HEWLETT hp, FACKARD

HP ALGOL

Reference Manual

HP ALGOL

Reference Manual

i

hp: PACKARD

E

HEWLETT

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed in U.S.A. 11/76

PART NO. 02116-9072

LIST OF EFFECTIVE PAGES

Changed pages are identified by a change number adjacent to the page number. Changed information is indicated by a
vertical line in the margin of the page. Original pages (Change 0) do not include a change number. Insert latest changed
pages and destroy superseded pages.

Change 0 (Original) NOV 1976

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1976 by HEWLETT-PACKARD COMPANY

PREFACE

This manual describes the HP ALGOL language for Hewlett-Packard 2000 computer systems.
HP ALGOL is similar to the source language described in “Revised Report on the Algorithmic
Language ALGOL 60,” Communications of the ACM, January, 1963.

Different versions of HP ALGOL have been designed to run on these operating systems:

SIO Subsystem

DOS IIT Operating Systems
Real-Time Executive II (RTE-II)
Real-Time Executive III (RTE-III)

In addition, programs compiled by ALGOL can run under the Basic Control System (BCS) and
RTE memory based systems. You should check the reference manual of your system for
information on how HP ALGOL is implemented.

This is a reference manual, not a training manual. You should already be familiar with your
operating system and have had some programming experience.

For information concerning subroutines provided with your system, see DOS/RTE Relocatable
Library Reference Manual (Part No. 24998-90001).

The first section of this manual describes ALGOL programs in general, and includes a
comparison of HP ALGOL and ALGOL 60. The second section defines the basic concepts of
ALGOL and explains how to declare identifiers. Section III gives a detailed description of
assignment, GO TO, IF, CASE, WHILE, DO, FOR, and PAUSE statements. Input/Output
statements and declarations are described in section IV. An explanation of procedures, both
internal and external, is presented in section V. Section VI gives some general information
about the HP ALGOL compiler. Section VII presents sample HP ALGOL programs. HP
ALGOL and HP FORTRAN IV are compared in section VIII. Appendix A contains compiler
and system error messages. Appendix B contains the HP ALGOL syntax in BNF productions.
Appendix C lists the Hewlett-Packard character set for computer systems.

lii/iv

CONTENTS

Section I Page
INTRODUCTION
Algorithms and Programs 1-1
HP ALGOL Programsccooiiiineeeenn. 1-1
HP ALGOL and ALGOL 60 13
Section II Page
BASIC CONCEPTS
Constantsiiiiiii 2-1
Decimal constants 2-2
ASCII Constantsciiiiuiinnnenn. 2-2
Octal Constantscooiiiinienenne... 2-2
Boolean Constants 2-2
Identifierst 2-2
Declarations 2-3
EQUATE Declaration 2-3
Type Declaration 2-4
ARRAY Declaration F 2-4
LABEL Declaration 2-5
SWITCH Declaration 2-6
Variables...... 2-6
Arithmetic Expressions 2-7
Boolean Expressionscoiiiiian. 2-9
Conditional Expressions 2-10
Assigned Expressions R 2-11
Intrinsic Functions and Predeclared
Identifiers 2-11
Commentst 2-12
Section III Page
ALGOL STATEMENTS
Labels ... 3-1
Assignment Statements 3-1
GO TO Statementc..... 3-2
IF Statementcooi .. 3-3
CASE Statement 3-4
WHILE Statement 3-6
DO Statement 3-7
FOR Statementccc ... 3-8
PAUSE Statement 3-9
Dummy Statement 3-10
Blocks ... 3-10
Section IV Page
INPUT/OUTPUT
INPUT List ..o 4-1
OUTPUT List ... 4-2
FORMAT Declaration 4-2
Real Format Specifications...................... 4-2
Integer Format Specifications 4-5
Editing Specifications 4-7
Specification Separators 4-8
Repeat Count................................ 4-8
Carriage Control 4-9
Free Field Input 49
READ Statement 4-10
WRITE Statement 4-10
Examples ... 4-11
Magnetic Tape Statements..................... 4-15

Section V Page
PROCEDURES
Parameters 5-1
Procedure Declarations 5-2
Calling Procedurescoovveeiinn... 5-3
Function Procedures 5-4
CODE procedurescooiiiiiiinennnnnn. 5-4
Separately Compiled Procedures 5-4

ALGOL Procedurescovvveieinnnn.. 5-5

Calling FORTRAN Routines

from ALGOL 5-5

Calling ALGOL Procedures

from FORTRAN i 5-6

Calling ALGOL Procedures from

Assembly Language 5-7

Calling Assembly Language Routines

from ALGOL i, 5-7
Section VI Page
THE HP ALGOL COMPILER
Environment 6-1
Control Statement F 6-1
Program Input............... 6-2
Program Listing L. 6-2
Section VII Page
PROGRAM EXAMPLES
Taylor Series for EXP, SIN, and COS 7-1
Read Text and Count Characters 7-5
Call System Routines 7-6
Section VIII Page
HP ALGOL AND HP FORTRAN IV
Program Format 8-1
Variables and Constants 8-1
Arrays ... 8-1
Statement Numbers............................... 8-2
Expressions i 8-2
EXTERNAL Statement 8-2
COMMON and EQUIVALENCE Statements 8-2
DATA Statementcccoii. ... 8-2
Assignment Statement 8-3
GO TO Statementcooi. ... 8-3
ASSIGN TO and Assigned GO TO Statements...... 8-3
Computed GO TO Statement 8-3
Arithmetic IF Statement 8-3
Logical IF Statement 8-3
CALL Statementcccoeiiioi. ... 8-4
RETURN and STOP Statement 8-4
CONTINUE Statement............................ 8-4
PAUSE Statement 8-4
DO Statement 8-4
END Statement 8-4
I/O Statements 8-5
Functions and Subroutines 8-5

CONTENTS (continued)

Appendix A Page
Errors A-1
Appendix B Page
HP ALGOL BNF SYNTAX B-1

Appendix C

HEWLETT-PACKARD CHARACTER SET

FOR COMPUTER SYSTEMS

TABLES

Title Page
Reserved ALGOL Identifiers....................... 2-3
ALGOL Intrinsic Functions 2-11
Predeclared ALGOL Variables.................... 2-12

vi

INTRODUCTION

The word ALGOL is an acronym for ALGOrighmic Language. This section has been written to
give you a brief introduction to algorithms, to describe the structure of ALGOL programs, and
to point out the differences between ALGOL 60 and HP ALGOL.

1-1. ALGORITHMS AND PROGRAMS

An algorithm is a step by step method used to solve a problem or accomplish some task. A
common algorithm is the definition of a factorial:

Factorial of n (n!):
If n= 0 then n!= 1.
Ifn>0thenn!=nxm-1) X ... Xx 3x 2x 1.
Example: 5! = 5 x 4 x 3 x 2x 1= 120

Il

In this form you can understand the algorithm, but it cannot be executed on a computer. A
computer program is an algorithm that has been written in a language which the computer
understands. ALGOL is one such computer language.

A compiler is a program that translates computer programs from a symbolic language (such as
ALGOL or FORTRAN) into binary code that can be loaded on a computer. The program read
into the compiler is called the source code or source program. The machine instructions
generated by the compiler are called the object code or object program. The object code can be
loaded and executed on a computer.

The steps to producing a computer program are:

Define the problem.

Write an algorithm to solve the problem.

Translate the algorithm into ALGOL.

Run the ALGOL compiler to produce relocatable object code.

Run the loader to combine subroutines and produce executable machine code.
Execute the machine code.

S

1-2. HP ALGOL PROGRAMS

HP ALGOL statements and declarations do not have to begin in any particular column. (They
must end by column 72.) One statement can be spread over several lines or several statements
can appear on one line. Statements are separated from each other with semicolons (;).

HP ALGOL is a block structured language. An ALGOL block is a series of declaratons and/or
statements that start with the word BEGIN and terminate with the word END.

1-1

As an example of HP ALGOL, here is a program to calculate a factorial:

PAGE 001

001 00000 HPAL,L,'"FACTL"™

002 00000 BEGIN

003 00001 COMMENT THIS PROGRAM READS A NUMBER FROM THE
004 00001 SYSTEM CONSOLE (LU 1) AND PRINTS ITS FACTORIAL;
005 00001 INTEGER N, FACTL;

006 00004 READC1, *, NJ;

007 00040 FACTL := 1;

008 00042 WHILE N > 0 DO

009 00045 BEGIN

010 00046 FACTL FACTL*N;

011 00052 N := N -1

012 00052 END;

013 00056 WRITEC1, #(* FACTORIAL =" I6), FACTL);

014 00101 ENDS$

PROGRAM= 000105 ERRORS=000

Line 1 contains the control statement. The L indicates that the program is to be listed as it is
compiled. The name of the program (in this case FACTL) is enclosed in quotes.

Line 2 is the first line of the program. Because a program is a block, the first statement must
always be the word BEGIN.

Lines 3 and 4 contain a comment. Comments are included in programs to help the reader
understand what the program does. Comments are ignored by the compiler and do not affect

the object code that is generated. The semicolon terminates the comment.

Line 5 declares two integer variables: N and FACTL. Any variables used exclusively within a
block must be declared at the beginning of the block.

Line 6 is the first executable statement in the program. It reads a number from logical unit 1
and puts it into N.

Line 7 initializes the factorial to one.

Line 8 is the beginning of a WHILE statement. The condition is checked (N greater than zero)
and the following block is executed while the condition is true. If N is zero the first time it is
checked, the block is never executed.

Line 9 is the beginning of an inner block.

Line 10 multiplies FACTL by N.

Line 11 sets up the value of N for the next iteration of the WHILE block.

Line 12 terminates the block that started in line 9. After line 11 is executed, the condition in
line 8 is checked again.

Line 13 is executed only after the WHILE condition is false. The value of the factorial of N is
printed on logical unit 1.

1-2

Line 14 terminates the block that began in line 2. The “$” indicates that this is the end of the
program.

This program listing was formatted to clearly show ALGOL’s block structure by indenting the
statements. This is not required — it could have been compacted to:

001 00000 HPAL,L,"FACTL"

002 00000 BEGIN INTEGER N,FACTL;READC1,#*, N);FACTL:=1;3WHILE N>
003 00042 0 DO BEGIN FACTL:=FACTL#*N;N:=N-1 END;WRITEC1, #(

004 00064 ' FACTORIAL = I5),FACTL) END$

PROGRAM= 000105 ERRORS=000

Although both programs produce the same object code, the first one is easier to read and
understand. Most of the program examples in this book indent blocks three spaces.

1-3. HP ALGOL AND ALGOL 60

This subsection describes the differences between HP ALGOL and ALGOL 60. If you are not
already familiar with ALGOL 60, you may skip this discussion.

In addition to the major elements of ALGOL 60, HP ALGOL provides the following extensions:
1. REAL and INTEGER variables can be intermixed on the left side of assignment state-
ments.

Example:

INTEGER A; REAL B;
A := B := 0;

2. IF statements can be nested within IF statements.
Example:

IF A=B THEN IF B=C THEN D=1 ELSE D=3;

3. All variables are treated as OWN variables (their values are not changed when execution
terminates in the block where they are declared).

4. Variables and arrays can be initialized as you declare them.
5. Program constants can be given symbolic names with the EQUATE declaration.

Example:

EQUATE TABLESIZE := 126;
ARRAY TABLE[1:TABLESIZET;

1-3

6. READ and WRITE statements use FORMAT specifications and Logical Unit numbers (as
in FORTRAN).

7. You can reference external routines written in HP ALGOL, FORTRAN, or Assembly
Language.

8. Because HP ALGOL treats Boolean and integer expressions in the same manner, you can
use NOT, AND, and OR in arithmetic expressions.

9. You can replace “STEP 1 UNTIL” with “TO” in FOR statements (only when the step value
is 1).

10. You can define one word (integer) octal and ASCII constants.

11. Comments can be inserted after an ampersand (&) on any line.

12. The DO ... UNTIL, PAUSE and CASE statements have been added.
HP ALGOL also differs from ALGOL 60 in the following areas:

1. Recursion is not supported.

2. Parameters are called by reference instead of by name. (Parameters can also be called by
value.)

3. The definition of a switch is not as general.

4. Lower case letters are not included in the basic character set. In addition, the following
characters are substituted for ALGOL 60 characters:

ALGOL 60 HP ALGOL MEANING
X * Multiplication
= \ Integer Division
=< <= Less Than or Equal
= >= Greater Than or Equal
Not Equal
- NOT Logical Not
A AND Logical And
\% OR Logical Or
10 ‘ Scaling Factor for Real Constants

String Quotes

You may use the standard ALGOL assignment operator := or the HP ALGOL assignment
operator <. The symbols D (Logical Implies) and = (Logical Equate) are not included in HP
ALGOL.

5. You cannot use the FOR list and WHILE form of the FOR statement.
6. Array bound values must be integer constants.
7. You must declare labels before you define them.

8. Storage for arrays and variables is not dynamic.

1-4

BASIC CONCEPTS

This section has been written to explain the basic elements of HP ALGOL: constants, iden-
tifiers, declarations, expressions, intrinsic functions, and program comments.

2-1. CONSTANTS

Constants are values used in your program that do not change. You can use four types of
constants in HP ALGOL programs: decimal, octal, Boolean, and ASCII.

2-2. DECIMAL CONSTANTS
Decimal constants may be either real or integer numbers.

Real numbers use two words (32 bits) of memory. They have a 23 bit fraction (plus sign bit) and
a seven bit (plus sign) exponent. Real numbers are significant to six or seven decimal digits,
depending on the leading digit in the fraction. The largest number that can be represented is
2127 (approximately 10¥). The smallest positive number is 27'*7 (approximately 107%%).

Integer numbers require one word (16 bits) of memory. They are represented in two’s comple-
ment form and can take any integer value between -32768 and 32767.

If you write a number and include a decimal point or scale factor, the compiler generates a two
word real constant. Otherwise a one word integer constant is created. All decimal constants
may be either signed or unsigned.

You may write real decimal constants as a number multiplied by an integral power of ten
(scientific notation) by following the number with an apostrophe (/) and a signed or unsigned

integer. The apostrophe and power are called a scale factor.

Here are examples of decimal constants:

ALGOL Constant Internal Value Type
0 0 Integer
0.0 0.0 Real
-325 -325 Integer
+426 426 Integer
-.5384 —.5384 Real
-5.384"-1 —.5384 Real
200. 200.0 Real
+200.0 200.0 Real
.0002’6 200.0 Real
2.+2 200.0 Real
‘3 1000.0 Real

2-1

2-3. ASCII CONSTANTS

ASCII constants are 1 or 2 ASCII characters enclosed in quotes (*'). Each character requires %
word (8 bits) of storage. If you include only one character between the quotation marks, the
character is placed in the right half of a word and the left half is filled with zeros.

ASCII constants are stored as integers. The internal representation of character values is
described in Appendix C. Here are examples of ASCII constants:

ALGOL Constant Internal Value (octal)
"HP 044120
A 000101
"oAT 020101
" oo 040440

2-4. OCTAL CONSTANTS

You can use octal (base 8) constants by typing a commercial at sign (@) followed by up to six
octal digits. Octal constants must be in the range 0 to 177777. They are stored as integers. For
negative numbers, place a minus (—) in front of the @

Examples:

®1230
@1030
-@121

(The constants ""A*",®101, and 65 generate the same internal value.)

2-5. BOOLEAN CONSTANTS

There are two Boolean constants: TRUE and FALSE. Internally, TRUE = —1 (all bits on) and
FALSE = 0 (all bits off). Boolean constants are treated as integers.

2-6. IDENTIFIERS

Identifiers are names you can use to reference procedures, statements, variables and con-
stants. The first character of an identifier must be a letter; succeeding characters may be
letters or digits. You can have as many characters as you want in an identifier, but only the
first fifteen are significant. (Additional characters are ignored.)

A number of identifiers already have special meanings in ALGOL. You may not use the
identifiers in table 2-1 except as noted.

2-2

Table 2-1. Reserved ALGOL Identifiers

*ABS ENDFILE “LN *SQRT
AND *ENTIER NOT STEP

*ARCTAN EQUATE OR SWITCH
ARRAY *EXP OUTPUT *“TAN
BACKSPACE *FALSE PAUSE *TANH
BEGIN FOR *Pl THEN
BOOLEAN FORMAT PROCEDURE TO
CASE GO READ *TRUE
CODE IF REAL UNLOAD
COMMENT INPUT REWIND UNTIL

*COS INTEGER *ROTATE VALUE
DO *KEYS *SIN WHILE
ELSE LABEL *SIGN WRITE
END SPACE

*These identifiers have been predeclared in that you can use them without declaring them. You
may, however, override these declarations with your own.

2-7. DECLARATIONS

ALGOL programs consist of declarations and statements. Declarations are non-executable.
They describe the properties of identifiers you use in your program. You must declare iden-
tifiers at the beginning of the outermost block where they are used. This section discusses five
types of declarations: Equate, Type, Array, Label, and Switch. Input, Output, and Format
declarations are discussed in Section IV. Procedure declarations are discussed in Section V.

Declarations are separated by semicolons.

2-8. EQUATE DECLARATION

You can assign identifiers to program constants with the EQUATE declaration. The form of
the EQUATE declaration is:

EQUATE <variable> = <constant>, ..., <variable> := <constant>
Example:
EQUATE KEYBOARD:=1, BLANK:='""'", 6 MASK:=0177, EPSILON:=738;

EQUATE identifiers may be used anywhere in a program where a constant can be used. The
EQUATE declaration is particularly useful to set constants which may change if the program
is redesigned.

Example:

EQUATE MAXLEN := 5, MAXENTRY := 100;
INTEGER ARRAY NAMEL[1:MAXENTRY, 1:MAXLENI;

2-3

NOTE

Throughout this book, the assignment operator := is used. HP
ALGOL also accepts < (_ on some terminals) as an assign-
ment operator. You can use either one where := is shown in
this book.

2-9. TYPE DECLARATION

Type declarations tell the compiler the names of simple variables and the type of data they are
to contain. You can initialize variables when you declare them. The types of variables are
REAL, INTEGER, or BOOLEAN. The general form of the type declaration is:

REAL <identifier> := <constant>, ... ,<identifier> := <constant>
or

INTEGER <identifier> = <constant>, ... ,<identifier> := <constant>
or

BOOLEAN <identifier> := <constant>, ... ,<identifier> := <constant>

The “:= <constant>" portion, which is entirely optional and may be omitted, assigns an initial
value to the variable.

Examples:

INTEGER I1,J:=0,K:=@30,N:="N", START,M:=-3;
REAL X,Y,2:=0.0;
BOOLEAN FLAG, MOREDATA;

If you don’t specify an initial value, the HP ALGOL compiler does not provide one. The value of
uninitialized variables depends upon the loader of your system.

2-10. ARRAY DECLARATION

The ARRAY deciaration declares multi-dimensional arrays and gives the lower and upper
bounds of each dimension. There is no limit to the number of dimensions an array may have.
The bounds must be integer constants with the lower bound less than or equal to the upper
bound.

In array declarations, you specify the type and write the word ARRAY followed by a list of
identifiers (the names of the arrays separated by commas) and a list of bound pairs enclosed in
brackets. The bound pairs are the lower and upper bound for each subscript separated by a
colon. All the identifiers in the list have the number of dimensions and subscript limits given
by the bound pairs.

If you want to declare several different sized arrays of the same type, follow the first declara-
tion with a comma, give a list of new identifiers, and specify new bound pairs. There is no limit
to the number of arrays you can define in an array declaration.

2-4

The general form of the ARRAY declaration is:

<type> ARRAY <identifier>, ... ,<identifier>[<lower bound>:<upper bound>,
... ,<lower bound>:<upper bound>], ... ,
<identifier>, ... ,<identifier>[<lower bound>:<upper bound>, ...]

An array may be REAL, INTEGER, or BOOLEAN. If no type is given, REAL is assumed.

Examples:

REAL ARRAY TABLEIL0:20, 1:121;
INTEGER ARRAY CONTROL[O0:®311,CHARSIL'" '":*_"],UPPERCASEI"A":"2"];
BOOLEAN ARRAY USED[-321:01;
ARRAY MATRIX1, MATRIX2, MATRIX3 [1:4,1:6],
MATRIX4, MATRIXS [1:3,1:3,1:101;

In the last example, MATRIX1, MATRIX2, and MATRIX3 are REAL 4 by 6 arrays. MATRIX4
and MATRIX5 are REAL 3 by 3 by 10 arrays.

Array are stored in consecutive memory locations with the rightmost dimension increasing
first.

Example:

ARRAY AL1:3,1:3,1:31

is stored in the order
Al1,1,1], Al1,1,2], A[1,1,3], A[1,2,1], A[1,2,2], A[1,2,3], A[1,3,1], A[1,3,2], A[1,3,3], A[2,1,1],
Al2,1,2], ..., Al3,3,2],A[3,3,3]

You can initialize the elements of an array when you declare it by placing an assignment
operator after the bounds list and following it with a list of constants separated by commas. In
an array declaration, only the last array named may be initialized. (Other arrays can be
initialized in other declarations.)

Example:

INTEGER ARRAY DIGITS [0:201 := *0', "', 2", "3", "4,
llSll , llGll , n 7ll , ll8ll , ll9ll ;

In this example, the first ten elements (0 through 9) of DIGITS are initialized to the ASCII
representation of their index. Elements 10 through 20 are undefined.

2-11. LABEL DECLARATION

The label declaration indicates that you will use the specified identifiers as labels of state-
ments in your program. Labels may be used in GO TO statements or passed as parameters to
subroutines.

2-5

The general form of the label declaration is:
LABEL <identifier>, ... , <identifier>;
Example:
LABEL ERROR, RESTART, LOOP;

All declared labels must be defined (assigned to a statement) somewhere in your program.
Defining labels is described in Section III.

2-12. SWITCH DECLARATION

A switch is a set of labels which can be entered as objects of a GO TO statement. During
execution of the GO TO statement, the switch identifier uses an indexing parameter to
determine which label is used.

General format:

SWITCH <identifier> := <label>, ... , <label>;

There is no limit to the number of labels which may be used in the switch. The labels are
associated from left to right with the positive integers (1,2,3...).

Example:

LABEL L1,L2,L3,FINISH;
SWITCH SW := L1,L2,L2,L3,FINISH;
INTEGER 1;

I := 33
GO TO SWIII;

In this example the indexing parameter, I, is set to 3. Control is passed to L2, the third label in
the switch list.

All the labels must be declared before the switch declaration. When the indexing parameter is
less than 1 or greater than the number of labels, the GO TO statement is bypassed; execution
continues with the next statement.

2-13. VARIABLES

There are two types of ALGOL variables: simple variables and subscripted (array) variables.
Each of these may be real, integer, or Boolean, depending on how you declared them.

Variables must be declared before you use them. Subscripted variable names must be followed
by subscript expressions enclosed in brackets. The general form is:

<identifier>[<expression>, ... , <expression>]

2-6

The number of subscript expressions must be identical to the number of dimensions specified
in the array declaration. Each subscript must have an integer value which lies within the
bounds specified for the array in its declaration.

Examples:

TABLELI, J+3*Al
USED[TEXT[3*X1+1 1]

If your program tries to access an array element beyond its declared bounds, the INDEX? error
message is printed and 0 is returned as the value of the element.

2-14. ARITHMETIC EXPRESSIONS

An arithmetic expression is a mathematical formula containing constants, variables, func-
tions, parenthesis, and arithmetic operators. (Constants, variables, functions, and paren-
thesized expressions are known as primaries.) The value of a variable is the last value
assigned to it. The value of a function is the value resulting from the computation defining the
function procedure.

The following operators are valid for arithmetic expressions:

" Exponentiation (} on some terminals)
* Multiplication
/ Real Division
\ Integer Division
MOD Remainder from Integer Division
+ Addition ‘
- Subtraction
NOT Complement bits
AND Logical AND bits
OR ' Inclusive OR bits

All operators except NOT work on two operands. NOT works on one operand.
The results of arithmetic operations can be real or integer. For +, —, and * the result is real
unless both of the operands are integer. The operator / always produces a real result. The

results are always integer for \, NOT, AND, and OR.

Examples of \, MOD, and logical functions:

Expression Value
7\8 0
3\2 1
(-32\(-2) 1
(-24)\5 -4
7 MOD 8 7
3 MOD 2 1
(-3XMOD(C-2) -1
(-24>XMOD 5 -4

®777 AND ®12345 ®000345
@077 OR ®120000 ®@120077
NOT @®123456 ®@054321

Integer and real overflow resulting from arithmetic op-
erations may not be detected during program execution.

The operator * denotes exponentiation and is defined as follows for integer I, real R, and real
or integer A:

A™]
I>0: A*A* ... *A (I times). Result is the same type as A.
I=0 and A#0: 1. Result is the same type as A.
I<0 and A#0: 1/(A® (—=1D)). Result is REAL.
I<0 and A=0: Undefined
A™R
A>0: EXP(R*LN(A)). Result is REAL.
A=0 and R>0: 0.0. Result is REAL.
A=0 and R<O0 or
A<0 and R#0: Undefined.

You can mix integer and real operands in an expression. If a real result is assigned to an
integer, the result is rounded to the nearest integer, not truncated.

The order of operations is determined by parentheses and the normal precedence of operators.
The normal precedence is:

~ Highest
* /\MOD

. -

NOT

AND

OR Lowest

If operands have the same precedence, they are performed from left to right.

Examples of arithmetic expressions:

ALGOL Mathematics
2~1~y @'y
Ay @ END) 2.9
B-C-+D
A+B*C*D/E+F A+ T + F
(A+B)*C+D/(E+F) (A+B)- C+
E+ F

X
X/Y*Z — 7

Y

2-8

2-15. BOOLEAN EXPRESSIONS

A Boolean expression is a rule for computing a logical value (TRUE or FALSE). The following
relational operators are valid in Boolean expressions:

Less Than

Less Than or Equal
Equal

Greater Than or Equal
Greater Than

Not Equal

BVVIAA
[}

The meaning of the logical operators NOT, AND, and OR is given by the following truth table
where B1 and B2 are Boolean expressions:

B1 B2 B1OR B2 |B1 AND B2| NOT B1
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE TRUE FALSE FALSE
FALSE TRUE TRUE FALSE TRUE
FALSE FALSE FALSE FALSE TRUE

Examples of Boolean expressions:

X = -2.46

(CHAR >= *A" AND CHAR <= "2") OR (CHAR >= "0'" AND CHAR <= "9')
A2 < 100

3*Q > 4*A+2 AND Q>0.0

A<B AND B#0

NOT (CHAR < "A'" O0OR CHAR > "2')

As shown in the examples, arithmetic expressions can be part of Boolean relations. The
complete hierarchy of operations is:

n Highest
* / \ MOD
+ -
€ = = >= > #
NOT
AND
OR Lowest

As with arithmetic expressions, Boolean expressions can be parenthesized to change the
precedence of operations.

In HP ALGOL, there is no difference between Boolean and integer values. As a result, Boolean
and arithmetic operations can be mixed within expressions.

Integer values are considered to be true when they are negative and false when they are
positive or zero. (Only the sign bit is significant in determining the logical value.) The Boolean
constants TRUE and FALSE are equivalent to —1 and 0.

2-9

For all logical operations, only the sign bit is used. Because of this, evaluation of a Boolean
expression may produce a value that is not —1 (TRUE) or 0 (FALSE). For example, the
following code may not work:

FLAG := A>B;
IF FLAG = TRUE THEN

<statement>;

As a result of the > operation, only the sign bit is set in FLAG, and the value may not be TRUE
even when A is greater than B. Instead of this, you should use:

FLAG := A>B;
IF FLAG THEN

2-16.

<statement>;

Integer overflow resulting from Boolean expressions is
not detected during program execution. Integer overflow
can result from comparing integer values that differ by
more than 32767.

CONDITIONAL EXPRESSIONS

Another type of arithmetic expression is the Conditional Expression. It has the form:

IF <Boolean expression> THEN <expression 1> ELSE <expression 2>

The Boolean expression is evaluated first. If it results in a true value, the value of the
expression is <expression 1>. Otherwise the value is <expression 2>. Each of the subexpres-
sions may have the conditional form.

Examples:

IF
IF
IF
IF

A>0 THEN A ELSE -A

FLAG THEN N ELSE N+3

CHAR >= "A"™ AND CHAR <= "2'" THEN ALPHA ELSE NUMERIC
A<B THEN

IF A<C THEN A ELSE C

ELSE IF B«C THEN B ELSE C

The value of the first expression is the absolute value of A. The value of the last expression is
the minimum of A, B, and C.

Conditional expressions may be enclosed in parentheses and combined with other expressions.

2-10

Example:

(IF A<B THEN A ELSE B) + C
is equivalent to

IF A<B THEN A+C ELSE B+C

A conditional expression may be used anywhere an arithmetic expression is legal.

2-17. ASSIGNED EXPRESSIONS

Arithmetic subexpressions can be assigned to variables within expressions. To do this, enclose
the assignment within parentheses. For example, the expression

3 + (A:=3%2) + 7

has the value 16. In addition, it assigns the value 6 to the variable A.

The subexpression can be any arithmetic, Boolean or conditional expression.

2-18. INTRINSIC FUNCTIONS AND PREDECLARED IDENTIFIERS

HP ALGOL provides 13 intrinsic functions. The intrinsics which require a parameter will
accept an expression enclosed in parentheses. (If you are passing a variable, constant, or
function value as the parameter, no parentheses are needed.) The trigonometric functions use
radian measure. The intrinsic functions are listed in table 2-2.

Table 2-2. ALGOL Intrinsic Functions

TYPE OF VALID RANGE
NAME MEANING RESULT OF PARAMETER
ABS X Absolute Value; |X| Same as X
SIGN X 1ifX>0 Integer
0ifX=0
-1ifX<0
SQRT X Square Root; VX Real X=0
SIN X Trigonometric Sine Real | Xim + 1/2| = 2%
COS X Trigonometric Cosine Real | Xlm | = 2"
TAN X Trigonometric Tangent Real X< 21
ARCTAN X Arctangent; tan—' X Real
TANH X Hyperbolic Tangent Real
LN X Natural Logarithm (base e Real X>0
EXP X Exponential; e* Real X < 124/log,e
ENTIER X Truncation; Integer X < 32767
Largest Integer = X
ROTATE | Rotate | 8 Bits; Integer Integer
Swap Halfwords
KEYS Value of Switch Register Integer (No Parameter)

2-11

The parameter passed to ROTATE must be an integer. KEYS does not have a parameter; it
returns the value stored in the Switch Register. All other intrinsics accept an integer or real
parameter.

Examples:
ABS SIN(3#X)
SQRT 3

EXPC4xI + 2)

Some of the intrinsics generate run-time errors if the value of the parameter is not in an
acceptable range. (See Appendix A for error messages.)

In addition to intrinsic procedures, ALGOL has predeclared values for the identifiers PI,
TRUE, and FALSE. You use them as you would use constants. Their values and types are
listed in table 2-3.

Table 2-3. Predeclared ALGOL Variables

NAME VALUE TYPE
PI 3.14159 Real
TRUE -1 Integer
FALSE 0 Integer

You can override the standard meaning of intrinsic functions and predeclared identifiers by
declaring them in your program.

2-19. COMMENTS

Comments are statements you include to explain a program; they do not affect the code that is
generated. In ALGOL programs, a comment may be included anywhere a space would be
permitted. Comments have several forms in HP ALGOL programs.

All characters between the word COMMENT and the next semicolon are treated as comments.
They may be continued for many lines.

Characters on a line to the right of an ampersand (&) are treated as comments.

The compiler ignores all symbols following an END statement up to the next END, ELSE,
UNTIL, semicolon or dollar sign.

Here is an example of a commented procedure:

REAL PROCEDURE INNERPRODUCT(A,B,N);
VALUE Nj; INTEGER N; ARRAY A,B;
BEGIN COMMENT COMPUTE THE SUM OF A[I1*BILI]
FOR I BETWEEN 1 AND N;
REAL SUM; & HOLDS SUM OF PRODUCTS
INTEGER I;& INDEXING VARIABLE
SUM := 0.0;
FOR I := 1 TO N DO
SUM := SUM + A[I11+B[I];
INNERPRODUCT := SUM
END OF INNERPRODUCT;

2-12

ALGOL STATEMENTS

This section describes the executable statements in HP ALGOL (except I/O statements). Any
identifiers referenced by ALGOL statements must be declared before they are used.

Statements are separated from one another by semicolons.

3-1. LABELS

A label is an identifier used to reference a statement. As described in Section II, labels must be
declared before they are defined or referenced.

You define a label by placing it and a colon (:) before the statement it references. Several labels
may reference the same statement. The general form is

<label>:<label>: ... <label> < statement>

Examples:

L1: A := B*3;
LOOP: L2: L4: COUNT := COUNT + 1;

Labels can be placed before an END statement if the preceding statement is terminated with a
semicolon.

3-2. ASSIGNMENT STATEMENTS

You can use assignment statements to assign the value of an expression to one or more
variables. The general form is

<identifier 1> = <identifier 2> := ... <identifier n> = <expression>

The expression following the last assignment operator (:=) is computed and then assigned to
each of the variables in turn from right to left. (HP ALGOL also accepts the symbol < in place
of :=))

Examples:

AREA := 2x#PIx*R;

A := TABLE[1,11 := C := 0;

TERM := (IF 2 MOD K = 0 THEN 1 ELSE -1)#(X*(2*K+1))/(2%K+1)
FLAG := LEN<15;

3-1

The variables which precede the assignment operator are called left part variables. They do
not all need to be of the same type. In any case, the effect of the statement is the same as if you
wrote

< identifier n>

<expression>;

<identifier 2> :
<identifier 1> :

Il

<identifier 3>;
<identifier 2>;

If a real value is assigned to an integer, the result is rounded (not truncated). The result is the
same as adding .5 and truncating. If the real portion is exactly .5, the number is rounded up to
the next integer.

Example:

Suppose X and Y are real and I is integer. The statement

3-3. GO TO STATEMENT

The GO TO statement causes an unconditional transfer of program execution to a labeled
statement. The general form is

GO TO <designational expression>

The designational expression can be a label or a switch. As explained in Section II, a switch is a
set of labels used with an indexing parameter. The general form of a GO TO statement using a
switch is

GO TO < switch identifier>[<expression>]

Examples:

GO TO FINISH;
GO TO SW3I[3*I - 4];

You should not jump into the middle of a block from outside the block. A block should be
entered only at its head. Otherwise, run time errors can occur.

The IF, CASE, WHILE, DO, and FOR statements provide efficient ways to control program
execution. Good programmers usually can write entire ALGOL programs without using one
GO TO statement. (The most common use for GO TO statements is to jump to the end of a block
when an error is detected.)

3-2

3-4. IF STATEMENT

You can use the IF statement to select a statement (or block) to be executed depending upon a
condition. The IF statement has two general forms:

IF <Boolean expression> THEN < statement 1> ELSE <statement 2>
or
IF <Boolean expression> THEN < statement 1>

These correspond to the following flowcharts:

! !

Evaluate Evaluate
Boolean Boolean

Expression Expression

TRUE FALSE FALSE
TRUE
Execute Execute *
Statement 1 Statement 2

Execute

Statement 1

-

(continue) (continue)

In the first form, if the Boolean expression is true statement 1 is executed and statement 2 is
skipped. Otherwise statement 1 is skipped and statement 2 is executed. If you use this form,
you must be sure not to insert a semicolon between statement 1 and ELSE.

In the second form, statement 1 is executed when the Boolean expression is true. Otherwise it
is skipped.

Examples:

IF A>B THEN MAX:=A ELSE MAX := B;
IF A=B THEN FOUND := TRUE;
IF NOT FOUND THEN GO TO LOOP;

Each of the statements following the THEN or ELSE can be an IF statement. Each ELSE is
always associated with the closest preceding unmatched IF.

For example,
IF A<B THEN IF B«C THEN <statement 1> ELSE <statement 2>;

is interpreted as

IF A<B THEN
BEGIN
IF B<C THEN
<statement 1>
ELSE
<statement 2>
END;

not as

IF A<B THEN
BEGIN
IF B<C THEN
<statement 1>
END
ELSE
<statement 2>;

Statement 1 is executed when A<B and B<C. Statement 2 is executed when A<B and B=C.
(In the second section of code, statement 2 is executed whenever A=B.)

3-5. CASE STATEMENT

The CASE statement is another method you can use to select statements (or blocks). One
statement from any number of ALGOL statements is chosen depending on the value of an
arithmetic expression. The general form of the CASE statement is:

CASE <expression>
BEGIN
<statement 1>;
< statement 2> ;

< statement n>
END

The expression is evaluated. Real results are rounded to the nearest integer. If the expression
is between 1 and n, the statement corresponding to that value is executed. Otherwise the
entire CASE statement is bypassed.

3-4

The flowchart corresponding to the CASE statement is

v

Evaluate
Expression

Result

A 4
Execute N Execute
Statement 1 e o0 ® Statement n
(continue)
Example:

CASE INDEX+3
BEGIN
LENGTH
DONE :=
TERM :=
END;

EGREES*PI/180.0)

3-6. WHILE STATEMENT

The WHILE statement causes repetition of a statement (or block) as long as a condition is true.
The general form is

WHILE <Boolean expression> DO < statement>

The flow chart for the WHILE statement is

1

Evaluate
Boolean
Expression

Result FALSE

TRUE

continue
Execute ()

Statement

v

The statement will never be executed if the condition is false for the first iteration.

Example:

I := 1,
WHILE X#TABLE[I]l AND 1«50 DO
I := 1 + 13

1

This example finds the element in the array TABLE that is equal to X (if any exists).

3-7. DO STATEMENT

The DO statement causes repetition of a statement (or block) until a condition becomes true. It
differs from the WHILE statement in that the statement is executed the first time through
whether the condition is true or false. The form of the statement is

DO <statement> UNTIL <Boolean expression>

The flow chart for the DO statement is

!

Execute
Statement
A
Evaluate
Boolean
Expression
FALSE Result
is
TRUE
(continue)
Example:
I 1= 13
DO
BEGIN
READ(S, *, TABLELI1);
I := 1+1
END

UNTIL I>50 OR TABLE[I1=0.0;

This example puts numbers in an array until a zero is read or the table is full.

3-7

3-8. FOR STATEMENTS

You can use the FOR statement to repeat a statement (or block) while assigning a sequence of
values to a control variable. The general form of the FOR statement is

FOR <variable> := <initial value> STEP <increment> UNTIL
<final value> DO <statement>

The control variable must be a declared integer variable. The initial value, increment, and
final value can be any expression, including negative ones.

The flow chart for this statement is

}

variable :=
initial
value

variable
past
limit?

yes

(continue)

Execute
Statement

'

variable =
variable +
increment

The control variable is assigned the initial value. Then the statement is executed while the
control variable is incremented until it exceeds the final value in the direction (positive or
negative) of the increment. (If the initial exceeds the final value, the statement is never
executed.)

The statement

FOR I:=J STEP K UNTIL L DO <statement>;
3-8

is equivalent to

I 1= J;
LOOP: IF SIGNC(K)*I > SIGNC(K)*L THEN GO TO DONE;
<statement>;
I := 1 + K;
GO TO LOOP;
DONE: <continuation of program>;

If the increment or final value is an expression (not a simple variable) it will be calculated and
saved before the statement is executed. The value will not be modified while the FOR
statement is executing. (If the increment or final value is a simple variable, changes to the
variable will affect the increment or final value.)

If the increment is an expression which evaluates to zero, the control variable will not change
value.

If the increment is 1, you can replace “STEP 1 UNTIL” with “TO”. For example,
FOR I:=1 TO N DO
is equivalent to

FOR I:= 1 STEP 1 UNTIL N DO

One use of FOR statements is to initialize arrays. Suppose A is an N by N array. You can set
all the elements to zero with

FOR 1

1 70
FOR 1

J
ALT,J]

3-9. PAUSE STATEMENT

The PAUSE statement causes your program to halt. You can use it for debugging purposes or
for changes to the hardware (mounting a tape, for example). The form of the statement is

PAUSE
This statement performs different functions in different operating systems:

For RTE and DOS, the PAUSE statement causes the job to be suspended until an operator
enters a GO directive.

For SIO, the word “PAUSE” is printed on the system console and the computer is halted.
Program execution continues when the operator presses the RUN button.

3-9

3-10. DUMMY STATEMENTS

Sometimes you may find it useful to specify a statement which causes no operation. You can do
this by placing an extra semicolon in the program.

One use for a dummy statement is in a case statement when you want no operation for values
of the controling expression. For example, suppose you want no operation when N is equal to
three. You could write

CASE N
BEGIN
X := SIN X;
Y := COS Y;
X 1= X*X
END;

You can also use dummy statements to place labels.

Example:

[1= I+1;
EXIT1: END;

3-11. BLOCKS

As stated in the introduction, a block is a section of code that starts with BEGIN and
terminates with END.

BEGIN and END are not considered statements; they are block brackets. No semicolon is
needed after BEGIN and none is needed between the last statement of a block and END. If you
insert a semicolon, it is treated as a dummy statement.

ALGOL blocks have the general form

BEGIN
<declaration>;
<declaration>;

.
.
.

< declaration>;
< statement>;
< statement>;

< statement>
END

All declarations must be specified before any executable statements. If there are no declara-
tions, the block is known as a compound statement.

A block is a type of ALGOL statement. Each block may have any number blocks within it.
Declarations made in a block are valid only within the block (and any blocks contained in the

3-10

block). You can redeclare identifiers for an inner block, as shown in this example:

BEGIN
INTEGER I,J,K;
REAL X,Y,Z;

J:
I:

13
33

BEGIN
INTEGER I,X,L;

} Inner Block

e vs

e ee (4 e
non
H N

END
END$

In this example, the variables I, J, K, X, Y, and Z are declared in the outer block. The variables
I, X, and L are declared in the inner block. Because the names I and X are declared in both
blocks, two different values may be referenced, depending on whether the statement referenc-
ing the variable is in the inner block or not. Only one location is referenced for the variables J,
K, Y, and Z throughout the blocks. The variable L is valid only in the inner block. (Such

variables are said to be local.) After the outer block is executed, J has the value 4 and I has the
value 3.

You can use local variables to perform functions that are contained within inner blocks. This is
one way to be sure that variables in the main program are not unintentionally altered.

Blocks can be nested indefinitely.

Example:

BEGIN
I := 0;
IF A<O0 THEN
BEGIN
I := 13
IF B<0 THEN
BEGIN
I := 23
IF C<0 THEN I:= 3
END
END
END

After executing this code, I has the value

0if A=0

1 if A<0 and B=0

2 if A<0 and B<0 and C=0
3 if A<0 and B<0 and C<0

3-11/3-12

INPUT/OUTPUT

The basic HP ALGOL input and output statements are READ and WRITE. You can declare
I/O lists and format specifications to be used with READ and WRITE. HP ALGOL also has
statements for Magnetic Tape I/O.

The input list, output list, and format declarations are like other ALGOL declarations in that
they must come at the beginning of a block (before any executable statements).

4-1. INPUT LIST

You can declare a list (or lists) of items that will be used in READ statements. The general
form of the INPUT declaration is

INPUT <list identifier> (<list element>, ... , <list element>), ... ,
<list identifier> (<list element>, ... , <list element>)

Whenever you use the list identifier in a READ statement, you refer to all the elements in the
associated list. Input list elements can be

a simple variable,

a subscripted variable,

another input list identifier, or
a FOR element.

A FOR element is similar to the FOR statement, except the statement part is replaced by one
or more input list elements. If more than one element is used, they must be enclosed in

brackets.

Examples of FOR elements:

FOR 1

1 STEP 2 UNTIL 10 DO TABLELI]

FOR J := 1 TO N DO
(V[Jl, FOR I:= 1 TO N DO [ALI,J1, BLI,J11]

All the elements in an input list must be previously declared.
Examples of input lists:

INPUT IN1CA, B[2], FOR I:= 1 TO N DO TBLI[I1),
IN2CX, Y, IN1, 2);

4-1

4-2. OUTPUT LISTS

You can declare a list (or lists) of items that will later be used in WRITE statements. The form
is similar to the INPUT declaration:

OUTPUT <list identifier> (<list element>, ... , <list element>), ...,
<list identifier> (<list element>, ... , <list element>)

Output list elements may be

a simple variable,

a subscripted variable,
another output list identifier,
a FOR element, or

an expression.

Examples of output lists:

OUTPUT TRIGC(FOR I:= 1 TO N DO
(1, ACI1, SIN ALIl, COS ALIID),
NOTUSEFUL(3*1, PI/180.0, 14.321, X*Y+2);

4-3. FORMAT DECLARATIONS

You use FORMAT declarations to describe the arrangement of data that is read or written.
(You will probably find that free field input is superior to formatted input for numeric data.)
The general form of the FORMAT declaration is:

FORMAT <format identifier> (< specification> ... <specification>), ...,
<format identifier> (< specification> ... <specification>)

The format specifications are separated by commas or slashes.

Format specifications fall into three classes: Real, Integer, and Editing.

4-4. REAL FORMAT SPECIFICATIONS

You can transfer data to and from real values with the following specifications:

E Exponent
F Fixed Point
G General

In addition, you can specify that real values are read or written with a scale factor.

4-5. E SPECIFICATION: EXPONENT

Format: Ew. d
w = field width
d = number of digits in fraction

Input: The number in the input field is converted to a real number and stored.

The number read must have the form of an ALGOL decimal constant, except the
character E is used instead of / for a scale factor. If the exponent is signed, the E is
not necessary. Thus, 12.0E+ 02, 12E2, and 12+ 02 all represent 1200.0. The
number may be positioned anywhere within the field. Spaces in the field are
ignored.

When no decimal point is present in the input field, d acts as a negative power of
ten scaling factor (otherwise it does nothing). The internal value of the quantity
will be

(integer portion) X 10—d X loexponem portion

Example: Suppose the characters 1234+ 5 appear in a field read with an E12.8 specifica-
tion. The result is 1.234.

Output: The output field consists of

a blank or negative sign

a decimal point

the d most significant digits of the internal value
the sign of the exponent

a two digit exponent.

The field must be wide enough to contain the sign, decimal point, d digits, and
exponent. For this reason, w should be at least d+ 5. If the field is not large
enough, dollar signs ($) are inserted in the entire field. If the field is longer than
the output value, the quantity is right-justified with spaces to the left. The
number printed is rounded (not truncated).

4-6. F SPECIFICATION: FIXED POINT

Format: F w. d
w = field width
d = number of digits in fraction

Input: Same as E Specification.

Output: The value occupies w positions and appears as a decimal number with d digits
following a decimal point (no exponent). The quantity is right justified in the
field, and rounded.

The field must be wide enough to hold the significant digits, sign (if the value is

negative), and decimal point. If the field is too short, dollar signs are placed in
the entire field.

4-3

4-7. G SPECIFICATION: GENERAL

Format: Gw. d
w = field width
d = number of digits in fraction

Input: Same as E Format

Output: The G specification acts like an E or F specification, depending on the magnitude
of the value being output. If X is the value being printed, the G format is the

same as:
Magnitude Equivalent Specification
1=sX<1 F(w—4).d,4X
1=sX< 10 F(w—4). (d-1),4X

F(w—4).1,4X
F(w—4).0,4X
Ew.d

1092< X < 109!
109 "< X < 104
All other values

4-8. SCALE FACTOR. A scale factor provides a way to normalize real values. (It has no

effect on integer values.)

Format: nP
n = an integer or negative integer constant

The default scale factor is 0. During a formatted I/O operation, once a scale factor is estab-

lished it remains in effect until another scale factor is read.

Input: If there is an exponent in the external field, the scale factor has no effect.
Otherwise the internally represented number is equal to the external number

times 107",
Output: E specification: The real constant part is multiplied by 10" and the exponent is

decreased by n.
F specification: The value is multiplied by 10".
G specification: No effect if the value is in range for F representation. Otherwise
it has the same result as for E.
Examples:

-1PE10.4, 1PF10.3, 2PG18.8, 0PFb.2

4-4

4-9. INTEGER FORMAT SPECIFICATIONS
You can transfer data to and from integer variables with the following specifications:

Decimal Integer
,K,and O Octal

ASCII

ASCII, Right-Justified

Logical (Boolean)

r2o>®®~—

4-10. I SPECIFICATION: DECIMAL INTEGER

Format: I w
w = width of field

Input: The characters in the input field are read as a signed or unsigned decimal integer
constant. Blanks (both leading and trailing) are treated as zeros.

Output: The internal value is converted to a decimal integer constant right justified in its
field. (The sign is printed only if the value is negative.) If the field is too short,
dollar signs are placed in the entire field.

4-11. @, K, AND O SPECIFICATIONS: OCTAL

Format: ®w or
Kw or

Ow
w = width of field

Input: If w = 6, up to six octal digits are stored; non-octal digits are ignored. The value of
the field must be no greater than 177777. If w < 6 or less than six octal digits are
read from the field, the number is right-justified in a computer word and filled
with leading zeros.

Output: If w = 6, six octal digits are written right-justified in the field. (Leading positions
are filled with blanks.) If w<6, the w least significant (rightmost) digits are
written.

4-12. A SPECIFICATION: ASCII

Format: Aw
w = field width

Input: If w = 2, the rightmost two characters are taken from the field. (The first w— 2
characters are ignored.) If w = 1, one character is read and stored in the left half of

a computer word; blank is stored in the right half.

Output: If w= 2, two characters are written in the field with w— 2 leading blanks. If w=1,
the character in the left half of the word is written.

4-5

W >2 W=2

o [T T T 0T
[~

IGNORED ON INPUT

Il
-

[]=

SPACES ON OUTPUT

MEMORY |

1

ed

1}
L
\
IGNORED ON OUTPUT

BLANK ON INPUT

The Al and A2 format for character I/O correspond to ASCII constants with a blank included
as the second character when w=1.

4-13. R SPECIFICATION: ASCII, RIGHT-JUSTIFIED

Format: Rw
w = field width

R specifications are the same as A specifications when w > 1.

Input: When w= 1, one character is read and stored in the right half of a computer word.
Binary zero is stored in the left half.

Output: When w=1, the character in the right half of the word is written.

o [TTIICT] [

IGNORED ON INPUT

1l
-

SPACES ON OUTPUT

N\
IGNORED ON OUTPUT

MEMORY

ZERO ON INPUT

The R format corresponds to ASCII constant format.
4-14. L SPECIFICATION: LOGICAL (BOOLEAN)
Format: L w

w = width of field

Input: The input field may contain leading blanks, but the first non-blank character must
be a T (for TRUE) or F (for FALSE). Any characters may follow the T or F.

The L specification converts an input T into the FOR-
TRAN .TRUE. = —-32767 (octal 100000), not the ALGOL
TRUE = —1. (Note that the sign bit is set correctly.) F
converts to FALSE.

Output: If the internal value is negative, the character T is printed as the rightmost
character in the field. Otherwise the character F is printed. The left w-1 charac-
ters are blanks.

4-15. EDITING SPECIFICATIONS

In addition to real and integer number specifications, you can use editing specifications in
FORMAT declarations.

4-16. STRING SPECIFICATION
Format: ""cic, ... c,'*
w = field width (number of characters)
¢; = any ASCII character except "

Input: The number of characters within the quotes are skipped on the input record.

Output: The characters between the quotes are written.

If you omit the closing quote, the compiler will read all
the text of your program up to the next quote as part of
the character string. If the program ends before a second
quote is read, the compiler will expect more input.

4-17. HOLLERITH SPECIFICATION
Format: w Heye, ... cy
w = field width (default = 1)
¢; = any ASCII character
This specification is similar to the string specification. The w characters following the H are
considered part of the Hollerith string. A quote can be included. You must have exactly w

characters following the H as part of the Hollerith string.

Input: The characters in the external field replace the characters in the field specifica-
tion.

Output: The characters in the field are written.

4-7

Examples:

29HTHE ' SPECIFICATION IS EASIER
35HYOU MUST COUNT CHARACTERS CORRECTLY

4-18. X SPECIFICATION

Format: wX
w = field width (default = 1)

Input: w characters are skipped.
Output: w blanks are placed in the output field.

This specification allows you to separate fields.

4-19. SPECIFICATION SEPARATORS

The specifications in a FORMAT declaration must be separated from one another by a comma
(,) or slash (/). The comma acts only as a character which separates two specifications. The
slash terminates a record. A series of slashes causes records to be skipped on input or lines to
be skipped on output.

Example:

FORMAT F1(3X, "X=", F7.2, 3X, "Y=", F7.2/"2#X+Y=", F10.2),
F2¢//1X,1PE10.3,0PF6.4///15,@4//);

4-20. REPEAT COUNT
You can repeat real and integer specifications or a slash several times in a format specification
by placing an integer constant (the repeat count) before the E, F, G, I, @, K, O, A, R, L, or /. For

example,

313,2F5.2,3/1P2E10.3
is equivalent to

13,13,13,F5.2,F5.2,///1PE10.3,E10.3

You can repeat groups of specifications by enclosing them in parentheses and placing a repeat
count in front.

Examples:

2(2(F7.2,3X),F5.1)
4C 5(¢"+"), 3X)

4-8

4-21. CARRIAGE CONTROL

If you are using a line printer as the output device, the first character of each line is used to
determine how the printer spaces before it prints a line. The following characters have special
meanings when they appear in column 1:

0 double space

1 eject page

* suppress spacing (overprint)
blank single spage

Any other character is treated like a blank. When the first character is used for carriage
control, it is not printed.

If your output device is a terminal, when the last character is a <~ or _ the normal carriage
return is supressed; the next I/O operation begins where the _ would have been printed. This is
useful in asking questions:

WRITEC1, #("WHAT IS THE LU NUMBER?_"));
READC1, #*, LISTLU);

4-22. FREE FIELD INPUT

Your program can read numeirc input without format specifications if you place an asterisk (*)
instead of a format identifier in a READ statement. When your program reads free field input,
it recognizes input values by scanning for the characters

+ or - sign of item
decimal point
E scaling factor
@ octal integer
*ro.o" comments
/ record terminator
0 to9 digits
space or , delimiter

All other characters are treated as separators between data items.

DATA ITEMS. Real and integer values are represented in the same form as E and I formatted
input. Octal values are represented in the same form as octal constants within the program.
Any characters between quotes are ignored.

DATA ITEM DELIMITERS. During input, you usually separate data items by a space or
comma. Any of the characters not listed above can also be used. The data items are read and
transferred to the corresponding variables in the input list. Two consecutive commas indicate
that no value is supplied for the corresponding list variable; its current value remains
unchanged. (An initial comma causes the first variable to be skipped.)

4-9

RECORD TERMINATOR. A slash within a record causes the next record to be read; the
remainder of the current record is skipped. If a record terminates and a slash has not been
read, the input operation terminates even if all the input elements have not been assigned new
values.

4-23. READ STATEMENT

The READ statement transfers values from an I/O device to program variables. The general
form of the READ statement is

READ (<unit>, <format part>, <input list>)

The unit is an integer arithmetic expression which designates an I/O logical unit number.

The format part can be

the name of a format identifier

the symbol # followed by format specifications enclosed in parentheses (in-line
format)

the symbol *, indicating free field input.

If the format part is left out, an unformatted record consisting of binary values is read. Consult
the driver manual of your device for its binary I/O format.

The input list can be any of the input elements allowed in the INPUT specification. If the input
list is omitted, a record is skipped.

For formatted input, when a READ statement is executed, one record is read. Additional
records are read only as indicated by the format specification. Any unprocessed characters on
the current record are ignored. If there are fewer input elements than format specifications,
the unused specifications are ignored. If there are more elements than specifications, a new
record is read and format control continues with the group of specifications terminated by the
last preceding right parenthesis.

4-24. WRITE STATEMENT

The WRITE statement transfers internal values to an I/O device. The general form of the
WRITE statement is:

WRITE (<unit>, <format part>, <output list>)
The unit is an integer arithmetic expression which designates an I/O logical unit number.

The format part can be

the name of a format identifier

the symbol # followed by format specifications enclosed in parentheses (in-line
format).

(There is no free field output.)
4-10

If the format part is left out, an unformatted record consisting of binary values is written.
Consult the driver manual of your device for its binary I/O format.

The output list can be any of the output elements allowed in the OUTPUT declaration. If the
format specifications don’t require any values, the output list is not necessary.

For formatted output, when a WRITE statement is executed the values are printed according
to the corresponding format specifications. The specifications are interpreted from left to right.
If there are fewer values to be printed than specifications, the extra specifications are ignored.
If format control continues to the last right parenthesis and more values are to be printed, a
new line is started and format control continues with the group repeat specification termi-
nated by the last preceding right parenthesis.

4-25. EXAMPLES

These programs have been written to show the use of FORMAT specifications and I/O state-
ments.

The first program shows the effect of a scaling factor. The four values read were all typed as
3212.5, but have different internal values due to different scaling factors.

In the second part of the program, values are printed using different scaling factors and
different real specifications, all with the same basic field width.

PAGE 001

001 00000 HPAL,L,"FMTS"

002 00000 BEGIN

003 00001 INTEGER I;

004 00003 REAL X1,X2,X3,X4;

005 00013

006 00013 OUTPUT XSCX1,X2,X3,X4),
007 00031 X1SCX1,X1,X1,X1);
008 00047

009 00047 FORMAT

010 00047 FMT1C E15.5, 1PE15.5, 2PE15.5, 3PE15.5, 4PE15.5),
011 00073 FMT2C(1X,F14.3,1X,1PF14.3,1X,2PF14.3,1X,3PF14.3,1X,4PF14.3),
012 00126 FMT3(G15.5, 1PG15.5, 2PG15.5, 3PG15.5, 4PG15.5);
013 00152

014 00152 READC1, FMT1, X1,X2,X3,X4);

015 00220 WRITECG, #(///'"ONUMBERS READ:"));

016 00242 WRITE(G, #(5C1X,F14.3)), XS);

017 00261 WRITEC(G, FMT1, XS);

018 00270 WRITECG, FMT2, XS);

019 00277

020 00277 WRITE(G, #(/"07.5 ~ I'"));

021 00315 FOR I := 1 STEP 5 UNTIL 20 DO

022 00323 BEGIN

023 00323 X1 1= 7.5"1;

024 00331 WRITE(6, #("0I =, I3), I);

025 00350 WRITE(6, FMT1, X1S);

026 00357 WRITEC(6, FMT2, X1S);

027 00366 WRITEC(6, FMT3, X1S);

028 00375 END;

029 00401 ENDS$

PROGRAM= 000405 ERRORS=000
4-11

Program output:

NUMBERS READ:
3212.500
.32125E+04
3212.500

—
n"

1
.75000E+01
7.500
7.5000

—
]

6
.17798E+06
177978.531
.17798E+06

I 11
.42235E+10
4223513599.998
.42235E+10
I = 16
.10023E+15
$PP$$5658888 8

.10023E+15

4-12

321.250
3.21250E+02
3212.500

7.50000E+00
75.000
7.5000

1.77979E+05
1779785.312
1.77979E+05

4.22351E+09
42235135999.98
4.22351E+09

1.00226E+14
$$$3$5583888988
1.00226E+14

32.125
32.1250E+00
3212.500

75.0000E-01
750.000
7.5000

17.7979E+04
17797853.125
17.7979E+04

42.2351E+08
422351359999.7
42.2351E+08

10.0226E+13
$3$9$9586388%9
10.0226E+13

3.213
321.250E-02
3212.500

750.000E-02
7500.000
7.5000

177.979E+03
177978531.250
177.979E+03

422.351E+07
4223513599997.
422.351E+07

100.226E+12
$$$8358938888
100.226E+12

The second program generates values for two arrays, then calls a procedure to print each
array. The procedure is designed to print any possible values from any sized N by N array. The
E12.4 format is used because it allows real values of any magnitude to be printed with four
significant digits. Five fields are printed per line. (If the array is larger than 5 by 5, more than
one line is used for each row.)

PAGE 001

001 00000 HPAL,L,"ARRIOD"™

002 00000 BEGIN

003 00001 COMMENT READ AND WRITE ARRAYS;
004 00001 INTEGER I,J;

005 00004 ARRAY A1[1:8,1:81, A2[1:3,1:31;
006 00242 FORMAT UP("™1');

007 00245

008 00245 PROCEDURE PRINTARRAYCA,N);

009 00246 VALUE N; ARRAY A; INTEGER N;

010 00246 BEGIN & PRINT AN N BY N ARRAY
011 00252 INTEGER I,J; &INDEX VARIABLES
012 00255 OUTPUT ARRAYOUT(FOR J:=1 TO N DO ALI,JU1);
013 00324 FORMAT ARRAYFMTC (1PSE12.4));
014 00332 FOR I:=1 TO N DO

015 00340 BEGIN

016 00340 WRITECGE, ARRAYFMT, ARRAYOUT);
017 00347 WRITECG, #(C" '"));

018 00361 END;

019 00365 END OF PRINTARRAY;

020 00366

021 00366 FOR I := 1 TO 8 DO
022 00374 FOR J := 1 TO 8 DO

023 00402 A1LT,JY =1 + J + I/J;
024 00443 FOR I := 1 TO 3 DO

025 00451 FOR J := 1 TO 3 DO

026 00457 A2LT,J1 = I*J + 1/J;

027 00521 WRITE(G,UP);

028 00527 PRINTARRAY(A1,8);
029 00533 WRITECG,#C/////));
030 00546 PRINTARRAY(A2,3);
031 00552 ENDs$

PROGRAM= 000556 ERRORS=000

4-13

Program output:

N w

- [(VRN] o u

.0000E+00
.1667E+00

.0000E+00
.3333E+00

.0000E+00
.5000E+00

.0000E+00
.0667E+01

1.1000E+01

—_

.1833E+01

.3000E+01
.3000E+01

.5000E+01
.4167E+01

.7000E+01
.5333E+01

.0000E+00
.0000E+00

.0000E+00

4-14

-0 -0 -~0 Oou ow

—_

.5000E+00
.1429E+00

.0000E+00
.2857E+00

.5000E+00
.0429E+01

.0000E+00
.1571E+01

.5000E+00
.2714E+01

.1000E+01
.3857E+01

.2500E+01
.5000E+01

.4000E+01
.6143E+01

.5000E+00

.0000E+00

=N

3.
6.
-5000E+00 10.

.3333E+00
.1250E+00

.6667E+00
.0250E+01

.0000E+00
.1375E+01

.3333E+00
.2500E+01

.6667E+00
. 3625E+01

.1000E+01
.4750E+01

. 2333E+01
.5875E+01

. 3667E+01
.7000E+01

3333E+00
6667E+00

0000E+00

.2500E+00

.5000E+00

.7500E+00

.0000E+00

.0250E+01

.1500E+01

.2750E+01

.4000E+01

.2000E+00

.4000E+00

.6000E+00

.8000E+00

.1000E+01

.2200E+01

.3400E+01

.4600E+01

4-26. MAGNETIC TAPE STATEMENTS

You can perform five magnetic tape operations in HP ALGOL. In these statements the unit is
an integer expression designating the magnetic tape logical unit number.

SPACE <unit>
Spaces the tape forward one record or causes one end-of-record gap.
BACKSPACE <unit>
Backspaces the tape one record.
ENDFILE <unit>
Prints an end-of-file mark.
REWIND <unit>
Returns the tape to the load point in auto mode.
UNLOAD < unit>

Puts the unit in local mode and rewinds the tape.

4-15 /4-16

PROCEDURES

When you write an ALGOL program, you may find that sections of code performing the same
operation appear in several different places. You can write one procedure to perform the
computations and execute it from your program wherever it is needed.

Procedures may be written and compiled separately from your program. When you do this,
procedures are similar to subroutines of FORTRAN and Assembly Language.

You can write procedures within your program. Internal procedures are more flexible than
subroutines because they can reference identifiers declared for the block in which they are
written.

Procedures must be declared before they are used. If procedure A calls procedure B, procedure
B must be declared before procedure A (unless it is declared within procedure A). No procedure
may be entered recursively, either implicitly or explicitly.

5-1. PARAMETERS

When you declare a procedure, you can specify parameters that will be passed when it is called.
You include in the procedure heading a list of the formal parameters — the symbolic names for
the items provided when the call is made. The formal parameters must be declared as to type
in the procedure heading. Formal parameters can have any ALGOL declaration:

REAL INTEGER ARRAY LABEL

INTEGER BOOLEAN ARRAY SWITCH

BOOLEAN REAL PROCEDURE FORMAT

ARRAY INTEGER PROCEDURE INPUT

REAL ARRAY BOOLEAN PROCEDURE OUTPUT
PROCEDURE

Formal parameters are either called by value or called by reference. If you specify that a
formal parameter is called by value, the parameter is computed when the procedure is called
and this result is used as a local variable within the procedure. Otherwise, the address of the
parameter is passed to the procedure. Only REAL, INTEGER and BOOLEAN variables or
expressions (not entire arrays) can be passed by value. Only identifiers (not expressions or
constants) can be passed by reference.

When you call a procedure, you can provide a list of actual parameters — the items which are
substituted for the formal parameters in the procedure declaration.

Actual parameters called by value may be expressions. Actual parameters called by reference
must be identifiers.

Value parameters are treated as local variables within the procedure. Assignments to these
parameters have no effect on the value of the corresponding actual parameter.

5-1

Any modifications to formal parameters passed by reference affect the corresponding actual
parameter.

Example:

PROCEDURE CHANGE(X);
REAL X3
X 1= X + 1;
PROCEDURE NOCHANGE(X);
VALUE X;REAL X;
X := X + 1;
A := 0;
CHANGECA);
NOCHANGEC(A);

After the procedure CHANGE is called, A has the value 1. A’s value remains 1 after
NOCHANGE is called because it is passed by value.

If an actual parameter is itself a procedure, all of its parameters must be called by value. (See
the SUMS example in Section VII.)

5-2. PROCEDURE DECLARATIONS

A procedure declaration describes a process. The process is not executed until the procedure is
called. A procedure declaration consists of two parts: the procedure heading, which gives the
name of the procedure and describes any formal parameters, and the procedure body, which
describes the process that takes place.

Example:

PROCEDURE TRANSPOSECA,N);
VALUE N; INTEGER N; ARRAY A;
BEGIN
COMMENT TRANSPOSE AN N BY N MATRIX;
INTEGER I,J; & USED TO INDEX MATRIX

REAL Z; & HOLDS VALUE DURING TRANSFER
FOR I := 1 TO N DO
FOR J := I+1 TO N DO
BEGIN
Z := All,J]l;
ACI,J] := ALJ,I];
ALJ,I]1 := Z;
END

END OF TRANSPOSE;

This procedure’s heading consists of the following parts:
1. PROCEDURE The reserved word PROCEDURE.

2. TRANSPOSE The procedure name. It must be a legal identifier.
5-2

3. (A,N) The formal parameter part. The identifiers of the formal
parameters must be enclosed in parentheses

4, A semicolon to terminate the first part.

5. VALUE N3 The reserved word VALUE followed by a list of any parame-
ters passed by value. A semicolon terminates the list. (Pa-
rameters passed by reference are not listed in the procedure
heading.)

6. INTEGER N;ARRAY A; Specifications for each of the formal parameters. A semico-
lon separates identifiers of different types. The order of the
identifiers is not important.

A procedure body can consist of a single statement or (as in this example) a block.

Much of the heading is not needed if no parameters are passed. For example, here is a
procedure to put the next character read from logical unit 5 into the program variable CHAR.

PROCEDURE GETCHAR;
BEGIN
COMMENT GLOBAL VARIABLES USED BY GETCHAR:
BUFFER HOLDS INPUT TEXT
COLUMN POINTS TO CURRENT TEXT POSITION

CHAR CURRENT INPUT CHARACTER;
IF COLUMN > 71 THEN
BEGIN

INTEGER 1;
READ(S, #(80R1), FOR I:=1 TO 80 DD BUFFERILII1);
COLUMN := 1
END;
CHAR := BUFFERI[COLUMNI;
COLUMN := COLUMN+1
END OF GETCHAR;

The procedure body may refer to any formal parameters, local variables, and those identifiers
which have been declared in the block containing the procedure.

5-3. CALLING PROCEDURES

You call a procedure by writing its name followed by any actual parameters enclosed in
parentheses. The procedure call is treated by the compiler like any other ALGOL command.

For example, here are calls to the procedure defined in the previous subsection:

TRANSPOSECTABLE,25);
GETCHAR;

The actual parameters must correspond in number and type to the formal parameters specified
in the procedure declaration.

5-3

5-4. FUNCTION PROCEDURES

A function procedure is a procedure that returns a single value. For function procedures, the
word PROCEDURE is preceded by the type of the value that is returned (REAL, INTEGER, or
BOOLEAN). You use the procedure name as a simple variable within the function. The value
returned is the last value assigned to the procedure name.

Example:

BOOLEAN PROCEDURE ALPHANUMERICCCH);
INTEGER CH;
ALPHANUMERIC := (CH >= "A™ AND CH <= "Z") OR
(CH >= "0" AND CH <= "9");

This function returns the value TRUE when the parameter, CH, is an alphabetic or numeric
character.

You call function procedures by using them as you would use an expression. The function’s
value is treated like the value of a variable of the same type.

Example:

IF ALPHANUMERIC(CHAR) THEN TOKEN:=7;

5-5. CODE PROCEDURES

Procedures may be compiled or assembled separately from the main ALGOL program. You can
declare such procedures by including a procedure heading in your program and replacing the
procedure body with the reserved word CODE. (All the parameters must be specified, as in
regular procedures.)

Examples:

PROCEDURE INVERCA,X,N);
VALUE Nj;INTEGER N;REAL A,X;
CODE;
REAL PROCEDURE INTEGRAL(A,B,F);
VALUE A,B;REAL A,B;REAL PROCEDURE F;
CODE ;

The names of CODE procedures have a maximum of five characters. Any characters beyond
the fifth are ignored.

5-6. SEPARATELY COMPILED PROCEDURES

Any CODE procedures you specify in your program can be written in ALGOL, FORTRAN, or
Assembly Language. The object code segments can be linked by the Relocating Loader before
the program is executed.

5-4

5-7. ALGOL PROCEDURES

When you compile ALGOL procedures separately from a main program, you must use the “P”
option in the HPAL control statement (Secton VI). The first line is the procedure declaration
(not BEGIN). The procedure is terminated with END; (not END$).

Example:

PAGE 001

001 00000 HPAL,L,P,'"SUM"

002 00000 INTEGER PROCEDURE SUM(V,N);

003 00002 INTEGER ARRAY V; INTEGER N;

004 00002 BEGIN & ALGOL PROCEDURE TO SUM ELEMENTS VI1]l ... VINI]
005 00006 INTEGER I3

006 00010 SUM := 0;

007 00037 FOR I:=1 TO N DO

008 00045 SUM := SUM + VI[I]

009 00045 END;

PROGRAM= 000062 ERRORS=000

The control statement name in quotes is used as the NAM record. The name in the procedure
declaration is used as the entry point. (The two should usually be the same.) For correct
execution, the procedure heading must agree with the main program’s CODE procedure
heading as to the number of parameters and parameter types.

5-8. CALLING FORTRAN ROUTINES FROM ALGOL

You can call subroutines written in FORTRAN the same way you call ALGOL procedures:
write the name of the subroutine followed by any parameters enclosed in parentheses. FOR-
TRAN functions are treated similarly.

Arrays are stored differently in FORTRAN and ALGOL. The name of an array in FORTRAN
references the first element of the array. In ALGOL, the name of an array references a
description of the array (type, number of dimensions, bounds for each dimension, and starting
address).

If you wish to call a FORTRAN routine that manipulates an array, specify the formal
parameter (in the heading) as being REAL or INTEGER (depending on the type of the array)
rather than as ARRAY or INTEGER ARRAY. The actual parameter (in the call) should be the
first element of the array. Arrays should also be handled this way in Assembly Language
routines that have been written to be called from FORTRAN.

5-5

Example:

FTN4,L

INTEGER FUNCTION SUMCV,N)

INTEGER V(1)

C FORTRAN FUNCTION TO SUM ELEMENTS V(1)

SUM = 0

DO 10 I=1,N

SUM = SUM + V(I)
10 CONTINUE

RETURN

END

ENDs$

HPAL,L,"MPRG1"
BEGIN
INTEGER RESULT, J;
INTEGER ARRAY Al1:201;
INTEGER PROCEDURE SUM(V,N);
INTEGER V,N;
CODE;

RESULT := SUMCAL11, J);

ENDS$

VIN)

The following is the WRONG WAY to call the FORTRAN routine:

INTéGER PROCEDURE SUM(V,N);
ARRAY V; INTEGER N;
CODE;

RESULT :=SUMCA, J)

FORTRAN
Function

ALGOL
Main Program

You can pass VALUE parameters to FORTRAN subroutines. However, the FORTRAN routine
will not treat the parameters as being called by value. Changes to parameters which are not
expressions will result in changes to the corresponding actual parameters in the main pro-
gram. For this reason, you must be absolutly sure a FORTRAN subroutine does not modify

constants passed as parameters.

5-9. CALLING ALGOL PROCEDURES FROM FORTRAN

ALGOL procedures compiled with the P option in the control statement can be called from

FORTRAN. Arrays cannot be passed as parameters.

5-6

5-10. CALLING ALGOL PROCEDURES FROM ASSEMBLY
LANGUAGE

If you want to call an ALGOL procedure from Assembly Language, you must provide the
return address and the address of parameters.

Suppose you want to call the ALGOL procedure that has been compiled with the heading

PROCEDURE TEST(A,B,C,D,E);
VALUE A,B;INTEGER A,C;REAL B,D;LABEL E;

In the Assembly Language program, you would write

EiT TEST DECLARE TEST EXTERNAL

JSB TEST JUMP TO TEST

DEF RTNPT ADDRESS OF RETURN

DEF PARM1 INTEGER VALUE PARAMETER

DEF PARM2 REAL VALUE PARAMETER

DEF PARM3 INTEGER PARAMETER

DEF PARM4 REAL PARAMETER

DEF LABL1 LABEL PARAMETER
RTNPT EQU * RETURN POINT
LABL1 EQU *
PARM1 BSS 1 STORAGE FOR INTEGER VALUE PARAMETER
PARM2 BSS 2 STORAGE FOR REAL VALUE PARAMETER
PARM3 BSS 1 STORAGE FOR INTEGER PARAMETER

2 STORAGE FOR REAL PARAMETER

PARM4 BSS

This would be equivalent to calling TEST from ALGOL with

TESTC(PARM1 ,PARM2,PARM3,PARM4,LABL1);

This is also the standard HP calling sequence for FORTRAN and Assembly Language. Value
and reference parameters are passed in the same way; the difference is the way they are
treated within the subroutine.

5-11. CALLING ASSEMBLY LANGUAGE ROUTINES FROM ALGOL

You can call Assembly Language routines from ALGOL if they have been written to pass the
correct parameter values and addresses.

When you write Assembly Language.routines to be called from ALGOL, you can obtain

parameters from the calling sequence shown above or you can use the standard ALGOL
parameter processing routine .PRAM.

5-7

The general calling sequence for .PRAM is

JSB .PRAM
<code words (maximum = 7)>
<storage for parameters>

The code words tell . PRAM the number of parameters, indicate which parameters are called by
reference and which are called by value, and specify whether value parameters are real or
integer. Code words have the following format:

First code word:
bits 15 through 10 Number of parameters (maximum= 52)
9 8 Bit pair for first parameter
Bit pair for second parameter

— e e o 3

6
0 Bit pair for fifth parameter

Second code word:
bits 15 through 14 Bit pair for sixth parameter

1 0 Bit pair for 13th parameter

Similarly, code word 3 contains bit pairs for parameters 14-21, code word 4 contains bit pairs
for parameters 22-29, etc.

Each parameter’s bit pair has the following meaning: The left bit is 1 if the parameter is called
by value, 0 if it is called by reference. The right bit is not used for parameters called by
reference; for value parameters it is 1 for real variables and 0 for integer (or Boolean)
variables.

Following the code words, you must reserve exactly enough words to store the address or value
of each parameter. Real parameters passed by value require two words; all others require one
word.

.PRAM also places the return address in the word preceding the JSB .PRAM instruction.
Example:

If the procedure TEST given above were written in Assembly Language, the entry portion
could be

TEST NOP ENTRY POINT
JSB .PRAM
0CT 013300 CODE WORD
A BSS 1 VALUE C(INTEGER)
B BSS 2 VALUE (REAL)
C BSS 1 REFERENCE CINTEGER)
D BSS 1 REFERENCE (REAL)
E BSS 1 REFERENCE (LABEL)

5-8

.PRAM places the values of A and B and the addresses of C, D, and E in the locations provided.
Within the subroutine you can refer to A and B directly. C and D should be referenced
indirectly. If you want to transfer control to label E (an address in the calling program) you
would write

JMP E, I

To return to the calling program you would write

JMP TEST, I

You can use the Relocatable Library routines .INDA (get address) or INDR (get value) to
access ALGOL array elements from Assembly Language. ALGOL maintains a table for each
array as follows:

TABLE DEC number of indices (+ = real, - = integer)
DEC size of 1st dimension
DEC -lower bound of 1st dimension
DEC size of 2nd dimension
DEC -lower bound of 2nd dimension

DEC size of last dimension
DEC -lower bound of last dimension
DEF starting address of array elements

When you pass the name of an array to a subroutine, you are passing the address of the first
word in the array table.

To call the indexing routines use the following code:

JSB .INDA (or .INDR)

DEF array table

DEC -number of indices
DEF first subscript value

DEF last subscript value

If you call .INDA, the address of the array element is placed in the A-Register. For INDR, the
value of the array element is placed in the A-Register (for integer arrays) or the A- and
B-Registers (for real arrays). For both routines, if the subscript values are not within their
bounds, the INDEX? error message is printed and the routine returns a zero.

For example, here is the subroutine SUM coded in Assembly Language:

PAGE 0602 #01

0001
0002
0003
0004+
0005+
0006+
0007
0008
0009
0010
0011
0012
0013
0014+
0015+
0016
0017
0018
0019
0020+
0021+
0022
0023
0024
0025
0026+
0027
0028
0029
0030
0031
0032
0033
0034+
0035
0036
0037
0038
0039+
0040
0041
0042+
0043
0044
0045
0046
0047

*+ NO ERRORS

5-10

00000

ASMB,L,R

NAM SUM,7

INTEGER FUNCTION CALLED FROM ALGOL WITH
SUMCV,N);

TO SUM ELEMENTS VI11

VIN]

WHERE V IS AN

INTEGER ARRAY AND N Ié.AN INTEGER VARIABLE.

ENT SUM
00000 000000 SUM NOP

EXT .PRAM
00001 016001X JSB .PRAM
00002 004000 DCT 004000
00003 000000 V BSS 1
00004 000000 N BSS 1

INITIALIZE SUM1 AND FOR LOOP COUNTER

00005 062033R LDA ZERO
00006 072031R STA SUM1
00007 062034R LDA ONE
00010 072032R STA 1
FOR I:=1 TO N DO SUM1:=SUM1+V[I];
00011 003004 TEST CMA,INA
00012 142004R ADA N, I
00013 002020 SSA
00014 026027R JMP ENDFR

EXT .INDR
00015 016002X JSB .INDR
00016 100003R DEF V,I
00017 177777 DEC -1
00020 000032R DEF I
00021 042031R ADA SUM1
00022 072031R STA SuMi
00023 062032R LDA I
00024 002004 INA
00025 072032R STA I
00026 026011R JMP TEST
00027 062031R ENDFR LDA SUM1
00030 126000R JMP SUM, I
00031 000000 SUM1 BSS 1
00032 000000 I BSS 1
00033 000000 ZERO DEC O
00034 000001 ONE DEC 1

END

*TOTAL #+RTE ASMB 750420%+

SUM1 :=

ENTRY POINT

CODE WORD

ADDRESS OF ARRAY V

PICK UP PARAMETERS

ADDRESS OF N

CHECK FOR END
OF FOR LOOP

CI>N)

PUT
VII]

IN

A-REGISTER

SUM1

+ VLI

INCREMENT I FOR NEXT
ITERATION AND CONTINUE

IN FOR LOOP

PUT SUM IN A-REGISTER
RETURN TO CALLING ROUTINE

THE HP ALGOL COMPILER

This section has been written to explain some of the features and requirements of the HP
ALGOL compiler.

6-1. ENVIRONMENT

HP ALGOL is a one pass compiler. It exists in two versions:

SIO System — The HP ALGOL compiler provides off-line compilation in BCS based systems. A
tape punch is required to provide simultaneous punching of an object tape with listing for
one pass compilation.

RTE-I/RTE-III/DOS — The HP ALGOL compiler provide on-line compilation in interactive or
batch mode. It uses 8K words of background area in RTE and comparable space in DOS.
The relocatable programs produced by this HP ALGOL compiler can execute in DOS,
RTE-II, RTE-III, and RTE memory based systems.

6-2. CONTROL STATEMENT

The first statement the ALGOL compiler reads must be an HPAL control statement. If the first
four characters of the first record are anything other than HPAL, the error message HPAL?? is
printed on the system console and the compiler halts.

You can use any of the following options in the control statement:

L — list source program

A — list octal code produced for each statement
B — produce object tape

P — a procedure only is to be compiled

S — sense switch register (SIO only)

Any options must be separated by commas.
The name of the program enclosed in quotes also appears in the control statement. (This name

becomes the NAM record name. It must be a legitimate identifier.) For DOS and RTE, the
name appears after any options; for SIO it must be listed first (after HPAL).

Examples:
HPAL,L,B,P,"NAME" (DOS/RTE)
HPAL ,'NAME" ,L,B,P (s10)

6-1

For SIO, when the S option is used the B, L, and A options are read by the compiler from the
switch register. (The P option must still be placed in the control statement if it is used.) If the
associated bit in the switch register is on, the following options are in effect:

Bit Option
15 B

14 L

13 A

The switch register is read at the beginning of each line. Any option may be turned on or off
partially through a compilation.

If no options are specified for a compilation, the compiler only produces diagnostic messages.

6-3. PROGRAM INPUT

The ALGOL compiler reads records from the logical unit you specify when you run the
compiler. No matter how long the record is, the compiler only uses the first 72 characters. (You
can use columns 73-80 on cards for identification or sequence numbers.)

The compiler accepts blank lines. However, some I/O drivers read a blank record as an
end-of-file indicator and signal that no more data is expected. (If disc input is used, do not
include null lines. Make sure each line contains at least one character.)

The compiler senses the end of a program in two ways: when all the BEGINs are matched with
ENDs or when a $ is read after an END. If your program contains an error, the BEGIN-END
pairs may not be matched and compilation may terminate before the entire source program is
read.

6-4. PROGRAM LISTING

When you use the L option in the HPAL statement, the program is listed as it is read. In
addition, two numbers are printed to the left of each line: the sequence number of each source
line and the relative octal address of the object code produced for that line. The relative address
is added to the start address printed by the loader to give the absolute address of each line in
your program. This address can be useful if you have run-time errors.

When you compile with option A, the object code listing consists of the octal code and
equivalent assembly language statements generated for each program statement. The first
octal number is the relative location in memory that will contain the object code. The second
number either gives the octal instruction code (if an instruction is placed in memory) or a
numeric value (for constants). The equivalent assembly language statements are listed to the
right of the octal code.

6-2

This partial listing shows the effect of the L. and A options:

001 00000 HPAL,L,A,"DMT"
002 00000 BEGIN

00000 000000 NOP
003 00001 INTEGER ARRAY NAME[1:5]:="TR'" "IB'" "BY";
00001 BSS 000001
00002 177777 NAME 0CT 177777
00003 000005 0CT 000005
00004 177777 ocT 177777
00005 000006 R DEF #+1
00006 052122 0CT 052122
00007 044502 OCT 044502
00010 041131 0CT 04113n
00011 BSS 000002
004 00013 INTEGER CHAR;
00013 CHAR BSS 000001
005 00014 WHILE CHAR#' ' DO
00001 ORG 000001
00001 026014 R JMP 000014
00014 ORR
00014 062013 R LDA CHAR
00015 026042 R JMP 000042
00016 BSS 000024
00042 042016 R ADA 000016
00043 002003 SZA,RSS
006 00044 BEGIN
00044 BSS 000001
007 00045 READC1, #(R1), CHAR);
00045 062017 R LDA 000017
00046 006404 CLB, INB
00047 014001 X JSB .DIO.
00050 000053 R DEF #+3
00051 BSS 000001
00052 BSS 000001
00053 024122 ASC 1,(R
00054 030451 ASC 1,1)

Array Table

Storage for Array

6-3/6-4

PROGRAM EXAMPLES

This section contains ALGOL programs that were compiled and executed under the RTE-III
operating system.

7-1. TAYLOR SERIES FOR EXP, SIN, AND COS

[If you do not have a mathematical background, you may want to skip this example.]

One method of evaluating logarithmic and trigonometric functions by polynomials is to use
Taylor series. (If you do not know what Taylor series are, consult a basic Calculus textbook.)
Three well known Taylor series are

X Xk
e* = —
k=0 k!

x
Z (- 1)k x2k+1
sin x = _
k=0 (2k+1)!

x<

Z (= 1) x2
COS X = E——

k=0 (2k)!

(& denotes summation and ! denotes the factorial function.)

All three of these infinite sums can be approximated by summations to a number of terms. The
greater the number, the closer the result is to the true value.

The following program evaluates the series for 5, 10, and 30 terms. It also prints the values of
the ALGOL intrinsic function for EXP, SIN, and COS.

The first part of the listing contains eight procedures that return real values when called.
Lines 9-15 define a procedure (FACTL) to calculate factorials. Lines 20-28 define procedures
that evaluate terms for the sums shown above. The procedures in lines 33-41 are included so
intrinsics can be passed as arguments to the PRINTVALUE procedure. The last real procedure
(SUM) uses the terms in lines 20-28 to calculate a sum to a given number of terms. Most of the
work of the program takes place in PRINTVALUES; it writes a heading, increments X from
—2 to 2, and prints three sums for each value of X. The actual call to the SUM procedure
appears in the OUTPUT statement (line 63). The main program, which begins in line 81, is
rather trivial. It prints headings and calls PRINTVALUES for each different summation.

7-1

PAGE

001

002
003
004
005
006
007
008
009
010
011

012
013
014
015
016
017
018
019
020
021

022
023
024
025
026
027
028
029
030
031

032
033
034
035
036
037
038
039
040
041

7-2

001

00000
00000
00001
00001
00001
00001
00001
00001
00001
00005
00005
00010
00012
00043
00063
00066
00066
00066
00066
00066
00071
00071
00120
00123
00123
00177
00202
00202
00301
00301
00301
00301
00301
00304
00304
00317
00322
00322
00335
00340
00340

HPAL,L,"SuUMS*"

BEGIN

COMMENT PROGRAM TO CALCULATE VALUES FOR EXP(X), SIN(X),
AND COS(X)> BY TAYLOR SERIES WITH 5, 10, AND 30
TERMS, AND VALUES OF X BETWEEN -2 AND 2;

70 Q0 Qo R

EAL PROCEDURE FACTL(N);
VALUE N; INTEGER N;
BEGIN &CALCULATE THE FACTORIAL OF N (ND)

INTEGER I
FACTL := 1.0;
FOR I := 2 TO N DO FACTL := FACTL * I;

END;

Qe Qe Qe

& PROCEDURES TO CALCULATE TERMS FOR EXP, SIN, AND COS
REAL PROCEDURE EXPSUM(X,K);
VALUE X,K; REAL X; INTEGER K;
EXPSUM := (X*K)/FACTL(K);
REAL PROCEDURE SINSUMCX,K);
VALUE X,K; REAL X; INTEGER K;
SINSUM := (-1)7K#X*(2+*K+1)/FACTL(2*K+1);
REAL PROCEDURE COSSUMCX,K);
VALUE X,K; REAL X; INTEGER K;
COSSUM := (-1)~K#X*(2+*K)/FACTL(2%K);

R

& DUMMY PROCEDURES SO INTRINSICS CAN BE PARAMETERS
REAL PROCEDURE EXP1(X);
VALUE X; REAL X;
EXP1 := EXP X;
REAL PROCEDURE SIN1(X);
VALUE X; REAL X;
SIN1 := SIN X;
REAL PROCEDURE COS1(X);
VALUE X; REAL X;
C0S1 := COS X;

PAGE 002

042 00353

043 00353

044 00353

045 00353 REAL PROCEDURE SUMCK1,X,FUNCT);

046 00356 VALUE K1,X; INTEGER K1; REAL X; REAL PROCEDURE FUNCT;

047 00356 BEGIN & SUM UP TERMS IN SERIES

048 00364 INTEGER K3

049 00366 SUM := 0.0;

050 00372 FOR K := 0 TO K1 DO

051 00400 SUM := SUM + FUNCT(X,K);

052 00414 END;

053 00417 &

054 00417 &

055 00417 &
&
P

0 R e >

056 00417

057 00417 PROCEDURE PRINTVALUESCINTRINSIC, FUNCTION);
058 00420 REAL PROCEDURE INTRINSIC, FUNCTION;

059 00420 BEGIN & CALCULATE AND OUTPUT VALUES

060 00424 INTEGER ARRAY N[1:3] := 5, 10, 30;

061 00434 INTEGER I; REAL X;

062 00437 OUTPUT SUMS

063 00437 (X, INTRINSIC(X),FOR I:=1 TO 3 DO SUMCNILIJ],X,FUNCTION));
064 00475 FORMAT NUMBERS(F7.2, 1P4E14.5),

065 00505 HEADING("0 X", 7X,"INTRINSIC",8X,"SUM(5)",8X,"SUMC10)"
066 00535 7X,"SUMC30)");

067 00544 &

068 00544 WRITE(6,HEADING);

069 00552 X 1= -2.0;

070 00556 WHILE X <= 2.0 DO

071 00563 BEGIN

072 00564 WRITE(6, NUMBERS, SUMS);

073 00573 X := X + .33333;

074 00601 END;

075 00602 END;

076 00603 &

077 00603 &

078 00603 &

079 00603 & BEGINNING OF MAIN PROGRAM

080 00603 &

081 00603 WRITE(G, #("1EVALUATION OF INTRINSICS BY SERIES"
082 00634 //"0INTRINSIC 1 = EXP'"));

083 00651 PRINTVALUESCEXP1,EXPSUM);

084 00655 WRITE(G, #C/"0INTRINSIC 2 = SIN"));
085 00700 PRINTVALUES(SIN1,SINSUM);
086 00704 WRITE(G, #C/"™0INTRINSIC 3 = C0S'"));

087 00727 PRINTVALUES(CCOS1,COSSUM);
088 00733 END$

PROGRAM= 000737 ERRORS=000

EVALUATION OF INTRINSICS

INTRINSIC 1

INTRINSIC 2

INTRINSIC 3

7-4

X

2.
.67

1

1.
1.

N = -
. . e

X

2.
1.
1.
1.

N ===

X

00

33

NOnwhh-=—~0o0N0NNTwmMNn ==

-9

-8
-6

n

()

oM NO_LONOD

= EXP

INTRINSIC

. 35335E-01
.88875E-01
.63595E-01
.67876E-01
.13410E-01
.16519E-01
.99980E-01
.39558E+00
.94768E+00
.71820E+00
. 79354E+00
.29429E+00
.38876E+00

= SIN

INTRINSIC

. 09297E-01
-9.
-9.

95408E-01
71940E-01

.41476E-01
.18381E-01
-3.
-2.

3.

27211E-01
03848E-05
27172E-01

6.18348E-01
8.41455E-01
9.
9
9

71930E-01

.95412E-01
.09314E-01

= CO0S

INTRINSIC

.16147E-01
.57270E-02
.35231E-01
.40294E-01
.85879E-01
.44951E-01
.00000E+00
.44965E-01
.85904E-01
.40328E-01
.35270E-01
.56867E-02

NOnwv-==0N0ntwrn-=0

Voo
OCOOWOHWND WO OWOWOWO

BY SERIES

SUM(5)

.66667E-02
.64951E-01
.57063E-01
.66663E-01
.13299E-01
.16517E-01
.99980E-01
.39558E+00
.94755E+00
.71658E+00
.78396E+00
.25564E+00
.26638E+00

SUM(S)

.09296E-01
.95408E-01
.71940E-01
.41477E-01
.18381E-01
.27211E-01
.03848E-05
.27172E-01
.18349E-01
.41455E-01
.71930E-01
.95411E-01
.09313E-01

-4.
.57279E-02
.35231E-01
.40294E-01
.85879E-01
.44951E-01
.00000E+00
.44965E-01
.85904E-01

]
MO NO-=ONONDO

SUM(S)
16155E-01

40328E-01

.35270E-01

-9.56876E-02

NONwh==0N01wmMNn ==

1o
[N

orvNNO—_LONN

SUMC10)

.35379E-01
.88881E-01
.63596E-01
.67876E-01
.13410E-01
.16519E-01
.99980E-01
.39558E+00
.94768E+00
.71820E+00
. 79354E+00
.29429E+00
.38870E+00

sSumc10d

. 09298E-01
.95408E-01
.71940E-01
.41477E-01
.18381E-01
.27211E-01
.03848E-05
.27172E-01
.18349E-01
.41455E-01
.71930E-01
.95412E-01
.09315E-01

SUMC10)

.16147E-01
.57270E-02
.35231E-01
.40294E-01
.85879E-01
.44951E-01
.00000E+00
.44965E-01
.85904E-01
.40328E-01
.35270E-01
.56867E-02

NOnnwhv-=—=0oNNnnwmN = -

-4
-9

N

S
7
9
1
9
7
5
2
-9

SUM(C30)
.35335E-01
.88875E-01
.63595E-01
.67876E-01
.13410E-01
.16519E-01
.99980E-01
. 39558E+00
.94768E+00
.71820E+00
. 79354E+00
.29429E+00
.38876E+00

SUM(30)
.09298E-01
.95408E-01
.71940E-01
.41477E-01
.18381E-01
.27211E-01
.03848E-05
.27172E-01
.18349E-01
.41455E-01
.71930E-01
.95412E-01
.09315E-01

SUMC30)
.16147E-01
.57270E-02
.35231E-01
.40294E-01
.85879E-01
.44951E-01
.00000E+00
.44965E-01
.85904E-01
.40328E-01
.35270E-01
.56867E-02

7-2. READ TEXT AND COUNT CHARACTERS

This program shows how to work with characters. All ASCII constants in the program are one
character in the right half of their word, with the left half filled with zeroes. This corresponds
to the R1 format for reading and writing. If the Al format were used for I/O, all the ASCII
constants would have to include a blank as the right character.

Note that ASCII constants can be used as array subscripts and as control values in a FOR
statement. The compiler converts them to their octal equivalent.

PAGE 001

001 00000 HPAL,L,'"COUNT"
002 00000 BEGIN

003 00001 &

004 00001 COMMENT READ TEXT FROM TERMINAL AND COUNT EACH CHARACTER;
005 00001 &

006 00001 INTEGER I;

007 00003 INTEGER ARRAY CHARC' **:*_'1,&HOLDS COUNT FOR EACH CHARACTER
008 00107 TEXT[1:801; &HOLDS INPUT CHARACTERS

009 00233 BOOLEAN DONE := FALSE;

010 00234 &

011 00234 & INITIALIZE CHARACTER COUNTS TO ZERO

012 00234 FOR I := " "™ TO "_" DO CHARII] := 0;

013 00302 &

014 00302 & WRITE HEADING AND READ TEXT

015 00302 WRITE(G, #C"1INPUT TEXT:"/));

016 00322 WHILE NOT DONE DO

017 00325 BEGIN

018 00326 READ(1, #(80R1)>, FOR I:=1 TO 80 DO TEXT(I1);

019 00360 IF TEXTC11 = */*" THEN DONE := TRUE

020 00367 ELSE

021 00372 BEGIN

022 00372 WRITE(6, #(1X,80R1), FOR I:=1 TO 80 DO TEXTI[I1);
023 00425 FOR I := 1 TO 80 DO

024 00433 CHARITEXTILI1] := CHARITEXTLI1]l + 1

025 00456 END

026 00464 END;

027 00465 &

028 00465 & LIST CHARACTERS USED AND CHARACTER COUNT

029 00465 WRITE(E, #("O0CHARACTERS USED:'));

030 00507 FOR I := "™ "+1 TO "_*" DO

031 00516 IF CHAR[I1#0 THEN WRITE(G, #(3X,R1,I1I6), I,CHARLI])
032 00546 ENDS$

PROGRAM= 000557 ERRORS=000

Program Output:

INPUT TEXT:

THIS IS A TEST TO SEE IF THE PROGRAM "COUNT'" WORKS. THE
PROGRAM READS TEXT, PRINTS IT, THEN COUNTS THE NUMBER OF
TIMES EACH CHARACTER APPEARS. THE END OF TEXT IS SIGNALED
BY A "/"™ IN COLUMN 1. AFTER ALL THE TEXT IS READ, THE
CHARACTER COUNTS ARE PRINTED.

CHARACTERS USED:

”"n 4
, 3
. 4
/ 1
1 1
A 17
B 2
c 9
D 5
E 26
F 4
G 3
H 11
I 11
K 1
L 4
M 5
N 11
0 10
P 6
R 17
s 14
T 27
u 5
W 1
X 3
Y 1

7-3. CALL SYSTEM ROUTINES

This program calls several routines provided with the RTE system:

RMPAR — a routine to pick up run-time parameters from the RUN, ON or GO command. You

EXEC —

pass as a parameter the first of five consecutive words. After executing RMPAR,
these five words contain the run-time parameters. Because the routine uses the
B-register, you cannot pass an element of an array as the parameter. Instead,
declare five consecutive integers and pass the first of these as the parameter.

the standard RTE system executive routine that can be used for many different
functions. You can pass from 1 to 9 parameters to EXEC. However, ALGOL
programs must declare a fixed number of parameters for each procedure. One
solution to this conflict is to define dummy external routines for each EXEC call
that requires a different number of parameters (EXEC2 for 2 parameters, EXEC3
for 3 parameters, etc.). An example of an assembly language routine to patch in a
call to the real EXEC routine is shown after the main program.

ABREG — A routine that returns the A- and B-registers in the two integer parameters

7-6

passed. This routine is useful to pick up information left in the registers by EXEC.

The program first picks up the logical unit number for the console from RMPAR. It then gets
the current time from EXEC and uses EXEC to read the user’s name. ABREG obtains the
length of the name from the B-register. The main loop of the program prints status informa-
tion for logical unit numbers read from the console.

PAGE 001

001 00000
002 00000
003 00001
004 00001
005 00001
006 00001
007 00001
008 00003
009 00004
010 00005
011 00006
012 00012
013 00014
014 00015
015 00015
016 00056
017 00056
018 00107
019 00155
020 00155
021 00155
022 00155
023 00156
024 00156
025 00155
026 00156
027 00156
028 00155
029 00156
030 00156
031 00155
032 00155
033 00155
034 00156
035 00156
036 00155
037 00155
038 00155
039 00156
040 00156
041 00155
042 00155
043 00155
044 00155
045 00155
046 00155
047 00155
048 00160
049 00166
050 00166
051 00166
052 00177

HPAL,L,"STATS"

BEGIN

&

COMMENT THIS PROGRAM PERFORMS EXEC CALLS REQUIRING 2, 3,
AND 4 PARAMETERS;

&

INTEGER LEN := 20, & NAME LENGTH FOR READ
LU, & LOGICAL UNIT NUMBER
EQTS, & EQT WORD 5 STORAGE
KEYBD, & LU FOR CONSOLE
P2,P3,P4,P5, & USED FOR RMPAR
A, B, & VALUES OF A- AND B-REGISTERS
I; & COUNTER
&

INTEGER ARRAY TIMEL1:51,NAME[1:201;
FORMAT TIMEFMT :

("/STATUS: CURRENT TIME: DAY"™,I14,3X,3C(I2,":"),12);
OUTPUT TIMEVAL(CFOR I:= 5§ STEP -1 UNTIL 1 DO TIME[LI]1);
&

&

& DUMMY EXEC ROUTINES

PROCEDURE EXEC2(P1,P2);
VALUE P1;INTEGER P1,P2;
CODE;

PROCEDURE EXEC3(P1,P2,P3);

VALUE P1,P2;INTEGER P1,P2,P3;

CODE;

PROCEDURE EXEC4(P1,P2,P3,P4);

VALUE P1,P2;INTEGER P1,P2,P3,P4;
CODE;
&
& SYSTEM ROUTINE TO PICK UP RUN-TIME PARAMETERS

PROCEDURE RMPAR(P1);
INTEGER P1;
CODE;
&
& SYSTEM ROUTINE TO GET VALUES OF A- AND B-REGISTERS
PROCEDURE ABREG(A,B);
INTEGER A,B;
CODE;

Qo Qo Qe

& BEGINNING OF PROGRAM

&

& PICK UP KEYBOARD LU VIA RMPAR
RMPARCKEYBD);

IF KEYBD < 1 THEN KEYBD := 1;

&

& GET TIME AND PRINT MESSAGE
EXEC2C11,TIMEL11);

WRITECKEYBD, TIMEFMT, TIMEVAL);

7-7

Page 002

053 00206 &

054 00206 & GET USER’S NAME (LENGTH GOES IN B REGISTER)

055 00206 WRITECKEYBD, #('/STATUS: WHAT IS YOUR NAME?"));

056 00235 P2 := KEYBD+®400;

057 00240 EXEC4(1,P2,NAMEL1],LEN);

058 00253 ABREG(A,B);

059 00257 LEN := B;

060 00261 LU := KEYBD;

061 00263 &

062 00263 & PROMPT FOR LU AND PRINT STATUS WORD

063 00263 WHILE LU > 0 DO

064 00266 BEGIN

065 00267 EXEC3(13, LU, EQTS);

066 00274 WRITECKEYBD, #("/STATUS: EQTS OF DEVICE",I3," = ",K6),
067 00326 LU,EQTS);

068 00333 WRITECKEYBD, #('/STATUS: NEXT LU CEND = 0):_"));
069 00362 READC(KEYBD, *, LU);

070 00371 END;

071 00372 &

072 00372 & GET TIME AND PRINT ENDING MESSAGE

073 00372 EXEC2C11,TIMEL11);

074 00403 WRITECKEYBD, TIMEFMT, TIMEVAL);

075 00412 WRITECKEYBD,#("/STATUS: GOODBYE *,20A2), FOR I:=1 TO LEN DO
076 00451 NAMELI1);
077 00455 END$.

PROGRAM= 000461 ERRORS=000

The following assembly language subroutine is called by a jump to any of the dummy EXEC
routines. It stores a JSB to the true EXEC routine over the dummy jump in the main program,
then jumps back and executes the EXEC call. When the original call is executed again, it
points to the true EXEC routine.

7-8

PAGE 0002 #01

0001 ASMB,L,R
0002 00000 NAM
0003++ USED TO FIX ALGOL EXEC
0004 EXT
0005 ENT
0006 ENT
0007 00000 EXEC1 EQU
0008 00000 EXEC2 EQU
0009 00000 EXEC3 EQU
0010 00000 EXEC4 EQU
0011 00000 EXECS5 EQU
0012 00000 EXEC6 EQU
0013 00000 EXEC7 EQU
0014 00000 EXEC8 EQU
0015 00000 EXEC9 EQU
0016+

0017 00000 000000 EXECO NOP
0018 00001 072011R STA
0019 00002 003400 CCA
0020 00003 042000R ADA
0021 00004 072000R STA
0022 00005 062012R LDA
0023 00006 172000R STA
0024 00007 062011R LDA
0025 00010 126000R JMP
0026+

0027 00011 000000 SAVE BSS
0028 00012 016001X JSBEX JSB
0029 END

** NO ERRORS

Output from program:

/STATUS: CURRENT TIME: DAY
/STATUS: WHAT IS YOUR NAME?
DAVE

/STATUS: EQTS OF DEVICE 7 =
/STATUS: NEXT LU C(END = 0):2
/STATUS: EQTS OF DEVICE 2 =
/STATUS: NEXT LU C(END = 0):1
/STATUS: EQTS OF DEVICE 1 =
/STATUS: NEXT LU C(END = 0):6
/STATUS: EQTS OF DEVICE 6 =
/STATUS: NEXT LU CEND = 0):0
/STATUS:

/STATUS: GOODBYE DAVE

EXECO,7

CALLS

EXEC
EXEC1,EXEC2,EXEC3,EXEC4,EXECS

EXEC6,EXEC7,EXEC8,EXECO
*
*
*
*
*
*
*
*
*
ENTRY POINT
SAVE SAVE A-REGISTER

EXECO A-REG POINTS TO EXEC CALL
EXECO

JSBEX LOAD A-REG WITH REAL EXEC CALL

EXECO0,I REPLACE JSB INSTRUCTION
SAVE RESTORE A-REGISTER
EXECO,I RETURN

1 SAVE AREA FOR A-REG
EXEC REPLACING INSTRUCTION

*TOTAL #+*RTE ASMB 750420+

91 11:10:13:55

002400

014400

000000

005000

CURRENT TIME: DAY 91 11:10:51:34

7-9 /7-10

HP ALGOL AND HP FORTRAN IV

This section has been written for the experienced FORTRAN programmer who wants to
program in ALGOL. If you do not already know FORTRAN, you may skip this discussion,

Complete descriptions of ALGOL statements are not given here. Consult the proper section of
this manual for further information.

This section compares HP FORTRAN IV and HP ALGOL. Comparison between other versions
of FORTRAN and ALGOL is not implied.

8-1. PROGRAM FORMAT

Unlike FORTRAN statements, which have a comment column, a statement number field, a
continuation column, and a statement field, ALGOL statements can begin in any column (they
must end by column 72) and run for as many lines as you need. Statements are separated by
semicolons (;). Several statements can appear on the same line.

Spaces act as delimiters in ALGOL. As in FORTRAN, extra spaces are ignored.

8-2. VARIABLES AND CONSTANTS

FORTRAN’s real and integer number formats are the same as ALGOL’s. ALGOL does not use
double precision or complex numbers. ALGOL’s Boolean values are similar to FORTRAN’s
logical values.

Any FORTRAN integer number is legal in ALGOL. ALGOL’s real constants use ‘ for scale
factors in place of E. Hollerith constants are enclosed in"' instead of being preceded by 1H or
2H. The logical constants in ALGOL are TRUE and FALSE (not .TRUE. and .FALSE.). Octal
constants are preceded by @ instead of being followed by B. (Any sign goes in front of the @.)

There are no default type declarations in ALGOL. Each variable must be declared explicitly
before it is used. The identifiers shown in table 2-1 may not be used except as noted.

Only alphanumeric and numeric characters (not $) may be used in ALGOL identifiers, and
embedded blanks are not allowed. Identifiers must begin with an alphabetic character and can
continue for as many characters as you need.

8-3. ARRAYS

Arrays can have as many dimensions as you need. The bounds of each subscript, which must be
defined when you declare the array, can be any integer constants, positive or negative. (The
lower bound does not default to 1.)

8-1

When referencing an array element, use brackets, not parentheses, around the subscript
expression. During execution of an ALGOL program, the subscript is checked every time an
array is referenced. If it is not within the specified bounds, an error message is printed.

8-4. STATEMENT NUMBERS

ALGOL statements are not numbered. However, you may reference a statement with a label.
Labels are defined by placing the label (any legal identifier) and a colon before the statement.

8-5. EXPRESSIONS

The FORTRAN exponentiation operator ** is replaced in ALGOL by ®. All other FORTRAN
operators have the same meaning in ALGOL, except / always produces a real result. Integer
division is performed with \.

The FORTRAN logical operators .OR., .AND., and .NOT. are replaced in ALGOL with OR,
AND, and NOT.

The FORTRAN relational operators and their equivalent ALGOL symbols are

LT, < EQ. = .GT. >
LE. <= NE. # .GE. >=

The precedence of operators in arithmetic and logical expressions is the same in FORTRAN

and ALGOL. In mixed mode expresions, the conversions between real and integer results
within the expression may be different for the two languages.

8-6. EXTERNAL STATEMENT

Each external function and subroutine in ALGOL must be declared as a regular procedure.
The instructions for the routine are replaced by the word CODE.

8-7. COMMON AND EQUIVALENCE STATEMENTS

There are no statements in ALGOL which perform the functions of FORTRAN’s COMMON
and EQUIVALENCE declarations. (ALGOL’s EQUATE declaration is completely different
from FORTRAN’s EQUIVALENCE.)

8-8. DATA STATEMENT

There is no DATA statement in ALGOL. However, you can assign initial values to variables
and arrays as you declare them.

8-2

8-9. ASSIGNMENT STATEMENTS

ALGOL assignments are the same as in FORTRAN except the symbols := or <« replace
FORTRAN’s =.

8-10. GO TO STATEMENT
The FORTRAN and ALGOL GO TO statements are equivalent. (In ALGOL, GO TO must be

two words.) Because ALGOL provides many ways to control program execution, you can
usually write entire programs without one GO TO statement.

8-11. ASSIGN TO AND ASSIGNED GO TO STATEMENTS
ALGOL does not have a construct exactly the same as the ASSIGN TO statement; they are not

needed because labels can be passed to subroutines as parameters. The ASSIGNED GO TO
statement of FORTRAN is similar to an ALGOL GO TO with a switch as the destination.

8-12. COMPUTED GO TO STATEMENT

An ALGOL GO TO statement with a switch as the destination is similar to FORTRAN’s
computed GO TO. The ALGOL CASE statement can also be used in much the same way.

8-13. ARITHMETIC IF STATEMENT

There is no ALGOL statement directly equivlent to the arithmetic IF statement. You can,
however, use the ALGOL IF statement in the following way:

E := <expression>;
IF E<0 THEN GO TO <statement 1 label>
ELSE IF E=0 THEN GO TO <statement 2 label>
ELSE GO TO <statement 3 label>;

A better solution using blocks instead of GO TO statements can usually be found.

8-14. LOGICAL IF STATEMENT

ALGOL’s IF statement is similar to FORTRAN’s, but it also allows an ELSE clause.

8-3

8-15. CALL STATEMENT

There is no need for a CALL statement in ALGOL. You invoke a subroutine by writing its
name as a statement. As in FORTRAN, any parameters are enclosed in parenthesis following
the subroutine name.

8-16. RETURN AND STOP STATEMENTS

RETURN and STOP statements are not needed in ALGOL. Control is returned to a main
program or to the operating system when the final END is reached during execution.

8-17. CONTINUE STATEMENT

ALGOL dummy statements perform the same functions as FORTRAN’s CONTINUE.

8-18. PAUSE STATEMENT

The PAUSE statement performs the same function in both languages. You cannot use an octal
number with an ALGOL PAUSE.

8-19. DO STATEMENT

FORTRAN’s DO statement is similar to ALGOL’s FOR statement. (Do not confuse it with
ALGOL’s DO statement.) The statements in the range of a FORTRAN DO statement are
always executed at least once. The FOR statement block is not executed when the initial value
exceeds the final value. ALGOL’s FOR statement is more powerful — it allows negative values
for the control variable, terminal parameter, and step size.

8-20. END STATEMENT

The FORTRAN and ALGOL END statements are similar, but should not be considered as
equivalent. ALGOL’s END is not a statement, but is used with BEGIN to delimit blocks of
code.

8-21. I/0 STATEMENTS

FORTRAN and ALGOL use the same formatter for I/O. The FORMAT statements of each
language are equivalent. Because ALGOL does not have double precision values, you cannot
use D format specifications. All other format specifications are legal in ALGOL. Unformatted
input and binary I/O are the same in ALGOL as in FORTRAN.

The ALGOL READ and WRITE statements perform the functions of their FORTRAN counter-
parts. ALGOL can write expressions (not just variables). You cannot output an entire ALGOL

array by specifying its name. FORTRAN’s implied DO list is replaced by FOR elements in
ALGOL.

ALGOL has magnetic tape statements that are similar to FORTRAN’s.

8-22. FUNCTIONS AND SUBROUTINES

ALGOL procedures are similar to FORTRAN’s functions and subroutines. You can call AL-
GOL, FORTRAN, or Assembly Language routines from ALGOL. ALGOL provides additional
control of parameters by allowing passage by value or reference. (FORTRAN passes parame-
ters by reference only.)

8-5 /8-6

ERRORS

A-1. COMPILER ERROR MESSAGES

If the first record of your source program is not an HPAL control statement, the compiler halts
and prints HPAL?? on the system console.

Errors detected in the source program are indicated by a numeric error code. An arrow (1) is
printed below the symbol the compiler was processing when it discovered the error.

Sometimes one mistake in your program will cause numerous errors. For example, if you do
not declare an identifier properly, an error message appears anywhere you reference the
identifier in your program. A semicolon before an ELSE or UNTIL (in a DO statement) can
cause the compiler to lose track of the blocks in your program.

Here are the compiler error codes and a description of the condition causing the error:

ERROR
CODE DESCRIPTION
1 More than two characters used in an ASCII constant.
2 @ not followed by an octal digit.
3 Octal constant greater than 177777.
4 Two decimal points in one number.
5 Non-integer following apostrophe in scale factor.
6 Label declared but not defined in program.
7 Number required but not present.
8 Missing END.
10 Undefined identifier.
11 Illegal symbol.
12 Procedure designator must be followed by left
parenthesis.
13 Parameter types disagree.
14 Reference parameter must be a variable.
15 Parameter must be followed by a comma or right
parenthesis.

A-2

ERROR
CODE

16

17

18

19

20

21

22

23

24

25

26

27

28

40

41

42

43

44

45

46

47

48

49

DESCRIPTION

Too many parameters.
Too few parameters.
Array variable not followed by a left bracket.

Subscript must be followed by a comma or right
bracket.

Missing THEN.

Missing ELSE.

Illegal assignment.

Missing right parenthesis.

Proper procedure not legal in arithmetic expression.
Primary may not begin with this type quantity.
Too many subscripts.

Too few subscripts.

Variable required.

Too many external symbols (maximum = 255)
Declaration following statement.

No parameters declared after left parenthesis.

REAL, INTEGER, or BOOLEAN illegal with this
declaration.

Doubly defined identifier or reserved word.
Illegal symbol in declaration.

Statement started with undefined identifier or illegal
symbol.

Label not followed by colon.
Label is previously defined.

Semicolon expected as terminator.

ERROR
CODE

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

DESCRIPTION
Left arrow or := expected in SWITCH declaration.
Label entry expected in SWITCH declaration.
Real number assigned to integer in declaration.
Constant expected following left arrow or :=.
Left arrow or := expected in EQUATE declaration.
Left bracket expected in ARRAY declaration.
Integer expected in array dimension.
Colon expected in array dimension.
Upper array bound less than lower bound.
Right bracket expected at end of array dimensions.
Too many values for array initialization.
Array size excessive (32767). Set to 1024.
Constant expected in array initialization.
Too many parameters for procedure.

Right parenthesis expected at end of procedure
parameter list.

Procedure parameter descriptor missing.

VALUE parameter for procedure not in list.

Illegal type in procedure declaration.

Illegal description in procedure declaratives.
Identifier not listed as procedure parameter.

No type for variable in procedure parameter list.
Semicolon found in FORMAT declaration.

Left parenthesis expected after I/O declaration name.

Right parenthesis expected after I/O name
parameters.

A-3

ERROR

CODE

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

100

999

DESCRIPTION
Undefined label reference.
SWITCH identifier not followed by left bracket.
Missing right bracket in SWITCH designator.
THEN missing in IF statement.
DO missing in WHILE statement.

FOR variable must be in integer.

Il

FOR variable must be followed by left arrow or :
STEP missing in FOR clause.

UNTIL missing in FOR clause or DO statement.
DO missing in FOR clause.

Parenthesis expected in READ/WRITE statement.
Comma expected in READ/WRITE statement.
Free field format (*) illegal with WRITE.
Unmatched left bracket in I/O statement list.
Missing BEGIN in CASE statement.

Missing END in CASE statement.

Program must start with BEGIN, REAL, INTEGER
or PROCEDURE.

Table areas overflowed.

A-2. RUN-TIME ERROR MESSAGES

When you run your ALGOL program, several kinds of errors may be reported.

A-4

Integer or real value overflow may not be recognized
during execution of arithmetic operations. Integers
“wrap around” (from 32767 to —32768) and real numbers
are assigned the largest value (1.70141’ 38).

A-3. RELOCATABLE LIBRARY MESSAGES

During execution of a relocatable library subroutine, any error messages consist of the calling
program name, a two digit subroutine identifier, and a two character error type indicator. (See
DOS-RTE Relocatable Library Reference Manual, Part Number 24998-90001, for further
details.) The message is printed in the following form:

program name nn error type address
program name is the name of your program

nn is a number in the range 02-14 (decimal) that identifies the subroutine which
generated the error.

error type is OF for integer or floating point overflow,
OR for out of range, or
UN for floating point underflow.

address is the absolute octal address of the memory location where the error occured.

These error messages can occur when ALGOL intrinsics are used or during an exponentiation
operation. Suppose X and Y are real values and I and J are integers. Then the following
relocatable subroutines are called for these computations: X* Y .RTOR (real to real); X*1
.RTOI (real to integer); I*J .ITOI (integer to integer).

ERROR CODE SUBROUTINE CONDITION
02 UN LN X<0
03 UN SQRT X <0
04 UN RTOR X=0and Y<O or
X< 0 and Y#0
X 1 15
05 OR SIN |7T + 2‘>2
05 OR Cos l2<—| > 915
w
06 UN RTOI X=0, I<0
07 OF EXP X > 124
log, e
07 OF RTOR X*LN(X) = 124
08 OF ITOI [= 92
08 UN ITOI I=0,J<0
09 OR TAN X > o

A-5

A-4. INDEX? DIAGNOSTIC MESSAGE

The message INDEX? appears during execution whenever an array is accessed with an invalid
index. For DOS and RTE, the absolute address of the violation is printed and exection
continues. Zero is returned as the value of the array element. For SIO and BCS, the computer
halts with the address in the A-register.

A-5. I/O ERROR MESSAGES

During execution of your program, the following messages may be printed on the console. For
SIO and BCS the computer halts and the code which further defines the error is contained in
the A-register. For DOS and RTE, the error message is printed in a form similar to the
Relocatable Library messages.

ERROR CODE EXPLANATION AND ACTION

*EQR Unit Number SIO only. Equipment error: end of input tape or tape
supply low on tape punch. B-Register contains the
status word of the equipment table entry. Place the
next tape into the input device or load a new reel of
tape. Press RUN.

FMT ERR 1 FORMAT specification error:

a. wor d field does not contain digits.
b. No decimal point after w field.
c. w—d = 4 for E specification.

Fix the error in your source code and compile your
program again.

FMT ERR 2 FORMAT specifications are nested more than one
level deep or FORMAT declaration contains un-
balanced parentheses. Fix the error in your source
code and recompile your program.

FMT ERR 3 FORMAT declaration contains an illegal character
or a repetition factor of zero or specifies more char-
acters than possible for the device. Fix the error in
your source code and recompile your program.

FMT ERR 4 Illegal character read in fixed field input or number
not right-justified in field. Check your data.

FMT ERR 5 An input number has an illegal form (such as two
E’s, two decimal points, two signs, etc.). Check your
data.

A-6

HP ALGOL BNF SYNTAX

This appendix contains a precise definition of HP ALGOL in the formal metalanguage derived
from the Backus-Naur Form (BNF) of syntax definition. The BNF notation consists of “produc-
tions” or syntax equations, each of which is in the following form:

< syntactic entity> ::= <syntactic expression>

This can be read as “the entity on the left is composed of the ordered collection of one or more of
the expressions on the right.”

If the entity has more than one expression, they are separated by a vertical bar. These
expressions represent choices for any given expansion of the entity.

The bold face characters are the “terminal” symbols; the character itself appears in the entity.
The productions are listed in a “bottom-up” fashion, that is, the simplest elements of the
language are listed first, then more complex elements are defined in terms of the simpler

elements. If you are more familiar with a “top-down” description, read the definitions starting
with the last one and work back to the first one.

Basic Symbols

<empty> ::= the null string of symbols

<character> ::= any single character

<letter> ::==A|B|C/DE|FIG/H|IJ|IKILIM|IN|O|P|Q|R|S|T|U|V|W X|Y|Z
<octal digit> ::= 0/1/2/3/4/5/6/7

<digit> ::= <octal digit>|8/9

<logical constant> ::= TRUE | FALSE

Identifiers

<identifier> ::= <letter>|<identifier><letter>|<identifier><digit>

Numbers

<unsigned integer> ::= <digit>|<unsigned integer><digit>

<integer> ::= <unsigned integer>|+<unsigned integer>|—<unsigned integer>

<octal integer> ::= @<octal digit>|<octal integer><octal digit>

B-1

<ASCII constant> ::= '""<character>""|"" <character>< character>""

< equate identifier> ::= <identifier>

< decimal fraction> ::= .<unsigned integer>

<exponent part> ::= ‘ <integer>

<decimal number> ::= <unsigned integer>|<unsigned integer> |

<decimal fraction>|<unsigned integer><decimal fraction>

<unsigned number> ::= <decimal number>|<exponent part>|
< decimal number>< exponent part>

<number> ::= <unsigned number>|<octal integer>|<ASCII constant>|
<logical constant>|<equate identifier>

<signed number> ::= <number>|+<number>|—<number>

Variables

<variable identifier> ::= <identifier>

<simple variable> ::= <variable identifier>

< subscript expression> ::= <expression>

< subscript list> ::= < subscript expression>|< subscript list>,< subscript expression>
<array identifier> ::= <identifier>

< subscripted variable> ::= <array identifier>[< subscript list>]

<variable> ::= <simple variable>|< subscripted variable>

Function Designators

< procedure identifier> ::= <identifier>

<actual parameter> ::= <expression>|<identifier>

<actual parameter list> ::= <actual parameter>|<actual parameter list>,<actual parameter>
<actual parameter part> ::= <empty>|(<actual parameter list>)

<function designator> ::= <procedure identifier>< actual parameter part>

Arithmetic Expressions
<adding operator> ::= + | —

<multiplying operator> ::= * | / | \ | MOD

B-2

<math intrinsic> ::= ABS | SIGN | SQRT | SIN | COS | ARCTAN | TANH | LN | EXP |
ENTIER | ROTATE | TAN

<intrinsic> ::= KEYS |<math intrinsic>< primary>

<primary> ::= <number>|<variable>|<function designator>|(<expression>) <intrinsic>

<factor> :i= < primary>|<factor>* <primary>
<term> ::= <factor>|<term><multiplying operator><factor>

<simple expression> = <term>|<adding operator><term>|
<simple expression>< adding operator><term>

<relational operator> 1= < | <= | = | >=| > | #

<relation> 1= <simple expression>|
< simple expression> < relational operator>< simple expression>

<denial> ::= <relation>] NOT <denial>

<conjunction> ::= <denial>|<conjunction> AND <denial>

<disjunction> ::= <conjunction>|<disjuction> OR <conjunction>

<if clause> ::= IF <expression> THEN

<expression> ::= <disjunction>|<if clause><simple expression> ELSE <expression>|

(< variable>< assignment operator>< expression>)

Designational Expression

<label> ::= <identifier>
<switch identifier> ::= <identifier>
< designational expression> ::= <label>|<switch identifier>[<expression>]

Format Declarations

<format identifier> ::= <identifier>
<repeat count> ::= <unsigned integer>
<field width> ::= <unsigned integer>
<fraction width> ::= <unsigned integer>
< scale factor> ::= <unsigned integer>

B-3

<basic real element> ::= E<field width>.<fraction width>|
F<field width>.<fraction width>| G<field width>.<fraction width>

<real element> ::= <basic real element>|<repeat count><basic real element>|
<scale factor>P<basic real element>|
< scale factor>P<repeat count><basic real element>

<basic integer element> ::= I<field width>| L<field width>|O<field width>|
K<field width>| @< field width> | A<field width>|R<field width>| X

<integer element> ::= <basic integer element>|<repeat count><basic integer element>
<character string> ::= <character>|<character string><character>
<string element> ::= <field width>H< character string>|

'* <character string (not containing **)>""
<element separator> =, | /

<format element> ::= <real element>|<integer element>|<string element>|
(<format list>) <repeat factor>(<format list>)|/ |<repeat factor>/

<format list> ::= <format element>|<format list><element separator><format element>
<format segment> ::= <format identifier> (<format list>)
<format declaration> ::= FORMAT <format segment>|

<format declaration> ,<format segment>
Procedure Declarations
<formal parameter> ::= <identifier>
<formal parameter list> ::= <formal parameter>|<formal parameter list>,<formal parameter>
<formal parameter part> ::= <empty>|(<formal parameter list>)
<identifier list> ::= <identifier>|<identifier list>,<identifier>
<value part> = <empty>| VALUE <identifier list>;

<specifier> ::= <type>| ARRAY | <type> ARRAY | LABEL | SWITCH |
PROCEDURE |<type> PROCEDURE | FORMAT | INPUT | OUTPUT

< specification part> ::= <empty>|<specifier><identifier list>;
< specification part>< specifier><identifier list>;

< procedure heading> ::= <procedure identifier><formal parameter part>;
<value part>< specification part>

< procedure body> ::= <statement>| CODE

B-4

< procedure declaration> ::= PROCEDURE < procedure heading>< procedure body>|
<type> PROCEDURE <procedure heading>< procedure body>

Declarations
<integer type> ::= INTEGER | BOOLEAN

<type> ::= REAL |<integer type>

<initialized identifier> ::= <identifier><assignment operator><signed number>
<simple variable declaration> ::= <identifier>|<initialized identifier>
<type declaration> ::= <type><simple variable declaration>|

<type declaration>,< simple variable declaration>

<lower bound> ::= <signed number>

<upper bound> ::= <signed number>

<bouhd pair> ::= <lower bound>:<upper bound>

<bound pair list> ::= <bound pair>|<bound pair list>,<bound pair>

<array identifier list> ::= <array identifier>| <array identifier list>,<array identifier>
<array segment> ::= <array identifier list>[<bound pair list>]

<simple array list> ::= <array segment>| <simple array list>,<array segment>
<constant list> ::= <signed number>|<constant list>,<signed number>

<array list> ::= <simple array list>| <simple array list>< assignment operator> < constant list>

<array declaration> ::= ARRAY <array list>|<type> ARRAY <array list>
<label declaration> ::= LABEL <label>|<label declaration>,<label>
<switch declaration> ::= SWITCH <switch identifier>< assignment operator><label>|

< switch declaration>,< label>

<equate declaration> ::= EQUATE <initialized identifier>|
< equate declaration>,< initialized identifier>

<input identifier> ::= <identifier>

<input list element> ::= <variable>|<input identifier>|
<for clause><input list element>|[<input list>]

<input list> ::= <input list element>|<input list>,<input list element>

<input segment> ::= <input identifier> (<input list>)

<input declaration> ::= INPUT <input segment>| <input declaration>,<input segment>
<output identifier> ::= <identifier>

<output list element> ::= <expression>|<output identifier>|
<for clause><output list element>|[<output list>]

<output list> ::= <output list element>| <output list>,<output list element>
<output segment> ::= <output identifier> (<output list>)
<output declaration> ::= OUTPUT <output segment>|

< output declaration>,<output segment>
<declaration> ::= <type declaration>|<array declaration>| <label declaration>|
<switch declaration>|<equate declaration>| <input declaration>|
<output declaration>|<format declaration>| <procedure declaration>
Basic Statements
<go to> = GO TO | GO
< go to statement> ::= <go to><designational expression>
<dummy statement> ::= <empty>
< procedure statement> ::= <procedure identifier><actual parameter part>
<pause statement> ::= PAUSE

<do statement> ::= DO <statement> UNTIL <expression>

<case head> ::= CASE <expression> BEGIN < statement>

<case body> ::= <case head>|<case body> ;< statement>
<case statement> ::= <case body> END

<basic statement> ::= <go to statement>|<dummy statement>| <procedure statement>|
<pause statement>|<do statement>| <case statement>

Assignment Statements

< assignment operator> 1= « | =

<left part> ::= <variable><assignment operator>

<left part list> 1= <left part>|<left part list><left part>

<assignment statement> ::= <left part list>< expression>

I/O Statements
<unit> 1= <expression>

<mag tape command> ::

ENDFILE | REWIND | UNLOAD | SPACE | BACKSPACE

<mag tape statement> ::= <mag tape command><unit>
<free—field part> 1= *

<inline format> ::= #(<format list>)

<output format part> ::= <format identifier>|<inline format>

<format part> 1= <free field part>|<output format part>

<read statement> ::= READ(<unit>,<format part>,<input list>)|
READ(< unit>,<format part>) | READ(<unit>,<input list>)

<write statement> ::= WRITE(< unit>,<output format part>,<output list>)|
WRITE(< unit>,< output format part>)] WRITE(< unit>,<output list>)

<I/O statement> ::= <mag tape statement>|<read statement>| <write statement>
Compound Statements, Blocks, and Programs
< step specification> ::= STEP <expression> UNTIL | TO

<for clause> ::= FOR <variable>< assignment operator><expression>
< step specification><expression> DO

<while clause> ::= WHILE <expression> DO

<closed statement> ::= <basic statement>|<assignment statement>|
<I/O statement>|<while clause><closed statement>|
<if clause><closed statement> ELSE <closed statement> |
<for clause><closed statement>|<compound statement>|
<block>|<label>:<closed statement>

<open statement> ::= <if clause><statement>|
<if clause><closed statement> ELSE <open statement>|
<for clause><open statement>|<while clause><open statement>|
<label>:<open statement>

<statement> ::= <open statement>|<closed statement>

< block head> ::

BEGIN <declaration>;/<block head>< declaration>;

<block body> ::

<block head>< statement>|<block body> ;< statement>
<block> ::= <blockbody> END
<compound head> ::= BEGIN <statement>|<compound head> ;< statement>

<compound statement> ::= <compound head> END

<program> ::= <procedure declaration>; <block>;<compound statement>;

B-8

HP CHARACTER SET

Effect of Control key * L
7 TN

|<— 000-0378 —» 040-0778 —>|<— 100-1378 —s>|4—140-1 77B—>|
0 0 1

b”’fit;s:——- o | % o | o | o | Mo | My

BITS w 0 1 2 3 4 5 6 7
bg bz by by| ROW §
olo|o]o 0 NUL | DLE sP 0 @ P ' P
ololo]1 1 SOH | DC1 ! 1 A Q a q
ojo|1]o0 2 STX DC2 " 2 B R b r
ojo|1]1 3 ETX DC3 # 3 c S c s
o|1|o]o 4 EOT | DC4 $ 4 D T d t
o|1]|0]1 5 ENQ | NAK % 5 E u e u
o{1/1]0 6 ACK | SYN & 6 F v f v
of1]1]1 7 BEL ETB ! 7 G w q w
1]/o]o]o0 8 BS CAN (8 H X h x
1/0[0]1 9 HT EM) 9 I Y i y
1]ol1]o0 10 LF sus . J z i 2
1]o]1]1 1 vT ESC + ; K [K {
1/1]0/|0 12 FF FS , < L \ I !
1/1]of1 13 CR GS — = M] m }
1{1)1]0 14 SO RS . > N A n ~
AERERE 15 S| us / ? o _ o DEL
N——
32 CONTROL .
upsines
<—— 64 CHARACTER SET ——|
<—— 96 CHARACTER SET >
- 128 CHARACTER SET >

EXAMPLE: The representation for the character “K’’ (column 4, row 11) is.

b7 bg bs by b3 by by
BINARY 1 001 0 1 1
N o —r—

ocTAL 1 1 3

* Depressing the Control key while typing an upper case letter produces
the corresponding control code on most terminals. For example,
Control-H is a backspace.
9206- 1A

¢ O

HEWLETT-PACKARD CHARACTER SET FOR COMPUTER SYSTEMS

This table shows HP's implementatiori of ANS X3.4-1968 (USASCII) and ANS X3.32-1973. Some devices may substitute
alternate characters from those shown in this chart (for example, Line Drawing Set or Scandanavian font) Consult the manual

for your device.

The left and right byte columns show the octal patterns in a 16 bit word when the character occupies bits 8 to 14 (left byte) or O
to 6 (right byte) and the rest of the bits are zero. To find the pattern of two characters in the same word, add the two values. For
example, "AB" produces the octal pattern 040502. (The parity bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are character codes.

Octal Values Octal Values
Deci Mnemonic | Graphic' Meaning Decil Character Meaning
Value Left Byte Right Byte Value Left Byte Right Byte
0 000000 000000 NUL N, Null 32 020000 000040 Space, Blank
1 000400 000001 SOH R Start of Heading 33 020400 000041 ! Exclamation Point
2 001000 000002 STX S Start of Text 34 021000 000042 ” Quotation Mark
3 001400 000003 ETX & End of Text 35 021400 000043 # Number Sign, Pound Sign
4 002000 000004 EOT & End of Transmission 36 022000 000044 $ Dollar Sign
5 002400 000005 ENQ & Enquiry 37 022400 000045 % Percent
6 003000 000006 ACK A Acknowledge 38 023000 000046 & Ampersand, And Sign
7 003400 000007 BEL Ja\ Bell, Attention Signal 39 023400 000047 4 Apostrophe, Acute Accent
8 004000 000010 BS & Backspace 40 024000 000050 (Left (opening) Parenthesis
9 004400 000011 HT He Horizontal Tabulation a4 024400 000051) Right (closing) Parenthesis
10 005000 000012 LF Le Line Feed 42 025000 000052 * Asterisk, Star
in! 005400 000013 VT v Vertical Tabulation 43 025400 000053 + Plus
12 006000 000014 FF Fe Form Feed 44 026000 000054 , Comma, Cedilla
13 006400 000015 CR S Carriage Return 45 026400 000055 - Hyphen, Minus, Dash
14 007000 000016 SO % Shift Out | Atternate 46 027000 000056 . Period, Decimal Point
15 007400 000017 SI 5, Shift In Character Set 47 027400 000057 / Slash, Slant
16 010000 000020 DLE c_ Data Link Escape 48 030000 000060 0
17 010400 000021 DC1 Dy Device Control 1 (X-ON) 49 030400 000061 1
18 011000 000022 DC2 02 Device Control 2 (TAPE) 50 031000 000062 2
19 011400 000023 DC3 Dy Device Control 3 (X-OFF) 51 031400 000063 3
20 012000 000024 DC4 0, Device Control 4 (TAPE) 52 032000 000064 4
21 012400 000025 NAK Ne Negative Acknowledge 53 032400 000065 5 Digits, Numbers
22 013000 000026 SYN £V Synchronous Idle 54 033000 000066 6
23 013400 000027 ETB Eg End of Transmission Block 55 033400 000067 7
24 014000 000030 CAN S Cancel 56 034000 000070 8
25 014400 000031 EM 9 End of Medium 57 034400 000071 9
26 015000 000032 SUB ES) Substitute 58 035000 000072 Colon
27 015400 000033 ESC Ec Escape? 59 035400 000073 H Semicolon
28 016000 000034 FS Fg File Separator 60 036000 000074 < Less Than
29 016400 000035 GS Gy Group Separator 61 036400 000075 = Equals
30 017000 000036 RS 5 Record Separator 62 037000 000076 > Greater Than
31 017400 000037 us W Unit Separator 63 037400 000077 ? Question Mark
127 077400 000177 DEL] Delete, Rubout?

9206- 1B

70/ €0

Octal Values Octal Values
Decimal Character Meaning Decimal Character Meaning
Value Left Byte Right Byte Value Left Byte Right Byte
64 040000 000100 @ Commercial At 96 060000 000140 * Grave Accent®
65 040400 000101 A 97 060400 000141 a
66 041000 000102 B 98 061000 000142 b
67 041400 000103 C 99 061400 000143 [}
68 042000 000104 D 100 062000 000144 d
69 042400 000105 E 101 062400 000145 e
70 043000 000106 F 102 063000 000146 f
71 043400 000107 G 103 063400 000147 g
72 044000 000110 H 104 064000 000150 h
73 044400 000111 [105 064400 000151 i
74 045000 000112 J 106 065000 000152 J
75 045400 000113 K 107 065400 000153 K
76 046000 000114 L 108 066000 000154 |
77 046400 000115 M 109 066400 000155 m
78 047000 000116 N Upper Case Alphabet, 110 067000 000156 n Lower Case Letters
79 047400 000117 0 Capital Letters 11 067400 000157 o
80 050000 000120 P 12 070000 000160
81 050400 000121 Q 113 070400 000161 q
82 051000 000122 R 114 071000 000162 r
83 051400 000123 S 115 071400 000163 s
84 052000 000124 T 116 072000 000164 t
85 052400 000125 U 117 072400 000165 u
86 053000 000126 \% 118 073000 000166 v
87 053400 000127 W 119 073400 000167 w
88 054000 000130 X 120 074000 000170 x
89 054400 000131 Y 121 074400 000171 y
90 055000 000132 z 122 075000 000172 z
91 055400 000133 [Left (opening) Bracket 123 075400 000173 { Left (opening) Brace®
92 056000 000134 AN Backslash, Reverse Slant 124 076000 000174 ' Vertical Line®
93 056400 000135] Right (closing) Bracket 125 076400 000175 3 Right (closing) Brace®
94 057000 000136 At Caret, Circumflex: Up Arrow? 126 077000 000176 ~ Tilde, Overline®
95 057400 000137 - Underline: Back Arrow*
9206- 1C Notes: 'This is the standard display representation. The software and hardware in your system determine if the control code is

displayed. executed, or ignored. Some devices display all control codes as " ", "@". or space

2Escape is the first character of a special control sequence. For example. ESC followed by "J" clears the display on a 2640
terminal

3Delete may be displayed as "__". "@", or space
“Normally, the caret and underline are displayed. Some devices substitute the up arrow and back arrow

5Some devices upshift lower case letters and symbols (N through ~) to the corresponding upper case character (@ through
A) For example, the left brace would be converted to a left bracket

INDEX

ABREG Routine, 7-6

ABS Intrinsic, 2-11
Algorithm, 1-1

ALGOL 60, 1-3

ARCTAN Intrinsic, 2-11
Arithmetic Expressions, 2-7

Arithmetic Operators Precedence, 2-8, 2-9

ARRAY Declaration, 2-4
Arrays, 5-5, 5-9, 6-3

ASCII Constants, 2-2, 4-6, 7-5, C-1

Assembly Language, 5-7
Assigned Expressions, 2-11

Assignment Statement, 3-1, B-6

B

BACKSPACE Statement, 4-15

BEGIN, 1-1, 3-10, 6-2

Block, 1-1, 2-3, 3-2, 3-10, B-7

BNF Syntax, B-1

Boolean
Declaration, 2-4
Expressions, 2-9
Values, 2-2, 2-9

Carriage Control, 4-9
CASE Statement, 3-4
Character Set, C-1
Comments, 2-12

Compound Statement, 3-10, B-7
Conditional Expressions, 2-10

Constants, 2-1
COS Intrinsic, 2-11, A-5

Decimal Constants, 2-1

Declarations, 2-3, B-5
ARRAY, 2-4
BOOLEAN, 2-4
EQUATE, 2-3
FORMAT, 4-2
INPUT, 4-1
INTEGER, 2-4
LABEL, 2-5
OUTPUT, 4-2
PROCEDURE, 5-2
REAL, 2-4
SWITCH, 2-6

DO Statement, 3-7, A-1

Dummy Statement, 3-10

E

Eject Page, 4-9
END, 1-1, 2-12, 3-1, 3-10, 6-2
ENDFILE Statement, 4-15
ENTIER Intrinsic, 2-11
EQUATE Declaration, 2-3
Error Messages

Compiler, A-1

Run-Time, A-5
Example Programs, 1-2, 1-3, 2-12, 4-11, 5-2, 5-3, 5-6,

5-10, 7-1
EXEC Routine, 7-6
EXP Intrinsic, 2-11, A-5
Exponentiation, 2-8, A-5
Expressions

Arithmetic, 2-7

Assigned, 2-11

Boolean, 2-9

Conditional, 2-10

Factorial, 1-1, 7-1
FALSE, 2-2, 2-9, 2-12, 4-7
FOR Elements (I/0O Lists), 4-1
FOR Statement, 3-8
FORMAT Declaration, 4-2, 4-10, B-3
FORMAT Specifications

A, 4-5

E, 4-3

F, 4-3

G, 44

H (Hollerith), 4-7

I, 4-5

K, 4-5

L, 4-6

0, 4-5

P, 4-4

R, 4-6

Repeat Count, 4-8

Scale Factor, 4-4

Separators, 4-8

String, 4-7

X, 4-8

@, 4-5
Formatted I/0, 4-10, 4-11
FORTRAN, 4-7, 8-1

Procedures, 5-5
Free Field Input, 4-9
Function Procedures, 5-4, B-2

G

GO TO Statement, 2-6, 3-2

I-1

H REWIND Statement, 4-15
RMPAR Routine, 7-6

HPAL Control Statement, 6-1 ROTATE Intrinsic, 2-11
I
S
Identifiers, 2-2, B-1
In-Line FORMAT, 4-10 Scale Factpr, .2-1, 4-3, 4-4
IF Statement, 3-3 SIGN InFru?sw, 2-11
INDEX? Error, 2-7, 5-9, A-6 SIN Imgor:isw’fi”’ A5
INPUT Declaration, 4-1 ource £ode, -
ec aratlont SPACE Statement, 4-15
INTEGER Declaration, 2-4 SORT Intrinsic. 2-11. A-5
Integer Numbers, 2-1 Q ntrinsic, 2-11, A-
Intrinsic Functions, 2-11, 7-1 Staterr}ents
Assignment, 3-1
K BACKSPACE, 4-15
Blocks, 1-1, 2-3, 3-2, 3-10, B-7
KEYS Intrinsic, 2-11 CASE, 3-4
Compound, 3-10, B-7
L DO, 3-7, A-1
Dummy, 3-10
Labels, 2-5, 3-1, 3-2, 3-10 ENDFILE, 4-15
LN Intrinsic, 2-11, A-5 FOR, 3-8
Local Variables, 3-11 GO TO, 2-6, 3-2
HPAL (Control), 6-1
M IF, 3-3 .
Magnetic Tape, 4-15
. PAUSE, 3-9
M tic T Stat ts, 4-15 ’
agnetic Tape Statements READ, 4-10
o) REWIND, 4-15
SPACE, 4-15
Object Code, 1-1 UNLOAD, 4-15
Octal Constants, 2-2 WHILE, 3-6
OUTPUT Declaration, 4-2 WRITE, 4-10
Subscripts, 2-4, 2-6
P Switches, 2-6, 3-2
Parameters T
Actual, 5-1, 5-3 L.
Formal, 5-1, 5-2 TAN Intrlnhsm,. 2-11, A-5
Reference, 5-1 TANH Intrinsic, 2-11
Value, 5-1, 5-3, 5-6 TRUE, 2-2, 2-9, 2-12, 4-7
PAUSE Statement, 3-9
PI, 2-12
Primaries, 2-7 Y
Procedures, 5-1)
Calling, 5-3 Unformatted (Binary) I/O, 4-10, 4-11
CODE, 5-4 UNLOAD Statement, 4-15
Declaration, 5-2, B-4
Function, 5-4, B-2 Vv
Separately Compiled, 5-4
Variables, 2-6, B-1
R
READ Statement, 4-10 w
REAL Declaration, 2-4
Real Numbers, 2-1 WHILE Statement, 3-6
Reserved Identifiers, 2-3 WRITE Statement, 4-10

I-2

READER COMMENT SHEET
02116-9072 Nov 1976
HP ALGOL

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Manager, Technical Publications
Hewlett-Packard Company

Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

HEWLETT [hp; PACKARD

SALES & SERVICE OFFICES

AFRICA, ASIA, AUSTRALIA

ANGOLA

Telectra

Emoresa Técnica de
Equipamentos
Eléctricos, S.A.R.L

R. Barbosa Rodnaues 42-1°0T.

Caixa Postal, 6487

Luanda

Tel: 35515/6

Cable: TELECTRA Luanda

AUSTRALIA

Hewilett-Packard Australia

y. Ltd.

31-41 Joseph Street
Blackburn, Victoria 3130
P.0. Box 36
Doncaster East, Victoria 3109
Tel: 89-6351
Telex: 31-024
Cable: HEWPARD Melbourne
Hewlett-Packard Australia

Pty Ltd
31 Bridge Street
Pymble
New South Wales, 2073
Tel: 449-6566
Telex: 21561
Cable: HEWPARD Sydney
Hewilett-Packard Australia

lsg'ﬁreenmll Road
Parkside. S.A.. 5063

Tel: 272-5911

Telex: 82536 ADEL

Cable: HEWPARD ADELAID

Hewlm Packard Australia

141 urlmg Hnghway
Nedlands, W.A. 6009
Tel: 86-5455

Telex. 93859 PERTH
Cable: HEWPARD PERTH

Hewlett-Packard Australia
121 o!longong S(reel

HONG KONG

Schmidt & Co (Hong Kong) Ltd
P.0. Box

cunnakgm Centre

39th Floor

Connaught Road. Central

long Kong
Tel: H-255291-5
Telex: 74766 SCHMC HX
Cable: SCHMIDTCO Hong Kong

INDIA

Blue Star Ltd
Kasturi Buildings
Jamshedji Tata Rd
Bombay 400 020
Tel: 29 50 21
Telex: 001-2156
Cable BLUEFROST

Blue Star Ltd
Saha

414/2 Vir Savarkar Marg
Prabhadevi

Bombay 400 025
Tel: 45 78 87
Telex: 011-4093
Cable: FROSTBLUE
Blue Star Ltd
Band Box House
Prabhadevi

T

Telex: 011-3751
Cable: BLUESTAR
Blue Star Ltd

7 Hare Street

P.0. Box 506
Calcutta 700 001
Tel: 23-0131

Telex: 021-7655
Cable: BLUESTAR
Blue Star Ltd

7th & 8th Floor
Bhandari House

91 Nehru Place
New Delhi 110024
Tel: 634770 & 635166
Telex: 031-2463
Cable: BLUESTAR
Blue Star Ltd.

11/11A Magarath Road
560 025

Fyshwick. A Blue Star House
Tel: 95-2733

Telex: 62650 Canberra

Cable D Ci Tel: 55668

Hewlett Packard Australia
Ld

5th Floor

Teachers Union Building
495-499 Boundary Street
Sprin, Hlll 4000 Queensland

Tel: 229-

Cable: HEWPARD Brisbane

GUAM
Medical/Pocket Calculators Only
Guam Medical Supply. Inc
Jay Ease Bmldmo. Room 210
P.0. Box 8

96911

Tamunis
Tel
Cable: EARMED Guam

Telex: 043-430

Cable: BLUESTAR

Blue Star Ltd

Meeakshi Mandiran
xxx/1678 Mahalma Gandhi Rd
Cochin 682 016

Tel: 32059 32161 32282
Telex: 0885-514

Cable: BLUESTAR

Blue Star Ltd

1-1-11711

Sarojini Devi Road
Secunderabad 500 003
Tel: 70126, 70127

Cable: BLUEFROST

Telex: 015-459

Blue Star Ltd
2/34 Kodambakkam High Road
Madras 600034

Cable: BLUESTAR

INDONESIA

BERCA Indonesia P.T
P.0. Box 496;Jkt
JLNeAbdul Muis 62

Jakarta

Tel: 40369. 49886.49255.356038
JKT 42895

Cable: BERCACON

BERCA Indonesia P t

63 JL. Raya Gubeng

ISRAEL

Electronics & Engineering Div.
of Motorola Israel Ltd.

17, Kremenetski Street

P.0. Box 25016

Tel-Aviv

Tel: 38973

Telex: 33569

Cable: BASTEL Tel-Aviv

JAPAN
Yokogawa-Hewlett-Packard Ltd
Ohashi Building

59-1 Yoyogi 1-Chome
Shibuya-ku, Tokyo 151

Tel 03 370-221

Telex: 232- 2024VHP MARKET

TOK 23-724
Cable: YHPMARKET
Yokogawa-| Hewlen Packard Ltd.
Chuo Bidg..

4-20, lehmaka |ma 5 -chome

Yodogawa-ku, Osaka-shi

Osaka 532

Tel: 06-304-6021

Yokogawa-Hewlett-Packard Ltd

Nakamo Building

24 Kami Sasajima-cho

Nakamura-ku, Nagoya . 450

Tel: (052) 571-5171

Yokogawa-Hewlett-Packard Ltd

Tanigawa Building

2-24-1 Tsuruya-cho

Kanagawa-ku

Yokohama, 221

Tel: 045-312-1252

Telex: 382-3204 YHP YOK

Yokogawa-Hewlett-Packard Ltd

Mito Mitsu Building

105, Chome-1,5an-no-maru

Mito. Ibaragi

Tel:: 0292-25-7470

Yokogawa-Hewilett-Packard Ltd

Inoue Building

3483 sam cho, 1-chome
Kanagawa 243

Tel 0 52 24-0452

Yokogawa-Hewlett-Packard Ltd
Kumagaya Asahi

Hackijuni Building

4th Floor

3-4, Tsukuba

Kumagaya. Saitama 360

Tel 0435. 24-6563

KENYA

Technical Engineering
Services(E.A)Ltd .

P.0. Box 18311

Nairobi

Tel: 557726/556762

Cable: PROTON

Medical Only

International Aeradio(E A)Ltd..
Box 19012

Nairobi Airport

Nairobi

Tel: 336055/56

Telex: 22201/22301
Cable: INTAERIO Nairob:

EA
Samsung Electronics Co.. Ltd
20th FI. Dongbang Bldg. 250. 2-KA
C.P.0. Box 2775
Taepyung-Ro. Chung-Ku
Seoul
Tel (23) 6811
Cable ELEKSTAH Seoul

MALAYSIA

Teknik Mutu Sdn. Bhd.

2 Lorong 13/6A

Section 13

Pelalmq Jaya, Selangor
Tel: 54994/54916

Telex: MA 37605
Protel Engineering
P.0. Box 1917

Lot 259, Satok Road
Kucnmg Sarawak

Canle PROTEL ENG

MOZAMBIQUE

AN. Goncalves. Lta

162. 1 Apt 14 Av. D. Luis
Caixa Postal 107
Lourenco Marques

Tel: 27091, 27114

Telex: 6-203 NEGON Mo
Cable: NEGON

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd
P.0. Box 9443

Courtenay Place
Wellington

Tel: 877-199

Cable: HEWPACK Wellington
Hewilett-Packard (N.Z.) Ltd
Pakuranga Professional Centre
267 Pakuranga Highway

Box 51092

Pakuranga

Tel: 569-651
Cable: HEWPACK.Auckland

Analytical/Medical Only

Medical Supplies N.Z. Ltd
Scientific Division

79 Carlton Gore Rd.. Newmarket
P.0. Box 1234

Auckland

Tel: 75-289

Cable:DENTAL Auckland

Analytical’Medical Only

y%ncal Suonhes NZ Ltd

147-161 Tory Sl

Wellington

Tel: 850-799

Telex: 3858

Cable: DENTAL. Wellington

Analytical:Medical Only

Medical Supplies N.Z. Ltd

P.0. Box 309

239 Stanmore Road

cnrlucnurch

Tel 892-019

Cable: DENTAL, Christchurch

Analytical/Medical Only

Medical Supplies N.Z Ltd

303 Great King Street

PO Box 233

Dunedin

Tel: 88-817

Cable: DENTAL. Dunedin

NIGERIA

The Electronics
Instrumentations Ltd

N6B:770 Oyo Road

Oiuseun House

P.M B. 5402

Ibadan

Tel: 61577

Telex: 31231 TEIL Nigeria

Cable THETEIL Ibadan

The Elec"omcs Instrumenta-
tions L

144 Agege Motor Road. Mushin

P 0 Box 6645

Cahle THETEIL Lagos

PAKISTAN

Mushko & Company. Ltd
Oosman Chambers
Abdullah Hamon Road
Karachi-3

Tel 511027 512927

Cable COOPERATOR Karachi
Mushko & Company. Ltd
38B. Satellite Town
Rawalpindi

Tel: 41924

Cable' FEMUS Rawalpindi

PHILIPPINES

The Online Advanced
Systems Corporation

Rico House

Amorsolo cor. Herrera Str

Legaspi Village. Makati

Melro Mamll

I: 85-3 4-9
Telex 3274 ONLiNE

RHODESIA

Field Technical Sales
450Ke|vm Road North
P

Tel 7052;1 (5 lines)
Telex: RH 4122

SINGAPORE

Hewlett- Packard Singapore
(Pte.)

1150 Depot Road

Alexandra P.0. Box 58

Singapore 4

Tel 375-2355

Telex: HPSG RS 21486

Cable: HEWPACK. Singapore

SOUTH AFRICA
Hewlett- Packam South Africa

(Pty).
Private Ba Wendywood
Sandton, Transvaal 2144
Hewlett-Packard Centre
Daphne Street. Wendywood.
Sandton. Transvaal 2144
Tel: 802- 10408
Telex: 8-478;
Cable: HEWPACK JOHANNESBURG
Service Department
Hewlett-| Packard South Africa
(Pty.). L
P.0. Box 39
Gramley, Sandlon 2018
451 Wynberg Ex\ensnon 3.
Sandton.
Tel: 636-1 8186/9
Telex: 8-2391

Hewlen Packard South Africa
P 0 g

Howard Place Cape Province. 7450

Pine Park Centre. Forest Drive,

Pinelands. Cape Province. 7405

Tel: 53-7955 thu 9

Telex: 57-0006

Service Department

Hewlett-Packard South Africa
(Pty.). Ltd

P.0. Box 37099

Overport. Durban 4067

Tel 88-7478
Telex: 6-7954

TAIWAI

Hewlett-Packard Far East Ltd..
Taiwan Branch

39 Chung Hsiao West Road
Sec. 1. 7th Floor

Taipei

Tel: 3

819
Cable HEWPACK TAIPEI
Hewlett-Packard Far East Ltd
Taiwan Branch
68-2. Chung Cheng 3rd. Road
Knomiun%
Tel: (07) 242318-Kaohsiung
Analytical Only
San Kwang Instruments Co., Ltd..
No. 20. Yung Sui Road

Taipei

Tel: 3715171-4 (5 lines)
Telex: 22894 SANKWANG
Cable: SANKWANG TAIPEI

TANZANIA
Medical Only
Interngtwnal Aeradio (E.A.). Ltd

Tel 21251 Ext 265
Telex: 41030

THAILAND

UNIMESA Co.. Ltd
Elcom Research Building
2538 Sukumvit Ave

Tel ?932357, 3930338
Cable: UNIMESA Bangkok

UGANDA

Medical Only

International Aeradio(E.A.). Ltd..
ox 2577

Kampala

Tel: 54388

Cable: INTAERIO Kampala

ZAMBIA
R J Ttlbu? éZambla) Lt
792

Tel 737
Cable: ARJAYTEE. Lusaka

OTHER AREAS NOT LISTED, CONTACT:

Hewett-Packard Intercontinental
321.‘0 Hillview Ave
Palo Afto, California 94304
Tel: (415) 493-1501
TWX: 910-373-1267
Cable: HEWPACK Palo Alto

I: 646-4513
ALBERTA
Hewlett-Packard (Canada) Ltd
11620A - 168th
EdmontonT5M 3T
Tel: (403) 452-3670
TWX: 610-831-2431
Hewilett-Packard gcamda) Ltd.
210,7220 Fisher St. S.E.
Cal IIX T2H 2H8
Tel ?40) 253-2713
Twx: 610-821-6141

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
837 E. Cordova Street
vancouvur V6A 3

Tel: (604) 254-053

TWX: 610-922- 5059

MANITOBA
Hewlett-Packard (Canada) Ltd.
513 Century St

St. James R3H 0L

Winni

Tet: (2&"786—7581

TWX: 610-671-3531

NOVA SCOTIA
Hewlett- Packard (Canada) Ltd
BDO Windmill R

B 1L1

uth 3
Tel (902) 469-7820
TWX: 610-271-4482 HFX

ONTARIO

Hewlett-Packard (Canada) Ltd
1020 Morrison Or

Ottawa K2H 8K7

Tel: (613) 820-6483

TWX: 610-563-1636

Hewlett-| Packam 1canaoa) Ltd
6877 Goreway D
Mississauga L4V M8

Tel: (416) 678-9430

TWX: 610-492-4246

QUEBEC

Hewlett-Packard (Canada) Ltd
275 Hymus Bivd

Pointe Claire HIR 1G7

Tel: (514) 697-4232

TWX: 610-422-3022

TLX: 05-821521 HPCL

FOR CANADIAN AREAS NOT LISTED:

Contact Hewiett-Packard (Canada)
Ltd. in Mississauga.

CENTRAL AND SOUTH AMERICA

ARGENTIN
Hewilett- Packard Argentina

SA

Av. Leandro N. Alem 822 - 12
1001Buenos Aires

Tel: 31-6063,4,5,6 and 7
Telex: 122443 AR CIGY

Cable: HEWPACK ARG

BOLIVIA

Casa Kavlin S.A.
Calle Potosi’ 1130
P.0. Box 500

La Paz

Tel: 41530,53221

Telex: CWC BX 5298.1TT 3560082
Cable: KAVLIN

BRAZIL
Hewlett-Packard do Brasil
l.e.C. Ltda

Avenida Rio Negro, 980
Alphaville

06400Barueri SP
Tel: 429-3222

Hewlett-Packard do Brasil
l.e.C. Ltda.
Rua Padre Cnaoas 32

Tel' (0612) 22-299%. 22-5621
Cable: HEWPACK Potto Alegre
Hewlett-Packard do Brasil
L.E.C. Ltda.
Rua anuelra Campos, 53
Copacabana
20000-Rio de Janeiro
Tel: 257-80-94-DDD (021)
Telex: 391-212-1905 HEWP-BR
Cable: HEWPACK

Rio de Janeiro

Calcagm y Metcalle Lma
Alameda 580-0f. 8
Casilla 2118

Telex: 3520001 CALMET
Cable: CALMET Santiago

COLOMBIA
Instrumentacidn
Henrik A Langebaek & Kier S.A.
Carrera 7 No. 48-7
Ananado Aéreo 6287
otd, | D E

TeI 69-88-7
Cable: AARIS Bogotd
Telex: 044-400

COSTA RICA

Cientifica Costarricense S.A.
Avenida 2. Calle 5

San Pedro de Montes de Oca
Apartado 10159

San Jose
Tel: 24-38-20, 24-08-19

Telex: 2367 GALGUR CR
Cable: GALGUR

ECUADOR

Calculators Only
Computadoras y Equipos
Electrdnico s

P.0. Box

Elryy Alfaro #1324 3 Piso

Tel 453482
Telex: 02-2113 Sagita Ed
Cable: Sagita-Quito

EL SALVADOR

EXICO
Hewlett-Packard Mexicana.
SA deCV.
Av. Peritérico Sur No. 6501
Tepepan, Xochimilco
Mexico 23. D.F
Tel: 905-676-4600

Hewlett-Packard Mexicana,
SA deCV
Ave "onsmucmn No. 2184

terrey, N.L
Tel. 4&71-32. 48-71-84
Telex: 038-410

NICARAGUA
Roberto Terdn G.
Apartado Postal 689
Edificio Terdn

yP
Electronico de el Salvador

Bulevar de los Heroes 11-48

San Salvador

Tel: 252787

GUATEMALA

IPESA

Avenida La Reforma 3-48.
Zona 9

Guatemala City

Tel 63627, 64786

Telex: 4192 Teletro Gu

Tel: 25114, 23412,23454
Cable: ROTERAN Managua

PANAMA

Electrdnico Balboa, S.A.
P.0. Box 4929

Calle Samuel Lewis
Cuidad de Panama
Tel: 64-2700

Telex: 3483103 Curunda,

Canal Zone
Cable: ELECTRON Panama

PERU

Compaila Eleclm Meduca SA
Los Flamencos 1

San Isidro Casqlla 1030
Lima 1

Tel: 41-4;

Cable ELMED Lima

PUERTO RICO
Hewlett-Packard Inter-Americas
Puerto Ru:o Branch Office
Calle 2

No 203 Urb Country Club
Carolina 00924

Tel: (809) 762-7255

Telex: 345 0514

URUGUAY

Pablo Ferrando S A
Comercial e Industrial
Avenida ltalia 2877
Casilla de Correo 370
Montevideo

Tel: 40-3102
Cable: RADIUM Montevideo

VENEZUELA
Hewlett-Packard de Venezuela

CA

P.0. Box 50933

Caracas 105

Los Ruices Norte

3a Transversal

Edificio Segre
Caracas 1

Tel: 35-00- 11 (20 lines)
Telex: 25146 HEWPACK
Cable: HEWPACK Caracas

FOR AREAS NOT LISTED, CONTACT:

Hewlett-Packard
Inter-Americas

3200 Hillview Ave

Palo Alto, California 94304
Tel: (415) 493-1501

TWX: 910-373-1260

Cable: HEWPACK Palo Alto
Telex: 034-8300. 034-8493

EUROPE, NORTH AFRICA AND MIDDLE EAST

AUSTRIA
Hewlett-Packard Ges.m b H
Handelskai 52

PO box7

A-1205 Vienna

Tel: (0222) 351621 to 27
cable: HEWPAK Vienna
Telex 75923 hewpak a

BELGIUM
Hewlett-Packard Benelux
SANV

Avenue de Col-Vert, 1
(Groenkraaglaan)

B-1170 Brussels

Tel. (02) 672 22 40
Cable: PALOBEN Brussels
Telex: 23 494 paloben bru

CYPRUS

Kypronics

19. Gregorios & Xenopoulos Rd
P.0 Box 1152

cY- Nncosna

Tel 45628

Cable KVPRONICS PANDEHIS
Telex 3018

CZECHOSLOVAKIA
Vyvojova a Provozni Zakiadna

Vyzkumnych Ustavu v Bechovicich
CSSR-25097 Bechovice u Prahy

Tel: 89 93 41
Telex: 121333

Institute of Medical Bionics

Vyskumny Ustav Lekarske| Bioniky

Jedlova 6

CS-88346 Bratislava-Kramare

Tel: 44-551/45-541

DDR
Entwicklungslabor der TU Dresden

Fnrschungsmsnmt Meinsberg
DDR-730!

Waldheim/Meinsberg
Tel: 37 667
Telex 112145
Export Contact AG Zuerich
Guenther Forgber
Schlegelstrasse 15
1040 Berlin
Tel 42-74-12
Telex: 111889

DENMARK
Hewlett-packard A/S
Datavej 52

DK-3460 Birkerod
Tel (02) 81 66 40
Cable: HEWPACK AS
Telex: 37409 hpas dk
Hewlett-Packard A/S
Naverve| 1

DK-8600 Silkeborg
Tel' (06) 82 71 66
Telex: 37409 hpas dk
Cable: HEWPACK AS

FINLAND

Hewlett-Packard OY
Nahkahousuntie 5

P.0. Box 6

SF-00211 Helsinki 21

Tel' (90) 6923031

Cable: HEWPACKOQY Helsinki
Telex: 12-1563 HEWPA SF

FRANCE
Hewlett-Packard France
Quartier de Courtaboeuf
Boite Postale No_ 6

Cable: HEWPACK Orsay
Telex: 600048
Hewlett-Packard France
Agency Régionale

Le Saquin’
Chemin des Mouilles
B.P 162

F-69130 Ecully

Tel: (78) 33 81 25.
Cable HEWPACK Eculy
Telex: 3106 1

Hewlett-Packard France
Agence Régionale

Péricentre de la Cépiére
Chemin de la Cépiére, 20
F-31300 Toulouse-Le Mirail
Tel (61) 40 11 12

Cable HEWPACK 51957

Telex: 510957

Hewlett-Packard France
Agence Régionale
Aéroport principal de
Marseille-Marignane
F-13721Marignane

Tel (91) 89 12 36

Cable: HEWPACK MARGN
Telex: 410770
Hewlett-Packard France
Agence Régionale

63, Avenue de Rochester
BP 1124

F-35014 Rennes Cédex
Tel (99) 36

Cable HEWPACK 74912
Telex 740912

Hewlett-Packard France

Agence Régionale

74, Alige de la Robertsau

F~67000 Strasbourg
Tel- (88) 35 23 2021

Telex: 89014

Cable: HEWPACK STRBG

Hewlett-Packard France
Agence Régionale
Centre Vauban
201 rue Colbert

Entrée A2
F-59000 Lille
Tel (20) 51 44 14
Telex: 820744
Hewilett-Packard France
Centre d' Affaires Paris-Nord
Batiment Ampére
Rue de La Commune de Paris
B P 300

F-93153 Le Blanc Mesnil Cédex

Tel (01) 931 88 50

GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Bernerstrasse 117
Postfach 560 140

Cable HEWPACKSA Frankfurt
Tel: (0611) 50 04-

Cable HEWPACKSA Frankfurt
Telex 04 13249 hpffmd
Hewlett-Packard GmbH
Technisches Buero Boblingen
Herrenbergerstrasse 110

D-7030 Bobhn?en Wiirttemberg

Tel: (07031) 66

Cable: HEPAK Boblingen
Telex: 07265739 bbn
Hewlett-Packard GmbH
Technisches Buero Dusseldort
Emanuel-Leutze-Str 1 lSeestern)
D-4000 Duzuldoﬂ

Tel: (0211) 5971

Telex: 085/86 533 hpdd d
Hewlett-Packard GmbH
Technisches Buero Hamburg
Wendenstrasse 23

0-2000 Hambur

Tel: (040) 24 13 93

Cable: HEWPACKSA Hamburg
Telex. 21 63 032 hphh d
Hewlett-Packard GmbH
Technisches Buero Hannover
Am Grossmarkt 6

D-3000 Hannover 91

Tel: (0511) 46 60 01

Telex: 092 3259

Hewlett-Packard GmbH
Werk Groetzingen
Ohmstrasse 6

D-7500 Karlsruke 41

Tel (0721) 69 40 06

Telex: 07-825707
Hewlett-Packard GmbH
Technisches Buero Nuremberg
Neumeyer Str

D-8500 Nurember,

Tel: (0911) 56 30 83/85
Telex 0623 860
Hewlett-Packard GmbH
Technisches Buero Munchen
Unterhachinger Strasse 28
ISAR Center

D-8012 Ottobrunn

Tel (089) 601 30 61:7
Cable: HEWPACKSA Munchen
Telex: 0524985
Hewlett-Packard GmbH
Technisches Buero Berlin
Keith Strasse 2-4

D-1000 Berlin 30

Tel (030) 24 90 86

Telex 18 3405 hpbin d

GREECE

Kostas Karayannis

08, Omirou Street
GR-Athens 133

Tel 3237731

Cable RAKAR Athens
Telex: 21 59 62 rkar gr

Anal ical Only

ECO" G Papa\nanassmu & Co

Marm 17

GR - Athens 103

Tel 522 1915

Cabie: INTEKNIKA Athens
Telex: 21 5329 INTE GR
Medical Only
Technomed Hellas Ltd
52.Skooufa Street

GR - Athens 135

Tel 362 6972. 363 3830
Cable ETALAK athens
Telex: 21-4693 ETAL GR

HUNGARY
M

TA
Muszertgy! és Méréstechnikai
Szolgalata
Lenin Krt. 67
1391 Budapest VI
Tel 4 38
Telex 22 51 14

ICELAND

Medical Only

Elding Trading Company Inc
Hafnarnvoh Tryquvalo(u

Cable: ELDING Reykjavik

IRAN

Hewilett-Packard Iran Ltd
No 13. Fourteenth St
Miremad Avenue

P.0. Box 41/2419
'R-Tehran

Tel 851082-7

Telex: 21 25 74 khrm it

IRAQ

Hewlett-Packard Trading Co

4/1/8 Mansoor City

Baghdad

Tel 5517827

Telex: 2455 hepairaq ik

Cable: HEWPACDAD,
Baghdad Iraq

IRELAND
Hewlett-Packard Ltd

King Street Lane
GB-Winnersh,Wokingham
Berks, RG11 5AR

Tel: (0734) 78 47 74

Telex: 847178/848179

ITALY

Hewlett-Packard Italiana S.p A
Via Amerigo Vespucci 2
Casella postale 3645

1-20100 Milano

Tel: (2) 6251 (10 lines)

Cable: HEWPACKIT Milano
Telex: 32046

Hewlett-Packard Italiana S .p.A
Via Pietro Maroncelli 40

(ang Via Visentin)

1-35100 Padova

Tel: (49) 66 48 88

Telex 416!2 Hewpacki
Medical of

Hewlett- Packard Italiana S.p.A
Via d'Aghiardi. 7

1-56100 Pisa

Tel (050) 232 04

Telex 32046 via Milano
Hewlett-Packard taliana S p.A
Via G. Armeliini 10

1-00143 Roma

Tel 106) 54 69 6i

Telex 615

Cable: HEWPACKIT Roma
Hewlett-Packard Italiana S.p.A
Corso Giovanni Lanza

1-1031 Torino

Tel (011) 682245/659308
Medical/Caiculators Only
Hewlett-Packard Italiana S.p.A
Via Principe Nicola 43 G/C
1-95126 Catania

Tel:(095) 37 05 04

Hewlett-Packard Italiana S.p.A
Via Amerigo Vespucci. 9
1-80142 Napoli

Tel (081) 3377 11
Hewlett-Packard Italiana S p A
Via £ Masi. 9/B

1-40137 Bologna

Tel: (051) 30 78 87

KUWAIT
Al-Khaldiya Trading &
Contracting Co

P.0 Box 830-Saft

uwait
Tel 424910-411726
Telex: 2481 areeg kt
Cable: VISCOUNT

LUXEMBURG
Hewlett-Packard Benelux
ANV

Avenue du Col-Vert. 1,
{Groenkraaglaan)

B-1170 Brussels

Tel (02) 672 22 40
Cable: PALOBEN Brussels
Telex 23 494

MOROCCO

Gerep

190. Bivd. Brahim Roudani
Casablanca

Tel: 25-16-76/25-90-99
Cable: Gerep-Casa

Telex 23739

NETHERLANDS
Hewlett-Packard Benelux N.V
Van Heuven Goedhartlaan 121
PO Box 667

NL-1134 Amstelveen

Tel: (020) 47 20 21

Cable: PALOBEN Amsterdam
Telex' 13 216 hepa nl

NORWAY
Hewlett-Packard Norge A/S
Nesveien 13

Box 149

N-1344 Haslum

Tel: (02) 53 83 60

Telex: 16621 hpnas n

POLAND

Biuro Informacii Techniczne)
Hewlett-Packard

U1 Stawki 2. 6P
00-950Warszawa

Tel 395962/395187

Telex: 81 24 53 hepa pi

UNIPAN
Zaklad Doswiadczalny
Budowy Aparatury Naukows

U1. Krajowej Rady Narodowe| 51/55

00-800 Warsz-wa

Tel 36190

Telex 81 46 48

Zaklady Naprawcze Sprzetu
Medycznego

Plac Komuny Paryskie| 6

90-007 Lodz

Tel: 334-41. 337-83

PORTUGAL
Telectra-Empresa Técnica de
Equipamentos Eléctricos S ar.|
Rua Rodrigo da Fonseca 103

P-Lisbon 1

Tel (19) 68 60 72
Cable: TELECTRA Lisbon
Telex: 12598

Medical only

Mundinter

Intercambio Mundial de Comércio

arl
Av_A A .de Aguiar 138
P.0. Box 2761
P - Lisbon
Tel* (19) 53 21 31,7
Cable: INTERCAMBIO Lisbon

RUMANIA

Hewlett-Packard Reprezentanta

Bd.N. Balcescu 16

Bucharest

Tel: 158023/138885

Telex 10440

1ILRU.C

Intreprinderea Pentru
Intretinerea

Si Repararea Utilajelor de Calcul

B-dul prof. Dimitrie Pompei 6

Bucharest-Sectorul 2

Tel: 12 64 30

Telex 11716

SAUDI ARABIA

Modern Electronic Establishment
King Abdul Aziz str.(Head office)
P.0. Box 1228

Jeddah

Tel: 31173-332201

Cable: ELECTRA

P.0 Box 2728 (Service center)
Riyadh

Tel: 62596-66232

Cable: RAOUFCO

SPAIN

Hewlett-Packard Espaiola, S.A
Jerez, Calle 3

E-Madrid 16

Tel:(1) 458 26 00 (10 lines)
Telex 23515 hpe
Hewlett-Packard Espaiola, S A
Milanesado 21- 23
E-Barcelona

Tel: (3) 203 6200 (5 lines)
Telex: 52603 hpbe e
Hewlett-Packard Espaﬁola SA
Av Ramdn y Cajal

Edificio Sevilla. plama 9.
E-Seville 5

Tel: 64 44 54/58
Hewlett-Packard Espafiola S.A
Edmmo Alma n7

TeI 23 83 06/23 82 06

Calculators Only
Hewlett-Packard Espadola S.A

Gran Via Fernando El Catdlico. 67

E-Valencia-8
Tel: 326 67 28/326 85 55

SWEDEN
Hewlett-Packard Svenge AB
Emghe(svagen

ack

$-161 20 Bromma 20

Tel: (08) 730 05 50

Cable: MEASUREMENTS
Stockholm

Telex: 10721

Hewilett-Packard Sverige AB
Osua leergalan 22

Orebro
Tel [D!S) 14 07 20
Hewlett-Packard Sverige AB
Frotallsgatan 30
$-421 32 Vastra Frolunda
Tel (031) 49 09 50
Telex: 10721 Via Bromma Office

SWITZERLAND
Hewilett-Packard (Schweiz) AG
Zurcherstrasse 20

P.0_Box 307

CH-8952 Schlieren-Zurich
Tel (01) 730 52 40/730 18 21
Cabie HPAG CH

Telex: 53933 hpag ch
Hewlett-Packard (schweiz) AG
Chateau Bloc 19

CH-1219 Le Lignon-Geneva
Tel (022) 96 03 22

Cable: HEWPACKAG Geneva
Telex: 27 333 hpag ch

SYRIA
Med»cal/Calculawv only
Sawah

Place Azmé

B P 2308
SYR-Damascus

Tel 16367, 19697 14268
Cable SAWAH. Damascus

TURKEY

Telekom Engineering Bureau
P.0 Box 437

Beyogiu

TR-Istanbul

Tel: 49 40 40

Cable: TELEMATION Istanbul
Telex: 23609

Medical only
MA

E

Muhendislik Kollektif Sirketi
Adakale Sokak 41/6
TR-Ankara

Tel 175622

Analytical only

Yilmaz Ozyure!

Milli Mudataa Cad No. 16/6
Kizilay

TR-Ankara

Tel: 25 03 09

Telex. 42576 ozek tr

UNITED KINGDOM
Hewlett-Packard Ltd

King Street Lane
GB-Winnersh, Wokingham
Berks RG11 5AR

Tel: (0734) 78 47 74

Cable: Hewpie London
Telex 847178/9

Hewlett-Packard Ltd
Trafalgar House,
Navigation Road
Altrincham
Cheshire WA14 INU
Tel (061) 928 6422
Telex: 668068

Hewlett-Packard Ltd
"e/qon Court
lereward Rise
Dudley Road
Halesowen,
West Midlands B62 8SD
Tel: (021) 550 9911
Telex 339105

Hewlett-Packard Ltd
Wedge House

799. London Road
GB-Thornton Healh
Surrey CR4 6XL

Tel (01) 684 010318
Telex: 946825

Hewiett-Packard Ltd
¢/0 Makro
South Service wholesale Centre
Wear Industrial Estate

Washington

GB-New Town, County Durham
Tel Washington 464001 ext. 57/58

Hewlett-Packard Ltd

10. Wesley St
GB-Castleford

West Yorkshire WF10 1AE
Tel: (09775) 50402

Telex 557355

Hewlett-Packard Ltd
1. Wallace Way
GB-Hitchin

Herts

Tel: (0462) 52824/56704
Telex 825981
Hewlet-Packard Ltd

2C. Avonbeg Industrial Estate
Long Mile Road

Dublin 12

Tel Dublin 509458

Telex 30439

USSR

Hewlett-Packard

Representative Office USSR
Pokrovsky Boulevard 4/17-KW 12
Moscow 101000

Tel'294-2024

Telex 7825 hewpak su

YUGOSLAVIA
Iskra-standard,/Hewlett-Packard
Miklosiceva 38/VIl

61000 Ljubyana

Telb. 31 58 79/32 16 74
Telex: 31583

SOCIALIST COUNTRIES

NOT SHOWN PLEASE

CONTACT:

Hewlett-Packard Ges m b H
0 Box7

0X
A-1205 Vienna. Austria
Tel: (0222) 35 16 21 to 27
Cable: HEWPAK Vienna
Telex: 75923 hewpak a

MEDITERRANEAN AND
MIDDLE EAST COUI

NOT SHOWN PLEASE CONYACY
Hewlett-Packard S.A
Mediterranean and Middle
East Operations
35. Kolokotroni Street
Platia Kefallariou
GR-Kifissia- Athens, Greece
Tel: 8080337/359/429
Telex 21-6588
Cable: HEWPACKSA Athens

FOR OTHER AREAS
NOT LISTED CONTACT
Hewlett-Packard S A

7, rue du Bois-du-Lan

0x
CH-1217 Meyrin 2 - Geneva
Switzerland

Tel: (022) 82 70 00

Cable: HEWPACKSA Geneva
Telex: 2 24 86

UNITED STATES

ALABAMA

8290 Whitesburg Dr., S E
P 0. Box 4207
Huntsville 35802

Tel: (205) 881-4591
Medical Only

228 W. Valiey Ave

Room 220

Birmingham 35209

Tel: (205) 942-2081/2

ARIZONA

2336 £ Magnolia St
Phoenix 85034

Tel. (602) 244-1361

2424 East Aragon Rd
Tucson 85706

Tel' (602) 294-3148
"ARKANSAS
Medical Service Only
P.0. Box 5646
Brady Station

Little Rock 72215
Tel: (501) 376-1844

CALIFORNIA

1430 East Ovanqe(horpe Ave
Fullerton 92631

Tel' (714) 870-1000

3939 Lankershim Boulevard
North Hollywood 91604
Tel (213) 877-1282

TWX: 910-499-2671

5400 West Rosecrans Blvd
P 0. Box 92105

World Way Postal Center
Los Angeles 90009

Tel: (213) 970-7500

‘Los Angeles

Tel: (213) 776-7500
3003 Scoft Boulevard
Santa Clara 95050

Tel: (408) 249-7000
TWX. 810-338-0518

it

Tel (714) 445 6165

646 W North Market Blvd
Sacramento 95834

Tel: (916) 929-7222
9606 Aero Drive

P 0 Box 23333

San Diego 92123

Tel (714] 279-3200

COLORADO

5600 South Ulster Parkway
nglewood 80110

Tel (303) 771-3455

CONNECTICUT
12 Lunar Drive
New Haven 06525
Tel (203) 389-6551
TWX: 710-465-2029

FLORIDA

P 0. Box 24210

2806 W Oakland Park Bivd

Ft. Lauderdale 33311

Tel: (305) 731-2020
‘Jacksonville
Medical Service onl,

Tel: (904) 398- 0663’

P.0. Box 13910

6177 Lake Ellenol Dr

Orlando

Tel (305) 859 2900

P.0 Box 12826

Pensacola 32575

Tel: (904) 476-8422

GEORGIA
P 0 Box 105005
Tel (404) 955-1500
TWX:810-766-4890
Medical Service Only
“Augusta 30903
Tel ?404] 736-0592
P.0. Box 2103

1
Warner Robins 31098
Tel: (912) 922-0449

HAWAII

2875 So. King Street
Honolulu 96814
Tel' (808) 955-4455
Telex 723-705

ILLINOIS

5201 Tollview Dr

Rolling meadows 60008
Tel (312) 255-9800

TWX. 910-687-2260

INDIANA

7301 North Shadeland Ave
Indianapolis46250

Tel (317)842-1000

TWX: 810-260-1797

IOWA

2415 Heinz Road
lowa City 52240
Tel (319) 338-9466

KENTUCKY

Medical Only

Atkinson Square

3901 Atkinson D

Suite 407 Atkmson Square
Louisville 40218

Tel: (502) 456-1573

IP.%UISIANA

3229-39 Williams Boulevard
Kenner 70063

Tel: (504) 443-6201

MARYLAND

6707 Whitestone Road
Baltimore 21207

Tel: (301) 944-5400
TWX' 710-862-9157

2 Choke Cherry Road
Rockville 20850

Tel' (301) 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartwell Ave
Lexington 02173
Tel: (617) 861-8960
TWX' 710-326-6904

MICHIGAN

23855 Research Drive
Farmington Hills 48024
Tel' (313) 476-6400

724 West Centre Ave
Kalamazoo 49002

Tel. (606) 323-8362

MINNESOTA
2400 N. Prior Ave

St. Paul 55113

Tel: (612) 636-0700
MISSISSIPPI
“Jackson

Medical Service onl
Tel: (601) 982- 9363’

MISSOURI

11131 Colorado Ave
Kansas City 64137

Tel (816) 763-8000

TWX: 910-771-2087

1024 Elecunve Parkway

t. Louis 6.
Tel (314) 878 0200

NEBRASKA
Medical Onl

7171 Mercy Road
Suite 110

Omaha 68106
Tel: (402) 392-0948
NEW JERSEY

-990-4951
Crystal Brook Professional
Building
Eatontown 07724
Tel:(201) 542-1384

NEW MEXICO

P.0. Box 11634

Station £

11300 Lomas Bivd.. N.E
Albuquerque 87123
Tel: (505) 292-1330
TWX: 910-989-1185

156 Wyatt Drive

Las Cruces 88001
Tel (505) 526-2484
TWX: 910-9983-0550

NEW YORK
6 Automation Lane
Compuler Park

Tel 151y8| 453 1550

201 South Avenue
Poughkeepsie 12601

Tel (914) 454-7330

TWX' 510-253-5981

650 Perinton Hull Office Park
Fairport 1445(

Tel (716) 223 9950

5858 East Molloy Road
Syracuse 13211

Tel (315) 454-2486
TWX: 710-541-0482

1 Crossways Park West
Woodbury 11797

Tel: (516) 921-0300
TWX: 710-990-4951
NORTH CAROLINA
P 0. Box 5188

1923 North Main Street
High Point 27262

Tel (919) 885-8101

OHIO

16500 Sprague Road
Cleveland 44130
Tel' (216) 243-7300
TWX: 810-423-9430
330 Progress Rd
Dayton 45449

Tel (513) 859-8202
1041 Kingsmill Parkway
Columbus 43229
Tel: (614) 436-1041

OKLAHOMA

P.0 Box 32008
Oklahoma City 73132
Tel: {405) 721-0200

OREGON

17890 SW Lower Boones
Ferry Road

Tualatin 97062

Tel: (503) 620-3350

PENNSYLVANIA

111 Zeta Drive

Pittsburgh 15238

Tel: (412) 782-0400

1021 8th Avenue

King of Prussia Industrial Park
King of Prussia 194

Tel: (215) 265-7000

TWX. 510-660-2670

SOUTH CAROLINA
6941-0 N. Trenholm Road
Columbia 29260

Tel: (803) 782-6493

TENNESSEE
“Knoxville
Medical Service only
Tel: (615) 523-5022

3027 Vanguard Dr
Director's Plaza
Memphis 38131
Tel: (901) 346-8370

Nashville
Medical Service only
Tel: (615) 244-! 5448

TEXAS

P O Box 1270

201 E Arapaho Rd

Richardson 75080
Tel: (214) 231-6101

10535 Harwin Or
Houston 77036

Tei: (713) 776-6400
205 Billy Mitchell Road
San Antonio 78226
Tel: (512) 434-8241

UTAH

2160 South 3270 West Street
Salt Lake City 84119

Tel: (801) 972-4711

VIRGINA

P 0. Box 12778

No. 7 Koger Exec Center
Suite 212

Norfolk 23502

Tel (804) 461-4025/6

P.0 Box 9669

2914 Hungarz Springs Road
Richmond 23228

Tel (804) 285-3431

WASHINGTON
Belletield Office Pk
1203-114th Ave. S E
Bellevue 98004

Tel' (206) 454-3971
TWX: 910-443-2446

"WEST VIRGINIA
Medical/Analytical Only
Charleston

Tel: (304) 345-1640

WISCONSIN

9004 West Lincoln Ave
West Allis 53227

Tet: (414) 541-0550

FOR U.S. AREAS NOT LISTED:
Contact the regional office

nearest you Atlanta, Georgia

North Hollywood, Calitornia

Rockville, Maryland. . Rolling Meadows,
illinois Their complete

addresses are listed above

“Service Only 178

HEWLETT @ PACKARD

PART NO. 02116-9072 Sales and service from 172 offices in 65 countries.
Printed in U.S A. 11/76 11000 Wolfe Road. Cupertino, Calfornia 95¢

	Front
	cover/inside

	Contents
	title
	ii
	iii/iv
	v
	vi

	Section 1
	1-1
	1-2
	1-3
	1-4

	Section 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12

	Section 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11/3-12

	Section 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15/4-16

	Section 5
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10

	Section 6
	6-1
	6-2
	6-3/6-4

	Section 7
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9/7-10

	Section 8
	8-1
	8-2
	8-3
	8-4
	8-5/8-6

	Appendix A
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6

	Appendix B
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8

	Appendix C
	C-1
	C-2
	C-3/C-4

	Index
	index-1
	index-2

	Comment Sheet
	comment-1
	comment-2

	Sales Offices
	sales-1
	sales-2

	Back
	cover

