(40 HEWLETT

PACKARD

FORTRAN 77
Reference Manual

RTE-A and RTE-6/VM

Software Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 92836-90001 Printed in U.S.A. December 1992
E1292 Third Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equip-
ment that is not furnished by Hewlett-P ackard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013

Copyright © 1981-1983, 1985-1987, 1990, 1992 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be
added. Thus, the reprinted copy will be identical in content to prior printings of the same edition with its
user-inserted update information. New editions of this manual will contain new information, as well as all
updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File or the Computer User’'s Documentation Index. (The Manual Numbering File
is included with your software. It consists of an “M” followed by a five digit product number.)

Editon1 Dec 1981 i E1281
Update 1 Apr 1982 uo482
Update 2 Jun 1983 ... uU0683

Reprint Jun 1983 . (Updates 1 and 2 Incorporated) 10683
Update 3 Feb 1985 u0285

Reprint Oct 1985 (Update 3 Incorporated) 11085
Update 4 Jan 1986 i uo186

Reprint Jan 1986 (Update 4 Incorporated) 10186

Editon2 Aug 1987 ... (Rev. 5000) E0887
Update 1 Jul 1990 (Rev. 5020) U0790

Editon3 Dec 1992 (Rev. 6000) E1292

3/4

Preface

This is the reference manual of the FORTRAN 77 programming language for the HP 1000
Computer System. The compiler for the FORTRAN 77 language operates under the RTE-6/VM
and RTE-A operating systems. This manual refers to both the language and the compiler as
FORTRAN 77.

Note In this manual, “FORTRAN” or “FORTRAN 77” means “FORTRAN 77 for
the HP 1000 Computer System.”

This manual is a reference manual and is not a tutorial. The user who is familiar with any
FORTRAN language can easily find syntactic and semantic information by using the index. The
experienced programmer can find syntactic information in the syntax charts in Appendix G,
which contains its own cross-reference index.

This manual contains the following:

Chapter 1 is an introduction to FORTRAN 77. The language and the compiler are
briefly described. Source file structure is shown.

Chapter 2 describes the rudiments of the FORTRAN 77 language. The character set is
identified. Keywords and symbolic names are defined. Data types are
described.

Chapter 3 provides information on all the statements in the FORTRAN 77 language.

The required order of statements is defined, followed by an alphabetical
listing of the statements.

Chapter 4 describes in more detail the input/output statements used in FORTRAN 77.
All the format descriptors are defined, with examples showing their use.

Chapter 5 discusses the file handling statements available in FORTRAN 77. These
include the $FILES directive and the READ, WRITE, OPEN, CLOSE,
INQUIRE, and file positioning statements.

Chapter 6 discusses procedures and block data subprograms. The procedures include
function subprograms, subroutine subprograms, statement functions, and
intrinsic functions.

Chapter 7 discusses using FORTRAN 77, including control statements, compiler
invocation, FORTRAN 77 messages, loading and running a program, and
compiler directives.

Chapter 8 discusses ANSI 66 compatibility extensions, comparing 66 mode with 77
mode.

Appendix A lists and describes object program and compilation error messages. Included

are library subroutine error messages, input/output run-time error messages,
and compilation error messages.

Appendix B presents tables of intrinsic functions and describes various library functions
and routines.

Appendix C displays the ASCII character set used by FORTRAN 77.

Appendix D shows the internal representation of all the data formats available in
FORTRAN 77.

Appendix E compares FORTRAN 77 with the ANSI 77 standard. Backward compatibility
is described, as are the MIL-STD-1753 extensions. FORTRAN 77 is also
compared with FORTRAN 4X.

Appendix F describes a cross-reference table.

Appendix G provides complete syntax charts in railroad normal form.

Appendix H explains code and data separation (CDS), static and dynamic memory
allocation, and recursion. Gives restrictions on mixing CDS and non-CDS
programs.

Index is a cross-reference index of all topics covered in this manual.

Additional Documentation

More information on the RTE-6/VM and RTE-A Operating Systems and related utilities can be
found in the following manuals:

Symbolic Debug/1000 User’s Manual, part number 92860-90001
Getting Started with RTE-6/VM, part number 92084-90002

Getting Started with RTE-A, part number 92077-90039

RTE-6/VM Quick Reference Guide, part number 92084-90003

RTE-A Quick Reference Guide, part number 92077-90020

RTE-A System Design Manual, part number 92077-90013

RTE-6/VM Loader Reference Manual, part number 92084-90008
RTE-A LINK User’s Manual, part number 92077-90035

RTE-6/VM Terminal User’s Reference Manual, part number 92084-90004
RTE-A User’s Reference Manual, part number 92077-90002
RTE-6/VM Programmer’s Reference Manual, part number 92084-90005
RTE-A Programmer’s Reference Manual, part number 92077-90007

In this manual, the last two pairs of the above listed manuals are referred to as “the appropriate
system reference manual” and “the appropriate programmer’s reference manual.”

Conventions

The following conventions are used in this manual:

Notation

UPPERCASE

italics

punctuation

{}

Description

Within syntax descriptions, characters in uppercase must be entered in
exactly the order shown, though you can enter them in either uppercase or
lowercase. For example:

| NTEGER
Valid entries: i nt eger I nt eger | NTEGER
Invalid entries: i nt erger I nt ger I NTE_GER

Within syntax descriptions, a word in italics represents a formal parameter
or argument that you must replace with an actual value. In the following
example, you must replace variable with the name of the variable you want
to declare:

COVMON variable

Within syntax descriptions, punctuation characters (other than brackets,
braces, vertical parallel lines, and ellipses) must be entered exactly as
shown.

Within syntax descriptions, braces enclose required elements. When
several elements within braces are stacked, you must select one. In the
following example, you must select ON or OFF:

{ O\
$LI ST { OFF}

Within syntax descriptions, brackets enclose optional elements. In the
following example, brackets around , OFF indicate that the option and its
delimiter are optional:

$I NCLUDE filename[,OFF]

Within syntax descriptions, a horizontal ellipsis enclosed in brackets
indicates that you can repeatedly select elements that appear within the
immediately preceding pair of brackets or braces. In the following
example, you can select ifemname and its delimiter zero or more times.
Each instance of ifemname must be preceded by a comma:

[,itemname][...]

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However, if you
select only one element, the delimiter is not required. In the following
example, the comma cannot precede the first instance of itemname:

[itemnamel][,...]

Within syntax descriptions, a horizontal ellipsis enclosed in parallel
vertical lines indicates that you can select more than one element that
appears within the immediately preceding pair of brackets or braces.
However, each element can be selected only one time. In the following
example, you must select, A or, B or, A, B or, B, A

{ A}
{8} .|

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However, if you
select only one element, the delimiter is not required. In the following
example, you must select A or B or A, B or B, A. The first element
cannot be preceded by a comma:

{A}
{B}[,..]

Within examples, horizontal or vertical ellipses indicate where portions of
the example are omitted.

Within examples, the space symbol A\ represents a blank. In the following
example, the value 123.45 is preceded by three blanks:

AAA123. 45

Table of Contents

Chapter 1
Introduction to FORTRAN 77
The FORTRAN 77 Compilert et 1-2
FORTRAN 77 Vocabularyt i e 1-2
FORTRAN 77 TEImMIS . .. oottt et e et et e e e e e e e e e e e 1-4
Source File Structure 1-5
FORTRAN Software Files and Installation i, 1-5
Chapter 2
Language Elements
FORTRAN 77 Character Setttt e 2-1
Special Symbols e 2-2
KeyWordso 2-2
Statement Keywords 2-2
Compiler Directive Keywords i 2-2
Symbolic NAmMESo ettt e e 2-3
Intrinsic Functions i e 2-4
Data TYPes ..o ettt 2-5
011 o4 PP 2-6
Double Integerot 2-6
Real .. 2-7
Double Precisionooiiii 2-8
COMPIEX .ot e 2-8
Double Complext e 2-9
Logical e 2-9
Double Logical e 2-9
Character i 2-10
Hollerith Constantsiuiit i e 2-11
Octal ConStantsiiintii e e e 2-12
Hexadecimal Constantsuouitnitn it 2-12
Variables e 2-13
Simple Variables e 2-13
AT AYS . ettt e 2-14
Array Declaratorst e 2-14
SUDSCIIPES . ettt e 2-15
Array Element Storagecoiiiii i e 2-16
Character SubStringsttt e e e 2-17
EXPIeSSIONS . . oottt ettt et e e e e 2-18
Arithmetic EXPressionsttt 2-18
Hierarchy of Arithmetic Operators i, 2-19
Expressions with Mixed Operandscoiiiiiiiiiiniinnen... 2-21
Arithmetic Constant EXpressionsouueunininn i, 2-22
Character EXPIessionsottt ettt ettt 2-23
Character Constant EXpressionsouveuneineieennenneennen.. 2-23
Relational EXpressionsououen it 2-24
Arithmetic Relational Expressionsc.. oo, 2-24

Character Relational Expressions i, 2-25

Logical EXPressionsttt it et 2-25
Bit Masking EXPressionsttt 2-27
Comments in FORTRAN 77 ... e e e 2-28
Chapter 3
FORTRAN 77 Statements
Statement CategoTiesttt e e 3-2
Order of Statementsttt e 3-5
ASSIGN Statement i 3-6
Assignment Statementottt e 3-7
Arithmetic Assignment Statementttt 3-7
Logical Assignment Statementttt 3-9
Character Assignment Statementttt 3-10
BACKSPACE Statementoouun ettt ettt e e 3-11
BLOCK DATA Statementunttttinne ettt 3-12
CALL Statementttt ettt ettt et e e 3-12
CHARACTER Statementoou ittt et et 3-13
CLOSE Statement e e e e 3-14
COMMON Statementttt ettt e e e ettt et it 3-15
COMPLEX Statementc.iutntntn ettt ettt ieeaennnn 3-18
COMPLEX™ 8 Statementc.utuntie ettt et 3-18
COMPLEX™ 16 Statementuuuuntettunnee ettt e, 3-18
CONTINUE Statementc.inontiit ittt ettt e 3-18
DATA Statementttt e e e e e 3-19
DIMENSION Statementuuittune ettt e iiiaee e 3-21
DO Statement 3-22
DO Loop EXECULION . . . oottt et e e e e e 3-22
Labeled and Block DO LOOPS ... oottt e 3-23
Labeled DO LOOPS . v vvtiit ittt e e e e e 3-24
BIoCK DO LOOPS -+« voveee ettt e e e e e 3-24
Implied DO LOOPS . .« oottt e e e e e 3-25
Implied DO Loops in Input/Output Statements 3-25
Implied DO Loops in DATA Statementsccoooiiuiiiinn... 3-27
DO WHILE Statementoutnttntn ittt et et ee e 3-29
Nesting DO LOOPS . v vttt e e e e 3-30
Ranges of DO LOOPS . .. oot e e 3-31
DOUBLE COMPLEX Statementouuuuneetunine et 3-32
DOUBLE PRECISION Statementuuuueetuunnee i, 3-32
ELSE Statementot e 3-32
ELSE IF Statementttt it ettt 3-32
EMA Statement 3-33
Notes on Using EMA ... o e e 3-33
END Statement e 3-34
END DO Statementttt ittt et 3-34
ENDFILE Statementttt 3-35
END IF Statemento ettt ettt e e e e e e e e e 3-35
ENTRY Statementt e e ettt e 3-36
EQUIVALENCE Statementccouuunnttemnunee et 3-38
Equivalence of Array Elements i 3-38
Equivalence Between Arrays of Different Dimensions 3-40
Equivalence of Character Variables 3-41
Equivalence in Common Blocks 3-41

10

EXTERNAL Statementt et e e e e e ettt e et e ettt ettt 3-43

FORMAT Statementottt e e e e e e e 3-44
FUNCTION Statementovu ittt et e ettt et e e e 3-46
GOTO Statementttt e e e e e e e e e e e 3-47

Unconditional GOTO Statementot vttt 3-47

Computed GOTO Statementttt i, 3-47

Assigned GOTO Statementiuniintin ittt 3-48
TF Statement e 3-49

Arithmetic IF Statementttt e e e 3-49

Logical IF Statement e e 3-50

Block IF Statementttt e e 3-51
IMPLICIT Statementottt ettt e et et et e e e e 3-53
INCLUDE Statementttt ettt et et e e e e e 3-55
INQUIRE Statementttt ettt et et et e e e e 3-56
INTEGER Statementttt e e e e e e 3-59
INTEGER*2 Statementottt ettt et e et e e e 3-59
INTEGER*4 Statementottt ettt ettt et et e e e e 3-59
INTRINSIC Statementottt ettt e e et et e e e e 3-60
LOGICAL Statementttt e e e e e e e 3-60
LOGICAL*2 Statementottt et et et et e e e e 3-60
LOGICAL* Statementottt et et et et et e e e e 3-60
OPEN Statementttt e e e e e e e e e e 3-61
PARAMETER Statementct ittt e e e e e 3-66
PAUSE Statementt e e e e e 3-68
PRINT Statementttt e e e e e e e e 3-69
PROGRAM Statementottt e e e e e e e e e 3-70
Alternate PROGRAM Statementvvttint ittt et e 3-70
READ Statementttt e e e e e e e 3-72

READ from the Standard Input Unit Statement 3-72

READ from File Statementttt e 3-73
REAL Statementottt e e e e e e e e e 3-75
REAL®4 Statementottt ettt e et e e e e e e e e 3-75
REAL®8 Statementottt ittt e e e e e e e e e e e 3-75
RETURN Statementot i e e e e e e e e e 3-76
REWIND Statementttt e e e e e 3-78
SAVE Statementt e e e 3-79
Statement Function Statementttt e e 3-80
STOP Statementttt e e e e e e e e e 3-81
SUBROUTINE Statementco vttt et e et e e e 3-82
THEN Statementttt e 3-82
Type Statement e 3-83
WHILE Statementttt e e e e e e e 3-84
WRITE Statement e e e e e e e e 3-85

11

Chapter 4

Input/Output
Formatted Input/Outputt e e e e 4-1
Formatted Input o 4-1
Formatted Outputt e 4-3
Format Specificationsottt 4-5
Format Specifications in FORMAT Statements 4-5
Format Specifications in Input/Output Statements, 4-5
Format and Edit Descriptorsoiuniiin it 4-7
Numeric Format Descriptorsottt 4-9
Integer Format Descriptors: Iwand Iwm 4-10
Real and Double Precision Format Descriptors: Fw.d, Ew.d[Ee], Dw.d[Ee], and
GW.A[Ee] .o 4-10
Fixed-Point Format Descriptor: Fw.d it 4-11
Floating-Point Format Descriptors: Ew.d[Ee] and Dw.d[Ee] 4-12
Fixed- or Floating-Point Format Descriptor: Gw.d[Ee] 4-13
Character Format Descriptors: A[w]and R[w] i, 4-14
Logical Format Descriptor: Lw 4-15
Octal Format Descriptors: Kw, @w, and Ow i, 4-16
Edit DesCriptorsottt e e e e 4-17
Blank Interpretation Edit Descriptors: BNand BZ 4-17
Literal Edit Descriptors: ... and “..7 e 4-17
Position Edit Descriptor: nX e 4-18
Tab Edit Descriptors: Tn, TLn,and TRn 4-19
Record Terminator Edit Descriptor: / ...t 4-19
Colon (Fence) Edit Descriptor: (1) ... cvvvnnn et 4-19
Scale Factor: nP 4-20
Repeat Specification it e 4-21
Nesting of Format Specifications i, 4-22
List-Directed Input/Outputttt e e 4-23
List-Directed Input i e 4-23
List-Directed OULPULottt e ettt et e e 4-26
Unformatted Input/Outputt e e 4-28
Unformatted Inputo e 4-28
Unformatted Outputttt e e e e 4-29
Chapter 5
FORTRAN File Handling
File Definition e e e e 5-1
File ACCESS ..ottt 5-2
SFILES DIreCtiveo oottt ittt ettt ettt et e 5-3
File Existence and Connectionttt 5-4
File Control Specifiersot e e 5-6
READ and WRITE Statementsot 5-6
OPEN Statementt e e e 5-7
CLOSE Statementttt i 5-10
INQUIRE Statementoouuii e e 5-11
File Positioning Statementsuoniinitnntin i, 5-13
Internal Files o e 5-14
Standard Input/Output Units i e 5-15
General File Examples e 5-16

12

Chapter 6
Procedures and Block Data Subprograms

Subroutine Subprograms 6-2
Referencing a Subroutine i 6-2
Alternate Returns from a Subroutine i oL, 6-3

FUnCHIONSo e e 6-5
Function Subprograms i 6-5
Statement FUNCLIONSt e e 6-8
Intrinsic Functions i e 6-9

Generic NAMES . . . oottt 6-9
Referencing a Functiont 6-10

Procedure Communicationiiuiinninntin it 6-11
USING ATZUMENLS . . oottt ittt e e e et et e e e e e e et 6-11
Using the COMMON Statementoiuiinnenie e, 6-13
Arrays in SUDPIOZIramsc.iiuiti et e e 6-13
Character ArgUMENESottt et ettt 6-15

SAVE Statement e 6-16

ENTRY Statementttt e e et et 6-17
Referencing an External Procedure by Entry Name 6-17
Entry ASSOCIAtIONottt e e 6-17
ENTRY Statement Restrictionso.iiuiiinniin i 6-18

Block Data Subprogramsiuiiit e 6-18

Chapter 7

Using FORTRAN 77

FORTRAN Control Statementiiuiinniiiii e, 7-1

Compiler Invocationttt e 7-3
Compiler MESSaZES . ..ottt ettt e e 7-6
Compiler Status Values oo i 7-7
Sample Listingttt 7-7

Linking a Program e 7-9

Running a Program 7-9

Compiler DITECHIVES . . .« .ottt ettt et e e e e e e 7-10
SALIAS DIreCtiVe . . oo vttt ettt e e e e e e e e 7-10

WXTRN OPtION . ..ottt e e e i 7-11
DIRECT OPtiOnottt ettt e e e e et e e e e e e e e i 7-11
NOABORT OPtion . ..ottt ettt e et e e e e i 7-11
ERROREXIT Optionttt i 7-11
NOEMA OPHON . . o et ettt ettt e e e e e 7-12
EMA Option . ..ottt e e e e e 7-12
NOALLOCATE OPtion . ..o vttt et e ettt 7-13
Absolute Common Blocks i 7-13
SCDS DIrCCHVE . oottt et ettt et e e e e et e e e e 7-14
SCLIMIT DIreCtiVe ... v vttt ettt e et e e e e e e et 7-14
SEMA DITCCHIVE . . .ottt ittt ettt e e e e e e e e et 7-15
SFILES DIrectiveo ottt ettt et et e e e e e e e e e 7-18
SIF DITECLIVE . . . o ettt ettt e et et e e e e e e e e e e e 7-20
$IFDEF and $IFNDEF Directivesuuutetiitineeetiiiineeeeennn.. 7-20
SELSE DIreCtiVe . ..o vttt ettt ettt et e e e e e e e e e 7-21
SELSEIF DIreCtiVettt t ettt et et et e et et 7-21
SENDIF DIreCtive vttt ittt et et e e e e e e e e e e 7-21

13

SINCLUDE DITECHIVE . . v v ottt e e e e e e e e e e e e e e e e e e e 7-22

SLIST DIMCCHIVE . . v v vttt e e e e e e e e e e ettt 7-23
SMSEG DITECLIVE . . . v v vttt e e e e e e et et 7-23
SOPTPARMS DIIECLIVE .. v vttt e e e e e ettt 7-24
SPAGE DIICCHIVE . .. v vttt e e e e e ettt 7-24
SSET DIICCLIVE . . . v v vttt e e e e e e e e e e e e e 7-24
STITLE DIrCCHVE . . . v v v ettt e e e e e e e e e e et e e 7-26
STRACE DIICCHIVE . . . v v vttt e e e e e e e et 7-27
An Example with Multiple Directives i i, 7-29

Interfacing FORTRAN with Non-FORTRAN Subprograms 7-30
Calling FORTRAN Subprograms from Non-FORTRAN Programs 7-30
FORTRAN and Pascal i e 7-30

Reducing the Size of a Loaded Program i 7-31

Chapter 8

ANSI 66 Compatibility Extensions

66 Mode Compared with 77 Mode oot 8-1

Compatibility Features i e e 8-4

Appendix A

Error Messages

Types of Compilation Brrors i A-1

Format of Compilation Errors i i A-2

Compilation Error Summary e A-3

FORTRAN 77 Compilation Error Messagesc.ouuniiiiiniinenennnen.. A-4

Library Subroutine Error MesSagesovutt ittt A-19

Input/Output Run-Time Errors i A-23

Appendix B

Intrinsic and Library Functions

FORTRAN 77 Intrinsic Functionsi ottt B-1

General Type Rules for Intrinsic Functions B-11

Input/Output Library Interface Functions B-11

Random Number Generator Functions i ... B-15

Command Line Access Subprograms:

RCPAR, RHPAR, and FPARM e B-16

Appendix C

HP Character Set

14

Appendix D
Data Format in Memory

Integer Format e D-1
Double Integer Format e D-2
Real Format o e D-2
Extended Precision Format D-3
Double Precision Format D-4
Complex Format e D-5
Double Complex Format e D-6
Logical Format o e D-7
Double Logical Format e D-7
Character Format o e D-8
Hollerith Format e e e e D-8
Chapter E
FORTRAN Comparisons
Extensions to the Standard e E-1
Extensions for Backward Compatibility E-1
MIL-STD-1753 EXtENSIONS . . .o vttt ettt et e e e e et ie e E-1
Other EXtenSIONSttt et e e e e e e E-2
Comparison of FORTRAN 4X and FORTRAN 77 E-3
Chapter F
Cross-Reference Table
Requesting a Cross-Reference Table F-1
Cross-Reference Table Format it F-1
Example Program e F-2
Appendix G
FORTRAN 77 Syntax Charts
Syntax Chart CONVENtIONSottt ettt e et et eens G-1
Syntax Chartsot e G-2
Cross-Reference to Syntax Chartsc. i G-33
Appendix H
CDS Usage
CDS OVEIVIEW . .ottt ittt e e e e e e e e e e e e e e e et e e H-1
Static vs. Dynamic MEMOTYttt e e e H-2
RESIIICHIONSot H-2
Recursion e H-3
Lbraries ...t H-3

15

Figure 1-1
Figure 3-1
Figure 4-1
Figure 4-2

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 3-1
Table 3-2
Table 3-3

Table 3-4

Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 5-1
Table 7-1
Table 8-1
Table 8-2
Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table A-7
Table A-8
Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table C-1
Table C-2

List of lllustrations

Sample Listing of a FORTRAN 77 Source File
Required Order of Statements,
Output Datao e
Input Data e

Tables

ANSI 77 Intrinsic Functions i,
MIL-STD-1753 EXteNnSIONS . . .« .o vttt ettt ie e
HP EXtensionsoouuiiiniiiiiniiin i
Compatibility EXtensionsciiiiiiiniiniinneen...
Conversion of Mixed-Type Operands c.oiiiuien...
Truth Table for Logical Operators
Truth Table for Masking Operators,
Executable and Nonexecutable Statements
Classification of Statements oot eneen...
Type Conversion Rules for Arithmetic Assignment

Statements of the Form var=expr o it
Examples of Type Conversions for Arithmetic Assignment

Statements of the Form var=expr it
Format Descriptorsuiniinnii i
Edit DesCriptorsoutti e e
INQUIRE Statement Specifiersooiiiiiiiniineen....
OPEN Statement Specifiersc.ooiuiiiiiiniin ...
Carriage Control Charactersc.couuiininninneennenn..
Non-Standard Carriage Control
Format Descriptors
Edit DeSCriptors oottt e e e
Contents of Character Data Fields
INQUIRE Statement Specifications,
FORTRAN 77 Compiler Optionscoieuniinenneeneenn...
77 Mode and 66 Mode Conflicts,
Compatibility Features i,
FORTRAN 77 Compilation Error Messages
Library Subroutine Errors i i
Input/Output Run-Time Errors it
FMP Errors and DS FMP Errors
Character String Errors
/O Errors ...
DST/O EITOrS . ..o
Miscellaneous Run-Time Errors i,
Arithmetic Functions i
Bit Manipulation Functions i ..
Character Functions i
Numeric Conversion Functions coiiii...
Transcendental Functions,
Miscellaneous Functions o oo,
Compatibility Functions
Hewlett-Packard Character Set for Computer Systems
HP 7970B BCD-ASCII CONVersionc.ueeueennennennennnnn.

16

B-2

NOTTITITITI I
aaushiads

Introduction to FORTRAN 77

The FORTRAN language was the first high-level computer language to receive wide acceptance
for application programming in the scientific community. First implemented in 1957, FORTRAN
evolved through many changes and extensions, until in 1966 the American National Standards
Institute (ANSI) published a “Standard FORTRAN” (X3.9-1966). This standard provided the
basic structure of most FORTRAN compilers for many years.

Many compilers, among them Hewlett-Packard’s RTE FORTRAN 4X, extended the standard. To
expand the FORTRAN standard to include many of the extensions, ANSI updated the standard in
1977. The document describing this new standard (American National Standard Programming
Language FORTRAN, ANSI X3.9-1978) was published in 1978. Because most of the work on the
language was completed in 1977, this standard FORTRAN is often called FORTRAN 77.

HP’s FORTRAN 77 has many extensions to provide a more structured approach to program
development and more flexibility in computing for scientific applications. In this manual,
wherever such an extension is described, it is referred to as “an extension to the ANSI 77
standard.” As part of its extensions, FORTRAN 77 fully implements those extensions described in
the Department of Defense publication, MIL-STD-1753 Military Standard FORTRAN, DOD
Supplement to American National Standard X3.9-1978. In this manual, wherever such an extension
is described, it is referred to as “a MIL-STD-1753 standard extension to the ANSI 77 standard.”

FORTRAN 77 is completely compatible with both ANSI 77 and the previous 1966 standard
(described in the document American National Standard Programming Language FORTRAN, ANSI
X3.9-1966, published in 1966). Because some of the ANSI 66 and ANSI 77 standards conflict,
FORTRAN 77 has a compiler option to switch to either 66 or 77 mode.

In 77 mode, FORTRAN 77 is completely compatible with the ANSI 77 standard. In 66 mode,
FORTRAN 77 is completely compatible with the ANSI 66 standard. All features of FORTRAN 77
are available in both modes, but some features may function differently in 66 mode and 77 mode.
Chapter 8 of this manual compares features of both modes, showing where they conflict and how
programs compiled in each mode behave. Appendix E compares FORTRAN 77 with RTE
FORTRAN 4X, the ANSI 66 standard version of FORTRAN for the HP 1000.

Introduction to FORTRAN 77 1-1

The FORTRAN 77 Compiler

The FORTRAN 77 compiler constructs object language programs from source language files
written according to the rules of the FORTRAN 77 language described in this manual. The
FORTRAN 77 compiler described in this manual is executable under RTE-6/VM and RTE-A. The
code generated by the compiler, standard binary output files, can be loaded and executed under
the RTE-6/VM and RTE-A Operating Systems. Details for specifying these files are in the
appropriate system reference manuals.

FORTRAN 77 is a multipass compiler. A pass is a processing cycle of the source program. When
the compiler is invoked, it produces a relocatable binary object program. Source and object
listings can be produced if specified in the FORTRAN 77 control statement or the command line
(see “FORTRAN Control Statement” and “Compiler Invocation” in Chapter 7 for details on the
FORTRAN 77 control statement and the command line).

Note FORTRAN 77 for the HP 1000 is invoked through the command FTN7X, plus a
source file name and optional parameters. Because of the command form, this
FORTRAN compiler is often referred to as FORTRAN 7X.

FORTRAN 77 Vocabulary

A FORTRAN 77 source file is composed of one or more program units. Each of the program
units is constructed from characters grouped into lines and statements.

Figure 1-1 below shows a sample listing of a FORTRAN 77 source file, consisting of one main
program unit (exone) and one subprogram unit (nf unc). The line numbers are shown for
reference only, and do not appear in the source file. The definitions of FORTRAN 77 source file
terms that follow Figure 1-1 refer to the figure.

1-2 Introduction to FORTRAN 77

O 01N W -

FTN, L I Optional control statemnent.
PROGRAM exone

C Thi s program shows program structure.
C The purpose of the programis to conpute
C the sumof the first n integers using
C a function subprogramunit.
C
| NTEGER*4 sum nf unc I Speci fication statenent.
*
WRI TE(1, ' ("' ENTER val ue—>"")") I Pronpt user.
READ *, n IlEnter integer limt to sum
* Conput e sum i n subprogram nfunc.
sum = nfunc(n) I'l nvoke subprogram

WRI TE (1,33) n,sum
33 FORMAT(“Sum of the first ",16,
1 “integers = ",110) I Continuation |ine.
STOP
END

* Function subprogramunit foll ows.
| NTEGER*4 FUNCTI ON nf unc(k)
nfunc = 0
DOi =1,k I'Loop to conpute sum
nfunc = nfunc+i
END DO
RETURN I Return value in function nane.
END

Figure 1-1. Sample Listing of a FORTRAN 77 Source File

Introduction to FORTRAN 77 1-3

FORTRAN 77 Terms

Executable Program

Program Unit

Main Program

Subprogram

Overlay

Line

Initial Line

Continuation Line

Directive Line

Statement

An executable program is one that can be used as a self-contained com-
puting procedure. An executable program consists of one main program
and its subprograms and segments, if any. (Figure 1-1 shows an executa-
ble program in its entirety.)

A program unit is a group of statements organized as a main program
unit, a subprogram unit, or a block data subprogram unit. (exone and
nf unc are program units.)

A main program is a set of statements and comments beginning with a
PROGRAM statement or any other statement except a FUNCTION,
SUBROUTINE, or BLOCK DATA statement, and ending with an END
statement. (Lines 1 through 18 are a main program.)

A FORTRAN 77 subprogram is a set of statements and comments
headed by a FUNCTION, SUBROUTINE, or BLOCK DATA statement.
When headed by a FUNCTION statement, it is called a function subpro-
gram (lines 21 through 27); when headed by a SUBROUTINE statement,
a subroutine subprogram; and when headed by a BLOCK DATA state-
ment, a block data subprogram. Subprograms can also be written in
other languages, such as FORTRAN 4X, Pascal/1000, or Macro/1000.

An overlay is an overlayable set of statements beginning with a PRO-
GRAM statement that specifies type 5. (See “Alternate PROGRAM
Statement” in Chapter 3.)

A line is a line of characters. All characters must be from the ASCII
character set. (See Appendix C for the complete ASCII character set.)
The character positions in a line are called columns and are consecutively
numbered 1, 2, 3, ..., 72 from left to right. (1 through 27 are lines.) Col-
umns 73 through 80 are placed in the listing but otherwise ignored. Col-
umns 81 and greater are completely ignored.

An initial line is one that is not a comment line, and contains a blank or
the digit 0 in column 6. Columns 1 through 5 can contain a statement
label or blanks. (Lines 2, 8, 10 through 11, 13 through 15, 17 through 18,
and 21 through 27 are initial lines.)

A continuation line is one that contains any characters other than a blank
or the digit 0 in column 6, and contains only blanks in columns 1 through
5. A continuation line can follow only an initial line or another continu-
ation line (unless separated by a comment line). In all cases, a statement
can be continued indefinitely. (Line 16 is a continuation line.)

A directive line is one that contains a $ in column 1 and the text of the
directive to the compiler in columns 2 through 72. A directive line can-
not be continued. (See “Compiler Invocation” and “Compiler Direc-
tives” in Chapter 7.)

A statement is an initial line optionally followed by continuation lines.
The statement is written in columns 7 through 72 of the lines. The order
of the characters in the statement is columns 7 through 72 of the first
line, columns 7 through 72 of the first continuation line, etc. (Lines 2, §,
10 through 11, 13 through 18, and 21 through 27 are statements.)

1-4 Introduction to FORTRAN 77

Control Statement A control statement is an optional directive on the first line that tells the
compiler how to compile the program. See “FORTRAN Control State-
ment” in Chapter 7.

T3

Comment Line A comment line is denoted by a “C” or an in column 1 of a FOR-
TRAN 77 source file. (Lines 3 through 7, 9, 12, 19, and 20 are comment
lines.) An exclamation point (!) in columns 7 through 72 signifies an end-
of-line comment. (Lines 8, 10, 11, 13, 16, 23, and 26 contain end-of-line
comments.) Blank lines are also treated as comment lines.

Source File Structure

FORTRAN 77 is column sensitive. The compiler control statements and directives (FTN, SEMA,
$PAGE, etc.) must begin in column 1. All other FORTRAN 77 statements can begin in columns 7
through 72. This permits indenting to improve program appearance. Statement labels appear in
columns 1 through 5. Column 6 must be blank or contain the digit 0 for all lines except
continuation, comment, directive, and control statement lines. A “C” or “*” in column 1 denotes
a comment line. Columns 73 through 80 are printed in the listing but are otherwise ignored
(historically, these columns were used for sequence numbers on Hollerith cards).

Figure 3-1 in Chapter 3 lists the ordering requirements of FORTRAN 77 statements within
program units.

FORTRAN Software Files and Installation

The following files are shipped with the HP 92836 A FORTRAN product:

"FTN7X Installation Guide

#FTN7X Loader Command File

A92836 Software Numbering File
$FCLBA RTE-A / 6/VM Compiler Library
$F7XCS Common Compiler Modules
Z2FT7X1 Compiler Modules Part 1
2FT7X2 Compiler Modules Part 2

&FRPLS Source for Compiler Option RPLs
%FRPLS Relocatable for Compiler Option RPLs
%FX000 Source Message Catalogs

After you have restored the above files, read the file "FTN7X for information on how to install
FTN7X on your system.

Introduction to FORTRAN 77 1-5

Language Elements

A FORTRAN 77 program is a sequence of statements that, when executed in a specified order,
process data to produce desired results. Because each program has different data needs,
FORTRAN 77 provides nine data types for constants, variables, functions, and expressions.
FORTRAN 77 also provides three additional constant formats, which are extensions to the ANSI
77 standard. All are described in “Data Types and Constants” below. Keywords, special
characters, special symbols, symbolic names, and constant values make up the statements of a
FORTRAN 77 program. This chapter describes the elements of statements.

FORTRAN 77 Character Set

Each language element is written using the letters A through Z, the digits 0 through 9, and the
following special characters:

Blank (Left parenthesis
= Equals) Right parenthesis
+ Plus , Comma
— Minus . Decimal point
* Asterisk > Single quotation mark (apostrophe)
/ Slash ” (Double) quotation mark
! Exclamation point $ Dollar sign
_ Underscore (break) : Colon
@ Atsign

The exclamation point, underscore, and at sign are extensions to the ANSI 77 standard. Although
the dollar sign is a standard special character, it is not valid except in character strings in a
standard program. See Appendix E for a description of extensions which use the exclamation
point, underscore, and at sign; see Chapter 8 for a description of the extension which uses the
dollar sign.

As an extension to the ANSI 77 standard, the 26 lowercase letters (a through z) are allowed. The
compiler considers them identical to their uppercase equivalents, except in character or Hollerith
constants. Lowercase letters improve program readability.

In addition, any printable ASCII character can be used in a character or Hollerith constant or a
comment.

Blanks can be used anywhere within a statement. They are ignored except in character and
Hollerith constants.

Language Elements 2-1

Special Symbols

The special symbols are groups of characters that define specific operators and values. The special
symbols of FORTRAN 77 are:

// Character concatenation

o Exponentiation .EQ. Equal

.TRUE. Logical true .NE. Not equal

.FALSE. Logical false .LT. Less than

NOT. Logical negation .LE. Less than or equal
AND. Logical AND .GT. Greater than

.OR. Logical OR .GE. Greater than or equal
XOR. Exclusive OR

.EQV. Logical equivalence (exclusive NOR)

NEQW. Logical nonequivalence (exclusive OR)

.XOR. is an extension to the ANSI 77 standard.

Keywords

Keywords are predefined FORTRAN 77 entities that identify a statement or a compiler option.
Symbolic names can be identical to keywords since the interpretation of a sequence of characters
is implied by the context in which it appears. The keywords of FORTRAN 77 are listed below.

Statement Keywords

ASSIGN
BACKSPACE
BLOCK DATA
CALL
CHARACTER
CLOSE
COMMON
COMPLEX
CONTINUE
DATA
DIMENSION
DO

DOUBLE COMPLEX
DOUBLE PRECISION

ELSE

ELSE IF

EMA

END

END DO

END IF
ENDFILE
ENTRY
EQUIVALENCE
EXTERNAL

Compiler Directive Keywords

ALIAS
CDS
CLIMIT
ELSE
ELSEIF

2-2 Language Elements

EMA
ENDIF
FILES
IF
IFDEF

FORMAT
FUNCTION
GOTO

IF
IMPLICIT
INCLUDE
INQUIRE
INTEGER
INTRINSIC
LOGICAL
OPEN
PARAMETER

IFNDEF
INCLUDE
LIST

MSEG
OPTPARMS

PAUSE
PRINT
PROGRAM
READ
REAL
RETURN
REWIND
SAVE
STOP
SUBROUTINE
THEN
WHILE
WRITE

PAGE
SET
TITLE
TRACE

Symbolic Names

Symbolic names are entities that define main program, procedure, block data subprogram,
common block, named constant, or variable names. Each symbolic name consists of a sequence of
characters, the first of which must be a letter. The rest can be letters, digits, or the underscore
character (). The letters can be uppercase or lowercase. The name can be any length, but only
the first 16 characters are significant. Main program names may be truncated to five characters by
the operating system.

Examples of Symbolic Names

I NI TI ALI ZATI ON_SUBROUTI NE REAL_VALUE
char _string sum of _real _val ues
NunBer _of _ERRors error_flag

Notice that, because only the first 16 characters are significant, the compiler would consider
INITIALIZATION_SUBROUTINE and INITIALIZATION_SUBPROGRAM to be the same
name. Since uppercase and lowercase letters are not distinguishable within symbolic names, the
following are equivalent:

result3
RESULT3
Resul T3

Names longer than six characters and the use of underscore or lowercase are extensions to the
ANSI 77 standard.

The name that identifies a variable, named constant, or function also identifies its default data
type. A first letter of I, J, K, L, M, or N implies type integer or double integer, depending on
compiler options. Any other letter implies type real. This default implied typing can be changed
with an IMPLICIT statement or type statement. A symbolic name that identifies a main program,
subroutine, block data subprogram, or common block has no data type. Symbolic names can be
identical to keywords since the interpretation of a sequence of characters is implied by its context.
Similarly, the symbolic name of a named constant or variable can be the same as the symbolic
name of a common block, without conflict.

The following are valid statements in FORTRAN 77:

READ = I|F + DO * REAL READ, | F, DO, and REAL are recognized as variables.
They can also be used elsewhere as keywords in state-
ments.

IF (IF .EQ GOrg Goro 99 The | F and GOTO within the logical expression are rec-
ognized as variables. The | F and GOTO outside the ex-
pression are recognized as statements.

DO 10 j = 1.5 The symbol DO 10 J is recognized as a variable, even
though it contains blanks, mixed case, and the characters
4‘D077.

Although the language permits the above examples, using symbolic names that look like keywords
is not good programming practice because it inhibits program readability.

Language Elements 2-3

Intrinsic Functions

Intrinsic functions are symbolic names that are predefined by FORTRAN 77. Intrinsic functions
are discussed in detail in Chapter 6 and Appendix B. The intrinsic functions of FORTRAN 77 are
listed in Tables 2-1 through 2-4.

If a user-defined symbolic name that is the same as a predefined symbolic name is used, any use of
that name in the same program unit refers to the user-defined name. (That is, the intrinsic
function of that name cannot be used in the same program unit.) Also see “EXTERNAL
Statement” in Chapter 3.

Table 2-1. ANSI 77 Intrinsic Functions

ABS ASIN CSIN DIM DSQRT INT MINMINO
ACOS ATAN CSQRT DINT DTAN ISIGN MIN1
AIMAG ATAN2 DABS DLOG DTANH LEN MOD
AINT CABS DACOS DLOG10 EXP LGE NINT
ALOG CCOs DASIN DMAX1 FLOAT LGT REAL
ALOG10 CEXP DATAN DMIN1 IABS LLE SIGN
AMAXO0 CHAR DATAN2 DMOD ICHAR LLT SIN
AMAX1 CLOG DBLE DNINT IDIM LOG SINH
AMINO CMPLX DCOS DPROD IDINT LOG10 SNGL
AMIN1 CONJG DCOSH DSIGN IDNINT MAX SQRT
AMOD COS DDIM DSIN IFIX MAX0 TAN
ANINT COSH DEXP DSINH INDEX MAX1 TANH
Table 2-2. MIL-STD-1753 Extensions
BTEST IBCLR IBSET IOR ISHFTC MVBITS
IAND IBITS IEOR ISHFT IXOR NOT
Table 2-3. HP Extensions
ACOSH ATANH DACOSH DATANH DEXEC IMAG REIO
ASINH CTAN DASINH DCMPLX EXEC PCOUNT XLUEX
XREIO
Table 2-4. Compatibility Extensions
ALOGT DATN2 DDINT DLOGT ISSW

2-4 Language Elements

Data Types

Every constant, variable, function, and expression is of one type only. The type defines:
e The set of values that an entity of that type can assume

e The amount of storage that variables of that type require
e The permissible operations on an entity of that type
The nine data types provided by FORTRAN 77 are:

® integer

e double integer

e real

e double precision

e complex

e double complex

e logical

e double logical

character

Each is discussed below along with a description of the constants of each type.

A constant is a data element that represents one specific value, such as —3, .TRUE., ’character
constant’, or 47.21E-8. With the PARAMETER statement, constants can be given symbolic
names.

FORTRAN 77 provides three additional constant formats:
e Hollerith

e octal

e hexadecimal

These formats are extensions to the ANSI 77 standard. They differ from the data types in that
they cannot be associated with variables, functions, or expressions. Only constants can be of these

types.

The operations allowed on each of the types are discussed in “Expressions” later in this chapter.
Each type statement mentioned below is discussed in detail in “Type Statement” in Chapter 3.
Appendix D shows the data format in memory of each type.

Language Elements 2-5

Integer

The integer type defines the set of signed whole numbers in the range —32768 to 32767. Variables
of type integer are stored in one 16-bit word.

A variable can be explicitly typed as integer by specifying it in an INTEGER type statement
(depending on compiler options) or in an INTEGER*2 type statement, or implicitly in an
IMPLICIT statement. If not explicitly typed, a symbolic name with a first letter of I, J, K, L, M, or
N is type integer.

Integer constants consist of an optional plus (+) or minus (—) sign followed by one or more digits
(0 through 9). Whole numbers outside the integer range are represented as double integers.

When an integer constant has an I suffix, the constant is 16 bits long, regardless of compiler
options.

Examples
0 -638 1231 (even with the J option)
45 -32767

Double Integer

The double integer type defines the set of signed whole numbers in the range —2147483648 to
2147483647. Variables of this type are stored in two 16-bit words.

A variable can be explicitly typed as double integer by specifying it in an INTEGER*4 type
statement, or it can be implicitly typed in an IMPLICIT statement. When the J compiler option is
used, any symbolic name declared in an INTEGER type statement or with a first letter of I, J, K,
L, M, or N implies type double integer.

Double integer constants consist of an optional plus (+) or minus (—) sign followed by one or
more digits (0 through 9). Only whole numbers that are outside the range of integer but within the
range —2147483648 to 2147483647 are represented as double integer constants. Constants
outside this range cause compile-time errors. Numbers outside the range assigned to, or read into,
variables cause an overflow or underflow condition. The compiler does not detect these, and
erroneous results can be produced. It is the programmer’s responsibility to check for overflow and
underflow.

When an integer constant has a J suffix, the constant is 32 bits long, regardless of the I and J
compiler options.

Examples
—-99526 32768 123J
2147483647 —3 (with the J option)

2-6 Language Elements

Real

The real type defines a set of real numbers. Real values, often called floating-point, fall in these
ranges:

—1.70141 x 10138 to —1.469368 x 1039
0.0
1.469368 x 10739 to 1.70141 x 10*38

Entities of type real are stored in two 16-bit words and have an accuracy of approximately 6.6 to
6.9 decimal digits (that is, one part in 100 to 106-9).

A variable can be explicitly typed as real by specifying it in a REAL or REAL*4 type statement. If
not explicitly declared in a type statement, a symbolic name with a first letter of A through H or O
through Z is type real unless otherwise specified in an IMPLICIT statement.

Real constants contain a decimal point, an exponent, or both. They can have a leading plus (+) or
minus (—) sign.

Syntax
sn.n sn.nEse
s.n snEse
sn. s.nEse
sn.Ese
where:
n is a string of digits.
s is the optional sign.
e is the exponent, which must be an integer.

The construct Ese represents a power of 10. For example:

3.4E-4 = 3.4 x 104 = . 00034

42. E2 = 42 x 102 = 4200.

Examples
8.5 5. E+04
-6 2E-15
3. . 18181E-2
3. 14159E2

Language Elements 2-7

Double Precision

The double precision type defines a set of real numbers. Double precision values have the
following range:

—1.70141183460469232 x 1038 to —1.46936793852785946 x 10737
0.0
1.46936793852785938 x 1073 to 1.70141183460469227 x 10+38

Entities of type double precision are represented in four 16-bit words and have an accuracy of
approximately 16.3 to 16.6 decimal digits (that is, one part in 1063 to 10166).

A variable can be explicitly typed as double precision by specifying it in a REAL*8 or DOUBLE
PRECISION type statement, or it can be implicitly typed in an IMPLICIT statement

Double precision constants contain an optional decimal point and an exponent. They can have a
leading plus (+) or minus (—) sign. The exponent is specified with the letter D.

The syntax for the double complex type is the same as the syntax for the real type, except that
double complex uses a D in the exponent part. The D is required.

Examples

5. 9972552908 23.9984432697338D-25
6D0 —. 74D-12

Complex

The complex type defines a set of complex numbers. The representation of a complex entity is an
ordered pair of real values. The first of the pair represents the real part of the complex value, and
the second represents the imaginary part. Each part has the same degree of accuracy as for a real
value. Values of type complex are represented in four consecutive 16-bit words.

A variable can be explicitly typed as complex by specitying it in a COMPLEX or COMPLEX*8
type statement, or it can be implicitly typed in an IMPLICIT statement.

The form of a complex constant is an ordered pair of real or integer constants separated by a
comma and surrounded by parentheses.

Examples
(3.0,-2.5E3) (3.5,5.4)
(0,0) (-187, -160. 5)

(45. 9382, 12)

2-8 Language Elements

Double Complex

The double complex type is an extension to the ANSI 77 standard. It defines a set of complex
numbers. The representation of a double complex value is an ordered pair of double precision
values. The first of the pair represents the real part of the double complex value, and the second
represents the imaginary part. Each part has the same degree of accuracy as for a double
precision value. Values of type double complex are represented in eight consecutive 16-bit words.

A variable can be explicitly typed as double complex by specifying it in a COMPLEX*16 or
DOUBLE COMPLEX type statement, or it can be implicitly typed in an IMPLICIT statement.

The form of a double complex constant is an ordered pair of constants separated by a comma and
surrounded by parentheses. One of the pair of constants must be double precision, while the other
can be double precision, real, or integer.

Examples

(1.56792456774D-24, —9. 74375486354D-21)
(0, 5. 99537D5)
(-153D-12, 4. 66257)

Logical

An entity of the logical type can assume only the values true or false. Entities of type logical are
represented in one 16-bit word. The values true and false are represented internally by,
respectively, a 1 or a 0 in the most significant bit (bit 15) of the word. The lower 15 bits of a
logical value are not defined, and therefore each can be 0 or 1.

A variable can be explicitly typed as logical by specifying it in a LOGICAL (depending on
compiler options) or LOGICAL*2 type statement, or it can be implicitly typed in an IMPLICIT
statement.

The forms and values of a logical constant are:

Form Value
.TRUE. true
.FALSE. false

The periods must be included as shown when specifying a logical constant.

Double Logical

The double logical type is similar to the logical type except that entities of type logical are
represented in two 16-bit words. Only the most significant bit of the first word is used.

A variable can be explicitly typed as double logical by specifying it in a LOGICAL*4 type
statement or, with the J compiler option specified, in a LOGICAL type statement, or it can be
implicitly typed in an IMPLICIT statement.

The double logical type is included for alignment of data in common blocks and equivalenced data.
Otherwise double logical is identical to the logical type.

Language Elements 2-9

Character

The character type is used to represent a string of characters. The string can consist of any
characters in the 8-bit ASCII character set. Most nonprintable characters can be included in a
string, but it is recommended that nonprintable characters be specified with the CHAR intrinsic
function and concatenated to a string. The CHAR intrinsic function is shown in Appendix B. The
blank character is valid and significant in a character value. Lowercase characters are not
identical to their uppercase equivalents in character values.

Each character in the string has a character position that is numbered consecutively: 1, 2, 3, and
so on. The number indicates the sequential position of a character in the string, beginning at the
left and proceeding to the right.

Entities of type character are stored two characters per 16-bit word, with each character occupying
1 byte (8 bits). If the last character is in the left byte of a word, the right byte (that is, the right 8
bits) is not part of the entity. The first character does not necessarily start in the left byte of a
word; that is, character values are not word-aligned.

A variable can be explicitly typed as character by specifying it in a CHARACTER type statement,
or it can be implicitly typed in an IMPLICIT statement.

The form of a character constant is a single quotation mark (apostrophe, ’) followed by a
nonempty string of characters followed by a single quotation mark.

If an apostrophe or single quotation mark is included in a string delimited by single quotation
marks, it must be written twice to distinguish it from the delimiting characters.

The length of a character constant is the number of characters between the delimiting single
quotation marks (which are not counted). Double apostrophes count as one character. The length
of a character constant must be greater than 0.

As an extension to the ANSI 77 standard, a one-character constant may be specified as CHAR (n),
where 7 is an integer constant.

Examples
"I nput the next item

"EXPECTING A “1" OR A “2"
"That’'s lifel’

" FI LE1: SU: —48’
"ltem #1 =>
Note Character strings are not initialized. You can initialize them using a DATA

statement or an assignment statement.

2-10 Language Elements

Hollerith Constants

Hollerith constants are an extension to the ANSI 77 standard. They are a special format for
ASCII characters and are stored as numeric values. A Hollerith constant consists of an integer
specifying the number of characters (including blanks), followed by the letter H and the character
string.

Hollerith constants are stored as the following types:

Number of Characters Compiler Option Type
1-2 I Integer
1-2 J Double Integer
3-4 lord Double Integer
3-4 I Real
5-8 lord Double Precision

(The table does not apply in 66 mode.)

A Hollerith constant with greater than eight characters is legal only as an actual argument in a
CALL statement or function reference, or in a DATA or FORMAT statement.

Examples
2HS 6 H&PROGA
8HA STRI NG 3H12A

12HReport Title 7HQU OTED

Note Since Hollerith constants offer no advantages over character constants and are
less flexible, they should be avoided.

Language Elements 2-11

Octal Constants

Octal constants are an extension to the ANSI 77 standard. They are a special format of octal
values that are stored as integers or double integers, according to the rules described for those
types. There are two formats for octal constants, the B-form and the O-form.

Syntax
snB the B-form
Oon’ the O-form
where
n is an integer constant containing only the digits 0 through 7.
s is the optional sign and can be used only in the B-form.

The B-form of octal constants can be used anywhere an integer or double integer constant can be
used. The O-form adheres to the MIL-STD-1753 standard extensions to the ANSI 77 standard.
These constants can appear in DATA statements only. With either form, if the constant fits into 16
bits and the list item is double integer, the first word is 0, regardless of the sign of the second word.

Examples

400B O 2137

100000B O 177777’

Hexadecimal Constants

Hexadecimal (base 16) constants are a MIL-STD-1753 extension to the ANSI 77 standard.
Syntax

Zn’
where

n is a constant containing the digits O through 9 and hexadecimal digits A through F
or a through f (representing the decimal equivalents of 10 through 15).

Hexadecimal constants are a form of hexadecimal values that are stored as integers or double
integers, according to the rules of those types. These constants can appear in DATA statements
only.

If the constant fits into 16 bits and the list item is double integer, the first word is 0, regardless of
the second word.

Examples
Z' FOAL Z' AB2’
Z' 2782 Z' FFFF

2-12 Language Elements

Variables

A variable is a symbolic name that represents a data element whose value can be changed during

program execution by assignment statements, READ statements, and so forth. Each variable can
represent only one type of value: integer, double integer, real, double precision, complex, logical,
double complex, double logical, or character.

A variable name can represent only one value (this is a simple variable), or it can represent a
collection of values (this is an array). Individual elements in an array are referenced by the array
name followed by a subscript (this is a subscripted variable).

See “Symbolic Names” above for a description of valid variable names.

Simple Variables

A simple variable is used for processing a single data item. It identifies a storage area that can
contain only one value at a time. Subscripted variables are treated in this manual as simple
variables unless stated otherwise.

Examples
t ot al sum of val ues
vol t age ERROR_FLAGL
Fi nal _Score array3_elenment(i,j)

[FORMAT

Language Elements 2-13

Arrays

An array is a collection of several values of the same type. An array name is a symbolic name that
represents all values, or elements, of the array. To designate exactly one data value, or element, of
the array, follow the array name with one or more subscripts. A group of values arranged in a
single dimension is a one-dimensional array. The elements of such an array are identified by a
single subscript. If two subscripts are used to identify an element of an array, then that array is
two-dimensional, and so forth. The maximum number of dimensions is seven.

Array Declarators
Array declarators are used in DIMENSION, COMMON, and type statements to define the
number of dimensions and the number of elements per dimension (called bounds).

Syntax
name(d1,d2,d3,...)

where
name is the symbolic name of the array.
d is a dimension declarator. There must be one dimension declarator for each di-

mension in the array. The syntax of a dimension declarator is:

n
or
m:n
where
m is the lower dimension bound.
n is the upper dimension bound.

If only the upper dimension bound is specified, the value of the lower dimension bound is 1. The
value of either dimension bound can be positive, negative, or 0; however, the value of the upper
dimension bound must be greater than or equal to the value of the lower dimension bound.

The lower and upper dimension bounds are arithmetic expressions in which all constants, symbolic
names of constants, and variables are of type integer or double integer. These expressions must
not contain a function or array element reference. The upper dimension bound of the last
dimension in the array declarator of a formal argument can be an asterisk.

Note Using variables or asterisks in a dimension declarator is limited to declarators of
formal arguments to subprograms. This is discussed in detail in Chapter 6.

The array bounds indicate the number of dimensions of the array and the maximum number of
elements in each dimension. The number of elements in each dimension is defined by n—m+1,
where 7 is the upper bound and m is the lower bound.

2-14 Language Elements

Examples Notes

nane(4,-5:5, 6) Specifies a three-dimensional array. The first dimension
can have four elements, the second 11, and the third six.

deci sion_table(2,3, 2,2, 3,4, 2) Specifies a seven-dimensional array.

m(0: 0) Specifies a one-dimensional array of one element:
m(0) .

list(10) Specifies a one-dimensional array of 10 elements:
list(1)...list(10).

A complete array declarator for a particular array can be specified only once in a program unit,
although the array name can appear in several specification statements. For example, if the array
declarator is used in a DIMENSION statement, the array name only (without dimensions or
subscripts) can be used in a COMMON or type statement. If the complete array declarator is
used in a COMMON or type statement, the array must not be mentioned in a DIMENSION
statement.

Subscripts

Subscripts designate a specific element of an array. An array element reference (a subscripted
variable) must contain the array name followed by as many subscripts as there are dimensions in
the array. The subscripts are separated by commas and enclosed in parentheses. Each subscript
value must fall between the declared lower and upper bounds for that dimension. Thus, a
subscripted variable for a one-dimensional array of three elements declared by a(3) or a(1: 3)
could have the form a(1) ,a(2), or a(3) to represent the elements of the array a. The compiler
does not generate an error if a subscript is used that is outside its declared lower and upper
bounds, but the results are unpredictable.

A subscript can be an integer expression. The expression can contain subscripted variables and
function references.

Examples Notes

arr(1,2) Represents the element 1, 2 of the array arr. Ifarr
was declared by arr (10, 20), arr would describe a
two-dimensional table and ar r (1, 2) would describe
the element in the second column of the first row.

chess_board(i,j, k) Subscripts i, j, and k are variables that represent dif-
ferent elements of the array chess_board.

arr(i+4,j-2) Subscripts i +4 and j —2 are expressions that represent
specific elements of the array ar r when evaluated.

i ((3*x+1)/4) If x=3.6, the expression evaluates to 2.95, which trun-

cates to integer 2. Thus, the subscripted variable is

i (2).

Language Elements 2-15

Array Element Storage

The total number of elements in an array is calculated by multiplying the number of elements in
each dimension. For example, the array declarator i (3, 4, —3: 5) indicates that array i contains
108 elements:

3%4%(5—(=3)+1) = (3*4%9) = 108

The number of words of memory needed to store an array is determined by the number of
elements in the array and the type of data that the array contains. Integer and logical arrays store
each element of an array in a single 16-bit word; double integer, real, and double logical arrays
store each element in two words; double precision arrays and complex arrays store each element
in four words; double complex arrays store each element in eight words; while character arrays use
half a word (1 byte) for each character. A one-dimensional array is stored as a linear list. Arrays
of more than one dimension are stored in column major order, with the first subscript varying most
rapidly, the second the next most rapidly, and so forth, with the last varying least rapidly.

Example

Array declarator: arr(2,0:1,-5:-4)

Array storage: arr(1,0,-5)
arr(2,0,-5)
arr(1,1,-5)
arr(2,1,-5)
arr(1,0,-4)
arr(2,0,-4)
arr(1,1,-4)
arr(2,1,-4)

2-16 Language Elements

Character Substrings

A character substring is a contiguous portion of a character variable. The form of a substring is:
name ([first]:[last])

or
a(s1[,s2]...) ([first]:[last])

where:

name is a character variable name.
a(sl[,s2]...) is a character array element name.

first is an integer expression that specifies the leftmost position of the substring; the de-
fault value is 1.

last is an integer expression that specifies the rightmost position of the substring; the
default value is the length of the variable or array element.

The value of first and last must be such that

1 < first < last < len

where len is the length of the character variable or array element. The length of a substring is
last-first+1.

Examples Notes

name(2:5) If the value of nanme is RAYMOND, then nane(2: 5) specifies
AYMO.

address(:4) If the value of the address is 1452 NORTH, then

addr ess(:4) specifies 1452.

city(6,2) (5:) If the value of ci ty(6, 2) is SAN JOSE, then ci t y(6, 2)
(5:) specifies JOSE.

title or title(:) These specify the complete character variable.

Language Elements 2-17

Expressions

An expression can be a constant, a simple or subscripted variable, a function reference, a
substring, or combinations of these entities, joined by arithmetic, character, logical, or relational
operators. There are four types of expressions:

e Arithmetic
e Character
e Relational
e I ogical

Arithmetic expressions return a single value of type integer, double integer, real, double precision,
complex, or double complex. Character expressions return character values. Relational and
logical expressions evaluate to either true or false (that is, to a logical value).

Arithmetic Expressions

Arithmetic expressions perform arithmetic operations. An arithmetic expression can consist of a
single operand, or it can consist of one or more operands together with arithmetic operators,
parentheses, or both. An operand in an arithmetic expression can be an arithmetic constant, the
symbolic name of an arithmetic constant, a variable, an array element reference, or a function
reference. The arithmetic operators are:

+ Addition; unary plus (positive or plus sign)

— Subtraction; unary minus (negation or minus sign)
* Multiplication

/ Division

o Exponentiation

A unary operator is one that affects one operand only. For example, the unary minus (also called
a minus sign, or sign of negation) is used to designate that the expression following it is to be
negated.

The following are valid arithmetic expressions:

a nun(i)

4. + 2 ar**2

3. 145 c**4)*d

SQRT(r + d) total + sum of val ues

arr(5,2)*45.5 nurber _of successes/ nunber _of tries*100

Multiplication must be specified explicitly. FORTRAN has no implicit multiplication that can be
indicated by a(b) or ab; a*b must be used.

Division by a constant 0 will cause a compilation warning. Division by a variable containing the
value 0 will produce an invalid result. There is no run-time check for division by zero. It is the
programmer’s responsibility to check for this condition.

2-18 Language Elements

Hierarchy of Arithmetic Operators

The order of evaluation of an arithmetic expression is established by a precedence among the
operators. This precedence determines the order in which the operands are to be combined. The
precedence of the arithmetic operators is:

o Exponentiation highest
*/ Multiplication and division
+ - Addition and subtraction; unary plus and minus lowest

Evaluation of operations within parentheses occurs first. Exponentiation precedes all arithmetic
operations within an expression; multiplication and division occur before addition and subtraction.

For example, the expression:
—-a**b + c*d + 6

is evaluated in the following order:
a** Db is evaluated to form the operand op1.
c*d is evaluated to form the operand op2.

—opl + op2 + 6 is evaluated to determine the value of the expression.

If an expression contains two or more operators of the same precedence, the order of evaluation is
determined by the following rules:

Two or more exponentiation operations are evaluated from right to left.

Multiplication and division or addition and subtraction are evaluated from left to right.
Examples

2* * 3* * a

Evaluation occurs as follows:
3**a is evaluated to form opl.

2**opl is evaluated.

al b*c
Evaluation occurs as follows:
a/ b is evaluated to form opl.

opl*c is evaluated.

Language Elements 2-19

i/j + c**j**d — h*d
Evaluation occurs as follows:
] **d is evaluated to form op7.
c**opl is evaluated to form op2.
i /] is evaluated to form op3.
h*d is evaluated to form op4.
op3 + op2 is evaluated to form op35.

op5 — op4 is evaluated.

Parentheses can be used to control the order in which the parts of an expression are evaluated.
Each pair of parentheses contains a subexpression that is evaluated according to the rules stated
above. When parentheses are nested in an expression, the innermost subexpression is evaluated
first.

Examples
((a + b)*c)**d

Evaluation occurs as follows:
a + bis evaluated to form opl.
opl*c is evaluated to form op2.

op2**d is evaluated.

((b**2 — 4*a*c)**.5)/(2*a)

Evaluation occurs as follows:
The subexpression b**2 — 4*a*c is evaluated to form opI.
opl**. 5 is evaluated to form op2.
2* a is evaluated to form op3.

op2/op3 is evaluated.

Note The actual order of evaluation may be different from that shown, but the result
is the same as if the described order were followed.

Two arithmetic operators cannot appear together unless one of the operators is enclosed in
parentheses. For example, a* (—3) is allowed, but a* -3 is not.

2-20 Language Elements

Expressions with Mixed Operands

Integer, double integer, real, double precision, complex, and double complex operands can be
intermixed freely in an arithmetic expression. Before an arithmetic operation is performed, the
lower type is converted to the higher type. The type of the expression is that of the highest
operand type in the expression. Operand types rank from highest to lowest in the following order:

Double Complex Highest
Complex

Double Precision

Real

Double Integer

Integer Lowest

Exceptions: If the two operands have types double precision and complex, the result is double
complex.

If the second operand of exponentiation (**) is of type integer or double integer,
the result has the type of the first operand.

Note The precision of a subexpression is independent of any subsequent use of the
value obtained from the subexpression. For example, if the I compiler option is
used, P = NI NT (32768) and P = 1000* 1000 both cause overflows, even
if P is double integer. Any overflow is an error, and its results are unpredict-
able.

The compiler may evaluate certain expressions in a higher precision and thereby
avoid an overflow. However, programs should not depend on this happening.

The conversion precedence for mixed type arithmetic expressions with the operators +, —, *, /,
and ** is shown in Table 2-5. For example, in the expression a*b—i /| , if a and b are real
variables and i and] are integer variables, then a is multiplied by b to form op1;i is divided by |
with integer division, converted to real, and subtracted from opl. The result is an expression of
type real.

Language Elements 2-21

Table 2-5. Conversion of Mixed-Type Operands

op2
Double Double Double
Integer | Integer | Real | Precision | Complex Complex
Integer I DI R DP C DC
Double DI DI R DP C DC
Integer
op1| Real R R R DP C DC
Double DP DP DP DP DC DC
Precision
Complex C C C DC C DC
Double
where: I = Integer
DI = Double Integer INTEGER*4)
R = Real
DP = Double Precision
C = Complex
DC = Double Complex

When any value is raised to an integer power, the operation is performed by repeated
multiplications. When any value is raised to a power that does not have an integer type, the
operation is performed by logarithms and exponentiation. Therefore, a negative number raised to
a real or double precision power results in an operation undefined (UN) error, even if the power is
a whole number such as 2.0.

Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression in which each operand is an
arithmetic constant, the symbolic name of an arithmetic constant, or an arithmetic constant
expression enclosed in parentheses. The exponentiation operator (**) is not allowed unless the
exponent is of type integer. Note that variable, array element, and function references are not
allowed.

2-22 Language Elements

Character Expressions

A character expression is used to express a character string. Evaluation of a character expression
produces a result of type character. The simplest form of a character expression is a character
constant, the symbolic name of a character constant, a character variable reference, a character
array element reference, a character substring reference, or a character function reference. More
complicated character expressions can be formed by using two or more character operands
together with the character operator and parentheses. The character operator is:

// Concatenation
The interpretation of the expression formed with the character operator is:
cl // c2 Concatenate cl with c2

The result of a concatenation operation is a character string whose value is the value of ¢/
contatenated on the right with the value of c2. The length of the resulting string is the sum of the
lengths of ¢ and c2. For example, the value of * FOOT" // ' BALL’ is the string* FOOTBALL' .

Parentheses have no effect on the value of a character expression. For example, the expression
"ab’ /] (" CD [’ef’) isthe same as the expression’ ab’ // 'CD [/ ’'ef’. The
result of either expression is * abCDef * .

Examples

char_string (5:9)

"constant string’
stringl//string2//’ another string’
file nane//’::"//crn

char (33B)//’H //char(33B)//'J

Character Constant Expressions

A character constant expression is a character expression in which each operand is a character
constant, the symbolic name of a character constant, or a character constant expression enclosed
in parentheses. Note that variable, array element, substring, and function references are not
allowed (except the special use of CHAR (n) as a character constant).

Language Elements 2-23

Relational Expressions

Relational expressions compare the values of two arithmetic expressions or two character
expressions. Evaluation of a relational expression produces a result of type logical.

Syntax
opl relop op2

where:
opl and op2 are either both arithmetic expressions or both character expressions.
relop is a relational operator.

The relational operators are:

.EQ. Equal

.NE. Not equal

.LT. Less than

.LE. Less than or equal
.GT. Greater than

.GE. Greater than or equal

Each relational expression is evaluated and assigned the logical value true or false depending on
whether the relation between the two operands is satisfied (true) or not (false).

Arithmetic Relational Expressions

Arithmetic expressions as operands in a relational expression are evaluated according to the rules
governing arithmetic expressions (defined above). If the expressions are of different types, the
one with the lower rank is converted to the higher ranking type as specified in Table 2-2. Once the
expressions are evaluated and converted to the same type, they are compared. An arithmetic
relational expression is interpreted as having the logical value true if the values of the operands
satisfy the relation specified by the operator. If the operands do not satisfy the specified relation,
the expression is interpreted as the logical value false. The following are valid arithmetic
relational expressions:

a .GI. 237. i +j .G z +1
a+b—-c .LT. num o .GI. p

Expressions of type complex or double complex can be used as operands with .EQ. and .NE.
relational operators only. The concept of less than or greater than is not defined for complex
numbers.

Hollerith data of types integer and double integer can be used with all six relational operators.
Hollerith data of other types may not compare correctly, because of the behavior of floating-point
data (see Chapter 8).

2-24 Language Elements

Character Relational Expressions

Character relational expressions are used to compare two operands, each of which is a character
expression. The character expressions are first evaluated; then the two operands are compared
character by character, starting from the left. The initial characters of the two operands are first
compared. If the initial character is the same in both operands, the comparison proceeds with the
second character of each operand. When unequal characters are encountered, the greater of the
two operands is determined by the greater of these two characters. Thus, the ranking of the
operands is determined only by the first character position at which the two operands differ. If
there is no such position, then the two operands are equal.

For example, when the two expressions “PEOPLE” and “PEPPER” are compared, the first
expression is considered less than the second. This is determined by the third character O which is
less than P in the ASCII collating sequence. See Appendix C for the ASCII collating sequence.

If the operands are of unequal length, the comparison is as if the shorter string was padded with
blanks to the length of the longer string.

Examples

I MPLICI T CHARACTER*6 (a-n) ' All variables beginning with the
I letters a—n are of this type.

"the' .LT. there’

"MAY 23 . GT.' MAY 21’

name .LE. ' PETERSEN

char_strl .CGE char_str2

first .EQ a_string(2:8) // 'COD

Logical Expressions

Logical expressions produce results of type logical with values of true or false. A logical
expression can consist of a single operand or one or more operands together with logical
operators, parentheses, or both. An operand in a logical expression can be a logical constant, the
symbolic name of a logical constant, a logical variable, a logical array element reference, a logical
function reference, or a relational expression. The logical operators are:

.NOT. Logical negation (unary)

AND. Logical AND

.OR. Inclusive OR

EQWV. Logical equivalence

NEQV. Logical nonequivalence (exclusive OR)

The unary operator .NOT. takes the complement (that is, the opposite) of the logical value of the
operand immediately following the .NOT. operator.

The .AND. operator returns a value of true only if the logical operands on both sides of the .AND.
operator are true.

The .OR. operator returns a value of true if one or both of the logical operands on either side of
the .OR. operator are true.

The .EQV. operator returns a value of true if the logical operands on either side of the .EQV.
operator are both true or both false.

Language Elements 2-25

The .NEQV. operator returns a value of true if only one (but not both) of the logical operands on
either side of the .NEQV. operator is true. As an extension to the ANSI 77 standard, .XOR. and
.EOR. can be used in place of NEQV.

Table 2-6 is a truth table for the logical operators.

Table 2-6. Truth Table for Logical Operators

a b .NOT. a| .NOT. b a .AND. b|a . OR b | a . .NEQ. b|a . EQV b
True | True False False True True False True
True | False False True False True True False
False | True True False False True True False
False | False True True False False False True

The order of evaluation of a logical expression is established by the following precedence of the
logical operators:

.NOT. highest
AND.

.OR.

EQV,, NEQV. lowest

Thus, .NOT. operations are performed before all other operations; .EQV. and .NEQV. operations
are performed after all other operations. If there is more than one operator of the same
precedence, evaluation occurs from left to right.

Examples

a .OR b .AND. C
Evaluation occurs as follow:

b . AND. c is evaluated to form lopl.

a . OR lopl is evaluated.

z .LT. b .OR .NOI. k .GI. z
Evaluation occurs as follows:

k . GrI. zisevaluated to form lopl.
. NOT. lopl is evaluated to form lop2.
z . LT. bis evaluated to form lop3.

lop3 . OR. lop2 is evaluated.

z .AND. d .OR Isunm(qg,d) .AND. p .AND. i
Evaluation occurs as follows:

z . AND. d is evaluated to form lop].

| sun(q, d) is evaluated to form lop2.

2-26 Language Elements

lop2 . AND. p is evaluated to form lop3.
lop3 . AND. i is evaluated to form lop4.
lopl . OR. lop4 is evaluated.
a .AND (b . AND. c¢)
Evaluation occurs as follows:
b . AND. c is evaluated to form lopl.
a . AND. lopl is evaluated.

As shown in the last example above, parentheses can be used to control the order of evaluation of
a logical expression. As with arithmetic expressions, the actual order of evaluation may be
different from that stated here, but the result is the same as if these rules were followed.

Bit Masking Expressions

As an extension to the ANSI 77 standard, the logical operators can be used with integer and
double integer operands to perform bit masking operations. You must be aware of the internal
binary representations of the data to use the masking operators with predictable results. (See
Appendix C for details on data representation in memory.)

A complete truth table is shown in Table 2-7 (a duplicate of Table 2-6 with true = 1 and false = 0).
A bit by bit comparison is done of the operands (i and j in Table 2-7), and the corresponding bit of
the expression’s result is set according to the truth table.

Care must be taken when using bit masking in the same expression as relational operators. The
expression:

(status .AND. mask .NE. O
is evaluated as:
(status .AND. (nmask.NE. O)
which is incorrect. The above expression should be written as:
((status .AND. mask) .NE.)
or
(I AND (status,mask) .NE. O

Note that FORTRAN 77 also supplies these bit masking operations and other bit manipulation
operations as intrinsic functions. These are described in Appendix B. The FO
RTRAN intrinsic functions comply with the MIL-STD-1753 extensions to the ANSI 77 standard.

Table 2-7. Truth Table for Masking Operators

i NoT. i|.Nnom. j i AaD i or i NEQv. j| i EQU. j
11 0 0 1 1 0 1
10 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 0 1

Language Elements 2-27

Examples

AND. returns the logical product of two operands:

opl 0111111111111111 (3276710)
op2 0001011001011001 (572110)
result 0001011001011001 (572110

.NEQV. returns the symmetric difference of two operands:

opl 0000000011111111 (25519)
op2 0001011001011001 (572119)
result 0001011010100110 (579810)

Comments in FORTRAN 77

FORTRAN 77 uses two types of comments: comment lines and embedded comments. A
comment line is denoted by a C or * in column 1, or a blank line in a source file. A comment line
is not a statement and does not affect the program in any way. Comment lines can be placed
anywhere in a source file, including between lines of a continued statement. Only comment lines
beginning with an asterisk (*) are included in mixed listings.

An exclamation point (!) after a statement on the same line indicates the beginning of an
embedded comment, unless the exclamation point is part of a character or Hollerith constant. The
compiler ignores the exclamation point and any text following it; that is, it treats them as blanks.
This use of the exclamation point is a FORTRAN 77 extension to the ANSI 77 standard.

2-28 Language Elements

FORTRAN 77 Statements

Statements are the fundamental building blocks of FORTRAN program units. This chapter
describes the general form of a statement and then discusses the different categories of
statements. Each of the statements is then described in detail, in alphabetical order. Each
statement description includes statement syntax, applicable rules, and examples.

A FORTRAN statement has the following general form:
[label] statement

The label is used to identify a particular statement so that it can be referenced from another
portion of the program. A statement label consists of one to five digits placed anywhere in
columns 1 through 5. Each label must be unique within a program unit; blanks and leading zeros
are ignored by the compiler. Labels are optional and need not appear in numerical order.

Examples Notes

99999 largest label
0300, 300, or 30 O identical

1 smallest label

The statement itself is written in columns 7 through 72. If a statement is too long for one line, it
can be continued on the next line. This is indicated by placing a character other than a 0 or a
blank in column 6. Columns 1 through 5 of a continuation line must be blank. Each statement can
have an unlimited number of continuation lines.

A FORTRAN statement can be one of two types: executable or nonexecutable. Executable
statements specify an action that the program is to take. Nonexecutable statements contain
information such as the characteristics of operands, types of data, and format specifications for
input/output. Each FORTRAN statement is categorized in Table 3-1.

FORTRAN 77 Statements 3-1

Table 3-1.

Executable and Nonexecutable Statements

Executable Statements

Arithmetic IF Statement
ASSIGN Statement
Assignment Statement
BACKSPACE Statement
Block IF Statement
CALL Statement
CLOSE Statement
CONTINUE Statement
DO Statement

DO WHILE Statement
ELSE Statement

ELSE IF Statement
END Statement

END DO Statement

END IF Statement
ENDFILE Statement
GOTO Statement
INQUIRE Statement
Logical IF Statement
OPEN Statement
PAUSE Statement
PRINT Statement
READ Statement
RETURN Statement
REWIND Statement
STOP Statement
WRITE Statement

Nonexecutab

le Statements

BLOCK DATA Statement
COMMON Statement
COMPLEX Statement
DATA Statement
DIMENSION Statement
EMA Statement

ENTRY Statement
EQUIVALENCE Statement
EXTERNAL Statement
FORMAT Statement

FUNCTION Statement
IMPLICIT Statement
INTRINSIC Statement
PARAMETER Statement
PROGRAM Statement

SAVE Statement

Statement Function Statement
SUBROUTINE Statement
Type Statement

Statement Categories

Executable and nonexecutable statements can be further grouped into seven functional categories:

Program unit statements
Specification statements
Value assignment statements
Control statements
Input/output statements

Program halt or suspension statements

The statements belonging to each of these categories are shown in Table 3-2.

3-2 FORTRAN 77 Statements

Table 3-2. Classification of Statements

Statement Description
Program Unit Statements

BLOCK DATA Identifies the program unit as a block data subprogram.
END Specifies the end of a program.
ENTRY Provides an alternate entry into a function or subroutine.
FUNCTION Identifies the program unit as a function subprogram.
PROGRAM Identifies the program unit as a main program.
RETURN Transfers control from a subprogram back to the calling program.

Statement Function

Defines a one-statement function.

SUBROUTINE Defines a program unit as a subroutine subprogram.
Specification Statements

COMMON Reserves a block of memory that can be used by more than one

program unit.
DIMENSION Defines the dimensions and bounds of an array.
EMA Declares local variables, formal agruments, or both to be in EMA.
EQUIVALENCE Associates variables so that they share the same place in memory.
EXTERNAL {;ietrrw]tifies subprogram names used as actual arguments, nonintrinsics, or

oth.

IMPLICIT Specifies the type associated with the first letter of a symbolic name.
INTRINSIC Identifies intrinsic function names used as actual arguments.
PARAMETER Defines named constants.
SAVE Causes the value of an entity to be retained after execution of a

RETURN or END statement in a subprogram.
TYPE Assigns an explicit type to a variable.

Value Assignment Statements

ASSIGN Assigns a value to a variable used in a GOTO or FORMAT statement label.
Assignment Assigns values to variables at execution time.
DATA Assigns initial values to variables before execution.

FORTRAN 77 Statements 3-3

Table 3-2. Classification of Statements (continued)

Statement Description
Control Statements
CALL Transfers control to an external procedure.
CONTINUE Causes execution to continue; has no effect of itself.
DO Causes a group of statements to be executed a specified number of
times.
DO WHILE Causes repeated execution of a group of statements while a condition is
true.
GOTO Transfers control to a specified statement.
Arithmetic IF Transfers control based on a condition.
Logical IF Conditionally executes a statement based on a logical value.
Block IF Executes optional groups of statements based on one or more conditions.
Input/Output Statements
BACKSPACE Positions a file at the previous record.
CLOSE Terminates access to a file.
ENDFILE Writes an end-of-file mark.
FORMAT Describes how data records are to be read or written.
INQUIRE Supplies information about files.
OPEN Allows access to a file.
PRINT Transfers data out.
READ Transfers data in.
REWIND Positions a file at beginning-of-file.
WRITE Transfers data out.
Program Halt Statements
PAUSE Causes a program suspension.
STOP Terminates program execution.

3-4 FORTRAN 77 Statements

Order of Statements

Each of the following statements can appear only as the first statement in a program unit:
PROGRAM, SUBROUTINE, FUNCTION, and BLOCK DATA.

Statements within a category are restricted as to where they can appear in a program unit. Within
a program unit, the following rules apply:

e FORMAT and ENTRY statements can appear anywhere.

e All specification statements must precede all DATA statements, statement function
statements, and executable statements.

e All statement function statements must precede all executable statements.

Within the specification statements of a program unit, IMPLICIT statements must precede all
other specification statements except PARAMETER statements. The last line of a program unit
must be an END statement.

The required order of statements is shown in Figure 3-1. Vertical lines delineate varieties of
statements that can be interspersed. For example, DATA statements can be interspersed with
statement function statements and executable statements. Horizontal lines delineate varieties of
statements that must not be interspersed. For example, statement function statements must not be
interspersed with executable statements.

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statement

IMPLICIT Statement

PARAMETER
Statement Other Specification Statements
FORMAT and ENTRY
Statements
DATA Statement Function Statements
Statements

Executable Statements

END Statement

Figure 3-1. Required Order of Statements

FORTRAN 77 Statements 3-5

ASSIGN Statement

The ASSIGN statement associates a statement label with an integer variable.

Syntax
ASSI GN label TOvariable

where

label is a statement label.

variable is a simple integer variable.
Example Notes

ASSI GN 10 TO | abel 1 The statement label 10 is assigned to the variable | abel 1.

The statement label can only refer to an executable statement or a FORMAT statement. The
variable defined as a label can then be used in an assigned GOTO statement or as the format
specifier in an input/output statement.

Example Notes

ASSIGN 20 TO last1 The statement label 20 is assigned to the variable | ast 1.
: The label is that of an executable statement.

GOTO | ast 1

ASSI GN 100 TO forml The statement label 100 is assigned to the variable f or mil.
. The label is that of a FORMAT statement.

100 FORMAT (F6. 1, 2X, 15/ F6. 1)

R'EAD(S,forml) sum k1, avel

A variable must be defined with a statement label value when referenced in an assigned GOTO
statement or as a format identifier in an input/output statement. While defined with a statement
label value, the variable must not be referenced in any other way.

An integer variable defined with a statement label value can be redefined with the same or a
different statement label value or an integer value.

3-6 FORTRAN 77 Statements

Assignment Statement

The assignment statement evaluates an expression and assigns the resulting value to a variable.
There are three kinds of assignment statements:

e Arithmetic
e I ogical

® Character

Arithmetic Assignment Statement

Syntax
var = expr
where:

var is a variable or array element of one of the following types:

INTEGER or INTEGER*2 DOUBLE PRECISION or REAL*8
INTEGER*4 COMPLEX
REAL or REAL*4 DOUBLE COMPLEX or COMPLEX*16

expr is an arithmetic expression.

Examples Notes

total = sub total + tally Defines the value of t ot al as the value of subtotal +
tally.

sum = sum + 1 Replaces the value of sumwith the value of sum + 1.

rate(10) = newrate * 5 Defines the 10th element of the array r at e as the value of

new_r at e multiplied by 5.

If the type of the variable on the left of the equals sign differs from that of the expression, type
conversion takes place. The expression is evaluated, and the result is converted to the type of the
variable on the left. The converted result then replaces the current value of the variable.
Conversion rules for the assignment statement are shown in Table 3-3 below, followed by
examples.

Note The expression is evaluated before the variable preceding the equals sign is con-
sidered. If the expression overflows, the value is incorrect even if the variable
before the equals sign could have held the larger result.

In Table 3-3, k and n represent all possible combinations of byte sizes for the particular data type.
For example, if var is INTEGER*k and expr is REAL*n, k is 2 or 4, while n is 4 or 8. This
represents the four possible combinations of byte sizes.

FORTRAN 77 Statements 3-7

Table 3-3. Type Conversion Rules for Arithmetic Assignment Statements of the Form var=expr

Var Type Expr Type Rules
a. INTEGER*k INTEGER*n If k=n, assign INTEGER*k. If k<n, assign least
significant word to var. See NOTE 1.
b. INTEGER*k REAL*n Truncation.
c. INTEGER*k COMPLEX*8 Real part is REAL*4. Apply rule b to real part.
Imaginary part is not used.
d. INTEGER*k COMPLEX*16 Real part is REAL*8. Apply rule b to real part.
Imaginary part is not used.
e. REAL*k INTEGER*n FLOAT and assign REAL*k. See NOTE 2.
f. REAL*k REAL*n Round and assign REAL*k. See NOTE 3.
g. REAL*k COMPLEX*8 Real part is REAL*4. Apply rule f to real part.
Imaginary part is not used.
h. REAL*k COMPLEX*16 Real part is REAL*8. Apply rule f to real part.
Imaginary part is not used.
i. COMPLEX*8 INTEGER or Convert to REAL*4 by rule e or f and
REAL assign as real part; imaginary part = 0.
j- COMPLEX*16 INTEGER or Convert to REAL*8 by rule e or f and
REAL assign as real part; imaginary part = 0.
k. COMPLEX*k COMPLEX*n Apply rule f to real and imaginary parts
independently.
NOTES:

1. If the value of the expression is between —32768 and 32767, the result of the conversion from
INTEGER*4 to INTEGER*2 is correct; otherwise, the result is the interpretation of the least
significant word, and therefore incorrect.

2. 'When converting from INTEGER*4 to REAL*4, the precision can be lost because REAL*4
holds only 23 significant bits and INTEGER*4 holds 31 significant bits. If this occurs, the
value is truncated and the least significant bits are lost.

3. When converting to a higher precision, the additional bits are set to zero. Converting a
lower-precision constant to a higher precision does not necessarily yield the value of that
constant written in the higher precision; for example, DBLE(1. 3) does not equal 1. 3DO; the
least significant 32 bits are different.

Table 3-4 below gives some examples of type conversions.

3-8 FORTRAN 77 Statements

Table 3-4. Examples of Type Conversions for Arithmetic Assignment
Statements of the Form var=expr

Rule Var Type Var Value Expr Value Expr Type
a INTEGER*4 542 542 INTEGER*2
a INTEGER*2 See NOTE 2 86420 INTEGER*4
for Table 3-3.
b INTEGER*2 3 3.842 REAL*4
c INTEGER*2 502 (5.0297E2,1.27E-5) COMPLEX*8
d INTEGER*4 —48170 (—4.817D4,1.0096D7) COMPLEX*16
e REAL*4 59. 59 INTEGER*2
f REAL*8 10.D+09 10.E+09 REAL*4
See NOTE 3
for Table 3-3.
f REAL*4 1.70141E+38 1.7014118344D+38 REAL*8
h REAL*4 8.425 (8.425,—6.02E—2) COMPLEX*8
h REAL*8 2.2964D—-8 (2.2964D—8,6.2881D—4) COMPLEX*16
i COMPLEX*8 (50.0,0) 50 INTEGER*2
i COMPLEX*8 (25.0,0.) 25. REAL*4
j COMPLEX*16 (14.23D—-17,0.) 14.23E—-17 REAL*4
See NOTE 4
for Table 3-3.

Logical Assignment Statement

Syntax
lvar = lexp

where:

lvar is a variable or array element of type logical.

lexp is a logical or relational expression.

Examples

LOE CAL | ogl
i=10
logl =i .EQ 10

LOG CAL |l og_res, flag_set

num = 100
flag_set = . TRUE

log_res = NUM .GI. 200 . AND.

flag_set

Notes

| 091 is assigned the value true

because i equals 10.

| ogi cal _res is assigned the value false
because numis not greater than 200.

FORTRAN 77 Statements

Character Assignment Statement

Syntax:
cvar = cexp

where:

cvar is a variable, array element, or substring of type character.

cexp is a character expression.
Examples

CHARACTER* 10 enpl oyee_nane
enpl oyee_nane = "EMLIFE

CHARACTER security_code*4
security_code = ' ZXYwuU’

CHARACTER address*20
address(1:4) = ’1645
address(6:13) = "First St.’

CHARACTER nane*6
nane =" MJRRAY’

CHARACTER*4 col or (6), k
k = bl ue’
color(5) =k

col'or(4) ='G [/ nanme(4:6)

Notes

The variable enpl oyee_nane is
assigned the value EM LI EAAAA.

The variable securi ty_code is
assigned the value ZXYw.

The first through fourth characters

of the variable addr ess are assigned
the value 1645 and the sixth through
13th are assigned the value Fi rst St.
The fifth character is undefined.

The variable name is assigned the
character string MURRAY.

The fifth element of the array col or
is assigned the character string bl ue.
The fourth element of the array col or
is assigned the character string GRAY.

If the length of the variable is greater than the length of the expression, the value of the expression
is left-justified in the variable, and blanks are placed in the remaining positions. If the length of
the variable is less than the length of the expression, the value of the expression is truncated from
the right until it is the same length as the variable. The information that appears on the left and
right sides of the assignment statement must not overlap.

3-10 FORTRAN 77 Statements

BACKSPACE Statement

The BACKSPACE statement positions a sequential file at the preceding record.

Syntax
{ unit}
BACKSPACE {([UNI T=]unit[, | OSTAT =ios][, ERR = label])}
where
unit is an integer expression (zero or positive) specifying the unit number of a sequen-
tial file.
ios is an integer variable for error code return (see Appendix A for IOSTAT error
codes). ios is set to zero if no error occurs.
label is the statement label of an executable statement in the same program unit as the

BACKSPACE statement. If an error occurs during execution of the BACKSPACE
statement, control transfers to the specified statement rather than aborting the pro-
gram.

If the prefix UNI T= is omitted, unit must be the first parameter. Otherwise the order of
parameters is flexible.

Examples Notes

BACKSPACE 10 The sequential file connected to unit 10 is
backspaced one record.

BACKSPACE (UNI T=k+3, | OSTAT=j , ERR=100) The file connected to unit k+3 is backspaced
one record. If an error occurs, control trans-
fers to statement 100 and the error code is
stored in the variable j .

If the file is positioned at beginning-of-information (BOI), a BACKSPACE statement has no effect
upon the file.

The BACKSPACE statement is allowed on files connected for direct access, but should be avoided
to preserve program portability. Backspacing over records written using list-directed formatting
can cause unpredictable results because the number of records produced by list-directed output is
difficult to predict.

FORTRAN 77 Statements 3-11

BLOCK DATA Statement

The BLOCK DATA statement is the first statement in a block data subprogram.
Syntax

BLOCK DATA [name] [, comment]
where:
name is an optional subprogram name.

comment s a string of zero to 86 characters. This is an extension to the ANSI 77 standard.

Block data subprograms are used to provide initial values for variables and array elements in
labeled common blocks.

As an extension to the ANSI 77 standard, data in common blocks can be initialized in any program
unit; block data subprograms are required only in programs that must conform completely to the
ANSI 77 standard.

See Chapter 6 for more information on block data subprograms.

CALL Statement

The CALL statement references and transfers control to a subroutine.

Syntax
CALL name [([argl], arg2], arg3...]]])]

where:
name is the name of the subroutine being referenced.
arg is an actual argument or an asterisk followed by a label, where the asterisk indi-

cates an alternate return and the label is a statement label of an executable state-
ment in the same program unit as the CALL statement.

3-12 FORTRAN 77 Statements

Examples Notes

CALL print_forms(top,!h,rh) The subroutine pri nt _f or ns is called. Three
arguments are passed.

CALL exit The subroutine exi t is called. No arguments are
passed.

CALL test _data (mn,val,*10) The subroutine t est _dat a is called. Three ar-
: guments are passed. * 10 means that the return
i point is the statement labeled 10, if the subroutine
10 total = val + 6.34 executes the alternate return (RETURN 1).

END

SUBRQUTI NE test _data (j,k,w *)
RETURN 1

END

When a CALL statement is executed, any expressions in the actual argument list are evaluated,
then control passes to the subroutine. Upon return from the subroutine, execution continues with
the statement following the CALL statement for a normal return. When an alternate return is
taken, execution continues with the statement label in the actual argument list that corresponds to
the return ordinal specified in the subroutine’s RETURN statement. Subroutine subprograms,
referencing subroutines, and alternate returns from a subroutine are all discussed in detail in
Chapter 6.

CHARACTER Statement

See “Type Statement” later in this chapter for the syntax of CHARACTER and all other type
statements.

FORTRAN 77 Statements 3-13

CLOSE Statement

The CLOSE statement terminates the connection of a file to a unit.

Syntax

CLOSE ([UNI T=]unit[,| OSTAT =ios][,ERR=label][,STATUS =stat])

where:

unit is an integer expression specifying the unit number of the file.

ios is an integer variable for error code return (see Appendix A for IOSTAT error
codes). ios is set to zero if no error occurs.

label is the statement label of an executable statement in the same program unit as the
CLOSE statement. If an error occurs during execution of the CLOSE statement,
control transfers to the specified statement rather than aborting the program.

stat is a character expression that determines the disposition of the file; stat is one of

the following:
" KEEP The file continues to exist after execution of the CLOSE statement.
" DELETE The file does not exist after execution of the CLOSE statement.

If STATUS = stat is not specified, the assumed value is ' KEEP’. The STATUS
specifier has no effect on scratch files, because scratch files are always deleted on
CLOSE or at normal program termination.

If the prefix UNI T= is omitted, unit must be the first parameter. Otherwise the order of
parameters if flexible.

Examples Notes

CLCSE (10) The file connected to unit 10 is disconnected.
The file continues to exist.

CLOSE (UNI T=6, STATUS=" DELETE’) The file connected to unit 6 is disconnected.
The file no longer exists.

CLOSE (5,1 OSTAT=i o_error, ERR=100) The file connected to unit 5 is disconnected
and kept. If an error occurs, control trans-
fers to statement 100, and the error code is
stored in the variable i 0_error.

A CLOSE statement must contain a unit number and at most one each of the other options.

A CLOSE statement need not be in the same program unit as the OPEN statement that connected
the file to the specified unit. If a CLOSE statement specifies a unit that does not exist or has no
file connected to it, no action occurs.

The CLOSE statement is discussed in detail in Chapter 5.

3-14 FORTRAN 77 Statements

COMMON Statement

The COMMON statement specifies a block of storage space that can be used by more than one
program unit.

Syntax
COMMON [/[blocknamel]/] listl [[,]/[blockname2]/ list2[,] . . .]
where:

blockname is the name of a labeled common block. Each omitted blockname specifies blank

common.
list is one or more simple variables, array names, or array declarators.
Examples Notes
COWON a, b, ¢ The variables a, b, and ¢ are placed in blank com-

mon.

COVWON pay, time, /color/red The variables pay and t i me are placed in blank
common; the variable r ed is placed in common
block col or .

COVWON /alal,a2,//x(10),y,/c/d The variables al and a2 are placed in common
block a; x(10) andy are placed in blank common;
and d is placed in common block c.

In each COMMON statement, the variables following a block name are declared to be in common
block blockname. 1f the first block name is omitted, all variables that appear in the first list are
specified to be in blank common. Alternately, the appearance of two slashes with no block name
between them declares the variables that follow to be in blank common.

The following data items must not appear in a COMMON statement:
e The names of formal arguments in a subprogram.
e A function, subroutine, or intrinsic function name.

A variable cannot be specified more than once in the COMMON statements within a program
unit.

Any common block name or blank common specification can appear more than once in one or
more COMMON statements in a program unit. The variable list following each successive
appearance of the same common block name is treated as a continuation of the list for that block
name. For example, the COMMON statements:

COMMON a, b,c/x/y,z,d//wr
COMMON /cap/ hat, visor,//tax,/x/o,t

are equivalent to the following COMMON statement:

COMON a,b,c,wr,tax,/x/y,z,d,o,t,/cap/hat, visor

FORTRAN 77 Statements 3-15

The length of a common block is determined by the number and type of the variables in the list
associated with that block.

Example Notes

| NTEGER*2 b(3) The common block bl k1 uses 9 words of storage,

COVMON /bl k1/ b, arr(3) b uses 3 (1 word per element), and arr uses 6 (2 words per
element).

Common block storage is allocated at load time. Storage is not local to any one program unit.
Data space is allocated as follows within the common block for arrays b and ar r in the preceding
example:

Word Common Block
b(1)

b(2)

b(3)

arr (1)

arr(2)

arr(3)

© 00O Nk~ W -

Each program unit that uses the common block must include a COMMON statement that contains
the block name (if a name was specified). The list assigned to the common block by the program
unit need not correspond by name, type, or number of elements with those of any other program
unit. The only consideration is the size of the common blocks referenced by the different program
units. The size of an unlabeled (blank) common block can differ between program units, but a
labeled common block should be the same size in all program units. For example, assume that the
following COMMON statement appears in program unit 1:

COVMON bl ockal/i (4),] (6), al pha, sam
CHARACTER*4 al pha

and the COMMON statement
COVMON bl ocka/ geo, n(10), i ndi a, j ack

appears in program unit 2. bl ocka is the same size (14 words) in both program units. Thus,
referencing i (4) in program unit 1 is equivalent to referencing n(2) in program unit 2, because
both variables refer to the same word of the labeled common block. The correspondence between
the variables in common in the two program units is shown in the following table:

3-16 FORTRAN 77 Statements

Program 1 Common Block Program 2

Reference Word Number Reference
i(1) 1 geo
i (2) 2
i (3) 3 (1)
i (4) 4 n(2)
j (1) 5 m(3)
j(2) 6 m(4)
j(3) 7 m(5)
j(4) 8 m(6)
j (5) 9 m 7)
j (6) 10 m(8)
al pha(1: 2) 11 m 9)
al pha(3: 4) 12 m(10)
sam 13 i ndi a
14 j ack

When common blocks in SSGA or system-labeled common are used, the NOALLOCATE option
of the $ALIAS directive is required. This causes the common block size to be defined in the block
data subprogram. The block data subprogram is then required, and should precede other

references to the common block in the load. See Chapter 7 for a description of the
NOALLOCATE option.

The following example shows an unlabeled common block in program unit 2 that is a different size
from the common block referenced in program unit 1:

Program unit 1: COMMON i (12)

Program unit 2: COVMON | aw(7)

The correspondence between the variables in common in the two program units is:

Program 1 Common Block Program 2
Reference Word Number Reference
i(1) 1 l awm 1)
i(2) 2 | awm 2)
i(3) 3 | awm 3)

i (4) 4 l awm 4)

i (5) 5 | awm 5)

i (6) 6 | awm 6)
i(7) 7 | awm 7)

i (8) 8 Unused
i(9) 9 Unused
i (10) 10 Unused
i (11) 11 Unused
i (12) 12 Unused

The ANSI 77 standard specifies that in a common block all items must be either character or
noncharacter. As an extension to the ANSI 77 standard, FORTRAN 77 allows a mixture.
However, noncharacter variables must begin on even byte addresses. If they do not, a warning is
issued and the odd byte is skipped.

Some linkers require that when more than one labeled common block of the same name appear in
a program unit, the largest must be loaded first. The largest blank common block must appear in
the first program unit loaded.

FORTRAN 77 Statements 3-17

COMPLEX Statement

See “Type Statement” later in this chapter for the syntax of COMPLEX and all other type
statements.

COMPLEX*8 Statement

See “Type Statement” later in this chapter for the syntax of COMPLEX*8 and all other type
statements.

COMPLEX*16 Statement

See “Type Statement” later in this chapter for the syntax of COMPLEX*16 and all other type
statements.

CONTINUE Statement

The CONTINUE statement creates a reference point in a program unit.

Syntax
CONTI NUE
Example Notes
DO 20 i = 1,10 Because the last statement in the loop is a GOTO
10 x = x + 1 statement, a CONTINUE statement is used to
y = SQRT(X) terminate the loop.
PRI NT *,y
IF (x .LT. 25.) GOro 20
GOroO 10
20 CONTI NUE

The CONTINUE statement should always be written with a label. CONTINUE is used to mark a
point in the program where a label is needed but where you do not want to associate the label with
any specific action. CONTINUE statements are useful with GOTO statements because they allow
you to add statements either before or after the statement label during program development.

In earlier versions of FORTRAN, the CONTINUE statement was often used as the last statement
in a labeled DO loop that otherwise would end in a prohibited statement such as a GOTO. The
END DO statement now serves this purpose. If a CONTINUE statement is used elsewhere in a
program, or if it is not labeled, the statement performs no function and control passes to the next
statement.

3-18 FORTRAN 77 Statements

DATA Statement

The DATA statement assigns initial values to variables before execution begins.

Syntax
DATA varlistl] conlistl] [[,] varlist2/ conlist2/ [,] . . .]
where:
varlist is one or more simple variable names, array names, array element names, substring
names, or implied DO loops. For syntax and detailed information on implied DO
loops, refer to “Implied DO Loops” under “DO Statement” below.
conlist is the list of constants to be assigned to the corresponding items in varlist. The
form of an item in conlist is:
[num™* | con
where:
num is an integer or named constant; the default is 1.
* is the repeat specifier.
con is a constant or named constant that is repeated num times.
Examples Notes

DATA a,b,c,d/3.0,3.1,3.2,3.3/

DI MENSI ON i (3)
DATA i/3*2/

DI MENSI ON i (3)
DATA i (1)/2/i(2)/2/i(3)/2

DI MENSI ON i (3)
DATA i (1),i(2),i(3)/2, 2,2

DI MENSI ON i (3)
DATA (i (K), k=1, 3)/3*2/

PARAMVETER (init_val = -1)
DI MENSI ONi(10)
DATA nf 10*ini't _val/

CHARACTER k(10, 5)

DATA ((k(i,j),j=1,5),i=1,10)/50* x’/

The values 3.0, 3.1, 3.2,and3. 3 are
assigned toa, b, c, andd, respectively.

All three elements of i are assigned an
initial value of 2.

All three elements of i are assigned an
initial value of 2. Equivalent to the
previous example.

All three elements of i are assigned an
initial value of 2. Equivalent to the
previous two examples.

An implied DO loop is used to assign an
initial value of 2 to all three elements of i .
Equivalent to the previous three examples.

Each element of mis assigned an initial value
ofinit_val thatis a named constant
previously defined in a PARAMETER
statement.

Two nested implied DO loops are used

to assign the value of X to each element
in an array of 50 elements, k(10, 5) .

FORTRAN 77 Statements 3-19

The number of items in the constant list must agree with the number of variables in the variable
list. If the list of variables contains an array name without a subscript, one constant must be
specified for each element of that array. The elements of the array are considered to be in column
major order. Each subscript in an array element in the variable list must be an integer or double
integer constant expression.

Constants are assigned to their corresponding variables in a DATA statement according to the
rules of the assignment statement, except that constants have the same precision as their
corresponding variables.

Examples Notes

DOUBLE PRECI SION d, e d is not equal to e because the least significant
DATA d/ 1. 23/ bits of e are zero. 1. 23 is converted in an

e = 1.23 assignment statement to REAL*4.

I NTEGER*4 j, k J is not equal to k because 100000B is con-
DATA j/1000008B/ verted to a 32-bit integer in the DATA

k = 100000B statement (upper bits = zero) and to a 16-bit

integer in the assignment statement, which is
then sign-extended.

If a constant has a type of character or logical, the corresponding variable must be of the same
type. If a constant is of any numeric type (integer, double integer, real, double precision, complex,
or double complex), the corresponding variable can be of any numeric type.

The length of a character constant and the declared length of its corresponding character variable
do not have to be the same. If the constant is shorter than the variable, the constant is blank-filled
on the right. If the constant is longer than the variable, the constant is truncated, losing characters
from the right.

Any variable can be initialized in a DATA statement except:
e A variable that is a formal argument to a function or subroutine
e A variable in blank common within a BLOCK DATA subprogram

A variable or array element must not appear in a DATA statement more than once, because a
variable is initialized only once. If two variables are equivalenced, only one can appear in a DATA
statement.

Each subscript or substring expression in a DATA statement must be an integer constant
expression, except that implied DO loop variables may be used in subscript and substring
expressions.

DATA statements can be placed anywhere after specification statements in a program unit.
Compile time is shortened if all DATA statements immediately follow the last specification
statement (with no intervening statement function definitions or executable statements).

DATA statements can be used to assign initial values to variables placed in the EMA area.
However, this is only supported on RTE-A. See “EMA Statement” section in this chapter for
more information on the EMA area. If any EMA variables appear in DATA statements in a
program, the RTE-A linker will change the program from an EMA program to a VMA program
without warning. See the RTE-A Programmer’s Reference Manual, part number 92077-90007, for
more information on EMA and VMA programming. Initialized VMA is not supported on the
RTE-6/VM Operating System.

The use of character constants to initialize non-character data is a compatibility extension; see
Chapter 8.

3-20 FORTRAN 77 Statements

DIMENSION Statement

The DIMENSION statement defines the dimensions and bounds of arrays.
Syntax
DI MENSI ON namel(boundsl) [, name2(bounds2), . . .]
where:
name(bounds) is an array declarator. (See “Array Declarators” in Chapter 2.)
name is the symbolic name of an array.

bounds is a dimension declarator. There must be one dimension declarator for each
dimension in the array. The syntax of a dimension declarator is:

[n:]m
where:

n is the lower dimension bound.
m is the upper dimension bound.

When an array is defined in a DIMENSION statement, only the name of the array (not the
complete declarator) can be used in a type or COMMON statement.

An array can have up to seven dimensions.

Examples Notes
I NTEGER*2 arr1l In this example, the type statement specifies
DI MENSION arr1(-3:1,4) arr 1 as type integer; the name of the array,

not the complete array declarator, appears.

The DIMENSION statement causes 20 words
of memory to be allocated for the array arrl.

An equivalent declaration would be | NTEGER* 2

arrl(-3:1,4).
COWLEX nun(5, 5) This is illegal because numis declared as an array
DI MENSI ON nun(5, 5) twice.

FORTRAN 77 Statements 3-21

DO Statement

DO statements come at the beginning of DO loops. A DO loop is a group of statements that is
executed repeatedly zero or more times, or a list within one statement that is executed a specified
number of times. There are four kinds of DO loops:

Labeled DO loops

Block DO loops

Implied DO loops

DO WHILE loops

A labeled or block DO loop executes a group of statements a specified number of times. An
implied DO loop is similar to a labeled DO loop but it is used in a READ, WRITE, PRINT, or
DATA statement. A DO WHILE loop executes a group of statements while a specified condition
is true.

DO Loop Execution

When a DO statement is executed, the following sequence occurs:

1. init, limit, and step are evaluated; index is set to init. (See the following sections for definitions
of these terms.) If necessary, init, limit, and step are converted to the same type as index.

2. The trip count, or the number of times the loop executes unless abnormally terminated (for
example, by a GOTO statement), is computed as:

INT((limit — init + step)/step)

3. If the trip count is negative or zero, the loop is skipped, and control transfers to the statement
following the termination statement of the DO loop. This occurs when init exceeds limit and
step is positive, or when init is less than limit and step is negative.

4. The range of the loop is executed.

5. index is incremented by the value of step. If the loop has not yet been executed the number of
times computed for the trip count, the range of the loop is executed again.

Within the range of a DO loop, modification of index, init, limit, or step does not affect the number
of iterations of the loop, because this value is established when the loop is entered. Changing the
value of step does not affect the incrementing of index; index is incremented by the original value of
step.

Example Notes
DO 10 i = 1,10,2 Modification of i in this example does
WRITE (1, (i =",12)")i not result in an infinite loop. The loop
i =i-2 executes five times, printingi = 1
10 CONTI NUE each time.

3-22 FORTRAN 77 Statements

Upon normal completion of the DO loop, the value of the control variable is defined to be the
next value assigned as a result of the incrementation, that is, the value that the variable would have
had on the next iteration. Upon abnormal exit from the DO loop, the control variable retains its
value at the time of exit.

Labeled and Block DO Loops

The labeled and block DO statements control execution of groups of statements by causing the
statements to be repeated a specified number of times. The DO statement defines this repetition,
or loop.

Syntax

DO [label [,]] index = init, limit [, step]

where

label is the statement label of an executable statement. In a labeled DO loop, this state-
ment must follow the DO statement in the sequence of statements within the same
program unit as the DO statement (see “Labeled DO Loops” below).
As an extension to the ANSI 77 standard, the label can be omitted, in which case an
END DO statement terminates the loop (see “Block DO Loops” below).

index is a simple variable that controls the loop. Note: The index must not be an array
element.

init is an expression that is the initial value given to index at the start of the execution of
the DO statement.

limit is an expression that is the termination value for index.

step is an expression that is the increment by which index is changed after each execu-

tion of the DO loop. step can be positive or negative; its default value is 1. step
should not equal 0.

init, limit, and step are indexing parameters as well as arithmetic expressions. index, init, limit, and
step should all be of the same type. If they are not, init, limit, and step are converted to the same
type as index. This can sometimes produce unexpected results, as in the following:

Example Notes
DO10i =1,3,.1 This program is intended to increment i by 10ths.
WRITE (1,*) i Instead, a warning is generated when the program is com-
10 CONTI NUE piled. When .1 is converted to type integer, it becomes 0,

but the increment must not be 0.

If index is a 1-word integer, limit and init can have any 1-word integer values, and the value
limit-init can be as large as 65536. This is the maximum number of times the loop can execute. If
index is a double integer, the value limit-init must not exceed 2147483647.

FORTRAN 77 Statements 3-23

Labeled DO Loops

A labeled DO loop begins with a DO statement that specifies the label of the terminating
statement of the loop. The terminating statement of a labeled DO loop must follow the DO
statement. The terminating statement must not be one of the following:

An unconditional GOTO statement
An assigned GOTO statement
An arithmetic IF statement

Any of the four statements associated with the block IF statement:

- An IF THEN statement
- An ELSE statement

- An ELSE IF statement
- An ENDIF statement

A RETURN statement
A STOP statement

An END statement
Another DO statement
A DO WHILE statement

Any nonexecutable statement

The terminating statement of a labeled DO loop can be a logical IF statement.
A labeled DO loop can be terminated with an END DO statement. This terminating END DO

statement must have a label that matches the label of the DO statement. (A DO loop terminated

with an unlabeled END DO statement is a block DO loop, described below.)

Examples Notes

100 CONTI NUE
200 |F (A(J) .EQ (0) STOP

300 END DO

DO 100 i = 1,10 Labeled DO loop. The group of statements terminating
: with the one labeled 100 is repeated 10 times.

DO 200 J = 1,10,2 Labeled DO loop. The group of statements terminat-
: ing with the one labeled 200 is repeated five times.

DO 300 r = 1.0,2.0,.1 Labeled DO loop. The group of statements terminating

this loop ends with an END DO statement, it is not con-
sidered a block DO loop. Notice that the label in the

DO statement corresponds with the one in the END DO

statement.

Block DO Loops

A block DO loop, an extension to the ANSI 77 standard, functions the same as a labeled DO loop.
It differs in not using a label in its DO statement. Each block DO loop must be terminated with

an END DO statement, which does not require a label.

3-24 FORTRAN 77 Statements

with the one labeled 300 is repeated 11 times. Athough

Block DO loops can be nested (as described in “Nesting DO Loops” below), but each level of
nesting must be terminated by a separate END DO statement.

Examples Notes
DOj = 10,1,-2 Block DO loop. The group of statements

: terminating with the END DO statement
END DO is repeated five times.
DOj = 10,1,2 Block DO loop. The group of statements

: terminating with the END DO statement is
END DO not executed. (The DO loop is skipped

entirely.)

Implied DO Loops

Implied DO loops are found in input/output statements (READ, WRITE, and PRINT) and in
DATA statements. An implied DO loop contains a list of data elements to be read, written, or
initialized, and a set of indexing parameters.

Implied DO Loops in Input/Output Statements

Syntax
(list, index = init, limit[, step])
where
list is an input/output list. It can contain other implied DO loops.

index, init,
limit, and step have the same meaning as in labeled and block DO loops.

The implied DO loop acts like a labeled or block DO loop. The range of the implied DO loop is
the list of elements to be input, output, or initialized. The implied DO loop can transfer a list of
simple variables, array elements, or any combination of allowable data elements. The control
variable, index, is assigned the value of init at the start of the loop. Execution continues the same
way as for DO loops. For example, the effect of the following statement:

PRINT *, (a, i =1,3)
is to write the value of a three times. If a = 35.6, the output consists of one record as follows:
35.6 35.6 35.6

If the list of an implied DO loop contains several simple variables, each of the variables in the list
is input or output for each pass through the loop. For example, the statement

READ *, (a, b, ¢, j =1,2)
is equivalent to

READ *, a, b, c, a, b, ¢c

FORTRAN 77 Statements 3-25

An implied DO loop can also transmit arrays and array elements. For example,

DI MENSI ON b(10)
PRINT *, (b(i), i = 1,10)

results in the array b being written in the following order:
b(1) b(2) b(3) b(4) b(5) b(6) b(7) b(8) b(9) b(10)

If an unsubscripted array name is used in the list, the entire array is transmitted. For example, the
result of the following statements:

DI MENSI ON x(3)
PRINT *, (x, i = 1,2)

is to write the elements of array X twice, as follows:
x(1) x(2) x(3) x(1) x(2) x(3)
The list can contain expressions that use the index value. For example:

DI MENSI ON a(10)
PRINT *, (i*2, a(i*2), i = 1,5)

Implied DO loops can also be nested. The form of a nested implied DO loop in an input/output
statement is:

(((list,index1=initl,limtl,stepl),index2=init2,limt2, step2)
...indexn=initn,limtn, stepn)

The expressions initl, limitl, and stepl can use the current value of the outer indices index2
through indexn, the expressions init2, limit2, and step2 can use the current value of the outer
indices index3 through indexn, and so forth.

Nested implied DO loops follow the same rules as other nested DO loops. For example, the
statement

WRITE (1,*) ((a(i,j), i =1,2), j =1,2)
produces the following output:
a(1,1) a(2,1) a(l1,2) a(2,2)

The first, or nested DO loop, is satisfied once for each execution of the outer loop. (See “Nesting
DO Loops” below.)

Implied DO loops are useful for controlling the order in which arrays are output, that is, for
outputting an array in row-major, as opposed to column-major, order (to produce a more natural
listing). The next two example statements print an array a, dimensioned as a(2, 3) , with values

135
2406

3-26 FORTRAN 77 Statements

The statement
WRITE (1,’(312)") a

prints the array in column-major order, yielding

123
456

and the statement

WRITE (1,’(312)") ((a(i,j), j =1,3), i =1,2)
prints the array in row-major order, yielding
135
246

Implied DO loops in input/output statements are not used only with arrays. The following
statement prints a table of degrees and the sine of each, in steps of 10 degrees.

WRI TE (1, (F4.0,F9.5)") (i,SIN(i*3.14159/180.), i = 0, 360, 10)

Implied DO Loops in DATA Statements

The format of a DATA statement containing an implied DO loop is:
DATA (dlist, index = init, limit [, step]l) | clist |
where

dlist is a list of array element names and implied DO loops.

index, init,
limit, and step have the same meaning as in labeled and block DO loops.

clist is the list of constants to be assigned to the corresponding items in dlist.

init, limit, and step are arithmetic expressions, just as in implied DO loops in input/output
statements; they must be integer expressions containing only constants and indices of outer loops.
index, init, limit, and step must all be integer.

Examples
DATA a, b, (vector(i), i = 1,10), k /2.5,-1.0,10*0.0, 999/
DATA ((matrix(i,j), i = 0,5, j = 5,10) /36*-1/

The implied DO loop in a DATA statement acts like the implied DO loop in an input/output
statement. It is executed at compilation time to initialize parts of arrays or to generate a full
variable list.

The index can be used in expressions for subscript values or position specifiers of character
substrings. Inner implied DO loops can use the indexes of outer loops.

FORTRAN 77 Statements 3-27

This example initializes parts of a one-dimensional character array:

CHARACTER char _array(5)*5
DATA ((char_array(i) (1:i), i = 1,10) /15* x’/

The following example initializes a square array to the identity matrix (its main diagonal is 1s, and
the rest of the array is 0s). It uses a WRITE statement with an implied DO loop to output the
array in row order.

Example

DI MENSI ON id_array(10, 10)

DATA ((id_array(i,j), j = 1+1,10), i = 1,9) [/ 45*0/ | upper
DATA (id_array(i,i), i = 1,10) /10*1/ ! diagonal
DATA ((id_array(i,j), i =j+1,10), j = 1,9) /45*0/ I | ower
WRI TE(1,’ (1012)") ((id_array(i,j), J = 1,10), i = 1,10)

END

The program produces this output:

00

[eNeoloNeolololNoNelNol
[eNoloNeolololNoNal o)
[eNeoloNeololoNol el
cNololoNoNol el

cNololoNol NelolNe)

OCOO0OOFrRrROOOO0OO0o
OCOOPFrRPOO0OO0OOO0OO0o
OOPRPOOO0OO0OO0OO0OO0o
OFrRPO0OO0OO0OO0O0OO0OO0OO0o
POOOOO0OO0OOO0OO0o

3-28 FORTRAN 77 Statements

DO WHILE Statement

As a MIL-STD-1753 standard extension to the ANSI 77 standard, the DO WHILE statement
controls execution of a group of statements by causing the statements to be repeated while a
logical expression is true. The DO WHILE construct is an important element of structured
programming.

Syntax

DO [label[,]] WHI LE (logical_expression)

where:
label is the statement label of an executable statement
logical_expression is an expression that produces a value of true or false.

Each DO WHILE loop must be terminated by a separate END DO statement, which does not
require a label. Note that if the DO WHILE statement uses the label option, the END DO
statement that terminates the DO loop must have a label, and the two labels must match.

A DO WHILE loop evaluates this way. The logical expression is evaluated and tested at the
beginning of the DO loop. If the expression evaluates to true, the group of statements between
the DO WHILE statement and the corresponding END DO statement is executed and the logical
expression is tested again. If the logical expression evaluates to false, the DO WHILE loop
terminates and execution continues with the statement following the END DO statement.

The rules for transfers into the range of a DO WHILE loop are the same as for other DO loops.
(See “Ranges of DO Loops” below.)

Examples Notes

DO WH LE (i .NE. 999) Repeatedly reads input until entry of a
READ(1, 33) i terminating flag (999 in this example).

END DO

index = 1

DO WHI LE (array(index) .NE value .AND. index .LE [limt)
index = index + 1

END DO Repeatedly increments i ndex while the

condition of the DO WHILE statement is true.

FORTRAN 77 Statements 3-29

Nesting DO Loops

DO loops can contain other DO loops. This is called nesting. The only restriction is that each level
(that is, each successive loop) must be completely contained within the preceding loop.

In a labeled DO loop, the last statement of an inner (nested) loop must either be the same as, or
occur before, the last statement of the outer loop. (For programming clarity, you should always
use a separate terminating statement for each loop.)

Here is an example in which the terminating statement of the innermost loop occurs before the
last statement of the preceding loop. The two outer loops have the same terminating statement.

DO 100 i = 1,10
DO 100 j = 1,10
sum = 0
DO 90 K=1, 10
90 sum = sum + a(i,k) * b(k,j)
c (i,j) = sum
100 CONTI NUE

Control passes to the statement following statement 100 only after all iterations of all three loops
are executed.

In a block DO or DO WHILE loop, each level must be terminated with a separate END DO
statement.

Example Notes
DO WHI LE (x .GE. 0) One END DO statement is required for
: each level.

DO WHI LE (y .LT. 10)

END DO
END DO

DO loops can be nested to as many levels as desired as long as the range of statements in any DO
loop does not overlap the range of the preceding loop.

This example shows an illegal construction, one in which the ranges of two loops overlap.

DO 100 i = 1,10 -=-— .
DO 500 | = 1,10 <= Range of first loop
100 x(i) = i**2 g—— Range of second loop
500 z(j) = |**6 -

3-30 FORTRAN 77 Statements

Ranges of DO Loops

The range of a DO loop is defined as the first statement following the DO statement up to and
including the terminal statement referenced by label, or, in the absence of label, up to and
including the END DO statement. This example shows the range of a labeled DO loop:

a==a6
DO20 i = 1,10 <«-—
b = SQRT(a)
WRI TE (6,200) b Range of the DO loop
a=-a+1
20 CONTI NUE =

This example shows the range of a block DO loop. It produces the same results as the preceding
example.

a==ao

DOi = 1,10 <
b = SQRT(a)
WRI TE (6, 200) b Range of the DO loop
a = atl

END DO =

This example shows the range of a DO WHILE loop:

DO WHI LE (i .NE. 999) ~-e—

READ(1, 33) i
. Range of the DO loop

END DO =

A DO loop can be exited at any time. Normal exit occurs when the DO loop is completed and
execution continues with the statement following the termination statement of the loop. A DO
loop can be exited abnormally with, for example, a GOTO statement, which transfers control out
of the loop.

This example searches a list for a keyword. If the keyword is found, control passes out of the DO
loop to the statement labeled 60. If the keyword is not found, the loop terminates normally and
then the program executes the STOP statement.

DO50i =1,n

50 IF (list(i) .EQ keyword) GOTO 60
STOP ' Not found.’

60 PRINT *, "Match at’, i

As an extension to the ANSI 77 standard, the range of a DO loop can be extended by passing
control out of and then back into the range.

Control can be passed into the range of the loop only if a transfer out of the same loop previously
occurred. This is an extension to the ANSI 77 standard, and causes the compiler to generate a
warning.

FORTRAN 77 Statements 3-31

Example Notes

DO 50 i =1,10,J*2 This is a legal transfer out of the range
G010 70 of a DO loop and back into the same
20 X = y*vV +r range.
50 END DO
G&Oro 100

70 v = ban + 6
GOTO 20
100 CONTI NUE

After the DO loop in the above example is satisfied, statement 60 is executed, passing control to
statement 100. The example shows the awkwardness of transferring into the range of a DO loop
without executing the DO statement. The capability is included only for compatibility with other
versions of FORTRAN, and should not be used in new programs.

DOUBLE COMPLEX Statement

See “Type Statement” later in this chapter for the syntax of DOUBLE COMPLEX and all other
type statements.

DOUBLE PRECISION Statement

See “Type Statement” later in this chapter for the syntax of DOUBLE PRECISION and all other
type statements.

ELSE Statement

See “BLOCK IF Statement” under “IF Statement” later in this chapter for information on the
ELSE statement.

ELSE IF Statement

See “BLOCK IF Statement” under “IF Statement” later in this chapter for information on the
ELSE IF statement.

3-32 FORTRAN 77 Statements

EMA Statement

The EMA (Extended Memory Area) statement is an extension to the ANSI 77 standard. It
declares that local variables or formal arguments are in EMA or VMA (Virtual Memory Area).
EMA and VMA may not be supported under some operating systems. For more information,
refer to the appropriate programmer’s reference manual.

Syntax
EMAVIV2,...,vn
where
v is a simple variable or array that is a formal argument or local variable.
Example Notes
PROGRAM nai n The EMA statement declares the items
EMA |arge_array, X, y large_array, x, and y to be in ENVA.
DI MENSI ON | arge_array(75000)
CALL subl (x,y) subl is called and is passed the two
: EMA variables X and y.
END
SUBROUTI NE subl (a, b) In subl, the EMA statement contains
EMA a, b the two formal arguments a and b
: corresponding to X and y above.
END

Arrays and single variables can be put in EMA through the EMA statement. Like other local
variables, EMA variables are unique to the program unit that declares them.

Because variables in EMA are accessed by a different mechanism from those not in EMA, you
must specify which formal arguments are EMA arguments. The default type for formal arguments
is non-EMA. Under the E compiler option, all formal arguments are EMA. (See Table 7-1 for a
discussion of the E option.)

Character variables cannot be in EMA.

DATA statements can be used to assign initial values to variables placed in the EMA area.
However, this is only supported on RTE-A. If any EMA variables appear in DATA statements in a
program, the RTE-A linker will change the program from an EMA program to a VMA program
without warning. See the RTE-A Programmer’s Reference Manual, part number 92077-90007, for
more information on EMA and VMA programming. Initialized VMA is not supported on the
RTE-6/VM Operating System.

See “SEMA Directive” in Chapter 7 for a complete example of the use of EMA.

Notes on Using EMA

Character variables and arrays cannot be put in EMA, and common blocks in EMA cannot contain
character items. Variables in EMA cannot be equivalenced to character variables either directly
or indirectly.

Although any variable can be declared to be in EMA, you should restrict EMA usage to those
arrays that require a large amount of storage. Because references to EMA variables take longer
than references to local variables, restricting EMA usage decreases execution time.

FORTRAN 77 Statements 3-33

The addressing modes of actual and formal arguments must match (that is, they must be both
EMA or non-EMA). If they do not match, an incorrect address is used. The effect is similar to
accessing an array with a subscript of unknown value. Therefore, do not pass a non-EMA variable
to a subroutine expecting an EMA argument, or vice versa.

END Statement

The END statement indicates the end of a program unit, that is, the end of a program, subroutine,
function, or block data subprogram.

Syntax
END
Example Notes
PROGRAM xt est The END statement terminates program Xt est .

READ (5,*) a,b

IF (a .LT. b) a=0»b
PRINT (6,*) a, b
END

If an END statement is executed in a subprogram, it has the same effect as a RETURN statement.
If an END statement is executed in a main program, execution of the program terminates.

An END statement can be labeled, but it cannot be continued. END must be the last statement in
a program unit.

END DO Statement

See “DO Statement” earlier in this chapter for information on the END DO statement.

3-34 FORTRAN 77 Statements

ENDFILE Statement

The ENDFILE statement writes an end-of-file (EOF) record to the specified sequential file or
device.

Syntax
{unit}
ENDFI LE {([unit=) unit[, | OSTAT=ios] [, ERR=label]) }
where
unit is the unit number of a sequential file.
ios is an integer variable or integer array element name for error code return (see Ap-
pendix A for IOSTAT error codes). ios is set to zero if no error occurs.
label is the statement label of an executable statement. It is in the same program unit as

the ENDFILE statement. If an error occurs during execution of the ENDFILE
statement, control transfers to the specified statement rather than aborting the pro-
gram.

If the prefix UNI T= is omitted, unit must be the first parameter. Otherwise the order of
parameters is flexible.

An end-of-file record can occur only as the last record of a disk file. After execution of an
ENDFILE statement, the file is positioned beyond the end-of-file record.

Some devices (magnetic tape units, for example) can have multiple end-of-file records, with or
without intervening data records.

An end-of-file record cannot be written to a direct access file.

Examples Notes
ENDFI LE 10 An end-of-file record is written to the file connected
to unit 10.

ENDFI LE (UNI T=5, | OSTAT=] , ERR=100) An end-of-file record is written to the file connected
to unit 5. If an error occurs, control transfers to
statement 100, and the error code is stored in the
variable j .

END IF Statement

See “IF Statement” later in this chapter for information on the END IF statement.

FORTRAN 77 Statements 3-35

ENTRY Statement

The ENTRY statement provides an alternate name, argument list, and starting point for a function
or subroutine.

Syntax
ENTRY name [([argl, arg2, arg3, ...])]

where:
name is the name of an external function and subroutine.
arg is a formal argument. arg can be a variable name, an array name, a formal proce-
dure name, or an asterisk. An asterisk is permitted only in a subroutine.
Example Notes
SUBROUTINE |inka (d,i,f) ENTRY defines an alternate entry

: point into subroutine | i nka.
ENTRY search (table,f)

CHARACTER* 10 FUNCTI ON conpose (word, sent, para)

: The ENTRY statement provides an
CHARACTER* 15 punctuati on alternate way of entering the function

ENTRY punctuation (docunent) conpose. Because this function is of

type character, the ENTRY statement
RETURN must also specify a character name.
END

The formal arguments in an ENTRY statement can differ in order, number, type, and name from

the formal arguments in the FUNCTION statement, SUBROUTINE statement, or other ENTRY
statement. However, for each call to the subprogram through a given entry point, only the formal
arguments of that entry point can be used.

If no formal arguments are listed after a particular ENTRY statement, no arguments are passed to
the subprogram when a call to that ENTRY name is made.

The name in an ENTRY statement can appear in a type statement in a function subprogram.

Character and noncharacter ENTRY statements cannot be mixed in a function subprogram. If an
entry name in a function subprogram is of type character, each entry name and the name of the
function subprogram must be of type character, and vice versa. In a function subprogram the
ENTRY statement name cannot appear as a variable in any statement before the ENTRY
statement, except a type statement.

An ENTRY statement can appear anywhere in a subprogram after the FUNCTION or
SUBROUTINE statement, with the exception that the ENTRY statement must not appear
between a block IF statement and its corresponding END IF statement, or between a DO
statement and the end of its DO loop.

A subprogram can have zero or more ENTRY statements. An ENTRY statement is considered a
nonexecutable statement. If control falls into an ENTRY statement, the statement is treated as an
unlabeled CONTINUE statement; that is, control falls through to the next statement.

3-36 FORTRAN 77 Statements

Within a subprogram, an entry name must not appear both as an entry name in an ENTRY
statement and as a formal argument in a FUNCTION, SUBROUTINE, or another ENTRY
statement. An entry name must not appear in an EXTERNAL statement.

Here is an example that creates a stack. It shows the use of ENTRY to group the definition of a
data structure together with the code that accesses it, a technique known as encapsulation.

SUBRCUTI NE push(val ue)
PARAMETER (size = 100)
| MPLICI T | NTEGER (a-2)
DI MENSI ON st ack(si ze)
DATA top /0/

C Push entry

IF (top .EQ size) STOP ' Stack overfl ow
top = top + 1

stack(top) = val ue

RETURN

C Pop entry

ENTRY pop(val ue)

IF (top .EQ 0) STOP ' Stack underfl ow
val ue = stack(top)

top = top - 1

RETURN

END

Here are examples of CALL statements that might be associated with the preceding example:
DO i =1, LEN(string)

CALL push (ICHAR (string (i:i)))
END DO

DO i =1, LEN(string)

CALL pop (])
string (i:i) = CHAR(j)
END DO

Both examples reverse the characters in stri ng.

FORTRAN 77 Statements 3-37

EQUIVALENCE Statement

The EQUIVALENCE statement associates variables so that they share the same storage space.

Syntax
EQUI VALENCE (listl) [, (list2), . . .]
where:
list is two or more simple variables, array elements, array names, or character
substrings. All items in each list entry share the same storage space.
Example Notes
EQUI VALENCE (a,b), (c(2),d,e) The variables a and b share the same storage space;

c(2),d, and e share the same storage space.

Function names and formal arguments must not appear in an EQUIVALENCE statement. Each
array or substring subscript must be an integer constant expression.

The EQUIVALENCE statement can be used to conserve storage. For example, arrays that are
manipulated at different times in the same program can be equivalenced. Thus, the same storage
space is used for each array.

The types of equivalenced data items can differ. The EQUIVALENCE statement does not cause
type conversion or imply mathematical equivalence. If an array and a simple variable are
equivalenced, the array does not have the characteristics of a simple variable and the simple
variable does not have the characteristics of an array. The array and the simple variable only
share the same storage space.

Use caution when equivalencing data types of different sizes, because the EQUIVALENCE
statement specifies that each data item in a list has the same first storage unit. For example, if an
integer and a real value are equivalenced, the integer value shares the same space as the most
significant word of the 2-word real value.

Equivalence of Array Elements

Array elements can be equivalenced to elements of a different array or to simple variables. For
example:

DI MENSI ON a(3), c(5)
EQUI VALENCE (a(2), c(4))

specifies that array element a(2) shares the same storage space as array element c(4) . This
implies that:

e a(1) shares storage space with c(3) , and a(3) shares storage space with c(5) .

e No equivalence occurs outside the bounds of any of the arrays.

3-38 FORTRAN 77 Statements

The storage space for the above two arrays is shown in the following table:

Storage Space

Array a Word Number Array c
1 c(1)
2 c(2)
a(l) 3 c(3)
a(2) 4 c(4)
a(3) 5 c(5)

Array elements are equivalenced on the basis of storage elements. If the arrays are not of the
same type, they may not line up element by element. For example, the statements:

DI MENSI ON a(2), i bar (4)
EQUI VALENCE (a(1), ibar(1))

where a is of type REAL*4 and i bar is of type INTEGER*2, produce the following storage space
allocation:

Storage Space

Array a Word Number Array ibar
a(1) 1 i bar (1)
2 i bar (2)

a(2) 3 i bar (3)
4 i bar (4)

If only an array name appears in an EQUIVALENCE statement, it has the same effect as using an
array element name that specifies the first element of the array. Specifying EQUI VALENCE
(a,ibar) instead of EQUI VALENCE (a(1),ibar (1)) inthe above example would produce
the same results.

When equivalencing array elements with other array elements or simple variables, do not specify
that the same storage space be occupied by more than one element of the same array. The
following example is illegal because it specifies the same storage space for a(1) and a(2):

DI MENSI ON a(2)
EQUI VALENCE (a(1),b), (a(2),b)

An EQUIVALENCE statement must not specify that consecutive array elements are to be
noncontiguous. For example:

REAL a(2), r(3)
EQUI VALENCE (a(1), r(1)), (a(2), r(3))

is prohibited because the EQUIVALENCE statement specifies that r is noncontiguous.

FORTRAN 77 Statements 3-39

Equivalence Between Arrays of Different Dimensions

To determine equivalence between arrays of different dimensions, FORTRAN contains an internal
array successor function that views all elements of an array in linear sequence. Each array is
stored as if it were a one-dimensional array. Array elements are stored in ascending sequential
order. The first index varies the fastest, then the second, then the third, and so on.

Examples Notes
i(-2:4) The elements of i are stored in the following order:

i(=2) (=1 (0 (1 i(2) i(3) i(4)
t(2,3) The elements of t are stored in the following order:

t(1,1) t(2,1) t(1,2) t(2,2) t(1,3) t(2,3)
k(2,2,3) The elements of k are stored in the following order (as read left

to right, top to bottom):

k(1,1,1) k(2,1,1) k(1,2,1) k(2,2 1)
k(1,1,2) k(2,1,2) k(1,2,2) k(2,2 2)
k(1,1,3) k(2,1,3) k(1,2,3) k(2,2 3)

The number of words each element occupies depends on the type of the array. For example, these
statements:

DI MENSI ON a(2,2), i(4)
EQUI VALENCE (a(2,1), i(2))

produce the following storage space allocation:

Storage Space

Array a Word Number Array i
a(1,1) 1
2 i(1)
a(2,1) 3 i(2)
4 i(3)
a(1,2) 5 i (4)
6
a(2,2) 7
8

In the EQUIVALENCE statement, a multidimensional array can be referenced by a single
dimension that specifies the array element relative to its linear position in storage. This is an
extension to the ANSI 77 standard. These statements:

DI MENSI ON a(2,2), i(4)
EQUI VALENCE (a(3), i(4))

produce the same storage space allocation as the previous example.

3-40 FORTRAN 77 Statements

Equivalence of Character Variables

As an extension to the ANSI 77 standard, character and noncharacter data items can be
equivalenced.

If equivalencing of character and noncharacter data forces a noncharacter data item to begin on an
odd byte address, a compilation error occurs.

Equivalenced data items do not have to be the same length. An EQUIVALENCE statement
specifies that the storage sequences of the character data items whose names are specified in the
list have the same first character storage unit. This causes the association of the data items in the
list and can cause association of other data items. Any adjacent characters in the associated data
items can also have the same character storage unit and thus can also be associated.

In the example:

CHARACTER a*4, b*4, c(2)*3
EQUI VELENCE (a, c(1)), (b, c(2))

the association of a, b, and ¢ can be illustrated this way:

[ot 1 o2l 031 oa] o051 06 | o7 |
a

| b

I
— c(1) ——— c(2)

Equivalence in Common Blocks

Data elements can be put into a common block by specifying them as equivalent to data elements
mentioned in a COMMON statement. If one element of an array is equivalenced to a data
element within a common block, the whole array is placed in the common block and equivalence is
maintained for storage units preceding and following the data element in common. The common
block is always extended when it is necessary to fit an equivalenced array into the common block.
No array can be equivalenced into a common block, however, if storage elements would have to be
prefixed to the common block to contain the entire array. Equivalences cannot insert storage into
the middle of the common block or rearrange storage within the block. Because the elements in a
common block are stored contiguously according to the order in which they are mentioned in the
COMMON statement, two elements in common cannot be equivalenced. In the following
example, array i is in a common block and array element j (2) is equivalent to i (3) :

DI MENSI ON i (6), j(6)
COWDN i EQUI VALENCE (i (3),j(2))

FORTRAN 77 Statements 3-41

The common block is extended to accommodate array j as follows:

Common Block

Array i Word Number Array j
(1) 1 1 (0)*
i (2) 2 j(1)
i (3) 3 j(2)
i (4) 4 1 (3)
i (5) 5 j(4)
i (6) 6 j(5)
i(7)* 7 j(6)

* Because FORTRAN does not check bounds on dimensional arrays, j (0) coincides withi (1),
and i (7) references the same storage space as j (6).

The equivalence set up by the following example is not allowed:
DI MENSI ON i (6), j(6)

COVMON i
EQUI VALENCE (i (1), j(2))

To set array j into the common block, an extra word must be inserted in front of the common
block. Elementj (1) would be stored in front of the common block; thus, EQUI VALENCE
(i (1), j(2)) isnot allowed.

3-42 FORTRAN 77 Statements

EXTERNAL Statement

The EXTERNAL statement identifies a name as representing a subprogram name and permits
the name to be used as an actual argument in subprogram calls.

Syntax
EXTERNAL procl [, proc2, ...]
where:

proc is the name of a subprogram. Each name can appear only once.

Examples Notes
EXTERNAL b1 The EXTERNAL statement declares
CALL sub(a, bl,c) b1 to be a subprogram name. The

: call to sub passes the values of a
END and c, and passes a pointer to

subprogram (b1).

SUBROUTI NE sub(x,y, z) The reference to y causes b1 to be
z = y(2z) called.

RETURN

END

The EXTERNAL statement allows you to use the names of subroutine subprograms and function
subprograms as actual arguments. The EXTERNAL statement is necessary to inform the
compiler that these names are subprograms or function names, not variable names. Whenever a
subprogram name is passed as an actual argument, it must be placed in an EXTERNAL statement
in the calling program.

As an extension to the ANSI 77 standard, statement function names can appear in an
EXTERNAL statement.

If an intrinsic function name appears in an EXTERNAL statement, the compiler assumes that a
user subprogram by that name exists; the intrinsic function is not available to the program.

Refer to Appendix E for information on compatibility of the EXTERNAL statement with the
ANSI 66 standard.

Also see the section “INTRINSIC Statement.”

FORTRAN 77 Statements 3-43

FORMAT Statement

The FORMAT statement describes the position and type of data fields in an ASCII data record.
Syntax

label FORMAT(desI[, des2, . . .])
where:
label is a statement label.

des is a format or edit descriptor.
Example Notes

10 FORVAT(I 3, 5F12. 3) | 3 specifies an integer number with a field width of
3. 5F12. 3 specifies five real numbers with a field
width of 12 and three significant digits to the right of
the decimal point.

The allowed format descriptors are summarized in Table 3-5. The edit descriptors are summarized
in Table 3-6. See Chapter 4 for a more detailed explanation of the FORMAT statement.

Table 3-5. Format Descriptors

Descriptor Data Type
Aw Character or Hollerith
Rw Character or Hollerith
Dw.d[Ee] Real, Double Precision, Complex
Ew.d[Ee] Real, Double Precision, Complex
Fw.d Real, Double Precision, Complex
Gw.d[Ee] Real, Double Precision, Complex
lw[.m] Integer
Kw Octal
@w Octal
Oow Octal
Lw Logical
where: w is an integer specifying the field width.
d is an integer specifying the number of digits to the right of the decimal point.
e s an integer specifying the number of digits in the exponent.
m is an optional integer specifying the minimum number of digits on output.

3-44 FORTRAN 77 Statements

Table 3-6. Edit Descriptors

Descriptor Function
BN Ignore blanks
Bz Treat blanks as zeros
nH Hollerith editing
Te Skip to column ¢
nX Skip n positions
TRe Skip ¢ positions to the right
TLe Skip ¢ positions to the left
/ Begin new record
: Terminate format if list empty
L Literal editing
Literal editing
S Processor determines sign output; same as SS on
HP 1000
SP Output optional plus signs
SS Inhibit optional plus sign output

Double quotation marks can be used in input/output and FORMAT statements. For example:

WRITE (1, (“Average is ",15)’) iaverage

However, single quotation marks are preferred.

FORTRAN 77 Statements

3-45

FUNCTION Statement

The FUNCTION statement identifies a program unit as a function subprogram.

Syntax
[type] FUNCTI ON name ([argl, arg2, . . . 1)[,comment]
where:
type is the type of the function; fype can be one of the following:
INTEGER REAL*8 DOUBLE COMPLEX
INTEGER*2 DOUBLE PRECISION LOGICAL
INTEGER*4 COMPLEX LOGICAL*2
REAL COMPLEX*8 LOGICAL*4
REAL*4 COMPLEX*16 CHARACTER([*len]
The *n in the above type specifications is optional.
In CHARACTER [*len], len is the length of the formal argument (arg) of the char-
acter function. The default value is 1. For an array, the length specified is for each
element of the array. len can be one of the following:
- An unsigned integer constant.
- An integer constant expression with a positive value. The integer expression
must be enclosed in parentheses. Example: (—3+4).
- An asterisk enclosed in parentheses (*).
name is the name of the function (if #ype is not specified, the name is typed the same way
as a variable).
arg is a formal argument of the function.
comment is up to 86 characters passed to the linker. This feature is an extension to the ANSI
77 standard.
Examples Notes
FUNCTI ON conmp() Defines the function conp.

I NTEGER FUNCTI ON ti nex(a, b, k) Defines an integer function, t i mex, with three

arguments.

CHARACTER*6 FUNCTI ON nanex(1) Defines a character function, hamex, with one

argument; the function result is six characters long.

The formal arguments in a FUNCTION statement can be used as:

® Variables

e Array names

e Subprogram names

3-46 FORTRAN 77 Statements

The formal arguments should be of the same type as the actual arguments that are passed to the
function from the calling program unit.

If a formal argument of type character has a length of (*) declared, the formal argument assumes
the length of the associated actual argument for each reference of the function.

If the function is of type CHARACTER*(*), the function assumes the length declared for it by the
calling program. Each calling program may declare a different length.

Function subprograms are discussed in detail in “Function Subprograms” in Chapter 6.

GOTO Statement

The GOTO statement transfers control to a labeled statement in the same program unit. There
are three kinds of GOTO statements:

e Unconditional GOTO
e Computed GOTO
e Assigned GOTO

The statement can be written GOTO or GO TO, because blanks are significant only in character
and Hollerith constants.

Unconditional GOTO Statement

The unconditional GOTO statement transfers control to the specified statement.
Syntax

GOTOlabel
where:

label is the label of an executable statement.
Example Notes

GOTO 20 Control passes to the statement labeled 20 when the GOTO
statement is executed. Statement 20 can be before or after
the GOTO statement, but must be present in the same pro-
gram unit.

Computed GOTO Statement

The computed GOTO statement transfers control to one of several statements depending on the
results of the evaluation of an expression.

Syntax
GOTO (labell, label2, . . .)[,]exp
where:

label is the label of an executable statement. The same label can appear more than once.

exp is an integer, real, or double precision expression.

FORTRAN 77 Statements 3-47

The use of noninteger expressions is an extension to the ANSI 77 standard.
In a CDS program, a computed GOTO statement cannot have more than 255 labels.

The computed GOTO statement passes control to one of several labeled statements, depending on
the result of an evaluation. exp is evaluated and truncated to an integer value (the index). The
index is used to select the statement label in the label list. For example, if the index is 1, control
passes to the statement whose label appears in the first position of the list of labels. If the index
value is 2, the second label in the list is used, and so on. If exp evaluates to less than 1, or to a
value greater than the number of labels in the label list, control passes to the statement following
the computed GOTO.

Examples Notes

a =3 Because a has a value of 3, control passes
&Ooro (30, 60, 50, 100) a to statement 50.

b =15 Because | NT(b + z) = 2, control passes
z =1 to statement 20.

GOro (10, 20,40,40) b + z

Assigned GOTO Statement

The assigned GOTO statement transfers control to the statement whose label was most recently
assigned to the variable in the GOTO statement by an ASSIGN statement.

Syntax
Q&OTO ivar| [,] (labell, label2, . . .)]

where

ivar is a simple integer variable.

label is the label of an executable statement. The list of labels is optional.

Examples Notes

ASSI GN 10 TO age Control transfers to statement 10 when the
G&OTO age GOTO statement is executed.

ASSI GN 100 TO tine Control transfers to statement 100 when the
&Oro time (90,100, 150) GOTO statement is executed.

ivar must be given a label value through an ASSIGN statement prior to execution of the GOTO
statement. When the assigned GOTO statement is executed, control transfers to the statement
whose label matches the label value of ivar.

The list of labels gives the possible label values that ivar might assume. Although the list of labels
is not used, it should be provided as good programming practice. Programs with undocumented
assigned GOTO statements are very difficult to understand.

3-48 FORTRAN 77 Statements

IF Statement

The IF statement provides a means for decision making. There are three kinds of IF statements:
e Arithmetic IF

e I ogical IF

e Block IF

An arithmetic IF statement transfers control to one of three labeled statements depending on
whether an expression evaluates to a negative, zero, or positive value. A logical IF statement
causes a statement to be executed if an evaluated expression is true. A block IF causes one of two
blocks of statements to be executed depending on the value of one or more logical expressions.

Each kind of IF statement is described in detail in the following sections.

Arithmetic IF Statement

The arithmetic IF statement transfers control to one of three statements. The form of the
arithmetic IF statement is:

Syntax

| F (exp) labeln,labelz,labelp

where
exp is an arithmetic expression of any type except complex or double complex.
label is the statement label of an executable statement.

Example Notes

IF (a + b) 10, 20, 30 Control passes to statement 10, 20, or 30 depending on the
value of a + b.

When an arithmetic statement is executed, exp is evaluated. If the resulting value is negative,
control passes to the statement whose label is labeln. If the value is 0, control passes to the
statement whose label is labelz. If the value is positive, control passes to the statement whose label
is labelp.

If the value of the expression exceeds the range of the expression, an overflow condition occurs.
Because overflow conditions are not detected by the compiler, an arithmetic IF statement can
make an erroneous transfer. Overflow conditions can often be avoided with logical IF statements.

Examples Notes

testa = 0. Because t est a equals 0, control passes to

IF (test) 50,100, 50 statement 100.

i =10 Because i +] is negative, control passes to

] = —(15) statement 10.

IF (i + j) 10, 20,30

IF (tinmex) 60, 60,60 Control passes to statement 60 regardless of
the value of ti mex.

z = 10. Because a + z is positive, control passes to

a = 60. statement 60.

I

F (a + z) 100, 100, 60

FORTRAN 77 Statements 3-49

As illustrated in the above examples, two of the labels in the label list can be the same; control
branches to one of two possible statements. In fact, all of the labels in the list can be the same. If
all are the same, control branches to the statement bearing this label, regardless of the results of
the evaluation.

If two of the labels are the same and one of the three labels is the label of the next statement, the
statement should be changed to a logical IF or a block IF for improved readability. For example,
this arithmetic IF statement:

| F (exp) 30,40, 30
40 ...

is the same as this logical IF statement:
IF (exp .NE. 0) GOTO 30

and this arithmetic IF statement:

IF (exp) 10, 10,20
10 ...
20 CONTI NUE

is the same as this block IF statement:

|F (exp) .LE. 0) THEN

END | F

Logical IF Statement

The logical IF statement evaluates a logical expression and executes a statement if the expression
evaluates to true.

Syntax
| F (exp) statement
where
exp is a logical expression.

statement is any executable statement other than a DO, END, or block IF statement, or an-
other logical IF statement.

Examples Notes
a=m>b Because the expression a . EQ Db is true, control passes
IF (a .EQ b) GOTO 100 to statement 100.

IF (p .AND. q) res=10.5 If p and q are both true, the value of r es is replaced by
10.5; otherwise the value of r es is unchanged.

The logical IF statement is a two-way decision maker. If the logical expression contained in the IF
statement is true, then the statement in the IF statement is executed and control passes to the next
statement. If the logical expression is false, then the statement contained in the IF statement is
not executed and control passes to the next statement in the program.

3-50 FORTRAN 77 Statements

Block IF Statement

The block IF statement is an extension of the logical IF statement, allowing one of two blocks of
statements to be executed depending on the true or false value of a logical expression.

Syntax
| F (exp) THEN

statement 1
statement 2

[ELSE :[I F(exp) THEN]

statement 3
statement 4

[ELSE

statement 5
statement 6

statement n]]
ENDI F-
where:

exp is a logical expression.
statement is any executable statement or a format statement.

END | F terminates the block IE. One END IF is required for each IE.. THEN statement
(see the third example below).

One block IF statement can contain any number of ELSE IF sub-blocks, but only one ELSE
sub-block. IF blocks can be nested to any level desired.

Examples Notes
X =y Because x = vy, the value of X is replaced by the value
IF (x .EQ y) THEN of x+1. Note that this is equivalent to the logical IF
X = x+1 statement | F (x . EQ vy) x=x+1.
END | F
IF (x .LT. 0) THEN If x < 0, one block of code is executed; if x = 0, a
y = SQRT (ABS(x)) different block of code is executed.
z = x+l-y
ELSE
y = SQRT (x)
z = x-1
END | F

FORTRAN 77 Statements 3-51

I'F (n(i) .EQ 0) THEN This example demonstrates nesting of

n (i) =n(j) IF blocks using the construct:
j =)+l
IF (j.LT.k) THEN | F (expl) THEN
k = k-1 :
ELSE IF (j .EQ k) THEN | F (exp2) THEN
k = k+1 :
END I F ELSE | F (exp3) THEN
ELSE :
n =i END | F
k = n(i) ELSE
END | F :
END | F

If the logical expression is true, the block of statements between THEN and ELSE is executed (if

there is no ELSE statement, the block of statements between THEN and END IF is executed). If
the logical expression is false, the block of statements between ELSE and END IF is executed (if

no ELSE block exists, control passes to the statement following the END IF statement).

Using ELSE IF does not change the nesting level of the IF block. (The term nesting level refers to
the number of enclosing IF blocks; the nesting level is equal to the number of preceding

IF .. THEN statements minus the number of preceding END IF statements.) The nesting level
must be equal to 0 at the end of each program unit. An IF THEN statement increases the nesting
level by one, while the END IF statement decreases the nesting level by one.

Example Nesting Level
0
I F (exp_]) THEN 1
I F iepo) THEN 2
ELS:E | F (exp3) THEN 2
ELSE 2
ENDiI F 1
ELSE I F (exp4) THEN 1
ENDI F: 0

The FORTRAN 77 compiler can perform conditional compilation within block IF statements. If
the expression following the IF in an IF block contains only constants and named constants
(specified in a PARAMETER statement) and does not contain any character data, then the
compiler can determine which section of code need not be generated: either the code following
the THEN in the IF block or the code following the corresponding ELSE or ELSE IF (if
specified). This form of conditional compilation can be used only in the executable portion of a
program. It cannot be used in declarations.

Example Code Generated
I NTEGER system rtedb, rtellO, rtel20 Yes
PARAVETER (rted4b=4, rtell0=110, rtel20=120) Yes

3-52 FORTRAN 77 Statements

PARAMETER (systenrrte4b) Yes

: Yes
IF (system .EQ rtedb) THEN Yes
CALL EXEC (23,5HD.RTR, ...) Yes
ELSE I F (system .EQ rtell0) THEN No
: No
ELSE I F (system .EQ rtel20) THEN No
: No
ELSE No
PRI NT ' (“UNKNOWN SYSTEM')’ No
ENDI F Yes

IMPLICIT Statement

The IMPLICIT statement overrides or confirms the type associated with the first letter of a
variable name.

Syntax
{NONE}
| MPLI CI T {type(rangel, [range2, ...1)[,type(rangel, [range2, ...]1)]}
where
type is the type to be associated with the corresponding letter or list of letters in range;
type can be one of the following:
INTEGER COMPLEX*8
INTEGER*2 COMPLEX*16
INTEGER*4 DOUBLE COMPLEX
REAL LOGICAL
REAL*4 LOGICAL*2
REAL*8 LOGICAL*4
DOUBLE PRECISION CHARACTER([*len]
COMPLEX
In CHARACTER [*len], len is the length of the character items, and is one of the
following:
- An unsigned integer constant.
- An integer constant expression enclosed in parentheses with a positive value.
If len is not specified, the default value is 1.
range is either a single letter or a range of letters (for example, a—z or i —n) to be associ-
ated with the specified type. Writing a range of letters has the same effect as writ-
ing a list of single letters.
Example Notes

I MPLICIT COWPLEX(i,j, k), NTEGER(a—c) All variables and function names beginning
withi,j, or k are of type COMPLEX; data
items beginning with a, b, or ¢ are of type
INTEGER.

FORTRAN 77 Statements 3-53

An IMPLICIT statement specifies a type for all variables, arrays, named constants, function
subprograms, entry names in function subprograms, and statement functions that begin with any
letter that appears in an IMPLICIT statement; it does not change the type of any intrinsic
functions.

The IMPLICIT statement itself can be overridden for specific names when these names are used
in a type statement. For example, | MPLI CI T | NTEGER (&) specifies that symbolic names
starting with the letter a are type integer. A type statement such as REAL abl e, however,
indicates that the variable abl e is type real, thus overriding the IMPLICIT statement.

Uppercase and lowercase letters are equivalent in arguments to the IMPLICIT statement. Thus
IMPLICIT INTEGER (Q and | MPLICI T | NTECER (q) are the same.

An explicit type specification in a FUNCTION statement overrides an IMPLICIT statement for

the function name. Note that the length is also overridden when a particular name appears in a
CHARACTER or CHARACTER FUNCTION statement.

As a MIL-STD-1753 extension to the ANSI 77 standard, if IMPLICIT NONE is specified,
inherent typing is disabled and all simple variables, arrays, named constants, function
subprograms, entry names, and statement functions (but not intrinsic functions) must be explicitly
typed. The IMPLICIT NONE statement must be the only IMPLICIT statement in the program
unit. The types of intrinsic functions are not affected.

Within the specification statements of a program unit, IMPLICIT statements must precede all
other specification statements, except PARAMETER statements.

The same letter must not appear as a single letter, or be included in a range of letters, more than
once in all of the IMPLICIT statements in a program unit.

3-54 FORTRAN 77 Statements

INCLUDE Statement

The INCLUDE statement is a MIL-STD-1753 extension to the ANSI 77 standard. It causes the
compiler to include and process subsequent source statements from a specified file or logical unit
(LU). When EOF is read from this file or LU, the compiler continues processing at the line
following the INCLUDE statement.

Syntax

{[, LI ST]}
| NCLUDE file_name {[, NOLI ST]}

where:

file_name is either the disk file name or an LU number. file_name may be quoted or un-
quoted. Unquoted file names must not contain ‘=" or ‘(.

LI ST causes the current lines to be listed. LI ST is the default.

NOLI ST causes lines not to be listed.

If the $LIST directive is OFF, lines are not listed regardless of LI ST and NOLI ST.

INCLUDE statements cannot be continued. INCLUDE:s can be nested nonrecursively; that is, an
INCLUDE cannot mention an active include file.

If the file name does not specify a directory, the directory containing the source file is searched
first, then the working directory.

Examples

I NCLUDE specs

I NCLUDE ' ../includes/grahics.inc , NOLIST

After an INCLUDE statement is executed, the LIST status is restored to what it was just before
the INCLUDE was encountered, even if LIST or NOLIST is specified and even if the LIST
directive appears in the included file.

Line numbering within the listing of an included file begins with 1. These line numbers are
suffixed with “+” (for example, 153+). The original line numbering of the source resumes after
the included file listing.

If an interactive LU is specified for the file name, information is included interactively from that
LU, in which case the prompt listed at the LU is “+”.

INCLUDE is also used as a compiler directive. The SINCLUDE compiler directive is useful when
the file name contains special characters that might be misinterpreted by the compiler. (See
“$INCLUDE Directive” in Chapter 7.)

FORTRAN 77 Statements 3-55

INQUIRE Statement

The INQUIRE statement provides information about selected properties of a particular file or
unit number.

Syntax
INQUIRE ([[UNI T=] unit] [, FI LE=name] [, | OSTAT=ios] [, ERR=label] . . . other specs)

where:
unit is the unit number of a sequential file.
name is a character expression containing the file name of the file to be inquired about.
See Chapter 5 for more information about file names.
ios is an integer variable or integer array element name for error code return (see Ap-
pendix A for IOSTAT error codes). ios is set to zero if no error occurs.
label is the statement label of an executable statement in the same program unit as the

INQUIRE statement. If an error occurs during execution of the INQUIRE state-
ment, control transfers to the specified statement rather than aborting the pro-
gram.

Either the UNI T or FI LE keyword specifier must be present in the keyword list, but not both. If
the prefix UNI T= is omitted and unit is present, unit must be the first parameter in the list.
Otherwise the order of parameters is flexible.

Table 3-7 below describes each of the specifiers used with the INQUIRE statement.

Most of the information described in Table 3-7 is assigned through the OPEN statement, which is
described in “OPEN Statement” below.

See “INQUIRE Statement” in Chapter 5 for an example of the INQUIRE statement.

In Table 3-7, when a variable is specified as undefined, its value may or may not be changed from
its previous value by the INQUIRE statement. In any event, the value is meaningless if the file or
unit either does not exist or cannot be accessed at the time the INQUIRE statement is executed.

3-56 FORTRAN 77 Statements

Table 3-7. INQUIRE Statement Specifiers

Specifier Restrictions Description
FI LE=name Character expression Specifies file name for inquiry by file name.
Example: FI LE=" QUTPUT’
UNI T=unit Integer expression Specifies unit number for inquiry by unit.
Example: UNI T=i
| OSTAT=ios Integer variable or ios=0 if no error; ios=positive value if error condi-
array element tion exists.
Example: | OSTAT=]
ERR=label Statement number Control transfers to specified executable statement
if error condition on named file or unit exists.
Example: ERR=99
EXI ST=ex Logical variable or ex=.TRUE. if named file exists and is accessible;
array element ex=.FALSE. otherwise.
Example: EXI ST=| ext
OPENED=0d Logical variable or od=.TRUE. if named file or unit has been opened
array element by an OPEN statement in this program;
od=.FALSE. otherwise.
Example: OPENED=I opn
NUVBER=num Integer variable or num is the FORTRAN logical unit number of the
array element external named file; if no unit is connected to the
named file, num is undefined.
Example: NUVBER=N
NANVED=nmd Logical variable or array ~ nmd=.TRUE. if specified unit is not a scratch file;
element nmd=.FALSE. otherwise.
Example: NAMED=| nam
NAVE=fn Character variable, array fn is returned as the external name of the specified
element, or substring unit; if the file has no name or is not connected, fn
is undefined.
Example: NAME=nam
USE=use Character variable, array use returns EXCLUSIVE if not connected for shared
element, or sub-string use, NONEXCLUSIVE if connected for shared use,
and not defined if the file is not connected.
Example: USE=use
ACCESS=acc Character variable, array acc returns SEQUENTIAL if the unit or file is con-

SEQUENTI AL=seq

element, or substring

Character variable, array
element or substring

nected for sequential access, DIRECT if the unit or
file is connected for direct access, and is unde-
fined if the unit or file is not connected.

Example: ACCESS=acc

seq returns YES if connected for sequential access,
NO if connected for direct access, and undefined if
the processor is unable to determine the access

type.
Example: SEQUENTI AL=seq

FORTRAN 77 Statements 3-57

Table 3-7. INQUIRE Statement Specifiers (continued)

Specifier

Restrictions

Description

DI RECT =dir

FORVE=fin

FORVATTED=fmt

UNFORMAT TED=unf

RECL =rcl

NEXTREC=nr

BLANK=bInk

Character variable, array
element, or substring

Character variable, array
element, or substring

Character variable, array
element, or substring

Character variable, array
element, or substring

Integer variable or array
element

Integer variable or array
element

Character variable, array
element, or substring

dir returns YES if connected for direct access,
NO if connected for sequential access, and un-
defined if the processor is not able to determine
the access type.

Example: DI RECT=di r.

fm returns FORMATTED or UNFORMATTED
depending upon the format specified when the
unit was connected; fm is undefined if the unit
is not connected.

Example: FORM=f or

fmt returns FORMATTED or UNFORMATTED
depending upon the format specified when the
unit was connected; fmt is undefined if the unit
is not connected.

Example: FORM=f or

unf returns YES or NO depending upon
whether the unit was connected for unfor-
matted data transfer; unf is undefined if the
processor is unable to determine the form of
data transfer.

Example: UNFORVATTED=i unf

rcl returns the record length of the specified
unit or file connected for direct access, meas-
ured in bytes. If the file is not connected for
direct access, rcl is undefined.

Example: RECL=ir ec

nr is assigned the next record number to be
read or written on the specified unit or file. If no
records have been read or written, nr=1. If the
file is not connected, or is an LU, or has an in-
determinate status, nr is undefined. If the file
can contain more than 32767 records, nr
should be double integer.

Example: NEXTREC=nr ec

blnk contains ZERO or NULL depending upon
the blank control in effect. If the specified file is
not connected or not connected for formatted
data transfer, blnk is undefined.

Example: BLANK=i bl k

3-58

FORTRAN 77 Statements

Table 3-7. INQUIRE Statement Specifiers (continued)

Description

Specifier Restrictions

MAXREC=mirec Integer variable or array
element

NCDE=node Integer variable or array

element

mrec returns the largest record number that cur-
rently exists in a direct access file. If the file is
extendable or already has extents, the returned
value may indicate the amount of disk space
allocated for the file. If used in an inquiry of a
sequential file, mrec is the number of 128-word
blocks in the file (not including extents). If the
file can contain more than 32767 records, mrec
should be double integer. MAXREC is an exten-
sion to the ANSI 77 standard.

Example: MAXREC=nt

node is set to the node number to which the
unit is connected. (If at the local node,
node=-1.) When the ClI file system is used,
the node number is also returned in the file
name. NODE is an extension to the ANSI 77
standard.

Example: NODE=5003

INTEGER Statement

See “Type Statement” later in this chapter for the syntax of INTEGER and all other type

statements.

INTEGER*2 Statement

See “Type Statement” later in this chapter for the syntax of INTEGER*2 and all other type

statements.

INTEGER*4 Statement

See “Type Statement” later in this chapter for the syntax of INTEGER*4 and all other type

statements.

FORTRAN 77 Statements 3-59

INTRINSIC Statement

The INTRINSIC statement identifies a name as representing an intrinsic function and permits the
name to be used as an actual argument.

Syntax
I NTRINSI C funl[, fun2, .. .]

where:

fun is the name of an intrinsic function. Each name can appear only once.

Example Notes
I NTRINSI C SI N, TAN The INTRINSIC statement informs the compiler
CALL MATH(SI N, TAN) that SI Nand TAN are intrinsics.

The INTRINSIC statement provides a means of using intrinsics as actual arguments. The
INTRINSIC statement informs the compiler that these names are intrinsic names and not variable
names. Whenever an intrinsic name is passed as an actual argument, it must be placed in an
INTRINSIC statement in the calling program.

The names of intrinsic functions for type conversion (INT, IFIX, IDINT, FLOAT, SNGL, REAL,
DBLE, CMPLX, ICHAR, CHAR), for logical relationships (LGE, LGT, LLE, LLT), and for
choosing the largest or smallest value (MAX0, AMAX1, AMAX0, MAX1, MINO, AMINI,
AMINO, MIN1) must not be used as actual arguments.

Generic names must not be used in an INTRINSIC statement.

A name must not appear in both an EXTERNAL and an INTRINSIC statement in the same
program unit.

LOGICAL Statement

See “Type Statement” later in this chapter for the syntax of LOGICAL and all other type
statements.

LOGICAL*2 Statement

See “Type Statement” later in this chapter for the syntax of LOGICAL*2 and all other type
statements.

LOGICAL*4 Statement

See “Type Statement” later in this chapter for the syntax of LOGICAL*4 and all other type
statements.

3-60 FORTRAN 77 Statements

OPEN Statement

The OPEN statement establishes a connection between a unit number and a file; it also establishes
or verifies properties of a file.

Syntax
OPEN([UNI T=] unit[, FI LE=name] [, | OSTAT=ios] [, ERR=label] . . . other specs)

where

unit is the unit number for the file.

name is a character expression containing the file name of the file to be connected. See
Chapter 5 for more information about file names.
name can also hold the ASCII representation of a system LU (logical unit).

ios is an integer variable or integer array element name for error return (see Appendix
A for IOSTAT error codes). ios is set to zero if no error occurs.

label is the statement label of an executable statement in the same program unit as the

OPEN statement. If an error occurs during the execution of the OPEN statement,
control transfers to the specified statement rather than aborting the program.

The UNIT specifier is required in the keyword list. If the prefix UNI T= is omitted, unit must be
the first item in the list. The other specifers can be in any order. At most one each of the other
specifics can appear in the keyword list.

Table 3-8 describes each of the specifiers used with the OPEN statement.

See Chapter 5 for additional details and examples.

FORTRAN 77 Statements 3-61

Table 3-8. OPEN Statement Specifiers

Specifier

Restrictions

Description

FlI LE=name

UNI T=unit

| OSTAT =ios

ERR=label

USE=use

STATUS=sta

ACCESS=acc

FORME=fin

RECL =rcl

BLANK=bInk

MAXREC=mrec

Character expression

Integer expression

Integer variable or
array element

Statement number

Character expression

Character expression

Character expression

Character expression

Integer expression

Character expression

Integer expression

Specifies file name, which can be the ASCII repre-
sentation of an LU identifying a nondisk device
(value less than 64).

Specifies unit number.

ios=0 if no error; ios=positive value if error condi-
tion exists.

Control is transferred to specified executable state-
ment if error encountered during OPEN.

Specifies file or unit for EXCLUSIVE (default) or
NONEXCLUSIVE use. As an extension to the ANSI
77 standard, USE can also specify UPDATE mode.
(See Note 3.)

Specifies file as OLD, NEW, SCRATCH, or UN-
KNOWN (default). (See Note 1.)

Specifies file access to be DIRECT, SEQUENTIAL
(default), BLOCKS (which forces to type 1, an ex-
tension to the ANSI 77 standard) or APPEND
(which is like SEQUENTIAL, but file is positioned
at the end). (See Note 2.)

Specifies data format to be FORMATTED or UN-
FORMATTED. Included for compatibility only, has
no effect on the file.

Specifies record length for direct access. Length
is measured in characters (bytes). If rc/>120, you
must use LGBUF to allocate a larger record buffer.
Note that the LGBUF size argument is in words,
not bytes.

Specifies treatment of blanks within numbers on
input. If BLANK=" NULL" (default), blanks are ig-
nored; if BLANK=" ZERO , blanks are treated as
Zeros.

Specifies the size, in records, of a direct access
file when no explicit length is given in the file name
(ignored otherwise.) The number of records can
be greater than 32767, in which case mrec must
be double integer. MAXREC is an extension to the
ANSI 77 standard.

Example: MAXREC=40000.

3-62 FORTRAN 77 Statements

Table 3-8. OPEN Statement Specifiers (continued)

Specifier

Restrictions

Description

BUFSI Z=bufs

NCODE=node

Integer expression

Integer expression

Specifies the number of 128-word blocks of disk
buffer for this file. This parameter overrides the de-
fault (the third argument in a $FILES directive). You
must use the fourth argument in a $FILES directive to
allocate sufficient blocks for all files which will be open
at any given time. Also see: the $FILES directive; the
NFIOB library function.

BUFSI Z is ignored for system LU opens (nondisk de-
vices), DS, and redundant OPEN statements. BUFSI Z
is an extension to the ANSI 77 standard.

The LGBUF library function is completely unrelated to
BUFSI Z. It allocates the record buffer shared by all
READ and WRITE statements.

Specifies the DS node number at which the connec-
tion is to be made.

In the FMGR file system, this specifier is legal only if
DS is included in the $FILES directive. This specifier
is ignored if the node number is specified in the file
name. NODE is an extension to the ANSI 77 standard.

Notes for Table 3-8:
Note 1

If = then the and
STATUS " OLD FI LE= parameter is required the file must exist.
" NEW FI LE= parameter is required the file must not exist.
' SCRATCH FI LE= parameter must not be a scratch file is created.
present
If = and if the then the
STATUS " UNKNOWN! FI LE= parameter is present and file named is created if it does
is not a system LU not already exist.
FI LE= parameter is not present the nondisk unit is connected
or if the parameter is a system to the unit specified.
LU

FORTRAN 77 Statements 3-63

Note 2

then the

and the

RECL = parameter must not be
present and the file must be of
type 0, 3, 4, 0or 5

RECL = parameter is required and
the file must be of type 1 or 2

RECL= parameter is required
and must be 256, and the file
must be of type 1 or greater.

file is opened for sequential
access.

file is opened for direct access.

file is opened for direct access
with 256-byte records (forced to

type 1).

then

this mode allows you to write to sequential files that are randomly
positioned using FPOSN. When this mode is used, the file is opened
for shared access. There is no provision for exclusive access with
update. (See the discussion on update mode for FMP OPEN calls in
the appropriate programmer’s reference manual.) USE=" UPDATE' is

not necessary for direct access files.

If =
ACCESS | ' SEQUENTI AL’
or
" APPEND
' DI RECT’
" BLOCKS'
Note 3
If =
USE " UPDATFE’
3-64 FORTRAN 77 Statements

Examples Notes

OPEN (100, FILE="/mib/filel0/ mycode. ex’) The CI file system file is connected to
unit 100.

OPEN (10, FILE=" I NV: : JW , NOCDE=15, The file | NV on CRN JWon node

+ACCESS=" SEQUENTI AL’ , ERR=100, | OSTAT=i 0s) number 15 is connected to unit 10 as a
sequential file. If an error occurs, con-
trol transfers to statement 100 and the
error code is placed in the variable i 0s.
If the FMGR file system is used, DS
must have been specified in the $FILES
directive.

OPEN (ACCESS=' DI RECT’ , UNI T=4, RECL=50, The character variable contains the
+FORME' FORVATTED |, FI LE=next 1) name of the file to be connected to unit
4 as a formatted, direct access file with
a record length of 50 characters.

Note: The file must be type 2 for this
OPEN statement to succeed.

OPEN (6, FILE="1") The system logical unit 1 is connected
to FORTRAN unit 6.

Under older file systems, file names have a restricted form and must be named in uppercase
letters. See your system reference manual for details.

Once a file is connected to a unit number, the unit can be referenced by any program unit in the
program.

If a unit is already connected to an existing file, execution of another OPEN statement for that
unit is permitted. If the FI LE=name option is absent or the file name is the same, the current file
remains connected. Otherwise, an automatic close is performed before the new file is connected
to the unit. A redundant OPEN call can be used to change the value of the BLANK= option. A
redundant OPEN does not affect the current position of the file.

The same file cannot be connected to two different units. An attempt to open a file that is
connected to a different unit causes an error.

FORTRAN 77 Statements 3-65

PARAMETER Statement

The PARAMETER statement is used to define named constants. After the definition of a name in
a PARAMETER statement, subsequent uses of the name are treated as if the constant was used.
When a character variable is defined as a constant in a parameter statement, the variable name
cannot be used in a substring expression in subsequent statements within the program.

Syntax
PARAMVETER (cnamel =cexpl[,cname2=cexp2,....])

where:
cname is a symbolic name that represents a constant. This name cannot appear in any
statement before the PARAMETER statement, except a type statement.
cexp is a constant expression.
Examples

PARAMETER (m nval =—10, maxval =50)

PARAMETER (debug=. TRUE.)

PARAMETER (fil e=" WELCOM)

PARAMETER (cl ear=char(33B)//"H //char(33B)//’J")

If the symbolic name cname is of type integer, real, double precision, complex, or double complex,
the corresponding expression cexp must be an arithmetic constant expression. If the symbolic
name cname is of type character, the corresponding expression cexp must be a character constant
expression. If cname is of type logical, cexp must be logical or relational constant expression.
Character constant expressions can include CHAR(const) as a value; const must be an integer
constant or named constant.

Each cname is the symbolic name of a constant that becomes defined with the value determined
from the expression cexp. cexp must appear on the right of the equal sign, in accordance with the
rules for assignment statements. If exponentiation (**) is used, the exponent must be of type
integer.

Any symbolic name of a constant that appears in an expression must be defined in a previous
PARAMETER statement in the same program unit or earlier in the same PARAMETER
statement.

A symbolic name of a constant must not be defined more than once in a program unit.

Even though the constant is represented by a name, that name may not be used in the context
where a variable is required. For example, it may not appear on the left side of an assignment or
in a substring expression.

3-66 FORTRAN 77 Statements

Examples

PARAMETER (nbyt es=4)
REAL* (nbytes) a, b, c

PARAMETER (| ower =0, upper=7)
DI MENSI ON a (| ower: upper)
DO 10 i =l ower, upper

a(i) =10

10 CONTI NUE

PARAVETER (pi =3. 14159)

area = pi * (radius**2)

If a symbolic name of a constant is not of the default implied type, its type must be specified by a
type statement or IMPLICIT statement prior to its first appearance in a PARAMETER statement.
Its type must not be changed by subsequent statements, including IMPLICIT statements. If a
symbolic name of type CHARACTER*(*) is defined in a PARAMETER statement, its length
becomes the length of the expression assigned to it.

Once such a symbolic name is defined, that name can appear in that program unit in any
subsequent statement as a value in an expression or in a DATA statement. A symbolic name of a
constant is not recognized in a character or Hollerith constant or within a FORMAT statement.

A symbolic name in a PARAMETER statement can identify only the corresponding constant in
that program unit.

FORTRAN 77 Statements 3-67

PAUSE Statement

The PAUSE statement causes a temporary pause in program execution.

Syntax
PAUSE [n]
where
n is an unsigned integer constant (one to five digits) or a character constant.
Examples Notes
PAUSE 7777 The message “PAUSE 7777 is displayed at
the terminal.
PAUSE ' ENTER GO to Conti nue’ The message “Enter GO to Conti nue”
is displayed at the terminal.
PAUSE Nothing is displayed at the terminal.

The PAUSE statement suspends execution of a program. When the program suspends, what is
printed at the terminal depends on whether digits, characters, or nothing has been specified in the
PAUSE statement.

If digits are used, the message PAUSE <digits> is displayed at the terminal. If a character
expression is used, the character value is displayed at the terminal. If nothing is used after
PAUSE, nothing is displayed.

After displaying the appropriate message, the PAUSE statement causes a blank line and a suspend
message to be displayed. The suspend message has the form:

<prg> Suspended
where:
<prg> is the five-character program name.

At this point the program is suspended. The operator must enter the system command GO to
resume operation.

3-68 FORTRAN 77 Statements

PRINT Statement

The PRINT statement transfers data from memory to the standard output unit.

Syntax

PRI NT fmt[,outlist]

where
fmt is the format designator. fmt must be one of the following:
- The statement label of a FORMAT statement.
- A variable name that has been assigned the statement label of a FORMAT
statement
- A character expression specifying the text of a FORMAT statement
- An asterisk
outlist is a list that specifies the data to be transferred. See the description of outlist under
“WRITE Statement” for further information.
Examples Notes

PRI NT 10, num des

PRINT *,’ x=",x

ASS|I GN 100 TO fnt
PRI NT fmt,rat, cat

PRINT * (413)",i,j,k*2,330

PRI NT 100
100 FORVAT (“End of report”)

PRINT * (" x SIN(x) COS(x)"//(12,2F7.3))",
+(i, SIN(i/57.3),008(i/57.3),i=0, 360, 5)

Prints numand des according to
FORMAT statement 10.

Prints * x=" and X according to
list-directed formatting.

Prints r at and cat according to
FORMAT statement 100.

Printsi, j, k*2 and the constant 330
according to the format specification in
the PRINT statement itself.

Prints the Hollerith constant in the
FORMAT statement.

Prints a literal heading and 73 rows
of values as indicated by the implied DO
in the input/output list.

The PRINT statement is used only for transferring data from memory to the standard output unit.
See Chapter 4 for a more detailed discussion of the PRINT statement.

FORTRAN 77 Statements 3-69

PROGRAM Statement

The PROGRAM statement defines the name of the main program. As an extension to the ANSI
77 standard, the PROGRAM statement can also be used to access strings passed from the RUN
command.

Syntax
PROGRAM namne [(pI[, p2...pn])]
where:

name is the name of the program.

pl,..pn are the names of character variables. These variables must appear in CHARAC-
TER statements or be typed by IMPLICIT statements. They cannot be in com-
mon.

The string parameters in the RUN command are copied into p1,...pn when the program starts.
Null parameters are not copied, and the corresponding variables are uninitialized unless they
appear in DATA statements. If a parameter is not null and the variable is defined in a DATA
statement, the parameter value takes precedence. Therefore, DATA statements can be used to set
default values.

Using the parameter variables is equivalent to using
CALL FPARM (p1,...pn)

as the first executable statement. See Appendix B for more details on FPARM.

Alternate PROGRAM Statement

The alternate PROGRAM statement also defines the name and, optionally, the type, priority, and
time values of the main program in which it appears.

Syntax for RTE-6/VM

PROGRAM name| ([type, pri, res, mult, hr, min, sec, msec]) , comment]
Syntax for RTE-A

PROGRAM namel ([type,pri]) , comment]

where:

name is the name of the program (and its entry point). If name is longer than five char-
acters, the linker may truncate it to five characters.

comment is up to 86 characters passed to the linker.

See the appropriate programmer’s reference manual for the definitions of type, pri, res, mult, hr,
min, sec, and msec.

3-70 FORTRAN 77 Statements

The parameters type, pri, res, mult, hr, min, sec, msec, and comment are all extensions to the ANSI
77 standard. These parameters are for compatibility with older programs, and should not be used
in new programs.

Examples Notes

PROGRAM progl(3, 90) Specifies pr ogl as the name of the program and as
type 3 with a priority of 90.

PROGRAM mai n Specifies mai n as the name of the program.

PROGRAM pr oga(, 90) ILLEGAL. If any parameter is given, all preceding

parameters must appear.

PROGRAM prog2(), Bubbl e Sort To pass comments to the loader, you must specify
both parentheses before the comments.

The program statement must be the first noncomment statement in a module, except for certain
compiler directives (see Chapter 7 for details).

In the absence of a PROGRAM statement, the program name defaults to “FTN. ”. The type
defaults to 4, the priority defaults to 99, and the time defaults to 0.

FORTRAN 77 Statements 3-71

READ Statement
The READ statement transfers data from a file to program variables. There are two kinds of
READ statements:

e READ from the standard input unit

e READ from file

The READ from the standard input unit statement complements the PRINT statement. The
READ from file statement complements the WRITE statement. See Chapter 4 for a more
detailed discussion of the READ statement.

READ from the Standard Input Unit Statement

The READ from the standard input unit statement transfers data from a unit designated to be the
standard input unit (usually the user’s terminal).

Syntax
READ fmt[, inlist]
where:
fmt is the format designator. fmt must be one of the following:

The statement label of a FORMAT statement

A variable name that has been assigned the statement label of a FORMAT
statement

- A character expression specifying the text of a FORMAT statement
- An asterisk(*)

inlist is a list of variables that specify where the data is to be transferred. Each item in
inlist must be one of the following:

- A variable name

An array element name

An array name

A substring

An implied DO loop containing the above items only

Functions used in subscripts, substrings, and implied DO loops must not contain
any READ, WRITE, or PRINT statements.

3-72 FORTRAN 77 Statements

Examples Notes

READ 10, num des Reads the values of numand des according to FORMAT
statement 10.

READ *,a, b, n Reads the values of a, b, and n according to list-directed
formatting.

ASSI GN 100 TO fnt Reads the values of al and h1 according to

READ fnt,al, hl FORMAT statement 100.

READ " (313)",i,j,k Reads the values of i , j, and k according to the format

specification in the READ statement itself.

READ from File Statement

The READ from file statement transfers data from a file to memory.

Syntax

READ([UNI T=] unit[, [FMI=] finf] [, | OSTAT=ios] [, ERR=errlabel] [, END=endlabel]
[, REC=mn] [, ZBUF=ibuf] [, ZLEN=ilen]) [inlist]

where;

unit is the unit number for the file; unit is required. wunit can be one of the following:

An arithmetic expression of type integer
An asterisk (*)

A qualified external (unit:sec|:ter])

A character variable, array element, substring, or array name
An asterisk indicates that the standard input device is to be used.
fmt is the format designator. fmt must be one of the following:

- The statement label of a FORMAT statement

- A variable name that has been assigned the statement label of a FORMAT
statement

- A character expression specifying the text of a FORMAT statement
- An asterisk (*)

If fmt is not present, the access is unformatted.

ios is an integer variable or integer array element name for error return (see Appendix
A for IOSTAT error codes). ios is set to zero if no error occurs.

errlabel is the statement label of an executable statement. If an error occurs during execu-
tion of the READ statement, control transfers to the specified statement rather
than aborting the program.

FORTRAN 77 Statements 3-73

endlabel is the statement label of an executable statement. If an end-of-file is encountered
in a sequential file during execution of the READ statement, control transfers to
the specified statement. In this case, the variable ios is set to —1.

m specifies the number of the record in a direct access file.

ibuf is an integer variable, array name, or array element name passed as the Z-buffer in

a device input request.

ilen is an integer expression that specifies the size of ZBUF (in words).

inlist is a list that specifies the data to be transferred. The items in inlist must be one of

the following:

- A variable name

An array name

A substring

An array element name

An implied DO loop containing the above items only

If the UNI T= prefix is omitted, unit must be the first item in the list. If the prefix FMI'= is
omitted, fmt must be the second item in the list and unit (without a prefix) must be the first item.
Except for these requirements, the order of parameters is flexible.

Examples

READ (7,10)a,b,c

ASSIGN 4 TO num
READ (UNI T=3, ERR=50, FMI'=nun) z

READ (10) x

READ (10, FMI=*, END=60) b

READ (2, (13)’, REC=10)i

Notes

The values of a, b, and c are read from the file
connected to unit 7 according to FORMAT state-
ment 10.

The value of z is read from the file connected to
unit 3 according to FORMAT statement 4. If an
error occurs, control transfers to statement 50.

The value of x is read from the file connected to unit
10. Because fimmt is omitted, the data is unformatted.

The value of b is read from the file connected to unit
10 according to list-directed formatting. If an EOF
is encountered, control passes to statement 60.

The value of i is read from the 10th record of the
direct access file connected to unit 2 according to the
format specification in the READ statement itself.

A READ from file statement must contain a unit number and at most one of each of the other
options. Note that REC=rn cannot appear with END=endlabel, UNI T=", nor with ZBUF, ZLEN, or
secondary and/or tertiary addresses. If REC=rn appears, the unit must be connected for direct

acCCcess.

3-74 FORTRAN 77 Statements

ZBUF and ZLEN are extensions to the ANSI 77 standard. They are used to pass control
information to the I/O driver. Also as an extension, secondary or tertiary addresses or both can be
passed to the I/O driver by qualifying the UNI T= specifier, as in

UNI T=unit: sec| : ter]
where:
sec and fer are integer expressions.

For further information on reading from a file, see Chapter 5, “FORTRAN File Handling.”

REAL Statement

See “Type Statement” later in this chapter for the syntax of REAL and all other type statements.

REAL*4 Statement

See “Type Statement” later in this chapter for the syntax of REAL*4 and all other type statements.

REAL*8 Statement

See “Type Statement” later in this chapter for the syntax of REAL*8 and all other type statements.

FORTRAN 77 Statements 3-75

RETURN Statement

The RETURN statement transfers control from a subprogram back to the calling program unit.

Syntax
RETURN [rtnnum]
where:

rtnnum is an integer expression specifying the alternate return ordinal. Normally control is
returned from a subroutine to the calling program unit at the statement following
the CALL statement. The alternate return statement allows return to the calling
program unit at one of a list of labeled executable statements supplied in the CALL

statement.
Example Notes
PROGRAM nmai n The CALL statement specifies three
: possible return labels, plus the normal
CALL matrx (*10, m *20, n, k, *30) return point (the statement following the

CALL statement).
10 ...
: The SUBROUTINE statement contains a
20 ... number of asterisks equal to the number of
: statement labels in the CALL statement.
30 ..

END SUBROUTI NE matrx(mn, kK, *, *, *)

k=2 k evaluates to the value 2, causing control
: to pass to the second alternate return label

RETURN k specified in the CALL statement (20).

END If k evaluates to a value outside the range

1 <k <3, control returns to the
statement following the CALL statement.

When the RETURN statement occurs in a subroutine and no alternate return is specified, control
returns to the first executable statement following the CALL statement that referenced the
subroutine. When the RETURN statement occurs in a function, control returns to the statement
containing the function call. Alternate returns are not allowed in functions.

The optional integer expression takes on the values:
1 <rtnnum <n
where:

rtnaum identifies the ordinal of the statement label in the actual argument list of the CALL
statement. Values outside the range indicate the ordinary return.

n is the number of alternate returns specified by the number of asterisks in the CALL
statement.

The asterisks in the SUBROUTINE statement are used for documentation purposes. There
should be the same number of asterisks as there are statement labels in the CALL statement.

3-76 FORTRAN 77 Statements

If rtnnum is an integer constant, the value of rtnnum must be less than or equal to the number of
asterisks in the SUBROUTINE statement. If the constant rtnnum exceeds the number of asterisks
in the SUBROUTINE statement, a compiler warning is generated, but load and execution are not
affected.

Similarly, a warning is generated if any alternate returns are specified and no asterisks appear in
the SUBROUTINE statement.

When the value of rtnnum is not in the range 1 < rtnnum < n, control returns to the statement
following the CALL statement. If rtnum is a variable or expression, only one asterisk is required
in the SUBROUTINE statement, although good programming practice dictates that the number
of asterisks in the SUBROUTINE statement always matches the number of labels in the CALL
statement.

A CALL and subroutine with alternate returns is equivalent to a computed GOTO and a function:
CALL sub(a, b, *10, *20)
SUE:aRClJTI NE sub(x,y,*,*)
RE'IEURN Kk
is equivalent to
GOTO (10, 20), fsub(a,b)
I N'IEEGER FUNCTI ON fsub(x, y)

fsub = k
RETURN

FORTRAN 77 Statements 3-77

REWIND Statement

The REWIND statement positions a sequential file or device at beginning-of-information.

Syntax
{unit}
REW ND {([UNI T=] unit[, | OSTAT=ios] [, ERR=label]) }
where:
unit is the unit number of a sequential file or device.
ios is an integer variable or integer array element name for error return (see Appendix
A for IOSTAT error codes). ios is set to zero if no error occurs.
label is the statement label of an executable statement. If an error occurs during execu-

tion of the REWIND statement, control transfers to the specified statement rather
than aborting the program.

If the UNI T= prefix is omitted, unit must be the first parameter in the list. Otherwise the order of
parameters is flexible.

Examples Notes

REW ND 10 The file connected to unit 10 is positioned at
beginning-of-information.

REWND (UNI T=5, |GOSTAT=j, ERR=100) The file connected to unit 5 is positioned at
beginning-of-information. If an error occurs,
control transfers to statement 100 and the
error code is returned inj .

If the file is already positioned at beginning-of-information, a REWIND statement has no effect
upon the file.

The REWIND statement can be used on direct access files, although it should be avoided to
preserve program portability.

3-78 FORTRAN 77 Statements

SAVE Statement

The SAVE statement causes the values of specified variables in a subprogram to be preserved after
execution of a RETURN or END statement.

Syntax
SAVE [varl,var2,/com/,var3,...]

where:

var is a simple variable name or an array name.

com is a common block name. The common block name must be preceded and fol-

lowed by a slash.

Examples Notes
SUBRQUTI NE matri x The SAVE statement saves the values

: of a, b, and c, and the values of all of
SAVE a, b, c,/dot/ the variables in the common block dot.
RETURN
SUBRQOUTI NE fi xit The SAVE statement saves the value of
SAVE all of the variables in the subroutine

: fixit.
RETURN

The following items must not be specified in a SAVE statement: formal argument names,
procedure names, and names of variables in a common block.

A SAVE statement without a list of variable names or common block names declares that all
appropriate variables in the subprogram are saved.

When a common block name is specified, all of the variables in that common block are saved.
Within an executable program, if a common block name is specified in a SAVE statement in one
subprogram, it must be specified in a SAVE statement in each subprogram where the common
block appears, including the main program.

A SAVE statement is unnecessary in a main program, except when it is required for consistency
with saved common blocks in subprograms as described above.

FORTRAN 77 Statements 3-79

Statement Function Statement

The statement function statement defines a one-statement function.

Syntax
name([parml, parm2, . . .])=exp
where:
name is the user-specified name of the function.
parm is a formal argument.
exp is an arithmetic, logical, relational, or character expression.
Examples Notes
di sp(a, b,c)=a + b*c Defines a statement function di sp with three arguments.
timtl)=t1/2 + b Defines the statement function t i mwith one formal argu-

ment. The value of b is the current program value of b
when the function is invoked.

A statement function is a user-defined, single-statement computation that applies only to the
program unit where it is defined. A statement function statement can appear only after the
specification statements and before the first executable statement of the program unit.

Formal arguments must be simple variables; they can be typed in preceding type statements if
necessary. Actual arguments must agree in number, order, and type with their corresponding
formal agruments.

The expression defines the actual computational procedure that derives the value. When the
statement function is referenced, this value is computed and returned as the function result. The
expression must be an arithmetic, logical, relational, or character expression.

The type of a statement function is determined by using the statement function name in a type
statement or by implicit typing.

The type of expression in a statement function statement must be compatible with the type of the
name of the function. That is, arithmetic expressions must be used in arithmetic statement
functions, logical expressions in logical statement functions, and character expressions in character
statement functions.

The arithmetic expression used in an arithmetic statement function need not be the same type as
the function name. (For example, the expression can be type integer even though the function
name is type real.) The expression’s value is converted to the statement function type before the
value is returned.

Statement functions can reference other statement functions or function subprograms. Statement
functions cannot contain calls to themselves. They can contain indirect recursive calls, but a
function subprogram must be in the call chain; otherwise the recursion could never terminate.

The values of any formal arguments in the expression are supplied at the time the statement
function is referenced. All other expression elements are local to the program unit containing the
reference. These expression elements derive their values from statements in the containing
program unit.

See Chapter 6 for further information about actual and formal arguments and calling a statement
function.

3-80 FORTRAN 77 Statements

STOP Statement

The STOP statement terminates program execution.

Syntax
STOP [n]
where:
n is an unsigned integer constant (one to five digits) or a character expression.
Examples Notes
STOP 7777 The message “STOP 7777 is displayed at
the terminal.
STOP 'This is the end!’ The message “This is the end!”is
displayed at the terminal.
STOP Nothing is displayed at the terminal.

The STOP statement is used to terminate program execution before the end of the program unit.

Sample Program Notes
READ *, a, b
IF (a .LT. b) STOP 56789 If a is less than b, execution terminates.
10 b = b-1
IF (b .EQ a) STOP 'All done’ When b equals a, execution terminates.
GOTO 10
END

When execution is terminated by a STOP statement, the message sent to the terminal depends on
whether digits, characters, or nothing has been specified with the STOP statement. If digits are
used, the message STOP <digits> is displayed at the terminal. If a character expression is used,

the character value is displayed. If nothing is used after STOP, nothing is displayed.

As an extension to the ANSI 77 standard, a CALL EXIT statement performs the same function as

the STOP statement with no message. However, STOP is preferred.

FORTRAN 77 Statements

3-81

SUBROUTINE Statement

The SUBROUTINE statement identifies a program unit as a subroutine subprogram.

Syntax

SUBRQUTI NE name [([argl,arg2,...1[*,...]1....)][, comment]
where:

name is the name of the subroutine.

arg is a formal argument of the subroutine.

* o, indicates one or more alternate returns.

comment is text of up to 86 characters passed to the linker. comment is an extension to the

ANSI 77 standard.
Examples Notes
SUBROUTI NE add Begins a subroutine named add.
SUBROUTI NE sub(z,i,d,*, *, *) Begins a subroutine named sub with three argu-

ments and three alternate return points.

The formal arguments in a SUBROUTINE statement can be variables, array names, or
subprogram names. They must be of the same type and structure as the actual arguments that are
passed to the subroutine.

One or more alternate returns can be specified by asterisks in the SUBROUTINE statement.
Alternate returns are described in “RETURN Statement” above.

See Chapter 6 for more information on subroutine subprograms.

THEN Statement

See “Block IF Statement” under “IF Statement” earlier in this chapter for information on the
THEN statement.

3-82 FORTRAN 77 Statements

Type Statement

The type statement is a specification statement that assigns an explicit type to symbolic names that
would otherwise have their type implicitly determined by the first letter of their names.

Syntax

type namel| , name2, . . .]

where:

bpe

name

Examples

is the type to be associated with the specified variables; type can be one of the fol-
lowing:

INTEGER REAL*8 DOUBLE COMPLEX
INTEGER*2 DOUBLE PRECISION LOGICAL
INTEGER*4 COMPLEX LOGICAL*2

REAL COMPLEX*8 LOGICAL*4

REAL*4 COMPLEX*16 CHARACTER([*len]

The *n in the above type specifications is optional.

In CHARACTER [*len] , len specifies the length of character variables not having
their own length specifications; the default value is 1. len can be one of the follow-
ing:

1. An unsigned integer constant.

2. An integer constant expression with a positive value. The integer expression
must be enclosed in parentheses, and cannot contain variable names.
Example: (-3 + 4).

3. An asterisk enclosed in parentheses (*).
is a simple variable name, an array name, an array declarator, a named constant, or
a function name. When type is CHARACTER, name can have * len as a suffix des-

ignating its length (see the examples that follow). Each name can appear in a type
statement only once.

Notes

| NTEGER run,tine The variables r un and t i me are single-word

integers.

CHARACTER*5 nane(6)*10, zi p(6) The variables name and zi p are character

| NTEGER* 4

REAL item

arrays with six elements each. Each element
in name has a length of 10; each element in
zi p has a length of 5.

rn, hours(4,5) The variable r n and each element of the

two-dimensional array hour s are double
integers.

i t emis a three-dimensional real array.

DI MENSI ON i t en(2, 3, 5)

FORTRAN 77 Statements 3-83

CHARACTER*6 var
CALL sub (var)

The variable var is defined as type
character and as six characters long.

SUBROUTI NE sub (varl var2, var3, var 4)

CHARACTER* (*) var 1

CHARACTER* 10 var 2(*)

CHARACTER var 2(*) *10

CHARACTER *(*) var 3(10)

CHARACTER var 3(10) * (*)

CHARACTER* (*) var 4(*)

CHARACTER var 4(*) *(*)

The variable var 1 is defined as being of
type character and as having the same
length as the variable var 1 in the calling
program.

var 2 is a character array with a length of
10; the number of array elements is as-
sumed-size.

Same as the preceding line.

var 3 is a character array of the same
length as the actual argument; it has 10 ar-
ray elements.

Same as the preceding line.

var 4 is a character array of the same
length as the actual argument; the number
of array elements is assumed-size.

Same as the preceding line.

If an array declarator is specified in a type statement, the declarator for that array must not be
used in any other specification statement (such as DIMENSION). If only the array name is
specified, an array declarator must appear within a DIMENSION or COMMON statement.

The CHARACTER*(*) form can be used only for named constants, formal arguments, function

subprograms, and ENTRY statements.

WHILE Statement

See “DO Statement” earlier in this chapter for information on the WHILE statement.

3-84 FORTRAN 77 Statements

WRITE Statement

The WRITE statement transfers data from memory to a file.

Syntax

WRI TE ([UNI T=] unit[, FMT=] fint[, | OSTAT=ios] [, ERR=label] [, REC=rn]
[, ZBUF=ibuf] [, ZLEN=ilen]) [outlist]

where:

unit

fmt

ios

label

m

ibuf

ilen

outlist

is the unit number for the file; unit is required. wunit can be an asterisk, in which
case the write is done to the standard output device.

is the format designator. It must be one of the following:

The statement label of a FORMAT statement

A variable name that has been assigned the statement label of a FORMAT
statement

A character expression specifying the text of a FORMAT statement
- An asterisk (*)

is an integer variable or integer array element name for error return (see Appendix
A for IOSTAT error codes). ios is set to zero if no error occurs.

is the statement label of an executable statement. If an error occurs during execu-
tion of the WRITE statement, control transfers to the specified statement rather
than aborting the program.

specifies the number of the record in a direct access file.

is an integer array name or array element name passed as the z-buffer in a device
output call.

is an integer expression that specifies the size of ZBUF.

is a list that specifies the data to be transferred. Each item in outlist must be one of
the following:

- A variable name

- An array element name

- An array name

- A substring

- An expression

- An implied DO loop

For syntax and detailed information on implied DO loops, see “Implied DO
Loops” under “DO Statement” above.

If outlist contains a function reference, that function must not contain any READ,
WRITE, or PRINT statements. If outlist contains a character expression using con-
catenation (//), the operands must not have implied lengths (through use of *).

FORTRAN 77 Statements 3-85

If the prefix UNI T= is omitted, unit must be the first item in the list. If the prefix FMI'= is
omitted, fmt must be the second item in the list and unit (without a prefix) must be the first item.
Apart from these requirements the order if flexible.

Example Notes

WRITE (7,10)a, b, c The values of a, b, and ¢ are written to
the file connected to unit 7 according to
FORMAT statement 10.

ASSIGN 4 TO num The value of z is written to the file

WRI TE(UNI T=3, | OTAT=j , ERR=5, FMI'=nun) z connected to unit 3 according to
FORMAT statement 4. If an error oc-
curs, control transfers to statement 5, and
the error code is returned in j .

WRITE (10) x + vy The value of the expression (X + YY) is
written to the file connected to unit 10.
Because fint is omitted, the data is unfor-

matted.

WRI TE (10, FMI=*) b The value of b is written to the file con-
nected to unit 10 according to list-directed
formatting.

WRITE (2, (13)’,REC=10) i The value of i is written to the 10th re-

cord of the direct file connected to unit 2
according to the format specification in
the WRITE statement itself.

A WRITE statement must contain a unit number and at most one each of the other options.

If REC=rn appears, the file must be connected for direct access, while if REC=rn does not appear
in a WRITE to a direct file, the current position of the file is used. The END= specifier cannot
appear in a WRITE statement.

ZBUF and ZLEN are extensions to the ANSI 77 standard. They are used to pass control
information to the I/O driver. Also as an extension, secondary or tertiary addresses or both can
alternately be passed to the I/O driver by qualifying the UNI T= specifier, as in:

UNI T=unit: sec| : ter]

where sec and ter are integer expressions.

The HP-IB driver cannot distinguish between a zero secondary address and a missing secondary
address. To ensure that the driver understands that you really do want to send a secondary
address of 0, use 400B instead; this sets bit 8 in the address field. Because secondary addressing
uses only the low 5 bits, the driver will then properly use secondary address 0. If you prefer, you
may set bit 8 on any secondary address.

See Chapters 4 and 5 for more information on the WRITE statement.

3-86 FORTRAN 77 Statements

Input/Output

Input/output (I/O) statements allow you to enter data into a program and to transfer data between
a program and a disk file, terminal, or other device. There are three types of input/output:

e Formatted input/output
e Unformatted input/output
e List-directed input/output

For each type of input/output, there are one or more input statements and corresponding output
statements.

Formatted Input/Output

Formatted input/output allows you to control the use of each character of a data record. This
control is specified in a FORMAT statement or in a character expression in the input/output
statement itself.

Formatted Input

Formatted input is specified by the following input statements:

Syntax
{fmt,list}
READ {(unit, fmt, . .. optional keywords) list}
where:
fmt is the format designator. fmt must be one of the following:

- The statement label of a FORMAT statement.

- A variable name that has been assigned the statement label of a FORMAT
statement.

- A character expression specifying the text of a FORMAT statement.

Input/Output 4-1

unit is the unit number of the file (see Chapter 5 for further information).

list is the list of variables that specifies where the data is to be transferred. list can con-
tain implied DO loops. For syntax and detailed information on implied DO loops,
see “Implied DO Loops” under “DO Statement” in Chapter 3. If list is omitted,
the file pointer is positioned at the next record without data transfer.

See “READ Statement” in Chapter 3 for more specific syntax and information on the optional
keywords.

The first READ statement syntax shown above (fint,list) is used for transferring information from
the standard input unit. The second READ statement syntax is used for transferring data from a
file or device. (Files and READ statement options are discussed in Chapter 5.)

Reading always starts at the beginning of a record. Reading stops when the list is satisfied,
provided that the format specification and the record length agree with the list. If the record is
shorter than the format specification, the record is treated as if blanks were added to the end to
match the format specification. If the list is longer than the format specification, the file skips to
the next record and reads it using part or all of the format specification again. This process
continues until the list is satisfied. After the READ, the file pointer is positioned at the beginning
of the next record.

Each READ statement begins reading values from a fresh record of the file; any values left unread
in records accessed by previous READ statements are ignored. For example, if the record
contains six data elements, a READ statement such as:

READ (4, 100) i, j

reads only the first two elements. The remaining four elements are not read. This is because any
subsequent READ statement reads values from the next record, unless the file pointer is
repositioned before the next READ.

Array names in the list represent all the elements in the array. Values are transferred to the array
elements according to the standard array storage order (see Chapter 2).

4-2 Input/Output

Formatted Output

Formatted output is specified by the following output statements:

Syntax:
PRI NT fimt, list

WRI TE (unit, fmt, ... optional keywords) list

where:

fmt is the format designator. fmt must be one of the following:
- The statement label of a FORMAT statement.
- A variable name that has been assigned the statement label of a FORMAT

statement.

- A character expression specifying the text of a FORMAT statement.

unit is the unit number of the file (see Chapter 5 for further information).

list is a list of variables or expressions that specifies the data to be transferred; if /ist is

omitted, a blank line is written. [list can contain implied DO loops. For syntax and
detailed information on implied DO loops, see “Implied DO Loops” under “DO
Statement” in Chapter 3.

See Chapter 3 for more specific syntax and information on the optional keywords.

The PRINT statement is used for transferring information to the standard output unit. The
WRITE statement is used for transferring information to disk files or to output devices. (Files
and WRITE statement options are discussed in Chapter 5.)

Each WRITE statement begins writing values into a fresh record of the destination file; any space
left unused in records accessed by previous write statements is ignored. After the transfer is
completed, the file record pointer is advanced.

The first character of the output record is always considered to be a carriage control character for
devices that recognize carriage control. The ANSI 77 standard carriage control characters are
listed in Table 4-1. (Some HP printers do not conform to the standard.)

Some older HP printers do not conform to the ANSI 77 standard. The standard requires that any
paper advance be done before printing. However, for an unbuffered printer, this generally forces
the printer to run at half speed. This is because the printer must wait for the paper to advance
before printing the line. By performing the advance after printing, older printers can overlap the
paper advance with the transmission of the next line from the computer. Newer printers with
larger buffers print at full speed regardless of when the paper advance is done.

The carriage control characters for older printers are listed in Table 4-2.

Note that the asterisk (*) rather than the plus sign (+) is the suppress paper advance character.
When a standard printer is used to print two lines of text on the same line, the first line must have
a + and the second line must have a blank. When some older printers are used, the first line must
have a blank and the second line must have an *. Other combinations are also different; for
example, with some older printers, it is not possible to overprint the first line on a page if you
reached that position using the carriage control character 1.

Input/Output 4-3

Table 4-1. Carriage Control Characters

Character Vertical Spacing Before Printing
Blank Advance one line (single space).
0 Advance two lines (double space).
1 Advance to first line of next page (page eject).
* Do not advance (for overprinting).
? (Any other character; not defined in the standard.) Device dependent; usu-
ally the same as a blank.
Table 4-2. Non-Standard Carriage Control
Character Printer Action
Blank Print line and then advance one line (single space).
0 Advance one line, print line, advance one line (double space).
1 Advance to top of form, print line, advance one line (page eject).
* Print line; do not advance. (See note below.)
? (Any other character.) Device dependent; usually the same as a blank.
Note: f?mcf printers advance one line as a side effect of printing and thus cannot implement the
eature.

4-4 Input/Output

Format Specifications

A format specification is a list of format descriptors and edit descriptors. The format descriptors
describe how the data is converted between internal form and ASCII, and edit descriptors specify
editing information.

Format specifications can be given in FORMAT statements or as character expressions in
input/output statements.

Format Specifications in FORMAT Statements

A format specification can be placed in a FORMAT statement that is referenced by a
corresponding READ, WRITE, or PRINT statement. The form of the FORMAT statement is:

label FORMAT format_specification

Example Notes

READ(10, 10)a, i, d, e The format specification
10 FORVAT(A2,13,D8.2,F12.2
() (A2,13,D8. 2, F12. 2)

corresponds to the variables a, i, d, and e in the
READ statement. List element a corresponds to the
format descriptor A2, i correspond to | 3, d corre-
sponds to D8.2, and e corresponds to F12. 2.

A FORMAT statement can be referenced by several input/output statements. Ensure that each
variable in the input/output list corresponds with the appropriate format descriptors in the format
specification.

Format Specifications in Input/Output Statements

The format specification can be contained in the input/output statement as a character expression.

Examples Notes

READ(UNI T = 4,’ (A3,3X F10.2)’)a,z The variables a and z are read according to
the format specification (A3, 3X, F10. 2).

CHARACTER a*5 The three integers, i ,] , and k, are printed

DATA a/’ (313)"/ according to the format specification (31 3).

PRINT a,i,j,k

WRI TE(1,’ (F10.2)’)d The variable d is written as a fixed-point
number according to the format specification
(F10.2).

To print a single quotation mark within single quotation mark edit descriptors, you must use two
consecutive single quotation marks. If the format is contained in an input/output statement, each

Input/Output 4-5

pair of consecutive single quotation marks must, in turn, be represented by two single quotation
marks. For further information see “Character” in Chapter 2.

Examples

WRI TE(6,’ (3X, "

WRITE (1, (" AN’ t

WRITE (1,’ (“Ain' 't

4-6

Input/Output

THIS IS THE END "))

true!’”’)’)

true!”)")

Notes

Writes the following record:
AAAATHIS |'S THE END
(Each A represents a blank.)

Writes the following on the display screen:
An't it true!

Writes the same as the previous example.
(Note that double quotation marks can be
used in input/output and FORMAT state-
ments, but single quotation marks are pre-
ferred.)

Format and Edit Descriptors

A list of format and edit descriptors makes up a format specification. The format descriptors
describe how the data appears, and edit descriptors specify editing information. For example, in
the following format specification:

(13, 3X, 3F12. 3)

the format descriptor | 3 specifies an integer number with a field width of three (the integer takes
up a total of three character positions). The edit descriptor 3X specifies that three character
positions are to be skipped. The format descriptor 3F12. 3 specifies three real numbers, each with
a field width of 12 and three digits to the right of the decimal point. A PRINT statement
referencing this format specification could be of the form:

PRI NT 10,itema, b, c
10 FORMAT (......)

Figure 4-1 shows the output data as it might appear in the output record with the field widths
indicated.

345 | 65376453. 324 | 14321. 265 | 4765321. 321
k> | = *
3 | 3 12 | 12 12

Figure 4-1. Output Data

The descriptors in a format specification must be separated by a comma except before and after a
slash (/) edit descriptor, a colon edit descriptor, a literal edit descriptor, or a scaling (P) edit
descriptor. For example, if a slash descriptor is used to indicate a new line of output, or a new
record on input, the comma that would separate the descriptors is not necessary. These two are
equivalent:

312,F4.0,/15, F12.6
and

312,F4.0/15,F12. 6

Format descriptors and edit descriptors (except H and P) can be preceded by a repeat
specification (such as the 3 in 3F12. 4).

Format and edit descriptors can include another set of format or edit descriptors, or both,
enclosed in parentheses; this is called nesting. For example, the information shown on the input
record in Figure 4-2 below could be represented in the following FORMAT statement:

10 FORMAT (13, F7.4,3(F7.2,13),F12. 4)

26 | 26. 4336| 342. 26 24 2373.86] 439 649. 79 4 4395. 4972
< O €“<“— I <o < | > | <> | <> | <—>

3 7 | 7 3 7 3 7 3 12
Figure 4-2. Input Data

Input/Output 4-7

A READ statement corresponding with the FORMAT statement above could be
READ 10,i,a,b,j,d, k,e,mf

The READ statement would read values for i and a, then repeat the parenthetical statement
(F7. 2,1 3) three times to read values for b and j, d and k, and e and m and, finally, read a value
for f. Nesting of format and edit descriptors is limited to five levels.

If a FORMAT statement specifies a record size larger than 134 bytes (67 words), the LGBUF
routine must be called to provide a larger input/output buffer. (For more information on LGBUE,
refer to “Input/Output Library Interface Functions” in Chapter 6.) If LGBUF is not used, an
input/output run-time error 496 is generated.

The format descriptors are summarized in Table 4-3 and the edit descriptors in Table 4-4. A
detailed explanation of the descriptors follows the tables.

Table 4-3. Format Descriptors

Format Additional
Data Type Descriptor Explanation
Integer and Double Integer w[.m]
Real, Double Precision, Fw.d Fixed-point format descriptor
Complex, and Double Complex
Real, Double Precision, Dw.d|Ee] Floating-point format descriptor
Complex, and Double Complex Ew.d|Ee]
Real, Double Precision, Gw.d[Ee] Fixed- or floating-point format descriptors
Complex, and Double Complex
Integer Kw Octal
@w
Ow
Logical Lw
Character Alw] Character data is left-justified in mem-
ory and right-justified in external format*
Character Rw] Character data is right-justified in
memory and external format*

* See Table 4-5 for exact format.

4-8 Input/Output

Table 4-4. Edit Descriptors

Descriptor Function
BN Ignore blanks
BZ Treat blanks as zeros
nX Skip n positions to the right
Tc Skip to column ¢
TRc Skip ¢ positions to the right
TLe Skip ¢ positions to the left

/ Begin new record

: Terminate format if remaining list empty
Literal editing

Literal editing

S Processor determines sign output; same as SS on HP 1000
SP Output optional plus signs
SS Inhibit optional plus sign output

Numeric Format Descriptors

The numeric format descriptors are used to specify the input/output fields of integer, double
integer, real, double precision, complex, and double complex data. The following rules apply to all
numeric format descriptors:

The field width, w, specifies the total number of characters that a data field occupies, including
any leading plus or minus sign, decimal point, or exponent.

On input, leading blanks are not significant. Trailing and embedded blanks are ignored unless
the BZ edit descriptor is encountered or the unit was connected with BLANK = ' ZERO
specified. A field of all blanks is considered to be a zero.

On output, the data is right-justified in the field. If the data length is less than the field width,
leading blanks are inserted in the field. If the data is longer than the field width for any
descriptors the decimal point, if present, may be moved to make the result fit in the field. If
the result still does not fit, the entire field is filled with asterisks, as specified in the output
examples of the particular descriptors.

At compile time, the sizes of w, d, and n fields within format specifications are checked only
for values greater than 2047.

A complex list item is treated as two real items, and a double complex list item as two double
precision items.

If a numeric list item is used with a numeric descriptor of a different type, the value is
converted as needed.

Input/Output 4-9

Integer Format Descriptors: Iw and Iw.m

The Iw and Iw.m format descriptors define a field for an integer or double integer number. The
corresponding input/output list item must be a numeric type.

On input, an Iw or Iw.m format descriptor causes the interpretation of the next w positions of the
input record; the number is converted to match the type of the list item currently using the
descriptor. A plus sign is optional for positive values. For compatibility with older programs, a
decimal point is accepted in the field without being flagged as an error. However, new programs
should not place a decimal point in the field. The m value is ignored on input.

Input Value

Descriptor Field Stored

14 A1AA 1

15 AAAAA 0

12 -1 -1

14 —-123 —123

13 Al12 12

12 123 12

On output, the Iw or Iw.m format descriptor causes output of a numeric variable as a
right-justified integer value (rounding takes place if necessary). The field width, w, should be one
greater than the expected number of digits to allow a position for a minus sign for negative values.
The optional m value specifies a minimum number of digits to be output. If m is not supplied, a
default value of 1 is assumed. If m = 0, a 0 value is output as all blanks. When m is supplied, the
corresponding list item should be of type INTEGER.

Internal
Descriptor Value Output
14 +452.25 A452
12 +6234 o
13 —-11.92 -12
15 =52 AA=52
13 —124 ek
110 123456.5 AAAA123457
16.3 3 AAA003
13.0 0 AAA

Real and Double Precision Format Descriptors: Fw.d, Ew.d[Ee], Dw.d[Ee], and
Gw.d[Ee]

The Fw.d, Ew.d[Ee], Dw.d, and Gw.d[Ee] format descriptors define fields for real, double
precision, complex, and double complex numbers. (Note that two descriptors must be specified for
complex and double complex values.) The input/output list item corresponding to a Fw.d,
Ew.d[Ee], Dw.d[Ee], or Gw.d[Ee] descriptor must be a numeric type.

The input field for these descriptors consists of an optional plus or minus sign followed by a string
of digits that may contain a decimal point. If the decimal point is omitted in the input string, the
last d digits are interpreted to be to the right of the decimal point. If a decimal point appears in

4-10 Input/Output

the input string and conflicts with the format descriptor, the decimal point in the input string takes
precedence. This basic form can be followed by an exponent in one of the following forms:

e A signed integer constant
e An E followed by an integer constant
e A D followed by an integer constant

All three exponent forms are processed the same way. The following are examples of valid input
fields:

Descriptor Input Field Value Stored
F6.5 4.51E4 45100
G4.2 51-3 .00051
E8.3 7.1AEAS 710000.
D9.4 AAA4SE+35 .0045 x 1035
BZ,F7.1 —54E24A —5.4 x 10240 Error
(overflow)
F2.10 34 34x10-10

Note that the value of d is used as a scale factor; d can be greater than the number of digits in the
field.

The appearance of the output field depends on whether the format descriptor specifies a fixed- or
floating-point format.

Fixed-Point Format Descriptor: Fw.d

The Fw.d format descriptor defines a fixed-point field on output for real, double precision,
complex, and double complex values. The value is rounded to d digits to the right of the decimal
point. The field width, w, should be four greater than the expected length of the number to
provide positions for a leading blank, the sign, the decimal point, and a roll-over digit for rounding
if needed.

Descriptor Internal Value Output
F5.2 +10.567 10.57
F3.1 —254.2 e
F6.3 +5.66791432 AS5.668
F8.2 +999.997 A1000.00
F8.2 —999.998 —1000.00
F7.2 —-999.997 —1000.0 (Adjusted to fit.)
F4.1 23 23.0

Input/Output 4-11

Floating-Point Format Descriptors: Ew.d[Ee] and Dw.d[Ee]

The Ew.d[Ee] and Dw.d[Ee] format descriptors define a normalized floating-point field on output
for real, double precision, complex, and double complex values. The value is rounded to d digits.
The exponent part consists of e digits. If Ee is omitted, then the exponent occupies two positions.
The field width, w, should follow the general rule:

w=d+7
or, if Ee is used:
w=d+e+5

to provide positions for a leading blank, the sign of the value, the decimal point, d digits, the letter
D or E, the sign of the exponent, and the exponent. This is a recommendation only, because the
input/output library adjusts the specifications to represent the output for even the following:

D10.9, E10.10, Gl0.11

The form Dw.dEe is an extension to the ANSI 77 standard. The standard form is Dw.d.

Descriptor Internal Value Output
D10.3 12.342 AA123A+02
E10.3E3 —12.3454 —.123E+002
E12.4 +12.340 AAA.1234E+02
D12.4 —.00456532 AA-.4565D—02
.*_

E10.8 99.99995 .10000E+03
D10.9 99.999123 .99999D +02
E11.5 +999.997 A.10000E+04
E10.3E4 624x10 —30 .624E—0030

T The input/output library adjusts the format specification to avoid outputting all asterisks.

4-12 Input/Output

Fixed- or Floating-Point Format Descriptor: Gw.d[Ee]

The Gw.d[Ee] format descriptor defines a fixed- or floating-point field, as needed, on output for
real, double precision, and complex values. The Gw.d[Ee] format descriptor is interpreted as an
Fw.d descriptor for fixed-point form or as an Ew.d[Ee] descriptor for floating-point form according
to the magnitude of the data. If the magnitude is less than 0.1 or greater than or equal to 10**d
(after rounding to d digits), the Ew.d[Ee] format descriptor is used; otherwise the Fw.(d-n) format
descriptor is used, where n is the number of nonzero digits before the decimal point. That is, the
decimal point is placed so that exactly d digits are produced. When Fw.d is used, trailing blanks
are included in the field where the exponent would have been. The field occupies w positions; the
fractional part consists of d digits, and the exponent part consists of e digits. If Ee is omitted, then
the exponent occupies two positions. The field width, w, should follow the general rule for
floating-point descriptors:

w>d+7
or, if Ee is used:
w>d+e+5

to provide for a leading blank, the sign of the value, d digits, the decimal point, and, if needed, the
letter E, the sign of the exponent, and the exponent.

Field Descriptor Internal Value Interpreted As Output
G10.3 +1234 E10.3 AA123E+04
G10.3 —1234 E10.3 A—.123E+04
Gl12.4 +12345 E124 AAA.1235E+05
Gl12.4 +9999 F8.0,4X AAA9999. AAAA
Gl12.4 —-999 F8.1,4X AA—999.0AAAA
G7.1 +.09 E7.1 AI9E—-01
G5.1 -.09 E5.1 Rk
Gl12.1 +9999 El12.1 AAAAAA1E+05
G8.2 +999 E8.2 A.10E+04
G7.2 —-999 E7.2 —1E+047

T The input/output library adjusts this specification to show the output value, instead of filling
the field with asterisks.

Input/Output 4-13

Character Format Descriptors: A[w] and R[w]

The A[w] and R[w] format descriptors define fields for character data. The size of the list variable
(the byte length) determines the maximum effective value for w. If w is not specified, the size of
the field is equal to the size of the input/output variable.

When the A[w] and R[w] format descriptors are used for input and output, w can be equal to, less
than, or greater than the specified byte size of the input or output variable. If w is equal to the
length of the variable, the character data field is the same as the variable. If w is less than or
greater than the length of the variable, there are eight possibilities. The possibilities are
summarized in Table 4-5.

Table 4-5. Contents of Character Data Fields

Input Length of

Descriptor Input Variable Result

Alw] w<len Left-justified in variable, followed by blanks.
w>len Taken from right part of field.

Rw] w<len Right-justified in variable, preceded by binary zeros.
w>len Taken from right part of field.

Output Length of

Descriptor Output Variable Result

Alw] w<len Taken from left part of variable.
w>len Output as the value, preceded by blanks.

Rw] w<len Taken from right part of variable.
w>len Output as the value, preceded by blanks.

In the following examples, Z represents a binary 0.

Input Variable Value

Descriptor Characters Length Stored

A3 DEF 3 DEF

R3 DEF 4 7DEF

A5 ABCAA 10 ABCAAAAAAA

R9 RIGHTMOST 4 MOST

A5 CHAIR 5 CHAIR

R8 CHAIRAAA 8 CHAIRAAA

A4 ABCD 2 CD

On output, if w is greater than or equal to the specified byte size (*n), of the output variable, the
data is right-justified within a w character field. If w is less than n, only the leftmost w characters
appear in the output field. If w is less than n and Rw is used, only the rightmost w characters
appear in the output field.

4-14 Input/Output

Internal Variable
Descriptor Characters Length Output

Ab ABCDEF 6 ABCDEF
R4 ABCD 4 ABCD

A4 ABCDE 5 ABCD

A8 STATUS 6 AASTATUS
A4 NEXT 4 NEXT

RS STATUS 6 AASTATUS
R4 STATUS 6 ATUS

Logical Format Descriptor: Lw

The Lw format descriptor defines a field for logical data. The input/output list item corresponding
to a Lw descriptor must be of type logical.

On input, the field width is scanned for optional blanks followed by an optional decimal point,
followed by a T for true or an F for false. The first nonblank character in the input field
(excluding the optional decimal point) is used to determine the value to be stored in the declared
logical variable. If this first nonblank character is not a T or an E an error is generated.

Input Value
Descriptor Field Stored
L5 AAATA .TRUE.
L2 F1 .FALSE.
L4 AXAT Error
L5 ARTA Error
L7 TFALSEA .TRUE.
L7 .FALSE. .FALSE.

On output, a T or an F is right-justified in the output field depending on whether the value of the
list item is true or false.

Internal
Descriptor Value Output
L5 .FALSE. AAAAF
14 .TRUE. AAAT
L1 .TRUE. T
12 FALSE. AF

The logical value true or false is determined by the leftmost bit in the internal data storage: 1 =
true, 0 = false.

Input/Output 4-15

Octal Format Descriptors: Kw, @w, and Ow

As an extension to the ANSI 77 standard, the Kw, @w, and Ow descriptors define a field for octal
data. These descriptors provide conversion between an external octal number and its internal
representation. The list elements must be of type integer.

No more than six octal digits can be input or output. If any nonoctal digit is used, or the value
exceeds 177777, an error occurs.

On output, if w is greater than or equal to 6, six octal digits are written right-justified in the output
field. If w is less than 6, the w least significant octal digits are written.

Note that double-word integer values cannot be input or output in the octal format.

Input Examples

Input Field Value Stored
Descriptor (Octal) (Octal)
@6 123456 123456
o7 —123456 error: no sign allowed
2K4 A396AAAS 000036 and
000005
Output Examples
Internal Value Output
Descriptor (Decimal) (Octal)
K6 99 000143
02 99 43
@8 -1 AA1T77777
@6 32767 077777

4-16 Input/Output

Edit Descriptors

Edit descriptors specify editing between numeric, Hollerith, and logical fields on input and output
records. There are 11 edit descriptors. Two descriptors, BN and BZ, apply only to input, and two
descriptors, “...”, and ’...’; apply only to output. The other seven descriptors, nH, /, Tn, TLn, TRn,
;, and nX, apply to both input and output.

Blank Interpretation Edit Descriptors: BN and BZ

The BN and BZ edit descriptors are used to interpret embedded and trailing blanks in numeric
input fields. At the beginning of execution of an input statement, blank characters within numbers
are ignored. (An exception to this rule occurs when the unit is connected with BLANK = "ZERO’
specified in the OPEN statement. See Chapter 5 for more details.) If a BZ edit descriptor is
encountered in the format specification, trailing and embedded blanks in succeeding numeric
fields are treated as zeros. The BZ edit descriptor remains in effect until a BN edit descriptor or
the end of the format specification is encountered. If BN is specified or defaulted, all embedded
blanks are removed and the input number is right justified within the field.

The BN and BZ edit descriptors affect only I, F, E, D, and G format descriptors during execution
of an input statement; BN and BZ have no effect during execution of an output statement.

Input BN Editing BZ Editing
Descriptor Characters in Effect in Effect
I4 1A2A 12 1020
F6.2 A4A.A2 4.2 40.02
E7.1 5A.AEIA 5x101 50.0x10'0
2 AA 0 0
E5.0 3E4AA 3.x104 3.x10%° (overflow)

Literal Edit Descriptors: °...” and “...”

To write a character constant string, surround the string with single or double quotation marks (’...”
or “...”). The width of the field is the number of characters, including blanks, contained between
the quotation marks.

To print a single or double quotation mark, you must either surround the string with quotation
marks of the opposite kind or type two quotation marks of the same kind. For example, to print a
single quotation mark, either type two single quotation marks and surround the string with single
quotation marks, or type one single quotation mark and surround the string with double quotation
marks.

Single and double quotation mark delimiters cannot be used in input.

Input/Output 4-17

Descriptor Width Output
"BEGIN DATA INPUT’ 16 BEGIN DATA INPUT
“DAVID’S TURN” 12 DAVID’S TURN
“THE ENDAAA” 10 THE ENDAAA
‘AASPACESAA’ 10 AASPACESAA
“GENN <, #!” 11 SN <, #!

"Ain”t’ 5 Ain’t
9993935 1 2

Position Edit Descriptor: nX

The nX edit descriptor is used to skip n positions of an input/output record; n must be a positive
nonzero integer.

On input, the nX edit descriptor causes the next n positions of the input record to be skipped.

Input Value
Descriptor Record Stored
F6.2,3X,12 673A21END45 673.21, 45
1X,12,A3 $6AEND 6, END

On output, the nX edit descriptor causes n positions of the output record to be filled with blanks.
(If the positions were already defined, they are left unchanged. This can happen when Tc or TLe
is used.)

Internal
Descriptor Value Output
F8.2,2X,13 5.87, 436 AAAAS.8TAA436
F4.23X,“TOTAL” 324 324AAATOTAL

The nX descriptor is identical to TRn.

4-18 Input/Output

Tab Edit Descriptors: Tn, TLn, and TRn

The tab edit descriptors are used to position the cursor in the input or output record. The Trn edit
descriptor references absolute column numbers (7), while the descriptors TLn and TR#n reference
a relative number of column positions to the left (TL#n) or right (TR#n) of the current cursor
position. Note that the TRn descriptor is identical to the nX descriptor.

The term column refers to a character position in the record. If the record contains special
characters, the column position specified in the tab descriptor may not match the external
representation (such as the CRT display).

Descriptor Value Output

T5,F3.1 1.0 AAAATL.0
F3.1,TR4,F3.2 1.0,.11 1.0AAAA11
T10,F3.1,TL12,F3.2 1.0,.11 J1AAAAAALQ
Descriptor Record Stored

A4 T1,F4.0 1234 ’1234°,1234.0

Record Terminator Edit Descriptor: /

The / edit descriptor terminates the current record and begins processing a new record (such as a
new line on a line printer or a terminal). The / edit descriptor has the same result for both input
and output: it terminates the current record and begins a new one. For example, on output, a new
line is printed; on input, a new line is read.

If a series of two or more / edit descriptors are written in a format specification, as many records
as there are slashes are skipped. If a format contains only n slashes, n + 1 records are skipped.
The / edit descriptor does not need to be separated from other descriptors by commas.

Colon (Fence) Edit Descriptor: ()

The colon (:) edit descriptor terminates format control (just as if the final right parenthesis in the
format specification had been reached) if there are no more items in the input/output list. If more
items remain in the list, the colon edit descriptor has no effect.

Stored
Format Value Output
(10C value=",12)) 1,2 value= 1 value= 2 value=
(10(:,” value=",12)) 1,2 value= 1 value= 2

Input/Output 4-19

Scale Factor: nP

The scale factor, nP (n is the scale value), is a descriptor that modifies the normalized output of
the Ew.d, Dw.d, and Gw.d (when interpreted as Ew.d) format descriptors and the fixed-point
output of the Fw.d format descriptor. The scale factor also modifies the fixed-point inputs to the
Fw.d, Ew.d, Dw.d, and Gw.d format descriptors. A scale factor has no effect on the output of the
Gw.d (interpreted as Fw.d) descriptor or on input values containing an exponent.

When a format specification is interpreted, the scale factor is set to 0. Each time a scale factor
descriptor is encountered in a format specification, a new value is set. This scale value remains in
effect for all subsequent affected format descriptors or until use of the format specification ends.

Examples Notes
(E10.3,F12.4,19) No scale factor change; the previous value, 0, remains in effect.
(E10.3,2PF12.4,19) Scale factor remains at 0 for E10.3, changes to 2 for F12.4, and
has no effect on I9.

On input, the scale factor affects fixed-field (no exponent) input to the Fw.d, Ew.d, Dw.d, and Gw.d
format descriptors. The external value is divided by 10 raised to the (n)th power, as illustrated
below.

Scale Factor and

Format Descriptor Input Value Value Stored
E10.4 AA123.9678 123.9678
2PD10.4 AA123.9678 1.239678
—-2PG11.5 AA123.96785 12396.785
—2PE12.5 123967.85E02 123967.85E02*

* If the input includes an exponent, the scale factor has no effect.

On output, the scale factor affects Fw.d, Ew.d, Dw.d, and Gw.d (interpreted as Ew.d) format
descriptors only. The scale factor has no effect on the Gw.d (interpreted as Fw.d) field descriptor.

For Ew.d, Dw.d, and Gw.d (interpreted as Ew.d) format descriptors, the scale factor has the effect
of shifting the decimal point of the output number right n places while reducing the exponent by n
(the overall value remains the same) as illustrated below. The number of significant digits printed
is equal to (d) for negative or zero scale factors and (d+1) for positive scale factors.

Scale Factor and
Format Descriptor Internal Value Value Stored
E12.4 12.345678 AAA.1235E+02
3PE12.4 12.345678 AA123.46E—-01
—-3PD12.4 12.345678 AAA.0001D+05
1PG10.3 1234 A1.234E+03

4-20 Input/Output

For the Fw.d format descriptor, the internal value is multiplied by 10 raised to the (n)th power, as
illustrated below.

Scale Factor and

Format Descriptor Internal Value Output
F11.3 1234.500 AAA1234.500
—2PF11.3 1234.500678 AAAAA12.345
2PF11.3 1234.500678 A123450.068

The scale factor need not immediately precede its format descriptor. For example, the format
specification

(3P, 12,F4.1, E5. 2)
is equivalent to
(12,3P,F4.1, E5. 2)

If the scale factor does not precede a Fw.d, Ew.d, Dw.d, or Gw.d format descriptor, it should be
separated from other descriptors by commas or slashes. If the scale factor immediately precedes a
Fw.d, Ew.d, Dw.d, or Gw.d format descriptor, the comma or slash descriptor is optional.

For example, the format specification
(12,3PF4. 1, E5. 2)

is equivalent to
(12,3P, F4.1, E5. 2)

The scale factor affects all F, E, D, and G specifications until either the end of the FORMAT
statement or another scale factor is encountered.

Repeat Specification

The repeat specification is a positive integer written to the left of the format descriptor it controls.
The largest repeat factor allowed is 2047. If a scale factor is needed also, it is written to the left of
the repeat specification.

Examples Notes
(3F10.5) is equivalent to (F10. 5, F10. 5, F10. 5)
(213, 2(3X, A5)) is equivalent to (1 3, 1 3, 3X, A5, 3X, A5)

(L2,2(F2.0,2PE4.1),15) isequivalentto (L2, F2.0, 2PE4. 1, F2. 0, 2PE4. 1, 1 5)
(2P3G10. 4) is equivalent to (2PGL0. 4, G10. 4, G10. 4)

The repeat specification allows one format descriptor to be used for several list elements. It can
also be used for nested format specifications; thus edit descriptors can be repeated by enclosing
them in parentheses as shown above.

As an extension to the ANSI 77 standard, the repeat specification can also be used in conjunction
with a record terminator edit descriptor (for example, 3/) and with literal edit descriptors (for
example, 5 COLUWN' or 5 COLUW).

Input/Output 4-21

Nesting of Format Specifications

The group of format and edit descriptors in a format specification can include one or more other
groups enclosed in parentheses (called groups at nested level n). Each group at nested level 1 can
include one or more other groups at nested level 2; those at level 2 can include groups at nested
level 3, and so forth. A maximum of five levels of nesting is allowed in FORTRAN 77 format
specifications.

Examples Notes

(E9.3,16,(2X,14)) One group at nested level 1.

(L2, A3/ (E10. 3,2(A2,L4))) One group at nested level 1 and one at nested
level 2.

(A (33X (12,(A3)),13),A One group at nested level 1, one at level 2, and one
at level 3.

A formatted input/output statement references each element of a series of list elements, and the
corresponding format specification is scanned to find a format descriptor for each list element. As
long as a list element and field descriptor pair occurs, normal execution continues.

If a program does not provide a one-to-one match between list elements and format descriptors,
execution continues only until a format descriptor, an outer right parentheses, or a colon is
encountered and there are no list items left. If there are fewer format descriptors than list
elements, these three steps are performed:

1. The current record is terminated.
2. A new record starts.

3. Format control returns to the repeat specification for the rightmost specification group at
nested level 1. If there is no group at level 1, control returns to the first descriptor in the
format specification.

Examples Notes

(15,2(3X%X,12,(14))) Control returns to 2(3X, 12, (14)) .
(F4.1,12) Control returns to (F4. 1, 12) .
(A3,(3X,12),4X,14) Control returns to (3X,12), 4X, 1 4.

When part or all of a format specification is repeated, the current scale factor is not changed until
another scale factor is encountered. Repetition also has no effect on the BN and BZ edit
descriptors.

4-22 Input/Output

List-Directed Input/Output

List-directed input/output allows you to transfer data without specifying its exact format. The
format of the data is determined by the data itself.

List-Directed Input

List-directed input is specified by the following input statements:

Syntax
{*, list}
READ {(unit, *, . . optional keywords) list}
where:
unit is the unit number of the file (see Chapter 5 for further information).
list is a list of variables that specifies where the data is to be transferred. If /ist is omit-

ted, the file is positioned at the next record without data transfer. list can contain
implied DO loops. For syntax and detailed information on implied DO loops, see
“Implied DO Loops” under “DO Statement” in Chapter 3.

See “READ Statement” in Chapter 3 for detailed information on the syntax and meaning of the
optional keywords.

The first READ statement syntax shown above is used for transferring information from the
standard input device. The second READ statement is used for transferring data from a disk file
or device. (Files, along with other READ statement options, are discussed in Chapter 5.)

Input data for list-directed input consists of values separated by one or more blanks, or by a
comma preceded or followed by any number of blanks. An end-of-record also acts as a separator
except within a character constant. Leading blanks in the first record read are not considered to
be part of a value separator unless followed by a comma. Input data can also take the forms

r*c
or
r*
where:
r is an unsigned, nonzero integer constant.
c is a constant.

The r* ¢ form means r repetitions of the constant ¢, and the ¥* form means r repetitions of null
values. Neither form can contain embedded blanks, except where permitted in the constant c.

Reading always starts at the beginning of a new record. As many records as required to satisfy the
list are read unless a slash occurs in the input record.

Input/Output 4-23

Embedded blanks are not allowed in input values (a blank is always interpreted as a value
separator). The forms of values in the input record are as follows:

Integers

Octal

Real and
Double
Precision

Complex
and Double
Complex

Logical

Character

Same form as an integer constant (see Chapter 2).

Consists of the character @ followed by a field of octal digits. (Octal is an ex-
tension to the ANSI 77 standard.)

Any valid form for real and double precision constants (see Chapter 2).

In addition, the exponent can be indicated by a signed integer constant

(the D or E can be omitted), and the decimal point can be omitted for those
values with no fractional part.

Two integer, double integer, real, or double precision constants, separated

by commas and enclosed in parentheses. The first number is the real part

of the complex or double complex number, and the second number is the imagi-
nary part. Each of the numbers can be preceded or followed by blanks.

Consists of a field of characters, the first nonblank character of which must be a
T for true or an F for false (excluding an optional leading decimal point).

Same form as a character constant. Character constants can be continued from
one record to the next; the end-of-record does not cause a blank or any other
character to become part of the constant. If the length of the character con-
stant is greater than or equal to the length, len, of the list item, only the left-
most len characters of the constant are transferred. If the length of the con-
stant is less than len, the constant is left-justified in the list item with trailing
blanks. Because the FMGR file system cannot represent odd record lengths
(bytes), a record can have one more character than expected.

As an extension to the ANSI 77 standard, a character value can appear without
the single quotation marks. In this case, the constant must not contain embed-
ded blanks, commas, or slashes. Constants of this form are not continued from
one record to the next; the first blank, comma, slash, or end-of-record termi-
nates the constant.

The data in the input record is converted to that of the list item, following the same assignment
rules as given in Table 3-3 in Chapter 3.

For example, the statement

READ *,a, b, c,d, e

and the input record

ANTOTAL’AA(42A,A1), TRUEAA362AAA563. 63D6

cause the following assignments to take place, assuming the variable is of the specified type:

4-24 Input/Output

Value
Variable Type Assigned
a Character TOTAL
b Complex 42.,1)
c Logical true
d Real 362.
e Double Precision 563.63x10 6

A null value can be specified in place of a constant when you do not want the value of the
corresponding list item to change; if the item is defined, it retains its value, or, if the item is
undefined, it remains undefined. A null value is indicated by two successive value separators (two
commas separated by any number of blanks) or by placing a comma before the first input value on
a line.

Examples

The statement
READ *,a, b, c
and the input record

A, 5. 12A/AA,

cause the following assignments to take place:

Variable Type Value Assigned
a Real Retains previous value
b Real 5.12
c Real Retains previous value

An end-of-line (end-of-record) in the input record causes the read to be continued on the next
record until the input list items are satisfied. If a slash (/) is encountered, the read terminates and
the remaining items in the input list are unchanged.

An end-of-record is treated as a blank. An end-of-record is not itself data and is not placed in a
character item when a character constant is continued on another line.

Input/Output 4-25

List-Directed Output

List-directed output is specified by the following output statements:

Syntax:

PRI NT *, list

WRI TE (unit, *, . . . optional keywords) list

where:
unit is the unit number of the file (see Chapter 5 for further information).
list is a list of variables or expressions that specifies the data to be transferred. If list

contains a function reference, that function must not contain any READ or
WRITE statements. /ist can contain implied DO loops. For syntax and detailed
information on implied DO loops, see “Implied DO Loops” under “DO State-
ment” in Chapter 3.

See “WRITE Statement” in Chapter 3 for details on the syntax and meaning of the optional
keywords.

The PRINT statement is used for transferring information to the standard output unit. The
WRITE statement is used for transferring information to external files or devices. (Files, along
with other WRITE statement options, are discussed in Chapter 5.)

The forms of values in a list-directed output records are as follows:

Integer Output as an integer constant.

Real and Output with or without an exponent, depending on the magnitude of

Double Precision the value.

Complex Output as two numeric values separated by commas and enclosed in
parentheses.

Logical A T is output for the value true and an F for the value false.

Character A character value is not delimited by single or double quotation

marks, and each single or double quotation mark within the value is
represented by one character.

Every value is preceded by exactly one blank, except character values. Trailing zeros after a
decimal point are omitted. A blank character is also inserted at the beginning of each record to
provide carriage control when the file is printed.

If the field is longer than the number of character positions left in the record, the current record is
written and a new one started. The default limit on record size is 72 characters. This limit can be
changed with the library routine FFRCL, described in Appendix B.

4-26 Input/Output

Examples

Internal Values (Types)

a = 11.15 (REAL)
b =.11145D 05 (DOUBLE PRECISION)

c = (10, 3.0) (COMPLEX)

d = (1.582D-03, 4. 9851) (COMPLEX*16)

e = .TRUE. (LOGICAL)

f = .FALSE. (LOGICAL*4)

i = 11250 (INTEGER)

j = —32799 (INTEGER*4)

n = ' PROGRAM NAME' (CHARACTER*15)

p = 'TEST:: RT" (CHARACTER*8)

Output Statement Output Record

PRI NT *, a,i A11. 15A11250 (Output to the standard output unit. The first
character, a blank, is not shown; it is used as carriage control.)

WRI TE(1, *)c A(10., 3.)

WRI TE(1, *)j, e A-32799AT

PRINT *, b Al. 1145E-6

WRI TE(1,*) d A(1.582E-3, 4. 9851)

WRI TE(1, *)n, p PROGRAMANAMEAAATEST: : RT

If the length of the values of the output items is greater than 72 characters, a new record is begun.

Slashes, as value separators, and null values are not output by list-directed formatting.

Input/Output 4-27

Unformatted Input/Output

Unformatted input/output allows you to transfer data in internal (binary) representation. Each
unformatted input/output statement transfers exactly one record. Unformatted input/output to
devices is done in binary mode.

On input or output, if the record size exceeds 120 bytes (60 words), the LGBUF routine must be
called to supply a larger input/output buffer. If LGBUF is not used, an input/output run-time
error is generated. (Note that the buffer size limit for paper tape is 118 bytes.)

Unformatted Input

Unformatted input is specified by the following input statement:

Syntax

READ (unit, . . . optional keywords) list

where:
unit is the unit number of the file (see Chapter 5 for further information).
list is a list of variables that specifies where the data is to be transferred. If /ist is omit-

ted, the file is moved to the next record without data transfer. [list can contain im-
plied DO loops. For syntax and detailed information on implied DO loops, see
“Implied DO Loops” under “DO Statement” in Chapter 3.

None of the optional keywords can be FMT=.

See “READ Statement” in Chapter 3 for a detailed description of the syntax and meaning of the
optional keywords.

Because only one record is read when an unformatted READ statement is executed, the number
of list elements must be less than or equal to the number of values in the record; a complex item
requires two real or double precision values.

The type of each input value should agree with the type of the corresponding list item. However, a
complex or double complex value in the input record can correspond to two real or double
precision list items, or two real or double precision values can correspond to one complex list item.

The data is transferred exactly as it was written; thus, no precision is lost.

The input record is a stream of bytes, not words. If an odd-length character item is input, the next
item begins at an odd byte offset (in the middle of a word).

The 60-word input/output buffer size applies to an unformatted READ statement. A cause of
input/output error number 496 is an attempt by an unformatted READ to input values when not
enough data is read (that is, the record is too small). You can avoid this problem by including the
ERR= and IOSTAT = options, or both, identifying the cause of the error, then using the ITLOG
function to find the actual length of the transmitted record. See Chapter 6 for more information
on the ITLOG function.

4-28 Input/Output

Unformatted Output

Unformatted output is specified by the following statement:

Syntax

WRI TE (unit, . . . optional keywords) list

where:
unit is the unit number of the file (see in Chapter 5 for further information).
list is a list of variables or expressions that specifies the data to be transferred. list can

contain implied DO loops. For syntax and detailed information on implied DO
loops, see “Implied DO Loops” under “DO Statement” in Chapter 3. If list is
omitted, an empty record is written. If /ist contains a function reference, that func-
tion must not contain any READ or WRITE statements.

None of the optional keywords can be FMT=.

See “WRITE statement” in Chapter 3 for a detailed description of the syntax and meaning of the
optional keywords.

The output list must not specify more values than can fit into one record. If the specified values
do not fill a direct access record, the remainder of the record is undefined. (Because sequential
records are variable length, they have no remainder.) The data is transferred exactly as it is stored
in memory; thus, no precision is lost. The output record is a stream of bytes, not words. If an
odd-length character item is output, the next item begins at an odd byte offset (in the middle of a
word).

The 60-word input/output buffer size applies to an unformatted WRITE statement. A cause of
input/output error 496 is an attempt by an unformatted WRITE to output more values than one
record can hold.

Input/Output 4-29

FORTRAN File Handling

The input/output statements described in Chapter 4 (READ, WRITE, and PRINT) reference a
unit number of a file. The unit number refers to a FORTRAN logical unit (LU) number assigned
to a disk file or a peripheral input/output or storage device. FORTRAN 77 allows access to disk
and nondisk units through two methods, both of which assign a FORTRAN logical unit number to
the unit. If a nondisk device or spool file is present in your session environment (SST), or in the
nonsession environment, you have access to a system unit through its system logical unit number,
and the unit is said to be preconnected. You can access all preconnected units without executing
an OPEN statement.

The second method of accessing files in FORTRAN is by connecting a disk file to a FORTRAN
logical unit number in an OPEN statement. The OPEN statement can also be used on devices
and spool files to assign standard FORTRAN unit numbers or change certain specifications.

This chapter contains details on the types of files, methods of assigning a unit number, control
specifications, FORTRAN DS methods, and other file status and manipulation procedures. For
the syntax and a discussion of each file handling statement, see Chapter 3.

File Definition

A file in FORTRAN is defined as a collection of related information logically organized into
records. A file can be stored on disk or can reference nondisk peripheral devices by LU or name
(that is, a type O file). The information in files can consist of programs or data. For a detailed
discussion of the types of files available, see the appropriate programmer’s reference manual.

A record is defined as a sequence of data values or characters. A record does not necessarily refer
to a physical entity (such as a punched card), but refers to a logical representation of data or
characters.

The three types of records are:
e Formatted

e Unformatted

e End-of-file

A formatted record consists of data that is edited during both the input and output processes. The
length of a formatted record is measured in characters. Formatted records should be read or
written only by formatted and list-directed input/output statements, and can contain a maximum of
134 characters (67 words) unless the routine LGBUF is used (see Appendix B for information on
LGBUF).

FORTRAN File Handling 5-1

An unformatted record consists of data that can be read or written without incurring the overhead
of editing. The length of an unformatted record is measured in bytes (the maximum is 120 bytes
per record unless LGBUF is used). An unformatted record should be read or written only by
unformatted input/output statements.

An end-of-file record is the last logical record of a sequential file. This record is written by the
ENDFILE statement, and contains no data. As an extension to the ANSI 77 standard, some
devices can contain multiple end-of-file records.

The terms external file and internal file are defined as:

external file is a file located on a storage medium external to the program (such as disk) or
an external device.

internal file is an area of storage that is internal to the program, such as an array in main
storage.

Moving data from one internal storage to another and converting data can be done more easily
with internal files. See “Internal Files” later in this chapter for more information.

This chapter uses the following terms to specify positioning within a file:

current record is the record within which the pointer is currently positioned.

file pointer is the current position within a file.
initial point is the position just before the first record of the file.
next record is the next record to be read or written; if the file pointer is at the terminal

point, there is no next record.

previous record is the record just read or written; if the file pointer is at the initial point, there
is no previous record.

terminal point is the position just after the last record of the file.

File Access

External files are categorized by the method of access: either sequential or direct. (Access means
to read from or write to a file.) Some files allow both access methods, while others are restricted
to one access method. For example, a file with a constant and known record length, storing either
ASCII or binary data, can allow both sequential and direct access, while a file with variable length
records can only be accessed sequentially. (See the appropriate programmer’s reference manual
for the specific file types and access methods allowed.)

Sequential access is the accessing of records in the order in which they were written. A sequential
file may contain both formatted and unformatted records. A sequential file is terminated by an
end-of-file record.

Direct access refers to the access of the records in any order, by record number. Reading and
writing records is done by direct access input/output statements (that is, READ and WRITE
statements containing a REC= specification). Each record of the file is identified by a record

5-2 FORTRAN File Handling

number, which is a positive integer. Once established, a record number of a specific record cannot
be changed or deleted, although the record can be rewritten.

Records can be read or written in any order. For example, record 3 can be written before writing
record 1. The records of a direct access file cannot be read or written using list-directed
formatting. A direct access file does not contain an end-of-file record as an integral part of the
file with a specific record number; therefore, when accessing a file with a direct access READ or
WRITE statement, the END= specification is not allowed.

SFILES Directive

The $FILES compiler directive must be specified in a FORTRAN main program to set aside a
storage area describing any connection between a FORTRAN logical unit and a system logical unit
or file. Programs that use only the preconnected units (that is, that do not contain any OPEN
statements) can be executed without the $FILES directive.

The $FILES directive can also be specified in a subprogram. It has an effect only if the program
does not use disk files and the $FILES directive in the subprogram specifies zero for the number
of disk connections. This can cause a reduction in the size of the loaded program (see “Reducing
the Size of a Loaded Program” in Chapter 7). If the program uses files, a $FILES directive in a
subprogram has no effect.

The general form of the $FILES directive is:

{m,n[,s[,b]]}
$FI LES {m, n, s, FREESPACE}

{m, n, DS}
where:

m is the maximum number of nondisk units that can be connected at one time (0
to 128, default = 0).

n is the maximum number of disk units that can be connected at one time (0 to
128, default = 0).

s is the default number of 128-word blocks in each Data Control Block (DCB)
buffer for each file (1 to 128, default = 1). You can override this default for
any given file through the BUFSIZ parameter in the OPEN statement.

b is the total number of 128-word buffer blocks that can be allocated (default =

n*s).

FREESPACE indicates that the area at the end of the user partition is available for use as
128-word buffer blocks. The NFIOB function allows you to determine the
number of input/output buffers available for allocation. The SZ system com-
mand tells you how much free space your program has. The SZ command in
LINK lets you increase the free space in your program. See the examples in
“Specifiers in the OPEN Statement” later in this chapter.

DS allows connections to remote nodes when using the FMGR file system. When
the CI file system is used, remote connections are always allowed and DS must
not be specified.

FORTRAN File Handling 5-3

Example Notes

$FILES 2,3 The $FILES directive begins in column 1 and should ap-
PROGRAM fi | ex pear before the first FORTRAN statement in the program
. unit. This directive reserves storage in the main program
of two nondisk units and three disk units, using the default
Data Control Block (DCB) buffer size of one block.

The m and n parameters are required positional parameters that indicate the maximum number of
connections to be made simultaneously within the main program and all subprogram units. The
default when no directive appears in the main program unit is:

$FILES 0,0
The size of the table area in the main program can be approximated by:
3*(m + n) + n*(32 + 128%s)
or, if FREESPACE is used, by:
3*(m + n) + 16%n
or, if DS is used, by:
3*(m + n) + 20%n
For further information about the Data Control Block (DCB) and system file structures, see the

appropriate programmer’s reference manual.

See Chapter 7 for further information about the $FILES directive.

File Existence and Connection

A unit is said to exist for an executable program if the unit is preconnected for use, or if the unit is
connected by the program through an OPEN statement. At any one time a specific set of units
exists for a program. All input/output statements can refer to any unit that exists, while the
INQUIRE, OPEN, and CLOSE statements can also refer to units that do not yet exist for the
program.

Units that are preconnected for use by a program can be accessed in READ or WRITE statements
without prior execution of an OPEN statement. These FORTRAN logical units coincide with the
system logical units available to the particular user (in the user’s session environment, or SST).
System logical unit numbers are normally limited to 0 through 63. Unit numbers 64 through 255
can be accessed by changing Z$CSWD; see the FORTRAN 77 installation guide. The user can
add these preconnected devices by using system commands dependent on the assigned user
capability level (such as the SL command). For more detailed information on the
system-dependent commands and tables, see the appropriate system reference manual.

A unit cannot be connected to more than one file at the same time; conversely, a file cannot be
connected to more than one unit at a time. If a unit is disconnected in a program by a CLOSE
statement, the unit number is available for reconnection to the same file or for connection to a

5-4 FORTRAN File Handling

different file in the program. Similarly, a particular file that is disconnected by a CLOSE
statement can be reconnected to the same unit number or to a different unit number.

Note that the only way to refer to a disconnected file in an OPEN or INQUIRE statement is by
name; therefore, if a scratch file is disconnected, it cannot be reconnected nor can data be
reclaimed (since scratch files are purged on CLOSE or program termination).

The following input/output and file positioning statements must reference a unit that is connected:

READ

WRITE

PRINT

BACKSPACE

ENDFILE

REWIND

inputs data from a connected unit.
outputs data to a connected unit.
outputs data to the default system unit, which is preconnected.

moves the file pointer of the connected file to the position immediately before
the previous record.

writes an end-of-file record as the next record of the file.

moves the file pointer of the connected file to the initial point of the file.

The following file control statements can reference a file that is either connected or not connected:

OPEN

CLOSE

INQUIRE

connects an existing file to a unit, creates a file and connects it to a unit, or
changes certain specifiers of a connection between a file and a unit.

disconnects a unit from a file.

requests information about the properties of a particular named file or of the
connection to a particular unit (inquire either by file name or by unit number).

The INQUIRE and CLOSE statements can refer to files that do not exist. All other input/output
statements must refer to files that exist.

FORTRAN File Handling 5-5

File Control Specifiers

File control specifiers are used with various file input/output statements or file positioning
statements. Some of the specifiers can be used with any file manipulation statement, while others
have meaning only in particular statements.

This section describes the file control specifiers allowed in each of the file input/output statements,
and describes any restrictions on their position or occurrence.

There are no positional requirements for the specifiers if all the keywords appear in the
input/output statement. If the keyword UNI T= is omitted, the unit number specifier must appear
first in the control list. If the optional keyword FMI'= is omitted, the format specifier must be the
second item in the list, following the unit specifier without the optional keyword UNI T=.

Detailed syntax requirements of the file control statements are described in Chapter 3.

READ and WRITE Statements

The following file control specifiers have meaning in the READ and WRITE statements:

UNIT = unit
or UNI T = unit:sec|:ter]
FMI = fint
REC = rn
| OSTAT = ios
ERR = label
END = endlabel
ZBUF = ibuf
ZLEN = ilen
Examples Notes
READ(1, 33) a, b, c These two lines have the same effect;
READ(UNI T=1, FMI=33) a, b, c they both request input from logical unit 1,
which is controlled by the format statement
labeled 33.

WRI TE(61, 11, REC=i r ec, | OSTAT=i 0s, ERR=99) This example specifies an output request to a
direct access unit 61, writing record number
i rec as specified in the format statement
labeled 11. If an error occurs, control trans-
fers to the statement labeled 99 and the error
code is stored in the variable i 0s.

The specification list must include exactly one unit specifier and at most one each of the other
specifiers. If a REC= specifier appears, the statement is a direct access request. On a direct access
request, the END= specifier must not appear, since the end-of-file record is not considered a part
of a direct access file. The END= specifier is never allowed in a WRITE request. Also, the FMI'=
specifier must not indicate list-directed formatting (*) with a direct access file.

The UNI T=unit:sec|[:ter] optional format permits secondary and tertiary addressing to be passed to
the I/O driver. ZBUF and ZLEN also permit a second buffer to be passed to the I/O driver.

5-6 FORTRAN File Handling

When ZBUF and ZLEN are used, the z control bit is set in the input/output request. See the
appropriate I/O driver manual for details.

The HP-IB driver cannot distinguish between a zero secondary address and a missing secondary
address. To ensure that the driver understands that you really do want to send a secondary
address of 0, use 400B instead; this sets bit 8 in the address field. Because secondary addressing
uses only the low 5 bits, the driver will then properly use secondary address 0. If you prefer, you
may set bit 8 on any secondary address.

OPEN Statement

The following file control specifiers have meaning in the OPEN statement:

UNI T = unit
| OSTAT = ios
ERR = label
FI LE = name
STATUS = sta
USE = use
ACCESS = acc
FORM = fm
RECL = rcl
BLANK = blnk
MAXREC = mrec
NODE = node
BUFSI Z = bufs

The OPEN statement is used to connect a unit number to a file or to change certain specifiers of a
connection between a file and a unit. When a file is opened, the file pointer is positioned at the
beginning of the file. A redundant OPEN does not affect the current position of the file.

For a detailed description of the syntax and meaning of each of the control specifiers, see
Chapter 3.

Examples
e Connect FORTRAN logical unit number 41 to a file called DAT. If an error is encountered in
the OPEN, save the error code in the variable i 0S and transfer to the statement labeled 99.
OPEN(41, | OSTAT=i os, ERR=99, FI LE=" DAT")
(If DAT exists, it is connected to unit number 41. If DAT does not exist, it is created as a type 4
sequential access file.)

e C(reate a file called FIL1 in directory GEORGE, on node number 4, in the DS network.
Connect the new file to FORTRAN unit number 88. Handle any OPEN errors the same as in
the previous example.

OPEN(88, FI LE=" / GEORGE/ MYDATA. DAT>4" , STATUS=" NEW , | OSTAT=i os, ERR=99)

The specification list must contain exactly one unit specifier and at most one each of the other
specifiers.

FORTRAN File Handling 5-7

The FI LE=name specification must be present when a named disk file is to be created or opened.
The file name may contain a directory name or cartridge reference number, network node,
security code, file type, or file size. (See the appropriate system reference manual for more
detailed information on file names.) A file name containing the above values is sometimes called
a namr.

The STATUS=sta specifier determines whether or not the file must already exist. If OLD is
specified, the file must already exist. If NEWis specified, an error occurs if the file exists. The NEW
specification directs that the file is to be created. If SCRATCH is specified, a file name must not be
specified; a file with a unique name is created and USE is forced to EXCLUSI VE. A system-wide
maximum of 99 scratch files can be open simultaneously (one user can have a maximum of 128

files open at one time, up to 99 of which can be scratch files). The UNKNOMN specifier can be
supplied if you do not know whether a file or device exists; if no STATUS=sta specifier is given, the
status defaults to UNKNOAN.

All the specifiers except the unit specifier are optional. If the file is opened with
ACCESS=DI RECT, you must include the RECL specifier to declare the record length of the file.

A file can be connected to a unit number by an OPEN statement in any program unit of an
executable program. Once connected to a unit, a file can be referenced in any program unit.

The OPEN statement can be used to connect existing files to a unit number, create and connect a
named or scratch file, or change the control specifiers on a file that is already connected to a unit
by referencing the same file name or omitting it and specifying different characteristics to the file.
This is effectively the same as executing a CLOSE statement on the file that was previously
connected to the unit number referenced in the OPEN statement, except that the file position is
not changed.

Conversely, once a file has been connected to a unit number, that file cannot be connected to a
different number until the file is closed.

The specifiers that have default values if omitted from the control list are:

STATUS = ’ UNKNOWN FORM = ' FORVATTED if ACCESS = ' SEQUENTI AL’
USE = ' EXCLUSI VE FORM = ' UNFORMATTED if ACCESS = ' DI RECT
ACCESS = ' SEQUENTI AL’
BLANK = ’ NULL’

Additional Examples

e Open a scratch file for direct access, with a user-defined record length of 80 characters,
assuming defaults for the remaining parameters.

OPEN(77, ACCESS=" DI RECT’ , RECL=80, STATUS=" SCRATCH)
e Connect a file named OUT1 to logical unit number 1. The file OUT1 exists on cartridge

reference number 25 as a sequential file for formatted input/output. Specify that all blanks
should be treated as zeros.

OPEN(1, FI LE=" QUT1: : 25", STATUS=" OLD , BLANK=" ZERO)
If logical unit number 1 is preconnected to the user’s terminal, all references to unit 1 refer to

the file OUT1. If a CLOSE statement is executed on unit 1, the terminal is again
preconnected and accessible to the program as unit 1, without requiring an OPEN statement.

5-8 FORTRAN File Handling

e Connect a direct access file named DATABASE in directory JOHN, sized to 4 blocks, with a
record size of 80 words.

OPEN(888, FI LE=" / JOHN DATABASE: : : : 4’ , ACCESS=" DI RECT" , RECL=80)

e Open two files for sequential access on the local node, specifying one with a 2-block buffer and
the other with the number of buffers remaining in the user program area of the current
partition. The $FILES directive is:

$FI LES 2, 3, 1, FREESPACE
The statements to accomplish this are:

OPEN(110, FI LE=' | NI’ , BUFSI Z=2)
OPEN(111, FI LE=' OUT1’ , BUFSI Z=NFI OB())

NFIOB is a no-argument integer function that returns the number of 128-word buffer blocks
available in your program area. To increase the number of buffers available, use the SZ
system command. SZ increases the size of the unused program area in the partition.

e Connect session LU 6 on node 20 to FORTRAN LU 6 (FMGR file system only).

OPEN(6, FI LE=" 6: 20")

o Connect a direct access scratch file with a maximum size of 10000 records to FORTRAN LU
880.

OPEN(880, STATUS=" SCRATCH , ACCESS=" DI RECT’ , MAXREC=10000, RECL = 10)
Since the default extent size for files is 24 blocks, using MAXREC can speed up execution. If

MAXREC is not used, accessing records outside the first 24 blocks can cause a directory
search.

FORTRAN File Handling 5-9

CLOSE Statement

The following file control specifiers have meaning in the CLOSE statement:

UNI T = unit
| OSTAT = ios

ERR = label
STATUS = sta

The CLOSE statement is used to terminate the connection of a unit to a file. For a detailed
description of the syntax and meaning of each of the control specifiers, see Chapter 3.

Examples Notes

CLOSE(55, | OSTAT=i os, ERR=99, STATUS=" DELETE’) Disconnects the file that was con-
nected to unit 55 and specifies that
the file should be deleted. If an
error occurs, control transfers to
the statement labeled 99 and the
error code is stored in the variable
| 0OS.

If a CLOSE statement referencing a preconnected device is executed, there is no effect on
subsequent input/output statements referencing the unit number (that is, the unit number and
device remain connected).

Specifying STATUS=" KEEP’ causes the file to continue to exist. Specifying STATUS=" DELETE’
causes the file to be purged from the disk.

A file whose status is SCRATCH is always deleted by the system when the file is closed or at normal
program termination, even if a CLOSE statement is executed specifying STATUS=" KEEP' . For
named files, if the STATUS= specifier is omitted, the default specification is KEEP. If a file is
opened for nonexclusive use and is open to another program at the time of a CLOSE with
STATUS=" DELETE' , an error is reported.

Scratch files are not deleted if the user aborts the program (with the OF command) before normal
termination. Scratch files that are kept are named .FTnn, where nn is an integer between 01 and
99.

A CLOSE statement can be executed referencing a unit that does not exist, and no action is taken.

If a file is not closed by a CLOSE statement in the execution of a program, the file is closed
automatically upon program termination.

5-10 FORTRAN File Handling

INQUIRE Statement

The following file control specifiers have meaning in the INQUIRE statement:

UNIT = unit
FILE = name
| OSTAT = ios
ERR = label
EXIST = ex
OPENED = od
NUMBER = num
NAVED = nmd
NAME = fn
USE = use
ACCESS = acc
SEQUENTI AL = seq
DI RECT = dir
FORM = fm
FORMATTED = fmt
UNFORMATTED = unf
RECL = rcl
NEXTREC = nr
BLANK = bink
MAXREC = mrec
NODE = node

The INQUIRE statement requests properties of a file or device by either specifying the unit
number, or in the case of a named file, by specifying the file name in the control list. The
INQUIRE statement returns information on a file that is not connected to a unit, as well as on a
connected file or device.

The INQUIRE-by-file version of the INQUIRE statement references exactly one file name
specifier and any of the other specifiers except the unit specifier. The INQUIRE-by-unit version
references exactly one unit specifier and one each of the other optional specifiers as desired,
excluding the file name specifier.

Refer to Chapter 3 for a description of each of the control specifiers.
Table 5-1 lists all of the possible combinations for each specification in the INQUIRE statement.

A file is considered to exist (EXIST=.TRUE.) only if it can be opened to the inquiring program in
shared mode (USE=NONEXCLUSIVE). The file may actually be opened momentarily to
determine its properties; this could interfere with a separate program that simultaneously attempts
to open the file for exclusive access.

A file is considered open (OPENED= .TRUE.) only if it is open to the inquiring program
(through a FORTRAN OPEN statement).

The system routine LUTRU is used for local LU numbers only to verify existence. When a system
LU is returned as a name, it is returned in ASCII, in a form legal for input to OPEN.

For sequential files, MAXREC is set to the number of blocks in the file, as if RECL was 256
(bytes).

FORTRAN File Handling 5-11

Table 5-1. INQUIRE Statement Specifications
Unopened Unopened Nonexistent
File Unit File File Opened File
EXIST By LUTRU True False True
OPENED False False False True
NAMED True True True False if a scratch
file. Otherwise, true.
NUMBER FTN unit Undefined Undefined FTN unit
NAME FTN unit FILE name FILE name FILE name (if named)
or system unit.
NODE —1 —1 —1 *
ACCESS Sequential By type Sequential *
SEQUENTIAL Yes By type Yes * As
DIRECT No By type No *
FORM Formatted By type Formatted * givenin
FORMATTED Yes By type Yes *
UNFOMATTED No By type No * OPEN
USE Undefined Undefined Undefined *
BLANK Null Null Null *
RECL Undefined In bytes (if di- Undefined In bytes (if direct).
rect).
NEXTREC Undefined Undefined Undefined Record number (if file).
MAXREC Undefined Size/recl Undefined Size/recl (if file).
Example Notes

I NQUI RE (FI LE=' EXFL’ , | OSTAT=i os, ERR=99
+ EXI ST= ex, OPENED=i op, NUVMBER=num
+ USE=use, ACCESS=acc)

Requests information on specified
properties of the file names EXFL.

If EXFL exists and is connected to a unit
in the program, the variables ex and i op
return the value true, the unit number is
stored in num and the character variables
use and acc are defined. If EXFL
does not exist, ex andi op return the
value false, and the other specifiers are
not defined.

In general, upon execution of an INQUIRE-by-file statement, if the file name is illegal or if the
file does not exist, the specifiers nmd, fn, seq, dir, fmt and unf are undefined. If the file exists and
is connected to a unit, ex and od return true, num become defined, and the variables acc, fim, rcl, n,
and bink become defined if they are included in the INQUIRE statement.

Upon execution of an INQUIRE-by-unit statement, if the unit exists and is connected to a file, all
specifiers become defined. If the unit is preconnected, all specifiers are defined except use, rel, hr,

and mirec.

The specifiers EXI ST=ex and OPENED=0d always become defined with a true or false value if no

error condition is encountered.

5-12 FORTRAN File Handling

File Positioning Statements

The BACKSPACE, REWIND, and ENDFILE statements are used to control the position of the
file pointer within a file. The following specifiers have meaning in these statements:

UNI T = unit
| OSTAT = ios
ERR = label

Exactly one external unit specifier must be included in the control list of the file positioning
statements. The unit specified should be connected for sequential access.

The BACKSPACE statement causes the file pointer to be positioned before the preceding record.
Backspacing over records written using list-directed formatting produces unpredictable results,
because it is difficult to predict the number of records written.

The REWIND statement causes the file pointer to be positioned at the initial point of the file.
The BACKSPACE and REWIND statements are allowed for all files, sequential and direct. To
preserve program portability, these statements should not be used on files connected for direct
access.

The ENDFILE statement writes an end-of-file record as the next record of the file. Note that the
ENDFILE statement is not allowed on files connected for direct access.

Examples Notes
BACKSPACE 66 Moves the file pointer of unit 66 to the previous record.

REW ND (58, | OSTAT=i os, ERR=99) Moves the file pointer to the initial point in the file con-
nected to logical unit 58. If an error occurs, control
transfers to statement 99 and the error code is stored in
the variable i 0s.

ENDFI LE 58 Writes an end-of-file record as the next record of the file
connected to unit number 58.

Note: If the second and third examples above appeared in sequence in a program unit, the effect
would be to delete the information in the file.

FORTRAN File Handling 5-13

Internal Files

Internal files provide a means of memory-to-memory data transfer. An internal file can be a
character variable, a character array element, a character substring, or a character array. Each
variable, substring, or array element is considered to be one record.

An internal file is accessed by a sequential formatted input/output statement. The name of the
internal file appearing as the value of the UNIT parameter identifies the file. For example, the
WRITE statement:

VWRI TE(UNI T=ADDRESS, ' (110)’) street_address

writes the value of the variable st r eet _addr ess into the first 10 positions of the internal file
ADDRESS. (ADDRESS must be of type CHARACTER.) If ADDRESS is longer than 10
characters, the rest of the record is filled with blanks.

Example

CHARACTER buf f er *20

READ(10, (A)’) buffer

READ(buffer,’ (110)’, ERR=99) val ue
SUMEsumt+val ue

Enter input into buffer.

Check if buffer is an integer.
Buf fer was integer and stored
in val ue.

Buf fer was not i nteger.

99 IF (buffer .EQ 'end’) THEN...

Internal files are not the same as disk files and do not have any internal record structure except
the one-to-one correspondence between records and array elements.

The operation “advance to next record,” such as is caused by a slash in a format statement, causes
processing of the internal file to advance to the next array element. If there is no next element, an
EQF error occurs. Note that an internal file that is a variable, substring, or array element has
exactly one record. When an internal file is an array element, other elements of the array are
ignored.

Internal files should be used in place of the DECODE and ENCODE statements of FORTRAN
4X, because DECODE and ENCODE are not part of the ANSI 77 standard.

Another example of writing to a character variable is shown in the following program. This
program assigns the character string (10x, 5(1 3, x)) to the variable i f nt, and then usesi f nt
as a format in a WRITE statement.

Example

PROGRAM i nl
CHARACTER *14 ifnt
| NTEGER iarray (5)
DATA iarray/1,2,3,4,5/
n=10
m=5
WRITE (ifmt,10) n, m
10 FORMAT (“(“12,°x,"11,"(13,x))")
WRITE (6,ifnt) iarray
END

5-14 FORTRAN File Handling

Standard Input/Output Units

The user’s terminal, normally unit 1, is the standard input unit. Unit 6 is the standard output unit.
These units are initially preconnected. Preconnected files need not be opened prior to use in any
input/output statement.

These standard unit numbers can be used to refer to a disk file in a user program if desired, and
thus are not reserved unit numbers. You must use an OPEN statement to reassign these standard
unit numbers to other files.

To change the standard input/output units from their default values, a call to the routine FSYSU
can be made in the following form:

CALL FSYSU(input_lu, output lu)
Example

CALL FSYSU(1, 1)

See “PRINT Statement” and “READ from the Standard Input Unit Statement” in Chapter 3 for
information on referencing standard unit numbers.

FORTRAN File Handling 5-15

General File Examples

The following examples demonstrate several options of the file manipulation statements.

Example 1

The following program computes the mean of all the data items in the disk file DATA located on
directory /JW/STAT. The file contains an unknown number of records, and each record contains

one real number.

FTN77, L

$FI LES 0, 1 Il Area for 1 disk file
PROGRAM j wf i |
sum= 0.0 Ilnitialize
n=2~0

OPEN (333, IOSTAT = ios, ERR = 99, FILE = '/JW STAT/ DATA
+ ACCESS=" SEQUENTI AL’ , STATUS=" OLD)

DO WH LE (. TRUE.)
READ (333, 22, END = 88, |OSTAT = ios, ERR = 99) anum

22 FORMAT(F10. 5)

sum = sum + anum | Add data entries
n=n+1 I Count entries
END DO ! Loop

C CQut of loop

88 WRITE(1, 33) sumn 'Qutput to preconnected term nal
33 FORMVAT (' The average is ', F12.6)

CLGCSE (333)

STOP

C |If there is an output error in the OPEN or READ,
C output to a preconnected termnal.

99 WRITE(1,*) 'Error encountered=',io0s
END

5-16 FORTRAN File Handling

Example 2

The following example inserts a single-number data entry in the proper position in a sorted
sequential file. A direct access scratch file is used to store the temporary results prior to rewriting
the original data file.

$FI LES 0, 2

C

PROGRAM j wex

nrec=0

C Connect 555 to data file and 666 to scratch file C

C

OPEN(666, STATUS=" SCRATCH , ACCESS=" DI RECT’ , | OSTAT=i 0s1, ERR=99, RECL=80)

C
READ *, anum | Enter nunber to insert.
DO WH LE (. TRUE.)
READ(555, *, END=999, | OSTAT=i os, ERR=99) f num ! Begi n readi ng.
nrec=nrec+l
C
| F(anum LE. f num) THEN ! Found t he pl ace.
WRI TE(666, *) anum | Enter the nunber.
DO WHI LE (. TRUE.)
WRI TE(666, *) f num lEnter the file item
READ(555, *, END=1111, | OSTAT=i 0s, ERR=99) f num
nrec=nrec+l | Copy renminder of
C Ifile to scratch file.
END DO
ELSE I Not the place.
WRI TE(666, *) f num I Copy itemto scratch
file.
END | F
END DO | Read next nunber.
C
C Execute 999 if enpty file or if itemgoes at end of file.
C
999 WRI TE(666, *) anum
C
C Now copy data fromscratch file to data file.
C
1111 REW ND 555 IData file sequential.
DO i =1, nrec
READ(666, 44, REC=I) f num IScratch file direct.
44 FORMAT(F16. 6) | Read record |I.
WRI TE(555, *) f num
END DO
CLOSE(555)
CLOSE(666)
STOP 'All done.’
C
C Handle error that occurred: ios fromopen or read of data file;
C iosl fromopen of scratch file.
C
99 WRI TE(1,*) “10s=",io0s,” 10SI=",io0sl
END

OPEN(555, FI LE=" JWDT1’ , STATUS=" UNKNOWN , | OSTAT=i os, ERR=99)

FORTRAN File Handling

5-17

Procedures and
Block Data Subprograms

Procedures are self-contained computational and data units that must be activated by the main
program or another procedure. FORTRAN procedures provide a way to organize a program into
small, manageable pieces, each of which performs a well-defined task (such as solving a
mathematical problem, performing a sort, or outputting standard headings) and provide initial
values for variables and array elements in labeled common blocks.

Block data subprograms are used to initialize variables in labeled common blocks. They cannot
contain executable statements.

Procedures can be grouped into subroutines and functions:

Subroutines

Subroutine subprograms

Functions

Function subprograms
Statement functions
Intrinsic functions

Subroutine and function subprograms can be written in languages other than FORTRAN, and can
come from the system library. For more information, refer to “Interfacing FORTRAN with
Non-FORTRAN Subprograms” in Chapter 7 and “Input/Output Library Interface Functions” in
Appendix B.

Subroutines and functions are referenced differently and return values differently.

Procedures and Block Data Subprograms 6-1

Subroutine Subprograms

The subroutine subprogram is a program unit that has a SUBROUTINE statement (refer to
Chapter 3 for syntax) as its first statement. Subroutine subprograms are user-written procedures
that perform a computation or a subtask for another program unit. Values can be passed to the
subroutine and returned to the calling program unit by arguments or common blocks (see “Using
the Command Statement” below).

Examples of SUBROUTINE statements are:

SUBROUTI NE next (argl, arg2)
SUBROUTINE last(a,*,*,b,i,k,*)

SUBRQUTI NE noarg

In the above examples, the formal arguments ar g1, ar g2, a, b, i , and k pass values to the
specified subroutine subprograms. The second example shows an alternate return form, using
asterisks (described in “Alternate Returns from a Subroutine” below).

A subroutine subprogram can contain any statement except a BLOCK DATA, FUNCTION, or
PROGRAM statement.

The last line of a subroutine subprogram must be an END statement. One or more RETURN
statements can be included to return control to the calling program unit. If no RETURN
statement is included in the subroutine, the subroutine END statement returns control to the
calling program unit.

Referencing a Subroutine

A subroutine is executed when a CALL statement (see Chapter 3 for syntax) is encountered in a
program unit. Examples of CALL statements are:

CALL next (x,Y, z)
CALL last (a,*10,*20,b,i,k, *30)

CALL noarg

When the subroutine is executed, the actual arguments (X, y, z, a, b, i , and k above) in the CALL
statement are associated with their equivalent formal arguments. The subroutine is then executed
using the actual argument values. When a RETURN statement is executed in the subroutine,
control normally returns to the statement following the CALL statement in the calling program
unit. The second example above shows the form of alternate return specifiers in the CALL
statement (discussed in “Alternate Returns from a Subroutine” below).

6-2 Procedures and Block Data Subprograms

Alternate Returns from a Subroutine

Normally, control returns from a subroutine to the calling program unit at the statement following
the CALL statement. The alternate return statement allows return to the calling program unit at
any labeled executable statement.

The RETURN statement specifies an alternate return with an integer expression (which can be an
integer constant) that identifies a statement label number in the CALL statement. The
SUBROUTINE statement must contain one or more asterisks corresponding to alternate return
labels in the CALL statement. (See “CALL Statement” and “RETURN Statement” in Chapter 3
for the syntax of calls with alternate return statements.) Here is an example of a CALL and its
associated SUBROUTINE and alternate return statements:

CALL sub (a,*10,*20*, *30)
SUBROUTI NE sub (a, *, *, *)
RETURN n

Control returns to statement 10, 20, or 30 depending on whether n evaluates to 1, 2, or 3.

If the RETURN statement contains an expression, the value of that expression should not exceed
the number of asterisks in the SUBROUTINE statement; also, the number of asterisks in the
SUBROUTINE should equal the number of alternate return labels specified in the CALL
statement. Upon execution of a RETURN statement with an expression whose value is either less
than 1 or greater than the number of alternate return labels in the CALL statement, control
returns to the statement following the CALL statement.

Note If the CALL statement specifies, for example, three return statements, but the
SUBROUTINE statement contains only two asterisks, the RETURN statement
is effective for the values 1, 2, and 3 (even though 3 is greater than the number
of asterisks in the subroutine statement), with all other values causing a “nor-
mal” return to the statement following the CALL statement. (A compiler warn-
ing is generated if RETURN 3 appears in the source file, but this does not pre-
vent loading and executing of the program.)

Example Notes

PROGRAM nai n If the compiler warning is ignored, loading
: and executing this program causes a return to
CALL sort (a,*10, b, *20, *30) statement 30.

END
SUBRQUTI NE sort (a,b,*,*)

RETURN 3
END

If the RETURN statement contains a variable or variable expression (but not a constant),
FORTRAN 77 permits all alternate returns specified in the CALL statement to be represented in

Procedures and Block Data Subprograms 6-3

the SUBROUTINE statement by a single asterisk. (For ease of understanding and portability,
however, it is recommended that the SUBROUTINE statement always contain as many asterisks
as the number of alternate returns specified in the CALL statement.)

Here is an example that uses alternate returns. Its subroutine searches a file (PARTS) to validate
a part number. Each record in PARTS contains two integers; the first is the part number and the
second is a code. A negative code indicates an obsolete part number. All existing part numbers
are in this file. The records in the file are in ascending part number order. For simplicity, the part
number search is sequential. This subroutine uses the normal return if the part number is found
and is not obsolete. If the part number is obsolete, the first alternate return is taken. If the part
number is not found, the second alternate return is taken.

$FILES 0,1
PROGRAM pr og

C Cet épart nunber
CALL val i dat e(part _nunber, *100, *999)
C Normal return. Process for valid part nunber follows.
C First alternate return. Process for obsol ete part number foll ows.
100 ‘
C Secoﬁd alternate return. Process for invalid part nunber foll ows.
999 .
END
SUBROUTI NE val i dat e(part _nunber, *, *)

| NTEGER part _nunber, rec_part, rec_code
LOd CAL obsolete flag,part _found flag

C Initialize variables

obsol ete flag = . FALSE.
part found flag = . FALSE.

C Search for part nunber and set flags accordingly

OPEN(111, FI LE=" PARTS')
DO WHI LE (. NOT. part_found fl ag)
READ(111, *, END=99) rec_part, rec_code
IF (rec_part .EQ part_nunber) THEN
part _found flag = . TRUE
IF (rec_code .LT. 0) obsolete flag = . TRUE
ENDI F
END DO
99 CLOSE(111)

C Return to calling program dependi ng on fl ags
| F (obsolete flag) RETURN 1
IF (.NOT. part_found flag) RETURN 2

RETURN
END

6-4 Procedures and Block Data Subprograms

Functions

A function can be intrinsic (see “Intrinsic Functions” below) or defined in a user-written function
subprogram. When a function reference in an expression is executed, the specified function is
evaluated and a value is returned. As with a subroutine, a function can return values through its
arguments or common block. However, this practice should be avoided, because it is difficult to
follow changes to the values of the arguments.

When a function is executed, the function name is associated with a value the same way a variable
is. When the function exits, the value returned is the last value assigned to the function name.

Function Subprograms

A function subprogram is a user-written FORTRAN function included in a FORTRAN 77
program. A function subprogram is a program unit that has a FUNCTION statement (see
Chapter 3 for syntax) as its first statement. Examples of FUNCTION statements are:

FUNCTI ON time()
| NTEGER*4 FUNCTI ON add(Kk, j)

LOGE CAL key_search(char_string, key)

Values are passed to function subprograms by arguments (kK and j , char _stri ng and key in the
above examples) or common blocks (see the “Using the COMMON Statement” below). Note that
an argument list is not required, but parentheses are required to differentiate the function name
from a simple variable.

A function subprogram can contain any statement except another FUNCTION statement or a
BLOCK DATA, SUBROUTINE, or PROGRAM statement.

Since the function returns a value, it must have a type. The type can be associated with the
function in one of three ways:

e If the type is given as the first part of the FUNCTION statement, that type is assigned to the
function. If the type is specified in the FUNCTION statement, the function name must not
appear in a type statement. A name must not be explicitly typed more than once in a program
unit.

e If the type is not given in the FUNCTION statement, the function name can be included in a
type statement within the function subprogram. (A type statement is the only nonexecutable
statement in which a function name can appear. See “Type Statement” in Chapter 3.)

e [f the function name is not included in a type statement and the type is not given in the
FUNCTION statement itself, the type is assigned implicitly according to the first letter of the
function’s name.

The type associated with the function name in each referencing program unit must agree with the
type of the function according to the above methods.

In a character function reference, the length of the character function must be an integer constant
expression of the same length as the referenced function. Note that there is always agreement of
length if the function has a length of (*).

Procedures and Block Data Subprograms 6-5

To associate a value with the function subprogram name, use the name within the function
subprogram in one or more of the following ways:

® On the left side of an assignment statement

e As an element of an input list in a READ statement

e As an actual argument of a function or subroutine subprogram reference, where the

subprogram defines the value

Examples

6-6

| NTEGER FUNCTI ON fact (n)
fact=1
DOi = 2,n
fact = fact*i
END DO
RETURN
END

FUNCTI ON tot (num sum
REAL num

IF (num .GE. 0) THEN
tot = sum + num

ELSE
READ (10,*) tot ENDIF
RETURN
END

FUNCTI ON next (back, fwrd)
IF (back .GI. 1.5) THEN
CALL gt fw d(next)

ELSE
CALL gt back(next)
ENDI F
RETURN
END

Notes

The function name is associated with a value
by appearing on the left side of an assignment
statement.

The function name is associated with a value
in one of two ways: by appearing on the

left side of an assignment statement or by
appearing in the input list of a READ
statement.

The function name is associated with a value
in one of two subroutine subprograms.
Within the subroutines, next must be
assigned a value.

Procedures and Block Data Subprograms

Here is an example of a character function. It returns the uppercase equivalents of any lowercase
characters in a string.

CHARACTER* (*) FUNCTI ON upshi ft(string)
CHARACTER*(*) string
DO i = 1,LEN(string)
IF (string(i:i) .GE. "a .AND. string(i:i) .LE. 'z') THEN
upshift(i:i) = CHAR (I CHAR (string(i:i)) — 40B)
ELSE
upshift(i:i) = string(i:i)
ENDI F
END DO
RETURN
END

A function returns the value last assigned to the function name at the time a RETURN statement
is executed within the subprogram.

The last line of a function subprogram must be an END statement. One or more RETURN
statements can be included to return control to the calling program unit. If no RETURN
statement is included in the subprogram, the END statement returns control to the calling
program unit.

Alternate returns are not allowed in function subprograms. A function subprogram always returns
to the expression from which it was invoked.

An example of a calling program unit and a function subprogram follows. This program asks for
input of two numbers, mand n, and computes the combinations of mitems taken n at a time. That
is, it computes:

L
n!' (m-n)!

In this example the function subprogram f act is invoked in the expression f act (m) / (f act (n)
* fact(mn)).

Procedures and Block Data Subprograms 6-7

Here is the source program listing followed by two typical runs:

$CDS ON
PROGRAM nmi n
| NTEGER*4 fact, resul t
WRITE (1,*) "mand n?_’
READ (1,*) mn
result = fact(nm)/(fact(n)*fact(n+n))
WRITE (1,'(15,” things taken”,15,” at atinme =",18)")mn,result
END

| NTEGER*4 FUNCTI ON fact (num
IF (num.EQ 1) THEN

fact =1
ELSE

fact = num + fact(num-1)
ENDI F
RETURN
END

m and n?7, 4
7 things taken 4 at atinme = 35
m and n?10, 2

10 things taken 2 at a tine = 45

This example uses recursion, which is available only with CDS ON.

Values over 12 cause f act to exceed the range of double integers. You can extend the range by
using real or double precision variables.

Statement Functions

A statement function is a user-defined, single-statement computation that applies only to the
program unit that defines it. Its form is similar to that of an arithmetic, logical, or character
assignment statement. Only one value is derived from a statement function. Examples:

root(a,b,c) = (-b + SQRT(b*b — 4.*a*c))/(2.*a)

di sp(c,r, h) c*3.1416*r*r*h

indexq(a,j)=IFIX(a) +) —ic

The statement function is referenced by using its symbolic name with an actual argument list in an
arithmetic, logical, or character expression. A statement function can be referenced only in the
program unit that contains it.

In a given program unit, all statement function definitions must precede the first executable
statement of the program unit and must follow any specification statements used in the program
unit.

6-8 Procedures and Block Data Subprograms

A variable or array with the same name as a statement function must not appear in the same
program unit.

As an extension to the ANSI 77 standard, the symbolic name of a statement function can be an
actual argument. Also, statement functions can appear in an EXTERNAL statement.

All arguments in the formal argument list are simple variables that assume the values of actual
arguments in the same program unit when the function is invoked. These variables are completely
distinct from variable, array, function, subroutine, or common block names used in the program
unit or in other statement functions (that is, they are local to the statement function). Variables
used in the statement function and not included in the argument list assume the current value of
the variable in the program unit (for example, the third example above, in which i ¢ is not an
argument, just an ordinary variable, defined outside the statement function, but used in it).

For syntax and more information about statement functions, see “Statement Function Statement”
in Chapter 3.

Intrinsic Functions

An intrinsic function is a function provided by FORTRAN 77 that is available to any program.
Intrinsic functions perform such operations as converting a value from one type to another.
Intrinsic functions also perform basic mathematical functions such as finding sines, cosines, and
square roots of numbers. The intrinsic functions available to FORTRAN 77 are listed in Tables
B-1 through B-7 of Appendix B. The tables give the definition of each function, the number of
arguments, the generic name for each group of functions, the specific name for each function, the
types of arguments allowed, and the argument and function type.

Generic Names

Generic names simplify referencing of intrinsic functions by allowing the same name to be used
with more than one type of argument.

The highest level of generic function name allows the use of one name with distinct types of
arguments. For example, in the function ABS(var), var can be a single or double integer, or a two-
or four-word real, complex, or double complex constant, variable, or expression.

A second, lower, level of generic function name allows the use of one function name for any
precision of a particular type of argument. For example, in the expression IABS(ivar), ivar is
either a single or double integer constant, variable, or expression.

The type of the generic function result is determined by the type of its arguments. An IMPLICIT
statement or type declaration does not change the type of an intrinsic function. If a particular
function, such as MOD, requires more than one argument, then all arguments in that function
must be of the same general type. For example, single integer arguments can be mixed with
double integer arguments, but integer arguments cannot be mixed with real.

If a formal argument has the same name as a generic or specific function, appears as a formal
argument, that name identifies the argument, not the intrinsic function, in that program unit or
statement function.

Procedures and Block Data Subprograms 6-9

Example Notes

SUBROUTI NE x(| og,) In this context, | 0g is not an intrinsic function.
f = log(f)
END

Referencing a Function

A function is executable when it is referenced in an expression.

Syntax

name ([parml.parm2,. . .)
where:

name is the name of the function.

parm is an actual argument.

Examples Notes

a =z +root(a,b,c) root is a user-defined function (defined in a function subpro-
gram) that uses the values of a, b, and ¢ to compute a value for
root.

s = SIN(6.5) SI Nis an intrinsic function that computes the sine of 6.5.

b =tinme() t i me is a user-defined function that has no arguments.

A function reference returns a specific value of the type associated with the function and is
equivalent to using a variable reference of the same type. In the above examples, a real number is
returned as the value of SI N(6. 5) . When a function reference is encountered during evaluation
of an expression, control passes to the referenced function. The function is executed using the
actual arguments listed in the function reference. The function name is assigned a value that is
passed back to the referencing expression. The referencing expression continues its evaluation,
using the passed value where the function reference appeared.

The length of a character function in a character function reference must be the same as the length
of the character function in the referenced function. A function length of (*) matches all
references.

A function that does input/output must not be referenced in the input/output list of a READ,
WRITE, or PRINT statement.

6-10 Procedures and Block Data Subprograms

Procedure Communication

Values are passed between a calling program and a procedure in an argument list. In addition,
values can be passed through common blocks to and from subprograms.

Using Arguments

The arguments passed by the calling program are called actual arguments. The procedure, which
is structured with formal arguments, uses the actual arguments passed to it to replace the formal
arguments and perform the computation. For example, when the call is made to the function
subprogram from the following calling program unit:

a=6.5
b=8. 3
r=rfunc(a, b)*3. 14159

a and b are passed to the subprogram. The subprogram could be the following:

FUNCTI ON rfunc(c, d)
rfunc = (c*d) + (d**3)
RETURN

END

Variables used as formal arguments (such as ¢ and d in the above example) are said to be passed
by reference. This means that they refer to the storage locations of the actual arguments (a and b
in the above example) and therefore assume the current values of the actual arguments. Changing
the values of the formal arguments passed by reference changes the actual arguments in the calling
program unit.

Actual arguments in a subroutine call or function reference should agree in number, order, and
type with the corresponding formal arguments. An actual argument must be a variable (simple or
subscripted), array name, substring, procedure name, constant, or expression. The expression can
be a character expression. However, it cannot involve concatenation of an operand whose length
specification is (*), unless that operand is the symbolic name of a constant. The actual arguments
for statement functions must be variables, constants, or expressions.

When a procedure name is used as an actual argument, it does not pass a value as other actual
arguments do. Instead, it passes a pointer to the subprogram to the referenced subroutine or
function. A subprogram name used as an actual argument must appear in an EXTERNAL
statement. An intrinsic function name used as an actual argument must appear in an INTRINSIC
statement.

When an actual argument is an expression, the formal argument in the subprogram unit that
corresponds to the actual expression should not be altered in the subprogram. The concept of call
by value, as defined in Pascal and other languages, does not exist in FORTRAN 77.

When an EMA variable is passed, the corresponding formal argument must be declared to be in
EMA (as described in “EMA Statement” in Chapter 3). If the formal argument is not in EMA,
the actual argument must not be an EMA variable. If you need to pass an EMA variable to a
subprogram that does not expect EMA, use the variable in an expression. You can do this by
enclosing the EMA variable in parentheses, for example. This produces an addressing level

Procedures and Block Data Subprograms 6-11

change that causes the two-word EMA address to be replaced by a one-word address pointing to a
temporary copy of the value of the EMA argument. You should not alter the value of the formal
argument corresponding to the parenthesized EMA argument within the subprogram.

Formal arguments of a statement function can consist of simple variable names only. Formal
arguments of a subprogram, on the other hand, can consist of names that represent variables,
arrays, or procedures. The argument of a subroutine subprogram can also be an alternate return
specifier (described in “Alternate Returns from a Subroutine” above).

Although formal arguments must agree with actual arguments by type, they may have a different
form. An array may have different dimensions, and a character variable may have a different
length. No conversion or rearrangement is performed; the formal argument merely specifies a
different way to access memory. To use this feature, you should have a thorough understanding of
the way arrays are accessed in memory.

Examples Notes

func(a,b,c) = a*b/c Formal arguments within a statement function can only be sim-
ple variables.

FUNCTI ON nect (z,i,]) z is a simple variable of type real, i is a double

DOUBLE PRECI SI ON8 i
DI MENSI ON j (10)

precision variable, and j is a 10-element integer array.

SUBROUTI NE add(a, f,get) aandf are real variables and get is a function name.
a = get(f)

Notes

a is an array name. The formal argument
array must be dimensioned in the
subprogram. If X is a real variable; the for-
mal parameter in the second position of the
subroutine argument list (r) must also be a
real variable. b(1) is an element of array b
and can correspond to a single variable name
(not dimensioned) or an array (dimensioned)
in the formal argument list (t np). fcn isa
function name; f , therefore, must be used in
the context of a function in the subprogram.

Examples of Argument Correspondence
CALL subl(a, x,i,b(1),fcn)

SUBROUTI NE subil(array,r,inil, tnp,f)

Example of Array Passing Notes

PROGRAM nmai n
DI MENSI ON x (10, 10)

The main program unit dimensions an
array X having 10 rows and 10 columns.
One element of x appears in the argu-
ment list of the reference to subroutine
col z; this is the element in the fifth col-
umn of the first row of x. col z dimen-

CALL colz (x(1,5))
END

SUBROUTI NE col z (col x)
DI MENSI ON col x (10)

sions the formal argument col x to have
10 elements, thus corresponding to the
entire fifth column of the actual array x.

DO 10 i=1, 10 col x then sets each element of the fifth
10 colx (i)=0.0 column of X to 0, and returns.
END
6-12 Procedures and Block Data Subprograms

Here is an example of a character argument:

FUNCTI ON si ze(string)
CHARACTER*10 string

All variable names are local to the program unit that defined them. Similarly, formal arguments
are local to the subprogram unit or statement function containing them. Thus, they can be the
same as names appearing elsewhere in another program unit.

No element of a formal argument list can occur in a COMMON statement (except as a common
block name), EQUIVALENCE statement, or DATA statement. When an array name is used as a
formal argument, the formal argument array name must be dimensioned in a DIMENSION or
type statement within the body of the subprogram.

If the actual argument is a constant, a symbolic name of a constant, a function reference, an
expression involving operators, or an expression enclosed in parentheses, the associated formal
argument must not be redefined within the subprogram.

Using the COMMON Statement

A common block can be used to pass values between a calling program unit and a subprogram.
(See “COMMON Statement” in Chapter 3 for more information on using common blocks.) The
example below shows how common blocks can be used to pass values to and from subprograms.

Example Notes
PROGRAM conex The variable a in the main program shares storage
COVMMON a, b, si de space with x in the subroutine. When a value for a is
READ *,a, b determined by the READ statement, X automatically
CALL tri shares this value. Similarly, b and y also share stor-
PRI NT *, side age space, as does the variable si de in the main pro-
END gram and the subprogram. The subroutine uses the
values input for a and b to compute the length of the
SUBROUTI NE tri hypotenuse of a right triangle.

COVWMNN X, Y, si de

side = SQRT(x**2 + y**2)
RETURN

END

Arrays in Subprograms

Since only the name of an array appears in the formal argument list of a subprogram, an array
declarator must appear in a DIMENSION or type statement for that array name. The number
and size of dimensions of an actual argument array should match those in the calling subprogram.
The number and size can differ, but when the array is accessed it will have the properties of the
new declaration.

You should understand subscripting when using different declarations in the calling routine and
the subroutine. The size of the formal argument array must not exceed the size of the actual
argument array. Since array bounds are not checked at run-time, no warning is issued if the
formal array size exceeds the actual array size. Altering these unreserved locations could yield
unpredictable results.

Procedures and Block Data Subprograms 6-13

Normally, array bounds are specified by integer constants and the bounds are fixed by the values
of these constants. You can, however, use adjustable array declarators in subprograms. With
adjustable array declarators, one or more of the array bounds are specified by an expression
involving integer variables instead of integer constants. An example of an adjustable array
declarator is shown below.

Example Notes
PROGRAM ar di m The example declares an array i arr in the main pro-
DI MENSI ON iarr (10, 10) gram. i arr has two dimensions of 10 elements each. A
i =10 subroutine (sb) is called to fill i ar r with values. The
j = 10 variables i and] are set equal to the array bounds, and
CALL sb(iarr,i,j) these variables are used as the actual arguments to be
PRINT *, iarr passed to the subroutine. The subroutine formal argu-
END ments K and massume the values passed to them
SUBRQUTI NE sb(ivar, k,n) throughi andj. These variables are used in a DIMEN-
DI MENSI ON i var (k, m SION statement to establish the bounds for array i var .
DO 10 nr=1, k
DO 10 nc=1, m
ivar(nr,nc) = nr*nc

10 CONTI NUE

RETURN
END

The last upper bound of a formal argument array is not used; FORTRAN 77 allows this bound to
be an asterisk. A declarator of this type is called an assumed-size array declarator. If the last
subscript exceeds the last bound of the actual argument, the results are unpredictable. The
following example demonstrates the use of assumed-size array declarators.

Example Notes
PROGRAM nai n

DI MENSI ON a(10, 10)
CALL subl(a)

END .
SUBROUTI NE subi(z) The last subscript of the array z can take any value
DI MENSI ON z(10, *) from 1 to 10. The last upper bound of the array num

: can take any value from 0 to 6.
| NTEGER num(5, 10, 0: 6)
j 5
[funcl(numj)

END
FUNCTI ON funcl(arry, k)
| NTEGER arry(k, 10, 0: *)

END

A variable used to dimension a formal argument in a bounds expression in a subprogram must
appear in a common block or be a formal argument.

EMA arrays can be variably dimensioned. It is very important that the bounds (variable
dimensions) accurately describe the range of the subscripts. If the bounds indicate that the
subscripts will fit in 16-bit (single) integers, more efficient code will be generated.

6-14 Procedures and Block Data Subprograms

For this purpose, a single integer bound is a single integer variable, or expression, or a constant
which fits in a single integer. The value “123J” is a single integer bound. A double integer bound is
a double integer variable, or expression, or a constant which does not fit in a single integer. An
asterisk bound is a single integer under the I compiler option or a double integer under the J
option.

If an EMA array is dimensioned with single integer bounds, the subscripts must be in the range
[-32768 to +32767] (because the .IMAP instruction is generated). If any bounds are double
integers, then double integer subscripts can be used (because the .JMAP instruction is generated).
Large EMA arrays may not be declared using an asterisk under the I option because the subscripts
are converted to single integers for use with IMAP. The same restriction applies to arrays
dimensioned with a last upper bound equal to 1, a convention used in older programs in lieu of an
asterisk.

Adjustable and assumed-size array declarators cannot be used in COMMON statements.

Character Arguments

If a formal argument is of type character, the associated actual argument must be of type character
and the length of the formal argument must be less than or equal to the length of the actual
argument. If the length of a formal argument of type character is less than the length of an
associated actual argument, then the characters associated with the formal argument are the
leftmost number of characters of the actual argument up to the length of the formal argument.

For example, if an actual character argument is a variable assigned the value abcdef gh and the
length of the formal argument is 4, then the characters abcd are associated with the formal
argument. If the formal argument is changed, only the first part of the actual argument is
changed. If the last part of the actual argument was undefined, it remains undefined.

If a formal argument of type character is an array name, the restriction on length is for the entire
array and not for each array element. The length of an individual array element in the formal
argument array can be different from the length of an array element in an associated actual
argument array, array element, or array element substring, but the formal argument array must
not extend beyond the end of the associated actual argument array. Association of array elements
will be changed in a manner similar to changing array dimensions, as shown in the following
example:

CHARACTER*3 x(5)
CHARACTER*1 y(15)
EQUI VALENCE (X, y)

CALL SUB (x)

SUBROUTI NE sub (z)
CHARACTER*1 z (15)

The formal argument z is referenced exactly like the variable y in the calling program.

If an actual argument is a character substring, the length of the actual argument is the length of
the substring. If an actual argument is the concatenation of two or more operands, its length is the
sum of the lengths of the operands.

The length of a formal argument can be declared by an asterisk, as in this example:

Procedures and Block Data Subprograms 6-15

SUBROUTI NE sub(char _dunmy)
CHARACTER* (*) char _dunmy

When the length is declared by an asterisk, the formal argument assumes the length of the
associated actual argument for each reference of the subroutine or function. If the associated
actual argument is an array name, the length assumed by the formal argument is the length of an
array element in the associated actual argument array.

SAVE Statement

A SAVE statement causes the definition status of an entity to be retained after execution of a
RETURN or END statement in a subprogram. It is used to save the values of entities from one
call of a subprogram to the next. Within a function or subroutine subprogram, an entity specified
by a SAVE statement does not become undefined as a result of the execution of a RETURN or
END statement in the subprogram. However, such an entity in a common block can become
undefined or redefined by another unit.

Syntax:
SAVE [al [,a2 [,...an]]]

where:

a is a named common block (preceded and followed by a slash), a variable name, or
an array name. Each item can appear only once.

Formal argument names, procedure names, and names of entities in a common block cannot
appear in a SAVE statement.

A SAVE statement without a list is treated as though it contains the names of all allowable items
in that program unit.

The SAVE statement is unnecessary in a main program, except when it is required for consistency
with subprogram common blocks, as explained below.

A common block name surrounded by slashes in a SAVE statement specifies all the entities in the
block.

If a particular common block name is specified in a SAVE statement in one subprogram of an
executable program, it must be specified in a SAVE statement in each suprogram where the
common block appears, including the main program.

If a named common block is specified in the main program unit, the current values of the common
block storage sequence are made available to each subprogram that specifies that named common
block. In this case, a SAVE statement in a subprogram has no effect.

Execution of a RETURN or END statement in a subprogram causes all entities within the
subprogram to become undefined, except for:

e Those specified by SAVE statements
e Those in a blank common block

e Those in a named common block that appears in the subprogram and also in at least one other
program unit that directly or indirectly references that subprogram

6-16 Procedures and Block Data Subprograms

A SAVE statement is not always necessary on the HP 1000, but should be used whenever values
must be saved, for readability and portability. On the RTE-A Operating System, SAVE statements
are often needed in CDS programs. On RTE-6, SAVE statements are often needed in MLS
programs.

The linker may require special commands when linking a program that contains a SAVE
statement. Refer to the appropriate linker reference manual.

ENTRY Statement

An ENTRY statement permits a procedure reference to begin with a particular executable
statement within the function or subroutine subprogram in which it appears. It can appear
anywhere within a function subprogram after the FUNCTION statement or within a subroutine
subprogram after the SUBROUTINE statement, with this exception: an ENTRY statement
cannot appear within a block IF statement or a DO loop.

A subprogram can have one or more ENTRY statements. An ENTRY statement is a
nonexecutable statement. For the syntax of the ENTRY statement, refer to “ENTRY Statement”
in Chapter 3.

Referencing an External Procedure by Entry Name

An entry name in an ENTRY statement in a function subprogram can be referenced as a function.
An entry name in an ENTRY statement in a subroutine subprogram can be referenced as a
subroutine.

When an entry name is used to reference a procedure, execution of the procedure begins with the
first executable statement that follows the ENTRY statement with that entry name.

An entry name can be referenced by any program unit of an executable program, except the
program unit that contains that entry name in an ENTRY statement.

The order, number, type, and names of the formal arguments in an ENTRY statement can differ
from those of the formal arguments in the FUNCTION or SUBROUTINE statement and of other
ENTRY statements in the same subprogram. However, each reference to a function or subroutine
must use an actual argument list that agrees in order, number, and type with the formal argument
list in the corresponding FUNCTION, SUBROUTINE, or ENTRY statement. (Using an
alternate return specifier as an actual argument is an exception to the rule requiring agreement of

type.)

Entry Association

Within a function subprogram, all variables whose names are also the names of entries are
associated with each other and with the variable whose name is also the name of the function
subprogram. Therefore, any such variable that becomes defined causes all associated variables of
the same type also to become defined and all associated variables of different type to become
undefined. Such variables need not be of the same type (unless the type is character), but a
variable that references the function must be defined at the time a RETURN or END statement is
executed in the subprogram. An associated variable of a different type must not become defined
during execution of the function reference.

Procedures and Block Data Subprograms 6-17

ENTRY Statement Restrictions

Within a subprogram, a name cannot appear both as an entry name in an ENTRY statement and
as a formal argument in a FUNCTION, SUBROUTINE, or ENTRY statement. It cannot appear
in an EXTERNAL statement.

In a function subprogram, a variable name that is the same as an entry name cannot appear in any
statement that precedes the appearance of the entry name in an ENTRY statement (except in a
type statement).

If an entry name in a function subprogram is of type character, each entry name and the name of
the function subprogram must also be of type character. If the name of the function subprogram
or any entry in the subprogram is declared to be of length asterisk (*), all such entities must also
be declared to be of length (*). In all other cases, all such entities must have a length specification
of equal integer value.

If a formal argument appears in an executable statement, the statement can be executed only
during a call to the function that defines the formal argument. That is, if a formal argument is
present in one argument list but not another, it may be used only when the subroutine or function
is entered through the appropriate entry. Note that the association of formal arguments with
actual arguments is not retained between references to a function or subroutine.

Block Data Subprograms

Block data subprograms are used to initialize the variables declared in common blocks.

The BLOCK DATA statement, described in Chapter 3, must be the first noncomment statement in
a block data subprogram. Each named common block referenced in an executable FORTRAN
program can be defined in a block data subprogram. Each different named common block within
a block data subprogram produces a separate subprogram module, which has the common block
name.

In general, only specification statements and data initialization statements are allowed in the body
of a block data subprogram. Allowable statements include COMMON, DIMENSION, type
statements (INTEGER*4, REAL*S, etc.), DATA, SAVE, PARAMETER, and IMPLICIT
statements.

Block data subprograms are optional in FORTRAN 77, but are required in FORTRAN 4X.
Labeled common can be set up the same way as in FORTRAN 4X by using the NOALLOCATE
option of the $ALIAS compiler directive. See Chapter 7 for a description of the NOALLOCATE
option.

Example Notes
BLOCK DATA nul | nul | is the optional name of a block
COMVON / xxx/ x(5), b(10), c data subprogram to reserve storage loca-
COVMON /set 1/iy(10) tions for the named common blocks XXX
DATA iy/1,2,4,8,16, 32, 64, 128, 256, 512/ and set 1. Arrays i y and b are initial-
DATA b/ 10*1. 0/ ized in the DATA statements shown.

: The remaining elements in the common
END block can optionally be initialized or

typed in the block data subprogram.

As an extension to the ANSI 77 standard, variables in labeled common blocks can also be
initialized in other program units.

6-18 Procedures and Block Data Subprograms

Using FORTRAN 77

This chapter contains information about FORTRAN 77 operations in an RTE operating system,
including the capabilities and invocation procedures of the compiler, error messages to the user
that can arise during compiler operations, a sample listing of a FORTRAN program, a discussion
of the compiler directives, information on reducing the size of a loaded program, and information
on interfacing FORTRAN with other languages.

FORTRAN 77 is a problem-oriented programming language that is translated by a compiler into
relocatable object code. Source programs are accepted from either a disk file or a device. Error
messages, list output, and relocatable object code are stored in files or output to devices. The
object code produced by the compiler can be loaded by an RTE linker and then executed.

FORTRAN Control Statement

The FORTRAN control statement is an optional directive specifying compiler options. If a
control statement is used, it must be the first line in the source file.

Syntax
FTN xx] , pl, p2, p3, p4, p5, p6, p7, p8, p9, . . . , pn
where:
xx is 66 or 77. Make this specification when you wish to use the nondefault mode.
(See the note below.)
pl—pn are compiler options in any order, chosen from the options in Table 7-1.
Note ANSI 66 mode or ANSI 77 mode is chosen as the default when the compiler is

loaded into the system. The FORTRAN control statement can override this de-
fault. If the control statement begins with FTN66, the compiler operates in
ANSI 66 mode. If it begins with FTN77, the compiler operates in ANSI 77
mode. If the control statement begins with FTN or is omitted, the compiler op-
erates in the default mode set when the compiler itself is linked. A complete
discussion of ANSI 66 and ANSI 77 modes is found in Chapter 8.

If the program does not begin with a control statement, the compiler assumes FTN,L.

Using FORTRAN 77 7-1

Table 7-1. FORTRAN 77 Compiler Options

Option

Meaning

Selects list output. A listing of the source language program is output to the list file.

Includes the relocatable address of each statement on a listing. Each line of the listing
becomes six characters longer. If the Q option is specified, the L option is implied. The
Q option is useful for debugging.

Selects a symbol table listing. A symbol table for each program unit is output to the list
device. The M option also produces a symbol table listing.

Selects a mixed listing. A listing of both the source and object program is produced.
Each source line is included with the object code generated in the compilation process.
The M option implies the T option.

Selects a cross-reference table. A cross-reference table of symbols and labels used in
the source program is produced. See Appendix F.

Enable warning about possible overlap in character assignments. See Error 106 in
Appendix A.

Symbolic Debug. Causes information about symbols, data types, and line numbers to
be included in the relocatable output file. This information may be passed to
Debug/1000 for use in debugging the code. See the Symbolic Debug/1000 User’s Manual,
part number 92860-90001. Note that the S option results in a larger relocatable file.
However, the extra records can be removed later using the appropriate option in the
MERGE utility.

This option is a legal option but is ignored when included in a FORTRAN 77 control state-
ment. Specifying any option in the command line, such as B, cancels all options stated
in the FORTRAN control statement, except the |, J, X, Y, and E options.

Integers are stored in one word (default). The J suffix can be useful for passing double
integer constants to routines that expect double integers.

Integers are stored in two words. The default setting can be changed to two words when
the compiler is linked (see the installation guide for further information). Care must be
taken to pass the correct size of integers between subprograms. In particular, programs
compiled with the J option pass constants as two-word integers, even to system routines
that expect one-word integers. The | suffix can be useful for integer constants passed to
routines that expect one-word constants, such as system routines.

Double precision is four words (default).

Double precision is three words. The default setting can be changed to three words
when the compiler is linked (see the installation guide for further information). See
Chapter 8 for more information on three-word real variables.

7-2 Using FORTRAN 77

Table 7-1. FORTRAN 77 Compiler Options (continued)

Option Meaning

E Selects EMA transparency mode, which causes all subprogram arguments to be passed
using 32-bit addresses. Therefore, subroutines do not have to distinguish between EMA
and non-EMA arguments. Non-EMA arguments are made into EMA arguments by con-
structing an EMA address with the first word equal to -32768 and the second word con-
taining the non-EMA address. A subprogram can be called at one time with EMA argu-
ments and at other times with non-EMA arguments, as long as the main program and all
subprograms are compiled under the E option.

1-9 Uses a different error handler. Errors are normally handled by calling .EXIT or .NFEX.
This option causes the routine ERRn to be called, where n is a single-digit option number
from 1 through 9. The ERRn routine is supplied by the user.

The ERRn routine must use the direct, or .ENTN, calling sequence. For example, if the
routine is ERR3, place the directive “$ALIAS ERR3,DIRECT” just before the definition of
ERRS.

Note that option 9 is reserved for use by HP system software.

Compiler Invocation

Syntax
[RU,] FTN7X, source_input [list_output [binary_output [line_count| options| directive] 1]1]]
where:

source_input is the name of a disk file or the logical unit number of the device containing the
FORTRAN source code.

Under the CI file system, if the file does not exist and the file name does not
have an extension, an extension of “.FTN” is assumed. A source file name must
not begin with an ampersand and end with “.FTN”.

If an interactive device is specified, the compiler prints a right bracket (]) on
the device as a prompt. It then accepts input one line at a time and continues
to issue prompts until a control-D is entered.

list_output is one of the following:
B — (minus sign)
m file name
®m Jogical unit number
® null (omitted)

If a minus sign is specified, the list file name is derived from the source file
name. If the source file is a CI file with an extension of “.FTN”, the list file
name is formed by changing “.FTN” to “.LST”. If the source file is an FMGR
file and its name begins with an ampersand (&), the list file name is formed by
changing the ampersand to an apostrophe (*). If the source file is of neither
form, an error results.

Using FORTRAN 77 7-3

7-4

binary_output

line_count

options

directive

The list file is created if it does not exist. If it already exists, it must be named
with a “. LST” extension or a leading apostrophe.

If an LU (logical unit) number is specified, the listed output is directed to that
logical device.

If the list_output parameter is omitted, the user’s terminal is assumed.
is one of the following:

— (minus sign)

file name (namr)
logical unit number H
null (omitted)

If a minus sign is specified, the binary file name is derived from the source file
name. If the source file is a CI file with an extension of “.FTN”, the binary file
name is formed by changing “FTN” to “. REL”. If the source file is an FMGR
file and its name begins with an ampersand (&), the binary file name is formed
by changing the ampersand to a percent sign (%). If the source file is of nei-
ther form, an error results.

The binary file is created if it does not exist. If it already exists, it must be
named with a “. REL” extension or a leading percent sign and have a file type of
5 (signifying relocatable object code).

If an LU (logical unit) number is specified, the binary output is directed to that
logical device.

If this parameter is omitted, no binary relocatable code is generated.

is a decimal number that defines the number of lines per page for the list device
or file.

Specification of this parameter is optional. If it is omitted, 59 lines per page
are assumed. If a number less than 10 is specified, the compiler runs material
together over page boundaries, treating the page size as if it is infinite. (The
default of 59 can be changed by changing the value of Z$LPP; see the installa-
tion guide.)

is up to six characters that select control function options. No commas are al-
lowed within the options. All options allowed in the FORTRAN 77 control
statement are also legal options in the run command, except I, J, X, Y, and E.
These options override the options declared in the FORTRAN 77 control state-
ment (except I, J, X, Y, and E).

The B option has no effect in the run command, beyond overriding (and thus
negating) any options in the FORTRAN 77 control statement (except I, J, X, Y,
and E, which cannot be overridden).

is a compiler directive beginning with $. Most directives must be quoted (for
example, with back quotes) so that embedded spaces and commas are part of
the command argument. The $INCLUDE directive is not allowed. The direc-
tive is listed as line zero of the program. It is processed after any FTN control
statement.

Using FORTRAN 77

If any parameters are specified, but some are skipped, commas must be used as placeholders.
Otherwise, blanks or commas may be used to separate parameters in the CI file system; commas
are required in the FMGR file system.

If the L, Q, T, M, and C options are all off, the list output has no headings and the listing consists
of the summary lines only, as shown:

(See “Sample Listing” on page 7-7.)

Examples

" RU, FTN7X PROGA — -

Runs FORTRAN 77 to compile the source file PROGA.FTN. Listed output is directed to
list file PROGA.LST, and binary relocatable code is directed to binary file PROGA.REL.
The number of lines per list file page defaults to 59.

:RU, FTN7X MYFI LE. FTN TEMP. LST

Runs FORTRAN 77 to compile the source file MYFILE.FTN. Listed output is directed to
the file TEMPLST. No binary relocatable code is generated. The number of lines per list
file page defaults to 59.

" RU, FTN7X &ABCD

Runs FORTRAN 77 to compile the source file &ABCD. Listed output defaults to the user’s
terminal. No binary relocatable code is generated. The number of lines per list file page
defaults to 59.

"RU, FTN7X &AAAA — — 80

Runs FORTRAN 77 to compile the source file &KAAAA. Listed output is directed to list file
"AAAA. Binary relocatable code is directed to the binary file %7 AAAA. The number of
lines per list file page is 80 (appropriate for eight lines per inch on 11-inch paper).

:RU, FTN7X TRANSACT - —,, M5

Runs FORTRAN 77 to compile the source file TRANSACT.FTN. Listed output is directed
to the list file TRANSACTLST. Binary relocatable code is directed to the binary file
TRANSACTREL. The number of lines per list file page defaults to 59. A mixed listing and
a symbol table will be produced, and symbolic debug information will be included in the bi-
nary file.

Using FORTRAN 77 7-5

" RU, FTN7X TRANSACT. FTN /LI ST/ - / REL/ —, , M5

This command line has the same results as the previous example, except that the listing is
put in directory /LIST and the binary file in directory /REL.

:RU, FTN7X, &W, —, —, , B

This command line schedules FORTRAN 77 to compile the source file &JW1. The commas
are required for commands used under FMGR. List output is directed to list file ’JW1. Bi-
nary relocatable code is directed to the binary file %JW1. The number of lines per list file
page defaults to 59. The command line cancels all the options specified in the FORTRAN
77 control statement by specifying the B option, which is otherwise ignored. Any option in
this position overrides all options in the FORTRAN 77 control statement except I, J, X, Y,
and E. Use B to override control statement options without specifying any other command
line option.

"RU, FTN7X, &IWL, —, —, , B, * $SET(System=’ RTE-A")*

Refer to the previous example. In addition, execute a $SET directive following the (option-
al) FTN control line, but before any other directives or statements.

Compiler Messages

At the end of the compilation (when the compiler detects the end of source condition), the
following message is printed:

END ftn7x: nn disasters nn errors nn warni ngs

where:

nn is the number of occurrences of each problem type. “No” is printed if there are no
occurrences of that type.

All error messages are output to the list file or device, unless there is an error in the list file
specification itself. This generates one of two error messages:

e I[f the user incorrectly specified the list file, the following message appears on the user’s
terminal:

| FTN7X: Access failed on |ist

e [f the user incorrectly specified both the source and list files, the following message appears on
the user’s terminal:

[FTN7X: Access failed on list and source

If the listing is sent to LU 0 (the null device) and errors are detected, the errors and explanations
are output to the terminal.

7-6 Using FORTRAN 77

Compiler Status Values

The FORTRAN compiler returns five integer status values using “PRTN”. These values are
returned in the CI variables “RETURN1” through “RETURNS”, or via RMPAR if the compiler is
run programmatically.

The five values returned are:
RETURNI1: Total number of errors (sum of RETURN2+RETURN3+RETURN4 below).
RETURN2: Number of disasters.
RETURN3: Number of errors.
RETURN4: Number of warnings.

RETURNS: Compiler revision in numeric form.

Sample Listing

Here is a program followed by the listing produced by FORTRAN 77. (The program contains
errors.)

PROGRAM | oop2

| NTEGER odd_sum

odd sum = 0

i =1

DO WHI LE (i .LT. 1000)
odd—sum = odd_sum + 1
i =i + 2

END DO

WRI TE(1, (15)) odd_sum

END

Page 1 Opts: 77/ LYl Sat, Jun 27, 1992 8.43 PM
&L OOP2. FTN: : SCRATCH
PROGRAM | oop2
| NTEGER odd_sum
odd sum= 0
i =1
DO WH LE (i .LT. 1000)
odd—-sum = odd_sum + 1

o, wWwN R

od?
" LOOP2”" error 10 detected at line 6 colum 12

7 i =i + 2
8 END DO

" LOOP2”" error 30 detected at line 8

9 WRI TE(1,’ (15)) odd_sum

Using FORTRAN 77 7-7

WRI TE(1,’ (15))?

" LOOP2”" error 28 detected at line 9 columm 20

10 END
Modul e LOOP2 3 errors Dat a 4 Bl ank Common: None
FTN7X 5000/ 861229 No war ni ngs Code: 32 Stack size: 10
Page 2 LOOP2 Opts: 77/ LYI Sat, Jun 27, 1992, 8:43 PM

LOOP2. FTN: : SCRATCH
Error Directory

Nunmber Expl anati on

10 Unr ecogni zed st at enent .
28 Unexpected character or unexpected end of statenent.
30 I ncorrect nesting. My be due to other errors.

Notice that one error can generate other error messages. For example, if the compiler encounters
an unrecognized statement within a DO loop, it loses the context of the loop and concludes that
the END DO statement has no prior DO statement.

In the listing a two-line heading appears at the top of each page. This heading gives the page
number, the options in effect, the date and time at which the listing was created, and the source
file name.

The compiler options can be used to send additional information to the list file (see Table 7-1).

Each line of the source file is listed. The numbers in the leftmost column are the source file line
numbers.

Each line containing errors is followed by an error line. Lines 6, 8, and 9 in the previous example
contain errors. For a detailed explanation of error lines, see Appendix A.

The last two or three lines after the source code are a summary containing applicable information
from the following list:

Modul e The name of the module (main program, subroutine, function, or
block data subprogram).

nnerrors The number of errors in the module.

nn War ni ngs The number of warnings in the module.

FTN7X The version of the compiler.

revi si on/ date

Pr ogr am The number of words of code and data in a non-CDS module.

Bl ank Conmon The number of words of blank common.

Save The number of words of SAVE (excluding common).

Local Emm The number of words of EMA (excluding common).

Code The number of words of code in a CDS module.

7-8 Using FORTRAN 77

Dat a The number of words of data in a CDS module.

St ack Space The number of words of stack space used by a CDS module.

Program Save, Bl ank Conmon, Data, Code, and Local Ema list the amounts of
relocation space required. FORTRAN 77 does not use the base page (although the linker and
run-time library do). These values do not include labeled common.

At the end of the listing, the number of each error encountered during compilation is listed with a
description of the error it represents.

Linking a Program

Once a program has compiled without errors, it can be linked on the system by the linker. For
more information, refer to the appropriate system reference manual.

Running a Program

Once a program has been successfully linked, it can be executed by specifying the command:

pgm|parameters|
where:
pgm is the program name as specified in the PROGRAM statement. If no
PROGRAM statement is used, pgm is FTN.
parameters are command line parameters that can be accessed by the library routines
RCPAR and RHPAR and by using formal parameters in the PROGRAM
statement.

Using FORTRAN 77 7-9

Compiler Directives

The compiler directives that can be included in the FORTRAN 77 source file to control certain
compiler functions include $ALIAS, $CDS, SEMA, $FILES, $SINCLUDE, $LIST, $SMSEG,
$OPTPARMS, $PAGE, $TITLE, and $STRACE. These statements are explained in detail below.
All compiler directives begin in column 1 of the source file.

$ALIAS Directive

The $ALIAS directive can be used to change certain default features of a subprogram, entry, or
labeled common block. In the following discussion, subprogram refers to a subroutine or function
that is to be called. Entry refers to the name of the current subroutine or function or a name used
in an ENTRY statement.

Syntax

{subpgm_name [=’ external name’] [, WKTRN] [, DIl RECT] [, NOABORT]
[, ERROREXI T] [, EMA] [, NOEMA] }
$ALI AS {entry_name [=" external name’] [, DI RECT] }
{l common_blk_namel [=" external name’] [, NOALLOCATE] }
{l common_blk_namel = value}

A common block name must be enclosed in slash marks. The external name must be delimited by
single quotation marks. The options follow the external name (if specified). A comma must be
used before the first option and between all subsequent options.

Examples
$ALI AS iopsy = .O0OPSY', DI RECT

$ALI AS subl, NOCEMA, NOABORT
$ALIAS /tinme/ = $TI ME , NOALLOCATE
$ALIAS /nmeml = 0

The $ALIAS directive must precede the first use of the aliased name.

The common block, subprogram, or alternate entry name is used in the source code for that
program. The external name (if specified) is the name that will be used in the code generated by
the compiler. Any other program unit that references a common block, subprogram, or alternate
entry name that has been defined with an external name must include a similar $ALIAS directive.
This use of external names is primarily applicable to system routines and entry points with names
that do not follow the FORTRAN symbolic name conventions.

Note that using quoted names in the $ALIAS directive is an exception to the rule that external
names are output in the relocatable file with all lowercase letters converted to uppercase. Because
quoted $ALIAS external names are used in the relocatable file verbatim, without converting to
uppercase, most such names should be supplied in uppercase. Otherwise, they may not match
instances of the names in other relocatable files.

$ALIAS should not be used for library routine names that are generated by the compiler. For
example, the names EXEC or SIN should not be used. The compiler already knows about the
unusual calling sequences of such routines.

The options specify nonstandard features of the common block, alternate entry, or subprogram.
Each option is described in detail below.

7-10 Using FORTRAN 77

WXTRN Option

The WXTRM option can be used with subprograms only. It indicates that the external name
should be weak external. Weak externals are never found in library searches, and undefined weak
externals do not cause linker errors. For more information about weak externals see the
appropriate system reference manual.

DIRECT Option

The DIRECT option is used with entries and subprograms. It indicates that the subprogram or
entry does not use the . ENTR calling sequence in the code generated by the compiler. . ENTR is
not used in the code for an entry, and references to a subprogram do not contain an initial DEF to
the return address. . ENTR is discussed in detail in the appropriate system library reference
manual.

NOABORT Option

The NOABORT option can be used with subprograms only. For each alternate return specified in
the subprogram reference, the compiler issues a jump to that return point immediately after the
code generated by the compiler for the reference.

The following example shows how this option can be used with the routine RNRQ. (RNRQ is
described in detail in the appropriate programmer’s reference manual.) In this example, the call
to RNRQ specifies the no-abort bit. Instead of specifying the error return in a GOTO statement
following the call, an alternate return can be used when the NOABORT option is specified for the
subprogram.

Example

$ALI AS rnrq, NOABORT
no_abort_bit = 40000B

CALL rnrqg(i con+no_abort _bit,irn,istat, *999)
normal return

999 error return

Note Using GOTO after such calls is not supported in FORTRAN 77.

ERROREXIT Option

The ERROREXIT option can be used with subprograms only. It is similar to the NOABORT
option. With ERROREXIT, the compiler generates code to handle an alternate return by calling
the standard FORTRAN run-time error handler. The error handler displays an error message,
closes any open FORTRAN files, and, in CDS programs, displays a traceback list showing the
names of all active subprograms. The subprogram must have only one alternate return, and the
CALL statement for the subprogram must not reference it explicitly (that is, it must not contain a
statement number parameter). Using ERROREXIT is preferable to letting RTE abort the
program, because FORTRAN files are closed and (if CDS) a traceback is displayed.

Using FORTRAN 77 7-11

Example

$ALI AS rnrqg, ERROREXI T
no_abort _bit = 40000B

CALL rnrq(icon+no_abort_bit,irn,istat)
normal return
(error return handled automatically)

NOEMA Option

The NOEMA option can be used with subprograms only. NOEMA is used with EMA
transparency (refer to “FORTRAN Control Statement” in Chapter 7). EMA transparency mode
causes all arguments to be passed as 32-bit addresses. This mode can be overridden by specifying
NOEMA for the desired subprogram. Arguments to this subprogram are then passed with their
natural address sizes; that is, non-EMA variables are passed with 16-bit addresses and EMA
variables are passed with 32-bit addresses.

The following example shows how the NOEMA option can be used with the subroutine ABREG
(see the appropriate system library reference manual). The E option in the control statement
indicates EMA transparency mode. ABREG expects a 16-bit address, so NOEMA must be
indicated for ABREG.

Intrinsic functions of FORTRAN 77 (refer to Appendix B) do not need the NOEMA option
specified in order to pass 16-bit addresses. The intrinsic functions of FORTRAN 77 include
EXEC and REIO. For all other subroutines and functions that expect one-word addresses, the
NOEMA option must be specified.

The NOEMA option must be specified at the beginning of any program unit that calls subroutines
that expect 16-bit addresses.

Example

FTN/77,L, E
$ALI AS ABREG NOENVA

CALL ABREG(i a, i b)

Because formal parameters are treated as EMA variables under the E option, any formal
parameter that is passed through to another subroutine is passed with a 32-bit address, even if that
subroutine was declared NOEMA. In other words, an address may be expanded because of the E
option or ALIAS...EMA, but it may not be reduced. (However, be aware of the effect of using
extra parentheses, as described in the section “EMA Directive.”)

EMA Option

The EMA option can be used with subprograms only. EMA is used without EMA transparency
(see “FORTRAN Control Statement” earlier in this chapter). Without EMA transparency mode,
all arguments are passed as 16-bit addresses. This can be overridden by specifying EMA for the
desired subprogram. Arguments to this subprogram are then passed as 32-bit addresses.

The following example shows how the EMA option can be used with the subroutine EMREG.
EMREG expects a 32-bit address, so EMA must be indicated for EMREG.

7-12 Using FORTRAN 77

The EMA option must be specified at the beginning of main programs and of subprograms or
main programs calling subroutines that expect 32-bit addresses.

Example

FTN77, L
$ALI AS EMREG EMNA

CALL EMREG (ia, ib)

NOALLOCATE Option

The NOALLOCATE option can be used with labeled common blocks only. When
NOALLOCATE is specified for a labeled common block in a block data subprogram, the compiler
creates a module (NAM,END) containing an entry point (ENT) that matches the common block
name. When NOALLOCATE is specified in a main program, function, or subroutine, the
compiler generates an external (EXT) reference matching the common block name. When
NOALLOCATE is not specified for a labeled common block, the compiler creates an allocate
record (ALLOC) for each labeled common block reference.

The NOALLOCATE option must be used for common blocks that are in the operating system.
This includes SSGA and system labeled common.

NOALLOCATE must be specified for each non-EMA, non-SAVE labeled common block in a
program that is to be used by SGMTR to create an MLS-LOC linker command file. Each labeled
common block that is specified with the NOALLOCATE option must be defined in a block data
subprogram. This requirement and others for using SGMTR are discussed in detail in the
RTE-6/VM Loader Reference Manual, part number 92084-90008.

Absolute Common Blocks

When a value is specified after the “=" in the $ALIAS directive, the common block starts at that
absolute address. This can be used to access free space, as in the following example:

$ALIAS /meml =0
PROGRAM fr ee
I MPLICIT | NTEGER (a-2z)
COMVON / meni mem(0: 0)

CALL Iimen{dum fwa, | en)
CALL sub(men(fwa), | en)

The first argument to sub begins at the first word of free space.

Note that variables in absolute common blocks cannot be initialized in DATA statements.

Using FORTRAN 77 7-13

$CDS Directive

CDS (Code and Data Separation) is available exclusively under the RTE-A Operating System with
the VC+ System Extension Package. The $CDS directive controls whether or not the program is
compiled for CDS systems. Programs compiled for systems without CDS should not use the $CDS
directive.

Syntax

{ ON}
$CDS { OFF}

The $CDS directive must be placed between modules or before the first module. (A module is a
main program or a subprogram.) The option is left in the new state until the next $CDS directive.
The initial (default) state is determined by the Z$CDS symbol used when the compiler was loaded
onto the system. (The source file &FRPLS contains the entry points that set compiler default
states at load time.)

When CDS is OFF, program instructions (code) and local variables (data) are both put in the
program area (relocation space). When CDS is ON, instructions are put in the code area, and
local variables are put in the data area.

Programs compiled with CDS ON can have up to 7.9M bytes of code. Overlaying (segmenting, in
RTE-6/VM terms) is not needed (and cannot be done). CDS programs can have up to 62k bytes
of data, which is expandable to 2M bytes with EMA and 128M bytes with VMA.

There are some restrictions on mixing CDS and non-CDS subprograms (for example, non-CDS
modules cannot call CDS modules). Also, some programs that rely on local variables being
statistically allocated (holding their value from one subprogram call to the next) may not work in
CDS mode unless SAVE statements are added. See Appendix H, “CDS Usage,” for further
explanation and some restrictions.

S$CLIMIT Directive

In a CDS program, small constant strings are kept in data space and large constant strings are kept
in code space (and copied to data space when needed).

The directive, $CLIMIT n, sets the minimum size for string constants in code space. When # is
32767, all string constants are in data space. Otherwise n may be in [1,100]. Very small values of n
are extremely inefficient.

The default may be set by changing the Z$CLM value in &FRPLS, assembling &FRPLS, and
relinking the compiler with the new %FRPLS.

7-14 Using FORTRAN 77

$EMA Directive

EMA (Extended Memory Area) and VMA (Virtual Memory Area) provide a means for storing
and manipulating large amounts of data. EMA and VMA are fully discussed in the appropriate
programmer’s reference manual.

The $EMA directive specifies that certain common blocks are to reside in VMA or EMA.
Syntax

$EMA [namell , | name2l , . .., | namen/
where:
namel...namen are names of common blocks to be put into VMA or EMA.

Blank common can be put into VMA or EMA by specifying “/ / ”.

VMA and EMA are memory access methods that allow quick referencing and manipulation of
large amounts of data. The data can reside in physical memory (EMA) or virtual memory
(VMA). VMA and EMA are declared the same way in the source program; the distinction
between them is made during linking.

More than one $EMA directive can be used, but all must appear before the first FORTRAN
statement in the program unit. All variables specified in the common block go into EMA.

Each program unit that declares EMA common must be preceded by an $EMA directive.
Multiple SEMA directives are permitted in each program unit.

A VMA or EMA variable is referenced within a program unit like any other variable, except when
being passed to other subroutines or functions. When calling subprograms that do not expect
VMA/EMA arguments, the user should pass VMA/EMA variables by enclosing the variable in an
extra layer of parentheses, for example, F((X)) . This causes the compiler to generate code to
put the argument into a local temporary variable and to pass the temporary variable as an
argument to the subprogram. This works only if the subprogram does not modify the argument,
because the function receives a pointer to the temporary variable, not to the original argument.
The corresponding formal argument must not be modified.

EMA variables passed to intrinsic functions need not be enclosed in parentheses. A local copy of
such variables is made automatically.

For subprograms expecting VMA or EMA variables, arguments can be passed normally. The
subprogram must declare the corresponding formal arguments in an EMA statement. These
arguments can be modified just like non-EMA arguments.

When the main program and all referenced subprograms are compiled with the E option (see
Table 7-1), all arguments use long addresses and need not be declared in EMA statements.

An additional restriction on VMA or EMA variables is that they cannot be used as keyword values
for results in input/output statements. For example, in | OSTAT = j, the variable] must not be
in VMA or EMA. The restricted keywords are:

e [OSTAT
e All keywords in INQUIRE except FILE and UNIT

Also, when integer arrays are used instead of character variables for keyword values, those arrays
must not be in VMA or EMA.

Using FORTRAN 77 7-15

A VMA or EMA variable can be equivalenced the same as any other variable. The same
restrictions apply. See “EQUIVALENCE Statement” in Chapter 3 for more information.

Variables in EMA may be initialized in DATA statements in the same way as non-EMA variables.
However, this is only supported on RTE-A. If any EMA variables appear in DATA statements in a
program, the RTE-A linker will change the program from an EMA program to a VMA program
without warning. See the RTE-A Programmer’s Reference Manual, part number 92077-90007, for
more information on EMA and VMA programming. Initialized VMA is not supported on the
RTE-6/VM Operating System.

The old form of the SEMA directive (for FORTRAN 4X and FORTRAN 4), whose syntax follows,
is still accepted for compatibility, but should not be used in new programs:

$EMA (common_block_name, mseg size)

A comprehensive example including the VMA/EMA directive and the EMA statement follows:

$EMA / xyz/
PROGRAM t est
COWDN /xyz/ a(100, 200), c(3000, 80)
EQUI VALENCE (a(99, 100), b)
DI MENSI ON e(200, 330)
EMA e
b = SIN(a(j, k)
C Change address |evel and pass to ufun.
d = ufun((a(j,k)))

C Pass subscr i pts for VMAV/EMA arrays to subroutine addl.
C Subroutine addl has VMN EMA arrays defined in naned conmon.

CALL addl (j, k)
C Pass VMAVEVA array e by reference with its dinensions
C to subroutine add2.

CALL add2(e, 200, 300, sum

E:ND

FUNCTI ON uf un(x)
C Square the nunber.

ufun = x * X

RETURN
END

7-16 Using FORTRAN 77

SEMAY [xyz/
SUBROUTI NE add1(m n)

C m and n are subscript argunents.
COMVON / xyz/ a(100, 200), c¢(3000, 80)

C Increment an elenent in the VMANV EVA array a.
agmn) = a(mn) + 1

RETURN
END

SUBRQUTI NE add2(epri ne, ne, ne, sunj
eprime is a VMAVEMA array passed by reference and sumis

non-VMA/ EMA. Note that subroutine add2 does not require a
$EMA directive or any VMA EMA nanmed common bl ocks.

OO0

EMA epri me(ne, ne)

j =1

DO i = 1,ne

eprime(j,i) = eprime(j,i) + 2
END DO

RETURN

END

Notes on the Preceding Example

Arrays a and ¢ are in VMA/EMA common because they are in the block common named xyz,
which is declared in the $EMA directive; e is in VMA/EMA because it is declared in an EMA
statement; b is in VMA/EMA because it is equivalenced to a; and epri ne is a formal argument
declared by the EMA statement to be in VMA/EMA.

The call to SI N can use standard argument notation because S| Nis an intrinsic function. The call
to uf un must use the addressing level change technique because uf un’s argument is not declared
in an EMA statement. This change is indicated by enclosing its argument in an extra layer of
parentheses as shown. An element in array a is incremented in the subroutine add1, which has
declared the VMA/EMA common block. The array e is passed by reference to the subroutine
add2, which has declared the formal argument, epr i ne, to be in VMA/EMA.

Using FORTRAN 77 7-17

SFILES Directive

The $FILES directive must be specified in a FORTRAN main program to set aside a storage area
describing any connection between a FORTRAN logical unit and a disk file or LU. Programs that
use only the preconnected units (that is, that do not contain any OPEN statements), can be
executed without the $FILES directive.

The $FILES directive can also be specified in a subprogram. It has an effect only if the program
does not use disk files and the $FILES directive in the subprogram specifies 0 for the number of
disk connections. This can cause a reduction in the size of the loaded program (see “Reducing the
Size of a Loaded Program” below). If the program uses files, then a $FILES directive in a
subprogram has no effect. (If a subprogram is compiled with a $FILES directive that does not
match the $FILES directive in the main program, and the program terminates while executing the
subprogram, files may be left open.)

Information about the $FILES directive also appears in Chapter 5.

Syntax

{m,n[,s[,b]]}
$FILES {m, n, s, FREESPACE}

{m, n, DS}
where:

m is the maximum number of nondisk units that can be connected at one time
(0 to 128, default = 0).

n is the maximum number of disk units that can be connected at one time
(0 to 128, default = 0).

s is the default number of 128-word blocks in each Data Control Block (DCB)
buffer for each file (1 to 128, default = 1). You can override this default for
any given file through the BUFSIZ parameter in the OPEN statement. See
Chapter 5.

b is the total number of 128-word buffer blocks that can be allocated

(default = n*s).

FREESPACE indicates that the area at the end of the user partition is available for use as
128-word buffer blocks. The NFIOB function allows you to determine the
number of input/output buffers available for allocation. The SZ system com-
mand tells you how much free space your program has. The SZ command in
LINK lets you increase the free space in your program. See the examples in
“Specifiers in the OPEN Statement” later in this chapter.

DS allows connections to remote nodes when using the FMGR file system. When
the CI file system is used, remote connections are always allowed and DS must
not be specified.

7-18 Using FORTRAN 77

Example Notes

$FILES 2,3 The $FILES directive begins in column 1 and should ap-
PROGRAM fi | ex pear before the first FORTRAN statement in the program
. unit. This directive reserves storage in the main program

of two nondisk units and three disk units, using the default
Data Control Block (DCB) buffer size of one block.

The m and n parameters are required positional parameters that indicate the maximum number of
connections to be made simultaneously within the main program and all subprogram units. The
default when no directive appears in the main program unit is:

$FILES 0,0
The size of the table area in the main program can be approximated by:

3*(m + n) + n*(32 + 128%s)
or, if FREESPACE is used, by:

3*(m + n) + 16%n

or, if DS is used, by:

3*(m + n) + 20%n

Using FORTRAN 77 7-19

$IF Directive

The $IF directive conditionally compiles blocks of source code.

Syntax
$I F (condition)
where:
condition is a logical expression for conditional compilation.

The $IF directive can appear anywhere in the source code. The condition is a constant expression
evaluating to type logical. All identifiers in the expression must be defined in previous $SET
directives.

Directives used with $IF are $SELSE, $SELSEIF, $ENDIF, and $SET. The $IF directive has
optional $ELSEIF blocks, an optional $ELSE block, and a required $ENDIF that delimits it. An
identifier is given a value with the SET compiler directive.

The semantics of conditional compilation closely parallel those of the $IF statement. If the
expression evaluates to true, the text between the $IF and the next SENDIF, SELSEIF, or SELSE
is compiled. If the expression evaluates to false, that text is treated as a comment.

$IF directives can be nested to 16 levels. If a user nests further than 16 levels, an error message is
issued and the code within the illegal $IF block is not compiled.

There can be multiple $ELSEIFs corresponding to each $IE. There can be, at most, one $ELSE
corresponding to each $IF.

The identifiers in $SET and $IF compiler directives are not related to FORTRAN variables in the
source text. That is, if the same variable name is used, both as an identifier for one of these
directives and elsewhere within a program, the one has no effect upon the other.

SIFDEF and $IFNDEF Directives

The $IFDEF and $IFNDEEF directives are similar to $IF, except that the condition tested is the
existence (or nonexistence) of a $SET variable.

Syntax

$| FDEF (name)
or

$| FNDEF (name)

Subsequent lines are compiled if name has (for $IFDEF) or has not (for $IFNDEF) been given a
value in a preceding $SET directive. The value of name itself is ignored.

7-20 Using FORTRAN 77

$ELSE Directive

The $ELSE directive is used with the $IF directive.
Syntax
$ELSE

The $ELSE directive semantically parallels the ELSE statement. The source following the $ELSE
line is compiled only if the condition in the matching $IF directive and in all previous matching
$ELSEIF directives is false.

SELSEIF Directive

The $ELSEIF directive is used with the $IF directive.
Syntax

$ELSEI F (condition)
or

$ELSE | F (condition)

The $ELSEIF directive semantically parallels the ELSEIF statement. There may be multiple
$ELSEIF directives between a $IF directive and the matching $SELSE or $ENDIF.

If the condition in the matching $IF directive and all previous matching $ELSEIF directives is
false, and this condition is true, the text after this SELSEIF directive is compiled. Otherwise the
text between this directive and the next matching $ELSEIE $ELSE, or $ENDIF is treated as a
comment.

SENDIF Directive

The $ENDIF directive terminates the $IF directive.
Syntax

$ENDI F

Each $IF directive requires a SENDIF, and vice versa. It may appear after the last FORTRAN
END statement.

Using FORTRAN 77 7-21

SINCLUDE Directive

The $SINCLUDE directive causes the compiler to include and process subsequent source
statements from a specified file or LU. When EOF is read from this file or LU, the compiler
continues processing with the line following the $INCLUDE directive.

Syntax

{[,LIST]}
$I NCLUDE file_name {[, NOLI ST] }

where:

file_name is either a disk file name or an LU number. file_name may be quoted or unquoted.
LI ST causes the included lines to be listed. LI ST is the default.

NOLI ST causes the included lines not to be listed.

$INCLUDE directives cannot be continued.

An include file can contain an $SINCLUDE directive; that is, SINCLUDE can be nested
nonrecursively.

Examples

$I NCLUDE specs

$I NCLUDE ' ../includes/graphics:inc’, NOLI ST

The LIST status after an $INCLUDE is completed is restored to the status just before the
$INCLUDE was encountered, even if LIST or NOLIST is specified or the $LIST directive appears
in the included file.

Line numbering within the listing of an included file begins with 1. The line numbers are suffixed
with a “+” (for example, 153+). The original line numbering of the source resumes after the
included file listing.

If an interactive LU is specified, information is included interactively from that LU, in which case
the prompt listed at the LU is “+”.

$INCLUDE can also be used as a statement. The INCLUDE statement begins in or after
column 7. (See “INCLUDE Statement” in Chapter 3.)

7-22 Using FORTRAN 77

SLIST Directive

The $LIST OFF directive suppresses listing of individual source lines and their corresponding
mixed listings (if any). $LIST ON turns the listing back on. If the L, Q, and M compiler options
are off, $LIST has no effect.

Syntax

{ON}
$LI ST {OFF}

Error messages are always listed, even when $LIST OFF is specified.

When the M option is specified, the mixed listing generated after the END statement is always
listed, regardless of the options of the $LIST directive.

The $LIST directive has no effect on the accumulation of cross-references for the C option.

SMSEG Directive

The $MSEG directive specifies the optional size in pages of the RTE MSEG. The concept of an
RTE MSEG is discussed in the appropriate programmer’s reference manual. FORTRAN 77
programs usually use the default size. (That is, they do not use the SMSEG directive.) Certain
products (for example, the Vector Instruction Set) require specification of the MSEG size.

Syntax

$MSEG n
where:

n is the number of pages of RTE MSEG requested.
$MSEG 0 requests as many pages of MSEG as possible.

Example

$EMA /1 arg/
$MSEG 2
PROGRAM nai n
COWON | ar g/ | gary(250000), x,y

In the preceding example, the SEMA directive declares that a common block name | ar g resides
in EMA.

The $MSEG directive declares the size of MSEG to be two pages.

Note The operating system always allocates one more page of MSEG than requested.

The size of the MSEG has no effect on execution time.

Using FORTRAN 77 7-23

$OPTPARMS Directive

The SOPTPARMS directive protects CDS programs when too few parameters are passed in a
subprogram call.

Syntax

{ ON}
$OPTPARMS { OFF}

Because EMA and character parameters are passed through descriptors, they are always
referenced in the entry (prologue) code of the subprogram. If any EMA or character parameters
are omitted, these references can cause a memory protect error. SOPTPARMS ON causes the
prologue code to check for missing parameters to avoid aborting the program.

A subprogram must not access missing parameters; the PCOUNT function can be used to detect
missing parameters. See Appendix B for more information on PCOUNT.

Programs compiled with §OPTPARMS on will run slightly slower.

S$PAGE Directive

The $PAGE directive causes the compiler to send a page eject to the list file or device.
Syntax
$PAGE

The $PAGE directive must begin in column 1, and can appear anywhere in the source file. This
directive has no effect if there are no list options in effect.

$SET Directive

The $SET directive assigns values to identifiers used in $IE, $ELSEIF and $SET directives and for
{name} substitution.

Syntax
$SET (idl = valuel[, id2 = value2]...)

where:
id is one or more identifiers given constant values.
value is a constant expression; all identifiers in the expression must be defined in pre-

vious $SET directives.

The identifiers in $SET and $IF compiler directives are in no way related to FORTRAN variables
in the source text. That is, if the same variable name is used both as an identifier for one of these
directives and elsewhere within the program, the one has no effect on the other.

The $SET directive may appear only between modules. Among those directives placed between
any two modules, before the first module, or after the last module, all $SET directives must
appear before any $ALIAS or SEMA directives.

7-24 Using FORTRAN 77

Examples

$SET (TOGGLE=. TRUE. , DEBUG=. FALSE.)
$SET (SYSTEML=. TRUE.)

Identifiers defined in $SET directives may be referenced in FORTRAN statements by enclosing
them in braces. The construct {id} is treated as if the constant value of {id} were used.

Example

$SET (version= '1.0")

wite(l,*) 'version', {version}

$SET identifiers can also be set using a $SET directive in the compiler command line. See
“Compiler Invocation”.

Examples

$SET (DEBUG=. TRUE. , TOGGLE=. FALSE.)
$SET (SYSTEML=. TRUE.)

$| F (DEBUG . AND. TOGGLE)
$I F (SYSTEML)

$IF (.NOT. (DEBUG . AND. TOGGLE))
$IF (.TRUE.)

$ELSE

$ENDI F
$ENDI F
$ENDI F
$ENDI F

$SET (system’ RTE-A)

$IF (system .eq. 'RTE-4B')
$ELSE | F (system .eq. ' RTE-6')
$ELSE IF (system .eq. 'RTE-A)
$ELSE

$ENDI F

Using FORTRAN 77 7-25

STITLE Directive

The $TITLE directive causes the compiler to send a page eject to the list file or device and
changes the main title to the string of characters specified in the directive.

Syntax
$TI TLE title
where:
title is up to 46 characters long and begins with the first nonblank character after $STITLE.

The $TITLE directive must begin in column 1 and can appear anywhere in the source file.

The main title appears on the first line following the page/option/date heading line. If no $TITLE
directive appears as line 1 of the source file (if it has no control statement) or line 2 of the source
file (immediately following its control statement, if there is one), the first main title is normally
blank. If the first §TITLE directive appears in one of these two places, the first page of the listing
does have the correct title.

If $LIST OFF is in effect, the title is changed from whatever it was to the specification in the
$TITLE directive, but does not appear until the first page after $LIST ON is specified.

Example

The following is a source file that includes $TITLE directives:

$TI TLE Exanpl e Program Number 1
PROGRAM exgl
x=0.
DO 10 i=1, 20
CALL xray(i, x)
10 CONTI NUE
END
$TITLE Different Title for Subroutine
SUBROUTI NE xray(i, X)
X=X+i
WR TE(1,’ (F5.2)") X
RETURN
END

If this command is entered:
FTN7X EXGL 1 —

The following listing results:

Page 1 FTN. Opts: 77/ LYI Wed Sep 23, 1981 2:45 pm
Exanpl e Program Nunber 1 EXGL. FTN: : SCRATCH
2 PROGRAM exgl
3 x=0.
4 DO 10 i=1, 20

CALL xray(i, x)
6 10 CONTI NUE

7-26 Using FORTRAN 77

7 END

Modul e EXGL No errors Dat a: 2 Bl ank Conmmon: none
FTN7X 5000/ 861229 No warni ngs Code: 36 Stack size: 12
Page 2 FTN. Opts: 77/ LYI Wed Sep 23, 1981 2: 45pm
Different Title for Subroutine &EXGL EXGL. FTN: : SCRATCH

9 SUBRQUTI NE xray(i, X)

10 X=X+i

11 WRI TE(1,’ (F5.2)")x

12 RETURN

13 END
Modul e XRAY No errors Dat a: none Bl ank Common: none
FTN7X 2121/ 810908 No war ni ngs Code: 46 St ack size: 13

$TRACE Directive

The $TRACE directive causes a program to display subprogram entries and exits. Only
subprograms compiled with TRACE ON are included. Tracing is done only in CDS programs.

Syntax

{ ON}
$TRACE { OFF}

Tracing is always off when the compilation starts. Once tracing is turned on, it remains on until
the next STRACE OFF directive. $TRACE directives must be placed between modules. In
subprograms with ENTRY statements, tracing is either in effect for all entry points to a module, or
none of them. Tracing is ignored for non-CDS modules, but the option is remembered; if tracing
is on but ignored (because of CDS OFF), a CDS ON directive restores tracing.

When $TRACE is used in the main program, a program cannot access its RMPAR parameters;
those values are changed by the initial TRACE print. However, RCPAR, RHPAR, and program
statement formal parameters are unaffected.

Using FORTRAN 77 7-27

Example
Here is an example of trace output:

Enter: MAI N_PROGRAM
Enter: INTIALIZE
Enter: OPEN_FI LES
Enter: CHECK FI LE_NAME
Ent er: UPPERCASE
Exit: UPPERCASE
Exit: CHECK FI LE_NAME
Exit: OPEN_FILES
Exit: I N TIALIZE
Ent er: PROCESS COMVANDS
Ent er: DO_FI RST_COMVAND
Exit: DO_FI RST_COVMAND
Enter: DO _OTHER
Exit: DO_OTHER
Exit: PROCESS_COVWANDS
Enter: CLEAN UP
Exit: CLEAN_UP
Exit: MAI N_PROGRAM

7-28 Using FORTRAN 77

An Example with Multiple Directives

The following example uses several of the compiler directives described in this chapter to declare a
VMA/EMA common area and sets up table area for two disk files. The program inverts a large
two-dimensional array stored in the file LGDAT and stores it in a new file, NDT. The program
does not show the user-written subroutine that performs the matrix inversion.

Example
$TI TLE Matri x | nversion ! These directives can
$EMA /set 1/ 'be in any order.
$FI LES 0, 2
PROGRAM exg2
COMMON /set 1/ matri x(250, 250), i nverse(250, 250) ! VMY EMA conmon decl .
CHARACTER*64 fi | enane
DATA fnare/’ ../ NPUT/’' LGDAT '/
OPEN(88, | OSTAT=i os, err=99, FI LE=fi | enane, STATUS=" OLD)
C
C First file opened.
C

READ(88, 11, END=111) ((matri x(i,j),j =1, 250),i=1, 250)

11 FORVAT(10F8.0)
CALL matrix_inversion(matrix,inverse) I User subroutine to invert.
OPEN(89, | OSTAT=i os, err=99, FI LE=" . ./ QUTPUT/ NDT" , STATUS=" NEW)

C
C Second file opened.
C
WRI TE(89, 22) ((matrix(i,j),j=1,250),i=1, 250)
22 FORMVAT(10F8. 2)
CLCSE (88)
CLCSE (89)
STOP " Al done’
$PAGE

C Print errors; quit.

99 WRI TE(1,*)' Error on open =',io0s
STCOP

111 STOP 'Bad data file — EOF encountered’
END

Using FORTRAN 77 7-29

Interfacing FORTRAN with Non-FORTRAN
Subprograms

FORTRAN 77 programs can call subprograms written in Pascal, BASIC, or Macro/1000, and
programs in these languages can call FORTRAN 77 subprograms. When passing arguments
between subprograms of different languages, be aware that the argument values may be
represented differently in different languages.

Calling FORTRAN Subprograms from Non-FORTRAN Programs

When a non-FORTRAN program calls FORTRAN subprograms, each FORTRAN subprogram
should do one of the following:

e Specify the $FILES 0,0 compiler directive.

e Use the IOSTAT keyword, or END and ERR keywords, or all, in each input/output statement.
Also do not use the STOP statement, CALL EXIT, character operations, or mathematical
intrinsics.

e Specify a compiler option (0 through 9) to change the name of the error handler, and provide a
custom error handler with the new name. See “FORTRAN Control Statement” earlier in this
chapter for information on the compiler options.

FORTRAN and Pascal

You should be aware of the following differences between FORTRAN 77 and Pascal when
interfacing between them:

e [ogical and Boolean

In FORTRAN the logical value of true is any negative value and the value of false is any
non-negative value. In Pascal, the Boolean type defines the value of true as 1 and the value of
false as 0.

® Arrays

In FORTRAN, arrays are stored in column-major order, while in Pascal, arrays are stored in
row-major order.

o Files

Pascal files can be accessed from FORTRAN by passing the Pascal file variable to the
FORTRAN subprogram. The FORTRAN subprogram then can access the file using FMP
calls, specifying the file variable as the DCB. Pascal cannot access FORTRAN files. Files
accessed through FMP calls can be used by either language.

e EMA

To pass EMA arguments between Pascal and FORTRAN 77 programs, the FORTRAN
program should use the EMA statement or the EMA option of the ALIAS directive or be
compiled with the E option; the Pascal program should use the SHEAPPARMS ONS directive.
When a FORTRAN program passes EMA arguments, all arguments should have long
addresses, either by being in EMA, by using the ALIAS directive, or by being compiled with
the E option.

7-30 Using FORTRAN 77

e Pascal value parameters

FORTRAN treats Pascal value parameters as though they were passed as VAR parameters,
that is, as though they were passed by reference. Pascal treats FORTRAN parameters as VAR

parameters or value parameters, according to the Pascal declarations.

Reducing the Size of a Loaded Program

When a FORTRAN program uses file input/output, additional initialization and error handling
routines are loaded with the program. This increases the size of the loaded program. STOP,
PAUSE, CALL EXIT, character operations, and some intrinsic functions also cause additional
initialization and error handling routines to be loaded.

If a FORTRAN program does no file input/output, the size of the loaded program can be
minimized by doing the following:

e In the main program, specify $FILES 0,0 or no $FILES directive.

e In each subprogram, do one of the following:

— Specify the $FILES 0,0 directive.

— Use the IOSTAT keyword, or the END and ERR keywords, or all, in each input/output
statement. Also, do not use the STOP statement, CALL EXIT, character data, or

mathematical intrinsics.

e Specify a compiler option (0 through 9) to change the name of the error handler, and provide a
custom error handler with the new name. See “FORTRAN Control Statement” earlier in this

chapter for information on the compiler options.

Using FORTRAN 77 7-31

ANSI 66 Compatibility Extensions

In addition to the ANSI 77 standard features and extensions discussed previously in this manual,
the FORTRAN 77 compiler provides some ANSI 66 compatibility extensions. These extensions
are for backward compatibility only. Their use in new program development is discouraged, as the
current ANSI 77 standard is more widely accepted. The descriptions in this chapter assume the
reader is familiar with the ANSI 77 standard features of FORTRAN 77.

The ANSI 66 compatibility extensions can be described in two parts. Certain features are included
in FORTRAN 77 but either operate differently or are implemented differently under the ANSI 66
standard. These conflicts are discussed in “66 Mode Compared with 77 Mode” below. Other
features of the ANSI 66 standard and extensions are part of the FORTRAN 4X compiler, but are
not defined as part of the ANSI 77 standard. These features are described in “Compatibility
Features” below.

66 Mode Compared with 77 Mode

Certain features of the ANSI 66 standard and the extensions used in FORTRAN 4X are not
compatible with FORTRAN 77. These features are summarized in Table 8-1. The FORTRAN 77
compiler provides a means of resolving these conflicting features in a 66 manner (using 66 mode)
or according to the ANSI 77 standard (using 77 mode).

To specify 77 mode, type FTN77 at the beginning of the control statement in the source file. To
specify 66 mode, type FTN66 or FTN4. Then, when the source file is compiled, all conflicts
encountered in that source file are resolved according to the specified mode.

If no control statement is given, or if the control statement does not specify a mode (for example,
FTN) the program compiles in the mode specified when the compiler was linked. When linking
the compiler, the System Manager can change the RPL value of Z$F67 to 7 for a default of 77
mode or to 6 for a default of 66 mode. (Refer to the "FTN7X file for more information.)

This section briefly describes the methods of 66 mode for resolving conflicting features, and briefly
compares the methods of 77 mode. The methods of 77 mode are fully discussed in previous
chapters of this manual.

The following table summarizes the conflicts between 66 mode and 77 mode. The number in the
left column indicates the subsequent section number in which each topic is discussed.

ANSI 66 Compatibility Extensions 8-1

Table 8-1. 77 Mode and 66 Mode Conflicts

NOoO O~ WN =

DO loop index and evaluation.

Computed GOTO value out-of-bounds condition.

Intrinsic functions declared in EXTERNAL and type statements.
Complex variables, slash (/), and end-of-line in list-directed input.
Mixed-type operations on complex and double precision operands.
Storage of Hollerith constants.

Unformatted input/output and paper tape length words.

1.

8-2

The syntax of the DO loop is the same in 66 mode as in 77 mode, but the loop exit condition is
tested at a different point in the loop.
Syntax

DO [label [,]] index = init, limit [, step]

When a DO statement is executed in 66 mode, the following sequence occurs:

a. The control variable (index) is assigned the value of init.
b. The range of the loop is executed.
c. index is incremented by the value of step.

d. index is compared with limit, and the following occurs:

If index is less than or equal to /imit and step is positive, or if index is greater than or equal to
limit, and step is negative, the sequence is repeated starting at step (b).

If index exceeds limit and step is positive, or if index is less than limit and step is negative, the
DO loop is satisfied and control transfers to the statement following the termination
statement.

The major difference in DO loop execution is that in 66 mode, the index is tested at the end of
the loop, whereas in 77 mode, the index is tested at the beginning of the DO loop. Therefore,
in 66 mode, the DO loop is always executed at least once.

In 66 mode, the index must be of type integer or double integer.

The index, limit, step values, or all can be modified in the DO loop if they are variables, which
can affect the number of times the loop is executed. In 77 mode, the loop count is unaffected.

The syntax of the computed GOTO is the same in 66 mode as in 77 mode.

Syntax
GOTO (labell, label2, ... ,labeln) [,] index _exp

The difference for the computed GOTO in 66 mode and 77 mode lies in how the compiler
handles an index expression that does not have a corresponding label. In 66 mode, if index_exp
is less than 1, control passes to the statement whose label is first in the label list (labell). If the
expression evaluates to a value greater than the number of labels in the label list, control
passes to the statement whose label is last in the list of labels. With 77 mode, control passes to
the statement following the computed GOTO if the index expression (index_exp) does not have
a corresponding label.

ANSI 66 Compatibility Extensions

3. In 66 mode, if an intrinsic function name is to be passed as an actual argument, it must be
specified in an EXTERNAL statement. An intrinsic function becomes nonintrinsic (that is, a
user-defined symbolic name) only if used as a variable or subroutine name, or if explicitly
typed differently from its implicit type (with a type statement).

In 77 mode, intrinsic functions to be passed as actual arguments must be specified in the
INTRINSIC statement. An intrinsic function name in an EXTERNAL statement always loses
its intrinsic properties and becomes a user-defined symbolic name. Type statements have no
effect on intrinsic names.

4. In the input record of a list-directed READ, complex values can have a different form. The
slash (/) and end-of-record have opposite meanings in 66 mode and 77 mode.

In 66 mode, the complex value in an input record must not have parentheses surrounding the
real and imaginary numbers. These numbers are separated by only a comma when that value
is read with a list-directed READ statement. The parentheses are required in 77 mode.

In 66 mode, when a list-directed READ statement is executed and a slash (/) is encountered in
the input record, all entries following the slash on the current record are ignored, and the read
continues on the next record until the input list items are satisfied. If an end-of-record is
encountered, the READ terminates and any items remaining in the READ statement are
unchanged.

In 77 mode, if an end-of-line (end-of-record) is encountered, the read is continued on the next
record until the input list items are satisfied. If a slash (/) is encountered, the read terminates
and the remaining items in the input list are unchanged.

5. Arithmetic expressions involving operands of two different types, complex and double
precision, produce a result of type complex in 66 mode. In 77 mode a similar expression
produces a result of type double complex.

6. Hollerith constants are discussed in “Compatibility Features” below. Note that the constant is
stored as a different type depending on the number of characters and on the mode.

Number of
Characters 66 Mode 77 Mode
lor2 Integer Integer (I compiler option) or
double integer (J compiler option)
3or4 Real Double integer
Sorb6 Extended precision Double precision
7 or 8 Complex Double precision

7. Using unformatted input/output in 66 mode, device types 00 through 17 octal use paper tape
length words. In 77 mode, device types 1 and 2 use paper tape length words.

ANSI 66 Compatibility Extensions 8-3

Compatibility Features

The compatibility features are included in FORTRAN 77 for backward compatibility only. These
features are defined as part of the ANSI 66 standard or as extensions that were included in
FORTRAN 4X but were not included as part of the ANSI 77 standard. The compatibility features
are listed in Table 8-2, with complete descriptions following. These features are always available
as part of FORTRAN 77 in addition to the features described in previous chapters. No special
action is required to enable the compatibility features.

Although FORTRAN 77 accepts these features, they should not be used in new programs. For
each feature, there is a corresponding or alternative feature in the ANSI 77 standard which should
be used instead. For example, the CHARACTER data type should be used instead of Hollerith.

Each of the features in Table 8-2 is discussed in detail after the table. The number in the left
column of Table 8-2 refers to the number of the paragraph where the feature is discussed.

Table 8-2. Compatibility Features

1 Extended precision type.

2 Hollerith constants.

3 nH editing in formatted input.

4 Character constant initializing noncharacter item in DATA statement.

5 An integer array name where character expression required in an input/output
statement.

6 The A and R format descriptors for input/output of noncharacter items.

7 DECODE and ENCODE statements.

8 Improper array dimensioning in EQUIVALENCE statement.

9 Record number connected to unit number (unit’recnum).

10 Statement function in EXTERNAL statements as arguments.

11 Two-way arithmetic IF statements.

12 Parentheses around simple input/output lists.

13 D in column 1 denoting debug line.

14 $ as statement separator.

15 A subscript may have a non-INTEGER value.

16 Ampersands (&) instead of asterisks (*) in alternate returns.

1. The extended precision type defines a set of real numbers. Extended precision values have the
following range:

—1.70141183460 x 10138 to —1.469367938528 x 10~39
0.0
1.469367938528 x 10739 to 1.70141183460 x 10+38

Objects of type extended precision are represented in three 16-bit words and have an accuracy
of approximately 11.6 to 11.9 digits (that is, one part in 10116 to 1011-9),

A variable can be explicitly typed as extended precision by specifying it in a REAL*6 or
DOUBLE PRECISION*6 type statement, or in a DOUBLE PRECISION statement with the
X option specified in the control statement.

Extended precision constants have the same syntax as double precision constants. Constants
with this syntax are stored as extended precision if the X option in the control statement is
specified; otherwise, they are double precision constants.

8-4 ANSI 66 Compatibility Extensions

The data format in memory of extended precision storage is shown in Appendix D.

2. Hollerith constants are a special format for character strings that are stored as numeric values.
A Hollerith constant consists of an integer specifying the number of characters (including
blanks), followed by the letter H and the character string (without delimiting single quotation
marks).

A Hollerith constant is a numeric value. It can be used in an arithmetic expression; it cannot
be used in a character expression.

Hollerith constants are stored as the following types:

Number of
Characters 66 Mode 77 Mode
lor2 Integer Integer (I compiler option) or
double integer (J compiler option)
3or4 Real Double integer
Sor6 Extended precision Double precision
7 or 8 Complex Double precision

A Hollerith constant with greater than eight characters is legal only as an actual argument in a
CALL statement or function reference, or to initialize multiple array elements in a DATA
statement, in which case the Hollerith constant must be the exact size of the array it is used to

initialize.

Examples
2HS 6 H&PROGA
8HA STRI NG 3H12A

12HReport Title 7THQU OTED

Note Since Hollerith constants offer no advantages over character constants and are
less flexible, they should be avoided.

The data format in memory of Hollerith constants storage is shown in Appendix D.

3. The nH Hollerith edit descriptor is mainly used to write to the output record the n characters
(including blanks) that follow the H. nH editing, if used on input, replaces the corresponding
characters in the format descriptor with the characters in the input field. If the format is then
used on output, the new value is used. Use of nH editing on input is discouraged, since
program portability may be inhibited. This feature does not work in CDS programs.

4. Character constants can be used as Hollerith constants to initialize noncharacter items in

DATA statements. These constants must be delimited by single quotation marks (). The size
of the character constant can be less than the size of the noncharacter item.

ANSI 66 Compatibility Extensions 8-5

Example

DI MENSI ON nanr (10)
DATA nant/’ FI LEL: SU; =31’ /

As with Hollerith constants, a character constant may initialize more than one element of an
array. If the length of the constant is not an exact multiple of the array element size, the
remaining characters in the last initialized element are padded with blanks. The next constant
initializes the following array element. The rule for concatenating adjacent character
constants does not apply in this case.

5. An integer variable can be used as the format specifier in an input/output statement. If the
variable represents an array, the array is assumed to contain an ASCII format. As defined in
the ANSI 77 standard, if the variable is a simple variable, it must be defined by an ASSIGN
statement.

An integer array name is also allowed with the following specifiers in input/output statements:

FI LE= NAME= UNFORMATTED=

USE= SEQUENTI AL= FMI=

STATUS= Dl RECT= FORM=

ACCESS= FORVATTED= BLANK=
Example

| NTEGER f name(5)
DATA fname/ 10H&FI LEL: : MW
OPEN(UNI T=66, FI LE=f nane)

In this example the integer array f name is used where a character expression is required by the
ANSI 77 standard. Simple variables or array elements may not be used this way.

6. Input and output of ASCII data to and from noncharacter variables can be done with the A
and R format descriptors.

7. The DECODE and ENCODE statements allow you to do formatted internal-to-internal data
transfer (that is, from and to internal records). This feature is provided in the ANSI 77
standard through internal files. DECODE and ENCODE should not be used in new
programs; use internal files instead.

Syntax

DECODE (c, f, buffer[, | OSTAT=ios] [, ERR=label]) list
ENCODE (c, f, buffer[, | OSTAT=ios] [, ERR=label]) list

where:
c is the maximum number of characters in the internal record.
f is a format statement label.
buffer is the location of the internal record and can be any type except character.

8-6 ANSI 66 Compatibility Extensions

ios is an integer variable or integer array element name for error code return (re-
fer to Appendix A for IOSTAT error codes).

label is the statement label of an executable statement in the same program unit as
the DECODE or ENCODE statement. If an error occurs during the execution
of the DECODE or ENCODE statement, control is transferred to the specified
statement rather than the program’s being aborted.

list is an input/output list of variables.

DECODE converts the first ¢ characters in the internal record buffer from ASCII data into the
input/output list items, using the format specification f; that is, DECODE reads from the
internal record to the list. List-directed DECODEIing is allowed (that is, f = *). The value of
¢ determines the record size.

ENCODE converts the elements of the list to ASCII data according to the format specification
f and stores the result in the internal record buffer (an array or a simple variable); that is,
ENCODE writes from the list to the record. The value of ¢ must be greater than or equal to
the record size specified in the FORMAT statement. List-directed formatting can be used in
the ENCODE statement.

Example
n =10 Shows the use of ENCODE to form a
m=5 FORMAT specification containing variables.
ENCCDE (20,33,ifm) n,m The resultant FORMAT stored in i f nt is:

33 FORNMAT (" ("12,X 12,7 (12,X))")

(10X, 5(12,X))
and might be used by:
WRITE (1,ifnt) iarray

If the format/list combination requires that more than one record be read or written, the
buffer is considered to have as many records as needed, in contiguous storage locations. If ¢ is
odd, every other record begins in the middle of a word.

A multidimensional array can be referenced in an EQUIVALENCE statement with fewer
subscripts than that which the array was declared. The missing subscripts are set to the
corresponding lower bounds of the array. If only one subscript is used and the first lower
bound is 1, the subscript specifies a linear position in storage. For example, the statements:

DI MENSI ON a(2, 2), i (4)
EQUI VALENCE (a(2,1),i(2))

produce the following storage space allocation:

ANSI 66 Compatibility Extensions 8-7

10.

11.

Storage Space

Array a Word Number Array i
a(1,1) 1
2 i(1)
a(2,1) 3 i(2)
4 i(3)
a(1,2) 2 i(4)
a(2,2) g

The statements:

DI MENSI ON a(2,2), i(4)
EQUI VALENCE (a(3),i(4))

produce the same storage space allocation as the previous example. This EQUIVALENCE
statement references a multidimensional array with a single subscript.

The UNI T= specifier in direct access input/output statements can be qualified by a record
number:

[UNI T=] unit’recnum

where recnum is an integer expression. If this form is used, the specifier ' REC=r ecnuni , which
is the ANSI 77 standard method of specifying the record number, is not allowed in that
statement.

Example

VWRI TE(UNI T=61" i recnum 11, | OSTAT=i os, ERR=99) record

A statement function name can be used in an EXTERNAL statement, allowing that function
to be passed as an actual argument in a subprogram call. The ANSI 77 standard does not
allow statement functions to be used as arguments.

A two-way arithmetic IF statement transfers control to one of two statements rather than
three. The syntax is the same as the arithmetic IF statement defined by the ANSI 77 standard
except that the third label is not specified.

Syntax
| F (exp) labell, label2

where:
exp is an arithmetic expression of any type except complex.
label is the statement label of an executable statement.

The statement to which control transfers is determined as follows:

8-8 ANSI 66 Compatibility Extensions

12.

If exp < 0, control transfers to labell.
If exp = 0, control transfers to label2.

Therefore, the statement
| F (a+b) 100, 200
is the same as the statement
I F (a+b) 100, 200, 200

The expression in a two-way arithmetic IF statement can be a logical expression, with the first
branch executed if the value is true and the second branch executed if the value is false.

Each READ, WRITE, or PRINT statement has a list of items to be read into or written from.
These items can be variables, expressions, or an implied DO loop surrounded by parentheses.
As a compatibility feature, any combination of one or more of these items in an input/output
statement can optionally be surrounded by parentheses.

Note Use this feature carefully with list-directed output. If the input/output list en-

closed in parentheses has the form of a complex constant, it is used as a complex
constant.

13.

14.

15.

16.

Example
READ(1,*) (varl,var2,var3),((matrix(i,j),i=1,5),]=1,10)

In this example, var 1, var 2, and var 3 are surrounded by parentheses. The parentheses are
not required but are allowed as a compatibility feature. This READ statement also involves
an implied DO loop for the array matrix. This implied DO loop is also surrounded by
parentheses, which in this case are required.

The letter D in column 1 of a line designates that line as a debug line. Compilation of debug
lines is optional. Unless specifically directed to compile debug lines, the compiler treats debug
lines the same as comment lines designated with C.

To cause compilation of debug lines, specify the D option in the control statement or in the
compiler command line (see Chapter 7 for the forms of the command line and control
statement).

More than one statement can appear on a line if the dollar sign ($) is used as a statement
delimiter.

Example
i =0 %r =0.0589 $ s = g*(4.82+t)

If a subscript has a non-INTEGER value, it is converted to INTEGER (using truncation)
before it is used.

An ampersand (&) may be used in place of an asterisk (*) to denote an alternate return in a
SUBROUTINE statement or to indicate a statement number passed as an actual parameter
for alternate returns.

ANSI 66 Compatibility Extensions 8-9

Error Messages

There are two kinds of FORTRAN error messages. Those produced by the compiler are called
compilation errors, compile-time errors, or just compile errors. Those produced while a FORTRAN
program is running are called run-time errors.

Types of Compilation Errors

There are three types of FORTRAN 77 compilation errors:

Warning The compiler continues to process the statement, but the object code may be erro-
neous. The program should be recompiled.

Error The compiler ignores the remainder of the erroneous source statement, including
any continuation lines. The object code is incomplete, and the program must be
recompiled.

Disaster The compiler ignores the remainder of the FORTRAN 77 source file. The error
must be corrected before compilation can proceed.

Note If the compiler detects an error in a program, the object code contains a refer-

ence to the undefined external name <Compile Errors>. This prevents loading
of the object code, unless forced by the user. It is strongly recommended that a
program with compilation errors not be executed.

The reference to the undefined external name is not produced for warnings.

Error Messages A-1

Format of Compilation Errors

When an error is detected in a source statement, the source statement is printed. A question mark
(?) is printed after the erroneous column. Then a message is printed in the format:

war ni ng
** program name ** error nndetected at |ine xx colum cc
di saster

where:

program name is the name of the program unit being compiled.

nn is the error number.
XX is the line number of the source file where the error occurred.
cc is the column number of the source line where the error was detected.

If the column number is unknown, it is not printed. If the source line is not available (for example,
an error occurs on the second pass of the compiler with the L option), the source line of the error
is not printed.

After the END statement, if the IMPLICIT NONE statement is used in the source file and some
names are not explicitly typed, those names are listed after a warning message.

If undefined source program statement labels still exist, an error message for each undefined label
is printed in the form:

undefi ned statenent nunber: #nnnnn

where:

nnnnn is the statement number that does not appear in columns 1 through 5 of any of
the initial lines of the program just compiled, or appears but is illegal.

A brief explanation of each error detected is output to the list file. The form of this error
description is:

Error Directory
Nunber Expl anation

nn description
mm description

etc.

where:

Error Directory and
Nunber Expl anation are headings.

nn and mm are the error numbers detected.

description is a brief explanation of the error number.

A-2 Error Messages

When an error occurs in accessing files, a disaster is generated. On some operating systems, a
message is printed giving the nature of the error and the file name. On other operating systems,
only the disaster number is given; the file on which the error occurred can be found from the
disaster number (for example, disaster 97 refers to an error in an access to the relocatable output
file).

Compilation Error Summary

When compilation is completed, a summary message is displayed at the initiating terminal. This
message reports the number of disaster, error, and warning conditions encountered during
compilation of all the program units. The FORTRAN 77 compiler returns this information by the
parameter return subroutine PRTN (see the appropriate system reference manual for a
description of this subroutine). The message appears in the form:

END ftn7x: nn disasters, nn errors, nn warni ngs

where:

nn is the total number of disaster, error, or warning conditions detected during
compilation of all programs (nn = No, if none were encountered).

The parameters returned by PRTN are:
parameter I~ The sum of parameters 2 through 4.
parameter 2 'The number of disasters detected.
parameter 3 The number of errors detected.
parameter 4~ The number of warnings detected.

parameter 5 The revision level of the compiler, as printed in the summary lines in the listing
(see Chapter 7), for example, 5000.

Error Messages A-3

FORTRAN 77 Compilation Error Messages

Table A-1 lists the FORTRAN 77 compilation error messages and briefly describes the causes of

the errors.
Table A-1. FORTRAN 77 Compilation Error Messages
1 ERROR Error in ftn directive.
MESSAGE
CAUSE The first line of the source begins with “FTN” but does not conform to
the syntax for the FTN directive or has an illegal option.
2 ERROR [Ilegal option in runstring.
MESSAGE
CAUSE The fifth parameter in the runstring contains a character that is not a
legal option. The options I, J, X, Y, and E can appear in the FTN direc-
tive, but not in the runstring.
3 ERROR Conpi |l er space overflow, conpiler needs nore ENMA
MESSAGE nenory.
CAUSE Refer to the installation manual for information on how to size the
compiler.
4 ERROR Invalid common | abel.
MESSAGE
CAUSE The common label given has an illegal character or is not followed by a
matching slash (/).
5 ERROR Inplicit is redundant or retypes nanmed constant.
MESSAGE
CAUSE A starting letter or range of letters is used in more than one IMPLICIT
group, or a name in a PARAMETER statement has its implicit type
changed by this statement.
A-4 Error Messages

6 ERROR Transfer of control into a |oop or |F-THEN-ELSE

MESSAGE bl ock.

CAUSE A statement in a loop or IF-THEN-ELSE block is referenced from out-
side the loop or block. The program may not run as expected. When
control is transferred into a DO loop, the loop may not be initialized
correctly; in an IF-THEN-ELSE, the block may have been optimized
out.

7 ERROR ENTRY or RETURN in main program or BLOCK DATA.

MESSAGE

CAUSE These statements are legal only in subroutines and functions. If a SUB-
ROUTINE or FUNCTION statement has an error, the compiler may
consider this module to be a main program.

8 ERROR Il egal conplex nunber.

MESSAGE

CAUSE The number looks like a complex constant, but does not conform to the
rules for forming such constants.

9 ERROR M smat ched parenthesis.

MESSAGE

CAUSE There are either more right parentheses than left parentheses at some
point, or not as many right parentheses as left parentheses at the end of
the expression.

10 ERROR Unrecogni zed statenent.

MESSAGE

CAUSE The statement does not look like an assignment statement or a state-
ment function, and does not start with a recognized keyword.

11 ERROR Di nensi on/ substring 2nd part < 1st part.

MESSAGE

CAUSE The upper bound or last character position is less than the lower bound
or first character position.

12 ERROR Return # too large or too nmany alternate returns.

MESSAGE

CAUSE The (constant) return number in a RETURN statement exceeds the

number declared in the SUBROUTINE statement, or a system intrinsic
(for example, EXEC) call has more than one alternate return specified.

Error Messages A-5

13 ERROR Constant > 2047 in format, or illegal string.
MESSAGE
CAUSE Numeric value in a FORMAT is too large, or the closing quote of a
string is missing, or an ALIAS string is too long.
14 ERROR Constant or constant expression overflow or under-
MESSAGE fl ow.
CAUSE A constant (expression) exceeds the number range of the machine, us-
ing the data types of the constants.
15 ERROR Keyword unrecogni zed, repeated, or illegal.
MESSAGE
CAUSE An I/O keyword is misspelled, has already been used in this I/O state-
ment, or is illegal in this I/O statement.
16 ERROR Il'legal octal or hex constant.
MESSAGE
CAUSE The constant has an illegal character or is too big.
17 ERROR M ssing constant or operand.
MESSAGE
CAUSE An operand was expected but a delimiter or an unrecognized character
was found. This can be caused in a number of ways by improper syntax
or badly formed names or constants.
18 ERROR Il egal conbination of keywords.
MESSAGE
CAUSE Some of the keywords used in this I/O statement cannot be used to-
gether.
19 ERROR I nt eger constant expected.
MESSAGE
CAUSE Only an integer constant, or possibly an integer constant expression, can
be used in this context.
A-6 Error Messages

20 ERROR Il'legal character count in hollerith constant.
MESSAGE
CAUSE A negative or zero integer constant is followed by “H”. Hollerith con-
stants must have character counts greater than zero, and the “H” is not
legal here if Hollerith was not intended.
21 ERROR Val ue out of range.
MESSAGE
CAUSE The constant value given is too large, too small, or otherwise unaccept-
able.
22 ERROR Il egal use of nane.
MESSAGE
CAUSE This name has been used before in a different context that conflicts with
its current use.
23 ERROR Step size = 0.
MESSAGE
CAUSE The step size in a DO loop cannot be zero.
24 ERROR Variable or array name expected.
MESSAGE
CAUSE A variable or array name is expected here, but a delimiter, constant,
named constant, or subprogram name is found.
25 ERROR Vari abl e nane or constant expected.
MESSAGE
CAUSE A name is expected here, but a delimiter, constant, named constant, or
subprogram name is found.
26 ERROR Integer (logical) item expected.
MESSAGE
CAUSE The context calls for an item of a certain type (integer or logical) but

the item given is of a different type.

Error Messages A-7

27 ERROR Dupl i cate statenent nunber.

MESSAGE

CAUSE This statement number has already been used.

28 ERROR Unexpected character or unexpected end of statenent.

MESSAGE

CAUSE The compiler did not recognize the character, or was expecting more
characters to complete the statement.

29 ERROR Bl ank |ine has statenent nunber.

MESSAGE

CAUSE Blank lines should not have statement numbers; blank lines are com-
ments.

30 ERROR Incorrect nesting. My be due to other errors.

MESSAGE

CAUSE If there are other errors, this error may be ignored until the other er-
rors are corrected. Can be caused by END DO, ELSE, ELSE IF, and
ENDIF statements after errors. It may also be caused by ending a
block (for example, a DO loop) before all inner blocks have been
ended.

31 ERROR Conpi | er space overflow, conpiler needs nore (EMA)

MESSAGE nenory.

CAUSE Refer to the Configuration/Installation manual for information on how
to size the compiler.

32 ERROR Undefined, illegal or incorrectly used statenent

MESSAGE nunber.

CAUSE This statement number has an illegal character in it, was never defined,
or was used in the wrong context (for example, a FORMAT statement
number cannot be used in a GOTO).

33 ERROR Redundant/conflicting/ m ssing EXTERNAL/I NTRI NSI C

MESSAGE decl arati ons.

CAUSE A subprogram name was passed as an actual parameter but not de-

clared EXTERNAL or INTRINSIC, or was declared more than once in
EXTERNAL or INTRINSIC statements.

A-8 Error Messages

34 ERROR St atement out of order.
MESSAGE
CAUSE This statement appears too late in the source. This can be due to errors
in earlier statements.
35 ERROR No path to this statenment.
MESSAGE
CAUSE The statement before this one always transfers control (for example, a
GOTO) but this statement is not labeled, so it can never be reached. If
this happens in old code that uses GOTOs after EXEC calls with the
no-abort bit, the calls must be changed to use alternate returns. The use
of GOTO with the no-abort bit is not supported.
36 ERROR Vari abl e appears twi ce in conmon.
MESSAGE
CAUSE A variable or array name appears more than once in COMMON state-
ments.
37 ERROR Formal paranmeter in COMMON or DATA statenent.
MESSAGE
CAUSE Parameters are illegal in this context.
38 ERROR Wong nunber of subscripts.
MESSAGE
CAUSE This array reference has a different number of subscripts than were de-
clared when the array was dimensioned.
39 ERROR Illegal variable in dinension bound expression.
MESSAGE
CAUSE Only formal arguments and variables in common may be used as dimen-
sion bounds or in bound expressions.
40 ERROR I nconsi stent equi val ence group.
MESSAGE
CAUSE It is impossible to perform the equivalences specified, because more

than one location has been given for an item. Examples: Items in dif-
ferent common blocks; or two different elements of an array specified,
but not aligned properly.

Error Messages A-9

41 ERROR Negative extension of common via equival ence.

MESSAGE

CAUSE An array element was equivalenced to an item in common in such a way
that the start of the array would be before the start of the common
block.

42 ERROR Left parenthesis expected.

MESSAGE

CAUSE Probably a function reference without a parameter list. Parameter lists
are required, even if empty; for example, PCOUNT().

43 ERROR Variable used in a context that requires a fornal

MESSAGE paraneter.

CAUSE Some operations, such as declaring an array to be variably dimensioned,
are only legal for formal parameters.

44 ERROR Constant mssing, ill-formed, or of wong type.

MESSAGE

CAUSE The compiler could not recognize a constant of an acceptable type in
this context.

45 ERROR Il'legal conbination of data types.

MESSAGE

CAUSE The current operation cannot be performed on the items given; the data
types are not compatible.

46 ERROR Name of a function not used or nane of a

MESSAGE subroutine is used.

CAUSE A function name must be used for assigning a result value; a subroutine
name must not be used as a variable.

47 ERROR Vari abl e di nension bound not in same entry list as

MESSAGE the array.

CAUSE The specified variable is a formal parameter but is not given in an entry
list that contains the array; so the bound is undefined at that entry, and
the array address calculations cannot be done.

A-10 Error Messages

48 ERROR Illegal use of EMA variable.
MESSAGE
CAUSE EMA variables are not allowed in some contexts, such as some I/O key-
word values.
49 ERROR Function has illegal mx of entry point types.
MESSAGE
CAUSE Character and noncharacter entry points cannot be mixed, and charac-
ter entry points must all have the same length.
50 ERROR Il'legal last statement of DO | oop.
MESSAGE
CAUSE This statement cannot end a DO loop. In particular, any statement that
always causes a transfer of control is illegal here (for example, GOTO
or arithmetic IF).
51 ERROR Control variable of DO statenent already in use.
MESSAGE
CAUSE An outer loop uses the same index variable as this inner loop.
52 ERROR This statement may not be used as the true part of
MESSAGE a logical IF.
CAUSE DO, logical IF, block-IF, ENTRY and END statements cannot be used
as the statement following a logical IF.
53 ERROR Il egal use of character*(*) or “*” |ast upper bound.
MESSAGE
CAUSE Character®(*) can only be used for a formal argument or named con-
stant; “*” can only be used as the last upper bound of a formal argu-
ment.
54 ERROR Array nane di nensioned tw ce.
MESSAGE
CAUSE Array names followed by their dimensions can only appear once within

the specification statements.

Error Messages A-11

55 ERROR Il'legal use of non-character data.

MESSAGE

CAUSE Character data is required in this context.
56 ERROR Il egal conbination of data types.

MESSAGE

CAUSE These data types cannot be used together with any operator.
57 ERROR Illegal data type.

MESSAGE

CAUSE This data type is illegal in this context (for example, with a certain op-
erator, such as logical data with “+7).

58 ERROR Function used as subroutine or has alternate

MESSAGE returns.

CAUSE This subprogram is used as a function, but it has alternate returns or is
also used as a subroutine. Mixed use as a function and subroutine is
allowed for ALIASed items, but should not be used in new programs.

59 ERROR Wong # of arguments.

MESSAGE

CAUSE This intrinsic, statement function, or recursive call has an illegal or in-
consistent number of actual arguments.

60 ERROR Il egal argunent type.

MESSAGE

CAUSE This intrinsic, statement function, or recursive call has an argument
with an illegal or inconsistent type.

61 ERROR Arithnetic IF with illegal data type.

MESSAGE

CAUSE The expression in an arithmetic IF must be numeric and not of type
COMPLEX. Make sure the parentheses are balanced and the right
side has the correct syntax.

A-12 Error Messages

62 ERROR Logical IF or WH LE with non-l ogical data.
MESSAGE
CAUSE The expression in a logical IF or DO WHILE must be of type LOGI-
CAL. Make sure the parentheses are balanced and the right side has
the correct syntax.
63 ERROR PCOUNT used with DI RECT entry point.
MESSAGE
CAUSE The number of actual parameters passed to a DIRECT entry point can-
not be determined.
64 ERROR “THEN" expect ed.
MESSAGE
CAUSE The only legal statement after ELSE IF (expression) is THEN.
65 ERROR Non—-character item on odd byte address.
MESSAGE
CAUSE A COMMON or EQUIVALENCE statement puts a word-addressed
variable on an odd byte address. In a COMMON statement, a byte will
be left unused.
66 ERROR Program should (not) have executabl e statenents.
MESSAGE
CAUSE Regular subprograms and main programs must have executable state-
ments, and BLOCK DATA subprograms must not have them.
67 ERROR Character item cannot be in EVA
MESSAGE
CAUSE By explicit declaration, COMMON, or EQUIVALENCE, an attempt
was made to put character data in EMA, which is illegal.
68 ERROR ENTRY used in Block IF or DO | oop.
MESSAGE
CAUSE All ENTRY statements must be at the “outer” level of a subprogram,

and not within any DO or IF blocks.

Error Messages A-13

69 ERROR Substring out of bounds or non-character item has

MESSAGE substring.

CAUSE In a character item, the starting character is less than one or the ending
character is greater than the declared length.

70 ERROR Const ant subscript out of bounds.

MESSAGE

CAUSE The subscripts are outside of the declared dimensions.

71 ERROR Too many/few constants, or illegal repeat count.

MESSAGE

CAUSE The number of constants does not match the number of variables and
array elements, or the repeat count is negative or zero.

72 ERROR [tem nust (not) be in common.

MESSAGE

CAUSE In a BLOCK DATA subprogram, only items in labeled common can be
used in DATA statements.

73 ERROR Constant & variable have different types.

MESSAGE

CAUSE This constant cannot be converted to the type of the corresponding vari-
able. Make sure the number of variables and constants is correct up to
this point.

74 ERROR Undecl ared array, or stnt funct after first

MESSAGE executable stnt.

CAUSE This statement looks like an assignment to an array element or like a
statement function, but the name is not declared as an array and it is
too late in the program to define a statement function.

75 ERROR Il'legal use of current subprogram name or ENTRY

MESSAGE nane.

CAUSE Entry point names are illegal in this context (for example, a recursive
call in non-CDS mode).

A-14 Error Messages

76 ERROR Duplicate formal paraneter.

MESSAGE

CAUSE A formal parameter appears more than once in this parameter list.
77 ERROR St at enment nunber i gnored.

MESSAGE

CAUSE Statement numbers are not functional on specifications, DATA, or EN-
TRY statements. The number is ignored, as if the statement number
field had been blank.

78 ERROR Overlays (type-5 prograns) not allowed in CDS

MESSAGE node.

CAUSE The module has been converted to a zero-argument subroutine.

79 ERROR More than 255 paraneters to a subprogram or

MESSAGE |ibrary routine.

CAUSE The (CDS) PCAL instruction can only handle calls with 255 or fewer
parameters. The offending call can be caused by certain long expres-
sions, such as concatenations.

80 ERROR This statement not |egal in BLOCK DATA.

MESSAGE

CAUSE Only certain specifications and data statements are legal in BLOCK
DATA; all executable statements and formats are illegal.

81 ERROR PROGRAM formal paranmeter is not type character.

MESSAGE

CAUSE All formal parameters in a PROGRAM statement must be of type
CHARACTER.

82 ERROR Conpi | er space overflow, conpiler needs nore

MESSAGE nmenory or EMNA

CAUSE There was not enough memory available for the compiler to compile

this module. Increase the “size” of the compiler. See your System
Manager, who should refer to the Configuration/Installation manual for
information on how to size the compiler.

Error Messages A-15

83 ERROR Attenpt to retype a nane.

MESSAGE

CAUSE A name appears in more than one type statement or twice in a single
type statement.

84 ERROR Code, data, conmon, save, stack or EMA space over—

MESSAGE fl ow.

CAUSE The module is too big. If there are large arrays, try making them
smaller or moving them to EMA. If the module is very long, try break-
ing it into two smaller modules.

85 ERROR Program nanme conflicts with comon, external or

MESSAGE intrinsic nane.

CAUSE The program name should be unique. Most “internal” names used to
access the library contain special characters, but a few do not, such as
SIN. Choose another program name.

86 ERROR (not currently used)
MESSAGE
CAUSE
87 ERROR The given names were not typed.

MESSAGE

CAUSE IMPLICIT NONE was specified but some variables were not men-
tioned in type statements. Could be due to typographical errors.

88 ERROR Cannot access list file.

MESSAGE

CAUSE An OPEN, CREATE, or WRITE of the list file failed. If the list file
does not end with .LST (new files) or begin with a single quote (old
files), it cannot be overwritten. If the list file is given the default name
using the “—" convention, the source file name must end with .FTN
(new files) or begin with an ampersand (old files).

89 ERROR (not currently used)

MESSAGE

CAUSE

A-16 Error Messages

90 ERROR II'legal continuation |ine.
MESSAGE
CAUSE The first line of the program, or the first line after a directive, cannot be
continued.
91 ERROR The follow ng external name is used in nore than
MESSAGE one way.
CAUSE A subprogram name was used as an entry point or a common block
name, or was ALIASed to match another subprogram name.
92 ERROR External name conflicts with a library routine.
MESSAGE
CAUSE An entry point, common block, or subprogram name matches the “in-
ternal” name used for a library routine. Most “internal” names contain
special characters, but a few do not, such as SIN. Choose another
name.
93 ERROR (not currently used)
MESSAGE
CAUSE
94 ERROR Item cannot be declared in EVA statenment or is
MESSAGE declared tw ce.
CAUSE Only formal parameters and local variables can be declared to be in
EMA, and must appear only once in EMA statements.
95 ERROR Cannot open include file, or name greater than 63
MESSAGE chars.
CAUSE The OPEN of this include file failed. Check the name.
96 ERROR Break detected.
MESSAGE
CAUSE An operator BREAK was entered. The compilation was terminated.

The relocatable file is not usable, and the list file may be incomplete.

Error Messages A-17

97 ERROR Cannot access rel ocatable output file.
MESSAGE
CAUSE An OPEN, CREATE or WRITE of the relocatable file failed. If the
relocatable file does not end with .REL (new files) or begin with a per-
cent sign (old files), it cannot be overwritten. If the relocatable file is
given the default name using the “—” convention, the source file name
must end with .FTN (new files) or begin with an ampersand (old files).
98 ERROR Cannot access source file, or eof before end.
MESSAGE
CAUSE The end of the source file was encountered in the middle of a module
(because of a missing or unrecognized END), or an OPEN or READ of
the source file failed, or a READ of an included file failed.
99 ERROR Can't access scratch file(s).
MESSAGE
CAUSE A CREATE or WRITE of internal scratch files failed, probably due to
lack of space. Make sure there is space available on the scratch car-
tridge, working directory, or top cartridge, depending on your operating
system. If in doubt, consult the System Manager.
100 ERROR (not currectly used).
MESSAGE
CAUSE
101 ERROR $| F/ SELSE/ $ENDI F nested incorrectly, or nested too
MESSAGE deeply.
CAUSE These directives were nested to more than 16 levels, or incorrectly
nested.
102 ERROR Command-line directive nust start with $; nust not
MESSAGE be | NCLUDE.
CAUSE The sixth command-line argument on the FTN7X command line did not
start with $ or was SINCLUDE.
103 ERROR Il —formed {nane} reference to $SET vari abl e.
MESSAGE
CAUSE A left brace “{” was not followed by a name and a right brace “}”.
A-18 Error Messages

104 ERROR No such $SET vari abl e.

MESSAGE

CAUSE This name has not been defined in a $SET directive yet.

105 ERROR $SET used between $ALIAS or $EMA and start of

MESSAGE subprogram

CAUSE $SET may not be used between $ALIAS or SEMA and the start of the
following subprogram.

106 ERROR Character item used on both sides of assignnent;

MESSAGE nust not overl ap.

CAUSE A character variable, array, or substring was used on the left side of an
assignment and in the expression on the right side. It is possible that
the two usages overlap, which could produce an incorrect result or run-
time error. The compiler can only determine the possibility of overlap.
See the P option in Chapter 7.

107 ERROR Vari ables in absolute comon bl ocks may not appear

MESSAGE in DATA statenents.

CAUSE When $ALIAS is used to place a common block at an absolute address,

variables in that common block may not be initialized in DATA state-
ments.

Library Subroutine Error Messages

During the execution of FORTRAN 77 programs, errors can be generated from several sources,
including input/output formatter errors, remote file access errors, and errors from references to
Relocatable Library Subroutines. Error messages from the Relocatable Library Subroutines are
listed in the first part of this appendix. The input/output run-time errors are listed in the second
part of this appendix. Refer to the appropriate system reference manual for applicable system
error messages and information about FMP, DS, and EXEC.

Error messages caused by CDS subprograms and non-CDS subprograms are slightly different:

CDS: /pname Runtime error xxxin code segnent zzat address yyyyy
non-CDS: | pname * RUNTI ME ERROR* xxx @ yyyyy

Error Messages A-19

where:

pname is the name of the program where the error was encountered.
XXXX is the error code; it can take one of three forms:

nnnn four-digit numeric error code

EOF end-of-file error

nnaa intrinsic routine error

nn = routine number
aa = OF integer or floating-point overflow.
UN operation is undefined for this argument, for
example | og(-1. 0) .
OR operation is defined but is computationally
unfeasible for this argument, for example

sin(le22).
Yyyyy is the address within the program at which the error occurred. The module and
line number can be determined using a load map and a compilation listing with the
Q option.
zz is the CDS code segment in which the error occurred.

When a CDS subprogram causes an error, a traceback is done after the above message is printed.
The traceback prints the name of the module that caused the error and the point where the error
occurred, followed by the name of the routine that called it, and the point of the call, and so on,
tracing the call back to the main program. For example:

(Error handl er) <— BAD ROUTI NE+22 <- | TS _CALLER+33 <— NAI N_PROGt+444

The numbers are octal offsets within the code of the module. If the stack has been corrupted, the
traceback may terminate early or may not be done at all. In this case, the offending routine and
address can be found from the standard message, which precedes the traceback.

Table A-2 lists the library subroutine errors, the library subroutines related to each error, and the
error conditions causing the errors. The parameter types referenced in Table A-2 are as follows:

r = REAL*4

x = EXTENDED PRECISION (REAL*6)
d = DOUBLE PRECISION (REAL*8)

i = INTEGER*2

j = DOUBLE INTEGER (INTEGER*4)

¢ = COMPLEX*8 or COMPLEX*16, (real(c), imag (c))

Generic forms are not listed; for example, LOG (r) is listed as ALOG(r), SQRT(d) is listed as
DSQRT(d), and r**d is listed as d**d.

A-20 Error Messages

Table A-2. Library Subroutine Errors

Error Expression
Message Used In Program Error Condition
02-UN ALOG(r) r<0
ALOGLO(r) r<0
CLOG(c) ¢ = (0,0)
DLOG(d) d=0
DLOGL0(d) d=0
03-UN SQRT(r) r<o0
DSQRT(x) x<0
DSQRT(d) d<0
04-UN rr base = 0, exponent < 0
or base < 0, exponent = 0
05-OR SI N(r) r or real(c) outside
COsS(r) [-8192 X 7,+8191.75 X 7]
CSl N(c)
CCOS(c)
CEXP(c)
DSI N(d) d outside
DCOS(d) [—228,+229]
06—UN g base = 0, exponent <0
06-0OR g exponent outside [—32768,+32767]
07-CF EXP(r) r, d, or real(c)
DEXP(d) > 88.03
EXP(c)
r**r overflow
d**d
08-UN " base=0, exponent < 0
7
08-COF %%, overflow
J*
09-OR TAN(r) r or x outside
DTAN(x) [-8192 X 7,+8191.75 X @]
DTAN(d) d outside [—223,+223]

Error Messages

A-21

Table A-2. Library Subroutine Errors (continued)

Error Expression

Message Used In Program Error Condition

10-OF DEXP(x) x > 88.03
x**x overflow

11-UN DLOG(x) x=0
DLOGI0(x)

12-UN X**] base = 0, exponent < 0
d**i

13-UN x**x base < 0
d**d or base = 0, exponent < 0

14-UN cH*i base = (0,0), exponent < 0

15-UN DATAN2(d1,d2) dl=d2=0

21-UN ASI N(r) r>1

22-UN ACOS(r) r>1

23-OR Sl NH(r) r > 88.722839
CSl N(c) i mag(c) > 88.722839
CCOS(c)

24-OR COsH(r) r > 88.722839

26—-UN ACOSH(r) r<i

27-UN ATANH(r) r=1

31-UN DASI N(d) d>1

32-UN DACOS(d) d>1

33-OR DSI NH(d) d > 88.722839

34-OR DCOSH(d) d > 88.722839

36—UN DACSH(d) d<1

37-UN DATNH(d) d>1

41-0R CTAN(c) real(c) outside

[—4096 x t,+4095.875 X]

600 Character assignment Left and right sides of character
statement assignment overlap.

601 Character substring Substring first or last character

position out of bounds.

A-22 Error Messages

Input/Output Run-Time Errors

If | OSTAT=ios is present, the input/output error code is stored in ios. If END= is present and an
EOF error occurs, or ERR= is present and any other error occurs, control transfers to label, where
the program can decode and handle the error if desired. If an error occurs but IOSTAT and
END= or ERR= are not present, the program is aborted with a run-time error.

The input/output run-time errors returned in the IOSTAT variable or displayed on the user’s
terminal are listed in Tables A-3 through A-8.

Tables A-4 through A-8 include most values currently possible for IOSTAT in a FORTRAN 77
program. Some of the errors do not apply to all operating systems. Refer to the appropriate
system reference manual for applicable system error messages and information about FMP, DS,
and EXEC.

Sometimes FMP and DS return very large error numbers. This causes FORTRAN 77 to generate
large error numbers that differ from the FMP number. For example, DS file error —999 causes
run-time error 1499. Although positive FMP error numbers do not normally occur, when they do
occur they can cause run-time error numbers that are less than 500. If a very unusual error
number appears, it is probably due to a mismatch between the system RPL file and microcode.
See your System Manager.

Note that errors 600 and 601 are not I/O errors, but character string errors. See Table A-5.

Table A-3. Input/Output Run-Time Errors

-1 IOSTAT MEANING An EOF was read on a sequential file, or the end of an in-
ternal file was reached.

450 IOSTAT MEANING Invalid FORTRAN unit number (less than zero) or system
unit number (greater than 255).

451 IOSTAT MEANING Unrecognized STATUS value; legal values in an OPEN
statement are OLD, NEW, SCRATCH, and UNKNOWN.

452 IOSTAT MEANING No file name (FILE=) given; file names are required when
STATUS is OLD or NEW.

453 IOSTAT MEANING File name (FILE=) supplied; no file names are allowed
when STATUS is SCRATCH.

454 IOSTAT MEANING Unrecognized ACCESS value; legal values are SEQUEN-

TIAL, DIRECT, and BLOCKS.

455 IOSTAT MEANING Unrecognized FORM value; legal values are FORMATTED
and UNFORMATTED.

Error Messages A-23

456 IOSTAT MEANING The value for MAXREC, RECL, BUFSIZE, or all is nega-
tive or zero. These parameters must have positive values.

457 IOSTAT MEANING Unrecognized BLANK value; legal values are NULL and
ZERO.

458 IOSTAT MEANING The maximum number of scratch files, 99, were in use, so
this OPEN of another scratch file could not be done.

459 IOSTAT MEANING This file has already been opened and connected to a differ-
ent unit; a file can be connected to only one unit at a time.

460 IOSTAT MEANING The OPEN specified direct access, but the file to be opened
was sequential access (not type 1 or 2).

461 IOSTAT MEANING The OPEN specified sequential access, but the file to be
opened was direct access (type 1 or 2).

462 IOSTAT MEANING The file was not found, and STATUS was OLD. Same as
error 506.

463 IOSTAT MEANING Unrecognized STATUS value; legal values in a CLOSE
statement are KEEP and DELETE.

464 IOSTAT MEANING An ENDFILE was attempted on a direct access file; such
files do not have EOFs and ENDFILE is illegal.

465 IOSTAT MEANING Invalid file name given in FILE=. Same as error 515.

466 IOSTAT MEANING All connections specified in the $FILES are in use; no more
OPENSs can be done until a CLOSE is done.

467 IOSTAT MEANING All disk file connections specified in the $FILES directive
are in use; no more disk file OPENs can be done until a disk
file CLOSE is done.

468 IOSTAT MEANING The record length given in RECL does not match the actual
record length of the file.

A-24 Error Messages

469 IOSTAT MEANING The file position given in FFLOC is odd; only even byte po-
sitions are allowed, because the file system cannot position a
file to an odd byte position.

470 IOSTAT MEANING Unrecognized USE value; legal values are EXCLUSIVE,
NONEXCLUSIVE, and UPDATE.

471 IOSTAT MEANING The system unit number used is not accessible from this pro-
gram; that is, it is not in the session SST.

472 IOSTAT MEANING Could get neither read nor write permission for this file.

473 IOSTAT MEANING (not currently used)

474 IOSTAT MEANING A record number (REC=) was supplied in the READ or
WRITE, but the unit was not connected to a direct access
file.

475 IOSTAT MEANING A RECL value must or must not be supplied. RECL must
be used only it ACCESS is DIRECT, or BLOCKS.

476 IOSTAT MEANING (not currently used)

477 IOSTAT MEANING A NODE value was supplied (other than —1), but the
$FILES directive did not contain the DS keyword (FMGR
file system only).

478 IOSTAT MEANING An OPEN of a unit that was already connected tried to
change attributes other than BLANK.

479 IOSTAT MEANING An OPEN was tried with $FILES 0,0; or the library routines
to support OPEN were not loaded correctly.

480 IOSTAT MEANING A CLOSE was tried with $FILES 0,0; or the library routines
to support CLOSE were not loaded correctly.

481 IOSTAT MEANING An INQUIRE was tried with $FILES 0,0; or the library rou-

tines to support INQUIRE were not loaded correctly.

Error Messages A-25

482 IOSTAT MEANING The library routines to support BACKSPACE, ENDFILE,
and REWIND were not loaded correctly.

483 IOSTAT MEANING This INQUIRE statement tried to inquire about a disk file,
but the $FILES directive did not specify any disk connec-
tions. At least one disk connection must be specified, even if
no OPEN of a disk file will be done.

484 IOSTAT MEANING This OPEN statement tried to open a disk file, but the
$FILES directive did not specify any disk connections.

485 IOSTAT MEANING This OPEN statement specifies a direct access file or uses
RECL, but the file name supplied is an LU number.

486 IOSTAT MEANING Attempt to use DNODE, which is illegal in FORTRAN 77
programs. Use an OPEN statement to connect to a remote
unit.

487 IOSTAT MEANING ZBUF, ZLEN, or secondary/tertiary address supplied in this
READ or WRITE statement, but unit is connected to a disk
file.

488 IOSTAT MEANING REC supplied in this READ or WRITE statement is nega-
tive.

489 IOSTAT MEANING (not currently used)

490 IOSTAT MEANING (not currently used)

491 IOSTAT MEANING This FORMAT has an invalid field width (w), number of
digits (d), minimum number of digits (m), or size of expo-
nent output (e).

492 IOSTAT MEANING This FORMAT does not begin with a left parenthesis, or has
too many levels of parentheses.

493 IOSTAT MEANING Unrecognized format character, or use of a negative value in
a format (except scale), or no conversions given in the for-
mat but I/O list was not empty.

A-26 Error Messages

494

IOSTAT MEANING

Illegal character in a numeric input field.

495

IOSTAT MEANING

Numeric input field has an ill-formed number or logical
value, or an octal number is too large.

496

IOSTAT MEANING

Discrepancy in record size, I/O list length, internal buffer
size, or all. Could be due to:

Input record (or amount that fits in internal buffer) was
not large enough to satisfy an unformatted READ list. If
unknown-length records are being read with an unfor-
matted READ, the error can be trapped with IOSTAT
and the actual record length recovered using ITLOG.

Output record, as specified in unformatted WRITE list
or a FORMAT, was too large to fit in the internal buffer.
See library routine LGBUF in Appendix B.

Output record, as specified in unformatted WRITE list
or a FORMAT statement, was larger than the record size
for the direct access file to which this unit is connected.

497

IOSTAT MEANING

A format specifier is illegal for the type of the list item that
matches it.

Error Messages A-27

Table A-4 lists the FMP and DS FMP errors. The last one to two digits of the error number
correspond to the absolute value of the FMP number. For example, if the FMP error number is
—6, the run-time error number is 506. If the FMP error number is —16, the run-time error
number is 516.

For error messages which do not appear in this table, refer to the appropriate system reference
manual for applicable system error messages and information about FMP, DS, and EXEC.

Table A-4. FMP Errors and DS FMP Errors

501 IOSTAT MEANING Disk error.

502 IOSTAT MEANING Duplicate file name.

504 IOSTAT MEANING Too many records (more than 231—1) in a type 2 file in
RTE-6/VM or RTE-A.

505 IOSTAT MEANING Record length illegal.

506 IOSTAT MEANING File not found.

507 IOSTAT MEANING Illegal security code or illegal WRITE to LU 2 or LU 3.

508 IOSTAT MEANING File OPEN or LOCK rejected.

512 IOSTAT MEANING EOF or SOF error.

513 IOSTAT MEANING Cartridge locked.

514 IOSTAT MEANING Directory full.

515 IOSTAT MEANING Illegal file name.

516 IOSTAT MEANING Illegal file type.

519 IOSTAT MEANING Illegal access on a system disk.

525 IOSTAT MEANING Bad FCODE (internal RFAM error).

A-28 Error Messages

526 IOSTAT MEANING Bad entry number in RFAM; DCB destroyed.

528 IOSTAT MEANING Too many open DS files at remote node.
529 IOSTAT MEANING Internal RFAM tables invalid.

530 IOSTAT MEANING Disk not mounted to caller’s session.
532 IOSTAT MEANING Cartridge not found.

533 IOSTAT MEANING No room on cartridge.

540 IOSTAT MEANING Disk not in SST.

541 IOSTAT MEANING No room in SST.

546 IOSTAT MEANING Greater than 255 extents.

547 IOSTAT MEANING No session LU available for SPOOL file.

Other error numbers in the range 501—-999 (except 600 and 601) are unexpected FMP errors. The
FMP error number is (500 — <FORTRAN_error_number>); for example, FORTRAN error 730 is
really FMP error —230. Refer to the RTE-A or RTE-6/VM Programmer’s Reference Manual for
a list of all FMP errors.

Table A-5 lists the character string errors.

Table A-5. Character String Errors

600 IOSTAT MEANING Left and right sides of character assignment overlap (not an
I/O error).
601 IOSTAT MEANING Substring out of bounds (not an I/O error).

Error Messages A-29

Table A-6 lists the I/O errors. The last two digits of the error number correspond to the I/O error
number. For example, if the I/O error is 1005, the run-time error number is 1005.

Table A-6. 1/O Errors

1000 IOSTAT MEANING An illegal class number was specified. Outside table, not
allocated, or bad security code.

1001 IOSTAT MEANING Not enough parameters were specified.

1002 IOSTAT MEANING An illegal logical unit number was specified.

1003 IOSTAT MEANING Illegal EQT referenced by LU in I/O call (select code=0).

1004 IOSTAT MEANING An illegal user buffer was specified. Extends beyond RT/BG
area or not enough system available memory to buffer the
request.

1005 IOSTAT MEANING An illegal disk track or sector was specified.

1006 IOSTAT MEANING A reference was made to a protected track or to unassigned
LG tracks.

1007 IOSTAT MEANING The driver has rejected the call.

1009 IOSTAT MEANING The LG tracks overflowed.

1010 IOSTAT MEANING Class get call issued while one all already outstanding.

1011 IOSTAT MEANING A type 4 program made an unbuffered I/O request to a
driver that did not do its own mapping.

1012 IOSTAT MEANING An I/O request specified a logical unit not defined for use by
this session. The format for 1012 is:
SES LU =xx 1012 PROG ADDRESS:
where: xx = session LU not in SST

A-30 Error Messages

1013 IOSTAT MEANING An I/O request specified an LU that was either locked to
another program or pointed to an EQT that was locked to
another program.

1014 IOSTAT MEANING An I/O request was issued with the no-suspend option.

1015 IOSTAT MEANING Buffer size of a type 6 program is greater than what will fit
in the user map.

1016 IOSTAT MEANING CPU backplane failure or I/O extender timing failure.

1020 IOSTAT MEANING Read attempted on write-only spool file.

1021 IOSTAT MEANING Read attempted past end-of-file.

1022 IOSTAT MEANING Second attempt to read JCL card from batch input file by
other than FMGR. Revise program and rerun.

1023 IOSTAT MEANING Write attempted on read-only spool file.

1024 IOSTAT MEANING Write attempted beyond end-of-file; usually, spool file over-
flow.

1025 IOSTAT MEANING Attempt to access spool LU that is not currently set up.

1026 IOSTAT MEANING I/O request made to a spool that has been terminated by the

GASP KS command.

Error Messages A-31

Table A-7 lists the DS errors that can occur during remote FMGR file access. These errors are
generated only when your program was linked using the $FOLDF library and you used the
$FILES directive with the DS option. The 11xx errors are generated when the FILE specifier in
the OPEN statement is an LU number; the corresponding numbers in parenthesis (55x) are
generated when the FILE specifier is a FMGR file name.

The last digit of the error number corresponds to the DS error number. For example, if the DS
error is DS02, the error number is 1102 (552). For detailed DS error information, refer to the
DS/1000-1V User’s Manual, part number 91750-90012, or the NS-ARPA Error Message and Recovery
Manual, part number 91790-90045.

Table A-7. DS 1I/O Errors

1100 (550) IOSTAT MEANING Local node is quiescent.

1101 (551) IOSTAT MEANING Communication line parity, protocol failure, ‘STOP’ re-
ceived, cable disconnected, or other hardware error.

1102 (552) IOSTAT MEANING Communication line timeout error (DVAG65 links only).

1103 (553) IOSTAT MEANING Illegal record size.

1104 (554) IOSTAT MEANING Illegal nodal address, node address not in nodal routing
vector (NRV).

1105 (555) IOSTAT MEANING Request timeout.

1106 (556) IOSTAT MEANING Illegal request or monitor not active.

1107 (557) IOSTAT MEANING System table error.

1108 (558) IOSTAT MEANING Remote busy or resource unavailable.

1109 (559) IOSTAT MEANING Illegal or missing parameters.

A-32 Error Messages

Table A-8 lists miscellaneous run-time errors.

Table A-8. Miscellaneous Run-Time Errors

xx99 IOSTAT MEANING Partially malformed error messages.

1999 IOSTAT MEANING All RTE errors that do not have the form IOxx or DSxx and
that are not FMP errors are mapped to 1999.

1000— IOSTAT MEANING RTE I/O errors 1000 through 1099.

1099

1100~ IOSTAT MEANING DS errors DS00 through DS99.

1199

Error Messages A-33

Intrinsic and Library Functions

This appendix lists and describes the intrinsic and library functions of FORTRAN 77 on the
HP 1000.

FORTRAN 77 Intrinsic Functions

Tables B-1 through B-6 list the intrinsic functions of FORTRAN 77. The tables give the definition
(and syntax, if different) of each function, the number of arguments, the generic name for each
group of functions, the specific name for each function, the types of arguments allowed, and the
argument and function type.

In Tables B-1 through B-6, the following definitions apply:
e Real means REAL*4.

e Double means REAL*8. In 66 mode, Double can also mean REAL*6 (except where 7 is
indicated).

e Wherever Integer appears, both INTEGER*2 and INTEGER*4 apply.
o Wherever Complex appears, both COMPLEX*8 and COMPLEX*16 apply.

Some functions (such as type conversion functions and NINT) return a type different from that of
their arguments. When the result type is Integer or Double, the size of the result depends on the
I, J, X, and Y compiler options. The size of the result is independent of the context in which the
result is used. For example, in K=NI NT(x) , NI NT returns an INTEGER*2 value when the I
option is used, even if K is type INTEGER*4.

A function can be called with either its generic name (if it has one) or its specific name. If it is
called with its generic name, FORTRAN 77 determines the specific function from the argument

type(s).

Intrinsic and Library Functions B-1

Table B-1. Arithmetic Functions

Intrinsic o Number of | Generic | Specific Type of Type of
Function Description Arguments | Name Name Argument Function
Absolute value abs(a) 1 ABS IABS Integer Integer
|a] ABS Real Real
[See note 5] DABS Double Double
CABS COMPLEX*8 Real
— COMPLEX*16 | Double
Remaindering a—int(a/b)*b 2 MOD MOD Integer Integer
mod(a,b) AMOD Real Real
[See note 1] DMOD Double Double
Transfer of sign sign(a,b) 2 SIGN ISIGN Integer Integer
|a] if b=>0 SIGN Real Real
—lalifb<0 DSIGN Double Double
Positive difference dim(a,b) 2 DIM IDIM Integer Integer
a—bifa>b DIM Real Real
Oifa<b DDIM Double Double
Double precision dprod (a,b) 2 DPROD |Real Double
product a*b
Choosing largest max(a,b,...) >2 MAX MAX0 Integer Integer
value AMAX1 |Real Real
DMAX1 Double Double
AMAXO0 Integer Real
MAX1 Real Integer
Choosing smallest min(a,b,...) =2 MIN MINO Integer Integer
value AMIN1 Real Real
DMINA1 Double Double
AMINO Integer Real
MIN1 Real Integer
Imaginary part of imag (a) 1 IMAG AIMAG COMPLEX*8 Real
a complex ai
argument [See note 5] —_— COMPLEX*16 Double
Conjugate of a conjg(a) 1 CONJG | CONJG Complex Complex
complex argument (ar, —ai) DCONJG T

[See note 7]

T Indicates that the function is an extension to the ANSI 77 standard.

B-2

Intrinsic and Library Functions

Table B-2. Bit Manipulation Functions

Intrinsic o Number of | Generic | Specific Type of Type of
Function Description Arguments | Name Name Argument Function
Bit test btest(a,b) o gresT T Integer LOGICAL*2
[See notes
19 and 20]
Bitset ibset(a,b) 2 IBSET Integer Integer
[See notes
19 and 21]
Bit clear ibclr(a,b) 2 IBCLR T Integer Integer
[See notes
19 and 22]
Bit field move mvbits(a,b,c,d,e) 5 MVBITS T | Integer None
[See note 18] (subroutine)
Logical shift + ishft(a,b) 2 ISHFT Integer Integer
[See note 8]
Circular shift ishftc(a,b,c) 3 ISHFTC ¥ Integer Integer
[See note 16]
Bit field ibits(a,b,c) 3 BITS T Integer Integer
extraction ¥ [See note 17]
Logical product | iand(a,b) 2 IAND" Integer Integer
Logical sumt ior(a,b) 2 IOR T Integer Integer
Exclusive ORY ixor(a) 2 IXOR | Integer Integer
ieor(a) IEOR T Integer Integer
Complementf not(a) 1 NOTT Integer Integer

"

Indicates that the function is an extension to the ANSI 77 standard.

Intrinsic and Library Functions

B-3

Table B-3. Character Functions

Intrinsic Number of | Generic | Specific Type of Type of
Function Description Arguments | Name Name Argument | Function
Conversion to char (a)
charaster [See note 13] 1 CHAR Integer Character
Conversion to ichar (a)
integer [See note 13] 1 ICHAR Character Integer
Length Length of LEN Character Integer
¢}
character string 1
len(a)
Index of a index(a,b)
substring Location of sub- 2 INDEX Character Integer
string b in string a
[See note 14]
Lexically greater Ige(a,b
than or equal §_>(b) 2 LGE Character LOGICAL*2
[See note 15]
pexically greater lgt(a.b) 2 LGT Character | LOGICAL*2
[See note 15]
Lexically less than lle(a,b) 2 LLE Character LOGICAL*2
or equa a< b
[See note 15]
Lexically less than lit(a,b) 2 LLT Character LOGICAL*2

a<b
[See note 15]

B-4

Intrinsic and Library Functions

Table B-4. Numeric Conversion Functions

Intrinsic Number of (Generic [Specific Type of Type of
Function Description Arguments | Name Name Argument | Function
Type conversion Conversion to integer 1 INT - Integer Integer
INT(a) INT Real Integer
[See note 1]
IFIX Real Integer
IDINT Double Integer
—_ Complex Integer
Conversion to real 1 REAL FLOAT Integer Real
real(a) _
[See note 2] Real Real
SNGL Double Real
— Complex Real
Conversion to double 1 DBLE — Integer Double
precision
dble(a) —_ Real Double
[See note 2] — Double Double
- Complex Double
Conversion to 1or2 CMPLX Real COMPLEX *8
COMPLEX *8 [See note 4]
cmplx(a)
cmplx(a,b)
[See note 4]
Conversion to 10r2 DCMPLX T |Double COMPLEX *16
COMPLEX *16
[See note 4]
dcmplx(a)
dcmplx(a,b)
[See Note 4]
Truncation aint(a) 1 AINT AINT Real Real
[See note 1] DINT Double Double
Nearest whole anint(a) ANINT ANINT Real Real
number aint(a+0.5)ifa>0 1 ¥ %
aint(@—0.5)ifa<0 DNINT Double Double
Nearest integer | Nint(@) 1 NINT NINT Real Integer
int(a+0.5) ifa=0 IDNINT Double Integer

int(@a—0.5) ifa< 0

T Indicates that the function is an extension to the ANSI 77 standard.
% Indicates that the function is not defined for extended precision (REAL*6) arguments. For more information about extended
precision, see Chapter 8.

Intrinsic and Library Functions

B-5

Table B-5. Transcendental Functions

Intrinsic L Number of | Generic | Specific Type of Type of
Function Description | Arguments | Name Name Argument Function
Sine sin(a) 1 SIN SIN Real Real
[See note 6] DSIN Double Double
CSIN Complex Complex
Cosine cos(a) 1 COS CcOs Real Real
[See note 6] DCOS Double Double
CCOS Complex Complex
Tangent tan(a) 1 TAN TAN Real Real
[See note 6] DTAN Double Double
CTAN i Complex Complex
Arcsine . 1 ASIN ASIN Real Real
o ety DASN | Double Double *
Arccosine 1 ACOS ACOS Real Real
[%%%S%)te 6] DACOS Double * Double ¥
Arctangent atan(a) 1 ATAN ATAN Real Real
[See note 6] DATAN Double Double
ataiﬂi,b/)b) 2 ATAN2 ATAN2 Real Real
arctan(a
[See note 12] DATAN2 Double Double
Hyperbolic sine sinh(a) 1 SINH SINH Real % Real %
DSINH Double Double
Hyperbolic cosine cosh(a) 1 COSH COSH Real Real
DCOSH | Double * Double *
Hyperbolic tangent tanh(a) 1 TANH TANH Real Real
DTANH Double * Double *
Hyperbolic arcsine asinh(a) 1 ASINH ASINH T Real Real
DASINH T | Double * Double ¥
Hyperbolic arccosine acosh(a) 1 ACOSH ACOSH T Real Real
DACOSH T | Double # Double ¥
Hyperbolic arctangent atanh(a) 1 ATANH ATANH T [Real Real
DATANH T | Double % Double ¥
Square root sqrt(a) 1 SQRT SQRT Real Real
Va DSQRT Double Double
CSQRT Complex Complex
Exponential exp(a) 1 EXP EXP Real Real
e DEXP Double Double
CEXP Complex Complex
Natural logarithm log(a) 1 LOG ALOG Real Real
DLOG Double Double
CLOG Complex Complex
Common logarithm log10(a) 1 LOG10 ALOG10 Real Real
DLOG10 Double Double

T Indicates that the function is an extension to the ANSI 77 standard.
% Indicates that the function is not defined for extended precision (REAL*8) arguments. For more information about extended
precision, see Chapter 8.

B-6

Intrinsic and Library Functions

Table B-6. Miscellaneous Functions

Intrinsic L Number of | Generic | Specific Type of Type of
Function Description | Arguments | Name Name Argument Function
Parametercount T No. of parame- 0 PCOUNT INTEGER*2
tersactually
passed to this
subroutine or
function pcount()
[See note 23]
Sense switch issw(a) 1 ISSW INTEGER*2 INTEGER*2
registert [See note 10]
EXEC REIOt EXEC EXEC
DEXEC, XREIO REIO REIO
and XLUEX [See note 11]

T Indicates that the function is an extension to the ANSI 77 standard.

Table B-7. Compatibility Functions

Compatibility Function

Preferred Function

Name Name
ALOGT ALOG10
DLOGT DLOG10
DATN2 DATAN2
DDINT DINT

Intrinsic and Library Functions

B-7

Notes for Tables B-1 through B-7

1.

B-8

For a of type integer or double integer, INT(a)=a. For a of type real, extended precision, or
double precision, there are two cases:

a. If |a| <1, int(a)=0;

b. If |a| > 1, int(a) is the integer whose magnitude is the largest integer less than or equal
to |a| and whose sign is the same as the sign of a.

For example:
int(-3.7) = -3

For a of type complex, INT(a) is the value obtained by applying the above rule to the real part
of a.

For a of type real, IFIX(a) is the same as INT(a).

REAL(a) and DBL(a) convert their arguments to real and double precision, respectively. The
result is rounded if necessary, except that REAL(a), where a is double integer, drops the least
significant bits of a if necessary to fit it in a real value.

For a of type integer, FLOAT(a) is the same as REAL(a).

The result of the function IBCLR(a,b) is equal to the value of a with bit number b set to 0. If
b > 16/32, the result is a. If b is a constant expression > 16/32, a warning is issued but the
code is correct.

CMPLX can have one or two arguments. If there is one argument, it can be of type integer,
real, double precision, or complex. If there are two arguments, they must both be of the same
type and can be of type integer, real, or double precision.

For a of type complex, CMPLX(a) is a. For a of type integer, real, or double precision,
CMPLX(a) is the complex value whose real part is REAL(a) and whose imaginary part is 0.
For a of type double complex, CMPLX(a) is:

CMPLX(REAL(a), | MAQ(a))

CMPLX(a,b) is the complex value whose real part is REAL(a) and whose imaginary part is
REAL(D).

These rules also apply to DCMPLX. For a of type complex, DCMPLX(a) is
DCMPLX(DBLE(@) , | MAK a))

A complex value is expressed as an ordered pair of reals or doubles (ar,ai), where ar is the real
part and ai is the imaginary part. ABS or CABS is defined as:

SQRT(ar2 + ai2)

All angles in trigonometric functions are expressed in radians.

Intrinsic and Library Functions

7.
8.

10.

11.

12.
13.

14.

15.

CONIG is defined as (ar,—ai); refer to note 5 above.

As a MIL-STD-1753 extension to the ANSI 77 standard, ISHFT(a,b) is defined as the value of
the first argument (@) shifted by the number of bit positions designated by the second
argument (b). If b > 0, shift left; if b < 0, shift right; if 5 = 0, no shift. Ifb > 150rb < —15

(a is INTEGER*2), or b > 31 or b < —31 (a is INTEGER*4), then the result is 0. Bits shifted
out from the left or right end are lost, and zeros are shifted in from the opposite end. The type
of the result is the same as the type of a.

If too few parameters are passed to a CDS subprogram, the program may abort with an error.
See “SOPTPARMS Directive” in Chapter 7 for further information.

ISSW(a) is defined to set the sign bit of the A register equal to bit a of the switch register.
May be meaningless on some processors.

EXEC, REIO, XLUEX, XREIO, and DEXEC can be invoked as functions and return the
contents of the A and B registers to check for error indications. Only one alternate return
label can be specified. Refer to the appropriate programmer’s reference manual for more
information.

ATAN2(yx) is in the range [—x,+x] and is in the correct quadrant.

ICHAR converts from a character to an integer, based on the internal representation of the
character. Characters in the ASCII character set have the standard ASCII values. See
Appendix C for the ASCII character set.

The value of ICHAR(a) is an integer in the range 0 < ICHAR(a) < 255, where a is an
argument of type character and length 1.

If a is longer than one character, the first character is used.

CHAR converts from an integer to a character, using the integer to form the internal
representation of the character. The integer value should be in the range 0 to 255; if it is not,
the least 8 bits are used. Note that c = CHAR(ICHAR(c)) for all characters c, and

i = ICHAR(CHAR(i)) for all integers i in the range 0 to 255.

INDEX(a,b) returns an integer value representing the starting position within character string
a of a substring identical to string b. If b occurs more than once within a, INDEX(a,b) returns
the starting position of the first occurrence.

If b does not occur in a, the value 0 is returned. If LEN(a) < LEN(b), 0 is also returned.

In FORTRAN 77 on the HP 1000, the intrinsic functions LGE, LGT, LLE, and LLT behave
exactly the same as the operators .GE., .GT, .LE., and .LT. because the HP 1000 uses the
standard ASCII character set. The intrinsics should be used for code that might be ported to
another system, because they always obey the ASCII collating sequence. Using the operators
on another system may produce different results. For example:

LLT ("3 ,"A)
is always true, but
("3 .LT. "A)

may be false on some systems.

Intrinsic and Library Functions B-9

16.

17.

18.

19.

20.

21.

22.

23.

As a MIL-STD-1753 standard extension to the ANSI 77 standard, ISHFTC(a,b,c) is defined as
the rightmost ¢ bits of the argument a left shifted circularly b places. That is, the bits shifted
out of one end are shifted into the opposite end. No bits are lost. The unshifted bits of the
result are the same as the unshifted bits of the argument a. The absolute value of the
argument b must be less than or equal to c¢. The argument ¢ must be greater than or equal to 1
and less than or equal to 16 if a is INTEGER*2, or 32 if a is INTEGER*4.

As a MIL-STD-1753 standard extension to the ANSI 77 standard, bit fields can be extracted
from a value. Bit fields are referenced by specifying a bit position and a length. Bit positions
within a numeric storage unit are numbered from right to left and the rightmost bit position is
numbered 0.

The function IBITS(a,b,c) extracts a field of ¢ bits in length from a starting with bit position b
and extending left ¢ bits. The result field is right justified and the remaining bits are set to 0.
The value of b+c must be less than or equal to 16 if a is INTEGER*2, or 32 if a is
INTEGER*4.

As a MIL-STD-1753 standard extension to the ANSI 77 standard, the bit move subroutine
MVBITS(a,b,c,d,e) moves ¢ bits from positions b through b+c—1 of argument a to positions e
through e+c—1 of argument d. The portion of argument d not affected by the movement of
bits remains unchanged. All arguments are integer expressions, except d, which must be an
integer variable or array element. Arguments a and d can be the same. The values of b+c and
e+c must be less than or equal to the lengths of a and d, respectively.

As a MIL-STD-1753 standard extension to the ANSI 77 standard, individual bits of a numeric
storage unit can be tested and changed with the bit processing routines described in notes 3,
20, and 21. Each function has two arguments, a and b, which are integer expressions. a
specifies the binary pattern. b specifies the bit position (rightmost bit is bit 0).

The function BTEST(a,b) is a logical function. Bit number b of argument a is tested. Ifitis 1,
the value of the function is true; if it is 0, the value is false. If b = 16/32, the result is false. If
b is a constant expression = 16/32, a warning is issued but the code is correct.

The result of the function IBSET(a,b) is equal to the value of a with the bth bit set to 1. If
b = 16/32, the result is a. If b is a constant expression = 16/32, a warning is issued but the
code is correct.

The result of the function IBCLR (a,b) is equal to the value of a, with the bth bit set to 0. If
b = 16/32, the result is a.

The PCOUNT function returns the actual number of arguments passed to the current
subroutine or function. The hidden result argument in CHARACTER, DOUBLE
PRECISION and COMPLEX functions is not counted. Also see the SOPTPARMS directive.

B-10 Intrinsic and Library Functions

General Type Rules for Intrinsic Functions

1. If the argument type matches the function type as specified in Tables B-1 through B-7, the
function maintains the same type.

For example, if a is REAL*8, EXP(a) is a REAL*8 value.

2. If the argument type does not match the function type, the compiler default type determines
the function result type (defined by the I, J, X and Y compiler options).

For example, if compiler option J (double integer) is selected, INT(XNUM) results in a
double integer value. Also, if an argument k is of type double integer, then the generic
function ABS(k) results in a double integer value.

Input/Output Library Interface Functions

The following library interface functions are used in FORTRAN 77:

NFIOB LGBUF FFRCL
ITLOG FPOST FLOCF
ISTAT ITYPE FPOSN

The above are not intrinsic functions. Unless otherwise specified, they have argument and result
types of INTEGER*2.

NFIOB is an integer function, requiring no arguments, that returns the number of input/output
buffer blocks available for allocation. The following example allocates all the remain-
ing buffer blocks to unit number 88:

Example

OPEN (88, FI LE=" QUTPUT , BUFSI Z=NFI OB())

ITLOG is a single-integer function that returns the actual number of characters read by the in-
put/output library during its last input request. (Note that one READ statement may
read more than one record and thus require more than one input request.) There must
be no input/output operations between the READ and the ITLOG call.

Example

CHARACTER*80 |i ne ' Reads nmax of 80 characters.
READ (100, (A)’,END=99) line !Determ nes nunber of characters
i chr=ITLOX) lactual |y read.

ISTAT is a no-argument integer function that returns the actual status of the device that was
last accessed by an input/output request from the input/output library. The value of
the function corresponds to the contents of the A-Register after the latest request was
completed. There must be no input/output operations between the request and the
ISTAT call.

Intrinsic and Library Functions B-11

Syntax
| STAT ()

Note If the device has multiple subchannels, or a buffered WRITE was done, the IS-
TAT value may be meaningless.
LGBUF extends the size of the input/output buffer for binary or formatted input or output.

Syntax
CALL LGBUF (a,b)

where:

a is the new buffer address (array name).

b is the size of the buffer in words (single integer; 1 to 16383).
Example

DI MENSI ON | buf (500), 1ine(100)

C:ALL LGBUF (I buf, 500)

V\:RITE (8, (100A2)’) (line(i),i = 1,100)

The array | buf in the example above must be statically allocated and must not be used
for any other purpose.

If a segmented program or a segment of an MLS program uses LGBUE, the array must
be in the root segment. In a CDS program, the array must not be on the stack, and it
should be in SAVE or COMMON.

Note that when run-time error 496 occurs, the input/output buffer size may have been
exceeded. A call to LGBUF to extend the size of the buffer may correct the problem.
The default buffer sizes are 134 bytes for formatted input/output and 120 bytes for un-
formatted input/output.

For device 1/O, the actual system call done by REIO will request the full record size
needed to fill the buffer (as modified by LGBUF). This may cause problems with
some drivers, such as the HPIB driver. Use LGBUF with device 1/O carefully.

B-12 Intrinsic and Library Functions

FPOST

ITYPE

FFRCL

causes any buffered data to be written (posted) to the file immediately.
Syntax

CALL FPOST(unit, ierr)

where:
unit is a FORTRAN unit number.
lerr is the error number.

If the unit is connected to a disk file, FPOST posts any data written to unit with
WRITE or PRINT and sets ierr equal to the FORTRAN error code. 0 is returned for
no errors.

Posting means physically writing the disk buffer. This is useful when programs share a
file, or to ensure the integrity of a database file. The file can reside on a remote node
of a DS network.

returns the type of the file connected to the specified unit.

Syntax

i = | TYPE(unif)

where:
i is a file type.
unit is a FORTRAN unit number.

ITYPE returns the file type associated with unit. 0 is returned for type 0 files, system
units (devices), and unconnected units.

sets the maximum record length for list-directed WRITE and PRINT statements. This
is the largest line that a list-directed WRITE or PRINT will produce before starting a
new line.

Syntax
CALL FFRCL(length)
where:
length is an integer value that specifies the record length in bytes (characters).
If the length exceeds the internal buffer size (see LGBUF), it will be

reduced to the internal buffer size.

The default width is 72 characters; suggested values are 79 for an 80-character termi-
nal, or 132 for a printer.

Intrinsic and Library Functions B-13

FLOCF get or set the current position of the disk file that is connected to a given unit. The file
FPOSN need not be direct access.

Syntax
{ FLOCF}
CALL {FPOSN} (lu, ierr, record, position)
where:
lu is an INTEGER*2 FORTRAN unit number that has been connected to
a disk file.
ierr is an INTEGER*2 error return variable, which is set to an IOSTAT
value.

record is an INTEGER*4 record number.
position is an INTEGER*4 byte offset from the start of the file.

FLOCEF sets record and position to the current file position. FPOSN sets the file posi-
tion to record and position. The actual file positioning is performed using position; the
value of record is used only to keep track of record numbers. If the value of record is
incorrect, some operations such as BACKSPACE and INQUIRE (NEXTREC=) may
fail.

Although the FORTRAN standard treats EOF as a record, the file system does not.
FPOSN may not be used to set the (FORTRAN) file position to a point after the EOF
record.

Example

i nteger*4 recnun(100), position(100)
character flag*10,1ine*80

open(1000,file="/dir/fil etoindex’)
i =0
do while (.true.)
read(1000,’ (a)’,end=99) flag
if (flag .eq. ’'index next’) then
=i +1
call flocf(1000,ierr,recnun(i), position(i))
if (ierr.ne.0) stop 'FLOCF error.
endi f
end do
99 conti nue

mx]te(l,*) "Enter index nunber:

read(1, *) index
call fposn(1000,ierr,recnun(index), position(index))

B-14 Intrinsic and Library Functions

if (ierr.ne.0) stop ' FPOSN error.’
read(1000,’ (a)’) line
wite(1,’(a)’) line

This program builds an index into a sequential file and randomly positions the file, on
demand, to a specified indexed record. The index could have been kept in another file
so that the access program would not have to build it each time. Note that the FLOCF
call returns the position of the record that will be read next, not the position of the re-
cord that was just read.

Random Number Generator Functions

Three random number generator functions can be used by FORTRAN programs: URAN, GRAN,
and IRANP. Each can be referred to by the function SSEED.

URAN

GRAN

IRANP

generates uniform random numbers using a multiplicative congruence method and a
register shift method asynchronously. The random numbers generated are single preci
sion real numbers in the range 0 < random_number < 1.

Example
n = INT (100. * URAN ())

generates Gaussian (normal) random numbers with a mean of 0 and standard devia-
tion of 1. The method used is to generate a random (chi-squared) variable and a ran-
dom angle (using two calls to URAN) to yield a random normal variable. The random
number generated is a single precision real number with a range of approximately —5
to +5.

Example
randm = GRAN ()

generates Poisson-distributed random numbers that are one-word integers. The
method used is to calculate exponentially distributed random numbers until the prod-
uct is less than e =% The number of exponentials needed, minus 1, is the random num-
ber returned by this function.

Example

irandm = | RANP (x)
In this example x is a user-defined real number representing A. A must be in the range
0 < A =< 88.72. If A is not in this range, the following error values are returned as the

function value:

A=<0 IRANP = -1
A > 88.72 IRANP = -2

This method makes an average of A+1 calls to URAN, so it is suggested that A be less
than 50.

Intrinsic and Library Functions B-15

SSEED

can be used to seed URAN, GRAN, and IRANP. This function generates an internal
number that is used by URAN, GRAN, and IRANP to start a new sequence of random
numbers. If SSEED is not called, this internal value defaults to 12345.

Syntax

CALL SSEED (iseed)

where:

iseed is an arbitrary user-defined positive integer. The least significant bit of
iseed is ignored. Therefore, an even iseed is the same as iseed +1.

If SSEED is called with the same iseed value each time the program is executed, or not
called at all, the same sequence of random numbers is generated each time. To vary
this sequence, SSEED should be called with a different iseed every time the program is
executed.

Command Line Access Subprograms:
RCPAR, RHPAR, and FPARM

The library entry points RCPAR, RHPAR, and FPARM copy command line parameters into
character variables or integer arrays. Each entry point can be referenced as a subroutine or a
function.

Syntax

CALL RCPAR(pnum,cvalue)

or

| NTEGER RCPAR
LENGTH = RCPAR(pnum cval ue)

CALL RHPAR(pnum i val ue, pl engt h)

or

| NTEGER RHPAR
LENGTH = RHPAR(pnum i val ue, pl engt h)

CALL FPARMpI p2...pn)

where:
phum is the number of the command line parameter.
cvalue is a character variable, array element, or substring.
ivalue is an integer array name.

plength is the number of characters to be copied.

pl,p2,..pn is one or more character variables, array elements, or substrings.

B-16

Intrinsic and Library Functions

The specified parameters are copied to the result variables and truncated or padded with blanks
on the right as required. Leading blanks are also truncated. If pnum is —1, the entire command
line is returned.

If the specified parameter is null, the result variable is unchanged. The first time RCPAR,
RHPAR, or FPARM is called, it makes an EXEC 14 call to get the command line. The complete
command line is stored as part of the program’s internal data structures. When an EXEC 14 call
is made, the command line is consumed by the system, so subsequent EXEC 14 calls cannot access
the command line. Further calls to RCPAR or RHPAR use the internal copy of the command line.
A call to the system routine GETST also consumes the command line the same way as an EXEC
14 call. RCPAR, RHPAR, and FPARM do not work if the program makes an EXEC 14 or GETST
call before the first RCPAR, RHPAR, or FPARM call, nor does an EXEC 14 or GETST call work
after the first RCPAR, RHPAR, or FPARM call.

FPARM is shorthand for repeated RCPAR calls. For example:
CALL RCPAR (1, pl)
CALL RCPAR (1, pn)

For more information on EXEC 14 and GETST, see the appropriate programmer’s reference
manual.

See “PROGRAM Statements” in Chapter 3 for another way to get command line parameters.
Using formal arguments in a PROGRAM statement is equivalent to calling FPARM.

Example

PROGRAM add
I MPLICI T NONE

C This program gets two strings fromthe command |i ne,
C converts them to nunbers using internal file reads,
C and displays the sum of the two val ues.
CHARACTER*20 a, b
REAL X,y
CALL fparma,b) I Get the paraneters
READ(a, *) X I Convert first param
READ(b, *) vy I Convert second param
WRI TE(1, *) Xx+y I' Display SUM
END

Intrinsic and Library Functions B-17

HP Character Set

Effect of Control Key * M
-—000-037B—»- | «+—040-077B—»- | «—100-137B—- | w1 40-177B—>|
1

765: O00 O01 O‘10 01‘1 100 10‘1 1 0 1‘1‘1
Bits Col.

0 1 2 3 4 5 6 7
4 3 2 1 |Row
o|0|0]O 0 NUL | DLE SP 0 @ P p
0|00 1 SOH | DC1 ! 1 A Q a
o|o|1{o0 2 STX | DC2 ? 2 B R b r
0|0 |11 3 ETX | DC3 # 3 C S c s
o|1]o0fo0 4 EOT | DC4 $ 4 D T d t
01|01 5 ENQ | NAK % 5 E u e u
o|1]1{o0 6 ACK | SYN & 6 F \" f v
0|1(1][1 7 BEL | ETB ’ 7 G w g w
110(0]|0 8 BS | CAN (8 H X h X
1]10(0]|1 9 HT EM) 9 | Y i y
110(1]0 10 LF SuB * J Y4 j z
1(0]1]1 11 VT ESC + ; K [k {
1{1]{olo| 12 FF FS , < L \ | |
11|01]| 13 CR | GS - = M] m }
1(1(1]0 14 SO RS > N ~ n ~
11|11 15 sl us / ? o] _ o | DEL

—
32 Control Upshifted
Codes Lowercase
+—— 64 Character Set
, % e e :

Example: The representation for the character “K” (column 4, row 11) is
Bit 76 54321
Binary 1 0 01 0 1 1
Octal 1 1 3

Note: * Depressing the Control Key while typing an uppercase letter produces the corresponding
control code on most terminals. For example, Control-H is a backspace.

HP Character Set C-1

Table C-1. Hewlett-Packard Character Set for Computer Systems

This table shows Hewlett-Packard’s implementation of ANS X3.4-1968 (USASCII) and ANS X3.32-1973. Some devices
may substitute alternate characters from those shown in this chart (for example, Line Drawing Set or Scandinavian
font). Consult the manual for your device.

The left and right byte columns show the octal patterns in a 16-bit word when the character occupies bits 8 to 14 (left
byte) or 0 to 6 (right byte) and the rest of the bits are zero. To find the pattern of two characters in the same word, add
the two values. For example, “AB” produces the octal pattern 040502. (The parity bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are character codes.

. Octal Values
Decimal Mnemonic | Graphic? Meaning
Value Left Byte | Right Byte

0 000000 000000 NUL Ny Null

1 000400 000001 SOH Sy Start of Heading

2 001000 000002 STX Sx Start of Text

3 001400 000003 EXT Ex End of Text

4 002000 000004 EOT Et End of Transmission

5 002400 000005 ENQ Eq Enquiry

6 003000 000006 ACK Ak Acknowledge

7 003400 000007 BEL JAN Bell, Attention Signall

8 004000 000010 BS Bs Backspace

9 004400 000011 HT Ht Horizontal Tabulation
10 005000 000012 LF Le Line Feed
11 005400 000013 VT V1 Vertical Tabulation
12 006000 000014 FF Fe Form Feed
13 006400 000015 CR Cr Carriage Return
14 007000 000016 SO So Shift Out Alternate
15 007400 000017 Sl S Shift In] Character Set
16 010000 000020 DLE D, Data Link Escape
17 010400 000021 DC1 D, Device Control 1 (X-ON)
18 011000 000022 DC2 D» Device Control 2 (TAPE)
19 011400 000023 DC3 D3 Device Control 3 (X-OFF)
20 012000 000024 DC4 D4 Device Control 4 (TAPE)
21 012400 000025 NAK Nk Negative Acknowledge
22 013000 000026 SYN Sy Synchronous Idle
23 013400 000027 ETB Eg End of Transmission Block
24 014000 000030 CAN Cn Cancel
25 014400 000031 EM Em End of Medium
26 015000 000032 SuUB Sg Substitute
27 015400 000033 ESC Ec Escape?
28 016000 000034 FS Fs File Separator
29 016400 000035 GS Gs Group Separator
30 017000 000036 RS Rs Record Separator
31 017400 000037 us Us Unit Separator

127 077400 000177 DEL [] Delete. Rubout3

C-2 HP Character Set

Table C-1. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
32 020000 000040 Space, Blank
33 020400 000041 ! Exclamation Point
34 021000 000042 ? Quotation Mark
35 021400 000043 # Number Sign, Pound Sign
36 022000 000044 $ Dollar Sign
37 022400 000045 % Percent
38 023000 000046 & Ampersand, And Sign
39 023400 000047 ’ Apostrophe, Acute Accent
40 024000 000050 (Left (opening) Parenthesis
41 024400 000051) Right (closing) Parenthesis
42 025000 000052 * Asterisk, Star
43 025400 000053 + Plus
44 026000 000054 , Comma, Cedilla
45 026400 000055 - Hyphen, Minus, Dash
46 027000 000056 . Period, Decimal Point
47 027400 000057 / Slash, Slant
48 030000 000060 0 \
49 030400 000061 1
50 031000 000062 2
51 031400 000063 3
52 032000 000064 4
53 032400 000065 5 } Digits, Numbers
54 033000 000066 6
55 033400 000067 7
56 034000 000070 8
57 034400 000071 9 }
58 035000 000072 : Colon
59 035400 000073 ; Semicolon
60 036000 000074 < Less Than
61 036400 000075 = Equals
62 037000 000076 > Greater Than
63 037400 000077 ? Question Mark

HP Character Set

C-3

Table C-1. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
64 040000 000100 @ Commercial At
65 040400 000101 A
66 041000 000102 B
67 041400 000103 C
68 042000 000104 D
69 042400 000105 E
70 043000 000106 F
71 043400 000107 G
72 044000 000110 H
73 044400 000111 I
74 045000 000112 J
75 045400 000113 K
76 046000 000114 L
77 046400 000115 M
78 047000 000116 N Uppercase Letters
79 047400 000117 @)
80 050000 000120 P
81 050400 000121 Q
82 051000 000122 R
83 051400 000123 S
84 052000 000124 T
85 052400 000125 U
86 053000 000126 \
87 053400 000127 W
88 054000 000130 X
89 054400 000131 Y
90 055000 000132 z
91 055400 000133 [Left (opening) Bracket
92 056000 000134 \ Backslash. Reverse Slant
93 056400 000135 1 Right (closing) Bracket
94 057000 000136 ~1 Caret. Circumflex: Up Arrow*
95 057400 000137 +— Underline: Back Arrow*

C-4 HP Character Set

Table C-1. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
96 060000 000140 f Grave Accent®
97 060400 000141 a
98 061000 000142 b
99 061400 000143 c
100 062000 000144 d
101 062400 000145 e
102 063000 000146 f
103 063400 000147 o]
104 064000 000150 h
105 064400 000151 i
106 065000 000152 j
107 065400 000153 k
108 066000 000154 I
109 066400 000155 m
110 067000 000156 n Lowercase Letters®
111 067400 000157 o]
112 070000 000160 p
113 070400 000161 q
114 071000 000162 r
115 071400 000163 S
116 072000 000164 t
117 072400 000165 u
118 073000 000166 \Y
119 073400 0oo167 w
120 074000 000170 X
121 074400 000171 y
122 075000 000172 z
123 075400 000173 { Left (opening) Brace®
124 076000 000174 | Vertical Line®
125 076400 000175 } Right (closing) Brace®
126 077000 000176 ~ Tilde, Overline®

Note 1: This is the standard display representation. The software and hardware in your system determine if the
control code is displayed, executed, or ignored. Some devices display all control codes as “@” or space.

Note 2: Escape is the first character of a special control sequence. For example, ESC followed by ‘J” clears the dis-
play on an HP 2640 terminal.

Note 3: Delete may be displayed as “_”, “@”, or space.

Note 4: Normally, the caret and underline are displayed. Some devices substitute the up arrow and the back arrow.

Note 5: Some devices upshift lowercase letters and symbols (‘ through ™) to the corresponding uppercase
character (@ through ™). For example, the left brace would be converted to a left bracket.

HP Character Set C-5

Table C-2. HP 7970B BCD-ASCII Conversion

BCD ASCII BCD ASCII

Mool | (oot Code) | (ESMEE || SIMBOL | (octal Code) | SUEETL
(space) 20 040 @ 14 100
! 52 041 A 61 101
” 37 042 B 62 102
13 043 C 63 103
$ 53 044 D 64 104
% 57 045 E 65 105
& 11 046 F 66 106
’ 35 047 G 67 107
(34 050 H 70 110
) 74 051 | 71 111
* 54 052 J 41 112
+ 60 053 K 42 113
, 33 054 L 43 114
- 40 055 M 44 115
. 73 056 N 45 116
/ 21 057 0 46 117
0 12 060 P 47 120
1 01 061 Q 50 121
2 02 062 R 51 122
3 03 063 S 22 123
4 04 064 T 23 124
5 05 065 U 24 125
6 06 066 v 25 126
7 07 067 w 26 127
8 10 070 X 27 130
9 11 071 Y 30 131
15 072 Z 31 132
; 56 073 [75 133
< 76 074 \ 36 134
= 17 075] 55 135
> 16 076 1 77 136
? 72 077 — 32 137

Note 1: 1The ASCII code 046 is converted to the BCD code for a space (20) when writing data onto a 7-track tape.

C-6

HP Character Set

RTE Special Characters

Mnemonic

SOH (Control A)
EM (Control Y)
BS (Control H)
EOT (Control D)

Octal Value

1
31
10

4

Use
Backspace (TTY)
Backspace (2600)

Backspace (TTY, 2615, 2640, 2644, 2645)
End-of-file (TTY, 2615, 2640, 2644, 2645)

HP Character Set C-7

Data Format in Memory

FORTRAN 77 has nine data types:
e Integer

e Double integer

e Real

e Double precision

e Complex

e Double complex

e I ogical

e Double logical

e Character

Two further types are available as ANSI 66 compatibility extensions:
e Extended precision

e Hollerith

When stored in memory, each type has the format described in this appendix.

Integer Format

An integer datum is always an exact representation of a whole number.

The integer format (INTEGER*2) occupies one 16-bit word and has a range of:

2B to +21-1 or —32768 to +32767

|15|14 Ol

| u value bits |
sign bit

Data Format in Memory

Double Integer Format

An integer datum is always an exact representation of a whole number.
The double integer format (INTEGER*4) occupies two 16-bit words and has a range of:

-231to +231-1 or —2,147,483,0648 to +2,147,483,647
|15|14 ()l word 1
| T | value bits

sign bit
word 2
| 15 0|
value bits |

word 1 — most significant word, memory location M
word 2 — least significant word, memory location M+1

Real Format

A real datum is a processor approximation to a real number.
The real format (REAL*4) occupies two consecutive 16-bit words in memory and has an
approximate range of:

1.47 x 10739 to 1.70 x 1038

The real format has a 23-bit fraction and a 7-bit exponent. Significance is 6.6 to 6.9 decimal digits,
depending upon the magnitude of the leading bits/digits in the fraction (that is, one part in 1050 to

106.9).

—— implied binary point
|15Y14 0| word 1
| U fraction bits
sign of fraction
| 15 8|7 1|0| word 2
fraction bits | exponent bits |j |
sign of exponent

D-2 Data Format in Memory

Extended Precision Format

An extended precision datum is a processor approximation to a real number.
The extended precision format (REAL*6 or DOUBLE PRECISION™*6) occupies three
consecutive 16-bit words in memory, and has an approximate range of:

147 x 107% to 1.70 x 10°8

The extended precision format has a 39-bit fraction and a 7-bit exponent. Significance is 11.4 to
11.7 decimal digits, depending upon the magnitude of the leading bits/digits in the fraction (that is,
one part in 1014 to 10117),

implied binary point
15 ‘ 14 0| word1
T | fraction bits
sign of fraction
15 0| word?2

fraction bits

15 8 | 7 1 | 0| word3
fraction bits | exponent bits | T
sign of exponent

Extended precision is fully described in Chapter 8.

Data Format in Memory D-3

Double Precision Format

A double precision datum is a processor approximation to a real number.
The double precision format (REAL*8 or DOUBLE PRECISION) occupies four consecutive
16-bit words in memory, and has an approximate range of:

1.47 x 10739 to 1.70 x 1038

This format has a 55-bit fraction and a 7-bit exponent. Significance to the user is 16.3 to 16.6
decimal digits, depending upon the magnitude of the leading bits/digits in the fraction (that is, one
part in 10163 to 10166),

implied binary point
|15| 14 ()l word 1
| T | fraction bits
sign of fraction

| 15 0| word 2

fraction bits

| 15 Ol word 3

fraction bits

| 15 8|7 1|0|

fraction bits | exponent bits | T |
sign of exponent

word 4

D-4 Data Format in Memory

Complex Format

A complex datum is a processor approximation to a complex number.

The complex format (COMPLEX™*8) occupies four consecutive 16-bit words in memory. Both the
real and imaginary parts have an approximate range of:

1.47 x 10739 to 1.70 x 1038

Both the real and the imaginary parts have 23-bit fractions and 7-bit exponents; each has the same
significance as a real number.

real
part

imaginary
part

—— implied binary point
15Y 14 0 | word 1
Ti fraction bits
sign of fraction
15 8|7 1|0| word 2
fraction bits | exponent bits |j |
implied binary point
15| 14 0 | word 3
U fraction bits
sign of fraction
15 8|7 1|0| word 4
fraction bits | exponent bits |j |
sign of exponent

Data Format in Memory D-5

Double Complex Format

A double complex datum is a processor approximation of a complex number.

The double complex format (COMPLEX*16 or DOUBLE COMPLEX) occupies eight
consecutive 16-bit words in memory. Both real and imaginary parts have an approximate range of:

1.47 x 10739 to 1.70 x 1038

Both the real and imaginary parts have 55-bit functions and 7-bit exponents; each has the same
significance as a double precision number.

—— implied binary point
15 Y14 0| word1
real T | fraction bits
part
sign of fraction
15 0 word?2

fraction bits
15 0| word?3

fraction bits

15 8 | 7 1 | 0| word4
fraction bits | exponent bits | T
sign of exponent
implied binary point
15 | 14 0 | word 5
imaginary T | fraction bits
part
sign of fraction
15 0| word6
fraction bits
15 0] word?7
fraction bits
15 110
8 | 7 | word 8
fraction bits | exponent bits | T
sign of exponent

D-6 Data Format in Memory

Logical Format

A logical datum is a representation of true or false, where the sign bit determines the truth value,
with:

1 = true
0 = false

The logical format (LOGICAL*2) occupies one 16-bit word in memory. Bit 15 determines the
truth value. The lower 15 bits are undefined.

15| 14 0 = .TRUE.
1 (undefined)

15| 14 0 = .FALSE.
0 (undefined)

Double Logical Format

A double logical datum is a representation of true or false, where the sign bit determines the truth
value, with:

1 = true
0 = false

The double logical format (LOGICAL*4) occupies two 16-bit words in memory. Bit 15 of the first
word determines the truth value. The lower 31 bits are undefined.

15 | 14 0
1 | (undefined)
15 0
= .TRUE.
(undefined)
15 | 0
0 | (undefined)
15 0|
= .FALSE.
(undefined) |

Data Format in Memory D-7

Character Format

A character datum is a character string taken from the ASCII character set. ASCII characters
occupy 1 byte (8 bits) of a 16-bit word, and are packed two to a word in memory.

Character variables and constants can start or end, or both, in the middle of a word. The other
byte of the word may be used by the compiler as part of another variable or constant, or it may be
unused.

When character items are passed as actual arguments, the argument address points to a descriptor
in the format given below. Descriptors must never be modified; only the data the descriptor points
to may be changed:

15| 14 0| word 1
0 length
15 0

word 2

byte address |

Hollerith Format

Hollerith constants are described in Chapter 8. A Hollerith constant has the same format when
stored in memory as a character datum. If the item is declared to have an odd number of
characters, it is padded with a blank in the lower byte of the last word.

Hollerith constants start on word boundaries. When passed as actual parameters, the word
address is used (no descriptor).

D-8 Data Format in Memory

FORTRAN Comparisons

In this appendix the FORTRAN 77 compiler is first compared with the ANSI 77 standard by listing
the FORTRAN 77 extensions to the standard. Then considerations affecting conversion from
FORTRAN 4X to FORTRAN 77 are discussed, followed by a list of the FORTRAN 77 features
that are not part of FORTRAN 4X.

Extensions to the Standard

FORTRAN 77 fully implements the ANSI 77 standard for FORTRAN. FORTRAN 77 also
contains many extensions to this standard. This appendix categorizes and lists these extensions.
Complete descriptions are given in the appropriate sections of this manual.

Extensions marked with an asterisk (*) are also available in FORTRAN 4X.

Extensions for Backward Compatibility

The compatibility extensions make the FORTRAN 77 compiler backward compatible with
FORTRAN 4X. These extensions consist of the 66 mode features and compatibility features
discussed in Chapter 8.

MIL-STD-1753 Extensions

The FORTRAN 77 compiler fully implements the Military Standard Definition
(MIL-STD-1753) of extensions to the ANSI 77 standard. These extensions are:

e BLOCK DO loops using END DO.

e DO WHILE loops.

e INCLUDE statement (also $INCLUDE directive).*
e IMPLICIT NONE statement.*

e The following bit manipulation intrinsics:

| AND* | OR* I BITS | BSET | SHFT* MBI TS
NOT* | EOR* BTEST | BCLR | SHFTC

o (ctal and hexadecimal constants in DATA statements.

FORTRAN Comparisons E-1

Other Extensions

These are the system-dependent extensions and all other extensions to the ANSI 77 standard:

Double complex data type (as approved by the IFIP WG 2.5 Numerical Software Group).*
Integer data type (1 word storage).*

Logical data type (1 word storage).*

Underscore (_) in symbolic names.

Lowercase letters as part of the FORTRAN 77 character set.”

Symbolic names greater than six characters.

Equivalence of character and noncharacter items.

Character and noncharacter items in same common block.

Byte length specified in type statements; for example, INTEGER*4. (Byte length in
CHARACTER type statements is part of the ANSI 77 standard.)*

EMA statement.*
Compiler directives.*

Secondary and tertiary HP-IB addressing as part of the unit value in READ and WRITE
statements.*

The following input/output statement keywords:

BUFSI Z* USE*
MAXREC* ZBUF*
NCDE* ZLEN*

Extended range DO loops (that is, jumping into a DO loop).*

Formal arguments in ENTRY statements can be referenced before their first occurrence in a
parameter list.

In some cases in which output formatting overflow would occur, the scale factor, number of
digits, or both are modified to produce readable results.*

Ew.dEe and Gw.dEe formats omit the E on output if necessary to fit the exponent.

A character expression involving concatenation of an item of type CHARACTER*(*) can be
used in a relational expression.

Dw.dEe format, and the octal formats Kw, @w, and Ow.

The logical operators, .AND., .OR., NOT, .EQV,, .NEQV,, .XOR., and .EOR., can be applied
to integer data to perform bit masking and manipulation.*

An exclamation point (!) can be used to denote an end-of-line comment.*

E-2 FORTRAN Comparisons

For all statements, there is no limit to the number of continuation lines.*
.XOR. and .EOR. can be used the same way as the .NEQV.operator.*

A character string (without delimiting quotes) can appear in PROGRAM, FUNCTION,
SUBROUTINE, and BLOCK DATA statements.*

A character substring can be used in an implied DO loop in a DATA statement.

The following intrinsics are included:

ASI NH* ACOSH* ATANH* | XOR* REI O DASI NH*
DATANH* PCOUNT* EXEC* | SSW CTAN* XLUEX*
DEXEC* DACOSH* XREI Of

Comparison of FORTRAN 4X and FORTRAN 77

FORTRAN 77 is completely backward compatible with FORTRAN 4X. To compile a FORTRAN
4X program with FORTRAN 77, change the program’s control statement so that it begins with
FTN66. This will ensure that the program is compiled under 66 mode. If the 66 mode default is in
effect, no changes are needed to the program.

FORTRAN 77 includes many features not found in FORTRAN 4X. These features are:

All extensions (MIL-STD-1753 and other) that are not marked with an asterisk in
“MIL-STD-1753 Extensions” and “Other Extensions” above.

77 mode handling of ANSI 77 and FORTRAN 4X conflicts.
Character data type.

The following character manipulation intrinsics:

| CHAR LEN LCGE LLE CHAR I NDEX LGT LLT
SAVE statement.

INTRINSIC statement.

Implied DO loops in DATA statements.

ENTRY statement.

An asterisk (*) as the last upper bound in an array declaration.
Real or double precision variable as a DO loop index.
Constant expressions in specification statements.

Expressions for variable dimensioning of arrays.

CMPLX intrinsic allowing integer, double integer, real, double precision, or complex
arguments.

DPROD intrinsic.

Block data subprograms are unnecessary in FORTRAN 77. Note: a FORTRAN 4X block
data subprogram will not be found during a library search in a FORTRAN 77 program.

FORTRAN Comparisons E-3

Cross-Reference Table

The FORTRAN 77 compiler provides a cross-reference table of symbolic names and labels used in
the source program. If requested, the cross-reference table is always the last listing produced for
each compiled program unit. This chapter explains how to request and read a cross-reference
table and includes an example cross-reference listing of a program and its cross-reference table.

Requesting a Cross-Reference Table

To request a cross-reference table, include the optional parameter C in the FORTRAN control
statement or command line. Chapter 7 describes the format and parameters of the FORTRAN
control statement.

Cross-Reference Table Format

Each symbol (symbolic name or label) is printed followed by the line numbers in which the symbol
appears. Multiple references in one line to the same symbol are noted. Statement labels are
preceded by the pound sign (#) character.

Up to 10 line numbers are printed per line of the cross-reference table. The line numbers are
listed in ascending order.

A cross-reference table is not complete for lines that contain compilation errors, since compilation
terminates at the point in the line where the error is detected.

Cross-Reference Table F-1

Example Program

Here is an example program that is compiled with a cross-reference table request (that is, with C
in the command line). The example program is followed by the listing and cross-reference table.

PROGRAM csor't

C This program builds a sorted character array of
C nanes and prints themin al phabetical order.

PARAMETER (max_names = 5)
CHARACTER* 12 nane_l i st (max_names),

DO i =1, mac_nanes

C READ a nane.

WRI TE
i FORMAT(’ I nput a nane of 12 characters or |ess’)
READ(i, *) nane

C Move "l arger” names up and insert this one in order.

DO j=1,2,-1
IF (name_list(j-1) .GI. nane) THEN
nanme_list(j) = name_list(j-1)

ELSE
GOTO 200
END | F
END DO
200 nane_list(j) = nane

END DO
C Print the sorted nanes.
VWRI TE(1, *) ' The names in al phabetical order are:’

VWRI TE(1,’ (2x,al2)’) nane_list
END

F-2 Cross-Reference Table

Page 1 Opts: 77/ LCYI Thu Nov 19, 1981 4:59 pm
CSORT. FTN: : SCRATCH
2 PROGRAM csor t
3
4 C This programbuilds a sorted character array of
5 C nanes and prints themin al phabetical order.
6
7 PARAMETER (max_names = 5)
8 CHARACTER* 12 nane_l i st (max_namnes),
9
10 DO i =1, mac_nanes
11
12 C READ a nane.
14 VWRI TE
15 i FORMAT(’ I nput a nane of 12 characters or |ess’)
16 READ(i, *) nane
17
18 C Move "larger” names up and insert this one in order.
19
20 DOj=1,2,-1
21 IF (name_list(j-1) .GI. nane) THEN
22 nane_list(j) = name_list(j-1)
23 ELSE
24 GOTO 200
25 END | F
26 END DO
27 200 nane_list(j) = nane
28 END DO
29
30 C Print the sorted nanes.
31
32 VWRI TE(1, *) ' The names in al phabetical order are:’
33 VWRI TE(1,’ (2x,al2)’) nane_list
34 END
Modul e CSORT No errors DATA: 25 Bl ank Conmon: None
FTN7X 5000/ 861229 No war ni ngs CODE: 214 Stack size: 53

Cross-Reference Table

F-3

Page 2 CSORT

Cross—reference |ist

Synbol

F-4

#111
#200

|

J
MAX NAMES .
NANVE
NAVE LI ST

Ref er ences

14
24
.10
.20

LT

Cross-Reference Table

Opt s:

15
27

20
21

16
21

77/ LCYI

22

10
21

22

22

27
22

27

27

Thu Nov 19, 1981 4:59 pm
CSORT. FTN: : SCRATCH

33

FORTRAN 77 Syntax Charts

The charts in this appendix describe the syntax of the FORTRAN 77 language as specified in this
manual. The charts are in railroad normal form, designed for human readability, not as an exact
specification of the syntax. For example, the description of expressions does not reflect the
precedence of operators. Certain syntactic features are not represented in the charts. These
features include:

e The use of blanks.

e The capability to write statements on initial lines and continuation lines.
e Compiler directives (lines beginning with a $).

e Comment lines and end-of-line comments.

e Context-dependent features, such as data type requirements, uniqueness and completeness of
labels used, actual and dummy argument matching, requirements for specification statements,
and restrictions on the use of statements in a particular context. Restrictions of this kind are
described in the body of the manual.

If there is a discrepancy between the syntax charts of this appendix and the language as specified in
the manual, the language syntax is that specified by the manual.

The charts were produced by a FORTRAN 77 program, using HP’s Graphics/1000-II graphics
software and an HP 9872 plotter.

Syntax Chart Conventions

In the charts, sequences of lowercase letters and embedded underscore characters (_) represent
syntactic entities. Uppercase letters and special characters must appear as written; however,
uppercase or lowercase characters can be used interchangeably in programs.

In general, names of syntactic items are identical to those used in the manual. A few names have
been shortened (for example, “statement label” to “label”).

The charts look like railroad tracks (hence the term “railroad normal form™). Alternative paths
are specified by “switches” in the path. A number # in a half-circle indicates that the path can be
traversed at most n times. A number # in a circle indicates that the path must be traversed exactly
n times.

FORTRAN 77 Syntax Charts G-1

Syntax Charts:

G-2

1

executable_program:

main_program _—G)j

M function_subprogram ——

—— subroutine_subprogram —

“—— block_data_subprogram —

{ A

main_program: T program_statement —

function_subprogram: ——— — function_statement —

subroutine_subprogram: subroutine_statement —

block_data_subprogram: block_data_statement —

y

labe! AU format_statement 2
entry_statement N

t parameter_statement ————

— implicit_statement \

y

y
LT label N format_statement
A entry_statement 2
b‘ parameter_statement —————

other_specification_statement —

y

{ v
label Y format_statement

4\ entry_statement —

E data_statement —

statement_function_statement —

€

label T———— format_statement
entry_statement

b data_statement
executable_statement —

JJJIL

~—

FORTRAN 77 Syntax Charts

6

7

N

N
S
—
—
e
S
—

other_specification_statement:
A\

dimension_statement —

equivalence_statement ———

common_statement ~

type—_statement

external_statement

intrinsic_statement ——————

save_statement 2

ema..statement

executable_statement:

A

SRR

assignment_statement
goto_statement
arithmetic_if_statement ——

logical_if_statement ——————

block_if_statement \
else_if_statement
else_statement N

end_if_statement

do_statement

block_do_statement 3

do_while_statement y

end..do_statement

d

continue_statement
stop_statement

>,

pause_statement

read_statement

write_statement

print_statement
decode_.statement

encode_statement
rewind_statement
backspace_statement ——

JJJJ))

endfile_statement

open_statement
close_statement

J)

inquire_statement

call_statement

return_statement

FORTRAN 77 Syntax Charts

G-3

8 program_statement: PROGRAM program_name —

(y

unsigned_int_constant 8) —

b

14

processor_character] -

9 entry_statement:

function_entry —1—
subroutine_entr

y

-

10 function_statement:

M [INTEGER

M REAL)

M DOUBLE PRECISION —
—— COMPLEX

M DOUBLE COMPLEX ——

M—— LOGICAL)

M—— CHARACTER ———
A

— % len_specification

r -
— FUNCTION function_name function_argument._list

L y T processor_character }

G-4 FORTRAN 77 Syntax Charts

11

12

13

14

function_entry:

ENTRY function_name ———*I— function_argument_Ilist —1

function_argument_list:
(\

variable_name —

array_name ———————

procedure_name ———

, A \.)_

subroutine_statement:

SUBROUT INE subroutine_name ——

subroutine_argument_list —

(— ’ _I__ processor_character }

subroutine_entry:

ENTRY subroutine_name

f_@_/

L

subroutine_argument_list

FORTRAN 77 Syntax Charts

G-5

G-6

15

16

17

18

19

subroutine_argument_list:

(\
}-—1 variable_name —
A

M array_name

—— procedure_name —

- *

block_dota_statement:

BLOCK DATA T block_data_subprogram_name —1

dimension_statement:

DIMENS|ON ——r arragy_declarator j————-

array.declarator: ——— array_name _-J
t(7 dim_bound_expr : J L *) —

dim_bound_expr

equivalence_statement: ——— EQUIVALENCE ——J

(— equiv_entity T y — equiv_entity))

FORTRAN 77 Syntax Charts

20 equiv_entity:
Y

M——— variable_name

F——— array_element_name

M—— array_name

‘—— substring.name

21 common_statement: —— COMMON

L

Tcomnon_block_nome J /
A

_ [

variable_name —j

array_name —————

array_declarator —

A

’

A

FORTRAN 77 Syntax Charts

G-7

22 type_statement:

A

——— INTEGER \

M—— REAL
—— DOUBLE PRECISION —

—— COMPLEX

M DOUBLE COMPLEX ——

—— LOGICAL

M~ % len_specification —-]— ’ j
\F_ﬁ
—— constant_name —j

A

M—— variable_name —

M—— array_name ———

M—— function_name —

L— array_declarator —

\ y

’
“—— CHARACTER T * len_specification T ’ —}
- |
constant_name —

A

M variable_name —
hA—
array_name —

‘— function_name —
-

|\

array—declarator

L * len_specification

G-8 FORTRAN 77 Syntax Charts

23 implicit_statement:

IMPLICIT —)— NONE ——————
ﬁﬁ—i INTEGER -

A
M—— REAL

DOUBLE PRECISION —

COMPLEX

DOUBLE COMPLEX —

I~ LOGICAL 2

——— CHARACTER ——————

‘— % len_specification

(— (letter }
— letter

24 Jen_specification:

— (%)

M—— nonzero..unsigned_int_constant

“—— (int_constant_expr)

25 parameter_statement:

PARAMETER — (T constant_name = constant_expr j—) —

’

FORTRAN 77 Syntax Charts

G-9

26 external_statement:

EXTERNAL

] procedure_name

block_data_subprogram_name

’

27 jntrinsic_statement:

INTRINSIC ————I———— function_name —————]—————

’

28 save_statement:

SAVE

variable_name

arrgy_name]

/ common_block_name /

)

29 ema_statement:

EMA

W variable_name
array_name

’

G-10 FORTRAN 77 Syntax Charts

30 data_statement:

t— DATA
__1

r variable_name
A 4 W

——— array_element_name ——————

M—— array_name

M—— substring_name

\—— data_implied_do_list ———

’

nonzero_unsigned_int_constant —1

constant_name %

r

— constant _—T

——— constant_name —

—— mil_std_octal —

L— mil_std_hex

L, J

31 data_implied_do_list:

(array_element_name —
substring_name —
data_implied_do_list —

’
(— variable_name = —]

—[- » integer_expr ———T—) —
o

—_—

integer_expr

FORTRAN 77 Syntax Charts G-11

32 mil_std_octal: — O °’ —[— octal_digit j

33 mil_std_hex: AN (hex_digit j ’

34 ctssignment_stotement :
\

M——— variable_name)
—— array_element_name)
F—— substring_name = expression —1
\—— ASSIGN label TO variable_name

35 g;oto_statement:

A

M—— unconditional_goto —ﬁ

—— computed_goto —
— assigned_goto

36 unconditional_goto: GO TO — label

37 computed_goto:

GO TO (—[_—_—|cbel]) L J integer_expr —
b ’

38 gssigned_goto:

GO TO variable_name i] L

’ (—[-_mbel—])

’

G-12 FORTRAN 77 Syntax Charts

39

40

41

42

43

45
46

47

48

arithmetic_if_statement:

IF (int_real_dp—_expr) label , label , label

logical_if_statement:

IF (logical_expression) executable_statement

block_if_statement:

IF (logicai_expression) THEN

else_if_statement:

ELSE IF (logical_expression) THEN

e|lse_statement: —— ELSE

end_if_statement: — END IF

do_statement: — DO l|abel _—__T— ’

block_do_statement: — DO —

(— variable_name = int_real_dp_expr —I— y int_real_dp_expr
o\]

do_while_statement:

DO —IT— iabel Iﬁ ’ [WHILE (logical_expression) ——

end_do_statement: — END DO

FORTRAN 77 Syntax Charts G-13

49 continue_statement: CONT INUE
50 stop_statement: —— STOP ———
51 pause_statement: —— PAUSE ——

digit —B" J

character_expression —————
52 write_statement: —— WRITE —
53 read_statement: ——— READ
54 print_statement: —————— PRINT ———
A 4 Y
J
(— (controi_info_list)
format_identifier L ’ fo_list

G-14 FORTRAN 77 Syntax Charts

55 decode_statement: ——— DECODE ——1

56 encode_statement: ——— ENCODE (]
[— integer_expr , format_identifier , t variable_name —

array_name ——\

ERR = label M—

|IOSTAT = variable_name
E l o\

array—_element_name

L io~list —1

57 control_info_list:

unit_identifier —1-) \

?
FMT = -—-[format_identifier ——fi\-—ﬂ

——— UNIT = unit_identifier <
——— REC = integer_expr T
—— ZBUF =

variable_name —j

array_name ———————

array_element_name ——/1\—

——— ZLEN = integer_expr M—
——— END = label MN—
—— ERR = lgbel M

C IOSTAT = variable_name
T orrcy_element_;l—rf‘j
L A

FORTRAN 77 Syntax Charts

G-15

58 unit_identifier:
A 4

M integer_expr 2

apostrophe integer_expr

integer_expr ——Ii;: integer_expr —

M variable_name)

— array_name
M— array_element_name —

M substring_name —

*

59 jo_list:

expression \

array_name

jo_implied_do_list ——————

A

’

60 jo_implied_do_list:

(io_list , variable_name = —————i]
[; int_real_dp_expr -I— » int_rea!_dp_expr ——I—) —

11\;

G-16 FORTRAN 77 Syntax Charts

61 open_statement:

OPEN (—

Y
i—-w—— UNIT = —L— integer—_expr %
—— ERR = label —

M FILE = character_expression — T
——— STATUS = character_expression —_—
—— ACCESS = character_expression ———————/1\—
—— FORM = character_expression —T—
— RECL integer_expr —N—
——— BLANK = character_expression _—

—— MAXREC = integer_expr

USE = character_expression

——— NODE = integer_expr

—— BUFSIZ = integer_expr

_ osTAT =

= T variable_name

array_element_name

fff??

62 close_statement:

CLOSE (—

) Y
E—w—— UNIT = —— integer_expr -D—

—— ERR = label N
M—— STATUS character_expression _—
L—- I0STAT =

= variable_name —l
L A

array-.element_name

\ JL)_

FORTRAN 77 Syntax Charts G-17

G-18

63 inquire_statement:

INQUIRE (—

-

P

rrrrrrrrrorrrri

-

A

.

S

-

M UNFORMATTED= —/1—

A
UNIT = —L- integer_expr

FILE = character_expression

ERR = label

1

O
A\

|OSTAT = —1\—
EXIST = ——1\—
OPENED = ———/1\—
NUMBER = ——/1\—
NAMED = ——/1\—

NAME = -

ACCESS = ——/1—

SEQUENT |AL= —/1—
DIRECT = —/1\—
FORM = —————/1\—
FORMATTED = —/1—

RECL = ———/1\—
NEXTREC = —/1—
BLANK = ————/1—
MAXREC = —T\—
USE = ——1—

NODE = ~N—

L

variable_name ————

array—element_name —

-

FORTRAN 77 Syntax Charts

64 backspace_statement: —— BACKSPACE —

65
66

67

68

69 format_specification: — (——If— fmt_specification _-T__) —

endfile_statement:

rewind_statement:

ENDF | LE ———

REWIND ————

J

integer_expr

>
>

UNIT = —1— integer_expr

T

ERR = label

|OSTAT = —t

M

variable_name
array—element_name 1

J;_)

format_identifier:
A 4
—— |abel

M—— variable_name

— array_name

—— character_expression —

— *

format_statement:

FORMAT format_specification

FORTRAN 77 Syntax Charts

G-19

G-20

70

fmt_specification:

repeat_spec I

lw L .m_—[
\ J

A
R]

Lw

Kw

Ow

Fw.d
Ew.d

(e rrr Tl

-
e T T I

Tec

TLe

— TRc

— (fmt_specification) n
b————— 'h ... h’' —
—————— "h ... h" ——
b————nHh ... h —
nX
kP
S
P
S —
B Y N
z——ﬂ
Y
\ —

FORTRAN 77 Syntax Charts

71
72
73
74
75

76
77

78

79

80

81

repeat_spec: —

we

c: nonzero_unsigned_int_constant

m: unsigned_int_constant

k: integer_constant
h: processor_character
statement_function_statement:

function_name (variable_name —

’

call_.statement:

) = expression —

CALL subroutine_name

~
(
\ Y
—— expression \
S
M array_name
- procedure_name ——————
M long_hollerith_const ——
—— % l|abel
\ , A)

FORTRAN 77 Syntax Charts G-21

G-22

82 return_statement:

RETURN]
integer_expr

83 function_reference:

function_name (]

£—1.— expression 2

L

—— array_name

—— procedure_name ————

“—— long-hollerith_const —

. —

’

84 expression:
v

—— arithmetic_expression —

M—— character_expression ——————

—— logical_expression

85 constant_expr:
Y

——— arithmetic_const_expr —

M—— character_const_expr —

—— logical_const_expr

FORTRAN 77 Syntax Charts

86
87
88

arithmetic_expression: —

integer_expr:

int_real_dp_expr:

8 \

A

S

e

-

unsigned_arithmetic_constant \

constant_name

variable_name

array_e!ement_name

function_reference

(arithmetic_expression)

FORTRAN 77 Syntax Charts

G-23

89 grithmetic_const_expr:

T
— + —

——— unsigned_arithmetic_constant ———

——— constant_name

‘—— (arithmetic_const_expr) —

. »

G-24 FORTRAN 77 Syntax Charts

90

4

nt_constant_expr:

—
> +
N
— _NOT. —
*
/

——— unsigned_int_constant A

—— unsigned_octal_constant

M constant_name

—— (int_constant_expr)

FORTRAN 77 Syntax Charts

G-25

91 im_bound_expr:

‘t’ 1
N
T

—— unsigned_int_constant

constant_name

}M— variable_name

\—— (dim_bound_expr)

92 character_expression:
i———j———- character_constant ~

M constant_name

b variable_name

array_element_name

M substring_name

function_reference

(character_expression) ——

\. // A

93 character_const_expr:

—— character..constant "\

S

constant_name

—— CHAR (integer_constant) ——

(charaocter_const_expr) ——

// AL

G-26 FORTRAN 77 Syntax Charts

94 |ogical.expression:

)
L .NOT. —

——

P

-

M—— loglical_constant ————

—— constant_name
M~ .AND. —— variable_name
— .OR. — —— array_element_name —
— LEQV. — M—— function_reference ——
— .NEQV.-W M relational_expression ——
— .XOR. — — (logical_expression) —
— .EOR. —A

95 Jogical_const_expr:

[)
! 1— NOT. —

—— logical_constant —___————W

M~ .AND. —— constant_name

M .OR. — —— relational_expression —
— JEQV. — — (logical_const_expr) —
— .NEQV.—

— .XOR. —

L EOR. ——

96 relational_expression:
arithmetic_expression rel_op arithmetic_expression :]

character_expression rel_op character_expression

FORTRAN 77 Syntax Charts G-27

97 rel_op:
y

M .EQ. —

———— .NE.

98 array-element_name:
e N

array_name (—[— integer_expr

77

’

99 substring_name:

t variable_.name

array—element_name
L

T integer_expr j : 1 integer_expr ——j—-) —

100 constant_name: q

101 variable_name:

102 array—_name:

103 common_block_name:

104 program_name:
105 block_data_subprogram_name: ————

106 rocedure_name:

107 subroutine_name:

108 function_name: symbo | ic_name

G-28 FORTRAN 77 Syntax Charts

109 gymbolic_name:
letter —

L
—— digit ——

-)

110 constant:
A 4

:j::;:i::l——— unsigned_arithmetic_constant —

character_constant

logical_constant

11 vnsigned_arithmetic_constont:

—— unsigned_int_constant ————
M—— unsigned_octal_constant ———
——— unsigned_real_constant —

M—— unsigned_dp_constant —————

f—— compliex_constant

“——— ghort_hollerith_const

112 unsigned_int_constant: 1

113 nonzero_unsigned_int_constant: —

114 integer_constant: 1

[:: sign [digit J
|

FORTRAN 77 Syntax Charts G-29

115 unsigned_octal._constant: —————I— octal_digit] B

116 unsigned_real_constant:

L—unsigned_lnt_constant . 11unsigned_int_constant —T

———— E integer_constant

117 unsigned_dp_constant:

L-unsigned.lnt..constant . 1 1unsigned_lnt_conetant —]

]

——— D integer_constant

118 complex_constont
unsigned_real_constant) —
1— sign —I}::nslgned_int_constant
nsigned_dp_constant

119 {iirt_hollerith_const:

nH ———I—— processor_character —Jﬁ\——I———-

G-30 FORTRAN 77 Syntax Charts

120

121

122

123

124

125

long_hollerith_const:

nH ——_I_— processor_character
o

logical_constant:

. TRUE. j
.FALSE.

-

character_constant:

apostrophe ——ii]

nonapostrophe_character
apostrophe apostrophe —;::l

digit /B]

B

apostrophe

abel:

T

octal_digit:] 1 l l l l l l
W
hex_digit: 1

— G —
p— 4 —
— O —
e O ——1
—~—
—00 —
—©—
—>>—
p—00 —
— 0 —
—0—1
—m—

—0—

FORTRAN 77 Syntax Charts

G-31

— sgign:

\|9||L
p— 00—
—~—
— O —
—N—
——
— 10—
p——ON—
IPE——

e Q—

nonapostrophe_character:
Y

ocessor_character:

-

apostrophe:

126
127
128
129

130

131

G-32 FORTRAN 77 Syntax Charts

Cross-Reference to Syntax Charts

127
89
86
39
18
98

102
38
34

64
16
5
105
46
41

75
81
93
122
92
62
103
21
118
37
110
85
100
49
57

76
31
30
55
130
91
17
45
47

apostrophe: 58, 122
arithmetic_const_expr: 85, 89
arithmetic_expression: 84, 88, 96
arithmetic_if statement: 7
array_declarator: 17, 21, 22

array_element_name: 20, 30, 31, 34, 56, 57, 58, 61, 62, 63, 66, 88, 92, 94, 99
array_name: 12, 15, 18, 20, 21, 22, 28, 29, 30, 56, 57, 58, 59, 67, 81, 83, 98

assigned_goto: 35
assignment_statement: 7

backspace_statement: 7
block_data_statement: 5
block_data_subprogram: 1
block_data_subprogram_name: 16, 26
block_do_statement: 7

block_if statement: 7

c:70

call_statement: 7

character_const_expr: 85, 93

character_constant: 92, 93,110
character_expression: 51, 61, 62, 63, 67, 84, 92, 96
close_statement: 7

common_block _name: 21, 28
common_statement: 6

complex_constant: 111

computed_goto: 35

constant: 30

constant_expr: 25

constant_name: 22, 25, 30, 88, 89, 90, 91, 92, 93, 94
continue_statement: 7

control_info_list: 54

d: 70

data_implied_do_list: 30, 31
data_statement: 5
decode_statement: 7

digit: 51,109,114,123
dim_bound_expr: 18, 91
dimension_statement: 6
do_statement: 7
do_while_statement: 7

FORTRAN 77 Syntax Charts

G-33

73 e 70

42 else_if statement: 7

43 else_statement: 7

29 ema_statement: 6

56 encode_statement: 7

48 end_do_statement: 7

44 end_if statement: 7

65 endfile_statement: 7
9 entry_statement: 5

20 equiv_entity: 19

19 equivalence_statement: 6
7 executable_statement: 5, 40

84 expression: 34, 59, 80,

26 external statement: 6

70 fmt_specification: 69, 70

67 format_identifier: 54, 56, 57

69 format_specification: 68

68 format_statement: 5

12 function_argument _list: 10, 11

11 function_entry: 9
108 function_name: 10, 11, 22, 27, 80, 83
83 function_reference: 88, 92, 94

10 function_statement: 3

3 function_subprogram: 1

35 goto_statement: 7

79 h:70
125 hex_digit: 33

23 implicit_statement: 5
63 inquire_statement: 7
90 int_constant_expr: 24, 31, 90
88 int_real dp_expr: 39, 46, 60
114 integer_constant: 78, 93,116,117
87 integer_expr: 37, 56, 57, 58, 61, 62, 63, 66, 82, 98, 99
27 intrinsic_statement: 6
60 io_implied_do_list: 59
59 io_list: 54, 56, 60

78 k:70
123 label: 5, 34, 36, 37, 38, 39, 45, 47, 56, 57, 61, 62, 63, 66, 67, 81

24 len_specification: 10, 22, 23

131 letter: 23,109
95 logical_const_expr: 85, 95

G-34 FORTRAN 77 Syntax Charts

121
94
40

120

77

33
32

74
128
113

124
61

25
51
54
106
126
104

53
97
96
71
82
66

28
119
129

80

50

15

14
107

109

22

36
111

logical_constant: 94, 95,110
logical_expression: 40, 41, 42, 47, 84, 94
logical_if statement: 7
long_hollerith_const: 81, 83

m: 70
main_program: 1
mil_std_hex: 30
mil_std_octal: 30

n: 70,1
nonapostrophe_character: 122
nonzero_unsigned_int_constant: 24, 30, 75

octal_digit: 32,115
open_statement: 7
other_specification_statement: 5

parameter_statement: 5
pause_statement: 7

print_statement: 7

procedure_name: 12, 15, 26, 81, 83
processor_character: 8, 10, 13, 79,119,120
program_name: 8

program_statement: 2

read_statement: 7

rel_op: 96
relational_expression: 94, 95
repeat_spec: 70
return_statement: 7
rewind_statement: 7

save_statement: 6
short_hollerith_const: 111

sign: 110,114,118
statement_function_statement: 5
stop_statement: 7
subroutine_argument _list: 13, 14
subroutine_entry: 9

subroutine_name: 13, 14, 81 13 subroutine_statement: 4
subroutine_subprogram: 1 99 substring_name: 20, 30, 31, 34, 58, 92

symbolic_name: 108
type_statement: 6

unconditional_goto: 35 58 unit_identifier: 57
unsigned_arithmetic_constant: 88, 89,110

FORTRAN 77 Syntax Charts

G-35

117 unsigned_dp_constant: 111,118

112 unsigned_int_constant: 8, 77, 90, 91,111,116,117,118
115 unsigned_octal _constant: 90,111

116 unsigned_real_constant: 111,118

101 variable_name: 12, 15, 20, 21, 22, 28, 29, 30, 31, 34, 38, 46, 56, 57, 58, 60, 61, 62, 63, 66, 67,
80, 88, 91, 92, 94, 99

72 w:70
52 write_statement: 7

G-36 FORTRAN 77 Syntax Charts

CDS Usage

Code and Data Separation (CDS) is available exclusively under the RTE-A Operating System with
the VC+ System Extension Package. CDS is not available under any other HP operating system,
and programs compiled for other systems should always be non-CDS.

Most programs work equally well with or without code and data separation. A few existing
programs make improper assumptions about the initial values of data in main programs or
subprograms because of static storage use; since CDS programs use less static storage and more
dynamic storage, such programs may fail when first compiled in CDS mode. This chapter clarifies
these considerations and explains a few features that are unique to one mode or the other.

CDS Overview

Details of the CDS mechanisms and instructions are found in the RTE-A Programmer’s Reference
Manual, part number 92077-90007, and the RTE-A System Design Manual, part number
92077-90013. The overview given here profiles the information necessary to use CDS with
FORTRAN programs. Since EMA works the same in CDS and non-CDS programs, EMA is not
discussed.

Non-CDS programs have only one memory area: the area with instructions and data, called the
program space or the non-EMA space. Instructions and data are freely mixed in these programs,
and a program with errors can easily overwrite its own instructions (for example, with a bad array
subscript). All data is allocated statically; that is, it has its own private area of memory, always in
the same place, and its area is never used for anything else. As a side effect of this, variables in
subprograms have the same value on entry to the subprogram as they had at the last exit.

Subprogram calls in non-CDS programs are made by a machine language instruction that saves the
address of the call in a location just before the subprogram. The standard entry mechanism in that
subprogram copies the addresses of the parameters to a list that is also just before the
subprogram. Both of these methods cause code modification, in that the memory area containing
the instructions of the subprogram is changed. The parameters are put into statically allocated
memory.

CDS programs replace the program memory area with two areas: code space and data space.
Instructions are put into code space, and data is put into data space. A program cannot
accidentally change its instructions, since it can’t access its code space. Some data, such as
common blocks and items in DATA statements, are statically allocated in data space. Other data
is dynamically allocated.

CDS programs have a stack. This is an area in data space that is allocated on demand when each
subprogram is entered, and released when it returns, in LIFO (last in, first out) manner. Each
subprogram allocates as much stack space as it needs.

CDS Usage H-1

Some local variables and arrays in CDS subprograms are allocated on the stack. When the
subprogram exits, these variables and arrays are lost; the next subprogram to be called re-uses that
memory for something else. These variables do not keep their values from one call to the next.

Subprograms in CDS mode are called with a different machine language instruction that puts the

address of the call and the parameters on the stack. No code is modified. Since each subprogram
allocates space for its return point and variables when it is called, recursion works; recursive calls

do not cost any more than nonrecursive calls.

Static vs. Dynamic Memory

Since local variables may be allocated on the stack, they behave differently in CDS programs than
in non-CDS. Uninitialized variables have random values, instead of starting out at zero as they
often do in non-CDS programs. Variables do not retain their values from one subprogram call to
the next. The ANSI 77 standard explicitly states that variables become undefined at subprogram
exit, but many non-CDS programs assume that the values are not lost.

When such programs are compiled in CDS mode, they must include SAVE statements, which
declare that certain variables must stay defined when the routine exits. An example is a routine
that counts the number of times it is called, or a report generator that appends strings to an output
line on each call until the line is printed.

One way to get such programs running quickly is to use blank SAVE statements. These declare
that all variables are to be allocated statically. This has the disadvantage of increasing the amount
of data space used; a large program may not fit in memory with blank SAVE statements, though it
fits easily without them.

Restrictions

For compatibility, CDS subprograms can call non-CDS subprograms. However, the reverse does
not work; non-CDS subprograms can call only other non-CDS subprograms. If a large program is
converted to CDS piecemeal, the main program must be converted first, then the subprograms
that the main program calls, and so on, in a top-down fashion.

There is an obscure FORMAT capability that allows a READ statement to read ASCII data into a
Hollerith field in the format itself, changing the format (but not any variables) so that the next
time it is used in a WRITE, the Hollerith data has the value from the READ.

Since data space is the critical resource in CDS programs, FORTRAN puts the ASCII data of
format statements in code space. When a READ or WRITE statement is used, the library copies
the format (using special instructions) from code space to a buffer in data space, and uses the copy
for the READ or WRITE. When data is read into a Hollerith field in a READ, the data modifies
the copy of the format, not the original. The next time the format is used, it has its original value
again. Therefore, programs that rely on reading into format statements cannot use CDS. (The
ANSI 77 standard prohibits reading into Hollerith formats.)

H-2 CDS Usage

The CALL CODE feature, which was obsoleted by the introduction of ENCODE and DECODE
in FTN4X, does not work in CDS mode. This is because the CODE routine actually looks ahead
in the program to find the READ or WRITE statement and decodes the first instruction from it;
that instruction is not even accessible in CDS mode, and if it were, it might work differently in
CDS mode and be misinterpreted by CODE. Since CODE is not a reserved name, and could be
the name of a legitimate subroutine, FORTRAN 77 does not issue a warning when a CALL
CODE is done in CDS mode. The CODE routine may set up an internal conversion using a
random address; for WRITE statements, this can have the effect of randomly overwriting memory.
In short, be careful to avoid CALL CODE in CDS programs. Because it has been replaced by
ENCODE and DECODE and internal files, all CALL CODE statements should be changed to
newer statements, even in non-CDS code.

Recursion

Recursion works only in CDS mode. All local variables are put on the stack, unless they are
initialized in DATA statements. All local equivalence groups are also put on the stack, unless an
item in a group is initialized in a DATA statement. Care should be taken to ensure that variables
that must be unique to each call are put on the stack; one way to check is with a T option listing,
which lists the location of each variable in the subprogram.

A subprogram can call itself directly or indirectly. If a subprogram calls itself directly, the type
and number of parameters are checked.

Variables that are to be the same for each subprogram invocation (that is, static) can be kept off
the stack in CDS by use of DATA statements; however, the preferred method is SAVE statements.
SAVE statements ensure program portability, while DATA statements do not because other
compilers may implement DATA statements by executing assignments when the subprogram is
entered the first time, and then reuse their memory area between subprogram calls.

Recursion is an extension of the ANSI 77 standard.

Libraries

CDS programs must be linked with the CDS versions of the system libraries. Normally these
libraries are selected automatically by the linker. If you specify system libraries explicitly, be sure
to specify the CDS versions of the libraries. See the appropriate system reference manual for
further information about system libraries.

CDS Usage H-3

Index

Symbols

AND., 2-25, E-2

.ENTR, 7-11

EOR,, E-2

.EQ., 2-24

.EQV,, E-2

.EQV. operator, 2-25

EXIT, 7-3

.GE,, 2-24

.GT, 2-24

IMAP, 6-15

JMAP, 6-15

.LE., 2-24

LT, 2-24

NE., 2-24

NEQV,, E-2

NFEX, 7-3

NOT, E-2

.OR., E-2

XOR., E-2

! (exclamation point), E-2
"FTN7X installation guide, 1-5
(pound sign), F-1

$ALIAS. See ALIAS directive
$CDS. See CDS directive
$CLIMIT. See CLIMIT directive
$ELSE. See ELSE directive
$ELSEIF. See ELSEIF directive
$EMA. See EMA directive
$ENDIF. See ENDIF directive
$FILES. See FILES directive
$IF. See IF directive
$IFDEF/SIFNDEF. See IFDEF/IFNDEF directive
$INCLUDE. See INCLUDE directive
$LIST. See LIST directive
$MSEG. See MSEG directive
SOPTPARMS. See OPTPARMS directive
$PAGE. See PAGE directive
$SET. See SET directive
$TITLE. See TITLE directive
$TRACE. See TRACE directive
@ (at sign), E-2

* (asterisk), E-3

_ (underscore), E-2

Numbers

66 mode, 1-1, 2-11, 7-1, 8-1, E-3
compared with 77 mode, 8-1

77 mode, 1-1, 7-1, 8-1, E-3
compared with 66 mode, 8-1

A

A-Register, B-11
ABREG, 7-12
ABS, B-2, B-8
absolute address, 7-13
ACOS, B-6
ACOSH, B-6, E-3
actual argument, 6-11
addition, 2-19
addressing mode, 3-33
adjustable array declarator, 6-14
AIMAG, B-2
AINT, B-5
ALIAS directive, 6-18, 7-10
DIRECT option, 7-11
EMA option, 7-12
NOABORT option, 7-11
NOALLOCATE option, 3-17, 7-13
NOEMA option, 7-12
WXTRN option, 7-11
alignment, 2-9
allocation, 3-39, 3-40
dynamic, H-1
static, H-1
ALOG, B-6
ALOGI10, B-6
alternate entry, 7-10
alternate PROGRAM statement, 3-70
alternate return, 3-82, 6-7
alternate return statement, 6-3
AMAXQO, B-2
AMAXI1, B-2
American National Standards Institute. See ANSI
AMINO, B-2
AMINI1, B-2
AMOD, B-2
ANINT, B-5
ANSI 66
compatibility extensions, 8-1, D-1
mode, 7-1, 8-1
standard, 1-1, 8-1
ANSI 77, 8-1, 8-6, 8-8, E-2, H-2
extension to the standard, 2-1, 2-2, 2-3, 2-5, 2-9,
2-10, 2-11, 2-12, 2-27, 2-28, 3-17, 3-23, 3-24,
3-31, 3-33, 3-40, 3-41, 3-43, 3-46, 3-48, 3-59,
3-62, 3-63, 3-70, 3-71, 3-75, 3-81, 3-82, 3-86
5-2, 5-14, 6-9, 6-18, 8-4, H-3
intrinsic functions, 2-4
MIL-STD-1753 extension, 2-12, 3-29, 3-54,
3-55, B-10
mode, 7-1, 8-1
ANSI X3.9-1966, 1-1

Index-1

ANSI X3.9-1978, 1-1
apostrophe, 2-10
argument
actual, 6-11
formal, 6-11
argument correspondence, 6-12
argument list, 6-11
arithmetic assignment statement, 3-7
arithmetic constant expression, 2-22
arithmetic expression, 2-18
order of evaluation, 2-19
arithmetic functions, B-2
arithmetic IF statement, 3-49, 8-8
arithmetic operators, 2-18
arithmetic relational expression, 2-24
array, 2-13, 2-14, 3-26, 3-33, 6-15, 8-6
adjustable, 6-14
bounds, 3-38, 6-13, E-3
character, 2-17
declarator, 2-14, 2-15, 3-21, 3-84
dimension, 2-14, 3-40, 6-13, E-3
dimension bound, 2-14
dimension declarator, 2-14
element storage, 2-16
elements, 2-14
FORTRAN versus Pascal, 7-30
in subprogram, 6-13
multidimensional, 8-7
name, 2-14
passing, 6-12
subscripted, 6-13
ASCIL, 8-7, D-8
ASCII characters, 2-1
ASCII collating sequence, 2-25
ASIN, B-6
ASINH, B-6, E-3
ASSIGN statement, 3-6, 3-48, 8-6
assigned GOTO statement, 3-48
assignment statement, 3-7
arithmetic, 3-7
character, 3-10
logical, 3-9
assumed-size array declarator, 6-14
asterisk, 2-28, 3-36, 3-46, 3-69, 3-72, 3-73, 3-76,
3-83, 6-3, 6-10, 6-14, 6-15, 6-18
as upper dimension bound, 2-14
asterisk (*), E-3
at sign (@), E-2
ATAN, B-6
ATAN2, B-6
ATANH, B-6, E-3

B
BACKSPACE statement, 3-11, 5-5, 5-13
backward compatibility, E-1, E-3

BASIC language, 7-30
beginning-of-information, 3-78

Index-2

bit manipulation functions, B-3

bit manipulation intrinsics, E-1

bit masking, 2-27

bit processing, B-10

bit subfields, B-10

blank common, 3-15, 3-20

blank interpretation edit descriptors, 4-17

blanks, 2-1, 2-10, 3-47

block, 3-59, 5-3, 7-18

BLOCK DATA statement, 3-12, 6-18

block data subprogram, 1-4, 3-12, 3-17, 6-1, 6-18,
7-13, E-3

block DO loop, 3-23, 3-24, 3-30, E-1

block IF statement, 3-51, 6-17

Boolean (Pascal), 7-30

BTEST, B-3, B-10, E-1

buffer block, 5-9

BUFSIZ, 5-3, 7-18, E-2

byte length, E-2

Cc

C compiler option, F-1
CABS, B-2, B-8
call by value (non-FORTRAN 77 languages), 6-11
CALL EXIT statement, 3-81
CALL statement, 3-12, 3-76, 6-2, 6-3
calling BASIC language, 7-30
calling FORTRAN, 7-30
calling Macro/1000, 7-30
calling non-FORTRAN subprograms, 7-30
calling Pascal, 7-30
carriage control characters, 4-4
CCOS, B-6
CDS, 3-48, 7-14, 7-24, A-19, B-12
CDS directive, 7-14
CEXP, B-6
CHAR, B-4, B-5, E-3
CHAR functions, 2-10
character
argument, 6-15
assignment, 3-10
constant, 2-1, 2-10, 8-5
constant expression, 2-23
data type, 2-10, E-3
expression, 2-18, 2-23, 8-5
format, D-8
format descriptor, 4-14
manipulation, E-3
operator, 2-23
position, 2-10
relational expression, 2-25
string, 2-23, E-3
string initializing, 2-10
substring, 2-17, 3-27, 6-15, E-3
substring length, 2-17
variable, 2-17, 3-33
character function, B-4
CHARACTER statement, 2-10

CHARACTER[*len] statement, 3-83
Cl file system, 3-65
CI return variables, 7-7
CLIMIT directive, 7-14
CLOG, B-6
CLOSE statement, 3-14, 5-5, 5-10
CMPLX, B-5, B-§, E-3
CODE, H-3
code and data separation (CDS), 7-14, H-1
code modification, H-1
code space, H-1, H-2
colon, 4-19
column major order, 2-16, 3-20, 3-26
column sensitive, 1-5
columns, 1-4
command line, 8-9, B-16, F-1
commas as placeholders, 7-5
comment, 2-28
embedded, 2-28
end-of-line, E-2
comment line, 1-5, 2-28
common, 3-70
common block, 2-3, 3-12, 3-15, 3-17, 3-33, 3-79,
6-2, 6-11, 6-13, 6-14, 6-16, 6-18, 7-10, 7-15, E-2,
H-1
absolute, 7-13
alignment of data in, 2-9
equivalencing of elements, 3-41
labeled, 3-16, 6-1, 7-13
saved, 3-79
unlabeled (blank), 3-16
COMMON statement, 3-15, 3-21, 3-41, 6-13, 6-15
compatibility, 8-4, H-2
compatibility extension, 7-16, 8-1
compilation error messages, A-4
compilation errors, F-1
format, A-2
types, A-1
compiler
directive keywords, 2-2
I option, B-11
J option, B-11
revision, 7-7
status values, 7-7
X option, B-11
Y option, B-11
compiler directives. See directives
compiler invocation, 7-3
compiler messages, 7-6
compiler option
C, F-1
D, 8-9
E, 3-33, 7-12, 7-15
I, 2-11, 2-21, B-1
J, 2-6, 2-11, B-1
summary, 7-2
T, H-3
X, 8-4, B-1
Y, B-1

complex
constant, 2-8
data type, 2-8
format, D-5
values, 8-3
COMPLEX statement, 2-8, 3-83
COMPLEX*16 statement, 3-83, D-6
COMPLEX*8 statement, 2-8, 3-83, D-5
computed GOTO statement, 3-47, 8-
concatenation, 2-23, 3-85, 6-11, 6-15, E-2
conditional compilation, 3-52
CONIJG, B-2, B-9
constant, 2-5
character, 2-1, 2-10, 8-5
complex, 2-8
double complex, 2-9
double precision, 2-8
hexadecimal, 2-12
Hollerith, 2-1, 2-11, 8-5, D-8
integer, 2-6
logical, 2-9
constant expression, E-3
constant values, 2-1
continuation line, 1-4, 3-1, E-3
CONTINUE statement, 3-18
control statement, 1-5, 3-4, 7-1, F-1
conversion rules for arithmetic assignments, 3-8
COS, B-6
COSH, B-6
CRN, 3-65
cross-reference table, 7-2, F-1
CSIN, B-6
CSOQRT, B-6
CTAN, B-6, E-3
current record, 5-2

D

D (specifying exponent), 2-8
D compiler option, 8-9
DABS, B-2
DACOS, B-6
DACOSH, B-6, E-3
DASIN, B-6
DASINH, B-6, E-3
data control block, 5-3, 5-4, 7-18, 7-19
data space, H-1, H-2
DATA statement, 2-10, 3-19, 3-25, 3-27, 6-13, 8-5,
E-1, E-3, H-1, H-3
position, 3-20
data structure, 3-37
data type, 2-1, 2-5, D-1
character, 2-10
complex, 2-8
default, 2-3
double complex, 2-9
double integer, 2-6
double logical, 2-9
double precision, 2-8

Index-3

integer, 2-6
logical, 2-9
real, 2-7
rules for intrinsic functions, B-11
database file, B-13
DATAN, B-6
DATAN2, B-6
DATANH, B-6, E-3
DBLE, B-5
DCB, 5-3, 5-4, 7-18, 7-19
DCMPLX, B-5
DCONIG, B-2
DCOS, B-6
DCOSH, B-6
DDIM, B-2
DDINT, B-5
debug line, 8-9
Debug/1000, 7-2
decimal point, 2-7
declarator
adjustable array, 6-14
assumed-size array, 6-14
DECODE, list-directed, 8-7
DECODE statement, 5-14, 8-6, H-3
default data type, 2-3
default mode, 7-1
descriptors
blank interpretation, 4-17
character, 4-14
colon, 4-19
edit, 3-45, 4-7, 4-9, 4-17
fixed- or floating-point, 4-13
fixed-point, 4-11
floating-point, 4-12
format, 3-44, 4-7, 4-8
integer, 4-10
literal, 4-17
logical, 4-15
numeric, 4-9
octal, 4-16
position, 4-18
real and double precision, 4-10
record terminator, 4-19
scale factor, 4-20
tab edit, 4-19
device
peripheral, 5-1
storage, 5-1
DEXEC*, E-3
DEXP, B-6
DIM, B-2
DIMENSION, 6-13
dimension, 2-14
bound, 2-14, 3-21
declarator, 2-14, 3-21
DIMENSION statement, 3-21, 6-13
DINT, B-5
direct access, 5-2
direct access file, 3-35, 3-59, 3-74, 5-13

Index-4

direct access input/output, 8-8
directive, 1-5
ALIAS, 6-18, 7-10
CDS, 7-14
CLIMIT, 7-14
ELSE, 7-21
ELSEIF, 7-21
EMA, 7-15
ENDIF, 7-21
FILES, 5-3, 7-18
IE, 7-20
IFDEF/IFNDEEF, 7-20
INCLUDE, 7-22
LIST, 3-55, 7-23
LIST OFF, 7-23
LIST ON, 7-23
MSEG, 7-23
OPTPARMS, 7-24
PAGE, 7-24
SET, 7-24
TITLE, 7-26
TRACE, 7-27
directive line, 1-4
disaster, A-3
divide by zero, 2-18
division, 2-19
DLOG, B-6
DLOG10, B-6
DMAX2, B-2
DMIN1, B-2
DMOD, B-2
DNINT, B-5
DO loop, 3-22, 6-17, 8-2
block, 3-22, 3-23, 3-24, 3-30
execution, 3-22
exiting, 3-31
extended range, E-2
implied, 3-19, 3-22, 3-25, E-3
index, 3-23, E-3
labeled, 3-18, 3-22, 3-23, 3-24, 3-30
range, 3-31
DO statement, 3-22
DO WHILE loop, 3-22, 3-29, 3-30, E-1
DO WHILE statement, 3-29
dollar sign, 8-9
DOUBLE COMPLEX, D-6
double complex, E-2
constant, 2-9
data type, 2-9
format, D-6
statement, 2-9
DOUBLE COMPLEX statement, 3-83
double integer, 2-3, 2-6
constant, 2-6
data type, 2-6
format, D-2
double logical
data type, 2-9
format, D-7

DOUBLE PRECISION, D-4
double precision

constant, 2-8

data type, 2-8

format, D-4
DOUBLE PRECISION statement, 2-8, 3-83
DOUBLE PRECISION*6, D-3
double quotation mark, 3-45
DPROD, B-2, E-3
DS, 3-63, 3-65
DSIGN, B-2
DSIN, B-6
DSINH, B-6
DSQRT, B-6
DTAN, B-6
DTANH, B-6

E

E compiler option, 3-33, 7-12, 7-15
edit descriptor, 4-19
edit descriptors, 3-45, 4-7, 4-9, 4-17
ELSE directive, 7-21
ELSE IF statement, 3-52
ELSE statement, 3-51
ELSEIF directive, 7-21
EMA, 3-33, 6-11, 6-14, 7-3, 7-12, 7-15, 7-24, H-1
passing between FORTRAN and Pascal, 7-30
EMA directive, 7-15
EMA statement, 3-33, E-2
embedded comment, 2-28
encapsulation, 3-37
ENCODE statement, 5-14, 8-6, H-3
END DO statement, 3-18, 3-23, 3-24, 3-29, 3-30,
3-31
END IF statement, 3-51
END statement, 1-4, 3-34, 6-2, 6-16
end-of-file record, 3-35, 5-2
end-of-line comment, E-2
ENDFILE, statement, 5-13
ENDFILE statement, 3-35, 5-2, 5-5
ENDIF directive, 7-21
entry
association, 6-17
name, 6-17
entry point, 3-70
ENTRY statement, 3-36, 6-17, E-2, E-3
restrictions, 6-18
EOF, 3-35, 3-55
equivalence, E-2, H-3
EQUIVALENCE statement, 3-38, 6-13, 8-7
equivalenced data, 2-9
equivalencing, 3-33, 3-38
arrays of different dimensions, 3-40
in common blocks, 3-41
of array elements, 3-38
of character variables, 3-41
of VMA or EMA variables, 7-16

error messages, 7-6, 7-23
errors
compilation, A-1
compilation time, F-1
format, A-2
library subroutine, A-19
listing of compilation errors, A-4
evaluation, 2-19
exclamation point (!), 1-5, 2-28, E-2
EXEC, B-7, B-9, E-3
EXEC 14 call, B-17
executable program, 1-4
executable statements, 3-1
table of, 3-2
EXP, B-6
exponent, 2-7, 2-8, E-2
exponentiation, 2-19, 2-22, 3-66
exponentiation operator, 2-22
expression, 2-5, 2-18, 3-7
arithmetic, 2-18
arithmetic constant, 2-22
arithmetic relational, 2-24
bit masking expression, 2-27
character, 2-18, 2-23
character constant, 2-23
character relational, 2-25
logical, 2-18, 2-25
relational, 2-18, 2-24
extended memory area, 3-33, 7-15
extended precision, format, D-3
extent, 3-59
external file, 5-2
external name, 7-10

EXTERNAL statement, 3-43, 3-60, 8-3, 8-8

F

FFRCL, B-13

file, 3-56, 3-61, 3-85
access, 5-2
connection, 5-4
database, B-13
definition of, 5-1
direct, 5-2
direct access, 3-35, 3-59, 3-74, 5-13
existence, 5-11
external, 5-2
FPOSN, B-14
include, 7-22
internal, 5-2, 5-14
Pascal, 7-30
positioning, 5-13
scratch, 5-5, 5-8, 5-10

sequential, 3-11, 3-35, 3-56, 3-59, 3-78, 5-2

source, 1-2

spool, 5-1
file control specifiers, 5-6, 5-7, 5-10, 5-11
file name, 3-55
file pointer, 5-2, 5-13

Index-5

file positioning statements, 5-13
FILES directive, 5-3, 7-18
fixed- or floating-point format descriptor, 4-13
fixed-point format descriptor, 4-11
FLOAT, B-5, B-8
floating-point, 2-7, 2-24
floating-point format descriptors, 4-12
FLOCE, B-14
formal argument, 6-11
of a statement function, 6-12
of a subprogram, 6-12
format descriptors, 3-44, 4-7, 4-8
format designator, 3-72, 3-73
format specifications, 4-5
in input/output statements, 4-5
nesting of, 4-22
format specifier, 8-6
FORMAT statement, 3-6, 3-44, 3-69, 3-72, 3-73,
3-85, 4-5
formatted record, 5-1
formatting
formatted input, 4-1
formatted output, 4-3
carriage control characters, 4-4
PRINT statement, 4-3
WRITE statement, 4-3
list-directed, 3-11, 5-3, 5-13, 8-7
FORTRAN 4, 7-16
FORTRAN 4X, 1-1, 6-18, 7-16, 8-1, 8-4, E-1, E-3
FPARM, 3-70, B-16
FPOSN, 3-64, B-14
FPOSN file, B-14
FPOST, B-13
free space, 7-13
FREESPACE, 5-3, 7-18
FRPLS file, 7-14
FSYSU, 5-15
FTN4X, H-3
FTNG66, 8-1, E-3
function, 2-3, 2-5, 3-36, 6-1, 6-5
CHAR, 2-10
character, 6-10
generic name, 6-9
intrinsic, 3-60, 6-9, B-1
random number generaor, B-15
statement, 6-8
subprogram, 6-5
typing, 6-5
value returned, 6-7, 6-10
FUNCTION statement, 3-46, 3-54
function subprogram, 6-1

G

generic name, 3-60, 6-9, B-1

GETST, B-17

GO (system command), 3-68

GOTO statement, 3-6, 3-31, 3-47, 7-11

Index-6

assigned, 3-48

computed, 3-47, 8-2

unconditional, 3-47
GRAN, B-15

H

H (specifying Hollerith), 2-11
hexadecimal constant, 2-12, E-1
Hollerith, H-2
constant, 2-1, 2-11, 8-3, 8-5, D-8
data, 2-24
format, D-8
HP ASCII character set, 1-4
HP-IB addressing, E-2

I compiler option, 2-11, 2-21, B-1, B-11
I/O driver, 3-75, 3-86, 5-6
IABS, B-2
IAND, B-2, E-1
IBCLR, B-3, B-8, E-1
IBITS, B-3, B-10, E-1
IBSET, B-3, B-10, E-1
ICHAR, B-4, B-5, B-9, E-3
IDIM, B-2
IDINT, B-5
IDNINT, B-5
IEOR, E-1
IEXOR, B-2
IF directive, 7-20
IF statement, 3-49
arithmetic, 3-49, 8-8
block, 3-50
logical, 3-50
IFDEF/IFNDEF directive, 7-20
IFIX, B-5, B-8
IMAG, B-2
IMPLICIT NONE statement, 3-54, A-2, E-
IMPLICIT statement, 2-3, 2-6, 2-7, 3-53, 6-
implied DO loop, 3-25, 3-27, E-3
in input/output statement, 3-25
in DATA statement, 3-27
implied typing, 2-3
INCLUDE directive, 7-22
include file, 7-22
INCLUDE statement, 3-55, E-1
indenting, 1-5
INDEX, B-4, B-9, E-3
initial line, 1-4
initial point, 5-2
initializing character strings, 2-10
input
list-directed, 4-23
unformated, 4-28
input/output, 4-1, 5-1, 8-3, 8-6, 8-7, 8-9
buffer, B-12
direct access, 8-8

1
9

formatted, 4-1

function, 6-10

list, 3-25

list-directed, 4-23

statements, 3-4, 3-25

unformatted, 4-28
INQUIRE, statement specifiers, 3-57
INQUIRE statement, 3-56, 5-5, 5-11

specifications, 5-12

specifiers, 3-56
INQUIRE-by-file statement, 5-12
INQUIRE-by-unit statement, 5-12
installation, 1-5
INT, B-5, B-8
integer, 2-3, E-2

constant, 2-6

data type, 2-6

format, D-1

format descriptors, 4-10

statement, 2-6
INTEGER statement, 2-6, 3-83
INTEGER*2 statement, 2-6, 3-83,
INTEGER*4 statement, 2-6, 3-83
internal file, 5-2, 5-14

intrinsic function, 2-4, 3-60, 6-1, 6-9, 6-11, 7-12,

8-3, B-1

in EXTERNAL statement, 3-43
intrinsic functions, ANSI 77, 2-4
INTRINSIC statement, 3-60, 8-3, E-3
invocation of the compiler, 7-3
IOR, B-2, E-1

IOSTAT, 3-11, 3-14, 3-35, 3-56, 3-61, 3-73, 3-78,

3-85, 8-7, A-23
IRANP, B-15
ISHFT, B-3, B-9, E-1
ISHFTC, B-3, E-1
ISIGN, B-2
ISSW, B-7, B-9, E-3
ISTAT, B-11
ITLOG, 4-28, B-11
ITYPE, B-13
IXOR, B-2, E-3

J
J compiler option, 2-6, B-1, B-11

K

keywords, 2-2
compiler directive, 2-2
statement, 2-2

L
label, 1-5, 3-1, 3-18, 3-23, 3-29, 3-76

labeled common block, 6-1
labeled DO loop, 3-23, 3-24, 3-30

D-1
,D-2

LEN, B-4, E-3

LGBUEF, 4-8, 4-28, 5-1, B-12
LGE, B-4, E-3

LGT, B-4, E-3

library function, B-1

library interface functions, B-11
library routine names, 7-10

library subroutine error messages, A-19

line, 1-4
LINK, 5-3, 7-18
linker, 3-46, 3-70, 6-17, 7-1, 7-9, 7-13
LIST directive, 3-55, 7-23
LIST OFF directive, 7-23
LIST ON directive, 7-23
list output, 7-2
list-directed
DECODEing, 8-7
formatting, 3-11, 5-3, 5-13, 8-7
input, 4-23
output, 4-26, 8-9, B-13
READ statement, 8-3
listing, 1-2
listing (sample), 7-7
literal edit descriptors, 4-17
LLE, B4, E-3
LLT, B-4, E-3
loader, 7-31
local variable, 6-13, H-2, H-3
LOG, B-6
LOG10, B-6
logarithms, 2-22
logical, E-2
assignment statement, 3-9
constant, 2-9
data type, 2-9
expression, 2-18, 2-25, 3-29
format, D-7
format descriptor, 4-15
IF statement, 3-24, 3-50
operator, 2-25
unit, 3-55, 5-1
logical operators
truth table for, 2-26
used in bit masking, 2-27
LOGICAL statement, 2-9, 3-83
LOGICAL*2, D-7
LOGICAL*2 statement, 2-9, 3-83
LOGICAL*4, D-7
LOGICAL*4 statement, 2-9, 3-83
lowercase, 2-1, 2-3, 2-10, 3-54, E-2
LU, 3-55, 3-61, 5-1
LUTRU, 5-11

Macro/1000, 7-30
magnetic tape, 3-35
main program unit, 1-4
MAX, B-2

Index-7

MAXO0, B-2

MAX1, B-2

MAXREC, E-2

memory area, H-1

memory protect error, 7-24

MERGE utility, 7-2

MIL-STD-1753 extensions, E-1

MIN, B-2

MINO, B-2

MINT1, B-2

minus sign, 2-7, 2-18

mixed listing, 7-2, 7-23

mixed-type expression, 8-3

mixed-type operands, 2-21
conversion of, 2-22

MLS program, B-12

MOD, B-2

MSEG, 7-23

MSEG directive, 7-23

multidimensional array, 8-7

multipass compiler, 1-2

multiplication, 2-18, 2-19

MVBITS, B-3, B-10, E-1

N

named constant, 2-3
namr, 3-62
nesting
level, 3-52
of DO loops, 3-25, 3-30
of implied DO loops, 3-26
nesting of format specifications, 4-22
next record, 5-2
NFIOB, 5-3, 5-9, 7-18, B-11
NINT, B-1, B-5
NODE, E-2
node, 3-59
nonexecutable statements, 3-1
table of, 3-2
NOT, B-2, E-1
null device, 7-6
numeric conversion functions, B-5
numeric format descriptors, 4-9

(o)

octal constant, E-1
B-form, 2-12
O-form, 2-12
octal format descriptors, 4-16
OF command, 5-10
OPEN statement, 3-14, 3-61, 5-1, 5-3, 5-4, 5-5, 5-7,
5-11, 7-18
specifiers, 3-62
operand, 2-18
mixed-type, 2-21
operating system, 2-3

Index-8

RTE-6/VM, 1-2
RTE-A, 1-2
operation undefined (UN) error, 2-22
operator, 2-2, 2-18
AND., E-2
.EOR., E-2
.EQ., 2-24
.EQV,, E-2
.GE., 2-24, B-9
.GT, 2-24, B-9
.LE., 2-24, B-9
.LT, 2-24, B-9
.NE., 2-24
NEQV, 2-26, E-2
.NOT, 2-25, E-2
.OR,, 2-25, E-2
XOR., E-2
arithmetic, 2-18
character, 2-23
exponentiation, 2-22
logical, 2-25, E-2
relational, 2-24
unary, 2-18, 2-25
operators, logical, 2-26
OPTPARMS directive, 7-24
order of evaluation, 2-19
order of statements, 3-5
output
formatted, 4-3
list-directed, 4-26, 8-9
unformatted, 4-29
overflow, 2-21, E-2
overlay, 1-4

P

PAGE directive, 7-24
page eject, 7-24, 7-26
PARAMETER statement, 2-5, 3-66
parentheses, 2-8, 2-9, 2-19, 2-20, 2-23, 2-27, 6-5,
7-15, 8-9
nested, 2-20
Pascal, 6-11, 7-30
value parameters, 7-31
pass, 1-2
passing by reference, 6-11
passing by value, 6-11
PAUSE statement, 3-68
PCOUNT, B-7, E-3
peripheral, 5-1
plus sign, 2-7, 2-18
portability, 8-5, B-9
position edit descriptor, 4-18
posting, B-13
pound sign, F-1
precedence, 2-19, 2-26
precision, 3-8
precision of a subexpression, 2-21
preconnected devices, 5-4

preconnected file, 5-15
previous record, 5-2
PRINT statement, 3-69, 4-3, 4-26, 5-5
procedure, 6-1
communication, 6-11
used as actual argument, 6-11
program halt statements, 3-4
PROGRAM statement, 1-4, 3-70
alternate, 3-70
program unit, 1-2, 1-4
PRTN, 7-7, A-3

Q

quotation mark
double, 3-45
single, 2-10

R

random number generator functions, B-15
range of a DO loop, 3-31
RCPAR, 7-9, B-16
READ statement, 3-72, 4-23, 4-28, 5-5, 5-6
from file, 3-73
from standard input unit, 3-72
list-directed, 8-3
REAL, B-8
real
data type, 2-7
format, D-2
real and double precision format descriptors, 4-10
REAL function, B-5
REAL statement, 2-7, 3-83
REAL*4, D-2
REAL*4 statement, 2-7, 3-83
REAL*6, D-3
REAL*S, D-4
REAL*8 statement, 2-8, 3-83
record, 5-1
definition of, 5-1
end-of-file, 5-2
formatted, 5-1
unformatted, 5-2
record terminator edit descriptor, 4-19
recursion, H-2, H-3
redundant OPEN call, 3-65
referencing an external procedure, 6-17
REIO, B-7, B-9, E-3
relational expression, 2-18, 2-24
relational operator, 2-24
relocatable address, 7-2
repeat specifications, 4-21
required software, 1-5
RETURN statement, 3-34, 3-76, 6-2, 6-3, 6-7, 6-16
return variables, CI, 7-7
REWIND statement, 3-78, 5-5, 5-13
RHPAR, 7-9, B-16

RMPAR, 7-27

RNRQ, 7-11

row-major order, 3-26

RTE-6/VM Operating System, 1-2

RTE-A Operating System, 1-2, 7-14, H-1

RUN command, 3-70
running a program, 7-9

S

SAVE statement, 3-79, 6-16, E-3, H-2, H-3

scale factor, 4-20, E-2
scratch file, 5-5, 5-8, 5-10
sequential access, 5-2, 5-13

sequential file, 3-11, 3-35, 3-56, 3-59, 3-78

session environment, 5-1, 5-4

SET directive, 7-24

SGMTR, 7-13

SIGN, B-2

simple variable, 2-13

SIN, B-6

SINH, B-6

SL command, 5-4

SNGL, B-5

software, required for installation, 1-5

source file, 1-2, 2-28

special characters, 2-1

special symbols, 2-1, 2-2

specific name, B-1

specification statement, 2-15, 3-3, E-3

specifiers
file control, 5-6, 5-7, 5-10, 5-11
format, 8-6
of INQUIRE statement, 3-57, 3-62

spool file, 5-1

SQRT, B-6

SSEED, B-16

SSGA, 3-17, 7-13

SST, 5-1, 5-4

stack, H-1, H-2, H-3

standard input unit, 5-15

standard output unit, 5-15

statement, 1-4, 3-1, 3-3
See also control statement
alternate return, 6-3
ASSIGN, 3-48, 8-6
assignment, 2-10, 3-7
BACKSPACE, 3-11, 5-5, 5-13
BLOCK DATA, 3-12, 6-18
block IF, 3-51, 6-17
CALL, 3-12, 3-76, 6-2, 6-3
CALL EXIT, 3-81
categories, 3-2
CHARACTER, 2-10
character assignment, 3-10
CHARACTER[len], 3-83
classification, 3-3
CLOSE, 3-14, 5-5, 5-10
COMMON, 3-21, 3-41, 6-13, 6-15

Index-9

common, 3-15 RETURN, 3-34, 3-76, 6-2, 6-3, 6-7, 6-16

COMPLEX, 2-8, 3-83 REWIND, 3-78, 5-5, 5-13
COMPLEX*16, 2-9, 3-83 SAVE, 3-79, 6-16, E-3, H-2, H-3
COMPLEX*8, 2-8, 3-83 specification, 2-15, 3-3, E-3
CONTINUE, 3-18 statement function, 3-80
control, 1-5, 3-4 STOP, 3-81
DATA, 2-10, 3-19, 3-25, 6-13, 8-5, E-3, H-1, H-3 SUBROUTINE, 3-76, 3-82, 6-3
DECODE, 5-14, 8-6, H-3 THEN, 3-52
DIMENSION, 3-21, 6-13 type, 2-3, 3-54, 3-83, 6-13
DO, 3-22 value assignment, 3-3
DO WHILE, 3-29 WRITE, 3-85, 4-3, 4-26, 4-29, 5-5, 5-6
DOUBLE COMPLEX, 2-9, 3-83 statement function, 6-1, 6-8, 8-8
DOUBLE PRECISION, 2-8 as actual argument, 6-9
DOUBLEPRECISION, 3-83 in EXTERNAL statement, 6-9
ELSE, 3-51 statement function statement, 3-80
ELSE IF, 3-52 statement label, 1-5, 3-1, 3-6
EMA, 3-33, E-2 statement order, (figure), 3-5
ENCODE, 5-14, 8-6, H-3 STOP statement, 3-81
END, 1-4, 3-34, 6-2, 6-16 storage, 2-5, 2-13, 3-15, 3-33, 3-38, 3-40, 5-1, 6-11,
END DO, 3-18, 3-23, 3-24, 3-29, 3-30, 3-31 7-18, 8-7, H-1
END IF, 3-51 for common blocks, 3-16
ENDFILE, 3-35, 5-2, 5-5, 5-13 of array elements, 2-16
ENTRY, 3-36, 6-17, E-3 string, 2-10, 2-23
EQUIVALENCE, 3-38, 6-13, 8-7 subprogram, 1-5
executable, 3-1 used as actual argument, 6-11
EXTERNAL, 3-43, 3-60, 8-8 subprogram unit, 1-4
FORMAT, 3-6, 3-44, 3-69, 3-72, 3-73, 3-85, 4-5 subroutine, 3-36, 6-1, 6-2
FUNCTION, 3-46, 3-54 alternate return from, 6-3
GOTO, 3-6, 3-31, 3-47, 7-11 referencing, 6-2
IF, 3-49 SUBROUTINE statement, 3-76, 3-82, 6-2, 6-3
IMPLICIT, 2-3, 2-6, 2-7, 3-53, 6-9, E-1 subroutine subprogram, 6-1
IMPLICIT NONE, 3-54 subscript, 2-14, 2-15, 3-20, 3-34
INCLUDE, 3-55, E-1 subscript value, 3-27
input/output, 3-4 subscripted variable, 2-13, 2-15
INQUIRE, 3-56, 5-5, 5-11 subtraction, 2-19
INTEGER, 2-6, 3-83 symbol table, 7-2
INTEGER™*2, 2-6, 3-83 symbolic debug, 7-2
INTEGER™*4, 2-6, 3-83 symbolic name, 2-1, 2-3, 2-13
INTRINSIC, 3-60, E-3 predefined, 2-2
keywords, 2-2 user-defined, 2-4
LOGICAL, 2-9, 3-83 system library, 6-1
logical assignment, 3-9 system unit, 5-1
logical IFE, 3-50 system-dependent extensions, E-2
LOGICAL*2, 2-9, 3-83 system-labeled common, 3-17
LOGICAL*4, 2-9, 3-83 SZ system command, 5-3, 5-9, 7-18
nonexecutable, 3-1
OPEN, 3-14, 3-61, 5-1, 5-3, 5-4, 5-5, 5-7, 5-11, T

7-18
order, 3-5 T compiler option, H-3
PARAMETER, 2-5, 3-66 tab edit descriptors, 4-19
PAUSE, 3-68 TAN, B-6
PRINT, 3-69, 4-3, 4-26, 5-5 TANH, B-6
PROGRAM, 1-4, 3-70 terminal point, 5-2
program halt, 3-4 THEN statement, 3-52
program unit, 3-3 TITLE directive, 7-26
READ, 3-72, 4-23, 4-28, 5-5, 5-6 TRACE directive, 7-27
REAL, 2-7, 3-83 tracing, 7-27
REAL*4, 2-7, 3-83 truth table
REAL*S, 2-8, 3-83 for masking operators, 2-27

Index-10

for the logical operators, 2-26 in dimension declarator, 2-14

type conversion rules simple, 2-13
examples for arithmetic assignments, 3-9 subscripted, 2-13, 2-15
table for arithmetic assignments, 3-8 VC+ System Extension Package, 7-14, H-1
type statement, 2-3, 3-54, 3-83, 6-13 Vector Instruction Set, 7-23
typing of intrinsic functions, B-11 virtual memory area, 3-33, 7-15
VMA, 3-33, 7-15
U
. w
unary minus, 2-18
unary operator, 2-18, 2-25 weak external, 7-11
unary plus, 2-18 WRITE statement, 3-85, 4-3, 4-26, 4-29, 5-5, 5-6
unconditional GOTO statement, 3-47
underscore (_), E-2 X
underscore in symbolic names, E-2
unformatted input, 4-28 X compiler option, 8-4, B-1, B-11
unformatted input/output, 4-28 XLUEX*, E-3
unformatted output, 4-29 XREIO*, E-3
unformatted record, 5-2
unit, 3-65 Y
unit number, 3-14, 3-35, 3-56, 3-61, 5-1
uppercase, 2-1, 2-3, 2-10, 3-54, 3-65 Y compiler option, B-1, B-11
URAN, B-15
USE, E-2 z

user-defined symbolic name, 2-4
Z-buffer, 3-74

v Z$CDS symbol, 7-14

Z$LPP, 7-4
value assignment statements, 3-3 ZBUEF, 3-74, 3-75, 3-85, 3-86, 5-6, E-2
variable, 2-3, 2-5, 2-13 ZLEN, 3-75, 3-86, 5-6, E-2

Index-11

	Title page
	Preface
	Table of Contents
	Chapter 1 - Introduction to FORTRAN 77
	Chapter 2 - Language Elements
	Chapter 3 - FORTRAN 77 Statements
	Chapter 4 - Input/Output
	Chapter 5 - FORTRAN File Handling
	Chapter 6 - Procedures and Block Data Subprograms
	Chapter 7 - Using FORTRAN 77
	Chapter 8 - ANSI 66 Compatibility Extensions
	Appendix A - Error Messages
	Appendix B - Intrinsic and Library Functions
	Appendix C - HP Character Set
	Appendix D - Data Format in Memory
	Appendix E - FORTRAN Comparisons
	Appendix F - Cross-Reference Table
	Appendix G - FORTRAN 77 Syntax Charts
	Appendix H - CDS Usage
	Index

