FORTRAN IV

reference manual

(

=000...

(

I

HEWLETT ﬁ PACKARD

FORTRAN 1V

reference manual

HEWLETT hp; PACKARD

HEWLETT-PACKARD COMPANY

PART NO. 5951-1321

11000 WCLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed in U.S.A. 12/75

PREFACE

The Hewlett-Packard FORTEAN IV Reference Manual describes the language ele-
ments used to code source programs in the HP FORTRAN IV programming language.
This manual may be used with any of the following compilers: HP 24170

FORTRAN IV, HP 24177 FORTRAN IV, or HP 18967 FORTRAN IV.

The front matter includes a Table of Contents and an Introduction to the

manual. Sections I through III describe the form of source programs and the
types, identification anc formats of data and expressions used in HP FORTRAN

IV. Sections IV through IX describe the language elements used to code a

source program, includinc the formats and uses of HP FORTRAN IV statements.

The Appendices describe the format of data in memory, the form of HP FORTRAN IV
jobs, departures from and extensions of ANSI FORTRAN IV specifications, features
included in HP FORTRAN IV for compatibility with HP FORTRAN and HP FORTRAN 1V

Compiler error diagnostics.

NOTE: Throughout the manual are special boxed notes
that explain departures from ANSI FORTRAN IV
specifications or features for compatibility
with HP FORTRAN.

Tris manual is a reference text for programmers who have had FORTRAN pro-

gramming experience, either with HP FORTRAN or with other FORTRAN compilers.

iii

CONTENTS

PREFACE
INTRODUCTION

SECTION I
THE FORM OF A FORTRAN IV PROGRAM
FORTRAN TV SOURCE PROGRAMS
FORTRAN IV CHARACTER SET
SOURCE PROGRAM LINES
SOURCE PROGRAM STATEMENTS AND LABELS

ORDEF. OF STATEMENTS IN A SOURCE PROGRAM

SECTION II
DATA, CONSTANTS, VARIABLES AND ARRAYS
IDENTIFYING DATA TYPES
Data Type Association
Establishing Data Names
Using Data Names
WRITING CONSTANTS, VARIABLES AND ARRAYS
INTEGER CONSTANT
REAL CONSTANT
DOUBLE PRECISION CONSTANT
COMPLEX CONSTANT
LOGICAL CONSTANT
HOLLERITH CONSTANT
OCTAL CONSTANT
SIMPLE VARIABLE
ARRAY
ARRAY ELEMENT
SUBSCRIPT EXPRESSIONS
SUBSCRIPT
DEFINING VARIABLES AND ARRAY ELEMENTS

SUBSCRIPTED VARIABLE

3-1
3-1
3-1
3-1
3-2
3-3

3-4
3-4
3-5

3-5
3-6

4-1

5-1
5-1

5-4

6-1

6-3
6-4

SECTION III
EXPRESSIONS
ARITHMETIC EXPRESSIONS
Arithmetic Operators
Arithmetic Elements
Combining Arithmetic Elements
Exponentiation of Arithmetic Elements
Evaluating Arithmetic Expressions
LOGICAL EXPRESSIONS
Logical Operators
Logical Elements
RELATIONAL EXPRESSIONS

Relational Operators

SECTION TV
SPECIFICATION STATEMENTS
ARRAY DECLARATOR
EXTERNAL
TYPE-
DIMENSION
COMMON
EQUIVALENCE

DATA

SECTION V

ASSTGNMENT STATEMENTS
ARITHMETIC ASSIGNMENT STATEMENT
LOGICAL ASSIGNMENT STATEMENT

ASSIGN TO STATEMENT

SECTION VI

CONTROL STATEMENTS
GO TO (UNCONDITIONAL)
GO TO (ASSIGNED)

GO TO (COMPUTED)

vi

SECTION VI (cont.)
CONTROL STATEMENTS

6-5 IF (ARITHMETIC)

6-6 IF (LOGICAL)

6-7 CALL

6-8 RETURN

6-9 CONTINUE
€-10 STOP
e-11 PAUSE

6-12 DO

6-16 END

SECTION VII

7-1 INPUT/OUTPUT STATEMENTS

7-1 IDENTIFYING INPUT/OUTPUT UNITS
7-1 IDENTIFYING ARRAY NAMES OR FORMAT STATEMENTS
7-2 INPUT/OUTPUT LISTS

7-2 Simple Lists

7-2 DO-Implied Lists

7-3 FORMATTED AND UNFORMATTED RECORDS
7-4 READ (FORMATTED)

7-5 WRITE (FORMATTED)

7-6 READ (UNFORMATTED)

7-7 WRITE (UNFORMATTED)

7-3 REWIND, BACKSPACE, ENDFILE

7-9 FREE FIELD INPUT

7-9 Data Item Delimiters

7-10 Record Terminator

7-11 Sign of Data Item

7-11 Floating Point Number Data Item
7-11 Octal Data Item

7-12 Comment Delimiters

vii

SECTION VIII
8-1 THE FORMAT STATEMENT

8-2 FORMAT
8-3 FZELD DESCRIFTOR
8-5 REPEAT SPECIFICATION
8-6 I-TYPE CONVERSION (INTEGER NUMBERS)
8-8 SCALE FACTOR
8-10 E-TYPE CONVERSION (REAL NUMBERS)
8-12 F-TYPE CONVERSION (REAL NUMBERS)
8-14 G-TYPE CONVERSION (REAL NUMBERS)
8-16 D-TYPE CONVERSION (DOUBLE PRECISION NUMBERS)
8-17 COMPLEX CONVERSION (COMPLEX NUMBERS)
8-18 L-TYPE CONVERSION (LOGICAL NUMBERS)
8-19 @-TYPE, K-TYPE AND O-TYPE CONVERSIONS
(OCTAL NUMBERS)
8-21 A-TYPE CONVERSION (HOLLERITH INFORMATION)
8-23 R-TYPE CONVERSION (HOLLERITH INFORMATION)
8-25 wi EDITING (HOLLERITH INFORMATION)
8-26 "..." EDITING (HOLLERITH INFORMATION)
8-27 X~-TYPE CONVERSION (SKIP OR BLANKS)
8-28 FIELD SEPARATOR
8-29 CARRIAGE CONTROL
SECTION IX
9-1 FUNCTIONS AND SUBROUTINES
9-1 FUNCTIONS
9-2 SUBROUTINES
9-2 DATA TYPES FOR FUNCTIONS AND SUBROUTINES
9-3 DUMMY ARGUMENTS
9-4 STATEMENT FUNCTION
9-5 Defining Statement Functions
9-5 Referencing Statement Functions
9-6 FORTRAN IV LIBRARY FUNCTICN
9-10 FUNCTION SUBPROGRAM
9-11 Defining Function Subprograms
9-13 Referencing Function Subprograms

viii

9-15
9-16
9-16

A-1

B-1

C-1

D-1

E-1

F-1

G-1

H-1

I-1

SECTION IX (cont.)
FUNCTIONS AND SUBROUTINES
SUBROUTINE
Defining Subroutines

Referencing Subroutines

APPENDIX A
DATA FORMAT IN MEMORY

APPENDIX B
COMPOSING A FORTRAN IV JOB DECK

APPENDIX C
SUMMARY OF CHANGES TO ANSI FORTRAN IV

APPENDIX D
COMPATIBILITY OF HP FORTRAN AND FORTRAN IV

APPENDIX E
CROSS REFERENCE SYMBOL TABLE

AFPENDIX F
SAMPLE LISTING OF FORTRAN IV PROGRAM

APPENDIX G
FORTRAN IV COMPILER ERROR DIAGNOSTICS

APPENDIX H
OBJECT PROGRAM DIAGNOSTIC MESSAGES

INDEX

TABLES
Table 2-1. The Value of a Subscript (in an Array)
Takle 3-1. Results: Combining Arithmetic Elements

Takle 3-2. Results: Exponentiation of
Arithmetic Elements

Table 5-1. Rules for Assigning e to v
Table 9-1. FORTRAN IV FUNCTIONS

Table G-1. FORTRAN IV Compiler Error Diagnostics

INTRODUCTION

The Hewlett-Packard FORTRAN IV Compiler is used to construct object language
programs from source language programs written according to the rules of the

HP FORTEAN IV language described in this manual.

The FORTRAN IV Compiler can read source input from paper tape, punched cards,
magnetic tape, or from a f:le (or files) in the User Area of the disc. The
Compiler outputs the resultant object program on a standard punch device or
to «he Job Binary Area or Core Image Buffer Area of the disc in a format ac-

cep:zable to the Relocating Loader.

HP TORTRAN IV is a two pass compiler. A pass is defined as a processing cycle
of the source program. In the first pass, the source program is processed, &
symool table is constructed, and a set of intermediate machine code is generated.
During the second pass, the Compiler searches the symbol table for object ccde
references, completes translation of the intermediate object code on the disc
and produces a relocatable binary cbject program. It outputs the object pro-
gram to the standard punch device and/or to the Job Binary Area of the disc.
Source and object listings may be produced, if specified in the FTN control

statement.

The HP FORTRAN IV Compiler is available in these HP operating systems: Real-
Time Executive (RTE-II/III), Test Criented Disc System (TODS-C), and the
DOS-III Disc Operating System. The hardware configurations required for com-
piling and executing HP FORTRAN IV programs under the control of these systems
are the same as the minimum requirements for the systems, as described in these
manuals:

Real-Time Executive-II Software System (HP 92001-93001)

Real-Time Executive-III Software System (HP 92060-90004)

HP 24307 DOS-III Disc Operating System (HP 24307-90006)

Test Oriented Disc System (HP 09500-90234)

xi

The libraries of relocatable subroutines available with HP FORTRAN IV

described in the Relocatable Subroutines manual (HP 02116-91780).

are

NOTE :

HP FORTRAN 1V source programs cannot be compiled under
the control of the Basic Control System (BCS). However,
object programs produced by the HP FORTRAN IV Compiler
can be loaded and executed under BCS control if the com-
puter has 8,192 words of memory and no program segments
are used.

Xii

SECTION |

THE FORM OF A FORTRAN IV PROGRAM

The HP FORTRAN IV Compiler accepts as input a source program written accord-

ing to the specifications contained in this manual. Each source program 1is

constructed from characters grouped into lines and statements. Appendix F

holds a sample source program listing. The elements used to construct a source

language program are defined in the following text.

FORTRAN IV SOURCE PROGRAMS

The following terms define FORTRAN IV Source Programs.

Executable Program:

Main Program:

Sulprogram:

Program Unit:

Segments* :

*Segments cannot be

A program that can be used as a self-contained computing
procedure. An executable program consists of precisely
one main program and its subprograms and segments®, if

any.

A set of statements and comments not containing a
FUNCTION or a SUBROUTINE statement, beginning with a

PROGRAM statement and ending with an END statement.

A set of statements and comments containing a FUNCTION
or a SUBROUTINE statement. When defined by FORTRAN
statements and headed by a FUNCTION statement, it is
called a function subprogram. When defined by FORTRAN
statements and headed by a SUBROUTINE statement, it is
called a subroutine subprogram. Subprograms can alsc
be written in HP FORTRAN, HP ALGOL, or HP Assembly

Language.
A main program or a subprogram.

An overlayable set of statements beginning with a
PROGRAM statement which specifies type 5, and ending

with an END statement.

included in programs to be run in BCS environment.

FORTRAN TV CHARACTER SET

A source language prograrm 1s written using the follcwing character set.

Letters: The twenty-six letters A through Z.

Digits: The ten digits O, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Unless specified otherwise, a string of digits
is interpreted in the decimal base number system
when a number system base interpretation is

appropriate.

Alphanumeric Character: A letter or a digit.

Blank Character: Has no meaning and may be used to improve the
appearance of a program with the following

exceptions:

a. A continuation line cannot contain a blank

in column 6.

b. A blank character is valid and significant

in Hollerith data strings.

¢. In numeric input conversions, leading blanks
are not significant, but embedded blanks are
converted to zeros. A field of all blanks

is converted to all zeros.

Special Characters: Used for special program functions. They are:

SYMBOL REPRESENTING
blank
= equals
+ plus
- minus
* asterisk
/ slash

(left parenthesis
) right parenthesis
, comma

decimal point

$ currency symbol

SOURCE PROGRAM LINES

Source program lines are written according to the following rules.

Lines: A line is a string of 72 characters. All charac-
ters must o2e from the HP ASCII character set.
The character positions in a line are called columns,
and are consecutively numbered 1, 2, 3, ..., 72.
The number indicates the sequential position of a
character in the line, starting at the left and

proceeding to the right.

Comnent Zine: The letter C in column 1 of a line designates that
line as a comment line. A comment line must be
immediately followed by an initial line, another
comment line, or an end line. A ccmment line
does not a“fect the program in any way, and is

available as a convenience for the user.

Program Line: The first statement of a main program may be the

following:

PROGRAM name (Pl'PZ'.'"PB)

name = An alphanumeric identifier of up to five
characters.

’2,...P8) are opticnal parameters. The acceptable
list of parameters depends upon the operating
system used.

Basic Control System. wWo parameters are allowed.
DOS-TII Disc Operating System. Only P is allowed.

1
Pl defines the program zype according to the

fellowing.

J=maln prograrmn
S=segment
¢=library
J=library

The program type is set zo 3 if not specified.

Rzal-Time bxecutive. Parameters Pl through P_ are
[S]

z1lowed depending on whether the RTE system is
disc-based (RTE-E) or core-based (RTE-C). Pl
defires the program typs according to the

following:

O=system program

l=real-time, core-resident program

O=real-time, disc-resident program (RTE-L only)

3=background, disc-resident program (RTE-E only)

d=packground, core-resident program (RTL-E only)

S=packground program segment (RTE-E only)

7=library utility program

8=subroutine used tc satisfy generaticn
requirement only

The program type is set to 3 if not specified. F.

thirough P8 are real-time parameters. For a full
description of parameters refer to the applicable
xeal-Time Executive Software System manual

(listed in the introduction).

Initial Line: An initial line is a line that is neither a comment
lire nor an end line, and that contains the digit ¢
or the character blank in column 6. Column 1 through

5 may contain a statement lapel or the character blank.

Continuation Line: A continuation line is a line that contains any charac-
ters other than the digit 0 or the character blank in
co_umn 6, and does not contain the character C or § in
column 1. Any other character may be placed in column 1.
Any characters may be placed in columns 2 through 5. A
contirnuation line may only follow an initial line or
another continuation line. A maximum of 19 continuation

lines can be used after one initial line.

Enc Line: An end line is a line with the character blank in
columns 1 through 6, the characters E, N and D
(preceded by, interspersed with, or followed by
blank characters) in columns 7 through 72. The
end line indicates to the compiler the end of the
written description of a program unit. Every pro-

gram unit must terminate with an end line.

SOURCE PROGRAM STATEMENTS AND LABELS

Source program statements and statement labels are written according to

the following rules.

Statements: A statement consists cf an initial line optionally
fcllowed by continuation lines. The statement is
written in columns 7 through 72 of the lines. The
order of the characters in the statement is columns 7

through 72 of the first continuation line, columns 7

through 72 of the next continuation line, etc.

Symbolic Names: A symbolic name consists of from one to six alpha-
numeric characters (except that external names, i.e.,
main program, SUBROUTINE and FUNCTION names are
limited to five characters), the first of which must

be alphabetic.

ORDER OF STATEMENTS IN A SOURCE PROGRAM

When the source program is a main program:

PROGRAM LINE

SPECIFICATION STATEMENTS

DATA STATEMENTS

ARITHMETIC STATEMENT FUNCTIONS
EXECUTABLE STATEMENTS

END STATEMENT

When the source program is a subprogram:

FUNCTION or SUBROUTINE STATEMENT
SPECIFICATION STATEMENTS

DATA STATEMENTS (See Note 2.)
ARITHMETIC STATEMENT FUNCTIONS
EXECUTABLE STATEMENTS

END STATEMENT

NOTE: 1. FORMAT Statements can appear anywhere in a source program,
as long as they appear after the PROGRAM LINE (main pro-
gram) or FUNCTION or SUBROUTINE statement (subprogram).

2. Items in the DATA statement list are intialized at load:ing
and not at every entrance to a program or subprogram.

SECTION I
DATA, CONSTANTS, VARIABLES AND ARRAYS

There ars six types of data ir. HP FORTRAN IV:

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

LOGICAL

HOLLERITH

Each data type has a specific format in core memory and a unique mathema-

tical significance and representation.

IDENTIFYING DATA TYPES

A symbolic name, called a data name, is used to reference or otherwise
identify data of any type. The following rules are used when identifying

data:

a. Data is named when it is identified, but not necessarily made

available.
k. Data is defined when it has a value assigned to it.

¢. Data is referenced when the current defined value of the data
is made available during the execution of the statement that

contains the data reference.

Data Type Association

The data name used tc identif; data carries the data type association,
subject to the following restrictions:
a. A data item keeps the same data type throughout the program

unit.

b. If a TYPE- statement is used to establish a data type association
(for integer, real, double precision, complex or logical data),
it overrides the implied association which occurs in integer and
real data types in variables and arrays. (See "Establishing Data

Names," below.)

Establishing Data Names

There are different ways of establishing a data name for a data type, depend-

ing upon the type of date and how the data is used.

The form of a string representing a constant defines both the value and the
type of the data. This definition is a function of how data is stored in

core memory. The type of a constant is implicit in its name.

A data name that identifies a variable or an array may have its data type
gspecified in a TYPE- statement. (See Section IV, "Specification Statements.")
In the absence of an explicit declaration in a TYPE- statement, the data type

is implied by the first character of the data name, as follows:

I, J, K, L, M, or N integer type data

real type data

Il

any other letter

Using Data Names

Lata names are used to identify

VARIABLES
ARRAYS, or ARRAY ELEMENTS

FUUNCTIONS (See Section IX.)

WRITING CONSTANTS, VARIABLES AND ARRAYS

The following pages describe how to write constants, variables and arrays
in HP FORITRAN IV. See Appendix A "Formats of Data in Core Memory," for

a description of how each date type is stored in core memory.

INTEGER CONSTANT

FURPOSE: An integer constant is written as a string of digits interpreted

as a decimal number.

FORMAT:

n = a decimal number with a range of -32,768 to 32,767

COMMENTS: an integer constant is signed when it is written immediately
following a + or - sign. If it is unsigned, an integer constant

is assumed to be positive.

EXAMPLES:

-32768
32767

-12
329
+5557

2-4

REAL CONSTANT

PURPOSE: A real constant is written as a string of decimal digits con-
taining an integer part, a decimal point, a decimal fraction

and an exponent, ir that order.

FORMAT :

+m . n EX

=t
Il

an integer constant

]

a decimal point
n = a decimal constant representing a fraction
Ex = the character E followed by the exponent, a signed

or unsigned integer

COMMENTS: The decimal exponent is a multiplier (applied to the constant
written immediatelv before it) that is equal to the number
10, raised to the power indicated by the integer following the

E.

Either m or n (but not both) may be omitted; and either the
decimal point or the exponent (but not both) may be omitted

from a real constant.

EXAMPLES:
1.29 0.18E+2
.00123 2E-3
-901. 1.E+15
256.177E2 -256.177E-2

DOUBLE PRECISION CONSTANT

PURPOSE: A double precision constant is written as a string of decimal
digits containing an integer part, & decimal point, a decimal

fraction and an exponent, in that order.

FORMAT :
tm . n Dx
m = an integer constant
= a decimal point
n = a decimal constant representing a fraction
Dx = the character D followed by the exponent, a signed or

unsigned integer

COMMENTS: The decimal exponent is a multiplier (applied to the constant
written immecdiately before it) that is equal to the number 10,

raised to the power indicated by the integer following the D.

Either m or n (but not both) can be omitted. A decimal point
must separate m and n when both are specified. When m is

present, both the decimal point and n cen be omitted.

EXAMPLES:
1.29D0
.0123p-1
256.17702D02
-256.17702D-2
2D-3

COMPLEX CONSTANT

PURPOSE: A complex constant is composed of a real part and an imaginary
part, and is written as an ordered pair of real constants, sep-
arated by a comma and enclosed in parentheses.

FORMAT:
(m, s m,)
ml and m2 are real constants, signed or unsigned

COMMENTS: The first real constant is the real part; the second, the
imaginary part.

EXAMPLES:

(1.29, 256.177E-2)

(-901., O.

)

(-.123E+01, -12.3E-4)

(0., 0.)

LOGICAL CONSTANT

PURPOSE : A logical constant is a truth value, either true or false.
FORMAT :
.TRUE.
.FALSE.

COMMENTS: The periods must be used as shown.

EXAMPLES:
.TRUE.

.FALSE.

PURPOSE:

HOLLERITH CONSTANT

A Hollerith constant is written as an integer constant followed
by the letter H, followed by one or two characters from the

FORTRAN character set.

FORMAT:

n H x

o]
Il

an integer constant (either 1 or 2)

ja s
I

the Hollerith descriptor, which is the character H

X = one or two alphanumeric characters

COMMENTS:

EXAMPLES:

If n = 1, the character immediately following the H is placed
in the left half of the computer word used to store the constent.

The right half of the word contains a blank character.

If n = 2, the first character after the H is put in the left

half of the word, the next character in the right half.

An error diagnostic occurs if n = 0 or n >2.

Hollerith constants are typed as integer.

1H@ 2HBB
1HA 2HSS
2H A 2H12

OCTAL CONSTANT

PURPQOSE: An octal constant is written as a string of from one to six
octal digits terminating with a B octal descriptor. An octal
constant is an implied integer constant.

FORMAT :
+n n.n.n n
L R SR
nl to n6 = octal digits
B = the octal descriptor, the character B

COMMENTS: If an octal constant has more than six digits or if the
leading digiz in a six-digit constant is greater than one,
an error diagnostic occurs.

Integers n, up to ng may be omitted if they equal 0. The
octal constant may carry a sign.

EXAMPLES:

21B
+00B

OB

177777B
-1705B

SIMPLE VARIABLE

PURPOSE : Is the symbolic name of a single value.

FORMAT:
One to six alphanumeric characters, the first of

which must be a letter.

COMMENTS: 1If the variable has a first character of I, J, K, L, M or N,
it is implicitly typed as an integer variable. All other

first letters imply that the variable is real.

Implicit typing may be overridden for individual symbolic

names by declaring them in a TYPE- statement. (See Section IV.]

EXAMPLES:
Integer Beal
I125 Al25
JMAX HMAX
MREAL REAL
K X

ARRAY

An array is an ordered set of data of one, two or three dimensions. An array
is identified by a symbolic name called the array name. The size and number

of dimensions of an array must be defined in a DIMENSION, COMMON or TYPE-

statement.

ARRAY ELEMENT

An array element is a member of the array data set. The array element is

identified by a subscript immediately following the array name.

An array element may be defined and referenced.

SUBSCRIPT EXPRESSIONS

A subscript expression may be any arithmetic expression allowed in FORTRAN IV.
If the expression is of a data type other than integer, it is converted to

integer before being used as a subscript.

In a program unit any appearance of a symbolic name that identifies an array

must be immediately followed by a subscript, except in the following cases:
a. In the list of an input/output statement
b. In a list of dummy arguments

¢. In the list cf actual arguments in a function or subroutine

reference
d. In a COMMON statement
e. In a TYPE- statement

f. In a LCATA statement

SUBSCRIPT

A subscript is written as a parenthesized list of subscript expressions.
Each subscript expression is separated by a comma from its successor, if

there is a successor.

The number of subscript expressions must be less than or equal to the num-
ber of dimensions declared for the array name in a DIMENSION, COMMON o
TYPE- statement. The value of a subscript is defined in Table 2-1, below.
The value refers to the number of array elements (stored in column order)

inclusively between the base entry and the one represented by the subscript.

TARLE 2-1
THE VALUE OF AN ARRAY SUBSCRIFT
(IN AN ARRAY)

*MINIMUM *MAYIMUM
ARRAY SUBSCRIPT SUBSCRIPT SUBSCRIPT SUBSCRIPT
DIMENSION (S) DECLARATOR SUBSCRIPT VALUE VALUE VALUE
1 (A) (a) a 1 A
2 (A,B) (a,b) a+A* (b-1) 1 L*B
3 (A,B,C) (a,b,c) a+A* (b-1)
+A*B* (c-1) 1 A¥B*C

*Refer to warning on page 2-14.

Usage of an unsubscripted array name always denotes the first element of
that array, except in an I/0 statement or a DATA statement, where the

entire array is referenced.

DEFINING VARIABLES AND ARRAY ELEMENTS

Variables and array elements become initially defired (before execution
begins) if, and cnly if, their names are asscciated in a DATA statement
with a constant of the same data type as the variable or array in question.
Any entity not sc defined is said to be "undefined" at the time the first

executable statement in a main program is executed.

2-13

SUBSCRIPTED VARIABLE

PURPOSE: Refers to a particular element of an array of the same symbolic

name as that of the subscripted variable.

FORMAT :

s = the symbolic name of the array
a = expression(s) which determine the values of the
subscript(s) of the subscripted variakle

n=1, 2, or i

COMMENTS: Subscripted variables must have their subscript bounds specified
in a COMMON, DIMENSION, or TYPE- statement prior to their first

appearance in an executable statement or in a DATA statement.

A subscript may be any arithmetic expression. If non-integer, the
subscript is evaluated and converted to integer (by truncating)

before being used as a subscript.

A subscripted variable is named and typed according to the same

rules as a simple variable.

WARNING: Nc check is made by the compiler to verify that
array subscript values fall within declared DI-
MENSION bounds. Unpredictable results (including
system crashes) occur if references are made to
dimensioned variables outside of the declared
bounds of the array. Thus, array subscripts may
not be less than one or greater than the declared
array size.

EXAMPLES:
A(3,5,2) MAX (I,J)
1(10) MIN (I-J, (I-J)*K/A,4)

ARRAY (2,5)

SECTION Il
EXPRESSIONS

An expression is a constant, variable or function reference (see Section IX),
or combination of these, separated by operators, commas or parentheses.

Expressions are evaluated by the compiler.

There are three types of expressions: arithmetic, logical and relational.

ARITHMETIC EXPRESSIONS

An arithmetic expression, formed with operators and elements, defines a
narerical value. Both the expression and its elements identify integer,

real, double precision or complex values.

Arithmetic Operators

The: arithmetic operators are:

Symkol Mathematic Function Example
* % exponentiation A**B
/ division A/B
* multiplication A*B
- subtraction (or negative value) A-B or -A
+ addition (or positive value) A+B or +A

Ar- thmetic Elements

The arithmetic elements are defined as:

FRIMARY: An arithmetic expression enclosed in paren-
theses, a constant, a variable reference, an

array element reference or a function reference.

FACTOR: A primary, or a conszruct of the form:
PRIMARY **PRIMARY
TERM: A factor, or a construct of one of the
forms:
TERM/FACTOR
TERM*TERM

SIGNED TERM: A term, immediately preceded by + or -

SIMPLE ARITHMETIC EXPRESSION: A term, or two simple arithmetic express-
ions separated by + or -.
ARITHMETIC EXPRESSION: A simple arithmetic expression or a signed
term or either of the preceding forms

immediately followed by + or -, followed by

a simple arithmetic expression.

Combining Arithmetic Elements

When adding, subtracting, div:iding or multiplyirg, the compiler combines

arithmetic elements according to the rules showr in Table 3-1.

TABLE 3-1

RESULTS: COMBINING ARITHMETIC ELEMENTS (+,-,%*,/)
FIRST
ELEMENT SECOND ELEMENT TYPE
TYPE INTEGER REAL DOUELE PRECISION COMFPLEX
INTEGER INTEGER REAL DOUELE PRECISION COMFPLEX
REAL REAL REAL DOUELE PRECISION COMPLEX
DOUBLE DCUBLE DOUBLE DOUEL:= FPRECISION COMPLEX
PRECISION PRECISION PRECISION
COMPLEX CCMPLEX COMPLEX COMFLEX COMPLEX

Exponentiation of Arithmetic Elements

Arithmetic elements can be exponentiated according to the rules shown in

Table 3-2.

TABLE 3-2

RESULTS: EXPONENTIATION OF ARITHMETIC ELEMENTS (**)

EXPONENT TYFE

3ASE TVPE INTEGER REAL DOUBLE PRECISION COMPLEX
INTEGER INTEGER NOT ALLOWED NOT ALLOWED NOT ALILOWED
REAL REAL REAL DOUBLE PRECISION NOT ALLOWED
DOUBLE DOUBLE DOUBLE

°RECISION PRECISTION PRECISICN DOURLE PRECISION NOT ALLOWED
ZOMPLEZX COMPLEX NOT ALLCWED NCT ALLOWED NOT ALLOWED

Evaluating Arithmetic Expressions

“he compiler evaluates arithmetic expressions from left to right, according

to the following rules:

PRECEDENCE::

SEQUENCE:

() parentneses, for groupinyg expressions, then
*x expornentiation, tnen
*,/ multirlication and division (whichever occurs

tirst) then
- unary minus, then

+,- addition and subtraction ‘whichever occurs first).

Evaluation begins with the subexpression most deeply

nested within parentheses.

Within rarentheses, subexpressions are evaluated fron

left to right in the crder of precedence above.

Function references are evaluated from left to right as

they occur.
No factcr is evaluated that requires a negative valued primary to be raised
to a real or double precision exponent. No factcr is evaluated that requires
raising a zero valued primary to a zero valued exponent. No element is
evaluated if its wvalue has not been mathematically defined. Integer overflow

resulting from arithmetic operations is not detected at execution time.

-OGICAL EXPRESSIONS

A logicel expression is a rule for computing a logical value. It is formed

with locical operators and logical elements and has the value true or false.

lLogical Operators

The logical operators and the logicael result of their use in an expression

cre:
Symbol Mathematic Function Example
.OR. LOGICAL DISJUNCTION A .OR. B
.AND. LOGICAL CONJUNCTION A .AND. B
.NOT. LOGICAL NEGATION .NOT.A
Logical Expression LOGICAL RESULT IS
(Logical elements A and B) TRUE FALSE
A. OR. B If either A or If both A and B
B 1s true are false
A .AND. B If both A and B If either A or B
are true is false
.NOT. A If A i1s false If A is true

Logical Elements

The logical elements are defined as:

LCGICAL PRIMARY: a4 logical expression enclosed in parentheses, a
relational expression, a logical constant, a
logical variable reference, a logical array element

reference, or a logical function reference.

LOGICAL FACTOR: A logical primary, or .NOT. followed by a logical
primary.
LOGICAL TERM: A logical factor or a construct of the form:

LOGICAL TERM .AND. LOGICAL TERM

LOGICAL EXPRESSION: A logical term or a construct of the form:

IOGICAL EXPRESSION .OR. LOGICAL EXPRESSION

RELATIONAL. EXPRESSIONS

A relational expression is a rule for computing a conditional logical ex-
pression. It consists of two arithmetic expressions separated by a re-
lational operator. The relation has the value true or false as the relation
is true or false. The operands of a relational operator must be of type
integer, real, or double precision, except that the operators .EQ. and .NE.

may have operands of type complex.

3-5

Relational Operators

The relational operators are:

Symbol Mathematic Function Example
.LT. less than A .LT. B
.LE. less than or equal to A .LE. B
.EQ. equal to A .EQ. B
.NE. not equal to A .NE. B
.GT. creater than A .GT. B
.GE. greater than or equal to A .GE. B

EXAMPLE: If A = 5 and B = 3, then

(A .LT. B) 1s false

((A .LE. B) .OF. (B .LE. A)) is true

Y S _—

NOTE: Integer overflow resulting from arithmetic operations is not de-
tected at execution time. Care must be taken when the relational operators
LT., LE., .GT., and .GE are used with integer operands. The object codes
generated by this compiler for relational operators on integers are as fol-

lows:

L.LT.J 1.LE.J LLEQ.J [.NE.J [.GT.J [.GE. J
LDA J LDA'I LDA I LDA I LDA I LDA'I
CMA,INA CMA,INA C(CPAJ CPA J CMA,INA CMA,INA
ADA I ADA J CCA,RSS CLA,RSS ADA J ADA J

CMA CLA CCA CMA

SECTION |V
SPECIFICATION STATEMENTS

specification statements are non-executable statements that specify variables,
arrays ard other storage information to the compiler. There are six specifi-
cation statements in HP FORTRAN IV. IT is recommended that specification
statements be used in the following order:

TYPE-

DIMENSION

COMMON

EQUIVALENCE

EXTERNAL

DATA

ARRAY DE CLARATOR

DIMENSION, COMMON and TYPE- statements use array declarators to specify the
arrays used in a program unit. An array declarator indicates the symbolic
name of the array, the number of dimensions (one, two or three), and the

size of each array dimension. An array declarator has the following format:

v (1)
v = the symbolic name of the array
i = one, two or three declarator subscripts (for one, two or
three dimensional arrays). Each subscript must be an
integer constant or a dummy intecger variable name. (See

Section IX.)

If a twc or a three dimensional array is being specified, each declarator

subscript is separated from its successor by a comma.

The values given for the declarator subscripts indicate the maximum value
that the subscripts can attain in any array element name. The minimum

value is always one.

EXTERNAL

PURPOSE: To declare external function or subroutine names that will be

referenced in the program unit.

FORMAT :

EXTERNAL Vl, v v

2, « ey n

v = any external functicn or subroutine name

COMMENTS: If an external function or subroutine name is used as an argu-
ment to another external function or subroutine, it must appear
in an EXTERNAL statement in the program unit in which it is so

used.

NOTE: EXTERNAL names are limited to five characters in
length.

EXAMPLES :
EXTERNAL FUN, IS, SIN

4-2

TYPE-

PUURPOSE: To declare the data type of variable names, array names, function
names or array declarators used in a program unit.
FORMAT:
INTEGER
REAL
DOUBLE PRECISION Vo, Voo, - , Vv
1 2 n
COMPLEX
LOGICAL
v = a variable, array, function, or array declarator.
COMMENTS: subroutine names cannot appear in a TYPE- statement.
If the same symbolic name appears in more than one TYPE-
statement, the last use of the name states the data type.
A TYPE- statement can be used to override or confirm the implicit
typing of integer or real data and must be used to declare the
data type for double precision, complex or logical data.
A symbolic name in a TYPE- statement informs the compiler that
it is of the specified data type for all appearances in the
program unit.
EXAMPLES :

INTEGER I,A,ARRAY(3,5,2)

REAL MAX, UNREAL, R(5)

DOUBLE PRECISION D, DOUBLE(2), DARRAY(3,3)
COMPLEX C, CPLEX, CARRAY(2,3,4), CAREA

LOGICAL T, FALSE, L(4), J

4:_3

DIMENSION

PURPOSE: To specify the symbolic names and dimension(s) of arrays used

in a program un:it.

FORMAT :
DIMENSION vl(ll), v2(12), ey Vnhln)

v(i) = an array declarator

COMMENTS: Every array in a program unit must bs specified in a DIMENSION,

TYPE or COMMON statement.

WARNING: o check is made by the compiler to verify that
arrey subscript values fall within declared DIi-
MENSION bounds. Unpredictable results (including
system crashes) occur if references are made to
dimensioned variable outsiade of the declared
bounds of the array. Thus, array subscripts may
not be less than one or greater than the declared
array size.

T D -
EXAMPLES: DIMENSION MATRIX (3,3,3)

DIMENSION I (4), A (3,2)

PURPOSE:

COMMON

To provide a means for sharing core memory between a main program

and its subprograms, or for sharing ccore memory between subprograms.

FORMAT :

COMMCN a

a = a list of variable names, array names Or array

declarators.

COMMENTS

A symbolic name that appears in a COMMON statement must be a vari-
able name, an array name or an array declarator. Once these names
are used in a COMMON statement, they cannot be used in another COM-

MON statement in the same program unit.

All entities in the COMMON statement are declared to be in unlabeled

(blank) commor .

The size of a common block is the sum of the storage required for
the elements introduced through COMMON and EQUIVALENCE statement
in a program unit. Entities are strung together in the order of

appearance.

NOTE: Named common blocks are not permitted in HP FORTRAN IV.

EXAMPLES :

COMMON I, CAREA(2,3), J(3)

4-5

EQUIVALENCE

PURPOSE: Allows the sharing of core memory locations by two or more
entities.
FORMAT:
EQUIVALENCE (k_), (k.), ..., (k)
1 2 n
k = a list of two or more variable names, array names Or
array elemernt names with integer constant subscripts.
COMMENTS: A symbolic name which appears in an EQUIVALENCE statement must
be a variable, array or array element name.
Equivalence can be established between different data types, but
the EQUIVALENCE statement cannot be used to equate two or more
entities mathematically.
The EQUIVALENCE statement can associate a variable in COMMON with
one or more variables not in COMMON, or may associate two or more
variables none of which are in COMMON.
No equivalence grouping is allowed between two entities in COMMON.
A variable not in COMMON, when equivalenced to a variable in
COMMON, becomes a part of the COMMON aree. A COMMON area, how-
ever, only can be lengthened by equivalerce groupings. If an
equivalence grouping causes an entity to be relocated before the
first entity in COMMON, an error diagnostic occurs.
EXAMPLES:

See the following page for examples cf correct equivalence

grouping.

INTEGER I, A, ARRAY

REAL R(4)

COMPLEX CAREA

LOGICAL L

DOUBLE PRECISION DOUBLE(2), DARRAY

DIMENSION DARRAY (2)

DIMENSION I(4),A(3,2), L(4)

COMMON CAREA(2,2), I, DOUBLE

EQUIVALENCE (CAREA(2,1),R), (DOUBLE (2),DARRAY)

EQUIVRLENCE (A& (3,2), L(4))

Results in this COMMON and

equivalenced area of 29 words

(26 words in original COMMON,
2 added by EQUIVALENCE) .

Resul=s in this non-COMMON

equivalenced area of six words.

|

A(l,1)
A(2,1)
A(3,1) L(1)
A(l,2) L(2)
A(2,2) L(3)
A(3,2) L(4)

CAREA
(1,1)
(1)
CAREA
(2,1)
R(2)
CAREA R(3)
(1,2)
R(4)
CAREA
(2,2)
I(1)
I(2)
I(3)
I(4)
DOUBLE
(1)
DOUBLE DARRAY
(2) (1)
DARRAY
(2)

PURPOSE

To define the

initial values of variabiles,

DATA

single array elements,

porticns of arrays or entire arrays.

FORMAT :

k = lists of nares
d = lists of
immediately |
by an asterisk)
constant is tc
/ = seperators,

constants

receded by an integer

array elements or arravs

o1 variables,

(optionally sicned) which can be
constant (followed
tdentifying the number of times the

ve repeated.

used to bound each constant list

COMMENT

S:

Mixed mode
may only assign
Hollerith data

or arrays.

assignments

are not permitted. The DATA statement

va.ues that agree in mode to their identifiers.

‘ene oe assigned only to integer type variakles

If a list contauns more than one entrv, the entries must ke
separated by comrmas. An o initiallv-de 7oned variable, array ele-
ment or array may ot e In common, nor can it be a durmy argu-
ment.

DATA statements

ments 1n tne

must

e
P

come after all cthoer specification statoe-

QY aAlli.

NOTE : Unsubscr,
I the ai
the |
order) .

elements

list

arrav

alre

ptod array names are allowed Iin DATA statements .
ray; has n elements, the rext n constants from

ar used to initialize the array (in column
1f the remainder of the constant list has m<n
:no1t, then only the tirst m elements of the
lritialized.

EXAMPLES

C.

DATA A, CARPAY (2,

DATA FALSE, LREA

e
v,

3, L) /0% (1.0,-2.39E~1)/

2HIA/ ,D/-2.39-0L/

o ALSH.,

4-8

SECTION V
ASSIGNMENT STATEMENTS

Assicgnment statements are executable statements that assign values to vari-

ables and array elements. There are three types of assignment statements:

Arithmetic assignment statements
Logical assignment statements

ASSIGN TO statement

ARITHMETIC ASSIGNMENT STATEMENT

PURPOSE: Causes the value represented by an arithmetic expression to be

assigned to a variable.

FORMAT:
vV = e
v = a variable name or an array element name of any data
type except logical
e = any arithmetic expression

COMMENTS: v is altered according to the rules expressed in Tab.e 5-1,
A variable must have a value assigned to it before it can be

referenced.

EXAMPLES:
K = 2HAB
A(I,J,K)=SIN(X)*2.5-A(2,1,3)

I=1

Table 5-1.

RULES FOR ASSIGNING e to v
If v Type Is And e Type Is The Assignment Rule Is
Integer Integer Assign
Integer Real Fix & Assign
Integer Double Precision Fix & Assign
Integer Complex Fix Real Part & Assign
Real Integer Float & Assign
Real Real Assign
Real Double Precision DP Evaluate & Real Assign
Real Complex Assign Real Part
Doukle Precision Integer DP Float & Assign
Double Precision Real DP Evaluate & Assign
Double Precision Double Precision Assign
Double Precision Complex DP Evaluate Real Part & Assign
Complex Integer Convert & Assign
Conplex Real as Real Part With
Conplex Double Frecision Imaginary Part = 0
Complex Complex Assign

NOTES :

1. Assign means transmit the resulting value, without change, to

the entity.

2. Real Assign means transmit to the entity as much precision of

tae

most significant part of the resulting value as a real datum can

contain.

3. DP Evaluate means evaluate the expression then DP Float.

4. Fix means truncate any fractional part of the result and transform

that value to the form of an integer datum.

5. Float means transform the value to the form of a real datuwm.

6. DP Float means transform the value to the form of a double pre-

cision datum, retaining in the process as much of the precision

of the value as &

double precision datwn can contain.

5-2

LOGICAL ASSIGNMENT STATEMENT

FURPOSE : Causes the value represented by the logical expression to be as-

signed to a simple or subscripted variable.

FORMAT:

v o= e

<
Il

a logical variable name or a logical array element
name

e = a logical expression

COMMENTS: A variable must have a value assigned to it before it can be

referenced.

EXAMPLES:

T = .TRUE.
FALSE = .FALSE.

T = A.LT.B

ASSIGN TO STATEMENT

PURPOSE : Initializes an assigned GO TO statement variable reference by

storing in it the location of a statement label.
FORMAT:
ASSIGN k TO i

k = a statement label
1 = an integer variable name

COMMENTS: After the ASSIGN TO statement is executed, any subsequent exe-
cution of an assigned GO TO statement using the integer variable
causes the statement identified by the assigned statement label
to be executed next.
The statement label must refer to an executable statement in the
same program unit in which the ASSIGN TO statement occurs.
Once menticned in an ASSIGN TO statement, an integer variable
may not be reierenced in any statement other than an assigned
GO TO statement until it has been redefined.

EXAMPLES:

ASSIGN 1234 TO ILABEL

GO TO ILABEL, (10C,1234,200) (cr, GO TO ILABEL)

1234 I =1

SECTION VI
CONTROL STATEMENTS

Normally, a program begins with the execution of the first executable state-
ment in the program. When the execution of that statement is completed, the
next sequential executable statement is executed. This process continues

until the program ends.

1 subprogram, if referenced, starts with its first executable statement,
then executes the next sequential executable statement, and so on, until it

returns control to the program statement which referenced it.

Control statements are executable statements that alter the normal flow of
a program or subprogram. There are twelve control statements in HP FORTRAN

iv.

GO TO (Unconditional)
GO TO (Assigned)
GO TO (Computed)
IF (Arithmetic)
IF (Logical)
CALL

RETURN

CONTINUE

PAUSE

STOP

DO

LND

GO TO

UNCONDITIONAL

PURPOSE: Causes the statement identified by the s=zatement label to be

executed next.

FORMAT :
G TO k

k = a statement label

COMMENTS: The program continues to execute from the statement identified
by k.

EXAMPLE:

GO TO 1234

GO TO

ASSIGNED

PURPOSE: Causes the statement identified by the current value of an in-

teger variable reference to be executed next.

FORMAT:
GO TC i, (Kyy Ky weey k)
1 2 n
GO TO i
i = an integer variable reference
k = a statement label
COMMENTS: The current value of i must have been assigned by a previous

execution of an ASSIGN TO statement.

The compiler does not check if i contains cne of the state-
ment labels in the list; the list is for programmer's docu-
mentation purposes only.

EXAMPLE :

ASSIGN 1234 TO ILABEL

GO TO ILABEL, (1234,200,100) (or, GO TO ILABEL)

6=-3

GO TO

COMPUTED

PURPOSE: Causes the statement identified by an indexed label from a

list of labels to be executed next.

FORMAT:
5O T , ;-0 kK), e
GC TO (kl k2 n) ¢
k = a statement label
e = an arithmetic expression

COMMENTS: The expression is evaluated, and converted to integer, if

necessary.

If the expression value is less than one, statement kl is
executed. If the expression value is greater than n,
statement kn is executed. If 1 < e < nmn, statement ke is

executed.

EXAMPLE:
GO TO (100,200,300), k

100 CONTINUE (if k < 1)
200 CONTINUE (if k = 2)
300 CONTINUE (i1f k > 3)

IF

ARITHMETIC

PURPOSE: Causes one of two or three statements to be executed next, depend-

ing upon the value of an arithmetic expression.

FORMAT:
IF (e) kl, k2, k3
IF (e) kl' k2
e = an arithmetic expression of type integer, real or
double precision.
k = a statement label

COMMENTS: When the statement contains three statement labels, the state-

X or k3 is executed next if

the value of e is less than zero, equal to zero, or greater than

ment identified by the label kl' k
zero, respectively.

When the statement contains two statement labels, the statement
identified by kl is executed next when the value of e is less
than zero; k2 is executed next when the value of e is equal to

or greater than zero.

EXAMPLES:
IF (A - B) 100, 200, 300
IF (SIN(X) - A*B) 100,200

6-5

IF

LOGICAL

PURPOSE: Causes a statement to be executed next if a logical expression is

true, or causes one of two statements tc be executed, depending

upon the value of the logical expression.

FORMAT:
IF (e) s

IF (e) kl’ k2

s = an executable statement (except a DC or a logical IF)

a logical expressicn

()
I

a statement label

e
Il

COMMENTS: TIf the logical expression is true (first format), statement s
is executed. If s does not transfer control elsewhere, execu-
tion then continues with the statement following the IF. If
e is false, the statement s is not executed, but the next

sequential statement after the IF is executed.

If the logical expression is true (second format), statement
kl is executed. If the logical expression is false, state-
ment k2 is executed.

EXAMPLES:

IF (A .EQ. B) A = 1.0

IF (SIN(X) .LE. (A-B)) 100,200

CALL

PURPOSE: Causes a subroutine to be executed.
FORMAT:
CALL s
CALL s (al, a2, ey an)

the name of a subroutine

u
1]

an actual argument

o3}
Il

COMMENTS: When the subroutine returns control to the main program, exe-

cution resumes at the statement following the CALL.

An actual argument is a constant, a variable name, an array
name, an array element name, expression or subprogram name.
Actual arguments in a CALL statement must agree in order,

type and number with the corresponding dummy parameters in

a subroutine. (See Section IX.)
EXAMPLES:
CALL MATRX SUEROUTINE MATRX
CALL SUBR (I, CJ) RETURN
END

SUEROUTINE SUBR (I,J)

RETURN

END

PURPOSE

RETURN

Causes control to return to the current calling program unit, if
it occurs in a function subprogram or a subroutine. Causes the

program to szZop if it occurs in a main program.

FORMAT:

RETURN

COMMENTS:

EXAMPLES:

When the RETURN statement occurs in a subroutine, control returns
to the first executable statement following the CALL statement

that referenced the subroutine.

When the RETURN statement appears in a function subprogram, con-
trol returns to the referencing statement. The value of the
function is made available in the expression which referenced

the function subprogram.

The END statement of a function subprogram or a subroutine is

also interpreted as a RETURN statement.

CALL MATRX SUBROUTINE MATRX
I = MIX(L,M)/A*B RETURN
END

INTEGER FUNCTION MIX(I,J
RETURN (1,3)

.

MIX = I + J
RETURN

END

CONTINUE

PURPOSE: Causes continuation of the program's normal execution sequence.

FORMAT :

CONTINUE

COMMENTS: The CONTINUE statement can be used as the terminal statement in a
DO loop.

If used elsewhere, the CONTINUE statement acts as a dummy state-

ment which causes no action on the execution of a program.

EXAMPLE:

CONTINUE

wn

STOP

PURPOSE: Causes the program to stop executing.
FORMAT:
STOP n
STOP
n = an octal digit string of one to four characters

COMMENTS: When this statement is executed, STOP is printed on the teleprinter
output unit. If n is given, its value is also printed, after the

word STOP.

EXAMPLES:
STOP 1234

STOP

PAUSE

FPURPOSE: Causes the program to stop executing. Execution is resumable in
sequence.
FORMAT:
PAUSE
PAUSE n
n = an octal digit string of one to four characters
COMMENTS: When this statement is executed, PAUSE is printed on the tele-
printer output unit. If n is given, its value is also printed,
after the word PAUSE.
The decision to resume processing is not under program control.
To restart, a system directive must be issued by the system
operator.
EXAMPLES:
PAUSE 1234
PAUSE

DO

PURPOSE: To initiate and control the sequence of instructions in a pro-

grammed loop.

FORMAT:

n = the statement label of an executable statement (called

the terminal statement)

1 = a simple integer variable name (called the control variakle)
m, = an arithretic expression (called the initial parameter)
m, = an arithmetic expression (called the terminal parameter)
m, = an arithretic expression (called the step-size parameter)

COMMENTS: The terminal statement must physically follow and be in the
same program unit as the DO statement. The terminal statement
may not be any form of a GO TO, an arithmetic IF, a two-branch
logical IF, a RETLURN, STOP, PAUSE, DC or a logical IF statement

containing any of these statements.

The initial, terminal and step-size parameters can be any arith-
metic expressions. However, 1f these expressions are not of
type integer, they are converted to integer (by truncation)

after they are evaluated.

If the step-size parameter is omitted (format 2), a value of +1

is implied for the step size.

NOTE: The step-size may be positive or negative, allowiny
elther incrementing or decremerting to the terminal

parametery value .

COMMENTS:
(cont.)

The range of a DO statement is from (and including) the first
executable statement following the DO to (and including) the

terminal statement of the DO.

When the range of one DO statement contains another DO statement,
the range of the contained DO must be a subset of the range of the

containing DO.

Succeeding executions of the DO loop co not cause re-evaluation of
the initial, terminal or step-size parameters if they are expressions.
Therefore, any changes made within the DO loop to the values of
variables occurring in these expressions do not affect the control

of the loop's execution. Only changes to the control variable

itself or to step-size parameters (if they are unsigned simple

integer variables) affect the loop's execution.

NOTE: A DO statement 1is executed at least once regardless
of the relationship of the initial parameter to the
terminal parameter.

If a subprogram reference occurs in the range of a DO, the actions
of that subprogram are considered to be temporarily within that

range.

When a statement terminates more than one DO loop, the label
of that statement may not be used in any GO TO or arithmetic
IF statement that occurs anvwhere but in the range of the

most deeply nested DO that ends with that terminal statement.
Integer overflow resulting from arithmetic operations is not

detected at execution time.

EXAMPLES:

DO 51=1,5 DO 20 1=1,10,2 DO 20 1=1,10,2
5 CONTINUE DO 20 J=1,5 DO 15 J=2,5
20 CONTINUE 15 CONTINUE

20 CONTINUE

The following occurs when a DO statement is executed:

a. The control variable is assigned the value represented by the
initial parameter. The DO loop is executed at least once regard-
less of the relationship of the initial parameter to the terminal

parameter value.
k. The range of the DO is executed.

c. If control reaches the terminal statement, then after execution
of the terminal statement, the control variable of the most re-
cently executed DO statement associatec with the terminal state-
ment is modified by the value represented by the associated step-

size parameter.

d. If the value of the control variable (after modification by the
step-size perameter) has not gone past the value represented by
the associated terminal parameter, ther. the action described
starting as step b. is repeated, with the understanding that the
range is that of the DO whose control variable has been most re-
cently modified. If the value of the control variable has gone
past the value represented by its associated terminal parameter,

then the DO is said to have been satisfied.

At this point, if there were one or more other DO statements
referring to the terminal statement in question, the control
variable of the next most recently executed DO statement is
modified by the value represented by its associated step-size
parameter and the action in step d. 1s repeated until all DO
statements referring to the particular terminal statement are
satisfied, at which time the first executable statement follow-

ing the terminal statement is executed.

Upon exiting from the range of a DO by the execution of a GO TO
or an arithmetic IF statement (that is, Ly exiting other than by
satisfying the LO), the control variable of the DO is defined
and is equal to the most recent value attained as defined in

steps a. through e.

6-15

END

PURPOSE: Indicates to the compiler that this is thes last statement in
program unit.
FORMAT :
END
COMMENTS : Every program unit must terminate with an END statement.

EXAMPLES :

The characters E, N and D (once each and in that order in
columns 7 through 72) can be preceded by, interspersed
with, or followed by blank characters; column 6 must con-
tain a blank character. Columns 1 through 5 may contain

elither a statement label or blank characters.

~.100 .END

SECTION VII
INPUT/OUTPUT STATEMENTS

Tnput/output statements are executable statements which allow the transfer
of data records to and from external files and core memory, and the position-

‘ng and demarcation of external files. The HP FORTRAN IV input/output state-

ments are:

READ (Formatted Records)
WRITE (Formatted Records)
READ (Unformatted Records)
WRITE (Unformatted Records)
REWIND

BACKSPACE

ENDFILE

NOTE: All external files must be sequential files.

[DENTIFYING INPUT/QUTPUT UNITS

An input or output unit is identified by a logical unit number assigned to
it by the operating system. (See the RTE, DOS-M, or DOS-III manual for a
description of logical unitzs.) The logical unit reference may be an integer
constant or an integer variable whose value identifies the unit. Any vari-

able used to identify an input/output unit must ke defined at the time of

its use.

IDENTIFYING ARRAY NAMES OR FORMAT STATEMENTS

The format specifier for a record or records may be an array name oOr the
statement label of a FORMAT statement (see Section VIII). If the format
specifier is an array name, the first part of the information contaired in
the array must constitute a valid FORMAT specification: a normal FORMAT

statement less the statement number and the word "FORMAT."

1f the format specifier is a FCRMAT statement label, the identified state-

ment must appear in the same unit as the input or output statement.

7-1

INPUT/QUTPUT LISTS

An input list specifies the names of the variables, arrays and array elenents
to which values are assigned on input. An output list specifies the rafer-
ences to variables, arrays, array elements and constants whose values are
transmitted on output. Input and output lists have the same form, except
that & constant is a permissable output list elemernt. List elements consist
of variable names, array names, array element names and constants (output
only), separated by commas. The order in which the elements appear in the

list is the sequence of transmission.

There are two types of input/output lists in HP FORTRAN IV: simple lists

and DO-implied lists.

Simple Lists

A simple list, n, is a variable name, an array name, an array element name,
a constant (output only) or two simole lists separated by a comma. It has

the form:

n,n

JO-Implied Lists

A DO~implied list contains a simple list followed by a comma and a DO-implied
specification, all enclosed by parentheses. It has the form:

n, i =m m m

(’ 3)

17 2!

where

n = a gimple list

i = a control variable (a simple integer variable) May not
mJ = the initial parameter (an integer arithmetic expression) reference
m, = the terminal parameter (an integer arithmetic expression) any kincé of

mg = the step-size parameter (an integer arithmetic expression)) functior

Data defined by the list elements is transmitted starting at the value of
m], in increments of M, until m2 is exceeded. Tf m% is omitted, the step-
size 1s assumed to be +1.

The step-size parameter may be positive or negative, allowing incrementing

or decrementing to the terminal parameter value.

The elements of a DO-implied list are specified for each cycle of the

implied DO loop.

EXAMPLES:
Simple List DO-Implied List
A,B,C ((ARRAY (1,J),J=1,5) ,I=1,5)
READ (5,10)A,B,C READ(5,10) ((ARRAY (I,J),J=1,5),1I=1,5)

Note: For output lists, signed or unsigned
constants are permitted as list
elements.

FORMATTED AND UNFORMATTED RECORDS

A formatted record consists of a string of the characters that are permissi-
ble in Hollerith constants. The transfer of such a record requires that a
format specification be referenced to supply the necessary positioning and
ccnversion specifications. The number of records transferred by the exe-
cution of a formatted READ or WRITE statement is dependent upon the list

ard referenced format specification.

An unformatted record consists of binary values.

READ

FORMATTED
PURPOSE: To read formatted records from an external device into main memory
or to provide data conversion from ASCII data to numeric data.
FORMAT:

READ (u,f) k
READ (u,*) k

READ (u,f)
= an input unit or the label of a buffer holding an ASCII

character string.

" = an array neme or a FORMAT statement label

= an input list

= specification for free-field input (no format statement)

COMMENTS :

EXAMPLES:

The format stetement or specification (in an array) can be any-

where in the program unit.

If free-field input is specified, the formatting is directed by
special characters in the input records; a FORMAT statement or

specification is not reguired.

If data conversion is tc be made, a call to the relocatable

subroutine CODE must precede the READ instruction.

READ (5,100) (A(I), I = 1, 20)

READ (5,200) 2,L,X

READ (5,*) (A(J), J=1, 10)

READ (5,ARRAY)

READ (5,100) ((a(1,J),I=1,5),J=1,20)

The following performs a data conversion of the ASCII buffer

IN and stores the numeric equivalents in variables A,L,X:

CALL CODE
READ (IN, 200) A,L,X

WRITE

FORMATTED

FURPOSE: To write formatted records from main memory to an external device

or to provide data conversion from numeric data to ASCII data.

FORMAT:
WRITE (u,f) k
WRITE (u,f)

u = an output unit or the label of a buffer to receive

the ASCII data string.
f = an array name or a FORMAT statement label

k = an output list

COMMENTS: The format statement or specification (in an array) can be
anywhere in the program unit. The maximum record size is 67

elements.

If data conversion is to be performed, a call to the reloca-

table subroutine CODE must precede the WRITE instruction.

EXAMPLES:
WRITE (2,200) 2, L, X
WRITE (2, ARRAY)

The following performs a data conversion cf variables A,L,X

and stores the ASCII equivalents in buffer TU:

CALL CODE
WRITE (TU,200) A,L,X

READ

UNFORMATTED

PURPOSE: To read one unformatted record from an external file.

FORMAT:
READ (u) k
READ (u)
u = an input unit

k = an input list

COMMENTS: The sequence of values required by the list may not exceed the

sequence of values from the unformatted record.

READ (u) causes a record to be skipped.

EXAMPLES:
READ (5) A, L, X
READ (5)

7-6

WRITE

UNFORMATTED
PURPOSE: To write one unformatted record from core memory to an external
file.
FORMAT:

WRITE (u) k

o
it

an output unit

k an output list

COMMENTS: This statement transfers the next binary record from core memory
to unit u from the sequence of values represented by the list k.

The maximum record size 1s 60 words.

EXAMPLES:
WRITE (2) A, L, X

REWIND, BACKSPACE, ENDFILE

PURPOSE: These statements are used for magnetic tape files. REWIND is
used to rewind a tape to the beginning of tape. BACKSPACE is
used to backspace a tape file one record. ENDFILE is used to
write an end-of-file record on a tape file.

FORMAT:
REWIND u
BACKSPACE u
ENDFILE u
u = an input/output unit

COMMENTS: If the magnetic tape unit is at beginning of tape when a REWIND
or a BACKSPACE statement 1s executed, the statement has no effect.

EXAMPLES:

BACKSPACE 2
ENDFILE I

REWIND 5

FREE FIELD INPUT

By following certain convertions in the preparation of his input data, a HP
FORTRAN IV programmer can write programs without using an input FORMAT state-
nent. The programmer uses special characters included within input data

‘tems to direct the formatting of records.

Data records composed this way are called free field input records, and can
be used for numeric input data only. Free field input is indicated in a
formatted READ statement by using an asterisk (*) instead of an array name

or a FORMAT statement labkel.

The special characters used to direct the formatting of free field input
records are:
space or , data item delimiters
record terminator
+ or - sign of item
E+ - flcating point number
@ octal 1nteger

.. comments

Data Item Delimiters

A space or a comma is used to delimit a contiguous string of numeric and

special formatting characters (called a data item), whose value corresponds
te a list element. A data item must occur between two commas, a comma and
2 space or between two spaces. (A string of ccnsecutive spaces is equiva-
lent to one space.) Two consecutive commas indicate that no data item is

supplied for the corresponding list element, i.e., the current value of the
list element is unchanged. An initial comma causes the first list element

to be skipped.

EXAMPLES:

100 READ (5,*) I, J, K, L 200 REAL (5,*) I, J, K, L
Input data items: Input data items:
1720,1966,1980, 1492 ,»1794,2000

Result: Result:

I = 1720 I = 1720

J = 1966 J = 1966

K = 1980 K = 1794

L = 1492 L = 2000

Record Terminator

A slash within a record causes the next record to be read immediately;

remainder of the current record is skipped.

EXAMPLE:

READ (5,*) I, J, K, L, M

Input data items:

987,654,321,123/DESCENDING

456

Result:
I = 987
J = 654
K = 321
L =123
M = 456

the

NOTE: If the input list requires more than one
external input record, a slash (/) s
required to terminate each of the input
records except the last one.

7-10

Sign of Data Item

Data items may be signed. If they are not signed, they are assumed to be

nositive.

Floating Point Number Data Item

A floating point data item 1s represented in the same form as E-TYPE con-
version of an external real number on input. (See Section VIII.) If the
decimal point is not present, 1t is assumed to follcw the last digit of

he number.

Nctal Data Item

The symbol @ is used to -ndicate an octal data item. Iist elements

sorresponding to the octal items must be type integer.

EXAMPLE:

READ (5,*%) I, J, K

Input Data ltemns:

@177777, @0, ©@H235

Result:

I = 1777778
J =20
K = 5555B

Comment Delimiters

Quctation marks (".

between gquotation marks are ignored.

EXAMPLE:

Y

READ (5,*)

I, J, <, L

Input Data Items:

123, 456,
Result:
I =123
J = 456
K = 123
L = 456

"ASCENDING"123,

") are used to bound comments;

456

characters appearing

SECTION VIII
THE FORMAT STATEMENT

There are three ways a user can transfer data records to and from core

memory using READ and WRITE statements (described in Section VII).

a. As "free field input" when the input data itself contains
special characters that direct the formatting of the records

in core memory. (See "Free Field Input.")

k. As unformatted input or output records containing strings of
binary values. (3ee "READ (Unformatted)" and "WRITE

(Unformatted).")

c. As formatted input or output records. (Ses "READ (Formatted)"

and "WRITE (Formatted).")

Wwhen a formatted READ or WRITE statement is executed, the actual number of

records transferred depends upon:

a. The elements of an input/output list (if present), which

specify the data items involved in the transfer, and

b. A format specification for the list element(s), which
defines the positioning and conversion codes used for the

string of characters in a record.

A format specification for & formatted READ or a formatted WRITE list

element can be defined in either:

a. A FORMAT statement, or

b. An array, the first elements of which contain a valid format
specification constructed according tc the rules of a FORMAT

statement (minus the FORMAT statement label and the "FORMAT").

The FORMAT statement and its components are described in the following

pages.

FORMAT

PURPOSE: The FORMAT statement 1s a non-executable statement that provides
format control for data records being transferred to and from

core memory by defining a format specification for each record.

FORMAT:

label FORMAT (qltlz t. z

. P
1 2% 270 Fne1dy)

label = a statement label.

g = a series of slashes (opticnal)
t = a field descriptor, or a group of field descriptors

z = a field separatcr

COMMENTS: 2 FORMAT statemert must be labeled.

When a formatted READ statement is executed, one record s read
when format —ontrol is initiated; thereafter, additional records
are read only as the format specification(s) demand. When a for-
matted WRITE statement is executed, one record is written each

time a format specification demands that a new record be started.
EXAMPLES:
READ (5,.00)4,B,C WRITE (2,200)A,L,X
100 FORMAT (2F5.1, F6.2) 200 FORMAT (F5.1, I10, Fe€.4)
The components of a format specification (field separators, field descriptors,

scale tactor, repeat spscificaticn and conversion codes) are described in

the following pages.

PURPOSE:

FIELD DESCRIPTOR

To provide the elements that define the type, magnitude and

method of conversion and editing between input and output.

FORMAT: oOne of tne following conversion and editing codes:

Integer data: riw Octal data: r@w
) rK
Real data: srEw.d roz
srFw.d
srGw.d Hollerith
data: rAw
Double pre- FRW
cision data: srDw.d
. wHh. h_ ... h
Logical data: rLw 12 w
Blank data: wX r("h.h_ ... h")
12 w
Complex data: sEw.d,Ew.d

w = a positive integer constant, representing the length of
the field in the external character string.

s = a scale factor designator (optional for real and double
precision type conversions).

r = a repeat specification, an optional positive integer
constant indicating the number of times to repeat the
succeeding field descriptor or group of field descriptors.

h = any character in the FORTRAN character cset.

d = an non-negative integer constant representing the number
of digits in the fractional part of the external charac-
ter string (except for G-type conversion codes).

= a decimal poinft.
The characters F, E, G, I, @, K, 0, L, A, R, H, ", and X

indicate the manner of conversion and editing between the

internal and external character representations, and are

called the conversion codes.

COMMENTS:

EXAMPLES:

For all field descriptors, except "h h_ ... hw” the field length

1
(w) must be specified, and must be greater than or equal to d.

For field descriptors of the form w.d, the d must be specified,

even if it is zeroc.

A basic field descriptor is a field descriptor unmodified by the

scale factor (s) or the repeat specification (r).

The internal representation of externsl fields corresponds to the

internal representation of the corresponding data type constants.
A numeric input field of all blanks is treated as the number zero.

The use of a decimal point in the input data field overrides the

d portion of a floating point conversion format.
Negative numbers are output with a minus sign.

If the output field is larger than thet required by the datum

being written, the datum is right-justified in the output field.

The number of characters produced by &n output conversion must
not exceed the field width (w). If the characters producec do

exceed the field width, the field is filled with the currency

symbol §$.

2I10 2@2
E20.10 2K2
F5.1 202
G20.10 2R2
D10.2 2k2
E10.4, E10.4 2HAB
2X "ABCD"

REPEAT SPECIFICATION

PURPOSE : Allows repetition of field descriptors through the use of a
repeat count proeceding the descriptor. The specified con-
version is in=erpreted repetitively, up =o the specified
number of times.

FORMAT:

v (basic field descriptor)

r = an integer constant, called the group repeat count.

COMMENTS:

EXAMPLES:

All basic field descriptors may have group repeat counts,

except these codes: wH or wX.

A further grouping may be formed by enclosing field descriptors,
field separators, or basic groups within parentheses, and by
specifying a group repeat count for the group. The depth of

this grouping is limited to the fourth level.

The parentheses enclosing the format specification are not

roup deliniating parentheses.
I

2110

6E14.6
4(E10.4, E10.4)
3/

I-TYPE CONVERSION

INTEGER NUMBERS

PURPOSE: Provides conversion between an internal integer number and an
external integer number.
FORMAT:
r I w
r = a repeat specification (optional)
w = length of external field
COMMENTS:

Input: The external input field contains a character string
in the form of an integer constant or a signed integer
constant. Blank characters are treated as zeros.

Output: The external output field consists of blanks, if
necessary, a minus (if the value of the internal
datum is negative), and the magnitude of the internal
value converted to an integer constant, right-
justified in the field.

If the output field is too short, the field is
filled with the currency symbol §$.
EXAMPLES:

See the next rage.

EXAMPLES: (Cont.)

INPUT:
External Field Format Internal Number
-.123 I5 -123
12003 I5 12003
.~ 102 14 102
3 Il 3

OUTPUT :

Internal Number Format External Field
-1234 I5 -1234
+12345 I5 12345
+12345 14 $$8S
+12345 I6 12345

PURPOSE:

SCALE FACTOR

Provides a means of normalizing the number and exponent parts of

real or double precision numbers specified in a FORMAT statement.

FORMAT:

lae}
1

npP

an integer constant or a minus sign followed by

3
1]

an integer constant.

the scale factor indicator, the character p

COMMENTS:

Input:

Jutput:

EXAMPLES:

When format cortrol is initialized, a scale factor of zero is

established. Cnce a scale factor has been established, it
applies to all subsequent real and double precision conversions

until another scale factor is encountered.

When there is no exponent in the external field, the relation-
ship between the externally represented number (E) and the
internally represented number (I) is this:

I =5 *10 "

When there is an exponent in the external field, the scale

factor has no effect.

For E- and D- type output, the basic real constant part (I) of

the output quantity is multiplied by 10" and the exponent is
reduced by n. For G-type output, the effect of the scale factor
is suspended unless the magnitude of the datum to be converted

is outside the range that permits effective F-type conversion.

See the next page.

EXAMPLES: (Cont.)

INPUT:

External Field Format Internal Number
528.6 1PF10.3 52.86
.5286E+03 1PG10. 2 528.6
528.6 -2PD10.3 52860.

QUTPUT :

Internal Number Format External Field
528.6 1PF8.2 .5286.00
.5286 2PE10.4 52.860E-02
5.286 -1pPD10.4 ..0529D+02
52.86 1PG10.3 ~A52.9. ...
-5286. 1PG10.3 -5.286E+03

E-TYPE CONVERSION

REAL NUMBERS

PURPOSE : Provides conversion between an internal real number and an

external floating-point number.

FORMAT:

s r Ew. d

03]
I

a scale factor (optional)
¥ = a repeat specification (optional)

w = the length of the external field

I

the decimal point
d = the total number of digits to the right of the

decimal point in the external field.

COMMENTS:

Input: The external input field may contain an optional sign,
followed by a string of dig:its optionally containing
a decimal point, followed by &n exponent, in one of
the following forms: a signed integer constant; or
E followed by an integer constant or a signed integer

constant.

Output: The external output field may contain a minus sign (or
a blank, if the number is positive), a zero, a decimal
po:nt, the most significant rounded digits of the internal
value, the letter E and a dec:mal exponent (which is

signed if it is negative).

EXAMPLES:

See the next page.

EXAMPLES: (Cont.)
INPUT:

External Field

123.456E6
. 456E6

. 456
123E6

123

E6

OUTPUT:

Internal Number

+12.34
-12.34
+12.34
-12.34
+12.34
+12.34

Forqu

E6.5
E4.3
E5.0
E3.1

E9.3

Format
E10.3
E10.3
E12.4
E12.4
E7.3

E5.1

8-11

Internal Number

123456000
456000

. 456
123000000
12.3

0

Q

External Field

. ~-123E+02
.—.123E+02

o ane1234E+02
. .—.1234E+02
.12E+02
SSS

F-TYPE CONVERSION

REAL NUMBERS

PIURPOSE: Provides conversion between an interral real number and an

external fixed-point number.

FORMAT:
s r Fw.d
s = a scale factor (optional)
r = a repeat specification (optiocnal)

w = the length of the external field
. = the decimal noint
d = the total number of digits to the right of the

decimal point in the external field

COMMENTS:
Input: The external input field is the same as for E-TYPE

convarsion.

Output: The 2xternal output field may contain blanks, a minus
(if the internal value is negative), a string of digits
containing a decimal point (as modified by the scale

factor) rounded to d fractional digits.

EXAMPLES:

See the next oage.

EXAMPLES:

(Cont.)

INPUT: Same s in E-TYPE conversion, except "F" replaces
in the format specification.

OUTPUT:

Internal Number

+12.34
-12.34
+12.34
-12.34
+12.34
+12345.12

Format
F10.3
F10.3
F1l2.

w

F12.

w

F4.3
F4.3

Exzernal Field

~~~12.340
~~a—12.340

AAAAAA

"E"



G-TYPE CONVERSION

REAL NUMBERS

PURPOSE : Provides conversion between an internal real number and an

external floating-point or fixed-point number.

FORMAT:
srGw.d
s = a scale factor (optional)
r = a repeat specification (optional)

w = the length of the external field
= the decimal point
d = the total rumkber of cigits to the right of the

decimal point in the external field.

COMMENTS:
Input: The external input field is the same as Zor E-TYPE conversion.
Output: The external output field depends upon the magnitude of the
real data beinc converted, and follows these rules:
Magnitude O:I Data Equivalent Conversion
0.1 <N <1 F(w-4).d, 4X
1 <N <10 F(w-4). (d-1),4X
-2 d-:
lOd < N - 10 L F(w-4).1,4X
1097 < n o< 108 F (w-4).0,4X
otherwise SEw.d
EXAMPLES:

See the next page.



EXAMPLES: (Cont.)

INPUT: Same as for E-TYPE conversion, except

that "G" replaces "E" in the format specification.

OUTPUT:
Format Internal Number External Field
.05234 ., .523E-01
.5234 523, . a
G10.3 52.34 L .52.3 .04
523.4 2523 0
5234. . ..523E+04



D-TYPE CONVERSION

DOUBLE PRECISION NUMBERS

PURPOSE: Provides conversion between an interral double precision numbe:

and an external floating-point numker.

FORMAT:

s rDw. d
s = a scale fector (optional)

r = a repeat c<pecification (optional)

w = the lengtl of the external field
= the decimal point

d = the total number of digits to the right of the

decimal pcint in the external field.
COMMENTS :

Input: The external input field is the same as for E-TYP?®
conversioln.

Output: The external cutput field is the same as for E-TYPE
conversion, except that the character D replaces the
charazter = in the exponent.

EXAMPLES:

INPUT: Same as in E-TYPE conversion except "D" replaces "E."

OUTPUT: Same as in E-TYPE conversion except "D" replaces "E.

8-16



COMPLEX CONVERSION

COMPLEX NUMBERS

PURPOSE: Provides conversion between an internal orcered pair of real

numbers and an external complex number.

FORMAT :
A complex datum consists of a pair of separate real data.
The total conversion is specified by two real field de-
scriptors, interpreted successively. The first descriptor

supplies the real part; the second, the imaginary part.

COMMENTS:

W

Input: Same as for any pair of real da:

Output: Same as for any pair of real data.

EXAMPLES:

See E-, F- and G-TYPE conversions.



L-TYPE CONVERSION

LOGICAL NUMBERS

PURPOSE: Provides conversion between an external field representing a

logical value anrnd an internal logical datum.

FORMAT:
L w

w = the length of the external field.

COMMENTS:

Input: The external input field consists of optional blanks
followed by a T or an F followed by optional characters,
representing the values true or false, respectively.

Output: The external output field consists of w - 1 blanks
followed by a T or an F as the value of the internal
logical datum is true or false, respectively.

EXAMPLES:

INPUT:

External Field Format Internal Number
~TRUE L5 100000B

o F L6 0

OUTPUT :

Internal Number Format External Field
0 (or positive) L3 ~AF
(negative) Ll T

8-18




o -TYPE. K-TYPE AND O-TYPE CONVERSIONS

OCTAL NUMBERS

PURPOSE : Provides conversion between an external octal number and an
internal octal datum.
FORMAT:
r @w
r Kw
r Ow
r = a repeat specification (optional)
w = the width of the external field in octal digits.

COMMENTS: List elements must be of type integer.

Input: If w > 6, up to six octal digits are stored; non-octal digits
are ignored. IZ the value of the octal digits within the field
is greater than 177777, results are unpredictable. If w < 6 or
if less than six octal digits are encountered in the field, the
number is right-justified with zeros to the left.

Output: If w > 6, six o-tal digits are written right-justified in the
field with blanks to the left. If w < 6, the w least significant
octal digits are written.

EXAMPLES:

See the next page.




EXAMPLES:  (Cont.)

INPUT:
External Field Format Internal Number
123456 “o 123456
-123456 o7 123456
2342342342 2K5 023423 and 042342
, 396E-05 2@4 000036 and 000005
OUTPUT':
Internal Numker Format External Field
99 K6 L ..143
99 02 43
-1 @8 ~ 177777
32767 @6 77777

8-20



A-TYPE CONVERSION

HOLLERITH INFORMATION

PURPOSE: Allows a specified number of Hollerith characters to be read

into, or written from, a specified list element.

FORMAT:

r A w

a repeat specification, (optional’

-
i

w = the length of the lollerith character string.

COMMENTS:
Input: If w - 2, the rightmost two characters are taken from
the external input field. TIf w =1, the character
appears left-justified in the word, with a trailing

blank.

2

Output: If w - 2, the external output field consists of w -
blanks, followed by two characters from the internal
representation. If w = 1, the character in the left

half »f the word is written.

EXAMPLES:

See the next paye.

NOTE: Input/cucput of A-format elements must be
to/from ‘type integer variables or arrays.



XAMPLES:

(Cont.)
INPUT:

External Field

XYZ
XYZ
X

OUTPUT :

Internal Value

XY
XY

XY

Format

A2
A3

Al

Format

A2
Ad

Al

Internal Value

XY
YZ

X

External Field

XY

~ XY



R-TYPE CONVERSION

HOLLERITH INFORMATION

PURPOSE: Allows a specified number of Hollerith characters to be read

into, or written from, a specified list element.

FORMAT:

I

1l

r Rw

a repeat specification (optional)

the length of the Hollerith character string.

COMMENTS : The Rw descriptor is equivalent to the Aw descriptor, except

that single characters are right-justified in the word with

leading binary zeros (on input); and on output, if w =1,
F

the character ir. the right half of the word is written.

NOTE':

The HP FORTRAN conversion Aw 1s replaced by the HP
FORTRAN IV conversion Rw: a single character
stored in a word under R format contrcl is placed
in the right half of the word with zeroes to the
left half. On output, using the REw format, the
right half of the word is written.

EXAMPLES: See the next page.

NOTE':

The FORTRAN IV program can be modified at run-time
to interpret A as in HP FORTRAN if the user calls
the OLDIO entry point:

CALL OLDIO
To change back to a HP FORTRAN IV A conversion,
the user calls the NEWIO entry point:

CALL NEWIO




EXAMPLES: (Cont.)

INPUT:
External Field Format Internal Value
XYZ R2 XY
XYZ R3 YZ
X Rl 0X
OUTPUT:
Internal Value Format External Field
XY R2 XY
XY R4 ~ XY
XY R1 Y



wH EDITING

HOLLERITH INFORMATION

PURPOSE: Allows Hollerith information to be read into, or written from,

the characters following the wH descriptor in a format specifi-

cation.
FORMAT:
w .
H h1 h2 e hw
w = a nonzero positive integer constant equal to the total

number of h's

h any character in the HP ASCII character set.

COMMENTS:
Input: The characters in the external field (hl to kh) replace
the characters in the field specification.
Output: The characters in the field specification are written
to an output file.
EXAMPLES:
INPUT:
Resulting Internal Value
External Field Format of Formatted Item
PACKARD JHHEWLETT 7HPACKARD
OUTPUT :
Format External Field
7THPACKARD PACKARD



“.." EDITING

HOLLERITH INFORMATION

PURPOSE : Allows Hollerith information to be written from the characters
enclosed by the guotation marks in a format specification.
FORMAT:
r("h.h_ ... h™)
("hyhy w
h = any character in the FORTRAN character set,
except "
r = a repeat count.

COMMENTS: 1Input:

The number of characters within the quotation

marks is skipped (equivalent to wX).

Output: Is equivalent to wH, with a repeat specification

capability added.

EXAMPLES :
OUTPUT:
Format External Field
"ABZ" ABZ
2"***" * kk kkk

8-26



X-TYPE CONVERSION

SKIP OR BLANKS

PURPOSE: Allows a specified number of characters to be skipped (input)

or allows a specified number of blanks to be inserted (output) .

FORMAT:

w X

w = a positive integer constant

COMMENTS:
Input: In the external input field, W characters are skipped.
Output: In the external output field, w blanks are inserted.
EXAMPLES:
14X
2X



FIELD SEPARATOR

PURPOSE: To separate each field descriptor, or group of field descriptors

in a FORMAT statement.

FORMAT:

/ or ,

COMMENTS: A repeat count can be specified immediately preceding the slash

(/) field separator. Each slash terminates a record. A series

of slashes causes records to be skipped on input, or lines to

be skipped on an output listing.

EXAMPLES:
READ (5,100)A,B
100 FORMAT (F5.1,F7.3)

READ (5,101)A,B
101 FORMAT (F5.1/F7.3)

READ (5,102)A,B (

102 FORMAT(//FS.I///P7.3/)§

WRITE (6,100)A,B

N—

WRITE (6,101)A,B

WRITE (6,102)A,B

w‘—/”

Causes A and B to be read from one record.

Ceuses A and B to be read from two

ccnsecutive records.

Causes two records to be skipped, A to be
read from the third record, two more
records to be skipped, B to be read from
the sixth record and one additional record

to be skipped.

Causes A and B to be printed on the same

line.

Causes A and E to be printed on twc con-

secutive lines.

Causes two lines to be skipped, A to be
printed on the third line, two more lines
to be skipped, B to be printed on the
sixth line and one more additional line
to be skipped.

8-28



CARRIAGE CONTROL

PURPOSE: To indicate the line spacing used when printing an output
record on a line printer or a teleprinter.
FORMAT:
.
0
1 as the first character in the record
*
any other character -
. = single space (orint on every line).
0 = double space (orint on every other line).
1 = eject page
* = sguppress spacinc (overprint current line).
any other character = single space (print on every line).

EXAMPLES:

When these

100 FORMAT
120 FORMAT

140 FORMAT

160 FORMAT
180 FORMAT

999 FORMAT

records are printed... they look like this:

(" .PRINT ON EVERY LINE") PRINT ON EVERY LINE
("OPRINT ON EVERY OTHER LINE") PRINT ON EVERY OTHER LINE

("1m") (a page is ejected, then a
line is skipped)

("*PRINT ON CUKRENT LINE") (an overprint of current line)
("PRINT ON EVEKY LINE") PRINT ON EVERY LINE
(1H1, El6.8, I%) (a page 1s ejected, and a

floating point number and an

integer are then printed.)







SECTION IX
FUNCTIONS AND SUBROUTINES

In executable FORTRAN IV program consists of one main program with or with-
out. subprograms. Subprograms, which are either functions or subroutines,
are sets of statements that may be written and compiled separately from the

main program.

A main program calls or references subprograms; subprograms can call or
reference other subprograms as long as the calls are non-recursive. That is
if subprogram A calls subprogram B, suoprogram B may not call subprogram A.
Furthermore, a program or subprogram may not call itself. A calling program

is a main program or suborogram that refers to another subprogram.

Main programs and subprograms communicate by means of arguments (parameters) .
The arguments appearing in a call or a reference are called actual argu-
ments. The corresponding parameters appearing within the called or refer-

enced definition are called dummy arguments.

FUNCTIONS
If the value of one quantity depends on the value of another quantity,
then it is a function of that quantity. Quantities that determine the

value of the function are called the actual arguments of the function.

In HP FORTRAN IV, there are three types of functions (collectively called
function procedures); they supply a value to be used at the point of refer-

ence.

a. A statement function is defined and referenced internally in

a program unit.

b. A FORTRAN IV library function is processor-defined externally
to the program unit that references it. The FORTRAN IV functions

are stored on an external disc or tape file.

9-1



¢. A function subprocram is user—defined externally to the program
unit that references it. The user compiles function subprograms,
loads them with his calling program urit ard references them the

same way he references FORTRAN IV library functions.

SUBROUTINES

The HP FORTRAN IV user can ccmpile a program unit and store the resultant
object program in an external file. If the program unit begins with a
SUBROUTINE statement and contains a RETURN statement, it can be called as

a subroutine by another program unit.

DATA TYPES FOR FUNCTIONS AND SUBROUTINES

All functions are identified by symbolic names.

A symbolic name that identifies a statement function may have its data type
specified in a TYPE- statement. In the absence of an explicit declaration

in a TYPE- statement, the type is implied by the first character of the name:

I, J, K, L, M or N = Integer type data

any other letter = real type data

A symbolic name that i1dentifies a FORTRAN IV function has a predefined data

tyoe associated with 1t, as explained in Table -1,

A symbolic name that identities a function subprogram may have its data type
specified in the FUNCTI M statemert that begins the subprogram. In the ab-
sence of an explicit deciaration in the FUNCTION statement, the data type 1s
implied by the first cheracter of the name, as for statement functions. A
function subprogram which has beer explicitly typec in its FUNCTION statement

nust alsc have its name wdentically typed in each program unit which calls it.

The symbolic names whict identify subroutines are not associated with any

data tvpe.



DUMMY ARGUMENTS

Dummy arguments are identified by symbolic name. They are used in functions
and subroutines to identify variables, arrays, other subroutines or other
function subprograms. The dummy arguments indicate the type, order and

nurber of the actual arguments upon which the value cf the function depends.

When a variable or an array reference is specified by symbolic name, a durny
argument can be used, providing a value of the same type is made available

through argument associatior.

Wnen a subroutine reference is specified by the gsymbolic name, a dummy argu-

ment can be used if a subrcutine name is associated with that dummy argument.
When a function subprogran reference is specified by symbolic name, a dummy

argument can be used 1f a function subprogram name is associated with that

dummy argument.

9-3



STATEMENT FUNCTION

PURPOSE: To define a user-specified function in a program unit for later
reference in that program unit.
FORMAT:
f( ajr ay oA ) = e
f = the user-specified function name, a symbolic name
a = a distinct variable name (the dummy arguments of the
function)
e = an arithmetic or lcgical expression
COMMENTS: The statement function is referenced by using its symbolic name,

EXAMPLES:

with an actual argument list, in an arithmetic or logical ex-—

pression.

In a given program unit, all statement function definitions must
precede the first executable statement of the program unit and
must follow any specification statements used in the program

unit.

The name of a statement function must not be a variable name or

an array name 1in the same program unit.

ISUM(I,J,K) = T+J+K

IJ

ROOT1 (A,B,C) = (-B+SQRT (B**2-4.0*A*C))/ (2.0%A)
L = ISUM(M**2,1,M-1)

I

R = ROOT1 (X,Y,2)




Defining Statement Functions

The names of dummy arguments may be identical to variable names of the same
type that appear elsewhere in the program unit, since they bear no relation

to the variable names.

The dummy arguments must be simple variables; they represent the values
passed to the statement function. These values are used in an expression
to evaluate the user-specified function. Dummy argunents cannot be used to

represent array elements or function subprograms.

Aside from the dummy arguments, the expression may contain only these values:

Constants

Variable references (both simple and subscripted)

FORTRAN IV library function references

External function references

References to previcusly-defined statement functions in the

same program

Referencing Statement Functions

When referenced, the symkolic name of the statement function must be immedi-

ately followed by an actual argument list.

The actual arguments constituting the argument list must agree in order,
number and type with the corresponding dummy argumerts. An actual argument
in a statement function reference may be an expression of the same type as

the corresponding dummy argument.

When a statement function reference is executed, the actual argument values
are associated with the ccrresponding dummy arguments in the statement
function definition and the expression is evaluated. Following this, the
resultant value is made available tc the expression that contained the state-

.

ment function reference.



FORTRAN IV LIBRARY FUNCTION

PURPOSE: To reference a processor-defined functicn by specifying its sym-
bolic name in an arithmetic or logical expression. The value is

made available at the point of reference.

FORMAT :
An arithmetic or logical expression that
contains the symbolic name of the FORTRAN

IV functicn (together with an actual argument list)

as a primary.

COMMENTS: Table 9-1 contains the FORTRAN IV library functions available

with the HP FORTRAN IV Compiler.

The symbolic name for the function cannct appear in a TYPE- state-
ment which defines the name as a data type different from that
specified for the function in Table 2-1 unless the user supplies

his own version of the FORTRAN IV library function.

NOTE: HP FORTRAN IV makes no distinction between "intrinsic"
and "external" functions.

EXAMPLES:
X = SIN(Y)

H
I

IFIX(X)



TABLE 9-1

FORTRAN IV LIBRARY FUNCTIORS

S S S

Nurmber of Symbolic Type of:
FORTRAN 1V Functicn Lefinition Arguamer.ts Name Argument Function
Absclute Velue & 1 ABS Real keal+
LABS Intecger Intecer+
DABS Double Pouble
Truncation Sign of a times 1 AINT Real keal+
Largest ntegex INT Real Intecert
oA I[DINT Double Integer
Remailraering® a, (med a.) 2 AMOD Real keal*
MOD Integer Intecer*
Chocsing Largest Value Max (a., a,, ...) 2 AMAXZ Integer keal
L < -
AMAXL Real keal
MAXY Integer [ntecer
MAXL Real Integer
DMAX L Double Louble
Chocsing Smallest Value Min (a., a, ) o2 AMINY Integer keal
AMINIL Real keal
MINY Integer Intecer
MINL Real Integer
DMINL Double Louble
Tloat Conversion from 1 FLOAT Integer Real+
I integer to real
Fix Conversion from 1 IFIX Real Integer+
real to integer
Transfer of Sign Sign of a times 2 SIGN Real keal+
La, ISIGN Integer [nteger+
1
OSIGN Double Double
Lifference a; - Min (ai, a.) 2 JOIM Real Real
<
IDIM Integer Integer
Obtain Mest Significant 1 SNGL Double Real
Part of Double Precision
Arguarent
Obtain Real Part of Complex 1 REAL Complex Real
Argunent
Obtain Imaginary Part of 1 AIMAG Complex Real
Complex Argument
Express Single Precision 1 DBLE

Argument in Double

Precision Form



TAELE 9-1 (cont.)

FORTRAN IV LIBRARY FUNCTIONS

Number of symbolic Type of:
FORTRAN IV Function Definition Arguements Ivame Argument Function
Express Two Feal Arguments aL oA iy 2 JMPLX Real Complex
P
.n Ccmplex Form
Chtain Conjucate of a 1 CONJG Complex Comp
Complex Argument
Exponential e 1 EXP Real Real+
1 DEXP Double Double+
1 CEXP Complex Complex+
Natural Logarithm log (a) 1 ALOG Real Reald
€
1 DLOG Double Double+
1 CLOG Complex Comp Lext
Common Logarithm log, (a; 1 ALOGT Real Realt
10
SLOGT Double Dcuble-
Trigonometric Sine sinfa; 1 5 IN Real Real+
1 OSIN Double Dcuble
1 CSIN Complex Complext
Trigonometzric Cosine cos(a) 1 S Real Real+
1 DCOS Double Deukle
1 CCos Complex Comp lexd
Trigonometric Tangent tan(a) 1 TAN Real Real+
Hyperbolic Tangent tank (a) 1 TANH Real Real+
i/2
Scquare Root () 1 SERT Real Real+
1 DSQRT Double Deuble+
1 CSQORT Complex Cemplex
Arctangenz arctan(a) 1 ATAN Real Real+
1 DATAN Double Deuble
arctan(a /a_) 2 ATANZ2 Real Real
L2
2 LATNZ2 Double Dcuble
Remaindering* a (mod a.) 2 LMOL Double Doublex
Mcodulus 1 (!ABS Complex Real
Logical Product 1.3 2 LAND Integer Integey+
Logical sum 1) 2 IGR Integer Integer+
Comp Llemen= 1 L HOT Integer Integert
Sense Switcn Reglster 1 [SSW Integer Integert

Switch (no




* The functions MOD, AMCD and DMOD are defined as al-[al/az]a2
where [X] is the largest integer whose magnitude does not exceed

the magnitude of X and whose sign is the same as the sign of X.

+ These FORTRAN IV functions have different entry points when
called by value and called by name. See the Relocatable
Subroutines manual for a complete description of each entry

point.



FUNCTION SUBPROGRAM

PURPOSE : To define a user-specified subprogram thet supplies a function

value when its symbolic name is used as & reference.

FORMAT:

t FUNCTION f (al, a2, ey an)
t = omitted, or one of the following data type identifiers
REAL
INTEGER
DOUBLE PRECISION
COMPLEX
LOGICAL
f = the symbolic name of the function

a = a dummy argument.

COMMENTS: The FUNCTION statement must be the first statement of a function
subprogram. 2 function subprogram is referenced by using its
symbolic name (together with an actual argument list) as a prim-
ary in an arithmetic or logical expressicn in another program unit.

A function subprogram may not be called recursively.
EXAMPLES:

VAR = USER1 (X,Y,2)**USER2 (X,Y) REAL FUNCTION USERL (A,B,C)

USER1 = A+E/C
RETURN
END

REAL FUNCTION USER2 (VARRLl, VARR2]

USER2 = VARR1-VARR2
RETURN

END



Defining Function Subprocrams

The symbolic name of the function subprogram must also appear as a variable
name in the defining subprogram. During every execution of the subprogram,
this variable must be defined, and, once defined, may be referenced or re-
defined. The value of tre variable at the time of execution of any RETURN

statement in this subprocram is called the value of the function.

The symbolic name of the function subprogram must nct appear in any non-
executable statement in this program unit, except as a symbolic name of the

function subprogram in the FUNCTION statement.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,

CCMMON or DATA statement in the function subprogram.

A dummy parameter can be used to dimension an array name, which also appears
as a dummy parameter of the function. An array which is declared with dummy
dimensions in a function must correspond to an array which is declared with
constant dimensions (throuch some sequence of argument association) in a
calling program unit. An array declared with dummy dimensions may not be

in COMMON.

The symbolic name of a dummy argument may represent a variable, array, a

subroutine or another function subprogram.

The function subprogram may contain any statements except PROGRAM, SUBROUTINE,
another FUNCTION statement, or any statement that directly or indirectly

references the function being defined.

The function subprogram nay define or redefine one or more of its arguments
to return results as well as the value of the function. Therefore, the user
must be aware of this when writing his programs. For example, a function
suoprogram that defines the value of GAMMA as well as finding the value of

7ZETA could be coded:



FUNCTION ZETA (BETA, DELTA, GAMMA)
A = BETA**2 - DELTA**3

GAMMA = A*5.2

ZETA = GAMMA**2

RETURN

END

Then, a program referencing the function could be:

GAMMB = 5.0

RSLT = GAMMB+7.5 + ZETA (.2,.3,GAMMB)

which results in the following calculation:

RSLT = 5.0 + 7.5 + ZETA, where ZETA is determined as:

A= 2%%2 - _3**3 = (04 - 027 = .013
GAMMA = .013*5.2 = .0676 (GAMMB is not altered)
ZETA = .0676**2 = _00456976
RSLT = 5.0 + 7.5 + .0046976 = 12.50456976

However, the program:

GAMMB = 5.0
RSLT = ZETA (.2,.3,GAMMB) + 7.5 + GAMMB

would result in the following calculations for ZETA and GAMMB:

A = 2*%*%2 - . 3%%3 = .04 - .027 = .013

GAMMA = .013*5.2 = .0676 = GAMMB
ZETA = .0676**2 = ,00456976
RSLT = .00456376 + 7.5 + .0676 = 7.57216976



Referencing Function Subprograms

The actual arguments of a function subprogram reference argument list must
agree in order, number ard type with the corresponding dummy arguments in

the function subprogram.

When referenced, the symbolic name of the function subprogram must be
immediately followed by an actual argument list, except when used in a

TYPE- or EXTERNAL statement, or as an actual argument to another subprogram.

in actual argument in a functicn subprogram reference may be one of the

following:

A constant

A variable name

An array element name

An array name

Any other expression

The name of a FORTRAN IV library function

The name of a user-defined FUNCTION or SUBROUTINE subprogram.

1f an actual argument is a function subprogram name or a subroutine name,
the corresponding dummy argument must be used as a function subprogram

name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument defined or redefined
in the referenced function subprogram. the actual argument must be a

variable name, an array element name, Or an array name.



Executicn of a function subprogram reference results in an association of
actual arguments with all appearances of dummy arguments in executable
statemerts and adjustable dimensions in the defining subprogram. If the
actual argument is an expression, this association is by value rather than
Iy nama. Following these associations, the first executable statement of

the defining subprogram is executed.

An actual argument which is an array name containing variables in the sub-
script could, in every case, be replaced by the sam2 argument with a con-
stant subscript containing the same values as would be derived by computing
the variable subscript just before the association of arguments takes

place.

If a dummy argument of a function subprogram is an array name, the corres-

ponding actual argument must be an array name or an array element name.



SUBROUTINE

PURPQSE: To define a user-specified subroutine, which may be compiled

independently from a program unit which references it.

FORMAT:
SUBROUTINE s
SUERCUTINE s (a;, % , an)
s = the symbolic name of the subroutine

a = dummy argument

COMMENTS: To reference & subroutine, a program unit uses a CALL statement.

The SUBROUTINI =statement must be the first statement in a

subroutine subprogram.

The SUBROUTINE statement cannot be used n a function subprogram.

EXAMPLES :
CALL MATRX SUBROUTINE MATRX
I )
CALL SUBR(I,J) RETURN
END

SUBROUTINE SUBR(I,J)
Ir
RETURN

END

9-15



Defining Subroutines

The symbolic name of the subroutine must not appear in any statement except
Pt 3% iS

as the symbolic name of the subroutine in the SUBROUTINE statement itself.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,

COMMON, or a DATA statement in the subroutine.

A dummy parameter can be used to dimension an array name, which also appears
as a dummy parameter of the subroutine. An array which is declared with
dummy dimensions in a subroutine must correspond to an array which is de-
clared with constant dimensions (through some sequence of argument associ-
ation) in a calling program unit. 2An array declared with dummy dimersions

may not be in COMMON.

The symbolic name of a dummy argument may be used to represent a variable,

array, another subroutine or a function subprogram.

The subroutine defines or redefines one or more of its arguments to return

results,

The subroutine may conta:n any statements except a FUNCTION statement,
PROGRAM statement, another SUBROUTINE statement, or any statement that

directly or indirectly references the subroutine being defined.

keferencing Subroutines

The actual arguments which constitute the argument list must agree in
crder, number and type with the corresponding dummy arguments in the de-
fining subroutine. (A Hollerith constant must correspond to an integer type

dummy argument.)



An actual argument in a sukroutine reference may be one of the following:

A constant

A variable name

An array element name

An array name

Any other expression

A FORTRAN IV likrary function name

A user-defined function or subroutine subprogram name

1f an actual argument is a function subprogram name oOr a subroutine name,
the corresponding dummy argument must be used as a function subprogram

nams or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument defined or redefired
in the referenced subroutine, the actual argument must be a variakle name,

an array element name, Or an array name.

Execution of a subroutine reference results in an association of actual
arguments with all appearances of dummy arguments ir. executable statements
and adjustable dimensions in the defining subroutine. If the actual argu-
ment is an expression, this association is by value rather than by name.
Following these associations, the first executable statement of the de-

fining subroutine is executed.
pn actual argument which is an array name containing variables in the sub-
script could, in every case, be replaced by the same argument with a con-

stant subscript just before the asscciation of arguments takes place.

If & dummy argument of a subrcutine 1is an array name, the corresponding

actual argument must be an array name or an array element name.

9-17






APPENDIX A
DATA FORMAT IN MEMORY

The six types of data used in HP FORTRAN IV (integer, real, double precision,
complex, logical, and Hollerith) have the following format when stored in

memnory.

INTEGER FORMAT

PURPOSE: An integer datum is always an exact representation of a positive,
negative or zero valued integer, occupies one 16-bit word and

nas a range of —ELS to 215~1.

FORMAT:

|15|14 Ol

'Q_l number bits l
sigh bit




REAL FORMAT

PURPOSE: A real datum is a processor approximation to the positive, neg-
ative or zero valued real number, occupies two consecutive
l6-bit words in memory and has an approximate range of 10“38
to 1038.
FORMAT:
«—————1mplied binary point

15)14 0 word |

I fraction bits

t_sign of fraction

IlS 8I 7 1 | 0 I wvord 2

fraction bits exponent bits I
sign ot exporent —

COMMENTS: A real number has a 23-bit fraction and a 7-bit exponent.

Significance (to the user) is to six or seven decimal digits,
depending upon the magnitude of the leading digit in the

faction.



DOUBLE PRECISION FORMAT

PURPOSE: A double precision datum is a processor approximation to a
positive, negative or zero valued double precision number,

occupies three consecutive 16-bit words in memory and

, -3 3
has an approximate range of 10 8 to 10 8.
FORMAT:
«——implied binary point
|15 14 QJ word |
l fraction bits
Q_sign of fract:on
115 0 word 2
fraction bits
llS 81 7 ll L)| word 3

fraction bits l Cx;onont bits ’l
sign ot exponent

COMMENTS: a double precision number has a 39-bit fraction and a 7-bit

exponent.

Significance (to the user) is to eleven or twelve decimal
digits, depending upon the magnitude of the leading digit in

the fraction.




COMPLEX FORMAT

PURPOSE: A complex datum is a processor approximation to the value of a
complex number and occupies four consecutive 16-bit words in

memory. Both the real and imaginary parts have an approximate

-38 38
range of 10 to 10 .
FORMAT:
- «——— lmplied binary point
IlS 14 (ﬂ word 1
| fraction bits
Lsign ot traction
real
part
L 15 ZSI'V 0 word .
fract.cn bits | cxponent bits I}I
sign of exponent

.implied binary point
15|l4 J I word 3

£

I l fraction bits
Lsign of fraction

liraglnary
part

S
—
w

oo
~J
—
(&)
T

word

fractien bits exponent bits
sign ot exponent

COMMENTS: Both the real part and the imaginary part have 23-bit fractions
and 7-bit exponents; both have the same s:gnificance as a real

number.




LOGICAL FORMAT

PURPOSE: A logical datum occupies one 1l6-bit word in memory. The

sign bit determines the truth value: 1 = true, 0 = false.

FORMAT:

l ]‘SI L v I .TRUL.

1

LFALSE .

1"

HOLLERITH FORMAT

PURPOSE: &2 Hollerith datum is a one or two character string taken from
the HP ASCIT cheracter set; it occupies one l6-bit word in

memory.

FORMAT:

HOLLERTTH | HOLLERTTH &







APPENDIX B
COMPOSING A FORTRAN IV JOB DECK

After a source program has been written, it is submitted as a FORTRAN v
job deck. A job deck is input in the form of puncted cards or a source

paper tape or through a teleprinter. The job deck has the following form:

FORTRAN CONTROL STATEMENT
MAIN PROGRAM
Ir
END STATEMENT
SUBPROGRAM (1)
IJ
END STATEMENT

SUBPROGRAM (n)
Ir
END STATEMENT

FORTRAN END JOB STATEMENT

FORTRAN END JOB STATEMENT

A FORTRAN end job statement is a source statement that contains the currency

symbcl ($) in column ons or END$ in columns 7-72.

The FORTRAN control statement is described on the following page.



FORTRAN CONTROL STATEMENT

To describe the type of output to be produced by the compiler.

FORMAT:

FTN[4_’, pl’ p2/ p3/ pq” pf;

FTN[4] = Signals a FORTRAN Control Statement; the "4" is optional.

pl - P5 = optional parameters, in any order, chosen from the follow-

ing set:

Binary Output. An object program is to be punched in re-
locatable binary format suitable for loading by any of

the operating system loaders.

List Output. A listing of the source language program is

to be produced as the source program is read in.

Assembly Listing. A listing of the cobject program in
assembly level language is to be produced in the second

pass.

Mixed Listing. A listing of both the source and object
program is produced; each source line is included with
the object code 1t generated in the compilation pro-
cess. This listing is produced during the second pass,
and therefore it is necessary to store the source
language program on the disc when it i1s read in during
the first pass. (Sufficient disc space must be avail-
able for storing both the source and intermediate code

in order for this parameter to be used.)

Table Listing. A listing of the symbol table for each

main or subprogram is produced during the second pass.




FORMAT:
(cont.)

¢ = Cross Reference Symbol Table Listing. A cross reference
listing of symbols and labels used in the source program is

produced. (See Appendix E for a description.)

Error Routine n Supplied. n is a decimal digit (1-9) which

n
specifies an error routine, ERRn. The error routine is called
when an error occurs in ALOG, SQRT, .RTOE, SIN, COS, .TROI,
EXP, ITOI, or TaN. If this option does not appear, the

standard librarv error routine, ERRO, is used.

COMMENTS: Undefined source program statement numbers are printed when an

END Statement is encountered.

If both M and A are specified, M is used. Both A and M will

generate the symbol table listings automatically.

TODS-C users dc not use 'C' to produce a cross-reference; the

system asks if a cross-reference is desired at compilation time.







APPENDIX C
SUMMARY OF CHANGES TO ANSI FORTRAN

The HP FORTRAN IV Compiler conforms to the American Mational Standards
Institute FORTRAN IV spec’ fications as described in the ASA publication

X2.9-1966, with the following exceptions and extensions.

EXCEPTIONS TO STANDARD

Program, subprogram and external names are limited to five characters.

Named. COMMON blocks are not allowed.

BLOCK DATA subprograms are not allowed. (With the elimination of named

COMMON blocks, BLOCK DATA subprograms have no function.)

Intrinsic functions are treated as external functions.

EXTENSIONS OF STANDARD

A subscript expression may be any arithmetic expression allowed in HP
FORTRAN IV. However, if an expression is of a type other than integer,

it is converted to type integer after it has been evaluated.

The initial, terminal and step~size parameters of a DO statement may

be any arithmetic expressions. If the expressions are not of type
integer, they are converted to type integer after they have been evalu-
ated. The step-size parameter may be either positive cr negative,
thereby allowing either incrementing or decrementing tc the terminal
parameter value. (Implied DO lists may use only integer arithmetic

expressions which do not reference functions.)

Cc-1

IV



The integer variable reference in a computed GO TC car. be replaced by any
arithmetic expression. Non-integer expressions are ccnverted to type in-
teger before the GO TO statement is executed. I1f the value of the express-
ion is less than one, the first statement in the computed GO TO list is
axecutec. If the value 1:# greater than the number of statements listed in

the GO TO, the last statement in the computed GC TO list is executed.

The Hollerith constant nHalc:...cn may be used in any arithmetic expression
where ar. integer constant or an integer-valued expression is permitted.
Noze, hcwever, that if n 2, only the first two characters in the constant
are usec, that n = 0 is nct permitted, and that if n = 1, the character C
ls stored in the left half of the computer word, with a blank character in

the right half. Characters are stored in a single word in ASCII form.

Any two arithmetic types may be mixed in any relational or arithmetic oper-

ation except exponentiaticn.
Additional types of exponentiation are permitted. (See Table 3-2.)

An unsubscripted array name 1s an admissible list element in a DATA state-
ment. In this case, the correspondence with constant values is as follows:
If the array has n elements, then the next m constants from the list are
nsed tc initialize the array in the order in which it is stored (column
order). TIf the remainder of the constant list (at the time the arrav name
1s encountered) has m < n elements in it, then only the first m elements

of the array are initialized.



APPENDIX D
COMPATIBILITY OF HP FORTRAN AND FORTRAN 1V

HP TORTRAN IV contains some language extensions to provide compatibility

wizh HP FORTRAN. These features are:

Sspecial characters included with ASCIT input data can direct its formatting
(free field input); a FCRMAT statement need not be specified in the source

program.

Alphanumeric data can be written without giving the character count by speci-
" "n

fying heading and editirg information in the FCRMAT statement through

entries.

The Aw conversion code cf HP FORTRAN is equivalent to the Rw conversion code
in HP FORTRAN IV. A sing.e character stored in a word under R format control
1s placed in the right half of the word with zeros in the left half. On out-
put, using the Rw format, the right half of the word 1s written. A HP FORTRAN
program using an Al FORMAT specification may have to be changed to use the

Rl specification. The uscr may also use calls to OLDIO. (See the Relocatable

subroutines manual.)

The END statement is interpreted as a RETURN statement (in a subprogram) or
as a STOP statement (in 3 main program). A RETURN statement in a main pro-

gram is interpreted as a sTO? statement.

The HP FORTRAN External Finctions which perform masking (Boolean) operations
(IZND, IOR, NOT) and test the sense switches (ISSW, are retained as FORTRAN IV
library functions.

The two-branch arithmetic IF statement (IF (e) n n2) is retained in FORTRAN

1 ’
Iv.

Octal constants are valid in FORTRAN IV.



Using an unsubscripted array name always denotes the first element of that
array, except in an I/O statement or a DATA statemen=, where the entire array
is referenced. A single subscript, i, with a multiply-dimensioned array,

denotes the ith element of the array as it is stored (in column order).

D-2



APPENDIX E
CROSS REFERENCE SYMBOL TABLE

The HP 24177 RTE/DOS FORTRAN IV Compiler provides the option of producing a
cross reference listing of symbols and labels used in the source program.
The sample program listing shown in Appendix F contains a cross reference
symbol table as the last item listed. If requested, the cross reference
symbol table is always tae last listing produced for each compiled program

unit.

REQUESTING A CROSS REFERENCE SYMBOL TABLE LISTING

Te optional parameter C is used in the FORTRAN Control Statement to request
a cross reference symbol table. Section VII describes the format and

parameters of the FORTRAN Cortrol Statement.

CHARACTERISTICS OF TABLE

=

Zzch symbol is printed followed by the line numbers in which the symbol
appears. Multiple referernces in one line to the same symbol are noted.

Statement labels are preceded by the € character.

Up to eight line numbers zre printed per line of the cross reference symbol
table. The line numbers are listed in ascending order except when they occur

in an EQUIVALENCE staterment. For example,

0099 COMMON N

0100 EQUIVALENCE (N(1), M{l))
0lol DIMENSION N(50), M(50)
0102 N(l)=1



produces, for the symbol N, the following cross referernce information:

N 0099 0101 0100 0102

ERROR CONDITIONS

The cross reference symbol table is not complete for lines which contain com-
pilation errors, since compilation is terminated at the point in the line

where the error 1s detected.

If more than 2000 unique symbcls are used in the compiled program unit, the

following message is prainted instead of the cross reference symbol table:

PROGRAM TCO LARGE — CROSS FEFERENCE ABORTED



APPENDIX F
SAMPLE LISTING OF FORTRAN IV PROGRAM



L1
ARA2
AQAJ
ANA4d
ANy
A0A6
AAAT
AAA8
AYng
auin
Autl
ani2
Aald
Avld
2018
ANL6
a817
naL8
2419
AU20
Av21
Av22
423
Aved
nA2%
AA26
AB27
A28
AnW29
20307
"3
A3
AA3d
A3d
A0 35
A1) 3F
AR37
LR Y]
AR 39
AN 40
441
AN42
24473
MM44
P45
AV46
av47
AV 4E
An49
ANBO
AASY
LI'BY
2053
A5
3355
AAD6

PAGE Maay FTN4 COMPILER: HP24177

FTN4,L,T,C
PROGRAM CDUMP(2,9@)
DIMENSTION TPARM{S5), IBLOCK(64), IWORD(E), TASCII(8)
EQUIVALENCE (IPARM(3),IBASE), C(IPARM(4),IFWA), (IPARM(H),ILWA), (I
1aSCIT(1),NOF)
DATA IN/Y/, LIS/6/, NO,NOF/2xQ/, J/iW /
IOCTAL(TIAB)ETAR/ 12N 4006+MINA(MOD(1AD,120008)/1000%512,3584) ¢MIND
1 (MODC(IAR,1000)/10P0+54,448) «MINQ(MOD(TAD,1PB)/10%8,56)+MINA(MOD(TIAR
2,12).,7)
CALL RMPAR (IPARM)
TF (IPARM(1),.,GT,.2) INsIPARM(1)
IF (IPARM(2),GT,2) LIS=sIPARM(2)
IBASE=TIOCTAL (IRASE)
IFWA3IOCTAL (IFWA)
TLWA=IOCTALCILWA)
IF (IBASE+IFWA+I|LWA,GT,B)3,4
4 ARITE (IN,5)
5 FORMAT(/,"/CDUMPt @ORASE,8FWA,0| WAL ¢")
READ (IN,®) IFASE,IFWA,JLWA
I IF (ILWA,EQ.M) ILWAITIFWA
1F (IBASE.GT,mi.AND.IBASE.LT.0776718.AND.IFNA.LE,ILNA.AND.IHASEO!F
1%A,GT,AR00021B,AND,IBASE+]I| WA,LT,0777008)1,13
13 HDn 12 183,5,1
12 IPARM(I) =D
G TO 4
1 IFWAs]AND(IBASE+IFWA,N777708)
ILWASJRASE+I|L wa
IF (IBASE,GY, 0022MAB) J=iHR
NeTAND(IFWA=IBASE,2000778B)
WRITE (LIS,6) IBASE
6 FORMAT(" BASE RELOCATION ADDRESS: ",05,"B",/)
NN 152 Lel,(ILwA=IFWA)/64¢],1
TF (NO.GT.1) wRITE (L1S,428) NO
420 FORMAT(3X,2(2%,5("«")),3X,13," LINES SAME AS ABOVE ",2(2x,5("«"))
'" .n)
IF (NO,NE,1)39,25
25 T=IAND(N=2200:.728,An0Q77B)
WwRITE (LIS,2001) T,IWORD,IASCII
20¢ FNRMAT(IX,02,":",B(1x,06),"«",B8A2)
In NO=0)
no 35 Msy,64,]
T3LICK(MYBIGET (IFWA)
35 JFwAaIFWA+1
I=2IFWAw]
TF (TLWALLT,T) TI=IAND(ILWA«QQAZA12B,077770B) =1
Mat
KslFWA«IRASE=H4
IF (K-GT.'1)718
B MziH
KaK+IBASE
7 1=1=1BASE
WRITE (LIS,102) K,M,1,J
1720 FARMAT(2/,5%X, "LOCATIONST ",05,A1," THRU ",05,A8,/)
DO 159 M=y ,MINA((ILWA=-IFWA+64)/8+8+1,57),8
IF (NOQF,.EQ,@)H,110
112 20 125 I=1,8,!

—



A7
LELY.)
2159
NARA
LELE) ]
MA82
483
24854
AA65
3366
1967
1368
23589
247
AT
NA7 e
nd7 3
mAa74
1475
NJ76
A377
nAa78
An79
AA8Y
LR
nA82

o

PAGE 0202 CDUMP FTN4 COMPILER: HP24177

125

130
11

12
[¢]

148

150

1F (IWORD(I),NE,IBLNCK(I+M=1))130,125%
CANTINUE

NDENO+Y

50 TO 159

1F (NO,GT,.,1) WRITE (LI1S,400) NO

1IF (NO,NE,1)1D2,11

[3IAND(N«QRRD10F,3000778B)

wIITE (L1S,2M@) 1,IWDORD,IASCII

\NzyY

no 148 1s1,8,1

TWORD(I)aIBLOCK(I+M=y)

Kz1WORDCI)

IF C(IAND(X,177490R),LT,0200008,0R,IAND(K,1774@08),GT,057400R) KsIA
1NO(K,B3AR3778)+02000MAR

IF (IAND(K,@@0377R),LT,A0P04@B,0R, IAND(K,Q003778),6T,A0N137R) KsIA
INO(K,1774008) +21NN4AB

TASCTITI(I) =K

WRITE (LIS,200) N,IWORD,IASCII
NZTAND(N«AQARLIAR,A020778)

1F (NO,GT.1) WRITE (L1S,400) NO
N3TAND(N=Q00Q108,3020778)

IF (NOLEM.1) WRITE (L18,280) N,IWORD,IASCII
SaLL EXEC (3,LI5+0n1100B,~1)

ARITE (IN,®)

FORMAT (" /CDUMPE SENDM")

END

N ERRORSwx PROGRAM 3 #4p9Q@2 COMMON s 2020



PAGE 0793

3YMBOL TABLE

NAME

8
0y
9120
011
LR R
LY
125
13
0130
4R
2150
2
8270
625
LK)
039
838
64
0420
"5

LT¢]

ey

LT

ay
cLRIO
EXEC
1
TAND
TASCI?
IBASE
IBLOCK
TFAA
IGET
TLWA
IN
I0CTAL
IPARM
IWORD
J

K

L

LIs

M
MING
MO
NQ

NOF
QMPAR

ADDRESS

NAP4KTR
AN1234R
AR1343R
AR1226R
201124R
2A@451R
P21152R
AIB447R
201163R
nA133I8R
N21379R
201504R
AAQ7 Q4R
220656R
200491R
A0@723R
AAQ737R
200337
290606F
2003458R
2015302R
AN1M21R
AA1A14R
AN1236R
22AAAR1 X
20@0316X
2015%7R
20021 3X
2000A12R
200AA6R
PARA24R
AAPNATR
20021 5%
AARAAL DR
202135R
2MQ142R
2ARA24R
200125R
200140R
NA1572R
2B1586R
20Q136R
A01570R
20002026X
2ABAAS K
2A1564R
220137R
209021 2R
2007247 X

couUMP

USAGE

STATEMENT
STATEMENT
STATEMENT
STATEMENTY
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENTY
STATEMENT
STATEMENT
STATEMENT
STATEMENY
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
SURPRUGRAM
SUBPROGRAM
VARIABLE
SUBPROGRAM
ARRAY (w)
VARTIABLE
ARRAY ()
VARIABLE
SUBPROGRAM
VARTIABLE
VARIABLE

STATEMENY FUNCTION

ARRAY (w)
ARRAY {w)
VARIABLE
VARIABLE
VARIABLE
VARTABLE
VARIABLE
SUBPROGRAM
SUBPROGRAM
VARIABLE
VARIABLE
VARIABLE
SUBPROGRAM

FTN4 COMPILERt HMP2417)

NUMBER
NUMBER
NUMRER
NUMBER
NUMRER
NUMRBER
NUMBER
NUMBER
NUMBER
NUMBER
NIUMBER
NUMBER
NUMBER
NUMBER
NUMRER
NUMRER
NUMAER
NUMBER
NUMRBER
NUMBER
NUMBER
NUMBER
NUMRER
NUMRER

TYPE

REAL

REAL

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL

LOCATION

EXTERNAL
EXTERNAL
LOCAL
EXTERNAL
LOCAL
LOCAL
LOCAL
LOCAL
EXTERNAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
EXTERNAL
EXTERNAL
LOCAL
LOCAL
LOCAL
EXTERNAL



PAGE 20a4 CDUMP FTN4 COMPILERY HP24177

CROSS=REFERENCE LIST

SYMBOL REFERENCES

LB pn22 nB26

0yn PR82 2068

#1330 20352 2A53

0L Pn82 2263

oL1a 2455 20568

042 Pan23 P224

n125 2256 2057 pas8

ny pR22 nA23

o13n 29257 2061

0148 PR56 an73

9159 2232 nas4 29262 an7s
®2 nA83a 2081

n2An 2038 2039 en64 ea7a4 gera
0235 P236 na37

»3 2216 Pa320

n3n 20386 no4e

033 2041 ”043

04 P216 nAL7 na25

0ana 2n33 2034 A6 aa76
"5 aANL7 2018

06 a3 2231

w7 2243 2051

ne 7438 nN4a9

0ng 2055 ”"A66

EXEC 2279



PAGE 20235 CDUMP FTN4 COMPILERS HP24%77

CHOSSREFPERENCE L1IST

SYMBOL REFERENCES

1 22323 2024 nay? nele8 po44 2045 P04Ss east
a3} 2052 2056 eesy pas”? 2063 oeeé4 eaess
00267 2086? o268 2873

142 aaa? a097 aee7 2008 1101 ] ga0s

IAND pa2s 0029 0237 2045 gaed 2069 2069 2069
20714 pa71 2071 eers ger?

IASCII 2003 004 2038 2084 2073 0074 a078

IBASE 204 2013 2013 eR16 2219 2021 2021 a2l
pa22 2026 2027 eoeas po29 0030 2047 eose
pas1

IBLOCK 2223 2042 eas? 0067

IFWA 004 0014 eQ14 1 By o119 po2e ge2l ep2!
p0es 0028 @29 p032 pR42 2043 8043 2044
0047 2854

IGET 2042

TLwaA 2024 20193 2018 2016 pai19 go2e pa2e 1.1 3}
80222 ee2” ea27 2032 2043 20458 2084

IN 2206 2011 017 2019 a8

INCTAL 2227 2013 9014 0013

IPARM 2293 2004 2004 2004 2018 2ot o1l o012
o2 024

TWORD 2223 038 eas7 2064 gea’ o068 2074 an7s

J 20028 2028 A48 ees2

L] #047 2048 2259 eese paye 0068 269 2069
p069 2870 ea71! 2074 perl pova 2073

L pa3e

LIs peas eo12 2030Q 20833 poyes ees?2 gae6! o264
2a74 2078 pazs o779

M a4y o042 046 2049 ges2 pe54 1111 (1.1 3

MING eaa7 eee? 0des eeas 2054

MOOD poar eeos ea0s goos



PAGE

2006

COUMP

CROSSREFERENCE LI87

SYMBOL REFERENCES

N A9 2037
2a78

NO 2028 2033
2061 2062

NOF 0025 eaps

RMPAR paiQ

FTN4A COMPILERS HP24177

eas3

2333
0065

n953

ea74

2036
ee76

eers

0049
peve

0a78

0859
ae7s

007?

287y

anest






APPENDIX G
FORTRAN IV COMPILER ERROR DIAGNOSTICS

TYPES OF COMPILER DIAGNOSTICS

There are four types of PORTRAN IV compiler diagnostics:

COMMENT: The compiler continues to process the source statement
contain:ng the errcr. Executable object code is pro-

duced, even though the program's logic may be faulty.

WARNING: The compiler continues to process the statement, but
the object code may be erroneous. The program should

be recompiled.

STATEMENT TERMINATED: The ccmpiler ignores the remainder of the
erroneous source statement, includ:ng any continuation
lines. The object code is incomplete, and the program

must be recompiled.

COMPILATION TERMINATED: The compiler ignores the remainder of
the FORTEAN IV job. The error must be corrected before

compilation can proceed.

NOTE: If an error occurs In a program, the object code will
contain a reference to the non-system external name
.BAD. This prevents loading of the object tape, un-
less forced hy the user. It is strongly recommended
that a program with cocmpilation errors not be executed.

G-1



FORMAT OF COMPILER DIAGNOSTICS

When an error is detected, the erroneous source statement is printed, follow-

ed by a message in this format:

** pname ** ERROR nn DETECTED AT COLUMN cc

pname = the programn rname

nn the diagnostic error number

1

cc column number of source line being scanned when error

detected.

NOTE: If cc = 01, the error is in the source line preceding
the last one printed. If cc = 00, there is an error
in an EQUIVALENCE group, and the group (or a portion
of the group) 1s printed before the error message.

When the END statement is encountered by the compiler and undefined source
program statement numbers still exist, an error message is printed of the

form:

@ nnn UNDEFINED

where nnn is the statement number that did not appear in columns 1-5 of any

of the initial lines of the program just compiled.

Following the listing of the source program, a summary line is listed of the

form;

** nn ERRORS ** PROGRAM = xxxxx COMMON = yyyyy

where nn is the number of errors detected (nn = NO, if no errors were detected).

xxxxx is the decimal number of main memory locations required for the program

okject code.

yyyyy is the decimal number of main memory locations required for the common

block.



TABLE

G-1

HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

EFFECT

ACTION

STATEMENT MISSING

There is no FTN or FIN4 directive

preceding the FORTRAN IV job.

ERROR IN COMPILER CONTRCL

STATE-

Incorrect syntax or illegal para-

meter in FTN or FTN4 directive.

Insufficient core memory
for continuing compilation.

LABELED COMMON NOT ALLOWED
(blank) COMMON
FORTRAN IV.

FILE ASSIGNED

exists

The logical unit for input of the

FORTRAN IV source program 1=

END OF FILE OCCURKRED BEFORE "$"

but
fi1le on disc

3ource input file ended before the
"M or ENDS statenent ending the

FORTRAN 1V jcb was encountered.

ERROR
CODE
0l COMPILER CONTROL
02
MENT
03 3YMBOL TABLE OVERFLCW
04
Only unlabeled
15 allowed in HP
05 NO DISC SOURCE
the address of source
has not been assigned.
Ce
Q7 RETURN

IN MAIN PROGRAM

A RETURN statemen= occurs in a
It is interpreted

main program.
as a STOP statement.

Comp:lation
terminated

Compilation
terminatad

Compilation
terminated

Statement
terminated

Compilation
terminated

Compilation
terminated

Comment

Reduce number of
symbols (constants,
variable names and
statement numbers)

in program and short-
en lengths of veri-
able names and state-
ment numbers.

Convert labeled
COMMON blocks to
blank COMMON.

Precede compilation
by a :JFILE (DOS) or
LS (RTE) directive

to operating svstem

Example: no "3" or
ENDS statement at

end of source file




TABLE G-1 (Cont.) HF

FORTRAN IV COMFILEER ERROR DIAGNOSTICS

ERROR
coDE

08

10

11

12

EXPLANATION

EFFECT ACTION

ILLEGAL COMPLEX NUMBER

A complex number dcoes not con-
form to the syntax:
(+ real constant, -+

real constant)

MISMATCHED CR MISSING PARENTHESIS

An unbalanced parerthesis exists
in a statement or en expected
parenthesis 1is missing.

ILLEGAL STATEMENT

The statement in guestion cannot
be identified.

ILLEGAL DECIMAL EXPONENT

Non-integer constant exponent
in floating point constant.

INTEGER CONSTANT EXCEEDS MAXIMUM

INTEGER SIZE

An integer constant is not in the

range of -32768 to 32767.

Warning Example: non-real
constant as part
of complex number:

(1.0,2)

Statement
terminated

Statement. Examples: The first

terminated 72 columns of a
statement do not
contain one of the
following: (a) the
'=' sign if 1t is a
statement function
or an assignment
statement, (k) the
',' following the
initial parameter
if it is a DO staze-
ment, (c) "IF(' for
an IF statement ox
(d) the first four
characters of the
statement keyword
for all other staze-
ments (e.g. LIME,
WRIT). A statement
keyword may also be
misspelled in the
first four charac-
ters (e.g. RAED).

Statement
terminated

Statement
terminated




A constant is used as a subprogram
or statement function name, as a
parameter of a subprogram or state-
ment function, or as an 2lement

of an EQUIVALENCE group.

TABLE G-1 (Cont.) HF FORTRAN IV CCMPILFR ERROR DIAGNOSTICS
ERROR
CODE EXPLANATION EFFECT ACTION
13 HOLLERITH STRING NOT TERMINATED Statement
terminated
In the use of 'nH', less than n rminate
craracters follow the H hefore
the end of the statement cccurs.
Ir a FORMAT statement, an odd
nunter of guotation marks sur-
round literals.
14 CONSTANT OVERFLOW OR UNDERFLOW Warning
The binary exponent of a floating
poirt constant exceeds the maximum,
i.e., |exponent. 3. If under-
flow, the value is set tc 0.
15 ILLEGAL SIGN IN LOGICAL EXPRESSION — Warning Examples: -.FALSE.,
. . +. E.
An arithmetic operator precedes TRCE
a logical constant.
16 ILLEGAL OCTAL NUMBEEK Statement Examples: 0000012E,
. . terminatec 7 . ]
An octal number has more tnan six rmina 2777778, 12343
digits, is greater than 177777B or
is nen-integer.
17 ITSSING OPERAND - UNEXPECTED DE- Statement Examples:
LIMITER termirated DIMENSION A(2,4,)
7
Missing subscript in an array EQUIVALENCE (B(2))
declarator in a DIMEN:TON
statement or missing name in
ar EQUIVALENCE group.
18 ILLEGAL CONSTANT USAGE Warning Examples:

SUBROUTINE 1234
FUNCTION NAME (X,12,A)
EQUIVALENCE (I,5)




TABLE G-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS
ERROR
COD= EXPLANATION EFFECT ACTION
19 INTEGER CONSTANT REQUIRED Statement Examples: A non-
. ) . . terminated dummy integer vari-
An integer variakle 13 usec y. nteg . et
. L , able is used in an
where an integer constant 1s
X . array declarator or
required. . -,
an integer variable
is used as a sub-
script in an
EQUIVALENCE group.
20 EMPTY HOLLERITH STRING Statement
. . terminated
In an 'nH' specification, n=0. rminatec
21 NON-OCTAL DIGIT IN OCTAL CCONSTANT Warriing Example: 12898
A digit 7 occurs in an octal
constant.
22 TLLEGAL USAGE OF NAME Statement
. . terminated
L variable is used as a sub- netec
program name Or &n array name
1s used as a DO statement
ndex variable.
23 DC TERMINATOR DEFINED PREVIOUS TO Statement Example:
DC STATEMENT terminated 10 DO 10 I=1,5
The terminating statement of a DO
lcop comes before the DO statement
or 1s the DO staterent itself.
24 ZLLEGAL CONSTANT Statement
. . ; terminated
I variable name 1is expected et (
but a constant appears.
25 ILLEGAL SUBPROGRAM NAME USAGE Statement Examples: A subpro-

A subprogram name -.s used where
a variable name cr constant is
expected.

terminated

gram name OCCurs on
the left-hand side
of an assignment

statement. A FUNCTION
or statement function
name oCcurs as an op-

erand in an expression

but no argument 1list
is given.

G‘E)




TABLE G-1 (Cont.) HP FORITRAN IV COMPILER ERROR DIAGNOSTICS

A statement number must be a
1-5% digit integer.

EEROR
CODE EXPLANATION EFFECT ACTION
20 INTEGER VARIARLE OR CONSTANT Statement Examples: A sub-
REQUIRED terminated script in an
. ; EQUIVALENCE grou
Non-integer value =& used where 9 . gl P
. i ‘ . . - element 1is a non-
an Integer qguantitv 1s requilred. )
integer constant.
A READ or WRITE
statement has a
non-integer lcgical
unit reference.
27 STATEMENT NUMBER FREVIOUSLY Statement
DEFINED terminated
The same statement number appears
on two statements.
28 UNEXPECTED CHARACTLEK Statement
, terminated
Syntax of statement 1is
incorrect.
2¢ CNLY STATEMENT NUM=ER ON SOURCE Warning
LINE
Some source code must appear
within the first 7: columns of
e numbered statemert.
30 IMPROPER DO NESTING OR ILLEGAL Statement
DO TERMINATING STATEMENT terminated
The ranges of nested DO locps
overlap or a statement such as
a GO TO, IF, RETURN or END ter-
minated a DO loop.
31 STATEMENT NUMBER STARTS WITH Statement Example: Statement
NCN-DIGIT termineted source code appears

in columns 1-5 of
first line of a
statemert.

G-7




TABLE G-1 (Cont.) HP FORTRAN IV

COMPILEF ERRCR DIAGNOSTICS

ERROR

CODE EXPLANATION

EFFECT ACTION

32 INVALID STATEMENT NUMBER

than
a non-

has
contains

A statement Number
five digits or it
digit character.

moere

33 VARIABLE NAME USED
NAME

A- SUBROUTINE

L name which has oeer previously

used as a variabic 19 now used

in a subprogram reteronce.

34 STATEMENT

outT OF
Source statemerts must pe
the

Ziw

and

+

order |. Gpeciticat
DATA, 3. ~tatement

4. Executable

ion,
Funuctions,

tatements.,

5 NO

PATH
MUMBERED

R UN-

statement (& rover be o es

+

1t 1s not

The

since cred and it

follows a transtor —f control state-
FORMA.T statement

nent. A not

numbered and *herefore 1t annot
e used by the ! AL

36 COUBLY DEFINEI oAl Lo NAME
A name oCcCcure Iy Toiar O 111

& COMMON block,

37 TLLEGAL USE OPF DUVMMY VARIAKLE

& subprogram parame ter oo
COMMON

urs

in a statement .,

Statement
term . neted

Statemen= A=S 1IN

B=SIN (X)

Example:

term:neted

Statement Examples: A sub-
program name
curring, with
argument list, on
the left-hand side
of an assignment
statement may also
generate this
error messayge.

term:nated oc-

arn

Conmen t

Statenent
[

natec

cey

Statement
terrinated




TABLE G-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

NOT FIRST STATEMENS

A PROGRAM statement, 11 present,
must come first. A FUNCTION or

SUBROUTINE statem=nt 1s reguaired
for csubprograms.

terminated

ERROR
CODE EXPLANATION FFFECT ACTION
38 MORE SUBSCRIPTS THAN DIMENSIONS Statement
. . terminated
An array name 1s referenced using
more subscripts taaen dimensions
declared for :1t.
39 ADJUSTARBLE DIMENSION IS NOT A Statement
DUMMY PARAMETER terminated
The variable dimeasior used with
a dummy array nam:s must alsc be
a dummy parameter.
40 IMPOSSIBLE EQUIVALENCE GROUMF Statement
. ) . terminated
Two entries in COMMON appear 1n . L
an BEQUIVALENCE group or two
EQUIVALENCE groups conflict.
Further BQUIVALENIL groups are
ignored.
4] ILLEGAL COMMON BILOCH BEXTENZTON statement
et S terminated
An EQUIVALENCE group regulres
the COMMON block sase to be
altered. Further FEJUIVAELENTE
Jroups are ignored,
4 FUNCTION HAS N PAEAMITERS OR Statement
ARRAY HAS EMPTY L0 ARETOK term:nated
LIST
A function must have at leas=t
one parameter. Uere 1e 1n-
sufficient informatiorn f«
dimension an arras habe.
43 PROGRAM, FUNCTION Ok SUBROUTINE Statement

G-9




TABLE G-1 (Cont.)

HF FORTRAN IV COMPILER ERROR DIAGNOSTICS

A DO statement is 1illegal as
the "true" branch of a logical
IF.

ERECR
COLE EXPLANATION EFFECT ACTION
44 NAME IN CONSTANT LIST IN Statement
DATA STATEMENT terminated
A constant list in & DATA state-
ment contalins a ncn-constant.
45 [ILLEGAL EXPONENT_ ATION Statement
. . . terminated
Zxponentiation is rnot permitted © e
with data types used.
4c FUNCTION NAME UNUSED OR SUB- warning
ROUTINE NAME USED
In a FUNCTION subprogram, the
name of the FUNCTION is not de-
fined or a SUBROUTINE name 1S
ased within the subroutine.
47 FORMAT SPECIFICATION NOT AN Statement
ARRAY NAME, STATEMZINT NUMBEEK terminated
OR *
The FORMAT refererce in an
I/0 statement is invalid.
4¢ 20 MISSPELLED Comment: Example: D@
Keyword DO misspelled.
44 IMPROPER USE OF NAME Statement
. . ) terminated
A variable is used as a sub- ¢
program name.
50 DO STATEMENT IN LOGICAL IF Warning




TABLE G-1

(Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROE
CORLE EXPLANATION EFFECT ACTION
51 CONTROL VARIABLE REPEATED IN Statement
DO NEST terminated
A variable occurs as the index
of two DO loops or implied DO's
or a combination oI these which
are nested.
52 IOGICAL IF WITHIN LOGICAL IF Statement
. . terminated
A logical IF statement 1is rmina
illegal as the "true" branch of
another logical IF.
53 ILLEGAL EXPRESSION OR Statement Examples:
ILLEGAL DELIMITER terminatec The expression con-
. . . tains an illegal op-
Arithmetic or logical express- @ 9 . P
. . . erator or delimiter,
ion has invalid syntax or a . .
e e . . . , has a missing cpera-
delimiter is invalid 1n state- .
tor (adjacent cper-
ment syntax. . .

’ ands) or a missing
operand (adjacent
operators). A READ
or WRITE statement
list has a delimiter
syntax errcr.

24 DOUBLY DEFINED ARRAY NAME Statement
. . terminated
An array name has dimensions
defined for it twice.
55 LCGICAL CONVERSICN ILLEGAL Statement
. . ; terminated
Conversion of logical data to ¢
arithmetic or arithmetic tc
logical is not definec.
56 OPERATOR REQUIRES LOGICAL Statement

OPERANDS terminated

An operand of type TNTEGER, REAL,
DOUBLE PRECISION or COMPLEX has
been used with .2AND., .OR., .NOT.




TABLE G-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT ACTION

57

58

60

ol

o2

OPERATOR REQUIRES ARITHMETIC
OPERANDS

A logical operanc has been used

in an arithmetic operation, i.e. +,
-, *, /, **, or & relational opera-
tor.

COMPLEX ILLEGAL

One of the relational operators
.LT., .LE., .GT. or .GE. has a
COMPLEX operand cr an IF statement
hes a COMFLEX expression.

INCORRECT NUMBER OF ARGUMENTS
FOR SUBPRCGRAM

One of the library routines SIGN,
TSIGN, IAND or ICR is called with
the number of arcuments less or
greater than two or a library
rcutine which is called by value 1is
called with more than one argument.

ARGUMENT MODE EREOR

A library routine which 1s called
by value is called with an argu-
ment that is DOUELE PRECISION,
CCMPLEX or LOGICAL.

LOGICAL IF WITH THEEE BRANCHES
“re expression 1in an [F stetement
is of type logicel and there are
three statement rumbers specified
-n the IF statement:.

ARITHMETIC IF WITH NO BRANCHES

No statement numbers in an arith-
metic IF statemert.

Statement
termineted

Statement
terminceted

Statement
term-_nzted

Statement
terminated

Warn:inc

Warninc

G-12




TABLE G-1 (Cont.; HP FORTRAN IV

COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

63

64

65

(515}

REQUIRED I/O LIST MISSING

The I/0 list required for a free
field input or unformatted out-
put statement has nct been
specified.

FREE FIELD OUTPUT ILLEGAL

An '*' in place of a format
designation is illegal in a
WRITE statement.

HOLLERITH COUNT GREATER THAN 2

In an 'nH' specification, n 2.

PROGRAM UNIT HAS NC BODY

A main program, SUBROUTINE or
FUNCTION requires nc object
program.

ENDS$ OR $ OCCURS BEF(
STATEMENT

The end of the FCRTIXAN job was
before “he END state-
current pro-

encountered
ment terminating the

gram unit.

EXTERNAL NAME HA:- MORE THAN FIVE

CHARACTERS

The name cof a PROGEAM, SUBROUTINE
or FUNCTION has more than five
characters. The ti1rst five
characters are usec.

OCTAL PALUST

STKRING 1! T R
STATEMENT i

Tox
statement ~IT''F o ox PAUSE

dlLgits.

[n the

n has more tharn four

Statement
terminated

Statenert

terminated

Comment

Warrning

Compilation

terminated

Warning

Warr ing

I,

Only the first two
characters after
the H are used.

Example: END state-
ment contains
tax error or it 1is

missing.

syn-




TABLE G-1 (Cont.)

HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

The same dummy variable nane
occurs twice in a subprogram
or statement function para-

meter list.

ERROR
CODE EXPLANATION EFFECT ACTION
70 EQUIVALENCE GROU» SYNTAX Statement
terminated
An EQUIVALENCE group does not ‘
start with a left parenthesis.
All further groups are ignored.
71 DUMMY VARIABLE IN DATA LIST Statement
terminated
Dummy parameters of a subprogram
cannot be initialized in a DATA
statement.
72 COMMON VARIARLE IN DATA LIST Statement
o e terminated
Entities of a COMMON klock can- ©
not be initializad with a DATA
statement.
73 MIXED MODE IN DATA STATEMENT Statemant
. terminated
A name and its corresponding
constant in a DATA statement
do not agree 1in type.
7¢. ILLEGAL USE OF STATEMENT FUNCTION Warning
NAME
The name of a statement function
also occurs in i1ts dummy parameter
list.
75 RECURSTION ILLEGAL Statement
. . terminated
The current program unlt namne
has been used in a CALL state-
ment.
76 DOUBLY DEFINED DUMMY VARIABLE Warning

G-14




TABLE G-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

The type declared for a sub-
program name within 1ts body
does not agree with the type
established in the SUBROUTINE
cr FUNCTION statement.

ERROR
CODE EXPLANAT [ON EFFECT ACTION

77 STATEMENT NUMBER ZGNORID Warrn ing
A statement number on a specifi-
cation, DATA statement, continua-
tion line, or on a statement
function 1is ignored.

78 PROGRAM UNIT HAS NG EXECUTABLE Warning
STATEMENTS
A program unit has only specifi-
cation or DATA statements ox
statement functions.

79 FORMAT DOES NOT START WITH Warning
LEFT PARENTHESIS

&0 FORMAT DOES NOT END WITH Warning
RIGHT PARENTHESIS

85l ILLEGAL EQUIVALENCE GROUFP Statement
SEPARATOR termirated
EQUIVALENCE groups are not
separated by a comma or a non-
array name has sunscripts in an
EQUIVALENCE group. All further
EQUIVALENCE groups are ignored.

82 ILLEGAL USE OF ARRAY NAMLID IN AN statement
EQUIVALENCE GROUF terminated
An array name in an EQUIVALENCE
group is not followed by (', ',
or ')'. All further EQUIVALENCE
groups are lgnored.

83 SUBPROGRAM NAME RETYPLED Warning




TABLE G-1 (Cont.)

HP FORTRAN IV COMPILEER ERRCR DIAGNOSTICS

ERRCR
CCDE EXPLANATION EFFECT ACTION
&4 OBJECT CODE MEMORY OVERFLOW Compiler
. . termi .
Object program size s greater rrinated
than 32K.
IS POSSIBLE RECURSIZI MAY RESULT Comment The user 1is advised
+ o) 3
The use of one of tne library t? E:angib“hs néTE
names REAL, SNGL, DELE, CMPLX, © N e Sk }"r\"’gid‘fﬂ
FLOAT, CLRIO, IFI1¥, ERRU or i; to marxe (‘(flr a'fl“
; mixed mode
EXEC as the name ¢f a PROGRAM, at no mixed mode
L ‘ R exists in the pro-
may produce recurs<ion 1if the .
i ) gram and that no
body of the subprogram sc named . .
. . o library subprcgram
requires an implicit call to one .
used requlres &
of these names. .
call to ERR{.
SI5) DUMMY VARIABLE TN STATEMENT Warning Example:
FUNCTION CANNCT BRI SUBSCRIPTED ASF(A)=A(1,1)+A(2,2)
A dummy variable in a statement
function cannot represent an
array Oor a subprocram name.
87 TOO MANY CONTINUATION LINES Comp-1lation
. . . termi o=
More than 19 continuation lines rnated
for a statement.
83 END OR FORMAT STATEMENT IN Statement Specify a oranch
LOGICAL IF terminated that is not an END
i, . or FORMAT statement.
An END or FORMAT s=tatement 1s
illegal as the "true" branch of
a logical IF.
89 CONTINUE STATEMENT Ok NO BRANCH wWarr.ing Specify a wvalic
IN LOGICAL IF branch or delete
. . statement.
Specifying no branch or a
CONTINUE statement as a branch
in a logical IF iz logically
equivalent to a NOP (No Operation).
The statement is assembled as
stated.
90 FIRST RECORD OF SUBPROGRAM IS A Staterent Statements are

CONTINUATION LINE

The first statement 1s incomplete
if it contains a continuation code.

termination

missing or out of
order in source
program.




APPENDIX H

OBJECT PROGRAM DIAGNOSTIC MESSAGES

uring execution of the object program, diagnostic messages may ke printed

on the ottput unit by the input/output system supplied for FORTRAN programs.

wWhen a halt occurs, the a-register contalns a code which further defines the

nature of the error:

Message A-registex
*FNMT 000001
*FMT 000002
*EMT 000003
*FMT 0000u4
*FMT 000005

Hxplanation

FPORMAT error:

al w or d field doces not
contain proper digxts.

L) HNo decimal point after
w field.

©) w - d <4 for B specification.

a) FORMAT specifications are
nested more than one level
deep.

L) A FOURMAT statement contains
more right parentheses than
left parentheses.

a) Illegal character in FORMAT
statement.

1) Format repetition factor of
zero.

¢) FORMAT statement defines
more character positions
than possible for device.

I.legal character in fixed field
iaput 1tem or number not right-
justified n field.

A number has an illegal form
(e.g., two Es, two decimal
points, two signs, etc.).

Action

Irrecoverable
error; program
must be
recompiled.

Irrecoverable
error; program
must be
recompiled.

Irrecoverable
error; program
must be
recompiled.

Verify daza.

Verify data.






INDEX

Actual argument.............. e=7,9-3
VG 1S B <5 1 T DU |
Alpharnameric character........... 1-2
ANST FORTRAN IV...coieeeeeeenonnan c-1
Argument, actual............. o=7,9-3
Argunent, dummy.............-. 9-3,6-7
Arithmetic assignment

statement. ... .. i i s ve..0-1
Arithmetic element........... R !
Aritnmetic expression............ 3-1
Arithmetic TF.....civieeee.n v .b=5
Arithmetic operator.............. 3-1
BYTAY + et eneneneesonnanannsns 2-12,8-1
Array declarator.......e.eeeenonn 4-1
Array element......... ... e -12
Assignment statement,

arithmetic.. ... e 5-1
Assignment statement, logical....5-3
ASSIGN TO. it ittt eeoonsentonson 5-4
Assigned GO TO....cvueneener s 6-3
A-Type CONVEXrSION......ocevcensn 3-21
BACKSFACE . v vwven F; .............. 7-8
BCS. e e e e xii
Blank character.............. vee.1-2

C

CALL v ee e cenemeeneeceeanenanas =7
CAREIAGE CONTROL . eevevevnnr on..3=-29
Character, alphanumericC.......... 1-2
Character, blank.........cconnn 1-2
Character, special...........o... 1-3
Commert line........coeeeeen. . veea1-3
COMMON s v it et sttt eeeeme s s s e s 4-5
COMMON, NAMEA. ¢ e e v v v moansonronens 4-5
COMMON, unlabeled............ c...4-5
Complex constant............. v 2-7
Compleéx CONVErSI1OM. ..aeeenernnns 5-17
Complex data format.....eeev.....h-4
Computed GO TO....vevvennennons 6-4
Constant, compleX.......coeuv . 2-7
Constant, double precision.......Z-6
Constant, Hollerith.............. 2-9
Constant, integer............. 2=4,2-9
Constant, logical............. ... 2-8
Ceonstant, octal......covvvevann 2-10
Constant, real........ ...... 2=5,2-7
CONTINUE. s o ittt e eneeeee oo W e ©-9

Continuation line............ ...1-4
Control statement, FORTRAN... ... B-2
Control variable........... 6-12,7-2
Conversion, A-TYPe.....ceeeuen. 8-21
Conversion, complex............ 8-17
Conversion, D=-TYP€....eeeeeeen.. g-16
Conversion, E-TypPe........v.o... 8-10
Conversion, F-TypPe.....eeeseen. 8-12
Conversion, G-TyP€.....eeeeen.. g-14
Conversion, I-TypPe.....eeeeee... 8-6
Conversion, K-Type........... L. 8-19
Conversion, L-TypP€....eeeewn... £§-18
Conversion, O-TYPE€...veeeeeen.. 8-19
Conversion, R-TYypPe€.......cee-.. 8-23
Conversion, X-TypP€....ceeeceens 8-27
Conversion, @-Type.........c..- 8-19
Cross Reference Symbol Table....E-1
Data....oeveeennn. F? ........ 4-8,2-13
Data 1tem.. ci i renenennnn 7-9
Data item delimiter............. 7-9
DeclaratoY, 3rray....ec.eeeee... 4-1
Delimiter, data item............ 7-9
Descriptor, field............... 8-3
DigitS . i iieieieieeeeeceneennn 1-2
DIMENS TON . . i it it s et e e venneeses 4-4
DivVIiSioNn. v ten et nenonenannn 3-1
DO et e e e e 6-12
DO-implied list......ccoueieoennn 7-2
0 x1
DOS=M. ittt ettt et ittt X1
Double precision constant....... 2-6
Double precision data format....A-3
Dummy argument..........c... 9-3,0-7
D-Type COnvVEerSiOoN......ueeeen.. 8-16
Editing, wH...... E ............. 8-25
Editing, e e e 8-20
Element, arithretic............. 3-1
Element, array......ceeceeeee.. 2-12
Element, logical................ 3-5
END. ottt ittt eeieeeaaenans 6-3,6-16
ENDFILE............ e 7-8
End job statement, FORTRAN...... B-1
End line... ... i eieeennnnnennnn 1-5
EQUIVALENCE. ¢ v it i it te i eeeean o 4-6

ERROR, COMPILER DIAGNOSTICS.... G-1
ERROR, OBJECT PROGRAM MESSAGLEs. E-1
E-Type COnversSioN.....e.e.ea... 8-10

I-1



Evaluating arithmetic

expressions............... e 3-3
Executable program............... 1-1
Exponentiation................... 3-1
Ixponentiation of

arithmetic elements............ 3-3
Expression..... e e e et 3-1
Expression, arithmetic........... 3~
Expression, logical.............. 3-4
Ixpression, relational........... 3-5
Expression, subscript........... 2-12
EXTERNAL . L ..t i it e e it e e e e e e 4-2
External files............ .. ..., 7=
Pactor............ F? .............. 3-2
Factor, scale....coiiiiiiivinn. 8-8
Field descriptor......c.oivn .. 8-3
Pield separator................. &-28
I'iles, external.......... e e e 7-1
FORMAT . i it it i i e et it e E=2,1-6,7-1
Format specification......... g-1,7-3
Format, complex data.............A-4d
Format, double precision data.... A-3
Format, Hollerith data...........A-5
Format, integer data..... e e A-1
Format, logical data..... B
Format, real data........ e e e A=2
Forratted READ........... v i=4,8-1
Formatted records............ T=3,8-1
Forratzed WRITE.......... v eai=5,8-1
FCRTRAN control statement........bB-2
FORTRAN end job statement........ B-1
FCRTRAN IV library function......v-6
FORTRAN IV job deck.............. BE-1
Free field input......... 7=, 7-4,8~1
F=7Vpe CONVEYSI1ON. e wnoeenueseans =12
PUNCEION . s it i it et cmeecenns 9-1
Function, statement.............. 9-4
Function subprogram. ........ 1-1,9-10
GC TO, assigned..Fs ............... ©6-3
GO T0O, computed. .o ee e nnns 6-4
GC TO, unconditional............. 6-2
G=TVPpE CONVEYrSiON. .t eeene eranaean &-14
Hollerith constan!ﬂ .............. 2-9
Hollerith data format............A-5
HP FORTRAN.............. ii1,8-23,D-.

IF, arithmetic.......cuueennn.. 6-5
IF, 1ogicales e eeiiieiniieeenen. 0=-6
Initial line.....e i nn. 1-4
Initial parameter.......... 6-12,7-2
Input/output list........... 7-2,8-1
Input/cutput unit............... 7-1
Input, free field....... 7-9,7-4,8-1
Integey constant............ 2-4,2-9
Integer data format............. A-1
[tem, datad..e.eeeeeeeeeeeesneneas 7-9
T-Type CONVEYSION.eeeeeaeensanens £-6
J
Job deck, FCRTRAN IV..eeeceoeenn B-1
K-Type conversioJ‘ ............. 8-19
L
Label, statement................ 1-5
T ol ol = 1-2
Library Function, FORTRAN [V....9-6
LINEeS ittt et ettt eaanonoeanasseas 1-3
Line, comment .....ceeeeeeeneeennn-
Line, continuaticn
Line, end....c.eeeeeneeeenneaens
Line, initial......cciceneunnn...
Line, PrograM..eeeceeeeseaeseoess ]
List, DO-implied.....coveen..n. -
List, 1input/output S
List, simple ..veieeeieennn . /
Logical assignment statement....t-.
Logical constant......cccccc....2-8
Logical data format............. A-5
Logical element ...veeeeean .3 -5
Logical expression,.............2-4d
Logical TIF .. ...ieiininannnanns C-6
Logical operator,.......cccvuu.-- 3-4
Logical unit, . ... . .eeeeennnna-. 7-1
L-Type CONVerSiON .....eeeee-n-- 8-18
M
Magnetic tape unit.............. 7-8
Main program........c.eccee-- 1-1,1-6
Mixed mode , ... ... eeeecenoarennces 4-8
Multiplication . ................ 3-1



Named CCMMON............ e e .4-5
Name, symbolic........c... ... 1-6,2-1
0]

Octal censtant...eeeeeeonn cee..2—10
Operatorxr, arithmetic. .c.ovvewsee..3-1
Cperetor, logical...... ... ...end -4
Operstor, relational...... RPN .3-6
O=Type CONVEYSIOTi. vuwe i vne vasenn 6-19
Tarameter, initiaf?. ...... L.6-12,7-2
Carameter, step-size........0-12,7-2
Carameter, terminal......... 6=12,7-2
FarerthesesS . ... ie e e in i 3-3
BASE L ot e e it e e e e e e e 6b-11
Primary . veeeeeeoen- e e e e L.2-1
Frogram, executable.............. 1-1
Eyogram 1Ine........eo vt onennnn 1-4
Frogram, Mall......... e e e 1-1,1-6
Frogram unit....... ... oo vennn 1-1
FEAD, formatted.............. 7-4,8-1
FEAD, unformatted........ .... T-6,8-1
Real constant............n... =5, 2=
Feal data format....... .. .o A-2
Record, formatted............ 7-3,8-1
Record terminator............... 7-10

Record, unformatted..........7-3,8-1

Relational exXpression............3=5
Relational operator............. L 3-6
RELCCATABLE SUBROUTINI -, . ....x11,9-9
Repeat specification............. 3-5
RETURN. « v v et e ve o e nnsnmcsonson v, 08
REWIND . ¢ ever oo e J Y
R R W e e LX1
R-TyDe CONvVersion.............. .8-23
Scale factor.....gs ........... ...8-8
separator, field.......... P ....8-28
Simple list....oooi oo 7-2
Simple variable............... ..2-11
special character..... A £
specification, format...... ,.8-1,7-2
specification, repeat............875
Statement.......... e e .1-5
Statement function....... R

Statement label.......
Statement, terminal...
Step-size parameter...
STOP. .. e, PR
Subprogram........... .

Subprogram, function..

Subprogram, subroutine

Subroutine............ ,
Subrout: ne subprogram.
Subscript..... e
Subscript expression.,.
Subscripted variable..
Subtraction...........
Symbolic names........

Tape anit, magnetic...

Term... .. et e s s e ee e
Terminal parameter....
Termina.. statement....

Terminatzor, record....

TYPE-

Unformatted READ......
Unformatted records...
Unformatted WRITE.....
Uniz, 1aput/output....
Unit, logical.........
Unit, program.........
Unlabelac COMMCN......

\'

Variable, control.....
Variable, simple......
Variablas, subscripted.

wH sditing........ “ees
WRITE, formatted......
Write, unformatted....

X

X-Type conversion.....

" n

. editingl ...
@-Type conversion.....

e 2-1
..... co.. 271
e 2-14
R
,,,,,, ].—(), 4—]
e e e 7-8
3=-2

......... L6-2
e ee e 1=t
J -3
........... 7-7
B A
..... A
A S
e e e 4-5
... 06-12,7-2
.......... =11
e e 2-14

e 8-27
R, 8-20
e 8-19






READER COMMENT SHEET

FORTRAN IV
Reference Manual
5951-1321 Dec 1975

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address




FOLD

=OLD

BUSINESS REPLY

MAIL

No Postage Necessary if Mailed ir the United States

Manager, Technical Publications
Hewlett-Packard Company

Data Systems Division

11000 Woltfe Road

Cupertino, California 95014

Postage will be paid by

|

FIRST CLASS
PERMIT NO. 141

CUPERTINO
CALIFORNIA

FOLD









PART NO. 5951-1321
Printed in U.S.A. 12/75

HEWLETT W PACKARD

Sales and service from 172 offices in 65 countries.
11000 Wolfe Road. Cupertino, California 95014



