MULTIPLEXER / MULTIPOINT INTERFACE DRIVER

EXTERNAL REFERENCE SPECIFICATIOH

Project # 1223

Greg Dolkas

5-25-80

MULTIPLEXER/7MULTIPOINT INTERFACE DRIVER ERS

1

2

o o s w

Table of Contents

OVERVIEW OF SUBSYSTEM . .

USER INTERFACE

» .

2-1 Control Request Definition 5
2-1--1 Function 6, Dynamic Status . . .
2-1--2 Function 20, Enable Schedule . .,
2-1--3 Function 21, Disable Schedule , .
2-1--4 Function 22, Set Timeout
2-1--5 Function 23, Buffer Flush
2-1--6 Function 24, Buffer Un-flush . .
2-1--7 Function 26, Flush Input Buffer .
2-1--8 Function 27, Set Program fAddress
2-1--9 Function 30, Set Port 1D,
2-1--10 Function 31, Open Line
2-1--11 Function 32, Close Line
2-1--12 Function 33, Configure Driver Responses .
2-1--13 Function 34, Set Port Parameters
2-1--14 Function 36, Set Temporary
2-1--15 Function 37, Set Read Type . . .
2-2 Input / Output Requests «
2-2-1 Keyboard / Display + « .+ .
2-2-2 Hotes on 1/0 requests ., . . . « . . .

DEVICE DRIVER INTERFACE . . .
Appendix 1 Modem Line Failure
Appendix 2 Type-ahead . . .

Appendix 3 System Generation
6-1 Sample Generation . . .

(H,P. INTERHNA

’ s) [3 Ll . ¢ ¢)

L . 2 ’ .) * v L

1 . ']] t 3 . 1
L .] ® * » . H .
s L} L] . L s [[})

[L} B . t 1] . . .

. L] [} s . . L s L

L USE OHNLY)

xxXvi

’
]
.
’
1
'
?
L}

v

Parameters

® w B e ®m e e » o & = o=

a & & & W & & & =

P N

- % & ®» w & =& ®w ‘e @ ®m & 2 = & & @« &8 = =

COVOVONNOGONU AN SO o

ity b
N -

4

—t
(78

18
20

23
23

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

o o e o e o R B 2 £ o e o o e

4
]

e - - - - o [————— A e L e

O e

OVERVIEY OF SUBSYSTEM CHAPTER 1 !

PO

e 1 o o

This document describes the interface driver for the 8-channel
Async Multiplexer and new Multipoint cards under RTE-I¥ B and
RTE-M. The driver supports RS-232C-like terminals and devices on
the Mux, and Multipoint terminals and devices (including FDL) on
MPT, and has an interface to personality modules (device drivers)
to allow customization of the driver,

Te the user this driver will appear somewhat similar to DVROO,
although much enhanced. Full duplex modems will be supported in
two modes and type-ahead buffering provided at the user’s option.

At this time harduware/firmware exists only to support the 12792a
Multiplexer in a hardwired configuration. All references in this
document to Modems or other interface cards should be ignored until
the hardware support exists., As these features are still under
development their specifications may change.

Block mode and peripheral devices are not supported by THIS driver.
These functions are performed by device drivers attached to this
driver, and are not covered in this document. Full support of FDL
may require a device driver.

(H.P. INTERNAL USE OHLY>
ii

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

+.,-...._..-. s e e et Wt v YED At HP Mt WDA WS GEY BT RS SO see Wnb WGBS Wd T SES SRS MeT MY S bt Ut SRS GWC ams vl RS WRC e S AmS wo Swe 4._. [U P e — .—-.‘.
! ! !
! USER INTERFACE ! CHAPTER 2 ;
] I

Fom e o o e e o e e e e o 2 o e e fom e e e e e +

This section describes the driver as seen by the user. It is
assumed that the resder is familiar with the general structure and
operation of the Real Time Executive (RTE) and its I/0 EXEC calls,

2-1 Control Request Definition

The various control requestsz accepted by this driver are detailed
as follows: ,

2-1--1 Function 6, Dynamic Status

Control function & returns the port’s status in the A register and
the character length of any typed-ahead data, if present, in the B
register. Unless altered by a device driver, they are defined as
follouws:

BIT 0: HNot used, always zerc

Bit 11 Program schedule enabled

Bit 2: Type-ahead data available (len in B reg)

Bit 3: Farity error or overflow detected on last reguest

Bit 4: Device failure <(e.g. Modem line douwn?

Bit S: EOT - control-D entered on last regquest

Bit 6: Break key hit

Bit 7: Last request timed out
IPRAM, if present, will be set to indicate the state of the card.
Possible status include the state of the modem contrel lines to
allow programatic monitoring and control of modem links, For the

Multipoint card the status is defined as follows:

(H.P. INTERNAL USE ONLY)
3

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

For the LINE {(given to an LU assigned to the HMPT lined:
| Bit 7: Modem line IC

Bit 6: Modem line S@

Bit S: Modem line DN

Bit 1: Modem line RR

Bit 0: Modem line CS

For a DEVICE {(given to an LU assigned to a device):
Bits 14-11: device priority
Bit 10: TCHAR timeout
Bit 9; Line Turn-around timeout
Bit 8: TSYH timeout
Bit 7: HNAK limit
Bit 6: RX WACK limit
Bit 5: SEL WACK limit
Bit 4: EHQ limit

All other bits zero, pending future enhancements.

o-{~--2 Function 20, Enable Schedule

Control function 20 (octal) sets a flag enabling the driver to
schedule a designated program (see control 27). Scheduling will
take place if the following conditions are met:

1. Scheduling is enabled

2, The program to be scheduled is dormant

3. The driver is not expecting data from that port
(a read operation is not in progress.)

4., The port is not in type-ahead mode and any key is hit

..OR_

The port is in type-ahead mode and the break key is
hit (see control 33 regarding type-ahead and the

¢H.P., INTERNAL USE ONLY)D
4

MULTIPLEXER/MULTIPOINT INTERFRCE DRIVER ERS

break key?’

Multipoint devices require that the "ENTER" or "BREAK" kevys be
pressed to initiate any transaction with the card.

2-1--3 Function 21, Disable Schedule

Control function 21 {(octal) resets the flag set by control 20.
Bhen a port is disabled, programs will not be scheduled, although
system attention will still be set if the port is the systenm
console, (The system conscle cannot be disabkled.) The schedule
enable flag defsults disabled at boot up time,

2=-1--4 Function 22, Set Timeout

Control function 22 {octal) sets the "last input” timer on that
port to the value of IPRAM. This timer specifies the number of
{0ms toc wait for a kevboard input., If this time is exceeded before
a user keyboard request completes, the driver sets bit 7 in the
terminal ‘s status byte and returns to the caller with a zero
transmission log, This call is roughly equivalent to the RTE *TO"
operator command.

2-{--5 Function 23, Buffer Flush

Control function 23 (octal) puts the port in the buffer flush
state. All subsequent write requests to the port are ignored until
either the queue of pending requests is empty or a read request
CEXEC 1) is encountered.

2-1-~-6 Function 24, Buffer Un-flush

Control function 24 {(octal) removes the port from the buffer flush
state., If the port is not in that state, the call deoes nothing.

2-1--7 Function 26, Flush Input Buffer

Control function 26 (octal) commands the card to clear any data
from the port s input buffer which might have accumulated in

type-ahead mode. The value of IPRAM indicates whether only the
active buffer (IPRAM=0) or all port buffers (IPRAM=1) shcould be

(H.P. INTERNAL USE ONLY>
5

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

cleared. HNote that this not the same as Buffer Flusht {(control
238>,

2-1--8 Function 27, Set Program Address

Control function 27 (octal) saves the value of IPRAM as the address
of the ID segment of the program to schedule (see control 20,213,
1f the value of IPRAM is zerc or negative program scheduling is
disabled regardless of function 20 {octal). This call overides the
value set at system generation time for this port. Care should be
taken that the address supplied is correct, and points to an 1D
segment which will not "move® (a permanent program2.

2~-1--9 Function 30, Set Port ID

Control function 30 (octal) creates a logical connection between
the logical unit to which it is directed and the physical terminal
connected to the interface, and configures the port., The value of
IPRAM is defined for the MUX card as follows:

Bits 0-2: Port {0-7) of this terminal

Bits 3-6: BaAUD rate: 0 = no change 8 = 1800
- i1 = 50 9 = 2400
2 =75 10 = 48040
3 =110 11l .= 9800
4 = 134,55 12 = 19200
S = 183 i3 = not defined
' & = 300 14 = not defined
-7 = 1200 15 = not defined

Note: 139200 BAUD is not supported on all & channels
simultaniously. A BAUD rate parameter of zero
results in no change to any of the terminal’s
parameters (BAUD rate, parity, stop bits, etc)

git 7: 1 = ENGAACK handshake enabled, 0 = not

Bits 8-9: Parity select: 0 none 2 = none
) =

add 3 even

reserved 2 =1 172 bits
1. bit 3 = 2 bits

Bits 10-11: # stop bits: 0
1

Bit 12: Baud rate generator for this port
Bit 13: Hot defined, should be zero

(H.P. INTERHAL USE ONLY)
6

MULTIPLEXER/MULTIPOINT INTERFRCE DRIVER ERS

Bits 14-15: # bits per char: 0 = § 2 =
i=7 3 =

Lol

The value of IPRAM for the Multipoint card is defined as follouws:

&=

Bits 0-7: Terminal’'s device ID (@-2)>

&FF
Bits 8-15: Terminal’'s group ID (6-2)

The line EQT is indicated by a special GIDA/DID defined by the card.

Function 30 must be issued before any other request is given to
that port. If other commands are sent they will be ignored, except
as noted below. In addition, the ID given should specify a unique
device on the 1/0 card. 'If a conflict exists the old assignment
will be overwritten.

To enable use of these cards for system console use, a regquest to
an un-initialized card (the SET TIME message, for example) will
simulate a CN, 1u,30B,0 and a CH,1u,34B,0 to that port. This will
make port 0 the system conscle at 9600 BAUD, no parity, 8-bit
characters with one stop bit (the default values for thecse
parameters) on the MUK, and terminal "@E@" on MPT.

2-1--10 Function 31, Open Line

Control function 31 {octal? estasblishes connecticon with a terminal
over a modem link. When issued, the interface raises Data Terminal
Ready and Request to Send, and waits for Data Set Ready, Clear to
Send, and Carrier Detect. UWhen all signals are present the regquest
completes. If IPRAM is not zero, the interface first waits for
Ring, then raises DSR and RTS.

IF the user program needs to wait for a valid line before
proceeding this request must be made to unbuffered ports. Conmplete
definition of the operation of this call hasz not yet been made.

2-1--11 Function 32, Close Line

Control function 32 {octal) causes a disconnect sequence on a
previously established modem link. The interface drops Data
Terminal Ready and Request to Send, and waits for Data Set Ready,
Clear to Send, and Carrier to drop. The "modem line down" bit is
then set in the status, and the call completes. A close line

(H.P. INTERNAL USE OHNLY)
7

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

request to an already down line, or te a hardwired link {(one never
*opened”) will be ignored.

2~-1--12 Function 33, Configure Driver Responses

Control function 33 (octal) sets various port parameters as

specified by IPRAM. The parameters set by this call configure the
driver and are not sent to the card. The bit fields are defined as
follouws: (All fields default to the 01 state at sustem boot time.?

Bits 15%14: These bits are used to control response to devicelline
failures. These include modem line down and Multipoint
timer or retry counter overflow. 01 = return EOT and go
into buffer flush mode (see control 23B); 10 = set device
down. If device is not set douwn, control éB will return
additional informatien regarding the failure.
see appendix 1 for a discussion of line failure and
recovery, 1If both bits are zero, no change is made
to their previous definition.

Bits 13&12: These bits define the type-ahead feature of the card.
8t = no type-ahead; system attention gained by hitting any
key vhen no read is pending. 10 = type-ahead; If data
is received without a pending read it is saved on the
card until such a request is made. System attention
is gained by BREAK key only, unless type-ahead
scheduling is enabled (see bits 11&10)., If both bits are
zero, no change is made.

Bits 11&10; These bits define the action to be taken when type-

ahead data becomes available., 01 = bit 2 is set in the
status; 10 = program scheduling is attempted and bit 2 is
set, If both bits are zero, no change is made.

Bits 948: These bits define the action to be taken when the BRERK
ey is hit. 01 = attempt program scheduling, if enabled;

N 3ﬁ = clear ALL port data, then attempt scheduling. If
«7"\ RS both bits are zero, no change is made, '
s

Bits 7-6: These bits control the sending of read configuration
information to the card., 01 = alwavs send on each EXEC
read operation, and on control 37B. 10 = only send via
control 37B or on command from the device driver. If both
bits are zero no change is made.

Bits S-4: The function of these bits has not been defined.
For compatibility with future products they should
be set to zero.

(H.P. INTERHAL USE ONLY)>
8

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

Bits 3-0: These bits define the device driver attached
to this port., Driver number 1 is a default driver
which passes all user requests directly to this driver.
Qther device drivers are defined at system generation
time., Exactly one device driver is attached to each
port at any time. If zero is entered, no change is made,

2-1--13 Function 34, Set Port Parameters

Control function 34 {octal) is the second of threes calls to set
port parameters. The parameters to be set by this call for the MPT
card are defined as follouws:

Bits 15-12: Device priority

Bits 11-8: not assigned, should be zero

Bits 7-6: poll type

Bit &: Auto select (1) or Hormal select (0)

Bits 4-1; strip LF, CR, RS, GS, respectively on input
Bit 0: append *ESC _* (an NDT) to write buffers

2-1--14 Function 36. .Set Temporary Parameters

Control function 36 (octal) allows the user to set additional card
parameters which are not to be restored after power-fail. These
parameters are not considered “configuration”, but do control the
operation of the card, For the Multipoint card they are defined as
follows:

Bits 15-13: definition of bits 12-0 a3s follows:
0t set modem control lines; bits 11-0 not yet defined

1: set timeouts: bit 12: 0 = report timeout, 1 = don’'t
bits 11-7: TCHAR
bits 5-0: 1line turn-around

2: set limits 1 bit 12: 0 = report overflow, | = don’t
bits 11-8: HNAK count
bits 7-4: RX TTD count
bits 3-0: RX WACK count

(H.P. INTERNAL USE OHLY)>
9

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

Overflow of above timers or counters result in the device returning
a bad status to the user and/or setting the device down, as
controlled by bits 15-14 of the driver configuration word {control
338>,

2-1--15 Function 37, Set Read Type

Control function 37 {octal) sends configuration information to the
card for use in subsequent read (EXEC 1) operations. Under normal
operation, this information is provided by the driver as directed
by the function field in the EXEC request (bits 104-6, defined
later?. This call provides a mechanism where the user can either
override the driver defined values, or configure a read operation
on the card without executing a read request {(useful in type-ahead
initialization). Hote that if bit 7 in the driver configuration
word (see control 33B) is not set, any read operation will reset
any values.set here. The parameters are defined as follous:

Bit 15: End transfer on <{CR> C(Mux only?
Bit 14: End transfer on <{RS5> CMux only)
Bit 13: End transfer on {ctri-D> (Mux only)
Bit 12: End transfer on <DC2> (Mux only)
Bit 1¥: not used, should be zero

Bit 10: not used, should be zero

Bit 9: Enable input data editing (Mux only)

Bit 8: Enable input data echo (Hux only)d

Bits 7-4: Read type: 1 = normal device pcll S5 = blocked group pell
2 = forced device pcll & = long term stats
(MPT only) 3 = Who Are You 7 = PCA parameters
4 = forced group poll € = upload

Bits 3-0: not assigned, should be zeroc

2-2 Input / Output Requests
The action taken by the driver in the processing of 1/0 requests
depends on the function code given in bits 10-6 of the user’'s EKXKEC

(H.P. INTERMAL USE OHLY)>
io0

MULTIPLEXER/MULTIPOINT INTERFACE DRIYER ERS

request ICHWD as follows:

2-2-1 Keyboard /7 Display

16 987 6 Action taken for READ request
0 00X O input editing enabled, echo off., end transfer
on <CR*» or CTRL-D
0 01 X0 input editing enabled, echo on if full duplex line
end transfer on {CR> or CTRL-D
000X 1 input editing off, echo off, end transfer
on buffer full
0 01 Xt editing off, echo on if full duplex line, end
transfer on buffer full
1 60X 0 editing off, echo off, end transfer on {CR>
10t X0 editing off, echo on if full duplex line, end

transfer on {CR>

* 1 % X % Special buffered transfer., Same as transfer with bit 9
set to zero, but data resident in card buffers past the
the end of the user buffer is not destroved and may
be accessed in subsequent transfers. Echo, edit, etc.
are defined by bits 6, 8, and 10 above.

10987 6 fiction taken for WRITE request

0 X ¥XXO0 end transfer on end of buffer, add CRALF if
last char in buffer is NQT "_*, "_* is not printed if
present.

0¥ X X1 end transfer on end of buffer, nothing added

1 XXX G0 end transfer on end of buffer, nothing added

(H.P. INTERNAL USE ONLY)
11

MULTIPLERER/MUL TIPOINT INTERFACE DRIVER ERS

2-2-2 NHotes on I/0 requests
For all I1/0 requests note the following:

zero length keyboard entries ({CR> only) are supported and return a
zero transmission log

1/0 transfers use character format setup by Control requests 30,34,
The terminal must be strapped accordingly.

If a Mux port was initialized for modem use in EOT mode (see ctrl 337
and the line goes down all write requests will be ignored and read
requests will immediately return as if a CTRL-D was entered (bits 3,
4 and 5 of status set and zero transmission log?

(H.P., INTERNHAL USE ONLY)
12

MULTIPLEXKER/MUL TIPOINT INTERFACE DRIVER ERS

L
4
m
<
Lol
O
m
o
x
-
<
m
x
-
z
]
m
A
Y
>
<y
m
Ao e
o
X
ol
o
-
m
X
Ol

A device driwver is responsible for interpreting a user regquest as a
series of interface driver commands. These commands are at an EXEC
level, such as "write this buffer" or "read 5 characters”. All
normal user requests are accessible to the device driver as well as
a few non-user callable requests., Using these requests, device
drivers may be written to support most current and future terminals
and devices. Note that device drivers can be written for
user-directed actions. Terminal initiated actions (hitting the
BREAK key, for example) are handled entirely by the interface
driver as directed by the parameters set by the driver
configuration control request (control 33B).

The device drivers used in this subsystem are subroutines which are
called by the interface driver on receipt of a new user request or
the completion of a previous device driver request. This mode of
operation is similar to the operation of the existing Multipoint
device subroutines, except that since they are called directly by
the driver the system overhead associated with their use is
removed., and the user can access them through the normal RTE
logical units.

Parameters are passed between interface and device drivers through
the A & B registers, and through the EQT. The device driver uses
the information given to set up a sequence of EKXKEC requests in the
EQT for the interface driver to execute, The device driver is
called with the following information:

A register, Bit 15: 1| = new user request, 0 = previous device driver
request complete

Bits 14-0: ARddress of device driver ERT extent
B register: Previous request transmission log, if any
EQT words 4-10 and 14 as per RTE definition

Device driver extent (pointed to by A) words 2-4 set to the current
user request (copied from EQT words 6-8 on each entry)d.

EQT words 9410 (READ/WRITE optional parameters) are available
to the device driver on new request entries (A bit 15=1), They
are not defined on other entries. If their contents is required

(H.P. INTERNAL USE ONLY)
13

MULTIPLEXER/MULTIPOINT INTERFACE DRIYER ERS

later, they should be copied to the device driver extent,

The device driver is given any EQT extent words not used by the
interface driver. Currently the interface driver uses 13 words,
plus 4 words for passing requests to/from the device driver, If a
device driver tequires the use of N words, the user must generate
that EGT with an N+17 word extension., HNote that no checking of the
extent size is possible. It is up to the user to assure that the
system has a large enough extent for the device drivers he plans to
use. For this chapter "Device Driver Extent" shall refer to that
which is pointed to by the A register, NHOT the EGT extension
pointed to by EQT 13,

On return to the interface driver, the device driver supplies the
following:

A register Bits 15-3: Function modifier

Bits 2-0: Exit command
B register: Request timer or user transmission log
EQT S, Bits ?-0: Status for user

Extent word 1: Physical record length for REGD if different
than user buffer length

words 2-4: EXEC request to be performed by the interface
‘driver, defined as per EQT words 6-8 (RTE)

The physical record length {(word 1) is used to prepare the Mux card
for binary data READ requests, where the device does not terminate
the record with a special character (CTU binary reads, for
example?, If this were not done, excess data could cause unwanted
program scheduling (user buffer shorter than data? or the read
operation would never complete (user buffer longer than data). If
this parameter is not set it defaults to the user buffer size.

The exit command is given to the interface driver to direct its
next action. The definition of the command is similar to the RTE
definition for drivers (the R register on exit through I.xx and
C.%xx%x), as follous:

Exit command if entered with new user request
(A register bit 15 = 1)

start request set in extent; B reg = device timer (-10°s ms)
user 1/0 request is illegal, give I0 error

user contrel request is illegal, ignore it

1/0 device is not ready, douwn it

user request has been completed; B register = xmit log

HOIN -
Hnnnn

CH.P. INTERNAL USE ONLY)>
14

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

S = start request (same as 0, above)

Exit command if entered after completion of previocus request
(A register bit 15 = 0)

user request complete; B register = xmit log
1/0 device is not ready, doun it

EGOT reached, douwn it

parity error, douwn it

timecut, down it

new request in extent; B register = timer

NE&LIN -
nuw W uan

Any status which is to be returned to the user on completion (& =
4/0) should be placed in EGT S bits 7-0.

The function modifier may be used to override the normal RTE
definition of the request function code {(extent word 2, bits 10-6),
It is defined for the following EXEC requests:

READ function modifier:
Multiplexer card:

Bit 15: end transfer on <{CR>
14: end transfer on <RS>
13: end transfer on {control-D>
12: end transfer on <DC2>
11: end transfer on when buffer is full
10: enable end on character (bits 15-12)
9: enable character editing (backspace, delete, etc)
8: echo received characters

Multipoint card:

7-4: Multipoint READ tuype, as follows:

normal poll S blocked group poll

= forced device poll 6 = long term statistics
Who aAre You ra PCA parameters
forced group poll 8 upload

WP -
nu

Bothi

3: if set and bits 15-5 are zero, current card
configuration will be used.

One or more of bits 15-12 must be "on" if bit 10 is "on"
Bits 15-12 and 10 are ignored if bit 11 is on

Bit 3 is used in conjunction with bits 15-8 of a previous
write request to remove unnecessary overhead in some cases.

(H.P. INTERNAL USE OHKHLY)>
15

MULTIPLEXKER/MULTIPOINT INTERFACE DRIYER ERS

WRITE function modifier:

Bit 1S: end transfer on {CR>
14: end transfer on <RS>
13: end transfer on <control-D>
12: end transfer on {DC2>
111 end transfer -on when buffer is full
10: enable end on character (bits 15-12)
9: enable character editing (backspace, delete, etc?
8: echo received characters
7: not defined, should be zero
6: write complete after acknowlege (MPT
5: disable ENRB/ACK handshake this xfer (MUXK)
4;: add CR/LF to buffer if last char is not *®*_*"
3: set to 1 if the overrides in bits 7-4 are to be used.
If zero, all of bits 7-4 should be zero.

Bits 15-8 on write requests are used to confiqure the card for an
upcomnring read request. This eliminates the "window" betueen .
writing and reading so that if the write triggers a response no
data will be lost. If bit 11 {(end-on-count? is set, the physical
record length should be set in extent word 1.

gince not all users require more than the simple interface driver
for their communications, a default device driver will be supplied
which passes all requests directly to the interface driver:

*
sk DEFAULT DEVICE DRI¥ER
*
DEFDD HNOP
SSA,RSS NEW REGUEST?
LDR EQT14,1 YES, S5ET TIMER
CLa START/COMPLETE REGUEST
JMP DEFDD,1 .+RETURN TO INTERFACE DRIVER

At boot-up time, the default device driver is attached to all
ports. The user may attach another device driver to any particular
port by a control request (33B). Each port may be assigned any
device driver which was generated into the system.

To find the correct device driver, the interface driver uses the
device driver number (given in the control request) to index into a
table of device driver addresses, This table is also generated
into the system, and must be supplied by the user if he writes his
own device drivers. All HP supplied device drivers will be
supplied with their address tables. This table has the following
format;

*

C(H.P. INTERNAL USE OHLY>
16

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

NAM $DVTB, S8 DEVICE DRIYER ADDRESS TABLE.
ENT $DVTB
EXT DVNNMI,..,,DVNMn

*
* DEVICE DRIVER ADDRESS TABLE
*
$DYTB DEC n OF ENTRIES IN TABLE
DEF DYHM{+0 ADDRESE OF DEYICE DRIYER 2
DEF...I' *0 -+ 1] L] L] ’ .] L) L4 * 3

DEF DVYHMn+0 ADDRESS OF LAST DEYICE DRIVER
END

The names of the device drivers may be any valid label, so long as
they do not confiict with any other symbol in the system. HNote
that the first device driver in the table is numbered ®*2". This is
because the value zero is reserved for "no change", and one is the
default device driver. Since the device driver number field is 4
bits wide, this allows the user to have the default and 14 other
device drivers in the system. MHNote also that there is no
restriction on how many devices a device driver may serve. There
need not be one device driver per supported device.

Since the device driver address table, and device drivers
themselves are called directly by the interface driver, they must
be resident within the same map. This poses a few restrictions on
the number and location of these modules, The interface driver is
currently about 1400 words, so up to 600 more words are left in a 2
page driver partition for the address table and the device drivers,
If this is not enough room either the driver partition can be
changed to 3+ pages, or modules may be placed in Table fArea I.
Enlarging the driver partition decreases the size of the user
partition, and using Table Area I will also decrease the size of
System Available Memory, so it is not recommended, but they are the
only places that are guarenteed to exist if the driver is mapped.
If the driver is generated in the System Driver RArea, more space is
available, but programg loaded Large Background will not be able to
use this driver unbuffered.

(H,P, INTERHAL USE ONLY)>
17

MULTIPLERKERA/MUL TIPOINT INTERFACE DRIVER ERS

Appendix 1 Modem Line Failure

PO
o
e o
r
)
-y
m
X
-8

When a communications line fails some action has to be taken to
insure that 1) recovery of the line is possible, 23 an interested
program is informed of the failure, 3) a dis-interested program is
not confused by the failure, and 4) the system is not brought to
its knees. R single solution to all of these requirements is not
possible given the current RTE system, its utility programs <(EDITR,
LOADR, -etc.) and the base of existing customer programs. The
following may help illustrate the problem:

Case 1: A customer has dialed into the {(one) phone line on his
computer to do some editing of a memo to be presented to the
staff the next day. After working on it for some time the
customer s dog accidentally kicks over the phone and the line
drops.

Case 2: A customer has dialed into one of many phone lines on
the computer through a master number. <(The lines are on a
rotary system which uses one number for many lines.) While
using the company’s payrol system the dog kicks over the phone
and the line drops. :

Considerations: The system is unattended.

In the first case the customer would like to be able to dial back
in and pick up right where he left of{ without loosing any data.

In the second case it is possible that if he dialed back in either
he would be assigned a different port by the phone rotary, anddor
somneone else could dial in and access his confidential payrcol data.
The customer would like the system to inform the payrol program of
the failure and log him off.

Currently, different RTE drivers respond differently to line
failures. Whenever there is a communications line failure, driver
pVALS informs RTE of the failure and downs the device, When a call
is received the device is UP'd and the outstanding request
restarted. The program never sees the line failure.

The multiplexer driver D¥S00 responds by aborting the request and
simulating .an EQOT. All subsequent requests are also flushed in the
same manner until the line is restored. FHGR and some utilities
respond to EOT the same as EX (/A, /E, etc) and abort, eventually

(H.P. INTERHAL USE OHLY)>
18

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

logging the user off.

Note that it is possible for a line failure to affect overall
system performance if driver response and program intelligence are
incorrectly matched., For example, in an EOT situation the RTE
editor, EDITR, responds with "??" and re-issues its proupt,
bringing the system to its knees until the line is restored.

It is also possible for a line drop to be missed by a program even
if the port has been set to log the user off. Should the progranm
not make any terminal 1/0 requests during the time the line is
down, it will never be notified of any change in the line status,
This problem can be minimized by checking the port’s status
periodically (similar to checking the BREAK bit with "IFBRK")
during periods of low terminal 1/0 usage. Should the "line down”
bit {bit 4) be set, the program can abort itself and return to
whoever called it, eventually logging the user off.

This driver will be able to respond to a line failure on Mux ports
in either mode at the user’s option. $Since the driver cannot .
predict how a user program will react to a2 line failure it is up to
the user to configure his port correctly, The concequences of
incorrectly specifying this should be stated in all related
documentation. .

fiction to be taken on modem line failure on Multipoint ports has
not been determined.

On boot-up the subsystem defaults to the "line closed" state. This
is done for two reasons: it forces the user to select a mode of
operation before using the line, and it prevents calls from being
answered while the port is in the process of being configured.

When initializing a modem port the last command given should open
the line (control 3iB)J.

1t should be noted that the existing RTE editor (EDITR)>, Session
Monitor user accounting program (ACCTS)>, BRSIC, and several other
subsystems respond incorrectly for an EQOT situation. They all
respond with an error message and re-issue a prompt. A suggested
solution could be to have a counter installed such that after
several consecutive EQT ‘s the program would terminate. ACCTS is
especially sensitive as it controls access to privileged system
data.

(H.P. INTERHAL USE OHNLY>
19

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

A oo = e B i > . 2 = S " S A U U S P e o e e S S
H
i Appendix 2 Type-ahead

O
)
I
g
o
=4
m
X
(&}

o i o o a8 e s o S o 2 B D e o S e e

Type-ahead is the ability of a system to accept data from the
user’'s terminal or device before it is asked for. The Mux card,
being buffered, can hold up to two lines of text in memocry without
needing a place in the system to held it. The two level HOST-CARD
protocol {(described in the IMS) allows the driver to hold off
receiving the data until a request from the user is given. This
mode has advantages over the current RTE operation preventing both
the loss of data and the annoying system prompts that keep popping
up during editing, debugging, etc.

fin additional advantage is that applications programs can make the
system appear more responsive to the user, increasing TOTAL <(human
included) throughput. This is done by having the application
program prompt the user for his next response before processing the
previous one. By the time the user has finished typing the systenm
will have caught up and can begin processing again., As long as the
processing takes less time than the typing, the user perceives
instant response time.

While in type-ahead mode, the driver leaves a read request pending
on the CARD <(not the EQT) at all times. This read allows the user
to enter data intoc the card even though the SYSTEM does not have a
read pending. . Upon receiving a receord, the card will interrupt the
host telling it that a buffer of data is available. If no request
has appeared on that port, a flag is set in the status and the
driver returns to the system waiting for something to happen. UWhen
the request is issued, the driver can get the data from the card
and return to the user,.

Since keyboard characters would be buffered on the card, system
attention cannot be gained by pounding on the terminal keys, The
BREAK key, however isn't buffered, and can be used for this
purpose. In addition, if type- ahead scheduling is enabled, the
user can enter a system command {(feollowed by a carriage return)
without first having to get system attention.

Since multi-line type-ahead is possible two different type-ahead
modes will be implemented. Full type-ahead, as described above,
would cause successive read requests to fetch successive lines of
text from the multiplexer card. This mode would be useful, for
example, for text editing, using DBUGR, etc. One could type as far
ahead of the data processing as allowed by available multiplexer

(H.P. INTERNAL USE ONLY)
20

MULTIPLEXER/MULTIPGINT INTERFACE DRIVER ERS

buffer memory <(two lines).

In situations where system response could radicaly alter a user s
next command { FMGR error messages, for example) a full multi-line
type-ahead may cause problems. The following may help illustrate
the problem:

User types... ST,.FILE.8
while tape is moving, user types:

PU,FILE .
tape runs out; system douwns device

User hits BREAK, system issues prompt and read

driver reads PU command from card buffer and system tries to
execute it.

In the above example, the user merely gets back an "OP CODE ERR*®
from the system the first time the request for system attention is
made. It is possible, however, for the commands stored on the card
to have a disasterous effect on the system,

& solutien to the above problem is to program the driver to cancel
all card data upon receiving 2 BREAK interrupt. This preserves the
multi- line type-ahead feature, and reduces the chance of data
being read by the wrong process.

another possible solution is for any “fatal' error message to the
user-be issued along with a Flush Card Buffers {(control 26B,1)
request. This will clear the extra commands before they can be
mis-read,.

For a description of the driver configuration options see control
33B.

Hote that the above forms of type-ahead are alsc useful in
non—-terminal device communication. The buffering on the card
eliminates the need for stacking two or three class read requests
on an LU to prevent data loss, thus reducing program size and
complexity, and the need for lots of SAM,

When data is available on the multiplexer card, and there is no
pending request to accept it, a bit will be set in the status word
and program scheduling attempted. Should the user program decide
it doesn‘t want the data, it can issue a input flush (control 26éB>
to remove the datas.

In the non—typé?ahéad made df‘opefatidh, the subsyétem will appear
to act the same as current RTE terminal drivers. The driver, when

(H.P. INTERNAL USE OHNLY)
21

MUL TIPLEXER/MUL TIPOINT INTERFACE DRIVER ERS

e

a port is inactive, will leave an "interrupt on any character” read
pending on the card so as to be informed when a key is struck. The
appropriate action (system attention, program schedule, etc) will
then be taken.

(H.P. INTERNAL USE ONLY)
22

MULTIPLEXER/MULTIPOINT INTERFACE DRIYER ERS

+——.‘—————.¢-~.————-—-—-—a————-———-————-——-————-‘—-——-—-—-—-————

H
H

e o o o o o S o S . (2 D S e . O O s w0

Appendix 3 System Generation

g orew eme -
[
I
X
-
L)
m
A
On

The generation of this driver into RTE is wvery similar to that of
other terminal drivers., Each HMultiplexer card may be assigned up
to 8 EQT“s {one per port), and each Multipoint card up to 128 C(one
per device, limited by RTE to 63). 0On system boot up, the WELCOM
file should contain control requests needed to initialize the
cards. It is at this time that the association between LU (i.e.
EQT? and physical port or device is made.

Each EGT to be used with this driver is assigned a card at
generation time by the select code degignated when EQT s are
entered. Any EGT on a particular card can be used for any port on
that card, but EQT’s cannot be moved from one card to another,

The size of an extent assigned an E@T is determined by adding the
size required by the interface driver (17 words) and the largest
required by any device drivers to be attached to that EQT. 1In the
sample generation below, this was 4 words, giving a total extent
size of 21.

6~-1 Sample Generation

The following are parts of a Multiplexer generation with two cards
in select codes 21422 (16 ports), and a device driver which
emulates DYROS subchannel 0 {(keyboard/display).

e

+ RELOCATION SECTION

sk

REL,%DYMDOQ::133 * 127924 MUY DRIVER

REL, %PYMO00::133 * 127924 MUX PRE-DRIVER
REL,%DDV¥12::133 * DEVYICE DRIVER FOR 7310 PRINTER
REL,%DDV05::133 » DEVICE DRIVER FOR 26XX SCREEN MODE
REL,%$DVTB::433 « DEVICE DRIVER ADDRESS TABLE

f 3 .

* PARAMETER DEFINITION SECTION

*

PYM00,13 | % FORCE PRE-DRIYER TO TABLE AREA I1I
L

* EQT DEFINITION SECTION

(H.P. INTERNAL USE OHLY)
23

MULTIPLEXER/ZMUL TIPCINT INTERFACE DRIVYER ERS

*

21,DVM00,B,X=21,T=32767 % EGT 21 - CARD 1 PORT

21,DYM00,B, X=21,T=32767 * EQT 22 - CARD 1 PORT
21,DVM00,B,X=21,T=32767 * EQT 23 - CARD 1 PORT
21,DVM00,B,X=21,T=32767 » EQT 24 - CARD 1 PORT
21,DYM00,B,X=21,T=32767 * EQT 25 - CARD 1 PORT

21,DVYM00,B,X=21, T=32767 * EQT 26 - CARD 1 PORT
21,DVM00,B,X=21,T=32767 % EQT 27 - CARD 1 PORT i
21,DYM00,B, X=21,T=32767 * EQT 28 - CARD 1 PORT o

* §7¥

22,0YM00,B,X=21,T=32767 * EQT 29 - CARD 2 PORT @6&
22,DVYM00.B,X=21,T=32767 * EQT 30 - CARD 2 PORT W
22,0VM00,B,X=21,T=32767 * EQT 31 - CARD 2 PORT
22.,0VM00,B,X=21,T=32767 * EQT 32 - CARD 2 PORT
22,0VM00,B,X=21,T=32767 * EQT 33 - CARD 2 PORT
22,DYM00,B,X=21,T=32767 * EQT 34 - CARD 2 PORT
22,DYM00,B,X=21,T=32767 »* EQT 35 - CARD 2 PORT
22,DVYM00,B,X=21,T=327&7 * EQT 36 - CARD 2 PORT

*

LOGICAL UNIT DEFINITION SECTIOHN
*

21 * LU 19 - MUX PORT
22 * LU 20 - MUX PORT
23 * LU 21 - MUX PORT
24 * LU 22 - MUX PORT
25 * LU 23 - MUX PORT
26 * LU 24 - MUX PORT
27 « LU 25 - MUX PORT
28 * LU 26 - MUX PORT
29 * LU 27 - MUX PORT
30 * LU 28 - MUX PORT
31 * LU 29 - MUX PORT
32 * LU 30 - MUX PORT
33 * LU 31 - MUX PORT
34 * LU 32 - MUX PORT
35 * LU 33 - MUX PORT
36 * LU 34 -~ MUX PORT
o

*

w INTERRUPT TABLE DEFINITION

»

21,PRG,PRMPT * 18T MUX CARD
22,PRG,PRNPT * 2ND MUK CARD

The cards are initialized at boot-up time by a sequence of control
requests in the WELCOM file. These requests configure each port to
the correct character format, BAUD rate, etc. and assign it to an
EQT in the system, The following is a sample part of a WELCOM file
which initializes each port to 9600 BAUD, no parity, one stop bit,

(H.P. INTERNAL USE OHLY)
24

MULTIPLEXER/MULTIPOINT INTERFACE DRIVER ERS

ENQ/ACK handshake enabled, attaches device driver 3 (the 286XX
screen mode driver), and puts the port in type-ahead mode with full
cancel on BREAK., Port 7 on the second card is configured for a
7310 lineprinter (device driver 2)

:CN,19,30B, 1423308 Lot
:1CN,20,30B,152331B e
:CH,21,30B, 1523328 -Y N
:CN, 22,308, 1523338 ey e
1CN, 23,308, 1523348 e
1CN, 24,308, 1523358

1CN, 25,308, 1523368 Je
:CN, 26,308, 1523378 R
:CN,27,30B, 1423308 ¢
:CN,28,30B, 1523318 .
:CN,29,30B, 1523328 R
:CH,30,30B, 1523338 o
:CN,31,30B, 1523348 A
:CN,32,30B, 1523358 o
:CN, 33,308, 1523368 PR o ’
1CN,34,30B, 1523378 S RV B R I
:CN,19,338,230038 o

:CN,20,33B,23003B

L4

ETC DA FON MgseE
' A PR R N T W NS I
. - N A hl oo T
:CN, 33,338,23003B L R S
:CH,34,33B,2 d oo ')
:CH, 19,208 | : N
2CH;23;2QB ,— ¥ 51 j,’;g' ; E;";/ ‘-;‘) Y og e

ETC

:CH, 33,208
:CN, 34,218

{H.P. INTERNAL USE OHLY)>
25

TERMINAL BlLocK 12946 - 60008
12792.A Mux SYSTEM WORK AREA TERMINAL CoriN,
RDPB AI7T—BLK P S— - Al < BEN [g 0ATA oul
sog Aq | BLIWAT, > RED lo pATA TN
[:‘ ______._Ygﬁ_.n cA Cﬁah
3 e ORN | -
scg ga o TERML B N E cBlres
RCD 817 SRHD L o GRN 1y crnp
[BLK] ai),
— L L | — = L xXigCltk &
RD? A30| _BRN e — 1T T - = T 7F BRN
sby Alo | BRN/wHL . ______ReD : |
| rermL 1 <} L R B
IBRRN E .
23 S’:‘Z 8RN/ WHT, GRN 8 CONNECTORS
ToTAL
——— L—-—
RD2 AlI8 RED ?__~———'.~_—-_? N l ‘
- - TERML 2 <[-
'c 18 IRED aund)
ey SEHEERla . cenn | .
RD3I AZT| ORN sty S S—
SD3 A31|oRN/WHT
- TERML 3 < T
Re3 A28 coup | —
an— L———n
Ro # B29| YEL < By S S A
sp4Y Bz20 YELZur,._ ! - S——
' | [‘_“ TERML # < I
Rc4 B2g [VEI.E I 8 A —
SC¥ B31, - e
RDS A3s5] _GRN 4_—_""“""‘_-“"“—(“““‘
SDS B3¥| GRAN/WAT, ‘
' CTERML S [.
sScy 835 Fe] {8/ |
_ L —
RDE B37|BLW T TIT - T T T T T T
sDé B832|BLufwHT, AR——
TERML 6 ([
| Rc 6 B3? % E —
SCé& B33 [Biu/wHTING GRND -
— L
RD7 A37l_VIo T T T T T T T
Spo7 B36| GRA
| . 7 E AT'ERML 74'—'—‘“ "
vIO . S
Be7 A%ITzaar—, <rnp | ____-..
—_ b

E_.J* ;.%rg}'!ﬁs ‘wh’!t"‘ LCB"J-P,’

Rkd— 7/ / %0

DEX2555222252522> BASICLY FINAL {4 {<KK
COMBINED MUK / DVROS EMULATOR DRIVER

EXTERNAL REFERENCE SPECIFICATION

Project # 1223

Greg Dolkas

4/21/80

BASICLY FINRL COMBINED MUX/DVYROS EMULATOR DRIVER ERS
Table of Contents

‘ OVERVIEH OF SUBSYSTE" 1] 1] L] L . L ’ L] . 1 1] A . L) 2 ’ 3 L] .

2 USER INTERFACE + . « « .+ . .
2-1 Subchannel Assignment '

2-2 Control Request Definition . '
2-2-1 Kevboard/Display Subch# .

2 2-1-1 Function 6, Dynamic Status .

Function 11, Line Spacing . .
Function 20, Enahle Schedule .
Function 21, Disable Schedule .
Function 22, Set Timeout
n

' .
1 .
L] .

.- = e .

Cy - - -

Function 23, Buffer Flush ., .
Function 24, Buffer Un-flush
Function 25, Update Terminal Config
Function 26, Flush Input Buffer
Function 27, Set Program Address
Function 30, Set Port 1D
Function 31, Open Line
Function 32, Close Line
Function 33, Configure Driver Resp
sette Tape Units, Subch‘s t1&2
Function 0, Unlock Keyboard . .
Function 1, UWrite File Mark . .
Function 2, Backspace Record . .
Function 3, Forward Space Record
Function 4, Rewind
Function 5, Rewind, . .
Function 6, Dynamic Status . . .
Function 10, UWrite EOF if not jus
Function 13, Foward Space File
0 Function 14, Backspace File .
1 Function 26, Write End-of-Data
2

rat

0

« & 8 T e ow e oo owoe e s o

]
.
&
L]
[}
s
1
L

U

d‘l\)N NNNNNNNNNNNM NMPJNNNNNMNNNN

nse

I L A T

N B WK -

v
N
U

a

Function 27, Locate File . ., .

-‘X --—-moova*-m.p-wm-m---~«ooo-qmm4num

-1-
-1-
-1~
-1~
-1=-
-1~
-1-
-1-
el
-1-
-1-
-1
-1-
c
-2-
-2~
-2~
-2-
-2-
-2-
-2-
-2~
-2~
-2~
-2-
-2-
A
-3~
-3~

e T
£
]

L T - T T T T T | T S 1 S I S T)
LI . T T~ o . T T T | I . T O T

AWN—-D NNNNNNNNNNNNNNMNNNNNMNNNMMNMN

m
T T T T T

2-2- u Printer Subch#%# 4 . . .,
Function 6, Dynamic Status . . .

- 2 Function 11, Line Spacing

2-3 Input /7 Output Requests « . . . « «
2-3- Keyboard / Display s e e e
2-3- CTU Requests, Subchannels 1&2 G e e
2-3- Printer Requests, Subchannel 4
2-3- Notes on 170 requests + . « « .+ .

3 Appendix 1 Modem Line Failure , . . .,+ .+ . . .
4 ﬂppend ix 2 Type*ahead L T T R S S T S R T TR A S SR T S S
S5 Appendix 3 System Generation . . ., 0 . 4

{H.P. INTERNAL USE QHLY)>
XX1iv

(]

WOONNNSNNNNNGOODARNANS D

BASICLY FINAL COMBINED MUX/DYROS EMULATOR DRIVER ERS

S5-1 Sample Generation «

(H.P., INTEENAL USE ONLY>
XXV

BASICLY FINAL COMBINED MUX/DYROS EMULATOR DRIVER ERS

PREFACE

This document describes the 2iMKX RTE driver developed for the new
asynchronous terminal multiplexer card,

The scope of this document is the driver as perceived by the user,
fi detailed description of the driver-hardware interface and

internal structure of the driver is contained in the Mux/Multipoint
INS.

{H,P, INTERMAL USE ONLY)
ii

BASICLY FINAL COWMBIMED MUX/DYRIS EHULATOR DRIVER ERS

o o o o e s ot e B W = = 2 . D " o~ S > o~ s st 7 s i e

o o o o 1 o o e o o o o T G P o S P D i] o 1 7 T s

S S §
!

OVERVIEW OF SUBSYSTEN CHAPTER i i

O

.................. +

This project will release a software driver which will provide
DYROS level terminal support on the 127924 Async, Multiplexer
under RTE-M and RTE-IVB. The subsystem will fill the need for a
high performance terminal subsustem on these machines and largely
replace the 12920B/91731A and to some extent the 12966 terminal
systens,

Support will be given for the full line of HP terminals in beth
character and block mode. RAccess to CTU, and Aux Printer
subchannels will be available through logicsl units separate from
the display/kevboard as in DVYRGS operation. A "dumb" mode is .
provided to "turn off" the DVROS handshaking and support older HP
and other manufacturer ‘s terminals,

The purpose of this driver is to provide a system/user interface
with the firmware on the 1/0 card, and to provide the card with
terminal device dependent information (Escape seq’‘s, etc), A
modular approach is taken with the objective of acheiving the
flexibility needed to support current and future HP terminals.
This approach will also provide the performance needed to support
many (32+) terminals and avoid the throughput problems of the
12920B MUX.

The layout of the user I/0 and Control calls are designed to be
roughly compatible with DYROS. 8Since this subsystem will be able
to support a far wider range of terminal capabilities, differences
are inevitable. In addition, no effort has been made to emulate
any DVYROS undocumented "features”.

Augmenting the DYROS-level capabilities are additional features
including type-shead, and full modem control, each independently
programmable for each port. —

(H.P., INTERNAL USE OHNLY)
3

BASICLY FINAL COMBINED MUX/DYROS EMULATOR DRIVER ERS

o e +
!
USER INTERFACE CHAPTER 2 !

e . - T G Y S B W " - o W . o — —— - - s - . v — - —

[O

I
i
i
o e o e o o e e o e e o e o e e o e o e e i e e e e +

This section describes the driver as seen by the user. It is
assumed that the reader is familiar with the general structure and
operation of the Real Time Executive (RTE) its EXEC calls, and RTE
drivers DYR0O and DYROS/DVADS.

2-1 Subchannel Assignment

Distinction between the various peripheral devices attached to a
terminal on a Mux port is done by assigning each device a different
EQT subchannel. A different logical unit is assigned to each
subchannel when the system is generated or on-line via operator
request. Each subchannel operates as an independent device (within
the limits of RTE?> and only accepts commands designated as wvalid
for its use. The user, therefore, cannot set terminal port
parameters when talking to the left CTU, even though it is
physically in the same terminal, The peripheral devices =upported
are accessed as follous:

SUBCH# (ocfal) CONTROLLED DEWICE / USE

S I o T e O ED CHP TEC D NP SES a NaP CHD NS GME WD S G CKD Ll GRS G O S S S G S i e S A D e D e S . o 0 - ——

1] Terminal Display/Keyboard 1/0, Control, & Status
Port configuration, modem control
Driver/RTE interface control

1 Left CTU 1/0, Control, & Status
2 Right CTU I1/0, Control, & Status
4 Aux. Printer Output, Control, & Status

Each request returns with the A register and EQT status word set to

indicate the results of the request (see control & for each
subchannel),

(H.P. INTERNAL USE ONLY)»
4

BASICLY FINAL COMBINED MUX/DVYROS EMULATOR DRIYER ERS

2-2 Control Request Definition

The various control requests accepted by this driver perform the
following functions based on which subchannel they are directed.
Some requests require additional data which is passed to the driver
through the EXEC optional parameter IPRAM, All control requests
are via EXEC ICODE=3,.

2-2-1 Keyboard/Display Subch# 0

Subchannel 0 controls the terminals keyboard input, display output
and control functions, requests for their status, and all

parameters related generally to that port. The various requests
are detailed as follows:

2-2-1-1 Function 6, Dynamic Status
Control function 6 returns the displav/kevboard status in the A
register and also sets it in the EQ@T status word as follows:
BIT 0: Not used, set to zero
Bit 1; Program schedule enabled
Bit 2: Type-ahead data available
Bit 3: Parity error or overflow detected on last request
Bit 4: Modem line down <modem links only)
Bit 5: EOT - control-D entered on last request
Bit 6: Power failed during/after last request

Bit 7: Last request timed out
2-2-1-2 Function 11, .Line Spacing

Control function 11 (octal) sends a number of CR/LF ‘s to the
terminal’s display as determined by the value of the optional
parameter. A maximum of 63 lines can be spaced in one request.
Any value greater than that will truncated module 64. @A zerc or
negative line count results in one CRAZLF sent. This reqguest is

{H.P. INTERHNAL USE ONLY)
S

BASICLY FINAL COMEBRINED MUXA/DVROS EMULATOR DRIVER ERS

ignored if the port was initialized in "dumb” mode.

2-2-1-3 Function 20, Enable Schedule

Control function 20 {octal) sets a flag enabling the driver to
schedule a designated program (see control 27)., Scheduling will
take place if the following conditions are meti:

1. Scheduling is enabled

2. The program to be scheduled is dormant

3. The driver . is not expecting data from that port (a

keyboard read operation is not in progress.?
4, The port is not in type-ahead mode and any key is hit
OR

The port is in type-ahead mode and the break key is
hit {see.control 32 regarding type-ahead and the
break key)

2-2-1-4 Function 21, Disable Schedule

Control function 21 {octal) resets the flag set by contreol 20,
When a port is disabled, programs will not be scheduled, although
system attention will still be set if the port is the system
console., (The system console cannot be disabled.? The schedule
enable flag is defaults to disabled at boot up time.

2-2-1-5 Function 22, Set Timeout

Control function 22 {octal) sets the "last input” timer on that
port to the wvalue of IPRAM. This timer specifies the number of
10ms to wait for a keyboard input. If this time is exceeded before
a user keyboard request completes, the driver sets bit 7 in the
terminal ‘s status byte and returns to the caller with a zero
transmission leog. This ¢all is roughly equivalent to the RTE "T0"
operator command.

2-2-1-6 Function 23, Buffer Flush

Control function 23 (octal) puts the port in the buffer flush
state. All subsequent write requests to the port are ignored until
either the queue of pending requests . is empty or a read request
(EXEC 1) is encountered,

(H.P. INTERNAL USE OHLY)
6

BASICLY FINAL COMBINED MUX/DYROS EMULATOR DRIYER ERS

2-2-1-7¢ Function 24, Buffer Un-flush

Control function 24 {(octal) removes the port from the buffer flush
state. If the port is not in that state, the call is ignored.

2-2-1-8 Function 25, Update Terminal Configuration

Control function 25 {octal’ causes the driver to read the strap
settings on HF terminals, This information is used by the driver
to assure correct terminal handshake when doing block reads, etc.
on HP terminals. This call is ignored if the port has been
initialized in "dumb" mode (see control 33B} to allow compatibility
with other types of terminals.

2-2-1-9 Function 26, Flush Input Buffer

Control function 26 {octal) commandsz the card to clear any data
from the port’'s input buffer which might have accumulated in
type-ahead mode. The value of IPRAM indicates whether only the
active buffer (IPRAMN=0) or all port buffers (IPRAM=1) should be
cleared. HNote that this not the same as Buffer Flush {(control
23B).

2-2-1-1¢ Function 27, Set Program Address

Control function 27 {octal) saves the value of IPRAM as the address
of the ID segment of the program to schedule (see control 20¢,21).
1f the value of IPRAM is zero or negative program scheduling is
disabled regardless of function 20 (octal), This call overides the
value set at system generation time for this port. Care should be
taken that the address supplied is correct, and points to an ID
segment which will not "move" (a permanent program).

2-2-1-11 Function 30, Set Port 1D

Control function 30 (octal) creates a logical connection between
the logical unit to which it is directed and the physical terminal
connected to the interface, and configures the port. The value of
IPRAM is defined as follouws:

Bits 0-2: Port # (0-7) of this terminal

(H.P. INTERNAL USE OHNLY)
?

BASICLY FINAL COMEBINED MUX-/DYROS EMULATOR DRIVER ERS

Bits 3-6: BAUD rate: 0 = no change & = 1800
i =50 9 = 2400
2 =75 10 = 4800
3 =110 11 = 9600
4 = 134.5 12 = 19200
5 = 150 13 = reserved
6 = 300 14 = reserved
7 = 1200 15 = reserved

A

Note: 19200 BAUD is not supported on all 8 channels
simultaniously. A BAUD rate parameter of zero
resuits in no change to any of the terminal’s
parameters (BAUD rate, parity, stop bits, etc?

Bit 7: 1 = EHNG/ACK handshake enabled, 0 = not
Bits 8-9: Parity select: 0 = none 2 = none
1 = odd 3 = even
Bits 10-11: # stop bits: ¢ = reserved 2 =1 172 bits
1 =1 bit 3 = 2 bits
Bits 12-13: not defined, should be zero
Bits 14~15: # bits per char: 0 =5 2 =6
1 =7 3 =8

Function 30 must be issued before any other regquest is given to
that port, If other commands are sent they will be ignored, except
as noted below. In addition, the ID given should specify a unigue
device on the 1/0 card., If a conflict exists the old assignment
will be overwritten,

To enable use of these cards for system conscle use, a request to
an un-initialized card (the SET TIME messzage, for example) will
simulate a CN,1u,30B,0 to that port., This will make port 0 the
system console at 9600 BAUD, no parity, 8-bit characters with one
stop bit (the default values for these parameters).

2-2-1-12 Function 31, Open Line

Control function 31 {octal) establishes connection with a terminal
over a modem link. WWhen issued, the interface raises Data Terminal
Ready and Request to Send, and waits for Data Set Ready, Clear to
Send, and Carrier Detect, When 2ll signals are present the request
completes, If IFRAM is not zero, the interface first waits for

(H.P, INTERHAL USE ONLY)
8

BASICLY FINAL COMBINED MUX/DVROS EMULATOR DRIYER ERS

Ring, then raises DSR and RTS.

IF the user program needs te wait for 3 valid line before
proceeding this request must be made to unbuffered ports., Complete
definition of the operation of this call has not yet been made.

2~-2-1-13 Function 32, Close Line

Control function 32 (octal) causes a disconnect sequence on a3
previously established modem link. The interface drops Data
Terminal Ready and Request to Send, and waits for Data Set Ready,
Clear to Send, and Carrier to drop. The "modem line down® bit is
then set in the status, and the call completes. #A close line
request to an already down line, or to a hardwired link (one never
*opened"? will be ignored.

2-2-1-14 Function 33, Configure Driver Responses

Control function 33 (octal) sets various port parameters as

specified by IPRAM. The parameters set by this call configure the
driver and are not sent to the card. The bit fields are defined as
follows: (All fields default to the 01 state at system boot time.)

Bits 15&14: The function of these bits has not been assigned. For
compatibility with future products they should be set to 0.

BPits 13&12: These bits define the type-azhead feature of the card,
01 = no type-ahead; system attention gained by hitting any
key when no read is pending. 10 = type~-ahead; 1f datas
is received without a pending resd it is saved on the
card until such a request is made. System attention
is gained by BREAK key only, unless type-ahead
scheduling is enabled (see bits 11&10). If both bits are
zero, no change is made.

Bits 11&10: These bits define the action to be taken when type-

ahead data becomes available., 01 = bit 2 is set in the
status; 10 = program scheduling is attempted and bit 2 is
set. If both bits are zero, no change is made.

Bits 9%8: These bits define the action to be taken when the BREAK
key is hit., 01 =.attempt program scheduling, if enabled;
10 = clear ALL port data, then attempt scheduling. 1If
both bits are zero, no change is made.

Bits 7-6: The function of these bits has not been assigned. For
compatibility with future products they should be set te 0.

C(H.P. INTERNAL USE OHLY)
9

BASICLY FINAL COMBINED MUX/DYRO5 EMULATOR DRIVER ERS

Bits S5-4: These bits define whether the port is in *smart" (DYR0S)
or “dumb® {DVRG0) mode. 0i = smart, i0 = dumb. Unce a port
has been used in dumb mode the driver type (EGT 4) is set
to 00", and all subchannels become equivalent to subch 0,
The port may NOT be returned to "smart” mode once changed.

Bits 3-0: The function of these bits has not been assigned. For
compatibility with future products they should be set to 0,

2-2-2 Cassette Tape Units, Subch’'s 1&2

Subchannels 1 and 2 control access to the 264x-series CTU's,
Requests made to these subchannels on ports initialized in "dumb"
mode are equivalent to those made to subchannel 0., If the request
is made to subchannel {1, it is directed to the left CTU, while
subchannel 2 is used for the right CTU, All requests return with
CTU status in the A register and in EQT word 5> for examination.
The transmission log on all requests is set to zero., CTU control
requests are defined as follous:

2-2-2-1 Function 0, Unlock Keyboard

Control function 0 sends an ESC-b to the terminal to unlock its
keyboard. This function is not normally called by the user but is
used bv the svstem’'s ahort processing.

2-2=-2-2 Function 1, Write File Mark

Control function 1 commands the terminal to record an End-of-File
mark at the current tape position. The tape is left after the file
mark.

2-2-2-3 Function 2, Backspace Record

Control function 2 commands the terminal to move the tape back one
record., If the tape is currently at load point the request will be
ignored,

CH.P, INTERHMAL USE OHLY)
10

BASICLY FINAL COMBINED MUX/DVROS EMULATOR DRIVER ERS

2-2-2~4 Function 3, Forward Space Record

Control function 3 commands the terminal to move the tape foward
one record.

2-2-2-5 Function 4, Rewind

Control function 4 commands the terminal to rewind the tape to load
point.

2-2-2-6 Function 5, Rewind
Control function § is exactly the same as function 4.
2-2-2-7 Function 6, Dynamic Status

Control function & causes the driver to request the status of the
CTU defined by which subchannel the request is directed to. The
status is formatted as follows, and is placed in bits 7-0 of EQT
word S5 and in the A register as the call completes.

Bit 0: 1 = Cartridge not inserted or unit busy

Bit 1: 1 = Tape positioned at end-of-data (EGD>

Bit 2: 1 = Lartridge write protected, #Attempts to write on the
tape will result in the device being set down.

Bit 3: 1| = Last request aborted or rejected

git 4: 1 = Hard error encountered

o
oo
o
(4]
-l
]

Tape positioned at End-of-Tape (EOT?
Bit 6: 1 = Tape positioned at load point

Bit 7: 1 = Tape positioned at a file mark (EOF)
2~-2-2-8 Function 10, Write EOF if not just written
Contrel function 10 {octal) commands the terminal to write an

{H,P, INTERHAL USE ONLY)
11

BASICLY FINAL COMEINED MUX/DVYROS EMULATOR DRIVER ERS

end-of~file mark (EOF) at the current position on the tape unless
the tape is currently at an EOF mark or at lcad point.

2-2-2-9 Function 13, Foward Space File

Control function 13 {(octal) commands the terminal to move the tape
after the next EOF mark., If the tape is currently at an EOF mark
this request is identical to a forward space record request.

2-2-2-10 Function 14, Backspace File

Control function 14 {cctal? commands the terminal to move the tape
back before the previous EOF mark., 1If the tape is currently at
load point, the request is ignored.

2-2-2-11 Function 26, UWrite End-of-Data

Control function 26 {octal? commands the terminal to write an
end-of-data mark at the current tape postion. This marks the place
bevond which data may be written but not read. :

2-2-2-12 Function 27, Locate File

Control function 27 {octal) commands the terminal to postion the
tape before the first record of the file number given in IPRAM,
The wvalue of IPRAM must be 0<{=IPRAM{=255, or the reguest will be
rejected (ignored).

2-2-3 Aux, Printer Subch# 4

Subchannel 4 is used to contrel the auxilary printer on 264x series
terminals., Hote that these requests will not work with the HP 2&21
optional printer, and are made to subchannel 0 if the port was
initialized in "dumb” wmode.

2-2-3-1 Function 6, Dynamic Status
Control function é causes the driver to request the status of the

(H.P. INTERNAL USE ONLY)
12

BASICLY FINAL CORBINED MUX/DYROS EMULATOR DRIVER ERS

printer from the terminal., This information is formatted as
follows and returned in the A register., It will also be saved in
EQT word 3. .

Bit 3: Last command aborted/rejected
2-2-3-2 Function 11, Line Spacing

Control function 11 {octal) sends a number of CRALF ‘s or a form
feed to the printer as determined by the value of IPRAM.

IPRAM > 0 # of CRALF ‘s sent
IPRAN = O one CR/LF
IPRAN < O one form feed

Note that printers not equiped with form feed capability will not
respond to such requests,

2-3 Input /7 Output Requests

The action taken by the driver in the processing of 1/0 requests
depends on which subchannel is being accessed and the function code
specified in the EXEC call from the user. Bits 10 through & of the
EXEC ICNWD define the function code for the request as follows:

2-3-1 Keyboard / Display

10 987 ¢ Action taken for READL request

e S G - . S - - - - — G - - D > GO - - . —-—————— -

000XGG input editing enabled, echo off, end transfer
‘on <CR>, <RS> or CTRL-D

001 X0 input editing enabled, echo on if full duplex line
end transfer on {CR>, <RS> or CTRL-D

000X 1 input editing off, echo off, end transfer
on buffer full

0 01 X1 editing off, echo on if full duplex line, end
transfer on buffer full

1 00XO0 editing off, echo off, end transfer on {CR> or (RS>

(H.P. INTERNAL USE ONLY)>
13

BASICLY

101

110

FINAL COMBINED MUX/DYROS EMULATOR DRIVER ERS

editing off, eche on if full duplex line, end
transfer on <CR>» or {RS)>

program initiated screen read; force short block
handshake (DCi-datal. Only used in smart mode.

Special buffered transfer. Same as transfer with bit 9
set to zero, but data resident in card buffers past the
the end of the user buffer is not destroyed and may

be accessed in subsequent transfers. Echo, edit, ete.
are defined by bits 6, 8, and 10 above. Only used in
"dumb” aode.

Action taken for WRITE reguest

- . ———p—— — - ——— - - - Y P - ———— - —_— T — G — g " - - - - —— > . =" b in G w—

x
x

end transfer on end of buffer, add CR/LF if

last char in buffer is NOT *_*, *_* is not printed if
present, ‘

end transfer on end of buffer, nothing added

end transfer on end of buffer, nothing added

CTU Requests, Subchannels 1%2

fiction taken for READR requests

- - - - — A —— - - G —— ——— - - -~ — - — G W - - ——— o —— — - " e - -

2-3-3

10 9 8

ASCII transfer,; one record read from current tape position

BINARY transfer, one record read from current position

Action taken for WRITE requests
ASCII transfer, end xfer on buffer end or {CR>

Binary transfer, end xfer on buffer end

Printer Requests, Subchannel 4

7?6

Action taken for WRITE requests

(H.P. INTERNAL USE OHNLY)
14

BASICLY FINAL COMBINED MUX/DYROS EMULATOR DRIVER ERS

XX X ¥ ¥ ASCII1 transfer, end xfer on buffer end, add CR/LF if lazt
char is NOT *_%; "_%" is not printed if present

2-3-4 Hotes on 1/0 requests
For all 1/0 requests note the fellowing:

zero length keyboard requests {<{CR> only) are supported and return a
zero transmission log

1/0 transfers use character format setup by Control request 30.
The terminal must be strapped accordingly.

ESC and US characters are NHOT stripped as is done under DVROS.

Binary type transfers from the display may not be used when in
block mode.

Block mode of any kind (ENTER, softkeys, etc) cannot be used in
"dumb"” mode.

In character mode, the {RS> character is equivalent to {CR>
If a line or page of display memory is to be read via ESC-d (not with

the ENTER key) the user MUST issue a read with a function code of
3000B.

{H.P. INTERNAL USE OHLY)
1S5

BASICLY FINAL COMBINED MUX/DYROS EMULATOR DRIYER ERS

o e e o e e R o o e o e B S B O o o o ot e o o o e >t = e +
! ! !
i Appendix 1 Modem Line Failure ! CHAPTER 3 !
1 ! !
e o o o e B . S O D 20 0 S A B B S o O P o o ot o o o o e +

When a communications line fails some action has to be taken to
insure that 1) recovery of the line is possible, 2) an interested
program is informed of the failure, 3> a dis-interested program is
not confused by the failure, and 4> the system is not brought to
its knees., A single solution to all of these requirements is not
possible given the current RTE system, its utility programs (EDITR,
LOADR, -etc.) and the base of existing customer programs. The
following may help illustrate the problem:

Case 1: A customer has dialed into the <(cne) phone line on his
computer to do some editing of a memc to be presented to the
staff the next day. After working on it for some time the
customer ‘s dog accidentally kicks over the phone and the line
drops.

Case 2: A customer has dialed intc one of many phone lines on
the computer through a master number. (The lines are on a
rotary system which uses one number for many lines.) While
using the company ‘s payrel system the dog kicks over the phone
and the line drops.

Considerations: The system is unattended.

In the first case the customer would like to be able to dial back
in and pick up right where he left off without loosing any data.

in the second case it is possible that if he dialed back in either
he would be assigned a different port by the phone rotary, and/or
someone else could dial in and access his confidential payrol data.
The customer would like the system to inform the payrol program of
the failure and log him off.

Currently, different RTE drivers respond differently to line
failures. Whenever there is a communications line failure, driver
DVYAOS informs RTE of the failure and downs the device. When a call
is received the device is UP‘d and the outstanding request
restarted. The program never sees the line failure.

The multiplexer driver DV¥S00 responds by aborting the request and
simulating an EOT. All subsequent requests are also flushed in the
same manner until the line is restored., FMGR and some utilities
respond to EOT the same as EX (/A, /E, etc) and abort, eventually

(H.P. INTERHAL USE OHLY)
16

BASICLY FINAL COMBINED MUX/DYROS EMULATOR DRIVER ERS

logging the user off.

Note that it is possible for a line failure to affect overall
system performance if driver response and program intelligence are
incorrectly matched. For example, in an EOT situation the RTE
editor, EDITR, recsponds with "??" and re-issues its prompt,
bringing the system to its knees until the line is restored,

It is also possible for a line drop to be missed by a program even
if the port has been set to log the user off. Should the progranm
not make any terminal 1/0 requests during the time the line is
doun, it will never be notified of any change in the line status,
This problem can be minimized by checking the port’'s status
periodically (similar to checking the BREAK bit with "IFBRK")
during periocds of low terminal 1/0 usage. Should the "line douwn"
bit ¢(bit 4) be set, the program can abort itself and return to
whoever called it, eventually legging the user off,

This driver will be able to respond to a line failure on Mux ports
in either mode at the user’‘s option. Since the driver cannot .
predict how a user program will react to a line failure it is up to
the user to configure his port correctly., The concegquences of
incorrectly specifying this should be stated in all related
documentation,

Aiction to be taken on modem line failure on Multipoint ports has
not been determined.

On boot-up the subsystem defaults to the "line closed" state. This
is done feor tuwo reasons: it forces the user to select a mode of
operation before using the line, and it prevents calls from being
nswered while the port is in the process of being configured,

Iﬁ;zﬁ initializing a modem port the last command given should ;EEE::]7

/ the line (control 318).

(/_‘_.—.__
It should be noted that the existing RTE editor (EDITR), Session
Monitor user accounting program (ACCTS), BASIC, and several other
subsystems respond incorrectly for an EOT situation. They all
respond with an error messsge and re-issue a prompt. A suggested
solution could be to have a counter installed such that after
several consecutive EQOT’'s the program would terminate, ACCTS is
especially sensitive as it controls access to privileged system
data.

(H.P. INTERNAL USE OHLY)
17

BASICLY FINAL COMBINED MUX/DYROS EMULATOR DRIVER ERS

o o o o e e e R e o e e o —————————— +
! !]
1 Appendix 2 Type-ahead i CHRPTER 4 i
! ! t
o e o e e e o O 2 e e e i +

Type-ahead is the ability of a system to accept data from the
user ‘s terminal or device before it is asked for. The Mux card,
being buffered, can hold up to two lines of text in memcory without
needing a place in the system to hold it. The two level HOST-CARD
protocol (described in the IMS) allows the driver to hold off
receiving the data until a request from the user is given., This
mode has advantages over the current RTE operation preventing both
the loss of data and the annoying system prompts that keep popping
up during editing, debugging, etc.

An additional advantage is that applications proagrams can make the
system appear more responsive to the user, increasing TOTAL (human
included) throughput. This is done by having the application
program prompt the user for his next response before processing the
previous one. By the time the user has finished typing the systenm
will have caught up and can begin processing again. As long as the
processing takes less time than the typing, the user perceives
instant response time,

While in type-ahead mode, the driver leaves a read request pending
on the CARD (not the EQT> at all times. This read allows the user
to enter data into the card even though the SYSTEM does not have a
read pending. Upon receiving a record, the card will interrupt the
host telling it that a buffer of data is available. If no request
has appeared on that port, a flag is set in the status and the
driver returns to the system waiting for something to happen. UWhen
the request is issued, the driver can get the data from the card
and return to the user.

since keyboard characters would be buffered on the card, systenm
attention cannot be gained by pounding on the terminal keys, The
BREAK key, however isn’t buffered, and can be used for this
purpose. In addition, if type- ahead scheduling is enabled, the
user can enter a system command (followed by a carriage return)
without first having to get system attention.

Since multi-line type-ahead is possible tuwco different type-ahead
modes will be implemented. Full type-ahead, as described above,
would cause successive read requests to fetch successive lines of
text from the multiplexer card, This mode would be useful, for
example, for text editing, using DBUGR, etc. One could type as far
ahead of the data processing as allowed by available multiplexer

(H.P. INTERNAL USE ONLY)
18

BASICLY FINAL COMBINED WMUX/DYROS EMULATOR DRIYER ERS

buffer memory (two lines).

In situations where system response could radicaly alter a user’s
next command (FMGR error messages, for example) a full multi-line
type~-ahead may cause problems, The following may help illustrate
the problem:

User types. .. ST,FILE.8
while tape is moving, user types:

PU,FILE
tape runs out; system douns .device

User hits BREAK, system issues prompt and read

driver reads PU command from card buffer and system tries to
execute it,

In the above example, the user merely gets back an "0OP CODE ERR*
from the system the first time the request for svstem attention is
made, It is possible, however, for the commands stored on the card
to have a disasterous effect on the system.

A solution to the above problem is to program the driver to cancel
all card data upon receiving a BREAK interrupt. This preserves the
multi~- line type-ahead feature, and reduces the chance of data
being read by the wrong process.

Another possible solution is for any "fatal" error message to the
user be issued along with a Flush Card Buffers (control 26B,1>
request. This will clgar the extra commands before they can be
mis-read,

For a description of the driver configuration options see control
33B.

Note that the above forms of type-ahead are also useful in
non-terminal device communication, The buffering on the card
elininates the need for stacking two or three class read requests
on an LU to prevent data loss, thus reducing program size and
complexity, and the need for lots of SaM.

When data is available on the multiplexer card, and there is no
pending request to accept it, a bit will be set in the stastus word
and program scheduling attempted. Should the user program decide
it doesn’t want the data, it can issue a input flush (control 26B>
to remove the data.

In the non-fypé?ahéad mode bf'opefafibn, the subs?étém will appear
to act the same as current RTE terminal drivers. The driver, when

(H.P., INTERNAL USE ONLY)
19

BASICLY FINAL COMEINED MUX/DVROS EMULATOR DRIVER ERS

a port is inactive, will leave an "interrupt on any character” read
pending on the card sc as to be informed when a key is struck. The
appropriate action (system attention, program schedule, etec) will
then be taken.

{H.P, INTERNAL USE ONLY)
20

BASICLY FINAL COMBINED MUX/DVROS EMULATOR DRIVER ERS

o e a8 it o s oo o o e e e o e +
i ! !
i Appendix 3 System Generation ! CHAFTER S H
}] |
o o o o o v o e e e B . 0 e 0 0 o o 0 o o o o N +

The generation of this driver into RTE is wvery similar to that of
other terminal drivers, Each Multiplexer card may be assigned up
to 8 EGT’s (one per port). On system boot up, the WELCOM file
should contain control requests needed to initialize the cards. It
is at this time that the asscciation between LU (i.e. EGT) and
physical port or device is made.

Each ERGT to be used with this driver is assigned a card at
generation time by the select code designated when EGT’s are
entered. @any EQT on a particular card can be used for any port on
that card, but EQT’s cannot be moved from one card to another.

5-1 Sample Generation

The following are parts of a Multiplexer generation with two cards
in select codes 21422 (16 ports).

o

: RELOCATION SECTION G PARARETER INPWT §EETICN
REL, #DVM05: 1133 * MUX DRIVER PVMER 13
REL, ZPYM0O: :133 % MUX PRE-DRIVER x
*

%« EQT DEFINITION SECTION

L 3

21,DYMOS, B, X=21,T=32767 * EQT 21 - CARD 1 PORT
21,DYM05,B,X=21,T=32767 %« EGT 22 - CARD 1 PORT
21,DVHOS, B, X=21,T=32767 * EQT 23 - CARD 1 PORT
21,DVMOS,B,X=21,T=32767 « EQT 24 - CARD 1 PORT
21,DYM05,B,X=21,T=32767 * EQT 25 - CARD 1 PORT
21,DYMO5,B,X=21,T=32767 * EQT 26 - CARD 1 PORT
21,D¥YMO5,B, X=21,T=32767 « EQT 27 - CARD 1 PORT
21,DVMOS,B,X=21,T=32767 « EQT 28 - CARD 1 PORT
3

22,DVYM05,B, X=21, T=32767 * EQT 29 - CARD 2 PORT
22,DVMO05,B, X=21, T=32767 + EQT 30 -~ CARD 2 PORT
22,DYM0S, B, X=21,T=32767 * EQT 31 - CARD 2 PORT
22,DVM05,B,X=21,T=32767 « EQT 32 - CARD 2 PORT
22,DYMO05,B, %=21, T=32767 * EQT 33 - CARD 2 PORT

{H.P. INTERHAL USE OHNHLY)
21

BASICLY FINAL COMBINED MUX/DVROS EMULATOR DRIYER ERS

22,D¥M0S5,B,X=21,T=32767 * EQT 34 - CARD 2 PORT
22,D¥NM05,B,X=21,T=32767 * EQT 35 - CARD 2 PORT
22,0¥M0S,B,X=21,T=32767 * EGT 36 - CARD 2 PORT
*

* LOGICAL UNIT DEFINITION SECTION

*

21 * LU 19 - MUX PORT
22 * LU 20 - MUX PORT
23 * LU 21 -~ MUX PORT
24 * LU 22 -~ MUX PORT
25 * LU 23 -~ MUX PORT
26 * LU 24 - MUX PORT
27 * LU 25 -~ HUX PORT
28 * LU 26 -~ MUX PORT
29 * LU 27 - MUX PORT
30 * LU 28 - MUX PORT
31 * LU 29 -~ MUX PORT
32 * LU 30 - MUX PORT
33 *« LU 31 - MUX PORT
34 * LU 32 - MUX PORT
35 * LU 33 - MUX PORT
36 * LU 34 - MUX PORT
*

21,1 LU 35 - LEFY CTU
21,2 * LU 36 - RIGHT CTU
22,1 * LU 37 - LEFT CTU
22,2 * LU 38 - RIGHT CTU
22,4 * LU 39 -~ PRINTER

* :

* INTERRUPT TABLE DEFINITION

*

21,PRG,PRNPT * 1ST MUK CARD
22,PRG,PRMPT * 2ND MUX CARD

The cards are initialized at boot-up time by a sequence of control
requests in the WELCOM file, These requests configure each port to
the correct character format, BAUD rate, etc., and assign it to an
EQT in the system. The following is a sample part of a WELCOM file
which initializes each port to 9600 BAUD, no parity, one stop bit,
ENG/ARCK handshake enabled, and puts the port in type-ahead mode
with full cancel on BREAK,

:CN,19,30B,142330B

:CN,20,30B,1823318B

:CN,21,30B, 1823328

1CN,22,308, 1823338 \ ror Coblc céwﬁ%*mgfam, # 1
[

:ﬁH;23.303;1£?334B , C;uﬂ?uuz gert: o
:CN, 24,308, 1423358 9eet bauk , re panit, 1step o
{CN, 25,308, 1423368 Eult/fck hasdsboke

pPe vt T[>

C(H.P. INTERNAL USE OHNLY)>
22

BARSICLY FINAL COMEBINED MUX/DVROS EMULATOR DRIVER ERS

:CN, 26,308,
:CN, 27,308,
:CN, 28,308,
tCN,29,30B,
:CN,30,30B,
:CH, 31,308,
:CN,32,30B,
tCN, 33,308,
:CH,34,30B,
:CH, 19,33B,
:CN,20,33B,

ETC

:CN, 33,338B,
:CH,34,338B,

3CN: ’9; 20B
:CH,20,20B

ETC

:CN, 33,208
:CH, 34,208

1E§3373}
1423308
1823318B
1423328 £ r,
1423338) Fovr Coble cowtigumaliod
1423348
1423358
1423368
1823378
230068
230008

1

c,....gf-sw al_#}uw hwfen.;c,g

S | W

230008
230008 _J

‘Yr Eha—b""’ mm}mlas
J
B
)

(H.P., INTERNAL USE OHLY)
23

	001
	002
	003
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	_001
	_002
	_003
	_004
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	_12
	_13
	_14
	_15
	_16
	_17
	_18
	_19
	_20
	_21
	_22
	_23

