HEWLETT@PACKARD

2100 series com puters

2000F

TIME-SHARED BASIC
programmer's guide

HEWLETTW PACKARD

2100 series computers

2000F

TIME-SHARED BASIC
programmer's guide

HP MANUAL PART NO. 02000-90073
MICROFICHE PART NO. 02000-90078 December 1973

© Copyright, 1973, by HEWLETT-PACKARD COMPANY, 11000 Wolfe Road, Cupertino, California, 95014.
All rights reserved. Printed in the U.S.A.

List of Effective Pages

Pages Effective Date
Title Dec. 1973
Copyright. Dec. 1973
itoxiii Dec. 1973
1-1to1-14 Dec.1973
21t02-37 Dec.1973
31to325 Dec.1973
41t04-28 Dec. 1973
51tob5-17 Dec.1973
6-1to6-14 Dec. 1973
71to7-4 Dec.1973
81to818 Dec. 1973
91to911 Dec.1973
Al Dec.1973
B1 Decl1973
CltoC6 Dec. 1973
DltoD-2 Dec.1973
EltoE4 Dec.1973

Index-1toIndex-4 Dec.1973

Printing History

First Edition

Preface

This publication is designed to serve as a reference text for Time-Shared BASIC, and as an instruc-
tional aid to the TSB user.

Example programs may be used as practice exercises (as well as for reference). They were chosen

for teaching value, and include pertinent remarks. Beginners are encouraged to try the examples
“‘on-line”.

The syntax requirements of BASIC have been ‘““translated” into English from the Backus Naur Form.

iii

Preface

Text Conventions

SECTION I Introduction to Time-shared BASIC

SPECIAL KEYS
PROMPT CHARACTERS
LOGGING ON AND OFF

Connection to the Computer
Checking the Connection
Identification Code
Password

Terminal Type Parameter
Logging On

Logging Off

THE BASIC LANGUAGE

Commands

Statements

Error Messages

Changing or Deleting a Statement
BASIC Programs

User’s Work Area

Listing a Program

Running a Program

Deleting a Program

Documenting a Program

Contents

ii

xii

11
1-2
1-3
1-3
1-3
1-4

1-10
1-10
1-11
1-12
1-13

SECTION II The Essentials of BASIC 2-1

TERM: NUMBER 2-1
TERM: E NOTATION 2-2
TERM: SIMPLE VARIABLE 2-2
TERM: EXPRESSION 2-3
TERM: ARITHMETIC EVALUATION 2-3
THE ASSIGNMENT OPERATOR 2-3
ARITHMETIC OPERATORS 2-4
RELATIONAL OPERATORS 2-4
MIN AND MAX OPERATORS 2-5
THE AND OPERATOR 2-6
THE OR OPERATOR 2-6
THE NOT OPERATOR 2-7
EXECUTION ORDER OF PRECEDENCE 2-8
STATEMENTS 2-9
The Assignment Statement 2-10
REM Statement 2-10
GO TO and Multibranch GO TO Statements 2-11
IF . .. THEN Statement 2-12
FOR . .. NEXT Statement 2-13
READ, DATA, and RESTORE Statements 2-15
INPUT Statement 2-17
PRINT Statement 2-18
END and STOP Statements 2-22
SAMPLE PROGRAM 2-23
Running the Sample Program 2-24
COMMANDS 2-25
HELLO Command 2-26
BYE Command 2-27
ECHO Command 2-27
RUN Command 2-28
LIST Command 2-28
SCRATCH Command 2-29
RENUMBER Command 2-30
PUNCH and XPUNCH Commands 2-31
TAPE Command 2-32
KEY Command 2-33

LPRINTER Command
TIME Command
MESSAGE Command
Break Key

SECTION III Advanced BASIC
TERM: ROUTINE
TERM: ARRAY
TERM: STRING
TERM: FUNCTION
TERM: WORD
STORING AND DELETING PROGRAMS
LENGTH Command
NAME Command
SAVE and CSAVE Commands
GET, GET-$, and GET-* Commands
KILL Command
APPEND Command
DELETE Command
LIBRARY, GROUP, and CATALOG Commands
SUBROUTINES AND FUNCTIONS
GOSUB. .. RETURN Statement
Multibranch GOSUB Statement
FOR ... NEXT with STEP Statement
DEF FN Statement
General Mathematical Functions
Trigonometric Functions
LEN Function
TIM Function
CHAIN Statement
COM Statement
ENTER Statement
BRK Function

2-33
2-36
2-36
2-37

3-3
3-3
3-4
3-4
3-5
3-5

3-7

3-8

3-9
3-10
3-13
3-13
3-14
3-16
3-16
3-18
3-19
3-19
3-20
3-20
3-22
3-23
3-24

SECTION IV Files
TERM: FILE
SERIAL FILE ACCESS
OPEN Command
KILL Command
FILES Statement
ASSIGN Statement
Serial File PRINT Statement
Serial File READ Statement
Resetting the File Pointer
TYP Function
Listing Contents of a File
TERM: END-OF-FILE
IF END#. .. THEN Statement
PRINT# ... END Statement
STRUCTURE OF SERIAL FILES
TERM: RECORD
STORAGE REQUIREMENTS
MOVING THE POINTER
To Determine the Length of a File
SUBDIVIDING SERIAL FILES
USING THE TYP FUNCTION WITH RECORDS
To List the Contents of a Record
To Copy a File
TERM: RANDOM FILE ACCESS
PRINTING A RECORD
READING A RECORD
Modifying Contents of a Record
Erasing a Record
To Erase a File, Record by Record
Updating a Record in a File
An Alphabetically Organized File
FILE ACCESSING ERRORS

viii

4-1
4-1
4-2
4-3

4-5

4-6

4-8

4-8

4-9
4-10
4-11
4-12
4-12
4-13
4-13
4-17
4-17
4-18
4-18
4-19
4-19
4-20
4-21
4-22
4-23
4-24
4-24
4-25
4-26
4-26
4-27
4-28

SECTION V Matrices
STATEMENTS

DIM Statement
MAT ... ZER Statement
MAT ... CON Statement
INPUT Statement
MAT INPUT Statement
Printing Matrices
MAT PRINT Statement
READ Statement
MAT READ Statement
Matrix Addition
Matrix Subtraction
Matrix Multiplication
Scalar Multiplication
Copying a Matrix
Identity Matrix
Matrix Transposition
Matrix Inversion
MAT PRINT# Statement
MAT READ# Statement

SECTION VI Strings

TERM: STRING

TERM: STRING VARIABLE

TERM: SUBSTRING

STRINGS AND SUBSTRINGS
String DIM Statement
String Assignment Statement
String INPUT Statement
Printing Strings
Reading Strings
String IF Statement
The LEN Function
Strings in DATA Statements
Printing Strings on Files

Reading Strings From Files

5-1
5-2
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-11
5-12
5-12
5-13
5-13
5-14
5-15
5-16
5-17

6-1

6-10
6-11
6-12
6-13
6-14

SECTION VII Logical Operations 7-1

RELATIONAL OPERATORS 7-1
BOOLEAN OPERATORS 7-2
SECTION VIII Formatted OQutput 8-1
DEFINITIONS 8-1
STRING FORMAT SPECIFICATIONS 8-4
Format Characters Used 8-4
Combination Rules 8-4
INTEGER FORMAT SPECIFICATIONS 8-5
Format Characters Used 8-5
Combination Rules 8-5
FIXED-POINT FORMAT SPECIFICATIONS 8-6
Format Characters Used 8-6
Combination Rules 8-6
FLOATING-POINT FORMAT SPECIFICATIONS 8-7
Format Characters Used 8-7
Combinations Rules 8-7
POSITION OF THE SIGN 8-9
GROUPED FORMAT SPECIFICATIONS 8-9
FORMAT STRINGS 8-10
TERM: EXPRESSION LIST 8-10
PRINT USING Statement 8-10
MAT PRINT USING Statement 8-12
IMAGE Statement 8-13
USING CARRIAGE CONTROL 8-14
NUMERICAL OUTPUT 8-15
REPORT GENERATION 8-16
FATAL ERRORS 8-17
NON-FATAL ERRORS 8-18
SECTION IX For the Professional 9-1
SYNTAX REQUIREMENTS OF TSB 9-1
Legend 9-1
Language Rules 9-1
STRING EVALUATION BY ASCII CODES 9-10

MEMORY ALLOCATION BY A USER 9-11

X

APPENDIX A How to Prepare a Paper Tape Off-line
APPENDIX B The X-ON, X-OFF Feature
APPENDIX C Diagnostic Messages

APPENDIX D Additional Library Features
APPENDIX E User Terminal Interface

Index

A-l1
B-1
C1
D-1
E-1

Index-1

SAMPLE

PLEASE LOG IN

20 PRINT X, Y LIST
This section. . .

line number PRINT X, Y
return linefeed

control
break

[1]

Text Conventions

EXPLANATION

All capitals in examples indicates computer-output
information. . .

or a statement or command typed by the programmer.

Mixed upper and lower case is used for regular text.

Lower case italics indicates a general form, derived
from BASIC syntax requirements (Sect. IX).

Represents the terminal keys:
Return, Linefeed, Control,

and Break.

An element enclosed in brackets is optional.

xiii

SECTION |
Introduction to Time-shared BASIC

HP 2000F Time-shared BASIC is a system designed to support the BASIC programming language in
a time-sharing environment at keyboard user terminals. The Time-shared BASIC system (TSB) uses
two computers - - a main computer for actual computation and an Input/Output processor com-
puter to control access to the main computer. Additional peripheral equipment is associated with
the system at the central site and is under control of the system operator. Up to 32 user terminals
can be connected directly (hardwired) to the TSB system or connected remotely through dial-up
telephone modems.

This section describes how to log on and log off, how to enter statements and commands and how
to make corrections. Simple programs are used for illustration, but the actual programming language
is described in Section II.

This manual assumes that the user is familiar with the terminal’s keyboard. Special keys with
particular functions in 2000F TSB are described in this section. The characteristics of particular
types of user terminals are given in Appendix E. A user’s terminal may be one of several types.
Some terminals are equipped with a paper tape punch and reader. The user can enter programs
into the system either through the keyboard or through the paper tape reader. System output can
be typed out on the terminal as well as punched on paper tape. In addition, a line printer may be
connected to the system. If a line printer is available, system output can be printed on it. The
system is designed so that any user should experience no more than a few seconds delay between
entering a command and receiving a response from the system, even when all terminals are active.

The user can work in a simple interactive mode, entering and running programs and reading the
results from the user terminal, or he can take advantage of the large storage capacity of the TSB

system by using library programs and by storing his own programs for later use.

In this section only, characters typed by the computer are underlined to distinguish them from user
input. Subsequent sections assume that this distinction is clear to the user.

1-1

SPECIAL KEYS

Key

break

control

linefeed

return

control C (C°€)

control N (N©)
control O (O€)

control Q (Q°)

control W (W¢)

control X (X€)

Function

Terminates a running program, listing, or punching operation.
This key may appear on the keyboard as INTRPT, BRK,
ATTN, etc., depending on the user terminal type.

Converts normal keys to non-printing control character keys.
This key may appear as CTRL, CTL, CONTRL, etc., depending
on the user terminal type.

Causes the user terminal to advance one line. This key may
appear as LINEFEED, LF, etc., depending on the user terminal

type.

Must be pressed after every statement and command and after
some control characters. It terminates the line and causes the
terminal’s printing element to return to the first print position.
TSB responds with a linefeed if the entered line is acceptable.
This key may appear as RETURN, CR, etc., depending on the
user terminal type.

Backspace. Deletes one preceding character for each < typed
in. This key may be represented by the underscore (_)

character on some types of user terminal.

Terminates an input loop during program execution. It must be
followed by return. Effectively, C€ causes a jump to the END
statement. TSB responds by printing DONE followed by a
return and linefeed.

Generates a linefeed when used in a PRINT statement.
Generates a return when used in a PRINT statement.

Diverts output to user’s terminal when the line printer is
designated as the output device.

Returns output to the line printer if output was previously
diverted via QC.

Deletes a line being typed from the user terminal. TSB
responds by printing a backslash (\) followed by a return and
linefeed.

PROMPT CHARACTERS

HP 2000F TSB uses a set of prompting characters to signal to the user that certain input is expected
or that a specific action is completed.

Character Meaning
? User input is expected during execution of an INPUT statement.
?? Further input is expected during execution of an INPUT statement.
?77? A BASIC command was mistyped; re-enter it correctly.
\ Issued by TSB in response to the control character X©. Indicates that

the line being typed just prior to entry of X € is deleted from the
user’s work area.

LOGGING ON AND OFF

Connection to the Computer
To log on to the TSB system, connection must be established between the user terminal and the

computer. There are several ways of doing this, depending on the type of user terminal equipment
used.

ACOUSTIC COUPLER AND TELEPHONE:

1. Set terminal mode to ON-LINE and power switch to ON.

2. Set coupler power switch to ON.

3. If coupler has a duplex switch, set to FULL or FULL/UP.

4. If coupler has a line switch, set to ON-LINE.

5. Remove telephone handset and dial the computer telephone number.

6. When the computer responds with a high pitched tone, place the handset into the coupler
receptacle (the correct handset position should be marked on the coupler).

HALF-DUPLEX COUPLER AND TELEPHONE:

1. Set terminal mode to ON-LINE and power switch to ON.

2. Set coupler power switch to ON.

3. If coupler has a line switch, set to ON-LINE.

4. Remove telephone handset and dial the computer telephone number.

5. When the computer responds with a high pitched tone, place the handset into the coupler
receptacle (the correct handset position should be marked on the coupler).

DATA SET:

1. Set terminal mode to ON-LINE and power switch to ON.

2. Press the TALK button on the Data Set.

3. Remove the handset and dial the computer telephone number.

4. When the computer responds with a high pitched tone, press the DATA button on the
Data Set to light it, and replace the handset in its cradle.

Note: When connection is via telephone lines, the user must log on

within a time period (nominally two minutes) determined by
the system operator.

DIRECT CONNECTION (HARDWIRED):

Set terminal mode to ON-LINE and power switch to ON.

Checking the Connection

This step is optional. The TSB system does not respond once connection is established. If you
wish to determine that connection has been made, type X €. If the terminal and the computer are
connected, the system responds with “\”. For further verification, type any numeral followed by
return. The TSB system will respond:

PLEASE LOG IN return linefeed

Identification Code

An identification code is assigned to you by the system operator. The code consists of a single
letter followed by a three-digit number. When logging on, the identification code along with a
password and sometimes a terminal type parameter must be specified.

Password

The password is also assigned to you by the system operator. It consists of from one to six printing
or non-printing characters. The password can be kept confidential by using non-printing characters.
For example, on the terminal the password SE CCCREECT prints as:

ST

Terminal Type Parameter

The terminal type parameter informs TSB of the type of terminal being logged on. Failure to
specify the correct parameter may result in a loss of characters. Terminal type is specified as one
digit as follows:

0 = HP 2600A or HP 2749A (default)
1 = Execuport 300

2 = ASR-37

3 = TermiNet 300

4 = Memorex 1240

If the terminal type parameter is omitted, the system assumes the terminal is an HP 2600A or
HP 2749A. It is not necessary to specify a type parameter when logging on from an IBM 2741
terminal; type and character composition (total bits per character including start and stop bits)
are determined automatically by the system for this terminal.

Logging On

Once the terminal is connected and ready, the user may log on. To log on, type the HELLO
command. For example:

HELLO-H200, JOHN, 1

- H200, JOHN and 1 are sample parameters representing the identification code, the password, and
the terminal type. A comma must be typed between them. TSB responds with a system message
or the word READY. In either case, the user is logged on and can enter BASIC commands or
statements.

1-5

ERRORS DURING LOGGING ON: If a mistake is made during logging on, the system responds
with an appropriate error message. For example, if you forget to type the hyphen while entering
the HELLO command:

HELLO-H200,JOHN, 1

TSB responds with the message:

ILLEGAL FORMAT

Re-enter the command in the correct form.

If the password is entered incorrectly:

HELLO-H200, JHN, 1

TSB responds:

ILLEGAL ACCESS

Re-enter the command with the correct password.

The messages ILLEGAL ACCESS and ILLEGAL FORMAT indicate that some or all of the current
input is not acceptable to the system.

Spelling mistakes, format errors and incorrect parameters can be corrected while the line is being
entered if the error is noticed before return is pressed. The backspace character (<) can be used
to correct a few characters just typed, or the control character XC can be used to cancel the entire
line and start over.

Suppose the command HELLO is mispelled during entry. The backspace (<) will delete the last

character. The user retypes the character correctly and finishes the line. When you press return,
the line is entered correctly.

HELO<LO-H200, JOHN, 1

If several characters have been typed after the error, the backspace character must be typed for each
character to be deleted. In the following example, four characters are deleted:

HELO-H2+«<++«<L0-H200, JOHN, 1
Another method is to use X to cancel the entire line. X must be typed before return is pressed.

To cancel a line, type X€. The system responds with a backslash at the end of the line and then
produces a return and linefeed. The correct command can be entered on the new line:

HELO-\
HELLO-H200, JOHN, 1

1-6

Logging Off

When a session at the terminal is completed, the user logs off with the BASIC command BYE.
To log off, type:

BYE

TSB responds by printing the total number of minutes the user was logged on. For example:

014 MINUTES OF TERMINAL TIME

THE BASIC LANGUAGE

There are many types of languages. English is a natural language used to communicate with people.
To communicate with a computer system we use a formal language, that is, a combination of
simple English and algebra. BASIC is a formal language used to communicate with the HP 2000F
Time-shared BASIC system. The TSB system employs BASIC statements with which to write
programs and BASIC commands for controlling program operation.

Commands

BASIC commands instruct the TSB system to perform certain control or utility functions such as
storing and listing programs or logging on and off the system. Commands differ from statements
used to write a program in the BASIC language. A command instructs the system to perform some
action immediately, while a statement is an instruction to perform an action only when the program
is executed (run). A statement is always preceded by a statement number; a command never is.

Any BASIC command can be entered once the logging on procedure is successfully completed.
Each command is a single word that can be abbreviated to the first three characters on entry.
Embedded blanks are ignored. If a command is misspelled, TSB returns three question marks.

Following entry of each command, return must be pressed to signal that command entry is complete.

Some commands have parameters to further define command operation. For instance, BYE is a
command that signals completion of a user session at the terminal and results in logging the user off
the system and disconnection of the terminal from the system. BYE has no parameters. Another
command, LIST, results in a display of the current program in the user’s work area. It may have
parameters to specify that only part of the program is to be printed.

Statements

BASIC statements are used to write a BASIC program that will be subsequently executed. Each
statement within the program performs a particular function. Every statement entered becomes
part of the current program and is kept until explicitly deleted or the user logs off the TSB system.
In addition, programs may be saved in one of the system libraries for further use.

1-7

A statement is always preceded by a statement number. This number is an integer between 1 and
9999. The statement number indicates the order in which the statements will be executed. State-
ments are ordered by BASIC from the lowest to the highest statement number. This order is main-
tained by the TSB system. Thus, it is not necessary for the user to enter statements in execution
order so long as the statement numbers are in that order.

Following entry of each statement, return must be pressed to inform the system that the statement
is complete. The system generates a return and a linefeed to the next line to signal that the state-
ment is acceptable. If an error is made while entering the statement, the computer prints an error
message.

BASIC statements are free form; blanks are ignored. For example, the following statements are
equivalent:

30 PRINT S
30 PRINT S
30PRINTS

3 0PRINTS

Error Messages

If an error is made in a statement line and the line is entered with return, TSB responds with a
message. The message consists of the word ERROR.

For example, if the line:

30 PRING S

is entered, the system will respond:

ERROR

The user may press return and re-enter the statement in the correct form. If the error is not
obvious, type any character after the message followed by return. The system will respond with a
diagnostic message:

30 PRING S
ERROR: MISSING ASSIGNMENT OPERATOR

Typing a colon causes the diagnostic message to be printed. Any other character could have been
typed with the same result.

1-8

Changing or Deleting a Statement
If an error is made before return is pressed, the error can be corrected with the backspace character
(+) or the line may be cancelled with X€. (See “Errors During Logging On”’, above.) After return

is pressed, the statement can be changed or deleted.

To change a statement, simply type the same statement number followed by the desired statement.
To change this statement:

30 PRINT X

Retype it as:
30 PRINT S

A change of this type can be made any time before the program is run.
To delete a statement, type the statement number followed by a return:

30

Statement 30 is deleted.

The DELETE command described in Section III is useful to delete a group of statements.

BASIC Programs

Any statement or group of statements that can be executed constitutes a program. The last state-
ment (the statement with the highest statement number) of every program must be an END
statement. The following is an example of a simple BASIC program:

15 PEINT 2545
¢S EMD

15 and 25 are statement numbers. PRINT is a key word or instruction that tells TSB the kind of
action to perform. In this case, it prints the result of the expression that follows. 35+5 is an
arithmetic expression. It is evaluated by the system, and when the program is run, the result is
printed. END is also a key word. It informs TSB that this is the end of this program. An END
statement is required as the last statement within every program.

Usually, a program contains several statements. The following four statements are a program:

10 IMFUT ASEsCaDsE

o LET EZ=0H+EB+C+0+E S
a0 PEIMT =
40 END

This program, which calculates the average of five numbers, is shown in the order of its execution.
It could be entered in any order if the statement numbers assigned to each statement were not
changed. The following program executes exactly like the program above:

40 EMD

=0 LET EZ={HA+E+C+0+E -5
10 IMFUT ASELCaIsE

30 PEINT =

Generally, it is a good idea to number statements in increments of 10. This allows room to insert
additional statements as needed.

User’s Work Area

When statements are entered at the terminal, these statements become part of the user’s work area.
All statements in the user’s work area constitute the current program.

Any statement in the user’s work area can be edited or corrected; the resulting statement will then
replace the previous version in the user’s work area. When the user logs off the TSB system, the
work area is cleared. Commands are available with which to retain the contents of the user’s work
area in the user’s library.

Listing a Program
At any time while a program is being entered, the LIST command can be used to produce a listing
of the statements that have been accepted by the TSB system. LIST causes the system to print a

listing of the current program at the terminal.

After deleting or changing a line, LIST can be used to check that the deletion or correction has
been made. For example, a correction is made while entering a program:

10 UeINFUT RaECaDaE

cll PRE<<LET Z=0CR+E+C+D+ED -5
30 FPREINT =
40 EMD

1-10

To check the corrections, list the program:

LI=T

10 IMHPUT HsECsDIsE

21 LET Z=0R4+E+C+D4+EH -5
20 PREIMT X

40 EHD

Should the statements be entered out of order, the LIST command will cause them to be printed
in ascending order by statement number. For example, the program is entered in this order:

20 LET =Z=¢A+EB+C+D+E2 -5
20 PREINT =
40 EMD

10 IMFUT AEBEsCsDE

The list will be in correct order of execution:

LIZT

10 IMFUT AsEsCsDE

o LET Z=¢HA+EBE+C+D+E -5
30__FRINT @

40__END

Running a Program

After the program is entered and, if desired, checked with LIST, it can be executed with the RUN
command. RUN will be illustrated with two sample programs.

The first program has two statements:

15 PRIMT Z25+5
&5 EMD

When run, the result of the expression 35+5 is printed:

FLIH

40

DOME

1-11

Because the program contains a PRINT statement, the result is printed when the program is run.
When execution of a program is complete the system prints the message DONE at the user’s
terminal.

The second sample program averages a group of five numbers. The numbers must be input by the
user:

10 IMHFUT AE.C-DE

i LET Z=cA+EB+C+D+ES -5
20 PRINT =

40 EMD

Each of the letters following the word INPUT and separated by commas names a variable that will
contain a value input by the user from his terminal. When the program is run, TSB signals that
input is expected by printing a question mark. The user enters the values following the question
mark. They are entered with a comma between each successive value.

The statement LET S = (A+B+C+D+E)/5 assigns the value of the expression to the right of the
equal sign to the variable S on the left of the equal sign. The expression first adds the variable
values within parentheses and then divides them by 5. The result is the value of S.

When the program is run, the user enters input values and the computer prints the result:

FLM

Deleting a Program

If a program that has been entered and run is no longer needed, it can be deleted from the user’s
work area with the SCRATCH command. SCRATCH deletes whatever program has been entered
by the user during the current session.

The first program entered was:

1

5 PRIMT 35+5
% EHD

1-12

This program should be scratched before entering the next program. Otherwise, statement numbers
may overlap causing undesirable results. In the latter case, when RUN is typed, the program will
execute in order of the statement numbers. The program will execute until the first END statement
is encountered. For example, if the program above remains in the user’s work area and the user
enters a new program, as follows:

10 IMFUT H«E«CTE

20 LET Z=0{RA+EBE+C+D+E -5
30 PRIMNT Z

40 ENI

Typing RUN produces the following results:

FLIM

The program executes statements 10 through 25, accepting input from the user but printing the
result of the expression 35+5.

A listing of the current program would appear:

LI=T

10 IMFUT AsEaCaT1sE

15 FPFRIMT 35+5

S0 LET S=0(R+EB+C+D+E -5
5 EMI

2 FRIMT =

G0 EMD

Documenting a Program
Remarks that explain or comment can be inserted in a program with the REM statement. Any

remarks typed after the word REM will be printed in the program listing but will not affect pro-
gram execution. As many REM statements can be entered as are needed.

1-13

The sample program to average five numbers can be documented with several remarks:

5 REM THIZ FPREOGEAM AYERRGEE

v REM FIYE HUMEERSZ.

15 FEM FIWE “WALUEZ MUZT EE IMFUT.
S REM Z COMTAINE THE RAYERAGE.

The statement numbers determine the position of the remarks within the existing program. A listing
will show them in order:

LIET

= REM THIE FEOGERM AVERERGEE

© FEM FIVE HUMEERE.

10 IMFUT HsEsCTisE

1% FEM FIVE WHLUEZ: MUET EBE IMFUT.
=0 LET Z=CH+EBE+C+D+E2-5

co FEM = COMTHINE THE RWEERRGE.

20 FRINT =

40 END

When run, the program will execute exactly as it did before the remarks were entered.

1-14

SECTION 1]
The Essentials of BASIC

This section contains enough information to allow you to use BASIC in simple applications, without
using the capability of storing programs.

Proceed at your own pace. The information in the vocabulary and operators subsections is included
for completeness; experienced programmers may skip these. Programmers with some knowledge of
BASIC may also concentrate on capabilities of the TSB system presented in the commands subsection.

The “Operators” subsections contain brief descriptions, rather than explanations, of the logical
operators. The novice should not expect to gain a clear understanding of logical operators from
this presentation. Section VII presents more details and examples of TSB logical operations.
Readers wishing to make best use of TSB logical capabilities should consult this section. Those
unfamiliar with logical operations should also refer to an elementary logic text.

A simple program is included at the end of this section for reference; it contains a running commen-
tary on the uses of many of the BASIC statements presented in the section.

TERM: NUMBER

Defined: A positive or negative decimal number whose magnitude is between an approximate
minimum of 10738 (2712%) and an approximate maximum of 1038 (2!27). Zero is included.

The precision of all numbers in TSB is 6 to 7 decimal digits (23 binary digits). If the user types a
BASIC statement which contains a number that is not representable in TSB, the system will print
a warning and change the number in the statement to the closest representable one.

If an executing program makes a calculation which results in a non-representable number, that

number will be set to the closest representable positive number and a warning message will be
printed.

2-1

TERM: E NOTATION

Defined: A means of expressing numbers having more than six decimal digits in the form of a
decimal number raised to some power of 10.

E notation is used to print numbers greater than six digits. (See PRINT.) It may also be used to

input any number. When entering numbers in E notation, leading and trailing zeros may be omitted
from the number; the + sign and leading zeros may be omitted from the exponent.

EXAMPLES:

1.00000E+06 is equivalent to 1000000 and is read:
“] times 10 to the sixth power” (1x10°).

1.02E+4 is equal to 10200
1.02000E-04 is equal to .000102

TERM: SIMPLE VARIABLE
Defined: A letter (from A to Z); or a letter immediately followed by a number (from 0 to 9).
Variables are used to represent numeric values. For instance, in the statement:
10 LET M5 = 96.7
M5 is a variable; 96.7 becomes the value of the variable M5.

There are two other types of variables in TSB, array and string variables; their use is explained in
Sections V and VI respectively.

EXAMPLES:
A0 B
M5 Cc2
Z9 D

TERM: EXPRESSION

Defined: A combination of variables, constants and operators which has a numeric value.

EXAMPLES:

(P+5)/27

(where P has previously been assigned a numeric value.)

Q-(N+4)
(where @ and N have previously been assigned numeric values.)

TERM: ARITHMETIC EVALUATION

Defined: The process of calculating the value of an expression.

THE ASSIGNMENT OPERATOR
SYMBOL: =

GENERAL FORM: LET variable = expression

variable = expression
The assignment operator assigns an arithmetic or logical value to a variable.

When used as an assignment operator, = is read ‘‘takes the value of,” rather than “equals”. It is,
therefore, possible to use assignment statements such as:

100 LET X = X+2
This is interpreted by TSB as: “LET X take the value of (the present value of) X, plus two.”
Several assignments may be made in the same statement, as in statements 10 and 50 below.

See Section VII, “Logical Operations” for a description of logical assignments.

EXAMPLES:

10 LET A = B2 = C =0

20 LET A9 = C5

30 Y = (N=CR+5)D/T

L0 N5 = A + B2

50 P5 = P6 = P7 = A = B = 98.6

2-3

ARITHMETIC OPERATORS
SYMBOLS: T*/+-

Each symbol represents an arithmetic operation, as:

exponentiate:
multiply:
divide: /
add: +
subtract: -

The ““-”’ symbol is also used as a sign for negative numbers. It is good practice to separate arithmetic
operations with parentheses when unsure of the exact order of precedence. The order of precedence
(hierarchy) is:

t

*/

+ -

with 1 having the highest priority. Operators on the same level of priority are acted upon from left
to right in a statement. See “Order of Precedence” in this Section for examples.

EXAMPLES:

40 LET N1 = X-5

50 LET C2 = N+#3

60 LET A (B-C)/h

70 LET X - CCP+2)-CY®X)D/N+Q

RELATIONAL OPERATORS
SYMBOLS: = # <> > < >= <=

Relational operators determine the logical relationship between two expressions, as

equality: =
inequality: or: <>
greater than:

less than:

greater than or equal to:

NV AV #

less than or equal to:

Note: It is not necessary for the novice to understand the nature of
logical evaluation of relational operators at this point. The
comments below are for the experienced programmer.

Expressions using relational operators are logically evaluated, and assigned a value of ‘“‘true” or
“false” (the numeric value is 1 for true, and O for false).

When the = symbol is used in such a way that it might have either an assignment or a relational
function, TSB assumes it is an assignment operator. For a description of the assignment statement
using logical operators, see Section VII, “Logical Operations.”

EXAMPLES:

100 IF A=B THEN 900

110 IF A+B >C THEN 910
120 IF A+B < C+E THEN 920
130 IF C>= D¥E THEN 930
140 IF C9<= G*H THEN 940
150 IF P2#C9 THEN 950

160 IF J <> K THEN 950

MIN AND MAX OPERATORS
SYMBOLS: MIN
MAX

The MIN or MAX operator selects the larger or smaller value of two expressions.

In the examples below, statement 110 selects and prints the larger value: since X =7.5andY =12.0,
the value of Y is printed. The evaluation is made first, then the statement type (PRINT) is executed.

EXAMPLES:

10 LET A=A9=P2=P5=C2=X=7.5
20 LET B5=D8=Q1l=Q4=Y=B=12.0

80 PRINT (A MIN 10D

90 LET B=(CA MIN 10)+100

100 IF (A MIN B5) > (C2 MIN D8) THEN 10
110 PRINT (X MAX YD

120 IF (A9 MAX B) <= 5 THEN 150

2-5

THE AND OPERATOR
SYMBOL: AND

The AND operator forms a logical conjunction between two expressions. If both are ‘“true”, the
conjunction is “true’’; if one or both are “false’’, the conjunction is “false’’.

Note: It is not necessary for the novice to understand how this

operator works. The comments below are for experienced
programmers.

The numeric values are: ‘‘true’ =1, “false” = 0.

All non-zero values are ‘“‘true”. For example, statement 90 below would print either a0 ora 1
(the logical value of the expression X and Y) rather than the actual numeric values of X and Y.

Control is transferred in an IF statement using AND, only when all parts of the AND conjunction
are “true”. For instance, example statement 80 requires four “true” conditions before control is

transferred to statement 10.

See Section VII, “Logical Operations” for a more complete description of logical evaluation.

EXAMPLES:

60 IF A9<B1 AND C#5 THEN 100

70 IF T7#T AND J=27 THEN 150

80 IF P1 AND R>1 AND N AND V2 THEN 10
90 PRINT X AND Y

THE OR OPERATOR
SYMBOL: OR
The OR operator forms the logical disjunction of two expressions. If either or both of the

expressions is ‘““true”’, the OR disjunction is ‘““true”’; if both expressions are ‘“false” the OR dis-
junction is “false”.

Note: It is not necessary for the novice to understand how this
operator works. The comments below are for experienced
programmers.

The numeric values are: ‘“‘true’ = 1, “false’” = 0.
All non-zero values are ‘““true’’; all zero values are “false”.

Control is transferred in an IF statement using OR, when either or both of the two expressions
evaluate to “true”’.

See Section VII, “Logical Operations” for a more complete description of logical evaluation.

EXAMPLES:

100 IF A>1 OR B<5 THEN 500

110 PRINT C OR D

120 LET D = X OR Y

130 IF (X AND Y) OR (P AND Q) THEN 600

THE NOT OPERATOR

SYMBOL: NOT

The NOT operator logically evaluates the complement of a given expression.
Note: It is not necessary for the novice to understand how this

operator works. The comments below are intended for experienced
experienced programmers.

If A=0, then NOT A = 1;if A has a non-zero value, NOT A = 0.

The numeric values are: “true” = 1, “false” = 0; for example, statement 65 below would print <1,
since the expression NOT (X AND Y) is “true”.

Note that the logical specifications of an expression may be changed by evaluating the complement.
In statement 35 below, if A equals zero, the evaluation would be “true’ (1); since A has a numeric
value of 0, it has a logical value of “false’’, making NOT A “‘true”.

See Section VII, “Logical Operations’ for a more complete description of logical evaluation.

EXAMPLES:

30 LET X = Y = 0
35 IF NOT A THEN 300

45 1F (NOT C) AND A THEN 400
55 LET B5 = NOT P

65 PRINT NOT (X AND Y)

70 IF NOT (A=B) THEN 500

EXECUTION ORDER OF PRECEDENCE

The order of performing operations follows:

1 highest precedence
NOT

*

+ -

MIN MAX

Relational Operators

AND

OR lowest precedence

If two operators in an expression are on the same level, the order of execution is left to right within
the statement.

5+ 6*7 is evaluated as: 5 + (6x7)
7/14*2/5 is evaluated as: (7/14)x2
5

Unary + and - may be used; parentheses are assumed by TSB. For example:

A++B is evaluated as: A+(+B)
C+-D is evaluated as: C+(-D)

Leading unary plus signs are omitted from output resulting from program execution, but remain in
program listings.

A MIN B MAX C MIN D is evaluated as:
((A MIN B) MAX C) MIN D

Operations enclosed in parentheses are performed before any operations outside the parentheses.

When parentheses are nested, operations within the innermost pair of parentheses are performed
first.

STATEMENTS

Be sure you know the difference between statements and commands.

Statements are instructions to the system. They are contained in numbered lines within a program,
and execute in the order of their line numbers. Statements cannot be executed without running a
program. They tell the system what to do while a program is running.

Commands are also instructions. They are executed immediately, do not have line numbers, and
may not be used in a program. They are used to manipulate programs, and for utility purposes,

such as logging on and off.

Here are some examples mentioned in Section I:

Statements Commands
LET HELLO
PRINT BYE
INPUT LIST

Do not attempt to memorize every detail in the ‘““Statements’ subsection; there is too much
material to master in a single session. By experimenting with the sample programs, and attempting
to write your own programs, you will learn more quickly than by memorizing.

2-9

The ASSIGNMENT Statement

GENERAL FORM:

statement number LET variable = number or expression or string or variable. . .
or

statement number variable = number or expression or string or variable. . .

The ASSIGNMENT statement used to assign or specify the value of a variable. The value may be
an expression, a number, string or a variable of the same type.

Note that LET is an optional part of the assignment statement.

The assignment statement must contain:

1. The variable to be assigned a value.

2. The assignment operator, an = sign.

3. The number, expression or variable to be assigned to the variable.

Statement 20 in the example below shows the use of an assignment to give the same value (0) to
several variables. This is a valuable feature for initializing variables in the beginning of a program.

EXAMPLES:

10 LET A = 5.02
20 X = Y7 =Z =20
30 B9 = 5% (Xt2)
40 LET D = (3%C24N)/C(A®(N/2))

x

REM Statement
GENERAL FORM: statement number REM any remark or series of characters
The REM statement allows insertion of a line of remarks or comment in the listing of a program.

The REM statement must be preceeded by a line number. Any series of characters may follow REM.

2-10

REM lines are saved as part of a BASIC program, and printed when the program is listed or
punched; however, they are ignored when the program is executing.

Remarks are easier to read if REM is followed by a punctuation mark, as in the example statements.

EXAMPLES:

10 REM--THIS IS AN EXAMPLE
20 REM: OF REM STATEMENTS
30 REM-—--- VAL RNy
40 REM. STATEMENTS ARE NOT EXECUTED BY TSB

GO TO and Multibranch GO TO Statements

GENERAL FORM:

statement number GO TO statement number

statement number GO TO expression OF sequence of statement numbers
GO TO is used to transfer control to the statement specified.

GO TO expression. . rounds the expression to an integer n and transfers control to the nth state-
ment number following OF.

GO TO may be written: GOTO or GO TO.

GO TO must be followed by the statement number to which control is transferred, or expression OF,
and a sequence of statement numbers.

GO TO overrides the normal execution sequence of statements in a program.

If there is no statement number corresponding to the value of the expression, the GO TO statement
is ignored.

2-11

Useful for repeating a task infinitely, or “‘jumping” to (GOing TO) another part of a program if
certain conditions are present.

GO TO should not be used to enter FOR-NEXT loops; doing so may produce unpredictable results
or fatal errors.

EXAMPLES:

10 LET X = 20

.

40 GO TO X+Y OF 410,420,430
50 GOTO 100

80 GOTO 10

90 GO TO N OF 100,150,180,190

IF ... THEN Statement
GENERAL FORM: statement number IF expression THEN statement number
Control is transferred to a specified statement if a specified condition is true.

Sometimes described as a conditional transfer; GO TO is implied by IF . .. THEN, if the condition
is true. In the example above, if X < 10, the message in statement 60 is printed.

Because numbers are not always represented exactly in the computer, the = operator should be
used carefully in IF . . . THEN statements. <=,>=, etc. should be used in the IF expression,
rather than =, whenever possible.

If the specified condition for transfer is not true, then the program will continue executing in
sequence. In the example below, if X>=10, the message in statement 40 will be printed.

See ‘“‘Logical Operations,” Section VII for a more complete description of logical evaluation.

SAMPLE PROGRAM:

10 LET N = 10

20 READ X

30 IF X < N THEN 60

L0 PRINT "X IS 10 OR OVER"
50 GO TO 80

60 PRINT "X IS LESS THAN 10"
70 GO TO 20

80 END

2-12

FOR. . .NEXT Statement

GENERAL FORM:

statement number FOR simple variable = initial value TO final value
or

statement number FOR simple variable = initial value TO final value STEP step value

statement number NEXT simple variable

Note: The same simple variable must be used in both the FOR and
NEXT statements of a loop.

The FOR. . .NEXT statements allow repetition of a group of statements within a program.
Initial value, final value and step value may be any expression.

The simple variable is assigned the value of the initial value; the value of the simple variable is
increased by 1 (or by the optional step value) each time the loop executes. When the value of
the simple variable passes the final value, control is transferred to the statement following the

NEXT statement.

STEP and step value are optional. For further details on the STEP feature, see “FOR. . .NEXT
with STEP” in Section III.

2-13

NESTING FOR. . .NEXT LOOPS: Multiple FOR. . NEXT statement loops may be used in the
same program; they may also be nested (placed inside one another). There are two important
features of FOR. . .NEXT loops:

1. FOR.. .NEXT statement loops may be nested.

——— 10 FOR A1=1TO 5
—— 20 FOR B2=NTOP
Range of loop A1~ 30 FOR C3 =X TO Y STEP R

\

Range of loop B2 —|

Range of loop C3 —| | 80 NEXT C3
L 90 NEXT B2
100 NEXT A1

2. The range of FOR. . NEXT statement loops may not overlap. The loops in the example above
are nested correctly. The following example shows improper and illegal nesting.

—— 10 FORI=1TO5

——30FORJ=1TON
The range of loops
I and J overlap.

50 NEXT I

— 90 NEXT J

Sample Program with a variable number of loops:

40 FREINT "HOW MAMY TIME:Z DO YOU WAMT TO LOGOF™ s
S0 INPUT A

0 FOR J=1 TO A

0 PRIMT "THI= I LDOFR" S

20 FEERD M1 sMHZ M3

20 FREINT "THEZE DATA ITEM:E WERFE RERD:"H1 iz fHZ
100 PEIMT "ZUM =" iH1+M2+M32

110 HEXT J

120 TATA Ss6s7

120 DATH 132.14 F=RIET=S

140 DRATH 22253 == R PN

150 DATAR 21.32

160 EHD

2-14

EXAMPLES:

100 FOR P1 =1 TO 5

.
.

170 NEXT P1

120 FOR R2 = N TO X STEP 1

150 NEXT R2

110 FOR Q7 = N TO X

130 FOR S = 1 TO X STEP Y
140 NEXT S

160 NEXT Q7

READ, DATA, and RESTORE Statements
GENERAL FORM:

statement number READ variable , variable,
statement number DATA number or string, number or string,
statement number RESTORE

statement number RESTORE statement number

The READ statement instructs TSB to read an item from a DATA statement. READ statements
require at least one DATA statement in the same program.

The DATA statement is used for specifying data in a program. The data is read in sequence from
first to last DATA statements, and from left to right within the DATA statement. TSB maintains
a data pointer as each item is read. Items in a DATA statement must be separated by commas.
String and numeric data may be mixed. Programmers mixing string and numeric data may find
the TYP function useful. See “The TYP Function”, Section IV.

DATA statements may be placed anywhere in a program. The data items will be read in sequence
as required. DATA statements do not execute; they merely specify data.

The RUN command automatically sets the data pointer to the first data item.
The RESTORE statement resets the data pointer to the first data item, allowing data to be re-read.

RESTORE followed by a statement number resets the pointer to the first data item, beginning at
the specified statement.

2-15

If you are not sure of the effects of READ, DATA, and RESTORE, try running the sample programs.

EXAMPLES:

Sample Program # 1

In this program, each data item is read only once. TSB keeps track of data with a pointer. When
the READ statement is encountered for the first time, the pointer indicates that the first item in

the DATA statement is to be read; then, the pointer is moved to the second item of data, and so on.
After the loop has executed five times, the pointer remains at the end of the data list.

1% FOR I=1 TO 5

&0 RERD R

40 LET ==At2

45 FRIMT A" ZRUAFED ="3

S0 MEST I

25 DATA S.89:6 .75 20,2272 .65 .89.72
23 EMD

Sample Program # 2

In this program, statements 55 through 80 are inserted into the program. The RESTORE statement
resets the pointer to the first data item, allowing data to be re-read for the second portion of the
program.

15 FOFE I=1 TO 5

&0 FEERD A

40 LET =Rt

45 FREIMT A" ZOURRED =" 8k
50 MEST 1

S5 EREEZTORE

&0 FOR J=1 TO %
=5 FERD E

T LET %=E+4

7S FRINT Ei" TO THE FOURTH FOWER =Y
20 MEXT

95 DATA S.2416.75 30,8 72.65.82.72

23 EMD

2-16

INPUT Statement

GENERAL FORM: statement number INPUT variable, variable,

The INPUT statement requests data to be input from the user terminal for subsequent assignment
to a variable. When the INPUT statement is encountered, the program comes to a halt and a
question mark is printed on the user’s terminal. The program does not continue execution until

the input requirements are satisfied.

Only one question mark is printed for each INPUT statement. The statements:
10 INPUT A, B2, C5, D, E, F, G

and

20 INPUT X

each cause a single question mark to be printed. Note that the question mark generated by state-
ment 10 requires seven input items, separated by commas, while that generated by statement 20
requires only a single input item.

The only way to stop a program when input is required is to enter C€ followed by a carriage return.
Note that C aborts the program; it must be restarted with the RUN command.

RELEVANT DIAGNOSTICS: One of the following responses may be printed on the user terminal
following user input:

?? indicates that more input is required to
satisfy the INPUT statement.

??? indicates that TSB cannot decipher your
input.

EXTRA INPUT-WARNING ONLY indicates that extra input was entered;

excess data items have been ignored; the
program is continuing execution.

2-17

Sample Program:

FOFE M=1 TO =

INFUT R

IHFUT H] fESACE S0 298ES

FEIMT "WHAT YALLUE =HOULD BE AR=ZIGHED TO EU

=

i BRSO B I N |

1 INFUT E

0 PEINT ASALIEZSCZZ0529ESs"R="3F
0 HE=T H

0 EMD

MHH? YALUE THOULD BE ASSIGHED TO R7ET

1 c] 34 = = 7 F= 27
T2 .S 2. S ad . S5 L AT L
TFE.1
WMHAT “ALUE =ZHOULD EE ASIZIGHED TO RT-399
1.5 2.5 2.5 3. & T.e
2.1 E=—23
DOMHE
PRINT Statement

GENERAL FORM:

statement number PRINT expression , expression ,
or
statement number PRINT “‘any text” ; expression ;
or
statement number PRINT “‘text’ ; expression ; “text”, ‘“‘text™ ;...
or
statement number PRINT any combination of -text and/or expressions and/or TAB, LIN, and SPA
or

statement number PRINT

2-18

The PRINT statement causes the value(s) of the expression(s) to be output to the terminal device.
In addition, it causes the terminal device to skip a line when used without an operand and causes
text within quotes to be printed literally.

The terminal device may be a user terminal or the line printer.

Note the effects of , and ; on the output of the sample program. If a comma is used to separate
PRINT operands, up to five fields will be printed per line. These five fields begin in columns 0, 15,
30, 45, and 60. If semicolon is used, up to twelve ““packed’ numeric fields will be output per line;
the exact number depends on the size of each numeric field. If semicolons are used between text
in quotes, it is possible to print a full 72 characters on a line.

A carriage return and linefeed are output after the execution of any PRINT statement unless the
list of items to be printed is terminated by a comma or semicolon, in which case the next PRINT
statement will begin on the same line.

Values output by PRINT statements are in one of four possible numeric formats, depending on the
value. These values and their formats are:

Value Field Examples
733

-999 < integer < 999 <ddd, , ., -214
~32767 < integer < -1000 ~-ddddd, , , -1234
1000 < integer < 32767 7515

all other integers <ddddddda aan 131072.
.000001 < and all < 999999.5 (one d is «.” 14.6

reals in range trailing zeroes -.003456

are suppressed.)

All numbers n such that 1.97343E+06
n < .000001
999999.5<n <d.dddddE+dd, , . -6.91112E+15

Each “d” represents one decimal digit; each “z”’ means the sign if negative, a space if positive;
each ““.”’ means a space; each * means the sign.

2-19

Insertion of the special functions TAB, SPA, and LIN into the output list provides carriage control:

TAB (expression) Causes the carriage to move to the specified print column (0-71). No
action is taken if the move would be to the left. The carriage moves to

the beginning of the next line if expression >71. (To TAB beyond
column 72 see PRINT USING statement.)

SPA (expression) Causes carriage to skip specified number of spaces (“‘print that number of
blanks’’). A negative expression does nothing. If more spaces are requested
than remain in the line, the carriage moves to the beginning of the next line.

LIN (expression) Generates a carriage return and the specified number of linefeeds. If the

expression is negative, then no carriage return is generated. LIN (0) pro-
duces a single carriage return.

0° printed in a character string causes a carriage return to be output instead.
N¢ printed in a character string causes a linefeed to be output instead.

The PRINT USING statement, which provides increased output formatting capabilities, is described
in Section VIII.

Sample Program 1

10 FOR H=-5 TO =0
20 PRINT 2tH3

30 MEXT M

40 ENI

---------------------------------- RESULTS - - - - - e i e e i e e e e e e oo
FUM
31 o5] i c
4 12 o] 51 103 ongs
403 =S, ES53E . 121072, cecldd
Sz242 AT1ISE+ 08 4,134 Z0E+ 0% oLIZEERIE+ DS
1.67 &L 1 0S3E+07 1.24212E+02 C.E2IEI5E+D
5 -.E:E'
DONE

2-20

Sample Program 2

10 LET RA=B=C=I=E=F=iG=14

S0 LET Di=E3=z0
20 PRIMT ALD1ECEZ
4 FRIMT A-EsB-C-TD1+EZ
S0 FRIWMT "HOTE THE FOMER TO EVWALURTE AM EXFFEZZION AMD FRINT ©
& FRIMT "THE “ALUE IM THE ZAME ZTRATEMEMT.™
T FFINT
20 EFEEM: "PRIMT" WITH MO OFEERND CRUZEZ THE TELEFRIMTER TO
21 REM: ZEIP AR LIME.
20 PRIWNT "“RS DIVIDED EY “E27 ="3iR-E93
100 FREINMT
110 FRINT A It I I
120 PRIMNT RN
120 FPRINT
140 FREINT
150 FRINT
150 FEINT PATFUNMCTIONE
170 EHMD
---------------------------------- RESULTS - - - - s s e e e e e e e a o
FLIMH
14 =0 14 14 20
1 S ns
HOTE THE FOWER TO EYRLUARTE HM ESFREZZION AMHD FRINMT
THE “ALLUE IM THE =AME =TRTEMENMT.
“HY DIVIDED EY “E9Y = .7
11111 cecee DS HAARAA EEEREE
CCooC
1111122828223 232ARARRAREREEECCCCC
14 14 14 14 cn
14 14 20 14
14 14 14 14 z0 14 14 2 14
CHERIAGE COMTROL
FUMCTIONE
IOHE

2-21

END and STOP Statements

GENERAL FORM:

any statement number STOP
any statement number END

highest statement number in program END

Terminates execution of the program and returns control to TSB.
The highest numbered statement in the program must be an END statement.
END and STOP statements may be used in any portion of the program to terminate execution.

END and STOP have identical effects; the only difference is that the highest numbered statement
in a program must be an END statement.

EXAMPLES:

200 IF A # 27.5 THEN 350

300 STOP

350 LET A = 27.5

500 IF B # A THEN 9999

550 PRINT "B = A"
600 END
9999 END

2-22

SAMPLE PROGRAM

If you understand the effects of the statement types presented up to this point, skip to the
“COMMANDS”’ section.

The sample program on the next two pages uses several BASIC statement types.

Running the program gives a good idea of the various effects of the PRINT statement on terminal
device output. If you choose to run the program, you may save time by omitting the REM
statements.

After running the program, compare your output with that shown under “RUNNING THE SAMPLE
PROGRAM?”. If there is a difference, LIST your version and compare it with the one presented on
the next two pages. Check your PRINT statements for commas and semicolons; they must be used
carefully.

10 REMAEE: "EEMAEE" OF "FEM" Iz UZED TO IMDICATE EEMAREELZ OF
20 REMARE : COMMEMTE THE UZER WANMTE TO IMCLUDE IM THE TE=®T

20 REM: OF HIZ FROGREAM. THE COMFUTER LIETZ AMD FUHCHEEZ THE
40 FEM: "REMAFE" LIME. EUT DOEZ HOT ESECUTE IT.

S0 REM: "FPRIMT" ALOME GEMERATE:Z A "RETUEM" AMD "LIMEFEED".
el FPREINT

0 OFRINMT "THIZ FEREOGEAM WILL RYERRRE AHY GEOUF OF HUMEBEERZ:M

20 PRIMT "vOU ZPECIFY . IT WILL AZE ALL HECEZZAEY QUEEZTIOME"
20 FREIMT "AMD GIVE IMZTEUCTIOMZ . FREZE THE EETUEH EEY AFTEER"
110 FPRIMT YO TYFE YOURE REFLY."

120 FRINT LIMoCZD

140 FEM: FIRZTs ALL “AFRIAELEZ UZED IH THE rFfROGEAM AEE IMH-
120 FEM: ITIRLIZED TO ZERO CTHEIR YARLWUE IZ ZET AT ZERO).

&0 LET A=H=FK1=Z=0

120 REM: HOW THE UZER WILL EBE SIYEM A CHAMCE TO ZPECIFY HOW
120 FEEM: MAMY HMUMEEREZ HE WAMTE TO AYERAGE.

S0 FPRINT "HOW MAMY HUMEERE DO 0L WAHT TO RAVERRGE™ s

210 IMFUT H

ool PRINMT

220 PRIMT "O.KE.s TYFE IM OME DF THE " 3iH3i"MUMEBERT AFTER ERCH"
240 PRIMT "QUEZTIOWM MAFE. DOMST FORGET TO FREEZE THE RETUREH"
o4l FRIMT "EEY HAFTEFR EACH HUMEER'EII®

250 FRINT LIM:Z:

2l FPRIMT “"HMOWs LET Z BERINM"

270 FRINT

220 FPRINT

2000 REM: "H" IZ HOW UZED TO ZET UF A "FOR-ME=T" LOOF WHICH
210 FREM: WILL FERD 1 TO W MHUMEERE AMD EEEF A FUMMHIMG TOTHAL.

220 FOR I=1 7O H

230 IMFUT A

340 LET ==3Z+AR

50 MERT 1

FEM: "I" IZ A “YARIRELE UEED RAE A COUMTER FOR THE HUMEEFR
FEM: OF TIMEZ THE TARZE ZFECIFIED IM THE "FOR-HEXT™ LOOF
FEM: IZ EXECUTED. "R" I:% A WARIAELE UZED TO REFREZENT
FEM: THE NUMEEFR TO EE AYERARGED. THE “YALLUE OF "A" I=
FEM: CHAMGED EARCH TIME THE WEER IMFUTZ A HUMEER.

U K 4

PO O P TR T I |

Lol
)

2-23

420 REM: "= WARET CHOZEHM AT THE YARIRELE TO FREFFEZEMT THE
40 REEM: ZUM OF ALL HUMEER TO EE RAWERRAGED. AFTER THE LOOF
440 REM: IE EXECUTED "H" TIMEZs THE FPROGERAM COMTIMLEZ.

40 FEM: A ZUMMAERY I3 FRIMTED FOR THE UZER.
470 FRINT

420 PRINT

430 PRIMT HIi"MUMEERE:S WERE IMFUT."

S0n PRIMT

510 FRIMT "THEIR ZUM IZ:"iZ

520 FRINMT

20 FRINT “"THEIR RYWEFAGE IZ:" 32N

540 FPRIHWT

550 PRINT

570 REM: MHOW THE UEER WILL EE SINVEM THE OFTIOW OF QUITTIHG

220 REM: OF REZTARTIME THE FROGERAM.

530 PRINT "DO Y0OL WAMT TO AVERAGE ANOTHER GROUF OF MIMEBEERZT"

00 FRIMT
FRIMT "TYFE 1 IF ¥YEZ. 0 IF HO"

T (T
T
s B

FRIMT

FRIMT "vOURE REFLY":
IMFUT F1

IF R1=1 THEH 1Z10

S T e B

FEM: REFLY.

IF Ri:0 THEH 700

=070 720

FREINT "TO REITERATE . 4O SHOULD TYFE 1 IF YEZ»
=070 &40

EMHD

=g =) b T T T T T T T T o]
B R W Y R B AR) (Y S R
P B o i e B e R

M3 o=

Running The Sample Program

FLIM

THIZ PROGEAM WILL AYERRGE AMY SROUF OF HUMEERS

TOW ZFECIFY. IT WILL, AZK ALL MECEZZARY QUESTIOMS
AND GIVE IMETRUCTIOMEZ. FREZZ THE FETURM KEY AFTER
YOU TYFPE %OUR REFLY.

HOW MAMY HUMEERE DO YOU WAMT TO AVERAGETS
O.k.s» TYFE IM OME OF THE S HUMEERE AFTER ERCH

RUEZTION MARK . DOM-T FORGET TO FREZZ THE FETURM
KEY RFTER ERCH HUMEER!Y?

2-24

0

FEINT "BE ZURE TO FRE=E THE RETURM EEY RFTEE YOUR FEFLY."

FEM: THE FOLLOWIMGE LIMEZ AMTICIPATE A MIZTAKE IM THE

IF Horit”

MOWs LET"Z BEGIN

Ly

bl HUMEERZ WERE IMNFUT.

THEIR ZUM TZ: 442,

THEIFR AYERAGE IZ: 25 .56

o v0Ou WAMT 7O AYERARGE RHOTHERE GRDOUF OF MHUMEBERSET

TYFE 1 IF ¥EZ» 0 IF HD
BE ZURE TO FREZZ THE RETURM KEY AFTER 7TOUR REFLY .
YOUR REFLYTE

TO FEITERATE: ¥OU ZHOULD TYFE 1 IF YES. 0 IF HO!!S
YOUR REFLYT0

noME

COMMANDS
Remember the difference between commands and statements (See “Statements” in this section).

Commands are direct instructions to the system, and are executed immediately. They are used to
manipulate programs, and for utility purposes.

Note that all TSB commands may be abbreviated to their first three letters. If information is
required or permitted after a command, a hyphen ‘-’ must be included. For example, when
logging in:

HEL-H200,sE cCRCECT

Do not try to memorize all of the details in the COMMANDS subsection. The various commands
and their functions will become clear to you as you begin writing programs.

2-25

HELLO Command

GENERAL FORM:

HELLO-idcode, password, terminal type
HEL-idcode, password

The HELLO command is used to log on to the TSB system. The user’s idcode and password are
assigned by the system operator. The terminal type parameter informs TSB of the type of user
terminal being logged on. Terminal type is specified as one numeric digit as follows:

0 = HP 2600A or HP 2749A (default)
1 = Execuport 300

2 = ASR-37

3 = TermiNet 300

4 = Memorex 1240

Failure to specify the correct type number may result in a loss of characters. If terminal type is
omitted the system assumes the terminal is an HP 2600A or HP 2749A. It is not necessary to
specify a type number when logging on from an IBM 2741 terminal; type and character
composition (total bits per character including the start and stop bits) are determined automatically
by the system for this terminal.

Several users with the same idcode may be logged on to the computer simultaneously, using
different terminals.

EXAMPLES:

HELLO-D007,POSCT, 2
HEL-Z123,TSB
HEL-A453, GEORGE, 3

2-26

BYE Command

GENERAL FORM: BYE

The BYE command is used to log off the TSB system.

Entry of this command logically disconnects the user from the TSB system. Telephone connection
is broken.

EXAMPLE:

BYE
009 MINUTES OF TERMINAL TIME

ECHO Command

GENERAL FORM:

ECHO-ON
or
ECHO-OFF

The ECHO command allows use of half-duplex terminal.

Users with half-duplex terminal equipment must first log on, then type the ECHO-OFF command;
then input and output becomes legible.

ECHO-ON returns a user to the full-duplex mode.

This command may be abbreviated to its first three letters.

EXAMPLES:

ECHO-OFF
ECH-ON

2-27

RUN Command

GENERAL FORM:

RUN
RUN- statement number

Entry of the RUN command starts execution of a program at the lowest numbered statement when
used without specifying a statement number. It starts execution of a program at the specified
statement when a statement number is used.

Note that when RUN- statement number is used, all statements before the specified statement will
be skipped. Variables defined in statements which have been skipped are therefore considered to be
undefined by TSB, and may not be used until they are defined in an assignment, INPUT, ENTER,
READ, or LET statement.

A running program may be terminated by pressing the break key; or, to terminate a running pro-
gram at some point when input is required, type cC.

EXAMPLE:

RUN
OR
RUN- 300

LIST Command
GENERAL FORM:

LIST

LIST- statement number

LIST- statement number , statement number
LIST-, statement number

LIST- statement number , statement number P
LIST-P

LIST- statement number , P

LIST-, statement number , P

This command produces a listing of all statements in a program (in statement number sequence)
when no statement number is specified.

2-28

When a statement number is specified, the listing begins at that statement.
When a second statement number is specified, listing ends with that statement.

When a “,”” and a statement number appear, listing starts at the beginning and ends with the
specified statement.

When “P” is specified, the listing is spaced for cutting into 11-inch sheets sized for binding or filing.
“P”” must be the final parameter, and must be preceded by a comma if it follows other parameters.

A listing may be stopped by pressing the break key. Library programs designated ‘“‘RUN ONLY”
(protected) by the System Master or Group Master cannot be listed. LIST may be abbreviated to
its first three letters.

EXAMPLE:

LIST
LIST-100
LIST-100, 200

SCRATCH Command

GENERAL FORM:

SCRATCH
or

SCR

This command deletes (from memory) the program currently being accessed from the user terminal.
The user’s work area is cleared including the program name.

Scratched programs are not recoverable. For information about saving programs on paper tape or
in your personal library, see the NAME and SAVE commands in Section III, and the PUNCH
command in this section.

EXAMPLE:

SCRATCH
OR
SCR

2-29

RENUMBER Command

GENERAL FORM:

REN
or

REN-number assigned to first statement
or

REN-number assigned to first statement , interval between new statement numbers
or

REN-number assigned to first statement, interval between new statement numbers, starting
statement number, ending statement number

or

REN-number assigned to first statement, interval between new statement numbers, starting
statement number

The RENUMBER command is used to renumber statements in the current program.

Statement numbers referenced within GO TO, GOSUB . . . Return, IF . . . THEN, RESTORE, and
PRINT USING statements are automatically replaced with the appropriate new number.

Starting statement number and ending statement number refer to line numbers in the original pro-
gram at which the renumbering is to start and end.

If ending statement number is not specified, it is assumed to be the last statement in the program.
If starting statement number is not specified, it is assumed to be the first statement in the program.
If both starting and ending statement numbers are omitted, the entire program is renumbered.

If no interval is specified, the new numbers are spaced at intervals of 10, from the beginning
statement.

If no parameters are stated, the entire program is renumbered starting with statement 10 at intervals
of 10.

RENUMBER can not be used to change the order of statements in a program.

Any parameter may be omitted, but all parameters following it must also be omitted.

2-30

EXAMPLES:

RENUMBER
REN
REN-100
REN-10, 1
REN-20, 50

REN-10, 10, 50, 100

PUNCH and XPUNCH Commands

GENERAL FORM:

PUN

PUN- statement number

PUN- statement number , statement number
PUN- statement number , statement number , P
PUN- , statement number

PUN- P

XPU

XPU- statement number

XPU- statement number , statement number
XPU- statement number , statement number , P
XPU-, statement number

XPU-P

These commands punch a program onto paper tape if the user terminal has a paper tape punch;

also punches the program name, and leading and trailing feed holes on the tape; lists the program

as it is punched. Punching can begin and/or end at specified statements; ‘“P*’ provides the pagination
option (see LIST).

If the user terminal is not equipped with a paper tape reader/punch, only a listing is produced.

Remember to press the paper tape punch “ON”’ button before pressing the return after PUNCH.

2-31

XPUNCH produces the same results as punch, but adds an X-OFF character at the end of each line
(before return linefeed) to enable other BASIC programs to read the paper tape as data. (See
Appendix B.)

EXAMPLES:

PUNCH
PUN- 100, 200
PUN- 100, 200, P
PUN-65

PUN-, 300

XPUNCH

XPU- 65, P

XPU- P

TAPE Command

GENERAL FORM:
TAPE
or

TAP

The TAPE command informs the system that following input (a group of BASIC statements) is
from paper tape.

TAPE suppresses any diagnostic messages which are generated by input errors, as well as the auto-
matic linefeed after return. The KEY command or any other command, causes the diagnostic

messages to be output to the user terminal, ending the TAPE mode.

TSB responds to the TAPE command with a linefeed after which the user may activate the tape
reader START switch.

This command is illegal if entered from an IBM 2741 Communications Terminal.

EXAMPLES:

TAPE
TAP

2-32

KEY Command
GENERAL FORM: KEY

The KEY command informs the system that following input will be from the user terminal key-
board; used only after a TAPE (paper tape input) sequence is complete; causes error messages
suppressed by TAPE to be output to the terminal.

Any command followed by a return has the same effect as KEY. Commands substituted for KEY
in this manner are not executed if diagnostic messages indicating syntax errors in BASIC statements
were generated during tape input.

EXAMPLE:

KEY

LPRINTER Command

GENERAL FORM:

LPRINTER[-character string]
or

LPR[-character string]

The LPRINTER command requests that system designate the line printer as the user’s output
device.

If successful, a linefeed occurs at the user’s terminal. The line printer performs a page eject and
the character string, if specified, is printed. The character string may be 1-132 characters in
length.

Once assigned to a user, the line printer is designated as that user’s output device and output
generated by the next entered command is printed on the line printer. After the entered command
is executed, or when the program ends (or is terminated by the user) line printer control is returned
to the system and the message LP FREE is displayed on the user’s terminal.

2-33

LINE PRINTER CARRIAGE CONTROL: The line printer connected to the system may be one of
the following:

Model No. Carriage Width Print Speed
HP 2610A 132 columns 200 lpm
HP 2614A 132 columns 600 Ipm
HP 2767A 80 columns 300 lpm
HP 2778A 120/132 columns 300 Ipm

Data designated for line printer output should not exceed the carriage width of-the line printer
because overprinting or truncation occurs (depending on the model used).

During execution of PRINT or PRINT USING statements (with the line printer designated as the
output device), those special characters which normally cause a return cause a line print with no
paper advance. Similarly, characters which normally cause a linefeed or return/linefeed cause a
line print with paper advance.

All string characters except control characters and the DEL character are printed on the line
printer. Lowercase characters are printed as uppercase characters on line printers supporting the
64-character ASCII subset. Support of the 96-character ASCII subset can be obtained as an option
for the 2610A or 2614 A; both lowercase and uppercase characters are printed if this option is
selected.

During execution of an ENTER statement (with the line printer designated as the output device),
an asterisk is displayed on the user’s terminal to signal that data input is expected. Similarly, during
execution of an INPUT statement, an asterisk followed by a question mark is displayed on the
user’s terminal. In addition, ANNOUNCE command messages from the system operator are not
sent to a user who has the line printer assigned as his output device.

When the line printer is designated as the output device, execution errors which result only in a
warning message cause the message to be printed on the line printer; execution with line printer
output continues. Errors fatal to execution result in loss of line printer control; execution halts
and control returns to the user’s terminal. In addition, a system power failure results in loss of

line printer control.

CONTROL CHARACTERS: After line printer control has ioeen established with the LPRINTER
command, mixing of output devices is permitted through use of two control characters:

QC Suspends line printer output and routes subsequent output to the
user’s terminal

we Resumes line printer output

2-34

These control characters must be entered before typing a command or when entering data during
execution of an INPUT or ENTER statement.

Messages Meaning
LP BUSY Displayed on user’s terminal in response to LPRINTER
command if line printer is currently assigned to another
user.
LP DOWN Displayed on user’s terminal if line printer becomes

disabled during output (printer power failure, out-of-
paper condition, etc.). Line printer output resumes
after problem is corrected.

LP NOT AVAILABLE Displayed on user’s terminal in response to LPRINTER
command if line printer is not connected to system

(notify system operator).

LP FREE Displayed on user’s terminal when command or program
ends or when program is terminated by the user.

ILLEGAL FORMAT Displayed on user’s terminal if the string specified in the
LPRINTER command exceeds 132 characters.

EXAMPLE:
A user logs on the TSB System from an ASR-37 user terminal with idcode B003 and password

PSWD. He creates a BASIC program, requests control of the line printer, and enters the RUN
command.

The user terminal display appears:

HEL-EOOZsFZWD .2 User enters HELLO command

FEARDY System response

10 FOR = =1 TO 140 User creates BASIC program

1% FPREIMT “"TEZTLF ": statement

2 MEST A by

¢S PEIWT "EMD OF TEZT" statement

20 EMHD until complete

LFE-FRINTER TEZT User enters LPRINTER command
(Response: CR/LF)

LM User enters RUN command

LF FREE System response on completion of RUN

DOHE

2-35

The line printer output appears:

(PAGE EJECT)

.
.

PRINTER TEST
TESTLP TESTLP TESTLP TESTLP TESTLP TESTLP TESTLP TESTLP TESTLP TESTLP
END OF TEST

TIME Command

GENERAL FORM: TIME

This command causes TSB to inform the user of terminal time used since log on, and total time
used for the account.

Time used by each idcode is recorded automatically by TSB. The system operator controls the

accounting system. Consult your system operator for information about your system’s accounting
methods.

EXAMPLE:

TIME
CONSOLE TIME = 12 MINUTES. TOTAL TIME = 1193 MINUTES.

MESSAGE Command

GENERAL FORM:

MESSAGE-character string
or

MES-character string

The MESSAGE command sends a character string to the system operator, preceded by the user’s
port number.

2-36

Can be used to request information from the system operator, or to have programs sanctified,
desecrated, copied, bestowed, or loaded from or dumped to magnetic tape (see Appendix D).

If the system operator’s message storage area is full, the message:
CONSOLE BUSY

will be printed on the user’s terminal, indicating that the message has not been sent and should be
entered again.

EXAMPLE:

MES-PLEASE SANCTIFY PROGRAM '"DUMMY'", USER Jl1l22.

Break Key

GENERAL FORM: break (Press the break key.)

Pressing the break key terminates a program being executed (RUN) or terminates the execution of
LIST, PUNCH, XPUNCH, CATALOG, GROUP and LIBRARY commands.

Pressing the break key signals the computer to terminate a program, producing the message: STOP.

Depending on the type of terminal, this key may appear on the keyboard as INTRPT, BRK, ATTN,
INTERRUPT, etc.

When break is pressed during a listing, the message STOP is output.
Pressing break will not terminate the program if it is awaiting input from the keyboard while
executing an INPUT or ENTER statement. In this case the only means of ending the program is
typing:

c¢
which produces the DONE message.

break will not delete a program. Type RUN to restart the program. (See also COM, Section III.)

2-37

SECTION 1l
Advanced BASIC

This section describes more sophisticated capabilities of BASIC.

The experienced programmer has the option of skipping the ‘“Vocabulary’’ subsection, and briefly
reviewing the commands and functions presented here. The most important features of the TSB
system - - files, matrices, and strings are explained in the next three sections.

The inexperienced programmer need not spend a great deal of time on programmer-defined and

standard functions. They are shortcuts, and some programming experience is necessary before
their specifications become apparent.

TERM: ROUTINE
Defined: A sequence of program statements which produces a certain result.

Routines are used for frequently performed operations. Using routines saves the programmer the
work of defining an operation each time he uses it, and saves computer memory space.

A routine may also be called a program, subroutine, or sub-program.
The task performed by a routine is defined by the programmer.

Examples of routines and subroutines are given in this section.

TERM: ARRAY

Defined: An ordered collection of numeric data. A single program can have up to about 4900
total array elements (numeric values).

An array variable is any single alphabetic character, A through Z. Subscripted variables define
elements in an array. A,, written A(1), is the first element in the single-dimensioned array called A.
In array A below, the value of A(1) is 5.0:

Array A
Element Value
1 5.0
2 3.2
3 1.1
4 0.3

Double subscripts are used to define elements in two-dimensioned arrays, referring to a row and
column position within an array. Element B(1,3) in array B has the value appearing in the first row,
third column. In this case the value of B(1,3) is 4.

Array B
Column 1 Column 2 Column 3
Row 1 6 5 4
Row 2 3 2 1
Row 3 0 9 8

Array B is a three-by-three array. Arrays need not be square.

If a one-dimensional array has more than ten elements or a two-dimensional array (matrix) has
more than 10 rows and 10 columns, a DIM (dimension) statement is required. The DIM statement
is described in Section V, which covers matrices; a matrix is a rectangular array of elements subject
to mathematical operations according to specified rules.

3-2

TERM: STRING
Defined: 0 to 72 characters enclosed by quotation marks.

Quotation marks may not be used within a string, except when the string is input using an ENTER
statement, described later in this section.

Sample strings: “ANY CHARACTERS!?%*/--->
“TEXT 1234567 . ..”

TERM: FUNCTION

Defined: The mathematical relationship between two variables (X and Y-for example) such that
for each value of X there is one and only one value of Y.

The independent variable is called an argument; the dependent variable is the function value. For
instance, in the statement:

100 LET Y = SQR(X)

X is the argument; the function value is the square root of X; and Y takes the value of the positive
root.

TERM: WORD
Defined: The equivalent of approximately two BASIC characters or one-half of a number.

The term ‘““word” is used to define the basic unit of computer storage. The TSB system operates on
computers having a word structure of 16 binary bits. Each character in BASIC occupies 8 bits of
computer storage; each number (when used in computation) occupies 32 bits. A numeral that
appears in a literal string (Section VI) is not used for computation, and is considered to be a
character.

Therefore, two characters will fit into one computer word, while one number will require two
computer words. Actually, the TSB system requires a few additional computer words of storage,
so programs and files will require slightly more storage than one word for each two characters or
two words for each number. Each user has a working area of 10,000 words. The user need not
normally be concerned about computer words.

3-3

STORING AND DELETING PROGRAMS

Up to this point manipulation of programs has been limited to the ‘“‘current’ program, that is, the
program being written or run at the moment. The only means of saving a program introduced thus
far is the PUNCH command.

The commands on the following pages allow the user to create his own library of programs on the
Time Shared BASIC system. Library programs are easily accessed, modified, and run.

The experienced programmer need only review the commands briefly — they do what their names
imply: NAME, SAVE, etc.

A word of caution for the inexperienced programmer: it is wise to make a ‘““hard”’ copy (on paper
tape) of programs you wish to use frequently. Although it is easy and convenient to store programs
“on-system”, you will make mistakes as you learn, and may accidentally delete programs. It is
much less time consuming to enter a program from paper tape than to rewrite it!

LENGTH Command
GENERAL FORM: LEN

The LENGTH command causes TSB to print the number of words in the program currently being
accessed from the terminal. This is the amount of ‘“‘storage space” needed to SAVE the program.

Each user has a working space of over 10,000 words (20,000 characters or 5,000 numbers).
LENGTH is a useful check on total program length when writing Long programs. During execution,
programs have temporary tables, buffers, etc. which require additional storage space. This larger
total length is not permitted to exceed the user’s working area. See ‘“Memory Allocation by a
User,” Section IX.

EXAMPLES:

LENGTH
3172 WORDS
LEN

151 WORDS

34

NAME Command

GENERAL FORM:

NAME-Program name of 1 to 6 characters

or

NAM-Program name of 1 to 6 characters

This command assigns a name to the program currently being accessed from the teleprinter.

The first character of the program named may not be $ or *. These symbols are used to access the
System Library ($) and the Group Library (*). The comma (,) and quote mark (’’) may not be used

in the name of a program.

The program name must be used in certain TSB operations (see the SAVE, CSAVE, KILL, GET,
and APPEND commands in this section).

Note: If NAME- is entered with no program name or if the hyphen
is omitted, the program cannot be stored with the SAVE or
CSAVE commands.

EXAMPLES:

NAME-PROG.1

NAM-ADDER

NAM-MYPROG

SAVE AND CSAVE Commands
GENERAL FORM: CSAVE or CSA

SAVE or SAV

These commands are used to save a copy of the current program in the user’s private library.
(CSAVE stores the program in semi-compiled form so that it will CHAIN more quickly. See CHAIN.)

A program must be named before it can be saved. (See NAME, this section.)

3-5

No two programs in a user’s library may have the same name. The procedure for saving a changed
version of a program is as follows (the program name is SAMPLE):

KILL-SAMPLE (Deletes the stored version)
NAME-SAMPLE (Names the current program)
SAVE (Saves the current program, named SAMPLE)

For instructions on opening a file, see Section IV, “FILES.”

EXAMPLES:

SAVE
SAV
CSA

GET, GET-$, and GET-* Commands

GENERAL FORM

GET- name of a program in user’s library
GET-$ name of system library program
GET-* name of group library program

GET- retrieves the specified program, making it the program currently accessed from the user’s
terminal.

GET-$ retrieves the specified program from the system library, making it the program currently
accessed from the user’s terminal.

GET-* retrieves the specified program from the group library.

GET- performs an implicit SCRATCH. The program that was the current program prior to using
GET- can not be recovered from the system unless it was previously saved with either SAVE or
CSAVE.

For more information on public library programs, see ‘‘Library’’ and ‘“Group” in this section.

EXAMPLES:

GET-PROGRAM
GET-MYPROG
GET-$PUBLIC
GET-S$NAMES
GET-*DATES

KILL Command

GENERAL FORM:

KILL-program or file to be deleted
or

KIL-program or file to be deleted

This KILL command deletes the specified program or file from the user’s library. (Does not delete
the program currently being accessed from the user’s terminal, even if it has the same name.)

Caution: Files have only one version, the stored one. A killed
file is not recoverable.

A file may not be killed while it is being accessed by another user.

KILL should be used carefully, as the killed program can not be recovered from the system unless
the killed program was also the current program.

The SCRATCH command deletes the program currently being accessed from the user terminal
while KILL deletes a program or file stored on-system. The stored and current versions of a pro-
gram occupy separate places in the system. They may differ in content, even though they have the
same name.

The sequence of commands for changing and storing a program named PROG** is:

GET-PROG** (Retrieves the program.)
(make changes)

KILL-PROG#** (Deletes the stored version.)
SAVE (Saves the current version.)

EXAMPLE:

KILL-PROG12
KIL-EXMPLE
KIL-FILE10

APPEND Command

GENERAL FORM:

APPEND-program name

or

APP-program name

or

APP-$system library program name
or

APP-*group library program

This command retrieves the named program from the user’s own library, or the group or public
libraries and appends it (attaches it) to the program currently being accessed from the user’s

terminal.

The lowest statement number of the appended program must be greater than the highest statement
number of the current program.

Programs saved by a CSAVE command may not be referenced in an APPEND command.

Caution: If an appended public library program is ‘“run-only”’,
the entire program to which it is appended becomes
“run-only”. (‘““Run-only’’ programs may not be
listed, punched, or saved.)

The $ preceding system library program names is needed to append them; the * is needed to append
group library programs. For details, see “Library’’ in this section.

EXAMPLES:

APPEND-MYPROG
APP-MYPROG
APPEND-S$SPUBLIC
APP-$SYSLIB
APP-%*GPROG

3-8

DELETE Command

GENERAL FORM:

DEL-statement number at which deletion starts
or

DEL-statement no. at which deletion starts , statement no. at which deletion ends

DEL-statement number erases the current program statements after and including the specified
statement. DEL-1 has the same effect as SCRATCH.

DEL-statement number, statement number deletes all statements in the current program between
and including the specified statements. If both statement numbers are the same, only that state-

ment is deleted.

It is sometimes useful to save or punch the original version of a program which is being modified,
before using the DELETE statement.

Deleted statements are not recoverable.

EXAMPLES:

DELETE-27
DEL-27, 50

LIBRARY, GROUP, and CATALOG Commands

GENERAL FORMS:

LIBRARY

or

LIB
GROUP

or

GRO
CATALOG

or

CAT

These commands are used to print an alphabetic listing of programs and files stored by the system.
LIBRARY or LIB produces a list of system programs and files. GROUP or GRO produces a list
of group programs and files. CATALOG or CAT produces a list of programs and files stored in the
user’s own program library.
In the examples below, the code letters preceding LENGTH indicate:

F - the entry is a file.

C - the entry is a program in semi-compiled form. If neither a C nor an F appears,
the entry is a program.

P - the entry is “protected,” may be either a program or a file.

S

the entry is “‘sanctified,” may be either a program or a file. (See Appendix D.)
Code letters may be combined as in the first entry, AAA in the LIBRARY listing.

Length is given in words for programs, records for files.

Protected system or group programs may be run but not listed, saved or punched. Protected

system or group files may not be accessed by other users. A user’s own programs may not be
protected, but may be sanctified by the operator.

3-10

Each user has access to the three libraries described. He has complete control over his own library,
using any of the commands used to store, delete, or retrieve programs and files.

Each user is part of a group, all having IDcodes with the same letter and same first digit. The user
whose IDcode ends in 00 is the group librarian, or Group Master. The Group Master is responsible
for maintaining the group library, entering and deleting programs in the same manner as the System
Master controls the system library.

The system library is under the control of the System Master, user A00Q. Only the System Master
(actually any user with access to the password for IDcode A000Q) can enter programs or files into
the system library, or delete programs and files from the system library.

The System Master and all Group Masters have the responsibility of controlling access to their
libraries. Regular users can not make entries to, deletions from, or changes to either the system
library or their group library. The System Master and all Group Masters have access to special
commands called PROTECT, which makes specified programs available on a run-only basis and
files unavailable to regular users, and UNPROTECT, which reverses the procedure. These special
commands are described in the 2000C Operator’s Guide.

A user can call a program from the system library by typing GET-$, followed by the program name
exactly as it appears in the LIBRARY, or append the program by typing APP-$ followed by the
program name. GET-* and APP-* are used to access group programs.

Files are accessed with the FILES statement, described in Section IV.

Any of these listings may be terminated by pressing the break key.

The system prints an error message if the user attempts to access a non-existent program, list or
punch or save a protected program, or GET or APPEND a file.

3-11

EXAMPLES:

LIBRARY
NAME

AAA

BAC

BBB

BUDGEU

cc

FFF

GOGO

GROUP
NAME

B

CAICAL

CATALOG
NAME
BLOCK?2

LENGTH
FPS 2
6

F L6
12

31

34

P 151

n

LENGTH
F 30
40Ok

LENGTH
F 128

NAME
AB
BAD
BFILE

CcccC
GARY1
G5

NAME
Bl
CALC

NAME
CHECK

m m m O m

-n

F
C

C

LENGTH
230

18

128

31

31

95

128

LENGTH
128
L4081

LENGTH
55

3-12

NAME LENGTH
BAA F 2
BB F 46
BUDGE 12
C.R S 1220
D F 100
GARY?2 83
STRING F 1

NAME ~ LENGTH
B2 F 128
MBLOCK 1655

NAME ~ LENGTH
sP1 F 800

NAME
BAB
BBA
BUDGET
CB
Fl
GARY3
XY

NAME
BLOCK2
SP1

NAME
TEST

F

F

LENGTH
13

2

3431
230

6L

188
256

LENGTH
128
4oo

LENGTH
3

SUBROUTINES AND FUNCTIONS

The following pages show TSB features useful for repetitive operations — subroutines, programmer-
defined and standard functions.

The programmer-controlled features, such as multibranch GOSUB’s, FOR . . . NEXT with STEP,
and DEF FN become more useful as the user gains experience, and learns to use them as shortcuts.

Standard mathematical and trigonometric functions are convenient timesavers for programmers at
any level. They are treated as numeric expressions by TSB.

The utility functions TAB, SPA, LIN, SGN, TYP, and LEN also become more valuable with

experience. They are used to control or monitor the handling of data by TSB, rather than for
performing mathematical chores.

GOSUB. . .RETURN Statement

GENERAL FORM:

statement number GOSUB statement number starting subroutine

statement number RETURN

The GOSUB statement transfers control to the specified statement number.

The RETURN statement transfers control to the statement following the GOSUB statement which
transferred control.

GOSUB .. .RETURN eliminates the need to repeat frequently used groups of statements in a
program.

The portion of the program to which control is transferred must end with a RETURN statement.

RETURN statements may be used at any desired exit point in a subroutine. There may be more
than one RETURN per GOSUB.

Variables have the same meaning as in the main program.

3-13

EXAMPLE:

50 READ A2
60 IF A2<100 THEN 80
70 GOSUB 40O

380 STOP (STOP frequently precedes the first statement of a subroutine,
to prevent accidental entry.)

390 REM--THIS SUBROUTINE ASKS FOR A 1 OR 0 REPLY.
400 PRINT "A2 1S>100"

410 PRINT '"DO YOU WANT TO CONTINUE";

420 INPUT N

430 IF N #0 THEN 450

LLo LET A2 = 0

450 RETURN

600 END

Multibranch GOSUB Statement

GENERAL FORM:

statement number GOSUB expression OF sequence of statement numbers . . .

GOSUB expression rounds the expression to an integer n and transfers control to the nth statement
number following OF.

Subroutines should be exited only with a RETURN statement.

The expression indicates which of the specified subroutines will be executed. For example, state-
ment 20, above transfers control to the subroutine beginning with statement 300. The expression
specifies which statement in the sequence of five statements is used as the starting one in the
subroutine.

The expression is evaluated as an integer. Non-integer values are rounded to the nearest integer.

If the expression evaluates to a number greater than the number of statements specified, or less
than 1, the GOSUB is ignored.

Statement numbers in the sequence following OF must be separated by commas.

3-14

EXAMPLES:

20 GOSUB 3 OF 100,200,300,400,500
60 GOSUB N+1 OF 200,210,220
70 GOSUB N OF 80,180,280,380,480,580

Nesting GOSUB Statements

Nested GOSUB . .. RETURN statements allow selective use of subroutines within subroutines.

GOSUB statements may be nested logically to a level of nine. More than nine exits without a
return may cause an error message.

RETURN statements may be used at any desired exit point in a subroutine. Note, however, that

nested subroutines are exited in the order in which they were entered. For example, if subroutine
250 (below) is entered from subroutine 200, 250 is exited before subroutine 200.

EXAMPLES:

100 GOSuUB 200

200 LET A = R2/7
210 IF A THEN 230
220 GOsSuUB 250

250 IF A>B THEN 270
260 RETURN
270 GOSuUB 600

3-15

FOR. . .NEXT with STEP Statement

GENERAL FORM:

statement number FOR simple variable = expression TO expression STEP expression

This statement allows the user to specify the size of the increment of the FOR variable.

The step size need not be an integer. For instance,

100 FOR N =1 to 2 STEP .01

is a valid statement which produces approximately 100 loop executions, incrementing N by .01 each
time. Since no binary computer represents all decimal numbers exactly, round-off errors may
increase or decrease the number of steps when a non-integer step size is used.

A step size of 1 is assumed if STEP is omitted from a FOR statement.

A negative step size may be used, as shown in statement 40 below.

EXAMPLES:

20 FOR 15 = 1 TO 20 STEP 2

4LO FOR N2 = 0 TO -10 STEP -2
80 FOR P = 1 TO N STEP R

90 FOR X = N TO W STEP (N+2-V)
DEF FN Statement

GENERAL FORM:

statement no. DEF FN single letter A to Z (simple var.) = expression

This command allows the programmer to define functions.

3-16

The simple variable is a “dummy”’ variable whose purpose is to indicate where the actual argument
of the function is used in the defining expression. After a function has been defined, the value of
that function is referenced whenever the function is used by the programmer. For example, in this
sequence M is a dummy variable:

10 LET Y = 100
20 DEF FNA (M) = M/10
30 PRINT FNA (Y)

40 END

RUN

10

When FNA (Y) is called for in statement 30, the formula defined for FNA in statement 20 is used to
determine the value printed.

A maximum of 26 programmer-defined functions are possible in a program (FNA to FNZ).

Any operand in the program may be used in the defining expression; however, such circular
definitions as:

FNB (XD
FNA (Y)

10 DEF FNA (Y)
20 DEF FNB (X)

cause infinite looping.

See the vocabulary at the beginning of this section for a definition of “function.”

EXAMPLES:

60 DEF FNA (B2) A+2 + (B2/C)
70 DEF FNB (B3) 7%B34+2
80 DEF FNZ (X) = X/5

I n

3-17

General Mathematical Functions

The use of common mathematical functions is facilitated by pre-defining them as follows:

ABS

EXP

INT

LOG
RND
SQR

SGN

(expression)

(expression)

(expression)
(expression)
(expression)
(expression)

(expression)

the absolute value of the expression

the constant e raised to the power of the expression value in statement 642
below, eTN)

the largest integer < the expression (INT (-3.5) would result in -4)
the logarithm of the expression to the base e

a random number between 0 and 1

the positive square root of the positively valued expression

returns: a 1 if the expression is greater than 0, a 0 if the expression equals 0,
a -1 if the expression is less than 0.

All these functions may be used as expressions or as parts of expressions. LOG and SQR expressions
must have a positive value or a fatal error will occur. A random sequence can be achieved if the
sequential call to RND has a positive argument. Specification of a negative argument gives a
predictable result. A sequence of random numbers is repeatable if the initial call to RND has a
negative argument and is followed by a sequential call to RND with a positive argument.

EXAMPLES:

642
652
662
672

PRINT EXP(N)/ ABS(N)D

IF RND (0)>=.5 THEN 900
IF INT (R) # 5 THEN 910
PRINT SQR (X); LOG (XD

3-18

Trigonometric Functions

The use of common trigonometric functions is facilitated by pre-defining them, as:

SIN (expression) the sine of the expression (in radians)
COS (expression) the cosine of the expression (in radians)
TAN (expression) the tangent of the expression (in radians)

ATN (expression) the arctangent (in radians) of the expression.

The trigonometric functions may be used as expressions, or parts of an expression.

The expressions (arguments) for SIN, COS, and TAN are interpreted as angles measured in radians.
ATN returns the angle in radians.

EXAMPLES:

500 PRINT SIN(CX); COSC(CYD

510 PRINT 3®SINCB); TAN (C2)

520 PRINT ATN (22.3)

530 IF SIN (A2) <1 THEN 800

540 IF SIN (B3) = 1 AND SINCX) <1 THEN 90

The LEN Function

GENERAL FORM:
The LEN function may be used as an expression, or part of an expression. The function form is

LEN (string variable)

The LEN function returns the length (number of characters) currently assigned to a string variable.

Note the difference between the LEN function and the LENGTH command. The command is used
outside a program, and returns the working length of the current program in two-character words.
The LEN function may be used only in a program statement.

EXAMPLES:

580 IF LEN (B$) >= 21 THEN 9999
800 IF LEN (C$) = R THEN 1000
850 PRINT LEN (N$)

880 LET P5 = LEN (N$)

3-19

The TIM Function
GENERAL FORM: TIM (X)

where if X =0, TIM (X) = current minutes (0 to 59)
X =1, TIM (X) = current hour (0 to 23)
X =2, TIM (X) = current day (1 to 366)
X =3, TIM (X) = current year (0 to 99)

The TIM function returns the current minute, hour, day or year.

Note the difference between the TIM function and the TIME command. The TIME command is
used outside a program and gives the console time and total time used. The TIM function can only
be used within a program statement.

The argument must be an integer in the range 0-3. Otherwise, an error results.

EXAMPLES:

580 IF TIM (0) - A > 15 THEN 9000
700 LET A3 = TIM (B)
800 PRINT "MINUTE" TIM (0) "HOUR'"™ TIM (1) "DAY" TIM (2) "YEAR" TIM (3)

CHAIN Statement

GENERAL FORM:

statement number CHAIN “‘character string”’
or

statement number CHAIN string variable
or

statement number CHAIN “‘character string’’ , expression
or

statement number CHAIN string variable , expression

This statement is used to link programs together. ‘“Character string’ or string variable specifies a
program in the user’s own library, the group library or the system library, which is retrieved
(replacing the current program) and run.

3-20

Strings and string variables are described in Section VI. As applied to the CHAIN statement,
“character string” is the name of a program in one of the libraries; string variable is an alphabetic
character followed by a $ that leads to a character string that is the name of a program. Expression
is a line number in the named program. In the examples below, lines 20, 97, and 150 contain charac-
ter strings. The other examples contain string variables.

If the first character of the program name, however defined, is $, the system will search the system
library; if the first character is *, the system will search the user’s group library. If the first character
is neither $ or *, the system will search the user’s own library. Note that the $ has different meanings
as the first character in a program name and when used to define a string variable.

If expression is not specified, the program will be retrieved from the proper library and executed
normally — examples 20 and 50. Expression may be an actual line number as in examples 150 and
230, may be a variable as in example 97, or may be computed as in example line 200.

In any of the above cases common storage is allocated if used. (See COM.) Before execution can
begin, the program chained to must be compiled. Programs which are often chained to should be
stored in semi-compiled form by use of the CSAVE command. This significantly reduces the time
required to execute CHAIN statements.

Execution of the CHAIN statement can produce the same errors produced in executing the GET
command. Such errors terminate execution of the program attempting the chaining, which will
remain as the current program, with its common area (if any) intact.

EXAMPLES:

20 CHAIN '"PROG2"

50 CHAIN V$

97 CHAIN "—-=""_ A

150 CHAIN "MELVIN'", 80
200 CHAIN N$,Q+14

230 CHAIN A$,110

3-21

COM Statement

GENERAL FORM:

statement number COM list of variables, dimensioned arrays and strings

The COM statement is used to designate data that can be passed between two or more programs
without intermediate storage. A number of programs may be run sequentially, all accessing and
possibly changing data in the common area.

The equivalence of common variables in different programs is determined by their relative order in
the COM statements. Thus, if one program contains the statement

10 COM A,B1,C$(10)
and a second program contains the statements

1COM X
2 COM Y,Z$(10)

and the two programs are run in order, identifiers A and X refer to the same variable, as do identi-
fiers B1 and Y, C$ and Z$.

There are certain restrictions on the use of COM:
1. COM statements must be the lowest numbered statements in the program.

2. A variable that is declared common in one program can be accessed by another program only
if all preceding common variables in both programs are of the same type and size. If the
common area in one program is smaller than that in another program to be run sequentially,
only the common variables in the smaller area will be preserved.

3. Arrays and strings which are to be in common must be dimensioned in the COM statement
and they must not also appear in DIM statements.

Variables in COM should be initialized by the first program that uses them. After that, other pro-
grams containing equivalent COM definitions can be executed by GET and RUN or CHAIN. The
COM variables will still have the same values. These values are destroyed, however, when a line of
syntax is entered. When a program with a common area terminates (whether normally, or because
of an execution error or because the user presses break) the variables in common storage retain
their values and will remain available until the user calls a program (GET command) with a different
common area or enters a BASIC statement.

3-22

EXAMPLES:

10 COM A,B,C,Q5(63),F(3,6),S1 (In program A) All variables in common
10 COM J,K,L,C$(63),C(3,6),V (In program B)

10 COM A,B,C,Q%(63),F(3,6),51 (In program A) Three variables in common
10 COM H,N,M,0 (In program B)

10 COM A,B,C (In program A) No variables in common
10 COM SS$(45),A,B,C (In program B)

10 COM A,B,C (In program A) All variables in common.
10 COM V (In program B)

30 COM B,C

ENTER Statement

GENERAL FORM:

statement number ENTER # variable 1
statement number ENTER expression, variable 2, variable 3

statement number ENTER # variable 1, expression, variable 2, variable 3

Allows the program to limit the time allowed for run-time data input, to check the actual time
taken to respond, to read in one string or numeric variable, to determine whether the input is of
the correct type, and/or to determine the current user’s terminal number.

The form ENTER # sets variable 1 to the terminal number (between 0 and 31) of the user.
Expression sets the time limit; it should have a value between 1 and 255 seconds. Zero is treated as
1 and numbers greater than 255 are treated modulo 256. Timing starts when all previous statements
have been executed and any resultant output to the user terminal is completed.

Variable 2 returns the approximate time the user took to respond. If the user’s response was of

the wrong type, such as alphabetic when numeric is expected, the value is the negative of the
response time. If the user failed to respond in time, the value is set to -256.

3-23

Variable 3, the data input variable, may be either a numeric or a string variable. A character string
being entered should not be enclosed in quotes, but may contain quotes, leading or trailing blanks
and embedded blanks. Only one data item can be entered per ENTER statement.

The ENTER statement differs from the INPUT statement in that a “?”’ is not printed on the user
terminal, and the TSB System returns to the program if the user does not respond within a specified
time limit. Also, the system does not generate a linefeed after the user types return.

A carriage return is a legitimate input to a string variable request.

A string that is too long to be assigned to a requested string variable is truncated from the right.

EXAMPLES:

100 ENTER #V

200 ENTER A,B,CS$

300 ENTER #V,K1,K2,K3
400 ENTER 25,L,Q

The BRK Function

GENERAL FORM: BRK(x)

where x < 0 returns current status of the BREAK capability.
x =0 disables the BREAK capability.
x > 0 enables the BREAK capability.

The BREAK capability (key) may be disabled or enabled by execution of the BRK function within
the user’s program. At the beginning of program execution, the BREAK capability is enabled
(default). Once disabled, it remains disabled until program execution is completed, the program
terminates because of an execution error, the BREAK command is entered by the system operator,
or until the BRK function is executed with an argument greater than zero.

Because program execution may be completed before accumulated output is exhausted, care should
be taken when re-enabling the BREAK capability. To ensure that program output will not be
interrupted and lost, either an INPUT statement or an ENTER statement can be included in the
program just prior to the statement containing the BREAK enable function. This will cause the

3-24

program to pause until output is complete before continuing execution. For example, the following
program segment will disable the BREAK capability and print the value of “I’’ twenty times. On
encountering the ENTER statement, the program will pause until printed output is complete before
execution continues from statement 30.

5 Y=BRK(0)

10 FOR I=1 TO 20
15 PRINT "I=";I
20 NEXT I

25 ENTER 1,A,B
30 Z=BRK(1)

99 END

For arguments equal to or greater than zero, the value returned after evaluation of the expression
depends on the previous condition of the BREAK capability. This value will be 1 if the capability
was previously enabled, or O if the capability was previously disabled.

To find the current status of the BREAK capability, enter an argument less than zero. If currently
enabled, a 1 is returned. If currently disabled, a O is returned.

If a program is in an infinite loop during execution and the BREAK capability is disabled, the
system operator can enter a BREAK command to enable the BREAK capability.

For terminals connected to the system through telephone lines, a loss of carrier for longer than two
seconds causes the user to be disconnected and automatically logged off the system. Similarly,
hardwired terminals that drop carrier and/or data set ready signals when turned off cause the user
to be automatically logged off the system. In either case, a disabled BREAK capability is returned
to the enabled condition.

EXAMPLES:

935 LET B = BRK(0)
940 zZ = BRK(CA+M)
945 PRINT BRK(Y)

3-25

SECTION IV
Files

For those problems that require permanent data storage external to a particular program, the TSB
system provides a data file capability. This allows flexible, direct manipulation of large volumes of
data stored within the system itself. Special versions of the READ, PRINT, MAT READ, MAT
PRINT, and IF statements allow you to read from and write onto mass storage files.

File programming offers two levels of complexity. Many problems can be solved using files treated
simply as serial access storage devices. In this case, the program reads or writes a serial list of data
items (either numbers or strings of characters) without regard to the underlying structure of the
file. However, with additional programming effort, any file can be used as a random access storage
device. In this case, the program breaks the file into a series of logical subfiles that can be modified
independently.

This section deals with the serial use of files, then internal file structure and random access use.
Explanatory programming samples follow each series of commands in this section.

TERM: FILE

Defined: An area of memory external to the program where numbers and strings of characters can
be stored and retrieved. Files are created by, and belong to, a particular user.

The user determines the name and size of a file. Files vary in size from 1 record to a maximum
determined by the device used to store them. The maximum size for files that are to be
sanctified is 32 records. (See Appendix D.) A record contains between sixty-four and 256 16-bit
words.

When a program stores some information in a file, the information remains there until it is changed
or the file is eliminated. Any program of a particular user can be written to access this information.

Each program must declare its files with a FILES statement before it can access them. Each pro-

gram can access up to 16 different files at one time. Files being accessed by a program can be
changed by use of the ASSIGN statement.

4-1

For each file declared in the program, there is a file pointer that keeps track of the item in the file
currently being accessed by that program. The RUN command causes all these pointers to be reset
to the beginning of the file. The ASSIGN statement repositions the pointer to the beginning of a
specified file. As the program reads or writes on a file, the pointer for the file is moved through
the file.

SERIAL FILE ACCESS

This program writes all the data items out into the file in serial order. Each write operation begins
where the previous one left off. Then, to retrieve one of these items, the program resets the pointer
to the beginning of the file and reads through the items until it comes to the desired item. There is
only one pointer for each file. When the pointer is repositioned by either a READ or a PRINT
statement, it remains pointing to the next item in the file until it is repositioned by another file
control statement.

Try this example. It should print out the same numbers you type in.

EXAMPLE OF SERIAL FILE ACCESS:

OPEN-GHIJK, 50 The OPEN command creates a new file.
GHIJK is the name of the file.
The file is 50 records long.

NAM-PROG1

100 FILES GHIUJK The FILES statement links the file
into the program. From now on, the
file is referenced by number; GHIJK
is file # 1.

200 INPUT A,B,C,D

300 PRINT #1;A,B,C,D This is a serial file PRINT statement.
It is identical to the normal PRINT
statement except that a file number
appears and the values of the variables
are written onto the file, not the
terminal.

400 INPUT A,B,C,D

500 PRINT #1;A,B,C,D This PRINT stores the new values of
the variables immediately following
the previous values in the file.

600 READ #1,1 This is a reset operation; it resets the
pointer for file #1 to the beginning
of the file.

700 READ #1; H1,H2,H3 This is a serial file READ statement.
It assigns the first three values in the
file to the three variables specified.

800 PRINT HI1,H2,H3

900 READ #1; H1,H2,H3,H4,H5 This READs the remaining five values
in the file into the five variables given.
The values in the file are not disturbed.

1000 PRINT H1,H2,H3,H4,H5
2000 END

OPEN Command

GENERAL FORM:

OPEN- 1 to 6 character file name , number of records in file
OPE- 1 to 6 character file name , number of records in file,, record size

OPE- 1 to 6 character file name , number of records in file

The OPEN command creates a file with a specified number of records of a specified size, and
assigns it a name.

The file that is opened is accessible only by the user idcode that opened it. The file remains open
until the same user Kkills it.

Note: Unprotected system library files can be read by all users,
and unprotected group files can be read by all members
of the group.

File names must conform to the same rules as program names.
The size of the file may vary from a minimum of 1 record to a maximum determined by the

peripheral devices on the system, the amount of unused storage, and the user’s personal storage
limit.

4-3

The size of a record must be between 64 and 256 words. If not specified, the system assumes
256 words. In any case, each record consumes 256 words of system storage.

If the system does not have enough storage space for the new file, the OPEN command is rejected
and an error message is printed:

SYSTEM OVERLOAD

If the user does not have enough space left for the new file in the amount set for him by the system
operator, the OPEN command is rejected and an error message is printed:

LIBRARY SPACE FULL

If the name given in the OPEN command equals the name of an existing file or program, the com-
mand is rejected and an error message is printed:

DUPLICATE ENTRY

The OPEN command marks each record of the new file as empty. If the system is heavily loaded,
this process could take several minutes for very large files.

EXAMPLES:

OPEN-FILE27, 20, 6k
OPEN-SAMPLE, 128

KILL Command

GENERAL FORM:

KILL-file to be deleted
KIL-file to be deleted

This command removes the named file from the user’s library and releases the space it occupied
for further storage. Users can kill only their own files.

Files have only one version, the stored one. When a file is killed, all the information in it is lost.

If the file named is currently being accessed by a user on another terminal, the KILL command is
rejected and an error message is printed:

FILE IN USE

EXAMPLES:

KILL-NAMEXX
KILL-EXMPLE
KIL-FILE1O

FILES Statement

GENERAL FORM:

statement number FILES file name, file name,,. . .,file name, ¢

The FILES statement declares which files will be used in a program; assumes that the files will be
opened (see OPEN command) before the program is RUN.

Up to four FILES statements can appear in a program, but only 16 files total can be declared
(duplicate entries are legal). The files are assigned numbers (from 1 to 16) in the order they are
declared in the program. In the EXAMPLES below, MATH is file #1 and #9, FILE27 is #7 and
DATA is #10.

These numbers are used in the program to reference the files. For instance, in the same example,

100 PRINT #2; A

would print the value of A into the file named SCORE. This feature allows most programming to
be done independently of the files to be used. The FILES statements may be added any time
before running the program.

Public or group library files to be read (they cannot be written on) must also be declared in a
FILES statement but with a $ or * preceding the file name. In the example, DATA is a public file;
GRP is a group file. When * is used without a program name as one of the arguments in a FILES
statement, the position occupied by the * symbol is reserved for a file to be specified later by an
ASSIGN statement. ASSIGN statements are described on the following page.

4-5

Users with the same I.D. number can share files, but only one user can write on a file at a time.
I.D. codes beginning with an “A” (e.g., AO67) are an exception to the rule; they may read or write
on files at the same time.

EXAMPLES:

10 FILES MATH, SCORE, AND, SQRT, NAMES
20 FILES ®GRP, FILE27, SAMPLE
30 FILES MATH, S$DATA, * , #

ASSIGN Statement

GENERAL FORM:

statement number ASSIGN file name, file number, return variable, mask

statement number ASSIGN file name, file number, return variable

The ASSIGN statement is used to change the file referred to by a specified file number during the
execution of a program.

The parameters of an ASSIGN statement are:

file name The name of a file - - a literal string of up to six characters (seven if
the first character is $ or *) enclosed in quotes, or a string variable
leading to a literal string. The symbol $ as a first character indicates
a system file; * as a first character indicates a group file.

file number A number, variable or expression whose value is between 1 and 16,
indicating a file position. The file number should not exceed the
number of files declared in the FILES statements of the program.

return variable One of the following values will be returned to this variable when
the statement is executed, depending upon the outcome of the
execution:

0 - the file is available for reading and writing.

1 - the file is available on a read-only basis because it is being
accessed by another terminal. For users AOOO through A999,
areturn code of 1 indicates only that the named file is being
accessed by another terminal. The file is still available for
reading and writing.

4-6

mask

2 - the file is available on a read-only basis because it is a system
library or group library file.

3 - the requested file does not exist or it is protected (and the user
attempting to ASSIGN it is not the owner).

4 - the file number in the ASSIGN statement is out of range; it does
not correspond to one of the positions reserved by the FILES
statements.

5 - the requested file has records which are larger than those of the
file previously in this position.

If the value given to the return variable is 3, 4, or 5, any access to the
requested file will cause a fatal error. If the return value is 2, any print
attempt to the file will cause a fatal error. If the returned value is 1,

a print attempt by any user other than Axxx users will cause a fatal
error.

An optional parameter that can be used to ensure security of data in
the file. Mask can be either a literal string of up to six characters or
a string variable of up to six characters used to form a mask through
which data is written to or read from the file. If the same mask is
used to read a data item that was used to write the item, the results
are the same value that was written.

When the ASSIGN statement is executed, the named file replaces the file previously referenced
by the file number in the statement. Subsequent file references using this number will apply to
the new file. Data written to the old file will be intact.

EXAMPLES:

20 ASSIGN AS,

B1, CS

30 ASSIGN "NEWFL", S2, J

40 ASSIGN '"S$SF2",

6, C, "AX1532"

Serial File PRINT Statement

GENERAL FORM:

statement number PRINT #file number formula ; data item, data item, . . .

This statement is used to print variables, numbers, or strings of characters consecutively on the
specified file, starting after the last item previously read or printed.

The file number formula may be any expression; it is rounded to the nearest integer (from 1
through 16). If the value is n, then the nth file declared in the FILES statements (or the file most
recently assigned to the nth position) is used.

The serial file PRINT always writes the indicated data items into the next available space in the file.
However, since character strings may vary in length and each string must be wholly contained within
arecord, some space in each record may be left unused. You can calculate the number of words

occupied by any string with a formula described under “Storage Requirements’ in this section.

After a serial file PRINT operation, the file pointer is updated so that it points to the next available
space.

The information written in a file remains there even when the program terminates. Therefore, the
user can return a day or week later and access the data at that time. If a program terminates

because of an error or if the user types break, the files may not have been completely updated.

Matrices can also be written on files using a MAT PRINT # statement described in Section V.

EXAMPLES:

125 PRINT #5; Al,B2,CS
130 PRINT #5; D,E,F, '"B,C,D,E"
140 PRINT #M+N; B

Serial File READ Statement

GENERAL FORM:

statement number READ #file number formula ; data item, data item, . . .

This statement is used to read numbers and strings into variables consecutively from the specified
file, starting after the last item read.

The file number formula is evaluated as in the serial file PRINT.

Both strings and numbers can be read, but the order of variable types must match the order of data
item types exactly. The TYP Function provides a means of determining the type of the next item.

The serial file READ moves from record to record within a file automatically, as necessary to find
the next data item. After a READ, the file pointer is updated, and a subsequent READ will start
with the next consecutive data item. Record boundaries and unused portions of records are ignored.

Matrices can also be read from files using a MAT READ # statement described in Section V.

Note: Following a serial file PRINT, the pointer must be reset
to the beginning of the file before the data that was just
written can be read. This is done using the reset operation
described on the next page. A serial READ should not
directly follow a serial PRINT.

EXAMPLES:

65
70
80
90

READ
READ
READ
READ

#5; A,B,C
#3; BS
#(N+1D; A,BS,C

Resetting the File Pointer

GENERAL FORM:

statement number READ #file number formula, 1

The READ statement in this form is used to reset the file pointer to the beginning of the file
specified by the file number formula.

READ #N,1 is used after a serial PRINT to prepare for a serial READ.

Note: Do not use PRINT #1,1 to reset, as this erases the first
record of the file.

EXAMPLES:

100 READ #1,1
200 READ #2,1
300 READ #M+N, 1

4-9

The TYP Function

GENERAL FORM:
TYP may be used as an expression or as part of an expression; the function form is:

TYP (file number formula)

The TYP function determines the type of the next data item in the specified file so that the program
can avoid a type mismatch on a file READ.

There are three possible responses:

1 = next item is number
2 = next item is character string

3 = next item is “end of file.”

If the file number formula is negated (<0), the TYP function also detects ‘‘end of record” con-
ditions (explained later under ‘“Random Access”’) and returns a value of 4 for them.

If the file number formula equals zero, the TYP function references the DATA statements. In this
case, TYP returns these values for the next data item:

1 = number
2 = string

= “out of data’’ condition.

EXAMPLES:

100 IF TYPEC1)=2 THEN 1000
250 IF TYP (6)=3 THEN 500
300 GO TO TYP(B) OF 400,600,800

4-10

Listing Contents of a File

Here is a sample program that lists a file of unknown contents. It assumes that the file (DATUMS)
has been previously filled serially by some other program.

NAM - LIST
100 FILES DATUMS
200 DIM AS[72]

300 IF END #1 THEN 1000 The IF END statement tells the pro-
gram where to go if it comes to the
end of file #1. Without this state-
ment, the program would quit at the
end of the file and give an error

message.

500 IF TYP(1)=1 THEN 600 TYP checks whether the next data

550 IF TYP(1)=2 THEN 700 item is a number (1) or a string (2).

600 READ #1;A Reads a number from file #1 into
variable A.

650 PRINT A

675 GOTO 500

700 READ #1;AS$ Reads a string from file #1 into
variable A$.

750 PRINT A$
775 GOTO 500

1000 PRINT "FILE LIST COMPLETED" The program comes here when it
reaches the end of file #1.

2000 END

4-11

TERM: END-OF-FILE
If a program attempts to PRINT beyond the physical end of a file or attempts to READ more
values than are present in the file, the TSB system detects an end-of-file condition and terminates

the program.

The OPEN command causes end-of-file marks to be written at the start of every record in the file.
End-of-file marks can also be written by the user (as explained later under “END”").

Note: If the user or an error (such as end-of-file) stops a program

abnormally, it is not possible to know which file PRINT
operations of the program were in fact performed.

To avoid termination of a program because of end-of-file, use the IF END statement below. If this
is done, all of the values preceding the end-of-file are transferred successfully.

IF END#. . .THEN Statement

GENERAL FORM:

statement number IF END # file number formula THEN statement number

This statement form defines a statement to be branched to if an ‘“‘end-of-file”” occurs on a specified
file.

The IF END statement defines an exit procedure which remains in effect until another IF for the
same file changes it, or until an ASSIGN statement containing the same file number is executed.

A different exit procedure can be defined for each file.

IF END is also used with random access to provide exit procedures when an ‘‘end-of-record” occurs.
(See “Random Access.”’)

If a program does not contain an IF END statement for a file and an ‘‘end-of-file”” occurs on that
file, the program is terminated and an error message is printed:

END OF FILE/END OF RECORD IN STATEMENT xxxx

EXAMPLES:
300 IF END #N THEN 800

310 IF END #2 THEN 830
320 IF END #3 THEN 9999

4-12

PRINT#. . .END Statement

GENERAL FORM:

statement number PRINT #file number formula ; data item list , END

This statement form places a logical “end-of-file’’ marker after the last value written on the file;
END is ignored if it is not the last item in the statement.

The “‘end-of-file”” marker written by this statement is a logical marker; each file also has a physical
end-of-file which marks the physical boundary of the file.

The ‘“‘end-of-file’’ mark is overlaid by the first item in the next serial PRINT statement. An ‘‘end-of-
file” condition that aborts the program or triggers an IF END statement occurs only on an attempted
READ operation beyond the available data or an attempted PRINT operation beyond the physical
end-of-file.

END and IF END can be used to modify a serial file.

EXAMPLES:
95 PRINT #N: A,B2,END

100 PRINT #(X+1); R3,S1,N$, "TEXT" , END
110 PRINT #2; G5,HS$,P, END

STRUCTURE OF SERIAL FILES
When a file is opened, you can think of it as looking like this:

OPEN-INFO, 5

INFO= |EOF| | PEOF|
T
EOF is a mark that shows the end of the data.

PEOF is the physical end of the file, beyond which no data can be written.

1 is the position of the file pointer.

4-13

When information is written into the file, the pointer moves and space in the file is used up.

100 FILES INFO
200 PRINT #1; A,B,C,F$,Ql, END

iNFo = |a[B[c|r$|qi[EOF| | PEOF|
T

The file is filled solidly from the beginning.

When more information is printed, it follows the previous data and the pointer is changed.

300 PRINT #1; G1,G2,G$,H$,Z,END

iINFOo= [A[B[c[Fs$|qQi|c1|c2|cs|us|z|EOF| |PEOF]
T

To read this data, the pointer must be reset.

400 READ #1,1

INFO = L;\lB lc|rs|q1|c1|c2|cs|us|z|EOF| |PEOF|

Now the data can be read.

500 READ #1; M1,M2

INFO= |A|B|c|F$|qQi|c1|c2|cs|us|z[EOF| |PEOF
T

M1 now contains the value of A

M2 now contains the value of B

4-14

At this point, the program continues to read the data.

600 READ #1; D1

INFO = |A|B|c|F$|Q1|G1|G§]G$]H$|Z]E0F| |PEOF|
0

D1 now contains the value of C

However, if you PRINT anything in the file at this point, the rest of the file is effectively lost as
far as serial access is concerned.

700 PRINT #1; D2,END

INFO = [A]B]C]DzlEOFT |PEO§]
T

The correct way to modify an item in the middle of serial file is to READ all the succeeding items,
then PRINT them and the new value out again.

700 READ #1; M$, Pl, P2, P3, P$, RS, P4
(read the values)

750 READ #1,1 (reset the pointer)

800 READ #1; A, B, C

(move the pointer out to the correct item)

INFO = |A|B|C|F$|Q1|G1|G2]G$|H$|Z|E0F| |PEOF|
0

900 PRINT #1; D2 (print the new item)
1000 PRINT #1; P1, P2, P3, PSS, RS, PL, END

(print the old values out)

INFO= |A[B|c|D2|qQ1{G1|G2|G$|H$|z|EOF| [PEOF|
1

4-15

EXAMPLE OF SERIAL FILE MODIFICATION:

(When the file is opened, ‘‘end-of-file”” markers are written into every record.)

OFEM-DATUMZ s 125

HAM-ADDIT

tor FILEZ DRTUMT

200 DIM PELTE]

00 IF EMD #1 THEM 1500

400 FEM: THIZ PPOGRAM FIRIT FIMDS THE EMD OF FILE. IT AZKS
410 FEM: THE UZER FOF R ZTRING AMD A MUMEER. IF THIZ IS
420 FEM: MDT THE FHYIICAL EMD OF THE FILE: IT AUDT THEM TO
430 REM: THE END DF THE FILE. THEN: THE FROGRAM AZKE THE
440 REM: THE LUSEF IF HE WANMTZ TO ADD AMY MOFE ITEMZ. IF
450 REM: THE UZER ANIWERZ YEZ. THE FROGRAM PEFEATS THE

460 FEM: INFUT AND WRITE LOOF.

200 FERD #1iR% R

=250 =O07TO =00

15200 IF EMD #1 THEM 2000

1600 FRINT “STRIME"S

1650 INFLT A%

1700 FRINT "MUMEER" 3

TS0 INFUT A
1200 PRIMT #13iA% A+ END

1200 FRINT “MOFE"

1950 IMFUT A%

1960 IF AE="YEI" THEM 1600

1370 =TOF
2000 PRINT "FHYSICAL EMD OF THIS FILE"
S000 END

Note: If the file is empty, the first thing the program finds is
an end-of-file. Therefore, it begins filling the file from
the first location.

The IF END statement (line 300) is changed once the end-of-file marker is found. The program is
then looking for the physical end-of-file.

You can use the sample program for “Listing Contents of a File’’ to check the contents of the file.

4-16

TERM: RECORD
Defined: A physical division of a file; consisting of from 64 to 256 words.

The number of records in a file is subject to several constraints, but in no case may it exceed 327617.

File = Data | O DATA | O DATA (0]
7/) 3
0 1 t 0 1
PEOR PEOR PEOR PEOR PEOF

where PEOR = the physical end of the record.

EOR = the end-of-record marker written by the system.

EOF = the end-of-file marker written by the system.

PEOF = the physical end of the file.

Following the data in a record, there is always an end-of-record marker. Every record also has a
physical end. (When the record is completely full, this also acts as the logical end-of-record
marker.)

During serial access the end-of-record markers act as skip markers that say to look in the next record

for the data item, but during random access they cause an end-of-file condition. This will be
explained later.

STORAGE REQUIREMENTS

Numerical data items require two words of storage space per item. If a full-size record is filled
completely with numbers, it contains 128 items.

Strings can be of varying sizes: they require about 1/2 word of storage per character in the string.
The exact formula for the number of words needed to store a string is:

If the number of characters is odd, then

+ humber of characters in the string + 1

1 2

If the number of characters is even, then

+ number of characters in the string

1 2

4-17

Eight 62-character strings will completely fill a 256-word record. Strings and numbers can be mixed
within a record, but each item must fit completely within the bounds of the record. For example,

a 256-word record could contain five strings of 72 characters (each using 37 words) and a maximum
of 35 numbers (leaving one word of the record unused).

MOVING THE POINTER

GENERAL FORM:

statement number READ #file number formula , record number formula

The statement in this form moves the pointer to the beginning of a specified record within a file;
rounds the file number formula and the record number formula to integers.

The READ #M,N statement only generates an end-of-file condition at the physical end of the file,
not for end-of-file markers.

After moving the pointer to the start of a record, you can use the serial READ and PRINT state-
ments normally.

EXAMPLES:

200 READ #1,N
300 READ #M,N
400 READ #3%J,9

To Determine the Length of a File

Here is a sample program that determines the number of records in a file. It uses the READ #M,N
statement through the records until it comes to the physical end of the file.

MAM-LEMGTH

10 FEM: THIZ FROGEAM FEIMTE OUT THE LEMGTH IM FECORDE OF AMY FILE.
ci FILEE DRTUME

00 REM: “DRTUMEZT IZ THE FILE WHOZE LEMGTH TE Z0OWGHT.

40 IF EHD 1 THEH =0

S50 FOR RE=1 TO 227Fe7

& RERD #1sF

v OHEET B
20 FREIMT "LEMGTH IM EECORDZ:" iR-1
Q200 END

4-18

SUBDIVIDING SERIAL FILES

Serial files can be divided into smaller serial files by moving the pointer and using the PRINT END
statement. For example, a file of six records could be treated as two files of three records.

a record
E E
File: DATA DATA DATA O DATA DATA DATA (o]
F F
« ~— J — J
first subdivision second subdivision

To switch from the first subdivision to the second, use this statement
100 READ #1, 4

since the fourth record is the start of the second subdivision.

When using this technique, you must be careful that you do not print more data into the sub-
division than it will hold. If you print too much, the data will overflow into the next subdivision
and destroy its contents.

A logical extension of this concept is to make each subdivision equal to a single record. The TYP
function detects end-of-record markers. The random access versions of PRINT# and READ#
statements (described later) allow you to access random records within a file without overflowing
the bounds of the record.

USING THE TYP FUNCTION WITH RECORDS

GENERAL FORM:
TYP is a function and can be used as an expression or a part of an expression.

TYP (-file number formula)

Returns a code telling the type of the next item in a specified file.

TYP(- X) 1 for a number

2 for a string

3 for an end-of-file

4 for an end-of-record

4-19

The file number formula must be negated to detect the end of record. If it is positive or zero,
different results are returned. See ‘“TYP Function” in this section.

EXAMPLES:

100 GO TO TYP(-1) OF 200, 250, 300, 40O
2000 A=TYP(-5) + B¥*2

To List the Contents of a Record

Here is a sample program that lists the exact contents of any record in a file.

MAM-RLIZT

1 FEM: THIZ FROGRAM LISTS THE COMTEMTS OF ANY RECORD OF THE FILE.
S DIM AELTE]

10 FILEZ DATUMS

20 IF END #1 THEHN &0

20 PRINT "RECORD HUMEER"

40 INFUT R

S0 IF R»0 AND R=INT<R» THEM 20
&0 PRINT "IMYALID FECORD MHUMEER."
70 50TO 30

20 RERD #1.F

100 GOTO TYFo-13 OF 110:150.2230.200
110 FRINT “MUMEER:":

120 RERD 13X

130 FRINT X

140 50TO 100

150 FPRINT "STRING:":

160 RERD #13iR%

170 FRINT A¥

180 =070 100

200 PRINT "EMD OF RECORD MAREK."

210 =ETOFR
220 FRINT "EMD OF FILE MARK."
230 END

4-20

To Copy a File

Here is a sample program that copies one file into another using only the statements and functions
covered so far: IF END, TYP, FILES, READ #M,N, serial READ, and serial PRINT.

HAM-COFY

1 EREM: THIZ PROGEAM COFIE= FILE 1 IWHTO FILE #2&.
10 FILE= ZAMI1 «ZRME

20 DIM RELTFE]

20 IF EHD #1 THEHM 170

40 IF EHD 3#2 THEHM 120

S0 FOR I=1 TO
&0 FERD #1141
O OFPRIWHT #2.1
20 2070 TYFPY -1 OF 2041202150160
S0 EERD #13%

100 FPRIMNT #2238

110 =070 =0

120 RERD #13sR¥

120 PEIMT #23iR%

140 5070 =20

150 PRIMNT #235 EHD

120 MEST I

170 ZTOR

120 FPRINT "IECOMD FILE T7OO =ZMALL."
120 END

-
el gl =X

4-21

TERM: RANDOM FILE ACCESS

Defined: A READ or PRINT access of a file is “random”’ if it specifies a particular record within
- the file.

Serial Access: 100 READ #1;A,B,C
(Reads from the file pointer)

Random Access: 100 READ #1,5;A,B,C
(Moves to record 5 before reading)

When files are accessed serially, the record structure of files is ignored. Serial READ operations
skip over end-of-record markers to the next record and act as if all data were in a continuous list.

The TSB System does, however, provide statements that take advantage of this record structure.
The file pointer can be moved to the beginning of any record. Also, any record can be read or
printed independently of the rest of the file using random access versions of READ# and PRINT#
statements. The TYP function and IF END statement can detect end-of-record conditions. These
extensions to BASIC constitute a random access file capability.

EXAMPLE OF RANDOM FILE ACCESS:

This sample program fills each record with two strings of up to 30 characters each and five numbers.
Then it lists the contents of any record.

OFEH-EMDFL s

HAM-FROGE
100 FILEE REHIOFL

150 DIM RECZ0I-BELZ0]
00 IF EMD 1 THEM 1000

200 FOR J=1 TO 20 This loop reads in two strings
400 IMPUT RESEFsH+ECsDsE and five numbers from the user,
500 PRIMT #1 s iAE+BEsAsEsCTE then it writes the Jth record
s00 MESET J of the file.

YO0 PRINT "WHICH FRECORD WOULD w00 LIKE TO ZEE™S

S0 INPUT

TE0 READ #1:13ATBEAECD0E This section will read and list
70 PRIMT A% the contents of record N.

20 PRIMT EB¥%

TI0 FRINT RAsEsCaDsE
800 GOTO Voo

1000 END

4-22

PRINTING A RECORD

GENERAL FORM:

statement number PRINT # file number formula, record number formula ; list of data items

The PRINT statement in this form prints a specified list of data items into a specific record of a
file, starting at the beginning of the record. (The record number formula is rounded to the nearest
integer.)

The previous contents of the record are destroyed. An end-of-record marker is written after the
data. If an END occurs in the data list, it acts as an end-of-record marker too. The random PRINT
operation cannot change the contents of any record except the one specified. The entire list of
data items must fit within the record. Otherwise, an end-of-file condition occurs which terminates
the program and prints an error message:

END OF FILE/END OF RECORD
An IF END statement establishes an exit procedure. See “IF END”’ in this section.
Matrices are printed using the random version of MAT PRINT # statement described in Section V.

Note, however, that the matrix must fit within a single record, so a maximum of 128 numerical
items can be printed. If this rule is violated, an end-of-file condition occurs.

EXAMPLES:

165 PRINT #N,X;G2,H,I,"TEXT"
170 PRINT #1,3;X,Y4,Z,6127,8B
175 PRINT #(N+2), (X+2);F,P5
180 PRINT #2,5;A,B,C,D,END

4-23

READING A RECORD

GENERAL FORM:

statement number READ # file number formula , record number formula ; list of data items

The READ statement in this form reads data from a specified record of a file, starting at the
beginning of the record. (The file number formula and record number formula are rounded to
integers.)

The contents of the file are not changed.

If the READ operation encounters an end-of-record marker before filling all the data items, an
end-of-file occurs. The program is terminated unless an IF END statement has been defined pre-
viously. (See IF END in this section.)

Matrices are read from records using a random version of MAT READ# statement described in
Section V. If the READ operation requests more items than the record contains, an end-of-file
condition occurs.

EXAMPLES:

100 READ #2,3;A,B,C3,X$
110 READ #N,2;N1,N2,N3
120 READ #M,N;R2,P7,AS$,T(35)
130 READ #(M+1),(N+1);X,Y,Z

Modifying Contents of a Record

Principle: The contents of a record can be changed only by reading the entire record into the
program, modifying the items desired, then printing it back on the file again.

Caution: When the strings are replaced by longer strings, the
result may no longer fit within a record. If this
happens, an end-of-file condition occurs.

4-24

EXAMPLE:
100 READ #1,5;A,B,C,ZS
200 LET A = Q¥2+(M/5)

300 LET Z$ = M$
500 PRINT #1,5;A,B,C,ZS

A,B,C, and Z$ are the entire contents of record 5.

Erasing a Record
GENERAL FORM:

statement number PRINT #file number formula , record number formula

The PRINT statement in this form erases the contents of a specified record in a file by printing an
end-of-record marker at the beginning of the record.

The file pointer is moved to the start of the specified record.

Only the contents of the specified record are erased; the rest of the file is unchanged. The erased
record still exists, however, and can be filled with new data.

Do not confuse this erase operation with the KILL command which permanently eliminates the
entire file.
EXAMPLES:

320 PRINT #M+N, R+S
330 PRINT #1,2
340 PRINT #12,Ql

4-25

To Erase a File, Record by Record

Here is a sample program that uses the erase operation to erase an entire file, record by record.

HAM-ERRZE

1 REM: THIZ FROGREAM ERAZEE A FILE BY ERATIMG EVERY EECORID.
10 FILEZ =

e IF EMHD 1 THFH E.El
20 FOR I=1 TD FIEVE

40 PRIMT 1.1

S0 MEST I

1 END

II':

Updating a Record in a File

File programming is simplified if every record of a file has the same data structure. For example,
each record might contain a string (e.g., a person’s name) and a number (e.g., the amount of money
he owes). Here is a sample program that manipulates such a file. The program searches through the
file until it finds a specified string; then it updates the number in the record to a new value.

HAME-LFDATE

10 FILEZ DATH

0 DIM RELYE2I-BELYE]

20 IF EMD 1 THEM 1&0
40 PRIMT "HAME" S

50 IMFUT RE¥E

0 FOR I=1 TO Z27e?

FEERD 1.1

IF TwFd-12az THEM 150
FERD 21 3E¥

100 IF EF:RAE THEH 150
110 FRIWT "HEW HUMEER"
120 IMPUT M

120 PRIMT #135H

(R |

w0
Iy

~140 =TOP e p x T
160 FPRINT "MAME MOT OM FILE."
170 ENMD

4-26

An Alphabetically Organized File

Suppose the first item of every record in a file is a string. The records can be ordered alphabetically.
Here is a program that inserts a new record where it alphabetically belongs. The rest of the file must
be moved up one record. In this example, record 1 contains the record number of the last item.

10 FILE= DRATH

S0 DIM GELF21.HELTZ]
20 IF EMD 3#1 THEH 290
40 RFERD #1s13%H

45 IF EMD 21 THEM 270
50 EERD =1 a.MH+2

0 FRIMT "ZTRIMG"S

v0 IMPUT 3%

72 IF Hu0 THEM 20
74 R=z

76 GOTO 120

20 F=g

90 L=H+1

100 R=IMTOOF+L 20

110 REERD :#1sF3HE

120 IF GF<HE THEH 210

120 IF 53:HE THEH 230

140 FOR I=H+1 TO R ZTEF -1
150 RERD #1s1iHE

160 PRIMT #1.I+15HE

170 MEXET I

120 PRIMT 3#1sR5G%F
120 PRIMT #1s13iH+1

200 =TOR

210 L=R

cenl IF F#L THEH 100
2es =070 140

230 F=R

o4 IF L-F>*1 THEM 100
2ol RE=RE+1

oo IF L-Fs:1 THEM 140
260 F=F+1

ceS 5070 144

270 PRIMT "FILE FULL."
£20 =TOR

230 HM=a

200 5070 4%

210 END

4-27

FILE ACCESSING ERRORS

If a data error occurs while the computer is performing a requested file read or write, the program
will be terminated and one of the following messages will be printed:

BAD FILE READ IN LINE nn
BAD FILE WRITE DETECTED IN LINE nn

As is the case with other errors which terminate a running program, the specific contents of any
file written on during execution cannot be easily predicted.

Most of the information in the file on which the data error occurred may be recoverable. If file
errors persist, the information should be copied item by item or record by record to another file.

4-28

SECTION V
Matrices

A matrix is a rectangular array of data elements arranged in rows and columns. Arrays are described
in Section III. This section describes a series of special instructions used to manipulate matrices.
Instructions starting with MAT refer to an entire matrix, or to two or more matrices. Instructions
such as PRINT and INPUT refer to specific elements of the array by row and column. The DIM
statement is used to define the dimensions of the matrix and to reserve storage space for it. Some
typical matrix operations are:

MAT READ A,B,C

MAT INPUT A,B
MAT C = ZER
MAT C = CON
MAT C = IDN
MAT PRINT A,B;C
MATB=A

MATC=A+B
MATC=A-B
MAT C = A*B
MAT C = TRN(A)

MAT C = (K)*A

MAT C = INV(A)

Read the three matrices, their dimensions having been previously
defined. Data is stored in the matrix row by row.

Input matrices A and B from the user terminal. Data is stored in
the matrix row by row.

Fill matrix C with zeros.
Fill matrix C with ones.
Set up matrix C as an identity matrix.

Print the three matrices, with A and C in the regular format, but
B closely packed.

Set matrix B equal to matrix A.

Add two matrices, A and B; set matrix C to the result.
Subtract matrix B from matrix A; set matrix C to the result.
Multiply matrix A by matrix B; set matrix C to the result.
Transpose matrix A; set matrix C to the result.

Multiply matrix A by K. K, which must be in parentheses, may
be a formula; set matrix C to the result.

Invert matrix A; set matrix C to the result.

MAT PRINT #5;A Print matrix A onto a file.

MAT READ #M,N+2;D Read matrix D from a file, row by row — same restrictions as
MAT READ.

Use of these statements is described in this section. Formatted printing of matrices is described in
Section VIII.

STATEMENTS
DIM Statement
GENERAL FORM:

statement number DIM matrix variable (integer). ..
or

statement number DIM matrix variable (integer , integer). ..

The DIM statement sets upper limits on the amount of working space used by an array or a matrix
in the TSB system.

The integers refer to the number of array elements if only one dimension is supplied, or to the
number of row and column elements respectively, if two dimensions are given.

A matrix (array) variable is any single letter from A to Z.

Some matrix operations permit the initialization of an array or matrix within the operation call if
the dimensions are 10 elements or less for one dimensional arrays or 10 rows and 10 columns or
less for two-dimensional arrays. Otherwise, a DIM statement is required.

The working size of a matrix may be smaller than its physical size. For example, an array declared
9 x 9 in a DIM statement may be used to store fewer than 81 elements; the DIM statement supplies
only an upper bound on the number of elements. When the working size of a matrix is changed
using one of the MAT statements described on the following pages, the values of excluded positions
are lost.

The absolute maximum matrix size is about 4900 elements; a matrix of this size is practical only in
conjunction with a very small program.

EXAMPLES:

110 DIM A (50D, B(20,20)
120 DIM z (5,20)
130 DIM S (5,25)
140 DIM R (4,4

MAT. . .ZER Statement
GENERAL FORM:
statement number MAT matrix variable = ZER
or
statement number MAT matrix variable = ZER (expression)

or

statement number MAT matrix variable = ZER (expression , expression)

This statement sets all elements of the specified matrix equal to zero.
The matrix specified may be initially dimensioned within the MATZER statement if the
dimensions are 10 elements or less for one-dimensional, or 10 rows and 10 columns or less for

two-dimensional arrays. Otherwise, a DIM statement is required.

A new working size may be established; the new working size in a MAT . . .ZER is an implicit DIM
statement within the limits set by the DIM statement on the total number of elements.

Since O has a logical value of ‘““false’’, MAT . . .ZER is useful in logical initialization.

The expressions in new size specifications should evaluate to integers. Non-integers are rounded to
the nearest integer value.

EXAMPLES:
305 MAT A = ZER

310 MAT Z = ZER (N)

315 MAT X = ZER (30, 10)
320 MAT R = ZER (N, P)

5-3

MAT.. .CON Statement

GENERAL FORM:

statement number MAT matrix variable = CON
or

statement number MAT matrix variable = CON (expression)
or

statement number MAT matrix variable = CON (expression , expression)

This statement sets up a matrix with all elements equal to one.

The matrix specified may be initially dimensioned with the MAT . . .CON statement if the dimen-
sions are 10 elements or less for one-dimensional, or 10 rows and 10 columns or less for two-
dimensional arrays. Otherwise, a DIM statement is required.

A new working size may be specified, within the limits of the original DIM statement on the total
number of elements.

Note that since 1 has a logical value of “true”, the MAT . . .CON statement is useful for logical
initialization.

The expressions in new size specifications should evaluate to integers. Non-integers are rounded to
the nearest integer value.

EXAMPLES:
205 MAT C = CON

210 MAT A = CON (N,ND
220 MAT Z = CON (5,20)
230 MAT Y = CON (50)

5-4

INPUT Statement

GENERAL FORM:

statement number INPUT matrix variable (expression). . .

or

statement number INPUT matrix variable (expression , expression). . .

The INPUT statement allows input of a specified matrix element(s) from the user terminal.

An expression should be an integer. Non-integers are rounded to the nearest integer value.

The subscripts (expressions) used after the matrix variable designate the row and column of the
matrix element. Do not confuse these expressions with working size specifications, such as those
following a MAT INPUT statement.

See MAT INPUT and DIM in this section for further details on matrix input.

See ENTER, Section III for an additional means of inputting specific matrix elements.

EXAMPLES:
600 INPUT A(C5)

610 INPUT B(5,8)

620 INPUT R(XD, N$, AC3,3)
630 INPUT Z(X,Y), P3, W$

640

INPUT Z(X,Y), Z(X+1, Y+1),

Z(X+R3, Y+S2)

MAT INPUT Statement
GENERAL FORM:

statement number MAT INPUT matrix variable
or

statement number MAT INPUT matrix variable (expression). . .
or

statement number MAT INPUT matrix variable (expression , expression). . .

The MAT INPUT statement allows input of an entire matrix from the user tetminal.

The matrix specified may be initially dimensioned within the MAT INPUT statement if the dimen-
sions are 10 elements or less for one-dimensional, or 10 rows and 10 columns or less for two-
dimensional arrays. Otherwise, a DIM statement is required.

A new working size may be specified, within the limits of the DIM statement on total number of
elements.

Do not confuse the size specifications following MAT INPUT with element specifications. For
example, INPUT X(5,5) causes the fifth element of the fifth row of matrix X to be input, while
MAT INPUT X(5,5) requires input of the entire matrix called X, and sets the working size at 5
rows of 5 columns.

Example statements 360 through 375 require input of the specified number of matrix elements,
because they specify a new size.

Elements being input must be separated by commas.

When a MAT INPUT statement is executed, ““?”’ is generated regardless of the number of elements.
A “??” response to an input item means that more values are required.

MAT INPUT causes the entire matrix to be filled from teleprinter input in the (row, col.) order:
1,1;1,2;1,3; etc.

EXAMPLES:

355 MAT INPUT A

360 MAT INPUT B(5)
365 MAT INPUT z(5,5)
370 MAT INPUT A(CN)D
375 MAT INPUT B(N,M)

5-6

Printing Matrices

GENERAL FORM:

statement number PRINT matrix variable (expression). . .

or

statement number PRINT matrix variable (expression , expression). . .

A PRINT statement causes the specified matrix element(s) to be printed.

The expressions (subscripts) should be integers. Non-integers are rounded to the nearest integer

value.

A trailing semicolon packs output into twelve elements per teleprinter line, if possible. A trailing
comma prints five elements per line.

Subscripts following the matrix variable designate the row and column of the matrix element. Do
not confuse these with new working size specifications, such as those following a MAT INPUT

statement.

This statement prints individual matrix elements. MAT PRINT is used to print an entire matrix.

EXAMPLES:

800 PRINT
810 PRINT
820 PRINT
830 PRINT
840 PRINT

AC3)

AC3,3);

FCX);ES$; C5;R(ND
G(X,Y)D

Z(X,Y), z(C1,5), Z(X+N

, Y+M)

5-7

MAT PRINT Statement

GENERAL FORM:

statement number MAT PRINT matrix variable
or

statement number MAT PRINT matrix variable , matrix variable . . .

A MAT PRINT statement causes an entire matrix to be printed.
Matrices referenced in a MAT PRINT statement must first be dimensioned in a DIM statement.

The MAT PRINT statement causes the matrix elements to be printed row by row across the page.
Each matrix row starts a new line. The spacing between row elements is controlled by the use of ,
and ; in the same manner as for the PRINT statement. Rows containing more elements than can
be printed on a line are continued on consecutive lines. Each row of a matrix is started on a new
line and is separated from the previous row by a blank line. Thus the instruction:

MAT PRINT A, B;C

will cause the three matrices to be printed A and C with five components to a line and B with up to
twelve.

Singly subscripted arrays may be interpreted as column vectors. Vectors may be used in place of
matrices, as long as the above rules are observed. Since a vector like (V)I is treated as a column
vector by BASIC, a row vector has to be introduced as a matrix that has only one row, namely row
1. Thus

DIM X(7), Y(1,5)
introduces a 7-component column vector and a 5-component row vector.

A column vector will be printed one element to the line with double spacing between lines. A row
vector will be printed in the manner indicated by the form of the statement. For example: if V is
arow vector then, “MAT PRINT V” or “MAT PRINT V,” will print V as a row vector, five numbers
to the line, while “MAT PRINT V;” will print V as a row vector with up to twelve numbers to the
line.

EXAMPLES:

500 MAT PRINT A
505 MAT PRINT A;
515 MAT PRINT A,B;C
520 MAT PRINT A,B,C;

READ Statement

GENERAL FORM:

statement number READ matrix variable (expression)

or

statement number READ matrix variable (expression , expression). . .

The READ statement causes the specified matrix element to be read from the current DATA
statement.

Expressions (subscripts) should evaluate to integers. Non-integers are rounded to the nearest
integer.

Subscripts following the matrix variable designate the row and column of the matrix element. Do
not confuse these with working size specifications, such as those following MAT INPUT statement.

The MAT READ statement is used to read an entire matrix from DATA statements. See details in
this section.

EXAMPLES:

900
910
920
930
940

READ
READ
READ
READ
READ

INGD)

AC9,9)

C(X); PS$; R7
C(X,Y)
z(X,Y),P(R2,

$5), X(4D

5-9

MAT READ Statement

GENERAL FORM:

statement number MAT READ matrix variable
or

statement number MAT READ matrix variable (expression). ..
or |

statement number MAT READ matrix variable (expression , expression)

The MAT READ statement reads an entire matrix from DATA statements.

The matrix specified may be initially dimensioned within the MAT READ statement if the dimen-
sions are 10 elements or less for one-dimensional, or 10 rows and 10 columns or less for two-
dimensional arrays. Otherwise, a DIM statement is required.

A new working size may be specified, within the limits of the original DIM statement.

MAT READ causes the entire matrix to be filled from the current DATA statement in the (row, col.)
order: 1,1;1,2;1,3; etc. In this case the DIM statement controls the number of elements read.

EXAMPLES:

350 MAT READ A

370 MAT READ B(5),C,D
380 MAT READ Z (5,8)
390 MAT READ N (P3,Q7)

5-10

Matrix Addition

GENERAL FORM:

statement number MAT matrix variable = matrix variable + matrix variable
Matrix addition establishes a matrix equal to the sum of two matrices of identical dimensions; addi-
tion is element-by-element.

Each matrix referenced must be previously mentioned in a DIM statement. Dimensions of the re-
sultant matrix must be the same as the component matrices.

The same matrix may appear on both sides of the = sign, as in example statement 320.

EXAMPLES:

310 MAT C = B + A
320 MAT X = X + Y
330 MAT P = N + M
Matrix Subtraction

GENERAL FORM:

statement number MAT matrix variable = matrix variable - matrix variable
Matrix subtraction establishes a matrix equal to the difference of two matrices of identical dimen-
sions; subtraction is element-by-element.

Each matrix referenced must be previously mentioned in a DIM statement. Dimensions of the re-
sultant matrix must be the same as the component matrices.

The same matrix may appear on both sides of the = sign, as in example statement 560.

EXAMPLES:

550 MAT C = A - B
560 MAT B = B - Z
570 MAT X = X - A

511

Matrix Multiplication
GENERAL FORM:

statement number MAT matrix variable = matrix variable * matrix variable

Matrix multiplication establishes a matrix equal to the product of the two specified matrices.
Each matrix referenced must be previously dimensioned.

Following the rules of matrix multiplication, if the dimensions of matrix B = (P,N) and matrix C =
(N,Q), multiplying B*C results in a matrix of dimensions (P,Q).

Note that the resulting matrix must have an appropriate working size.

The same matrix variable may not appear on both sides of the = sign.

EXAMPLES:

930 MAT Z = B ¥ C
940 MAT X = A ¥ A
950 MAT C = Z ¥ B
Scalar Multiplication

GENERAL FORM:

statement number MAT matrix variable = (expression) * matrix variable
Scalar multiplication establishes a matrix equal to the product of the matrix multiplied by a speci-
fied number, that is, each element of the original matrix is multiplied by the number.

Each matrix referenced must be previously dimensioned. The same matrix variable may appear on
both sides of the = sign. Both matrices must have the same working size.

EXAMPLES:

110 MAT A = (5) ®* B

115 MAT C = (10) ® C
120 MAT C = (N/3) * X
130 MAT P = (Q7%N5) * R

5-12

Copying a Matrix
GENERAL FORM:

statement number MAT matrix variable = matrix variable

A specified matrix may be copied into a matrix of the same dimensions; copying is element-by-
element.

Each matrix referenced must be previously dimensioned. Both must have the same dimensions.

EXAMPLES:

LO5 MAT B = A
L10 MAT X =Y
L20 MAT Z = B
Identity Matrix

GENERAL FORM:

statement number MAT array variable = IDN
or

statement number MAT array variable = IDN (expression , expression)

A MAT. .. IDN statement is used to establish an identity matrix (all 0’s, with a diagonal of all 1°s).
The matrix specified may be initially dimensioned within the MAT .. . IDN statement if the dimen-
sions are 10 elements or less for one-dimensional, or 10 rows and 10 columns or less for two-

dimensional arrays. Otherwise, a DIM statement is required.

A new working size may be specified within the limits of the original DIM statement. The IDN
matrix must be two dimensional and square.

Specifying a new working size has the effect of a DIM statement.

Sample identity matrix: 1 0 0

0 1 o0
0 0 1
EXAMPLES:
205 MAT A = IND
210 MAT B = IDN (3,3)
215 MAT Z = IDN (Q5, Q5)
220 MAT S = IDN (6, 6)

5-13

Matrix Transposition
GENERAL FORM:

statement number MAT matrix variable = TRN (matrix variable)

A MAT ... TRN statement can be used to establish a matrix as the transposition of a specified
matrix; transposes rows and columns.

Each matrix referenced must be previously dimensioned.

Sample transposition:

Original Transposed

1 3 1 4 7
6 2 5 8

7T 8 9 3 6 9

Note that the dimensions of the resulting matrix must be the reverse of the original matrix. For
instance, if A has dimensions of 6,5 and MAT C = TRN (A), C must have dimensions of 5,6. The
same matrix can not be on both sides of the “="’ sign.

EXAMPLES:

959 MAT Z = TRN (A)
969 MAT X = TRN (B)
979 MAT Z = TRN (C)

514

Matrix Inversion

GENERAL FORM:

statement number MAT matrix variable = INV (matrix variable)

A MAT ... INV statement is used to establish a square matrix as the inverse of the specified square
matrix of the same dimensions.

Each matrix referenced must be previously dimensioned.

A matrix may be inverted into itself, as in example statement 400 below.

In performing the inversion, the system must generate an additional internal matrix, so that an

additional amount of storage equal to that needed for the original matrix is required. It may not
be possible to invert an extremely large matrix.

EXAMPLES:
380 MAT A = INV(B)
390 MAT C = INVCA)D
400 MAT Z = INV(Z)

5-156

MAT PRINT # Statement
GENERAL FORM:
statement number MAT PRINT # file number formula ; matrix variable . . .

or

stat. no. MAT PRINT # file no. form. , record no. form. ; matrix var.

The MAT PRINT # statement prints an entire matrix on a file, or on a specified record within a file.
Matrices referenced in a MAT PRINT # statement must be previously dimensioned.

A random matrix file print (i.e., with a record number specified) cannot transfer more than 128
numeric values because that is the maximum a record can hold. Attempting to exceed this generates
an end-of-file condition.

A serial matrix file print, however, can transfer as many elements as will fit in the entire file.

Note: A matrix may also be printed with formatted output.
See PRINT USING, Section VIII.

EXAMPLES:

520 MAT PRINT #5; A

530 MAT PRINT #6, 3; B
540 MAT PRINT #4,M; A
550 MAT PRINT #N,M; A

5-16

MAT READ # Statement

GENERAL FORM:

statement number MAT READ # file formula number ; matrix variable . . .
or

statement no. MAT READ # file formula no. , record no. formula ; matrix variable . . .
or

statement no. MAT READ # file form. no. , record no. form. ; matrix var. (expression). . .
or

stmt. no. MAT READ # file form. no. , record no. form. ; matrix var. (expr. , expr.). ..

A MAT READ # statement reads a matrix from a file, or specified record within a file.

A new working size may be specified within the limits of the original DIM statement.

MAT READ # fills the entire matrix in a row-by-row sequence of elements as: 1,1;1,2;1,3;1,4...

Remember that a maximum of 128 numbers may be transferred on a random read.

EXAMPLES:

720 MAT READ #2;A

730 MAT READ #2,3;B

740 MAT READ #M,N;B(5)

750 MAT READ #M,N;B(CP7,R5)

5-17

SECTION VI
Strings

A string is a set of characters such as “DDDDDE” or “45T,#”’. BASIC contains special variables and
language elements for manipulating string quantities. This section explains how to use the string
features of BASIC. There is little difference in the form of statements referencing numeric quantities
and those referencing strings. One important difference, however, is the use of subscripts which is
explained later.

Lower-case alphabetic characters can be input from or output to user terminals having this capa-
bility. When lower-case characters are output to a terminal not capable of printing them, most
terminals will print such characters as the upper case equivalent. Lower-case characters are auto-
matically converted to upper case by the system, except when they occur in strings or REM state-
ments. Lower-case characters in strings used as file names in ASSIGN statements or program names
in CHAIN statements are also converted to upper case when used.

The examples and comments in this section emphasize modifications in statement form or other
special considerations in handling strings.

I <<

If you are familiar with the concepts “‘string”, “string variable”, and “substring”’, skip directly to
“The String DIM Statement”.

TERM: STRING
Defined: A set of 1 to 72 characters enclosed by quotation marks or the null string (no characters).

Typical Strings: “ABCDEFGHIJKLMNOP”
“12345”
“BOB AND TOM”
“MARCH 13, 1970”

Null String: “r
Quotation marks cannot be used within a string because quotation marks are used as string delimiters.

Note: Quotation marks are accepted in strings by the ENTER
statement.

6-1

Apostrophes and control characters are legal as string characters.
A null string has no value, as distinguished from a blank space which has a value.

Strings are manipulated in string variables. For example:

100 A$ = “THISIS A STRING”
t t
string string
variable
200 B$ = A$(1,10)
t t
string substring
variable (defined later)
300C$ = <»
t t
string null string
variable

TERM: STRING VARIABLE

Defined: A variable used to store strings; consists of a single letter (A to Z) followed by a $. For
example: A$, Z$, M$.

String variables must be declared before being used if they contain strings longer than one char-
acter. See “The String DIM Statement”.

When a string variable is declared, its “physical” length is set. The “physical” length is the maxi-
mum size string that the variable can accommodate. For example:

710 DIM A$(72),B$(20),C$(50)

During execution of a program, the “logical” length of a string variable varies. The ‘““logical” length
of the variable is the actual number of characters that the string variable contains at any point. For
example:

100 DIM A$(72) (Sets physical length of A$)
200 A$ = “SAMPLE STRING” (Logical length of A$ is 13)
300 A$ = “LONGER SAMPLE STRING” (Logical length of A$ is now 20)

6-2

TERM: SUBSTRING

Defined: A single character or a set of contiguous characters from within a string variable. The sub-
string is defined by a subscript string variable.

A substring is defined by subscripts placed after the string variable. Characters within a string are
numbered from the left starting with one. Subscripts must be positive, non-zero, and less than

32768. Non-integer subscripts are rounded to the nearest integer.

Two subscripts, separated by a comma, specify the first and last characters of the substring. For
example:

100 Z$ = “ABCDEFGH”
200 PRINT Z$(2,6)

prints the substring

BCDEF

A single subscript specifies the first character of the substring and implies that all characters
following are part of the substring. For example:

300 PRINT Z$(3)

prints the substring
CDEFGH

Two equal subscripts specify a single character substring. For example:

400 PRINT Z$(2,2)

prints the substring
B

If subscripts specify a substring larger than the physical length of the original string, blanks are
appended.

STRINGS AND SUBSTRINGS

A string can be made into a null string. This is done by assigning it the value of a substring whose
second subscript is one less than its first. For example:

100 A$ = B$(6,5) (A$ now contains a null string)

This 1s the only case in which a smaller second subscript is acceptable in a substring.

6-3

Substrings can become strings. For example:

100 A$ = “ABCDEFGH”
200B$ = A$(3,5)
300 PRINT B$

prints the string

CDE

because the substring of A$ is now a string in B$.

Substrings can be used as string variables to change characters within a larger string. For example:

100 A$ = “ABCDEFGH”
200 A$(3,5) = “123”
300 PRINT A$

prints the string

AB123FGH

Strings, substrings, and string variables can be used with relational operators. They are compared
and ordered as entries are in a dictionary. For example:

100IF A$ = B$ THEN 2000
200IF A$ < “TEST” THEN 3000
3000 IF A$(5,6) = B$(7,8) THEN 4000

See the STRING IF statement description in this section.

The String DIM Statement
GENERAL FORM:

statement number DIM string variable (number of characters in string)
The string DIM statement reserves storage épace for strings longer than 1 character; also for matrices
(arrays).

The number of characters specified for a string in its DIM statement must be expressed as an integer
from 1 to 72.

Each string having more than 1 character must be mentioned in a DIM statement before it is used in
the program.

Strings not mentioned in a DIM statement are assumed to have a length of 1 character.

The length mentioned in the DIM statement specifies the maximum number of characters which
may be assigned; the actual number of characters assigned may be smaller than this number. See
“The LEN Function” in this section for further details.

Matrix dimension specifications may be used in the same DIM statement as string dimensions
(example statement 45 below).

EXAMPLES:

35 DIM AS$ (72), Bs$(60)
Lo DIM z$ (10)
45 DIM N$ (2), R(5,5), P$(8)

6-5

The String Assignment Statement

GENERAL FORM:

statement number LET string variable = ** string value
or

statement number LET string variable = string or substring variable
or

statement number string variable = *‘ string value ™’
or

statement number string variable = string or substring variable
The string assignment statement establishes a value for a string; the value may be a literal value in
quotation marks, or a string or substring value.

Strings contain a maximum of 72 characters, enclosed by quotation marks. String variables having
more than 1 character must be mentioned in a DIM statement.

Special purpose characters, such as <, X€, or quotation marks may not be string characters.

If the source string is longer than the destination string, the source string is truncated at the
appropriate point.

EXAMPLES:
200 LET AS = "TEXT OF STRING"
210 BS$ = "RRX TEXT 11"

220 LET CS$ = AS(1,W)
230 D$ = BS(W)
240 F$(3,8)=N$

6-6

The String INPUT Statement

GENERAL FORM:

statement number INPUT string or substring variable . . .

The string INPUT statement allows string values to be entered from the user terminal.

Placing a single string variable in an INPUT statement allows the string value to be entered without
enclosing it in quotation marks.

If multiple string variables are used in an INPUT statement, each string value must be enclosed in
quotation marks, and the values separated by commas. The same convention is true for substring
values. Mixed string and numeric values must also be separated by commas.

If a substring subscript extends beyond the boundaries of the input string, the appropriate number
of blanks are appended.

Numeric variables may be used in the same INPUT statement as string variables (example state-
ment 55 below).

Note: The ENTER statement (Section III) can be used to input a
character string. When using the ENTER statement for
character strings, the string being entered should not be
enclosed in quotation marks, but may contain quotation
marks.

EXAMPLES:

50 INPUT RS

55 INPUT A$,BS, C9, D10
60 INPUT AS$(1,5)

65 INPUT BS$(3)

Printing Strings
GENERAL FORM:

statement number PRINT string or substring variable , string or substring variable . . .

A string PRINT statement causes the current value of the specified string or substring variable to be
output to the user’s terminal device. The terminal device may be a user terminal or the line printer.

String and numeric values may be mixed in a PRINT statement (example statements 115 and 130
below).

Specifying only one substring parameter causes the entire substring to be printed. For instance, if
the value of B3 = 642 and C$ = “WHAT IS YOUR NAME?”’, example statement 120 prints:

WHAT IS
while statement 115 prints

YOUR NAME?END OF STRING 642

Numeric and string values may be “‘packed’’ in PRINT statements without using a “semicolon’’, as
in example statement 115.

0OC and N€ generate a return and linefeed respectively when printed as string characters.

Note: The PRINT USING statement (Section VIII) can be used
to provide greater control of format over strings and sub-
strings.

EXAMPLES:

105 PRINT AS

110 PRINT AS, BS, Z$

115 PRINT C$(8) "END OF STRING" B3
120 PRINT C$(1,7)

130 PRINT "THE TOTAL IS:";X5

6-8

Reading Strings

GENERAL FORM:

statement number READ string or substring variable , string or substring variable , . ..

A string READ statement causes the value of a specified string or substring variable to be read from
a DATA statement.

A string variable (to be assigned more than 1 character) must be mentioned in a DIM statement
before attempting to READ its value.

String or substring values read from a DATA statement must be enclosed in quotation marks, and
separated by commas. See ‘‘Strings in DATA Statements” in this section.

Only the number of characters specified in the DIM statement may be assigned to a string. Blanks
are appended to substrings extending beyond the string dimensions.

Mixed string and numeric values may be read (example statement 310 below); see “The TYP
Function’, Section IV for description of a data type check which may be used with DATA
statements.

EXAMPLES:

300 READ C$

305 READ X$, Y$, Z$

310 READ Y$(5), A,B,C5,N$
315 READ Y$(1,4)

6-9

String IF Statement

GENERAL FORM:

statement no. IF string var. relational oper. string var. THEN statement no.

A string IF statement compares two strings. If the specified condition is true, control is transferred
to the specified statement.

Strings are compared one character at a time, from left to right; the first difference determines the
relation. If one string ends before a difference is found, the shorter string is considered the smaller
one.

Characters are compared by their ASCII representation. (See STRING EVALUATION BY ASCII
CODES, Section IX.)

If substring subscripts extend beyond the length of the string, null characters (rather than blanks)
are appended.

String compares may appear only in IF . . . THEN statements and not in conjunction with logical
operators (Section VII).

EXAMPLES:

340 IF C$<D$ THEN 800

350 IF C$>=D$ THEN 900

360 IF CS#DS THEN 1000

370 IF N$(3,5)<R$(9) THEN 500
380 IF ASC10D="END" THEN 400

6-10

The LEN Function

GENERAL FORM:

statement number statement type LEN (string variable) . ..

The LEN function supplies the current (logical) length of the specified string, in number of
characters.

DIM merely specifies a maximum string length. The LEN function allows the user to check the
actual number of characters currently assigned to a string variable.

Note that LEN is a directly executable command (see Section IIT), while LEN (... $) is a pre-
defined function used only as an operand in a statement. The LEN command gives the working
program length; the LEN function gives the current length of a string.

EXAMPLES:

469 PRINT LEN (AS)

479 PRINT LEN (X$D

489 PRINT "TEXT'"; LENCAS$); BS, C

499 IF LEN (PS$S) #5 THEN 600

509 IF LEN (P$) = 5 THEN 609

519 IF LEN (P$) = 5 OR LEN (P$) = 10 THEN 10

529 LET XSCLEN(X$)+1) = "ADDITIONAL SUBSTRING"
600 STOP
609 PRINT "STRING LENGTH = '"; LEN (P$)

6-11

Strings in DATA Statements

GENERAL FORM:

statement number DATA * string text >, ‘“ string text > . . .

The DATA statement specifies data in a program (numeric values may also be used as data).
String values must be enclosed by quotation marks and separated by commas.

String and numeric values may be mixed in a single DATA statement. They must be separated by
commas (example 520 below).

Strings up to 72 characters long may be stored in a DATA statement.

See “The TYP Function”, Section IV, for description of a data type (string, numeric) check which
may be used with DAT A statements.

EXAMPLES:
500 DATA "NOW IS THE TIME."

510 DATA '"HOwW'", "ARE", "yOu,"
520 DATA 5.172, "NAME?", 6.47,5071

6-12

Printing Strings on Files

GENERAL FORM:

statement number PRINT # file number , record number formula ; string variable . . .
or

statement number PRINT # file number formula , record number formula ; *‘ string text ”
or

statement number PRINT # file number formula ; string variable or substring variable . . .

The PRINT # statement prints string or substring variables on a file.

String and numeric variables may be mixed in a single file or record within a file (example state-
ment 360 below).

The formula for determining the number of 2-character words required for storage of a string on
a file is:

number of characters in string
1

1+ if the number of characters is even;

number of characters in string + 1
2

1+ if the number of characters is odd.

See “The TYP Function”, Section IV for description of a data type check.

EXAMPLES:

350 PRINT #5; "THIS IS A STRING."

355 PRINT #8; C$, BS, X$, Y$, D$

360 PRINT #7,3; X$, P$, "TEXT", 27.5,R7
365 PRINT #N,R; PS$, N, A(5,5), "TEXT"

6-13

Reading Strings from Files

GENERAL FORM:

statement no. READ # file no. formula, record no. formula ; string or substring variable . . .
or

statement no. READ # file no. formula ; string or substring variable . . .

The READ # statement reads string and substring values from a file.

String and numeric values may be mixed in a file and in a READ number statement; they must be
separated by commas.

See “The TYP Function,” Section IV for description of a data type check.

EXAMPLES:

710 READ #1, 5; AS$, BS

715 READ #2; C$, Al, B2, X

720 READ #3,6; CS$(5),X5C4,7),Y$
730 READ #N,P; CSS, V(2,7),R$(9)

6-14

SECTION VII
Logical Operations

Logical evaluation simply determines whether a given statement or expression is true or false. When
applied to numeric values, any non-zero expression is considered ‘““‘true’>; a value of zero is considered
“false.”

When an expression or statement is logically evaluated by the TSB system, it is assigned one of two
numeric values—a 1 if the expression or statement is logically ‘“‘true,” or a 0 if the expression or state-
ment is logically ‘““‘false.”

Logical decisions are used to select one of two or more paths of execution through a program. Exe-
cuting an IF statement, described in this section, causes the system to perform a specified statement

next if the condition in the IF statement is true, and a different statement if the condition is false.

The truth or falsity of a statement or expression can also be determined and printed as a 1 for true
or a 0 for false.

RELATIONAL OPERATORS
There are two ways to use the relational operators in logical evaluations:

1. As asimple check on the numeric value of an expression.

EXAMPLES:

150 IF B=7 THEN 600
200 IF A9#27.65 THEN 700
300 IF (Z/10)>=0 THEN 800

When a statement is evaluated, when the “IF”’ condition is currently true (for example, in statement
150, if B=7), then control is transferred to the specified statement. When the condition is false, the
next sequential statement after 150 is executed.

7-1

Note that the numeric value produced by the logical evaluation is unimportant when the relational
operators are used in this way. The user is concerned only with the presence or absence of the con-
dition indicated in the IF statement.

2. As acheck on the numeric value produced by logically evaluating an expression, that is:
“true” = 1, “false” = 0.

EXAMPLES:

610 LET X=27
615 PRINT X=27
620 PRINT X#27
630 PRINT X>=27

The example PRINT statements give the numeric values produced by logical evaluation. For instance,
statement 615 is interpreted by TSB as “Print 1 if X equals 27, 0 if X does not equal 27.”” There are
only two logical alternatives; 1 is used to represent ““true,”” and 0 “false.”

The numeric value of the logical evaluation is dependent on, but distinct from, the value of the

expression. In the example above, X equals 27, but the numeric value of the logical expression X=27
is 1, since it describes a ‘““true” condition.

BOOLEAN OPERATORS
There are two ways to use the Boolean operators.

1. Aslogical checks on the value of an expression or expressions.

EXAMPLES:

510 IF Al OR B THEN 670
520 IF B3 AND C9 THEN 680
530 IF NOT C9 THEN 690
540 IF X THEN 700

Statement 510 is interpreted: “‘if either Al is true (has a non-zero value) or B is true (has a non-zero
value) then transfer control to statement 670.”

Similarly, statement 540 is interpreted: ““if X is true (has a non-zero value) then transfer control to
statement 700.”

7-2

The Boolean operators evaluate expressions for their logical values only; these are ‘“‘true” = any
non-zero value, “‘false’ = zero. For example, if B3 = 9 and C9 = -5, statement 520 would evaluate
to ‘“‘true,” since both B3 and C9 have a non-zero value.

2. As acheck on the numeric value produced by logically evaluating an expression, that is:
“true’” =1, “false” = 0.

EXAMPLES:

490 LET B = C = 7
500 PRINT B AND C
510 PRINT C OR B
520 PRINT NOT B

Statements 500 - 520 returns a numeric value of either: 1, indicating that the statement has a logical
value of ““true,” or 0, indicating a logical value of ‘“‘false.”

Note that the criteria for determining the logical values are:

true any non-zero expression value

false an expression value of 0.

The numeric value 1 or 0 is assigned accordingly.

EXAMPLES:

The following examples show some of the possibilities for combining logical operators in a statement.
It is advisable to use parentheses whenever possible when combining logical operators.

310 IF CA9 MIN B7)<0 OR (A9 MAX B7)>100 THEN 900

310 PRINT (A>B) AND (X<Y)

320 LET C = NOT D

330 IF (C7 OR D4) AND (X2 OR Y3) THEN 930
340 IF (A1 AND B2) AND (X2 AND Y3) THEN 940

7-3

The numerical value of ‘“‘true’ or ‘“‘false’’ may be used in algebraic operations. This sequence counts
the number of zero values in a file:

90 LET X = 0

100 FOR I = 1 TO N
110 READ #1; A

120 LET X = X+(CA=0)
130 NEXT 1

140 PRINT N; '"VALUES WERE READ."
150 PRINT X; "WERE ZEROES."
160 PRINT (N-XD; "WERE NONZERO."

Note that X is increased by 1 or 0 each time A is read; when A = 0, the expression A = 0 is true, and
X is increased by 1. N must have been given a value earlier in the program.

7-4

SECTION Vil
Formatted Output

The PRINT USING and IMAGE statements give the user more explicit and exact control over the
format of his output. Numbers can be printed in three forms - - integer, fixed-point, or floating
point - - with control of + and - signs. Strings may be printed in specified fields. Blanks can be
inserted wherever needed. Carriage return and linefeed can be controlled. PRINT USING requires
more programming effort than a simple PRINT, but it provides the ability to output data in what-
ever format the programmer needs.

DEFINITIONS

Term Defined in TSB

FORMATTED OUTPUT Similar to normal output (PRINT statement) except
that, in addition to an expression list of output
values, the PRINT USING statement also specifies
a format string that determines the form in which
the values are printed.

EXPRESSION LIST A list of expressions and string variables separated
by commas and optionally interspersed with space
functions. An expression list must not contain
literal strings.

FORMAT STRING A string of up to 72 characters, consisting of an
optional carriage control character followed by a
list of format specifications separated by commas
or slashes (/).

FORMAT SPECIFICATION A series of format characters and repetition
factors that determines the format (field width,
decimal point, sign, etc.) of one item in the
expression list. Can also be a literal string in
certain situations. Format specifications can be
gathered into a repeatable group through the use
of parentheses.

8-1

Term Defined in TSB

FORMAT CHARACTERS The characters A, X, D, S, ., and E are used to
specify output fields for strings and numbers.

REPETITION FACTOR An unsigned integer (e.g., 3, 6, 12, 32) that is
placed before a format character or group of
format specifications in order to repeat it
(e.g., 3A = AAA; 2(3A,4A) = 3A,4A,3A4A).
The repetition factor must be between 1 and 72
inclusive.

SLASH A delimiter (/) used to separate specifications when
a carriage return-linefeed is desired before processing
the next specification. Multiple slashes may be

used (///).

LITERAL STRING Any sequence of characters, other than quote
marks (“’), that is surrounded by quote marks and
is to be printed as it appears.

SPACE FUNCTIONS Three functions can appear in an expression list:

TAB(x) - Tabs out to column x before printing
next item. (x> 72 is legal only in a
PRINT USING statement.)

LIN(x) - Skips |x | lines before printing next
item. (If x <0, no carriage return is
generated. If x=0, only a carriage
return is generated.)

SPA(x) - Skips x spaces before printing next

item.
CARRIAGE CONTROL At the beginning of any format string there may
CHARACTERS appear one of three optional chracters set off

by a comma:

+ means to suppress linefeed.
- means to suppress carriage return.

means to suppress carriage return and linefeed.

These characters specify action to be taken after
the PRINT USING statement is complete. If no
character is specified, the default condition is

a carriage return and linefeed.

Summary

FORMAT CHARACTERS
& REPETITION FACTORS

-—

FORMAT SPECS

CARRIAGE CONTROL
CHARACTERS

DELIMITERS: / and,

PRINT USING

-

=Van

FORMAT STRING

; EXPRESSION LIST

—

Vv

EXAMPLES:

PRINT USING

PRINT USING

PRINT USING STATEMENT
FORMATTED OUTPUT

""DDD.DDD"

N —— ———

FORMAT STRING

"2X,3(3D.3D, 2X)"

FORMAT STRING

Z1

[

EXPRESSION LIST

z1,22,723

N —————

EXPRESSION LIST

STRING FORMAT SPECIFICATIONS

Format Characters Used

A - calls for one ASCII character to be output from a string in the expression list.

X specifies that a blank be printed next.

nA - calls for n ASCII characters (n = repetition factor).

nX - specifies that n blanks be printed.

Combination Rules

Any combination of X’s, A’s, and repetition factors specifies a legal STRING FORMAT
SPECIFICATION. When such a specification is encountered in a format, the next item in the
expression list must be a string.

FORMAT EXAMPLES:
AAAA
LA equivalent
2A2A
4x special case (all blanks, so no variable required)
AXAXAXA alternate characters and blanks
2X20A
OUTPUT EXAMPLES:
Contents of
Format Spec String Variabie Format of Output
6A ABCDEF ABCDEF
5A ABCDEF ABCDE
8A ABCDEF ABCDEF an
2X6A ABCDEF ~~ ABCDEF
AXAXAXAXAXA ABCDEF AABACADAEAF

The string is left-justified in the field and any leftover spaces are filled with blanks. If the string
variable contains more characters than the specification allows, characters on the right are truncated.

8-4

INTEGER FORMAT SPECIFICATIONS

Format Characters Used

D - calls for one decimal digit to be printed from a number in the expression list.

nD - calls for n contiguous decimal digits to be printed from a number in the expression list.
X - specifies that a blank is to be printed within the field for the number (nX is also allowed).
S - specifies that the sign (+ or -) of the number is to be printed.

Combination Rules

Any combination of X and D is allowed, but at least one D must be present and only one S is
allowed. When such a specification occurs in a format, the next item in the expression list must be
a number. This number is rounded to an integer and printed right-justified. Although the requested
number of digits will be printed, only six can be guaranteed to be significant.

FORMAT EXAMPLES:

DDDD

4D .

2DDD equivalent

2D2D

2DX3D

SDDD

S4p

DX3DS

OUTPUT EXAMPLES:

Format Spec Value ‘ Format of Output

4p 1234 1234
SLD 1234 +1234
Lps 1234 1234+
5D 1234 Al234
4D 1234.8 1235
DXDDD 1234 1,234
S10D 1234 Aanann +1234
DSDDD 1234 1+234
5D -1234 -1234
4p 1234.2 1234

8-5

If there is not enough room in the field for the number (i.e., the number of digits is greater than the
number of D’s in the format spec), then the value is printed on a separate line in a floating-point
format (SD.5DE) so that the programmer can analyze what went wrong.

If an S precedes all D’s, the sign is printed immediately preceding the first digit of the number.
If an S appears past the first D, the sign is printed at the location of the S.

If an S is not included in the format, then an extra D should be provided if the value could possibly
be negative. When the value is negative, the - sign is always printed preceding the most significant
digit and a space must be provided for it with a D or the field may overflow.

The ability to insert blanks can be combined with the ability to overprint (carriage control) in order
to produce useful results. For example, large numbers can be printed with blanks left in the correct
spots for commas to be inserted after each group of three digits (e.g., $10,937).

FIXED-POINT FORMAT SPECIFICATIONS

Format Characters Used
Same as INTEGER FORMAT, plus

. - specifies the location of the decimal point.

Combination Rules

Any combination of D and X to the left and right of the decimal point is allowed, but at least one
D must be present and only one S and one ‘.’ are allowed. For this specification, the next item in
the expression list must be a number. The digits to the right of the decimal point are rounded to
fit in the field. Leading zeros to the left are suppressed, but trailing zeros are always printed.

FORMAT EXAMPLES:

DDD.DDD
DDD. 3D .
3D. 3D equivalent

3D.DDD
S3D. 3D
DXDXDX.DDXD

XD6XLD.8D
DDSDD. 3D

8-6

OUTPUT EXAMPLES:

Format Spec Value Format of Output
3D.4D 465.465 465.4650
4D. 2D 4L65.465 AL465.47
4D. 3D -465.465 -465.465
sSbD2D.D 465.465 A+465.5
S2D. 4D 465 A+0.4650
S.4D .465 +.4650
D.4D -.465 -.4650
2D. 4D -. 465 -0.4650

If the number to be printed has no digits to the left of the decimal point but D’s are provided to the
left, then a zero (‘‘0’’) will be printed in the rightmost D on the left side. If an S is provided to the
left, it is moved to the right through D’s and X’s until it comes to the first non-blank character. If
an S is not provided and the number is negative, then one of three things will happen: 1) no D’s to
the left causes overflow; 2) one D to the left will be used for the ‘-’ sign and the ““0”’ will not be
printed; or 3) two or more D’s to the left, then the “->’ and ““0”’ will be printed in the positions
reserved by the rightmost two D’s.

FLOATING-POINT FORMAT SPECIFICATIONS

Format Characters Used
Same as FIXED-POINT FORMAT, plus

E - signifies floating point format.

X - as defined earlier may follow E.

Combination Rules

Any legal INTEGER or FIXED-POINT format specification followed by an E is a legal FLOATING-
POINT format. The E stands for “exponent” and signifies a four-character field consisting of an
“E” followed by “+” or ““~”” and two decimal digits. When 10 is raised to the power printed after

E and multiplied by the number in the integer or fixed-point field, the result is the value being
output. This format is useful for numbers that are very large or very small. For example,

.00005 = .5 x 1074 = .5E-4. X’s may follow the E and they cause Blanks to be printed between
the E and the exponent sign.

8-7

FORMAT EXAMPLES:

SD.5DE

DDD.DDDXEX

SD.8DXE

S6DE

S6D.E

S6D.XE

S6D.DDDE

OUTPUT EXAMPLES:
Format Spec Value Format of Output

21

SDXE 4.82716 X 10 +5AE+21
DDDD.DDE SAME 4827.16E+18
S5DX.X5DEX SAME Ann +48 Acn 27159EA+20
SD.5DE SAME +4,.82716E+21
S.10DE3X SAME +.04827159382E ann+22

Note again that the format can specify an unlimited number of digits in a specification, but only
six of these are guaranteed accurate. When more than six digits are requested, non-significant digits
are printed as in the preceding examples.

To produce the output, the output value from the expression list is multiplied or divided by 10,
the number of times necessary to fit the value into the field. It is then rounded from the right,
and the exponent is adjusted to account for the multiplications or divisions.

If the format allows for more digits than there are significant digits in the output value, two rules
are followed:

1. If there are more than 6D’s on the right side of the decimal point, the feftmost digit is printed
in the first D (if any) to the left of the decimal point or the first D to the right of the decimal
point; extra D’s beyond 7 on the right are filled with non-significant digits. In the following
examples, the arrow indicates the position of the leftmost digit printed:

DD.40D XX.DD40D 40DD.40D
1 1 1

2. If there are less than 7 D’s on the right side of the decimal point, the leftmost digit is printed
in the seventh D position from the right (or the leftmost if there are not 7). In the following
examples, the arrow indicates the position of the leftmost digit printed:

6DDDD.DDDD DD.DD D.6D
0 0 0

8-8

POSITION OF THE SIGN
1. When S is used.

If S precedes any D, the sign position is moved to the right through X’s and D’s and is printed
immediately to the left of the first non-blank character. If the number to be printed is a
fraction with no digits to the left of the decimal point and any D’s appear on the left of the
decimal point, then a ‘0’ appears in the rightmost D and the sign floats up to that “0”’.

If S is preceded by one or more D’s, the sign is printed at the position of the S and does not
float.

2. When S is not used.

When the number is negative, an extra D must be present to reserve a place for the sign. The
position of the sign is moved through unused D’s and X’s to the first non-blank character.

If not enough D’s are provided for all the significant digits and sign of a negative number,
then the field overflows and the number is printed on a separate line in SD.5DE format.

GROUPED FORMAT SPECIFICATIONS

One or more format specifications can be gathered within parentheses to make a group. This group
must be repeated by prefacing it with a repetition factor between 1 and 72 inclusive. Within the
parentheses, the specifications must be separated by commas or slashes and the group must be set
off from other specifications by a comma or slashes, just as if it were a single specification. Groups
can be nested two levels deep.

EXAMPLES:

4LC10A,2X,4D,2X//)
3C10D, 2(3DX, 4DX), 4A)D
3D.3D//3(20A,6D,4C(2A2X)/)

FORMAT STRINGS

Defined: A collection of format specifications (or groups of format specifications) set off by
commas or slashes and optionally preceded by a carriage control character set off by a comma.
One format string is used by one PRINT USING statement. The first character of a format string
must not be a slash (/) or a comma.

EXAMPLES:
+,20A,2X,S4D. 2D

6D, 2X,6DSX, 13AXAX, 2C4D, 2X, 3AX)
-,20A/20X20A/40A20X/

TERM: EXPRESSION LIST
Defined: The list of items to be printed using the format string. The items must be separated by
commas (not semicolons), and the list must not contain any literal strings. The types of the items

(numerical or string) must match the types of items called for in the format string. Space functions
(SPA,LIN,TAB) may appear in the list.

PRINT USING Statement

GENERAL FORM:

statement number PRINT USING format string ; expression list

This statement is used to print out data according to a specified format.
The format string can be specified in one of three ways:

a. an actual string (“‘6D,X20A”)
b. a string variable containing the format string (A$,B$(5,20))

c. the statement number of an IMAGE statement containing the format string (200).

The expression list is a list of expressions separated by commas; the semicolon and expression list
are optional.

When the PRINT USING statement is executed, the format string is examined and the carriage
control character, if any, is saved. Each specification is extracted and examined. If it calls for a
string or numerical item, the next expression in the expression list is taken and printed according
to the specification.

8-10

If there are no more specifications or the specification is of the wrong type, execution of PRINT
USING terminates.

If the specification does not require an item from the list (e.g., a blank or literal specification), the
specification is printed without examining the expression list.

If the end of the format string is reached before the end of the expression lis@, processing continues
from the beginning of the format string.

When all expressions have been printed, a carriage return and linefeed (modified by the carriage
control character) are printed.

EXAMPLES:

300 PRINT USING 200;A,B4,C$,TAB(50),67.78
400 PRINT USING AS;A,A3,CS$,D$
500 PRINT USING '"6DX,25A";A,AS$

In the following examples, the variables have these values: A =+12345, B =-1234,C =123,
D=12,E=-12345,F =123456,G=-1,H=1234.

100 PRINT USING "3(S6D2X)/ ";A,B,C,D,E,F

Output

A+123L5Annn =123 Aannn +123
ArAn F12aaa 12345, A+123456

100 PRINT USING "3(S6D2X)/";A,G
Output
A+ 12345 aannnnn =1

50 IMAGE "MONEY '",6DX,'"COST '",6DX,"INPUT ", 6DX
100 PRINT USING 50;H,D

Output

MONEY AANAN 1 23L|',\COST ANAAN 1 2

8-11

MAT PRINT USING Statement

GENERAL FORM:

statement number MAT PRINT USING format string ; matrix list

This statement is used to print out data from matrices in a specified format.
Matrices referenced in MAT PRINT USING statements must be previously dimensioned.

The format string is the same as in PRINT USING except that it must not contain any string
specifications.

The matrix list is a list of matrices separated by commas. (The semicolon and matrix list are
optional.) Space functions are allowed in the matrix list.

As in MAT PRINT, the matrices are printed in row by row order.

EXAMPLES:

200 MAT PRINT USING 300;A,B,SPA(M),C
350 MAT PRINT USING AS$; B,N,M
400 MAT PRINT USING '"SD.S5DE2X";K

10 DIM A(5,5)

100 PRINT USING "6(SD.5DED/";A

8-12

FORMAT IN A STRING VARIABLE: One way to specify the format string in a PRINT USING or
MAT PRINT USING statement is by using a string variable that contains the format string. This
allows the programmer to change the format during the execution of the program. The following
excerpt from a sample program shows what can be done:

100 LET AS$ = '"'DD, aannn DD"
110 IF X<Y THEN 130
120 A$C4,8) = "SD.E,"

130 PRINT USING AS;

If X is not less than Y, then the format string becomes
DD,SD.E,DD

instead of

DD,DD

IMAGE Statement

GENERAL FORM:

statement number IMAGE format string

The IMAGE statement is used to specify a format to be used in a PRINT USING statement.
An IMAGE statement is one means by which a literal string can be introduced into a format string.
Literal strings are printed exactly as they appear in the format string, similar to the way blanks are

printed in a blank specification.

The format string is any legal format string; it is not enclosed in quotes and can therefore contain
literal strings as format specifications.

EXAMPLES:

100 IMAGE 6D,"LITERAL STRING'",SD.5DE
200 IMAGE XDDXDD.DDE, 20A, 3D

8-13

USING CARRIAGE CONTROL

" This example demonstrates the use of the LIN function (statement 5), the carriage control characters
(statements 20, 40, and 60), and literal strings in IMAGE statements.

PROGRAM:

5% FEIWHT LIMCS:
FRIMT UZIMG &0
0 IMARGE s:a" "

0 FEINT UZIMGE 40

L T

40 IMAGE -»"IUPFREZZEZ LIMEFEED AWML CAFRIAGE RETH"
50 FPRIMT UZIHG &0
&0 IMAGE +."- ZUFFREZZEZ CARRIRGE FTH"

TOOPRINT UZIMG =0
20 IMAGE "AMD + IUPPREZZEZ LIMEFEED."
=0 END

OUTPUT:

i ZUFFREZZEE LIMEFEED RHD lI:F*.F?F:IHle FTH
AMD + ZUFFREZZEZ LIMEFEED. - IUFFREZZIES

I
-
m
=t
i
g}
m
T
4

DOHE

814

NUMERICAL OUTPUT

This example program prints out the values of 21N and (-2)tN, where N varies from -5 to 20.
Floating-point and integer formats are used (statement 350).

PROGRAM:

S PEINT UEZINHG 210

Sl IMFAGE " M a2 TO THE M"aZxa"-2 TO THE H"

00 FOR M=-5% TO 20

350 PRINT UZING 20238 ZD.SDE S »ZDLSDE” sHa2tH s C-2 2+
3e0 MERT M

1000 EMD

OUTPUT:

(& o TO THE H -2 TO THE M

- +3 . 12500E-02 -2.12500E-G2
- +E5 2SSO0 0E-02 +E SO0 0E-02
- +1 . 2S000E-11 -1 . E5000E-01
- +2.S0000E-01 +2.S0000E-01
- +5.00000E-01 -S.00000E-01

N ofe Gl Mo e TG0 Jo ()
+
—
m
+
+
—
m
+

cE0n —-1l.2an00E+02
+2 JSEOODE+OZ
+5.12000E+02
+1.02400E+]
+2 . 042 00E+DZ

+4 , D9 D0E+ 1D

+2 . 132 00E+03
+1 E3840E+04

+

.iéﬁﬁﬁE+UE
COSGONE+DS
L3S0 0E+DZ

Nu R B &
+
—
f
D
m
+
i

(RN ;i'n [ah]

—

H
R~

B}
J S

I+ 1

foy
o
1)

+

-
PR]

192 00E+03
LESSLOE+ 09

g

-

I+ 1

5 +3.2TESNE+O4 ”=éBUE+U4
+5 .S535 0E+ 04 +5 LV SSESR0E+ DY

+1 . 210FZE+0S
+2 2 144E+0S
+5 . 24288E+05
+1 4SS SE+ 08

=
n
m
+

OO =)
+

CESE+DS

i B KR s SRR B S o O S A KRS | B Y]

s l"l_’u (2§ ;_._'u N ll'll

JS S N SR |

0N o

| N S S S Y

+ i

8-15

REPORT GENERATION

This program is a sample report generator. It first requests a school number from the terminal, then
reads and prints out information about the school’s teachers from a file. Note that a carriage control
character is used to advantage (statement 100), slashes (/) are used (statement 200), string and
fixed-point fields are used (statement 210), and an error occurs in the output for the eighth teacher
(number too large for field; therefore, it is printed in E format on a separate line).

PROGRAM:

10 EEM: THIZ FEOGEAM GEMERATEE A FEFORT OM TERCHER:.

S0 DIM RECE2SI-BEC131.08012]

20 FILEEZ ZCHL »ZCHS »ZCHZ »Z0HG « TOHS

100 IMAGE #."ENTEFR ZCHOOL HUMEBER:"

150 IMAGE "TERCHER" » 12X« "ZURBJECT" « 125 « "ZALARY " 4=« "ATTHL .
¥ IMARE Y- YaldE et CalTHat e e e e
cod IMAGE "CEMTEARL CITY ZCHOOL DIZTRICT"-"DAILY REFDET DOF " 2SR
10 IMAGE S0RSZ20AR-"F"DDD.DL.LD.DODD

30 PRIMT LEIME 100

S0 IHFUT 2 .

&0 READ #Z3AF M

TO O OPRIMT LIMOER

a0 PRIMT UZIME S005RF

S0 PEIMT LZIMHG 150

5% FPRIMT UZIMG 175

57 FOR RA1=1 TO H

&0 RFERD #15EEsCEsAsE

00 PRIMNT UEZING 2103BESCEATRECSO B

e HMEST Al

1000 EMD

8-16

OUTPUT:

ENTER SCHOOL NUMBER:?1

CENTRAL CITY SCHOOL DISTRICT

DAILY REPORT OF B.

TEACHER

MISS BROOKS
MISS CRABTREE
MISS GRUNDIE
MRS. HUMPREY
COLONEL MUSTARD
MISS PEACH
PROF. PLUM

MISS H. PRYNNE
+5.00500E+02

MISS SCARLETT
MR. SIR

MR. T. TIM
MR. WEATHERBY

FATAL ERRORS

BAKER HIGH SCHOOL

SUBJECT

ENGLISH

REM. READING
HISTORY

SPELLING
CRIMINOLOGY

LIFE PREPARATION
AGRICULTURE
SOCIAL STUDIES

P.E.

HOME ROOM
MUSIC
ECONOMICS

SALARY

SL50.34
$L00.00
$350.00
$700.00
$700.00
$232.00
$777.77
$100.25

$205.10
$890.00
$ 10.99
$767.99

ATTND.
12.5000
64.3200
1.0010
99.9900
21.4500
23.2320
65.0050

25.0000
99.9000

0.0500
10.0400

These errors cause termination of execution of the PRINT USING statement. An appropriate

message is printed, along with the format specification that caused the error.

© ® N ok wd

-
[)

The replicator is outside the range 1< n< 72.

Appearance of a D,S,E or . in a string specification.

A comma followed by a slash.

More than two levels of parentheses.

No D in a fixed or floating specification.
An S in a blank specification.

String expression attempted to output in non-string format.
A slash followed by a comma.

Two or more E’s or . in a specification.

8-17

Appearance of an A in an integer specification, a fixed specification, or a floating specification.

Appearance of any character other than A,X,D,S,E,/ or . in any specification but literal.

12.
13.
14.
15.
16.

Literal string not separated by delimiters.

Missing quotes in a literal.

Specifications enclosed in parentheses without a replicator.
Specified statement is not IMAGE.

Attempt to print number with string format.

NON-FATAL ERRORS

These errors do not cause termination of the PRINT USING statement. The action taken is

indicated.

1. String specification field too narrow - - truncate string on right.

2. Field too narrow for integer or integer part of fixed specification - - number is printed in
SD.5DE format on next line and printing resumes on following line.

3. Field too narrow for fraction part of fixed or floating specification - - round from right to
fit into field.

4. Specification requires the printing of more than 46 digits - - 46 digits will be printed preceded
by blanks filling the rest of the field.

5. More than one S - - subsequent S’s are ignored.

8-18

SECTION IX
For the Professional

This section contains the most precise reference authority - - the syntax requirements of Time-
shared BASIC. The syntax requirements are explicit and unambiguous. They may be used in all
cases to clarify descriptions of BASIC language features presented in other sections.

The other subsections give technical information of interest to the sophisticated user.

SYNTAX REQUIREMENTS OF TSB

Legend

= “isdefinedas...”

I [X3 bR

or

<> enclose an element of Time Shared BASIC

Language Rules

Exponents have 1 or 2 digit integers only.
A <parameter> primary appears only in the defining formula of a <DEF statement>>.

A <sequence number> must lie between 1 and 9999 inclusive.

L

An array bound must lie between 1 and 9999 inclusive; a string variable bound must lie
between 1 and 72 inclusive.

9-1

’

The character string for a <REM statement>> may include the character ”.

An array may not be transposed into itself, nor may it be both an operand and the result
of a matrix multiplication.

n

A character string that is not a literal can contain the character ", through the use of the
ENTER statement.

A replicator must lie between 1 and 72 inclusive.

Note: Parentheses, (), and square brackets [| , are accepted
interchangeably by the syntax analyzer.

9-2

<constant>
<number>

<decimal number>
<integer>

<digit>

<exponent part>
<literal string>
<character string>

<character>

<variable>
<simple variable>

<letter>

<subscripted variable>
<sublist>

<string variable>

<string simple variable>
<expression>
<conjunction>

<relation>

<minmax>

<sum>

<term>

<subterm>

<number> |+<number> |-<number> |<1iteral string>
<decimal number>|<decimal number><exponent part>
<integer>|<integer>.|<integer>.<integer>|.<integer>
<digit>|<integer><digit>

P|1]2]|3]4|5]|6]7]|8]9

E<integer> |E+<integer> |E-integer (see rule 1)
"<character string>"

<character>|<character string><character>

(See Rule 7.)
Any ASCII character except null, line feed,

return, x-off, alt-mode, escape, <, " , and
rubout

<simple variable>|<subscripted variable>
<letter>|<letter><digit>

A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|
WX|Y|Z

<letter>(<sublist>)
<expression>|<expression>,<expression>

<string simple variable>|<string simple variable>
(<sublist>)

<letter>$
<conjunction> | <expression>0R<conjunction>
<relation>|<conjunction>AND<relation>
<minmax>|<minmax><relational operator><minmax>
<sum> | <minmax>MIN<sum> | <minmax>MAX<sum>

<term> | <sum>+<terms | <sum>-<term-
<subterm>|<term>*<subterm> | <term>/<subterm>

<denial>|<signed factor>

9-3

<denial>
<signed factor>
<factor>

<primary>

<relational operator>
<parameter>

<functional>

<function identifier>

<pre-defined function>

<source string>
<destination string>
<file reference>
<file formula>
<record formula>
<array identifier>
<sequence number>
<program statement>

<BASIC statement>

<LET statement>

<factor>|NOT<factor>
+<factor>|-<factor>
<primary>|<factor>+<primary>

<variable>|<number>|<functional>|<parameter>
(rule2) | (<expression>)

<|<=|=|#|<>|>=]>
<letter>|<letter><digit>

<function identifier>(<expression>)|
<pre-defined function>(<expres§ion>5|
LEN (<string simple variable>)

FN <letter>
SINICOS|TAN|ATN|EXP|LOGIABS|SQR|INTIRND|SGN]TYP|
TIM

<string variable>|<literal string>

<string variable>

#<file formula>|#<file formula>,<record formula>
<expression>

<expression>

<letter>

<integer> (see rule 3)

<sequence number><BASIC statement>carriage return

<LET statement>|<IF statement>|<GOTO statement> |

<GOSUB statement>|<RETURN statement>|<FOR statement> |

<NEXT statement>|<STOP statement>|<END statement> |

<DATA statement>|<READ statement>|<INPUT statement> |

<ENTER statement>|<PRINT statement> |
<PRINT USING statement><RESTORE statement> |
<DIM statement>|<COM statement>|<DEF statement>|

<FILES statement>|<REM statement>|<CHAIN statement> |
<MAT statement>|<ASSIGN statement>|IMAGE statement

LET <leftpart><expression> |

LET <destination string>=<source string>|
<]eftpart><expression>?

<destination string>=<source string>

9-4

<leftpart>

<IF statement>

<decision expression>

<comparison string 1>

<comparison string 2>

<GOTO statement>

<sequence list>

<GOSUB statement>

<RETURN statement>

<FOR statement>

<for variable>
<initial value>
<final value>
<step size>
<NEXT statement>
<STOP statement>
<END statements
<DATA statement>

<READ statements

<variable Tists>
<read variable>

<INPUT statement>

<variable>=|<leftpart><variable>=

IF<decision expression>THEN<sequence number> |
IF END #<file formula>THEN<sequence number>

<expression> |

<comparison string 1><relational operator>
<comparison string 2>

<string variable>

<string variable>|<literal string>

GOTO<sequence number>
GOTO<expression>0F<sequence list>

<sequence number>|<sequence list>,<sequence number>

GOSUB<sequence numbers
GOSUB<expression>0F<sequence Tist>

RETURN

FOR<for variable>=<initial value>TO<final values |

FOR<for variable>=<initial value>TO<final value-
STEP<step size>

<simple variable>

<expressions>

<expressions

<expressions

NEXT<for variable>

STOP

END

DATA<constant>|<DATA statements>,<constants>

READ<variable 1ist>|READ<f11e reference>{
READ<file reference>;<variable Tists>

<read variab1e>|<variab1e list>,<read variables
<variable>|«destination string-

INPUT<variable 1ist>

<ENTER statement>

<PRINT statement>

<type statement>
<print 1>
<print 2>
<print 3>

<print expression>

<A part-

<D part>

<X part
<replicator>

<empty>

<string spec. comp.>

<string spec. 1>

<string spec. 2>

<string spec.>
<integer spec. comp.>

<integer spec.>

<fraction spec.>

<fixed spec.>

ENTER #<variable>|

ENTER<expression>,<variable>,<variable>|

ENTER<expression>,<variable>,<string variable> |

ENTER #<variable>,<expression>,<variable>,
<variable>|

ENTER #<variable>,<expression>,<variable>,
<string variable>

<type statement>|<file write statement> |
PRINT<file reference>

<print 1>|<print 2>

PRINT|<print 2>,|<print 2>;|<print 3>
<print 1><print expression>|<print 3>
<type statement><literal string>

<expression>|<special function>|
<source string>

Al <A part-A|<replicator-<A part>
D|<D part-D|<replicator-<D part-
X|<X part>X|<replicators<X part-

<integer>

<A part>|<X part>

<string spec. comp.> |
<string spec. comp.><string spec. 1>

<string spec. 1>|
<empty>

<string spec. 2><A part><string spec 2>
<D part>|<X part>|S|<empty>

<D part>|<integer spec. comp>
<integer spec.><integer spec. comp.>

<integer spec. comp.> |
<fraction spec.><integer spec. comp.>

<integer spec.><fraction spec.>]|
<fraction spec.>.<integer spec.>

<floating spec>

<format list element>

<format list>

<carriage control>

<format string>

<special function type>
<special function>

<expression list>

<expression list element>

<PRINT USING 1>

<PRINT USING statement>

<IMAGE statement>

<file write statement>

<Write expression>
<RESTORE statement>

<DIM statement>

<fixed spec.>E|<integer spec.>E|
<floating spec.><X part>

<string spec.>|<fixed spec.>|
<floating spec.>|<integer spec.>|
<X part>?<1itera1 string>

<format 1ist element> |

<format list element>,<format Tist>|
<replicator>(<format list>)|

<format 1list>/<format list element> |
<format list>/

|-

<format list>|<carriage control>,
<format list>

TAB|LIN|SPA
<special function type>(<expression>)

<expression list element> |
<expression list>,<expression Tist element>

=<expression>|<special function>

PRINT USING"<format string>"|
PRINT USING<sequence number> |
PRINT USING<string variable>

<PRINT USING 1>;<expression Tist>|
<PRINT USING 1>

IMAGE<format string>

PRINT<file reference>;<write expression>|

<file write statement>,<write expression>|

<file write statement>;<write expression>|

<file write statement><literal string>|

<file write statement><literal string>
<write expression>

<expression>|END|<source string>

RESTORE |RESTORE<sequence numbers

DIM<dimspec>|<DIM statement>,<dimspec>

9-7

<COM statement>

<com list element>

<dimspec>

<bound>

<DEF statement>

<FILES statement>

<name>

<REM statement>

<CHAIN statement>

<MAT statement>

<MAT READ statement>

<actual array>
<dimensions>

<MAT INPUT statement>

<MAT PRINT statement>
<MAT PRINT 1>

COM<com list element> |
<COM statement>,<com 1list element>

<simple variable>|<string simple variable>|
<dimspec>

<array identifier>(<bound>)]|
<array identifier>(<bound>,<bound>)
<string simple variable>(<bound>)

<integer> (see rule 4)
DEF<function identifier>(<parameter>)=<expression>

FILES<name> |FILES $<name> |
FILES* name> |FILES*|
<FILES statement>,<name> |
<FILES statement>,$<name> |
<FILES statement>,*<name> |
<FILES statement>,*

a string of up to 6 printing <character>'s

except comma, and not beginning with "$" or
Nl

REM<character string> (see rule 5)

CHAIN<source string>|
CHAIN<source string>,<expression>

<MAT READ statement>|<MAT INPUT statement>|
<MAT PRINT statement> |

<MAT initialization statement>|

<MAT assignment statement>

MAT READ<actual array>|

MAT READ<file reference>;<actual array>
<MAT READ statement>,<actual array>
<array identifier>|<array identifier>(<dimensions>)
<expression>|<expression>,<expression>

MAT INPUT<actual array>|
<MAT INPUT statement>,<actual array>

<MAT PRINT 1>|<MAT PRINT 2>
MAT PRINT<array identifier>|

MAT PRINT<file reference>;<array identifier>|
<MAT PRINT 2><array identifier>

9-8

<MAT PRINT 2>
<MAT PRINT USING statement>

<MAT PRINT USING 1~

<array identifier list>

<array identifier list element>

<MAT initialization statement>

<initialization function>

<MAT assignment statement>
(rule 6)

<mat operator>

<ASSIGN statement>

<MAT PRINT 1>, |<MAT PRINT 1>;

<MAT PRINT USING 1> |
<MAT PRINT USING 1>;<array identifier list>

<MAT PRINT USING<">format string>"|
<MAT PRINT USING><sequence number> |
<MAT PRINT USING><string variable>

<array identifier list element> |
<array identifier list>,
<array identifier list element>

<array identifier>|<special function>

MAT<array identifier>=<initialization function>]|
MAT<array identifier>=<initialization function>
(<dimensions>)

ZER|CON| IDN

MAT<array identifier>=<array identifier>|

MAT<array identifier>=<array identifier>

<mat operator><array identifier>

MAT<array identifier>=INV(<array identifier>)|

MAT<array identifier>=TRN(<array identifier>)|

MAT<array identifier>=(<expression>)*<array
identifier>

+-]*
ASSIGN<source string>,<expression>,<variable> |

ASSIGN<source string>,<expression>,<variable>,
<source string>

STRING EVALUATION BY ASCII CODES

Each user terminal character is represented by an A.S.C.I.I. (American Standard Code for Information
Interchange) number except 2741.

Strings are compared by their A.S.C.1.1. representation.

The A.S.C.1.1. sequence, from lowest to highest is:

Lowest: bell

space 5 J ® u
! 6 K a v
" 7 L b W
8 M o X
$ 9 N d y
% 0 e z
& ; P f {
' < Q 9 :
(= R h }
) > S i ~ Highest
* ? T J
+ @ U k
s A v 1
- B W m
. C X n
/ D Y 0
9 E VA p
1 F [q
2 G \ r
3 H] s
4 I 4 t

9-10

MEMORY ALLOCATION BY A USER

Approximate space available for user allocation: 10,000 2-character words.

Examples of User-Determined Allocation

Note: This is variable ‘‘system overhead’’; it is not included in
word counts produced by the LEN command.

a. Introduction of each simple, string, or matrix variable uses 4 words.

b. A 9 word stack is reserved for GOSUB’s.

c. 6 X (maximum level of FOR .. .NEXT loop nesting).

d. Each file name mentioned in a FILES statement reserves as many words for buffer space as
there are words in each logical record of the file. Each ‘“*” in a FILES statement reserves
256 words of BUFFER space; each file and ‘‘*” also reserves 15 words of table space.

e. An approximate estimate of space required for a program is:

11 words per BASIC statement
+2X(number of matrix elements dimensioned)

+1/2X(number of string characters used)

Semicompiled programs require slightly more space than that shown by the LEN command.
CATALOG gives the actual length of CSAVED programs.

9-11

APPENDIX A
How to Prepare A Paper Tape Off-Line

To prepare a BASIC program on paper tape for input:

Set terminal status to “LOCAL.”

Press the ON button on the paper tape punch.

Press @€ (or HERE IS if available) several times to put leading feed holes on the tape.
Type the program as usual, following each line with return linefeed.

Press @€ (or HERE IS) several times to put trailing feed holes on the tape.

AR S A

Press the OFF button on the paper tape punch.

The standard on-line editing features, such as line delete and character delete, may be punched on
paper tape.

Pressing the BACKSPACE button on the paper tape punch, then the RUBOUT or DEL key on the
keyboard, physically deletes the previous character from the paper tape.

Programs punched onto paper tape in the above manner, or produced by the PUNCH command,
may be input to the system through the paper tape reader after typing the TAPE command. They
may not be input as data using INPUT or ENTER statements. (See Section II and Appendix B.)

APPENDIX B
The X-ON, X-OFF Feature

Terminals equipped with the X-ON, X-OFF feature must be used if it is desired to input data from
a paper tape while a program is running.

Data is punched on paper tape in this format:

line of data items separated by commas x-off return linefeed

(x-off, return and linefeed are user terminal keys.)

Remember that each line of data must end with x-off return linefeed.

The X-OFF character causes the paper tape reader to stop reading tape after each carriage return
until more input is requested by the program. Lines output by PRINT and PRINT USING state-
ments are terminated by the X-off character

Programs on paper tape produced by the XPUNCH command are in the correct format to be input
as data strings from terminals with the X-ON, X-OFF feature. No line of such a program should
exceed 72 characters (not counting X-OFF, carriage return, and linefeed), since each must fit into

a single string. Programs produced by XPUNCH are not suitable for input in TAPE mode (Appendix
A) from terminals with the X-ON, X-OFF feature.

APPENDIX C
Diagnostic Messages

USER COMMAND ERROR MESSAGES

Error messages are listed below with the command which may invoke them. The message ILLEGAL
FORMAT may be typed in response to many commands. The message PLEASE LOG IN is typed if

a command (other than HELLO) or a line of syntax is entered from a port on which no user is logged
in.

APPEND

INVALID NAME

NO SUCH PROGRAM

ILL-STORED PROGRAM

ENTRY IS A FILE

SEMI-COMPILED PROGRAM

NO COMMON AREA ALLOWED
PROGRAM TOO LARGE

UNABLE TO RETRIEVE FROM LIBRARY
SEQUENCE NUMBER OVERLAP

CATALOG
CAN’T READ DIRECTORY

CSAVE
See SAVE.

DELETE
NOTHING DELETED

C1

GET

INVALID NAME

NO SUCH PROGRAM

ILL-STORED PROGRAM

ENTRY IS A FILE

PROGRAM TOO LARGE

UNABLE TO RETRIEVE FROM LIBRARY

GROUP

See CATALOG.
HELLO

ILLEGAL ACCESS

NO TIME LEFT
KILL

ILLEGAL NAME

NO SUCH ENTRY

FILE IN USE
LIBRARY

See CATALOG.
LIST

RUN ONLY
LPRINTER

LP BUSY

LP DOWN

LP FREE

LP NOT AVAILABLE
MESSAGE

CONSOLE BUSY
NAME

ONLY 6 CHARACTERS ACCEPTED
ILLEGAL FIRST CHARACTER

C-2

OPEN

NAME TOO LONG

ILLEGAL FIRST CHARACTER
LIBRARY SPACE FULL

SYSTEM OVERLOAD

DUPLICATE ENTRY
UNSUCCESSFUL; KILL AND REPEAT.

PROTECT

PRIVILEGED COMMAND
INVALID NAME
NO SUCH ENTRY

PUNCH
See LIST.

RENUMBER

SEQUENCE NUMBER OVERFLOW/OVERLAP
BAD PARAMETER

RUN

See Execution Errors.

SAVE

RUN ONLY

NO PROGRAM NAME

NO PROGRAM

OUT OF STORAGE IN LINE n
LIBRARY SPACE FULL

SYSTEM OVERLOAD

DUPLICATE ENTRY
UNSUCCESSFUL; KILL AND REPEAT.

TAPE

If entered from an IBM 2741 Selectric:
ILLEGAL

UNPROTECT
See PROTECT.

XPUNCH
See LIST.

C-3

LANGUAGE PROCESSOR ERROR MESSAGES

The following messages are output by the BASIC language processor to indicate errors or possible
errors in users’ BASIC programs.

Syntax Errors

One of the following error messages will be typed by the system after the entry of a BASIC state-
ment with incorrect syntax. In all cases but the last, the line will be deleted.

OUT OF STORAGE

ILLEGAL OR MISSING INTEGER
EXTRANEOUS LIST DELIMITER
MISSING ASSIGNMENT OPERATOR
CHARACTERS AFTER STATEMENT END
MISSING OR ILLEGAL SUBSCRIPT
MISSING OR BAD LIST DELIMITER
MISSING OR BAD FUNCTION NAME
MISSING OR BAD SIMPLE VARIABLE
MISSING OR ILLEGAL ‘OF’

MISSING OR ILLEGAL ‘THEN’
MISSING OR ILLEGAL ‘TO’

MISSING OR ILLEGAL ‘STEP’

MISSING OR ILLEGAL DATA ITEM
ILLEGAL EXPONENT

SIGN WITHOUT NUMBER

MISSING RELATIONAL OPERATOR
ILLEGAL READ VARIABLE

ILLEGAL SYMBOL FOLLOWS ‘MAT’
MATRIX CANNOT BE ON BOTH SIDES
NO ‘* AFTER RIGHT PARENTHESIS
NO LEGAL BINARY OPERATOR FOUND
MISSING LEFT PARENTHESIS
MISSING RIGHT PARENTHESIS
PARAMETER NOT STRING VARIABLE
UNDECIPHERABLE OPERAND
MISSING OR BAD ARRAY VARIABLE
STRING VARIABLE NOT LEGAL HERE
MISSING OR BAD STRING OPERAND
NO CLOSING QUOTE

72 CHARACTERS MAX FOR STRING
STATEMENT HAS EXCESSIVE LENGTH
MISSING OR BAD FILE REFERENCE
‘PRINT” MUST PRECEDE ‘USING’
ILLEGAL OPERAND AFTER ‘USING’
VARIABLE MISSING OR WRONG TYPE
OVER/UNDERFLOWS—WARNING ONLY

Execution Errors

This section lists messages output to indicate errors detected during program execution. Such errors
cause termination of the execution.

UNDEFINED STATEMENT REFERENCE
NEXT WITHOUT MATCHING FOR
SAME FOR-VARIABLE NESTED
FUNCTION DEFINED TWICE
VARIABLE DIMENSIONED TWICE
LAST STATEMENT NOT ‘END’
UNMATCHED FOR

UNDEFINED FUNCTION

ARRAY TOO LARGE

ARRAY OF UNKNOWN DIMENSIONS
OUT OF STORAGE

DIMENSIONS NOT COMPATIBLE
CHARACTERS AFTER COMMAND END
BAD FORMAT OR ILLEGAL NAME
MISSING OR PROTECTED FILE
GOSUBS NESTED TEN DEEP

RETURN WITH NO PRIOR GOSUB
SUBSCRIPT OUT OF BOUNDS
NEGATIVE STRING LENGTH
NON-CONTIGUOUS STRING CREATED
STRING OVERFLOW

OUT OF DATA

DATA OF WRONG TYPE

UNDEFINED VALUE ACCESSED
MATRIX NOT SQUARE
REDIMENSIONED ARRAY TOO LARGE
NEARLY SINGULAR MATRIX

LOG OF NEGATIVE ARGUMENT

SQR OF NEGATIVE ARGUMENT

ZERO TO ZERO POWER

NEGATIVE NUMBER TO REAL POWER
ARGUMENT OF SIN OR TAN TOO BIG
TOO MANY FILES STATEMENTS
NON-EXISTENT FILE REQUESTED
WRITE TRIED ON READ-ONLY FILE
END-OF-FILE/END OF RECORD
STATEMENT NOT IMAGE
NON-EXISTENT PROGRAM REQUESTED
CHAIN REQUEST IS A FILE
PROGRAM CHAINED IS TOO LARGE
COM STATEMENT OUT OF ORDER
ARGUMENT OF TIM OUT OF RANGE
BAD FORMAT STRING SUBSCRIPT
BAD FILE READ

BAD FILE WRITE DETECTED

C-5

CAN’T READ PROGRAM CHAINED TO
ILL-STORED PROGRAM CHAINED TO
PROGRAM BAD

MISSING FORMAT SPECIFICATION
ILLEGAL OR MISSING DELIMITER
NO CLOSING QUOTE

BAD CHARACTER AFTER REPLICATOR
REPLICATOR TOO LARGE
REPLICATOR ZERO

MULTIPLE DECIMAL POINTS

BAD FLOATING SPECIFICATION
ILLEGAL CHARACTER IN FORMAT
ILLEGAL FORMAT FOR STRING
MISSING RIGHT PARENTHESIS
MISSING REPLICATOR

TOO MANY PARENTHESIS LEVELS
MISSING LEFT PARENTHESIS
ILLEGAL FORMAT FOR NUMBER

Execution Warnings

The following messages are printed by the system to inform the user of conditions which may be
unexpected or undesirable. These conditions do not terminate execution.

BAD INPUT, RETYPE FROM ITEM XXXX
LOG OF ZERO—WARNING ONLY

ZERO TO NEGATIVE POWER-WARNING
DIVIDE BY ZERO—WARNING ONLY
EXP OVERFLOW—WARNING ONLY
OVERFLOW—WARNING ONLY
UNDERFLOW—WARNING ONLY

EXTRA INPUT—WARNING ONLY
READ-ONLY FILES:

C-6

APPENDIX D
Additional Library Features

Normally, programs and files in a user’s library are stored on a mass storage device called a disc,
which is external to the computer. Only the current program and portions of currently accessed

files occupy the user’s “working space” in the computer. TSB also makes use of another, usually
smaller, mass storage device called a drum, on which many system tables are stored. There may

also be room on the drum for a limited number of user programs and files. In certain cases, programs
and particularly files which reside on the drum have improved (shorter) access times over those on
the disc.

The system operator has control over placement and removal of programs and files on the drum.
He also has several other program and file movement capabilities of which the user should be aware.
These operator commands, and their functions, are listed here.

SANCTIFY This command enables the operator to move a program (no longer than 8192
words) or a file (no longer than 32 records) from the disc to the drum. The
area on the disc where it resided is retained. The entry will remain on the drum
until it is removed by the operator (see below) or killed by the user who owns
it. Only entries whose access times are critical should be santified.

Note: For 2000F (options 200 and 205), programs and files cannot
be sanctified.

DESECRATE This command moves a sanctified file from the drum back to its original
location on the disc, or deletes the drum copy of a sanctified program. (The
disc copy of the program is retained.)

Notes: 1) If a sanctified program cannot be retrieved from a user’s
library because of a data error on the drum, it may be
possible to DESECRATE the program and retrieve the
copy from the disc.

2) This command is not permitted under 2000F (options 200
and 205).

BESTOW This command enables the operator to remove a program or file from one user’s
library and place it in another user’s library, or to transfer ownership of an
entire library.

COPY This command is used to make a duplicate copy of any user program or file in
the library of any other user (or the same user). The copy may be given a new
name.

LOAD The LOAD command enables the operator to load selected programs and files

DUMP or entire user libraries from magnetic tape. DUMP allows the operator to

write such programs, files or libraries onto magnetic tape. This can be done
only at system start-up time (commonly once a day) and is a convenient way
of transferring entries between 2000 systems, or dumping TSB files for other
utility purposes.

Note: Except as noted, any of the above may be requested using the
MESSAGE command. All pertinent idcodes and program or
file names must be included.

APPENDIX E
User Terminal Interface

User terminals can be operated in either of two modes, on-line or off-line. In on-line mode,
connection to the computer is established, a log on procedure is performed, and the user is in con-
tact with the computer through the Time-Shared BASIC System. This system accepts and executes
any legal command entered by the user. Illegal commands are rejected, usually with an informative
message printed or displayed on the terminal.

To enter a command, type either the short or full form of the command; if additional parameters
are required or permitted, type a hyphen, then the parameters. Terminate the command by pressing
return. Some commands cause an obvious response from the system such as a listing or punching
operation. Other commands result in computer operations; the only response is the generation of

a linefeed, indicating that the system has accepted the command and is ready for another entry.

Terminals with paper tape punching capabilities may be used to prepare paper tape in off-line mode.
Off-line operation of these terminals is described in Appendix A.

Eight types of user terminals can be connected to the HP Time-Shared BASIC System. Seven
generate ASCII code and one generates CALL 360 or PTTC/EBDC (non-ASCII) code.

The following user terminals generate ASCII code:
L HP 2600A Keyboard-Display Terminal
o HP 2749A Teleprinter Terminal

L] General Electric TermiNet 300 Data Communications Terminal, Model B (10/15/30 cps
transfer rates) with Paper Tape Reader/Punch, Option 2

Note: The terminal must be strapped for “ECHO-PLEX”.

o Memorex 1240 Communications Terminal (10/15/30 cps transfer rates)

Note: The terminal must be equipped with the even parity
checking option.

® Execuport 300 Data Communications Transceiver Terminal
® ASR-37 Teleprinter Terminal with Paper Tape Reader/Punch

Note: If the terminal is equipped with the Shift Out (SO) feature,
SO must be disabled because the 2000F TSB System does
not allow use of this feature.

The following user terminal generates non-ASCII code:
® IBM 2741 Communications Terminal

Note: The terminal must be connected to the system over telephone
lines. In addition, the terminal must be equipped with the
following features:

1. Interrupt, Receive (IBM #4708) and Transmit (IBM #7900)
associated with the terminal’s ATTN key.

2. Dial-Up (IBM #3255) to enable system connection through
a 103A modem or acoustic coupler.

Any terminal equipped with the automatic linefeed feature (operator selectable) must be operated
with this feature OFF.

Note: Although cursor, form feed, horizontal and vertical tabulation,
and various special function keys are provided on specific types
of user terminals, these capabilities are not supported by the
High Speed option. Some of these operations may be requested
from the keyboard, but results are unpredictable. Features
provided by Time-Shared BASIC, such as the TAB, SPA, and
LIN functions, and the PRINT and PRINT USING statements,
should be used to control output format. However, terminals
equipped with automatic linefeed after carriage return or on
end of line may cause unpredictable results. These functions and
statements are described in other sections of this manual.

IBM 2741 COMMUNICATIONS TERMINAL INTERFACE

Because the IBM 2741 terminal generates non-ASCII code, special consideration must be given to
the representation of several ASCII characters and functions which are not available in the 2741
character set.

For input from a 2741 terminal, these characters (and some of the functions) are simulated by
entry of a two-character code. The first character of this code is the cent symbol (¢). The cent
symbol is followed by one of several alphanumeric or special characters to compose a unique code
representing one ASCII character or function.

On input from a 2741 terminal, the two-character code is translated into the internal ASCII code.
On output to a 2741 terminal, ASCII code is translated into the appropriate two-character
representation.

The TAPE command is not allowed from ports configured for 2741 terminals. If entered, the
system responds with the message ILLEGAL.

The IBM 2741 Communications Terminal must be equipped with the interrupt feature associated
with the ATTN key. This key represents the break function; it is used to terminate program or
command execution. The underline character (_) is equivalent to a back arrow (<) and represents

the delete character on the IBM 2741 Communications Terminal.

Any CALL/360 or PTTC/EBCD characters that do not have an equivalent ASCII character are
ignored on input.

Table 1-1 shows 2741 terminal representation of ASCII characters and functions.

Table 1-1. IBM 2741 ASCII Character Simulation

ASCII IBM 2741] IBM 2741
Graphic Control Character Representation User Termunal Character Representation
Character CALL/360 | PTTC/EBCD Function CALL/360 | PTTC/EBCD
[&(&(contro/@ ¢C ¢C
\ ¢/ ¢/ break ATTN key ATTN key
] ¢) ¢)
- 1 ¢A
N o o
{ ¢0 ¢0
} ¢S ¢S
~ ¢T ¢T
. K, S
ESC ¢E "¢E
FS ¢F ¢F
GS ¢G ¢G
RS ¢R ¢R
us ¢U cU

© Underline character, used as delete character (<).

©) Code must be followed by an appropriate alphabetic character; otherwise, it is ignored.

EXAMPLES:

Action

System input request termination (control C)

Input line deletion (control X)

Character deletion (backspace)

Note:

This entry must be followed by return.

Code Required
¢CC
¢CX (See NOTE)

__(underline)

Otherwise, it is ignored.

A

ABS function, 3-18

Acoustic Coupler, 1-3
Addition symbol, 2-4
Additional library features, D-1
AND operator, 2-5

APPEND, 3-8

Array, defined, 3-2

Arithmetic Evaluation, 2-3
Arithmetic Operators, 2-4
ASCII code, string evaluation, 9-10
ASSIGN, 4-6

Assignment operator, 2-10, 6-6
Assignment statement, 2-10
ATN function, 3-19

B

Backus Naur Form, BASIC language, 9-3
BASIC command, 1-7
BASIC language

Backus Naur Form,9-3

defined, 1-7

syntax, 9-1
BASIC programs, 1-9
BASIC Statements, 1-7
Bestowing files, D-2
Boolean operators, 7-2
Branching

to statements, 2-11

to subroutines, 3-14
break key, 2-37
BRK function, 3-24
BYE, 2-27

C

ct,1-2

Carriage control, 8-14

Carriage control characters, defined, 8-2
Carriage spacing, output, 2-20
CATALOG, 3-10

CHAIN, 3-20

Index-1

Index

Changing a statement, 1-9
Changing file references during execution, 4-6
Character deletion, 1-2
Character spacing, 8-2
Clearing the user work area, 2-29
COM, 3-22
Command, definition, 2-25
Command error messages, C-1
Commands, BASIC, 1-7
Communicating with system operator, 2-36
Conditional branching, 2-12, 4-12, 6-10
Connection to computer
via telephone, 1-3
direct, 1-4
Control characters, 1-2
control key, 1-2
Copying a file, 4-21, D-2
COS function, 3-19
Creating files, 4-3
CSAVE, 3-5

D

DATA, 2-15, 6-12
DATA, strings, 6-12
Data input, matrix, 5-6
Data set, 1-4
DEF FN, 3-16
Defining functions, 3-16
DELETE, 3-9
Deleting
files, 4-4
programs, 1-12, 3-4, 3-7
statements, 1-9, 3-9
Desecrating files (Options 210/215 only), D-1
Determining file length, 4-18
Diagnostic messages, C-1
DIM, 5-2, 6-5
Dimensioning
matrix, 5-2
strings, 6-5
Division symbol, 2-4
Documenting a program, 1-13
DUMP, selective, D-2

E

E notation, defined, 2-2
ECHO, 2-27
END, 2-22
End-of-file, defined, 4-12
ENTER, 3-23
Erasing

files, 4-26

records, 4-25
Error messages, 1-8, C-1
Equality symbol, 2-4
Execution

error messages, C-5

warning messages, C-6
EXP function, 3-18
Exponentiation symbol, 2-4
Expression, defined, 2-3
Expression list, defined, 8-1, 8-10

F

File
accessing errors, 4-28
BESTOW, D-2
COPY, D-2
copying, 4-21
defined, 4-1

DESECRATE (Option 210/215 only), D-1

erasing, 4-26

length determination, 4-18
matrix printing, 5-16
matrix reading, 5-17
pointer, 4-13

pointer manipulation, 4-18

SANCTIFY (Option 210/215 only), D-1

selective LOAD/DUMP, D-2
storage requirements, 4-17

FILES, 4-5

Fixed-point format specifications, 8-6

Floating-point format specifications, 8-7

FOR ... NEXT, 2-13
FOR ... NEXT with STEP, 3-16
Format characters
defined, 8-2
fixed-point, 8-6
floating-point, 8-7
integer, 8-
string, 8-4
Format specification
defined, 8-1
grouped, 8-9
Format string, defined, 8-1, 8-10
Formatted output, 8-1
Function, defined, 3-3, 3-13

G

General mathematical functions, 3-18
GET, 3-6

Index-2

GO ToO, 2-11

GOSUB. . .RETURN, 3-13

Greater than symbol, 2-4

Greater than or equal to symbol, 2-4
GROUP, 3-10

Group library, 3-10

Grouping format specifications, 8-9

H

Half-duplex coupler, 1-4
Hardwired connection, 1-4
HELLO, 2-26

I

Identification code, user, 1-5
Identity matrix, 5-13
IF...THEN, 2-12, 6-10

IF END#. . .THEN, 4-12
IMAGE, 8-13

Inequality symbol, 2-4
INPUT, 2-17, 5-5, 6-7
INPUT, matrix, 5-5

Input, program data, 2-17
INT function, 3-18

Integer format specifications, 8-5
Interface, user terminal, E-1

K

KEY, 2-33
Keyboard mode, 2-33
KILL, 3-7, 4-4

L

Language processor error messages, C-4

LEN function, 3-19, 6-11
LENGTH, 3-4
Length, string, 6-11
Less than symbol, 2-4
Less than or equal to symbol, 2-4
LET, 2-10, 6-6
LIBRARY, 3-10
LIN function, 8-2
Line deletion, 1-2
Line printer
access, 2-33
carriage control, 2-34
control characters, 2-34
messages, 2-35
Line spacing, 2-20, 8-2
linefeed, 1-2
LIST, 2-28
Listing
file contents, 4-11
programs, 1-10, 2-28
record contents, 4-20
Literal string, defined, 8-2

LOAD, selective, D-2
LOG function, 3-18
Logging off, 1-3, 2-27
Logging on, 1-3, 2-26
Logical evaluation, 7-1
Looping, 2-13
LPRINTER, 2-33

M

Masking files, 4-7
MAT INPUT, 5-6
MAT PRINT, 5-8
MAT PRINT USING, 8-12
MAT PRINT#, 5-16
MAT READ, 5-10
MAT READ#, 5-17
MAT. . .CON, 54
MAT. . .IDN, 5-13
MAT. . .INV, 5-15
MAT...TRN, 5-14
MAT. . .ZER, 5-3
matrix
addition, 5-11
copy, 5-13
defined, 5-1
inversion, 5-15
multiplication, 5-12
print, 5-8
scalar multiplication, 5-12
subtraction, 5-11
transposition, 5-14
MAX operator, 2-5
Memory allocation, 9-11
MESSAGE, 2-36
Messages, diagnostic, C-1
MIN operator, 2-5
Mode
paper tape, 2-32
keyboard, 2-33
Modifying a record, 4-24
Multibranch GO TO, 2-11
Multibranch GOSUB, 3-14
Multiplication symbol, 2-4

N

N¢, 12

NAME, 3-5

Naming a program, 3-5
Nested FOR. . .NEXT, 2-14

Nested GOSUB. . .RETURN, 3-15

Nested loops, 2-14
NOT operator, 2-7

Null string, defined, 6-1
Number, defined, 2-1
Numeric output, 8-15

Index-3

)

0°¢, 12

One’s matrix, 5-4
OPEN, 4-3

OR operator, 2-6

Order of precedence, execution, 2-8

Output, numeric, 8-15
P

Paper tape input mode, 2-32

Paper tape preparation, off-line, A-1

Paper tape punching, 2-31
Password, user, 1-56

Precedence, order of execution, 2-8

PRINT, 2-18, 5-7, 6-8
PRINT USING

defined, 8-10

errors, 8-17

matrix output, 8-12
PRINT#, 6-13
PRINT#. . .END, 4-13
Printing

data, 2-18

matrices, 5-7, 5-16

records, 4-23

serial files, 4-8

strings, 6-8

strings on files, 6-13
Program

break, 1-2

deletion, 1-12

documentation, 1-13

end, 1-11, 2-22

execution, 2-28

listing, 1-10

running, 1-11, 2-22
Prompt characters, 1-3
PUNCH, 2-31

Q
Qc ’ 1-2
R

Random file access, defined, 4-22

READ, 2-15, 5-9, 6-9
READ, matrix, 5-10
READ#, 6-14
Reading

data, 2-15

records, 4-24

serial files, 4-8

strings, 6-9

strings from files, 6-14

Record

defined, 4-17

erasing, 4-25

listing contents, 4-20

modification, 4-24

print, 4-23

read, 4-24

update, 4-26
Relational operators, 2-4, 7-1
REM, 2-10
Remarks, 2-10
RENUMBER, 2-30
Report generation, 8-16
Resetting the file pointer, 4-9
RESTORE, 2-15
Restoring input data, 2-15
Retrieving programs, 3-6
RETURN statement, 3-13
return, 1-2
RND function, 3-18
Routine, defined, 3-1
RUN, 1-11, 2-28

S

Sanctifying files (Options 210/215 only), D-1
SAVE, 3-5
Saving programs, 3-5
Saving semi-compiled programs, 3-5
SCRATCH, 2-29
Selective DUMP, D-2
Selective LOAD, D-2
Semi-compiled programs, 3-5
Serial file
access, 4-2
writing, 4-8
reading, 4-8
structure, 4-13
subdividing, 4-19
SGN function, 3-18
Simple variable, defined, 2-2
SIN function, 3-19
SPA function, 8-2
Spacing functions, 8-2
Special Keys, 1-2
Specifying input data, 2-15
SQR function, 3-18
Statements
BASIC, 1-7
defined, 2-9
STOP, 2-22
Storing programs, 3-5
Storing semi-compiled programs, 3-5
String
DATA, 6-12
defined, 3-3, 6-1
dimensioning, 6-5
format specifications, 8-4
IF. . .THEN, 6-10
INPUT, 6-7

Index-4

String (cont)

length, 6-11

PRINT#, 6-13

READ#, 6-14
String evaluation, ASCII code, 9-10
String variable, defined, 6-2
Strings, format, 8-10
Strings, substrings, 6-3
Subroutines, defined, 3-13
Substring, defined, 6-3
Subtraction symbol, 2-4
Syntax, BASIC language, 9-1
Syntax error messages, C-4
System library, 3-10

T

TAB function, 8-2
Tabulation, 2-20, 8-2

TAN function, 3-19

TAPE, 2-32

Terminal subtype, 1-5

Text Conventions, xiii

TIM function, 3-20

TIME, 2-36

Transposing a matrix, 5-14
Trigonometric functions, 3-19
TSB, Introduction to, 1-1
TYP function, 4-10

TYP function with records, 4-19

U

Updating a record, 4-26

User library, 3-10

User terminal characteristics, E-1
User work area, 1-10

Using a half-duplex terminal, 2-27
Using carriage control, 8-14

w

we,1-2
Word, defined, 3-3
Work area, user’s, 1-10

X

X€ . 1-2

X-OFF, 2-32, B-1
X-ON, 2-32, B1
XPUNCH, 2-31

Z

Zero’s matrix, 5-3

UNITED STATES

ALABAMA

8290 Whitesburg Dr., S.E.
P.0. Box 4207

Hunstville 35802

Tel: (205) 881-4591

TWX: 810-726-2204

ARIZONA

2336 E. Magnolia St.
Phoenix 85034

Tel: (602) 244-1361
TWX: 910-951-1330

5737 East Broadway
Tucson 85711

Tel: (602) 298-2313
TWX: 910-952-1162

(Effective Dec. 15, 1973)
2424 East Aragon Rd.
Tucson 85706

Tel: (602) 889-4661

CALIFORNIA

1430 East Orangethorpe Ave.
Fullerton 92631

Tel: (714) 870-1000

TWX: 910-592-1288

3939 Lankershim Boulevard
North Hollywood 91604
Tel: (213) 877-1282

TWX: 910-499-2170

6305 Arizona Place
Los Angeles 90045
Tel: (213) 649-2511
TWX: 910-328-6148

1101 Embarcadero Road
Palo Alto 94303

Tel: (415) 327-6500
TWX: 910-373-1280

2220 Watt Ave.

Sacramento 95825
Tel: (916) 482-1463
TWX: 910-367-2092

9606 Aero Drive
P.0. Box 23333

COLORADO

7965 East Prentice
Englewood 80110
Tel: (303) 771-3455
TWX: 910-935-0705

CONNECTICUT
12 Lunar Drive
New Haven 06525
Tel: (203) 389-6551
TWX: 710-465-2029

FLORIDA

P.0. Box 24210

2806 W. Oakland Park Bivd.
Ft. Lauderdale 33307

Tel: (305) 731-2020

TWX: 510-955-4099

P.0. Box 13910
6177 Lake Ellenor Dr
Orlando, 32809

Tel: (305) 859-2800
TWX: 810-850-0113

GEORGIA

P.0. Box 28234

450 Interstate North
Atianta 30328

Tel: (404) 436-6181
TWX: 810-766-4890

HAWAIL
2875 So. King Street
Honolutu 96814

Tel: (808) 955-4455

ILLINOIS

5500 Howard Street
Skokie 60076

Tel: (312) 677-0400
TWX: 910-223-3613

INDIANA

3839 Meadows Drive
Indianapolis 46205
Tel: (317) 546-4891
TWX: 810-341-3263

ELECTRONIC

SALES & SERVICE OFFICES

MARYLAND

6707 Whitestone Road
Bailtimore 21207

Tel: (301) 944-5400
TWX: 710-862-9157

20010 Century Bivd.
Germantown 20767
Tel: (31) 428-0700

P.0. Box 1648

2 Choke Cherry Road
Rockville 20850
Tel: (301) 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartwell Ave.
Lexington 02173
Tel: (617) 861-8960
TWX: 710-326-6904

MICHIGAN

23855 Research Drive
Farmington 48024
Tel: (313) 476-6400
TWX: 810-242-2900

MINNESOTA

2459 University Avenue
St. Paul 55114

Tel: (612) 645-9461
TWX: 910-563-3734

MISSOURI

11131 Colorado Ave.
Kansas City 64137
Tel: (816) 763-8000
TWX: 910-771-2087

148 Weldon Parkway
Maryland Heights 63043
Tel: (314) 567-1455
TWX: 910-764-0830
*NEVADA

Las Vegas

Tel: (702) 382-5777

NEW JERSEY

NEW MEXICO

P.0. Box 8366

Station C

6501 Lomas Boulevard N.E.
Albuquerque 87108

Tel: (505) 265-3713

TWX: 910-989-1665

156 Wyatt Drive
Las Cruces 88001
Tel: (505) 526-2485
TWX: 910-983-0550

NEW YORK

6 Automation Lane
Computer Park
Albany 12205

Tel: (518) 458-1550
TWX: 710-441-8270

1219 Campville Road
Endicott 13760

Tel: (607) 754-0050
TWX: 510-252-0890

New York City

Manhattan, Bronx

Contact Paramus, NJ Office
Tel: (201) 265-5000
Brooklyn, Queens, Richmond
Contact Woodbury, NY Office
Tel: (516) 921-0300

82 Washington Street
Poughkeepsie 12601
Tel: (914) 454-7330
TWX: 510-248:0012

39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510-253-5981

5858 East Molloy Road
Syracuse 13211

Tel: (315) 454-2486
TWX: 710-541-0482

1 Crossways Park West
Woodbury 11797

Tel: (516) 921-0300

NORTH CAROLINA
P.0. Box 5188

1923 North Main Street
High Point 27262

Tel: (919) 885-8101
TWX: 510-926-1516

OHIO

25575 Center Ridge Road
Cleveland 44145

Tel: (216) 835-0300
TWX: 810-427-9129

330 Progress Rd.
Dayton 45449

Tel: (513) 859-8202
TWX: 810-459-1925

6665 Busch Blvd.
Columbus 43229
Tel: (614) 846-1300

OKLAHOMA

P.0. Box 32008
Oklahoma City 73132
Tel: (405) 721-0200
TWX: 910-830-6862

OREGON

17890 SW Boones Ferry Road
Tualatin, 97062

Tel: (503) 620-3350

TWX: 910-467-8714

PENNSYLVANIA
2500 Moss Side Boulevard
Monroevilie 15146
Tel: (412) 271-0724
TWX: 710-797-3650

1021 8th Avenue

King of Prussia Industrial Park
King of Prussia 19406

Tel: (215) 265-7000

TWX: 510-660-2670

RHODE ISLAND
873 Waterman Ave.
East Providence 02914

TEXAS

P.0. Box 1270

201 E. Arapaho Rd.
Richardson 75080
Tel: (214) 231-6101
TWX: 910-867-4723
P.0. Box 27409
6300 Westpark Drive
Suite 100

Houston 77027

Tel: (713) 781-6000
TWX: 910-881-2645

231 Billy Mitcheil Road
San Antonio 78226
Tel: (512) 434-4171
TWX: 910-871-1170

UTAH

2890 South Main Street
Salt Lake City 84115
Tel: (801) 487-0715
TWX: 910-925-5681
VIRGINIA

P.0. Box 6514

2111 Spencer Road
Richmond 23230
Tel: (804) 285-3431
TWX: 710-956-0157
WASHINGTON
Bellefield Office Pk.
1203 - 114th SE
Bellevue 98004

Tel: (206) 454-3971
TWX: 910-443-2303
*WEST VIRGINIA
Charleston

Tel: (304) 345-1640
WISCONSIN

9431 W. Beloit Road
Suite 117
Milwaukee 53227
Tel: (414) 541-0550

FOR U.S. AREAS NOT
LISTED:

Contact the regional office near-
est you: Atlanta, Georgia .

San Diego 92123 LOUISIANA 1060 N. Kings Highway TWX: 510.221-2168 Tel: (401) 434-5535
Tel: (714) 279-3200 P. 0. Box 840 Cherry Hill 08034 TWX: 710-381-7573 North Hollywood, California .
TWX: 910-335-2000 3239 Williams Boulevard Tel: (609) 667-4000 Paramus, New Jersey . . 3“0“%
Kenner 70062 TWX: 710-892-4945 *TENNESSEE tIillmo-s. Thel!r‘ :omhplele ad-
Tel: (504) 721-6201 W. 120 Century Rd Memphis resses are listed above.
.+ 810-955- . - 1: - .
TWX: 810-955-5524 Paramus 07652 Tel: (901) 274-7472 Service Only
Tel: (201) 265-5000
TWX: 710-990-4951
ALBERTA BRITISH COLUMBIA MANITOBA NOVA SCOTIA ONTARIO QUEBEC

Hewlett-Packard (Canada) Ltd.
11748 Kingsway Ave.
Edmonton TSG 0XS

Tel: (403) 452-3670

TWX: 610-831-2431

Hewlett-| Packard (Canlda) Ltd.
825 - 8th
Suite 804

Calgary
Tel: (403) 262-4279

Hewlett-Packard (Canada) Ltd.
837 E. Cordova St.

Vancouver 6

Tel: (604) 254-0531

Hewlett-Packard (Canada' Ltd
513 Century St.

Winnipeg

Tei: (204) 786-7581

TWX: 610-671-3531

Hewlett-Packard (Canada) Ltd.
2745 Dutch Village Rd.

Suite 210

Halifax

Tel: (902) 455-0511

TWX: 610-271-4482

Hewlett-Packard (Canada) Ltd.
1785 Woodward Dr.

Ottawa K2C 0P9

Tel: (613) 255-6180, 255-6530
TWX: 610-562-8968

Hewlett-Packard (Canada) Ltd.
50 Galaxy Bivd.

Rexdale

Tel: (416) 677-9611

TWX: 610-492-4246

Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard

Pointe Claire HOR 1G7

Tel: (514) 697-4232

TWX: 610-422-3022

Telex: 01-20607

Hewlett-Packard (Canada) Ltd.
2376 Galvani Street

Stefoy GIN 4G4

Tel: (418) 688-8710

FOR CANADIAN AREAS NOT
LISTED:

Contact Hewlett-Packard (Can-
ada) Ltd. in Pointe Claire.

CENTRAL AND SOUTH AMERICA

ARGENTINA
HewlettPackarg Argentina
S.ACe

Lavalle 117l 3°

Buenos Al

Tel: 35-4 0436 35-0627, 35-0341
Telex: 012-1009

Cable: HEWPACK ARG

BOLIVIA

Stambuk & Mark (Bolivia) LTDA.

Av. Mariscal, Santa Cruz 1342
La Paz

Tel: 40626, 53163, 52421
Telex: 3560014

Cable: BUKMAR

BRAZIL

Hewlett-Packard Do Brasil
I.E.C. Ltda.

Rua Frei Caneca 1119
01307-Sao Paulo-SP

Tel: 288-7111, 287-5858
Telex: 309151/2/3

Cable: HEWPACK Sao Paulo

Hewlett Packard Do Brasi
LEC. Ltda.

Praca Dom Fellciano, 78
90000-Porto Alegre-RS

Rio Grande do Sul (RS) Brasil
Tel: 25-8470

Cable: HEWPACK Porto Alegre

Hewlett- Packarﬂ Do Brasil
1LE.C. Ltd:

Rua da Mal riz, 29

20000-Rio de Janeiro-GB

Tel: 266-2643

Telex: 210079 HEWPACK

Cable: HEWPACK Rio de Janeiro

CHILE

Hector Calcagni y Cia, Ltda.
Casilla 16.475

Santiago

Tel: 423 96

Cable: CALCAGNI Santiago

COLOMBIA
Instrumentacion

Henrik A. Langebaek & Kier S.A.

Carrera 7 No. 48-59
Apartado Aéreo 6287
Bogota, 1 D.E.

Tel: 45.78-06, 45-55-46
Cable: AARIS Bogota
Telex: 44400INSTCO

COSTA RICA

Lic. Alfredo Gallegos Gurdidn
Apartado 10159

San José

Tel: 21-86-13

Cable: GALGUR San José

ECUADOR

Laboratorios de Radio-Ingenieria
Calle Guayaquil 1246

Post Office Box 3199

Quito

Tel: 212-496; 219-185

Cable: HORVATH Quito

EL SALVADOR

Electronic Associates
Apartado Postal 1682

Centro Comercial Gigante

San Salvador, EI Salvador C.A.
Paseo Escalon 4649-4° Piso
Tel: 23-44-60. 23-32-37
Cable: ELECAS

GUATEMALA
IPESA
Avenida La Reforma 3-48,

Guatemala
Tel: 63627, 64738
Telex: 4192 TELTRO GU

MEXICO

Hewlett-| Par_kam Mexicana,
S.A. de C.V.

Torres Adalid No. 21, 11
Col del Valle

Piso

Telex 017 74 507

NICARAGUA

Roberto Terdn G.
Apartado Postal 689
Edificio Terdn

Manmn

Tel: 345,

Cable: ROTERAN Managua

PANAMA

Electrénico Balboa, S.A.

P.0. Box 4929

Ave. Manue! Espinosa No. 13-50
Bldg. Alina

Panama City

Tel: 230833

Telex: 3481103, Curunda,
Canal Zone

Cable: ELECTRON Panama City

PARAGUAY

Z.). Melamed S.R.L,

Division: Aparatos y Equipos
Medicos

Division: Aparatos y Equipos
Scientificos y de
Investigacion

P.0. Box

Chile, 482, Edificio Victoria

Asuncion

Tel: 4-5069, 4-6272

Cable: RAMEL

PERU

Compaiia Electro Médica S.A.
Ave. Enrique Canaual 312
San Isidro

Casilla 1030

Lima

Tel: 22-3900

Cable: ELMED Lima

PUERTO RICO

San Juan Electronics, Inc.
P.0. Box 5167

Ponce de Leon 154

Pda. 3-PTA de Tierra

$an Juan 00906

Tel: (809) 725-3342, 722-3342
Cable: SATRONICS San Juan
Telex: SATRON 3450 332

URUGUAY

Pablo Ferrando S.A.
Comercial e Industrial
Avenida Italia 2877
Casilla de Correo 370
Montevideo

Tel: 40-3102

Cable: RADIUM Montevideo

VENEZUELA
Hewlett-Packard de Venezuela
C.A.

Apartado 50933

Edificio Segre

Tercera Transversal

Los Ruices Norte
Caracas 107

Tel: 35-00-11

Telex: 21146 HEWPACK
Cable: HEWPACK Caracas

FOR AREAS NOT LISTED,

CONTACT:
Hewlett-Packard
Inter-Americas

3200 Hillview Ave.

Palo Alto, Cahlomla 94304
Tel: (415} 4

TWX: 910- 373 1267

Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

E11/73

EUROPE

AUSTRIA
Hewlett-Packard Ges.m b H
Handelska 52/3

P.O. Box 7

A-1205 Vienna

Tel: (0222) 33 66 06 to 09
Cable: HEWPAK Vienna
Telex: 75923 hewpak a

BELGIUM
Hewlett-Packard Benelux
/NV.

Avenue de Col- Vert, 1,
(Groenkraaglaan)

B:-1170 Brussels

Tel: (02) 72 22 40

Cable: PALOBEN Brussels
Telex: 23 494 paloben bru

DENMARK
Hewlett-Packard A’/S
Datavej 38

DK-3460 Birkerod
Tel: (01) 81 66 40
Cable: HEWPACK AS
Telex: 166 40 hp as

Hewlett-Packard A/S
Torvet 9

DK-8600 Silkeborg
Tel: (06) 82-71-66
Telex: 166 40 hp as
Cable: HEWPACK AS

FINLAND
Hewlett-Packard Oy
Bulevardi 26

P.0. Box 12185

SF-00120 Helsinki 12

Tel: (90) 13730

Cable: HEWPACKOY Helsinki
Telex: 1215363 hel

FRANCE
Hewlett-Packard France
Quartier de Courtaboeuf
Boite Postale No. 6
F-91401 Orsay

Tel: (1) 907 78 25
Cable: HEWPACK Orsay

Hewiett-Packard France
Zone Aéronautique
Avenue Ciement Ader
F-31770 Colomiers

Tel: (61) 86 81 55
Telex: 51957

Hewlett-Packard France
Agence Régionale
Boulevard Ferato-Gamarra
Boite Postale No. 11
F-13100 Luynes

Tel: (47) 24 00 66

Telex: 41770

Hewlett-Packard France
Agency Régionale

63. Avenue de Rochester
F-35000 Rennes

Tei: (99) 36 33 21
Telex: 74912 F

Hewlett-Packard France
Agence Régionale

74, Allée de la Robertsau
F-67000 Strasbourg

Tel: (88) 35 23 20/21
Telex: 89141

Cable: HEWPACK STRBG

GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH

Hewlett-Packard GmbH
Vertriebsbiiro Hamburg
Wendenstr. 23

D-2000 Hamburg 1

Tel: (040) 24 13 93

Cable: HEWPACKSA Hamburg
Telex: 21 63 032 hphh d

Hewlett-Packard GmbH
Vertriebsbiiro Hannover
Mellendorfer Strasse 3
D-3000 Hannover-Kieefeld
Tel: (0511) 55 06 26

Hewlett-Packard GmbH
Vertriebsburo Nuremberg
Hersbruckerstrasse 42
D-8500 Nuremberg

Tel: (0911} 57 10 66
Telex: 623 860

Hewlett-Packard GmbH
Vertriebsbiiro Minchen
Unterhachinger Strasse 28
ISAR Center

D-8012 Ottobrunn

Tel: (089) 601 30 61/7
Telex: 52 49 85

Cable: HEWPACKSA Miichen

{(West Berlin)
Hewlett-Packard GmbH
Verlnebsbuw Berlin

Vertr Frankfurt
Bernerstrasse 117

Postfach 560 140

D-6000 Frankfurt 56

Tel: (0611) 50 04-1

Cable: HEWPACKSA Frankfurt
Telex: 41 32 49 fra
Hewlett-Packard GmbH
Vertriebsbiiro Boblingen
Herrenbergerstrasse 110
D-7030 Bablingen, Wiirttemberg
Tel: (07031) 66 72 87
Cable: HEPAK Bablingen
Telex: 72 65 739 bbn

Hewlett-Packard GmbH
Vertriebsbiiro Diisseldorf

fer Strasse 113/114
D- 1000 Berlin W. 12
Tel: (030) 3137046
Telex: 18 34 05 hpbin d

GREECE

Kostas Karayannis

18, Ermou Street
GR-Athens 126

Tel: 3230-303, 3230-305
Cable: RAKAR Athens
Telex: 21 59 62 rkar gr

IRELAND
Hewlett-Packard Ltd.

224 Bath Roa

GB-Slough, SL1 4 DS, Bucks

ITALY

Hewle!l Packard Italiana S.0.A
Via Amerigo Vespucci 2
1:20124 Milan

Tel: (2 6251 (10 lines:

Cable: HEWPACKIT Milan
Telex: 32046

Hewlett-Packard ftaiiana S.p A
Piazza Marconi, 25

1-00144 Rome - Eur

Tel: (6) 5912544 5, 5915947
Cable: HEWPACKIT Rome
Telex: 61514

Hewlett-Packard Italiana S.p.A.
Vicolo Pastori. 3

i-35100 Padova

Tel: (49) 66 40 62

Telex: 32046 via Milan

Hewlett-Packard Itatiana S.p.A.
Via Colli, 2

1-10129 Turin

Tel: (11) 53 82 64

Telex: 32046 via Milan

LUXEMBURG
Hewlett-Packard Benelux
SA/NY.

Avenue de Col-Vert, 1,
(Groenkraaglaan)

B8-1170 Brussels

Tel: (03/02) 72 22 40
Cable: PALOBEN Brussels
Telex: 23 494

NETHERLANDS
Hewlett-Packard Benelux/N.V.
Weerdestein 117

P.0. Box 7825

NL-Amsterdam, 1011

Tel: 020-42 77 77, 44 29 66
Cable: PALOBEN Amsterdam
Telex: 13 216 hepa nl

NORWAY
Hewlett-Packard Norge A/S
Nesveien 13

Box 149

PORTUGAL
Telectra-Empresa Técnica de

Equipamentos Eléctricos S.a.r.l.

Rua Rodrigo da Fonseca 103
P.0. Box 2531

P-Lisbon 1

T 19) 68 60

Cable: TELECTRA Lisbon
Telex: 1598

SPAIN

Hewlett-Packard Espanola, S.A
Jerez No 8

E-Madrid 16

Tel: 458 26 00.

Telex: 23515 hpe

Hewlett-Packard Espaioia, SA.
Milanesado 21-23

E-Barcelona 17

Tel: (3) 203 62 00

Telex: 52603 hpbe e

SWEDEN
Hewlett-Packard Sverige AB
Enighetsvigen 1-3

acl

§-161 20 Bromma 20

Tel: (08) 98 12 50

Cable: MEASUREMENTS
Stockholm

Telex: 10721

Hewlett-Packard Sverige AB
Hagakersgatan 9C

$-431 41 Méindal

Tel: (031) 27 68 00/01
Telex: Via Bromma

SWITZERLAND

Hewlett Packard (Schweiz) AG
Ziircherstrasse 20

P.0. Box 64

CH-8952 Schiieren Zurich
Tel: (01) 98 18 21/24

Cab| PAG CH

Telex: 53933 hpag ch
Hewlett-Packard (Schweiz) AG
9, Chemin Louis:

TURKEY

Telekom Engineering Bureau
Saglik Sok No. 1571
Ayaspasa-Beyogly

P.0. Box 437 Beyoglu

TR leanb-l

Tel: 49 &

Cable: TELEMA"ON Istanbul

UNITED KINGDOM
Hewlett-Packard Ltd.

224 Bath Road

GB-Slough, SL1 4 DS, Bucks
Tel: Slough (0753) 33341
Cable: HEWPIE Slough
Telex: 848413

Hewlett-Packard Ltd.
“The Graftons'*
Stamford New Road
GB-Altrincham, Cheshire
Tel: (061) 928-9021
Telex: 668068

Hewlett-Packard Ltd's registered
address for V.A.T. purposes
only:

70, Finsbury Pavement

London, EC2A1SX

Registered No: 690597

SOCIALIST COUNTRIES
PLEASE CONTACT:
Hewlett-Packard Ges.m.b.H.
Handelskai 52/3

.0. Box 7

A-1205 Vienna

Ph (0222) 33 66 06 t0 09
Vienna
Telex 75923 hewlul a

ALL OTHER EUROPEAN

COUNTRIES CONTACT:

Hewlett-Packard S.A.

Rue du Bois-du-Lan 7

P.0. Box 85

CH-1217 Meyrin 2 Geneva
Switzerland

Tel: (022) 41 54 00

Cable: HEWPACKSA Geneva

Vogelsanger Weg 38 Tel: Slough (0753) 33341 N-1344 Haslum CH-1214 Vernier—Geneva Telex: 2 24 86
Telex: 60048 D»4¢000 nliisstldfll $a|ble: HEWPIE Slough Tel: (02) 53 83 60 Tel: (022) 41 4950
Hewlett-Packard France Tel: (0211) 63 80 31/38 elex: 848413 Telex: 16621 hpnas n Cable: HEWPACKSA Geneva
Agenee Regional Telex: 85/86 533 hpdd d Hewlett-Packard Ltd. Telex: 27 333 hpsa ch
4 Quai des Etroits The Graftons
F-69321 Lyon Cedex 1 Stamford New Road
Tel: (78) 42 63 45 Altrincham, Cheshire
Cable: HEWPACK Lyon Tel: (061) 928-9021
Telex: 31617 Telex: 668068
AFRICA, ASIA, AUSTRALIA
ANGOLA ETHIOPIA Blue Star, Ltd. Yokogawa-Hewlett-Packard Ltd. The Electronics Instrumenta- TAIWAN

Telectra-Empresa Tecnica
de_Equipamentos Electricos
RL

Al
Rua de Barbosa, Rodrigues,
421, D1*
P.0. Box 6487
Luanda
Cable: TELECTRA Luanda

AUSTRALIA
Hewlett-Packard Australia

Pty. Ltd.
22-26 Weir Street
Glen Iris, 3146
Victoria

Tel: 20-1371 (6 lines)
Cable: HEWPARD

African Salespower & Agency
Private Ltd., Co.

P. 0. Box 718

58/59 Cunningham St.

Addis Ababa

Tel: 12285

Cable: ASACO Addisababa

HONG KONG

Schmidt & Co. (Hong Kong) Ltd.
P.0. Box 297

Connalight Centre

39th Floor

Cunnaugm Road, Central

Hong Kon;

Tel: 240168 232735

Telex: HX4766

1-1117/1
Sarojini Devi Road
Secunderabad 500 003
Tel: 763 91,7 73 93
Cable: BLUEFROST
Telex: 459

Blue Star, Ltd.

23/24 Second Line Beach
Madras 600 001

Tel: 23954

Telex: 379

Cable: BLUESTAR

Blue Star, Lt

Nathraj Mansions

2nd Floor Bistupur

Telex: 31 024
Hewlett-Packard Australia
Pty. Ltd

31 Bridge Street
Pymble,

New South Wales, 2073
Tel: 449 6566

Telex: 21561

Cable: HEWPARD Sydney

Hewlett-Packard Australia
Pty. Ltd

97 Churchill Road
Prospect 5082

South Australia

Tel: 44 8151

Cable: HEWPARD Adelaide

Hewlett-Packard Australia
Pty. Ltd.

Casablanca Buildings

196 Adelaide Terrace

Perth, W.A. 6000

Tel: 25-6800

Cable: HEWPARD Perth

Hewlett-Packard Australia
Pty. Ltd.

10 woolley Slreet

P.0. Box

Dickson A. C ' 2602

Tel: 49-8194

Cable: HEWPARD Canberra ACT

Hewlett-Packard Australia
Pty. Ltd.

2nd Floor, 49 Gregory Terrace
Brisbane, Queensland, 4000
Tel: 29 1544

CEYLON
Unl(ed Eleclncals Ltd
P 0.

Dl
Tel: 26696

Cable: HOTPOINT Colombo
CYPRUS

Kypronics

19 Gregorios & Xenopoulos Road
P.0. Box 1152

CY-Nicosia

Tel: 45628/29

Cable: KYPRONICS PANDEHIS

Cable: Hong Kong

INDIA

Blue Star Ltd.
Kasturi Buildings
Jamshedji Tata Rd
Bombay 400 020
Tel: 29 50 21
Telex: 3751
Cable: BLUEFROST

Blue Star Ltd

Sahas

414/2 Vir Savarkar Marg.
Prabhadevi

Bombay 400 025

Tel: 45 78 87

Telex: 4093

Cable: FROSTBLUE

Blue Star Ltd.
Band Box House
Prabhadevi
Bombay 400 025
Tel: 45 73 01
Telex: 3751
Cable: BLUESTAR

Blue Star Ltd
14/40 Civil Lines
Kampur 208 001
Tel: 6 88 82
Cable: BLUESTAR

Blue Star, Ltd

7 Hare Street
P.0. Box 506
Calcutta 700 001
Tel: 23-0131
Telex: 655
Cable: BLUESTAR

Blue Star Ltd.
Blue Star House.
34 Ring Road
Lajpat Nagar

New Delhi 110 024
Tel: 62 32 76
Telex: 2463
Cable: BLUESTAR

Blue Star, Ltd.
Blue Star House
11/11A Magarath Road
Bangalore 560° 025
Tel 55668

Telex: 430
Cable: BLUESTAR

001
Tel: 38 04
Cable: BLUESTAR
Telex: 240
INDONESIA

Bah Bolon Trading Coy. N.V.
Dialah Merdeka 29
Bandung

Tel: 4915; 51560

Cable: ILMU

Telex: 08-809

IRAN
Multi Corp International Ltd.
Avenue Soraya

P.0. Box 1212

IR-Teheran

Tel: 83 10 3539

Cable: MULTICORP Tehran
Telex: 2893 MC! TN

ISRAEL

Electronics & Engineering
Div. of Motorola Israel Ltd.

17 Aminadav Street

Tel-Aviv

Tel: 36941 (3 lines)

Cable: BASTEL Tel-Aviv

Telex: 33569

JAPAN
Yokogawa-Hewlett-Packard Ltd.
Ohashi Building

1-59-1 Yoyogi

Shibuya-ku, Tokyo

Tel: 03-370-2281/92

Telex: 232-2024YHP

Cable: YHPMARKET TOK 23-724

Yokogawa-Hewlett-Packard Ltd
Nisei [baragi Bldg.

228 Kasuga

Ibaragi-Shi

Osaka

Tel: (0726) 23-1641

Telex: 5332-385 YHP OSAKA

Yokogawa-Hewlett-Packard Ltd.
Nakamo Bmldlns

Chuo Bld

Rm. 603 3,
2-Chome

1ZUMI-¢ CHO

Mito,

Tel: 0292 25-7470

KENYA
Kenya Kinetics
P.0. Box 18311

Cable PROTON

KOREA

American Trading Company
Korea,

1.P.0. Box 1103

Dae Kyung Bldg., 8th Floor

107 Sejong-Ro,

Chongro-Ku, Seoul

Tel: (4 lines) 73.8924-7

Cable: AMTRACO Seoul

LEBANON

Constantin E. Macridis

P.0. Box 7213

RL-Beirut

Tel: 22084

Cable: ELECTRONUCLEAR Beirut

MALAYSIA

MECOMB Malaysia Ltd.

2 Lorong 13/6A

Section 13

Petaling Jaya, Selangor
Cable: MECOMB Kuala Lumpur

MOZAMBIQUE

A.N. Goncalves, Lta
162, Av. D. Luis

P.0. Box 107
Lourenco Marques

Tel: 27091, 27114
Telex: 6-203 Negon Mo
Cable: NEGON

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
94-96 Dixon Street

P.0. Box 9443

Courtenay Place,
Wellington

Tel: 59-559

Telex: 3898

Cable: HEWPACK Wellington

Hewlett-Packard (N.Z) Ltd.
Pakuranga Professional Centre
267 Pakuranga Highway

Box 51092

Pakuranga

Tel: 569-651

Cable: HEWPACK, Auckland

NIGERIA
The

No. 24
Nakamura-ku, Nageya City
Tel: (052) 571-5171

Yokogawa-Hewlett-Packard Ltd
Nitto Bldg.

2-4-2 shinohara-Kita
Kohoku-ku

Yokohama 222

Tel: 045-432-1504

Telex: 382-3204 YHP YOK

tions Ltd. (TEIL)
144 Agege Motor Rd.. Mushin
P.0. Box 6645

Lagos
Cable: THETEIL Lagos

tions Ltd. (TEIL)
16th Floor Cocoa House
F.M.B. 5402
adan
Tel 22325
Cable: THETEIL Ibadan

PAKISTAN

Mushko & Company, Ltd.
Oosman Chambers
Abdullah Haroon Road
Karachi 3

Tel: 511027, 512927

Cable: COOPERATOR Karachi

Mushko & Company, Ltd.
388, Satellite Town
Rawalpindi

Tel: 41924

Cable: FEMUS Rawalpindi

PHILIPPINES

Electromex, Inc.

6th Floor, Amalgamated
Development Corp. Bldg.

Ayala Avenue, Makati, Rizal

C.C.P.0. Box 1028

Makati, Rizal

Tel: 86-18-87, 87-76-77,
87-86-88, 87-18-45, 88-91-71,
83-81-12, 83-82-12

Cable: ELEMEX Manila

SINGAPORE
Mechanical & Combustion
Engineering Company Pte.,

10 12, Jalan Kilang

Red Hill Industrial Estate
Singapore, 3

Tel: 647151 (7 lines)
Cable: MECOMB Singapore

Hewlett-Packard Far East
Area Office

P.0. Box 87

Alexandra Post Office

1302
Cable HEWPACK SINGAPORE

SOUTH AFRICA
Hewlett Packard South Africa

(Pty.), Ltd.
Hewlett-Packard House
Daphne Street, Wendvwood,
Sandton, Transvaal 2001
Tel: 407641 (five lines)

Hewlett Packard South Africa
(Pty.), Ltd.

Breecastle House

Bree Street
pe Town

Tel: 2-6941/2/3

Cable: HEWPACK Cape Town

Telex: 0006 CT

Hewlett Packavd South Africa
Pty

641 Rldge Road Durban

P.0. Box 99

Overport, Natal

Tel: 88-6102

Telex: 567954

Cable: HEWPACK

Hewlett Packard Taiwan
39 Chung Shiao West Road
Sec. 1

QOverseas Insurance
Corp. Bldg. 7th Floor
Taipei
Tel: 389160,1,2, 375121,
Ext. 240-249
Telex: TP824 HEWPACK
Cable: HEWPACK Taipei

THAILAND

UNIMESA Co., Ltd.
Chongkoinee Building

56 Suriwongse Road
Bangkok

Tel: 37956, 31300, 31307,

Cable: UNIMESA Bangkok

UGANDA
Uganda Tele-Electric Co., Ltd.
P.0. Box 4449

Kampala

Tel: 57279

Cable: COMCO Kampala

VIETNAM
Penmsular Traamg Inc.
P.0. Box
216 Hien- Vuong
Saif

Saigon
Tel: 20-805, 93398
Cable: PENTRA, SAIGON 242

ZAMBIA

R. J. Tilbury (Zambia) Ltd.
P.0. Box 2792

Lusaka

Zambia, Central Africa
Tel: 73793

Cable: ARJAYTEE, Lusaka

MEDITERRANEAN AND
MIDDLE EAST COUNTRIES
NOT SHOWN PLEASE
CONTACT:
Hewlett-Packard
Co-ordination Office for
Mediterranean and Middle
East Operations

Piazza Marconi 25
1-00144 Rome-Eur, Italy
Tel: (6) 59 40 29

Cable: HEWPACKIT Rome
Telex: 61514

OTHER AREAS NOT
LISTED, CONTACT:
Hewlett-Packard
Export Trade Company
3200 Hillview Ave.
Palo Alto, California 94304
Tel: (415) 326-700

{Feb. 71 493-1501)
TWX: 910-373-1267
Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

€11/73

READER COMMENT SHEET
2000F Time-shared BASIC Programmer’s Guide
02000-90073 December 1973

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Manager, Technical Publications
Hewlett-Packard

Data Systems Development Division
11000 Wolfe Road

Cupertino, California 95014

02000-90073

	Front
	cover/inside
	title

	Contents
	i
	ii
	iii/iv
	v
	vi
	vii
	viii
	ix
	x
	xi/xii
	xiii/xiv

	Section 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14

	Section 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37/2-38

	Section 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25/3-26

	Section 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28

	Section 5
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17/5-18

	Section 6
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14

	Section 7
	7-1
	7-2
	7-3
	7-4

	Section 8
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18

	Section 9
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11/9-12

	Appendix A
	A-1/A-2

	Appendix B
	B-1/B-2

	Appendix C
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6

	Appendix D
	D-1
	D-2

	Appendix E
	E-1
	E-2
	E-3
	E-4

	Index
	index-1
	index-2
	index-3
	index-4

	Sales Offices
	sales-1
	sales-2

	Comment Sheet
	comment-1
	comment-2

	Back
	cover

