\“}/' fﬁ/ ///c///

S

4. _DIRECTORY:

f}hg?directgxyxis;a'fé&se which CQﬂL&LﬁS &!5 ncc»ssary : f‘{mat§oﬂ abqut

cach. pragram or file @@~ﬁhﬁ{3ystem 1chary e rea;d@ﬁ o 3;c disc and @ay

‘ycupy -frem. . to b dise ‘tacks, depending Up@a Qﬂw many discs, therc are. 0n &he
system. A core residerit table called @ﬁ&ﬁc 00&2&405 anﬁormatton on tﬁe
-directony itself.

A} restory entry,gﬁnﬁssta “GF Bqurds and has the f@iiawtng formaz

WORD" 0 . § u$@r 3&

1517, 15 =L Tk pro
nfﬁﬂT 5 M ED

-ected 0 sf unprotetteﬁ

E1 P oif prwgram

1 date

;fgdiac adéress L

S W e «

j'-igggthzem aord#f .
: i

Fhe directory Eﬂif‘@ﬁ gre kept sorted Qn wcrds 6 -3, Bi? 15 of words 1
“@ﬁ&“j are not consudgtcd in ihg‘soruipg. Names @F fewer than 6 characters
gre fitled out with spaces (ﬁ@g?, The date is the mo&;rrggcnt dage on which
the program or file wad referred to.

The-dtrﬁctory cehtains 2 pseu ic entrses whi Lh are the f|rst and dast
Enteies in the table. They have the ﬁo‘iowang form

FIRST ENTRY LAST £NTRY »
o T M7 :
x 0 y | y77777 |
2] 0 i [i
I R | S [177977
5 Lo | 17
& 6 } P9
L A | oo

e i)

When the directory occupies more than one track, all the dircetory

tracks appended together form the dircctory.

1. A. DIREC
DIREC is a core resident table which contains information about the

disc directory. |t has the following structure:

WORD @ -tength in words of first dircctory track
1-4 same as first 4 words of first directory‘track
5 unused
6 disc address of first directory track

7-13 same as 0-6 but applied to 2nd diréctory track
14-20 same as 0-6 but applied to 3rd directory track
21-27 same as 0-6 but applied to 4th directory track

A disc address of 0 implies that there is no such directory track.

When word @ is 0, words 1-4 are meaningless.

The disc address of a directory is always sector 0 of a track. Each
directory'track may contain as many as 5440 words = 85 sectors = 680 directory
entries. Directory tracks are allocated as follows:

a.) When the system is initially loaded, or when it is loaded from mag. tape,
the number of directory tracks allocated is the maximum of the original

number of tracks and the number of discs;

b.) When the DISC command is used to add a disc,'a new directory track is
allocated unless this would cause there to be more directory tracks than

discs.

11, 1D TABLE

The 1D table {IDT) is a disc resident table which contains one 8-word

entry for ecach 1D code on the system. The entrics are kept sorted according

to the ID codes. Ar entry has the following format:

WORD P user id
-3 password (filled with B's if fewer than 6 characters
: 4 time allowed (ia minutes)
' 5 time used {in minutes)
6 disc allowed (in szctors)

disc used (in sectors)

~

Words 4-7 are 16 bit quantities with values between 0 and 65535. The
following 2 words in core vefer to the IDT:

IDLOC = disc address of IDT.

IDLEN = length in words of 10T,

1. AVASLABLE DISC TABLE

The available disc table (ADT) is a disc resident table which contains
one two-word cntry for cach area of the disc which is unallocated. An cntry

has the following form:

WORD @ disc address
1 length of areca in sectors

Entries are sorted according to word ., Each entry may rcfer to as
much as one full track, and no two consccutive entries ever refer to two adjacent
disc areas (two tracks are not considered to be adjacent).

Besides the entries for unallocated areas, there is also one ADT entry for
each of the five tracks on which the system itself resides, and for each of the
sixteen tracks allocated for user swapping. Word 1 of each of these entries
is 0 so that they will never be allocated. The purpoéc of having thesc entries
is to fndicate to the system dump that they hay be releascd at that time,and
also to indicate to the LOCK and UNLOCK routines that these tracks have special
significance.

At the end of the ADT is one additional entry having the form:

0 177777
1 0

Since track 0 is always allocated as a syétem fratk, any possible disc
address is guaranteed to be bounded by two ADT entries.
The fo]lowing two memory locations refer to the ADT:
ADLOC = disc address of ADT
ADLEN = -length in words of ADT

4

The IDT and ADT always reside on the same track. The IDT is at the
beginning of the track (sector 0), and the ADT begins at the first scctor that
is unused by the IDT.

IV. FUSS

The FUSS table is a 128 word table which resides on the disc. !ts

disc address can be obtained by the instruction

LDA FUSS, |

FUSS is divided into 16 sections of 8 words each. The 8 words in ecach
section are the disc addresses of the user files currently being accessecd

by the user corresponding to that table. Addresses of U indicate no file.

Disc addresses with bi =1 {ndi .ad on
he purpose o? AN a‘n%%%'%ﬁ%% £135.th¢ yser has read only access.

1.) prevent simultaneous write access by two users to one file;
2-)

)

prevent KiLLing a file when some user has access to it

A user's FUSS (i.e. his area of the FUSS table) is set by the FiLES

routine, which is called from BASIC at the beginning of exccution of a

program containing a FILES statement. It is cleared by BYE,HELLG,KILLID,

and sometimes by KILL.

V. COMTABLE

The COMTABLE is a list of all user and system commands containing

their ASCII codings and disc locations or core addresses. The structure
of the COMTABLE is as follows: ’

COMI codes for commands which are
executed immediately by the
system

COM2 codes for commands which are
executed by
BASIC

COM3 user commands which are
executed by disc resident
programs

COM4 system commands - - all are
' executed by disc resident
programs

COM5 starting addresses for those
commands which are listed
under COM1 and COM2

coM6 disc addresses for those
commands which are %isted
under COM3 and COM4

(this section is filled
by the loader)

Since each command is recognized only by its first 3 letters, the
scanner converts each letter into a number from 0 to 318, and then packs
the three codes into one word as three 5-bit bytes. In addition, bit 15
is set for system commands. Codes of -1 in sections 2, 3, and 4 do not
correspond to any possible 3-letter code. Their purpose is to generate
room in COM6 for disc addresses of routines that are called indirectly, or
for tables like FUSS. In the case of CTAPR, the purpose is to generate a
status type for.prihting compiler tape errors without a direct command from

the user.

Vi: LOGGR

LOGGR is a 32-word qucue which contains codes for printing
LOGON/OFF messages. Entries are placed on the queue by HELLC EYE, and

SLEEP. Each entry consists of 2 words, with the following format;

WORD @: user id (BIT 15=0 for ON, 1 for OFF)
1: bits 15-4 = 60 x hrs + mins

bits 3-0 = terminal numbes

The representation of a uscr id is as follows:

BITS 14-i0

letter ’:A = }, B = 29 ceeyg = 328)

number (0-999)

BITS 9-0
The following variagbles aras relevant:

LOGCT
LOCP1

LOCP2 = points to word | of last unprocessed entry

[}

of unprocessed entries in LOGGR.

points to word 1 of last processed entry

Note that LOGCT = 0 <X» LOGP1=LOGP2

Vi1 TELETYPE TABLES

This set of 16 tables, one for ecach user, contains relevant information

about the various terminals. The structure of the tables is as follows:

WORD O BTIM

1 CHAR
2 BCHT
3 MASK
4 CeNT
5 - BPNT
6 BSTR
7 BHED
8 BGIN
9 BEND
10 LADR
1 DISC
12 PROG
13 1D)
14-16 NAME
17 PHON
18-19 TIME
20 ABCH ’
21 cLoC
22 RSTR
23 STAT
24 LINK
25 PLEV

BTiIM, CHAR, BCNT, CCNT, BPNT, BSTR, BHED, BGIN, and BEND are uscd for
i/0 and buffer control. BTIN is used by the MPX driver to count interrupts
between bits. BCHNT is used to count bits within a character. CHAR is used

to pack input bits or uhpack output bits. The use of the other items varies

depending upon whether input or output is being performed.

During input, the uscr's buffer acts as a character quecue. BHED points

to the first character of the first unprocesscd input line, i.c. the hecad

of the queue. BSTR points to the first character of the current input line.
BSTR = BHED except when the user is in TAPE mode, and there exists the |
possibility of multiple input lines. At the end of each line of input,

BSTR is set to point just beyond the line. After a line is processed by
either BASIC or by the system, it advances BHED beyond the line just processed.
If it remains unequal to BSTR, a second line must be processed. BPHNT points
to the taij of the queue, i.e., the location into which the next character

is to be deposited. BGIN and BEND are fixed pointers which give the first
character of the physical buffer and the first character beyond the physical’

buffer, respectively. HNote that character pointers have the form:

BITS 15-1: WORD ADDRESS

BIT O : O for left character. 1 for right character

During output, the buffer again acts as a character queue, but lines

have no significance. CCNT = -numbér of characters to be transmitted,

including the current one. BPNT points to the character currently being
transmitted, and BSTR to the location into which the next output character

will be deposited.

The remainder of the words in the table are defined as follcws:

LADR: a Pointer to the user's LADDR entry
DISC: disc address of user's swap area
PROG: when user is on the disc, PROG points to the last core

location used by the program. When the user is loaded

into core, PROG is placed into PBPTR. \When he is written
back to disc, PBPTR is copied into PROG. BASIC is

required to maintain PBPTR as a bound on the core it is using.

1D: user's id, 0 if none

NAME ¥ a three word entry containing the user's program name. It is
set by the routines NAME & GET, and cleared by HELLO. When
fewer than 6 characters are in the name, blanks are appended.

PHON: when the system telcphone routine is timing the user for
various. things, PHON is-set to the value of DATIM+l necessary
‘to achieve timeout. ;

TINE: the value of DATIM (0 : 1) when the user logged 6n.

ABCHN: this is used by the abort checker in the MPX driver to count
the length of a BREAK. When the abort checker senses a
0 input bit that may be the start of a BREAK, it sets ABCH

= -100. If_the 0 bits contipue for 10C consecutive HPX time
_ periods (~—~11l ms), then the BREAK key has been pressed.
R ——
cLoC: this is the timeout clock used to determine the length of a

user's time slice. See the discussion on scheduling for
further information,

RSTR: this is set, when a user is placed on the qucue, to his
starting address in core, VWhen the user is actually

~initiated, RSTR is set to 0. Whenever RSTR = 0, the transfer

address of the user can be found in location PREG.

STAT: ~ indicates user's status. The user‘s status is as follows:

-2, system disconnect '
-1, user abort request

0, idle |

), system abort

2, input wait

3, output wait

L, syntax processing

>4, command processing

When a command is being processed, STAT indicates the command. STAT
values are assigned in order of entries in the COMTABLE, so that
RUN = 5
LIST = 6
PUNCH = 7, etc.

LINK: the LINK words in the tables are used to form a queue of active
users. All users whose status is Z 4 are in the quecue. Sce the discussion

on scheduling for further information.

PLEV: this word gives the priority level of the user when he is on
the queue. When the user's status is set to 2 or 3, the previous
value of STAT is copied into PLEV, and the user removed from the

queuc. The possible values of PLEV are as follows:
L]

highest priority, used for syntax, users returning from
1/0 suspend, and for disc resident routines once they begin.

used for commands RUN,LIST,PUNCH

used' for disc resident routines until tlcey rcach the top
of the queue

used for long running programs

Associated with each item in these tables is a symbol which is EQUated

to the corresponding number of the item. For example:

1BTIM
7CHAR

°

7PLEV

H

EQU O
EQU 1
EQU 25

These symbols are primarily used for adjusting pointers to the table.

For

example, if the B register contains a pointer to the LINK entry of some user,

the instruction

ADB

47

ID - 7 LINK

will point B to his. D entry. B .

« is a symbol located in base page at the 0 entry of a tablec of constants from

-26 to + 49. A word containing the value N, where =26& .N2=h9 can be referenced

by .+N.

CORE MAP

0 | |NTERRUPT LINKAGE AND
UNITIALIZED SYSTEM
VARIABLES; ALSO LOCATION OF |
BOOTSTRAP LOADER |
100 ;
EQUIPMENT TABLE !
(DIREC, 1DLOC, ETC.)
200
CONSTANTS AND SYSTEM
VARIABLES
i
USER ‘
REGISTERS SAVED BY CLOCK)
" LIBUS '
= USER + 4 ,
! : '
i g\s',ig SYSTENM
i» AREA | L | BRARY
, VORK AREA
‘ (5440 WORDS) (5440 VORDS)
) !
i J
L 5440 UNUSED :
& 14000B .
140008
: BASIC
PROCESSOR
1/0 DRIVERS
EXECUTIVE
; 4
LIBRA" SYSTEM LIBRARY PROGRAMS -
= 373008 SWAP AREA (256 WORDS)
A !) 3
@ ' 377008 PROTECTED LOADER

]

t

EQUIPMENT TABLE

The equipment table is the area of core which describes the resources available

to the system. It resides at locations 100-166, as follows:

100-133: DIREC - (discussed elsewhere)
134: iDLOC "
135: IDLEN "
136: ADLOC | "
137: ADLEN ' "
140-157 TRAX - this is a table of which disc tracks are physically

available to the system. Locations 140-143 correspond
to disc 0, 144-147 to disc 1, etc. Track 0 of disc O
is represented by bit 0 of 140, track | of disc 0 is

represented by bit 1 of 140, etc. A bit is 0 when the

track is available, 1 when unavailable.

When a system is initialized, all tracks of disc 0 are

made available, all others unavailable. The TRAX table

is changed only by the following commands:

DISC - causes all tracks of the specified disc to be made available.

LOCK - all specified tracks are made unavailable.
UNLOCK - all specified tracks are made available.

160-163: 7TBL - thére is one word in this area for each of the four discs. Whe
the word is zero, the particular disc does not exist, Otherwis
bits 15:8 contain the number of sectors / track, bits 7:6 the
disc prefix, and bits 5:0 the high priority select code. The
prefix is used by the disc driver as the high order 2 bits of
the 8-bit track address.

164: "MAGSC - high priority select code for mag. tape; if nonexistent, ,

€ ‘ MAGSC = 0.

165: PHSC - select code for autodisconnect board, if nonexistent,

PHSC = O.

166: " PHR - 10 x number of seconds allowed for user to log on; applicable
only if PHSCZFO.

.

DISC ORGANIZATION

The disc available to the system consists of from 64 to 256 tracks, depending
upon how many discs exist. Each track contains from 90 to 128 sectors of 64 words

each, for a total of 5760-8192 words per track. The loader assigns tracks as follows

RESIDENT SYSTEM (3 tracks, including track 0)
System library routines (2 tracks)’

IDT and ADT (1 track)

User swap tracks (16 tracks)

Directory : (V-4 tracks)

All remaining tracks are available for storage of user programs and files.

The ADT contains an entry for each available area.

The disc addresses of the individual system fjbrary roulines are stored into
the COMTABLE during loading. Although they are not all the same length, they are
limited to 256 words, and so the system. reads in exactly 256 words whenever it

wants to load such a routine. The loader never assigns a library routine within

3 sectors of the end of a disc track, so that no errors can take place in doing this.
The 1DT and ADT are stored on the same track, as described above.
Each directory track is stored beginning at sector 0.

User tracks are initialized to sector 0. The scheduler optimizes swapping,

however, by writing user swap areas back at the first possible sector, but on the

same track. The SLEEP routine rewrites all user tracks back to track origin (sector
P

0) so that the system will function correctly when it is rcloaded from disc.

During running, cach user track contains a copy of the areca from core location

USER through the core Jocation specified by its ?PROG entry. This includes

all variable data which is relevant to that user's program, and his program itsclf.l
The location of various scctiqns in his program is discussed elsewhere.

Programs and files are each required to be stored as contiguous blocks of
disc. Sincé the disc is allocated by sectors, cach program may cause part of its
last sector to be wasted. When a program is stored (by the SAVE routine), it is
first decompiled and is stored in that form. Only the encoded text is stored, so

that a program may require as little as 3 words of disc space.

Files always occupy an integral number of sectors (l ~;28), each file
occupying a contiguous area on the disc. BASIC does not treat the individual
sectors in the same logical sequence as the physical sequence, but rather inter-

leaves the sectors, as follows:

even # of sectors

Physical sequence: ' 2 3 4 ... 2n-2° 2n-1 20

Logical sequence: I n+d 2+ n+2 N 2n-1 n 2n

odd # of sectors

Physical sequence:] 2 3 4 - 2n-2 2n-1

- Logical sequence: 1 n+l 2 nt+2 “ee 2n-1 n

This format tends to decrease disc seek time when sectors are accessed in a

logically ascending order.

SCHEDUL NG

[hhc basic philosophy of the TSB scheduling algorithm is to provide short
response times for short, intcractive jobs at the possible cost of dcldys in
longer running jobs. The implementation of this involves a queue of jobs to run
which is ordered according to a priority schemei’ The queue is a linked list of
from | to 18 entries, each entry pointing to the next entry, and the last entry
pointing back to the first. The 18 possible entries in the queue are the 16 user
LINK entries, a LINK word in a truncated TELETYPE table reserved for the system
console, and a queue head. The queue head consists of the locations MLINK (0:2),
and is always in the queue. The queue head has a priority of 777778,'which ié
stored in location MLINK+2, and so it is always the last entry in the queue. As
an example of;how this works, assume that users 1, 3 and 6 are on the queue
in that order and so is the system console, in a position between users 3 and 6.

Then the queue will have the following appearance:

s'r
TTYPI+TLINK —
0
7PLEV
\1’
TTYB3+7LINK U] S
7PLEV ‘ {
T35LK ° :
T35PR 2
\rm"
TTYAC+7L IHK — <ni
PLEV L h
HLINK ? |
' i v -
77777

Since the MLINK entry is always the last entry on the qucue, MLINK+]

is a pointer to the first entry, which in this casc is TTY#l. In the case of an
empty queue, MLINK+1 will point to itself, i.e., CONTENTS(MLIUK+]) = CONTENTS (MLINK).
Each entry on the queue has a priority no greater in numerical value than that of
the one it points to. When an entry is added to the queuc, this ordering is always
preserved by placing the new entry just ahead of the first entry with a larger
priority number. Hote that when the first entry in the queue has priority 0, it

will remain at the head of the queue until it is removed from the queue entirely.
The follbwing rules are used to assign (and reassign) priorities:

1. Upon first entering the queue, jobs are assigned priorities as follows:
SYNTAX lines and jobs returning from 1/0 suspend: 0
BASIC commands (RUN, LIST, PUNCH) : 1

Commands for disc-resident routines (GET, BYE, etc): 2

2, Priorities of jobs are reassigned in the following way:

Jobs of priority 2, when they reach the top of the queue, are reassigned

priority 0.

RUN jobs, when thcy exceed their time slice, are re-assigned priority &,

and repositioned in the queue according to that priority. Each RUH job is

assigned a time slice of one second, and if it exhausts that it is assigned

another.

The scheduler always chooses to run the job on top of the queue, so thaf
whenever a job is running, MLINK + 1 is pointing to its link word: The two locations
MAIN and LIB are control variables which tell what is presently in core. MAIN
refers to one of the 16 user programs. It is a pointer to WORD 0 of the TTY table

of the user program currently in core. If none is in core, MAIN = 0.

LiB poiﬁts to the location in the COMTABLE of the disc address of the library

routine in core. LIB = 0 when none is present.

The following conditions must exist for the scheduler to permit execution:

A) for Syntax and BASIC commands:

MAIN set to point to correct user table

B) for disc resident commands:

MAIN = 0
LIB set to correct disc resident routines.

The Scheduler routine SWAPR is responsible for creating these conditions, and

makes its decisions acbording to the values of MAIN, LIB, and the entry on top of

the queue,

Communication Between System Modules

There are six system modules that communicate with cach other in various ways:
the disc driver, multiplexor (MPX) driver, system console driver, scheduler, BASIC,
and system library routines (HELLO, BYE, KILLID, ctc.).

. Disc Driver,

Any section of the system may call the disc driver to perform a disc transfer.

Three parameters are passed:

A = disc address (bits (15:1h) = disc number
bits (13:8) = track number
bit 7 =0
. bits (6:0) = sector number)
B = core address (bits (14:0) = core address
' bit 15 = | for disc input
0 for.disc output)
WORD = -# of words to be transferred°(may ve 0, in which case no actual transfer

is performed).
Called by JSB DISC,1

it is the responsibility of the caller to insurc that the disc is not busy
when the call takes place. This is no hardship since while BASIC or a system library
routine is running, no other module ever initiates disc transfers. As a resuit, the

disc will appear to be busy only if the module itself has initiated the transfer.

Upon initiation of a disc transfer, the variahle ENDSK is set to 1, and it
‘is cleared upon completion. A complete transfer can be performed by:‘
' JSB DISC,}
LDA ENDSK
SZA
JMP #-2

The system never suspends a program for a disc _transfer becausc

the high

speed of the disc does not cause any grecat overhcad.

The value of WORD is not modified by the driver.

{5
.f(

i1, Output to MPX

Output to the MPX driver is performed on a character by character basis via

the routine OUTCH. The calling sequence is as follows:

>
n

character to be output (in bits (6:0); bits (15:7) may be anything)

B = address of WORD @ of user's teletype table.

JSB OUTCH, |
The OUTCH routine places characters into the user's buffer until it is filled

(99 characters), at which point the user is suspended by OUTCH. This is no

problem for BASIC, but due to reentrancy problems must not be allowed by other
modules. The buffer is always empty when a library routine is initiated; so they

normally do not have to worry about it.

After the user has typed a carriage return, the MPX driver does not permit

him _to abort yptil one character is output. - Therefdre, those routines which do

not wish to be terminated do not output anything until they are willing to be.

Each routine must output at least one character (usually a line feed) to allow the

user to type again.

1l Input from MPX

Input from a user teletype is allowed only when he is in idle or input status,

or when he is entering a program tape. Upon completion of input (CR), the MPX sets
his MPCOM bit, and the scheduler, upon sceing the bit set, takes the appropriate

action. BASIC can ask for input from a user terminal by performing

JSB SCHIN, I

Although no other routine ever does this, the only possible problems ‘involved

would be those of reentrancy.

[R———

"IV System Console Driver

The system console driver maintains two flags, T35F1 and T35F2, which

determine its status. The meanings of these flags are as follows:
T35F1: = =1 during output, O otherwise
T35F2: Normally 0, it is set to -1 by the driver at the conclusion of input,

and cleared to 0 externally. The combined values of these is more significant:

Fl . F2

0 0 driver is accepting input
-1 1) input command received and being processed, or
2) output terminated from a system command which is to be
reinitiated
-1 0 : outputting 3
-1 -1 outputting, at the end of which the current system command will

be reinitiated.

Vlhen F2 = -1, the driver will not accept any input. This guarantees system
library programs that they will not be interfered with. These routines are

responsible for clearing F2 when they call the driver for the last time.

The calling sequence is:

A: bit 15 = 0 if CRLF is to be appended, bits (14:0) = # of chars.
B: Bit 15 =1 if punching is to take place in addition to printing,
bits (14:0) = core address of output buffer. ! .

JSB TTY35,1
The driver uses the 36 word buffer T35BF as an input buffer. Most of the

library routines use it for output, and occasionally for temporary storage between

lines of output.

V. Input and Termination Requests
BASIC may obtain input from a user console by performing the instruction
JSB SCHIN, I

Upon return, the input will be in the users buffer as indicated by the
pointers 7BHED and 7BEND.

Either BASIC or a system library routine terminates by:
JSB SCHEN, |

It is possible for BASIC to call a system Iibréry routine directly by

executing:

JSB SCHLB, | ' . ‘
DEF Clocation in COMTABLE of disc address of program}

In the initial system, this is done only with the FILES routine. It is
necessary that the library routine cooperate with BASIC, i.e., not any program

can be so called.

FILES

SYSTEM LIBRARY ROUTINES

The FILES routine is used by BASIC to procecss a FILES statement in a

user's program. The function of the FILES routine is to translate the

file names in the user's program into a table for use during exccution.

This table contains a 7-word entry for each file. Its format is:

1.
2,
3.
4.
5~7,

physical length in sectors (BIT 15 = 1 if read only)
disc address of last logical sector

not set by FILES routine

discladdress of first sector

not set by FILES routine

During operation of the FILES routine, the user's buffer is used as a

table to store intermediate data. Three words of the buffer are used

for each file. The operation is as follows:

1.

2,

Translate characters in FILES statement into the buffer
table, Filenames are extended to six characters, if necess-
ary, and Ehose which are specificd to be public files are
marked by setting Bit 15 of their first word to 1; Possible
errors found in this step are: |

a., file name of 0 or » 6 characters

b. more thah 8 files requested

Perform directory search for each file. Change the last two

words of its entry in the buffer tablec to the disc address

~and length in sectors. The read-only bit is set if the file

is a public file and the uscr is not AOOO. An error occurs
1f the file is nonexistent or protccted. Update the date

word in the diregtory entry for this file.

3.

4.

5

Test to make sure that there is sufficient room in the

~user area for the file table.

Scan the FUSS table to see if any other user has write
capability on the files requested, Mark any such files

as read—-only. Copy the disc addresses of the requested

files into the user's portion of FUSS, Indicate read-

only files by marking bit 7 in FUSS.
Build the table specified above. FILTB is a pointer to
the beginning of the table. Upon exit, VALTB and PBPTR

both point to the first word following the table.

SAVE

The SAVE routine is called by a user to save a program in the library.

Its operation is as follows:

1.

2,

3.

4,

5.

6.

70

8.

9.

Test for the existence of a program name and a non-null
program,.
If the usér‘s‘program is in compiled form (CFLAG bit = 1),
call DCMPL to put it into the form in which we will save it.
Test to see that the user has sufficient disc space allocated
to save the program. The test to be satisfied is:

(disc currently in use) + (length of program in sectors)

$ (disc allowed). E

Search the ADT for the first entry large enough to hold the
program. Remember the addéess of the entry in SAVA,
Perform a directory search on the program to be saved. Fail
if such an entry already exists.
If the directory track is full, call the SUPERSAVE routine to
attempt to reallocate the directory. SUPERSAVE will perform
step 7 itself and proceed to step 8.
Insert a new directofy entry into th? difectory.
Update the IDT and ADT. |

Copy the user's program to its library area.’

SUPERSAVE

The SUPERSAVE Qoutine is called by the SAVE and OPEN routines when they
want to make a directory entry on a track that is already full. SUPERSAVE
assumes that the following words arc sct properly:

(LTEMP:LTEMP+3) = first 4 words of entry.

(LTEMP+4) = pointer to DIREC entry for appropriate directory track
(LTEMP+5) = core address of ehtry which is to precede the new entry

(LTEMP+6)

disc address of entry

1l

(LTEMP+7) length of entry

Note that (LTEMP+4) and (LTEMP+5) are set correctly by DLOOK,

SUPERSAVE attempts to redistribute the directory tracks so that they will
be as eqﬁal in length as possible. This will generally prevent it from
being called very frequently. The opecration is as follows:

1. Scan through DIREC and determine the total length of all
directory tracks, and add 8 for the new entry. If all direct-
ory tracks are full, exit through failure location.

2. Divide total directory length.by number’of available disc
tracks to determine their new individual lengths. Insert these
in the table at (DEFNN+1:DEFNN+4) as negative,

3. Now redistribute the directory tracks. The basic idea of the
algorithm is to £fill the swap area with as much of the directory
information as we can, reading from the beginning; and then
to Write out as much as we can, always making sure that when
writihg we don't overlay any portion that hasn't been read yet,
The fol;owing variables arc used§
(SUP)‘Ki points to the DIREC entry for track being read

f (initially DIRECH). ,
: Ll points tosthe DIREC entry for track being written

(initially DIRECH).

4.

56

6.

11

Ké. # of words rcad so far from track K1 (initially 0)

L2 = # of words written so far on track L1l (initially 0)

P = # of words in core (initially O0)

PP points to DEFNN entry, telling how many arce to be

written on L1,

TG = 1 if we have already inserted the new entry.
If L2 =-(PP), we have completely written track L\ so check
for L1 = DIRD3. If it is, we've written all the tracks, so go
to step 10, Otherwise, advance L1 to the next directory track
advance PP, set L2 = 0, and repeat this step. If L2 # -(PP),
go to:step 5
If P » 5432, wé have read as much és we can, so go to step 7.
If K1 = DIRD4, there is nothlng left to read, so go to step 7.
If K2 = # of words on track Kl, we've read the entire track,
so advance Kl to the next track, set K2 = 0, and repeat this
step., Otherwise, compute the number of words we can read. If
there is room to read the balance of the track, we will, other-
wise we will read the maximum number of full sectors possible,

If this is zero, go to step 7. If it is not zero, read from

sector K2/64 into core location LIBUS + P, Add the number of

words read to P and to K2,

If TG = 0, determine if we can insert the new entry. This will
be so if K1 = (LTEMP + 4) and (LTEMP + 5) - LIBD < K2, If
this is not the case, go back to step 5. Otherwise, set TG

to 1 and insert the new entry in core. Set P to P + 8 and go

back to step 5.

7.

8.

9,

10.

Write section. Set S = 0, This is the numbex of words

written,

Compute number of words we can write on track Ll. TFirst

set A = -~ number of words left to write on the track. If

Ll = K1, we haven't finished reading everything from track
Ll, so if L2-A ?» K2 change A to L2-K2, which is the number
of WOrds we can write without destroying any unrcad directory
information, If P-S< -A, we don't have as much in core as

we are capable of writing, so set A = -(((S-P)+64) x 64), an
exact number of sectors. | |

If A = 0, we can't write anything, $o if S$#D slide the re-
maining P~S words in core up to locétion LIBUS, set S = 0 and
P = P-S, Then go back to sgtep 4.

If A$0, write -A words to sector L2+ 64 of track Ll. If

L2 = 0, set the first 4 words of the L1 DIREC entry to the
first 4 words written. Set L2 to L2-A, S to S-A, and go back
to step 8.

Set the new directory lengths into DIREC and go back to the

calling‘program°

-

GET

The GET routinc is called by a user to load a program from the library.
The operation is as follows:

l. Translate name of program from user's input. If prececded by
a 2, set up for A000 search; otherwise set for searching on
user's id.

2, Perform directory searqho Print érror if not found.

3, Fail if entry is a file (BIT 15 of word 2 of entfy is 1).
Check that the program will fit into the user area. This is
necessary in case a program which was saved under an old
version of the system can no longer fit with the current
vérsion.

4, Set the date into word 5 of the directory entry and write it

back. Copy the program name into the user's table, and if

this is a run-only program, set the run-only bit, unless the
user is A000. |

‘5, Scratch any previous user program, read in the basic portion
of his user area, and then append the library program on.
Set PBPTR correctly, set his CFLAG bit to O, set>SYMTB'to.O,

and exit.

-

APPEND
The APPEND routine is called by a user to append a library program
onto his current program, The operation is the same as GET for
steps 1-4, except that the old name is prescrved, and then continues
as follows:
5. Load user's current program and call DCMPL. Read in the
‘program to be appended at the end of the current program.
6. If the current program is not null, secarch it for the .
sequence number of the last statement, and insist tha£ it
be smaller than the sequence number of the first statement

of the appended program., If o.k, update PBPTR and exit.

HELLO

The HELLO command is used to log a usecr on to the system. Its oper-

ation is as follows:

1.

2.

3.

5,

6.

If the current id is O, there is no user to log off, so go
to step 2. Otherwise, clear the user's section of FUSS,

set the PHON entry in his table to (DATIM+1l) + PHR, and set
his PHT bit. This will force the user to be disconnected if
he does not successfully log on.

Read the IDT. If there is no user to be logged off, go‘to
step 3. Find the old user's IDT ehtry and update his total

time used., Add an entry to LOGGR tb be printed on the system

- console, Set the user's ID word to 0O,

Translate the new .idcode and search for it in the IDT. If
not found, print an error message and terminate. Compare

the password typed to the correct one, and fail if they dis-

~ agree., Also, check that the time used to date is less than

the time allowed,

Add a LQGON entry to LOGGR, and set the starting time into the
user‘’s table. Also insert the idcode, clear the name, clear
the program and clear the PHT bit. |

Search the directory for a public library HELLO program. If
not found, or if it is a file,}or if it won't fit in core,
print READY and terminate,

Read in the fixed user area and appepd ZHELLO. Set PBPTR,
clear the user's CrFLAG, set HFLAG, and clear SYMTB. Change

the user's status to RUN, set TIMEF, and transfexr to BASIC. *
| e

BYE

This command is used to log a user off, It operates as follows:

1.

2,

Set the user's PLEX bit to full duplex, If the user

id is 0, set his disconnect bit, clear his PHT bit and
terminate.

Clear the user's FUSS table and read in the IDT. Compute
the time used and update his IDT entry. Create a LOGOFF
entry in LOGGR. Clear the user's id ehtry and output a
message, Set his PHON entry and set PHT so that he will
be disconnected in 4 seconds (the.time required to print

the message). Then terminate.

s re———

KILL

The KILL routine is called by a user to delcte a program or a file

from the library. Files which are being accessed by another user

are not allowed to be killed. The operation is as follows:

1.

2.

3.

4.

Translate the program or file name and perform a directory
search. Fail if illegal name or the search fails.

If the entry is a file, search the FUSS table to see if
any other user has access to the file. If so, print a
message and terminate. If not, clear the user's’section’
of FUSS.,

Delete the entry from the directory and adjust DIREC.
Subtract the program length from the user's IDT entry, and
restore the space to the AD_T°

If a file was killed, read the user's brogram invand de-
compile it°' This guarantées that any'old references to

the file will disappear.

RENUMBER

The function of RENUMBER is to assign a new set of scquence numbers
to a user program. The uscr may specify the sequence number of the
first statement and the increment between statements. If unspecified,

these are set to 10,

There are actually two sets of numbers that must be modified. One set
is the sequence numbers themselves, each of which occupies the first
word of its statement. The other is the set of references, which are
labels in GO TO, GOSUB, RESTCRE, and IF statements, Each of these also
occupies one word. For programs in compiled mode, they are pointers to
the statement they reference; in decompiled mode they are the actual

statement number.

The primary ﬁechnique used is to change all the references to absolute‘
pbinters (if in decoﬁpiled mode), then to change all the seguence
numbers, and then (if in decompiled mode) to change the references to
the new statement numbers. References to nonexistent labels are left

unchanged.,

Because the process of changiﬁg all the references to absolute pointers
can become quite time consuming (due to the search that must be per-
formed for each reference), a table is built in advance essentially
dividing the program into 32 parts, each containing the same number of
statements. For large programs with many references, this effectively

cuts the time down by a factor of close to 32,

The subroutine RENSK is used to scan for references. It maintains two
pointers, P and Q. Whenev%r it is called, it moves P to the next

reference, and sets Q to point at the statement following the one that

P is pointing at. It takes advantage of the fact that any references

within a statement are always the 1aSt word or words of the statement.
Before calling RENSK for the first time, Q is set to point at the be-

ginning of the program, and P is set to Q-1l.

The operation of RENUMBER is as follows:

l. If null program, terminate immediately. Otherwise, read
in user program,

2, Translate and check parameters M and N,

3. Scan through program and make sure that the new sequence
numbers will not exceed 9999,

4, If program is in compiled mode, go éo step 7. Otherwise,
set up a table in ERSEC which divides the program into 32

parts. The result is that for each I from 0 to 31

ERSEC fI] = sequence number of first statcment in part I,
ERSEC [1+32) = Absolute address of that statement
If there ére 32K + L statements (0 L ¥ 31) in the program,
ERSEC [I] is the sequence number of statement
(K+ 1) I +1, if I<L
KI + L + 1, if I2L, K>0
L © if IL, K=0
Set Q = PBUFF, P = Q-1. (PBUFF points to the first state-
ment) . |
5. Call RENSK to find the next statement referénceu If there are.
none left, go to step 7. Find the largest I for which
ERSEC [I] & (RENP). If there is none, the statement referenced
%:i\ . does not exist, so go to step 6. Otherwise, test all stateménts

from (ERSEC [I + 32]) to either (ERSEC LI + 33]) or PBPIR,

depending upon whether 1<31 or | = 31, If found, set (RENP) to the location

of the statement rcferred to, and repeat this step. Otherwise, go to step 6.
A

Set (RENP) = (RENP) + 1000008 and go back to step 5.

Change the sequence numbers of all statements, according to the M and N
parameters, |If compiled mode, terminate. Otherwise, set Q = PBUFF, P = Q-1,

and go to step 8. '

‘Call RENSK to find the next statement reference.. If none left, terminate. If

(RENP)& 0, the reference was undefined, so set (RENP) = (RENP)-IOOOOOB, and
repeat this step. Otherwise, set RENP = ((RENP)) and repeat this step.

NAME

The NAME routinc is called by a user when hc wants to assign a name
to his program. The program name is placed in his tcletype table.
'~ The operation is as follows:
‘l. Get an input character. If a carriage return chanée it
to a blank. If a control character, ignore it and repeat this
. - step., If a "g", and this is the first character, print an
error message and terminate, |
2. Add’the character to the user's name area., If< 6 characters,
go back to step 1. Otherwise, restore the RUN-ONLY bit, and
get one more character, If not a blank, print an error mess—’

age. Then terminate.

CATALOG

The CATALOG routine prints a list of all programs and files in the user

library. The operation is as follows:

l. Perform directory search on the program with all nulls. Get
first directory entry following the one sought.

2. If the entry does not belong to this user, output a CRLF
and terminate. Otherwise, output the 6 characters of the
name one at a time, then a blank, then the 4 digits comprising
the length of the program or file, and then another blank.

3. If <6 names have been printed on the line, advance to the
next directory entry and return to step 2. Otherwise, output
a carriage return and suspend until the buffer is almost
empty. Note that during step 2, the user's BHED word was set

‘to point to the beginning of the last program name printed.

This will insure that step 4 will work.,

4, Read the name of the last program printed from the user's
buffer and perform a directory search. The reason for doing
this in this way rather than saving a pointer to the directory
is that during the time CATALOG was suspended, the directory
may have been changed in any way. Get the first directory

entry following and go back to step 2.

o

LIBRARY
The LIBRARY routine prints a list of all programs and files in the

public library. Its operation is identical to that of CATALOG except

that A000 is used for directory searches instcad of the user's id.

DELETE

The DELETE command allows a user to delete a scction of his program.

He can specify two parameters, M and N. M refers to the first linec

to be deleted, N to the last. If N is not specified, the entire pro-

gram is delected, starting at line M. The operation is as follows:

1.

2,

3.

4.

5.

Translate and check parameters. If N is not specified, sect
it to 9999,
Decompile program,

Locate range of statements to be deleted.

Move portion of program following deleted area up against

portion preceding.

Reset PBPTR and exit.

TIME

The TIME command prints the user's console time and total time. The

operation is as follows:

1.
2,
3.
4.

5.

6.

Print "CONSOLE TIME ="

Read IDT.

Compute console time and print it.

Print "TOTAL TIME="

Find user's IDT entry. Add the timewin there tb the console
time and print it.

Exit.

PROTECT

The PROTECT command allows user A000 to'protect a program or file,
Program protection means that no other user may list or save the
program, File protection means that no other user may access the

file. AO000 files are always protected. against other users writing

on them. The operation is as follows:

l. Check for A000.
2. Translate and check the program or file name.
3., Perform a directory search on the specified program. Fail
if not found. | *
4, Set the protect fit (BIT 15 of word 1 of the directory entry),

write the directory back to the disc, and terminate,

UNPROTECT

This is identical to PROTECT except that it clears the protect bit.

OPEN

_The OPEN command is used to open data files. The user must specify

the filename and file length in sectors (1 to 128). The'operation is

as follows:

1.
2.

3.

4,
50

Translate and check the file name and length,

Check the IDT and ADT to see if a) the user has enough

disc allocated to him to satisfy the command; and b) there
is an area on the disc which is large enough to accommodate
the file. Save.the location of the ADT entry and its inform-
ation, but don't update it until we know that there is room
in the directory. :

Perform a directory search on the file name. If found, this is
a duplicate entry, so terminate. Otherwise, if the directory
track is not full, insert the new entry. If it is full, call
in SUPERSAVE to restructure the directory and insert thekentry.
Update the IDT and ADT appropriately.

Initialize the file so that a =1 (end-of - file) is at the

beginning of every sector., Write the file to the disc and

then terminate.

LENGTH
The LENGTH command prints the length of the user's program, as it
would be if saved. This is only the length of the source area of
. the program; ahd‘includes neither the fixed portion nor any of the
tables used at run time., The length is determined in one of two
ways:
1. if the user is in decompiled mode, length = PROG-PBUFF,
PROG is just a copy of PBPTR, which points to the last
word +1 of the program. PBUFF points to the first word.

2, if the user is in compiled . mode, length = SPTR-PBUFF. It

is necessary to read in the user's program to obtain SPTR.

ECIO

The ECHO command is used to control the computer echo of telctybe

input. Echoihg is determined by the user's bit in the word PLIX.

Bit = 0 implies no echo, 1 implies echo. The user Will want echoing

if and only if his teletype is full duplex. The command format is:
ECHO~ON . for full duplex,

ECHO-OFF for half duplex,

P

REPORT

The REPORT command prints IDT information on the system console.

From each IDT entry, the user id, time consumed, and disc consumcd

are printed. The entries are printed three per line. Note that the

time printed on the console does not include any time for currently

“active users, since these are not added to the IDT until the user logs

off. The operation of REPORT is as follows:

1.
2.
3.

4.
5.

Print heading and suspend.

Read portion of IDT containing next three IDT entries,

Translate id, time, and disc of next three entries into
output buffer. If less than three left, only do those.
Print and suspend if necessary, otherwise terminate,

Go back to step 2.

. RESET

The RESET command modifies the time to date of a user's IDT entry.

There are 3 cases:

1.
2,
3.

5.

6,

a) all users set to zero;

b) one user set to zero;

c) one user set to specified amount.

The operation is as follows:
Read IDT.

Set ID =T = O,

If no parameters, all users are to be set to zero, so go
to step 5.
If no time specified, go to step 5. Othérwise, set T =
specified timeo‘

If ID = 0, clear word 5 of all IDT entries., Otherwise, locate

specified id and set word 5 to T.

Write IDT back to disc and terminate,

CHANGEID
The CHANGEID command is used to modify any or all of the parameters
" in an IDT entry. The paramecters that can be specificd are: password,
time allowed, disc allowed. The operation is as follows:
1. Translate id specified. Read IDT and locatc the specified
id. Fail if not found.
2. If password specified, insert into IDT entry. If foilowed
by comma, go to step 3, otherwise to step 5.
3. If time specified, insert into entry. If followed by comma,
go to step 4, othefwise to step 5. '
4, Insert new disc value,

5. Write IDT back to disc and terminate.

* DIRECTORY

The DIRECTORY routine prints a list of all directory entries. The

entries are printed one per line. The items printed are: 1id,

- name, date, disc address, length. The operation is as follows:

l. Print héading and suspend,

2., Set up parameters for directory secarch for null program.

3. Perform directory search.

4. Get first directory entry following the one sought. If
pseudo entry, terminate. |

5. If id of entry is different from that of the preceding’
entry, place the ascii representation of the idcode in the

output buffer. Otherwise, place blanks in the buffer.

Save the idcode in location 35 of the buffer.
6; Convert the ﬁame, date, disc address, and length into
- the buffer. |
7. Print line and suspend.
8. Set up parameters for directory search. These can be gotten

from locations 35, 3,4, and 5 of the buffer. Go to step 3.

STATUS

The STATUS routine prints a summary of the various system rescources. The only

noteworthy thing about it is that the subroutine STAPR, which forces printing of

a line and suspends, is only called from top level code. 7This is because any other

subroutine entry points will be lost by overlays while the STATUS routine.is suspended

STAPR fools T355P into thinking il was called from the location which STAPR was

actually called from. The operation of STATUS is as followun:

l.

.

O N O B

Print IDLOC, IDLEN, ADLOC, ADLEN
Print disc addresses and lengths for each of the four directory tracks.
Search the ADT for the first five entries with length 0. These are the

five system tracks, Print their disc addresses.

Print disc addresses of users 0-7.

Print disc addresses of users 8-15.

Print select codes for magtape, phoncs,iand discs.
Print TRAX in 4 lines of 64 digits each.

Terminate. .

SLEEP

The SLEEP command is used for system shutdown. It operates as

follows:

l. Remove all users from the queue énd make sure they can't get
back by:
a) clearing MPCCM,
b) setting all status words to -2

. c) setting T35LK to point to MLINK+1

2. Output the sleep message to all active uéers, preceded and
followed by a CRLF.

3. When ail terminals are done outputting (IOTOG = =~1), disconnect
the telephones.

4, Update the IDT entry for each active user and create a logoff

entry in LOGGR. .

5. Clear FUSS to zeroes.

6. Set all user swap areas at track origin. This corresponds with
the copy of the system that is pn the disc.

7. Wait for the console to finish any output and then read the

overlay.

The SLEEP overlay packs each library track so that the only unused
area is at the end of the track. It also builds a table at TLTAB,
which is of length 255, TLTAB [T] = - length of track T. This is

used by the magtape dump routine. The operation is as follows:

8. Read in ADT. Set T = 1., T is the track number.
9. If track T is locked or is a system track, or has m\ADTentn,wiﬂj}eng“

= that of the di
there are no ﬁ;ggrams on it, so set TLTAB [Tﬂ = 0 and go to step,

6 15 °
Y
10. Write the ADT back to disc. Set S = R = the disc address <T, 0> .

Set P = Q = STAB, P and Q point to a table which will scrve as

SLERD (contd)

1ll.

12,

13.

14.

15,

- 16,

a subdirectory. Each program on track T will cause a two word

entry to be created, the first of which is the old disc address
of the program, and the second of which is the new disc address
of the program following.

Search the directdry for the next program on track T. If none

left, go to step 12. Otherwise, set MEM[P] = old disc address

of program, set disc address in directory entry to SLES, P=P+1,
MEM[P] = SLES = SLES + length in sectors of program, P = P+1,

and repeat this step.

Read in programs. ‘If Q = P, we have read in all the programs,
s0 go to step 13. Otherwise read in MEM [Q + 1] =R sectors
from disc address MEM [Q] to core address LIBUS + sector (R) x
64, set 0 = Q+1, R = MEM[Q}, Q = @ + 1, and repeat this step.
Write R-~T sectors to disc address T from core address LIBUS,
set TLTAB [T] = 64 x T-R .,

Read in the ADT, and.replace all entries referring to track T
by either no entries if the track is/full, or by one entry
with values R and # of sectors/track + T-R

Set T=T+l. If T <256 go back to step 9.

Write the ADT back to the diéc, write thefequipment‘table
(100-177) to track 0, sector 4, read in the dump routine, turn

off all the IO and interrupt system, and jump to the dump.

NEWID

The NEWID routine adds an entry to the IDT. The operation

is as follows:

1.

2.
3.
4.

If the IDT is at full capacity, print‘an error message
and terminate.

Reéd in the IDT.

Translate the parameters.

Search the IDT for the specified id. Fail if found.
Otherwise insert the new entry in its appropriate position,

update IDLEN, write the IDT back to disc, and terminate,

| KILLID

The KILLID routiné removes a specified id from the system. The

operation is as follows:

l. Get the id. If the id is A000, fail. This is because the .

- files belonging to A000 may be accessed by other users, and
removing them would be almost impossible.

2. Search the IDT for the specified id. If not found, terminate.
Otherwise, delete the entry from the IDT and write it back to
the disc,

3. If any user with the specified id is currently on the'system,
set the id item of his TTYTABLE to O,zset his status to ;2
and his MPCOM bit to force him to be disconnected, and remove
him from the queue if he is om it. Also,';ero out his section
of the FUSS table.

4, Load the overlay section. This section will remove from the
directoxry any entries belonging to the user being killed, and
will release the space occppied to the system.

5. Remove all directory engg;es belonging to this user, and build
a table wﬁich will be u;ed to patch the ADT. For each directory
entry, two words are placed in the tabié, fhe disc address and

length of the released area.

6. Update the ADT, using the patch table information.

UNLOCK

The UNLOCK command is used to restore disc tracks to the system,
The operation is as follows:

l. Interpret parameters, setting F and L to the first and
last tracks to be unlocked.

2. Scan the TRAX table to determine the number of tracks

- to be unlocked. Set CN to this number.

3. Set CN = min {CN, (5440 + IDLENA M64 + ADLEN)/2} . The
‘parenthesized expression is the number of words that can
be added to the ADT.

4, Read the ADT into core location LIBUS + 2 CN.

5. Set MOVED = LIBD, MOVES = LIBD + 2CN.,

6. If track F is unlocked go to step 8. Otherwise, unlock

it by clearing its bit in TRAX. If MOVED = MOVES, we

can't insert an ADT entry, so go to step 8.
7. If MEM [MOVES]< F, move 2 words and repeat this step.

Set MEM [MOVED]

F, MEM [MOVED + 1] = / Sectors/track, MOVED=MOVEI
+ 2,
8., IfF#£L, set F=F + 1 and go to step 6. Set ADLEN =

ADLEN - 2CN. Write the ADT back to disc and terminate.

LOCK

The LOCK routine is used to tell the system that certain disc tracks

- are not to be used. Only tracks which are part of thc program library
are lockable, but tracks which contain active files are not. Any pro-
grams or files on tracks being locked are removed from the system. The

operation is as follows:

l. Interpret the parameters and set F and L to the first and last
tracks to be locked. Check that none of these tracks arc mentioned
in FUSS, is a directory track, id track, system track, or user
track.

- 2. Delete from the ADT all entries with disg addresses on the tracks
being locked. |

3. For each track being locked, set its TRAX bit to 1.

4, Read in the LOCK overlay. The overlay will delete all dircctory

entries for programs on the locked tracks, and also updatc the IDT
appropriately. To do this, it maintains a table of IDT updates,
each entry containing an id and a sector count, which is —#ybf sec-
tors removed from that id.

5. Set ID = LIBUS - IDLEN, P = LIBUS + 5440, I = DIRDO. ID is a bound
on the IDT, P a pointer to the update table, I a pointer to the
DIREC entry for the directory being scannezi°

6. If P < LIBUS - MEM [I] , we can't read the directory without
.clobbering the update table, so call LOCFX to‘rcmcdy the situation.

7. Read the directory. Set MOVES = MOVED = LIBD, D = LIBD - MMCM [I].

8., If MOVES = D, we're done with this directory, so go to step 9.
Otherwise, if the entry pointed to by MOVES is not on a track being

%%hm | locked, perform an 8-word move and repeat this step. If it is on’a

8

LOCK (contd) (

track being locked, we want to delcte the entry. Set T = id of cntry,
Tl = - sector length of entry,MOVES = MQVES + 8. If P< LIBUS + 5440
‘and MEM [P] =T, set MEM [P + 1] = MEM [P + 1] + T1, and rcpeat this
step. If P = D, set N = MOVED, perform a move of length D - MOVES,
set D = MOVED, MOVED = MOVES = N, If P = ID, write out all words
from LIBUS to D-1 to the directory track, call LOCFX, and read the
stuff back in. Set P = P-2, MEM[p] =T, MEM [P + 1] = T1, and repeat‘v
this step.

9. set MEM [I] = LIBD - MOVED, write out the new directory track, and
update direc. If I # DIRD3, set I = I + 7 and go back to step 7.

10. Call IOCFX and terminate.

The LOCFX subroutine is used by LOCK. to update the IDT from the update

table. It operates as follows:

l. If P = LIBUS + 5440 then exit immediately. Otherwise, read the
IDT and set B = LIBUS - IDLEN.

2, Set B=B ~ 8, If MEMIB] # MEM [P!, repeat this step. TOthefwiée
set MEM [B + 71 =MEM [B+ 7] + MEM{P+ 1], P=P+ 2. IfP#
LIBUS + 5440 repeat this step. Otherwise, write the IDT back to

disc and exit. .

PURGE

The PURGE routine is used to delete from the library all programs

or files which have not been referenced since a certain date. The
operation is as follows: !
l. If HELLO program exists, assign it today's date. This is
because the HELLO routine does not perform this function.
2. Intérpret parametérs ana set DTto the purge date. Make sure
that DT & today's date,
3. Make sure that FUSS is empty. This is to avoid killing any active
‘filesy
4, Set ID = - max (LIBUS-IDLEN, LIBUS-ADLEN)-4. This is used to de-
termine when the update table described below has reached the
point when the updates must be made.

5. Set P = LIBUS + 5440, I = DIRDO. P is a pointer to the update

table. Each entry in the update table contains 3 woxds: .
a) ia
b) disc address

c) length in sectors

6. Read directory. If LIBUS-MEM [I]>P, the directory won't fit,
so0 call PURFX to remedy the situation. Then read the directory.
Set MOVED=MOVES~LIBUS, D = LIBUS-MEM [I].

7. Test next entry. If MOVES = D, we're done with this directory

track, so go to step 11. If MEM [MOVES + 5] % DT, we don't want to

delete the entry, so perform an 8 word move and repeat this step.

)

MEM [MOVES + 6],

8. Entry deletion. Set T = MEM.[MOVES], T1
T2 = (- MEM [MOVES + 7]+ 63) < 64, MOVES = MOVES +8. If P-33%D,
e%hx. we have room for another update entry, so go to step 9. Otherwise,
set N = MOVED, perforn® a move of D-MOVES words, set D = MOVED,

MOVED

MOVES = N,

PURGE (contd)

9., 'If P+ IDZo, we can add a new update and still be able to

load the IDT and ADT, so go to step 10. Otherwise, write LIBUS
through D-1 to the disc, call PURIFX, and rcad back LIBUS through
D"lo

10. Make entry in update table. Set MEM [P-1] = T2, MEM [P-2] = 71,

MEM{ P3}= T, P =P - 3, and go back to step 7.

11. End of directory track. Set MEM [I] = LIBUS-MOVED, update DIREC

and write the directory back to the disc. If I # DIRD3, sct
I=1I+ 7 and go to step 6. Otherwise, call PURFX once more and
then terminate,
The PURFX routine is brought in as an overlay. It operates as
follows:

l. Save MOVED and MOVES in M and ﬁlo

2. Read the IDT, set B = LIBUS-IDLEN-8, set PP=D.
3. If PP=LIBUS+5440, write back the IDT, read in the ADT, and go to
step 5.

4. Search for ID. If MEM [PP] # MEM [B], set B = B-8 and repeat

this step. Otherwise, set MEM [B + 7] = MEM[B + 7] - MEM[PP+2],

set PP=PP+3, and go back to step 3.

5. Update ADT. If P = LIBUS + 5440, set MOVED = M, MdVEs = M1,
| write the ADT back to disc, set ID = -max(LIBUS-~IDLEN,LIBUS-
ADLEN)-4, and exit. Otherwise, insert into the ADT the entry
specified by MEM [P + 1} and MEM[P + 2], set P =P + 3, and repeat

this step.

ROSTER
The ROSTER routine prints a listing of the id_codes of all active
uSers. These are obtained from the ID worxrd in the 16 TTYTABLES,

The absence of a user is indicated by the word being zero,

DISC

S ———

The DISC routine is used to add discs to the system or to remove discs. It operates

'.

as follows:

Interpret parameters.

If specified select code is 0, make sure all disc tracks are locked, set

0 into the TBL entry, and terminate.
Otherwise, make sure that the TBL entry is 0.

Search TBL and determine the lowest numbered prefix which has not been
assigned to any other disc with the same select code. Create a TBL entry

containing the number of sectors/track, the prefix, and the select code.

Unlock the disc tracks by clearing the four words in TRAX corresponding

to the specified disc.

.

Insert one entry into the ADT for each disc track. If fewer than 64 entrie:

can be made, some tracks will not be used.

tf there are more discs than directory tracks, allocate a new DIREC entry

of length 0, and exit.

MAGTAPE
The MAGTAPE routine is used to set a select code into the location

&

PHONES

The PIIONES command is used to specify the disconnect parameters.
If the seleét code given is 0, it sets PHSC = 0 and forces the
scheduler to'skip around the disconnect logic. If the select code
is non zero, it sets PHSC, constructs the LIA and OTA instructions
in the phone logic, allows the scheduler to enter the phone logic,
and initializes PHL to the cufrent state of the disconnect input.
If a logon time is specified, it multiplies it by 10 and sets it
into PHR. If none is specified, it uses 120 seconds. The specified v
time can be no greater than 323 in‘order that the various chéckingv

algorithms work properly.

Cloc K _ TNILREIPT

L&eﬁ.ﬁ?’_’....{’ﬁ!}' .. QJ—MJJ

res ("Q‘at 'g'ﬂ a4 "{ ‘:,a‘{.)

_ | [PReeEG
EEpsove FRoM QueEus

(move 1o 00 4 4 rcu)

N g\'
PLOc & oN Qura i
by PRIoRITY

|
O, S
Clod « =10 }
v

4(521'. f‘imkrs oo el)

41

l N < PHoNES INPUT

AePHNVPAL VINT
8.« IITXENemased

iy xes
! EMExT MASK
| 7637 Nexr agrr) ©
_ |
\/_‘-m o————
lf_ﬁ;_vr A ANP 6']

-wLM— S S S

WE NOW HAVE MASK
oF INTERESTING
| vesR .

———t v A

T Q.

{s:r PHOM :}____‘_
Uj tA

L—:f

7121 pid o

-2 PHO ~» PHoNES Out PUT
PNLe-PH N

@I\ﬁf'.}’}—g/<7n /5'- PR "“‘»[g;;: S ;j

.H fo RV)

RESTORE pLBL

SET
— .

el

YN }___._____Mo »(2)
‘ lZ;

T80

0 e s aoe

. TLEAR
({66

.
-
.
<
-
——— 2T
/o
S 0 e

SLEAR lr]o ((..
o 2 TR FLD 2
lifntf?’_"",:f-‘l ~ '{" : —lg.f:::—.'_) R

S

OUTFV, LLG
KIS

[T

]

(‘f("ﬁ for I .’n('.v'.“”,)

r)20 (37 DL

EX A \.T’ \Sr.’.’- OU7{I’

e et e

4 ‘oh{’ " iFJ‘ffu AT %

]"l'(‘_/r
3LLL AL
[6uTFoT) 5[, f

T

[
:)______.

Efbof Ar;w.._e.:.'é

|-

PA
(sw 1 P p R ‘r.’.. _..- }

Lmn%,?‘ 1pie QRuPT

= et s i

< e w00

LNE;&.O(Y

FRar v g DLEL

(fwcc honir.*e\'v)?*'s:‘)r. s
of \'!brema\ Aype obs) e
OO PRE - uag_g ‘

S TR0 -
(Se.‘l st arf'm% a&éw,:ﬁ k,‘i_ l r"‘-s’...’.-s:.‘i.‘...:..J

ET TItALR T [C‘-Ot—ﬂ

-‘uuu
el

* (only #imcslice on RUK) ‘.I.".!T’,‘.‘,’,"" (s707 = R

(set up 4o run 3 job)

PR'“RI:\;::J
,..}, e

lresvone n,@ll,z,r;;/“

e

lé!i(\fz&.g.@lﬁ&&a&ﬁﬂ

[Ix:r viA PR;:‘:L‘»‘

Leaodin, SUX. 2ol

v
N @0smwtent st A WO gt ¢ e s 4y

¢ ey
D'()"‘[n .\AHUHL u\-(.(.o lac.(_{l

\r:m\:;‘t ﬁ |M€ V\’J‘UJ
‘c!cdv f~7f£914 bit

(sfafuq »H? "Y""""'. (8‘»‘017 h'..ml/e./)

AN O) disconnget)

N V\i)

Swilch i siafus i S hoort weavtst
e —— "L""'k,% &Cé«::ev'i g‘: 'o{v\)i)s
) }\nLui ot (e5)) @hort,alyeniq rondicd)
A viput
. | - [Efaivi < (viery]
' lwu}-l;:“b'.';\“vvvpf)

e
previii<e (hinh priovity for interact)on)

(3 bort Te%ueg’f)

$tatus « AP.-oRﬂ

g

(fme curegat ou{’puf char 1o b tis i.'-ST,

no ¢ffcct if net evi Pumvd)

M‘y\j‘ aboet vwe"«(sbgc\ .
! |

L4

prise iy <o)

s
(-:31' V<fr .or ‘\,Mé(l

‘\ ‘ Chi us & t'\;_pj;__
i
®

(ha V\dtc .‘Cm P‘%‘\l lin (_‘)

yel

I‘V\!' "h -?Mﬂ’l‘a

sccong hyfior?

,@ .

C*“[ercd ew'f lire £€ca v.,-};-

coraynand e

| ("317:‘)45’-' (LLLD D)-ET0n prin ‘..“‘.ia-JM'QQ

‘Yl.

elcav 1o ¢ la.\]
" {

. - b e 'la - neema, et
) . g s N ! L
‘__‘i::- LD L LR ERYE >(I.‘:.'.. ‘,\.:..j

lSa

Gzr‘r‘;;\ cleny N

. vt
. e cha/\?c e e awa
- ‘ t"i 'f [. 't
. — v’g AR ¢ [N
.
3
d
(Prorzen © P'I:'M{m':?— (sAvE, w77, o DS PR RT R
= T LN

(Tyer = cortma %F ”.WQW»:‘;H atel, L'*Q

v o mnv

LL? 31’2 s to speciiy f,owwmm:(

es At Sty dane sy
696 .!1 _.C“OﬂMANéO) ¥ ;‘/m»’ ﬁl(N r.(u:fiwl

l - S . v p s s e

slarting S}Ercss: LIGUS,
?ﬁl’“ﬁ'*y T L

L
’
®

a0

_ c:"&_)w@
=
(Q:E{it. i *) =@

He

I Tof e g '.'“”ﬁ.'
o T

RETURN

Iaw; {“Fa\r,‘ut
Pecs '_u‘ .

e o oo e \ L., i
'?.’ Meoged (.?}“‘)' i ;‘)
~.‘-1L«H ‘.

L e e

FLT 1an]
L
INaItinT? ﬂ_’;m«}?fs‘z
T

(i1 81 7 07 1

YES .

. < .
478 b’u) S -
| LlerbL.\R _ S RETURL
"\ SYSIEM RoyTINE? ,

RIS :

3e7 e
s

AWNATIATE TRANSFER
10 CoRE

Y

0

JA‘\/@.»- Lo

)

o _5:2 ve I_r ¢ ,r /(_’-V...J

INET T Mrx wl.‘um
INPTE «-TNPTE v T3
) <- CLD TNVPTF v ,7/ I T ARBTLT

PR e

oo cwm—. -

| (e S}%E_@—’?i@’r(23 4

\NJ
MPOUT —» 01 PX output |
REsToLE REGISTEIL E
ENABLE DPLwICE \
EXTT |
: :
f
1
€~) .

QEER 3T

SIRAfoRT AR <D

S S e o s h

(S1ATVUS 2708, SYNTAX, 08 THEJE Y Yo e

L SR
]ns

T
SR T

ARG 7577 Jemi

AL A s o

v

PRITR

SET TiMERk =M
SET CLARALTE

SET TG 170 LNPBA

R20
ser 27T COLNTTRE - O

e n s rant whn g AR et s et

s) I\l.)}
oy e

e e,

- . vy

\T‘;:‘:%::{’j‘ ’:“[’.— .‘Q* c &:v.,c

LADOR

JERNE 7S
CLEAR TRi:™ ‘
S) [

SET ARTST

'“6?!‘”‘6— fos
Vpprrammoantre mvarbtnes 1 oo

{Bpute ointel]

D P et

——————

/

T AN of ()

AT

!

RUL AGROR T)
w:s

IR 41,3, Vo
SET Mmpcos

PO . .

MPr oo,

ReESLT TIMER To - ¥,
SET VP (aresttfy |

INPUT e _.L

- »
romssrmnas |,_l - ..wmI

cvurPour

......._..,._“_L_._..Q,L‘,,& o .

Ht[l‘-‘([»!' wto
 EMNRA. 1T J

CLCAR LADDR ENTRY
& lH,].f"” &7

ESCAr i lnirpntr? >J ‘;\’“""

No

(FeTo, ey Lr,x or 7

R 073 [surper \ ci LP\->E&x T

EvT

- (Byre: e < oz 1E

] INSERT 18 F:»-)H‘&ﬁ’.’)
e TN - e e b el

ST SIART nN(

| MELY HUEr s IS

D s

’@\)Cl"(&?

NN | .
Ef E? Hﬁ’coM

KX 7

v L-‘ N

[&Act NEYT B,r

NE 4 u/o uf'

LAJT ’70F ’_"’C(‘x
cH Il *cht.f'
e N,
l/&t.w"“ _,_]
s

—
(LALT Cupl?
'Nraan. e 1 22 e

Yig

1Y

ToTON -

[B

}ca mk”inpmj

-

Py ' Y
CSTAT s AT E

O e e b obethe o s s
N Y&
’ (""; ST};, \.—D.I

S S
RIGL" GurFLr
Lorsmrifa.....

-~ [Ny
K]

C-b(l‘\;': ity
Ex T
PREFAVE WNEAY
CHA (‘J_“"«'HL
,‘M.\Lw l'-'
ATV chgafc? plbitn Ex
da

O
LN_.f;;,jTu. “’D

\.

pg

e Ay T I € i

YLw

‘,..."!..?..{ o c.um,,“gﬂ*f;
o Lerrm e

(wWas T'M/\l 157 \ MO X

-—-a SET 'M{'Lc, ""'1

e rhonay

ENTER ol INTERRYPT ENIER fok ovTPUT

‘L_.“..."..., [//W/I/ YT 4L At'"ff‘d
save 1,5, £] "

o o s 21 8.

L7e Nl h lef.i:.’{"ii} :

_.h #o e men \.-‘.........o-
@’:.-’};w/ 73 .s"‘»y/ - =/

SET vP RETURN ALP.
\ 706 ¢ o
("}.2"0 v o
eeep Cbg_tfws 1o T IS SEOAELE Vg tar
t4o . ”.’f.,.’. on
. - PN T .
GET WNPUT Wil (Te 1170 7 0 D2 T L e 2
CHAR Yes 73 Th N boie i
K \ e o
“ . g - “ *
- = TENTE 100002 ..
(LR RUE s 3 7ADR & [CRUFITADR,, .)
S KoFF — J e -
"\No -
- oAb [f =5 OF & RExaf‘»/u
G SO . OUT FoT T 10 71\,1..-..-.................._.:;. Coinizir DEVICEE
CHARACTE R FENTE L e
SRR v N >
e . N v
a3 . Ex IT
A4
Escare! .Zug...,,, TEG i <= =1 -—~>@L T’ \j
. ® TCNTETAD [4~0
ALT 08 * TH175«
s 2% 120000
4' OUTfuT TO DEVICE
YES
mCTENT= O o 1\
e t&::
wy»u« e .
TENTCTCNT =)
TETEE(Te T 22 R urten
P Y(‘ o ww e,
LR vsm.-‘}
:,QL" W‘Jw'
r‘gw’:u-nvw 5)
Py
TCHT=72? LARE
@
Vv
ISERT N GUEFER
_Zf_vi?c- TENT ¢y
3

- o ————

AL N RA N A R A RO N N S

Lon],

ResTNT FATL OR
\RLSTART?
l FAIL o s 4

6‘7:1«5 fF:’::)-t—Q~.r[j{:';:Jf F e L—-—’E{'r ‘C""E"'} ' "'l ‘.”',::..":]
T o TR o }

N

. :;r[RIZUPT FReM _x_i.‘s \
RESTART SECTron?)

e Gl

[shvE Z,a,z,gjﬂ

ASAVE INTERRUPTL }
FLAGS, TN n._{ '

e, I . ot v L L RR——

l

Ser roe A

F“ 6,I«7
Zameleels, Lol

Sy bt

irss TG I e Asii s |
'-'\5{' r J

é
v

[MPooTe =1

s cansde | _r---~~l,£,s.r..£,\il
.) e a

st rung [z) S8l (F T~

TV e T [
sre Cioxis

3 $TC TIvifl
SET /A TRITEAPT
-3 - — . -~ ——
’ @gy ¢T.LT] € Rourrg [1])-LL =
Wm, - -
[OVmmy THTEREUET [T o] T € T e

S N) 3 r~ -.“’ l ’~”]
€~ 05)-C~-s{ RESTORE A, 8,50, CLAGH I—> Exi T

N

RLsey W'E)".'TS} ‘l .

W"n-vhowv‘ﬂi""

M
owin FAn No. . ==~ SALL DISC) jrrdmmme o
G ie D D Fel [~ owwre [ASE2.07ed]

}?&s

JME To REGTARY
VVSe TRANSTER

(SEARCH For DILLLToRY LNTRY)

Lol
A\ _
LLT"«- (orrecs]

T e e -
R
TRY OM TATy

733 o9).._._.._...,>'“~ ,{ LT e-uTq- T |
’i»
?

S, ()
7 _
{ MEMLiTisrsiTusy] 2 (mb LT3) 7.‘«‘n<n" ;

- e Ao

$

'

.
T e e

\
WoKD % (LT4)
L15< tIB D= (LTY) =& 3

L. S
READ DT RECTONN TRALIN)
LTY POoin!s To 115 DIREC
ENTRY, LIS To 75 LAST
ELABiINT, R

[27w ;-z.r,?,i;"__\

Ctad

fM& mlery: z.nwaj (LTése L@

‘"«».-

> = <
RETVURN RETY R
FOUND UNFOWi,
’ N

l’ -~y .
o ew -

{
ILts « Lride (@ns-crim) s edaimt 0

r...-..—--.‘—“‘—- / \ ~ B) r’. ~ -
LTIY<-LT8 > T ? b4 ES v..........,.;.-’\'L TOTLTRD ?

A LTSI P)
) O ' y‘;".
. «emn, Y
N T ;
4 <mt‘n's IATS¥ 3]t (Lrosers) , MTUIESR el (
K lu - AN W b . <t P T e u.‘:». o vaem
RETHN . " e e i)
Fouvmd '

LT LED

\L
v S s

TRIG TS

e g

CHARNCTERS
Frlorg FILES STATEALENT

TN VEER'. BUFFER

b

ety o

SENKCh
o A

— FILE

DTREC

N N T

TR e e s i
' Y)—f—-\l-f—-«o ERRO>R RNETIRN

meue

@ﬁ. OTSCTY 82
N3

ITE ITT /O FTLE of

ERD ARG D

YEL |

ERRVA RET I

> ERAOR KET SR

COFFER

w7,

[savE OTie ABDIiSS
Q11D LEHOTR TN
AND TF
Puitic rFiLE ACLESS,
WET REGeDerniy

&

R 2
jsET LT
DR LCTOf

(2R S}

eyt o

YES -
. L-——-—..:)...\,‘?-{;; v Me0

I FILgg?

iN'T}“
¥ ENTRY,

J T v

[

tNO
e,

RooM FOR FLLE TARLES\ Mo
Q»l VS ER FROGIIM? ERRR RETURN

YES

ijé‘/\p T rus_s-]

CLENR UsSiR's Fuss l

Ho

Aoy ? LES
CJ

MARK ANY Busy FILLS
AS_READ- 6N LY/

4.

oo

A)
FOS AR LE tmcxl

EJR T1e
TR DI EC,. rmmmns esmimnene.

ALy

{wx LD FILES
Fo R f.'ip ik

RETURN

L]

RS

\
P e K KT

QUi pROGRA R AME Y e ke g,
: Np .

La s
Qva t f’(l‘o(nfﬁﬂD—x'J“? CRr=e e

N

N9

- M - : o [T
‘ ({_("m'u‘-,t g M@-ﬁu{ UL/

Y

; SET PROG A
; LE® (‘iﬂ

[Renb ro7 4 pnr]

o v

((J"Em OUT aF 5ACE 7

L]—w L A, e
r/0

o m—

fe s
s

(RN

e e

e
' .

DS Yy e
ST X

BCMrLE,

e ('_ /' 7 ;‘n"?

FIND FIRST ADT ENTIY N\piere: Y
THAT'S Byl e G fTT Erlrione

TAWIA [*ontram v

Fovnd

N Dioor > f?&'i?,, ERP~1

DIRECTORY TRALK 3

FuL L ?

l//o
\

INSERT 100
DIREC T RY £
wrpATE DA EE

(L

. : ~ w‘
" Nusoars sor 4:1

Jor

v
Coly USER P26 RAM
7o JTS SAVED LoCcA-

L‘L/ 20N,

ZXI'."

AL

)

SUPCRSN VE

i 811 A & Sonesa w

B«/\"’@L”«- Pe T 6 <
KitLle A DIQDJ)-p—p.
:.._.::.."' ?-)..,’p‘;u.’f.(’vﬂ)

- ..:..’-.....A. . C“,'.',ﬁ".r::‘
S~ S oMl '()))
- '34-(44; Q- (.’,ﬂ/h/,":g,

o o e Ry

S f DI RECTEN Y FIAcES
E:_‘.‘Z.n...'.'..-’..}"""'("" sl DJ'E_?;’,’)‘—“ S=Terae DI Ve Ty

e REQUI RE LS
| a]

o SET NN{T)=nNEwW ‘\
é DI RECTORY JENGTRs (I20,3)

RE. SRl Seth g

- . ~
°Y£R:1LDW et ERROR €47

P<P-5 ‘L e e e

s W
MoVE(-f) 100345y 8vs) | o T30 g [,,om YES o7 brrr. __»_«‘J}‘L.m- uw’(

-y g LL*‘ 3
we P L pbeiee
A . TREC(TT s m’:‘,} :
(p < 54327)¥ES - (1:0) |
“.-ND \ . J/
Ex 7

. E/_g}izg_@?—-g‘i-"'} (L{v/ccfovy rcacf)

Ef’:ﬂ< Y \JES K1 = DIRDH h....._.,a.*,.-.,.]
.MA"WM(PP)“Q! | A -c—m&M-ZKJ)f

EXe
e o s g o

Ki=Li A 1C2< L2=A?) o - |
(A Y (reworb -4 ..-_.‘.u‘L/ f—*«*’i', +b3)'\f~"wJ
_ ‘ <c> \ TR Wl A S by SR AN

- P RIERTA7]
J ai AT

. A sv e

Y&

WoRDEA .
bl Read (TR KD, Lo o o
S ; Pe PuWoR D s bt il

i
i e enr———-

) el L e
1'5\,?:.@".6"’..“.’.5!,1 3‘
- No o, - o - .- .‘.' + evastes .-.l‘a._...-,.-‘-m.m«-v-s -
e N w.--x 'T(.'e O A K| .u i T e e LT BuUst ol
WEDORD < fy fammr P g s s o ~3
vt ; Lyﬁr :
TG' < | ' ' —
MovER ((LTimisrie ~ o hicu) ,

o N g

s

- ALE ; LTBL 48y i A med

@ , ‘Mén(uu:uuf)« ‘ Lﬁ"saﬂ‘\' N..N/“," L ’

. , (LTRUS S LG US+5-3 ¢ | '

| s3] [PePra .

L 2 -

WR r*re(tu Lz] uru,»_,)
Lo t2-W/, s«-f-w

T e

-

GCT/NOPEID

b

Lum/’w USER I /\

‘ ronm o

N\

LTEME(1: 3) 4 PROC»-;:{;;:;;
» NAME

|

. [,—- At con. g = . o

lo R
-‘;}L LTl R0

’l f‘l O \

*rvmanie

AL ,\.m
(DL oo & Lo

}'\Fr’::uup

(Fricp) Yoo cri '
No

G4 APLPEHD

yERROR

L.

J(\fsf}@iﬁ:’ g,?'?o/z . SLT /"Q;:‘:-? "f. }‘
" , ‘.)/;’!iim.ﬁ,f.?”.f' ‘

)

s
N~
S
.07‘\

\
(LN _"....-./.. PR RN

Y
. R ' WRITE ouT
SET /‘ueem-my DIRicToRY |
DATE gmTity . | *I:' ot

" OIS s, R BRI e
3 . B .
1/ } OrecomritLe

WRITE 04T usSEN's PR G LAM
DIRECTORY S
: 'L ‘o 7’(’ ‘l‘l‘i ,’, "")) ‘
oo‘gp \/ﬁs‘l clw(-/)f&‘ ‘Fﬁ(”/ ﬁ‘i:"l"\ ‘:;‘!‘I'? “\’;""(‘H’/’m
" PN e eIl) o
& [CER \l/fu

. N | APPEND NEw
‘ SET USLs '} ‘ PRLT,
N T

Aeze tﬁm Vey X,

OF NEW PAET >

[:
Ll sk KiEs i

f?l—f‘\,) f’)r‘—p . 3' "A‘? {”’r‘&- ‘4\‘;"’1
SEcTion of UIER'S 2D Sat
PRo 6 KA & IRZ3:
oy . {

S8 P/SP?’/.

BRPeS et ST

gﬂ PPEPLID HSOUi.’;iL:)j , ' TV
) N M £ J*’ S /}
| PROGRL | GE :=)~--—~ ,“, T

{
Al o o w«n e A ey f . ,\ . d
4 o 2
FaS AP " ..
N A

'—-w(m.,mau- IRTRTT RN,

im—.—. Cnnvon=s s 18 Wematarmy o ,

* |7
--ﬂmm"

VSE7 PEFiR,CLEAR : Tt
)mm e B

e N 7

Lmr , - Cxem
! 9 . .

Helto

M
Wsep 1D 2
‘o |
FCCAR USERS

Fos 5

B e RS g

SET PHoN = LATIIAG (0 f
LT l’{/i“, | S

b

READ roT

e e vmenp vt

P (A
QUsen riv?)—-——-4--1“'
130 ,
Comf’ur? TIpmE
on

)

; |
SET VP LoGor
ML"L/LCL*.
UPDAYE ITDT
ENTRY

CH £<“.‘.n<
PAs s uwolk

SETVP Lot oM
MESSACE

v

ET ID,cLenk PROG,
CLEAR Fuv

e\ AT
Broor (1 ’*2@""“' PRICAT "R EA DY

L R e Rt

, FP Ul
SET VU~ HELLDo TN U5[.l<"i{ ——----....‘
SWAARES, CLUAR COLA S ¢SYAITR,
Ser .’.‘;s’.-cf'lf,}) 8T MAie, STNTVS %= RN,

o p -
W ra

ﬁg_ﬂue‘.ﬁm_,ﬁmw- N

CmpALE .

!;f:{'f.if.

[Fer riix]
Qser

N

CLENAK USER'S
r’us‘s

, NEND ,..)
, RAL2Z J”J:’("l |
S:T(/P LOuaF
r"’z’ '- ;. zkﬁlﬁzwmw
.

UPPiTE 10T
EMNTRY 4

WE :).um

Iro>; P)llok. ’/ PHT 1—-“[,)’/.
fo

\l
lvsez 1peo |

tourf’u‘r TIMmTue MLSSAGE
T USER :
Ser PHoN FoR 4 Sfc.[

- Yy o, Ry

Ler v Ry

EXTT

£a2, LA i

7‘/ NS& AT o
Roé ’”M A "’E

"//>-—-"“““2""r‘“".J Ar’ror
r’oUND

p

. @:‘T‘\#o

O

A4

.

N o
F/L.‘—“,
L‘/:.:;
[READ Fuss TamLE])

.
CeeaAR VseER'S
Fi2ss ARXA
A\
IS ANY O6THER
VSER ARCCESS MY,
IHE FILE T
\!,ow

Writg ovt

FUSS TABLE

)

REMovE ENTRY

LLfont p126c700y]

v

lvevan aptd rorl

N
WAS 1T A FiLg 7 L8
~res
\'4
DECoOMPILE WS
PR O & 12,5% 0
\
EX iy

EX 1T

REN MO E

N
A D P‘\?i>

Lc.fél..ffiﬁﬁm.{ﬂ.c.iﬁm.(4.4 .N) .}

w'LL "EU) SEO')E’JC',’, sx-—} " 0'./1,./ r..; ;.‘
AVSE OVLRELOW ?

Wy
e
CeompiLr tropg 2)— » 753 B e — e
ﬁmﬂ"\{’l'J t. tﬁm -
v ‘ Divipl® PRrG R ZNID 3% ﬂc.f'*v A

EQUAL PARTS TD vP&,D LAC«FL r/mcﬁ

L oumenena el d UL COPEUINN -

Qe PRUFE :
P< Q-1 SV -
CI-M;' F Nt }
—-’L‘>E vy OF PROGKAM ey STATICSNT MOS, |
r—*@_j._s To tHE11la NEW %
NOP L vA L‘“tv,,w.-w
SEARCH For CoinDf mprer T .
REFIRENEED LANEL WEGr
kouND
clm.lm. REFLRENCE f-
To Atsoivrg FoinTeR |
\
. F A ;
, Y.......,..,.n ‘.’ Cu MFEIL E‘_Maf)ﬁ? }
X R, A B Yes
Q& PEIFF | .
i Pﬂ' R~ ‘M-Ww.—&'f‘fm'l' /Jf,'fa,)l‘JJ,
3 | ¥
e far
— "’?‘"’?Tﬁr‘*i“" ef PRoG (e

Exivr

lREF £ ft.[,NCt:) mAKE
Pc‘:- l'f',/g R
o |
d?“'”ér{ Roin T LN
Te N{.w LAGE L]

B T

(/ / l/ (m
1 "_./.:21:]::' ot

_a.@,z«]
Utsse soee tadiyls dele)

IO TAD-TDLENS
| ADe2s2D -/\()Lc./w‘

L
. LP - LY (.)!
Y

Li.t,'itﬁif o)

@ro-pirioze X

Fl1eor

IREAD D12 rorg

[Movicevoviberzen)

[pe Lre{;f DIRLEN]

MOVE (-—)

T < (TO,Lcr &, Loat)
Movr<1 e MOVES ¢ P

W s ey

PzD+3" MD & MovE D
Movi: (1429l s - D)
Dé MoVED Movi D& MIYVE Y 4utdD

a5

Pz ID':;;‘AM(V RiT&E. Drggero :’«‘T) FIxvp, ReEA”

e

W n v .v.-..

">, RECTL L i

]

%vu—m-vn* gt 84 1

LH(.M(P P:z)«'r}

ST T S

X!
e

RE- NS I;\; J«tlxt, l-fl:r/\ P ,'.va\ '-'14, 9 (q- /:.«u {

/
)ll[ls’-—‘ ", o /,m..ft , ﬂ e ment

A 7!‘0 Ar»ftou-\.., u/«({ 1r /....‘ le. ou{dtl"
(P« (’H)= RETVL Frvad :

¥ .
[7= verr?)by RErpem wNFO 0D
‘ IR PO .
)

Firwd svnromiesT
Ty F, SET @

e fGelo o Yuo,, C;‘\L Ne

ws |

-

/“Z..;T LRE”

SET @ TO No

NEXT ¢ EL
STATLIAENT : L"‘J’ﬂ S
4

P PoiNTING To
FIRST teafe?

RETURN Fovmd

R, b S uad

A P

OPE

. s g S 4 o S

LTt Mr«-TD }

y

[TZANSLATE _
NAIA G\

et aosn- § < 3 o e o

GET ru.E']
Lrenrzy

eHeek ror é
. |APT Fok Avaie
L : . ﬁp ,, r'[x,ar

’\L younND .
D l:.,ce,e. iz >“"“"*”’ EAR0Q

~

DlﬂtCTnQy ES cnt g
IrRACIC. Kt 19) ovE R, (\

Nl)

"JSER.T b/ﬂ’tcrau)
ENTIY

oo
UPDATE TpT <
ADT o
I \,‘

INITIpLIZ € FILE
To LteF MARKS
IN_EACH SECTOR |

[wmve‘}'m

E.Xt‘;"

rpP
-
e eesrmims \\'..w...

TERM (A TE oOTPUT O
Efcd TELLTYPE AnD

PLACE ALL uscrs W

LAGorT $TANLS

e DL LTIV

BUTPUT MESSAGE 7
ALL TERM ! ALS . . |

It s e

(Prscomorer recetnrnes)

X v

UPPATE ALl Ace T v
IDT ENTRIES AND OuilPUT
Lot MUSSASES ..
o
CLEnR FUSS TARLT)
d |
MovE ALL USER Swaf ‘
l‘_"GfALif:o TRACK 0p Gt

leace overiay]

»

l”\ .' LR ~n ‘

1“”:(/[17;"]
| fo |
C&"Z'.-. l'-f /o' » u F—J—k\-« T-'- 7'425 Oy bm“:“j;?ﬂé'_,f‘]‘_v PoNET

m-

ID 0) x~C.) P Ls Ut t‘»,,,'[.}__y_-., ’

(s y« fr, it N VI .

YIO

> 2 Lo - S P B e W B @ s e n i,

f)
80,,¢<.fwe ‘IG” ')’——,
PO 5T1e]
II*- DI’l’(.’,’“")l
o Read Dh’&t?a"-‘{ Y
Deirop-memis] ’
{

~£E§’.13"“}-~..-~]

Yhﬁ
RlTEI PiikicToRy Meq (P e pserals J

1

e pl (29« s

FeFa

MEmIv«-e-»;}«s«s—::;mgae Y OhLs
?-j- -;P»? ’- R e TR gl e e R R N s VR

d;‘,frﬂu’(p'.'é-,':\ (Qj) D,D- L\{;.i) wrbHY (MiM[Gu]—R))

Do LIBD + u(mem fo+]=R) ' '
Retmpmio+t]
P12

‘k_——‘ I
g“:‘cw‘ e (Tyezen, eudT-Rr))

.
-
. waI) »
J : .

AQ"JQL M‘\, /'JI S w‘l\/q JU‘\‘ -a';:;/;:"f_"rw Asaaresron oz |
‘t, igi-::f %M:t" dre Ln TR > o) R, Rt &5 ;"':S — —

L]

’

Qo BASIC FLOW CHARTS

I. Svn{:o.'x

T T O ———

progvam "(t Sequenen v HP PO
COMWQ ,Q_J ? J numbhav 1 alen? ? Evrsrwinm, 9§
. Stab- .
Yo 1 WMo : t r
DCcmPL praet
) . [Rl 4 d
. g
; . . o
Assume ha)\.lm.\}g 3.'-
‘Ler! skteXemant "‘f_‘ N - | embed eveor
type? et 7 /NS '
: LSO L n "Yegr:»h\
Y25

ad}
o barermenl {oomd

ko Pragren.

' f\n«'J;L
Sbh“i Ment

ﬂ. Phast 2

- A, Compth\h\m..

— YEs)
nv it 0 [’!{N.u— R Save R 3‘?t t‘//)s' REM or
Pv‘o,wun'. CFLAG[1]) Saavente 42 skeltrn oF obATA ?
Vs “‘J e # o any
~o

e e g

DR o Gl g PRl S G
e . Qve Copy

— ves e oan. 5‘.__._.1 ;

R4 ’ o

move

Sequere -V e saw
nUmbeyy T null : skep Ceoker o l22 second
apevond 7 over 1t Eo FILYVS FILES ?
N:m- I M v e a4 .j -
X)
veplace
veSerewnce number - :‘.,.._W.A. .-;-,“..,
"l‘\ JJ d — (o s Gt e e+ l Com n
Lo enlresy o set porvler ‘ r
’ be drSumbron Program
_!fs . . " h’r-'u, Fa. . j
S‘t&t(h\ﬂ.v“t S 5¢4iueng_e Vo N'I

Ntareet nvmbry ¥ hoed % cecond Y5
o . W‘S - DY F i_’ Yid d(‘nml'm-,:'

o

functron e e e
{ YT Se% purrkay
1dent) Gy ? SSYM G mmeed Lo ‘).‘. .-',.rs,,.’.«,
e inayel] tanle
Y
o no
. s%vun; \iid ASYMT.,(N» = >-, e _\d-»u:s'\:-t}‘
vaviable? — DIM? /N0 "\ ahieady 0 Y‘fs'
m .
. _ i
< :
‘ R avva
lSSYMT aveviakle ¥
r !
Sov ~vavie kld V3 » Gov-veviah)\ VO
in FORT/ \ 1~ N xv?
YEY Yis

¥

. S
w"da&ﬂ on Yvs ’“‘.‘_(k on YES ‘ e e Yromw ¢
ov~1vﬁ\.¢? weo ‘;"-qu'. 9‘, [;' wene !
wvo_.....A“.‘.--_..._._J , :

»rrqma ko 9 ‘ NE
govlaﬁ\lc\ll , V@

mMery¢ :‘f

movl u%
stabemant?

“roorr\mf

las €
Statement
END 7

all FOR's
ma‘.‘&)\ca 7

b ‘cw.-.-.h new —1

° ahie . . :

erhovsbrd VES Syl i@"’i}
(h\'y\?;

&

MO ’

A S

; _ doey net
inNsvie space | @ symbal beble

Sor (‘.a\"r\,': anr} mo\\"clk?

USSR, L

-

insvre S‘)“(t
*‘
80" ‘-htv‘)/

A 4

mekch with \ ygs
A‘Md"‘u)."(J

s)ml,.), ?
ol

YES

pornt “done

Knew " c,h""“v Yo

dimansionc d one,

"“""r‘_?“

No

< d‘h”""ohﬂ.a
PqVive. | Wi

sarme

d!wr I"",".‘, t“-
K4

noke G d e

dimensiont

c"u’v“ 1T

P°|V\t ndon't

Frow™ ot >
by new entry

creste nvll

¢enky

New “"‘ky}’
v

by
o bovye

B. Vu'\l,l

load neyt
Sy mbo)

3

sgt (wn\kar
§ syrm‘,o' talle
to waluve entry,

'Cﬁa (‘l(’avtd
drmangrong
Svorm Progqvam

l,

pvt p)\ys'cu‘
dimenoiong 1hXo
wvelve aven

SeX paintey bo
Valve avea gntol
;7:'\3:4\ th‘c

y

wof default
T N\dimenstons ¥

wo/valve >
atiscatod?

<

Syrrhe ! tabl [4

volue \YFS
N wk iy
ey

PR, ———
Set painker to

velue mrge nto

YES fond ph\)‘,l((\‘
i durensions
R food JeSavit
dimarsions

4

set wvolue

\d

o(}' (“jn‘-m)c-
A(mdh‘;'.’hg

ster: ¢ JSM«‘_

reset logreal
I‘ﬁjtk 1'}

®

b valyr

frs. Y 1
Aatvz e by

Qe e

ACAY T

e ated

olicasy ¥
¥os)

T 4

sel nalve tof

c,.,‘-,,\ c?

geb value
r,pot,q..

- o
ur.*‘lr?d

rSC t nh‘ ;’T.'W

et Peinter to
velva (nto
g)..‘iu’ k&b".’.

21z s ko

l YurdiSoy ed !

A

j.'t aalve
',"«(t‘

C. Decompilation

skyp
eviy T

CFLI\VG[!:]. nuty o
« P progrem /o

th e‘) p’.’ Uly

seqvinee

number 7

Sl:o.to ™m0 nt)

\Thd *
SavE
5_)Ve (e 1
(nVmber]
AichJ T 3@_1.‘ next
B optrator
NO
3“: next
o‘qt.V!\Ma

™Morve

Cvebevencr « .

replace
FoGeverie wikh

hatenont's &

Feplace pornier
ta s\)wu.—.l o bl

lv\\"" '.‘mbol

3

Y%

vIgra: DI

clean v
pgavbers

hve puintdy

S (P

5'»'&4:'-'; ien$

rorbtion ¢ 5
proyream don/

ZZL E'X‘lt_dttor\.

A ° ,\1~|'\. Locs’

. W\ .q"’ . A% .3 ‘f e '|':
[Progeam newe bl b Ll kable onby s,
Ve o .
4
¢ Set ponnter o sett stacit
vt DATA pointers and
(‘(an "f’
. -
seave currert advanee projrand l;”"_', Cors T bres € o
s\.ﬁ"'"t“t '5 N Meovrker to h”‘t ""&"2 wo ety “":‘ruf'l'«t'c
L‘h—“;(‘\\:i::l. # shebame st r:;; _“" v vouvltine
B. Selecked Statement Types
evalyate
. branch LAl
byhi\(h . "‘l(‘('x

load breveh
6 3dvesd

pvt oy .;’n\o-\T

Plcourter on —@
voturn stack

Sl

ndaht\(f\) /f-:-r—sfmk
&oro'vm'u\b‘t .\ \c"‘w"s ‘-;
e mant |

Yis

Y
dors noxt
:‘h\"s me ko h
"n»v--qu \,h*

add only 7 te

| Gor-sbac k

vt Fovaanciapty

!
f%.v»mo,v'k),lf

valve adiress

n enbry

4
mivve gammter MO‘VC oid
““‘“‘posf M\') cn»'-., to top |
Qg 5“‘(“
compule
Step syge
v
Sttt ko branch Sava t,\'c"
past associ - $13¢ 4
abed MEXT an \'ytr
. —Y
ehminake ' St(ly 312
Sov ~ HXet b heat ;\;-J\;a 1adde d ° <
enkyvy evetaded | SGev-veria hie

Vo

set ko braveh
ko Steter T

Sollore ihay [HOT S

Jov -ske e
ewlyrey ko

Pxamine §

&
g

s € Ehe
top (‘n‘(?r? ?

dooy nealt
enbpr ma\'r‘\? ~o
Sorvenariable

>)w) hev erbries

elhimimate off

l "A‘at L4 "\77‘7-

mong feinkey

N nleh\?"f‘}

f)'ov “Vavia lJ

XA &)

[N R PR P

enter addvess
LR LN i)

FaVere nt

iCovl [TY9RS o
a/alve an
l ('\"y N

drvialble nrva
e e veas U
covplev

J

st Flog Sor

MAT or LVPVUT

P'H\‘f 'o.

budS ey

7

pvink o
AT nIng

33 overd
under Glow

sccuy ?

¢vint

W.'H‘)‘-’

request calt §oom \wo | 9'F variabic
mpvt mat?) addvess
' Yi5)
A o
reyuest o wof skr)
num oo \ Ve bt H
YeS
" oor i n N
Soverd c‘
Yes
1
< — ‘
pnnt Y(qvi"sr ptffm <
warnivg. thf'vt Sor S*Y.n’
Erans§a -
print .‘:";:‘f*g trorsServ
or v Stvarg :r_r.)l"
errov vetv oy spvt /Y S
N2

was |(n,\'k
o8 tvamGar
Sp0e Wied ?

F 3

L4

‘ o
scan Yo
Yooy (:,(;)

S veo X LS

Y3

Skrivmy walh §

|

__.:3:'{?:._':. .__J \

I, SN
wis/ o regvested
chovort by ?

travsi?rve j‘,:’

N

Y
wes |'h°)H-
oY EreanSow

PR
WS yyeo o

PR N e

Vo

e

sel degieall
‘(nv"L e
[2%4 ‘ \,;;) ‘!' ‘n} "’h

s > i)

turn on

fuL g”o\&

y

7”..5 nert

Lof evend

stabepert
evhavsteld ?

o

tuvn of5

amit :
cayringt vetum

- line Sce d

write 1kem

irob 'S"a.?

move ko neal|,

prrt S0 d

 J

cat neyt
opevafoy

\operatovr ?

o

’ , tvalvale
AN !»‘ruvwo)»

ovt (u“

h\)vn‘)fV

p
e

L

tur» on

totL gh\"

p—

S}v\h

Navia Zia ? /

wo/ Lteval

Yi: s

¢ P
i)

Yis

‘74"‘:%3 ,?
e

y

Mo

r

o/ $ile

PREWT 7/ vy,

-t -t ——

e172¢ p»r

pYQ,()arQ.

Aovint s *‘vmi

3
) , vis/ Gile
Prt

a1 /e

@)

‘,f’yw-):

Y8 S null epevand\,

X

neyt ?
R Y2

!

‘load neat

ofey ~tov

SaVe

»

VC.)"" "oton

Sovl chﬁt

Mot
penn?

e

%le{' k\ml?
{‘irh»)% Nerg)

ayya\’ Os {h‘ m-h\'"
YES
YES .
15 [wneat read
opavaYoy 7 /o element

odsﬂ vobov

Imyver all
6vyan, elanant s
ave. JC"‘I)\'J

e MATY write oefemept 4 7
PRIWT? to Gite e
" 1 "
»
OV“U’V? 9pece as ?
| S 1 dene .
ﬂ-k»sevﬁ' a.‘vpropvw‘:?.
1 o
k]

™more o‘f
“tf\kf ""’nt .7

A o ori

set Lgoor 44
a3 Ere S0

(oﬂ“"\"t

o

y

Se t 'vu”
optratioh ko

bl abion

vedimtngron

squave
- \, ?
motrioy !

L_mdm z

Y¥ES

‘maky iy
svhseri ot ?

tompvta an

. v ——

A

Q_'." w(v-t’ b\a

»

lso opn g eXwn

set et
ke Q2

prepryv

destirabion
(ot

rnatrox
%Q)ht t\"f‘. {

-«

Sft 'Jdr‘
(TS 208 TRV &

evalucke
',(-0)&\’

Foremnla

2

set lsop
te Scalay
wu)\'-phce\~pr

"c‘ﬁ'»\ct‘ B4)~t

’,v.t up Qn",f
SeVree mrty

— 4

gec on)} sovree
¢‘-0(e b —So”
Cowo“a‘v\\,th‘)

Girst sovuree move B
dicheckeld G N \Sl’a"iv-'(n"l'?
Co»\(m.(;ulnhty,
4 T
Y.
SCE |°.(’ {‘o Sﬁt V‘) See LY

i

ma"vm(O -

—

compuke an
¢lerment by an
innev {‘v.aJwL'

\

Souvr pmelt vy

'

checle Soy

domersrane ‘

3

(Jn-‘ﬁn":.!' ties

ql

o Trarspose

t,f)vm T

enﬁijy‘

Sres cove ko
"°f; nakeiy /

Y5

NANES

sopy $oure e
seb ot f‘v@

Yo

<
done f >

9

carp vie
minnoum

()"Vot fvo"LIQ

p

Set ‘w'{) ko
10 bhe dost]

seb ot t'—‘@

l':ef-fh S, -
Y SN
N Uov

scela gra ot
Yo i Y d‘*&"
&rd Sourrl.

pev Sorm
imnstiong
on ‘hwl.t‘ estipn

&

®

—&)

v_.

wo [oW vYeus
deno .’ .

Yclu\ e copz

)
maerir Cord

SUPPLEMENTARY NOTES ON BASIC

SYNTAX

The general process of analyzing an input to the language processor
is displayed in the section on flow charts. The annotations in the listing
explain the actions of the Subroutines, while the core map and section on
internal representation describe the objects/structures being crcated or
manipulated. The BASIC syntax, in conjunction with the listing, explains
the method of identification and recognition‘of legitimate RASIC statements

from the input string.

Phase 2
A. ComEilation

The preliminary seétion of CMPLE prepares for execution of the program
following a successful compilation.. Null progﬁams require no processing.

If a sequence number follows the RUN (e.g., RUN - 22¢) the intcrpreter's
program counter is set'to the first statement whose sequence nuiiber equals
or exceeds the reference, otherwise it is set to the first statement of the
user program. |f the program is already compiled (as when a program is RUN
twice without intervening program modification) PBPTR is sct back to the
first word following the value table and phase 2 simply reinitializes all of
the variables to 'undefined'. Otherwise FILTB is set to f# so PRIST will not
terminate coﬁpilation by mistaking it for decompilation.

The symbol table is then built as explaiﬁed.in the listing (Refer to the
flow chart for general logic flow and to BASIC Variable Storace Allocation for
a visual example.) During compilation SPTR points to the program word being
processed and VALTB is either -1 or a pointer to (he CFILES staterent D if

one exists. An error in compilation will cause a call to DUI'TL to restore

the source form of the program followed by a call to the ervor routine. |If
after a successful compilation a { FILES statement) has boen founa, BASIC calls
the system with VALTB pointing to the second word of the statcient. The system

analyzes a {FILES statement) and builds the file table, filling in the

first, second, and fourth words of each entry,

The symbol routine has two entry points: SSYNMT is used for functions
and simple variables and ASYMT is used for array and string variables. Because
the dimensionality of an array variable may not be known locally (e.g., MAT A = L)
some symbols may have two entries. If this is the case, the ''don't know'" entry
‘ 4 will always'be farther down in the table (i.e., have a higher core address)

than its dimensioned counterpart.

B. Value

VALUE is responsible for detecting deficiencies in the symbol taSie,
allocating storage for the values of symbols (i.c., building the value table),
and initializing the values of all variables. Only the last of these functions
is performed if a program is already compiled when a RUN command is received.

The process of building the value table is described in the listing.

Several errors may be encountered while building the value table. The
occurrence of a null symbol (bit pattern of #) in the syrbol table means
that an array symbol is used in the program, but never in such a way that its
dimensionality can be determined. If the second word of a function entry is
zero, no & DEF statcment) for that function appears in the program. Arrays
of more than 250@ elements are not allowed. For all errors the program is

decompiled before the call to the error routine.

€. Decompilation

Programs are decompiled when any error occurs during compilation,
building of the file table, building of the valuc table, or when the program
is to be modified or saved in the user library. Since in the first of these
only a portion of the program is compiled, the pointer SPTR is used to determine
how much to be decompiled (A fully compiled proaran always has SPTR pointing

to the first word following the program). The process is explained in the

@ : listing. »

The routine PRNST

PRNST is used by both CMPLE and DCMPL to scan the program and skip over those
portions not affected by compiling. One outstanding pecularity shéuld be
noticed. PRNST assumes responsibility for recognizing a € FILES statement»

in a program. If a second <FILES statement) is found during compilation the
following occurs: 1.) PRNST calls DCMPL 2,) DCMPL calls PRNST 3.) the first
CFILES statementd is found and treated as if compilation were taking place

L.) the second CFILES statement) is found and DCMPL is called again, but the
first call set CFLAG[I] = @ so this call returns immediately and PRNST exits

to the error routine,

I3

EXECUTION

A. Main LooE

Upon completion of the value assignment in phése 2, control transfers to XEC.
FCORE saves a pointer to the first word following the value table (used in
repcated RUNS of a program). After printing the program name XEC proceeds to
initialize the file table. A 6h-word buffer is allocated for each file and

pointers to the word following it are placed in words 5 and 6 of the file table.

" The disc address of the record in the buffer (word 3) is set to -1 to indicate

that no record is present. Word 7 is set to #, indicating that no end-of-
record/end-of-file exit has been specified. |If the file is read-only a message

to this effect is printed, following the program name.

Following the preparation of files the initial execution status is set. The
initial execution stacks are claimed from free Gser space and pointers are set
to the first constant of the first {DATA statement) , if such exists. The
internal print position counter (CHRCT) is set to zero by outputting a carriage
return. Phase 2 has already set the BASIC program pointer (PRGCT) to the first

statement to be executed,

Execution of a statement simulates the execution of an instruction on a 'BASIC
machine'. The sequence number of the statement referenced by PRGCT is saved for

possible use by the error routine. PRGCT is advanced to reference »

the following statement. The type of the current statement is used to
branch to the appropriate routine via a jump table. Individual statement

routines return to the top of the loop.

B, Statement execcution

{ LET statement) execution consists simply of evaluating the formula, which
is known to contain at least one assignment opcrator and to have type

compatibility (numeric vs. string) by its acceptance by phase 1.

{IF statement) execution forks on the symbol following the IF. The
construction 'IF END' causes the following: the file refercence is evaluated
and tested for existence as one of the program's requested files; if a legitimate
reference, the statement reference following the THEN is placed in the
end-of-file word of the file's table entry. If not 'IF END', the decision
formula is evaluated and if true the statement ;eference replaces the value of.
the interpreter's program counter, PRGCT, via the GOTO mechanism.

{GOTO statement) execution consists of choosing a statement reference
to replace the program counter. For simple GOTO's this is done trivially;
for multi-branch GOTO's this is done by evaluating the index formula and
choosing the statement reference in the corresponding list position. If the
index value lies outside the list of statement references, the program counter

remains unchanged.

€ GOSUB statement) exccution follows the pattern for the GOTO except that
after choosing the new value for the program couhger, the old value is saved

on the return stack (stack overflow generating an crror condition).

{ FOR statement) execution opens an active program loop. The for-stack is
secarched for an entry with the same for-variable; if found, the entry is
eliminated (i.e., the previous {FOR statement) with this for variable is closed).
A new entry is set on top of the for-stack (extenqing the for-stack by six words

if no entry was eliminated) and a pointer to the for-variable's value entry is

1

put into word 1. Since the first formula in the FOR contains an assignment

operator, the formula evaluator, FORMX, initializgs the for-variable when

it determines the initial value. A reference to the statement following the

- {FOR statcmcnt}is put into word 6 of the for-stack entry (the start-of-loop

address). Words 2 and 3 save the result of cvaluating the limit value formula.

If a step size formula appears explicitly it is evaluated, otherwise 1.0 is

takenas the step size. In either case the value of the step size is left in
words 4 and 5 of the for-stack entry. The program couiter is set to the

. statement following the associated (NEXT statement) and control transfers to the

{NEXT statement) execution code to compare the initial and limit values (see

flow chart).

{ NEXT statement) execution decides whether to iterate a loop or close it.
The for-stack is searched for an entry with‘thg same for-variable. If none
is found the statement is ignored and control &asses to the following statement.
if the entry is found, any entries above it (more recent entries) are eliminated;
i.e., they are assumed to belong to nested loobs which were not closed by
exceeding their limit value but exited otherwise. The value of the for-variable
is then incremented by'the step size and the new value tested by subtracting
the limit value and using the sign of the step size to determine whether a
non-negative or non-positive result indicates ‘success'. If the result-is
‘success', the program counter is loaded from word 6 of the for-stack entry
(the reference to the statement following the { FOR STATEHMCHT)). If the result
is not ‘success', the for-stack entry is eliminated. At this point the program
counter aUreédy points to the statement following the {NEXT statement) so exit
is simply to the main execution loop. ;{ | :

{RETURN statement) execution merely loads the program counter from the
top entry of the return stack. An error condition is gcnerated if the return

stack is empty.

{INPUT statement) execution assigns values to the input list for both
INPUT and MAT INPUT. INITF = @ and MCHT is meaningless vhien executing an
C INPUT statement) ; For MAT INPUT, INITF = -1 and I'CT holds the number

(in 2's complement) of elements of the current array as yet unassigned values.
']

c

IFCNT holds the ordinal number of the current item.in the current record
(Note that IFCNT is not cumulative over the entirc execution of a statement
requesting input unless the request is met entircly by one line from the

teletype.).

The general approach in execution is to deternmine the address and type

of a variable in the input list and then atteinpt to satisfy it from the

input record. When an error occurs in the above process, it is explained

along with any necessary corrective action and the value assignment is attempted
again, so that ecrrors in the input record will not terminate program execution.
For simple input if the next variable in the list is of numeric type its value:
table address is placed into SBPTR; for array input the base address of the
array is put into SBPTR. After filling a simple variable the next variable
from the list is taken and a new address genecratcd; after filling an array
element SBPTR has been advanced to the next eclemcat by the numeric input
routine so no new address need be calculated. ‘Vhen MCHT rolls over to zero

(an array has been filled) control exits to the MAT INPUT code, which may
return with another array's base address in SCPFTR and MCHT reset appropriately.
If the input record is empty but the variable list is not yet exhausted a
request for additional input is made (signified by '??' rather than the

initial '?7'). SERR is needed as a flag to indicate if under/overflow occurred
while converting the latest numeric input, since the crror message will have
destroyed any additional information in the input record. Vhen looking for a
number;, the input record is scanned for the first sign (+ or =), digit, or
decimal point, which begins the number. Any othcr charecters will be ignored

except the ", which will generate a recoverable error.

String input requires fairly complicated analysis of the data transfer.
If the string variable does not specify the transfer length (does not have a
double subscript), then the next string in the input record is transferred in
its entirety and the logical length of the variable set appropriately. If the
next string does not fit, a message is printed and a nc: string value requested.
If the string variable speciffes the transfer length then exactly that much '
of - the next string in the input record will be transferrved, cither truncated or

extended by blanks as necessary to achieve the specificd length. The 'next strin

B

in the input record begins with the next non-blank character or, if it is a
" the following character, blanks included. The string ends with the
first " (which is not part of the string) encountered or with the carriage

return (also not part of the string) if no ' appears.

Every data item in the input record must be followed by a comma or
carriage return and a comma must be followed by another data item, Failuré
to observe the above will §enerate recoverable errors. [INTMP holds the
type of déta being sought, INTMP = @ for a number or INTMP # O for a string,

and is used by the error recovery code to prepare for the retry.

{READ statement) exccution assigns values to variables in the list.
FDATA is primed to obtain values from either a file or the {DATA statement) s,
depending on the presence or lack of a file réference following the READ.
A mismatch in type between the variable and thé next data item, or a string
too long to fit into lts designated destination, will generate an error

and terminate execution. .

¢PRINT statement) execution consists of identifying items in the print
list and sending the appropriate media equivalent to the teletype or disc
file. An initial file reference identifies the statement as a file write
and turns off the end-of-line mode; its absence fdentifies a teletype write
and turns on the end-of-line mode. A comma or semicolon -turns off the
end-of-line mode and generates enough blanks to advance to the next field
of 15 characéersy if a teletype write. A literal string is written as a string -
of characters, less quotes, and turns on the end-of-line mode if a teletype
write. An END writes an end-of—file mark on thé file; it cgnnot occur in a
teletype write. Formulas in the print string are evaluated and the results
examined. Formulas which are string variables evaluate to their contcnts,
which is then treated as a literal string. If not a string variable but
within a file write statement, the floating point value of the formula is
written on the file in its two-word binary representation. |If a teletype write,
floating point values arc converted to an ASCII Eharacter string -of the decinal
equivalent. TAB can only occur in a telectype write; the evaluation of the TAB
itself produces the desired action, so the value returned is thrown away, al;ng‘

with a following comma ifgone exists. For a teletype write all formulas

turn on the end-of-line mode. If the end-of-line mode is on after processing

the last.print item, a carriage return-line feed is printed (This can only

occur in a teletype write.).

Before writing a quantity BASIC insures that sufficicnt space is
available to accommodate it. CHRCT keeps track of the current print position
on the teletype line (#-71). |If the character string sent to the teletype
would require non-blank characters to be printed past pocition 71, a
carriage return—line‘feed is output first and CHRCT sct to #. If an item
sent to a file requires more words than remain in the current record, BASIC
automatically advances to the next record if in serial modc or exits to the

end~of-record code if in record mode.

{RESTORE statement) execution resets the pointcrs to the DATA block.
Beginning at the statement specified, or at the first statement in the program
if none is specified, the pointers are set to the first {DATA statement)

found, or to the out-of-data condition if none is found.

{END statement) and &STOP statement) execution terminates the program
run. Since each requested file has a 64-word buffer in cere, the last record
written on a file does not exist on the disc in ils updated form. Thus END
and STOP must force the buffer of each read/write file onto its proper
disc sector. Following this, the word DONE is sent to the teletype and

control exits to the scheduler.

¢MAT statement) execution involves many disparate tasks. The forms
of the {MAT statement) may be classified as array 1/0, array assignment,
array initialization, and the array functions TRN and IRNV. For conciseness

in coding, all forms other than array !/0 use sonic common program segments.

Array 1/0 prepares each array in the list in the same: fashion. SBPTR is
set to the dynamic dimensions of the array (base address -2) and the operator

fo!lowing;the array identifier is picked up for cxamination. At this point

MAT PRINT follows a scparate path than MAT READ and MAT IHPUT. The following
operator is noted as spacing the elements (comma or end-of-statement) or packing
them (semicolon). VCHK examines the array and generates an error if any of
its elements have value 'undefined'. The dynamic row and column lengths are
saved in 2's complement. If the MAT PRINT references a file, the array
elements are written one by one in rows, each element in its two-word binary
form. If the MAT PRINT references the teletype, rows arc double spaced and

. the elements within a row are spaced or packed as noted abovc, each element in
its ASCIIl decimal form. Both MAT READ and MAT INPUT redimension the array if
the following operator is a left bracket (i.e., begins a matrix subscript).
MCNT is set to the number of elements in the array, in 2's complement.

MAT READ calls FDATA for element values while MAT INPUT transfers to the
{INPUT STATEMENT) execution to obtain element values. MNTP acts as a flag for -
MAT INPUT, differentiating the first call for fnput from subsequent calls

and saving the input character following the last element value used from the:
input record. After completing 1/0 on an arraj,_a common scction.of code

prepares the next array in the list or, if no more remain, terminates the

statement execution. * MAT INPUT returns to the input code to clean up there,
MAT PRINT and MAT READ return directly to the main execution loop.

Array assignment consists of preparing the destination and source arrays
and executing a loop which assigns the destination array clements one by one.
The general procedure is to assign a jump to the element computation code to

- MOP, an exit address to MEXIT to use after completing the destination array,
and a count qf the elements to MCNT, in 2's complement. The code to compute an
“element returns to MLOP], MLOP2, or MLOP3 depend}ng on the nbmbcr of arrays
involved which require updating of the element address. Each operation checks

~the dimensions of the arrays involved to insure that the operation is well-

~defined; and all elements of the source matrices are checked to makc sure none

~ have value ‘'undefined'. Matrix multiplication does not usc the élcment
computation loop, instead it uses row and column counters to tell vhen it is
done and computes destination array elements by inner products of the rows

- and columns of its source matrices.

Array initialization also uses the clcment computation loop. The
initialization program first redimensions the destination array (if a
matrix subscript is given) and then chooses the appropriate constant for the
element values. IDN acts like ZER except that it insists that the destination
array be 'squarc' and sets a special counter to choose |.# for the value of

main diagonal elements.

TRN and INV are handled apart from the other matrix functions. For
both of these, the elements of the source matrix are checked against the
‘undefined value'. The source and destination matrices are then checked for
transpositional compatibility. If TRN, then proceed to transfer the columns

of the source matrix to the rows of the destination matrix.

INV uses the Gauss-Jordan algorithm with row pivoting. This prdcedure

converts a copy of the cource matrix into the identity matrix and converts

an identity matrix into the inverse By applying the same set of operations

to both. Since the source matrix is destroyed in the process, it is first
copied into free user space and the copy treated thereafter as the source. A
side effect of the copying produces the element of largest absolute value, which
is used to compute a lower bound on the allowable magnitude Qf‘pivot elements.
INV then calls IDN to set the destination matrix to an identity matrix, having

the side effect of checking that the matrix is square.

Diagonalization of the source matrix and production of the inverse

now proceeds on a row-by-row basis. The next unreduced column of the source
"is searched for the pivot element (the largest in magnitude). ,]f necessary,
rows are swapped to put the pivot element on the main diagonal (the correspond-
ing rows of the destination matrix must also be swapped). If the pivot

element is smaller in magnitude than the previously computed lower bound, the
matrix is too nearly singular to invert and ecxccution is terminated. Other-
wise, the inot rows of both matrices are divided through by the pivot element.
Now all other elements in the pivot column are eliminated by subtracting the

appropriate multiple of the pivot row from cach of the other rows. Advantage

is taken of thosc pivot column elements which are already zero and of the.

fact that elements of the pivot row to the left of the pivot column have
been set to zero by previous steps. After diagonalization of the source
matrix and consequent crcation of the inverse, the user space occupied by

the source copy is released.

The other statement types are declarative in nature. Execution of them

consists solely of skipping over to the statement following.

NOTES ON THE ERROR ROUTINES

Errors are handled by routine SERR, reached by a jump through the base page table
beginning at SERRS. A JSB SERRS + i, signifies detection of error i. The
alternative bases RERRS and WERRS are conveniences to denote subsections of the
table used for run-time errors and warning-only errors. The actions taken by SERR
are explained in the listing; but notice that the 'BAD INPUT' error is singled
out, its processing is completed by the input execution routine upon return from

SERR.

Syntax errors detected while in tape mode are handled by accepting error psuedo-
statements in place of the erroneous statements. Since these psuedo-statements will
be replaced by any subsequently received statements With the same line‘numbcr,
provision is made in FNDPS, which returns the location of a statement when given

its sequence number, to decrement the error counter (ERRCT) whenever the statement
found is an error psuedo-statement (an error psuedo-statement will only be found by
FNDPS when another statement with the same sequence number is ready to replace it).
Over/underflows detected during number conversions in syntax mode cause warning
messages to be issued only after accepting the statement, if it is otherwise correct.
Since no printing can be done while in tape mode, the routine CHOUF suppresses setting

of the flag and these potential errors are not reported when in tape mode.

.
'

SYNTAX (Phase 1)

g

System Base Page

USE —?

Subroutine Entry

Points and User Variables

PBUFF —

Previously - entered

Program Statements

PBPTR=SBUFA—

Current Statement

SBPTR—-)—- T g o waows: oo | D >
' Buffer (1645 Words)

>

SYNTQ—

SSTAK--»

Syntax Stack

{
z
|
!
!
s
i
!
:
¢
!

Available User Space

" By 2t vgeer Ny

R R

LWAUS—;

POV i

=8

37777

BASIC and System

et 8 W 57

BASIC Core Naps

User Swap Area

(544g Words)

Pointers

USE Fixed, first word of
user swap area.

PBUFF Fixed, first word of
program space.

SBUFA Variable, first word of
statement being syntaxed.

PBPTR Variable, first word of
program space not used by
previously accepted
program statements,

" SBPTR Veriable, first word

not used by statement
~becing syntaxed.

SYNTQ Veriable, first word
of syntax stack.

-SSTAK Variable, last word of

syntax stack.

LWAUS Fixed, first word not

“in user swap area.

COMPILATION (Phase 1)

Compilation ” ‘ ; Value Storage Allocation
" . s e e
System Base Page o System Basc Page
USE— uscmﬂé : T
Subroutine Entry | Subroutine Entry
Points & User i Points & User
Variables - i Variables
PBUFF-- - ’ ‘ PBUFF-» E
v i §
BASIC , BASIC :
Program ’ - * Program !
— !
1€SYMTB . SYHTB-> g
: X i
Symbol g ' * Symbol !
Table " Table §
i¢SPTR = SPTR--3 | (eFILTB
PBPTR { File Table '
L Avaitable E ; . - -;'” ,CVALTB
User Space . " Value Table
LWAUS— : ' i | T ePBPTR
BASIC and ' , A ' " Available '
: system . : User Space _
- 37777 ~ | LWAUS- 3 !
_ BASIC ‘and ;
System
37777 i e

SYMTB - Variable, first word of symbol table.
SPTR =~ Varlable, first word not used by symbol tablc .
FILTB - Variable, first word of file table.

VALTB - Variable, first word of symbol value table
(FILTB = VALTB if no <FILES statementy is in program)

PBPTR - Variable, first word availeble of user space.
SYMTB and SPTR are not changed after compilation.

FILTB and VALTB are not changed after allocatang value storage.

EXECUTLON _(PHASE 111)

L T e L L ous——

¢
System Base Page
R
Subroutine Entry 1
Points & User
Variables
PBUFF -3} o
. DBASIC
¥ Program
A I
SYMTB-Y
g Symbol Table
FILTB=);
i File Table
:_........ e
VALTB-:
i
i Value Table 1 rcoRre
File Buffers “RTRNQ
r—..... " ae ...,,._..,...,.,.‘_..vM-::‘_RTNST
9 Words Return Stack __FORQ
For-Stack +FORST
$
Temporary Stack «TMPST
: “
' Operator/Operand '$0PTRQ
{ Stack '*QEB§E
" Available
User Space
LVAUS—
BASIC and ;
System 3
37777 b Mkﬁ.umd.“w,muaf”_{

FCORE - Variable, first word not used by
Phase |1

RTRHQ - Variable, bottom of return stack
(first word preceding return stack)

RTNST - Variable, top of return stack

FORQ - Variable, bottom of for-stack
(sixth word preceding for-stack)

FORST - Variable, top of for-stack
(points. to latest g-word entry)

- TMPST - Variable, top of temporary stack

~ (points to latest 2-word entry)
OPTRQ - Variable, bottom of operator stack
OPDST - Variable, top of operand stack.
PBPTR - Variable, top of operator stack.

FCORE, RTRNQ, and FORQ are not changed after initiating execution,
j &

Entries on the operator and operand stack are one word each and interleave

) !
(i.e., alternate words belong to onec stack). All stacks beyond the return stack

grow and shrink as needed so long as user space is available.

=5 ..

BASIC Internal Representation

BASIC statements are represented internally by the sequence number followed
by the length in words (including the Sequence number and length words) followed
by the statcment body. The statement body is composed almost entirely of operator-
operand pairs which occupy from one to three words each. Null operands and
'operators are used when necessary to maintain the operator-operand correspondence.
The operator resides in bits 14-9 of a word; the operand uses bit 15, bits 8-8,

and sometimes whole additional words immediately following.

'Variable' Operands

- i o ‘ : Bits 8-§ are generally diQided<
| Operator @ Null Operand
into two fields as follows:
; i a name field (bits 8-4) and
| Operator |MName; # String Variable .\ oc field (bits 3-§). The
- - name field holds a value
@] Operator | Name . 1-3 Array Yariable ' between 1 and 328 corresponding.
: - to A-Z (for functions,
@ | Operator que<;h-16 Simple Variable corresponding to FNA through
. et e e ey s FNZ). A type of @ identifies
') Operatotf -Name i 178 Function Variable a string variable (e.g. 3.

. represents C$). Types 1 and 2
identify array variables of dimensionality one and two respectively (e.g. 4,2
represents D[*,*]) while type 3 identifies an array variable whose dimensionality
cannot be determfned by its immediate context. Type 4 identifies a simple‘variab!e
with no digit (e.g. 1,4 represents A) while types 5r 168 identify simple variables
whose names include the digit § - 910 respectively (e.g. 6,7 represents F2). Type
i7§ ldentifies a programmer=defined function (e.g. 323, 178 represents FNZ).

'Constant' Opcrands

e o Bl amr ga e 0 o G § Saret b A s b AR Ay

) i
| | Operator | Name i 4-168
1
1 | Operator | Name . 174
| | Operator ' 3
Binary Integer
: :
¢ .
Binary integer
e et o o o e e
1 | Operator ¢
High Mantissa
Low Mant Exponent
" -
g1 #-72, 4
N
Character Character

within a program are so represented).

signals'the start of a string constant,

_ Parameter

Pre~defined Function

Formal Dimension//

Branch Address List

Numerical Constant

String Constant

A parameter (which can
only appear inside a

{DEF statement>) differs
from a simple variable
only in that bit 15 is

set. The name of a pre-
defined function may range,

in the standard system,

from 1 to 168 or 2&8 to

308 (TAB to TYP or ZER to
TRN). A flagged .(bit 15
set) operand of 3. identifies
either a formal dimension

in a&DIM statement» (value
in following word) or a
branch address list (one or
more statemént sequence
numbers in the following

words). A flagged operand

.of @ indicates that the

following two words hold a
floating-point constant

(all numerical constants

The operator with internal code 1 is ', which.

The operand portion of the word has a value

from @ to 72‘¢, indicating the number of_charactefs in the constant. The string .

follows, two characters per word, and the closing ' is not explicitly represented

internally,

The table below gives the internal representation of the BASIC operators. Those

operators which manipulate the formula evaluation stack during execution have

associated priorities,

~ CODE

BASIC Operators

ASCI |

AVl numbers are in octal notation.

PRIORITY |
/] f-l) | (end-of -
' i formula)
| ! "
|
2 v,]
3 b ‘
4 # (fi)e);
5 (unused)f
6 (unused):
7 (unused)g
9]) o
n L !
12 13(1)
13 13O0) *
14 11 ! ;(unary):
15 1 - (unary) -
16 2 ,(subscript)
17 2 ‘=(assignmentl
20 7+ %
21 7 . - ?
22 19 * %
23 19 /
24 12 4 i
| >

25

o>

e o S e ¢ e e it S A i . b s S8

s o e —

'CODE g PRIORITY | ASCII CODE é ASCII

26 - 5 4 54 | FOR
o

27 . 5 4 55 NEXT
0 5 =(equal) 56 GOSUB
31 ! (unused)t7 RETURN
32 ! (unuscd 6p END
33 ; (unused)51 STOP
34 . (unused)C? DATA
35 (unused)63 INPUT
36 - 4 AND 64 READ
37 § 3 OR 65 PRINT
kw6 MIN 66 RESTORE
by 6 MAX 67 MAT
b2 5 <> g FILES
b3 5 >= 7 CIMPLIED' LET
Ll 5 <= 72 (unused) |
Ls 1K NOT 73 (iinused)
b6 - LET 7h OF
47 DIM 75 THEN
50 DEF 76 T0
51 | REM 77 STEP
52 GOTO '
53 IF

Some examples of BASIC statements in their internal form are given below. Note

that actual function parameter formulas, {DEF statements) formulas, and subscript
formulas appecaring in {MAT statements) require end-of-formula operators to signal
their end whercas most formulas end either with the first operator which does not
manipulate the formula evaluation stack or with the end of the statement. Hote

- also that constants are considercd signed only within a { DATA statemcnt) . ASC!I

numbers are decimal, internal numbers are octal in the presentation below.

19 LET Wl =Y = (B=2C)T 3%A[1,J+K]

12 _ sequence number 20 pin A[5], c[6,12]
21 length :
g 46| 27" 6 LET Wi 24
g 17131 b = W
g 170 e = .ol T
¢ 'IBi 2; b (iz, |3
g 3¢ 3.4 = 5
g1g P) ol |
Piakt g r 9 2| 3
#3000 | 3.9 o ahizd
L : 6,
¢ !22 iiz . xA 116 i3
g ‘12 AR’ [| | 13}
¢§l6 12;14‘} , J gl”~§ s-ig
§120 13 b + K |
6, 8 fﬁlb (end-of-formula)
gint e 1

3B DEF FNC (X) = X + AB hg REM ARK

36 | 50
7 . 5
p!50) 317 | 8]51; o
113 3p1 phg522
) ;la?) Y
1,17 38 4
. §2¢! l: 5
o 0 |0
50 GOTO A OF 19, 204, 3¢ 64 DATA -1, ''ApC"
62 | 4
7 o | N
gl 52/ [. 1'62] o
BRI ERE 109000
12 ' poPoop
2k | - K {a
36 g1, 3
| - phpsp2
7¢ MAT READ #K;A[1] : pulhge
186
" :
p|67] i g
g 6 '@
P43 4
pro3i
g 1200 4
' TR
g 1 i @

1";

BASIC Variable Storage “Mllocation

PROGRAM FRAGMENT

L DEF___|FNC
(X
|) S VALUE TABLE FPAGHENT
oy = X .
% A \ o
+ R tiadd o .‘\V
i c §
g
9 - LB g b popaso . value of
:\b_..l“"\) ; ' pgepoeh simple variable
. | L declared
.S"YMBOL TABLE FRAGMENT) dimensions
1 : . L 3 dynamic
\-/\ . .]
< e ; i dimensions
J j - . '. . . — vl "
, FNC ') > 1980060 \
| ’ Al1] | dosoes
. D3 : . pLEpana active
Ot e "~.~'~~~9~-~~'~*-—"-J : Al2] BOEGa2 ; 7 elements
: 4. o
Al*] dimensionality| | . llQulde _
‘ SISO I |
. _ Al3] |___poeods
Al] dimensionality — e inactive
locally unknown ISV, o
g ’ o ' element
BS ' : ' R . physical length/
’ ‘ 8 5 logical length
. A .
-’\.L"\ ‘) .___.__ﬂc . __Dw,,_ character
. . - __E —_— string .
‘ s 20 e S{-.. PR

The symbol table consists of two-word entries, one for cach unique symbol occurring
in the user's program. The first word of an entry is the internal representation of
the symbol as previously described. The second word of the entry is a pointer to the
value of the symbol. For a programmer-defined function the value is the defining
formula in the ¢DEF statementd . The value of a simple variable is a two-word
floating point number. The value pointer of an array is its base address (i.e. the
address of its first element); when an array is dynamically redimensioned to occupy
less than its physically allocated storage, it occupies a contiguous block justified
to the low core portion of its clement space. Since array symbols may not have
dimensionality locally defined (e.g. MAT A=B), array symbols may have a ''don't know'
entry in the symbol table in addition to the dimensioned entry. Both entries have
the same vValue pointer. The declared and dynamic dimensions occupy the four words
preceding the element space in the value table. The value of a string is'also its
base address. A string is a character array (packed two elements per word in contrast
to the two words per element for numerical arrays). |ts physical (declared) length

and logical (dynamic) length occupy the word immediately preceding its value space.

The value table is simply the concatenation of the values for the symbols in the

program, excepting programmer-defined functions.

FILE TABLE ENTRY

read-only | number of The file table consists of one
bit : records in file

seven-word entry for cach filec in

disc address of last o 4 ~the {FILES statement) . Bit 15

. ‘ d * 3 ,
fogical record in file of the first word is set if the

QRSC_addreSS of record file was busy when requested or is
in file buffer :

file base disc address

R

a public file (available on a read

i , only basis). A 6h-word buffer is

o

NI e " associated with each file entry
] * ~and is accessed through pointers i
iv EOF/EOR exit address its file entry. An intra-record

[

: pointer designates the next portio

FILE BUFFER of the record to be written or rea
: A fixed pointer to the first word

in the buffer acts as a bound on

the intra-buffer pointer.

.

64 words

RTRNQ—+

- RTHST—+

BASIC Run-Time Stacks

Return Stack

T ~———— TN

return address

L—p! succeeding

]

For-Stack Entry

B L P

pointer o value
of for-variable |

RS

lim(t

value

8. e vineae

Program Fragment

——

¢FOR statement)

statement

‘*--§~’”"“"“W4

9 words

two~-word
floating point

numbers

The return stack is of fixed
length, holding from § to 9
one-word entries at any time.

An entry is the absclute address
of the statement following the
GOSUB which placed the entry on
the stack.

~The for-stack is of variable

 length, containing one six-word

entry for each for-loop which
is currently active. Since the
limit value and stop size are

kept in the entry, they may not

be changed within the for-loop.

The value of the for-variable is

"the one kept in the value table,

so this may be altered by

statements within the for-loop.

OPERATOR/OPERAND STACK FRAGMENTS

LET A = B+C*D

All operands (checked words) are addresses (i.e., C represcats

’\\wm
S e e TPST "B Floating point -t |
s ‘ number ; TEMPORARY
P STACK
Temporary 3
Stack e
v A |
v w| "
A OPTRQ * (unused) i
OPTRQ ~»| (unused) oPDST > ['B+C*D —t
lv start-of-
B $> formula operator
start-of- :)
formula_operator | . (unused)
v C PBPTR ~* |! =
available user
: = LWAUS ~» Sp—s”’c,e —
oPOST “*|v C N
' +
{unused) N —,
 PBPTR-® * g
- TEMPORARY
‘available user oPOST STACK
space
% o
LWAUS -\-~”z,f——-~\\ (unused)
B OPTRQ = (unused) |e PBTR
;\""/&\.L

o

(33

poinier o

" the value of the simple variable C). Bits 7 - @ of an operator ¢ntrv contain the

operators identifying code (See 'Basic Operations' Table) whilc Lits i5-8 contain

~ the op

erator’s priority.

Note the alternate-word structure of the stacks. The

temporary stack holds intermediate values during the formula cvaluation.

%

BASIC Language Processor Tables

The two areas of core labelled SBJTB and USER contain the mechanism allowing
different users to exercise different portions of the language processor without
interference. The language processor makes its subroutine calls to the labels in
the area beginning with USER. The word following a subroutine entry point is an
indirect jump through the appropriatec address in the area following SBJTE. Vhen
a user is displaced by the system, his registers are saved at USER and the area of
core from USER to PBPTR,! inclusive is dumped onto his track of the disc. Thus,

a complete record of the language processor's status with respect tc him is
preserved, CThe only things particular to a user which remain when he is swapped

out are his own teletype table, teletype buffer, and the bit flags CFLAG, TERR,

‘aﬁd TAPEF»] Since the bit flags are modified only in the bit belonging tc the active
user, information belonging to quiescent users is never modified.

The tables headed by PDFTB,(whEch must be in base page), SYNTB, XECTB, and

.FOJT are jump tables. The method in the last threc cases is to compute & decisiun
number, add the base address of the table, and transfer through the entry thus
designated. The pre-defined function table is used by the formula evaluator to

enter the code for evaluating pre-defined functions.

The tables headed by QUOTE and MCBOS have several uses. Their entries are
explained in the listing and their use will be explained in those routines which
. access them. The Error Jump Table (at SERRS) is explained along with the error

routines,

P WY Bl 8 IV MW E W Ve

« SYNTAX REQUIREMENTS OF TSB

LEGEND

"o r"
" <> enclose an element of Time Shared BASIC

2= "is defined as..."

'LANGUAGE RULES

Exponents have 1 or 2 digit integers only.

A <parameter> primary appears only in the defining formula of a‘
<DEF statement>.

A <sequence number> must lie.between 1 and 9999 inclusive.

An array bound must lie between 1 and 9999 inclusive; a string
variable bound must 1ie between 1 and 72 inclusive.

The character string for a <REM statement> may include the

character

An array may not be transposed into itself, nor may it be both
an operand and the result of a matrix multiplication.

Note: Parentheses, (), and square brackets, [], are acccpted

interchangeably by the syntax analyzer.

Continued on the next page.

8-2 (869)

<constant>
<number>
<decimal number>
<integer>
<digit>
<exponent part>

<literal string>

<character string>

<character>

9 <variable>

<simple variable>

<1e£ter>

<subscripted variable>

<subfist>

- <string variable>

<string simple variable> :

¢

<expression>
<¢conjunction>
<relation>
<minmax>
<sum>

<term>

<subterm>

. SYNTAX REQUIREMENTS OF TSB

<number>l+<number>|-<nynber>|<litera],string>
<decimal number>|<decimal number><exponent part>
<integer>|<integer>.|<1nteger>.<integer>|°<integer>
<digit>|<integer><digit>

pll2]3]4lsl6]7]8]9

E<integer>|E+<integer>|E-integer (see rule 1)

"<character string>"

‘<character>|<character string><character>

any ASCII character except null, line feed, return, x-off,
alt-mode, escape, «, " , and rubout o ‘

<simple variable>|<subscripted variable>
<letter>|<letter><digit>
AlBiC]DiElF[G]H[I[JIK[LlM[NlO[P[QlRlS[TIUlV[W[X[YIZ
<letter>(<sublist>)

<expression>|<expression>,<expression>

<string simple variable>|(<sublist>)|<string simple variable
<letters$ |
<conjunction>| <expression>OR<conjunction>
<relation>|<conjunction>AND<relation>

<minmax>| <minmax><relational operator><minmax>
<sum>l<minma§>MIN<sum>]<minmax>MAX<sum>

<term> | <sum>+<term> | <sum>- <term>

<factors| <subterm>*<factor>|<subterm>/<factor> .

<denip1>[<signed factor>

8- 3 (869)

FOR THE PROFESSIONAL

SYNTAX REQUIREMENTS OF TSB, CONTINUED

- <denial> ,
<signed factor>
<factor>

<primary>

- <relational operator>
<parameter>
. <functional>

<function identifier>
<pre-defined function>
<source string>

- <destination string>
<file reference>
<file formula>
<record formula>
<array identifier>
<sequence number>
<program statement>
<PASIC statement>

<L, ZT statement>

~<teftpart>
<. F statement>

 <decision expressicn>

<comparison string 1>
<comparison string 2>

o oo
oe

os
ee

LX)

e

oe

n

"

1

<factor>|NOT<factor>
+<factor>|-<factor>
<primary>|<factor>+<primary>

<variable>|<numbers|<functional>|<parameters> (rule 2)|
(<expression>)

<|<~|—|#|<>l>=]>
<letter>|<letter><digit>

<function identifier>(<exprcssion>);
<pre-defined function>(<expression>)]
LEN (<string simple variable>)

FN <letter>

SIN|COS| TAN|ATN|EXP|LOG] ABS | SQR| INT| RND| SGN| TYP
<string variable>|<literal string>

<string variable>

#<file formula>|#<file formula>,<record formula>
~ <expression> ' ‘

<expression>
<letter>

- <integer> (see rule 3)

<sequence number><BASIC statement>carriage return

<LET statement>|<IF statement>|<GOTO statement>|
<GOSUB statement>|<RETURN statement>|<FOR statement>]
<NEXT statement>|<STOP statement>|<END statement>|
<DATA statement>|<READ statement>|<INPUT statement>|
<PRINT statement>|<RESTORE statemcnt>|<DIM statement>|
<DEF statement>|<FILES statement>]<REM Qtatement>l

<MAT statement>)

LET <leftpart><expression>|
LET <destination string>=<source string>|

<leftpart><expression>|
- <destination string>=<source string>

<variable>=|<leftpart><variable>=

IF<decision expression>THECN<sequence nunbers|
IF END #<file formula>THLN<scquence number>

<expression>|
<comparison string 1><rclational operator> !
<comparison string 2>

<string variable>
<string variable>|<literal string>

8-4 (869)

<G0TO statement>

<sequence list>
<GOSUB statement>

<RETURN statement>
<FOR statement> .

<for variable>
<initial value>
<final value> |
<step size>

<NEXT statement>
<STOP statement>
<END statement>
<DATA statement>
<READ statement>

<variable list>
<read variable>
<INPUT statement>
<PRINT statement>

~ <type statement>
- <print 1>

<print 2>
<print 3>
<print expression>

<file write statement> IRE

awrite éxpression>
<RESTORE statement>

W WY s eree v srw oy e w w v e

SYNTAX REQUIREMENTS OF TSB, CONTINUED

e

n

fl

.
*

[}

i

]

"

n

Y

]

- STOP
" END

GOTO <sequence nunbers|
GOTO <expression>0F<scquence 1ist>

<sequence number>|<scquence list>,<sequence nunbers

GOSUB <sequence number> |
GOSUB <expression>0F <sequence list>

RETURN

~ FOR <for variable>=<initial value>TO<final value>|

<FOR <for variable>=<initial value>TO0<final value>
’ STEP<step size>

<simple variable>
<expression>
<expression>
<expression>
NEXT<for variable>

DATA<constant>|<DATA statement>,<constant>

READ<variable list>|READ<file reference>|
READ<file reference>;<vafiab1e Tist>

<read variable>|<variable 1ist>,<read variable>
<variable>|<destination string>

INPUT<variable list>

<type statement>|<file write statements|

' PRINT<fi]e reference>

<print 1>|<print 2>

PRINT|<print 2>, |<print 2>;|<print 3>

<print 1><print expression>|<print 3>

<type statement><literal string>
<expression>|TAB(<expressions)|<source strings

PRINT<file reference>;<write expression>|
<file write statement>,wwrite expressions|

. <file write statement>;<write expression>|

<file write statement--literal string>|
<file write statement-<literal string>
write expression>

<expression>|END|<source string>
RESJORE [RESTORE <sequence nuiber>

8-5 (869)

FOR THE PROFESSIONAL

“ SYNTAX. REQUIREMENTS OF TSB, conTINUED

<DIM statement>
<dimspec>

- <bound>

 <DEF statement>

<FILES statement>"

<file name>

- <REM statcment>
<MAT statement>

<MAT READ statement>

<actual array>
<dimensions>
<MAT INPUT statement>

<MAT PRINT statement>
<MAT PRINT 1>

VAT PRINT2>
- <MAT initialization

.o

ce

ce

statement>::

 <initialization function>::

<MAT assignment

statement> (rule 6)

®

~<mat operator>

.
.

1

1 fn n

u

n.

DIM<dimspec>|<DIM statements>, <dimspec>

<array identifier>(<bounds)|
<array identifier>(<bound>, <bound>)|
<string simple variable>(<bound>)

<integer> (see rule 4)

DEF<function identifier>(<barameter>)=<expression>
FILES<file name>|<FILES statement>,<file name>

a string of 1 to 6 printing characters
REM<character string> (see rule 5)

<MAT READ statement>|<MAT INPUT statements|
<MAT PRINT statement>|<MAT initialization statements]|
<MAT assignnment statement>

MAT READ<actual array>|
MAT READ<file reference>;<actual array>|
<MAT READ statement>,<actual array>

<array identifiers>|<array identifier>(<dimensions>)
<expressions| <expression>, <expression> ’

MAT INPUT<actual array>|
<MAT INPUT statement>,<actual array>

<MAT PRINT]>l<MAT PRINT 2>

MAT PRINT<array identifiers|
MAT PRINT<file reference>;<array identifiers|
<MAT PRINT 2><array identifiers

<MAT PRINT 1>, |[<MAT PRINT 1>

MAT<array identifier>=<initialization function>|
MAT<array identifier>=<initialization function>
(<dimensions>)

ZER|CON| IDN

MAT<array identifier>=<array identifiers]
MAT<array identifier>=<array identifier><mat operator>
<array identifiers| '

MAT<array identifier>=INV(<array identifier>)

MAT<array identifier>=TRN(<array identifier>)|
MAT<array identifier>=(<expression>)*<array identifier>

S

8-6 (869)

