HP 12792A

8-Channel Asynchronous
Multiplexer Subsystem
User's Manual

S

for HP 1000 M/E/F-Series Computers

N

| ITILIE
l||H|| l“
!

A

HEWLETT
PACKARD

HP 12792A

8-Channel Asynchronous
Multiplexer Subsystem

User’s Manual

(bp HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY -
Data Systems Division Library Index No.
11000 Wolfe Road MUX.310.12792-90002 MANUAL PART NO. 12792-90002

Cupertino, California 95014 Printed in U.S.A. September 1980

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain the latest replacement pages and write-in instructions to be merged into the
manual, including an updated copy of this Printing History page.

To replenish stock, this manual will be reprinted as necessary. Each such reprinting will incorporate all past Updates,
however, no new information will be added. Thus, the reprinted copy will be identical in content to prior printings of the
same edition with its user-inserted update information.

To determine the specific manual edition and update which is compatible with your current software revision code, refer to

the appropriate Software Numbering Catalog.

First Editionoo i Sept. 1980

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1980 by HEWLETT-PACKARD COMPANY

il

Preface

This manual is designed as a technical reference for the
Hewlett-Packard 12792A Eight Channel Asynchronous Multiplexer
Subsystem for M/E/F-Series HP 1000 Computers. The Multiplexer

interface is an efficient, high performance interface for multiplexed
terminal/device applications. It enhances terminal communications by

offering a low cost/channel, high speed, high performance alternative
to other point-to-point interface offerings.

This manual is intended for users knowledgeable in FORTRAN and the
RTE-MIII or RTE-IVB operating system. The following is a brief
description of each chapter's content.

The OVERVIEW provides general information concerning the multiplexer
subsystem and its interrelationships with HP 1000 products.

The USER INTERFACE outlines the control functions used to perform data
transfers to and from external devices, in addition to the control
functions necessary to accomplish I/O control. Examples are provided
for each control request. ‘

Using the features of the multiplexer and error handling/recovery is
discussed in Chapter 3, USING THE MULTIPLEXER.

The DEVICE DRIVER chapter is directed at the advanced programmer who
is experienced with Assembly language. It provides the user with a
tutorial on device driver writing.

The DEVICE SPECIFIC CONSIDERATIONS chapter explains the interfacing
requirements for using a non-HP device in the multiplexer subsystem.

iii/iv

Table of Contents

Chapter 1 Overview
Chapter 2 User Interface
GENERAL CONSIDERATIONS « o« o o o o o o o o o o o o o ¢ o o 2=1
REQUEST CODE « & o o o o o o o o s o o o o o o o o o o 2-1
CONTROL WORD + « o o« o o o o o o o o o o o o o o o o o 2=2
FUNCTION CODE ¢ & « o o o o s ¢ ¢ o o o o e o . 2=-2
LOGICAL UNIT NUMBER &+ « « o o o o s s s o o o o o o« o o 2-4
I/0 REQUESTS v « o o o o o o o o o o o o o o o o o o o« 2-4
STANDARD I/0 EXEC CALLING SEQUENCES . o & o« ¢ o o o o o o o 2=7
EXEC CALLS FROM ASSEMBLY LANGUAGE ¢ « « « o o o o o o « « o 2-8
EXEC CALLS FROM FORTRAN . &« o o o o o o o o o o o o o o o o 2-9
EXEC CALLS FROM PASCAL +« « &« « o s o s s o o o o o o o« o« 2-10
EXEC CALL PARAMETERS . « ¢ ¢ « o & e o o o o o o o o o 2-13
CONTROL REQUESTS TO THE MUX « &« o ¢ o o o o« o o o o o o o« 2-13
DEVICE INITIALIZATION . « « + e o o o o o o o o o o & 2-15
SET PORT'S ID (CONTROL FUNCTION 30) e o o o o o o o o 2-15
CONFIGURE DRIVER RESPONSES (CONTROL FUNCTION 33) . . 2-17

ENABLE SCHEDULING (FUNCTION 20) o o + o o o o s o o o 2-19
OTHER INTERFACE DRIVER CONTROL REQUESTS . « « « o « « o« o 2-20
DISABLE SCHEDULE (FUNCTION 21) . « o o o o o o o o o 2-20
SET TIMEOUT (FUNCTION 22) ¢ « o o o o o o o o o o o o 2-20
BUFFER FLUSH (FUNCTION 23) e e o o o o o o o s o o e 2-21
RESTORE OUTPUT PROCESSING (FUNCTION 24) e o s o 221
FLUSH INPUT BUFFER (FUNCTION 26) . . e e e o 2-22
SET PROGRAM ADDRESS (FUNCTION 27) . . 2-22
SET READ TYPE (FUNCTION 37) « « .« o e o o o 2-23
DYNAMIC STATUS (FUNCTION 6) . « « . e o o o 2-24

.
.
.

e o o o o
.
.
.
.

Chapter 3 Using the MUX
NORMAL MODE v ¢ « o o o o o o o o s o o o o o o o o o o o o 3-1
TYPE-AHEAD . . e e e o s o o o o o o o o s o o o o 3-1
PROGRAM SCHEDULING e e o o o o o o & o s s e e s o & o 3-3
COMMON TYPE—-AHEAD MODES & « « « o« o o o o o o o o o o o o » 3-4
NO TYPE-AHEAD MODE « « « « o o o o o o o o o o o o« o o 3=5
FULL TYPE-AHEAD MODE . . . c o o o s o o o o o o « 3-5
TYPE-AHEAD WITH SCHEDULING MODE e e o o s o s o o « 36
TYPE-AHEAD WITH FLUSH ON BREAK MODE e e o o o o s o o « 3-6
ERROR RECOVERY +« & o 3=7
I/0 STATUS & o 37
FAILURE ANALYSIS « & o o o o o o o o o o o o o o o o o o o« 3-9
READ ERRORS &+ o« 3-9

Chapter 4

vi

Device Driver Writing

DEVICE DRIVER/INTERFACE DRIVER CONCEPT . . .

e . .

REASONS FOR DEVICE DRIVER/INTERFACE DRIVER USE .

INTERFACE TASKS ¢ & ¢ o o o o o o o o o« &
INTERFACE DRIVER TASKS ¢ ¢ o o «
Interface control
Operating System Interface
DEVICE DRIVER TASKS
HP IMPLEMENTATIONS OF DEVICE DRIVERS . .
Lineprinter Device Driver DDV12 . .

Block Mode Terminal Device Driver DDVO05

DEVICE DRIVER INTERFACE o o o
DEVICE DRIVERS FOR HP 12792A MULTIPLEXER
RESTRICTIONS AND REQUIREMENTS
SYSTEM ABORT REQUESTS . &+ & ¢ o« o & « o &
INTERFACE DEFINITIONS . . . e s e 4 o .
RETURN TO THE INTERFACE DRIVER e ¢ o .

RETURN TO INTERFACE DRIVER —-- DEVICE DRIVER

RETURN TO INTERFACE DRIVER -- A-REGISTER
Exit Command . « ¢« ¢ ¢ & ¢ o« o o &
Function Modifier ¢« . « . .

RETURN TO INTERFACE DRIVER -~ B-REGISTER

RETURN TO INTERFACE DRIVER -- EQT ENTRIES

SELECTED EQT DEFINITIONS AND USES

DEVICE DRIVER ADDRESS TABLE « o o ¢ o . .

LOCATION AND SIZE OF DEVICE DRIVERS . . .

CASE STUDY: A DEVICE DRIVER WRITING EXAMPLE .

TASK DEFINITION v v ©¢ o o o o o o o
Margin Set Up +. « & v ¢ ¢ ¢ ¢ o o o &
Cursor Position . . ¢ & v & o
Cursor Tracking . + & ¢« ¢« ¢ o o o .
Minor Tasks . . . e o o o o o o @

DEVICE DRIVER OPERATION e o o o o o o o
Operation Flow e e

Set Up Device Driver EQT Extent Pointers

EQT Setup On First Entry
Subchannel Determination . . .« .
Output a Setup String to the Termlnal

Perform The Original User Request

Read Cursor Position

[} . *

Final Completion Return to the Interface Drlver

Device Driver Address Table
SAMPLE DEVICE DRIVER LISTING e s o

1
NFOOVOWOITIIATULTULIULELDBDWWWWN K-

oD DD DD DD D DD DD DD DD D DD
I

|
R

Chapter 5

Device-Specific Considerations

HANDSHAKING « « « o o

DDV12 LINEPRINTER DRIVER

DDV05 TERMINAL DRIVER

BLACK BOX CONSIDERATIONS

Appendix A

Appendix B

26XX SCREEN MODE DEVICE DRIVER
DDV05 USER INTERFACE FOR 26XX
7310 LINE PRINTER DEVICE DRIVER

Appendix C

DUMB DEVICES . .
MODEMS L] L3 Ll L] L d

Device Equipment Table

Device Driver Interfaces

Glossary

L] L] L] L .
L] L] L] . L]
L4 L] L * [
L
*

TERMINALS

L] * e o L]

ooy n
1
dwwhNn =

thﬂw
N

vii

List of lllustrations

Possible MUX Configuration . . +« v ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o & o 1=2
ICNWD Function Code BitS o &« 4 o o o ¢ o o o o o o o o o o 2-3
Valid Terminators .« ¢ o o o o ¢ o o ¢ o o o o o o o« o o o« 2-5
Read Request Function Codes . & & v v v ¢ o o « o« o o o & 2-6
Write Request Function Codes . ¢« ¢ ¢ ¢ v o o o o o o o o o« 2=7
Device Driver Flow Chart v « & & o« o ¢ o o o « o o o o o« o 4=20

List of Tables

COl’ltI.’Ol Function COdeS 3 . . 3 . 3 . . . 3 . L . . 2—14

Set Read Type (Function 37B) Parameter Description 2-24
I/() Status_RequeSt Returns * L] . L]] . * (3 L] L] L] L]] L] L]

Equipment Table Entry . . . 3 3 3 3 A-l

viii

Chapter 1
Overview

The Hewlett Packard 12792A Eight Channel Multiplexer Subsystem and its
accessory, the HP 12828A accessory panel, provide communication to the
computer through a microprocessor-based interface. The multiplexer
significantly off-loads routine communication management overhead.
The Multiplexer is used to route data from one of eight I/O devices to

a common destination. One possible MUX configuration is shown

in
Figure 1-1.

CPU

USER
PGM.

7700-558

1-2

INTERFACE
DRIVER

DEVICE
DRIVER #1

DEVICE
DRIVER n

Figure 1-1.

208NV 2-C PANEL
wewiaTr\fcanY

°
o

oo
oo
oty

oriiit)o
o o
o o
ofuige
oo

MULTIPLEXER
ACCESSORY PANEL

26408 TERMINAL

N

2631A PRINTER

2635A PRINTING
TERMINAL

BLACK

BOX

BLACK

2645/2648A TERMINAL

L’Eﬁ*" Si: D—

2631A PRINTER

> BOX

Possible MUX Configuration.

Flexibility is a key feature of this product in that the users can
connect devices such as terminals, printers, and "black boxes" to the
MUX, provided the device meets RS-423-A or RS5-232-C requirements.
Furthermore, users can write device drivers for these devices attached
to the MUX to handle any special control required by the device.

Device drivers are simply subroutines of the interface driver which
are used to modify user requests and make them compatible with a
specific device. The interface driver, on the other hand, is
basically responsible for the transfer of information between the user
programs, the appropriate device driver, and the interface card.

Each channel of the Multiplexer has a device driver associated with
it. The device driver performs the device specific formatting of
data, specifically, the inclusion of control characters for device
requirements. When an EXEC call is 1issued from the user program, the
interface driver passes it to the device driver. At this point the
device driver can break up the user request into a series of interface

requests. For example, the device driver can instruct the interface
driver to wait for a buffer and inform the interface driver of the

buffer's destination. The 1information is taken from the appropriate

channel buffer and sent to the destination 1indicated by the device
driver.

Up to 14 device drivers may be used, each of which can be associated
with one or more devices attached to one of the MUX cards 1in the
system. HP supplies two device drivers with the 12792A
product -- DDV0O5 (26XX terminal screen mode device driver) and DDV12
(2631/2635/7310 line printer device driver).

Each Multiplexer interface card contains 16K bytes of Random Access
Memory, of which 8K bytes are allocated for channel buffers. This 8K
portion of memory is divided so that each channel contains four 254
byte buffers, two for transmission and two for reception. Each
interface card provides two on-board programmable baud rate generators
which control channel transmission speeds ranging from 50 to 19.2K
baud. The total aggregate throughput must not exceed 78.6K baud.
This card may be inserted anywhere in the backplane of the CPU, unless
there is a privileged interrupt fence. 1In this case the interface
card should be inserted above the fence. The maximum number of
physical devices which will be supported in the Multiplexer Subsystem
is 61 (RTE-IVB) or 62 (RTE-MIII). There are 63 available EQT's in the
system but one EQT should be reserved for the system console and one
for the disc. The Multiplexer does not offer system console support.

To increase the throughput of the interface card Direct Memory Access
is used. If the terminal/device channel is unable to obtain a DMA
channel the device driver is placed 1into a loop to perform read/write
functions on a word-by-word basis.

The HP 12828A multiplexer panel contains eight RS-232-C ports. The
standard accessory panel is hardwired connecting port 0 to one baud

rate generator, and ports one through seven to another baud rate
generator.

The Multiplexer Accessory Panel is connected to the interface card and
can be located locally at the CPU (with the standard cable) or up to
91 metres (300 feet) away from the CPU with custom cabling., RS-232-C
compatible devices can then be connected to the Multiplexer panel by
cables less than 39.7 metres (50 feet) in length.

The MUX will passively support asynchronous, full duplex modems.

Passive support means the MUX does not recognize or supply any modem

control or status lines. The RS-232-C connectors on the HP 12828A
have modem "Clear to Send" connected back to "Request to Send" and

"Carrier Detect" wired back to "Data Terminal Ready." ("Data Set
Ready" is pulled to +12v through a 1K ohm resistor for those terminals
that require it.) Use of the HP 12828A or connectors similar to these
allow the passive support of modems. The user should be aware that

"Line Loss" or other "Modem Not Ready" problems cannot be detected by
the MUX or user software through the MUX. Modem connect or disconnect

sequences cannot be requested through the MUX.

Chapter 2
User Interface

General Considerations

This section describes the driver as seen by the user. Standard I1/0
EXEC calls are used to transfer data to and from external I/O devices
in addition to performing various 1I/0 control operations. Input,
output and control requests to the multiplexer are generally in the
form of RTE EXEC calls while control requests can be initiated either
from EXEC calls or by using the file manager CN command. EXEC calls

can be made from Assembly Language programs or from higher level
languages such as FORTRAN and PASCAL.

Request Code

Parameter ICODE identifies the type of EXEC call request. There are

eight types of EXEC calls described 1in this manual; four normal I/O
EXEC calls and four Class I/0 EXEC calls.

STANDARD EXEC CODE PARAMETERS

ICODE =1 READ REQUEST

ICODE = 2 WRITE REQUEST
ICODE = 3 CONTROL REQUEST
ICODE = 13 I/0 STATUS REQUEST

CLASS I/0 EXEC CODE PARAMETERS

ICODE = 17 READ REQUEST

ICODE = 18 WRITE REQUEST
ICODE = 20 WRITE/READ REQUEST
ICODE = 19 CONTROL REQUEST

Control Word

Control word (ICNWD) contains a five bit function code and the logical

unit number (LU) of the device to which the user request is directed.
It is structured as follows:

15 10 [6(5 5 0

OOOOOXA:KﬂVM‘LLL;LLL

| <==function-->|<--logical unit->|
ode ’ number

%

Function Code

The octal value of the required function code is provided for each of
the request descriptions 1in the following sections. The user may
choose any of the methods described in this chapter to set the value
of bits 10 through 6 of control word ICNWD. For example, if the

function code value 1is octal 6, add 600B to the value of the LU
number.

The MUX driver examines the value of the function code to determine
the action taken by the interface driver in the processing of I/0 or
device control. The requests will vary depending on the function
codes described below. These function codes are used whenever an EXEC

1 (Read), EXEC 2 (Write), or EXEC 3 (Control) call 1is made, although
the bit meanings differ between read and write requests. Refer to
Figure 2-1 for ICNWD bit names.

BIT 10 (X BIT) Transparent Mode Bit;

0 - DISABLED
1 - ENABLED

BIT 9 (A BIT) Special buffer control bit;

0 - DISABLED
1 - ENABLED

BIT 8 (K BIT) Echo Bit;

0 - DISABLE
1l - ENABLE

BIT 7 (V BIT) Honesty Bit;

0 - DISABLE
1 - ENABLE

BIT 6 (M BIT) Binary Mode Bit;

0 - DISABLE
1 - ENABLE

Figure 2-1. ICNWD Function Code Bits.

Logical Unit Number

The logical unit (LU) number is the system address for the I/0 device
to which the wuser 1is directing a request. The wuser's system
generation 1listing enumerates the LU numbers of all 1I/0 devices
generated into the system.

For example, if the LU number is decimal 10 and the function is octal
6, the value of ICNWD can be computed:

ICNWD = 10 + 600B

The B suffix is used to identify "600" as an octal number.

/0 Requests

I/0 requests are handled in a variety of ways. These requests are

processed differently depending on the wvalue of the control word.
Three basic input functions are controlled by the value of ICNWD.

- editing
- echoing
- terminators

When editing 1is enabled, the control word bits 6 and 10 are set to
zero. If a delete key (rub out key) is struck, the contents of the
user's receiving buffer is erased. The backspace key deletes only the
last character entered, if any. If editing is disabled, the delete

and backspace keys would enter a 177B or 12B into the user's on-board
buffer.

If a user is inputting data with editing enabled the interface card
will accept the data into one of the channel's input buffers. The
multiplexer handles all the edits. User 1input and editing can
continue until the card's buffer is full or a valid terminator is
detected. At this point the on-board buffer is off loaded to the CPU.
Once the buffer has been moved it cannot be edited. For this reason
the user cannot backspace or delete past a 254 byte boundary.

In general, information 1is supplied to the Multiplexer card in a
character mode format and echoed back to the user for wvisual
inspection of the buffer. This is not always desirable; the echo
feature may be suppressed for passwords and special requests.

The Multiplexer card must be able to detect an end-of-record or valid

terminator when it 1is encountered. Figure 2-2 1lists the wvalid
terminators used to signal the card to interrupt the CPU and transfer
data to the user's buffer.

Figure 2-3 describes the control word bit combinations wused to
determine the interface driver's action on a read request. It is here
that valid terminators, as well as input editing and echoing are

specified. Figure 2-4 describes the valid buffer transfer
terminators.
OCTAL VALUE OF

COMMON NAME RIGHT BYTE

carriage return CR 000015

device control DC2 000022

record separator RS 000036

end of transmission EOT 000004

Figure 2-2. Valid Terminators

ICNWD BITS

lo

9

8

ACTION TAKEN FOR READ REQUEST

0

0

editing enabled .

echo disabled

CR is a valid buffer transfer terminator

CNTRL D results in an EOT status condition
and a zero length transmission log (zero
length buffer)

input editing enabled

echo enabled '

CR is a valid transfer terminator

CNTRL D results in an EOT status condition

and a zero length transmission log (zero
length buffer)

input editing disabled

echo disabled

data transfer terminates only when the user
buffer is full

input editing disabled

echo enabled

data transfer terminates only when the user
buffer is full

input editing disabled
echo disabled
CR is a valid transfer terminator

input editing disabled
echo enabled
CR is a valid transfer terminator

special buffer transfer

same as the transfer with bit 9 (special
function bit) set to zero but data
resident in the card's buffer that
exceeds the end of the user buffer is
not destroyed. It may be accessed in
subsequent buffer transfers.

echo, edit, etc. are defined by bits 6, 8,
and 10 above.

X = don't care condition

Figure 2-3. Read Request Function Codes.

ICNWD BITS

10 9 8 7 6 WRITE REQUESTS

0 X X X 0 An ASCII write request will have CR/LF
appended to the buffer if the last
character in the buffer is not " ".

If the underscore, 00137B, is appended to
the user's buffer it will not be printed.

0 X X X 1 the entire buffer is transmitted as is,
1 X X X 0 no characters are appended to the user's
buffer.

X = don't care condition

Figure 2-4. Write Request Function Codes.

There are some areas of I/0 request handling that require special
mention:

Zero-length keyboard entries will not be ignored by the interface
driver. A carriage return without data 1is a zero length record.

Control function 30 configures the Multiplexer card to conduct
I1/0 transfers in a specified character format. The terminal must
be configured accordingly for successful I/0 processing to occur.

Standard I/O EXEC Calling Sequences

The following sections show the general formats used for making EXEC
calls from RTE Assembly, RTE FORTRAN IV and PASCAL/1000 programs. In
the following examples, the only names that must be used as given are

EXEC and ABREG. Other parameters used such as ICODE, ICNWD, and IPARM
are simply mnemonics used in this manual.

EXEC CALLS from Assembly Language

The Assembly language calling sequence for EXEC calls is as follows:

EXT EXEC Declare EXEC as an external
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code
DEF ICNWD Control word
DEF IPR1 Parameter 1, optional
DEF IPR2 Parameter 2, optional
RTN Return Point

A register contains I/0 status

B register contains the length of the
transmission log

ICODE DEC 1 Request code word (READ)
ICNWD OCT CNWD Control word. Control function

+ LU number assigned to the port.

IPR1 OCT prl Use depends on
IPR2 OCT pr2 type of call

The return point, 1labeled RTN, must follow the DEF of the last
parameter used. EXEC uses this address to calculate the number of
parameters passed for those calls that have optional parameters.

EXEC CALLS from FORTRAN

To call EXEC as a subroutine from RTE FORTRAN IV, use the following
calling sequence:

ICODE
ICNWD

3
600B + LU

CALL EXEC(ICODE,ICNWD,IPARM1,IPARM2)
CALL ABREG(IA,IB)

EXEC can also be called as a function from RTE FORTRAN IV, using the
following calling sequence:

DIMENSION IREG(2)
EQUIVALENCE (REG,IREG), (IA,IREG), (IB,IREG(2))

REG = EXEC(ICODE,ICNWD,IPARM1,IPARM2)

The two different methods of calling EXEC from FORTRAN illustrate the
two ways of obtaining the A- and B-Register values from the EXEC call.

In the following sections, the examples used to 1illustrate the calls

are written using the CALL EXEC(...) method, with an example showing
how to make the control request from the File Manager using the CN
command.

EXEC CALLS from Pascal

An EXEC call may be coded in PASCAL/1000 either as a procedure or as a
function. 1If it is coded as a function, the return value type must be
a one-word type to return the values of both the A- and B-Registers.

The PASCAL/1000 compiler does not treat an EXEC call in any special
manner. Therefore, it is possible to call EXEC directly if an
external declaration has been made with a set of formal parameters.

If the SHEAP 2$ compiler option is wused, then the HEAPPARMS option
must be OFF for EXEC external declarations with VAR parameters.

Example:

program muxex;

const { EXEC 3 , a control request }
lu control request code = 3 ; { is placed on LU 19. The 16 }
- - - { bit control word is stripped}
shift left six bits = 64 ; { of bits 15 -11, so that the }
o - { function code, bits 10-6, }
lu number = 19 ; { can be examined. 1In this }
- { case the function code 6 }
function code =6 ; { is placing a status request }
- { to LU 19 }
type

int = -32768..32767; { single-word integer type }
bit = 0..1; { single-bit type }
bit def = packed record { bit data type }
bit 15 : 0..1; { This allows the user to }
bit 14 : 0..1; { access each bit field }
bit 13 : 0..1; { individually. }

bit 12 : 0..1;

bit 11 : 0..1;

bit 10 : 0..1;

bit 9 : 0..1;

bit 8 : 0..1;

bit 7 : 0..1;

bit:6 : 0..1;

var

bit 5 : 0..1;
bit 4 : 0..1;
bit 3 : 0..1;
bit 2 : 0..1;
bit 1 : 0..1;
bit:O : 0.ol;

end;

word_def = record
CASE int of

1
2

end;

control word

_ int;
sub function

e 00 o0 e oo

word def;

(bits
{ word

word data type }

this double definition

allows the user to access }
the information bit by bit}

or as a word

: word def);

external;

}

}

(var a:word def; var b : word def); external;

a reg word def;
b reg word def;
Sl text;
procedure rte exec_call $alias 'EXEC'S
(request code : int;
var control request : int;
var subfunction
procedure get the a b_registers $alias 'ABREG'S
procedure initialize sub_function;
begin { initialize optional parameters }
sub_function.bits.bit_15 := 0;
sub_function.bits.bit 14 = 0;
sub function.bits.bit 13 := 0;
sub_function.bits.bit_12 := 0;
sub_function.bits.bit_11l := 0;
sub function.bits.bit_10 := 0;
sub_function.bits.bit 9 := 0;
sub_function.bits.bit_B 2= 0;
sub function.bits.bit 7 := 0;
sub function.bits.bit 6 := 0;
sub function.bits.bit 5 := 0;
sub function.bits.bit 4 := 0;
su&qunction.bits.bit:3 = 0;

sub_function.bits.bit 2 := 0;
sub_function.bits.bit 1 := 0;
sub_function.bits.bit™ 0 := 0;
end;
begin { beginning of main program }

initialize sub_function;

sub_function.bits.bit_l t= 1;
sub_function.bits.bit 3 := 1; { set the appropiate bits }
sub_function.bits.bit 5 := 1; { in the optional parm }
sub_function.bits.bit™7 := 1;

{ sub_function.bits.bit 9 := 1;

}

{ construct the control word }
control word := lu“number+(function“pode*shift_left_six_bits);
{ place the RTE EXEC call }

rte_exec_call (lu_control_request code,
control word, sub function);

get_the a b registers (a_reg,b req);

begin { examine the A-register for the status of this channel }

reset (S1,'1');

{
}
if a_reg.bits.bit 15 = 0
then
if a reg.bits.bit 14 = 0
then -
writeln (51, 'unit available for use')
else
writeln (S1,'unit disabled')
else
if a_reg.bits.bit 14 = 0
then
1 writeln (S1,'unit currently in operation!')
else

writeln (S1, 'unit waiting for DMA channel');

end;
end. { end of PASCAL example }

It may be necessary or desirable to use aliases for each EXEC service
used in a program for the following reasons:

- The name EXEC represents an entire class of services, A

program using EXEC calls will be more readable if a descriptive
PASCAL/1000 name is given to each service.

- Each EXEC service requires a different set of parameters. Some

services (e.g., EXEC 11) have optional parameters. Each
PASCAL/1000 routine must have a specific set of parameters.

EXEC CALL Parameters

Request code ICODE and control word ICNWD, in that order, are the
first two parameters of an EXEC call. Other parameters, when needed,
are described for each request in the following sections.

Control Requests to the MUX

Control requests have the following general format:

CALL EXEC(ICODE,ICNWD,IPARM)

Request code ICODE has a value of 3 for all control requests. Each
control request has a different function code specified in ICNWD, and
the value of the IPARM parameter depends on the function code. Table
2-1 contains a summary of the function codes and their meanings.

Equipment Table word five (EQT5) contains the status word. If a

control request is made to an unbuffered EQT, the A-register will
contain the device's status. If the EQT is buffered, the A-Register

2-13

is meaningless. 1In either case the B-Register is meaningless, except
for control function 6. This status request will return the length of
the type-ahead data in the B-register.

When issuing a control function command from the File Manager the
following format is used:

:CN,1lu,fnl[,pr]

lu = LU number
fn = control function code
pr = optional control parameter

For example, to place LU 19 in type-ahead mode with cancel on break,
the following control command is issued.

:CN,19,33B,23000B

Table 2-1. Control Function Codes

CODE DESCRIPTION PARAMETERS REQUIRED
6B DYNAMIC STATUS OF PORT NO
20B ENABLING SCHEDULING NO
21B DISABLE SCHEDULING NO
22B SET TIMEOUT YES
23B BUFFER FLUSH (OUTPUT) NO
24B BUFFER UNFLUSH NO
26B FLUSH INPUT BUFFER YES
27B SET PROGRAM ADDRESS YES
30B SET PORT'S ID YES
33B CONFIGURE DRIVER RESPONSES YES
37B SET READ TYPE YES
J

Device Initialization

Device initialization is accomplished by executing the following three
control functions to enable terminals. Normally this is done for each
terminal from your WELCOM file, but can be executed interactively.

- set port ID (required)
function 30

- configure driver responses (optional)
function 33

- enable scheduling (optional)
function 20

Set Port’s ID (Control Function 30)

Control function 30B establishes a 1logical connection between the
logical unit and the physical terminal connected to the interface.
This function is normally executed from the WELCOM file to initialize
and configure ports 0 through 7, but can be done interactively.
Function 30 must be issued before any other request is given to that

port. If other commands are sent prior to this function call they may
be ignored.

The value of IPARM for control function 30 is defined as follows:

.

Bits 15-14: # bits per char for trahsmission and reception.
This does not include parity.

0 = 5 bits/char 2 = 6 bits/char

1 = 7 bits/char 3 = 8 bits/char
Bit 13: Reserved for future use and should be set to zero.
Bit 12: Baud rate generator for this port:

0 = baud rate generator O

1 = baud rate generator 1

Bits 11-10:

Bits 9-8:

Bit 7:

Bits 6-3:

Bits 2-=0:

For example,

stop bits:
All data transfers to and from the interface card
require a delay between each character. For all
asynchronous transfers there is always at least
one stop bit.

0 = reserved 2 = 1-1/2 bits
1 =1 bit 3 = 2 bits
Parity select:

0 = none 2 = none

1 = odd 3 = even

1 = ENQ/ACK handshake enablea
0 = handshaking disabled

BAUD rate:

0 = no change 8 = 1800

1 =50 _9 = 2400

2 = 75 10 = 4800

3 =110 11 = 9600

4 = 134.,5 12 = 19200

5 = 150 13 = reserved
6 = 300 14 = reserved
7 = 1200 15 = reserved
NOTE

All ports on a Baud Rate Generator must be initialized to
the same baud rate. The user should be certain that all
ports have their baud rate set using this function,
regardless of the baud rate at which the terminal is

strapped. 1In addition, 19200 baud 1is not supported on 8
channels simultaneously since it would exceed the maximum

throughput of the card (78600 baud). A baud rate
parameter of zero will not change any of the port's

parameters (baud rate, parity, stop bits, etc.).

Port number of this terminal (0-7)

to set the port ID of an HP 2621 terminal on channel 0,

as LU 41, with a baud rate of 9600, ENQ/ACK handshaking enabled, and
no parity the following control request is issued:

CN,41,30B,142330B

Configure Driver Responses (Control Function 33)

Control function 33B uses the IPARM parameter to specify port
parameters, The value of IPARM will configure the driver without
sending the parameters to the card. The bit fields are defined as
follows (all fields default to the 01 state at system boot time):

Bits 15-14 Reserved for future use, should be set to zero.

Bits 13-12 These bits define the type-ahead feature of the MUX card.

00 = no change

01 = (default wvalue) no type-ahead. Striking any key
when there is not a read request pending will gain
the system's attention, if enabled.

10 = Type-ahead data can be received without a pending

read request. The information on the card is saved
until a read request is made. At this point the
data is retrieved. Only the break key will gain the

system's attention unless type-—-ahead with scheduling
is enabled.

Bits 11-10 These bits define the action to be taken when type-ahead

data becomes available. Type-ahead data is defined as
"available" when an End-of-Record is read by the card.
Valid terminators are defined by the previous read or
through control request 37.

00 = no change
01 = (default value) bit 2 is set in the EQT status word.
10 = Bit 2 is set and scheduling is attempted.

Bits 9-8 These bits define the action to be taken when the BREAK

key is struck.

00 = no change

01 = (default value) if scheduling has been enabled via
control 20, scheduling is attempted.

10 = cancels any type-—-ahead data and then attempts to

schedule the designated program.

Bits 7-6

Bits 5-4

Bits 3-0

For example,

These bits control the sending of read configuration
information to the card. Also see control 37B.

00

I

no change

01

This is a normal read operation. The driver
examines bits 10-6 of the control word in the user's
EXEC request which specifies a unique read request
type to the MUX card.

10 = This will not reconfigure the read operation. When

bit 7 1is set, the driver overlooks bits 10-6, and
only the device driver or a control 37 can modify
the read configuration type.

Reserved for future use, should be set to zero.

These bits define the device driver attached to this
port. Device driver number one is the default device
driver which passes all of the user's requests directly
to the interface driver. Other device drivers are
defined at system generation time. The device driver
address table SDVTB is established at generation time and
defines which device driver has what device driver number

assoclated with it. Exactly one device driver is
attached to each port at any time. If zero is entered no

change is made.

to configure the driver response for a full type-ahead

mode on the terminal/device associated with LU 41: LU 41 has device
driver #3 (DDV05) attached to port O.

ICODE = 3
ICNWD = 3300B+41
IPARM = 022400B

CALL EXEC(ICODE,ICNWD,IPARM)

OR

CN,41,33B8,022400B

NOTE: 1If any port is configured for a type-ahead mode, the break key
must be struck to schedule the LOGON prompt.

Enable Scheduling (Function 20)

Control function 20B enables the driver to schedule a program on
interrupt. The program to be scheduled 1is specified at generation or
the driver can interactively be informed of the address of the
program's ID segment through control function 27. Scheduling will
commence if the following conditions are met:

1. Scheduling is enabled

2. The program to be scheduled is dormant (state 0)

3. A read operation is not in progress.

4., The port is not in type-ahead mode and any key is hit

The port is in type-ahead mode and the break key is hit (see
control 33 regarding type-ahead and the break key).

The port is in the type-ahead mode with "scheduling on data
available" and a valid terminator, or count, is received.

To enable scheduling and schedule a program on an unsolicited
interrupt the following request is issued:

ICODE = 3
ICNWD = 2000B+LU
CALL EXEC(ICODE,ICNWD)

or to enable scheduling on an unsolicited interrupt at LU 41:

CN,41,20B

Other Interface Driver Control Requests

Disable Schedule (Function 21)

Control function 21 resets the flag set by control function 20 (enable

scheduling). When a terminal is disabled, striking a key on the
keyboard will not schedule the program specified at generation or by
control request 27. Once a port is disabled, programs will not be
scheduled. At boot-up time the default value of the schedule enable
flag is disabled.

For example, to disable LU 41:

ICODE = 3
ICNWD = 2100B + 41
CALL EXEC(ICODE,ICNWD)

OR
:CN,41,21B
To re-enable the terminal an "Enable Schedule" request must be issued:

:tCN,41,20B

Set Timeout (Function 22)

To alter the RTE device time-out value that was established at system
generation, use control function 22B. The time-out value can be set

in 10 millisecond intervals by the integer provided as an additional
parameter.

Time-out values can also be set by using the system TO command. The
RTE Programmer's Reference Manual describes how to use the TO command.

When using a control request or the File Manager CN command, be sure
to specify the channel or device by LU number; when you use the TO

command, specify the channel by the EQT number. The TO command checks
for a lower limit of 500 ms but control function 22 does not.

The timer specifies the number of tens of milliseconds to wait for

keyboard input. If this time is exceeded before a user keyboard input
completes, the driver sets bit 7 in the terminal's status byte and
returns to the caller with a zero length transmission log.

2-20

For example, to set the timeout of LU 41 to 25 seconds:

ICODE
ICNWD
ITO
REG

3

2200B + 41

100 * 25
EXEC(ICODE,ICNWD,ITO)

OR

CN,41,22B,2500

Buffer Flush (Function 23)

Issuing a control request to a specified LU with a function code of
23B will place that LU's port in the buffer flush condition. In this
condition, the driver ignores all write requests for the designated
port.

The buffer flush condition 1is removed automatically when a read
request is processed or the pending request queue on the EQT is empty.

The buffer flush condition may also be removed by issuing the "Buffer
Unflush" control request.

The following is an example of establishing a buffer flush condition
on LU 41:

ICODE 3
ICNWD 2300B + 41
REG = EXEC(ICODE,ICNWD)

OR

:CN,41,23B

Restore Output Processing (Function 24)

To remove a buffer flush condition, issue a control request with a
function code of 24B. The Restore Output Processing function restores
the ability to process write requests after a buffer flush condition.
If the port is not in the buffer flush state, this call is ignored.

The following is an example of restoring output processing to LU 41:

ICODE 3
ICNWD 2400B + 41
CALL EXEC(ICODE,ICNWD)

It 1e o

OR

:CN,41,24B

Flush Input Buffer (Function 26)

Control function 26B instructs the interface card to clear any data
from the channel's input buffer which might have accumulated in
type-ahead mode. The value of IPARM indicates whether only the active
buffer (IPARM=0) or all of that port's receiving buffers (IPARM=1)
should be cleared. Note that this is not the same as Buffer Flush
control function 23B. Control 26B ensures the wuser that the
information requested is what is obtained, eliminating the possibility
of processing any outstanding data previously entered. To flush only
this channel's active buffer use IPARM=0. Setting IPARM=1 will flush
the two 254 byte input buffers on this port.

For example, to flush the two input buffers on LU 41:

ICODE = 3
ICNWD = 2600B+41
IPARM = 1

CALL EXEC(ICODE,ICNWD,IPARM)

OR

CN,41,26B,1

Set Program Address (Function 27)

Control function 27B saves the value of IPARM as the address of the ID
segment of a program to be scheduled on an unsolicited interrupt. If

the value of IPARM is zero or negative, program scheduling is disabled
regardless of function 20 (octal). This call will override for this

2-22

particular port the value set at system generation time. This control
function is intended for programmatic rather than interactive use. A
program's ID segment address can be found using the system utility
subroutine IDGET. Care should be exercised that the address supplied
is correct and points to an ID segment of a permanently loaded
program. For example, if IADDR contains the address of a program's ID
segment, this program will be scheduled on an unsolicited interrupt.

ICODE 3
ICNWD 2700B+LU
CALL EXEC(ICODE,ICNWD,IADDR)

OR

CN,LU,27B,IADDR

Set Read Type (Function 37)

Control function 37B sends configuration information to the interface
card for use in read (EXEC 1) operations. Under normal operation,
this information is provided by the 1interface driver as directed by
the function field bits 10-6 of the EXEC request. This call provides
the user with a mechanism to override the interface driver defined
values or to configure a read operation on the card without executing
a read request. This is useful in type-ahead initialization. If bit
7 in the driver configuration word (control 33B) is not set, the next

read operation will reset the read type. See Table 2-2 for a
description of the SET READ TYPE parameter.

For example, to establish a read type with a buffer transfer on a
carriage return for LU 41:

ICODE 3

ICNWD 3700B+41

ITYPE = 100000B

CALL EXEC(ICODE,ICNWD,ITYPE)

OR

CN,41,37B,100000B

Table 2-2. Set Read Type (Function 37B) Parameter Description.

Bit # Read Type
15 buffer transfer on a carriage
return <CR>
14 buffer transfer on a record separator <RS>
13 buffer transfer on control-D
12 buffer transfer on DC2 \

10-11 reserved for future use,
should be set to zero

9 enables input data editing
(backspace and delete)
8 enables input data echoing
0-7 reserved for future use,

should be set to zero

Dynamic Status (Function 6)

All requests to the MUX (EXEC 1, 2 and 3 calls) clear bits 3 through 7
of the port's status. Control function 6B can be used to verify if
program scheduling is enabled or type-ahead data is available. If
program scheduling 1is enabled bit 1 would be set and if type-ahead
data is available, bit 2 would be set in the A-register. Bits 0, 3-7
would all be zero. The B-register can be examined to determine the
length of the available type-ahead data.

An example of a dynamic status request to LU 42 is coded as follows:

ICODE = 3

ICNWD = 600B+42

CALL EXEC(ICODE,ICNWD)
CALL ABREG (IA,IB)

The dynamic status request is a call to the driver; therefore, it will
wait until any outstanding requests to that EQT have completed.

Chapter 3
Using the MUX

This chapter deals with using the features of the - HP 12792A
Multiplexer. Type-ahead is explained, and the most commonly used
type-ahead modes are discussed. Error handling and failure analysis
in user-written programs are also addressed.

Normal Mode

In the normal, non-type-ahead mode of operation, the subsystem will
appear identical to other non-multiplexed RTE terminal drivers. When
a port is 1inactive, the driver will 1leave an "interrupt on any
character" read pending on the card so as to be informed when a key 1is

struck. The appropriate action (system attention, program schedule,
etc.) will then be taken.

Type-Ahead

Type-ahead is the ability of a system to accept data from the user's

terminal or device before it is requested by the CPU. The MUX card is
a buffered device and for each channel it is capable of holding up to
two, 254 byte buffers of text in on-board memory.

An advantage of type-ahead is that applications programs can make the
system appear more responsive to the user, increasing TOTAL (human
included) throughput. This is done by having the application program
prompt the user for his/her next response while processing the
previous one. By the time the wuser has finished typing, the system
will have processed the last request and can begin on the next. As

long as the processing takes less time than the typing, the user
perceives instant response time.

While in type-ahead mode, the driver leaves a read request pending on
the CARD (not the EQT) at all times. This read allows the user to
enter data into the card even though the SYSTEM does not have a read
pending. Upon receiving a record the card will interrupt the CPU,
telling it that a buffer of data is available. If no request has been

3-1

posted to that port, a flag is set in the status word and the driver
returns to the system and waits. When a request is issued, the driver
reads the data from the card and completes the user request.

Since keyboard characters are buffered on the card, system attention
in type-ahead mode cannot be gained by striking a terminal key. The

BREAK key, however, is not buffered and can be used to obtain system
attention.

Since multi-line type-ahead is possible, two different type-ahead
modes are available. Full type-ahead, as described above, would cause

successive read requests to fetch successive 1lines of text from the
multiplexer card. This mode is useful for such tasks as text editing

and using DBUGR. Typing can be done as far ahead of the data
pProcessing as allowed by available multiplexer buffer memory, up to
and not exceeding two records.

In situations where system response could radically alter a user's
next command (FMGR error messages, for example) a full multi-line

type-ahead may cause problems. The following will illustrate this
problem:

User typesS... SsT,FILE,S8
while tape is moving, the user types:
PU,FILE
the tape runs out; the system downs the device

The user hits the BREAK key, the system issues a prompt and a
read, the system rather than FMGR reads the PU command from card
buffer, and tries to execute the FMGR command.

In the above example, the user merely gets back an "OP CODE ERR" from
the system the first time the request for system attention 1is made.

It is possible, however, for the commands stored on the card to have a
disastrous effect on the system.

The solution to the above problem is to configure the driver to cancel
all card data wupon receiving a BREAK interrupt (see control function
33B). This preserves the multi-line type-ahead feature, and reduces
the chance of data being read by the wrong process.

If an analogous situation could occur for user written programs,

another possible solution is for the user to issue a Flush Card Buffer
request (control 26B,1) prior to any sensitive read request., This
will clear the extra commands before they can be misread.

Note that type-ahead is also useful in non-terminal device
communication. The buffering on the card eliminates the need for

3-2

stacking two or three class read requests on an LU to prevent data

loss, thus reducing program size and complexity and the need for lots
of SAM. Type-ahead scheduling can be used to invoke a data processing
program.

When data is available on the multiplexer card and there is no pending
request to accept it, a bit is set in the status word and program
scheduling will be attempted. Should the user program decide it

doesn't want the data, it can issue an input flush (control 26B) to
remove the data.

Program Scheduling

Program scheduling is a mechanism whereby certain external events will
cause the interface driver to schedule a program in the system. This

program is given the address of EQT word 4 which provides adequate
information to determine at which port the event occurred.

Program scheduling is an optional feature which must be enabled to
operate. A set of control requests (Control 20B, 21B) are used to
enable and disable this feature. An additional request (Control 27B)
is provided to allow programmatic setting of which program is to be

scheduled, overriding the program designated when the system was
generated.

There are several events which can cause a program to be scheduled.
If the port has been set to "normal" mode (see Control 33B, bits 13,
12) striking any character key or the BREAK key on a terminal keyboard
(or the receipt of a character or BREAK from a device) will cause the
character to be ignored and the designated program to be scheduled.

A port which has been configured in type-ahead mode will require the
receipt of a BREAK to schedule the program, because any characters
received will be saved in the port's data buffers. The port can also
be configured to schedule the program on receipt of a buffer of data

from the device. This type-ahead with scheduling mode will still
recognize the BREAK key.

A program scheduled by one of the above events 1is run with the
machine's B-register pointing to word 4 of the Equipment Table (EQT)
entry corresponding to the port wupon which the event took place.
Library functions EQLU or TRMLU can be used by the program to recover
the Logical Unit (LU) of that port. This LU can be used later to make
I1/0, Control, and status calls to that port. The library subroutine
RMPAR can be used to recover EQT words 4 through 8. Note that both
these routines require that the B-register set by the driver remain
intact.

The programs PRMPT and RSPNS$ are used for terminal break-mode command
processing, and are supplied with most RTE systems. These programs
are an example of the use of program scheduling. 1In operation, PRMPT
is the program which gets scheduled on interrupt from the terminal.
When invoked it finds the LU of the interrupting port and writes the
break-mode prompt to that LU. It then posts a class read against that
port and schedules the program R$PNS. RSPNS$, waiting on a class GET,
receives a command from the user and executes it, returning to suspend
on the GET call for the next command.

User supplied programs may be written to process other schedule-driven
applications. These programs may either be included as the program to

be scheduled when the system is generated, or assigned on-line by a
control request.

Common Type-Ahead Modes

Control Function 33 allows the user to control the driver responses by
manipulating four fields, specifying sixteen different type-ahead
combinations. However, the four following combinations are sufficient
for most user applications. If a specific application is desired, the

user can design a mode by manipulating the control word's bit fields
using control function 33.

The common operating modes are:
Normal Non Type-Ahead Mode
Full Type-Ahead Mode
Type-Ahead with Flush on Break Mode

Type-Ahead with Scheduling Mode

Each mode is summarized below along with the run string necessary to

configure the user's terminal. Control requests and bit manipulation
are discussed in the Interface Driver section.

No Type-Ahead Mode
CN,0G,33B,012400B
Control Parameters

Control Request

User's Terminal

This will return the port to a standard RTE mode. This mode is
commonly used in the WELCOM file so that the individual may later

configure the port to a specific application. If a key is struck
while executing in this mode and no request is pending on the
terminal, the designated program will be scheduled.

v

Full Type-Ahead Mode

CN,0G,33B,022400B

Control Parameters

Control Request

User's Terminal

As discussed earlier, type-ahead is a mode of operation enabling the
interface to accept strings of data from terminal devices even though
the system did not request any information. This information is
stored in one of the two 254 byte receiving buffers for that port and
remains buffered until a program reads the contents of the buffer.
While in type-ahead the driver leaves a read pending on the interface,
looking for a valid terminator. The terminator merely signals the
interface driver that a complete record has been encountered, and the
interface card will interrupt the CPU.

In this mode, the only way to schedule the designated program 1is to

strike the break key. Data resident on the card, if any, is not
disturbed.

Type-Ahead with Scheduling Mode

:CN,0G,33B,024400B

Control Parameters
Control Request

User's Terminal

This mode configures the interface driver responses to utilize the
type-ahead mode. Scheduling will occur when an end-of-record is
encountered. Depressing the Break Key will always schedule the
designated program. Program specification is accomplished with

control function 27 or, more commonly, it is specified at generation
time.

4

Type-Ahead with Flush on Break Mode
dvgﬂﬁ%
CN,OG,33B,023(OOOB

Control Parameters

Control Request

User's Terminal

In this mode when the break key is struck, the interface driver will
flush the contents of the input buffers and then the program
designated by control function 27 is scheduled. This mode of
operation 1is the preferred type-ahead mode because it reduces the
possibility of having data misread. The user has the option of
"erasing" the contents of the buffers Jjust entered by hitting the
break key or 1leaving the buffers alone allowing them to execute when
the next read request reads them.

NOTE: Flush on break may be used 1in conjunction with either full
type-ahead or type-ahead with scheduling.

Error Recovery

Dynamic status checking and I/0 status checking allow the user to
check on the status of a Multiplexer port for normal processing and

error checking. 1I/O status can provide the wuser with two of the
device status words (EQTS and EQT4) and an LU status word. Dynamic
status checking provides the user with the port's status and the

length of any type—-ahead data 1if present. Control function 6 is
described in the User Interface chapter.

All errors associated with the Mux will appear as:
- time outs

- parity error or overflow

Parity and overflow errors are indistinguishable. As soon as an error
is encountered, the user's buffer is flushed.

/O Status

The I/0 status request, using a request code (ICODE) of 13, calls the
RTE operating system to provide information contained in system

tables. This EXEC call is not a <call to the interface driver
therefore bits 3-7 of ISTATI are not cleared. The LU number of the
port must be specified in the control word (ICNWD). One additional
parameter is required and two more are optional. One, two, or three
words are returned to the user's program in the parameters passed.
Table 3-1 lists the I/0O status request returns,

A sample calling sequence for LU 41 is shown below:

ICODE 13
ICNWD 41
CALL EXEC(ICODE,ICNWD,ISTAl,ISTA2,ISTA3)

When the call completes, the variables ISTAl, ISTA2, and ISTA3 contain
the I/0 status as shown in Table 3-1., ISTAl is the status word (EQT5)
and ISTA2 is also a status word (EQT4).

Table 3-1. 1I/0 Status-Request Returns

Word |Bits Description
ISTAl | 15-14 I/0 controller availability indicator:
00 = Available for use
01 = EQT disabled (down)
10 = Device busy
13-8 Equipment Type code
7-0 Status: 1 =

7 Last request timed out

6 Break Key hit

5 Control D entered on the last request (EOT)

4 Reserved for future use, always zero

3 Parity error or overflow detected on the last
request .

2 Type-ahead data available, control function 6B
will return the length of type-ahead data in
the B-Register

1 Program schedule enabled

0 Reserved for future use, always zero

ISTA2 15 Reserved for future use, always zero
"14 1 = Automatic output buffering enabled
13 1 = Driver to process power fail (always 1)
12 1l = Driver to process time-out (always 1)
11 System communication flag
10-6 Last subchannel addressed
5-0 Select code of the Multiplexer Card
ISTA3 Logical Unit Status:
15 1l = LU down, 0 = LU up
14-5 Reserved for future use, should always be zero
4-0 EQT subchannel associated with the LU number

Failure Analysis

For failure analysis it is important to note that all errors appear as
time outs, parity or overflow errors. Current HP supplied device
drivers will not produce the following error message. User written
device drivers may use the EXIT command described in Chapter 4 to have
the following error message displayed at the system console.

I/0 XX L #x E #Y S #z

XX = NR
TO
PE
etc., as specified by device driver

In the above example x, y, and 2z are the Logical Unit number, EQT
number, and subchannel number respectively. If a device is down, any
1/0 control request will wait for the operator to "UP" the EQT number.

For time-outs it may be that a simple time-out has occurred,
indicating the operator was too slow in responding to a read request.
In this case, retry the request.

If the device is not downed, control will return to the user program
on error and the user program should be structured to check for errors
and process accordingly. The "I/O Status" request can be used to
obtain the status to test for various conditions.

Read Errors

If the last command issued was a read, a parity error or data overrun
may have occurred. Data Overrun indicates the Multiplexer maximum
throughput rate has been exceeded and data on the LU with the overflow
bit set was lost. These errors are only detectable on a read
operation.

Chapter 4
Device Driver Writing

This chapter explains the writing and use of device drivers that can
be called by the 12792A Multiplexer interface driver, DVMOO. The

basic philosophy of using device drivers is explained to give the user
a better understanding of the steps involved.

Device Driver/Interface Driver Concept

An interface driver 1is a standard RTE driver that converts user EXEC
requests for input, output, and control into a sequence of assembly
level instructions which control and pass data to an interface card
through the I/O backplane of an HP-1000 computer. The interface
driver need know nothing about the device that is the eventual source
or destination for the data; the interface driver only communicates
with the interface. The device driver modifies user requests to make
them compatible with the device. The device driver is a subroutine

that is called by the interface driver to examine and modify user
requests.

Reasons for Device Driver/Interface Driver Use

The device driver/interface driver concept offers several advantages
over the conventional monolithic driver. The use of device drivers
allows flexibility for system designers and users. Many different
types of equipment may be controlled by a single type of interface as
long as they are electrically compatible and use the same basic line
protocol. For example, any RS-232-C (electrical specification),
asynchronous (basic 1line protocol) device may be controlled by the
12792A interface. 1Individual device drivers for each of these devices
may be easily written without knowledge of the I/O card/backplane
interface. New devices may be added to a system without undertaking
the monumental task of writing an entirely new driver. The system
programmer need only write a subroutine to add the required character
sequences to the user data to control the new device.

Differences between devices may be made transparent to user programs.
Applications programmers need only concern themselves with reading or
writing data to a "standard" device while the device driver takes care

of the control needed for the "exotic" device the program is actually
communicating with.

Some devices may be customized by using different device drivers for
different tasks. Printing terminals may be made to look 1like line
printers to the user program by writing a device driver to translate

column one carriage control into the proper escape sequences for the
terminal. A different device driver may then be used when an

interactive terminal is desired. These various device drivers may be

dynamically switched in and out by the user program or by the system
manager when required.

A single driver written to control a large number of different devices
through a common type of interface would be very large. Requiring the
use of this driver would penalize users who only need a few of these

devices. By using device drivers a system manager need only include
the driver code needed for the devices on the system, thus saving

space for other uses.

Interface Tasks

To write efficient device drivers it helps to have an understanding of
the responsibilities of the other components in the 1I/0 interfacing
subsystem. In the HP 12792A Multiplexer Subsystem the HP 12792A
interface card is primarily responsible for sending and receiving
characters on the RS-232-C line and for handling line protocol. When
enabled to do so, the interface card will handle the ENQ/ACK line
protocol to prevent terminal buffer over-runs. The interface card
will transmit and receive the characters to and from the terminal at
the baud rate for which it has been set by the driver. The interface
card will automatically pack the eight bit characters into sixteen bit
data words for efficient DMA transfer to the computer, or unpack the
sixteen bit words into eight bit bytes for the terminal. The
interface card will treat the parity bit as described in the Interface
Support statement in the Multiplexer Configuration Guide, and will
notify the driver when incorrect parity has been received.

Interface Driver Tasks

Interface Control

The interface driver (DVM0OO) is responsible for <controlling the
interface card via assembly level I/0O instructions to the computer I/O
backplane. The interface driver interprets user requests to properly
initialize the interface card for baud rate, parity, character length,
number of stop bits, etc. The interface driver initializes and starts
DMA transfers between the computer memory and the interface card.

Operating System Interface

The interface driver receives EXEC level user requests from the RTE
operating system and passes them to the device driver for further
processing. The interface driver processes requests from the device
driver, returning to the device driver on each request completion.
The interface driver requests a DMA channel from the RTE operating
system when a data transfer 1is required either to send data to the
card or receive data from the card. When the device driver informs
the interface driver that the user request is complete, the interface
driver returns to RTE with the correct device status and transmission
log or error code in the A and B registers.

Device Driver Tasks

The device driver is entered on each new user request and on
completion of each device driver request. The device driver may do
further checking on request legality. If the device requires a
special sequence of characters prior to receiving or sending the user
data, the device driver should format the characters into a buffer and
send them to the device via a device driver request to the interface
driver. When the user request is to be processed the device driver
tells the interface driver to start the request currently in the EQT.
When the entire request has completed, the device driver places the
correct status in the EQT and the transmission log in the B register,
and then informs the interface driver that the request is complete.

HP Implementations of Device Drivers

There are two examples of device driver applications that
Hewlett-Packard has implemented as part of the HP 12792A Multiplexer
subsystem.

Lineprinter Device Driver DDV12

The device driver DDV12 1is used to make HP 2631/2635/7310 printers
look like typical 1line printers to user programs. These devices use
escape sequences and control characters for carriage control while
standard line printers interpret the first character of each line as a
carriage control character. The DDV12 device driver examines the
user's first character and sends the proper control character sequence
to the printer. The first character is then stripped from the data
and the data is sent to the printer. The device driver also changes
the driver type in the EQT to type 12 for lineprinters.

Block Mode Terminal Device Driver DDV05

The device driver DDV0O5 allows utilization of the block mode read
capabilities of an HP 264X or 262X terminal. The first time a read
request is made to the terminal its status is read to determine
whether it is in block or character mode. When a user read request is
made the device driver first issues a write to the interface driver to
send a DCl to the terminal. If the terminal is 1in block mode the
device driver issues a read to the interface driver and examines the
first returned character. If the character is a DC2 the device driver
knows that the terminal is in block mode and trying to send data to
the interface. A read is then issued for the user buffer length with
echo and character editing turned off. If the returned character is
not a DC2, the user program had probably issued a program enabled
block read (escape lower case d) and the program's data is in the
buffer just read.

If the terminal 1is in character mode, the user's request is executed
as-is after the DC1l is sent (to enable the softkeys).

Device Driver Interface

An uncomplicated device driver/interface driver interface is provided
making it easy for systems programmers to write their own device
drivers. All that is required beyond the information given 1in this
chapter is a basic familiarity with the flow of I/O requests in RTE

and a thorough knowledge of the particular device that is being
communicated with.

Device Drivers for HP 12792A Multiplexer

The following points should be kept in mind when writing device
drivers for the HP 12792A Multiplexer subsystem. First, all read,
write, and control requests are passed to the device driver by the
interface driver for modification before they are sent to the
interface card. The device driver only has to make read, write, or
control requests to the interface driver; the device driver does not
issue 1I/0 instructions to the interface card. The device driver
requests are at the EXEC level, that 1is, a request word (control word
as defined for EQT word 6) buffer address and length, or optional
control request parameters are passed to the interface driver. A
device driver will typically make several of these requests for each
user EXEC request. After each device driver request completes the
interface driver will return to the device driver for the next
request. It is up to the device driver to tell the interface driver
when the original user request is complete. The device driver and
interface driver pass parameters back and forth between each other

using the A and B registers and the portion of the EQT extent defined
as the Device Driver EQT Extent.

Restrictions and Requirements

When a device driver issues read or write requests the data buffer
must be either within the device driver or in the same map as the user
request buffer, If the user request 1is unbuffered the user request
buffer is in the user map. If the user request is buffered, class

1/0, REIO (re-entrant I/0), or $XSIO (system I/0) the wuser request
buffer is in the system map.

All requests are passed to the device driver prior to checking by the
interface driver. Device drivers should check only for control
requests that are defined for the device driver. Any unrecognized

control requests should be passed on to the interface driver with a
command to execute the request.

System Abort Requests

A system abort request may be issued to the interface driver at any
time 1if the user program currently doing I/0 is aborted for any
reason. The device driver may be entered with the system abort either
as a new user request or as a continuation request. If the device
driver is entered as a new user request with the system abort request,
the device driver should treat it as any unknown control request and
pass it back to the interface driver.

However, if the device driver is entered as a continuation with the
system abort two problems may occur. If the device driver does not
check for the system abort on a continuation entry and subsequently
issues a read or write request to the user buffer, the buffer area may
have been re-allocated for other wuses. Program corruption and system
or subsystem crashes may occur. It 1is also possible to 1leave the
device in an unknown state if an expected user buffer 1is not written
to the device. If this is a problem with a device, the device driver

should check for system abort requests and reset the device to a known
state.

In all cases the device driver should check for a system abort request
prior to issuing an I/O request to the user buffer area.

To test for a device driver system abort request check the contents of
EQT word 6 or word 2 of the extent for a 100003 octal ($XSIO control
zero request). The above tests are necessary if the device driver
issues it's own read or write to or from the user buffer area on a
continuation entry. 1If the device driver is simply trying to execute
the user's original request by 1leaving it in the device driver EQT
extent word 2, the test for system abort request is not necessary. 1In
this case the contents of device driver EQT extent word 2 are changed
to a control zero at the same time as EQT word 6.

Interface Definitions

Entry to the Device Driver

On entry to the device driver the following parameter locations are
defined:

A register, Bit 15: 1
0

initial entry on a new user request
continuation entry, signifying a previous
device driver request is complete

Bits 14-0: address of device driver EQT extent
(defined below)

B register: Previous device driver request transmission log,
if any

The device driver EQT extent words 2~4 are set to the current user
request definition. These three words are copied from EQT words
6-8 on each (new or continuation) entry to the device driver. See
the expanded definitions of the EQT words below.

Base page locations 1660 through 1672 are the addresses of the
current EQT words 1 though 11 and base page locations 1771 through
1774 are the addresses of EQT words 12 through 15.

On each entry EQT words 4-10 and 14 are defined per the RTE
definitions (expanded below). EQT words 9 and 10 (READ/WRITE
optional parameters) are defined per RTE on new request entries
only (A register bit 15 = 1). However, they are not defined on
the subsequent continuation entries. If their contents are
required by the device driver on subsequent entries, they should
be saved in the device driver EQT extent on the new request entry.

Return to the Interface Driver

On return to the interface driver the device driver must insure that
the proper parameters are passed back to the interface driver. The
device driver must differentiate between new user request entries and
continuation entries as the parameters returned to the interface
driver are different for each case. Also, the device driver must tell
the interface driver when the original user request is complete and

set up the correct transmission log and status indications for the
calling program.

On return to the interface driver the following parameter locations
are defined:

A register, Bits 15-3: Function modifier
Bits 2-0: Exit command
B register: Request timer, or user transmission log
EQT 5, Bits 7-0: Status for user
Device driver EQT extent,

word 1: Physical record length in characters for read
requests if different from user buffer length

word 2: Request word as defined for EQT word 6 except
that bits 15-11 are not defined and should be
zZero

word 3: Request buffer address

word 4: Request buffer length (positive number of words

or negative number of characters)

Return to Interface Driver — Device Driver EQT Extent

The physical record 1length (device driver EQT extent word 1) is used
to prepare the 12792A interface card for binary data read requests
where the device does not terminate the record with a special
character such as carriage return. The physical record length must be
a positive number of characters. If this parameter 1is not set it
defaults to the user buffer length.

Words 2-4 of the device driver EQT extent may be changed by the device
driver to cause the interface driver to execute some other request, or
they may remain unmodified causing the interface driver to perform the
initial user request. Remember that on each entry words 2-4 of the
device driver EQT extent are restored to the original user request
copied from EQT words 6-8.

Return to Interface Driver — A-Register
Exit Command

on return to the interface driver from the device driver the A
register bits 2-0 must Dbe set up with the exit command. The exit
command definition is similar to the RTE definition for the A register
for a standard driver on return to RTE. The exit command definition
is as follows:

Exit command if entered-with a new user request
(A register bit 15 = 1 on entry)

0

start request in device driver extent words 2-4;

B register = time out value (-10's ms)

user I/0 request is illegal, give IO07 error

user control request is illegal, ignore it

I/0 device not ready, down it and print IONR message
user request completed (immediate completion);

B register = transmission log

start request (same as 0)

S W N
wonun

5

Exit command if entered after completion of a device driver
request (A register bit 15 = 0 on entry)

0 = user request is complete; B register = transmission log
1 = I/0 device not ready, down it and give IONR message
2 = end of transmission (EOT) reached, down device and
give IOET message
3 = parity error, down device and give IOPE message
4 = device time out, down device and give IOTO message
5 = new request in device driver EQT extent words 2-4;

B register = time out value (-10's ms)

Function Modifier

Error type exit commands (new request 1, 2, and 3 or continuation
entry 1, 2, 3, and 4) are simply passed to RTE in the A register by
the interface driver. Action taken (program abort, print error
message, etc.) is determined by RTE the same as for any standard
driver.

For exit commands that initiate another device driver request (new
request exit command = 0 or 5, continuation entry exit command = 5) a
function modifier may be placed in the A register bits 15-3 to
override and expand the normal request function code contained in the
device driver EQT extent word 2, bits 10-6. Function modifiers are
defined for read and write operations. Write function modifiers
contain read modification fields and can be used to define the
function modification for the next read or series of read operations.
The write function modifier bit fields are defined as follows:

A register bits 15-3

Bit 15: end transfer on carriage return (CR)
14: end transfer on record separator (RS)

13: end transfer on end of tape (EOT, control D)
12: end transfer on (DC2)

11: end transfer on specified character count

10: enable end on character specified in bits 15-12

9: enable character editing (backspace, delete, etc)

8: echo received characters

7: not defined, should be 0

6: not defined, should be 0

5: disable ENQ/ACK handshake this transfer only

4: add CR/LF to buffer if last character is not an
underline (137 octal)

3: use write overrides in bits 7-4, if bit 3 is o0,

bits 7-4 should be 0

If bits 7-3 are zero (do not override) the write is configured by bits
10-6 in the device driver EQT extent word 2. These bits are defined

as bits 10-6 in EQT word 6 and the ICNWD description in the EXEC write
section of this manual.

The read related fields in the write function modifier (bits 15-8)
will configure the card for any subsequent read operations. This
eliminates the "window" between writing and reading so that if the
write triggers a response from the device no data will be lost.

If enable end on character (bit 10) is set, one or more of bits 15-12
must be set. Reads will complete on reception of any one of the
specified characters. 1If bit 10 is clear, bits 15-12 should be zero.
If end on count (bit 11) is set, the physical record length in device
driver EQT extent word 1 should be set to a positive number of
characters. If bit 11 is set, the end on character bits 15-12 and 10
are ignored. Only one of bits 10,11 should be set.

For read functions the modifier bit fields are defined as follows:
A register bits 15-8,3

Bit 15: end transfer on carriage return (CR)
14: end transfer on record separator (RS)
13: end transfer on end of tape (EOT, control D)
12: end transfer on (DC2)
11: end transfer on specified character count
10: enable end on character specified in bits 15-12
9: enable character editing (backspace, delete, etc)
echo received characters
reserved for future use, should be zero

8
7-4
3 use current card configuration

If enable end on character (bit 10) is set, one or more of bits 15-12
must be set. Reads will complete on reception of any one of the
specified characters. If bit 10 is clear, bits 15-12 should be zero.
1f end on count (bit 11) is set, the physical record length in device
driver EQT extent word 1 should be set to a positive number of
characters.

If bits 15-3 are all zero the read configuration will be determined
from the control word bits (10-6) in the device driver EQT extent word
9. These bits are defined as in EQT word 6 and the CONWD described in
the EXEC read section of this manual. - Bit 9 of the EXEC request (EQT
6) is always used and must be valid. 1If bit 3 is set bits 15-4 should
be zero.

Return to Interface Driver — B-Register

On return to the interface driver the device driver should set the B
register to be either the transmission log, or the device time out
value. If the initial user request is complete, the B register should
contain the transmission 1log to be returned to the user program.
Transmission logs for each device driver operation are returned to the
device driver in the B register by the interface driver on each
continuation entry. The device driver may save one or more of these
to return, or the device driver may return any meaningful number.
Convention requires that the transmission log be a positive number,
either a number of words if the initial user request specified words
(EQT word 8 is positive) or a number of characters if characters were
initially specified (EQT word 8 is negative).

If a new device driver request is to be initiated (exit command = 5 on
continuation, or 5 or 0 on 1initial entry) the B register should
contain the request time out value. This value will be a negative
number of time base ticks (10's of milliseconds). If the device
driver needs to use the system defined time out for the device, EQT
word 14 should be copied into the B register.

Return to Interface Driver — EQT Entries

As a general rule it is not advisable for the device driver to modify
the EQT, except for the area defined as the device driver EQT extent.
However some EQT areas are routinely modified by device drivers. 1In
EQT word 5 the equipment type (bits 13-8) should be modified on the
first entry to a device driver to reflect the device type the device
driver 1is emulating. On each completion exit (new request exit
command = 4, or continuation entry exit command = 0) the status field
in EQT word 5 bits 7-0 should be updated to return status to the user.
This field should be the same as is defined for the device type the
device driver is emulating.

After the wuser's request has been processed, if further interaction
with the interface driver is required EQT words 7 and 8 are available
as convenient temporary storage areas. It is common to Store the
transmission log 1in EQT word 8 in these cases. Words 9 and 10 are
used by the interface driver for temporary storage and should not be
modified by the device driver.

Selected EQT Definitions and Uses

EQT Word 4 -- Subchannel

EQT word 4 bits 10-6 contain the currently addressed subchannel. This
information is required by device drivers that perform different tasks
for different subchannels.

EQT Word 5 -- Equipment Type Code and Status

EQT word 5 bits 13-8 contain the equipment type code as specified by
the driver name at generation. The 12792A Multiplexer interface
driver is DVM0OO so the type code is 00. Device drivers that emulate
devices should use a type code that corresponds to the device they are
emulating. On first entry the device driver should change the type
code in the EQT table. The following 1is a list of type codes and
devices they represent:

00 to 07
00
01
02
05

07
10 to 17
10
11
12
13
15
20 to 35
23
24
30
31
32
33
36
37
47

EQT word
Multiplexer

5

W

terminals or paper tape devices

teleprinter or keyboard control device
photoreader

paper tape punch

intelligent terminal devices generally having block
mode capability (HP 264x and 262x terminals)
multipoint devices

other unit record devices

plotters (Calcomp or HP 7210)

card readers

line printers

TV monitor

mark sense card readers

mag tape or mass storage devices

9 track mag tape

7 track mag tape

fixed head disc

7900 moving head disc

7905/6/20/25 moving head disc

flexible disc drives

writable control store (microcode execution space)
HPIB Interface

Multidrop FDL interface

bits 7-0 contain the device status of the 12792A
on each entry to the device driver. This status |is

defined as follows:

Bit 7

6

w >

0

Time out, if the driver was entered on a time out
this bit will be set on entry to the device driver.
Break, if the 12792A Multiplexer card received a break
character from the terminal during the last operation
this bit will be set.

EOT, The End Of Tape bit will be set if an EOT

(004 octal) was received during the last read.

Bit 4 is not currently used

PE/OV, the Parity Error/Overflow bit will be set

if either one of these conditions occurred on the
last read.

Type-ahead data, this bit will be set if type-ahead
data is available on the card.

Schedule, this bit indicates that program scheduling
on unsolicited interrupt has been enabled (interface
driver control function 20))

Bit 0 is not currently used

The above definitions apply whenever the device driver is entered from
the interface driver. The device driver is free to change any of the
status bits if emulation of other driver types is desired. On a user
request complete exit from the device driver the status bits (EQT word
5) will be passed to the user program in the A register.

4-13

EQT word 6 and device driver EQT extent word 2 contain the current
request word which is defined as follows:

Bits 15-14 Request type:
00 = standard user request
01 = automatic buffered user request (request
buffer is in system available memory)
10 = a system request ($XSIO)
11 = user Class I/0 request (request buffer is

in system available memory)

Bits 15-14 are only defined in EQT word 6. They are undefined

in the device driver EQT extent word 2 and should be set to
zero if the device driver modifies this word.

Bit 12 Z-bit indicates a second buffer is available
’ on a read or write. If set, EQT word 9 contains

the address of the buffer and EQT word 10
contains the length. If the z-bit is clear,

EQT words 9 and 10 contain 1 word optional
parameters.

In the 12792A Multiplexer subsystem, the interface driver

does not use the double buffering feature, it is therefore
available to the device driver for use.

Bits 10-6 Subfunction, as defined in the EXEC request
section of this manual for the EXEC control
word.

Bits 1-0 Function:

01 read request

10 write request
11 = control request
Bits 13,11 These bits are undefined and should be set to
and zero if the device driver modifies the request
5-2 in the device driver EQT extent word 2.

EQT word 7 and device driver EQT extent word 3 is the user buffer
address. The interface/device driver is always entered in the same

map as the user buffer, so the user buffer address is in the current
map.

EQT word 8 and device driver EQT extent word 4 1is the user buffer

length. The length is either a positive number of words, or a
negative number of characters.

EQT word 9 is an optional parameter. If the Z-bit (EQT word 6 bit 12)
is set EQT word 9 is the address of a secondary user buffer which is
in the same map as the primary user buffer. If the Z-bit is clear EQT

word 9 contains the optional parameter or zero if no parameter was
passed.

EQT word 10 is an optional parameter. If the Z-bit is set EQT word 10
is the length of the secondary user buffer. It is a positive number
of words, or a negative number of <characters. If the Z-bit is clear,
EQT word 10 contains the second optional parameter, or zero if a
second optional parameter was not passed.

Both EQT words 9 and 10 are only available to the device driver on a
new request entry. These words must be saved in the device driver EQT

extent if they are required later by the device driver.

EQT word 14 contains the system defined time-out reset value for the
device, a negative number of time base ticks (10's of ms). This value
is set by the system at generation, or by the system TO command, or by
the interface driver by a control 22 request. This word may also be
set directly by the device driver if desired.

EQT word 15 contains the time out clock count down counter. This word
is setup by the interface driver prior to returning to the system.
This word should not be modified by the device driver. On any device
driver request to the interface driver the time out count for EQT 15
should be passed 1in the B register. The value should be a negative
number of 10's of milliseconds. If the system defined time out is to
be used, the device driver must pass the contents of EQT word 14 to
the interface driver in the B register.

Device Driver Address Table

The interface driver uses a device driver address table to £ind the
correct device driver when the device driver is selected with a
control 33 request. The device drivers are selected by numbers which
are determined by their positions in the device driver address table.
Each device driver to be used with the interface driver must have an
entry in the device driver address table. To add device drivers to
the device driver address table, the user must create his own table.

The device driver address table should have the following format:

NAM $DVTB,8 DEVICE DRIVER ADDRESS TABLE
ENT $DVTB
EXT DVNM1,...,DVNMn

*

* DEVICE DRIVER ADDRESS TABLE

*

SDVTB DEC n NUMBER OF ENTRIES IN TABLE
DEF DVNM1+0 ADDRESS OF DEVICE DRIVER 2
DEF..... +0 L] . L] . L] L L] L] L] L L] 3

DEF DVNMn+0 ADDRESS OF DEVICE DRIVER n+l
END

The names of the device drivers may be any wvalid label, as 1long as
they do not conflict with any other symbol in the system. Note that
the first device driver 1in the table is selected by a control 33
request to wuse device driver number two. This is because the the
value zero is reserved for "no change", and one is the used for the
default device driver. Since the device driver number field is 4 bits
wide, the wuser is able to include the default and up to 14 other
device drivers in the system.

Location and Size of Device Drivers

Since the device driver address table and device drivers themselves
are called directly by the interface driver, they must be resident

within the same map. This poses a few restrictions on the number and
location of these modules.

The interface driver requires approximately 1400 words of memory, So
up to 600 words are left in a standard two page driver partition for
the device driver address table and the device drivers. 1If this is
not enough room either the driver partition can be changed to three or
more pages, or one or more device drivers and the table may be
relocated into Table Area I. If $DVTB is relocated into Table Area I,
all device drivers will be forced to Table Area I. The disadvantages
are that the wuser available space in the system is reduced. If the
driver partition size is increased, the size of the largest available
user partition is reduced by an equal amount, and the size change must
be an incremental number of pages. If the modules are relocated in
Table Area I, the actual space used may not take away from user space
unless a page boundary is crossed, in which case a page will be taken
away from the largest available user partition. Device drivers
relocated in Table Area I will take space otherwise used as System
Available Memory. In the RTE-IVB operating system, only these two

4-16

methods of gaining space for device drivers will guarantee that the
device driver and interface driver will be 1in the same map and be
mapped properly to handle all user requests. The interface driver and

device drivers and table could be all relocated into the system driver
area (SDA). More space is available to users, but large background

programs will not be able to make unbuffered requests to the driver.

In RTE-M the device drivers and device driver table are simply
relocated as system modules along with the interface driver.

Case Study: A Device Driver Writing Example

The following is an example of device driver writing that illustrates
some of the problems, solutions, and steps involved in writing a
typical device driver. The device driver in this example is written
to make a terminal look 1like two separate terminals, sharing the
keyboard, and splitting the screen into two separate areas.

Task Definition

The tasks involved in interfacing with a device using a device driver
should be clearly defined and broken down into a sequence of logical
steps. In this example the object is to make an HP 26XX terminal
appear as two terminals for read and write requests. Requests made to
an LU defined as an EQT subchannel 0 will go to the 1left half of the
terminal display, and requests to subchannel 1 will go to the right
half of the display.

Three major tasks are defined for the device driver while the
interface driver handles the user's actual read or write request. The
three tasks all involve sending specific character sequences to the
terminal for initialization in a classi¢ device driver application.

Margin Set Up

The first task is to set the left and right margins on the terminal to
keep the following text on the respective side of the screen. Upon
determination of the subchannel for each new user request the device

driver sends the escape sequence to set the left and_ right margin at
predetermined columns on the terminal screen. Due to terminal

idiosyncrasies the left margin must be set first for subchannel 0

(left side) and the right margin must be set first for subchannel 1
(right side).

Cursor Position

The second major task is to position the cursor so that the subsequent
read or write operations will appear at the correct place on the
screen. The escape sequence to position the cursor is formatted with
the correct cursor position for the left or right side of the screen.
The device driver keeps track of the current cursor position for each
side in the device driver EQT extent. Once the request buffer is
formatted with the correct cursor position the device driver passes it
to the interface driver as a device driver request.

Cursor Tracking

The third major task for the device driver is to find out where the
user's request has left the cursor for the side of the screen that was
just addressed. To do this the device driver writes a request for a
cursor position sense to the terminal and then reads back the result.

The resulting cursor position is separated from the escape sequence
that precedes it and stored away in the device driver EQT extent for
the subchannel that is addressed.

Minor Tasks

Additionally, in an effort to reduce overhead, the device driver is
written to not set the margins or position the cursor when the
subchannel addressed is the same as the previous subchannel. It is
assumed that the cursor and margins will remain in position between
sequential requests to the subchannel. In order to implement this

step the device driver saves the 1last addressed subchannel in the
device driver EQT extent.

Finally the device driver patches the equipment type code into EQT
word 5, This patch will take place only the first time the device
driver is accessed for any particular EQT. Since either subchannel
most closely resembled type 00 devices to the user the equipment type
used is 00. This step is included for illustration only. When any
"Select New Device Driver" request is made (CN,LU, 30B,XXXXXn where
bits 3-0 = 0) the driver is reset to 00.

Device Driver Operation

Functionally the device driver makes a series of tests on each entry
to determine the action required. Processing a user request is a
sequence of actions that generally fall in the following order:

1. Position left or right margin
2. Set margin

3. Position other margin

4. Set margin

5. Position cursor

6. Perform user request

7. Request cursor position
8. Read cursor position

9, Save cursor position
Each action is handled by a separate routine that saves the address of

the next routine in the device driver EQT extent so that execution

moves in a step by step fashion on each continuation entry to the
device driver.

Operation Flow

Figure 4-1 shows the complete device driver flowchart.

\

ENTER
DDSPP

SET UP
EQT POINTERS

NEW
REQUEST
A (15)

FIRST
EVER
ACCESS

7700-569

Figure 4-1.

POSITION
CURSOR
FOR RIGHT
MARGIN

v

SET NEXT
ROUTINE TO

®

NO
GET NEXT
Eggggég SET UP EQT
FROM DEX13
AND JUMP
y
SUBCHANNEL \ NO
1 ’ 0/
YES
4
POSITION
CURSOR SET LEFT
FOR LEFT MARGIN
— MARG IN
> SET NEXT
ROUTINE TO SUBCHANNEL -
.
Y
SET NEXT SET NEXT
ROUTINE TO ROUTINE TO
v
EXIT TO EXIT TO
CRTN CRTN
|

Device Driver Flow Chart

y

EXIT TO
CRTN

POSITION SET NEXT
SET RIGHT ROUTINE
MARGIN CURSOR TO
PER
SUBCHANNEL @
SET NEXT
ROUTINE GET TIME OUT
SUBCHANNEL o AND PASS USER
—0 : REQUEST

EXITTO
DDS0Q,1

\
SET NEXT
ROUTINE

SET NEXT EXIT TO
ROUTINE CRTN
TO TO

O) ®
l e |

EXITTO
CTRN

° CRTN

SEND CURSOR SAVE CURSOR SAVE NEXT
SENSE REQUEST SET UP CURSOR POSITION PER ROUTINE ADDR
SSVE XMIT POSITION READ SUBCHANNEL GET TIMEOUT
LOG
SET NEXT SET NEXT
ROUTINE ROUTINE GET XMIT LOG
To TO@ A COMPLETION
EXIT TO EXIT TO EXIT TO EXIT TO
CRTN CRTN DDS 00, | DDSOR,!

7700-570

Figure 4-1 (cont'd). Device Driver Flow Chart

Set Up Device Driver EQT Extent Pointers

On each entry to the device driver the device driver EQT extent
addresses are stored into a table in the device driver. On each entry
the A register contains the first device driver EQT extent address and
bit 15 indicates new or continuation entry. Bit 15 is saved for later
testing and stripped from the address before the addresses of the
device driver extent are saved.

DDS00 NOP DEVICE DRIVER ENTRY POINT
STB TEMP SAVE B TEMPORARILY
CLE SAVE A[15]
ELA,RAR AND CLEAR IT
LDB DEXAD ADDRESS OF TABLE
LDX DM15 DECIMAL MINUS 15

*

* CREATE TABLE OF DD EXTENT ADDRESSES
*

DEXLP STA B,I A CONTAINS ADDRESS OF DD EXTENT WORD
INA B CONTAINS ADDRESS IN TABLE
INB X CONTAINS COUNT DOWN
ISX
JMP DEXLP
DEXAD DEF DEXO01 ADDRESS OF TABLE
DEX01 NOP ADDRESS OF FIRST DD EXTENT WORD
DEX02 NOP
DEX15 NOP ADDRESS OF DD EXTENT WORD 15

After the initial setup 1is done on each entry the device driver then
tests the bit that indicates a new request entry that was saved in the
E register. Continuation entries go the next routine to be executed
whose address is always saved in the device driver EQT extent word 13.
If it is not a continuation entry the device driver tests to see if it
is the first ever entry for the EQT. Device driver EQT extension word
15 contains an ASCII "S0" if this is not the first ever entry.

EQT Setup on First Entry

On the first entry for any EQT the starting cursor positions for the
left and right sides of the screen are established. The cursor
positions are stored in ASCII format in the device driver EQT extent
words 5 - 12. The starting positions, upper left corner of each
screen, are hard coded in ASCII in the driver.

LDA ASO GET THE ASCII "SO"
STA DEX15,I SAVE IT TO INDICATE NOT FIRST ACCESS
*
JSB .CFER MOVE FOUR WORDS OF CURSOR POSITION
DEF DEX05,I TO THE DD EXTENT
DEF SORC FROM THE DEFINITION LOCATION
JSB .CFER MOVE FOUR WORDS FOR THE OTHER CURSOR
DEF DEX09,I TO THE DD EXTENT
DEF S1RC FROM THE DEFINITION LOCATION
*
LDA EQTS,I GET THE EQT ENTRY WITH EQUIP TYPE
AND TMASK (14037B) MAKE THE TYPE 00
STA EQT5,I SAVE IT

EQT5 EQU 1644B
SORC ASC 4,000r000C STARTING ROW & COLUMN SUBCHANNEL 0
S1RC ASC 4,000r042C STARTING ROW & COLUMN SUBCHANNEL 1

Subchannel Determination

On a new request entry the device driver determines what subchannel
the request is addressed to. The subchannel is in the EQT word 4 bits

10-6. The subroutine GTSCH gets the subchannel and returns it in the
A register.

GTSCH NOP
LDA EQT4,I GET FROM EQT WORD 4
AND B3.7K (3700B) ONLY LOOK AT THE SUBCHANNEL BITS
ALF,ALF
RAL, RAL POSITION TO RIGHT

JMP GTSCH,I RETURN

EQT4 EQU 1663B

Once the subchannel has been determined the device driver must save it
in the device driver EQT extent and then go set the left or right
margin. Note that although the driver specifies subchannel 0 or 1 it
will use any even subchannel as the left side or any odd subchannel as
the right side.

NN
1

23

JSB GTSCH GO GET THE SUBCHANNEL FROM THE EQT
STA DEX14,I SAVE IT IN DD EXTENT WORD 14

SLA ODD OR EVEN?
JMP RMPOS,I ODD -- DO RIGHT FIRST
JMP LMPOS,I EVEN -- DO LEFT FIRST

Output a Setup String to the Terminal

The device driver routines to output various strings of characters to
set up the terminal are all basically the same. They all set up the
request in device driver EQT extent words 2-4 and exit through a
common return routine. Device driver extent word 2 is set up with a
read or write request code, word 3 with a buffer address inside the
device driver, and word 4 is set up with the buffer length,

*

* POSITION CURSOR FOR LEFT MARGIN SET
*

LMPOS DEF *+1] ADDRESS OF ROUTINE

LDA BNWT GET THE CONTROL WORD FOR WRITE W/0 CRLF
STA DEX02,I PUT INTO DD EXTENT
LDB DEX14,I GET THE SUBCHANNEL NUMBER

LDA LMPA GET THE LEFT MARGIN POSITION ADDRESS POINTER
SLB TEST ON SUBCHANNEL
INA ODD -- USE THE OTHER ONE
LDA A,I GET THE ADDRESS OF THE CHARACTER STRING
STA DEXO03,I PUT INTO DD EXTENT
LDA CMLNG GET THE CURSOR MOVE LENGTH WORD
STA DEX04,I PUT INTO DD EXTENT
LDB LMSET GET THE ADDRESS OF THE NEXT ROUTINE
LDA MODX1 GET THE WRITE MODIFIER/EXIT COMMAND
JMP CRTN GO TO THE COMMON RETURN ROUTINE
BNWT OCT 000102 CONTROL WORD FOR WRITE W/0 CRLF
LMPA DEF LMPAD ADDRESS OF LEFT MARGIN POSITION TABLE
LMPAD DEF LMPAO EVEN SUBCHANNEL POSITION ADDRESS
DEF LMPAl ODD SUBCHANNEL POSITION ADDRESS
LMPAO OCT 15446 ASCII "ESC g&"
ASC 3, 000C COLUMN POSITION FOR LEFT SIDE LEFT MARGIN
LMPA1l OCT 15446 ASCII "ESC &"

ASC 3, 042C COLUMN POSITION FOR RIGHT SIDE LEFT MARGIN
CMLNG DEC 4

MODX1 OCT 102005 WRITE MODIFIER/EXIT COMMAND:
* DO REQUEST IN DEX02-4, END NEXT READ ON CR
* DO NOT MODIFY WRITE IN DEX02

The common return routine is used by all of the device driver routines
that initiate their own requests to the interface driver. The return
routine expects the address of the next routine to be 1in the B
register and the modifier/exit command to already be 1in the A
register. The return routine saves the next address in the device

driver EQT extent word 13 and picks up the time out value used for all
setup requests.

CRTN STB DEX13,I SAVE NEXT ROUTINE ADDRESS IN DD EXT WORD 13

LDB TO GET TIME OUT FOR SETUP REQUESTS
JMP DDS00,I RETURN TO INTERFACE DRIVER

Stepping from one routine to the next is made simple by always saving
the next routine address in device driver EQT extent word 13. On any

continuation entry the device driver only has to Jjump through the
contents of extent word 13 indirect.

DDS00 NOP DEVICE DRIVER ENTRY POINT
STB TEMP SAVE B TEMPORARILY
CLE
ELA,RAR SAVE A[15] FOR CONTINUATION TEST
. SET UP DD EXTENT ADDRESSES
LLDB TEMP RESTORE B
SEZ,RSS TEST FOR CONTINUATION
JMP CS00 IF E (WAS A[15]) IS SET, GO TO CONTINUATION

Cs00 LDA DEX13,I GET NEXT ROUTINE ADDRESS
JMP A,I GO DO IT

Perform the Original User Request

Since the original user request is restored to the device driver EQT
extent words 2-4 on each entry to the device driver, processing the
original request is quite simple. Before returning to the interface
driver, the device driver only puts the system defined time out value
in the B register and an exit command = 5 in the A register. 1In this
device driver the next routine address is also saved in the device
driver EQT extent word 13 to keep the flow of requests going.

DORQ DEF *+1 ADDRESS OF ROUTINE
LDB EQT14,I GET THE SYSTEM TIME OUT WORD

LDA SENCU GET THE NEXT ROUTINE ADDRESS
STA DEX13,I SAVE IT FOR RETURN
LDA MODX2 GET THE MODIFIER/EXIT COMMAND

JMP DDSO0O0,I RETURN DIRECTLY TO THE INTERFACE DRIVER

MODX2 OCT 000005 UNIVERSAL DON'T MODIFY ANYTHING/DO REQUEST
* IN THE DD EXT MODIFIER/EXIT COMMAND
EQT14 EQU 1773B

Since further requests to the interface driver are required after
completion of the original user request, the device driver must save
the transmission log from the user request. This is accomplished by

storing the contents of the B register in EQT word 8, which was the
original user request length (in characters).

Read Cursor Position

SENCU senses where the cursor was left at the end of the user request.
An escape - lower case a - DCl (binary write) is sent to the terminal,
requesting the terminal to send back the cursor position. The card is
pre-configured for the next read by setting the high order bits in
MODX1l. This demonstrates the read modifier on a write request.

SENCU DEF *+1 ADDRESS OF THE ROUTINE
STB EQTS8,I SAVE TRANSMISSION LOG IN EQT 8
LDA BNWT SET UP BINARY WRITE
STA DEX02,I IN DEVICE DRIVER EQT EXT
LDA SENCA GET ADDRESS OF CURSOR SENSE
STA DEXO03,I FOR DD EQT EXT
LDA SENSL GET LENGTH FOR SENSE COMMAND
STA DEX04,I PUT IT IN THE DD EQT EXT
LDA MODX1 WRITE MODIFIER/EXIT COMMAND
LDB RDCUS GET THE ADDRESS OF NEXT
JMP CRTN RETURN TO INTERFACE DRIVER

Final Completion Return to the Interface Driver

Completion is signified on return to the interface driver by a zero in

the A register and the user request transmission 1log in the B
register.

LDB EQT8,I RETRIEVE TRANSMISSION LOG
CLA SET COMPLETION EXIT COMMAND
JMP DDS00,I RETURN TO INTERFACE DRIVER

EQTS8 EQU 1667B

Device Driver Address Table

The following device driver address table is required to include the
device driver with the interface driver at generation time.

ASMB,0Q
NAM $DVTB,8 DEVICE DRIVER ADDRESS TABLE
ENT $DVTB
EXT DDS00
*

* DEVICE DRIVER ADDRESS TABLE
*

$DVTB DEC 1 NUMBER OF ENTRIES IN TABLE
DEF DDS00+0 ADDRESS OF DEVICE DRIVER 2
END

The device driver is then selected via a control 33, 000002 request to
the interface on either the subchannel 0 or 1 LU.

Sample Device Driver Listing

The following sample device driver is given to illustrate the various
procedures involved in interfacing to the 12792A Multiplexer Interface

Driver (DVM00O). It 1is intended as an example only and is not a
supported functioning product.

0001
0002%*
0003*
0004*
0005%*
0006%*
0007%
0008%*
0009%*
0010%*
0011
0012
0013
0014x*
0015
0016
0017
0018
0019
0020
0021%*
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038*
0039%
0040%*
0041
0042
0043
0044
0045
0046

0047
0048
0049
0050

ASMB,Q

MULTIPLEXER DEVICE DRIVER FOR SPLIT SCREEN OPERATION OF
A 264X TERMINAL. LEFT HALF OF SCREEN IS SUBCHANNEL 0,

RIGHT HALF IS SUBCHANNEL 1.
THIS DEVICE DRIVER WILL SET
HALF OPERATION AND POSITION
POSITION IN THE APPROPRIATE
TO THE SUBCHANNEL ADDRESSED

oooco NAM DDSO
ENT DDSO
EXT .CFE
00000 A EQU O
00001 B EQU 1
01663 EQT4 EQU 1663
01664 EQT5 EQU 1664
01667 EQT8 EQU 1667
01773 EQT14 EQU 1773

00000 000001R DEXAD DEF DEXO
00001 000000 DEXO01l NOP
00002 000000 DEX02 NOP
00003 000000 DEX03 NOP
00004 000000 DEX04 NOP
00005 000000 DEX05 NOP
00006 000000 DEX06 NOP
00007 000000 DEXO07 NOP
00010 000000 DEX08 NOP

00011 000000 DEX09 NOP
00012 000000 DEX10 NOP

00013 000000 DEX1ll NOP
00014 000000 DEX1l2 NOP
00015 000000 DEX13 NOP
00016 000000 DEX14 NOP
00017 000000 DEX15 NOP

SETUP ON EACH ENTRY

00020 000000 DDSO0 NOP

00021 000313R STB TEMP
00022 000040 CLE

00023 001623 ELA,RAR
00024 00000OR LDB DEXA
00025 105745 LDX DM15

00026 000267R
00027 000001 DEXLP STA B,I

00030 002004 INA
00031 006004 INB
00032 105760 ISX

FUNCTION IS OTHERWISE DVMOO.
THE MARGINS FOR LEFT OR RIGHT
THE CURSOR TO IT'S LAST KNOWN
HALF OF THE SCREEN ACCORDING
ON EACH OPERATION.

0,8 SPLIT SCREEN DEVICE DRIVER
0

R

B

B
B
B

1

PHYSICAL RECORD LENGTH

EQT6 COPY

EQT7 COPY

EQT8 COPY

CURRENT SUB CH 0 ROW WORD
" WORD

CURRENT SUB CH 0 COL WORD
" WORD

CURRENT SUB CH 1 ROW WORD
" WORD

CURRENT SUB CH 1 COL WORD
" WORD

NEXT ROUTINE ADDRESS

CURRENT (LAST) SUBCHANNEL

FIRST ACCESS FLAG = ASCII

N N NN e

[42]
o

SAVE B TEMPORARILY

SAVE A[15] FOR CONTINUE TEST
D SAVE EXTENT ADDRESSES

A ADDRESS OF DD EQT EXT 1
B ADDRESS OF DEXO01l

DO FOR DEX01-15, ADDRESSES
OF DEVICE DD EXT WORDS 1-15

nu

0051
0052%*
0053
0054
0055
0056*
0057%*
0058%*
0059
0060
0061
0062*
0063
0064
0065%*
0066
0067
0068
0069
0070
0071
0072%
0073
0074
0075
0076*
0077*%
0078%
0079%
0080
0081
0082
0083
0084
0085*
0086*
0087*
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101

00033

00034
00035
00036

SPECIAL PROCESSING TO SETUP EQT

00037

00040
00041

00042
00043

00044
00045

00046
00047

00050
00051

00052
00053
00054

GET THE SUBCH AND DECIDE THE PATH

SuB 1

00055
00056
00057
00060
00061

000027R JMP DEXLP
000313R LDB TEMP
002041 SEZ ,RSS
000254R JMP CS00

000017R LDA DEX15,I
000277R CPA ASO
000250R JMP SUBCK
000277R LDA ASO
000017R STA DEX15,I
000001X JSB .CFER
100005R DEF DEXO05,I
000300R DEF SORC
000001X JSB .CFER
100011R DEF DEX09,I
000304R DEF S1RC
001664 LDA EQTS5,I
000276R AND TMASK
001664 STA EQT5,I

SET RIGHT MARGIN FIRST)

000261R JSB GTSCH
000016R SVSCH STA DEX14,I

000010 SLA
000117R JMP RMPOS,I
000062R JMP LMPOS,I

POSITION FOR LEFT MARGIN SET

00062
00063
00064
00065
00066
00067
00070
00071
00072
00073
00074
00075
00076
00077

000063R LMPOS DEF *+1
000310R LDA BNWT
000002R STA DEX02,1
000016R LDB DEX14,I
000330R LDA LMPA
004010 SLB

002004 INA

000000 LDA A,I
000003R STA DEXO03,I
000272R LDA CMLNG
000004R STA DEX04,I
000100R LDB LMSET
000314R LDA MODX1
000256R JMP CRTN

RESTORE B
TEST FOR CONTINUATION
GO DO CONTINUATION

ON FIRST ACCESS

GET FIRST ACCESS FLAG

CONTAINS ASCII "SO"
NOT FIRST ACCESS, CHECK SUBCH

FIRST ACCESS, SET UP FLAG

SET UP SUB CH 0 ROW AND COL

SET UP SUB CH 1 ROW AND COL

SET UP DRIVER TYPE

(SUB 0 SET LEFT MARGIN FIRST,

GO GET SUBCHANNEL

AND SAVE

ODD SUBCHANNEL?

YES, DO RIGHT MARGIN FIRST
NO, DO LEFT MARGIN FIRST

ADDRESS OF ROUTINE

SET UP BINARY WRITE

TO POSITION THE CURSOR
GET SUBCHANNEL

GET LEFT MARGIN POINTER

ODD SUBCH USE THE OTHER ONE

GET
PUT

THE ADDRESS

IT IN THE DD EXTENT

GET CURSOR MOVE LENGTH WORD
PUT IT IN THE DD EXTENT

GET L. MARGIN SET ADDRESS
WRITE MODIFIER/EXIT COMMAND
RETURN TO INTERFACE DRIVER

4-29

0l02%
0103%*
0104%*
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120%*
0121*
0122%
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137*
0138*
0139*
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152

SET THE LEFT MARGIN

00100
00101
00102
00103
00104
00105
00106
00107
00110
00111
00112
00113
00114
00115
00116

POSITION CURSOR FOR

00117
00120
00121
00122
00123
00124
00125
00126
00127
00130
00131
00132
00133
00134

000101R
000310R
000002R
000332R
000003R
000271R
000004R
000016R
000010

000114R
000117R
002001

000154R
000314R
000256R

000120R
000310R
000002R
000016R
000345R
004010

002004

000000

000003R
000272R
000004R
000135R
000314R
000256R

SET THE RIGHT

00135
00136
00137
00140
00141
00142
00143
00144
00145
00146
00147
00150
00151

000136R
000310R
000002R
000347R
000003R
000271R
000004R
000016R
000010

000151R
000154R
002001

000062R

LMSET DEF
LDA
STA
LDA
STA
LDA
STA
LDA
SLA
JMP
LDB
RSS
LDB
LDA
JMP

RMPOS DEF
LDA
STA
LDB
LDA
SLB
INA
LDA
STA
LDA
STA
LDB
LDA
JMP

MARGIN

RMSET DEF
LDA
STA
LDA
STA
LDA
STA
LDA
SLA
JMP
LDB
RSS
LDB

*41
BNWT
DEX02,I
LMSTA
DEX03, I
MSLNG
DEX04,I
DEX14,T

*+3
RMPOS

CUPOS
MODX1
CRTN

x4
BNWT
DEX02,1
DEX14,1
RMPA

A,I
DEXO03,I
CMLNG
DEX04,I
RMSET
MODX1
CRTN

*4]
BNWT
DEX02,1
RMSTA
DEX03,1I
MSLNG
DEX04,1I
DEX14,1

%43
CuPOS

LMPOS

ADDRESS OF ROUTINE

SET UP BINARY WRITE

IN DEVICE DRIVER EQT EXT

GET ADDRESS OF L. MARGIN SET

FOR DD EQT EXT

GET LENGTH FOR MARGIN SET
PUT IT IN THE DD EQT EXT
GET SUBCHANNEL

OoDD?

YES, GO POSITION CURSOR
NO, GET RIGHT MARGIN ADDRESS

GET CURSOR POSITION ADDRESS
WRITE MODIFIER/EXIT COMMAND
RETURN TO INTERFACE DRIVER

RIGHT MARGIN SET

ADDRESS OF ROUTINE

SET UP BINARY WRITE

TO POSITION THE CURSOR
GET SUBCHANNEL

GET R. MARGIN ADDRESS POINTER
ODD SUBCH USE THE OTHER ONE

GET
PUT

GET
PUT

THE ADDRESS

IT IN THE DD EXTENT
CURSOR MOVE LENGTH WORD
IT IN THE DD EXTENT
GET R. MARGIN SET ADDR

GET WRITE MODIFIER/EXIT
RETURN TO INTERFACE DRIVER

ADDRESS OF ROUTINE

SET UP BINARY WRITE

IN DEVICE DRIVER EQT EXT
GET ADDRESS OF R. MARGIN SET
FOR DD EQT EXT

GET LENGTH FOR MARGIN SET
PUT IT IN THE DD EQT EXT
GET THE SUBCHANNEL

oDD?

YES, GO SET LEFT MARGIN

NO, GET CURSOR POS. ADDRESS

GET L. MARGIN POS. ADDRESS

0153
0154
0155%
0156%*
0157%*
0158
0159
0160
0161
0162
0163
0l64
0165
0166
0167

0168
0169
0170
0171
0172
0173
0174
0175%
0176*
0177*
0178
0179
0180
0181
0182
0183
0184*
0185%
0186*
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198%
0199*
0200%*
0201

00152
00153

POSITION CURSOR FOR

00154
00155
00156
00157
00160
00161
00162
00163
00164
00165
00166
00167
00170
00171
00172
00173
00174
00175
00176

000314R
000256R

000155R CUPOS

000310R
000002R
000016R
000360R
004010

002004

000000

000361R
105777

000272R
000000

000362R
000O003R
000273R
000004R
000177R
000314R
000256R

LDA
JMP

MODX 1
CRTN

WRITE MODIFIER/EXIT COMMAND
RETURN TO INTERFACE DRIVER

OPERATION ON A SUBCHANNEL

DEF
LDA
STA
LDB
LDA
SLB
INA
LDA
LDB
MVW

LDA
STA
LDA
STA
LDB
LDA
JMP

*41
BNWT
DEX02,1I
DEX14,I
CPAD

A,I
CPVAD
D4

CPBFA
DEX03,I
CPLNG
DEX04,I
DORQ
MODX1
CRTN

DO THE ORIGINAL USER REQUEST

00177
00200
00201
00202
00203
00204

USER REQUEST DONE,

00205
00206
00207
00210
00211
00212
00213
00214
00215
00216
00217

READ THE SENSED CURSOR POSITION

000200R DORQ

001773

000205R
000015R
000315R
000020R

DEF
LDB
LDA
STA
LDA
JMP

000206R SENCU DEF

001667

000310R
000002R
000363R
000003R
000270R
000004R
000314R
000220R
000256R

STB
LDA
STA
LDA
STA
LDA
STA
LDA
LDB
JMP

*41
EQT14,I
SENCU
DEX13,1
MODX 2
DDS00, I

*4]
EQT8 , I
BNWT
DEX02,1I
SENCA
DEX03,1I
SENSL
DEX04,1I
MODX 1
RDCUS
CRTN

00220 000221R RDCUS DEF *+1

" GET

ADDRESS

OF ROUTINE

SET UP BINARY WRITE
TO POSITION THE CURSOR

SUBCHANNEL

GET CURSOR ADDRESS POINTER

ODD

GET THE
AND THE

SUBCH USE THE OTHER ONE

ADDRESS OF LAST
BUFFER FILL ADDRESS

MOVE THE LAST POSITION

GET THE WHOLE BUFFER ADDRESS

PUT
GET
PUT
GET

IT IN THE DD EXTENT
CURSOR MOVE LENGTH WORD
IT IN THE DD EXTENT
DORQ ROUTINE ADDRESS

WRITE MODIFIER/EXIT COMMAND

RETRURN

ADDRESS
GET THE
GET THE
SAVE IT
GET THE

TO INTERFACE DRIVER

OF THE ROUTINE

TIME OUTWORD

SENCU ROUTINE ADDRESS
FOR RETURN

EXIT COMMAND

RETURN DIRECTLY

ADDRESS

SENSE WHERE THE CURSOR WAS LEFT

OF THE ROUTINE

SAVE TRANSMISSION LOG IN EQTS8
SET UP BINARY WRITE

IN DEVICE DRIVER EQT EXT

GET ADDRESS OF CURSOR SENSE
FOR DD EQT EXT

GET LENGTH FOR SENSE COMMAND
PUT IT IN THE DD EQT EXT
WRITE MODIFIER/EXIT COMMAND

GET THE

ADDRESS OF NEXT

RETURN TO INTERFACE DRIVER

ADDRESS

OF ROUTINE

0202
0203
0204
0205
0206
0207
0208
0209
0210
0211%
0212%*
0213*
0214
0215
0216
0217
0218
0219
0220
0221
0222

0223
0224
0225
0226*
0227%
0228%
0229
0230
0231
0232
0233*
0234*
0235%
0236
0237
0238%
0239%*
0240*
0241%*
0242
0243
0244
0245%*
0246%*
0247%*
0248
0249
0250

00221 000311R LDA RDWCR CONTROL WORD FOR READ W/CR
00222 000002R STA DEX02,1I PASS TO I/F DRIVER

00223 000366R LDA CRDBA ~ ADDRESS OF BUFFER

00224 000003R STA DEX03,I

00225 000273R LDA CPLNG LENGTH

00226 000004R STA DEXO04,I

00227 000232R LDB COMPL ADDRESS OF NEXT ROUTINE
00230 000315R LDA MODX2 GET THE EXIT COMMAND

00231 000256R JMP CRTN RETURN TO INTERFACE DRIVER

COMPLETION ROUTINE, SAVES RETURNED CURSOR POSITION AND EXITS

00232 000233R COMPL DEF *+1 ROUTINE ADDRESS

00233 000016R LDA DEX14,I GET CURRENT SUBCHANNEL
00234 000360R LDB CPAD GET CURSOR STORAGE POINTER
00235 000010 SLA ODD SUBCHANNEL., ..

00236 006004 INB YES, USE THE OTHER ONE
00237 000001 LDB B,I GET THE ADDRESS

00240 005200 RBL MAKE IT A BYTE ADDRESS
00241 000375R LDA CUBYT GET BYTE ADDRESS

00242 105765 MBT D8 MOVE BYTES

00243 000274R
00244 000000

00245 001667 LDB EQT8,I RETRIEVE THE TRANSMISSION LOG
00246 002400 CLA SET EXIT COMPLETION COMMAND
00247 000020R JMP DDSO00,I

TEST FOR SUBCHANNEL ALREADY EQUAL, SKIP MOST OF SETUP

00250 000261R SUBCK JSB GTSCH GET REQUEST SUBCHANNEL

00251 000016R CPA DEX14,1 COMPARE TO LAST ONE ADDRESSED
00252 000177R JMP DORQ,T SAME, GO DO USER REQUEST
00253 000056R JMP SVSCH DIFFERENT, GO SET UP TERMINAL

CONTINUATION PROCESS SELECTION

00254 000015R CSO00 LDA DEX13,I GET ADDRESS OF NEXT ROUTINE
00255 000000 JMP A,I GO DO IT

RETURN TO INTERFACE DRIVER ROUTINE A=MODIFIER/EXIT CMD,
B=NEXT ROUTINE ADDRESS

00256 000015R CRTN STB DEX13,I SAVE NEXT ROUTINE ADDRESS

00257 000312R LDB TO GET THE SETUP TIME OUT
00260 000020R JMP DDS00,I

SUBROUTINE TO RETURN THE SUBCH IN THE A REGISTER

00261 000000 GTSCH NOP
00262 001663 LDA EQT4,I GET SUBCHANNEL WORD
00263 000275R AND B3.7K ONLY LOOK AT SUBCHANNEL BITS

0251
0252
0253
0254%*
0255%*
0256%*
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266

0267

0268
0269
0270
0271
0272
0273%
0274*
0275
0276*
0277*
0278%
0279%
0280%
0281
0282
0283
0284%
0285
0286

0287
0288

0289
0290
0291

00264
00265
00266

001727
001222
000261R

ALF,
RAL,

JMP

CONSTANTS AND VARIABLES

00267
00270
00271
00272
00273
00274
00275
00276
00277
00300
00301
00302
00303
00304
00305
00306
00307
00310
00311
00312
00313
00314

00315

TERMINAL COMMAND STRINGS

00273
00272
00271

00316
00317
00320
00321
00322
00323
00324
00325
00326
00327
00330

177761
177775
000001
000004
000006
000010
003700
014037
051460
030060
030162
030060
030103
030060
030162
030064
031103
000102
000001
177160
000000
102005

000005

015446
060440
030060
030103
015446
060440
030064
031103
000316R
000322R
000326R

DM15
DM3
D1

D4

D6

D8
B3.7K
TMASK
ASO
SORC

S1RC

BNWT
RDWCR
TO
TEMP
MODX1

MODX 2

CPLNG
CMLNG
MSLNG

LMPAO

LMPAl

LMPAD

LMPA

DEC
DEC
DEC
DEC
DEC
DEC
OCT
OCT
ASC
ASC

ASC

OCT
OCT
DEC
BSS
0OCT

OCT

EQU
EQU
EQU

oCT
ASC

oCcT
ASC

DEF
DEF
DEF

ALF
RAL
GTSCH,I

3700

14037

1,80
4,000ro000C

4,000ro042C

000102
000001
-400

1
102005

000005

D6
D4
D1

15446
3,a 000C

15446
3,a 042C

LMPAOQO
LMPAl
LMPAD

POSITION TO RIGHT

CNWD FOR BINARY WRITE
CNWD FOR READ TO CR, NO ECHO
4 SEC TIME OUT ON SETUP

WRITE MODIFIER/EXIT COMMAND
DO REQ. IN DEX02, END READS
ON CR, DON'T MODIFY WRITE.

UNIV. MODIFIER/EXIT COMMAND

DON'T MODIFY ANYTHING,
JUST START REQUEST IN EXTENT

LENGTH OF CURSOR POSITION RQ
LENGTH OF MARGIN REQUESTS
LENGTH OF MARGIN SET REQUESTS

(ESC&) POS. CURSOR FOR LEFT
MARGIN SET, SUB O

(ESC&) POS. CURSOR FOR LEFT
MARGIN SET, SUB 1

ADDRESS OF LEFT MARGIN, SUB 0
ADDRESS OF LEFT MARGIN, SUB 1
ADDRESS OF ADDRESSES

0292%*

0293 00331 015464 LMST OCT 15464 SET L. MARGIN COMMAND (ESC4)
0294 00332 000331R LMSTA DEF LMST AND ADDRESS

0295%

0296 00333 015446 RMPAO OCT 15446 (ESC&) POSITION CURSOR FOR R.
0297 00334 060440 ASC 3,a 037C MARGIN SET, SUB 0

00335 030063

00336 033503
0298 00337 015446 RMPAl OCT 15446 (ESC&) POSITION CURSOR FOR R.
0299 00340 060440 ASC 3,a 079C MARGIN SET, SUB 1

00341 030067

00342 034503

0300 00343 000333R RMPAD DEF RMPAO ADDRESS OF R. MARGIN, SUB 0
0301 00344 000337R DEF RMPAl ADDRESS OF R. MARGIN, SUB 1
0302 00345 000343R RMPA DEF RMPAD ADDRESS OF ADDRESSES

0303%*

0304 00346 015465 RMST OCT 15465 SET R. MARGIN COMMAND (ESC5)
0305 00347 000346R RMSTA DEF RMST AND ADDRESS

0306*

0307 00350 015446 CPBUF OCT 15446 (ESC&) POSITION CURSOR FOR A
0308 00351 060440 ASC 1,a SUB CHANNEL FOR OPERATION
0309 00352 000000 CPVAL BSS 4 AREA TO PUT CURSOR COORD.
0310 00356 000005R CPADD DEF DEXO05 ADDR OF CURSOR COORD. SUB 0
0311 00357 00001l1R DEF DEX09 ADDR OF CURSOR COORD. SUB 1
0312 00360 100356R CPAD DEF CPADD,I ADDRESS OF ADDRESSES

0313 00361 000352R CPVAD DEF CPVAL ADDRESS OF COORDINATE STORAGE
0314 00362 000350R CPBFA DEF CPBUF ADDRESS OF BUFFER

0315%*

0316 00363 000364R SENCA DEF SENCC ADDR OF SENSE CURSOR COMMAND
0317 00364 015541 SENCC OCT 15541 (ESCa) SENSE CURSOR COMMAND
0318 00365 010400 OCT 10400 DC1 SEND DATA

0319 00270 SENSL EQU DM3 CHAR COUNT FOR SENSE COMMAND
0320%*

0321* RETURN AREA FOR CURSOR SENSE

0322%*

0323 00366 000367R CRDBA DEF CRDBF CURSOR READ BUFFER ADDRESS
0324 00367 000000 CRDBF NOP SPACE FOR ESC &

0325 00370 000000 NOP SPACE FOR ay

0326 00371 000000 NOP SPACE FOR YY

0327 00372 000000 NOP SPACE FOR rX

0328 00373 000000 NOP SPACE FOR XX

0329 00374 000000 NOP SPACE FOR C

0330 00375 000761R CUBYT DBR CRDBF+1 BYTE ADDRESS OF RIGHT BYTE
0331 END

** NO ERRORS *TOTAL **RTE ASMB 92067-16011%*

Chapter 5
Device-Specific Considerations

The Multiplexer subsystem supports the following HP

terminals: 2621A/P, 2626A, 2631A/B, 2635, 2675A, and 264X, as well as
printer support for the 263X and the 7310A.

Other HP or non-HP devices may be used in conjunction with the
Multiplexer subsystem. A prerequisite for HP support is the device
must be hardwired into a point-to-point, asynchronous, bit serial
environment. However, for these devices it may be necessary for the
user to write simple device drivers to supplement line protocol and
specific control characters.

Handshaking

Transmission and reception of data or instructions 1is coordinated by
firmware controlled handshaking. Handshaking can be viewed from two

aspects; the Multiplexer firmware or the device can act as the
transmitter. Some 1line printers and other devices use hardware

handshaking between the computer and the terminal/device; these
devices are not supported.

The HP 12792A interface card uses firmware on the interface card

rather than a software driver to accomplish ENQ/ACK handshaking and
other line protocol necessary to communicate between the MUX card and
a terminal/device. If the card configuration has handshaking enabled,
data is transferred to the terminal/device in the following manner:

The card sends data to the terminal/device in blocks of 80
characters. Between blocks an ENQ is sent and the firmware

waits up to 5 seconds for an ACK. If one is received the
next block is sent. If no response is given, another ENQ is
sent.

If the handshaking is disabled information is transmitted serially
(character by character) to the terminal/device.

The other type of handshaking is from terminal/device to the

Multiplexer card and this 1is accomplished wusing DC1 an DC2
handshaking. DCl1 and DC2 are used for CPU reception in block mode.

This type of handshaking is controlled by the terminal driver DDVOS5.

5-1

DDV12 Lineprinter Driver

HP supplies a line printer driver (DDV12) similiar to DVR12, although
some limitations are:

- no vertical form feed except top of form
- no over print carriage control (* in col 1)

- no status requests

DDVO05 Terminal Driver

When using the HP 264X terminal in the Multiplexer subsystem, the

device expects to see 8 bits/char data transfers. Users wanting to
communicate with a 264X or 262X terminal with parity checking should
configure the interface card for a 7 bit/char data transfer, or
without parity use 8 bits/char. The 264X terminals require
handshaking with the ENQ/ACK protocol in order to preserve data
integrity. These terminals use a blockmode handshaking scheme with

the CPU receiving DC1/DC2 protocol. A DCl must be detected before the
information can be sent across the line.

Black Box Considerations

In order to connect a "black box" RS-232-C or RS-423-A device to the
HP 12792A Multiplexer Interface, the following three criteria must be
examined:

RS-232-C and RS-423-A Capability
Handshaking

Driver Considerations

HP offers support to most RS-232-C and RS-423-A compatible devices.
HP support 1is limited to correct passage of user's data to/from the
user's buffer and from/to the specified Multiplexer channel data links

with insertion/deletion of specifying characters and parity
information.

The user should be aware of the line protocol, control sequences, and
handshaking used by the device. The line protocol must match in order
for two way communication to exist. The user must understand how
requests are mapped in as control requests. The user must specify
whether the terminal/device uses character or block mode handshaking.

The 1last consideration requires the user to determine if the
terminal/device can function wusing the HP supplied drivers, or if it
will require a user written device driver. Any specialized control
which 1is required by the device not included in the user buffer
indicates the need for a user written device driver. When functioning
with user written device drivers, support is also 1limited to correct
passage of EQT extent information to and from the user's device driver
and the correct execution of the device drivers requests.

Dumb Devices

If the device requires no additional information beyond what 1is
contained in the user's buffer and does not use DCl's, the device can
be considered a "dumb" device and will be able to operate using DVMOO
and the default device driver (device driver number one). Some
devices that are normally considered dumb devices actually redquire
CR/LF delays and will require a user written device driver for proper
operation. One example of these devices is the common Teletype.

Modems

The HP 12792A Multiplexer has no modem control lines. HP will support

only full duplex asynchronous modems (USA only) in the 12792A

Multiplexer Subsystem. All control functions must be set on the
modem.

When using modems be aware that if the modem line is disconnected, no
provision 1is available to detect the condition. If the user was
logged on under an RTE-IVB session and the line is disconnected before
the user logs off, anyone dialing in to that port will be re-connected
to the session in progress at the time of the previous disconnect.

Appendix A
Device Equipment Table

The HP 12792A/12828A Multiplexer Subsystem requires a Device Equipment

Table (EQT) entry for each port on the multiplexer. The entry
consists of 15 words plus an extension of 17 words, or a total of 32
words. The EQT entry is configured into the RTE Operating System at
system generation time.

During system operation, the device and interface drivers receive
channel configuration instructions, and passes 1information to each
other through the EQT entry for that channel. Table A-1 provides the
function at each word in the Equipment Table Entry in RTE-IVB and
RTE-MIII operating systems.

Table A-1l. Equipment Table Entry.

EQT Words 1-8: standard in the RTE operating environment.

Word 5: the status word, bits 7-0 describe the channel's
status unless it is altered by a device driver:

Bit 7: Last request timed out
Bit 6: BREAK key hit

Bit 5: EOT (control-D entered)
Bit 4: Reserved for future use,

should be set to zero
Bit 3: Parity error or overflow
Bit 2: Type-ahead data available
Bit 1: Program scheduling enabled
Bit 0: Reserved for future use,
should be set to zero

Word 9: On initiation entry this is an optional user
parameter to the device driver. Thereafter,
it is the starting address for transfers.

Word 10:

On initiation entry, this is an optional user

parameter to the device driver., Thereafter,
it is the character length of the data transfer.

Word 11: Port Status Word 1
Bit 15: Card is busy processing a command
Bit 14: Deferred abort in process
(system clear request)
Bit 13: Waiting for or using DCPC channel
Bit 12: Buffer flush state
Bit 11: Using DCPC channel 1 (select code = 6)
Bit 10: I/0 transfer in process
Bit 9: Unsolicited interrupt in progress
Bit 8: Defer abort flag
Bit 7: End on CR
Bit 6: End on RS
Bit 5: End on CNTL D
Bit 4: End on DC2
Bit 3: End on Count
Bit 2: End on Character
Bit 1: Edit enable
Bit O: Echo enable
Word 12:
Bit 15: This EQT is suspended on itself
Bits 14-0: The address of first EQT suspended,
waiting for access to the backplane.
Word 13: Address of EQT extension
Word 14: Standard usage: EQT time-out value reset
Word 15: Standard usage: EQT running timer

EQT extension words: (extension word 1 = EQT word 16)

Word 16: Address of the program to schedule
-1 if none
0 if the driver has not been entered
Word 17: Level 1 subroutine return address
Word 18: Level 2 subroutine return address
Word 19: Level 3 subroutine return address
Word 20: Port ID from control 30B optional parameter,
used in power fail recovery
Word 21: Driver configuration word (from control 33B)
Word 22: Reserved for future use
Word 23: Length of typed-ahead data, in characters
Word 24: Temporary, usually contains the character
length of the data remaining to be transferred
Word 25: Temporary, usually the second word of the card

command

Word 26:

Temporary, usually the length of the character
space left in the user buffer

Word 27:

Port Status Word 2:

Bit 15: Terminating character has not yet been
found

Bit 14,13: 00
01

control-D (terminating character)
<CR>
10 <DC2>
11 <RS>
Bits 12-9: Reserved for future use
Bit 8: Port has key
Bits 7-0: default status for word 5 bits 7-0

Word 28:

Device driver command to the interface driver
(A-Register)

Word 29:

Device driver timeout, -10's ms

Word 30:

Device driver EXEC request

Word 31:

Device driver I/0 buffer address or control
requests optional parameter

Word 32:

Device driver buffer length (+words, =-chars)

Any further storage used is defined by the device driver in use.

Appendix B
Device Driver Interfaces

26XX Screen Mode Device Driver

This section describes the HP supplied 26XX Screen Mode device driver
DDV05 used with the Multiplexer interface driver DVMO0O. The driver
supports HP terminals in both character and block mode. All screen
mode functions (the ENTER key, soft keys, etc) are supported.

Peripheral devices (CTU's, etc.) are NOT supported by this device
driver.

The layout of the user 1I/0 and Control calls are designed to be
roughly compatible with DVROS5. Since this subsystem 1is be able to

support a far wider range of terminal capabilities, differences are
inevitable.

For generation and 1initialization information please refer to the
configuration guide.

DDVO05 User Interface for 26XX Terminals

The device driver DDV05 utilizes the block mode read capabilities of
an HP264X or 262X terminal. At boot-up time the device driver reads
the terminal straps. The strappings may vary between character, block

line, or block page mode. The character mode 1is a normal read
operation, with a carriage return or CNTL-D 1indicating an
end-of-record. A carriage return denotes an end-of-record in the

block line mode, while a record separator denotes an end-of-record in
the block page mode. Prior to every read request, the device driver
instructs the interface driver to write a DCl allowing the softkeys to
be read.

Subchannel Assignment

No support for peripheral devices 1is given, therefore EQT subchannels

are 1ignored. However, for compatibility with existing and future
products, the subchannel field should be set to zero.

Control Request Definition

The <control requests accepted by this driver perform wvarious
functions. Some requests require additional data which is passed to
the driver through the optional EXEC parameter IPARM. Any control
request not listed here is passed on to the interface driver for
execution. The various requests are described as follows:

Function 11, Line Spacing

Control function 11 sends a number of CR/LF's to the terminal's
display as determined by the value of the optional parameter. A
maximum of 63 lines can be spaced in one request. Any value greater
than 63 will be truncated modulo 64. A zero or negative 1line count
results in one CR/LF sent.

Function 25, Update Terminal Configuration

Control function 25 (octal) causes the driver to read the strap

settings on HP terminals. This information is used by the driver to
assure correct terminal handshake when doing block reads, etc. on HP
terminals.

- A control 25 1is automatically performed when the driver receives its
first read request. If the terminal straps are subsequently changed
manually or by escape sequences the user must issue another control 25
to keep the driver posted of any changes. Failure to do so may result
in the terminal getting "hung".

Input/Output Requests

The action taken by the driver in the processing of I/O requests

depends on the function code specified in the EXEC call from the user.
Bits 10 through 6 of the EXEC ICNWD define the function code for the
request as follows:

10 9 8 7 6 Action taken for READ redquest
0 X0XO input editing enabled, echo off, end transfer
on <CR> or CTRL-D
0 X1X0 input editing enabled, echo on
end transfer on <CR>, or CTRL-D
0 X0X1 input editing off, echo off, end transfer
on buffer full
0 X1X1 editing off, echo on, end
transfer on buffer full
1 X0X0 editing off, echo off, end transfer on <CR>
1 X1X0 editing off, echo on, end
transfer on <CR>
10 9 87 6 Action taken for WRITE request
0 X XXO0 end transfer on end of buffer, add CR/LF if
last char in buffer is NOT " ". " " is not printed if
present as the last char in buffer
0 X XX1 end transfer on end of buffer, nothing is added to
the user's buffer
1

X XXO0 end transfer on end of buffer, nothing is added to
the user's buffer

For all I/0 requests note the following:

Zero length keyboard entries will not be ignored by the interface
driver.

I/0 transfers use a character format set up by Control request 30,
and the terminal must be strapped accordingly.

Escape and Unit Separator characters are NOT stripped from the
user's buffer as is done under DVRO5.

Binary type transfers from the display may not be used when the
terminal is in a block mode.

Read function code 3000B "program enabled block read" is not
required when doing ESC-d screen reads. However, the driver is not
as "forgiving" as DVRO5 when terminal straps are changed without

informing the driver. Control function 25 must be issued in order
to prevent the terminal from being "hung".

7310 Line Printer Device Driver

Functional Overview

This section describes the HP 2631/2635/7310 Line Printer device
driver DDV12 for use under the Multiplexer driver DVM00. The driver
supports both normal (column 1 as carriage control) and transparent

(column 1 printed) print modes. Carriage control includes
Top-of-Form, single, double, and triple spacing.

For Generation and Initialization information consult the HP 12792A
Multiplexer Subsystem Configuration Guide.

Write Request Processing

Write requests to the driver can be made either in a normal or
transparent mode. The device driver DDV12 1is used to make
HP 2631/2635/7310 printers 1look like typical line printers to user
programs. These devices use escape sequences for carriage control
while standard 1line printers interpret the first character of each
line as a carriage control character. The DDV12 device driver
examines the wuser's first character and sends the proper escape
sequence to the printer. In normal mode the first character of the
line is wused to direct the driver to perform carriage control. The
remainder of the line is transferred to the printer. Carriage control

characters recognized by the driver are:
" Go to Top=-of-Form
"o" Space one extra line before printing {(double space)
" n

- Space two extra lines (triple space)

all others Single space

Transparent mode is selected by setting bit 7 of the EXEC function

code. In this mode all data is shipped to the printer regardless of
the data in column 1.

It should be noted that no processing of the user data 1is performed
other than that described above. Since the printer always reacts to

escape sequences and protocol characters (e.g. ENQ) the user should
be careful not to place these in the user buffer.

Control Request Processing

The only control request processed by this device driver is control 11
(octal). This is used to either move the paper up (line spacing) or

move the paper to top-of-form, depending on the value of the optional
parameter.

IPARM > 0 move the paper up IPARM lines
IPARM = 0 move the paper up one line
IPARM < 0 go to top-of-form

The maximum number of 1lines that can be spaced in one request is 63.

If a request is made to send more than 63 1lines the value will be
truncated modulo 64. (i.e 66 will send 2 lines.)

All other control requests are passed directly to the interface driver
for processing. Refer to Chapter 2 for descriptions.

ACK - Acknowledge

ASCII

ASYNCHRONOUS TRANSMISSION

BAUD

BS

CONTROL CHARACTER

CR

DC1l - Device control

DC2 - Device control

Appendix C
Glossary

A transmission control character
transmitted by a receiver as an affirmative

response to the sender's block mode
information.

American Standard Code for Information
Interchange.

Transmission in which time intervals
between transmitted characters may be of
unequal length., Transmission is controlled
by start and stop elements at the beginning
and end of each character.

A unit of signaling speed equal to the
number of discrete conditions or signal
events per second. In asynchronous
transmission, the unit of signaling speed
corresponding to one wunit interval per
second; that is, if the duration of the
unit interval is 20 milliseconds, the
signaling speed 1is 50 baud. Baud 1is the
same as "bits per second" only if each
signal event represents exactly one bit.

Backspace, Control H.

In the ASCII code, any of the 32 characters

in the first two columns of the standard.
code table.

Carriage return, Control M.

A device control character which is
primarily intended for turning on or
starting a peripheral device. The host is
receiving information, Control Q.

A device control character which is
primarily intended for turning on or
starting a peripheral device, Control R.

DIRECT MEMORY ACCESS (DMA) A facility that permits I/0 transfers

DUMB DEVICE

DUPLEX

ECHO

ENQ - Enquiry

EOT

HALF-DUPLEX

INPUT EDITING

INTERFACE

MODEM

PARITY CHECK

directly into or out of memory independent
of the processor.

Device that processes one unit of
information at a time. It does not contain
its own local processing capability. 1In a
smart device this is typically accomplished
with a microprocessor.

Simultaneous two-way independent
transmission 1in both directions. Also
referred to as full-duplex.

A method of checking the accuracy of
transmission of data in which the received
data are returned to the sending end for
comparison with the original data.

A transmission control character used as a
request for a response, Control E.

End-of-Transmission, Control D,

A circuit designed for transmission in
either direction but not both directions
simultaneously.

When enabled, the backspace and delete key
are enabled and will affect the user's
buffer. When disabled, the keys are not
executed but are placed in the user's
buffer.

The Multiplexer card making possible

interoperation between the terminal/device
and the CPU.

A device that modulates and demodulates

signals transmitted over communications
circuits,

Addition of non-information bits to data,
making the number of ones in each grouping
of bits either always odd for odd parity or
always even for even parity. This permits
single error detection in each group.

PROTOCOL

TRANSMISSION LOG

VALID TERMINATOR

A formal set of conventions governing the
format and relative timing of message

exchange between two communicating
processes.

Length of buffer contents to or from the
MUX card.

End of data transfer, end of record, for
example a carriage return.

MULTIPLEXER Index

$DVTB
device driver address table, 4-15, 4-16
sample code, 4-27
table area I, 4-16

26XX screen mode device driver
DDV0O5, 4-4, B-1

7310 line printer device driver

A

A-register
interface driver, 4-9
interface driver returns, 4-8
Abort port's write or control request, 2-21

B

B-register
device driver, 4-11
interface driver returns, 4-8
return to interface driver, 4-11
Baud rate specification, 2-16
Baud rate generators
port specification, 2-15
Binary data reads
device driver EQT extent, 4-8
Black box
compatibility, 5-3
driver considerations, 5-3
handshaking, 5-3
HP support, 5-3
Break key action, 2-17
Buffer flush
abort ports write or control request, 2-21
buffer flush recovery example, 2-21
example, 2-21

Index-1

INDEX MULTIPLEXER

general, 2-21
remove buffer flush condition, 2-21

C

Case study
cursor position, 4-18
cursor tracking, 4-18
device driver writing example, 4-17
margin set up, 4-17
minor tasks, 4-18
task definition, 4-17
Channel transmission, 1-3
Clear extraneous commands
control 26B, 3-2
Common type-ahead modes, 3-4
Configure driver responses
break key action, 2-17
defining a device driver to this port, 2-18
example, 2-18
function code, 2-17
general description, 2-17
scheduling, 2-17
sending read configuration into the card, 2-18
specifying unique read request type, 2-18
type-ahead action, 2-17
type-ahead feature specification, 2-17
Continuation entry
device driver, 4-22
system abort request, 4-6
test, 4-22
Control request
buffer flush, 2-21
configure driver responses, 2-17
device initialization, 2-15
disable schedule, 2-20
dynamic status, 2-24
enable scheduling, 2-19
file manager format, 2-14
flush input buffer, 2-22
function codes, 2-14
general format, 2-13
required parameters, 2-14
restore output processing, 2-21
set port's ID, 2-15
set program address, 2-22
set read type, 2-23
set timeout, 2-20
Control request to the MUX, B-5

full type-ahead, 3-5
no type—-ahead mode, 3-5

Index-2

MULTIPLEXER INDEX

write request, B-5
Control word

general, 2-2

read request, 2-6

write request, 2-7
Cursor position

case study, 4-18
Cursor tracking

case study, 4-18

D

Data overrun error
read error, 3-9

Data transfers
packing, 4-2
parity, 4-2

DC1/DC2

andshaking, 5-2

DDVO5
block line mode, B-1
block mode terminal device driver, 4-4
block page mode, B-1
block read, 4-4
character mode, 4-4, B-1
control request definition, B-2
data transfers, 5-2
DC1l, DC2, 4-4
editing, 4-4
handshaking requirements, 5-2
I1/0 requests, B-2
line spacing, B-2
read requests, B-3
special I/0 considerations, B-3
status checking, 4-4
subchannel assignment, B-2
terminal driver, 5-2
update terminal configuration, B-2
user interface for 26XX terminals, B-1
write requests, B-3

DDV0O5 vs DVRO5
comparison, B-1

DDV12
carriage control, 4-4
changing device type, 4-4
control request processing, B-5
functional overview, B-4
limitations, 5-2
line printer driver, 5-2
line spacing, B-5
normal print mode, B-4

Index-3

INDEX

paper advance, B-=5
transparent mode selection,
transparent print mode,
write request processing, B-4
Device driver
26XX screen mode device driver,

7310 line printer device driver,

A-register,
adding device drivers,
B-register,

base page locations,

case study,

changing device type,

B-4

4-7
4-15
4-7
4-7
4-17
4-4

character mode, 4-4
concept,

4-1
continuation entry, 4-22

correct status, 4-3
customizing,

4-2

B-5

4-27

DDV0O5, 4-4

DDV12, 4-4

device address table, 4-15
device driver address table,
device driver writing example,
double buffering, 4-14
dynamic switching, 4-2
EQT, 4-3

EQT word 1, 4-8

EQT word 10, 4-7, 4-15

EQT word 14, 4-7, 4-15

EQT word 15, 4-15

EQT word 2, 4-8

EQT word 3, 4-8

EQT word 4, 4-8

EQT word 5, 4-13

EQT word 7, 4-14

EQT word 8, 4-14

EQT word 9, 4-7, 4-15

EQT words 2-4, 4-7, 4-8
EQT words 4-10, 4-7

EQT words 6-8, 4-7
equipment type code, 4-13

exit commands, 4-10

final completion return to the interface driver,
I/0 considerations,

4-5

interface driver concept, 4-1

location and size of device drivers,

modify EQT, 4-12

operation,

4-19

operation flow, 4-20

output a set up string to terminal,
perform the original user request, 4-25
read cursor position,

Index-4

4-

26

MULTIPLEXER

MULTIPLEXER INDEX

Read/Write control request considerations, 4-~5
request legality, 4-3
request types, 4-14
restrictions and requirements, 4-5
return routine, 4-25
sample listing, 4-27
sequence of actions, 4-19
set up device driver EQT extent pointer, 4-22
set up on first entry, 4-23
special sequences, 4-3
status definitions, 4-13
subchannel determination, 4-23
system abort request, 4-6
tasks, 4-3
transmission log, 4-3
unrecognized control request, 4-6
use, 4-1
user request, 4-3
user written device driver considerations, 4-5
valid labels, 4-16
writing example, 4-17
Device driver address table
$DVTB, 4-15
format, 4-16
general description, 4-15
valid device driver labels, 4-16
Device driver EQT extent
binary data reads, 4-8
general description, 4-8
pointers set up, 4-22
Device driver interface
general definition, 4-5
Device initialization
configure driver responses, 2-15
enable scheduling, 2-15, 2-19
set port ID, 2-15
Disable schedule
example, 2-20
general description, 2-20
DMA
interface driver, 4-3
Dumb device, 5-3
DVMOO
interface driver, 4-3
Dynamic status
character length of any TA data, 2-24
example, 2-25
general, 2-24
port's status, 2-24

Index-5

INDEX MULTIPLEXER

E

Enable scheduling
conditions, 2-19
example, 2-19
general description, 2-19
EQT
modify, 4-12
set up on first entry, 4-23
word 1, 4-8
word 10, 4-7, 4-15
word 14, 4-7, 4-15
word 15, 4-15
word 2, 4
word 3, 4-8
word 4, 4-8
word 5, 4-1
word 7, 4-1
word 8, 4-1
word 9, 4-7, 4
words 2-4, 4-7,
words 4-10, 4-7
words 6-8, 4-7
EQT set up on first entry
cursor position, 4-23
device driver, 4-23
sample code, 4-23
EQT word 10
device driver, 4-15
length of secondary buffer, 4-15
EQT word 14
device driver, 4-15
EQT word 15
device driver, 4-15
EQT word 4
subchannel, 4-12
EQT word 5
equipment type code, 4-13
equipment type code and status, 4-12
interface driver, 4-8
status definitions, 4-13
EQT word 6
double buffering, 4-14
request types, 4-14
EQT word 7
device driver, 4-14

EQT word 8
device driver, 4-14

Index-6

MULTIPLEXER INDEX

EQT word 9
address of secondary buffer, 4-15
device driver, 4-15
Equipment type code
EQT word 5, 4-13
Error checking
dynamic status, 3-7
failure analysis, 3-9
I/0 status, 3-7
I/0 status request returns, 3-8
Error recovery
general, 3-7
EXEC call
control word, 2-1, 2-2
from Assembly language, 2-8
from FORTRAN, 2-9
from PASCAL, 2-10
function code, 2-2
request codes, 2-1
Exit commands
device driver, 4-9, 4-10
error types, 4-9
new device driver request, 4-11

F

Failure analysis, 3-9
Final completion
return to the interface driver sample code, 4-27
Flush input buffer
example, 2-22
flush active, 2-22
flush all input buffers on that port, 2-22
general description, 2-22
Full type-ahead
example, 3-5
general description, 3-5
program scheduling, 3-5
Function 11
line spacing, B-2
Function 25
update terminal configuration, B-2
Function code
EXEC call, 2-2

H
Handshaking
DC1l, DC2, 5-1
enable/disable port for ENQ/ACK, 2-16

Index-7

INDEX

ENQ/ACK, 5-1
terminal, 5-2
HP supplied device driver
26XX screen mode device driver, B-1l
7310 line printer device driver, B-4
HP supplied drivers
DDV05, 4-4
DDv12, 4-4
Hung terminals, B-2

I

I/0 request
echoing, 2-4
editing, 2-4
general, B-2
terminators, 2-4
I/0 status
example, 3-7
general, 3-7
parameters, 3-7
request returns, 3-8
status word 4, 3-7
Interface definitions
A-register, 4-7
B-register, 4-7
base page location, 4-7
device driver, 4-7
EQT word 10, 4-7
EQT word 14, 4-7
EQT word 9, 4-7
EQT words 2-4, 4-7
EQT words 4-10, 4-7
EQT words 6-8, 4-7
general description, 4-7
Interface driver, 3-3
A-register, 4-3
A-register return, 4-8
B-register, 4-3
B-register return, 4-8
concept, 4-1
device address table, 4-15
device driver, 4-16

device driver EQT word 1 return, 4-8
device driver EQT word 2 return, 4-8
device driver EQT word 3 return, 4-8
device driver EQT word 4 return, 4-8
DMA, 4-3

DVMOO, 4-3

EQT word 5, 4-8
EXEC call handling, 4-3

Index-8

MULTIPLEXER

MULTIPLEXER INDEX

exit command, 4-9
memory requirements, 4-16
program scheduling, 3-3
read function modifiers, 4-10
request timer return, 4-8
return to the interface driver, 4-7
RTE, 4-3
status for user, 4-8
system abort requests, 4-6
transmission log, 4-3
use, 4-1
user request and continuation entries, 4-7
user transmission log return, 4-8
write function modifier bits, 4-10
write function modifiers, 4-10
Interface driver concept
device driver, 4-1
Interface driver tasks

general description, 4-2
interface control, 4-3

operating system interface, 4-3

L

Line printer

device carriage control, 4-4
Line printer driver

Dbv1l2, 5-2

M

Margin setup
case study, 4-17
Memory requirements
interface driver, 4-16
Minor tasks
case study, 4-18
Modems, 1-4
limitations, 5-4
session environment, 5-4
support, 5-4
Modes
normal mode, 3-1
type-ahead, 3-1
Multiplexer interface responsibilities, 4-2

Index-9

INDEX MULTIPLEXER

N

No type—-ahead mode

example, 3-5

general, 3-=5

standard RTE mode, 3-5
Normal mode

general description, 3-1

0

Operation flow
device driver, 4-20

Output a set up string to terminal
sample code, 4-24

Outstanding data, 2-22

Overflow error
error recovery, 3-7

P

Parity error
error recovery, 3-7
PASCAL
example, 2-10
PRMPT
program scheduling, 3-4
Program scheduling
B-register, 3-3
break key, 3-3
EQLU, 3-3
EQT word 4, 3-3
explanation, 3-3
normal break mode, 3-3
PRMPT, 3-4
programmatic setting, 3-3
RPN' 3-4
TRMLU, 3-3

RSPNS
program scheduling, 3-4
Re—-enable schedule
example, 2-20

Index-10

MULTIPLEXER

Read cursor position
device driver, 4-26
sample code, 4-26
Read errors, 3-9
Read function modifier interface driver, 4-10
Read function modifiers
bit field definitions, 4-11
read configurations, 4-11
Read redquest, 2-6
Request timer interface driver, 4-8
Request types EQT word 6, 4-14
Restore output processing
buffer flush recovery, 2-21
example, 2-21
general, 2-21
Return routine
device driver, 4-25
Return to interface driver
A-register, 4-9
B-register, 4-11
RTE interface driver, 4-3

SAM
$SDVTB, 4-16
Selected EQT definitions
equipment type code and status, 4-12
subchannels, 4-12
Set port ID ‘
baud rate, 2-15, 2-16
ENQ/ACK handshaking, 2-16
example, 2-16
function code, 2-15
general description, 2-15
number of bits/char, 2-15
port number, 2-16
stop bits, 2-16
Set program address
example, 2-23
general description, 2-22
scheduling an unsolicited interrupt, 2-22
Set read type

configure a read without executing a read request,

example, 2-23
general, 2-23
Set timeout
example, 2-21
general description, 2-20

2-23

INDEX

Index-11

INDEX MULTIPLEXER

Set up device EQT extent pointers
sample code, 4-22
Special considerations
binary transfers, B-3
character format, B-3
escape and unit separator treatment, B-3
screen reads, B-4
zero length reads, B-3
Standard RTE mode
no type-ahead, 3-5
Status definitions
EQT word 5, 4-13
Status for user interface driver, 4-8
Status word 4
I/0 status, 3-7
Subchannel determination

new request entry, 4-23
sample code, 4-23

System abort request
continuation entry, 4-6
EQT word 2, 4-6
EQT word 6, 4-6
general description, 4-6

System defined timeout
EQT word 14, 4-15

System or subsystem crashes

system abort request, 4-6

T

Table area 1
$DVTB, 4-16
Task definition
case study, 4-17
Terminal driver
DDV05, 5-2
Throughput, 1-3
Timeout clock
EQT word 15, 4-15
Timeouts
error recovery, 3-7
Transmission log
B-register, 4-11
Transparent mode selection, B-5
Type-ahead
action taken on available type-ahead data, 2-17
cancel type-—-ahead data, 2-17
description, 3-1
enable, 2-17
example, 3-2
schedule, 2-17

Index-12

MULTIPLEXER INDEX

Type—-ahead with flush on break mode
control function 27, 3-6
example, 3-6
general, 3-6

Type-ahead with scheduling
control function 27, 3-6
example, 3-6
general, 3-6

U

User transmission log
interface driver, 4-8
User written device driver considerations, 4-5

W

Write function modifier bits
read related fields, 4-10
Write modifier
interface driver, 4-10
Write request, 2-7
Write request processing
normal mode, B-5
transparent mode, B-5

Index-13

READER COMMENT SHEET

12792A MULTIPLEXER SUBSYSTEM
User’'s Manual

12792-90002 Update No. September 1980
(If Applicable)

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

FROM:

Company

Address

TTT—
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 141 CUPERTINO, CA.

— POSTAGE WILL BE PAID BY —

Hewlett-Packard Company

Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

ATTN: Technical Marketing Dept.

()

HEWLETT
PACKARD

MANUAL PART NO. 12792-90002
Printed in U.S.A. September 1980

HEWLETT-PACKARD COMPANY
Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

	000
	001
	002
	003
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	replyA
	replyB
	xBack

