutines for Multiuser Support

AccessLU, Check for LU ACCESS . . oo ii ittt ettt e e e 6-2
ATACH, Attach tO SESSIONottt e e e e e e e 6-3
ATCRT, Attach a CRT (RTE-A Only)t i 6-4
Programmatic LOGON (RTE-A Only) ...ttt et 6-4
CLGOFEF, Call LOGOF (RTE-A Only) . .. oottt e et 6-5
CLGON, Call LOGON (RTE-A Only) . ..ottt 6-6
DTACH, Detach From Sessionuiniiniiti it et 6-7
FromSySession, Check System Session Table Address (RTE-A Only) 6-8
GetAcctInfo, Access User and Group Accounting (RTE-AOnly) 6-8
GetOwnerNum, Return Owner’sID i i e 6-10
GetResetInfo, Access/Reset User Accounting (RTE-AOnly) 6-10
GETSN, Get Session Number (RTE-A Only) ... 6-11
GPNAM, Return Group Name e 6-11
GroupTold, Return Group ID e 6-12
IdToGroup, Return Group Namettt 6-12
IdToOwner, Return User Nameottt ettt e ee e 6-13
LUSES, Return User Table Addresso i i 6-13
Member, Check if User is in Group (RTE-AOnly) 6-13
OwnerTold, Return User ID and Group ID i, 6-14
ProglsSuper, Check for Super Program i 6-14
ResetAcctTotals, Resets User and Group Accounting Totals (RTE-A Only) 6-15
RTNSN, Return Session Number (RTE-AOnly) 6-16
SessnToOwnerName, Return User Name 6-16
SetAcctLimits, Set User and Group Accounting Limits (RTE-A Only) 6-17
SuperUser, Check For/If Superuser 6-18
SYCON, Write Message to System Consoleoo i, 6-18
SystemProcess, Check For/If System Process
(RTE-A Only) . o oottt e e e e 6-19
UserIsSuper, Check For/If Superuserc. .. 6-19
USNAM, Return User Namettt ettt ettt et et e 6-19
USNUM, Return the Session Number 6-20
VENAM, Verify User Name (RTE-AOnly) ...t 6-20
Chapter 7
Utility and Status Subroutines
AddressOf, Return Direct Addressooitiiiii it ittt it it eeeeiannnn 7-1
Bit Map Manipulation Routines i 7-2
ChangeBitst e 7-2
CheckBits 7-2
FIndBitso 7-3
BlankStringot 7-4
BlockToDisc, Convert Block and Sector to Track and Sector 7-4
CaseFold, Convert Lowercase to Uppercasec.ueuuiennennennennennnnn. 7-5
CharFill . ..o 7-5
CharsMatch, Compare Characters in Arraysc.oiiiiiniinnneinneennn.. 7-6
ClearBuffer, Zero a Passed Buffer i 7-6
CLCUC, Convert Lowercase to UPpPercasec.ouuveeneinenenneneneenenn.. 7-7
CMNDO Routines (RTE-A Only)t e 7-8
HpStartCmndo, Enable a CMNDO Slave Monitor ooiiiii... 7-8

12

HpReadCmndo, Request CMNDO to Read from User’s Terminal 7-9

HpStopCmndo, Terminate CMNDO Slave Monitorcooivii... 7-10
Example Program Using CMNDO i 7-10
CmndStacklnit, Initialize Command Stack 7-12
CmndStackMarks, Check for Marked Lines, 7-13
CmndStackPush, Add Line to Command Stack 7-13
CmndStackRestore, Restore Command Stack 7-14
CmndStackSaveP, CmndStackRstrP, Save and Restore Command Stack 7-15
CmndStackScreen, Do Stack Interactionswith User, 7-16
CmndStackStore, Store Command Stack ContentsinaFile 7-17
CmndStackUnmark, Remove Marks from Command Stack Lines 7-17
Command Stack Example Program 7-18
Concat, Concatenate SIrNESo vttt et et 7-20
ConcatSpace, Concatenate Strings with Embedded Blanks 7-20
DayTime, Seconds Since January 1, 1970 i 7-21
DecimalToDint, ASCII to Double Integer Conversionc..covven.... 7-21
DecimalTolnt, ASCII to Single Integer Conversionc.ocuiiineennn.. 7-22
DintToDecimal, Double Integer to ASCII Conversioncooviien.... 7-22
DintToDecimalr, Double Integer to ASCII Conversionc...ou.... 7-23
DintToOctal, Double Integer to Octal Conversionc.ooeuiiineennon.. 7-23
DintToOctalr, Double Integer to Octal Conversionc..ciiiineenn.... 7-24
DiscTOBIOCK 7-24
DiscSize, Tracks and Sectors Per Track i, 7-25
ElapsedTimeot e 7-25
ETIme ... 7-25
Fgetopt, Get a Runstring Optionttt it 7-26
GetFatherIdNum o e 7-28
GetRedirection, Extract I/O Redirection Commandscouu... 7-28
GetRteTIme 7-29
HexToInto 7-29
HMSCtoREETIME . .. oot e e 7-29
IdAddToName, Convert ID Segment Address to Program Name and LU Number 7-30
IdAddToNumber, Convert ID Segment Address to ID Segment Number 7-30
IDCLR 7-30
IdNumberToAdd, Convert ID Segment Number to ID Segment Address 7-31
It i . oo e 7-31
IntToDecimal, Integer to ASCII Conversioncoiiiiiiniinnennn... 7-32
IntToDecimalr, Integer to ASCII Conversionoiiiiiiniiinneenn... 7-32
IntToHeX o 7-33
IntToHexRo 7-33
IntToOctal, Integer to Octal Conversioncuuiuieuneinenenennennnen.. 7-34
IntToOctalr, Integer to Octal CONVersionc.uuuiiuneinennennennennnen.. 7-34
InvSeconds o 7-35
LastMatcho 7-35
LD Yar . . ottt 7-35
LuLocked o 7-36
MOVEWOTAS . . .o 7-36
MyldAdd, Return ID Segment Addressooiiiiiniiinin .. 7-36
NumericTime 7-37
OctalToDint, ASCII to Double Integer Conversioncouieniieneenn... 7-37
OctalTolnt, ASCII to Single Integer Conversionc..ouveuneuneennenn.n. 7-38
ProgramPriority 7-38
ProgramTerminal e 7-39

13

PutInCommas oot 7-39

ReadA990Clock (RTE-A Only) . ..coounni i e 7-40
ResetTimer 7-40
Rex (Regular Expression) Routinesot 7-41
RexBuildPattern e 7-42
RexBuildSubst o 7-42
RexExXchangeo.iiii i e 7-43
RexMatch 7-44
RteDateToYTDOy . . . oot e 7-44
RteShellRead, Read from a Terminal and Enable Command Line Editing (RTE-A Only) 7-45
RteTimeToHMS C . ..o e e e e 7-46
SamlInfo, Return SAM Size (RTE-AOnly) ...t 7-46
SECONAS ..ttt 7-47
SplitCommand, Parse String e 7-47
SplitString, Parse Stringoo i e 7-48
StEDSC o e 7-49
StringCopy, Copy One String to Another i, 7-50
TIMEF . 7-51
TIMENOW . . 7-52
TrimLen, Remove Trailing Blanks i, 7-52
WhoLockedLu e 7-53
WhoLockedRn (RTE-A Only)ottt e 7-53
Write A990Clock (RTE-A Only)ottt e 7-54
YrDoyToMonDomo 7-54
YrDoyToRteDAteo 7-55
Chapter 8
VIS Subroutines
The Vector Instruction Set (VIS) oo e 8-1
Arrays i MEMOTY . ..ottt et e e e 8-2
Index to VIS ROULINES oottt e e 8-5
General Calling Sequenceottt e 8-6
Example o e 8-8
Vector Arithmetic Routines i i 8-9
Exampleo e 8-9
Scalar-Vector Arithmetic Routines i, 8-11
Exampleo e 8-12
Absolute Value Routinet e e 8-13
Example e 8-13
Sum ROULINES ... oo e 8-14
Exampleo e 8-14
Exampleo e 8-15
Dot Product ROULINEo e e e 8-17
Example e 8-17
Pivot ROULINEo e 8-18
Example e 8-19
MAX/MIN ROULINES . ..ottt e e e e e e e e e 8-20
Example e 8-20
COmMmMENLS ... 8-21
Case 1 (vl is first array element and incrl isnot 1) 8-22
Case 2 (vl is not first array element and incrl = 1) 8-22
Case 3 (v1 is not first array element and incrlisnot 1) 8-23
Case 4 (multidimensional arrays — scanning rows) 8-23

14

MOVE ROULINES . . vttt ettt e e e e e e e e e e e e e e e e 8-24

Exampleo e 8-24
EMA (Extended Memory Area)/Non-EMA Move Routines 8-26
COommENtSo 8-26
Exampleo e 8-26
Exampleo e 8-27
Chapter 9
Using VIS in Programs
Converting FORTRAN DO LOODPS ... ovvi i 9-1
One Dimensional Array Examples i 9-2
Two Dimensional Array Examples i 9-4
Nested DO Loops Exampleo e 9-6
Combinations of Vector Instructions i, 9-7
Increment Parameters Other Than One 9-8
Zero INCrement 9-9
Negative INCTEMENtttt e e e e 9-10
Useful AppliCationsottt e e e e e 9-11
Initialize a Square Matrixttt e 9-11
Initialize an Array in a Certain Order ottt 9-12
Statistical Examples e 9-12
Matrix Transpositionttt e 9-13
Case 1 (Notin Place)ot e 9-14
Case 2 (InPlace)cooiinniii e 9-14
Graphics Coordinate Transformation i, 9-15
Extended Memory Area (EMA) Considerationsc.cuiiiiiinnnneeann. 9-16
EMA Call by Value and Call by Reference 9-17
Obtaining Efficiency with Multidimensional Arrays 9-19
Matrix Multiplication EMA Example i 9-22
Example VIS Programs e e 9-24
Calculating Prime Numbers: Sieve of Eratosthenes 9-24
Solution of Linear Systemsttt e 9-27
Matrix INVErsion . ..ot 9-30
VIS Online DiagnostiCttt e et et 9-34
Required Hardware and Software 9-34
TeSt SECHIONS . o o\ttt 9-34
Self-Test SECtionot e 9-34
Non-Privileged Section it 9-35
Privileged Section i e 9-35
Running the Diagnosticot e e 9-36
FORTRAN Equivalents for VIS e 9-38
Assembly Language Opcodesttt i e 9-45
A990, A900, and AT700ot 9-45
F-Series ..o 9-50
Firmware Interface Routines, VSRPand .VDRP 9-55
Adding Your Own EMA ROULINESoouit e 9-59
Error MesSagesvvt ittt e e e 9-62

15

Chapter 10
Decimal String Arithmetic Subroutines

Using the DCAR Routines e 10-1
DCAR Data Formats i i i 10-1
A2 Format 10-2
D2Formato 10-4
DI Format o 10-6
String Utilities ROUtines e 10-7
JSCOM, Substring Character COmparec.veeueennennennenneennnn 10-7
SFILL, Substring Fill e 10-9
SGET, Substring Getc.ititi e e e e 10-10
SMOVE, Substring MOVettt e e 10-11
SPUT, Substring Put e e 10-13
SZONE, Substring Zomnettt e e 10-14
String Arithmetic Routines i e 10-17
SADD, Substring Decimal Add i 10-17
SDIV, Substring Decimal Division i 10-19
SMPY, Substring Decimal Multiply 10-22
Short-String Routine i 10-24
SSUB, Substring Subtract e 10-26
Output Editing Routine, SEDIT i 10-28
Alphanumeric Editing oo e 10-28
X (Alphanumeric Replacement Holder)o oiiiiii.. 10-28
Numeric Editing e 10-28
Replacement e 10-29
9 (Numeric Replacement Holder) 10-29
Z (Zero Suppression Replacement Holder) 10-29
* (Asterisk Replacement Holder) i, 10-29
$ (Dollar Sign Replacement Holder) ..., 10-29
Sign Charactersttt e e e e 10-29
Cr (Credit) oov ettt e e 10-29
— (MINUS) ettt e 10-29
Insertion Characterscouuiiiiiiiiii i 10-29
Operation of SEDIT e e 10-30
Rules Governing Creation of Edit Mask o it 10-30
Brrors .o 10-31
Internal ROULINES oo e 10-31
SA2DE, Substring A2 Format to Decimal 10-31
SCARY, Substring D2 Decimal Carry i, 10-33
SDCAR, Substring D1 Decimal Carry, 10-34
SDEAZ2, Substring Decimal to A2 Format 10-36
SD1D2, Substring Decimal D1 Format to Substring Decimal D2 Format 10-37
SD2D1, Substring Decimal D2 Format to Substring Decimal D1 Format 10-38
SSIGN, Substring Sign oottt e 10-40
Chapter 11
Floating Point Conversion Subroutines
DEFCHI ..o 11-1
FCHI .. 11-2
DECIH ..o 11-2
FCIH ..o 11-3

16

Chapter 12
HpCrt Library Routines

A_Register, B_Register, A_B_Registers, ABREG

12-1
ClearBitMapo ot e 12-2
CompareBufs e 12-3
CompareWordsottt e 12-3
CompressASCIIRLE o e 12-4
ExpandAsciiRLE 12-5
FakeSpStatus 12-6
FillBuffero 12-7
FirstCharacterottt e e e e 12-7
GetBitMap ..o e 12-8
Gty . .ottt e 12-8
GetDIbIt ..o 12-9
GetNIbble 12-9
GetRUNSIIINGo e 12-10
[1T N5 01 ¥ PP 12-11
HpCrtCharMode e e e e e e 12-11
HpCrtCheckStrapso oottt e e e e e e e e e 12-12
HpCrtCRC16_F, HpCrtCRC16_S ... oo e 12-13
HpPCrtGetCursOrottt e e e e e e e ettt e et e 12-14
HpCrtGetCursorXY ...ttt e e e e e e e e 12-15
HpCrtGetfield I e e e e e 12-16
HpCrtGetfield S e e 12-17
HpCrtGetLine Pos e e e e e 12-18
HpCrtGetMenultem e e e et e e 12-19
HpCrtHardReset e e e e e e 12-19
HpCrtLineMode e e e 12-20
HpCrtMenu e e 12-20
HpCrtNISMenU e e e e e e e 12-21
HpCrtNISXMENU . ..ot e e e e e e e e et 12-21
HpCrtPageMode e e e e e 12-22
HpCrtParityChko e e 12-22
HpCrtParityGeno e e e e 12-23
HpCrtQTDPOIt7 ... e e 12-23
HpCrtReadChar o e e e e e e 12-24
HpCrtReadPaget e e e e 12-25
HpCrtRestorePort e 12-26
HpCrtSavePort e 12-26
HpCrtSchedProg, HpCrtSchedProg S i i 12-27
HpCrtScreenSizet e e e e e 12-27
HpCrtSendCharo e e e e e 12-28
HpCrtSSRCDriver, HpCrtSSRCDriver? i 12-29
HpCrtStatus e 12-30
HpCrtStripChar e e e e e e e e 12-31
HpCrtStripCntrls e e 12-31
HpCrtXMEenU . ..o e e e e e e e e e 12-32
HpCrtXReadChar i e e e e 12-32
HpCrtXSendChar e e e e e 12-33
HpLowerCaseNamettt ettt et et 12-33
Hp R A .. 12-34
HpPREO ..o 12-34

17

HpZ, Mini-Formatter oo e 12-35

How to Use the Mini-Formatter to Do Output 12-35

How to Use the Mini-Formatter to DoInput 12-35

Precautions 12-35
HpZASCIIOA 12-38
HpZASCIIOS . .. 12-38
HpZAsciHpEnh 12-39
HpZASCIMRES 12-40
HpZASCIMNEA . ..o 12-41
HpZBackSpacelbuf e 12-41
HPZBINCo 12-42
HPZBINOo 12-42
HpPZDECO ..o e e 12-42
Hp DOy . . e 12-42
HpZDecC ... 12-43
HpZDefIBuf 12-43
HpZDefIStringo 12-44
HpZDefOBuUf 12-44
HPZDICV . .o 12-44
HPZDPArseo e 12-45
HpZDumpBitMap e 12-48
HpZDumpBuffero e 12-49
HpZFieldDefine 12-50
HpZEmpWEIIte e 12-51
HpZGetNextChar HpZPeekNextChar i, 12-51
HpZGetNextSIrDSCo 12-52
HpZGetNextToken i e e 12-52
HpZGetNumD2 HpZGetNumO2 HpZGetNumB?2
HpZGetNumD4 HpZGetNumO4 HpZGetNumB4 12-53
HpZGetNumSIrDSCot e 12-54
HpZGetNUmX e 12-55
HpZGetRemStrDSCo e 12-56
HpZHeEXC . ..o 12-56
HpZHexi 12-57
HpPZHEXO0 . ..o 12-58
HpZIBufRemain i e e 12-58
HpZIBUfRESEt e e 12-58
HpZIBufUsed e e 12-58
HpZIBufUSeStrDSCo 12-59
HpZInsertAtFront 12-60
HpZmbt ... 12-60
HPZMESSS . . . oo 12-61
HPZMOVESTIING . . .ot e e 12-62
HpZmve ... 12-62
HpZmvs .. 12-63
HpZmvs_Control 12-64
HpZmvs_ESCapet 12-65
HpZmvs_Large 12-65
HpZINISMVS . .o 12-66
HpZNISSUbSet 12-66
HpZOBUTRESEt o 12-66
HpZOBufUsedo e 12-67
HpZOBUfUSeStIDSCo e 12-67

18

HpZOcCtdo 12-68
HpPZOCHO . . .o e e 12-69
HpZOCty . e 12-69
HpZPadToCount e e e 12-70
HpZPadToPoSIitiono e 12-70
HpPZParse e 12-71
HpZPlural e 12-73
HpZPrintPort 12-74
HpZPushObuf and HpZPopObuf i 12-75
HpZQandA 12-76
HpZReScan 12-76
HpZRomanNumeral o 12-77
HpZsbt . o 12-78
HpZStripBlanks o e 12-78
HpPZUECO . ..ot e e e e e e 12-78
HpZUdeECV . .o e e 12-79
HpZWIiteEXeC14 . .. o e e 12-79
HpZWriteLU e e 12-79
HpZWrite XLUo e e e 12-79
HpZWriteTOSIIIngot e e 12-80
HpZYesOTNO . ..o 12-80
MINSIIDSC « oo 12-82
PUutBitMap ..o 12-82
PutByte ..o e e 12-83
PutDibit . ..o 12-83
PutNibble 12-84
SetBItMaD . ..ottt e 12-84
SEtPIIOTILY . ..ttt e e 12-84
TestBItMap ..ottt e 12-85
Test PUtBYteot 12-85
Test SetBitMapo 12-86

List of lllustrations

Figure 8-1 One Dimensional Array in Memorycoiiiiinn... 8-2
Figure 8-2 Two Dimensional Array in Memoryccooiiiiiinn... 8-3
Figure 8-3 Three Dimensional Arrays in Memorycoveienn.... 8-4
Figure 8-4 Accessing Row Elements i i 8-8
Figure 9-1 Troubleshooting Flowchart 9-37
Tables
Table 7-1 Expression Pattern Matching Summary 7-41
Table 7-2 Substitution CONStIuUCtSttt 7-41
Table 10-1 Zoned Characters for Negative Stringso .. 10-3
Table 10-2 Binary Representation of Decimal Digits 10-4
Table 10-3 Rightmost Digit for Negative Numbers 10-5
Table 10-4 SZONE CONVEISION . . .ottt ettt et et 10-16

Table 12-1 Contents of the State Buffer after FakeSpStatus or HpCrtSavePort Call . 12-6

19

Functional Grouping of Library Routines

RTE-A is delivered with a collection of relocatable subroutines. These subroutines interface user
programs with system services. This chapter contains a listing of those subroutines. The detailed
description of each subroutine can be found in this manual, the RTE-A Programmer’s Reference
Manual, part number 92077-90007, or the RTE-6/VM Programmer’s Reference Manual, part number
92084-90005. The functional listing given here indicates the page number on which the subroutine
is documented. The subroutines documented in the RTE-A Programmer’s Reference Manual are
indicated in the listing by the mnemonic “prog”, for example “prog-7-11” refers you to page 7-11 of
the RTE-A Programmer’s Reference Manual. Similarly, the subroutines documented in the
RTE-6/VM Programmer’s Reference Manual are indicated in the listing by the mnemonic “prog6”.

The subroutines listed in this chapter are organized into the following functional groups:

ASCII/Integer Conversion
Bit Map Manipulation
Buffer and String Manipulation
Character String Routines
HpCrt and HpZ Buffer Routines
Integer Buffer Routines
Character Buffer Manipulation
Command Stack
Error Handling
I/O
Interprocess Communication
Class I/O
Parameter Passing
Programmatic Environment Variable Access
Signals
Machine-level Access
Math
Absolute Value Subroutines
Complex Number Arithmetic Subroutines
Double Integer Utilities
Exponents, Logs, and Roots
HP 1000/IEEE Floating Point Conversion Subroutines
Number Conversion Subroutines
Real Number Arithmetic Subroutines
Trigonometry Subroutines
VIS Subroutines
Miscellaneous Subroutines
Multiuser
Parsing Routines
Privileged Operation
Program Control
Resource Management
System Status
Time Operations

Functional Grouping of Library Routines 1-1

ASCII/INTEGER CONVERSION SUBROUTINES

1-2

.FMUI

.FMUO

.FMUP

.FMUR
CNUMD
CNUMO
DecimalToDint
DecimalTolnt
DintToDecimal
DintToDecimalr
DintToOctal
DintToOctalr
HexTolnt
HpZBinc
HpZBino
HpZDecc
HpZDeco
HpZDecv
HpZDicv
HpZDParse
HpZGetNumB2
HpZGetNumB4
HpZGetNumD2
HpZGetNumD4
HpZGetNumO2
HpZGetNumO4
HpZGetNumX
HpZHexc
HpZHexi
HpZHexo
HpZOctc
HpZOctd
HpZOcto
HpZOctv
HpZParse
HpZRomanNumeral
HpZUdeco
HpZUdecv

INPRS
IntString
IntToDecimal
IntToDecimalr
IntToHex
IntToHexR
IntToOctal
IntToOctalr
KCVT
OctalToDint
OctalTolnt
PARSE

ASCII digit to internal numeric conversion
Numeric to ASCII conversion

Internal to normal format conversion

Rounding of digit string produced by .FMUO
Convert unsigned 16-bit integer to ASCII decimal
Convert unsigned 16-bit integer to ASCII octal
ASCII to double integer

ASCII to single integer

Double integer to ASCII

Double integer to ASCII

Double integer to octal

Double integer to octal

ASCII hexadecimal to single integer

Convert a number to binary

Convert value to its binary ASCII representation
Convert a number to ASCII numerals

Convert an integer*2 number to ASCII decimal representation
Convert an integer*2 number to ASCII decimal representation
Convert double integer value to ASCII decimal representation
Parse the next occurring token in the input buffer

Convert number in input buffer to integer*2 decimal or octal
Convert number in input buffer to integer*4 decimal or octal
Convert number in input buffer to integer*2 decimal

Convert number in input buffer to integer*4 decimal

Convert number in input buffer to integer*2 octal

Convert number in input buffer to integer*4 octal

Convert digits to internal representation

Convert a number to hexadecimal

Parse hexadecimal ASCII integers

Convert an integer*2 number to hexadecimal

Convert a value to its octal ASCII representation

Convert a double integer value to its octal ASCII representation
Convert the passed value to its octal ASCII representation
Convert the passed value to its octal ASCII representation
Parse routine for 16-character parameters

Convert a value to its Roman numeral equivalent

Convert integer*2 number to unsigned decimal representation
Convert integer*2 number to unsigned decimal representation,
suppressing leading zeros

Inverse parse; convert buffer to original ASCII form

Integer to ASCII

Integer to ASCII

Integer to ASCII

Integer to ASCII hexadecimal

Integer to ASCII hexadecimal with right justification

Integer to octal

Integer to octal

Convert positive integer to base 10; return last 2 ASCII digits
ASCII digit to internal numeric conversion

ASCII to integer

Parse ASCII input buffer

Functional Grouping of Library Routines

5-32
5-32
5-32
5-34

prog-7-11; prog6-5-70
prog-7-11; prog6-5-70

7-21

7-22

7-22

7-23

7-23

7-24

7-29
12-42
12-42
12-43
12-42
12-42
12-44
12-45
12-53
12-53
12-53
12-53
12-53
12-53
12-55
12-56
12-57
12-58
12-68
12-68
12-69
12-69
12-71
12-77
12-78

12-79

prog-7-8; prog6-5-74

7-31
7-32
7-32
7-33
7-33
7-34
7-34
prog-7-11
7-37
7-38

prog-7-7, prog6-5-77

BIT MAP MANIPULATION

ChangeBits
CheckBits
ClearBitMap
FindBits
GetBitMap
HpZDumpBitMap
PutBitMap
SetBitMap
TATMP
Test_SetBitMap
TestBitMap

Change bits in a bit map

Check bits in a bit map

Clear specified bit in a bit map

Find free bits

Retrieve a bit from a bit map

Display a bit map; useful for debugging

Copy a bit to a bit map

Set a bit in the buffer

Map track assignment table into driver partition area in user map
Test if a bit is set in the buffer, then if it is not, set bit
Test if a bit is set in the buffer

BUFFER AND STRING MANIPULATION

Character String Routines

BlankString
CaseFold
CharfFill
Concat
ConcatSpace
LastMatch
MinStrDsc

RexBuildPattern
RexBuildSubst
RexExchange
RexMatch
SplitCommand
SplitString
StrDsc
StringCopy
TrimLen

Determine blank character string

Convert a character string from lowercase to uppercase

Fill string with characters

Concatenate strings

Concatenate strings with n spaces between strings

Return last occurrence of a character

Construct a string descriptor that describes a trimmed substring
of the string that is passed to it

Build pattern for use by RexMatch and RexExchange

Build regular substitution string for use by RexExchange
Replace occurrences of pattern built by RexBuildPattern
Determine if string contains pattern built by RexBuildPattern
Parse a string

Parse a string

Construct a character string descriptor

Copy one string to another

Remove trailing blanks

HpCrt and HpZ Buffer Routines

HpCrtCRC16_F
HpCrtCRC16_S
HpCrtParityChk
HpCrtParityGen
HpCrtStripChar
HpCrtStripCntrls
HpZAscii64
HpZAscii95
HpZAsciiHpEnh
HpZAsciiMne3
HpZAsciiMne4

HpZBackSpacelbuf

HpZBinc
HpZBino
HpZDecc
HpZDeco
HpZDecv
HpZDefIBuf
HpZDefIString
HpZDefOBuf
HpZDicv
HpZDParse
HpZDumpBuffer
HpZFieldDefine

Cyclic Redundancy Check

Cyclic Redundancy Check

Perform a parity check on a data buffer

Compute and set the parity bits in a data buffer

Delete characters from a buffer

Delete non-displayable characters from a string

Move characters from input buffer to output buffer

Move characters from input buffer to output buffer

Move characters from input buffer to output buffer

Translate characters in input buffer into output buffer
Translate characters in input buffer into output buffer

Back up the input buffer pointer

Convert a number to binary

Convert a number to its binary ASCII representation

Convert a number to ASCII numerals

Convert an integer*2 number to ASCII decimal representation
Convert an integer*2 number to ASCII decimal representation
Declare the attributes of the input buffer

Define a string as the input for the HpZ routines

Define the output buffer for the HpZ routines

Convert double integer value to ASCII decimal representation
Parse the next occurring token in the input buffer

Dump a buffer in different formats; useful for debugging
Issue escape sequences to define a field in a block mode screen
and optionally set display enhancements

7-2
7-2
12-2
7-3
12-8
12-48
12-82
12-84
prog6-5-63
12-86
12-85

7-4
7-5
7-5
7-20
7-20
7-35

12-82
7-42
7-42
7-43
7-44
7-47
7-48
7-49
7-50
7-52

12-13
12-13
12-22
12-23
12-31
12-31
12-38
12-38
12-39
12-40
12-41
12-41
12-42
12-42
12-43
12-42
12-42
12-43
12-44
12-44
12-44
12-45
12-49

12-50

Functional Grouping of Library Routines 1-3

HpZFmpWrite
HpZGetNextChar
HpZGetNextStrDsc
HpZGetNextToken
HpZGetNumB2
HpZGetNumB4
HpZGetNumD2
HpZGetNumD4
HpZGetNumO2
HpZGetNumO4
HpZGetNumStrDsc
HpZGetNumX
HpZGetRemStrDsc

HpZHexc
HpZHexi
HpZHexo
HpZIBufRemain

HpZIBufReset
HpZIBufUsed
HpZIBufUseStrDsc

HpZlnsertAtF ront
HpZmbt
HpZMesss
HpZMoveString
HpZmvc

HpZmvs
HpZmvs_Control
HpZmvs_Escape
HpZmvs_Large

HpZNIsMvs
HpZNIsSubset
HpZOBufReset
HpZOBufUsed
HpZOBufUseStrDsc
HpZOctc

HpZOctd
HpZOcto

HpZOctv
HpzZPadToCount
HpZPadToPosition
HpZParse
HpZPeekNextChar
HpZPlural
HpZPopObuf
HpZPushObuf
HpZReScan
HpZRomanNumeral
HpZsbt
HpZStripBlanks
HpZUdeco
HpZUdecv

HpZWriteExec14
HpZWriteLU
HpZWriteToString
HpZWriteXLU

Write current contents of output buffer to the file specified
Extract the next character from the input buffer

Build a string descriptor for the next token in the input buffer
Copy the next token in the input buffer to the output string
Convert number in input buffer to integer*2 decimal or octal
Convert number in input buffer to integer*4 decimal or octal
Convert number in input buffer to integer*2 decimal
Convert number in input buffer to integer*4 decimal
Convert number in input buffer to integer*2 octal

Convert number in input buffer to integer*4 octal

Return a string descriptor

Convert digits to internal representation

Return a string descriptor to the portion of the HpZ input buffer
that has not yet been consumed by other HpZ calls

Convert a number to hexadecimal

Parse hexadecimal ASCII integers

Convert an integer*2 number to hexadecimal

Return number of bytes remaining from current position

to end of the input buffer

Reset the current input position to the start of the input buffer
Return the current byte offset in the input buffer

Return a string descriptor for the portion of the input buffer
that has already been passed over

Insert data in front of the data currently in the buffer

Copy bytes from an integer buffer to the output buffer

Send a command to the operator interface section of the OS
Copy strings without FORTRAN limitations

Copy characters from an integer buffer to the output buffer
Copy a string to the current position in the output buffer
Move the string passed by the user to the output buffer
Move the string passed by the user to the output buffer

Create large characters in a 3-by-3 character cell using line segments

in the HP 264x alternate character set

Move an NLS string to the output buffer

Set up the linkage from NLS to HpZ routines

Reset the current position to the start of the output buffer
Return the current byte offset in the output buffer

Return the current byte offset in the output buffer

Convert a value to its octal ASCII representation

Convert a double integer value to its octal ASCII representation
Convert the passed value to its octal ASCII representation
Convert the passed value to its octal ASCII representation

Add the specified number of blanks to the output buffer

Add blanks to output buffer until desired position is reached
Parse routine for 16-character parameters

Same as HpZGetNextChar but does not consume the character
Conditionally make a string plural depending on count

Inverse of the HpZPushObuf routine

Declare a new output buffer for the HpZ routines

Reset internal pointers used by HpZ routines

Convert a value to its roman numeral equivalent

Store the lower byte of the passed value into the output buffer
Adjust internal pointer to output buffer to “erase” trailing blanks
Convert integer*2 number to unsigned decimal representation
Convert integer*2 number to unsigned decimal representation,
suppressing leading zeros

Perform an EXEC 14 call from the HpZ mini-formatter

Write current contents of the output buffer to the LU specified
Copy the contents of the output buffer to a string

Write current contents of the output buffer to the LU specified

Functional Grouping of Library Routines

12-51
12-51
12-52
12-52
12-53
12-53
12-53
12-53
12-53
12-53
12-54
12-55

12-56
12-56
12-57
12-58

12-58
12-58
12-58

12-59
12-60
12-60
12-61
12-62
12-62
12-63
12-64
12-65

12-65
12-66
12-66
12-66
12-67
12-67
12-68
12-68
12-69
12-69
12-70
12-70
12-71
12-51
12-73
12-75
12-75
12-76
12-77
12-78
12-78
12-78

12-79
12-79
12-79
12-80
12-79

Integer Buffer Routines

.CFER

.CPM

.DFER

XFER
CharsMatch
CLCUC
ClearBuffer
CompareBufs
CompareWords
CompressAsciiRLE
CPUT
ExpandAsciiRLE

FillBuffer
FirstCharacter
GetByte
GetDibit
GetNibble
GetString
INAMR
JSCOM
KHAR
MoveWords
NAMR
PutByte
PutDibit
PutinCommas
PutNibble
SETDB
SETSB
SFILL

SGET
SMOVE
SPUT
StrDsc
SZONE
Test_PutByte
ZPUT

COMMAND STACK

CmndStackinit
CmndStackMarks
CmndStackPush
CmndStackRestore
CmndStackRstrP
CmndStackSaveP
CmndStackScreen
CmndStackStore
CmndStackUnmark
HpReadCmndo
HpStartCmndo
HpStopCmndo
RteShellRead

Move four words from address x to address y (complex transfer)
Compare two single integer arguments

Move three words from one address to another (extended real transfer)
Move three words from address x to address y (extended real transfer)
Compare characters in arrays

Convert an integer buffer from lowercase to uppercase

Zero a passed buffer

Compare two buffers and return offset

Compare two buffers for equality

Move bytes from the input to the output buffer

Put character in destination buffer set up by SETDB

Process run length encoded ASCII data to expand it back

to the original uncompressed contents

Fill a buffer with null characters or a specified value

Return the first character of a buffer

Retrieve a byte from a packed array of bytes

Retrieve a bit pair from a packed array

Retrieve 4 bits from a packed array

Copy a string or a constructed string descriptor

Inverse parse of 10-word parameter buffer generated by NAMR
Compare substrings in two integer buffers

Get next character from source buffer set up by SETSB

Move words

Read input buffer, produce 10-word parameter buffer

Copy a byte to a packed array of bytes

Copy a bit pair to a packed array of bit pairs

Prepare a string for parsing

Copy 4 bits to a packed array

Set up character string destination buffer for KHAR, CPUT, ZPUT
Set up character string source buffer for KHAR, CPUT, ZPUT

Fill area in a substring array with a specified character

Get a specified character from a substring in an integer buffer
Move data from one integer buffer string to another

Put a specified character in an integer buffer substring
Construct a character string descriptor

Find the zone punch of a character

Copy a byte into an array with a test for zero

Store character string in destination buffer set up by SETDB

Initialize command stack

Check for marked lines

Add line to command stack

Restore command stack

Restore command stack

Save command stack

Do stack interactions with user

Store command stack contents in a file
Remove marks from command stack lines
Request CMNDO to read from user’s terminal
Enable a CMNDO slave monitor

Terminate CMNDO slave monitor

Read from terminal and enable command line editing

3-69
3-75
3-80
3-127
7-6
7-7
7-6
12-3
12-3
12-4
prog-7-18

12-5

12-7

12-7

12-8

12-9

12-9

12-11

5-11

10-7
prog-7-18
7-36

5-18
12-83
12-83
7-39
12-84
prog-7-17
prog-7-17
10-9
10-10
10-11
10-13
7-49
10-14
12-85
prog-7-18

7-12
7-13
7-13
7-14
7-15
7-15
7-16
717
717

7-9

7-8
7-10
7-45

Functional Grouping of Library Routines 1-5

ERROR HANDLING

1/0

1-6

PAUS
ERO.E
ERRO
ERRLU
FTRAP
IND.E
PAU.E
RT_ER
RTRAP

.STIO
.TAPE
AbortRq
ABREG
AccessLU
BINRY
BlockToDisc
CLRQ
DiscSize
DiscToBlock
EQLU
EXEC 1
EXEC 2
EXEC 3
EXEC 4
EXEC 5
EXEC 13
EXEC 15
EXEC 16
EXEC 17
EXEC 18
EXEC 19
EXEC 20
EXEC 21
FakeSpStatus
HpCrtCharMode

HpCrtCheckStraps
HpCrtGetCursor
HpCrtGetCursorXY
HpCriGetffield_|

HpCriGetfield_S

HpCrtGetLine_Pos
HpCrtGetMenultem
HpCrtHardReset
HpCrtLineMode
HpCrtMenu
HpCrtNIsMenu
HpCrtNIsXMenu
HpCrtPageMode
HpCrtQTDPort7
HpCrtReadChar
HpCrtReadPage
HpCrtRestorePort
HpCrtSavePort
HpCrtSchedProg

Halt program execution and print message 5-38
Specify the LU for printing library error messages 5-3
Print four-character error code on list device 5-5
Change LU for printing library error messages 5-4
Traps FORTRAN runtime errors 5-6
Select output LU for error messages 5-14
Select output LU for PAUSE messages 5-22
Formats and prints runtime errors 5-26
Traps FORTRAN runtime errors 5-6
Configure driver for a select code currently in use prog6-5-38
Rewind, backspace, or EOF operation on mag tape unit 5-40
Abort current request prog-3-11
Obtain contents of A- and B-Registers 5-2, 121
Check for LU access 6-2
Transfer data to or from a disk device prog6-5-39
Convert block to track and sector 7-4
Class management request prog-4-8; prog6-5-3
Returns tracks and sectors per track 7-25
Convert track and sector to block 7-24
Return LU of interrupting device that scheduled program prog-7-10; prog6-5-41
Read data from device prog-3-3; prog6-2-19
Write data to device prog-3-3; prog6-2-19
Perform 1/O device control operation prog-3-8; prog6-2-24
Allocate contiguous disk tracks for use by a single program prog6-2-85
Release disk tracks previously allocated locally prog6-2-87
Get device status prog-3-12; prog6-2-74
Allocate contiguous disk tracks for use by multiple programs prog6-2-85
Release disk tracks previously allocated globally prog6-2-87
Class read request prog-4-11
Class write request prog-4-11
Class 1/O device control request prog-4-22; prog6-2-39
Class write/read request prog-4-11
Class I/0 Get prog-4-18; prog6-2-41
Return port status similar to a special status read 12-6
Sends the escape sequences to the terminal that place it in line mode,

character mode with forms disabled 12-11
Check port and terminal for availability of screen mode operation 12-12
Returns the coordinates of the cursor of an HP CRT 12-14
Returns the coordinates of the cursor of an HP CRT 12-15
Retrieve the Nth field from an integer*2 buffer that contains the data

read from an HP terminal in block page mode 12-16
Retrieve the Nth field from an integer*2 buffer that contains the data

read from an HP terminal in block page mode 12-17
Return cursor position, contents of line, and delimiter 12-18
Return a menu item from the screen 12-19
Perform a hard reset on an HP terminal 12-19
Send escape sequences to terminal for block line mode 12-20
Used to print multiple character strings to an LU 12-20
Perform HpCrtMenu function from the NLS module 12-21
Perform HpCrtXMenu function from the NLS module 12-21
Send escape sequence to terminal to place in block page mode 12-22
Return LU of port 7 when given LU of one of the other ports 12-23
Read directly from LU to character data type variable 12-24
Perform page mode write/read call 12-25
Reset port to conditions in effect when HpCrtSavePort was called 12-26
Read current state of port driven 12-26
Pass name of program to scheduled upon interrupt 12-27

Functional Grouping of Library Routines

HpCrtSchedProg_S

HpCrtScreenSize
HpCrtSendChar
HpCrtSSRCDriver

HpCrtSSRCDriver?

HpCrtStatus
HpCrtXMenu
HpCrtXReadChar
HpCrtXSendChar
HpZDumpBuffer
HpZPrintPort
HpZQandA
HpZWriteLU
HpZWriteXLU
HpZYesOrNo
IFTTY

LOGIT

LOGLU

LUTRU

MAGTP
ProgramTerminal
PTAPE

REIO

RMPAR
RteErrLogging
RteShellRead
SYCON

TRMLU

VMAIO

XLUEX

XREIO

Pass name of program to scheduled upon interrupt

Return width and height of an HP terminal screen

Call EXEC to print a FTN7X character variable or literal
Determine if driver for LU will respond to a special status read
Determine if driver for LU will respond to a special status read
Perform XLUEX write/read call to read status of an HP terminal
Print multiple character strings to an LU

Input directly from an LU to a character data type variable
Call EXEC to print a FTN7X character variable or literal

Dump a buffer in different formats; useful for debugging
Display port status using a special status read

Ask a question and read reply

Write current contents of the output buffer to the LU specified
Write current contents of the output buffer to the LU specified
Ask question to be answered with a yes or no reply

Determine if an LU is interactive prog-7-12;
Log message in error log file and display on terminal

Get LU of invoking terminal prog-7-9;
Return true system LU associated with session LU prog-7-9;
Perform utility functions on magnetic tape unit

Return program’s terminal LU

Position magnetic tape

Buffered 1/0 prog-3-10;

Get extended status
Determine if error logging is on or off
Read from terminal and enable command line editing

Write message to system console 6-18; prog-3-7;
Determine LU number of interrupting device

Perform large VMA or EMA data transfer

Extended LU EXEC call prog-3-10;
Extended LU REIO call prog-3-11;

5-25; prog-3-17;

12-27
12-27
12-28
12-29
12-29
12-30
12-32
12-32
12-33
12-49
12-74
12-76
12-79
12-79
12-80
prog6-5-42
prog-7-13
prog6-5-43
prog6-5-44
5-17

7-39

5-24
prog6-5-45
prog6-5-31
prog-7-13
7-45
prog6-5-79
prog6-5-47
prog-9-21
prog6-5-45
prog6-5-45

INTERPROCESS COMMUNICATION
Class 1/O0 See “Class 1/0” chapter in the RTE-A Programmer’s Reference Manual

Parameter Passing

EXEC 14 Retrieve or pass string from or to calling program prog-7-3; prog6-2-67
Fgetopt Get a runstring option 7-26
GetRedirection Extract I/O redirection commands 7-28
GetRunString Retrieve runstring used to schedule program 12-10
GETST Recover parameter string 5-9; prog-7-5; prog6-5-35
HpZWriteExec14 Perform an EXEC 14 call from the HpZ mini-formatter 12-79
PRTM Pass 4 parameters back to parent program prog-7-1; prog6-5-33
PRTN Pass 5 parameters back to parent program prog-7-1; prog6-5-33
RMPAR Retrieve parameters passed to program 5-25; prog-7-2; prog6-5-31

Programmatic Environment Variable Access

EXEC 39 Programmatic environment variable access prog-14-1
Signals
KillTimer Cancel current timer prog-13-27
QueryTimer Return number of ticks remaining before timer signal is to

be generated prog-13-27
SetTimer Establish a new timer or reset an existing timer prog-13-27
SglAction Return integer specifying action to take prog-13-6
SgiBlock Return previous set of masked signals and block signals prog-13-6

Functional Grouping of Library Routines 1-7

SglHandler
SqlKill
SglLimit
SglLongdmp
SglPause
SglSetymp
SglSetMask

MACHINE-LEVEL ACCESS

..MAP
.DRCT
.ENTC and .ENTN

MATH

Set the signal handler address prog-13-7
Send a signal to a program prog-13-7
Set the signal buffer limits prog-13-8
Jump to the supplied environment prog-13-9
Wait for a signal to be delivered to the program prog-13-9
Set an environment prog-13-10
Block signals and return previous set of masked signals prog-13-10
Compute address of specified element of a 2- or 3-dimensional array 5-41
Resolves indirect address prog6-5-72

Transfer true address of parameters from calling sequence into a subroutine;

adjust return address to true return point 5-28
.ENTP and .ENTR Transfer true address of parameters from calling sequence into a subroutine;
adjust return address to true return point 5-29
.GOTO Transfer control to the location indicated by a FORTRAN computed
GOTO statement 5-35
.MAP Return actual address of a particular element of a two-dimensional
FORTRAN array 5-36
.MPY Replace the subroutine call with the hardware instructions to multiply
by integer i and j 3-102
.PCAD Return true address of parameter passed to a subroutine 5-39
$SETP Set up a list of pointers 5-42
%SSW Set sign bit of A-Register according to bit n of switch register 5-43
ABREG Obtain contents of A- and B-Registers 5-2, 121
AddressOf Return direct address 7-1
COR.A, COR.B Return address of first word of available memory prog6-5-64
EXEC 25 Return status information about specified memory partition prog6-2-72
IGET and IXGET Read contents of a memory address 5-10
ISSR Set S-Register to value n 5-15
ISSW Set sign bit of A-Register according to bit n of switch register 5-16
OVF Set sign bit of A-Register according to overflow bit 5-21
ReadA990Clock Read the calendar clock of the A990 7-40
WriteA990Clock Set the calendar clock on the A990 7-54
Absolute Value Subroutines
.ABS Absolute value (double real) 3-62
%ABS (Call-by-name) IABS 3-146
%BS (Call-by-name) ABS 3-150
ABS Absolute value (real) 3-2
CABS Absolute value (complex) 3-12
DABS Absolute value (extended real) 3-20
DIM Positive difference (real) 3-27
IABS Absolute value (integer) 3-43
IDIM Positive difference (integer) 3-45
Complex Number Arithmetic Subroutines
..CCM Complement (complex) 3-132
.CADD Complex add 3-66
.CDBL Extract the real part of a complex number in extended real form 3-67
.CDIV Complex divide 3-68
.CMPY Complex multiply 3-72
.CSuB Complex subtract 3-76
AIMAG Extract imaginary part of complex (real) 3-3
CMPLX Combine real and imaginary complex 3-15
CONJG Form conjugate of complex 3-16
REAL Extract the real part of a complex 3-53

Functional Grouping of Library Routines

Decimal String Arithmetic Subroutines

JSCOM
SA2DE
SADD
SCARY
SD1D2
SD2D1
SDCAR
SDEA2
SDIV
SEDIT
SFILL
SGET
SMOVE
SMPY
SPUT
SSIGN
SSuUB
SZONE

Double Integer Utilities

.DADS
.DCO
.DDE
.DDI
.DDIR
.DDS
.DIN
.DIS
.DMP
.DNG
.FIXD
.FLTD
.TFTD
.TFXD
XFTD
XFXD
FLTDR

Compare two substrings

Convert substring in A2 format to decimal
Perform a decimal add of two substrings
Examine D2 decimal substring for carries
Convert substring in D1 format to D2

Convert substring in D2 format to D1

Examine D1 decimal substring for carries
Convert substring in decimal format to A2
Perform a decimal division of two substrings
Edit data in substring array

Fill area in a substring array with a specified character
Get a specified character from a substring
Move data from one string to another

Perform a decimal multiply of two substrings
Put a specified character in a substring

Find the sign of a number

Perform a decimal subtraction of two substrings
Find the zone punch of a character

Double integer add and subtract
Compare two double integers

Decrement double integer

Double integer divide

Double integer divide

Double integer decrement and skip if zero
Increment double integer

Double integer increment and skip if zero
Double integer multiply

Negate double integer

Convert real to double integer

Convert double integer to real

Convert double integer to double real
Convert double real to double integer
Convert double integer to extended real
Convert extended real to double integer
Convert double-length record number to real

Exponents, Logs, and Roots

.CTOI
.DTOD
.DTOI
.DTOR
.EXP
.FPWR
TOI
.LOG
.LOGO
.PWR2
.RTOD
.RTOI
.RTOR
.RTOT
.SQRT
.TPWR
.TTOI
.TTOR
TTOT
$EXP

Raise complex to integer power

Raise extended real to extended real power

Raise extended real to integer power

Raise extended real to real power; extended real result
Raise e to double real power

Raise real to integer power

Raise integer to integer power

Natural log (double real)

Base 10 log (double real)

Multiply a real by 2 raised to integer power

Raise real to extended real power; extended real result
Raise real to integer power

Raise real to real power

Raise real to double real power

Square root (double real)

Raise double real to unsigned power

Raise double real to integer power

Raise double real to real power

Raise double real to double real power

Raise e to extended real power; no error return

Functional Grouping of Library Routines

10-7
10-31
10-17
10-33
10-37
10-38
10-34
10-36
10-19
10-28

10-9
10-10
10-11
10-22
10-13
10-40
10-26
10-14

43
4-4

4-6
4-6
4-7

4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17

4-2

3-78
3-83
3-84
3-85
3-86
3-91
3-96
3-97
3-98
3-105
3-106
3-107
3-108
3-109
3-112
3-120
3-121
3-122
3-123
3-141

1-9

$LOG
$LOGT
$SQRT
%LOG
%LOGT
%QRT
%XP
[EXP
/EXTH
/LOG
/LOGO
/SQRT
ALOG
ALOGT
CEXP
CLOG
CSQRT
DEXP
DLOG
DLOGT
DSQRT
EXP
SQRT

Natural log (extended real); no error return
Base 10 log (extended real); no error return
Square root (extended real); no error return
Natural log (real; call-by-name)

Base 10 log (real; call-by-name)

Square root (real; call-by-name)

Raise e to real power; call-by-name

.EXP with no error return

2**n*2**z (small double real z)

.LOG with no error return

.LOGO with no error return

.SQRT with no error return

Natural log (real)

Base 10 log (real)

Raise e to complex power

Natural log (complex)

Complex square root (complex)

Extended real e (extended real)

Natural log (extended real)

Base 10 log (extended real)

Square root (extended real)

Raise e to real power

Square root (real)

HP 1000/IEEE Floating Point Conversion Subroutines

DFCHI
DFCIH
FCHI
FCIH

HP 1000 double precision to IEEE
IEEE double precision to HP 1000
HP 1000 single precision to IEEE
IEEE single precision to HP 1000

Number Conversion Subroutines

.BLE
.CINT
.CMRS
.CTBL
.DCPX
.DINT
.DTBL
ICPX
.IDBL
AENT
ITBL
.NGL
.PACK
.TCPX
.TDBL
TINT
%FIX
%INT
%LOAT
%NT
/CMRT
/TINT
AINT
AMOD
DBLE
DDINT
DMOD
ENTIE
FLOAT
IDINT

Convert real to double real

Convert complex to integer

Reduce argument for SIN, COS, TAN, EXP

Convert complex real to double real

Convert extended real to complex

Convert extended real to integer

Convert extended real to double real

Convert integer to complex

Convert integer to extended real

Greatest integer no greater than given real x

Convert integer to double real

Convert double real to real

Convert signed mantissa of real into normalized real format
Convert double real to complex real

Convert double real to extended real without rounding
Convert double real to integer

Convert real to integer; call-by-name

Truncate real; call-by-name

Convert integer to real; call-by-name

Truncate real to integer; call-by-name

Range reduction for .SIN, .COS, .TAN, .EXP, and .TANH
Convert double precision to integer

Truncate (real)

x modulo y (real x and y)

Convert real to extended real

Truncate (extended real)

X modulo y (extended real x and y)

Greatest integer not greater than given real

Convert integer to real

Truncate extended real to integer

1-10 Functional Grouping of Library Routines

3-142
3-143
3-144
3-156
3-157
3-162
3-165
3-169
3-170
3-171
3-172
3-174

3-6
3-13
3-14
3-19
3-26
3-28
3-29
3-36
3-41
3-59

—_
—_
o
DN =

3-65
3-71
3-73
3-77
3-79
3-81
3-82
3-92
3-93
3-94
3-95
3-103
3-104
3-116
3-117
3-119
3-151
3-154
3-155
3-158
3-168
3-176
3-4
3-9
3-23
3-25
3-31
3-39
3-42
3-46

IFIX
INT
MOD
SNGL
SNGM
SPOLY

Convert real to integer

Truncate real to integer j

i modulo j (integer i and j)

Convert extended real to real

Convert extended real to real without rounding

Evaluate the quotient of two polynomials in single precision

Real Number Arithmetic Subroutines

..DCM
..DLC
..FCM
..TCM
.DTBL
.FDV
.FLUN
.FMP
.MANT
.MAX1 and .MIN1
.MOD
.SIGN
.TADD
.TDBL
.TDIV
TINT
.TMPY
.TSUB
.XCOM
XDIV
XMPY
XPAK
YINT
%IGN
/ATLG
DSIGN
ENTIX
SIGN

Complement (extended real)

Load and complement (real)

Complement (real)

Negate (double real)

Convert extended real to double real

Real divide

Unpack (real); place exponent in A-Register, lower mantissa in B-Register
Real multiply

Extract mantissa of real x

Find the maximum (or minimum) of a list of double reals
Double real remainder of real divide

Transfer sign of one double real to another

Double real add

Convert double real to extended real with rounding
Double real divide

Convert double real to integer

Double real multiply

Double real subtract

Complement extended real unpacked mantissa in place
Extended real divide

Extended real multiply

Normalize, round, and pack with the exponent an extended real mantissa
Truncate fractional part of double real

Transfer sign of real or integer to real

Compute (1—x)/(1+x) (double precision)

Transfer sign of one extended real to another

Greatest integer no greater than given extended real; result is extended real

Transfer sign of real or integer to real

Trigonometry Subroutines

.ATAN
ATN2
.COS
.SIN
.TAN
.TANH
$TAN
%AN
%ANH
%IN
%08
%TAN
/COS
/SIN
/TAN
ATAN
ATAN2
COoS
CSNCS
DATAN
DATN2
DCOS
DSIN

Arctangent (double real)
Arctangent double real quotient
Cosine (double real)

Sine (double real)

Tangent (double real)

Hyperbolic tangent (double real)
DTAN with no error return
Tangent (real); call-by-name
Hyperbolic tangent (real); call-by-name
Sine (real); call-by-name

Cosine (real); call-by-name
Arctangent (real); call-by-name
.COS with no error return

.SIN with no error return

.TAN with no error return
Arctangent (real)

Arctangent (real)

Cosine (real)

Complex sine or cosine (complex)
Arctangent (extended real)
Arctangent (extended real x, double real y)
Cosine (extended real)

Sine (extended real)

Functional Grouping of Library Routines

3-47
3-48
3-52
3-56
3-57
3-58

3-133
3-134
3-135
3-136

3-82

3-88

3-89

3-90

3-99
3-100
3-101
3-110
3-113
3-117
3-113
3-119
3-113
3-113
3-125
3-126
3-128
3-129
3-131
3-152
3-166

3-34

3-40

3-54

3-63
3-64
3-74
3-111
3-114
3-115
3-145
3-147
3-149
3-153
3-160
3-164
3-167
3-173
3-175
3-10
3-11
3-17
3-18
3-21
3-22
3-24
3-35

1-11

DTAN
DTANH
SIN
TAN
TANH

VIS Subroutines

DVABS
DVADD
DVDIV
DVDOT
DVMAB
DVMAX
DVMIB
DVMIN
DVMOV
DVMPY
DVNRM
DVPIV
DVSAD
DVSDV
DVSMY
DVSSB
DvVSuUB
DVSUM
DVSWP
DVWMV
DWABS
DWADD
DWDIV
DWDOT
DWMAB
DWMAX
DWMIB
DWMIN
DWMOV
DWMPY
DWNRM
DWPIV
DWSAD
DWSDV
DWSMY
DWSSB
DWSUB
DWSUM
DWSWP
DWVMV
VABS
VADD
VDIV
VDOT
VMAB
VMAX
VMIB
VMIN
VMOV
VMPY
VNRM
VPIV
VSAD
VSDV

Tangent (extended real)
Hyperbolic tangent (real)
Sine (real)

Tangent (real)
Hyperbolic tangent (real)

Absolute value routine (double precision)
Vector add (double precision)

Vector divide (double precision)

Vector dot product routine (double real)

Vector largest value (absolute) (double real)
Vector largest value (double real)

Vector smallest value (absolute) (double real)
Vector smallest value (double real)

Vector move routine (double real)

Vector multiply (double real)

Vector sum (absolute) routine (double real)
Vector pivot routine (double real)

Vector-scalar add (double real)

Vector-scalar divide (double real)

Vector-scalar multiply (double real)
Vector-scalar subtract (double real)

Vector subtract (double real)

Vector sum routine (double real)

Vector copy routine (double real)

Vector non-EMA to EMA move routine (EMA double real)
Absolute value routine (EMA double real)
Vector add (EMA double real)

Vector divide (EMA double real)

Vector dot product routine (EMA double real)
Vector largest value (absolute) (EMA double real)
Vector largest value (EMA double real)

Vector smallest value (absolute) (EMA double real)
Vector smallest value (EMA double real)

Vector move routine (EMA double real)

Vector multiply (EMA double real)

Vector sum (absolute) routine (EMA double real)
Vector pivot routine (EMA double real)
Vector-scalar add (EMA double real)
Vector-scalar divide (EMA double real)
Vector-scalar multiply (EMA double real)
Vector-scalar subtract (EMA double real)

Vector subtract (EMA double real)

Vector sum routine (EMA double real)

Vector copy routine (EMA double real)

Vector EMA to non-EMA move routine (double real)
Absolute value routine (single precision)

Vector add (single precision)

Vector divide (single precision)

Vector dot product routine (single precision)
Vector largest value (absolute) (single precision)
Vector largest value (single precision)

Vector smallest value (absolute) (single precision)
Vector smallest value (single precision)

Vector move routine (single precision)

Vector multiply (single precision)

Vector sum (absolute) routine (single precision)
Vector pivot routine (single precision)
Vector-scalar add (single precision)
Vector-scalar divide (single precision)

1-12 Functional Grouping of Library Routines

3-37
3-38
3-55
3-60
3-61

8-13

8-9
8-17
8-20
8-20
8-20
8-20
8-24

8-9
8-14
8-18
8-11
8-11
8-11
8-11

8-14
8-24
8-26
8-13

8-9

8-9
8-17
8-20
8-20
8-20
8-20
8-24

8-9
8-14
8-18
8-11
8-11
8-11
8-11

8-9
8-14
8-24
8-26
8-13

8-9

8-17
8-20
8-20
8-20
8-20
8-24

8-9
8-14
8-18
8-11
8-11

VSMY
VSSB
VSUB
VSUM
VSWP
VWMOV
WABS
WADD
WDIV
WDOT
WMAB
WMAX
WMIB
WMIN
WMOV
WMPY
WNRM
WPIV
WSAD
WSDV
WSMY
WSSB
WSUB
WSUM
WSWP
WVMOV

Vector-scalar multiply (single precision)

Vector-scalar subtract (single precision)

Vector subtract (single precision)

Vector sum routine (single precision)

Vector copy routine (single precision)

Vector non-EMA to EMA move routine (single precision)
Absolute value routine (EMA single precision)

Vector add (EMA single precision)

Vector divide (EMA single precision)

Vector dot product routine (EMA single precision)
Vector largest value (absolute) (EMA single precision)
Vector largest value (EMA single precision)

Vector smallest value (absolute) (EMA single precision)
Vector smallest value (EMA single precision)

Vector move routine (EMA single precision)

Vector multiply (EMA single precision)

Vector sum (absolute) routine (EMA single precision)
Vector pivot routine (EMA single precision)
Vector-scalar add (EMA single precision)

Vector-scalar divide (EMA single precision)
Vector-scalar multiply (EMA single precision)
Vector-scalar subtract (EMA single precision)

Vector subtract (EMA single precision)

Vector sum routine (EMA single precision)

Vector copy routine (EMA single precision)

Vector EMA to non-EMA copy routine (single precision)

Miscellaneous Math Subroutines

..TCM
.CFER
.CHEB
.FLUN
.MANT
TENT
XFER
%AND
%0R
%0T
%SIGN
DPOLY
IAND
IOR
ISIGN
IXOR
XPOLY and .XPLY

Negate (double real)

Move four words from address x to address y (complex transfer)
Evaluate Chebyshev series

Unpack (real); place exponent in A-Register, lower mantissa in B-Register
Extract mantissa of real x

Find the greatest integer i less than or equal to a double real

Move three words from address x to address y (extended real transfer)
Logical product (two integers); call-by-name

Logical inclusive OR (two integers); call-by-name

Complement (integer); call-by-name

Transfer sign of real or integer z to integer i; call-by-name

Evaluate quotient of two polynomials (double precision)

Logical product (two integers)

Logical inclusive OR (two integers)

Transfer sign of real or integer z to integer i

Exclusive OR (integer)

Evaluate extended real polynomial

Functional Grouping of Library Routines

8-11
8-11

89
8-14
8-24
8-26
8-13

89

89
8-17
8-20
8-20
8-20
8-20
8-24

89
8-14
8-18
8-11
8-11
8-11
8-11

89
8-14
8-24
8-26

3-136
3-69
3-70
3-89
3-99

3-118

3-127

3-148

3-159

3-161

3-163
3-32
3-44
3-49
3-50
3-51

3-130

1-13

MULTIUSER

AccessLU Check for LU access 6-2
ATACH Attach calling program to a session 6-3
ATCRT Attach to CRT 6-4
CLGOF Call LOGOF 6-5
CLGON Call LOGON 6-6
DTACH Detach from session 6-7
FromSySession Check system session 6-8
GetAcctinfo Access user and group accounting 6-8
GetOwnerNum Return owner ID 6-10
GetResetInfo Access and clear multiuser account 6-10
GETSN Get session number 6-11
GPNAM Return group name 6-11
GroupTold Return group ID number given group name 6-12
GTERR Return SCB error mnemonic from current Session Control Block prog6-5-48
GTSCB Return contents of the current Session Control Block prog6-5-50
ICAPS Return current session’s capability level prog6-5-51
IdToGroup Return group name given group ID number 6-12
IdToOwner Return user name 6-13
LUSES Return user table address 6-13; prog6-5-52
Member Determine if user is in group 6-13
OwnerTold Return user ID 6-14
ProglsSuper Determine if program is a super program 6-14
PTERR Update error mnemonic in current Session Control Block prog6-5-53
ResetAcctTotals Reset user and group accounting totals 6-15
RTNSN Return session number 6-16
SESSN Determine if calling program is in session prog6-5-54
SessnToOwnerName Return user name 6-16
SetAcctLimits Set user and group accounting limits 6-17
SuperUser Check for or if superuser 6-18
SYCON Write a message to the system console 6-18; prog6-5-79
SystemProcess Check for or if system process 6-19
UserlsSuper Check for or if superuser 6-19
USNAM Return user name 6-19
USNUM Return session number 6-20
VFNAM Verify user name 6-20
PARSING
HpZDParse Parse the next occurring token in the input buffer 12-45
HpZParse Parse routine for 16-character parameters 12-71
INAMR Inverse parse of 10-word parameter buffer generated by NAMR 5-11
INPRS Inverse parse; convert buffer to original ASCII form prog-7-8; prog6-5-74
NAMR Read input buffer, produce 10-word parameter buffer 5-18
PARSE Parse ASCII input buffer prog-7-7; prog6-5-77
SplitCommand Parse a string 7-47
SplitString Parse a string 7-48

PRIVILEGED OPERATION

$LIBR Go privileged (highest level) prog-12-3
$LIBX Resume normal operation after calling $LIBR prog-12-3
DispatchLock Prevent all other user programs from executing prog-12-2
DispatchUnlock Remove lock set by DispatchLock prog-12-2
GOPRV Go privileged; disable normal memory protect mechanism prog-12-1
UNPRV Resume normal operation after calling GOPRV prog-12-1

1-14 Functional Grouping of Library Routines

PROGRAM CONTROL

CHNGPR
EXEC 6
EXEC 7
EXEC 8
EXEC 9
EXEC 10
EXEC 22
EXEC 23
EXEC 24
EXEC 26
EXEC 29
GetFatherldNum

HpLowerCaseName

HpZMesss
IdAddToName
IdAddToNumber
IDCLR

IDGET

IDINFO
IdNumberToAdd
MESSS
MyldAdd
PNAME
ProgramPriority
SEGLD

SEGRT

XQPRG

Change program priority prog-5-4
Stop program execution prog-5-5; prog6-2-50
Suspend program execution prog-5-8; prog6-2-53
Load program overlay prog-5-2; prog6-2-55
Immediate program scheduling with wait prog-5-8; prog6-2-57
Immediate program scheduling without wait prog-5-8; prog6-2-57
Lock program into memory so it cannot be swapped prog-5-13; prog6-2-70
Queue program scheduling with wait prog-5-8; prog6-2-57
Queue program scheduling without wait prog-5-8; prog6-2-57
Return memory limits of the partition of calling program prog-5-14; prog6-2-81
Retrieve ID segment of specified program prog-5-16
Return father ID segment number 7-28
Change the name of the program that calls it to lowercase 12-33
Send a command to the operator interface section of the OS 12-61
Convert ID segment address to program name and LU number 7-30
Convert ID segment address to segment number 7-30
Deallocate ID segment 7-30
Retrieve ID segment of specified program prog-7-14; prog6-5-66
Return ID segment information prog-7-15
Convert ID segment number to segment address 7-31
Process base set commands prog-7-12; prog6-5-75
Return segment address 7-36
Return program name prog-7-14; 5-23

Return program priority 7-38
Load program overlay; allows use of SEGRT and debug prog-5-3; prog6-5-56
Return to main from overlay prog-5-4, prog6-5-59
Load and execute a program prog6-5-82

RESOURCE MANAGEMENT

LIMEM

LuLocked
LURQ

RNRQ
SetPriority
WhoLockedLu
WholLockedRn

SYSTEM STATUS

.OPSY
CPUID
HpRte6
HpRteA
HpZMesss
IFBRK
MESSS
OPSY
Saminfo

Return starting location and size of memory area between end of program

or stack area and end of program partition prog-2-13; prog6-5-68
Report is passed LU is locked 7-36
Give program exclusive access to an I/O device prog-2-8; prog6-5-20
Allocate and manage resource numbers prog-2-1; prog6-5-16

Set the priority of the currently executing program 12-84
Return ID segment address of program that locked LU 7-53
Return ID segment address of program that locked the

specified resource number 7-53
Determine which operating system is in control 5-37
Get CPU identification prog-7-9
Determine if calling program is running on RTE-6/VM 12-34
Determine if calling program is running on RTE-A 12-34
Send a command to the operator interface section of the OS 12-61

Test break flag and clear if set prog-7-11; prog6-5-67
Process base set commands prog-7-12; prog6-5-75
Determine which operating system is in control prog6-5-55
Return number of free words in SAM or XSAM 7-46

Functional Grouping of Library Routines 1-15

TIME OPERATIONS

1-16

DayTime
ElapsedTime
ETime

EXEC 11
EXEC 12
FTIME
GetRteTime
HMSCtoRteTime
InvSeconds
KillTimer
LeapYear
NumericTime
QueryTimer

ResetTimer
RteDateToYrDoy
RteTimeToHMSC
Seconds
SetTimer

SETTM

TIMEF

TIMEI and TIMEO
TimeNow
TMVAL
YrDoyToMonDom
YrDoyToRteDate

Return ASCII time string
Number of milliseconds since last time recorded by ResetTimer
Number of centiseconds since specified base time

Retrieve current time prog-6-1;
Schedule program at specified time interval prog-6-2;
Return ASCII message giving time and date prog-6-7;

Read the system clock in three-word format

Convert Hr-Min-Sec-Centisec to RTE time format

Perform conversion that is the inverse of the Seconds routine
Cancel current timer

Test a given year to see if it is a leap year

Return numeric ASCII time string

Return number of ticks remaining before timer signal is to

be generated

Reset timer used by ElapsedTime routine

Convert from RTE combined year/day format to year and day
Convert centiseconds since midnight to Hr-Min-Sec-Centisec
Convert a time buffer to seconds since January 1, 1970
Establish a new timer or reset an existing timer

Set system time

Format time

Measure difference between time in and time out

Number of seconds since midnight January 1, 1970

Format system time into array of time parameters

Convert year and day of year to day of month, month, and day of week
Convert year and cardinal day to RTE format

prog-6-7;

Functional Grouping of Library Routines

7-21
7-25
7-25
prog6-2-72
prog6-2-63
prog6-5-73
7-29
7-29
7-35
prog-13-27
7-35
7-37

prog-13-27
7-40
7-44
7-46
7-47
prog-13-27
prog6-5-61
7-51
5-27
7-52
prog6-5-80
7-54
7-55

Calling Conventions

This chapter discusses conventions to use when calling or writing subroutines that conform to
calling sequences used by compilers and HP-supplied software. Use of these conventions is
strongly recommended for any general purpose software.

.ENTR Call Sequence (Non-CDS)

The standard calling sequence for non-CDS programs uses a JSB instruction and a (usually
microcoded) subroutine called .ENTR. This calling sequence is produced by FORTRAN and
Pascal in non-CDS mode. Briefly, it uses a list of parameter addresses following the JSB and a
word providing parameter count information. These are copied to the subroutine parameter
pointer area by a .ENTR call:

Cal l er: JSB Sub

DEF Return

DEF paraneterl[, 1]

DEF paraneter?2[, 1]
DEF paranetern[,|]
Return EQU *

Subr out i ne: APar ml BSS
APar n2 BSS

APar m BSS
Sub BSS
JSB . ENTR
DEF “Par nl

R

<Body of subroutine>

JMP Sub, |

This illustrates a call that passes n parameters to a subroutine that expects n parameters. The
instructions must come in the order given; for example, the return point must immediately follow
the last passed parameter, and the entry point and .ENTR call must immediately follow the last
subroutine parameter pointer.

Calling Conventions 2-1

Important points about using .ENTR:

e Indirect addresses are allowed on the parameter addresses, but not on the “DEF return”.
Indirects are resolved before storing the subroutine parameter pointers, so these are always
direct addresses.

e If the number of parameters passed does not match the number expected, then the number of
pointers transferred is equal to the smaller of the passed or expected number of pointers. Any
remaining parameter pointers in the subroutine are left unchanged.

e The entry point is updated with the true return address, even if not all the parameters are
transferred.

e The number of parameters passed or expected can be equal to zero parameters. (The DEF
return is still required to indicate zero parameters expected. The DEF following the . ENTR
points to the entry point in such case.)

e Use this statement for the DEF return to avoid the necessity of assigning new label names for
return addresses:

DEF *+n+1

where n is the number of parameters.

e The A, B, E and O-Registers should be considered indeterminate after the .ENTR call. This
means you should not pass parameters indirectly through A or B. Thus, the following is not

permitted:
JSB SUB
DEF *+2
DEF B, |

.ENTR uses call by reference, that is, it passes the addresses of parameters rather than the
parameters themselves. This works well for FORTRAN or for Pascal VAR parameters. It
simplifies handling parameters that are changed by the subroutine or are several words long
(floating point, and so on). Because it is “pass by reference”, it is possible to change the values of
your constants with a subroutine, so be careful. Note that Pascal implements non-VAR type
parameters by using a .ENTR call followed by code to copy the value of the parameter to a local
variable.

Default Parameters

Because .ENTR does not change the value of parameter pointers that are in excess of the number
of parameters passed, it is possible to provide defaults for parameters not passed. This is done by
initializing the pointers to point to default values. The defaults must be restored after each call in
most cases; this is usually done just before returning. Note that default parameters are not
available in some computers, so if you are concerned with program portability, do not make
extensive use of them. It may be better to use certain key values, such as zeros, to indicate that the
default value of a parameter is desired.

2-2 Calling Conventions

Alternate Returns

Some subroutines use alternate returns to show that the subroutine works. EXEC is the most
notable example of this. It uses a technique called “P+1” return, meaning it returns one location
past where you would normally expect it to. (It does this on no-abort EXEC calls when they don’t
abort.) It is technically possible to have P+2, P+3, and so on, returns, but they are rarely used.
Compilers have difficulty with subroutines that use such P+1 returns. FORTRAN treats EXEC
calls as a special case, and both FORTRAN and Pascal provide Alias mechanisms to generate the
right code to call such routines. The code looks like this:

JSB EXEC

DEF Return

DEF =B100027 : no abort schedul e
DEF nane

Ret urn JVP Abort ed! : return here on error
) : return here if it worked

FORTRAN multiple returns are handled by returning a value in the A-Register that indicates
which of several returns to take; zero means normal return, 1 means the first alternate return, and
SO on.

“Direct” Calls

Some subroutines have a modified .ENTR calling sequence that does not use the DEF return.
This calling sequence is usually called the direct calling sequence. It is not recommended for
general use, but it does appear occasionally, especially when calling routines that are implemented
in microcode on some processors. This method reduces the number of words needed to call a
subroutine, but the disadvantage is that the number of parameters passed must match the exact
number expected or the return address will be incorrect.

Compilers produce direct calling sequences for constructs that require them, such as intrinsics like
.DAD. This calling sequence can also be requested with the Alias directive, but again it is not
recommended. Some library routines like SIN combine direct calling sequences with alternate
returns. The compiler handles such constructs only with difficulty; because they cannot be stepped
over with the symbolic debugger and they reduce the number of ways the subroutines can be used,
they should be avoided. If you must write a routine that has a direct calling sequence, you should
know that the microcoded routine .ENTN (described in the appropriate hardware reference
manual) can be used in place of .ENTR at the subroutine end to make this work. .ENTR will not
do what you want, because there is no DEF return.

Calling Conventions 2-3

PCAL Call Sequence (CDS)

Programs that separate code and data (CDS programs in RTE-A) cannot use the .ENTR calling
sequence, because the JSB instruction does not work with pure code. Instead, these programs use
the PCAL calling sequence. PCAL uses a procedure call stack maintained in the program’s data
segment to hold the return address, parameters and other important information.

The standard PCAL interface, as used in assembly language, is shown below. It is similar to the
.ENTR call in that addresses of the parameters are passed to the subroutine. It differs in that the
called procedure does not do any special processing to retrieve the data or parameters or both; the
parameter addresses just appear automatically on the stack. This example illustrates the simplest
form of PCAL (described in the Macro/1000 Reference Manual, part number 92059-90001), in
which both the calling and called routines are written as CDS modules, and the address of the
subroutine is known when the program is linked.

Cal l er: PCAL Sub,n, 0,0
DEF paraneterl[,|]
DEF paraneter?2[,|]
DEF paranetern[,|]
<return here>

Subr out i ne: RELOC LOCAL
AParml BSS 1
APar n2 BSS 1

AParmm BSS 1
RELOC CODE
Sub DEC fs
<enter here>

EXI T

Sub is the entry point of the procedure to be called. N, the actual argument count, is in the range
0 to 255. The zeros following the parameter count specify the call sequence and PCAL-type; here
they mean standard call sequence, standard PCAL type. The parameter DEFs always point to
locations in the data segment; they can be base relative or indirect (or both). The address will be
resolved to a direct, non-base relative address before being written on the stack.

Fs, the frame size, must include six words for the stack marker, n words for the formal arguments,
and local space used by the procedure.

2-4 Calling Conventions

The Stack

After execution of a PCAL, the called routine has acess to a stack frame of the form:

Q — Stack
Marker

~ parameter1

~ parametern

local
space

Q contains the address of the first word of the (current) stack frame. The location of
~ parameteri is Q + 5 + i; the stack marker uses Q + 0 through Q + 5. The first location for
local space is Q + 5 + n + 1. Local space in the stack frame is not initialized by PCAL.

Character Strings and EMA Variables

The convention of passing a single word address to indicate a parameter works for most cases, but
there are at least two cases that require a different technique: character strings and EMA
variables.

Character string parameters are passed using a string descriptor that indicates where the string is
located and how long it is. Various languages use different string descriptors; the kind that is used
by FORTRAN is a two word descriptor, the first word containing the (fixed) length of the string in
bytes, the second being the byte address of the string. Whenever a character string is passed as a
parameter, the parameter address passed in the subroutine call (either .ENTR or PCAL) is a
pointer to a descriptor. Note that the byte address can specify an odd byte, meaning the string can
start in the middle of a word.

FORTRAN, Pascal, and MACRO can generate calls that refer to parameters in EMA. Because
the reason for having EMA is to handle large data areas, it stands to reason that a 16-bit address
(actually 15, plus an indirect bit) cannot be used as the address. Instead, EMA variables are
passed with a single word pointer to a double word (32-bit) address, which really specifies where
the data item is. Thus one level of indirect resolution is necessary when accessing the 32-bit
address from the called routine.

Calling Conventions 2-5

Microcoded Routines (RPLSs)

Many subroutines are microcoded on some (but not all) processors. These include such constructs
as SIN and TAN, which are included with processors that have hardware floating point support.
LINK handles these routines if they are defined when the program is loaded; the RTE generator
handles them if they are defined when the system is generated. RPL files can also be specified at
load time. Defining these files is usually done by including an RPL file in the system generation
(although it is possible to specify the RPLs at load time); these subroutines are then included with
all programs loaded for this system. Whenever a JSB to a microcoded routine occurs, LINK or the
generator replaces the JSB instruction with the opcode for the desired instruction. The DEFs, and
so on, remain as they are for the software equivalent of the subroutine.

Apart from the differences just described, the rules and recommendations for calling microcoded
routines are the same as for calling software routines.

Fast FORTRAN Processor (FFP)

The HP 1000 E-Series computer is optionally equipped with a Fast FORTRAN Processor (FFP),
while the F-Series computer includes the FFP as a standard feature. The FFP Firmware feature
performs several frequently used FORTRAN operations including parameter passing, array
address calculations, floating point conversion, packing, rounding, and normalization operations.
The A-Series computer is not equipped with FFP; however, it supports a comparable group of
instructions called the language instruction set.

See your computer reference manual to find the list of microcoded subroutines suitable for your
computer.

Routines Callable from FORTRAN

Using FORTRAN, routines are callable as a function or subroutine; examples are ABS(x) and
RMPAR(IBUF), respectively. Routines are callable under the same conditions as Pascal. Refer
to the FORTRAN-77 Reference Manual, part number 92836-90001, for a discussion of
compatibilities between the two languages.

Note Functions called from FORTRAN must have data types declared corresponding
to the return value of the function (that is, Real, Integer, Character and so on).
For example, the DecimalToDint function returns a double word integer, there-
fore DecimalToDint should be declared in a type declaration statement as a
double word integer.

2-6 Calling Conventions

Routines Callable from PASCAL

Using Pascal, routines are callable if the calling sequence is either in the standard calling sequence
format or one of the special calling sequences supported by the compiler. For additional
information, refer to the Pascal/1000 Reference Manual, part number 92833-90005.

Routines that return results in the A-Register, or in the A- and B-Registers, are callable from
Pascal as functions.

Routines that have names containing characters that are not allowed in Pascal identifiers, such as
the leading dot in .RTOI, must have EXTERNAL declarations using the ALIAS compiler option.
For example,

FUNCTI ON power
$ALI AS ' . RTA ', DI RECT, ERROREXI T$
(X REAL; | : | NTEGER) : REAL;
EXTERNAL;

Unless stated otherwise, all parameters documented in this manual are not EMA parameters. In
HEAP 2 programs, the SHEAPPARMS OFF$ compiler option must be given in the EXTERNAL
declaration of routines that do not accept EMA parameters.

The non-CDS calling sequences supported by the Pascal compiler (where n(DEF) represents the
DEF statement repeated n times) are:

1. Standard: JSB routine
DEF *+n+1
n(DEF)
2. Direct: JSB routine
n(DEF)
3. Standard,
ERROREXIT: JSB routine
DEF *+n+1
n(DEF)
JSB PAS. ERROREXI T
4. Direct,
ERROREXIT: JSB routine

n(DEF)
JSB PAS. ERROREXI T

The CDS calling sequences supported by the Pascal compiler are analogous to the non-CDS
calling sequences, using the PCAL instruction rather than JSB.

Routines that have direct calling sequences and/or include an error return must have EXTERNAL
declarations using the DIRECT and/or ERROREXIT compiler option(s). The EXTERNAL
function declaration above is an example of a Direct, ERROREXIT calling sequence.

A routine is not callable from Pascal if it has any other calling sequence. For example, Pascal does
not support passing parameters in registers.

Calling Conventions 2-7

Mathematical Subroutines

This chapter documents subroutines used for mathematical subroutines in programs produced by
the FORTRAN, Pascal, and BASIC compilers. The subroutines can also be called from assembly
language. Many of the subroutines are available as microcoded subroutines; refer to the specific

processor reference manual for more information.

Format of Routines

The subroutines in this chapter are presented in the following format:

Name
Purpose
Entry Points
Assembly

FORTRAN
Pascal
Parameters
Result

Errors

External
References

Notes

The name of the subroutine.
The use of the subroutine.
The entry points to the subroutine.

CEA

The Macro/1000 assembly language calling sequence for each entry point.
and “B” indicate the A- and B-Registers.

A statement on whether or not the subroutine is callable in FORTRAN-77.
A statement on whether or not the subroutine is callable in Pascal.

An explanation of the parameters’ form and value.

The type of result and the registers used (if any) where the result is returned.

A summary of the error conditions reported by the subroutine. Errors gener-
ated by external references are not described. Refer to the FORTRAN 77 Ref-
erence Manual, part number 92836-90001, for a more complete discussion of
error messages.

Other subroutines that are called by the subroutine.

Additional information for using the subroutine.

Mathematical Subroutines 3-1

ABS

Purpose: Calculate the absolute value of a real x.
Entry
Points: ABS
Assembly: DLD x
JSB ABS
<Return> (result in A and B)
FORTRAN: Function: ABS (x)
Pascal: Not callable
Parameters: Parameter Description Type
X argument Real
Result: Real in A and B
Errors: None
External
References: ..FCM, .ZPRV

3-2 Mathematical Subroutines

AIMAG

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Extract the imaginary part of a complex x.

AIMAG

JSB Al MAG

DEF *+2

DEF x

<Return> (result in A and B)

Function: AIMAG (x)

Callable
Parameter Description Type
X Complex Complex
number
Real in A and B
None
.ZPRV

Mathematical Subroutines

3-3

AINT

Purpose: Truncate a real x.
Entry
Points: AINT
Assembly: DLD x
JSB AINT
<Return> (result in A and B)
FORTRAN: Function: AINT (x)
Pascal: Not callable
Parameters: Parameter Description Type
X real to Real
truncate
Result: Real in A and B
Errors: None
External
References: .FAD, .ZPRV

3-4 Mathematical Subroutines

ALOG

Purpose: Calculate the natural logarithm of a real x.
Entry
Points: ALOG
Assembly: DLD x
JSB ALOG

JSB ERRO (error return)
<Return> (result in A and B)

FORTRAN: Function: ALOG (x)

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real

Result: Real in A and B

Errors: x <(0— 02 UN

External

References: .FLUN, FLOAT, .FAD, .FSB, .FDV, .FMP, .ZPRV

Mathematical Subroutines 3-5

ALOGT

Purpose: Calculate the common logarithm (base 10) of a real x.
Entry

Points: ALOGT ALOGO

Assembly: DLD x

JSB ALOGT (or ALOX))
JSB ERRO (error return)
<Return> (result in A and B)

FORTRAN: Function: ALOGT (x)

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real

Result: Real in A and B

Errors: Ifx < 0—= 02 UN

External

References: ALOG, .FMP

3-6 Mathematical Subroutines

AMAX0, MAX0, AMINO, MINO

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:

Errors:

External
References:

Notes:

Calculate the maximum or minimum of a series of integer values.

AMAX0, MAX0, AMINO, MINO

JSB entry point

DEF *+n+1

DEF a

DEF b

DEF n

<Return> (result y in A or A and B)

See Notes.

Callable

Parameter Description Type
a argument Integer
b argument Integer
n arguinent Intéger

Real in A and B for AMAX0 and AMINO
Integer in A for MAX0 and MINO

If the number of parameters is less than 2, result = 0

FLOAT
FORTRAN 7X functions:

AMAXO (a,b,...,n),
MAXO (a,b,...,n),
AMINO (a,b,...,n),
MINO (a,b,...,n)

Mathematical Subroutines

3-7

AMAX1, MAX1, AMIN1, MIN1

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:

Errors:

External
References:

Notes:

Calculate the maximum or minimum of a series of real values.

AMAX1, MAX1, AMIN1, MIN1

JSB Entry Point

DEF *+ n+1

DEF a

DEF b

DEF n

<Return> (result y in A or A and B)

See Notes.

Callable

Parameter Description Type
a argument Real
b argument Real
n arguinent Real

Real in A and B for AMAX1 and AMIN1
Integer in A for MAX1 and MIN1

If the number of parameters is less than 2, result = 0

IFIX, .FSB

1.

Callable as integer or real procedure, but only with a fixed
number of parameters.

FORTRAN 7X functions:

AMAXI (ab,...n),
MAXI (a,b,...,n),
AMIN (a,b....n),
MINTI (ab,...,n).

3-8 Mathematical Subroutines

AMOD

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the real remainder of x/y for a real x and y.

AMOD

JSB AMOD

DEF *+3

DEF x

DEF vy

<Return> (result z in A and B)

Function: AMOD (x,y)

Callable

Parameter Description Type
X 1st argument Real
y 2nd argument Real

Real in A and B

Ify =0,thenz =x

.ENTP, .ZPRYV, AINT, .FDV, .FMP, .FSB

Mathematical Subroutines

3-9

ATAN

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Calculate the arctangent of a real x.

ATAN

DLD x

JSB ATAN

<Return> (result in A and B)
Function: ATAN (x)

Not callable

Parameter Description Type

X argument Real
Real in A and B (radians)

None

.ZPRYV, .FCM, .FAD, .FSB, .FDV, .FMP

Result ranges from —m/2 to mt/2.

3-10 Mathematical Subroutines

ATAN2

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the real arctangent of the quotient of two reals.

ATAN?2

JSB ATAN2

DEF *+3

DEF vy

DEF x

<Return> (result in A and B)

Function: ATAN2 (y,x)

Callable
Parameter Description Type
y dividend Real
X divisor Real
Real in A and B
None

.ENTP, SIGN, ATAN, .ZRNT, .FDV, .FAD

Mathematical Subroutines

3-11

CABS

Purpose: Calculate the real absolute value (modulus) of a complex x.
Entry
Points: CABS
Assembly: JSB CABS
DEF *+2
DEF x

<Return> (result in A and B)

FORTRAN: Function: CABS (x)

Pascal: Callable
Parameters: Parameter Description Type
X argument Complex
Result: Realin A and B
Errors: None
External
References: ABS, .FSB, .FAD, .FDV, .FMP, .ENTP, SORT, .ZRNT

3-12 Mathematical Subroutines

CEXP

Purpose: Calculate the complex exponential of a complex x.
Entry
Points: CEXP
Assembly: JSB CEXP
DEF *+3
DEF y (result)
DEF x

<error return>
<normal return>

FORTRAN: Function: CEXP (x)

Pascal: Callable

Parameters: Parameter Description Type
X argument Complex
y result Complex

Result: Complex

Errors: None

External

References: .ENTP, EXP, .ZRNT, SIN, COS, .FMP

Mathematical Subroutines 3-13

CLOG

Purpose: Calculate the complex natural logarithm of a complex x.
Entry
Points: CLOG
Assembly: JSB CLOG
DEF *+3
DEF y (result)
DEF x

<error return>
<normal return>

FORTRAN: Function: CLOG (x)

Pascal: Callable

Parameters: Parameter Description Type
X argument Complex
y result Complex

Result: Complex

Errors: Ifx =0—= 02 UN

External

References: .ENTP, ALOG, .ZRNT, CABS, ATAN2

3-14 Mathematical Subroutines

CMPLX

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Combine a real x and an imaginary y into a complex z.

CMPLX

JSB CMPLX

DEF *+4

DEF z (result)
DEF x

DEF vy
<Ret ur n>

Function: CMPLX (xy)

Callable

Parameter Description
X real part
y imaginary part
z result

Complex

None

.ENTP, .ZPRV

Type
Real

Real
Complex

Mathematical Subroutines

3-15

CONJG

Purpose: Form the conjugate of a complex x.
Entry
Points: CONJG
Assembly: JSB CONJG
DEF *+3
DEF y (result)
DEF x
<Ret ur n>

FORTRAN: Function: CONJG (x)

Pascal: Callable

Parameters: Parameter Description Type
X argument Complex
y result Complex

Result: Complex

Errors: None

External

References: .ENTP, ..DLC, .ZPRV

3-16 Mathematical Subroutines

COS

Purpose: Calculate the sine or cosine of a real x (radians).
Entry
Points: COS
Assembly: DLD x
JSB COs

Error return
<Return> (result in A and B)

FORTRAN: Function: COS (x)

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real

Result: Real in A and B

Errors: x outside [—8192*n, +8191.75*n] — 050R

External

References: .ZPRYV, .CMRS, . FCM, .FMP, .FAD

Mathematical Subroutines 3-17

CSNCS

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

3-18

Calculate the complex sine or cosine of a complex x.

CSIN, CCOS

JSB CSIN (or CCOS)
DEF *+3

DEF y (result)

DEF x

JSB error routine
<normal return>

Function: CSIN (x) or CCOS (x)

Callable
Parameter Description Type
X argument Complex
y result Complex
Complex
None

.ENTR, SIN, COS, EXP, .FCM

Mathematical Subroutines

CSQRT

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the complex square root of a complex x.

CSQRT

JSB CSQRT

DEF +*3

DEF y (result)
DEF x
<Ret ur n>

Function: CSQRT (x)

Callable
Parameter Description Type
X argument Complex
y result Complex
Complex

Overflow bit is set if result is out of range

.ENTP, .DLC, .CFER, SQRT, CABS, .ZRNT

Mathematical Subroutines

3-19

DABS

Purpose: Calculate the absolute value of an extended real x.
Entry
Points: DABS
Assembly: JSB DABS
DEF *+3
DEF y (result)
DEF x
<Ret ur n>
FORTRAN: Function: DABS (x)
Pascal: Callable
Parameters: Parameter Description Type
X argument Extended Real
y result Extended Real
Result: Extended Real
Errors: None
External
References: .DCM, .DFER, .ENTP, .ZRNT

3-20 Mathematical Subroutines

DATAN

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the extended real arctangent of an extended real x.

DATAN

JSB DATAN

DEF *+3

DEF y (result)
DEF x
<Ret ur n>

Function: DATAN (x)

Callable
Parameter Description Type
X argument Extended Real
y result Extended Real
Extended Real
None

.ZRNT, XADD, .XSUB, .XMPY, .XDIV, .ENTP, . DCM,
.FLUN, .DFER

Mathematical Subroutines

3-21

DATN2

Purpose: Calculate the extended real arctangent of the quotient of two
extended reals.

Entry
Points: DATN, DATA2

Assembly: JSB DATN2 (or DATAZ2)
DEF *+4
DEF z (result)
DEF vy
DEF x
<Ret ur n>

FORTRAN: Function: DATN2 (y,x)

Pascal: Callable
Parameters: Parameter Description Type
X divisor Extended Real
y dividend Extended Real
z result Extended Real
Result: Extended Real
Errors: None
External
References: .ENTP, DSIGN, DATAN, .ZRNT, .XADD, .XDIV, .DFER

3-22 Mathematical Subroutines

DBLE

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Convert a real x to an extended real y.

DBLE

JSB DBLE

DEF *+3

DEF y (result)
DEF x
<Ret ur n>

Function: DBLE (x)
Callable

Parameter Description

X argument
y result

Extended Real

None

.ZPRV

Type
Real
Extended Real

Mathematical Subroutines

3-23

DCOS

Purpose: Calculate the extended real cosine of an extended real x (angle in
radians).
Entry
Points: DCOS
Assembly: JSB DCOS
DEF *+3
DEF y (result)
DEF x
<Ret ur n>

FORTRAN: Function: DCOS (x)

Pascal: Callable

Parameters: Parameter Description Type
X argument in radians ~ Extended Real
y result Extended Real

Result: Extended Real

Errors: None

External

References: .ENTP, DSIN, .ZRNT, . XADD

3-24 Mathematical Subroutines

DDINT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Truncate the fractional part of an extended real.

DDINT

JSB DDI NT

DEF *+3

DEF y (result)
DEF x
<Ret ur n>

Function: DDINT (x)

Callable
Parameter Description Type
X argument Extended Real
y result Integer
Extended Real
None

XADD, .ENTP, .ZRNT, ENTIX

Mathematical Subroutines

3-25

DEXP

Purpose: Calculate the extended real exponential of an extended real x.
Entry
Points: DEXP
Assembly: JSB DEXP
DEF *+3
DEF y (result)
DEF x

<error return>
<normal return>

FORTRAN: Function: DEXP (x)

Pascal: Callable

Parameters: Parameter Description Type
X argument Extended Real
y result Extended Real

Result: Extended Real

Errors: IfeX> (1 — 27392127 — 1 OF

External

References: .ENTP, .XADD, .XSUB, . XMPY, .XDIV, .DFER,

.ZRNT, DDINT, SNGL, IFIX, .FLUN, .XPAK

3-26 Mathematical Subroutines

DIM

Purpose: Calculate the positive difference between a real x and y.
Entry
Points: DIM
Assembly: JSB DIM
DEF *+3
DEF x
DEF vy
<Return> (result in A and B)
FORTRAN: Function: DIM (x,y)
Pascal: Callable
Parameters: Parameter Description Type
X first argument Real
y second argument Real
Result: Real
Errors: None
External
References: .FSB, .ZPRV

Mathematical Subroutines 3-27

DLOG

Purpose: Calculate the extended real natural logarithm of an extended real x.
Entry
Points: DLOG
Assembly: JSB DLOG
DEF *+3
DEF y (result)
DEF x

<error return>
<normal return>

FORTRAN: Function: DLOG (x)

Pascal: Callable

Parameters: Parameter Description Type
X first argument Extended Real
y result Extended Real

Result: Extended Real

Errors: Ifx <= 011 UN

External

References: .ENTP, . XADD, .XSUB, .XMPY, .XDIV, .FSB,

.FLUN, FLOAT, DBLE, .DFER, .ZRNT

3-28 Mathematical Subroutines

DLOGT

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the extended real common logarithm of an extended real x.

DLOGT (DLOGO)

JSB DLOGT (DLOQXD)
DEF *+3

DEF y (result)
DEF x

<error return>
<nornmal return>

Function: DLOGT (x)

Callable
Parameter Description
X argument
y result
Extended Real

Ifx<0— 11UN

.ENTP, DLOG, .XMPY

Type
Extended Real
Extended Real

Mathematical Subroutines

3-29

DMAX1, DMIN1

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Calculate the maximum or minimum of a series of extended real values.

DMAX1, DMIN1

JSB DMAX1 (or DM N1)

DEF *+n+2

DEF y (result)

DEF a

DEF b

iDEF. n

<Ret ur n>

See Notes.

Callable

Parameter Description
a argument
b argument
ﬁ arguinent
y result

Extended Real

Ifn <2, theny = 0.

.XSUB, .DFER

FORTRAN 7X intrinsic functions:

DMAXI (a,bc,....)
DMINT (a,bc,....)

3-30 Mathematical Subroutines

Type
Extended Real
Extended Real

Extendéd Real
Extended Real

DMOD

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the extended real remainder of two extended real values.

DMOD

JSB DMOD

DEF *+4

DEF z (result)
DEF x

DEF vy
<Ret ur n>

Function: DMOD (x,y)

Callable

Parameter Description Type
X first argument Extended Real
y second argument Extended Real
z result Extended Real

Extended Real

Ify =0, thenz = x

.ENTP, . XSUB, .XMPY, .XDIV, DDINT, .ZRNT

Mathematical Subroutines

3-31

DPOLY

Purpose: Evaluate the quotient of two polynomials in double precision.
Entry
Points: DPOLY, TRNL
Assembly: Form 1 Form 2
JSB DPOLY or JSB DPOLY
DEF *+6 CCT <fl ags>
DEF z (result) DEF z (result)
DEF x DEF x
DEF c DEF c
DEF m DMF m
DEF n DEF n
<Ret ur n> <Ret ur n>

FORTRAN: CALL DPOLY (zx,c,m,n)

Pascal: Callable

Parameters: Parameter Description Type
z result Double Real
X argument Double Real
c coefficient list Address
m order of numerator Integer
n order of denominator Integer

Result: Double Real

Errors: None

External

References: .ENTR, .CFER, .TADD, .TSUB, .TMPY, .TDIV, .4ZRO

The two polynomials are defined as follows:
P(x) = Ppx™ 4+ Ppox™~1 + ... + Pix + Py

Qx) =x"+ Qx4+ ... +Qx+ Qp

The coefficient list ¢ is stored sequentially in memory as follows:

Pma Pm—la L] P17 P07 Qn—la Qn—27 st Q17 QO

Qn = 1.0 is implied but not stored.
If n = 0, no coefficients are provided for Q, and only P is evaluated.

The first form of the call evaluates the quotient z = P(x)/Q(x).

3-32 Mathematical Subroutines

FORTRAN uses the first form of the call.

Either form can be called from Assembler. If the second form is used, the format of the flags is as
follows:

Bit15=F
Bit14 =S
Bit 0=T

The following equations can be evaluated by using the second form in Assembler and setting E S,
and T as follows;

F=0 1z = P(x)/Q(x)

F=1,S=0,T =0:z=P(x»)/Q(x2)
F=1,S=0,T=1:z=x*P(x%/Q(x?)
F=1,S=1,T=0:z=Px)/(P(x*) — Q(x?)) (n>0)
F=1,S=1T=1:z=x*Px?/(P(x3) — Q(x?)) (n>0)

The case n = 0 and S = 1 is not allowed.

Any underflow or overflow that occurs invalidates the final result and will set the O-Register. The
O-Register is cleared otherwise. Variable m must be at least one. The A, B, X, Y, and
E-Registers are undefined after the exit from this routine.

Mathematical Subroutines 3-33

DSIGN

Purpose: Transfer the sign of an extended real y to an extended real x.
Entry
Points: DSIGN
Assembly: JSB DSI GN
DEF *+4
DEF z (result)
DEF x
DEF y
<Ret ur n>

FORTRAN: Function: DSIGN (x,y)

Pascal: Callable

Parameters: Parameter Description Type
X first argument Extended Real
y second argument Extended Real
V/ result Extended Real

Result: Extended Real

Errors: Ify=0,z=0

External

References: .DFER, .ENTP, .DMC, .ZRNT

3-34 Mathematical Subroutines

DSIN

Purpose: Calculate the extended real sine of an extended real x (angle in radians).
Entry
Points: DSIN
Assembly: JSB DSI N
DEF *+3
DEF y (result)
DEF x
<Return>
FORTRAN: Function: DSIN (x)
Pascal: Callable
Parameters: Parameter Description Type
X argument Extended Real
y result Extended Real
Result: Extended Real
Errors: None
External
References: .ENTP, ..DCM, XPOLY, .DFER, .XSUB, ENTIX,

XADD, .XMPY, .XDIV, .ZRNT

Mathematical Subroutines 3-35

DSQRT

Purpose: Calculate the extended real square root of an extended real x.
Entry
Points: DSQRT
Assembly: JSB DSQRT
DEF *+3
DEF y (result)
DEF x

<error return>
<normal return>

FORTRAN: Function: DSQRT (x)

Pascal: Callable
Parameters: Parameter Description Type
X argument Extended Real
y result Extended Real
Result: Extended Real
Errors: Ifx <0 —= 03 UN
External
References: .ENTP, DBLE, SNGL, SORT, .XDIV, .XADD, .ZRNT, .XMPY

3-36 Mathematical Subroutines

DTAN

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate tangent of an extended real x.

DTAN

JSB DTAN

DEF *+3

DEF y (result)
DEF x

<error
<nor nal

return>
return>

Function: DTAN (x)

Callable
Parameter Description
X argument
y result
Extended Real

x outside [—8192n,+8191.75x] — 0 OR

Type

Extended Real (radians)
Extended Real

.ENTR, .DFER, . TMPY, .TSUB, .TINT, .ITBL, .XADD, .XMPY,

XDIV, XPOLY

Mathematical Subroutines

3-37

DTANH

Purpose: Calculate hyperbolic tangent of an extended real x.
Entry
Points: DTANH
Assembly: JSB DTANH
DEF *+3
DEF y (result)
DEF x
<Ret ur n>
FORTRAN: Function: DTANH (y,x)
Pascal: Callable
Parameters: Parameter Description Type
X argument Extended Real
y result Extended Real
Result: Extended Real
Errors: None
External
References: .ENTR, .DFER, .XFER, .FLUN, .PWRZ, DEXP, . XADD, .XMPY, .XDIV

3-38 Mathematical Subroutines

ENTIE

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

1. Calculate the greatest integer not algebraically exceeding a real x

(ENTIER).

2. Round a real x to the nearest integer; if half way between two

integers, select the algebraically larger integer ((RND).

ENTIE, .RND

DLD x

JSB . RND (or ENTIE)
<Return> (result in A
Not callable

Not callable

Parameter Description Type

X argument Real
Two Integers: sign in A; Integer in B

See Notes.

None

I f exponent > 15 Then (overfl ow detected)
If (x > 0) Then

A = 077777B
El se
A = 100000B
Endi f
El se
A = Result
Endi f

Mathematical Subroutines

3-39

ENTIX

Purpose: Calculate ENTIER of an extended real x.
Entry
Points: XENT, ENTIX
Assembly: JSB . XENT (or ENTI X)
DEF *+3
DEF y (result)
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable
Parameters: Parameter

X

y
Result: Extended Real
Errors: None
External
References: .ENTP, .ZPRV

3-40 Mathematical Subroutines

Description

argument
result

Type
Extended Real
Extended Real

EXP

Purpose: Calculate e*, where x is real.
Entry
Points: EXP
Assembly: DLD x
JSB EXP

JSB ERRO (error)
<Return> (result in A and B)

FORTRAN: Function: EXP (x)

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real

Result: Real in A and B

Errors: x*logpe = 127 —= 07 OF

External

References: .ZPRYV, .CMRS, . PWRZ, .FMP, .FSB, .FAD, .FDV

Mathematical Subroutines 3-41

FLOAT

Purpose: Convert integer i to a real x.
Entry
Points: FLOAT
Assembly: LDA i
JSB FLOAT

<Return> (result in A and B)

FORTRAN: Function: FLOAT (i)

Pascal: Not callable

Parameters: Parameter Description Type
1 argument Integer

Result: Real in A and B

Errors: None

External

References: .PACK, .ZPRV

3-42 Mathematical Subroutines

IABS

Purpose: Calculate absolute value of integer i.
Entry
Points: IABS
Assembly: LDA i
JSB | ABS
<Return> (result in A
FORTRAN: Function: TABS (i)
Pascal: Not callable
Parameters: Parameter Description Type
1 argument Integer
Result: Integer in A
Errors: See Notes.
External
References: .ZPRV
Notes: If i is (—32768), the result is 32767 and the overflow bit is set.

Mathematical Subroutines 3-43

IAND

Purpose: Take the logical product of integers i and j.
Entry
Points: IAND
Assembly: JSB | AND
DEF i
DEF |
<Return> (result in A
FORTRAN: Function: TAND (i,))
Pascal: Callable using $DIRECT directive
Parameters: Parameter Description Type
1 argument Integer
j argument Integer
Result: Integer in A
Errors: None
External
References: None

3-44 Mathematical Subroutines

IDIM

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Calculate the positive difference between integers i and j.

IDIM

JSB IDIM

DEF *+3

DEF i

DEF |

<Return> (result in A

Function: IDIM (i,j)

Callable
Parameter Description
i argument
j argument

Integer in A

See Notes.

.ZPRV

Type
Integer
Integer

If IDIM(i,j) is out of range, the overflow bit is set and a value of 32767

returned.

Mathematical Subroutines

3-45

IDINT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Truncate an extended real to an integer.

IDINT

JSB | DI NT

DEF *+2

DEF x

<Return> (result in A

Function: IDINT (x)

Callable
Parameter Description Type
X argument Extended Real

Integer in A

If IDINT (x) is out of range, then result = 32767 and the overflow bit is set.

IFIX, .ZPRV, SNGM

3-46 Mathematical Subroutines

IFIX

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Convert a real x to an integer.

IFIX

DLD x

JSB | FI X

<Return> (result in A
Function: IFIX (x)

Not callable

Parameter Description Type
X argument Real

Integer in A (see notes)

None

Nonfloating point library: .FLUN
Floating point library: .ZPRV

1. Any fractional portion of the result is truncated. If the integer portion is

greater than or equal to 215, the result is set to 32767.

2. The routine IFIX exists only in nonfloating point libraries.

Mathematical Subroutines

3-47

INT

Purpose: Truncate a real x to an integer.
Entry
Points: INT
Assembly: DLD x
JSB I NT

<Return> (result in A

FORTRAN: Function: INT (x)

Pascal: Not callable
Parameters: Parameter Description Type
X argument Real
Result: Integer in A
Errors: If INT (x) is out of range, the overflow bit is set. The result is set to 32767.
External
References: IFIX

3-48 Mathematical Subroutines

IOR

Purpose: Take logical inclusive OR of integers i and j.
Entry
Points: IOR
Assembly: JSB | OR
DEF i
DEF j

<Return> (result in A

FORTRAN: Function: IOR (i)

Pascal: Callable using $DIRECT directive

Parameters: Parameter Description Type
1 argument Integer
j argument Integer

Result: Integer in A

Errors: None

External

References: None

Mathematical Subroutines 3-49

ISIGN

Purpose: Calculate the sign of z times the absolute value of i, where z is real or integer
and i is integer.

Entry
Points: ISIGN
Assembly: JSB | SI GN
DEF i
DEF z

<Return> (result in A

FORTRAN: Function: ISIGN (i,z)

Pascal: Callable using $DIRECTS$ directive
Parameters: Parameter Description Type
1 argument Integer
z argument Real or Integer
Result: Integer in A
Errors: None
External
References: .ZPRV

3-50 Mathematical Subroutines

IXOR

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Perform an integer exclusive OR.

IXOR

JSB | XOR

DEF *+3

DEF i

DEF |

<Return> (result in A

Function: IXOR (i)

Callable
Parameter Description
i argument
j argument

Integer in A

None

None

Type
Integer
Integer

Mathematical Subroutines

3-51

MOD

Purpose: Calculate the integer remainder of i/j for integer i and j.
Entry
Points: MOD
Assembly: JSB MOD
DEF *+3
DEF i
DEF j

<Return> (result in A and B)

FORTRAN: Function: MOD (i,j)

Pascal: Callable

Parameters: Parameter Description Type
1 argument Integer
j argument Integer

Result: Integer in A

Errors: If j=0, then result = i

External

References: .ZPRV

3-52 Mathematical Subroutines

REAL

Purpose: Extract the real part of a complex x.
Entry
Points: REAL
Assembly: JSB REAL
DEF *+2
DEF x
<Return> (result in A and B)
FORTRAN: Function: REAL (x)
Pascal: Callable
Parameters: Parameter Description Type
X argument Complex
Result: Real in A and B
Errors: None
External
References: .ZPRV

Mathematical Subroutines 3-53

SIGN

Purpose: Calculate the sign of z times the absolute value of x, where z is real or integer
and x is real.

Entry

Points: SIGN

Assembly: JSB SI GN
DEF x
DEF z

<Return> (result in A and B)

FORTRAN: Function: SIGN (x,z)

Pascal: Callable using $DIRECT directive
Parameters: Parameter Description Type
X argument Real
V4 argument Integer or Real
Result: Real in A and B
Errors: None
External
References: .FCM, .ZPRV

3-54 Mathematical Subroutines

SIN

Purpose: Calculate the sine of a real x (radians).
Entry
Points: SIN
Assembly: DLD x
JSB SI N

Error return
<Return> (result in A and B)

FORTRAN: Function: SIN(x)

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real

Result: Real in A and B

Errors: x outside [—8192m,+8191.75n] —= 050R

External

References: .ZPRYV, .CMRS, . FCM, .FMP, .FAD

Mathematical Subroutines 3-55

SNGL

Purpose: Convert an extended real x to a real y.
Entry
Points: SNGL
Assembly: JSB SNGL
DEF *+2
DEF x

<Return> (result in A and B)

FORTRAN: Function: SNGL (x)

Pascal: Callable
Parameters: Parameter Description Type
X argument Extended Real
Result: Realin A and B
Errors: None
External
References: ZPRV

3-56 Mathematical Subroutines

SNGM

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Convert an extended real x to a real y without rounding.

SNGM

JSB SNGM

DEF *+2

DEF x

<Return> (result in A and B)

Function: SNGM (x)

Callable
Parameter Description Type
X argument Extended Real
Real in A and B

Ify < ABS ((—1 + 2723) * 27128) zero is returned.

.ZPRV

Maximum error will be less than the least significant bit.

Mathematical Subroutines

3-57

SPOLY

Purpose: Evaluate the quotient of two polynomials in single precision real.

Entry
Points: SPOLY

Assembly: JSB SPALY
DEF *+5
DEF x
DEF c
DEF m
DEF n
<Ret ur n>

FORTRAN: Call SPOLY (x,c,m,n)

Pascal: Callable

Parameters: Parameter Description Type
X Argument Real
c Coefficient Address
m Order of numerator Integer
n Order of denominator Integer

Result: Real in A and B

Errors: None

External

References: .ENTR, .FAD, .FDV, .FMP

The two polynomials are defined as follows:
P(x) = Ppx™ + Ppoix™~1 + ... + Pix + Py
Qx) =x"+ Qx> 1+ ... +Qx+ Qp
The coefficient list ¢ is stored sequentially in memory as follows:

Pma Pm—la L] P17 P07 Qn—la Qn—27 st Q17 QO

Qn = 1.0 is implied but not stored.

If n = 0, no coefficients are provided for Q, and only P is evaluated. Otherwise, the call evaluates
the quotient P(x)/Q(x).

Any underflow or overflow that occurs invalidates the final result. M must be at least one. The A,
B, X, Y, and E-Registers are undefined after this routine. The O-Register is set if any underflow
or overflow occurs; otherwise, it is cleared.

Notes: Use DPOLY for speed and accuracy (if it is in microcode). SPOLY is best
used for completion.

3-58 Mathematical Subroutines

SQRT

Purpose: Calculate the square root of a real x.
Entry
Points: SQRT
Assembly: DLD x
JSB SOQRT

JSB ERRO (error)
<Return> (result in A and B)

FORTRAN: Function: SQRT (x)

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real

Result: Real in A and B

Errors: x<(0—= 03 UN

External

References: .ZPRYV, .FLUN, .PWR2, .FMP, .FAD, .FDV

Mathematical Subroutines 3-59

TAN

Purpose: Calculate the tangent of a real x (radians).
Entry
Points: TAN
Assembly: DLD x
JSB TAN

JSB ERRO (error)
<Return> (result in A and B)

FORTRAN: Function: TAN (x)

Pascal: Not callable

Parameters: Parameter Description Type
X argument (radians) Real

Result: Real in A and B

Errors: x outside [—8192m,+8191.75n] —= 09 OR

External

References: .ZPRYV, .CMRS, .FMP, .FAD, .FDV

3-60 Mathematical Subroutines

TANH

Purpose: Calculate the hyperbolic tangent of a real x.
Entry
Points: TANH
Assembly: DLD x
JSB TANH
<Return> (result in A and B)
FORTRAN: Function: TANH (x)
Pascal: Not callable
Parameters: Parameter Description Type
X argument Real
Result: Real in A and B
Errors: None
External
References: .ZPRV, .EXP, .FAD, .FSB, .FDV, .FMP

Mathematical Subroutines 3-61

.ABS

Purpose: Find the absolute value of a double real.
Entry
Points: ABS
Assembly: JSB . ABS
DEF *+3
DEF y (result)
DEF x
<Ret ur n>
FORTRAN: Function: DABS (with Y compiler option)
Pascal: Callable
Parameters: Parameter Description Type
X argument Double Real
y result Double Real
Result: Double Real
Errors: None
External
References: .CFER, . TSUB, 4ZR0O, .ENTR

3-62 Mathematical Subroutines

.ATAN

Purpose: Calculate the inverse tangent of a double real x.
Entry
Points: ATAN
Assembly: JSB . ATAN
DEF *+3
DEF y (result)
DEF x
<Ret ur n>
FORTRAN: Function: DATAN (with Y compiler option)
Pascal: Callable
Parameters: Parameter Description Type
X argument Double Real
y result Double Real
Result: Double Real (radians)
Errors: None
External
References: .ENTR, CRER, TRNC, .TDIV, ..TCM, .FLUN, .TSUB, /ATCG

Mathematical Subroutines 3-63

.ATN2

Purpose: Calculate the arctangent of the quotient x/y of two double real variables x and y.
Entry
Points: ATN2, .ATA2
Assembly: JSB . ATN2
DEF *+4
DEF z (result)
DEF x
DEF y

<error return>
<normal return>

FORTRAN: Function: DATN2 or DATAN2 (with Y compiler option)
Pascal: Callable using SERROREXIT directive
Parameters: Parameter Description Type
X argument Double Real
y argument Double Real
z result Double Real
Result: Double Real (radians)
Errors: x=y=0— 15UN
External
References: .ATAN, .TADD, .TSUB, .TDIV, .ENTR, .4ZRO, .CFER

3-64 Mathematical Subroutines

.BLE

Purpose: Convert real x to double real y.
Entry
Points: .BLE
Assembly: JSB . BLE
DEF *+3
DEF y (result)
DEF x
<Ret ur n>
FORTRAN: Function: DBLE (with Y option)
Pascal: Callable
Parameters: Parameter Description Type
X argument Real
y result Double Real
Result: Double Real
Errors: None
External
References: .ENTR

Mathematical Subroutines 3-65

.CADD

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

3-66

Add complex x to complex y.

.CADD

JSB . CADD

DEF z (result)
DEF x

DEF vy
<Ret ur n>

Callable
Callable using $DIRECT directive

Parameter Description Type
X argument Complex
y argument Complex
z result Complex
Complex

Overflow bit set if result out of range. See Notes.

.ETNC, .ZRNT, .FAD
Example FORTRAN usage:

conpl ex*8 Xcnpl x, Ycnpl x, Rcnpl x
Renpl x = Xcmpl x + Ycnpl x

IF (OVF()) Then
(overfl ow was set,

Endi f

so result was out of

Mathematical Subroutines

range)

.CDBL

Purpose: Extract the real part of a complex x and return it as an extended precision real y.
Entry
Points: .CDBL
Assembly: JSB . CDBL
DEF vy
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive
Parameters: Parameter Description Type
X argument Complex
y result Extended Real
Result: Extended Real
Errors: None
External
References: DBLE

Mathematical Subroutines 3-67

.CDIV

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Divide complex x by complex y.

.CDIV

JSB . CDlV

DEF z (result)
DEF x

DEF vy
<Ret ur n>

Callable
Callable using $DIRECT directive

Parameter Description Type
X argument Complex
y argument Complex
z result Complex
Complex

Overflow bit set if result out of range.

.ZRNT, . ENTC

3-68 Mathematical Subroutines

.CFER

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Move four words from address x to address y. Used to copy a complex x to

complex y.

.CFER

JSB . CFER
DEF vy

DEF x
<Ret ur n>
A
B

Callable

Callable using $DIRECT directive

Parameter

X
y

Complex in y

None

.ZPRV

direct

direct address of (x+4)
address of (y+4)

Description

source
destination

Type
Complex
Complex

Mathematical Subroutines

3-69

.CHEB

Purpose: Evaluate the Chebyshev series at a real x for a particular table of coefficients c.
Entry
Points: .CHEB
Assembly: DLD x
JSB . CHEB

DEF c (table, note 1)
<Return> (result in A and B)

FORTRAN: Not callable

Pascal: Not callable

Result: Real in A and B

Errors: None

External

References: .ZRNT, .FAD, .FMP, .FSB

Notes: Table C consists of a series of real coefficients terminated by an integer zero.

3-70 Mathematical Subroutines

.CINT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Convert the real part of a complex x to an integer.

.CINT

JSB . CI NT

DEF x

<Return> (result in A
Callable

Callable using $DIRECT directive

Parameter Description Type

X argument Complex
Integer in A

None

IFIX

Mathematical Subroutines

3-71

.CMPY

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Multiply a complex x by a complex y.

.CMPY

JSB . C\WPY

DEF z (result)
DEF x

DEF vy
<Ret ur n>

Callable
Callable using $DIRECT directive

Parameter Description Type
X argument Complex
y argument Complex
z result Complex
Complex

Overflow bit set if result out of range.

.ZRNT, . ENTC

3-72 Mathematical Subroutines

.CMRS

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Reduce the argument for SIN, COS, TAN, EXP.

.CMRS

DLD x

JSB . CVRS

DEF C

DEF N

<error return>

<normal return> (Real result in A and B)

Not callable
Not callable

Parameter Description Type
X argument Real
C argument Extended Real
N result Integer

Real and Extended Precision

N outside the range [—215, 21] gives error return.

.ZPRV, XMPY, XSUB, SNGL, IFIX, FLOAT

Mathematical Subroutines

3-73

.COS

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the cosine of double precision x (radians).

.COS

JSB . CCS

DEF *+3

DEF y (result)

DEF x

<error return>

<normal return>

Function: DCOS (with y option)
Callable using SERROREXIT directive

Parameter Description Type
X argument Double Real
y result Double Real
Double Real

x outside [—2%3,223] — 05 OR

.ENTR, /CMRT, DPOLY, ..TCM

3-74 Mathematical Subroutines

.CPM

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

Notes:

Compares two single integer arguments.

.CPM

JSB . CPM

DEF ARGl
DEF ARG2

<Ret ur n>
<Ret ur n>
<Ret ur n>

Not callable
Not callable

Parameter

ARG1
ARG2

None

None

if (ARGL = AR®)

if (ARGL < AR®)

if (ARGL > AR®)
Description Type
argument Integer
argument Integer

Pass arguments or addresses of arguments via A- or B-Registers
(address 0 or 1). This subroutine does not restrict the defined addresses
of arguments 1 and 2.

Mathematical Subroutines

3-75

.CSUB

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Subtract a complex y from a complex x.

.CSUB

JSB . CsSuB

DEF z (result)
DEF x

DEF vy
<Ret ur n>

Callable
Callable using $DIRECT directive

Parameter Description Type
X argument Complex
y argument Complex
z result Complex
Complex

Overflow bit set if result out of range.

.ENTC, .ZRNT

3-76 Mathematical Subroutines

.CTBL

Purpose: Convert the real part of a complex real to a double real.
Entry
Points: .CTBL
Assembly: JSB . CTBL
DEF y (result)
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive

Parameters: Parameter Description Type
X argument Complex
y result Double Real

Result: Double Real

Errors: None

External

References: .BLE

Mathematical Subroutines 3-77

.CTOI

Purpose: Raise a complex x to an integer power 1i.
Entry
Points: .CTOI
Assembly: JSB . CTA
DEF z (result)
DEF x
DEF i

<error return>
<normal return>

FORTRAN: Callable

Pascal: Callable using $DIRECT, SERROREXIT directives

Parameters: Parameter Description Type
X argument Complex
1 exponent Integer
z result Complex

Result: Complex

Errors: x=0,i< 0—> 14 UN

External

References: .CMPY, .CDI1V, .CFER, .ENTC, .ZRNT

3-78 Mathematical Subroutines

.DCPX

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Convert an extended real x to a complex y.

.DCPX
JSB . DCPX
DEF vy

DEF x
<Ret ur n>
Callable

Callable using $DIRECT directive

Parameter Description Type
X argument Extended Real
y result Complex
Complex
None
SNGL, CMPLX

Mathematical Subroutines

3-79

.DFER

Purpose: Extended real transfer.
Entry
Points: .DFER
Assembly: JSB . DFER
DEF vy
DEF x
<Ret ur n>
A = direct address of x+3

B di rect address of y+3

FORTRAN: Callable

Pascal: Callable using $DIRECT directive

Parameters: Parameter Description Type
X source Extended Real
y destination Extended Real

Result: Extended Real

Errors: None

External

References: .ZPRV

3-80 Mathematical Subroutines

.DINT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Convert an extended real x to an integer.

.DINT, .XFTS

JSB . DI NT

DEF x

<Return> (result in A
Callable

Callable using $DIRECT directive

Parameter Description Type
X argument Extended Real

Integer in A

None

SNGM, IFIX, .ZPRV

Mathematical Subroutines

3-81

.DTBL

Purpose: Convert extended real to double real.
Entry
Points: .DTBL
Assembly: JSB . DTBL
DEF y(result)
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive

Parameters: Parameter Description Type
X argument Extended Real
y result Double Real

Result: Double Real

Errors: None

External

References: XFER

3-82 Mathematical Subroutines

.DTOD

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Raise an extended real x to an extended real power y.

.DTOD

JSB . DTCD

DEF z (result)

DEF x

DEF vy

<error return>

<normal return>

Callable
Callable using $DIRECT, SERROREXIT directives

Parameter Description Type
X argument Extended Real
y exponent Extended Real
z result Extended Real
Extended Real
See Notes.

DEXP, DLOG, .XMPY, .DFER, .ENTC, .ZRNT

Xy <0 — (13 UN)
x> (1 —27392127 — (10 OF)

Mathematical Subroutines

3-83

.DTOI

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Raise an extended real x to an integer power i.

.DTOI

JSB . DTA

DEF y (result)

DEF x

DEF i

<error return>

<normal return>

Callable
Callable using $DIRECT, SERROREXIT directives

Parameter Description Type
X argument Extended Real
1 exponent Integer
y result Extended Real
Extended Real

Ifx=0,i < 0—> 12UN

XMPY, .XDIV, .DFER, .ZRNT

3-84 Mathematical Subroutines

.DTOR

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Raise an extended real x to a real power y.

.DTOR

JSB . DTOR

DEF z (result)

DEF x

DEF vy

<error return>

<normal return>

Callable
Callable using $DIRECT, SERROREXIT directives

Parameter Description Type
X argument Extended Real
y exponent Real
z result Extended Real
Extended Real
See Notes.
.DTOD, DBLE
xy <0 — (13 UN)

x> (1 —27392127 — (10 OF)

Mathematical Subroutines

3-85

.EXP

Purpose: Calculate e* where x is double real.
Entry
Points: .EXP
Assembly: JSB . EXP
DEF *+3
DEF z (result)
DEF x

<error return>
<normal return>

FORTRAN: Function: DEXP (x) (with Y option)
Pascal: Callable using SERROREXIT directive
Parameters: Parameter Description Type
X exponent Double Real
y result Double Real
Result: Double Real
Errors: x > 127*LN(2) gives error code 07 OF
External
References: .ENTR, .CFER, 4ZRO, /CMRT, /EXTH
Notes: For x < —129*LN(2), a zero will be returned with no error indication.

3-86 Mathematical Subroutines

.FAD, .FSB

Purpose: .FAD: Add real x toy. .FSB: Subtract real y from x.

Entry

Points: .FAD, .FSB

Assembly: DLD x DLD x
JSB . FAD or JSB . FSB

<Return> (result in A and B) Return (result in A and B)

FORTRAN: Not callable

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real

Result: Real

External

References: .PACK, .ZPRV

Mathematical Subroutines 3-87

.FDV

Purpose: Divide a real x by y.
Entry
Points: FDV
Assembly: DLD x
JSB . FDV
DEF vy

<Return> (quotient in A and B, O set if under/overfl ow)

FORTRAN: Not callable

Pascal: Not callable

Parameters: Parameter Description Type
X dividend Real
y divisor Real

Result: Realin A and B

Errors: None

External

References: .PACK, .ZPRV

3-88 Mathematical Subroutines

.FLUN

Purpose: “Unpack” a real x; place exponent in A, lower part of mantissa in B.
Entry
Points: .FLUN
Assembly: DLD x
JSB . FLUN

<Return> exponent in A lower mantissa in B

FORTRAN: Not callable

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real

Result: Return exponent in A, lower mantissa in B

Errors: None

External

References: .ZPRV

Mathematical Subroutines 3-89

.FMP

Purpose: Multiply a real x by y.
Entry
Points: .FMP
Assembly: DLD y
JSB . FMP
DEF x

<Return> (product in A and B)
FORTRAN: Not callable

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real
y argument Real

Result: Real in A and B

Errors: None

External

References: .PACK, .ZPRV

3-90 Mathematical Subroutines

.FPWR

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:
External

References:

Notes:

Calculate x! for real x and unsigned integer i.

FPWR

LDA i

JSB . FPWR

DEF x

<Return> (result in A and B)

Not callable
Not callable

Parameter Description Type
X argument Real
i exponent Unsigned Integer
Real in A and B
None

.FMP, FLOAT, .FLUN

1. i must be in the range [2,32768]

2. If overflow occurs, the maximum positive number is returned with overflow
set. Overflow is set if underflow occurs.

3. The X- and Y-Registers may be altered.

Mathematical Subroutines 3-91

ACPX

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Convert an integer i to a complex y.

ICPX

LDA i

JSB .| CPX
DEF vy
<Ret ur n>

Not callable
Not callable

Parameter Description Type
i argument Integer
y result Complex
Complex
None

FLOAT, CMPLX

3-92 Mathematical Subroutines

.IDBL

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Convert an integer i to an extended real y.

IDBL, .XFTS

LDA i
JSB .| DBL
DEF vy
<Ret ur n>

Not callable
Not callable

Parameter Description
i argument
y result

Extended Real

None

FLOAT, DBLE

Type
Integer
Extended Real

Mathematical Subroutines

3-93

JENT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the greatest integer not algebraically exceeding a real x.

JENT

DLD x

JSB .| ENT

JSB error routine
<Return> (result in A
Not callable

Not callable

Parameter Description Type

X argument Real
Integer in A

Exponent (x) > 14, user must supply error routine

IFIX, .FLUN, FLOAT, .ZPRV

3-94 Mathematical Subroutines

ATBL

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Convert an integer x to a double real y.

JTBL, .-TFTS
LDA x
JSB .| TBL

DEF y (result)
<Ret ur n>

Not callable
Not callable

Parameter Description
X argument
y result
Double Real
None
.BLE, FLOAT

Type
Integer
Double Real

Mathematical Subroutines

3-95

ATOI

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate i for integer i and j.

ITOI

JSB .1 TA

DEF i

DEF |

JSB ERRO (error return)
<Return> (result in A

Callable
Callable using $DIRECT, SERROREXIT directives

Parameter Description Type
1 argument Integer
j exponent Integer

Integer in A

Overflow if result is greater than 32767

.ZPRV

3-96 Mathematical Subroutines

LOG

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the natural logarithm of a double real x.

.LOG

JSB . LOG

DEF *+3

DEF y (result)

DEF x

<error return>

<normal return>

Function: DLOG (with Y option)
Callable using SERROREXIT directive

Parameter Description Type
X argument Double Real
y result Double Real
Double Real

X <0— 02UN

.ENTR, .CFER, .FLUN, .TADD, .TMPY, TRNL, /ATLG, FLOAT

Mathematical Subroutines

3-97

.LOGO

Purpose: Calculate the common (base 10) logarithm of a double real x.
Entry
Points: .LOGO (.LOGT)
Assembly: JSB . LO&XD (.LOGT)
DEF *+3
DEF y (result)
DEF x

<error return>
<normal return>

FORTRAN: Function: DLOGT (or DLOG10) (with Y option)

Pascal: Callable using SERROREXIT directive

Parameters: Parameter Description Type
X argument Double Real
y result Double Real

Result: Double Real

Errors: x < 0 gives error code 02 UN

External

References: .LOG, .TMPY, .ENTR

3-98 Mathematical Subroutines

.MANT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Extract the mantissa of a real x.

.MANT

DLD x

JSB . MANT

<Return> (result in A and B)
Not callable

Not callable

Parameter Description Type
X argument Real

Real mantissa in A and B

None

.ZPRV

Mathematical Subroutines

3-99

.MAX1, .MIN1

Purpose: Find the maximum (or minimum) of a list of double reals.
Entry
Points: .MAX1, .MIN1
Assembly: JSB . MAX1 or JSB . M N1

DEF *+N+2 DEF *+N+2

DEF z (result) DEF z (result)

DEF a DEF a

DEF b DEF b

DEF n DEF n

<Ret ur n> <Ret ur n>
FORTRAN: Functions: DMIN1 (with y option)

DMAX]I1 (with y option)
DMIN1 (with y option)
Pascal: Callable
Parameters: Parameter Description Type
a,b,...,n argument Double Real
z result Double Real

Result: Double Real
Errors: None
External
References: .CFER, .TSUB, .4ZRO
Notes: 1. If there is only one argument in the list, it is considered to be both the

maximum and minimum of the list.

2. If the list is null, zero is returned.

3-100 Mathematical Subroutines

.MOD

Purpose: Calculate the remainder of x/y, where x, y and result are double reals.
Entry
Points: .MOD
Assembly: JSB . MOD
DEF *+4
DEF z (result)
DEF x
DEF y
<Ret ur n>

FORTRAN: Function: DMOD (x,y) (with y option)

Pascal: Callable
Parameters: Parameter Description Type
X dividend Double Real
y divisor Double Real
z result Double Real
Result: Double Real
Errors: If y = 0 then the result is zero.
External
References: .CFER, .TSUB, .TMPY, .TDIV, .YINT, .ENTR, .4ZRO
Notes: 1. The function .MOD returns x if y=0, or x/y overflows or underflows.

2. If an overflow or underflow occurs elsewhere in the calculation, the result
will be incorrect.

3. No attempt is made to recover precision lost in the subtract.

Mathematical Subroutines 3-101

.MPY

Purpose: Replace the subroutine call with the hardware instruction to multiply integer i
and j.

Entry

Points: .MPY

Assembly: LDA j
JSB . MPY
DEF i

<Return> (result in A and B) (See Notes)

FORTRAN: Not callable

Pascal: Not callable
Parameters: Parameter Description Type
1 argument Integer
j argument Integer
Result: Double Integer in A and B
Errors: None
External
References: .MAC.
Notes: 1. B contains the most significant bits of product; A contains the least

significant bits.

2. Because the subroutine call is replaced by the hardware instruction, the
routine is called only once for each subroutine call.

3-102 Mathematical Subroutines

.NGL

Purpose: Convert double real x to real.
Entry
Points: .NGL
Assembly: JSB . NGL
DEF *+2
DEF x

<Return> (result in A and B)

FORTRAN: Callable

Pascal: Callable
Parameters: Parameter Description Type
X argument Double Real
Result: Real in A and B
Errors: None
External
References: SNGL, .CFER
Notes: The result is rounded unless this would cause overflow. If so, overflow is set and

the result is truncated to the greatest positive number.

Mathematical Subroutines 3-103

.PACK

Purpose: Convert the signed mantissa of a real x into normalized real format.
Entry
Points: .PACK
Assembly: DLD x
JSB . PACK

BSS 1 (exponent)
<Return> (result in A and B)

FORTRAN: Not callable

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real

BSS1 exponent returned Integer

Result: Real in A and B

Errors: None

External

References: .ZPRV

3-104 Mathematical Subroutines

.PWR2

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Multiply a number by 2 to an integer power (x*2").

.PWR2

DLD x

JSB . PV\R2

DEF n

<Return> (result in A and B)

Not callable
Not callable

Parameter Description Type
X argument Real
n exponent Integer
Real in A and B
None
.ZPRV

Mathematical Subroutines

3-105

.RTOD

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

3-106

Raise a real x to a double real power y.

.RTOD

JSB . RTOD

DEF z (result)

DEF x

DEF vy

<error return>

<normal return>
Callable

Callable using $DIRECT, SERROREXIT directives

Parameter

X
y

z
Double Real

See Notes.

.DTOD, DBLE

x=0,y=<0
x<0,y=0
x > (1-2739)2127

Mathematical Subroutines

Description Type
argument Real
exponent Double Real

result Double Real

— (13 UN)

— (13 UN)

— (10 OF)

.RTOI

Purpose: Calculate x! for real x and integer i.
Entry
Points: .RTOI
Assembly: JSB . RTO
DEF x
DEF i
JSB ERRO
<Return> (result in A and B)
FORTRAN: Callable
Pascal: Callable using $DIRECT, SERROREXIT directives
Parameters: Parameter Description Type
X argument Real
i exponent Integer
Result: Real in A and B
Errors: x=0,i<0 — 06 UN
xlil > 2127 — (floating point overflow)
External
References: .FPWR, FDV

Mathematical Subroutines 3-107

.RTOR

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:

Errors:

External
References:

Calculate x¥ for real x and y.

.RTOR

JSB . RTOR

DEF x

DEF vy

JSB ERRO

<Return> (result in A and B)

Callable
Callable using $DIRECT, SERROREXIT directives

Parameter Description Type

X argument Real

y exponent Real
Real in A and B

x<0Oor(x=0andy<0) —>= 04UN
|x*ALOG(x)| > 124 —> 07OF

On error return, the overflow bit is set.

ALOG, EXP, ZRNT, .FMP

3-108 Mathematical Subroutines

.RTOT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Calculate x¥, where x is a real and y is a double real.

.RTOT

JSB . RTOT

DEF z (result)

DEF x

DEF vy

<error return>

<normal return>
Callable

Callable using $DIRECT, SERROREXIT directives

Parameter Description Type
X argument Real
y exponent Double Real
z result Double Real
Double Real
See Notes.
JTTOT

1. Underflow gives a zero result, with no error. Overflow returns the greatest
positive number, sets overflow (cleared otherwise), and gives an error code
of 07 OF.

2. If(x<0)or (x=0andy =< 0), there is an error code of 13 UN.

Mathematical Subroutines 3-109

.SIGN

Purpose: Transfer the sign of a double real y to a double real x.
Entry
Points: SIGN
Assembly: JSB . SI GN
DEF *+4
DEF z (result)
DEF x
DEF y
<Ret ur n>

FORTRAN: Callable

Pascal: Callable
Parameters: Parameter Description Type
X argument Double Real
y argument Double Real
z result Double Real
Result: Double Real
Errors: None
External
References: .CFER, . TSUB, 4ZR0O, .ENTR
Notes: 1. Overflow is set or cleared depending on occurrence. Overflow only occurs if

y = 0 and x is the maximum negative number.

2. SIGN(x,0) = |x|

3-110 Mathematical Subroutines

.SIN

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the sine of double precision x (radians).

SIN

JSB SIN

DEF *+3

DEF y (result)

DEF x

<error return>

<nornmal return>

Function: DSIN (x) (with y option)
Callable using SERROREXIT directive

Parameter Description Type
X argument Double Real
y result Double Real
Double Real

x outside [—2%3,223] — 05 OR

.ENTR, /CMRT, DPOLY, ..TCM

Mathematical Subroutines

3-111

.SQRT

Purpose: Calculate the square root of a double real x.
Entry
Points: SQRT
Assembly: JSB . SQRT
DEF *+3
DEF y (result)
DEF x

<error return>
<normal return>

FORTRAN: Function: DSQRT (x) (with y option)

Pascal: Callable using SERROREXIT directive
Parameters: Parameter Description Type
X argument Double Real
y result Double Real
Result: Double Real
Errors: x < 0 — error code 03 UN
External
References: .ENTR, .CFER, .PWRZ, .TDJV, .XADD, .XDIV, .TADD, .SQRT

3-112 Mathematical Subroutines

.TADD, .TSUB, .TMPY, .TDIV

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:
External

References:

Notes:

Double real arithmetic.

.TADD, .TSUB, .TMPY, .TDIV

JSB . TADD or
DEF z (result z=x+y)

DEF x

DEF y

<Ret ur n>

JSB . TMPY or
DEF z (result z=x*y)

DEF x

DEF y

<Ret ur n>

Callable
Callable using $DIRECT directive

Parameter Description
X argument
y argument
z result
Double Real
None

.FLUN, .XFER, .CFER, FLOAT

JSB . TSUB

DEF z (result z=x-y)

DEF x
DEF y
<Ret ur n>

JSB . TDIV

DEF z (result z=x/y)

DEF x
DEF y
<Ret ur n>

Type

Double Real
Double Real
Double Real

If underflow occurs, zero is returned with overflow set. If overflow or divide by

zero occurs, the largest positive number is returned with overflow set.

Otherwise, overflow is cleared.

Mathematical Subroutines

3-113

.TAN

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Calculate the tangent of a double real x (radians).

.TAN

JSB . TAN

DEF *+3

DEF y (result)

DEF x

<error return>

<normal return>

Function: DTAN (x) (with y option)
Callable using SERROREXIT directive

Parameter Description Type
X argument Double Real
y result Double Real
Double Real

x outside [—223, 23] — OR

.ENTR, /CMRT, TRNL, .TDIV

3-114 Mathematical Subroutines

.TANH

Purpose: Calculate the hyperbolic tangent of a double real x.
Entry
Points: .TANH
Assembly: JSB . TANH
DEF *+3
DEF y (result)
DEF x
<Ret ur n>
FORTRAN: Function: DTANH (x) (with y option)
Pascal: Callable
Parameters: Parameter Description Type
X argument Double Real
y result Double Real
Result: Double Real
Errors: None
External
References: .ENTR, .CFER, .TADD, .TDIV, /CMRT, /JEXTH, .4ZRO

Mathematical Subroutines 3-115

.TCPX

Purpose: Convert a double real x to a complex real y. The second value is set to zero.
Entry
Points: TCPX
Assembly: JSB . TCPX
DEF y (result)
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive
Parameters: Parameter Description Type
X argument Double Real
y result Complex Real
Result: Complex Real
Errors: None
External
References: NGL
Notes: The result is rounded unless this would cause overflow. If so, overflow is set and

the result is truncated to the greatest positive number.

3-116 Mathematical Subroutines

.TDBL

Purpose: Convert double real to extended real without rounding.
Entry
Point: .TDBL
Assembly: JSB . TDBL
DEF y(result)
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive

Parameters: Parameter Description Type
X argument Double Real
y result Extended Real

Result: Double Real

Errors: None

External

References: XPAK, .XFER, .FLUN

Mathematical Subroutines 3-117

.TENT

Purpose:
Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Find the greatest double real i of integer value less than or equal to a double

real (floor x).

.TENT

JSB . TENT

DEF *+3

DEF i (result)
DEF x
<Ret ur n>

Callable
Callable

Parameter Description

X argument
i result

Double Real

None

.FLUN, .ENTR, .CFER

Result is a double real value with no bits set after the binary point.

3-118 Mathematical Subroutines

Type
Double Real
Double Real

.TINT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Convert a double real x to an integer.

TINT, . TEXS
JSB . TINT

DEF x

<Return> (result in A)

Callable

Callable using $DIRECT directive

Parameter

X
Integer in A

None

IFIX

If the argument is outside the range [—215, 21], the result is 21°—1, and

Description

argument

Type
Double Real

overflow is set. Overflow is cleared otherwise.

Mathematical Subroutines

3-119

.TPWR

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:
Errors:
External

References:

Notes:

Calculate xi, where x is a double real and i is an unsigned integer.

TPWR

LDA i

JSB . TPWR

DEF y (result)
DEF x
<Ret ur n>

Not callable
Not callable

Parameter Description Type
i exponent Unsigned Integer
X argument Double Real
y result Double Real
Double Real
None

IMPY, FLOAT, .FLUN, .CFER

1. i must be in the range [2,32768].

2. If overflow occurs, the maximum positive number is returned with overflow
set. Overflow is set if underflow occurs.

3. The X- and Y-Registers may be altered.

3-120 Mathematical Subroutines

.TTOI

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:

Errors:

External
References:

Calculate x' , where x is a double real and i is an integer.

TTOI

JSB . TTA

DEF y (result)

DEF x

DEF i

<error return>

<normal return>

Callable
Callable using $DIRECT, SERROREXIT directives

Parameter Description Type
1 exponent Integer
X argument Double Real
y result Double Real
Double Real

x=0,i<0—> 12UN
xlil = 2127 —— (Floating point overflow)

TPWR, .TDIV, .CFER, 4ZRO

Mathematical Subroutines

3-121

.TTOR

Purpose:
Entry Points:
Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Raise a double real x to a real power y.
.TTOR

JSB . TTOR

DEF z (result)

DEF x

DEF vy

<error return>

<normal return>

Callable
Callable using $DIRECT, SERROREXIT directives

Parameter Description Type
X argument Double Real
y exponent Real
z result Double Real
Double Real
See . TTOT
JTTOT

3-122 Mathematical Subroutines

TTOT

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:
External

References:

Notes:

Calculate x¥ , where x and y are both double reals.

JTTOT

JSB . TTOT

DEF z (result)

DEF x

DEF vy

<error return>

<nornmal return>

Callable
Callable using $DIRECT, SERROREXIT directives

Parameter Description Type
X argument Double Real
y exponent Double Real
z result Double Real
Double Real
See Notes.

.LOG, .EXP, .CFER, .TMPY, 4ZRO

1. Underflow gives a zero result, with no error. Overflow returns no result and

gives an error code of 07 OF.

2. If(x<0)or(x=0andy =< 0), there will be an error code of 13 UN.

Mathematical Subroutines

3-123

.XADD, .XSUB

Purpose: Extended real addition and subtraction.
Entry
Points: XADD, .XSUB
Assembly: JSB (. XADD or . XSUB)
DEF z (result)
DEF x
DEF vy
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive

Parameters: Parameter Description Type
X argument Extended Real
y argument Extended Real
z result Extended Real

Result: Extended Real

External

References: XPAK, ADRES, .ZPRV

3-124 Mathematical Subroutines

XCOM

Purpose:
Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Complement an extended real unpacked mantissa in place. Upon return, the

A-Register = 1 if exponent should be adjusted; otherwise, A = 0.

XCOM

JSB . XCOM

DEF x

ADA (exponent)
STA (exponent)

Callable
Callable using $DIRECT directive

Parameter Description Type
X argument Double Real
Double Real
None
.ZPRV

Mathematical Subroutines

3-125

XDIV

Purpose: Divide an extended real x by an extended real y.
Entry
Points: XDIV
Assembly: JSB . XDI V
DEF z (result)
DEF x
DEF vy
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive

Parameters: Parameter Description Type
X dividend Extended Real
y divisor Extended Real
z result Extended Real

Result: Extended Real

Errors: None

External

References: ZRNT, .XPAK

3-126 Mathematical Subroutines

XFER

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Move three words from address x to address y. Used for extended real

transfers.

XFER

LDA (address x)
LDB (address vy)
JSB . XFER
<Return> (A
(B

di rect address x+3)
di rect address y+3)

Not callable
Not callable
Extended Real

None

.DFER, .ZPRV

Mathematical Subroutines

3-127

XMPY

Purpose: Multiply an extended real x by an extended real y.
Entry
Points: XMPY
Assembly: JSB . XMPY
DEF z (result)
DEF x
DEF vy
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive

Parameters: Parameter Description Type
X argument Extended Real
y argument Extended Real
z result Extended Real

Result: Extended Real

Errors: None

External

References: XPAK, .ZPRV

3-128 Mathematical Subroutines

XPAK

Purpose:
Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Extended precision mantissa is normalized, rounded, and packed with exponent

in place; result is an extended real.

XPAK

LDA exponent

JSB . XPAK

DEF z (3-word mantissa)
<Return> (result in z)
Not callable

Not callable

Parameter Description

z argument
Extended Precision

None

.ZPRV

If the result is outside the range:

[—2128 2127(1-2-39)],
then the overflow bit is set and
z =2127(1-27%).
If the result is within the range:

[_2129(1 + 2—22)’ 2—129]’

then the overflow bit is set and z = 0.

Type
Extended Real

Mathematical Subroutines

3-129

XPLY, XPOLY

Purpose: Evaluate extended real polynomial.
Entry
Points: XPLY, XPOLY
Assembly: JSB . XPLY or XPCLY
DEF *+5

DEF y (result)
DEF n (degree + 1)
X

DEF
DEF ¢ (first elenent of coefficient array)
<Ret ur n>

FORTRAN: Callable

Pascal: Callable

Parameters: Parameter Description Type
y result Extended Real
n degree of Integer

polynomial + 1

X argument Extended Real
c coefficient list Address

Result: Extended Real

Errors: Ifn=<0,y=0

External

References: .ZRNT, .ENTP, . XADD, .XMPY, .DFER

3-130 Mathematical Subroutines

YINT

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Truncate the fractional part of a double real.

JYINT

JSB . YI NT

DEF *+3

DEF y (result)
DEF x
<Ret ur n>

Function: DDINT (with y option)

Callable
Parameter Description Type
X argument Double Real
y result Double Real

Double Real (See Notes)

None

.TENT, .TADD, .ENTR

Result is a double real value with no bits set after the binary point.

Mathematical Subroutines

3-131

..CCM

Purpose: Complement a complex variable x in place.
Entry
Points: .CCM
Assembly: JSB ..CCM
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive
Parameters: Parameter Description Type
X argument Complex
Result: Complex
Errors: None
External
References: .DLC

3-132 Mathematical Subroutines

..DCM

Purpose: Complement an extended real in place.
Entry
Points: .DCM
Assembly: JSB .. DCM
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive
Parameters: Parameter Description Type
X argument Extended Real
Result: Extended Real
Errors: See Notes.
External
References: .ZRNT, .XSUB
Notes: If x is the smallest ne%ative number (—2127), then result is the largest positive
number [(1—223)*2127] and the overflow bit is set.

Mathematical Subroutines 3-133

..DLC

Purpose: Load and complement a real x.
Entry
Points: .DLC
Assembly: JSB ..DLC
DEF x

<Return> (result in A and B)

FORTRAN: Callable

Pascal: Callable using $DIRECT directive

Parameters: Parameter Description Type
X argument Real

Result: Real in A and B

Errors: None

External

References: .ZPRYV, .FSB

3-134 Mathematical Subroutines

..FCM

Purpose: Complement a real x.
Entry
Points: .FCM
Assembly: DLD x
JSB .. FCM

<Return> (result in A and B)

FORTRAN: Not callable

Pascal: Not callable

Parameters: Parameter Description Type
X argument Real

Result: Real in A and B

Errors: None

External

References: .ZRPV, .FSB

Mathematical Subroutines 3-135

..TCM

Purpose: Negate a double real.
Entry
Points: .TCM
Assembly: JSB .. TCM
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable using $DIRECT directive
Parameters: Parameter Description Type
X argument Double Real
Result: Double Real
Errors: None
External
References: .TSUB, .4ZRO
Notes: This routine negates a double real number in ?lace by subtracting it from zero.
If the number is —2127, the result is (1—259)2127 and overflow is set. If the

number is 27129, the result is zero and overflow is clear.

3-136 Mathematical Subroutines

#COS

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to COS.

#COS
JSB #CCS
DEF *+3
DEF vy
DEF x
<Ret ur n>
Callable
Callable
Complex

None

ERRO, .ENTR, CCOS

Mathematical Subroutines

3-137

#EXP

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

3-138 Mathematical Subroutines

Call-by-name entry to CEXP.

#EXP
JSB #EXP
DEF *+3
DEF vy
DEF x
<Ret ur n>
Callable
Callable
Complex

None

ERRO, .ENTR, CEXP

#LOG

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to CLOG.

#LOG
JSB #LOG
DEF *+3
DEF vy
DEF x
<Ret ur n>
Callable
Callable
Complex

None

ERRO, .ENTR, CLOG

Mathematical Subroutines

3-139

#SIN

Purpose: Call-by-name entry to CSIN.
Entry
Points: #SIN
Assembly: JSB #SI N
DEF *+3
DEF vy
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable

Result: Complex

Errors: None

External

References: ERRO, .ENTR, CSIN

3-140 Mathematical Subroutines

$EXP

Purpose: Call-by-name entry to DEXP.
Entry
Points: $SEXP
Assembly: JSB $EXP
DEF *+3
DEF vy
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable

Result: Extended Real

Errors: None

External

References: ERRO, .ENTR, DEXP

Mathematical Subroutines 3-141

$LOG

Purpose: Call-by-name entry to DLOG.
Entry
Points: $LOG
Assembly: JSB $LOG
DEF *+3
DEF vy
DEF x
<Ret ur n>

FORTRAN: Callable

Pascal: Callable

Result: Extended Real

Errors: None

External

References: ERRO, .ENTR, DLOG

3-142 Mathematical Subroutines

SLOGT

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:
Result:
Errors:

External
References:

Call-by-name entry to DLOGT.

$LOGT, $LOGO

JSB $LOGT (or $LOX)
DEF *+3

DEF vy

DEF x

<Ret ur n>

Callable

Callable

Extended Real

None

DLOGT .ENTR, ERRO0

Mathematical Subroutines

3-143

$SQRT

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:
Result:
Errors:

External
References:

Call-by-name entry to DSQRT.

$SORT

JSB $SQRT
DEF *+3
DEF vy

DEF x

<Ret ur n>
Callable
Callable
Extended Real

None

DSQRT, ERRO, .ENTR

3-144 Mathematical Subroutines

$TAN

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

DTAN with no error return.

$TAN

JSB $TAN
DEF *+3
DEF vy
DEF x
<Ret ur n>

Callable
Callable

Extended Real
x outside [—8192r,+8192.75x] —= 09 OR

DTAN, .ENTR

Mathematical Subroutines

3-145

%ABS

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to IABS (i).

%ABS

JSB %ABS

DEF *+2

DEF i

<Return> (result in A
Callable

Callable

Integer in A

None

IABS

3-146 Mathematical Subroutines

%AN

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to TAN (x).

% AN

JSB %AN
DEF *+2
DEF x

<Return> (result

Callable
Callable

Real in A and B

See TAN

TAN, ERRO

in A and B)

Mathematical Subroutines

3-147

%AND

Purpose: Call-by-name entry to calculate the logical AND (product) of the two integers i
and j.
Entry
Points: % AND
Assembly: JSB %AND
DEF *+3
DEF i
DEF |

<Return> (result in A

FORTRAN: Callable

Pascal: Callable
Result: Integer
Errors: None
External

References: None

3-148 Mathematical Subroutines

%ANH

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to TANH (x)

%ANH

JSB %ANH
DEF *+2
DEF x

<Return> (result

Callable
Callable

Real in A and B

None

TANH

in A and B)

Mathematical Subroutines

3-149

%BS

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to ABS (x).

%BS

JSB 8BS

DEF *+2

DEF x

<Return> (result
Callable

Callable

Real in A and B

None

ABS

3-150 Mathematical Subroutines

in A and B)

%FIX

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to IFIX (x).

%FIX

JSB %I X

DEF *+2

DEF x

<Return> (result in A
Callable

Callable

Integer in A

None

IFIX

Mathematical Subroutines

3-151

%IGN

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

3-152 Mathematical Subroutines

Call-by-name entry to SIGN (x,z)

%1IGN

JSB % GN
DEF *+3
DEF x
DEF z

<Return> (result

Callable
Callable
Real

None

SIGN

in A and B)

%IN

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to SIN (x).

%IN

JSB % N
DEF *+2
DEF x

<Return> (result

Callable
Callable

Real in A and B

See SIN

SIN, ERRO

in A and B)

Mathematical Subroutines

3-153

%INT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to AINT (x).

%INT

JSB % NT

DEF *+2

DEF x

<Return> (result
Callable

Callable

Real

None

AINT

3-154 Mathematical Subroutines

in A and B)

%LOAT

Purpose: Call-by-name entry to FLOAT (i).
Entry
Points: % LOAT
Assembly: JSB % OAT
DEF *+2
DEF |

<Return> (result in A and B)

FORTRAN: Callable

Pascal: Callable

Result: Real in A and B
Errors: None

External

References: FLOAT

Mathematical Subroutines 3-155

%LOG

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

3-156 Mathematical Subroutines

Call-by-name entry to ALOG (x).

%1LOG

JSB %.0G
DEF *+2
DEF X

<Return> (result

Callable
Callable

Real in A and B

See ALOG

ALOG, ERRO

in A and B)

%LOGT

Purpose: Call-by-name entry to ALOGT (x).
Entry
Points: %1.OGT, %1L.OGO0
Assembly: JSB %.OGT (or %.0X0)
DEF *+2
DEF x

<Return> (result in A and B)

FORTRAN: Callable

Pascal: Callable

Result: Real

Errors: See ALOGT
External

References: ALOGT, ERRO

Mathematical Subroutines 3-157

%NT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to INT (x).

90NT

JSB 9NT

DEF *+2

DEF x (real)

<Return> (result in A
Callable

Callable

Integer

None

INT

3-158 Mathematical Subroutines

%O0R

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Call-by-name entry to calculate the inclusive OR of two integers, i and j.

%0OR

JSB %R
DEF *+3
DEF i
DEF |

<Return> (result

Callable
Callable
Integer in A

None

None

in A

Mathematical Subroutines

3-159

%0S

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

3-160 Mathematical Subroutines

Call-by-name entry to COS (x).

%0S

JSB %0
DEF *+2
DEF x

<Return> (result

Callable
Callable

Real in A and B

See COS

COS, ERRO

in A and B)

%0T

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Standard call-by-name subroutine for NOT function.

%0T

JSB %OT
DEF *+2
DEF |

<Return> (result

Callable
Callable
Integer in A

None

None

in A

Mathematical Subroutines

3-161

%QRT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

3-162 Mathematical Subroutines

Call-by-name entry to SQRT (x).

%QRT

JSB YQRT
DEF *+2
DEF x

<Return> (result

Callable
Callable

Real in A and B

See SORT

SQRT, ERRO

in A and B)

%SIGN

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:
Result:
Errors:

External
References:

Call-by-name entry to ISIGN (i,z).

%SIGN

JSB %8sl GN

DEF *+3

DEF i

DEF z

<Return> (result in A
Callable

Callable

Integer in A

None

ISIGN

Mathematical Subroutines

3-163

%TAN

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

3-164 Mathematical Subroutines

Call-by-name entry to ATAN (x).

%TAN

JSB 9%GAN
DEF *+2
DEF X

<Return> (result

Callable
Callable

Real in A and B

See ATAN

ATAN, ERRO

in A and B)

%XP

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to EXP (x).

%0XP

JSB 9%XP
DEF *+2
DEF x

<Return> (result

Callable
Callable

Real in A and B

See EXP

EXP, ERRO

in A and B)

Mathematical Subroutines

3-165

/ATLG

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Notes:

Compute (1—x)/(1+x) in double precision.

/ATLG

JSB / ATLG
DEF x

<Ret ur n>
Callable
Callable
Double Real

None

.TADD, .TSUB, .TDIV
1. No error checking is performed.

2. The X- and Y-Registers may be changed.

3-166 Mathematical Subroutines

/COS

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

.COS with no error return

/COS

JSB / COS

DEF *+3

DEF <result>
DEF x

<Ret ur n>
Callable
Callable

Double Real

None

.COS, .ENTR

Mathematical Subroutines

3-167

/CMRT

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:
Result:
Errors:
External

References:

Notes:

Range reduction for .SIN, .COS, .TAN, .EXP, and .TANH.

/CMRT

LDA <fl ag>

JSB / CVRT

DEF <result>

DEF <const ant >

DEF <ar gunent >

<error return>

<normal return> (B-Register contains |east significant
bits of n)

Not callable
Not callable
Double Real

.CFER, .TADD, .TSUB, . TMPY, .PWR?2, .YINT, .FLUN,
IFIX, FLOAT, .FSB, .FAD

1. This routine may alter the X- and Y-Registers.

2. This routine should be used by system programs only.

3-168 Mathematical Subroutines

/EXP

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

.EXP with no error return.

/EXP

JSB / EXP

DEF *+3

DEF <result>
DEF x

<Ret ur n>
Callable
Callable

Double Real

None

.EXP, . ENTR

Mathematical Subroutines

3-169

/EXTH

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Notes:

Compute 2" * 2¥2 or, if n = —32768, then TANH (x).

/EXTH

LDA <n>

JSB / EXTH
DEF <result>
DEF <x>

<Ret ur n>

Not callable

Not callable
Double Real

None

.PWR2, TADD, DPOLY

No error checking is performed. The final exponent will be in error by a
multiple of 128 if overflow or underflow occurs.

3-170 Mathematical Subroutines

/LOG

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

.LOG with no error return.

/LOG

JSB / LOG
DEF *+3

DEF <result>
DEF x

<Ret ur n>
Callable
Callable

Double Real

None

.LOG, .ENTR

Mathematical Subroutines

3-171

/LOGO

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

.LOGQO with no error return.

/LOGO or /[LOGT

JSB /LO&X or [/LOGT
DEF *+3

DEF <result>>

DEF x

<Ret ur n>

Callable

Callable

Double Real

None

.LOGO, .ENTR

3-172 Mathematical Subroutines

/SIN

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Calculate the sine of a double real x with no error return.

/SIN

JSB /SIN
DEF *+3

DEF <result>

DEF x
<Ret ur n>

Callable
Callable
Double Real

None

SIN, .ENTR

Mathematical Subroutines

3-173

/SQRT

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

.SQRT with no error return.

/SQRT

JSB / SQRT
DEF *+3

DEF <result>
DEF x

<Ret ur n>
Callable
Callable

Double Real

None

SQRT, .ENTR

3-174 Mathematical Subroutines

/TAN

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

.TAN with no error return.

/TAN

JSB / TAN

DEF *+3

DEF <result>
DEF x

<Ret ur n>
Callable
Callable

Double Real

None

.TAN, .ENTR

Mathematical Subroutines

3-175

[TINT

Purpose: Conversion of double precision to integer.
Entry
Points: /TINT
Assembly: JSB / TINT
DEF *+2

DEF <ar gunment s>
<Return> (result in A

FORTRAN: Callable as IDINT with y option

Pascal: Callable

Result: Integer in A

Errors: Overflow set if argument outside [—215, 219]
External

References: TFXS, .ENTR

3-176 Mathematical Subroutines

Double Integer Subroutines

This chapter documents additional mathematical subroutines for programs produced by the
FORTRAN, Pascal, and BASIC compilers. The subroutines can also be called from assembly
language. Many of the subroutines are available as microcoded subroutines; refer to the specific
processor reference manual for more information.

Double integer values contained in the A- and B-Registers have the most significant bits in the
A-Register. Values stored in memory require two locations. The operand address in a double
integer instruction points to the first memory location, which contains the most significant bits.

Format of Routines

The subroutines in this chapter are presented in the following format:

Name The name of the subroutine.
Purpose The use of the subroutine.
Entry Points The entry points to the subroutine.

A

Assembly The Macro/1000 assembly language calling sequence for each entry point.
and “B” indicate the A- and B-Registers.

FORTRAN A statement on whether or not the subroutine is callable in FORTRAN-77.
Pascal A statement on whether or not the subroutine is callable in Pascal.
Parameters ~ An explanation of the parameters’ form and value.

Result The type of result and the registers used (if any) where the result is returned.

Errors A summary of the error conditions reported by the subroutine. Errors gener-
ated by external references are not described. Refer to the FORTRAN 77 Ref-
erence Manual, part number 92836-90001, for a more complete discussion of
error messages.

External Other subroutines that are called by the subroutine.
References
Notes Additional information for using the subroutine.

Double Integer Subroutines 4-1

FLTDR

Purpose: Convert a double integer to real.
Entry
Points: FLTDR
Assembly: JSB FLTDR

DEF *+2

DEF x

<Return> (result in A and B)
FORTRAN: Function
Pascal: Not callable
Parameters: Parameter Description Type

X argument Double Integer

Result: Real in A and B
Errors: None
External
References: .FLTD, .ENTR
Notes: Should not be used for numbers exceeding 223 as the conversion may not be

exact for such numbers.

4-2 Double Integer Subroutines

.DADS

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:

Errors:

External

References:

Notes:

Double integer add and subtract.

.DAD, .DSB, .DSBR

DLD x DLD x DLD x
JSB . DAD JSB . DSB JSB . DSBR
DEF vy DEF vy DEF vy

<Return> (results in A and B) ——

Not callable
Not callable

Parameter Description Type

Double Integer
Double Integer

X argument
y argument

Double Integer in A and B

For .DSB, value equals x—y
For .DSBR, value equals y—x

None

None

If overflow occurs, the least significant 32 bits are returned with overflow set.

Overflow is cleared otherwise. E is never cleared, but is set if carry (.DAD) or

borrow (.DSB and .DSBR) occurs.

.DSBR replaces the sequence:

DST tenp JSB . DSBR
DLD x with DEF x

JSB . DSB

DEF tenp

Double Integer Subroutines

4-3

.DCO

Purpose: Compare two double integers.
Entry
Points: .DCO
Assembly: DLD x
JSB . DCO
DEF vy

<Return> (if x=y)
<Return> (if x<y)
<Return> (if x>y)

FORTRAN: Not callable

Pascal: Not callable
Parameters: Parameter Description Type
X argument Double Integer
y argument Double Integer
Result: None
Errors: None
External
References: None
Notes: A, B, E, and O are left unchanged. The compare is correct even if X—Y is not

representable in 32 bits.

4-4 Double Integer Subroutines

.DDE

Purpose: Decrement the double integer in the A- and B-Registers.
Entry
Points: .DDE
Assembly: DLD x
JSB . DDE

<Return> (result in A and B)

FORTRAN: Not callable

Pascal: Not callable
Parameters: Parameter Description Type
X argument Double Integer
Result: Double Integer in A and B
Errors: None
External
References: None
Notes: 1. If the largest negative number is decremented, the largest positive number is

the result, with overflow set. Overflow is cleared otherwise.

2. Eis preserved unless x = 0, in which case it is set.

Double Integer Subroutines 4-5

.DDI, .DDIR

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Result:

Errors:

External

References:

Notes:

Double integer divide.

.DDI, .DDIR

DLD x DLD x

JSB . DDI JSB .DDIR
DEF vy DEF vy

<Return> (result in A and B) <Return> (result in A and B)
Not callable
Not callable

Parameter Description Type
X argument Double Integer
y argument Double Integer
Double Integer in A and B

For .DDI, value equals x/y
For .DDIR, value equals y/x

None
FLOAT

If overflow or divide by zero occurs, the largest positive integer is returned with
overflow set. Overflow is cleared otherwise. E is preserved.

.DDIR is used to replace the sequence:

DST tenp with JSB . DD R
DLD x DEF x

JSB . DDI

DEF tenp

4-6 Double Integer Subroutines

.DDS

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Double integer decrement and skip if zero.

.DDS

JSB . DDS

DEF x

<Return> (if x-1 not equal to 0)
<Return> (if x-1 equal to 0)
Not callable

Not callable

Parameter Description Type
X argument Double Integer

Double Integer

None

None

This routine decrements the double integer x. A, B, E, and O are left

unchanged, except that A and B are changed if the effective address is zero.

Double Integer Subroutines

4-7

.DIN

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:

Errors:

External
References:

Notes:

Increment the double integer in the A- and B-Registers.

.DIN

DLD x

JSB .DIN

<Return> (result in A and B)
Not callable

Not callable

Parameter Description Type
X argument Double Integer

Double Integer in A and B

None

None

If the largest positive number is incremented, the largest negative number is the
result, with overflow set. Overflow is cleared otherwise. E is preserved unless x
= —1, in which case E is set.

4-8 Double Integer Subroutines

.DIS

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:

Parameters:

Result:
Errors:

External
References:

Notes:

Double integer increment and skip if zero.

.DIS

JSB .D'S

DEF x

<Return> (if x+1 not equal to 0)
<Return> (if x+1 equal to 0)
Not callable

Not callable

Parameter Description Type
X argument Double Integer

Double Integer

None

None

This routine increments the double integer x by 1. A, B, E, and O are left

unchanged, except that A and B are changed if the effective address is zero.

Double Integer Subroutines

4-9

.DMP

Purpose: Double integer multiply.
Entry
Points: .DMP
Assembly: DLD X
JSB . DWP
DEF vy

<Return> (result in A and B)

FORTRAN: Not callable

Pascal: Not callable
Parameters: Parameter Description Type
X argument Double Integer
y argument Double Integer
Result: Double Integer in A and B
Errors: None
External
References: None
Notes: If overflow occurs, the largest positive integer is returned with overflow set.

Overflow is cleared otherwise. E is preserved.

4-10 Double Integer Subroutines

.DNG

Purpose: Negate double integer x.
Entry
Points: .DNG
Assembly: DLD x
JSB . DNG

<Return> (result in A and B)

FORTRAN: Not callable

Pascal: Not callable
Parameters: Parameter Description Type
X argument Double Integer

Result: Double Integer in A and B

Errors: None

External

References: None

Notes: If overflow occurs, the argument is returned unchanged and overflow is set.
Overtflow is cleared otherwise. E is preserved unless X = 0, in which case
E=1

Double Integer Subroutines 4-11

.FIXD

Purpose: Convert real to double integer.
Entry
Points: FIXD
Assembly: DLD x
JSB . FI XD

<Return> (result in A and B)

FORTRAN: Not callable

Pascal: Not callable
Parameters: Parameter Description Type
X argument Real
Result: Double Integer in A and B
Errors: None
External
References: .FLUN
Notes: 1. If the argument is outside the range [—231, 231] the result is 231 —1 and

overflow is set. Overflow is cleared otherwise.

2. .FXDE is not a usable entry point. It is referenced by .XFXD and .TFXD.

4-12 Double Integer Subroutines

.FLTD

Purpose: Convert double integer to real.
Entry
Points: .FLTD
Assembly: DLD x
JSB . FLTD

<Return> (result in A and B)

FORTRAN: Not callable

Pascal: Not callable
Parameters: Parameter Description Type
X argument Double Integer
Result: Real in A and B
Errors: None
External
References: XPAK
Notes: If the argument is outside the range [—223, 223], the excess low order bits are

truncated. Positive numbers may become smaller, negative numbers may
become smaller in value (larger in absolute value).

Double Integer Subroutines 4-13

.TFTD

Purpose: Convert a double integer to a double real.
Entry
Points: TFTD
Assembly: DLD x
JSB . TFTD
DEF y (result)
<Ret ur n>

FORTRAN: Not callable

Pascal: Not callable

Parameters: Parameter Description Type
X argument Double Integer
y result Double Real

Result: Double Real

Errors: None

External

References: XPAK

4-14 Double Integer Subroutines

.TFXD

Purpose: Convert a double real to a double integer.
Entry
Points: TFXD
Assembly: JSB . TFXD
DEF x

<Return> (result in A and B)

FORTRAN: Not callable

Pascal: Not callable
Parameters: Parameter Description Type
X argument Double Real
Result: Double Integer in A and B
Errors: None
External
References: .FLUN, .CFER, .FIXD, .FXDE
Notes: If the argument is outside the range [—231, 231] the result is 231—1 and overflow

is set. Overflow is cleared otherwise.

Double Integer Subroutines 4-15

XFTD

Purpose: Convert a double integer to an extended real.
Entry
Points: XFTD
Assembly: DLD x
JSB . XFTD
DEF y (result)
<Ret ur n>

FORTRAN: Not callable

Pascal: Not callable

Parameters: Parameter Description Type
X argument Double Integer
y result Extended Real

Result: Extended Real

Errors: None

External

References: XPAK

4-16 Double Integer Subroutines

XFXD

Purpose: Convert extended real to double integer.
Entry
Points: XFXD
Assembly: JSB . XFXD
DEF x

<Return> (result in A and B)

FORTRAN: Not callable

Pascal: Not callable
Parameters: Parameter Description Type
X argument Extended Real
Result: Double Integer in A and B
Errors: None
External
References: .DTBL, .TFEXD
Notes: If the argument is outside the range [—231, 231, the result is 231 —1 and overflow

is set. Overflow is cleared otherwise.

Double Integer Subroutines 4-17

Utility Subroutines

This chapter describes subroutines that can be used by application programs, as well as some that
can be used by programs produced by compilers. All subroutines can be called from assembly
code; some can also be called from FORTRAN, Pascal, and BASIC.

Format of Routines

The subroutines in Chapters 3 through 5 are presented in the following format:

Name The name of the subroutine.
Purpose The use of the subroutine.
Entry Points The entry points to the subroutine.

b

Assembly The Macro/1000 assembly language calling sequence for each entry point. “
and “B” indicate the A- and B-Registers.

FORTRAN A statement on whether or not the subroutine is callable in FORTRAN-77.

Pascal A statement on whether or not the subroutine is callable in Pascal.

Parameters An explanation of the parameters’ form and value.

Result The type of result and the registers used (if any) where the result is returned.

Errors A summary of the error conditions reported by the subroutine. Errors gener-
ated by external references are not described. Refer to the FORTRAN 77 Ref-

erence Manual, part number 92836-90001, for a more complete discussion of
€ITOr messages.

External Other subroutines that are called by the subroutine.
References
Notes Additional information for using the subroutine.

Utility Subroutines 5-1

ABREG

Purpose: Obtain the contents of the A- and B-Registers from high level languages.
Entry
Points: ABREG
Assembly: JSB ABREG
DEF *+3
DEF | A
DEF |1 B
<Ret ur n>

FORTRAN: CALL ABREG (I A, IB)

| A <— AREG
| B <— BREG
Pascal: Callable
Errors: None
External
References: None

Note that the FORTRAN compiler (as of Revision 5010) recognizes ABREG and emits STA IA
and STB IB instead. IA and IB must be direct addresses (they cannot be subscripted array
elements).

5-2 Utility Subroutines

ERO.E

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Specify the LU for printing library error messages. ERO.E is defaulted to 1.

(See also ERRLU.)

ERO.E
EXT ERO. E

LDA LU
STA ERO. E
<Ret ur n>
Not callable
Not callable

None

None

None

TO CHANGE THE LU, USE TH S CODE

Utility Subroutines

5-3

ERRLU

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:
Result:
Errors:

External
References:

Notes:

Change the LU for printing library error messages.

ERRLU
JSB ERRLU
DEF *+2
DEF NEW.U
Callable
Callable

None

None

ERO.E

If ERRLU is called with a number < 0, the LU is not changed. If the LU is
changed to 0, the system inhibits error printing. (Not recommended.)

5-4 Utility Subroutines

ERRO

Purpose: Print a 4-character error code and a memory address on the logical unit ERO.E.
Entry
Points: ERRO
Assembly: LDA nn
LDB xx
JSB ERRO
<Ret ur n>

FORTRAN: Not callable

Pascal: Not callable

Result: Printed

Errors: None

External

References: REIO, ERO0.E, PNAME

Utility Subroutines 5-5

FTRAP, RTRAP

Purpose: Traps FORTRAN runtime errors to user defined subroutines.
Entry
Points: FTRAP, RTRAP
Assembly: EXT TRAP
EXT FTRAP
JSB FTRAP
DEF *+2
DEF TRAP

<Return> A B,=old TRAP val ue
FORTRAN: Callable

Pascal: External Trap
Cal | FTRAP(TRAP)

Result: For a runtime error control transfers to a user defined subroutine TRAP.
Define TRAP as follows:

SUBROUTI NE TRAP (ABREG, PREG)
| NTEGER ABREQ 2), PREG(2)

TRAP handl i ng code
where:

ABREG is a two-word error code that contains an ASCII
string or number (see below).

PREG(1) is the location of the error (P-Register).

PREG(2) is the code segment number (-1 if error is found
in data space).

The return values are from the stack. The sign bit on the PREG(1) indicates
that the location is not in the current segment. The stack value for the code
segment is from Q+3 and is in the high 8 bits of PREG(2).

Notes: You have two options when your program exits this subroutine. You can either
return to let the detected error get a runtime error message or you can send a
modified runtime error by storing it in ABREG’. (Errors are printed on LU
ERO.E.)

5-6 Utility Subroutines

The TRAP routine receives the following error codes:
Groups 1 and 3 ABREG contains the ASCII string (up to four characters)
from the library subroutine error table in Appendix A of the
FORTRAN 77 Reference Manual.
Group 2 ABREG(1) contains an unconverted number. Refer to the
runtime errors table in Appendix A of the FORTRAN 77
Reference Manual.
where:
Group 1 = the library errors.
Group 2 = the I/O and string errors.
Group 3 = the EOF error.

Standard error handlers using ERRO continue the program after Group 1
errors, setting A=B=0.

Group 2&3 errors normally terminate the program after the error is printed.

Some Group 2&3 errors can be trapped before they get to TRAP by using the
ERR and EOF options of the FORTRAN READ/WRITE statements.

You can change the TRAP address as often as you desire. You may want to
save it on entry to a subroutine, set a different address, and then restore the
old address. (See RTRAP below.)

See RT_ER routine for more details on how to format and print a run-time

error.

Errors: None

External

References: ERO.T
Example:

Ext ernal TRAP
| NTEGER*4 FTRAP, RTRAP,intrap ! RTRAP is the restore
: | TRAP routi ne.
I dd TRAP is saved in
I itrap (a double integer)
! Restore the old TRAP

[t?aszTRAP (trap)

CALL RTRAP (itrap)
Ret urn

Utility Subroutines 5-7

Notes: RTRAP also returns, as a double integer function, the old trap value which can
be restored by a subsequent call to RTRAP.

To turn off traps and return to standard error handling, set the trap to 0 using
RTRAP. Call RTRAP (0J).

EXIT calls are not trapped.
Caution: In CDS programs the TRAP routine, the routine that calls FTRAP, and the

routine that declares TRAP an EXTERNAL must all be in the same space,
either Code or Data.

5-8 Utility Subroutines

GETST

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:
Result:

Errors:

External
References:

See also:

Recovers the parameter string from a programs command string storage area.

GETST
JSB CGETST
DEF RTN
DEF | BUF

DEF | LEN
DEF | LOG

| BUF BSS n

ILEN DEC n

| LOG NOP

Callable

Callable (See appropriate Pascal user’s manual for restrictions.)

None

None

EXEC, .ENTP, .ZPRV
GetRunString (this manual); EXEC 14 (documented in the RTE-A

Programmer’s Reference Manual, part number 92077-90007); RCPAR
(documented in the FORTRAN 77 Reference Manual, part number 92836-90001).

Utility Subroutines 5-9

IGET, IXGET

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Notes:

Allow programs to read the contents of a memory address. IXGET uses the

system map.

IGET IXGET

JSB | GET
DEF *+2
DEF | ADRS

<Return> (results in A)

Callable as a function

Callable

Contents of memory address

None

None

JSB | XGET
DEF *+2
DEF | ADRS

<Return> (results in A)

On IXGET for RTE-A VC+, address refers to data segment not code segment.

5-10 Utility Subroutines

INAMR

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Read a 10-word parameter buffer generated by the NAMR routine and produce
an output buffer delimited by colons.

INAMR

JSB | NAMR

DEF *+5

DEF | PBUF
DEF OUTBUF
DEF LENGTH
DEF | STRC
<Ret ur n>

Callable:

if (I'NAMR (I PBUF, OTBUF, LENGTH, | STRC) .LT. 0) GOTO 10

Callable
IPBUF

is the ten-word input parameter buffer. The ten words are described

as follows:

Word 1 =

Word 2 =

Word 3 =

Word 4 =

Word 5 =

Word 6 =

Word 7 =

Word 8 =

0 if type = 0 (see below);
16-bit number if type = 1; and
chars 1 and 2 if type = 3.

0 if type = 0 or 1;
chars 3 and 4 or trailing space(s) if type = 3.

0 if type = 0 or 1;
chars 5 and 6 or trailing space(s) if type = 3.

Parameter type of all seven parameters in two-bit pairs.
Note the difference between NAMR parameter types, and
those for the system library routine PARSE.

0 = Null parameter.
1 = Integer numeric parameter.
3 = Left justified 6 ASCII character parameter.

First subparameter, is delimited by colons and has
characteristics of word 1.

Second subparameter, is delimited by colons and has
characteristics of word 1.

Third subparameter, is delimited by colons and has
characteristics of word 1.

Fourth subparameter, is delimited by colons and has
characteristics of word 1.

Utility Subroutines 5-11

Word 9 = Fifth subparameter, is delimited by colons and has
characteristics of word 1.

Word 10 = Sixth subparameter, is delimited by colons and has
characteristics of word 1.

OUTBUF is the starting address of output buffer containing the namr to be
passed.

LENGTH is the character length of OUTBUFE.

ISTRC s the starting character number in OUTBUFE. This parameter is
updated for possible next call to INAMR and the start character in
OUTBUE. An empty OUTBUF array should start with ISTART = 0.

Note ISTRC is modified by this routine; it must be passed as a variable (not a con-
stant) from caller (FTN).

Result: INAMR = -1 Insufficient space in buffer.
INAMR = 0 If the character string has been emitted.

Errors: None
External
References: ENTR

5-12 Utility Subroutines

Notes: The following table shows the results returned in OTBUF given the contents of
IPBUFE.
| PBUF W w8 W B wWw W W Vo WLO OTBUF
1 12345 O 0 00001B O 0 0 0 0 0 = 12345,
2 DO UG 00037B DB -10 0 0 0 0 = DQOUG DB: -10,
3 0 0 0 00000B O 0 0 0 0 0=,
4 GE OR GE 00017B A 0 0 0 0 0 = GECRGE A,
5 & AR SE 12517B JB 0 4 -1 1775 -22738 = &PARSE: JB::
4:-1:1775:
—22738,

Sample Program

FTN, L

100

101

200

206

207

PROGRAM t est i

DI MENSI ON i b2(18),i b1(36), i pbuf(100)
CALL RMPAR(i b1)

lu = ibl

IF (luuEQO) lu =1

VWRI TE (I u, 100)

FORVAT ("I nput ASCII nant’s to parse ?")
READ (lu, 101) ibl

FORVAT (36A2)

CALL I TLOX I en)

IF (len. EQ Q) STOP 77

|STRC = 1

NCHRS = 0

| FLGL = NAMR(i pbuf,ibl,len,istrc)

IF (I FLGL. LT.0) WRITE (LU, 206)
FORVAT ("nanr out of data”)

| FLG = | NAMR(i pbuf,ib2, 36, nchrs)

IF (iflg2.1t.0) WRITE (I u, 207)
FORVAT (”inanmr out of buffer”)
IF(iflgl.LT.0.0r.iflg2.LT.0) GO TO 1
CALL EXEC (2,1 u,ib2,—-nchrs)

&0 TO 200

END

Utility Subroutines 5-13

IND.E

Purpose: Used by .INDR and .INDA routines to select output LU for error messages.
Default is 6; a 0 inhibits messages (not recommended).
Entry
Points: IND.E
Assembly: EXT I ND. E
LDA LU
STA IND. E
<Ret ur n>
FORTRAN: Not callable
Pascal: Not callable
Result: None
Errors: None
External
References: None

5-14 Utility Subroutines

ISSR

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Set the CPU S-Register to the value n.

ISSR

JSB | SSR
DEF *+2

DEF n

<Ret ur n>
CALL 1 SSR(n)
Callable

None

None

None

Utility Subroutines

5-15

ISSW

Purpose: Set the sign bit (15) of A-Register equal to bit n of the S-Register.
Entry
Points: ISSW
Assembly: LDA n
JSB | SSW

<Return> (result in A

FORTRAN: Function: ISSW(n)

Pascal: Not callable
Result: Integer in A
Errors: None
External

References: None

5-16 Utility Subroutines

MAGTP

Purpose:
Entry
Points:

Assembly:

FORTRAN:
Pascal:
Result:
Errors:

External
References:

Performs utility functions on magnetic tape and other devices: checks status,
performs rewind/standby, writes a gap, and issues a clear request.

IEOF, IERR, IEOT, ISOT, LOCAL,RWSTB

The calling sequence and purpose of each entry point is:

JSB | ECF
DEF *+2

DEF unit
Ret urn

JSB | ERR
DEF *+2

DEF unit
Ret urn

JSB | EOCT
DEF *+2

DEF unit
Ret urn

JSB | SOT
DEF *+2

DEF unit
Ret urn

JSB LOCAL
DEF *+2
DEF unit
Ret urn

JSB RWSTB
DEF *+2
DEF unit
<Ret ur n>

Returns a negative value in A if an end-of-file was
encountered during last tape operation on the
logical unit specified.

Returns a negative value in A if a parity or timing
error was not cleared after three read attempts
during the last operation on the specified unit
(cannot occur if EOF occurs).

Returns a negative value in A if an end-of-tape was
encountered during the last forward movement of the
specified unit.

Returns a negative value in A if the start-of-tape
marker is under the tape head of the specified unit.

Returns a negative value in A if the specified unit
is in local mode.

Rewinds the specified logical unit and sets it to LOCAL.

Callable as a subroutine

Callable

Not applicable

Returns on illegal call

.ENTR, EXEC

Utility Subroutines

5-17

NAMR

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Parameters:

Read an input buffer of any length, parse the buffer delimited by colons as in a
file namr, and produce a parameter buffer of 10 words.

NAMR

JSB NAWMR
DEF *+5
DEF | PBUF
DEF | NBUF
DEF LENGTH
DEF | STRC
<Ret ur n>

Callable:
If (NAMR (I PBUF, | NBUF, LENGTH, | STRC) .LT. 0) GOTo 10

Callable

IPBUF is the 10-word destination parameter buffer. The ten words are
described as follows:

Word 1 = 0 if type = 0 (see below);
16-bit number if type = 1; and
chars 1 and 2 if type = 3.

Word 2 = 0 if type = O or 1;
chars 3 and 4 or trailing space(s) if type = 3.

Word 3 = 0 if type = O or 1;
chars 5 and 6 or trailing space(s) if type = 3.

Word 4 = Parameter type of all seven parameters in two-bit pairs.
Note the difference between INAMR parameter types and
those for the system library routine PARSE.

0 = Null parameter.
1 = Integer numeric parameter.
3 = Left justified 6 ASCII-character parameter.

Bits for FNAME : P1:P2:P3:P4:P5:Po6,
0,1 2345 6,7 89 10,11 12,13

Word 5 = First subparameter, is delimited by colons and has
characteristics of word 1.

Word 6 = Second subparameter, is delimited by colons and has
characteristics of word 1.

Word 7 = Third subparameter, is delimited by colons and has
characteristics of word 1.

5-18 Utility Subroutines

Word 8 = Fourth subparameter, is delimited by colons and has
characteristics of word 1.

Word 9 = Fifth subparameter, is delimited by colons and has
characteristics of word 1.

Word 10 = Sixth subparameter, is delimited by colons and has
characteristics of word 1.

INBUF s the starting address of input buffer containing the namr to be
parsed.

LENGTH is the number of characters in INBUFE

ISTRC s the starting character number in INBUFE. This parameter is
updated for possible next call to NAMR and the start character
in INBUE

Note ISTRC is modified by this routine; it must be passed as a variable (not a con-
stant) from caller (FTN).
Result: NAMR = -1 If no characters are in INBUE
NAMR = 0 If the character string has been parsed. (See Note.)
Errors: None
External
References: .ENTR

Utility Subroutines

5-19

Notes: Examples that can be parsed by successive calls to NAMR:

+12345, DOUG DB: -12B:,, GEORCE: A, &PARSE: JB: : 4: —-1: 1775: 123456B

where:
NAMRE W = W VB Ww w W W V8 o WL0
1 12345 0 0 00001B O 0 0 0 0
2 DO UG 00037B DB -10 0 0 0 0
3 0 0 0 00000B O 0 0 0 0 0
4 GE OR GE 00017B A 0 0 0 0 0
5 & AR SE 12517B JB 0 4 -1 1775 -22738
Sample Program
FTN7X, L
PROGRAM t est n
DI MENSI ON i b(36), i pbuf(10)
VWRI TE(1, ("I nput ASCIlI nanrs to parse?”)’)
CALL EXEC(1, 401B,i b, -72)
CALL ABRE(a, | en)
iscr =1
DO i =1, 10
I F (nanr (ipbuf,ib,len,iscr) .LT. 0) GOTO 999
WRI TE(1, 220) iscr, ipbuf, ipbuf
END DO
220 FORVAT(” "/13,10(X, 16)/” "3A2,7(X, 06))
999 STOP
END

See also HpZParse and HpZDParse.

5-20 Utility Subroutines

OVF

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Notes:

Return value of overflow bit in bit 15 of the A-Register and clear the overflow

bit.

OVF

JSB OVF
DEF RTN

<Return> (result

Callable (see Notes)

Callable
Integer in A

None

None

Logi cal *2 OVF
IF (OVF()) Then
overfl ow was set

Endi f

FORTRAN does not clear the overflow register, so before using this routine to
test for overflow, it should be called prior to the code which may set overflow,

unless that code will also clear it. (Refer to your CPU reference manual’s
description for the instructions involved.)

Note also that the single precision integer MPY instruction never sets overflow,

(but returns a *4 integer); nor does the compiler check for overflow when it
truncates *4 integers to *2 integers.

Utility Subroutines

5-21

PAU.E

Purpose: Used by .PAUS and .STOP routines to select LU on which to output pause
message. Default is LU 1; a 0 inhibits message (not recommended).
Entry
Points: PAU.E
Assembly: EXT PAU. E
LDA LU
STA PAU. E
<Ret ur n>
FORTRAN: Not callable
Pascal: Not callable
Result: None
Errors: None
External
References: None

5-22 Utility Subroutines

PNAME

Purpose:
Entry
Points:

Assembly:

FORTRAN:
Pascal:
Result:
Errors:

External
References:

Notes:

100 FORMVAT (”

Copies the runtime name of the currently executing program from the

program’s ID segment to a three word array.

PNAME
JSB PNAME
DEF *+2

DEF | ARAY
— <Return>

| ARAY BSS 3
CALL PNAME (| ARAY)
Callable

ASCII characters

None

.ENTR, $OPSY
The sixth character is returned as an ASCII space.
Sample Program

PROGRAM pr nam

DI MENSI ON i aray(3)

CALL PNAME (i aray)

WRI TE (1, 100) iaray

Program ", 3A2, "executing”)
STOP

END

Utility Subroutines

5-23

PTAPE

Purpose: Position a magnetic tape unit by spacing forward or backward a number of files
and/or records.

Entry
Points: PTAPE
Assembly: JSB PTAPE
DEF *+4
DEF | ogical wunit
DEF file count (see notes)
DEF record count (see notes)
<Ret ur n>
For example:
0 = Make no file movements.
—1 = Backspace to the beginning of the current file.
1 = Forward space to the beginning of the next file.
—2 = Backspace to the beginning of the previous file.
Record count: Positive for forward, negative for backward.
The file count is executed first, then the record
count EOF marks count as a record.
For example:
0,—1 = Move back one record.
—1,0 = Backspace to the first record of the current file.
See Notes.
FORTRAN: CALL PTAPE (LU, file count,record count)
Pascal: Callable
Result: None
Errors: None
External
References: EXEC, .ENTR
Notes: After using PTAPE, always check status with MAGTP.

5-24 Utility Subroutines

RMPAR

Purpose:

Entry
Points:

Assembly:

FORTRAN:
Pascal:
Result:
Errors:

External
References:

Notes:

Move five parameters from the program’s ID segment into a buffer within the
program memory space. Used to retrieve up to five parameters passed to a
program by the operating system (see Notes).

RMPAR

Suspend call or program entry point
JSB RVPAR

DEF *+2

DEF ARRAY

— <Return>

ARRAY BSS 5
Callable
Callable
Integer

None

$OPSY

1. The operating system inserts parameters into a program’s ID segment as a
result of:

a. ON, GO, and other functions in RTE (refer to the appropriate RTE
manual for other functions of this call).

b. Program execution of an EXEC schedule call.

2. The RMPAR call must occur before any EXEC call or other subroutine call
that calls EXEC.

3. Also used to retrieve parameters after a son program terminates, and to get
the extended status following I/O calls. Refer to the RTE-A or RTE-6/VM
Programmer’s Reference Manual.

Example

FTN7X, L
PROGRAM t est
DI MENSI ON i buf (5)
CALL RMPAR (i buf)
or
PAUSE
CALL RMPAR (i buf)

See also EXEC 14 and PRTN in Programmer’s Reference Manual, and
GetRunString in this manual.

Utility Subroutines 5-25

RT_ER

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Result:

Errors:

External
References:

To format and print a run-time error.

RT ER

CALL RT_ER (ABREG, PREG)
or
CALL RT_ER (ABREG)

Use the second form to print a run-time error from the current location. See
FTRAP for contents of ABREG and PREG.

Callable

Prints a ‘RUN TIME’ error message on ‘ER0.E’. Refer to Appendix A of the
FORTRAN 77 Reference Manual for the message format.

See FTRAP, RTRAP for details.

CDS Version: .ENTR, ER0.T, 'ERR0O, CODE ©~ DATA_ENTN
Non-CDS Version: .ENTR, ER0.V, ER0.C, PNAME, EXEC, ER0.E

5-26 Utility Subroutines

TIMEI, TIMEO

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Result:

Errors:

External
References:

Notes:

These two subroutines measure the accumulated differences between the
time-in and timeout calls.

TM.IN, TM.OU, TIMEI, TIMEO

JSB TM I N

DEF TMARY

<Return> (Al registers preserved)

: I routine to be timed goes here
JSB TM QU
DEF TMARY
<Return> (Al registers preserved)

TMARY DEC 0,0, 0,0, 0

| NTEGER *4 TMARY(3)
TMARY(1) =0J
CALL TI MEI (TMARY)

: I routine to be timed goes here
CALL TI MEQ(TMARY)
Callable

After each set of calls the first element of TMARY, a two word integer time
array, advances by the number of 10’s of milliseconds between the two calls.

None

.ENTR, $TIME

You may call these sets of calls as often as you like, but you should call them in
the order given. By specifying different “TMARY” arrays, you can keep time on
several events at once.

Assembly calls preserve all registers; FORTRAN calls do not.

See the ElapsedTime, ETime, ResetTimer, and TIMEF routines in Chapter 7 of
this manual.

Utility Subroutines 5-27

.ENTC and .ENTN

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Notes:

Transfer the true address of parameters from a calling sequence into a
subroutine and adjust return addresses to the true return point.

.ENTC, ENTN

. ENTN sanme as . ENTR
. ENTC sane as .ENTP
Callable

Callable

Address

None

ZPRV
This routine assumes the subroutine call is of the form:

JSB SUB
DEF p; (first parameter)

iDEF Pm

The number of parameter addresses actually passed by the calling routine must
agree with the number requested by the receiving routine.

See the .ENTR and .ENTP writeups for calling conventions.

5-28 Utility Subroutines

.ENTP and .ENTR

Purpose: Transfer the true addresses of the parameters from a calling sequence into a

subroutine; adjust return address to the true return point.

Entry
Points: .ENTP, . ENTR
Assembly: For all utility routines:

EXT . ENTR

PARAML NOP
PARAM? NOP

PARAM NOP

SUB NOP
JSB . ENTR
DEE PARAML
<Return Pt>
LDA PARAML

LDB @PARAMR

STA @ARAND
IWP @BUB

Get the address of a parameter

Get the value of a parameter

Pass back a value

Exit the subroutine

Utility Subroutines

5-29

For all privileged routines:

P1 NOP
P2 NOP
P3 NOP
Pn NOP
PSUB NOP
JSB $LIBR
OCT 0
JSB . ENTP
DEF P1

Privileged code

JSB $LI BX
DEF PSUB
For all reentrant routines:

TDB NOP
ABS Q+N+3

RETURN NOP

Svi NOP

SV2 NOP

SV3 NOP

SVg NOP

P1 NOP

P2 NOP

P3 NOP

Pn NOP

RSUB NOP
JSB . ZRNT
DEF EXIT
JSB . ENTP
DEF P1
STA RETURN

EXIT JMP @RETURN
DEF TDB
DEC O

5-30 Utility Subroutines

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Notes:

Callable
Callable
Address

None

.ZPRV

1. The true parameter address is determined by eliminating all indirect
references.

2. .ENTR and .ENTP assume the subroutine call is of the form:

JSB SUB
DEF *+mtl (m = number of parameters)
DEF P1

iDEF Pm

If m > n, then n parameters are passed. If n > m, then m parameters are
passed, and any parameter addresses not passed remain as they were from
the previous call.

3. “PARAM BSS n” must appear immediately before the subroutine entry
point “SUB NOP”. The entry point is set to the return address
(DEF *+m+1). “JSB .ENTR” must be the first instruction after the
subroutine entry point. “JSB .ENTP” must be the third instruction after the
subroutine entry point.

Utility Subroutines 5-31

.FMUI, .FMUO, .FMUP

.FMUI contains three entry points corresponding to three conversion

procedures in the FORTRAN formatter:

Purpose:
JFMUI
JFMUO
JFMUP
Entry
Points: .FMUI, FMUO,
Assembly: JSB . FMUI
DEF *+8

DEF <buffer>
DEF <bufsi z>
DEF <si gn>
DEF <exp>
DEF <result>
DEF <type>
DEF <ovfl >

<Ret ur n>

JSB . FMJO
DEF *+7

DEF <buffer>
DEF <bufsi z>
DEF <si gn>
DEF <exp>
DEF <val ue>
DEF <type>
<Ret ur n>

JSB . FMUP
DEF *+5

DEF <result>
DEF <type>
DEF <unpkd>
DEF <ovfl >

<Ret ur n>

FORTRAN: Callable

Pascal:

5-32

Callable

Utility Subroutines

Convert an ASCII digit string to internal
numeric form.

Convert a numeric value to ASCII.

Convert an unpacked internal format number
(from .FMUI) to a normal format.

.FMUP

ASCII, one digit/word, FORTRAN R1 format

of digits in <buffer> between 0 and 20, inclusive.
0 = positive, 1 = negative.

Scale factor; power of ten.

Return value.

Type of <result> (see below).

Returned from .FMUI, 1 if overflow or

underflow; else 0.

Returned from .FMUO
Number of digits to return
Returned from .FMUO
Returned from .FMUO
Input value

Type of value (see below)

Input <result> from .FMUI
Returned from .FMUP, 1 if overflow or
underflow else 0.

Result:

Errors:

External

References:

Method:

Notes:

None

None

PACK, .ENTR, MVW, IFIX

JFMUI The value in <buffer> is converted to binary with the digit in buffer
(i) having weight 10** (<exp>—i). The result is negated
if<sign> =1, and rounded to the specified type:

<TYPE> TYPE
0 16-bit integer (1 word)
32-bit integer (2 words)
32-bit real (2 words)
48-bit real (3 words)
64-bit real (4 words)
Unpacked internal format (5 words)

DN AW N

JFMUO Reverse of .FMUI; that is, generates <buffer> <exp> and <sign>
from <value> as described in .FMUI. The result should be
rounded by calling .FMUR since there may be some round-off error
by .FMUO (for example, 2.0 could convert to 1.99999).

JFMUP A type 5 buffer <unpkd> created by .FMUI is converted to a
normal type buffer <result>. The type of <result> is specified by
<type> and must be 0 to 4.

See also HpZ.

Utility Subroutines 5-33

.FMUR

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:

Result:
Errors:

External
References:

Rounding of digit string produced by .FMUO.

.FMUR

JSB . FMUR

DEF *+5

DEF <buf f er> ASCII, one digit/word, FORTRAN R1 format
(input and returned value)

DEF <buf si z> # of digits in <buffer> between 0 and 20, inclusive

DEF <rndsi z> # of digits to round to

DEF <ovfl > Returned from .FMUR, 1 if carry overflow occurs, else 0.

<Ret ur n>

Callable

Callable

Example:

A conversion to 10 digits would be as follows:

None

None

FMUO (buffer,11,sign,exp,value,type)
.FMUR (buffer,11,10,ovfl)
exp=exp+ovfl

.ENTR

5-34 Utility Subroutines

.GOTO

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Transfer control to the location indicated by a FORTRAN computed GOTO

statement:

GOTO (ki, ko,

.GOTO
JSB . GOTO
DEF *+n+2

DEF J
DEF k;

DEF k,
<Ret ur n>

Callable
Callable

Branch to addressk

Ifj < 1 then ky; if j > n then ky

None

kn)]

Utility Subroutines

5-35

.MAP

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Return actual address of a particular element of a two dimensional FORTRAN

array.

.MAP

JSB . MAP

DEF array

DEF first subscript
DEF second subscri pt
OCT first dinension
<Return> (result in A
Callable

Callable

Integer in A

None

None

5-36 Utility Subroutines

.OPSY

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Notes:

Determines which operating system is in control. Included for compatibility
with previous libraries.

.OPSY

JSB . OPSY
—>result in
-7 (RTE-
-15 (RTE-
-5 (RTE-
-3 (RTE-11)
-1 (RTE-I11)
-9 (RTE-lV, RTE-I VB)
-17 (RTE-6/ VM
—-13 (RTE-4E)
—29 (RTE-=XL)
-31 (RTE-L)
—-37 (RTE-A Pre—Rev 2440)
—-45 (RTE-A. 1)
—-53 (RTE-A Rev 2440 through 4010)
—61 (RTE-A Rev 5000 through 5270)
—-125 (RTE-A Rev 6000 or | ater)
Ret ur n>

> >

A
M
M
M

——
——

)

A>T>>P>P>IT>>I>P>P>I>>>

Callable
Callable
Integer in A

None

$OPSY

This routine is equivalent to EXT $OPSY
XLA $OPSY

The $OPSY value of an operating system identifies the operating system and
major version of the operating system. Each operating system has a unique
$OPSY value. The value of SOPSY changes only when major internal table
structures are affected by the revision. (Another system entry point $DATC
contains the revision code for any given release.) Programs that are system
dependent should check the value of SOPSY before executing.

The range of values reserved for RTE-6/VM Operating Systems is —17 through
—28. The range of values reserved for RTE-A Operating Systems is —33
through —128.

See also the HpRTEA and HpRTES6 functions.

Utility Subroutines 5-37

.PAUS

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Notes:

Print the following message on the console device:

name PAUSE XXXXX

where name is the calling program name and xxxxx is the specified integer i.
Halt program execution and return to operating system.

.PAUS, .STOP

LDA i

JSB . PAUS (or .STOP)

<Ret ur n> (See Notes)

Not callable. Use FORTRAN intrinsic PAUSE.

Not callable

None

None

EXEC, PAU.E, REIO, PNAME

When .PAUS is used, the program can be continued using GO.

5-38 Utility Subroutines

.PCAD

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Notes:

Return the true address of a parameter passed to a subroutine.

.PCAD

JSB . PCAD
DEF SUB, i

<Return> (result

Callable
Callable

Direct address A

None

.ZPRV

1. .PCAD has the same purpose as GETAD.

2. .PCAD is used by reentrant or privileged subroutines because
use GETAD.

in A) (See Notes)

they cannot

Utility Subroutines 5-39

.TAPE

Purpose: Perform magnetic tape rewind, backspace or end-of-file operations on a
specified logical unit.

Entry

Points: .TAPE

Assembly: LDA const ant
JSB . TAPE
<Ret ur n>

FORTRAN: Callable

Pascal: Callable

Result: None

Errors: None

External

References: EXEC

Notes: In FORTRAN, use utility statements or PTAPE and MGTAP.

5-40 Utility Subroutines

..MAP

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:

Errors:

External
References:

Computes the address of a specified element of a 1, 2, or 3 dimension array;

returns the address in the A-Register.

..MAP

For 1 dimension:

CCA, <CLE>
LDB n (see bel ow)
JSB .. NAP

DEF base address
DEF 1st subscri pt

<Return> (address in A)

For 2 dimensions:

CLA, <CLE>
LDB n (see bel ow)
JSB .. VAP

DEF base address
DEF 1st subscri pt
DEF 2nd subscri pt

DEF | ength of 1st dinension
<Return> (address in A)

CLA,
LDB
JSB
DEF
DEF
DEF
DEF
DEF
DEF

For 3 dimensions:

I NA, <CLE>
n (see bel ow
.. MAP
base address
1st subscri pt
2nd subscri pt
3rd subscri pt

l ength of 1st dinension
l ength of 2nd di nension
<Return> (address in A)

n = Number of words per element in the array (1, 2, 3 or 4).

E-Register = 1 if store to this element.
0 if read from this element.

Not callable
Not callable
Integer

None

None

Utility Subroutines

5-41

$SETP

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Notes:

5-42

Set up a list of pointers.

$SETP

LDA Start
LDB Array
JSB $SETP
DEF COUNT
<Ret ur n>

ARRAYADDR
ARRAY

Callable
Callable
Integer

None

.ZPRV

1. This routine is available in microcode.

2. The sign bit of B is ignored.

Utility Subroutines

Pntr
Addr

DEF ARRAY
BSS n

%SSW

Purpose:

Entry
Points:

Assembly:

FORTRAN:

Pascal:
Result:
Errors:

External
References:

Call-by-name entry to ISSW (x).

%SSW

JSB %SSW

DEF *+2

DEF n (integer)
<Return> (result in A
Callable

Callable

Integer in A

None

ISSW

Utility Subroutines

5-43

Subroutines for Multiuser Support

The subroutines in this chapter provide programmatic access to the system handling of multiuser
sessions. They allow programs to set up and remove sessions, attach and detach from them, and
convert between names, user numbers, and session numbers.

For RTE-A Operating Systems, these routines do not return useful information unless you have
the HP 92078A product (the Virtual Code +, VC+, System Extension Package).

Note All subroutines listed in this chapter are compatible within both the RTE-A and
RTE-6/VM Operating Systems unless otherwise specified. All functions must be
declared correctly (that is, the type that they return).

The subroutines in this chapter are presented in the following format:

The name of the subroutine, a statement of the use of the subroutine, followed by the
subroutine’s syntax, a description of the parameters, and then returns, if any.

If a parameter is underlined in a subroutine call description, the value is a variable returned or
modified by the system subroutine.

Subroutines for Multiuser Support 6-1

AccessLU, Check for LU Access

This logical function determines if the specified LU is accessible by the calling program.

LogicalVar = AccessLU(/u)

| ogi cal LogicalVar, AccessLU
i nteger lu

where:

LogicalVar is TRUE if the calling program can access the LU; otherwise, it is FALSE.
lu is the LU to be checked.

6-2 Subroutines for Multiuser Support

ATACH, Attach to Session

This integer function attaches the calling program to an existing session for RTE-6/VM and
RTE-A. In addition, on RTE-A you can attach a program other than the calling program to an
existing session.

error = ATACH(SesNum, error, [ProgName, [CurrentSes]])

e ————— e ———

For RTE-A Only

where:

SesNum is a one-word integer, the session number. If SesNum is 0, it attaches to the “sys-
tem” session.

error is a one-word integer, with these meanings:

= 0 no error; successful attach.

= —1 if session number does not exist.

= —2 if specified program does not exist.

= —3 if current session number does not exist.

= —4 must be superuser for action requested.

= —5 program with same name already exists in session SesNum.

ProgName 1is a three-word integer array containing the name of the program to be attached to
session SesNum. (For RTE-A only.)

CurrentSes is a one-word integer containing the session number that program ProgName is in.
Defaults to caller’s current session. (For RTE-A only.)

For RTE-A Only:
If no program is specified, ATACH is performed on the calling program.

If the ATACHed program is not a system utility, that program’s terminal LU changes to coincide
with a new session LU number. If the ATACHed program is a system utility, you can change your
terminal LU number by following the ATACH call with an ATCRT call.

A program cannot be attached to the system session if any session, other than the current session,
has a program of that name in it. This is because the system session is considered to be an
extension of each user session.

Note Only a superuser or system process can manipulate programs in sessions other
than the session that the calling program is in.

Subroutines for Multiuser Support 6-3

ATCRT, Attach a CRT (RTE-A Only)

This subroutine inserts a CRT LU into the $CON word (word 29 of the ID segment) of a program
(generally a system process).

CALL ATCRT(crtlu)

where:

crtlu is an integer representing the CRT LU to insert into the $§CON word (word 29) of
the ID segment.

Programmatic LOGON (RTE-A Only)

To create a programmatic session, your program must call GETSN and CLGON. To end a
programmatic session, your program must call CLGOF and RTNSN.

For example, DS logs on programmatically as follows:

1. DS calls the subroutine GETSN (get a session number). The session numbers are defined to
start from one larger than the largest assigned LU in the system (that is, $SLU + 1). Session
numbers are recyclable and can exceed eight bits. On initializing, DS allocates all the
numbers it needs by making multiple calls to GETSN.

2. DS calls CLGON with the specified session number, user name, and password for a
programmatic logon.

3. LOGON gets the buffer and creates a user entry with the specified session number. LOGON
can treat the number as a session number because the value is greater than that of the largest
assigned LU. The session number is placed in word 12 of the user table (the same location as
the terminal LU). LOGON sets the status equal to 3, for programmatic LOGON, and sets
the counter that counts the number of programs to 0.

DS programs make ATACH calls by specifying the session number.
DS programs make DTACH calls to remove programs from the session.

DS calls the subroutine CLGOF to log off the session.

N S s

DS calls RTNSN to deallocate (multiple times) session numbers reserved by calls to GETSN.

6-4 Subroutines for Multiuser Support

CLGOF, Call LOGOF (RTE-A Only)

This integer function logs off a user.
error = CLGOF(SesNum, option, error)
where:

SesNum is a one-word integer, the session number of the session that the user wants to ter-
minate.

option is a one-word integer, with the following meanings:

= 0 if no active programs, just log off; if there are active programs, do not
log off, but set error = —1.

= 1 log off and kill all active programs.

= 2 go noninteractive, let active programs continue to run; if there are no
active programs, log off.

error is a one-word integer, with these meanings:

= 0 no error.

—1 there are active programs (if option is 0).

—2 wrong option given or wrong session number.

= —5 program with same name already exists in session SesNum.

If Security/1000 is turned on, this routine will be subject to security checking. If the security check
fails, the calling program will either receive a -1713 error (Security Violation) or be aborted with a
Security Violation, depending on the security configuration set up by the System Manager.

Subroutines for Multiuser Support 6-5

CLGON, Call LOGON (RTE-A Only)

This integer function logs a user on.

error = CLGON(buffer, length, SesNum, error)

where:
buffer is an integer buffer in which the username/password is placed. Maximum buffer
length is 34 characters.
length is a one-word integer, the length of buffer in characters.

SesNum is a one-word integer, a session number.
error is a one-word integer, with these meanings:
= 0 no error.
= —1 internal error, such as no class numbers, or logon not performed.
= —3 too many sessions active.
= —4 no such user.
= —5 bad or missing password.
= —6 file is not valid user file.
= —7 user configuration file already open.

= —9 an FMP error occurred during LOGON.

If Security/1000 is turned on, this routine will be subject to security checking. If the security check
fails, the calling program will either receive a —1713 error (Security Violation) or be aborted with
a Security Violation, depending on the security configuration set up by the System Manager.

6-6 Subroutines for Multiuser Support

DTACH, Detach From Session

This routine in RTE-A detaches a program from its current session and associates the program
with the “system” session. It also changes the terminal LU to 1. If the calling program in
RTE-6/VM is not a session program, this routine does nothing more than a return. If no program
is specified, the DTACH is performed on the calling program.

CALL DTACH

Although the routine does not require a parameter, it will accept three. The following alternatives
are also possible:

RTE-6/VM Only:

CALL DTACH()
CALL DTACH(dummy)

RTE-A Only:

CALL DTACH()
CALL DTACH(error)
CALL DTACH(error, ProgName, CurrentSes)

where:

error is a one word integer, with these meanings:

= 0 no error, successful DTACH.

= —2 program specified does not exist.

= —3 session specified does not exist.

= —4 must be a superuser for action requested.

= —5 program with same name already exists in SYSTEM session.

ProgName is a three-word integer array containing the name of the program to be
DTACHed to the system session.

CurrentSes is a one-word integer containing the session number that program ProgName is
in. It defaults to caller’s current session.

A program cannot be DTACHed to the system session if a session, other than the current session,
has a program of that name in it. This is because the system session is considered to be an
extension of each user session.

Note Only a superuser or system process can manipulate programs in sessions other
than the session that the calling program is in.

Subroutines for Multiuser Support 6-7

FromSySession, Check System Session Table Address
(RTE-A Only)

This integer function determines if the given user table address is equal to the system session table
address.

i = FronBySessi on(UserlubAddr)

where:
UserTabAddr is an integer containing the user table address.
Returns:
1 User table address is equal to system session address.
0 User table address not equal to system session address.

GetAcctinfo, Access User and Group Accounting
(RTE-A Only)

This routine retrieves the multiuser accounting information stored in the group and user
configuration files.

CALL Get Acct | nf o(AcctName, Acctinfo, error)

where:
AcctName is a character string containing the name of the account whose information is
to be retrieved. It can be in any of the following forms:
username get unique user information from block one and user
CPU and connect limits from the user.nogroup record
username. get unique user information from block one of the user
configuration file
username.groupname
get user.group information from the user configuration file
groupname get group information from block one of the group
configuration file
Note No masks are allowed.

6-8 Subroutines for Multiuser Support

AcctInfo is an integer array in which the following accounting information is returned:

For “user.” :

Words 1-2 Total CPU usage for user in all groups that user is a member
of (double integer in tens of msecs).

Words 3-4 Total connect time for user in all groups that user is a
member of (double integer in seconds).

Words 5-6 User’s last logon time (double integer in seconds since
Jan. 1, 1970).

Word 7 Group ID the user last logged on with.

Word 8 LU the user last logged on to.

Words 9-10 Last logoff time (double integer in seconds since
Jan. 1, 1970).

For “user”:
Words 1-10 Same as above.

Words 11-12 CPU usage limit for the user (double integer in tens of
msecs).

Words 13-14 Connect time limit for the user (double integer in seconds).

For “user.group” or “.group” information:

Words 1-2 Total CPU usage for the user in the group specified or the
total for the entire group (double integer in tens of msecs).

Words 3-4 Total connect time for the user in the group specified or the
total for the entire group (double integer in seconds).

Words 5-6 CPU usage limit for the user in the group specified or the
limit for the entire group (double integer in tens of msecs).

Words 7-8 Connect time limit for the user in the group specified or the
limit for the entire group (double integer in seconds).

error < 0, routine was unsuccessful
= 0, routine was successful

Subroutines for Multiuser Support 6-9

GetOwnerNum, Return Owner’s ID

This integer function returns the user’s identification number.
i = Get Owner Num()
Returns:

nonzero Caller’s identification number.

2 Calling program is attached to the system session.

GetResetinfo, Access/Reset User Accounting
(RTE-A Only)

This integer function accesses and clears (if directed so) the multiuser accounting information
stored in the user configuration file.

CALL GCet Reset | nf o(user, ResetFlag, Acctlnfo, error)
where:

user is a character string containing the user’s logon name.

ResetFlag is a one-word logical with these meanings:
= true, reset User’s accounting information to 0.
= false, leave accounting information unaltered.
Acctlnfo is an array of three double integers in which the following is returned:

AcctInfo(1) — last logoff time in seconds since Jan 1, 1970
AcctInfo(2) — cumulative connect time in total seconds
AcctInfo(3) — cumulative CPU usage in tens of milliseconds

error is a one-word integer with these meanings:
= 0, no error.
= —1, file is not a valid user file.
< —1, FMP error encountered.
Note 1. CPU usage can accumulate to a total of approximately .7 years; connect

time to approximately 70 years.

2. This function only exists for backward compatibility and should NOT be used
by any new applications. Its functionality has been replaced by GetAcctInfo
and ResetAcctTotals. It returns the user’s last logoff time, cumulative connect
time and cumulative CPU usage from block one of the user configuration file.
It clears the cumulative CPU usage and connect time totals in block one and
the USER.NOGROUP record, block 2, in the user configuration file.

6-10 Subroutines for Multiuser Support

GETSN, Get Session Number (RTE-A Only)

This integer function gets a unique session number.

error = GETSN(SesNum)

where:

SesNum

error

If 0, user wants to allocate a session number. The routine returns the session num-
ber and sets the return error code.

If nonzero, user wants to allocate that number as the session number. If available,
routine returns that number and sets the return error code.

SesNum is a one-word integer that starts from the number of system LUSs plus 1
and is unique. The final number may be greater than an 8-bit number.

is a one-word integer, with these meanings:

0, no error.
—1, cannot get a session number.
—2, no more available.

GPNAM, Return Group Name

This subroutine returns, in ASCII, the group name associated with the calling program.

CALL GPNAM (name)

where:

name

is a returned character string containing the group name (16 character maximum
for RTE-A; 10 characters for RTE-6/VM).

Subroutines for Multiuser Support 6-11

GroupTold, Return Group ID

This integer function returns the group’s ID number when given the group’s name.
groupID = G oupTold (name)

where:

name is a character string containing the group name (16 characters maximum).

groupID is a one-word integer with the following returns:

>0 Group ID number.
—254 No such group.
any other

negative FMP error when accessing the group configuration file.
number

IdToGroup, Return Group Name

This integer function returns the group name when given a group ID number.

error = |1 dToG oup (id, name)
where:

id is an integer representing the group’s ID number.

name is a return character string containing the group’s name (16 characters maximum).
Returns:

—254 No such group.

any other File error encountered when accessing multiuser file to

negative determine group name.
number
0 No error.

6-12 Subroutines for Multiuser Support

IdToOwner, Return User Name

This integer function returns a user name when given a user ID number.

error = | dToOmer (id, name)

where:
id is an integer representing the user’s ID number.
name is a return character string containing user’s name (maximum 16 characters).
Returns:
—233 No such user.
any other File error encountered when accessing multiuser file to
negative determine group name.
number
0 No error.

LUSES, Return User Table Address

This integer function returns the address of the user table entry associated with the session
number.

i = LUSES(SesNum)

If i is equal to 0, it is an error; no such user associated with the specified session number.
Otherwise 1 is equal to the address of the user table. i and SesNum are one-word integers.

Member, Check if User is in Group (RTE-A Only)

This integer function determines if the specified user is in the specified group.
i = Menber (username, groupname)

where:

username is a character string containing the user’s name (16 characters maximum).

groupname is a character string containing the group’s name (16 characters maximum).

Returns:
-1 User is not a member of the group.
-2 File error in determining if the user is a member of the group (returned if the
group does not exist).
>0 User is a member of the group.

Subroutines for Multiuser Support 6-13

OwnerTold, Return User ID and Group ID

This integer function returns the user’s ID number when given the user’s name or the user’s ID
and the group’s ID when given the usergroup name.

userID = Omner Tol d(name[, groupID])

where:

name is a character string containing the owner name. If the optional “groupID” parame-
ter is not specified, it is a user name (16 characters maximum). Otherwise, it is a
“user.group” name (31 characters maximum for both; “user” and “group” are each
16 characters maximum).

groupID is an optional one-word integer for the group ID number with the following returns:

>0 group ID number.
0 never attempted to get group ID due to previous error.
—254 no such group.
—255 user is not a member of the specified group.
any other
negative FMP error in accessing the user configuration file.
number
user[D is a one-word integer for the user ID number with the following returns:
>0 user ID number.
—233 no such user.
any other
negative FMP error in accessing the user configuration file.
number

ProglsSuper, Check for Super Program

This logical function determines if a program is a Super Program. A Super Program is defined as
having a ProgCplv of 31. If Security/1000 is not turned on, this function will always return FALSE.

Progtype = Progl sSuper (IdSegAdr)

Logi cal ProgType, Progl sSuper
I nt eger IdSegAdr

where:

ProgType is TRUE if the program is a Super Program; otherwise, it is FALSE.

IdSegAdr is the ID segment address of the program whose type is to be determined.
If IdSegAdr is 0, the calling program’s type is determined.

6-14 Subroutines for Multiuser Support

ResetAcctTotals, Resets User and Group Accounting
Totals (RTE-A Only)

This routine resets the CPU usage and connect time totals stored in the group and user
configuration files to zero. The routine can be used to reset the cumulative CPU usage and/or
connect time totals. Either CP or CO, but not both, can be specified as the optional parameter
“only”. If CP is specified, only the cumulative CPU usage total is reset. Likewise, if CO is
specified only the cumulative connect time total is reset. If neither is specified, both totals are

reset.

CALL Reset Acct Tot al s(AcctName, Acctinfo, error, only)

where:
AcctName

AcctInfo

error

only

is a character string containing the name of the account whose totals are to
be reset. It can be in any of the following forms:

user. Reset unique user total(s) in block one of the user configuration
file.
user Reset the unique user totals in block one of the user configuration

file and those in the USER.NOGROUP record (this is for
backward compatibility).

user.group Reset the total in the user.group record in the user configuration
file for the specified user.group.

user.(@ Reset the total(s) in all the user.group records for user. (Note
the cumulative totals for the user in block one are not affected).

@.group Reset user.group total(s) in the user files for all members in
group. (Note: The cumulative totals for the group in block one of
the group file are not affected).

.group Reset the group total(s) in block one of the configuration file for
the group (user.group totals of members are not affected).

@ Reset the group total(s) in block one of all group configuration
files.

contains the values of the CPU usage and connect time totals
before they were reset. If a mask is used in Acct_ Name, Acct_Info
contains the totals of the last user.group or group that was
processed.

Words 1-2 CPU usage total (double integer in tens of msecs).

Words 3—4 connect time total (double integer in seconds).

= 0, routine was successful.
< 0, routine was unsuccessful.

is an optional parameter string containing CO or CP.
If CO, only reset the connect time total.

If CP, only reset the CPU usage total.

Subroutines for Multiuser Support 6-15

RTNSN, Return Session Number (RTE-A Only)

This integer function returns a session number to the system.
error = RTNSN(SesNum)

where:
SesNum is a one-word integer where the session number to be returned is placed.
Returns:

0 No error.

—1 Not a session number.

SessnToOwnerName, Return User Name

This integer function returns the ASCII user name when given the session number.

error = SessnToOmer Name(SesNum, name)

where:
SesNum is a one-word integer representing the session number.
name is a return character string containing user’s name (maximum 16 characters
for RTE-A, 21 characters for RTE-6/VM).
error is a one-word integer.
Returns:
0 No error.
-1 Cannot find name.

6-16 Subroutines for Multiuser Support

SetAcctLimits, Set User and Group Accounting Limits
(RTE-A Only)

This routine sets the multiuser accounting limits in the group and user configuration files to the
value specified. The CPU usage limit and/or the connect time limit can be set. CP:limit and
CO:limit are used to specify that the CPU usage limit and/or the connect time limit, respectively,

are to be set.

CALL Set Acct Li m t s(AcctName, AcctInfo, error, Parml1, Parm?2)

where:
AcctName

AcctInfo

error

Parml/
Parm?2

is a character string containing the name of the account whose accounting
limits are to be set. It can be in the following forms:

user Set USER.NOGROUP limit(s) in the user configuration file (for
backward compatibility.)

user.group Set the limit(s) in the user.group record in the user configuration
file for the specified user.group.

user.(@ Set the limit(s) in all the user.group records for user. (Note the
cumulative limits for the user in block one of the user
configuration file are not affected.)

@.group Set the user.group limit(s) in the user files for all members in
group. (Note: The limits in block one of the group configuration
file are not affected.)

group Set the group limit(s) in block one of the configuration file for
group. (Note: User.group limit(s) of members are not affected.)

@ Set the group limits in block one of all group configuration files.
contains the values of the CPU and connect time limits before they were
modified. If a mask is used in Acct Name, Acct_Info contains the totals for
the last user.group or group that was processed:

Words 1-2 CPU usage limit (double integer in tens of msecs).

Words 3—4 Connect time limit (double integer in seconds).

= 0, routine was successful.
< 0, routine was unsuccessful.

at least one must be specified, and they cannot both be CPs or COs.
They are character strings with the following format and meaning:

CP:limit set CPU limit to double integer value “limit”
(in tens of msecs).

CO:limit set connect time limit to the double integer
value “limit” (in seconds).

Subroutines for Multiuser Support 6-17

SuperUser, Check For/If Superuser

2

This integer function determines if the user associated with this session number is a “superuser.’
For RTE-6/VM, this is the MANAGER.SYS account.

i = Super User (SesNum)

where:
SesNum is a one-word integer representing the session number.
Returns:

1 User is superuser.
0 User is not superuser.

—1 User not found with the given session number.

SYCON, Write Message to System Console

The SYCON subroutine writes a message to the system console (system LU 1).

CALL SYCON(ibuf, ilen)

where:
ibuf is a buffer that contains the message to be written.
ilen is the length of ibuf. A positive value indicates the number of words, and a negative

value indicates the number of characters.

This routine bypasses the Session Switch Table (SST) and writes directly to system LU 1.

The Macro/1000 calling sequence is as follows:

EXT SYCON

JSB SYCON

DEF RTN

DEF | BUF

DEF | LEN
RTN

6-18 Subroutines for Multiuser Support

SystemProcess, Check For/If System Process
(RTE-A Only)

This logical function determines whether the program in the ID segment is a system process.
i = SystenProcess(idseg)

where:

idseg 1is a one-word integer representing an ID segment address.

i is a logical variable (Boolean).

Returns:

true The program is a system process (less than 0).

false The program is not a system process (greater than 0).

UserlsSuper, Check For/If Superuser

If the user is not a superuser, this integer function returns zero; otherwise, it returns nonzero. The
nonzero value can be used as a logical condition (by declaring this to be a logical function).

SuperState = User | sSuper ()

where:
SuperState is the user’s state.
Returns:

nonzero User is superuser.

0 User is not superuser.

USNAM, Return User Name

This subroutine returns, in ASCII, the user’s name associated with the calling program.
CALL USNAM name)

where:

name is a returned character string containing the user name (maximum 16 characters for
RTE-A, 21 characters for RTE-6/VM).

Subroutines for Multiuser Support 6-19

USNUM, Return the Session Number

This integer function gets the session number of the calling program.

i = USNUM)
where:

i is a one-word integer in which the session number is returned.
Returns:

nonzero The session number.

0 Error: there is no user session number.

VENAM, Verify User Name (RTE-A Only)

This integer function verifies the validity of a user name.

error = VFNAM name, length)

where:
error is a one-word integer.
name is a character string containing the user name/password, up to 34 characters.
length is a one-word integer representing the length of name in characters.
Returns:

0 The name and password are valid.

—1 The name or password is invalid.

If Security/1000 is turned on, this routine is subject to security checking. If the security check fails,
the calling program will either receive a -1713 error (Security Violation) or be aborted with a
Security Violation, depending on the security configuration set up by the System Manager.

6-20 Subroutines for Multiuser Support

Utility and Status Subroutines

This chapter describes routines that obtain information from RTE-A and RTE-6/VM Operating
Systems or do operations that are otherwise difficult from high level language and MACRO/1000
programs.

Note All subroutines listed in this chapter are compatible within both the RTE-A and
RTE-6/VM Operating Systems unless otherwise specified. All functions must be
declared correctly (that is, the type that they return).

The subroutines in this chapter are presented in the following format:

The name of the subroutine, a statement of the use of the subroutine, followed by the
subroutine’s syntax, a description of the parameters, and then returns, if any.

If a parameter is underlined in a subroutine call description, the value is a variable returned or
modified by the system subroutine.

AddressOf, Return Direct Address

This function is like .DRCT, but with a name easily used from FORTRAN and .ENTR call
sequences. It returns the direct address of the passed item.

directAdd = AddressO (item)
where:
item is an array, variable, or constant whose address you want.

directAdd is a one-word integer variable in which the direct address of the passed item is re-
turned. Indirect references are resolved.

Utility and Status Subroutines 7-1

Bit Map Manipulation Routines

These routines operate on bit maps represented by one or more contiguous words containing bits
to set, clear or test. These bit maps can have more than 32K bits in them, so all size parameters
are double integers. These routines were written for the space allocation routines in the file
system, which convert from external units (blocks) to bits by means of the parameter blocks per
bit. This can be set to one if you want to deal directly with bits.

See also the ClearBitMap, SetBitMap, TestBitMap, and Test_SetBitMap routines.

ChangeBits

This subroutine changes a number of bits in a passed bit map.

CALL ChangeBi t s(bitmap, where, nblocks, bperb, how)

where:
bitmap

where

nblocks

bperb

how

CheckBits

is an integer array of words containing the bit map.

is a double-word integer variable that specifies a starting block number to change,
with block zero the first bit, located in bit 15 of the first word of the bit map.

is a double-word integer variable that specifies how many blocks to change; this is
rounded up to an integral number of bits.

is a user supplied conversion factor, the number of blocks per bit (the caller is as-
sumed to be working in blocks).
is a one-word integer variable, the method by which to change the passed bits:

0 = clear bits,
anything else = set bits

This function checks a number of bits in a passed bitmap.

state =

where:
bitmap

where

nblocks

bperb

CheckBi t s(bitmap, where, nblocks, bperb, how)

is an integer array of words containing the bit map.

is a double-word integer variable that specifies a starting block number to check,
with block zero the first bit, located in bit 15 of the first word of the bit map.

is a double-word integer variable that specifies how many blocks to check, rounded
up to an integral number of bits.

is a one-word integer variable, a user-supplied conversion factor, the number of
blocks per bit (the caller is assumed to be working in blocks).

7-2 Utility and Status Subroutines

how

state
Returns:

nonzero

0

FindBits

is a one-word integer variable that indicates what to check for:

0 = check for zeros
anything else = check for ones.

is the returned value.

All of the nblocks are in the state indicated by how.

Any of the nblocks are in the opposite state.

This function locates contiguous holes in a bit map. It returns as its function value the block
address where the free bits can be found. This block address can then be passed to ChangeBits to
allocate the bits.

freebits
where:

bitmap

size

nblocks

bperb

Returns:

freebits

Fi ndBi t s(bitmap, size, nblocks, bperb)

is an integer array of words containing a bit map.
is a one-word integer variable, the number of words in bitmap.

is a double-word integer variable that specifies how many contiguous zero bits to
locate.

is a one-word integer variable, a user supplied conversion factor, the number of
blocks per bit (the caller is assumed to be working in blocks).

Block address where the free bits can be found.

Utility and Status Subroutines 7-3

BlankString

This function determines if a character string consists entirely of blanks.

bool = Bl ankStri ng(string)

where:

string is the character string to be examined.

bool is a logical variable that contains the returned value.
Returns:

.TRUE.(—1) if the entire string is blank.

FALSE.(0) if the string contains any nonblank characters.

Note This function performs the same operation as the FTN7X statement

) ’

bool = string .EQ

except BlankString does it using fewer instructions than FTN7X generated code.

BlockToDisc, Convert Block and Sector to Track and
Sector

This subroutine converts a block number and number of sectors per track into the corresponding
track and sector. No overflow check is performed on the track number.

CALL Bl ockToDi sc(block, spert, track, sector)

where:

block is a double-word integer block number to be converted into a corresponding track
and sector.

spert is a one-word integer variable, the number of 64 word sectors per track on the LU
of interest.

track is a one-word integer variable, the returned value for the track corresponding to
the specified block. No overflow check is performed on track.

sector is a one-word integer variable, the returned value for the sector corresponding to

the passed block.

7-4 Utility and Status Subroutines

CaseFold, Convert Lowercase to Uppercase

This subroutine converts lowercase to uppercase in character strings (converting a—z to A—72).
Conversion is done in place.

CALL CaseFol d(string)

where:

string is the character string to convert to all uppercase characters.

See also CLCUC.

Charfill

This subroutine fills the specified string with the supplied character. Typically, it can be used to
blank fill a string or pad a substring with blanks. The operation is quick and uses less code than
the standard string assignment in FTN7X.

CALL Char Fi | | (string, char)

where:
string is the character string to be modified.
char is a single character string variable that contains the user supplied fill character.

If the specified string has a length of zero, nothing is done.

Example:

CALL CharFill (string(5:),” ') ! pad string with blanks

Utility and Status Subroutines 7-5

CharsMatch, Compare Characters in Arrays

This integer function compares the characters in two arrays for matches.

match = Char sMat ch(bfrl, bfr2, chars)

where:
bfrl is the first integer array of characters to compare; must start on a word boundary.
bfr2 is the second integer array of characters to compare; must start on a word bound-
ary.
chars is a one-word integer variable, the number of characters to compare; can be even
or odd.
match is a one-word integer variable in which the match state of the characters is re-
turned.
Returns:

nonzero Characters match.

0 Characters do not match.

See also CompareWords.

ClearBuffer, Zero a Passed Buffer

This subroutine zeros out the passed buffer, using the specified length in words.

CALL d ear Buf f er (buffer, len)

where:
buffer is the name of a buffer to clear. It is of any type except char.
len is a one-word integer variable, the length of the buffer in words.

See also FillBuffer.

7-6 Utility and Status Subroutines

CLCUC, Convert Lowercase to Uppercase

This subroutine operates on an integer array buffer, converting ‘a’ through ‘z’ to ‘A’ through ‘Z’.
Conversion is done in place.

CALL CLCUC (buffer, len)

where:
buffer is an integer array of characters.
len is an integer length, in words if positive, in bytes if negative.

See also CaseFold.

Utility and Status Subroutines 7-7

CMNDO Routines (RTE-A Only)

The CMNDO monitor performs command editing and/or command stack handling for a user
program. Using a monitor to perform these tasks requires an additional ID segment at runtime;
however, using the monitor minimizes the code changes and the code growth that are required to
add this functionality directly to a program. The $VISUAL command editing modes are described
in the RTE-A User’s Manual, part number 92077-90002.

Note that the functionality provided by the CMNDO monitor can also be added directly to a
program with calls to the CmndStackInit, CmndStackRestore, CmndStackMarks,
CmndStackScreen, CmndStackPush, CmndStackSave, and RteShellRead routines.

HpStartCmndo, Enable a CMNDO Slave Monitor

HpStartCmndo schedules a copy of the CMNDO program. Communication with the clone is done
via Class I/O. One Class number is allocated to the calling program, and another is allocated and
owned by the CMNDO clone. The Class numbers are passed back to the user in the class array.
These Class numbers are required in any subsequent calls to HpReadCmndo or HpStopCmndo.

error = HpSt art Cmdo(lu, class[, stackfile, stkerr])

i nt eger*2 error, lu, class(2) , stkerr
character*(*) stackfile

where:
error returns the following:
0 CMNDO successfully started.
<0 FMP error trying to RP CMNDO.
1 CLRAQ error obtaining class numbers.
2 EXEC error scheduling CMNDO.
lu is the LU number of the user’s terminal.
class is a two-word integer array; class(1) is returned as the Class number owned by the

caller, class(2) is returned as the Class number owned by CMNDO.

The following two parameters are required only when restoring from an existing command
stack file.

stackfile is a FORTRAN character string containing the name of a command stack file.

stkerr is an error returned from CmndStackRestore.

7-8 Utility and Status Subroutines

HpReadCmndo, Request CMNDO to Read from User’s
Terminal

HpReadCmndo signals CMNDO to issue a read to the terminal. The prompt is assumed to have
already been issued by the calling program. The prompt is used by CMNDO only when a refresh
command is entered by the user. When recalling “marked” lines from the command stack,
CMNDO echoes the marked line to the terminal.

The CMNDO program uses the following environment variables. The default is taken when the
environment variable cannot be obtained.

Variable Default

$LINES 24

$COLUMNS 80

$VISUAL no command editing

$KILLCHAR DEL
$FRAME SIZE S$LINES —2

If the CMNDO clone is no longer available, HpReadCmndo returns —1 in the A- and B-Registers.

CALL HpReadCmdo(class, buffer, len, prompt, promptlen)
CALL ABRE(J areg, breg)

i nteger*2 class(2), buffer(*), len, prompt(*) , promptlen

where:
class is a two-word integer array returned from HpStartCmndo.
buffer is an integer array in which the data is returned.
len is a positive number of characters to read.

prompt is the prompt currently issued for the read.

promptlen is the number of characters in the prompt, not including the underscore (_) character.
Returns:

A-Register ~ DVT word 6 (returned from the EXEC read).

B-Register positive number of characters read, or —1 if the Class Get fails. (If the Class
Get fails, CMNDO terminated abnormally.)

Utility and Status Subroutines 7-9

HpStopCmndo, Terminate CMNDO Slave Monitor

HpStopCmndo terminates the CMNDO clone and optionally posts the command stack to a file. If
this routine is not called, the clone is aborted by the system when the caller of HpStartCmndo
terminates. In addition to terminating the CMNDO clone, both Class numbers are returned to
the system.

CALL HpSt opCmdo(class[, stackfile])

i nteger*2 class(2)
character*(*) stackfile

where:
class is a two-word integer array returned by HpStartCmndo.

stackfile is an optional FORTRAN character string containing the name of a command stack
file.

If the stackfile parameter is passed and the character string is not blank, CMNDO will try to post
the current command stack into the file named in stackfile.

Example Program Using CMNDO

Progr am Readl t
inmplicit none

C The conmand stack nonitor, CMNDO, can be used progranmatically to
c easily add the RTE-style command stack and the $VI SUAL conmand
c line editing features to a program Conmunication with the
c nmonitor is perforned via Class 1/O The O ass nunbers returned
c by HpStart Cmdo nust be used in subsequent calls to HpReadCmdo
c and HpSt opCmmdo.

i nteger*2 stkerr, class(2), buffer(128), areg, len

i nteger*2 pronpt(4), plen

character stackfile*64

i nt eger*2 HpStart Chmdo

i nt eger*4 HpReadCmdo
c Start up a copy of CMNDO, the conmmand stack slave nonitor. CWVNDO
c will performthe command stack initialization and attenpt to
c restore the command stack fromthe naned file.

stackfile = './READIT. STK

if (HpStartCmdo(1, class, stackfile, stkerr).ne.0) stop

pronmpt (1) = 2hPr

pronmpt (2) = 2hom

pronpt (3) = 2hpt

pronmpt (4) = 1h>

7-10 Utility and Status Subroutines

o

OO0O0O0O0O0O0O0OO0

O0O0O0O0O0O0

O0O0O0

OO0

o0

plen = 8 I length of the pronpt in characters, ’Pronpt>
Loop until the user enters "EX'.
do while (.not.(buffer(1).eq.2hEX and.|en.eq.?2))
I ssue the pronpt.
call exec(2,2101b, prompt, —pl en)
Tell the CVNDO nonitor to issue a read.

The CVMNDO nonitor will performthe read with a call to

Rt eShel | Read. Depending on the user’s $VI SUAL environment

vari able, command line editing may or may not be enabled. (Note
that CVMNDO can only retrieve exported variables.) The standard
"RTE-styl e” command stack functions are always avail abl e
regardless of the state of the user’s exported environment

vari abl e bl ock.

Note that the pronpt is assuned to have al ready been issued.
The contents of the pronpt are still required because sone
of the command line editing commands refresh the current
input line. (If no pronmpt is being used, the length of the
pronmpt, "plen”, should be set to 0.)

call HpReadCmdo(cl ass, buffer, 256, prompt, plen, 1)
call abreg(areg, |en)

A-Regi ster — DVT 6

B-Regi ster — transm ssion | og (nunber of characters read),
positive nunmber of characters read, or
-1 if an EXEC error.

if (len.1t.0) stop
Process the buffer

call exec(2,1, buffer,-len)
enddo

Tell the CVNDO nonitor that we are finished. Post the current
stack to a stack file if we successfully read a stack file in
HpStart Cmdo. The C ass nunbers are returned to the system
and CMNDO wi || term nate.

If a stack file is not being used and the calling programis
going to exit inmmediately, the call to HpStopCmdo is optional
The systemwi || abort CVMNDO when the calling program term nates.

if (stkerr.lt.0) stackfile =" "~
call HpStopCmdo(class, stackfile)

end

Utility and Status Subroutines 7-11

CmndStacklnit, Initialize Command Stack

This routine is used to initialize the stack area before other command stack routines can be used.
There is one word per line overhead and one additional word. A useful approximation is 64 lines
of 30 characters per 1IKW allocated.

CALL CmdSt ackl ni t (stack, size, MaxLine, TimeOutMask, ScreenWidth)

i nteger*2 stack(*), size, MaxLine, TimeOutMask, ScreenWidth

where:
stack is the buffer to be used to keep the stack lines.
size is the number of words reserved for the stack.
MaxLine is the number of bytes allowed in the longest command; should be the same as

the length of the input buffer used to read the commands.
TimeoutMask is the timeout bit (described below).

ScreenWidth is the width of a line on the CRT screen (described below).

The TimeOutMask is used as a mask to check the status returned by the terminal driver. In
RTE-A, it is always 2 (bit 1). For RTE-6/VM, the Revision C compatible drivers returned bit 0 on
timeout, and the Revision D compatible drivers use bit 1, as does RTE-A. Routine
HpCrtSsrcDriver determines if the driver is Revision D compatible.

The ScreenWidth parameter must be set correctly; otherwise, the stack display may or may not
work, but stack read back definitely will not work correctly. We recommend that you call
HpCrtCheckStraps (described in Chapter 12 of this manual) to get the correct number at runtime.

Note that the command stack routines treat all terminals as 80 column terminals regardless of
their configuration. Therefore, the command stack routines will leave the margin at 80 even if
you’re working with margins greater than 80 columns on a horizontally scrolling terminal.

7-12 Utility and Status Subroutines

CmndStackMarks, Check for Marked Lines

This routine is called when your program is ready to receive another input line to determine if a
line marked for grouped execution is pending. If so, the line is returned in ibuf and the line is no
longer marked for grouped execution.

linemarked = CmmdSt ackMar ks(ibuf, bytelen)

i nteger*2 ibuf(*), bytelen
| ogi cal *2 linemarked, CmdSt ackMar ks

where:

linemarked is true if a line was marked for grouped execution, or false if no marked line is

pending.
ibuf returns the marked line, if any.
bytelen returns the length of the marked line in bytes.

CmndStackPush, Add Line to Command Stack

This routine is called to add a line to the command stack. If necessary, the oldest line or lines in
the stack are “forgotten” to make room for the new line.

CALL CmdSt ackPush(ibuf, bytelen[, duplicatesOK])

i nteger*2 ibuf(*), bytelen, duplicatesOK

where:
ibuf is the line to be pushed onto the stack.
bytelen is the length of the line in bytes.

duplicatesOK is an optional parameter that specifies if duplicate lines are allowed in the com-
mand stack. If duplicatesOK is not passed or equals 0, duplicate lines are not
kept in the command stack. If it is nonzero, duplicate lines are allowed in the
command stack.

Utility and Status Subroutines 7-13

CmndStackRestore, Restore Command Stack

This routine is used to read a stack file previously saved by CmndStackStore into the command
stack. The stack must have been previously initialized with CmndStackInit.

lines =

CmdSt ackRest or e(dcb, fmperr, stackfile, buffers, linebuf, buflen)

i nteger*2 lines, CmdSt ackRest or e, dcb(*) , fmperr, buffers, linebuf(*) , buflen
character*(*) stackfile

where:

lines

dcb

fmperr
stackfile
buffers

linebuf

buflen

returns the positive number of lines read from the file, or the negative FMP error
code, if any.

is the DCB used to read the stack file.
is the returned FMP error code.
is the stack file descriptor.

is the number of buffers in the dcb parameter. This is the value that is passed to
the FmpOpen call that specifies the number of buffers in the DCB. Refer to the
FmpOpen call description in the RTE-A Programmer’s Reference Manual, part num-
ber 92077-90007.

is the buffer for lines read from the stack file; should be as long as the longest com-
mand line possible.

is the maximum length in bytes of linebuf.

7-14 Utility and Status Subroutines

CmndStackSaveP, CmndStackRstrP,
Save and Restore Command Stack

These routines are used to save and restore the command stack in some way other than by using
files (for example, in EMA). To save a command stack, you must call CmndStackSaveP to read
the number of lines and word occupied. This data must be saved along with the stack, by whatever
means the programmer wishes to use. To restore the saved stack, two alternatives exist:

1.

Call CmndStacklInit to set up an empty stack.
Transfer the data from EMA to the stack buffer.
Call CmndStackRstrP to set the pointers.

Transfer the data from EMA first.

Save the first word of the buffer in a safe place.
Call CmndStacklInit.

Restore the first word of the buffer.

Call CmndStackRstrP to set the pointers.

CALL CmdSt ack SaveP(pointers)
i nt eger*2 pointers(2)

where:

pointers is a two-word buffer to receive stack pointer information.
Word 1 is the number of lines in the stack.
Word 2 is the number of occupied words.

CALL CmdSt ackRst r P(pointers)
i nteger*2 pointers(2)

where:

pointers is a two-word buffer to pass back to stack routines.

Word 1 is the number of lines in the stack.

Word 2 is the number of occupied words.

The pointers must not be altered between the save and restore calls. CmndStackSaveP can be
used at any time to display the stack statistics since it does not alter the internal pointers but
merely copies them.

Utility and Status Subroutines 7-15

CmndStackScreen, Do Stack Interactions with User

This subroutine manages the command stack for client programs. When user input is accepted
and delivered to this routine, CmndStackScreen determines whether it is a command stack
command. If it is not, it is returned just as given. If it is a command stack command, the
appropriate stack functions are performed and the resulting line is returned.

CALL CmdSt ackScr een(crt, ibuf, bytelen, framesize, label, oops)

integer*2 crt, ibuf(*), bytelen, framesize
character*(*) label, oops

where:
crt is the LU of the user’s terminal.
ibuf passes in the user command that might be a stack command; passes out the line
undisturbed, or a line just read from the stack.
bytelen passes in the number of characters in the current line; passes out the same, or the

number of characters on the line just read from the stack.
framesize is the number of lines to display on the screen.
label is the message to display before the stack is displayed.
oops is the message to display when search fails.
Note that it is possible for the routine to return a zero length and a blank command buffer, if that

is what you enter. Also, do not trust anything in the buffer past the returned byte length, since the
buffer is used extensively as a work buffer for all communications with the user.

7-16 Utility and Status Subroutines

CmndStackStore, Store Command Stack Contents in a
File
This routine copies the contents of the command stack to a file. If no directory is specified in the

stackfile parameter, the session’s home directory is used for the file. If a file with the given name
already exists, it is overwritten; otherwise, the file is created.

error = CmdSt ackSt or e(dcb, fmperr, stackfile, buffers)

i nt eger*2 fmperr, buffers, dcb(*)
| ogi cal error
character*(*) stackfile

where:
dch is a DCB used to write to the stack file.
fmperr returns an FMP error code.

stackfile is the stack file file descriptor.

buffers is the number of buffers in the dcb parameter. This is the value that is passed to
the FmpOpen call that specifies the number of buffers in the DCB. Refer to the
FmpOpen call description in the RTE-A Programmer’s Reference Manual, part num-
ber 92077-90007.

error returns TRUE if an error occurs.

CmndStackUnmark, Remove Marks from Command
Stack Lines

This procedure removes all marks from lines in the command stack in order to facilitate error
recovery.

CALL CmdSt ackUnmar k

Utility and Status Subroutines 7-17

Command Stack Example Program

$al i as HpRt €6, direct

*

inmplicit none

i nt eger*2 | bufl
paranmeter (lbufL = 256) I maxi mum byte | ength of | buf
i nt eger*2
> | buf (0:127) I up to 256 character commands
>, Byt elLen I current length in bytes of command
i nt eger*2 I declare a stack buffer as bhig
> StackBuffer (0:4095) I as desired
i nt eger*2
> DCB (16+128) I file DCB buffer
i nt eger*2
> Error, I error code from HpCrt CheckStraps
> Crt, I termnal lu
> St atus, | termnal status from read
> TOwask, I timeout nmask for term nal reads
> MenSi ze, I #K bytes of display nenory in term nal
> ScreenW dt h, ! nunber of characters visible at one
' time on a CRT Iline
> Franesi ze I # lines in stack w ndow
| ogi cal *2
> HpCrt CheckStraps, ' the CRT and Port are OK for stacks
> CmdsSt ackMar ks, | a marked line is avail able for use
> CmdSt ackSt or e, I save stack in a file
> CmdSt ackRest ore, I read stack froma file
> HpRt e6, I is this an RTE-6 systenf
> HpCrt SSRCDx i ver, ! is termnal on a Rev.D nux?
> | fBrk I user has set the break flag

Begi n exanpl e:

CRT =1 ! use ternmnal lu 1l
Framesi ze = 22 I use 22 lines per frame
TOVask = 2 I determ ne tineout mask

if (HoRte6()) then
if (.not. HpCrt SSRCDriver (Crt)) TOVask = 1
endi f

if (HpCrtCheckStraps (Crt, Error, Menti ze, ScreenWdth)) then
conti nue

7-18 Utility and Status Subroutines

el se
call HpCrtSendChar (Crt, ' Command Stack Unavail able’)

endi f
call CmdSt ackl nit (StackBuffer, 4096, 256, TOVask, Scr eenW dt h)

if (CmdStackRestore(Dcb, Error,’ StackFile ,1,1buf,lbuflL)) then
| Process the FMP error that was returned

endi f
10 [f (.NOT.CmdSt ackMar ks(| buf, ByteLen)) then
call HpzZzQandA(Crt,’ Next Conmand? ', I issue pronpt
> I buf, I buf L, St atus, BytelLen) ' and read a conmand
if (iand(Status, TOvBsk).ne.0) go to 10 ! ~check for tineout
endi f
Cal I CmdStackScreen(Crt, | buf, BytelLen,
> FranmeSi ze,’ Commands: ',
> "No match, try again’)

call CmdSt ackPush(| buf, Byt eLen)
* Process conmand:
If (Ibuf(0).eq.2hEX) then
go to 9000

el se

I (Handl e ot her commands. . .)

endi f

If (1fBrk()) then ' when break is set,
call CmdSt ackUnmar k I abandon all nmarks.

endi f

go to 10

* This is the program exit section.
9000 continue
if (CGmdStackStore(Dcb, Error,’ StackFile’,1)) then
' Process the FWWP error that was returned

endi f

end

Utility and Status Subroutines 7-19

Concat, Concatenate Strings

This routine concatenates two strings together after removing trailing blanks from the first string.
The result is returned in the first string.

CALL Concat (stringl, string2)
character*(*) stringl, string2

where:

stringl,
string2 are character strings of any length.

If the second string is too large to fit in the first string, the result will be truncated on the right.

Example:

stringl = "abc '
string2 = ’'de '
call Concat(stringl, string2)
stringl = 'abcde '

ConcatSpace, Concatenate Strings with Embedded
Blanks

This routine is similar to Concat, except that a caller specified number of blanks are inserted
between the two strings.

CALL Concat Space(stringl, string2, spaces)

character*(*) stringl, string2
i nt eger*2 spaces

where:

stringl,

string2 are character strings of any length.

spaces is the number of blanks to insert after stringl before concatenating string2.
Example:

stringl = ' abc ’

string2 = ’'de ’
call Concat Space(stringl, stringz2, 2)
stringl = "abc de

7-20 Utility and Status Subroutines

DayTime, Seconds Since January 1, 1970

This subroutine returns an ASCII time string corresponding to the passed number of seconds since
12 AM January 1, 1970.

CALL DayTi re(time, buffer)

i nt eger*4 time
character*(*) buffer

where:
time is the double-word integer number of seconds since 12 AM, January 1, 1970.
buffer is the returned character string, with the entire string occupying 28 characters, but a

longer or shorter buffer can be supplied, in which case the string is truncated or
padded with blanks, respectively.

For example, 360000000 => Fri May 29, 1981 4:00:00 pm

DecimalToDint, ASCII to Double Integer Conversion

This function is an ASCII to double integer conversion that returns the double integer value of the
characters contained in the specified string (one integer for the entire string). Blanks are ignored,
except that an all blank string is an error.

dintValue = Deci mal ToDi nt (string, error)

i nt eger*4 dintValue, Deci mal ToDi nt
character*(*) string
i nteger*2 error

where:
string is the character string to convert, whose characters must comprise a legal double
integer, in the range —2147483648 to +2147483647; a plus or minus sign can be
specified, although the octal qualifier “B” is not allowed.
error is a required one-word integer variable that returns zero to indicate no error, or

nonzero to indicate an invalid character was encountered or overflow occurred
(zero is returned as the function value if an error occurs).

dintValue is a double-word integer variable in which the integer value of the character string
is returned.

Compare this function to DecimalTolnt.
See also HpZ.

Utility and Status Subroutines 7-21

DecimalTolnt, ASCII to Single Integer Conversion

This function is an ASCII to single integer conversion that returns the single integer value of the
characters contained in the specified string (one integer for the entire string). Blanks are ignored,
except that an all blank string is an error.

intValue = Deci mal Tol nt (string, error)

i nt eger*2 intValue, Deci mal Tol nt, error
character*(*) string

where:
string is the character string to convert, whose characters must comprise a legal single in-
teger in the range —32768 to +32767; a plus or minus sign (or no sign at all) can be
specified, although the octal qualifier “B” is not allowed.
error is a required one-word integer variable that returns zero to indicate no error, or

nonzero to indicate an invalid character was encountered or overflow occurred
(zero is returned as the function value if an error occurs).

Note: Prior to Revision 5000, the error parameter was not required and the call
“i ntval ue = Deci mal Tol nt (string) ” was valid. However, as of Revision
5000, the error parameter is required.

intvalue is a one-word integer variable in which the integer value of the character string is
returned.

Compare this function to DecimalToDint.
See also HpZ.

DintToDecimal, Double Integer to ASCIl Conversion

This function returns a character string representation of a double integer number. The string
includes a leading minus sign if the number is negative. Leading zeros are suppressed, and the
whole number is left justified in the string with trailing blanks. The character string should be at
least 11 characters so that the largest double integer can be represented. A smaller string can be
used; however, the rightmost digits will be truncated.

string = Di nt ToDeci mal (number)

character*(*) string, Di nt ToDeci mal
i nt eger*4 number
where:
number s a double integer number to process.
string is a character string in which a character representation of the number is returned.

Compare this function to IntToDecimal.
See also HpZ.

7-22 Utility and Status Subroutines

DintToDecimalr, Double Integer to ASCII Conversion

This function returns a character string representation of a double integer number. The string
includes a leading minus sign if the number is negative. Leading zeros are suppressed, and the
whole number is right justified in the string with leading blanks. The character string should be at
least 11 characters so that the largest double integer can be represented. A smaller string can be
used; however, the leftmost digits will be truncated.

string = Di nt ToDeci mal r (number)

character*(*) string, Dint ToDeci mal r
i nt eger*4 number

where:

number is a double integer number to process.

string is a character string in which a character representation of the number is returned.

Compare this function to IntToDecimalr.
See also HpZ.

DintToOctal, Double Integer to Octal Conversion

This function returns a character string representation of a double integer number. The number is
returned unsigned. Leading zeros are suppressed, and the whole number is left justified in the
string with trailing blanks. The character string should be at least 11 characters so that the largest
double integer can be represented. A smaller string can be used; however, the rightmost digits will
be truncated.

string = Di nt ToQOct al (number)

character*(*) string, Di nt ToCct al
i nt eger*4 number

where:
number is a double integer number to process.
string is a character string in which a character representation of the number is returned.

Compare this function to IntToOctal.
See also HpZ.

Utility and Status Subroutines 7-23

DintToOctalr, Double Integer to Octal Conversion

This function returns a character string octal representation of a double integer number. The
number is returned unsigned. Leading zeros are suppressed, and the whole number is right
justified in the string with leading blanks. The character string should be at least 11 characters so
that the largest double integer can be represented. A smaller string can be used; however, the
leftmost digits will be truncated.

string = Di nt ToCct al r (number)

character*(*) string, DintToCctalr
i nt eger*4 number

where:
number is a double integer number to process.
string is a character string in which a character representation of the number is returned.

Compare this function to IntToOctalr.
See also HpZ.

DiscToBlock

This subroutine converts track, sector, and sectors per track information into a double integer
block number.

CALL Di scToBIl ock(block, spert, track, sector)

where:
block is a double-word integer containing the returned block number. (The first block on
a disk LU is block 0.)
spert is a one-word integer variable containing the number of 64 word sectors per track
on the LU of interest.
track is a one-word integer variable containing the track number to be converted.
sector is a one-word integer variable containing the sector to be converted.

7-24 Utility and Status Subroutines

DiscSize, Tracks and Sectors Per Track

This subroutine returns information about the number of tracks and sectors per track on a disk
LU. This subroutine’s behavior is not defined for other than disk LUs.

CALL Di scSi ze(lu, ntracks, spert)

where:
lu is a one-word integer, a disk LU.
ntracks is a one-word integer, the number of tracks on the specified LU.

spert is a one-word integer, the number of 64 word sectors per track on the specified LU.

ElapsedTime

This double integer function returns the number of milliseconds that have passed since the last
time recorded by ResetTimer (refer to that section). It does not attempt to correct for any
overhead in the timing measurement. It does not clear the timer, so it can be used to get “splits”
(intermediate timing points in an ongoing event) at various checkpoints. Elapsed time is only
valid within 24 hours of calling ResetTimer.

milliseconds = El apsedTi me()
where:

milliseconds is a double-word integer variable in which the number of milliseconds that have
passed since the last time recorded by ResetTimer is returned.

ElapsedTime must be declared as a double integer function.

ETime

This double integer function returns the number of centiseconds that have passed since the
specified base time. It does not attempt to correct for any overhead in the timing measurement.
The base time is updated each time the routine is called so that running time is kept. The elapsed
time is only valid within a 24-hour period.

centiseconds = ETi me(btime)
where:

centiseconds is a double-word integer variable in which the number of centiseconds that have
passed since the time specified by btime is returned.

btime is a double-word integer variable which represents the time from which to de-
termine the number of centiseconds that have elapsed. btime is updated to the
current time each time ETime is called so that running time is kept. By using
more than one btime, you can time as many processes as desired.

Utility and Status Subroutines 7-25

Fgetopt, Get a Runstring Option

Fgetopt processes single-character options from a runstring. Fgetopt assumes that options are
immediately preceded by a hyphen (for example,—O) and that all options are specified at the
beginning of a runstring. Fgetopt can optionally search for options that begin with a plus (+). As
each option is processed, it is removed from the runstring. Fgetopt can also process options with
arguments. The argument is assumed to immediately follow the option (for example, “—O arg” or
“—Qarg”). Fgetopt returns FALSE when there are no more options to process.

logical = Fget opt (runstring, opts, option, argument| , optflag])

| ogi cal *2 logical, Fget opt
character*(*) runstring, opts, option, argument
i nt eger*2 optflag

where:

runstring is a FORTRAN character string containing the runstring to be processed. It is
expected that the “RU,PROG” or “XQ,PROG” has already been removed
(GETST format). Fgetopt modifies this string such that a call to SPLITSTRING
returns the next option or parameter.

opts is a FORTRAN character string containing the list of recognized character options.
If the character is followed by a colon, the option is expected to have an argument
that may or may not be delimited. The argument is returned in the argument
parameter. Option characters cannot be a question mark (?), colon (:), comma (,)
or space ().

option is a FORTRAN character string returned as the next option letter in the runstring,
or returned as ‘?” when an error is encountered. Possible causes are unknown
options and non-existent arguments.

argument is a FORTRAN character string that is returned when an option requires an argu-
ment.

optflag is an optional single-word integer with bits 15 and 14 defined as follows:

bit 15 if equal to 1, allow error messages to be output to the user’s terminal LU.
(Default = enabled.)

bit 14 if equal to 1, enable options to be flagged with either a plus (+) or minus

(—) character. Options flagged with ‘+’ are returned in uppercase and
options flagged with ‘=’ are returned in lowercase. (Default = disabled.)

7-26 Utility and Status Subroutines

Example:

The following program segment demonstrates how Fgetopt can be used to process a runstring for a
program that has 3 possible options, “U”, “F”, and “O”. The “F” and “O” options require an
argument to be passed with the option.

I nt eger areg, len, runbuff(128)

Character runstring*256, option*1l, arg*64,
+ firstparntr64, file_options*10

Logi cal Fgetopt, Ufl ag

equi val ence (runbuff, runstring)

c get the runstring,

call exec(14, 1, runbuff, -256)
call abreg(areg, |en)

c take out the 'RU and the program nane,

call SplitString(runstring(l:1en),arg,runstring)
call SplitString(runstring,arg,runstring)

do while (Fgetopt(runstring,’ Ur: Q' ,option,arg)
if (option.eq.”U) then I -U
Ulag = .true.

else if (option.eq.”’F) then I —F arg
file = arg

else if (option.eq.”’0) then I —O arg
file_options = arg
else if (option.eq.’?’) then I illegal option
write(l, ("Usage: prog [-u] [-f name] [—o0 opts] parni)’)
st op
endi f
enddo
c Fgetopt rempves the options fromthe "runstring”.
C A call to "splitstring” will return the first paraneter
c after the options in the runstring.

call splitstring(runstring,firstparmrunstring)

Utility and Status Subroutines 7-27

GetFatherldNum

This function returns the ID segment number of the calling program’s ‘father’, that is, the program
that scheduled the calling program. If the calling program has no father, the value returned is
Z€eT0.

fatheridnum = Get Fat her | dNun()

i nt eger*2 fatheridnum, Get Fat her | dNum
where:
fatheridnum is the returned ID segment number of the program that scheduled the calling
program.
Returns:

nonzero Father’s ID segment number.

0 Program has no father.

GetRedirection, Extract I/O Redirection Commands

GetRedirection scans a runstring for I/O redirection strings (for example, >output, >>output,
<input). The redirection strings are removed from the runstring and returned to the caller. For
runstrings that contain multiple redirection strings, all redirection strings are removed, but only
the last one is returned.

The less than (<) or greater than (>) character must be preceded by a comma. The redirection
prefix (‘<’, “>’, or ‘>>") will not be included in the input or output file descriptors that are
returned.

If the input parameter is not supplied, GetRedirection does not scan for and remove input
redirection strings.

length = Get Redi r ecti on(runstring, output, append| , input])

i nteger*2 length, GCetRedirection
character*(*) runstring, output, input
| ogi cal append

where:
length returns the new length of the runstring in bytes.

runstring is the program runstring (it will get modified by GetRedirection if it contains a
redirection string).

output is returned as the output file descriptor.
append s set to TRUE if the output file is preceded by ‘>>".

input is optional and returns the input file descriptor.

7-28 Utility and Status Subroutines

GetRteTime

This function returns the current system time represented as the number of centiseconds since
midnight. It also returns the combined year and day of year in the RTE system internal format.
This routine executes with less system overhead than the EXEC 11 call.

TimeNow = GCet Rt eTi me(RteDate)

i nt eger*4 TimeNow, GCet Rt eTi me
i nt eger*2 RteDate

where:
TimeNow is the current system time of day, as the number of centiseconds since midnight.
RteDate is the combined year/day in RTE system internal format.

See also YrDoyToRteDate.

HexTolnt

This function converts an ASCII hexadecimal value to the corresponding single integer value.

intval = HexTol nt (string, error)

i nt eger*2 intval, HexTol nt, error
character*(*) string

where:
intval is a one-word integer in which the value of the hexadecimal string is returned.
string is a character string (legal, unsigned, hexadecimal) to convert to an integer value.
error returns 0 for no error, or nonzero if the string is not a valid hexadecimal number.
Returns:
0 if error is true.

See also HpZHexi.

HMSCtoRteTime

This function performs the inverse of RteTimeToHMSC; it converts Hour-Minute-Second-
Centisecond to RTE time format. The calling routine must ensure the validity of the time values,
as no checking is done in the function.

RteTime = HVBCt oRt eTi me(Hour, Minute, Second, Centisecond)

i nt eger*4 RteTime, HVSCt oRt eTi e
i nt eger*2 Hour, Minute, Second, Centisecond

Utility and Status Subroutines 7-29

IdAddToName, Convert ID Segment Address to
Program Name and LU Number

This subroutine converts an ID segment address to a program name and LU number. No error
checking of the address is done, but name and lu will be invalid if add is invalid.

CALL | dAddToNare(add, name, lu)

i nteger*2 add, name(3), lu

where:
add is a one-word integer variable, the ID segment address.
name is a three-word integer array, the name of the program at the ID segment address
specified by add. name is undefined if the passed ID segment address is not a valid
ID segment address.
lu is a one-word integer variable, the LU number. [u is undefined if the passed ID

segment address is not a valid ID segment address.

IdAddToNumber, Convert ID Segment Address to
ID Segment Number

This function converts an ID segment address to an ID segment number.

idNumber = | dAddToNunber (add)

i nteger*2 idNumber, | dAddToNunber, add
where:
add is a single integer representing the ID segment address.
idNumber is a one-word integer variable that returns the ID segment number.

Returns:

nonzero ID segment number corresponding to the address.

0 There is no such ID segment.

IDCLR

This subroutine causes the ID segment for the calling program to be deallocated when the
program terminates.

CALL | DCLR()

The ID segment is marked such that if the program terminates without going either “Dormant
Serially Reusable” or “Dormant Saving Resources” and is not in the time list, the ID segment is
returned to the system for use by another process.

7-30 Utility and Status Subroutines

IdNumberToAdd, Convert ID Segment Number to ID
Segment Address

This function converts an ID segment number to an ID segment address.

idAddress = | dNunber ToAdd(number)

i nt eger*2 idAddress, | dNunber ToAdd, number
where:
number is an integer representing the ID segment number.
idAddress is an integer variable that returns the ID segment address.
Returns:

nonzero ID segment number corresponding to the address.

0 Passed number is not a legal ID segment number.

IntString

This subroutine converts an integer into printable form. If the number is printable ASCII, the two
ASCII characters are returned; otherwise, the ASCII equivalent of the number is returned. The
returned string can be used for printing.

INTSTRING was written to process FMGR security codes into strings. Because lowercase
security codes do not go through the standard interactive interfaces (they are upshifted), lowercase
must be converted as numeric. This is also true of leading digits, (:) and ().

CALL I ntString(num, string)

i nteger*2 num
character*(*) string

where:

num is the single integer to be converted.

string is the character string that contains the returned ASCII equivalent of num.
Examples:

CALL IntString(numstring)

where: num = 345
string = 345
num = 40502B
string = AB
num = 18505
string = H

Utility and Status Subroutines 7-31

IntToDecimal, Integer to ASCII Conversion

This function returns a character string representation of a number. The string includes a leading
minus sign if the number is negative. Leading zeros are suppressed, and the whole number is left
justified in the string with trailing blanks. The character string should be at least six characters so
that the largest one-word integer can be represented. A smaller string can be used; however, the

rightmost digits will be truncated.

string = | nt ToDeci mal (number)

character*(*) string, | nt ToDeci mal
i nteger*2 number

where:
number is a one-word integer number to process.

string is a character string in which is returned a character representation of the number.

Compare this function to DintToDecimal.
See also HpZ.

IntToDecimalr, Integer to ASCII Conversion

This function returns a character string representation of a number. The string includes a leading
minus sign if the number is negative. Leading zeros are suppressed, and the whole number is right
justified in the string with leading blanks. The character string should be at least six characters so
that the largest one-word integer can be represented. A smaller string can be used; however, the
leftmost digits will be truncated.

string = | nt ToDeci mal r (number)

character*(*) string, | nt ToDeci mal r
i nt eger*2 number

where:
string is a character string in which a character representation of the number is returned.

number is a one-word integer number to process.

Compare this function to DintToDecimalr.
See also HpZ.

7-32 Utility and Status Subroutines

IntToHex

This function returns a character string of the hexadecimal representation of a number. Four
hexadecimal digits are returned, unsigned, with leading zeros.

string = | nt ToHex(number)

character*(*) string, | nt ToHex
i nt eger*2 number

where:

string is the returned character representation.

number is a one-word integer to convert.

See also HpZ.

IntToHexR

This function converts an integer to an ASCII hexadecimal string with right justification.

string = | nt ToHexR(number)

character*(*) string, | nt ToHexR
i nt eger*2 number

where:

string is the returned character representation.

number is a one-word integer to convert.

See also HpZ.

Utility and Status Subroutines

7-33

IntToOctal, Integer to Octal Conversion

This function returns a character string octal representation of a number. The number is returned
unsigned. Leading zeros are suppressed, and the whole number is left justified in the string with
trailing blanks. The character string should be at least six characters so that the largest one-word
integer can be represented. A smaller string can be used; however, the rightmost digits will be
truncated.

string = | nt ToCct al (number)

character*(*) string, | nt ToCct al
i nt eger*2 number

where:

string is a character string in which is returned a character representation of the number.

number is a one-word integer number to process.

Compare this function to DintToOctal.

See also HpZ.

IntToOctalr, Integer to Octal Conversion

This function returns a character string octal representation of a number. The number is returned
unsigned. Leading zeros are suppressed, and the whole number is right justified in the string with
leading blanks. The character string should be at least six characters so that the largest one-word
integer can be represented. A smaller string can be used; however, the leftmost digits will be
truncated.

string = | nt ToCct al r (number)

character*(*) string, | nt ToCctal r
i nt eger*2 number

where:

string is a character string in which a character representation of the number is returned.

number is a one-word integer number to process.

Compare this function to DintToOctalr.

See also HpZ.

7-34 Utility and Status Subroutines

InvSeconds

This routine performs a conversion which is the inverse of the Seconds routine. This routine
dissasembles the number of seconds since January 1, 1970 into conventional time values. The
seconds since 1970 format is used extensively in the FMP file system for timestamps.

Cal | I nvSeconds(SecsSince70, Year, Doy, Hour, Minute, Second)
i nt eger*4 SecondsSince70
i nt eger*2 Year, Doy, Hour, Minute, Second

where:

SecsSince70 is seconds since midnight.

Year is the year A.D. (for example, 1993).

Doy is the cardinal day of the year (1..366).

Hour is the hour of the day in military time (0..23).

Minute is the number of minutes into the current hour (0..59).
Second is the number of seconds into the current minute (0..59).

See also Seconds.

LastMatch

This function returns the position in string of the last occurrence of char. It performs a backward
search from the end of string until it finds char. If char is not found, a zero is returned.

index = Last Mat ch(string, char)

where:

string is the character string to be examined.

char is a single character string searched for.

index is the position of char in the string that is returned, an integer value.
LeapYear

This routine tests a given year to see if it is a leap year. The algorithm follows the correct rules for
4, 100, and 400 divisibility.

flag = LeapYear (year)

| ogi cal *2 flag, LeapYear
i nt eger*2 year

where:
flag is a flag that will be TRUE if the year is a leap year.
year is the year to be tested (for example, 1980 or 1985).

Utility and Status Subroutines 7-35

LuLocked

This function reports if the passed LU is locked. The value can be used as a logical condition.
lockedFlag = LulLocked(/u)

where:
lu is a one-word integer variable containing the LU number.

lockedFlag is a one-word integer variable that reports the locked condition of the LU.
Returns:

0 LU is not locked or is illegal.

nonzero LU is locked.

MoveWords

This subroutine moves a specified number of words from one location to another. It uses the
MVW instruction, which moves the words one at a time starting with the first. Do not use this
subroutine to move character strings to or from another location, as it will not work.

CALL MoveWbr ds(from, to, count)

where:
from is the location, usually an integer array or array element, from which the specified
number of words are to be moved.
to is the location, usually an integer array or array element, to which the specified
number of words are to be moved.
count is the one-word integer number of words to move.

See also CompareWords.

MyldAdd, Return ID Segment Address

This function returns the calling program’s ID segment address.
idAddress = Myl dAdd()

where:

idAddress is a one-word integer variable in which the ID segment address is returned.

7-36 Utility and Status Subroutines

NumericTime

This subroutine returns a numeric ASCII time string corresponding to the passed number of
seconds since 12 AM January 1, 1970.

CALL Nurreri cTi me(time, buffer)

where:
time is the double-word integer number of seconds since 12 AM January 1, 1970.
buffer is a character string, with the entire returned string occupying 13 characters, but a

longer or shorter buffer can be supplied, in which case the string is truncated or
padded with blanks, respectively.

For example, 360000000 => 810529.160000

Compare this subroutine to DayTime.

OctalToDint, ASCII to Double Integer Conversion

This function is an ASCII to double integer conversion that returns the double integer value of the
characters contained in the specified string (one integer per string). Blanks are ignored, except
that an all blank string is an error.

dintValue = Cct al ToDi nt (string, error)

where:
string is the character string to convert, whose characters must comprise a legal, unsigned
octal double integer, in the range 0 to 37777777777B. The octal qualifier “B” is not
allowed.
error is a required one-word integer variable that returns zero to indicate no error, or

nonzero to indicate an invalid character was encountered or overflow occurred
(zero is returned as the function value if an error occurs).

dintValue is a double-word integer variable in which the integer value of the character string
is returned.

Compare this function to OctalTolnt.
See also HpZ.

Utility and Status Subroutines 7-37

OctalTolnt, ASCII to Single Integer Conversion

This function is an octal ASCII to single integer conversion that returns the single integer value of
the characters contained in the specified string (one integer per string). Blanks are ignored,
except that an all blank string is an error.

intValue = Cct al Tol nt (string, error)

where:
string is the character string to convert, whose characters must comprise a legal, unsigned
octal integer, in the range 0 to177777B. The octal qualifier “B” is not allowed.
error is a required one-word integer variable that returns zero to indicate no error, or

nonzero to indicate an invalid character was encountered or overflow occurred
(zero is returned as the function value if an error occurs).

intValue is a one-word integer variable in which the integer value of the character string is
returned.

See also HpZ.

ProgramPriority

This function returns the priority of a program.
priority = ProgranPriority(program)
where:

program is a three-word integer array containing the name of the program whose priority or
existence is being requested.

priority is a one-word integer variable in which the program’s priority is returned.
Returns:

nonzero Priority of the program.

0 Program does not exist.

See also SetPriority.

7-38 Utility and Status Subroutines

ProgramTerminal

This function returns the LU of the terminal associated with the named program. Among other
things, this is the LU at which that program’s I/O to LU 1 will actually take place.

lu = Programler m nal (program)

where:

program is a three-word integer array containing the program name for which the terminal
LU is being requested.

lu is a one-word integer variable in which the terminal LU associated with the pro-
gram is returned.

Returns:

nonzero LU of the terminal associated with the named program.

PutinCommas

This subroutine prepares a string of parameters for parsing by routines expecting commas as
separators.

CALL Put | nCommas((string)
where:

string is the character string to process.

The subroutine separates parameters at blanks or commas, then rebuilds the string in place with
single commas between parameters and blanks deleted; for example:

expr w,xy,,z
becomes

expr,w, Xx,y,,Zz

Utility and Status Subroutines 7-39

ReadA990Clock (RTE-A Only)

This routine reads the calendar clock of the A990.

flag = ReadA9900 ock(TimeArray, WorkBuf, error)

i nteger*2 TimeArray(8) , WorkBuf(20) , error
| ogi cal *2 flag, ReadA9900 ock

where:
flag returns TRUE if an error is detected.
TimeArray is an array of integers that returns the time as follows:
word 1: seconds past the minute (0..59)
word 2: minutes past the hour (0..59)
word 3: the hour of the day (0..23)
word 4: the day of the week (0..6, Sunday = 0)
word 5: the day of the month (1..28, 29, 30, 31)
word 6: the month (1..12)
word 7: the year (for example, 1991)
word 8: RTE-Date word when the time was set
WorkBuf is the buffer used for communication with the A990 clock chip.
error is the error code if the function is . TRUE. :

—1 not an A990 CPU

—2 clock is not stable, delay 10 ms and try again
—3 battery is dead, time may not be correct

—4 clock has not been set

See also Write A990Clock.

ResetTimer

This subroutine resets the timer used by ElapsedTime. It must be called first for ElapsedTime to
give meaningful values, or any time thereafter to reset the timer.

CALL Reset Ti ner

7-40 Utility and Status Subroutines

Rex (Regular Expression) Routines

The Rex routines perform regular expression pattern matching and substitution on arbitrary

character strings in very much the same way as EDIT/1000. Matching is briefly summarized in
Table 7-1. Regular substitutions have the constructs shown in Table 7-2.

Table 7-1. Expression Pattern Matching Summary

Pattern Match
a Matches character “a”
. Matches any character
@ Matches any character zero or more times (same as “.*”)
~X Anchors the pattern to the beginning of line
x$ Anchors the pattern to the end of line
[ai—K] Matches any of the characters “a”, “i’, “j”, “k”
[~ai—Kk] Matches any characters but “a”, “i”, “”, “k”
x* Matches zero or more occurrences of pattern x
X+ Matches one or more occurrences of pattern x
x<5> Matches 5 repetitions of pattern x
a:b Matches a word boundary between patterns a and b
* Matches the character “*”
{x} Tags a subexpression for recall in substitutions

Table 7-2. Substitution Constructs

Substitution Meaning
& Recall the entire matched string
&1 Recall tagged field #1 in the matched field
> Same as “&” but fold characters to uppercase
(“>1” folds tagged field #1)
< Same as “&” but fold characters to lowercase
<&> Break the line into 2 lines at this point

Utility and Status Subroutines

7-41

RexBuildPattern

RexBuildPattern takes pattern string string, of which stringlen characters are significant, and builds
a pattern for use by RexMatch and RexExchange into pattern, an array of patternmax words.

error = RexBui | dPat t er n(string, pattern, stringlen, patternmax)

i nteger*2 RexBui |l dPat t er n, pattern, stringlen, patternmax
character string*(*)

where:
string is the pattern string, which should already be folded to uppercase if case sensi-
tivity is not desired.
stringlen contains the significant characters.
pattern is an array of patternmax words built into a pattern for use by RexMatch and

RexExchange.

patternmax should be about 200 words to handle most expressions (the repeat operator
uses a lot of space).

Returns (error code):

-2 If the pattern is too complicated; does not fit in pattern.
-1 If an illegal regular expression syntax is found.
>0 If no problem occurs, error is the number of words of pattern generated.

RexBuildSubst

RexBuildSubst takes pattern string string, of which stringlen characters are significant, and builds a
regular substitution string into subpattern, an array of subpatternmax words, for use by
RexExchange. The subpatternmax parameter should include one word per character to be
substituted and two words per recall operator (&, >, <). About 100 words handles most
substitutions.

error = RexBui | dSubst (string, stringlen, subpattern, subpatternmax)

i nteger*2 RexBui |l dSubst , stringlen, subpattern(*) , subpatternmax
character string*(*)

Returns (error code):

-2 If pattern will not fit in subpattern.
-1 If an invalid regular expression syntax is found.
>0 If no problem occurs, err is the number of words of subpattern generated.

7-42 Utility and Status Subroutines

RexExchange

This routine replaces all occurrences of pattern (built by RexBuildPattern) in foldedline, of which
linelen characters are significant, with substitution pattern subpattern (built by RexBuildSubst) into
newline, the length of which is returned in newlen. origline is the unfolded version foldedline; if
case sensitivity is desired, foldedline and origline should be the same string passed twice; otherwise,
foldedline should be case folded prior to calling RexExchange.

error = RexExchange (foldedline, linelen, origline, pattern, subpattern, newline, newlen)

i nt eger*2 RexExchange, linelen, pattern(*) , subpattern(*) , newlen
character*(*) foldedline, origline, newline

Returns:
<0 Number of matches found, new line was truncated.
0 No matches.
>0 Number of matches found.

If no matches occur (returns=0), newline is unmodified. newline should replace origline only if
exchanges are performed.

If RexExchange is used, the calling program must supply a routine named RexBreakLine that can
be called as follows:

CALL RexBreaklLi ne(string, length)

character string*(*)
i nteger*2 length

RexBreakLine is called whenever the break line operator <$> is encountered. string is the
newline parameter to RexExchange and length is the number of valid characters in the broken line.
This routine should process the new broken line the same as the normal RexExchange returned
newline and return so that RexExchange can continue substituting on the current line. For
example:

Suppose the match pattern is “abcdef”, the substitution pattern is “ab<$>cd<$>ef”, and
RexExchange is called on line xxabcdefzz.

1. RexBreakLine is called with parameter “xxab”.
2. RexBreakLine is called with parameter “cd”.

3. RexExchange returns string “efzz”.

This is in keeping with EDIT/1000’s notion of the break line operator, creating separate lines of
the broken lines and not inserting a carriage return.

Utility and Status Subroutines 7-43

RexMatch

This routine determines whether the supplied string, of which stringlen characters are significant,
contains the pattern previously built by RexBuildPattern. The routine returns values of .true. or
false. accordingly. Note that string should already be folded to uppercase if case sensitivity is not
desired.

match = RexMat ch(string, stringlen, pattern)
| ogi cal RexMatch

i nt eger *2 stringlen, pattern(*)
charact er string* (*)

RteDateToYrDoy

Convert from RTE’s combined year/day format to Year and Cardinal Day

call RteDateToYr Doy(RteDate, Year, DayOfYear[, OS_Flag])

i nt eger*2 RteDate, Year, DayOfYear
| ogical *2 OS Flag

where:

RteDate is the combined year/day in system format.

OS Flag indicates which date format to use. Because RTE-A and RTE-6/VM maintain
the date in different formats, the OS_Flag parameter indicates which operating
system format is in use, TRUE for RTE-6/VM or FALSE for RTE-A. The
default for OS_Flag is FALSE.

Year is the year A.D. (for example, 1989).

DayOfYear is the day of the year (1..366).

This routine separates the combined year and day, as read from the system, into individual
variables. RTE-A computes RteDate as (year—1976)*366+day. RTE-6/VM computes RteDate as
the number of days since 1970.

See also GetRteTime and YrDoyToRteDate.

7-44 Utility and Status Subroutines

RteShellRead, Read from a Terminal and Enable
Command Line Editing (RTE-A Only)

This routine reads from a terminal LU and enables the $VISUAL command line editing. (See the
RTE-A User’s Manual, part number 92077-90002, for more information about the $VISUAL
command line editing modes.) This routine uses the §VISUAL, $LINES, $COLUMNS, and
$KILLCHAR variables in the exported Environment Variable Block (EVB). This routine should
be used in conjunction with the standard HP command stack library routines, CmndStackInit,
CmndStackScreen, and CmndStackPush.

If $VISUAL is not found in the EVB, RteShellRead performs the read with an REIO call and
command line editing is not available. $LINES defaults to 24, SCOLUMNS defaults to 80, and
$KILLCHAR defaults to the DEL character.

If one of the $VISUAL editing modes is enabled and the terminal LU supports FIFO mode, the
LU is enabled for FIFO during the terminal I/O phase. The port is reset to its original state
before RteShellRead returns. For optimal performance, the port should be configured to use
FIFO mode with Xon/Xoff handshaking.

CALL Rt eShel | Read(crt, bufr, bufin, len, status, prompt, plen, * alt_rtn)

i nteger*2 crt, bufr(*), bufin, len, status, prompt(*) , plen

where:

crt is the LU of the user’s terminal.

bufr is the integer array in which the data is returned.

bufin is the buffer length. A positive value indicates the number of words; a negative
value indicates the number of characters in bufr.

len is returned as the transmission log, the positive number of words or characters
(depending on bufin) transmitted in the bufr array.

status returns DVT word 6 of the terminal LU after the last read.

prompt is the integer array containing the prompt that is currently issued by the calling pro-
gram. (Some of the editing commands require the prompt to be reissued.)

plen is the length of the prompt in characters. This length should not include the trail-
ing underscore (_) character.

alt_rtn is the alternate return taken if the EXEC read is aborted. alt_rtn is a FORTRAN
line number and must be preceded by an asterisk (*). See the FORTRAN Reference
Manual, part number 92836-90001, for information on alternate returns in subrou-
tines.

Utility and Status Subroutines 7-45

RteTimeToHMSC

This routine converts centiseconds since midnight to Hour-Minute-Second-Centisecond. Given
the current system time, as read by GetRteTime, this routine converts it to conventional time
values.

Call RteTi meToHMSC(RteTime, Hour, Minute, Second, Centisecond)

i nt eger*4 RteTime
i nt eger*2 Hour, Minute, Second, Centisecond

where:
RteTime is the time of day, as returned by GetRteTime.
Hour is the hour of the day, “military time” (0..23).
Minute is the number of minutes into the current hour (0..59).
Second is the number of seconds into the current minute (0..59).

Centisecond is the number of centiseconds into the current second (0..99).

Saminfo, Return SAM Size (RTE-A Only)

This routine returns information about the number of free words in SAM or XSAM.

CALL Sam nf o(whichsam, totalwords, freewords, maxfree)

where:
whichsam is an integer that is 0 if SAM information is desired, or non zero for XSAM.
totalwords is an integer that returns the total number of words of SAM or XSAM.
freewords is an integer that returns the number of free SAM or XSAM words.
maxfree is an integer that returns the number of words in the largest free block of SAM

or XSAM.

7-46 Utility and Status Subroutines

Seconds

This function converts a time buffer and year into the number of seconds since 12 AM January 1,
1970.

totalSeconds = Seconds(timebuff, year)

where:
timebuff is the five-word integer time buffer, in the same format as that returned by a
call to EXEC 11.
year is a one-word integer variable, the corresponding year.

totalSeconds is a double-word integer variable, the number of seconds since 12AM January
1, 1970 of timebuff.

SplitCommand, Parse String

This subroutine parses the string, stopping at the first semicolon or user defined character.

CALL Spl it Command(string, partl, part2, | char])

where:

string is the character string to process, with leading blanks stripped before the string is
split to make the subroutine easier to use as a parameter separator.

partl is a character string variable that holds the first part of the string (up to but not in-
cluding the delimiter).

part2 is a character string variable that holds the second part of the string (after the de-
limiter, not including it).

char is an optional character string variable which contains an optional user supplied

delimiter; if not supplied, the delimiter defaults to a semicolon (;).

Note that this routine follows the normal CI quoting rules when it encounters a backquote (*) or
backslash (\) in string. Therefore, it is possible for char (the delimiter) to be passed as a simple
character and not be treated as a delimiter.

Normal string assignment rules apply, including blank fill. As an extension to normal string
assignment rules, null strings are blank filled; part2 can specify the same string as string. This
permits a statement such as:

CALL Spl it Command(buffer, item, buffer)

which sets up buffer for another call after putting the current item in item.

Utility and Status Subroutines 7-47

SplitString, Parse String

This subroutine parses the string, stopping at the first comma or blank.

CALL Split String(string, partl, part2[,commas-only])

where:
string is the character string to process, with leading blanks stripped before the string
is split to make the subroutine easier to use as a parameter separator.
partl is a character string variable that holds the first part of the string (up to but not
including the delimiter).
part2 is a character string variable that holds the second part of the string (after the

delimiter, not including it).

commas-only is an optional boolean variable that, if set to TRUE, directs SplitString to stop
only at the first comma.

Normal string assignment rules apply, including blank fill. As an extension to normal string
assignment rules, null strings are blank filled; part2 can specify the same string as string. This
permits a statement such as:

CALL Split String(buffer, item, buffer)

which sets up buffer for another call after putting the current item in item.

Null characters are treated as non-blank ASCII characters, not blanks. Therefore, character
strings with these routines should always be initialized to blanks before they are used. See the
“Character String” section in Chapter 6 of the RTE-6/VM CI User’s Manual, part number
92084-90036, or Chapter 8 of the RTE-A Programmer’s Reference Manual, part number
92077-90007, for more information.

See also HpZ Miniformatter, HpZParse, and HpZDParse.

7-48 Utility and Status Subroutines

StrDsc

This routine constructs a character string descriptor for the nchars section of buffer starting with
startchar (first character is one, not zero). This character string descriptor can then be passed to
routines that expect a character string descriptor, with the effect that the character string data will
be taken from or put into the designated section of buffer.

Refer to the RTE Programmer’s Reference Manual for information about using this routine in
Pascal to call FMP routines.

stringDes = St r Dsc(buffer, startchar, nchars)

where:

buffer is an integer array containing characters.

startchar is a one-word integer variable, the first character to be included in the string. (The
first character in an array is character number 1.)

nchars is a one-word integer variable, the length of the string, in characters.

stringDes is a double-word integer variable in which a character string descriptor is returned.

Confusion can exist about whether a subroutine requires a character descriptor (such as one
returned by StrDsc) or a simple integer array. Confusion can also arise because the string
descriptor references an integer buffer where the string data really resides. For these reasons, use
this function with care.

For example, a valid use of this call is:
err = fnppurge(StrDsc(8hEXPR: : XX, 1, 8))
This is equivalent to the FORTRAN call using strings:
err = fnppurge(’ EXPR : XX)

The buffer, string character and number of characters do not have to be constants, although they
are in this example. Note that FORTRAN does not treat the descriptor as a character string in the
module where the descriptor is created; it must be passed to another module to get this effect.

An incorrect use is:

sd = St r Dsc(buf, 1, 80)
IF (sd 'STOP') GOTO 10
because FORTRAN does not recognize “sd” as a character string.

Note also that the string descriptor returned works for FORTRAN and FMP, but other languages
do not interpret it as a string descriptor.

See also MinStrDsc, HpZMoveString, and GetString.

Utility and Status Subroutines 7-49

StringCopy, Copy One String to Another

This routine copies one string into another. It is equivalent to the FIN7X statement “string2 =
stringl”. This routine is used when the caller has two FTN7X string descriptors, but they are not
declared as such within the program, so a normal string assignment cannot be used. For instance,
routine A may pass a string to routine B, but routine B declares the passed argument as
INTEGER*4 rather than as character string (the programmer may choose to do this to reduce
overhead or because the string is an optional parameter). Routine B cannot do normal
assignments with these variables because FTN7X does not recognize them as string descriptors.
This routine may be used to copy one of these strings into the other.

CALL StringCopy(stringl, string2)
where:

stringl,
string2 are character string descriptors, stringl is copied into string?2.

Example:

Character stringl*10, string2*10 .
CALL Sub(stringl, string2)

Subroutine Sub(stringl,string2)
Integer*4 stringl, string2

CALL .St ri ngCopy(stringl, string2)

See also HpZMoveString.

7-50 Utility and Status Subroutines

TIMEF

This subroutine formats time, a positive double-word integer, into FORTRAN compatible
character strings.

CALL TI VEF(etime, ttime, hrs, mins, secs, percents)

where:
etime is a double-word integer for elapsed time (10s of ms.).
ttime is a double-word integer (10s of ms.).
hrs is a four-character string (up to 5760 hours).
mins is a two-character string (up to 59 minutes).
secs is a five-character string (up to 59.99 seconds).

percents s a four-character string which is the percent of ttime that etime represents.

Example:

SUBROUTI NE PRI NT(PREAVBLE, SUB, TOTAL)
CHARACTER *(*) PREAMBLE

CHARACTER *2 M N

CHARACTER *4 HR PE

CHARACTER *5 SEC

CHARACTER *70 OUT

| NTEGER OUTI (35)

EQUI VALENCE (QUTI, OUT)

| NTEGER *4 SUB, TOTAL

CALL TI MEF(SUB, TOTAL, HR, M N, SEC, PE)

OUT=PREAMBLE/ /HR//° HRS '//MN/' MN ’//SEC//' SEC //PE X/ /' % OF
TOTAL’

CALL EXEC(2, 1, OUTI, —-70)

RETURN

END

PREAMBLE is the string that you have passed to the PRINT subroutine.

Result: RELOCATABLE FILE READ TIME = 0 HRS. 1 MIN. 0.04 SEC. 19.2%
OF TOTAL

See the ElapsedTime or ResetTimer subroutines in Chapter 7 and the TIMEO or TIMEI
subroutines in Chapter 5 of this manual.

Utility and Status Subroutines 7-51

TimeNow

This routine returns the number of seconds since 12 AM January 1, 1970 corresponding to the
current system time.

seconds = Ti meNow()

where:

seconds is a double-word integer variable, the number of seconds since 12 AM January 1,
1970.

Note No correction is made for time zones or Daylight Savings Time.

TrimLen, Remove Trailing Blanks

This function returns the length of a character string, not including trailing blanks.

length = Tri nLen(string)

where:
string is the character string whose length is to be determined.
length is a one-word integer variable in which the length of the passed string after trim-

ming off trailing blanks is returned; this length can be zero, so be careful about us-
ing this length for substrings.

Null characters are treated as non-blank ASCII characters, not blanks. Therefore, character
strings with these routines should always be initialized to blanks before they are used. See the
“Character String” section in Chapter 6 of the RTE-6/VM CI User’s Manual or Chapter 8 of the
RTE-A Programmer’s Reference Manual for more information.

7-52 Utility and Status Subroutines

WholLockedLu

This function returns the ID segment address of the program that locked the passed LU. Use
IdAddToName to get the program name, if desired.

idAddress = \WhoLockedLu(lu)
where:
lu is the LU number.

idAddress is a one-word integer variable in which the ID segment address of the program that
locked the LU is returned.

Returns:
nonzero ID segment address of the program that locked the passed LU.

0 LU is not locked, or is not a legal LU.

WholLockedRn (RTE-A Only)

This function returns the ID segment address of the program that locked the passed resource
number. Use IdAddToName to get the program name, if desired.

idAddress = \WhoLockedRn(rn)
where:
m is the resource number.

idAddress is an integer variable in which the ID segment address of the program that locked
the resource number is returned.

Returns:
nonzero ID segment of the program that locked the passed resource number.

0 Resource number is not locked locally, or it is not a legal resource number.

Refer to the RTE-A Programmer’s Reference Manual, part number 92077-90007, for more
information about resource numbers.

Utility and Status Subroutines 7-53

WriteA990Clock (RTE-A Only)

This routine sets the calendar clock on the A990 CPU.

if (WiteA990Q ock(TimeArray, WorkBuf, dse)) then not A990 endi f

i nteger*2 TimeArray(7), WorkBuf(20) , dse
| ogical *2 WiteA990d ock

where:
TimeArray is an array that contains the time to set:
word 1: seconds past the minute (0..59)
word 2: minutes past the hour (0..59)
word 3: the hour of the day (0..23)
word 4: the day of the week (0..6, Sunday = 0)
word 5: the day of the month (1..28, 29, 30, 31)
word 6: the month (1..12)
word 7: the year (for example, 1991)
word 8: RTE-Date word when the time was set
WorkBuf is the buffer used for communication with the A990 clock chip.
dse indicates daylight savings time: 0 to disable and 1 to enable.
See also ReadA990Clock.

YrDoyToMonDom

This routine converts year and day of the year to day of the month, month, and day of the week.

cal | Yr Doy ToMonDom(Year, DayOfYr, Month, DayOfMonth, Weekday)

i nt eger*2 Year, DayOfYr, Month, DayOfMonth, Weekday

where:

Year is the year A.D. (for example, 1993).

DayOfYr is the day of the year (1..366).

Month is the corresponding month (1..12).

DayOfMonth is the corresponding day (1..31).

Weekday is the day of the week (0..6, 0 = Sunday).

Given the year and the cardinal day of the year, this routine calculates the month, day of the
month, and day of the week. The algorithm used does account for leap years, including century

leap years.

7-54 Utility and Status Subroutines

YrDoyToRteDate

This routine converts a year and cardinal day to the format used by RTE internally; it performs the
inverse of RteDateToYrDoy. The calling routine must ensure the validity of the time values, as no
checking is done in the function.

RteDate = Yr DoyToRt eDat e(Year, DayOfYear[, OS_Flag])

i nt eger*4 RteDate, Yr DoyToRt eDat e
i nt eger*2 Year, DayOfYear
| ogi cal *2 OS Flag

where:
RteDate is the combined year/day in the RTE system internal format (see below).
Year is the year A.D. (1976..2155 for RTE-A; 1970..2149 for RTE-6/VM).

DayOfYear is the day of the year (1..366).

OS _Flag indicates which operating system algorithm to use; TRUE indicates RTE-6/VM
and FALSE indicates RTE-A. If not specified, the algorithm RTE-A is used.

The RteDate parameter is the data word kept by the operating system in location $TIME+2. The
format of the word depends on which operating system is in use:

For RTE-A, it is the approximate number of days since January 1, 1976, calculated as
follows:

RteDate = (Year—1976)*366 + DayOfYear — 1

For RTE-6/VM, it is the actual number of days since January 1, 1970, calculated as follows:

RteDate = (Year—1970)*365 + (Year—1969)/4 + DayOfYear + 1
See also GetRteTime and RteDateToYrDoy.

Utility and Status Subroutines 7-55

VIS Subroutines

The HP 1000 Vector Instruction Set (VIS) is a group of arithmetic routines that operates on arrays
of floating point numbers. There are 80 routines that can be called from FORTRAN, half of which
involve the Extended Memory Area (EMA) of the RTE Operating System. EMA is an area for
arrays that can extend beyond the program’s logical address space. EMA is discussed in detail in
the RTE-A Programmer’s Reference Manual, part number 92077-90007. Arrays can also be in the
Virtual Memory Area (VMA). This data resides on disk and pages of data are swapped into
memory as needed. All references to EMA in this manual also pertain to VMA.

Note The VIS subroutines are included as part of the product for RTE-A only. These
subroutines are a separate product for RTE-6/VM and are included here for the
use of the RTE-A programmer and the convenience of the RTE-6/VM user.

In this chapter, as in the rest of this manual, single precision real is the same as
Real *4 and double precision real is the same as Real *8. The VIS routines do not
support extended precision (Real *6) operations.

The Vector Instruction Set (VIS)

The eight VIS routines include:

20 single precision, non-EMA routines.

20 double precision, non-EMA routines.

20 single precision, EMA routines.

20 double precision, EMA routines.

VIS Subroutines 8-1

VIS provides the following operations:

e The sum, difference, product or quotient of corresponding elements of two arrays.
e The sum, difference, product or quotient of a scalar and an array.

e The dot product of two arrays.

e The absolute value of an array, element by element.

e The sum of the elements of an array or the sum of their absolute values.

e The sum of an array and the product of an array, and the product of a scalar and another
array; this is known as a pivot operation.

e The identification, by index, of the maximum or minimum value of an array by actual value or
absolute value.

* Copying of an array into another and swapping two arrays.

e Copying arrays to and from EMA (Extended Memory Area).

Note The overflow bit will always be cleared on a normal VIS termination, regardless
of whether an overflow occurred during some intermediate calculation.

2 <<

In this chapter, the term “VIS” refers to the Vector Instruction Set. The terms “array,
and “matrix” are used interchangeably.

vector,”

Arrays in Memory

The increment parameter in the calling sequence of VIS routines specifies the next array element
to be processed. Therefore, it is important to understand how arrays in FORTRAN are arranged
in memory, especially two and three dimensional arrays.

In a one dimensional array, the elements are physically contiguous. Figure 8-1 shows a one
dimensional array in memory. Array a is a single precision array with 10 elements. Each element
occupies two words in memory. If Array a were double precision, each element would occupy four
words.

a(10) decimal
memory address

20000 a(1)
20001
20002 a(2)
20003
20004 a(3)
20005

20018 a(10)
20019

Figure 8-1. One Dimensional Array in Memory

8-2 VIS Subroutines

In FORTRAN, two and three dimensional arrays, elements in a row are not physically contiguous.
Elements are stored in column major order. Figures 8-2 and 8-3 show two and three dimensional

arrays in memory. Array b is a 3x5 single precision array with 15 elements and Array c is a 3x5x2

array with 30 elements. Notice how the columns are stored contiguously in memory. In all arrays,
an increment of 1 means to access the next contiguous array element. In two and three
dimensional arrays, the spacing between elements in a row is determined by the number of rows.
In Figures 8-2 and 8-3, an increment of 3 would allow every third element of each row element to
be accessed. Therefore, starting at b(1,1), the next element would be b(1,2) and starting at

c(1,1,1), the next element would be c(1,2,1). The increment is further described in “The Vector
Instruction Set, VIS,” that follows and appears in Chapter 9.

5 columns
3 10 40 7.0 10.0 13.0
rows 20 5.0 8.0 11.0 14.0
30 6.0 90 120 15.0

column
1

column

b(3x5)

1.0
2.0
3.0
4.0

13.0
14.0
15.0

decimal
memory address

20000 Db(1,1)
20001
20002 Db(2,1)
20003
20004 Db(3,1)
20005
20006 b(1,2)
20007

20024 b(1,5)
20025
20026 b(2,5)
20027
20028 b(3,5)
20029

Figure 8-2. Two Dimensional Array in Memory

VIS Subroutines

8-3

8-4

c(3x5x2)

decimal
plane 1 memory address
5 columns 20000 c(1,1,1)
3 1.0 40 70 100 130 10 3888; c2,1,1)
rows 2.0 50 8.0 11.0 14.0 column 20 20003 Y
30 6.0 9.0 120 15.0 1) 50004 c3,1,1)
3.0 20005
20006 c(1,2,1)
(plane 1 for three- 4.0 20007
dimensional array) '
20024 c(1,5,1)
13.0 20025
20026 c(2,5,1)
column 14.0 20027
5 20028 c(8,5,1)
15.0 20029
decimal
plane 2 memory address
5 columns 20030 c(1,1,2)
16.0 20031
3 16.0 13.0 20032 c(2,1,2)
rows 17.0 29.0 column | 17.0 20033
18.0 30.0 1 20034 ¢(3,1,2)
18.0 20035
(plane 2 for three- .
dimensional array) 20054 c(1,5,2)
28.0 20055
20056 c(2,5,2)
column | 29.0 20057
5 20058 c(3,5,2)
30.0 20029

Figure 8-3. Three Dimensional Arrays in Memory

VIS Subroutines

Index to VIS Routines

INDEX TO VIS ROUTINES

Fortran Calling Sequences

CALL VABS (v1, incr1, v2, incr2, #elements)

CALL VADD (v1, incr1, v2, incr2, v3, incr3, #elements)
CALL VDIV (v1, incr1, v2,incr2, v3, incr3, #elements)
CALL VDOT (scalar, v1, incr1, v2, incr2, #elements)
CALL VMAB (scalar, v1, incr1, #elements)

CALL VMAX (scalar, v1, incr1, #elements)

CALL VMIB (scalar, v1, incr1, #elements)

CALL VMIN (scalar, v1, incr1, #elements)

CALL VMOV (v1, incr1, v2, incr2, #elements)

CALL VMPY (v1,incr1, v2, incr2, v3, incr3 #elements)
CALL VNRM (scalar, v1, incr1, #elements)

CALL VPIV (scalar, v1, incr1, v2, incr2, v3, incr3, #elements)
CALL VSAD (scalar, v1, incr1, v2, incr2, #elements)
CALL VSDV (scalar, v1, incr1, v2, incr2, #elements)
CALL VSMY (scalar, v1, incr1, v2, incr2, #elements)
CALL VSSB (scalar, v1, incr1, v2, incr2, #elements)
CALL VSUB (v1, incr1, v2, incr2, v3, incr3, #elements)
CALL VSUM (scalar, v1, incr1, #elements)

CALL VSWP (v1,incr1, v2, incr2, #elements)

CALL VWMOV (v1, incr1, v2, incr2, #elements)

CALL WVMOV (v1, incr1, v2, incr2, #elements)

Operations Page
v2 + abs(v1) 13
V3 +v1 + v2 7
v3 +—vi1/v2 7
scalar + sum [v1 * v2 19
scalar = index of largest absolute value in v1 23
scalar = index of largest value in v1 23
scalar = index of smallest value in v1 23
scalar = index of smallest value in v1 23
V2 +vi 29
V3 +—v1 *v2 7
scalar + sum [abs(v1)] 15
v3 + (scalar * v1) + v2 21
V2 + scalar + v1 11
v2 + scalar / v1 11
V2 + scalar * v1 11
V2 + scalar — v1 11
V3 + vl —v2 7
scalar + sum [v1] 15
vl & v2 29
non-EMA v1 — EMA v2 31
EMA v1 — non-EMA v2 31

VIS Subroutines

8-5

General Calling Sequence

The rest of this chapter describes each group of VIS routines. Examples given are all for single
precision arrays and variables. The previous index of all the single precision VIS routines can be
used as a quick reference guide.

Conventions used for the calling sequence description are:

Notation Description
[] Items within brackets are optional.
{} For items stacked within braces, choose one.
lowercase parameters Lowercase parameters are to be replaced by user supplied variables.

VIS routines are callable from FORTRAN or assembly language. The general form of the
FORTRAN calling sequence is:

CALL {subr} ([scalar,]vl,incrl,[v2,incr2,[v3,incr3,]]Nuntlenents)

where:

subr is the actual VIS routine name. The initial letters of the names indicate the
type of the routine. The conventions are:
V - Single precision, non-EMA routines.
DV - Double precision, non-EMA routines.
DW — Double precision, EMA routines.
W - Single precision, EMA routines.
Default numeric type must be four-word double precision.

scalar is the operand or result. Precision must match the associated arrays. For the
MAX/MIN routines, not every VIS routine requires a scalar parameter. If the
scalar is an operand, it is not modified.

vl are the starting array element(s), defining where to start processing

v2 the arrays. Arrays can be of one or more dimensions.

v3 All arrays must be of the same precision and must all be either in EMA or non-
EMA (except for the EMA/non-EMA move routines). The same arrays can be
specified for both operands and results.

incrl are integer value(s) indicating the next element(s) in the

incr2 array(s) to be processed. If 0, only the first is processed.

—32767 < incr# < +32767
(The increment parameter is discussed later.)

NumElements is the integer value indicating the number of elements to process. If less than
or equal to 0, no operation occurs, but the calling sequence must be valid.

NumElements < +32767

8-6 VIS Subroutines

The array parameters (v1, v2, and v3) must all be either in EMA or non-EMA and must be of the
same precision. The appropriate VIS routine should be used accordingly. All the other
parameters (scalar, increment, and NumElements) should never be EMA “call by reference”
variables. However, they can be “call by value” variables, except when used as a result parameter.
Refer to “Extended Memory Area (EMA) Considerations” in Chapter 9 and to the FORTRAN 77
Reference Manual, part number 92836-90001, for more detailed information on EMA call by
reference and call by value.

Note If a starting array element (v1, v2, or v3) is the first element of the array, it can

be specified with or without the unity subscripts. For example, a is the same as
a(1,1) or b is the same as b(1).

The FORTRAN compiler does not verify that the array subscript values fall within
declared DIMENSION bounds. Unpredictable results occur if the array subscripts
are negative or greater than the declared array size.

When calling VIS firmware routines from CDS code, local arrays passed to the VIS
routines cannot exceed the stack frame address space of 1018 words. The other six
words are used for stack frame control variables. You must get these arrays out of
the limited address space of the stack frame. In Pascal, this means the arrays
should be in global space, while in FORTRAN, either labeled common or the
SAVE statement will work. Also in FORTRAN, if the local array is completely
above the 1K address limits of the stack frame, the language will compute and pass
the data relative address to the VIS instructions, and they will work correctly. To
do this, equivalence the data arrays in such a way that they are preceded by 1024
words. For example:

integer fill(1024)
real data(2000)
equivalence (fill(1024, data(1)))

The fill array may be used for other functions as long as it is not passed into a VIS
routine.

The increment parameters, incrl, incr2, and incr3, indicate the next array elements to be
processed. An increment of 1 accesses every element, an increment of 2 accesses every other
element, and so on. For FORTRAN arrays, elements in a column are physically contiguous in
memory. Therefore, an increment of 1 is used to access each column element. For arrays greater
than one dimension, row elements are not physically contiguous. The increment must be greater
than 1 to access row elements. For example, a three-by-five matrix has three rows and each row
element is three elements apart. The increment would be 3. Figure 8-4 shows how row elements
are accessed. Refer to “Introduction” above for a description of how arrays are arranged in
memory.

VIS Subroutines 8-7

Example

This example shows the use of the increment parameter to calculate the sum of the elements in
row 1.

CALL VSUM (sum matrix(1,1), 3, 5)

where:
scalar = sum, which will be the sum of row 1.
vl = matrix(1,1), which is the starting element.
incrl = 3, to access row elements that are spaced three
elements apart in memory.
NumElements = 5, to access the five elements in one row.

matrix (3x5)
1 2 3 4 5 columns

. sum = sum of the five elements in row 1 = 15.0
rows 2 2.

aRsN
Now
©or
- — O1
- Q"

Figure 8-4. Accessing Row Elements

If a v1, v2, or v3 parameter is the very first element of an array and is specified with a negative
increment, the VIS processes elements backward in memory and out of the array bounds.
Therefore, with negative increments you must be careful to specify the starting array elements well
within the bounds of the arrays.

The following descriptions of VIS routines give brief examples to explain the routines themselves
and show incrl, incr2, and incr3 in simple uses. Refer to Chapter 9, “Using VIS in Your
Programs,” to see examples of increments other than 1.

8-8 VIS Subroutines

Vector Arithmetic Routines

The vector arithmetic routines add, subtract, multiply, or divide the specified elements of two
arrays and place results into elements of a third array.

VADD
CALL VSUB (vl,incrl,v2,incr2,v3,incr3, Nunkl enents)
VIVPY
VDI V
EMA EMA
Single Double Single Double
Operation Precision Precision Precision Precision
v3 =— vi 4+ V2 VADD DVADD WADD DWADD
v3 = vi —Vv2 VSUB DVSUB WSUB DWSUB
v3 = vi *v2 VMPY DVMPY WMPY DWMPY
v3 = vi/v2 VDIV DVDIV WDIV DWDIV

Example

Problem: Calculate d = (a*a+b)/c for all elements in arrays a, b, ¢, and d.

Arrays a, b, ¢, and d are all one dimensional arrays with 100 elements each. Use array d to store
intermediate and final results.

For d = a*a, every element of array a is multiplied by itself and the results put into array d.

a(100) a(100) d(100)

For d = d+b, every element of array d is added to the corresponding element in array b and the
results put into array d.

d(100) b(100) d(100)

VIS Subroutines 8-9

For d = d/c, every element of array d is divided by the corresponding element in array c and the
results put into array d.

d(100) ¢(100) d(100)

C Calculate d = (a*atb)/c for all elenments.
REAL*4 a, b, c, d
DI MENSI ON a(100), b(2100), c(100), d(100)

K@)

FORTRAN DO | oop without VIS:
DO 10 i = 1,100

=a(i) * a(i)
d(i) =d(i) + b(i)
i) =d(i) / c(i)

Wth VIS

d = a*aMiltiply each elenent in a by itself

CALL VMWPY (a,1,a,1,d,1,100)

d = d+b Add each element of b with corresponding elenent in d

OO'S

CALL VADD (d,1,b,1,d,1,100)

d = d/c Dvide each elenent of d with
corresponding elenment in c

CALL VDIV (d,1,c,1,d,1,100)

END

(OXQ)]

Arrays a, b, and ¢ are not modified; d always contains the results. Each operation involves the
corresponding elements among the arrays. Therefore, results from computations with a(1), b(1),
and c¢(1) are put into d(1), results from a(2), b(2), and ¢(2) are put into d(2), and so on. Incrl,
incr2, and incr3 are all 1, and NumElements is 100 to obtain all elements in all arrays.

8-10 VIS Subroutines

Scalar-Vector Arithmetic Routines

The scalar-vector arithmetic routines add, subtract, multiply, or divide a constant with specified
elements of an array and place results into elements of a second array.

VSAD
CALL VSSB (scalar,vl,incrl,v2,incr2, Nunkl ements)

VSMY

VSDV

EMA EMA
Single Double Single Double

Operation Precision Precision Precision Precision
v2<«—— scalar + vi VSAD DVSAD WSAD DWSAD
v2<—— scalar — vi VSSB DVSSB WSSB DWSSB
v2<—— scalar * v1 VSMY DVSMY WSMY DWSMY
v2<—— scalar / v1 VSDV DVSDV WSDV DWSDV

Note that the operations are in scalar-vector rather than vector-scalar order. Scalar-vector order
means that the scalar is the first operand in the arithmetic operation. This affects the operations
of subtraction and division. For example, to perform vector-scalar arithmetic, call VSAD with a

negative scalar (vl — scalar); similarly, call VSMY with the reciprocal (v1 / scalar).

VIS Subroutines 8-11

Example

Problem: Compute a = a/const for all elements a.

Array a is a one-dimensional array with 100 elements. Each element in a is divided by const by
actually multiplying with the reciprocal of const.

const =4.0
1.0/const = 0.25
a(100) before a(100) after
4.0 1.0
2.0 0.5
1.0 0.25
025 * =
C Conpute a(i) = a(i)/const
REAL*4 a

DI MENSI ON a(100)
const = 4.0

C
C FORTRAN DO | oop without VIS:
DO 10 i = 1,100
10 a(i) = a(i)/const
C
C Wth VIS
C Di vide and replace each elenent of a

CALL VSMY (1.0/const,a, 1, a, 1, 100)
END

incrl and incr2 are both 1 and NumElements is 100 to access all elements in a.

8-12 VIS Subroutines

Absolute Value Routine

The absolute value routine places the absolute values of specified array elements into a second

array.

CALL VABS (v1,incrl,v2,incr2, NunEl enents)

EMA EMA
Single Double Single Double
Operation Precision Precision Precision Precision
v2<—— abs (v1) VABS DVABS WABS DWABS

Example

Problem: Find absolute values of row 1 of a and place into b.

Array a is 2 x 100 matrix and b is a one dimensional array of 100 elements. Take the absolute
value of a’s row 1 and place them into corresponding elements of array b.

a(2X100) before (and after)

columns
1 2 3 C 100
rows 1 1.0 -3.0 —-5.0 199.0
2120 —-4.0 6.0 200.0

C
C

10
C
C

Put absolute values of row a of a into b.

REAL*4 a, b
DI MENSI ON a(2, 100), b(100)

FORTRAN DO | oop without VIS:

DO 10 j = 1,100
b(j) = abs(a(1,j))

Wth VIS

CALL VABS (a, 2, b, 1, 100)

END

b(100)
1.0] 1
+30]| 2
+50| 3
199.0 | 100

Notice that incrl is 2, which is the spacing between row elements for array a. The NumElements
parameter is 100, which is the row length for a and the size of b. Array a is not modified.

VIS Subroutines

8-13

Sum Routines

The sum routines calculate the sum or the sum of the absolute values of specified array elements.
The result is stored into a scalar variable. VSUM calculates the sum, and VNRM is defined to be
the sum of the absolute values.

CALL { VSUM} (scal ar, v1,incrl, Nunkl enents)

VNRM
EMA EMA
Single Double Single Double
Operation Precision Precision Precision Precision
scalar<=— sum {vi} VSUM DVSUM WSUM DWSUM
scalar<— sum {abs(v1)} VNRM DVNRM WNRM DWNRM

Note VNRM computes the “L1” norm.

Example

Problem: Compute the average of student grades.

Two arrays are needed: grades is a 25 x 50 matrix of students and grades, and avrg is a
one-dimensional array of the average grades.

grades(25x50) before (and after) avrg(25)
grades
1 2 3 4 .. 50 1
2
students 1 3
2
3
' 25
25

8-14 VIS Subroutines

C Comput e the average.
C grades = student grades
REAL*4 grades, avrg
DI MENSI ON gr ades(25, 50), avrg(25)
C
C FORTRAN DO | oop w thout VIS:
DO 10 istud = 1,25
avrg(istud) = 0.0
DO 20 j = 1,50
20 avrg(istud) = avrg(istud) + grades(istud,j)
avrg(istud) = avrg(istud)/50.0
10 CONTI NUE
C
C Wth VIS

DO 10 istud = 1,25
CALL VSUM (avrg(istud), grades(istud, 1), 25, 50)
avrg(istud) = avrg(istud)/50.0
10 CONTI NUE
END

The average of each row is calculated for each student. The incrl parameter is 25 to obtain each
row element in grades, because row elements are 25 elements apart. The NumElements is 50 to
process one row at a time. Elements in array grades are not modified.

Example

Problem: Compute the average of error values.

An array of error values, err, contains positive and negative values. Therefore, the VNRM routine
should be used so that the absolute values are added. Otherwise, the positive and negative values
would cancel each other out when added.

err(100)

+0.25
-1.0
-0.33
+0.5 Add absolute values to get sum,
then norm = sum/100.0

VIS Subroutines 8-15

C Cal cul ate the average of errors.
C error contains + or — errors.
REAL*4 err
DI MENSI ON err (100)
REAL norm
C
C FORTRAN DO | oop wi thout VIS:
sum = 0.0
DO 10 i = 1,100
10 sum = sum ABS(err (i)
C
C Wth VIS

CALL VNRM (sumerr, 1, 100)
norm = sum 100. 0
END

The incrl parameter is 1 and NumElements is 100 to obtain all elements in err; sum contains the
sum of the absolute values; err is not modified.

8-16 VIS Subroutines

Dot Product Routine

The dot product routine performs the dot product operation between two arrays. Elements of two
arrays are multiplied and the products are added together to give a scalar result. The operands
are not modified.

CALL VDOT (scalar,vl,incrl,v2,incr2, NunEl enents)

EMA EMA
Single Double Single Double
Operation Precision Precision Precision Precision
scalare— sum {v1*v2} VDOT DVDOT WDOT DWDOT
Note VDOT of a vector with itself computes the square of the “L2” norm or the

Euclidean norm.

Example

Problem: Compute the dot product of an array with itself.

Let a be a (5,25) matrix, and dot a scalar where the dot product is stored. First the dot product is
computed for row 1 of a with itself by multiplying each element in row 1 by itself. These products
are added together and the sum stored in dot. The equation for dot is:

dot = [a(1,1)*a(1,1)] + [a(1,2)*a(1,2)] + ... + [a(1,25)*a(1,25)]

a(5x25) before (and after)

columns
1 2 3 25
40 40 -3.0 3.0
rows 2.0 3.0 -1.0 5.0

abhown =

VIS Subroutines 8-17

K@)

K@)

10
C
C

Comput e the dot product of row 1 with itself.

dot = dot product
REAL*4 a
DI MENSI ON a(5, 25)

FORTRAN DO | oop without VIS:
i =1
dot = 0.0
DO 10 j = 1,25
dot = dot + a(i,j) * a(i,j)

Wth VIS:
CALL VDOT (dot,a, b5, a, 5, 25)
END

The NumElements parameter is 25, which is the size of one row; incrl and incr2 parameters are 5,
which is the spacing between elements in a row. This allows access to all of row 1. Elements in
array a are not modified.

Pivot Routine

The pivot routine performs the pivot operation, in which specified array elements are multiplied
by a constant and then added to elements of the second array. The corresponding results are
placed into the third array. If operands only, the first and second arrays are not modified.

CALL VPIV (scalar,vl,incrl,v2,incr2,v3,incr3, Nunkl ements)

EMA EMA
Single Double Single Double
Operation Precision Precision Precision Precision
v3<—— (scalar*v1l)+v2 VPIV DVPIV WPIV DWPIV

Note

Although it has other applications, VPIV was designed for row

manipulation in matrix reduction.

8-18 VIS Subroutines

Example

Problem: Perform pivot operation on two rows.

Let a be a (3,50) matrix and s a scalar. The pivot is performed with rows 1 and 2. The scalar, s, is
a negative value multiplied with each element in row 1. These products are added to each element
in row 2, and these results are placed back into row 2.

s = —(a(2,1)/a(1,1)) = —2.0/4.0 = —0.5

a(3x50) before

columns 1 2 3 Co 50
multiply each row
1140 40 -30 3.0 element by —0.5
rows 2|20 3.0 -1.0 5.0 and add to corres-
3 ponding elements

in row 2.

a(3x50) before

columns 1 2 3 R 50
row 1 remains un-
11 40 40 -3.0 3.0 modified, row 2
rows 2| 00 1.0 0.5 3.5 is replaced, and
3 a(2,1) = 0.0
C Calculate a(2,j) =s * a(l,j) + a(2,j)

REAL*4 a
DI MENSI ON a(3, 50)

s is the multiplier for the first row
s = —(a(2,1)/a(1,1))
Perform pivot to replace row 2

FORTRAN DO | oop without VIS:
DO 10 j = 1,50 _ _
a(2,j) =s * a(l,j) +a(2,j)

00 000 00

Wth VI 'S:
CALL VWPIV (s, a(1,1), 3, a(2,1), 3, a(2,1), 3, 50)

END

The incrl, incr2, and incr3 parameters are all 3, and the NumElements parameter is 50, which
allows access to one row at a time. Row 1 is not modified and row 2 is replaced.

VIS Subroutines 8-19

MAX/MIN Routines

The MAX/MIN routines solve for the index of the largest/smallest value in an array. Routines
VMAX and VMIN give indexes for the largest and smallest values. Routines VMAB and VMIB
give indexes for the largest and smallest absolute values.

VIVAX
CALL VM N (scal ar, v1,incrl, Nunkl enents)
VMAB
VM B
EMA EMA
Single Double Single Double
Operation Precision Precision Precision Precision
scalar = index of largest VMAX DVMAX WMAX DWMAX
element in v1
scalar = index of smallest VMIN DVMIN WMIN DWMIN
element in v1
scalar = index of largest VMAB DVMAB WMAB DWMAB
absolute value in v1
scalar = index of smallest VMIB DVMIB WMIB DWMIB

absolute value in v1

Example

Problem: Find the largest and smallest errors.

Let err be an array with 10 error values. Errors can be positive or negative. Search for the largest
and smallest values.

err(10)

—1.0 [err(2) = smallest error

+0.5 | err(4) = largest error

8-20 VIS Subroutines

C Find | argest and snallest errors.
C errmax = largest error
C errmn = smallest error
REAL*4 err
DI MENSI ON err (10)
C
C FORTRAN DO | oop without VIS:
errmax = err(1)
errmn = err(1)
DO 10 i = 1,10
IF (errmax . LE
IF (errmn .CGE
10 CONTI NUE
C
C Wth VIS
CALL vrmex(imax, err, 1, 10)
errmax = err (i max)
C
CALL vmin(imn, err, 1, 10)
errmn = err(imn)
END
Comments

The indices returned are based only on the elements that are examined, as requested by the

err(i)) errmax
err(i)) errmn

err(i)
err(i)

starting array element, the increment, and number of elements. Therefore, there are special cases
concerning the MAX/MIN routines:

1.
2.

B

vl is the first array element and incrl is not 1.

vl is not the first array element and incrl = 1.

vl is not the first array element and incrl is not 1.

multidimensional arrays — scanning rows.

VIS Subroutines

8-21

Case 1 (v1 is first array element and incr1 is not 1)

When incrl is greater than 1, the actual index of the array element is:
index =1 + incrl * (iposl — 1)
where:

iposl is the scalar index returned from calling a MAX/MIN routine.

Example: Call VMAX (iposl, err(1), 2, 5)

In array err above, the largest element is actually 0.5 in err(4). However, with incrl = 2, only
every other element is examined. Therefore the instruction returns iposl = 5, putting these values
into the equation:

incrl =2
iposl = 5 returned from vmax
index =1+2*5-1)=9

err(9) = 0.4 largest value of every other element

Case 2 (v1 is not first array element and incr1 = 1)

When v1 is not exactly the first array element, the index returned is relative to that specified v1.
To calculate the exact position (index) of the maximum/minimum variable, the equation is:

index = ipos2 + istart — 1
where:
ipos2 is the scalar index returned.

istart is the array subscript of v1.

Example: Call VMAX (ipos2, err(6), 1, 5)

Starting with err(6) and scanning the next five elements, the largest value is in err(9). However,
ipos2 = 4 because err(9) is the fourth element from err(6). To find the actual scalar index, the
calculations are:

istart =6

ipos2 = 4, returned from VMAX

index =4+6-1=9

err(9) = 0.4, largest value of last 5 elements

8-22 VIS Subroutines

Case 3 (v1 is not first array element and incr1 is not 1)

Combine the two equations above to calculate the exact position (index) of the
maximum/minimum variable.

ipos2 =1 + incrl * (iposl — 1)
index = ipos2 + istart — 1

Starting with the second element, scan every other element for the largest value. iposl = 2
because the largest value is the next element from err(2). To find the actual index, the calculations
are:

ipos2 = 4, returned from VMAX
incrl =2

ipos2 =1+[2*(2-1)]=3
istart =2

index = ipos2 + istart — 1

index =3+2-1=4

err(4) = 0.5, largest value of every other element
starting with err(2)

Case 4 (multidimensional arrays — scanning rows)

With two and three dimensional arrays, any number of columns can be scanned. However, only
one row at a time can be scanned per VIS call. Starting with the first element of a row, the index
returned is the column number.

Example: Call VMAX (index, err(3,1), 4, 5)

index = 5, column number of largest value in row 3
vl = err(3,1), starting element in row 3
incrl = 4, number of rows in err
NumElements = 5, number of elements in a row
err(3,index) = 13.0, maximum value in row 3
err(4x5)
5 columns
10.0 20.0 30.0 40.0 50.0
4 rows 5.0 6.0 7.0 99.0 8.0
9.0 10.0 11.0 12.0 13.0 err(3,5) = maximum
16.0 15.0 14.0 13.0 95.0 value in row 3

VIS Subroutines 8-23

Move Routines

The move routines copy or exchange elements between two arrays. Routine VMOV copies an
array into another array. VSWP exchanges specified elements between two arrays.

CALL {vnvov} (v1,incri,v2,incr2, NunEl ements)

VSWP
EMA EMA
Single Double Single Double
Operation Precision Precision Precision Precision
v2 <=— vi VMOV DVMOV WMOV DWMOV
vli == 2 VSWP DVSWP WSWP DWSWP

Example

Problem: Exchange elements between one row and another array.

Let a be a 5x25 matrix and b an array of 25 elements. Exchange row 1 of a with every element
inb.

a(5x25) before b(25) before
columns
1 2 3 Coe 25 2.0
3.0
1] 40 4.0 -3.0 3.0 -1.0
rows 2
3
4
5 5.0
array(5x25) before b(25) before
columns
1 2 3 Coe 25 4.0
4.0
1120 3.0 -1.0 5.0 -3.0
rows 2
3
4
5 3.0

8-24 VIS Subroutines

C Exchange row 1 of a with every elenent in b.
REAL*4 a, b
DI MENSI ON a(5, 25), b(25)

C
C FORTRAN DO | oop without VIS:
DO 10 j = 1,25
temp = a(l,j)
a(1,j) = b(j)
b(j) = tenp
10 CONTI NUE
C
C Wth VIS
CALL VSWP (a(1,1), 5, b, 1, 25)
C

END

Incrl is 5 to access elements in row 1. NumElements is 25, which is the size of one row of a or the
length of b. Incr2 is 1, to obtain each element in b.

VIS Subroutines 8-25

EMA (Extended Memory Area)/
Non-EMA Move Routines

The EMA/non-EMA move routines allow arrays to be copied to and from EMA and non-EMA
areas. With all other VIS routines, arrays must be entirely in EMA or non-EMA. WVMOV
copies an EMA array into a non-EMA array. VWMOV copies a non-EMA array into an EMA
array.

CALL { VV\ND\/} (vl,incrl,v2,incr2, Nuntl enents)

W/MOV
Single Double
Operation Precision Precision
v2inEMA <— v1in non-EMA VWMOV DVWMV
v2 in non-EMA <=—— v1 in EMA WVMOV DWVMV

Comments

Only v1 or v2 can be in EMA. All the other parameters, incrl, incr2, and NumElements, cannot
be in EMA. Further discussion on using EMA is in the section “Extended Memory Area (EMA)
Considerations,” in Chapter 9.

Example

Problem: Move part of an EMA array into non-EMA area.

Let emaa be a 100x300 matrix in EMA, and a be a one-dimensional array of 100 elements in
non-EMA. Move one column from emaa into a.

emaa(100x300) a(100)
columns
1 2 3 Co 300

1
rows 2
3

4

100

8-26 VIS Subroutines

$EMA(xyz, 0)
PROGRAM exanpl e
COVMON / xyz/ emaa(100, 300)
REAL*4 a
DI MENSI ON a(100)

C Move columm 1 fromemaa into a.

C

C FORTRAN DO | oop without VIS:
DO 10 i = 1,100

10 a(j) = ema(l,j)

C

C Wth VIS
CALL WMV (emaa(l1,1), 1, a, 1, 100)
END

incrl and incr2 are 1 and NumElements is 100 to copy column 1 of emaa into array a. Column 1 is
not modified.
Example

Problem: Initialize an EMA array.

Initialize matrix emaa to all zeros.

C

C FORTRAN DO | oop without VIS:

C DO 10 i = 1,100

C DO 10 j = 1,300

C 10 emaa(i,j) = 0.0

C

C Wth VIS
CALL vWwwov (0.0, O, emma, 1, 100*300)
END

Incrl is 0 to cause the value 0.0 to be repeatedly accessed and put into emaa.

VIS Subroutines 8-27

Using VIS in Programs

This chapter describes using VIS subroutines in your programs, with examples from FORTRAN.

Converting FORTRAN DO Loops

VIS can replace FORTRAN DO loops performing repetitive operations on arrays. Chapter 8
already provided some simple examples of VIS routines.

Steps involved in converting to VIS are:

1. Write your program as you would normally with FORTRAN DO loops. Determine that the
program is operating correctly.

2. Identify the DO loop(s) that need to be sped up. Find the VIS routine that is functionally
equivalent.

3. Comment the program code that includes the FORTRAN DO loops to annotate calls to VIS
routines.

4. Insert call(s) to VIS using the following criteria:
a. The starting array elements (v1, v2, v3) are the same as the first values of the DO loop.

b. Calculate the increments (incrl, incr2, incr3).

c. Calculate the number of elements (NumElements).

Using VIS in Programs 9-1

One Dimensional Array Examples

The following examples show how FORTRAN DO loops using one dimensional arrays are
converted to VIS.

Example: Adding two vectors in double precision.

C FORTRAN DO | oop:
C Add two vectors in double precision
C
DOUBLE PRECI SI ON a(100), b(100), d(100)
C
DO 10 i = 1,100
10 d(i) = a(i) + b(i)
C
C VI S equi val ent :
CALL DVADD (a,1,b,1,d, 1, 100)
END

The parameters for DVADD are:

vl =a incrl =1 NunElements = (100-1+1)/1 = 100
v2 =b incr2 =1
v3 =d incr3 =1

In general, for one dimensional arrays and one FORTRAN DO loop, such as

DO 10 i = istart, iend, incr

10 CONTI NUE
the NumElements parameter as shown above is calculated to be:
NunEl ements = (iend — istart + incr)/incr

where:
/ indicates an integer divide.

If incr is not specified, FORTRAN defaults to 1.

9-2 Using VIS in Programs

Example: Sum of every other element in an array.

C FORTRAN DO | oop:
C Find the sum of every other elenent in array a
DI MENSI ON array (100)
C
sum= 0.0 — Note that VSUM automatically initializes sum to 0.0
DO 10 i = 1,100,2 so that this statement is not required.
10 sum = sum + a(i)
C
C VI S equi val ent :
CALL VSUM (sum a, 2, 50)
END

The parameters for VSUM are:

scal ar = sum
vl = a
incrl =2

Nuntl ements = (100-1+2)/2 = 50

Example: Find largest value in an array.

C FORTRAN DO | oop:
C Find largest value in array a
REAL nxm
DI MENSI ON a (100)
C
mkm = a(1)
imkm=1
DO 10 i = 1,100
IF (a(i) .LE. nmxnm) GOTO 10
mkm = a(i)
imxm = i
10 CONTI NUE
C
C VI S equi val ent:

CALL VMAX (imm a, 1, 100)
mkm = a(i mxm
END

The parameters for VMAX are:

scal ar
vl
incrl

Nuntl erment s (100-1+1)/1 = 100

Using VIS in Programs 9-3

Two Dimensional Array Examples

The following examples show how FORTRAN DO loops using two dimensional arrays are
converted to VIS.

Example: Adding two matrixes in double precision.

C FORTRAN DO | oop:
C Add two 10 x 10 matrixes in double precision
C
DOUBLE PRECI SI ON a(10, 10), b(10,10), d(10, 10)
C
DO 10 j = 1,10
DO 10 i 1,10

0 d(i,j)=a(_i-j)+b(i-j)

(ON@ Ny

VI S equi val ent :

CALL DVADD (a(1,1),1,b(1,1),1,d(1,1),1,10 * 10)
C or

CALL DVADD (a, 1, b, 1, d, 1, 10 * 10)

END

The parameters for DVADD are:

vli=a incrl =1 Nuntl ements = [(10-1+1)/1]*[(10-1+1)/1] = 100
v2 =b incr2 =1
v3 =d incr3 =1

For multidimensional arrays and one FORTRAN DO loop, the NumElements parameter is
calculated as for one dimensional arrays. For more than one nested FORTRAN DO loop, such as:

DO 10 i
DO 20 j

istart#1, iend#1, incr#l
istart#2, iend#2, incr#2

20 CONTI NUE

10 CONTI NUE
The NumElements parameter is the product of the number of elements for each loop.

NunEl ements = [(iend#1-istart#1+1)/incr#1] * [(iend#2-istart#2+1)/incr#2]

9-4 Using VIS in Programs

Example: Exchange two rows in a matrix.

FORTRAN DO | oop:
Exchange rows

DI MENSI ON a(5, 100)

o0 000

Exchange row 1 of a with row 3 of a
DO 10 icol = 1,100

temp = a(l,icol)

a(l,icol) = a(3,icol)

a(3,icol) = tenp
10 CONTI NUE

C

C VI S equi val ent :
CALL VSWP (a(1,1),5,a(3,1),5,100)
END

The parameters for VSWP are:

5
5

vl
v2

a(1,1) incrl
a(3,1) incr2

NunEl enents = 100-1+1/1

Using VIS in Programs 9-5

Nested DO Loops Example

To enhance program execution speed, it is not necessary to convert every DO loop. Converting
the innermost DO loop is normally sufficient to decrease execution time. If the number of
operations in the innermost loop is reasonably large, converting that DO loop should produce 90%
of the speed enhancement.

This example multiplies two matrixes, a and b, by calculating dot products of the rows and columns
and forming matrix c:

Example: Dot product of two matrixes.

C

C
C

30
20

FORTRAN nested DO | oops
DI MENSI ON a (25, 10), b(10,20), c(25,20)

FORTRAN DO | oops:
DO20i =1,25
DO 20 j =1,20
c(i,j) =0.0
DO 30 k = 1,10
c(i,j) =c(i,j) +a(i,k) * b(k,j)
CONTI NUE
CONTI NUE

VI S equi val ent :

DO 20 i =1,25
DO 20 j = 1,20
Repl ace DO

CALL VDOT (c(i,j), a(i,1), 25, b(1,j), 1, 10)

CONTI NUE

In the VIS call, the subscript k is replaced by its initial value, 1. The subscripts i and j remain
constant within the inner loop.

9-6 Using VIS in Programs

Combinations of Vector Instructions

Sometimes an expression exists within a DO loop that does not correspond to just one standard

vector instruction. However, the expression can often be rearranged to yield a combination of VIS
operations. The example that follows shows two vectors being multiplied by scalars. Those results

are then added together to form another vector.
Example: Evaluate x(i) = s*v1(i) + t*v2(i).

DO10i =1,n
X(1) = s*vi(i) + t*v2(i)
10 CONTI NUE

can be rewritten as:

DO10i =1,n
x(1) s*vl(i)
x(i) x(i) + t*v2(i)
10 CONTI NUE

The single loop can be broken into two separate loops:

DO10i =1,n
x(i) = s*vi(i)
10 CONTI NUE
DO20i =1,n
x(i) = x(i) + t*v2(i)
20 CONTI NUE

These loops can now be replaced by two vector instructions:

CALL VSWY (s,vl1,1,x,1,n)
CALL VPIV (t,v2,1,x,1,x,1,n)

Using VIS in Programs

9-7

Increment Parameters Other Than One

The incrl, incr2, or incr3 parameter of the calling sequence determines the next array elements to
be used. An increment of 1 accesses every element in an array, an increment of 2 accesses every
other element, and so on.

For two and three dimensional arrays in FORTRAN, elements are stored in column order. Refer
to Chapter 8 for an explanation of arrays in memory. The spacing between elements in a row is
determined by the number of rows as declared in the FORTRAN DIMENSION statement.
Therefore, to access row elements, the increment should equal the number of rows in the array.
With VIS, only one row can be accessed at a time. If NumElements is greater than the actual
number of row elements, then the elements would be out of the array bounds. However, any
number of columns can be accessed because elements are stored contiguously in column order.

For a three dimensional array, to increment from one plane to the next, the increment is the size
of the array for one plane. For instance, for a 3x5x2 array to go from element 3,5,1 to 3,5,2, the
increment is 3x5 or 15. (There are 15 elements in memory between the two elements.) The
different array structures are depicted as follows:

one dimensional array two dimensional array
a(10) b(3x5)
5 columns

1.0 40 70 100 13.0
rows | 20 5.0 8.0 11.0 14.0
30 60 90 120 15.0

three dimensional array

c(3x5x2)

5 columns

1.0 40 70 10.0 13.0 (plane 1 for three
rows 20 50 8.0 11.0 14.0 dimensional array)
30 60 90 120 15.0

5 columns

3 20 8.0 140 20.0 24.0 (plane 2 for three
rows 40 10.0 16.0 21.0 26.0 dimensional array)
6.0 120 18.0 22.0 28.0

9-8 Using VIS in Programs

The use of increment and number of elements for these arrays could be:

Increment NumElements Action
1 10 access every element of array a
1 15 access every element of array b in column order
1 30 access every element of array ¢ in column order
1 3 access one column of array b
1 3 access one column of array ¢
1 6 access two consecutive columns of array b
1 6 access two consecutive columns of array c
2 5 access every other element of array ¢
3 5 access one row of array b
3 5 access one row of array c
3 10 access two rows of array c, the first row of each plane

—_
W
[\

access elements c(3,5,1) and c(3,5,2)

Zero Increment

A zero increment value causes the same element to be repeatedly accessed. This feature can be
used to initialize arrays to scalar values.

With the VECTOR MOVE routines, VMOV or DVMOV, you can fill in an array with a constant:

Example: Initialize an array to a constant.

C FORTRAN DO | oop:
DO10i =1,n

10 a(i) = const

C

C VI S equi val ent :

CALL VMOV(const, 0, a, 1, n)

Const must be a floating point variable with precision matching array a. The precision of the
scalar value can be modified as needed with the FORTRAN FLOAT, DBLE, or SNGL functions.

Using VIS in Programs 9-9

Negative Increment

The negative increment sequences through an array in reverse order. The VSWP instructions can
also be used to reverse the order of the elements in an array. For example, transforming a vector
whose values are arranged in ascending order into one of descending order is easily accomplished
by the vector instruction:

Example: Swap elements in an array.

C FORTRAN DO | oop:
] =n
DO10i =1,n/2
temp = v(i)
v(i) = v(j)
v(j) = tenp
10 i =] -1
C
C VI S equi val ent :

CALL VSWP (v, 1,v(n),-1,n/2)

v(n) before v(n) after
1.0 n
2.0
3.0
3.0
. 2.0
n 1.0

Here v(n) specifies the last element of the vector and has a corresponding increment of —1. If n is
an odd number, the algorithm still works since the middle vector element is not moved.

Note If the starting array element (v1, v2, or v3 parameter) is actually the very first
element of an array and is specified with a negative increment, VIS starts at that
element and processes backward in memory out of the array’s bounds. With
negative increments, be careful to specify the starting array elements well within
the array bounds.

9-10 Using VIS in Programs

Useful Applications

Here are some examples showing practical uses of VIS.

Initialize a Square Matrix

The identity matrix has ones on the main diagonal and zeros in all other elements. To create this
matrix, two vector instructions are needed:

1. Fill the entire matrix with zeros.

2. Insert ones on the main diagonal.

For a double precision matrix a(n x n), the VIS instructions are:

Example: Initialize a square matrix in double precision.

C FORTRAN DO | oop:
DO10i =1,n
DO20j =1,n

a(i,j) = 0.0D0
IF (i .EQ j) a(i,j) = 1.0D0

20 CONTI NUE
10 CONTI NUE

C

C VI S equi val ent :

CALL DVMOV (0.0D0, O, a, 1, n*n)
CALL DVMOV (1.0D0, O, a, n+l1, n)

Notice that the scalars are double precision and have increments of 0. In the first VIS instruction,
a’s increment is 1 to cause all elements to be zeroed. The second instruction uses an increment of
n+1 for a to initialize ones on the main diagonal.

a(5x5)
5 columns
5 1 0 0 0 O Note that the elements on the main
rows [0 1 0 0 O diagonal are 5+1 or 6 elements
0 01 0 O apart in memory.
0 0 0 1 O
0O 0 0 0 1

Using VIS in Programs 9-11

Initialize an Array in a Certain Order

In FORTRAN, DO loops are often used to initialize an array with values in a certain order; VIS
can easily do this function. The following array is initialized in ascending order from 1 to n:

Example: Initialize an array from 1 to n.

array(1) = 1.0
array(2) = 2.0
C FORTRAN DO | oop:
DO 10 i = 1,n-2
10 array (i+2) = array(i) + 2.0
C
C VI S equi val ent :

CALL VSAD (2.0, array, 1, array(3), 1, n-2)

The resulting array must start with array(3), because VIS is “pipelined”; that is, it accesses the
next element while arithmetic is being performed on the current element. This affects operations
where the next element’s value depends on the previous elements. Therefore, although the
following example may seem logically correct, it does not execute as above.

Example: Incorrect initialization of an array.

array(1) = 1.0
CALL VSAD (1.0, array, 1, array(2), 1, n-1)

Statistical Examples

Several basic statistical measures can be rapidly and easily calculated using VIS. The most
obvious is the average or mean. Assuming that n sample values are stored in the vector v:

Example: Average or mean.

CALL VSUM (sum v, 1, n)
avg = sum'n

A similar quantity is the root-mean-square (RMS) average. Here it is necessary to sum the
squares of the sample values, which can easily be done by taking the dot product of the vector with
itself. The RMS calculation then becomes:

Example: Root-mean-square.

CALL VDOT (dot, v, 1, v, 1, n)
rms = SQRT (dot/n)

Note The function SQRT is in the Scientific Instruction Set and thus also executes at
microcoded speed.

9-12 Using VIS in Programs

Another useful statistical quantity is the standard deviation, which measures the distribution (or
spread) of the sample values about the mean. First the average must be calculated and subtracted
from each sample value. A temporary vector will probably be needed to hold the results of this
subtraction. The algorithm for standard deviation then becomes:

Example: Standard deviation.

CALL VSUM (sum v, 1, n)

avg = sum'n

CALL VSAD (-avg, v, 1, tenp, 1, n)
CALL VDOT (dot, temp, 1, tenmp, 1, n)
stdev = SQRT(dot/(n-1))

To subtract the scalar avg from each element, VSAD is used with a negative value of avg.

The standard deviation can also be computed without a temporary vector using the following
formula:

Example: More efficient standard deviation.

n

(OIE S1 = Yx useVSUM
STDEV = [Zx2-" o -
n-1

n
S2 = X x? useVDOT

CALL VSUM (S1, v, 1, n)

CALL VDOT (S2, v, 1, v, 1, n)
var = (S2 — S1*S1/n)/(n-1)
stdev = SQRT(var)

Matrix Transposition

The transposition matrix atrans of the matrix a is formed by transferring the rows of a into the
columns of atrans. A FORTRAN program to generate the matrix atrans could be written as:

DO10i =1,n
DO10j =1,n
atrans(i,j) = a(j,i)
10 CONTI NUE

To form this operation rapidly with vector instructions, two cases must be considered. In the first
case, the matrix atrans is distinct from matrix a; for the second case, the transposition is done in
place.

Using VIS in Programs 9-13

Case 1 (Not in Place)

A vector move instruction with the proper increment values can move one row of matrix into a
column of matrix atrans. Thus, a DO loop is required to move all of the rows:

DO10i =1,n
CALL VMV (a(i,1l), n, atrans(1,i), 1, n)
10 CONTI NUE

Case 2 (In Place)

Transposing a matrix in place is a little more complicated than the previous case. The vector
instruction VMOV does not work, but the VSWP instruction can be used. It is easier to
understand the algorithm by applying it to a specific case. Let us define the 4 x 4 matrix a and its
desired transposition atrans:

a(4x4) atrans(4x4)
1 2 3 4 1 5 9 13
5 6 7 8 2 6 10 14
9 10 11 12 3 7 11 15
13 14 15 16 4 8 12 16

Since the main diagonals of a and atrans are identical, only the off-diagonal terms need to be
modified. To form the first row and column of atrans, swap row 1 of a with column 1 of a. (You
could actually include the diagonal element, but that would be swapping a value with itself, which
is a waste of time.) Thus, to form the first row and column of atrans:

CALL VSWP (a(1,2), 4, a(2,1), 1, 3)

The increment of the first vector (row) is 4 and the increment of the second vector (column) is 1.
The number of elements is 3 instead of 4 because the diagonal need not be modified.

To perform the entire transposition in place, use a DO loop to similarly manipulate all of the rows
and columns. As you move to each succeeding row/column, the number of elements to be
exchanged decreases. Generalizing the example to the n x n case yields:

DO 10 i = n-1
CALL VSWP (a(i,i+1), n, a(i+1,i), 1, n-i)
10 CONTI NUE

Only n-1 loop passes are required since the last row and column is the a(n,n) element.

9-14 Using VIS in Programs

Graphics Coordinate Transformation

A basic operation in three dimensional graphics software is the coordinate transformation. Points
in the graphics space are stored as 3 element vectors, whose values are the x, y, and z coordinates
of each point. (The n points of the complete picture thus require n vectors, which are stored in a 3
x n array). Coordinate transformation involves rotating the graphical image and then translating
the points to a new origin.

The rotation is accomplished by first building a 3 x 3 rotation matrix r. Each vector is then “passed
through” the rotation matrix by matrix multiplication to create a new set of coordinate vectors.
The operation can be expressed as:

r * a = b
ri1 r12 r13 ax1 ax2 ... axn bx1 bx2 ... bxn
r21 r22 r23 * ayl ay2 ... ayn = by1 by2 ... byn
r31 r32 r33 azl az2 ... azn bz1 bz2 ... bzn
(3x3) (3xn) (3xn)

This operation is matrix multiplication. However, since the matrixes a and b usually contain a
large number of points (columns), n will be much greater than the number of rows (3) and a more
efficient technique can be found. Instead of transforming each column vector, let us examine the
equation for the x-coordinate of each point:

bx =r11 * ax +r12 * ay +r13 * az
bx1 =ri1 * ax1 +r2 * ay1 +r3 * azil
bx2 =r1 * ax2 +r12 * ay2 +r13 * az2
bx3 =ri1 * ax3 +ri2 * ay3 +ri3 * az3
b;m =ri1 * a;<n +ri2 * a&/n +ri3 * ain

From these equations you see that bx, the vector of new x-coordinates, is a linear combination of
the input coordinate vectors ax, ay, and az. Note that the rotation matrix coefficients (r1l, r12, r13
just appear as scalars in these equations. Using the general notation bx, ax, ay, and az, the VIS
equivalent of these equations becomes:

CALL VSMWY (r11, ax, 3, bx, 3 n)
CALL VPIV (rl12, ay, 3, bx, 3, bx, 3, n)
CALL VPIV (r13, az, 3, bx, 3, bx, 3, n)

All the increments are 3 because the coordinate vectors are rows of the matrixes a and b.

The same equations apply to the other dimensions y and z when the proper values of the rotation
matrix are used. The final VIS algorithm for three dimensional rotation then becomes:

DO10 i = 1,3
CALL VSWY (r(i,1), a(1,1), 3, b(i,1), 3, n)
CALL VPIV (r(i,2), a(2,1), 3, b(i,1), 3, b(i,1), 3, n)
CALL VPIV (r(i,3), a(3,1), 3, b(i,1), 3, b(i,1), 3, n)
10 CONTI NUE

Using VIS in Programs 9-15

This algorithm generates 9 VIS calls, independent of the number of vectors (n). The matrix
multiplication (VDOT) technique would generate 3*n VDOT calls of length 3. In an actual
application, n can easily be in the thousands, making the speed advantage of this algorithm highly
significant.

The translation process just involves adding a translation vector (tx, ty, tz) to each coordinate
vector. As in rotation, this is best accomplished by doing all of the x-coordinates, then the
y-coordinates, and then the z-coordinates:

CALL VSAD(tx, b(1,1), 3, b(1,1), 3, n)
CALL VSAD(ty, b(2,1), 3, b(2,1), 3, n)
CALL VSAD(tz, b(3,1), 3, b(3,1), 3, n)

Extended Memory Area (EMA) Considerations

When programming with EMA or VMA arrays and variables, check your programs for the
following items:

1. Check the MSEG size in the $EMA directive.
MSEG = 2*n-1

where:

n is the largest number of parameters declared in a VIS call.

For example, in the following VIS routines, the MSEGs are:

WUM n =1 (vl only), MSEG = 2*1-1 =1
WDOT: n =2 (vl and v2), MSEG = 2*2-1 = 3
WDOT: n =3 (vl, v2, and v3) MSEG = 2*3-1 =5

2. Check the VIS calling sequence for proper EMA and non-EMA parameters. With the EMA
routines, only the v1, v2, and v3 parameters can be in EMA. All other parameters (incrl,
incr2, incr3, and scalar) cannot be EMA call-by-reference variables. However, they can be
call-by-value variables.

3. Check the actual name of the VIS routine for the correct EMA routine. Also, use the Y
option in the FORTRAN control statement (FTN7X,Y) when using double precision routines.
The initial letter determines the type of VIS routine:

W = single precision, EMA routine
DW = double precision, EMA routine

4. Do not use EMA transparency mode for addressing EMA/VMA variables.

Refer to the RTE-A Programmer’s Reference Manual, part number 92077-90007, for a description
of EMA and VMA in RTE-A. There are no special programming requirements for VMA other
than those mentioned above.

9-16 Using VIS in Programs

EMA Call by Value and Call by Reference

An EMA variable or array can be passed “by value” or “by reference”. (Refer to the EMA
directive and EMA statement in the FORTRAN 77 Reference Manual, part number 92836-90001.)
If passed by reference, an entire array or variable is available and can be changed by the called
subroutine. If passed by value, only the value is available and the variable cannot be altered.
Therefore, “by value” arguments can be used as operands but not as results. “By value” is noted
by extra parentheses around the variable or by an arithmetic expression as shown with the variable
scalar in the example:

CALL subr ((scalar), earray(1l,1),1,10)
CALL subr (scal ar+0.,earray(1,1), 1, 10)

For all EMA VIS routines, EMA arrays must be passed by reference for the v1, v2, and v3
parameters. All other parameters (scalar, incrl, incr2, incr3, and NumElements) cannot be in
EMA. If an EMA variable is needed, it can be placed into a temporary non-EMA variable or be
passed by value. Scalar results should not be “by value” elements in a calling sequence.
Transparency mode for EMA/VMA addressing is not supported with VIS. The following examples
illustrate using a temporary non-EMA element and a “call by value” element:

Example: Using an EMA VIS routine with temporary non-EMA element to add a variable to each
element in an array.

$SEMA(xyz, 3)

PROGRAM sunp
COWMMON / xyz/ a(100, 300), tsun(100)

Find sum of each rowin a and put into tsum

OO0

Wt hout VIS:
DO 10 i = 1,10

sun(i) + a(i,j)
20 CONTI NUE
10 CONTI NUE

C VI S equi val ent :
DO 10 i = 1,100
CALL WBUM (sum a(i, 1), 100, 300)
tsum(i) = sum
10 CONTI NUE
END

Arrays a and tsum are in EMA. The variable sum is not in EMA and is used as the scalar result in
wsum. sum’s value is placed into tsum each time through the DO loop. With VIS, tsum does not
have to be initialized to zero.

Using VIS in Programs 9-17

Example: Use an EMA element as call-by-value element to add a variable to each element in an
array.

$SEMA(xyz, 3)
COMWON / xyz/ a(500), b(500), c(300)
EQUI VALENCE (var, c(1))

C
C Add var to each elenent in b and store into a.
C
C Wt hout VIS:
DO 20 i =1, 500
a(i) = var + b(i)
20 CONTI NUE
C
C VI S equi val ent :

CALL WBAD ((var), b, 1, a, 1, 500)
END

Arrays a, b, and ¢ are in EMA. Var is made equivalent to c(1), so it also is in EMA. In WSAD,
var is used as the scalar operand by passing it “by value.”

9-18 Using VIS in Programs

Obtaining Efficiency with Multidimensional Arrays

To optimize program execution times when manipulating EMA arrays, access array elements
contiguously in memory (column order) with VIS routines.

With EMA arrays, different portions of an array can be mapped into the MSEG many times to
access all the array elements. Since FORTRAN array elements are stored in column order, row
elements cause more mapping since they are not contiguous in memory. Therefore, for more
efficient execution, access EMA arrays by columns. For FORTRAN DO loops written for row
access, modify the program for column access by the following:

1. Exchange array subscripts in matrix array declarations (DIMENSION, COMMON, or type
specification statements) of the matrix being altered.

2. Exchange only the subscripts in all executable statements where the matrix is used.

3. Change the increment parameter associated with the matrix array to 1 in VIS calls.

Program sump from above can be rewritten to calculate the sums of each column in a instead of
each row:

Example: More efficient use of EMA arrays to find sum of each column in array a.

SEMA(xyz, 1)
PROGRAM sunpl
COVMMON / xyz/ a(300,100), tsun(100)

Find sum of each colum in a and put into tsum

ONQNONQ)

Wt hout VIS:
DO 10 i = 1,10
0

, 300
= tsum(i) + a(i,j)
20 CONTI NUE

10 CONTI NUE

C VI S equi val ent :
DO 10 i = 1,100
CALL WABUM (sum a(1,i), 1, 300)
tsum(i) = sum
10 CONTI NUE
END

In this example, the sum of each column is found. This is functionally equivalent, yet much faster
than the previous sum example. The increment is 1 to access each contiguous column element.
Only the subscripts of a and the increment were changed.

The next example computes 20 sums of a three dimensional array, a (10x20x30) in EMA into a
non-EMA array, asum (20). Starting with each element in the first row, the sum is taken from
every plane.

Using VIS in Programs 9-19

a(10x20x30) asum(20)

30 planes

10 rows

20 columns

Example: Find sum of plane elements for row 1.

$SEMA(ar ea, 1)
PROGRAM pl ana
COMWON ar eal a
DI MENSI ON a(10, 20, 30), asun(20)

C
C Wthout VIS
DO 10 i = 1,20
asum(i) = 0.0
DO 20 j = 1,30
asum(i) = asum(i) + a(1,i,j)
20 CONTI NUE
10 CONTI NUE
C
C VI S equi val ent:
DO 10 i = 1,20
CALL WBUM (asun(i), a(l,i,1), 10*20, 30)
10 CONTI NUE
END

To be more efficient, exchange the dimensions of a to be a(30x20x10). Then find the sum of each
column in plane 1.

9-20 Using VIS in Programs

a(30x20x10) asum(20)

10 planes

30 rows

20 columns

Example: Find sum of elements for each column in plane 1.

$SEMA(ar ea, 1)
PROGRAM pl ana
COMMON ar eal a
DI MENSI ON a(30, 20, 10), asun(20)

C
C Wthout VIS
DO 10 i = 1,20
asum(i) = 0.0
DO 20 = 1,30
asum(i) = asum(i) + a(j,i,1)
20 CONTI NUE
10 CONTI NUE
C
C VI S equi val ent:
DO 10 i = 1,20
CALL WABUM (asum(i), a(1,i,1), 1, 30)
10 CONTI NUE
END

Using VIS in Programs

9-21

Matrix Multiplication EMA Example

Matrix multiplication (a * b = c) is defined if the number of columns of a is equal to the number
of rows in b:

a * b = c
(MN) (N*P) (M P)

Each element c(i,j) is defined to be the dot product of the ith row of a and the jth column of b.
Thus, a DO loop is required to generate each element c(i,j). A FORTRAN routine to form the
entire product matrix ¢ might be:

DO 10 i =1, m

DO10 | =1,p
c(i,j) = 0.0
DO20 | = 1,n
c(i,j) =c(i,j) +a(i,l) * b(l,j)
20 CONTI NUE
10 CONTI NUE

The innermost loop can be replaced with a call to the VDOT routine:

DO10i =1, m
DO10j =1,p
C
C Wthout VIS
c(i,j) =0.0
DO20 I =1,n
c(i,j) =c(i,j) +a(i,l) * b(l,j)
20 CONTI NUE
C VI S equi val ent :
CALL VDOT (c(i,j), a(i,1), m b(1,j), 1, n)
C
10 CONTI NUE

The increment on the row vector a(i,1) is m and the increment on the column vector b(1,j) is 1.
The expression c(i,j) is actually a scalar as far as the VDOT instruction is concerned.

Recall that scalar parameters in VIS cannot be in the EMA address space. Thus, if the matrixes a,
b, and c are all in EMA, an additional statement must be included to place the scalar result into
the EMA area, c(ij).

9-22 Using VIS in Programs

Example: Matrix multiplication with EMA arrays.

$SEMA(xyz, 3)
PROGRAM enal
COMMON / xyz/ a, b, ¢
DI MENSI ON a(100, 200), b(200, 300), c(100, 300)

C
m = 100
p = 300
n = 200
DO10i =1, m
DO10j =1,p
C
C Wthout VIS
c(i,j) =0.0
DO20 | =1,n
c(i,j) =c(i,j) +a(i,l) * b(l,j)
20 CONTI NUE
VI S equi val ent :
CALL WDOT (temp, a(i,1), m b(1,j), 1, n)
c(i,j) = tenp
C
10 CONTI NUE
END

Note that, as required, the scalar result temp is not in EMA. The dot product is calculated
between the rows in a and the columns in b. To speed the array processing, the arrangement of
rows and columns in a could be exchanged. This would cause the dot product of the columns in a
and b to be calculated:

$SEMA(xyz, 3)
PROGRAM ena?2
COMMON / xyz/ a, b, ¢
DI MENSI ON a(200, 100), b(200, 300), c(100, 300)

C
m = 100
p = 300
n = 200
DO10i =1, m
DO10j =1,p
C
C Wthout VIS
c(i,j) =0.0
DO20 | =1,n
20 c(i,j) =c(i,j) +a(l,i) * b(l,j)
C VI S equi val ent :
CALL WDOT (temp, a(1,i), 1, b(1,j), 1, n)
c(i,j) = tenp
C
10 CONTI NUE
END

Here, the dot product of columns in a and b is calculated more quickly. The increment is 1 for a to
access the contiguous column elements. Only the dimensioning and subscripts of a and the
increment changed from the previous example.

Using VIS in Programs 9-23

Example VIS Programs

Calculating Prime Numbers: Sieve of Eratosthenes

The Sieve of Eratosthenes is a scheme for calculating prime numbers. The sieve is attributed to
Eratosthenes, an ancient Greek scholar. First integers are written in consecutive order starting
with 1. Then the nonprime numbers are eliminated in a certain order leaving the prime numbers.

In the program that follows, the prime numbers of the first 65,535 numbers are calculated. Since
all even numbers except for 2 are not prime numbers, an array of odd numbers beginning with 3 is
generated first. The sequence for eliminating nonprime numbers is:

1. Starting with the square of 3 (3*3 = 9), every third number is crossed off or zeroed.

2. The square of the next number 5 (5*5 = 25) is found. From that position, every fifth number
is zeroed.

3. The square of the next number 7 (7*7 = 49) is found. From that position, every seventh
number is zeroed.

4. This elimination continues until the square root of the largest number is reached.

Note Some numbers may be zeroed more than once. The numbers that are not

crossed off (that is, not zeroed) are prime numbers.

9-24 Using VIS in Programs

$EMA(dan, 3)
PROGRAM si eve
COWMON / dan/ prime(32767)
DI MENSI ON i p(5), anun(10)
EQUI VALENCE (i p, | u)

C

C** This program generates prime nunbers from2 to 65535 ****
C *
C i ncr = increnent through array prinme *
C And al so the working prine nunber *
C ip = gl obal inputs *
C 32767 = length of array prine *
C lu = output l|ogical unit *
C ncount = nunber of values to elimnate *
C prime = array of odd nunbers, initially; then, *
C Array of prime nunbers *
C isqrin = index of the |largest odd nunber .LE. *
C the SQRT of |ast nunber in array *
C istrt = index of incr**2 which is 1st no. to elimnate *
C *
Ck***
C Get output |ogical unit

CALL RMPAR(| u)
C
isqrin = (SQRT(2.0%32767+1.0) — 1)/2

Ck**

C Initialize prime with odd nunbers *
Ck**
prime(1) = 3.0
prime(2) =5.0
C
C Wthout VIS
DO 10 i = 3, 32767
10 prime(i) = prime(i-2) + 4.0
C
C Wth VIS
CALL WSAD(4.0,prinme, 1, prime(3),1,32767-2)
C
C
Ck**********************************
C El i m nate nonprinme nunbers *
Ck**********************************
DO 100 i = 1,isqgrln
IF (PRIME(1).EQ 0.0 @GOTO 100
incr =i +i +1
istrt =incr * incr/2.0

ncount = (32767 — istrt)/incr + 1

Ck**********************************

C Zero out nonprime nunbers *
Ck**********************************

Using VIS in Programs 9-25

C Wt hout VIS:
j = istrt
DO 20 k = 1, ncount
prime(j) = 0.0
20 j =] + incr

C
C Wth VI S:
CALL VWWWOV(O0.0,0, prine(istrt),incr,ncount)
C
100 CONTI NUE
Ck***********************************
C Li st prime nunbers *
C *
C i sum = total nunber of prines *
C anum = 10 primes to print *
C per line *
Ck***********************************
isum= 0
j =1
anum(j) = 2.0
DO 200 i = 1, 32767
IF (prime(i).EQ 0.0) GOTO 200
isum=isum+ 1
=] +1

anum(j) = prime(i)
IF (j.LT.10) GOTO 200
IF (j.NE.O) WRITE(Iu,250) (anum(k),k=1,j)
j =0
200 CONTI NUE
VWRI TE (lu, 300) isum
250 FORMAT(5X, 101 7)
300 FORMVAT(///” Total prines = ",15)
END

9-26 Using VIS in Programs

Solution of Linear Systems

a is a square matrix of order n and b is a given vector of n elements. To solve
a*x=>b

for the unknown vector x, a popular method is to use Gaussian elimination with back substitution.
To find the solution vector x, the elements in a are first eliminated to form an upper tridiagonal.
Then back substitution is performed.

The program that follows uses VIS routines in two places. The execution time for VIS is about 10
times faster than the non-VIS version. The array subscripts are changed to column-row order, to
obtain maximum speed efficiency. Note that subroutine gauss accepts EMA call-by-reference
arguments.

$EMA(den, 5)

PROGRAM vsol v

COWDN / den/ a(201, 200), x(200), i p(200)

DI MENSION itiml(5),itinm(5)
C** This program solves a |inear systemusing VIS routines ****
C

lu = loglu(i)
Ck**
C Read in order of linear system *
Ck**
C

VRI TE(I u, 50)

50 FORMAT(//” 1 nput order of linear system ")

READ(I u, *) n

IF(n .LE. 1) n=2

IF(n .GI. 200) n=200
C
Ck**
C* Formthe test matrix *
C* For example: 1x + 2y + 3z = 4 *
C* 2Xx + 3y + 4z =1 *
C* 3X + 4y + 1z = 2 *
Ck**
C

DO 10 i=1,n

k=i

DO 10 j =1, n+1
| F(k. GT. n+1) k=MoD(k, n+1)
a(j,i) = FLOAT(k)

10 k=k+1
C
Ck**
C* Call gauss to solve linear system *
Ck**
Cr Call for systemtinme *
Ck**
C

CALL EXEC(11,itintl)
CALL gauss (a,x,ip, 200,201, n,ifl ag)

Using VIS in Programs 9-27

CALL EXEC(11,itinR)
VRl TE(| u, 55)
55 FORMAT(///”The solution vector x is"//)
DO 70 i=1,n
WRI TE(I u, 60) i, x(i)
60 FORMAT(9X, " X(",13,") ", F11. 5)
70 CONTI NUE
CALL etime(itintd,itinR)
END

SUBRQUTI NE gauss (a, X, ip, nsize, msi zpl, n,iflag)
EMA a, x,ip
REAL a(nsizpl, nmsize), x(msize)
| NTEGER i p(nsi ze)
C

Ck***

C Initialize the ip vector to be used for pivoting *
Ck***
C
i flag=1
DO 10 i=1,n
10 ip(i)=i

Ck***

C* Begin Gaussian elimnation by first pivoting the equations *
Ck***
C
DO 20 k=1, n-1
DO 30 i=k+1,n
IF (ABS(a(k,ip(k))) .GE ABS(a(k,ip(i))) GOTO 30

i temp=i p(k)
i p(k)=ip(i)
ip(i)=itenp
30 CONTI NUE
C
Ck***
C* Check for a zero in the diagonal *

Ck***

IF (a(k,ip(k)) .NEE 0. G TO 35
i flag=0
35 CONTI NUE
C

Ck*********************************

C Performthe actual elimnation *
Ck*********************************

C
DO 20 i=k+1,n
z1 = a(k,ip(i))
IF (z1 .EQ 0 GOTO 20
z1 = z1/a(k,ip(k))
C

C Wt hout VIS:
DO 25 j =k+1, n+1

9-28 Using VIS in Programs

025 a(j,ip(i)) =a(j,ip(i)) - zl*a(j,ip(k))
C Wth VIS

CALL WPI'V (-z1, a(k+l,ip(k)), 1, a(k+1,ip(i)), 1,

+ a(k+1,ip(i)), 1, (n-k+1))
C
20 CONTI NUE
C

Ck***

C End of elimnation — now check to nake sure the matrix *
C i s not singular *
Ck***
C

IF (a(n,ip(n)) .EQ 0) iflag=0
C

Ck*********************************

C Now perform back substitution *
Ck*********************************

C
DO 50 k=n,1, -1

s=0.0

| =k+1

IF (I .GI. n) GOTO 50
C
C Wt hout VIS:

DO 55 j=I,n

55 s =s +a(j,ip(k))*x(j)

C

C Wth VS
CALL WDOT (s, a(l,ip(k)), 1, x(1), 1, (n=l+1))

C
50 x(k) = (a(n+l,ip(k))-s)/a(k,ip(k))
RETURN
70 iflag = 0
RETURN
END
C
C
SUBROUTI NE etine(itiml,itinR)
DI MENSION itiml(5),itinm2(5)
C
Ck**************************************
C Cal cul ate el apsed tine *

Ck**************************************

C Check centi seconds
IF (itinm2(1) .GE. itiml(1l)) GOTO 10
itin2(2) =itin2(2) -1
itin2(1) = itin2(1l) + 100
C Check seconds
10 IF (itinm2(2) .GE. itiml(2)) GOTO 20
itin2(3) =itin2(3) -1
itin2(2) =itinm(2) + 60
C Check m nutes

Using VIS in Programs

9-29

20 IF (itin2(3) .CGE. itiml(3)) GOTO 30
itin2(4) = iting(4) -1
itin2(3) =itinm(3) + 60
C Don’t bother with hours

30 icens = 10*(itinmR2(1) — itiml(1l))
isecs = itim(2) — itim(2)
imns = itim(3) — itim(3)

i hour = itinm2(4) — itim(4)

VWRI TE(1, 55) ihour,imns,isecs,icens

55 FORMAT(//"Execution time =",3(12,":"),13)
RETURN
END

Matrix Inversion

Finding the inverse of a matrix is a problem often presented in numerical analysis. The following
program does matrix inversion for square matrixes from 50 to 200 in increments of 50. The array
subscripts are exchanged to specify column-row order instead of row-column. This exchange
executes about 10 times faster.

$EMA(bi 11, 5)
PROGRAM chuck
COWDON /bill/ a,test
DI MENSI ON itenpl(5),itenp2(5),ipvt(200)
REAL a(200, 200),test (400), dot, norm
DATA nsize / 200 /
CALL RWPAR(itenpl)

C [istlu = output device

C i check = 0, DO NOT conpute norm = 1, conmpute the norm
listlu = itenpl(l)
i check = itenpl(2)

Ck**

C
C Maj or | oop: calculate inverse of square matrixes
Cfrom50 to 200 in increments of 50

DO 100 n = 50, 200, 50

gk**
C
C Construct test matrix

DO 10 i = 1,2*n

test(i) = iabs(i-n)
10 CONTI NUE

C

DO15j = 1,n
C
C Wthout VIS
C DO15 i =1,n
C a(i,j) = test(n—j+i)
C VI S equi val ent :

CALL WOV(test(n—j+1),1,a(1,j),1,n)

C

9-30 Using VIS in Programs

15 CONTI NUE

Ck**

C
C Set itenpl to the cpu time in seconds
C

CALL EXEC(11,itenpl)
Ck**
C
C Invert the matrix
C

CALL invrt(a, msize,n,ipvt,ierr)
Ck**
C
C Set itenp2 to the cpu time in seconds

CALL EXEC(11,itenp2)

C
C Cal cul ate el apsed tine
DO25i =1,4
itemp2(i) = itenp2(i) — itenmpl(i)
25 CONTI NUE

IF (itemp2(4) .LT. 0) itenp2(4) = itenmp2(4) + 24
time = itenp2(4)*3600. +itenp2(3)*60.+itenp2(2)

+ +itenp2(1)/100.
Ck**
C
C Check the answer
C

norm= 0.0
IF (icheck .EQ 0) GOTO 40

@

DO20 i = 1,n
DO20j = 1,n

Wthout VIS
dot = 0.0
DO 30 k = 1,n
30 dot = dot + a(k,i) * test(n—j+k)
Wth VI S:
CALL WDOT(dot,a(1,i),1,test(n—j+1),1,n)

O 000000

IF (i .EQ j) dot = dot — 1.0
norm = norm + ABS(dot)
20 CONTI NUE
C
Ck**
C
C Print the results
C
WRI TE (Iistlu,90)
90 FORMAT(///” WMatrix size”, 11X, "Nornf, 9X, "I nversion tinme"//)
40 VWRITE (listlu,91) n,normtine
91 FORMAT(4X, 1 3, 10X, E12. 5, 5X, F12. 2)

Ck**

Using VIS in Programs

9-31

C

C End of major |oop
100 CONTI NUE
END

SUBROUTI NE invrt(a, msize,n,ipvt,ierr)
C Matrix inversion

EMA a

REAL a(nsize,n), pivot,t

| NTEGER i pvt (n)

DATA eps / 1E-6 /

Ck**

C

C Initialize interchange pointer
C
DO5i =1,n
ipvt(i) =i
5 CONTI NUE

Ck**

C
C Start | oop through main diagonal
C

DO 100 irow = 1,n

Ck**

C
C Search for pivot
C
icol = ipvt(irow)
C
C Wthout VIS
C imx = irow
C pi vot = a(icol,irow
C IF (irow .EQ n) GOTO 20
C DO 10 jrow = irowtl, n
C t = a(icol,jrow
C IF (ABS(t) .LE. pivot) GOTO 10
C i mx = jrow
C pivot =t
C 10 CONTI NUE
C Wth VIS
CALL WWVAB(i mab, a(icol,irow), nsize, n—i rowt+l)
imax = imab + irow - 1
pi vot = a(icol,imx)
C
20 | F (ABS(pivot) .LT. eps) GOTO 99
C

Ck**

C
C I nt er change col umms
C
jmax = ipvt (i max)
IF (imax .EQ irow) GOTO 40

i pvt(irow) = ipvt(imax)

9-32 Using VIS in Programs

i pvt (i max) = icol

C
C
C Wthout VIS
C DO 25 jcol = 1,n
C T = a(jcol,irow
C a(jcol,irow) = a(jcol,imx)
C a(jcol,imax) =1t
C 25 CONTI NUE
C Wth VIS
CALL WeWP(a(1l,irow, 1,a(1,imx),1,n)
C
C
Ck**
C

C Zero out elenents in this colum and form columm of inverse.

C
40 a(icol,irow)
a(j max,irow)

a(j max,irow)
1.0

Wthout VIS
DO 45 jcol = 1,n
a(jcol,irow) = a(jcol,irow)/pivot
45 CONTI NUE
Wth VIS
CALL wsny(1l.0/pivot,a(l,irow,1,a(l,irow),1,n)

OO0 000000

DO 50 jrow = 1,n
IF (jrow .EQ irow) GOTO 50
t = —a(icol,jrow)
a(icol,jrow) = a(jmax,jrow

Wthout VIS
DO 60 kcol = 1,n
a(kcol ,jrow) = a(kcol,jrow) + t*a(kcol,irow)
60 CONTI NUE
Wth VIS
CALL wpiv(t,a(l,irow),1,a(l,jrow,1,a(l,jrow, 1,n)

O00000

0O

a(jmax,jrow) = t/pivot
50 CONTI NUE
C
Ck**
C
C End of main | oop
100 CONTI NUE
ierr =0
RETURN
C Error condition, ierr = colum with no acceptable pivot.
99 ierr = irow
RETURN
END

Using VIS in Programs

9-33

VIS Online Diagnostic

The program VISOD is the online diagnostic for the Vector Instruction Set on an HP 1000 A990,
A900, A700, or F-Series Computer. It is designed to verify the proper installation and operation
of read-only-memories (ROMs). The diagnostic contains operands for each VIS instruction that
have been chosen to exercise the firmware through all of the internal algorithm paths.

Required Hardware and Software

The required hardware for each computer is described below:
1. HP 1000 A990 or A900 Computer with RTE-A.
2. HP 1000 A700 Computer with the HP 12156A floating-point board and RTE-A.
3. For the F-Series:
a. HP 1000 F-Series Computer with an RTE-6/VM Operating System.

b. HP 12791A Firmware Expansion Module (FEM). The FEM must reside in select code 10
or 11 of the CPU I/O backplane and is cabled to the CPU and FAB with a 50-pin flat
ribbon cable.

c. VIS firmware (part numbers 12824-80007 through 80009) installed on a FEM.

The software required to run VISOD consists of an RTE Operating System and the following VIS
relocatables:

1. The Firmware Interface Library, §VLB6A (RTE-6/VM) or $VLBA1 (RTE-A).
2. The VIS Online Diagnostic, % VISO6 (RTE-6/VM) or % VISOA (RTE-A).

VISOD requires a 13-page partition to run on RTE-A and a 15-page partition to run on
RTE-6/VM. The program must be assigned to a suitably-sized partition at load time. VISOD
should not be loaded at system generation time. A duplicate entry point error will occur.

Test Sections

The VISOD program is divided into three main sections:

1. Self-test (F-Series only).
2. Non-privileged.
3. Privileged.

Self-Test Section
The VIS self-test section in VISOD is for the F-Series computer only. If the self-test section does

not return the correct results, the following message is displayed on the output device and the
program stops:

**** SELFTEST FAI LURE

9-34 Using VIS in Programs

Non-Privileged Section

This section contains all of the tests that can be performed in a non-privileged user environment.
These include all of the non-EMA VIS instructions and .ERES which resolves EMA call by
reference addressing.

An error in any VIS instruction causes the following message to be displayed on the output device
and the program to stop:

**x% ERROR | N | NSTRUCTI ON xxooox

where xoxx is the VIS instruction name. A successful pass displays:
VIS ON- LI NE DI AGNOSTI C SUCCESSFUL COVPLETI ON

on the output device. If the privileged section is not to be tested, the message:
WARNI NG - PRI VI LEGED | NSTRUCTI ONS NOT TESTED

precedes the above completion message.

Privileged Section

This section tests the VIS instructions .ESEG and .VSET by temporarily entering a privileged
environment. In addition, the program must lock itself into memory for this portion of the testing.
In this privileged mode, malfunctions in VIS firmware could cause catastrophic system failure.
Therefore, it is recommended that this section be executed only on an otherwise inactive system.

The last test in the privileged section executes the VIS EMA sum routine, WSUM, to ensure that
individually tested instructions correctly perform together.

An error in any of the instructions, .ESEG, .VSET, or WSUM causes this message to be displayed
on the system console:

*¥**%* ERROR IN | NSTRUCTI ON xxocx

where xxxxx is the VIS instruction name.

Using VIS in Programs 9-35

Running the Diagnostic

Before operating the diagnostic, the RTE Operating System should be up and running. The
proper entry points for VIS firmware should be specified during generation or declared to the
loader with a separate RPL file.

The diagnostic program is supplied as a relocatable file which is loaded using the RTE loader.
The main program to be loaded and the library to search are:

RTE-A RTE-6/VM
Main % VISOA % VISO6
Library $VLBA1 $VLB6A

Once the diagnostic has been loaded, it can be executed as follows:
Cl> VI SOO , lu] [, #passes] [, priv]
where:

lu is the output logical unit number. Specifies where messages are to be output. If 0
or not specified, defaults to user terminal.

#passes is the number of passes to be run. If 0 or not specified, 1 pass is run.

priv is the privileged section flag. If 0 or not specified, do not run the privileged section
test. If 1, run the privileged section test.

Examples:

Cl > VI SOD Print messages on user terminal, run 1 pass, do not run privileged
section test.

Cl> vIsoD,1,0 Print messages on user terminal, run 1 pass, do not run privileged
section test.

Cl> VISOD, 0G 3,1 Print messages on user terminal, run 3 passes, run all sections.

Cl > VISOD, 6, 1 Print messages on LU 6, run 1 pass, do not run privileged section
test.

Cl> VvIsoD,, 0,1 Print messages on user terminal, run 1 pass, run privileged section
test.

Caution When executing the privileged section, malfunctions in VIS firmware could
cause overwriting of the operating system. It is recommended that other critical
tasks not be executing concurrently.

Figure 9-1 is a troubleshooting flowchart to follow if errors occur while running the VIS online
diagnostic.

9-36 Using VIS in Programs

Run Computer
Self-Test and
Kernel
Diagnostics
Refer to
Installation
Successful an&;ﬁgeor:ce
Completion Contact HP Sales
’ and Service
Office
ru, visod
Check VIS* Self-Test
— Firmware Successful
Installation ?
«—| Replace VIS* Instruction Do Other
Firmware Processing

* For A700 computers, FPP/SIS/VIS Firmware

Figure 9-1. Troubleshooting Flowchart

Using VIS in Programs 9-37

FORTRAN Equivalents for VIS

The Software Equivalents Library contains FORTRAN equivalents for all VIS routines. Program
results may not be exactly the same using the software equivalents in place of the firmware. For
reference, the source of the single precision, non-EMA routines are presented. The following
notation is used:

V1, V2, V3 = starting array elements

I NCR1, | NCR2, = increments to obtain next elements
I NCR3

S, I MAX, | M N = scalar operand or result

N = number of elements to process

VADD: addition

SUBROUTI NE VADD(V1, | NCR1, V2, | NCR2, V3, | NCR3, N)
REAL V1(1),V2(1),V3(1)
| F(N. LE. 0) RETURN

J1 =1
J2 =1
3 =1
DO10 | = 1,N
V3(J3) = VI(J1) + V2(J2)
J1 = J1 + INCRL
J2 = J2 + INCR2
10 J3 = J3 + INCR3
RETURN
END

VSUB: subtraction

SUBROUTI NE VSUB (V1, | NCRL, V2, | NCR2, V3, | NCR3, N)
REAL V1(1),V2(1),V3(1)
| F (N. LE.0) RETURN

J1 =1
J2 =1
3 =1
DO10 | = 1,N
V3(J3) = VI(J1) - V2(J2)
J1 = J1 + INCRL
J2 = J2 + INCR2
10 J3 = J3 + INCR3
RETURN
END

9-38 Using VIS in Programs

VMPY: multiplication

SUBROUTI NE VMPY(V1, | NCRL, V2, | NCR2, V3, | NCR3, N)
REAL V1(1),V2(1),V3(1)
| F (N.LE.0) RETURN

J1 =
J2 =1
3 =1
DO10 | = 1,N
V3(J3) = VI(J1) * V2(J2)
J1 = J1 + INCRL
J2 = J2 + INCR2
10 J3 = J3 + INCR3
RETURN
END

VDIV: division

SUBROUTI NE VDI V(V1, | NCRL, V2, | NCR2, V3, | NCR3, N)
REAL V1(1),V2(1),V3(1)
| F (N.LE.0) RETURN

J1 =1
J2 =1
3 =1
DO10 | = 1,N
V3(J3) = V1(J1) / V2(J2)
J1 = J1 + INCRL
J2 = J2 + INCR2
10 J3 = J3 + INCR3
RETURN
END

VSAD: scalar-vector addition

SUBROUTI NE VSAD(S, V1, | NCRL, V2, | NCR2, N)
REAL S, V1(1), V2(1)
| F (N.LE.0) RETURN

J1 =1
J2 =1
DO 101 =1,N

V2(J2) = S + VI(J1)
J1 = J1 + INCRL

10 J2 = J2 + INCR2
RETURN
END

Using VIS in Programs 9-39

VSSB: scalar-vector subtraction

SUBROUTI NE VSSB(S, V1, | NCRL, V2, | NCR2, N)
REAL S, V1(1), V2(1)
| F (N.LE.0) RETURN

J1 =1
J2 =1
DO 101 =1,N

V2(J2) = S - VI(J1)
J1 = J1 + INCRL

10 J2 = J2 + INCR2
RETURN
END

VSMY: scalar-vector multiplication

SUBROUTI NE VSMY ('S, V1, | NCRL, V2, | NCR2, N)
REAL S, V1(1), V2(1)
| F (N.LE. 0) RETURN

J1 =1
J2 =1
DO 101 = 1,N

V2(J2) = S * VI(J1)
J1 = J1 + INCRL

10 J2 = J2 + INCR2
RETURN
END

VSDV: scalar-vector division

SUBROUTI NE VSDV('S, V1, | NCRL, V2, | NCR2, N)
REAL S, V1(1), V2(1)
| F (N.LE.0) RETURN

J1 =1
J2 =1
DO 101 = 1,N

V2(J2) = S/ Vi(J1)
J1 = J1 + INCRL

10 J2 = J2 + INCR2
RETURN
END

9-40 Using VIS in Programs

VPIV: pivot operation

10

VDOT:

10

SUBROUTI NE VPI V('S, V1, | NCR1, V2, | NCR2, V3, I NCR3, N)

REAL S, V1(1),V2(1), V3(1)
| F (N.LE.0) RETURN

J1 =

J2 =1

J3 =1

DO 101 =1,N
V3(J3) = S * VI(J1) + V2(J2)
J1 = J1 + INCRL
J2 = J2 + INCR2
J3 = J3 + INCR3
RETURN

END

dot product

SUBROUTI NE VDOT(S, V1, | NCRL, V2, | NCR2, N)
REAL S, V1(1), V2(1)

DOUBLE PRECI SI ON DS

| F (N.LE.0) RETURN

DS = 0.0D0
J1 =1

J2 =1

DO10 | = 1,N

DS = DS + DBLE(V1(J1)) * DBLE(V2(J2))
J1 = J1 + INCRL

J2 = J2 + INCR2

S = SNGL(DS)

RETURN

END

VABS: absolute value

10

SUBROUTI NE VABS(V1, | NCR1, V2, | NCR2, N)
REAL V1(1),V2(1)
| F (N.LE.0) RETURN

J1 =1
J2 =1
DO 101 =1,N

V2(J2) = ABS(V1(J1))
J1 = J1 + INCRL

J2 = J2 + INCR2
RETURN

END

Using VIS in Programs

9-41

VSUM: sum

SUBROUTI NE VSUM S, V1, | NCRL, N)
REAL S, V1(1)

DOUBLE PRECI SI ON DS

| F (N.LE.0) RETURN

DS = 0.0D0

J1 =1

DO10 | =1,N

DS = DS + DBLE(V1(J1))
10 J1 = J1 + INCRL

S = SNGL (DS)

RETURN

END

VNRM: sum of absolute values

SUBROUTI NE VNRM(S, V1, | NCRL, N)

REAL S, V1(1)

DOUBLE PRECI SI ON DS

| F (N.LE.0) RETURN

DS = 0.0D0

J1 =1

DO10 | = 1,N

DS = DS + DABS(DBLE(V1(J1)))
10 J1 =J1 + INCRL

S = SNGL(DS)

RETURN

END

VMAX: maximum value

SUBROUTI NE VMAX(| MAX, V1, | NCRL, N)
REAL V1(1), MAX, TMAX
I F (N.LE.1) RETURN

| MAX = 1
MAX = VI(1)

J1 =1+ INCRL
DO10 | = 2,N

TVAX = V1(J1)
| F(TMAX. LE. MAX) GO TO 10
| MAX=I
MAX=TMAX

10 J1 =J1 + INCRL
RETURN
END

9-42 Using VIS in Programs

VMAB: maximum absolute value

SUBROUTI NE VMAB(| MAX, V1, | NCRL, N)
REAL V1(1), MAX, TMAX
I F (N LE. 1) RETURN
| MAX = 1
MAX = ABS(V1(1))
J1 =1+ INCRL
DO10 | = 2,N
TMAX = ABS(V1(J1))
| F(TMAX. LE. MAX) GO TO 10
| MAX=I
MAX=TMAX
10 J1 = J1 + INCRL
RETURN
END

VMIN: minimum value

SUBROUTI NE VM N (1 M N, V1, I NCR1, N)
REAL V1(1),MN, TM N

I F (N.LE. 1) RETURN

IMN = 1

MN = VI(1)

J 1 + I NCRL

01 =2,N

= V1(J1)

MN.GE.MN) GO TO 10

TI§8I—‘
HZ k1

(

——d

zi
II_'E

M N

10 J1 J1 + I NCR1
RETURN
END

VMIB: minimum absolute value

SUBROUTI NE VM B(1 M N, V1, | NCRL, N)
REAL V1(1),MN, TM N
I F (N LE. 1) RETURN
IMN = 1
MN = ABS(V1(1))
= 1 + INCRL
DO 10 | = 2,N
= ABS(V1(J1))
MN.GE.MN) GO TO 10

10 J1 = J1 + INCR1

Using VIS in Programs 9-43

VMOV: move

SUBROUTI NE VMOV(V1, | NCR1, V2, | NCR2, N)
REAL V1(1),V2(1)
| F (N.LE. 0) RETURN

J1 =1
J2 =1
DO 101 =1,N

V2(J2) = V1(J1)

J1 = J1 + INCRL
10 J2 = J2 + INCR2

RETURN

END

VSWP: swap

SUBROUTI NE VSWP(V1, | NCR1, V2, | NCR2, N)
REAL V1(1),V2(1), TEMP
| F (N.LE.0) RETURN

J1 =1
J2 =1

DO10 | = 1,N
TEMP = V1(J1)
V1(J1) = V2(J2)
V2(J2) = TEMP

J1 =J1 + INCRL
10 J2 = J2 + INCR2

RETURN

END

9-44 Using VIS in Programs

Assembly Language Opcodes

A990, A900, and A700

The A990, A900, and A700 VIS uses the opcodes listed below.

VIS ROUTI NES W TH ONE-WORD OPCODES

SI NGLE DOUBLE
ONE-WORD OPCODE PRECI SION ONE-WORD OPCODE PRECI SI ON
ROUTI NE ROUTI NE
105001 VADD 105021 DVADD
105003 VSUB 105023 DvSUB
105004 VIVPY 105024 DVMPY
105005 VDIl V 105025 DVDI V
105006 VSAD 105026 DVSAD
105007 VSSB 105027 DVSSB
105010 VSMY 105030 DVSMY
105011 VSDV 105031 DvSDv
105101 VPI V 105121 DVPI V
105103 VABS 105123 DVABS
105105 VSUM 105125 DVSUM
105107 VNRM 105127 DVNRM
105110 VDOT 105130 DvDOT
105111 VIVAX 105131 DVIVAX
105112 VVAB 105132 DVVAB
105113 VM N 105133 DVM N
105115 VM B 105135 DVM B
105116 VMOV 105136 DvMOV
105117 VSWP 105137 DVSWP

Using VIS in Programs

9-45

VECTOR ARI THMETI C ROUTI NES

SI NGLE DOUBLE
ONE-WORD OPCCODE PRECI SION ONE-WORD OPCODE PRECI SI ON
ROUTI NE ROUTI NE
105001 VADD 105021 DVADD
105003 VSUB 105023 DVSUB
105004 VIVPY 105024 DVMPY
105005 VDI V 105025 DvDI V
Calling sequence:
CALL subr (v1, incrl, v2, incr2, v3, incr3, #elenents)

These routines are each nine-word instructions:

word 1 = first word of opcode
word 2 = address of next instruction
word 3 = address of array, vl
word 4 = address of increment, incrl
word 5 = address of array, v2
word 6 = address of increment, incr2
word 7 = address of array, v3
word 8 = address of increment, incr3
word 9 = address of no. of elenents, #elenents
VECTOR-SCALAR ARI THVETI C ROUTI NES
SI NGLE DOUBLE
ONE-WORD OPCODE PRECI SI ON ONE-WORD OPCODE PRECI SI ON
ROUTI NE ROUTI NE
105006 VSAD 105026 DVSAD
105007 VSSB 105027 DVSSB
105010 VSMY 105030 DVSMY
105011 VSDV 105031 DVSDV
Calling sequence:
CALL subr (scalar, v1, incrl, v2, incr2, #elenents)

These routines are each eight-word instructions:

9-46

word 1 = first word
word 2 = address of
word 3 = address of
word 4 = address of
word 5 = address of
word 6 = address of
word 7 = address of
word 8 = address of

Using VIS in Programs

of opcode

next instruction
scal ar,

array,

i ncrement,

array,

i ncrement,

no. of elenents,

scal ar

vl

incrl

v2

i ncr2

#el enent s

ABSOLUTE VALUE ROUTI NE

SI NGLE DOUBLE
ONE-WORD OPCODE PRECI SI ON ONE-WORD OPCODE PRECI SI ON

ROUTI NE ROUTI NE
105103 VABS 105123 DVABS

Calling sequence:
CALL subr (v1, incrl, v2, incr2, #elenents)

These routines are each seven-word instructions:

word 1 = opcode
word 2 = address of next instruction
word 3 = address of array, vl
word 4 = address of increment, incrl
word 5 = address of array, v2
word 6 = address of increment, incr2
word 7 = address of no. of elenents, #elenents
SUM ROUTI NES
SI NGLE DOUBLE
ONE-WORD OPCODE PRECI SI ON ONE-WORD OPCODE PRECI SI ON
ROUTI NE ROUTI NE
105105 VSUM 105125 DVSUM
105107 VNRM 105127 DVNRM

Calling sequence:
CALL subr (scalar, vl1, incrl, #elenents)

These routines are each six-word instructions:

word 1 = opcode

word 2 = address of next instruction

word 3 = address of scalar, scal ar
word 4 = address of array, vl

word 5 = address of increnent, incrl
word 6 = address of no. of elenents, #elements

Using VIS in Programs 9-47

DOT PRODUCT ROUTI NE

SI NGLE SI NGLE
ONE-WORD OPCODE = PRECI SI ON ONE-WORD OPCODE = PRECI SI ON

ROUTI NE ROUTI NE
105110 VDOT 105130 DvDOT

Calling sequence:
CALL subr (scalar, vl1, incrl, v2, incr2

These routines are each eight-word instructions:

word 1 = opcode

word 2 = address of next instruction
word 3 = address of scalar,

word 4 = address of array,

word 5 = address of increnent,

word 6 = address of array,

word 7 = address of increnent,

word 8 = address of no. of el enents,

Pl VOT ROUTI NE

#el ement s)

scal ar

vl

incrl

v2

i ncr2

#el enent s

SI NGLE SI NGLE
ONE-WORD OPCODE PRECI SI ON ONE-WORD OPCODE PRECI SI ON

ROUTI NE ROUTI NE
105101 VPI V 105121 DVPI V

Calling sequence:
CALL subr (scalar, vl1, incrl, v2, incr2

These routines are each ten-word instructions:

word 1 = opcode

word 2 = address of next instruction
word 3 = address of scal ar,

word 4 = address of array,

word 5 = address of increment,

word 6 = address of array,

word 7 = address of increment,

word 8 = address of array,

word 9 = address of increment,

word 10 = address of no. of elenents,

9-48 Using VIS in Programs

v3, incr3, #elenents)

scal ar

vl

incrl

v2

i ncr2

v3

incr3

#el enent s

MAX/ M N ROUTI NES

SI NGLE SI NGLE
ONE-WORD OPCODE PRECI SION ONE-WORD OPCODE = PRECI SI ON

ROUTI NE ROUTI NE
105111 VIVAX 105131 DVIVAX
105112 VVAB 105132 DVVAB
105113 VM N 105133 DVM N
105115 VM B 105135 DVM B

Calling sequence:

CALL subr

(scal ar,

vl, incrl, #elenents)

These routines are each six-word instructions:

word 1 = opcode
word 2 = address of next instruction
word 3 = address of integer scalar, scalar
word 4 = address of array, vl
word 5 = address of increnent, incrl
word 6 = address of no. of elements, #elenents
MOVE ROUTI NES
SI NGLE SI NGLE
ONE-WORD OPCODE PRECI SION ONE-WORD OPCODE PRECI SI ON
ROUTI NE ROUTI NE
105116 VMOV 105123 DVABS
105117 VSWP 105137 DVSWP
Calling sequence:
CALL subr (v1, incrl, v2, incr2, #elenents)

These routines are each seven-word instructions:

wor d
wor d
wor d
wor d
wor d
wor d
wor d

NoO o~ WNPE

opcode
addr ess
addr ess
addr ess
addr ess
addr ess
addr ess

of next instruction

of array, vl
of increnent, incrl
of array, v2
of increnent, i ncr2

of no. of elenents, #elenents

Using VIS in Programs

9-49

F-Series

The firmware address space 06000B to 07777B is assigned to VIS with the opcodes 101460 through
101477 and 105460 through 105477. The following VIS routines use two-word opcodes, where the
second word of the opcode (the sub-opcode) replaces the return address. .VSRP and .VDRP are
assembly language routines (located in the Firmware Interface Library) that install the two-word
opcodes for FORTRAN programs at run time.

VIS ROUTI NES W TH TWO-WORD OPCODES

SI NGLE DOUBLE
TWO-WORD OPCODE PRECI SION TWO-WORD OPCODE PRECI SI ON

ROUTI NE ROUTI NE
101460 000000 VADD 105460 004002 DVADD
101460 000020 VSUB 105460 004022 DvSuUB
101460 000040 VIVPY 105460 004042 DVVPY
101460 000060 VDl V 105460 004062 DVDI V
101460 000400 VSAD 105460 004402 DVSAD
101460 000420 VSSB 105460 004422 DVSSB
101460 000440 VSMY 105460 004442 DVSMY
101460 000460 VSDV 105460 004462 DvSDV

The assignment of one-word opcodes and the equivalent VIS routine are listed as follows. These
entry points are declared in the Parameter Input Phase of RTE generation.

VIS ROUTI NES W TH ONE-WORD OPCODES

SI NGLE DOUBLE
ONE-WORD OPCODE PRECI SION ONE-WORD OPCODE PRECI S| ON

ROUTI NE ROUTI NE
101460 . VECT 105460 . DVCT *
101461 VPI V 105461 DVPI V
101462 VABS 105462 DVABS
101463 VSUM 105463 DVSUM
101464 VNRM 105464 DVNRM
101465 VDOT 105465 DvDOT
101466 VMAX 105466 DVMAX
101467 VMAB 105467 DVMAB
101470 VM N 105470 DVM N
101471 VM B 105471 DVM B
101472 VMOV 105472 DVMOV
101473 VSWP 105473 DVSWP
101474 . ERES* *
101475 .ESEG'* EMA interface routines
101476 . VSET* *

105477 sel f-test

* (first word of two-word opcodes as above.)
** (used under RTE-IVB only)

9-50 Using VIS in Programs

VECTOR ARI THMETI C ROUTI NES

SI NGLE DOUBLE
TWO-WORD OPCODE PRECI SION TWO-WORD OPCODE =~ PRECI SI ON
ROUTI NE ROUTI NE
101460 000000 VADD 105460 004002 DVADD
101460 000020 VsSUB 105460 004022 DVSUB
101460 000040 VMPY 105460 004042 DVMPY
101460 000060 VDIV 105460 004062 DvDI V
Calling sequence:
CALL subr (v1, incrl, v2, incr2, v3, incr3, #elenents)

These routines are each nine-word instructions:

word 1 = first word of opcode
word 2 = second word of opcode
word 3 = address of array, vl
word 4 = address of increnent, incrl
word 5 = address of array, v2
word 6 = address of increnent, i ncr2
word 7 = address of array, v3
word 8 = address of increnent, incr3
word 9 = address of no. of elements, #elenents
VECTOR-SCALAR ARl THVETI C ROUTI NES
SI NGLE DOUBLE
TWO-WORD OPCODE PRECI SION TWO-WORD OPCCODE PRECI SI ON
ROUTI NE ROUTI NE
101460 000400 VSAD 105460 004402 DVSAD
101460 000420 VSSB 105460 004422 DVSSB
101460 000440 VSWY 105460 004442 DVSMY
101460 000460 VSDV 105460 004462 DVSDV
Calling sequence:
CALL subr (scalar, v1, incrl, v2, incr2, #elenents)

These routines are each eight-word instructions:

wor d
wor d
wor d
wor d
wor d
wor d
wor d
wor d

oO~NO O WN -

first word of opcode
second word of opcode
address of scal ar,

address of array,

address of increnent,
address of array,

address of increnent,
address of no. of elenments,

scal ar

vl

incrl

v2

i ncr2

#el enent s

Using VIS in Programs

9-51

ABSOLUTE VALUE ROUTI NE

SI NGLE DOUBLE
ONE-WORD OPCODE PRECI SI ON ONE-WORD OPCODE PRECI SI ON

ROUTI NE ROUTI NE
101462 VABS 105462 DVABS

Calling sequence:
CALL subr (v1, incrl, v2, incr2, #elenents)

These routines are each seven-word instructions:

word 1 = opcode
word 2 = address of next instruction
word 3 = address of array, vl
word 4 = address of increment, incrl
word 5 = address of array, v2
word 6 = address of increment, incr2
word 7 = address of no. of elenents, #elenents
SUM ROUTI NES
SI NGLE DOUBLE
ONE-WORD OPCODE PRECI SI ON ONE-WORD OPCODE PRECI SI ON
ROUTI NE ROUTI NE
101463 VSUM 105463 DVSUM
101464 VNRM 105464 DVNRM

Calling sequence:
CALL subr (scalar, vl1, incrl, #elenents)

These routines are each six-word instructions:

word 1 = opcode

word 2 = address of next instruction

word 3 = address of scalar, scal ar
word 4 = address of array, vl

word 5 = address of increnent, incrl
word 6 = address of no. of elenents, #elements

9-52 Using VIS in Programs

DOT PRODUCT ROUTI NE

SI NGLE SI NGLE
ONE-WORD OPCODE = PRECI SI ON ONE-WORD OPCODE = PRECI SI ON

ROUTI NE ROUTI NE
101465 VDOT 105465 DvDOT

Calling sequence:
CALL subr (scalar, v1, incrl, v2, incr2, #elenments)

These routines are each eight-word instructions:

word 1 = opcode
word 2 = address of next instruction
word 3 = address of scal ar, scal ar
word 4 = address of array, vl
word 5 = address of increment, incrl
word 6 = address of array, v2
word 7 = address of increment, incr2
word 8 = address of no. of elenents, #elenents
Pl VOT ROUTI NE
SI NGLE SI NGLE
ONE-WORD OPCODE PRECI SI ON ONE-WORD OPCODE PRECI SI ON
ROUTI NE ROUTI NE
101461 VPI V 105461 DVPI V

Calling sequence:
CALL subr (scalar, vl1, incrl, v2, incr2, v3, incr3, #elenents)

These routines are each ten-word instructions:

word 1 = opcode

word 2 = address of next instruction

word 3 = address of scal ar, scal ar
word 4 = address of array, vl

word 5 = address of increment, incrl
word 6 = address of array, v2

word 7 = address of increment, i ncr2
word 8 = address of array, v3

word 9 = address of increment, incr3
word 10 = address of no. of elenents, #elenents

Using VIS in Programs

9-53

MAX/ M N ROUTI NES

SI NGLE SI NGLE
ONE-WORD OPCCODE PRECI SION ONE-WORD OPCODE PRECI SI ON
ROUTI NE ROUTI NE
101466 VIMAX 105466 DVMAX
101467 VMVAB 105467 DVMAB
101470 VM N 105470 DVM N
101471 VM B 105471 DVM B
Calling sequence:
CALL subr (scalar, vl1, incrl, #elenents)
These routines are each six-word instructions:
word 1 = opcode
word 2 = address of next instruction
word 3 = address of integer scalar, scalar
word 4 = address of array, vl
word 5 = address of increnent, incrl
word 6 = address of no. of elements, #elenents
MOVE ROUTI NES
SI NGLE SI NGLE
ONE-WORD OPCODE PRECI SION ONE-WORD OPCODE PRECI SI ON
ROUTI NE ROUTI NE
101472 VMOV 105472 DVABS
101473 VSWP 105473 DVSWP
Calling sequence:
CALL subr (v1, incrl, v2, incr2, #elenents)

These routines are each seven-word instructions:

9-54

wor d
wor d
wor d
wor d
wor d
wor d
wor d

NoO o~ WNPE

opcode
addr ess
addr ess
addr ess
addr ess
addr ess
addr ess

of next instruction

of array,

of increnent,

of array,

of increnent,

of no. of elenents,

Using VIS in Programs

vl

incrl

v2

i ncr2

#el enent s

Firmware Interface Routines, .VSRP and .VDRP

.VSRP and .VDRP are firmware interface routines included in the VIS Firmware Interface

Library. These routines install the two-word opcodes for FORTRAN programs at run time. (See

the previous section for opcodes.) They are used only on an F-Series computer. VIS on an
A-Series computer does not have two-word opcodes.

The following assembly language routine .VSRP interfaces between FORTRAN programs and the

following single-precision operations:

VADD VSUB VMPY VDIV
VSAD VSSB VSMY VSDV

by replacing the sequence

JSB VADD with 101460
DEF *+8 000000

and so forth for the other operations.

ASMB, L
HED ".VSRP" — RPL’ING OF: VADD VSUB VMPY VDIV
* VSAD VSSB VSMY VSDV
NAM . VSRP, 7 12824-16001 REV. 1926 790403

EXT . VECT
ENT VADD, VSUB, VWPY, VDI V, VSAD, VSSB, VSMY, VSDV

EQU 0
EQU 1

. VSRP REPLACES CALLS TO VADD...VSDV W TH THE APPROPRI ATE
TWO-WORD OPCODE. |F THE MAIN OPCODE |S NOT RPL'D, IT
FAKES A JSB | NSTEAD OF REPLACI NG THE ORI G NAL JSB.

<>(->(->(->(->(-m>>(-

NCP ADDI TI ON
JSB COM
CCT 000000

VSUB NOP SUBTRACTI ON
JSB COM
OCT 000020

VIVPY NOP MULTI PLI CATI ON
JSB COM
OCT 000040

VDIV NOP DI VI SI ON
JSB COM
CCT 000060

VSAD NOP VECTOR-SCALAR ADDI TI ON

JSB COM
OCT 000400

Using VIS in Programs

9-55

VSSB

VSMY

VSDV

SOFT

OPCCOD

9-56

NCP
JSB

LDB
STA
LDA
SSA,
JwP
ADB
STA
JwP

STB
I NA
JwP

DEF . VECT+0

END

Ccom
000420

Ccom
000440

Ccom
000460

CoM |
Ccom

=D-2
B, |

B, |
OPCCOD
RSS
SOFT
=D-1
B, |

B, |

Al

Al

VECTOR-SCALAR SUBTRACTI ON

VECTOR-SCALAR MULTI PLI CATI ON

VECTOR-SCALAR DI VI SI ON

A = SUB-OPCODE.
GET ADDRESS + 1 OF ORI G NAL JSB.

OVERLAY ORI GNAL RTN PTR W TH SUB-OPCODE.
A = MAIN OPCODE.

SOFTWARE ?

YES, SPECI AL CASE.

NO. OVERLAY ORI G NAL JSB W TH MAI N OPCODE.

GO EXECUTE THE OPCODE.
FAKE A JSB TO THE SOFTWARE. FI RST, RTN ADDR

THEN,
THE ENTRY.

Using VIS in Programs

The following assembly language routine .VDRP interfaces between FORTRAN programs and the

following double-precision operations:

DVADD DVSUB DVMPY DVDIV
DVSAD DVSSB DVSMY DVSDV
by replacing the sequence
JSB DVADD with 105460
DEF *+8 004002
and so forth for the other operations.
ASMB, L
HED ".VDRP" — RPL’ING OF: DVADD DVSUB DVSMWY DVSDV .
NAM . VDRP, 7 12824-16001 REV. 1926 790403
*
EXT . DVCT
ENT DVADD, DVSUB, DVIVPY, DVDI V, DVSAD, DVSSB, DVSMY, DVSDV
*
A EQU 0
B EQU 1
*
* . VDRP REPLACES CALLS TO DVADD. .. DVSDV W TH THE APPROPRI ATE
* TWO-WORD OPCODE. | F THE MAIN OPCODE IS NOT RPL’' D, | T FAKES
* A JSB | NSTEAD OF REPLACI NG THE ORI G NAL JSB.
*
DVADD NOP ADDI TI ON
JSB COM
OCT 004002
*
DVSUB NOP SUBTRACTI ON
JSB COM
OCT 004022
*
DVIVPY NOP MULTI PLI CATI ON
JSB COM
OCT 004042
*
DVDI V NOP Dl VI SI ON
JSB COM
OCT 004062
*
DVSAD NOP VECTOR-SCALAR ADDI TI ON
JSB COM
OCT 004402
*
DVSSB NOP VECTOR-SCALAR SUBTRACTI ON
JSB COM
OCT 004422
*
DVSMY NOP VECTOR-SCALAR MULTI PLI CATI ON
JSB COM
OCT 004442

Using VIS in Programs 9-57

DvSDv

SOFT

OPCCOD

9-58

NCP
JSB
CCT

NCP
LDA
LDB
ADB
LDB
STA
LDA
SSA
JwP

STA
JwP

STB
I NA
JwP

DEF
END

com
004462

CoM |
com
=D-2
B, |
B, |
OPCOD
RSS
SOFT
=D-1
B, |
B, |

Al
Al

. DVCT+0

VECTOR-SCALAR DI VI SI ON

A = SUB-OPCODE.
GET ADDRESS + 1 OF ORI G NAL JSB.

OVERLAY ORI G NAL RTN PTR W TH SUB-CPCCODE.
A = MAIN OPCODE.

SOFTWARE ?

YES, SPECI AL CASE.

NO. OVERLAY ORI G NAL JSB W TH MAI N OPCODE.

GO EXECUTE THE OPCODE.
FAKE A JSB TO THE SOFTWARE. FI RST, RTN ADDR.

THEN,
THE ENTRY.

Using VIS in Programs

Adding Your Own EMA Routines

You may create your own routines involving non-EMA arrays either in software or microcode. To
extend your routines to include EMA arrays, you may use the VIS firmware interface routine
.WCOM. .WCOM is included in the Firmware Interface Library. This program calls the
non-EMA VIS routine using the EMA arrays. Note that WCOM can only be used with three
arrays or less.

The calling sequence for your VIS program must be in the assembly language form:

JSB subr subr is your non-EMA VIS routine
DEF return address = current address +2+i +2*]
DEF m sc. paraneterl

DEF m sc. paraneteri "i” msc. paraneters
DEF v1 "j” arrays in EVA
DEF incrl with increments

DEF vj

DEF incrj

DEF #el enents

which can be generated from FORTRAN with the following call:

CALL subr (misc.1,...,msc.i,vl,incrl,...,vj,incrj, #elenents)

A maximum of 16 parameters (any combination) can be in the parameter list.

All the parameters have the same definitions as stated in Chapter 8, which describes the general
calling sequence. Therefore, when creating EMA routines, only the arrays can be in EMA and all
other arguments must be in non-EMA. The EMA routine calls .WCOM, which interfaces between
the EMA and the non-EMA routine and has the following form:

ASMB, L

NAM narne, 7 name i s the EMA routine

ENT nane

EXT subr, . WCOM subr is the equival ent non—-EMA routine
name NOP

JSB . WCOM .MWCOM i s the interface routine

DEF subr + O + 0 guarantees a direct address

BYT i,] i=# of msc. paraneters,j= #arrays

ABS (1024/ #words per elenent)-1 + bit 13

END

Using VIS in Programs 9-59

When bit 13 = 0:
After calling “subr”, .WCOM returns directly to the program that called “name”. See the
integer vector add example.

When bit 13 = 1:
After each call to “subr”, WCOM calls the subroutine whose entry point must follow the ABS
instruction in “name”. The form of this call is:

JSB <ABS + 1>
DEF <first parameter DEF in "subr” call>
DEC <0 if last call; -1 if not last call>

See the integer vector sum example.
Example 1: Integer Vector Add Instruction Example
NON-EMA VIS ROUTINE:

Generate a VIS integer add routine for non-EMA arrays. Add integer elements from two arrays
and place results into a third array.

SUBROUTI NE VI ADD (I,1X,J,JX K, KX, N)

OPERAND ARRAY I X
OPERAND ARRAY JX
RESULT ARRAY KX
NO. OF ELEMENTS TO ADD

I NCREMENT FOR
I NCREMENT FOR
I NCREMENT FOR

I
J
K

O0O0000
ZX&«—

INTEGER 1 (1), J(1), K(1)
1
1
1
L=1N
) = 1(1A) + J(JA
1A + X
JA + JIX
KA + KX
10 CONTI NUE
RETURN
END

355>

K(

£

5>
Il

Subroutine WIADD is the EMA routine equivalent to VIADD. It has the same calling sequence
as VIADD except that I, J, and K must be EMA arrays.

ASMB, L
NAM W ADD, 7 PROGRAM TYPE = 7
ENT W ADD
EXT VI ADD, . WCOM EXTERNAL ROUTI NES

W ADD NCP EMA VIS ROUTI NE FOR | NTEGER ADD
JSB . WCOM CALL EMA | NTERFACE ROUTI NE
DEF VI ADD+0
BYT O, 3 0 M SC. PARAMETERS, 3 ARRAYS
ABS 1023+0 (1024/1 WORD PER ELEMENT)-1 + O
END

Each integer array element is one word. Bit 13 is not set, so return from .WCOM normally.

9-60 Using VIS in Programs

Example 2:

Integer Vector Sum Instruction Example

NON-EMA VIS ROUTINE:

Generate a VIS integer sum routine for non-EMA arrays that calculates the sum of integer

elements.

O0O000

10

SUBROUTI NE VI SUM (1SUM I, INCR N)

| SUM = | NTEGER SUM

| = | NTEGER ARRAY I NCR = | NCREMENT FOR |
N = NO OF ELEMENTS TO ADD

| NTEGER | SUM 1 (1)

A =

| SUM =

DO10 L = 1,N
ISUM = | SUM + | (I A)
IA = IA + INCR
CONTI NUE

RETURN

END

Subroutine WISUM is the EMA routine equivalent to VISUM. WISUM has the same calling
sequence except that Array I must be in EMA.

ASMB, L

W SUM

EACH

SUM

NAM W SUM 7 PROGRAM TYPE = 7
ENT W SUM
EXT VI SUM . WCOM EXTERNAL ROUTI NES
EQU 0 A REG STER
NCP EMA VIS ROUTI NE FOR | NTEGER SUM
JSB . WCOM CALL EMA | NTERFACE ROUTI NE
DEF VI SUM+0
BYT 1,1 1 M SC. PARAMETER, 1 ARRAY
ABS 1023+20000B (1024/1 WORD PER ELEMENT)-1 + BIT 13 SET
NCP ENTRY AFTER EACH . WCOM CALL TO VI SuM
DLD EACH, | A = ADDR OF PARAMETER LI ST
B = LAST TI ME FLAG
STB LAST SAVE LAST Tl ME FLAG
| SZ EACH
| SZ EACH
LDA A | A = ADDR OF PARAMETER " | SUM
LDB A | B = SUM FROM CURRENT VI SUM CALL
ADB SUM B + SUM OF PREVI QUS CALLS
STB SUM = NEW TOTAL SuM
| SZ LAST SKIP I'F NOT LAST TI ME
RSS
JWVP EACH, | NOT LAST TIME, JUST EXIT
STB 0, | SET | SUM = TOTAL SUM
CLA SET RUNNI NG SUM = 0 FOR NEXT TI ME
STA SUM
JWVP EACH, |
NCP RUNNI NG SUM

Using VIS in Programs

9-61

LAST NOP

*

-1 IF NOT' LAST TI ME
0 IF LAST TI ME
END

.WCOM calls the non-EMA routine, VISUM, repeatedly to obtain the sum of each group of EMA
array elements. Because bit 13 is set, ' WCOM returns to WISUM with the sum from the current
VISUM call and a last time flag. WISUM must then take that sum and add it to the running total,
SUM. If the last time flag, FLAG, is 0, then WISUM clears the running sum, stores the final sum
and exits. If FLAG is —1, then EACH returns to .WCOM to get the next sum.

Error Messages

The format for error messages displayed on LU 6 is:

name NN XX @ddress
where:
name = user program name
NN XX = error code
@ddress = address from within a VIS interface routine
ERROR CODE EXPLANATION ACTION
20 EM An array is specified with incorrect Check array declarations and
subscripts: negative subscripts, array subscripts.
negative dimensions, subscript <
lower bound.
21 EM MSEG in the $EMA directive is not Specify MSEG = (2")-1 where n
specified correctly. is the maximum number of EMA
arrays used in a VIS instruction.
22 VI The program is not an EMA program. Check $EMA directive for correctness.

9-62 UsingV

An EMA VIS routine is called instead
of a non-EMA VIS routine.

IS in Programs

Check VIS routine calls.

Decimal String Arithmetic Subroutines

The Hewlett-Packard Decimal String Arithmetic Routines (%DECAR) is a group of subroutines
that provide solutions to business applications for users of Hewlett-Packard FORTRAN, BASIC,
and Assembler Programming languages. Routines in the Decimal String Arithmetic Package
perform tasks such as:

* Arithmetic functions performed on decimal data strings. Strings can be as long as desired.
e Code conversion for data manipulation.

» Editing for the preparation of output in special formats including insertion of commas, decimal
points, dollar signs, minus signs, asterisks, and zero suppression.

Using the DCAR Routines

The Decimal String Arithmetic Routines are executed through a calling sequence from either
BASIC, FORTRAN, or Assembly Language programs. You select the desired routine by using the
routine name in the calling sequence. Parameters accompanying the subroutine call control
subroutine operation. Arithmetic operations performed by the routines are performed using
string variables. String variables are created by defining a one dimensional integer array. ASCII
characters are then loaded into the array (using the SPUT subroutine, for example). The number
of string characters stored in the array depends upon the format chosen by you for the data.

All arithmetic performed by arithmetic routines in the package is done using integer numbers
(without fractions). For example, rather than deal in dollars and cents when multiplying monetary
values, you’ll deal in cents only, as:

$350.56 = 35056 cents

Later the result of arithmetic operations can be output with leading dollar signs and decimal
points inserted by the SEDIT routine. A decimal number used in an arithmetic calculation using
one of the arithmetic routines can be as long as desired. You can process the entire string defined
in the array or any smaller substring within the array.

DCAR Data Formats

Data is stored in several different formats in integer arrays, depending upon the requirements of
the Decimal Arithmetic Routines and the user’s needs. Data can be stored in one format into
integer arrays, using the appropriate subroutine, and then converted into a different format using
the conversion routines supplied as part of the package.

Decimal String Arithmetic Subroutines 10-1

A2 Format

Character strings stored in A2 format are stored two characters per 16 bit computer word. The
characters are represented in 8-bit ASCII code; for example, to reserve space in memory for an
8-character string, the user must define an integer array four words in length. In FORTRAN,
arrays are defined by a DIMENSION statement:

DIMENSION IX(4)

An 8-character string is stored into the integer array, IX, in the following manner:

15 87 0 BITS
WORD 1 A B
WORD 2 C D
WORD 3 E F
WORD 4 G H

If a number is stored in A2 format (two ASCII digits per computer word), then the sign of the
number (indicating whether it is positive or negative) is indicated in the rightmost digit of the
string. Positive numbers are indicated by no sign at all. For example, the number 001968 is stored
in an integer array as follows:

15 8 7 0 BITS
WORD 1 0 0
WORD 2 1 9 INTEGER ARRAY
WORD 3 6 8

If a substring number has a negative sign, the rightmost character of the string must be
represented as an 11 zone character. For example, if the rightmost character of a negative number
is a 0, then the zero is changed to a minus sign to reflect the negative sign of the number. A
rightmost character equal to 1 is changed to a J, and so on. Table 10-1 below shows the zoned
character which must appear as the rightmost digit of a negative string, depending upon the value
of the rightmost digit of the string.

10-2 Decimal String Arithmetic Subroutines

Table 10-1. Zoned Characters for Negative Strings

If the sign of the substring is negative
and the rightmost digit is a:

The programmer must represent
the rightmost digit as a:

0

—

© 00 N o o » W N

T © v O 2 =2 X ¢

According to Table 10-1, the string —001968 is represented in an integer array as 00196Q:

WORD 1
WORD 2
WORD 3

15 8 7 0 BITS
0 0
1 INTEGER ARRAY
6 Q
15 8 7 0
00110110 01010001

ASCII CODE FOR 6 ASCII CODE FOR Q

Decimal String Arithmetic Subroutines

10-3

D2 Format

The D2 format is used to store numbers (and only numbers) in memory, and consists of two digits
per 16-bit computer word:

15 8 7 0 BITS

0000 DIGIT| 0000 DIGIT

1 WORD

Unlike A2 format, each number is represented in binary code (as opposed to ASCII code for A2),
the number is right justified in the appropriate half-word (eight bits), and unused bits are set to
zero. Table 10-2 shows the binary code for the digits 0 through 9.

Table 10-2. Binary Representation of Decimal Digits

Decimal Digit Binary Representation

0 00000000
1 00000001
00000010
00000011
00000100
00000101
00000110

N o o~ wWwN

00000111

For example, the number 001968 is stored in an integer array in D2 format as follows:

15 87 0 BITS
WORD 1 00000000 00000000
WORD 2 00000001 00001001 INTEGER ARRAY
WORD 3 0000‘0110 0000‘1000

/ /

BINARY CODE FOR 6 BINARY CODE FOR 8

10-4 Decimal String Arithmetic Subroutines

If a number is stored in D2 format, the sign of the number is indicated by the rightmost digit.
Positive numbers are indicated by no sign at all. For example, the positive number 001968 is

stored as shown in the previous figure. If a number has a negative sign, the negative number is
indicated in the rightmost digit. If the rightmost digit of a negative number is a 0, the user must
represent the rightmost digit as a —1. A rightmost character equal to 1 is changed to —2 to reflect
the negative sign, and so on. Table 10-3 shows the digit which must appear as the rightmost digit
of a negative number, depending upon the value of the rightmost digit of the number.

Table 10-3. Rightmost Digit for Negative Numbers

If the sign of the number is
negative and the rightmost
digit is a:

The rightmost digit of the
number is represented as:

-10

For example, the negative number —001968 is represented in an integer array as:

WORD 1
WORD 2
WORD 3

15 87 0
00000000 00000000
00000001 00001001
00000110 1111‘0111

/

BITS

INTEGER ARRAY

BINARY TWO’S COMPLEMENT
REPRESENTATION OF -9.

Decimal String Arithmetic Subroutines

10-5

D1 Format

D1 format is the same as D2 format except that one digit is stored in one computer word.
Negative numbers are represented in the same way as in D2 format (the rightmost digit of the
number is changed according to Table 10-3). For example, the number —001968 would be stored
in six elements (one word per element) of an integer array as follows:

WORD 1
WORD 2
WORD 3
WORD 4
WORD 5
WORD 6

10-6 Decimal String Arithmetic Subroutines

15

0

4

-9

/

1111111111110111

TWO’s COMPLEMENT BINARY FOR —9.

BITS

INTEGER ARRAY

String Utilities Routines

JSCOM, Substring Character Compare

JSCOM, a function subprogram that can be used in any arithmetic expression, compares two
variable length data substrings in A2 format according to the ASCII collating sequence and sets
the result to a negative number, zero, or a positive number.

JSCOM (jstr, jbeg, jend, kstr, kbeg, ierr)

where:

jstr

Jjbeg

jend

kstr

kbeg

lerr

Error:

names a one dimensional integer string array defined in a DIMENSION statement.
This array contains the first data field to be compared, in A2 format, two characters
per word.

is an integer constant, integer variable, or integer expression defining the position
of the first character in jstr to be compared (beginning of substring).

is an integer constant, integer variable, or integer expression defining the position
of the last character in jstr to be compared (end of substring). jend must be greater
than or equal to jbeg.

names a one dimensional integer string array defined in a dimension statement.
This array contains the second data field to be compared, in A2 format, two charac-
ters per word.

is an integer constant, integer variable, or integer expression defining the position
of the first character in kstr to be compared (beginning of substring).

is an integer variable used as an error indicator. The value of ierr following execu-
tion of JSCOM indicates whether an invalid character was encountered.

If any character in jstr or kstr to be compared is not a valid printable ASCII
character, ierr is set to the position of the current character in jstr, and JSCOM is
set to one; otherwise, ierr remains unchanged.

Decimal String Arithmetic Subroutines 10-7

Example:

Comments:

DI MENSI ON | TEMA (5), | TEMB (6)
| ERR=0
| F (JSCOM| TEMA, 1, 10, | TEMB, 3, | ERR)) 1, 2, 3

1 | TEMA substring is less than | TEMB substring

2 | TEMA substring is equal to | TEMB substring

3 If (IERR)5,4,5

4 | TEMA substring is greater than | TEMB substring
| TEMA 0001335689

| TEMB 000001335791

ITEMA, from positions 1 through 10, is compared character by character with
ITEMB, positions 3 through 12. If the ITEMA field is less than the ITEMB field,
control goes to statement 1.

If the ITEMA field is equal to the ITEMB field, control goes to statement 2. If the
ITEMA field is greater than the ITEMB field or if an illegal character was encoun-
tered, control goes to statement 3, where a test may be made for the error condi-
tion.

The collating sequence used in the comparison given in Appendix A is in ascending
order and constitutes the entire set of valid ASCII characters.

Corresponding characters in jstr and kstr are compared logically according to the
collating sequence given in Appendix A. Comparison starts with the jbeg and kbeg
positions and proceeds from left to right. The comparison is finished with the first
pair of characters that do not match, or when the character at jstr (jend) has been
compared.

JSCOM is set when the comparison terminates according to the following:

JSCOM Result of Comparison

— (minus) Jstr substring is less than kstr substring

0 (zero) Jjstr substring is equal to kstr substring

+ (plus) jstr substring is greater than kstr substring

Note

JSCOM does not set, test, and reset ierr.

10-8 Decimal String Arithmetic Subroutines

SFILL, Substring Fill

SFILL fills a specified area in a substring array with a specified character.

CALL SFILL (jstr, jbeg, jend, jcd)

where:

jstr

Jjbeg

jend

jed

Errors:

Example:

Before:

IPRIN

After:

IPRIN

Word | 1 2 3 4 5 6 7 8 9 10 [11 12 | 13

Data | 0 [1] 2 9|o|1]2|3|4a|5])6]|7[8]9f[0o]1[2]3]4]5
String 2|3 10 |11[12]|13]14[15]| 16| 17|18 [19]| 20 [21| 22| 23| 24| 25| 26
Word 1 2 3 4 5 6 7 8 9 10

Data | 0 1] 2[{3[4]|5]| 6]l <l *l*|*|*[5]6)|7]8]9

Sting| 1[2]3 5|6 8 | 9[10]|11]|12[13]|14|15[16 |17 |18 [19] 20

names a one dimensional integer string array containing the area of the substring to
be filled. The array must be defined in a DIMENSION statement.

is an integer constant, integer variable, or integer expression defining the position

of the first character in jstr to be filled (beginning of substring).

is an integer constant, integer variable, or integer expression defining the position
of the last character in jstr to be filled (end of substring). jend must be greater than

or equal to jbeg.

is an integer constant, integer variable, or integer expression containing the ASCII

code for the fill character.

None.

DI MENSI ON | PRIN (13)
JCB=000052B
CALL SFILL (IPRIN, 9, 15, JCD)

The array IPRIN is filled with asterisks from positions 9 through 15. To fill the array IPRIN with
blanks, the following code and parameters are specified.

| CD

000040B

CALL SFILL(IPRIN<1, 26, |CD)

Decimal String Arithmetic Subroutines

10-9

SGET, Substring Get

SGET gets a specified character from a substring.

CALL SGET (jstr, j, jhold)

where:
Jjstr names a one dimensional integer string array containing the area of the requested
character. The array must be defined in a DIMENSION statement.
j is an integer constant, integer variable, or integer expression defining the position
of the specified character in jstr.
jhold is an interger variable or integer expression containing the specified character, zero
filled, right justified (after SGET is executed).
Errors: None.
Comments: The character in position J of jstr is returned in jhold, right justified, zero filled.
Example: DI MENSI ON | PRI N(10)
CALL SCGET (I PRIN, 6, NCHAR)
Before:
Word 1 2 3 4 7 10
IPRIN Data | 0] 2|4a|6[8[3]5]|7]9|A|lBlC|DlE|[F[G[H|I|J]K
sting | 1] 2| 3[4[5]6]7 | 8[9f1o]tn]12]13]14]15[16]17[18]19[20
After:

IPRIN unchanged
NCHAR — 000063g (ASCII 3)

10-10 Decimal String Arithmetic Subroutines

SMOVE, Substring Move

SMOVE moves data from one string array to another

CALL SMOVE (jstr, jbeg, jend, kstr, kbeg)

where:

jstr

jbeg

jend

kstr

kbeg

Errors:

Comments:

names a one dimensional integer string array containing the data to be moved. The
array must be defined in a DIMENSION statement. The data may be any format
that is two characters per word.

is an integer constant, integer variable, or integer expression defining the position
of the first character to be moved (beginning of substring).

is an integer constant, integer variable, or integer expression defining the position
of the last character in jstr to be moved, (end of substring). jend must be greater
than or equal to jbeg.

names a one dimensional integer array, in any format that is two characters per
word, into which the data from js#r is moved. It must be defined in a DIMENSION
statement.

is an integer constant, integer variable, or integer expression defining the first char-
acter position in kstr to which data from jstr is moved (beginning of substring).

None.

Each character in jstr beginning with position jbeg and ending with jend is moved to
kstr beginning at position kbeg.

Decimal String Arithmetic Subroutines 10-11

Example: DI MENSI ON | CARD(80), | LI NE(120)

I = 2
J = 13
K = 10
CALL SMOVE(I CARD, I, J, | LI NE, K)
Before:
Word 1 2 3 4 5 6 7 8 9 10 11 12 13

ICARD Data |0 |1 |X|Y|z|A|lB|cCclofofo|s5|[7|s8|1[3|7|6|5[A]lA]OfO|7]3]|9

Sting | 1 |2 |3 |4|5]6]| 78| 9]10]11]12[13]14]15]16 [17]18 19|20 [21[22|23|24]25]26

Word 1 2 3 4 5 6 7 8 9 10 11 12 13
ILINE Data |A|A|A|A[A[A[A[A[A]IA]IA]AIAIAIAIA[AIAIAIA]LAIA] A[A]A[A
String | 1|2 |3 |4|Ale|7 8] 9|t0]11]12|13|14|15]16 |17 |18 [19]20|21|22]23]24]25]26
After:
ICARD No Change
Word 1 2 3 4 5 6 7 8 9 10 11 12 13

ILINE pata | A|A|A|A[A[A[A[A[Al1 x| Y]lZz]lAalBlclololols|7]lAlA[A]A[A
String | 1 10 |11 |12 |13 |14 |15 |16 |17]18 [19] 20 [21|22 [23 | 24 | 25 | 26

&)
w
£
>
o
~J
o
©

The field in the array ICARD beginning at character 2 and ending with character 13 as defined by
the variables I and J, is moved to ILINE starting with character 10 as defined by the variable K.

In all, 12 characters were moved.

10-12 Decimal String Arithmetic Subroutines

SPUT, Substring Put

SPUT puts a specified character in a specified position of a substring.

CALL SPUT (jstr, j, jhold)

where:
jstr names a one dimensional integer string array into which the requested character is
to be placed. The array must be defined in a dimension statement.
j is an integer constant, integer variable, or integer expression defining the position
in jstr where the specified character is to be placed.
jhold is an integer variable, or integer expression, containing the character to be trans-
ferred, right justified and zero filled.
Errors: None.

Comments: jhold remains unchanged after the transfer.

Example: DI MENSI ON | PRI N(5)
NCHAR=000060
CALL SPUT(1 PRI N, 7, NCHAR)

Before:
Word 1 2 3 4 5
IPRIN Data o[2|4]6|8|1]5]3]7]9
String 11231415167 |8] 9|10
NCHAR = 000060
After:
Word 1 2 3 4 5
IPRIN Data o2 4|6 8]1|0f3]7]9

Sting | 1|23]4|5|6]7 8| 9|10

NCHAR = 000060

Decimal String Arithmetic Subroutines 10-13

SZONE, Substring Zone

SZONE finds the zone punch of a character, sets a code to indicate what the zone is, and provides
a new zone.

CALL SZONE(jstr, jbeg, nez, noz)

where:

Jjstr names a one dimensional integer string array containing the character whose zone
is to be tested and modified. It must be defined in a DIMENSION statement. The
character must be in A2 format, two characters per word.

jbeg is an integer constant, integer variable, or integer expression defining the position
of the character in jstr to be tested and modified.

nez is an integer constant, integer variable, or integer expression specifying a code for
the new zone.

noz is an integer variable which is set to a code indicating the original zone of the char-
acter.

Errors: None.

Comments: First, the zone of the character jbeg is retrieved and noz is set as follows:

NOZ Original Zone Character
1 12-zone A-l
2 11-zone -J—-R
3 0-zone /,S-2
4 no zone +,0-9
more than 4 special

A new zone is then inserted as specified by nez as follows:

NEZ New Zone Character
1 12-zone A—I
2 11-zone —-,J—-R
3 0-zone /,S—Z2
4 no zone +,0-9
more than 4 special

No change is made to the zone when the character is a special character.

The minus sign or hyphen (- or an 11 zone punch) is not treated as a special character. It is
assumed to be a negative zero. The only modification that can be made to a — (minus, or negative
zero) is to change it to an unsigned zero with a no zero code. Zero (0) and + (plus) are treated as
no-zone characters; however, the only modification that can be made to a zero (0) or plus (+) is to
change it to a minus (—) upon request for an 11 zone punch. Plus is changed to zero upon request
for a no-zone punch. Upon request for any other zero punch, zero (0) and plus (+) remain
unchanged. These are the only exceptions among the special characters.

10-14 Decimal String Arithmetic Subroutines

Example: DI MENSI ON | CHAR(80)
CALL NZONE (I CHAR 8,1,1)

Before:
| CHAR(8) = R (11-9 punch)
=0

After:
:CIZ-|AR(8) =1 (12-9 punch)

Decimal String Arithmetic Subroutines 10-15

Table 10-4. SZONE Conversion

NOZz

T rrrrrrrrrr A AN AN AN AN NN ANODOOO OO OO TS T AT T T T T T O
LLCODOAQAWLOI—"DX 103Z000C~NDFEFD>TX>NO+ | mNOTOONOO®
T~ AN OTOOMNMNOOTANODOTOLOMNMOGOO T ANNDOTOLOMNMNODOOOO~ANMOSTOLONNOOWOOD
£
2 g
] g
po o ©
MH 3/STUVWXYZ/STUVWXYZ/STUVWXYZ0+_/STUVWXYme
oz o ®
[
[0
3 3
DY 15Z2000xHD¥ 153Z000x>HX¥Y 1353Z2000Cx | | | P¥X 152000
~—C OO ULOI - <O0O0OAQAUWLOI-—-<nO0OAQAWLOI—0+ | <oO0AQwWwdI-—
S
[s
0 58
S <CODOAOWLOI—-"OX 13Z00a0XE~NDFD>TX>NO+ | mAOIFTWOONDODOD 3
Og &g
n..nv]

Decimal String Arithmetic Subroutines

10-16

String Arithmetic Routines

SADD, Substring Decimal Add

SADD adds two character substrings of arbitrary length and stores the result in the second
substring.

CALL SADDjstr, jbeg, jend, kstr, kbeg, kend, ierr)

where:

Jjstr names a one dimensional integer string array containing the first character substr-
ing to be added. The contents of the array must be in A2 format, two characters
per word. jstr must be defined in a DIMENSION statement.

jbeg is an integer constant, integer variable or integer expression indicating the position
of the first character in jstr to be added (beginning of substring).

jend is an integer constant, integer variable or integer expression giving the position of
the last character in jstr to be added (end of substring). It must be greater than or
equal to jbeg.

kstr names a one dimensional integer string array containing the data to which the data
in jstr is added. It will contain the result following addition in A2 format, two char-
acters per word. kstr is defined in a DIMENSION statement.

kbeg is an integer constant, integer variable or integer expression giving the position of
the first character in kstr (beginning of substring).

kend is an integer constant, integer variable, or integer expression giving the position of
the last character in kstr (end of substring). It must be greater than or equal to
kbeg.

ierr is an integer variable used as an error indicator. The value ierr following execution
of SADD indicates whether arithmetic overflow occurred; if an overflow occurred,
ierr is set equal to kend. The programmer must initialize, test and reset ierr.

Errors: ierr is set when:

e There was arithmetic overflow; if kstr is not large enough to contain the
sum, the kstr field is filled with 9s and ierr is made equal to kend.

» jstris longer than kstr, neither field is altered, but ierr is set equal to kend.

» Either substring of jstr and/or kstr does not contain all ASCII numeric
characters (except the rightmost character), or ierr is set equal to —1.

Comments: jstr and kstr can be any length up to the maximum space available; kstr must,
however, be greater than jstr in order to avoid an overflow condition.

The characters in jstr and kstr must all be ASCII numeric, 0—9, except the rightmost character,
JLAST or KLAST, which may be an 11 zone character, indicating a negative digit.

Decimal String Arithmetic Subroutines 10-17

Note SADD does not initialize, test, or reset ierr.

Example: DI MENSI ON | FLDA(8), | FLDB(10)
IE = 0
CALL SADD(IFLDA 1, 15, | FLDB, 1, 20, | E)

Before:
Word 1 2 3 4 5 6 7 8
IFLDA Data |A|A|A|A|A|3| 7|1 |4|1|o|of2]|5]1]6
String 12345]|6]|7]|8]| 9|10]|11]|12|13[14[15] 16
Word 1 2 3 4 5 6 7 8 9 10
IFLDB Data A|A[A|l1]|5]|3|4a]l6]|7]|8]lola|s5]/oflolo]|ols|[7]s6
String 112|3|4|5]|6]| 7|8 | 9|10|11|12|13[14[15|16]|17[18[19]20
IE = 0(zero)
After:

IFLDA No Change

Word 1 2 | 8 4 5 6 7 8 9 | 10
IFLDB Data oflofo|1]|5|3l4|l6|7]9|3|0|6[4|1]1]0]|1]2]|7

String 1l2|3|4|5|6]7[8] 9]10]11]|12]13]|14[15]16 [17[18[1920

IE = 0(zero)

The data field IFLDA is added to IFLDB and the result placed in IFLDB. The error indicator IE
is unchanged since no overflow occurred.

Note At the conclusion of SADD, the rightmost character in kstr, kend, carries the
sign of the sum. Thus, if the sum is negative, the rightmost character will be an
11 zone character. However, if the sum is zero, the rightmost character may be
either 0 (zero) or — (minus sign).

10-18 Decimal String Arithmetic Subroutines

SDIV, Substring Decimal Division

SDIV divides arbitrary length substring kstr by another such substring jstr, placing the quotient and
the remainder in kstr.

CALL SDIV (jstr, jbeg, jend, kstr, kbeg, kend, ierr)

where:

Jjstr

Jjbeg

jend

kstr

kbeg

kend

lerr

Errors:

Comments:

names a one dimensional integer string array used as the divisor. It must contain
data in A2 format, two characters per word. jstr must be defined in a DIMENSION
statement.

is an integer constant, integer variable, or integer expression giving the position of
the first digit of jstr (beginning of substring).

is an integer consant, integer variable, or integer expression giving the position of
the last digit of jstr (end of substring). jend must be greater than or equal to jbeg.

names a one dimensional integer string array used as the dividend. It will contain
the quotient and the remainder, extended to the left, following division. The data
is in A2 format, two digits per word.

is an integer constant, integer variable, or integer expression giving the position of
the first digit of kstr (beginning of substring).

is an integer constant, integer variable, or integer expression giving the position of
the last digit of kstr (end of substring). It must be greater than or equal to kbeg.

is an integer variable used as an error indicator. After SDIV is executed, it indi-
cates whether division by zero was attempted, or whether the field kstr was too
small to contain quotient and remainder.

lerr is set in one of four circumstances:

1. If division by zero was attempted, ierr is set to kend.

2. If either substring of jstr and/or kstr does not contain all ASCII
numerics, except the rightmost character, ierr is set to —1.

3. [If insufficient space was allocated to extend kstr to the left, ierr is set
to kend.

4. If the length of the divisor is greater than the length of the dividend,
ierr is set to kend.

In all above cases, neither kstr nor jstr is modified.

Jstr and kstr can be any length up to the maximum space available. Sufficient space
must be allocated to kstr to allow for its extension. At least (kend-kbeg+1) +
2(jend-jbeg+1) positions must be provided between the beginning of kst and the
first dividend position kbeg. For instance, if jend =6, jbeg=2 (the divisor has 5
positions) and the dividend has 7 positions, then kbeg must be at least 18 positions
from the beginning of kstr.

Decimal String Arithmetic Subroutines 10-19

Note SDIV does not initialize, test, or reset the error indicator, ierr.

The quotient and the remainder will both be located in the extended kstr field ac-
cording to the diagram below:

KSTR

A is the position:
K'is the position:
B is the position:
C is the position:
D is the position:

Quotient Remainder

A KB C D

KBEG-(JEND-JBEG+1)
KBEG
KEND-(JEND-JBEG+1)
KEND-(JEND-JBEG)
KEND

The SDIV arithmetic is decimal arithmetic using whole numbers only, with no deci-
mal point alignment. Therefore, the numbers should have an assumed decimal
point following the rightmost digit.

See also “Short-String Routine” in the SMPY description.

Example: Divide 7943074 by —42135

DI MENSI ON | DI VR(3), | DVD(12)

| E=0

CALL SDIV(ID VR, 2,6,1DVD, 18, 24, | E)

10-20 Decimal String Arithmetic Subroutines

Before:

Word 1 2 3
IDIVR Data Al4|l2]1]3[N
String 11213|4]|5]6 Note: 11-—zone 5, (N) stands
for —5 in A2 formats.
Word 1 2 3 4 5 6 7 8 9 10 11 12
IDVD Data A|lB|C|D|E|F|G|H|]I|J|K|L|[M|N|JO|O]JO|7]|]9]|4|3|0|7]4
String 1|l2|3|4|A]|6|7 |8 9[10]|11|12]|13]|14|15]|16 |17 |18 |19|20|21]|22| 23] 24

After:

IDIVR No Change

Word 1 2 3 4 5 6 7 8 9 10 11 12
IDVD Data oJlofofojo|oflofo] o] ofofoJo|JoJofof1|8f[Qa]2|[1]6]|9]4
String 112|383 4|A|6[7|8]910[11[12]|13]|14[15[16|17[18]19]|20]|21] 22|23 24

T ——— —————— " —

Quotient Remainder
Answer: —188, remainder 21694

The numeric field IDVR was divided by the numeric field IDIVD with the quotient and remainder
placed in IDVD. The field IDVD has been extended 17 places to the left and filled with zeros.
The remainder is in the 5 low order positions of IDVD, the quotient in positions 13 through 19.

Note See SMPY for a routine that enables you to provide a shorter string for the divi-
dend.

Decimal String Arithmetic Subroutines 10-21

SMPY, Substring Decimal Multiply

SMPY multiplies two character data substrings and places the result in the second substring. The
substrings may be any length.

CALL SMPY (jstr, jbeg, jend, kstr, kbeg, kend, ierr)

where:

Jjstr

Jjbeg

jend

kstr

kbeg

kend

lerr

Errors:

Comments:

Example:

names a one dimensional integer string array containing the data to be multiplied.
The array must be defined in a DIMENSION statement. The data is in A2 format,
two characters per word.

is an integer constant, integer variable, or integer expression defining the position
of the first character in jstr to be multiplied (beginning of substring).

is an integer constant, integer variable, or integer expression defining the position
of the last character in jstr to be multiplied (end of substring). jend must be greater
than or equal to jbeg.

names a one dimensional integer string array containing the multiplicand. After
multiplication, it will contain the product extended to the left. The data, before
and after multiplication, is in A2 format, two characters per word.

is an integer constant, integer variable, or integer expression defining the position
of the first character in the multiplicand (beginning of substring).

is an integer constant, integer variable, or integer expression defining the position
of the last character in both the multiplicand and the product (end of substring).
kend must be greater than or equal to kbeg.

is an integer variable used as an error indicator. It is set to kend when kstr is not
large enough to contain the product.

If kstr does not have enough positions to allow for its extension to the left in order
to receive the product, ierr is set equal to kend. The subroutine terminates at that
point. If jstr or kstr contain a non-numeric or non-blank character in other than the
last position, ierr is set to —1. In either case, neither jstr nor kstr is modified. The
user is responsible for testing and resetting ierr.

The data is converted from ASCII to numeric within SMPY.

Jstr and kstr can be any length up to the maximum space available. Sufficient space
must be allocated to kstr to allow for its extension. At least (kend-kbeg+1) +
2(jend-kbeg+1 positions must be provided between the beginning of kstr and the
first multiplicand position kbeg. That is, if jstr has five positions (for example,
jend=6,jbeg=2) and the multiplicand has 7 positions, then kbeg must be at least 18
positions from the beginning of kstr; kbeg would be greater than or equal to 18.

The SMPY arithmetic is decimal arithmetic using whole numbers only.

The product of SMPY is located in kstr beginning at position kbeg and ending at
position kend.

DI MENSI ON MULTR(3) 0, MLCNDX 13)
IE =0
CALL SMPY(MULTR 2, 6, MLCND, 18, 24, | E)

10-22 Decimal String Arithmetic Subroutines

Before:

Word 1
MULTR pata | ©
String | 1
Word [1 5 6 7 8 9 | 10 | 11 12 | 13
MLCND Data |V G|H| 1'|J|[K|L|[R|Ss|o|ls]|6]|5]|8|3|[2]|A]B
String | 1 9|10 |11]|12[13|14|15]|16 [17 [18 19| 20| 21|22|23 | 24| 25| 26
IE = 0
After:
MULTR No Change
Word 1 6 7 8 9 10 11 12 13
MLCND Data |0 | O olo| o|lo|of1|[3]|3|3|3|8|1|[2|8]0|A]|B
String | 1 | 2 10| 11|12 [13]14]|15]16 [17[18]19| 20| 21|22 |23 | 24| 25| 26
IE = 0

The numeric data fields MULTR and MLCND are multiplied and the result placed in MLCND.
The field MLCND has been extended to the left 17 characters and filled with zeros. IE has not
been changed. The result starts the number of positions in MULTR to the left of kbeg, but the
field was extended and zero filled 2*(jend-jbeg+1) + (kend-kbeg+1) positions.

Decimal String Arithmetic Subroutines

10-23

Short-String Routine

If you do not wish to provide such a long string of kstr, you can use the following instructions with
SMPY:

MAI NLI NE

N1=2+(JEND- JBEG+1) +(KEND- KBEG+1) +1

N2=N1+(KEND- KBEG)

CALL SMOVE(LSTR, KBEG, KEND, STEMP, N1)

CALL SMPY(JSTR, JBEG, JEND, KTEMP, NI, N2, | ERR)
N3=N1—(JEND- JBEG+1)

NA=KBEG- (JEND- JBEG+1)

CALL SMOVE (KTEMP, N3, N2, KSTR, N4)

kstr must be dimensioned, and at least (jend-jbeg+1) positions must be provided between the
beginning of kstr and the first multiplicand position, kbeg, to allow for the extension of the product.
That is, if jstr has 5 positions (for example, jend =6, jbeg=2), and the multiplicand has 7 positions,
then kbeg must be greater than or equal to 6. KTEMP is a temporary buffer to which the
multiplicand is moved to allow for its expansion during SMPY. It must be dimensioned by the
user, and must consist of at least 2 (kend-kbeg+1) + 2(jend-jbeg+1) positions.

Note The short-string routine also can be used with SDIV.

10-24 Decimal String Arithmetic Subroutines

Example:

Before:

MULTR

MLCND

After:

MLCND

DI MENSI ON MULTR(3), MLCNDX 6) , MTEMP(12)

| E=0
JBEG=2
JEND=6
KBEG=6
KEND=12

N1=2* (JEND- JBEG#+1) +(KEND- KBEG#+1) +1

N2=N1+(KEND- KBEG)

CALL SMOVE(MLCND, KBEG, KEND, MTEMP, NL1)
CALL SMPY(MULTR, JBEG, JEND, MTEMP, N1, N2, | E)

N3=N1—(JEND- JBEG+1)
NA=KBEG- (JEND- JBEG+1)

CALL SMOVE(MTEMP, N3, N2, MLCND, N4)

Word 1 2 3
Data 0|]0|1]5
String 1123 4| 5|6

Decimal String Arithmetic Subroutines

Word 1 2 3 5 6

Data J| K| L|R|s]|oO 8|32

String 1| 21 3| 4|A| 6 1011 12
0

Word 1 2 3 5 6

Data 0]0]1]13]3]83 112]18]0

String 112 |3|4|A |6 9 [10] 11] 12
0

10-25

SSUB, Substring Subtract

SSUB subtracts one substring from a second substring and places the result in the second
substring. Both substrings may be of any length.

CALL SSUB(jstr, jbeg, jend, kstr, kbeg, kend, ierr)

where:

jstr

Jjbeg

jend

kstr

kbeg

kend

lerr

Errors:

Comments:

names a one dimensional integer string that is to be subtracted from a second ar-
ray. The array must be defined in a DIMENSION statement. The contents of the
array must be in A2 format, two characters per word.

is an integer constant, integer variable, or integer expression defining the position
of the first character to be subtracted (beginning of substring).

is an integer constant, integer variable, or integer expression defining the position
of the last character to be subtracted (end of substring). jend must be greater than
or equal to jbeg.

names a one-dimensional integer string array containing the data from which the
data in jstr is subtracted. It will contain the result following subtraction. The array
must be defined in a DIMENSION statement.

is an integer constant, integer variable, or integer expression defining the position
of the first character in kstr (beginning of substring).

is an integer constant, integer variable, or integer expression defining the position
of the last character in kstr (end of substring). kend must be greater than or equal
to kbeg.

is an integer variable used as an error indicator. Upon completion of SSUB, ierr
indicates whether arithmetic overflow has occurred.

If there was arithmetic overflow (kstr was not large enough to contain the result),
ierr is set to kend, kstr is filled with 9s.

If jstr is longer than kstr, neither field is altered, but ierr is set equal to kend and
SSUB terminates.

If either data field, except jend and kend, is not numeric ASCII, ierr is set to —1 and
SSUB terminates.

See comments for SADD.

10-26 Decimal String Arithmetic Subroutines

Example: DI MENSI ON | FLDA(8), | FLDD(10)
IE = 0
CALL SSUB(IFLDA, 1, 8, | FLDB, 1, 16, | E)

Before:
Word 1 2 3 4 5 6 7 8
IFLDA Data 1|5|6|4]|3|0o|5|5|D|D|D|(D|D|D|D|D
String 1|l2(3|4|5|6|7]8]9]|10]11|12|13]14|15]16
Word 1 2 3 4 5 6 7 8 9 10
IFLDB Data olofolo|7|2]|3|5|7|9]|8[3]|4|lo|l5]|0]|0]| 0f 00
String 1l2|3|4|Aa|l6|7]8]|9]|10]|11|12[13]|14|15]|16 |17 |18]|19]20
IE = 0
After:

IFLDA No Change

Word 1 2 | 3 4 5 6 7 8 9 | 10
IFLDB Data ofofojof7|l2|3|5|6|4[1]9]0]9|9|5|0|0|O0fO

String 1|23 |4|A|6|7]8

[(e]

10 | 11|12 [13]|14|15|16 [17 [18]19] 20

The decimal data field IFLDA is subtracted from the decimal data field IFLDB and the result
placed in IFLDB. Because IFLDA is positive, it is made negative and then added to IFLDB
producing the result.

The error indicator IE is unchanged since no overflow occurred.

Decimal String Arithmetic Subroutines 10-27

Output Editing Routine, SEDIT

SEDIT edits data in one substring array using an edit mask in a second substring array and places
the edited data in the second substring array.

CALL SEDI T(jstr, jbeg, jend, kstr, kbeg, kend)

where:

jstr names a one dimensional integer string array containing the data to be edited. The
array must be defined in a DIMENSION statement. The data to be edited, called
the source field, is in A2 format, two charactes per word.

jbeg is an integer constant, integer variable, or integer expression defining the position
of the first character of jstr to be edited (beginning of substring).

jend is an integer, integer variable, or integer expression defining the position of the last
character of jstr to be edited (end of substring). jend must be greater than or equal
to jbeg.

kstr names a one dimensional integer string array containing the edit mask and into
which the data is edited. The edit mask, called the mask field, is in A2 format, two
characters per word.

kbeg is an integer constant, integer variable, or integer expression defining the first posi-
tion of the mask field (beginning of substring).

kend is an integer constant, integer variable, or integer expression defining the last posi-

tion of the mask field (end of substring). It must be greater than kbeg.

Alphanumeric Editing

X (Alphanumeric Replacement Holder)

Alphanumeric edit masks are used to edit character substring and consists of Xs as replacement
holders and any other characters as insertion characters. Characters are placed in the edit mask
from right to left. Each replacement holder (X) in the edit mask is replaced in the display result
with a character from the substring. Each insertion character (anything other than X) in the edit
mask appears unmodified in the display result. If the end of the mask is reached before the end of
the character substring, the remaining characters in the elements are not displayed. If the end of
the character substring is reached first, the remainder of the display is replaced by asterisks. The
character substring must be defined in ASCII if using the alphanumeric edit mask.

Examples: Character Substring Edit Mask Edi ted Result
MRZ ? X=XX=X" M-NR-Z
MRZ 7 XXX NRZ
M\RZ " XX XX XX **[MN RZ

Numeric Editing

Numeric edit masks are used to edit ASCII numeric, 0—9. Numeric edit masks consist of
replacement holders, sign characters, and insertion characters.

10-28 Decimal String Arithmetic Subroutines

Replacement

9 (Numeric Replacement Holder)

Each 9 in the edit mask is replaced by a decimal digit in the corresponding position of the numeric
substring.

Z (Zero Suppression Replacement Holder)

The position of the Z in the edit mask is replaced by a decimal digit in the corresponding position
of the numeric substring. Zeros to the left of the first significant position in the substring are
replaced by blanks.

* (Asterisk Replacement Holder)

Asterisks rather than blanks are inserted to the left of the first significant decimal digit in the
substring.

$ (Dollar Sign Replacement Holder)

A dollar sign is inserted to the left of the first significant decimal digit in the substring, and is to

the left of the position that defined the zero suppression. Any zero in the remaining
non-significant positions are replaced by blanks.

Sign Characters

Cr (Credit)

These two characters are placed in the rightmost positions of the edit mask. If the decimal
substring is negative, the characters remain in the edited output. If the substring value is positive,
CR is replaced by two blanks. When CR is present in the edit mask, no data is edited into the last
two positions but only into the edit characters to the left.

— (Minus)

This character placed in the rightmost position of the edit mask is treated similarly to CR. It
remains if the substring value is negative; is replaced by a blank when the substring value is
positive. A minus elsewhere in the edit mask remains in that position in the edited output.

Insertion Characters

All other characters in the edit mask not defined above are insertion characters.

Decimal String Arithmetic Subroutines 10-29

Operation of SEDIT

The characters are placed in the edit mask right to left. Only the characters 9, *, and S are
replaced by decimal characters in the substring.

If the characters CR or a minus are in the rightmost position or positions, they are made blank for
a positive substring value and left unchanged for a negative substring value.

If all the substring characters have not been placed in the edit mask when the end of the edit mask
is reached, the entire edited output is filled with asterisks and editing terminates. Zero
suppression proceeds from left to right of the edit mask. Any of the edit mask characters: 9, Z, X,
(decimal point), or, (comma) is replaced by a blank unless the zero suppression character is an
asterisk, in which case it is replaced by an asterisk.

Rules Governing Creation of Edit Mask

There must be no more than one decimal point in a numeric edit mask. Zero suppression is used
when the edit mask contains a Z (zero), * (asterisk), or $ (dollar sign) and:

e A Z may not appear anywhere after a 9, *, or § which is not the first holder in the edit mask.

e An * may not appear anywhere after a 9, Z or $ which is not the first holder in the edit mask.

* A $ may not appear anywhere after a Z, 9, or *.

In editing a numeric data substring through a numeric edit mask, the digits that represent the
value of the substring are exchanged for the replacement holder. The decimal point remains in
the edited output where it was placed in the edit mask. If, however, zero suppression is also
requested, it is replaced by a blank if it is to the left of the last character to be suppressed.

Any insertion character appears unmodified in the display unless it is a decimal point or comma
with zero suppression.

Examples:

Substring Value

0059
1024

010555

01055N (-0l 0555)
01055N (-010555)
010555

15039250
139R (-1399)
044240474
214N(-2145)
24

24

1234

Edit Mask
"$$$, 9997
72727, 7277"

"$$, $5%$. 99CR’
" $$, $5%$. 99CR’
"$3, $$3$. 99-"
"$$, $$3$. 99-7
"8, $3%, $33%. 99CR”
”*’ ***. 99CR”
"999-99-9999"
"%, $3%. 99"
"999. 99"
"9,99.9"
XXX X!

10-30 Decimal String Arithmetic Subroutines

Edited Result
$059

1, 024

$105. 55
$105. 55CR
$105. 55—
$105. 55
$150, 392. 50
***13, 99CR
044-24-0474
$21. 45

000. 24
**%(Q, 24
1.23. 4

Errors
When the number of characters in the source field is greater than the number of characters in the
mask substring, the mask substring is filled with asterisks and editing terminates.

In numeric edits, if more than one decimal point is encountered, the mask substring will be filled
with stars from the place of the second decimal point to the leftmost position of the substring.

Each execution of SEDIT destroys the mask field by replacing it with the edited result. It is,
therefore, advisable to move the mask to the output area and perform the edit function in the
output area.

Internal Routines

SA2DE, Substring A2 Format to Decimal

SA2DE converts a field from A2 format to decimal format; A2 format is two characters per word;
decimal format is two digits per word.

CALL SA2DE (jstr, jbeg, jend, ierr)

Note This routine is not normally called by user programs. It is used by the variable
length decimal string arithmetic subroutines: SADD, SSUB, SMPY, and SDIV.

where:
Jjstr names the one dimensional integer string array in A2 format that is to be converted
to decimal. The array must be defined in a DIMENSION statement.
jbeg is an integer constant, integer variable, or integer expression defning the first char-
acter position in jstr to be converted (beginning of substring).
jend is an integer constant, integer variable, or integer expression defining the last char-
acter position in jstr to be converted (end of substring). jend must be greater than
or equal to jbeg.
ierr is an integer variable used as an error indicator. If all characters are valid, ierr is
unchanged; otherwise, it is set to the last invalid character found during conversion.
Errors: When an invalid character is found, the position of the character is placed in ierr.

(A nonnumeric or nonblank character is invalid; an 11 zone character representing
a sign in the jend position of jstr is valid.) If more than one invalid character is
found, ierr is set to the most recent position and processing continues.

Comments: Only the last invalid character is an indicator in ierr when conversion is complete.
Other invalid characters may have been found in preceding positions.

Blanks are converted to zeros.

Zone punches can be used to indicate conditions. These punches can be removed
with the SZONE routine as shown in the following example.

Decimal String Arithmetic Subroutines 10-31

Example: DI MENSI ON | NFL(10)

IE =

CALL SA2DE (I NVL,7,17,1E)

INFL is originally in A2 format. After execution of SA2DE, positions 7—17 of
INFL have been converted to decimal format (blanks are converted to zeros).
Since no invalid characters are found, IE is unchanged. The field to be converted

was originally:

bbbb012345J

and the field after conversion is:

00000123451

Example: In order to remove zone punches, use the following routine:

11
22

32

40
50

When ierr is greater than zero, control transfers to statement 32. Unless the zone is a special
character, it is removed with the SZONE routine and converted to decimal. If the character was a
special character (truly invalid), the program halts at statement 40. Otherwise, control goes to
statement 50 where the field is returned to A2 format. Control then returns to statement 11 where
the field is again converted to decimal in an attempt to find other invalid characters. This process
continues until no more errors are found or a truly invalid character is encountered. The error

MAI NLI NE

CALL SA2DE (JARY, JBEG JEND, | ERR)
| F (1ERR) 22, 22, 32
(CONTI NUE MAI NLI NE)

(ERROR ROUTI NE)

CALL SZONE (JARY, | ERR, 4, N1)

N =0

CALL SA2DE (JARY, | ERR, | ERR, N1)

| F (N1) 50, 50, 40

STOP 999

CALL SDEA2 (JARY, JBEG, JEND, | ERR)
IERR = 0

GO TO 11

indicator is not reset by this routine but must be reset by the programmer.

10-32 Decimal String Arithmetic Subroutines

SCARY, Substring D2 Decimal Carry

SCARY examines a specified D2 decimal substring for carries, resolves the carries in the next
higher substring, and saves any carry from the high order digit of the substring.

CALL SCARY (jstr, jbeg, jend, kout)

Note This routine normally is not called by a user program.

where:

Jjstr names a one dimensional integer string array which is interrogated for carries. It
must be defined in a DIMENSION statement.

jbeg is an integer constant, integer variable, or integer expression indicating the first dig-
it in jstr (beginning of substring).

jend is an integer constant, integer variable, or integer expression indicating the position
of the last digit in jstr (end of substring). jend is greater than or equal to jbeg.

kout identifies an integer variable used to hold any carry from the high order position of
jstr after execution of SCARY. If there is no carry, kout is set to zero.

Errors: None.

Comments: Generally, this routine is not called by a user program, since carries are resolved
within the arithmetic routines SADD, SSUB, SMPY, and SDIV. SADD and SSUB
call SCARY to resolve carries.

Example: DI MENSI ON JDI GT(10)

M= 17
CALL CARRY(JDIGT, 1,10, M

Decimal String Arithmetic Subroutines 10-33

Before:

Word 1 2 3 4 5 6 7 8 9 10

JDIGT Data ololzelelo7ls |1]l8l1[1|AIAJA[A[A]A]A]AIALA
String 1]12]3]4|5]|6]|7 10 | 11|12 13|14 15|16 |17 [18|19] 20

[(e]

After:

Word 1 2 3 4 5 6 7 8 9 10
JDIGT Data ol7l2]3]|3]|5|lo|2] 1|1 |AlA[A]|A][A|A[A]A[A[A

String 112 |3[4[A]|6]7]8 10 | 11|12 |13]|14|15|16 [17 [18]19] 20

[(e]

M = 0

As a result of multiple arithmetic operations, JDIGT originally has positions 3, 5, and 8 as shown
before execution of SCARY. Following execution of SCARY, a 1 has been borrowed from the 7th
position to resolve the —8 condition, a 3 was borrowed from the 4th position to resolve the
condition at position 5, and the 7 from 72 is now in position 2.

SDCAR, Substring D1 Decimal Carry

SDCAR examines a specified D1 decimal substring for carries, resolves the carries in the next
higher substring, and saves any carry from the high order digit of the substring.

CALL SDCAR (jstr, jbeg, jend, kout)

Note This routine normally is not called by a user program.
where:

Jjstr names a one dimensional integer string array in D1 decimal format (one digit per
word) which is interrogated for carries. It must be defined in a DIMENSION
statement.

jbeg is an integer constant, integer variable, or integer expression indicating the word

postion of the first digit to be carried in jstr (beginning of substring).

jend is an integer constant, integer variable, or integer expression indicating the word
position of the last digit to be carried in jstr (end of substring). jend is greater than
or equal to jbeg.

kout identifies an integer variable used to hold any carry from the high order position of
jstr after execution of SDCAR. If there is no carry, kout is set to zero.

10-34 Decimal String Arithmetic Subroutines

Errors: None.

Comments: Generally, this routine is not called by the user since carries are resolved within the
arithmetic routines SADD, SSUB, SMPY, and SDIV. SMPY and SDIV call
SDCAR to resolve carries in D1 format substrings.

Example: DI MENSI ON JDI GT(10)
M= 17
CALL SDCAR JDI GT(0,9, M

Before:
Word 1 2 3 4 5 6 7 8 9 10
JDIGT Data 0 0 72 6 27 5 1 8 1 1
String 12]3]a|s5|6]|7 8] 9li0f11]12]13]14]15[16]17]18]19]20
M = 17
After:
Word 1 2 3 4 5 6 7 8 9 10
JDIGT Data 0 7 2 3 3 5 0 2 1 1
String 12]s|4]s|e6]|7|s]o]tof11]12[13]14|15[16 |17 |18 [19]20
M = 0 (zero)

Decimal String Arithmetic Subroutines 10-35

SDEAZ2, Substring Decimal to A2 Format

SDEAZ2 converts a substring from D2 format to A2 format.

CALL SDEA2 (jstr, jbeg, jend, ierr)

Note

This routine normally is not called by user program. It is used by the variable
length decimal string arithmetic subroutines: SADD, SSUB, SMPY and SDIV.

where:

jstr

jbeg

jend

lerr

Errors:

Comments:

names a one dimensional integer string array containing the substring to be con-
verted; it must be in decimal format, two digits per word before conversion. The
array must be defined in a DIMENSION statement.

is an integer constant, integer variable, or integer expression defining the position
of the first digit of jstr to be converted (beginning of substring).

is an integer constant, integer variable, or integer expression defining the position
of the last digit in jstr to be converted (end of substring). It must be greater than or
equal to jbeg.

is an integer variable used as an error indicator. It is set when a digit is greater
than nine or is negative unless the negative digit is at position jend which, as the
sign digit, can be negative.

The error indicator ierr is set equal to the position of the last invalid digit
encountered. An invalid digit is one outside the range 0—9 except for a signed digit
in the last position.

Only the last invalid digit is indicated by the error indicator. Other invalid digits
may have been encountered to the left of the digit noted.

Errors should not occur since the arithmetic routines (SADD, SDIV, SMPY, and
SSUB) resolve carries. If an error does occur, the user’s program should indicate
it.

Note

SDEAZ2 does not set, test, or reset the error indicator.

10-36 Decimal String Arithmetic Subroutines

Example: DI MENSI ON | NFL(10)
IE = 0
CALL SDEA2(INFL, 7, 18, | E)

Before:

Word 1 2 3 4 5 6 7 8 9 10
INFL Data AlB|C|D|E|F|o|lo]o|lo|o|1|2]|3|4|5]|1|E|N|D

String 1]12|3|4|5]|6]|7]|8|9]|10]11|12|13]|14]|15]|16|17]|18]|19]20
~ ~ -
IE = O(zero) Decimal Format
After:
Word 1 2 3 4 5 6 7 8 9 [10
INFL Data A|lB|lc|D|E|F|o|o|o|lofo|1|[2]3]4]5]| J|E|N|D
String 1|l2|3|4a|5]|6|7]|8]|9]|10]|11|12|13|14]|15]|16|17|18]|19]20
~ ~/
IE = 0(zero) ASCII Format

SD1D2, Substring Decimal D1 Format to Substring Decimal D2 Format

SD1D2 converts a substring from D1 format (1 digit per word) to D2 format (2 digits per word).
CALL SD1D2 (jstr, jbeg, jend, diff)

Note This routine normally is not called by a user program. It is used by the variable
length decimal string arithmetic subroutines SMPY and SDIV.

where:

Jjstr names a one dimensional integer string array containing the substring to be con-
verted; it must be in D1 format, 1 digit per word before conversion. The array
must be defined in a DIMENSION statement.

jbeg is an integer constant, integer variable, or integer expression defining the first posi-
tion of jstr after conversion to D2 format.

jend is an integer constant, integer variable, or integer expression defining the last posi-
tion of jstr after conversion to D2 format. It must be greater than or equal to jbeg.

diff is an integer constant, integer variable, or integer expression defining the bias to be

added to any index or position pointer for D2 format to obtain an index for D1 for-
mat. It is calculated by SD2D1.

Decimal String Arithmetic Subroutines 10-37

Errors: None.

Example: DI MENSI ON | NFL(10)
DIFF = -11
CALL SD1D2(JSTR 12, 19, DI FF)

Before:

Word 1 2 3 4 5 6 7 8 9 10
INFL Data AlB 3 4 5 6 7 |7|D
sting | 1]2]3]a[s]6]| 7|8 o]10]11]12]13[14]15]16[17]18[19]20

Y

o
-
N

DIFF = —11 D1 Format
After:
Word 1 2 3 4 5 6 7 8 9 | 10
INFL Data AlB|lololo|lo]jo|o|o|ofloflof[1]2]|3]4]|5]|6]|7]|H
String 1]12]3l4|5[6f[7]|8]|9]10][11[12[13]|14]15]|16(17]18]19]20
N\ -)
DIFF unchanged D2 Format

SD2D1, Substring Decimal D2 Format to Substring Decimal D1 Format

SD2D1 converts a substring from D2 format (2 digits per word) to D1 format (1 digit per word).

CALL SD2D1 (jstr, jbeg, jend, diff)

Note This routine normally is not called by a user program. It is used by the variable
length decimal string arithmetic subroutines SMPY and SDIV to accommodate
large numbers.

where:
Jjstr names a one dimensional integer string array containing the substring to be con-
verted; it must be in D2 decimal format, two digits per word before conversion.
The array must be defined in a DIMENSION statement.
jbeg is an integer constant, integer variable, or integer expression defining the position

of the first digit of jstr to be converted (beginning of substring).

10-38 Decimal String Arithmetic Subroutines

jend

is an integer constgant, integer variable, or integer expression defining the position
of the last digit in jstr to be converted (end of substring). It must be greater than or
equal to jbeg.

diff is an integer constant, integer variable, or integer expression defining the bias to be
added to any index or position pointer for D2 to obtgain an index for D1 format. It
is calculated according to the formula:
DI FF = —((jend+1)/2+1)
Note 2(jend-jbeg+1) positions in jstr must be available, so that no digit would ever be
moved to a position preceding jstr(1).
Errors: None.
Example: DI MENSI ON | NFL(100)
CALL SD2D1 (JSTR, 12,19, DI FF)
Before:
Word 1 2 | 3| 4 5 6 | 7 [8 [9|10
INFL Data A|lB|C|D|E[F|G|H|I|J|K|[o0]| 1] 2] 3[]4f5]6|[7|H
String 112]3[4]5]6[7]8]9f10]11]12[13]14|15[16]17|18]19]20
-)
Y
D2 Format
After:
Word 5 6 | 7 [8 [9|10
INFL Data o[3|lo]| 4|o|s5|[of6]|of7|7|H
String 9]10]11]12]13]14]|15]|16 |17 |18]19]| 20
Diff = —11

D2 Format

Decimal String Arithmetic Subroutines 10-39

SSIGN, Substring Sign

SSIGN finds the sign of a number, sets a code to indicate this sign and gives the number a new sign
(as specified).

CALL SSI GN (jstr, jbeg, news, nolds)

Note This routine normally is not called by a user program. It is used by the variable
y y prog y
length decimal string arithmetic subroutines: SADD, SSUB, SMPY, SDI1V,
JSCOM.
where:
Jjstr names a one dimensional string array containing the character whose sign is to be

tested and modified. The array array must be defined in a DIMENSION state-
ment. The character must be decimal format, two digits per word (D2).

jbeg is an integer constant, integer variable, or integer expression defining the position
of the character to be tested and modified.

news is an integer constant, integer variable, or integer expression containing the code
for the new sign.

nolds is an integer variable which is set to a code specifying the old (original) sign of the
character.
Method: First the sign of the character at jbeg is retrieved and nolds is set as follows:
NOLDS Original Sign
+1 non-negative
-1 negative

Next, the character is given a new sign according to the code specified by news. The
following shows the sign depending on the value of news:

NEWS New Sign
+1 positive
0 opposite of original sign
-1 negative

Errors: None.

Comments: The character to be processed must be in decimal format, two digits per word (D2
format), or the result is meaningless.

10-40 Decimal String Arithmetic Subroutines

Example: DI MENSI ON | DGT(10)
CALL SSI GN(| DGT, 20+1, NS)

Before:
| DGT(20) = +8
NS =0
After:
I DGT(20) = +8 (no change)
NS = +1

Decimal String Arithmetic Subroutines 10-41

Floating Point Conversion Subroutines

The floating point conversion routines convert between HP 1000 and IEEE standard floating point
formats. These subroutines are part of the SMATH library. Each function must be declared as a
32-bit integer, the same type that it returns.

The subroutines in this chapter are presented in the following format:

The name of the subroutine, a statement of the use of the subroutine, followed by the
subroutine’s syntax, a description of the parameters, and then returns, if any.

If a parameter is underlined in a subroutine call description, the value is a variable returned or
modified by the system subroutine.

DFCHI

DFCHI is a function that converts from HP 1000 format double precision floating point to IEEE
standard format.

error = DFCHI (hpfp, i3efp)

i nt eger*4 error, DFCHI
real *8 hpfp, i3efp

where:

hpfp is the 64-bit double precision floating point real to be converted to IEEE standard
format.

i3efp is the 64-bit variable in which the IEEE standard double precision floating point real
will be stored.
Returns: A 32-bit integer with the following meanings:

0 Successful conversion.
—3 Value of hpfp is denormalized number; i3efp unchanged.

Floating Point Conversion Subroutines 11-1

FCHI

FCHI is a function that converts from HP 1000 format single precision floating point to IEEE
standard format.

error = FCH (hpfp, i3efp)

i nt eger*4 error, FCHI
real *4 hpfp, i3efp

where:

hpfp is the 32-bit single precision floating point real to be converted to IEEE standard
format.

i3efp is the 32-bit standard single precision floating point variable in which the IEEE
standard single precision floating point real will be stored.

Returns: A 32-bit integer with the following meanings:

0 Successful conversion.
—3 Value of hpfp is denormalized number; i3efp unchanged.
—5 Underflow occurred; i3efp unchanged.

DFCIH

DFCIH is a function that converts from IEEE standard format double precision floating point to
HP 1000 format.

error = DFCI H(i3efp, hpfp)

i nt eger*4 error, DFCI H
real *8 i3efp, hpfp

where:

iJefp is the 64-bit IEEE standard format double precision floating point real to be converted
to HP 1000 format.

hpfp is the 64-bit standard single precision floating point variable in which the HP 1000
double precision floating point real will be stored.

Returns: A 32-bit integer with the following meanings:

0 Successful conversion.
—1 Value of i3efp is not a number; Apfp unchanged.
—2 Value of i3efp is signed infinity; 4pfp unchanged.
—3 Value of i3efp is denormalized number; Apfp unchanged.
—4 Overflow occurred; Apfp unchanged.

11-2 Floating P oint Conversion Subroutines

FCIH

FCIH is a function that converts from IEEE standard format single precision floating point to HP
1000 format.

error = FCl H(i3efp, hpfp)

i nteger*4 error, FCI H
real *4 i3efp, hpfp

where:

i3efp is the 32-bit IEEE standard format single precision floating point real to be converted
to HP 1000 format.

hpfp is the 32-bit standard single precision floating point variable in which the HP 1000
single precision floating point real will be stored.

Returns: A 32-bit integer with the following meanings:

0 Successful conversion.
—1 Value of i3efp is not a number; Apfp unchanged.
—2 Value of i3efp is signed infinity; 4pfp unchanged.
—3 Value of i3efp is denormalized number; Apfp unchanged.
—4 Overflow occurred; Apfp unchanged.
—5 Underflow occurred; Apfp unchanged.

Floating Point Conversion Subroutines 11-3

HpCrt Library Routines

The subroutines in this chapter are presented in the following format:

The name of the subroutine, a statement of the use of the subroutine, followed by the
subroutine’s syntax, a description of the parameters, and then returns, if any.

If a parameter is underlined in a subroutine call description, the value is a variable returned or
modified by the system subroutine.

A_Register, B_Register, A B_Registers, ABREG

These are CDS compatible replacements for the ABREG call. To use these functions, you must
declare them to be direct so that the standard .ENTR calling sequence will be omitted. They must
be declared as Integer*2 for A_Register and B_Register and Integer*4 for A_B_Registers.

$alias A Register,direct
$alias B_Register,direct
$alias A B Registers,direct

Integer*2 A Register,B _Register
Integer*4 A B Registers (Real*4 will work also)

As an example call, you could do the following:

CALL Exec(1, 401b, i buf,-80) read the term nal

!
Jboth = A B Registers() I save both registers
Istat = A Register() I save A only
Length = B_Register() I save B only

You must call A_B_Registers or A_Register first, as B_Register copies the B-Register contents
into the A-Register. The destination variables must be simple variables, that is, not subscripted, as
the subscript resolution process alters the registers. This same restriction applies to the HP
ABREG call.

HpCrt Library Routines 12-1

The assembly language generated by the previous example is:

j sb exec
def rtn
def =d1
def =b401
def i buf
def =d-80
rtn equ *
jsb A B registers (converted to a NOP at load time)
dst Jboth
jsb A register (converted to a NOP at load time)
sta Istat
jsb B_register (converted to LDA B at load time)
sta length

Note The usual restrictions upon ABREG apply; that is, do not use variables, EMA
variables, or anything else that will alter the registers before they can be stored.

ClearBitMap

This routine clears the specified bit in a bit map.
CALL d ear Bi t Map(ibuf, ibit)

i nt eger*2 ibuf(*), ibit

where:
ibuf is an integer array of up to 64K bits (4096 words).
ibit is a one-word integer representing the bit number to clear, where 0 equals the most

significant bit of the first word.

When accessing bits above 32K in FORTRAN, you must use negative numbers, as there is no
unsigned integer data type.

12-2 HpCrt Library Routines

CompareBufs

This routine compares two buffers. It is similar to the CompareWords routine except that it
returns the offset of the mismatch.

flag = Conpar eBuf s(bufl, buf2, numwds, badwd)

| ogi cal *2 flag, Conpar eBuf s
i nteger*2 bufl(*), buf2(*), numwds, badwd

where:
flag is the logical return flag. It will be —1 if the buffers are identical, which is a logical
true in FORTRAN or Pascal; or 0 if they differ, which is a logical false in both lan-
guages.
bufl specifies the first buffer.
buf2 specifies the second buffer.

numwds is the number of words to be compared.

badwd is the offset of the word from the beginning of the buffer that was found to be dif-
ferent.

The buffers can be of any data type except FTN77 characters. The number of words to be
compared must be computed accordingly. For example to compare two buffers of 12 double
precision floating point (Real*8), the number of words would be 8/2*12=48.

CompareWords

This routine compares two buffers.

flag = Conpar eWor ds(bufl, buf2, numwds)

| ogi cal *2 flag, Conpar eWor ds
i nteger*2 bufl(*), buf2(*), numwds

where:
flag is the logical return flag. It will be —1 if the buffers are identical, which is a logical
true in FORTRAN or Pascal; or 0 if they differ, which is a logical false in both lan-
guages.
bufl specifies the first buffer.
buf2 specifies the second buffer.

numwds is the number of words to compare.

The buffers can be of any data type except FTN77 characters. The number of words to be
compared must be computed accordingly. For example to compare two buffers of 12 double
precision floating point (Real*8), the number of words would be 8/2*12=48.

HpCrt Library Routines 12-3

CompressAsciiRLE

This function moves bytes from the input buffer to the output buffer, compressing the data by
replacing repeated characters with a repeat count. The first character in a sequence of like
characters is copied to the output, but all successive characters are replaced by the 2’s complement
of the repeat count. If more than 128 characters appear in the run, repeats of —128 are used as
necessary. Characters which are not repeated are not altered. If data that already has the 8th bit
set is encountered, such as binary data, Kanji, or extended ASCII for national character sets, then
the error flag will be set.

flag = ConpressAsci i RLE(ibuf, length, obuf, newlength)

| ogi cal *2 flag, ConpressAscii RLE
i nteger*2 ibuf(*), length, obuf(*) , newlength

where:
flag is the logical error indicator. Equals .TRUE. when an error occurs.
ibuf is the input data buffer.

length is the number of bytes in the input buffer.
obuf returns the output data buffer.

newlength contains the number of bytes that were moved to obuf.

For example, if the routine is called with the following values for ibuf and length:

ibuf=ABCCCD:::EEEEEEEEE. I
length = 26

The output values of obuf and newlength will be:

obuf = ABC376bD:375b E367b. 371b1
newlength = 12

A buffer length of zero is acceptable and does not cause an error. It is not possible for the output
to be longer than the input.

It is permissible for the output buffer to be the same as the input buffer so that in-place
compression is done. For example, the following call is valid:

flag = ConpressAsci i RLE(ibuf, length, ibuf, length)
See also ExpandAsciiRLE.

12-4 HpCrt Library Routines

ExpandAsciiRLE

This logical*2 function processes run length encoded ASCII data to expand it back to the original
uncompressed contents. If the expanded text will be longer than the stated size of the output
buffer, conversion terminates and the routine returns with a .TRUE. error condition. Note that

the output can be much larger than the input.

errorflag = ExpandAsci i RLE(ibuf, ilength, obuf, olength, newlength)

| ogi cal *2 errorflag, ExpandAsci i RLE
i nteger*2 ibuf(*), ilength, obuf(*) , olength, newlength

where:
errorflag is the error indicator; will be true if an error occurs.
ibuf is the input data buffer.
ilength is the number of bytes in the input buffer.
obuf returns the output data buffer.
olength is the size of the output buffer.

newlength contains the number of bytes that were moved to obuf.

For example, if the routine is called with the following values for ibuf and ilength:

ibuf = X377b Y 374b $§ @ * 370b AB C375b A
ilength = 13

The output values of obuf and newlength will be:

obuf =XXYYYYYS@********* ABCCCCA
newlength = 25

See also CompressAsciiRLE.

HpCrt Library Routines 12-5

FakeSpStatus

This routine creates a status buffer similar to what a Special Status Read returns. FakeSpStatus is
used by HpZPrintPort to obtain as much port status information as it can in the event that the
device LU is busy. The FakeSpStatus routine retrieves information statically from the system
status tables that would normally be returned dynamically from a Special Status Read call issued
to the driver (refer to the serial driver documentation). Therefore, some of the values returned by
FakeSpStatus in words 1 through 32 of statebuffer are invalid as indicated in Table 12-1.

CALL FakeSpSt at us(lu, statebuffer)
i nteger*2 lu, statebuffer(32)
where:

lu is the LU number of the port (in the range 1..255).

statebuffer is a 32-word buffer to hold the current state of the port.

This call can be made only for an LU known to be a DDCO0x LU.
See also HpCrtSavePort, HpCrtRestore, and HpZPrintPort.

Table 12-1. Contents of the State Buffer after FakeSpStatus or HpCrtSavePort Call

Word Returned Value
1.3* Device driver name
4 * Device driver Revision code
5 DVT word 6 or EQT word 5
6 DVT (or EQT) address
7.9% Interface driver name
10 * Interface driver Revision code
11 * Firmware Revision code
12..14 Primary Interrupt program name
15..17 Secondary Interrupt program name
18 Echo back of CN 17 parameter
19 Echo back of CN 22 parameter
20 Echo back of CN 30 parameter
21 Echo back of CN 31 parameter
22 * Echo back of CN 33 parameter
23 Echo back of CN 34 parameter
24 Address of IFT (RTE-A only)
25..27 Echo back of CN 42 parameters (RTE-A only)
28 Echo back of CN 16 parameters (RTE-A only)
29..31 Zero
32 Driver communications word
* Words 3, 4, 9 - 11, and 22 are not valid after a FakeSpStatus call.

12-6 HpCrt Library Routines

FillBuffer

This routine fills a buffer with either null characters or a specified value.

CALL Fill Buf f er (ibuf, length[, value])

i nteger*2 ibuf(*), length, value

where:
ibuf returns the buffer that is filled.
length specifies the length of the buffer in words.
value is an optional value to store in ibuf. The value to store is located in the low byte of
value. The default is zero (null).
Examples:
call FillBuffer(ibuf,20,2h .) ' fill 1st 20 words of i buf
I with ASCII decimal points
call FillBuffer(ibuf,50,2h) I fill 1st 50 words of i buf
I with blanks (020040Db)
call FillBuffer(ibuf,30) I fill 1st 30 words of i buf
!

with nulls (000000b)

FirstCharacter

This function returns the first character of a buffer. The character is in the left byte with an ASCII
blank character in the right byte.

value = First Char act er (buffer)
i nt eger*2 value, buffer(*), Fi r st Char act er
For example:
if (FirstCharacter(buffer).eq.2h+) then ... endif

will test to see if the first character of “buffer” is a plus sign.

HpCrt Library Routines 12-7

GetBitMap

This integer*2 function retrieves the value of the indicated bit from a bit map (packed array of
bits). When accessing bits above 32k, you must use negative numbers, as there is no unsigned
integer data type in FORTRAN on the HP 1000.

bit = Get Bi t Map(ibuf, index)

i nteger*2 bit, ibuf(*), index, Cet Bi t Map

where:
bit is the value of the bit indicated by index.
ibuf is the bit map, an array of up to 64K bits (4096 words).
index is the bit number to be read, where 0 equals the MSB of the first word of ibuf.

See also SetBitMap, TestBitMap, TestSetBitMap, and PutBitMap.

GetByte

This routine gets a byte from a packed array of bytes. The leftmost byte of the first word of array is
byte number 0. The array can be up to 32K words, so the byte index can be from 0 to 65,535.
Addresses above 32,767 look like negative numbers because there is no unsigned integer data type
in FORTRAN on the HP 1000.

byte = Get Byt e(array, index)

i nteger*2 byte, array(*) , index, Get Byt e

where:
byte is the value of the indicated byte in array. The value is contained in the low byte of
byte; null is contained in the high byte.
array is the array that contains the byte to be read.
index is the index into the array indicating the byte to be read where byte 0 is the left byte

of the first word of array.

See also PutByte.

12-8 HpCrt Library Routines

GetDibit

This routine gets a dibit (bit pair) from a packed array of dibits. The leftmost two bits of the first
word of array is dibit number 0. The index is limited to 16 bits, which limits the length of the array
to 8K words. Dibit addresses above 32,767 look like negative numbers because there is no
unsigned integer data type in FORTRAN on the HP 1000.

twobitvalue = Cet Di bi t (array, index)
i nt eger*2 twobitvalue, array(*) , index, Get Di bi t
where:

twobitvalue is the value of the indicated dibit in array. The value is contained in the lower 2 bits
of twobitvalue; upper bits are null.

array is the array that contains the dibit to be read.

index is the index into the array indicating the dibit to be read where dibit number 0 is
the leftmost two bits of the first word of array.

See also PutDibit.

GetNibble

This routine gets a nibble (4 bits) from a packed array of nibbles. The leftmost four bits of the
first word of array is nibble number 0. The index is limited to 16 bits, which limits the length of the
array to 16K words. Nibble addresses above 32,767 look like negative numbers because there is no
unsigned integer data type in FORTRAN on the HP 1000.

nibble = Get Ni bbl e(array, index)

i nt eger*2 nibble, array(*) , index, Get Ni bbl e

where:
nibble is the value of the indicated nibble in array. The value is contained in the lower 4
bits of nibble; the upper 12 bits are null.
array is the array that contains the nibble to be read.
index is the index into the array indicating the nibble to be read where nibble number 0 is

the leftmost four bits of the first word of array.

See also PutNibble.

HpCrt Library Routines 12-9

GetRunString

This integer*2 or logical*2 function retrieves the runstring that was used to schedule a program.

| F (CGet RunSt ri ng(ibuf, ibuflen, length, ip)) THEN
no_runstring_passed
ENDI F

i nteger*2 ibuf(*), ibuflen, length, ip
| ogical *2 GetRunString

where:
ibuf returns the input buffer.
ibuflen specifies the length of the buffer, positive number of words or negative number of
bytes.
length returns the number of characters passed back by the EXEC 14 call including
“RU,progname,”.
ip returns the pointer to the first character past “RU,progname,” in the buffer. This

value is not valid for a . TRUE. return.

If it is desired to manipulate the buffer using the FORTRAN character routines, use StrDsc to
build a character descriptor after calling this function.

Algorithm used:

An EXEC 14 call reads the runstring, if any is present, into the caller’s buffer. length is updated to
show the length in bytes. The buffer is then scanned until the second comma is found, to skip the
“RU,progname,” that is present in the buffer when programs are run interactively. If the program
is not going to be run interactively, do not use this routine; use an EXEC 14 call instead.

The position just following the second comma is then passed back in ip, where 0 indicates the first
byte in the buffer, the left byte of the first word. This is done to facilitate the use of routines such
as NAMR or the HpZ routines to parse the remaining contents of the buffer.

If no string was passed, the function returns with A=—1 (.TRUE.). If a string was passed, it
returns with A=ip (a .FALSE. value).

The values passed back are in the correct form for a call to HpZDefIbuf.

See also GETST and HpZDeflbuf (this manual); Exec 14 (documented in the RTE-A
Programmer’s Reference Manual); RCPAR and RHPAR (documented in the FORTRAN 77
Reference Manual).

12-10 HpCrt Library Routines

GetString

This subroutine copies a string or a constructed string descriptor (refer to the StrDsc call) to the
indicated output string. The number of characters is given by the third parameter rather than
using a length imbedded in instring.

CALL Cet Stri ng(outstring, instring, stringlength)
character*(*) outstring
i nt eger*4 instring
i nt eger *2 stringlength
where:
outstring is the output string.
instring is the input string. This could be the output of StrDsc.
stringlength is the number of characters to be copied to outstring.

This routine is sometimes required because FORTRAN does not have a mechanism to copy the
contents of a constructed string descriptor.

See also HpZMoveString and ConCat.

HpCrtCharMode

This call sends the escape sequences to the terminal that place it in line mode and character mode
with forms mode disabled. It also does the control call to the driver that is required after such
strap changes.

CALL HpCrt Char Mode(lu)

i nteger*2 lu
where:

lu is the LU number(1..255) of the terminal to be strapped for character mode.
The escape sequence generated by this call is:

Esc & k 0 a 0 BEsc &s 0d 0 g0 HEsc XEscb

It is the caller’s responsibility to ensure that the LU is legal, that the terminal is capable of page
mode operation, and that the terminal driver is capable of block mode transfers (such as DDCO00
and DVC05).

See also HpCrtPageMode and HpCrtLineMode.

HpCrt Library Routines 12-11

HpCrtCheckStraps

This routine checks the port and the terminal to ensure that screen mode operation (as used by
EDIT/1000 and the Command Stack routines) is available.

I F (HpCrt CheckSt raps(crtlu, error, memsize, linewidth)) THEN
screen mode is usable
ENDI F

i nteger*2 crtlu, error, memsize, linewidth
| ogi cal *2 HpCrt CheckStraps

where:
crtlu is the LU number of the terminal.
error is the returned error code as given below.

memsize is the returned amount of display memory in the terminal.

linewidth is the returned number of columns that can be displayed at any one time. To deter-
mine the linewidth, position the cursor to column 1, then cursor left. This is done
to be compatible with the Command Stack routines.

The error code is defined as:

—1 successful
0 not an HP 2645 or compatible terminal
1 EXEC call failed
2 one of the terminal straps is incorrect even though this routine tried to set it
to the following states:

character mode (not page mode and not block mode); transmit functions disabled.
When error 2 is returned, the calling program should print an advisory message telling the user

what strapping is needed.

See also HpCrtScreenSize.

12-12 HpCrt Library Routines

HpCrtCRC16_F, HpCrtCRC16_S

A Cyclic Redundancy Check (CRC) is an error checking method based upon feedback shift
registers for the hardware implementation. The mathematical derivation is that it is a synthetic
division of the message by a given polynomial.

Two implementations are provided, HpCrtCRC16_F which uses a 256-word lookup table, and
HpCrtCRC16_S which uses a 32-word table and runs correspondingly slower.

icheck = HpCrt CRC16_F(buffer, bytelength, start)
i nt eger*2 icheck, buffer, bytelength, start, HoCr t CRC16_F
where:
icheck returns a 16-bit integer result (2 bytes in A2 format).
buffer is the buffer containing data in A2 format (cannot be character data type).
bytelength is the number of bytes to include in the Cyclic Redundancy Check bytes.

start is the starting position in buffer, where 0 is the left byte of the first word.

This routine uses the polynomial 120001 octal as its generator. This is commonly called a CRC-16,
and is the CRC used by HDLC, BiSync, and other industry standard protocols. Refer to the
standard textbooks on data communications for further information.

The algorithm used by these routines was first described by Stuart Wecker of Digital Equipment
Corporation (1974).

HpCrt Library Routines 12-13

HpCrtGetCursor

This call returns the coordinates of the cursor of an HP CRT. The reply is in the form of the
ASCII escape string that would be needed to redirect the cursor to its current position.

I F (HpCrt Get Cursor (crt, reply[, screenrelative])) THEN
good_reply
ENDI F

i nteger*2 crt, reply(6), screenrelative
| ogi cal *2 HpCrt Get Cursor

where:
crt is the LU number of the terminal; in the range 1..255 for RTE-A and 1..63 for
RTE-6/VM systems.
reply is a 6-word long buffer to receive the reply in one of the following forms:

If screenrelative is not passed or equals zero: “<esc>&a000c000R <cr>”

If screenrelative is nonzero: “<esc>&a000c000Y <cr>"” or
“<esc>&a000x000Y <cr>"

screenrelativeis an optional parameter that indicates screen relative coordinates should be re-
turned. If screenrelative is not passed or equals zero, memory relative coordinates
are returned. If it is nonzero, screen relative coordinates are returned.

Note that the column number may not be limited to 0...79. As an example, the HP 2393 can be
configured for up to 160 columns. The maximum row number is also terminal dependent.

See also HpCrtGetCursorXY.

12-14 HpCrt Library Routines

HpCrtGetCursorXY

This call returns the coordinates of the cursor of an HP CRT. The reply is in the form of the
column and row numbers needed to redirect the cursor to its current position.

I F (HpCrt Get Cursor XY(crt, x, y[, screenrelative])) THEN
good XY
ENDI F

i nt eger*2 crt, x, y, screenrelative
| ogi cal *2 HpCrt Get Cursor XY

where:
crt is the LU number of the terminal; in the range 1..255 for RTE-A and 1..63 for
RTE-6/VM systems.
X returns cursor column position (0..n).
y returns cursor row position (0..n).

screenrelative is an optional parameter that indicates screen relative coordinates should be
returned. If screenrelative is not passed or equals zero, memory relative coordi-
nates are returned. If it is nonzero, screen relative coordinates are returned.

Note that the column number may not be limited to 0..79. As an example, the HP 2393 can be
configured for up to 160 columns. The maximum row number will depend upon the amount of
memory installed.

See also HpCrtGetCursor.

HpCrt Library Routines 12-15

HpCrtGetfield |

This integer*2 function retrieves the nth field from an integer*2 buffer that contains the data read
from an HP terminal in block page mode. The fields are separated by US (Unit Separator, octal
37) characters. The function returns the number of characters in the given field. The newer HP
terminals have the capability to return modified fields only, which results in two adjacent US
characters for unmodified fields. This routine will return a length of zero in that case.

There is another version of this routine, HpCrtGetfield_S, that is used when the destination buffer
is a FORTRAN character data type.

olen = HpCrt Getfiel d_I (ibuf, ilength, field#, obuf, olength)

i nteger*2 olen, ibuf(*), ilength, field#, obuf(*) , olength, HpCrt Get fi el d_I

where:
olen returns the number of characters present in the nth field.
ibuf specifies the input buffer from a page mode read.

ilength specifies the number of bytes in the input buffer.

leld# specifies the ordinal number of the unprotected field containing the data that is to
p p g
be moved to the output string.

obuf is the buffer to receive the data; it should be as long as the protected fields you are
reading.

olength is the length of the output buffer in bytes.

The input buffer is assumed to contain something similar to the following:

" dat adat ada<US>t adat adat <US><US>adat adat adat <US>adat a. . .’

the first field contains ’datadatada’ length = 10
the second contains ‘tadatadat’ length = 9
the third is empty 7 length = 0
the fourth contains "adatadatadat’ length = 12
and so on.

If the terminal is not capable of operating in “altered fields only” mode, every field will contain
something, even if just blanks.

12-16 HpCrt Library Routines

HpCrtGetfield_S

This logical*2 function retrieves the nth field from an integer*2 buffer that contains the data read
from an HP terminal in block page mode. The fields are separated by Unit Separator characters.
For the newer HP terminals, fields which were not modified by the user will return two adjacent
Unit Separators. This subroutine detects such fields and returns a .FALSE., while modified fields
will return a .TRUE. to indicate the data is valid.

The destination string will be blank padded, as is usual for character data type. There is another
version of this routine, HpCrtGetfield_I, that returns the data to integer*2 buffers with a byte
count.

flag = HpCrt Getfiel d_S(ibuf, ilength, field#, deststring)
| ogi cal *2 flag, HpCrt Getfiel d_S

i nteger*2 ibuf(*), ilength, field#
character*(*) deststring

where:
flag returns true if data is present in the nth field.
ibuf specifies the input buffer from a page mode read.

ilength specifies the number of bytes in the input buffer.

field# specifies the ordinal number of the unprotected field containing the data that is to
be copied to the destination string.

deststring returns the FORTRAN character data type buffer to receive the data; it should be
at least as long as the unprotected field.
The input buffer is assumed to contain something similar to the following:
' dat adat ada<US>t adat adat <US><US>adat adat ad<US>at a. . .’

the first field contains ’datadatada’

the second contains ’tadatadat ’
the third is empty 77

the fourth contains ’adatadatad’
and so on.

If the terminal is not capable of operating in “altered fields only” mode, every field will contain
something, even if just blanks, so that the routine will return .TRUE. for all fields.

HpCrt Library Routines 12-17

HpCrtGetLine_Pos

This routine returns the cursor position, the contents of the line where the cursor was located
when a given delimiter is entered, and the delimiter that caused the routine to return.

bytelen = HpCrt Get Li ne_Pos(crt, buf, length, pos, delimiters, stopchar)

i nt eger*2 bytelen, crt, buf(*) , length, pos, delimiters, stopchar, HoCr t Get Li ne_Pos

where:
bytelen returns the number of characters read from the screen.
crt is the LU number of the User’s terminal (in the range 1..255).
buf is the name of the return buffer; it must be large enough to hold the width of the
screen plus any non-displayable characters.
length specifies the size of buf in bytes.
pos returns the position that the column cursor was in when the user typed the delimit-

er (0-n).

delimiters defines up to two delimiters that will cause the routine to return. If only one de-
limiter is needed, the high byte and low byte must be set equal to each other.

stopchar returns the delimiter that was entered.

This function performs a single character read on the indicated LU until one of the delimiters
passed in the call is received. It then reads the absolute cursor position on the line followed by
reading the line from the screen where the cursor is currently located. The function returns the
number of characters in the current line. The routine attempts to do the single character reads
using class I/O to allow the calling program to be swappable.

12-18 HpCrt Library Routines

HpCrtGetMenultem

This routine returns a menu item from the screen. Put the cursor on the item and press the
carriage return key. This routine returns, in buf, the item under (or just in front of) the cursor.
The character length is also returned. For generality, the result is not upshifted. It is assumed
that the item is delimited by one of the passed delimiters or by the start or the end of the line.

bytelen = HpCrt Get Menul t en{ crt, buf, length, delimiters)
fakestring = HpCrt Get Menul t en(crt, buf, length, delimiters)

i nteger*2 crt, buf(*), length
character*(*) delimiters

where:

bytelen if this routine is declared integer*2, it returns the length in the A-Register.

fakestring if this routine is declared integer*4, it returns a string descriptor in the A- and B-
Registers.

crt is the LU number of the user’s terminal (in the range 1..255).

buf is the name of the return buffer; it must be large enough to hold the width of the
screen plus any non-displayable characters.

length specifies the size of buf in bytes.

delimiters is the string that defines the delimiters.

HpCrtHardReset

This function performs a hard reset on an HP terminal connected to the given LU. A hard reset
sets the terminal back to the state that it had on power-up. The results are specific to the terminal
model, but a hard reset usually causes loss of all soft configurations, such as margins, screen
memory, and softkeys. This is a drastic way to set a terminal to a known state.

CALL HpCrt Har dReset (lu)

i nteger*2 lu
where:

lu is the LU of the terminal on which to perform a hard reset (in the range 1..255).
Algorithm:

1. Transmit ‘Esc Z Esc E’ to the terminal.
2. Use an EXEC 12 call to pause 1 second.
3. Perform an XLuEx CN25 call to the port to re-sense the terminal straps.

Because this routine uses an EXEC 12 call, the calling program will be removed from the time list
if it happens to be there.

HpCrt Library Routines 12-19

HpCrtLineMode

This call sends the escape sequences to the terminal that place it in block line mode. It also does
the control call to the driver that is required for line mode operation.

CALL HpCrtLi neMode(lu, flag)

i nteger*2 lu
| ogi cal *2 flag

where:
lu is the LU number of the terminal to be strapped for line mode.
flag specifies a flag to control forms mode:

. TRUE. = enable protected forms mode.
. FALSE. = disable protected forms mode.

The escape sequence generated by this call is:
Esc &k 1 a1 BEsc &s 0dO0gO0HEsc XEscb

It is the caller’s responsibility to ensure that the LU is legal, that the terminal is capable of page
mode operation, and that the terminal driver is also capable of block mode transfers (DDCOO0,
DVCO05, for example).

See also HpCrtPageMode and HpCrtCharMode.

HpCrtMenu

This routine prints multiple character strings to an LU. Each string is printed by a separate EXEC
call, in the same way as HpCrtSendChar.

CALL HpCrt Menu(lu, ' Ist line of menu’

> ' 2nd line’
> ' 3rd line’
> " last line’)

The number of strings passed is unlimited, and either quoted strings (literals) or FTN7X character
variables can be passed.

See the documentation for HpCrtSendChar for a caution about certain printers.

See also HpCrtXSendChar, HpCrtXReadChar, HpCrtSendChar, and HpCrtXMenu.

12-20 HpCrt Library Routines

HpCrtNIsMenu

This routine performs the HpCrtMenu function from the NLS module.
CALL HpCrt N sMenu(lu, start] , end])

i nteger*2 lu, start, end

where:
lu is the LU number for the output; a single integer in the form expected by EXEC
calls.
start specifies the starting string index.
end is an optional parameter that specifies the ending string index. end must be equal

to or greater than the starting string index. It defaults to be equal to the start so
that only one line is displayed.

Prior to this call, an initialization call to HpZNIsSubset must have been issued.

When used with HpZNIsSubset, the index number of the string must be in the range 0..N, where N
is the last message number in the catalog.

See also HpZNIsSubset and HpCrtNIsXMenu.

HpCrtNIsXMenu

This routine performs the HpCrtXMenu function from the NLS module.
CALL HpCrt Nl sXMenu(lu, start[, end])

i nteger*4 lu
i nteger*2 start, end

where:
lu is the LU number for the output; a double integer in the form expected by XLuEx
calls.
start specifies the starting string index.
end is an optional parameter that specifies the ending string index. end must be equal

to or greater than the starting string index. It defaults to be equal to the start so
that only one line is displayed.

Prior to this call, an initialization call to HpZNIsSubset must have been issued. When used with
HpZNIsSubset, the index number of the string must be in the range 0..N, where N is the last
message number in the catalog. Perhaps a different initialization routine will be written in the
future, but it is unlikely.

See also HpZNIsSubset.

HpCrt Library Routines 12-21

HpCrtPageMode

This call sends the escape sequences to the terminal that place it in block page mode. It also does
the control call to the driver that is required for page mode operation.

CALL HpCrt PageMode(lu, flag)

i nteger*2 lu

| ogi cal *2 flag
where:
lu is the LU number of the terminal to be strapped for line mode.
flag specifies a flag to control forms mode:
. TRUE. = enable protected forms mode.

. FALSE. = disable protected forms mode.

The escape sequence generated by this routine is:
Esc &k 1 a1 BEsc &s 1d0gO0HEsc XEscb

It is the caller’s responsibility to ensure that the LU is legal, that the terminal is capable of page
mode operation, and that the terminal driver is also capable of block mode transfers (DDCO0O0,
DVCO05, for example).

See also HpCrtReadPage, HpCrtLineMode, and HpCrtCharMode.

HpCrtParityChk

This logical*2 function performs a parity check on a data buffer. It will return .TRUE. if there are
NO parity errors in the buffer.

| F (HpCrt Parit yChk(ibuf, length, par)) THEN
no_parity_error
ENDI F

i nteger*2 ibuf(*), length, par
| ogi cal *2 HpCrtParityChk

where:
ibuf is the input buffer.
length is the number of characters in the input buffer.
par specifies odd/even parity select as follows:

set to 0 for even parity
set to 1 for odd parity

The companion routine HpCrtParityGen can be used to compute parity in a user buffer.

12-22 HpCrt Library Routines

HpCrtParityGen

This subroutine computes and sets the parity bits in a data buffer. It works on word boundaries, so
the byte following the data will be altered if an odd number of data bytes is specified.

CALL HpCrt ParityGen(ibuf, length, par)

i nteger*2 ibuf(*), length, par

where:
ibuf specifies the input and output buffer. The conversion is done in place.
length is the number of characters in the input buffer.
par specifies odd/even parity as follows:

set to 0 for even parity.
set to 1 for odd parity.

The companion routine HpCrtParityChk can be used to check for correct parity in a buffer.

HpCrtQTDPort7

This integer*2 function returns the LU of the seventh port when given the LU of one of the
modem ports on a Rev. D 8-channel MUX. The LU of Port 7 is needed to perform writes for
auto-dial when the MUX is connected to an HP 37214 modem card cage. Port 7 must have been
initialized before this call is made, lu must be configured as a modem (bit 13 was set when the LU
was initialized with a CN 30B), and it must be a Rev. D MUX.

port7lu = HpCrt QTDPor t 7(lu, workbuffer)
i nteger*2 port7lu, lu, workbuffer(*), HoCrt QTDPor t 7
where:

port7lu returns the LU number of Port 7.

lu is the LU number of one of the other ports on that 8-channel MUX. It must be
configured as a modem port.

workbuffer is used by this routine to do a Special Status read. It must be at least 32 words
long.

If for any reason the Port 7 LU cannot be determined, this routine returns a zero.

HpCrt Library Routines 12-23

HpCrtReadChar

This function inputs directly from an LU to a character data type variable. As is usual for
character data types, it will be blank filled if the user enters less data than the full length allowed.
The variable can be even or odd length, and need not start on a word boundary. The input is done

via REIO to allow for swapping.

CALL HpCrt ReadChar (lu, charvariable, status, bytelen)

i nt eger*2 lu, status, bytelen
character*(*) charvariable

where:

lu is the LU number from which to read; it must be in the same format as an
EXEC 1 call.

charvariable returns the data read from the specified LU.
status returns the status (A-Register).

bytelen returns the transmission log (B-Register).

The caller must set the bits in the LU word in the same way that they would be set in an EXEC
call; for example, bit 8 must be set to enable echo.

The status and bytelen variables returned are the A- and B-Register returns from the REIO call,
which is done with the no-abort option. For normal call completion, the sign bit of the status will
be set and the low byte will have the usual I/O status bits, including the timeout bit in bit 1. bytelen
will be valid. For an abnormal call completion, status and bytelen (A- and B-Registers) will contain
the ASCII error code, such as “I013”.

See also HpCrtXSendChar, HpCrtXMenu, HpCrtSendChar, and HpCrtMenu.

12-24 HpCrt Library Routines

HpCrtReadPage

This integer*2 function does a page mode write/read call. The write portion does a keyboard
unlock. The read is done without echo and with the auto-home bit set. Thus the keyboard is again
locked when the routine exits.

iostatus = HpCrt ReadPage(/u, buffer, bufferlen, bytelen)

i nt eger*2 iostatus, lu, buffer(*) , bufferlen, bytelen, HoCr t ReadPage

where:

lostatus returns the status word from the EXEC call. Refer to the driver documentation for
the bit assignements.

lu is the LU number of the HP terminal; for RTE-A lu can range from 1 to 255.

buffer returns the input buffer; the size must be sufficient to receive the data from the
largest screen that is to be read.

bufferlen specifies the length of the input buffer; positive number of words or negative num-
ber of bytes.

bytelen returns the number of bytes that were read from the screen.

The programmer must ensure the following conditions exist before this routine is called:

The port driver is compatible with block/page/auto-home operation. Call HpCrtSSRCDriver
to verify.

The driver in use is configured for driver 5 operation. Verify by executing an EXEC 13.
The port is legal for use. Verify by executing an EXEC 13 call with the no-abort bit.

To operate in “altered fields only” mode you must send the appropriate CRT escape
sequences. Refer to the terminal reference manuals. Use either formatted writes, EXEC
calls, or HpCrtXSendChar.

The terminal screen has been “painted” with the proper form. Refer to the terminal reference
manuals.

The terminal is in block/page mode and a CN25 call has been done. Use HpCrtPageMode to
do this.

After this call, the programmer should perform the following checks:

Bit 1 of the status is set if the request timed out. The usual course of action is to simply call
this routine again.

The transmission log as given by bytelen cannot be zero unless the terminal was reset by the
user or the read timed out. Normally you would loop back in the program to the point where
the terminal was set up, including sending the forms again.

If the results of the above checks are good, the programmer can then use the data that was read
from the screen. HpCrtGetField is a useful subroutine for this purpose.

HpCrt Library Routines 12-25

HpCrtRestorePort

This subroutine resets a port to the conditions that were in effect when HpCrtSavePort was called.

CALL HpCrt Rest or ePort (lu, statebuffer)

i nteger*2 lu, statebuffer(32)

where:
lu is the LU number of the port (in the range 1..255).
statebuffer specifies a 32-word buffer that contains the original state of the port that is to be
restored.
Note This routine temporarily enables the primary and secondary programs during

the process of restoring the port. This occurs even if 1) both the primary and
secondary programs were disabled prior to calling HpCrtRestorePort and 2) the
state being restored has them disabled. If this affects your application, it is sug-
gested that you disable the primary or secondary programs by passing the CN 20
or CN 40 control requests an invalid program name, for example “—”, instead of
using CN 21 or CN 41. Refer to the serial driver documentation in the RTE-A
Driver Reference Manual, part number 92077-90011.

HpCrtSavePort

This logical*2 function reads the current state of a serial port that is driven by one of the Special
Status Read compatible drivers. Refer to Table 12-1 for the definitions of words 1 through 32 of
the state buffer that is returned by an HpCrtSavePort call. The contents of statebuffer is described
in the Special Status Read section of the serial driver documentation.

error = HpCrt SavePor t (lu, statebuffer)

| ogi cal *2 error, HoCr t SavePor t
i nteger*2 lu, statebuffer(32)

where:
error returns . TRUE. if the call failed.
lu is the LU number of the port (in the range 1..255).

statebuffer is a 32-word buffer to hold the current state of the port.

statebuffer should not be altered if the state is to be returned to the current state by calling
HpCrtRestorePort. It is a good idea to declare statebuffer in SAVE address space.

HpCrtRestorePort should not be invoked if this routine returns an error.

See also FakeSpStatus.

12-26 HpCrt Library Routines

HpCrtSchedProg, HpCrtSchedProg_S

This function passes the name of the program to be scheduled on unexpected interrupt to the
terminal drivers. In RTE-6/VM, only the primary program name can be set.

CALL HpCrt SchedPr og(lu, Shprmry[, 2hpr]) I pass primary nane
CALL HpCrt SchedProg(lu, Shsecnd, 2hse) I pass secondary nane

An alternative form of the routine is available for use with FORTRAN character data type
variables:

CALL HpCrt SchedProg_S(lu,’ prmry’ ,’ pr)
CALL HpCrt SchedProg_S(lu,’ secnd’ ,’ se’)

HpCrtScreenSize

This function returns the width and height (in characters) of the visible surface of the screen of an
HP terminal. The width and height parameters are not modified if an error occurs.

| F (HpCrt ScreenSi ze(crt, width, height)) THEN
Good_Width_Height
ENDI F

i nteger*2 crt, width, height
| ogical *2 HpCrt ScreenSi ze

where:
crt is the LU number of the terminal.
width is the screen width (in number of characters).
height is the screen height (in number of characters).

See also HpCrtCheckStraps.

HpCrt Library Routines 12-27

HpCrtSendChar

This routine calls EXEC to print a FORTRAN character variable or literal. It computes the word
address of the buffer and handles the case of a buffer starting on an odd byte boundary.

CALL HpCrt SendChar (lu, ' characters to print’)
or
CALL HpCrt SendChar (lu, character_variable)

i nteger*2 lu

The caller must set the bits in the LU in the same way that they would be set in an EXEC call; for
example, bit 10 must be set to inhibit the Carriage Return and Line Feed that are normally
appended to the buffer by the drivers.

Because EXEC calls can be done only from word (even byte) addresses, this routine must handle
the occasional odd byte case in a special way. The word that contains the first byte of the specified
buffer is saved inside the subroutine while the left byte is replaced by a null for the duration of the
EXEC call. After the EXEC call completes, the original contents of the word is restored. The
null byte does not display on terminals, so the user is not aware of the extra byte preceding the
data. However, there are some devices, such as the HP 2608 lineprinter, which do print nulls. The
programmer should be aware of this, especially when using the subroutine to display substrings.
The FORTRAN compiler does not produce odd byte addresses for character literals. In fact,
almost the only time that odd byte addresses are generated by FTN7X is for the substrings
mentioned above.

See also HpCrtXMenu, HpCrtMenu, and HpCrtXSendChar.

12-28 HpCrt Library Routines

HpCrtSSRCDriver, HpCrtSSRCDriver?

This logical function determines if the driver for a given LU will respond to a Special Status Read
that is supported by the serial drivers. Once this capability is known, the Special Status Read can
be used to retreive any further information needed by the application.

| ogi cal *2 HpCrt SSRCDr i ver I' must be declared as a logical function

If (HpCrt SSRCDri ver (/u)) THEN
continue I The LU is driven by a Special Status
I Read Conpatible driver.

ELSE
continue I' The driver does not do Special Status
I Reads, or there was an error generated
' by the XLuEx call.
ENDI F

The method used is to issue an XLUEX control call 6, with the optional parameter equal to —2.
The new drivers return 123456b in the B-Register. Because the driver must be entered, this call
will suspend if the driver is busy. Note that because XLUEX is used and the lu parameter is used
as the first word of the cntwd array when XLUEX is called, you may set the OV bit (bit 15) or the
OS bit (bit 14) in the [u parameter to override LU 1 mapping or spooling, respectively.

For special purpose programs that must avoid suspension, another version of the call is available,
“HpCrtSSRCDriver?”. The method used by this call is to ensure that the driver type is 0, 5, 6, or
12 and the sign bit of DVT word 20 has been cleared. Prior serial drivers such as DD.00 and ID.00
did not change this bit. Unfortunately, Hewlett-Packard has no knowledge of what all customers
have done, so it is possible that a customer written driver may cause this routine to be in error.
Because the method is less robust, the subroutine is not directly callable from FORTRAN. It is
available by using the SALIAS construct. Note that the call will fail even for a compatible driver
until the driver has been entered the first time.

Use caution when calling either of these routines for non-serial driver LUs. For example, HP-IB
LUs may hang in response to this call.

HpCrt Library Routines 12-29

HpCrtStatus

This call does an XLuEx write/read call to read the status of an HP terminal. The returned status
is unpacked, one byte per word.

CALL HpCrt st at us(lu, flag, statusbuffer)

i nteger*2 lu, flag, statusbuffer(7)

where:
lu is the LU number of the terminal (in the range 1..255).
flag specifies a flag equal to 2hPR for primary status or 2hSE for secondary status.

statusbuffer is a 7-word buffer to receive the terminal status bytes, one byte per word. Refer
to the terminal manual for definitions of the status bytes.

It is the responsibility of the programmer to ensure that the terminal is an HP terminal which
responds to the type of status requested. The programmer must also ensure that the interface
card and driver are capable of burst transmissions, such as DDC00 and DVCO05.

This call produces a write/read call to the given LU. The write portion contains “Esc Z Esc ™ ” or
“Esc Z Esc ©”. The reply is of the form “Esc\4 00 ? 420 Cr”. The “4007420” is then unpacked
into the caller’s buffer, one byte per word with the upper byte of each set to null.

12-30 HpCrt Library Routines

HpCrtStripChar

This routine deletes characters from a buffer. Its primary use is to remove the Unit Separator
characters that separate the lines of data read from a terminal in block mode for backwards
compatibility with the RTE-6/VM driver DVR05/DVAO05. DVROS stripped the Unit Separators
automatically, but no other drivers do so.

newlength = HpCrt Stri pChar (ibuf, num, char)
i nt eger*2 newlength, ibuf(*) , num, char, HoCrt St ri pChar
where:

newlength returns the new buffer length in number of characters.

ibuf specifies the buffer containing the data to modify and returns the modified data.
The conversion is done in place.

num specifies the number of characters to process.

char specifies the character to remove (in the low byte).

To convert a program that was written for DVAOS to use the new drivers, the screen input buffer
must be increased in size to accomodate one more character per unprotected field and the read
request length must be increased accordingly. After the read completes, this routine should be
called to remove the Unit Separator characters (octal 37). For example:

bytelen = HpCrt Stri pChar (ibuf, bytelen, 37b)

At this point, the program can proceed as if DVAQS were still in use.

HpCrtStripCntris

This routine strips non-displayable characters from a string. It deletes all characters less than
blank (40b). When the control character is Escape (33b), it attempts to eliminate the rest of the
sequence as well.

newlen = HpCrt Stri pCntrl s(ibuf, bytelen)
fakestring = HpCrt Stri pCntrl s(ibuf, bytelen)

integer*2 ibuf(*),bytelen

where:
newlen if this routine is declard integer*2, it returns the length in the A-Register.
fakestring if this routine is declard integer*4, it returns a string descriptor in the A- and B-
Registers.
ibuf is the data buffer to be modified; modification is done in place.
bytelen is the number of characters to be passed into the routine.

See also HpCrtStripChar.

HpCrt Library Routines 12-31

HpCrtXMenu

This routine prints multiple character strings to an LU. Each string is printed by a separate
XLuEX call, in the same way as HpCrtXSendChar.

CALL HpCrt XMenu(lu, ' Ist line of menu’ ,

> ' 2nd line’
> ' 3rd line’
> " last line’)

The number of strings passed is unlimited, and either quoted strings (literals) or FTN7X character
variables can be passed.

Refer to the documentation for HpCrtXSendChar for a caution about certain printers.
The LU parameter is a double word value as is used in an XLuEx call.
See HpCrtXSendChar, HpCrtXReadChar, and HpCrtMenu.

HpCrtXReadChar

This function inputs directly from an LU into a character data type variable. As is usual for a
character data type, it will be blank filled if the user enters less data than the full length allowed.
The variable can be even or odd length and need not start on a word boundary. The input is done
via XREIO to facilitate swapping.

CALL HpCrt XReadChar (lu, charvariable, status, bytelen)

i nteger*2 [u(2), status, bytelen
character*(*) charvariable

where:

lu is the LU number, a double word value in the same format as an XLUEX call.
charvariable returns the data read from the terminal.
status returns status (A-Register).

bytelen returns status (B-Register).

The caller must set the bits in the CONWD (the second word of the lu parameter) in the same way
that they would be set in an XLUEX call; for example, bit 8 must be set to enable echo.

The status and bytelen variables returned are the A- and B-Register returns from the XREIO call,
which is done with the no-abort option. For normal call completion, the sign bit of the status will
be set and the low byte will have the usual I/O status bits, including the timeout bit in bit 1. The
bytelen will be valid. For an abnormal call completion, the status and bytelen (A and B) will
contain the ASCII error code, such as ’1013°.

See also HpCrtReadChar, HpCrtXSendChar, and HpCrtXMenu.

12-32 HpCrt Library Routines

HpCrtXSendChar

This routine calls XLUEX to print a FTN7X character variable or literal. It computes the word
address of the buffer and handles the case of a buffer starting on an odd byte boundary.

CALL HpCrt XSendChar (lu,’ characters to print’)
or
CALL HpCrt XSendChar (lu, character_variable)

where:

lu is the LU number used in the XLUEX call.

The caller must set the bits in the CONWD (the second word of the LU parameter) in the same
way that they would be set in an XLUEX call; for example, bit 10 must be set to inhibit the
Carriage Return and Line Feed that are normally appended to the buffer by the drivers.

Because EXEC and XLUEX calls can be done only from word (even byte) addresses, this routine
must handle the occasional odd byte case in a special way. The word which contains the first byte
of a specified buffer is saved inside the subroutine while the left byte is replaced by a null for the
duration of the EXEC call. After the EXEC call completes, the original contents of the word are
restored. The null byte does not display on terminals, so the user is not aware of the extra byte
preceeding the data. However, there are some devices, such as the HP 2608 Lineprinter, which do
print nulls. The programmer should be aware of this, especially when using the subroutine to
display substrings. The FORTRAN compiler does not produce odd byte addresses for character
literals. In fact, almost the only time that odd byte addresses are generated by FTN7X is for the
substrings mentioned above.

See also HpCrtXMenu and HpCrtXReadChar.

HpLowerCaseName

This subroutine changes the name of the program that calls it to the lowercase equivalent. Once
this is done, the program is safe from user commands entered through any of the standard RTE
user interfaces, as they all do upshifting. It is still possible to affect the program programmatically
because the EXEC calls themselves do not do casefolding. Note that the $SALIAS command is
required because this call is not .ENTR compatible.

$ALI AS HpLower CaseNane, DI RECT
CALL HpLower CaseName()

For example, if a program named “XYZ12” calls this routine, the ID segment name field is
altered to “xyz12”.

This routine should be called by any program which could adversely affect the system if it were
killed.

HpCrt Library Routines 12-33

HpRteA

This logical*2 function determines whether the calling program is running on an RTE-A system.
The method used is to read $OPSY and to check if it is in the range —33 to —128 as defined for
RTE-A. Note that the $ALIAS command is required because this routine is not .ENTR
compatible.

$ALI AS HpRt eA, DI RECT
| ogi cal *2 HpRt eA

IF (HpRteA()) THEN

CALL HpCrtSendChar(1,' This is an RTE-A systeni)
ELSE

CALL HpCrt SendChar (1, This is not an RTE-A systemi)
ENDI F

See also HpRte6.

HpRte6

This logical*2 function determines whether the calling program is running on an RTE-6/VM
system. The method used is to read $OPSY and check to see whether it is in the range —17 to
—28 as defined for RTE-6/VM. Note that the $ALIAS command is required because this routine
is not .ENTR compatible.

$ALI AS HpRt e6, DI RECT
| ogi cal *2 HpRt e6

I|F (HpRte6()) THEN

CALL HpCrt SendChar (1, ' This is an RTE-6 systeni)
ELSE

CALL HpCrt SendChar (1, This is not an RTE-6 systemni)
ENDI F

See also HpRteA.

12-34 HpCrt Library Routines

HpZ, Mini-Formatter

The mini-formatter is a set of routines designed to provide formatted text I/O for systems
programs. It can be called from FORTRAN in place of the FTN77 formatter, or from other
languages.

Certain routines manipulate the pointers so that you can “erase” output characters or back up to
re-parse input characters. You can even “clear” the line if you start building a line and then
discover that you do not need it. Some routines can be used to inquire about the current positions
of the pointers.

Because it was designed primarily for the systems programmer, it has much less extensive error
checking, and dispenses with support of floating point conversions entirely. Its advantages are that
it provides support for a wider range of representations, such as octal, hexadecimal, transparency
ASCII, mnemonic ASCII, and inverse assembly, as well as being much smaller and faster code. It
is more difficult to use, but provides greater flexibility.

How to Use the Mini-Formatter to Do Output

Call HpZDefOBuf to define the buffer that will be used by the mini-formatter. The buffer can be
of any size, but it is better to make it bigger than you think you will need (rather than smaller),
because the mini-formatter does no error checking when it adds characters to the output buffer
(you can overwrite your code!).

Now “write” data into the buffer from left to right, just as if you were writing on paper. Each
element of the line will require a call to one of the various format routines. The routine puts its
output into the output buffer at the current position indicated by an internal pointer and then
updates the pointer. Because the output line is being built in memory, you can use DO loops, IF
statements, or other control structures as needed to make the line look the way you desire. When
you have finished building a line, write it to a device, a file, or a buffer with the appropriate calls.
This action sets the internal pointer back to the start of the buffer so you can start building the
next line of output.

How to Use the Mini-Formatter to Do Input

After a line of input text is read from a device or a file, call HpZDefIbuf to tell the input routines
where the input text is located and the valid length. Then call the various parsing routines to
extract tokens from left to right as the internal pointer moves across the line.

Precautions

Because of the use of internal pointers and other related reasons, the routines HpZDefOBuf and
HpZDefIbuf must be called in the main at least once when the routines are used in a segmented

or CDS program. By the same token, the buffers should be either in the main, or in common, or
in SAVE address space so that they are available at all times.

It is very easy to add new output formats to this package, so if a format becomes too awkward to
do with individual calls, write a subroutine to accomplish the same task.

HpCrt Library Routines 12-35

A sample program:

Ftn7x,q, s

program sanpl e
inmplicit none

i nteger*2
Crt,

Par anet er,
Type,
Byt el en,

| pntr,

V V.V V V

>

| ndex

i nteger*2

> Qut put Buffer(0: 127),
> | nput Buf fer(0:127),
> Resul t (0:14)

vari abl es

LU of user’s term na

counter for nunber of paraneters
type of a paraneters

[ength of data in input
pointer to first byte of
followi ng “ru, sanple,”
do |l oop index for subparaneters

buffer
runstring

arrays
out put buffer for HpZ mni-formatter
i nput buffer for HpZ parse routines

buffer to receive parse results

processed

12-36

| ogi cal *2 I variabl es

> EndOF String I true when | ast paraneter

| ogi cal *2 I functions

> CGet RunStri ng, I true if NOrunstring

> HpZPar se I true if paranmeter parsed

dat a

> Ct 11/

cal | HpzDef OBuf (Qut put Buf f er) I initialize mni-formatter

if (GetRunString(lnputBuffer,
call HpCrtSendChar(Crt,’ No

el se
EndOF Strin
par anet er

g .fal se.

1

cal | HpzDef | buf (1 nput Buf f er

do while (HpzZParse(Result)

Cal |
Cal |
Cal |
Cal |

HpZmvs(’ Par anmeter #
HpZdecv(Par anet er)
HpZmvs(® type word
HpZWitelLu(Crt)

i bits(Result(0), 0,

Type

HpCrt Library Routines

—256, BytelLen, I pntr)) then
runstring provided)

, BytelLen, I pntr)

) I loop until all paraneters
I have been parsed
) I show par aneter nunber
") I and its type word
2) I extract type of 1st param

out put

call HpZnvs(' Subparaneter 1 = ")

if (type.eqg.3) then I'if ASCII,
call HpZmvc(Result(1), 8) I print as 8 al phabetic characters
el se
call HpzZdecv(Result(1)) I print as a numnera
endi f
call HpzWiteLu(Crt) I display it

type = Result(0)
do index = 9,14 I show t he renni ni ng subpar anet er
call HpZnvs(' Subparameter ')
call HpzZdecv(i ndex-7)
type = ishft(type, -2)
if (ibits(type,0,2).eq.3) then
call HpZnmvc(Result (index))

el se
call HpzZdecv(Result (index))
endi f
call HpzWiteLu(Crt)
enddo

call HpzWiteLu(Crt)
enddo

endi f
end

HpCrt Library Routines 12-37

HpZAscii64

This subroutine copies the characters from the given input buffer to the output buffer defined by a
prior call to HpZDefOBuf. As the characters are copied, they are examined to ensure that they
have values in the range 40b through 137b, the TTY compatible subset of the ASCII characters. If
the character is not in that range, the low byte of the replacement value given in the call is
substituted.

CALL HpZAsci i 64(ibuf, length, replacechar)

i nteger*2 ibuf(*), length, replacechar

where:
ibuf specifies the buffer containing the characters to be copied.
length specifies the length of the input buffer in bytes.

replacechar specifies the replacement value.

The output length will be the number of bytes specified in the call.

See also HpZAscii95, HpZAsciiHpEnh, and HpZAsciiMne3.

HpZAscii95

This subroutine copies the characters from the input buffer to the output buffer defined by a prior
call to HpZDefOBuf. As the characters are copied, they are examined to ensure that they have
values in the range from 40b through 176b, the printable subset of the ASCII characters. If the
character is not in that range, the low byte of the replacement value given in the call is substituted.

CALL HpZAsci i 95(ibuf, length, replacechar)

i nteger*2 ibuf(*), length, replacechar

where:
ibuf specifies the buffer containing the characters to be copied.
length specifies the length of the input buffer in bytes.

replacechar specifies the replacement value.

The output length will be the number of bytes specified in the call.

See also HpZAscii64, HpZAsciiHpEnh, and HpZAsciiMne3.

12-38 HpCrt Library Routines

HpZAsciiHpEnh

This subroutine copies characters from the input buffer to the output buffer defined by a prior call
to HpZDefOBuf. As the characters are copied, they are processed according to the following
algorithm:

o The character enhancement is set to none.

e [f the parity bit (bit 7) is set, underlining is turned on and 200b is subtracted from the
character.

e If the character is a control code (0..37b), inverse video is turned on and 100b is added to the
character.

e [f the character is 177b (Delete or rub-out), half bright inverse video is turned on and the
character is replaced by a blank.

The new enhancement generated by the process above is compared to the current enhancement
value as generated by preceeding characters; if different, the new enhancement is emitted. The
character as altered by the process above is emitted (it will be in the range 40b..176b).

After the last character is processed, if any video enhancement is currently in effect, the “Esc & d
@” sequence is appended to turn off all enhancements.

CALL HpZAsci i HpEnh(ibuf, length)

i nteger*2 ibuf(*), length

where:
ibuf specifies the buffer containing the characters to be displayed.
length specifies the number of bytes to output.

For an input string of N bytes, the output length will be in the range of N to 5N, so be sure to allow
sufficient space in the buffer that is declared by HpZDefOBuf. It is also a good idea to be aware
that enhancements are cancelled when the line wraps around on the CRT terminals, but retained
on the hardcopy terminal (HP 2635) and lineprinters. It is best to restrict the line to fewer than 80
displayable characters.

See also HpZAscii95, HpZAscii64, and HpZAsciiMne4.

HpCrt Library Routines 12-39

HpZAsciiMne3

This routine copies the characters in the input buffer into the output buffer defined by a previous
call to HpZDefOBuf. As each character is copied, it is examined to see if it falls in the 95
printable character subset of ASCII. If it does, it is copied without change, and two blanks are
appended. If it does not, the mnemonic for the control character is placed in the buffer instead.
Thus, three characters are output for each character of input.

CALL HpZAsci i Mhe3(buffer, count)

i nteger*2 buffer(*), count

where:
buffer specifies the input buffer containing the characters which are to be formatted.
count specifies the length of buffer in bytes.

The parity bit (bit 7 of each character) is masked by this routine.

For example, if the input contains:

040502b, 060542b, 034001b, 006412b, 077614b, 020040b

the output will be:

A B a b BelSohCr Lf Del Ff SpcSpc
See also HpZAsciiMne4, HpZAscii95, and HpZAsciiHpEnh.

12-40 HpCrt Library Routines

HpZAsciiMne4

This routine copies the characters in the input buffer into the output buffer defined by a previous
call to HpZDefOBuf. As each character is copied, it is examined to see if it falls in the 95
printable character subset of ASCII. If it does, it is copied without change and three blanks are
appended. If it does not, the mnemonic for the control character is placed in the buffer instead
and a single trailing blank is appended. Four characters are output for each character of input.

CALL HpZAsci i Mhe4(buffer, count)

i nteger*2 buffer(*), count

where:
buffer specifies the input buffer containing the characters which are to be formatted.
count specifies the length of buffer in bytes.

The parity bit (bit 7 of each character) is ignored by this routine.

For example, if the input contains:

040502b, 060542b, 034001b, 006412b, 077614b, 020040b
the output will be:

A B a b Bel Soh Cr Lf Del Ff Spc Spc
See also HpZAsciiMne3, HpZAscii95, and HpZAsciiHpEnh.

HpZBackSpacelbuf

This routine backs up the character pointer to the input buffer defined by a prior call to
HpZDeflIbuf.

CALL HpzZBackSpacel buf
See also HpZGetNextStrDsc and HpZGetNextToken.

HpCrt Library Routines 12-41

HpZBinc
This routine converts a number to binary. The output length is 1..15 bytes, as specified in the call.

CALL HpZBi nc(ivalue, numdigits)

i nt eger*2 ivalue, numdigits
where:

ivalue is the number to be converted to binary. It is stored into the output buffer defined
by a prior call to HpZDefOBuf.

numdigits is the number of digits to produce; must be in the range 1..15.

See also HpZBino.

HpZBino

This subroutine converts the passed value to its binary ASCII representation at the current
position in the output buffer defined by a prior call to HpZDefOBuf. The output length is 16
bytes.

CALL HpZBi no(ivalue)

i nteger*2 ivalue

HpZDeco

This subroutine stores the ASCII decimal representation of an integer*2 number at the current
position in the output buffer defined by a prior call to HpZDefOBuf. The output will be 6
characters wide with leading zeros and a leading blank or negative sign as required.

CALL HpzDeco(ivalue)

i nteger*2 ivalue
Examples: ' -00001', ’'-32768, ' 00005, ' 00000
See also HpZDecv, HpZDecc, HpZUdeco, HpZUdecv, and HpZDicv.

HpZDecv

This subroutine converts an integer*2 number into ASCII decimal representation, suppressing
leading zeroes. The conversion is done to the buffer defined by a prior call to HpZDefOBuf. The
output length is in the range of 1 to 6 bytes.

CALL HpzDecv(ivalue)
See also HpZDeco, HpZDecc, HpZUdeco, HpZUdecv, and HpZDicv.

12-42 HpCrt Library Routines

HpZDecc

This routine converts the given value to ASCII numerals at the current position in the output
buffer defined by a prior call to HpZDefOBuf. The conversion is to unsigned decimal constant
width format with either leading zeroes or leading blanks as specified by the sign of fieldwidth.
fieldwidth must be in the range 1..5 or —1..=5.

CALL HpZDecc(value, [-] fieldwidth)
i nt eger*2 value, fieldwidth

where:

value is the value to be represented in ASCII decimal.

fieldwidth is the minimum width of the output; it must be in the range 1..5 or —5..—1.

Examples:
call HpzZDecc(52,5) — ’'00052 call HpzDecc(52,-5) — '’ 52’
call HpZDecc(52,4) — ’'0052’ call HpzDecc(52,-4) — ' 52
call HpzZDecc(52,3) — ’'052 call HpzDecc(52,-3) — ' 52’
call HpzZDecc(52,2) — '52’ call HpzDecc(52,-2) — ’'52’
call HpzZDecc(52,1) — '2 call HpzDecc(52,-1) — ' 2’

See also HpZDecv, HpZDeco, HpZUDeco, and HpZUDecv.

HpZDeflBuf

This routine is used to declare the attributes of the input buffer that is referenced by the various
parsing routines such as HpZParse.

CALL HpZzDef | Buf (buffer, ilength, position)

i nteger*2 buffer(*), ilength, position

where:
buffer specifies the buffer where the string to be examined is located.
ilength specifies the number of valid characters in the input buffer.

position specifies the starting character position in the buffer. Zero indicates the first char-
acter (leftbyte of the first word).

This routine must be loaded with the main in a segmented or CDS program. The buffer should be
in the main, in common, or in SAVE address space.

See also HpZDefOBuf, HpZDParse, and HpZGetNextToken.

HpCrt Library Routines 12-43

HpZDeflString

This routine defines a string as the input for HpZ routines.

CALL HpzZDef | Stri ng(stringbuffer)

character*(*) stringbuffer

where:

stringbuffer is a character variable (or literal) that contains data to parse with the HpZ
routines.

See also HpZDefIBuf and HpZParse.

HpZDefOBuf

This routine defines the output buffer for the Mini-Formatter.

CALL HpZDef OBuf (workbuffer)
i nt eger *2 workbuffer(*)
where:

workbuffer is a buffer to receive the characters from the various formatting routines.

The work buffer should be in the main, in common, or in SAVE address space so that it is always
available.

See also HpZDefIBuf and HpZPushOBuf.

HpZDicv

This routine puts the ASCII decimal representation of a double integer value (integer*4) into the
output buffer previously defined by a call to HpZDefOBuf. The routine stores the minimum
representation, so no leading blanks or zeros will be produced. The output length will be from 1 to
11 bytes.

CALL HpZDi cv(ivalue)
i nteger*4 ivalue
where:

ivalue is the number to be converted to ASCII decimal representation.

See also HpZDecv.

12-44 HpCrt Library Routines

HpZDParse

This logical*2 function parses the next occurring token in the input buffer defined by a prior call to
HpZDeflIbuf.

| F (HpZDPar se(obuf, olength, ocount, type, offset)) THEN something was parsed ENDI F

i nteger*2 obuf(*), olength, ocount, type, offset
| ogi cal *2 HpZDPar se

where:

obuf is a buffer that holds the result of the parse. For maximum utility, equivalences
should be defined to allow access to obuf as integer*2 and integer*4 as well as an
integer array of characters.

olength is the number of characters allowed in obuf, must be at least 4.
ocount is the number of characters written to obuf, if type = 3.

type is a flag indicating the type of data found in the input buffer:

0 Null parameter

1 16-bit integer, signed or unsigned
2 32-bit integer, signed or unsigned
3 ASCII string

offset if non-zero, this parameter indicates the offset where a subparameter starts. The
input buffer can then be reparsed by another call to HpZDParse to retrieve the
next subparameter.

HpZDParse returns .TRUE. if something was found in the input buffer that could be parsed;
otherwise, .FALSE. is returned.

The parse is performed as follow:

e skips leading white space (blanks and tabs).
* ends on a comma, trailing white space, or the end of the buffer.
e defines a subparameter when it encounters a colon (:) or an equal sign (=).

When a subparameter is parsed, the offset is noted and the end of the parameter is then sought.
In this way the input buffer can be reparsed by another call to HpZDParse to retrieve the next
subparameter (or ignored).

To reparse, use the offset value as a parameter to the HpZIBufReset call.

HpCrt Library Routines 12-45

Examples:

Input
123
123b
0123z
0123zz
al23z
0al23z
123bb
foo::2

nt =8

277777b
1000000

Type Offset
Returned Returned
1

SO ODWOUNPIrOODODODODOO

1
1
3
3
1
3
3
0
1
3
1
2
2

Example program:

ftn7x,q,s

program pt est
inmplicit none

integer*2 ! variabl es
Type,

Byt eLen

Qut Len,

O fset

V V VYV

integer*2 ! arrays
> | buf (0:127),
> Obuf (0:127),
> Resul t (0: 39)

logical *2 ! variabl es
> More

logical *2 ! functions
> Get RunString,
> HpZDPar se

Interpretation

decimal 123

octal 123

hexadecimal 123

an alpha string ‘0123zz

an alpha string ‘a123z’
hexadecinal a123

an alpha string ‘123bb’

an alpha string ‘foo’
reparse yields a null
reparse yields decimal 2.
an alpha string ‘mt’
reparse yields decimal 8
double integer octal 277777 or decimal 98303
double integer one million

call HpzDef Gouf (Gouf)

if (GetRunString(lbuf,-256, ByteLen, Offset)) then
call HpCrtMenu(l, Nothing to parse!’)

12-46 HpCrt Library Routines

go to 9999
endi f

cal | HpzDef I buf (I buf, ByteLen, O f set)

Ofset =0
More = .true
do while (Mre)
if (Ofset.ne.0) then
call HpZnwvs(’® subparaneter ')
cal |l HpZl buf Reset (O f set)
endi f

More = HpzZDPar se(Resul t, 80, Qut Len, Type, O f set)

if (.not.More) then
call HpZnvs(’ End of buffer’)

el se
if (Type.eqg.0) then
call HpZnmvs(’ Null’)

elseif (Type.eq.1) then
call HpZnvs(’ Single Integer ")
call HpZdecv(Result (1))

elseif (Type.eq.3) then
call HpZnmvs(’ Ascii ')
call HpZmvc(Result(0), QutLen)

elseif (Type.eq.2) then
call HpZnvs(’ Doubl e Integer ")
call HpzZbDi cv(Result(0))

el se
call HpZnvs(’ HpZDParse defective,
call HpzZdecv(Type)

nmore = .fal se.
endi f
endi f
call HpzZWiteLu(1)

enddo
call HpzZWitelLu(1)

9999 end

See also HpZParse, NAMR, and HpZGetNextToken.

HpCrt Library Routines

type =)

12-47

HpZDumpBitMap

This routine is useful for debugging, to display a bit map. The bit map can contain up to 32,768
bits (8K words). The output consists of a display of the bit numbers in ASCII.

CALL HpZDunpBi t Map(lu, bitmap, lastbit[, width])
i nteger*2 lu, bitmap(*) , lastbit, width
where:

lu is the LU number of the output device. It must be in the range of 1 to 63.
bitmap is a variable length array containing the bit map.
lastbit is a one-word integer representing the last bit to be displayed.

width is an optional one-word integer representing the field width for the numbers as spe-
cified for HpZDecc. The default is 0 which specifies a variable width.

If a bit is set, the number will be displayed in inverse video. The bits in the map are numbered
from 0 to N, where the MSB (most significant bit) of the first word is bit 0.

For example, if the bit map buffer contains only one 16-bit number, 64703B, the output would look
like:

0123456789 10 11 12 13 14 15

Because the output of this routine uses the terminal escape sequences for inverse video, the output
device should be a terminal, not a printer.

This call uses the output buffer defined by a prior call to HpZDefOBuf as its work buffer. The
display lines are up to 79 displayable characters wide, but the invisible escape sequences which
turn inverse video on and off add to that to make the worst case line 230 characters total.
Therefore, the work buffer must be at least 115 words long.

See also HpZDefOBuf, HpZDumpBuffer, and SetBitMap.

12-48 HpCrt Library Routines

HpZDumpBuffer

This routine is useful for debugging, to dump a buffer in many different formats at once. It uses
the HpZ mini-formatter routines, so they must have been initialized by calling HpZDefOBuf with
a buffer of at least 80 words (160 characters).

CALL HpzZDunpBuf f er (crt, ibuf, wordlen[, format])

i nteger*2 crt, ibuf(*), wordlen, format

where:
crt is the LU number of the list device.
ibuf specifies the buffer to be displayed.

wordlen specifies the length of the buffer in words.

format is an optional parameter which specifies the display routines to be used to format
the data for printing. The bits are assigned the following meanings:

Bit Format Example
0 Decimal conversion 00001 00031 16737
1 Octal conversion 000001 000037 040541’
2 Hexadecimal conversion ' 0001 001F 4161’
3 ASCII mnemonics "Nul Soh Nul Us A a
4 ASCII 95 character subset ' Aa’
5 ASCII HP video enhancements ; @\ @) Aa’
6 Hexadecimal bytes ' 00 01 00 1F 41 e6Y
13..7 Reserved for future enhancements
14 Emit a blank line before and after the dump
15 Emit a blank line between 10-word groups

If format is not supplied, it defaults to 47b, which displays in decimal, octal, hexade-
cimal, and HP video ASCII.

See also HpZDeco, HpZOcto, HpZHexo, HpZHexc, HpZAsciiHpEnh, HpZAscii95, and
HpZAsciiMne3.

HpCrt Library Routines 12-49

HpZFieldDefine

This call issues up to three escape sequences to define a field in a block mode screen and
optionally set display enhancements.

CALL HpZFi el dDef i ne(onoff, fieldattribute)

i nt eger*2 onoff, fieldattribute
where:
onoff specifies the flag to define the field as protected or unprotected.

fieldattribute specifies two characters to define the edit checks and video enhancements for
the field.

Up to three escape sequences can be emitted by the routine.
For onoff = . True. the sequenceis “Esc] Esc & d

The character to be used for X’ is passed in the right byte of fieldattribute. Its value should be
chosen from the following:

i) 1

X

@A B CDEFGHI J KL MNDO
half bright X X X X X X X X
underline X X X X X X X X
inverse video X X X X X X X X
blinking X X X X X X X X
end enhancement X

If a blank is passed, the enhancement select escape sequence is suppressed so that only the
“Esc] 7 is emitted.

For onoff = . Fal se. the sequenceis “Esc & d 'x’ Esc '# Esc [”.

The right byte of fieldattribute selects X’, as described above with the addition of S to the possible
enhancements for security fields to inhibit the display of any characters.

The left byte of fieldattribute controls the second escape sequence and should be chosen from the
following set:

blank supress the escape sequence

"6’ start an alphabetic only field

e start a numeric only field

'8’ start an alphanumeric only field
Examples:

CALL HpZFi el dDefi ne(. True., 2h D)
CALL HpZFi el dDefi ne(. Fal se., 2h B)
CALL HpZFi el dDefi ne(. Fal se., 2h7J)

I protected field, underlined
I unprotected field, inverse video
I unprotected nuneric only field,
' in half intensity inverse video
CALL HpZFi el dDefine(. True.,2h @ !
CALL HpZFi el dDefine(. True., 2h) !

protected field, normal video
protected field

The output of the routine is to the current position in the HpZ output buffer declared in a prior
call to HpZDefOBuf. The maximum length of output is 8 characters.

12-50 HpCrt Library Routines

HpZFmpWrite

This subroutine writes the current contents of the buffer defined by a prior call to HpZDefOBuf to
the file specified. The current buffer pointer is then reset to the beginning of the buffer, thus
“erasing” the buffer. The length returned by the function call is the same as for an FmpWrite call.

CALL HpZFrmpW i t e(dcb, error)
length = HpZFnpW i t e(dcb, error)

i nteger*2 dcb(*), error, length, HoZFnmpW it e

where:
dcb specifies an open file Disk Control Block (DCB) as expected by an FmpWrite call.
error returns the error code.
length returns the number of bytes written to the file or a negative error code.

Before the write is performed, if the buffer currently ends on an odd byte, a blank will be put into
the right byte. This is because the file write occurs on word boundaries. The record length will
NOT be altered, so the length word in the file will not include the added blank.

If the buffer length is known to be less than 32,768 bytes, the following construct allows easier
error checking. HpZFmpWrite must be declared as logical*2 in this case:

| F (HpZFnpWite(dcb,error)) THEN
error_occurred
ENDI F

See also HpZWriteLu, HpZDefOBuf, HpZdecv, HpZMesss, and HpZWriteToString.

HpZGetNextChar HpZPeekNextChar

These logical*2 functions extract the next character from the input buffer defined by a prior call to
HpZDefIBuf. The character is returned in the right byte with a blank pad in the left byte.
HpZPeekNextChar differs from HpZGetNextChar in that it does not consume the character, that
is, the character is still the next character in the input buffer.

| F (HpZGet Next Char (ichar)) THEN no_characters ENDI F
| F (HpZPeekNext Char (ichar)) THEN no_characters ENDI F

i nteger*2 ichar
where:

ichar is a variable that receives the character from the buffer.

It is possible for no characters to be remaining in the input buffer, either because it was empty to
begin with or because all the characters have already been parsed. When this happens, this
function returns a —1 (. t rue. in both FORTRAN and Pascal) and ichar is set to null.

See also HpZGetNextStrDsc, HpZGetNextToken, and HpZBackSpacelbuf.

HpCrt Library Routines 12-51

HpZGetNextStrDsc

This integer*2 function builds a string descriptor for the next token in the input buffer defined by a
prior call to HpZDefIBuf. To find the token, the function skips leading blanks and tabs. The end
of the token is the first occurrence of a blank, a tab, a comma, or the end of the input buffer.

length = HpZGet Next St r Dsc(stringdescriptor)

i nteger*2 length
i nt eger *4 stringdescriptor

where:

length returns the number of characters in the token.

stringdescriptor returns the manufactured string descriptor.

The action of this routine is similar to that the StrDsc call and the same limitations apply. Refer
to “StrDsc” in this manual.

It is possible for no characters to be remaining in the input buffer, either because it was empty to
begin with or because all the tokens have already been parsed. When this happens, this function
builds a zero-length string descriptor and returns a value of zero. Because the FORTRAN
definition of a character string does not allow zero-length strings, it is the programmer’s
responsibility to check the function return to trap such cases. If this is not done, the FORTRAN
string handling routines will get a runtime error when they encounter the zero-length strings.

See also HpZGetNextToken, GetString, StrDsc, MinStrDsc, HpZParse, HpZDParse, and
HpZGetRemStrDsc.

HpZGetNextToken

This integer*2 function copies the next token in the input buffer defined by a prior call to
HpZDefIBuf to the output string. Tokens are delimited by either commas, blanks, tabs, or the end
of the input buffer. Leading blanks and tabs are skipped.

length = HpZGet Next Token(string)

i nteger*2 length
character*(*) string

where:
length returns the number of characters in the token.
string is the variable in which the token is returned.

It is possible for no characters to be remaining in the input buffer, either because it was empty to
begin with or because all the tokens have already been parsed. When this happens, this function
builds an empty string and returns a value of zero. It is the programmer’s responsibility to check
the function return to trap such cases. If this is not done, FORTRAN runtime errors will result.

See also HpZGetNextStrDsc, HpZParse, and HpZDParse.

12-52 HpCrt Library Routines

HpZGetNumD2 HpZGetNumO2 HpZGetNumB2
HpZGetNumD4 HpZGetNumO4 HpZGetNumB4

These logical*2 functions extract a signed or unsigned number from the input buffer defined by a
prior call to HpZDefIBuf. The number is converted to either a *2 or *4 integer as per the ending
routine number. The type of conversion is defined by the D (decimal), O (octal), or B (decimal
unless there is a B suffix, then octal) in the function name.

F (HpZGet NunD2(number)) THEN no_number ENDI F

I

| F (HpZGet NunO2(number)) THEN no_number ENDI F

| F (HpZGet NunB2(number)) THEN no_number ENDI F

| F (HpZGet NunD4(number)) THEN no_number ENDI F

| F (HpZGet Nun4(number)) THEN no_number ENDI F

| F (HpZGet NunB4(number)) THEN no_number ENDI F
where

number returns the converted number.
Declare as integer*2 when using HpZGetNumD2, HpZGetNumO?2, or HpZGetNumB?2.
Declare as integer*4 when using HpZGetNumD4, HpZGetNumO4, or HpZGetNumB4.

The routine returns true if a number is not found. In this case the next character available to Ibuf
routines will be the first nonblank character found in the conversion attempt. Leading blanks are
allowed in the number as well as a leading + or —. After the first nonblank character is found,
any non-numeric character is taken as the terminator. No blanks may be imbedded in the number
or between the sign and the number.

See also HpZParse, HpZGetNextToken, and HpZGetNextStrDsc.

HpCrt Library Routines 12-53

HpZGetNumStrDsc

This function returns a string descriptor for a signed or unsigned number, beginning at the current
position in the input buffer and ending just before first non-numeric after possible leading +/—
sign. Leading blanks are skipped. Blanks after the sign or first digit terminate the number. If no
number is present, a zero length is returned and the Ibuf pointer will point at the first nonblank
beyond where it started.

length = HpZGet Nunst r Dsc(StrDsc)

i nteger*2 length, HoZGet Nuntt r Dsc
i nt eger*4 StrDsc

or
StrDsc = HpZGet Nuntt r Dsc(StrDsc)

i nteger*4 StrDsc, HoZGet Nuntst r Dsc

where:

length is the length of the string when HpZGetNumStrDsc is declared as integer*2. length
is also returned in the A-Register.

StrDsc returns the string descriptor when HpZGetNumStrDsc is declared as integer*4.
StrDsc is also returned in the A- and B-Registers.

See also HpZGetNumD2, HpZGetNumD4, HpZGetNumO2, HpZGetNumO4, etc.

12-54 HpCrt Library Routines

HpZGetNumX

This routine converts digits to internal representation. It assumes that the actual conversion can
be done by a function (such as DecimalTolnt) that accepts a character string as the first parameter
and returns the result in A or A and B; and has a second parameter that is an error flag indicating
an error if not equal to zero. The conversion function is passed in along with an indicator of the
size of the result. It can handle any conversion of pure digits with a possible sign and either
integer*2 or integer*4 result.

EXTERNAL conversion (declare conversion function)
I F (HpZGet NumX(number, conversion, size) THEN

| ogi cal HpzZGet NunX
where:

conversion 1s the external conversion function.

number returns the conversion result. Declare as integer*?2 if size = —1, otherwise declare
as integer*4.

size indicates the size of the result. If size = —1, number is integer*2, otherwise number
is integer*4.

See also HpZGetNumD2, HpZGetNumO2, HpZGetNumB2, HpZGetNumD4, HpZGetNumO4,
and HpZGetNumB4.

HpCrt Library Routines 12-55

HpZGetRemStrDsc

Returns a string descriptor to the portion of the HpZ input buffer that has not yet been consumed
by the other HpZ calls such as HpZGetNextChar or HpZParse.

length = HpZGet Rentt r Dsc(StrDsc)

i nteger*2 length, HoZGet RentSt r Dsc
i nt eger*4 StrDsc

or
StrDsc = HpZGet Rentt r Dsc(StrDsc)

i nteger*4 StrDsc, HpZGet RentSt r Dsc

where:

length is the length of the string when HpZGetRemStrDsc is declared as integer™2. length
is also returned in the A-Register.

StrDsc returns the string descriptor when HpZGetRemStrDsc is declared as integer*4.
StrDsc is also returned in the A- and B-Registers.

It is possible for no characters to be remaining in the input buffer, either because it was empty to
begin with or because all the tokens have already been parsed. When this happens, this function
builds a zero-length string descriptor and returns a value of zero. Because the FORTRAN
definition of a character string does not allow zero-length strings, it is the programmer’s
responsibility to check the function return to trap such cases. If this is not done, the FORTRAN
string handling routines will get a runtime error when they encounter the zero-length strings.

See also HpZIBufUseStrDsc and HpZGetNextToken.

HpZHexc

This routine converts a number to hexadecimal. The output length will be 1 to 3 bytes, as specified
in the call.

CALL HpZHexc(ivalue, numdig)
i nteger*2 ivalue, numdig

where:

ivalue is the number to be converted to hexadecimal and is stored in the output buffer de-
fined by a prior HpZDefOBuf call.

numdig is the number of digits to produce; must be 1, 2, or 3.

See also HpZHexo.

12-56 HpCrt Library Routines

HpZHexi

This function parses hexadecimal ASCII integers from the HpZ input buffer defined by a prior call
to HpZDefIBuf. The conversion terminates when the buffer is exhausted, the max number of
characters are converted, or a character other than 0-9, A-F, or a-f is found. The current position
in the buffer is then updated. This routine ignores leading blanks, and does not count them in the

max limitation.

| F (HpZHexi (number| , max])) THEN
no_number_found
ENDI F

i nt eger*2 number, max
| ogi cal *2 HpZHexi

is the maximum number of characters to convert. max can be in the range of 1..4,

where:
number is the number found in the input buffer.
max
with the default value equal to 4.
Example:

Assume the input buffer ‘I buf * contains ‘Bl ar g,

CALL Hpzdef I buf (1 buf, 19, 0) !

Tenp = HpZGet Next Token(DString) !
if (HpZHexi (num 4)) then !

endi f

Tenp = HpZGet Next Token(DString) !

if (HpZHexi (num 2)) then !
endi f

! !
if (HpZHexi (num 4)) then !
endi f |

AOFE, F2BAAD.

decl are input buffer

parse 'Blarg’ and consune
trailing conmmas

parse up to 4 hex characters
code to handle parse failure

in this exanple, the parse succeeds
with 'numi = OxXAOFE (41214 decimal);
the | eadi ng bl ank is skipped, but
the trailing comma is NOT consuned

consune the trailing comua
Temp will be O

parse only 2 hex characters this
time

"num will be OxF2 (242 decimal);
the | eadi ng bl ank is skipped
parse remaining 4 characters

"num wll be OxBAAD (47789 decimal)

See also HpZParse, HpZGetNextToken, and HpZGetNextChar.

HpCrt Library Routines 12-57

HpZHexo

This subroutine stores the ASCII hexadecimal representation of a number into the current
position in the output buffer that was defined by a prior call to HpZDefOBuf. The output is 4
characters wide with leading zeros.

CALL HpZHexo(ival)

i nteger*2 ival
Examples: ' 00A5’, ' FFFF , ’'8000°, ' 0000’

See also HpZHexc and HpZDeco.

HpZiBufRemain

This integer*2 function returns the number of bytes remaining from the current position to the
end of the input buffer defined by a prior call to HpZDefIBuf.

count = HpZl Buf Rermai n()

i nteger*2 count, HpZl Buf Rermai n
See also HpZIBufUsed.

HpZiBufReset

This subroutine resets the current input position to the start of the input buffer defined by a prior
call to HpZDefIBuf. Optionally, the position can be set to a value passed in by the caller.

CALL HpZl Buf Reset ([position])
i nt eger*2 position
where:

position is an optional parameter to specify the new pointer position, where 0 equals the
start of the buffer.

HpZIBufUsed

This integer*2 function returns the current byte offset in the input buffer defined by a prior call to
HpZDefIBuf. It can be used to see how much of the HpZ input buffer has been parsed.

count = HpZl Buf Used()

i nteger*2 count, HpZl Buf Used
See also HpZIBufRemain.

12-58 HpCrt Library Routines

HpZIBufUseStrDsc

Returns a string descriptor for the portion of the input buffer (as defined by a call to HpZDeflIbuf)
that has already been passed over. This is useful if it is desired to output the buffer to the current
position as part of an error message.

length = HpZl Buf UseSt r Dsc(StrDsc)

i nteger*2 length, HpZl Buf UseSt r Dsc
i nt eger*4 StrDsc

or

StrDsc = HpZl Buf UseSt r Dsc(StrDsc)
i nt eger*4 StrDsc, HpZI Buf UseSt r Dsc

where:

length is the length of the string when HpZIBufUseStrDsc is declared as integer*2. length
is also returned in the A-Register.

StrDsc returns the string descriptor when HpZIBufUseStrDsc is declared as integer*4.
StrDsc is also returned in the A- and B-Registers.

It is possible for no characters to be remaining in the input buffer, either because it was empty to
begin with or because all the tokens have already been parsed. When this happens, this function
builds a zero-length string descriptor and returns a value of zero. Because the FORTRAN
definition of a character string does not allow zero-length strings, it is the programmer’s
responsibility to check the function return to trap such cases. If this is not done, the FORTRAN
string handling routines will get a runtime error when they encounter the zero-length strings.

See also HpZGetRemStrDsc.

HpCrt Library Routines 12-59

HpZinsertAtFront

This routine inserts the given data in front of the data that is currently in the buffer defined by a
prior call to HpZDefOBuf.

CALL HpZl nsert At Fr ont (buffer, numchars)

i nt eger*2 buffer(*) , numchars

where:

buffer is the data to be copied into the buffer previously defined by HpZDefOBuf.

numchars is the number of characters to copy.

For example, suppose that the current contents of the output buffer is “abcdef ”.

call HpZl nsert At Front (2h* | 2) I stuff "* ’ into output

The contents will now be “* abcdef ” and the output buffer pointers will be updated accordingly.

HpZmbt

This routine copies the indicated bytes from a buffer to the current position in the output buffer
defined by a prior call to HpZDefOBuf. offset = 0 describes the first byte in the buffer.

CALL HpZnbt (buffer, offset, bytes)
i nteger*2 buffer(*), offset, bytes
where:
buffer is a packed array containing the bytes to be copied.

offset is the offset into the buffer (previously defined by HpZDefOBuf) for the first byte
to be copied.

bytes is the number of bytes to copy.

See also HpZmvc, HpZmvs, and HpZsbt.

12-60 HpCrt Library Routines

HpZMesss

This function delivers a command to the operating system’s operator interface section. Any
system command can be given. If the system returns a reply message, it does so into the HpZ
buffer and this routine sets the pointers accordingly. If not, the pointers will be reset just as if
HpZWriteLu had been called. Note that HpZDefOBuf must have been called with a buffer at
least 72 bytes long.

length = HpZMesss([u])

i nteger*2 length, lu, HoZMesss

where:
length is the number of bytes in the message returned from the operating system, if any.
lu is an optional LU number used to form the session number if the command is an

“RU” Or “XQ”‘
Example program:
ftn7x,q,s

program hpznessst est
inmplicit none

integer*2 ! variabl es
> obuf (0: 39),
> tenp

integer*2 ! functions
> HpZMesss

cal | HpzDef CBuf (Oouf)
call HpZnvs('TM)
Tenp = HpZnesss()
if (Tenp.ne.0) then

call HpZnvs(’® <=== tinme from HpZMesss call’)
call HpzZWitelLu(1)

endi f

end

See also HpZInsertAtFront, HpZWriteLu, and Messs.

HpCrt Library Routines 12-61

HpZMoveString

This routine copies strings without FORTRAN limitations. This routine does the same thing as
the FORTRAN statement “fo = from”; where to and from are strings.

CALL HpZMoveSt ri ng(from, to)

character*(*) from, to

where:
from is the “from” string descriptor.
to is the “to” string descriptor.

FORTRAN does not allow the “to = from” construct if the strings are manufactured string
descriptors, such as the output from StrDsc, which are really type Integer*4. This routine also
handles zero-length strings. The destination string is blank padded in the usual manner.

This routine does not do overlap checking. It moves from low to high, so that you can ripple fill.
Note that this routine does NOT use the HpZ mini-formatter input or output buffers.
See also ConCat and GetString.

HpZmvc

This routine copies characters from an integer buffer to the current position in the output array
defined by a prior call to HpZDefOBuf.

CALL HpZnvc(buffer, numchar)

i nteger*2 buffer(*), numchar
where:

buffer is the buffer to be copied.

numchar is the number of characters in buffer.

For an input buffer of n bytes, the output length will be n bytes.
See also HpZmvs, HpZsbt, HpZmbt, and HpZInsertAtFront.

12-62 HpCrt Library Routines

HpZmvs

This routine copies a string to the current position in the output array defined by a prior call to
HpZDefOBuf.

CALL HpZnmvs(’ string to nove’)
or
CALL HpZnwvs(string variable)

where:
string to nove is a literal data string to move.

string_variable is a variable declared as a character string that contains the string to
move.

For an input string of n bytes, the output length will be n bytes.

Note that it is less efficient, both in time and space, to use string concatenation before calling
HpZmvs.

For example,

Strl = "String nunber 1’
Str2 = 'String nunber 2’

call HpzZmvs(Str1)
call HpZnvs(Str?2)

is preferable to

call HpZnvs(Strl//Str?2)

See also HpZmvs_Escape, HpZmvs_Control, HpZmvc, and HpZsbt.

HpCrt Library Routines 12-63

HpZmvs_Control

This call moves the string passed by the user to the current position in the output buffer defined by
a prior call to HpZDefOBuf. As the string is copied, the underscore character (octal 137) is
interpreted to mean that the next character should be altered by subtracting 100 octal (modulo 200
octal). The uppercase portion of the ASCII character set (octal 100..137) will be downshifted to
the control portion (octal 0..37), and “delete” (octal 177) will be produced by * _?" .

This call is very useful to generate control characters that cannot be manipulated by the editor or
language compilers.

CALL HpZnvs_Contr ol (charvariable)
or
CALL HpZnvs_Control (' _M[&JB Inverse _[&J@ Non-inverse _L’)

For an input string of n bytes, the output length will be in the range of n/2 to n.

_@==> Nul _A ==> Soh _B ==> Stx _C ==> Etx
_D ==> Eot _E ==> Enq _F ==> Ack _G ==> Bel
_H ==> Bs | ==> Tab J ==> Lf K ==> Wt

L ==> Ff M= C N ==> So 0 ==> Si

P ==>De _Q ==> Dcl R ==> Dc2 S ==> Dc3
T ==> Dc4 _U ==> Nak _V ==> Syn _W==> Etb
_X ==> Can _Y ==> Em _Z ==> Sub [==> Esc
\ ==> Fs] ==> Gs N ==> Rs __==> Us

? ==> Del

See also HpZmvs, HpZmvs_Escape, and HpZDefOBuf.

12-64 HpCrt Library Routines

HpZmvs_Escape

This call moves the string passed by the user to the current position in the output buffer defined by
a prior call to HpZDefOBuf. As the string is copied, the underscore character (octal 137) is
replaced by an escape character (octal 33). This call is useful for generating the escape sequences
needed to control HP terminals that are difficult to manipulate with the editor. Note that the
character following an underscore is not examined, therefore “__” is translated to escape
underscore.

CALL HpZnvs_Escape(charvariable)
or
CALL HpZnmvs_Escape(’ _&IB I nverse _&JI@ Non-inverse’)

An example string to perform: memory lock off
home up
clear screen
turn on inverse video
address the cursor to line 24, column 12

is:

CALL HpZnvs_Escape(’' _mH J &JIB a24r12C)
For an input string of n bytes, the output length is n bytes.
See also HpZmvs, HpZmvs_Control, and HpZDefOBuf.

HpZmvs_Large

This subroutine creates large characters in a 3-by-3 character cell using line segments (nine
character segments) in the HP 264x alternate character set. An example of constructing the letter
“B” using the large character set is as follows:

” &+

- B o

F&L where B is constructed of
the following segments

If your terminal does not reproduce the above characters as a large letter “B”, it is not capable of
producing the large character set. This capability is standard on some terminals, and optional or
unavailable on others.

Example program segment:

cal | HpzDef OBuf (Gouf)
call HpzZStartLarge

make it Bl G each char needs 26 bytes
must call at start of each “line” of
large letters (emts 18 bytes)

emt |large characters

must call to termnate |ine

(emts 5 bytes)

flush the buffer

call HpZnvs_Large(’ String')
call HpZEndLar ge

call HpzWiteLu(Crt)

HpCrt Library Routines 12-65

HpZNIsMvs

This routine moves an NLS string to the HpZ output buffer. Prior to this call, initialization calls to
HpZNIsSubset and HpZDefOBuf must have been issued.

CALL HpZN sMs(stringnumber)
i nt eger*2 stringnumber
where:

stringnumber is the index number of the string to be moved.

When used with HpZNIsSubset, the index number of the string must be in the range 0 to n, where
n is the last message number in the catalog.

See also HpZNIsSubset and HpZDefOBuf.

HpZNIsSubset

This routine sets up the linkage from NLS to HpZ routines. It allows access to the binary
relocatable module that is the output of the GENCAT program.

CALL HpZN sSubset (modulename)

This routine implements only a restricted subset of the NLS features in that it assumes that the
messages in the catalog are numbered from 0 to n with no skipped values.

See also HpCrtNIsMenu and HpZNIsMvs.

HpZOBufReset

This subroutine resets the current position to the start of the output buffer defined by a prior call
to HpZDefOBuf. Optionally, the position can be set to the value passed in by the caller.

CALL HpZOBuf Reset ([position])
i nt eger*2 position
where:

position is an optional parameter that specifies the new pointer position, where 0 equals the
start of the buffer.

12-66 HpCrt Library Routines

HpZOBufUsed

This integer*2 function returns the current byte offset in the output buffer defined by a prior call
to HpZDefOBuf.

count = HpZOBuf Used()

i nteger*2 count, HoZOBuf Used

HpZOBufUseStrDsc

This integer*2 function returns the current byte offset in the output buffer defined by a prior call
to HpZDefOBuf.

length = HpZOBuf UseSt r Dsc(StrDsc)

i nteger*2 length, HoZOBuf UseSt r Dsc
i nt eger*4 StrDsc

or
StrDsc = HpZOBuf UseSt r Dsc(StrDsc)
i nteger*4 StrDsc, HhZOBuf UseSt r Dsc
where:

length is the length of the string when HpZOBufUseStrDsc is declared as integer*2.
length is also returned in the A-Register.

StrDsc is an optional variable that returns the manufactured string descriptor for the filled
portion of the HpZ output buffer when HpZOBufUseStrDsc is declared as inte-
ger*4. StrDsc is also returned in the A- and B-Registers.

It is possible for no characters to be remaining in the input buffer, either because it was empty to
begin with or because all the tokens have already been parsed. When this happens, this function
builds a zero-length string descriptor and returns a value of zero. Because the FORTRAN
definition of a character string does not allow zero-length strings, it is the programmer’s
responsibility to check the function return to trap such cases. If this is not done, the FORTRAN
string handling routines will get a runtime error when they encounter the zero-length strings.

HpCrt Library Routines 12-67

HpZOctc

This routine converts the passed value to its octal ASCII representation at the current position in
the output buffer defined by a prior call to HpZDefOBuf.

CALL HpZCct c(ivalue, numdigits)
i nt eger*2 ivalue, numdigits
where:

ivalue is the number to be converted to octal and is stored in the output buffer defined by
a prior HpZDefOBuf call.

numdigits is the number of digits to produce, must be in the range 1..5.

The output length will be 1 to 5 bytes, as specified in the call.
See also HpZOctv and HpZOcto.

HpZOctd

This routine converts the given double integer value to its octal representation. The result will be
stored at the current position in the output buffer defined by a prior call to HpZDefOBuf.

CALL HpZCct d(value)

i nteger*4 value

where:

value is the number to be converted to octal.

The output will be eleven characters wide with leading zeros as needed.

Examples:
0 — 00000000000
-1 — 37777777777
255 — 00000000377
65535 — 00000177777
8640000 — 00040753000
2147483647 — 17777777777

12-68 HpCrt Library Routines

HpZOcto

This subroutine converts the passed value to its octal ASCII representation at the current position
in the output buffer defined by a prior call to HpZDefOBuf.

CALL HpZCct o(value)

i nteger*2 value

where:
value is the number to be converted to octal ASCII representation.

The output length will be 6 bytes.
See also HpZOctv and HpZOctc.

HpZOctv

This routine converts the passed value to its octal ASCII representation at the current position in
the output buffer defined by a prior call to HpZDefOBuf.

CALL HpZCct v(value)

i nteger*2 value

where:
value is the number to be converted to octal suppressing leading zeros. The result will be
stored at the current position in the output buffer defined by a previous call to
HpZDefOBuf.

The output length will be from 1 to 6 bytes.
See also HpZOctc and HpZOcto.

HpCrt Library Routines 12-69

HpZPadToCount

This subroutine puts the specified number of blanks at the current position in the output buffer
defined by a prior call to HpZDefOBuf.

CALL HpzZPadToCount (numblanks)
i nt eger*2 numblanks
where:

numblanks is the variable or constant indicating the number of blanks to output.

The output length will be the number of bytes specified in the call.
See also HpZPadToPosition.

HpZPadToPosition

This subroutine puts blanks into the output buffer defined by a prior call to HpZDefOBuf until the
desired position is reached. The first character position in the buffer is position zero. Note that
HP terminals also number rows and columns starting from 0. If the current position in the buffer
is greater than or equal to the desired position, no blanks are emitted.

CALL HpZPadToPosi ti on(position)
i nt eger*2 position
where:

position is the variable or constant indicating the desired position in the buffer.

The output length will be in the range from zero to position —1 bytes.

For example:

call HpZsbt(2h *)
call HpzPadToPosition(6)
call HpZsbt(2h *)

would put
1 % * 1
0123456

in the buffer.
See also HpZPadToCount.

12-70 HpCrt Library Routines

HpZParse

This is a parse routine for 16-character parameters.

| F (HpZPar se(result)) THEN
parse succeeded
ENDI F

i nteger*2 result(15)
| ogi cal *2 HpZPar se

where:

result returns the result of parsing the contents of the buffer defined by a prior call to
HpZDefIBuf. The parse starts at the current position in the buffer, extracts a pa-
rameter (possibly with subparameters) then updates the current position in the
buffer. Multiple calls to HpZParse can be made to parse successive parameters.

Parsing rules:

Parameters (a namr) are separated by commas (', ') or spaces (").
Subparameters (name, scode, etc) are separated by colons (" :’) or equal signs (" =").

Leading negative signs of numeric arguments are significant, but are just another character for
alphabetic arguments.

Octal numeric constants can be expressed with a B suffix.

Anything that has a non-numeric character in it is assumed to be alpha, except for the B suffix
for octal.

Contents of result after a call:

word 1 — aflag word, see below for explanation

word2 — a numeric value if the first subparameter is numeric, or the first 2 ASCII
characters of a name if alphabetic

word 3 — 0 or characters 3 & 4 of a name

word4 — 0 or characters 5 & 6

word5 — 0 or characters 7 & 8

word 6 — 0 or characters 9 & 10

word 7 — 0 or characters 11 & 12

word 8 — 0 or characters 13 & 14

word9 — 0 or characters 15 & 16

word 10— the second subparameter (security code)

word 11— the third subparameter (cartridge reference number)

word 12— the fourth subparameter (file type)

word 13— the fifth subparameter (file size in blocks)

word 14 — the sixth subparameter (record length)

word 15 — the seventh subparameter (DS node number)

Words 2 through 9 default to blanks for alphabetic characters or null for numeric.

HpCrt Library Routines 12-71

Example:

&SCOURCE_FI LE_NAME: 1: 40: 2: 200: 1000, 6

1122 File=Fred: AT: AT T7::

will be parsed into the following arrays in 5 successive calls:

OCoO~NOUITRWNE

RPRRRRE
GORWNRO

First Second Third Fourth Fifth
02527B 000001B 000010B 000377B 000603B
&S 6 0 Fi T7

QU 0 0 l e 2 bl anks
RC 0 0 2 bl anks 2 bl anks
E 0 0 2 bl anks 2 bl anks
Fl 0 0 2 bl anks 2 bl anks
LE 0 0 2 bl anks 2 bl anks
N 0 0 2 bl anks 2 bl anks
AM 0 0 2 bl anks 2 bl anks
00001 O 0 Fr 0

00040 O 00022 AT 00022
00002 O 0 AT 0

00200 O 0 0 0

01000 O 0 0 0

0 0 0 0 0

<«—call

<— flag word
|

name
or
numeric
value

scode
crn
type
bl ks
recl en
node#

22

The flag word contains a bit pattern to describe the type of each of the subparameters, with bits 0
and 1 for the name, 2 and 3 for the scode, and so on, where:

00
01
10
11

not used

null, no parameter supplied (this is not the same as a zero)
numeric, a decimal, or octal constant (zero is numeric, :0:)

an ASCII value, stored 2 bytes per word, left justified, blank filled

See also NAMR, PARSE, INAMR, HpZReScan, and HpZDParse.

12-72

HpCrt Library Routines

HpZPlural

This routine conditionally makes a string plural depending upon a count. This routine emits an

192

s” to the HpZ output buffer if the given count is not equal to 1. Thus it follows the English
language rules about forming most plurals.

CALL HpZPI ur al (count)

i nteger*2 count

where:
count indicates whether or not to emit an “s”. If count = 1, an “s” is NOT emitted,
otherwise an “s” is emitted.
Example:
ErrorCount = 0 ErrorCount =1
call Hpzdecv(ErrorCount) — 0 "
call HpZnmvs(' Error’) — "0 error’ "1 error’
call Hpzpl ural (ErrorCount) — "0 errors’ "1 error’
call HpzZnmvs(' detected’) — "0 errors detected’ "1 error detected

HpCrt Library Routines 12-73

HpZPrintPort

This routine displays the port status (using a special status read) of port_lu to display lu. If port_lu
is equal to 1, this routine converts it to the true LU number. It verifies that the LU is not locked,
not down, and not busy. If it is, a message is output to the calling LU. Before calling this routine,
you must call HpZDefOBuf with a buffer of at least 80 words (160 characters).

CALL HpZPri nt Port (port_lu, display lu, waitflag)
i nteger*2 port_lu, display lu, waitflag
where:

port_lu is the LU number of the port to display (in the range 1..255) in the format of the
first word of the XLUEX control word.

display_lu is the LU number of the display LU (in the range 1..255) in the format of the first
word of the XLUEX control word. If it is not in the valid range, it will default to
the call LU.

waitflag specifies whether to get real or “fake” status in the event that port_lu is busy. If
waitflag is 0, the true status is displayed. If waitflag is nonzero, a call to
FakeSpStatus is made. See the FakeSpStatus section earlier in this chapter.

This subroutine is designed to be a simple addition to a program such as:

Ft n7x, |
program HpCrt
i nt eger paranms(5), obuf (0:79)
call rnpar (parans)
cal | HpzDef OBuf (Gouf)
call HpZPrintPort (parans(1l), parans(2), parans(3))
end

The resulting display is similar to the following:

Status for LU 32:

Devi ce Driver: DDC01 Rev. 5.00 Driver type = 05
Interface Driver: 1D800 Rev. 5.00
Fi r mnar e: Rev. 4.10
CN20: Primary Program PROMI (Enabl ed)
CN40: Secondary Program (Di sabl ed)

CN17: 000000B No user defined term nator

CN22: 32767 Tinmeout = 327.39 seconds

CN30: 010132B Frane=8/1 No par. BRGL 9600 baud Port 2
CN31: 000000B

CN33: 000000B

CN34: 000002B ENQ ACK Prot ocol

DV20: 000077B Character node

DVT Address: 44227B; |FT Address: 47203B

12-74 HpCrt Library Routines

HpZPushObuf and HpZPopObuf

Declare a new output buffer for the HpZ mini-formatter routines, pushing the old one.

cal | HpZPushQouf (NewObuf)

i nteger*2 NewObuf(*)
where:

NewObuf is a buffer to receive the characters from the various formatting routines

The NewObuf parameter should be in the main, in common, or in SAVE address space so that it is
always available. Also, it should be large enough to accomodate the expected output, as the HpZ
output routines do not perform limit checks.

This call is used to declare a new output buffer for the HpZ mini-formatter routines. It pushes the
declaration of the output buffer currently in use, if any, into the first two words of the buffer
provided in the call. The call is legal even if it is not preceeded by a call to HpZDefObuf, so it is
useful for system routines in which you are not sure if the user is calling the HpZ library or not.

The HpZPopObuf routine is the inverse of HpZPushObuf.

HpCrt Library Routines 12-75

HpZQandA

This subroutine allows the user to ask a question and read a reply. The question is written in
transparency mode to keep the cursor on the prompt line. The reply is read with REIO, with echo
enabled.

CALL HpZQandA(lu, prompt, ibuf, ilength, status, length)

i nteger*2 lu, ibuf(*), ilength, status, length
character*(*) prompt

where:
lu is the LU number of the user’s CRT.

prompt is the prompt string to be issued to the user. The cursor remains on the same line.

ibuf returns the reply buffer.

ilength is the size of the input buffer (positive number of words or negative number of
characters).

status is the status word returned from the driver after the read is completed. Refer to

the driver reference manual for the driver you are using for a definition of the bits
in the status word.

length returns the number of bytes in the user’s reply.

In most cases, this routine should be followed by a call to upshift the reply.
Note that this routine does NOT use the HpZ mini-formatter input or output buffers.
See also HpZYesOrNo, HpCrtSendChar, and HpCrtGetChar.

HpZReScan

This subroutine resets the internal pointers used by the HpZ parse routines to the start of the
second subparameter preceeding the current position in the buffer defined by a prior call to
HpZDefIbuf. This is useful so that constructs such as’ Fi | e=Dat a: : 20’ can be reparsed after
the’ Fi | e=" isrecognized to extract the ' Dat a: : 20’ portion of the string.

CALL HpZReScan()
See also HpZParse and HpZIbufReset.

12-76 HpCrt Library Routines

HpZRomanNumeral

This routine places the Roman numeral equivalent for the given value at the current position in
the output buffer defined by a prior call to HpZDefOBuf.

CALL HpZRomanNuner al (value, case)

i nt eger *2 value, case

where:
value is the value to be output in Roman numerals.
case is a flag to indicate uppercase or lowercase output. If case is 0, output will be up-
percase; if case is nonzero, output will be lowercase.
Note The Roman numeral system does not provide for a zero or for negative num-

bers. This implementation is limited to a maximum input value of 3999. If a
number outside the range 1 to 3999 is passed to this routine, it will pass it on to
HpZdecv for display as a decimal number.

The minimum output emitted is 1 character and the maximum is 15 characters for the value 3888
(MMWDCCCLXXXVI I'1) .

The values used are:

1

5

10
50
100
500
1000

SO0 X< ™

A lower value number to the left subtracts, (for example, ix = 9). A number to the right adds (for
example, xii = 12).

HpCrt Library Routines 12-77

HpZsbt

This routine stores the lower byte of the passed value into the current position defined by a prior
call to HpZDefOBuf.

CALL HpZsbt (value)
i nteger*2 value
where:

value is the variable or constant whose lower byte is to be stored.

The output length is one byte.

Example:
CALL HpZsbt (7) ' Put an ASCI| 'BELL' in the output buffer.

See also HpZmvc.

HpZStripBlanks

This routine adjusts the internal pointer to the output buffer for the HpZ routines to “erase”
trailing blanks before calling HpZWriteLu, HpZFmpWrite, or any of the other routines that flush
the output buffer. See HpZ.

CALL HpzStri pBl anks

HpZUdeco

This subroutine stores the unsigned decimal representation of a number at the current position in
the output buffer defined by a prior call to HpZDefOBuf.

CALL HpzZUdeco(ivalue)
i nteger*2 ivalue
where:

value is the number to be stored.

The output will be 5 characters wide with leading zeros as required.
Examples: ' 65536’ , ’'32768, ’'00005, ’00000’
See also HpZUdecv and HpZDecc.

12-78 HpCrt Library Routines

HpZUdecv

This subroutine converts a number into unsigned decimal representation, suppressing leading
zeros. The conversion is done to the buffer defined by a prior call to HpZDefOBuf.

CALL HpzUdecv (ivalue)

i nt eger*2 ivalue

The output length will be in the range of 1 to 6 bytes.
See also HpZDeco.

HpZWriteExec14

Perform an EXEC 14 call from the HpZ mini-formatter buffer.
call HpzZWiteExecld

This routine writes the current contents of the HpZ output buffer to the parent process via an
EXEC 14 call. Just as in an HpZWriteLu call, the buffer pointers are reset to clear the buffer.

HpZWriteLU

This subroutine writes the current contents of the output buffer defined by a prior call to
HpZDefOBuf to the LU specified. The current buffer pointer is then reset to the beginning of the
buffer. The write is done with an EXEC call so the LU must be in the range 0 to 63.

CALL HpZWit eLu(lu)

i nteger*2 lu

See also HpZWriteXLU, HpZFmpWrite, HpZDefOBuf, HpZDecv, HpZMesss, and
HpZWriteToString.

HpZWriteXLU

This subroutine writes the current contents of the output buffer defined by a prior call to
HpZDefOBuf to the LU specified. The current buffer pointer is then reset to the beginning of the
buffer. The write is done with an XLUEX call so the LU can be greater than 63. The LU
parameter should be a double word in the form expected by XLUEX.

CALL HpZW i t eXLu(lu)

i nteger*2 lu

See also HpZFmpWrite, HpZDefOBuf, and HpZDecv.

HpCrt Library Routines 12-79

HpZWriteToString

This routine copies the contents of the HpZ output buffer to a string. The output string will be
padded with blanks, as necessary.

length = HpZWiteToStri ng(string)

i nteger*2 length
character*(*) string

where:
length is the number of bytes moved to string; it will be the minimum of the string length
and the occupied length of HpZ output buffer.
string is the string that receives the current contents of the HpZ output buffer.

It is possible for no characters to be remaining in the input buffer, either because it was empty to
begin with or because all the tokens have already been parsed. When this happens, this function
builds a zero-length string descriptor and returns a value of zero. Because the FORTRAN
definition of a character string does not allow zero-length strings, it is the programmer’s
responsibility to check the function return to trap such cases. If this is not done, the FORTRAN
string handling routines will get a runtime error when they encounter the zero-length strings.

See also HpZWriteLU, HpZFmpWrite, HpZOBufStrDsc, and HpZMesss.

HpZYesOrNo

This routine is used to ask questions which are to be answered with a yes or no response only. The
cursor remains on the prompt line after the question. The answer is read with XREIO, with echo
enabled. The user can answer the prompt with any of [y ye Ye YE yE n no No NO nO], any other
string that starts with those characters, or a carriage return by itself.

I F (HpZYesOr No(crt, prompt, ians)) THEN answer_was yes ENDI F

i nteger*2 crt, ians
character*(*) prompt
| ogi cal *2 HpZYesOr No

ians = 2hNO (set default answer to NO; must be all uppercase)
where:
crt is the LU number of the user’s terminal (in the range 1..255).

prompt is the prompt string for the user.

12-80 HpCrt Library Routines

ians returns the user’s answer to the question, if entered (that is, the user did not hit
return). By setting ians before the call, you can control the action that occurs when
the user types only a carriage return.

initial value resulting action if user
for ians hits carriage return only
2hYE function returns . t r ue.
2hNO function returns . f al se.
anything else the user is forced to type a yes or no response;

function will be . t rue. or.fal se. accordingly

In all cases, ians contains either 2h'YE or 2hNO after the call completes, even if the
user typed a lowercase answer. The question is repeated if the read times out.

Caution Do not pass a constant for the ians parameter because it is altered by the
HpZYesOrNo call. For example, do not do the following:

if (HpzZYesOr No(Crt, pronpt’, 2hYE) then

To make it obvious to the user what the defaults are, the prompt string can contain escape
sequences to display the default answer in inverse video. The cursor can then be positioned back
on the default so it will be overwritten if the user does not want the default value. For example:

ians = 2hYE
if (HpZYesOrNo(crt,' OK? " &IBY " &I@[D*[D ,ians)

The above prompt string in this case is “O K ? Esc & d B'Y Space Esc & d @” to display the Y in
inverse video, followed by “Esc D Esc D” to put the cursor under the Y.
Note that this routine does NOT use the HpZ mini-formatter input or output buffers.

See also HpZQandA and HpCrtSendChar.

HpCrt Library Routines 12-81

MinStrDsc

This routine builds a string descriptor that describes a trimmed substring of the string that is
passed to it. Leading and trailing blanks are not included in the output string descriptor.

fakestring = M nSt r Dsc(string)

i nt eger*4 fakestring, M nSt r Dsc
character*(*) string

where:

fakestring returns the manufactured string descriptor.
string is the input string.

It is possible for no characters to be remaining in the input buffer, either because it was empty to
begin with or because all the tokens have already been parsed. When this happens, this function
builds a zero-length string descriptor and returns a value of zero. Because the FORTRAN
definition of a character string does not allow zero-length strings, it is the programmer’s
responsibility to check the function return to trap such cases. If this is not done, the FORTRAN
string handling routines will get a runtime error when they encounter the zero-length strings.

See also StrDsc.

PutBitMap

This subroutine copies the LSB of the indicated word to a bit map (a packed array of bits). When
accessing bits above 32 Kbytes, you must use negative numbers, as there is no unsigned integer
data type in FORTRAN on the HP 1000.

CALL Put Bi t Map(newbit, bitmap, index)
i nt eger*2 newbit, array(*) , bitmap
where:
newbit is the word whose LSB is to be copied into the bit map.
bitmap an array of up to 64K bits (4096 words).

index is the bit number to be altered; where 0 is the MSB of the first word of bitmap.
See also SetBitMap, TestBitMap, TestSetBitMap, and GetBitMap.

12-82 HpCrt Library Routines

PutByte

This routine writes a byte into a packed array of bytes. The leftmost byte of the first word of array
is byte number 0. The array can be up to 32K words, so the byte index can be from 0 to 65,535.
Addresses above 32,767 look like negative numbers because there is no unsigned integer data type
in FORTRAN.

CALL Put Byt e(newbyte, array, index)

i nt eger*2 newbyte, array(*) , index

where:

newbyte is the value of the byte to be stored into array. The value is contained in the low
byte of newbyte; the high byte is ignored.

array is the array to be modified.

index is the index into array indicating the byte to be altered where byte 0 is the left byte
of the first word of array.

See also GetByte.

PutDibit

This routine writes a dibit (bit pair) into a packed array of dibits. The leftmost two bits of the first
word of array is dibit number 0. The index is limited to 16 bits, which limits the length of the array
to 8K words. Dibit addresses above 32,767 look like negative numbers because there is no
unsigned integer data type in FORTRAN.

CALL = Put D bi t (twobitvalue, array, index)

i nt eger*2 twobitvalue, array(*) , index

where:

twobitvalue is the value of the dibit to be stored into array. The value is contained in the lower
2 bits of twobitvalue; upper bits are null.

array is the array to be modified.

index is the index into the array indicating the dibit to be written where dibit number 0 is
the leftmost two bits of the first word of array.

See also GetDibit.

HpCrt Library Routines 12-83

PutNibble

This routine writes a nibble (4 bits) into a packed array of nibbles. The leftmost four bits of the
first word of array is nibble number 0. The index is limited to 16 bits, which limits the length of the
array to 16K words. Nibble addresses above 32,767 look like negative numbers because there is no
unsigned integer data type in FORTRAN on the HP 1000.

CALL Put Ni bbl e(newnibble, array, index)

i nt eger*2 newnibble, array(*) , index
where:

newnibble is the value of the nibble to be stored into array. The value is contained in the low-
er 4 bits of newnibble; the upper 12 bits are null.

array is the array that will be modified.

index is the index into the array indicating the nibble to be written where nibble number 0
is the leftmost four bits of the first word of array.

See also GetNibble.

SetBitMap

This routine sets a bit in a bit map. When accessing bits above 32 Kbytes, you must use negative
numbers, as FORTRAN does not have an unsigned integer data type on the HP 1000.

CALL Set Bi t Map(ibuf, ibif)

i nt eger*2 ibuf(*), ibit

where:
ibuf is an array of up to 64K bits (4096 words).
ibit is the bit number to set, where 0 is the MSB of the first word of ibuf.

SetPriority

This function sets the priority of the currently executing program to a given value. It returns the
existing priority for later use in restoring the priority to the current value. It can also be used to
read the current priority without setting a new value by calling the routine with newpriority equal to
0.

oldpriority = Set Pri ori t y(newpriority)

i nt eger*2 oldpriority, newpriority, Set Priority
where:
oldpriority returns the existing priority of the program.

newpriority is the priority to which you want to set the calling program.

12-84 HpCrt Library Routines

TestBitMap

This routine tests a bit in a bit map. When accessing bits above 32K, you must use negative
numbers, as there is no unsigned integer data type on the HP 1000.

| F (Test Bi t Map(ibuf, ibit)) THEN
bit was set
ENDI F

i nt eger*2 ibuf(*), ibit
| ogi cal *2 TestBit Map

where:
ibuf specifies an array of up to 64 K bits (4096 words).
ibit specifies the bit to test, where 0 is the MSB of the first word of ibuf.

Test_PutByte

This routine puts a byte into an array with a test for zero. This logical*2 function return. t r ue. if
the existing byte in the array is not zero before it is modified.

| F (Test _Put Byt e(newbyte, array, index)) THEN
byte was not zero
ENDI F

i nt eger*2 newbyte, array(*) , index
| ogi cal *2 Test_PutByte

where:
newbyte is the byte to be put into the array.
array is the array where the byte is to be stored.

index is the index into the byte array.

See also GetByte and PutByte.

HpCrt Library Routines 12-85

Test_SetBitMap

This routine tests and sets a bit in a bit map. For either the true or the false return, the bit
referenced will be set. When accessing bits above 32K, you must use negative numbers, as there is
no unsigned integer data type on the HP 1000.

| F (Test_Set Bi t Map(ibuf, ibit)) THEN
bit was already set
ENDI F

i nt eger*2 ibuf(*), ibit
| ogi cal *2 Test_SetBitMp

where:
ibuf is an array of up to 64 K bits (4096 words).
ibit is the bit to test, where 0 is the MSB of the first word of ibuf.

12-86 HpCrt Library Routines

Index

Symbols

.CCM, 3-132
.DCM, 3-133
.DLC, 3-134
.FCM, 3-135
..MAP, 5-41
.TCM, 3-136
ABS, 3-62
.ATAN, 3-63
.ATN2, 3-64
.BLE, 3-65
.CADD, 3-66
.CDBL, 3-67
.CDLV, 3-68
.CFER, 3-69
.CHEB, 3-70
.CINT, 3-71
.CMPY, 3-72
.CMRS, 3-73
.COS, 3-74

no error return, /COS, 3-167

range reduction, /CMRT, 3-168
.CPM, 3-75
.CSUB, 3-76
.CTBL, 3-77
.CTOlI, 3-78
.DADS, 4-3
.DCO, 4-4
.DCPX, 3-79
.DDE, 4-5
.DDI, .DDR, 4-6
.DDS, 4-7
.DFER, 3-80
.DIN, 4-8
.DINT, 3-81
.DIS, 4-9
.DMP, 4-10
.DNG, 4-11
.DTBL, 3-82
.DTOD, 3-83
.DTOI, 3-84
.DTOR, 3-85
.ENTC, 5-28
.ENTN, 5-28
.ENTP, 5-29
.ENTR, 5-29
.ENTR call sequence, 2-1
.EXP, 3-86

no error return, /EXP, 3-169

range reduction, /CMRT, 3-168
.FAD, 3-87
FDV, 3-88
FIXD, 4-12

.FLTD, 4-13
.FLUN, 3-89
.FMP, 3-90
FMUI, 5-32
FMUO, 5-32
FMUP, 5-32
FMUR, 5-34
FPWR, 3-91
.FSB, 3-87
.GOTO, 5-35
ICPX, 3-92
IDBL, 3-93
IENT, 3-94
JTBL, 3-95
ITOI, 3-96
.LOG, 3-97

no error return, /LOG, 3-171

.LOGO, 3-98

no error return, /LOGO, 3-172

.MANT, 3-99
.MAP, 5-36
.MAXI1, 3-100
.MIN1, 3-100
.MOD, 3-101
.MPY, 3-102
.NGL, 3-103
.OPSY, 5-37
PACK, 3-104
PAUS, 5-38
.PCAD, 5-39
PWR2, 3-105
.RTOD, 3-106
.RTOI, 3-107
.RTOR, 3-108
.RTOT, 3-109
SIGN, 3-110
SIN, 3-111
SQRT, 3-112

no error return, /SQRT, 3-174

.TADD, 3-113
.TAN, 3-114

no error return, /TAN, 3-175
range reduction, /CMRT, 3-168

.TANH, 3-115

range reduction, /CMRT, 3-168

.TAPE, 5-40
TCPX, 3-116
.ITDBL, 3-117
IDIV, 3-113
.TENT, 3-118
TFTD, 4-14
.TFXD, 4-15
TINT, 3-119, 3-176
ITMPY, 3-113

Index-1

TPWR, 3-120
.TSUB, 3-113
TTOI, 3-121
.TTOR, 3-122
TTOT, 3-123
XADD, 3-124
XCOM, 3-125
XDIV, 3-126
XFER, 3-127
XFTD, 4-16
XFXD, 4-17
XMPY, 3-128
XPAK, 3-129
XPLY, 3-130
XSUB, 3-124
JYINT, 3-131
#COS, 3-137
#EXP, 3-138
#LOG, 3-139
#SIN, 3-140
$EXP, 3-141
$LOG, 3-142
$LOGT, 3-143
$SETP, 5-42
$SQRT, 3-144
$TAN, 3-145
%ABS, 3-146
%AN, 3-147
%AND, 3-148
%ANH, 3-149
%BS, 3-150
%FIX, 3-151
%1IGN, 3-152
%]IN, 3-153
%INT, 3-154
%LOAT, 3-155
%LOG, 3-156
%LOGT, 3-157
9NT, 3-158
%0R, 3-159
%08, 3-160
%0T, 3-161
%QRT, 3-162
%SIGN, 3-163
%0SSW, 5-43
%TAN, 3-164
%XP, 3-165
/ATLG, 3-166
/CMRT, 3-168
/COS, 3-167
/EXP, 3-169
/EXTH, 3-170
/LOG, 3-171
/LOGO, 3-172
/SIN, 3-173
/SQRT, 3-174
/TAN, 3-175
/TINT, 3-176

Index-2

A

A_B_Registers, 12-1
A_Register, 12-1
A- and B-Registers, ABREG, 5-2
A2 to decimal converison, SA2DE, 10-31
A990
reading real-time clock, 7-40
setting real-time clock, 7-54
ABREG, 5-2, 12-1
ABS, 3-2
ABS entry (call-by-name), %BS, 3-150
absolute value
double real, 3-62
extended real, 3-20
integer, 3-43
of a real, 3-2
of complex (real), 3-12
routine
DVABS (double precision), 8-13
DWABS (EMA double precision), 8-13
VABS (single precision), 8-13
WABS (EMA single precision), 8-13
AccessLU, check for LU access, 6-2

accounting limits, user and group, SetAcctLimits,

6-17
actual address, array element, . MAP, 5-36
add
complex to complex, 3-66
double integer, 4-3
DVADD (double precision), 8-9
DWADD (EMA double precision), 8-9
extended real, 3-124
real, 3-87
VADD (single precision), 8-9
WADD (EMA single precision), 8-9
address
actual, array element, .MAP, 5-36
array element, .MAP, 5-41
true, of parameter, .PCAD, 5-39
address transfer
.ENTC, 5-28
.ENTN, 5-28
.ENTP, 5-29
.ENTR, 5-29
AddressOf, 7-1
AIMAG, 3-3
AINT, 34
AINT entry, %INT, 3-154
ALOG, 3-5
ALOG entry (call-by-name), %LOG, 3-156
ALOGT, 3-6
ALOGT entry (call-by-name), %LOGT, 3-157
alternate returns, 2-3
AMAXO, 3-7
AMAX1, 3-8
AMINO, 3-7
AMINT, 3-8

AMOD, 3-9

AND entry, logical (call-by-name), %AND, 3-148

applications (VIS), 9-11

arctangent
extended real, 3-21
of a real, 3-10
quotient of two double reals, 3-64
quotient of two extended reals, 3-22
quotient of two reals, 3-11

arithmetic, double real, 3-113

arithmetic routines, 8-9

array initialization (VIS), 9-12

arrays in memory, 8-2

ASCII, digit to internal numeric conversion,
FMUI, 5-32

ASCII to double integer conversion
DecimalToDint, 7-21
OctalToDint, 7-37

ASCII to single integer conversion
DecimalTolnt, 7-22
OctalTolnt, 7-38

ATACH, attach to session, 6-3

ATAN, 3-10

ATAN entry (call-by-name), %TAN, 3-164

ATAN?2, 3-11

ATCRT, attach a CRT, 6-4

attach a CRT, ATCRT, 6-4

attach to session, ATACH, 6-3

B

B_Register, 12-1

backspace tape, .TAPE, 5-40

bit map manipulation routines, 7-2
ChangeBits, 7-2
CheckBits, 7-2
ClearBitMap, 12-2
FindBits, 7-3
GetBitMap, 12-8
HpZDumpBitMap, 12-48
PutBitMap, 12-82
SetBitMap, 12-84
Test_SetBitMap, 12-86
TestBitMap, 12-85

bits
change, 7-2
check, 7-2

find free bits, 7-3
BlankString, 7-4
block and sector to track and sector, 7-4
BlockToDisc, 7-4
buffer, zero, ClearBuffer, 7-6
byte manipulation, GetByte, 12-8

Cc

CABS, 3-12

calculate sign
real or integer times integer, 3-50
real or integer times real, 3-54

call LOGOEF, CLGOF, 6-5
call LOGON, CLGON, 6-6
calling conventions, 2-1
CaseFold, convert lowercase to uppercase, 7-5
CDS programs, 2-4
CEXP, 3-13
CEXP entry, #EXP, 3-138
ChangeBits, 7-2
character strings, 2-5
characters in arrays, compare, CharsMatch, 7-6
CharkFill, 7-5
CharsMatch, 7-6
Chebyshev series, evaluate, 3-70
check if user is in group (RTE-A only), Member,
6-13
check system session table address, FromSySession,
6-8
CheckBits, 7-2
CLCUC, convert lowercase to uppercase, 7-7
ClearBitMap, 12-2
ClearBuffer, zero a passed buffer, 7-6
CLGOF, call LOGOE, 6-5
CLGON, call LOGON, 6-6
CLOG, 3-14
CLOG entry, #LOG, 3-139
CMNDO
example program, 7-10
routines, 7-8
HpReadCmndo, 7-9
HpStartCmndo, 7-8
HpStopCmndo, 7-10
CmndStacklInit, initialize command stack, 7-12
CmndStackMarks, check for marked lines, 7-13
CmndStackPush, add line to command stack, 7-13
CmndStackRestore, restore command stack, 7-14
CmndStackSaveP, CmndStackRstrP, save and reset
command stack, 7-15
CmndStackScreen, 7-16
CmndStackStore, store command stack contents in
a file, 7-17
CmndStackUnmark, remove marks from command
stack lines, 7-17
CMPLX, 3-15
combinations of vector instructions, 9-7
command line editing, RteShellRead routine, 7-45
command stack example program, 7-18
commas, PutinCommas, 7-39
common logarithm
double real, 3-98
extended real, 3-29
real, 3-6
compare, double integer, 4-4
compare characters in arrays, CharsMatch, 7-6
CompareBufs, 12-3
CompareWords, 12-3
complement
complex, 3-132
double real unpacked mantissa, 3-125
real, 3-135
complex, 3-15

Index-3

conjugate, 3-16
exponential, 3-13
extract real, 3-53
return extended precision, 3-67
natural logarithm, 3-14
CompressAsciiRLE, 12-4
Concat, concatenate strings, 7-20
ConcatSpace, concatenate strings with embedded
blanks, 7-20
CONJG, 3-16
conjugate, of complex, 3-16
control transfer, computed GOTO, .GOTO, 5-35
conventions, calling, 2-1
conversion
ASCII digit to internal numeric, .FMUI, 5-32
ASCII to double integer, OctalToDint, 7-37
ASCII to double integer conversion, DecimalTo-
Dint, 7-21
ASCII to single integer, OctalTolnt, 7-38
ASCII to single integer conversion, 7-22
block and sector to track and sector, 7-4
complex real to double real, 3-77
double integer to ASCII
DintToDecimal, 7-22
IntToDecimal, 7-32
double integer to double real, 4-14
double integer to extended real, 4-16
double integer to octal
DintToOctal, 7-23
IntToOctal, 7-34
double integer to real, 4-13
double length record number to real, 4-2
double precision to integer, /TINT, 3-176
double real to complex real, 3-116
double real to double integer, 4-15
double real to extended real without rounding,
3-117
double real to integer, 3-81, 3-119
double real to real, 3-103
extended real to complex, 3-79
extended real to double integer, 4-17
extended real to double real, 3-82
extended real to real, 3-56
without rounding, 3-57
HP 1000 single precision floating point to IEEE,
FCHI, 11-2
IEEE standard format double precision to HP
1000, DFCIH, 11-2
IEEE standard format single precision to HP
1000, FCIH, 11-3
integer to complex, 3-92
integer to double real, 3-95
integer to extended real, 3-93
integer to real, 3-42
internal to normal format, .FMUP, 5-32
lowercase to uppercase
CaseFold, 7-5
CLCUC, 7-7
numeric to ASCII, . FMUO, 5-32
real part of complex to integer, 3-71

Index-4

real to double integer, 4-12
real to double real, 3-65
real to extended, 3-23
real to integer, 3-47
segment address to program name and LU num-
ber, IdAddToName, 7-30
segment address to segment number, IdAddTo-
Number, 7-30
segment number to segment address, IdNumber-
ToAdd, 7-31
signed mantissa into normalized real format,
3-104
track, sector, to double integer block number,
7-24
converting FORTRAN DO loops, with VIS, 9-1
copy one string to another, StringCopy, 7-50
copy routine
DVSWP (double precision), 8-24
DWSWP (EMA double precision), 8-24
VSWP (single precision), 8-24
WSWP (EMA single precision), 8-24
COS, 3-17
COS entry (call-by-name), %0S, 3-160
cosine
#COS, 3-137
complex, 3-18
double precision, 3-74
extended real, 3-24
real, 3-17
CSNCS, 3-18
CSQRT, 3-19
Cyclic Redundancy Check (CRC), 12-13

D

D1 decimal substring carries, SDCAR, 10-34

D1 format, 10-6

D1 to D2 decimal format conversion, SD1D2,
10-37

D2 decimal substring carries, SCARY, 10-33

D2 format, 10-4

D2 to A2 substring conversion, SDEA2, 10-36

D2 to D1 decimal substring conversion, SD2D1,
10-38

DABS, 3-20

DATAN, 3-21

DATN?2, 3-22

DayTime, seconds since January 1, 1970, 7-21

DBLE, 3-23

DCOS, 3-24

DDINT, 3-25

deallocate ID segment, IDCLR, 7-30

decimal string arithmetic subroutines, 10-1

DecimalToDint, ASCII to double integer conver-
sion, 7-21

DecimalTolInt, ASCII to single integer conversion,
7-22

decrement double integer, 4-5
(and skip if zero), 4-7

default parameters, 2-2

detach from session, DETACH, 6-7

DEXP entry, 3-26
$EXP, 3-141

DFCHI, HP 1000 double precision floating point
to IEEE conversion, 11-1

DFCIH, IEEE standard format double precision to
HP 1000 conversion, 11-2

difference, positive real, 3-27

DIM, 3-27

DintToDecimal, double integer to ASCII conver-
sion, 7-22

DintToDecimalr, double integer to ASCII conver-
sion, 7-23

DintToOctal, double integer to octal conversion,
7-23

DintToOctalr, double integer to octal conversion,
7-24

direct address, AddressOf, 7-1

direct calls, 2-3

DiscSize, tracks and sector per track, 7-25

DiscToBlock, 7-24

divide
complex by complex, 3-68
double integer, 4-6
DVDIV (double precision), 8-9
DWDIV (EMA double precision), 8-9
extended real by extended real, 3-126
real, 3-88
substrings, SDIV, 10-19
VDIV (single precision), 8-9
WDIV (EMA single precision), 8-9

DLOG entry, 3-28
$LOG, 3-142

DLOGT entry, 3-29
$LOGT, 3-143

DMAX1, DMINT1, 3-30

DMOD, 3-31

DO loops, converting, with VIS, 9-1

dot product routine, 8-17
DVDOT (double precision), 8-17
DWDOT (EMA double precision), 8-17
VDOT (single precision), 8-17
WDOT (EMA single precision), 8-17

double integer to ASCII conversion
DintToDecimal, 7-22
DintToDecimalr, 7-23

double integer to octal conversion
DintToOctal, 7-23
DintToOctalr, 7-24

double precision floating point conversion
DFCHI, 11-1
DFCIH, 11-2

double precision to integer conversion, /TINT,
3-176

double real
arithmetic, 3-113
remainder, 3-101

DPOLY, 3-32

DS, programmatic logon, 6-4

DSIGN, 3-34

DSIN, 3-35

DSQRT entry, 3-36
$SQRT, 3-144

DTACH, detach from session, 6-7

DTAN, 3-37
no error, $TAN, 3-145

DTANH, 3-38

DVABS, absolute value routine (double precision),
8-13

DVADD, vector add (double precision), 8-9

DVDI1V, vector divide (double precision), 8-9

DVDOT, vector dot product routine (double preci-
sion), 8-17

DVMAB, vector largest value (absolute) (double
precision), 8-20

DVMAX, vector largest value (double precision),
8-20

DVMIB, vector smallest value (absolute) (double
precision), 8-20

DVMIN, vector smallest value (double precision),
8-20

DVMOV, vector move routine (double precision),
8-24

DVMPY, vector multiply (double precision), 8-9

DVNRM, vector sum routine (absolute) (double
precision), 8-14

DVPIV, vector pivot routine (double precision),
8-18

DVSAD, vector-scalar add (double precision), 8-11

DVSDYV, vector-scalar divide (double precision),
8-11

DVSMY, vector-scalar multiply (double precision),
8-11

DVSSB, vector-scalar subtract (double precision),
8-11

DVSUB, vector subtract (double precision), 8-9

DVSUM, vector sum routine (double precision),
8-14

DVSWP, vector copy routine (double precision),
8-24

DVWMV
vector non- EMA to EMA copy routine (double

precision), 8-26
vector non-EMA to EMA move routine (double
precision), 8-26

DWABS, absolute value routine (EMA double pre-
cision), 8-13

DWADD, vector add (EMA double precision), 8-9

DWDIV, vector divide (EMA double precision),
8-9

DWDOT, vector dot product routine (EMA double
precision), 8-17

DWMAB, vector largest value (absolute) (EMA
double precision), 8-20

DWMAX, vector largest value (EMA double preci-
sion), 8-20

DWMIB, vector smallest value (absolute) (EMA
double precision), 8-20

DWMIN, vector smallest value (EMA double pre-
cision), 8-20

Index-5

DWMOY, vector move routine (EMA double pre-
cision), 8-24

DWMPY, vector multiply (EMA double precision),

8-9

DWNRM, vector sum routine (absolute) (EMA
double precision), 8-14

DWPIV, vector pivot routine (EMA double preci-
sion), 8-18

DWSAD, vector-scalar add (EMA double preci-
sion), 8-11

DWSDV, vectro-scalar divide (EMA double preci-
sion), 8-11

DWSMY, vector-scalar multiply (EMA double pre-

cision), 8-11
DWSSB, vector-scalar subtract (EMA double pre-
cision), 8-11

DWSUB, vector subtract (EMA double precision),

8-9

DWSUM, vector sum routine (EMA double preci-

sion), 8-14

DWSWP, vector copy routine (EMA double preci-

sion), 8-24
DWVMY, vector EMA/non-EMA move routine
(double precision), 8-26

E

ElapsedTime, 7-25

EMA
call by value and call by reference (VIS), 9-17
considerations (VIS), 9-16

copy routine, DVWMYV (double precision), 8-26

variables, 2-5
EMA/non-EMA, move routine, 8-26
DVWMYV (double precision), 8-26
VWMOV (single precision), 8-26
WVMOV (single precision), 8-26
EMA/non-EMA move routine, DWVMYV (double
precision), 8-26
end-of-file, perform on tape, .TAPE, 5-40
ENTIE, 3-39
ENTIER
extended real, 3-40
real, 3-39
ENTIX, 3-40
ERO.E, 5-3
ERRLU, 5-4
ERRO, 5-5
error code
for ERO.E, 5-5
for ERRLU, 5-4
error messages (VIS), 9-62
ETime, 7-25
Euclidean norm, 8-17
example, using CMNDO routines, 7-10
example VIS programs, 9-24
EXP, 3-41
EXP entry (call-by-name), %XP, 3-165
ExpandAsciiRLE, 12-5
exponential, extended real, 3-26

Index-6

exponentiate
double real to double real power, 3-123
double real to integer power, 3-121
double real to unsigned integer power, 3-120
integer to integer power, 3-96
real to double real power, 3-109
real to integer power, 3-107
real to real power, 3-108
real to unsigned integer power, 3-91
exponentiate e
double real power, 3-86
real power, 3-41
extend complement, real, 3-133
extended real
to integer, truncate, 3-25, 3-46
to real, conversion, 3-56
without rounding, 3-57
extract real from complex, 3-53
return extended precision, 3-67

F

FakeSpStatus, 12-6

Fast FORTRAN Processor (FFP), 2-6

FCHI, HP 1000 single precision floating point to
IEEE conversion, 11-2

FCIH, IEEE standard format single precision to
HP 1000 conversion, 11-3

Fgetopt routine, 7-26

FillBuffer, 12-7

FindBits, 7-3

FirstCharacter, 12-7

FLOAT, 3-42

FLOAT entry (call-by-name), %LOAT, 3-155

FLTDR, 4-2

format of routines, 3-1, 4-1, 5-1

FORTRAN
DO loops, converting, with VIS, 9-1
routines callable from, 2-6

FromSySession, 6-8

FTRAP, 5-6

G

get
redirection commands, 7-28
runstring option, 7-26

get a character, SGET, 10-10

get session number, GETSN, 6-11

GetAcctlnfo, access user and group accounting, 6-8

GetBitMap, 12-8

GetByte, 12-8

GetDibit, 12-9

GetFatherldNum, 7-28

GetNibble, 12-9

GetOwnerNum, 6-10

GetRedirection routine, 7-28

GetResetlnfo, access/reset user accounting, 6-10
GetRteTime, 7-29

GetRunString, 12-10

GETSN, get session number, 6-11
GETST, 5-9
GetString, 12-11
GPNAM, 6-11
graphics coordinate transformation (VIS), 9-15
greatest integer
(ENTIER), real, 3-39
double real, 3-118
real, 3-94
group 1D
GroupTold, 6-12
OwnerTold, 6-14

H

HexTolnt, 7-29
HMSCtoRteTime, 7-29
HP 1000, single precision floating point to IEEE
conversion, FCHI, 11-2
HPCRT library routines, 12-1
HpCrtCharMode, 12-11
HpCrtCheckStraps, 7-12, 12-12
HpCrtCRC16_F, 12-13
HpCrtCRC16_S, 12-13
HpCrtGetCursor, 12-14
HpCrtGetCursorXY, 12-15
HpCrtGetfield_I, 12-16
HpCrtGetfield_S, 12-17
HpCrtGetLine_Pos, 12-18
HpCrtGetMenultem, 12-19
HpCrtHardReset, 12-19
HpCrtLineMode, 12-20
HpCrtMenu, 12-20
HpCrtNIsMenu, 12-21
HpCrtNIsXMenu, 12-21
HpCrtPageMode, 12-22
HpCrtParityChk, 12-22
HpCrtParityGen, 12-23
HpCrtQTDPort7, 12-23
HpCrtReadChar, 12-24
HpCrtReadPage, 12-25
HpCrtRestorePort, 12-26
HpCrtSavePort, 12-26
HpCrtSchedProg, 12-27
HpCrtSchedProg_S, 12-27
HpCrtScreenSize, 12-27
HpCrtSendChar, 12-28
HpCrtSSRCDriver, 12-29
HpCrtSSRCDriver?, 12-29
HpCrtStatus, 12-30
HpCrtStripChar, 12-31
HpCrtStripCntrls, 12-31
HpCrtXMenu, 12-32
HpCrtXReadChar, 12-32
HpCrtXSendChar, 12-33
HpLowerCaseName, 12-33
HpReadCmndo, 7-9
HpRte6, 12-34
HpRteA, 12-34
HpStartCmndo, 7-8

HpStopCmndo, 7-10
HpZ, mini-formatter, 12-35
HpZAscii64, 12-38
HpZAscii9s, 12-38
HpZAsciiHpEnh, 12-39
HpZAsciiMne3, 12-40
HpZAsciiMne4, 12-41
HpZBackSpacelbuf, 12-41
HpZBinc, 12-42
HpZBino, 12-42
HpZDecc, 12-43
HpZDeco, 12-42
HpZDecv, 12-42
HpZDefIBuf, 12-43
HpZDeflIString, 12-44
HpZDefOBuf, 12-44
HpZDicv, 12-44
HpZDParse, 12-45
HpZDumpBitMap, 12-48
HpZDumpBuffer, 12-49
HpZFieldDefine, 12-50
HpZFmpWrite, 12-51
HpZGetNextChar, 12-51
HpZGetNextStrDsc, 12-52
HpZGetNextToken, 12-52
HpZGetNumB2, 12-53
HpZGetNumB4, 12-53
HpZGetNumD2, 12-53
HpZGetNumD4, 12-53
HpZGetNumO2, 12-53
HpZGetNumO4, 12-53
HpZGetNumStrDsc, 12-54
HpZGetNumX, 12-55
HpZGetRemStrDsc, 12-56
HpZHexc, 12-56
HpZHexi, 12-57
HpZHexo, 12-58
HpZIBufRemain, 12-58
HpZIBufReset, 12-58
HpZIBufUsed, 12-58
HpZI1BufUseStrDsc, 12-59
HpZInsertAtFront, 12-60
HpZmbt, 12-60
HpZMesss, 12-61
HpZMoveString, 12-62
HpZmvc, 12-62

HpZmvs, 12-63
HpZmvs_Control, 12-64
HpZmvs_Escape, 12-65
HpZmvs_Large, 12-65
HpZNIsMvs, 12-66
HpZNIlsSubset, 12-66
HpZOBufReset, 12-66
HpZOBufUsed, 12-67
HpZOBufUseStrDsc, 12-67
HpZOctc, 12-68
HpZOctd, 12-68
HpZOcto, 12-69
HpZOctv, 12-69
HpZPadToCount, 12-70

Index-7

HpZPadToPosition, 12-70
HpZParse, 12-71
HpZPeekNextChar, 12-51
HpZPlural, 12-73
HpZPopObuf, 12-75
HpZPrintPort, 12-74
HpZPushObuf, 12-75
HpZQandA, 12-76
HpZReScan, 12-76
HpZRomanNumeral, 12-77
HpZsbt, 12-78
HpZStripBlanks, 12-78
HpZUdeco, 12-78
HpZUdecv, 12-79
HpZWriteExec14, 12-79
HpZWriteLU, 12-79
HpZWriteToString, 12-80
HpZWriteXLU, 12-79
HpZYesOrNo, 12-80
hyperbolic tangent
double real, 3-115
extended real, 3-38
real, 3-61

IABS, 3-43
IABS entry (call-by-name), %ABS, 3-146
IAND, 3-44
ID segment, deallocate, IDCLR, 7-30
IdAddToName, convert segment address to pro-
gram name and LU number, 7-30
IdAddToNumber, convert segment address to seg-
ment number, 7-30
IDCLR, 7-30
IDIM, 3-45
IDINT, 3-46
IdNumberToAdd, convert segment number to seg-
ment address, 7-31
IdToGroup, 6-12
IdToOwner, 6-13
IEEE standard format
double precision to HP 1000 conversion,
DFCIH, 11-2
single precision to HP 1000 conversion, FCIH,
11-3
IFIX, 3-47
IFIX entry (call-by-name), %FIX, 3-151
IGET, 5-10
imaginary part, extraction of, 3-3
INAMR routine, 5-11
inclusive OR ent
(call-by-name), %OR, 3-159
integer, 3-51
logical, 3-49
increment double integer, 4-8
(and skip if zero), 4-9
increment parameters other than one (VIS), 9-8
IND.E, 5-14
initialize a square matrix (VIS), 9-11

Index-8

initialize an array in a certain order (VIS), 9-12
input buffer, read, 5-18
INT, 3-48
INT entry (call-by-name), %NT, 3-158
integer inclusive OR, 3-51
integer to ASCII conversion
IntToDecimal, 7-32
IntToDecimalr, 7-32
integer to octal conversion
IntToOctal, 7-34
IntToOctalr, 7-34
internal routines, 10-31
internal to normal format conversion, .FMUP, 5-32
IntString, 7-31
IntToDecimal, integer to ASCII conversion, 7-32
IntToDecimalr, integer to ASCII conversion, 7-32
IntToHex, 7-33
IntToHexR, 7-33
IntToOctal, integer to octal conversion, 7-34
IntToOctalr, integer to octal conversion, 7-34
inverse tangent, double real, 3-63
InvSeconds, 7-35
IOR, 3-49
ISIGN, 3-50
ISIGN entry (call-by-name), %SIGN, 3-163
ISSR, 5-15
ISSW, 5-16
ISSW entry (call-by-name), %SSW, 5-43
IXGET, 5-10
IXOR, 3-51

J
JSCOM, substring compare, 10-7

L

L2 norm, 8-17
language instruction set, 2-6
largest value
DVMAX (double precision), 8-20
DWMAX (EMA double precision), 8-20
VMAX (single precision), 8-20
WMAX (EMA single precision), 8-20
largest value (absolute)
DVMAB (double precision), 8-20
DWMAB (EMA double precision), 8-20
VMAB (single precision), 8-20
WMAB (EMA single precision), 8-20
LastMatch, 7-35
LeapYear, 7-35
load and complement, real, 3-134
locked LU, 7-36
WhoLockedLu, 7-53
locked resource number, WhoLockedRn, 7-53
logical AND entry (call-by-name), %AND, 3-148
logical inclusive OR, 3-49
logical product, integer, 3-44
logon, programmatic, 6-4
lowercase to uppercase, CaseFold, 7-5

LU, locked, WhoLockedLu, 7-53
LuLocked, 7-36
LUSES, get user table address, 6-13

magnetic tape, position, PTAPE, 5-24
magnetic tape utility functions, MAGTP, 5-17
MAGTP, 5-17
mantissa
complement, double real unpacked, 3-125
normalized, rounded, packed (double real),
3-129
real, extract, 3-99
matrix
inversion (VIS), 9-30
multiiplication EMA example, 9-22
transposition (VIS), 9-13
MAX/MIN routines, 8-20
MAXO, 3-7
MAX1, 3-8
maximum
double real value, 3-100
extended real, 3-30
integer value, 3-7
real value, 3-8
Member, check if user is in group, 6-13
microcoded routines (RPLs), 2-6
MINO, 3-7
MIN1, 3-8
minimum
double real value, 3-100
extended real, 3-30
integer value, 3-7
real value, 3-8
MinStrDsc, 12-82
MOD, 3-52
modulus, of complex (real), 3-12
move
complex to complex, 3-69
extended real to extended real, 3-127
name of program from ID segment, PNAME,
5-23
move routines, 8-24
DVMOV (double precision), 8-24
DWMOYV (EMA double precision), 8-24
VMOV (single precision), 8-24
WMOYV (EMA single precision), 8-24
MoveWords, 7-36
multidimensional arrays, efficiency (VIS), 9-19
multiply
by 2 to integer power, 3-105
complex by complex, 3-72
double integer, 4-10
extended real by extended real, 3-128
hardware, 3-102
real, 3-90
substrings, SMPY, 10-22
multiply routines
DVMPY (double precision), 8-9

DWMPY (EMA double precision), 8-9

VMPY (single precision), 8-9

WMPY (EMA single precision), 8-9
MyldAdd, return segment address, 7-36

N

NAMR routine, 5-18
natural logarithm

complex, 3-14

double real, 3-97

extended real, 3-28

real, 3-5
negate

double integer, 4-11

double real, 3-136
negative increment (VIS), 9-10
nested DO loops example (VIS), 9-6
NOT function (call-by-name), %OT, 3-161
numeric to ASCII conversion, . FMUO, 5-32
NumericTime, 7-37

o)

obtaining efficiency with multidimensional arrays
(VIS), 9-19

OctalToDint, ASCII to double integer conversion,
7-37

OctalTolnt, ASCII to single integer conversion,
7-38

one dimensional array examples (VIS), 9-2

operating system determination, .OPSY, 5-37

OR

integer inclusive, 3-51
logical inclusive, 3-49
OR entry, inclusive (call-by-name), %OR, 3-159
output editing routine, SEDIT, 10-28
output pause message, PAU.E, 5-22
overflow bit, OVF, 5-21
OVE 5-21
OwnerTold, return user ID and group ID, 6-14

P

parameters, default, 2-2
parameters from ID segment, RMPAR, 5-25
parse string
SplitCommand, 7-47
SplitString, 7-48
Pascal, routines callable from, 2-7
PAU.E, 5-22
pause message
PAU.E, 5-22
print, 5-38
PCAL call sequence (CDS), 2-4
pivot routine, 8-18
DVPIV (double precision), 8-18
DWPIV (EMA double precision), 8-18
VPIV (single precision), 8-18
WPIV (EMA single precision), 8-18

Index-9

PNAME, 5-23
pointers, list of, $SETP, 5-42
polynomial

extended real, 3-130

quotient double precision, 3-32
position magnetic tape, PTATE, 5-24
positive difference, integer, 3-45
print pause message, .PAUS, 5-38
printing library error messages, ER0.E, 5-3
priority, ProgramPriority, 7-38
processor, Fast FORTRAN (FFP), 2-6
ProglIsSuper, check for super program, 6-14
programmatic logon, 6-4
ProgramPriority, 7-38
ProgramTerminal, 7-39
PTAPE, 5-24
put a character, SPUT, 10-13
PutBitMap, 12-82
PutByte, 12-83
PutDibit, 12-83
PutInCommas, 7-39
PutNibble, 12-84

Q

quotient, polynomial, double precision, 3-32

R

raise
complex to integer power, 3-78
double real to double real power, 3-83
double real to real power, 3-85
extended real to integer power, 3-84
real to double real power, 3-106
real to real power, 3-122

range reduction for SIN, .COS, .TAN, .EXP,
.TANH; /CMRT, 3-168

read input buffer, 5-18

read memory address
IGET, 5-10
IXGET, 5-10

ReadA990Clock routine, 7-40

real
to double real, conversion, 3-65
to integer, conversion, 3-47

real remainder, 3-9

REAL routine, 3-53

real to integer, truncate, 3-48

reduce argument, for SIN, COS, TAN, EXP, 3-73

regular expression, routines, 7-41
remainder

double real, 3-101

extended real, 3-31

integer, 3-52

real, 3-9
remove trailing blanks, TrimLen, 7-52

ResetAcctTotals, reset user and group accounting

totals, 6-15
ResetTimer, 7-40

Index-10

resouce number, locked, WhoLockedRn, 7-53
return address adjust
.ENTC, 5-28
.ENTN, 5-28
.ENTP, 5-29
.ENTR, 5-29
return direct address, AddressOf, 7-1
return group ID
GroupTold, 6-12
OwnerTold, 6-14
return group name
GPNAM, 6-11
IdToGroup, 6-12
return owner’s ID, GetOwnerNum, 6-10
return segment address, MyIdAdd, 7-36
return session number
RTNSN, 6-16
USNUM, 6-20
return user ID, OwnerTold, 6-14
return user name
IdToOwner, 6-13
SessnToOwnerName, 6-16
USNAM, 6-19
return user table address, LUSES, 6-13
rewind tape, .TAPE, 5-40
Rex routines, 7-41
RexBuildPattern, 7-42
RexBuildSubst, 7-42
RexExchange, 7-43
RexMatch, 7-44
RMPAR, 5-25
round, real, 3-39
rounding of digit string produced by .FMUO,
.FMUR, 5-34
routines
callable from FORTRAN, 2-6
callable from Pascal, 2-7
format of, 3-1, 4-1, 5-1
RPL, 2-6
RT ER, 5-26
RteDateToYrDoy, 7-44
RteShellRead, 7-45
RteTimeToHMSC, 7-46
RTNSN, return session number, 6-16
RTRAP, 5-6
run length encoding, 12-4, 12-5
runstring
option, getting, 7-26
redirection command, getting, 7-28

S

S-Register set, ISSR, 5-15

SA2DE, A2 to decimal conversion, 10-31

SADD, substring add, 10-17

SamInfo (RTE-A only), 7-46

scalar-vector arithmetic routines, 8-11

SCARY, D2 decimal substring carries, 10-33

SD1D2, D1 to D2 decimal format conversion,
10-37

SD2D1, D2 to D1 decimal substring conversion,
10-38
SDCAR, D1 decimal substring carries, 10-34
SDEA2, D2 to A2 substring conversion, 10-36
SDIV, divide substrings, 10-19
Seconds routine, 7-47
seconds since 12 AM January 1, 1970, 7-47
DayTime, 7-21
SEDIT, output editing routine, 10-28
segment address
MyldAdd, 7-36
to program name an LU number conversion,
IdAddToName, 7-30
to segment number, IdAddToNumber, 7-30
segment number to segment address, IdNumber-
ToAdd, 7-31
session number
RTNSN, 6-16
USNUM, 6-20
SessnToOwnerName, return user name, 6-16
set user and group accounting limits, SetAcctLi-
mits, 6-17
SetAcctLimits, set user and group accounting lim-
its, 6-17
SetBitMap, 12-84
SetPriority, 12-84
SFILL, substring fill, 10-9
SGET, get a character, 10-10
SIGN, 3-54
entry (call-by-name), %IGN, 3-152
sign
bit, S-Register, ISSW, 5-16
change, SSIGN, 10-40
real or integer times integer, calculate, 3-50
real or integer times real, calculate, 3-54
transfer, extended real, 3-34
SIN, 3-55
entry (call-by-name), %IN, 3-153
range reduction, /CMRT, 3-168
sine
#SIN call, 3-140
complex, 3-18
double precision, 3-111
double real (no error return), /SIN, 3-173
extended real, 3-35
real, 3-17, 3-55
single precision floating point conversion
FCHI, 11-2
FCIH, 11-3
smallest value
DVMIN (double precision), 8-20
DWMIN (EMA double precision), 8-20
VMIN (single precision), 8-20
WMIN (EMA single precision), 8-20
smallest value (absolute)
DVMIB (double precision), 8-20
DWMIB (EMA double precision), 8-20
VMIB (single precision), 8-20
WMIB (EMA single precision), 8-20
SMOVE, substring move, 10-11

SMPY, multiply substrings, 10-22
SNGL, 3-56
SNGM, 3-57
solution of linear systems (VIS), 9-27
SplitCommand, parse string, 7-47
SplitString, parse string, 7-48
SPOLY, 3-58
SPUT, put a character, 10-13
SQRT, 3-59
entry (call-by-name), %QRT, 3-162
square matrix, initialize (VIS), 9-11
square root
complex, 3-19
double real, 3-112
extended real, 3-36
real, 3-59
SSIGN, sign change, 10-40
SSUB, subtract substrings, 10-26
stack, 2-5
statistical examples (VIS), 9-12
StrDsc, 7-49
string
arithmetic routines, 10-17
utilities routines, 10-7
string manipulation
BlankString, 7-4
Concat, 7-20
ConcatSpace, 7-20
GetRunString, 12-10
GetString, 12-11
StringCopy, copy one string to another, 7-50
subroutines, double integer, 4-1
substring
add, SADD, 10-17
compare, JSCOM, 10-7
fill, SFILL, 10-9
move, SMOVE, 10-11
subtract
complex from complex, 3-76
double integer, 4-3
DVSUB (double precision), 8-9
DWSUB (EMA double precision), 8-9
extended real, 3-124
real, 3-87
substrings, SSUB, 10-26
VSUB (single precision), 8-9
WSUB (EMA single precision), 8-9
sum routine, 8-14
DVSUM (double precision), 8-14
DWSUM (EMA double precision), 8-14
VSUM (single precision), 8-14
WSUM (EMA single precision), 8-14
sum routine (absolute)
DVNRM (double precision), 8-14
DWNRM (EMA double precision), 8-14
VNRM (single precision), 8-14
WNRM (EMA single precision), 8-14
super program, check for, ProglsSuper, 6-14
superuser, check for/if
SuperUser, 6-18

Index-11

UserlIsSuper, 6-19
SYCON, 6-18
system console, write to, SYCON, 6-18
SystemProcess, check for/if system process, 6-19
SZONE, zone punch, 10-14

T

TAN, 3-60
TAN entry (call-by-name), %AN, 3-147
tangent
double real, 3-114
extended real, 3-37
real, 3-60
TANH, 3-61
TANH entry (call-by-name), %ANH, 3-149
tape operations, .TAPE, 5-40
terminal, ProgramTerminal, 7-39
Test_PutByte, 12-85
Test_SetBitMap, 12-86
TestBitMap, 12-85
TIMEF, 7-51
TIMEI, TIMEO, 5-27
TimeNow, 7-52
timer, reset, ResetTimer, 7-40

track, sector, to double integer block number con-

version, 7-24
tracks and sectors per track, DiscSize, 7-25
trailing blanks, remove, TrimLen, 7-52
transfer
control, computed GOTO, .GOTO, 5-35
extended real, 3-80
sign
double real to double real, 3-110
extended real, 3-34
transformation, graphics coordinate (VIS), 9-15
TrimLen, remove trailing blanks, 7-52
true address of parameter, .PCAD, 5-39
true address transfer
.ENTC, 5-28
.ENTN, 5-28
.ENTP, 5-29
.ENTR, 5-29
truncate
extended real to integer, 3-25, 3-46
fractional part of double real, 3-131
real, 3-4
real to integer, 3-48
two dimensional array examples (VIS), 9-4

U

unpack, real, 3-89

use applications (VIS), 9-11

user ID, OwnerTold, 6-14

user name
SessnToOwnerName, 6-16
USNAM, 6-19
verify, VFNAM, 6-20

user table address, LUSES, 6-13

Index-12

UserlIsSuper, check for/if superuser, 6-19
USNAM, return user name, 6-19

USNUM, return the session number, 6-20
utility functions, magnetic tape, MAGTP, 5-17

\'}

VABS, absolute value routine (single precision),
8-13
VADD, vector add (single precision), 8-9
VDIV, vector device (single precision), 8-9
VDOT, vector dot product routine (single preci-
sion), 8-17
vector add
DVADD (double precision), 8-9
DWADD (EMA double precision), 8-9
VADD (single precision), 8-9
WADD (EMA single precision), 8-9
vector arithmetic routines, 8-9
vector copy routine
DVSWP (double precision), 8-24
DWSWP (EMA double precision), 8-24
VSWP (single precision), 8-24
WSWP (EMA single precision), 8-24
vector divide
DVDIV (double precision), 8-9
DWDIV (EMA double precision), 8-9
VDIV (single precision), 8-9
WDIV (EMA single precision), 8-9
vector dot product routine
DVDOT (double precision), 8-17
DWDOT (EMA double precision), 8-17
VDOT (single precision), 8-17
WDOT (EMA single precision), 8-17
vector EMA copy routine, DVWMYV (double preci-
sion), 8-26
vector EMA/non-EMA, move routine
DVWMYV (double precision), 8-26
VWMOV (single precision), 8-26
WVMOV (single precision), 8-26
vector EMA/non-EMA move routine, DWVMV
(double precision), 8-26
vector instructions, combinations, 9-7
vector largest value
DVMAX (double precision), 8-20
DWMAX (EMA double precision), 8-20
VMAX (single precision), 8-20
WMAX (EMA single precision), 8-20
vector largest value (absolute)
DVMAB (double precision), 8-20
DWMAB (EMA double precision), 8-20
VMAB (single precision), 8-20
WMAB (EMA single precision), 8-20
vector move routine
DVMOV (double precision), 8-24
DWMOYV (EMA double precision), 8-24
VMOV (single precision), 8-24
WMOV (EMA single precision), 8-24
vector multiply
DVMPY (double precision), 8-9

DWMPY (EMA double precision), 8-9

VMPY (single precision), 8-9

WMPY (EMA single precision), 8-9
vector pivot routine

DVPIV (double precision), 8-18

DWPIV (EMA double precision), 8-18

VPIV (single precision), 8-18

WPIV (EMA single precision), 8-18
vector smallest value

DVMIN (double precision), 8-20

DWMIN (EMA double precision), 8-20

VMIN (single precision), 8-20

WMIN (EMA single precision), 8-20
vector smallest value (absolute)

DVMIB (double precision), 8-20

DWMIB (EMA double precision), 8-20

VMIB (single precision), 8-20

WMIB (EMA single precision), 8-20
vector subtract

DVSUB (double precision), 8-9

DWSUB (EMA double precision), 8-9

VSUB (single precision), 8-9

WSUB (EMA single precision), 8-9
vector sum routine

DVSUM (double precision), 8-14

DWSUM (EMA double precision), 8-14

VSUM (single precision), 8-14

WSUM (EMA single precision), 8-14
vector sum routine (absolute)

DVNRM (double precision), 8-14

DWNRM (EMA double precision), 8-14

VNRM (single precision), 8-14

WNRM (EMA single precision), 8-14
vector-scalar add

DVSAD (double precision), 8-11

DWSAD (EMA double precision), 8-11

VSAD (single precision), 8-11

WSAD (EMA single precision), 8-11
vector-scalar divide

DVSDV (double precision), 8-11

DWSDV (EMA double precision), 8-11

VSDV (single precision), 8-11

WSDV (EMA single precision), 8-11
vector-scalar multiply

DVSMY (double precision), 8-11

DWSMY (EMA double precision), 8-11

VSMY (single precision), 8-11

WSMY (EMA single precision), 8-11
vector-scalar subtract

DVSSB (double precision), 8-11

DWSSB (EMA double precision), 8-11

VSSB (single precision), 8-11

WSSB (EMA single precision), 8-11
verify user name, VFNAM, 6-20
VFNAM, verify user name, 6-20
VIS programs, examples, 9-24
VMAB, vector largest value (absolute) (single pre-

cision), 8-20

VMAX, vector largest value (single precision), 8-20

VMIB, vector smallest value (absolute) (single pre-
cision), 8-20

VMIN, vector smallest value (single precision),
8-20

VMOV, vector move routine (single precision),
8-24

VMPY, vector multiply (single precision), 8-9

VNRM, vector sum routine (absolute) (single pre-
cision), 8-14

VPIV, vector pivot routine (single precision), 8-18

VSAD, vector-scalar add (single precision), 8-11

VSDV, vector-scalar divide (single precision), 8-11

VSMY, vector-scalar multiply (single precision),
8-11

VSSB, vector-scalar subtract (single precision),
8-11

VSUB, vector subtract (single precision), 8-9

VSUM, vector sum routine (single precision), 8-14

VSWP, vector copy routine (single precision), 8-24

VWMOY, vector non-EMA to EMA move routine
(single precision), 8-26

w

WABS, absolute value routine (EMA single preci-
sion), 8-13

WADD, vector subtract (EMA single precision),
8-9

WDILV, vector divide (EMA single precision), 8-9

WDOT, vector dot product routine (EMA single
precision), 8-17

WhoLockedLu, 7-53

WhoLockedRn, 7-53

WMARB, vector largest value (absolute) (EMA
single precision), 8-20

WMAX, vector largest value (EMA single preci-
sion), 8-20

WMIB, vector smallest value (absolute) (EMA
single precision), 8-20

WMIN, vector smallest value (EMA single preci-
sion), 8-20

WMOV, vector move routine (EMA single preci-
sion), 8-24

WMPY, vector multiply (EMA single precision),
8-9

WNRM, vector sum routine (absolute) (EMA
single precision), 8-14

WPI1V, vector pivot routine (EMA single preci-
sion), 8-18

write to system console, SYCON, 6-18

WriteA990Clock routine, 7-54

WSAD, vector-scalar add (EMA single precision),
8-11

WSDV, vector-scalar divide (EMA single preci-
sion), 8-11

WSMY, vector-scalar multiply (EMA single preci-
sion), 8-11

WSSB, vector-scalar subtract (EMA single preci-
sion), 8-11

Index-13

WSUB, vector subtract (EMA single precision), Y

8-9
WSUM, vector sum routine (EMA single preci- YrDoyToMonDom, 7-54
sion), 8-14)) . YrDoyToRteDate, 7-55
WSWP, vector copy routine (EMA single preci-
sion), 8-24
WVMOY, vector EMA to non-EMA move routine
(single precision), 8-26 z
X zero a passed buffer, ClearBuffer, 7-6
zero increment (VIS), 9-9
XPOLY, 3-130 zone punch, SZONE, 10-14

Index-14

	Title page
	Preface
	Table of Contents
	Chapter 1 - Functional Grouping of Library Routines
	Chapter 2 - Calling Conventions
	Chapter 3 - Mathematical Subroutines
	Chapter 4 - Double Integer Subroutines
	Chapter 5 - Utility Subroutines
	Chapter 6 - Subroutines for Multiuser Support
	Chapter 7 - Utility and Status Subroutines
	Chapter 8 - VIS Subroutines
	Chapter 9 - Using VIS in Programs
	Chapter 10 - Decimal String Arithmetic Subroutines
	Chapter 11 - Floating Point Conversion Subroutines
	Chapter 12 - HpCrt Library Routines
	Index

