SRR T HEWLETT PACKARD

e DISC OPERATING SYSTEM

DISC OPERATING SYSTEM

|

HEWLETT ﬁ PACKARD

11000 Wolfe Road
Cupertino, California

October 1969

HP 02116-91748

© Copyrnight, 1969, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

—

PREFACE

DISC OPERATING SYSTEM is the programmer's and operator's guide to the
Hewlett-Packard Disc Operating System (DOS) for.the HP2116B Computer and
disc or drum memory. DOS is a batch processing system that executes complete
jobs without operator intervention. For a full understanding of DOS, the
reader should be familiar with one of the Hewlett-Packard programming lan-
guages, as presented in the FORTRAN (02116-9015) and ASSEMBLER (02116-9014)

programmer's reference manuals.

The Introduction of this manual explains the software and hardware elements
of the system. Section I presents the system organization, while Sections

IT and III cover the éomplete set of batch and keyboard directives and pro-
gram calls to the system. All facets of DOS programming -- FORTRAN, Assem-
bler, Loader, DEBUG, and Library —- are presented in Section IV. Section V
assembles all the necessary information on input/output, including the plan-
ning of I/O drivers. Procedures for installing and initiating the software
appear in Section VI. The appendices provide tables, summaries, a complete

listing of error messages, and sample job decks.

iii

2-1

2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-13
2=-17
2-18
2=-21
2-22
2-25

CONTENTS

PREFACE
CONTENTS
INTRODUCTION

SECTION I

SYSTEM ORGANIZATION
DISC OPERATING SYSTEM
Directives
EXEC Calls
Input/Output
Core Layout
Disc Layout
DOS Files
DOS Installation

SECTION II
DIRECTIVES
JOB
EJOB
ABORT
PAUSE
COMMENT
TYPE
PROG
RUN
TRACKS
STORE
SPECIFY SOURCE FILE
EDIT
PURGE
LIST
FILE DUMP

2=27
2-28
2-31
2-32
2-33
2-34
2-35
2-36
2-37

3-1

3-2

3-4

3-7

3-9
3-11
3-13
3-14
3-16
3-17
3-19
3-21
3-22

4-1

CONTENTS

SECTION II (cont.)
DIRECTIVES
DISC DUMP
PROGRAM DUMP
EQUIPMENT
LOGICAL UNIT
UP
DOWN
BATCH
DATE
GO

SECTION III
EXEC CALLS
FORMAT OF THE ASSEMBLY LANGUAGE CALLING SEQUENCE
FORMAT OF THE FORTRAN CALLING SEQUENCE
ﬁEAD/WRITE
FILE READ/WRITE
1/0 CONTROL
" I/0 STATUS
WORK AREA LIMITS
WORK AREA STATUS
PROGRAM COMPLETION
PROGRAM SUSPEND
PROGRAM SEGMENT LOAD
SEARCH FILE NAMES
TIME REQUEST

SECTION IV

PROGRAMMING
LOAD-AND-GO FACILITY
DOS FORTRAN COMPILER
Compiler Operation
PROG, FTN
PROGRAM STATEMENT
DATA STATEMENT

vi

4-7

4-8

4-9
4-10
4-11
4-11
4-14
4-15
4-16
4-21
4-22
4-22
4-23
4-26
4-28
4-30
4-31
4-33
4-34
4-35

5-1

CONTENTS

SECTION IV (cont.)
PROGRAMMING
EXTERNAL STATEMENT
PAUSE & STOP
ERRZ LIBRARY ROUTINE
DOS ASSEMBLER
Assembler Operation
PROG,ASMB
DOS Assembly Language
NAM STATEMENT
Segmented Programs
DOS RELOCATING LOADER
Starting the Loader
PROG, LOADR
Operating the Loader
DEBUG Library Subroutine
Loader Example
Loader Error Messages
DOS RELOCATABLE LIBRARY
% Library Routines
Subroutines Unique to DOS

Assembly Language Calling Sequences

SECTION V

INPUT/OUTPUT
SOFTWARE I/0 STRUCTURE
The Equipment Table
Logical Unit Numbers
Input/Output Drivers
System I/O
User Program I/0
Interrupt Processing
PLANNING I/O DRIVERS
Initiation Section

Completion Section

vii

CONTENTS

6-1 SECTION VI
INSTALLATION
6-1 DSGEN, THE DOS GENERATCR
6-2 Operating Procedures
6-12 Error Messages (DSGEN)
6-15 DOS INITIATION FROM THE DISC
6-16 CREATING A BACK-UP COPY
6-17 Error Messages (SDUMP)
6-18 Saving System and/or User Files
APPENDICES
A-1 TABLES
B-1 TYPICAL JOB DECKS
C-1 SAMPLE DSGEN LISTINGS
D-1 RELATION TO OTHER SOFTWARE
E-1 LINE PRINTER FORMATTING
F-1 SUMMARY OF DIRECTIVES
G-1 SUMMARY OF EXEC CALLS
H-1 MESSAGES
I-1 MAGNETIC TAPE USAGE
ILLUSTRATIONS
1-2 Figure 1-1. DOS Core Allocation
1-4 Figure 1-2. DOS Disc Storage
4-17 Figure 4~1. Segmented Programs
4-18 Figure 4-2. Main Calling Segment
4-19 Figure 4-3. Segment Calling Segment
4-20 Figure 4-4. Main-to-Segment Jumps
5-9 Figure 5-1. I/O Driver Initiation Section
5-12 Figure 5-2. 1I/0O Driver Completion Section
6-9 Figure 6-1., Core Allocations in DOS

viii

4-29

TABLES

CONTENTS

Table 4-1. Library Subroutines

ix

INTRODUCTION

In the DISC OPERATING SYSTEM (DOS) for the HP2116B Computer and disc storage
unit, software modules are stored permanently on the disc for high-speed
batch processing, eliminating slow and inefficient paper tape loading. In-
put can be set up and executed in serial order to automatically edit, trans-
late, load and execute a set of source programs written in HP FORTRAN (an
extension of ASA BASIC FORTRAN) or HP Assembly Language. A variety of files

can be stored, edited, listed, dumped and used as input to programs.

FEATURES OF DOS

DOS contains the following highlights and features:

n Keyboard and batch processing modes,

=

Software programming aids: FORTRAN Compiler, Assembler, Relocating
Loader, Relocatable Library, Debug Routine, and Source File Editor,

Jobs executed in a gqueue with no operator intervention,
Symbolic disc files, with relative addressing,
Centralized and device-independent I/0 processing,

Modular structure,

| e R —a= B = I~ Qi ——

Custom configuration to optimize available memory and I/O.

DOS HARDWARE CONFIGURATION

The minimum hardware requirements for the DOS system are:

ﬂ An HP2116B Computer with 8K memory, and:
12578A Direct Memory Access
12579A Extended Arithmetic Unit

xi

INTRODUCTION

12591A Memory Parity Check with Interrupt
125397 Time Base Generator

1269TA Memory Protect Check

125¢1 4

ﬂ Disc or Drum Mass Storage Unit(maximum of 4 units, 256 tracks total)
0 wmp2752a (ASR-33) System Teleprinter
ﬂ HP2754B (ASR-35) teleprinter for Batch Input, Punch and List Device

In place of the HP2754B (ASR-35) teleprinter, the user may select for example

the following I/O devices instead for batch operations:

Batch List Device Batch Input Device Batch Punch Device
HP2752A Teleprinter Punched Tape Reader Punch Unit
HP2752A Teleprinter Mark Sense Card Reader Punch Unit
Line Printer Punched Tape Reader Punch Unit

DOS_SOFTWARE MODULES

The following software tapes are supplied to the user:

ﬂ DOS Supervisor and sub-modules
DOS Assembler

DOS FORTRAN Compiler

DOS Relocating Loader

DOS Relocatable Library

DOS I/0 Drivers

DSGEN, the DOS Generator

[=== QR e R e I e R e R —— |

DOS Supervisor

The DOS Supervisor consists of a core- and disc-resident protected section

(DISCM) and a disc-resident job processor, JOBPR.

xii

INTRODUCTION

DISCM JOBPR
ﬂ Interrupt Processor ﬂ Job Processor
ﬂ Executive Processor ﬂ File Manager
ﬂ I/0 Processor PURGE
ﬂ Executive modules DUMP
SEX@1 thru $SEX16 STORE
LIST
EDIT
NOTE: SEX@1 through SEX16 may be NOTE: JOBPR is always disc-resident.
either core- or disc-resident It is called to execute control
when a system is configured. commands -

System Programs

System Programs include DOS FORTRAN, DOS Assembler, and the DOS Relocating
Loader. Both the DOS FORTRAN and the DOS Assembler consist of a main pro-
gram and several segments. The DOS Relocatable Library consists of math,

service and I/O subroutines which may be appended to a user program by the

DOS Relocating Loader.

DOS I/0 Drivers

The following I/O Drivers are discussed in Section V:

Name Device

DVROO Teleprinter

DVRO1 Punched Tape Reader
DVRO2 High Speed Punch

DVR12 Line Printer

DVR15 Mark Sense Card Reader
DVR22 3030 Magnetic Tape Unit
DVR30 Disc/Drum

Xiii

INTRODUCTION

DSGEN, THE Disc Operating System Generator

DSGEN, the DOS Generator, is an independent program which configures complete
operating systems out of the DOS software modules, user programs, and infor-

mation supplied about the I/O configuration.

Xiv

SECTION |
SYSTEM ORGANIZATION

An operating system is an organized collection of programs which increases

the productivity of a computer by providing common functions for all user

programs.

An operating system's function is to aid in the preparation, translation,
loading, and execution of programs. This is accomplished by an auxiliary,
quick access memory, usually a disc or drum. The various translators, load-
ers, and other software are stored permanently on the disc for use only when
needed. Since the programmer requests a compiler from the disc instead of

loading it by hand from paper tape, the overhead time can be significantly

reduced.

DISC OPERATING SYSTEM

The Disc Operating System (DOS) is composed of user disc files and the DOS
Supervisor. The Supervisor consists of two parts: a Disc Monitor (DISCM) and
a Job Processor (JOBPR). DISCM consists of modules which are either core- or
disc-resident and handle I/0 transfers, requésts from programs, and other

supervisory tasks. The disc-resident JOBPR handles operator and programmer

directions from the batch or keyboard device.

The Disc Operating System affords speed and convenience. Programs can be
input to DOS for automatic translation, loading, and execution. For example,

simple punched cards are able to carry out load-and-go operations in DOS as

follows:

a. DOS reads the FORTRAN Compiler into core from the disc.

b. The Compiler reads the source program from an external device,
such as a card reader, and stores the relocatable binary in-
structions on the disc.

c. DOS reads the Loader into core from the disc.

SYSTEM ORGANIZATION

d. The Loader reads the relocatable binary programs from the disc and
stores the converted binary instructions on the disc.

e. DOS reads the program in from the disc and runs it.

Directives

The DOS Supervisor operates in response to directives input by the programmer
Or operator. Directives are strings of up to 72 characters that specify
tasks to DOS. They are entered in one of the two modes of DOS operation:
keyboard or batch. In keyboard mode, the directives are entered manually
from the teleprinter keyboard. In batch mode, directives can be input as

punched cards integrated with the source program into a job deck.

A job is a related set of user tasks and data. 1In keyboard mode the di-
rectives (tasks) are entered separately from the job data. 1In batch mode,
they are included in a job deck that can execute without manual intervention.
Jobs may be stacked directly upon one another in a queue.
The DOS directives are used for the following functions:

ﬂ Create, edit, list, dump, and purge user files (relocatable,
loader-generated, source and ASCII or binary data).
Turn on systems programs such as FORTRAN, Assembler, etc.
Modify the logical organization of the I/0.
Start and stop a job; type comments; suspend operations.
Translate, load and execute a user program.
Dump core or disc memory.

Resume execution of suspended programs.

[== = R —— Qi = I —— B - I — |

Set the date; abort programs; transfer to batch mode (from keyboard
mode); return to keyboard mode (from batch mode).

ﬂ Check and set status of disc tracks.

DOS directives are described in detail in Section II.

SYSTEM ORGANIZATION

EXEC Calls

After being translated and loaded, an executing user program communicates
with DOS by means of EXEC calls. An EXEC call is a JSB instruction which

transfers control to the DOS Supervisor.

The EXEC calls perform the following functions:

I/0 read and write operations,

User file and work area read and write operations,
I/0 control operations (backspace, EOF, etc.),
Request I/O status,

Request status of disc track,

Request limits of WORK area (temporary disc storage),
Program completion,

Program suspension,

Loading of program segments,

[o [e G e B e [s S e R e B o R e R e |

Request the time.

Section III describes EXEC calls in detail.

Input/Output

All I/O operations and interrupts are channeled through the DISCM section of
the DOS Supervisor. DISCM is always core-resident and maintains ultimate

control of the computer resources. (See SOFTWARE I/0O STRUCTURE, Section V.)

I/0 programming is device-independent. Programs written in DOS FORTRAN and
DOS Assembly Language specify a logical unit number (with a predefined func-

tion, sSuch as data input) in I/O statements instead of a particular device.

Logical unit numbers are assigned to appropriate devices by the operator, de-
pending upon what is available. Thus, the programmer need not worry about
the type of input or output device performing the actual operation. (See

Logical Unit Numbers, Section V.)

SYSTEM ORGANIZATION

Core Layout

When DOS is active, the core memory is divided into a user program area and a
system area (as shown in Figure 1-1). The Disc Monitor program handles all
EXEC calls and, if they are legal, transfers them to the proper module for
processing. The I/0 drive.s handle all actual I/0 transfers of information.
If some I/O drivers are disc-resident, they are read into core by the super-
visor when needed. The user program area provides space for execution of
user programs. In addition, large DOS software modules, such as the FORTRAN

Compiler, Assembler, Relocating Loader, and Job Processor, reside on the disc

INTERRUPT LOCATION

CORE - RESIDENT

> SECTION OF DOS
DOS DISC MONITOR (DISCM) SUPERVISOR

1/0 DRIVER AREA
MEMORY

PROTECT
BOUNDARY

OVERLAY AREA
FOR EXECUTION
OF USER PROGRAM
USER ” AND SYSTEMS
PROGRAM PROGRAMS
AREA (FTN, ASMB,
LOADER, JOBPR)

HIGH CORE

Figure 1-1. DOS Core Allocation

1-4

SYSTEM ORGANIZATION

Disc_Layout

The disc storage is divided logically into three areas: system area, user
area, and work area. (See Figure 1-2.) In any installation, only the system
area has a fixed size. DOS and its software reside permanently in the hard-
ware-protected system area. Users' files of data and object programs reside
in the user area. Work tracks are temporary storage for any executing pro-

gram. The object code, which is generated by translators, is stored into the

job binary area of the work tracks.

SOF TWARE
PROTECTED

USER AREA

HARDWARE
PROTECTED

DISC MEMORY

— — — DYNAMIC BOUNDARY
STATIC BOUNDARY

Figure 1-2. DOS Disc Storage

SYSTEM ORGANIZATION

DOS Files

The disc or drum provides quick access and mass storage for user files con-
sisting of source statements, relocatable and loader-generated object programs,
and ASCII or binary data. Each file has a name that is used to reference it.
Programs use the work area of the disc for temporary storage. The system area
contains files of systems programs, Exec modules, and library subroutines

(see LIST, Section II).

DOS Installation

DOS is a series of relocatable binary software modules. Since each module is
and independent, general purpose program, the hardware and software configur-
ation of each DOS is quite flexible. A separate absolute program, DSGEN, ac-
cepts the software modules and generates a configured DOS following dialogue-

type instructions from the user. (See DOS Generator, Section VI.)

Certain DOS modules may be either core~ or disc-resident. In a minimum 8K
core system, all possible modules are disc-resident; but a 16K memory allows

more modules to be core-resident for faster processing.

An absolute copy of the configured DOS is stored on the disc or drum and is
protected from alteration by a hardware protect switch. A core-resident bi-
nary loader transfers DOS from the disc into core to start operations. (See

DOS Initiation from Disc, Section VI.)

SECTION 1I
DIRECTIVES

Directives are the direct line of communication between the keyboard or batch
input device and the Disc Operating System. The operator enters these di-
rectives manually through the keyboard, while the programmer enters them on

punched cards within his job deck. Directives are able to:

ﬂ Initiate, suspend, terminate, and abort jobs

I switch between keyboard and batch mode,

ﬂ Execute, suspend, and resume suspended programs (including compi-
lers, loaders, etc.),

] Print the status of the disc tracks and the I/0 tables,

ﬂ Create and purge files of source statements, relocatable and loader-
generated binary programs, and ASCII or binary data,

Edit source statement files,

Set up source files for compilers and assemblers,

List and dump files, dump disc and core,

Declare I/O devices up and down, and

= |3 /|| e

Set the date and print comments.

Directives may enter DOS in two modes: keyboard and batch. In either mode,
all directives are listed on the teleprinter. Certain directives are legal
in one mode only; other directives are operable in both. In keyboard mode,
the operator manually inputs the directives through the teleprinter keyboard.
In batch mode, the programmer prepares the directives on punched cards or
paper tapes and inputs them along with programs, data, etc, in a complete

job.

Directives have the same format, regardless of the mode in which they occur:

:" followed by a directive word (first two characters are significant) and,

if necessary, a list of parameters separated by commas. For example,

:PROG,FTN, 99

2-1

DIRECTIVES

When optional parameters are missing, they must be represented by commas if
the following parameters are to be recognized. The first blank character
not preceded by a comma is the end of the directive. Comments may appear
after this blank; they are ignored by DOS. A "rubout" anywhere in a di-
rective deletes the entire directive, while a "control-A" (striking the"a"

key and the "control"” key simultaneously) deletes the previous character.

DOS has two conventions for notifying the operator that directives may be
entered. An asterisk (*) means that DOS is waiting for an operator atten-
tion directive (see below). A "@" with the bell signals that DOS is wait-
ing for further directions. (During some operations, such as editing, there
may be perceptible waits while DOS processes the directive. Further di-

rectives must not be input until the "@" is output.)

The operator attains control of DOS at any time by striking any system
teleprinter key. If the teleprinter is available, DOS prints an asterisk
(*) on it; if it is busy, DOS prints an asterisk as soon as it is free. At
this time, the operator may enter any of the following directives (describ-

ed in detail in this section):

:ABORT

:DN

:EQ

:LU (reports only)
: TYPE

:UP

If the operator types any other directives, DOS prints the following message

and returns to the executing program.

IGNORED

DIRECTIVES

JOB

Purpose

To initiate a user job and assign it a name for accounting purposes.

Format

:JOB[,name]

where name is a string of up to five characters (starting with an

alphabetic character) which identifies the job.

Comments

When DOS processes the JOB directive, it prints an accounting message on the
system teleprinter and the list device recording the job's name (as speci-
fied in the JOB directive), the current time, and the date (as specified in

the DATE directive):
JOB name date TIME = xxxx MIN. xx.x SECS.

For example,
:JOB, START
JOB START MON 6.16.9 TIME = Pp13 MIN 41.6 SECS.

If an EJOB directive has not been encountered, JOB also acts as the EJOB for
the previous job. In this case, all actions of the EJOB are carried out,
except for returning to keyboard mode from batch mode, before starting the

new job.

Only the first two characters of JOB are significant. DOS skips everything

up to the comma.

DIRECTIVES

EJOB

Purpose

To terminate the current job normally and return to keyboard mode.

Format

Comments

EJOB purges the user file, eliminating spaces left by non-permanent programs.
EJOB outputs a message recording the total job and execution time, then re-
turns to keyboard mode. (See STORE directive and Relocating Loader, Section
Iv.) All directives except TRACKS or BATCH are ignored until the next JOB

directive.

When the EJOB directive occurs, a message 1s printed, similar to that of JOB,

giving the total run time of the job and total execution time. For example,
END JOB START RUN = @p@7 MIN. 52.6 SEC. EXEC = @p@1 MIN. 21.p SEC.

This message is printed on the system teleprinter and on the standard list

device.

2-4

DIRECTIVES

ABORT

Purpose

To terminate the current job before the next JOB or EJOB directive.

Comments

ABORT carries out all the operations
When it returns to the batch device,
BATCH, or TYPE, until it finds a new

through the keyboard, even if DOS is

of an EJOB. All I/0 devices are cleared.
DOS ignores all directives, except TRACKS,
JOB directive. An ABORT may be entered

in batch mode.

DIRECTIVES

PAUSE

Purpose

To interrupt the current job and return to the keyboard for

operator action.

Format

Comments

PAUSE may be entered through the keyboard even when DOS is in batch mode.
PAUSE suspends the current job until the operator inputs a GO directive. Dur-
ing this time the operator may mount magnetic tapes or prepare I/0 devices.

(A series of COMMENT directives or a remark in the PAUSE directive itself can

be used to tell the operator what to do during the PAUSE.)

The GO directive returns DOS to the job in the previous mode.

DIRECTIVES

COMMENT

Purpose

To print a message on the system teleprinter.

:COMMENT character String

where Character String is a message to be printed on the

teleprinter,

Comments

The programmer may use the COMMENT directive with the PAUSE directive to re-
lay instructions to the operator about setting up magnetic tapes, etc. A

space (but not a comma) is required between the directive word and the com-

ment string.

Examples

:COMMENT PLACE MAGTAPE LABELED"INPUT"ON THE M.T. UNIT
:COMMENT PUT "INPUT" PAPERTAPE IN PHOTOREADER

DIRECTIVES

TYPE

Purpose

To return from batch mode to keyboard mode.

Format

Comments

Control is returned to the teleprinter keybocard. TYPE may be entered through
the batch device or keyboard device; but when it is entered from the keyboard,
DOS waits until the current executing program is completed or is aborted be-
fore returning to keyboard mode. If TYPE is entered while already in key-

board mode, the directive is ignored.

DIRECTIVES

PROG

Purpose

To turn on (i.e., load from the disc and begin executing) a program
from the system area or programs from the user file which were gen-

erated through the DOS Relocating Loader.

Format

:PROG,name[,Pl,PZ....P5]

where name denotes a system program, such as FTN for the DOS FORTRAN
Compiler, ASMB for the DOS Assembler, or LOADR for the
DOS Relocating Loader. A user program is specified via

the file name assigned in the DOS Relocating Loader.

Pl through P5 are optional parameters which DOS transfers

to the program named. Pl through P

integers less than 32767.

5 must be positive

Comment

Consult Section IV for the parameters required by FTN, ASMB, and LOADR. Add-

itional programs may be added at system generation time if desired. (See

DOS Generator, Section VI.)

Examples

: PROG,FTN,2,99
:PROG,ASMB,2,6,4
:PROG,LOADR,9,6,0,1,0

DIRECTIVES

RUN

Purpose

To run a user program.

Format

:RUN,name[, time][,N]

where name is a user file containing the desired program,
time is an integer specifying the maximum number of minutes

the program may run (set to five minutes if not

specified).

N, if present, tells DOS to allow the program to continue

running even if it makes EXEC calls with illegal re-

quest codes.

Comments

Programs which have been relocated during the current job but not stored (see
STORE directive) permanently in a user file, may be run using this directive.
If the program executes longer than the time limit, the current job is abort-

ed and DOS scans to the next JOB directive.

If N is not present in the RUN directive, the current job will be aborted by
any illegal request codes. The N option is provided so that programs can be
written and tested on DOS ultimately to execute with other HP software which
does not have the same request codes. (See Appendix D, RELATION TO OTHER
SOFTWARE.)

Example
:RUN,ROUT, 15

executes program ROUT up to fifteen minutes not allowing illegal request codes.

2-10

DIRECTIVES

TRACKS

Purpose

To print the status of the tracks on the disc, and optionally,
to notify DOS of tracks known to be faulty.

Format

:TRACKS[,Tl,TZ,...]

where Iﬁ,Ib.... are optional parameters which are used to notify
DOS that faulty tracks exist. Féulty tracks may
be reported only on a fresh start-up from the
disc (following the DATE directive). Track num-

bers are decimal.

Comments

The number of the first track of the work area is printed, followed by the

numbers of any faulty tracks. Each faulty track is listed separately.

The supervisor itself declares tracks down when a parity check on read

occurs.

All tracks in the work area are available as user area tracks when STORE di-

rectives are encountered.

The operator should use TRACKS regularly to keep aware of the disc status, so

that he can set faulty tracks unavailable on fresh starts.

DIRECTIVES

Examples
The following is an example in which no faulty tracks are reported.

(INPUT) : TRACKS
(OUTPUT) 1ST WORK TRACK = ¢@1p

@ (End of directive processing)

In this example, the operator makes tracks 1@ to 1l unavailable (only on a

fresh start).

(INPUT) : TRACKS, 10,11

(outpuT) 1ST WORK TRACK = @p12
BAD=
poIp
P11

@ (End of directive processing)

DIRECTIVES

STORE

Purpose

To create a user file on the disc. The STORE directive can
create relocatable object program files (type-R),
loader-generated object program files (type-P), source state-
ment files (type-S), ASCII data files (type-A), and binary
data files (type-B).

Format

The format varies according to what type file is being created.

See Comments below for details:

:STORE,R,file[,logical unit]

:STORE,P/Bpamel, name2,...]
:STORE,S,file,logical unit
:STORE,A,file, sectors
:STORE,B,file, sectors

Comments

TYPE - R FILES

The directive format is:

:STORE,R,filel ,1ogical unit]
where file is a name consisting of five characters or less.

A user file is created under this name, and relocatable binary programs are

read into it from the logical unit specified or from the job binary area of

2-13

DIRECTIVES

the work tracks if none is specified. The job binary area remains as it was
before the STORE directive. (See Section IV, DOS FORTRAN and DOS ASSEMBLY
LANGUAGE.)

If DOS comes to an end-of-tape, it asks:
DONE?

If there are more tapes, the operator places the next tape in the reader and

replies NO; otherwise, he answers YES.

The file name should not duplicate the name (in the NAM record) of any relo-
catable program within the file being stored if it is to be loaded via/the
Relocating Loader. The file may be input to the DOS Relocating Loader for
relocation into an executable program. (See Section IV, DOS RELOCATING
LOADER.)

Examples

:STORE,R,RINE

(Stores all of the relocatable programs from the job

binary area into the file RINE created for that purpose.)
: STORE,R,JUGG, 5

(stores relocatable programs from logical unit 5, the

standard input device, into the file JUGG.)

TYPE - P FILES

The directive format is:

:STORE,P[,namel,nameZ,....]

where namel, name, ... are programs that the DOS Relocating Loader had relo-
cated into executable format during the current job. Up to 14
programs per directive are allowed. If none are specified, all
programs loaded during the current job are stored. DOS finds
these temporary programs in the user file and converts them to
permanent user files; the program name automatically becomes

the file name.

DIRECTIVES

Programs loaded during the current job but not stored as files (as shown
above) may be executed normally (RUN or PROG directive) and appear in the user
directory (LIST directive). At the end of a job, however, they are purged
from the directory unless they have been converted to user files by a STORE,P

directive.
Examples

:STORE, P

(Changes all loader-generated bPrograms--core images--in the work

area into permanent user files.)

:STORE,P,ARITH,MATH, TRIG,AL GEB

(Searches the work area for the programs listed and makes them

permanent user files.)

TYPE - S FILES

The directive format is:
:STORE,S, file,logical unit

where file is the name of the user file to be filled with source statements
from the logical unit specified. File must not duplicate a name
already present in the user or system files. The source statement
input must be terminated by a double colon (::). If the :: is
omitted, DOS stores the succeeding data on the disc as if it were

source statements.
If DOS comes to an end-of-tape or blank card before finding the ::, it asks
DONE?
If there are more tapes or cards, the operator replies NO; otherwise, he
answers YES.

When DOS completes the STORE, it prints
nnnn LINES

where nnnn is the number of statements stored.

DIRECTIVES

Example

:STORE, S, SOURC,5

(Reads source statements from the standard input device and stores

them in a new file SOURC.)

TYPE - A and TYPE - B FILES

The directive format is:
:STORE, type, file,sectors

where type is either A (for ASCII character data) or B (for binary data), and
file is the name assigned to a file containing the number of sectors
requested. These requests are made prior to executing a program.

The program may store and retrieve data from the file through a

call to EXEC.

It is the programmer's responsibility to store the right kind of data in the
file. The EXEC call must specify the file name and the relative sector with—

ih the file. DOS chécks that the file name exists and contains the sector

specified.

Example

:STORE,A,ASCII, 20

(Creates a file named ASCII,20 sectors in length. A sector

equals 64 words.)

DIRECTIVES

SPECIFY SOURCE FILE

Purpose

To specify the user source file to be used as input by the

assembler and compilers.

Format

:JFILE,file

Comments *

he assembler or compiler is turned on, logical unit 2 (disc) mus

specified as the™ device. transfers the

DOS looks up t
source statements from anslator as they are requested.

(See~Sertion IV, DOS FORTRAN and DOS ASSEMBLY LAN

Only one program can be translated from a file; any statements beyond the
end of the source program will be ignored. The JFILE assignment is only

changed at the end of the current job or another JFILE directive.

’fjf zﬁé/CﬁL, J/MJ‘Y A /G SPLEtF/ED yU TRE e P B U SICE il oyt
Chrwn MR Ll ASEE e ECEL 1L ko b O i D PROE) avo
CIFILE v sy OB €D, TIe cqmriea & P Y s Wy

;s .
REAFS vrg Sbewncl T7rmpm? Uiineg A . S‘roRé‘,S Dr1e e CTIré

2-17

DIRECTIVES

EDIT

Purpose

To perform listed edit operations on a user source file.

Format

:EDIT,file,logical unit[,new file]

where file is the name of a source file to be edited according to an
edit list (edit operations plus associated source state-
ments) input on the specified logical unit. If new file
appears, the edited source file is stored in a new file
(with the name new file) and the old file is not purged.

Otherwise, the edited source file is the updated old file.

Position one of a source statement must not be a slash (/) or a
colon (:). The legal edit operations in an edit list are de-

scribed under Comments.

Commen ts

An edit list consists of several edit operations and, optionally, a series of
associated source statements (i.e., following REPLACE, INSERT). Edit opera-

tions are executed when they are entered. When using the keyboard, the oper-
ator must not enter the next operation until the previous one is completed

(completion is signaled by "@" output on the keyboard).

All edit operations begin with a slash (/), and only the first character
following the slash is required. The rest are ignored up to a comma. If a
colon (:) is encountered in column one before the end of the edit list, the

job is aborted. 1In the edit operation formats, the letters m and n are the

DIRECTIVES

sequence numbers of the source statements to be edited, starting with one.

Letter m signifies the starting statement, and n is the ending statement of
the operation, inclusive. 1In all cases, n must be greater than or equal to
m; neither can be less than one, nor greater than the last source statement

of the file. The m must be greater than the n of the previous operation.

All edit operations are listed on the system teleprinter as they are executed.

EDIT OPERATIONS

The following operation causes source statements m through n, inclusive, to

be deleted from the file.
/DELETE ,m[,n]

If only m is specified, only that one statement will be deleted.

By means of an edit operation, the source statements m through n can be re-

placed by one or more source statements following /REPLACE in the edit list.
/REPLACE ,m[,n]

Again, if n is absent, only m is replaced.

The format for the INSERT operation is:
/ INSERT,m

The source statements which follow /INSERT in the edit list are inserted in

the file after statement m.

In the END operation,
/END

the edit directive is terminated and DOS returns to its previous mode for

further directives.

Examples
If a file named SOURC contains:

Statement
Statement
Statement
Statement
Statement
Statement

Statement

and the EDIT directive is:

DIRECTIVES

1 ASMB,R,B,L

2 NAM START
3 A EQU 30

4 B EQU 29

5 START NOP

6 LDA A

7 END

:EDIT,SOURC,5

and the edit list, which follows

then the new file equals:

Statement
Statement
Statement
Statement
Statement
Statement
Statement

Statement

@ N A W N N~

:EDIT on the batch device, is:

/R,3
A EQU 199
B NOP
/D,4
/1,6
STA' B
/E
ASMB,R,B,L
NAM START
A EQU 100
B NOP
START NOP
LDA A
STA B
END

DIRECTIVES

PURGE

Purpose

To remove a user file from the user file area.

: PURGE, filel, filez,...

where filel, file2,... (up to 15 file names per directive) designate
files in the user area. These are purged from the user

area. If a file cannot be found, a message is printed

on the keyboard:

FILE UNDEFINED

Comments

After the files are purged from the disc, the remaining user area files are
repacked for efficiency. If the end of the user area moves below a track
boundary during the purge, the work area becomes a track larger. As each

file is purged, DOS prints its name on the teleprinter.

Example

ORIGINAL CONTENTS OF USER FILE: F1,F2,F3,F4, FLONG, and F5 (at least)

DIRECTIVE: :PURGE, FLONG, F1,F2,D3,D7,F3,F4,F5
OUTPUT: FLONG
Fl
F2

D3 UNDEFINED
D7 UNDEFINED
F3
F4
F5

DIRECTIVES

LIST

Purpose

To list file information recorded in the user or system director-
ies. To list and number the contents of a source file sequential-

ly statement-by-statement.

Format

(System) :LIST,X,logical unit[,filel,...]

(User) :LIST,U,l0gical unit[,filel,...]

where X specifies the system area directory, and
U specifies the user area directory,
logical unit specifies the list device, and

file names the entries to be listed (if none is

77
specified, the entire directory is listed).

(Source) :LIST,S,logical unit,filel,m[,n]]

where file names the source file to be listed on the

logical unit specified.

m and n, if present, specify the first and last statements
to be listed. If n is absent, then all statements
from m on are listed. TIf neither appear, then the en-
tire field is listed. The restrictions for m and n

are the same as those for the EDIT directive.

Comments

DIRECTORY LISTING OUTPUT

The first line is a heading, identifying the information that follows:

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P.LIMITS ENTRY LIBR.

DIRECTIVES

The following lines are then printed:

upper, entry 1ibr

name type sctrs trk sec lowerp upperp lowerb

where name identifies the file,

type tells what kind of file name is,

AD = ASCII data
BD = bi dat

inary data User File Only
RB = relocatable binary program
SS = source statements
DR = disc resident I/0 driver
LB = 1ib

rary System File Only

SR = system core-resident program
XS = supervisor module
UM = user main program

} Either File
US = user program segment i

sctrs 1is the number of sectors in the file,
trk is the track origin of the file,

sec is the starting sector of the file within the track specified,

The information below does not appear for types AD, BD, LB, RB and SS.

lowerp is the lower limit (octal) of the program,
upperp is the upper limit (octal) of the program,
lower, is the lower limit (octal) of the program base page links,

b
upper, is the upper limit (octal) of the program base page links,
entry is the absolute octal address where execution begins, and
1ibr is the beginning absolute octal address of the first library

routine included in the program.

If the requested file does not exist, a message appears,

file UNDEFINED
RE-ENTER STATEMENT ON TTY

DIRECTIVES

SOURCE LISTING FORMAT

Each source statement is preceded by a four-digit decimal sequence number.

If the requested file is not a source file, a three-line message appears,

file
ILLEGAL
RE-ENTER STATEMENT ON TTY

The list is terminated by a message on the system teleprinter,

*%%% [IST END **
Examples

:LIST,X,1

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY LIBR.
DVRPAT DR pPP5 TPPP P64 19626 11142 Pp6p6 pP61P 10626 11142
DVRI5 DR Pp@5 TPPP P69 19626 11153 PP6p6 pP61p 19626 11153
JOBPR UM pp64 TPPP P74 120pp 21425 Pp61p P1975 12ppp 21425
LOADR UM @@51 T@@1 P53 120Pp 17512 pP61@ 91211 12ppp 17512
ASMB UM 9p4T TPP2 P19 12009 16424 PP61P P1153 16279 16424
ASMBD US @pp7 TPP2 P6P 16433 17135 P1153 P1154 16746 17135
ASMB1 US @@11 T@p2 P67 16672 2pP12 P1153 P1157 16672 2p@12
ASMBZ US @911 TP@2 P78 16651 20p4p 91153 P1156 16655 2pp4p
ASMB3 US p@p3 TP@P3 PP4 17194 17245 91153 P1154 17195 17245
ASMB4 US @pp6 TP@3 PP7 16672 17314 P1153 P1154 16672 17314
ASMBS US @P1p T@@3 P13 16651 17713 P1153 P1154 16655 17713
LIBRY LB @173 T@P3 P24

@

:LIST,U,1

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY LIBR.
F1 AD pPP1 TPP9 P0P

F2 BD @pp2 Tpp9 PPl

FLONG AD 0900 T@P9 993

@

:L1,S,1,DVRLP,316

@316 EQTI2 EQU EQTT1+11
@317 I1.12 EQU I.11
318 C.12 EQU C.11

9319 END
*kxk% LIST END**
@

.

DIRECTIVES

FILE DUMP

Purpose

To dump a user file on a specified device in a format

appropriate to the file content.

Format
:DUMP,logical unit,file[,s1[,s2]1]

where logical unit is the output device to be used for the dump,
file is the user file to be dumped,
51 and S2 are the first and last relative sectors to be dumped.
If S1 and S2 are not given, the entire file is dumped. If

only S1 is given, then the file, starting with S1I, is dumped.

Comments

Files may be dumped on list devices or punch devices. The dump format varies

with the type of file and the type of device. See Table 2-1.

Table 2-1
FILE DUMP Formats

File Type Punch Device List Device
ASCII data 64 characters/record 64 characters/record
Binary data 64 words/record 8 octal words/line
Rel. binary programs Relocatable binary 8 octal words/line

records (loadable)

Source statements 1 statement/record 1 statement/line

e el ey ke e v

DIRECTIVES

Source statements are packed and do not necessarily start on sector boundaries.
Thus, if the SI and S2 parameters are used, dumping begins with the start of
the first statement'beginning in sector S1, and ends with the last statement

beginning in sector S2 (this will probably end in the following sector).

Files in the system area cannot be dumped. Errors occur when S1 > S§2, or

when either SI or 52 is greater than the length of the file.

Examples

Where L is a source file:

:DUMP, 1,L
A

BB

cce

DDDD
EEEEE
FFFFFF
GGGGGGG

e

Where DVR is binary file:

:DUMP,T,DVR,1,1

pO1 010400 020000 164165 @4216 (51p60 P3P44D PPP313 POPPDD
PoPOPD OPORRA POPEPP PADEPD PEPRAD PPAPRD PPPPPD PPPDP
PopPPP PR5APG PAPPP2 P66352 PAA4S6 P3PPE] P20PPD PPPOPD
041456 p3pp6l P2pPPP PPPP52 P36PPP PEP146 171620 PPPRPP
012000 PPPPPR P160P0 PPP266 16213 PI1PP56 P5PP54 12p120
p26p0p PPPP26 PP6APA P5PP55 P26P0P PPPP24 1609213 PPPORP
pP1727 91222 QP1PP74 (Q5pP62 PP2001 121290 26000 PPPP23
160206 032000 PPP30P 170206 PPEPP4 D129 P6PPRT 126000

DIRECTIVES

DISC DUMP

Purpose

To dump any sector of the disc storage on the system teleprinter in

either ASCII or octal format.

:SA,track,sector[,number] (ASCII)

:S0, track,sector[snumber] (Octal)

where track and sector give the starting disc address for the

dump, and
number gives the number of sectors to be dumped. If
number is absent, only one sector is dumped. All

three parameters are decimal numbers.

Comments

The ASCII dump format (:SA) is 64 characters per record. The octal dump
format (:SO) is eight octal numbers per line. Two ASCII characters equal

one computer word (also represented by one octal number). Although :SA dumps
64 characters per record, these do not necessarily appear on one line since
the binary numbers are converted to ASCII characters, some of which might be

linefeeds or returns.

Example

:50,8,0 ‘

@01 Ppaspp 177400 QPP000 000000 QOPP00 POP0DD POPPRD PPPRPP
00popD PPEPPD POPOPD PPOPRD PPOPPD PPPPDD PPPPRP PPPPRD
g0ppP QPOPPP2 177560 941124 41519 P3P44P 51525 PATR4AD
020040 0204 D20P4D OPPOPP DPPOOD PPOPRD DPRPPE PODPRP
00PP00 0PPPPD DRPP0P PPPOPD PPPRRD DPPPRY PPPRPR PRPARY
000p00 PPPOPY QPPROP PPPPPD POPPOD PPPEPD POPROP PODPOPD
pOPOED PPPPOD PPPPDP POPOPD DPPPPD PPDPRD PRPOPD PPDPDP
P0PO0p PP0P0D DOPROD DPOERD DPPORD PPPPDD DPPRPD PPPARD

2-27

DIRECTIVES

PROGRAM DUMP

Purpose

To request that a user program be dumped when it completes
execution. Two directives are provided: PDUMP for dumping
on a normal completion, and ADUMP for dumping when the pro-

gram aborts.

Format

:PODUMP[,Fwal ,zwa]][,B][,L]
:ADUMP[, Fwa[,zwa]][,B][,L]

where FWA is the first word address, relative to the program
origin,
is the last word address, relative to the program
origin,
means dump the base page linkage area of the program,
and,
L means dump the library subroutines used by the program.
FWA and LWA are octal numbers that specify the limits of the
program being dumped.
If LWA is missing, the entire program, starting with FWA, is
dumped.
alone dumps all the main program, plus base page link-
ages, but not the library routines.
L alone dumps only the library routines.

If no parameters are given, everything is dumped.

DIRECTIVES

Comments

a job. They Iimptieitly refer to the next program to be e

flag when it encounters either PD! -tHen checks the flag the next

time a program is executed. These flags are reset w ogram executes.
e
Any parameter,fokioWIﬁg L is ignored. If FWA is greater than LWA, a mé&

1ls printed.

LIMIT ERROR
RE-ENTER STATEMENT ON TTY

The main program and library subroutines are dumped eight octal words per line,

along with the octal starting address for that line. For example,

adr8 wd-1 wd—-2 wd-3 wd-4 wd=5 wd-6 wd-7 wd-8

ad8+108 wd-1 wd-2 wd-3 wd-4 wd-5 wd-6 wd-7 wd-8
If present, the base page dump follows the main program and library. Base
page linkages exist for page boundary crossings and subroutines. For each
line, the starting address appears first, followed by four pairs of octal num-
bers. The first number of each pair records the content of the base page
word (an address elsewhere in core). The second number of each pair records
the contents of the address specified by the first item. If the first item
is the address of a subroutine, then the second item contains the last ad-

dress from which the subroutine was called. For example,
pair-1 pair-2 pair-3 pair-4

adr item-1 item~2 item-1 item-2 item-1 item-2 item-1 item-2

adr+48 item-1 item 2 item~1 item-2 item-1 item-2 item1 1item-2

Example
:ADUMP,0,15,B (set up dump flag)
:RUN,LOADR (Run program)
LU 912149
ABRT ©12149 (Program aborted)

(Page Eject)

(Main program dump)

12009 16p91 PP20P2 13p573 179574 PPEPDA 1600P1 PP20P3 PR6P12
12019 13p575 17@9576 PP6@P4A 16pPP1 179577 PP6PP4 1690p1 1706090

.(Page Eject)

(Base page dump)

pps579 PIP137 @P2p45 P1P711 PP3237 PIP763 PP2pAS P17914 PPO3PP
pp574 P17641 PPPPPP P17015 PPPAPR P17641 PPPAPE P176p1 PPRPAP
ppepp 017650 PPPPPR P17615 pOPPPR P17664 PPPPPP P17662 PPP5T73
poepa 917637 PPPS573 P17571 177295 P17563 @P12p4 P17714 P17715
ppe1p P17562 P21121 P17534 P21122 P17536 @21122 17633 160656
ppe14 p17544 P37626 P17546 P37626 P17673 QpPPPP P176D5 PROPAP

"Any parameter following L is ignored. If FWA 1s
greater than LWA, a message is printed. When the
directive :PDUMP precedes a :RUN or :PROG request,

the program contained in the request will be dumped,
if it runs to normal completion. To dump a program
that is aborted while running, the directive :ADUMP
must precede the :RUN request. To make sure that

a program will be dumped whether it runs normally

or is aborted, both dump directives must be declared
preceding the :RUN request. Only one of the requests
will be honored, depending upon whether the, program
runs normally or is aborted. Since DOS sets a flag
when it encounters either dump directive, then clears
the flag after the dump routine is executed, the flag
representing the dump routine that was not executed
will remain set. This flag can cause an unwanted

dump of some program run later under the same :JOB
directive. Either dump flag can be cleared by re-
questing the dump with both FWA and LWA equal to 0;
all flags can be cleared by calling a new :JOB

DIRECTIVES

EQUIPMENT

Purpose

To list one or all entries in the equipment table.

:EQ [sn]

where n, if present, indicates the one entry to be listed. If

n is absent, the entire equipment table is listed.

Commen ts

Each entry is output in the following format,
EQT nn CH vv DVRmm d r Uu Ss

where nn is the decimal number of the entry,
vv is the octal channel number of the device,
DVRmm is the I/O driver number for the device,
d specifies DMA if equal to D, no DMA if ¢,
r specifies core-resident if eQual to R, disc-resident if g,
u is one decimal digit used for sub-channel addressing,
s is the availability status of the device:
@ for not busy, and available,
1 for disabled (down),
2 for busy,

3 for awaiting an available DMA channel.
Example

:EQUIPMENT TABLE

EQT @1 CH 11 DVRPP P R UP SP
EQT @2 CH 17 DVR3@ D R Up SP
EQT @3 CH 13 DVRP1 @ 9 UP SP
EQT @4 CH 23 DVRI5 @ 9§ U@ SP
e

LOGICAL UNIT

Purpose

To assign logical unit numbers for a job or to list the device

reference table (logical unit assignments).

Format

:LU[,nl [,nz]]

where n, and n,, if both present, assign the device recorded in

1 2
equipment table entry n, to logical unit number n, (both

2
are decimal numbers). If only n

1

7 is present, then the

equipment table entry number (see EQUIPMENT directive)

assigned to logical unit number n_, is output. If no par-

1

ameters appear, the entire device reference table is

printed.

Comments

Assignments made by :LU for logical units 1 through 9 are only valid during
the current job. At the beginning of each new job, the device reference
table for the first nine logical units is reset to the assignments given when
the system was configured. (See Section VI, DOS Generator). This insures

a standard I/O organization for all users.
Example

:LUN TABLE
LUAT EQTQI
LU@2 EQTP2
LUB3 EQTPP
LUp4 EQTQ1
LUPS EQTP3
LU@g6 EQTPI
LUP7 EQTP4

DIRECTIVES

Uup

Purpose

To declare an I/0 device ready for use.

Format
:UP, n

where n is the equipment table entry number corresponding to the

device.

Comments

The :UP directive is usually used in response to the following message from
DOS:

ET
1/0 ERR< or > EQT #n
NR

where ET indicates end of tape,
NR indicates device not ready, and

n is the equipment entry number.

DIRECTIVES

DOWN

Purpose

To declare an I/0 device unavailable for use.

Format

:DN,n

where n is the equipment table entry number for the device to

be set down.

Comments

The system teleprinter and system disc cannot be set down. Once set down,

a device is unavailable until set UP by the operator.

NOTE:

The directives in the rest of this section pertain to operation in the key-
board mode only.

DIRECTIVES
(KEYBOARD MODE ONLY) ~ /

BATCH =

Purpose

To switch from keyboard mode to batch mode.

Format

:BATCH,logical unit

where logical unit is the device to be used as the batch input

device.

Comments

See "TYPE" in this section for the opposite procedure of returning from batch
mode to keyboard mode.

DIRECTIVES
(KEYBOARD MODE ONLY)

DATE

Purpose

To set the date and time for accounting purposes whenever DOS is

started up.

: DATE, day[,hour,min]

(COn«mAm T A TR
where day is an strigg of ten or less charactersachosen by the
BPELATD
use? (such as 7/18/69,1¢.JULY.69, etc.);
hour and min are the current time in hours and minutes on a

24-hour clock. If not given, they are set to zero.

Comments

The DATE directive is legal only following a start-up procedure. (See
Section VI, DOS INITIATION FROM THE DISC.) The directive is not accepted

any other time.

Examples

:DATE,7/1969,12,23
:DATE,WEDNESDAY, 7,45
:DATE,T@JULY1969

DIRECTIVES
(KEYBOARD MODE ONLY)

GO

Purpose

To restart a program that has been suspended, and optionally, to

transfer up to five parameters to that program.

Format

:GO[,PI,PZ,...P5]

where Pl through P_ are optional parameters and must be decimal

5
values between @ and 32767.

Comments

When a program suspends itself (see Section III, PROGRAM SUSPEND EXEC CALL),
it is restarted by a GO directive. Upon return to a suspended program, the
initial address of the five parameters is located in the B-register. A
FORTRAN program calls the library subroutine RMPAR to transfer the parameters
to a specified 5-word array. The first statement after the suspend call, in

a FORTRAN program, must be the call to RMPAR. For example,

DIMENSION I(5)
CALL RMPAR (I)

An assembly language program should use the B-register upon return from the
suspend to obtain and save the parameters prior to making any EXEC request

or I/0 request.

SECTION I1l1
EXEC CALLS

Using EXEC calls, which are the line of communication between an executing

program and DOS, a program is able to:

Perform input and output operations,
Request status of disc tracks,
Terminate or suspend itself,

Load its segments,

Search for file names, or

[=== == G cwen R =me= R e B waes |

Obtain the time of day.

An EXEC call is a block of words, consisting of an executable instruction and
a list of parameters defining the request. The execution of the instruction
causes a memory protect violation interrupt and transfers control to DOS.

DOS then determines the type of request (from the parameter list) and, if it
is legally specified, initiates processing of the request. The executable

instruction is a jump subroutine (JSB) to EXEC.

In FORTRAN, EXEC calls are coded as CALL statements. In Assembly Language,
EXEC calls are coded as a JSB, followed by a series of parameter definitions.
For any particular call, the object code generated for the FORTRAN CALL

Statement is equivalent to the corresponding Assembly Language object code.

This section describes the basic formats of FORTRAN and Assembly Language
EXEC calls, then each EXEC call is presented in detail.

3-1

EXEC CALLS

FORMAT OF THE ASSEMBLY LANGUAGE CALLING SEQUENCE

The following is a general model of an EXEC call in Assembly Language:

EXT EXEC

JSB EXEC

DEF *+n+1
P

DEF g l

DEF P ‘
n

return point

(Used to link program to DOS)

(Transfer control to DOS)

(Defines point of return from DOS, n
is number of parameters; may not be
an indirect address)

(Define addresses of parameters which
may occur anywhere in program; may be
multi-level indirect)

(Continue execution of program)

(Actual parameter values)

EXEC CALLS

FORMAT OF THE FORTRAN CALLING SEQUENCE

In FORTRAN, the EXEC call consists of a CALL Statement and a series of

assignemnt statements defining the variable parameters of the call:

CALL EXEC (p., P_ , Pn)

1 2
where Pl through Pn are either values or variables defined
elsewhere in the program. Variables must begin with

a letter I through N, since they are integer variables.

Example

CALL EXEC (7)

or Equivalent calling sequence
IRCDE = 7
CALL EXEC (IRCDE)

Some EXEC call functions are handled automatically by the FORTRAN compiler or

special subroutines. (Refer to "FORTRAN," Section IV, DOS PROGRAMMING, and

the specific EXEC calls in this section.)

3-3

EXEC CALLS
READ/WRITE

Purpose

To transfer information to or from an external I/0 device or
the work area of the disc. (DOS handles track and disc

switching automatically.)

Assembly Language

EXT EXEC

JSB (Transfer control to DOS)

DEF (Point of return from DOS; 7 is
for disc request)

DEF (Request code)

DEF _ (Control information)

DEF (Buffer location)

DEF (Buffer length)

DEF (Track number-disc transfer only)

DEF (Sector number-disc transfer only)

(return (Continue execution)

DEC (1=READ, 2=WRITE)

oCcT (conwd is described in Comments)

BSS (Buffer of n words)

DEC (Same n; words (+) or characters (-))
DEC (Work area track number, decimal)

DEC (Work area sector number, decimal)

3-4

EXEC CALLS

FORTRAN

I/0 transfers to regular devices are programmed by standard
i
FORTRAN READ and WRITE Statements. I/0 on the work area of

the dfsc is done with a subroutine BINRY, described in the

|
Comments, or the FORTRAN equivalent of the EXEC call:
l ; -

|
CALL EXEC (ICODE, ICON, IBUF, IBUFL, ITRAK, ISECT)

Comments

11

READ/WRITE EﬁEC calls carry out I/O transfers including those on the work
i

area of the disc. (See FILE READ/WRITE EXEC CALL.)
i

CONWD

The conwd, required in the calling sequence, contains the following fields:

'} /] W K \ M LOGICAL UNIT #
BITS {15114 |13 12| 11} 1p 9 8 7 6 5 4 3 2 1 r.

Field Function
w If 1, tells DOS to return to the calling program after

starting the I/O transfer. If W = @, DOS waits until
the transfer is complete before returning.

K Used with keyboard input, specifies printing the input
as received if K= 1. If K= ¢, "no printing” is
specified.

v Used when reading variable length records from punched
tape devices in binary format (M = 1, below). If V = ¢,
the record length is determined by buffer length. If
V = 1, the record length is determined by the word count
in the first non-zero character which is read in.

M Determines the mode of data transfer. If M = @, transfer
is in ASCII character format, and if M = 1, binary format.

(Disc is always binary).

EXEC CALLS

BINRY

User FORTRAN programs call the FORTRAN disc read/write library routine, BINRY,
to accomplish I/O in the work area. The user must specify: an array to be
used as a buffer, the length of the buffer in words (equal to the number of
elements in an integer array, double that for a real array), the disc logical
unit, track number, sector number, and offset in words within the sector.

(If the offset equals @, the transfer begins on the sector boundary. If the
offset equals N, then transfer skips N words of the sector before starting).
BINRY has two entry points, BREAD and BWRIT, for read and write operations

respectively. An example below gives the calling procedure.

DIMENSION IBUF(1{), BUF(2#)

LUN = 2

ITRK = 12
~ ISECT = 63

IOFF = @

CALL BREAD (BUF, 4%, LUN, ITRK, ISECT, IOFF),
or

CALL BWRIT (IBUF, 1¢, LUN, ITRK, ISECT, IOFF)
Waiting and No Waiting

If the program requests the no waiting option in the conwd, it can check for
the end of the I/O operation with the I/O STATUS EXEC call. In the Assembly
Language calling sequence, the buffer length can be given in words (+) or
characters (-). When the transfer is complete, the amount actually trans-
ferred can be learned by the same status call. A positive number of words
or characters, depending upon which were originally requested, is returned.
If the WAIT oétion is used, DOS returns the number of transmitted words or

characters to the B register.

EXEC CALLS

FILE READ/WRITE

Purpose

To transfer information to or from a user file on the disc; the

file must be referenced by name.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS)

DEF *+7 (Point of return from DOS)
DEF RCODE (Request code)

DEF CONWD (Control information)

DEF BUFFR (Buffer location)

DEF BUFFL (Buffer length)

DEF FNAME (File name)

DEF RSECT (Relative sector within file)
return point (Continue execution)

DEC 14 or 15 (14 = READ, 15 = WRITE)
OCT conwd (See Comments, READ/WRITE EXEC CALL.)
BSS n (Buffer of n words)

DEC n or -2n (Same n; words (+) or characters (-))

ASC 3, xxxxx (User file name = xxxxx)

DEC m (Relative sector number)

3-7

EXEC CALLS

FORTRAN

Dinrgasron
D IFILE (3)

IFILE(1) = xxxxxB (First two characters of file name)

IFILE(2) = xxxxxB (Second two characters)
(

IFILE(3
IRCDE = 14 (or 15) (Request code)

ICNWD = xxxxxB (conwd)
DirvEngion

DM IBUF(10)

CALL EXEC (IRCDE,ICNWD,IBUF,1@,IFILE,D)

) = xxxxxB (Last character and blank)

Comments

See the Comments under READ/WRITE EXEC CALL for a description of the conwd

fields needed in the above calling sequences.

To read or write on the first sector of a file, m=@; for the last sector,
m=number of sectors in the file -1. To determine the size of a file, use

the SEARCH FILE NAMES EXEC call.

Any type of file may be read, but only ASCII or binary data files may be

written.

EXEC CALLS

1/O CONTROL

Purpose

To carry out various I/O control operations, such as backspace,

write end-of-file, rewind, etc.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS)

DEF *+4(or 3) (Point of return from DOS)
DEF RCODE (Request code)

DEF CONWD (Control information)

DEF PARAM (Optional parameter)

return point (Continue execution)

RCODE DEC 3 (Request code = 3)

CONWD OCT conwd (See Comments)
PARAM DEC n (Required for some control functions;

see Comments)

FORTRAN

Use the FORTRAN auxiliary I/O statements or an EXEC calling

sequence.

IRCDE = 3 (Request code)
ICNWD = conwd (See Comments)
IPRAM = % (Optional; see Comments)

CALL EXEC (IRCDE,ICNWD,IPRAM)
CALL EXEC (IRCDE,ICNWD)

EXEC CALLS

Comments

CONWD

The control word value (conwd) has two fields:

g g |w FUNCTION CODE (see below) LOGICAL UNIT NUMBER
BITS |15 (14 [13 |12 |11 [1g IE IE [7] 6 5 4| 3 2] 1] ¢

If W= 1, DOS returns to the calling program after starting the control request.

Ifw

¥, DOS waits until the control request is complete before returning.

Function Code (Octal) Action
[.]0.10)] Unused
271 Write end-of-file (magnetic tape)
g2 Backspace one record (magnetic tape)
283 Forward space one record (magnetic tape)
ag4 Rewind (magnetic tape)
gas Rewind standby (magnetic tape)
@6 Dynamic status (magnetic tape)
237 Set end-of-paper tape
g1g Generate paper tape leader
711 List output line spacing

(PARAM or IPRMA required)
g12

177

Unused

Function code 118, list output line spacing, requires the optional parameter
mentioned in the calling sequences. PARAM (or IPRAM) designates the num-
ber of lines to be spaced on the specified logical unit. A negative para-
meter specifies a page eject on a line printer or number of lines to be
spaced on the teleprinter. For details of line printer formatting, consult

Appendix E.

EXEC CALLS

I/O STATUS

Purpose

To request the status of a particular I/0 device, and the

amount transmitted in the last operation.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS)
DEF *+5 (Point of return from DOS)
DEF RCODE (Request code)

DEF CONWD (Logical unit)

DEF STATS (Status returned)

DEF TLOG (Transmission log returned)
return point (Continue execution)

RCODE DEC 13 (Request code = 13)
CONWD DEC n (Logical unit number)

STATS NOP (Status returned here)

TLOG NOP (Transmission log returned here)

FORTRAN

IRCDE = 13 (Request code)

ICNWD = n (n is decimal logical unit)
CALL EXEC (IRCDE,ICNWD,ISTAT,ITLOG)

EXEC CALLS

Comments

The status returned is the hardware status of the device specified by the
logical unit. The transmission log contains the amount of information which
was transferred (a positive number of words or characters depending on which
was requested by the call initiating the transfer). The disc is a special
case because transfers are broken up by DOS when the transfer crosses track
boundaries or switches physical disc files. Only the amount transmitted in

the last transfer is recorded in TLOG.

EXEC CALLS

WORK AREA LIMITS

Purpose

To ascertain the first and last tracks of the work area on the

disc and the number of sectors per track.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS)

DEF *+5 (Point of return from DOS)
DEF RCODE (Request code)

DEF FTRAK (First track)

DEF LTRAK (Last track)

DEF SIZE (Number of sectors/track)
return point (Continue execution)

RCODE DEC 17 (Request code = 17

FTRAK NOP (Returns first work track number here)
LTRAK NOP (Returns last work track number here)

SIZE NOP (Returns number of sectors per track here)

FORTRAN o/
1 LSS CoE
IB@’%=]7’/ w (Request code)

CALL EXEC (IRCDE,IFTRK,ISIZE)

Comments

This call returns the limits of the work area, that area of the disc which
programs use for temporary storage with the READ/WRITE EXEC call. Some tracks
within the work area may be faulty. Therefore, if the program requires con-
secutive tracks, it should check the work area track status. (See WORK AREA
STATUS EXEC call.)

3-13

EXEC CALLS

WORK AREA STATUS

Purpose

To ascertain whether a specified number of consecutive operable

tracks exist in the work area of the disc.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS)

DEF *+5 (Point of return from DOS)
DEF RCODE (Request code)

DEF NTRAK (Number of tracks desired)
DEF RTACK (Starting track desired)
DEF STRAK (Actual starting track)

return point (Continue execution)

DEC 16 (Request code = 16)

NTRAK DEC n (Consecutive tracks desired)
TRACK NOP (Desired track; from LIMITS call)
STRAK NOP (Actual starting track available.

g if n tracks not available).

FORTRAN

IRCDE
ICNWD
ITRAK
CALL EXEC (IRCDE, ICNWD,ITRAK,ISTRK)

16 (Request code)

n (Consecutive tracks desired)

m (Desired starting track)

EXEC CALLS

Comments

This call is used with the WORK AREA LIMITS EXEC call to establish the nature
of the work area. The READ/WRITE EXEC call then transmits information to and
from this area, using the track numbers determined by this call. DOS handles

track and disc switching automatically.

DOS checks whether there are n consecutive operable tracks starting at the
track specified. 1If not, DOS scans through the work area looking for n con-
secutive operable tracks. Upon location of tracks, DOS returns the starting
track number to the program. If DOS does not locate n consecutive tracks, it

returns @ in TRAK or ITRAK.

EXEC CALLS

PROGRAM COMPLETION

Purpose

To notify DOS that the calling program is finished and wishes

to terminate.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS)
DEF *+2 (Return point from DOS)
DEF RCODE (Request code)

return point

RCODE DEC 6 (Request code = 6)

FORTRAN

The FORTRAN compiler generates a PROGRAM COMPLETION EXEC CALL

automatically when it compiles an END statement.

The programmer may use an EXEC call instead:

ICODE = 6 (Request code)
CALL EXEC(ICODE)

EXEC CALLS

PROGRAM SUSPEND

Purpose

To suspend the calling program from execution until restarted by

the GO directive.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS)

DEF *+2 (Point of return from DOS)
DEF RCODE (Request code)
return point (Continue execution)

RCODE DEC 7 (Request Code = 7)

FORTRAN

The FORTRAN library subroutine PAUSE, which is automatically called

by a PAUSE statement, generates the SUSPEND EXEC call.

The programmer may use an EXEC call instead:

CALL EXEC (7)

3-17

EXEC CALLS

Comments

DOS prints a message on the system teleprinter when it processes the PROGRAM

SUSPEND EXEC call:

name, SUSP

When the operator restarts the program with a GO, the B-Register contains the
address of a five-word parameter array set by the GO request. (The param-
eters equal zero if no values have been given.) In a FORTRAN program, the
library subroutine RMPAR can load these parameters; however, the call to

RMPAR must occur immediately following the SUSPEND EXEC call, as in the fol-

lowing example:

DIMENSION I (5)
CALL EXEC (7) (Suspend)
CALL RMPAR (I) (Return point; get parameters)

EXEC CALLS

PROGRAM SEGMENT LOAD

Purpose

To load a segment of the calling program from the disc into
the segment overlay area and transfer execution control to
the segment's entry poinﬁl (See Section IV, DOS PROGRAMMING,

for information on segmented programs.)

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS)
DEF *+3 (Point of return from DOS)
DEF RCODE (Request code)

DEF SNAME (Segment name)

return point (Continue execution)

RCODE DEC 8 (Request code = 8)

SNAME ASC 3,xxxxx (xxxxx is the segment name)

FORTRAN

IRCDE = Berons

pHT INAME (3)

INAME (1) = xxxxxB (First two characters)
INAME (2) = xxxxxB (Second two)

INAME (3) = xxxxxB (Last character)

CALL EXEC (IRCDE,INAME)

3-19

EXEC CALLS

Comments

In the FORTRAN calling sequence, the name of the segment must be converted

from ASCII to octal and stored in the INAME array, two characters per word.

See OVERLAY SEGMENTS and SEGMENTED PROGRAMS, Section IV, for a description

of segmented programs.

3-20

EXEC CALLS

SEARCH FILE NAMES

Purpose

To check whether a specif

of user or system files.

Assembly Language

EXT EXEC

JSB EXEC

DEF *+4

DEF RCODE
DEF FNAME
DEF NSECT
return point

RCODE DEC 18
FNAME ASC 3,xxxxx
NSECT NOP

FORTRAN
IRCDE = 18

oy et tons
p#T INAME (3)
INAME (1) = xxxxxB

INAME (2) = xxxxxB

ic file name exists in the directory

(Transfer control to DOS)
(Return address)

(Rquest code)

(File name)

(Number of sectors)

(Request code = 18)
(xxxxx 1s the file name)
(Number of sectors returned here;

g if not found)

(Request code)
(File name)
(First two characters)

(Next two characters)

INAME (3) = xxxxxB (Last character and blank)

CALL EXEC (IRCDE,I

NAME, ISECT)

3-21

EXEC CALLS

TIME REQUEST

Purpose

To request the current time.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS)
DEF *+3 (Point of return from DOS)
DEF RCODE (Request code)

DEF ARRAY (Time value array)

return point (Continue execution)

RCODE DEC 11 (Request code =11)
ARRAY BSS 5 (Time value array)
FORTRAN

E?ggggi;g}«ﬁf

QM ITIME (5)
CALL EXEC (IRCDE, ITIME)

Comments

When DOS returns, the time value array contains the time on a 24-hour clock:

ARRAY or ITIME (1) = Tens of milliseconds

ARRAY + 1 or ITIME (2) = Seconds

ARRAY + 2 or ITIME (3) = Minutes

ARRAY + 3 or ITIME (4) = Hours

ARRAY + 4 or ITIME (5) = Not used, but must be present
(always = @)

SECTION IV
PROGRAMMING

Section IV describes the operating procedures and formatting conventions of

the four user programming aids of DOS:

FORTRAN Compiler
Assembler

Relocating Loader

O e e |

Relocatable Library

Using the EDIT directives, the operator creates and edits files of source
programs written in FORTRAN and Assembly Language. In load~and-go operations
the DOS FORTRAN Compiler and DOS Assembler generate relocatable binary code
onto temporary disc storage. The DOS Relocating Loader can relocate and
merge the code with referenced subroutines of the DOS Relocatable Library.

Once loaded, a program is executed by the PROG or RUN directive.

LOAD-AND-GO FACILITY

The Disc Operating System providés the facility for "load-and-go" which is
defined as compilation or assembly, loading, and execution of a user program
without using intervening object paper tapes. To accomplish this, the com-
piler or assembler generates relocatable object code from source statements
and stores it on the disc in the job binary area of the WORK tracks. Then

separate directives initiate loading (PROG, LOADR) and execution (RUN,program).

DOS stores the object code of several programs and associated subroutines on
the disc. The Relocating Loader locates them on the disc, and relocates

them into executable absolute program units.

PROGRAMMING

DOS FORTRAN COMPILER

The DOS FORTRAN Compiler, a segmented program, operates under control of the

DOS Supervisor. The compiler consists of a main program (FTN) and four over-
lay segments (FTN@l, FTN@2, FTN@3, FTN@4). It resides in the protected area

of the disc and is read into core only when needed. The compiler requires

at least a 4K user area of core.

DOS FORTRAN, a problem-oriented programming language, is very similar to
regular HP FORTRAN. Source programs, accepted from either an input device
or a user file, are translated into relocatable object programs, punched on
paper tape, and optionally, stored in the job binary area of the disc. The
object program can be loaded using the DOS Relocating Loader and executed

using the RUN or PROG directive.

Compiler Operation

The DOS FORTRAN compiler is started by a PROG directive. Before entering
the PROG directive, place the source program in the input device, or, if

input is from a source file, specify the file with a JFILE directive.

PROGRAMMING

PROG,FTN

:PROG,FTN Lop ,p,,p_,p,,99]

logical unit of input device (standard is 5; set to

2 for source file input).

logical unit of list device (standard is 6).

p., = logical unit of punch device (standard is 4).

= lines/page on listing (standard is 56).

the job binary parameter. If present, the object

program is stored in the job binary area for later

loading. Any requested punch output still occurs.

(The 99 may occur anywhere in the parameter list,

but terminates the list.)

pl through p4 are optional. If not present, the standard operation

is assumed. If 99 is not present, then binary is not placed in the

job binary area.

MESSAGES TO OPERATOR DURING COMPILATION

This message is printed on the operator console when an end-of-tape occurs

on device #n.

I/0 ERR ET EQT #n
EQT #n is unavailable until the operator declares it up.

:UP,n

Compilation continues after the GO. More than one source tape can be compiled
into one program by loading the next tape before giving the GO,

At the end of compilation, the following message is printed.

$END, FIN

4-3

TR

PROGRAMMING

If the job binary area (where binary code is stored because of a 99 parameter)
overflows, the following message is printed, and compilation continues:

JBIN OVF

There is no further loading into the job binary area.

The compiler terminates if...

ﬂ No JFILE is declared, although logical unit 2 has been
given for input. Error E-@@19 is printed on the list
device. (SEND,FTIN is not printed.)

ﬂ There are not enough work tracks for the compiler. The

following message is printed:
#TRACKS UNAVAILABLE

ﬂ Colons occur in the first column of a source program
entered through the batch device. (Blank cards in
the source program are ignored.) The following mes-

sage is printed:
IE nnnnn

where nnnnn is the memory location of the input request.

FORTRAN CONTROL STATEMENT

Besides the standard options described in the FORTRAN manual, two new compiler
options, T and n, are available. A "T" lists the symbol table for each pro-
gram in the compilation. If a "u" follows the address of a variable, that
variable is undefined (the program does not assign a value o it). The A op-
tion includes this T option. If n appears, n is a decimal digit (1 through 9)
which specifies an error routine. The user must supply an error routine, ERRn.
If this option does not appear, the standard library error routine, ERR@, is

used. The error routine is called when an error occurs in ALOG, SQRT, .RTOR,
SIN, COS, .TROI, EXP, .ITOI or TAN.

PROGRAMMING

PROGRAM STATEMENT

The program statement includes an opticnal type parameter.

PROGRAM name [, type]

where name is the name of the program and its main entry point.
When the program is executed using a RUN directive,
this name is used.
type is a decimal digit specifying the program type.
Only types 3 (main), 5 (segment), and 6 or 7 (library)

are significant in DOS. The type is set to 3 if not given.

Seven more parameters may be included but they are used only
with the HP2005A Real-Time Executive System. Programs can be
compiled on DOS to be run under Real-Time. (Consult the

Real-Time Software Manual.)

I/0 LOGICAL UNIT NUMBERS

DOS FORTRAN function assignments for logical unit numbers are different from

regular FORTRAN. (See Section V.)

When preparing input data for the batch device, the user never puts a colon
(:) in column one of a record because the colon in first position signifies

a directive. DOS aborts the job if a directive occurs during data input.

PROGRAMMING

DATA STATEMENT

A new statement, the DATA statement, has been added to DOS
FORTRAN. DATA sets initial values for variables and array
elements. The format of the DATA statement is:

DATA kl/dl/,kz/dz/, - ,kn/dn/

where k is a list of variables and array elements separated by
commas ,
d is a list of constants or signed constants, separated by
commas and optionally preceded by j* (j is an integer

constant).

The elements of di are serially assigned to the elements of ki'
The form j* means that the constant is assigned j times. The

ki and di must correspond one-to-one.
Elements of ki may not be from COMMON.

Arrays must be defined (i.e., DIMENSION) before the DATA state-
ments in which they appear. DATA statements may occur anywhere

in a program following the specification statements.
Example,

DIMENSION A(3), I(2)
DATA A(1),A(2),A(3)/1.8,2.9,3.8/1(1),1(2)/2*1/

PROGRAMMING

EXTERNAL STATEMENT

With the new statement, EXTERNAL, subroutines and functions
can be passed as parameters in a subroutine or function call.
For example, the routine XYZ can be passed to a subroutine
if XYZ is previously declared EXTERNAL. Each program may de-

clare up to five EXTERNAL routines.

The format of the EXTERNAL statement is

EXTERNAL Ve v

PYRREIASS

Where v; is the entry point of a function, subroutine,

or library program,
EXAMPLE

FUNCTION RMX(X,Y,A,B)
RMX=X (A)*Y (B)

END

EXTERNAL XYZ, FL1
Z=Q-RMX(XYZ,FL1,3.56,4.75)

ERROR E-@@18 means too many EXTERNALS.

Note: 1If a library routine, such as SIN, is used as an EXTERNAL,
the compiler changes the first letter of the entry point
to "s". sSpecial versions of the library routines exist
with the first character changed to "%". See DOS Relo-

catable Library, in this section.

PROGRAMMING

PAUSE & STOP

PAUSE causes the following message to be printed.

PAUSE xxxx

Where xxxx is an octal number.

To restart the program, the operator uses a GO directive.

STOP causes the program to terminate after the following

messale.

STOP xxxx

Where xxxx is an octal number.

OVERLAY SEGMENTS

Segmented user programs may be written in FORTRAN, but certain conventions

are required. A segment must be defined as type 5 in the PROGRAM statement.
The segment must be initiated using the PROGRAM SEGMENT LOAD EXEC call from
main or segment. A dummy call to main must appear in each segment. In this

way, the proper linkage is established between ‘the main and its segments.

Chaining of segments is unidirectional. Once a segment is loaded, execution
transfers to it. The segment, in turn, may call another segment using an
EXEC call, but a segment written in FORTRAN cannot return to the main program.
All communication between the main program and segments must be through

COMMON. Segments must not contain DATA Statements.

PROGRAMMING

ERR® LIBRARY ROUTINE

ERR@, the error print routine referred to under the FORTRAN
control statement, prints the following message whenever an

error occurs in a library routine:

Where nn is the routine identifier, and

xx is the error type.

The compiler generates calls to ERR@ automatically. If the

FORTRAN control statement includes an n option, the call will

be to ERRn, a routine which the user must supply.

Check the FORTRAN manual (Chapter 9.9) for the meaning of error

codes.

REFERENCE ON FORTRAN

For a complete description of the FORTRAN language, read the FORTRAN
programmer's reference manual (02116-9015). Sections 9.5,9.6, and 9.8 are

not pertinent to DOS FORTRAN,

PROGRAMMING

DOS_ASSEMBLER

The DOS Assembler, a segmented program that executes in the user program
area of core, operates under control of DOS. The Assembler consists of a
main program (ASMB) and six segments (ASMBD, ASMB1, ASMB2, ASMB3, ASMB4,

ASMB5), and resides in the protected system area of the disc.

DOS Assembly Language, a machine-oriented programming language, is very
similar to the HP Extended Assembly Language. Source programs, accepted
from either an input device or a user source file on the disc, are trans-
lated into absolute or relocatable object programs; absolute code is punched
in binary records, suitable for execution only outside of DOS. ASMB can
store relocatable code in the load-and-go area of the disc for on-line
execution, as well as punch it on paper tape. The DOS Relocating Loader
accepts assembly language relocatable object programs from paper tape, the

load-and-go area, and user files.

A source program passes through the input device only once, unless there is
insufficient disc storage space. In the latter case, two passes are re-

quired. There are no magnetic tape assemblies.

4-10

PROGRAMMING

Assembler Operation

The DOS Assembler is started by a PROG directive. However, before entering
the PROG directive, the operator must place the source program in the input
device. If the source program is on the disc, the operator must first speci-

fy the file with a JFILE directive, and set parameter p, = logical unit 2
in the PROG directive.

PROG,ASMB

;PROG,ASMB,pl,pZ,p3,p4,99

= logical unit of input device (5 is standard; 2 is used for

source file input indicated by a JFILE directive)

= logical unit of list device (6 is standard)
logical unit of punch device (4 is standard)
lines/page on listing (56 is standard)

job binary parameter. If present, the object program is
stored in the job binary area for later loading. Any re-
quested punching still occurs. The 99, which may follow

any parameter in the list, terminates the list.

the values of p. through p, are not set, the standards are used.
1 4

PROGRAMMING

MESSAGES DURING ASSEMBLY

The messages described in this section are printed at the teleprinter console

or in the program listing.

When an end-of-tape occurs on device #n, this message appears on the system

teleprinter:
I/0 ERR ET EQT #n

EQT #n is unavailable until the operator declares it up and restarts the

assembler by means of a GO directive:

:UP, n
:G0

Thus, more than one source tape can be assembled into one program. The next
tape is loaded each time the input device goes down. The program should be

placed in the input device before entering the GO.
The following message on the system teleprinter signifies the end of assembly:

$END ASMB

If another pass of the source program is required, the message is printed on

the system teleprinter at the end of pass one.
$END ASMB PASS
The operator must replace the program in the input device and type:
:GO

If an error is found in the Assembler control statement, the following mes-

sage 1s printed on the system teleprinter:
$END ASMB CS

The current assembly stops.

PROGRAMMING

If an end-of-file condition on source input occurs before an END statement

is found, the teleprinter signals:
$END ASMB XEND

The current assembly stops.

If source input for logical unit 2 (disc) is requested, but no file has been

declared (see JFILE, Section II), the system teleprinter signals:
$END ASMB NPRG

If the job binary area, where binary code is stored by a 99 parameter, over-
flows, assembly continues but the following message is printed on the system

teleprinter:
JBIN OVF

However, no binary code is stored in the job binary area.

The next message is associated with each error diagnostic printed in the

program listing during pass 1.
nnn

nnn is the "tape" number on which the error (reported on the next line of
the listing) occurred. A program may consist of more than one tape. The
tape counter starts with one and increments by one whenever an end-of-tape
condition occurs (paper tape) or a blank card is encountered. When the

counter increments, the numbering of source statements starts over at one.

Each error diagnostic printed in the program listing during pass 2 of the

assembly is associated with a different message:

PG ppp

ppp is the page number (in the listing) of the previous error diagnostic.

PG @PF is associated with the first error found in the program.

These messages (#nnn and PG ppp) occur on a separate line, just above each

error diagnostic in the listing.

PROGRAMMING

DOS Assembly Language

The DOS Assembly Language is equivalent to extended assembly language, as
defined in the ASSEMBLER programmer's reference manual (02116-9014). A few
language changes are required to run under DOS; programs must request certain
functions, such as I/0, from the executive. These requests are made using

the EXEC calls described in Section III.

ASSEMBLER CONTROL STATEMENT

The control statement has the same form as that of regular assembly language;
and although only relocatable code can be run under DOS, the DOS Assembler is
able to assemble absolute code if it is specified. Absolute code is never
stored in the job binary area. To get absolute code, the control statement
must include an "A". The "R", however, is not required for relocatable code.

An "X" causes the assembler to generate non-extended arithmetic unit code.

Examples

ASMB,L,B List and Punch Relocatable Binary.
ASMB,R,L,B,X List and Punch Relocatable, non-EAU Binary.
ASMB,T,L List and Print Symbol table.

ASMB,A,B,L List and Punch absolute binary.

PROGRAMMING

NAM STATEMENT

The NAM psuedo-instruction allows up to eight optional parameters.

(The last seven parameters are used only by programs to be exe-

cuted under the HP2005A Real-Time Executive System.) Only the

first parameter is significant in DOS. If the first parameter

equals 3, the program is a main program; if 5, a program segment;

if 6, a library routine; if 7, a subroutine. TIf the parameter

equals another number, the assembler and DSGEN will accept it,

(See Section VI for DSGEN

but the Relocating Loader will not.

program type codes.)

NAM name [,type]

where name is the name of the program, and

type is the type code.

In addition to the name defined by NAM, each program has one or

more entry points defined by an ENT statement with the exception

of the main program. The transfer address on the END statement

is sufficient for the main program (type.3). Name is used in

programmer-to-DOS communication, while the entry points are pro-

gram—-to-program communication.

ORB STATEMENT

DOS Assembly Language does not contain the ORB statement, since information
cannot be loaded into the protected base page area by user programs. How-
ever, programs can read information from base page using absolute address

operands up to 17778.

INPUT/QUTPUT

DOS has different function assignments for the logical unit numbers. (See

Section V.)

=
j

15

PROGRAMMING

When preparing input for the batch device, the programmer must remember to
never put a colon (:) in column one of a source statement. DOS aborts the
entire job if a directive (signified by : in column one) occurs during data

input.

The memory protect feature protects the resident supervisor from alteration

and interrupts the execution of a user program under these conditions:

ﬂ Any operation that would modify the protected area or jump into it.

H Any I/O instruction, except those referencing the switch register
or overflow.

ﬂ Any halt instruction.

Memory protect gives control to DOS when an interrupt occurs, and DOS checks

whether it was an EXEC call. If not, the user program is aborted.

Segmented Programs

User programs may be structured into a main program and several segments, as
shown in Figure 4-1. The main program begins at the start of the user pro-
gram area. The area for the segments starts immediately following the last
location of the main program. The segments reside on the disc, and are read
into core by an EXEC call, when needed. Only one segment may be in core at
a time. When a segment is read into core, it overlays the segment previously

in core.

The main program must be type 3, and the segments must be type 5. When using
DSGEN to configure the system or loading programs with LOADR, the main pro-
gram must be entered prior to its segments. One external reference from each
segment to the main routine is required for DSGEN to link the segments and
main programs. Also, each segmented program should use unique external ref-
erence symbols. Otherwise, DSGEN or LOADR may link segments and main pro-

grams incorrectly.

PROGRAMMING

User

Program < MAIN PROGRAM
Area

SEGMENT
OVERLAY
AREA

,J

CORE MEMORY

SEGMENT 3
SEGMENT 2

MAIN PROGRAM SEGMENT 1

SEGMENT 1 MAIN PROGRAM

NOTE: TRACK, SEGMENT,
AND GAP SIZES ARE
EXAGGERATED.

DISC MEMORY

Figure 4-1. Segmented Programs

PROGRAMMING

Figure 4-2 shows how an executing program may call in any of its segments from
the disc using the PROGRAM SEGMENT LOAD EXEC request (1-2). DOS locates the
segment on the disc (3-4), loads it into core (5) and begins executing it.

The segment may call in another of the main program's segments using the‘same

EXEC request (6).

SEGMENT 1 DOSs
SUPERVISOR

SEGMENT 2

NAM MAIN
EXT EXEC

ENT M
° MAIN PROGRAM
.

JSB EXEC

NAM SEG1

EXT EXEC, M

4 SEGMENTS
o

JSB EXEC

(CALL FOR
SEG2)

MAIN PROGRAM

DISC

CORE

Figure 4-2. Main Calling Segment

PROGRAMMING

Figure 4-3 shows how DOS processes the request from the segment (7) by locat-
ing the segment on the disc (8-9), loading it into core (10), and beginning

execution of it.

SEGMENT 2 DOs
SUPERVISOR

NAM MAIN
EXT EXEC

-
O
- W
&lm
83
7
w

SEGMENT 1

~

MAIN PROGRAM

MAIN PROGRAM
NAM SEG2

DISC EXT EXEC, M SEGMENTS

Figure 4~3. Segment Calling Segment

When a main program and segment are currently residing in core, they

operate as one single program. Jumps from a segment to a main program (or
vice versa) can be programmed by declaring an external symbol and referen-
cing it via a JMP instruction. (See Figure 4-4.) A matching entry symbol

must be defined as the destination in the other program. DSGEN associates

4-19

PROGRAMMING

the main programs and segments, replacing the symbolic linkage with actual
absolute addresses (i.e., a jump into a segment is executed as a jump to a
specific address). The programmer should be sure that the correct segment

is in core before any JMP instructions are executed.

Reference on Assembly Language

Consult the ASSEMBLER programmer's reference manual (02116-9014) for a full
description of assembly language. Sections 5.5 and 5.6 of that text do not

apply to DOS.

MAIN PROGRAM

(Segments)

CORE MEMORY

Figure 4-4. Main-to-Segment Jumps

T ——

PROGRAMMING

DOS RELOCATING LOADER

The DOS Relocating Loader accepts relocatable object programs which have
been translated by the DOS Assembler or DOS FORTRAN Compiler. It generates

an executable core image of each such program on the disc. The relocatable

programs may enter the loader as

Job binary area programs translated during the current job,
User files,

Punched tapes, or

= & /| 3

Subroutines from the disc-resident Relocatable Library.

Each main program is relocated to the start of the user area and linked to
its external references, such as library routines. Segments will overlay
the area following the main program and its subroutines. Programs may run
under control of the DEBUG library routine. The main program, plus its sub-
routines and its longest segment, can be as large as the user area. With a
RUN or PROG directive, the program is called by name from the disc and ex-
ecuted, or the program is stored as a permanent user file to be run dur-
ing a later job. The loader may be executed only once during each job, so
all load-and-go assemblies or compilations must be done prior to calling the

loader.

4-21

PROGRAMMING

Starting the Loader

The DOS Relocating Loader is initiated by a PROG directive from the batch or

keyboard device.

PROG,LOADR

Format

:PROG,LOADR[,Pl,P2,P3,P4,P5]

determines the relocatable object program input combination:
@ for loading from jbin and relocatable library.
2 for loading from jbin, user files, and relocatable
library. |
for loading from jbin, user files, relocatable

library and paper tape (logical unit n).

list device logical unit.

@ for no DEBUG,‘# ¢ for DEBUG.

@ for list of program load map, # @ for none.

@ for list of entry point addresses, # g for none.

=6, P =P =P_=f.

If values P_,...P 3PP

1 5 are not set, Pl=ﬂ, P

2

Comments

Selecting the DEBUG option causes DEBUG to be appended to each main program
and segment. The loader sets the primary entry point of each to DEBUG,
rather than the user routine. When the program is run, DEBUG takes control

of the program's execution and seeks instructions from the keyboard.

&

PROGRAMMING

RELOCATABLE FILES

A list of relocatable file names follows the PROG directive (unless Pl equals
#). 1In batch mode, the list starts on the next record and stops at "/E". 1In

keyboard mode, the loader prints
ENTER FILE NAME(S) OR /E

then waits for input. After each list of files is entered, the message
repeats until a /E is entered. In batch mode the list of files follows the

PROG directive on the batch input device.
file-name 1, file-name 2,.../E

The file list is a series of records containing file names separated by com-
mas, ending with a "/E." All programs in each file are loaded unless a par-

ticular subset of the file is specified:
file-name (prog 1, prog 2...)

Only the programs specified within the parenthesis are loaded from the file-

name. The file list is simply a "/E" if no files are to be loaded.

Operating the Loader

SCANNING THE PROGRAMS

The loader scans the relocatable binary programs and maintains two fables—-
one of program names, and another of entry points and externals. Since mains
are matched with segments during the scan, each main program must occur be-
fore the associated segments. Programs from tape are stored on thé work

tracks as they are read in.

If the job binary area contains any programs, it is scanned first. User

files given in the file list (if any) are scanned for entries and externals.

4-23

PROGRAMMING

If paper tape input is requested, the following messages are printed,

LOAD TAPE
LOADR SUSP
@

The loader suspends. The operator places a tape in the input device and

types
:GO

When an end-of-tape condition occurs, three messages are printed on the sys-

tem teleprinter:.

1/0 ERR ET EQT# nn

LOAD TAPE
LOADR SUSP
@

The operator places the next tape in the input device, enters :UP,n, and :GO
to read the next tape. Enter :GO,l to indicate that all tapes have been read

in.
Matching Entries with Externals
After matching all possible entry points and external references in the user
programs, the loader scans the DOS Relocatable Library (disc-resident) look-
ing for entry points to match the undefined external references. If undefin-
ed external references still exist,

UNDEFINED EXTS

is printed and the external references are listed, one per line.

PROGRAMMING

To load additional programs from paper tape, the operator types:

:Goaﬂ[sn]

where n is the logical unit number of the input device, if different from Pl

of the PROG,LOADR directive.

To continue without fulfilling external references, the operator types:

:G0,1

To specify a file name from the keyboard, the following directive is typed:

:G0,2

RELOCATION

The main and segment names become user file names once the programs are load-
ed. To ensure unique file names, the loader compares all program and segment
names against the names of previous user and system files. If duplicate

names occur, an error message is printed and loading stops.

The loader converts each main program into an absolute core image, stores it
on the disc, places the name in the user directory where it remains during
the current job, and lists the program address map and entry points, if re-
quested. After each main program, any associated segments are loaded in the
same way. When the loader is completely finished, the following message is

printed:

LOADR COMPLETED

During the current job, the absolute core images appear in the user file area
(see LIST directive, Section II) and can be executed by name (see RUN and

PROG directives.) At the end of the job, however they disappear from the

file area, unless they are made permanent files by means of the STORE direc-

tive.

If no programs are entered, the loader prints the following messages and

terminates:

NO PROGRAM LOADED
LOADR COMPLETED

DEBUG Library Subroutine

DOS DEBUG, a subroutine of the DOS Relocatable Library, allows programmers
to check for logical errors during execution. If the P3 parameter of the
PROG, LOADR directive equals 1, the loader combines DEBUG with the user pro-
gram being loaded. The primary entry point (the location where execution
begins) is set to DEBUG. Therefore, when the program is executed with a RUN

directive, DEBUG takes control and prints the message:

BEGIN 'DEBUG' OPERATION

The programmer now enters any legal debug operation. DEBUG ignores illegal

requests and prints a message:

ENTRY ERROR

DEBUG OPERATIONS

S,4,,D,

S,A,,D,,D_

1°71

PROGRAMMING

Instruction breakpoint at address A. (NOTE: if A = JSB

EXEC, a memory protect violation occurs.)

or from N, to N_.

ASCII dump of core address Nl 7 2

Binary dump of core address Nl or from Nlto N2.

Sets absolute base of relocatable program unit.

Execute user program starting at A. Execute starting

at next location in user program (used after a break-
point or to initiate the program at the transfer point

in the user program).

in location 4,.

Set Dl 1

Set Dl

location Al.

to Dn in successive memory locations beginning at

Set A-Register to Dl.

Set B-Register to D2.
Set E-Register (@=off, non-zero=on).
Set Overflow (@=off, non-zero=on).

Clear breakpoint at address A.

Bbort Debug operation.

PROGRAMMING

Loader Example

In the following example, DOS is in keyboard mode.

:PROG,LOADR,5,6,0,0,0 Paper tape input is specified.
ENTER FILE NAME(S)OR/E No files are specified.

/E

LOAD TAPE Place paper tape in input device.
LOADR SUSP

@:G0 Return to loader.

I/0 ERR ET EQT # @23 End of tape.

LOAD TAPE Put in next tape.

LOADR SUSP

@:UP,3 Declare input device ready.

@:G0

I/0 ERR ET EQT # 03
LOAD TAPE

LOADR SUSP

@:UP,3

@:60

I/0 ERR ET EQT # @3
LOAD TAPE

LOADR SUSP

@:UP,3

@:G0 Repeat tape loading process 4 times.
I/0 ERR ET EQT # @3
LOAD TAPE

LOADR SUSP

@:UP,3

0:G0

I/0 ERR ET EQT # 03
LOAD TAPE

LOADR SUSP

@:UP,3 J

@:G0,1 No more paper tapes.

RELOCATING LOADER

NAME/ENTRY

QA1
*QA1
QATA
*QATA
QA1B
*QA1B
QA1C
*QA1C
QA1D
*QA1D
FRMTR
*.D10.
*.BIO.
* 101.
*,I0R.
* IAR.
* RAR.
* . DTA.
.ENTR
*,ENTR
. FLUN
*, FLUN
. PACK
*,PACK
FLOAT
*FLOAT
IFIX
*IFIX

LOADR COMPLETE

PROGRAMMING

ADDR

12009
12076
12200 |
12201
12262
12263
12336
12337
12364
12365
12431
14612
14665
14507
14462
14546
14522
14719
15162
15162
15230
1523p
15243
15243
15350
15350
15355

15355

Main program, starting address.

Main program, entry point.

Subroutine starting addresses and entry

points. Asterisk signifies entry point.

End of Loading.

Loader Error Messages

PROGRAMMING

During its operation the loader may print one of the following error mes-

sages on the keyboard:

Message

L
Lp2
LP3
Lp4
L5
Lp6

L@7
Lp8
LP9
L19
L11
L12
L13
L14
L15
L16

Error Messages

Checksum error on tape
Illegal record

Memory overflow

Base page overflow
Symbol table overflow

Duplicate main or segment name (may be caused
by attempting to run the loader twice in one job)

Duplicate entry point

No main or segment transfer address
Record out of sequence

Insufficient directory or work area space
Program name table overflow

User file specified cannot be found
Program name duplication

Non-zero base page length

Segment occurred before main

Program overlay (illegal ORG)

The loader aborts (programmer must start over) on each of these conditions,

and prints a message.

LOADR TERMINATED

PROGRAMMING

DOS RELOCATABLE LIBRARY

The DOS Relocatable Library is a collection of relocatable mathematics and
service subroutines which are stored on the disc. A program signifies its
need for a subroutine by means of an "external reference"--created by an

EXTERNAL statement in assembly language, automatically in FORTRAN.

Many of the subroutines are equivalent to subroutines of the Hewlett-Packard BCS
RELOCATABLE PROGRAM LIBRARY, but modified internally to run under DOS. For

a list of the library subroutines and their entry points, see Table 4-1.

Table 4-1
Library Subroutines

Subroutine Name Subroutine Entry Points
FRMTR .DIO.
.BIO.
.I01.
.IO0R.
. IAR.
.RAR.
.DTA.
%ANH %ANH
%XP ‘ %XP
%IN %IN
%0S %0S
%AN %AN
%BS %BS
%L0G %L0G
%QRT %QRT
%1GN %IGN
%LOAT ' %LOAT
%FIX %FIX
%TAN %TAN
%ABS %ABS
%SIGN %SIGN

Subroutine Name

PROGRAMMING

Subroutine Entry Points

%AND
%OR
%07
GETAD
TANH
.RTOR
TAN
EXP
SICOS
SQRT
SIGN
ALOG
. IENT
ABS
ATAN
PWR2
FDV
FMP
FLOAT
. .FCM
IFIX
FADSB
.RTOI
LITOI
ISIGN
IABS
CHEBY
MANT
.PACK
..DLC
.ENTR
.FLUN
.GOTO
IAND

%AND

%0R

50T
GETAD, ADRES
TANH
.RTOR
TAN

EXP

SIN, COS
SQRT
SIGN

LN, ALOG
IENT
ABS
ARCTA, ATAN
PUR2
JFDV
.FMP
FLOAT

. .FCM
IFIX
.FAD.,
.RTOI
IT0I
ISIGN
IABS
.CHEB
.MANT
.PACK
..DLC
.ENTR
.FLUN
.G0TO
TAND

PROGRAMMING

Subroutine Name Subroutine Entry Points
I0R IOR
OVF ‘ OVF
MAP. .MAP
RMPAR RMPAR
PAUSE .PAUS, .STOP
ERRP ERR@
BINRY BREAD,BWRIT
DLDST .DLD, .DST
MPY MPY
DIV .DIV ,
SREAD %READ, %JFIL, %RDSC
PWRIS %WRIS, %WRIN, %WEOF
FWRIT %WRIT, %WRIF
ASCII CNDEC, CNOCT
$SRCH $SRCH
$ADDR $ADDR
DEBUG $DBP1, DEBUG
DBKPT $DBP2, $MEMR
PTAPE PTAPE

% Library Routines

In Table 4-1, some routines start with the‘character "g", The rest of the
subroutine name is the same as some other subroutine (e.g., SIN becomes %IN).
A subroutine starting with "$" is a call-by-name version of a call-by-value
subroutine that does the same operation. In the call-by-value subroutine,
the actual value of the parameter must be replaced in the A- and B-Registers
as an integral part of the calling sequence, The subroutine searches

the registers for the parameter.

Call-by-name subroutines, on the other hand, expect a list of parameter ad-
dresses following the subroutine call. (The EXEC calls given in Section III
demonstrate the form of a call-by-name subroutine's calling sequence.) In

FORTRAN, using the special EXTERNAL statement, subroutines may be passed as

PROGRAMMING

parameters to other subroutines. Since the subroutines receiving the par-
ameter cannot know in advance which type (call-by-value or call-by-name)
will be passed, it must assume call-by-name for generality. In FORTRAN,
subroutine parameters are assumed to be the call-by-name type subroutines

and the appropriate calling sequence is generated.

When the FORTRAN compiler encounters SIN or another of the call-by-value
subroutine within an EXTERNAL statement, the compiler knows that the sub-
routine is going to be used as a parameter. Since SIN will be assumed to
be call-by-name, the compiler automatically changes the external reference
to %IN, the call-by-name version of SIN. (NOTE: %WRIS and %WRIT are ex-

ceptions to the % routines).

For Example,

SUBROUTINE SUB (PARAM) (PARAM is a subroutine parameter)

CALL PARAM (A) (The call to PARAM is assumed to
be call-by-name)

RETURN

END

Subroutines Unique to DOS

RMPAR, ERR@, BINRY, and the %-routines are unique to DOS. RMPAR is ex-
plained in Section II, GO directive. ERR@ is explained in this section un-
der DOS FORTRAN COMPILER. BINRY is explained in Section IV, READ/WRITE

EXEC CALLS. The % routines are explained above.

4-34

PROGRAMMING

Assembly Language Calling Sequences

The calling sequences for the DOS Relocatable Library subroutines are
identical to those for the regular Relocatable Program Library routines,

with the following exceptions:

For SIN, COS, ALOG, SQRT, EXP, and TAN, the calling sedquence is:

DLD Argument
JSB Subroutine name
JSB Error routine (either ERR@ or a user

routine, ERRn, where n = 1 to 9)

normal return point

Before returning to the error routine location, the subroutines place an
ASCII error code in the A- and B-Registers. ERRP prints this code on the

system teleprinter. A user error routine may handle these errors.

For .RTOR, .RTOI, and .ITOI, the calling sequence is

JSB Subroutine name
DEF Argument one

DEF Argument two

JSB Error-print routine

normal return point

Reference

For further information on the library subroutines, see the PROGRAM LIBRARY

programmer's reference manual (02116-9032).

SECTION V
INPUT/OUTPUT

In the Disc Operating System, centralized control and logical referencing of
I/0 operations effect simple, device-independent programming. Each I/0 de-
vice is interfaced to the computer through one or more I/O channels (lO8
through 378) which are linked by hardware to corresponding core locations
for interrupt processing. By means of several user-defined I/C tables,

multiple-device driveré, and program EXEC calls, DOS relieves the programmer

of most I/O problems.
For further details on the hardware input/output organization, consult

Volume One, SPECIFICATIONS AND BASIC OPERATION MANUAL, Model 2116B Computer
(02116-9152).

SOFTWARE I/0 STRUCTURE

An Equipment Table records each device's I/0 channels, driver entry points,
DMA requirements, and location on disc if disc-resident. A Device Reference
Table (logical unit table) assigns an equipment table number to each of its
entries, thus allowing the programmer to reference changeable logical units

instead of fixed physical units.

An Interrupt Table relates each channel to an entry in the Equipment Table.

A driver is responsible for initiating and continuing operations on all

devices of an equivalent type.

The programmer requests I/0O by means of an EXEC call in which he specifies
only the logical unit, control information, buffer location, buffer length,

and type of operation.

INPUT/OUTPUT

The Equipment Table

The Equipment Table (EQT) has an entry for each device recognized by DOS
(these entries are established by the user when DOS is generated).

entries reside in the permanent core-resident part of the system and have

this format:

WORD CONTENTS
1 Driver "Initiation" Section Address
2 Driver "Continuation" Section Address
3 D | R Unit #| Channel #
4 Av Equipment Type Code v Status
5 (saved for system use)
6 (saved for system use)
7 Request Return Address
8 Request Code
9 Current I/0O Request Control Word
10 Request Buffer Address
11 Request Buffer Length
12 Temporary or Disc Track #
13 Temporary or Starting Sector #
14 Temporary Storage for Driver
15 Upper Memory Address of Main Driver Area
16 Upper Memory Address of Driver Linkage Area
17 Starting Track # Starting Sector #
BITS 15[14]13]12[11|1¢|9|8 7l el s]a] 3] 2] 1] ¢
D = 1 if DMA channel required.
R = 1 if driver type is core-resident.
Unit # May be used for sub-channel addressing.
Channel # I/0 select code for device (lower number if multiboard
interface.)

5-2

The EQT

g's if
core-

resident

INPUT/OUTPUT

- Unit not busy and available

Unit disabled (down)

=g
1
2 Unit busy
3 - Unit waiting for an available DMA channel
Status - Actual or simulated unit status at end of operation.

Equipment Type Code - Identifies type of device and associated software

driver. Assigned equipment type codes in octal are:

1] Teleprinter
#1-37 Paper Tape Devices
a1 Punched Tape Reader
22 High Speed Punch
13-17 Unit Record Devices
19 Reserved for Plotter
12 Line Printer
15 Mark Sense Card Reader
28-37 Magnetic Tape/Mass Storage and other devices capable
of both input and output
22 3030 Magnetic Tape
30 Disc/Drum

For eguipment type codes @1 through 17, odd numbers indicate input devices

and even numbers indicate output devices.

When DOS initiates or continues an I/O operation, it places the address of
the EQT entry for the device into the base page communication area (see Ap-

pendix A) before calling the driver routine.

Logical Unit Numbers

Logical unit numbers from 1 to 631Q provide logical addressing of the physi-

1p
cal devices defined in the EQT. These numbers are maintained in the Device
Reference Table (DRT or logical unit table), which is created by the Disc

Operating System Generator (DSGEN) and can be modified by the LU directive.

INPUT/OUTPUT

Each one-word entry in the DRT contains the EQT entry number of the device
assigned to the logical unit. DOS has the following function assignments for

logical unit numbers.

Logical Unit Number Function

System Teleprinter
System Mass Storage
Auxiliary Mass Storage #1
Standard Punch Device
Standard Input Device

Standard List Device

- P L <
gy, Eanl e,

e

Reserved for use by DOS

=
=

. Can be assigned to any device

63 by user

1g

The user determines the number of logical units when the system is generated.
At the beginning of each JOB, logical units 1 through 9 are restored to the
values set by DSGEN (System Generator), where as 10 through 63 are restored

only on a start-up from the disc.

Executing programs use logical unit numbers to specify the type of device for
I/0 transfers. In an I/0 EXEC call, the program simply specifies a logical
unit number and does not need to know which actual device or which 1/0 chan-

nel handles the transfer.

The Interrupt Table

The interrupt table contains an entry, established at system generation time,
for each I/O channel in the computer. The entry contains the address of the

EQT entry for the device on the channel.

The interrupt locations in core contain a jump subroutine to $CIC which is
the central interrupt control routine which examines the interrupt table to
decide what action to take. On a power failure interrupt, DOS halts. How-

ever, the user can write his own routine to handle power failure interrupts.

5-4

INPUT/OUTPUT

Input/Qutput Drivers

The I/O driver routines, either core-or disc-resident, handle the actual
transfer of information between the computer and external devices. When a
transfer is initiated, DOS places the EQT entry addresses into the base page
communication area and jumps to the driver entry point. The driver con-
figures itself for the particular channel (in this way the same driver can
handle several devices of the same type on many channels), initiates the
transfer and returns to DOS. When an interrupt occurs on the channel, in-
dicating continuation or completion of the transfer, DOS again transfers con-

trol to the driver.

DOS currently includes seven standard I/O drivers:

DVR@@E - Teleprinter

DVR@l - Photo-reader

DVRG2 -~ High speed punch

DVR12 - Line Printer

DVR15 - Mark Sense Card Reader
DVR22 - 3030 Magnetic Tape
P'Rt? - wé (4]

DVR3@8 - Disc/drum

The driver name consists of the letters "DVR" added to the equipment type
code. In addition, the programmer can write drivers for special devices,
following the guidelines in this section. The driver is only responsible
for updating the status field in the EQT entry; DOS handles the availability
field.

System I/0

DOS itself initiates many I/O transfers. It reads in directives from the
batch or keyboard device and transfers modules in from the disc. These func-
tions are accomplished by $SYIO, a routine within the DOS Supervisor, which

calls the appropriate driver routine.

INPUT/OUTPUT

User Program I/0

The user program initiates an I/O transfer by means of an EXEC call--a "JSB
EXEC" as described in Section III. The supervisor recognizes the EXEC call
as an I/0 request and sends it along to the I/0O supervisor $IORQ which de-
termines if the driver for the requested device is core-resident. If not,

the driver is read into core from the disc.

SIORQ places the address of the EQT entry in the base page communication area
(see Appendix A, TABLES) and transfers control to the driver. The driver
configures itself to I/O operation, the appropriate channel, initiates the
transfer and returns to $IORQ. DOS either returns to the executing user
program or waits until the I/0 transfer is complete as requested by the

program.

Interrupt Processing

When an interrupt occurs on the HP2116B computer, control is transferred to
the instruction in the interrupt location corresponding to the device. Each
interrupt location (memory locations lO8 through 378) contains a "JSB $CIC"
instruction. $CIC, the central interrupt control routine of DOS, then per-

forms the following:

a. Disables interrupt system
b. Saves registers, point of program suspension
c. Clears interrupt flag
d. Determines the type of interrupt
1) If power fail, halts
2) If memory protect, goes to EXEC
3) If time base, goes to CLOCK routine
4) If not a legal I/O channel, returns to suspension point

5) 1If legal I/O channel, puts EQT entry addresses in base
page communication address and transfers to driver con-
tinuation address

e. Upon return from the I/O driver, turns on interrupt system re-

stores registers and returns to the point of suspension.

5-6

4

INPUT/OUTPUT

PLANNING I/0 DRIVERS

Before attempting to program an I/C driver, the programmer should be thorough-
ly familiar with Hewlett-Packard computer hardware I/0 organization, inter-

face kits, computer I/0 instructions and Direct Memory Access (DMA).

An I/O driver, operating under control of the Input/Output Control ($IORQ)
and Central Interrupt Control ($SCIC) modules of DOS, is responsible for all
data transfer between an I/0 device and the computer. The device equipment
table (EQT) entry contains the parameters of the transfer, and the base page
communication area contains the number of the allocated DMA channel, if

required.

An I/0 driver includes two relocatable, closed subroutines, -- the Initiation
Section and the Completion Section. If nn is the octal equipment type code
of the device, I.nn and C.nn are the entry point names of the two sections

and DVRnn is the driver name.

Initiation Section

The $IORQ module calls the initiation section directly when an I/0 transfer is
initiated. Locations EQT1 through EQT17 of the base page communication area
contain the addresses of the appropriate EQT entry. CHAN in base page con-
tains the number of the DMA channel assigned to the device, if needed. This
section is entered by a jump subroutine to the entry point, I.nn. On entry,
the A-register contains the select code (channel number) of the device (bits

through 5 of EQT entry word 3). The driver returns to $IORQ by an in-

direct jump through I.nn.

Before transferring to I.nn, DOS places the request parameters from the user
program's EXEC call into words 7 through 13 of the EQT entry. Word 9, CONWD,
is modified to contain the request code in bits @ through 5 in place of the
logical unit. See the EQT entry diagram and Section III, READ/WRITE EXEC

CALL, for details of the parameters.

INPUT/OUTPUT

Once initiated, the driver can use words 10 through 14 of the EQT entry in
any way, but words 1, 2, 3, 5, 6, 7, 8, 9, 15, 16 and 17 must not be altered.
The driver updates the status field in word 4, if appropriate, but the rest

of word 4 must not be altered.

FUNCTIONS OF THE INITIATION SECTION

The initiation section of the driver operates with the interrupt system
disabled. The initiation section is responsible for those functions (as

flow-charted in Figure 5-1):

1. Rejects the request and proceeds to step 5 if:
ﬂ the device is inoperable, or

ﬂ the request code, or other of the parameters, is illegal.

2. Configures all I/O instructions in the driver to include the

select code (and DMA channel) of the device.
3. Initializes DMA, if appropriate.

4. Initializes software flags and activates the device. All vari-
able information pertinent to the transmission must be saved in
the EQT entry because the driver may be called for another device

before the first operation is complete.

5. Returns to $IORQ with the A-register set to indicate initiation

or rejection and the cause of the reject:

If A = @, then the operation was initiated.
If A # @, then the operation was rejected with A set as:
l - read or write illegal for device,
2 - control request illegal or undefined,
3 - equipment malfunction or not ready,
4

- immediate completion (for control requests).

INPUT/OUTPUT

I.on

i

Configure I/0
Instructions
for Device

Return (A)=1 or
P+1

Request

Code Legal
?

Operable
Regdy

YES

Initialize
Operating,
Conditions,
Flags, etc.

l

Set buffer

address, length,

mode, etc. for
transfer

Activate
Device

Return to
P+1

Figure 5~1. I/0O Driver Initiation Section

INPUT/OUTPUT

Completion Section

DOS calls the completion section of the driver whenever an interrupt is

recognized on a device associated with the driver. Before calling the

driver, S$CIC sets the EQT entry addresses in base page, sets the interrupt
source code (select code) in the A-register, and clears the I/O interface

or DMA flag. The interrupt system is disabled. The calling sequence for
the completion section is:
Location Action

Set A-register equal to interrupt source code

(P) JSB C.nn
(P+1) Completion return from C.nn
(P+2) Continuation or error retry return from C.nn

The point of return from C.nn to S$CIC indicates whether the transfer is con-
tinuing or has been completed (in which case, end-of-operation status is

returned also).

The completion section of the driver is responsible for the functions below

(as flow-charted in Figure 5-2):

1. The driver configures all I/O instructions in the Completion
Section to reference the interrupting device, and then proceeds

to step 2.

2. If both DMA and device completion interrupts are expected and the
device interrupt is significant, the DMA interrupt is ignored by

returning to $CIC in a continuation return.

3. Performs the input or output of the next data item if the device
is driven under program control. If the transfer is not com-

pleted, the driver proceeds to step 6.

4, If the driver detects a transmission error, it can re-initiate
the transfer and attempt a retransmission, A counter for the
number of retry attempts can be kept in EQT 14. The return to
CIC must be (P+2) as in step 6.

5-10

5.

INPUT/OUTPUT

At the end of a successful transfer or after completing the retry

procedure, the following information must be set before returning

to SCIC at (P+1):

a. Set the actual or simulated device status into

bits @ through 7 of EQT word 4.

b. Set the number of transmitted words or characters
(depending on which the user requested) to the

B-register.

c. Set the A-register to indicate successful or

unsuccessful completion.

successful completion,

device malfunction or not ready,

g
1
2 end-of-tape (information),
3

transmission parity error.

Clears the device and DMA control on end-of-operation, or sets the

device and DMA for the next transfer or retry. Returns to $CIC at:

(P+1) - completion, with the A and B-registers set as in step 5.

(P+2) =~ continuation; the registers are not significant.

5-11

INPUT/OUTPUT

C.nn

i

Configure
1/0 Instructions

for Device

Transfer
by DMA
2

Device
Interrupt
Required

RETURN

Transfer next

Data item, . RETURN
update indexes, PT492
flags, etc.

Update
Status in
EQT
Re-initializel
Conditions l
(B) =
l ords or

charagcters
RETURN transferred

!
(A) =

Completion
Code

!

Clear
Device
Control

RETURN
TO
P+1

Figure 5-2. I/0 Driver Completion Section

SECTION VI
INSTALLATION

The setup and operation of a Disc Operating System involves two essential
steps and one optional step. DOS must be configured using the DOS Generator
(DSGEN) . It must be initiated from the disc by the core-resident Basic
Binary Disc Loader (BBDL), and it may be dumped onto tape using the system

dump (SDUMP) as protection against a disc failure.

This section describes the three routines -- DSGEN, BBDL, and SDUMP -- that

are responsible for these processes.

DSGEN, THE DOS GENERATOR

DSGEN configures DOS to fit a particular user's core memory size, I/O

equipment, and programming needs.

To accomplish this, DSGEN requests certain information from the user. DOS
then accepts the relocatable program modules to be included in the system,
determines where they belong in core or on the disc, relocates them into ab-
solute format, and stores them on the disc. DSGEN also creates I/0 tables
by identifying each I/O device and its associated driver routine, and es-

tablishing procedures for interrupt processing on each chamnel.

DSGEN is an absolute program, loaded into core by the Basic Binary Disc
Loader (BBDL) from paper tape. Since DSGEN is independent of the DOS which
it generates, the I/0O operations of DSGEN require special programs called

SIO Drivers.
Using other standard Hewlett-Packard software, the user can create a mag-
netic tape or disc file of the relocatable‘program modules for quick and

easy configuration.

DSGEN operates on the same minimum configuration as that required for a DOS.

6-1

L

i amnsiai

okt

ke

T RiH

INSTALLATION

Operating Procedures

The operation of DSGEN involves four phases:

0

INITIALIZATION PHASE. DSGEN requests specifications for the DOS,
including description of available disc space, memory, time base

generator channel, and program input devices.

PROGRAM INPUT PHASE. DSGEN reads in the relocatable programs

provided with the system and created by‘the user.

PARAMETER INPUT PHASE. Parameters to change EXEC modules or
drivers from disc to core-resident may be entered. (The programs'
NAM records are set for a minimum core system). DISCM, DVR3Q (disc/

drum driver) and DVR@@ (teleprinter driver) must be core-resident.

DISC LOADING PHASE. DSGEN requests a specification of the base
page linkage, and begins loading programs onto the disc. Systems
programs (i.e., the modules of DOS), are loaded first, after which
DSGEN requests information fqr the equipment table, device refer-
ence table (logical unit table), and interrupt table and proceeds
to load the rest of the programs onto the disc.

To execute DSGEN and configure DOS, follow these steps:

0

Turn on all equipment, set the system teleprinter to LINE, and dis-
able the disc protect. (See Drum Memory Interface Kit Manual,

12610~9001, or Disc Memory Interface Kit Manual, 12606~9001.)

Load the DSGEN tape into core using BBDL (the core-resident loader)
and add the appropriate SIO Drivers. (If the relocatable programs
are on a magnetic tape or disc file, the file must be created by

the Prepare Tape System (PTS).) Refer to the MAGNETIC TAPE SYSTEM

reference manual (5950-9292) for a description of PTS.

a. Load the SIO Buffered Teleprinter Driver tape using the
——

BBDL.
‘b. Set the switch register to 28 and press LOAD ADDRESS.
c. Set switch register bits 5-0 to the channel number of the

device associated with the driver.

6-2

INSTALLATION

d. Press RUN.

e. Repeat these steps, if appropriate, for the gunched Tape

Reader and‘amy§§gggic Tape Unit or Disc.B;I;ggl;% “

ﬂ Set the switch register to lﬂﬂs, press LOAD ADDRESS, then press

RUN. DSGEN begins the initialization phase.

INITIALIZATION PHASE

During the initialization phase, DSGEN requests information necessary to
begin generating the DOS. After each question is printed, the operator re-
sponds by giving the required information. The following dialogue is typical.
(The operator responses are only examples; actual responses should be ap-

propriate to the particular system being generated,)

DSGEN requests the octal channel number (higher
priority channel if multi-card) of the system
disc Or Arum UNit.s. .o iieereoreoenereeraeacnananananonns SYS DISC CHNL?

DSGEN requests the smallest number of sectors (decimal)
per track on the discs or drums in the system. (Disc

units are usually 90; Arums, 128.) cveueeeeeeneennnnnnnns #SECTORS/TRACK?

Operator YEeSPONAS. «vvr teveooesenesseceanasannnns 9¢

DSGEN requests the number of tracks (decimal)
on the system diSC OF ArUM..:.icsveceresescccanaceaesss.SYS DISC SIZE?

Operator YeSPONAS. st eieeesnceeeenncaseaannaneeas 32

DSGEN requests the number of hardware protected
tracks in decimal. ivuieeeeoeeeeeenenecnoasannn eeeeease. H#PROTECTED TRACKS

INSTALLATION

DSGEN requests decimal number of first track /;>
on disc available to the system. (All system
tracks must be contiguous, i.e., DOS cannot

be generated with intervening faulty tracks.).......... FIRST SYSTEM TRACK?

Operator resSpondS .. uiee e ene et tnneenenennnnennnn. ¢

DSGEN requests the starting system sector

number in decimal...eueie i eneieiiternenr e FIRST SYSTEM SECTOR?

The systen cawunt Siart oh
trac @ Hec¥For D Sinig
this response and the previous one if he S§¢ fw: * { HAre ticd

-
. »[ru‘v +he ::t’ L ‘lf @ 5’ vyl .
plans to save the systenm using SDUMP.)....ieenn.. 3

Operator responds. (Operator must record

DSGEN requests the I/O channel of the auxiliary
mass storage device in octal (@ if none)......eveuu.... AUX DISC CHNL?

Operator reSpOonNdS..uieeeeeneeneeennenenennnnn...)

If the previous response is not zero,
DSGEN requests the number of tracks on the
auxiliary diSc OF Arum......vieeeeeneennennennnnnnn.. .AUX DISC SIZE?

DSGEN requests the I/O channel of the Time
Base Generator (0Ctal)...uveieeeeeinieeneennnnenunnnnnn. TIME BASE GEN CHNL?

A
B

OPerator reSPONAS. cieveeeenenneennoeeennnnnnnnns 10

DSGEN requests the last word of available core
MEMOYY, In OCtALl. st sieeneeeeenneneeneenennennennnnnn. LWA MEM?

DSGEN requests the type of input unit for
relocatable program MmodUleS. cuueuenveeesononnn.. e PRGM INPT?

Operator responds with PT (for paper tape),
TY (for teleprinter), MT (for magnetic
tape), or DF (for disc file)....veweueeeuwnnnnnun. PT

INSTALLATION

DSGEN requests the type of input unit for
relocatable 1ibYary DPrOGraMS. « s eeeeeoe e eeeensonnnennan LIBR INPT?

Operator responds with PT, TY, MT, or DF........ MT

DSGEN requests the type of input unit for par-
ameters, describing the relocatable pPrograms........... PRAM INPT?

Operator responds With PT O0F TY. i e oeewennnnn TY

When DSGEN finishes the initialization phase, the computer halts.

PROGRAM INPUT PHASE

During the program input phase, DSGEN accepts relocatable programs from the
Program Input Unit and Library Input Unit specified during the initialization
phase. The operator selects the input device by setting switch register bits
g-1 (ﬁﬂz for the Program Input Unit, or 1Q2 forgthe Library Input Unit), and
places the programs in the input device. Main programi‘must enter prior to

their segments.

The suggested order of tape input is:

i‘DOS CORE-RESIDENT SYSTEM (DISCM)
DOS DISC-RESIDENT EXEC MODULES ($EX@1 THRU $EX16) VZZL*. 42)/ /‘;k*;j>)
DOS I/0 DRIVERS (DVRP@, DVRP1,...ETC) \IQ (:
- DOS JOB PROCESSOR/FILE MANAGER (JOBPR)
DOS RELOCATING LOADER (LOADR)
DOS ASSEMBLER (MAIN CONTROL, SEGMENTD, SEGMENTI,....)

DOS FORTRAN (MAIN CONTROL, PASS 1,...)
DOS RELOCATABLE LIBRARY

xkﬁ%jj; Any user programs to be made a permanent part of DOS.

Fov»ua+f@r Leaw 10; ag gy iibrevs

6-5

INSTALLATION

The operator presses RUN. When entering paper tape, the message "¥EOT" is

printed whenever an end-of-tape occurs. The computer halts.

At this point, the operator has several options: additional programs can be
input from the same device by repeating the steps above; input can be switch-
ed to the other input device (by setting the switch register bits to ¢ﬂ2 or
l¢2).

To terminate the program input phase, the user must set switch register bits

to ﬁlz, and press RUN. If there are no undefined externals, this message is

printed on the system teleprinter:

NO UNDEF EXTS
If there are undefined externals, the following message is printed:
UNDEF EXTS

The externals are listed one per line and the computer halts. External
references are satisfied by loading more programs. The user must set switch

register bits to ﬂﬂg (for Program Input Unit) or lﬂz for the Library Input
Unit) and press RUN.

PARAMETER INPUT PHASE

During the parameter input phase, the operator can change some modules

from disc to core-resident.

Each parameter record is of this general form:

name, type

where name is the name of the program
type is the program type code;
@ - System core-resident
1 - System disc-resident exec modules

3 - User disc-resident main

INSTALLATION

Disc-resident I/0 driver

User segment

Library

Program deleted from the system

EXEC modules and drivers that are often used may be changed from disc to

core-resident.

The functions of the EXEC modules are:

Module Name

SEX@1
SEX@2
SEX@3
SEX@4
SEX@5
$EX@6
SEX@7
SEX@8
SEX@9
SEX1P
SEX11
$EX12
$EX13
SEX14
$EX15
$EX16

Function

Disc Work Tracks

Disc Work Track

Status

Limits

Program Completion

Program Suspensi

Program Segment

User File Name S

Current Time Pro

on
Load
earch

cessor

- Real-Time Disc Allocation. (See Appendix D.)

Execution Time :
Load and Execute
System File Name

System Startup

EQ Processor
Program

Search

Error Message Processor

Execution Time,

:UP, :DN, :LU Processor

Abort and Post Mortem Dump

:GO Parameter Processor

When EXEC modules are made core-resident, certain associated library sub-

routines must also be changed to be core-resident.

use $ADDR:

SEXg@1
SEXg@2
SEX@6
SEX@7
SEX@S8

Several EXEC modules

INSTALLATION

The following EXEC modules use $SRCH:

SEX@5
SEX@6
$EX11

These EXEC modules use ASCII:

SEX@9
$EX13
$EX14
SEX15

To end the parameter input phase and continue on to the disc loading phase,
the operator enters "/E" instead of a parameter record. DSGEN then asks two

questions before entering the disc loading phase.

DISC LOADING PHASE

DSGEN requests the estimated number of system
linkages required in base PAGE. .. eveceennenonnrnonnnnn. #SYSTEM LINKS?

Operator responds with a decimal number,
(The more modules that are core-resident
the more links are needed, 1¢@ should be

the minimum responSe.) cuee. s eeeerenenrennennn. 200

DSGEN requests the estimated number of user

linkages required in base Page......uoeeeveenmnnnnnn.. #USER LINKS?

Operator responds with a decimal number.
(Since FORTRAN duires approximately
4~¢¢ &g¢ 1 inkages, E should be the minimum

numMber entered.) .u. e e it eee e eeneeeennneneennnnn e 4‘¢¢

Figure 6-1 shows the relative location of the various core areas. Loading
of the absolute, resident supervisor begins after the establishment of the

user and system linkage areas. As each program is loaded, DSGEN prints a

INSTALLATION

Interrupt Locations

System Base Page Area

User Base Page Area

DOS Supervisor
DISCM — the core resident

Core Resident Drivers and EXEC Modules

Disc Resident EXEC
Module Overlay Area
(Optional)

Disc Resident 1/O Drivers
Overlay Area (Optional)

>
«
Q
®
3
=
=]
«Q
o
(=}
=
(]
3
Q
o
=4
o
=]
»

Memory Protect Boundary

User Common Area (Optional)

Disc Resident User
Program Area
{Mains & Segments)

Basic Binary Disc Loader

Figure 6-1. Core Allocations in DOS

INSTALLATION

memory map giving the starting locations and, if switch register bit 15 is
up, the entry points for all main programs and subroutines. (Subroutines are

indented two spaces, and entry point addresses are preceded by an asterisk.)

Next, DSGEN generates the three I/O tables: equipment table, device refer-
ence table (logical unit table), and the interrupt table.

DSGEN requests the equipment table entrieS............. EQUIPMENT TABLE ENTRY?

Operator responds with a series of one

line EQT entries, which are assigned

EQT numbers sequentially from one as

they are entered. The EQT entry re-

lates the EQT number to an I/0 channel B}

and driver, in this formMat.....veeeeeeenneeenses nl,DVRan [,D1[,R1[,U]

where nf is the I/0O channel (lower number if mul ti-board),
DVRun is the driver name (un is the equipment type code).
D, if pre;ent, means DMA channel required,
R, if pres;ntj means driver is core-resident,

U, is the physical sub-channel number.

Operator terminates the equipment

table entries by typing............ S 4
DSGEN requests the logical unit assignments for
the device reference table................ eeeeenn ...DEVICE REFERENCE TABLE?
For each logical unit number, DSGEN prints....... ceee n=EQT#?

Operator responds with an EQT entry number (m)
appropriate to the standard definition of #n.

Numbers above 9 may be assigned any EQT entry

desired..eeierinrecencecennnnnns Ceceesennns I
Operator terminates entry by typing......... ee.. /JE
DSGEN requests the interrupt table entries...... ceesaen INTERRUPT TABLE

Operator responds with an entry for each I/0

location which may interrupt, in aécending

order, and in this format...ee.eeeeceeenennnnn. nl, n2
Foke 3vRs Maw. Tare TEE C TRt N TRE s areh AT Tas g
Dt S SR TR F e AT Al o ,"1" A Tare 2 /joa,ﬁ =

6-10

INSTALLATION

where p] is the octal channel number between 1¢8 and 378 inclusive (must be
entered in ascending order), and

n? is a decimal EQT entry number.

Operator terminates entry by typing............. /E

Following the completion of the I/O tables, DSGEN loads the disc-resident

executive modules (if any), and the disc-resident I/0 drivers (if any).

DSGEN reports the last address (plus 1) of the
SUDPELVIS0Y . eeeeeenoeasncnncccaaceenns S eeeceecnanan ...LWA SYS xxxxx

DSGEN requests the first word address of the

USEY PYrOJYaM AYER.seecescscacasesseasancancasensaenssns FWA USER?

Operator responds with an octal address
greater than or equal to XXXXX. (This
option is provided so that user programs
can start on a page boundary, if

deSired) .. eceeecescosccosssssoneons cecssscaceannes nnnnn

DSGEN proceeds to load all user main programs
and segments onto the disc with memory map

listings as described for system programs.

When system generation is complete, DSGEN prints...... SYSTEM STORED ON DISC

DSGEN then reports the last track used in bits 15 through 8 of the A-Register,
and the last sector used in bits 7 through @ of the A-Register. (These must
be recorded if one plans to use SDUMP to save the system.) At this point,

the disc protect switch must be enabled to protect the system on the disc.

(See Drum Memory Interface Kit Manual, 12610-9001, or Disc Memory Interface

)

. L.
Kit Manual, 12606-9001.) ff44;; |
Lo ¥ 3+3> Bosvs s/ ¢ i
= g il R) ———
o~ 25y £l @Y 8io0

Restart
I
4 %é
During any of the phases, DSGEN can restart that phase if any error occurs.

The operator sets the switch register equal to l¢¢8, and presses LOAD ADDRESS
and RUN.

6-11

INSTALLATION

In addition, the parameter input phase can be re-entered at 4¢¢¢8, and the

disc loading phase at 6¢¢ﬂ8.

Error Messages

The following messages may be printed on the teleprinter during execution of

DSGEN:
Message Meaning Action

Messages During Initialization and Input Pnase

Request is repeated. Enter

ERR@1 Invalid response to initial-

' ization request. valid reply.

ERR@Z2 Checksum error on program Computer halts; reposition

input. tape to beginning of record
and press RUN to reread.
~

ERR@3 Record out of sequence. Same as ERR@2,

ERR@4 Illegal record type. Same as ERR@2.

ERR@5 name Duplicate entry point. Revise program by reloading
the entry points (the current
entry point replaces the pre-
vious entry point}.

ERR@6 Invalid base page length Base page area is ignored,

(must be zero). but memory protect error will
occur if program is executed.

ERR@7 Program name or entry point Irrecoverable error. Revise

table overflow of available or delete programs.
memory.
ERR@8 name Duplicate program name. The current program replaces

the previous program.

INSTALLATION

Messages During the Parameter Phase

Message

ERR@9

ERR1g@

Meaning

Parameter name error (no

such program).

Parameter type error.

General Messages

ERR13

ERR15

ERRl06

ERR17

ERR18

ERR19

ERR2d

User segment precedes

user main program.

More than 63 subprograms

called by a main program.

Base page linkage over-

flow.

Current disc address ex-
ceeds number of available

tracks.

Memory overflow (absolute

code exceeds LWA memory).

Program overlay (current
word of absolute code has
identical location to

previous).

Binary DBL record overflow

of internal table.

Action

Enter valid parameter

statement.

Same as ERR@9.

Irrecoverable,

Revise main program(subsequent
calls to subprograms are

ignored).

Diagnostic printed for each
word required. Revise order
and composition of program
loading to reduce linkage

requirements.

Irrecoverable error.

Diagnostic printed for each
word required (absolute code is
generated beyond LWA). Revise

program.

Current word is ignored

(the address is printed).

Records overlay previous DBL
records (diagnostic printed for
each overflow record). Revise

program.

INSTALLATION

Message Meaning
ERR21 Module containing entry

point $CIC not loaded.

ERR22 Read parity/decode disc
error. A-register bits
8-14 show track number;
bits @g-7 show sector

number.

ERR23 EQT not entered for

disc-resident I/0 module.

Messages During I/0 Table Entry

ERR24 Invalid channel number.

ERR25 Invalid driver name or no

driver entry points.

ERR26 Invalid or duplicate D,R,U
operands.

ERR27 Invalid logical unit no.

ERR28 Invalid channel number.

ERR29 Channel number decreasing.

ERR31 | Invalid EQT number.

ERR35 Base page interrupt loca-

tions overflow into link-

age area.

.ERR36 Invalid number of charac-

ters in final operand.

6-14

Action

Irrecoverable error.

After ten attempts to read or
write the disc sector, the com-
puter halts. To try ten more

times, press RUN.

Restart at 4¢¢¢8.

Enter valid EQT statement.

Same as ERR24.
Same as ERR24.

Enter valid DRT statement.
Enter valid INT statement.
Same as ERR28.
Same as ERR28.

Restart Disc Loading Phase.

Same as ERR2S8.

INSTALLATION

DOS INITIATION FROM THE DISC

The Basic Binary Disc Loader (BBDL), a modified version of the standard Basic
Binary Loader, resides in the highest-protected 64 words of core and loads

either absolute format paper tapes or disc-based systems, such as DOS.

Loading DOS

[The operator sets the switch register equal to ¢7776¢8, and
presses LOAD ADDRESS. He then sets the loader switch to
ENABLED, presses PRESET, and presses RUN.

ﬂ When the computer halts with lﬂ2¢778 in the T-register, the
operator sets the loader switch to PROTECTED, sets switch
register bit @ to 1, and presses RUN. A halt with l¢2¢118
in the T-register means that a checksum error occurred.
1¢2¢558 means an illegal address. If the BBDL itself is de-
stroyed, it can be replaced through the switch register us-

ing the octal listing in Appendix A.
ﬂ When DOS is loaded, it types:

INPUT FR = FRESH; CO = CONTINUATION

The operator enters FR if no user files are currently saved on the disc, or

CO if user files currently exist or have been loaded by SDUMP.

DOS then prints the following message until the operator types a valid DATE

directive (see Section II):
INPUT :DATE ,XXXXXXXXXX,H,M

Following the DATE directive, the only valid directives are TRACKS, BATCH
and JOB. All others are ignored until a JOB directive is given. If this
is a fresh start (FR) and there are known faulty tracks in the system (i.e.
user and work areas of the disc), they should be set at this time using the

TRACKS directive as shown below:

:TRACKS,bl,b .b

greeeb

where bl through bn are the faulty tracks.

INSTALLATION

CREATING A BACK-UP COPY

SDUMP, the System Dump, is an independent utility program that can create
back-up copies of disc-based systems on punched tape or magnetic tape. The

back-up copy can later be reloaded onto the disc by SDUMP.

Because it is an independent program like DSGEN, SDUMP requires the inde-
pendent SIO Drivers. For paper tape storage, the SIO Teleprinter Driver,
SIO Paper Tape Reader Driver, and SIO Paper Tape Punch Driver are required.

For magnetic tape storage, the SIO Teleprinter Driver and SIO Magnetic Tape

Unit Driver are required. The Operator loads the SDUMP tape and SIO Driver
e —————— l‘—\.
tapes as described for DSGEN. The magnetic tape driver must be loaded after

SDUMP.
e

After loading SDUMP, execution begins at lﬂﬂs. SDUMP prints out a request

guide on the teleprinter:

DUMP = D,T[-SI[,T[-S]] ([] = OPTIONAL)
VERIFY = V

LOAD = L

TERMINATE = T

SDUMP requests the lower-number channel or the
disc in octal...cvivnuen.. S e teceta st naeees s aes «...DISC CHNL?
Then SDUMP types..... et et ttcee ettt ettt e COMMAND
The operator replies with V,L,T,
or D (followed by parameters).....c.oeeeeeenn... L

P s L
D for dumping requires a set of parameters specifying the first and last

%fécké, inclusive, to be dumped."Tﬁe values are octal. The last track and

sector are reported by DSGEN after creating DOS and should be recorded then.
If output is to paper tape, trailer aﬁd ieader blank tape is produced, and
two tracks are dumped at a time. If output is to magnefic tape, the entire
information is dumped, followed by an End~Of-File which is written over by

D2 7

subsequent dumps.

6-16

INSTALLATION

V for verifying, involves placing the dump in the input device, reading it
in, and checking each record against the contents of the disc. Comparison

errors are reported. If magnetic tape is verified, only one file is checked.

L for loading causes the dumped information to be loaded back onto the disc.
The information is verified after it is output to the disc, and comparison

errors are reported.

An illegal command causes the message:

STATEMENT ERROR

2 T - WY &
An error inaspecifying the disc channel, causes the message:

PARAM ERROR: NON-NUMERIC OR NOT-OCTAL

If the magnetic tape is used, a rewind is issued during initialization,
before and after a verify or load operation, and rewind/standby after T for

termination.

Error Messages

The following messages may be printed on the teleprinter by SDUMP:

Statement Action
STATEMENT ERROR Retype input statement in correct
format.
EOT The end of the input tape being read

has been reached; either load the next
tape or go on to the next phase.
CHANGE INPUT TAPE, HIT RUN Two full tracks have been dumped onto

paper tape; perform the requested action.

TURN OFF DISC PROTECT, HIT RUN Set the Disc Track Protect Switch off,

then press RUN.

DISC INPUT ERROR Disc Error Diagnostic, for a Parity, De-
code or Abort status after 10 retrys.

Input sequence repeated on restart.

6-17

Statement

DISC WRITE ABORT

TRACK nnn (8) SECTOR mmm

TAPE/DISC VERIFY ERROR

TAPE CHECKSUM ERROR

MT ERROR - READ PARITY
MT ERROR -~ EOT, RESTART

Saving System and/or User Files

(8)

INSTALLATION

Action

Disc Error Diagnostic, for an Abort
status after a write attempt. Sequence

is repeated if restarted.

. /
Identification information for the Disc ar~o (8P6

FarOd DidprnusTICs Al Obec R 1ACD A rpccons
< . . .

nnn is the octal track number and mmm is
the octal sector number where the error

occurred.

Disc and tape records do not agree.

Disc record is rewritten on restart.

The checksum in the tape record does not
match the sum computed by SDUMP. Current

record is ignored if restarted.

Magnetic Tape Errors. Error recovery
procedures are completed by driver. Re-

start to retry sequence.

The system operator can save the system and/or user files on the disc for

later use by dumping them on tape with SDUMP. This is desirable when there

are more than two disc-based software systems to be used with one computer

(e.g. DOS, RTE System, TSB System) or when there is a need to protect certain

user files (not hardware-protected by DOS).

The operator first determines which tracks and sectors to dump. For the

system file, track @, sectors g, 1 and 2 must always be saved. 1In the oper-

ation of DSGEN, the operator should save the responses to the following

queries:

FIRST SYSTEM TRACK?
FIRST SYSTEM SECTOR?

INSTALLATION

If the system area is to be dumped, start dumping with these response values

after converting them from decimallto octal.

When DSGEN is completed, the operator should note the value in the A-register;

this value indicates the last track and sector of the system.

To dump only the system area of the disc, the user enters the following two

SDUMP commands:

Dsg'ﬂ,ﬂ'z

D,Fr-Fs,LT-LS

Where FT is the first track,
FS 1is the first sector,
LT is the last track, and

LS is the last sector.

The first track of the user file is that immediately following the hardware-
protected area of the disc. To obtain the value of the last track, the
operator uses a TRACKS directive (see Section II). The last track of the

user area immediately precedes the first work area track reported by TRACKS.

Since the track and sector numbers start with zero, if there are 16 protected

tracks, the user file starts with 16l (2ﬂ8). To save the user file, the

2

following SDUMP command 1is entered:
D,ur-P,LUu-5

where UT is the first user track,
LU 1is the last user track, and

S is the number of sectors/track in octal minus one.

To dump and verify the entire system and user areas, the operator would use

the following SDUMP commands:

COMMAND :
D,0-0,0-2
COMMAND:

D, FT-FS,LT-LS

(o)}
1

19

INSTALLATION

COMMAND :
D,ur-g,LU-S
COMMAND:

v

COMMAND:

T

To reload this dump, the operator enters L in response to COMMAND:. Then
DOS is initiated from the disc using BBDL and CO is entered for a continu-

ation start (to preserve the user files).

Entering FR for a fresh start would prevent access to the user file area.
Therefore, FR is used when only the system area is dumped and restored. When
only the user area is saved, a CC start must be used when it is restored.
However, the user area can only be reloaded on a disc containing the system

area from which it Was dumped.

APPENDIX A
TABLES

Appendix A contains several useful tables and figures.

DOS BASE PAGE CONSTANTS

LOCATION TYPE VALUE
ag DEC -64
41 DEC -1
42 DEC -9
43 DEC -8
44 DEC -7
45 DEC -6
46 DEC -5
47 DEC -4
5@ DEC -3
51 DEC -2
52 DEC -1
53 DEC &
54 DEC 1
55 DEC 2
56 DEC 3
57 DEC 4
69 DEC 5
61 DEC 6
62 DEC 7
63 DEC 8
64 DEC 9
65 DEC 1p
66 DEC 17
67 DEC 64
70 OCT 17
71 OoCT 37
72 OCT 77

LOCATION

73
74
75
76
77

TABLES

DOS BASE PAGE SYSTEM COMMUNICATION AREA

LOCATION NAME
149 UMLWA
191 JBINS
122 JBINC
143 TBG
184-5 CLOCK
186-7 CLEX
118 CXMX
111 BATCH
112 SYSTY
113 DUMPS
114 SYSDR
115 SYSBF
116 SECTR
117 EQTAB
129 EQT#
121 LUTAB
122 LUT#
123 JBUF
124 JFILS
125 JFILC
126-49 RONBF
141-53 EXPG

TYPE VALUE

OCT 177

OCT 377

oCT 177490

ocT 3777

oCT 17779%
CONTENTS

Last word address of USER useable memory

Starting track/sector of current job binary
area

Current track/sector of current job binary
area

Time base generator I/0 channel address.
Current time

Execution time

Maximum execution time

Logical unit # of batch input device
Logical unit # of system teletype
Abort/Post Mortem dump flags

System directory track/sector address

System buffer track address; User directory
sector #

Number of sectors/disc track

First word address of Equipment Table
Number of Equipment table entries

First word address of Logical Unit table
Number of Logical Unit table entries

Job input buffer address

Source file starting track/sector address
Source file current track/sector address
System buffer

Currently executing program directory entry.

pa—

LOCATION

154-57
leg

lel-249
2/
2¢2
203

204
285
206

223
224
225
226

235
236
237
240
241

242
243
244
245
246-7
25@¢-1

252

253

NAME

DISCO
NXTTS

TTABL
INTAB
INT #
EQT1

EQT2
EQT3
EQT4

EQT17
RQCNT
RQRTN
RQP1

RQPS
NABRT
XA

XB
XEO

XSUSP
EXLOC
EX#

EXMOD
EXMAN
EXBAS

IODMN

TODBS

TABLES

CONTENTS

Disc I/O channel/track number

Next available user file track/sector
address

Track status table
First word address of interrupt table
Number of interrupt entries

EQT1-EQT17 are addresses of current
Equipment table entry

Current number of request parameters
Current request return address

RQP1-RQP8 are current request parameter
addresses

Illegal request code abort/no abort option
A register contents at time of interrupt
B register contents at time of interrupt

E and O registers contents at time of
interrupt

Point of suspension at time of interrupt
Address of Exec module table
Number of Exec module table entries

Current resident Exec module address

Exec module low and high main core addresses

Exec module low and high base page core
addresses

First word address of I/0 driver module
main area

First word address of I/0 driver module
base page area

LOCATION NAME
254 UMFWA
255 UBFWA
256 UBLWA
257 CHAN
260 OPATN
261 OPFLG
262 SWAP
263-4 JOBPM
265 JOBPB
266 TBSYG
267 RTRK
278-367 $BUF
37¢-413 DBUFR
414 $GOPT
415 $IDCD
416-7 $MDBF
420-6 TEMP
427 TEMPY
439 TEMP1
431 TEMP2
432 TEMP3
433 TEMP4
434 TEMP5
435 MSECT
436 VADR
437 TODMD
449 RCODE
441 SXA
442 SXB
443 SXEO
444 SXSUS
445 SEQT1
446 DSCLB

TABLES

CONTENTS

First word address of user main area

First word address of user base area

Last word address of user base area

Current DMA channel number

Operator/Keyboard attention flag

Operator communication flag

Job Processor resident flag

Job Processor disc address/number of words

in main

Job Processor base page number of words

Track/sector address of system track table

Real time simulation track number

System buffer for disc sector

System disc triplet parameter buffer

Point of suspension continuation address

Input request code check

Exec module data buffer

System
System
System
System
System
System
System

temporary
temporary
temporary
temporary
temporary
temporary

temporary

Negative of number of sectors/track

Address of instruction causing memory
protect violation

Current resident I/0 driver module address

Current positive request code

Operator attention restore A register value

Operato

Operato

r attention

r attention

Operator attention

Operato

r attention

restore B register value
restore E and O value
return address

restore EQT table address

Track/sector address of relocatable library

—

LOCATION

447
450-1

TABLES

NAME CONTENTS
DSCL# Number of relocatable library routines
CHARC System temporary

SYSTEM DIRECTORY

SYSTEM AREA
(Hardware Protected)
SYSTEM FILES

SYSTEM BUFFER

USER DIRECTORY USER AREA

(Software Protected)

USER FILES

WORK AREA

JOB BINARY AREA

Figure A-1. General Disc Layout

TABLES

1st DIRECTORY ENTRY

/,,—-*

f‘_/.——-——//\

Last Word of Last Directory Entry

st File of SYSTEM AREA

____/’_\

Figure A-2. System Directory Format

SECTOR 0 SYSTEM BUFFER SECTOR

SECTOR 1 1st Directory Entry ﬁ‘__‘_J

Last Word of Last Directory Entry

TRACK BOUNDARY

1st File of USER Area ‘

Figure A-3. User Directory Format

TABLES

Word 1

Word 2 A

Word 3 E Entry Type

Word 4 Track Sector

Word 5 File Length (in sectors)

Word 6 FWA Program

Word 7 LWA Program

Word 8 FWA Base Page Linkage Area For System Generated

Binary Programs Only

Word 9 LWA Base Page Linkage Area

Word 10 Program Entry Point

Word 11 FWA of LIB routine section

e

The 1st five characters (in Words 1 through 3) contain the name of the File.

The lower character in Word 3 contains the Type Code and ‘P’ bit, as shown below.

Figure A-4. Directory Entry Format

TABLES

TYPE FILE
/i System Resident
1 Disc Resident Executive Supervisor Module
2 Reserved for System
3 User Program,Main
4 Disc Resident Device Driver
5 User Program, Segment
6,7 Library
lO8 Relocatable Binary
ll8 ASCII Source Statements
128 Binarvaata
138 ASCITI Data

'P' Bit
g = ©No Action
1 = Purge this entry at the énd of the JOB. This bit is set by

the LOADER and cleared by a :STORE,P[,file-name] request

The last directory entry in each sector is followed by a word containing '-1'.

The last entry in the directory is followed by a word containing zero.

Directory size dependent on number of programs

One directory entry for each disc resident module

One directory entry for each disc resident module

One directory entry

One directory entry for each main and segment

One directory entry

END OF HARDWARE PROTECTED
FILE AREA

TABLES

|
|
|
|
|

BOOTSTRAP LOADER

REAL TIME EXEC OR TIME SHARE SYSTEM LOADER

DISC MONITOR SYSTEM LOADER

L
REAL TIME OR TIME-SHARE SYSTEM AREA
(If Present)

—

SYSTEM AREA DIRECTORY

SYSTEM COMMUNICATION, RESIDENT SYSTEM
LINKAGE, MODULE LINKAGE, and USER LINKAGE
AREA

EQUIPMENT TABLE

DEVICE REFERENCE TABLE

INTERRUPT TABLE

CENTRAL INTERRUPT CONTROLLER

EXECUTIVE SUPERVISOR

1/0 SUPERVISOR

DISC DRIVER

TELEPRINTER DRIVER

EXEC MODULES — Main and Base Page

1/0 DRIVER MODULES — Main and Base Page

: JOB PROCESSOR and/FILE MANAGER
—Main and Base Page —

USER SYSTEM PROGRAMS
{Asmb., Ftn., Algol, etc.)
— Main and Base Page —

RELOCATABLE LIBRARY

UNUSED HARDWARE FILE

PROTECTED SECTORS

Figqure A-5. Disc Allocation in System Area

A-9

TABLES

BASIC BINARY DISC LOADER (BBDL)

Paper Tape Loading

The operator places the paper tape in the teleprinter reader (or photoreader,
if available). He sets the switch register equal to ﬂ777¢ﬂ8, and presses
LOAD ADDRESS. He then sets the loader switch to ENABLED and presses RUN.

After BBDL reads the tape, the operator sets the loader switch to PROTECTED.

BBDL Listing

Figure A-6 is an octal listing of the Basic Binary Disc Loader that resides
in the protected, highest 64 words of core. If the loader is destroyed in
core, it can be replaced through the switch register using this listing. The

operator simply replaces symbolic items with the value appropriate to the

configuration.
B
0 1 2 3 4 5 6 7
0m7700: 107700 002401 063726 006700 017742 007306 027713 002006
0m7710: 027703 102077 027700 077754 017742 017742 074000 077757
0m7720: 067757 047755 002040 027740 017742 040001 177757 037757
0m7730: 000040 037754 027720 017742 054000 027702 102011 027700
0m7740: 102055 027700 000000 006600 1037cc 1023cc 027745 1064cc
0m7750: 002041 127742 005767 027744 000000 120100 0200nn 000000
O0m7760: 107700 063756 102606 002700 10264qq 001500 102602 063777
0m7770: 102702 102602 103706 1027nn 067776 074077 024077 177700

Legend: A + B = Memory Address

m = 1 for 8K, 3 for 16K, 5 for 24K, 7 for 32K memory
nn = first disc channel

gq = second disc channel

cc = photoreader or Teleprinter address

z 6 for 8K, 4 for 16K, 2 for 24K, g for 32K memory

Figure A-6 BBDL LISTING

APPENDIX B
TYPICAL JOB DECKS

ASSEMBLE A PROGRAM AND STORE IN FILE

:JOB,ASMBS
:PROG,ASMB,5,6,4,56,99
ASMB,B,L

NAM TEST,3

Source Program

END ENTER
: STORE,R,AFILE
:JOB,NEXTJOB

LOAD AND EXECUTE A RELOCATABLE FILE

:JOB, LOADE
:PROG,LOADR, 2
AFILE

/E
:STORE,P,TEST
:RUN, TEST

10

23

Data

51
:JOB,NEXTJOB

TYPICAL JOB DECKS

STORE, EDIT, COMPILE, LOAD AND RUN A PROGRAM

:JOB, EVERY
:STORE, S, SOURC,5
FTN,B,L
PROGRAM ZOOM
DIM I(10) Source Program

END$

:LIST,S,6,S0URC
:EDIT,SOURC,5
/1,2
. Edit List
/E
:JFILE, SOURC
:PROG, FTN,2,6,4,56,99
: PROG,LOADR
| :RUN, ZOOM
123.62

Data for first run

popp1
:RUN, ZOOM
321.5

Data for second run
0.56
:JOB,NEXTJCB

APPENDIX C
SAMPLE DSGEN LISTINGS

A MINIMUM CORE DOS

SYS DISC CHNL?
21

SECTORS/TRACK?
99

SYS DISC SIZE?
64

#PROTECTED TRACKS?
24
FIRST SYSTEM TRACK?
p

FIRST SYSTEM SECTOR?
3

AUX DISC CHNL?
p

TIME BASE GEN CHNL?
13

LWA MEM?
17677

PRGM INPT?
PT

LIBR INPT?
PT

PRAM INPT?
TY

*EOT
*EQT
*EOT

S

T T e e T

TR

SAMPLE DSGEN LISTINGS

NO UNDEF EXTS
ENTER PROG PARAMETERS
/E

SYSTEM LINKS?
326

USER LINKS?
499

SYSTEM

DISCM P2000
DVR3p0 P5p75
DVRPP 95349

*EQUIPMENT TABLE ENTRY

12,DVR15

14 ,DVR12
15,DVRP1
16,DVR@2
17,DVRPP,R
20 ,DVROP,R
21,DVR3P,D,R
/E

*DEVICE REFERENCE TABLE

—
1}

EQT #°?

nNo
H

EQT #?

w
i}

EQT #?

S
H

EQT #?

o
n

EQT #?

()]
(]

EQT #?

- o

SAMPLE DSGEN LISTING

2

7 = EQT #?
3

8 = EQT #?
6

9 = EQT #?
/E

* INTERRUPT TABLE
12,1

14,2

15,3

16,4

17,5

20,6

JE

EXEC SUPERVISOR MODULES

$SEXPT 06365
$ADDR (6461

$EXP2 $6365
$ADDR P6433

$EXP3 06365

$EXp4 06365

$EXP5 06365

$SRCH p6524

$EXP6 p6365
$SRCH P6422
$ADDR p6554

$EX@7 p6365
$ADDR p6451

$EXP8 P6365
$ADDR $6536

SAMPLE DSGEN LISTINGS

$EXQ9 06365
ASCII p6616

$EX19 p6365

$EXT1 06365
$SRCH P6463

$EX12 06365

$EX13 p6365
ASCIT p6752

$EX14 06365
ASCIT p6627

$EX15 96365
ASCIT P667P

$EXT6 p6365

1/0 DRIVER MODULES
DVRI2 p7g27
DVRI1 g7ger
DVRg2 p7p27
DVRE1 p7ge7

LWA SYA p7447

FWA USER?
p7447
USER SYSTEM PROGRAMS

LOADR p7447
JOBPR p7447

*SYSTEM STORED ON DISC

A MAXIMUM CORE DOS

SAMPLE DSGEN LISTINGS

SYS DISC CHNL?
21

SECTORS/TRACK?

99
SYS DISC SIZE?
64

#PROTECTED TRACKS?
16

FIRST SYSTEM TRACK?
p
FIRST SYSTEM SECTOR?
3

AUX DISC CHNL?
P

TIME BASE GEN CHNL?
13

LWA MEM?
37677

PRGM INPT?
PT

LIBR INPT?
PT

PRAM INPT?
TY

*EOT
*EOT
*EOT
*EOT
*EOT
*EOT

SAMPLE DSGEN LISTINGS

*EOT
*EOT
*EOT
*EOT
*EOT
*EOT

NO UNDEF EXTS

ENTER PROG PARAMETERS

$EXP1,0
$EXP2,0
$EXP3,0
$EXP4,P
$EXP5,0
$EXP6,0
$EXP7 .
$EXP8,0
$EXP9,P
$EX10,P
$EX11,0
$EX12,P
$EX13,9
$EX14,9
$EX15,0
$EX16,0
$ADDR, §
$SRCH, P
ASCII,p
DVR15,9
DVR12,
DVROT,
DVRP2, P
/E

SYSTEM LINKS?
326

SAMPLE DSGEN LISTINGS

USER LINKS?
499

SYSTEM

DISCM p2009
$EXQ@T p5p77
$EX@2 p5173
$EXP3 p5241
$EXP4 #5273
$EXP5 §5331
$EXP6 P5470
$EXP7 #5525
$EXP8 P5611
$EXP9 p5762
$EX1P p6213
$EXTT P6254
$EX12 $6352
$EX13 P6561
$EX14 p7146
$EX15 p741p
$EX16 p7713
DVR3p 10927
DVR12 19272
DVR15 10667
ASCII 11397
$SRCH 11364
$ADDR 11516
DVR@P 11533
DVRP2 12306
DVR@1 12597

*EQUIPMENT TABLE ENTRY
12,DVR15,R
14,DVR12,R
15,DVRPT,R
16,DVRP2,R
17 ,DVRPP,R

SAMPLE DSGEN LISTING

2, DVRPPD,R
21,DVR3p,D,R
/E

* DEVICE REFERENCE TABLE

1 = EQT #7
5

2 = EQT #?
7

3 = EQT #?
]

4 = EQT #?
4

5 = EQT #?
1

6 = EQT #?
2

7 = EQT #?
3

8 = EQT #?
6

9 = EQT #?
JE
*INTERRUPT TABLE
12,1
14,2
15,3
16,4
17,5
20,6
JE

EXEC SUPERVISOR MODULES
(NONE)

I/0 DRIVER MODULES
(NONE)

SAMPLE DSGEN LISTING

LWA SYS
FWA USER?
14000

USER SYSTEM PROGRAMS

LOADR
JOBPR
ASMB
ASMBD
ASMB1
ASMB2
ASMB3
ASMB4
ASMBS
FTN
FTN@1
SREAD
FTNP2
FTN@3
FINDp4
SWRIT
FADSB
.FLUN
.PACK

*SYSTEM STORED ON DISC

13235

14000
14000
14009
20509
2p50P
20500
20500
2p5p0
20500
14ppP
14797
23005
14797
14797
14797
21253
21549
21676
21711

APPENDIX D
RELATION TO OTHER SOFTWARE

The Hewlett-Packard 2116B is a general-purpose computer; as such, it can
handle standard HP software when the Disc Operating System is inactive. Every
computer is shipped with the standard software and documentation appropriate

to the system configuration.

In addition, the disc/computer combination may include two disc-based soft-
ware systems simultaneously (although only one can execute in core at a
time): the Disc Operating System, and another software system (either the
Time Shared Basic System or the Real-Time Executive System). When loading
into core from the disc with Basic Binary Disc Loader (BBDL), the operator
specifies which system to load by setting switch register bit 0 equal to 1
(for DOS) or @ (for another disc-based system) after the BBDL halts. (See
Section VI.)

When the two systems are generated, they must be stored on different areas
of the disc. This is accomplished by protecting enough tracks to cover both
systems; first generate the other system onto the initial tracks and then
generate the DOS onto the remaining protected tracks. In this way, DOS does

not attempt to write on the other system.

Another way to use the computer and disc for two or more software systems is
to dump DOS on magnetic tape using SDUMP (see Section VI) before loading

another system from magnetic tape.

RELATION TO OTHER SOFTWARE

In an attempt to make DOS compatible with the Real-Time Executive, DOS simu-
lates the Real-Time EXEC requests as follows (See REAI-TIME SOFTWARE, 0211l6-
9139):

READ/WRITE Identical for work area of disc and I/0
devices.

I/0 CONTROL Identical

I/0 STATUS Status word 2 returns transmission log

instead of Real-Time Equipment Table word

5.
DISC ALLOCATION Simulates request in work area.
DISC RELEASE No action; tracks cannot be released.
PROGRAM COMPLETION Identical
PROGRAM SUSPENSION Identical
PROGRAM SEGMENT LOAD Identical
PROGRAM SCHEDULE Treated as segment load.
CURRENT TIME Word 5 set to @, other words identical.
EXECUTION TIME (TIMER) Not accepted. See N option of RUN request.

APPENDIX E
LINE PRINTER FORMATTING

When a user program makes a READ/WRITE EXEC call to the line printer (HP2778A
or HP2778A-01), the line printer driver DVR12 interprets the first charac-
ter in the line as a carriage control character and prints it as a space.

The control characters have the following meanings:

Character Meaning

blank Single space (print on every line),

ﬂr Double space (print on every other line),
1 Eject page,

* Suppress space (overprint next line),
others Single space.

Each printed line is followed by an automatic single space unless suppressed
by the asterisk (*). Double spacing requires an additional single space prior
to printing the next line. If the last line of a page is printed and the fol-

lowing line contains a "l1", then a completely blank page occurs.

When a user program makes an I/O CONTROL EXEC call and the function code

equals 11_ (see Section IV, I/O CONTROL EXEC CALL), then the optional param-

8
eter word defines a format action to be taken by the line printer. The par-

ameter word has these meanings:

Parameter Word (Dpec) Meaning
< g Page eject,
g to 55 Space # to 55 lines ignoring page boundaries,
56 to 63 Use carriage control channel equal to the
word - 55,
64 Set automatic page eject mode,
65 Clear automatic page eject mode.

*DVR12 checks for certain program names (FTN, ASMB, LOADR, JOBPR); for these
programs it prints the first character of each line and generates a single

space.

LINE PRINTER FORMATTING

If the parameter word equals zero, the automatic single space is to be

suppressed on the next print operation only.

CARRIAGE CONTROL CHANNELS

If the parameter word is between 55 and 64, then the printer spaces using

the standard carriage control channels, which have the following meanings:

Channel
Channel
Channel
Channel
Channel
Channel

Channel

(o T e RS B ~SE SV R)

Channel

AUTOMATIC PAGE EJECT

Single space

Skip to next

Skip
Skip
Skip
Skip
Skip
Skip

During non-automatic page

then it is interpreted as

to
to
to
to
to
to

next
next
next

next

with automatic page eject,

even line with automatic page eject,
triple line with automatic page eject,
1/2 page boundary,

1/4 page boundary,

1/6 page boundary,

bottom of the page,

top of next page.

eject mode, if the parameter word is equal to 56,

equal to 1. Automatic page eject mode applies only

to single space operations.

APPENDIX F
SUMMARY OF DIRECTIVES

DIRECTIVE
:ABORT
:ADUMP[, rwa[,zwa]][,B]1[,L]
:BAfCH
:COMMENT string
:DATE, day[,hour ,min]
:DN,n
:DUMP, log.unit, file[,Sl[,Sz]]
:EDIT,file,log.unit[,new]
:EJOB
:EQ[,n]

:GO[,p ...P5]

1%
:JFILE, file

: JOB[,name]
:LIST,S,log.unit,filel ym[,n]]
:LIST,U,log.unit[,file ,...]
:LIST, X, Iog.unit[,file ,...]
:LU[,nl[,nz]]

: PAUSE

:PDUMP[, Fwal ,zwa]][,B][,L]
:PROG,name[,Pl,PZ...P5]
:PURGE, file, ,file,, ...
:RUN, name[, time][,N]

DESCRIPTION
Terminate the current job.
Dump a program if it aborts.
Switch from keyboard to batch mode.
Print a message.
Set the date and time.
Declare an I/0 device down.
Dump a user file,
Edit a source statement file.
Terminate the current batch and/or job normally.
List the equipment table.
Restart a suspended program.

Specify a source file for the assembler or

compiler.
Initiate a user job.

List a source statement file.

List the user directory.

List the system directory.

Assign or list logical units.
Interrupt the current job.

Dump a program after normal completion.
Turn on a system or user program.
Delete user files.

To run a user prodram.

SUMMARY OF DIRECTIVES

DIRECTIVE

:SA,track,sector[snumber]
:S0, track,sector[,numbér]

. :STORE,A,file, sectors
:STORE,B,file, sectors
:STORE,P[,namel, name,,...]
:STORE,R, file [,log.unit]
:STORE, S, file,log.unit
:TRACKS[,Tl,Tz...]

:TYPE

:UP,n

DESCRIPTION
Dump disc in ASCII.
Dump disc in octal.
Reserve space for an ASCII data file.
Reserve space for a binary data file.
Store loader generated programs.
Create a relocatable file.
Create a source statement file.
Print or set disc track status.
Return to batch from keyboard mode.

Declare an I/O device up.

APPENDIX G
SUMMARY OF EXEC CALLS

Consult Section III for the complete details on each EXEC call. The general

format of an EXEC call in assembly language is:

EXT EXEC (Used to link program to DOS)
JSB EXEC (Transfer control to DOS)
DEF *+n+1 (Defines point of return from DOS, n is

number of parameters; must be a direct

address)
DEF p . .
1 (Define addresses of parameters which may
: occur anywhere in program; may be multi~level
DEF p indirect)
n
return point (Continue execution of program)
P -———
1
. (Actual parameter values)
P -———
n

For each EXEC call, this appendix includes only the parameters (Pl through

Pn in the format above) of the assembly language calling sequence.

READ/WRITE: Transfers input or output.

RCODE DEC 1 or 2 1 = read or 2 = write

CONWD OCT ¢ (See Section III for control information.)
BUFFR BSS n (n-word buffer)

BUFFL. DEC n or -2n (buffer length, words (+), characters (-).)
DTRAK DEC p (disc track; optional)

DSECT DEC gq (disc sector; optional)

SUMMARY OF EXEC CALLS

I/0 CONTROL : Carry out control operations.

RCODE DEC 3

CONWD OCT ¢ (See Section III for control information.)
PARAM DEC n (Optional parameter required by some CONWDs.)
PROGRAM COMPLETION: Signal end of program.

RCODE DEC 6

PROGRAM SUSPEND: Suspend calling program.

RCODE DEC 7

PROGRAM SEGMENT LOAD: Load segment of calling program.

RCODE DEC 8

SNAME ASC 3 ,XXXXX (xxxxx 1s segment name)

TIME REQUEST: Request the 24-hour time and day.

RCODE DEC 11

ARRAY BSS 5 (Time values: tens of milliseconds, seconds,
minutes, hours, returned in that order.)

I/0 STATUS: Request device status.

RCODE DEC 13

CONWD DEC n (Logical unit number)
STATS NOP (status returned here)
TLOG NOP (Transmission log returned here)

File READ/WRITE:

RCODE
CONWD
BUFFR
BUFFL

FNAME
RSECT

DEC
OCT
BSS
DEC

ASC
DEC

WORK AREA STATUS:

RCODE
NTRAK
TRACK
STRAK

DEC
DEC
NOP
NOP

WORK AREA LIMITS:

RCODE
FTRAK
LTRAK
SIZE

SEARCH FILE NAMES:

DEC
NOP
NOP
NOP

RCODE
FNAME
NSECT

DEC
ASC
NOP

14 or 15
c
n

n or -2n

3, XXXXX

m

16

17

18

3,XXXXX

SUMMARY OF EXEC CALLS

Read or Write a user data file.

(14 = read or 15 = write.)
(See Section III for control information.)
(Buffer of n words.)

(Length of buffer in words (+) or
characters (-).)

(User file name = XxxxXx.)

(Relative sector within file.)

Ascertain if n contiguous work tracks are
available.

(Number of consecutive tracks desired.)
(Desired first track; from LIMITS call.)

(Actual starting track, or @ if n not
available.)

Ascertain first and last tracks of work area.

(Returns first work track number here.)
(Returns last work track number here.)

(Returns number of sectors per track here.)

Ascertain if a file name exists in the
directory.

(xxxxx 1s the file name.)

(Number of sectors in file returned here, or
@ if not found.)

APPENDIX H
MESSAGES

During the operation of DOS, certain messages may be printed on the system
teleprinter. These messages may be error reports or simply informative; they
are generated by various parts of DOS. Appendix H lists thése messages alpha-
betically including where they originated, what they mean, and what response,
if any, the operator must make. Messages that begin with a variable name or
a non-alphabetic character are listed by the first non-variable, alphabetic

character. Page references (if any) are given in parentheses.

Message Source Description and References

BAD CONTROL STATE,
JOBPR Directive just entered is not
acceptable in DOS.
BAD DIRECTORY OR SYSTEM
JOBPR Parity error has occurred during
read from disc of a system pro-
gram, user or system directory,
or the system buffer,
BEGIN 'DEBUG' OPERATION
DEBUG Operator may now enter any legal
DEBUG operations. (4-25)
CW nnnnn
DISCM In ab READ/WRITE EXEC call at
nnnnn, buffer address plus the
number of words (or characters)
to be transferred would wrap
around the top of core. The job
is aborted-
DEVICE #nn DOWN
JOBPR Logical unit nn is unavailable
(down). An :UP,nn makes nn

available (up) again.

Message
DISC TRACK ttt ERROR

DICTIONARY OVERFLOW

DONE?

DUPLICATE FILENAME

$END ASMB

$END ASMB CS

$END ASMB NPRG

$END ASMB PASS

$END ASMB XEND

SYSTEM MESSAGES

Source

DISCM

JOBPR

JOBPR

JOBPR

ASMB

ASMB

ASMB

ASMB

ASMB

Description and Reference

Disc error when attempting to

read track ttt.

No room is left for entries in

the user file dictionary.

Thirty feed frames (paper tape) or
an end-of-file (magnetic tape)
have occurred during input. Op-
erator responds with YES for end
of input, NO for more input.

(2-15)

Doubly defined file name found in
a :STORE directive, (other than
STORE,P), or an :EDIT directive

with a new file.

Assembly has completed. (4-11)

Assembly has terminated because
of an error in the Assembler Con-

trol Statement. (4-11)

Assembly has terminated because
no JFILE was found when required.

(4-12)

Another pass of the source pro-
gram through the input device is

required. (4-11)

Assembly stops because an EOF
occurred in the source program

before an END Statement. (4-12)

SYSTEM MESSAGES

Message Source
END FILE

JOBPR
$END FTN

FTN

Description and References

During an :EDIT, the master file
ended before completion of editing
or a colon occurred in column 1 of a

source statement.

Compilation has completed. (4-3)

END JOB xxxx RUN = xxxx MIN. xx.x SEC EXEC = xxxx MIN. xx.x SEC

JOBFR
ENTER FILE NAME(S) OR /E
LOADR
ENTRY ERROR
DEBUG

EQT xx CH xx DVRxx D R Ux Sx

JOBPR
EXTRA PARAMETERS

JOBPR
FI nnnnn

DISCM

End of current job. Total job time
and execution time are reported.

(2-4)

Enter list of relocatable program

files terminated by /E. (4-22)

DEBUG operation entered was illegal.

(4-25)

Equipment table entry printed by
:EQ. (2-31)

More than 15 parameters in a

directive.

In a FILE READ/WRITE EXEC call, the
file nnnnn cannot be found. Calling

program is aborted.

Message

IB nnnnn

IE nnnnn

IGNORED

*]GNORED

file
ILLEGAL

ILLEGAL DIGIT

ILLEGAL LUN

SYSTEM MESSAGES

Source

DISCM

DISCM

DISCM

JOBPR

JOBPR

JOBPR

JOBPR

Description and References

Illegal buffer address in EXEC call
at location nnnnn. Program is

aborted.

EXEC call at nnnnn read in a :card
from batch input device. Program is

aborted.

Input from system teleprinter or
batch device during program execution

cannot be processed.

All directives following EJOB and
before next JOB except BATCH, TYPE

and TRACKS are ignored.

1) On a source file LIST directive,
the requested file was not a source
file. (2-24)

2) A file name begins with a non-

alphabetic character.

In a decimal number, digit is other
than @-9. In an octal number, digit
is other than @g-7.

Logical unit requested is = @, great-
er than number of logical units in
the table, or 1is not the correct

type (i.e., input for output, etc).

Message Source

ILLEGAL PROGRAM TYPE
JOBPR

INP ERR
DISCM

INPUT: DATE , XXXXXXXXXX, H,M

DISCM

INPUT FR=FRESH; CO=CONTINUATION

DISCM
I/0 ERR NR EQT# mm

DISCM
I/0 ERR ET EQT# mm

DISCM
I/0 ERR PE EQT# mm

DISCM

SYSTEM MESSAGES

Description and References

Name requested in a RUN or PROG is
not legal.

Equipment table entry number of
logical unit number in EQ, LU, UP or
DN is illegal.

When system is initiated from the
disc, DOS requires a DATE directive.
(6-15)

When system is initiated from the
disc, DOS asks whether start-up is
fresh (no user files) or continua-

tion (user files on disc). (6-15)

Device #mm is not ready. DOS re-
turns to program return address with

status in A, B set to 4.

An end-of-tape occurred on device
#mm. DOS returns to program return

address with status in A, B set to 4.

Parity error on device #mm. DOS
returns to program return address

with A set to status, B set to 4.

- SYSTEM MESSAGES

Message Source
IT nnnnn

DISCM
JBIN OVF

FTN ,ASMB
JBIN TRK BAD

JOBPR
JOB ABORTED!

JOBPR

Description and References

Illegal disc track or sector address
in EXEC call from location nnnnn.

Program is aborted.

Overflow of job binary area during

assembly or compilation. (4-4,4-12)

Parity error when reading a program

from the job binary area.

Current job is aborted because of:

1) parity error on disc (in user

file, work file, system or user di-
rectory system file on system bﬁffer),
2) :ABORT directive, 3) end-of-file

during EDIT or source input, 4) dic-

tionary overflow during a STORE,

5) parity error on job binary track,
6) no tracks left for writing on the

disc.

JOB xxxxx dddddddddd TIME = xxxxMIN.xx.xSECS EXEC = xxxx MIN.xx.x SEC.

JOBPR

LA
LOADR

L16

Message printed at the beginning of

each job. (2-3)

36

Loader error messages. (4-28]

Message’
LIMIT ERROR

xxxx LINES

*kkk| | ST END****

LN nnnnn

LOADR COMPLETED

LOADR SUSP

LOADR TERMINATED

LOAD TAPE

SYSTEM MESSAGES

Source

JOBPR

JOBPR

JOBPR

DISsCM

LOADR

~ LOADR

LOADR

LOADR

Description and References

1) Sourée statement numbers out of
order in an EDIT; 2) dump limits in-
compatible in PDUMP, ADUMP; 3) sec-
tors illegal in a DUMP; 4) or begin-
ning source statement in LIST is

greater than final statement number.

Total number of statements stored by
a STORE, S directive

Terminates list of source statements

generated by a LIST directive. (2-25)

Logical unit requested by an EXEC
call at nnnnn is unassigned. Pro-

gram is aborted.
Loading has completed. (4-24)

Loader has suspended and is waiting

for a GO directive. (4-23)

Loader has terminated because of an

error. (4-28)

In conjunction with LOADR SUSP, this
message requests that next relocat-

able tape be loaded before GO. (4-23)

Message

LU nnnnn

LUxx EQTxx

LUN UNASSIGNED

xxxxx MISSING

MISSING PARAMETER

MP nnnnn

NAME* IGNORED

NO BIN END

NO PROGRAM LOADED

Source

DISCM

JOBPR

JOBPR

DISCM

JOBPR

DISCM

JOBPR

JOBPR

LOADR

SYSTEM MESSAGES

Description and References

Illegal logical unit in EXEC call at

nnnnn. Program is aborted.

Logical unit table entry; EQT # xx
is assigned to LU#xx. (2-32)

Logical unit requested in a direc-

tive is unassigned.

Segment xxxxx, requested by an EXEC
call, is not in system or user di-

rectory. Job is aborted.

A parameter is missing in a direc-

tive.

Illegal memory protect violation at

location nnnnn. Program is aborted.

Illegal JOB name; non-alphabetic

first character.

No END record detected when storing

a relocatable binary program.

No programs were loaded into the

LOADR. Loading terminates. (4-23)

Message
NO SOURCE

NO TRACKS AVAILABLE

NUMBER OVERFLO

OR nnnnn

PARAMETER ILLEGAL

PARITY ERROR/TRK=ttt

SYSTEM MESSAGES

Source

" JOBPR

JOBPR

JOBPR

DISCM

JOBPR

JOBPR

Description and References

No source statements following a /R
or /I in an EDIT directive. Job is

aborted.

No tracks available on disc for

writing

An integer is too large.

I/0 operation requested by EXEC call
at nnnnn is rejected. Program is

aborted.

1) no EQT number in EQ directive;
2) slash missing in EDIT file;
3) non-source file requested in EDIT
or JFILE;
4) illegal type character in STORE
or LIST;
5) logical unit missing or = g;
6) sector count = @ in STORE;
7) character other than B or L in
PDUMP or ADUMP;
8) logical unit = system teleprinter
or DISC/DRUM in UP or DN; or
9) number out of range of table in
an EQ, LU, UP or DN.

Parity error during disc read.

SYSTEM MESSAGES

Message Source Description and References
PAUSE xxxx
program Program has suspended itself. Re-

start with Q0. (4-8)

RE-ENTER STATEMENT ON TTY
JOBPR Follows most error messsges that do

cause abort.

RQ nnnnn
DISCM Illegal request code in EXEC call at
nnnnn. Program is aborted.
STOP xxxx
program Program has terminated. (4-28)
xxxx SUSP
DISCM Program xxxx suspended by EXEC call.
Enter GO to proceed.
™ nnnnn

DISCM Maximum execution time exceeded.
The program is currently at nnnnn

and is aborted.

TRACKS UNAVAILABLE
DISCM Desired number of contiguous tracks
(in RT disc-allocation EXEC call) is
not available. Job aborted unless

N present in RUN directive. (4-4)

TRAK # TOO BIG
JOBPR Track requested is higher than last
available disc track. (track may be

in JBIN area.)

file name UNDEFINED
JOBPR Undefined file-name in PURGE, LIST,
RUN or STORE,P. (2-21,2-23)

H-10

i g

Message
UNDEFINED EXTS

WAIT

WRONG INPUT

1ST WORK TRACK=ttt
BAD=
bbb

SYSTEM MESSAGES

Source

LOADR
JOBPR
JOBPFR

ERR{

JUBPR
DISCM

JOBPR

Description and References

Undefined external references exist

in programs loaded. (4-24)

DOS is purging the user files or

moving them, sector by sector, be-

cause of parity error on read.

Printed every 6 seconds.

Relocatable binary input furnished
for a source file request or vice-

versa.

Library routine error code. (4-9)

DOS is ready for further directions.

(2-2)

In TRACK directive, ttt = first
available work track; bbb = faulty

tracks.

APPENDIX |
MAGNETIC TAPE USAGE

Input/output transfers to and from a HP3@3@ magnetic tape unit can be pro-
grammed using the standard READ/WRITE EXEC call. (See Section III.) When
specifying the data buffer length, the programmer must know that a buffer
length of zero (@) causes the driver to take no action on a write or an ASCII
read. Only the amount of data that fits within the buffer is transmitted

to the user on read. A zero (@) buffer length on binary read causes a for-

ward skip one record.

In the I/O STATUS EXEC call, bits 7-8 of the second status word contain the
status of the magnetic tape unit. The bits have the following meaning

when they are set (i.e., equal to one):

BIT MEAN ING

7 End-of-file record encountered while reading, forward
spacing, or backward spacing.

Start-of-tape marker sensed.

End-of-tape marker sensed.

Timing error on last read/write operation.

I/0 request rejected by magnetic tape unit.

No write enable ring, or the tape unit is rewinding.

Parity error on last read/write operation.

= N Wb o

Tape unit busy, or in local mode.

The status bits are stored in the EQT entry; they are updated everytime the
driver is called. A dynamic status request is processed as soon as the mag-
netic tape EQT entry is available (availability bits equal to @@), and re-
turns the actual status of the device (obtained from the driver) to the call-

ing program in the A-register and to the EQT entry.

Buffers of less than six words are padded to six words. The maximum buffer

length is 16,384.

MAGNETIC TAPE USAGE

ERROR RECOVERY PROCEDURES

On a read parity error, the driver rereads the record three times before
setting the parity error status bit and returning to the calling program.

The final read attempt is transmitted to the program buffer.

On a write parity error, the driver continues to retry the write until one
of these two conditions occurs:
a) The record is successfully written, or

b) The end-of-tape is encountered.

On a write without the write enable ring, the magnetic tape unit is made

unavailable (magnetic tape not ready). DOS prints a message:

I/0 ERR NR EQT# n

and waits for the operator to correct the unit and enter :GO.

At the end-of-tape there are only two legal forward motion requests:

a) Write end-of-file, or

b) Read record.
All other forward motion requests (write, forward space) cause the unit to be
made unavailable. 1In addition, only one of the legal motion requests may be
made after an end-of-tape. Backward motion requests clear the end-of-tape

status.

I-2

SOFTWARE MANUAL CHANGES

DISC OPERATING SYSTEM

(HP 02116-91748)
Dated October 1968

Some of the items below pertain not only to the DISC OPERATING
SYSTEM manual but also to the Manual Change Sheet itself. The highest-
numbered entry is the most current. Therefore, these changes should
be recorded first. This ensures that earlier entries which have been
modified are updated on this sheet. Earlier entries which no longer
apply are deleted.

11-69
Change
Number Description

1 Page 2-4, under EJOB, replace the first sentence un-
der "Comments" with: "EJOB condenses the
user file by eliminating spaces left by
non-permanent programs."

2 Page 2-15, Type -S Files, in the second paragraph,
delete the words "or blank card."

3 Page 6-4, before FIRST SYSTEM SECTOR? add: "(The
system cannot start on track 0 sector O
since sectors 0-2 are used for the disc
loaders.)"

4 Page 6-10, at the bottom of the page, add: "(For 3030
magnetic tape, the entry in the interrupt
table should be the location of the magnetic
tape 2 board.)"

5 Page H-9, below OR nnnnn, insert the following system

message:

OVERFLOW JBIN There is not enough room in the
user area for starting relocat-
able binary from JBIN area.

HEWLETT h PACKARD Software Development Cupertino, California 95014

~Change

Number

10

11

12

13

14

15

Page 2
HP 02116-91748

1-70

Page
Page
Page
Page

Page

Page

Page

Descrigtion

Xii, in the third line delete "12591A" and replace it
with "12581A." ,

2-4, in the first Tine; delete the word "purges" and
replace with the word "condenses.”

2-15, in the first line of the third paragraph, delete
the words ' or b]ank card."

4-7, change the th1rd DEBUG operat1on from "D,A,N[,N]”
to "D,B,N[,N] !

46—16, in the first line of the last paragraph, delete

the rest of the sentence after the word "requires"
and insert "a parameter specifying the first track
to be dumped. The end parameter is optional."

6-17, in 1ine nine before the word "in" insert "in
command or."

6-18, After the error message "TRACKnnn(8) SECTORmmm(8)"
delete the rest of the sentence after the word
"DISC" and insert "and Tape Error Diagnostics are
described as follows."

3-70

Page

Page

Page

1-4, insert after the first paragraph: "A memory protect
boundary is set between the executive area and a
user program area. This boundary interrupts whenever
a user program attempts to execute an I/0 instruction,
(including a HALT) or to modify the executive area.
Programs to be run in the user area must use EXEC
calls for 1nput/output termination, and suspension.'

3-8, under the word “FORTRAN”, in the first and seventh
lines delete "DIM" and insert "DIMENSION."

3-13, under the word "FORTRAN", insert after "IRCDE",
"TFTRK".

HEWLETT-PACKARD, CUPERTINO DIVISION

Change
Number

16
17
18

19

20
21

22

23

24

25

Page 3
HP 02116-91748

3-70

Page

Page

Page

Page

Description

3-19, under the word "FORTRAN" in the second line
delete "DIM" and insert "DIMENSION."

3-21, under the word "FORTRAN" in the second line
delete "DIM and insert "DIMENSION."

3-22, under the word "FORTRAN" in the second line
delete "DIM" and insert "DIMENSION."

H-9, insert after the fourth message the following:

"OVERFLO JBIN. JOBPR insufficient space in
job binary area for reloactable code."

4-70

Page

Page

Page

Page

1, of the Manual Change Sheet on the title replace
"1968" with "1969."

2, of this Manual Change Sheet, delete change number
7 and change number 8.

2, of this Manual Change Sheet, change number 15,
replace "IRCDE" with "IFTRK". Replace "IFTRK"
with "IRCDE".

3, of this Manual Change Sheet, delete change
number 19.

5-70

Page

Page

2-13, under the second entry should be:
":STORE,P[, name 1, name 2,...]"

2-36, under Format, in the second line insert the
following parethetical expression after
"characters".

"(commas not permitted);"

In the third line, replace "user" with "operator."

Under EXAMPLES, in the first line replace "10,"
with "10/".

HEWLETT-PACKARD, CUPERTINO DIVISION

ot

Number

26

27

28

Page 4
~HP 02116-91748

5-70

\

Page 5-12,

Description

in the cénter of the flowchart, change "EQT(5)"
to "EQT(4)".‘

6-70

Page 2-17,

Page 2-29,

replace the first paragraph under “Comments" with:

"If logical unit 2 is specified as the input device
when the compiler or assembler is turned on (using
:PROG) and a :JFILE has been defined, then the
compiler or assembler reads the source statement
using a :STORE,S directive."

under "Comments" delete the first paragraph and in-
sert the following:

"Any parameter following L is ignored. If FWA is
greater than LWA, a message is printed. When the
directive :PDUMP precedes a :RUN or :PROG request,
the program contained in the request will be dumped,
if it runs to normal completion. To dump a program
that is aborted while running, the directive :ADUMP
must precede the :RUN request. To make sure that

a program will be dumped whether it runs normally

or is aborted, both dump directives must be declared
preceding the :RUN request. Only one of the requests
will be honored, depending upon whether the, program
runs normally or 1is aborted. Since DOS sets a flag
when it encounters either dump directive, then clears
the flag after the dump routine is executed, the flag
representing the dump routine that was not executed
will remain set. This flag can cause an unwanted
dump of some program run later under the same :JOB
directive. Either dump flag can be cleared by re-
questing the dump with both FWA and LWA equal to 0;
all flags can be cleared by calling a new :JOB

~ directive."

HEWLETT-PACKARD, CUPERTINO DIVISION

Change
Number

29

30

Page 5
HP 02116-91748

/-70

Page 2-17,

Page 2-29,

Description
replace the first paragraph under "Comments"
with:

"If logical unit 2 is specified as the input
device when the compiler or assembler is turned
on (using :PROG) and a :JFILE has been defined,
then the compiler or assembler reads the source
statements using a :STORE,S directive."

under "Comments" delete the first paragraph and
insert the following:

"Any parameter following L is ignored. If FWA

is greater than LWA, a message is printed. When

the directive :PDUMP precedes a :RUN or :PROG
request, the program contained in the request

will be dumped, if it runs to normal completion.

To dump a program that is aborted while running,

the directive :ADUMP must precede the :RUN request.
To make sure that a program will be dumped whether
it runs normally or is aborted, both dump directives
must be declared preceding the :RUN request. Only
one of the requests will be honored, depending upon
whether the, program runs normally or is aborted.
Since DOS sets a flag when it encounters either

dump directive, then clears the flag after the dump
routine is executed, the flag representing the dump
routine that was not executed will remain set. This
flag can cause an unwanted dump of some program run
Tater under the same :J0B directive. Either dump
flag can be cleared by requesting the dump with both
FWA and LWA equal to 0; all flags can be cleared by
calling a new :JOB directive."

HEWLETT-PACKARD, CUPERTINO DIVISION

	00-00
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	00-11
	00-12
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	0a-01
	0a-02
	0a-03
	0a-04
	0a-05
	0a-06
	0a-07
	0a-08
	0a-09
	0a-10
	0b-01
	0b-02
	0c-01
	0c-02
	0c-03
	0c-04
	0c-05
	0c-06
	0c-07
	0c-08
	0c-09
	0d-01
	0d-02
	0e-01
	0e-02
	0f-01
	0f-02
	0g-01
	0g-02
	0g-03
	0h-01
	0h-02
	0h-03
	0h-04
	0h-05
	0h-06
	0h-07
	0h-08
	0h-09
	0h-10
	0h-11
	0i-01
	0i-02
	chg-01
	chg-02
	chg-03
	chg-04
	chg-05

