2100

computer

HEWLETT g, PACKARD

gulde

microprogramming

POWERFUL HARDWARE
A proven architecture implemented by a micro-
processor in the heart of the control section.

EXPANDABLE MAINFRAME MEMORY

Lets you choose from 4K to 32K a/l in mainframe.

STANDARD FEATURES
Includes extended arithmetic instructions, power fail
interrupt, memory parity check and memory protect.

FLEXIBLE INPUT/OUTPUT

14 internal 1/O channeis, externally expandable to 45.

FULL INTERRUPT SYSTEM
Interrupt priority easily established
or changed for all devices.

COMPREHENSIVE SOFTWARE
Proven software packages for generating
and executing your programs.

2100 computer

The Hewlett-Packard 2100 is a general-purpose digital
computer designed for a wide range of small computer
applications.

Features built-in to the 2100 include extended arithmetic
instructions, power fail interrupt with automatic restart,
memory parity check with interrupt and memory protect.
Besides the standard built-in features, dual-channel Direct
Memory Access (DMA) and Floating Point Hardware are
also available. Under DMA control, data can be transferred
to or from computer memory at rates greater than one
million sixteen-bit words per second. Floating Point Hard-
ware provides a typical ten-fold speed increase for scientific,
computer bound algorithms.

A minimum 2100 provides 4096 words of core memory,
self-contained power supply and 14 input/output channels.

You can select a wide range of memory sizes up to 32K
words, all in mainframe. By including an HP 2155 Extender,
you add another 31 input/output channels and power
supply.

The 2100 automatically inherits a comprehensive range of
proven software packages, including assemblers, compilers,
operating systems and subroutines. A complete line of
standard computer peripherals and 1/0O interface kits are
also available, permitting complete systems to be tailored
around the 2100. Added to these capabilities, you can
also depend on the HP reputation for high quality and
world-wide customer support. The result is a cost-effective
computer that can meet your data processing problems
today and continue meeting them as your needs expand.

HEW

MICROPROGRAMMING

Hewlett-Packard Model 2100 Computer

il

LETT w PACKARD

GUIDE

for

HEWLETT-PACKARD COMPANY

11000 WOLFE ROAD, CUPERTINO, CALIFORNIA U.S.A
Printed:

FEB 1972

5951-3028

‘ PREFACE
—

This handbook is a complete guide to micropro-
gramming for the Hewlett-Packard 2100 Computer.
With the information given here, you will be able to
expand the already powerful capability of your 2100
by adding custom-tailored instructions to the existing
set of microprogrammed operations. This capability
of expanding the Central Processor Unit, in addition
to the extraordinary expansion features of the mem-
ory and I/O sections, contributes to the total flexi-
bility and unusual adaptability of the 2100.

Essentially, this handbook is self-contained., Micro-
assembler documentation is, of course, required in
order to format and assemble your microprograms
correctly. Beyond this, however, no other reference
documents will be needed for most micropro-
gramming projects.

It is intended that this handbook should be read in
sequence, from beginning to end, before attempting
to use the information as a reference.

While Hewlett-Packard cannot assume responsibility
for the effectiveness of microprograms written and
implemented according to the recommendations out-
lined herein, further information and assistance can
be obtained by contacting a Hewlett-Packard field
office. Sales and Service offices throughout the world
are listed at the back of this handbook.

CONTENTS

1 THE MICROPROGRAMMED COMPUTER CONCEPT . .

Comparison of Conventional vs Microprogram Control

What a Microprogram Is

The 2100 Approach v ot v ot oo
Physical Organization
TIMINE . . . o v v v e e e e e e e e e e e e e e

The Steps to Implement a New Microprogram

Practical Considerations 0
General Factors« oo o vt
WCS/ROM Implementations

2 CONTROLLABLE FUNCTIONS IN THE 2100
General Control Functions
Control e
ArithmeticLogic oo
MEMOYY . & o v vt v v o o v oo e o oo e e e e e
Input/Output oo vt
Effects of Microinstruction Fields
R-BusField o i i i v it i et e et
SBus Field o v v v i e e e e e e e
Function Field oo
Store Field & ¢ v i v i i v v v i e
Special Field
SkipField« ot i it

3 ACCESSSCHEME0
The MAC Instruction Group« o o ¢ o -
Mapping o vt e e e e e e e e e e e e e e

Standard Jump Table
Secondary Entry Points
Non-Standard Jump Tables
Assigning Addresses oo e el e
SOftware ACCESS . + v = v v o = o s o s e e e e e e e e
Useof Module O o v v v vt vt e et et e e e

4 THE 2100 MICROPROGRAMMING LANGUAGE 4-1

Microinstruction Word Format 41
Assembly Format 4-2
Micro-Order Instruction Set 4-4
RBusField 4-4
SBusField 4.5
FunctionField 4.7
Store Field 4-11
Special Field 4-12
SkipField, 4-14
5 MICROPROGRAMMINGMETHODS 5-1
Introduction, 5-1
Example Microprogram e e e e e e e e e e e 5-1
Programming Aids and Restrictions 5-5
APPENDIX

Microprogram Listing for Basic Instruction Set A-1

e R il ol ol ol o

G

.

ILLUSTRATIONS

Simplified Block Diagrams of Computer Systems 1-2
Microprogrammable Controls 1-6
Microprogrammed Generation of Controls 1-8
Elementary Microprogram 19
Control Store Locations 1-12
Four-Module Control Store 1-14
External Control Store 1-15
Timing Considerations 1-18
Microprogram Implementation 1-22
2100 Block Diagram,Part A 2-18
2100 Block Diagram,PartB 2-19
2100 Block Diagram,PartC 2-20
2100 Block Diagram,PartD 2-21
Binary Machine Codes for Extensions 3-2
Primary Entry PointCodes 34
Standard Jump Tables 3-7
SecondaryJump Tables 3-10
Microinstruction Formats 4-1
Sample Assembly Coding 44
TABLES
Primary Entry Point Mapping 3-5
Assembly Language Access 3-14
Microinstruction Coding 4-3
SWP Microprogramttt et .. 5-2

Storing/Reading LocationsOand1 5-8

SECTION

THE MICROPROGRAMMED COMPUTER CONCEPT IR

COMPARISON OF CONVENTIONAL
vs MICROPROGRAM CONTROL

Functionally, a computer is comprised of four major sections:

the memory section

the arithmetic logic section
the control section

the input/output section.

ap o

Some textbooks separate input and output so as to form five distinct
sections. However, the section of prime interest in this handbook is the
control section. The advent of a microprogrammable architecture, as
used in the Hewlett-Packard 2100 Computer, represents a departure
from the conventional method of implementing the control function.

Figure 1 compares the basic structure of computer systems using a
conventional control section and one using a microprogrammed control
section. Note that, except for the control section, the two systems are
identical.

However, in the conventional system, although the block picture looks
simpler, the control logic is in fact comparatively more complex. All
control functions are implemented by means of a large number of
specialized logic circuits scattered throughout the entire computer. A
complete set of timing signals, which break the basic machine cycle into
discrete “time periods”, must also be routed throughout the computer
so that the controls may be generated in a desired sequence. This
implementation permits the basic instruction set to be executed in a
most efficient manner. However, any function beyond the original

1-1

CONVENTIONAL
CONTROL

Memory

MICROPROGRAMMED
CONTROL
Controt
Store Conuol

2177-1

Arithmetic
Logic

Memory

Arithmetic
Logic

Input/
Output

1/0 Devices

%@'QQQ@

pwmal' ‘

Bﬂm

6

Figure 1. Simplified Block Diagrams of Computer Systems

1-2

design would be very difficult to incorporate. Even minor changes
might reveal unforeseen consequences, due to logic interdependency,
long after the modification is made. Major changes mean extensive and
costly redesign.

In the microprogrammed system, the control logic is relatively simple,
and it becomes easy for either the original manufacturer or the user to
incorporate new functions (e.g., more machine instructions). The com-
plexity of the microprogrammed system is in the coding of the micro-
programs. But even here, the systematic design of this approach, once
understood, simplifies the process of comprehending and visualizing the
various control functions.

Basically, microprogrammed control consists of two parts: control store
and control decode. The hardware for both is centrally located, rather
than distributed as in the case of conventional control. The control
store may be a read-only memory (ROM), as provided in the 2100 to
implement the basic instruction set, or it may be a writable control
store (typically a semiconductor random-access memory). Stored
within this memory, either permanently or semi-permanently, are the
microprograms which control the operation of the computer. For the
most part, the microprograms are dedicated to the execution of the
machine instructions (one microprogram per machine instruction);
however some microprograms perform other functions, as will be seen
later in this handbook.

The control decode accepts one microinstruction word at a time from
control store. Each such word consists of a number of ‘““micro-orders”
(six in the case of the 2100). Each micro-order is decoded to activate
one or a set of specific control lines to perform a given function. Thus,
in the 2100, up to six control functions may be simultaneously acti-
vated by control decode.

Taken together, control store and control decode are sometimes re-
ferred to as a microprocessor.

Although not shown in figure 1, there is obviously a need for some
means to address the word locations in the control store. Also, the
address will have to be incremented in order to advance through a

1-3

microprogram, and it will have to be altered for microprogram jumps.
These features will be discussed in section 2.

At this point, however, it can be seen that control signals are generated
from a decoded microinstruction word. It should also be apparent that
most timing requirements are automatically taken care of by the fact
that only one microinstruction word at a time may be executed.

WHAT A MICROPROGRAM IS

As applied in this handbook, a microprogram is a program-structured
sequence of commands which resides in hardware and can be translated
by hardware into hardware controls. This mergence of software (i.e.,
programs) into a hardware medium leads to the generic term “firm-
ware’’; this term is used when speaking of microprograms as a physical
entity.

To illustrate the concept of a microprogram, it is best to look at the
hardware functions that are to be controlled and work backward. First
we’ll extract a portion of the 2100 Computer logic (figure 2), then
show how the logic can be controlled by a microprogram (figure 3), and
finally develop an actual microprogram to perform the intended func-
tion (figure 4).

Note: In order to keep things simple at this level of discus-
sion, the following descriptions are not strictly valid
for the 2100 Computer. Specifically, we will neglect
the complications arising out of the fact that the A-
and B-registers are addressable as memory locations.
The actual corresponding microprogram can be seen
in the listing in the appendix of this handbook; see
ROM addresses 144, 145, and 146.

The intended function in our example is to add the contents of a
memory location to the contents of the A-register — i.e., to execute the

1-4

been fetched from memory; as a result, the operand address is presently
residing in the Scratch Pad 1 register. (Fetching is also done by a
microprogram, although this will not be duscussed here.)

Referring to figure 2, note that nine separate controls are necessary to
execute the ADA instruction. Also note the logic symbology key at the
bottom of figure 2. The S-bus, shown bold in the figure, is the major
data communication path in the 2100.

The first step in the execution of ADA is to ask memory to fetch the
addressed operand. (The implicit operand is assumed to be present in
the A-register.) First, the operand address in Scratch Pad 1 is to be read
out to the S-bus (1) and stored in the M-register (2); also, memory must
be given a command (3) to read the contents of the addressed location.
After this, there will presumably be a short delay while memory goes
through its cycle. Then, when the operand is in the T-register, the next
step may proceed.

The second step is to bring the operand from memory into the central
processor unit. (The CPU is the unit which contains the control and
arithmetic logic sections.) This step consists of reading the T-register
contents out to the S-bus (4), routing it through the adder with an
“IOR”, and storing from the T-bus into Scratch Pad 2 (5). Once this is
done, the final step may proceed.

The third step is to add the two operands and deposit the result in the
A-register. This is done by reading out the contents of the A-register to
the R-bus (6), which is one input to the adder, reading out the contents
of Scratch Pad 2 to the S-bus (7), which is the other input to the adder,
and issuing an “add” command to the adder (8). The result on the
T-bus is stored into the A-register (9), and the execution is complete.

By analyzing the types of actions that occur in the preceding steps, a
systematic approach can be made. Simply group the actions according
to the type of control required. That is, controls that:

a. read something onto the R-bus
b. read something onto the S-bus
c. cause the adder to do a specific function

1-5

| B

Memory
Location

16 16 16 “And"’ Gates,
Inputs :D—— Output Simultaneously
Gated by Control #6.

“And"’ Gate

2177-2A

Figure 2. Microprogrammable Controls

1-6

d. store something into a register
e. cause special functions (e.g., read memory).

Refer now to figure 3. Here, the nine actions (circled numbers from
figure 2) have been grouped in five categories directly corresponding to
the above list. (A sixth essential category, SK for skip, is not used in
this example but is shown in the figure.) Thus, action 6 reads something
onto the R-bus, actions 1, 4, and 7 read something onto the S-bus,
action 8 is an arithmetic (add) function, actions 2, 5, and 9 store
something into a register, and action 3 is a special function.

If each of these actions is decoded from an instruction register, as
shown in figure 3, the instruction register will be divided into six
separate ““fields”. Several bits in each field (the average is four) permits
the selection of a specific number of sources, destinations, or functions.
For example, actions 1, 4, and 7 will read (respectively) Scratch Pad 1,
the T-register, and Scratch Pad 2 onto the S-bus. These actions are
encoded, respectively, by the following binary codes in the S field:
1011, 0010, and 1010.

Now it is possible to encode all of the nine actions into an instruction
word format. Since the S-bus and Store fields are each used three
separate times, there will have to be a minimum of three microinstruc-
tion words. It will also be shown shortly that no more than three words
are required. Thus our microprogram will consist of three storable
microinstruction words. These are shown in figure 3 as occupying
locations 0144, 0145, and 0146 of a read-only memory.

Now then, to execute the ADA instruction, assuming that the three
microinstruction words have been correctly coded, it is only necessary
to read three words, in succession, into the ROM Instruction Register.
This is done by supplying the starting address of 0144 (which is derived
from the ADA instruction code) to the ROM Address Register, and
then permitting the system clock (which has a period of 196 nano-
seconds) to increment the ROM Address Register three times. As each
word is read into the ROM Instruction Register, it is immediately
decoded and control signals go out to enable the appropriate gates and
functions. After this (on the third clock), the ROM Address Register is

1-7

@ sP1 —» SBus ®

(@ sBus —» MReg @ sp2 —» sBus
® RW —» Memory ADD —» Adder
(@ T-Reg —» S-Bus ®

® TBus —» SP2

2177-3A
Figure 3. Microprogrammed Generation of Controls

normally forced to address 0000 (the starting address of the fetch phase
microprogram), rather than proceeding to 0147.

Figure 4 defines some of the terms relating to a microprogram, and
shows the written microprogram resulting from the example described

1-8

ONE MICROINSTRUCTION 11 1011 1N ooo1
: NOP ST 1OR M

A MICROPROGRAM i comems

. _ ADD . NOP S1 IOR M RW NOP Fetch Operand
g o dee
' Label NOP T IOR S2 NOP EOP PutinsPz

e A S2 ADDO A NOP NOP . AddtoA-Reg
"Three Microinstructions’ e

2177-4A

Figure 4. Elementary Microprogram

in the preceding paragraphs. Note that the microinstruction word
format has 24 bits, the least significant bit (0) on the right and the most
significant bit (23) on the left. The six fields are distributed left to right
as shown; the R field has three bits, the Function field has five bits, and
the remaining fields each have four bits. One microinstruction (the first
one of the microprogram) is shown in full binary form, with the
corresponding mnemonic below each code. The individual command, in
mnemonic or binary form, is termed a “micro-order”.

The three microinstructions which comprise the microprogram (lower
part of figure 4) directly correspond to the three steps which were
outlined earlier in the discussion of figure 2. Thus the first microin-
struction sends the .address in Scratch Pad 1, via the S-bus, to the
M-register and requests memory to read (RW) the contents of that

1-9

location, The second microinstruction transfers the operand from the
T-register (via the S-bus and adder) to Scratch Pad 2. The third micro-
instruction reads the A-register contents to the R-bus, reads Scratch
Pad 2 to the S-bus, adds the two, and stores the result in the A-register.
Note that it is possible, due to the nature of the flip-flop elements, to
specify an A-register read and an A-register store in the same micro-
instruction word. (This characteristic is not true of Scratch Pad regis-
ters, as explained later.)

Other comments on the microprogram: since the Function field (FN)
does not have a NOP (No Operation) code, an Inclusive “OR” (IOR) is
specified; this has no effect in these cases because an IOR of one bus
with NOP (zeros) on the other bus does not affect the data passing
through the adder from the first bus. The EOP (End of Phase) micro-
order causes the ROM Address Register to return to address 0000 after
executing the final microinstruction. It is always located in the micro-
instruction just prior to the final microinstruction. The program label
“ADD? is assigned and used during assembly of the microprograms by a
microassembler.

THE 2100 APPROACH

The 2100 Computer is not a wholly microprogrammed machine. In
order to maintain software and peripheral compatibility with the earlier
2116, 2115, and 2114 computers, the 2100 was designed to emulate its
predecessors. As a result, some of the controls are hardware-generated,
rather than originating from the microprogram. Thus the control
section is a hybrid firmware/hardware implementation, and as such
bears special considerations which will now be pointed out. First, the
overall organization will be described, followed by a timing discussion.

1-10

PHYSICAL ORGANIZATION

The control store for the 2100 is configured into four modules of 256
words each. This gives a total of 1024 available addressable locations.
Module 0 is fully occupied by the basic 2100 instruction set, leaving
modules 1, 2, and 3 for extensions to the basic set. Although not
recommended, it is also possible to substitute a different module 0 to
replace the existing basic instruction set.

Figure 5 shows the approximate layout of modules within the 2100.
Note that module O consists of six integrated-circuit packs located on
the ROM Control card. Module 1, if present would consist of an
additional six packs on the ROM Control card. Modules 2 and 3, if
present, would each consist of six additional packs located on the
Timing and Control card. If modules 2 or 3 are used, a flat cable with a
pair of edge-connectors is required to connect these modules to the
ROM Control card.

The Hewlett-Packard Floating Point package is an option designed to
occupy module 1. If this option is present, only modules 2 and 3 are
available for special extensions.

Any mix of modules may be present in the computer, except that
module 0 must always be present. For example, modules 0 and 3 could
be present, with 1 and 2 absent. Thus it is possible to allow for the
future addition of the Floating Point option while proceeding to use
special microprogramming in modules 2 and 3. Jumper connections on
the ROM Control card are manually set so as to allow proper addressing
of the modules. Modules must be physically located in their proper
positions, as indicated in figure 5.

Figure 5 also shows the arrangement for adding modules in the form of
Writable Control Store cards. These cards are designed to be installed in
computer I/O slots, so that they may be loaded (written into) via the
I/O system. That is, machine I/O instructions are used to load words
consisting of coded microinstructions from the accumulators into the
256 word locations on the card. The locations are then accessed by the
ROM Control card by means of a flat cable and top-edge connections,
as shown in the figure.

1-11

TIMING AND
CONTROL

ROM CONTROL s
CARD 1/0 Slots

Module

|
ModuleL@
2} %

1

CONTROL
STORE

(Module 1) /‘/ .
(Module 2) /‘/ B

(Module 3)

Note: Approximate Representation

2177-5

1-12

Figure 5. Control Store Locations

When Writable Control Store modules are used, they are assigned
module numbers by manually setting a switch located on each Writable
Control Store card. The corresponding hard-wired module locations on
the ROM Control or Timing and Control cards then may not be used. If
IC packs are present in these modules, they must be removed (except
for module 0) before using WCS as those modules.

Whether the modules consist of hard-wired integrated-circuit packs or
Writable Control Store, or a mixture of both, the addressing capability
limits the maximum number of modules to four.

Figures 6 and 7 show the organization in simplified block form. In
figure 6, the four module blocks correspond to the four hard-wired
module locations shown earlier in figure 5. The basic machine instruc-
tions which are microprogrammed are listed in the module 0 block,
along with some of the other major routines. The optional modules Q,
2, and 3), are represented with broken-line boxes.

Octal addresses for each module, which come from the ROM Address
Register, are listed at the left side of each module block. When one
specific location is addressed, the contents of that location are loaded
into the ROM Instruction Register.

Note that the ROM Address Register has ten bits (0-9), and the ROM
Instruction Register has 24 bits (0-23). In addition to the above
routing, the ten address bits can also be sent to an external control
store in the I/O section, and the 24 microinstruction bits can be
returned via the same cable to the ROM Instruction Register.

The ROM address, which establishes the starting point for a given
routine (e.g., the LDA phase 3 routine) is derived from a mapper, which
generates the appropriate ten bits from the machine instruction code in
the Instruction Register.

In the block on the left side of figure 6 are listed the machine
instructions which are decoded by hardware. While these instructions
do not have dedicated execute routines in firmware, the hardware
decoders must be enabled by special microprograms; these micropro-

1-13

Instruction Register

MODULE |

Phase 1A

HARDWARE
DECODE STA/B ASR Phase 1B
for LIA/B ASL Phase 2
Alter-Skip, JsB MIA/B LSR ASG
Shift-Rotate JMP OTA/B LSL SRG
[I74 MPY RRR FLAG
and
Input/Output CTRL

Instructions

CLA/B CLE
CMA/B SLA/B
CCA/B A/BLS o~ MODULE 1
SSA/B A/BRS ~ ! 256 Words
INA/B RA/BL I | ;
SZA/B RA/BR 1 79l _ |
SEZ A/BLR] maol— ———————— H
RSS ERA/B)
CME ELA/B ; MODULE 2 |
ccE ABLE Lageme 256 Words (e
HLT MIA/B ‘
STF LIA/B [
CLF OTA/B
SFC STO
SFS CLO MODULE 3
sTC s0oC 256 Words .
cLC SOS

‘ i??vL_m__.__._,__,___ ,

ROM Instruction Register

2177-6A

Figure 6. Four-Module Control Store

1-14

1/0 Interface

— OTB

FF

WRITABLE CONTROL STORE

1/0 Bus Data

Module
Enable

T Bits 8,9

v v
[Losd Butter1][stuffex____l
15 8,7 0, 15

7 0 23l ¢ 0
Address
for -
Loadin - -

9 Address Random-Access
? > Decode Memory
256 Words
Address . —]
— [

for
t i‘\
Bits 0-7

\

-
- a—

2177-7

Figure 7. External Control Store

grams also provide appropriately timed reading and storing of registers
for those instructions which use registers. The alter-skip and shift-rotate
decoders must be enabled by ASG and SRG microprogram routines
(respectively). In the I/O group, the decoder for flag instructions (STF,
CLF, SFC, SFS, STO, CLO, SOC, SOS) must be enabled by the Flag
routine; control instructions (STC, CLC) must be enabled by the CTRL
routine; input instructions must be enabled by either LI+ or MIx
routines; and output instructions must be enabled by the OT* routine.
In general, hardware decoding was chosen for these instructions to
permit rapid execution. The bit testing and synchronization required
for these instructions would have resulted in decreased performance if
done purely by firmware.

Figure 7 shows the general configuration of one Writable Control Store
unit. As indicated, the storage capability is provided by a Random
Access Memory (RAM) of 256-word capacity. Each location stores one
24-bit word, and is addressed by an integral 8-bit address decoder. Since
the storage elements are writable (as opposed to read-only), the loca-
tions may be loaded by the computer.

A loading example (top of figure 7) assumes that the RAM address is
contained in the eight most significant bits of the B-register; the
microinstruction is contained in the remaining eight bits plus the 16
bits of the A-register.

The load is initialized by issuing a Set Flag (STF) instruction to the
appropriate select code location of the card. This sets a Switch flip-flop
to enable the loading of Load Buffer 1. Then an OTB instruction
transfers the contents of the B-register to Load Buffer 1, via the I/O
bus, and clears the Switch flip-flop. Next, an OTA instruction transfers
the contents of the A-register to Load Buffer 2. Finally a Set Control
signal (STC, not shown) loads the 24-bit microinstruction from the two
Load Buffers into the addressed RAM location.

To execute microinstructions from RAM, the ten address bits from the
ROM Address Register are sent out to Writable Control Store via the

1-16

flat cable connected to the card. Bits 8 and 9 of the address enable the
particular module according to a manually-set switch, and bits 0-7 are
used on the card as an address. This eight-bit address reads out one of
the 256 RAM locations via output line drivers to the flat cable. This
cable routes the RAM word to the ROM Instruction Register.
(Although not shown in figure 7, the RAM output can also be read
back to the I/O bus by an input instruction for diagnostic checking
purposes.)

TIMING

When writing microprograms for the 2100, it cannot be assumed that
microinstructions can always be executed at the maximum rate (one
every 196 nanoseconds), although this will commonly be the case. The
reason for this is that the memory and I/O sections of the computer
operate on a cycle that is five times as long as the ROM cycle (980 vs
196 nanoseconds). Thus whenever a microprogram reference to mem-
ory or I/O is made, execution of the microprogram must be synch-
ronized with the memory or I/O cycle. That is, the microprogram must
be delayed at certain points until an appropriate point in the longer
cycle is detected.

There are two kinds of delays that achieve synchronization. One is
automatic, called the CPU freeze. The microprogrammer has no control
over this type of delay, but should be aware of its existence. The other
type of delay is deliberately microprogrammed by inserting NOP (No
Operation) microinstructions. It is the microprogrammer’s responsi-
bility to know when to insert a NOP delay and how to apply it
properly.

Figure 8 illustrates the basic timing considerations for micropro-
gramming. Note that the I/O cycle begins at the start of time T2 and
ends at the end of time T6. (The timing nomenclature purposely omits

1-17

Pl ieiw

e (2
_ INPUT/OUTPUT ‘
_CYCLE

[v 3
grzimguzmi
- H : B
%/ CPU Freeze ///// H H
Z i C { C | D
A A A A
: and Rw/cw AAB Dats
to Memory o
and Memory
MPV Test
TIMING FOR 1/0 REFERENCES
: ! g i ¢ : .y
it iTaiTsive T2 ivaiTaivsive vl
T : H T H
CPU Freeze H ' E E !
1 Il 1 L .

£ E E E 10G1 NOP 101 10t F
{Enable or 100 100
10} Resd
Out
A/B

A-F Reference Times, See Text
2177-8A |
Figure 8. Timing Considerations
1-18

TO and T1 in order to maintain documentation uniformity with the
large number of existing interfaces.) Output transfers are made during
T3 and T4 (100 signal), and input transfers are made during T4 and T5
(IOI signal).

The memory cycle also begins at the start of T2 and ends at the end of
T6. Memory read (or clear) starts early in T2 and ends in T3. Memory
write begins in the middle of T4 and ends in T6. Thus, when reading
from memory, data will be available in the T-register during T4, and
when writing into memory, data must be loaded into the T-register
before T4.

The ROM cycle, shown for comparison, can cause five microinstruc-
tions to be executed in the same length of time required for one
memory or I/O cycle.

The lower part of figure 8 illustrates the various delays required for
memory and I/O references.

MEMORY REFERENCES. Memory references are caused when an RW
(Read/Write) or a CW (Clear/Write) micro-order is specified in the
Special field of a microinstruction. If such a microinstruction is
decoded during any time period designated T2 through T5 (see A), a
CPU freeze will delay execution of that microinstruction until T6. At
that time the address and the RW or CW signal is sent to memory. (For.
CW, a memory protect violation test is also made at this time.)

During T2 and T3, data transfers take place. For reading (RW), a
second CPU freeze occurs if, after issuing the RW, you attempt to read
the T-register (Memory Data) while the read half-cycle is not complete.
The T-register can be read either by a T or COND in the S-bus field
with AAF and BAF both clear in the case of COND. Otherwise, no
freeze will occur. This allows the microprogrammer to use the time
periods T2 and T3 following an RW for additional microcoding. The
data from memory is available at T4 (point B) in either case and must
be read out of the T-register in either T4 or T5. A NOP delay is not

1-19

necessary. For writing, however, provision is made to test for a possible
attempt to store into a protected memory location. Thus the second
CPU freeze does not occur during T2 and T3. Instead, two lines of
microcoding must be inserted (C in figure 8) to be executed at times T2
and T3, before further microprogramming can continue at point D
(T4). During T2 an addressable A/B check may be made, assuming
there is no memory protect violation, and at T3 data is sent to memory.
(Refer to ST listing, addresses 0134, 0135, and 0136.)

Note: The preceding two paragraphs assume that the mem-
ory reference operand for RW is in core memory and
the operand address for CW refers to a location in
core memory. If the operand for RW were in the A-
or B-register, no CPU freeze occurs. However this is
not a common occurrence; the shorter possible execu-
tion time (example: as short as 1.568 microsecond
for ADA 1) is not usually listed as a 2100 Computer
specification.

I/0 REFERENCES. I/O references are caused when an I0G1 micro-
order is specified in the Special field of a microinstruction. If such a
microinstruction is decoded during T3 through T6 (see E), a CPU freeze
will delay execution of that microinstruction until T2. At that time the
IOG1 signal enables the I/O decoders. The next three time periods (T3,
T4, T5) must be coded with NOP microinstructions to allow time for
the hardware to fully decode and execute the current I/O instruction.
The remainder of the microprogram may then continue at point F (T6).
However, if the microprogram involves the input or output of data, 101
or 100 micro-orders (respectively) must be encoded in the S-bus or
Store fields, respectively, of the microinstruction during T4 and T5.
Additionally, in the case of output, the data must be read out of the A-
or B-register to the S-bus during T3, T4, and T5, by encoding CAB in
the R-bus field and RRS in the S-bus field. In the case of input (LIA/B,
MIA/B), CAB must be encoded in the STOR field during T5.

In summary: associate T'6 with the start of memory references, and T2
with the start of I/O references.

1-20

THE STEPS TO IMPLEMENT
A NEW MICROPROGRAM

This handbook tells only how to write microprograms, However, a
written microprogram is of no use until it is stored in the appropriate
binary form in ROM or RAM. The task of getting your microprogram
into the required form is simplified by the use of Hewlett-Packard
software which is specially prepared for this purpose. Software docu-
mentation is separately available to describe in detail the procedures
required to implement your microprograms.

Figure 9 illustrates the overall process. Briefly, the process is as follows:

First, the microprograms are written using the guidelines given in this
handbook. These are then punched or recorded in a format suitable for
the HP 2100 micro-assembler. The assembler accepts the cards or tape
and produces an interim punched tape or disc file, and a microprogram
listing. This interim tape or file is then loaded into core memory by a
microprogram editor. The editor provides several useful features,
including:

a. the ability to output the block of microprograms in memory to
Writable Control Store;

b. the ability to examine any word in Writable Control Store;
c. the ability to alter any word in memory, and hence in WCS;
d. the ability to produce a new, edited interim tape or file;

e. an output suitable for use by a WCS driver;

f. an output suitable for use by a mask generator program to
produce mask tapes for the manufacture of ROM or program-
mable ROM.

Depending on the desired end result, the HP software will give you
either a fully loaded Writable Control Store or a set of six mask tapes.
With WCS, the driver used to originally load the card is also callable by
FORTRAN and ALGOL programs. This makes it possible to dynami-
cally modify the microprograms.

1-21

HP
2100
Micro-
Assembler

HP
2100
Micro-
Program
Editor

 WRITABLE
CONTROL
STORE

ROM : .- Programmable ROM
Read-Only Memory e ‘ integrated Circuits
: !m'egtated‘ciwuits," : R Y s :

2177-9

Figure 9. Microprogram Implementation

1-22

The six mask tapes would be used to make the six integrated-circuit
packages for one hard-wired ROM module. Each IC has a 256-location
storage capability for four bits; thus six IC’s are required in order to
form the 24-bit word length. The programmable ROM version is the
same as ROM except in the way it is manufactured.

Once produced, the ROM packages are to be installed in the reserved IC
locations on the ROM Control and/or Timing and Control printed-
circuit cards. Refer to the 2100 Computer manuals for locations and
procedures.

PRACTICAL CONSIDERATIONS

The decision to extend or replace the 2100 firmware bears careful
consideration. After all, considerable cost will be involved — not only in
hardware investment (primarily the control store hardware), but also in
the time requirements for a microprogrammer to acquire sufficient
knowledge to be able to generate correct microcode, and then to write,
debug, and implement his microprograms. Also to be borne in mind is
the fact that much of your software will have to be modified to
recognize new function codes.

The benefits to be gained by special microprogramming must neces-
sarily outweigh the cost considerations. While it is beyond the scope of
this handbook to enumerate specific applications, some of the basic
benefits are listed in the following paragraphs.

GENERAL FACTORS

SPEED. Microprogramming can increase system speed in many ways. A
frequently-used software subroutine, for example, will execute many
times faster when implemented as a microprogram. Since six additional
CPU registers become accessible (see section 2), the number of memory
references can be greatly reduced. This can be particularly significant in

1-23

real-time systems, or systems which are compute-bound (i.e., 1/O runs
faster than computation in a serial input-compute-output application).

MEMORY SPACE. By converting software routines into firmware, core
space is freed for other purposes. The routines remain instantly callable,
as opposed to the technique of relegating routines to mass storage in
order to gain core space.

SPECIAL FUNCTIONS. The software instruction set can be enriched
to perform functions that are application oriented. Thus the general-
purpose computer can become a special-purpose machine, uniquely
adapted to a specific environment. (However, due to hardware restric-
tions, the 2100 cannot be made to emulate other systems.) Because of
the relative inaccessibility of firmware contents (as compared to soft-
ware), proprietary packages can receive a high degree of security.

EXPANDED CAPABILITY. Through microprogramming, six additional
registers become accessible. Software instructions may be invented to
reference and use these registers. In addition, due to the three-operand
format of the microinstruction word, instructions can be created which
perform some function with the contents of two registers and store the
result in a third register. A flag bit, also not otherwise accessible, may
also be used.

As can be expected, certain restrictions limit the operations that may
be performed. These are described later in section 5. However, one
consideration should be mentioned at this point: a microprogram
normally inhibits all I/O interrupts until it is fully executed. (A CJMP
may be used to circumvent this restriction.) This fact can become
significant if a routine is very long — e.g., if it contains potentially
endless loops or numerous links to other microprograms. Micro-
programs should be kept short. Direct Memory Access (DMA) is not,
however, held off by the microprogram.

WCS/ROM IMPLEMENTATIONS

Deciding whether to use Writable Control Store or a permanent Read-

1-24

Only Memory again involves the factor of cost. WCS is convenient,
ready to install as a plug-in unit, but is more costly than ROM.
Although ROM involves a manufacturing step, the cost factor is usually
decisive when a quantity of units are to be made. For low quantities, a
programmable Read-Only Memory is often a suitable compromise. It is
relatively easy to produce, although the cost per unit for large quan-
tities is somewhat higher than for ROM.

The primary advantage of WCS is that it is modifiable — even dynam-
ically modifiable. An executing software program can actually alter the
functions performed by a microprogram during run time, based upon
any internal or external stimuli that may be desired. The modifiability
feature also means that a preliminary microprogram may be tested and
debugged under actual run conditions. Execution speed is the same
whether operating from WCS or ROM. For this reason, WCS is fre-
quently used to check out microprograms before they are permanently
committed to ROM. This also permits division of labor on micropro-
gramming projects; several microprogrammers can independently test
their microprograms before integration into a total set.

The disadvantages of WCS, apart from cost, are that: 1) each module
uses up one I/O slot, and 2) the stored information is volatile — i.e., the
contents are lost in the event of a power failure. This requires an
automatic restart routine to be written which would reload WCS when
power is restored. If automatic restart is used, firmware routines must
be short enough to run to completion and still allow time for power fail
interrupt and execution of the service routine before power is gone.

1-25

SECTION

CONTROLLABLE FUNCTIONS IN THE 2100 I

GENERAL CONTROL FUNCTIONS

Figures 10 through 13 represent a four-part block diagram of the 2100
Computer. Each part corresponds to one of the major component parts
of a computer, as illustrated earlier in figure 1.

The block diagram is specifically configured to show where in the
machine the various micro-orders have their effect. Later, under the
heading, “Effects of Microinstruction Fields”, most of the important
controls will be discussed. First, each of the blocks in the four parts will
be described briefly.

CONTROL

The control section of the computer includes the read-only memory
and its addressing and decoding logic. Refer to figure 10.

INSTRUCTION REGISTER. The Instruction Register is 16 bits wide.
It accepts software instruction codes, in binary, from memory via the
S-bus. The microprograms are responsible for reading memory data
onto the S-bus, and for storing the S-bus data into the Instruction
Register. Major destinations of Instruction Register outputs are: 1) the
Phase 3 Mapper; 2) the SRG/ASG Decoder, for register reference
instructions, and; 3) the I/O Instruction Decoder (see figure 13), for
I/0 group instructions. Other outputs are used for phase control,
operand addressing (IR0-9), and A/B-register references (IR11).

PHASE CONTROL. The Phase Control logic controls the state of the
computer. Operation begins in the fetch phase, and thereafter the Phase

21

Control logic determines the next state (or phase) based upon the
current state and the type of instruction (IR11-15), plus indirect and
interrupt detection logic (not shown). The End-of-Phase (EOP) signal
from the microprogram commands the Phase Control logic to switch to
the next phase. Phase 1A is the fetch phase; phase 1B is the interrupt
fetch phase; phase 2 is the indirect phase; phase 3 is the execute phase.

PHASE 3 MAPPER. The Phase 3 Mapper is enabled by bits 4 through
15 of the Instruction Register and the SPH3 (Set Phase 3) signal from
the Phase Control logic. The mapper accepts these bits from the
Instruction Register and translates this information into a 10-bit ROM
address. This address is the starting location in ROM for the micro-
program which executes the current instruction.

SRG/ASG DECODER. This decoder provides the necessary hardware
controls to enable execution of phase 3 for shift-rotate and alter-skip
group instructions. It, in turn, is enabled by an SRG or ASG signal (not
shown) from the microprogram (i.e., Special field decoder).

ROM ADDRESS REGISTER. The ROM Address Register supplies one
address at a time to ROM. Its contents can be forced to a particular
value from one of seven sources and, unless inhibited by RPT (Repeat)
or overridden by a jump, the content increments on every clock cycle
(196 nanoseconds). The ROM Address Register is loaded for phase 1A
by applying no data input to the register and enabling the parallel-load
terminal with EOP (End of Phase). This forces an address of 0000 (all
addresses are in octal), which is the starting location of the fetch
routine. For phases 1B or 2, EOP again enables the parallelload
terminal, and addresses 4 or 14 are forced. For phase 3, the address
from the Phase 3 Mapper is loaded into the register, again with EOP;
this is the starting address for the routine which executes the instruc-
tion which has been fetched (in phase 1A) into the Instruction Register.
For microprogram jumps (JMP, JSB, and CJMP) a 10-bit address from
the ROM Instruction Register, consisting of bits O through 7 plus 12
and 17, is forced into the ROM Address Register. The JMP, JSB, and
CJMP signals (instead of EOP) enable the parallelload terminal. The

2-2

contents of the Save Register (discussed next) can also be loaded into
the ROM Address Register; this loading is caused by an RSB (Return
from Subroutine) signal, which also (though not shown) enables the
parallel-load terminal.

SAVE REGISTER AND JSB FF. The Save Register provides a means
for returning from a microprogram subroutine. It is controlled by the
JSB (Jump to Subroutine) flip-flop. Normally, the JSB flip-flop is clear.
In this condition, the Save Register automatically copies the content of
the ROM Address Register on every cycle. Then, when a JSB micro-
order appears in the Function field of a microinstruction, a JSB
signal sets the JSB flip-flop. This inhibits the Save Register from
further copying of ROM Address Register contents; thus the return
address for the subroutine is saved. Later, when the microprogram
completes the subroutine, it generates an RSB (Return from Sub-
routine) signal. This signal forces a parallelload of the Save Reg-
ister contents into the ROM Address Register, and clears the JSB
flip-flop. The microprogram thus continues following the point
where the JSB was given.

READ-ONLY MEMORY. Four modules of ROM provide 256 locations
each, for a total of 1024 possible locations. Module 0 (octal addresses 0
through 377) contains the microprograms for the basic instruction set.
The remaining three modules are optional. As explained in section 1,
modules can be located in the I/O section and connected to the ROM
Address Register and ROM Instruction Register by direct cabling.

ROM INSTRUCTION REGISTER. This register receives the con-
tents of the ROM location addressed by the ROM Address Register.
The ROM Instruction Register is 24 bits wide, divided into six
fields as shown. Mostly, the outputs of the register go directly to
the ROM field decoders. The EOP micro-order, however, is sep-
arately decoded, and the address bits for a microprogram jump
(0-7, 12, 17) come directly from the register.

ROM FIELD DECODERS. There is a separate decoder for each field of
the ROM word: R-bus, S-bus, Function, Store, Special, and Skip. The
signals they generate depend on the coding of micro-orders in each

2-3

field. In addition, the output of the R-bus and Store fields can be
affected by AAF and BAF input signals and the A/B bit (IR11) from
the Instruction Register. The Function field can be affected by bit 0
of the A-register or a carry-out (COUT) from the arithmetic logic
unit (ALU). A full discussion of the effects of microinstruction fields
is given later in this section.

MICRO-SKIP TEST LOGIC. A microinstruction skip is accomplished
by inhibiting most of the decoder outputs on the next clock cycle.
This will cause the next microinstruction to have no effect. Some
signals, such as the entire R- and S-bus field signals, are permitted to
occur since they do not change anything. The skip signal to the
inhibit gates is generated by the micro-skip test logic. The decoded
Skip field (SK) specifies which condition is to be tested for a possible
skip. Nine such input conditions (see figure 11) are shown: COUT,
TBZ, OVF, FLG, ALUO, ALU15, Ctr = 17, AAF, BAF. (These are
defined later.) An RSS (Reverse Skip Sense) causes the skip to occur
if the tested condition is false. For example, TBZ alone would cause
a skip if the T-bus is zero; TBZ with RSS would cause a skip if the
T-bus is not zero.

ARITHMETIC LOGIC

The arithmetic logic section contains the data registers and data mani-
pulating logic. Refer to figure 11.

ADDRESSABLE A/B. The Addressable A/B logic contains two flip-
flops, the outputs of which are designated as AAF and BAF
(Addressable A flip-flop and Addressable B flip-flop). One or the
other of these flip-flops may be set (or neither), but not both. If
AAF is set, it indicates that the A-register is being addressed as a
memory reference. Similarly, if BAF is set, it indicates that the B-
register is being referenced as a memory location. Either flip-flop is
conditionally set by an AAB or RW signal from the Special field of
the microinstruction. Thus, AAB or RW will set AAF if T-bus bits 1
through 14 are “0” and ALUO is “0” (this is the address of the

2.4

A-register), and will set BAF if T-bus bits 1 through 14 are “0” and
ALUO is “1” (the address of the B-register).

A-/B-REGISTERS. The A-register and B-register are 16-bit accumu-
lators which are accessible to both software programming and
firmware microprogramming. They are loaded from the T-bus by
signals from the Store field, and can be read out to the R-bus by
signals from the R-bus field. The two registers are capable of being
right-shifted as a 32-bit quantity, in a single clock cycle, by speci-
fying R1 (Right one place) in the Special field, with ARS, CRS,
LGS, or MPY in the Function field and B specified in the R-bus and
Store fields. The B-register contents (most significant 16 bits) are
shifted by routing through the ALU and the shifter; the A-register
shifts internally in the register itself, Either register may also be indi-
vidually shifted left or right through the ALU and the shifter, by
specifying L1 or R1 in the Special field. All of these shifts are micro-
programmable, and are in addition to the non-microprogrammed
shifts generated by the shift-rotate group of instructions. (See note
following Q- and F-register description.)

Q-/F-REGISTERS. The Q-register and F-register are 16-bit accumu-
lators which, in the basic computer, are not accessible to software
programming. Special microprograms must be written if it is desired
to have instructions which reference these registers. Under micro-
program control, the Q- and F-registers are loaded from the T-bus
and read out to the R-bus. The two registers are capable of being
left-shifted as a 32-bit quantity, in a single clock cycle, by specifying
L1 (Left one place) in the Special field, with ARS, CRS, LGS, or
DIV in the Function field and F specified in the R-bus and Store
fields. The F-register contents (most significant 16 bits) are shifted by
routing through the ALU and the shifter; the Q-register shifts
intemally in the register itself, The Q-register may also be indi-
vidually shifted left or right through the ALU and the shifter, by
specifying L1 or R1 in the Special field. Since the F-register is
used as a fence register by the memory protect feature, any micro-
programs which use the F-register must save the contents on entry
and restore the contents on exit, assuming that the system does use
memory protect.

25

Note: Special care should be taken when microprogramming
long shifts on the B-/A-registers and any shifts on the
F-/Q-registers, particularly if attempting unconven-
tional operations. For example, if you do not
intend to store the result of a long shift (i.e., do

-not specify B or F in the Store field), the
A-register would be shifted anyway, but not the
B-register; whereas, in the case of the F- and
Q-registers, neither would be shifted. Also note
that the F-register is not intended to be shifted by
itself as an individual register. This is because the
F-register is permanently linked with the
Q-register. Thus on left shifts, the most significant
bit of the Q-register automatically shifts into the
least significant bit of the F-register; furthermore
there is the possibility of an “OR”-tie with the
Flag content if the LWF micro-order is specified.
This can, of course, be circumvented by clearing
the unwanted. low-order bits;- however, considerable
caution and close study of the cemputer logic are
advisable before attempting such operations. Right-
shifting of the F-register will not have any serious
consequences.

P-REGISTER. The P-register is a 16-bit pregram counter, which
contains the memory address of the next instruction to be fetched.
It is initially loaded manually from the front panel. Thereafter, in
run mode, its contents are incremented at the start of each execute
phase (phase 3) by an INP (Increment P) signal from the Phase
Control logic. During the execute phase of skip instructions (alter-
skip group) the register may be ‘incremented a second time by an
INP signal from the Skip Carry logic. During the execute phase
of JMP and JSB instructions, a different address from Scratch
Pad 1 (SP1) is loaded into the P-register. The address in SP1 is
cither a direct address obtained during the fetch phase (from
Instruction Register bits 0-9, conditionally combined with P-
register bits 10-15, depending on. the istate of page bit IR10) or
a final indirect address obtainéd. from the T-register during an

2-6

indirect phase. The transfer from SP1 to P-register occurs by way
of the S-bus, ALU, and T-bus.

SCRATCH PAD REGISTERS. Like the Q- and F-registers, the four
Scratch Pad registers (SP1, SP2, SP3, SP4) are accessible to software
only by special microprogramming. These are 16-bit registers, nor-
mally used for temporary storage of information during the execution
-of a microprogram. They are loaded from the T-bus, and can be read
onto the S-bus. Information is not normally carried over in these
registers from. one execute phase to another; only the A- and
B-register have this capability. Unlike the A-, B-, Q-, F-, and
P-registers, which use edge-triggered storage elements, the Scratch Pad
storage elements are latches. This means that it is not possible to read
the contents of one Scratch Pad and store back into that Scratch Pad
in the same cycle (i.e., same microinstruction). Another register, such
as another Scratch Pad would have to be specified for storing, if it is
desired to preserve the T-bus information.

MULTIPLEXER. A four-input multiplexer is used to select one of
four registers (A-, B-, Q-, and F-registers) for reading onto the R-bus.
The multiplexer is controlled by the R-bus field of the decoded
microinstruction. Note that, by specifying an RRS (Read R-bus to
S-bus) in the S-bus field, it is possible to read the output of the
multiplexer onto the S-bus, as well as onto the R-bus.

ARITHMETIC LOGIC UNIT (ALU). The ALU performs one of eight
arithmetic or logical functions on the combined R- and S-bus inputs.
If nothing is read onto one of the buses, its state is all-zero, and the
specified function essentially operates on only the remaining bus
input. The function is specified by the Function field of the decoded
microinstruction. The eight functions are: IOR (“inclusive OR”),
XOR (“exclusive OR”), AND (logical “AND”), NOR (“OR” and
complement), ADD (two’s complement add), SUB (subtract S-bus
from R-bus, two’s complement), INC (add S-bus and R-bus, incre-
ment the result), and DEC (subtract S-bus from R-bus, one’s com-
plement; decrement R-bus if S-bus is zero). The output bits of the
ALU are designated ALUO through ALU15.

27

SHIFTER. The 16 ALU bits are applied to the shifter, which routes
each bit onto the numerically corresponding T-bus line unless a shift
signal is applied by either the SRG/ASG decoder or the Special field
of the decoded microinstruction. The SRG/ASG decoder can generate
all three basic shift signals: R1 (Right one), L1 (Left one), and L4
(Left four). The Special field decoder can supply two of these: R1
and L1. The various types of shifts (arithmetic, logical, etc.) are
enabled by controlling the data bit that is inserted into either the
high end (ALX16) or the low end (LSI) of the shifter. See Shift
Linkage paragraph.

SHIFT LINKAGE. The shift linkage logic takes some combination of
three input data bits (Flag, Extend, and either ALX16 or LSI), and
outputs one bit to either ALX16 or LSI depending on the direction
of the shift. The shift linkage is controlled by shift-type signals from
either the SRG/ASG decoder or the Function field.

RFE LOGIC. The RFE (Rotate Flag and Extend bits) logic exchanges
the contents of the Flag and Extend flip-flops on receiving an RFE
signal from the Function field decoder.

FLAG LOGIC. The Flag logic controls the state of the Flag flip-flop,
which is used by microprograms for temporary storage of a single
data bit or status bit. This is not the same flag referred to in the I/O
group. The state of the bit (FLG) may be tested by the micro-skip
test logic and, as mentioned above, its content may be exchanged
with the Extend bit content. (FLG was also used in the shift linkage
for implementing the shift and rotate instructions of the basic
instruction set.) The Flag flip-flop may be set or cleared by SFLG or
CFLG signals from the Function field decoder, or an LWF (Link with
Flag) micro-order may be used to cause the Flag flip-flop to save the
bit shifted off either end of a word by the shifter. That is, if shifting
left (L1), the Flag will assume the state of ALU15 (which would be
lost from the word shifted to the T-bus). Similarly, if shifting right
(R1), the Flag will assume the state of ALUO. The LWF micro-order
also inserts the Flag content into the vacated bit position at the other
end of the shifted word.

2-8

EXTEND LOGIC. The Extend logic controls the state of the Extend
flip-flop. The bit contained in this flip-flop is accessible to software by
way of the shift-rotate and alter-skip groups of instructions. For micro-
programming purposes, the Extend bit will be set by a carry out
(COUT) from the ALU, when enabled by an ADDO (ADD, with
Overflow enabled) or an INCO (Increment, with Overflow enabled)
micro-order in the Function field. Microprograms cannot directly set or
clear the Extend bit; indirectly it may be controlled by rotating with
the Flag bit, which is directly controllable (see RFE and Flag logic).

OVERFLOW LOGIC. The Overflow logic controls the state of the
Overflow flip-flop. The state of the bit contained in this flip-flop can be
controlled by software (STO and CLO instructions) and may be tested
for skips (SOS and SOC instructions). For microprogramming purposes,
the Overflow bit may be directly set or cleared by SOV and CLO
micro-orders, and may be enabled to check for possible ALU overflow
by ADDO and INCO micro-orders. ALU overflow normally is tested by
comparing ALU15 with bit 15 of the R- and S-buses (“anded”); if a
sign change occurs, Overflow will be set. The Overflow bit output
(OVF) is one of the conditions which may be tested by the micro-skip
test logic.

COUNTER. A five-bit hardware counter is available for use by micro-
programs. Typically it would be used for loop counting. The four least
significant bits (0-3) may be parallel-loaded from the S-bus (with bit 4
cleared) by a CNTR micro-order in the Special field, and all five bits
may be read out to the S-bus by a CNTR micro-order in the S-bus field.
The counter is incremented by ICTR or CTRI in the Skip field. The
latter of these two micro-orders, CTRI, enables the micro-skip test logic
to test the counter contents for a full count. A full count is represented
by all ones in the four least significant bits (i.e., octal 17).

MEMORY

The memory section of the computer contains the memory core
modules, plus the memory addressing logic, timing circuits, and a data
holding register. Refer to figure 12.

29

M-REGISTER. The M-register contains the memory address of the core
location which is to be accessed on a given memory cycle. The register
has 15 bit positions. (Bit 15 of an address word is used as an indirect
address indicator and thus never forms part of an address.) Addresses
may be loaded from the S-bus by an M micro-order in the Store
field, and the current M-register contents may be read out to the
S-bus by an M micro-order in the S-bus field. However, the main
output of the M-register is to the Memory Address Decoder. The
Direct Memory Access option may also load the M-register.

MEMORY ADDRESS DECODER. The Memory Address Decoder
converts the address bit pattern in the M-register to a selection of
matrix-arranged addressing lines.

X-Y DRIVER/SWITCHES. A set of Driver/Switch circuits, selected
by the lines from the Memory Address Decoder, supplies the
current required to access one particular memory location. Timing
signals cause the current direction to reverse (for storing) from the
“read” direction to the “write” direction.

CORE. Up to four core modules may be used in optional configura-
tions to provide various storage capacities from 4K (4096 words) to
32K (32,768 words). For reading, the X-Y Driver/Switches provide a
read current to the 17 cores in the selected location; the Sense
Amplifiers (SA) detect the state changes caused by the read currents.
For writing, the X-Y Driver/Switches provide a write current to the
17 cores in the selected location; the bit pattern supplied by the
Inhibit Drivers (described next) causes the T-register contents to be
copied into the core location. (The 17th bit, used by parity-checking
logic, is being ignored in these discussions since parity generation and
checking are not microprogrammable functions.)

INHIBIT DRIVERS. The Inhibit Drivers (ID) are used when writing
data into core. During the write operation, the Driver/Switches
attempt to drive all cores in the selected location to the “1” state.
The Inhibit Drivers supply opposing current to any core which has a
corresponding “0”’-state bit in the T-register. Thus the T-register con-
tents will be copied into the core location.

2-10

SENSE AMPLIFIERS. The Sense Amplifiers (SA) are used when
reading data from core. During the read operation, the Driver/
Switches drive all cores in the selected location to the “0” state. Any
cores that change state obviously were “1”s. The Sense Amplifiers
detect this change of state, and set the corresponding bit in the
T-register. The T-register is always cleared by hardware at the start of
any read operation.

T-REGISTER. The T-register is a 16-bit register that holds the data
that is read out of and written into a memory location during
memory read and write operations. It is automatically loaded
with the contents of a core location during the read operation of
a read/write (RW) cycle, or will be cleared by the clear operation
of a clear/write (CW) cycle. Under microprogram control its con-
tents may be loaded from or read onto the S-bus. A T micro-
order in the Store field loads the register, and a T micro-order in
the S-bus field reads the contents. The Direct Memory Access
option may also load or read the T-register.

MEMORY TIMING. For microprogramming purposes, the memory
timing circuits may be viewed as the block which translates the
RW (Read/Write) and CW (Clear/Write) micro-orders into memory
cycle sequences. A typical microprogrammed read would consist
of specifying RW in the Special field of one microinstruction,
and then reading the contents of the T-register (T in S-bus field)
in the next microinstruction. As explained in section 1, a CPU
freeze will occur, so that the read signal will not actually occur
until data is present in the T-register. A typical microprogrammed
write would consist of specifying CW in the Special field and, in
the same microinstruction, M in the Store field. This will load
the S-bus data (the address) into the M-register and start the
clear operation. Then, after one microinstruction for memory-
protect violation checking (or a forced skip), a T in the Store
field may be used to load the T-register from the S-bus. Note:
the T-register may not be loaded by a microinstruction prior to
issuing CW, since a DMA transfer could destroy the data.

2-11

INPUT/OUTPUT

The input/output section includes I/O instruction decoding and
device interfacing. Refer to figure 13.

I/0 INSTRUCTION DECODER. As mentioned in section 1, the
decoding for I/O instructions is mostly done in hardware. Thus all
Instruction Register bits, IR0O-IR15, are shown applied to the I/O
instruction decoder. The decoder is enabled by an I0OG1 micro-order
in the Special field. The control and timing logic has not been shown
in detail, since it is not particularly relevant to microprogramming.

S-REGISTER AND DISPLAY. In the run mode, the S-register may
be addressed by I/O instructions as select code 01. Thus its contents
may be transferred to and from the S-bus in the same manner as I/O
interface data (see next paragraph). The Display register, in the run
mode, is locked to the S-register, thus providing a convenient means
of display and modification via the front panel.

I/O BUS. For input and output of data, it is necessary for the micro-
program to gate the data between the S-bus and the I/O bus at the
appropriate time. (Refer to figure 8 for timing details, explained
earlier.) Hardware-decoded controls will take care of the remaining
operations involved in data transfers (i.e., addressing the interface
cards via select codes, and transferring data between the cards and
the I/O bus). An I0O micro-order in the Store field will read the
S-bus onto the I/O bus, and an I0I micro-order in the S-bus field will
read the I/O bus onto the S-bus.

CENTRAL INTERRUPT REGISTER. Whenever an interrupt occurs,
the interrupt address (select code) is loaded into the 6-bit Central
Interrupt Register. The contents of this register are used by the PH1B
(phase 1B, or interrupt fetch phase) microprogram, for transferring
computer control to an interrupt subroutine in software.

SKF SIGNAL. The SKF (Skip Flag) signal is one of the conditions
which the Skip Carry logic can use for a possible software instruction
skip. It is not used in microprogramming.

212

EFFECTS OF MICROINSTRUCTION FIELDS

Most of the micro-orders have been mentioned in the preceding
block-diagram discussion. In order to present a perspective from the
point of view of the microprogram, the following descriptions provide
a summary of controls that are available to the microprogrammer.
Refer to figures 10 through 13. A complete listing of the micro-
program language instruction set is given in section 4.

R-BUS FIELD

The R-bus field, having only three bits, is the smallest of the six
fields. Basically, it selects one of the four R-bus registers (A, B, Q, F)
for reading onto the R-bus. This is done by specifying an A, B, Q, or
F micro-order. Also, the A- and B-registers may be conditionally
selected by specifying AAB or CAB. For AAB, A or B will be
selected depending on whether an AAF or BAF signal is being
supplied by the Addressable A/B logic; if neither is present, the A-
register will be read. For CAB, the selection depends only on the
state of IR11 (“0” for A, “1” for B).

S-BUS FIELD

The S-bus field basically selects one of the five S-bus registers (P,
SP1, SP2, SP3, SP4) for reading onto the S-bus. The respective micro-
orders are P, S1, S2, S3, and S4. Also (in figure 11), an RRS micro-
order can read the R-bus value to the S-bus, and CNTR can read the
counter contents (five bits) to the S-bus.

In figure 10, note that a COND (Conditional) micro-order can force
the R-bus field to conditionally read the A- or B-register, depending
on whether AAF or BAF is set (AAB must be coded in the R-bus
field for this case); hardware logic also enables RRS so that the data
will be routed to the S-bus. If neither AAF nor BAF is set, then the
T-register contents are read onto the S-bus. Also, as shown in figure

213

10, a CR or CL micro-order can read an eight-bit constant from the
ROM Instruction Register (RIR0-7) to the S-bus. The CR micro-order
reads this data to the right half of the bus (bits 8 through 15), and
CL reads it to the left half (bits O through 7). In each case the
unused bits are cleared. An ADR micro-order reads Instruction Reg-
ister bits 0 through 9 (normally the operand address for memory
reference instructions) to the S-bus, and (not shown) conditionally
may also read P-register bits 10 through 15. See ADR micro-order
definition.

As shown in figures 12 and 13, the S-bus field can also read the
T-register (T micro-order), the M-register (M micro-order), the I/O bus
(I0I micro-order), and the Central Interrupt Register (CIR
micro-order).

FUNCTION FIELD

The Function field controls operations in five separate areas: the
ALU, the Overflow logic, the Flag logic, the shift linkage logic, and
the micro-jump logic. The following five paragraphs summarize the
controls in these areas.

ALU OPERATIONS. Eight functions can be performed by the ALU
on command of micro-orders from the Function field. These are:
IOR (“inclusive OR”), XOR (“exclusive OR”), AND (logical
“AND”), NOR (logical “NOR”), ADD (two’s complement add), SUB
(two’s complement subtract), INC (add R- and S-bus inputs and
increment the sum), DEC (one’s complement subtract, or decrement
R-bus input). The micro-orders ADDO and INCO are the same as
ADD and INC except for the additional logic they enable (see next

paragraph).

OVERFLOW. Two of the Function field micro-orders directly control
the Overflow flip-flop: SOV sets Overflow, and CLO clears Overflow.
The ADDO and INCO micro-orders enable the Overflow logic, so that
Overflow can be set by arithmetic overflow in the ALU. Note that

2-14

ADDO and INCO also enable the Extend logic for the software ADA/B
instruction. Extend is then set by a carry out (COUT) from the ALU.

SHIFT OPERATIONS. Long shifts (32 bits) and muitiply and divide
steps can be specified by ARS, CRS, LGS, MPY, and DIV in the
Function field. These are complex operations, involving other logic
(not shown in figure 11) in addition to the essential shift linkage
(shown). Refer to definitions for full explanation.

FLAG LOGIC. The Flag flip-flop can be directly set or cleared by
SFLG or CFLG micro-orders in the Function field. By specifying
LWF (Link with Flag) in the Function field, plus L1 or R1 in the
Special field, the content of the Flag flip-flop can be rotated with the
ALU output (i.e., circular shift), left or right. Also, RFE may be used
to exchange Flag and Extend contents.

MICRO-JUMPS. As shown in figure 10, a JMP, JSB, or CJMP micro-
order will force a jump address into the ROM Address Register. This
address is taken from the eight least significant bits of the current
microinstruction (RIR0-7) plus RIR12 and RIR17. The Special and
Skip fields cannot be used in this case. For special reasons that will be
explained in section 3, the four least significant bits of the S-bus
(SBO-3) are “OR”-tied into the ROM Address Register. Additionally,
for JSB only, the Save Register will be caused to save the former ROM
Address Register contents; later, an RSB (Return from Subroutine)
micro-order in the Function field can restore the former address from
the Save Register to the ROM Address Register.

STORE FIELD

Mostly, the Store field is used to store the data on the T-bus into a
specifiable register. Four exceptions (next paragraph) involve the S-
bus instead of the T-bus. As shown in figure 11, the nine R- and
S-bus registers (A, B, Q, F, P, SP1, SP2, SP3, SP4) can be loaded
from the T-bus on command from the Store Field decoder, by A, B,

2-15

Q, F, P, 81, S2, S3, or S4 micro-orders. The A- and B-registers may
also be loaded conditionally by AAB or CAB micro-orders. For AAB,
the selection will depend on whether an AAF or BAF signal is being
supplied by the Addressable A/B logic. If neither is present, no store
will occur. For CAB, the selection depends on the state of IR11 (“0”
for A, “1” for B).

The IR, T, and M micro-orders store the data on the S-bus into
(respectively) the Instruction Register, T-register, or M-register. (Refer
to figures 10 and 12.) The I00 micro-order gates the data on the
S-bus onto the I/O bus (figure 13).

SPECIAL FIELD

The Special field provides for several miscellaneous operations,
described in the following paragraphs. Special functions provided for
the SRG/ASG decoder are disregarded.

SKIP SENSE. An RSS (Reverse Skip Sense) in the Special field will
cause the micro-skip test logic to test for a condition which is the
complement of that specified in the Skip field (e.g., skip on cleared
condition instead of set condition).

ADDRESSABLE A/B. An AAB or RW micro-order enables the
setting of AAF or BAF, depending on whether ALUOQ is “0” or “17,
respectively, with T-bus bits 1 through 14 all “0”’. When AAF or
BAF is set as a result of an RW (Read/Write) micro-order, this indi-
cates that the data to be read is in the A- or B-register; thus a
memory fetch (and synchronization) will not be necessary, although
it is still executed. The following microinstruction, which normally
contains AAB and COND in the R- and S-bus fields respectively,
makes the decision as to where to get the data.

SHIFTS. An L1 (Left one) or R1 (Right one) micro-order in the
Special field causes the shifter to shift the ALU data bits left or right
one place onto the T-bus. By using LWF (Link with Flag) in the
Function field, the vacated bit position can be filled with the current

2-16

bit state of the Flag flip-flop. For long shifts (ARS, CRS, LGS, MPY,
and DIV), L1 and R1 enable shifting of the higher order word. (The
lower order word is shifted internally in the appropriate register.)

COUNTER. The CNTR micro-order in the Special field causes bits 0
through 3 of the S-bus to be loaded into the counter, and bit 4 of
the counter to be cleared.

MEMORY. An RW micro-order causes the memory to execute a read/
write cycle; this will place memory data into the T-register. A CW
micro-order causes the memory to execute a clear/write cycle, which
stores the contents of the T-register into memory. The CW command
requires a “true” skip condition (specified in the Skip field); other-
wise the command will be inhibited.

SKIP FIELD

The Skip field permits one of several conditions to be specified for
possible microinstruction skip decisions. Some special operations (see
next paragraph) are also coded in this field. Ten skip conditions are
shown in figures 10 and 11, specified by the following micro-orders:
CTR (skip if counter bits 0-3 are all ““1”’), CTRI (same as CTR, but
also increment the counter), NEG (skip if ALU15 is “1”"), ODD (skip
if ALUO is “1”), COUT (skip if there is a carry out from the ALU),
FLG, (skip if Flag is set), OVF (skip if Overflow is set), TBZ (skip if
T-bus is all “0”), AAB (skip if AAF or BAF is set), and NAAB (skip
if the T-bus value is not the address of the A- or B-register). In
addition, although not shown, there is a test for no memory-protect
violation (NMPV) and an unconditional (UNC) skip micro-order.

There are three special functions available in the Skip field. The RPT
micro-order causes the next microinstruction to be repeated until a
condition specified in the Skip field of that microinstruction is met.
The ICTR micro-order increments the counter. The EOP micro-order
commands the Phase Control logic to switch to the next phase after
executing the next microinstruction.

2-17

Control
 [pais]2]s

ROM 0 - 377

ROM 400 - 777

ROM 1000 -1377

ﬁﬁy v :

'ROM Instruction Register

ROM 1400 -1777

| (1024)

SRG/ASG

Decoder

SIFN

| »
23 [21.20

17,16 | 12,311} 8,7

ROM Field Decoders

R |

s | e s

S

SP
- >
»
ST
»-
N i S

2-18

Figure 10. 2100 Block Diagram, Part A

Muiti- |

J10R |

Figure 11. 2100 Block Diagram, Part B

plexer 1 |xorR
et ﬁg:
o ADD
sus|
- s InC
- - DEC
SP1 .
RFE SP2
SP3
SP4
v
ALUO,ALULS
i v
TB2
By
R1]
L1
. 3 La]
—_— 1 - e
< . LSt
_ycour y
-] Extend : Shift
Counter Logic Eyl Linkage
. SR e st'g:s%‘
> S
> TICTR,CTRI Nco. jLes
cNTRS T mey
: g oIV
>
r'y
»- ; i . (SRG)
> sp
>
, | o
.) | s
>
- IRO-15
>
_ SKF
S-BUS

2-19

M-Register

T

Memory
Address
Decoder

X-Y X-Y X-Y X-Y
Driver/ Driver/ Driver/ Driver/
Switch Switch Switch Switch |

‘

Memory
Timing

2-20

Figure 12. 2100 Block Diagram, Part C

INPUT/OUTPUT

interface Control and Addressing

T B To/From
gg‘ i o 110 Devices

[S-Register 1 ‘ . I ; b >

L oseay]

. [* i ’imev}tu@i‘
o Address

1/0 Instr

Decoder
Control Logic,
and Timing

Central Int Reg

1RO-15 L IO‘I? CIR

Figure 13. 2100 Block Diagram, Part D
2-21

SECTION

ACCESS SCHEME I

When writing microprograms, it is the responsibility of the micro-
programmer to assign physical addresses for the starting points of his
microprograms. This is a requirement of the micro-assembler. To assign
addresses that are correct and appropriate for the machine structure
requires a thorough understanding of how microprograms are accessed.

This section describes the access scheme. Since microprogram addresses
are derived from machine language instruction codes, we must first
know what codes are available. Therefore, the Macro (MAC) instruction
group, which delimits the available codes, will be discussed first. Fol-
lowing this, it will be shown how instruction codes are mapped into
addresses in the control store modules, and how software can access the
microprograms.

THE MAC INSTRUCTION GROUP

The instruction set for the 2100 Computer reserves a block of binary
codes for extensions beyond the basic set. This block of codes is
designated as the MAC instruction group.

Figure 14 shows how the binary machine codes are allocated for the
MAC group. As shown, the MAC group is specified by a “1” in bit 15
of the instruction, and a “0” in bits 14, 13, 12, and 10. Of this group,
certain codes are preempted by the Extended Arithmetic Group of
instructions; this subset uses bits 11 and 9 in the combinations 00, 01,
and 10. This leaves only the combination 11 to specify a code group for
further extensions. Thus all such extensions are designated with 105 as
the first three octal digits.

31

% 14 13 12 11 10 9 8 7 6 & 4 3 2 1 0.

I A A B

MAC Group 1 000 0
Used by o o
Extended o 1
Avrithmetic
Group 1 1]
b i
k4 H i
CodeGroup | i H T
;;:%':geoog:ai of
Extensions |} H /’ N
f i i
5 i : ;'N“'Av‘ailihle
Due to Hardware

Module Sefects

OCTAL RANGE: 105000

105377

2177-14

Figure 14. Binary Machine Codes for Extensions

Of the ten bits of control store addresses, the two most significant bits
cannot be externally coded, since these bits are controlled internally by
module-select jumpers. Thus only eight bits (O through 7) can be used
in the instruction word to specify the desired functions. Bit 8 is coded
as a “0”. The eight available bits allow 256 possible functions to be
coded, each of which will correspond to a fixed address (i.e., micro-
program entry point) in control store.

The net result is that octal codes 105000 through 105377 are available
for extensions. Some of these, it should be noted, are assigned to
options manufactured by Hewlett-Packard. (For example, the Floating
Point option uses octal codes 105000, 105020, 105040, 105060,

32

105100, and 105120 for instructions FAD, FSB, FMP, FDV, FIX, and
FLT, respectively.) If it is expected that such options will or may be
used in your system, these codes should be avoided.

Due to the hardware mapping arrangement, which will be described
next, the most convenient sequencing of codes is not necessarily
according to consecutive octal numbers (105000, 105001, 105002,
etc.). In fact, the six Floating Point codes listed in the preceding
paragraph are actually the first six most easily implemented codes.

MAPPING

In describing the Phase 3 Mapper in Section 2, it was stated that the
mapper uses bits 4 through 15 of the Instruction Register to generate a
10-bit ROM address. For our purposes (i.e., functions beyond the basic
instruction set), bits 9 and 8 of the instruction will always be “1” and
“0”, respectively. (See preceding paragraphs.) This leaves the four bits 4
through 7 for “primary’’ mapping. Refer to figure 15.

Primary mapping, therefore, translates the 16 possible codes for bits 4
through 7 of an instruction into appropriate control store addresses
called primary entry points. The use of secondary entry points multi-
plies the total number of possible entry points to 256. However, to
apply the secondary entry points requires a special microprogramming
technique to access bits 0 through 3 of the Instruction Register, plus a
structure of secondary jump tables. This special technique will be
discussed later under the heading, “Secondary Entry Points”. For now,
we will consider only the primary entry points.

As shown in figure 15, the series of 16 binary codes for bits 4 through 7
(i.e., 0000 through 1111) will result in a sequence of octal codes as
follows: 105000, 105020, 105040, etc., through 105360. These are
translated by the mapper to specific control store addresses, depending
on which module has been chosen (and hard-wired) to contain the

33

Figure 15. Primary Entry Point Codes

primary entry points. The rule here is that the lowest numbered module
in the system, excluding module 0, must contain the primary entry
points. Examples: if modules 0, 1, and 2 are present, module 1 contains
the primary entry points; if modules 0 and 3 are present, module 3
contains the primary entry points. In all cases, the first 16 locations of
the appropriate module are dedicated to this purpose.

Table 1 shows how the mapping is accomplished. Bits 4 through 7 of
the instruction form the four least significant bits of the generated
ROM address. Bits 9 and 8 of the address are fixed by hard wiring
according to the rule stated in the preceding paragraph. The coding for
bits 9 and 8 is 01 for module 1, 10 for module 2, and 11 for module 3.
Thus the octal addresses of the primary entry points will be 400
through 417 for module 1, 1000 through 1017 for module 2, and 1400
through 1417 for module 3.

The microinstructions contained in the primary entry point locations
are normally jumps. Taken together, the 16 locations are referred to as

34

the primary jump table. Primary jump tables may be either standard,
following a convention established for Hewlett-Packard option exten-
sions, or nonstandard. If your microprogrammed extensions are to be
used in conjunction with extensions supplied by Hewlett-Packard, the
standard jump table configuration must be used.

Standard and nonstandard jump tables are considered next.

Table 1. Primary Entry Point Mapping

*Coding for Module 1. Octal Addresses Start at 400
For Module 2 (10): Octal Addresses Start at 1000
For Module 3 (11): Octal Addresses Start at 1400

STANDARD JUMP TABLE

The jump targets of microinstructions contained in the primary jump
table are defined by convention as shown in figure 16. Three different
situations are shown, where: module 1 contains the primary jump table
(with jump targets in modules 1, 2, and 3); module 2 contains the
primary jump table (module 1 is absent); and module 3 contains the
primary jump table (modules 1 and 2 are absent). In all three cases,
module 0 is assumed to be present, but it does not enter into the jump
table structure.

First consider the case where module 1 contains the primary jump
table. As indicated, the first 16 locations of this module, octal addresses
400 through 417, are used for the table. The first six addresses, 400
through 405, are used for jumps to target addresses within module 1.
The next five addresses, 406 through 412, are used for jumps to target
addresses in module 2. And the last five addresses, 413 through 417, are
used for jumps to target addresses in module 3.

For the jumps within module 1 (see A), the target is any location in the
module following address 417. Since six addresses are allocated to
jumps within module 1, module 1 can contain six microprograms which
can be accessed by direct jumps. (This is the case for the Hewlett-
Packard Floating Point option, which provides six floating point
routines.) However, it is possible for any or all of these primary jumps
to access secondary jump tables instead of pointing directly to a
microprogram routine. As explained later, this would permit up to 96
distinct routines in module 1.

For jumps outside module 1 (see B and C), the target is the numerically
corresponding location in the higher module; i.e., “this location’ plus
octal 400 for module 2, or “this location” plus octal 1000 for module
3. The asterisk is assembler notation for “this location”. Thus, locations
406 through 412 jump to locations 1006 through 1012, and locations
413 through 417 jump to locations 1413 through 1417. In each case,
the location jumped to contains another jump which points directly to
one of the microprograms in that module (or accesses a secondary jump
table, as explained later). Therefore, using only primary entry points,

3-6

400

405
406

412
413

2177-16

Module 1

Jvp A by

IMP*+400 N

JMP*+1000 JMP*+400

* Current Address

Figure 16. Standard Jump Tables

3-7

modules 2 and 3 could contain up to five microprograms each. Note,
incidentally, that the first six and the last five locations of module 2
and the first eleven locations of module 3 (dark shaded) are not used.

Now consider the case where module 2 contains the primary jump
table. Module 1 is absent, so the module jumpers on the ROM Control
card direct all references to routines beyond the basic module 0 set to
primary entry points in locations 1000 through 1017. To allow for
future addition of module 1, the convention here is that locations 1006
through 1012 are used for jumps within module 2 (see D). The next
five locations are for jumps to module 3; the jump targets are “this
location’’ plus octal 400. Each of these target locations, 1413 through
1417, contains another jump which points directly to one of the
microprograms in module 3 (see E).

Since the decoding of machine instructions provides direct access to the
primary jump table, the possibility exists that an erroneous or inappro-
priate code may inadvertently enter locations 1000 through 1005. To
protect against unpredictable results, these locations should be filled
with jumps to an exit routine (labeled OUT in figure 16). Basically, the
exit routine would simply include an EOP (End of Phase) microinstruc-
tion followed by a NOP.

Note: The protective exit jumps described in the preceding
paragraph could also be used in any unused locations
in the primary and secondary jump tables if it is
desired to protect against erroneous MAC instruction
codes. Frequently, however, it may be found more
important to wuse such locations for micropro-
gramming, due to the restrictions of available control
store space.

The final case illustrated in figure 16 shows the primary jump table
located in module 3. Modules 1 and 2 are absent. The first eleven
locations, 1400 through 1412, contain exit jumps. Locations 1413
through 1417 are for jumps to microprograms within module 3 (see F).

38

SECONDARY ENTRY POINTS

The preceding descriptions have referred several times to secondary
entry points and secondary jump tables. The use of secondary entry
points is discussed in the following paragraphs.

As stated earlier in discussing figure 15, the use of secondary entry
points multiplies the 16 primary entry points to a total of 256 possible
entry points. Refer back to figure 15. Note that for each primary entry
point code, there can be 16 secondary entry point codes by varying the
coding of bits 0 through 3. (Only code 0000 is shown for secondary
entry points.)

Thus it is apparent that the use of these additional entry points requires
special access to bits O through 3 of the Instruction Register. This
special access is provided by hardware. Every time a microprogram
jump is executed, bits O through 3 of the S-bus are “OR”-tied into the
ROM Address Register along with the specified jump target (bits
RIRO0-7, 12, and 17). Normally there is no data on the S-bus when a
jump is executed; however, by specifying ADR in the S-bus field, bits 0
through 9 of the Instruction Register will be read onto the S-bus. Of
these 10 bits, only bits 0 through 3 are used in modifying the ROM
Address Register contents. (The logic involved can be seen in the block
diagram, figure 10).

Figure 17 shows how secondary jump tables can be created using the
special hardware feature described in the preceding paragraph. In this
figure, it is assumed that only two primary entry points are to be
expanded into secondary jump tables. However, any number of the
primary entry points may be expanded in this manner. If all 16 primary
entry points were expanded, there would be six secondary jump tables
in module 1, five in module 2, and five in module 3. The secondary
jump tables need not be adjacent to each other or to the primary jump
table, although they are shown this way in figure 17. Note that each set
of secondary jump tables is accessed from the first 16 locations of the
module, following the scheme illustrated earlier in figure 16. Module 1
is used as an example only.

39

(" 400
402 JVP B
Primary Or First 16 Locations
Jump 405 JMP 776 T of a Higher Order
Table Module
3 417
420
Secondary /"‘)
Jump < 425 JVP A \
Table #1
\ 437
440
Secondary
Jump <
Table #2
\ 457
A ¢
B
774| — ADR _1OR S1 — —)
775 | — S1 __JMP _— 240
776 | — ADR 1OR 51 ——‘Q—J
777 =_S1__UMP _— 420 pr——r—e—d
2177-17A

Figure 17. Secondary Jump Tables
3-10

Each secondary jump table consists of 16 consecutive locations, and
must start on a 16-word boundary (octal 420, 440, etc.). In figure 17,
the two tables are assigned to octal addresses 420 through 437 and 440
through 457, and are identified as secondary jump tables number 1 and
number 2. The use of secondary jump table number 1 is described in
the following paragraphs.

Assume that the current instruction has an instruction code of 105125.
From table 1, “Primary Entry Point Mapping”, it can be seen that this
code will map to location 405 in the primary jump table. Location 405
contains a jump to a two-word routine, at location 776 for this
example, which generates the secondary entry point. Location 776
obtains a 15-bit operand address (see ADR definition), of which we are
interested in only the four least significant bits. These four bits are
from the Instruction Register, and specify the secondary entry point.
The address word is stored in Scratch Pad 1 so that it may be read out
in the following “jump’> microinstruction.

Note: To access secondary jump tables in the odd-numbered
modules (1 and 3), you must use Scratch Pad 1 or 3
in the two-word jump routine, as outlined above and
in figure 17. This is because the least significant bit of
the S-bus field (ROM address bit 17) is part of the
jump target. Thus, when the jump is given (see next
paragraph) bit 17 of the microinstruction must be a
“1”, which is the case when specifying S1 or S3 in
the S-bus field. Conversely, to access secondary jump
tables in the even-numbered modules (0 and 2) the
least significant bit of the S-field must be a “‘0”. Thus
Scratch Pads 2 or 4 would have to be used. However,
note that ADR also has a “0” as the least significant
bit. This means that in modules 0 and 2, the two-
word jump routine is not necessary. Instead, the
entry in the primary jump table may specify a jump
directly to the secondary jump table. For example, if
the primary entry point is 1007, this location may
contain “ADR, JMP, 1020”, which points directly at
a secondary entry point.

311

Continuing with the example in figure 17, note that location 777
contains a jump to location 420 — but in addition also specifies S1 in
‘the S:bus field. Thus, according to the JMP definition, bits O through 3
(i.e., -octal 5) will be “OR”-tied into the jump target address. As a
result, the jump is to location 425, which is the sixth entry in
secondary jump table number 1. Location 425 contains the secondary
jump to the actual starting point of the routine (see A) corresponding
to instruction code 105125.

Note that location 405 permanently refers to the jump routine, and
location 777 in the jump routine permanently refers to the starting
point of one secondary jump table. It is the ADR in the microinstruc-
tion which accounts for the selection of microprogram routines.

It is not necessary for all primary entry points to refer to secondary
jump tables just because one entry point does so. The primary jump
table may contain any mixture of direct jumps or jumps to secondary
tables. Thus a primary entry point at location 402 could contain a jump
directly to the starting point of a microprogram routine (see B).

Although the use of secondary jump tables greatly extends the number
of specifiable functions, it should also be remembered that too many
jump tables use up a significant number of valuable control storage
locations.

NON-STANDARD JUMP TABLES

Non-standard jump tables are any which do not follow the conventions
outlined in the preceding descriptions. For example, you may decide to
use only one module and use all 16 locations in the primary jump table
to reference routines or secondary jump tables within that same
module. Or, jump targets for either primary or secondary tables may
point backward — i.e., to lower numbered locations or modules. Any
such departure from convention may be made, provided there is an
adequate understanding of the principles involved and assuming the
decision has been made that the modules so programmed will not be

312

used in conjunction with modules which use the standard jump tables
(e.g., Hewlett-Packard options).

It is permissible (i.e., not a non-standard technique) for microprograms
to have references outside their own module, as long as that module
provides a return to the calling microprogram, or an EOP signal to allow
normal software sequencing to continue. The use of external reference
designators is described in the micro-assembler documentation.

ASSIGNING ADDRESSES

From the preceding, it is apparent that the instruction codes assigned
to specially microprogrammed functions are dependent on the access
scheme. The access scheme you establish is, in turn, dependent on
several factors, including:

the number of modules used
the number of microprograms per module
whether or not secondary entry points are used, and

whether or not the resultant code has previously been assigned
by Hewlett-Packard or the user.

Since these are all variable factors, hard and fast rules about assigning
addresses cannot be established here. Given your specific application,
and using the information given in this section, you will first allocate
the necessary jump tables, configure them as necessary, and assign
appropriate addresses for each table entry and each microinstruction.
Gaps of two or three addresses between each microprogram are
advisable to allow for future modifications.

313

SOFTWARE ACCESS

Table 2 lists two methods of accessing microprogrammed functions
from assembly language. The first method (left) is for those assemblers
which include the RAM (Random Access Memory) pseudo instruction.
The second method (right) is for those assemblers which do not have
the RAM pseudo instruction.

The RAM pseudo instruction essentially merges the MAC group code
(octal 105) with a separately definable code, so that the result may be
executed as a machine instruction. The Equate statement (EQU) is used
to define up to 256 possible functions.

The alternative method requires an octal number to be inserted in-line
with machine language instructions, so that the octal code will be
executed as a machine instruction.

In both cases, parameters may be passed to the function by use of the

DEF or OCT statement. This will bring the address (or the parameter
itself) into the P-register where it may be accessed by the micro-

Table 2. Assembly Language Access

LD
DEF R o DE
STBY STB o
RAM SWB e 105377
DEF BADD oCT !
e ~ 105000
S : DEF BADD

e

255
SswB EQU A
000

314

program. It is the responsibility of the microprogram to increment the
P-register the proper number of times before exiting from the routine,
so that it will point to the next instruction at the end of phase 3.
Remember that the P-register is automatically incremented once upon
entering phase 3. Thus if, for example, three parameters are passed into
the routine via DEFs, then the P-register must be incremented three
times by the microprogram to ensure proper return to the software.

USE OF MODULE 0

It is possible to rewrite module 0. However, as mentioned previously,
this is not recommended. A very high degree of machine knowledge is
required in order to do any rewriting. Furthermore, Hewlett-Packard
warranties and support guarantees are voided if module 0 is modified. It
is expected that the extension capabilities provided by the three addi-
tional control store modules will cover all needs for special micropro-
gramming.

If, however, you do intend to use module 0, machine control can be
switched from the basic ROM module to Writable Control Store by a
switch located on the Writable Control Store card. In this way, the new
module 0 microprograms may be debugged without making any hard-
ware modifications. The next step, if desired, would be to install a
permanent module 0 ROM in place of the original ROM module. This
requires unsoldering the six ROM packs and installing the six new packs
in their place.

3-15

SECTION

THE 2100 MICROPROGRAMMING LANGUAGE

MICROINSTRUCTION WORD FORMAT

Figure 18 illustrates the basic formats for microinstruction words. As
shown, the 24-bit word is divided into six fields, and can be represented
by an eight-digit octal number.

When a jump (JMP, JSB, or CJMP) is specified in the Function field,
bits 0 through 7 of the microinstruction are used for part of the jump
target address instead of for Special and Skip operations. The remaining
part of the jump target address consists of bits 12 and 17 of the
microinstruction. Bit 12 is the least significant bit of the Function field
(which accounts for the fact that JMP, JSB, and CJMP each have two
valid Function codes), and forms the most significant bit of the jump
target (i.e., bit 9). Bit 17 is the second most significant bit (i.e., bit 8)

2177-18

Figure 18. Microinstruction Formats

41

of the jump target address; note the position reversal with bit 12. When
a jump code is present in the Function field, the micro-assembler
examines the jump address and automatically codes the proper values
for bits 12 and 17. Therefore, care must be taken if an S-bus function is
to be coded concurrently with the jump micro-order. (See detailed note
under the heading “Secondary Entry Points” in section 3.)

When a constant is to be read onto the S-bus (CL or CR in the S-bus
field), bits 0 through 7 of the microinstruction are used for the con-
stant, instead of for Special and Skip operations.

Coding a CL or CR in the S-bus field or JMP, JSB, or CJMP in the
Function field automatically inhibits execution of the Special and Skip
fields.

Table 3 is a consolidated coding table showing the binary coding of
each of the micro-orders. For the R-bus field, only the three least
significant code bits are used. For the Function field, all five bits are
used. For all remaining fields, only the four least significant bits are
used.

ASSEMBLY FORMAT

Normally, the microprogrammer will write his microprograms for
assembly by a micro-assembler, and thus generally he does not have to
be concerned with binary coding. The micro-assembler has its own set
of requirements and rules, which are described in the micro-assembler
documentation. It is assumed that the microprogrammer has this docu-
mentation at his disposal.

For completeness of this text, however, an approximate representa-
tion of the assembly format is shown in figure 19. For assembly, a
fixed-field format is used. Typically, cards would be punched according
to this format, and read by the micro-assembler using a card reader. The
assembly format allows for comments following each microinstruction.

4-2

Table 3. Microinstruction Coding

DO m N O - 0000 -"00==00==200==00== |
“‘Q‘ggfuidd,ggg.‘Q@»@_‘@.»Q..«o.;@..»@.-o_‘o.;o.ﬁ.o..s

e S R = - T

**Undefined codes

*See CAUTION note in definitions

CODE
5-Bit Field : a-*Bus “S:Bus | Function | Store | Special | Skip
4-Bit Field Field | Field | Field | Field | Field | Field
] 3-Bit Field | 3Bits | 4 Bits 5Bits | 4Bits | 4 Blts 1 4 Bits
1 NOP | NOP 1OR NOP NOP NOP
1 *ca P sov A RW | UNC
1 AAB cL cLO B 10G1 EOP
1 CAB ’ - CR SFLG AAB cw NAAB
1 F S1 CFLG CAB ASG2 AAB
1 Q 82 LWF Q ASG1 | NMPV
1 B 83 CJMP F ECYN CTR
1 A S4 ARS P ECYZ CTRI
0 COND CRS S1 *LEP | TBZ
0 ADR LGS 82 AAB | FLG
0 CNTR RSB S3 SRG2 | OVF
0 _RRS CJMP sS4 SRG1 | COUT
0 M Jvp IR CNTR | NEG
0 T Jmp T R1 0ODD
] 101 JSB M L1 RPT
0 CIR JsB 100 RSS ICTR
1; * % |
1
1
1
¥
1
1
.0
0
0

Refer to the assembled listing in the appendix of this handbook for
examples of the assembly format.

CODING FORM

Columns:
———5 7— —1011— —14 16— —19 21-—24 26 —-—29 31— =34 36~=~=——= =~

SWAP NOP NOP IOR NOP NOP NOP No Operation

NOP NOP JsB NOP GETA First Address

2177-19

Figure 19. Sample Assembly Coding

MICRO-ORDER INSTRUCTION SET
R-BUS FIELD
A Reads the A-register onto the R-bus.

AAB Reads the A-register or B-register onto the R-bus, depending
on whether the A Addressable FF or B Addressable FF is set.
(Both flip-flops cannot be set at the same time.) If neither
AAF nor BAF is set, the A-register will be read onto the R-bus
(unless COND is present in the S-bus field, in which case the
T-register is read onto the S-bus).

B Reads the B-register onto the R-bus.
4-4

CAB

cQ

NOP

Reads the A-register or B-register onto the R-bus, depending
on whether Instruction Register bit 11 is “0” (A) or “1” (B).

Reads the Q-register onto the R-bus if Instruction Register bit
9 is a “1” and the Index Mode flip-flop is set. Used only for
diagnostics.

CAUTION

The CQ and RFI codes are not intended for use in
special microprogramming. The use of these codes will
affect the operation of module 0 and consequently
will cause incorrect operation of HP software. To
allow continued use of existing software, it would be
necessary to rewrite those instruction routines in
module 0 which use the Q-register. As noted under the
heading “Use of Module 0, such changes will void
Hewlett-Packard warranties and support guarantees.

Reads the F-register onto the R-bus.
No operation; results in all ““0”’s on the R-bus.

Reads the Q-register onto the R-bus.

S-BUS FIELD

ADR

Reads Instruction Register bits O through 9 and (if Instruction
Register bit 10 is a “1”) P-register bits 10 through 15, or (if
Instruction Register bit 10 is a “0”’) six “0”s onto the S-bus.
ADR is normally used to obtain an operand address.

4.5

CIR

CL

CNTR

COND

CR

4-6

Reads the Central Interrupt Register onto S-bus bits 0 through
5.

Reads a constant onto the left half (bits 8 through 15) of the
S-bus; the constant is obtained from bits O through 7 of the
ROM Instruction Register. Execution of the Special and Skip
fields is inhibited. Reads “0”s onto the right half (bits 0
through 7) of the S-bus.

Reads the counter contents onto S-bus bits 0 through 4. (Bit 0
is the least significant bit.)

Normally used with AAB coded in the R-bus field. If so, and
AAF is set, the A-register is read onto both the R- and S-buses;
if BAF is set, the B-register is read onto both the R- and
S-buses. If neither is set, the T-register is read onto the S-bus.
If some function other than AAB is coded in the R-bus field
when COND is used in the S-bus field, one of the following
will occur:

a. if neither AAF nor BAF is set, the T-register is read
onto the S-bus;

b. if either AAF or BAF is set, the register selected in the
R-bus field (including F and Q) is read onto both the
R- and S-buses.

If the “Data Ready’’ signal from memory is false, the CPU will
freeze until this signal becomes true.

Reads a constant onto the right half (bits O through 7) of the
S-bus; the constant is obtained from bits O through 7 of the
ROM Instruction Register. Execution of the Special and Skip
fields is inhibited. Reads “0”s onto the left half (bits 8
through 15) of the S-bus.

101

NOP

RRS

S1

S2

S3

5S4

Reads the I/O bus onto the S-bus.

Reads the M-register onto the S-bus. Note that the M-register
contains only 15 bits.

No operation; results in all “0”’s on the S-bus.

Reads the P-register onto the S-bus.

Reads the R-bus onto the S-bus.

Reads Scratch Pad 1 onto the S-bus.

Reads Scratch Pad 2 onto the S-bus.

Reads Scratch Pad 3 onto the S-bus.

Reads Scratch Pad 4 onto the S-bus.

Reads the T-register onto the S-bus. If the ‘“Data Ready”

signal from memory is false, the CPU will freeze until this
signal becomes true.

FUNCTION FIELD

ADD

ADDO

AND

ARS

Adds the R-bus and S-bus.

Adds the R-bus and S-bus and enables the Overflow logic. If
the instruction ADA or ADB is detected, the Extend logic is
also enabled.

Logical AND of the R-bus and S-bus.

32-bit arithmetic shift. The direction of shift is specified in the
Special field (L1 or R1). If L1, a “0” is shifted into bit 0 of
the low-order register; bit 14 of the high-order register is lost,

4-7

CFLG

CIMP

CLO

CRS

DEC

4-8

and the sign bit is unchanged; the Overflow flip-flop is set if
ALU bits 14 and 15 differ. If R1, the sign is copied into bit 14
of the high-order register, and bit 0 of the low-order register is
lost. ARS also enables IOR.

Note: On 32-bit right shifts, the B- and A-registers
must be used; the B-register contains the
high-order bits and the A-register contains
the low-order bits. On 32-bit left shifts, the
F- and Q-registers must be used; the F-
register contains the high-order bits and the
Q-register contains the low-order bits.

Clears the CPU Flag flip-flop. Also enables IOR.

Conditional jump. (See JMP note.) Executes a jump if, in the
run mode, an interrupt or an operator panel halt command is
detected. Otherwise, the microinstruction is treated as an IOR.
(The IOR function is enabled regardless of whether or not the
jump condition is detected.) In the single-cycle mode, the
detection of CJMP will cause the computer to halt uncon-
ditionally. The Special and Skip fields are inhibited, as is the
“read-P”” micro-order in the S-bus field. See JMP definition for
derivation of the jump address.

Clears the Overflow flip-flop. Also enables IOR.

32-bit circular shift (rotate). (See ARS note.) The direction of
shift is specified in the Special field (L1 or R1). If L1, bit 15
of the high-order register is transferred to bit O of the low-
order register. If R1, bit 0 of the low-order register is trans-
ferred to bit 15 of the high-order register. CRS also enables
IOR.

Subtracts the S-bus from the R-bus in one’s complement form.
If the S-bus contains all “0”’s, the R-bus is decremented.

DIV

INC

INCO

IOR

Divide step. Normally used in a repeat loop as part of a divide
algorithm., DIV subtracts the S-bus from the R-bus (two’s
complement) and checks the COUT (Carry Out) signal for a
store decision. If COUT is “1”, the result of the subtraction is
left-shifted one place and stored in a register (normally the
F-register). If COUT is “0”, the existing contents of the
F-register are shifted left one place internally in the F-register;
the subtraction result is not stored. In either case, the Q-
register also shifts left one place, COUT is shifted into bit O of
the Q-register, bit 15 of the Q-register shifts into bit 0 of the
F-register, and bit 15 of the F-register is lost. A valid divide
step requires L1 in the Special field, F in the R-bus and Store
fields, and an S-bus register (normally a Scratch Pad) specified
in the S-bus field. DIV requires two CPU clock cycles to
execute.

Increments the sum of the R-bus and S-bus.

Increments the sum of the R-bus and S-bus, and enables the
Overflow logic. If the memory reference instruction ADA or
ADB is detected, the Extend logic is also enabled.

Logical “inclusive OR” of the R-bus and S-bus.

Jump. Transfers bits 0 through 7 of the ROM Instruction
Register (RIR0-7) to the corresponding bits of the ROM
Address Register, RIR17 to bit 8 of the ROM Address Reg-
ister, and RIR12 to bit 9. Bits O through 3 of the S-bus are
“OR”-tied with RIR0-3 in the forming the jump address. The
Special and Skip fields are inhibited, as is the “read-P”’ micro-
order in the S-bus field. Also enables IOR.

Note: JMP, JSB, RSB, and CJMP each require two
machine cycles to execute. The microin-
struction containing the jump is executed
during the first cycle, and a NOP is executed
in the second cycle. The second cycle is used

JSB

LGS

LWF

MPY

NOR

4-10

to allow data to be accessed from control
store at the new address.

Jump to microprogram subroutine. Same as JMP, except also
sets the JSB flip-flop, thus locking the return address in the
Save register.

32-bit logical shift. (See ARS note.) The direction of shift is
specified in the Special field (L1 or R1). If L1, a “0” is shifted
into bit 0 of the low-order register and bit 15 of the high-order
register is lost. If R1, a “0” is shifted into bit 15 of the
high-order register and bit O of the low-order register is lost.
LGS also enables IOR.

Link with Flag. If L1 is coded in the Special field, the content
of the Flag flip-flop is transferred to the left-shift input (LSI)
of the shifter, thereby transferring its content to T-bus bit 0,
and ALU bit 15 is transferred to the Flag flip-flop. If R1 is
coded in the Special field, the content of the Flag flip-flop is
transferred to the right-shift input (ALX16) of the shifter,
thereby transferring its content to T-bus bit 15, and ALU bit 0
is transferred to the Flag flip-flop. Also enables IOR.

Multiply step. Normally used in a repeat loop as part of a
multiply algorithm. MPY first checks bit 0 of the A-register for
an add decision. If this bit is a *“1””, the R- and S-bus inputs to
the ALU are added; if a “0”, the R-bus only is routed through
the ALU. In either case, the output of the ALU is shifted right
one place and stored back into the R-bus register (normally
the B-register, assumed to be specified in the Store field), with
COUT forming bit 15. The A-register is shifted right, and ALU
bit O fills vacated bit position 15. Bit 0 of the A-register is lost.
A valid multiply step requires R1 in the Special field; also,
normally, B in the R-bus and Store fields, and S1/2/3/4 in the
S-bus field.

Logical NOR of the R-bus and S-bus. If a NOP is specified in
either the R-bus or S-bus field, the complement of the other is

obtained. If both the R-bus and S-bus fields contain a NOP,
the ALU output (shifter input) consists of all “1”’s.

P1A Sets phase 1A and clears the current phase. Used mainly by
diagnostics.

RFE Rotates the contents of the Flag and Extend flip-flops.

RFI Rotates the contents of the Flag and Index Mode flip-flops.
See CAUTION note under CQ definition.

RSB Return from microprogram subroutine. Transfers the contents
of the Save register into the ROM Address Register. Clears the
JSB flip-flop. Also enables IOR. (See JMP note.)

SFLG Sets the CPU Flag flip-flop. Also enables IOR.

SOV Sets the Overflow flip-flop. Also enables IOR.

SUB Subtracts the S-bus from the R-bus in two’s complement form.

XOR Logical “exclusive OR” of the R-bus and S-bus.

STORE FIELD

A Stores the T-bus into the A-register.

AAB Stores the T-bus into the A- or B-register, depending on
whether the A Addressable FF or B Addressable FF is set. If
neither flip-flop is set, no store will occur.

B Stores the T-bus into the B-register.

CAB Stores the T-bus into the A- or B-register, depending on

whether Instruction Register bit 11 is ““0” (A) or “1”” (B).
4-1

100

IR

NOP

S1

52

S3

S4

Stores the T-bus into the F-register.

Reads the S-bus onto the I/O bus.

Stores the S-bus into the Instruction Register.

Stores the S-bus into the M-register, and also into the Viola-
tion register if the computer is in phase 1A, memory protect
mode is set and no memory protect violation has been
detected, and no parity error exists.

No store.

Stores the T-bus into the P-register.

Stores the T-bus into the Q-register.

Stores the T-bus into Scratch Pad 1.

Stores the T-bus into Scratch Pad 2.

Stores the T-bus into Scratch Pad 3.

Stores the T-bus into Scratch Pad 4.

Stores the S-bus into the T-register.

SPECIAL FIELD

4-12

Note: The special functions I0G1, ASG1, ASG2,

SRG1, and SRG2 are used as hardware
enables to allow the 2100 microprocessor to
more easily emulate the 2116-family instruc-
tion set. These functions are available for use
by the microprogrammer; however, proper
use of these functions requires a deeper

AAB

ASG1

ASG2

CNTR

cw

ECYN

understanding of the machine hardware than
is given here. Refer to the Theory of Opera-
tion in the 2100 maintenance documenta-
tion for a more complete explanation of the
operation of these functions.

Enables the setting of A Addressable FF or B Addressable FF,
depending on whether ALU bit 0 is a “0” (A) or a “1” (B),
with T-bus bits 1 through 14 all <0”.

Enables skip and Extend logic specified by Instruction Reg-
ister bits 0 and 3 through 7. (Regi