
,'''!-' J);l R E CTORY~

:Hl~':d4,rcct@,ry' is il t:a~le~~ih ich .cdlit~~rq~, ~J 1· n~~cs sa ry ·t~·~f#fmC)'(~,6h ~'B,t4~!
ca:~. pr~,ra'm"<0<r. :fJ~e;ii,iJ"''t:be:,·s.Ys,tem' library'. ",t re~i<i~~~.~q ,'t:fi9disc~.rid, t.l/vi

'b~c'upy "ff',~,. ~",t'o 4a.,i's¢i·:tJ~~'ck~, depending ur~~lf'-!ti~\-I "nl~,n\t dl,s,~,s, the~~ ~{rq on. ;th¢
. '" '." ; " , . ';: ~, " " ', .. : . . / ' '

sys t6m. A. ·corer-.es ld~f;!n't, table till 1 eQ.,"~1~~~,;,c;>dn'~:~'~:Q~i::n~9tm~tLqh.{)n :t;he
;. ' .. .' , ~ ,,,. . ,. . . ~. '.'

:,d i,'r'ec tOt7¥ j, t,s~l-·r,c

A«d; te~:fory en t rx .~~n$;::i\s~tJ!t.~·Q'f.;'t}\t49~4~ta'114,· ,~~~s ~~e,5f:9lt9\~tcig:f9fniQ:r::

WORD'"

'The, ,<Ii re~tQr-y. e~o;;:r'les, Qre k~pt sor't~,cl,:~h, ~<?r,d,s.()-j. 'SIT. lS of \·JorO-s 1

'a'ni~J '2- a.re,r:lO,~ cons"rdered tn~:hq. so~tl~g.. '~,atne's '~f fewe., t:~,;),O 6 cht;\~acters

;~~r~: 'f+:~~}-e~ ,ou:t wi.t~,se(lCCS (hUg' ~ T~e d,at~ j,s th'e "inost re~e,nt d~'H'c on \vh fch

~~~. ,1'.f0:gr.trr.tl 'O"f" 'f.l'fe ·~as: tefer~ed t:o~ 

r~e.-dh:-ector~~'flntain:s, ,2i?s,e.p~.o.entries~bi~h are t'l1~ firs,t ~nd t,p,st 

~i1tf!:'~$ {n the ta,bt9~ Jt,le~ 'h~ve. the f<pt\OYJ,j n& 'form: 

:~ 

I 
'4-

5 
a 
'1. 
/. 

.1< ~ 

fl.ist EN,T~V tASTpNTRY 

, .. ~'~: :~~;i~ " 1 
I 
I 

~ 

0 

0 

0 

~j117i 
9 
tJ' 

,"«'W, \ ,'f{' 

~'''.\Ii ~ ... 

i 

I " 

!):. 
<~ , 

, 17.7777-

':\7?177 
.~ 

*-"1'77 
q' 
;0 ' 

, -.. 
'. 



",'" ~ 

I . 

When the directory occupies more thon one trClck. all the defcct.;';ry 

tracks appended together form the directory. 

A. OIREC 

D~REC is a core resident table which contains information about the 

disc directory. It has the following structure: 

WORD 0 -length i n \'10 r d s' 0 f fir s t directory track 

1-4 same as first 4 words of first directory track 

5 unused 

6 disc address of first directory track 

7-13 same as 0-6 but app 1 ; ed to 2nd directory track 

14-20 same as 0-6 but app 1 i ed to 3rd directory track 

21-27 same as 0-6 but app 1 i ed to 4th directory track 

A disc addr~ss of 0 implies that there is no such directory truck. 

When word ~ is 0, words 1-4 are meaningless. 

The disc address of a directory is always sector 0 of a track. Each 

d~rectory track may contain as many as 5440 words = 85 sectors = 680 directory 

entries. Directory tracks are allocated as follows: 

a.) When the system is initially loaded, or when it is loaded from mag. tape~· 

the number of directory tracks allocated is the maximum of the original 

number of tracks and the number of discs; 

b.) When the DISC command is used to add a disc, a new directory track is 

allocated unless this would cause there to be more directory tracks than 

discs. 



II. 10 TABLE 

The to tilble(IDT) is a disc resident t()ulc \-/hich contains one 8-vloni 

entry for each 10 code on the system. The entr~cs are kept sorted uccording 

to the 10 codes. An entry hilS the follm .. ling format: 

\/ORO 0 user id 

1-3 pass\lJord (filled with 0's if fewer thuo 6 characters 

4 time allowed ( i ~1 minutes) 

5 time used (i n minutes) 

6 disc allowed ( in .s~c tors) 

7 di sc used (i n sectors) 

\~ords 4-7 are 16 bit quantities with values bCt\'Jecn o and 65535. The 

following 2 words in core (efer to the lOT: 

IOLOC = disc address of 10T~ 

IOLEN = length in words of lOT. 



III. AVA~lAOLE DISC TABLE 

The avni lable disc table (ADT) is il di~jc resident lublc \oJhich contains 

one two-word entry for each area of the disc which is unallocated. An ~ntry 

h~s the fol10\-JIn9 (orm: 

WORD disc ilddress 

length of area In sectors 

Entries are sorted according to word 0. Each entry may refer to as 

much as one full track, and no two consecutive entries ever refer to two adjacent 

disc areas (two tratks are not considered to be adjacent). 

Besides the entries for unallocated areas, there is also one ADT entry for 

each of the five tracks on which the system itself resides, and for each of the 

sixteen tracks ~llocated for user swapping. Word 1 of each of these entries 

is 0 so that they will never be allocated. The purpose of having these entries 

is to indicate to the system dump that they may be released at that time,and 

also to indicate to the LOCK and UNLOCK routines that these tracks have special 

significance. 

At the end of the ADT is one additional entry having the form: 

o 177777 
1 0 

Since track 0 is always allocated as a system tratk, any possible dist 

address is guaranteed to be bounded by two AOT entries. 

The fo'110wing t\'IO memory locations refer to the ADT: 

ADLOC = disc address of AOT 

ADLEN = -length in words of AOT 

The lOT and ADT always reside on the same track. The lOT is at the 

beginning of the track (sector 0) p and the AOT begi'ns at the first sector that 

is unused by the lOT. 



IV. fUSS 

The FUSS table is a 128 word table wh;ch resides on the disc. Its 

disc address can be obtained by the instruction 

LOA fUSS, I 

FUSS is d i v i ded into 16 sec t ions, of 8 words cueh. The 8 words in each 

section are the disc addresses of the user files currchtly be!og accessed 

by the user corresponding to that table. Addresses of 0 indicate no file~ 

Disc addresses with bit 7=1 lndic~te that the user has rCDd only acce.sso The purpose of maIntainIng tn.s table is [0 -

1~) prevent simultaneous write access by two users to one file; 

2.) prevent KILLing a file when some user nuS ~c.cess to;t. 

A user1s FUSS (i.e. his area of the FUSS table) is set by the FILES 

rout ille, wh i ch is ca 11 cd f rom BAS I c" at the beg i nn i ng of c>:\.'cut i on of a 

program containing a FILES statement .. It is cleared by BY[JtI[LLO~KiLLID, 

and sometimes by KILL. 

• 



v. COMTABLE 

The C0I1TA13LE is ali ~ t of a 11 user and system commt1nds conta i n j ng 

their ASCII codings and disc locations or core addresses. The structure 

of the COMTABLE is as foIl O\'/s: 

COMI codes for commands which are 
executed immediately by the 
system 

COM2 codes for commands which are 
executed by 
BASIC 

COM3 user command~ which are 
executed by disc resident 
programs 

C0l14 system commands - - all are 
executed by disc resident 
programs 

COMS starting addresses for those 
commands which are listed 
under COMI and COM2 

COM6 disc addresses for those 
commands which are iistcd 
under COM3 and COM4 

(this section is filled 
by the loader) 

Since each command is recognized only by its first 3 letters, the 

scanner converts each letter into a number from 0 to 31S' and then packs 

the three codes into one word as three 5-bit bytes. In addition, bit lS 

is set for system commands. Codes of -1 in sections 2, 3, and 4 do not 

correspond t~ any possible 3-1etter code. Their purpose is to generate 

room in COM6 for disc addresses of routines that are called indirectly, or 

for tables like FUSS. In the case of CTAPR, the purpose is to generate a 

status type for ~rinting compiler tape errors without a direct command from 

the user Q 

• 



V I: LOGGR 

LOGGR is a 32-\'/ord queucvJhich cont()ins codes for printing 

LOGOH/OFF mcss()ges. Entries are placed on the queUe by I1ELLO~!3YE~ and 

SLEEP. Each entry consists of 2 words, \-/ith the following format~· 

\·/ORD 0: user i d (BIT 15=0 for OU, 1 for OFF) 

The 

1: bits 15-4 = 60 x hrs + mins 

bits 3-0 = terminal number 

representation of a user id is as 

BITS 14-10 ;:: letter (tiy = 1 , B -

BITS 9-0 = number (0-999) 

The foltowing variables are relevant: 

follows: 

I') 

1'... ' .. ~ 

LOGeT = # of unprocessed entries in LOGGR. 

Z ;:: 

LOGPl = points to word of last processed entry 

lOGP2 = points to word of la6t unprocessed entry 

Note that LOGeT = 0 ~~> LOGP1=LOGP2 

328
) 



VII TELETYPE TABLES 

This set of 16 tables, one for euch user, contuins relevant inform.1tion 

about the various terminals. The structure of the tables is as follows: 

WORD 0 BTII1 

1 CHAR 

2 BCNT 

3 t1ASK 

It CCNT 

5 ' BPNT 

6 BSTR 

7 BHED 

6 BGIN 

9 BEr~D 
; 

" 10 LADR , 

11 DISC 

12 PROG 

13 10 

14-16 N,AME 

17 PHON 

18-19 TIME 

20 ABCN 

21 CLOC 

22 RSTR 

23 STAT 

24 LINK 

25 PLEV 

BT Itt, CHAR, BeNT 9 CCNT, BPNT ~ BSTR» SHED? l3G IN, and BEND ,a reused for 

I/O and buffer control. BTIH is used by the MPX driver to count interrupts 

between bits. BCNT is used to count bits within a character. CHAR is used 

to pack input blts or unpack output bits. The use of the other items var1cs 



depending upon \"hether input or output is being performed. 

During input, the u~cr's buffer ncts uS u character queue. BHED points 

to the first character of the first unprocessed input linc, i.e. thchcod 

of the queue. BSTR points to the first charucter of the current input line. 

BSTR = BHED except when the user is in TAPE mode, and there exists the 

possibility of mUltiple input lines. At the end of each line of input, 

BSTR is set to point just beyond the line. After a line is processed,by 

either BASIC or by the system, it advances BHED beyond the line just processed. 

If it remains unequal to BSTR, a second line must be processed. BPNT points 

to the tail of the queue, i.e., the location into which the next character 

is to be deposited. BGIN and BEND are fixed pointers Wllich give the first 

character of the physical buffer and the first character beyond the physical' 

buffer, respectively. Note that character poi~ters have the form: 

BITS 15-1: HORD ADDRESS 

BIT 0 o for lcft character. 1 for right character 

During output, the buffer ag~in acts as a character queue, but lines 

have no significance. CCNT = -numb~r of characters to be transmitted, 

including the current onc. BPrJT points to the character currently being 

transmitted, and BSTR to the location into which the next output character 

will be deposited. 

The rema i nde r of the \'Jords in the tab 1 e are def; ned as fo 11 Oh'S: 

lADR: 

DISC: 

PROG: 

10: 

NAME:' 

PHON: 

a Pointer to the user's LADDR entry 

disc address of user's swap area 

when user is on the disc, PROG points to the last core 
location used by the program. When the user is loaded 
into core, PROG is placed into PBPTR. When he is written 
back to disc, PBPTR is copied into PROG. BASIC is 
required to maintain PBPTR as a bound on the core it is using, 

user's id, 0 jf none 

a three word entry containing the user's progr.am name. It is 
set by the routines NAME & GET, and cleared by HELLO. Hhcn 
fewer than 6 characters are in the name, blanks are appended. 

when the system telephone routine is timing the user for 
variou~ things, PHON is-set to the value of DATIM+l necessary 
to achieve timeout . 

• 



T HiE: 

ABCU: 

CLOC: 

RSTR: 

STAT: 

the value of OATII1 (0 : 1) \'Jhen the user logged on. 

this is used by the abort checker in the l1PX driver to count 
the length of a BREAK. Hhen the ilbort checker scn~e:", ,) 
o ; n put bit t hat ma y bet he s tar t 0 f a f3 REA 1\ , its e t s 1\ Be: J 
= -100. If the 0 bits continue for 100 consecutive t\PX tir.1c 
PZriods (""1)1. ms), then the BREAK key has been pre5sed. 

this is the timeout clock used to determine the length of a 
user's time slice. See the d~scussion on scheduling for 
further information. 

this is set, when a user is placed on the queue, to his 
starting address in core. When the user is actually 
initiatcJ, RSTR is set to O. Whenever RSTR = 0, the transfer 
address of the user can be found in location PREG. 

indicates user's status. The user's status is as fol10w5: 

-2, system disconnect 

-1 , user abort request 

0, idle 

1 , system abort 

2, input wait 

3, output wait 

4, syntax processing 

> 4, command processing 

When a command is being processed, STAT indicates the command. STAT 

values are assigned in order of entries in the COMTABlE, so that 

RUN = 5 
LIST = 6 

PUNCH = 7, etc. 

LINK: the llNK words in the tables are used to form a queue of active 

users. All users whose 'status is Z 4 are in the queue. See the discussion 

on scheduling for further information. 

P lEV: t his wo r d g i ve s the p rio r i t y 1 eve 1 0 f the use r \'J hen he i son 

the queue. When the user's status is set to 2 or 3, the previous 

value of STAT is copied into PLEV, and the user removed from the 

queue. The possible values of PLEV ~re as follows: 

• 



0: highest priority, used for synt~x, uscr~ returning from 
I/O suspend, and for disc resident routili('S once they beg'in. 

1: used for commands RUN,LIST,PUNCIt 

2: used' for disc res i dent rou tines un til t I.I.'Y reach the top 
of the queue 

4: used for long running programs 

Assoc i ated with each i tern in these tab 1 es is a syl1iho 1 \-/h i ch is EQUa ted 

to the corresponding number of the item. For example: 

1BTIM 

1CHAR 

1PLEV 

EQU 

EQU 

EQU 

o 
1 

25 

I . 

These symbols are primarily used for adjusting pointers to the table. For 

example p if the B register contains a pointer to the LINK entry of some user, 

the instruction 

ADS .+1 10 - 7 LINK 

will point B to his. ID entry. 

is a ,symbol located in base page at the 0 entry of a lllldc of constants from 

- 26 to + l19. A word con ta i n i ng the va 1 uc N, whe re, - 26 ~ . r~ ~ It9 (.,.)1) be re f e renced 

by .+N. 

• 



, 
LI BRA· 

• 37300B 
• ~ 

37700,B 

I/O DRIVERS 

EXECUTIVE 

SYSTEM LIBRARY PROGRAMS -
S\·/AP AREA (256 \·/ORDS) 

-PROTECTED LOADEH 



EQUIPMENT TABLE 

The equipment table is the area of core which describes the re~ourccs avai lablc 

to the system. It resides at locations 100-166, as follows: 

100-133: 
134: 

135: 

136: 

137: 

'If 0-157 

160-163: 

OIREC (discussed cl~ewherc) 

IDLOC " 
IDLEN " 

ADLOC .. 
ADLEN " 

TRAX - this is a table of which disc tracks are physically 

available to the system. Locations 140-143 correspond 

to disc 0, 144-147 to disc 1, etc. Track 0 of disc 0 

is represented by bit 0 of 140, track 1 of disc 0 is 

represented by bit 1 of 140., etc. A b'i tis 0 when the 

track is available, 1 when unavailable. 

When a system is initialized, all tracks of disc 0 are 

made available, all others unavailable. The TRAX table 

is changed only by the following commands: 

DISC - causes all tracks of the specified disc to be made available. 

LOCK - all specified tracks are made unavailable. 

UNLOCK - all specified tracks are made available. 

1TBL - th~re is one word in this area for each of the four discs. Whe 

the word is zero t the particular disc does not exist. Othcn·;is 

bits 15:8·contain the number of sectors / truck, bits 7:6 the 

disc prefix, and bits 5:0 the high priority select code. The 

prefix is used by the disc driver as the high order 2 bits of 

the 8-bit track address. 

MAGSC - high priority select code for mug. t~pe; if nonexistent. 

MAGSC = O . 
.. 



c 

'. 
165: PHse - select code for autodisconnect board, if noncxi5tcnt, 

166: 

puse II: 0. 

PHR - 10 x number' of seconds allo\'Jcd for user to log on; c1pplicublc 

only if puse*"o. 



. .., 

DISC ORGANIZATION 

The disc available to the system consists of from GIl to 256 trucks, depending 

upon how many discs exist. Each track contains from 90 to 128 scctor~; of 6/1 \'/()I'd~ 

each, for a tot a I of 5760-8192 words pc r track. The 1 oade r c1S si gns t racks as j" 011 m'Js 

RES I OEtJT SYSTEM 

System library routines 

lOT and AOT 

User swap tracks 

Directory 

(3 tracks. including track 0) 

(2 tracks) 

(1 track) 

(16 tracks) 

(1-,. tracks) 

All rem~ining tracks are available for storage of user programs and fi lese 

The AOT contains an entry for each available area. 

The disc addresses of the individual system ljbrury rOlllines are stored into 

the COMTABLE during loading. Although they are not all the sulne length, they are 

limited to 256 words, and so the system. reads in exactly 256 words whenever it 

wants to load such a routine. The loader never assigns a library routine within 

3 sectors of the end 6f a disc track, so that no errors can t~kc place in doing this . 

The lOT and ADT are stored on the same track, as des~rib(->d above. 

Each directory track is stored beginning at sector O. 

User tracks are initialized to sector O. The scheduler optimizes swapping, 

however p by writing user swae areas back at the fir5t possihle sector, but on the 

same track. The SLEEP routine rewrites all user tracks back to track origin (sector 

0) so that the system will function correctly when it is relo~dcd from disc. 

During running, cach user truck contains a copy (If the (1ret) from core location 

USER through the core location specified by its ?PROG clltry. "hi~ includes 

• 



-

all variable data which is relevant to that user's progrnm, and his progr~m itself. 

The location of various sections in his program is discussed c1sewtlerc. 

Programs and files are each required to be stored as contiguous blocks of 

disc. Since the disc is allocated by sectors, each program may cause part of its 

last sector to be wasted. When a program is stored (by the SAVE routine), it is 

first decompiled and is stored in that form. Only the encoded text is stored, so 

that a program may require as little as 3 words of disc space. 

Files always occupy an integral number of sectors (1 -}28), each file 

occupying a contiguous area on the disc. BASIC does not treat the individual 

sectors in the same logical sequence as the physical sequence, but rather inter­

leaves the sectors, as follows: 

even U of sectors 

Physical sequence: 

Logical sequence: 

odd # of sectors 

Physical sequence: 

logical sequence: 

2 

n+1 

2 

n+1 

3 
2· n+2 

3 4 
2 n+2 

... 
2n-2 . 

2n-1 

2n-2 
2n-1 

2n-1 

n 

2n-1 

n 

2n 

2n 

This format tends to decrease disc seek time when sectors are accessed in a 

logically ascending order. 



SCHEDlJL I r~G 

[The basic philosophy of the TS13 scheduling algorithm is to provide ~,hort 

response times for short, intcrnctive jobs at the possible cost of delays in 

longer running jobs. The implementation of this involves a queue of Jobs to run 

which is ordered according to a priority scheme.] The queue is a linked list of 

from 1 to 18 entries, each entry pointing to the next entry, and the last entry 

pointing back to the first. The 18 possible entries in the queue are the 16 user 

LINK entries, a LI~K word in a truncated TELETYPE table reserved for the system 

~on~ole, and a queue head. The queue head consists of the locations MLINK (0:2), 

and is always in the queue. The queue head has a priority of 777778, which is 

stored in location MLINK+2, and so it is ahvays the last entry in the queue. As 

an example of how this works, assume that users 1, 3 and 6 are on the queue 

~n that order and so is the system console, in a positlon between users 3 and 6. 

Then the queue wi 11 have the fo 110\'Ij n9 appearance: 

'lTY03+?L i NK 

?PLEV 

T3SLK 
T35PR 

TTY0(,+?L I UK 

?PLEV 

I1L I '~K 

~ __ -i-__ 

'-

2 

4 

1\----$ __ -',(-...... ------.6 '--7-7-7-77----'; 

• 



Since the KLINK entry is. alw0ys the la5t entry on thc queue, MLINI(+l 

is a pointer to the first entry, which in this case is TTY01. In the cuse of an 

empty queue, I-1LIUK+l will point to itself, I.e., CONTEUTS(I1LIIJK+l) = COfHErHS(HLlrH~). 

Each entry on the queue has a priority no grcuter in numerical value thun thilt of 

the one it points to. When an entry is added to the queuc, this ordering is al\/ays 

preserved by placing the new cntry just ahead of the first entry with a largc~ 

priority number. Note tha~ when the first entry in the que~e has priority 0, it 

wi)) remain at the head of the queue until it is removed from the queue entirely. 

The following rules are used to assign (and reassign) priorities: 

1. Upon first entering the queue, jobs are assigned priorities as follows: 

SYNTAX lines and jobs returning from I/O suspend: 0 

BASIC commands {RUN, LIST, PUNCH} 1 

Commands for disc-resident routines {GET, BYE, etc}: 2 

2 • P rio r i tie s 0 f j ob s are rea s s i 9 ne d. i nth e f 0 1 1 0,/1 i n9 way: 

Jobs of priority 2, when they reach th~ top of the queue, are reassigned 

priority O. 

RUN jobs~ when they exceed their time slice p are re-assigned priority 4, 

and repos it i oned in the queue accord i n9 to that p r i or i ty . Each RUIJ job is 

assigned a time slice of one second? and if it exhausts that it is assisned 

anothero 

The scheduler always chooses to run the job on top of the queue t so that 

whenever a job is running, HLIfJK + 1 is pointing to its link word. The tvJO locations 

MAIN and LIB are control variables which tell what is presently in core. MAIN 

refers to one of the 16 user programs. It is a pointer to WORD 0 of the TTY table 

of the user program currently in core. If none is in core, MAlfJ = O. 

LIB points to the location in the COI1TABLE of the disc address of the librilry 

routine in core. LIB = 0 when none is present. 



The following conditions must exist for the scheduler to permit execution: 

A) for Syntax and BASIC commnnds: 

MAIN set to point to correct user table 

B) for disc resident commands: 

MAIN = 0 

LIB set to correct disc resident routines. 

The Scheduler routine SWAPR ;s responsible for creating these' conditions, and 

makes its decisions according to the values of MAIN, LIB, and the entry on top of 

the queue. 

.t· 



Commun i cat i on Between Sy.s t em Hodu 1 cs 

CIt There are six system modules that communicat(' .. lith e,1ch other in various 'Jay" 
~ 

the disc driver, multiplexor (MPX) driver, sy~)lem c.on!',olc driver, scheduler, BASIC, 

and system library routines (HEL~O. BYE, KILLID, etc.). 

1. Disc Driver. 

Any section of the system may call the disc driver to perform a disc transfer. 

Three parameters are passed: 

A = disc address (b its (J 5: JI.) :: disc nurT'bcr 

bits (13:8 ) - track number 

bit 7 == 0 

bits (6:0 ) == ~cctor number) 

B = core address (bits (14:0 ) :: core address 

bit 15 == for di sc input 

0 for. disc output) 

WORD = -# of words to be transferrel (may be 0, in \'/hich case no actual transfer 

is performed). 

Ca11ed by JSB DISC p l 

It is the responsibility of the caller to insure thut the disc is not busy 

when the ·call takes place. This is no hardship since \vhile BASIC or a system library 

routine is running, no other module ever initiates di~L trnn5fcrs. As a result, the 

disc will appear to be busy only if the module itself has initiated the transfer. 

Upon initiation of a disc transfer. the vc1/"ial.,l(-.! [IJDSK is'set to 1, and it 

is cleared upon completion. A complete transfer can be performed by: 

JSB DISC p l 

LOA ENDSK 

SZA 

JMP ~'~-2 



The system never suspends a progru~_ for u dLsc trun~_!"er because the high 
~-~ 

speed of the disc does not cause any great overhead. 

The value of WORD is not modified by the driver. 

c 



II. Output to.MPX 

Output to the HPX driver is performed on a character by character basis via 

the routine OUTCH. The calling sequence is as follows: 

A = character to be output (in bits (6:0); bits (lS:7) may be anything) 

B = address of WORD 0 of user's teletype table. 

JSB DUTCH, 1 

The DUTCH routine places characters into the user's buffer until it is filled 

(99 characters), at which point the user is suspended by OUTCH. This is no 

problem for BASIC, but due to reentrancy problems must not be allowed by other 

modules. The buffer is always empty when a library routine is initiated; so they 

normally do not have to worry about it. 

After the user has typed a carriage return, the MPX driver does not permit 

him to abort yntil one character is output .. Therefore, those routines which do 

not wish to be terminated do not output anything until they are wi l1ing to be. 

Each routine must output at least one character (usually a line feed) to allow the 

user to type again. 



III Input from MPX 

Input from a user teletype is allowed only \vhcn he is in .!i!!:. 0 r ~. s l u t us, 

or when he is enter; n9 a program tape. Upon completion of inrut (CR) , the HPX sets 

his MPCOM bit, and the scheduler, upon seeing the bit set" takes the appropriate 

action. BASIC can ask for input from a user terminal by performing 

JSB· SetH N, I 

Although no other routine ever does this, the only possible problems involved 

would be those of reentrancy • 

• 



tV System Console Driver 

The system console driver maintains two flags, T35Fl and T35F2, which 

determine its status. The mca~ings of these flags are as follows: 

T35F1: = -1 during output, 0 otherwise 

T35F2: Normally 0, it is set to -1 by the driver at the conclusion of input, 

and cleared to 0 externally. The combined values of these is more significant: 

F1 F2 

o 
o 

-1 

-1 

o 
-1 

o 
-1 

driver is accepting input 

1) input command received and being processed, or 

2) output terminated from a system command which is to be 

reinitiated 

outputting 

outputting, at the end of which the current system command \..,i 11 

be reinitiated. 

When F2 = -1, the driver will not accept any input. This guarantees system 

library programs that they will not be interfered with. These routines are 

responsible for clearing F2 when they call the driver for the last time. 

The calling sequence is: 

A: bit 15 = 0' if CRLF is to be appended, bits (14:0) = # of chars. 

B: Bit 15 = 1 if punching is to take place in addition to printing, 

bits (14:0) = core address of output buffer. f 

JSB TTX35,1 
The d~iver uses the 36 word buffer T35BF as an input buffer. Most of the 

library routines use it for output, and occasionally for temporary storage between 

lines of outp'ut. 

.. 



c 

v. Input and Termination Requests 

BASIC may obtain input from a user console by performing the instruction 

JSB SCHIN,I 

Upon return, the input will be in the users buffer as indicated by the 

pointers ?BHED and ?BEND. 

Either BASIC or a system library routine terminates by: 

JSB SCHEN.I 

It is possible for BASIC to call a system libr~ry routine directly by 

executing: 

JSB SCHLB,I 

DEF ~location in COMTABLE of disc address of program) 

In the initial system, this is done only with the FILES routine. It is 

necessary that the library routin~ cooperate with BASIC, i.e., not any program 

can be so called. 

• 



·SYSTEM LIBRl\RY ROUTINES 

FILES 

The FILES routine is used by BASIC to process a FILES statement in a 

user's program o The function of the FILES routine is to translate the 

file names in the user's program into a tru)lc for use during exccutionu 

This table contains a 7-word entry for each file. Its format is: 

10 physical length in sectors (BIT 15 = 1 if read only) 

2. disc address of last logical sector 

30 not set by FILES routine 

4. disc address of first sector 

5-70 not set by FILES routine 

During operation of the FILES routine, the userls buffer is used as a 

table to store int'ermediate data o Three words of the buffer are used 

for each file 0 The operation is as fo110\-18: 

10 Translate characters in FILES statement into the buffer 

tablc o Filenames are extended to six characters, if necess-

ary, and those which are specified to be public files are 

marked by setting Bit 15 of their f:Lrst word to 1. Possible 

errors found in this step are: 

a o file name of 0 or > 6 characters 

b o more than 8 fi1'es requested 

24'1 Perform directory ,search for each file Q Change the last two 

words of its entry in the buffer t~)lc to the' disc address 

, and length in sectors. The reu.d-only bit is set if the file 

is a public file and the user is not AOOO. An error occurs 

if the file is nonexistent or prol:cctcd. Update the date 

word in the directory entry for ·thi~3 file • • 



c 

3. Test to make sure that there is sufficient room in the 

user area for the file table o 

4. Scan the FUSS table to see if any other· user has write 

~apability on the files requestedu Mark any such files 

as read-onlyo Copy the disc addresses of the requested 

files into the user's portion of FUSS. Indicate read­

only files by marking bit 7 in FUSS o 

50 Build the table specified aboveo FILTB is a pointer to 

the beginning of the table. Upon exit, VALTB and PBPTR 

both point to the first word following the table o 

• 



SAVE 

The SAVE routine is called by a user to save a program in the libraryo 

Its operation is as follows: 

1. Test for the existence of a program name and a non-null 

program. 

20 If the user's program is in compiled form (CFLAG bit = 1), 

call DCMPL to put it into the form in which we will save ito 

3. Test to see that the user has sufficient disc space allocated 

to save the program. The test to be satisfied is: 

(disc currently in use) + (length of program in sectors) 

~ (disc'allowed)o 

40 Search the ADT for the first entry large enough to hold the 

program. Remember the address of the entry in SAVAo 

50 Perform a directory search on the program to be saved. Fail 

if such an entry already existso 

6 0 If the directory track is full, call the SUPERSAVE routine to 

attempt to rea1locate the directory. SUPERSAVE will perform 

step 7 ~tself and proceed to step 8. 

70 Insert a new directory entry into th7 directory. 

8. Update the IDT and ADT. 

9. Copy the user's program to its library area o' 

• 



c 

SUPERSAVE . 
The SUPERSl\VE routine is called by the SAVE and OPEN routines when they 

want to make a directory ehtry on a truck thut is already full. SUPERSAVE 

assumes that the following words arc set properly: 

(LTEMP:LTEMP+3) = first 4 words of entry. 

(LTEMP+4) = pointer to DlREC entry for appropriate directory track 

(LTEMP+5) = core address of entry which is to precede the new entry 

(LTEMP+6) = disc address of entry 

(LTEMP+7) = length of entry 

Note that (LTEMP+4) and (LTEMP+S) are set correctly by DLOOK o 

SUPERSAVE attempts to redistribute the directory tracks so that they will 

be as equal in length as possible. This will generally prevent it from 

being called very frequently. The operation is as follows: 

10 Scan through DIREC and determine the total length of all 

directory tracl(s, and add 8 for the new entry. If all direct-

ory tracks are full, exit through failure location$ 

2Q Divide total directory 1ength,by number of available disc 

tracks to determine their new individual lengthse Insert these 

in the table at (DEFNN+l:DEFNN+4) as negative o 

3. Now redistribute the directory tracl(s. The basic idea of the 

algorithm is to fill the swap area with as much' of the directory 

information as we can, reading from the beginning, and then 

to write out as much as we can, always making sure that when 

writing we don't overlay any portion that hasn't been read yet g 

:. 

The f01~owing variables arc used: 

(SUP)Kl points to the DIREC entry for track being read 

(initially DlREC%)_ 

Ll points to~the DIREC entry for track being written 

(initially DlREC¢). 



K2 = # of words read so far from track Kl (initially 0) 

L2 = # of words written so far on track Ll (initially 0) 

p = # of words in core (initially 0) 

PP points to DEFNN entry, telling how many arc to be 

written on Llo 

TG = 1 if we have already inserted the new entryu 

4. If L2 =-(Pp), we have completely written track L~ so check 

for Ll = DIRD3. If it is, we've written all the track~ so go 

to step 10 0 Otherwise " advance L1 to the next directory track 

advance P~ set L2 = 0, and repeat this stepo If L2 1 -(Pp), 

go to step 5. 

50 If P ~ 5432, we have read as much as we can, so go to step 70 

If Kl = DIRD4, there is nothing left to read, so go to step 7. 

If K2 = # of words on track Kl, we've· read the entire track, 

so advance Kl to the next track, set K2 = 0, and repeat this 

step. Otherwise, compute the number of words we can reado If 

• there is room to read the balance of the track, we will, other­

wise we will read the maximum number of full sectors possible o 

If this' is zero, go to step 70 If it is not zero, read from 

,sector K2/64 into core location LIBU~ + p. Add the number of 

words read to P and to K20 

6 0 If TG = Oq determine if we can insert the new entry. ~his will 

be so if Kl = (LTEMP + 4) and (LTEMP + 5) - LIBD < K2. If 

this is not the case, go back to step 50 

to 1 and insert the new entry in coree 

back to step 50 

Otherwise, set TG 

Set P to P + 8 and go 



7. Write section. Set S = O. This is the number of words 

writteno 

8. Compute number of wo·rds we can write on track Ll. First 

set A = - number of words left to write on the track. If 

Ll = Kl, we haven't finished reading everything from track 

Ll, so if L2-A '>' K2 change A to L2-K2, which is the number 

of words we can write without destroying any unread directory 

information 0 If P-S( -A, we don't have as much in core as 

we are capable of writing, so set A = -«(S-P)~64) X 64), an 

exact number of sectors. 

90 If A = 0, we can I t write anything, so if S -:ft D slide the re­

maining P-S words in core up to location LIBUS, set S = 0 and 

p = P-S o Then go back to ~tep 40 

If A + 0, write -A words to sector L2 -7 64 of track LI. If 

L2 = 0, set the first 4 words of the Ll DIREC entry to the 

first 4 words writteno Set L2 to L2-A, S to S-A, and go back 

to step 8f!) 

100 Set the new directory lengths into DlREC and go back to the 

calling programo 

• 



o 

.QJl! 

The GET routine is called by a user to load a program from the libraryo 

The operation is as follows: 

10 Translate name of program from user's inputo If preceded by 

a ;" set up for AOOO search; otherwise set for searching on 

user's ide. 

20 Perform directory search o Print error if not found. 

30 Fail if entry is ,a file (BIT 15 of word 2 of entry is 1)0 

Check that the program will fit into the user areao This is 

necessary in case a program which was saved under an old 

version of the system can no 'longer fit with the current 

version. 

40 Set the date into word 5 of the directory entry and write it 

back 0 Copy the program name into the userls table, and if 

this is a run-only program, set the run-only bite unless the 

user is AOOO a 

50 Scratch any previous user program, read in the basic portion 

of his user area, and then append the library program on. 

Set PBPTR correctly, set his CFLAG bit to 0, set SYMTB to 0, 

and exit. 

.. 



c 

APPEND 

The A)?PEND routine is called by a user to append a library program 

onto his current program o The operation is the same as GET for 

steps 1-4. except that the old name is preserved, and then continues 

as follows: 

5. Load user's current program and call DCr.1PL. Read in the 

program to be appended at the end of the current program. 

6 0 If the current program is not null, search it for the 

sequence number of the last statement, and insist that it 

be smaller than the sequence number of the first statement 

of the appended program o If o.k, update PBPTR and exit. 



CIt HELLO 

The IillLLO command is used to log a user on to the system. Its oper­

ation is as follows: 

1. If the current id is 0, there is no user to log off, so go 

to step 2. Otherwise, clear the user's section of FUSS, 

set the PHON entry in his table to (DATIM+l) + PHR, and set 

his PHT bito This will force the user to be disconnected if 

he does not successfully log on. 

2. Read the IDTo If there is no user to be logged off, go to 

step 3 0 Find the old userDs IDT entry and update his total 

time used o Add an entry to LOGGR t'o be printed on the system 

console o set the user's ID word to 00 

3. Translate the new.idcode and search for it in the IDT. If 

not found, print an error message and terminatee Compare 

the password typed to the correct One, and fail if they dis­

agree Q Also, check that the time used to date is less than 

the time allowed~ 

4. Add. a LOGON entry to LOGGR, and set the starting time into the 

user's table. Also insert the idcode, clear the name, clear 

the program and clear the PHT bit. 

5 Q Search the directory for a public library HELLO program. If 

not found, or if it is a file, or if it wonit fit in core, 

print READY and terminate. 

6. Read in the fixed user area and append ,3HELLO. Set PBPTR, 

clear the user's CFLAG, set HFLAG, and clear SYMTB. Change 

the user's status to RUN, set TlMEF, and transfer to BASIC g ) 

.. 



c 

BYE -
This command is used to log a user off. It operates as follows: 

1. Set the userls 'PLEX bit to full duplexo If the user 

id is 0, set his disconnect bit, clear his PHT bit and 

terminate. 

20 Clear the userls FUSS table and read in the IDT. Compute 

the time used and update his IDT entry. Create a LOGOFF 

entry in LOGGR. Clear the userls id entry and output a 

message o Set his PHON entry and set PHT so that he \,/i11 

be disconnected in 4 seconds (the time required to print 

the message). Then terminate o 

• 



c 

I< ILL 

The KILL routine is called by a user to delete a program or a file 

from the library. Files which are being accessed by another user 

are not allowed to be killed. The operation is as follows: 

1. Translate the program or file name and perform a directory 

search. Fail if illegal name or the search fails. 

2. If the entry is a file, search the FUSS table to see if 

any other user has access to the file. If so, print a 

message and terminate. If not, clear the user's section 

of FUSS. 

3. Delete the entry from the directory and adjust DlREC. 

Subtract the program length from the user's IDT entry, and 

restore the space to the ADT. 

4. If a file was killed, read the user's program in and de­

compile ito This guarantees that any-old references to 

the 'file will disappear. 



,RENUMBER 

The function of RENUMBER is to assign a new set of sequence numbers 

to a user progrum. The user may specify the sequence number of the 

first statement and the increment between statements. If unspecified, 

these are set to 10. 

There are actually two sets of numbers that must be modified. One set 

is the sequence numbers themselves, each of which occupies the first 

word of its statement. The other is the set of references, \-lhich are 

labels,in GO TO, GOSUB, RESTORE, and IF statements o Each of these also 

occupies .one word. For programs in compiled mode, they are pointers to 

the statement they reference: in decompiled mode they are the actual 

statement nuffiberG 

The primary technique used is to change all the references to absolute 

pointers (if in decompiled mode), then to change all the sequence 

numbers~ and then (if in decompi1ed mode) to change the references to 

the new statement numberso References to nonexistent labels are left 

unchanged 0 

, 
Because the process of changing all the references to absolute pointers 

, 
can become quite time consuming (due to the search that must be per-

formed for each reference), a table is built in advance essentially 

dividing the program into 32 parts, each containing the same number o~ 

statements~ For large programs with many references, this effectively 

cuts the time down by a factor of close to 32. 

The subroutine RENSI< is used to scan for references. It maintains tW9 

pointers, P and Qo Whenever it is called, it moves P to the next 
~ 

reference, and sets Q to point at the statement following the one that 



c 

P is pointing ato It takes advantage of the fact th~lt any references 

within a statement are always the last word or words of the statement o 

Before calling RENSK for the first time, Q is set to point at the be-

ginning of the program, and P is set to Q-l. 

The operation of RENUMBER is as follows: 

10 If null program, terminate imrnediatelyo Otherwise, read 

in user program. 

20 Translate and check parameters M and No 

3. Scan through program and make sure that the nev .... sequence 

numbers will not exceed 99990 

40 If program is in compiled mode, go to step 7" Otherwise, 

set up a table in ERSEC which divides the program into 32 

partso The result is that for each I from 0 to 31 

ERSEC tIJ = sequence number of first statement in part I, 

ERSEC tI+32) = Absolute address of'that statement 

If there are 32K + L' statements (O~ L ~ 31) in the program, 

ERSEC tIl is the sequence number of statement 

(K + 1) I + 1, if I< L 

KI + L + 1, if I~L, K>O 

L if I~L, K= 0 

Set Q = PBUFF, P = Q-I. (PBUFF points to the first state-

ment) 0 

50 Call RENSK to find the next statement reference., If ·there are. 

none left, go to step 7. Find the largest I for \·lhi.ch 

ERSEC tIJ ~ (RENP) 0 If there is none, the sti. .... tcmcnt referenced 

does not exist, so go to step 6co Otherwise, test: u11 ~tatements 
9l< 

from (ERSEC [I + 32') ) to either (ERSEC r. I + 33J ) OJ:' PBPTR, 



depending upon whether 1<31 or I::; 31. If found, ~et (RENP) to the )oc"lion 

of the statement referred to, and repeat this step. Otherwise, go to step 6., 
\. 

6. Set (RENP) ::; (RENP) + 100000
S 

and go back to step 5. 

7. Change the sequence numbers of all statements, according to the M and N 

parameters. If compi led mode, terminate. Otherwise, set Q ::; PBUFF, P = Q-l, 

and go to step 8. 

8. Call RENSK to find the next statement reference.· If none left, terminate. If 

(RENP)~Ot the reference was undefined, so set ( RENP1 = (RENP)-lOOOOOS' and 

repeat this step. Other~ise, set RENP ::; ( (RENP) ) and repeat this step • 

• 



c 

NAME 

The NAME routine is called by a user when he wtints to assign a name 

to his program o The program name is placed in his teletype table. 

The operation is as follows: 

1. Get an input character o If a carriage return change it 

to' a blank. If a control character, ignore it and repeat this 

stepo If a n~", and this is the first character, print an 

error message and terminate o 

20 Add the character to the user' s name area 0 If < 6 characte·rs, 

go back to step 1. Otherwise, restore the RUN-ONLY bit, and 

get one more character o If not a blank, print an error mess­

ageo Then terminate. 



CATAT.JOG 

The CATALOG routine prints a list of all programs and files in the user . 

library. The operation is as follows: 

1. Perform directory search on the program with all nulls. Get' 

first directory entry following the one sought. 

2. If the entry does not belong to this user, output a CRLP 

and terminate. Otherwise, output the 6 characters of the 

name one at a time, then a blanl<, then the 4 digi ts comprising , 

the length of the program or file, and then another blank. 

3. If <6 names have been printed on the line, advance to the 

next directory entr.y and return to step 2. Othen~ise8 output 

a carriage return and suspend until· the buffer is almost 

empty. Note that during step 2, the user's BHED word was set 

to point to the beginning of the last program name printed. 

This will insure'that step 4 will work. 

40 Read the name of the last program printed from the user IS 

buffer and perform a directory search. The reason for doing 

this in this way rather than saving a pointer to the directory 

is that during the time CATALOG was suspended, the directory 

may have been changed in any way. Get the first directory 

entry following and go back to step 2. 

! f 
( , 

, 
i 



C." 
~ 

LIBRARY 

The LIBRARY routine prints a list of all programs and files in the 

public libraryo Its operation is identical to thQt of CATALOG except 

that AOOO is used for directory searches instead of the userls id o 



DELETE 

The DELETE command allows a user to delete a section of his programu 

He can specify two parameters, M and N. M refers to the first line 

to be deleted, N to the lasto If N is not specified, the entire pro­

gram is deleted, starting at line Mo The operation is as follows: 

l~ Translate and check parameterso If N is not specified, set 

it to 9999 0 

20 Decompile program o 

3 0 Locate range of statements to be deluted. 

40 Move portion of program following deleted area up against 

portion precedingo 

50 Reset PBPTR and exito 



.~. 

TIME 

The TIME command prints the user's console timcand total time. The 

operation is as follows: 

10 Print "CONSOLE TIME =" 

2. Read IDTo 

3 0 Compute console time and print ito 

4. Print "TOTAL TIME=" 

5. Find user's IDT entryo Add the time in there to the console 

time and print ito 

60 Exito 



PROTECT 

The PROTECT command allows user AOOO to protect a program or file o 

Program protection means that no other user may list or save the 

programo File protection means that no other user may access the 

f11eo AOOO files are always protected. against other users writing 

on themo The operation is as follows: 

10 Check for AOOO o 

2. Translate and check the program or file name. 

3. Perform a directory search on the specified program. Fail 

if not found. 

40 set the protect bit (BIT 15 of word 1 of the directory entry), 

write the directory back to the disc, and terminateo 



UNPROTECT 

This is identical to PROTECT except that it clears the protect bit. 

" 



.. ' 

,OPEN 

. The OPEN command is used to open data files.. The user must specify 

the filename and file length in sectors (1 to 12ro. The operation is 

as follows: 

1. Translate and check the file name and lengtho 

2. Check the IDT and ADT to see if a) the user has enough 

disc allocated to him to satisfy the command; and b) there 

is an area on the disc which is large enough to accommodate 

the file o Save.the location of the ADT entry and its inform-

ation, but don't update it until we know that there is room 

in the directory. 

3. Perform a directory search o~ the file nameo If found, this is 

a duplicate entry, so terminate o Otherwise" if the directory 

track is not full, insert the new entry. If it is full, call 

in SUPERSAVE to restructure the directory and insert the entry_ 

40 Update the IDT and ADT appropriately. 

5,0 Initialize the file so that a -1 (end-of - file) is at the 

beginning of every sectoro Write the file to the disc and 

then'terminate Q 

, 
I 



LENGTH 

The LENGTH command prints the length of the user's program, as it 

would be if saved. This is only the length of the source area of 

• the program, and includes neither the fixed portion nor any of the 

tables used at run time o The length is determined in one of two 

ways: 

1. if the user is in decompiled mode, length = PROG-PBUFF o 

PROG is just a copy of PBPTR, which points to tha last 

word +1 of the program. PBUFF points to the first word o 

20 if the user is in compiled.mode, length a SPTR-PBUFF. It 

is necessary to read in the user's program to obtain SPTR. 

. . 



ECHO 

Tho ECHO command is used to control the computer echo of teletype 

input 0 Echoing is determined by the user's bit in the word PLEX o 

Bit = 0 implies no echo, 1 implies echo. The user will want echoing 

if and only if his telatype is full duplex u The command format is: 

ECHO-ON ,.for full duplexo 

ECHO-OFF for hal( duplex o 

." 



---------------------------_._--_ .. , .... -........ _----_ ....... 

REPORT 

The REPORT command prints IDT information on the system console. 

From each IDT entry, the user id, time consumed, and disc consumed 

are printed. The entries are printed three per line. Note that the 

time printed on the console does not include any' time for currently 

active users, since these are not added to the lDT until the user logs 

off. The operation of REPORT is as follows: 

1. Print heading and suspend. 

2. Read portion of IDT containing next three IDT entries o 

3. Translate id, time, and disc of next three entries into 

output buffer. If less than three· left, only doth,?se. 

4. Print and suspend if necessary, otherwise terminate. 

5. Go back to step 2. 



RESET 

The RESET command modifies the time to date of a user's IDT entry. 

There are 3 cases: 

a) all users set to zero; 

b) one user set to zero; 

c) one user set to specified amount. 

The operation is as follows: 

1. Read IDT. 

2. Set ID= T = O. 

3. If no parameters, all users are to be set to zero, so go 

to step 5. 

_ 4. If no time specified, go to step 5. Otherwise, set T = 

specified timeo 

S. If ID = 0" clear word 5 of all IDT entrieso Otherwise, locate 

specified id and set word 5 to T~ 

60 Write IDT back to disc and terminate o 



CHANGEID 

The CH1\NGEID command is used to modify any or all of the parnmctcrs 

in an IDT entry. The parameters that can be specified are: password, 

time allowed, disc allowed. The operation is as follows: 

1. Translate id specified. Read lDT and locate th~ specified 

id o Fail if not found. 

2. If password specified, insert into IDT entry. If followed 

by comma, go to step 3, o.therwise to step 5" 

3. If time specified, insert into entry. If follo\'led by ~omma, 

go to step 4, otherwise to step S. 

40 Insert new disc value. 

s. Write IDT back to disc and terminate. 



f 

·'. 

DIRECTORY 

The DIRECTORY routine prints a list of all directory entries. The 

entries a·re printed one per line. The items printed are: id, 

name, date, disc address, length. The operation is as follows: 

1. Print heading and suspendo 

2. set up parameters for directory search for null program. 

3. Perform directory search. 

4. Get first directory entry following the one sought. If 

pseudo entry, terminate 0 

s. If id of entry is different from that of the preceding' 
. 

entry, place the ascii representation of the idcode in the 

output buffer. Otherwise, place blanks in the buffer. 

Save the idcode in location 35 of the buffero 

6. Convert the name, date, disc address, and length into 

the buffer. 

7. Print line and suspend. 

8. Set up parameters for directory search. These can be gotten ' 

from locations 35, 3,4~ and 5 of the buffer. Go to step 3. 



STATUS 

The STATUS routine prints a summary of the various system n",OlJrccs. The only 

noteworthy thing about it is that the subroutine STAPR, v/hirh forces printing of 

a line and suspends, is only ca'lled from top level code. lId!. is because any other 

subroutine entry points wi 11 be lost by overlays whi 1e tfH~ STATUS routine. is ~u·,pendcd 

STAPR fools T355P into thinking it was called from the loc~tion which STAPR was 

actually called from. The operation of STATUS is as follo\'i',: 

1. Pr i nt I OLOC J I OLEN, AOLOC, ADLEN 

20 Print disc addresses and lengths for each of the four directory tracks. 

3. Search the AOT for the first five entries with length O. These are the 

five system tracks. Print their disc addresses. 

~. Print disc addresses of users 0-7. 

5. Print disc addresses of users 8-15. 

6. Print select codes for magtape, phones, 'and discs. 

7. Print TRAX in 4 lines of 64 digits each. 

8. Terminate. 



SLEEP 

The SLEEP command is used for system shutdown. It operates as 

follows: 

1. Remove all users from the queue and make sura they can't get 

back by: 

a) clearing MPCCM, 

b) setting all status words to -2 

c) setting T35LK to point to MLlm<+l 

2. Output the sleep message to all active users, preceded and 

followed by a CRLF. 

3 0 When all terminals are done outputting (IOTOG = -1), disconnect 

the telephones. 

4. Update the IDT entry for' each active user and create a logoff 

entry in LOGGRg 

5. Clear FUSS to zeroeso 

6 0 set all user swap areas at track origino This correspo:nds with 

the copy of the system that is on the disc. 

7~ Wait for the console to finish any output and then read the 

overlay", 

The SLEEP overlay packs each library track so that the only unused 

area is at the end of the track. It also builds a table at TLTAB, 

which is of length 255 0 TLTAB [Tl = - length of track T. This is 

used by the magtape dump routine. The operation is as follo\'/s: 

8e Read in AnT. Set T = 10 T is the track numbero 

9. If track T is locked or is a system track, or has an ADT entry wi th lengtr 

= that of the disc 
there are no programs on it, so set TLTAB [TJ = 0 and go to step 

) 

150 

10. Write the ADT back to disc. Set S = R ct the disc address <T, 0> • 

Set P = Q • STAD. P and Q point to a table which will serve uS 



c 

pLEEP (contd) 

a subdirectory. Each program on track T will cause a t\vO \Vord 

entry to be created, the first of which is the old disc address 

of ~hc program, and the second of which is the new disc address 

of the program following. 

11. Search the directory for the next program on track T. If none 

left, go to step 12. Otherwise, set MEM[P] = old disc address 

of program, set disc address in directory entry to SLES, P=P+l, 

MEM(PJ = SLES = SLES + length in sectors of prqgram, P = P+1, 

and repeat this step. 

12. Read in programs. If Q = P, we have read in all the programs, 

so go to step 13. Otherwise read in MEM [Q + 1J -R sectors 

from disc address MEM [Q] to core address LIBUS.+ sector (R) x 

64, set Q = Q+1, R = MEM[Ql, Q.~ Q + 1, and repeat this step. 

13. Write R-T sectors to disc address T from core address LIBUS, 

set TLTAB [Tl = 64 x T-R 

14$ Read in the ADT q and.replace all entries referring to track T 

by either no entries if the track is full, or by one entry 

with values Rand # of sectors/track + T-R 

15. Set T=T+l. If T <. 256 go back to step 98 
: . 

16. Write the ADT back to the disc .. write the' equipment table 

(100-177) to track 0, sector 4, read in the dump routine, turn 

off all the IO and interrupt system, and jump to the dump. 

)" 



NEWID 

The NEWID routine adds an entry to the IDT. The operation 

is as follows: 

1. If the IDT is at full capacity, print an error message 

and te,rminate. 

2. Read in the IDT. 

3. Translate the parameters. 

4. Search the IDT for the specified ide Fail if found. 
I 

~therwise insert the new entry in its appropriate position, 

update IDLEN, write the IDT back to disc, and terminate o 



~­
~ , 

KILLID 

TheKILLID routine removes a specified id from the system. The 

operation is as follows: 

1. Get the ide If the id is AOOO, fail. This is because the 

files belonging to AOOO may-be accessed by other users~ and 

removing them would be almost impossible. 

2. Search the IDT for the specified ide If not found, terminate. 

Otherwise, delete the entry from the IDT and write it back to 

the disc. 

3. If any user with the specified id is currently on the system, 

set the id item of his TTYTABLE to 0, 'set his status to -2 

and his MPCOM bit to force him to be disconnected, and remove 

him from the queue if he is on it. Also, zero out his section 

of the FUSS table. 

4. Load the overlay sectione This section will remove from the 

directory any entries belonging to the user being killed, and 

will release the space occupied to the system. 
1 

~ I 
50 Remove all qirectory entires belonging to this user, and build 

I " I I 

a table which will be used to patch the AnT. For each directory 

entry, two words are placed in the table, the disc address and 

length of the released areao 

60 Update the ADTe using the patch table informationo 



UNLOCK 

The UNLOCK command is used to restore disc tracks to the system" 

The operation is as follows: 

1. Interpret parameters, setting F and L to the first and 

last tracks to be unlocked. 

2. Scan the TRAX table to determine the number of tracks 

to ·be unlocked. Set eN to this number~ 

3e Set eN = min {CN, {5440 + IDLENAM64 + ADLEN)!2}. The 

parenthesized expression is the number of words that can 

be added to the AnT. 

4. Read the APT into core location LIBUS + 2 CN. 

5. set MOVED = LIBD, MOVES = LIBD + 2CN. 

6. If track F is unlocked go to step 810) Othenvise, unlock 

it by clearing its bit in TRAX. If MOVED = MOVES, \..;e 

can't insert an ADT entry, so go to step 8. 

7. If'MEM (MOVES] < F, move 2 words and repeat 'this step. 

set MEM [MOVED] = F, MEM (MOVED + 11 = II Sectors/track, MOVED=MOVE[ 

8. If F # L, set F = F + 1 and go to step 6. Set ADLEN = 
ADLEN - 2CN. Write the ADT back to disc and terminate. 



].tOCK 

The LOCK routine is used to tell the system that ccrt~in di:;c tracks 

are not to be used. Only tracks which are part of the program library 

are lockable, but tracks which contain active files arc not. Any pro­

grams or files on tracks being locked are removed from the sy!;tcm. The 

operation is as fo110\.,s: 

1.' Interpret the parameters and set F and L to the first and last 

tracks to be locked. Check that none of these tracks arc mentioned 

in FUSS, is a directory track, id track, system track, or user 

track. 

2. Delete from the ADT all entries with disc addresses on the tracks 

being locked. 

3. For each track being locked, set its TRAX bit to 10 

4. Read in the LOCK overlay. The OVerlay will delete all d:i.:~:cctory 

entries for programs on the locked tracks, and also update the IDT 

appropriately. To do this, it maintains a table of IDT updates, 

each entry containing an id and a sector count, which is -# of sec­

tors removed from that ide 

5. Set ID = LIB~S - IDLEN, P = LIBUS + 5440, I = DIRDO o ID is a bound 

on the lOT, P a pointer to the update tab~e, I a pointer to the 

DIREC entry for the directory being scannedo 

6. If P < LIBUS - MEM t IJ , we can it read the directory \vi thout 

clobbering the update table, so call LOCFX to, remedy the fd. t'llation. 

7. Read the directory. set MOVES '::J MOVED:: LIBD, D :;:: LInD - I·1.Lr·, [IJ • 

8 0 If MOVES = D, we U re done with this directory, so go to step 9,. 

Otherwise, if the entry pointed to by MOVES is not on a trac)~ being 

locked, perform an a-word move and repea·t this step. If i t'is on)(1 

, 



LOCK (contd) 

track being locked, we want to delete the entry. Set T = id of entry, 

Tl = - sector length of entry,MOVES = MOVES + 8. If P< LIBUS + 5440 

and MEM T.P] = T, set MEM [p + 11 = MEM [p + 11 + TI, and repeat this 

step. If P = D, set N = MOVED, perform a move of length D - MOVES, 

set D = MOVED, MOVED = MOVES = N. If P = ID, write out all words 

from LIBUS toD-l to the directory track, call LOCFX, and read the 

stuff back in. Set P = P-2, MEMtpJ = T, MEM LP + lJ =Tl, and repeat-

this step. 

90 Set MEM tIl = LIBD - MOVED, write out the new directory track, and 

update direc. If I ~ DIRD3, set I = I + 7 and go back to step 7. 

10. Call LOCFX and terminate. 

The LOCFX subroutine is used by LOCK.to update the IDT from the update 

table 0 It operates as follows: 

10 If P ~ LIBUS + 5440 then exit immediately. Otherwise, read the 

IDT and set B = LIBUS - IDLENe 

20 set B = B - 8. If MEM tE].~ MEM [p] 6 repeat this stepe Otherwise 

set MEM [B + 7] = MEM tB + 71 + ~M lP + 1.l, p = P + 2 It If P "I­

LIBUS + 5440 'repeat this step. Otherwi,se, write the IDT back to 

disc and exit. 



~.:","" 
'-

PURGE 

The PURGE routine is used to delete from the lihrary all programs 

or files which have not been referenced since a certain date. The 

operation is as follows: 

1. If lffiLLO program exists, assign it today's date. This is 

because the HELLO routine does not perform this function. 

2. Interpret parameters and set DT to the purge date. Make sure 

that DT 4$ today's date o 

3. Make sure that FUSS is empty. This is to avoid killing any active 

files •. 

4. Set ID = - max (LIBUS-IDLEN, LIBUS-ADLEN)-4. This is used to de-

termine when the update table described below has reached the 

point when the updates must be made. 

S. Set P = LIBUS + 5440, I = DIRDO. P is a pointer to the update 

table. Each entry in the update table contains 3 words: 

a) id 

b) disc address 

c) length in sectors 

6. Read directoryu If LIBUS-MEM tIJ>P, the directory won't fit, 

so call PURF-X to remedy the situation. Then read the directory. 

Set MOVED=MOVES-LIBUS, D = LIBUS-MEM tIl. 

7. ~est next entry. If MOVES = D, weure done with this directory 

track, so go to step 11. If MEM (MOVES + 5J~DT, we don't want to 

delete the entry, so perform an 8 word mOve and repeat this step. 

8.. Entry deletion. Set T = MEM (MOVESJ I Tl = MEM [MOVES + 6J, 

T2 = (- ME!1 [MOVES + 7J+ 63)+64, MOVES = MOVES +8. If P-3~D, 

we have'room for another update entry, so go to step 9. Otherwi'se,' 

set N = MOVED, perfo~ a move of D-MOVES words, set D = MOVED, 

MOVED = MOVES = No 



c 

PURGE (contd) 

9. "If P + ID ~ 0, we can add a new update and still be able to 

load the IDT and ADT, so go to step 10. Othcl.-v;ise, 'V,rite LIDUS 

through D-l to the disc, call PURFX, and read back LIBUS through 

D-l. 

10. Make entry in update table. Set MEM (p-ll ::; T2, MEM [p-21 = TI, 

MEM t P~3J:= T, P = P - 3, and go back to step 7. 

11. End of directory track. Set MEM t-IJ = LIBUS-HOVED, update DIREC 

and write the directory back to the disc. If I ~ DIRD3, set 

I = I + 7 and go to step 6. Otherwise, call PURFX once more and 

then terminate. 

The PURFX routine is brought in as an overlay. It operates as 

follows: 
. 

1. Save MOVED and MOVES in M and Ml. 

2. Read the IDT, set B = LIBUS-IDLEN-8, set PP=P. 

3. If PP=LIBUS+5440, write back the IDT, read in the AnT, and go to 

step 5. 

4. Search for ID. If MEM rppJ ~ MEM tBl, set B = B-8 and repeat 

this step •. Otherwise, set MEM [B + 73 = l\1E~1 CB + 71 - MEM Ipp+2] , 

set PP=PP+3, and go back to step 3. 

'5. Update ADT. If P = LIBUS + 5440, set MOVED = M, MOVES = Ml, 

write the ADT back to disc, set ID = -max(LIBUS-IDLEN,LIBUS­

ADLEN)-4, and exitQ Otherwise, insert into the ADT the entry 

specified by MEM tP + 11 and MEM f.p + 21, set P = P + 3, and repeat. 

this stepo 



ROSTER 

The ROSTER routine prints a listing of the id codes of all active 

users. These are obtained from the ID word in the 16 TTYTABLES. 

The absence of a user is indicated by the word being ,zero o 

, J 

f 

• 



DISC 

The DISC routine is used to add discs to the system or to remove discs. It operates 

as follows': 

I. Interpret parameters. 

2. 'If specified select code is 0, make sure all disc tracks are locked. set 

o into the TBl entry, and terminate. 

3. Otherwise, make sure that the TBl entry is O. 

~. Search TBl and determine the lowest numbered prefix which has not been 

assigned to any other disc with the same select code. Create a TBl entry 

containing the number of sectors/track,',the prefix, and the select code. 

5. Unlock the disc tracks by clearing the four words in TRAX corresponding 

to the specified disc. 

6. Insert one entry into the ADT for each disc track. If fewer than 64 entrje~ 

can be made', some t racks wi 11 not be used. 

7. If there are more discs than directory tracks, allocate a new DIREC entry 

of length Op and exite 



MAGTAPE 

The MAGTAPE routine is used to set ~ select code into the location 

. MAGSC. 

• 



PHONES 

The PHONES command is used to specify the disconnect parameters. 

If the select code given is 0, it sets PHSC = 0 and forces the 

scheduler to skip around the disconnect logico If the select code 

is non zero, it sets PI-ISC, constructs the I,IA and OTA instructions 

in the phone logic, alloW's the scheduler to enter the phone logic, 

and initializes PHL to the current state of the disconnect input. 

If a logon time is specified, it multiplies it by 10 and sets it 

into PHRo If none is specified, it uses 120 seconds. The specified 

time can be no greater" than 323 in order that the various checking 

algorithms work properly. 

• 



CD 

, 



, 
l 

I 

I 

I 

.. 





,.; ~r~b;zf :Yo';;:S~ 

GiiLUl 

~ 

(J i $'t)"''''f1'+) 'i ~ "" t t' f , ,;, ,,.) 
(O""''''4.'',,i .. ~, !'I"'i) .• ) 
(a~~.,t ,a l ... ~~,:, '1 YI~.\J i e ~) 

(f"'Ytc "v(re~'\t outpllt ,J~t. io (X d", L".:\) 

V-D ~{{,c.t 'f ~tt o\li £>\J1~\\'J) 

" 



'~'--~ ....... ---..-------~. 

c' • 



'. 

~vr~~r--'~""""''''''''-''''''''-~' · ..... ··'·'1 (":~ 
____ .r..~~~~~Jr-is.:: . .':~:.:.~ .. ~.2: .. ~::.:.·~.L~~! 1. .. ~ ~ 

.\..1> 

~:!-~f~._;,O :;t-~~r,:~;.~,::.q ,,' 

C{ylE. ~.~.~!1ANQ ~(~-D~~_~~.~[~'~~;Y~;~J 
'---"""~-"-T"".- .--~ 
5i~ .. t'Y'-t clcid(~S:: ll'GU$, 

f'Y';~"'.y = ~ 
-----------------





( c 

.t""·\;:(J.,, v 

r:---J, .. -------, 
12.f.!~~ -{~Lt..f.r:...:u 

._-_ .. - .. _--, _._--, ~ ...... .......--
r NtJ T·- Mf'1. ';""I-'",.l ---INPrr .... ·rN/>r~ v .7"(,/('J·~· ------- - ... ._-------................... 

/}t::O' 
~-.Jf~ 

G.LJ:_~" 
· LIt.' 

--------_ .. _. -....., 
MPoVr ~ M p;< ovfp vt ) 
n r" b·" - '-'~ .' ~ n. f oS l:..> ,(! " ,... I:. v .k $ r ",_.- , 

CNAtlL£ PCJ,tt'/C.E' _._\ 

II x .rr .\ 



I 
I , 
j 
I 

f 
I 
! 
I 

, 

\ 
_-----------.----.•• ~~ ...... -.... ~I 

• 



.'Uf1~ 
c. ____ \ 

{-:;.[;", .. ;-1I-'C"';"{ 
~*,.~.-.{;-~ 

{}. ,-r 



• 10. ... .... , -----...... --..... ....................... .........., .... .............., .. ...-... .. 



, ___ "., •• ~ ••. ~ ......... " .• 4.,..."... ..... ~-................. ··!..,.,.,.-·~··M..,..,..,...~ ... "' • ...... __ 



, , 

(I: ':"11. Y ()IJ '; ... ,' r :,; 
;/ir)(/( ? 





\ 

S-/~ l'; ... I~' 

I /J (. 
I; (..' ''1 

~;5 I C f~' t. (,.. 
r- --............... - .. "! 
~ ,:: ,;';;. I; .; 

uP J)ftT.': A [)r (. 

I l>i 

c.~j5)1 uSjR-PC,:) Ci '?AM 
1(> TTS SA V l~ D LoCA-

• '," ~ ........... .. I. , .• 



~ 
c-----).l A t(- Mtt·~ (I> r) ~ ~J 

c , . M (i ~ Ii' f.' 
e ::: I: ('.'F /,1 II /', :' i. . 

Df Rl \.4 J i.' ..... / rr.'A 6';: .: 

S::' 7 .... ;,;1. D .. "·: i.: -:-, .. ~. 'I 

R(Ol)l- J! t.,'" ~/JT 

. WO~:£_2L:£'~.~~) (~\' t'cc toy y 

*' 

'::~;:l . -) 
,"., v .... "'", .... 0: 



Sf; t;f;!;<:~ -) 
NAMe E /":CM C /.J7( 

- - .; .......... , .. \ .•••. ~_ .... "'-....,...r. 

~I'. Qol 

r..... _'V·_._v ..• 
...... --~ '\j .............. ~ ..... , 

\ ~ .. E r~'~ , ~.I •. l 
v ex ( -:-





". 



fl. ~ M t' V C !."N ; {, V1 
r R.:> t't~f~U..f..1.~ 

~ · ._ ... _} 
r~f ~ A~.E."f)_~r.J_ .. [rlr 

~ ~ 



It J' , . " ":.. ,,' !~, ... "" h"~H ~"l; f< .. '\i'.; .... I, 
'To N C ll./ f.,Af':; E L. .... ~ ............... .,......<ll ... ,i ........... ----

........................... ~" ... 

M/lI< a 
Pc:. ,1' liE 

........ tr\oo ..... _ ........... ___ --. 





SE 7 Q or;> 
NCKi 
s T 1'-~!!:1..ll'.JT 

Rf.NSI~ ~-t... t.,...:r" P -r t"" • 0''1, fI 'i t.~ (# . ., f , 
.I,.t{,,.,I""fC-, ,.' p,.,,~ .. l .. , ~~ t~ .. /,~; ... I: 
~C,. 'It, , ..... t~; ~ /'~ d t. "ir ,(.~'=' ('" ":'1 l.1//- .... " 

r','VN !> 

'" n ([in 'oJ ~ 

Allix r S~/~·i'rMtrrr 
-.~-... -. 

Yt. s 

lli~J ,,------!><p 

,:- I P. ~ r t. 1"::2 [I. ? 
l,Yc;s-

R,; 1 V/~'~ ro v N 'i) 



INIT,,,,:..,'CE r:,L.G' 
,0 J; r.-F MAR~~ 

• I C"1\(li 5[Crn(~ 

~'-"1''''''''''---
t-~-R-, ,-e- 'r 0 D p S c.J 
~-.-~-----

tx, ,.. 



5L[[.P .. _=~ ·L~~ __ .... _ ... 



I 

( 

{i;H1 [D-\1;:~~ ~ 

[~~~~ . 
~r~ -~--. _____ _ 

~;;!~~.:~:~~~~~.~~"_':_.f:: J 
d~,;~(r,~~;:,:~tQr:"D J-~-:-~~~:" 6~ (~t·~[;;jl-:;») 

1) ~ t..l bD ... ","i(JYlE:',-1 [Oi-I]-: R ) 
R~· t"'l E..r4 (ev ~ 1] 

"'" Q i ? __ --.0.1-..-._,,----.,.---,--------, 



DCMPl-

B f\ SIC 

j( t se,w ~(t:' 

'"'''' bt. '" 

FLOW C(-tARTS 

o..""'j)'-
c, ~"h P"I~r?t 

r--- -.---
: ~.! ~t 

It: , ( • ~ "" .... J 
'~ t" \. '" t' t 

).-___ ~ tlH b(J II Yt".)y 

It'\. rY~ ~ y .... (.\. 



tt. Ph.,st.. 2 

~
--.--- .. -

f\.V" 0 Jlt 

"'Y'., •. ~ .... ~ ~-':.A (,[1] 
Yf:S 

\'t r' -. c.e!. 
\,t fJ. ).( "( to. 

..... ,\-'.., .... .1 J t"(! t,s 

-"rro. VI.& \:0 

~Ol' t .. 1 \J t \If. 

r--- .. -"'-'" ._. 

1 ,~t t: 'j' ' ~ 
l ~. t:::.~:: ... ·r 

NO 

1.-'-" ._-_.---.-
d~ <. """;(,,Ie 

(> Y.J :J Yct..t1'\. 



• 



, •• t\ t If ~cJh't 
k".w" ('hh~ h 
el, ... , '" ilo.,.. ~ ""~ 

" 

Ch lore.. h \J" 
1I.o..----~t"~t"l o.bo"Yc. 

ht..., a.l"Itr 

f"~V\'( ~r ... <.t t----,.,. 
~or e.ht.Vr 

, .. S)'" It ... ' 
'~";:"--I~ Itel 'fl'! 1<1'-I\oI"? 

Yl' .. 

----~'---""'I 
,ull:l_ }U, ~ I )~J 
d''''t.,-,.\..l''''' cJ' 
~'VI'VtI!' rot 



B. V~lvq" 

lo~J h(f~t 

\'1.~ 1.4 J 

St t f" H, l:.t" i'" 
~ \' ..... ;Je. l',.l·l, 
*-' 'Vet- t". crt'W-

pvt" ""'.'1' 'c,.. i 
.. u.,t t'\ (.I""c" thto 
"",.lvl ".v(.~ 

Cit t r" ,., ~"Y h. 
VIA ttl, "'Y~A- H"to 
~ "",b", l:-,..hl e 

101'\ ~ r h J t,1 C t" 

d'.\"l'h"J,on~ 

, 

c; t t' r 0, ... t;::-;Ol 
"'\If-) \I~ ,,... to 
\1"'\".11 t'1'h.1~ 



" 

.. 
. ! 

NO 

,t. t n<1 'l' t: 
°rC. v t\)"Id 

M----l 

'-t·rl(\( t ron .. tc 
t" \1 ... ~~1 t:. ... ~(! 
""\-I.,, ,-",.,....,,,1 

~~t' hI! 'X t: 

0rt!t'~ tc)Y' 



~------------.--------------------~ 

t---~ fYt we t h~! 
pYO, rp..~' n"· .,../!. 

~1t\11"~ 

b"".,,~. ~ 

f ",A-vca "'t 4- r.·~Jy." 

~--""('."""'''' to .... ~~t. 
" ~II ).4. """~ ~:t 

. I 

t",,,I\I~~(t. 

by"",c#'\. 
,., d~")f 

pvt i'r ,,'W""'.' 
)-'(-t!-';,-~ c: • v .... C! ... on. 

... ,",v,..n ,\\"&t k 

~ h.\·.! M-

t: \~ I ,-

--I-- - -

Alb t I. h ~.,:,;, ..... , 
~-~\""\"~"3< ~,I.: 

t'~I~'r' 
,..,0 

,~;~-~ 'f' .' •• ' .~ -) ". 
'"' '\.'" i •• '---+1, 

I" i '" t ~ 
'(.> 



• I, ~ I f' (. ~ ~ 
~"" - '»~_f k. 
~ ... lot''')' 

.... '4.,,( ,·.~ttatt r' 

1-0 ,. t '''' \, r )" 

Sft ~. b ..... ""(~ 
p~ .. t ~\c,,,t • .;. 

ell " (J tvt! 1. r 

\. t ~" h· •• ·t h 

..... ----~ h o;h·~·r.· .. ·t 
fr.,P.H"" ':,}r .... 

flo 

"u 0 t\ \.. )' 1:0 

~ .... ~ C,~AI it. 

M,,-Ve. \) I J 
t .... ..,'/ too t~r 
_~ ,l-,., k. 

Co~('1.1 re .. 

''''''' '\.'}t. 

s .. "v~ \~<''' 
~--t ~13' Ih 

t.. t\ \ty ~ 

st~" ~'1 (!. 
)4.---~ co clJt J fo 

c;. .. Y,~e. "I/o "I" 

tll""l1_~C. Cl.fI 
}---~ h,,"'''' U·\'r'I'!:. "'0 

---, 
i t;~y.t h,,··t I ....-_..J
l 
'V~lv(". II'\. 

, (.'}"4f-~ 



d",I\.th tlH"d 
~ ,,. .,. .. " t' 

(~",.l:''''' 

M--~ tt, v(\ r ~ 
" v,.. .," y 

~ ________ --I S ( fA ~ ~ 0 ----1 
~I ,)!I" (-:'-0 '---__ ' __ J 

,..---- ---
t r .,.~ (f\~ (. 
~"y ~~ '(' .... , 

t: r"tf.."" ~t" .. 



~ l'"I'I,t 
t"YY'''J t yt.t",,, 

- "t'\ct SS~(l A 

wntt. d::I7.,.., 

0". '1,"-

~O~f. to t\~?'t-t 

rt"~ t ~,t' A 

)----1.1 ,Q. -t ., • ')( -t: 
o~ t" f\ -l:.,.y 

)4--_.--- __ . _______ ....,;:1";_0-< 

'? . 

pY~r A r<Z.. 

- r~."'C s h-."j 

NO 

-----------' 



'IOt\.d t'\41")ft 

Oro. Y·I'-t:·y 

"'0 

, 

~"'Vt c.~Vnt 

o ~ C. t" w\ .. ~ \' f) 

wr,~~ • 'I. ""(..,tt-__ -J( 

to ~"E. 

'$ feflt 4!!. Q, ".» 'if.S 

A.rrro (,y" .. tt. 



St t ,. -1 .n ~.", 
... ~ t'h. C;dt 
C"t1,\-",·t 

_L 
tlo 

S'u' "~6 S,,\)(l.~ 
c).CO( J<q ~ ~"y 

C03''''U'''''' ~'\a' I)\:\ 

• 

St \:-. I~.r to 
~---i 

~,jl, l-r I", ..,. ~,. -

e"'Vt\l"rtf. 
")(.1'<)" ~ 

h...,~,.,ll\. 

s~ t:' '.,.,r 
t'. StAt" ... 
~ ",1\', r' '0' \-, J r 

c:hl'.(.k y"" 
14----1 ~ ....... ,. ~ • " t· ... 1 

( ~ ,..(' ... '" • I' t· \t s 

Stt 'Hf 
.( .. y ... t·.·,.. to 

l', ,.1", 0: •• ~, ).t: 

--r 
~\.~IDY--~·\ 

we< r, r"=1 
r 

--~.­
'»". \: Vt) 1'1 yo. t 

I---~ 
S.Vr(.t. ..... ,. h" '-' 



'tytl .... "f~ \ e.. 
t.),) .. I',l 

Stt '~"f ~.., 

~or'J· S JUYc. <!..­
~.l- ~." ~ t'u @ 

M 1\1 II" V ,Y'\ 

(>t "V 0 t ,ND.,t II ~ 

'i \. t' h. r' .,' .. t 
)----l1li y: .... ~ ~ y d .... t. 

~ .. .# ~ ltoJ) f ,,-

r~. ( ~oH' •• , 

t."~\'" \- ..... \ c;. 
0" (I'-./.l' f.,,' " ... " 

'f('..~ ct.4\ ') ~ lOfd 

tt'\~ t"Y 'f)' (0 Y<! 



SUPPLEMENTARY NOTES 0" BASIC 

SYNTAX 

The general process of analyzing an input to the languag~ processor 

is displayed in the section on flow charts. The annotations in the listing 

explain the actions of the subroutines, while the core map and section on 

internal representation describe the objects/structures bping created or 

manipulated. The BASIC syntax, in conjunction with the listing, explains 

the method of identification and recognition of legitimate r.ASIC statements 

from·the input string. 

II Phase 2 

A. Comp i 1 at ion 

The preliminary section of CMPLE prepares for executioll of the program 

following a successful compilation .• Uull programs require no processing. 

If a sequence number follows the RUN (e.g., RUN - 220) the int(~(prete:r's 

program counter is set to the first statement whose sequence nun~)er equals 

or exceeds the reference, otherwise it is set to the first stc1tcn~nt of the 

user program. If the program is already compiled (as when a pro3ram is RUN 

twice without intervening program modification) PBPTR is set buck to the 

first word following the value table and phase 2 simply rcinitiulizcs all of 

the variables to iundefined i
• Otherwise FILTB is set to " so PRnST will not 

terminate compilation by mistaking it for decompilation. 

The symbol table is then built as explained in the li~(in9 (~cfcr to the 

flow chart for general logic flow and to BASIC Variable S~or.l~!(, /\llocation for 

a v i sua 1 examp 1 e.) Our j ng comp i 1 at ion SPTR poi nts to the pr()~, rtH;1 :'Jord be i ng 

processed and VALTJ3 is either -lor a pointer to the <FIL!:~ ~t(~tel·ent> if 

one exists. An error in compilation will cause a en}1 to ocr·rl to restore 

the source form of the program fol1ov.Jed by a call to tilf' <'rror rO~ltine. If 

after a successful compilation a (FILES statement) hiV, bef:·: fOUIHI, GI\SIC cnlts 

the system with VALTO pointing to the second word of the st.du,'Pllf. The system 
• 

• 



analyzes a (FILES statement) and bui lds the fi Ie tilblc. fi 11 ing in thc 

first, second, and fourth words of each entry. 

The symbol routine has two entry points: SSYrn is u!;cd for functions 

and simple v()riables and ASYMT ;s used for urr<ly .1nd string variables. Because 

the dimensionality of an array variable may not be knm'/n locally (c.g., MAT A = C) 

some symbols may have two entries. If this is the CflSC, the "don't know" entry 

wi 11 always be farther do\vn in the table (i ,c., h:.lVC a higher core address) 

than its dimensioned counterpart. 

B. Value 

VALUE is responsible for detecting deficiencies in the symbol table, 

allocating storage f()ir the values of symbols (i .c., building the value table), 

and initializing the values of all variables. Only the lust of these functions 

is performed if a program is already compiled whc:n cJ nUIJ command is received. 

The process of building the value table os dc~cribcd in the lisfing. 

Several error·s may be encountered whi Ie bui lding the value table. The 

occurrence of a null symbol (bit pattern of 0) in the syp.bol table means 

that an array symbol is used in the program, but nc~cr in such a way that its 

dimensionality can be determined. If the second word of a function entry is 

zero, no ( DEF statcment) for that function appcar5 in the program. Arrays 

of more than 2500 elements are not allowed. For all errors the program is 

decompiled before the call to the error routine. 

Co Oecompilation 

Programs are decompiled when any error occurs during compilation~ 

building of the file table, building of the value ttlblc, or \'Jhcn the program 

is to be modified or saved in the user library. Since in the first of these 

only a portion of the program is compi lcd, the pointer SPTn is used to dctcrr.1ine 

how much to be decomp i 1 ed (A fu 11 y comp i 1 cd rro~ rill·)() hvuys has SPTR poi nt i ng 

to the first word following the program). The proc('~~ is explained in the 

1 is t i n9. 

• 



D. The routine PRNST 

PRNST is used by both CMPLE and DCMPL to sc~n the program and skip over those 

portions not affected by compiling. One outstanding pecuJarity should be 

noticed. PRNST assumes responsibility for recognizing a ( FILES statement> 

in a program. If a second <FILES statement> is found during compilation the 

following occurs: 1.) PRNST calls OCMPL 2.) DCMPL calls PRNST 3.) the first 

(FILES statement) is found and treated as if compilation were taking 'place 

4.) the second (FILES statement> is found and OCMPL is called again. but the 

first call set CFLAG[I] = 0 so this call returns immediately and PRNST exits 

to the error routine. 

III EXECUT I ON 

A. Main loop 

Upon completion of the value assignment in phase 2, control transfers to XEC. 

FCORE saves a pointer to the first word following the value table (used in 

repeated RUNS of a program). Afte; printing the program name XEC proceeds to 

initialize the file table. A 64-word buffer is allocated for each file and 

pointers to the word following it are placed in words 5 and 6 of the file table. 

The disc address of the record in the buffer {word 3} is set to -1 to indicate 

that no record is present. Word 7 is set to 0, indicating that no end-of­

record/end-of-fi Ie exit has been specified. If the file is read~only a message 

to this effect is printed, following the program name. 

Following the preparation of files the initial execution status is set. The 

initial execution stacks are claimed from free ~ser space and pointers are set 

to the first constant of the first (DATA statement) pif such exists. The 

internal print position counter (CtiReT) is set to zero by outputting a carriage 

return. Phase 2 has already set the BASI·C program pointer (PRGCT)' to the first 

statement to be executed. 

Execution of a statement simulates the execution of an instruction on a 'BASIC 

machineD 0 The sequence number of the statement referenced by PRGCT is saved for 

possible use by the error routine. PRGCT is advanced to reference 

.. 



the following statement. The type of the current statement is u5ed to 

branch to the appropriate routine via it jump table. Individual statement 

routines return to the top of the loop. 

B. Statement execution 

(LET statement) execution consists simply of evaluating the formula. which 

is known to contain at least one assignment operator and to have type 

compatibility (numeric vs. string) by its acceptance by phase 1. 

(IF statement) execution forks on the symbol fol10~ving the IF. The 

construction 'IF EUD' causes the following: the file reference is evaluated 

and tested for existence as one of the program's requested files; if a legitimate 

reference, the statement reference following the TttEU is placed in the 

end-of-fileword of the file's table entry. If'~not 'IF EUO', the decision 

formula is evaluated and if true the statement r~ference replaces the value of, 

the interpreter's program counter, PRGCT, via the GOTO mechanism. 

(GOTO statement) execution consists of choosing a statement reference 

to replace the program counter. For simple GOTO's this is done trivially; 

for multi-branch GOTO's this is done by evaluating the index formula and 

choosing the statement refer~nce in the corresponding list position. If'the 

index value lies outside the list of statement references, the program counter 

remains unchanged. 

(GOSUB statement> execution follows the pattern for the GOTO except that 

after choosing the new value for the program coun~er, the old value is saved 

on the return stack (stack overflovi generating an error condition). 

<FOR statement) execution opens an active program loop. The for-stack is 

searched for an entry with the s~me for-variable; if found, the entry is 

eliminated (i.e., the previous {FOR statement) \,Jith this for v~riablc is closed). 

A new entry is set on top of the for-stack (extending the for-stack by six words 

if no entry was eliminated) and a pointer to the for-variablc's value entry is 



, Tromm 

put into word 1. Since the first formula in the FOR contains an assignment 

operator, the formula evaluator, FORt1X, initial izes the for-variable \'/hen 

It determines the initial value. A reference to the statement f0110.,,;ng the 

(FOR statement)is put into word 6 of the for-stack entry (the start-of-loop 

address). Words 2 and) save the result of evaluating the limit value formula. 

If a step size formula appears explicitly it is evalual~d. otherwise 1.0 is 

takenas the step size. In either case the value of the step size is left in 

words 4 and 5 of the for-stack entry. The program COUI ter is set to the 

statement following the associated(UEXT statement) and c.(mtrol transfers to the 

< NEXT s ta tement) execut i on code to compa re the in i t i a 1 and 1 i mit va 1 ues (see 

flow chart)a 

<NEXT statement) execution decides whether to iterate a loop or close it. 

The for-s tack is sea rched for an ent ry wi th th,e same for-va r i ab 1 e. I f none 

is found the statement is i,gnored and control passes to the fol10\'/ing statement. 

If the entry is found, any entries above it (more recent entries) are eliminated; 

i.e., they are assumed to belong to·nested loops which were not closed by 

exceeding their limit value but exited otherwise. The value of the for-variable 

is then incremented by the steP size and the new value tested by subtracting 

the limit value and using the sign of the step size to deterl~ine whether a 

non-negative or non-positive result indicates 'success'. If the result- is 

Qsuccessi ~ the program counter is loaded from word 6 of the for-stack entry 

(the reference to the statement fo 11 owi ng the < FOR STATEI1C:n> ) • I f the resu 1 t 

is not isuccessoll the for-stack entry is eliminated. At this point the program 

counter already points to the statement fol10v,Jing th~ <r;EXT statement) so exit 

is simply to the main execution loop. 

(RETURN statement) execution merely loads the progra~ counter from the 

top entry of the return stack. An error condition is £cnf!ratcd if the return 

stack is emptyo 

(INPUT statement> execution assigns values to the input list. for both 

INPUT and t1AT INPUT. IUITF = 0 and HCNT is mcanin?lcs~ \:~I(.'n c>:ccuting iln 

(INPUT statement) ; For ~1AT H~PUTp INITF = -1 and r~C'JT holds the number 

(in 2 8 s complement) of elements of the current array as yet unassigned values'. 

-



c 

IFCUT holds the ordin(')1 number of the current it('ril in tl,,' current record 

(Note that I FCNT ; s not cumulnt ive over the ent i rc, (!y.('cu1 ion of a statement 

requesting input unless the request is met cnlin'ly hy olle line from the 

teletype.). 

The general approach in execution is to delen:linc the address and type 

of a variable in the input list and then attt'il1pl to !Hllisfy it from the 

input record. When an error occurs in the aLovn procc~sf it is explained 

along with any necessary corrective action ()nd the V11111C assignment is attempted 

again. so that errors in the input record \'Jill not terminate program execution. 

For simple input if the next variable in the li~l is of numeric type its value 

table address is placed into SBPTR; for array input the hilse address of the 

array is put into SBPTR. After filling a simple varii,ble the next variable 

from the list is taken and a new.address generattJ; after fi l1ing an array 

element SBPTR has been ~dvanced to the n~xt clem("t by the numeric i'nput 

routine so no new address need be calculated. \lhcn I~CNT rolls over to zero 

(an array has been filled) control exits to the t1~T INPUT code, which may 

return with another array's base ad~ress in SGFTr~ and f'~Ct:T reset appropriately. 

~f the input record is empty but the variable list i~ not yet exhausted a 

request for additional input is made (signified by I??I rather than the 

g nit i a 1 '1'). S ERR i s nee de d a s a flag to i n die i1 t e i fun cI e r / over flo ... , oce u r red 

while converting the latest numeric input, since the error message will have 

destroyed any additional information in the inrut record. \/hen looking for a 

number p the input record is scanned for the fir~t sign (+ or -)~ digit, or 

decimal point p which begins' the number. Any other chari.~ctcr~) will be ignored 

except the 81~ which will generate a recoverable error. 

String input requires fairly complicated vnalysis of the data transfer. 

If the string variable does not specify the tran~,fl!r len~~th (does not have a 

doublesubscript)p then the next strrng in the input record is transfeired in 

its entirety and the logical length of the varitlhle ~)f·t .:1ppropriately. If the 

next string does not fitp a message is printed ilnd a rw',: "trins value requested. 

If the string variable specifies the transfer lcrqtlt lhc·n C;<i1Ct ly that much 

of the next string in the input record \"Jill bf' I"'ln(;f(~rred, either truncated or 

,extended by blunks as necessary to achieve the ~p('ciricd lpn~;lh. The 'next strin 

, 



A.,.,.<.' .... • 
in the input record begins with the next non-blank character or, if it is a 

"0 the follo\-Jing chilracter, blanks included. The string ends with the 

fi rst " (which is not part of the stri n9) encountered or \-Ji th the carriage 

return (also not part of the string) if no II appears. 

Every data item in the input record must be folloHed by a comma or 

carriage return and a comma must be follo\'Ied by another dilta item. Fai lure 

to observe the above will generate recoverable errors. INTMP holds the 

type of data being sought, INTI1P = ~ for a number or IraMP # 0 ror a string, 

and is used by the error recovery code to prepare for the retry. 

(READ statement) execution assigns values to variables in the list. 

FDATA is primed to obtain values from either a file or the (DATA statement) s, 

depending on the presence or lack of a fi Ie r~ference fol10~Jin9 the READ. 

A mismatch in type between the variable and the next data item, or a string 

too long to fit into lts designated destination p will generate an error 

and terminate execution. 

(PRINT statement> execution consists of identifying items in the print 

list and sending the appropriate media equivalent to the teletype or disc 

file. An initial file reference identifies the statement as a fi Ie write 

and turns off the end-of-line ~ode; its absence identifies a teletype write 

and turns on the end-of-line mode. A comma or semicolon ·turns off the 

end-of-line mode and generates enough blanks to advance to the next field 

of 15 characters~ if a teletype write. A literal string is written as a string 

of characters 9 less quotes~ and turns on the eri~~of-line mode if a teletype 

wruteo An END writes an end-of-file mark on the f'ile; it cannot occur in a 

teletype write. Formulas in the print string are evaluated and the results 

examined. Formulas which are string variablei evaluate to their contents, 

which is then treated as a literal string. If not a string variable but 

within a file write statement, the floating point value of the formula is 

written on the file in its two-word binary representation. If a teletype write. 

floating point values are converted to an ASCI I character stri~g <of the decimal 

equivalent. TAB can only occur in a teletype write; the evaluation of the TAB 
~ 

itself produces the desired action, so the value returned is thro\'ln m'Jay, a10ng 

with a following comma if.,ne exists. For a teletype write all formula5 



c 

turn on the end-of-linc.modc. If the end-of-line mode is on after processing 

the last print item, a carriage return-line feed i~ printed (This can only 

occur in a teletype write.). 

Before writing a quantity BASIC insures thut sufficient space is 

available to accommodate it. CHRCT keeps track of the current print position 

on the teletype line (0-71). If the character string s~nt to the teletype 

would require non-blank characters to be printed pust por,ition 71, a 

carriage return-l ine feed is output fi rst and CHRCT ~('t to 0. If an item 

sent to a file requires more words than remain in the Cl.'rr('nt record. BASIC 

automatically advances to the next record if in serial r.K)dc or exits to the 

end-of-record code if in record mode. 

(RESTORE statement) execution resets the pointcr~ to the DATA block. 

Beginning at the statement specified, or at the first statement in the program 

if none is specified p the pointers are set to the first (DATA statement) 

found, or to the out-of-data conditi~n if none is found. 

(END statement) and <STOP statement) execut ion tend ncJtes the program 

runG Since each requested file has a 64-word buffer in core» the last record' 

written on a file does not exist on the disc in its updated form. Thus END 

and STOP must' force the buffer of each read/write fi Ie onto its proper 

disc sector~ Following thisp the word DONE is sent to the telrtype and 

cont ro 1 ex its· to the schedu 1 er. 

<MAT statement) execution involves many dispar~te t~~ks: The forms 

of the (MAT statement) may be classified as array I/O~ array assignment» 

array initoalization p and the array functions TIUJ and Ir~Vo For conciseness 

un coding 9 all forms other than array I/O use some c.ommon rH()~1r()m segments. 

Array i/O prepares each array in the 1 ist in the Si)l':(! ra~)hion. SOPTR is 

set to the dynamic dimensions of the array (ba~;e uddre~s -7.) and the operator 

fol1ohting the array. identifier is picked up for examination. At this point 

• 



MAT PRINT follows a separate path than MAT READ and HAT IfJPUT. The follo.·ling 

operator is noted as spacing the elements (comma or end-of-statement) or packing 

them (semicolon). VCJfK examines the array and generates an error if any of 

its elements have value 'undefined'. The dynamic ro\oJ and column lengths are 

saved in 2's complement. If the MAT PRINT references a fi Je, the array 

elements are written one by one in rOV/S, each element in j·ts t\10-word binary 

form. If the MAT PRINT references the teletype, rov.JS arc double spaced and 

the elements within a row arc spaced or packed as noted above, each clement in 

Its ASCII decimal form. Both MAT READ and MAT INPUT redimension the array if 

the following operator is a left bracket (i.e., begins a matrix sub~cript). 

MCNT is set to the number of elements in the array, in 2's complement. 

MAT READ calls FDATA for element values while MAT IUPUT transfers to the 

(INPUT STATEMENT) execution to obtain element ·values. 1110 acts as a flag for 

MAT INPUT, (jifferentiating the first call for 'input from sllbs0quent calls 

and saving the input character following the last element value used from the 

input record. After completing I/O "on an array.,. a common sec.t ion .of code 

prepares the next array in the list or, if no more remain, terminates the 

statement execution. -HAT INPUT returns to the input code to clean up there, 

MAT PRINT and MAT READ return directly to the main execution loop. 

Array assignment consists of preparing the destination and source arrays 

and executing a' loop which assigns the destination arr~y cleMents one by one. 

The general procedure is to assign a jump to the element computation code to 

MOP» an exit address to MEXIT to use after completing the destination arraYf 

and a count of the elements to MeNT, in 2 i s comP:.1emcnt. Thc, code to compute an 

element returns to MlOP1, MLOP2, or I1LOP3 depending on the nud)cr of arrays 

~nvolved which require updating of the element address. [~cl) 0pcration checks 

the dimensions of the arrays involved to insure th~t the operation is well­

defined; and all elements of the source matrices are checkl!O Lo make sure none 

have value ·undefined'. Matrix multiplication docs not u~~ tile clement 

computation loop, instead it uses row and column COUl1tcr~, to tell \!hcn it is. 

done and computes destination array elements by 'inner pro(h:(t':. of the" rO\<JS 

and columns of its source matrices. 



Array initialization also uses the clement computation loop. The 

Initialization program first redimensions the destination array (if a 

matrix subscript is givcn) and then chooses the appropriate constant for the 

element values. ION acts like ZER except lhc1t it insists that the destination 

array be 'square' and sets a special counter to choose 1.~ for the value of 

main diagonal clements. 

TRH and INV are handled apart from the other matrix functions. For 

both of these, the elements of the source matrix arc checked against the 

'undefined value'e The source and destination matrices are then checked for 

transpositional compatibility. If TRN, then proceed to transfer the columns 

of the source matrix to the rows of the destination matrix. 

INV uses the Gauss-Jordan algorithm with row pivoting. This procedure 

converts a copy of the cource matrix into the identity matrix and converts 

an identity matrix into the inverse by a~plying the same set of operations 

to both. Since the source matrix is gestroyed in the process, it is first 

copied into free user ~pace and the copy treated thereafter as the source. A 

side effect of the copying produces the element of largest absolute value, which 

is used to compute a lower bound on the allowable magnitude of pivot elements. 

INV then calls ION to set the destination matrix to an identity matrix, having 

the side effect of checking that the matrix is square. 

Diagonalization of the source matrix and production of the inverse 

now proceeds on a rO\'1-by-row basis. The next unreduced column of the source 

, is searched for the pivot element (the largest in magnitude). ,"If necessary. 

rows are swapped to put the pivot element on the main diagonal (the correspond­

ing rows of the destination matrix must also be swapped). If the pivot 

element is smaller in magnitude than the previously computed lower bound, the 

matrix is too nearly singular to invert and execution is terminated. Other­

wise, the pivot rows of both matrice~ are diviucd through by the pivot clement. 

Now all other elements in the pivot column are eliminated by subtracting the 

appropriate mul~ip1e of the pivot ro\'1 from c(lch or the other rows. "Advantage 



is taken of those pivot column clements which are already zero and of the 

fact that clements of the pivot row to the left of the pivot column have 

been set to zero by previous steps. After diagonalization of the source 

matrix and consequent creation of the inverse, the user space occupied by 

the source copy is released. 

The other statement types are declarative in nature. Execution of them 

consists solely of skipping over to the statement following • 

. ' 

• 



NOTES ON THE ERROR ROUTINES 

Errors are handled by routine SERR, reached by a jump through the base page table 

beginning at SERRS. A JSB SERRS + i ,I signifies detection of error i. The 

alternative bases RERRS and WERRS are conveniences to denote subsections of the 

table ' used for iun-time errors and warning-only errors. The actions taken by SERR 

are explairied in the listing; but notice that the 'BAD INPUT' error is singled 

out, its processing is completed by the input execution routine upon return from 

SERR. 

Syntax errors detected while in tape mode are handled by accepting error psuedo­

statements in place of the erroneous statements. Since these psuedo-statements will 

be replaced by any subsequently received ~tatements with the same line number, 

prOVIsion is made in FNDPS, which returns the location of a statement when given 

its sequence number, to decrement the error counter (ERRCT) whenever the statement 

found is an error psuedo-statement (an error psuedo-statement will only be found by 

FNDPS when another statement with the same sequence number is ready to replace it). 

Over/underflows detected during number conversions in syntax mode cause warning 

messages to be issued only after accepting the statement, if it is otherwise correct. 

Since no printing ,can be done while in tape mode, the routine CHOUF suppress'es setting 

of the flag and these potential errors are not reported when in tape mode . 

• 



SYNTAX (Phase 1) 

~ ~~:m Bas~':~ 
USE -',- · -_ ... __ .. ---

Subroutine Entry 

Points and User Variables· : . 

PBUFF -If------.. ~--.---..... J 
Previously - entered. I( 

Program Statements . 

I 
PBPTR=SBUFA->r------.--...... -.---~.\ 

Current Statement I 
-- ......... -~ ............... -- .... J 

Buffer (105 \~ords) ~ 

SYNTQ-:)I-----.-----.... , .. - V • .. '" t r 
Syntax Stack t 

SSTAK--+i- - - - - - - - _. _...1. , ,. I Available User Space I 
lWAUS~1 BA'~~~:~~y' =:--~I! , 

\, 

37777 f ! 

.. 

lSASIC Core naps 

User Swap Area 
(5ltlt'~ Words) 

PoiotC'rc, 

USE Fixcrlp first word of 
user swap Drea. 

PBUFF Fixpd, first word of 
progr(1m SP()CC. 

SBUFA 

PBPTR 

SBPTR 

Varinble, first word of 
statement being syotaxed. 

Vari~blc, first word of 
program space oot used by 
prC'viollsly accepted 
progrC1m statements. 

Variablci first word 
not u~cd by statement 
being syntaxed. 

SYNTQ V(Jriilhl(~, first word 
of synt.'lx stack. 

·SSTAK ~()riable» last word of 
syntClx sUlck. 

·lHAUS F i x~d, firs t \oJord not 
in uscr swap area. 



COMP I LA T 1014 (PhCl~c II ) 

Come i 1 at ion Value Storage Al1oc"tio~ 

" 
USE~ 

PBUFF--.\ 

-----...--.....-.. ... -

Sys tern Base Page. 

Subroutine Entry 
Points & User 

. ..1 Variables 

BASIC 
p,rogram i 
~ _________ ........ _ ..... J 

itSYMTB 

, Symbol t 

~ r:tem::~:- pa~~'" 
US ( _ .. ')---------.-._. 

I 
!Subroutine Entry 
! Points & U~er : 
, Variables i _--..._-..• --.. ____ • f 

PBUFF-' ) 
! 
I 

! BASIC 
;" Program 

I 
! 

\ , 
. I 

,_ • ___ ._-.-.......... ... ~ __ .-.... •• _.." ................. "i ... ( 

SYt\TB'''-); t 
j 

; Symbol 
; TabJe 

~ 

... - ·--~_"""""""""""''''''''''''''''I .. -·~ 

1
:_ !a~~_ - - - ---.~ 

·;tSPTR = 
t . I PBPTR 

SPTRo' -) :~F Il T S 

} Avai1ab1e ~. 
t I Use~_~ace .. _ 

LWAUS~. 

lSASIC and 
system 

37777 __ . __ 

SYMTa - Variable p f~rst word of symbol table. 

l\JAUS-' .} 

37"/77 

SPTR - Variable, first word not used by symbol table 

FILTB - Variable, first word of file table. 

VAllB - Variable, first word of symbol value table 

: File Table ~ ... ...... ----~---................. ~ ... 

Value Table 
. , 

~ Ava; lable 
; User Space ............. .,..,. .................... ,.",. ..... _---

BASIC 'and 
System 

... -.~" ... _ .. -., 

(FllTB = VALTa if no <-FILES statement> is in program) 

PBPTR - Variable, first word available of user sp~cc. 

SVHTB and SPTR are not changed after compilation. 

FILTB and'VAlTB are not changed after allocating vRlue stor~~c . 

• 

(-VALTB 



EXECIITIOU (PHASE III) 

o [·S~:~·~.~~~~a-~~_ ... 
USE~, 

j 

I Subrout i ne Entry 
Points & User 

P BUF F _~ r-.:': ~_i_ a~~ es_-___ . __ '" I 
BASIC 

1 Program 
~-... - . " ....................................... _ .............. -'. ' 

SYf1TB--}: 

j Symbol Table r------.-.... --.-.-..-~-... 
FILTB-)j , 

I File Table a....-.... ,....... . .............. - ..... ,-.~ .. ~.~. 
\ 

VALTB4; , 
i Value Table r'" F-~'1 e ~~'~f'f;;'~' __ '_N~_' .;~~~~~ 
,.". __ ... . .......... - ............ ······· .... -;f-RTNST 

9 wordsl __ .~_et_~.~~ .. :_~.~.c_~ ___ . (FORQ 

For-Stack' ~FORST r-··--··-.... -··---··-· .... -~.,. ...... 

l\/AUS4 

_. _.2:~~ora~.Y.2.t.!.~_ t-THPST 
.··OPTRQ 

Operator/Operand ~O~DST 
Stack ~PBPTR 
.~--.~ .. -... _ ..... --... - .... ·._·--.-1 

Available i 
User Sp~~ ...... e __ -l 

I BASIC and 
System 

37777 L-~-.... ~.-- "-'-~" ....... _ .... ---! 

FCORE - Variablc J first word not uscdby 
Phase II 

RTRHQ - Variable, bottom of return stnck 
(first word preceding return stack) 

RTNST - Variablc, top of return stack 

FORQ - Variable, bottom of for-stack 
(sixth word preceding for-stack) 

FORST - Variable, top of for-stack 
(points. to latest 6-vJord cntry) 

TMPST Variable, top of tcmporary stack 
(points to latest 2-word entry) 

OPTRQ - Variable) bottom of operator stack 

OPOST - Variable, top of operand stack. 

PBPTR Variable, top of operator stack. 

FCORE, RTRNQ, and FORQ are not changed after initiating execution. 
s . 

Entries on the operator and operand stack are one word each and interleave 
I 

(I .c., alternate \'Jords belong to one stack). All stacks beyond the return stack 

grow and shrin~ as needed so long as user space is available. 

f 



qASIC Internal Representation 
i 

BASIC statements are represented internally by the sequence number followed 

by the length in words (including the sequence number and length words) followed 

by the statement body. The statement body is composed almost entirely of operator­

operand pairs which occupy from one to three words each. Null operunds and 

operators are used when necessar.y to maintain the operator-operand correspondence. 

The operator resides in bits 14-9 of a word; the operand ,uses bit 15, bits 8-0, 
and sometimes whole additional words immediately following. 

'Variable' Operands 

r-;;--r,.....----.. -r-··~~ ..... ··-".-.--;;___l 
~--~~-~--'- -.~ Null Operand 

String Variable 

Array Variable 

Simple Variable 

Function Variable 

Bits 8-0 are generally divided. 

into two fields as follows: 

a name field (bits 8-4) and 

a type field (bits 3-0). The 

name field holds a value 

between 1 and 328 corresponding 

to A-Z (for functions, 

corresponding to FNA through 

FNZ). A type of 0 identifies 

a string variable (e.g. 3,0 
represents C$). Types 1 and 2 

identify array variables of dimensionality one and two respectively (e.g. 4,2 

represents 0[*,*]) while type 3 identifies an array variable whose dimensionality 

cannot be determined by its immediate context. Type 4 identifies a simple variable 

with no digit (e.g. 1,4.represents A) while types 5 r 168 identi~y simple variables 

whose names include the digit 0 - 910 respectively (e.g. 6,7 represents F2). Type 

17tJ 'deNtt,t@s a programmer-defined function (e.g. 328.; 178 represents FUZ). 



'Constant' Operands 

Parameter 

Pre-defined Function 

A parame ter h/h i ch can 

only appear inside u 

.(OEF statement» differs 

from a simple variable 

11 T o;;;~~~;-T-:---3-'-1 ................................................................................... 
Binary Integer 

.. ... 

Formal Dimension / 

Branch Address List 

only in that bit 15 is 

set. The name of a pre­

defined function may range, 

in the standard system • • 
~ . 
I 

High Mantissa 

• 
1/ 

• 
from 1 to 168 or 248 to 

Numerical Constant 

I-------------~ --------------f 

308 (TAB to TVP or ZER to 

TRr~). A flagged .. (bit 15 

set) operand of. 3. identifies 

either a formal dimension 

ina <0 I H s tat eme n t > (val u e 

in following word) or a 

branch address 1 i st· (one or Low Hant Exponent 

I,,"---,-~ 11----....(11) 1_:· ~~:~!~=: ~.:~] String Constant 

more statement sequence 

numbers in the following 

words). A flagged operan.d , , , 
Q 

c~aracter 

• p 

II 

Character --~-l 
·of 0 indicates that the 

fo 11m'lj ng two words ho 1 d a 

floating-point constant 

(all numerical constants 

within a program are so represented). The operator \'Jith internal code 1 is ", \'Jhich, 

signals the start of a string constant. The operand portion of th~ word ha~ a value 

from 0 to 7210, indi~ating the number of characters in the constant. The string 

follows, two characters per word, and the closing II is not explicitly represented 

internally. 

• • 



The table below gives lh~ internal representation of the BASIC operators. Those 

operat6rs Wllich manipulate the formula cvalu~tion stack during execution have 

associated priorities. A 11 numbers are in octal notat ion. 

BASIC 0Ecrators 

CODE PRIORITY ASCII 'CODE r PR lOR I TV ASC II COOE ASCII . -:---1 ,--! , ~ " (end-of- t 26 5 < 54 FOR 
formula) 

t 
It 5 H t 27 '55 NEXT 

I· I 
2 I 30 5 =(equal)S6 GOSUS 

3 . I 31 (unuscd)~7 RETURN . , 
4 H (file); 

j 
32 (unused 60 END 

5 (unused) : 33 . (unuscd)Gl STOP 
I 

(unused)'G2 6 (unused) . 34 DATA , 
7 (unused) f 35 (unuscd)63 INPUT 

i 

10 1 ) 
t 

36 4 G1t j AND READ 

11 1 ] ( 37 3 OR 65 PR Ir~T 
I 

12 13 (J ) [ ,40 6 HIN 66 RESTORE 

13 13(1)' ( 41 6 MAX 67 MAT 

14 11 +(unary) : 42 5 () 70 FILES 

15 11 - (unary) : 43 5 )= 71 I I MPL I ED' LET 
16 2 ,(subscript)' 44 5 <= 72 (unused) 

17 2 III (ass i gnment l, 45 11 NOT 73 (Unused) . 
I 

20 7 + ~ 46 LET 7/• OF 
I 

21 7 "I 47 DIM 75 THEN 

22 10 ,'c 50 OEF 76 TO 

23 10 ./ 51 REH 77 STEP 

24 12 , 52 GOTO 

25 5 > i 53 IF 

I 
'I 
i 
I 
I 
I 
I , 
! 

C • 

" 



Some examples of BASIC statements in their internal form t,re given below. Note 

that actual function parameter formulas, (DEF statements> formulas, and subscript 

formulas appearing in <IiAT statements) require end-of-formula operators to signal 

their end whereas most formulas end either with the first operator wtlich does not 

manipulate the formula cvaluatiorl stack or with the end of the statement.· Note 

also that constants are considered signed only within a (DATA statement). ASCII 

numbers are decimal, internal numbers are octal in the presentation belo\-I. 

10' LET WI 1:1 Y 1:1 (B = C) t 31'A[1,J+K] 

12 

21 

o : 1t61 
o . 17 \ 

I 
I 

" 17: 
II : 13 1 

e 30' 

" ! 1" i , 
1 ,24 : 

"300091 

000"04 

27' 6 

31 ~ 4 

I " I 

2 4 
I 

3~ It 

. " 
9J 

e 1221 i:1 2 

" 12

J

11 4 
o 116 12! 4 

i i o ! 20 " 13 : q 

ll; ll! ill 
"il1~ ;" 

sequence number 

length 

LET Wl 

r:: y 

( B 

= C 
) 

't 
3.0 

oJ: A 

[ 1 

J 

+ K ~ 

(end-of-formula) 

1 

• 

20 DIM A[s1, C[6,121 

24 

lit 

II 471 III 1 '" 

1 12 l 3 
5 

31 : , 
! 3 



30 DEF FNC (X) = X + 1\0 

36 

7 

., ! 50 I 31 17 ' 
1 ! 13 30! It 

" ; 10' . " I 

1 , 17 30, It 
; i 

.' f 20 ~ 1 ; 5 , I 
! 

" " ~ 

50 GOTO A OF 10, 20, 30 

62 

7 

,,! 521 1 j" 
'I ! 74 { 3 

12 

2~ 

36 

70 MAT READ IK;A[I] 

H~6 

11 

., 1671 I" 
~ .64; ! 0 

, , 
o 4~13 ,. 

; i ' 

o i 3~ 1; 1 

0'\2.1\: It 
, 

" ~ 0 

" '1 t " I 

1.0 REM ARK 

50 
5 

I I "J 5 1. '.0 t I 

0~~S22 

0~5~00 

60 DATA -1, "ABC" 

7~ 

11 

1 i621 to 
100000 . 
000000 

°1 2 
f r ~ 

":1, 13 
,,' 0~0502 

01t 1.400 



BASIC V~riablc Storage Allocntion 

PROGRAM FRAGMENT 

I---\' --,. 

I' ~~C;'~i .. -~ 
L -!--. __ . --~----

-_ .... 4tJ'" _________ • __ 

+ A 

". C 

VALUE TI\BLE rP'I\GI1Er~T 

. ,.--

0 0 .• 
.' . 

-----b 

- ~ 
~ -

"-.. 
.. 

-. S¥MBOL TABLE FRAGMENT 

( 

---.--_ .. -

i'I 
4 .......-._--_._------1 ~ 

I_' ___ <~~ 
J...-__________ ' 

fNC -J. .. ~~--~~ 100000 I 
" I-------~ 

a...-_--I ___ ~ I 
A[ 1] 000000 j 

I---------~i 

D3 ! 
A[2] . / 

oj 

dimensionality 1 0000~10 . j 
"'------'---j 

~ ---. --_. _ •....... _------_. _._._ ... __ ._ ..... 
I ,---------t 

A[ 1 . dimensionality 
'--______ llocal1y unknown 

~--.----~--------------~ -_ .. '_._-----1 
B$ 

. .1 ) 

~
l 

I __ .-_---... - .---- I 
... ._- , 

1----.. _...... - ....... --- - ..• 

8 I 5 .! 
~ .. 

A[3] __ .00~0~0 

~------------+-----------------------9.~ 1\ U , 4------- --.. ---_ . ___ . 
c ----_ ... --. 

---.-.~.-

..... "" ................. .......... 

~ 

value of 

simple variable 

declared 

dimensions 

dynamic 

dimensions 

ac t i ve 

elements 

inactive 

element 

ph y sic all e n £J't h / 
logical length 

character 

string 



The symbol table consists of two-word entries, one for each unique symbol occurring 

in the user's program. The first word of an entry is the internal representation of 

the symbol as previously described. The second word of the entry is a pointer to the 

value of the symbol. For a programmer-defined function the value is the defining 

formula in the (DEF statement). The value of a simple variable is a tHo-''Iord 

floating point number. The value pointer of an array is its base address (i.e. the 

address of its first element); when an array is dynamically redimensioned to occupy 

le~s than its physically allocated storage, it occupies a contiguous block justified 

to the low core portion of its clement space. Since array symbols may not have 

dimensionality locally defined (e.g. MAT A=B), array symbols may have a "don't knovl" 

entry in the symbol table in addition to the dimensioned entry. Both entries have 

the same Value pointer. The declared and dynamic dimensions occupy the four words 

preceding the element space ih the value table. The value of a string iS'also its 

base address. A string is a character array {packed two elements per word in contrast 

to the two words per element for numerical arrays). Its physical (declared) length 

and logical (dynamic) length occupy the w9rd immediately preceding j'ts value space. 

The value table is simply the concatenation of the values for the symbols in the 

program, excepting programmer-defined functions. 



FILE TAOLEENTRV 

read-only 
bit .J.-_~_~:~~~S or n f i I"e ----=] 

disc address of last i 
logical record in file I 

I 
---~-.-- .. - I 

disc address of record ! 
__ in fi~~l.L~E __ ...... ~. __ ...... 1 

I 

fi Ie base disc address I 
j 

t------.. ~-..... - .'~= .. ::::------.. -=.~~J 
L __ ~-_~.O-F /-E.;~~~~" ad;;;d 

FILE BUfFER 

-_.> 

--------~----------~ ............................... ~ ... -----...., 

64 words 

The file table con5ists of onc· 

seven-word entry for each file in 

the ~FllES statement>. Bit 15 

of the first word is set if the' 

file was busy when requested or is 

a public file (avai lable on a read­

only basis). A 64-word buffer is 

associated with each file entry 

and is accessed through pointers i.1 

its file entry. An intra-record 

pointer designates the next portiol 

of the record to be written or real 

A fixed pointer to the first word I 

in the buffer acts as abound on 

the intra-buffer pointer. 



BASIC Run-Time Stacks 

Return Stuck 

9 words 

For-Stack Entry 

.' .. ··--,··.,.·· .. -· ... · .. ··· ..... 1 

-.... .,.. .. J ... _-J ·1 pp,nter to.va u~ 

O~~v~-a~~l-~Vu!.e:.~ ~-~~~I two-wo rd 

If float i n9 pol nt 

-·-·-:~:-;--··1···-l numbers ,-----_ .. _._._-
I size 
4 ---.-.--.... - •• -----, 

. ~-- -- ---. I 

Lt=J 
Program Fragment 

(FOR statement) 

-•. succeed i n9 

tatc~i~~ , 

The return stack is of fixed 

length, holding from 0 to 9 

one-word entries at any time. 

An entry is the absolute address 

of the statement following the 

GOSUB which placed the entry on 

the stack. 

The for-stack is of variable 

length, containing one six-word 

entry for each for-loop which 

is currently active. Since the 

limit value and stop size are 

kept in the entry, they may not 

be changed \·Ii th in the for-loop . 

The value of the for-variable is 

'Jhe one kept .in the value table, 

so this may be altered by 

statements within the for-loop. 



LET A = B+C~':O 

~ .. ~. ---
.---~ ) 

Temporary 

Stack 

-I A 

OPTRQ ... ~ (unused) 

.~ B 

start-of-
.f.o.r:muJa-D.p e.ra.to..r:... 

V C 

= 
OPOST --=+ " D 

~ 

+ 

(unused) -

P8PTR4 ,,~ 

ava i lab Ie user 

space 

) 
-......... 

lWAUS -+ 

OPERATOR/OPERAND STACK FRAGMENTS 

i 

OPTRQ ,. _(y.il.y~s._~.Q)~_ .. _.. ! 

TE,1PORARY 
STACK 

..... f ,.. I 
OPOST ~. B+C~:O • ,._-) 

·start-of- l 
form~.l.~ ope ra tor ----at> 

.,-i!!D!,sed 1 ==r 
PBPTR -. I '---J 

ava i la: Ie ~ser -j 
lWAUS -+, sPf-~~-· 

. ; ~ .!---- "'-J 

l 
OPOST~ 

OPTRQ :+ 

I . ~ 

.....--5_ 

(unused) 

(u .. nused) 

I 
1. 

TEMPonARY 
STACK 

.... PB:'TR 

All operands (checked words) are addresses (i.e.» C repre~cnt~ ~ poi~Lcr (0 

the v'atue of the simple variable C). Bits 7 - 0 of an operator ('n1.('· c.onldln the 

operators identifying code (See 'Basic Operations' Table) \·,hilc I.it:; lS~R contain 

the operator's priority. Note the alternate-word structure of the ~tacl:.s. The 

('. temporary stack ho Ids i ntermed i a te va lues du ri n9 the formu I il C'I" I"" t i 0" • 

.. 

f 



BASIC Language Processor Tables 

The two areas of core labelled SBJTB and USER contain the mechanism al1o~~ing 

different users to exercise different portions of the language processor without 

interference. The language processor makes its subroutine calls to the labels in 

the area beginning \-/ith USCR. The word f0110\.."ing a subroutine entry point is an 

indi rect jump through the appropriate address in the area fol10\..,,:09 SBJTB. Hhen 

a user is displaced by the system, his registers are saved at USER and the area of 

core from USER to PBPTR,I inclusive is dumped onto his track of the disc~ Thus t 

a complete record of the language processor's status with respect to him is 

preserved. [The only things particular to a user wh~ch remain when he is swapped 

out are his own teletype table, teletype buffer, and the bit flags CFLAG, 'TERR~ 

,and TAPEF.] Since the bit flags are modified only in the bit belonging to the active 

user, information belonging to quiescent users IS never modified. 

The tables headed by PDFTB. (which must be in base page), SYUTB, XECTB, and 

. FOJT are Jump tables. The method in the last three cases is to compute a dec~si·)n 

number, add the base address of the table, and transfer through the entry thus 

designated.' The pre-defined function table is used by the formula evaluator to 

enter the code for evaluating pre-defined functions. 

The tables headed by QUOTE and MC[30S have several uses. Their entries are 

explained in the listing and their use will be explained in those routines which 

access them. The Error Jump Table (at SERRS) is explained along with the error 

routines. 

.. 



·v., , .......... ", ... "....,..", .. , ..... 

• SYNTAX REQU I REf'1EfffS OF TSB 

LEGEND 

::= "is defined as .•• " 
"or" 

< > enclose an element of Time Shtlred BASIC 

LANGUAGE RULES 

1. Exponents have 1 or 2 d~git integers only. 

2. A <parameter> primary appears only in the defining formula of a 
<OEF statement>. 

3. A <sequence number> must lie.between 1 and 9999 inclusive. 

4. An array bound must lie bet\a,een 1 and 9999 inclusive; a string 
vari ab 1 e bound mus t 1 i e bet\'1een 1 and 72 ; nc 1 us i vc . 

5g The character string for a <REM statement> may include the 
character II. 

·6. An array may not be transposed into itself, nor may it be both 
an operand and the result of a matrix multiplication. 

Note: Parentheses, (), and square brackets, [1, arc accepted 

interchangeably by the syntax analyzerD 

Continued on the next page • . 

8-2 (869) 



.,- " 

; .-. 

<constant> 

<number> 

<de,cimal number> 

<integer> 

<digit> 

<exponent part> 

<1 iteral string> 

<character string> 

<character> 

<variable> 

<simple variable> . 

<letter> 

~subscripted variable> 

<sub', ist> 

<string variable> 

<string simple variable> 
I 

<expression> 

<conjunction> 

<rel ation> 

<minmax> 

<sum> 

<term> 

("" <s ub te rm> 

I 

• SYNTAX REQUIRENENTS OF TSB 

: : = <number> I +<number> 1- <n~mber> I <1 i tera 1 s tri n9> 

::= <decimal number>l<decimal numbcr><exponent part> 

::= <integcr>l<integer>·I<integer>.<integer>lo<integer> 

::= <digit>l<integer><digit> 

::= E<integer>IE+<intcger>IE-integer (see rule 1) 

::= "<chal:'acter string>" 

:: = '<character> I <character s tri ng><character> 

::= any ASCII character except null, line feed, return, x-off, 
alt-mode, escaee, +, II , and rubout 

" ~­.. -
..­
e .-

::= 

: : = 
o .-00-

<simple variable>l<subscripted variable> 

<letter>l<letter><digit> 

AIBICIDiEIFIGIHIIIJIKILIMIN!OIPIQIRIS(T!UIVlw(XIY!Z 

<letter>«sublist» 

<expression>l<expression>,<expression> 

, 

G .­· .-
o .-
o • -

<string simple variable>I«sublist»I<string si~ple variable 

<letter>$ 

· .­.. -
· .­I> .-

" 0 Ct_ 
80-

: : = 
• If_ · .-
· .­" 0-

.0-· .-

<conjunction> I <expression>OR<conjunction> 

<relation>l<cqnjunction>AND<relation> 

<minmax>l<minmax><relational operator><minmax> 

<sum>l<minma~>MIN<sum>l<minmax>MAX<sum> 

<term>1 <sum>+<term>! <sum>-<terrn> 

<factor> I <subterm>*<factor> I <subterm>/<factor> 

<den\r1>1 <signed factor> 

8 .. 3(869) 



fOR TilE PROFESS IONl\l 

S~~TAX REQUIREMENTS OF TSB, CONTINUED 

<denial> 
<signed factor> 
<factor> 
<primary> 

<relational operator> 
<parameter> 
<functional> 

<function identifier> 
<pre-defined function> 
<source string> 
<destination string> 
<file reference> 
<file formula> 
<record formula> 
<array identifier> 
<sequence number~ 
<program statement> 
<BASIC statement~ 

<L~T statement> 

<leftpart> 
<~ F s ta temen t> 

<decision expression> 

<comparison string 1> 
<comparison string 2> 

· .-· .-
: : = 
•• = · . · .-· .-
: : = 
· .-· .-
· .­... -

: : = 
: : = 
· . - ~ .. -
::= 
· .-· .-
: : = 
: : = 
· .-.. -
oa-
" .-
· .-... -
" .-· .-

<factor> I NOT <factor> 
+<factor>I-<factor> 
<primary> I <factor>t<primary> 
<vari ab 1 c> I <number> I <funct iona 1> I <parameter> (rule 2) I 
«expression» . 

<1<=1=1#1<>1>=1> 
<letter>l<lettcr><digit> 
<function identifier>{<exprcss;on»I 
<pre-defined function>«cxpression>}I 
LEN «string simple variable» 
FN <letter> 
SINICOsITAN)ATNIEXPILOGjAUSISQR!INTIRNDlSGNITYP 
<string variable>l<literal string> 
<string variable> 
D<file formula>I#<file formula>,<record formula.> 
<express ion> 
<expression> 
<letter> 

. <i nteger> (see rule 3) 

<sequence number><BASIC statcment>carri~ge return 
<LET statement> I <IF statenlcnt>! <GOTD statement> I 
<GOSUB statement> I <RETURN state~ent>I<FOR statement>i 
<NEXT statement>! <STOP statcm2nt>!<END statement> I 
<DATA statement> <READ statement> <INPUT statement> I . 
<PRINT statement> I <RESTORE statcment>I <DI~1 statement>l 
<DEF statement> I <FILES s tatclnent> I <REM st·atement> I 
<MAT statement> 

::= LET <leftpart><exprcssion> I 
LET <destination string>=<source string>' 
<leftpart><expression> I 
<destination string>=<source string> 

::= <variable>=I<leftpart><variablc>= 
::= IF<decision express;on>THEri<sequcncc nurrber> I 

IF END #<fi le formul a> TI{[N<scqucnce number> 
::= <expression>1 

<comparison string l><rclational operator> 
<compa ri son s tri n9 2> 

::= <string variablc> 
::= <string variable>l<literal ~tring> 

8-4 (869) 



c 

.' SY.NTI\X REQUIREr"1EtJTS OF TS13, CONTINUE!? 

<GOTO statement> 

<sequence list> 
<GOSUB statement> 

<RETURN statement> 
<FOR statement> , 

<for variable> 
<initial value> 
<final value> 
<step size> 
<NEXT s ta temen t> 
<STOP statement> 
<END statement> 
<DATA statement> 
<READ statement> 

<variable list> 
<read variable> 
<INPUT statement> 
<PRINT statement> 

<type statement> 
<print 1> 
<pri nt 2> 
<print 3> 
<print express1on> 
<file write statement>' 

'~rite expression> 
<RESTORE statement> 

: : = GOTO <sequence number> I 
GOTD <expression>OF<sequcnce list> 

: : = <sequence number> I <sequence 1 is t> t ~sequcnce number> 
: : = GOSUl3 <sequence numbel"> I 

GOSUB <expression>OF <sequence list> 
:: = RETURN 
::= FOR <for variable>=<initial value>TO<final value>1 

<FOR <for variable>=<initial value>TO<final value> 
STEP<s tep size> 

: : = ~ <s ; mp 1 eva ria b 1 e> 
::= <expression> 
::= <expr~ssion> 

::= <expression> 
::= NEXT<for variable> 
:: - STOP 
: : = END 

::= DATA<constant>I<DATA statemcnt>,<constant> 
!:= READ<variable list>IREAD<file reference> I 

READ<file reference>;<variable list> . 
::= <read variable>l<variablc list>,<read variable> 
::= <variable>l<destination string> 
::= INPUT<variable list> 
::= <type statement> I <file write statement> I 

PRINT<file reference> 
::= <print l>l<print 2> 
::= PRINTI<print 2>~I<print 2>;I<print 3> 

::= <print l><print expression>l<print 3> 
::= <type statement><literal string> 
::= <exprcss;on>!TAB«expression»I <source string> 
::= PRINT<file reference>;<write expression>\ 

<file 'r'Jrite statement>$<\'/rite expression>1 
. <file write statement>;~~rite expression>1 

<file write statement-·--:literal string>l 
<file write statement;.. <1 iteral string> 

<write expression> 
::= <expression>IENDI<source string> 
::= RES~OREIRESTORE<sequcnce number> 

8-5 (869) 



,,' 

FORTUE PHOFESSIONAL 

SYNTAX REQUIREMENTS OF TSB, CONTINUED 

<OHV1 statement> 
<dimspec> 

. <bound> 
<DEF statement> 
<FILES statement>· 
<file name> 
<REM statement> 
<MAT statement> 

<MAT READ statement> . 

<actual array> 
<dimensions> 
<MAT INPUT statement> 

~T PRINT statement> 
<MAT PRINT 1> 

<lt1AT PRINT2> 

::= OIM<dimspec> I <DIM statement>, <dimspec> 
::= <array ;dentificr>«bou~d»1 

<array i denti fier>( <bound>, <bound» I 
<string simple variable>«bound» 

· .-· .-
· .-... -
· .-· .-· .-· .. -
... -· .-
· .-· .-

<i nteger> (sec rule 4) 

DEF <function i denti fi er>«pa rameter> )=<express ion> 
FILES<file name> I <FILES statement>,<file name> 
a string of 1 to 6 printing characters 
REM<character string> (see rule 5) 

<MAT READ statement>I<MAT INPUT statement> I 
<MAT PRINT statement> I <MAT initialization statement> I 
<MAT assignment statement> 

::= MAT READ<actua1 array> I . . 
w\T READ<file reference>; <actual .array>I 
<ML\ TREAD s ta tement>, <actua 1 array> 

::= <array identifier>l<array identifier>«dimens;ons» 
::= <expression~l<expression>,<expression>. 

::= MAT INPUT<actual array> I 
<MAT INPUT statement>,<actual array> 

'::= <MAT PRINT l>I<MAT PRINT 2> 
::= MAT PRINT<array identifier>l 

MAT PRINT<file reference>;<array identifier>l 
<MAT PRINT 2><array identifier> 

::= <MAT PRINT 1>, I <MAT PRINT 1>; 
<MAT initialization, 

statement>: := MAT<array identifier>=<;nitialization function>l 
MAT<array identifier>=<initialization function> 

«dimensions» . 
<initialization function>::= 
<w\T assignment 

statement> (rule 6) ;: = 

. <ii!'lt operator> · .-· .-

ZER I CON I ION 

MAT<array identifier>=<array identifier>1 
MAT<array identifier>=<array identifier><mat operato~> 
<array identifier>1 . ' 

MAT<array identifier>=INV«array identifier» 
MAT<array identifier>=TRN«array identifier»1 
MAT<array identifier>=«express;on»*<array identifier> 

~I-I* 

8 .. 6 (869) 


