
2000E: A GUIDE TO

TIME-SHARED BASIC

02000-90048 August 1972

©Copyright, 1972, by HEWLETT-PACKARD COMPANY, 11000 Wolfe Road, Cupertino, California. All rights reserved.
Printed in the U.S.A.

PREFACE

The Time-shared BASIC system (TSB) has provided a major breakthrough by
reducing the cost of using a computer. Now, for the first time, it is practical
for the programmer to use his time sharing terminal to teach himself more about
the BASIC language. Accordingly, this publication is designed to meet two

requirements:

1. To serve as a clear and concise reference text for

Time-shared BASIC
2. To serve as an instructional aid to the TSB user.

All example programs may be used as practice exercises (as well as for

reference). They were chosen for maximum teaching value, and include pertinent
remarks. Beginners are encouraged to try the examples "on-line. 1I

The syntax requirements of BASIC have been "translated ll into Engl ish

from the traditional Backus Normal Form. Each element of a statement is under­
lined separately.

This text is divided into learning units. Each page presents a separate
item or feature, and sections are arranged in a coherent instructional sequence.
All items are presented in a standard, consistent format.

iii

CONVENTIONS USED IN THIS TEXT

SAMPLE

PLEASE LOG IN

20 PRINT X, Y
LIST

Thi s secti on ...

line number PRINT X,Y

return linefeed

esc ctrl

al t-mode break

Note: Both X and ...

LISTING A PROGRAM

o
~

EXPLANATION

All capitals in examples indicates computer­
output information ...

or a statement or command typed by the pro­
grammer.

Mixed upper and lower case is used for regu-
1 ar text.

Lower case italics indicates a general form,
derived from BASIC syntax requirements
(Sect. IX).

Underlining indicates an essential part of a
general form; each underlined item is a separ­
ate, essential element.

Represents the terminal keys:
Return, Linefeed, Escape, Control,
Alt-Mode, and Break.

Mixed upper and lower case italics is used
for notes.

Oversized type is used for page headings.

The 1 etter II 011

Zeroes are slashed.

IV

PAGE FORMAT
The reference page format is as uniform as possible. This

sample shows how positioning and typeface relate to content.
Black frames are used on reference pages.

EXAMPLES:

GENERAL FORM: ---

Several sample

statements or commands

(Each essential element underlined.)

PURPOSE

A clear and concise explanation of the purpose
or function.

COMMENTS

A series of several items containing:
Pertinent information

Additional explanation or examples
Helpful hints.

Reference to other sections or subsections related
to the contents of this page.

"Continued on the next page ll if the explanation fills
more than one page.

Page No.

v

HOW TO USE THIS BOOK

If your purpose is:

Quickly acquiring a minimum

working knowledge of Time­
shared BASIC:

Acquiring a good working

knowledge of Time-shared
BASIC:

Learning the complete Time­
shared BASIC system:

Reference only:

VI

Read:

Sections I and II.

Sections I, II, III,
I V, V, V I, in tha t
order.

The entire book, in

sequence.

1. Contents

2. The index

",

CONTENTS

iii PRE FACE
iv CONVENTIONS USED IN THIS TEXT

v PAGE FO RMAT
vi HOW TO USE THIS BOOK

1 -1 SECT ION I
AN INTRODUCTION TO TIME SHARED BASIC

1 -1 WHAT IS TIME SHARING?
1-2 COMMUNICATING WITH A COMPUTER
1-3 EXAMPLES OF BASIC STATEMENTS
1-4 STATEMENT NUMBERS
1-5 INSTRUCTIONS (STATEMENT TYPES)
1 -6 OP ERAN OS
1-7 A PROGRAM
1-8 THE FORMAT OF STATEMENTS

1-10 BEFORE GOING ON-LINE
1-11 PRESS RETURN AFTER EACH STATEMENT
1-12 BACKSPACE
1-13 DELETING OR CHANGING A STATEMENT
1-14 LISTING A PROGRAM
1-16 CONNECTION TO THE COMPUTER
1-17 CHECKING THE CONNECTION
1-17 Your 10 Code and Password

1-18 Control Characters

1-19 SAMPLE LOG IN AND LOG OUT
1-20 MISTAKES DURING LOG IN
1-21 ENTERING THE SAMPLE PROGRAM
1-22 HOW TO OBTAIN A DIACl'JOSTIC MESSAGE
1-23 RUNN IN G THE SAMPLE PROGRAM
1-24 STOPPING A PROGRAM: THE break KEY

1-25 HOW THE PROGRAM WORKS

VII

CONTENTS CONTINUED

2-1 SECTION II
THE ESSENTIALS OF BASIC

2-1 HOW TO READ THIS SECTION
2-2 TERM: NUMBER
2-2 TERM: "EII NOTATION
2-3 TERM: SIMPLE VARIABLE
2-4 TERM: ARITHMETIC EVALUATION
2-5 THE ASSIGNMENT OPERATOR
2-6 ARITHMETIC OPERATORS
2-7 RELATIONAL OPERATORS
2-8 MIN AND MAX OPERATORS
2-9 THE AND OPERATOR
2-10 THE OR OPERATOR
2-11 THE NOT OPERATOR
2-12 ORDER OF PRECEDENCE OF EXECUTION
2-13 STATEMENTS
2-14 THE ASSIGNMENT STATEMENT
2-15 REM
2-16 GO TO AND MULTIBRANCH GO TO
2-17 IF ... THEN
2-18 FOR ... NEXT
2-20 NESTING FOR ... NEXT LOOPS
2-21 READ, DATA AND RESTORE
2-24 INPUT
2-26 PRINT
2-28 END AND STOP
2-29 Sample Program

2-32 Running the Sam~e Program

2-33 COMMANDS
2-34 HELLO
2-35 BYE
2-36 ECHO-
2 -37 RUN
2-38 LIST
2-39 SCRATCH

VIII

CONTENTS CONTINUED

2-40 RENUMBER
2-41 BREAK
2-42 PUNCH
2-43 XPUNCH
2-44 TAPE
2-45 KEY
2-46 TIME
2-47 DISC
2-48 MESSAGE

3-1 SECTION III
ADVANCED BASIC

3-2 ROUTINE
3-3 ARRAY (OR MATRIX)
3-4 STRING
3-4 FUNCTION
3-5 WORD
3-5 RECORD
3-6 STORING AND DELETING PROGRAMS
3-7 LENGTH
3-8 NAME
3-9 SAVE-
3-10 GET- AND GET-$
3-11 KILL-
3-12 APPEND-
3-13 DELETE-
3-14 LIBRARY
3-15 CATALOG
3-16 SUBROUTINES AND FUNCTIONS
3-17 GOSUB ... RETU RN
3-18 MULTIBRANCH GOSUB
3-19 NESTING GOSUB1S
3-20 FOR ... NEXT WITH STEP
3-21 DEF FN
3-22 GENERAL MATHEMATICAL FUNCTIONS
3-23 TRIGONOMETRIC FUNCTIONS

IX

CONTENTS CONTINUED

3-24 THE TAB AND SGN FUNCTIONS
3-25 THE TYP FUNCTION
3-26 THE LEN FUNCTION
3-27 THE TIM FUNCTION
3-28 CHAIN
3-29 COM

4-1 SECTION IV
FILES

4-2 TERM: FILE
4-3 SERIAL FILE ACCESS
4-5 OPEN-
4-7 KILL-
4 -8 FILES
4-10 SERIAL FILE PRINT
4-12 SERIAL FILE READ
4-14 RESETTING
4-15 LISTING CONTENTS OF A FILE
4-16 THE TYP FUNCTION
4-17 TERM: END-OF-FILE
4-18 IF END# ... THEN
4-19 PRINT# ... END
4-20 MODIFYING A SERIAL FILE
4-21 EXAMPLE OF SERIAL FILE MODIFICATION
4-23 STRUCTURE OF SERIAL FILES
4-26 TERM: RECORD
4-27 STORAGE REQUIREMENTS
4-28 MOVING THE POINTER
4-29 SAMPLE USE OF READ#M,N
4-30 SUBDIVIDING SERIAL FILES
4-31 USING THE TYP FUNCTION WITH RECORDS
4-32 SAMPLE OF READNM,N AND TYP(-M)
4-33 HOW TO COpy A FILE
4-34 TERM: RANDOM FILE ACCESS
4-35 SAMPLE OF RANDOM FILE ACCESS

x

CONTENTS CONTINUED

4-36 PRINTING A RECORD
4-38 READING A RECORD
4-39 MODIFYING CONTENTS OF A RECORD
4-40 ERASING A RECORD
4-42 UPDATING A RECORD
4-43 AN ALPHABETICALLY ORGANIZED FILE

5-1 SECTION V
MATRICES

5-1 MATRIX (ARRAY)
5-2 DIM
5-3 MAT ... ZER
5-4 MAT ... CON
5-5 INPUT
5-6 MAT INPUT
5-7 PRINT MATRICES
5-8 MAT PRINT
5-9 READ
5-10 MAT READ
5-11 MATRIX ADDITION
5-12 MATRIX SUBTRACTION
5-13 MATRIX MULTIPLICATION
5-14 SCALAR MULTIPLICATION
5-15 COPYING A MATRIX
5-16 IDENTITY MATRIX
5-17 MATRIX TRANSPOSITION
5-18 MATRIX INVERSION
5-19 MAT PRINT#
5-20 MAT READ#

6-1 SECTION VI
STRINGS

6-2 STRING
6-3 STRING VARIABLE

XI

CONTENTS CONTINUED

6-4 SUBSTRING
6-6 STRINGS AND SUBSTRINGS
6-8 THE STRING DIM STATEMENT
6-9 THE STRING ASSIGNMENT STATEMENT
6-10 THE STRING INPUT STATEMENT
6-11 PRINTING STRINGS
6-12 READING STRINGS
6-13 STRING IF
6-14 THE LEN FUNCTION
6-15 STRING IN DATA STATEMENTS
6-16 PRINTING STRINGS ON FILES
6-17 READING STRINGS FROM FILES

7-1 SECTION VII
LOGICAL OPERATIONS

7-1 LOGICAL VALUES AND NUMERIC VALUES
7-2 RELATIONAL OPERATORS
7-4 BOOLEAN OPERATORS
7-5 SOME EXAMPLES

8-1 SECTION VIII
FOR THE PROFESSIONAL

8-2 SYNTAX REQUIREMENTS OF TSB
8-8 STRING EVALUATION BY ASCII CODES
8-9 MEMORY ALLOCATION BY A USER

A-1 APPENDIX A
HOW TO PREPARE A PAPER TAPE OFF-LINE

B-1 APPENDIX B
THE X-ON, X-OFF FEATURE

XII

CONTENTS CONTINUED

C-l APPENDIX C
DIAGNOSTIC MESSAGES

INDEX

XIII

SECTION I

AN INTRODUCTION TO TIME SHARED BASIC

This section is for novices and programmers in

nee d 0 f a II b r us h - u P lion me c h an i cal ski 11 s . The

information presented here is arranged in a tu­

torial sequence. It is assumed that the reader

has access to a Time Shared BASIC terminal, and

will use some or all of the examples as practice

exercises, depending on his own personal require­

ments.

If you are familiar with the following procedures,

skip this section, and begin at Section II:

Log in and log out
Correcting mistakes and changing lines
Obtaining a diagnostic message
Running and terminating a program.

WHAT IS TIME SHARING?

Time sharing is a method of computer programming

which enables many persons (users) to have access

to a single computer simultaneously.

The computer processes the requests of the users so

rapidly that it seems to each individual that he is

the only one using the machine.

Even if every user required large amounts of com­

puter time, the longest delay possible for anyone

user is a few seconds.

1-1

COMMUNICATING WITH A COMPUTER

THE BASIC LANGUAGE

There are many types of languages. English is a

natural language used to communicate with people.

To communicate with the computer we use a formal

language, that is, a combination of simple English
and algebra.

BASIC is a formal language used to communicate with
the computer during time-sharing.

Like natural languages BASIC has grammatical rules,
but they are much simpler. For example, this series
of BASIC statements (which calculates the average of
five numbers given by you, the user) shows the funda­
mental rules:

10 INPUT A,B,C,D,E

20 LET S = (A+B+C+D+E)/5

30 PRINT S
40 GO TO l,k?

50 END

The frames on the following pages show how to interpret

these rules. Notice how the statements are written.

What they do is explained later.

1-2

EXAMPLES OF BASIC STATEMENTS

This is a BASIC statement:

10 INPUT A,B,C,D,E

COr+1ENTS

A statement contains a maximum of 72 characters
(one teletypewriter line).

A statement may also be called. a line.

1-3

STATEMENT NUMBERS

Each BASIC statement begins with a statement number

(in this example, 20):

20 LET S={A+B+C+D+E)/5

COMMENTS

The number is called a statement number or a line

number.

The statement number is chosen by you, the programmer.
It may be any integer from 1 to 9999 inclusive.

Each statement has a unique statement number. The
computer uses the numbers to keep the statements in
order.

Statements may be entered in any order; they are
usually numbered by fives or tens so that additional
statements can be easily inserted. The computer keeps
them in numerical order no matter how they are entered.
For example, statements are input in the sequence 30,10,

20; the computer arranges them in the order: 10,20,30.

1-4

INSTRUCTIONS (STATEMENT TYPES)

The statement then gives an instruction to the
computer (in this example, PRINT):

3~ PRINT S

COMMENTS

Instructions are sometimes called statement types

because they identify a type of statement. For

example, the statement above ;s a "print" statement.

1-5

OPERANDS

If the instruction requires further details, o£erands

(numeric details) are supplied (in this example, 10;
on the previous page, "S"):

4.0 GO TO 10

COMMENTS

The oEerands specify what the instruction acts upon;
for example, what is PRINTed, or where to GO.

A PROGRAM

The sequence of BASIC statements
given on the previous pages is
called a program.

The last statement in a program,

as shown here, is
and END statement.

COMt·1ENTS

10 INPUT A,B,C,D,E

20 LET S=(A+B+C+D+E)/5
30 PRINT S

40 GO TO 10
50 END

The last (highest numbered) statement in a program must be
an END statement.

The END statement informs the computer that the program is
finished.

1-7

THE FORMAT OF STATEMENTS

BASIC is a "free format" language--the computer ignores

extra blank spaces in a statement. For example, these
three statements are equivalent:

30 PRINT S
30 PRINT S
30PRINTS

COMMENTS

When possible, leave a space between words and numbers
in a statement. This makes a program easier to read.

1-8

•
(Spot check)

Be sure you are familiar with these terms before continuing:

statement
instruction (statement type)

statement type

statement number (line number)

operand

program

All of these terms are defined in the context of this section.

1-9

BEFORE GOING ON-LINE

The following pages explain the mechanics of entering,

correcting, and checking statements.

Since you will probably have to make several corrections

in your first attempts to use the computer, these features
should be learned before beginning.

1-10

PRESS RETURN AFTER EACH STATEMENT

The return key must be pressed after each statement.

Examples: 1~ INPUT A,B,C,D,E return

20 LET S=(A+B+C+D+E)/5 return

30 PRINT S return

40 GO TO l~ return

50 END return

COMMENTS

Pressing return informs the computer that
the statement is complete. The computer
then checks the statement for mistakes.

(The checking process is explained later.)

1 - 11

BACKSPACE

The reverse arrow (+) key acts as a backspace, deleting
the immediately preceding character.

Typing:

is equivalent to typing:

And typi ng:

is equivalent to typing:

2~ LR+ET S=10 return

2~ LET S=10 return

30 LET+ + + PRINT S return

30 PRINT S return

COMMENTS

The + character is a "shift" 0 on most terminals.

1-12

DELETING OR CHANGING A STATEMENT

To delete the statement being typed, press and hold down the ctrl key, strike

the x key, and release the ctrl key. (From this point on, this operation is
indicated by the characters xc.) This causes a , to be printed, and deletes
the entire line being typed.

To delete a previously typed statement, type the statement number followed by

a return.

To change a previously typed statement, retype it with the desired changes.
The new statement replaces the old one.

Pressing the XC keys deletes

the statement being typed: 20 LET S = XC

NOTE: The computer responds wi th a \ when XC is typed, like this:

20 LET S = \

To delete statement 5 in the

sequence: 5 LET S = 0
10 INPUT A,B,C,D,E,

20 LET S = (A+B+C+D+E)/5

NOTE: \ and / are different,and have very different functions.

type: 5 return

Or, to change statement 5 in

the above sequence, type: 5 LET S = 5 return

The old statement is re-

placed by the new one.
Typing an XC

before a return prevents
replacement of a previously
typed statement.

For example, typing:

or:

has no effect on the orig­
inal statement 5.

1 -13

LISTING A PROGRAM

After you have made several corrections you may wish to inspect the

entire program. Typing LIST return produces a listing of all lines
accepted by the computer.

NOTE: The program has already been entered.

The computer skips three lines,
separating the listing from pre­
viously printed information.

linefeed indicates that the
listing is complete.

LIST return

linefeed

linefeed

linefeed

l~ INPUT A,B,C,D,E
20 LET S = (A+B+C+D+E)/5
3~ PRINT S
40 GO TO 10
50 END
linefeed

The LIST command followed by a dash and statement number causes the
listing to begin at the statement specified.

A list of the same sample program
produces these lines:

1-14

LIST-30 return

linefeed

linefeed

linefeed

30 PRINT S

40 GO TO 10
50 END
linefeed

•
1. Be sure you understand the use of these features work be­

fore using the computer:

return to end statements
How to backspace
How to delete a statement
How to change a statement
How to list statements

The following pages explain how to make the connection with
the computer and log-in.

1-15

CONNECTION TO THE COMPUTER

To enter a program into the computer, first make a connection between the tele­
printer and the computer. There are several ways of doing this, depending on
the terminal equipment used. The input-output device, such as teleprinter or
optical mark reader, on your end of the line is called terminal equipment. Not
all users have the same type of equipment.

IF YOUR TERMINAL EQUIPMENT IS A TELEPRINTER WITH

ACOUSTIC COUPLER AND TELEPHONE:

1. Turn teleprinter control knob to
LINE.

2. Turn on coupler power.
3. If coupler has a duplex switch,

set to FULL or FULL/UP.
4 . I f co u p 1 e r has ali n e s wi tc h set

it to ON-LINE.
5. Call the computer number.
6. When the computer answers with a

high pitched tone, place the hand­
set in the coupler (Be sure to
check that the handset is inserted
in the correct position; the con­
nection will not be made if it is
reversed. (The correct position
should be marked on the coupler.)

HALF DUPLEX COUPLER AND TELEPHONE
1 . Fo 11 ow ins t ru c t ion s 1, 2 , 4 , 5 , 6

given above.
2. Log in. (See Log In and Log Out

in this section.)
3. Type ECHO-OFF return

1-16

DATA SET:

1. Turn teleprinter control knob to
line.

2. Press TALK button on the Data Set.
3. Call the computer number.

4. When the computer answers with a
high pitched tone, press the DATA
button until the DATA light is on,
and replace the handset.

DIRECT CONNECTION TO THE COMPUTER:
Turn the teleprinter control knob to
the LINE position.

CHECKING THE CONNECTION

The computer does not respond when the connection is established. If
you wish to make sure that the connection has been made, type XC. When
the connection is made, the computer responds with a 11,\". Youcan also
verify connection by typing in any letter or digit; if the connection is
made, the message PLEASE LOG IN appears.

EXAMPLE: 3 return

The computer then responds with the message:

PLEASE LOG IN return linefeed

NOTE: linefeed causes the teleprinter to advance to the next line.

return causes the teleprinter typeface to return to the first

print position.

This step is optional

YOUR IDCODE, PASSWORD AND TERMINAL SUBTYPE

You need your identification code, password, and terminal subtype to
log in. The 10 code and password are assigned by the system operator.
The terminal subtype is obtained from the table below. The 10 code is
a single letter followed by a three digit number. The password consists
of one to six regular or control characters. The terminal subtype code
tells the system what kind of terminal is being used. It is an integer
from ~ to 5. The following table indicates the meaning of each.

Terminal Subtype Code

It'

2

3

4

5

Termi na 1

HP 2600A, HP 2749A, ASR-33, ASR-35.
Execuport 300
ASR-37
Termi net-300
Memorex 1240
Un i vac OCT 500

The message ILLEGAL FORMAT is printed if the type code is less than 0, or

greater than 5. If terminal type code is omitted, i is assumed by default.

1-17

CONTROL CHARACTERS

Control characters are non-printing. They are represented with a super­
script IIC II to indicate that they are control characters; an example is
xc. By using these non-printing characters, you may keep your password a
secret. For example, on the teleprinter the password SEcCcRcEcT prints

as:

ST

Control letters are input by pressing the letter and ctrl keys
s i mu 1 taneous ly .

1-18

SAMPLE LOG IN AND LOG OUT

H2~0 is used as a sample identification code.

User H2~0 for example, logs in on
an AS R-33 by typi ng:

HELLO- is a command, not a statement.

Commands are orders to the computer

which are acted upon (executed) im­

mediately. Unlike statements, com­

mands do not have line numbers.

The computer acknowledges that the
user has correctly logged in, by
outputting three linefeeds:

If the operator has put a message
into the system for users it is
printed when the user logs in:

NOTE: This message can be terminated
by hitting break.

If there is no message, the computer
responds with three linefeeds, then
READY, indicating it is awaiting
input.

To LOG OUT, type:

The elapsed time since log in is
then printed.

1-19

HELLO-H2~~,password return

or
HEL-H2~~,password, 0 return

linefeed

linefeed

linefeed

- - - - - - - - - - - - - - - -

MESSAGE TO USERS FROM OPERATOR

- - - - - - - - - - - - - - - -
linefeed

linefeed

linefeed

READY

linefeed

BYE return

001 MINUTES OF TERMINAL TIME

MISTAKES DURING LOG IN

If you make a mistake while logging in, the computer responds with a mes­

sage informing you that something is ~rong. For example, if user H200

forgets the hyphen while entering the HELLO command or types an incorrect
subtype:

HELLO H2~~,password return
or

HEL-H200,passwordt 6 return

the computer responds with the message:

ILLEGAL FORMAT return linefeed

and the user then enters the command in the correct form.

If user H20~ enters his password incorrectly:

HELLO-H200,password return

the response is:

ILLEGAL ACCESS return linefeed

and the user tries again.

NOTE: The messages ILLEGAL ACCESS and ILLEGAL FOR.MAT

indicate that some or all of the input is not

acceptable (not legal) to the Time Shared BASIC

system.

1-20

ENTERING THE SAMPLE PROGRAM

The frame below shows how to enter a program. If you are not sure how
the computer responds when a line is entered, use it as a practice
exercise.

NOTE: Connection to the computer is made.

Log in:

NOTE: The computer responds with a

linefeed after each line is

entered. This indicates that

the line has been checked and

accepted as a legal BASIC

statement. It informs the

user that the computer is

waiting for further input.

or

HELLO-H2~0,password return

OPERATOR IS r'1ESSAGE TO USER

READY return linefeed

10 INPUT A,B,C,D,E return

linefeed

20 LET S = (A+B+C+D+E)/5 return

linefeed

30 PRINT S return

linefeed

40 GO TO 10 return

line feed

50 END return

linefeed

Now the program is ready to run.

1-21

HOW TO OBTAIN A DIAGNOSTIC MESSAGE

If you make a mistake while entering a program, the computer responds with an ERROR

message. This indicates that the previous line has not been accepted. There are
two possible responses to the ERROR message. The frame below shows how to obtain a

diagnostic for the probable cause of the error and how to avoid printing the diag­
nostic if you recognize the mistake.

If the user types:

The computer responds:

The user then types in a colon
(or any other character) fol­
lowed by a return. This causes
the diagnostic to be printed
on the same line. The result­
ing output looks like this:

To correct the statement,
retype it in the proper form:

If you know the cause of the

ERROR message and do not wish
to see the diagnostic, type a
return after the ERROR message

is output, then retype the line:

30 PRIMT S return

NOTE: PRINT has been misspelled.

ERROR

ERRO R: return

ERROR: NO STATEMENT TYPE FOUND
NOTE: PRIMT has not been recognized

as a legal statement type, and

the line was not accepted.

30 PRINT S return

30 PRIMT S return

ERROR return

30 PRINT S

Appendix C contains a list of TSB diagnostic messages and probable causes.

1-22

RUNNING THE SAMPLE PROGRAM

This frame shows what happens when the sample program is run. The

program does not begin execution (does not run) until the command RUN
followed by a return is input.

NOTE: The program (averaging 5 numbers) has been entered.

The computer responds with four linefeed's

indicating that the command is being
executed.

The question mark indicates that input is
expected. The five numbers being averaged
should be typed in, SEPARATED BY COMMAS,
and followed by a return.

The answer is printed:

NOTE: This program continues executing

indefinitely, unless terminated

by the user. To stop the program,
c

type a C return (control "C") when

more input is requested:

The program ;s finished:

Log off:

Time used ;s printed:

1-23

RUN return linefeed

linefeed

linefeed

linefeed

? 95.6,87.3,80.5,9~,82.8 return

87.24 return linefeed

?-12.5,-5~.6,-32,45.6,60 return

2.1 return linefeed

c ? C return

DONE

BYE return

~03 r~INUTES OF TERt4INAL TIME

STOPPING A PROGRAM: THE break KEY

When the commands RUN or LIST are typed,

TSB "takes over" the user's terminal
until the program or listing is complete.

To terminate a program or listing, press, then release, the
break key:

When a program is running or being listed, TSB responds
with the message:

after break is pressed.

Remember that:

and not break is used to terminate input loops (when the
computer is expecting a number to be typed in).

COMMENTS

break must be held down for at least
1/10 second.

1-24

break

STOP

c C return

HOW THE PROGRAM WORKS

Line 10 tells the computer that five numbers will be input,
and that they should be given the labels A,B,C,D,E in se­
quence. The first number input ;s labeled "A" by the com­
puter, the second "B", etc. A,B,C,D, and E are called var­

ab 1 es.

After line 1~ is executed, the variables and their assigned
values, typed in by the user, are stored. For example, us­
ing the values entered by the user in the previous example,
this information is stored: A = -12.5; B = -50.6; C = -32;

o = 45.6; E = 60

Line 20 declares that a variable called S exists, and is as­
signed the value of the sum of the variables A,B,C,D,E divid-

1~ INPUT A,B,C,D,E

ed by 5: 2~ LET S = (A+B+C+D+E)/5

Line 30 instructs the computer to output the value of S to
user's terminal:

NOTE: If the PRINT statement were not given, the value of
S would be calculated and stored, but not printed
The computer must be given explicit instruction for
each operation to be performed.

Line 40 tells the computer to go to line 1~ and execute
whatever instruction is there:

NOTE: A "loop" is formed by lines l~ to 4/1. The sequence
of statements in this loop execute until the user
breaks the loop. This particular kind of loop is
called an input loop (because the user must repeat­
edly input data). INPUTTING A C

C
WHEN INPUT IS

REQUESTED BY A "?" IS THE ONLY WAY TO BREAK AN INPUT
LOOP WITHOUT DISCONNECTING THE TERMINAL DEVICE.
Other, more controlled loops are explained later.
Line 5¢ is not executed until the loop is broken
by entering a C

C
when input is requested.

Line 50 informs the computer that the program is finished:

1-25

30 PRINT S

40 GO TO 10

50 END

SECTION II

THE ESSENTIALS OF BASIC

HOW TO READ THIS SECTION

This section contains enough information to allow
you to use BASIC in simple applications, without
using the capability of storing programs.

Proceed at your own pace. The information in the
vocabulary and operators subsections is included
for completeness; experienced programmers may skip
these. Programmers with some knowledge of BASIC
may also concentrate on capabilities of the TSB
system presented in the commands subsection.

The "Operators" subsections contain brief descriptions t

rather than explanations, of the logical operators.
The novice should not expect to gain a clear under­
standing of logical operators from this presentation.
Section VIr presents more details and examples of
TSB logical operations. Readers wishing to make best
use of TSB logical capabilities should consult this
section. Those unfamiliar with logical operations
should also refer to an elementary logic text.

A simple program is included at the end of this
section for reference; it contains a running commen-
tary on the uses of many of the BASIC statements presented
in the section.

2-1

TERM: NUMBER

DEFINED IN TSB AS: A positive or negative Decimal number whose magnitude
is between an approximate minimum of 1~-38 (or 2- 129)
and an approximate maximum of:
1 ~ 38 (a r 2 1 27)

Zero is included in this range.

TERM: E NOTATION

DEFINED IN TSB AS: A means of expressing numbers having more than six

decimal digits, in the form of a decimal number

raised to some power of 1~.

EXAMPLES: 1.00000E+06 is equal to 1,000,000 and is
III times 10 to the sixth power (lx106).

1.02000E+04 is equal to 10,200

1.02000E-04 is equal to .000102

COMMENTS

IIEII notation is used to print numbers greater than six

digits. It may also be used to input any number.

read

When entering numbers in IIEII notation, leading and

trailing zeroes may be omitted from the number; the + sign

and leading zeroes may be omitted from the exponent.

The precision of numbers ;s 6 to 7 decimal digits

(23 binary digits).

2-2

TERM: SIM PLE VARIABLE

DEFINED IN TSB AS: A letter (from A to Z); or a letter immediately

followed by a number (from ~ to 9).

EXAMPLES: Aft'
M5

Z9

B

C2

D

COMMENTS

Variables are used to represent numeric values.

For instance, in the statement:

l~ LET M5 = 96.7

M5 is a variable; 96.7 becomes the value of the variable MS.

There are two other types of variables in TSB, string

and array variables; their use is explained in Sec­
tions V and VI respectively.

2-3

DEFINED IN TSB AS:

EXAMPLES:

TERM: EXPRESSION

A combination of variables, constants and
operators which has a numeric value.

(P + 5)/27

(where P has previously been assigned a
numeric value.)

Q - (N + 4)

(where Q and N have previously been assigned
numeric values.)

TERM: ARITHM ETIC EVALUATION

DEFINED IN TSB AS: The process of calculating the value of
an expression.

2-4

THE ASSIGNMENT OPERATOR

SYMBOL:

EXAMPLES:

GENERAL FORM:

=

l~ LET A = B2 = C = ~
20 LET A9 = C5
30 Y = (N-(R+5))/T

40 N5 = A + B2
50 P5 = P6 = P7 = A = B = 98.6

LET variable ~ expression

varia-h12 = expression

PURPOSE

Assigns an arithmetic or logical value to a

variable.

COMMENTS

When used as an assignment operator, = is read

"takes the value of," rather than "equals". It

is, therefore, possible to use assignment state­

ments such as:

100 LET X = X+2

This is interpreted by TSB as: "LET X take the
value of (the present value of) X, plus two. II

Several assignments may be made in the same

statement, as in statements 10 and 5~ above.

See Section VII, ilLOGICAL OPERATIONS" for a

description of logical assignments.

2-5

SYMBOLS:

EXAMPLES:

ARITHMETIC OPERATORS

t * / + -

40 LET Nl = X-5
50 LET C2 = Nt3
60 LET A = (B-C)/4
70 LET X = ((Pt2)-(Y*X))/N+Q

PURPOSE

Represents an arithmetic operation, as:

exponentiate: t

mul ti ply: *
divide: /

add: +

subtract:

COMMENTS

The "_" symbol is also used as a sign for negative numbers.

It is good practice to separate arithmetic operations with

parentheses when unsure of the exact order of precedence.

The order of precedence (hierarchy) is:

t

* /
+ -

with t having the highest priority. Operators on the same level

of priority are acted upon from left to right in a statement. See
"Order of Precedence" in this Section for examples.

2-6

RELATIONAL OPERATORS

SYMBOLS: = # <> > < >= <=

EXAMPLES: 100 IF A=B THEN 90~
110 IF A+B >C THEN 91~

120 IF A+B < C+E THEN 920

130 IF C>= O*E THEN 930

140 IF C9 <= G*H THEN 940

150 IF P2#C9 THEN 950

160 IF J <> K THEN 950

PURPOSE

Determines the logical relationship between two expressions, as
equa 1 i ty:

i n e qua 1 i ty : # or: <>

greater than: >

less than: <

greater than or equal to: >=

less than or equal to: <=

COMMENTS

NOTE: It is not necessary for the novice to understand the nature of

logical evaluation of relational operators, at this point. The

comments below are for the experienced programmer.

Expressions using relational operators are logically evaluated, and assigned

a value of "true" or "false" (the numeric value is 1 for "true", and 0 for
fa 1 se) .

When the = symbol is used in such a way that it might have either an

assignment or a relational function, TSB assumes it is an assignment

operator. For a description of the assignment statement using logical
operators, see Section VII, IlLogical Operations".

2-7

EXAMPLES:

MIN AND MAX OPERATORS

10 LET A=A9=P2=P5=C2=X=7.5
20 LET B5=D8=Ql=Q4=Y=B=12.0

80 PRINT (A MIN 10)
90 LET B=(A MIN 10)+100

100 IF (A MIN B5) > (C2 MIN 08) THEN 10
110 PRINT (X MAX Y)
120 IF (A9 MAX B) <= 5 THEN 150

PURPOSE

Selects the larger or smaller
value of two expressions.

COMMENTS

In the examples above, statement 110
selects and prints the larger value:
since X = 7.5 and Y = 12.0, the value
of Y is printed. The evaluation is
made first, then the statement type
(PRINT) is executed.

2-8

THE AND OPERATOR

SYMBOL: AND

EXA~1PLES: 6~ IF A9<Bl AND C#5 THEN l~~

7~ IF T7#T AND J=27 THEN 150

80 IF Pl AND R>l AND NAND V2 THEN 10

90 PRINT X AND Y

PURPOSE

Forms a logical conjunction between two expressions. If

both are "true", the conjunction is "true"; if one or both

are "false", the conjunction is "false".

NOTE: It is not necessary for the novice to understand how this

operator works. The comments below are for experienced

programmers.

COMMENTS

The numeric value of "true" is 1, of "false" is 0.

All non-zero values are "true". For example, statement 90

would print either a 0 or a 1 (the logical value of the ex­

pression X AND Y) rather than the actual numeric values of

X and Y.

Control is transferred in an IF statement using AND, only

when all parts of the AND conjunction are II true II • For in-

stance, example statement 80 requires four "true" conditions

before control is transferred to statement 10.

See Section VII, ilLogical Operations" for a more complete

description of logical evaluation.

2-9

SYMBOL:

EXAMPLES:

THE OR OPERATOR

OR

100 IF A>l OR B<5 THEN 500
110 PRINT C OR D
120 LET D = X OR Y
130 IF (X AND Y) OR (P AND Q) THEN 600

PURPOSE

Forms the logical disjunction of two expressions. If
either or both of the expressions is true, the OR dis­
junction is "true"; if both expressions are "false" the
OR dis j un c t ion is II fa 1 se" .

NOTE: It is not necessary for the novice to understand

how this operator works. The comments below are

for experienced programmers.

COMMENTS

The n u me ric val u e s are: II t rue II = 1, II fa 1 se" = 0.

All non-zero values are true; all zero values are false.

Control is transferred in an IF statement using OR, when
either or both of the two expressions evaluate to "true".

See Section VII, ilLogical Operations" for a more complete
description of logical evaluation.

2-10

THE NOT OPERATOR

SYMBOL:

EXAMPLES:

NOT

30 LET X = Y = 0
35 IF NOT A THEN 300
45 IF (NOT C) AND A THEN 400
55 LET B5 = NOT P

65 PRINT NOT (X AND Y)
70 IF NOT (A=B) THEN 500

PURPOSE

Logically evaluates the complement of a given
expression.

NOTE: It is not necessary for the novice to

understand how this operator works. The

comments below are intended for experi­

enced programmers.

COMMENTS

If A = 0, then NOT A = 1; if A has a non-zero value,
NOT A = 0.

The numeric values are: "true" = 1, Ifa1se" = 0; for

example, statement 65 above would print "1", since the
expression NOT (X AND Y) is true.

Note that the logical specifications of an expression may
be changed by evaluating the complement. In statement 35

above, if A equals zero, the eval uation would be "true" (1);

since A has a numeric value of 0, it has a logical value of
II fa 1 se", rna kin g NOT A II t ru e".

See Section VII, ilLogical Operations" for a more complete
description of logical evaluation.

2-11

ORDER OF PRECEDENCE OF EXECUTION

The order of performing operations is:
t

NOT

* /
+ -

MIN MAX

highest precedence

Relational Operators

AND
OR lowest precedence

If two operators are on the same level,
the order of execution is left to right,
for example:

5 + 6*7
7/14*2/5

;s evaluated as: 5 + (6x7)
is eval uated as: (7/14) x2

5

A MIN B MAX C MIN D is evaluated as:
((A MIN B) MAX C) MIN D

Parentheses override the order of precedence
in all cases.

2-12

STATEMENTS

Be sure you know the difference between statements

and commands.

Statements are instructions to the computer. They

are contained in numbered lines within a program,

and execute in the order of their line numbers.
Statements cannot be executed without running a pro­
gram. They tell the computer what to do while a

program is running.

Commands are also instructions. They are executed

immediately, do not have line numbers, and may not

be used in a program. They are used to manipulate

programs, and for utility purposes, such as logging
on and off.

Here are some examples mentioned in Section I:

Statements

LET
PRINT
INPUT

Commands

HELLO
BYE
LIST

Do not attempt to memorize every detail in the
IIStatements ll subsection; there is too much material

to master in a single session. By experimenting
with the sample programs, and attempting to write

your own programs, you will learn more quickly than

by memori zing.

2-13

THE ASSIGNMENT STATEMENT

EXAMPLES: 10 LET A = 5.02

20 X = Y7 = Z = 0
30 B9 = 5* (Xt2)
40 LET D = (3*C2tN)/(A*(N/2))

GENERAL FORM:

statement number LET variable = number or expression or string or variable ...

or

statement number variable = number or expression or string or variable ...

PURPOSE

Used to assign or specify the value of a variable.
The value may be an expression, a number, string
or a variable of the same type.

COMMENTS

Note that LET is an optional part of the assignment

statement.

The assignment statement must contain:

1 . The variable to be assigned a value.

2. The assignment operator, an = sign.

3. The number, expression or va riabl e to be
assigned to the variable.

Statement 20 in the example above shows the use of
an assignment to give the same value (~) to several

variables. This is a valuable feature for initial­
izing variables in the beginning of a program.

2-14

EXAMPLES:

REM

10 REM--THIS IS AN EXAMPLE
20 REM: OF REM STATEMENTS
30 REM-----/////*****!!!!!

40 REM. STATEMENTS ARE NOT EXECUTED BY TSS

GENERAL FORM: statement number REM any remark or series of characters

PURPOSE

Allows insertion of a line of remarks or comment
in the listing of a program.

COMMENTS

Must be preceeded by a line number. Any series of
characters may follow REM.

REM lines are saved as part of a BASIC program, and
printed when the program is listed or punched; how­
ever, they are ignored when the program is executing.

Remarks are easier to read if REM is followed by a
punctuation mark, as in the example statements.

2-15

GO TO AND MULTIBRANCH GO TO

EXAMPLES:

GENERAL FORM:

10 LET X = 20

40 GO TO X+Y OF 410,420,430
50 GOTO 100
80 GOTO 10
90 GO TO N OF 100,150,180,190

statement number GO TO statement number

statement number GO TO expression OF sequence of statement numbers

PURPOSE

GO TO transfers control to the statement specified.

GO TO expression .•. rounds the expression to an integer ~ and transfers control
to the nth statement number following OF.

COMMENTS

GO TO may be wri tten: GOTO 0 r GO TO.

Must be followed by the statement number to which control is transferred, or
expression OF, and a sequence of statement numbers.

GO TO overrides the normal execution sequence of statements in a program.

If there is no statement number corresponding to the value of the expression, the
GO TO is ignored.

Useful for repeating a task infinitely, or "jumping" (GOing TO) another part of
a program if certain conditions are present.

GO TO should not be used to enter FOR-NEXT loops; doing so may produce unpredict­

able results or fatal errors.

. 2-16

SAMPLE PROGRAM:

IF ... THEN

1 ~ LET N = 1 ~
2~ READ X
3~ IF X <=N THEN 6~

4~ PRINT "X IS 10 OR OVER"
5~ GO TO 8~

6~ PRINT "X IS LESS THAN l~"

70 GO TO 20

8~ END

GENERAL FORM: statement number IF expression THEN. statement number

"

PURPOSE

Transfers control to a specified statement if a specified condition is
true.

COMMENTS

Sometirres described as a conditional transfer; "GO Ta" is implied by
IF ... THEN, if the condition is true. In the example above, if X<=l~,
the message in staterrent 6~ is printed.

Since numbers are not always represented exactly in the computer, the
= operator should be used carefully in IF ... THEN statements. <=,>=, etc.
should be used in the IF expression, rather than =, whenever possible.

If the specified condition for transfer is not true, then the program
will continue executing in sequence. In the example above, if X>=l~,

the rressage in statement 4~ will be printed.

See ilLogical Operations", Section VII for a more complete description

of logical evaluation.

2-17

FOR ... NEXT

EXAMPLES: 100 FOR P1 = 1 TO 5
110 FOR Q1 = N TO X

120 FOR R2 = N TO X STEP 1

130 FOR S = 1 TO X STEP Y
140 NEXT S
150 NEXT R2
160 NEXT Q1
170 NEXT P1

- -
Sample Program - Variable Number Of Loops

40 PRINT "HOW MANY TIMES DO YOU WANT TO LOOP";
50 INPUT A

.;)60 FOR J = 1 TO A
I

I
70 PRINT "THIS IS L09P"; J

80
I

READ N1, N2, N3
i 90

Ll['J~
110

PRINT "THESE DATA ITEMS WERE READ:II N1; N2; N3
PRINT "SUM ="; (N1+N2+N3)
NEXT J

120 DATA 5, 6, 7, 8, 9, 10, 11, 12

130 DATA 13, 14, 15, 16, 17, 18, 19, 20, 21

140 DATA 22, 23, 24, 25, 26, 27, 28, 29, 30
150 DATA 31 , 32, 33, 34

160 END

GENERAL FORM:
statement number FOR simple variable = initial value TO final value

or

statement number FOR simple variable = initial value TO final value STEP step value

(Statements to be repeated)

statement number NEXT simple variable

NOTE: The same simple variable must be used in both the FOR and NEXT statements of

a loop.

2-18

FOR ... "NEXT, CONTINUED

PURPOSE

Allows repetition of a group of statements
within a program.

COMMENTS

Initial value, final value and
step value may be any expression.

How the loop works:

The simple variable is assigned the value

of the initial value; the value of the sim-
ple variable is increased by 1. (or by the optional
step value) each time the loop executes.

When the value of the simple variable passes
the final val ue, con tro 1 is trans ferred to the
statement following the "NEXT" statement.

STEP and step value are optional.

For further details on the STEP feature, see
"FOR ... NEXT with STEP" in Section III.

Try running the sample program if you are not

sure what happens when FOR ... NEXT loops are
used in a program.

2-19

NESTING FOR ... NEXT LOOPS

Multiple FOR ... NEXT loops may be used in the same

program; they may also be nested (placed inside one

another). There are two important features of
FOR ... NEXT loops:

1. FOR ... NEXT loops may be nested.

r----l~ FOR Al = 1 TO 5

~ r-20

Range of loop A 1 / /~~[30
Range of loop B2.r /1/ :
Range of loop C3~ 80

FOR 82 = N TO P
FOR C3 = X TO Y STEP R

NEXT C3
"--90 NEXT 82
-1~0 NEXT Al

2. The range of FOR ... NEXT loops may
not overlap. The loops in the ex­
ample above are nested correctlY.
This example shows improper nesting.

~l~ FOR 1= 1 TO 5

--3~ FOR J = 1 TO N

The range of loops {

I and J overlap.
I--~5~ NEXT I

'-90 NEXT J

2-20

READ, DATA AND RESTORE

Sample Program using READ and DATA

15 FOR 1=1 TO 5

20 READ A

40 LET X=A t 2
45 PRINT A; II SQUARED =";X

5~ NEXT I
55 DATA 5.24,6.75,30.8,72.65,89.72

60 END

Each data item may be read only once in
this program. TSB keeps track of data
wi th a II poi nter" . When the fi rs tREAD

statement is encountered, the "pointer"

indicates that the first item in the
first DATA statement is to be read; the

pointer is then moved to the second item
of data, and so on.

In this example, after the loop has

executed five times, the pointer remains
at the end of the data list. To reread
the data, it is necessary to reset the

pointer. A RESTORE statement moves the
pointer back to the first data item.

2-21

READ, DATA AND RESTORE, CONTINUED

Sample Program Using READ, DATA and RESTORE

2.0 FOR 1=1 TO 5
3.0 READ A
4.0 LET X=At2
5.0 PRINT A; IISQUARED =II;X

6.0 NEXT I
8.0 RESTORE

1.0.0 FOR J=l TO 5
11.0 READ B
12.0 LET Y=Bt4
1 3.0 P R I NT B; II TO TH E FO U RTH PO WE R = II ; Y

14.0 NEXT J
15.0 DATA 5.24,6.75,30.8,72.65,89.72
16.0 END

GENERAL FORM:
sta tement number READ variable L variable L. ""

statement number DATA number or string Lnumber or string L"""

statement number RESTORE
statement number RESTORE statement number

PURPOSE

The READ statement instructs TSB to read an item from a DATA statement.

The DATA statement is used for specifying data in a program. The data
is read in sequence from first to last DATA statements, and from left to

right within the DATA statement.

The RESTORE statement resets the pointer to the first data item, allowing

data to be re-read.

RESTORE followed by a statement number resets the pointer to the first
data item, beginning at the specified statement.

2-22

READ, DATA AND RESTORE, CONTINUED

COMMENTS

READ statements require at least one DATA

s ta temen tin th e s a me pro g ra m .

Items in a DATA statement must be separated

by commas. String and numeric data may be

mixed.

DATA statements may be placed anywhere in a

program. The data items will be read in se­

quence as required.

DATA statements do not execute; they merely

spec; fy da ta.

The RUN command automatically sets the pointer

to the first data item.

If you are not sure of the effects of READ,

DATA, and RESTORE, try running the sample

programs.

Programmers mlxlng string and numeric data

may find the TYP function useful. See liThe

TYP Function", Section I I I.

2-23

INPUT

This program shows several variations of the INPUT statement and their effects.

Sample Program Using INPUT

5 FOR M=l TO 2
10 INPUT A

20 INPUT Al,B2,C3,Z0,Z9,E5
30 PRINT "WHAT VALUE SHOULD BE ASSIGNED TO RII;

40 INPUT R
50 PRINT A;Al ;B2;C3;z0;Z9;E5;"R=";R

60 NEXT M

70 END

------------------------------------- RESULTS ------------------------------------

RUN
?l return

?2,3,4,5,6,7 return

WHAT VALUE SHOULD BE ASSIGNED TO R?27 return

2 3 4 5

?1.5 return

?2.5,3.5,4.5,6.,7.2 return

6 7 R=27

??8.1 return ?? indicates that more input is expected

WHAT VALUE SHOULD BE ASSIGNED TO R?-99
1.5 2.5 3.5 4.5 6 7.2
8.1 R=-99

DONE
GENERAL FORM:

statement number iNPUT variable L variable~ ...

PURPOSE

Assigns a value input from the teleprinter to a variable.

2-24

INPUT CONTINUED

COMMENTS

The program comes to a halt, and a question mark is print­

ed when the INPUT statement is used. The program does not
continue execution until the input requirements are satis­
fied.

Only one question mark is printed for each INPUT statement.
The s ta temen ts :

10 INPUT A, B2, C5, 0, E, F, G

and

20 INPUT X

each cause a single "?" to be printed. Note that the I/?I/

generated by statement 10 requires seven input items,
separated by commas, whi 1 e the II?" generated by statement

20 requires only a single input item.

The only way to stop a program when input is required is

entering: CC return. Note that the CC aborts the program;
it must be restarted with the RUN command.

Relevant Diagnostics:

? indicates that input is required.
?? indicates that more input is needed to satisfy an INPUT statement.

??? indicates that TSB cannot decipher your input.
ENTRA INPUT-WARNING ONLY indicates that a) extra input was

entered; b) it has been disregarded; and c) the program
is continuing execution.

See the description of the "PRINT" format in this section for
variations on output formats.

2-25

PRINT

This sample program gives a variety of examples of the PRINT statement.
The results are shown below.

l~ LET A=B=C=l~

20 LET Dl=E9=2~
3~ PRINT A,B,C,Dl ,E9
40 PRINT A/B,B/C/Dl+E9
50 PRINT "NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THEil
6~ PRINT "VALUE IN THE SAME STATEMENT."
70 PRINT
80 PRINT
90 REM* "PRINT" WITH NO OPERAND CAUSES THE TELEPRINTER TO SKIP A LINE.

100 PRINT IIIAI DIVIDED BY IE9 1 =";A/E9
110 PRINT "11111 11 , "22222", "33333", "44444", "55555", "66666"
120 PR I NT 111111111; 1122222" ;"33333" .; "4444411 ; 1155555 11 ; 1166666 11

130 END

- - - - - - - - - RESULTS - - - - - - - - - - - - - - - - - - -

RUN return

10
1

10
20.05

10 20

NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE
VALUE IN THE SAME STATEMENT.

IAI DIVIDED BY IE9 1 = .5

11111 22222
66666
111112222233333444445555566666
DONE

33333 44444

NOTE: The"," and ";" used in statements 110 and 120 have very

different effects on the format.

2-26

20

55555

PRINT, CONTINUED

GENERAL FORM:

statement number PRINT expression L expression L

or

statement number PRINT ~any text~ ~ expression ~

or

statement number PRINT "text" I expression ~ :':'text~ L ~text~L­

or

statement number PRINT any combination of text and/or expressions

or

statement number PRINT

PURPOSE

Causes the operand(s) to be output to the

teleprinter or terminal device.

Causes the teleprinter to skip a line when

used without an operand.

COMMENTS

Note the effects of , and ; on the output of

the sample program. If a comma is used to

separate PRINT operands, five fields will be

printed per teleprinter line. If semicolon
is used, up to twelve IIpacked" numeric fields

will be output per teleprinter line, or 72

characters.

2-27

EXAMPLES:

GENERAL FOR~1:

END AND STOP

2~0 IF A # 27.5 THEN 350

300 STOP

350 LET A = 27.5

500 IF B # A THEN 9999

550 PRINT liB = A"

600 END
9999 END

any statement number STOP
any statement number END
Highest statement number in program END

PURPOSE

Terminates execution of the program and returns control to TS8.

COMMENTS

The highest numbered statement in the program must be an END statement.

END and STOP statements may be used in any portion of the program to
terminate execution.

END and STOP have identical effects; the only difference is that the
highest numbered statement in a program must be an END statement.

2-28

SAM PL"E PROG RAM

If you understand the effects of the
statement types presented up to this
point, skip to the "COMMANDS" section.

The sample program on the next two
pages uses several BASIC statement
types.

Running the program gives a good idea
of the various effects of the PRINT
statement on teleprinter output. If
you choose to run the program, you may
save time by omitting the REM statements.

After running the program, compare your
output with that shown under "RUNNING
THE SAMPL E PROGRAM". I f the re is a d i f­
ference, LIST your version and compare
it with the one presented on the next
two pages. Check your PRINT statements
for commas and semicolons; they must be
used carefully.

2-29

SAM PLE PROGRAM

10 REMARK: "REMARK" OR "REM" IS USED TO INDICATE REMARKS OR COMMENTS
20 REMARK: THE USER WANTS TO INCLUDE IN THE TEXT OF HIS PROGRAM.
30 REM: THE COMPUTER LISTS AND PUNCHES THE "REM" LINE, BUT DOES NOT

40 RE~l: EXECUTE IT.
50 REM: "PRINT" USED ALONE GENERATES A "RETURN" "LINEFEED"
60 PRINT
7rJ PRINT "THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY. II

80 PRINT
90 PRINT lilT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS. II

100 PRINT
110 PRINT "PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY. II

120 PRINT
130 PRINT
140 REM: FIRST, ALL VARIABLES USED IN THE PROGRAM ARE INITIALIZED
150 REM: TO ZERO (THEIR VALUE IS SET AT ZERO.)
160 LET A=N=Rl=S=0
180 REM: NOW THE USER WILL BE GIVEN A CHANCE TO SPECIFY HOW MANY
190 REM: NUMBERS HE WANTS TO AVERAGE.
200 PRINT "HOW MANY NUMBERS DO YOU WANT TO AVERAGE";
210 INPUT N
220 PRINT
230 PRINT "O.K., TYPE IN ONE OF THE ";N;"NUMBERS AFTER EACH QUES. MARK."
240 PRINT "DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER,"
250 PRINT
260 PRINT "NOW, LET'S BEGIN"

270 PRINT
280 PRINT
300 REM: "N'I IS NOW USED TO SET UP A "FOR-NEXT" LOOP WHICH WILL READ
31~ REM: 1 TO "N" NUMBERS AND KEEP A RUNNING TOTAL.
320 FOR 1=1 TO N
330 INPUT A
340 LET S=S+A
350 NEXT I
360 REM: "1" IS A VARIABLE USED ,f1.S A COUNTER FOR THE NUMBER OF TIMES

2-30

SAMPLE PROGRAM CONTINUED

370 REM: THE TASK SPECIFIED IN THE "FOR-NEXT" LOOP IS PERFORMED.
380 REM: "1" INCREASES BY 1 EACH TIME THE LOOP IS EXECUTED.
390 REM: "A" IS THE VARIABLE USED TO REPRESENT THE NUMBER TO BE
40~ RE~1: AVERAGED. THE VALUE OF "A" CHANGES EACH TIME THE
410 REM: USER INPUTS A NUMBER.
420 REM: "5" WAS CHOSEN AS THE VARIABLE TO REPRESENT THE SUM
430 REM: OF ALL NUMBERS TO BE AVERAGED.
440 REM: AFTER THE LOOP IS EXECUTED liN" TIMES) THE PROGRAM CONTINUES.
460 REM: A SUMMARY IS PRINTED FOR THE USER.
47~ PRINT
480 PRINT
490 PRINT N; "NUMBERS WERE INPUT."
500 PRINT
510 PRINT "THEIR SUM I5:";S
520 PRINT
530 P~U NT liTHE I R AVERAGE IS: "; SIN
540 PRINT
550 PRINT
570 REM: NOW THE USER WILL BE GIVEN THE OPTION OF QUITTING OR
580 REM: RESTARTING THE PROGRAM.
59.0 PRINT "00 YOU WANT TO AVERAGE ANOTHER GROUP OF NUMBERS?"

600 PRINT
61.0 PRINT "TYPE 1 IF YES, 0 IF NOli
62~ PRINT "BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER. II

63.0 PRINT
640 PRINT "YOUR REPLY";
650 INPUT R1
66.0 IF R1=1 THEN 120
670 REM: THE FOLLOWING LINES ANTICIPATE A MISTAKE IN THE REPLY.
680 IF R1#0 THEN 700
690 GO TO 720
700 PRINT liTO REITERATE, YOU SHOULD TYPE 1 IF YES, 0 IF NO."
710 GO TO 640
720 END

2-31

RUNNING THE SAMPLE PROGRAM

RUN return

THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY.

IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS.

PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY.

HOW MANY NUMBERS DO YOU WANT TO AVERAGE? 5 return

O.K.,TYPE IN ONE OF THE 5 NUMBERS AFTER EACH QUES. MARK.

DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER.

NOW, LET'S BEGIN

? 99 return

? 87.6 return

? 92.7 return

? 79.5 return

? 84 return

5 NUMBERS WERE INPUT.
THEIR SUM IS: 442.8

THEIR AVERAGE IS: 88.56

DO YOU WISH TO AVERAGE ANOTHER GROUP OF NUMBERS?
TYPE 1 IF YES, 0 IF NO
BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER.
YOUR REPLY? 2 return

TO REITERATE, YOU SHOULD TYPE 1 IF YES, 0 IF NO.
YOUR REPLY? 1 return

HOW MANY NUMBERS DO YOU WISH TO AVERAGE? c C return

DONE

2-32

COMMANDS

Remember the difference between commands
and s ta tements (See II Statements II in th is

section).

Commands are direct instructions to the

computer, and are executed immediately.

They are used to manipulate programs,

and for utility purposes.

Note that all TSB commands may be

abbreviated to their first three letters.
If information is required after a com­

mand, a hyphen "_" mus t be inc 1 uded. For

example, when logging in:

c c c c
HEL-H20~,SE eRE T return

Do not try to memorize all of the details

in the COMMANDS subsection. The various

commands and their functions will become
clear to you as you begin writing programs.

2-33

EXAMPLE:

GENERAL FORM:

HELLO -

HELLO-D007,POS cT return

or

HEL-C32l,PASS,4 return

HELLO-IDcode L password , terminal type code

or
HEL-IDcode L password , terminal type code

or
HEL-IDcode L password

PURPOSE

The command used to log in to the TSB system.

COMMENTS

10 codes and passwords are assigned by the system master or operator.

Several users with the same 1.0. code may be logged on to the computer
simultaneously, using different terminals.

The terminal subtype code tells the system what kind of terminal is being
used. It is an integer from 0 to 5. The following table indicates the
meaning of each.

Terminal SubtalEe Code Terminal
0 HP 2600A, HP 2749A, ASR-33, ASR-35.
1 Execuport 300
2 ASR-37 ! ~ ~ r I :--

-,

3 Terminet-300
4 Memorex 1240 -

5 Univac OCT 500

The message ILLEGAL FORMAT is printed if the type code is less than 0, or
greater than 5.

If terminal type code is omitted, ! is assumed by default.

2-34

BYE

EXAMPLE: BYE return

0~9 MINUTES OF TERMINAL TIME

GENERAL FORM: BYE

PURPOSE

The command used to log out of the TSB system.

COMMENTS

Causes the amount of terminal time used to be

printed.

Breaks a telephone connection to the computer.

2-35

ECHO-

EXAMPLES:

GENERAL FORM:

PURPOSE

ECHO-OFF return

ECHO-ON return

ECHO-ON
or

ECHO-OFF

Allows use of half duplex terminal.

cor1~1ENTS

Users with half duplex terminal
equipment must first log on, then
type the ECHO-OFF command; then
input and output becomes legible.

ECHO-ON returns a user to the full­
duplex mode.

May be abbreviated to its first three
letters.

2-36

EXAMPLE:

GENERAL FORM:

RUN

RUN return

or

RUN- 3~~ return

RUN

RUN- statement number

PURPOSE

Starts execution of a program at the lowest numbered
statement when used without specifying a statement

number.

Starts execution of a program at the specified statement
when a statement number is used.

COMMENTS

Note that when RUN- statement number is used, all statements
before the specified statement will be skipped. Variables

defined in statements which have been skipped are therefore
considered to be undefined by TSB, and may not be used until

they are defined in an assignment, READ, or LET statement.

A running program may be terminated by pressing the break key;
or, to terminate a running program at some point when input is

required, type:
c C return

2-37

EXAMPLE:

GENERAL FORM:

LIST

LIST return

LIST -1~~ return

LIST -100, 200 return

LIST
LIST- statement number

LIST- statement number L statement number

LIST - L statement number

PURPOSE

Produces a listing of all statements in a program (in state­
ment number sequence) when no statement number is specified.

When a statement number is specified, the listing begins at
that statement.

When a second statement number is specified, listing ends
with that statement.

When a "," and a statement nurrber appear, 1 isting starts at
the beginning and ends with the specified statement.

COtIMENTS

A listing may be stopped by pressing the break key.

System library programs designated "RUN ONLY" by the operator
cannot be listed.

May be abbreviated to its first three letters.

2-38

SCRATCH

EXAMPLE: SCRATCH return

or

SCR return

GENERAL FORM: SCRATCH

or

SCR

PURPOS E

Deletes (from memory) the program currently
being accessed from the teleprinter.

COMMENTS

Scratched programs are not recoverable. For

information about saving programs on paper
tape or in your personal library, see the NAME

and SAVE commands in the next section, and PUNCH

in this section.

2-39

EXAMPLES:

RENUMBER

RENUMBER return

REN return

REN-l~~

REN-10, 1 return

REN-20, 50 return

GENERAL FORM: REN
or

REN-number assigned to first statement

or

REN-number assigned to first statement L interval between new statement numbers

PURPOSE

Renumbers statements in a Program.

COMMENTS

GO TO's, GO SUB's, IF ... THEN's, and RESTORE's are
L~

automatically reassigned the appropriate new numbers.

If no first statement number is specified, renumbering

begins at statement 10, in intervals of 10.

If no interval is specified, the new numbers are spaced
at intervals of 10, from the beginning statement.

Remember that numbers or text contained in REM and PRINT
statements are not revised by RENUMBER.

2-40

BREAK

EXAMPLES: break (Press the break key.)

PURPOSE

Terminates a program being run.

Terminates the execution of LIST, PUNCH, CATALOG, and LIBRARY
commands.

COMMENTS

Pressing the break key signals the computer to terminate a
program, producing the message: STOP.

When break is pressed during a listing~ the message STOP
is output.

Pressing break will not terminate the program if it is

awaiting input (data to be typed in from the teleprinter).

In this case the only means of ending the program is
typing:

c C return

which produces the DONE message.

break will not delete a program; however, the RUN command
must be used to restart it.

2-41

EXAMPLES:

GENERAL FORM:

PUNCH

PUNCH return

PUN- 100, 200 return

PUN-65 return

PUN-, 300 return

PUN
PUN- statement number

PUN- statement number 2. statement number

PUN- -!.. statement number

PURPOSE

Punches a program onto paper tape; also punches the program
name, and leading and trailing feed holes on the tape; lists
the program as it is punched. Can begin and/or end at
specified statements (see LIST).

COMMENTS

If the teleprinter is not equipped with a paper tape
reader/punch, only a listing is produced.

Remember to press the paper tape punch liON" button before

pressing the return after PUNCH.

2-42

EXAMPLES:

XPUNCH

XPUNCH return

XPU- 65, P return

XPU- P return

GENERAL FORM: XPU

XPU- statement number

XPU- statement number L statement number

XPU- statement number L statement number L ~

XPU- L statement number

XPU- P

PURPOSE

Punches a program onto paper tape; also punches the program name, and leading
and trailing feed holes on the tape; lists the program as it is punched.

Punching can begin and/or end at specified statements; IIpll provides the

pagination option (see LIST).

COMMENTS

If the teleprinter is not equipped with a paper tape reader/punch, only a
listing is produced.

Remember to press the paper tape punch liON" button before pressing the return

after PUNCH.

XPUNCH produces the same results as punch, but adds an X-OFF character at the

end of each line (before return linefeed) to enable other BASIC programs to

read the paper tape as data. (See Appendix B.)

2-43

TAPE

EXAMPLES:

GENERAL FORM:

PURPOSE

TAPE return

TAP return

TAPE
or

TAP

Informs the computer that following input
is from paper tape.

COM~ENTS

TAPE suppresses any diagnostic messages which are
generated by input errors, as well as the auto­

matic linefeed after return. The KEY command
(KEY return) or any other command, causes the di­

agnostic messages to be output to the teleprinter,
ending the TAPE mode.

TSB responds to the TAPE command with a linefeed.

2-44

KEY

EXAMPLES: KEY return

GENERAL FORM: KEY

PURPOSE

Informs the computer that following input

will be from the teleprinter keyboard;

used only after a TAPE (paper tape input)

sequence is complete; causes error messages

suppressed by TAPE to be output to the tele­
printer.

COMMENTS

Any command followed by a return has the
same effect as KEY. Commands substituted
for KEY in this manner are not executed if

diagnostic messages were generated during
tape input.

2-45

TIME

EXAMPLE: TIME return

CONSOLE TIME = ~ MINUTES. TOTAL TIME = 00 MINUTES

GENERAL FORM: TIME

PURPOSE

Produces listings of terminal time used since log on, and

total time used for the account.

COMMENTS

Time used by each 10 code is recorded automatically by
TSB. The system operator controls the accounting

system. Consult your system operator for information
about your system's accounting methods.

2-46

DISC

EXAMPLE: DISC return

DISC ALLOWED = 100 SECTORS. DISC USED = a SECTORS

GENERAL FORM: DISC

PURPOSE

Produces listings of the total disc space allowed, and the disc

space already used for the account.

COMMENTS

The disc space used by each 10 is recorded automatically each
time a SAVE, OPEN, or KILL command is used. The total disc
space allowed is controlled by the system operator. Consult
your system operator for information about your system's
accounting methods.

2-47

EXAMPLE:

GENERAL FORM:

MESSAGE

MES-PLEASE MOVE PROGRAM IIDUMMY II TO SYSTEM DISC, USER
J122

MESSAGE-character string return

or

MES-character string return

PURPOSE

Sends a character string to the system operator, preceded by the user's

port (terminal) number.

COMMENTS

Can be used to request information from the system operator, or to have

programs moved to a particular disc.

If the system operator's message storage area is full, the message:

CONSOLE BUSY

will be printed on the user's terminal, indicating that the message has

not been sent and should be entered again.

2-48

SECTION III

ADVANCED BASIC

This section describes more sophisticated
capabi 1; ties of BASIC.

The experienced programmer has the option of
skipping the "Vocabulary" subsection, and

briefly reviewing the commands and functions

presented here. The most important features
of the TSB system--files, matrices, and
strings are explained in the next three sec­

tions.

The inexperienced programmer need not spend

a great deal of time on programmer-defined

and standard functions. They are shortcuts,
and some programming experience is necessary
before their specifications become apparent.

3-1

TERM: ROUTINE

DEFINEO IN TSB AS: A sequence of program statements

which produces a certain result.

PURPOSE

Routines are used for frequently performed
operations. Using routines saves the pro­
grammer the work of defining an operation
each time he uses it, and saves computer

memory space.

COMMENTS

A routine may also be called a program,

subroutine, or subprogram.

The task performed by a routine is defined

,-by the programmer.

Examples of routines and subroutines are
given in this section.

3-2

TERM: ARRAY (OR MATRIX)

DEFINED IN TSB AS: An ordered collection of numeric data. A
single program can have up to 2000 total

array elements (numeric values).

COMMENTS

Arrays are referenced by columns (vertical) and rows (horizontal).

Arrays may have one or two dimensions. For example,

1 .0
2. 1

3.2

4.3

is a one dimensional array, while

6 , 5 , 4

3 , 2 , 1

o , 9 , 8

is a two dimensional array.

Array elements are referenced by their row and column

position. For instance, if the examples above were ar­

rays A and Z re~pectively, 2.1 would be A(2); similarly,
o would be Z(3,1). The references to array elements are

called subscripts, and set apart with parentheses. For

example P(1,5) references the fifth element of the first

row of array P; 1 and 5 are the subscripts. In X(r·j,N),

M and N are the subscripts.

NOTE: A2 is a simple variable; A (2) ~s an array
element 0

3-3

DEFINED IN TSB AS:

TERM: STRING

o to 72 teleprinter characters enclosed
by quotation marks.

COMMENTS

Sample strings: "ANY CHARACTERS!?*/---"

"TEXT 1234567 ... "

Quotation marks may not be used within a

string.

TERM: FUNCTION

DEFINED IN TSB AS: The mathematical relationship between two

variables (X and Y for example) such that
for each value of X there ;s one and only
one value of Y.

COMMENTS

The independent variable is called an argument;
the dependent variable ;s the function value.
For instance in

100 LET Y = SQR(X)
X is the argument; the function value is the
square root of X; and Y takes the value of the
function.

3-4

DEFINED.IN TSB AS:

TERM: WORD

The amount of computer storage
space occupied by two tele­
printer characters.

COMMENTS

Numeric characters contained in strings
require the same amount of storage space
as other characters.

Numbers (stored in binary format) require
two words of storage each.

TERM: RECORD

DEFINED IN TSB AS: A storage unit containing 128
2-character words.

COMMENTS

Further details on file storage

are given in Section IV, "FILES".

3-5

STORING AND DELETING PROGRAMS

Up to this point manipulation of programs has

been limited to the "current" program, that is,

the program being written or run at the moment.
The only means of saving a program introduced
thus far is the PUNCH command.

The commands on the following pages allow the
user to create his own library of programs on
the Time Shared BASIC system. Library programs
are easily accessed, modified, and run.

The experienced programmer need only review
the commands briefly -- they do what their
names imply: NAME, SAVE, etc.

A word of caution for the inexperienced
prograrrmer: it is wise to make a "hard"
copy (on paper tape) of programs you wish
to use frequently. Although it is easy and
convenient to store programs "on-sys tem", you
will make mistakes as you learn, and may ac­
cidentally delete programs. It is much less

time consuming to enter a program from paper
tape than rewrite it!

3-6

LENGTH

EXAMPLES:

GENERAL FORM:

LENGTH return

LEN return

0000 WORDS

LEN return

PURPOSE

Prints the number of two-character

words in the program currently being

accessed from the terminal. This
is the amount of "storage space 'l

needed to SAVE the program.

COMMENTS

Each user has a working "space" of

approximately 4000 two-character
words. LEN is a useful check on

total program length when writing
long programs.

3-7

EXAMPLE:

GENERAL FORM:

NAME-

NAME-PROG.l return

NAME-**GO** return

NAM-ADDER return

NAM-MYPROG return

NAME-Program name of 1 to 6 characters

or

NAM-Program name of 1 to 6 characters

PURPOSE

Assigns a name to the program currently being
accessed from the teleprinter.

COHMENTS

The first character of the name of a user's
program may not be a $; this use of $ is
reserved for system programs.

The program name may be used in certain TSB
operations (see the KILL, GET, and APPEND

commands in this section).

3-8

EXAMPLES:

GENERAL FORM:

SAVE

SAVE return

SAV return

SAVE or SAV

PURPOSE

Saves a copy of the current program in the
user's private library.

COMMENTS

A program must be named before it can be saved.
(See NAME, this section.)

No program or file in a user's library may have the same
name as another program or file in that library. The pro­
cedure for saving a changed version of a program is as
follows (the program name is SAMPLE):

KILL-SAMPLE return (Deletes the stored version)

linefeed

NAME-SAMPLE return (Names the current program)

linefeed

SAVE return (Saves the current program, named SAMPLE)

linefeed

For instructions on opening a file, see Section IV, "FILES."

3-9

EXAMPLES:

GENERAL FORM:

GET- AND GET- $

GET-PROGRM return

GET-MYPROG return

GET-$PUBLIC return

GET-$NAMES return

GET - name of a program in user's library

GET-$ name of system library program

PURPOSE

GET- retrieves the specified program, making
it the program currently accessed from the
tel eprinter.

GET-$ retrieves the specified program from the
system library, making it the program currently
accessed from the teleprinter.

COMMENTS

The program being accessed previous to using
GET- is not recoverable unless it has been
previously SAVEd or PUNCHed (GET- performs an
implicit SCRATCH).

For more information on publ ic 1 ibrary programs,
see "LIBRARY II in this section.

3-10

EXAMPLE:

KILL-

KILL-PROG12 return

KIL-EXMPLE return

KIL-FILE10 return

GENERAL FORM: KILL- program or fil e to be dele ted

or

KIL- program or file to be deleted

PURPOSE

Deletes the specified program or file from the user's library. (Does not delete the
program currently being accessed from the teleprinter, even if it has the same name.)

COMMENTS

CAUTION: Files have only one version, the stored one. A KILLed file is not
recoverable.

A file may not be KILLed while it is being accessed by another user.

KILL-should be used carefully, as the KILLed program is not recoverable unless:
a) A paper tape was previously PUNCHed, or

b) The KILLed program was also the current program.

SCRATCH deletes the program currently being accessed from the teleprinter, while KILL

deletes a program or file stored on-system. The stored and current versions of a pro­
gram occupy separate places in the system. They may differ in content, even though
they have the same name.

The sequence of commands for changing and storing a program named PROG** is:

GET-PROG** (Retrieves the program.)
(make changes)

KILL-PROG** (Deletes the stored version.)
SAVE (Saves the current version.)

3-11

EXAMPLES:

GENERAL FORM:

APPEND-

APPEND-MYPROG return

APP-MYPROG return

APPEND-$PUBLIC return

APP-$SYSLIB return

APPEND~program name

or
APP-program name

or
APP-~system library program name

PURPOSE

Retrieves the named program from the users or public library
and appends it (a~-.it) to the program currently being
accessed from the teleprinter.

COMMENTS

The lowest statement number of the APPENDed program must be
greater than the highest statement number of the current
program.

CAUTION: If an APPENDed publ ic 1 ibrary program is IIrun-onlyll,
the entire program to which it is APPENDed becomes "run-onlyll.
("Run-onlyll programs may not be listed, punched, ot' saved.)

The $ in system library program names is needed to APPEND
them. For details, see IILIBRARY II in this section.

3-12

EXAMPLES:

GENERAL FORM:

DELETE-

DELETE-27 return

DEL-27, 50 return

DEL-statement number at which deletion starts

or

pEL-statement no. at which deletion starts , statement no. at which deletion ends
~ -------~--------------------------

PURPOSE

DEL-statement number erases the current program statements
after and including the specified statement. DEL-l has

the same effect as SCRATCH.

DEL-statement number, statement number deletes all statements
in the current program between and including the specified
statements.

COMMENTS

It is sometimes useful to SAVE or PUNCH the original version

of a program which is being modified, before using the DELETE
statement.

Deleted statements are not recoverable.

3-13

EXAMPLES:

LIBRARY

LIBRARY return

LIB return

BINOPO

QFILE

~594 CDETER 0706 CSHFLO 1598 CURFIT 1618 DIFF£O

F544~ QFILE2 F544~ ROMINT ~299 SQ£ f'209

GENERAL FORM: LIBRARY
or

LIB

PURPOSE

Produces an alphabetical listing of TSB system library program and
file names, followed by the size of each, in two-character words.
For files, "F" precedes the size. The absence of a letter indi­
cates a saved program.

COMMENTS

Public library programs are available to users; typing:

GET-$ program name return

retrieves the specified program.

Public files are accessed with the FILES statement. (See Section
IV, 'IFILES" for details.)

Programs designated "run-only" by User A000 may be RUN
but not listed, punched, xpunched, or saved.

LIBRARY listings may be terminated with the break key.

3-14

4466

CATALOG

EXAMPLES: CAT return

CATALOG return

PROGl 0~24 PROG2 2348 PROG3 1489

GENERAL FORM: CATALOG
or

CAT

PURPOSE

Produces an alphabetical listing of the
names of the programs and files stored
on-system, under the user's account name
and size of each in two-character words.
"F" precedes the size for files. The
absence of a letter indicates a saved

program.

COMMENTS

May be terminated with the break key

Programs are accessed with the GET command.

Files are accessed with a FILES statement.
See Section IV, "Files" for details.

3-15

SUBROUTINES AND FUNCTIONS

The following pages show TSB features useful for repetitive

operations -- subroutines, programmer-defined and standard
functions.

The programmer-controlled features, such as multibranch
GOSUB's, FOR ... NEXT with STEP, and DEF FN become more use­
ful as the user gains experience, and learns to use them

as shortcuts.

Standard mathematical and trigonometric functions are
convenient timesavers for programmers at any level. They

are treated as numeric expressions by TSB.

The utility functions TAB, SGN, TYP, and LEN also become
more valuable with experience. They are used to control
or monitor the handling of data by TSB, rather than for
performing mathematical chores.

3-16

EXAMPLE:

GOSUB ... RETURN
50 READ A2
60 IF A2<100 T~EN 80
70 GOSUB 400

380 STOP (STOP frequently precedes
the first statement of a subroutine, to
prevent accidental entry.)

390 REM--THIS SUBROUTINE ASKS FOR A 1 OR 0 REPLY.
400 PRINT "A2 IS>100"
410 PRINT "00 YOU WANT TO CONTINUE";

420 INPUT N
430 IF N #0 THEN 450
440 LET A2 = 0
450 RETURN

600 END

GENERAL FORM: statement number GOSUB statement number starting subroutine

statement number RETURN

PURPOSE

GOSUB transfers control to the specified statement number.

RETURN transfers control to the statement following the GOSUB statement which trans­

fe rred con tro 1 .

GOSUB ... RETURN eliminates the need to repeat frequently used groups of statements in

a program.

COMMENTS

The portion of the program to which control is transferred must end with a RETURN

statement.

RETURN statements may be used at any desired exit point in a subroutine.

GOSUB ... RETURN's may be nested to a level of 9 (see "Nesting GOSUBs").

3-17

EXAMPLES:

GENERAL FORM:

MULTIBRANCH GOSUB

20 GOSUB 3 OF l00,200,300,4~~,500
60 GOSUB N+l OF 200,210,220

70 GOSUB N OF 80,180,280,380,480,580

statement number GOSUB expression OF sequence of statement numbers ...

PURPOSE

GOSUB expression rounds the expression to an integer ~ and transfers

control to the nth statement number following OF.

COMMENTS

Subroutines should be exited only with a RETURN statement.

The expression indicates which of the specified subroutines will be
executed. For example, statement 20, above transfers control to the
subroutine beginning with statement 300. The expression specifies which
statement in the sequence of five statements is used as the starting one

in the subroutine.

The expression is evaluated as an integer. Non-integer values are

rounded to the nearest integer.

If the expression evaluates to a number greater than the number of state­

ments specified, or less than l, the GOSUB is ignored.

Statement numbers in the sequence following OF must be separated by commas.

3-18

EXAMPLES:

NESTING GOSU B 5

1~ GOSUB 200

200 LET A = R2/7
210 I F A THEN 230
220 GOSUB 250

250 IF A>B THEN 270
260 RETURN

270 GOSUB 600

PURPOSE

Allows selective use of subroutines within
subroutines.

COMMENTS

GOSUB's may be nested to a level of nine.

RETURN statements may be used at any desired
exit point in a subroutine. Note, however,
that nested subroutines are exited in the or­
der in which they were entered. For example,

if subroutine 250 (above) is entered from sub­

routine 200, 250 is exited before subroutine

200.

3-19

EXAMPLES:

GENERAL FORM:

FOR ... NEXT WITH STEP

20 FOR 15 = 1 TO 20 STEP 2
40 FOR N2 = 0 TO -10 STEP -2

80 FOR P = 1 TO N STEP R
90 FOR X = N TO W STEP (Nt2-V)

statement number FOR simple variable ~ expression TO expression STEP expression

PURPOSE

Allows the user to specify the size of the
increment of the FOR variable.

COMMENTS

The step size need not be an integer. For instance,

100 FOR N = 1 TO 2 STEP .~l

is a valid statement which produces approximately
100 loop executions, incrementing N by .01 each
time. Since no binary computer represents all
decimal numbers exactly, round-off errors may in­
crease or decrease the number of steps when a non­
integer step size is used.

A step size of 1 is assumed if STEP is omitted from
a FOR statement.

A negative step size may be used, as shown in
statement 40 above.

3-20

EXAMPLE:

GENERAL FORM:

DEF FN

60 DEF FNA (B2) = At2 + (B2/C)
7~ DEF FNB (B3) = 7*B3t2
80 DEF FNZ (X) = X/5

statement number DEF FN single letter A to z 1 simple variable 1 ~ expressioIl

PURPOSE

Allows the programmer to define
functions.

COMMENTS.

A maximum of 26 programmer-defined
functions are possible in a program
(FNA to FNZ).

Any operand in the program may be used
in the defining expression; however
such circular definitions as:

1~ OEF FNA (Y) = FNB (X)
2~ OEF FNB (X) = FNA (Y)

causes infinite looping.

See the vocabulary at the beginning of
this section for a definition of
"function".

3-21

ASS

EXP

INT

LOG

RND

SQR

GENERAL MATHEMATICAL FUNCTIONS

EXAMPLES:

GENERAL FORM:

(ex.p.ression)

(expression)

(ex12.ression)

(exE.ression)

(ex£.ression)

(ex12.ression)

642 PRINT EXP(N); ASS(N)
652 IF RND (0»=.5 THEN 900
662 IF INT (R) # 5 THEN 910
672 PRINT SQR (X); LOG (X)

The general mathematical functions may be used
expressions, or as parts of an expression.

PURPOSE

Faci 1 ita tes the use 0 f corrmon rna thema ti cal
functions by pre-defining them, as:

the absolute value of the expression;

as

the constant e raised to the power of the expression value

(in statement 642 above, etN)

the largest integer: the expression;

the logarithm of the positively valued expression to the base e;

a random number between 1 and ~.

the square root of the positively valued expression.

COMMENTS

The RND function can be restarted by
having an initial call to RND with a
negative argument. In this way a
sequence of random numbers can be
repea ted.

3-22

EXAMPLES:

TRIGONOMETRIC FUNCTIONS

500 PRINT SIN(X); COS(Y)

510 PRINT 3*SIN(B); TAN (C2)
520 PRINT ATN (22.3)

530 IF SIN (A2) <1 THEN 800
540 IF SIN (B3) = 1 AND SIN(X) <1 THEN 90

PURPOSE

Facil itates the use of common trigonometric functions by

pre-defining them, as:

SIN (expression) the sine of the expression (in radians);

COS (expression) the cosine of the expression (in radians);

TAN (expression) the tangent of the expression (in radians);

ATN (expression) the arctangent of the expression (in radians).

COMMENTS

The function is of the value of the expression (the value in

parentheses, or argument).

The trigonometric functions may be used as expressions, or parts

of an expression.

ATN returns the angle in radians.

See the next three pages for other standard functions.

3-23

EXAMPLES:

GENERAL FORM:

THE TAB AND SGN FUNCTIONS

500 IF SGN (X» -1 THEN 80~
510 LET Y = SGN{X)

·520 PRINT TAB (5); A2; TAB (20)ITEXT"
530 PRINT TAB (N),X,Y,Z2
540 PRINT TAB (X+2) "HEADING"; R5

The TAB and SGN functions may be used as
expressions, or parts of an expression.
The function forms are:
TAB 1 expression indicating column number 1
SGN 1 expression 1

PURPOSE

TAB (expression), when used in a PRINT statement,
causes the teleprinter to move to the column num­
ber specified by the expression (~ to 71).

"

SGN (expression), returns ali f the express ion
is greater than ~, returns a 0 if the expression
equals 0, returns a -1 if the expression is less

than 0.

3-24

EXAMPLES:

GENERAL FORM:

THE TYP FUNCTION

800 IF TYP (3) = 2 THEN 1~00

850 PRINT TYP (N)

90~ IF TYP (R) # X THEN 1200

TYP may be used as an expression or as part of an
expression; the function form is:

TYP 1 file number formula 1

PURPOSE

If the file number formula is positive, TYP
returns these values indicating the type of
the next data item in a file: 1 = number;
2 = string; 3 = Ilend of file".

If the file number formula is zero, TYP returns
these values for the next data item in a DATA
statement: 1 = number; 2 = string; 3 for an

"out of data" condition.

If the file number formula is negative, TYP
returns these values for the next data item
in a file: 1 = number; 2 = string; 3 = "end
off i 1 e"; 4 = II end 0 f re cord II •

COMMENTS

When using files as random storage devices, the

file number formula should be negative, enabling

TYP to return an "end of record" va 1 ue. (See

Section IV for details of file structure.)

3-25

EXAMPLES:

GENERAL FORM:

THE LEN FUNCTION

580 IF LEN (B$) >= 21 THEN 9999
8~0 IF LEN (C$) = R THEN 1000
850 PRINT LEN (N$)
880 LET P5 = LEN (N$)

The LEN function may be used as an expression, or
part of an expression. The function form is

LEN l string variable 1

PURPOSE

Returns the length (number of characters)
currently assigned to a string variable.

COMMENTS

Note the difference between the LEN function
and the LENGTH command. The command is used
outside a program, and returns the working
length of the current program in two-character
words. The LEN function may be used only in
a program statement.

3-26

THE TIM FUNCTION

EXAMPLES:
58~ IF TIM (0) - A > 15 THEN 90~~
7~0 LET A3 = TIM (B)
800 PRINT TIM (~) "MINUTES" TIM (1) "HOURS" TIM (2) "DAYS" TIM (3) II YEARS II

GENERAL FORM: TIM (~)

where ; f l = 0, TIM (~J = current minutes (0 to 59)
l = 1, TIM (~J = current hour (0 to 23)
X = 2, TIM (~) = current day (1 to 366)
X = 3, TIM (~) = current year (0 to 99)

PURPOSE

Returns the current minute, hour, day or year.

COMMENTS

Note the difference between the TIM function and the
TIME command. The TIME command is used outside a
program and gives the console time and total time used.
The TIM function can only be used within a program
statement.

3-27

EXAMPLES:

GENERAL FORM:

CHAIN

100 CHAIN IPROG2"
1 75 CHAIN $PROGl

5320 CHAIN ***

statement number CHAIN name of a program in a private library

or
statement number CHAIN $name of a public library program

PURPOSE

Retrieves the names program from the user's private
library or the public library and executes it.

COMMENTS

Communication between chained programs can be done using
COMMON.

DEBUGGING HINT: Output to the teleprinter need not be from
the program that is currently in memory. This is because
output is buffered; the program that contained the PRINT
statement may have CHAINed to another program before the
output was actually printed. Therefore, if the programmer
hits break, he cannot be sure that the program in memory
was responsible in the printing.

3-28

EXAMPLES:

GENERAL FORM:

COM

10 COM A,B,D$(53),E(3,4),F2
15 COM H2,K8, C$(14)

statement number COM list of variables, dimensioned arrays and strings

PURPOSE

Defines variables that can be accessed by more
than one program.

The equivalence of COMmon variables in different
programs is determined by their relative order in
the COM statements. Thus, if one program contains
the statement

10 COM A,BI,C$(10)
and a second program contains the statements

1 COM X
2 COM Y,Z$(10)

and the two programs are run in order, identifiers A
and X refer to the same variable, as do identifiers B1
and Y, C$ and Z$.
There are certain restrictions on the use of COM:

1. COM statements must be the lowest numbered
statements in the program.

2. A variable that is declared COMmon in one
program can be accessed by another program
only if all preceeding COMmon variables in
both programs are of the same type and size.

3-29

COM, CONTINUED

3. Arrays and strings which are to be in common
must be dimensioned in the COM statement and
they must not also appear in DIM statements.

Variables in COM should be initialized by the first
program that is run. After that, other programs con­
taining equivalent COM definitions can be executed
by GET and RUN or CHAIN. The COM variables will
still have the same values. These values are de­
stroyed, however, when a line of syntax is entered
or a program is called that does not have equivalent

COM.

EXAMPLES

10 COM A,B,C,Q$(63),F(3,6),Sl
10 COM J,K,L,C$(63),C(3,6),V

(In program A) All variables in common
(In program B)

10 COM A,B,C,Q$(63),F(3,6),Sl
10 COM H,N,M,O

10 COM A,B,C
10 COM S$(45),A,B,C

l¢ COM A,B,C
10 COM V

3~ COM N,M

(In program A) Three variables in common
(In program B)

(In program A) No variables in common

(In program B)

(In program A) All variables in common.

(In program B)

3-30

SECTION IV

FILES

For those problems that require permanent data
storage external to a particular program, the
TSB system provides a data file capability.
This allows flexible, direct manipulation of
large volumes of data stored within the system
itself. Special versions of the READ, PRINT,
MAT READ, MAT PRINT, and IF statements allow
you to read from and write onto mass storage
fi 1 es.

File programming offers two levels of complexity.
Many problems can be solved using files treated
simply as serial access storage devices. In this
case, the program reads or writes a serial list
of data items (either numbers or strings of charac­
ters) without regard to the underlying structure
of the file. However, with additional programming
effort, files can be used as random access storage
devices. In this case, the program breaks the file
into a series of logical subfiles that can be
modified independently.

This section deals with the serial use of files,
then internal file structure and random access
use. Explanatory programming samples follow each
series of frames in this section.

4-1

TERM: FILE

DEFINED IN TSB AS: An area of memory external to the
program where numbers and strings
of characters can be stored and
retrieved. Files are created by,
and belong to, a particular user.

COMMENTS

The user determines the name and size of a file. Files
vary in size from 1 to 48 records. A record contains
128 l6-bit words space for 64 numbers or 248
characters.

When a program stores some information in a file, the
information remains there until it is changed or the
file is eliminated. All the programs of a particular
user can access this information.

Each program must declare its files with a FILES state­
ment before it can access them. Each program can access
up to 4 different files.

For each file declared in the program, there is a file
pointer that keeps track of that program's current
position within the file. The RUN command causes all
these pointers to be reset to the beginning of the file.
As the program reads or writes on a file, the pointer
for the file is moved through the file.

4-2

SERIAL FILE ACCESS

The program writes all the data items out into the file in serial order.
Each write operation begins where the previous one left off. Then, to
retrieve one of these items, the program must reset the pointer to the
beginnin9 of the file and read through the items until it comes to the
desired item.

OPEN-GHIJK,24

NAM-PROGl
100 FILES GHIJK

2~~ INPUT A,B,C,D
300 PRINT #1 ;A,B,C,D

SAMPLE SERIAL FIL~ ACCESS

GHIJK is the name of the file.
The file is 24 records long.

The FILES statement links the
file into the program. From
now on, the file is referenced
by number; GHIJK fs file #1.
This allows programs to use
different files by changing
only the FILES statement.

This is a serial file PRINT
statement. It is identical
to the normal PRINT statement
except that a file number
appears and the values of the
variables are written onto the
file, not the terminal.

4-3

SERIAL FILE ACCESS, CONTINUED

4~~ INPUT A,B,C,D
5~~ PRINT #l;A,B,C,D

6~~ READ #1,1

7~~ READ #1; Hl,H2,H3

8~~ PRINT Hl,H2,H3

This PRINT stores the new
values of the variables
immediately following the
previous values.

This is a reset operation;
it resets the pointer for
file #1 to the beginning of
the file.

This is a serial file READ
statement. It assigns the
first three values in the
file to the three variables
specified.

9~~ READ #1; Hl,H2,H3,H4,H5 This READs the remaining
five values in the file
into the five variables
given. The values in the
file are not disturbed.

1000 PRINT Hl,H2,H3,H4,H5
2000 END

Try this example. It should print out the same numbers you type in.

Now, since you are done with the file, remove it from your library by
using the KILL command:

KIL-GHIJK

4-4

EXAMPLES

GENERAL FORM:

OPEN-

OPEN-FILE27, 20 return

OPEN-SAMPLE, 48 return

OPEN- ****, 10 return

OPEN- 1 to 6 character file name ~ number of 128-word records in file

OPE- 1 to 6 character file name ~ number of l28-word records in file

PURPOSE

Creates a file with a specified number of 1 28-word records and assigns it a

name.

COMMENTS

The file that is open is accessible only by the user 1.0. number that OPENED
it. (NOTE: Unprotected public library files can be read by all users.)
The file remains OPEN until the same user KILLs it.

File names must conform to the same rules as program names.

The size of the file may vary from a minimum of 1 record to a maximum of 48

records.

If the system does not have enough storage space for the new file, the OPEN
command is rejected and an error message is printed:

SYSTEM OVERLOAD

4-5

OPEN-, CONTINUED

If the user does not have enough space left for the new file in the amount
set for him by the system operator, the OPEN command is rejected and an
error message is printed:

FILE SPACE FULL

If the name given in the OPEN command equals the name of an existing file
or program, the command is rejected and an error message is printed:

DUPLICATE ENTRY

4-6

EXAMPLE:

GENERAL FORM:

KILL-

KILL-NAMEXX return

KIL-EXMPLE return

KIL-FILE10 return

KILL-file to be deleted

KIL-file to be deleted

PURPOSE

Removes the named file from the user's library and re­
leases the space it occupied for further storage. Users
can only KILL their own files.

COMMENTS

Files have only one version, the stored one. When a file
is KILLed, all the information in it is lost.

If the file named is currently being accessed by a user
on another terminal, the KILL command is rejected and an
error message is printed:

FILE IN USE

4-7

FILES

EXAMPLES: 10 FILES MATH, SCORE, SQRT

GENERAL FORM:

statement number FILES up to 16 file names separated by commas

PURPOSE

Declares which files will be used in a program; assumes that the files will
be OPENed before the program is RUN.

COMMENTS

One FILES statement can appear in a program, with up to 4 files declared
(duplicate entries are legal). The files are assigned numbers (from 1
to 4) in the order they are declared in the program. In the EXAMPLES
above, MATH is file #1, SCORE is file #2, and SQRT is file #3.

These numbers are used in the program to reference the files. For instance,

in the same example,

100 PRINT #2; A

would print the value of A into the file named SCORE. This feature allows
most programming to be done independently of the files to be used. The
FILES statements are then added just before running the program.

4-8

FI LES, CONTINUED

Public library files to be read (they cannot be written on) must also be

declared in a FILES statement but with a $ preceding the file name.

Users with the same 1.0. number can share files, but only one user can write
on a file at a time. 1.0. codes beginning with an "A" (e.g., A067) are an
exception to the rule; they may read or write on files at the same time.

4-9

SERIAL FILE PRINT

EXAMPLES:

GENERAL FORM:

125 PRINT #4; Al,B2,C$
13" PRINT #4; D,E,F, "B,C,D,E"
140 PRINT #M+N; B

statement numb-er PRINT #file number formula i.

list of data items separated by commas

PURPOSE

Prints variables·, nurrbers, or strings of characters consecutively on the

specified file, starting after the last item previously read or printed.

COMMENTS

The file number formula may be any expression; it is rounded to the nearest
integer (from 1 through 4). If the value ;s ~, then the nth file declared
in the FILES statement is used.

The serial file PRINT always writes the indicated data items into the next
available space in the file. However, since character strings may vary in
length and each string must be wholly contained within a record, some space
in each record may be left unused. You can calculate the number of words
occupied by any string with a fonnula described under "Storage Requirements"
i n th iss e c t i on .

After a serial file PRINT, the file pointer is updated so that it points to
the next available space.

4-10

SERIAL FILE PRINT

The information written in a file remains there even when the program
terminates. Therefore, the user can return a day or week later and
access the data at that time. If a program terminates because of an
error or the user typing break, the files may not have been completely
updated.

NOTE: Matrices can also be written on files using a
MAT PRINT # statement described in Section V.

4-11

SERIAL FILE READ

EXAMPLES:

GENERAL FORM:

65 READ #4; A,B,C

70 READ #3; B$
80 READ #N; A,B$, C(5,6)
90 READ #(N+l); A,B$,C

statement number READ #file number formula .!...

list of data items separated by commas

PURPOSE

Reads numbers and strings into variables consecutively from the specified
file, starting after the last item read.

COMMENTS

The file number formula is evaluated as in the serial file PRINT.

Both strings and numbers can be read, but the order of variable types must
match the order of data item types exactly. The TYP Function provides a
means of determing the type of the next item.

The serial file READ moves from record to record within a file automatically,
as necessary to find the next data item. After a READ, the file pointer is
updated, and a subsequent READ will start with the next consecutive data
item. Record boundaries and unused portions of records are ignored.

4-12

SERIAL FILE READ. CONTINUED

Matrices can also be read from files using a MAT READ # statement described
in Section V.

NOTE: Following a seri al file PRINT, the file
pointer should be reset to the beginning
of the file before the data can be read.
This is done using the reset operation
described on the next page. A serial
READ should not directly follow a serial
PRINT.

4-13

EXAMPLE:

GENERAL FORM:

RESETTING

100 READ # 1 , 1
2091 READ #2,1
3091 READ #M+-N, 1

statement number READ #fi1e number formula L 1

PURPOSE

Resets the file pointer to the beginning of the file specified
by the file number formula.

COMMENTS

READ #N,l is used after a serial PRINT to prepare for a serial
READ.

NOTE: Do ~ use PRINT #1,1 to reset, as this
erases the first record of the file.

4-14

LISTING CONTENTS OF A FILE

Here is a sample program that lists a file of unknown contents. It assumes
that the file (DATUMS) has been previously filled serially by some other
program.

NAM - LIST

100 FILES DATUMS

200 DIM A$[72]

300 IF END #1 THEN 1000

500
550

600

IF TYP(1)=l THEN 6~~}
IF TYP(1)=2 THEN 700

READ #l;A

650 PRINT A

675 GOTO 500

700 READ #l;A$

750 PRINT A$

775 GOTO 500

1000 PRINT "FILE LIST COMPLETED"

2000 END

The IF END statement tells the pro­
gram where to go if it comes to the
end of file #1. Without this state­
ment, the program would quit at the
end of the file and give an error
message.

TYP checks whether the next data
item is a number (1) or a string (2).

Reads a number from file #1 into
variable A.

Reads a string from file #1 into
variable A$.

The program comes here when it
reaches the end of file #1.

4-15

EXAMPLES:

GENERAL FORM:

THE TYP FUNCTION

100 IF TYP{l)=2 THEN 1000
250 IF TYP (4)=3 THEN 500
300 GO TO TYP(B) of 400,600,800

TYP may be used as an expression or as
part of an expression; the function form is:

TYP (file number formula)

PURPOSE

Determines the type of the next data item in the specified file so that the
program can avoid a type mismatch on a file READ.

There are three possible responses:

1 = next item is number
2 = next item is character string
3 = next item is lI end of file. 1I

COMMENTS

If the file number formula is negated «0), the TVP function also detects
"end of record" conditions (explained later under "Random Access") and
returns a value of 4 for them.

I f the file number formula equals zero, the TVP functi on refet'ences the
DATA statement. (See lithe TVP Function" in Section III.)

4-16

TERM: END-OF-FILE

If a program attempts to PRINT beyond the
physical end of a file or attempts to READ
more values than are present in the file,
the TSB system detects an end-of-fi1e con­
dition and terminates the program.

COMMENTS

The OPEN command causes end-of-fi1e marks to be written
at the start of every record in the file. End-of-fi1e
marks can also be written by the user (as explained later
under II ENDII) .

NOTE: If the user or an error (such as
end-of-file) stops a program
abnormally, it is not possible to
-know which file PRINTs of the pro­
gram were in fact performed.

To avoid termination of a program because of end-of-fi1e,
use the IF END statement on the next page. If this is done,
all of the values preceding the end-of-file are transferred
successfully.

4-17

EXAMPLES:

GENERAL FORM:

IF END# ... THEN

300 IF END #N THEN 8~0
310 IF END #2 THEN 830
32~ IF END #3 THEN 9999

statement number IF END #file number formula THEN statement number

PURPOSE

Defines a statement to be branched to if an "end-of-fi 1 e" occurs on a
specified file.

COMMENTS

The IF END statement defines an exit procedure which remains in effect until
another IF END for the same file changes it.

A different exit procedure can be defined for each file.

IF END is also used with random access to provide exit procedures when an
"end-of-record" occurs. (See "Random Access. ")

If a program does not contain an IF END statement for a file and an
"end-of-fi1e" occurs on that file, the program is terminated and an error
message is printed:

END OF FILE/END OF RECORD IN STATEMENT xxx

4-18

EXAMPLES:

GENERAL FORM:

PRINT# ... END

95 PRINT #N: A,B2,END

100 PRINT #(X+l); R3,Sl,N$, "TEXT" , END
110 PRINT #2; G5,H$,P, END

statement number PRINT #file number formula ~ data item list ~ END

PURPOSE

Places a logical "end-of-file" marker after the last value written on the
file; END is ignored if it is not the last item in the statement.

COMMENTS

The "end-of-file" marker written by this statement is a logical marker; each
file also has a physical end-of-file which marks the physical boundary of

the fi 1 e.

The "end-of-file" mark is overlaid by the first item in the next serial
PRINT statement. An "end-of-file ll condition that aborts the program or
triggers an IF END statement occurs only on an attempted READ beyond the
available data or an attempted PRINT beyond the physical end-of-file.

END and IF END can be used to modify a serial file.

4-19

MODIFYING A SERIAL FILE

PRINCIPLE:

RESULT:

Serial files can only be lengthened
(added to) or shortened.

Items within a serial file cannot be
written over without destroying the
succeeding items in the file.

An item within a serial file can be
updated ~ if you read it and all
succeeding items into the program,
then correct the one item and write
them all back out again.

ADDING TO A SERIAL FILE

You may often want to keep a serial file for data col­
lection. The file would contain a list of data items
that would be added to continuously over a period of
time until the file is full.

IF END and PRINT ... END are used to write a program
that creates and lengthens such a file.

4-20

EXAMPLE OF SERIAL FILE MODIFICATION

OPEN-DATUMS, 48 When the file is opened, "end-of-file" markers
are written into every record.

NAM-ADDIT
100 FILES DATUMS
200 DIM A$[72]
3~0 IF END #1 THEN 15~0

400 REM THIS PROGRAM FIRST FINDS THE END OF THE FILE. IT ASKS THE
410 REM USER FOR A STRING AND A NUMBER. IF THIS IS NOT THE PHYSICAL
420 REM END OF THE FILE, IT ADDS THEM TO THE END OF THE FILE.
430 REM THEN THE PROGRAM ASKS THE USER IF HE WANTS TO ADD ANY MORE ITEMS.
440 REM IF THE USER ANSWERS YES, THE PROGRAM REPEATS THE INPUT AND
450 REM WRITE LOOP.
800 READ #l;A$,A
850 GOTO 800
150~ IF END #1 THEN 2000
1600 PRINT "STRING";
1650 INPUT A$
1700 PRINT "NUMBER";
1750 INPUT A
1800 PRINT #1;A$,A, END
1900 PRINT II MORE ";
1950 INPUT A$
1960 IF A$="YES" THEN 1600
1970 STOP
2000 PRINT "PHYSICAL END OF THIS FILE"
5000 END

NOTE: If the file is empty, the first thing the program
finds is an end-of-file. Therefore, it begins
filling the file from the first location.

4-21

EXAM PLE, CONTINUED

The IF END statement (line 300) is changed once the end-of-file marker is
found. The program is then looking for the physical end-of-file.

You can use the listing sample program to check the contents of the file.

4-22

STRUCTURE OF SERIAL FILES

When a file is OPENed, you can think of it as looking like this:

INFO = 1 EO_F&.-I __________ 1 P_EO __ F I
t OPEN-INFO,5

EOF is a mark that shows the end of the data.

PEOF is the physical end of the file, beyond which no data
can be written.

t is the position of the file pointer.

When information is written into the file, the pointer moves
and space in the file is used up.

t

100 F I L E S INFO
200 PRINT #1; A,B,C,F$,Q1, END

The file is filled solidly from the beginning.

When more information is PRINTED, it follows the previous
data and the pointer is changed.

INFO = IAI BI c I F$I Q11 Gli G21 G$I H$I zl EOFf f PEOFI

t

300 PRINT #1; Gl,G2,G$,H$,Z,END

4-23

STRUCTURE OF SERIAL FILES. CONTINUED

To read this data, the pointer must be reset.

INFO = IAIBlcIF$IQ1IG1IG2IG$IH$lzIEOFI IPEOFI

t

400 READ #1,1

+

Now the data can be read.

INFO = IAIBICIF$IQlIGlIG2IG$IH$IZIEOFI IPEOFI

t

500 READ #1; Ml,M2

Ml now contains the value of A
M2 now contains the value of B

At this point, the program continues to read the data.

INFO = IAIBlcIF$IQ1IG1IG2IG$IH$lzIEOFI IPEOFI

t

69191 READ #1; Dl

Dl now contains the value of C

4-,24

STRUCTURE OF SERIAL FILES, CONTINUED

However, if you PRINT anything in the file at this point,
the rest of the file is effectively lost as far as serial
access is concerned.

INFO = I AI BI cl D21 EOFI I PEOFI

t

700 PRINT #1; D2,END

The correct way to modify an item in the middle of serial
file is to READ all the succeeding items, then PRINT them
and the new value out again.

INFO = I AIBICIF$IQ1IG1IG2IG$IH$IZIEOFI IpEOFI

t

700 READ #1; M$, P1, P2, P3, P$, R$, P4
(READ the values)

750 READ #1,1 (reset the painter)

800 READ #1; A, B, C
(move the pointer out to the correct item)

900 PRINT #1; D2 (PRINT the new item)

1000 PRINT #1; P1, P2, P3, P$, R$, P4, END

(PRINT the old values out)

t

4-25

TERM: RECORD

DEFINED IN TSB AS: A physical division of a file;
consists of 128 memory words that

can be used to store numbers or
strings of characters. Every
file consists of from 1 to 48

records.

File =
E

Data 0
R

t

COMMENTS

t t t t

PEOR PEOR PEOR PEOR PEOF

where PEOR = the physical end of the record.
EOR = the end-of-record marker written by the system.
EOF = the end-of-file marker written by the system.
PEOF = the physical end of the file.

Following the data in a record, there is always an end-of-record
marker. Every record also has a physical end. (When the record is
completely full, this also acts as the logical end-of-record marker.)

During serial access the end-of-record markers act as skip markers
that say to look in the next record for the data item, but during
random access they cause an end-of-file condition. This will be

expl ained later.

4-26

STORAGE REQUIREMENTS

Numerical data items require two words of storage space per item.
Therefore, if a record is filled completely with numbers, it
contains 64 items.

Strings can be of varying sizes: they require about 1/2 word of
storage per character in the string. The exact formula for the
number of words needed to store a string is:

If the number of characters is odd, then

1 + (£Umber of charac~ers in the string + ~

If the number of characters is even, then

1 + o umber of charac~ers in the strin~

Therefore, four 62-character strings would completely fill a record.

Strings and numbers can be mixed within a record, but each item
must fit completely within the bounds of the record. For example,

a record could contain a string of 72 characters (using 37 words)
and a maximum of 45 numbers (leaving one word of the record unused).

4-27

EXAMPLES:

GENERAL FORM:

MOVING THE POINTER

200 READ #l,N
300 READ #M,N
400 READ #3*J,9

statement number READ #file number formula ~ record number formula

PURPOSE

Moves the pointer to the beginning of a specified record within a file;

rounds the file number formula and the record number formula to integers.

COMMENTS

The READ #M,N statement only generates an end-of-file condition at the
physical end of the file, not for end-of-file markers.

After moving the pointer to the start of a record, you can use the serial
READ and PRINT statements normally.

4-28

SAMPLE USE OF READ# M,N

DETERMINE LENGTH OF A FILE

Here is a sample program that determines the number of records in a file.
It uses the READ #M,N statement through the records until it comes to the
physical end of the file.

NAM-LENGTH
10 REM THIS PROGRAM PRINTS OUT THE LENGTH IN RECORDS OF ANY FILE.
20 FILES M
30 REM M IS THE FILE WHOSE LENGTH IS SOUGHT
40 IF END #1 THEN 80
50 FO R R= 1 TO 1 28
60 READ #l,R
70 NEXT R
80 PRINT IILENGTH IN RECORDS: II; R-l

90 END

4-29

SUBDIVIDING SERIAL FILES

Serial files can be divided into smaller serial files by moving the pointer
and using the PRINT END statement. For example, a file of six records could
be treated as two files of three records.

a record

Fil e: I DATA I DATA DATA I ~ I DATA DATA DATA I ~ I
l~ __________ y __________ ~/~ ___________ y~ ________ -J

first subdivision second subdivision

To switch from the first subdivision to the second, use this statement

100 READ #1, 4

since the fourth record ;s the start of the second subdivision.

When using this technique, you must be careful that you do not PRINT more
data into the subdivision than it will hold. If you PRINT too much, the
data will overflow into the next subdivision and destroy its contents.

A logical extension of this concept is to make each subdivision equal to a
single record. The TYP function detects end-of-record markers. The random
access versions of PRINT# and READ# (described later) allow you to access
random records within a file without overflowing the bounds of the record.

4-30

USING THE TYP FUNCTION WITH RECORDS

EXAMPLES:

GENERAL FORM:

100 GO TO TYP(-l) OF 200, 250, 300, 400
2000 A=TYP(-4) + B*2

TYP is a function and can be used as an
expression or a part of an expression.

TYP (-file number formula)

PURPOSE

Returns a code telling the type of the next item in a specified file.

TYP(- X) = 1 for a number
2 for a string
3 for an end-of-file
4 for an end-of-record

COMMENTS

The file number formula must be negated to detect the end of record. If it
is positive or zero, different results are returned. See TYP Function in
this section and Section III.

4-31

SAMPLE OF READ# M,N AND TYPC-M)

LIST CONTENTS OF A RECORD

Here is a sample program that lists the exact contents of any record in a
file.

NAM-RLIST
1 REM THIS PROGRAM LISTS THE CONTENTS OF ANY RECORD OF THE FILE.
5 DIM A$[72]
10 FILES PETER
20 IF END #1 THEN 60
30 PRINT "RECORD NUMBER";
40 INPUT R
50 IF R>0 AND R=INT(R) THEN 80
60 PRINT "INVALID RECORD NUMBER. II

7rtJ GOTO 30
80 READ #l,R
100 GOTO TYP(-l) OF 110,150,22rtJ,200
110 PRINT "NUMBER: ";
120 READ #l;X
130 PRINT X
140 GOTO 100
150 PRINT "STRING: II ;
160 READ #l;A$
170 PRINT A$
180 GOTO 100
200 PRINT II END OF RECORD MARK. II

210 STOP
220 PRINT IIEND OF FILE MARK. II

230 END

4-32

HOW TO COpy A FILE

Here is a sample program that copies one file into another using only the
statements and functions covered so far: IF END, TYP, FILES, READ #M,N,
serial READ, and serial PRINT.

NAM-COPY
1 REM THIS PROGRAM COPIES FILE #1 INTO FILE #2
10 FILES SAM1, SAM2
2~ DIM A$[72]
30 IF END #1 THEN 170
40 IF END #2 THEN 180
5~ FOR 1=1 TO 128
60 READ #1,1
70 PRINT #2,1
80 GOTO TYP(-l) OF 90,120,150,160
90 READ #l;X
100 PRINT #2;X
110 GOTO 8~
120 READ #l;A$
130 PRINT #2;A$
140 GOTO 80
150 PRINT #2; END
160 NEXT I
170 STOP
180 PRINT "SECOND FILE TOO SMALL"
190 END

4-33

TERM: RANDOM FILE ACCESS

DEFINED IN TSB AS: A READ or PRINT access of a file is
"random" if it specifies a particular
record within the file.

Serial Access: 100 READ #l;A,B,C
(Reads from the file pOinter)

Random Access: 100 READ #1,5;A,B,C
(Moves to record 5 before reading)

COMMENTS

When files are accessed serially, the record structure of files is ignored.
Serial READs skip over end-of-record markers to the next record and act as
if all data were in a continuous list.

The TSB System does, however, provide statements that take advantage of
this record structure. The file pointer can be moved to the beginning of
any record. Also, any record can be READ or PRINTed independently of the
rest of the file using random access versions of READ# and PRINT#. The TYP
function and IF END statement can detect end-of-record conditions. These
extensions to BASIC constitute a random access file capability.

4-34

SAMPLE OF RANDOM FILE ACCESS

This sample program fills each record with two strings of up to 30 charac­
ters each and five numbers. Then it lists the contents of any record.

OPEN-RNDFL,20

NAM-PROG2

100 FILES RNDFL
150 DIM A$(30),B$(30)
200 IF END #1 THEN 1000
300 FOR J=l TO 20 This loop reads in two strings
400 INPUT A$,B$,A,B,C,D,E and five 'I·Jmbers from the user,
500 PRINT #l,J; A$,B$,A,B,C,D,E then it writes the Jth record
600 NEXT J of the fi 1 e.

700 PRINT "WHICH RECORD WOULD YOU LIKE TO SEEII;
750 INPUT J

760 READ #1, J; A$,B$,A,B,C,D,E This section will read and list
770 PRINT A$ the contents of record N.
780 PRINT B$
790 PRINT A,B,C,D,E
800 GO TO 700
1000 END

4-35

PRINTING A RECORD

EXAMPLES:

GENERAL FORM:

165 PRINT HN,X;G2,H,I,"TEXT"

170 PRINT Hl,3;X,Y4,Z,6127,B
175 PRINT H(N+2),(X+2);F,P5
18~ PRINT H2,5;A,B,C,D,END

statement number PRINT #file number formula L

record number formula 1. list of data items

PURPOSE

Prints a specified list of data items into a specific record of a file,
starting at the beginning of the record. (The record number formula

is rounded to the nearest integer.)

COMMENTS

The previous contents of the record are destroyed. An end-of-record marker
is written after the data. If an END occurs in the data list, it acts as
an end-of-record marker too. The random PRINT cannot change the contents
of any record except the one specified. The entire list of data items must
fit within the 128-ward record. Otherwise, an end-of-file condition occurs
which terminates the program and prints an error message:

END OF FILE/END OF RECORD

An IF END statement establishes an exit procedure. See "IF END" in this
section.

4-36

PRINTING A RECORD, CONTINUED

Matrices are PRINTed using the random version of MAT PRINT# described in
Section V. Note, however, that the matrix must fit within a single record.
Therefore, a maximum of 64 numerical items can be PRINTed. If this rule
is violated, an end-of-file occurs.

4-37

READING A RECORD

EXAMPLES:

GENERAL FORM:

100 READ #2,3;A,B,C3,X$
11~ READ #N,2;N1,N2,N3
120 READ #M,N;R2,P7,A$,T(3S)
1~ READ #(M+l),(N+1);X,Y,Z

statement number READ #file number formula .!..

record number formula L list of data items

PURPOSE

Reads data from a specified record of a file, starting at the beginning
of the record. (The file number formula and record number formula

are rounded to integers.)

COMMENTS

The contents of the file are not changed.

If the READ encounters an end-of-record marker before filling all the data
items, an end-of-fi1e occurs. The program is terminated unless an IF END
statement has been defined previously. (See IF END in this section.)

Matrices are READ from records using a random version of MAT READ# described
in Section V. Note however, that_only 64 numbers can be stored in a record.
If the READ requests more than 64 numbers (or more items than the record con­
tains), an end-of-file condition occurs.

4-38

MODIFYING CONTENTS OF A RECORD

PRINCIPLE:

EXAMPLE:

The contents of a record can be

changed only by READing the entire

record into the program, modifying

the items desired, then PRINTing

it back on the file again.

100 READ #1,5;A,B,C,Z$

200 LET A = Q*2+(M/5)

300 LET Z$ = M$

500 PRINT #1,5;A,B,C,Z$

A, B, C, and Z$ a re the enti re- contents of record 5,

DANGER: When the strings are replaced by longer

strings, the_ result may no longer fit

within a record. If this happens, an

end-of-file condition occurs.

4-39

EXAMPLES:

GENERAL FORM:

ERASING A RECORD

320 PRINT #M+N, R+S
330 PRINT #1,2
340 PRINT #4,Ql

statement number PRINT #file number formula L record number formula

PURPOSE

Erases the contents of a specified record in a file by PRINTing an end-of­
record marker at the beginning of the record.

Moves the file pointer to the start of the specified record.

COMMENTS

Only the contents of the specified record are erased; the rest of the file
is unchanged. The erased record still exists, however, and can be filled
wi th new data.

Do not confuse this erase operation with the KILL command which permanently
eliminates the entire file.

Here is a sample program that uses the erase operation to erase an entire
file, record by record.

4-40

ERASING A RECORD, CONTINUED

NAM-ERASE

REM THIS PROGRAM ERASES A FILE BY ERASING EVERY RECORD
5 DIM A$[72]
10 FILES X
20 IF END #1 THEN 60
30 FOR 1=1 TO 128
40 PRINT #1,1
50 NEXT 1
60 END

4-41

UPDATING A RECORD IN A FILE

File programming is simplified if every record of a file has the same data
structure. For example, each record might contain a string (e.g., a
person's name) and a number (e.g., the amount of money he owes). Here is
a sample program that manipulates such a file. The program searches
through the file until it finds a specified string; then it updates the
number in the record to a new value.

NAM-UPDATE

10 FILES DATA
20 DIM A$(72) , B$(72)
30 IF END #1 THEN 160
40 PRINT "NAME";
50 INPUT A$
60 FOR 1= 1 to 128
70 READ #1, I
80 IF TYP (-1) #2 THEN 150
90 READ #1; B$
100 IF B$#A$ THEN 150
110 PRINT "NEW NUMBER";
120 INPUT N
130 PRINT #1; N
140 STOP
150 NEXT I

160 PRINT "NAME NOT ON FILE.II
170 END

4-42

AN ALPHABETICALLY ORGANIZED FILE

If the first item of every record in a file is a string, the records can be
ordered alphabetically. Here is a program that inserts a new record where
it alphabetically belongs. The rest of the file must-be moved up one record.
In this example, record 1 contains the record number of the last item.

NAM-INSERT

10 FILES DATA
20 DIM G$(72), H$(72)
30 IF END #1 THEN 290
40 READ #1, 1 ; N _

50 READ #1, N+l
60 PRINT "STRING";
70 INPUT G$
72 IF N#0 THEN 80
74 R=2
76 GO TO 180
80 F= 1
90 L= N+1
100 R= INT ((F+L)/2
110 READ #l,R; H$
120 IF G$<H$ THEN 210
130 IF G$>H$ THEN 230

4-43

140 FOR 1= N TO R STEP -1
150 READ #1,1; H$
160 PRINT #1,1+1; H$
170 NEXT I

180 PRINT #l,R; G$
190 PRINT #1,1; N+1
200 STOP
210 L=R
220 IF F#L THEN 100
225 GO TO 140
230 F= R
240 IF L-F > 1 THEN 100
250 R=R+l
260 GO TO 140
270 PRINT IIFILE FULL."
280 STOP
290 N=0
300 GO TO 50
310 END

SECTION V

MATRICES

This section explains matrix manipulation. In
TSB, you can treat ~ matrix simply as an array
of data organized_ into rows and columns or as

a mathematical entity. Using data arrays re­
quires no special background; the necessary

statements are covered in this section. Using
the matrix as a mathematical entity, as in

matrix inversion, transposition, etc., requires
a background in matrix theory.

DEFINED IN TSB AS:

TERM: MATRIX (ARRAY)

An ordered collection of numeric data con­
taining not more than 2000 elements (numeric
values).

Matrix elements are referenced by subscripts

following the matrix variable, indicating the
row and column of the element. For example,

if matrix A is:
1 2 3

4 5 6

789

the element 5 is referenced by A{2,2); likewise

9 is A(3,3).

See Sect; on I I I, IIVocabul aryl' for a more compl ete

description of matrices.

5-1

EXAMPLES:

GENERAL FORM:

DIM

ll~ DIM A (5~), B(2~,20)
1 20 DIM Z (5, 20)
130 DIM S (5,25)

140 DIM R (4,4)

statement number DIM matrix variable i integer L
or

statement number DIM matrix variable i integer .L. integer L

PURPOSE

Sets upper 1 imits on the amount of working space used by a maxtri x in the
TSS system.

COMMENTS

The integers refer to the number of matrix elements if only one dimension
is supplied, or to the number of column and row elements respectively,

if two dimensions are given.

A matrix (array) variable is any single letter from A to Z.

Arrays not mentioned in a DIM statement are assumed to have 10 elements
if one-dimensional, or 10 rows and columns if two-dimensional.

The working size of a matrix may be smaller than its physical size. For

example, an array declared 9 x 9 in a DIM statement may be used to store
fewer than 81 elements; the DIM statement supplies only an upper bound on
the number of elements.

The absolute maximum matrix size is 2000 elements; a matrix of this size
is practical only in conjunction with a very small program.

5-2

EXAMPLES:

GENERAL FORM:

MAT ... ZER

305 MAT A = ZER
310 MAT Z = ZER (N)
315 MAT X = ZER (30, 10)
32 ~ MAT R = Z E R (N, P)

statement number MAT matrix variable = ZER
or

statement number MAT matrix variable ~ ZER t expression 1
or

statement number MAT matrix variable ~ ZER i expression ~ expression 1

PURPOSE

Sets all elements of the specified matrix
equal to 0; a new working size may be
established.

COMMENTS

The new working size in a MAT ... ZER is an
implicit DIM statement within the limits
set by the DIM statement on the tota 1 num­
ber of el ements.

Since 0 has a logical value of "false",
MAT ... ZER is useful in logical initialization.

The expressions in new size specifications should
eval uate to integer;s. Non-integers are rounded

to the nearest integer val ue.

5-3

MAT ... CON

EXAMPLES: 205 MAT C = CON
2l~ MAT A = CON (N,N)
220 MAT Z = CON (5,2~)

230 MAT Y = CON (50)

GENERAL FORM:
statement number MAT matrix variable = CON --

or

statement number MAT matrix variable ~ CON i expression 1
or

statement number MAT matrix variable ~ CON i expression ~ expression 1

PURPOSE

Sets up a matrix with all elements equal to 1;
a new working size may be specified, within the
1 imits of the original DIM statement on the total
number of elements.

COMMENTS

The new working size (an implicit DIM statement)
may be omitted, as in example statement 205.

Note that since 1 has a logical value of "true",
the MAT ... CON statement is useful for logical
initialization.

The expressions in new size specifications should
evaluate to integers. Non-integers are rounded
to the nearest integer value.

5-4

EXAMPLES:

INPUT

600 INPUT A(5)
610 INPUT B(5,8)

620 INPUT R(X), N$, A(3,3)
630 INPUT Z(X,Y), P3, W$
640 INPUT Z(X,Y), Z(X+l, Y+1), Z(X+R3, Y+S2)

GENERAL FORM:

statement number INPUT matrix variable i expression 1 ...
or

statement number INPUT matrix var~able 1 expression L expression 1 ...

PURPOSE

Allows input of a specified matrix e1ement(s)
from the teleprinter.

COMMENTS

Expression should evaluate to integers. Non­

integers are rounded to the nearest integer
va 1 ue.

The subscripts (expressions) used after the matrix
variable designate the row and column of the matrix
element. Do not confuse these expressions with
working size specifications, such as those following
a MAT INPUT statement.

See MAT INPUT and DIM in this section for further
details on matrix input.

5-5

EXAMPLES:

GENERAL FORM:

MAT INPUT

355 MAT INPUT A

36~ MAT INPUT B(5}

365 MAT INPUT Z(5,5}

37~ MAT INPUT A(N)
375 MAT INPUT B(N,M)

statement number MAT INPUT matrix variable

or

statement number t'lAT INPUT matrix variable .l expression 1 ...
or

'~

statement number MAT INPUT matrix variable.l expression L expression 1 ...

PURPOSE

Allows input of an entire matrix from the teleprinter; a new working size may be

specified, within the limits of the DIM statement on total number of elements.

COMMENTS

Do not confuse the size specifications following MAT INPUT with element specifications.

For example, INPUT X(5,5) causes the fifth element of the fifth row of matrix X to be
input, while MAT INPUT X(5,5) requires input of the entire matrix called X, and sets

the working size at 5 rows of 5 columns.

Example statements 360 through 375 require input of the specified number of matrix
elements, because they specify a new size.

Elements being input must be separated by commas.

A II??II response to an input item means that rrore input is required.

Only one? is generated by a MAT INPUT statement, regardless of the number of
elements.

MAT INPUT causes the entire matrix to be filled from teleprinter input in the (row,
col.) order: 1,1;1,2;1,3; etc.

5-6

EXAMPLES:

PRINTING MATRICES

800 PRINT A(3)
810 PRINT A(3,3);
820 PRINT F(X);E$; C5;R(N)
830 PRINT G(X,y)
840 PRINT Z(X,Y), Z(1,5), Z(X+N, Y+M)

GENERAL FORM:
statement number PRINT matrix variable i expression 1 ...

or

statement number PRINT matrix variable 1 expression i expression 1 ...

PURPOSE

Causes the specified matrix element(s) to be printed.

COMMENTS

Expressions (subscripts) should evaluate to integers.
Non-integers are rounded to the nearest integer
value.

A trailing semicolon packs output into twelve
elements per teleprinter line, if possible. A trail­
ing comma prints five elements per line.

Expressions (subscripts) following the matrix variable
designate the row and column of the matrix element.
Do not confuse these with new working size specifica­
tions, such as those following a MAT INPUT statement.

This statement prints a single matrix element. MAT
PRINT is used to print an entire matrix.

5-7

EXAMPLES:

GENERAL FORM:

MAT PRINT

500 MAT PRINT A
505 MAT PRINT A;
515 MAT PRINT A,B,C
52~ MAT PRINT A,B,C;

statement number MAT PRINT matrix variable

or

statement number MAT PRINT matrix variable.!.. matrix variable ...

PURPOSE

Causes an entire matrix to be

printed, row by row, with double
spacing be~/een rows.

COMMENTS

Matrices may be printed in "packed"
rows up to 12 elements wide by us-
ing the 11;" separator, as in example

statement 505. Normal separation (",")
prints 5 elements per row.

5-8

EXAMPLES:

READ

900 READ A(6)
910 READ A(9,9)
920 READ C(X); P$; R7
930 READ C(X,V)
940 READ Z (X, V), P (R2, S5), X (4)

GENERAL FORM:
statement number READ matrix variable 1 expression 1

or

statement number READ matrix variable i expression L expression 1 ...

PURPOSE

Causes the specified matrix element to be
read from the current DATA statement.

COMMENTS

Expressions (subscripts) should evaluate to
integers. Non-integers are rounded to
the nearest integer.

Expressions following the matrix variable
designate the row and column of the matrix
element. Do not confuse these with working
size specifications, such as those following
MAT INPUT statement.

The MAT READ statement is used to read an
entire matrix from DATA statements. See
details in this section.

5-9

EXAMPLES:

MAT READ

350 MAT READ A
370 MAT READ B(5),C,D
380 MAT READ Z (5,8)
390 MAT READ N (P3,Q7)

GENERAL FORM:
statement number MAT READ matrix variable

or

statement number MAT READ matrix variable i expression 1 ...
or

statement number MAT READ matrix variable i expression l expression 1

PURPOSE

Reads an entire matrix from DATA statements.
A new working size may be specified, within
the limits of the original DIM statement.

COMMENTS

MAT READ causes the entire matrix to be filled
from the current DATA statement in'the (row, col.)
order: 1,1; 1,2; 1,3; etc. In this case the
DIM statement controls the number of elements
read.

5-10

EXAMPLES:

MATRIX ADDITION

310 MAT C = B + A
320 MAT X = X + y

330 MAT P = N + M

GENERAL FORM:
statement number MAT matrix variable = matrix variaple + matrix variable.

PURPOSE

Establishes a matrix equal to the
sum of two matrices of identical
dimensions; addition is e1ement­
by-element.

COMMENTS

The resulting matrix must be previously
melltioned in a DIM statement, if it has
more than 10 elements, or 10 x 10 ele­
ments if two dimensional. Dimensions
must be the same as the component matrices.

The same matrix may appear on both sides
of the = sign, as in example statement 320.

5-11

EXAMPLES:

MATRIX SUBTRACTION

550 MAT C

560 MAT B

570 MAT X

=
=
=

A

B

X

- B

Z

A

GENERAL FORM:
statement number MAT matrix variable = matrix variable - matrix variable

PURPOSE

Establishes a matrix equal to the
difference of two matrices of
identical dimensions; subtraction
is element-by-element.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has
more than 10 elements, or 10 x 10 elements
if two dimensional. Its dimension must be
the same as the component matrices.

The same matrix may appear on both sides
of the = sign, as in example statement 560.

5-12

EXAMPLES:

MATRIX MULTIPLICATION

930 MAT Z = B * C
940 MAT X = A * A
950 MAT C = Z * B

GENERAL FORM:
statement number MAT matrix variable = matrix variable * matrix variable

PURPOSE

Establishes a matrix equal to the
product of the two specified matrices.

COMMENTS

Following the rules of matrix multiplication,
if the dimensions of matrix B = (P,N) and ma­
trix C = (N,Q), multiplying B*C results in a
matrix of dimensions (P,Q).

Note that the resulting matrix must have an

appropriate working size.

The same matrix variable may not appear on

both sides of the = sign.

5-13

SCALAR MULTIPLICATION

EXAMPLES:

GENERAL FORM:

110 MAT A = (5) * B
115 MAT C = (10) * C
120 MAT C = (N/3) * X
130 MAT P = (Q7*N5) * R

statement number MAT matrix variable ~i expression 1 ~ matrix variable

PURPOSE

Establishes a matrix equal to the product
of a matrix multiplied by a specified num­
ber, that is~ each element of the original
matrix is multiplied by the number.

COMMENTS

The resul ting matrix must be previously
mentioned in a DIM statement, if it con­
tains more than 10 elements (lOxlO if two
dimensional).

The same matrix variable may appear on
both sides of the = sign.

Both matrices must have the same working
size.

5-14

EXAMPLES:

COPYING A MATRIX

405 MAT B = A
410 MAT X = Y
42~ MAT Z = B

GENERAL FORM:

statement number MAT matrix variable = matrix variable

PURPOSE

Copies a specified matrix into a matrix

of the same dimensions; copying is e1e­

ment-by-e1ement.

COMMENTS

The resulting matrix must be previously

mentioned in a DIM statement if it has

more than 10 elements, or 10xlO if two

dimensional. It must have the same di­

mensions as the copied matrix.

5-15

EXAMPLES:

GENERAL FORM:

IDENTITY MATRIX

205 MAT A = ION
210 MAT B = ION (3,3)
215 MAT Z = ION (Q5, Q5)
22~ MAT S = ION (6, 6)

statement number MAT array variable = ION
or

statement number MAT array variable ~ ION i expression L expression 1

PURPOSE

Establishes an identity matrix (all 0's, with
a diagonal of all 1 IS): a new working size may

be specified.

COMMENTS

The IDN matrix must be two dimensional and square.

Specifying a new working size has the effect of a
DIM statement.

Sample identity matrix: 1 0 0

010
~ 0 1

5-16

EXAMPLES:

GENERAL FORM:

MATRIX TRANSPOSITION

959 MAT Z = lRN (A)
969 MAT X = TRN (8)
979 MAT Z = TRN (C)

statement number MAT matrix variable ~ TRN i matrix variable 1

PURPOSE

Establishes a matrix as the transposition of
a specified matrix; transposes rows and columns.

COMMENTS

Sample trans pas i ti on:

Original TransQosed

1 2 3 1 4 7

4 5 6 2 5 8

7 8 9 3 6 9

Note that the dimensions of the resulting matrix
must be the reverse of the original matrix. For
instance, if A has dimensions of 6,5 and MAT C =
TRN (A), C must have dimensions of 5,6.

5-17

EXAMPLES:

GENERAL FORM:

MATRIX INVERSION

38~ MAT A = INV(B)
390 MAT C = INV(A)
4~0 MAT Z = INV(Z)

statement number MAT matrix variable ~ INV 1 matrix variable 1

PURPOSE

Establishes a square matrix as the inverse
of the specified square matrix of the same
dimensions.

COMMENTS

A matrix may be inverted into itself, as in
example statement 400, above.

Number representation in TSB is accurate to
6-7 decimal digits; matrix elements are
rounded accordingly.

5-18

EXAMPLES:

GENERAL FORM:

MAT PRINT #

520 MAT PRINT #4; A
530 MAT PRINT #3, 3; B
540 MAT PRINT #4,M; A
550 MAT PRINT #N,M; A

statement number MAT PRINT# file number formula ~ matrix variable ...

or

stat. no. MAT PRINT# file no. form. ~ record no. form.~ matrix var

PURPOSE

Prints an entire matrix on a file, or on a
specified record within a file.

COMMENTS

A random matrix file print (i.e., with a
record number specified) cannot transfer
more than 64 numeric values because that
is the maximum a record can hold. This
generates an end-of-file condition.

A serial matrix file print, however, can
transfer as many elements as will fit in
th e en tire f i 1 e .

5-19

EXAMPLES:

GENERAL FORM:

MAT READ #

720 MAT READ #2;A
730 MAT READ #2,3;B

740 MAT READ #M,N;B(5)
750 MAT READ #M,N;B(P7,R5)

statement number MAT READ# file formula number Lmatrix variable ...

or

statement no. MAT READ# file formula no. ~ record no. formula L matrix variable ...

or

statement no. MAT READ# file form. no. ~ record no. form. L matrix var. i expression 1 ...
or

stmt. no. MAT READ# file form. noL record no. form . .!.. matrix var. i expr. ~ expr. 1 ...

PURPOSE

Reads a matrix from a file, or specified
record within a file. A new working size

may be specified.

COMMENTS

MAT READ# fills the entire matrix in a row-by-row
sequence of elements as: 1,1; 1,2; 1,3; 1,4

Remember that a maximum of 64 numbers may be
transferred on a random read.

5-20

SECTION VI

STRINGS

A string is a set of characters such as
"DDDDDE" or 145T,#". BASIC contains

special variables and language elements
for manipulating string quantities. This
section explains how to use the string
features of BASIC. There is little dif­
ference in the form of statements refer­
encing numeric quantities and those refer­
encing strings. One important difference,
however, is the use of subscripts which is
explained later.

The examples and comments in this section
emphasize modifications in statement form
or other special considerations in handling

strings.

If you are familiar with the concepts
"s tring," "string variable,1I and II substring,"
skip directly to liThe String DIM Statement. II

6-1

TERM: STRING

DEFINED IN TSB AS: A set of 1 to 72 characters enclosed by
quotation marks or the null string

Typical
Strings:

(no characters).

COMMENTS

"ABCDEFGH IJKLMNOp ll

1112345"

II BOB AND TOM II

"MARCH 13, 1970 11

Special purpose characters such as XC and

quotation marks cannot be used within a

s tri ng.

Apostrophes and most control characters are

legal as string characters.

Strings are manipulated in string variables.
For example:

100 A$ = IITHIS IS A STRING II

t t
string string

variable

200 B$ = A$(1,10)
.t

str~ng

variable

t
substring
(defined later)

6-2

TERM: STRING VARIABLE

DEFINED IN TSB AS: A variable used to store strings; consists of a
single letter (A to Z) followed by a $.

For example: A$, Z$, M$

COMMENTS

String variables must be declared before
being used if they contain strings longer
than one character. See liThe String DIM
Statement. II

When a string variable is declared, its
"physical" length is set. The "physical"
length is the maximum size string that the
variable can accommodate. For example:

710 DIM A$(72),B$(20),C$(5)

During execution of a program, the "logical"
length of a string variable varies. The
Ilogica1" length of the variable is the
actual number of characters that the string
variable contains at any point. For example:

100 DIM A$(72)

200 A$ = "SAMPLE STRING"

300 A$="LONGER SAMPLE STRING"

6-3

(Sets physical length of A$)

(Logical length of A$ is 13)

(Logical length of A$ is now 20)

DEFINED IN TSB AS:

TERM: SUBSTRING

A single character or a set of contiguous
characters within a string. The substring
is defined by a subscripted string
variable.

COMMENTS

A substring is defined by subscripts placed
after the string variable. Characters within
a string are numbered from the left starting
with one.

Two subscripts specify the first and last
characters of the substring. For example:

100 Z$ = "ABCDEFGH"

200 PRINT Z$(2,6)

prints the substring

BCDEF

A single subscript specifies the first
character of the substring and implies
that all characters following are part
of the substring. For example:

300 PRINT Z$(3)

prints the substring

CDEFGH

6-4

TERM: SU BSTRING

Two equal subscripts specify a single
character substring. For example:

400 PRINT Z$(2,2)

prints the substring

B

6-5

STRINGS AND SUBSTRINGS

A string variable can be assigned the null

string (no value, as distinguished from a

blank space which has a value). This can be
done by assigning it the value of a sub­
string whose second subscript is one less
than its first. For example:

10~ A$= B$(6,5) (A$ now contains a

null string)

This is the only case in which a smaller
second subscript is acceptable in a sub­
string.

Substrings can become strings. For example:

100 A$ = "ABCDEFGH II

200 B$ = A$(3,5)

300 PRINT B$

prints the string

CDE

because the substring CDE of A$ is now the
string of B$.

Substrings can be assigned to subscripted
string variables to change characters within
a larger string. For example:

100 A$ = "ABCDEFGH"

200 A$(3,5) = "123"

300 PRINT A$

6-6

STRINGS AND SUBSTRINGS, CONTINUED

prints the string

AB123FGH

Strings t substrings, and string variables
can be used with relational operators. They
are compared and ordered as entries are in a
dictionary. For example:

100 IF A$ = B$ THEN 2000

200 IF A$:: "TEST" THEN 3000

3000 IF A$(5,6) ~ B$(7,8) THEN 4000

6-7

EXAMPLES:

GENERAL FORM :

THE STRING DIM STATEMENT

35 DIM A$ (72), B$ (6~)

4~ DIM Z$ (l~)

45 DIM N$ (2), R(5,5), P$(8)

statement number .DIM string variable i number of charac·ters in string 1

PURPOSE

Reserves storage space for strings longer than 1 character;

also for matrices (arrays).

COMMENTS

The number of characters speci fied for a string in its DIM

statement must be expressed as an integer from 1 to 72.

Each string having rrore than character must be mentioned

in a DIM statement before it is used in the program.

Strings not mentioned in a DIM statement are assumed to

have a length of 1 character.

The length mentioned in the DIM statement specifies the max­

imum number of characters which may be assigned; the actual

number of characters assigned may be smaller than this number.

See liThe LEN Function" in this section for further detail s.

Matrix dimension specifications may be used in the same DIM

statement as string dimensions (example statement 45 above).

6-8

THE STRING ASSIGNMENT STATEMENT

NOTE: These strings have been mentioned in a DIM statement

EXAMPLES:

GENERAL FORM:

20~ LET A$ = "TEXT OF STRING"
210 B$ = "*** TEXT !!!"

220 LET C$ = A$(l,4)
230 D$ = B$(4)
240 F$(3,8)=N$

LET . . b - II t· 1 II statement number _ str~ng var~a 1e =- _ s r~ng va ue _

or

statement number LET string variable -=- string or substring variable

or

statement number string variable -=- ~ string value II

or

statement number string variable -=- string cr substring variable

PURPOSE

Establishes a value for a string; the value may be a literal
value in quotation marks, or a string or substring value.

COMMENTS

Strings contain a maximum of 72 characters, enclosed by
quotation marks. Strings having more than 1 character
must be mentioned in a DIM statement.

Special purpose characters, such as + or XC may not be
string characters.

If the source string is longer than the destination string,
the source string is truncated at the appropriate point.

6-9

THE STRING INPUT STATEMENT

NOTE: These string variables have been mentioned in a DIM

statement.

EXAMPL ES:

GENE RAL FO RM :

50 INPUT R$

55 INPUT A$,B$, C9, 010

6~ INPUT A$ (1,5)

65 INPUT B$ (3)

statement number INPUT string or substring variable ...

PURPOSE

Allows string values to be entered from the teleprinter.

COMMENTS

Placing a single string variable in an INPUT statement allows
the string value to be entered without enclosing it in quota­

tion marks.

If multiple string variables are used in an INPUT state­
ment, each string value must be enclosed in quotation marks,
and the values separated by commas. The same convention is
true for substring values. Mixed string and numeric values
must also be separated by commas.

If a substring subscript extends beyond the boundaries of
the input string, the appropriate number of blanks are
appended.

Numeric variables may be used in the same INPUT statement

as string variables (example statement 55 above).

6-10

EXAMPLES:

GEN ERAL FORM:

PRINTING STRINGS

105 PRINT A$

110 PRINT A$, B$, Z$

115 PRINT C$(8) "END OF STRING" 83

120 PRINT C$(l ,7)
131) PRINT liTHE TOTAL IS: ";X5

statement number PRINT string or substring variable L string or substring variable ...

PURPOSE

Causes the current value of the specified string or substring

variable to be output to the teleprinter.

COMMENTS

String and numeric values may be mixed in a PRINT statement

(example statements 115 and 130 above).

Specifying only one substring parameter causes the entire

substring to be printed. For instance, if C$ = "WHAT IS

YOUR NAME?", example statement 12~ prints:

WHA TIS

while statement 115 prints

YOUR NAME?END OF STRING 642

Numeric and string values may be "packed" in PRINT statements

without using a ";", as in example statement 115.

OC and NC generate a return and linefeed respectively when

printed as string characters.

6-11

EXAMPLES:

READING STRINGS

30" READ C$
305 READ X$, Y$, Z$

310 READ Y$(5), A,B,C5,N$

315 READ Y$ (1 ,4)

GENERAL FORM:

statement number READ string or subs tz-,ing variable ~ string or subs tring variable .. !

PURPOSE

Causes the value of a specified string or substring variable to be read

from a DATA statement.

COMMENTS

A string variable (to be assigned more than 1 character) must be mentioned
in a DIM statement before attempting to READ its value.

String or substring values read from a DATA statement must be enclosed in
quotation marks, and separated by commas. See "Strings in DATA Statements"
in this section.

Only the number of characters specified in the DIM statement may be
assigned to a string. Blanks are appended to substrings extending beyond
the string dimensions.

For example, in the following code, the actual contents of B$ is IIABC

DIM A$(3), B$(72)
A$ = "ABC"
B$ (1,5) = A$

II

Mixed string and numeric values may be read (example statement 310 above);
see liThe TYP Function,1I Section III for description of a data type check
which may be used with DATA statements.

6-12

EXAMPL ES:

GENERAL FORM:

STRING IF

340 IF C$<O$ THEN 800
350 IF C$>=O$ THEN 90~

360 IF C$#O$ THEN 1~00
370 IF N$(3,5)<R$(9) THEN 5~0
380 IF A$(10)=IEND" THEN 400

statement no. li string variable relational opere string var. THEN statement no.

PURPOSE

Compares two strings. If the specified condition is true,

control is transferred to the specified statement.

COMMENTS

Strings are compared one character at a time, from left
to right; the first difference determines the relation.

If one string ends before a difference is found, the short­
er string is considered the smaller one.

Characters are compared by their ASCII representation.
See Section VII, "String Evaluation by ASCII Codes" for
detail s.

If substring subscripts extend beyond the length of the

string, null characters (rather than blanks) are appended.

6-13

EXAMPLE:

GENERAL FORM:

THE LEN FUNCTION

469 PRINT LEN (A$)
479 PRINT LEN (X$)
489 PRINT "TEXT"; LEN(A$); B$, C
499 IF LEN (P$) #5 THEN 600
509 IF LEN (P$) = 5 THEN 6~9
519 IF LEN (P$) = 5 OR LEN (P$) = l~ THEN 1~

529 LET X$(LEN(X$)+l) = "ADDITIONAL SUBSTRING"

600 STOP
609 PRINT "STRING LENGTH = "; LEN (P$)

statement number statement type LEN l string variable 1 ...

PURPOSE

Supplies the current (logical) length of the specified
string, in number of characters.

COMMENTS

DIM merely specifies a maximum string length. The LEN
function allows the user to check the actual number of
characters currently assigned to a string variable.

Note that LEN'is a directly executable command (See
Section III), while LEN (... $) is a pre-defined function
used only as an operand in a statement. The LEN command
gives the working program length; the LEN function gives
the current length of a string.

6-14

EXAMPLES:

GENERAL FORM:

STRINGS IN DATA STATEMENTS

5~0 DATA "NOW IS THE TIME."
5l~ DATA IIHOW", "ARE", "YOU,"
52~ DATA 5:172, "NAME?II, 6.47,5071

DATA II. II II. II statement number ___ str~ng text _ .L _ str~ng text _ ...

PURPOSE

Specifies data in a program (numeric values may
also be used as data).

COMMENTS

String values must be enclosed by quotation
marks and separated by commas.

String and numeric values may be mixed in a
single DATA statement. They must be separated
by commas (example statement 520 above).

Strings up to 72 characters long may be stored
in a DATA statement.

See liThe TYP Function, II Section I I I, for
description of a data type (string, numeric)
check which may be used with DATA statements.

6-15

EXAMPLES:

GENERAL FORM:

PRINTING STRINGS ON FILES

350 PRINT #4; "THIS IS A STRING. II

355 PRINT #2; C$, B$, X$, Y$, 0$
360 PRINT #3,3; X$, P$, "TEXT", 27.5,R7
365 PRINT #N,R; P$, N, A(5,5), "TEXT"

statement number PRINT# file number L record number formula L string variable

or

statement number PRINT# file number formula L record number formula L ~string text ~

or

statement number PRINT# file number formula L string variable or substring variable •••

PURPOSE

Prints string or substring variables on a file.

COMMENTS

String and numeric variables may be mixed in a single file
or record within a file (example statement 360 above).

The formula for determining the number of 2-character words
required for storage of a string on a file is:

1 + number of characters in string
2

if the nUnDer of characters is even;

1 + number of characters in s"tring + 1 if the nUnDer of characters is odd.
2

A maximum of 248 string characters may be stored on 1 file record.

See liThe TYP Function~" Section III for description of a data
type check.

6-16

EXAMPLES:

GENERAL FORM:

READING STRINGS FROM FILES

710 READ #1,5; A$, B$
715 READ #2; C$, Al, B2, X
720 READ #3,6; C$(5),X$(4,7),Y$
730 READ #N,P; C$, V$(2,7), R$(9)

statement no. READ# file no. formula ~ record no. formula ~ string or substring variable ...

or

statement no. READ# file no. formula ~ string or substring variable ...

PURPOSE

Reads string and substring values
from a fi 1 e.

COMMENTS

String and numeric values may be
mixed in a file and in a READ#

statement; they must be separated
by corrmas.

See liThe TYP Function", Section III,

for description of a data type check.

6-17

SECTION VII

LOGICAL OPERATIONS

LOGICAL VALUES AND NUMERIC VALUES

When using the logical capability of Time Shared BASIC, be
sure to distinguish between logical values and the numeric
values produced by logical evaluation.

The logical value of an expression is determined by defini­
tions established in the-user's program.

The numeric values produced by logical evaluation are assign­
ed by Time Shared BASIC. The user may not assign these values.

Logical value is the value of an expression or statement,
using the criteria:

any nonzero expression value = IItrue ll

any expression value of zero = "false"

When an expression or statement is logically evaluated,
assigned one of two numeric values, either:

1 , meaning the expression or statement is IItrue",

or
0, meaning the expression or statement is "false".

7-1

it is

RELATIONAL OPERATORS

There are two ways to use the relational operators in logical evaluations:
1. As a simple check on the numeric value of an expression.

EXAMPLES: 15~ IF 8=7 THEN 6~~
200 IF A9#27.65 THEN 7~~

30~ IF (Z/l~»=~ THEN 800

When a statement is evaluated, if the "IFII condition is currently true (for
example. in statement 150, if 8 = 7), then control is transferred to the
specified statement.

Note that the numeric value produced by the logical evaluation is unimportant
when the relational operators are used in this way. The user ;s concerned
only with the presence or absence of the condition indicated in the IF
statement.

\

7-2

RELATIONAL OPERATORS CONTINUED

2. As a check on the numeric value produced by logically
evaluating an expression, that is: "true" == 1, Ifa1se" == 0.

EXAMPLES: 610 LET X==27
615 PRINT X==27
620 PRINT X#27
630 PRINT X>=27

The example PRINT statements give the numeric values produced
by logical evaluation. For instance, statement 615 is inter­
preted by TSB as "Print 1 if X equals 27, 0 if X does not equal
27.11 There are only two logical alternatives; 1 is used to
re p re sen tilt rue ", and ~ II fa 1 se" .

The numeric value of the logical evaluation is dependent on, but
distinct from, the value of the expression. In the example above,
X equals 27, but the numeric value of the logical expression X==27
is 1, since it describes a "true" condition.

7-3

BOOLEAN OPERATORS

There are two ways to use the Boolean Operators.

1. As logical checks on the value of an expression or expressions.

EXAMPLES: 510 IF Al OR B THEN 670
520 IF B3 AND C9 THEN 680
530 IF NOT C9 THEN 690
540 IF X THEN 700

Statement 510 is interpreted: "if either Al is true (has a nonzero value) or B is true
(has a nonzero val ue) then transfer control to statement 670. II

Similarly, statement 540 is interpreted: "if X is true (has a nonzero value) then
transfer control to statement 700."

The Boolean operators evaluate expressions for their logical values only; these are
"true" = any non-zero value, "false ll = zero. For example, if B3 = 9 and C9 = -5,
statement 520 would evaluate to IItrue ll

, since both B3 and C9 have a nonzero value.

2. As a check on the numeric value produced by logically evaluating an expression,
that is: "true" = 1, "false ll = 0.

EXAMPLES: 490 LET B = C = 7
500 PRINT BAND C
51~ PRINT C OR B
520 PRINT NOT B

Statements 50~ - 520 returns a numeric value of either: 1, indicating that the state­
ment has a logical value of "true", or ~, indicating a logical value of "fa1se".

Note that the criteria for determining the logical values are:
true = any nonzero expression value
false = an expression value of ~.

The numeric value 1 or 0 is assigned accordingly.

7-4

SOME EXAMPLES

These examples show some of the possibilities for combining
logical operators in a statement.

It is advisable to use parentheses wherever possible when
combining logical operators.

EXAMPLES: 310 IF (A9 MIN B7)<0 OR (A9 MAX B7»100 THEN 900
310 PRINT (A;B) AND (X<Y)
320 LET C = NOT 0
330 IF (C7 OR 04) AND (X2 OR Y3) THEN 930
340 IF (Al AND B2) AND (X2 AND Y3) THEN 940

The numerical value of "true" or "false" may be used in
algebraic operations. For example, this sequence counts
the number of zero values in a file:

90 LET X = ~
100 FOR I = 1 TO N
110 READ #1; A
120 LET X = X+(A=0)
130 NEXT I
140 PRINT N; II VALUES WERE READ. II

150 PRINT X; "WERE ZEROES. II

160 PRINT (N- X); "WERE NONZERO. II

Note that X is increased by or" each time A is read; when
A = 0, the expression A = 0 is true, and X is increased by 1.

7-5

SECTION VIII

FOR THE PROFESSIONAL

This section contains the most precise reference authority -­

the syntax requirements of Time Shared BASIC. The syntax

requirements are explicit and unambiguous. They may be used
in all cases to clarify descriptions of BASIC language
features presented in other sections.

The other subsections give technical information of interest

to the sophisticated user.

8-1

SYNTAX REQUIREMENTS OF TSB

LEGEND

"is defined as ... "

< > enclose an element of Time Shared BASIC

LANGUAGE RULES

1. Exponents have 1 or 2 digit integers only.

2. A <parameter> primary appears only in the defining formula of a
<DEF statement>.

3. A <sequence number> must lie between 1 and 9999 inclusive.

4. An array bound must lie between and 9999 inclusive; a string
variable bound must lie between 1 and 72 inclusive.

5. The character string for a <REM statement> may include the
character II.

6. An array may not be transposed into itself, nor may it be both
an operand and the result of a matrix multiplication.

Note: Parentheses, (), and square brackets, [J, are accepted

interchangeably by the syntax analyzer.

8-2

SYNTAX REQUIREMENTS OF TSB, CONTINUED

<constant>

<number>

<decimal number>

<i nteger>

<digit>

<exponent part>

<1 iteral string>

<character string>

<character>

<variable>

<simple variable>

<1 etter>

<subscripted variable>

<sublist>

<string variable>

<string simple variable>

< e x pre s s ion>

<conjunction>

<rel ation>

<minmax>

<sum>

<term>

<subterm>

-

-

-

-

-

-

-

-

-

<number>j+<number>j-<number>j<literal string>

<decimal number>j<decimal number><exponent part>

<integer>j<integer>. j<integer>.<integer>1 .<integer>

<digit>l<integer><digit>

E<integer>jE+<integer>jE-integer (see rule 1)

"<character string>"

<character>l<character string><character>

any ASCII character except null, line feed, return, x-off,
Xc, +, II , and rubout

<simple variable>l<subscripted variable>

<letter>l<letter><digit>

AIBICIDIEjFIGIHIIIJIKILIMINIOIPjQIRjSITIUIV!WIXIYIZ

<letter>«sublist»

<expression>j<expression>,<expression>

<string simple variable>l<string simple variable>«sublist»

<letter>$

<conjunction>j<expression>OR<conjunction>

<relation>j<conjunction>AND<relation>

<minmax>j<minmax><relational operator><minmax>

<sum>l<minmax>MIN<sum>1 <minmax>MAX<sum>

<term> I <sum>+<term> I <sum>-<term>

<subterm> I <term>*<subterm> I <term>/<subterm>

<denial>l<signed factor>

8-3

SYNTAX REQUIREMENTS OF TSB, CONTINUED

<denial>

<s i gned factor>

<factor>
<primary>

<relational operator>
<parameter>
<functional>

<function identifier>
<pre-defined function>
<source string>
<destination string>
<fil e reference>
<fi 1 e formula>
<record formul a>
<array i denti fier>
<sequence number>
<program statement>

<BASIC statement>

<LET statement>

<leftpart>
<I F statement>

<decision expression>

- <factor> 1 NOT<factor>
- +<factor>I-<factor>

- <primary> I <factor>t<primary>

- <variable>l<number>l<functional>l<parameter> (rule 2) 1
«expression»

- <1<=1=1#1<>1>=1>
- <letter>l<letter><digit>
- <function identifier>«expression» 1

<pre-defined function>«expression»I

-

-

-

-

-

-

-

-

-

-

-

LEN «string simple variable»
FN <letter>

SINICOSITANIATNIEXPILOGIABSISQRIINTIRNDISGNITYPITIM
<string variable>l<literal string>
<string variable>
#<file formula>I#<file formula>,<record formula>
<e xpress; on>
<express ion>
<letter>

<i nteger> (see rule 3)

<sequence number><BASIC statement>carriage return

<LET statement> 1 <IF statement>I<GOTO statement> I
<GOSUB statement> I <RETURN statement> I <FOR statement> I
<NEXT statement> I <STOP statement> I <END statement> 1
<DATA statement> <READ statement> <INPUT statement>i
<PRINT statement> I <RESTORE statement>I<DIM statement>
<COM statement> I <DEF statement>I<FILES statement>
<REM statement> <CHAIN statement>j<MAT statement>

- LET <leftpart><expression> 1
LET <destination string>=<source string>1
<leftpart><expression>i
<destination string>=<source string>

- <variable>=I<leftpart><variable>=
- IF<decision expression>THEN<sequence number> 1

IF END #<file formula>THEN<sequence number>
- <expression>1

<comparison string l><relational operator>
<comparison string 2>

8-4

SYNTAX REQUIREMENTS OF TSB , CONTINUED

<comparison string 1>
<comparison string 2>

<GOTO statement>

<sequence list>
<GOSUB statement>

<RETURN statement>
<FOR statement>

<for variable>
<initial value>
<final value>
<step size>
<NEXT statement>
<STOP statement>
<END statement>
<DATA statement>
<READ statement>

<variable 1 ist>
<read variable>
<INPUT statement>

<PRINT statement>

<type statement>
<print 1>
<print 2>
<pri nt 3>
<print expression>
<file write statement>

<string variable>
<string variable>l<litera1 string>

GOTO <sequence number> I
GOTO <expression>OF<sequence list>
<sequence number> I <sequence 1ist>,<sequence number>
GOSUB <sequence number> I
GOSUB <expression>OF <sequence list>
RETURN
FOR <for variable>=<initial va1ue>TO<fina1 va1ue>1

FOR <for variable>=<initia1 value>TO<final value>
STEP<step size>

<simple variable>
<express i on >
<express i on >
<express ion>
NEXT<for variable>
STOP
END
DATA<constant> I <DATA statement>,<constant>
READ<variab1e list>IREAD<file reference> I
READ<file reference>;<variable list>
<read variab1e>l<variab1e 1ist>,<read variable>
<variable>l<destination string>
INPUT<variable list>

<type statement>j<file write statement> I
PRINT<file reference>
<print l>l<print 2>
PRINTI<print 2>,j<print 2>;I<print 3>
<print l><print expression>j<print 3>
<type statement><literal string>
<expression>ITAB«expression» I<source string>
PRINT<file reference>;<write expression>1
<file write statement>,<write expression>1
<fil e wri te sta temen t>; <wri te express ion>
<file write statement><literal string>
<file write statement><literal string>

<write expression>

8-5

SYNTAX REQUIREMENTS OF TSB, CONTINUED

<write expression>
<RESTORE statement>

<DIM statement>

<COM statement>

<com list element>

<di mspec>

<bound>
<DEF statement>

<FILES statement>

<name>

<REM statement>

<CHAIN statement>

<MAT statement>

<MAT READ statement>

<actual array>
<dimensions>
<MAT INPUT statement>

<MAT PRINT statement>
<MAT PRINT 1>

<MAT PRINT 2>
<MAT initialization

.. -
o •

-

-

-

-

-

.. -
-

-

-

-

-

-

s ta tement> : : =

<initialization function>::=

<expression>IENDI<source string>
RESTOREIR~STORE<sequence number>

DIM<dimspec>I<DIM statement>,<dimspec>

COM<com list element>\
<COM statement>,<com list element>

<simple variable>l<string simple variable>!
<dimspec>

<array identifier>«bound» I
<array identifier>«bound>,<bound» I
<string simple variable>(<bound»
<i nteger> (see rule 4)

DEF<function identifier>«parameter»=<expression>

FILES<name>!<F1LES statement>,<name>

a string of 1 to 6 printing characters>

REM<character string> (see rule 5)

CHAIN<name>I<CHAIN $<name>

<MAT READ statement> I <MAT INPUT statement> I
<MAT PRINT statement> I <MAT initialization statement> I
<MAT assignment statement>
MAT READ<actua1 array> I
MAT READ<file reference>;<actual array> I
<MAT READ statement>,<actual array>
<array identifier>!<array identifier>«dimensions»
<expression>/<expression>,<expression>
MAT INPUT<actual array> I
<MAT INPUT statement>,<actua1 array>
<MAT PRINT l>/<MAT PRINT 2>
MAT PRINT<array identifier>1
MAT PRINT<file reference>;<array identifier>/
<MAT PRINT 2><arrav identifier>
<MAT PRINT l>,/<MAT PRINT 1>;

MAT<array identifier>=<initialization function>/
MAT<array identifier>=<initialization function>

«dimensions»
ZERjCONjIDN

8-6

SYNTAX REQUIREMENTS OF TSB CONTINUED

<MAT assignment
statement> (rule 6)

<mat operator>

MAT<array identifier>=<array identifier>]
MAT <array identifier>=<array identifier><mat operator>
<array identifier>!
MAT<array identifier>=INV«array identifier»
MAT<array identifier>=TRN«array identifier»!
MAT<array identifier>=«expression»*<array identifier>

+I-!*

8-7

STRING EVALUATION BY ASCII CODES

Each teleprinter character is represented by an ASCII

(American Standard Code for Information Interchange)
number.

Strings are compared by their ASCII representation.

The ASCII sequence, from lowest to highest is:

Lowest: bell

space 5 I
6 J

7 K

$ 8 L

% 9 M

& N

0

(< p

) = Q

* > R

+ ? S

@ T
A U

B V

/ c w
~ 0 X

1 E Y

2 F Z

3 G [

4 H \
]

t Highest

Quotation marks are used to delimit strings, and may not
be used within a string.

8-8

MEMORY ALLOCATION BY A USER

Approximate number of 2-character words per user:
System overhead (approx.):

Space available for user allocation:

4,500
320

4,180 2-character words

SOME EXAMPLES OF USER-DETERMINED ALLOCATION*

a) Introduction of each simple, string, or matrix

variable uses 4 words.

b) A 9 word stack is reserved for GOSU8 I s.

c) 6 X (maximum level of FOR ... NEXT loop nesting)

d) Each file name mentioned in a FILES statement
reserves 128 words for buffer space.

e) An approximate estimate of space required for
a program is:

11 words per BASIC statement
+2X(number of matrix elements dimensioned)
+1/2X(number of string characters used)

* This is variable "system overhead"; it is not included

in word counts produced by the LEN command.

8-9

APPENDIX A

HOW TO PREPARE A PAPER TAPE OFF-LINE

To prepare a paper tape for input:

1. Turn teleprinter control knob to "LOCAL".

2. Press the "ON" button (on tape punch).

3. Press the "HERE IS" key; or press @C (control shift "p")

several times to put leading holes on the tape.

4. Type program as usual, following each 1 ine \oJi th return

linefeed.

5. Press "HERE IS "; or press @C several times to pu t tra i 1 ing

holes on the tape.

6. Press the "0 FF" button on the tape punch.

COMMENTS

The standard on-line editing features, such as xc, +, and re­

peating the same line number may be punched on tape; XC must

be followed by return linefeed.

Pressing the "B.SP." (backspace) button on the tape punch, then

the II RUBOUT" key will physically delete the previous character

from a paper tape.

A-l

APPENDIX B

THE X-ON, X-OFF FEATURE

Terminals equipped with the X-ON, X-OFF feature may be used

to input data from a paper tape while a program is running.

Data is punched on paper tape in this format:
line of data items separated by commas x-off return linefeed

(x-off, return and linefeed are teleprinter keys.)

COMMENTS

Remember that each line of data must end with x-off return

linefeed.

See Appendix A, "Preparing A Paper Tape Offline,1I for instruc­

tions on editing a paper tape.

B-1

SAVE

GET

APPEND

HELLO

KILL

APPENDIX C

DIAGNOSTIC MESSAGES

COMMAND ERROR MESSAGES

NO PROGRAM
NO PROGRAM NAME
FILE SPACE FULL
SYSTEM OVERLOAD
DUPLICATE ENTRY
RUN ONLY

INVALID NAME
NO SUCH PROGRAM
ENTRY IS A FILE
PROGRAM TOO LARGE

NO COMMON AREA ALLOWED
PROGRAM TOO LARGE
SEQUENCE NUMBER OVERLAP
INVALID NAME
NO~, SUCH PROGRAM
ENTRY IS A FILE

ILLEGAL ACCESS
NO TIME LEFT

ILLEGAL NAME
NO SUCH PROGRAM
FILE IN USE

PROTECT
PRIVILEGED COMMAND
INVALID NAME
NO SUCH PROGRAM

OPEN
FILE SPACE FULL
SYSTEM OVERLOAD
DUPLICATE ENTRY

LIST
RUN ONLY

PUNCH
RUN ONLY

UNPROTECT

XPUNCH

PRIVILEGED COMMAND
INVALID NAME
NO SUCH PROGRAM

RUN ONLY

RENUMBER

NAME

DELETE

SEQUENCE NUMBER OVERFLOW
BAD PARAMETER

ONLY 6 CHARACTERS ACCEPTED
$ ILLEGAL AS FIRST CHARACTER

NOTHING DELETED

C-l

DIAGNOSTIC MESSAGES CONTINUED

LANGUAGE ERROR MESSAGES

Syntax Errors
OUT OF STORAGE
ILLEGAL OR MISSING INTEGER
EXTRANEOUS LIST DELIMITER
MISSING ASSIGNMENT OPERATOR
CHARACTERS AFTER STATEMENT END
MISSING OR ILLEGAL SUBSCRIPT
MISSING OR BAD LIST DELIMITER
MISSING OR BAD FUNCTION NAME
MISSING OR BAD SIMPLE VARIABLE
MISSING OR ILLEGAL 10F I
MISSING OR ILLEGAL ITHENI
MISSING OR ILLEGAL ITO I
MISSING OR ILLEGAL ISTEp l

MISSING OR ILLEGAL DATA ITEM
ILLEGAL EXPONENT
SIGN WITHOUT NUMBER
MISSING RELATIONAL OPERATOR
ILLEGAL READ VARIABLE
ILLEGAL SYMBOL FOLLOWS IMATI
MATRIX CANNOT BE ON BOTH SIDES
NO 1*1 AFTER RIGHT PARENTHESIS
NO LEGAL BINARY OPERATOR FOUND
MISSING LEFT PARENTHESIS
MISSING RIGHT PARENTHESIS
PARAMETER NOT STRING VARIABLE
UNDECIPHERABLE OPERAND
MISSING OR BAD ARRAY VARIABLE
STRING VARIABLE NOT LEGAL HERE
MISSING OR BAD STRING OPERAND
NO CLOSING QUOTE
72 CHARACTERS MAX FOR STRING
STATEMENT HAS EXCESSIVE LENGTH
MISSING OR BAD FILE REFERENCE

Run Time Errors
UNDEFINED STATEMENT REFERENCE
NEXT WITHOUT MATCHING FOR
SAME FOR-VARIABLE NESTED
FUNCTION DEFINED TWICE IN LINE n
VARIABLE DIMENSIONED TWICE IN LINE n
LAST STATEMENT NOT IENDI IN LINE n
UNMATCHED FOR
UNDEFINED FUNCTION
ARRAY TOO LARGE
ARRAY OF UNKNOWN DIMENSIONS
OUT OF STORAGE
DIMENSIONS NOT COMPATIBLE IN LINE n
CHARACTERS AFTER COMMAND END
BAD FORMAT OR ILLEGAL NAME
MISSING OR PROTECTED FILE
GOSUBS NESTED TEN DEEP
RETURN WITH NO PRIOR GOSUB
SUBSCRIPT OUT OF BOUNDS
NEGATIVE STRING LENGTH
NON-CONTIGUOUS STRING CREATED
STRING OVERFLOW
OUT OF DATA
DATA OF WRONG TYPE
UNDEFINED VALUE ACCESSED
MATRIX NOT SQUARE
REDIMENSIONED ARRAY TOO LARGE
NEARLY SINGULAR MATRIX
LOG OF NEGATIVE ARGUMENT
SQR OF NEGATIVE ARGUMENT
ZERO TO ZERO POWER
NEGATIVE NUMBER TO REAL POWER
ARGUMENT OF SIN OR TAN TOO BIG
OVER/UNDERFLOWS - WARNING ONLY.
LAST INPUT IGNORED, RETYPE IT
TOO MANY FILES STATEMENTS
NON-EXISTENT FILE REQUESTED
WRITE TRIED ON READ-ONLY FILE
END-OF-FILE/END OF RECORD
INVALID PROGRAM NAME IN CHAIN
NON-EXISTENT PROGRAM REQUESTED
CHAIN REQUEST IS A FILE
PROGRAM CHAINED IS TOO LARGE
COM STATEMENT OUT OF ORDER
ARGUEMENT OF TIM OUT OF RANGE IN LINE n

C-2

DIAGNOSTIC MESSAGES CONTINUED

Warnings
BAD INPUT, RETYPE FROM ITEM
LOG OF ZERO - WARNING ONLY
ZERO TO NEGATIVE POWER-WARNING
DIVIDE BY ZERO - WARNING ONLY
EXP OVERFLOW - WARNING ONLY
OVERFLOW - WARNING ONLY
UNDERFLOW - WARNING ONLY
EXTRA INPUT - WARNING ONLY
READ-ONLY FILES:

Diagnostic messages printed while entering a program refer only to the first

error found in a line.

? (Input is required to continue execution.)

?? (More input is required to continue execution.)

??? (Input is unintelligible.)

C-3

INDEX

t 2-6

+ .•.•.•......................... 1-12

""'- ~ ... 1-13
•••.•••.•••••••••••••••.••.••• 2 - 2 7

, 1-23,2-23,2-25,2-27
+•.•.... 2-6,5-11
- 2-6,5-12
/ 2-'6
* 2-6,5-13,5-14
= 2-5,2-7,2-17,5-15,6-9

.......................... 2-7,6-13
<> •••••••••••••••••••••••••• 2-7,6-13
< •••••••••••••••••••••••••• 2-7,6-13
> .••••••••••••••••••••••••• 2-7,6-13

)::. 2-7,2-17,6-13
<= ••••••••••••••••••••• 2-7,2-17,6-13
ABS Function 3-22
Accuracy 2-2
Acoustic Coupler 1-16
Add 2 -6 , 5 - 11
Adding Matrices 5-11
Adding to a Serial File 4-20
Advanced BASIC 3-1
A 1 phabeti ca 1 Fi 1 e 4-43

AND Operator 2-9
APPEND Command 3-12
Arithmetic Evaluation 2-4
Arithmetic Operators 2-6
Arguments 3-4
Array 3-3,5-1
Assignment Operator 2-5,6-9
Assignment Statement 2-14,6-9

ATN Function 3-23
Backspace 1-12
BAS I C 1 -2 ,2-1
Be fo re Go i n 9 On - Line 1 -1 0
Boo 1 ean Operators 7-4
break••..........•..•••. , -24,2-41
BYE Command 2-35
CATALOG Command 3-15
CHAIN Statement 3-28
Changing Statements 1-13
COLUMNS 3- 3,5-1
Communication Between Programs ... 3-29
COM Statement 3-29
Commands 2-13,2-33
Comments 2-15
Comparing Strings 6-13,8-8
Conditionals 2-17
Co nne c t ion s 1 -1 6 , 1 -1 7
CONTENTS vi i
Contro 1 C 1-24
Control Characters 1-18
CONVENTIONS ,. i v
Co P yin 9 a F i 1 e. 4 - 33
Copying a Matrix 5-14
COS Function 3-23
Current Program 3-6
Da ta Se t. 1 -1 6
DATA Statement 2-21,6-15
Data Types 3-25,4-16,4-31
Declaration of Files 4-8
DEF FN Statement 3-21

DELETE Command ·.3-13

INDEX

Deleting Programs 3-6,3-11
Deleting Statements 1-13
Determining Length of a Fi1e 4-29
Diagnostic Messages 1-22,C-1
DISC Command 2-47
Divide 2-6
DIM Statement 5-2,6-8
ECHO Command 2-36
End-of-File Marker 4-17,4-18,4-19

4-23,4-26,4-30
End-of-Record Marker 4-26
END Statement 1-7,2-28
E Notation ..•.................... 2-2
Equality 2-7,6-13
Erasing a Record 4-40,4-41
Error Messages 1-22,C-l
Essentials of BASIC 2-1
Ex e cut ion. 1 -2 3
EXP Function 3-22
Ex po ne n t i ate 2 -6
Express i on 2-4
False 2-7
File Names 4-5
File Numbers 4-3,4-8,4-10,4-12
File Pointer 4-2,4-3,4-14,4-16

4-23,4-28
Files 4-1,4-2,4-5
FILES Statement 4-3,4-8
Format, Page v
FOR .. NEXT Statements 2-18,3-20
FOR Statement 2-18
Functi ons 3-4,3-16,3-21 ,3-22,3-23

3-24,3-25,3-26,4-15,4-16,4-31,6-14
GET Command 3-10

2

GOSUB ... RETURN Statements 3-17
GO TO Statement 2-16
G re a te r Th an. 2 -7 ,6 -1 3
Greater Than or Equal To 2-7,6-13
Half-Duplex Coupler 1-16
HELLO Command 2- 34
How To Use This Book vi
IDcode 1-17,1-19,2-34
Identity Matrix 5-16
ION 5- 16
IF END Statement 4-15,4-18
IF .. THEN Statement 2-17,6-13
Inequa1 ity 2-7,6-13
Input Logs 1-25
INPUT Statement 2-24,5-5,6-10
Inputti ng a Stri ng 6-10
Inputting Matrix E1ements 5-5,5-6
Instructions•............... 1-5
INT Functi on 3-22
In troducti on 1-1
INV 5-1a

Inverting Matrices 5-18
KEY Co JlITla nd•........ 2 -45
KILL Conmand ...•..•...... 3-11 ,4-4,4-7
LEN Function ..•....••.•....• 3-26,6-14
LENGTH Conmand 3-7 ,6-14
Length of Programs 3-7,3-26
Length of Fil es 4-29
Less Than 2-7,6-13
Less Than or Equal To 2-7,6-13
LET Statement 2-5,2-14
LIBRARY Conmand 3-14

INDEX

Line Number 1-4 MAX Opera tor 2-8
LI NE Setti ng 1-16 Memory Allocation 8-9

Linking Programs 3-28
LIST Command 1-14,2-38
List Contents of a Record 4-32
Listing a Program 1-14,2-38

MESSAGE Command 2-48
MI N Opera tor 2-8
Minimum Number 2-2
Modifying a Record 4-39,4-42
Modifying a Serial File 4-20,4-2l

Listing a File 4-15 Moving the Pointer 4-28
LOG Function 3-22 Multibranch GOSUB 3-l8
Logging In 1-17,1-19,1~20 Multibranch GOTO 2-16

Logging Out 1-19 Mu 1 tip 1 y . 2 -6 , 5 -1 3
Logical Length of Strings ... 6-3,6-14 Multiplying Matrices 5-13
Logical Operations 7-1 NAME Comma nd 3-8
Logical Va1ue 7-1 Nested GOSUBS 3-l7,3-l9
Loop 1-25 Nesting Loops 2-20
Looping 2-18,3-20 NEXT Statement 2-18
Mathematical Functions 3-22 NOT Operator 2-11
MAT ... CON Statement 5-4 Numbers 2-2
MAT INPUT Statement 5-6 OPEN Command 4-3,4-S
MAT PRINT Statement 5-8 Operands 1-6
MAT PRINT#M; Statement 5-l9 OR Operator 2-10
MAT READ Statement S-l0 Paper-Tape A-l
MAT READ#M; Statement S-20 Parenthesis 2-6,2-12
MAT ... ZER Statement S-3 Password 1-17,1-19,2-34
Matrix 3-3,S-1 Physical End-of-File 4-23,4-26
Matrix Addition S-ll Physical Length of Strings 6-3
Matrix Element S-l Poi nters 2-21
Matrix File Print 5-l9 Precedence 2-6,2-12
Matrix File Read S-20 Precision 2-2
Matrix Inversion 5-18 Printing Matrix Elements 5-7,5-8
Matrix Mul tipl ication 5-13 5-19

Ma tri x Subtracti on S-12 Printing Strings 6-11

Matrix Transposition 5-17 PRINT Statement 2-26,5-7,6-11

Matrix Variable S-2 PRINT # .. END Statement 4-l9

Maximum Number 2-2 PRINT#M; Statement 6-l6

3

INDEX

PRINT# Statement•...... 4-3,4-l0
PRINT#M,N Statement 4-40
PRINT#M,N; Statement 4-35,4-36
Program 1-7,1-25
Public Fi1es 4-5,4-9
Public Library Programs 3-10,3-12

3-14
PUNCH COtmlan d .•..•.•............ 2-42
Random File Access ...• 4-34,4-35,4-36

4-38,4-39
Random Numbers 3-22
Reading Matrix Elements 5-9,5-10

5-20
Reading Strings 6-12
READ S ta temen t 2-21 ,6-12
READ# Statement 4-4,4-12
READ#M; Statement 6-17
READ#N,1 4-l4
READ#M,N Statement 4-28,4-29,4-32
READ#M,N; Statement•.. 4-35,4-38
Records 3-5,4-2,4-26,4-27,4-31

4-32,4-34,4-36,4-38,4-39
Relational Operators ..•. 2-7,6-13,7-2

7-3
Remark•.•.....•........... 2-15
REM Statement .•.•.•............. 2-15
RENUMBER COlTllland •.......•....... 2-40
Resetting the File Pointer 4-14
RESTORE Statement 2-21
Retri evi n g Programs 3-1 0
return 1 - 11

RETURN•...... 3-l7,3-19
RND Function 3-22
Routine 3-2,3-16
Rows 3- 3,5-1

4

RUN Command 1-23,2-37
Running a Program 1-23,2-32,2-37
Run-Only•........... 3-12
Sample Programs ... 1-21,1-23,1-25,2-29

4-3,4-15,4-21,4-29,4-32,4-33,4-35
4-41 ,4-42,4-43

SAVE Command 3-9
Scalar Multiplication•.. 5-14
SCRATCH Conmand 2-39
Sequence of Statements 1-4
Serial File Access 4-3,4-10,4-12

4-14,4-16,4-20,4-23,4-30
Serial File Print 4-10
Serial File Read 4-12
SGN Function•.. 3-24
SIN Function•.............. 3-23
Spaces•........... 1-8
Spot Checks 1-9,1-15
SQR Function 3-22
Statement Format 1-8
Statement Numbers 1-4,2-40
Statement Types 1-5
Statements 1-3,2-13
STEP 3-20

Stopping a Program 1-24,2-37
STOP Statement 2-28
Storage Requirements 4-27
Storing Programs 3-6,3-9
String Assignment Statement 6-9
String Eval uati on 8-8
String File Print 6-16
String File Read~ 6-17
String Variable 6-2,6-3,6-6
Strings 3-4,4-27,6-1,6-2,6-6

INDEX

Strings in DATA Statements 6-15
Strings in IF Statements 6-l3
Structure of Serial Files 4-23
Subdividing Serial Files 4-30
Subroutines ...•............ 3-16,3-17
Subscri pts 5-1 ,6-4,6-6
Substring•.•...... 6-4,6-6
Subtract 2-6,5-12
Subtracting Matrices 5-12
Summary ...•.................•.... 0-1
Syntax Requirements of BASIC 8-2
TAB Function .•........•.••...... 3-24
TAN Fun c t ion . 3 -2 3
TAPE Conmand•....•....... 2-44
Teleprinter•................ l-16

5

Telephone 1-16
TIME Command 2-46
Time-Out on Input 3-31
TYP Function 3-25,4-15,4-16

4-31,4-32
Time Sharing 1-1
TIM Function 3-27
Transposing Matrices 5-17
Trigonometric Functions 3-23
TRN 5-17
True 2-7
Variables 1-25,2-3
Word 3-5
Wo rk i n 9 S i z e . 5 - 2

XPUNCH Command 2-43
X-ON, X-OFF B-l
Zeroing a Matrix 5-3

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	7-1
	7-2
	7-3
	7-4
	7-5
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	A-1
	B-1
	C-1
	C-2
	C-3
	I-1
	I-2
	I-3
	I-4
	I-5

