HEWLETT E PACKARD

ive III

Real-Time Execut
Software System
g and Operating Manual

rogrammin

Real-Time Executive 111
Software System

Programming and Operating Manual

i

HEWLETTW PACKARD

v HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed in U.S.A. 7/76

PART NO. 92060-90004

LIST OF EFFECTIVE PAGES

Changed pages are identified by a change number adjacent to the page number. Changed information is indicated by a
vertical line in the outer margin of the page. Original pages do not include a change number and are indicated as change
number 0 on this page. Insert latest changed pages and destroy superseded pages.

Change 0 (Original), Jul 1976

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1976 by HEWLETT-PACKARD COMPANY

il

DOCUMENTATION MAP

START
DOS-RTE
RTE-IlIl General Belocatable
Information Manual Library —ﬂ
92060-90009 Ref. Manual
24998-90001
RTE-Ill: A Guide ' 21MX HP FORTRAN IV
for New Users Operator's Manual Reference Manual |
92060-90012 < 02108-30004 5951-1321
YOU
RTE-Ill Programming GEEE
" i | and Operating Manual]
gTE ||/|t|| On-Line 99060.90004 language HP FORTRAN
Re?era or Manual or Reference Manual |
933(;%13%0;8 ua RTE-Il Programming 02116-9015
and Operating Manual
92001-93001
ALGOL
‘ Reference Manual
A 4 02116-9072
RTE Interactive . m RTE Operating System
h Batch-Spool M RTE U ’ .
Eﬁcgﬁ)ura:?eference Ref:renggoMar?LTalltlor Progra::gy 'l\)llr;\r/‘%r; and Subroutines
92060-90014 92060-90013 92060-90017 92200-93005
RTE ASSEMBLER
[p{ Reference Manual [
92060-90005
Multi-User
Real-Time BASIC
P Reference Manual P
92060-90016

quick reference

+

RTE and BSM
Pocket Guide
92060-90010

error messages

—

iiifiv

TABLE OF CONTENTS

Section

| GENERAL DESCRIPTION
Introduction
Hardware
Software
Memory Management
Addressing .
Maps . .

System Map

User Map

Port A Map

Part B Map
Physical Memory .
Logical Memory .

System Description .
Multiprogramming .o
Memory Resident Program Area
Disc Resident Program Area (Partitions)
Base Page
Common .

Real-Time and Background Common
Subsystem Global Area
Memory Protection .

Program Types
Memory Resident Programs
Disc Resident Programs

System Command Program ($$CMD) .

Assembler .
FORTRAN
FORTRAN IV
ALGOL .
Interactive Editor (EDITR)
Relocating Loader
On-Line Generator
SWTCH .
DEBUG . .
Disc Resident Program Slze
Subroutines
Program Scheduling .
Time Scheduling .
Priority Level . . .
Program Initiation and Swappmg

1-2

. 14

1-4
1-4
1-4

1-6
1-6
1-6
1-7
1-7
1-7

1-7
1-7
1-7
1-7

1-7
1-7
1-7
1-7
1-8
1-8
1-8
1-9
1-9
1-9

Section

I (cont)

I

Input/Output Control
Interrupt Processing .
Privileged Interrupt .
Input/Output Processing
Class Input/Output Operations
Logical Unit Lock

Resource Management .

Executive Communication

Operator Requests

System Configuration
System/Auxiliary Discs
Peripheral Discs

RTE-III System Summary .

OPERATOR REQUESTS
Introduction
Command Structure
Command Conventions
AB

BL

BR

DN . . .

EQ (status)

EQ (buffering)

FL

GO

IT

LG

Ls
LU (assignment) .
LU (reassignment)
OF

ON

PR

RU

RT

SS

ST

TI

™

Contents

Page

1-9

1-9
. 19
. 1-10
. 1-10
. 1-10
. 1-10
. 1-10
. 1-11
L 1-11
. 1-11
. 1-11
. 1-12

2-1
2-1
2-1
2-2
2-3
2-3
2-3
2-4
24
2-5
2-5
2-6
2-6
2-7

2-7
2-8
2-8
2-9

. 2-10
. 2-10
. 2-11
. 2-13
.2-13

RTE-II

CONTENTS (Continued)

Section Page Section Page
II (cont) 111 (cont)
TO . 2-13 Error Messages. . 3-38
8 . 2-14 Error Codes for Disc Allocatlon Cal]s . 3-38
System Command Program ($$CMD) . .2-14 Error Codes for Schedule Calls . 3-38
Error Messages .2-14 Error Codes for I/O Calls . . 339
Error Codes for Program Management . . 339
Error Codes for Logical Unit Lock Calls . 3-39
I EXEC CALLS

Introduction 3-1 IV REAL-TIME PROGRAM PREPARATICN 4-1
Error Return Point 3-1 Part 1 RTE FORTRAN . 4-3
Assembly Language Format 33 FORTRAN Reference . 4-3
FORTRAN/FORTRAN IV Format 3-3 Compiler Operation . 4-3
ALGOL Format . 33 RU,FTN/FTN4 4-3
Read/Write 34 Messages to Operator 4-4
Control Word . .o 3-5 FORTRAN Format . 4-4
A- and B-Register Returns . 3-5 FORTRAN Control Statement 4-4
[/O and Swapping 3-6 Program Statement . 4.5
Re-Entrant [/O 3-6 Data Statement 4-6
Class I/O — Read/Write . 36 External Statement . 4-6
[/O Control . 3-10 Pause & Stop Statements 4-7
Control Word . . 3-10 ERRO Library Routine . 4-7

Class 1/O — Control . . 3-12
Class I/O — Get . 3-13 Part 2 RTE ALGOL . 4-9
Buffer Considerations . 3-14 ALGOL Reference 49
A- and B-Register Returns . . 3-14 Compiler Operation . 4-9
I/O Status . . 3-15 RU,ALGOL 4-9
Disc Track Allocatlon . . 3-18 Messages to Operator . 49
Disc Track Release-Program Tracks . 3-19 ALGOL Format . . . 4-10
Disc Track Release-Global Tracks . 3-20 ALGOL Control Statement L 4-11

Program Completion . 3-21
Program Suspend . 322 Part3 RTE ASSEMBLER . . 4-13
Program Segment Load . 3-23 Assembler Reference . 4-13
Program Schedule . 3-24 Assembler Operation . 4-13
Optional Parameters . 3-25 RU,ASMB . . 4-13
Time Request . . 3-26 Messages to Operator . 4-13
String Passage . . 327 Assembler Control Statement . 4-14
Timed Execution (Inmal Offset) . 3-29 NAM Statement . .4-15

Run Once . . 3-29
Run Repeatedly . . . 330 Part 4 RTE RELOCATING LOADER . . 4-17
Go Dormant; Then Run . 330 LG Track Area . 4-18
Timed Execution (Absolute Start Tlme) . 331 Program Relocation . . 4-18
Run Once . . 332 Program Disposition . 4-18
Run Repeatedly . . 332 On-line Modification . 4-18
Program Swapping Control . 3-33 Limitations . 4-19
Resource Management (Resource Segmented Background Programs . 4-19
Numbering) . . 3-34 New Program Addition . .4-19
Allocate Options . . 3-35 Program Replacement . 4-20
Set Options . 3-35 Program Deletion . 4-20
Logical Unit Lock . 3-36 Common Allocations . 4-20
No Abort Bit . . 3-36 Loader Operation . 4-20
Partition Status . 3-37 RU,LOADR . 4-20

vi

Section

Part 4

CONTENTS (Continued)

opcode Parameter (Parameter 3) .

(cont) fimt Parameter (Parameter 4) .

Part 5

Loading the Binary Code
Loader Rescheduling
GO,LOADR (Program Relocat1on)
input option Parameter
library Parameter
Matching Externals .
End of Loading
Loader Operation (On- Lme Edlt)
Loader Rescheduling (On-Line Edit)
GO,LOADR (On-Line Edit)
RTE DEBUG Library Subroutine
LOADR Error Messages
Warning (W) Message
L Error Messages .
Additional Messages .
No Blank ID Segments .
Duplicate Prog Name — name
Waiting for Disc Space .
Undefined EXTS .
Load .
Set PRGM Inactlve
Load Lib

RTE RELOCATABLE LIBRARY
Re-entrant Subroutine Structure
Privileged Subroutine Structure .
Format of Privileged Routine
Utility Subroutine Structure .
Re-entrant I/O
Other Subroutines
Binry
Parse Subroutme .
Binary to ASCII Conversmn Subroutmes
Message Processor Interface
Interrupting LU Query .
Parameter Return Subroutines
Indirect Address Subroutine .
Break Flag Test Subroutine
First Word Available Memory
Subroutine .
Current Time Subroutlne .
Buffer Conversion Subroutine
Recover Parameter String .

Page

.4-21
. 4-22
. 4-22
. 4-22
. 4-22
.. 423
T 423
. 4-23
424
. 424
. 4-24
. 4-24
. 4-25
. 4-25
. 425
. 4-25
. 426
. 4-26
. 4-26
. 4-26
. 4-26
. 4-26
. 426
. 4-26

. 4-27
. 427
. 4-27
. 4-28
. 4-28
. 4-28
. 4-29
. 4-29
. 4-29
. 4-30
. 4-30
. 430
. 4-31
. 4-31
. 4-31

. 432
. 432
. 4-32
. 4-32

Section

Part 6

VI

SEGMENTED PROGRAMS

RTE ALGOL Segmentation

RTE FORTRAN Segmentation .
RTE Assembler Segmentation

Part 7- MULTIPLE TERMINAL OPERATION

Multiprogramming
Multitasking
Operation

System Conﬁguratmn

REAL-TIME INPUT/OUTPUT
Software I/O Structure
The Equipment Table
Device Reference Table
The Interrupt Table . .
General Operation of I/O Processor
Standard I/O Calls
Power Fail . . .
Driver Structure and Operatlon .
Initiation Section
Completion Section .
I/0 Controller Time-Out
Driver Processing of Time-Out
System Processing of Time-Out .
Device Clear
Driver Auto Up .
Mapping Subroutines for Drivers
$PVMP Subroutine (Privileged) .
$XDMP Subroutine (Non—Prwﬂeged)
Sample I/O Driver
Privileged Interrupt Processmg

Memory Access by Privileged Interrupt

Special Processing by CIC .
Privileged Interrupt Routines .
Sample Privileged Driver
Access to Buffer in User Area

RTE SYSTEM INSTALLATION
Deéscription

Contents

Page

. 4-33
. 4-33
. 4-33
. 4-34

. 4-35
. 4-35
. 4-35
. 4-35
. 4-36

5-1
5-1
5-2
5-3
5-3
5-3
5-3
54
5-4
5-7
5-7
59
59
5-9
. 59
. 5-10
. 5-10
. 5-10
. 5-11
. 5-17
. 5-17
. 5-17
. 5-18
. 5-18
. 5-19

vii

RTE-II

Section

Part 1

Part 2

Part 3

viii

CONTENTS (Continued)

INSTRUCTIONS FOR PLANNING RTE .
Disc Planning .
System/Auxiliary Subchanne]s
Peripheral Subchannels . .
HP 7900 Disc Configuration .
HP 7905 Disc Configuration .
Multiple Disc Controllers . .
Multiple CPU/7905 Systems .
Generator Scratch Area
Input/Output Planning .
Step 1: I/O Locations .
Step 2: Standard Logical Unit
Assignments . . .
Step 3: Additional Loglcal Unit
Assignments . .o .
Step 4: Driver Identlfrcatlon .
Step 5: Direct Memory Access.
Step 6: EQT Table
Step 7: Buffering
Step 8: Time-Out
Step 9: Extended EQT .
Memory Configuration Planning .
Physical Memory .
Disc Program Size Consuieratlons
Memory Protection .
Program Loading .
Privileged Drivers .

PREPARING GENERATOR RESPONSES
Initialization Phase
HP 7900/7901 Disc Inltlahzatlon
HP 7905 Disc Initialization
Bad Track Information
Program Input Phase
Parameter Input Phase .
System Loading Phase .
Table Generation Phase .
Equipment Table Entry (EQT Table)
Device Reference Table (DRT Table)
Interrupt Table (INT Table)
Program Loading Phase .
Partition Definition Phase .

PERFORMING SYSTEM GENERATION.
Computer Configuration
Generator Features .

Switch Register Options

Halts . .

Current Page Lmkmg

Responses and Comments .

Error Messages.. .

Number Systems .

Page

6-3
6-3
6-3
6-3
6-6
6-6
6-7
6-7
6-8
6-8
6-9

6-9

69

. 6-11
. 6-11
. 6-11
. 6-11
. 6-11
. 6-11
. 6-11
. 6-11
. 6-14
. 6-14
. 6-15
. 6-16

. 6-17
. 6-17
. 6-17
. 6-17
. 6-18
. 6-20
. 6-20
. 622
. 6-22
. 623
. 6-23
. 6-25
. 6-26
. 6-26

. 6-33
. 6-33
. 6-33
. 6-33
. 6-33
. 6-33
. 6-33
. 6-34
. 6-34

Section

Part 3
(cont)

Answer Tape

Restarting .
Generator Input/ Output
Preparing Relocatable Tapes .
Generator Start-Up

‘Sample Generation

Program Input Phase

Parameter Input Phase .

System Loading Phase .

Table Generation Phase .

Program Loading Phase .

Partition Definition Phase .

Initiating an RTE-III System .

Error Halts . .

RTGEN Error Messages
Messages During Initialization

and Input Phase . .

Messages During the Parameter Phase
General Messages . .
Messages During I/O Table Entry
General Message .o

Appendix

A

C

SYSTEM COMMUNICATION AREA
AND SYSTEM TABLES .

System Communication Area ,

Program ID Segment ,

The Equipment Table

Device Reference Table , .

Disc Layout of RTE-III System

REAL-TIME DISC USAGE
Track Configuration .
7900 Extra Controller Track
Configuration
Subchannels
Sectors .
Tracks .
Defining 7900 Track Map Table .
7905 Extra Controller Track
Configuration
Subchannels
Tracks .
Surface Orgamzatron
Unit Number . . .
Defining the 7905 Track Map Table

Multiple CPU/7905 System Operation

DVR32 Lock/Unlock Function Call
Record Formats . e

SAMPLE GENERATION |

Page

. 6-34
.6-34 -
. 6-34
. 6-35
. 6-35
. 6-35
. 6-39
. 6-40
. 640
. 6-41
. 644
. 6-44
. 6-46
. 646
. 6-46

. 6-46
. 6-47
. 6-47
. 6-48
. 6-48

Appendix Page Appendix
E (cont)
D SUMMARY OF EXEC CALLS . D1 ALGOL Errors
Assembly Language Format D1 Assembler Errors .
FORTRAN/FORTRAN IV Format . . D1 Relocating Loader Errors .
Read/Write | . D1 Warning (W) Message
I/O Controt . D2 “L” Error Messages .
Class I/O - Get , . D2 Additional Messages .
I/O Status . . D2 No Blank ID Segment
Disc Track Allocatlon . D2 Waiting for Disc Space .
Disc Track Release . D3 Undefined Exts
Program Completion . D3 Load . . .
Program Suspend . D4 Duplicate Prog Name—name .
Program Segment Load . D4 Set PRGM Inactive
Program Schedule . D4 Load Lib
Time Request . D4 System Halts . .
String Passage . . . D5 F SUMMARY OF OPERATOR REQUESTS.
Timed Execution (Imtlal Offset) . . D5
Timed Execution (Absolute Start) . . D5 G HP CHARACTER SET
Program Swapping Control . D6
Reseurce Management . . D6 H TAPE FORMATS
Logical Unit Lock . D6
Partition Status D-6 NAM Record .
’ ENT Record
E SUMMARY OF ERROR MESSAGES . . . E-l ED)];E gzzgig
Operator Request Error Messages . E-l END Record ‘
Exec Call Error Messages . . E-l Absolute Tape Format .
Error Codes for Disc Allocation Ca]]s . E-1
Error Codes for Schedule Calls . E-2
Error Codes for I/O Calis . E2 I RTE-II VS RTE-III .
Error Codes for Program Management Privileged Drivers
Calls . . B2 $REIO with Double Buffermg
Error Codes for Loglcal Umt Lock Communications Area .
Calls . . E2 Common Usage
Input/Output Error Messages . E2 Fixed-Head Discs . . .
Illegal Interrupts . . E2 Default Common for On-Line Relocatlon .
Equipment Error Messages . . E2 Interrupt Trap Cells .
FORTRAN Compiler Errors . . E3 Program Types
ILLUSTRATIONS
Figure Title Page Figure Title
1-1 RTE-TII Address Scheme 1-2 3-4 1/0 Control (conwd)) Format .
1-2 Physical Memory Allocations . 1-3 3-5 Class Word (ICLAS) Format . .
1-3 RTE-1II 32K Logical Memory. 1-5 3-6 Resource Number Control Word Format .
1-4 Memory Protect Fence Locations for 4-1 RTE Library Selection .
Programs using Common . . . 1-6 4-2 Segmented Programs
3-1 READ/WRITE (conwd) Format . . 35 4-3 Main Calling Segment
32 Class Number (ICLAS) Format . 3-8 4-4 Segment Calling Segment .
33 Example of Class I/O Mailbox , 4-5 Main-to-Segment Jumps
Communication . . 39 5-1 Device Reference Table

CONTENTS (Continued)

Contents

Page

. E4
. E4
. E-5
. ES
. ES5
. E-6
. E-6
. E-6
. E-6

. E6
. E-7
. E7
. E7
. F-1

. G

. H1
. H3

. H4
. H-5
. H6
. H7
. H-8

I-1
I-1
I-1
I-1
I-1
I-1
I-1
I-1
I-2

Page

.3-10
.3-14
. 3-34
. 4-28
.4-33
.4-34
. 4-34
.4-34
. 52

ix

RTE-II

Figure

52
53
5-4
5-5
6-1
6-2

6-3

Table

1-1
2-1
2-2

3-1
32
33
3-4
3-5
5-1
6-1
6-2
6-3

ILLUSTRATIONS (Continued)

Title

1/0 Driver Initiation Section .

I/O Driver Completion Section

Sample I/O Driver .

Sample Privileged I/0 Drlver .

Physical Memory Allocations .

RTE-III 32K Logical Memory
Configurations

Memory Protect Fence Locatlons for
Programs using Common .

Title

Minimum RTE-III System .

RTE-III Operator Commands

Conventions in Operator Command
Syntax

Day of Year

RTE-III EXEC Calls .

Glossary of Terms for Class Input/Output.

[/O Status Word (ISTA1/ISTA?2) Format .

EQT Word 5, STATUS Table .

Summary of EXEC Call Errors

Equipment Table Entries

HP 7900 Moving Head Disc Worksheet

HP 7905 Disc Worksheet . .

Approximate Number of 64-Word Sectors
Required to Store RTE-IIT in Relocatable
Format

Page Figure
5-5 6-4
. 5-8 6-5
.5-12 6-6
. 5-20 6-7
. 6-1 A-1
A-2
.6-13
.6-15
TABLES
Page Table
1-1 6-4
2-1 6-5
.22 6-6
. 2-12 6-7
32 A-1
. 37 A-2
. 3-16 B-1
. 3-17 C-1
3-40)
5-1 C-2
6-4
6-5 I-1
6-8

Title

Swap Delay Graph

EQT Table Example .

DRT Table Example .

INT Table Example . .
Device Reference Table Word

Disc Space Allocation in RTE-III System -

Title

/O Configuration Worksheet .

Programs Requiring Buffer Space in
Partitions .

Generator Input Worksheet

Switch Register Options

ID Segment Map .

Equipment Table Entries

Source Format

Completed Worksheet G1vm g Suggested
7905 Disc Configuration .

Completed Worksheet Giving Suggested
7905 Disc Configuration .

Summary of RTE-III Program Types

Page

.6-19
.6-24
.6-25
.6-25
. A4
. A5

Page

. 6-10

. 6-15
. 628
. 6-36
. A3
. A4
. B4

C-3

C4
I3

Glossary

GLOSSARY OF TERMS
USED IN THIS MANUAL

ABSOLUTE SYSTEM — The binary memory image of the
Real-Time Executive Il System (stored on logical unit 2).

AUXILIARY SUBCHANNEL — The subchannel is optional
and when used is assigned to logical unit 3. (The binary
memory image of RTE-III does not reside on the auxiliary
subchannel.) The auxiliary subchannel has the same status
as the system subchannel in that it is treated as a logical
extension of the system subchannel.

CLASS I/O — A method of communication between a set
of programs or devices that may be synchronous or asynch-
ronous with respect to each other, in order to provide paral-
lel processing of information. Class I/O allows a program

to continue processing after initiating the operation, with-
out requiring that it wait for completion (I/O without wait).

DEVICE DOWN — Relates to the state of a peripheral I/O
controller or device. When the controller or device is down,
it is no longer operable. Also, refers to the operator com-
mand DN, which sets the controller or device down.

DEVICE UP — Relates to the state of a peripheral 1/0
controller or device.-When the controller or device is up,

it is operable. Also, refers to the operator command UP,
which sets the controller and all associated devices up after
being set down.

EQT (EQUIPMENT TABLE) — A table in memory associ-
ating each 1/0 interrupt location (I/O controller) with a
particular software processing routine (driver). The status
of the I/O controller and information about any current
request is also stored in its EQT.

GLOBAL TRACKS — Global tracks are a subset of system
tracks and are accounted for in the track assignment table.
Any program can read/write or release a global track

(i.e., programs can share global tracks).

1/0 CONTROLLER — A combination of 1/0 card, cable,
and (for some devices) controller box used to control one
or more I/O devices on a channel.

1/0 DEVICE — A physical unit defined by an EQT entry
(1/O controller) and subchannel.

LG AREA — A group of tracks used to temporarily store
the relocatable output of an assembler, compiler, or file
manager prior to relocation by the loader.

LOGICAL MEMORY — Logical memory is the 32K (maxi-

mum) address space described by the currently enabled
memory map. If the System Map is enabled, it describes
those areas of physical memory necessary for the operation
of the operating system and does not change during system
operation. When the User Map is enabled, it is updated to
describe those areas needed by programs when it is to be
executed. DMA Maps describe buffers during DMA
transfers.

LU (LOGICAL UNIT) NUMBER — A number used by a
program to refer to an I/O device. Programs do not refer
directly to the physical I/O device channel number, but
through the LU number which has a cross reference to the
device. This allows I/O devices to be changed without hav-
ing to change the programs.

MOVING HEAD DISC DRIVE — Consists of a mechanism
to rotate one or two discs, one permanently mounted and
the other removable. There is one head per recording sur-
face that is attached to a movable arm. The head is moved
to the addressed track by means of an actuator driving the
arm and head.

PARTITION — A block of memory with a fixed size (in
pages) and identification number located in the disc resident

- program area. The user may divide up the disc resident pro-

gram area into as many as 64 partitions classified as a mix-
ture of Real-Time and Background, all Real-Time, or all
Background. Disc resident programs run in partitions.

PERIPHERAL SUBCHANNEL — Peripheral subchannel is
a subchannel that is available to the user for read/write
operations but for which RTE-III does not manage the sub-
channel nor maintain a track assignment table. (The file
manager can, however, use peripheral subchannel tracks.)
A peripheral subchannel must have a logical unit number
assignment greater than 6.

PHYSICAL MEMORY — Physical memory is all memory
available to the user. Physical memory includes the operat-
ing system, libraries, common, system available memory,
and all partitions.

PROGRAM SWAPPING — Where disc resident program A

is removed from a partition and stored on the disc in its cur-
rent state of execution, and program B is placed (for execu-
tion) in the partition formerly occupied by program A.
Program A is eventually returned to either the same or a dif-
ferent partition to continue.

REAL-TIME EXECUTIVE III — The total operating system
comprised of the memory resident modules (e.g., EXEC,

Glossary-1

RTE-II

SCHED, RTIOC), plus I/O drivers, and various tables.
Abbreviated RTE-III.

RESOURCE MANAGEMENT — Resource management, or
numbering, is a feature that allows the user to manage a
specific resource shared by a particular set of programs, so
that no two of these programs use the resource at the same
time.

SCRATCH AREA — A number of disc tracks used during
off-line system generation for temporary storage of the
relocatable binary code of RTE-III.

SUBCHANNEL — One of a group of I/O devices connected
to a single I/O controller. For example, RTE driver DVRxx
can operate more than one magnetic tape drive through sub-
channel assignments. In the case of moving head discs,
contiguous groups of tracks are treated as separated sub-
channels. For example, a 7905 disc platter may be divided
into four subchannels.

Glossary-2

SYSTEM SUBCHANNEL — The disc subchannel assigned
to logical unit 2 that contains the binary memory image of
the Real-Time Executive III System.

SYSTEM TRACKS — All those subchannel tracks assigned
to RTE-III for which a contiguous track assignment table is
maintained. These tracks are located on logical unit 2 (sys-
tem), and 3 (auxiliary).

TIME-OUT — Relating to the state of a peripheral device.
When the device has timed-out, it is no longer operable.
Also (noun), the parameter itself. Amount of time RTE-III
will wait for the device to respond to an I/O transfer com-
mand before RTE-III makes the device inoperable.

SECTION I
GENERAL DESCRIPTION

INTRODUCTION

The Hewlett-Packard Real-Time Executive with dynamic
mapping (RTE-III) is a multiprogramming operating system
that supports user access to more than one million words
of main memory. Through a unique scheme of memory
management and mapping, the central processor unit (CPU)
can be expanded from a maximum of 32K words of
“logical” memory to 1024K words of “physical” memory.
“Logical” memory describes the actual 32K address space
imposed by the 15-bit address length used in HP 2100
Series Computers. Note that 32K is also the minimum
amount of memory that RTE-III will operate in. The term
“Physical” memory describes all of memory available to
the user through the memory management and mapping
scheme. The RTE-III system takes care of all addressing
and mapping for you (except in the case of privileged
drivers which are discussed in Section V). With the-éxcep-
tion of those features listed in Appendix I, RTE-III is
backward compatible with RTE-II. Most programs written
for a previous HP Real-Time executive system, and using
documented system functions, will operate correctly under
RTE-III.

This book serves as a reference manual and programmer’s
guide to the RTE-III system. You should be familiar with
operating procedures of the HP 21MX Series Computers and
other system related hardware, and in addition, with soft-
ware programming Languages as presented in the Hewlett-
Packard FORTRAN (02116-9015), FORTRAN IV (5951-
1321), ALGOL (2116-9072), and 21MX Assembler
(24307-90014) Programmer’s Reference Manuals.

HARDWARE

The RTE-1II system operates with the minimum hardware
configuration shown in Table 1-1.

SOFTWARE

The RTE-ITI software is listed in 92060B Software Number-
ing Catalog, part number 92060-90019.

Table 1-1. Minimum RTE-III System

HP 21MX Computer with 32K Memory
Time Base Generator

Dual Channel Port Controller (DCPC)*
Dynamic Mapping System

Memory Protect

System Console Device

High Speed Disc Storage

HP Mini Cartridge Subsystem or High Speed Paper

Tape Reader

*Note that DCPC provides the direct memory access
(DMA) capability.

MEMORY MANAGEMENT

The Real-Time Executive, using the Dynamic Mapping
System, provides the capability of addressing memory con-
figurations larger than 32K. Using DMS, the user has the
capability of addressing up to 1024K words of physical
memory.

The capability of addressing more than 32K is accomplished
by translating memory addresses through one of four
“memory maps”’; a memory map being defined as 32 hard-
ware registers that provide the interface between the 32K
logical memory and physical memory.

Note that all memory map addressing is done internally by
the system and is transparent to the user. The following
brief explanation of the addressing and mapping process
provides a general understanding of the overall operation of
the system. For a more detailed description of the Dynamic
Mapping System, refer to the 21MX Computer Reference
Manual, HP Part No. 02108-90002.

ADDRESSING

The basic addressing scheme of the computer uses a 15-bit
number which describes a location in memory numbered

1-1

RTE-III

010 32767 (refer to Figure 1-1). The 32768 (32K) loca-
tions are grouped into 32 pages, each page containing 1024
(1K) words. The scheme takes the 15-bit address and splits
it into two parts. The upper 5 bits (bits 10-14), become the
logical page number, an index pointing to one of the 32
registers within a memory map (only one of the four maps
can be enabled at a time). The lower 10 bits point to a
relative address (or offset) within the destination page and
do not require translation. Thus, when the address is con-
verted, the index is used to determine which of the 32
registers of the currently enabled map has the 10 bit
physical page address. This page address is then concate-
nated to the relative address to provide the ultimate 20 bit
address in physical memory.

DIRECT
INDIRECT

—y
non

T T T

T T LI T T T
15141312|11 10 9(8 7 6]5 4 3]2 1 0

L I I
1 T

LOGICAL PAGE OFFSET WITHIN
ADDRESS DESTINATION PAGE

¥

ENABLED MAP

10-BITS

[

PHYSICAL PAGE
ADDRESS

¥

20-BIT MEMORY ADDRESS BUS

15(14 13 12911 10 9({8 7 6|5 4 3|2 1 0

ONE WORD OUT OF
ONE MILLION

Figure 1-1. RTE-III Address Scheme

MAPS

There are four memory maps managed by the system -- the
User Map for descri‘bing user programs, the System Map for
describing the system and system available memory, and
two Dual Channel Port Controller (DCPC) maps called
Port A Map and Port B Map for describing the initiator of

1-2

the direct memory access (DMA) transfer. At any one
instant only one memory map is enabled. This map
describes the 32K logical address space at that instant in
time. Either the System or User Map will be enabled unless
a DMA transfer is in progress. If a DMA transfer is taking
place, the appropriate Port Map is instantaneously enabled
each time a word is transferred between the DCPC and
main memory.

SYSTEM MAP. This map, which is automatically enabled
whenever an interrupt occurs, is loaded by the system dur-
ing system initialization and is never changed. It describes
the logical address space which includes the RTE-III system
and its base page, the memory resident library, and system
available memory. The inclusion of common in the system
map is a generation option for the bénefit of users with
privileged drivers. Refer to Section V for more information
on privileged drivers.

USER MAP. Associated with each disc resident program is
a unique set of page addresses that describe the logical
address space for that program. These page addresses
describe the memory occupied by the system, the memory
resident library, common (if the program uses it), the pro-
gram’s base page, and the program. All memory resident
programs use a single set of page addresses describing the
system base page, the system, the memory resident library,
common, and the memory resident program area. Each
time a new memory or disc resident program is dispatched,
the system reloads the User Map with the appropriate set
of page addresses. The User Map therefore, provides the
interface between logical memory and physical memory.

PORT A MAP. Direct memory access is a software assign-
able direct data path between memory and a high speed
peripheral device. This function is provided by the 21MX
Dual Channel Port Controller (DCPC). There are two
DCPC channels, each of which may be assigned to operate
with an 1/O device. The Port A Map is automatically
enabled when a transfer on DCPC channel one takes place.
[t must be reloaded by the system each time the channel is
assigned so that the caller’s buffer is described. Having
separate maps for DCPC facilitates multi-programming since
DCPC may be accessing one program’s buffer while another
program (in a different area of physical memory) is using
the CPU under the User Map (i.e., when one program is
using DCPC, another program can be executing).

PORT B MAP. This map is handled the same as the Port A
Map except that it applies to DCPC channel two.

PHYSICAL MEMORY

At generation time, the user plans the physical memory

allocations shown in Figure 1-2 and then loads the system
components in the most efficient configuration. The user
determines the size of system available memory, the num-
ber and size of each partition, the size of common, and the
size and composition of the resident library and memory
resident program area.

In Figure 1-2 the areas shown are used as follows:

o System Base Page — contains system communication
area and is used by the system to define request
parameters, 1/O tables, scheduling lists, operating
parameters, memory bounds, etc. System and library
links, memory resident program links, and trap cells
are also located on the system base page. The base
page links for memory resident programs are not
accessible by disc resident programs and therefore
may not be shared. System and library links and the
system communication area are accessible to all
programs. Partition base pages, used for disc resident
program links, are described below with partitions.

HIGH MEMORY 4
DISC RESIDENT PARTITION m
BASE PAGE
0
° ZPAGES
Z=N-Y-X
®
DISC RESIDENT PARTITION 1
BASE PAGE
¥ PAGES .
SYSTEM AVAILABLE MEMORY &
<
MEMORY RESIDENT PROGRAMS a
BG COMMON 1
RT COMMON COMMON
SUBSYSTEM GLOBAL AREA I
MEMORY RESIDENT LIBRARY
MINIMUM SIZE
SYSTEM APPROXIMATELY
12 PAGES (X)
SYSTEM BASE PAGE
BAS LOWMEMORY Y

Figure 1-2. Physical Memory Allocations

e System — Contains the absolute code of the type @
system modules (e.g. RTIOC, SCHED, EXEC), and
drivers plus tables that form the nucleus of the
operating system.

® Memory Resident Library — Contains those re-entrant
or privileged library routines which are used by the

General Description

memory resident programs (type 6) or which are force-
loaded (type 14) at generation time.

® Common — This area is divided into three subareas:
The Subsystem Global Area (SSGA), the Real-time
Common area, and the Background Common area.
SSGA is used by Hewlett-Packard software subsystems
for buffering and communications. The Real-time and
Background subareas are reserved for user-written
programs that declare COMMON.

® Memory Resident Programs — This area contains all
type 1 programs that were loaded during generation.

. System Available Memory — This is a temporary
storage area used by the system for Class 1/0 and
reentrant I/O (refer to Section III), and automatic
buffering.

. Partition — This is an area set aside by the user where
his disc resident program will run. Each partition has
its own base page that describes the linkages for the
program running in the partition. Up to 64 partitions
are allowed, subject to available main memory.

All of the above areas are established during system genera-
tion. Refer to Section VI for more information on sizes
and boundary determination.

LOGICAL MEMORY

Logical memory is the 32K (maximum) address space
described by the currently enabled memory map. If the
System Map is enabled, logical memory includes the operat-
ing system and its base page, the memory resident library,
and system available memory. It may also include common
if that option was chosen at generation time. If the User
Map is enabled for a disc resident program, logical memory
includes the operating system, the memory resident library,
common (if it is used by the program), and the currently
executing program and its base page. The logical memory
of a memory resident program includes the system base
page, the operating system, the library, common and all
memory resident programs. Port Maps are enabled on a
word-at-a-time basis during DCPC transfers. They describe
the logical memory containing a data buffer. A Port Map
will be the same as either the System Map or the map of the
program being serviced, depending on type of 1/0 call.

Figure 1-3 shows four configurations of the 32K logical
address space. The first configuration is how this space
appears under control of the System Map. Note that there
is always a total of 32 pages to be divided up; however, the
particular boundaries shown for the various parts are only
examples. Your system could be larger or smaller. The

1-3

RTE-III

second configuration is how the logical address space
appears under control of the User Map when a memory
resident program is executing. The third configuration is
how the logical address space appears under control of the
User Map when a disc resident program using common is
executing. The fourth configuration is how the logical
address space appears under control of the User Map whena
disc resident program not using common is executing.
Many programs will not require a full 32K space, and un-
needed pages will be READ/WRITE protected in the user
map (shown in Figure 1-3, configuration 3).

SYSTEM DESCRIPTION
MULTIPROGRAMMING

The RTE-1I System is a multiprogramming system that
allows several programs written in Real-Time Assembler,
ALGOL, or FORTRAN languages, to operate concurrently,
each program executing during the unused central processor
time of the others.

Up to 256 programs may be defined by ID segments at one
time. An ID segment is a table that describes the program.
Refer to Appendix A for more information. Note that
additional programs may be relocated and then saved by
the file manager. This increases the number of readily
accessible programs indefinitely.

RTE-III has a scheduling module that decides when to
execute the competing programs, which may be scheduled
by time intervals, an external event, an operator request, or
“by another program. All input/output and interrupt proc-
essing is controlled by RTE-III except for privileged inter-
rupts which circumvent the system for a faster response.
When a program requests a nonbuffered 1/O transfer, the
system places the program in an I/O suspended state,
initiates the I/O operation, and starts executing the next
‘highest priority scheduled program. When the /O transfer
is complete, the system reschedules the suspended program
for execution. When a program requests a buffered 1/O
transfer, the system does not suspend the program.

There are two areas available to the user for execution of
his programs, the memory resident program area and the
disc resident program area. Note that the number of pro-
grams which may be resident in memory at one time is the
sum of the number of memory resident programs and the
number of partitions defined (up to 64). This greatly mini-
mizes the dispatching time for disc resident programs which
are in memory, because it is much faster to switch maps
than it is to perform a swap between main memory and
disc.

14

MEMORY RESIDENT PROGRAM AREA

The memory resident program area is that area where
programs are always resident and is intended for high
priority tasks requiring quick response time to real-time
conditions and for often used programs which are very
small.

DISC RESIDENT PROGRAM AREA (PARTITIONS)

The disc resident program area is divided up into partitions
which are defined as fixed blocks in memory established at
generation time. The user may specify how many partitions
(up to 64) are in the system, what type each partition is
(Real-Time or Background), and the size (pages) of each
partition.

The number of partitions depends on the amount of
physical memory available. Partition types can be specified
as a mixture of real-time and background, all real-time, or
all background. A program can be assigned at load time to
run in any partition that is large enough to accommodate it.
There can be several programs assigned to the same parti-
tion, but only one program can run in that partition at a
time. If a program is not assigned to a partition, then by
default, real-time programs will run in real-time partitions
and background programs in background partitions. If only
one type of partition is defined, all programs will run in
that type partition.

When a program is not assigned to a partition, it will run in
the smallest free partition that will accommodate it. If no
free partition exists, the program will be swapped with the
lowest priority swappable program that occupies a partition
large enough to accommodate the new program.

BASE PAGE

In RTE-III, the system, and each disc resident program has
its own base page. The system base page contains the sys-
tem communication area,system and library links, memory
resident program links and trap cells for interrupt process-
ing. The disc resident program base page contains the sys-
tem communication area, system and library links, and disc
resident program links. The base page communications area
(see Appendix A) and the system and resident libra ry links,
which are located in physical page 0, will be common to alt
base pages.

Instructions are channeled to the proper physical base page
by being either above or below a base page fence set during
generation. The base page fence not to be confused with
the memory protect fence, is set to be immediately below
the communication area, the system links and the library
links. If a base page address is above the fence it is

DESCRIBED BY

General Description

THREE POSSIBLE CONFIGURATIONS DESCRIBED BY USER MAP

SYSTEM MAP
MEMORY DiSK RESIDENT DISK RESIDENT
RESIDENT PROGRAM & PROGRAM, W/O
SYSTEM PROGRAM COMMON COMMON
UNUSED AREA
READ/WRITE
PROTECTED
MEMORY
RESIDENT
b DiSK DisK
SYSTEM Y RESIDENT RESIDENT
AVAILABLE PROGRAM PROGRAM
MEMORY [J
MEMORY RESI-
DENT PROG 2
MEMORY RESI-
DENT PROG 1
5G COMMON 5G COMMON
{COMMON
OPTIONAL IN RT COMMON RT COMMON
SYSTEM MAP)

SUBSYSTEM GLOBAL

SUBSYSTEM GLOBAL

SYSTEM

SYSTEM

SYSTEM

SYSTEM

COMMUNICATION
AREA, SYSTEM
LINKS, & RESIDENT
PROGRAM LINKS

COMMUNICATION
AREA, SYSTEM LINKS
& RESIDENT PROG
LINKS

COMMUNICATION
AREA, SYSTEM LINKS,
& PROGRAM LINKS

COMMUNICATION
AREA, SYSTEM LINKS,
& PROGRAM LINKS

(1)

(2)

Figure 1-3. RTE-III 32K Logical Memory Configurations

(3)

(4)

INDICATES POSSIBLE
MEMORY PROTECT
FENCE SETTINGS

POSSIBLE PAGE ALIGNMENTS

RTE-III

channeled to physical page 0. If it is below the fence'it is
channeled to the base page described by the currently
enabled map.

COMMON

The real-time and background commons along with
subsystem global area occupy a contiguous area in memory
and are treated as a single group for mapping purposes
(refer to Figure 1-3). The use of common is optional on a
program basis; that is, any program may use real-time com-
mon, background common or no common. If the program
declares common, both common areas and the subsystem
global area will be included in the User Map. If the program
does not use common it is not accounted for in the User
Map, thereby providing the user a larger program area in the
32K logical address space. Note that memory resident pro-
grams always include common in their map.

REAL-TIME AND BACKGROUND COMMON. If a pro-
gram declares at least one word of common, the use of
real-time or background common is selected by program
type (at generation) or parameters with the on-line loader.
Program types are summarized in Appendix I. Note that
the memory protect fence protects areas below the selected
common,

These system common areas are not to be confused with
the local common area which may be specified for programs
loaded on-line. The system common areas are sharable by
programs operating in different partitions, whereas the local
common area is appended to the program (i.e. it will be in
its partition) and is accessible only to that program, its
subroutines, and its segments.

SUBSYSTEM GLOBAL AREA. The subsystem global area
consists of all type 30 modules input to the generator.
Accessed by entry point (using EXT statements) rather than
common declarations, SSGA provides multiple communica-
tion and buffer areas for Hewlett-Packard subsystems.
SSGA access is authorized by program type at generation
(see Appendix I) or through special parameters to the on-
line loader. Programs authorized for SSGA access include
the common area in their maps and have the memory pro-
tect fence set below SSGA.

MEMORY PROTECTION

Memory protection between disc resident program partitions
and between disc and memory resident programs is pro-
vided by the Dynamic Mapping System. A program cannot
access a page not included in its logical memory either
directly or through a DMA transfer. Since many programs
do not use all of the possible 32K logical area, unused

1-6

logical pages above the program are READ/WRITE pro-
tected and do not necessarily have counterparts in physical
memory.

A different form of protection is required for the system,
library, and (optionally), common. The memory protect
fence provides this protection by preventing stores and
jumps to locations below a specified address. All possible
fence positions are shown in Figure 1-3.

The memory protect fence applies to the logical address
space where addresses are compared to the fence before
translation. If a disc resident program does not use any of
the common areas, the memory protect fence is set at the
bottom of the program area. Similarly, for a memory
resident program not using common, the memory protect
fence is set at the base of the entire memory resident area.

For programs using common, all of logical memory includ-
ing common is mapped and the fence is set at one of three
possible locations, depending on the portion of common
being used. A hierarchy of protection is thereby established
within common due to their physical locations. Background
common is the least protected (any program using any
common can modify it) and SSGA is the most protected
(only programs authorized for SSGA access can modify it).
Figure [-4 expands the common area and shows these three
fence settings as @, , and .

Figure 1-4 also shows a potential problem area marked ““?”
which includes those words from the top of common to the
next page boundary. This area could include one or more
memory resident programs and/or part of System Available
Memory. Any program using common could potentially
destroy the contents of this area. Aligning the top of com-
mon at the next page boundary is a generation option that
expands the size of background common while eliminating

— —— —— ——-<— PAGE BOUNDARY
A

?
BG COMMON
@ HIGHER PHYSICAL
RT COMMON MEMORY
@ SSGA

Figure 14. Memory Protect Fence Locations for Programs
using Common.

this problem. The same option is available for the boundary
between memory resident programs and system available
memory where a similiar problem occurs.

PROGRAM TYPES

As described above, there are two areas for program execu-
tion, the memory resident area and the disc resident area.

MEMORY RESIDENT PROGRAMS

The memory resident area is intended for high priority tasks
requiring rapid response to real-time conditions and external

events and for very small programs which execute very often.

Memory resident programs are loaded into the system during
generation.

DISC RESIDENT PROGRAMS

Disc resident programs run in partitions and require more
time for dispatching than memory resident programs do
since a partition must be allocated and the program loaded
from the disc. There are two types of programs that run in
the partitions, real-time programs and background pro-
grams. To minimize the time necessary to locate a partition
for a particular program the capabilities for defining two
types of partitions and for assigning programs to partitions
have been included in the system. These capabilities mini-
mize the number of programs competing for the same
partitions. The real-time programs are usually user pro-
grams that have been compiled to handle external events.
These new programs can be compiled, tested, and placed
into operation without any paper tape output and little
operator intervention. Background disc resident programs
are usually compilers, assemblers, and editors used. to

create new programs to control future processes while the
real-time programs handle external events. Background disc
resident software usually includes the following items.

SYSTEM COMMAND PROGRAM ($$CMD). A system
program scheduled by SCHED for the processing of the
LU, EQ, and TO system commands.

ASSEMBLER. Accepts source programs in HP Assembler
Language and outputs a relocatable binary program to LG
disc tracks and/or punches the program on paper tape.

FORTRAN. Compiles FORTRAN programs and provides
additional statements for real-time control. Same output
options as Assembler.

FORTRAN IV. Compiles source programs written in
FORTRAN IV with extended precision arithmetic and bit
manipulation via logical expressions.

General Description

ALGOL. Compiles source programs written in HP ALGOL.

INTERACTIVE EDITOR (EDITR). EDITR is an on-line
editor that provides the user with a powerful editing tool.
The user moves a pointer (pending line to be edited)
through the file, forward or backward skipping lines if
desired, and editing only where desired.

RELOCATING LOADER. Provides on-line loading of user
generated programs. Programs can be debugged and tested
in background and then loaded to run in either a real-time
or disc resident partition.

ON-LINE GENERATOR. Provides a way to configure a
new operating system on-line under control of your
current operating system.

SWTCH. Transfers a new operating system from a file
created by the On-Line Generator to a disc subchannel.

DEBUG. When user program is loaded with relocating
loader, DEBUG can be appended to each main program and
segment to provide checkout. When the program is run,
DEBUG takes control of program execution and requests
instructions from the keyhoard.

DISC RESIDENT PROGRAM SIZE

Disc resident programs run in partitions and partitions
always begin on a page boundary. Referring to Figure 1-3,
it can be seen that the program (starting with the second
page of the partition) is placed in logical memory immedi-
ately following the background system common if the
program uses common, or immediately following the library
if not. When the program runs, the user program only sees
that area of memory described by its map.

The end of logical memory is determined by the number of
pages needed to hold the main program, its subroutines, and
its largest overlayable segment. This, plus a base page, also
determines the minimum acceptable partition size for the
program. If a program needs a dynamic buffer area or
symbol table space (EDITR, for example), the program size
in pages must be increased during generation or when load-
ing with the relocating loader to make it appear larger. This
insures enough buffer space for the program to use, since
only this number of pages will be mapped into the program
area of the logical address space. If the partition allocated
is larger than the program, the remaining pages are not a
part of its logical memory, and are therefore inaccessible.
This is necessary to allow a program to be freely swapped
between disc and any suitable partition during its operation.

1-7

RTE-HI

SUBROUTINES

Each user program (main or segment) consists of a primary
routine, containing the transfer point for entry into the
program from RTE-III and optionally a series of subrou-
tines. In Assembly Language, the transfer point is given by
the label appearing as the operand of the END statement.
In FORTRAN, the transfer point is the first executable
instruction in a routine containing a PROGRAM statement.
The primary routine is linked with its subroutines (which
are defined by external references within the primary rou-
tine) when it is loaded.

The Relocatable Library consists of a number of subroutines
that may be linked to user programs. (See Section IV,

Part 6.) Each subroutine is either re-entrant, privileged, or
utility. These terms are defined as follows:

° Re-entrant — Code is shared and the routine can be
interrupted.

e Privileged — Cannot be interrupted except by privi-
leged I/0.

e Utility — Separate copy of the routine must be
appended to each calling program.

The classification of a specific routine is based on its
function, word length, and execution time. A single copy
of a re-entrant or privileged subroutine may be used by
more than one program if it is included in the resident
library. (See Figure 1-2.) If called by a disc resident pro-
gram-and not in the resident library, a copy of the re-entrant
or privileged subroutine is appended to the calling program
during relocation.

Subroutines which cannot be shared because of internal
design or I/O considerations are utility subroutines, and a
copy of the utility subroutine is appended to each primary
routine, whether memory or disc resident, that calls it.
RTGEN stores all library programs that are not included in
the resident library on the disc in relocatable format (as
utility routines to be used by the Relocating Loader). Note
that utility subroutines may call a re-entrant or privileged
subroutine but the reverse is not permitted.

The classification into which a particular subroutine fits is

determined by program type at generation (See Appendix D.

PROGRAM SCHEDULING

]

Scheduling of all programs is done by a scheduling module
in the memory resident system, and is based on priority.
Programs may be scheduled for execution by an operator

1-8

request, a program request, a device interrupt, or the com-
pletion of a time interval. RTE-III can be generated such
that one program is automatically scheduled each time the
system is loaded from the disc. Whenever programs conflict
because of simultaneous demands for execution, the system
decides in favor of the highest priority program. Priorities
are assigned by the user during generation or on-line load-
ing, and may be changed by an operator request.

In RTE-III, the highest priority program scheduled for
execution executes first. Then, if that program suspends
execution (e.g., waiting for I/O to complete), the next
highest priority scheduled program executes.

Programs that were removed from the executing state to
wait for an event to occur before re-scheduling are in the
suspended state. Programs which are not currently in either
the scheduled, executing, or suspended state are in the
dormant state. Programs may thus be in one of four states:
® Executing

® Scheduled

e Suspended

® Dormant

The status field in the ID segment (see Appendix A) records
the state of the program.

Programs may be suspended for several reasons:

® Waiting for the completion of an I/O operation

® Waiting for the availability of needed memory space
e Waiting for the completion of a disc allocation

® Waiting for the completion of a program scheduled
by the suspended program

® The operator has requested that a program be
suspended

® The progra’in has requested that it be suspended
® Waiting for a logical unit number to be unlocked
® Waiting for a resource number to be unlocked

e Waiting for a class number

TIME SCHEDULING

Current time is updated every ten milliseconds. Whenever
this occurs, a time list of programs is checked. Any pro-
grams scheduled to execute at that time are placed in the
scheduled list. Time scheduling is based on multiples of
hours, minutes, seconds, and tens of milliseconds.

PRIORITY LEVEL

Program priority determines the order of a program in the
scheduled and 1/0 suspended states. The priority field of
the ID segment (see Appendix A) records the priority of
the program. Priorities range from O (the highest, reserved
for system programs) to 32767 (the lowest). The priority
of any program can be changed by an operator request, and
more than one program can be at the same priority.

For each program state except dormant, RTE-III maintains
an ordered list of the programs in that state, connecting the
ID segments according to the priority of the programs.
There are two types of lists:

® Scheduled

® Suspended

The base page communication area (see Appendix A) con-
tains the pointers to the ID segment of the first, or highest
priority, program in each list. Then, the linkage field of
each ID segment contains location of the next ID segment
in the list. There is one scheduled list and five types of
suspension lists:

® [/O suspension lists (one for each device)
® Memory availability list

® Disc allocation list

® Operator suspension list

® General wait list

PROGRAM INITIATION AND SWAPPING

Program initiation requires that a copy of the program be
present in main memory and that the ID segment be placed
in the scheduled list. A disc resident program must be trans-
ferred into memory while a memory resident program is
always immediately available. When a disc resident program
is scheduled, a partition is selected by the system. If an
uncompleted program already occupies that partition, the
uncompleted program is transferred out to the disc and
saved in its uncompleted and modified state, the new pro-

General Description

gram is transferred into its place. This operation is called
swapping. During the swap a check is made to see if work
can be done by another program already residing in main
memory. [/O operatons continue concurrently.

Multiple-partitions combined with background swapping
make it possible for multiple users to take advantage of the
program development facilities of the RTE-III system. For
example, one person can be editing a program in one parti-
tion while another is entering, compiling, assembling, or
loading a program in another partition. Multiple partitions
greatly decrease the amount of time-consuming swapping.
Unless assigned to a specific partition, there is no require-
ment that a swapped-out program be swapped back into the
same partition.

INPUT/OUTPUT CONTROL

A system module called RTIOC is responsible for processing
normal system interrupts (non-privileged) and input/output
operations. Section V describes the I/O structure of the
RTE-III system in detail, emphasizing I/O drivers, and
privileged interrupt processing.

INTERRUPT PROCESSING

All interrupts, except privileged interrupts and power fail,
cause a transfer to RTIOC which is responsible for saving
and restoring the various registers, analyzing the source of
the interrupt and calling the appropriate processing routine.

An interrupt table, containing entries ordered by hardware
interrupt priority, indicates the correct processor routine
for each interrupt. Processors that respond to standard sys-
tem interrupts (real-time clock routine, memory protect,
standard I/O drivers) are entered directly by RTIOC.
Processors that respond to user-controlled devices or inter-
rupt sources are normal user programs and are placed in the
scheduled list and executed according to program priority.

When an interrupt occurs, the instruction in the word cor-
responding to the 1/O channel number is executed. For all
active interrupt locations, except privileged interrupts and
power fail, this instruction is a jump subroutine indirect
(JSB, D).

PRIVILEGED INTERRUPT

RTE-III offers a special privileged interrupt feature, using
an optional privileged interrupt control card and the hard-
ware priority structure of the computer. A privileged inter-
rupt by-passes normal interrupt processing to achieve faster
response for interrupts having the greatest urgency. Privi-
leged drivers must save and restore the state of the machine.
See Section V for details.

19

RTE-NI

INPUT/OUTPUT PROCESSING

RTIOC allocates DCPC channels for I/O devices requiring
direct memory access (DMA), provides for referencing I/0
devices by logical unit number (rather than directly by
equipment table entry number of the I/O channel), queues
program 1/O requests for a particular device by priority of
the calling program, and provides automatic output buffer-
ing, when specified.

1/0O drivers are under control of RTIOC for initiation and
completion of program-requested I/O operations; they
provide simultaneous multi-device control.

Program requests for 1/O are made by EXEC calls which
specify the type of transfer and device desired. All input/
output operations occur concurrently with program execu-
tion; one program is executed while others receive I/O
service. If a transfer is unbuffered, the requesting program
is suspended and the next lower priority scheduled program
is executed during the suspension. Class and buffered trans-
fers allow the immediate continuation of the requesting
program.

CLASS INPUT/OUTPUT OPERATIONS

Under class I/O, input-output operations for a program are
performed concurrently with its execution. This unique
scheme within the RTE-III system also allows program-to-
program communication and program-to-multiple-device
operation. The term “class” as used in this context is
likened to an account which is owned by one program but
may be used by a group of programs. The maximum num-
ber of classes is established during system generation. Once
the numbers are established the system keeps track of them
and assigns one (if available) to the calling program when a
class I/O call is made. Once the number has been allocated,
the program can keep it as long as desired and use it to
make multiple class [/O calls. When the program is finished
with the number it should be returned to the system for
use by some other programs.

LOGICAL UNIT LOCK

The RTE-III system provides for temporary exclusive
assignment of 1/O devices to specific user’s programs. This
can be used to assure that a low-priority program completes
its use of a printer, for example, without having that use
preempted by a higher-priority program.

RESOURCE MANAGEMENT
Within RTE-III, any element that can be accessed by a

user’s prograni is regarded as a resource. A resource thus
can be an I/O device, file, program, or subroutine. Occa-

1-10

sionally, the user may want to manage a specific resource
shared by a particular set of programs so that no two of
these programs can use the resource at the same time. To
accomplish this type of resource management the programs
involved must mutually cooperate. For example, PROGB
must not access a particular file when PROGA is using it.
Both programs should include provisions for a hand-shaking
arrangement overseen by the system when these programs
are being executed concurrently. Under this arrangement,
when PROGA has exclusive access to the file and PROGB
attempts to access the same file, this access will be denied.
PROGB will be suspended until PROGA releases its exclu-
sive access. Then, PROGB can resume execution and access
the file. (It is important to realize that as long as PROGB
is suspended, it not only cannot access the file — it cannot
perform any operations.) For more information refer to
Section I1I.

The hand-shaking arrangement between programs is based
upon an arbitrary resource identification number (RN)
made available to programs. Within the cooperating pro-
grams the RN is related to a particular resource through the
structure of the statements making up each program. When
a program seeks exclusive access to a resource, it requests
the system to lock the related RN. (This request is granted
only if no other program has already locked the RN; other-
wise, the requesting process is suspended until the RN is
released.) When it is finished with the resource, the pro-
gram requests the system to unlock the RN so that other
programs can lock it.

A RN is not a physical entity. Furthermore, it is not
logically assigned to any resource. The association between
a RN and a resource is accomplished only by the context
of the statements within the program using the RN. The
RN is always known to the system but its meaning (the
resource with which it is associated) is not. For this reason,
all cooperating programs must agree on what RN i3
associated with what resource.

Programs can lock more than one RN at a time. However,
in doing so, the users must be careful to avoid the case
where two suspended programs cannot be resumed because
they are mutually blocked.

EXECUTIVE COMMUNICATION

When an executing program makes an EXEC call, it attempts
to execute a jump subroutine (JSB) to that portion of the
system located in the protected area of memory. This
causes a memory protect violation interrupt which is duly
processed by the system. The parameters associated with
the EXEC call in the calling program are examined. If the
parameters are legal, the system processes the request.

Using EXEC calls, which are the line of communication
between an executing program and RTE-III, a program is
able to:

® Perform input and output operations
o Allocate and release disc space
e Terminate or suspend itself

® [oad its segment (if background disc type)

® Schedule other programs
® Recover scheduling strings

® Obtain the time of day

e Set execution time cycles

e . Obtain status information on partitions
OPERATOR REQUESTS

The operator retains ultimate control of the RTE-III system
with requests entered through the teleprinter keyboard.
(See Section II) Operator requests can interrupt RTE-III to:

® Turn programs on and off
® Suspend and restart programs

e Examine the status of any partition, program, or I/O
device

® Schedule programs to execute at specified times
® Change the priority of programs

e Setup load-and-go operations and source files
® Declare I/O controllers or devices up or down

® Dynamically alter the logical I/O structure and buffer-
ing designations

® Eliminate disc-resident programs from the system

® Examine and dynamically alter an I/O device’s time-
out parameter

® Release tracks assigned to dormant programs

o Initialize the real-time clock and print the time

SYSTEM CONFIGURATION

User memory resident programs and disc resident programs,
system programs, library routines, and Real-Time Executive

General Description

Modules are incorporated into a configured RTE-III System.
The RTE-II software is modular and of a general nature, so
the user can configure his particular programs and 1/0
device drivers into a real time system tailored to his exact
needs.

Using the Real-Time Off-Line Generator (RTGEN), or the
Real-Time On-Line Generator (RT3GN) and SWITCH, the
relocatable software modules and user programs are con-
verted into a configured real-time system in memory-image
binary format stored on the system disc (LU2). In operation
the configured system is loaded (bootstrapped) into the
computer from the system area of the disc. The remaining
disc storage is dynamically allocated by the configured
system to user programs or is utilized by the scheduler for
swapping operations. System configuration is detailed in
Section VI of this manual and the On-Line Generator
manual (92060-90016).

SYSTEM/AUXILIARY DISCS

The RTE-III System disc tracks are those for which RTE-III
controls and maintains a track usage table. Programs may
obtain and release tracks from this area using EXEC calls.
System tracks include all tracks on the system subchannel
(LU2) and the optional auxiliary subchannel (LU3). The
system disc tracks are used for swapping, and by the editor,
assembler, and compilers for source,‘load-and-go, and
scratch area. They may also be used by user programs for
storage.

The main differences between a system disc and an
auxiliary disc are:

] The configured system (including the memory resi-
dent system, the relocated disc resident programs,
and the relocatable library), is stored on the system
disc.

] The auxiliary disc is optional.

. Most program swapping takes place on the auxiliary
disc.

PERIPHERAL DISCS

Peripheral discs (LU’s greater than 6) are not managed by
the RTE-III System but can be managed with the file man-
ager program. Track allocation and usage in this case are
totally up to the user through the file manager. Note that
peripheral disc tracks may be protected the same as those
on the system/auxiliary discs.

1-11

RTE-III

RTE-III SYSTEM SUMMARY

The Hewlett-Packard Real-Time Executive-1I1 Software
System is a multiprogramming, multi-partitioned system
with priority scheduling interrupt handling, and program
load-and-go capabilities.

With multiprogramming, a number of data acquisition sys-
tems or test stands can be operated simultaneously on a
24-hour a day basis. Data reduction and report preparation
functions can be scheduled to execute in the background
area during times when real-time activities permit. The same
computer can also be used by the programming group for
ongoing development work with RTE-III’s background
compilers for FORTRAN, FORTRAN 1V, and ALGOL, and
with the HP Assembler, Editor, and other auxiliaries. Pro-
grams can be added to the system on-line, and on a load-
and-go basis (no intervening paper tapes). For system pro-
tection new programs can be debugged while the memory
protect fence maintains the integrity of the system area and
the Dynamic Mapping System maintains the integrity of
other user programs.

Scheduling of all programs is based on priority. External
events can interrupt to schedule programs for execution, or
a program can be scheduled by an operator request, a pro-
gram request, or on a real-time clock basis, Priorities are
assigned by the user during generation or on-line loading,
and may be changed by an operator request.

1-12

The system controls I/O processing through a central rou-
tine that directs requests and interrupts to the appropriate
device driver subroutine. For efficiency, programs awaiting
1/0 are suspended to let other programs use the computer.
Outputs to slow devices can be buffered. For processes that
cannot tolerate ordinary system overhead, a privileged
interrupt option lets a device contact its driver directly
without going through the Executive.

The operator retains ultimate control of the RTE-III System
with requests entered through the system console. The
operator can turn programs on, make status checks, or
perform other operations.

Configuration is efficient. System generation may be done
off-line or on-line using interactive operator dialog or pre-
built answer files. This results in an operating system
configured for a specific hardware system.

SECTION II
OPERATOR REQUESTS

INTRODUCTION

The operator controls an executing Real-Time Executive-11I
System by operator requests entered through the console.
These operator requests can interrupt RTE to perform the
functions described in Table 2-1.

COMMAND STRUCTURE

The operator gains the attention of RTE by pressing any
key on the console. When RTE responds with an asterisk
(*), the operator types any operator request (or command),
consisting of a two-character request word (e.g., ON, UP,
etc.) and the appropriate parameters separated by commas.
Each command is parsed, or resolved, by a central routine
that accepts certain conventions. Command syntax is
described in Table 2-2 and, with the conventions described
next, must be followed exactly to satisfy system require-
ments.

COMMAND CONVENTIONS

(] When the data is entered, the items outside the
brackets are required symbols, and the items inside
the brackets are optional. Note that when RTE-III is
restarted, any parameters previously changed are
restored to their original value set during RTGEN.

L If an error is made in entering the parameters,
CONTROL and A struck simultaneously will delete
the last character entered if input is a teletype. If the
system input device is a CRT terminal, the last
character can be deleted with the backspace key. To
delete the entire line use RUBOUT. Note that line
feed is supplied by the system. Each request must be
completed with an end-of-record terminator (e.g.,
carriage return for the teleprinter and CRT).

L Two commas in a row mean a parameter is zero.

Table 2-1. RTE-III Operator Commands

| Command

Format Description

AB Abort current batch program.

BL Sets buffer limits.

BR Sets a break flag in named program’s
ID segment.

DN Declare I/O controller or device unavailable.

EQ Examine the status of any 1/O device,
and dynamically alter device buffering
assignments.

FL Buffer flush command used in conjunction
with Multiple Terminal Monitor (MTM) only.

GO Restart programs out of suspension.

IT Sets time intervals for programs

LG Allocate load-and-go area.

LS SEt logical source pointer.

LU Dynamically alter device logical unit
assignments.

OF Turn programs off.

ON Turn programs on.

PR Change the priority of programs.

RU Start a program immediately.

RT Release program’s disc tracks.

SS Suspend programs.

[\
h

RTE-III

Table 2-1. RTE-I Operator Commands (Continued)

AB

Command Descripti
Format escription

ST Examine the status of programs.

TI Print the current time.

™ Set the real-time clock.

TO Examine and dynamically alter an I/O
device’s time-out parameter.

UP Declare I/O controller and associated devices
available.

Table 2-2. Conventions in Operator Command Syntax

| item]

Jdteml
Jitem?2
Jitem3

item]

item 2
item 3

... (row of

Item Meaning
UPPER CASE These words are literals and
ITALICS must be specified as shown.
lower case italics | These are symbolic representa-

tions indicating what type of
information is to be supplied.
When used in text, the italics
distinguishes them from other
textual words.

Items with brackets are optional.
However, if itewn is not supplied,
its position must be accounted
for with a comma; this causes
item to automatically default.

This indicates that exactly one
itern may be specified.

This indicates that there is a
choice of entries for the param-
eter, but one parameter must be
specified.

dots) This notation means ‘“and so

i

On.

Purpose:

To abort the current File Manager Program running
under batch.

Format
AB [(IJ]

0 terminates and removes from the time list
the current BATCH program that is
executing, scheduled, or operatcr sus-
pended. Terminates BATCH programs
which are 1/O, memory, or disc suspended
the next time they are scheduled. Disc
tracks are not released.

Where:

1 terminates immediately the BATCH pro-
gram and removes it from the time list, and
releases all disc tracks. If suspended for
I/O, a system generated clear request is
issued to the driver.

COMMENTS

When the File Manager is waiting on a program it is running
(e.g., ASMB), the AB command aborts that program just
like the

OF name command.

If the File Manager is dormant, or non-existent in the
system, the AB command will cause the error message
[LLEGAL STATUS to be printed. If the File Manager is
not dormant and is not running a program, this command is
the same as

BR,FMGR

BL

Operator Requests

BR

Purpose:

To examine or modify current Buffer Limits.

Format:
BL [lower limit, upper limit, |
Where:
BL alone displays upper and lower

limits previously set.
lower limit is the lower limit number.

upper limit is the upper limit number.

Purpose:
To set an attention flag in a program’s ID segment.
Format:

BR ,name

Where:

name is the name of the program.

COMMENTS

Setting upper and lower memory limits with this command
can prevent an inoperative or slow I/O device from
monopolizing available- system memory. Each time a
buffered I/O request is made (Class I/O requests are
buffered), the system adds up all the buffered words in I/O
requests queucd to that EQT entry and compares the
number to the upper limit set by this command (or during
generation). If the sum is less than the upper limit the new
buffered request is added to the queue. If the sum is larger
than the upper limit the requesting program is suspended in
the general wait (STATUS = 3) list. When a buffered 1/O
request completes, the system adds up the remaining words
in 1/O requests queued to that EQT entry and compares the
number to the lower limit set by this command (or during
generation). When the sum is less than the lower limit, any
programs suspended for exceeding the buffer limits on this
EQT are rescheduled.

Any program with a priority of 1 through 40 will not be
suspended for buffer limit so alarm messages, etc., are not
inhibited.

COMMENTS

The BR command allows an operator to interrupt a
program while it is running. When the BR command is
executed, RTE sets bit 12 in word 21 of the named
program’s ID segment. The user’s program can call an HP
furnished subfunction that will test this bit and then act
accordingly. The calling sequence of the subfunction is:

I = IFBRK (DM)

where DM is a dummy parameter to make the call appear as
a function (DM need not be supplied in Assembly Language
or ALGOL calls). The returned value will be negative if the
break flag is set and positive if it is not. If the flag is set it
will be cleared by IFBRK.

DN

Purpose:

To declare an I/O controller or device down (i.e.,
unavailable for use by the RTE-III System).

Format:

eqt
DN u

Where:

eqt is the EQT entry number of the I/O controller
to be set down.

lu is the LU entry number of the I/O device to be
set down.

RTE-III

COMMENTS

Setting an I/O controller (EQT) down effectively sets all
devices connected to the I/O channel down by blocking
any I/O operations on the channel. The state of the devices
(LU’s) associated with the channel are unchanged.

Setting the I/O device (LU) down will make only the
specific device unavailable. However, all other LU’s
pointing to the device will also be set down. Other devices
using this device’s I/O channel are unaffected.

The I/O controller or I/O device is left unavailable until the
I/O controller is set up by the UP command. The operator
might set a device down because of equipment problems,
tape change, etc.

EQ (status)

Purpose:

To print the description and status of an I/O controller,
as recorded in the EQT entry.

Format:
EQ,eqt
Where:

eqt is the EQT entry number of the I/O controller.

COMMENTS
The status information is printed as:

select code DVRnn D B Unn status
Where:

select code is the I/O channel.

DVRnn is the driver routine.

D is D if DMA required, 0 if not,

B is B if automatic output buffering used, 0 if
not,

Unn is tile last subchannel addressed

24

status is the logical status:

0 — available

| — unavailable (down)

2 — unavailable (busy)

3 — waiting for DMA assignment

Note that if egz is O it is a bit bucket, and the LU associated
with it is also a bit bucket.

This command is implemented by the disc resident pro-
gram $$CMD. If $$CMD is not included in the operating
system, the message NO SUCH PROG will be printsd
when the command is entered.

EQ (buffering)

Purpose:

To change the automatic output buffering designa-
tion for a particular 1/O controller.

Format:
UNbuffer
E
Qeqt ,:,BUffer]
Where:
eqt is the EQT entry number of the I/O
controller.

UNbuffer deletes buffering.

BUffer specifies buffering.

COMMENTS

When the system is restarted from the disc, buffering
designations made by the EQ command are reset to the
values originally made during generation.

FL

Purpose:
To eliminate buffered output to an 1/O device.
Format:

w>FL

Where:

Iu is the logical unit number of the inter-
rupting terminal.

COMMENTS

The FLush command can only be used in conjunction with
the Multiple Terminal Monitor (MTM), and can only be
entered from a terminal other than the system terminal.

Other methods of clearing the buffer are using an EXEC
call or a File Manager command as follows:

CALL EXEC (3,23]u)

*ON,FMGR
:CN,u,23B

GO

Purpose:

To reschedule a program that has been suspended by
an SS command or a Suspend EXEC Call.

Format:
GO
; Ce 5
com name Lot . Lps]111]
Where:
name is the name of a suspended program to be
scheduled for execution.
pl..pS5 is a list of parameters to be passed to

name only when name has suspended
itself (see Suspend EXEC Call in Section
III). The parameters are not required if
name was suspended with the SS
command.

Operator Requests

COMMENTS

If the program has not been suspended previously by the
operator or has not suspended itself, the request is illegal.

Parameters pl through p5 can be entered in ASCII or
numeric form. Octal numbers are designated by the “B”
suffix and negative numbers by a leading minus sign. For
example:

GO,name,FI,LE,31061B

Note that only two ASCII characters per parameter are
accepted; if one is given, the second character is passed as a
blank (blank = 40B). If the first parameter is ASCII
“NO” then it must be repeated (the system interprets it as
“NOW?” in the GO command). For example:

GO,name,NO,NO,F1,3 4,5

is interpreted as shown below. NO (NOW) is not used
except to push the parameters out.

NO
FI
3

4

5

After a program has suspended itself and is restarted with
the GO command, the address of the parameters passed by
GO is in the B-Register. In FQRTRAN, an immediate call
to the library subroutintrieves the parameters
(sec Section III, Suspend EXEC Call). If the program has
not suspended itself, the B-Register is restored to its value
before suspension and the parameters are ignored.

The program may also recover the ASCII command string
(up to 80 characters typed after the prompt) that scheduled
it by using the String Passage EXEC call (see Section III).

If the program was rescheduled with a GOIH (inhibit string
passage) or if the program has not suspended itself, the
command string is not passed.

RTE-II1

LG

Purpose:
To set time values for a program, so that the program
executes automatically at selected times when turned
on with the ON command.
Format:

IT,name |,res,mpt| hr,min|,sec|,ms]}]]

Where:

name is the name of the program.

res is the resolution code
1 — tens of milliseconds
2 — seconds
3 — minutes
4 - hours
mpt is a number {from 0 to 4095 which is used

with res to give the actual time interval for
scheduling (see Comments).

hr hours
min minutes L .
sets an initial start time.
sec seconds
ms tens of ms.
COMMENTS

The resolution code (res) is the units in time to be
multiplied by the multiple execution interval value (mpt) to
get the total time interval. Thus, if res=2 and mpr=100,
name would be scheduled every 100 seconds. If Ar,min,sec
and ms are present, the first execution occurs at the initial
start time which these parameters specify. (Program must
be initialized with ON command.) If the parameters are not
present (e.g., 1T name), the program’s time values are set to
zero and the program is removed from the time list. The

program can still be called by another program or started
with the ON’, narme NOW or RU command.

When the system is restarted from the disc, time values set
by the IT command are lost, and the original time values set

at original load time are reinstated.

The IT command is similar to the Execution Time EXEC
Call (See Section HI).

2-6

Purpose:

To allocate or release a group of disc tracks for
load-and-go operations.

Format:
LG,numb
Where:

numb =0 (zero) releases the allocated load-and-go
area. :

numb > 0 release currently allocated load-and-go
tracks and then allocate numb contiguous
tracks for a load-and-go area.

COMMENTS

The user must allocate enough tracks for storing binary
object code before each load-and-go compilation or assem-
bly. If not, the compiler or assembler aborts and a
diagnostic is printed on the system console.

1006
1009~

Load-and-go area not defined.
Overflow of load-and-go area.

An LG request should not be used while a compiler or the
Assembler is using the load-and-go tracks. If done, this may
result in the message

LGO IN USE

being printed on the system console, and no change in the
current number of load-and-go tracks. In most cases,
however, it results in an [006 error.

EQT (controller) number

Operator Requests

=

logical unit number

subchannel number

I/0O device status

If the logical unit is disabled (down) then a D is printed as
the status; otherwise the position is left blank.

This command is implemented by the disc resident pro-
gram $$CMD. If $$CMD is not included in the operating
system, the message NO SUCH PROG will be printed when
the command is entered.

LU (reassignment)

LS
Purpose:
To designate the disc logical unit number and starting
track number of an existing source file before
operating on it with EDITR, FTN, FTN4, ALGOL,
ASMB.
Format:
LS, disc lu, trk numb
Where:
disc lu is the logical unit number of the disc
containing the source file.
2 or 3 = system or auxiliary disc units.
0 = eliminate the current source
file designation.
trk numb is the starting track number of the
source file (in decimal).
COMMENTS

LS replaces any previous file declarations with current file.
Only one file may be declared at a time.

For details on creating, updating, compiling, or assembling
source files, see Section IV, Background Programming.

LU (assignment)

Purpose:

To print the EQT (channel) number and device sub-
channel number and 1/O device status associated with
a logical unit number.

Format:
LU, lu
Where:
lu is a logical unit number from 1 to 63.

Purpose:

To change a logical unit number assignment.

Format:
LU,zwgqf [,subch numb)|

Where:

lu is a logical unit number from 1 to 63
(decimal).

eqt is an EQT entry number to assign
lu.

eqt if zero (0) lu becomes the bit bucket.

subch numb s a subchannel number (0 to 31) to

assign to lu.

COMMENTS

The LU command can be used to change subchannel bits of
DVROO in reference to an EOT setting the tape reader
down. Refer to the Multiple Device Driver DVR0OO manual
HP Part No. 29029-95001.

The restrictions on changing logical unit assignments are:

a. LU1 (system console) must be a keyboard en-
try device (e.g., teleprinter). Note that if LUI is

2-7

RTE-II

changed from one keyboard device to another, the
new device will print a double asterisk (**).

b. LU2 (system disc) and LU3 (auxiliary disc) can-
not be changed to another EQT entry number.

c. An LU cannot be changed to point at the same
device as LU2 or LU3.

When an irrecoverable problem occurs on an 1/0 device, the
operator can bypass the downed device for future requests
by reassigning the logical unit number to an operable device
on another channel. Any programs referencing the downed
device are suspended until the device is declared UP.

When the system is restarted from the disc, any assignments
made by LU are reset to those originally set during
generation.

Section V, Real-Time Input/Qutput, explains logical unit
numbers, equipment table entry numbers, and subchannel
numbers in detail.

This command is implemented by the disc resident pro-
gram $$CMD. If $$CMD is not included in the operating
system, the message NO SUCH PROG will be printed when
the command is entered.

OF

Purpose:

To terminate a program, or to remove a disc resident
program which was loaded on-line but not permanently
incorporated into the protected RTE-III system.

Format:
0
OF, name| ,1
8
Where:

name is the name of the program.

0 terminates and removes from the time list
the named program the next time it is
scheduled. The program’s disc tracks are not
released.

1 terminates immediately the named program,
removes it from the time list, and releases all
disc tracks. If suspended for I/O, a system
generated clear request is issued to driver.

2-8

8 terminates immediately the named program,
and if the program is a temporary program
loaded on-line, it is permanently removed
from the system.

COMMENTS

For programs with segments, the OF, name, 8 command
must be used on the segments as well as the main.

OF,name,8 will not remove permanent programs because
their ID segments on the disc are not altered by this re-
quest. A permanent program is defined as a program loaded
during generation, or on-line with the LOADR and with a
copy of its ID segment in core and on the disc. For tem-
porary programs loaded on-line the ID segment is blanked
making the segment available for loading another program
with LOADR. The tracks (if they are system tracks) con-
taining the program are released. If the program had been
stored on File Manager tracks, those tracks are not returned
to the system but remain as File Manager tracks.

If the program is I/O suspended, a system generated clear
request is issued to the driver. The OF ,name,8 command
must then be entered a second time to permanently re-
move name from the system in this case.

A permanent disc resident program is removed with the
LOADR as described in Part 5 of Section IV.

ON

Purpose:

To schedule a program for execution. Up to five param-
eters and the command string may be passed to the
program.

Format:
ON
oNi mame LNOW] [pi[,...[p5111]]
Where:
name is the name of a program.
NOW schedules a program immediately that is
normally scheduled by the system clock
(see IT).
pl..p5 are parameters passed to the.program

when it is scheduled.

Operator Requests

COMMENTS PR

Parameters p/ through p5 are the ones passed Qy RMPAR ::

as described under Comments in the Program Schedule Purpose:
EXEC Call in Section IIlI. Refer also to XTEMP words
2 through 6 in the program’s ID segment (see Appendix To change the priority of a program.
A). Note that any parameters not entered as part of

the ON command will be returned as zeros by a call to Format:
RMPAR.

PR name numb
Parameters pl through p5 can be entered in ASCII or nu-

meric form. Octal numbers are designated by the “B” suffix Where:

and negative numbers by a leading minus sign. For ‘

example: name is the name of the program.
ON,name,FI,LE,31061B numb is the new priority.

Note that only two ASCII characters per parameter are
accepted; if only one is given, the second character is passed

as a blank. (blank = 40B). If the first parameteris ASClT ~ COMMENTS
“NO” then it must be repeated (the system interprets it as . . o)
“NOW? in the ON command). For example: One (1) is the highest priority, and 32767 is the lowest.
When the system is restarted from the disc, the priority of
ON.name.NO NO.FI .3 4.5 name resets to the value set by the generator or LOADR.
is interpreted as RU
NO
FI
P :
3 urpose
4 To schedule a program immediately without affecting
5 its entry in the time list. Up to five parameters and
The program can recover the ASCII command string (up to the command string may be passed to the program.
80 characters typed after the prompt) by using the String P .
Passage EXEC call (see Section II1). The ONIH command ormat.
inhibits the passage of the command string. RU
P : pomg meme Lt L Les]111]
If the resolution code in the ID.segment of the program is Where:
not zero, RTE-11I places the program in the time list for’
execution at specified times (unless NOW appears in which name is the name of a program.
case, the program is scheduled and put into the time list
immediately). The resolution code may be non-zero as a pl..p5 are parameters passed to the program
result of: when it is scheduled.
a. Generation
1. With a resolution code in the name record COMMENTS
2. Entry of a resolution code during param-
eter input phase. The RU command is usually used when the operator desires

to run a program without affecting its entry in the time list.

b. The IT command. ~~-\\
c. Scheduling the program with absolute start Parameters pl through p5 are the ones passed oy RMPAR i

time or offset by some program in the system. as described under Comments in the Program™Se

29

RTE-HI

EXEC Call in Section HI. Refer also to XTEMP words 2
through 6 in the program’s ID segment (see Appendix A).
Note that any parameters not entered as part of the RU
command will be returned as zeros by a call to RMPAR.

Parameters p/ through p5 can be entered in ASCII or
numeric form. Octal numbers are designated by the “B”
suffix and negative numbers by a leading minus sign. For
example:

RU,name FI,LE,31061B

Note that only two ASCII chiracters per parameter are
accepted; if only one is given, the second character is passed
as a blank (blank = 40B). If the first parameter is ASCII
“NO” then it must be repeated (the system interprets it as
“NOW” in the RU command). For example:

RU,name NO,NO,FI,3,4,5

is interpreted as shown below. NO(NOW) is not used except
to push the parameters out.

NO
FI
3

4

5

The program can recover the ASCII command string (up to
80 characters typed after the prompt) by using the String
Passage EXEC call (see Section III). The RUIH command
inhibits the passage of the command string. If there are no
characters past name, the command string is not trans-
mitted.

RT

Purpose:
To release all disc tracks assigned to a program.
Format:
RT name
Where:

name is the name of the program that is to have its
tracks released.

2-10

COMMENTS
If the program is not dormant, the command is illegal.

If the program is dormant, all tracks assigned to that
program are released.

If any tracks are released as a result of this command, all

programs in disc track allocation suspension are re-
scheduled.

SS

Purpose:
To suspend a non-dormant program.
Format:

SS name
Where:

name is the name of the program to be suspended.

COMMENTS

The SS command places the program in the operator
suspended list immediately if the program is executing or
scheduled. If the program is dormant the request is illegal.
If the program is suspended for I/O memory or disc, RTE-III
waits until the current suspend is over, then suspends the
program with SS.

The SS command is similar to the Program Suspend EXEC
Call (see Section III).

ST

Purpose:

To request the status (priority, current list, time
values) of a named program, or to determine the
name and partition number of the program cur-
rently occupying memory, or print the name of
the program occupying a specified partition.
Format (status of a program):

ST name

Format (name and partition number of current
program):

ST,0

Format (name of program in specified partition):

ST part numb
Where:
name is the name of the program whose status is
to be printed.
0 causes the system to print the name and

partition number of the program currently
in memory. If none, then O is printed.

part is a partition number; causes the system to

numb print the name of the program in part numb.
If the partition is empty, O is printed. If
part numb is wrong, NO SUCH PROG is
printed.
COMMENTS

The status of a program is printed on one line in a fixed

format:

pr s res mpt hr min sec ms T

Where

pr
s

is the priority, a decimal value from 1 to 32767.

is the current state of the program.
0— Dormant

1— Scheduled

2— 1/O suspend

3— General wait

4— Unavailable memory suspend

Opcrator Requests

5— Disc allocation suspend

6— Operator suspend or
(EXEC 7 Call)

9— Background segment.

res, mpt, hr, min, sec and ms are all zero (0) unless

the program is scheduled by the clock (see IT, this

section, for the meaning of these items).

programmed suspend

The letter “T” appears when the program is currently in the
time list (as the result of an ON command).

A program is placed in the general wait list (status = 3)
whenever:

a. It is waiting for a Resource Number (RN) to
clear or become available. This includes Logical Unit
(LU) locks and attempts to use a locked LU.

b. A schedule request is made with ICODE = 23 or
24 (queue schedule), and the program being called is
busy.

c. A request is made to an I/O device that is
down. This differs from a request to an 1/O device
that is busy.

d. A Class 1/0 GET Call is made and the Class
Queue is empty.

e. A program is waiting for another program to
complete as a result of an Exec 9 or 23 call.
f. A program is waiting on a Buffer limit (see

BL this section).

Programs will be removed from the general wait list when
the action waited for takes place, or when the program is
aborted.

When the format ST,0 is used, the status is printed as:

name part numb

Where

name is the name of the program currently residing

in partition number part numb.

part is the partition number.
numb

When the format ST part numb is used, the status is printed

as.

name

2-11

RTE-III

Table 2-3. Day of Year

Note: For leap year, add one to each number starting at 3/1 (60).

JANUARY FEBRUARY MARCH
172 13 1/4 1/5 1/6 [Vl 21 I 203 204 2/s 206 21 3N 32 33 3/4 3/5 36 37
(2 3 (4) (5) 6 (Qu)] 32) (33) (34) 35) 36) 37 (38) (60) (61) (62) (63) (64) 65) (66)

1/8 1/9 1/10 i 112 /13 1/14 28 29 210 21 2 23 2”4 38 3/9 3/10 3711 312 313 314
8) (9 (10) an 2 a3 (14) (39) (40) @1 (42) (43) (44) (@5) (67) (68) (69) (70) an (72))
118 /16 w7 118 1/19 120 1/21 215 U6 217 218 29 2120 221 3/15 3/16 37 318 319 320 3021
as) (16) an 18) 19) Qo) @y (46) (a7 (48) (49) (50) 1) (52) 4 %) (76) an 8) 79 (80)
1/22 1/23 1/24 1/25 1/26 127 1/28 un 223 2124 2025 2126 2027 2028 322 3/23 3124 3728 3126 327 3/28
@2) @3 (24) (25) 6) @n (28) (53) (54) (55) (56) o7 58) (59) (81) (82) (83) (84) (85) (86) [C)
1/29 1/30 1/31 29 3129 3130 3131

9 30) [¢I)) (60) LEAPYEARONLY (88) (89) (90)

APRIL MAY JUNE

41 412 43 4/4 4f5 446 41 s/t 512 5/3 5/4 5/s 56 517 6/1 6/2 6/3 6/a 6/5 6/6 6/7
1) (92) (93) (94) (95) (96) ©7 (21 (122) 123 24) 25 (126) a27) (152) (153) (154) (155) (156) (157) (158)
4/8 4/9 4/10 411 4/12 4/13 4/14 5/8 519 5/10 sni 5/12 5/13 s/14 6/8 6/9 6/10 6/11 6/12 H/13 6/14
(98) (99) (100) (o1) (102) (103) (104) (128) (129) (130) a3n |03 (133) || (134 (159) 160y || (6 (162) (163) (164) (165)
415 a/16 417 4/18 419 4/20 4121 5/15 5/16 517 5N8 5/19 5/20 /21 6/15 6/16 6/17 6/18 6/19 /20 6/21
(105) (106) 107) (108) (109) (110) (111) (135) (136) (137) (138) (139) (140) (141) (166) (167) (168) (169) (170) a7y amn)
4/22 4/23 424 4/25 4126 4/27 4/28 5/22 5/23 5/24 5125 5126 5127 5/28 6/22 6/23 6/24 6/25 6/26 5127 6/28
(12 (113) (114) (115) (116) (17 (118) (142) 143) | | (149) (145) (146) (147) (148) (173) (174) 175) (176) am (178) (179)
4/29 4/30 5129 5/30 5/31 /29 6/30

19y | | (120 (149) | { (150) (151) (180) (181)

JuLy AUGUST SEPTEMBER
711 72 13 714 15 76 4T 8/1 8/2 8/3 8/4 8/5 8/6 8/7 9/1 912 9/3 9/4 95 9/6 9/1
182 | | (183 (184) (185) (186) asn || ass) (213) @4 || @5 @16 || @ (218) 219) (244) (245) | | (246) (247) (248) (249) || (250
8 7/9 710 7 M2 73 714 8/8 8/9 8/10 8/11 8/12 8/13 8/14 9/8 9/9 910 9/11 9/12 913 9/14
(189) { | (190) 9N (192) (193) (194) (195) (220) 21 (222) (223) (224) 225) | | (226) (251) 252) | | 253 (254) (255) ;256) @57y
115 /16 mn 718 719 720 721 8/15 8/16 8/17 8/18 8/19 8/20 8/21 9/15 9/16 9/17 9/18 9/19 /20 9/21
(196) a7 (198) (199) (200) o1 (202) (227) (228) (229) (230) (231) (232) (233) (258) (259) 260) (261) (262) 263) (264)
722 7/23 7/24 725 7/26 7127 728 8/22 8/23 8/24 8/25 8/26 8/27 8/28 9/22 9/23 9/24 9/25 9/26 9/27 9/28
(203) (204) (205) (206) (207) (208) (209) (234) (235) (236) (237 (238) (239 (240) (265) (266) (267) (268) (269) (270) @711)
7129 7130 7431 8/29 8/30 8/31 9/29 930
(210 e fl e (241) (242) (243) @) (273)
OCTOBER NOVEMBER DECEMBER

10/1 10/2 10/3 10/4 10/5 10/6 10/7 171 1172 113 11/4 11/5 11/6 1147 12/1 122 12/3 12/4 12/5 12/6 1217
(274) (275) (276} Q@1 278) 2719) (280) (305) (306) (307) (308) 309 (310) [€1D)] (335) (336) (337) (338) (339) (340) (341)
10/8 109 10/10 1011 10/12 10/13 10/14 /8 i) 1Mo 1/ 112 i3 1/14 12/8 12/9 12/10 12/11 12/12 12/13 1214
(281) (282) (283) || (284) (285) (286) (287) @12) (313) (314) 315) (316) @i || 619 (342) 343) [| (349) (345) (346) (347) | | (348)
10/15 10/16 10/17 10/18 10/19 10/20 10/21 11/15 116 117 1718 /19 11720 121 12/15 12/16 12017 12/18 12/19 12/20 12/21
288) || (289 (290) 91) (292) (293) (294) (319) 320 [] G20 (322) (323) (324) (325) (349) (350) asnl| 652 (353) 354) | | 659
10/22 10/23 10/24 10/25 10/26 10/27 10/28 1/22 /23 11/24 11425 11/26 1727 /28 12/22 12/23 12/24 12/28 12/26 2127 12/28
(295) | | (296) 297) { | (298) (299) (300) (301) (326) (327) (328) (329 || @330 (331) 1133 (356) 357 || 358 (359) (360) 361) | | (362)
i0/29 10/30 10/31 11729 11730 12/29 12/30 12/31

(302) (303) || (304) (333) (334) 363) | | (364) (365)

TI

Purpose:

To print the current year, day and time, as recorded
in the real-time clock.

Format:

T1

COMMENTS

The computer prints out the year, day and time:

YEAR DAY HR MIN SEC
Where
YEAR is the four-digit year.
DAY is the three-digit day of the year (see
Table 2-3 for day of year conversion).
HR,MIN,SEC is the time on a 24-hour clock.

The TI command is similar to the Time Request EXEC Call!
(see Section III).

™
Purpose:
To set the real-time clock.
Format:
TM, year,day |, hr,min,sec)
Where:
year is a four-digit year.
day is a three-digit day of the year (see
Table 2-3).
hr,min,sec is the current time of a 24-hour clock.
COMMENTS

The operator should give TM in response to the message
printed when the RTE-III System is initiated from the disc:

Operator Requests

SET TIME

The response sets the time when the return key is pressed.
Enter a time value ahead of real-time. When real-time equals
the entered value, press carriage return. The system is now
synchronized with the time of day.

NOTE

The real-time clock is automatically
started from 8:00 on the approx-
imate system release date each time
the system is loaded into core.

TO

Purpose:

To print or change the time-out parameter of an I/O
device.

Format:
TO,eqt[,numb]
Where:

eqt is the EQT entry number of the I/O device.

numb is the number of 10 ms intervals to be used
as the time-out value. (numb cannot be less
than 500 (5 sec) for the system input
device driven by DVR00/05).
COMMENTS

The time-out value is calculated using numb time-base
generator interrupts (the time-base generator interrupts
once every 10 ms). For example, numb = 100 sets a
time-out value of one second: 100+ 10 ms = 1 second.
When the system is restarted from the disc, time-out values
set by TO are reset to the values originally set during
RTGEN.

If numb is absent the time-out value of egt is printed. The
information is printed as:

TO #3 =100

and means EQT entry number 3 has a time-out value of 100
ten millisecond intervals or one second.

2-13

RTE-II

If a device has been initiated, and it does not interrupt
within the interval set by the time-out parameter, the
following events take place:

a. The calling program is rescheduled, and a zero
transmissjon log is returned to it.

b. The device is set to the down status, and bit 11
in the fourth word of the device’s EQT entry is set to
one. An error message is printed;e.g.,

I/OTOL #x E #y S #z

c. The system issues a CLC to the device’s I/O
select code(s) through the EQT number located in the
interrupt table.

This command is implemented by the disc resident pro-
gram $$CMD. If $$CMD is not included in the operating
system, the message NO SUCH PROG will be printed when
the command is entered.

up

Purpose:

The declare an I/O controller and all associated devices
up (i.e., available for use by the RTE-III System).

Format:
UP eqt
Where:

eqt is the EQT entry number of the I/O controller
to be re-enabled.

COMMENTS

When the operator of the RTE-III System has set an I/O
controller or device down for some reason, the operator
should correct the situation before declaring the item
available again with the UP command. If the problem is
irrecoverable, the operator can use LU to switch the
logical unit number assignment to another device for
further requests (see LU, this section). Previous requests
made to this device are switched to the new device. To
prevent indefinite I/O suspension on a downed device,
time-out is used. Refer to I/O Device Time-Out in Section V,
and the TO command in this section.

2-14

The UP command places all downed devices (LU’s) and the
I/O controller (EQT) in the available state. Any I/O opera-
tions associated with downed devices are queued on the
EQT for processing. If a device’s problem has not been
corrected, it will be reset down and an error message will
be printed:

I[/ONRE #x L #y S #z

SYSTEM COMMAND PROGRAM ($$CMD)

A foreground disc resident program, $$CMD, implements
the EQ, LU, and TO system commands. If $$CMD does
not exist in the system, the message NO SUCH PROG is
printed when the commands are entered.

If the disc is down, the commands are unavailable. This
situation can be avoided by making $$CMD memory
resident during system generation.

ERROR MESSAGES

RTE-III rejects operator requests for various reasons. When
a request is in error, RTE-III prints one of the messages
below. The operator should re-enter. the request correctly.

Message Meaning
OP CODE ERROR Illegal operator request word.
NO SUCH PROG The name given is not a main

program in the system.

INPUT ERROR A parameter is illegal.
ILLEGAL STATUS Program is not in appropriate state.
CMD IGNORED- Not enough system available mem-
NO MEM ory exists for storing the program’s

command string. Re-enter the
command (RU, ON, GO) or enter
the inhibit (IH) form of the
command.

Other errors may occur when an I/O device times out
because of an inoperable state. When this occurs the
operator can use the LU operator command to change the
referenced device to another that works.

For example, the line printer may be in the OFF-LINE
condition (or the operator has failed to engage the paper
tape reader clutch). In this case the system will print one of
the following error messages and suspend the program.

I/ONR L #lu E #eqt S #sub
I/OTO L #lu E #eqt S #sub

After the operator has corrected the device problem, all
that is required is to type:

UP.eqt

where eqt is the downed device’s equipment table entry
number (same number given in the I/O error message). The
program is automatically rescheduled and the desired 1/O
operation takes place.

Operator Requests

Another example is that the program may be in the process
of printing a long listing on the line printer when the
printer runs out of paper. In this case it is possible to switch
LU’s and continue the listing without interruption as shown
below.

[JOTO L #lu E #eqt S #sub
LU, lu,eqt

The error message says that the device at LU number lu,
EQT number eqt, subchannel number sub has timed out
and has been set down by the system. Note that some
drivers handle time out themselves and do not cause the
specified actions. In this case the error message states that
the device is not ready (NR). The operator switches logical
units (with the LU command). The listing will continue on
the new device.

2-15

Exec Calls

SECTION III
EXEC CALLS

INTRODUCTION

This section describes the basic formats of FORTRAN,
FORTRAN 1V, ALGOL, and Assembly Language EXEC
Calls with each call presented in detail. Table 3-1 is a
summary of the EXEC calls listed in the order of
appearance in this section. The error messages associated
with the calls are listed at the end of this section. Refer to
Appendix D at the rear of this manual for a summary of the
EXEC calls and required parameters.

An EXEC call is a block of words consisting of a “JSB
EXEC” instruction and a list of parameters defining the
request. The execution of the “JSB EXEC” instructions
causes a memory protect violation interrupt and transfers
control into the EXEC module. EXEC then determines the
type of request (from the parameter list) and, if it is legally
specified, initiates processing of the request.

In FORTRAN and FORTRAN IV, EXEC calls are coded as
CALL statements. In ALGOL, EXEC calls must be declared
as CODE procedures and parameters must be declared as
NAME. In Assembly Language, EXEC calls are coded as
JSB EXEC followed by a series of parameter definitions.
For any particular call, the object code generated for the
FORTRAN CALL Statement is equivalent to the
corresponding Assembly Language object code.

ERROR RETURN POINT

The user can alter the error return point of EXEC calls in
association with error codes LU, SC, 10, DR, and RN as
shown in the following example.

CALL EXEC (ICODE ...)
GO TO error routine
normal return

This special error return is established by setting bit 15 to
“1” on the request code word (ICODE). This causes the
system to execute the first line of code following the CALL
EXEC if there is an error, or if there is no error, the second
line of code following the CALL EXEC.

The special error return will also return control to the
calling program on a disc parity error on the system disc.
In this case the B-Register will be set to ~1 instead of the
transmission log and the return will be to the normal
return point. If there is an error the A-Register will be set
to the ASCII error type (LU,SC,LO,DR,RN) and the
B-Register set to the ASCII error numbers normally
printed on the system console.

The following excerpts from an example program
demonstrates the use of the special error return.
FTN, L

PROGRAM PROGA

DIMENSION IREG(2)

EOUIVALENCE (REG,IREG,TA), (IREG(2),IB)

When an EXEC call is issued, the sign bit must be set in the
request code.

CALL EXEC (ICODE+1@@2g¢RB,...)
GO TO 10 (ERROR RETURN POINT)
: (NO ERROR RETURN POINT)

After the following line of code is executed, “IA” will
contain the A-Register contents and “IB” the B-Register
contents. Note the EQUIVALENCE statement at the
beginning of the example.

10 CALL ABREG (IA,IB)

Next call the user defined error routine and pass it the error
code.
CALL IER(IA,IB)

.
.

END

3-1

RTE-I1I

Table 3-1. RTE-III EXEC Calls

Request
Call Code Function Page
READ,WRITE 1,2 Transfers information to and from an external 1/O 34
device.
Class I/O READ,WRITE 17,18,20 Starts a no-wait I/O request which results in a transfer 3-6
WRITE/READ of information to and from an external 1/O device
or program.

/0 Control 3 Instigates various [/O control operations. 3-10
Class I/O Control 19 Instigates various 1/O control operations under Class 3.12
numbering scheme.

Class 1/0O Get 21 Completes the data transfer initiated by "the Class 1/O 3-13

request.
/O Status 13 Requests information about a device. 3-15
Disc Track Allocation Assigns a specific number of disc tracks for data storage.
Program
Global 15 3-18
Disc Track Release Release assigned disc tracks
Program 5
Global 16 3-19/3-20
Program Completion 6 Logically terminates execution of a calling program. 3-21
Program Suspend 7 Suspends calling program execution. 3-22
Program Segment Load 8 Loads a program segment into background area. 3-23
Program Schedule Schedules a program for execution.
9 Immediate with wait.
10 Immediate without wait.
23 Queue with wait.
24 Queue without wait. 3-24
Time Request 11 Requests current real time. 3-26
String Passage 14 Retrieves program’s command string or passes string 3-27
to program’s “Father.”
Timed Execution
Initial Offset 12 Schedules a program for execution after an initial offset. 3-29
Absolute Start 12 Schedules a program for execution at a specified time. 3-31
Program Swapping 22 Allows a program to lock itself into core and notify 3-33
Control system of core usage.
Resource Management Allows cooperating programs a method of efficiently 3-34
utilizing resources.
Logical Unit Lock - Allows a program to exclusively dominate an I/O device. 3-36
Partition Status 25 Provides information about a specified partition. 3-37

3-2

™y
The Relocatable Library routine ABREG ; i¥used to pick up

information left in the A- and B-Registers by EXEC. The
ALGOL format is:

INTEGER IA,IB;

.

PROCEDURE ABREG (A,B) ;
INTEGER A,B;

CODE;

ABREG(IA,IB);

ASSEMBLY LANGUAGE FORMAT

The following is a general model of an EXEC call in
Assembly Language:

EXT EXEC Used to link
. program to RTE-III.

JSB EXEC Transfer control to
RTE-TII.

DEF *+n+1 Defines point of
return from RTE-III;
n is number of
parameters and may
not be an indirect
address,

DEF pl Define addresses of
parameters which may
occur anywhere in
program; may be multi-
level indirect.

DEF pn

return point Continue execution of
program,

pl - - -

. Actual parameter values.

pn - = =

FORTRAN/FORTRAN IV FORMAT

In FORTRAN and FORTRAN 1V, the executive can be
called through a CALL statement or as a function. The
function is used when the user wants the A- and B-Registers
returned in a variable.

For example, as a CALL:

CALL EXEC (ICODE, p2,...,pn)

Exec Calls

Where

ICODE and p2 through pn are either integer values or
integer variables defined else-
where in the program.

For example, as a function:

DIMENSION IREG(2)

EQUIV%LENCE (REG,IREG,IA),(IREG(Z),IB)

REG=EXEC (ICODE,p2...,pn)

The A-Register is returned in IA and the B-Register in IB.
ALGOL FORMAT

In ALGOL, the EXEC routine must be declared as an
external CODE procedure before it is used. All formal
parameters should be integers. Parameters that are not
buffers and those that will not be modified by EXEC can
be passed by value. When calling EXEC from ALGOL,
pass a buffer by specifying the first element in an integer
array (not the array name) as the actual parameter. For
example, the following ALGOL program uses the EXEC
routine with four parameters to perform a read:

HPAL,L, "MAIN"

.

INTEGER ICNWD;

INTEGER ARRAY IBUFR{20];

PROCEDURE EXEC(A,B,C,D);
VALUE A,D; INTEGER A,B,C,D;
CODE;

EXEC(1,ICNWD,IBUFR[1],20);

END$

The EXEC routine can be called with 1 to 9 parameters.
However, ALGOL requires procedures to be called with a
fixed number of parameters. If an ALGOL program calls
EXEC with different numbers of parameters, unique
procedure names must be declared within the main pro-
gram and an external procedure must be written for each
unique call. In the following example, a second EXEC call
has been added to get the system time:

HPAL,L,"MAIN"

INTEGER ICNWD;
INTEGER ARRAY IBUFR[20], ITIME[5];

PROCEDURE EXEC(A,B,C,D);
VALUE A,D; INTEGER A,B,C,D;
CODE;

RTE-II

PROCEDURE EXECA (A,B) « HPAL,L,P, "EXECA"
VALUE A: INTEGER A,B: PROCEDURE EXECA (A,B) ;
CODE VALUE A; INTEGER A,B;
3 BEGIN

EXEC (1, ICNWD, IBUFR(1],20) ; PROCEDURE EXEC (A,B) ;

EXECA (11,TIME[1]);

ENDS$

(External)

INTEGER A,B;
CODE;
EXEC (A,B) ;

END;

The following external procedure would be compiled
separately:

READ/WRITE

Purpose:

To transfer information to or from an 1/O device. For a READ request, or, if the I/O device is not buffered, the
program is placed in the 1/0 suspend list until the operation is complete. RTE then reschedules the program.

Assembly Language:

RTN

ICODE
ICNWD
IBUFR
IBUFL
IPRM1
IPRM2

FORTRAN

EXT EXEC

JSB EXEC Transfer control to RTE-III

DEF RTN Return address

DEF ICODE Request code

DEF ICNWD Control-information

DEF IBUFR Buffer location

DEF IBUFL Buffer length

DEF IPRMI Optional parameter or track number if disc transfer

DEF IPRM2 Optional parameter or sector number if disc transfer

return point Continue execution (A =status, B = transmission log. If
buffered WRITE, A and B are meaningless.)

DEC 1 (or2) 1=READ, 2=WRITE

OCT conwd conwd is described in Comments

BSS n Buffer of n words

DEC n(or -2n) Same n; words (+) or characters (-)

DEC f Optional parameter or decimal track number if disc transfer

DEC ¢ Optional parameter or decimal sector number if disc transfer

DIMENSION IBUFR(n) Set up buffer

IBUFL =n Buffer length
ICODE =2 Request code
ICNWD = conwd Set Control Word

REG=EXEC (ICODE,ICNWD,IBUFR,IBUFL,IPRM1,IPRM2)

34

COMMENTS

Parameters IPRM1 and IPRM2 are optional, except in the
case of disc transfers. If the data transfer involves a disc,
I[PRM1 is the disc track number and IPRM2 is the disc
sector number. In calls to other I/O devices these para-
meters may have other uses. For example, driver DVR77
(HP 2323A Subsystem) uses IPRM1 for the scanner
channel number and [PRM2 for the instrument program
word. In some cases these parameters may be used to pass
an additional control buffer to the driver (see Z-bit below).

CONTROL WORD

Figure 3-1 shows the format of the control word (conwd)
required in the READ/WRITE calling sequence for DVR0OO
driven devices. Several fields defining the nature of the data
transfer are shown.

|T5|14'13I1ZI11'1019l8|7'6 5|4'3|2I1I0

Logical |
0 0 0 ¢ OLX

A K Vv m Unit
Figure 3-1. READ/WRITE (conwd) Format

Function Code
TPRTE-3

Note that if the logical unit bits are specified as zero, the
call takes place but no data is transferred. '

Where

M= 0 for ASCII.

M= 1 for binary.

V= 1, and M = 1, causes the length of punched tape input
to be determined by the word count in the first
non-zero character read from the tape.

V= 1 for the line printer will cause it to print column
one.

V= 0, and M = 1, the length of the punched tape input is
determined by the buffer length specified in the
EXEC call.

K= 1 causes keyboard input to be printed as received. If
K = 0 input from the keyboard is not printed.

A= 1 designates punching (without printing) ASCII char-

acters on the teleprinter M = 0). (If A =0, M
determines mode of transfer.) This bit is effective on
devices that recognize this control function.

® Modified to contain request code before entry into driver.

7

Exec Calls

When paper tape devices are used, “X” in combina-
tion with “M” and “V” will indicate an honesty
mode that is defined as follows:

On input, if “X”, “M”, and “V” are set, absolute
binary tape format is expected and handled. If “X”
and “M” are set, and “V” is not, leader is not skipped
and the specified number of words are read. On
output, the record terminator (usually four feed
frames) is not punched.

On input, if “X” is set and “M” is not, ASCII tape
format is expected. Leader is not skipped, bit 8 is
stripped, but otherwise, all characters are passed to
the user’s buffer. The only exception is line-feed,
which terminates the record. On output, carriage
return and line-feed are suppressed; any trailing left
arrow is not (i.e., left arrow is transmitted but
carriage return/line feed is not).

1 designates that [IPRM1 is the address of a control
buffer and IPRM2 is the length of that buffer in
words (only when the call is to be non-disc device).
The Z-bit is passed to the driver.

In an Assembly Language calling sequence, the buffer
length (IBUFL) can be a positive number for words (+) or a
negative number for characters (—).

A- AND B- REGISTER RETURNS

End-of-operation information is transmitted to the program
in the A- and B-Registers. The A-Register contains word 5
(status word) of the device EQT entry with bits 14 and 15
indicating the end-of-operation status as defined by the
driver completion code. This will be either 00-up, or
01-down. The B-Register contains a positive number which
is the number of words or characters (depending upon
which the program specified) actually transmitted.

NOTE

When a REAL array is transmitted,
the buffer length must still be the
total number of words required
(i.e., 2 times REAL array length, or
3 times double precision array
length).

If the request is for output to a buffered device, the
registers are meaningless.

3-5

RTE-III

I/0 AND SWAPPING

Disc resident programs doing 1/O are swappable under the
following conditions:

a. The buffer is not in the partition (i.e., it is in
common or the resident library).

b. The device is buffered and the request is for
output, and enough contiguous memory was allo-
cated for buffering the record to be transferred.

c. The buffer is contained in the Temporary Data
Block (TDB) of a re-entrant routine, and enough
contiguous memory was allocated to hold the TDB.

Only the first buffer of a two buffer request (see Z-bit
above) is checked to determine program swappability. It is
the user’s responsibility to put the second buffer in an area
that implies the swappability if conditions “a” or “c” are
true. The system takes care of case “b”.

RE-ENTRANT I/O

A subroutine called REIO is furnished to allow the user to
do re-entrant I/O. REIO is a utility type library routine and
is more fully documented in Part 5 of Section IV, RTE-III
Relocatable Libraries.

CLASS I/0 — READ/WRITE

Purpose:

To transfer information to or from an external non-disc I/O device or another program. Depending on parameter
options, the calling program will not be suspended while the call completes.

assembly Language:

Transfer control to RTE-I11

Contine execution (A = zero or status, B meaningless)

17=READ, 18=WRITE, 20=WRITE/READ
conwd is described in Figure 3-1

Same n; words (+) or characters (-)

class is described in Comments

EXT EXEC
JSB EXEC
DEF RTN Return address
DEF ICODE Request code
DEF ICNWD Control information
DEF IBUFR Buffer location
DEF IBUFL Buffer length
DEF IPRMI Optional parameter
DEF IPRM2 Optional parameter
DEF ICLAS Class word
RTN return point
ICODE DEC numb
ICNWD OCT conwd
IBUFR BSS n Buffer of n words
IBUFL DEC n(or-2n)
IPRM1 DEC f Optional parameter
[PRM?2 DEC ¢ Optional parameter
ICLAS OCT class
FORTRAN:
DIMENSION IBUEFR (n)
IBUFL =n
ICODE =20
ICNWD =0
ICLAS=0

REG = EXEC (ICODE,ICNWD,IBUFR,IBUFL IPRM1,IPRM2,ICLAS)

3-6

COMMENTS

Class 1/O consists of a unique scheme of programming
within the RTE-III System to effectively handle several
programs addressing either other programs or I/O devices.
The following description of class 1/O relies upon a Glossary
of Terms directly related to Class I/O (see Table 3-2).

The maximum number of classes is established during
system generation after the last system modules are loaded.
The generator requests how many class numbers are to be
established and the operator responds with a number
between O and 255. Once the numbers are established the
system keeps track of them and assigns them (if available)
to the calling program when a class I/O call is made and the
Class Number parameter is set to zero. Once the number
has been allocated, the user can keep it as long as desired
and use it to make multiple class I/O Calls. When the user is
finished with the number it can be returned to the system
for use by some other class user. One example of using Class
I/O is Class I/O Mailbox communication. The example
program in Figure 3-3 and described in the following
sequence of events, shows how this is accomplished.

Table 3-2. Glossary of Terms for
Class Input/Output

Term Description

1. Class An account which is owned
by a program which may be

used by a group of programs.

2. Class Number The account number referred

to in number one.

3. Class Users Programs that use the class

number.

4. Class Request An access to a logical unit

number with a class number.

5. Class Members Logical unit numbers that are
currently being accessed in
behalf of a class. Completion
of access removes the associa-
tion between class number
and logical unit number (com-
pletion of access is defined as
when the driver completes
the request).

6. Class Queue The set of uncompleted class

(Pending) requests.
7. Class Queue The set of all completed class
(Completed) requests. The structure is first

in, first out.

Exec Calls

a. User program PROGA issues a Class /O call
with the Class Number parameter set to zero and the
logical unit number portion of the control word
parameter set to zero. This causes the system to
allocate a Class Number (if available) and the request
to complete immediately. (Logical unit zero specifies
a system “bit bucket” which implies immediate
completion).

b. When the WRITE/READ call completes,
PROGA’s data will have been placed in a system
buffer and this fact recorded in the Completed Class
Queue for this class.

c. PROGA then schedules PROGB (the program
receiving the data) and passes PROGB, as a parameter,
the Class Number it obtained.

d. When PROGB executes it picks up the Class
Number by calling(RMPAR. Fhen using this Class
Number, it issues a Class I/O Get Call to the class.
PROGA’s data is then passed from the system buffer
to PROGB’s buffer.

The system handles a Class 1/O call in the following
manner.

a. When the class user issues a Class 1/O call (and
the call is received), the system allocates a buffer
from available memory and puts the call in the header
(first 8 words) of this buffer. The call is placed in the
pending class queue and the system returns control to
the class user.

b. If this is the only call pending on the EQT, the
driver is called immediately, otherwise the system
returns control to the class user and calls the driver
according to program priority.

C. If buffer space is not available, the class user is
memory suspended unless bit 15 (“no wait™) is set. If
the “no wait” bit is set, control is returned to the
class user with the A-Register containing a —2
indicating no memory available.

d. If the class number is not available or the I/O
device is down, the class user is placed in the general
wait list (status = 3) until the condition changes.
e. If the call is successful, the A-Register will
contain zero on return to the program.

The buffer area furnished by the system is filled with the
caller’s data if the request is either a WRITE, or a
WRITE/READ call. The buffer is then queued (pending) on
the specified logical unit number. Since the system forms a
direct relationship between logical unit numbers and EQT
entries, the buffer can also be thought of as being queued
on the EQT entry. ~

3-7

RTE-III

After the driver receives the Class I/O call (in the form of a
standard I/O call) and completes, the system will:

a. Release the buffer portion of the request if a
WRITE. The header is retained for the Get call.

b. Queue the header portion of the buffer in the
Completed Class Queue.

c. If a Get call is pending on the Class Number,
reschedule the calling program. (This means that if
the user issues a Class Get call or examines the
completed Class Queue before the driver completes,
the user has effectively beat the system to the
completed Class Queue.) Note that the program that
issued the Class I/O call and the program that issued
the Class Get call do not have to be the same
program.

d. If there is no Get call outstanding, the system
continues and the driver is free for other calls.

When the user issues the Get call, the completed Class
Queue is checked and one of the following paths is taken.

a. If the driver has completed, the header of the
buffer is returned (plus the data). The user (calling
program) has the option of leaving the I/O request in
the completed Class Queue so as not to lose the data.
In this case a subsequent Get call will obtain the same
data. Or the user can dequeue the request and release
the Class number.

b. If the driver has not yet completed (Get call
beat system to the completed Class Queue), the
calling program is suspended in the general wait list
(status = 3) and a marker so stating is entered in the
completed Class Queue header. If desired, the
program can set the “no wait” bit to avoid
suspension. In any case, when the driver completes,
any program waiting in the general wait list for this
class is automatically rescheduled. Note that only one
program can be waiting for any given class at any
instant. If a second program attempts a GET call
before the first one has been satisfied it will be
aborted (I/O error 1010).

IPRM1 and IPRM2 are required as place holdersin this
request. They may also be used to pass information through
to the Class I/O Get Call to aid in processing the request.

For a combination class WRITE/READ call, the driver
should expect control data in the buffer IBUFR. The
system will treat the request as a class WRITE in that the
buffer must be moved prior to the driver call, and as a class
READ in that the buffer must beé saved after the driver
completion. Note that the driver will receive a standard
READ request (ICODE = 1) on this request.

3-8

Refer to Figure 3-1 for the format of the control word
(conwd) required in the class I/O READ/WRITE calling
sequence.

Figure 3-2 shows the format of the class word (ICLAS)
required in the calling sequence. To obtain a class number
from the system the class portion (bits 12-0) of the word is
set to zero. This causes the system to allocate a Class
Number (if one is available) to the calling program. The
number is returned in the ICLAS parameter when the call
completes and the user must specify this parameter
(unaltered) when using it for later calls. Bit 15 is the
“no-wait” bit. When set the calling program does not
memory suspend if memory (or a class number) is not
available. A-Register value when the program returns is as
follows:

“A” Value Reason

0 OK-request done

-1 No class number
-2 No memory now or buffer limit

exceeded.
[15|14 13 12|11 10 9|8 7 6|5 4 3]2 1 OI
Nlo | Class Number I
Wait

TPRTE-4

Figure 3-2. Class Number (ICLAS) Format

When the user’s program issues a Class 1/O call the system
allocates a buffer from available memory and puts the
call in this buffer. The call is queued and the system
returns control to the user’s program. If memory is not
available, three possible conditions exist: (1) The program
is requesting more memory than will ever be available. In
this case the program is aborted with a 1004 error. (2) The
program is requesting a reasonable amount of memory but
the system must wait until memory is returned before it
can satisfy the calling program. In this case the program is
suspended unless the “no wait” bit is set in which case a
return is made with the A-Register set to —2. (3) If the
buffer limit is exceeded the program will be suspended until
this condition clears. If the “no wait” bit is set the program
is not suspended and the A-Register is set to —2.

FTN, |,

e g Ryl

o000

FTN,L

onn

Oo0o0n

PROGRAM PROGA

DIMENSTON IBFR(32),INAME(3)

DO CLASS WRITE/READ TO LU=R,

1ICLASER
CALL EXEC(22,14,18FR, =64, IDUMY, JDUMY,ICLAS)

SLHEDULE RECEIVING PRUGRAM AND PASS IT CLASSW
INAME (1) 3541229
INAME (2)®475B7R

INAME (3) 2412008
CALL EXEC (19, INAME,ICLAS)

PROGRAM PROGH
DIMENSION JBFR(32),1IPRAM(S)

SAVE CLASS %, IPRAM(1)
CALL HMPAR(CIPRAM)

ACCEPT DATA FROM PROGA USING CLASS GET CaALL
AND RELFASE THE CLASS NUMBER,

Call EXEC(21,IPR&M(1),1BFK,J32)

]
»
[

Figure 3-3. Example of Class I/O Mailbox Communication

Exec Calls

RTE-III

1/0 CONTROL

Purpose:

To carry out various 1/O control operations, such as backspace, write end-of-file, rewind, etc. If the I/O device is
not buffered, the program is placed in the 1/O suspend list until the control operation is complete.

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE-III
DEF RTN Return address
DEF ICODE Request code
DEF ICNWD Control information
DEF [PRAM Optional parameter
RTN return point
buffered, A is meaningless)
ICODE DEC 3 Request code = 3
ICNWD OCT conwd See Control Word
IPRAM DEC =n
FORTRAN:

Use the FORTRAN AUXILIARY 1/O statements or an EXEC call sequence.

ICODE = 3 Request code
ICNWD = conwd
IPRAM =x

REG = EXEC (ICODE ICNWD,IPRAM)

Optional; see Control Word

Continue execution (A = status, B meaningless. If call is

Required for some control functions; see Control Word

CONTROL WORD

Functional Code (Octal)

Figure 3-4 shows the format of the control word (conwd)
required in the 1/0 control calling sequence.

T T T T T
|15|14 13 12l11 10 9 !8 7 615

T T
43|210

0

Logical
Unit#

)

TPRTE-S

0O 0 O Function Code

Figure 3-4 I/O Control (conwd) Format

Function Code (Octal) Action
00 Clear device
01 Write end-of-file (magnetic tape)
02 Backspace one record (magnetic

3-10

03

04

05

06*
07

10
11
12

Action

Forward space one record (mag-
netic tape)

Rewind (magnetic tape)
Rewind standby (magnetic tape)

Dynamic status (magnetic tape)

Set end-of-paper tape—lzader
skipped on next input request

Generate paper tape leader
List output line spacing

Write 3-inch gap (magnetic tape)

tape)

#p Modified to contain request code before entry into driver

Function Code (Octal) Action
13 Forward space file (magnetic
tape)
14 Backward space file (magnetic
tape)
15 Conditional form feed (see Line

Printer Driver manual).

The following functions are defined for DVR0O. For more
information see the driver manual 29029-60001.

20 Enable terminal — allows terminal to schedule its
program when any key is struck.

21 Disable terminal — inhibits scheduling of terminal’s
program.

22 Set time-out — the optional parameter is set as the
new time-out interval.

23 Ignore all further action requests until:

a) The device queue is empty or

b) An input request is encountered in the queue,
or ’

¢) A restore control request is received.

24 Restore output processing (this request is usually not
needed).

Exec Calls

The following functions are defined for the 2644 cartridge
tape units (CTU). (Function codes 01, 02, 03, 04, 06, 13,
and 14 have the same meaning for CTU as for magnetic

tape.)

05 Rewind

10 Write end-of-file if not just previously written or not
at load point

26 Write end-of-data

27 Locate file number IPRAM (less than 256)
Function Code octal 11 (list output line spacing), requires

the optional parameter IPRAM which designates the num-
ber of lines to be spaced on the specified logical unit as

shown below. o
IPRAM Teleprinter // Line Printer
+n space n lines space n lines l'
. /
-n space n lines top of form |
0 no line feed \ no line feed

N

*The dynamic status request (06) is unbuffered by RTIOC
so that the caller receives the true status of any device. This
causes the caller to wait for previous requests he (and lower
priority programs) has made to be processed.

RTE-III

CLASS I/0 — CONTROL

Purpose:

To carry out various 1/O control operations, such as backspace, write end-of-file, rewind, etc. The calling program

does not wait.

Assembly Language:

RTN

ICODE
ICNWD
IPRAM
ICLAS

FORTRAN:

Use the FORTRAN auxiliary 1/0 statements or an EXEC call sequence.

EXT

JSB
DEF
DEF
DEF
DEF
DEF
return

DEC
OCT
DEC
OCT

EXEC

EXEC
RTN
ICODE
ICNWD
IPRAM
ICLAS
point

19
conwd

class

ICODE = 19

ICNWD = conwd

IPRAM =x
ICLAS =y

REG = EXEC (ICODE,ICNWD,IPRAM,ICLAS)

Transfer control to RTE-II1

Return address

Request code

Control information

Optional parameter

Class word

Continue execution (A = class number, B meaningless)

Request code = 19

See Control Word

Required for some control functions; see Control Word
class is described in Comments

Request code

See Control Word
See Control Word
Class Word

COMMENTS

Note that this call, with the exception of the ICLAS
Refer to Figure 3-4 for the format of the control word parameter is the same as the standard 1/O control call. Also
(conwd) required in the Class I/O control calling sequence. refer to the Class I/O Get Call for additional information.

3-12

Exec Calls

CLASS I/O — GET

Purpose:

request.

Assembly Language:

To complete the data transfer between the system and user program that was previously initiated by a Class

EXT EXEC

JSB EXEC . Transfer control to RTE-III

DEF RTN Return address

DEF ICODE Request code

DEF ICLAS Class word

DEF IBUFR Buffer location

DEF IBUFL Buffer length

DEF IRTN1 Optional parameter status word

DEF IRTN2 Optional parameter status word

DEF IRTN3 Optional parameter class word
RTN return address Continue execution (A = status, B = Transmission log)
1ICODE DEC 21 21 = class GET call
ICLAS NOP class is described in Comments
IBUFR BSS n Buffer of n words
IBUFL DEC n(or—2n) Same n; words (+) or characters (—)
IRTN1 NOP Location for IPRM1 from READ/WRITE call
IRTN2 NOP Location for IPRM2 from READ/WRITE call
IRTN3 NOP Location for IPRM3 from READ/WRITE call

FORTRAN:

DIMENSION IBUFR (n)

ICODE =21

IBUFL =n

ICLAS =x0

REG = EXEC (ICODE,ICLAS,IBUFR,IBUFL,IRTN1,IRTN2,IRTN3)

COMMENTS Figure 3-5 shows the format of the class word (ICLAS)

When the calling program issues a Class Get call, the
program is telling the system that it is ready to accept
returned data from a Class READ call or remove a
completed Class WRITE or Control call from the completed
Class list. If the driver has not yet completed (Get call beat
system to the completed Class Queue), the calling program
is suspended in the general wait list (status = 3) and a
marker so stating is entered in the Class Queue header.
When the driver completes, the program is automatically
rescheduled. If desired, the program can set the “no wait”
bit to avoid suspension.

required in Class Get Call. Bits 12-0 represent the Class
Number and security code that the Get call is looking for.
This Class Number is obtained (in unaltered form) from the
original Class 1/O READ, WRITE, CONTROL or
WRITE/READ call. Bit 15 is the “no wait” bit. When set,
the calling program does not suspend if the Class Request
has not yet completed. Bit 14 is the “‘save’ bit. When set,
the buffer is not released; therefore, a subsequent Get call
will return the same data. Bit 13 is the “de-allocate” bit.
When set, the Class Number is not returned to the system.
If bit 13 is zero and no requests are left in the Pending Class
Queue, and no Class Requests for this class are waiting for

3-13

RTE-II

[15]14'13'12[11'10'9 8 7 6|5 4 3|2

I—— System Use —

Class Number
Do not de-allocate class number
Save Class Buffer

No Wait

TPRTE-6

Figure 3-5. Class Word (ICLAS) Format

driver processing, the class is returned to the system. It is
possible for the call to return the Class Number and data, or
no data depending on if there is one class call left. Bits 14
and 13 work in conjunction with each other. If bit 14 is set
then the buffer will not be released. Therefore you cannot
de-allocate the Class Numiber. That is, the Class Number
cannot be released because there is still an outstanding
request against it.

Only when the Get call gets the last class request on a class,
or on an empty class queue (completed and pending) can
the user release the Class Number by clearing bit 13 in the
ICLAS word.

Three parameters in the call are return locations: that is,
values from the system are returned to the calling program
in these locations. Optional parameters [IPRM1 and IPRM2
from the Class I/O — WRITE/READ calls are returned in
IRTNI and IRTN2. These words are protected from
modification by the driver. The original request code
received by the driver is returned in IRTN3. For example:

Original Request Code Value Returned in IRTN3

17/20(READ,WRITE/READ) 1
18 (WRITE) 2
19 (CONTROL) 3

3-14

1 0| BUFFER CONSIDERATIONS

Several buffer considerations exist in the Class I/O Get call.
They are as follows:

a. The number of words returned to the user’s
buffer is the minimum of the requested number and
the number in the Completed Class queue element
being returned.

b. If the original request was made with the “Z”
bit set in the control word, then IPRM1 returned by
this call will be meaningless.

c. The “Z” buffer will be returned if there is room
for it (see “a” above) only if the original request was
a READ or WRITE/READ (i.e., for WRITE requests
no data is returned in the buffer area).

A- AND B-REGISTER RETURNS

The A- and B-Registers are set as follows after a Class 1/0
Get call.

A-Register B-Register

A15 =0then A = status B = transmission log
(positive words or characters
depending on original request)

Al5 =1 then A = —(numb+1)B = meaningless

On return with data, bit 15 is set to zero and the rest of the
A-Register contains the status word (EQTS5). If a return is
made without data (the “no wait bit” was set in the
class word) then bit 15 is set to one and the A-Register
contains the number of requests numb made to the class bit
not yet serviced by the driver (i.e., pending class requests).

Exec Calls

I/0 STATUS
Purpose:
To request information (status condition and device type) about the device assigned to a logical unit number.
Assembly Language:
EXT EXEC
ISB EXEC Transfer control to RTE-III
DEF RTN Return address’
DEF ICODE Request code
DEF ICNWD Control information
DEF ISTAl Status word 1
DEF ISTA2 Status word 2 — optional
DEF ISTA3 Status word 3 — optional
RTN return point Continue execution (A and B are meaningless)
ICODE DEC 13 Request code = 13
ICNWD DEC n Logical unit number
ISTA1 NOP Word 5 of EQT entry returned here
ISTA2 NOP Word 4 of EQT entry returned here, optional
ISTA3 NOP LU status returned here, optional
FORTRAN:
ICODE =13 Request code
ICNWD =nn nn is the logical unit number
CALL EXEC (ICODE,ICNWD,ISTA1,ISTA2,ISTA3)
COMMENTS The status of the specified LU is returned in ISTA3. Bit 15
indicates whether the device (LU) is up (0) or down (1).
When this call is made the calling program is not suspended. Bits 4-0 give the subchannel associated with the device.

Equipment Table (EQT) words 5 and 4 (optional) are
returned in ISTA1 and ISTA?2 and are defined as shown in
Table 3-3. The STATUS portion of EQT word 5 is further
broken down and shown in Table 3-4.

RTE-III

s

Table 3-3. 1/O Status Word (ISTA1/ISTA2) Format

EQUIP. TYPE CODE

STATUS

WORD CONTENTS
Y T T T T T Y v
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
4 D B P S T Unit # Channel #
5 AV EQUIP. TYPE CODE STATUS (see Table 34)
ISTA2 D = 1 if DMA required.
B = 1 if automatic output buffering used.
P = 1 if driver is to process power fail.
S = 1 if driver is to process time-out.
T = [if device timed out (system sets to zero before each 1/0 request).
Unit = Last sub-channel addressed.
Channel = [/O select code for device (lower number if a multi-board interface).
ISTA1 AV = availability indicator:

0 = available for use.
1 = disabled (down).
2 = busy (currently in operation).

3 = waiting for an available DMA channel.

type of device. When this number is linked with “DVR.” it identifies the
device’s software driver routine:

00 to 075 = paper tape devices (or system control devices)

00 = teleprinter (or system keyboard control device)

01 = photo-reader

02 = paper tape punch

05 subchannel 0 = interactive keyboard device (or system

keyboard control devices)
subchannel 1,2 = HP mini-cartridge device

10 to 17 = unit record devices

10 = plotter
12 = line printer
15 = mark sense card reader

20 to 37 = magnetic tape/mass storage devices
31 = 7900 moving head disc

32 = 7905 moving head disc

40 to 77 = instruments

= the actual physical status or simulated status at the end of each operation.
For paper tape devices, two status conditions are simulated: Bit 5= 1
means end-of-tape on input, or tape supply low on output.

3-16

Table 3-4. EQT Word 5, STATUS Table.

Exec Calls

DevNatus 7 6 5 4 3 2 | 0

Teleprinter(s) End of

Photoreader(s) X — I/0 - - STL TEN -

Punch(es) Tape
DVRO0

2640 Terminal

2644 Terminal BF — CD — — - TEN —

Cartridge Tape Unit EOF TLP EOT RE LCA Ccwp EOD CNE/DB

DVRO5

7210 Plotter — - - - — — - PD
DVRIO0

2892 Card Reader HE RNR
DVRI11

2767 Line Printer “ ok NE
DVR12 LCF LCF

2607 Line Printer TOF DM ON RY X X Auto X

page
eject

DVR12

7261 Card Reader EOF — HE/SF PF - — DE RNR

2761 Mark Sense - — HE/SF PF — — DE RNR

Reader

DVRI5

3030 Mag Tape EOF ST EOT TE I/OR NW PE DB/OL

7970
DVR22
DVR23

7900 Moving Head Disc NR EOT AE FC SC DE EE
DVR31

7905 Moving Head Disc PS FS HF FC SC NR DB EE
DVR32

Where:
PE = Parity Error
HE = Hopper Empty
SF = Stacker Full
RNR = Reader Not Ready
PF = Pick Fail
DE = Data Error
OL = Off Line
ON = On Line
CE = Compare Error
BT = Broken Tape
DB = Device Busy
EOF = End of file
ST = Start of Tape
TE = Timing Error
I/OR =I/O Reject

NW = No Write (write enable
ring missing or tape unit is rewinding)
SC = Seek Check

FC =Flagged Track (protected)
AE = Address Error

EOT = End of Tape

NR = Not Ready

RY = Ready (0 = power on)
LCF = Last Character Flag

NE = No Error

DR = Disc Ready

HF = Hardware Fault

PS =Protect Switch Set

FS = Drive Format Switch is set
EE = Error exists

TEN = Terminal Enabled

TOF =Top of Form

DM = Demand (1 = Idle)

X = Driver Internal Use

STL = Stall required/ In
program

PD =Pen Down

CD = Control-D Entered

BF = Buffer Flushed

CNI = Cartridge Not Inserted
EOD = End of Data

CWP = Cartridge Write Protected
LCA = Last Command Aborted
RE = Read Error

TLP = Tape at Load Point

3-17

RTE-II

DISC TRACK ALLOCATION

Purpose:

To request that RTE-III assign a specific number of contiguous disc tracks for data storage. The tracks are either
assigned to the calling program or assigned globally.

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE-II1
DEF RTN Return address
DEF ICODE Request code
DEF ITRAK Number of contiguous tracks required
DEF ISTRK Start track number
DEF IDISC Disc logical unit number
DEF ISECT Number of 64 word sectors/track
RTN return point Continue execution (A and B are meaningless)
ICODE ~ DEC 4orl5 4 = allocate track to program
15 = allocate track globally
ITRAK DEC n n = number of contiguous tracks within the same disc unit
requested. If bit 15 of ITRAK = 1 the program is not suspended if
tracks are not available; if bit 15 = 0, the program is suspended until
the tracks are available.
ISTRK NOP RTE-III stores starting track number here, or —1 if the tracks are
not available.
IDISC NOP RTE-I1I stores logical unit number here.
ISECT NOP RTE-III stores number of 64 word sectors/track here.

FORTRAN:
Example (with no suspension):

ICODE =4
ITRAK = 100000B + n
CALL EXEC (ICODE,ITRAK,ISTRK,IDISC,ISECT)

Example (with suspension until tracks available):
ICODE = 4

ITRAK =4
CALL EXEC (ICODE,ITRAK,ISTRK IDISC ISECT)

COMMENTS

switching; the user program (when using this call) is
RTE-II supplies only whole tracks within one disc. When completely responsible for file and track management.
writing or reading from the tracks (see READ/WRITE RTE-III will prevent other programs from writing on
EXEC Call), RTE-III does not provide automatic track program assigned tracks, but not from reading out of them.

3-18

Exec Calls

The program retains the tracks until it or the operator READ, WRITE, or release. The user is completely re-

releases them, or the program is aborted.

Globally assigned tracks are available to any program for

sponsible for their management. RTE-III will not prevent!
other programs from writing on globally assigned tracks or
releasing them.

DISC TRACK RELEASE-PROGRAM TRACKS

Purpose:

Call).

RTN

ICODE
ITRAK

ISTRK
IDISC

FORTRAN:

Assembly Language:

EXT

JSB
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC

DEC
DEC

To release some contiguous disc tracks which were previously assigned to'a program (see Disc Allocation EXEC

EXEC

EXEC
RTN
ICODE
ITRAK
ISTRK
IDISC
point

T 3

Release of n contiguous tracks starting at m on LU p:

ICODE =5
ITRAK =n
ISTRK = m
IDISC=p

CALL EXEC (ICODE,ITRAK,ISTRK,IDISC)

ICODE =5
ITRAK = —1
CALL EXEC (ICODE,ITRAK)

Release all tracks allocated to the program.

Transfer control to RTE-III

Return address

Request code

Number of contiguous tracks, or —1

Starting track number

Disc logical unit

Continue execution (A and B are meaningless)

Release program’s tracks

If n = —1, release all tracks assigned to program; ISTRK and IDISC are
unnecessary. Otherwise, n is the number of contiguous tracks to be
released starting at ISTRK.

Starting track number

Disc logical unit

COMMENTS

When tracks are released, any program suspended waiting
for tracks is rescheduled.

RTE-1I

DISC TRACK RELEASE-GLOBAL TRACKS

Purpose:

RTN

ICODE
ITRAK
ISTRK
IDISC

FORTRAN:

Assembly Language:

EXT

JSB
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC
DEC
DEC

To release some contiguous disc tracks which were previously assigned globally (see Disc Allocation EXEC Call).

EXEC

EXEC
RTN
ICODE
ITRAK
ISTRK
IDISC
point

Release of n contiguous global tracks starting at m on LU p:

ICODE =16
ITRAK=~n
ISTRK =m
IDISC=p

REG = EXEC (ICODE ITRAK,ISTRK,IDISC)

Transfer control to RTE-III

Return address

Request code

Number of contiguous tracks

Starting track number

Disc logical unit

Continue execution (A = track release status, B meaningless)

Release global tracks

The number of contiguous tracks to be released starting at ISTRK
Starting track number

Disc logical unit

COMMENTS

If any one of the tracks to be released is either not assigned =0 The tracks have been released.

globally or is currently in use (i.e., some program is queued

to read or write on the track at the time of the release =_1 No tracks have been released — at least one of

request), none of the tracks are released.

them was in use.

The requesting program is rescheduled after the request = -2 No tracks have been released — one or more of
with the A-Register set as follows:

3-20

them was not assigned globally.

PROGRAM COMPLETION

Exec Calls

Purpose:

To notify RTE-III that the calling program wishes to instigate a program termination.

Assembly Language:

RTN

ICODE

INAME

INUMB

IPRM1
IPRMS

FORTRAN:

EXT EXEC
JSB EXEC Transfer control to RTE-III
DEF RTN Return address
DEF ICODE Request code
DEF INAME Name of program to be terminated — optional
DEF INUMB Type of completion — optional
DEF IPRM1
: Up to five optional parameters — optional
DEF IPRM5
return point Continue execution (A = as it was, B = as
it was or parameter address)
DEC 6 Request code = 6
DEC 0 Terminate this program
or
ASC 3,name name = Name of subordinate program to be terminated.
DEC n n =0, Normalcompletion
n = -1, Serial reusability completion.When rescheduled,
program is not reloaded into memory if it is
still resident.
n=1, Make program dormant but save current suspension
point.
n=12, Terminates and removes from the time list the named
program. If the program is I/O suspended, the system
waits until the I/O completes before setting the pro-
gram dormant; however, this call does not wait. The
program’s disc tracks are not released.
n=3, Terminates immediately the named program, removes
it from the time list, and releases all disc tracks. If sus-
pended for I/0, a system generated clear request is
issued to the driver. An abort message is printed on
the system TTY.
Up to five optional parameters to be passed to caller when next
scheduled (INAME = 0).
DIMENSION INAME(3) See INAME above
ICODE =6
INUMB=0 See INUMB above
INAME(1) = 2Hce First two characters
INAME(2) = 2Hcc Second two
INAME(3) = 1Hc Last character in upper 8 bits

REG = EXEC (ICODE,INAME,INUMB,IPRM1 . .. IPRM5)
CALL RMPAR (IPRM1 . . . IPRM5) to pick up the parameters

3-21

RTE-III

COMMENTS

This call, with its optional parameters, makes it possible for
the user to selectively terminate programs he and only he
has scheduled. For example, if PROGI (“Father”)
schedules PROG2 (“‘Son”) to run, and then later PROG2
schedules PROG3 to run, PROG2 becomes the “Father” to
PROG3 (a “Son™). In this case, only the following calls for
Program Completion are legal.

o PROG 1 terminates itself or PROG 2
° PROG 2 terminates itself or PROG 3
] PROG 3 terminates itself only.

Option =1 (INUMB = ~1) should be used only for programs
that have serial reusability. These are disc resident programs
that can initialize their own buffers or storage locations. For
instance, all library subroutines are serially resuable. When
INUMB = -1, the program is reloaded from disc only if it
is overlaid by another program. The program must be able
to maintain the integrity of its data in memory.

Option 1 (INUMB = 1) is almost the same as a Program
Suspend EXEC call. In this case the program restarts from
its point of suspension with all resources untouched. Unless
the program suspended itself in this way, the program may

only be restarted by the program that scheduled it
(“Father”), or the ON or RUN operator commands. If the
program suspended itself (INAME = 0), it may be restarted
by any normal run stimulus (i.e., Schedule, ON, RUN,
TIME and Interrupt).

Parameters IPRM1 . . . IPRMS are optional parameters that
are passed to the caller when it is next scheduled. The
parameters are passed only. MME = 0 and may be
recovered by a call (o RMPAR whdn the program next
executes. In this way a program in the time list may run
with the same parameters each time.

Note that the FORTRAN and ALGOL compilers generate a
Program Completion EXEC call automatically when they
compile an END statement.

PROGRAM SUSPEND

Purpose:

Assembly Language:

EXT EXEC
JSB EXEC
DEF RTN
DEF ICODE

RTN return point

ICODE DEC 7

FORTRAN and ALGOL.:

generates the Suspend EXEC Call.

To suspend the calling program from execution until restarted by the GO operator request.

The FORTRAN and ALGOL library subroutine PAUSE, which is automatically called by a PAUSE statement,

Transfer controf to RTE-III

Return address

Request code

Continue execution (A = as it was, B = as it was or
parameter address)

Request code =7

COMMENTS

Note that it is illegal to suspend a Batch program with this
call (error SCOOQ results). When a program is suspended
(either by this call or the SS command), both the A- and
B-Registers are saved and the program is placed in suspen-
sion list 6. When the program is restarted with the GO

322

request and no parameters, both registers are restored as
they were at the point of suspension and the program
continues. When the program is restarted with a GO and
parameters, the B-Register contains the address of a
five-word parameter array $et by the GO request. In a
FORTRAN program, a call to the library subroutine

)can load these parameters using the address in the

B-Register as a pointer as long as the RMPAR call occurs
immediately after the EXEC call. It must be noted,
however, that when RMPAR is used, parameters must
accompany the GO request. Otherwise RMPAR uses the
restored B-Register as an address to parameters which do
not exist. If you suspect there might not by any para-
meters, the following example shows how to allow for it.

DIMENSION I (5),IREG(2)
EQUIVALENCE (IREG,REG), (IREG(2),IB)
REG = 0.0

REG = EXEC (7) Suspend
IF (IB) 20,20,10
10 CALL(E@PAﬁT(I) \Return Point; get
J— prarameters
20 CONTINUE Return point; no
parameters

Exec Calls

When programming in ALGOL the parameters can be
retrieved through RMPAR in the following manner. The
variables are declared as integers and then RMPAR is called
(immediately after the EXEC call).

INTEGER A,B,C,D,E;

EXEC (7) ;

—

RMPAR (A); >
Obtaining the parameters in this manner depends on the

compiler placing the contents of A,B,C,D,E in sequential
locations.

The Program Suspend EXEC Call is similar to the SS
operator request (see Section II).

PROGRAM SEGMENT LOAD

Purpose:

on segmented programs.)

Assembly Language:

INAME (1) = 2Hee
INAME (2) = 2Hce
INAME (3) = [He

To load a background segment of the calling program from the disc into the background overlay area and transfer
execution control to the segment’s entry point. (See Section IV, Part 7, Real-Time Programming, for information

EXT EXEC
JSB EXEC
DEF RTN
DEF ICODE
DEF INAME
DEF IPRM1
DEF IPRMS
RTN return point
ICODE DEC 8
INAME ASC 3,name
FORTRAN:
DIMENSION NAME (3)
ICODE = 8

REG = EXEC (ICODE,INAME IPRM1 ... IPRMS)

Transfer control to RTE-111
Return address

Request code

Segment name

Up to five optional parameters

Control is transferred to the segment. (A = segment
ID segment address, B = as it was or parameter
address).

Request code = 8

name is the segment name

First two characters
Second two
Last character in upper 8 bits

3-23

RTE-III

COMMENTS

See Section IV, Overlay Segments and Segmented Pro-
grams, for a description of segmented background pro-

grams.

On segment entry the registers are set as follows:
A= Segment ID segment address.

B= Asit is unless parameters are passed in which case it is
the parameter list address (see RMPAR).

The FORTRAN examples are HP FORTRAN IV. For HP
FORTRAN, the name of the segment must be converted

from ASCII to octal and stored in the INAME array, two
characters per word. Refer to the table in Appendix G

for the ASCII to octal conversion.

PROGRAM SCHEDULE

Purpose:

Assembly Language:

EXT EXEC
JSB EXEC
DEF RTN
DEF ICODE
DEF INAME
DEF IPRM1
DEF IPRMS
DEF IPRMS5
DEF IBUFR
DEF IBUFL

RTN return point

ICODE DEC numb

INAME ASC 3name

IPRM 1

[PRMS5

IBUFR BSSn

IBUFL DEC n(or -2n)

FORTRAN:

IBUFL=n
ICODE = numb

INAME(1) = 2Hee
INAME(2) = 2Hee
INAME(3) = 1He

REG = EXEC(ICODE,INAME,IPRM1, . . . , IPRMS5, IBUFR,IBUFL)

To schedule a program for execution. Up to five parameters and a buffer may be passed to the program.

Transfer control to RTE-HI
Return address

Request code

Name of program to schedule

Up to five optional parameters

Optional buffer address
Optional buffer length

Continue execution (A = program status, B = as it
was or parameter address)

9 = immediate schedule, with wait
10 = immediate schedule, no wait
23 = queue schedule, with wait
24 = queue schedule, no wait
name is the name of the program to schedule

Up to five optional parameters

Optional buffer of n words
Same n; words (+) or characters (-)

DIMENSION INAME(3),IBUFR(n)

Set buffer length
See ICODE above
First two characters
Second two

Last character

3-24

COMMENTS

The ICODE parameter determines if the calling program
will wait or not, and if the calling program’s schedule
request will be queued until the scheduled program
becomes dormant.

When a program is scheduled, a pointer will be put in its ID
segment that will:

a. Point back to the program that scheduled it.
b. Be set to 0if the program was scheduled by the
operator, from an interrupt, or from the time list.

The pointer will be cleared when the program terminates or
is aborted. Note that this pointer establishes the program
doing the scheduling as the “Father”, and the program
being scheduled as the “Son”.

As soon as a program that had been scheduled with wait
completes, the ‘“Father” may recover optional parameter
one that indicates if the “Son” was aborted by the system

or terminated by the OF operator command. The para-

meter is set by the system to 100000B and is recovered
through RMPAR or a load B Indirect (LDA B,I). However,
if the program does not pass back parameters and ter-
minates normally, B will be set as it was on the call.

ICODE=90OR 10

If the program to be scheduled is dormant, it is scheduled
and a zero is returned to the calling program in the
A-Register. If the program to be scheduled is not dormant,
it is not scheduled by this call, and its status (which is some
non-zero value) is returned to the calling program in the
A-Register. If the program to be scheduled is a “Son” that
was suspended with the EXEC 6 call, some high bits may be
set in the A-Register. Only the least 4-bits should be
checked for zero in this case.

A schedule with wait (ICODE = 9) call causes RTE to put
the “Father” in a waiting status (the wait bit is set in the
status word in the “Father’s” ID segment). If required, the
“Father” will be swapped by the system to make way for a
program that may run. The “Son” runs at its own priority,
which may be greater than, less than, or equal to that of the
calling program. Only when the “Son” terminates does
RTE resume execution of the “Father” at the point
immediately following the schedule call.

A disc-resident program may schedule another disc-resident
program with waiting, because disc-resident programs are
swapped according to their priority when they conflict over
use of their core area.

Exec Calls

All schedule combinations are legal: a disc-resident can call
a core-resident, a core-resident can call a disc-resident, and a
core-resident can call a core-resident.

A Schedule EXEC Call with no wait (ICODE = 10) causes
the specified program to be scheduled for execution
according to its priority.

ICODE = 23 or 24

These requests are the same as 9 and 10 except that the
system will place the “Father” in a queue if the “Son” is
not dormant. When the “Son” becomes available the
“Father’s” request will be honored. Note that status will
not be available in the A-Register and the “Father” will be
impeded until the request is honored.

OPTIONAL PARAMETERS

When the “Son” begins executing, the B-Register contains
the address of a five-word list of parameters from the
“Father” (the parameters equal zero if none were spec-
ified). A call to the library subroutine RMPAR, the first
statement of a called FORTRAN program, transfers these
parameters to a specified five-word array within the called
program. For example:

PROGRAM XQF
DIMENSION IPRAM (5)
ENSION IPRAM

' CALL RMPAR (IPRAM) ™

If the “Father” includes the optional buffer in his schedul-
ing call, the buffer is moved to system available memory
and assigned to the “Son.” The “Son’ can recover the
buffer by using the String Passage EXEC call. If there is
not enough system available memory to hold the buffer,
but there will be in the future, the “Father” is memory
suspended. If there will never be enough memory available
for the buffer, the “Father” will be aborted with a SC10
error. If the no abort bit (bit 15 in ICODE) is set, the
program will not abort.

The Program Schedule EXEC Call is similar to the RU
operator request (see Section II). The Execution Time
EXEC Call also schedules programs for execution, but
without passing parameters.

For the schedule with wait requests (ICODE = 9 or 23), the
“Son” may pass back five words to the “Father” by calling
the library routine PRTN. For example:

PROGRAM SCHEE
DIMENSION IBACK(5)
CALL PRTN (IBACK)
CALL EXEC (6}

3.25

RTE-III

The EXEC (6) call (which is a termination call) should For all schedule requests, the “Son” may pass back a buffer
immediately follow the PRTN call. The “Father” may to the “Father” (see the String Passage EXEC call).

recover these parameters by calling RMPAR immediately

after the “Son” call.

TIME REQUEST

Purpose:

To request the current time recorded in the real-time clock.

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE-III
DEF RTN Return address
DEF ICODE Request code
DEF ITIME Time value array
DEF IYEAR Optional year parameter .
RTN return point Continue execution (A=meaningless, B as it was)
ICODE DEC 11 Request code = 11
ITIME BSS 5 Time value array
IYEAR BSS 1 Year (optional)
FORTRAN
DIMENSION ITIME(5),IYEAR(1)
ICODE =11
CALL EXEC (ICODE,ITIME,IYEAR)
COMMENTS The Time Request EXEC Call is similar to the TI operator

request (see Section II).

When RTE returns, the time value array contains the time
on a 24-hour clock, with the year in an optional parameter.
The year is a full 4-digit year (e.g., 1976).

Assembler

ITIME

ITIME+1
ITIME+2
ITIME+3
ITIME+4

3-26

or
or
or
or
or

ITIME(1)
ITIME(2)
ITIME(3)
ITIME(4)
ITIME(5)

FORTRAN/ALGOL Another method of obtaining the current time is through a
double word load from the system entry point $TIME.
Tens of milliseconds $TIME contains the double word integer of the current
Secorids time of day. If this double word is passed to the library
= Minutes subroutine TMVAL, then TMVAL returns milliseconds,
= Hours seconds, minutes, and hours. Refer to the Library, Part 6,
= Day of the year Section V.

Exec Calls

STRING PASSAGE

Purpose:
To retrieve the command string which scheduled the program or to pass a buffer back to the “Father” program.
Assembly Language:
EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code
DEF IRCOD Retrieve/write code
DEF IBUFR Buffer location
DEF IBUFL Buffer length
RTN return point Continue Execution (A = status, B = number
: of words/characters)
ICODE DEC 14 Request code
IRCOD DEC lor2 I = retrieve parameter string
2 = write buffer to “Father”
IBUFR BSS n Buffer of n words
IBUFL DEC n(or -2n) Same n; words (+) or characters (-)
FORTRAN:
DIMENSION IBUFR(n)
IBUFL = n
ICODE = 14
IRCOD =1
REG = EXEC(ICODE,IRCOD,IBUFR,IBUFL)
Upon return from a retrieve operation, the A-Register con-
COMMENTS

The command string retrieved is exactly like the string used
in scheduling the program via RU, ON, GO commands or
EXEC 9, 10, 23 or 24. The block of system available mem-
ory used to store the command string (buffer) is released
by this call or when the “Son” goes dormant. Any parsing
of the returned string is left to the calling program. The
RTE system library routine GETST can be used to recover
the parameter string portion of the command string.

tains status information: 0 if the operation was successful
or 1 if no string was found. The B-Register is a positive
number giving the number of words (or characters)
transmitted. If the string is longer than IBUFL, only IBUFL
words are transmitted. If an odd number of characters are
requested in a retrieve operation, the right half of the last
word is undefined.

If the write parameter string option is used, the call returns
any block of system available memory associated with the

3-27

RTE III

“Father” and allocates a new block for the “Father” into
which the string will be stored. If no memory is currently
available, the “Son” is memory suspended. If there will
never be enough memory, and bit 15 of ICODE is not set,
the “Son” is aborted with an SC10 error. If there is no
“Father,” execution continues at the return point with
the A-Register equal to 1. If the write parameter operation
was successful, the A-Register is set to 0.

3-28

NOTE

Be careful when writing a buffer to
a “Father” when the “Father”
scheduled the “Son” without wait
(EXEC 10 or 24). It is the user’s
responsibility to insure synchroni-
zation of the “Son’s” write and

the “Father’s” read.

TIMED EXECUTION (Initial Offset)

Exec Calls

Purpose:

To schedule a program for execution at specified time intervals, starting after an initial offset time. RTE-III places

the specified program in the time list and returns to the calling program.

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE-III
DEF RTN Return address
DEF ICODE Request code
DEF IPROG Program to put in time list
DEF IRESL Resolution code
DEF MTPLE Execution multiple
DEF IOFST Initial time offset
RTN return point Continue execution (A = meaningless, B as it was)
ICODE DEC 12 Request code = 12
DEC 0 Put calling program in time list
IPROG or
ASC 3,name . name is the program to put in the time list
TRESL DEC X Resolution code (1 = 10’s/ms; 2=secs; 3=mins; 4=hrs)
MTPLE DEC y Execution multiple
IOFST DEC -z z (units set by x) gives the initial offset
FORTRAN:
DIMENSION IPROG(3) See IPROG above
IPROG(1) = 2Hce First two characters
IPROG(2) = 2Hce Second two
IPROG(3) = 1He Last character in upper 8 bits
ICODE=12
IRESL = x (1=10’s/ms; 2=secs; 3=mins; 4=hrs)
MTPLE =y
IOFST =z z (units set by x) gives the initial offset
CALL EXEC (ICODE,IPROG,IRESL,MTPLE,-IOFST)
COMMENTS RUN ONCE

The Execution Time EXEC Call is similar to the IT

Operator request (see Section II). However, the EXEC Call
places the program in the time list whereas IT does not.
This call can schedule a program to execute in one of three
ways as described in the following paragraphs.

example:

After a time offset and the program to be scheduled is
dormant, the program will execute once and then be made
dormant. This is accomplished as shown in the following

3-29

RTE-III

IRESL = 3 (specifies minutes)

MTPLE = O (specifies run once)

IOFST = —45 (specifies run after 45 minutes have
elapsed from current time)
RUN REPEATEDLY

After a time offset and the program to be scheduled is
dormant, the program will execute, go dormant, and then
re-execute at specified intervals. This is accomplished as
shown in the following example.

3-30

IRESL = 3 (specifies minutes)

MTPLE = 60 (specifies run every 60 minutes)

IOFST = —30 (specifies run after 30 minutes have
elapsed {rom current time)
GO DORMANT; THEN RUN

If IPROG=0, the current/calling program is made dormant,
but the point of suspension is retained. The program is then
placed in the time list for rescheduling from the point of
suspension after a delay. When the program is rescheduled,
it can be either to run once or repeatedly. ‘

Exec Calls

TIMED EXECUTION (Absolute Start Time)

Purpose:

To schedule a program for execution at specified time intervals, starting at a particular absolute time. RTE-III
places the specified program in the time list and returns to the calling program.

Assembly Language:

RTN

ICODE
IPROG

IRESL
MTPLE
IHRS
MINS
ISECS
MSEC

FORTRAN:

EXT EXEC
JSB EXEC Transfer control to RTE-III
DEF RTN Return address
DEF ICODE Request code
DEF IPROG Program to put in time list
DEF IRESL Resolution code
DEF MTPLE Execution multiple
DEF IHRS Hours
DEF MINS Minutes
DEF ISECS Seconds
DEF MSECS Tens of milliseconds
return point Continue execution (A = meaningless, B as it was)
DEC 12 Request code = 12
DEC 0 Putting calling program in time list
or
ASC 3,name name is the program to put in the time list
DEC X Resolution code (1=10’s/ms; 2=secs; 3=mins; 4=hrs)
DEC y Execution multiple
DEC «a Absolute starting time
DEC b In hours, minutes, seconds
DEC ¢ and tens of milliseconds
DEC d on a 24-hour clock

IPROG=0 or DIMENSION IPROG(3)

IPROG(1) =2Hcec First two characters

IPROG(2) =2Hce Second two

I[PROG(3) = 1He¢ Last character in upper 8 bits
ICODE =12

IRESL = x (1=10’s/ms; 2=secs; 3=mins; 4=hrs)
MTPLE =y

IHRS =h

MINS =m

ISECS =35

MSECS = ms

CALL EXEC (ICODE,IPROG,IRESL MTPLE,,IHRS,MINS,ISECS,MSECS)

3-31

RTE-II

COMMENTS

The Execution Time EXEC call is similar to the IT operator
request (see Section II). However, the EXEC call places the
program in the time list whereas IT does not. This call
differs from the Initial Offset version in that a future
starting time is specified instead of an offset. For example,
if the current time is 1400 hours and you wish the program
to run at 1545 hours the parameters would be as follows:

[HRS = 15
MINS = 45
ISECS = 0
MSECS= 0

This call can schedule a program to execute in one of two
ways as described in the following paragraphs.

RUN ONCE

After a time offset and the program to be scheduled is
dormant, the program will execute once and then be made

3-32

dormant. This is accomplished as shown in the following
example.

IRESL 3 (specifies minutes)

MTIPLE = 0 (specifies run once)

IHRS = h

MINS = m o .
ISECS _ s (specifies absolute start-time)
MSECS = ms

RUN REPEATEDLY

After a time offset and the program to be scheduled is
dormant, the program will execute, go dormant, and then
re-execute at specified intervals. This is accomplished as
shown in the following example:

IRESL = 3 (specifies minutes)

MTPLE = 60 (specifies run every 60 minutes)
[HRS = h

MINS = - .
ISECS - (specifies absolute start-time)
MSECS = ms

Exec Calls

PROGRAM SWAPPING CONTROL

Purpose:
To allow a program to lock itself into core (foreground or background) if the core locks were set up during
generation.
Assembly Language:
EXT EXEC
JSB EXEC Transfer control to RTE-III
DEF RTN Return address
DEF ICODE Request code
DEF IOPTN Control information
RTN return point Continue execution (A = meaningless, B as it was)
ICODE DEC 22 Request code = 22
IOPTN DEC numb 0 = program may be swapped
1 = program may not be swapped
2 = swap just the program area
3 = swap all of the disc resident area
FORTRAN:
ICODE =22
IOPTN = numb
CALL EXEC (ICODE,IOPTN)
COMMENTS

This call allows the programmer to lock his program into
core so it cannot be swapped out for a program of higher
priority. Also the programmer can specify if just the
program is to be swapped or if the entire fore-
ground/background area is to be swapped with the pro-
gram.

NOTE

The program cannot be locked into
core if the core lock bits (base
page word 1736B, bits 2 and 3)
are not set (SCO7 error results).
The bits are set during generation.

The program’s core lock bit (IOPTN = 0 or 1) is set or
cleared by this request (refer to ID segment word 15, bit 6

in Table A-1). This bit is also cleared (making the program
swappable) if the program aborts or terminates except on
the Program Completion EXEC Call where the current
suspension point is saved.

The program’s core usage bit (IOPTN = 2 or 3) is also set or
cleared by this request (refer to ID segment word 15, bit 5
in Table A-1). The bit is initialized when the program is
scheduled as follows:

Foreground program — bit is cleared
Background programs — bit is set

The system sets this bit whenever it loads a segment for the
program. If the bit is not set, the segment area is not
swapped, that is, the segment occupies undeclared core.

When IOPTN = 3, the calling program tells the system that

it is going to use undeclared core in its disc resident area.
When the program is swapped, the whole disc resident area

3-33

RTE-III

is swapped. This allows the program tq save working area When IOPTN = 2, the calling program tells the system that

that it had set up.

it is not going to use undeclared core in its disc resident
area. Only the program itself is swapped.

RESOURCE MANAGEMENT (Resource Numbering)

Purpose:

Assembly Language:

To allow cooperating programs a method of efficiently utilizing resources through a resource numbering scheme.

EXT RNRQ
ISB RNRQ Transfer control to subroutine
DEF RTN Return address
DEF ICODE Control information
DEF IRN Buffer location
DEF ISTAT Status parameter
RTN return point Continue execution (A = meaningless, B as it was)
ICODE OCT numb numb is described in Comments.
IRN BSS 1 Resource number. Returned on allocate; required otherwise.
ISTAT BSS 1 Status of resources.
FORTRAN:
ICODE = numb
CALL RNRQ (ICODE,IRN,ISTAT)
COMMENTS If more than one bit is set in the control word, the

following order of execution is used:

Figure 3-6 shows the format of the control word (numb)

required in the calling sequence. 1. Local allocate (skip 2 if done).
2. Global allocate.
15 14 5] 'NIERE I 1 | 0 3. Deallocate (exit if done).
Wait Allocate Sat 4. Local set (skip 5 if done).
Option Option Option 5. Global set.
6. Clear.
NO NO C G L C G L
W A L L o L L (0] .
A B £ o c £ o c Tl"he.status return word (ISTAT) has the following mean-
] o] A B A A B A nes:
T R R A L R A L
T L L ISTAT Value Meaning
|_ Reserved For Normal deallocate return
System Use TPRTE-7

Figure 3-6. Resource Number Control Word Format

3-34

RN is clear (unlocked).

RN is locked locally to caller.
RN is locked globally.

No RN available now.

A OO~ O

4

ISTAT Value Meaning
5 _
6 RN is locked locally to other program.
7 RN was locked globally when request was

made.

Note that status 4, 6, and 7 are returned only if the request
failed and the “no wait™ bit is set.

NO ABORT BIT

The no abort bit is used to alter the error return point of
this call as shown in the following example.

CALL RNRQ (ICODE ...)
GO TO error routine
normal return

This special error return is established by setting bit 14 to
“1” in the request code word (ICODE). This causes the
system to execute the first line of code following the CALL
RNRQ if there is an error, or if there is no error, the second
line of code following the CALL RNRQ.

ALLOCATE OPTIONS

LOCAL — Allocate an RN to the calling program. The
number is returned in the IRN parameter. The number is
automatically released on termination of the calling pro-
gram, and only the calling program can de-allocate the
number.

GLOBAL — Allocate an RN globally. The number is
released only by a request from any program.

CLEAR — De-allocate the specified number.
The system has a certain quantity of resource numbers

(RN’s) that are specified during generation. If a number is
not available, ‘the program is suspended until one is free,

Exec Calls

unless the “no wait” bit is set (see the ICODE parameter).
If the “no wait” bit is set, the IRN location is set to zero. If
the RN allocation is successful, the value returned in IRN is
set by the system (it has no meaning to the user) and must
be specified (through IRN) when a lock is requested or the
RN is cleared or de-allocated.

SET OPTIONS

LOCAL — Lock the specified RN to the calling program.
The RN is specified in the IRN parameter. The local lock is
automatically released on termination of the calling pro-
gram, and only the calling program can clear the number.

GLOBAL — Lock the specified RN globally. The RN is
specified in the IRN parameter and the calling program can
globally lock this number more than once. The number is
released by a request from any program.

CLEAR — Release the specified number.

If the RN is already locked, the calling program is
suspended (unless the “no wait” bit is set) until the RN is
cleared. If more than one program is attempting to lock an
RN, the program with the highest priority is given
precedence.

If a program makes this call with the “clear” bit set, in
addition to ecither the “global” or “local set” bits, the
program will wait (in the general wait list) until the RN is
cleared by another program and then continue with the RN
clear.

An entry point is provided for drivers or privileged
subroutines that wish to clear a global (and only a global)
RN.

LDA RN
JSB S$CGRN
return point

3-35

RTE-II

LOGICAL UNIT LOCK

Purpose:

Assembly Language:

To allow a program to exclusively dominate (lock) input/output devices (logical unit, or LU numbers).

EXT LURQ
JSB LURQ Transfer control to subroutine
DEF RTN Return address
DEF [IOPTN Control parameter
DEF LUARY LU’s to be locked
DEF NOLU Number of LU’s to be locked
RTN return point Continue execution (A = lock status, B as it was)
[OPTN OCT numb numb is an octal number:
0x0000 — unlock specified LU’s
120000 — unlock all LU’s program currently has locked
0x0001 — lock with wait specified LU’s
120001 — lock without wait specified LU’s
x (bit 14) is the no abort bit, x =4 to set ‘no abort’, else x=0
LUARY DEC xx LUARY is an array of LU’s to be
DEC yy locked/unlocked. Only the least
DEC zz 6 bits of each word are used.
NOLU DEC aa Number of LU’s to be locked/unlocked.
FORTRAN:
DIMENSION LUARY (x)
IOPTN = numb
NOLU =aa
CALL LURQ (IOPTN,LUARY ,NOLU)
COMMENTS This special error return is established by setting bit 14 to

This request allows up to 31 programs to exclusively
dominate (lock) an input/output device (e.g., program out-
put to a line-printer). Any other program attempting to use
or lock a locked LU will be suspended until the original
program unlocks the LU or terminates.

NO ABORT BIT
The no abort bit is used to alter the error return point of

this call as shown in the following example.

CALL LURQ (IOPTN ...)
GO TO error routine
normal return

3-36

“1” in the request code word (ICODE). This causes the
system to execute the first line of code following the CALL
LURQ if there is an error, or if there is no error, the second
line of code following the CALL LURQ.

UNLOCK

To unlock allowned LU’s, the LUARY array is not used but
still must be coded; the program will not abort.

Any LU’s the program has locked will be unlocked when
the program (1) does a standard terminate, (2) does a serial
reusability terminate, or (3) aborts. Note that LU’s will not
be unlocked when the program does a ‘“‘save resources
terminate”.

This subroutine calls the Program Management subroutine
(RNRQ) for a resource number (RN) allocation. That is,
the system locks an RN number locally to the calling
program. Therefore, before the logical unit lock subroutine
can be used, a resource number must have been defined
during generation. Note that the first 31 Resource Numbers
can be used for LU locks.

If the no wait option is coded the A=Register will contain
the following information on return.

Exec Calls

= 0 — LU lock successful.
A#¥ 0 — LU lock unsuccessful.
A= —1 — No RN available this time.
A= 1 — One or more of the LU’s is already locked.

Note that the calling program may not have LU’s locked at
the time of this call unless the no wait option is used. Also,
all the LU’s that the calling program locks are locked to the
same RN.

PARTITION STATUS

Purpose:

is returned.

Assembly Language:

To return information on the status of a particular partition. The status information provides the starting page
number, the number of pages in the partition, whether the partition is reserved, and whether it is a real-time or
background partition. If the partition contains a program, the index into the keyword table for the ID segment

EXT EXEC

JSB EXEC Transfer control to RTE-III
DEF RTN Return address

DEF ICODE Request code

DEF IPART Partition number

DEF IPAGE Location where

DEF IPNUM Location where

DEF ISTAT Location where

starting page is returned
number of pages is returned
partition status is returned

RTN return point
ICODE DEC 25 Partition status request code = 25
IPART DEC n Partition number
IPAGE BSS 1 Starting page number returned here (0 if illegal partition number)
IPNUM BSS 1 Number of pages returned here (-1 if illegal partition number)
ISTAT BSS 1 Partition status returned here (see comments)
FORTRAN:
ICODE=25
IPART=n where 7 is the partition number
CALL EXEC (ICODE,IPART,IPAGE IPNUM,ISTAT)
COMMENTS

The status word ISTAT contains status information as follows:

15 14 7

[«

[PR | RrT |

ID segment

3-37

RTE-HI

Where:

PR =1 if the partition is reserved for programs
requesting it.
= 0 if the partition is not reserved
RT =1 for a real-time partition
= 0 for a background partition

If the partition contains a program, the index into the key-
word table for the ID segment is returned in bits 0-7 of
ISTAT; otherwise these bits are set to zero.

ERROR MESSAGES

When RTE-III discovers an error in an EXEC call, it
terminates the program, releases any disc tracks assigned
to the program, prints an error message on the operator
console, and proceeds to execute the next program in
the scheduled list. Table 3-5 is a summary of the possible
errors associated with all the EXEC calls. Refer to
Appendix E for other system errors.

When RTE-III aborts a program, it prints the following
message:

name ABORTED

When a memory protect violation occurs that is not an
EXEC call, a resident library call, or SLIBX or $LIBR
call, the following message is printed: (address is the lo-
cation that caused the violation.

MP name address
When an EXEC call contains an illegal request code, the
following message is printed: (address is the location that
made the illegal call).

RQ name address

An RQOO error means that the address of a returned
parameter is below the memory protect fence.

The following errors have the same format as “MP” and
“RQ” errors.

Error Meaning

DM Program tried to access a page not included in its
logical memory (similar to MP).

TI Batch program exceeds allowed time.

RE Re-entrant subroutine attempted recursion.

3-38

The general error format, for other errors, is:

type name address

Where
type isa4-character error code.
name is the pfogram that made the call.
address is the location of the call (equal to the

exit point if the error is detected after
the program suspends).

ERROR CODES FOR DISC ALLOCATION CALLS

DRO1 = Not enough parameters.

DRO02 = Number of tracks zeto, illegal logical unit;
or number of tracks to release is zero or neg-
ative.

DRO3 = Attempt to release track assigned to another

program.

ERROR CODES FOR SCHEDULE CALLS

SC00 = Batch program attempted to suspend (EXEC
(M)

SCO01 ., = Missing parameter.

SC02 = Illegal parameter.

SCO03 = Program cannot be scheduled.

SCO3 INT = occurs when an external interrupt attempts
to schedule a program that is already
scheduled. RTE-III ignores the interrupt and
returns to the point of interruption.

SC04 = pame is not a subordinate (or “son”) of the
program issuing the completion call.

SCOs = Program given is.not defined.

SC06 = No resolution code in Execution Time

EXEC Call (not 1,2, 3, 0r 4).

SCO7 = Prohibited core lock attempted.

SCi10 = Not enough system available memory for

buffer passage.

ERROR CODES FOR I/0 CALLS

1000 = lllegal class number. Qutside table, not
allocated, or bad security code.

1001 = Not enough parameters.

1002 = Itlegal logical unit, or less than 5 parameters
with X bit set.

1003 = Not used.

1004 = lilegal user buffer. Extends beyond FG/BG
area or not enough system memory to
buffer the request.

1005 = Illegal disc track or sector.

1006 = Reference to a protected track; or using ‘
LG tracks before assigning them (see LG,
Section II).

1007 = Driver has rejected call.

1008 = Disc transfer longer than track boundary.

Exec Calls

1009

Overflow of load-and-go area.

1010 Class Get and one call already outstanding

on class.

ERROR CODES FOR PROGRAM MANAGEMENT

RNOO = No option bits set in call.

RNO1 = Not used.

RNO2 = Resource number not defined.

RNO3 = Unauthorized attempt to clear a LOCAL

Resource Number.

ERROR CODES FOR LOGICAL UNIT LOCK CALLS

LU0l = Program has one or more logical units locked
and is trying to LOCK another with WAIT.

LU02 = lllegal logical unit reference (greater than
maximum number).

LUO3 = Not enough parameters furnished in the call.
)

LUO03 = Not enough parameters furnished in the call.

Logical unit reference less than one. Logical
unit not locked to caller.

3-39

RTE-IL

Table 3-5. Summary of EXEC Call Errors

ERROR

MEANING

READ

WRITE

CONTROL

PROGRAM
TRACK
ALLOCATE
4

PROGRAM
TRACK
RELEASE

5

PROGRAM
COMPLETION

6

PROGRAM
SUSPEND

PROGRAM
SEGMENT
LOAD

8

PROGRAM
SCHEDULE
W/WAIT
9

PROGRAM
SCHEDULE
WO/WAIT

10

TIME
REQUEST

11

DRO1 3

Not Enough Parameters

1. Less than 4 parameters.
2. Less than 1 parameter.
. Number = -1.

4. Less than 3 (not -1).

DRO2

illegal Track Number or
Logical Unit Number.

1. Track number = 0.

2. Logical Unit not 2 or 3.

3. Dealocate 0 or less Tracks.

DRO3

Attempt to release Track
assigned to another program.

1000

Illegal Class Number
1. Outside Table.

2. Not allocated.

3. Bad Security Code.

1001

Not Enough Parameters.

1. Zero parameters.

2. Less than 3 parameters.
3. Less than §/disc.

4, Less than 2 parameters.
5. Class word missing.

W

-

1002

Iitegal Logical Unit

1. 0 or maximum.

2. Class request on disc LU,

3. Less than 5 parameters and
X-bit set.

1004

lilegal User Butfer.

1. Extends beyond FG/BG area.

2. Not enough system memory to
buffer the request.

1005

Illegal Disc Track or Sector
1. Track number maximum.
2. Sector number

0 or maximum

1006

Attempted to WRITE to LU2/3
and track not assigned to user
or globally, or not to next
load-and-go sector. Illegal
WRITE to a FMP track.

1007

Driver has rejected request
and request is not buffered.

1008

Disc transfer implies track
switch (LU2/3)

1009

Overflow of load-and-go area.

340

Exec Calls

PROGRAM 1/0 STRING GLOBAL GLOBAL [|CLASS [CLASS CLASS CLASS CLASS |PROGRAM PROGRAM PROGRAM
SCHEDULE STATUS PASSAGE TRACK TRACK 1/0 /o 1/0 /0 1/0 SWAPPING SCHED QUEUE | SCHED QUEUE | RNRQ LURQ
TIMLE “ | ALLOCATE RELEASE | READ |WRITE | CONTROL WRITE/READ GET CONTROL W/WAIT WO/WAIT
12 13 14 s 16 17 18 19 20 21 22 23 24
L
3
4
1
2
3
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
1 1 1 1 1
2 2 2
4
5 5 5 S
1 1 1 1 1
2 2 2 2
3 3 3 3
1
2 2 2 2

341

RTE 111

ERROR

MEANING

READ

WRITE

2

CONTROL

i

PROGRAM
TRACK
ALLOCATE
4

PROGRAM
TRACK
RELEASE

5

PROGRAM
COMPLETION

5

PROGRAM
SUSPEND

7

PROGRAM
SEGMENT
LOAD
A

PROGRAM
SCHEDULE
W/WALT
9

| PROGRAM

SCHEDULE

WO/WALT
10

TIME
REQUEST
1

1010

Class GET and one call already
outstanding on class.

LU0l

Program has one or more logical
units locked and is trying to
LOCK another with WAIT.

LU02

Illegal logical unit reference
(greater than maximum number).

LUo3

Not enough parameters furnished
in the call. Illegal logical unit ref-
crence (less than one). Logical
unit not locked to caller,

RQUO

Return buffer below memory pro-
tect fence.

RQ

EXEC call contains an illegal re-

quest code.

1. Return address indicates less
than one or more than seven
paramoters.

. Parameter address indirect
through A- or B-Register.

. Request code not defined or
not loaded.

I

w

RNOO

No option bits set.

RNO1

Not used.

RNO02

Resource number not in Table
(undefined).

RNO3

Unauthorized attempt to clear a
LOCAL Resource Number.

SCo0

Batch program cannot suspend.

SCo1

Missing Parameter.

L. Segment name missing.

2. Not 4 or 7 parameters in Time
Call.

. Not 4 parameters in String
Passage Call,

w

$C02

Iliegal Parameter

L. Option word is missing or not
0,1,2,0r3.

. Read/write word in String Pass-
age Call is not 1 or 2.

»

SC03

Program Cannot Be Scheduled.
1. Not a segment.
2. Isasegment.

SC04

Attempted to control a program
that is not a “Son.”

SC05

Program Given is Not Defined.
1. No segment.

2. No program.

3. “Son™ not found.

5C06

Resolution not 1, 2, 3, or 4.

SC07

Prohibited core lock attempted.

sCLo

Not enough system available
memory for string passage.

342

Exec Calls

PROGRAM /o STRING GLOBAL GLOBAL | CLASS | CLASS CLASS CLASS CLASS | PROGRAM PROGRAM PROGRAM
SCHEDULE STATUS | PASSAGE TRACK TRACK /o /o 1o 1/0 1/0 SWAPPING SCHED QUEUE | SCHED QUEUE: | RNRQ | LURQ
TIME ALLOCATE RELEASE | READ | WRITE | CONTROL [WRITE/READ GET CONTROL W/WAIT WO/WAIT
12 13 14 15 16 17 18 19 20 21 22 23 24
X
X
X
X
X X X X X X
X X X X X X X X X X X X X
X
X
X
2
3
1
2
2 2
2 2 2
X
X X X

3-43/44

SECTION IV
REAL-TIME PROGRAM PREPARATION

This section is divided into six parts that describe the
operating procedures and formatting conventions of back-
ground programming aids of the RTE system. The memory
requirements stated apply to the program plus a reasonable
area for symbol tables where appropriate.

PART 1. RTE FORTRAN

The FORTRAN compilers accept source programs from
either an input device or a source file created by the RTE
Editor, and translates the source programs into relocatable
object programs. The relocatable code is written to a
device or stored in the LG tracks of the disc or both.

PART 2. RTE ALGOL

The ALGOL compiler accepts source programs from either
an input device or a source file created by the RTE Editor,
and translates the source programs into relocatable object
programs. The relocatable code is written to a device or
stored in the LG tracks of the disc or both.

PART 3. RTE ASSEMBLER

The Assembler accepts source programs from either an
input device or a source file created by the RTE Editor, and
translates the source programs into either absolute or relo-
catable object programs. Absolute code is punched in
binary, suitable for execution outside of RTE. The relocat-
able code is written to a device or stored in the LG tracks
of the disc or both.

PART 4. RTE RELOCATING LOADER

The loader accepts relocatable object programs from either
an input device, or a file created by the Assembler,

ALGOL, or FORTRAN compilers on LG tracks. The
program can optionally be loaded into the background
and run; or the program can be loaded into the background
with the DEBUG library routine linked to it; or the
program can be loaded into the disc-resident user program
area.

LG TRACK AREA

The loader also provides the facility for compilation or
assembly, loading, and executing a user program without
intervening object tapes. To accomplish this, the compiler
or assembler stores the relocatable object code, which it
generates from source statements, on the disc in a pre-
defined group of tracks called LG Tracks (see LG operator
request). Then separate operator requests initiate loading
(RU, LOADR) and execution (RU, program). All of the
operating procedures have optional parameters that specify
source input, relocatable output, and list device. These
parameters take the form of logical unit numbers as follows:

Logical Unit Number Function
0 Bit Bucket
1 System Teleprinter
2 System Disc
3 Auxiliary Disc
4 Standard Output Device
5 Standard Ir‘lput Device
6 Standard List Device

4-1

RTE-III

7) PART 5. RTE RELOCATABLE LIBRARY
8)) This part describes the libraries used by RTE, re-entrant
Can be assigned to any devices by subroutine structure, privileged subroutine structure, and
9 the user, for the defined range of utility subroutine structure.
L logical units.
10 PART 6. SEGMENTED PROGRAMS
: This part describes the procedures for writing segmented
programs in Assembler, ALGOL, and FORTRAN.

PART 7. MULTIPLE TERMINAL OPERATION

63

10
This part -describes the operation and configuration of the
Note that LU8 is recommended as the magnetic tape multi-terminal moniter.
device.

42

RTE FORTRAN

PART 1
RTE FORTRAN

Regular FORTRAN and FORTRAN IV are segmented pro-
grams that execute in the background under control of
RTE-IIl. The compilers consist of a main program and
overlay segments, and reside in the protected area of the
disc.

RTE FORTRAN, a problem-oriented programming lan-
guage translated by a compiler, is very similar to regular
HP FORTRAN. Source programs, accepted from either

an input device or disc LS Tracks, are translated into re-
locatable object programs, and stored in the LG tracks of
the disc and/or on an output device. The object programs
can be loaded by the RTE Relocating Loader and executed
by an ON operator request. When a FORTRAN program
has been completely debugged, the RTE Relocating Loader
can make it a permanent part of the RTE-III System if
desired.

FORTRAN REFERENCE

For a complete description of the regular HP FORTRAN
Language, read the FORTRAN Programmer’s Reference
Manual (02116-9015). For a complete description of the
HP FORTRAN IV Language, read the FORTRAN IV Pro-
grammer’s Reference Manual (5951-1321).

COMPILER OPERATION

AnRU, FTN operator request schedules the regular RTE-II
FORTRAN compiler for execution. If FORTRAN IV is
used, the operator request is RU, FTN4. All other para-
meters are the same. Before using RU, FTN, the operator
must place the source program in the input device, or, if
input is from LS Tracks, specify the file location with an

LS operator request. If planning to relocate and run, the

operator allocates LG tracks with an LG operator request.

RU,FTN/FTN4

Purpose:
To schedule the FORTRAN compiler for operation.
Format:
RU,FTN,input, list, output, lines, 99
or
RU, FTN4,input, lisf, output, lines, 99
Where:

input = Logical unit number of input device. Use 2
for source file input from the disc (set to 5 if
not given).

list = Logical unit number of list device (set to 6 if
not given).

output =Logical unit number of output device (set to
4 if not given).

lines = Lines/page on listing (set to 56 if not given).

99 = The LG parameter (LG command required
first). If present, the object program is stored
in the LG tracks for later loading. Any
punching requested still occurs. The 99 may
occur anywhere in the parameter list, but
terminates the list.

Example:

RU,FTN < is equivalent to RU,FTN,5,6,4,56 >

4-3

RTE-I

MESSAGES TO OPERATOR

More than one source tape can be compiled into one FOR-
TRAN program by leaving off the $END statement on all
but the last source tape. When the end of each source tape
is encountered (end-of-tape or EOT condition), RTE Driver
DVROO can interpret it in two ways. An EOT can set the
tape reader down (make it inactive), or not set it down. The
action depends on how DVROO subchannels were con-
figured during generation. In any case, an EOT does not
suspend the FORTRAN compiler. Therefore, it is recom-
mended that when compiling multiple tapes, DVROO be
configured to set the tape reader down on EOT (see the LU
command). For more information refer to the DVROO
Manual (HP Part No. 29029-95001).

If an EOT causes the tape reader to be set down, the RTE
system will output a message to the operator:

I/OETL #lu E #eqt S #sub

The operator must place the next source tape into the tape
reader and set the tape reader up with the UP operator
command.

UP,eqt

If an EOT does not cause the tape reader to be set down,
the RTE-III system does not output any message and the
compiler is not suspended.

At the end of the compilation (when the compiler detects
the $END statement), the following message is printed.

$END,FTN

Two 1/O error messages may be generated by the system
when FTN attempts to write on the LG tracks (FTN is
aboried).

1006
1009

1006 means that the LG tracks were not defined by an
LG operator request, and [009 means that the LG tracks
overflowed. The operator must define more LG tracks
with LG and start compilation over again.

The compiler terminates abnormally if:

a. No source file is declared by LS, although logi-
cal unit 2 is given for input. Compiler error E-0019

44

(FTN?2), or ERROR 05 (FTN4) is printed on the list
device.

b. The symbol table overflows. Compiler error
E-0014 (FTN2), or ERROR 03 (FTN4) is printed on
the list device. SEND, FTN does not appear after the
error message using FTN2, but does appear when us-
ing FTN4.

FORTRAN FORMAT

The RTE FORTRAN language is similar to the regular HP
FORTRAN language. The differences are described in the
next pages. RTE FORTRAN has additional capabilities,
using EXEC calls. Read Section III for complete details on
the EXEC calls.

FORTRAN CONTROL STATEMENT

Purpose:

To define the output to be produced by the
FORTRAN compiler.

Format:
FTN,B,L,A
Where:
B = Punched binary tape (B not present does not

affect binary output to load-and-go tracks).

L

List output.

A

Assembly listing.

Besides the standard options shown above, two
additional compiler options, T and n, are available.

T

Lists the symbol table for each program in the
compilation. If a “u” follows the address of a
variable, that variable is undefined (the program does
not assign a value to it). The A option includes this T
option.

n

n is a decimal digit (! through 9) which specifies an
error routine. The user must supply an error routine,
ERRn. If this option does not appear, the standard
library error routine, ERRO, is used. The error
routine is called when an error occurs in ALOG,
SQRT, .RTOR, SIN, COS, .RTOI, EXP, .ITOI or
TAN.

PROGRAM STATEMENT

Purpose:

The program statement, which must be the first
statement in a FORTRAN source program, includes
optional parameters defining the program type,
priority, and time values.

Format:

PROGRAM name, (type, pri, res, mult, hr, min, sec, msec)

Where:

name is the name of the program (and its entry point).

type is the program type (set to 3 for main
program, or 7 for subroutines, if not given).

pri

res

System Program

Real-Time Memory-Resident
Real-Time Disc-Resident

Background Disc-Resident

Not used

Background Segment

Itlegal

Library, utility

If program is a main, it is deleted from
the system

— Oor —

If is a subroutine, then it is used to
satisfy any external references during
generation. However, it is not loaded
in the relocatable library area of the
disc.

The primary type may be expanded in
some cases by adding 8, 16 or 24 to

the number. These expanded types
allow such features as access to real-
time common by background programs
and access to SSGA. See Appendix I

for alist of expanded program types.

is the priority (1-32767, set to 99 if
not given).

is the resolution code.

RTE FORTRAN

mult is the execution multiple.

hr is hours.
min is minutes.
sec is seconds.

msec is tens of milliseconds.

COMMENTS

The parameters type through msec must appear in the order
shown. And even though the parameters are optional, if any
one parameter is given, those preceding it must appear also.
For example:

PROGRAMname(,90)

is illegal and will be rejected by the system. The only
method of legally defaulting the parameters is shown be-
low:

PROGRAM name
PROGRAM name(3,90)

All parameters are set to O if not specified with the fol-
lowing two exceptions:

a. The priority parameter pri is set to 99, the
lowest priority recognized by RTE FOR-
TRAN.

b. The program type parameter type is set to 3
for a main program, or 7 for subroutines. Type
6 is illegal.

4-5

RTE-1II

DATA STATEMENT

EXTERNAL STATEMENT

Purpose:

The DATA statement sets initial values for variables
and array elements.

Format:

DATA k,/d, [ky[do), . . . Kyfdy/

Where:

k is a list of variables and array elements
separated by commas.

d is a list of constants (optionally signed)
which can be immediately preceded by an
integer constant (followed by an asterisk)
identifying the number of times the constant
is to be repeated.

/ is a separation, and is used to bind each

constant list.
The elements of d; are serially assigned to the
elements of k;, therefore, k; and d; must correspond
one-to-one. If a list contains more than one entry, the
entries must be separated by commas.

Elements of k; may not be from COMMON.

Arrays must be defined (i.e., DIMENSION) before
the DATA statements in which they appear.

Example:
DIMENSION A(3), 1(2)

DATA A(1), A(2), A(3)/1.0,2.0,3.0/ ,
1(1),1(2)/ 21/

Purpose:

With the EXTERNAL statement, subroutines and
functions can be passed as parameters in a subroutine
or function call. For example, the routine XYZ can
be passed to a subroutine if XYZ is previously
declared EXTERNAL. Each program may declare up
to five EXTERNAL routines.

Format:
EXTERNAL v, v,,...,Vs
Where:
vy is the entry point of a function, subroutine,

or library program, which exists externally.
Example:

FUNCTION RMX (X,Y,A,B)
RMX=X (A) * Y (B)

END

PROGRAM ABCDE
EXTERNAL XYZ, FL1

7=Q—-RMX (XYZ,FL1,3.56,4.75)
END
NOTE

If a library routine, such as SIN, is
used as an EXTERNAL, the com-
piler changes the first letter of the
entry point to “%.” Special versions
of the library routines exist with
the first character changed to “%.”
See RTE Relocatable Library, Part 6
in this section.

PAUSE & STOP STATEMENTS

RTE FORTRAN

ERRO LIBRARY ROUTINE

Purpose:

PAUSE provides a temporary program halt and the
program to be suspended.

Format (as displayed):
name: PAUSE oct numb
Where:
name is the program name.
oct numb is the octal number given in the PAUSE.
Note that the ‘B’ octal designator suffix

is not required.

To restart the program, use a GO operator request.
(See Section II, GO.)

Purpose:
STOP:causes the program to be terminated.
Format (as displayed):
name; STOP oct numb
Where:
name is the program name.
oct numb is the octal number given in STOP. Note

that the ‘B’ octal designator suffix is not
required.

Purpose:

Prints the following message whenever an error occurs
in a library routine. '

Format:
name: id type
Where:
name is the program name.
id is the routine identifier.
type is the error type.
COMMENTS

The compiler generates calls to ERRO automatically.

If the FORTRAN control statement includes an n option,
the call will be to ERRn,a routine which the user must

supply.

Read the appropriate FORTRAN manual for the meaning
of error codes.

4-7/4-8

RTE ALGOL

PART 2
RTE ALGOL

The RTE ALGOL compiler is a segmented program that

accepts source programs written according to regular HP
ALGOL with some additions and changes.

ALGOL REFERENCE
For a complete description of the HP ALGOL language,

including error messages, read the HP ALGOL Reference
Manual (Part No. 02116-9072).

COMPILER OPERATION

An RU,ALGOL operator request schedules the RTE
ALGOL compiler for execution. Before using RU,ALGOL,
the operator must place the source program in the input
device, or, if input is from LS Tracks, specify the file
location with an LS operator request. If planning to relocate
and run, the operator allocates LG tracks with an LG

operator request.

RU,ALGOL

Purpose:
To schedule the ALGOL compiler for operation.
Format:

RU,ALGOL, input, list, output, lines, 99
Where:

input = Logical unit number of input device. Use 2
for source file input from the disc. (Set to 5
if not given).

list = Logical unit number of list device (set to 6 if
not given).

output = Logical unit number of output device (set to
4 if not given).

lines = Lines/page on listing (set to 56 if not given).

99 = The LG parameter (LG command required
first). If present, the object program is
stored in the LG tracks for later loading.
Any punching requested still occurs. The
99 may occur anywhere in the parameter
list, but terminates the list.

Example:

RU,ALGOL < is equivalent to RU,ALGOL,5,6,4,56 >

MESSAGES TO OPERATOR

A single ALGOL program can be made up of several source
tapes. When the end of each source tape is encountered
(end-of-tape or EOT condition), RTE Driver DVROO can

4.9

RTE-III

interpret it in two ways. An EOT can set the tape reader
down (make it inactive), or not set it down. The action
depends on how DVROO subchannels were configured
during generation. In any case, an EOT does not suspend
the ALGOL compiler. Therefore, it is recommended that
when compiling multiple tapes, DVROO be configured to
set the tape reader down on EOT (see the LU command).
For more information refer to the DVROO Manual (HP
Part No. 29029-95001).

[f an EOT causes the tape reader to be set down, the RTE
system will output a message to the operator:

I/OET L #lu E #eqt S #sub

The operator must place the next source tape into the tape
reader and set the tape reader up with the UP operator
command.

UP, eqt

If an EOT does not cause the tape reader to be set down,
the RTE-III system does not output any message and the
compiler is not suspended.

At the end of completion (when the compiler detects the
ENDS statement), the following message is printed.

$END ALGOL

If source input is indicated to be from the disc (by input=2
in the ON control statement), and the source pointer is not
set, the diagnostic

NO SOURCE

is output to the system teleprinter and the compilation
ceases.

Two I/O error messages may be generated by the system
when ALGOL attempts to write on the LG tracks
(ALGOL is aborted).

1006
1009

1006 means that the LG tracks were not defined by an LG
operator request, and 009 means that the LG tracks over-
flowed. The operator must define more LG tracks with LG
and start compilation over again.

4-10

At the end of a program, a program-termination request is
made to the Executive. No message is printed.

In case of a PAUSE statement, the following message is
printed:

name: PAUSE xxxx

Where
name = the program name.
XXXX = number which has no significance.

Execution is then suspended. To restart the program, type
GO, name

See the GO operator command in Section II for a definition
of the parameters.

ALGOL FORMAT

The first statement of an RTE ALGOL program’is the HPAL
control statement. The control statement does not use the
symbol S (sense switch control). Also, after the NAM record-
name, additional parameters may be specified.

ALGOL CONTROL STATEMENT

Purpose:

To define the output to be produced by the ALGOL

compiler.

Format:

HPAL [,L,A,B,P],

“name”’[, numb, type, pri, res, mult, hr, min, sec, msec/

Where:

=]
It

“name”

numb

type

Produce source program listing.
Produce object code listing.

Punch binary tape. B not present does
not affect binary output to load-and-go
tracks.

A procedure only is to be compiled.
Program name.

A digit from 1 through 9 specifying the
error-routine name. A library routine,
ERRnumb with numb = 1-9 must be
supplied by the user. If this option is not
specified, the error-routine name is
ERRO. The error routine is called when
an error occurs in the following routines:
ALOG, SQRT, .RTOR, SIN, COS, .RTOI,
EXP, .ITOI, TAN.

The program type (set to 3 for main pro-
gram, or 7 for subroutines, if not given).

System Program
Real-Time Core-Resident

= Real-Time Disc-Resident

Background Disc-Resident

= Background Core-Resident

Background Segment

= Tllegal
= Library, utility
= If program is a main, it is deleted from the

system

If it is a subroutine, then it is used to
satisfy any external references during
generation. However, it is not loaded

in the relocatable library area of the disc.

RTE ALGOL

9 = Foreground core-resident, uses back-
ground common
10 = Foreground disc-resident, uses back-
ground common
11 = Background disc-resident, uses fore-
ground common
12 = Background core-resident, uses fore-
ground common
13 = Background segment, uses foreground

common
14 = Tllegal

pri = Priority.

res = Resolution code (0-4).

mult = Execution multiple (0-999).

hr = Hours (0-23).

min = Minutes (0-59).

sec = Seconds (0-59).

msec = Tens of milliseconds (0-99).

COMMENTS

Note that the program-name specified in “name’” must be
enclosed in quotation marks, must be a legitimate iden-
tifier, and must not contain blanks.

If no symbols are specified (L through P), and if
load-and-go is not specified in the RU,ALGOL control
statement, the program is compiled but does not produce
output other than diagnostic messages.

If there is an error in the control statement, the diagnostic
“HPAL??” is printed on the system console. The compiler
then returns control to the system.

The parameters numb through msec must appear in the
order shown. And even though the parameters are optional,
if any one paramenter is given, those preceding it must
appear also. For example:

name , ,, 90
is illegal and will be rejected by the system. The only
method of legally defaulting the parameters is shown be-
low:
name

or
name, 3, 3, 90

4-11

RTE-II

All parameters are set to O if not specified with the fol- b. The program type parameter type is set to 3 if
lowing two exceptions. : both type and P are not specified, or 7 if £ype is not
specified and P is specified.
a. The priority parameter pri is set to 99.

4-12

RTE Assember

PART 3
RTE Assembler

The RTE Assembler is a segmented program that consists of
a main program and segments, and resides in the protected
area of the disc.

RTE Assembler Language, a machine-oriented program-
ming language, is very similar to regular HP Extended
Assembler Language. Source programs, accepted from
either an input device or disc LS tracks, are translated

into absolute or relocatable object programs. Absolute
code is written in binary records suitable for execution
outside of RTE-III. ASMB can store relocatable code in the
LG area of the disc for on-line execution, as well as writing
it to an output device. The RTE Relocating Loader accepts
Assembler Language relocatable object programs.

The source tape passes through the input device only once,
unless there is insufficient disc storage space. In this case,
two passes are required. (See next page Messages To Opera-
tor.)

ASSEMBLER REFERENCE

For a complete description of the HP Assembler language,
read the Assembler Reference Manual (HP Part No.
92060-90005).

ASSEMBLER OPERATION

An RU operator request schedules the RTE Assembler for
execution. Before using RU,ASMB, the operator must
place the source program in the input device, or if the in-
put is from LS Tracks, specify the file location with an LS
operator request. If planning to relocate and run, the
operator must allocate LG tracks with an LG operator
request. The format for scheduling the Assembler is:

RU,ASMB

Purpose:
To schedule the Assembler for operation.
Format:
RU,ASMB, input, list, output, lines, 99
Where: |
input = Logical unit number of input device. Use 2
for source file input from the disc. (Set to 5

if not given.)

list = Logical unit number of list device (set to 6 if
not given).

output = Logical unit number of output device (set to
4 if not given).

lines = Lines/page on listing (set to 56 if not given).

99 = LG parameter (LG command required first).
If present, the object program is stored on
the disc for loading, and any punching re-
quested still occurs. The 99 may occur any-
where in the parameter list, but terminates
the list.

Example:

RU,ASMB < is equivalent to RU,ASMB,5,6,4,56 >

MESSAGES TO OPERATOR

When a paper tape is being input through the tape reader,

"~ RTE Driver DVROO can interpret and end-of-tape (EOT) in

two ways. An EOT can set the tape reader down (make it
inactive), or not set it down. The action depends on how

4-13

RTE-III

DVROO subchannels were configured during generation. In
any case, an EOT does not suspend the Assembler. There-
fore, it is recommended that when assembling multiple
tapes, DVROO be configured to set the tape reader down on
EOT (see the LU command). For more information refer to
the DVROO Manual (HP Part No. 29029-95001).

If an EOT causes the tape reader to be set down, the RTE
system will output a message to the operator:

I/OETL #lu E #eqt S #sub

The operator must up the tape reader with the UP operator
command.

UP, eqt
If an EOT does not cause the tape reader to be set down,
the RTE-III System does not output any message and the
Assembler is not suspended.
At the end of assembly, the following message is printed:

$END ASMB

If another pass of the source program is required, the fol-
lowing message appears at the end of pass one.

SEND ASMB PASS

The operator must replace the program in the input device
and type:

GO,ASMB

If an error is found in the Assembler control statement, the
following message appears:

$END ASMB CS
The current assembly aborts.

If an end-of-file condition occurs before an END statement
is found (LS file only), the console signals:

$END ASMB XEND
The current assembly aborts.
If source input for logical unit 2 (disc) is requested, but no
file has been declared (see LS, Section II), the console

signals:

$END ASMB NPRG

4-14

The current assembly aborts.

RTE-III generates two messages when ASMB attempts to
write on the LG tracks (ASMB is aborted).

1006
1009

I006 means that the LG tracks were not defined by an LG
operator request, and 1009 means that the LG tracks have

overflowed. The operator must define more LG tracks with
LG and start the assembly over again.

The next message is associated with each error diagnostic
printed during pass 1.

tape numb

tape numb is the “tape” number where the error (reported
on the next line of the listing) occurred. A program may
consist of more than one tape. The tape counter starts with
one and increments whenever an end-of-tape condition oc-
curs (paper tape) or a blank card is encountered or a zero
length record is read from the disc. When the counter incre-
ments, the numbering of source statements starts over at
one.

Each error diagnostic printed during pass 2 of the assembly
is associated with a different message:

PG page numb

page numb is the page number (in the listing) of the pre-
vious error diagnostic.

PG 000 is associated with the first error in the program.

These messages occur on a separate line, above each error
diagnostic in the listing.

ASSEMBLER CONTROL STATEMENT

The control statement has the same form as that of regular
Assembler language; and although only relocatable code

can be run under RTE, the RTE Assembler accepts and
assembles absolute code. Absolute code is never stored in

the LG tracks. To get absolute code, the control

statement must include an “A.” The “R”, however, is not
required for relocatable code. An “X” causes the assembler
to generate non-extended arithmetic unit (non-EAU) code.
B is required to punch a binary tape. B not present does not
affect binary output to LG tracks.

The memory protect feature, which protects the resident
executive from alteration (except in the case of privileged
library routines), interrupts the execution of a user program
under these conditions:

a. Any operation that would modify the pro-
tected area or jump into it.

b. Any I/O instruction, except those referencing
the switch register or overflow.

c. Any halt instruction.

When an interrupt occurs, memory protect gives control to
the system which checks to see if the interrupt was from a
legal system call. If not, the user program is either suspend-
ed or aborted (depending on bit 15).

RTE Assembler

NAM STATEMENT

Purpose:

The NAM statement, which must be the first
statement in an Assembler source program, includes
optional parameters defining the program type,
priority, and time values.

Format:
NAM name, type, pri, res, mult, hr, min, sec, msec id
Where:
name is the name of the program.
type is the program type (set to O if not given):

0= System program
I = Real-time core-resident
2 = Real-time disc-resident
3 = Background disc-resident
4 = Background core-resident
5= Background segment
6 = Library (re-entrant or privileged)
= Library, utility
8 = If program is a main, it is deleted from
the system

— Oor —

8 = If program is a subroutine, then it is
used to satisfy any external references
during generation. However, it is not
loaded in the relocatable library area
of the disc.

The primary type may be expanded in
some cases by adding 8, 16, or 24 to
the number. These expanded types
allow such features as access to real-
time common by background programs
and access to SSGA. See Appendix I
for a list of expanded program types.

4-15

RTE-II

pri

res
mult
hr
min
sec

msec

id

also.

is the priority (1 to 32767, set to 99 if not
given).

is the resolution code \

is the execution multiple.
(Time values,

is hours. set to O if not
given. See

is minutes. Section 11, IT,
for meaning)

is seconds.

is tens of milliseconds. y

comments field-separated
from parameters by a space.

These parameters are optional; but if any one
parameter is given, those preceding it must appear

4-16

COMMENTS

The parameters of the NAM statement, beginning with rype
and ending with msec, are separated by commas. A blank
space within the parameter field will terminate that field
and cause the Assembler to recognize the next entry as the
comment field (id). The first parameter must be separated
from the program name by a comma. The parameters are
optional, but to specify any particular parameter, those
preceding it must also be specified.

The comment field (id) can be a maximum of 73 characters
due to the restriction of the source statement size. The
source statement will be truncated after column 80.

The comment field in the NAM statement will be included
as ASCII in the relocatable binary object code. This means
that when the program is relocated with the RTE loader,
the comments field will be printed out as part of the NAM
statement.

RTE Relocating Loader

PART 4
RTE RELOCATING LOADER

The RTE-III On-line Relocating Loader, LOADR, accepts
relocatable code from an input device such as paper tape,
magnetic tape, and so forth, or from LG tracks (see LG
operator request, Section II) filled by the RTE Assembler,
RTE FORTRAN, or RTE ALGOL. LOADR provides for
linking the relocatable program file produced by the Assem-

bler or the compilers together with one or more library files.

The resultant program may be relocated (loaded) as a
background program; or it may be relocated as a back-
ground program with the DEBUG library routihe ap-
pendeéd to it; or it may be relocated as a real-time disc- -
resident program for subsequent action. In addition,
LOADR may be used to list program names and blank
ID segments, purge permanent programs from the system,
add permanent programs to the system, or replace perm-
anent programs in the system.

The RTE-III Relocating Loader has the following features:

e Can be operated under control of the File Manager in
batch mode.

i LOADR is swappable and can be operated in either
real-time or background disc-resident areas.

° Allows programs which declare COMMON to refer-
ence either a system or reverse common area (shared
with other programs) or a local common area (not
shared with other programs).

° Can relocate referenced library routines which are on
LG tracks.

] Can force the relocation of subroutines which have

not been referenced by a previously relocated module.

For example, you can force the relocation of your
own version of a subroutine that already exists in the
system library (see library parameter, GO,LOADR
command). :

. Allows a program to be permanently added to the
system (i.e., only the loader can be used to purge a

permanent program; the OF name,8 command will
not remove a permanent program from the system).

. Allows a program to be temporarily loaded into
either the real-time or background area.

° Allows a program to reference absolute and code
replacement type ENT records (see Section VI).

] Uses system area disc tracks that have been vacated
by deleted programs.

L] Uses a short ID segment (when available; see
Appendix A) when loading a background program
segment. In addition, the loader does not restrict
the arrangement of subroutines following segments
(e.g., if a subroutine is shared by two segments, only
one copy of it is necessary on the LG tracks).

Options are available as parameters to the ON,LOADR
statement which permit you to specify:

1) the logical unit number of the input device.
2) the logical unit number of the list device.

3) an operation code which includes a Subsystem Global
Area (SSGA) flag together with common type and
loader operation indicators.

4). aprogram format code which includes program mem-
ory size requirements, partition assignment, and a
program structure indicator.

5) listing characteristics.

A detailed description of the ON,LOADR statement is given
under Loader Operation in this section.

At load time, it is not necessary to know the real address of
the partition in which the program will run because each
partition appears to be within the first 32K words of mem-
ory. The location at which a program area appears to begin
is a logical address. The program is relocated with respect to
this logical address. Logical memory address space configura-
tions are illustrated in Section VI, Figure 6-2.

4-17

RTE-III

You have more address space available for your program if
it does not declare COMMON. If COMMON is not declared,
the program is relocated (loaded) to begin after the system
resident library. If COMMON is declared, the common area
begins after the system resident library and is followed by
the program.

LG TRACK AREA

The RTE system provides facilities for the assembly or
compilation, relocation, and scheduling for execution of a
user program without intervening paper tapes. To accom-
plish this, the assembler or compiler accepts source state-
ments from which it generates relocatable object code. The
relocatable code may be stored on disc in predefined LG
tracks (see LG Operator Request, Section II). Then, separate
operator requests initiate relocation (e.g., RU,LOADR) and
schedule execution (e.g., ON, or RU, program name).

Two rules should be remembered when using the LG track
area:

a. Do not reset the LG track area using the LG
command if the LG track area was just used for a
forced relocation and additional library routines re-
main to be relocated. To do so would result in the
loss of the additional routines to the loader.

b. When the initial input is from the LG track area,
the input option parameter of the GO,LOADR com-
mand is set to 99 to indicate that the LG tracks have
been reset with new data moved into them. Setting
the input option to 2 implies that the LG tracks have
not been reset and additional data has been added to
them.

When using the loader, the programmer can structure the
LG track area with a single main program and subroutines,
or with a main program and segments. For relocating a main
program with segments from the LG track area, some con-
straints are imposed by LOADR. These constraints are:

a. Once the LG track area has been scanned and
relocated, there should be no undefined external
references in the main program. If there are, they will
be listed after the last segment is relocated but they
cannot be satisfied.

b. A segment cannot satisfy any external refere-
nces made by another segment. However, the main
program can satisfy segment external references, and

segments can satisfy main program external references.

4-18

When the loader terminates either with the message
J/LOADER: $END, or [LOADR ABORTED, the LG
track area is cleared. If the loader terminates in some
other manner, the LG track area is not cleared.

PROGRAM RELOCATION

During loading, programs are relocated to start at the
beginning of the disc-resident program area of logical

“memory. If COMMON is declared, the program will be

preceded by the common area. The logical address of
the program location is always at a page boundary and
the first two words of the program location are allocated
for saving the contents of the X- and Y-registers when-
ever the program is suspended.

Once relocated, the program is linked to external refer-
ences such as EXEC, the resident library, or the relocat-
able library. Any segments will overlay the memory area
immediately following the main program and its sub-
routines.

LOADR stores the absolute version of the program, its
subroutines, and linkages on a disc track or a group of
contiguous disc tracks; it then assigns the disc tracks to
the system (that is, they are not available as scratch or
data tracks to programs). LOADR then builds or updates
the ID segment assigned to the program. The program
together with its subroutines and its largest segment may
be as large as the largest partition of the same type. If a
program is assigned to a partition, it must not be larger
than the partition or an error, L17, results (see LOADR
Error Messages). Common may be allocated in one of
several areas according to the needs of the programmer
(see the optional parameter list for the RU,LOADR
request).

PROGRAM DISPOSITION

Regardless of the program type recorded in the program’s
NAM record, the third parameter (opcode) of the
RU,LOADR request determines the program disposition.
This parameter’s default (zero) results in a background
temporary program. Other parameter values result in a
background temporary program with the DEBUG library
subroutine appended, a real-time temporary program, a
real-time or background permanent program addition, or

a real-time or background permanent program replacement.

ON-LINE MODIFICATION

Using the loader, the operator can permanently modify
the set of disc-resident user programs in a configured

RTE-III system. The loader adds new disc-resident real-
time or background programs, and replaces disc-resident

programs with updated versions that have the same name.

When a program is being replaced it must be dormant, not
in the time list, and have a zero point of suspension. The

OF Operator Request deletes those disc-resident programs

loaded temporarily into the system by the loader. The OF
request cannot delete program segments that were perma-

nently added on-line or stored during generation.

When the system is generated, RTGEN, the system genera-
tor, stores disc-resident programs on the disc in an absolute,
packed format. Each main program is identified and lo-
cated by a 28-word ID segment. The ID segments are stored
in the ID segment area of the system on the disc and
brought into main memory when the system is started up.
For disc-resident programs, the program’s disc location as
well as its main memory and base page addresses are kept in
the ID segment. When a main program and segments are
loaded, the segments are identified and located by a 9-word
short ID segment. See Appendix A for ID segment format.

RTGEN can create a number of blank 28-word and 9-word
ID segments so that the loader can add new programs and
segments to the permanent system later. The addition or
replacement of a program involves the conversion of relocat-
able programs into an absolute unit, finding space on the
disc to store it, and and recording information in the ID seg-
ment. The loader always attempts to use the short ID seg-
ment for identifying a program segment. However, if a
short ID segment is not available, a regular 28-word ID
segment is used.

In replacing, the new program may overlay the old pro-
gram’s disc space only if the length of the new program
plus base page linkages does not exceed the disc space
formerly occupied by the old program. A track or group
of tracks is allocated for program storage if adding a pro-
gram, or if space requirements of a replacement program
exceed those of the old. These newly allocated tracks are
software-protected, but not hardware-protected.

Memory-resident programs cannot be replaced in the sys-
tem because the length of the program and linkage area
is not kept in the ID segment for these programs, nor can
programs be added.

If a user supplied routine is to be referenced by a pro-
gram, and a memory-resident subroutine of the same
name already exists in the system, then the user sup-
plied routine must be loaded before any reference is made
to it, Conversely, if a system relocatable library routine
has to be replaced, the user supplied routine can be force
loaded even after it has been referenced.

RTE Relocating Loader

When performing an on-line modification, the disc hard-
ware protect must be physically disabled prior to the load-
ing (and then enabled afterwards) unless the protection

is always kept disabled. RTE provides additonal software
protection for any tracks containing system programs or
user programs.

LIMITATIONS

Several limitations may prohibit the final addition or re-
placement of disc-resident programs:

a. System or reverse common is requested but
the program’s common length exceeds that of the
common area.

Local common is requested and COMMON is
not declared by the first relocatable module en-
countered by the loader, even though the module is
a dummy module which contains no executable code.

b. The base page linkages exceed the correspond-
ing linkage area for disc-resident programs estab-
lished by the system during generation.

c. The length of the absolute program unit ex-
ceeds the area available.

d. Disc space is not available to store the program.

e. A blank ID segment is not available for adding
a program. (A program previously loaded can be
deleted to create a blank ID segment.)

SEGMENTED BACKGROUND PROGRAMS

Segmented programs can be added and replaced in any order
as long as the main program is always entered first. Per-
manent addition of main segment programs will not nec-
essarily result in the main and segments being stored on
contiguous tracks.

When replacing segmented programs that were incorporated
into the system at generation time, the operator must re-
place every segment with a new segment having the same
name, or remove the original segment permanently from
the system. Additonal segments, however, may be added in
a replacement and any segments left over (from the old
program) as a result of replacement may be deleted using
the loader.

NEW PROGRAM ADDITION

When a new program is added, it is stored on a complete
disc track or several contiguous tracks. A blank ID segment

4-19

RTE-II

is allocated to record the program’s memory and disc bound-
aries, name, type, priority, assigned partition, and time
values. The loader attempts to use available disc space in the
system before allocating new full tracks. If new tracks must
be allocated, they are assigned to the system and are soft-
ware- protected.

PROGRAM REPLACEMENT

In a replacement, the new program uses the ID segment of
the old program (both programs must have the same name).
The new program is generated onto temporary tracks, and
then, if it can fit in the old area, or within another area
gained by deleting a program incorporated during gener-
ation, it is transferred to that area. If not, the temporary
tracks attain system track status and if a blank ID segment
is available, the old tracks are assigned to it for later use by
another program. If a blank ID segment is not available,

the old tracks are lost.

PROGRAM DELETION

A temporary program is deleted from the system with the
OF ,name,8 command. A permanent program (i.e., a program
loaded during generation, or on-line with the loader as a
permanent addition or replacement load) is deleted with the
loader. When using the loader to delete a permanent program,
the opcode parameter is set to 4. This blanks the program’s
ID segment making it available for loading another program.
The tracks containing the program are released, unless they
are system tracks. If the program had been saved through
the File Manager on FMP tracks, those tracks are not re-
leased to the system but remain as FMP tracks.

COMMON ALLOCATIONS

There are three options you can specify when allocating
common area for a program.

SYSTEM COMMON. This implies a background program

- with common in the background system common area, or
a real-time program with common in the real-time common
area.

LOCAL COMMON. Common area for a background pro-
gram is established at the beginning of the background pro-
gram’s area, or for a real-time program, at the beginning of
the real-time program’s area. The common area will be
swapped together with the program.

REVERSE COMMON. This implies a background program
with its common in the real-time common area. Conversely,
a real-time program can reference and use the background
system common area.

4-20

LOADER OPERATION

The operator schedules the loader for execution with the
ON operator command.

RU,LOADR

Purpose:

To relocate a program so the program can be
scheduled by an ON or RU operator request.

Format:

RU,LOADR, input,list,opcode,fmt,listing

Where:

input = Parameter |, — logical unit number of
input device. If set to 99, the LG tracks
are used, but 99 does not terminate the
parameter list (default = 5).

list = Parameter 2 — logical unit number of
list device (default = 6).

opcode = Parameter 3 — SSGA Flag/Common

Type/Operation Code: A three digit
code (decimal) indicating Subsystem
Global Area Flag, Type of Common,
and Loader Operation to perform, as
follows:

abc
where,

Subsystem 4 =0 No SSGA (default)

Global Area =1 Use SSGA

Flag

Type of b =0 No Common or

Common use local Common
if any is de-

clared (default)
=1 System Common
=3 Reverse Common
Loader ¢ =0 Background Tem-
Operation orary (default)
=1 Background
(DEBUG ap-
pended)
=2 On-line Edit
=3 List
=4 Purge
=5 Real-time Tem-

porary

=6 Real-time Re-
placement
=7 Real-time Addi-
tion
= § Background Re-
placement
=9 Background
Addition
fmt = Parameter 4 — Size/Partition/Structure
Control: A five digit code (decimal) in-
dicating memory size and override require-
ments, partition assignment, and pro-
gram structure as follows:

xxyyz
where,
Size xx = 00 Use program size
(default)
01-32 Required size in
pages

Partition yy = 00 None assigned
(default)
= 01-64 Assigned parti-

tion number

Structure z =0 Main program
(default)
=] Main program
plus segments
listing = Parameter 5 — Listing parameter (only

when input = 99). A one digit code
Where:
0

List program name, bounds, and
entry points.

List only entry points.

2 = List only program name and bounds.
3 = Omit program name, bounds, and
list of entry points from listing.

—
I

COMMENTS

If a track allocation cannot be made, the message WAITING
FOR DISC SPACE is printed. The loader repeats the disc re-
quest and is suspended until space becomes available.

Following the relocation of a program which has its external
references satisfied, the loader terminates with the following
messages:

/LOADR: name READY
/LOADER: $END

RTE Relocating Loader

Where name is the main program name. The loader termi-
nates and the program is ready to run.

opcode PARAMETER (PARAMETER 3)

This parameter is specified as a decimal value of three digits.
The first (left) digit determines whether or not the program
uses the Subsystem Global Area (SSGA). The second digit
determines whether or not common is to be used and, if
common is used, the type of common. The third digit de-
termines the loader operation to be performed. Setting the
loader operation value to 1 causes the DEBUG utility
routine to be appended to each main program and segment.
The loader sets the primary entry point of each main pro-
gram and segment to DEBUG, rather than to the user
program. When the program is run, DEBUG takes control
of program execution and requests instructions.from the
keyboard. (See RTE DEBUG LIBRARY SUBROUTINE
for legal commands.)

Setting the loader operation value to 2 initiates the loader
for an on-line edit which requires additional information
through the GO,LOADR request. See Loader Operation
(On-line Edit) for addition information.

Setting the loader operation value to 3 causes a listing of all
program names and blank ID segments to be printed. For
each ID segment in the system the following format is used:

name, type, priority, partition

name is the program name

type is the program type:

1 — Real-time Memory-resident.

2 — Real-time Disc-resident.

3 — Background Disc-resident.

4 — Background Memory-resident.
5 — Background Segment.

priority is the program priority, from 1 to 32767.

is the partition number, from 1 to 64. This field
appears only if the program is assigned to a
specific partition.

partition

Each blank ID segment available for use by the loader is
noted by the line:

<LONG BLANK ID>

<SHORT BLANK 1D >

The loader terminates after the list is complete.

4-21

RTE-III

Setting the loader operation value to 4 initiates the purge of
a permanent program. Using this option, the input and list
parameters automatically default to 1. The loader’s response
to this option is:

/LOADR: PNAME?

Enter the program’s name on the keyboard input device and
it will be permanently removed from the system. To abort
the command (and LOADR) enter /A.

Setting opcode = 5-9 allows the loader to run in Batch
mode without operator intervention.

fmt PARAMETER (PARAMETER 4)

The fmt parameter is specified as a decimal value of five
digits. The first two (left) digits determine whether or not
memory space larger than the program size is required. For
example, programs such as EDITR, ASMB, and LOADR re-
quire extra memory space to store symbol tables, intermedi-
ate buffers, and so forth. If space larger than the program
size is required, the total space required is specified in pages
of memory; if program size is sufficient, set these digits to
Zero.

The next two digits determine whether or not the program
is to be assigned to a specific partition. A program may be
assigned to any partition of sufficient size regardless of
partition class (i.e., real-time or background). If a program
is to be assigned to a partition, specify the partition num-
ber desired, otherwise, set these digits to zero. If zero, the
program executes in the smallest available partition possible
when it is scheduled.

The LG track area must contain the main program and its
subroutines followed by a segment and its subroutine. Where
the same subroutine is required by both the main program
and segment, but is not in the library, it need only appear in
the main program. Subroutines required by more than one
segment, but not by the main, can appear with each segment
in the LG track area for greater speed in loading. Or, only
once copy of the subroutine may be placed in the LG track
area and the area is scanned as a library (loading time is
somewhat longer).

NOTE

If the loader suspends as a result of
undefined external references in any
segment, you may move additional
subroutines to the end of the LG
track area and scan the area as a
library, or have the loader scan the
input device for required subroutines.
In Batch mode, the loader aborts.

422

If there are undefined external references in the main pro-
gram, LOADR printes the message MAIN followed by the
message UNDEFINED EXTS and then suspends. It is not
possible to satisfy these undefined external references using
the loader. The only acceptable request is GO,LOADR 4 to
continue loading without satisfying external references, or
GO,LOADR,98 to list the undefined external references.

If the last digit is O, a single main program and subroutines
will be merged into an absolute program unit. To load
another main program, the loader must be scheduled again.

LOADING THE BINARY CODE

For a main/segment load, the main program must be entered
first to establish the segment area boundaries. The library
must be scanned (GO,LOADR,1) after each main program .
and segment (except the last segment).

The loader scans the relocatable programs and subrcutines
as it reads them, keeping track of any external references.
If input is initially from the disc as specified by 99 in the
ON statement, the loader immediately scans the library for
entry points. If input is from paper tape and DVROO has
been configured to logically disable (down) the tape reader
on end-of-tape (EOT condition), the loader suspends opera-
tion with the message:

I/OETL #lu E #eqt S #sub
/LOADER: LOAD

LU #lu is unavailable (down, see DN, Section II) until the
operator declares it up:

UP,eqt
If an EOT condition does not cause the tape reader to be set
down, the RTE system does not send any messages but does
suspend the loader.

LOADER RESCHEDULING

After the loader has been suspended, the operator can re-
schedule it with the GO operator command.

GO,LOADR (PROGRAM RELOCATION)

Purpose:
To reschedule the loader to continue program loading.

Format:

GO,LOADR input option,entry pts,library

Where:

inpui‘ option 0,2, or 99 indicates a program
load if library is O or not
entered.
= 0 — Load from the binary input
unit (LUS).
= 1 — Scan disc resident relocatable
library and load referenced li-
brary routines.
= 2 — Load from LG track area. LG
track area has been loaded
from previously.
= 3 — Load from the relocatable li-
brary for the last segment in a
main/segment load.
= 4 — Continue without loading
any remaining referenced li-
brary routines. Ignore unde-
fined external references.
= 98 — List undefined externals.
99 — Load from LG track area for
the first time.
lu — Where lu is a logical unit num-
ber and not one of the above
numbers.

entry pts = 0 — List entry points.
= | — Omit list of entry points.

library = 0 — Load all data (forced reloca-
tion).
= 1 — Satisfy undefined externals
only (library scan),
COMMENTS

If the LG tracks are read with a GO,LOADR,99 (or 2) com-

mand, the LG track area is not cleared. However, the
RU,LOADR,99 command will still clear the LG track area
upon a successful load.

input option PARAMETER

L Once you have force loaded from the LG track area,
subsequent use of the area requires that input
option = 2.

] After the loader encounters the last segment during a

main/segment load from the LG track area, no more
segments can be read even from the binary input
device.

L If undefined externals remain in the main of a seg-
mented program (which the loader discovers after

RTE Relocating Loader

loading the last segment) and the message MAIN—
UNDEFINED EXTS is printed, the undefined externals
cannot be satisfied. The only legal response at that
time is GO,LOADR,98 or 4.

1 It is permissible to use the LG track area more than

once with GO,LOADR,99 without resetting it with
the LG command as long as the last load was not a
forced relocation.

library PARAMETER

The library parameter does not apply when input option = 1,
3,4 or 98. If library = 1 then library input from the specified
source is assumed. If library = O then the input is a forced
relocation. If the library is read through an input device (not
from the LG track area) and the message LOAD LIB is
printed, the library must be scanned again to satisfy an un-
defined external. When the message LOAD is printed, the
library scan is finished.

MATCHING EXTERNALS

External references to resident library programs use the
existing base page links to those entry points, but external
references to disc-resident relocatable library subroutines
cause these routines to be loaded along with the referencing
program. If a segment references a library routine also refer-
enced by the main program, the segment shares the routine
loaded with the main program.

After matching all possible entry points to external refer-
ences, if there are still undefined external references, the
loader prints this message:

UNDEFINED EXTS

The external references are listed, one per line, and the
loader suspends itself.

To load additional programs from the input unit, the opera-
tor types:

GO,LOADR

To continue, without fulfilling external references, the
operator types:

GO,LOADR 4
The loader proceeds to relocate the program or segment and
subroutines into absolute format, and prints a list (on the
list device) of all entry points (unless instructed not to print

the list) as each routine is loaded. The entry point listing is:

*name address

4-23

RTE-III

Where

name is the entry point name, and
address is its absolute location in octal.
END OF LOADING

At the end of a normal load, or after loading the last seg-
ment of a main/segment load, the loader prints the following
message and terminates itself.

/LOADR: name READY
/LOADR: $END

Where
name

is the name of the main user program. The loader
terminates and the program is ready to run.

After loading a main or segment of a main-segment load
(end-of-tape mark) the loader prints the following message
and waits for the GO,LOADR entry for the next segment.

/LOADR: LOAD

After entering the last segment and subroutines from the
input device (not the disc), the operator reschedules the
loader with the command:

GO,LOADR,3

The loader proceeds to the end of loading, as described
above.

The operator can schedule the program for execution by an
ON, or RU, name operator request (see¢ Section II). The
disc tracks containing the program are assigned to the
system and are software-protected. The program, if a
temporary load, can be eliminated from the system with
the OF operator command, or if a permanent load can be
eliminated with the RU,LOADR,,,4 command.

LOADER OPERATION (ON-LINE EDIT)
The operator schedules the loader for on-line edit operations
by setting opcode = 2 in the RU,LOADR command. Refer
to the RU,LOADR command for more details.

RU,LOADR, input,list,2,fmt,listing

The loader requires additional information to carry out the

modifications so it prints the following message and suspends.

JLOADR: “GO” WITH EDIT PARAMETERS

424

The operator must disable (override) the hardware disc pro-
tect switch and reschedule the loader.

LOADER RESCHEDULING (ON-LINE EDIT)

The operator reschedules the loader with the GO cperator
command. This GO,LOADR command for on-line edit
operations contains an additional command.

GO,LOADR (On-Line Edit)
Purpose:
To reschedule the loader to input additional param-
eters required for the edit operation.
Format:
GO,LOADR joperation,prog type |,priority]
Where:
operation = | for an addition operation.
= 2 for a replacement operation (pro-
gram must be dormant).
prog type = 2 for a real-time disc-resident program.
= 3 for a background disc-resident
program.
priority = priority (optional) from 0 to 32767
(a 0 means use the priority value in the
NAM record of the program or, if that
priority is O, uses 32767).
COMMENTS

Any errors encountered while attempting to reschedule the
loader cause the error message L10 to be printed (see
LOADR ERROR MESSAGES). The disc hardware protect
must be disabled before the program is loaded, then re-
enabled after loading.

When the GO request is entered, the loader proceeds to load
the program, keeping track of any external references. If in-
put is from the disc as specified by 99 in the ON statement,
the loader immediately scans the library for entry points. If
input is from paper tape, the loader suspends with the
nmessage.

I/OETL #Ilu E #eqt S #sub
J/LOADER: LOAD

LU #lu isunavailable (down; see DN, Section II) until the
operator declares it up.

UP,eqt

The operator reschedules the loader with the GO request
exactly as described previously under GO,LOADR (Back-
ground).

RTE DEBUG LIBRARY SUBROUTINE

DEBUG, a utility subroutine of the RTE Relocatable Li-
brary is appended to the user’s program by the loader when
the opcode parameter in the RU,LOADR command is set to
1, and allows programs to be checked for logical errors dur-
ing execution, Programs that expect starting parameters or
that call RMPAR (see Section I, Program Suspend Exec
Call) cannot use DEBUG because DEBUG uses these param-
eters.

The DEBUG routine was developed for 2100 series com-
puters. It should not be used with instructions labeled as
“21MX Only” in the RTE Assembler Reference Manual
(92060-90005).

After the user’s program is loaded with DEBUG appended
to it, the user turns his program on with the input parameter
set to 1 (keyboard input).

RU,name,1
Where
name is the program name.

The primary entry point of the program (the location where
execution begins) is set to DEBUG so that when the pro-
gram is turned on with an RU operator request, DEBUG
takes control and prints a message:

BEGIN ‘DEBUG’ OPERATION

You can then enter any legal debug operation. Illegal re-
quests are ignored and a message is printed.

ENTRY ERROR

The following commands describe DEBUG operations.

Bn Instruction breakpoint at octal
address n (Note: if n = JSB EXEC,
a memory protect violation occurs)

D,An, [,n2] ASCII dump of octal main memory
address n; or from n,; through n
1 1 2
D,B,nl [’”2] Binary dump of octal main memory

address n| or from #| through ny

RTE Relocating Loader

M,n Sets absolute base of relocatable
program unit at octal address n

R[n] Execute user program starting at
octal address n or execute starting
at next location in user program
(used after a breakpoint or to init-
iate the program at the transfer
point in the user program)

Snd Set octal value d in octal address n
S,n,dl,dz, - ’dn Set octal values d, through dn in
’ successive memory locations begin-
ning at octal address n
W,Ad Set A-register to octal value d
W.,B,d Set B-register to octal value d
W.E.d Set E-register to octal value d
(0 = off; non-zero = on)
W.,0,d Set Overflow to octal value d
(0 = off; non-zero = on)
X Clear breakpoint at octal address n
Abort DEBUG operation.
LOADR ERROR MESSAGES

Messages are printed in this format:
/LOADR: message
WARNING (W) MESSAGE

W17 — Number of pages required by the program exceeds
the partition size. The loader cannot find a parti-
tion large enough for the program. It can be relo-
cated successfully but cannot be executed. You
can generate a new system containing a partition
large enough for the program or you can revise the

program.
L ERROR MESSAGES
LOl — Checksum error
LO2 — Tilegal record

These errors are recoverable (except in Batch mode). The
record in error can be reread by repositioning the tape to the
beginning of the record and typing:

GO,LOADR

4-25

RTE-III

LO3 —
L04 —
LOS -
LO6 —

LO7 —
LO8 —

L09 —

L10 —

L1l —

L12 —

L13 -

L14 —

L15 —

L16 —

L17 —

4-26

Memory overflow.
Base page linkage area overflow.
Symbol table area overflow.

Common block error.

a. Exceeding allocation in a replacement or
addition.
b. In anormal background load, first program

did not declare largest common block.
Duplicate entry points

No transfer address (main program) in the pro-
gram unit. Another program may be entered with
a GO operator request. (This also occurs when the
LG track area is specified, but no program exists in
that area.)

Record out of sequence.

Operator request parameter error. GO requests
may be retyped; ON requests may not.

Operator attempted to replace or purge a memory
resident program.

LG track area used without presetting (input
option = 2 IN ‘GQ’). input option was not speci-
fied as 99 previously.

LG track area has been illegally reset (i.e., over-
written). Program addition on area not allowed if
it has already been specified for program input, or
area was once used for force loading with input
option = 99 and it is again being used with input
option =99 (must = 2).

Assembler or compiler produced illegal relocatable.
A DBL record refers to an external which has not
been defined (the original can not be found in the
symbol table).

Forward reference to a type 3 or type 4 ENT or to
an EXT with offset which has not yet been
defined, or an indirect forward reference.

Illegal partition number. Value must be in the
range from 1 through 64.

Number of pages required by the program exceeds
assigned partition size. A specific partition has
been assigned for this program. This program re-

quires more pages than are available in the partition.

L18 — Total number of pages required exceeds 32. The
sum of required pages must be in the range from
1 through 32.

ADDITIONAL MESSAGES

NO BLANK ID SEGMENTS

This message is printed when no available (i.e., blank) ID
segment is found. The loader calls for program suspension.
The operator may then delete a program from the system
(OF jname,8 operator request) or may terminate the loader.

DUPLICATE PROG NAME — name

This message is printed when a program name is already
defined in the system for a normal load or a program addi-
tion. The loader changes the name of the current program
by replacing the first two characters with periods (e.g.,
JIMBI becomes . .MB1). The second duplicate program
name aborts the loader.

WAITING FOR DISC SPACE

This message is printed when a track allocation carmot be
made. The loader repeats the disc request and is suspended
until space becomes available.

UNDEFINED EXTS

This message is printed followed by a list of all remaining
undefined external symbols after a scan of the library. Addi-
tional programs may be loaded by the GO operator request.

LOAD

This message is printed and the loader is suspended when-
ever an end-of-tape condition is detected from the input
unit.

SET PRGM INACTIVE

This message is printed if the loader attempts to re place a
program that is not dormant, is in the time list, or has a non-
zero point of suspension. The program to be replaced must
be set inactive using the OF operator request.

LOAD LIB
This message is printed when an end-of-tape condition is

detected from the input device being used for library input
and the loader needs to scan the library again.

RTE Relocatable Library

PART 5
RTE Relocatable Library

INTRODUCTION

DOS/RTE Relocatable Library Reference Manual (24998-
90001) describes the subroutines contained in the following
relocatable libraries:

Library Mnemonic Library Name

RLIB.N DOS/RTE Relocatable Library
FF4.N FORTRAN IV Formatter
FF.N FORTRAN Formatter

In addition to the above libraries there is a system library
which contains routines unique to the RTE-III System.
These routines are documented in this section.

RE-ENTRANT SUBROUTINE STRUCTURE

Many executing programs can reference one resident library
subroutine on a priority basis. If the subroutine is struc-
tured as re-entrant, it must not modify any of its own
instructions; and it must save temporary results, flags, etc.,
if it is called again (by a higher priority program) before
completing its current task.

Each time the re-entrant routine begins executing, the ad-
dress and length of its temporary data block are transferred
to RTE-III through entry point $LIBR to save the data. At
the end of execution, the re-entrant routine calls RTE-III
through entry point SLIBX to restore the temporary data,
if any.

Re-entrant structure is used for programs with an execution
time exceeding one millisecond. For shortér execution
times, the overhead time the system uses in saving and re-
storing temporary data makes re-entrant structure unrea-
sonable. Faster subroutines can be structured as privileged.

NOTE

A library (type 6) program can only
call another library program or
system (type 0) program.

FORMAT OF RE-ENTRANT ROUTINE

NAM xxxxx,6
EXT $LIBR, SLIBX

ENTRY NOP Entry point of routine.

ISB $LIBR Call RTE-II to save temporary
data.

DEF TDB Address of temporary data.

P Program instructions
EXIT JSB $LIBX Call RTE-III to restore data.
DEF TDB
DEC m m is for routines with two return

points in the calling program; O
specifies the error-point return
and 1 the normal return. For rou-
tines with only one return point,
m = 0.

TDB NOP System control word.
DEC n+3 Total length of current block.
NOP Return address to calling program.
Tl
: Temporary data (n words).
Tn

PRIVILEGED SUBROUTINE STRUCTURE

Privileged subroutines execute with the interrupt system
turned off. This feature allows many programs to use a
single privileged subroutine without incurring re-entrant
overhead. As a result, privileged subroutines need not save
temporary data blocks but must be very quick in execution
to minimize the time that the interrupt system is disabled.

4-27

RTE-II

RTE SYSTEM
LIBRARY

\

INCLUDE
RLIB.N

USE

FTNIV

COMPILER
?

USE

FORTRAN

COMPILER
?

YES
INCLUDE INCLUDE
FF4.N FF.N
-
OTHER
LIBRARIES NO
TO
INCLUDE
?
INCLUDE THEM i
IN ORDER END

SUGGESTED

Figure 4-1. RTE Library Selection

FORMAT OF PRIVILEGED ROUTINE
NAM xxxxX,6

EXT S$LIBR,S$LIBX

ENTRY NOP Entry points to the routine.
JSB $LIBR (all RTE-III to disable the interrupt
~ystem and memory protect fence.
NQP Denotes privileged format.

EXIT JéB SLIBX Call RTE-II to return to calling
program and enable interrupts and
memory protect fence.

DEF ENTRY Location of return address.

4-28

Re-entrant and privileged routines may be placed in the
resident library during generation by either of the following
methods.

L] If the routine is declared as an external (called) by a
resident (type 1) program, or is called by another
resident library routine, the routine will automatically
be placed in the resident library by the generator.

(] The routine can be changed during the parameter in-
put phase of generation to a type 14 routine (it also
could have been assembled as a type 14).

Note that type 6 routines not put in the resident library’
are changed to utility routines (i.e., type 7).

UTILITY SUBROUTINE STRUCTURE

Utility subroutines are subroutines which cannot be shared
by several programs because of internal design or 1/O opera-
tions. A copy of the utility routine is appended tc every
program that calls for it. The library subroutine FRMTR
(FF .n) or FMTIO (F4D.n) which carries out FORTRAN
[/O operations, and the PAUSE subroutine are examples of
utility routines.

When the RTE-III System is generated, all library sub-
routines not included in the resident library are loaded
immediately following each user program requiring them
during program relocation.

RE—ENTRANT /O

A re-entrant subroutine may do I/O using the standard
EXEC requests. If the buffer is in the temporary data block
(TDB) of either itself or another re-entrant routine that
called it, the calling program is swappable. If the buffer is in
the user area the program is not swappable. (i.e., if the
buffer is not in the TDB or user common area the program
is not swappable).

A subroutine called REIO is furnished to allow the user to
do re-entrant I/O. REIO is a utility type library routine that
has within its structure a re-entrant routine. Therefore, the
routine may not be put in the resident library, it must be
appended to each program that calls it.

The calling sequence for REIO is:

CALL REIOC(ICODE,ICNWD,IBUFR,IBUFL)

where the parameters are described in the READ/WRITE
EXEC call in Section III of this manual. Note that REIO
can only be used with READ/WRITE calls and that the
optional parameters available in those calls are not allowed
in the REIO call. REIO will always do the requested I/O;
however, it will do re-entrant I/O only if the buffer is less
than 130 words (to save system memory), and the buffer
address is at least three words above the current fence
address. If the sign bit is set on ICODE the same error
options available with the EXEC Call are effected (i.e.,
error return followed by normal return). REIO returns the
same values in the A- and B-Registers as the standard EXEC
Call.

OTHER SUBROUTINES

Several other subroutines are provided for programming
convenience. The basic calling sequences are provided here
for reference.

BINRY

FORTRAN programs can call BINRY, the disc read/write
library subroutine, to transfer information to or from the
disc. The call must specify a buffer array, the array length
in words, the disc logical unit number, track number, sector
number, and offset in words within the sector. (If the offset
cquals 0, the transfer begins on the sector boundary; if the
offset equals n, then the transfer skips n words into the
sector before starting.) BINRY has two entry points:
BREAD for read operations and BWRIT for write
operations. ‘

For example,

CALL BWRIT (ARRAY,N,IDISC,ITRK,ISECT,IOFST)
CALL BREAD (ARRAY,N,IDISC,ITRK,ISECT,IOQOFST)

Where:

ARRAY = Address of the first element

N = Number of words

IDISC = Disc logical unit number

ITRK = Starting track number

ISECT = Starting sector number

IOFST = Number of words offset within a sector

RTE Relocatable Library

There are three basic ways that data can be written on the
disc in relation to sector boundaries. Care must be used in
planning the WRITE statement in two of the cases to avoid
losing existing data.

One form of writing data on the disc is offset=n (i.e., trans-
fer begins within a sector), and less than the sector is
written, or the data transfer ends on a sector boundary. The
entire first sector is initially read into an internal buffer, the
data is modified according the BWRIT statement, and then
the entire sector is rewritten on the disc with no data loss.
No special precautions are required in this instance.

A second form of writing data on the disc is offset=0 (i.e.,
transfer begins on a sector boundary), and less than the
sector is written. The remaining data in the sector will be
lost if the following precaution is not taken. The entire
existing sector on the disc can first be read into a user’s
buffer, modified to reflect the desired changes, and then
rewritten on the disc as a full sector.

A third form of writing data on the disc is offset=0 or n,
and a sector boundary is crossed in the data transfer. The
remaining data in the final sector will be lost if the follow-
ing precaution is not taken. The entirc final sector (of the
data transfer) on the disc should be read into a user’s buf-
fer, modified to reflect the desired changes, and then re-
written on the disc as a full sector.

PARSE SUBROUTINE

The following subroutine is used to parse an ASCII string.
The calling subroutine must be privileged when using the
following Assembly Language calling sequence:

buffer address
character count

LDA BUFAD
LDB CCOUN
EXT S$PARS
JSB $PARS
DEF RBUF
-return-

Where RBUF is 33 words long. The result of the parse of
the ASCII string at BUFAD is stored in RBUF using 4
words per parameter and are set as follows:

Word Entry
1 FLAG WORD 0 = NULL
1 = NUMERIC
2 = ASCII

2 VALUE(1) 0 If NULL; Value if Numeric;

ﬁrst 2 characters if ASCII.

4-29

\

(ﬁﬂiﬁfﬁ%RSE'(IBUFl,ICCNT,IBUFz)

RTE-II

3 VALUE(2) 0 If NULL or numeric else
the 3rd and 4th characters.
4 VALUE(3) 0 If NULL or numeric else

the 5th and 6th characters.

ASCII parameters are separated from numeric parameters
by examination of each character. One or more non-digit
characters (except a trailing “B” or leading “—"") makes a
parameter ASCIL.

The 33rd word of RBUF will be set to the number of
parameters in the string.

The Parse routine ignores all blanks and uses commas to
delimit parameters. ASCII parameters are padded to 6 char-
acters with blanks or, if more than 6 characters, the left
most 6 are kept. Numbers may be negative (leading “~”)
and/or octal (trailing “B”).

- -

A FORTRAN callable interface to SPARS is provided with
the calling sequence as follows:

Jp— -

)

T —

e T

IBUF]1 is an array containing the string to be parsed

ICCNT is the character count

IBUF2 is a 33 word array that will contain the result
of the parse.

BINARY TO ASCII CONVERSION SUBROUTINES

The $CVT3 subroutine is used to convert an integer binary
number of ASCII. Note that the calling program must be
privileged when using the following Assembly Language
calling sequence:

LDA numb
CLE or CCE (see text)
EXT $CVT3
JSB $CVT3
-return-
E=1,
A=address of result
B=value at invocation

$CVT3 converts the binary number in the A-Register to
ASCII, suppressing leading zeros, in either OCTAL (E = 0)
or decimal (E = 1). On return, the A-Register contains the
address of a three word array containing the resultant ASCII
string.’

430

$CVT]1 has the same calling sequence as $CVT3 except that
on return, the A-Register contains the least two characters
of the converted number.

A FORTRAN callable interface to $CVT3 is provided with
the calling sequence as follows:

(decimal) CALL CNUMD (binary numb,addr)
(octal) CALL CNUMO (binary numb,addr)

where binary numb is the binary number to be converted
and addr is the address where a three word array (6 ASCII
characters) begins. Leading zeros are suppressed. (For
CNUMD, the number must not be negative.)

The following subroutine converts a variable to ASCII base
10 and returns the least two digits in “I”’. The FORTRAN
calling sequence is:

I=KCVT(J)

MESSAGE PROCESSOR INTERFACE

The message processor processes all system commands. See
Section II. A FORTRAN call to the system message pro-
cessor is provided with the calling sequence as follows:

I = MESSS (IBUFA,ICOUN,LU)

Where IBUFA contains the ASCII command, ICOUN is an
integer containing the character count, and LU is optional.

The value on return will be zero if there is no response or
the negative of the character count, if there is a message.
The message, if any, will be in IBUFA.

If the request is RU or ON (starting in 1st column) and the
first parameter is zero or absent, then the first parameter
will be replaced by LU. LU is optional. If it is not supplied,
no action takes place.

If the request is LU, EQ, or TO (starting in first column),
any resulting message will be written to the device specified
by LU. If LU is not given, the message will be sent to the
system console. No message is returned to the caller for
these commands.

INTERRUPTING LU QUERY

A calling sequence is provided to find the logical unit num-
ber of an interrupting device from the address of word four

of its equipment table entry. The address of word four is
placed in the B-Register by the driver and used in the fol-
lowing sequence:

LDB EQT4 (done by DVROO and DVR65)

Not necessary if address of EQT4 has already been placed
into ‘B’ by driver, or by another program/subroutine.

EXT EQLU
JSB EQLU
DEF *+2 or *+1
DEF LUSDI

EQLU will return with:

A-Register = 0 if an LU referring to the EQT was not
found.
= LU if the LU was found.
B-Register = ASCII “00” or the LU number in ASCII
e.g., “16.”
LUSDI = (optional parameter) value is returned to this

parameter, as well as in the A-Register.

Other variations of the call are (passed from DVROO or
DVR65):

EXT EQLU
JSB EQLU
DEF *+1

STA LU

STB ASCLU
—or—
LU=EQLU (LU)

PARAMETER RETURN SUBROUTINES

There are two routines used to pass parameters to the pro-
gram that scheduled the caller with wait. The scheduling
program may recover these parameters with RMPAR.

The first routine is called PRTN, passes five parameters, and
clears the wait flag. This means that the caller should termi-
nate immediately after the call. The Assembly Language
calling sequence is:

EXT EXEC,PRTN

JSB PRTN

DEF *+2

DEF IPRAM
JSB EXEC

RTE Relocatable Library

DEF *+2
DEF SIX

IPRAM BSS 5 PARAMETER BUFFER
SIX DEC 6 PROGRAM TERMINATION CODE

The FORTRAN calling sequence is:

DIMENSION IPRAM(5)

CALL PRTN (IPRAM)
CALL EXEC (6)

The second routine is called PRTM, passes four parameters,
and does not clear the wait flag. When the parameters are
recovered with RMPAR, the first parameter is meaningless.
The Assembly Language calling sequence is:

EXT PRTM
JSB PRTM
DEF *+2

DEF IPRAM

IPRAM BSS 4

INDIRECT ADDRESS SUBROUTINE

This routine is used to find an indirect address. The Assem-
bly Language calling sequence is:

EXT .DRCT
JSB .DRCT
DEF ADDR

-return-

The routine returns with the A-Register set to the direct
address of ADDR, the B-Register unaitered, and the E-
Register lost. This routine is usually used when ADDR is
external.

BREAK FLAG TEST SUBROUTINE

This routine tests the break flag and if set clears it. The
FORTRAN calling sequence is:

IF (IFBRK(IDMY)) 10,20

4-31

RTE-II

Where:

10 branch will be taken if the break flag is set. The flag will
be cleared.

20 branch will be taken if the break flag is not set.

IDMY must be used in order to inform the FORTRAN
compiler that an external Function is being called. (It is not
needed for ALGOL.)

In the Assembly Language calling sequence:

JSB IFBRK
DEF *+1
-return-

The A-Register will = -1 if the break flagis set and = 0
if not. The break flag will always be cleared if set.

FIRST WORD AVAILABLE MEMORY SUBROUTINE

This routine finds the address of the first word of available
memory for a given ID segment. The Assembly Language
calling sequence is:

EXT COR.A
LDA IDSEG
JSB COR.A

-return-

The ID segment address is loaded into the A-Register and
the routine is called. On return the A-Register contains the
first word of available memory (MEM2 from ID). Note that
on entry into a segment, the A-Register contains the seg-
ments ID segment address.

CURRENT TIME SUBROUTINE

This routine reformats and returns the time in milliseconds,
seconds, minutes, hours, and the day. The FORTRAN call-
ing sequence is:

CALL TMVAL (ITM,ITMAR)

Where:

IT™M is the two word negative time in tens of milli-
seconds. This double word integer can be ob-
tained from the system entry point $TIME or
the time values in the ID segment.

ITMAR is a five word array to receive the time. The

array is set up as:
tens of milliseconds

4-32

seconds

minutes

hours

current system day of year (not related to call
values)

BUFFER CONVERSION SUBROUTINE

This routine converts a buffer of data back into its original
ASCII form. The user passes the routine a buffer (IRBUF),
plus the number of parameters in the buffer, that looks like
the buffer returned by the PARSE routine. INPRS then
reformats the buffer into an ASCII string that is syntacti-
cally equivalent (under the rules of PARSE) to a buffer that
may have been passed to PARSE to form IRBUF. The
length of the ASCII string in characters will be 8 times the
number of parameters. The FORTRAN calling sequence is:

CALL INPRS (IPRBF,IPRPF(33))

Where:
IPRBF is the buffer IRBUF
IPRBF (33) is the number of parameters parsed

RECOVER PARAMETER STRING

The routine GETST recovers the parameter string from a
program’s command string storage area. The parameter
string is defined as all the characters following the second
comma in the command string (third comma if the first
parameter is NO). The Assembly Language calling sequence
is:

EXT GETST

JSB GETST Call subroutine
DEF RTN Return address

DEF IBUFR Buffer Location

DEF IBUFL Buffer length

DEF ILOG Transmission Log
RTN return point Continue execution
IBUFR BSS n Buffer of n words
IBUFL DEC n(or =-2n) Same n; words (+)

or characters (-)

ILOG NOP Error information

Upon return, ILOG contains a positive integer giving the
number of words (or characters) transmitted. The A- and
B-Registers may be modified by GETST. Note that if
RMPAR is used, it must be called before GETST.

When an odd number of characters is specified, an extra
space is transmitted in the right haif of the last word.

Segmented Programs

PART 6
Segmented Programs

Background disc-resident programs may be structured into
a main program and several overlapping segments, as shown
in Figure 4-2. The main program begins from the start of the
background partition (after base page), and must be loaded
during RTGEN or with the loader prior to its segments. The
area for overlay segments starts immediately following the
last location of the main program. The segments reside
permanently on the disc, and are read in by an EXEC call
when needed. Only one segment may reside in core at a
time .

T T
.
Background
Partition SEGMENT
OVERLAY
AREA

MAIN PROGRAM

PARTITION BASE PAGE

PHYSICAL MEMORY

MAIN PROGRAM © SEGMENT 1

SEGMENT 1 MAIN PROGRAM

NOTE: TRACK, SEGMENT,
AND GAP SIZES ARE
EXAGGERATED.

TPRTE-8

DISC MEMORY

Figure 4-2. Segmented Programs

RTE ALGOL SEGMENTATION

ALGOL programs can be segmented if certain conventions
are followed. The main program must be primary type 3,
and the segment must be type 5 in the HPAL statement.
The segment must be initiated using the Program Segment
Load EXEC call from the main or another segment

To establish the proper linkage between a main program
and its segments, each segment must declare the main
program a CODE procedure. For example, if MAIN is the
main program, the following must be declared in each
segment:

PROCEDURE MAIN; CODE;

Chaining of segments is unidirectional. Once a segment is
loaded, exccution transfers to it. The segment, in turn, may
call another segment using an EXEC call, but a segment
written in ALGOL cannot easily return to the main program.

RTE FORTRAN SEGMENTATION

FORTRAN programs can be segmented if certain conven-
tions are followed. The main program must be type primary
3, and the segment must be type 5 in the PROGRAM
statement. The segment must be initiated using the Program
Segment Load EXEC call from the main or another
segment.

Each segment must make a dummy call to the main
program. In this way, the proper linkage is established
between mains and segments:

CALL MAIN
END

Chaining of segments is unidirectional. Once a segment is
loaded, execution transfers to it. The segment, in turn, may
call another segment, but a segment written in FORTRAN
cannot easily return to the main program. Segments can call

4-33

RTE-II

any subroutine attached to the main program. Communica-
tion between the main program and segments may be
through COMMON.

RTE ASSEMBLER SEGMENTATION

The main program must be primary type 3, and the segments
must be type 5. One external reference from each segment
to its main program is required for RTGEN to link the seg-
ments and main programs. Also, each segmented program
should use unique external reference symbols. Otherwise,
RTGEN or the loader may link segments and main programs
incorrectly.

Figure 4-3 shows how an executing main program may call
in any of its segments from the disc, via a “JSB EXEC.”
The main program is not suspended, but control is passed
to the transfer point of the segment.

An executing segment may itself call in another of the main
program’s segments using the same “JSB EXEC” request.

(See Figure 4-4). However, a segment of the FORTRAN or

ALGOL compiler may not call in a segment of the
Assembler,

When a main program and segment are currently residing in
core, they operate as one single program. Jumps from a
segment to a main program (or vice versa) can be
programmed by declaring an external symbol and
referencing it via a JMP instruction. (See Figure 4-5.) A
matching entry symbol must be defined at the destination
in the other program. RTGEN and the loader associate the
main programs and segments, replacing the symbolic
linkage with actual absolute addresses (i.e., a jump into a
segment is executed as a jump to a specific address). The
programmer should be sure that the correct segment is in
core before any JMP instructions are executed.

SEGMENT 2
SEGMENT 1

- NAM SEG1

EXT EXEC
. (SEGMENT OVERLAY
AREA}
BAC
NAM MAIN PROGRAM
EXT EXEC AREA
.
(MAIN PROGRAM
AREA)

SEG2) j
I

{CALL FOR

488 EXEC

MAIN PROGRAM

({4

p
~

)2
[

DISC MEMORY

RESIDENT LIBRARY

REAL-TIME
EXECUTIVE

4

LOGICAL

MEMORY TPRTE-9

Figure 4-3. Main Calling Segment

4.34

SEGMENT 2

MAIN PROGRAM

DISC_MEMORY

{CALL FROM SEG1}

Ay

e

f== NAM SEG2
EXT EXEC

NAM MAIN

{SEGMENT OVERLAY
AREA}

BACKGROUND

EXT EXEC FROGRAM
N AREA
(MAIN PROGRAM
AREA)
S %
A
RESIDENT LIBRARY

{— REAL-TIME

EXECUTIVE
L ~

TPRTE-10
LOGICAL
MEMORY

Figure 4-4. Segment Calling Segment

r' s1

EXT M1
ENT §1

JMP M1

{Segments)

MAIN PROGRAM

MEMORY

e

TPRTE-11

Figure 4-5. Main-to-Segment Jumps

Multiple Terminal Operation

PART 7
Multiple Terminal Operation

Through Class Input/Output, which consists of initiating an
1/O request without wait, the RTE-III System will support
multiple operator consoles. This means that more than one
operator can have access to the system and a single program
simultaneously. To properly understand the capabilities of
multiple terminal operation, one must first understand the
different ways in which a single minicomputer can interact
with more than one terminal.

MULTIPROGRAMMING

Under the scheme of multiprogramming, each terminal has
its own unique and separate copy of a particular program.
This is accomplished by renaming the program with the File
Manager RN command as many times as required. When the
operator at any terminal desires the system’s attention he
simply strikes a key which causes an interrupt. The system
returns the prompt character back to the terminal signaling
the operator that he has the system’s attention. The
operator can then activate his copy of the program until a
resource limitation or higher priority interrupt occurs. For
example, two users would be using the editor and one user
would be using BASIC; the master copy of the editor would
be on the disc, but two copies of the editor would be
swapped in the background area. Most often, the operator
will use the RUn command to cause a program to be
initiated; for example, RU,EDITR. The multiterminal
monitor will then cause the editor program to be executed
using the given terminal as an input/output device. The
given terminal is used because its logical unit number is
placed in the first parameter following the program’s name
since in the above example that parameter was left out. If
the user desires to use another I/O device for input/output
then its logical unit number should be supplied immediately
following the program name. For example, RU,EDITR,14
would schedule the editor program and specify logical unit
14 as the I/O device.

Programs and resources are given priorities according to
their interaction with the system as follows:

Real-Time Programming — Highest

Interactive Programming
Editor
BASIC -
FMGR

Middle

Bit Manipulation
ASMB
LOADR -
FTN

Lowest

MULTITASKING

In multitasking multiple programs exist as in multi-
programming, but the programs must communicate data
and control flags to each other in order to synchronize their
efforts. For example, one program may handle data
gathering while another program would handle queries for
statistical analysis of the data; both programs would be
coordinated by a third program to provide a consistent and
simple interface to the terminal user. These multitasking
functions are performed in RTE-III with the following calls.

Class I/O calls

Schedule with wait

Schedule without wait
Schedule and pass parameters
Allocate resource numbers
Logical unit lock

OPERATION

Multiple terminal operation requires that two routines,
PRMPT and RPNS (HP Part No. 92001-16003) be
configured into the system during generation and that these
routines be assigned a reasonably high priority. The
Interrupt Table is set up so that an interrupt generated by a
terminal schedules the PRMPT routine which in turn
schedules RPN. Then, as soon as any key is struck on the
terminal, PRMPT issues the prompt character back to the
terminal signaling the operator that he has the system’s
attention. Input from the operator is processed by RSPNS.

Any legal operator request is valid for input (e.g., ON, or
ST, etc.): however, if an ONror RU command is given and

4.35

RTE-II

the first parameter is not specified, RSPN$ will defaultthat
parameter to the input terminal’s logical unit number. The

following examples show how the multiple terminal monitor
(MTM) might be used.

Example:

A key on one of the terminals is struck. The terminal
responds as follows:

14>

You desire to run the Interactive Editor EDITR.
14> RU,EDITR

Since there is no parameter (specifically a logical unit
number) following EDITR, MTM takes the logical unit
number of the interrupting device (14 in this example) and
uses it for 1/O. If a logical unit number had been provided
then 1/O would have taken place through that device. In the
above case EDITR would respond with

SOURCE FILE ?

and you would be on your way using the Interactive Editor.

Programs to be scheduled for operation from several
terminals must be swappable. That is, the program must
perform all 1/O through the re-entrant subroutine REIO
instead of EXEC calls or otherwise maintain their
swappability. An additional requirement is that each
terminal must access the program by using a different
Program ID Segment (different program name).

NOTE

Since the Logical Source (LS) and
LG areas may only be used by
one program at a time, it is rec-
ommended that programs such as
ASMB, FTN4, etc. should not

be assigned duplicate ID segments
for multiple terminal operations.

When a program is to be used by several terminals it must
be accessed by a different name in each case. In the above

4-36

example using the Interactive Editor, it can be renamed
several times on-line with the File Manager RN command.
The following series of File Manager commands
demonstrates how this is accomplished.

:PK
:RN,EDITR,EDIT1
:RP,EDIT1
:RN,EDITL,EDIT2
:RP,EDIT2
:RN,EDIT2,EDIT3
:RP,EDIT3
:RN,EDIT3,EDITR

Note that the above commands can be put in a file that will
be run each time the system is booted up. This relieves the
user the responsibility of renaming all programs for MTM
use if the system should go down and have to be rebooted.

The Pack (PK) command in the above example is issued
first to recover disc space. However, if a program file is
assigned to an ID segment, the disc may not be packed (see
the Batch and Spool Manual).

The last rename command restores the file’s original name
for future use. It is recommended that a different number
be assigned to each copy of the program so that the
operator of each terminal may run the program without
confusion as to which one is already being run by another
terminal. Output which has been buffered up for a terminal
may be stopped and completely eliminated by entering the
Flush (FL) command.

SYSTEM CONFIGURATION

The routines PRMPT and RPN are loaded into the
system during the Program Input Phase, and are assigned a
reasonably high priority during the Parameter Input Phase.
When the Interrupt Table is formed, and entry for PRMPT
is made as follows:

select code, PROG, PRMPT
After the RTE-I1l System is initialized and running, each
terminal must be initialized with a control request through

cither a File Manager command or an EXEC request.

:CN, lu,20B —or— CALL EXEC (3,20B)

SECTION V
REAL-TIME INPUT/OUTPUT

In the Real-Time Executive System, centralized control and
logical referencing of I/O operations effect simple, device-
independent programming. Each I/O device is interfaced to
the computer through an I/O controller associated with one
or more I/O channels which are linked by hardware to cor-
responding memory locations for interrupt processing. By
means of several user-defined 1/O tables, self-contained
multi-device drivers, and program EXEC calls, RTE-III
relieves the programmer of most I/O problems.

For further details on the hardware input/output organiza-
tion, consult the appropriate computer manuals.

SOFTWARE I/O STRUCTURE

An Equipment Table records each controller’s I/O
channels, driver, DMA, buffering and time-out specifica-
tions. A Device Reference Table assigns one or more
logical unit numbers to each device and points each device
to the appropriate Equipment Table entry, allowing the
programmer to reference changeable logical units instead
of fixed physical units.

An Interrupt Table directs the system’s action when an
interrupt occurs on any channel; RTE-III can call a driver
(which is responsible for initiating and continuing opera-
tions on all devices’ controllers of an equivalent type),
schedule a specified program, or handle the interrupt itself.

The programmer requests I/O by means of an EXEC call in
which he specifies the logical unit, control information,
buffer location, buffer length, and type of operation. Other
subsystems may require additional parameters.

THE EQUIPMENT TABLE

The Equipment Table (EQT) has an entry for each 1/O
controller recognized by RTE-III (these entries are
established by the user when the system is generated).
These 15-word EQT entries reside in the system, and have
format as shown in Table 5-1.

Table 5-1. Equipment Table Entries

Word Contents

151141312)11109|876|543 (210

p—t

I/O Request List Pointer

Driver “Initiation” Section Address

Driver “Completion” Section Address

D |B [P]S|T]| Unit # Channel #

AV |EQ TYPE CODE STATUS
CONWD (Current I/O Request Word)
Request Buffer Address

Request Buffer Length

Temporary Storage for Optional Parameter*

Q]| | W]

Temporary Storage for Optional Parameter™®

11 Temporary Storage for Driver

12 Temporary Storage for Driver (EQT extension
size)

13 Temporary Storage for Driver (EQT extension
starting address

14 Device Time-Out Reset Value

15 Device Time-Out Clock
*Modified by RTE at each I/O initialization.

Where:

D =1 if DMA required.

B =1 if automatic output buffering used.

P = 1 if driver is to process power fail.

S = 1 if driver is to process time-out.

T = 1 if device timed out (system sets to zero

before each /O request).

5-1

RTE-II

Unit = Last sub-channel addressed.

Channel = [/O select code for the [/O controller (lower
number if a multi-board interface).

AV = /O controller availability indicator:

0 = available for use.

1 = disabled (down).

2 = busy (currently in operation).

3 = waiting for an available DCPC channel.

STATUS = the actual physical status or simulated status
at the end of each operation. For paper tape
devices, two status conditions are simulated:
Bit 5 = 1 means end-of-tape on input, or
tape supply low on output.

EQ = type of devices on this controller. When this
TYPE octal number is linked with “DV” it
CODE identifies the device’s software driver

routine as follows:

00to 07 = paper tape devices (or system control
devices).

00 = teleprinter (or system keyboard control
device).

01 = photoreader.

02 = paper tape punch.

05 sub0 = console (or system Keyboard control device).

05 sub 1 _ mini cartridge.

05 sub2 devices

10to 17 = unit record device.

10 = plotter.

11 = card reader.

12 = line printer.

15 = mark sense card reader.

20to 37 = magnetic tape/mass storage devices.

31 = 7900 moving head disc.

32 = 7905 moving head disc.

40to 77 = instruments.

CONWD = user control word supplied in the I/O EXEC

call (see Section III).
When RTE-III initiates or continues an I/O operation, it
places the addresses of the EQT entry for the device’s

controller into the base page communication area (see
Appendix A) before calling the driver routine.

DEVICE REFERENCE TABLE
Logical unit numbers from decimal 1 to 63 provide logical

addressing of the physical devices defined by the EQT (I/O

5-2

controller) and the subchannels (if applicable) and also
define the physical devices’ (LU) status. These numbers
are maintained in a two word Device Reference Table
(DRT), which is created during system generation, and can
be modified by the LU operator request (see Figure 5-1).

word 1——+

Subchannel No. LU Lock Flag EQT Number
15]1aT13T12]11T10To 8T 7 6 [sTala]2lilo
F Downed 1/0 Request List Pointer

word 2-J

F (up/down flag) = 0 if device is up
1 if device is down

Figure 5-1. Device Reference Table

DRT word one contains the EQT entry number of the
device assigned to the logical unit, and the subchannel
number within the EQT entry. The second DRT word con-
tains the logical unit’s status (up or down) and a pointer to
any downed I/O requests. If the pointer is less than 64, it
is the LU number off of which the downed I/O requests
are queued. If several LU’s point to the same device, the
requests are queued off the lowest LU number (the major
LU). If the pointer is greater than 64, it points to the
device’s downed I/O request list. There are separate tables
for words one and two, with the word two table located in
memory immediately following the word one table. The
starting address and length of the word one table arz
recorded in the base page. The functions of logical units O
through 6 are predefined in the RTE-HI System as:

0 — bit bucket (null device)
1 — system console

2 — system disc

3 — auxiliary disc

4 — standard output unit

5 — standard input unit

6 — standard list unit

Logical units 7 through 63 may be assigned for any func-
tions desired although logical unit 8 is recommended to be
the magnetic tape device. The operator can assign EQT
numbers and subchannel numbers within the EQT entries
to the logical unit numbers when the RTE-III Si/stem is
generated (see Section VI), or after the system is running
(see Section II, LU). The user determines the number of
logical units when the system is generated.

Logical unit numbers are used by executing programs to
specify on which device I/O transfers are to be carried out.
In an I/O EXEC call, the program simply specifies a logical
unit number and does not need to know which actual de-
vice or which I/O controller handles the transfer.

THE INTERRUPT TABLE

The Interrupt Table contains an entry, established at sys-
tem generation time, for each I/O channel in the computer.
If the entry is equal to 0, the channel is undefined in the
system. If an interrupt occurs on one of these channels,
RTE-III prints this message:

ILL INT xx

where xx is the octal I/O channel number. RTE-III then
clears the interrupt flag on the channel and returns to the
point of interruption.

If the contents of the entry are positive, the entry contains
the address of the EQT entry for the I/O controller on the
channel.

The interrupt locations in memory contain a JSB $CIC;
CIC is the Central Interrupt Control routine which ex-
amines the Interrupt Table to decide what action to take.
On a power failure interrupt RTE-III halts unless the power
fail routine is used. If privileged interrupt processing is
included in the system, the privileged channels bypass

$CIC and the interrupt table entirely.

GENERAL OPERATION OF I/O PROCESSOR

STANDARD I/O CALLS

A user program makes an EXEC call to initiate I/O transfers.

If the device’s controller is not buffered, or in the case of
input transfers, the calling user program is suspended until
the transmission is completed. (See Class I/0, Section III
for exceptions). The next lower priority program is
allocated execution time during the suspension of a higher
priority program.

An 1/0 request (i.e., Read, Write, Control) is channeled to
I0C by the executive request processor. After the necessary
legality checks are made, the request is linked into the
request list corresponding to the referenced I/O controller.
The parameters from the request are set in the temporary
storage area of the Equipment Table.

If the device’s controller is available (i.e., no prior requests
were stacked), the “initiation” section of the associated
driver is called. The initiation section initializes the device’s
controller and starts the data transfer or control function.
On return from the initiation section, or if the device’s
controller is busy, or a required DMA channel is not
available, IOC returns to the scheduling module to execute
the next lower priority program.

Real-Time Input/Output

If the device’s controller (EQT) or the device (LU) is down,
the calling program is automatically suspended in the
general wait list (status = 3). While in this list the program
is swappable, and if any LU or EQT is set up the program
is automatically rescheduled. Refer to the ST command in
Section II for more information on the general wait list.

Interrupts from the device’s controller cause the Central
Interrupt Control (CIC) module to call the “completion”
section of the driver. At the end of the operation, the
driver returns to CIC and consequently to IOC. IOC causes
the requesting program to be placed back into the schedule
list and checks for an I/0 stacked request. If there are no
stacked requests, IOC exits to the dispatching module
(DISP); otherwise, the initiation section is called to begin
the next operation before returning,.

POWER FAIL

The system power fail routine, if loaded at generation, will
perform the following steps.

a. When power comes on, it will restart the real-time
clock, set up a time-out entry (TO) back to its EQT,
and then return to the power fail interrupt location.

b. When the EQT entry times-out, the power fail
routine will check EQT word 5 bit 14 and 15 of each
I/O controller. The status of bits 14 and 15 will
indicate whether the I/O controller is “down” or
“busy.” The routine will also check bit 13 of EQT
word 4 (set by driver) which indicates if the driver is
to process the power fail.

c. If the I/O controller was busy when the power
failed and the power fail bit is set when power
resumes, the driver is entered at I.nn and the EQT is
not reset. If the power fail bit is not set, the controller
is set ““down.” The system then sets the controller
“up,” resets the EQT and enters the driver at I.nn.

In other words, if the controller was reading or
writing data when the power failuré occurred and the
driver is designed to handle power fail, when power
resumes the controller driver will do the power fail
recovery. If the controller was busy when power
failure occurred and the controller driver is not
written to handle power failure, the routine attempts
to restart the I/O operation.

d. If the controller or device was down when the
power failed and the power fail bit is set or not set,
when power resumes the system “ups” the device,
resets the EQT and enters the driver at I.nn. In other
words, if the controller or device was down when
power failed, when power resumes the system “ups”

5-3

RTE-II

the controller and device and attempts to start the
operation, if any, in the controller I/O request list.

e. An HP supplied program called AUTOR will be
scheduled. AUTOR will send the time of power fail-
ure to all teletypes on the system (which re-enables
all terminals). AUTOR is written in FORTRAN, with
the source tape supplied so the user can easily modify
the program to suit his individual needs.

DRIVER STRUCTURE AND OPERATION

An T/O driver, operating under control of the Input/Output
Control (RTIOC) and Central Interrupt Control (CIC)
modules of RTE-II, is responsible for all data transfer be-

tween an I/O device and the computer. The device EQT
entry contains the parameters of the transfer, and the base
page communication area contains the number of the allo-

cated DCPC channel, if required. [t should be noted that
RTE-III operation makes it manadatory that a synchronous
device driver use a DCPC or privileged interrupt channel for
data transfer.

Many of the I/O drivers and subroutines are documented in
the RTE Driver and Device Subroutine Library manuals; HP
Part Nos. 92200-93005 and 29100-93007.

An 1/0 driver always has an initiation section and usually a
completion section. If nn is the octal equipment type code
of the device, Ixnn and Cxnn are the entry point names of
the two sections respectively, and DVynn is the driver
name. As shown, the driver name is five characters long
and starts with the characters “DV” and ends with a two-
digit octal number (e.g., DVRO0O0). This name is usually
obtained from the software distribution package. The entry
point names are four characters in length and start with
either “I”” or “C” and usually end with the same two-digit
octal number used in the driver name. However, since the
system generator does not examine the driver’s NAM
record, the driver may in fact be renamed to support more
than one device. The rules for the choice of “x” and “y”
above are as follows:

If ‘Sy” iS nOt 6(R” then 6‘x7’ - ‘,‘y”

If 5‘y57 iS ‘6R$7 t}len 6‘x” - “.7,
Using the above rules, a driver named DVRI16 has entry
points named 1.16 and C.16. A driver named DVPI16 has
entry points [P16 and CP16. This allows one driver to sup-

port more than one device type.

Privileged drivers are in a special class. Refer to the end of
this section for a discussion of privileged drivers.

5.4

INITIATION SECTION

The RTIOC module of RTE-III calls the initiation section
directly when an I/O transfer is initiated. Locations EQT1
through EQT15 of the base page communication area (see
Appendix A) contain the addresses of the appropriate EQT
entry. CHAN in base page contains the number of the DMA
channel assigned to the device’s controller, if needed. This
section is entered by a jump subroutine to the entry point,
[.nn. The A-Register contains the select code (channel
number) of the channel (bits 0 through 5 of EQT entry
word 4). The driver returns to IOC by an indirect jump
through [.an.

Before transferring to I.nn RTE-III places the request
parameters from the user program’s EXEC call into words 6
through 10 of the EQT entry. The subchannel number is
placed into bits 6 through 10 of word 4. Word 6, CONWD,
is modified to contain the request code in bits 0 and 1 in
place of the logical unit. See the EQT entry diagram in
Table 5-1, and Section III, Read/Write Exec Call, for details
of the parameters.

Once initiated, the driver can use words 6 through 13 of the
EQT entry in any way, but words 1 through 4 must not be
altered. The driver updates the status field in word 5, if
appropriate, but the rest of word 5 must not be altered.

FUNCTIONS OF THE INITIATION SECTION - The ini-
tiation section of the driver operates with the interrupt
system disabled (or as if it were disabled, in the case of
privileged interrupt processing; see discussion of special
conditions under “Privileged Interrupt Processing”).

The initiation section of the driver is responsible for these
functions (as flow charted in Figure 5-2).

a. Checks for power fail entry by examining bit 15
(=1) of EQT word 5. This bit is set only on power fail
entry (see “b” in Power Fail).

b. Rejects the request and proceeds to “g” if:

1. The device or controller is inoperable,
2. The request code, or other of the param-
eters, is illegal.

c. Configures all I/O instructions in the driver to
include the select code (and DMA channel) of the
device’s controller.

d. Initializes DMA, if appropriate.

e. Initializes software flags and activates the
device’s controller. All variable information pertinent
to the transmission must be saved in the EQT entry

Real-Time Input/Output

because the driver may be called for another con-

troller before the first operation is complete. DO POWER
L, , FAIL
f. Optionally set the device’s controller time out m RECOVERY

clock (EQT 15).
g. Returns to RTIOC with the A-Register set to
1nf11ca.te initiation or rejection and the cause of the CONEIGURE 1/0
reject: INSTRUCTIONS
FOR DEVICE'S
If A=0, then operation was initiated. CONTROLLER
I[fA=123 then operation rejected because:
1— read or write illegal for device.
2— control request illegal or undefined.
3— fequlpment malfunc.tlon or not re‘ad.y. EQUEST (A)=10R 2, v
If A=4, immediate completion. (Transmission CODE LEGAL REJECT
log should be returned in the B-Register CODES
in this case.)
IfA=5, DMA channel required.
. . DEVICE (A) =3,
DMA INITIALIZATION — A driver can obtain a DCPC & CONTROLLER REJECT
: . OPERABLE &
channel in two ways: READY CODE
a. The channel can be assigned during generation
by entering a “D” in the driver’s Equipment
Table Entry.
INITIALIZE AN
b. The driver can dynamically assign a DCPC chan- OPERATING, RE:S
nel as required. CONDITIONS 10C
FLAGS, ETC.
If a driver requires DMA but does not require or use the
DMA interrupt, the DMA control should be cleared after ¢ ?
DMA initialization. Further special processing is not
required in this case. SET BUFFER
ADDRESS,
LENGTH, MODE,
If a driver requires DMA, and the DMA interrupt, special ETC. FOR
processing must be included in the driver. After disabling TRANSFER
the interrupt system, initiating DMA and clearing control,
the driver sets a software flag to indicate that a DMA chan-
nel is active.
ACTIVATE
The software flag is either the first or second word of the DEVICE'S
interrupt table, depending on which DCPC channel is used. CONTROLLER
The flag is set by making bit 15 equal to 1.
INTBL (1) — channel 1 (location 6) ¢
INTBL (2) — channel 2 (location 7) OPTIONALLY SET
DEVICE'S (A) REGISTER
‘ CONTROLLER |9 =40RO
The address of INTBL is contained in the word INTBA in TIME-OUT CLOCK ()
the base communication area. When bit 15 is set, the rest of (EQT 15)
the word must not be altered. The operation can be per-
IF A =4 SET B = TRANSMISSION LOG -C-2
formed only if DUMMY is non-zero (meaning the system ® RTEC
includes privileged interrupt processing.) Figure 5-2. I/O Driver Initiation Section

5-5

RTE-III

The following code demonstrates these principles:

CLF 0O Disable interrupts.

STC DMA,C Initiate DCPC channel.

CLA Bypass this section if DUM-

CPA DUMMY MY = 0 and special processing
JMP X is not needed (go to X).
CLC DMA
LDB INTBA Clear DMA control. Set B =
LDA CHAN > address of the appropriate en-
CPA = D7 try in the interrupt table.
INB)
LDA B,I Set bit 15 of the entry equal
IOR = B10000O to 1 and return to the inter-
STA B,I rupt table. Enable interrupt
STF 0O system.

X EQU * Continue processing.

There may be times when a driver will only occasionally
need DMA, and thus not want to always tie up a DCPC
channel while it is operating. This may be done in one of
two ways: (Note that in example No. I, the DCPC channel
is always assigned before the driver is entered. In example
No. 2, the DCPC channel is assigned only if the driver
requests it.)

Example 1 — The DMA flag is set at generation time by
entering a “D” in the driver’s equipment table entry. The
driver may return the DCPC channel (before completion if
desired) by clearing the appropriate INTBL word (first or
second word of interrupt table). This may be done as
follows:

LDA DMACH Get current channel
LDB INTBA And INTBL address
SLA If channel 7

INB Step address

CLA Clear the

STA B,I Channel word

Example 2 — The DMA flag is not set at generation time as
above. In this case the driver is entered by RTIOC without
a channel being assigned. The driver must analyze the re-
quest and determine if a channel is required, and if so,
request a channel from RTIOC by returning via I.XX,I with
A = 5, RTIOC will assign a channel and recall the driver.
The recall completely resets EQT words 6 through 10.
Since it is possible for the calling program to be aborted
between the request for DMA and the resulting recall of the
driver, the driver must determine, independently of its past
history, if it has DMA. The following code illustrates these
principles:

5-6

DLD INTBA,I Come here if DMA required.

CPA EQT1 Is channel 6 assigned?
JMP CH6 Yes; go configure.
CPB EQT1 Is channel 7 assigned?
JMP CH7 Yes? go configure.
LDA =B5 No channel so

JMP I.XX,I

Request one from RTIOC

.
.

In this case the driver must also tell RTIOC that it has a
DCPC channel at completion of request. This is done by

setting the sign bit in the A-Register on the completion
return to RTIOC. This bit may be set at all times — even
when the driver does not own a DCPC channel. However, if
set when not required, some extra overhead in RTIOC is
incurred. The sign bit is set in addition to the normal com-
pletion code. The following code illustrates this principle:

LDA COMCD
IOR =B100000
JMP C.XX,T

Get completion code
Set the sign bit
Return to RTIOC

NOTE

If your driver wishes to do a series
of non-DMA operations, but still re-
tain the DCPC channel assignment,
you must clear bit 15 in the first or
second word of the INTBL entry to
prevent the system from restoring
DMA. The correct word must be
determined by the driver and is the
word described in the above para-
graphs. That is;

INTBL (1) — channel 1 (location 6)
INTBL (2) — channel 2 (location 7)

Programming Hint — A driver may use the following code

to determine which DCPC channel it is using at any time:

DLD INTBA,I Get DMA words

RAL,CLE,ERA Clear sign

RBL,CLE,ERB Bits (needed only if driver
sets the sign bit)

CPA EQT1 Channel 6?

JMP CH6 Yes

CPB EQT1 Channel 7?7

JMP CH7 Yes

JMP NODMA No — no DMA assigned

COMPLETION SECTION

RTE-III calls the completion section of the driver whenever
an interrupt is recognized on an I/O controller associated
with the driver. Before calling the driver, CIC sets the EQT
entry addresses in base page, sets the interrupt source code
(select code) in the A-Register, and clears the I/O interface
or DMA flag. The interrupt system is disabled (or appears
to be disabled if privileged interrupt processing is present).
The calling sequence for the completion section is:

Location Action
Set A-Register equal to interrupt source code
® JSB C.nn
(P+1) Completion return from C.nn
(P+2) Continuation or error retry return from C.nn

The return points from C.nn to CIC indicate whether the
transfer is continuing or has been completed (in which cdse,
end-of-operation status is returned also).

The completion section of the driver is flowcharted in
Figure 5-3 and performs the following functions in the
order indicated.

a Checks whether word 1 (controller I/O request
list pointer) of the EQT entry equals zero. If it does,

a spurious interrupt has occurred (i.e., no I/O oper-
ation was in process on the controller). The driver
ignores the interrupt, sets EQT 15 (time-out clock)

to zero to prevent time-out, and makes a continu-
ation return. If not zero, the driver configures all

I/O intructions in the completion section to refer-
ence the interrupting controller, and then proceeds

to “b.”

b. If both DMA and the device controller com-
pletion interrupts are expected and the device
controller interrupt is significant, the DMA

interrupt is ignored by returning to CIC in a
continuation return.

c. Performs the input or output of the next data
item if the device is driven under program control. If
the transfer is not completed, the driver proceeds to
G‘f.”

d. If the driver detects a transmission error, it can
re-initiate the transfer and attempt a retransmission.
A counter for the number of retry attempts can be
kept in the EQT. The return to CIC must be (P+2) as
in “£.”

e. At the end of a successful transfer or after com-
pleting the retry procedure, the following in-
formation must be set before returning to CIC at
(P+1):

Real-Time Input/Output

1. Set the actual or simulated device
controller status, into bits O through 7 of EQT word §.
©2. Set the number of words or characters
(depending on which the user requested) transmitted
into the B-Register,
3. Set the A-Register to indicate successful
or unsuccessful completion and the reason:

A equals O for successful completion.
A does not equal O for unsuccessful:

[

end-of-tape (information).
transmission parity error.
device time-out.

AW =
I

f. Clears the device controller and DMA control, if
end-of-operation, or sets the device controller and DMA
for the next transfer or retry. If not end-of-operation
(i.e., a continuation exit is to be made), the driver can
again optionally set the device controller time-out clock.
Returns to CIC at:

(P+1) — completion with the A and B-Registers set as

in “e”.
(P+2) — continuation; the registers are not significant.

I/O CONTROLLER TIME-OUT

Each I/O controller can have a time-out clock that will
prevent indefinite I/O suspension. Indefinite I/O suspension
can occur when a program initiates I/O, and the device’s
controller fails to return a flag (possible hardware malfunc-
tion or improper program encoding). Without the con-
troller time-out, the program which made the I/0O call
would remain in I/O suspension indefinitely awaiting the
operation-done indication from the device’s controller.
With respect to privileged drivers, the time-out parameter
must be long enough to cover the period from I/O
initiation to transfer completion.

Two words, EQT 14 and EQT 15, of the EQT entry for each
I/O controller function as a controller time-out clock. EQT
15 is the actual working clock, and before each I/O transfer
is initiated, is set to a value m, where m, is a negative num-
ber of 10 ms time intervals. If the controller does not inter-
rupt within the required time interval, it is to be considered
as having “timed out.” The EQT 15 clock word for each
controller can be individually set by two methods.

° The system inserts the contents of EQT 14 into EQT

15 before a driver (initiation or completion section) is
entered. EQT. 14 can be preset to m by entering (T=)

5-7

— device or controller malfunction or not ready.

RTE-I

C.nn

YES
NO

OFF-LINE
TO READY
INTERRUPT

CONFIGURE 1/0
INSTRUCTIONS
FOR DEVICE’S
CONTROLLER

SET EQT15
=0

TRANSFER
BY DMA

DO TIME-

YES
ouT
PROCESSING
NO

DEVICE
CONTROLLER
INTERRUPT
REQUIRED

YES

RETURN
TO
P+2

OPTIONALLY SET
DEVICE’S
CONTRCLLER
TIME-OUT CLOCK
(EQT 15)

TRANSFER NEXT
Dﬁlg/'\TriM; END OF RETRY RE-INITIALIZE
OPERATION REQUI ONDITI
INDEXES: QUIRED CONDITIONS
FLAGS, ETC.
OPTIONALLY SET
DEVICE'S UPDATE
CONTROLLER STATUS IN
TIME-OUT CLOCK EQT (5)
(EQT 15)
RETURN (B) = # (A) = CLEAR RETURN
TO WORDSOR | gl COMPLETION | DEVICE'S
e CHARACTERS peding CONTROLLER o
TRANSFERRED CONTROL
RTE-C-3

5-8

Figure 5-3. I/O Driver Completion Section

m during the EQT entry phase of generation (see Sec-
tion VI), or it can be set or modified on-line with the
TO operator request (see Section II).

° When the driver initiates I/O, and expects to'be
entered due to a subsequent interrupt, the driver can
set the value m into EQT 15 just before it exits. This
value m can be coded permanently into the driver or
else passed to the driver as an I/O call parameter.

NOTE

The system always inserts the con-
tents of EQT14 into EQT15 before
entering a driver except on initia-
tion if EQT15 is not zero, it is not
reset. However, a time-out value in-
serted directly into EQT15 by the
driver overrides any value previously
set by the system (from EQT 14).

DRIVER PROCESSING OF TIME-OUT

A driver indicates to the system that it wants to process
time-out by setting bit 12 in EQT word 4. The system
never clears this bit so it need be set only once. In this
case, when a controller times out, the following actions
take place:
a. Bit 11 in EQT word 4 is set.
b. The driver is entered at C.nn with the A-Regis-
ter set to the select code (from EQT word 4).
¢. The driver must recognize that the entry is for
time-out by examining bit 11 of EQT word 4 and do
whatever is necessary. The driver should then cléar bit
11 in the event it is entered again prior to completion
of the operation so that it knows why it is being
entered on the next call. (RTIOC will clear this bit
prior to entering the driver at L.nn.)
d. The driver may continue or complete the opera-
tion. If it completes the operation it may set the
A-Register to 4 to indicate time-out.
e. If the A-Register is set to 4, RTIOC will issue
the message.

I/OTOL #x E #y S #=z

where x is the LU number, y is the EQT number,
and z is the subchannel. The LU is set down.

SYSTEM PROCESSING OF TIME-OUT

In the case where the driver does not set bit 12 of EQT
word 4, the following actions take place on time-out:

Real-Time Input/Output

a. The calling program is rescheduled, and a zero
transmission log is returned to it.

b. The LU is set to the down status, and bit 15 in
the second word of the device’s LU entry is set to
one. An error message is printed; e.g.,

IJOTOL #x E #y S #z

c. The system issues a CLC to the controller’s
select code(s) through the EQT number located in
the interrupt table.

Due to the system issuing a CLC to the device’s select code,
each controller interface card requires an entry in the inter-
rupt table during generation. If an I/O card did not normally
interrupt, and therefore did not have an entry in the inter-
rupt table, and the controller had timed out, the system
would not be able to issue a CLC to the I/O card.

A time-out value of zero is equivalent to not using the
time-out feature for that particular controller. If a time-out
parameter is not entered, its value remains zero and time-
out is disabled for the controller.

DEVICE CLEAR

If an 1/O suspended program is aborted while waiting for a
controller, the system clears the controller by sending a
clear control request (00) to the driver. If the controller
can be cleared without interrupt (i.e., immediately), the
driver should return with A-Register = 2 or 4. If an inter-
rupt is required, the driver should return with A-Register =
0. In this latter case the system will force a 1-second time-
out for the controller. If the interrupt is not serviced
before this time-out, the system will process it as in step
“c” above. Note that the driver is not allowed to process
this time-out.

DRIVER AUTO UP

A driver has the capability of automatically “uping” itself
through a JMP instruction. For example, if a driver makes
a not ready, parity error, EQT, or time-out return to the
system, and subsequently detects an interrupt (or time-out)
entry which signals that the controller is now ready, it may
“up” itself as follows:

IMP $UPIO
The device’s EQT and any of the EQT’s downed LU’s will

be upped. If any requests are pending the system will call
the driver at Lxx.

5-9

RTE-II

MAPPING SUBROUTINES FOR DRIVERS

There are two routines supplied with the RTE-III System
that may be called by a driver to load the User Map to
describe a certain program. $PVMP may be called by privi-
leged drivers and $XDMP may be called by non-privileged
drivers.

$PVMP SUBROUTINE (PRIVILEGED)

The $PVMP subroutine may be called by a privileged driver
to load the User Map to describe a certain program. This
routine is necessary only if the privileged driver needs to
access a buffer in a user program. This routine is a type 8
module which means it is not re-entrant. A Type 8 module
is loaded with each driver that calls it even though only one
copy of the relocatable is input to RTGEN. Note that this,
routine should be used only by privileged drivers.

The calling sequence is as follows:

EXT $PVMP
Normal privileged entry
Code (save registers,
etc)

SSM DMSST Save DMS status at
interrupt

LDA MAPAD Address of map
storage area

IOR SIGN Set sign bit indicat-
ing store in memory

USA Store user map in
memory

LDA IDADR Get ID segment ad-
dress of program

JSB $PVMP Go set user map

SZA,RSS Check for error return

JMP ERROR

uUlP CONT Enable user map and
continue

CONT
Processing for privi-
leged interrupt
EXIT LDA MAPAD Address of map stor-

age area

USA Restore original map

JRS DMSST RTN Restore DMS status
at interrupt and
continue

5-10

RTN . Restore registers and
memory protect
status then return to
point of interrupt

MAPAD
MAPAD DEF MAP
MAP BSS 32 Map save area
SIGN OoCT 100000
IDADR BSS 1 Storage for ID seg-
) ment address
DMSST BSS 1 Storage for DMS

status at interrupt

SPVMP will check to see if the program is resident in mem-
ory. If it is not, the User Map will not be reloaded and the
A-Register will be zero on return. If the program is resident,
the User Map will be loaded and the A-Register will be non-
zero on return. Note that any privileged driver using this
routine must save the contents of the User Map before call-
ing this routine and must restore the contents before return-
ing to the point of interrupt.

$XDMP SUBROUTINE (NON-PRIVILEGED)

The $XDMP subroutine may be called by a non-privileged
driver to load the User Map to describe a certain program.
Since the system will enter the driver with the map enabled
which describes the buffer of the current I/O call, this
routine is necessary only for those drivers which must access
another buffer which is contained in a user program. Note
that this routine is intended for the use of non-privileged
drivers only and is included as part of the system. The calling
sequence is as follows:

EXT $XDMP
Normal driver proc-
essing

RSA Get DMS status

RAL,RAL Position current
status in upper bits

STA DMSST Save status for later

LDA MAPAD Address of map
storage area

IOR SIGN Set sign bit indicat-
ing store in memory

USA Store user rap in
memory

LDA IDADR Get ID segnent ad-
dress of program

JSB SPVMP Go set user map

SZA,RSS Check for error
return

IMP ERROR

CONT

EXIT

NXT

MAPAD
MAP
SIGN
IDADR

DMSST

ujp

LDA

USA
JRS

DEF
BSS
OCT
BSS

BSS

CONT

MAPAD

DMSST

MAP
32
100000
1

Enable user map and
continue

Process buffer under
User Map

Address of map
storage area

Restore original map
NXT Restore earlier
DMS status and
continue

Proceed with normal
processing

Map storage area

Storage for ID seg-
ment address
Storage for DMS
status

Real-Time Input/Output

The routine will check to see if the program is resident in
memory. If it is not, the User Map will not be reloaded, and
the A-Register will be zero on return. If the program is
resident, the User Map will be reloaded and the A-Register
will be non-zero on return.

Note that any driver using this routine must save the con-
tents of the User Map before calling this routine and must
restore the contents before exiting.

It is recommended that privileged drivers be designed for
user communication through common or subsystem global.
If this is done, the driver does not have the overhead of
map switching; it simply saves and restores the state of the
machine (including DMS status).

SAMPLE I/0 DRIVER

The sample driver in Figure 5-4 demonstrates the principles
involved in writing an 1/O driver for the RTE-III System.
Note that this driver is for tutorial purposes only and not one
of the drivers supplied with the system.

5-11

RTE-II

5-12

Fhuk

Ay

Av ' 3

ACNd
[L]
A0d6

QAT
Aehidn
QAR
A1 Ex
Bellx
(A28 WX]
NA13»
214w
Ahldw
W16

A miy ax Wl FXREC DRIVEY <7(8> G,P.K, (ULUTPUT)

ASMY , K, L
GIAANA NAM DVYRZ¢

ENT 1,70,C,70

DRIVER 72 DPE=ATES UNDER THE CONTKOL UF THE
L7 CUNTROL MODULE OF THE wEA_L-TIME EXELUTIVE.,
THIS NRIVeR T5 RESPONSIGLE FON CONTWROLLING
CUTRUT TRANSMISSION TQO A 16 BIT EXTERNAL
DeviCe. «72> IS THE EWUIPMENT TYPL COUE ASSIGNED
GENERALLY TO THESE UEVICFS., 1,70 15 THE
ENTRY PGINT FOGR THE «INITIATIUN® SELTIUN AND C,70
IS THE xCOMPLETION® SECTIOUON ENTRY,

Figure 5-4. Sample I/O Driver

* %

1117 =
v 18w
WAL O %
Al 20*
N2l x
Bre2x
AR 23 %
Nnldx
WRe2ohx
NP26x
AR %
A28
A2G*
LS *
A3l
N3«
[EEIRY
P34
WAID %
Nvd6*
AQ37 »
ndadw
QI
Prndaw
A041 %
DA42*
Vnddx
Anddw
A4S %
WNaLB*
PNAT
A48 *
Q49w
2030w
AR5«
VuH2x
LRI
NAH 4w
QuhHo+
RABO6 %
Weoz»

FAGE

Ny HB A
S Dy X
Anby =
Wb x
Vi H2 K
Puebdx
dvibax
A boHw

Real-Time Input/Output

THE INITTATIU~N SELTION 18 CALLEU FRUM I/0
CONTPUL TG INLTIAULIZE A DEVICE AND INITIATE
AN DUTPUT OPERATIOCN,

1/0 CONTROL SETS THE ADDRESS OF EACH nORD (UF THE

15 W0RND kg7 ENTRY (FUOK THE DEVICE) IN ThE SYSTEM
COMMUNTCATIONS AREA FUR BOTH INITIATOR AND CONTINUATOR
SECTINNS. THE UKWLIVER REFERENCES 10 THE EWT AKE:

wEQTY THRU EDT19=-

CapL ING StuEMCE:
(A) = SELECT Cubt OF THE T/0 DEVICE.

P Jsp 1,70
P+l ~RETURN=

() @, UPERATION INITIATEL
(A) = REJECT COOE

te ILLEGAL REQUEST
2., ILLEGAL MODE

~THE COMPLETION SECTION IS CALLED BY CENTKAL

INTERRUPT CONTROL T CONTINUE OR COMPLETE
AN OPERATION,

CALLING SERUENCES
(A) = SELFCT CODE OF THE 1,0 DEVICE,

P JSsE C,7¢
Pel =COMPLETION RETURN=
P+2 CONTINUATION RETURNe

(A) = @, SUCLESSFUL COMPLETIUN WITH
(B) = & (UF WORDS TRANSMITTED,

(A) = 2, TRANSMISSION ERROR DETECTED
(8), SAME AS FOR (A)=0

CANS 8l xx] EXEC DRIVER <7P> G ,F Kk, (OGUTPUT) #*x

e UGNVINUATTION RETURNS REGISTERS
MEANINGLESYS

=k CORD FORMAT =

THLIS DRIVEr PROVIDES A 16 BIT HINAKY
WURD TRANSFER ONLY,

Figure 5-4. Sample 1/O Driver (continued)

RTE-III

PAGE

0067w
PN68«
AN69
70
0a71
AA72x
PO73
2n74
Q075
Vo776
AR77
wa78
we79
208w
Q8L »
AL82x
AN8s
an84
e85
NNB86w
PAB7 x
2n38
An89
A690
A9t
nrn9e
Qw93
av9a
angsd
NAgb
27
P98 w
NC.99 %
Qio@ex
101
A1n2
2103
2104«
2105
niee
A1B7x

5-14

aa04a #d\

xxn INITIATION SECTION wwx

ngany
aeaey

onnn2
[d'd 1R

pnana
nARAS
27006
nnaaz

e0aenpn
016071k

161665
#12175R

P52106R
126000R
0521a7R
P26012RK

1,790 NOP
JsB

LDA
AND

CPA
JMP
cPa
JMP

SETIO

EQT6,1
83

sB1
1,70,1
282
D.X1

< DRIVER 70 =INITIATION® SECTION >

ENTRY FROM IOC
SET I/0 INSTRUCTIONS FOR DEVICE

GET CONTROL WORD OF REQUEST,
IS0LATE,

IF REQUEST 1S FOR INPUT
THEN REJECT,

PROCESS FOR WRITE REQUEST
GO TO WRITE REGUEST

REQUEST ERROR= CAUSE REJECTY RETURN TO 1/0 CONTROL,

anntie
Apaty

WRITE

PAgl2
. BN
rnRt14
Qor1s
nepte
aantL7z
waezy
20021
wern2e
pre2d

R62107R
126@04R

REQUEST PROCESSING

161666
171676
161667
¥n3on4d
17167
en20em2
R26024R
no211@R
nubdaQ
12600RR

LDA
JMP

D.x1 LDA

STA
LDA

CMA,
STA EQTLR,!

SZA
JMP
LDA
cLe
JMP

zR2
I.7@,1

EQT7,1
EQTY,I
EQTH,I
INA

D.x3
28B4

I1,70,1

SET A=z2 FOR ILLEGAL CONTRL REG,
wEXIT.

GET REQUEST BUFFER ADDRESS
AND SET AS CURRENT ADDKESS
GET BUFFER LENGTH
SET NEGATIVE AND SAVE
AS CURKENY BUFFER LENGTH,
CHECK LENGTH
NONeZERD
IMMEDIATE COMPLETION
SET TLOG IN B=REG
IF 2ERO

CALL COMPLETION SECTION TUu wRITE FIRST WOKD,

Apn24
nenes
neaze

nnena7
neR30N

@H21WAR D, X3 LDA

W72031R
A26RA30OR

Bv24ney
1260n0R

STA
JMp

IEXIT CLA
JMP

P2
C.70
N,x2

I.70,1

ADJUST RETURN
TO INITIATOR SECTION,
GO TO COMPLETION SECTION

RETURN TO I/0 CONTROL WITH
OPERATION INITIATED,

Figure 5-4. Sample 1/O Driver (continued)

PAGE

D109
Q110w
Aligw
0112
f113
2114
8115
2116
D117 %
118
a119
n120
B AR
A122
123
A124
n128
A126
A127»
128w
2129
2130
n131
w132
D133
2134
V133
Q136w

wund By < DRIVER

xxx COMPLETION

nynal
nemae
?eRdd
ANA34
20035

AnR3e6
wnna?
nAn4e

aegaal
nendaz
a4l
Q1R 44
pp24d

NAR46
Anuaz
aeadn
AANS

anas2
Aada

nannee C,7v
165660
a06003
N26B51R
n16R7 1R

Bdrn24on D,Xx2
1516714
P26n54R

16567n
135670
160am1
135671
QARG

1na26an
183700
ar2e2l
175774 SPUKI]

—t -
- *
N -

B3IBAILR
126031R

Real-Time Input/Output

70 wCOMPLETION SECTIONx »

SECTION wwx

NOP
L0OB

58,

JMP
JSB

CLA
CPA
JMP

LOB
182
LDA
182
NODP

0TA
STC
RSS
5TB

152
JMP

EQT1, 1
RSS

SPURI
SETIO

EwT10,1
1.3

EQTY, I
E4T9,I
B,1

EQT1Q,1

4]
9,C

EQT15,1

C.70
C.70,1

ENTRY
SPURIOUS
INTERRULPT?
YES = IGNORE
SET 1+/0 INSTRUCTIONS FOR DEVICE

IF CURKRENT BUFFER LENGTH 3 @,
THEN,GO TO
STATUS SECTION,

GET CURRENT BUFFER ADDRESS
ADD 1 FGR NEXT WORD

GET WORD

AND INDEX WURD COUNT
IGNORE P+1 IF LAST WORD,

OUTPUT WORD TO INTERFACE
TURN CEVICE ON
ZERU TIME=OUT CLOCK WORD

ADJUST RETURN YO P+2
~EXITm

Figure 5-4. Sample 1/O Driver (continued)

5-15

RTE-III

5-16

PAGE

1136
V139w
W14Px
141
D142
143
A144
a14d
2140
N147
N148x
V149
4150
151
Q152w
@153
Ad154n
@155
A156x
n157
D158
2159%
AL6ax*
2161«
A16e
A163
A164
A165x%
3166
2167
A168x%
A169
wi7a
Q174w
@172
2173
2174«
ai175
Ai706x

wepe nmay < DRIVEW 74 «COMPLETTIUN

STATUS AND COMPLETIUON SECTION,

pomo4
ARash
AAADE
naas?
Pnn6e
nYa6t
wovez

7R
ANN64
neuBes
ArAa6s6
AANE7

anaza

SUBROUTINE <SETIO>» CONFIGURES 1/0

nan7y
©weare
goazy

nav74
A@a75

enazé
w77

na1on
na1ot

ar1n2

fu25en
12111R
B/ aent
161664
121128
23avnt
171664

Av240np
AO6110R
AB2107R
165667
1v67un8

126031R

aneone
N321M3R
n72054R

242113R
d72¢46R

d42114R
n72047R

A32110R
A72067R

12607 1R

I,3 LIA
AND
STA
LDA
AND
10R
STA

CLA
cCrs
LDA
LDB
I,4 CLC

JMP

SETIO NOP
1GR
STA

ADA
STA

ADA
STA

10R
STA

JMP

]

aB77

B

EQTH,]
28177400
8

EQYy, 1

tfid
382
EQTH,]
']

Ca70,1

LIA
1.3

aBl1od
1,1

e8110¢
I.,2

=B4anny
I,a

SETIO,!

SECTIUONX >

GET STATUS WORD

STRIP OFF BITS

AND SAVE IN B
REMOVE PREVIOUS

STATUS BITS

SET NEW

STATUS BITS

SET NORMAL RETURN COND
ERROR STATUS BIT ON?
YES, SET ERROR RETURN
SEY (B) = TRANSMISSION | OG
CLEAR DEVICE

=EXIT FUR CUMPLETION
INSTRUCTIONS,

COMBINE LIA WITH I/0

SELECT COUDE AND SET,
CONSTRUCT OTA INSTRUCTION
CONSTRULT STC,C INSTRUCTION

CONSTRUCT CLC INSTRUCTION

~RETURN=

Figure 5-4. Sample I/O Driver (continued)

PRIVILEGED INTERRUPT PROCESSING

When a special 1/O interface card is included in the system,
RTE-I1I allows a class of privileged interrupts to be processed
independently of regular RTE-III operation, with a minimal
delay in responding to interrupts. The presence and location
of the special I/O card is selected at system generation time.
Its actual hardware location is stored in the word DUMMY
in base page (or if not available, zero). See the generation
section for the exact specification procedure.

The special 1/O card physically separates the privileged
interrupts from the regular system-controlled interrupts.
When an interrupt occurs the card has its flag set which
enables the card to hold off non-privileged, lower priority
interrupts. This means that the system does not operate
with the interrupt system disabled, but in a hold-off state.
Furthermore, the privileged interrupts are always enabled
when RTE-III is running, and can interrupt any process
taking place.

The privileged interrupts are processed in two ways:

a. Through a privileged driver which has in general
the structure of a standard 1/O driver plus a special
privileged interrupt processor routine.

b. Through a special routine located (embedded)
in the system area.

If a privileged driver is used, the calling program can make a
standard 1/O call to the privileged device. The calling program
will be suspended for the time it takes to do the transfer,
after which it will be rescheduled. To the calling program,
there is no difference between a privileged type device I/O
call and a non-privileged (standard) type device 1/O call. If
the privileged driver is assigned a time-out parameter, the
parameter must be long enough to cover the period from

[/O initiation to transfer completion.

If a special routine is used, a jump subroutine indirect (JSB
xxx,]) instruction in the interrupt location (set by using
“ENT,name” when configuring the interrupt table) channels
the special interrupt directly to the entry point of its associ-
ated special routine. CIC and the rest of the system are not
aware of these interrupts but CPU time is lost because of
them. For this reason the special routine must functionally
be completely independent of the system (i.e., the routine
can not use any of the system functions). CIC sets a software
flag (MPTFL) in base page indicating the current status of
the memory protect fence.

If MPTFL equals zero, memory protect was “ON’" at the
time of interrupt. Any special interrupt routine must restore

Real-Time Input/Output

the status of memory protect and the dynamic mapping
system as described below before returning to the point of
interruption by a JMP xxx,I instruction.

IF MPTFL equals one, RTE-I1I itself was executing when
the privileged interrupt occurred, and memory protect was
“OFF”. The special routine must not restore memory pro-
tect in this case.

MEMORY ACCESS BY PRIVILEGED INTERRUPT

A privileged interrupt routine, whether embedded directly
within the system or within a privileged driver, must save
and restore all registers which are used (including index
registers), restore memory protect to its original state (word
MPTFL contains this status), and restore the status of the
Dynamic Mapping System. If the privileged driver wants to
access a buffer within a disc resident program, the User
Map will have to be saved and restored. In addition, it will
have to be loaded to describe the correct partition. How-
ever, if the driver limits its access to a buffer in either com-
mon or the subsystem global area, the driver may access
that buffer while in the System Map if the generation
option to include common and SSGA in the System Map
was exercised. That is, if the program the driver is servicing
puts a buffer in the common area, then the driver can
access that data through the System Map which is enabled
by the interrupt. Note that no standard HP software uses
common,; it is reserved for the user.

SPECIAL PROCESSING BY CIC

The Central Interrupt Control (CIC) module is entered on
all normal (non-privileged) interrupts. CIC disables the
entire interrupt system (including privileged), saves registers,
issues a clear flag instruction (CLF) to the interrupt location,
sets the memory protect “OFF” (MPTFL=1), and checks
the DUMMY word. If the DUMMY word is zero, the hard-
ware interrupt system is left disabled and normal processing
continues. If non-zero, a set control instruction (STC) is
issued to the 1/O location specified (this assumes that the
flag on the special 1/O card is set). The STC holds off lower
priority interrupts until the control flip-flop is cleared on
the special card.

If DUMMY is non-zero, CIC also clears the control flip-flop
on each DCPC channel to defer DMA completion interrupts,
and enables the interrupt system (a NOP in the interrupt
location for the special card causes its interrupts to be
ignored). The DMA transfer itself is not affected, only the
completion interrupt.

5-17

RTE-III

Interrupt processing continues and control is passed to a
driver, timer routine, scheduler, or other appropriate execu-
tive module. Privileged interrupts can occur during this
processing. RTE-I1I returns to user program processing
through the interrupt return module, $IRT.

S$IRT briefly disables the entire interrupt system. Each
active DCPC channel is reset (STC) to allow it to interrupt.
User register values are restored, and the memory protect
system is inactivated. The User Map is enabled and control
is transferred to the user program with the interrupt
system on.

PRIVILEGED INTERRUPT ROUTINES

A privileged interrupt routine, whether embedded directly
within the system or within a privileged driver, must save
and restore all registers which are used (including index
registers), restore memory protect to its original state, and
restore the status of the Dynamic Mapping System. The
privileged interrupt routine must not use any features or
requests of RTE-III, or either DCPC channel. It can com-
municate with normal user programs by use of the appro-
priate common region. Flags, parameters, control words,
etc., can be set and monitored by either routine in the pre-
defined locations in common. The starting address of the
common region is available in base page. (See Appendix A.)
A normal user program could, for example, be scheduled to
run at periodic time intervals to scan and set indicators in
common, and fill or empty buffers in that area.

SAMPLE PRIVILEGED DRIVER

The following discussion describes a sample privileged driver

(see Figute 5-5), generalized to DVRXX, which is controlling

a device operating in the privileged mode. The user buffer
is in common.

The device transfers one word of data each time it interrupts,

and the data is stored into the buffer passed to the driver via
the call parameters. Also passed to the driver is the number
of data words to be input from the privileged device, this
being the length of the data buffer.

The concepts behind such a driver are as follows:

° It is called by a standard EXEC 1/O call.
L The calling program is placed into I/O suspension.

. The device controller’s trap cell is changed from
“JSB CIC” to “JSB P.XX” where P.XX is the entry
point to the privileged routine within the driver.

5-18

] Therefore, each time the device’s controller inter-
rupts, the RTIOC overhead is circumvented because
the privileged routine is entered directly.

. After each interrupt, if another data point is still
required to satisfy the buffer length, the device’s
controller is again encoded to subsequently inter-
rupt, and the privileged routine is exited.

° When the entire data buffer has been filled, the driver
needs a way to communicate to the Executive that
the transfer is complete. This is accomplished by
allowing the driver to time-out. The time-out causes
RTIOC to re-enter the driver at C.XX.

. C.XX returns the transmission log, via the B-Register,
and a successful completion indication, via the
A-Register, to RTIOC.

e RTIOC then reschedules the program which called
the driver through its normal 1/0 completion machin-

ery.

A standard RTE-III driver uses the EQT for all its tempor-
ary storage so that the same driver can be driving more
than one device controller simultaneously. A privileged
driver, however, cannot do this because it can never know
the state of pointers to the EQT while it is running since
it is running independently of the Executive. The
privileged driver keeps its temporary storage internally,
and therefore can control only one device controller. For
each device controller the driver will control, the driver
must be reassembled with all names DVRXX and $JPXX
(for this example) changed to another number. Then one
driver per device controller must be loaded into the

~ system at generation time.

INITIATION SECTION, I.XX. Refer to the partial listing
of the sample privileged driver in Figure 5-5. A standard
1/O call to input from the device controller causes the
calling program to be 1/O suspended and the driver to be
entered at [.XX. The request code is checked for validity.

Because this driver can control just one device controller
(unlike standard drivers), there is no need to configure it
more than once. Therefore, the first time the driver is
entered, it is configured and the switch at “FIRST” is
cleared so that on all subsequent entries the configuration
code is not executed.

The modification of the device controller trap cell is per-
formed just once, after the configuring routine, and is not
modified again on all later entries into the initiator. The
trap cell is altered so that the device controller interrupts
will be channeled to the P.XX subroutine instead of to
RTIOC. The “JSB P.XX” instruction and its associated
base page link are established via the small program
“$IPXX” (see listing).

A counter, which is incremepted in routine P.XX, is estab-
lished for the number of readings to be taken; the buffer
address for the storage of the data is saved, and the device
controller is set up to initiate a reading and is encoded. The
initiator then exits.

PRIVILEGED SECTION, P.XX. When the device con-
troller interrupts, P.XX is entered as a result of the
controller’s trap cell modification. The system Map will
be enabled by the interrupt.

Because entry is made directly into P.XX the routine must
do the housekeeping which RTIOC does when entered from
an interrupt. Before P.XX can turn the interrupt system
back on for higher priority interrupts, it must ensure that
the DMA channels cannot interrupt, save the old memory
protect status, and set its new status. It must also save the
dynamic mapping system status at the time of interrupt. '

P.XX then loads and stores the data in the next unfilled
buffer word. If there is yet another data point to be taken,
P.XX sets up the device controller for the next reading,
disables the interrupt system, encodes the device controller,
restores memory protect status and its flag, turns the inter-
rupt system back on, and exits. This basically resets the
system to its state before P.XX was entered.

When the last reading is taken, P.XX disables the interrupt
system, turns off the device controller, and sets up the
driver for an immediate time-out. Before P.XX exits, it
restores memory protect status and its flags, turns the
interrupt system back on and restores the dynamic
mapping system status.

COMPLETION SECTION, C.XX. The status of the device
controller and the driver is now unchanged until the TBG
interrupts. The TBG interrupt will cause a time-out (this is.
because - 1 is set in EQT word 15), which will cause RTIOC
to pass control to C.XX which returns a transmission log
and a normal completion indication to RTIOC.

RTIOC then goes to its I/O completion section which

reschedules the calling program and processes the controller .

request list as if it were a standard (non-privileged)
controller.

ACCESS TO BUFFER IN USER AREA

If the sample privileged driver described above were written
to access a buffer within the user program area instead of
common, the following changes would be necessary: (The
caution note on the sample also applies here, since informa-
tion is stored in the driver).

Real-Time Input/Output

1. L[XX — The ID segment address of the calling program
would have to be saved. This would be done as follows:

I.XX STA SCODE Save select code
LDA 1717B Get ID Segment

address

STA IDADR Save it

2. P.XX — In addition to saving and restoring the DMS
status, the User Map would have to be saved, reloaded
to describe the user, and restored on exit. This would
be done as follows:

P.XX
P.XI SSM DMSTS Save DMS status
LDA MAPAD Get address of map
storage area
IOR SIGN Set sign bit indicating
store to memory
(37uSEC) USA Save user map
LDA IDADR Get ID segment ad-
dress
(100uSEC) JSB $PVMP* Call routine to set
map
[OR)4 CONT Enable user map and
jump to CONT
CONT LDA MPTFL
EXIT! LDA MAPAD Get address of map
storage area
USA Restore user map
LDA EOSV

MPADR DEF MAP Address of save

Map area
IDADR BSS 1 Save ID segment
address
MAP BSS 32 Save map area
DMSST BSS 1 Save DMS status
SIGN OCT 100000 Sign Bit

The subroutine $PVMP is a Type 8 subroutine and is loaded
with each driver that accesses it. It is not re-entrant.

The times given in the example are approximate.

5-19

RTE-1I

Tap0an4 16 ON CRAQAQ2 USING GQ@23 BLKS RND20Y

»

"
* DRIVER WITH PRIVILEGED INTERRUPT
*
*
NAM DVRXX
ENT T XX P XX,0qXX
EXT 8JPXX
*
"
"
CALLING SEQUENCE}
J8B EXEC CALL EXEC
DEF we5§ RETURN POQINT
DEF RCODE REQUEST CODE
DEF CONWD CONTROL WORD
DEF BUFFR ADDRESS OF BUFFER
DEF LENTH LENGTH OF BUFFER

CAUTIONY THIS DRIVER WILL NOT WORK WITH MORE THAN
ONE SUBSYSTEM, IF MQORE THAN ONE SUBSYSTEM
EXISTS IN A SYSTEM, BOTH DVRXX AND $JPXX MUST
BE REwASSEMBLED WITH ALL THE NAMES CONTAINING
'XX! CHANGED TO SOME OTHER NUMBER, THEN ONE
DRIVER PER SUBSYSTEM MUST BE PUT INTO THE SYSTEM
AT GENERATION TIME,

INITIATION SECTION

% R E R & XXX FEREER RSN

o XX NOP

§STA SCODE SAVE SELECT CODE
LDA EQTE,1] REQUEST CODE Tp A
AND M77
CPA =81 READ REQUEST?
JMP %3 YES

REJCT CLA,INA NO = ERROR
JMP T,.XX,1 REJECT RETURN

FIRST RSS CONFIGURE FIRSTY
JMP INIT TIME QONLY

®
LDA SCODE
I0R L1IaA CONFIGURE
STA 10¢ IO INSTRUCTIONS
]
L]
LDA $JPXX SET TRAP CELL TO
STA SCODE,!I JSB P XX
LDA EQT4,! CLEAR EQTA4 BIYY2
I0R BIT12 TO ALLOW NORMAL
XOR BIT12 TIME QUT,
STA EQT4,])
LDA EQTIS SAVE EQT15
STA EQYS AND EQT4 ADDRESSES

Figure 5-5. Sample Privileged I/O Driver

5-20

INIT

104

READ

T ® & %

. XX

P.X1
CONT

104
ExIT

LDA EQTA
$TA EQ4
CLA

STA FIRST

LDA EQT8,I
CMA, INA
§TA CVCTR
8SA,R88
JMP REJCT
DA EQT7,1
STA DAPTR
JSB READ
§TC 10,C
JMP T.xX, 1

NOP

SMP READ, I

NOP

CLF ©

c.L.C 6

cLC 7

STA ASY
$TB BSYV
ERA,ALS
s0C

INA

8TA EOSV
$TX X8V
STY Y8y
S3M DMSTS
LDA MPTFL
STA MPFSYV
CLA,INA
STA MPTFL
STF @

STA DAPTR,1

182 CVCTR
RSS

JMP DONE

I18Z DAPTR
J88B READ

CLF 0

§TC 10,C

LL.DA MPFSV
SZA

JMP EXITH
L.DB INTBA

FOR LATER,

SET SO AS NOT TO
CONFIGURE AGAIN

NUMBER OF CONVERSIONS TO A

NEGATE FOR

CONVERSION COUNTER

REJECT IF

NUMBER <=2

SAVE DATA BUFFER
ADDRESS FOR P,XX
START A READING

ENCODE
RETURN

ROUTINE CONTAINING

DEVICE

CONFIGURED IO
INSTRUCTIONS TO

SET UP THE DEVICE
TO INITIATE ONE READING

TURN OFF INTERRUPTS

PRIVILEGED INTERRUPT ROUTINE

TURN OFF
DMA INTERRUPTS

L]
A
v
E

REGISTERS
SAVE INDEX
REGISTERS

SAVE DMS STATUS
SAVE MEMORY
PROTECT FLAG
TURN OFF MEMORY
PROTECT FLAG

TURN ON INTERRUPTS

LOAD IN DATA
FROM DEVICE

VIA I0 INSTRUCTIONS

STORE IN DATA BUFFER

LAST CONVERSIQN

NOD
YES
SET UP

FOR

NEXT CONVERSION

TURN OFF INTERRUPTS

ENCODE

DEVICE

WAS MEMORY
PROTECT ON?
NO, FORGET DMA'S

TURN

Figure 5-5. Sample Privileged I/O Driver (continued)

Real-Time Input/Output

5-21

RTE-HI

5-22

LDA
SSA
STC
INB
LDA
$SA
STC
EXIT1 LDA
CLo

SLA,

STF
LDB
LOX
LDY
LDA
STA
S$ZA
JMP
JRS
EX1 LDA
STF
STC
JMP

EXIT2 L. DA
STF
JRS

DONE CLF
107 CLC
CCa
§TA
LDA
I0R
STA
JMP

T % % % »

«XX NOP
CLA
LOB
JMP

» ¥ ¥ ¥

*
SCODE oCT
CVCTR OCY

L}
LIA LIA
M77 acr
DAPTR DEF

8,1
6
B,1

7
EQOSV

ELA

1

BSY
X8v
Y8y
MPF SV
MPTFL

EXIT2
DMSTS EX1
ASV

)

5

P.XX, I

ASY
e

DMA'S
BACK
ON
IF
THEY
WERE
ON
RESTORE
E AND
0
FLAGS
RESTORE B
RESTORE INDEX
REGISTERS
RESTORE MEMORY PROTECT
FLAG IN SYSTEM
MEMORY PROTECT ON?
NOD

YES, RESTORE A
TURN ON INTERRUPTS
SET MEMORY PROTECTY

RESTORE DMS
STATUS AND
RETURN

RESTORE &
TURN ON INTERRUPTS

DMSTS P, XX,! RESTORE DMS

0
10

EQ15,1
EQ4,1
BIT1C
EQa,!
EXIT

EQT8,1
CaXX,1

@
9

2
77
(4

STATUS AND
RETURN

TURN OFF INTERRUPTS
TURN OFF DEVICE
SET TIME OUT FOR
ONE TICK AND SET
BIT12 IN EQT4 SO
RTIOC WILL CALL
C.XX ON TIME oOuT,
GO0 YO EXIT

COMPLETION SECTION

SET UP FOR NORMAL RETURN
TRANSMISSION LOG TO B
RETURN

CONSTANTS AND TEMPORARIES

Figure 5-5. Sample Privileged I/O Driver (continued)

ASY ocT @
BSY ocT @
EOSv O0CT 0@
MPFSY QCY @
EQ4 NQOP
EQLS NOP
BITi2 OCT 10020
L
w
* SYSTEM
w
. EQU 16508
INTBA EQU ,#»4
EQT4 EQU .+*11}
EQT6 EQU ,+13
EQY? EQU ,+14
EQT8 EQU ,+15
EQT15 EQU 17748
X A EQU ,+49
X8 EQU ,+504
XED EQU ++51
MPYFL EQU ,+80
A EQU @
B EQU

END
J1imMa3d
APnY ASMB,K,L,bB
nan2 NAM
R ENT
"Rn4 EXT
A0S BJPXX Jab
20006 END

T=unnndg IS ON CRAMIAS USING

COMMUNICATION AREA

$JPXX
$JFXX
PLYX
P, XX

Figure 5-5. Sample Privileged I/O Driver (continued)

2AnnyY BLKS R=oawnip

Real-Time Input/Output

5-23

SECTION VI
RTE SYSTEM INSTALLATION

The RTE-III system is initially configured with the system
off-line generation program RTGEN. For instructions on
using the RTE On-Line Generator see RTE-II/III On-Line
Generator Reference Manual (92060-90016). Configuration
is accomplished by the user entering answers in response to.
questions from RTGEN. This section describes the steps
necessary to produce such answers.

To facilitate system generation, this section has been divided
into three parts.

® Part 1 — Planning. This part contains directions for
planning or laying out an RTE-III System. The overall
structure of the system, including I/O and memory
configuration, is planned with the aid of worksheets.
It is imperative that the user be familiar with Section I
of this manual before planning the system.

® Part 2 — Procedure. This part converts the plans from
Part 1 into a procedure used to prepare generator res-
ponses to configure the system. The procedure is out-
lined on workshects in the form of questions from
RTGEN and responses by the user.

® Part 3 — Operation. This part presents the operation of
the generator including features making the process more
convenient, A sample generator is presented and dis-
cussed step-by-step (the sample is based on the generation
listing in Appendix C). The last step in this part is the
initialization (or start-up) of the new system.

DESCRIPTION

RTE-IIT is a multiprogramming system using partitions
which are numbered contiguous blocks of memory the size
and number of which are fixed during generation. The basic
purpose of the generation is to build a system structured as
shown in Figure 6 - 1. During the generation, various pro-
gram modules arc loaded and questions answered. The
memory resident parts of the system are constructed and

stored on the disc. The remainder of memory is divided
into partitions for disc resident programs and these pro-
grams are relocated and saved on the disc to be swapped into
memory when needed. The relocatable subroutine library

is saved on disc for use by programs relocated during normal
system operation.

HIGH MEMORY A
DISC RESIDENT PARTITION m
BASE PAGE
[J
° Z PAGES
Z=N-Y-X
[
DISC RESIDENT PARTITION 1
BASE PAGE
Y PAGES A
SYSTEM AVAILABLE MEMORY w
- <
MEMORY RESIDENT PROGRAMS <
BG COMMON 1
RT COMMON COMMON
SUBSYSTEM GLOBAL AREA l-
MEMORY RESIDENT LIBRARY
MINIMUM SIZE
SYSTEM APPROXIMATELY
12 PAGES (X)
SYSTEM BASE PAGE
LOW MEMORY Y

Figure 6-1. Physical Memory Allocations

Be aware that certain software subsystems may have specific
requirements when included in the system generation. Op-
tions in such areas as spooling, measurements, communica-
tions, and multiple terminal operation may place specific
requirements on [/O configuration, buffer space, etc. As an
example, refer to the Batch and Spool Manual (HP Part No.
92060-90013) when planning for that subsystem.

6-1/6-2

Planning RTE

PART 1
Instructions for Planning RTE

This planning part has been divided into three major areas
as follows:

® Disc Planning — Disc tracks are grouped together to form
subchannels. A scratch (work) area is set aside to tem-
porarily hold programs during the generation process.
Tables 6-1 and 6-2 provide the necessary worksheets.

® 1/O Planning — Peripheral device I/O cards are assigned
priorities, logical unit numbers are assigned, and tables
are built that effect communication between the devices
and the system. Table 6-4 provides the I/O worksheet.

® Memory Configuration — The physical and logical
organization of memory is discussed and planned.
Memory protection options are presented.

[t is recommended that all the worksheets be duplicated.
The copies can then be used for planning the system leaving
clean copies in the manual for future use.

DISC PLANNING

RTE-IIT is a disc-based operating system where the disc
provides the primary storage area for the following items:

— The configured operating system

— Relocated disc resident programs

— Relacatable library modules

— Temporary storage for programs (source for editing,
relocatable output of assembler, etc.)

— User files

Disc storage is managed in terms of contiguous groups of
tracks called subchannels (after generation, subchannels are
normally referenced through logical unit numbers which are
assigned in the I/O planning section). The primary purpose
of the disc planning section is to configure available disc
storage into one or more subchannels. RTE-III further
distinguishes between these as system, auxiliary, and peri-
pheral subchannels. The generator will interact with the
user to define a group of subchannels on a single disc con-
troller. Multiple controllers and mixed disc types are dis-
cussed here under the heading, “Multiple Disc Controllers,”
and also in Appendix B.

SYSTEM/AUXILIARY SUBCHANNELS

The RTE-III System disc tracks are those for which RTE-III
controls and maintains a track usage table. Programs may
obtain and release tracks from this area using calls to the
executive. System tracks include all tracks on the system
subchannel (LU2) and the auxiliary subchannel (LU3). The
size of a system or auxiliary subchannel is limited to 256
tracks. This number may be further reduced depending on
the type of disc used (e.g. 203 for a 7900 disc). The system
disc tracks are used for swapping, and by the editor, assem-
bler, and compilers for source, load-and-go, and scratch
area. They may also be used by user programs for storage.
The main differences between a system and auxiliary sub-
channel are:

L] The configured system (including the memory resident
system, the relocated disc resident programs, and the
relocatable library), is stored on the system disc.

. The auxiliary disc is optional.

] Most program swapping takes place on the auxiliary
disc.

NOTE

More than one system or type of system can be
located on a disc, and those systems may share
tracks. In designating tracks, those that are

* shared would be included and declared during
each system generation. The restriction is that
any tracks of an RTE-III System that are assigned
to LU2 or LU3 (system or auxiliary subchannel)
must be unique to that RTE-III System.
Remaining tracks on the disc can be assigned to
other systems.

PERIPHERAL SUBCHANNELS

Disc subchannels other than system and auxiliary are
classified as “peripheral’ and must be assigned logical unit
numbers above 6. Tracks on these peripheral subchannels
are not subject to the RTE assignment and release mech-
anism; however, they may have the same protection. Man-
agement of these areas may be accomplished directly by
user supplied programs or by the File Manager. Peripheral
subchannels to be used by the file manager must be defined
with no more than 1204 tracks.

6-3

RTE-IIT

Table 6-1. HP 7900 Moving Head Disc Worksheet

SUBCHANNEL 1

REMOVABLE

NO OF TRACKS AVAILABLE

FIRST TRACK
NOTE:
SUBCHANNEL 0 THE FIXED PLATTER
DOES NOT EXIST
ON THE 7901.
FIXED
NO. OF TRACKS AVAILABLE
FIRST TRACK
SYSTEM SUBCHANNEL NUMBER (LOGICAL UNIT 2)
AUXILIARY SUBCHANNEL NUMBER (LOGICAL UNIT 3)

SCRATCH SUBCHANNEL NUMBER

START SCRATCH (1.E. 1ST TRACK = 0)

Planning RTE

Table 6-2. HP 7905 Disc Worksheet

STEP 1 FILL IN UNIT NUMBER:

CYLINDER 410
CYLINDER 0 — '

[] L1
!

HEAD O ———[—_—I UNIT #

HEAD 1 — [\/

TIMING

HEAD l |
HEAD 2 —D

STEP 2 TRACKS SHOWN END-TO-END ON THREE SURFACES—CIRCLE SUBCHANNELS:
CYLINDER 0 40 80 120 150 200 240 280 320 360 400 410

HEAD 0 —

REMOVABLE
HEAD 1 ——» -

HEAD 2 ———»

STEP 3 TRANSLATE STEP 2 TO NUMBERS:

SUBCHANNEL

NUMBER OF
TRACKS

STARTING
CYLINDER

STARTING
HEAD

NUMBER OF
SURFACES

NUMBER OF
SPARES

SYSTEM ?
(v)

AUXILIARY
(v)

SCRATCH ?
(v)

6-5

RTE-III

HP 7900 DISC CONFIGURATION

The HP 7900 Disc Drive is a single unit that contains two
discs; one permanently mounted and designated subchannel
0, and the other housed in a removable cartridge and desig-
nated subchannel 1. The drive is interfaced to the computer
through a single plug-in controller occupying two I/O slots.
It is possible to daisy-chain up to four drives to the same
controller providing up to eight discs. Each disc platter is a
subchannel, and is accessed through a logical unit reference
number that is referenced back to the equipment table
(EQT) entry number of the controller. Therefore, one con-
troller, containing eight subchannels linked to eight logical
unit numbers, can control up to eight discs. Refer to Table
6-1 and fill in the blanks according to the following instruc-
tions.

Determine the number of tracks available and starting track
number for each subchannel, and fill in the blanks on the
worksheet. Note that the maximum number of tracks
available per subchannel for the 7900 is 203. The moving
head Basic Binary Disc Loader (BBDL) will boot a system
on a 7900 disc only if it starts at physical track O on sub-
channel 0 or 1. Locating the system tracks anywhere else
will require that a paper tape bootstrap be punched during
generation and used each time the system is initialized.

Determine which subchannel will be the system and which
subchannel the auxiliary (if any). Fill in the appropriate
.blanks on the worksheet.

Refer to the heading, “Multiple Disc Controllers,” for
instructions which cover special action required if the
auxiliary subchannel is on a different controller than the
system subchannel.

HP 7905 DISC CONFIGURATION

The HP 7905 Disc Drive is a single unit that contains two
disc platters; one permanently mounted, and the other
housed in a removable cartridge. Up to 8 drives may be
connected to a single 7905 controller. The controller is
interfaced to the computer through an interface card
occupying one I/O slot. Each disc has two surfaces; how-
cver, one surface of the fixed disc is used for timing pur-
poses and is not available for data recording. Therefore,
a single HP 7905 Disc Drive contains three surfaces (3
heads) and 411 cylinders, giving 1,233 tracks. Refer to
Table 6-2 for a pictoral diagram of the drive showing
heads and cylinders.

The purpose of the following discussion is to configure each
disc into subchannels. Each subchannel will consist of a
contiguous group of tracks on a single drive, and one drive
may contain several.subchannels. Up to 32 subchannels may

6-6

be defined on one 7905 controller. There is no fixed rela-
tionship between a subchannel and a given disc area (as on
7900 discs); it is the user’s responsibility to define these
relationships.

The completed disc worksheet describes each subchannel on
a drive in terms of the drive’s unit number, size of the sub-
channel in tracks, starting head and cylinder numbers, sur-
face organization, and number of tracks. In dividing up the
HP 7905 disc tracks, bear in mind that the ultimate goal is
a logical unit number referencing a group of disc tracks.

When filling in the worksheet on Table 6-2 there are several
important rules and guidelines to remember.

e Surface organization. Tracks on a subchannel must be
contiguous. Head movement should be kept to a mini-
mum for fastest response time to sequential tracks. This
means that track assignment should alternate between
surfaces. For example, if track O (of the first subchannel)
is accessed by head 0, cylinder 0, and track 1 is accessed
by head 1, cylinder 0, physical head movement (changing
cylinders) is kept to a minimum.

NOTE

If a subchannel involves both fixed and removable
platters, some flexibility is lost since removal of
one platter invalidates all data on the subchannel.
Additionally, the rotational alignment between
two platters depends on drive orientation when
the cartridge is inserted. This makes track-to-
track access time across platters unpredictable.

It may, in fact, be better or worse than on one
platter depending on alignment and the time
required for software processing between tracks.

If more than one surface is to be used, tracks are
cyclically allocated downward and back to the original
surface when necessary. For example, a subchannel be-
ginning with head 1 and using 2 surfaces will use head 1,
2 and 1 repeatedly, and in that order. Note that any sub-
channel using 3 surfaces must start on head 0.

® Spare tracks. Some tracks on a disc surface may be un-
usable. When such a track is encountered, another track
is assigned by RTGEN in its place, and the disc controller
will automatically switch to that track on future refer-
ences. During generation, spare tracks are assigned to
each subchannel for this purpose; then when a bad track
is encountered, a subchannel may draw from its spares.
Note that spare tracks are allocated on a subchannel basis
and belong to that subchannel. That is, one subchannel
cannot take spare tracks from another subchannel. The

user should plan on about 1200 usable tracks per drive,
dividing the remaining 33 tracks as spares amorg the
subchannels in proportion to their size. Spares imme-
diately follow the main tracks for the associated subchan-
nel, and use the same surface organization, Spares are
recommended even though they may not be used on a
given disc. A subchannel or complete disc might later be
copied to another disc where bad tracks are encountered,
and all data would not “fit” without sufficient spares.

® Subchannel size. A subchannel to be used as the system
or auxiliary subchannel (LU2 or 3) must not exceed 256
tracks, excluding spares. Similarly, a peripheral subchan-
nel to be used by the file manager must not exceed 1024
tracks, again, excluding spares. Larger subchannels may
be defined for access by user-developed programs.

NOTE

If the user plans to run disc utility programs
designed for a 7900 disc, subchannels should
be restricted to 203 tracks or less.

® Subchannel numbering. Subchannels on a given disc
controller are numbered sequentially from 0. Do not
skip or duplicate any numbers, otherwise the disc ad-
dressing scheme is completely up to the user.

® System Subchannel. The moving head Basic Binary
Disc Loader will boot a system on a 7905 disc only if it
starts at cylinder 0, head O, 1, or 2. Locating the system
subchannel anywhere else will require that a paper tape
bootstrap be punched during generation and used each
time the system is initialized.

With the aid of Table 6-2, 7905 subchannels are defined in
a manner directly translatable for input to the generator.
Copies of the table have been completed for two sample
one-drive systems and are included as suggested disc con-
figurations in Appendix C.

Follow the instructions below for each HP 7905 drive.

STEP1 — A hardware unit number is associated with
each drive and is selected by a switch located behind the
perforated front panel. Set the switch to the appropriate
number and then write the number on the worksheet.

STEP 2 — The second part of the worksheet represents
the three surfaces of the disc drive and is provided as an aid
in dividing up the surfaces into subchannels. Using Table
C-1 as an example, allocate to subchannel 0 256 tracks for
data and 8 tracks for spares encompassing two surfaces,
This makes a total of 264 tracks which is 132 cylinders.
Note that the example on Table C-1 has all the tracks for
subchannel 0 enclosed and labeled. The first cylinder con-
tains the first and second addressable track:

— first track = head #0, cylinder #0
— second track = head #1, cylinder #0

Divide up the surfaces, grouping the tracks into subchannels.
Allow approximately 6 spare tracks for each 200 data tracks
allocated. The number for the first cylinder of succeeding

Planning RTE

subchannels is found by adding the number of cylinders
used by preceding subchannels. (Add tracks and spares then
divide by the number of surfaces to count cylinders). In the
example above, 132 cylinders were assigned to subchannel 0
(256 tracks plus 8 spares). Therefore, the “First Cyl” for
subchannel 1 would be cylinder 132, Head #0 or 1, or cylin-
der O, Head #2. It depends on how you assign the tracks.

STEP3 — The third part of the worksheet answers all
the questions the generator will ask about each subchannel.
For the most part, the numbers are filled in from Step 2.
Refer to Table C-1 for the example.

Fill in the blanks for all subchannels created in Step 2.

Determine which subchannel will be the system and which
subchannel the auxiliary (if any) and check the appropriate
boxes,

MULTIPLE DISC CONTROLLERS

The RTE-III generator assumes a single disc controller for
purposes of interactively defining and initializing subchan-
nels. If a system is to have more than one controller (same
or different disc types), the user must construct a table,
according to the directions in Appendix B, describing the
subchannels of the controller before beginning generation.
The generator will not initialize these subchannels. The user
must include the appropriate disc driver and define equip-
ment table entry and logical unit numbers for the subchan-
nels (described in I/O configuration planning).

The optional auxiliary subchannel may be placed on a dif-
ferent controller than the'system subchannel. The preceding
discussion applies in this case with the added requirement
that the user specify the number of tracks in the subchannel
when the generator inquires about the auxiliary option (see
part 2 of this section).

MULTIPLE CPU/7905 SYSTEMS

The HP 7905 versions of RTGEN, the bootstrap loader, and
the on-line driver support multiple CPU operation. More
than one CPU can share one or more disc drives under the
following conditions:

® The system area (that is, LU2 and LU3) for one CPU
cannot occupy the same system disc tracks as that of
another CPU.

® Systems may map tracks in the same peripheral disc
area. However, they should share access to these areas
only as described in Appendix B under Multiple CPU/
7905 System Operation,

® The generator should not be allowed to use as scratch or
to injtialize areas of the disc already in use by any other
CPU.

As an aid to using a multiple CPU system, it is recom-
mended that the disc track map be identical for each CPU.,
Further, logical unit numbers should not be assigned to sub-
channels already assigned to another CPU.

6-7

RTE-III

GENERATOR SCRATCH AREA

RTGEN requires a scratch area for storing relocatable mod-
ules used to build the system. This area is defined only for
the duration of the generation and may be placed on any of
the subchannels. Two factors must be considered in selecting
the size of the area. (1) The area must be large enough to
accomodate all the relocatable modules, otherwise, an
ERR17 will occur, and (2) the area cannot be so large that
the system area will prematurely overflow into it (ERR38)
during the disc loading phase. The ERR38 can occur when
the scratch area is located on the system subchannel and the
absolute system is built upwards, toward, and into the relo-
catable modules, overlaying the latter before they have been
converted into absolute code. Due to this possibility, it is
recommended that the scratch area not be located on the
system subchannel.

Determine which subchannel will provide the scratch area
and indicate on the appropriate disc worksheet. If the
scratch area is located on the system subchannel, it is recom-
mended that the entry for “start scratch” be zero (0).

This entry causes RTGEN to start the scratch area at the
midpoint of the available disc area. (Note that this default
occurs only when scratch is located on the system subchan-
nel.) If either of the two error codes (ERR17 or ERR38)

are experienced during RTGEN, use the data in Table 6-3 as

a guide in adjusting the scratch area. A rule-of-thumb formula
for determining the approximate number of 64 word sectors

a user written program will occupy is as follows:

=X
of 64 word sectors = 33

where

x = number of words of memory the program
occupies.

NOTE

Table 6-3 and the formula are only approximate
guides to be used as an aid if using the RTGEN
scratch default does not work or if difficulty is
experienced in estimating some other starting
point for scratch.

If the scratch area is assigned to a subchannel other than the
system subchannel, that subchannel should not have tracks
shared with another system, or any data on it that must be
retained. This is because the scratch subchannel tracks as-
signed to the system being generated are initialized by
RTGEN. As a result, any data on them is destroyed.

6-8

Table 6-3. Approximate Number of 64-Word Sectors
Required to Store RTE-III in Relocatable

Format
NAME 64-WORD SECTORS
Executive Software 210
System Library 50
ASMB 210
XREF 60
FORTRAN 350
RTE/DOS FORTRAN IV 470
Compiler
RTE/DOS FORTRAN IV 360
10K Compiler
ALGOL 180
Interactive Editor 70
Loader 150
RTE/DOS Relocatable 240
Library
RTE/DOS FORTRAN IV 290
Library
RTE/DOS HP FORTRAN 45
Formatter
RTE/DOS Plotter 80
Library
Drivers Allow 15 sectors per
driver.

The first logical track number of the scratch disc is always
zero (0) regardless of the actual track address. For example,
if the scratch is located on a subchannel consisting of cyl-
inders 100 to 200, the starting logical track for the scratch
disc would be track zero (0). To start the scratch areaon a
track inside the available area, count the number of tracks
into the area and use that number as the starting track (e.g.,
to skip the first 10 tracks, start scratch on track number 10).

INPUT/OUTPUT PLANNING

Input/output locations in all HP 2100 series computers have
the same sequence of priority addresses: the highest priority
address is the lowest numbered select code (I/O location).
The octal select codes start at octal 10 and continue upward
toward octal 77, limited by the I/O capacity of the particular
computer and any attached extenders.

Interface cards are assigned to priority addresses according
to the speed of interrupt response required by the I/O device.
Interface cards for high-speed devices are assigned higher
priority addresses than low-speed devices. Devices requiring
privileged interrupt are always assigned to the highest
priority addresses, while direct memory access devices are
assigned the lowest. The one exception to the direct memory
access rule is in regard to the moving head system disc con-
troller. For the fastest ifiterrupt response, assign moving head
disc controller to the next available I/O slots after the Time
Base Generator (TBG).

The following instructions are keyed by step numbers to the
I/O Configuration Worksheet in Table 6-4. Fill in the blanks
as you plan your system.

STEP 1: I/O LOCATIONS

Considering the factors given in the preceding paragraphs
and the instructions given below, select the priority addresses
for each I/O card, and fill in the top portion of the Input/
Output Configuration Worksheet table with the I/O card
name, and the appropriate select code (I/0 slot).

NOTE

The top portion of the table is used for either
the select code or the subchannel number. For
example, if two HP 7900 moving head disc
drives (four subchannels) are connected to a
controller in select codes 20 and 21, the top
portion of the table would be completed as
follows:

octal selec o] 20/ 21
code

subchannel 0 1 2 3

This method of noting subchannel numbers will
facilitate assigning logical unit numbers later in
the table. Refer to the HP 7905 Disc worksheet
for applicable subchannel numbers.

The following detailed steps show how to assign select codes
to devices starting at the highest priority address, octal select
code 10, In addition to these steps, make certain that any
peripheral devices or subsystems that use multiple I/O slots
have their I/O cards together and in the relative order
required by that device or subsystem.

a. Assign all devices that require privileged interrupt in order
of decreasing response time requirements (i.e., time from
interrupt to service).

Planning RTE

b. After the privileged devices, assign the privileged interrupt

I/O card.

c. Assign the TBG I/O card.
d. Assign the moving head disc controller I/O cards.

e. Assign all devices that do not use direct memory access in

order of decreasing speed.

NOTE

There will be occasions when a device uses direct
memory access for data transfer and still generates
an interrupt for end-of-record (EOR) processing.
In these cases the hardware priority of the device
should be treated as a non-DMA device, with the
interrupt rate of the EOR condition determining
its priority location. Some consideration should
be given to the priority of a data transfer vs. the
priority of a record termination. Data transfers
would normally be given priority over EOR
interrupts of equivalent or even slightly slower
interrupt rates.

f. Assign all devices that do use direct memory access in
order of decreasing speed.

g. If an I/O extender is required and the extender does not
have direct memory access capability, the order of steps
“e” and “f can be reversed so that all direct memory
access devices are in the computer mainframe. If this
step is necessary, maintain the same relative order of
speed assignment among the DMA and non-DMA devices.

STEP 2: STANDARD LOGICAL UNIT ASSIGNMENTS

Make the standard logical unit number (LU) assignments

(1 through 6) to I/O devices by placing an X at the inter-
section of the standard logical unit number and the I/O card
select code. Place an X under one of the disc subchannels
for LU2; include LU3 if applicable. Any remaining disc sub-
channels can be assigned logical unit numbers above six
(i.e., they become peripheral if desired).

STEP 3: ADDITIONAL LOGICAL UNIT ASSIGNMENTS

Starting with decimal 7, write in the logical unit numbers
sequentially for each device or subchannel number as
applicable. These numbers can be arbitrarily assigned to 1/0
devices, and do not have to be written in a left to right order
on this table. However, if a magnetic tape unit is being
configured into the system it is recommended that it be
made LUS8. The power fail routine should be the last (or
highest numbered) LU.

6-9

RTE-II

Table 6-4. I/0 Configuration Worksheet

STEP 2

STEP 3

STEP 4

STEPS

STEP 6

STEP 7

STEP 8

STEP9

GENERATION NUMBER

PREPARED BY

suB

STEP 1

1/O INTERFACE
CARD NAME

STD. LOGICAL
UNIT NOS.

1 SYS.TTY

2 SYS. MASS STORAGE

3 AUX. MASS STORAGE

4 PUNCH QUTPUT

5 INPUT

6 LIST OUTPUT

I 7.'0 to 6310

———1 DVR IDENT. (DVRxx)

—1 DMA REQUIRED (D)

——1 EQT ENTRY NO,

—*1.BUFFERED OUTPUT (B)

—} TIME OUT (T)

—1 EXTENDED EQT

OCTAL SELECT
CODE / SUBCHANNEL

TPRTE-18

6-10

NOTE

If a device has two I/O cards use only the highest
priority (lowest select code) I/O card for steps
2 and 3.

STEP 4: DRIVER IDENTIFICATION

Write in the driver identification number for each device;
e.g., teleprinter driver is DVROO. If the 7900 disc drive is
used, in addition to placing DVR31 under the high-priority
card, place a large “I”” under the low priority card. For other
devices or subsystems that have more than one I/O card, refer
to the I/O card or subsystem documentation covering that
device and driver. Place an “I”” under the select code number
of all I/O cards (i.e., every I/O card must have an entry in the
interrupt tables). Place a dash under subchannel numbers. In
the case there is more than one driver with the same DVR
number, refer to the paragraph under Equipment Table
Entries later in this planning part.

STEP 5: DIRECT MEMORY ACCESS

Write in a large “D” for direct memory access required on
each device that will use this capability. Note that some
drivers, such as DVR62 for the HP 2313 sub-system, are
capable of dynamically assigning a DCPC channel to them-
selves when required. In those cases, do not assign direct
memory access. Refer to individual driver documentation
for more information on this capability.

STEP 6: EQT TABLE

Starting with decimal 1, write in the Equipment Table Entry
(EQT) numbers sequentially for each device. The system
disc should be EQT number 1 to permit special priority
assignment to an available DCPC channel. Other DMA devices
should then be assigned EQT numbers in order of their DMA
priority. A device that has subchannels is assigned the same
EQT number for each subchannel. It is recommended that
whenever possible, the EQT number be the same as the LU
number. This will aid the user in operating the system after
it is running. It is also recommened to make the power fail
routine the last (Highest numbered) EQT.

STEP 7: BUFFERING

Write in a large “B” for devices that will use output buffer-
ing. Buffering means that the computer will copy into a
system buffer data that is to be output to a device (e.g.,
line printer). The system will allow a program to continue
processing after issuing a WRITE request to such a device,
rather than suspending the program while it waits for a
buffer (in the program) to be emptied.

Planning RTE

STEP 8: TIME-OUT

Write in a large “T” for devices that will use the time-out
parameter. Values will be assigned later on the configuration
worksheet.

STEP 9: EXTENDED EQT

Write in a large ““X” for drivers that will use the extended
EQT feature. For example, each entry for Spool Monitor
Driver DVS43 will use the EQT extension. Values will be
assigned later on the configuration worksheet.

MEMORY CONFIGURATION PLANNING

RTE-III, as described in Section I, provides the capability

of addressing physical memory configurations of up to 1024K
words. This portion of the planning part describes most of
the considerations you must make when dividing up physical
memory, setting up partitions, establishing memory
protection, and actually loading programs. This material is
provided for both reference and planning purposes to help
the user. Some actual inputs to the generator will depend on
the user analyzing the data printed out by the generator to
that point, and making his decision based on that hard data
with the aid of the considerations presented here.

PHYSICAL MEMORY

Physical memory is organized as shown in Figure 6-1. The
organization is fixed although relative sizes of the areas will
depend on installation needs. Some areas (e.g., common)
will not exist in all systems. The user determines the size of
system available memory, size of each partition, the size of
common, and the size and composition of the resident
library and memory resident program area.

MEMORY SIZE — The size of physical memory depends on
the hardware supplied. RTGEN can configure a system from
32 to 1024 pages long.

SYSTEM BASE PAGE — The system base page contains the
system communication area and is used by the system to
define request parameters, I/O tables, scheduling lists,
operating parameters, memory bounds, etc. System and
library links, memory resident program links, and trap cells
are also located on the system base page. The base page links
for memory resident programs are not accessible by disc
resident programs and therefore may not be shared. System
and library links and the system communication area are
available to all programs for read-only access.

6-11

RTE-III

The system communication area is fixed. The size of the
system links area varies with the number of page crossings
which cause indirect links to be generated on base page
(current page linking can reduce the number of base page
links used; see Part 3).

After the assignment of I/O interrupt locations (see Input/
Output Planning), the user has no direct control over the
allocation of the base page area. Linkages are allocated as
needed during the generation. If the base page linkage area
overflows an error message is given and the user must delete
one or more programs from the memory resident area of the
system. As an aid in generation, RTGEN will optionally trace
the allocation of links, program by program.

SYSTEM AND LIBRARY AREAS — These two areas
become a part of every program’s logical address space (see
Figure 6-2). Since each program is limited to 32K address-
ability, the size of this area directly reduces the area available
for user programs, system available memory, and memory
resident program area.

The system area contains type O system modules (e.g.,
RTIOC, SCHED, EXEC) and drivers plus tables. The size of
the system area is indirectly controlled by the number of
1/O devices configured (i.e., table sizes and drivers).

The memory resident library area contains those re-entrant
or priviledged library routines which are used by the memory
resident programs (type 6) or which are force loaded (type
14) at generation time. Placing a module in this area means

it doesn’t need to be appended to programs that call it, but

it is subject to special design constraints so that two programs
will not inadvertantly gain concurrent access. Refer to the
section of the Relocatable Library when designing such sub-
routines.

COMMON AREA — This area is divided into three subareas:
The Subystem Global Area (SSGA), the Real-Time Common
Area, and the Background Common Area. Common’s size is
important to all memory resident programs (they can only
use that part of 32K remaining after common), and to disc
resident programs using one of the three subareas. Disc
resident programs using one of the common subareas must
“map” the whole common area, thus reducing the amount
of logical address space left over for the program.

The Subsystem Global Area is used by HP subsystems and
contains type 30 modules loaded sequentially. The modules
are accessed by their entry point and not through common
declarations.

The Real-Time Common Area defaults to the maximum size
common declared by any main program “typed” to use it.

6-12

Real-time programs use Real-Time Common as the default
case. Background programs may use Real-Time Common
if “reversed” common is specified.

The Background Common Area defaults to the maximum
size common declared by any main program “typed” to
use it. Real-time programs use Real-Time Common as the
default case. Background programs may use Real-Time
Common if “reversed” common is specified.

If a program (memory or disc resident) is to use common,
the maximum size to be used must be declared in the main
module. Subroutines and segments used by the program
will access the same common as the main.

If desired, the size of the Real-Time and Background
Commons may be increased during generation to accomo-
date future programs loaded on-line. Do not confuse these
system-wide common areas with the local common area
which may be specified for a program loaded on-line. The
local common area is appended to the program (i.e., it will
be in the program’s partition), and is accessable only to
that program, its subroutines, and its segments.

The common area may optionally be included in the System
Map to aid privileged drivers. This makes common
immediately accessable at interrupt. Refer to the part in
Section V on privileged drivers.

MEMORY RESIDENT PROGRAM AREA - This area
contains all type 1 programs and is loaded sequentially
following common. It is recommended that the first word
of this area be aligned on the first page boundary following
common. The area skipped is then appended to Background
Common. This alignment is desirable to protect the Memory
Resident Program area. Refer to the heading, Memory
Protection for more information. All memory resident
programs must fall within the first 32K of physical memory.
The last word of the last Resident Program must fall at or
before 77677 (octal), leaving 64 words for operation of the
loader. If this address is violated, ERR 18 is printed.

SYSTEM AVAILABLE MEMORY (SAM) — This is a
temporary storage area used by the system for Class 1/0,
re-entrant I/O (refer to Section III), and automatic buffering
The amount of SAM depends on specific applications. The
lack of enough buffer space can cause temporary suspension
or obortion of a program. Subsystem (communications,
spooling, etc.) may place additional requirements on this
area; refer to the appropriate manuals.

SAM may start immediately after the memory resident
programs or be aligned at the next page. Alignment prevents
accidental destruction of critical data by another program
accessing the same page. Any words skipped due to align-
ment are wasted.

DESCRIBED BY

Planning RTE

SYSTEM MAP THREE POSSIBLE CONFIGURATIONS DESCRIBED BY USER MAP
MEMORY DISK RESIDENT DISK RESIDENT
RESIDENT PROGRAM & PROGRAM, W/O
SYSTEM PROGRAM COMMON COMMON
UNUSED AREA
READ/WRITE
PROTECTED
MEMORY
RESIDENT
1 DISK DISK
SYSTEM ° RESIDENT RESIDENT
AVAILABLE PROGRAM PROGRAM
MEMORY °
MEMORY RESI-
DENT PROG 2
MEMORY RESI-
DENT PROG 1
BG COMMON BG COMMON
(COMMON « <
OPTIONAL IN RT COMMON RT COMMON
SYSTEM MAP) < «
SUBSYSTEM GLOBAL SUBSYSTEM GLOBAL
]] |]]
a < -«
RESIDENT LIBRARY RESIDENT LIBRARY RESIDENT LIBRARY RESIDENT LIBRARY
SYSTEM SYSTEM SYSTEM SYSTEM
COMMUNICATION COMMUNICATION
AREA SYSCTEM AREA, SYSTEM LINKS COMMUNICATION COMMUNICATION
LINKS, & RESIDENT & RESIDENT PROG AREA, SYSTEM LINKS, AREA, SYSTEM LINKS,
PROGRAM LINKS LINKS & PROGRAM LINKS & PROGRAM LINKS
() (2) (3)

(4)

< INDICATES POSSIBLE
MEMORY PROTECT
FENCE SETTINGS

— — — POSSIBLE PAGE ALIGNMENTS

Figure 6-2. RTE-III 32K Logical Memory Configurations

6-13

RTE-III

SAM always ends at a page boundary where the first disc
program partition starts. Therefore, its size defaults to the
number of words between its starting address and the next
page (between 1 and 1024 words). The recommended
minimum is 1K words. The size limit is:

System + Library + SAM + (optionally)

Common < 32 pages

System Available Memory size can be increased in 1K word
increments by increasing the page number where the disc
partitions start. - .

DISC PARTITIONS — The number of pages remaining
after S AM must be divided up into distinct partitions
(maximum of 64). Each partition should be at least two
pages long, one page to be used as a base page and the
remainder for the program. This includes subroutines, over-
layable segments, and buffer/table space.

The size of a given partition depends on program needs.

A Disc Resident program, out of its 32K of address space,
usually has 13 to 16 pages taken up by the system and
library area. Some programs use a common area which must
be mapped. This may result in less address space for the
programs depending on the size and location of the common
area. Therefore, a useful partition will normally be between
2 and 20 pages long.

The generator reports the largest useful partition sizes for
programs with and without common (including a base page
for the program) to aid the user in determining partition
sizes.

Partition size requirements for each program relocated are
also reported; however, some programs may require
additional pages for buffer area as discussed under the head-
ing “Disc Program Size Considerations.” It may not be
possible to completely plan partition sizes until this infor-
mation is reported by generator.

A program cannot be dispatched for execution unless a
partition of sufficient size is defined and available (not
reserved for the exclusive use of other programs).

The user must determine the mix of Real-Time and Back-
ground partitions of appropriate sizes to suit his particular
application and subject to available main memory. Two
classes of partitions prevents competition for main memory
between background programs (typically involved in
program development of other non-time-critical applications)
and Real-time programs. Note that the class of a partition
does not imply any special attributes, but merely that
programs of the same type may use that partition subject

to exceptions noted below.

6-14

In some situations, placing all partitions in a single class may
be best. This allows free competition for main memory
between all disc programs, subject to program priority and
size requirements.

Undesired competition for partitions can be prevented by
assigning programs to specific partitions. This could, for
example, keep a very small program out of a large partition.
Assignment can cross class boundaries; a Real-time program
can run in a Background partition, and vice-versa. (Such a
program would still have all the attributes of a real time
program).

DISC PROGRAM SIZE CONSIDERATIONS

Section I of this manual discusses program size. The
generator reports the partition size required for each disc
program loaded. This size includes a base page and is
based on the length of the main program, subroutines
loaded with the main, and the largest overlayable segment
(if any).

Program size can be overriden during the generation, thus
increasing the minimum size partition required. When the
program is run, it may be given a partition larger than this
minimum. To the program however, the “apparent” size
of the partition (determined from the System Communi-
cation Area during execution) is still the minimum.

Some programs require additional space to dynamically
construct buffer areas or symbol tables. Standard RTE
programs needing this additional space are shown with
their requirements in Table 6-5. During generation the
user must modify the page requirements of any of these
programs to be used. Size requirements for user-supplied
programs may be overriden if necessary.

MEMORY PROTECTION

Memory protection between disc resident program partitions
and between disc and memory resident programs is-provided
by the Dynamic Mapping System. A program cannot access
a page not included in its logical memory either directly or
through a DCPC transfer. Since many programs will not use
all of the possible 32K logical area, unused logical pages
above the program are READ/WRITE protected and do not
necessarily have counterparts in physical memory.

A different form of protection is required for the system,
library, and (optionally), common. The memory protect
fence provides this protection by preventing stores and
jumps to locations below a specified address. All possible
fence positions are shown in Figure 6-2.

Table 6-5. Programs Requiring Buffer Space in Partitions

Note 2:

Note 3:

Note 4:

Note 5:

INIM

PROGRAM | RECOMMENDED | SUGGESTED
NAME OVERRIDE

(pages) (pages)
EDITR 6 7 (Note 2)
ASMB 7 (Note 1) 10 (Note 3)
XREF 6 (Note 1) 10 (Note 3)
LOADR 8 (Note 1) 10 (Note 3)
ALGOL 9 (Note 1) 13 (Note 3)
FTN 6 (Note 1) 8 (Note 3)
FTN4 (smalt) 7 (Note 1) 9 (Note 3)
FTN4 (large) 11 (Note 1) 13 (Note 3)
FMGR 7 7 (Note 4)
RT2GN 12 12 (Note 5)
RT3GN 12 12 (Note 5)
Note 1: Running this program with this size partition

will limit the size of the programs it can
process. In some cases, however, experience
may show that even small partitions will
suffice.

Limited to “Largest Addressable Partition”
size printed during generation. Extra space
increases size of two disc buffers thereby
improving performance.

Limited to “Largest Addressable Partition”
size printed during generation. Extra space
increases symbol table space thereby allow-
ing larger programs to be processed.

Extra space is used during a disc packing
operation.

Extra space for the generator virtual symbol
tables increases the generator’s speed.

The memory protect fence applies to the logical address
space and addresses are compared to the fence before
translation. If a disc resident program does not use any of
the common areas, the memory protect fence is set at the
bottom of the program area. Similarly, for a memory
resident program not using common, the memory protect
fence is set at the base of the entire memory resident area.

Planning RTE

For programs using common, all of logical memory in-
cluding common is mapped and the fence is set at one of
three possible locations, depending on the portion of
common being used. A hierarchy of protection is thereby
established within common due to their physical locations.
Background common is the least protected (any program
using any common can modify it) and SSGA is the most
protected (only programs authorized for SSGA access can
modify it). Figure 6-3 expands the common area and shows
these three fence settings as @ s @ , and @ .

Figure 6-3 also shows a potential problem area marked ““?”
which includes those words from the top of common to the
next page boundary. This area could include one or more
memory resident programs and/or part of System Available
Memory. Any program using common could potentially
destroy the contents of this area. Aligning the top of common:
at the next page boundary is a generation option that expands
the size of background common while eliminating this
problem. A similar option is available for the boundary
between memory resident programs and system available
memory.

b— —— —— ——<— PAGE BOUNDARY

2
BG COMMON
@ HIGHER PHYSICAL
RT COMMON MEMORY
@ SSGA

Figure 6-3. Memory Protect Fence Locations for Programs
using Common.

PROGRAM LOADING

Program loading refers to RTGEN taking the relocatable
modules from the scratch area, relocating them to absolute
addresses in physical or logical memory, and storing them
permanently on the system subchannel.

6-15

RTE-III

SYSTEM MODULES — These are type 0 modules (EXEC,
RTIOC, SCHED etc.) and are loaded sequentially above the
system base page. Base page links for these modules are
allocated downward in the system base page below the
system common area.

LIBRARY MODULES — These are type 6 and 14 (re-entrant,
privileged, and force-loaded) and are loaded sequentially
above the system and tables. Base page links for these
modules are allocated downward in the system base page
below the system links.

MEMORY RESIDENT PROGRAMS — These programs are
sequentally loaded above the common areas. Base page links
for these programs are allocated upward in the system base
page starting at FWA BP LINKAGE (established by the user)
above the I/O interrupt locations.

DISC RESIDENT PROGRAMS WITHOUT COMMON —
These programs are relocated into logical memory and stored
on the disc. Each program starts at word 2 of the next avail-
able logical page after the end of the system and memory
resident library. The first two words of the page are reserved

to save index registers in the event the program is interrupted.

6-16

Base page links are allocated upward from logical location 2.
The highest available link address is the word before the
lowest system/library link. These links are written on the
disc and are referred to as the user base page. This user base
page is swapped with the program into memory and placed
into the first page of the selected partition.

DISC RESIDENT PROGRAMS WITH COMMON -- These
programs are treated the same as the disc resident programs
without common. The only difference is that the program
starts at word 2 of the logical page following the common
area.

PRIVILEGED DRIVERS

Privileged drivers must be considered when doing the
generation. Practically, the privileged drivers will have al-
ready been written according to the directions given in
Section V. If the driver was written to use the common area
then the generator question about privileged drivers access-
ing common will have to be answered YES, causing common
to be included in the System Map. Otherwise, it is assumed
that driver is performing its own mapping functions.

Preparing Generator Responses

PART 2
Preparing Generator Responses

The plans in Part 1 and the procedures described in Part 2
aid the user in preparing responses to RTGEN questions.
These responses are written on Table 6-6, a worksheet
located at the end of this part. The user can then use the
worksheet to enter the correct responses to the computer
as the generation proceeds. As the user becomes more
familiar with the system and generation procedure, a
punched tape containing all the parameter inputs can be
made up from the worksheets and then placed in the tape
reader (either the teletype tape reader or high-speed
photoreader). The generator will read such a tape auto-
matically and operate at a much higher speed than if the
responses were entered interactively through the system
console.

The worksheet has been keyed to the text by step numbers
for easy cross-reference between the two.

This part is organized in parallel with the *“phases” exe-
cuted by RTGEN during operation. Some phases do not
require user responses, but have been listed for complete-
ness. The phases include:

® [Initialization — Disc areas are described and initialized.
Various system parameters are entered.

® Program Input — All relocatable tapes are loaded into
the system by the user.

® Parameter Input — The default characteristics of
programs just loaded can be overriden. Entry point
values can be modified. More system parameters are
entered.

¢ System loading — system executive routines, drivers
and user written system routines are relocated by the
system to absolute memory locations.

® Table Generation — tables describing the I/O
configuration are constructed.

® Program loading — Memory resident library routines
and memory resident programs are relocated by the

system. Common areas are constructed and disc
resident programs are relocated by the system.

® Partition definition — Partitions for disc resident
programs are defined. Program size requirements can
be modified, and programs may be assigned to run
in specific partitions.

INITIALIZATION PHASE

The first portion of Table 6-6 is divided into two parts—
one for HP 7900/7901 initialization and one for HP 7905
initialization. Refer to the appropriate heading and fill in
the blanks for the type disc drive you have.

During the initialization phase, RTGEN first requests
information necessary to generate track map that defines
disc subchannels., Once the track map is established,
RTGEN goes on to request more information necessary
to generate the system.

HP 7900/7901 DISC INITIALIZATION

The answers to the following steps can be obtained from
Table 6-1, the HP 7900/7901 System Disc Worksheet.

STEP1 — Write in the lower numbered/highest
priority select code (I/O slot) for the disc controller.

STEP2 — Fill in the track assignments for each
subchannel. A zero (0) entered for number of tracks
causes RTGEN to ignore that subchannel.

Go to STEP 3.
HP 7905 DISC INITIALIZATION

Many of the answers to the following steps can be obtained
from Table 6-2, the HP 7905 System Disc Worksheet.

STEP1 —Write in the lower numbered/highest priority
select code (1/0 slot) for the disc controller.

6-17

RTE-II

STEP2 — Fill in the blanks for each subchannel from
Table 6-2.
STEP3 — The number of 128-word sectors per track

is 48. This is the number of logical sectors per track and is
the number of sectors on two sides of the platter on a
7900 disc, one side on a 7905.

STEP4 — Fill in the blanks for the system and scratch
subchannels from the table. If only one subchannel was
defined in step 2, place a dash (i.e., does not apply) in
system subchannel, auxiliary disc, auxiliary disc subchannel,
and scratch subchannel blanks.

STEP 5
follows:

— The auxiliary disc question is filled in as

® Enter NO if none.

® Enter YES if it is to be one of the subchannels specified
in step 2.

® Enter number of tracks on the subchannel if it is to be on
a different controller.

If YES is entered, fill in the subchannel number in the next
blank. Note that the auxiliary subchannel may have no
more than 256 tracks assigned to it.

STEP 6 — Fill in the select code of the Time Base
Generator (TBG) card.

STEP7 — Fillin the select code of the privileged
interrupt card. The next question is answered as follows:
YES if the common area is to be included in the System
Map for access by privileged drivers. NO if not.

STEP8 — The core lock questions are answered with
a YES or NO. If YES is answered to either of these
questions, it allows a program of the corresponding type
to lock itself into memory and not be swapped. If the
answer is NO then the program cannot be locked into
memory. Refer to the PROGRAM SWAPPING CONTROL
call in Section III.

STEP9 — The answer to the Swap Delay question is
a decimal number between 0 and 255 that represents tens-
of-milliseconds (i.e., 0 to 2550 milliseconds). If a number
“N” is entered here a program will not be swapped if it
resides in a disc resident area, is in the time list, and is to
run within “N” milliseconds of the current time and has
priority over its contender for that core area. The amount
of time required for a program to swap depends on several
factors; type of disc drive, program length, and if the pro-
gram is segmented. For the HP 7900 Disc Drive, the trans-

6-18

fer time is 25 milliseconds for each 3K words. For the

HP 7905 Disc Drive, the transfer time is 16.7 milliseconds
for each 6K words. To obtain an accurate figure tailored

to memory size, program size, and disc type, refer to

Figure 6-4, Swap Delay Graph. (Note that the graph takes
track switching time into account.) Remember, the number
selected here is applied to all swappable programs.

STEP 10 — MEM SIZE refers to the decimal number of
pages in the system. Fill in the blank.

STEP 11 — The use of input units is interchangeable.
Maximum versatility can be achieved by designating one
device for paper tape and one for magnetic tape if magnetic
is present on the system. For example, if most of your
relocatable programs are on magnetic tape and only a few
on paper tape, it would be most efficient to set up the
magnetic tape as the program input device (PRGM) and the
paper tape reader as the library (LIBR) input device. Note
that there is no difference between programs input through
the PRGM device and those input through the LIBR device;
any program may be loaded through either device. Part 3
of this section describes the mechanism for switching
between devices during input.

The program input and library input devices can be:

PT — paper tape (photoreader)
TY — teleprinter
MT — magnetic tape
The parameter input device is either PT or TY.

STEP 12— The user has the option of initializing or
not initializing the tracks on each subchannel. RTGEN
automaticaily initializes tracks on the system, auxiliary,
and scratch subchannels. If other subchannels are avail-
able RTGEN asks if they are to be initialized by sub-
channel number in ascending order. Write in YES or NO
for each subchannel. If the answer is YES, RTGEN
initializes the tracks on that subchannel and reports any
defective tracks. (On a 7900 disc subchannel, only those
tracks assigned to RTE in step 2 are initialized.) If the
answer is NO, RTGEN does not initialize that subchannel.

NOTE

Any subchannels containing tracks shared with
other systems should not be initialized because
that data will be destroyed.

BAD TRACK INFORMATION

7900 DISCS — Up to 10 bad tracks are allowed before
RTGEN aborts. Bad tracks in the area where the absolute
system and relocatable library are stored will prevent
operation of the system (this is the area reported at the
end of generation).

250+A —

225+A

200+A |—

175+A

150+A =

125+A |— r

100+A |—

1
1
75+ |—]

NUMBER OF MILLISECONDS
-

Preparing Generator Responses

50+A |— . .

25+A __j,_J

o+A [—

o L1 1|

| | | I |

0 3 6 9

12 15 18 21 24

PROGRAM SIZE IN K-WORDS

TPRTE-13

THIS GRAPH REPRESENTS THE TIME IT TAKES TO READ OR WRITE A PROGRAM
TO THE DISC. THE TIMES SHOULD BE DOUBLED TO GET TOTAL SWAP TIME.

NOTES:

A RANDOM ACCESS TIME WHICH IS COMPOSED OF
TWO QUANTITIES.

A. THE ROTATIONAL DELAY. THIS DELAY
RANGES FROM 0 TO ONE ROTATION TIME (RT)
WITH EQUAL PROBABILITY, THUS THE
AVERAGE ROTATIONAL DELAY IS RT/2.

B. THE SEEK TIME (ST). FOR A FIXED HEAD
DISC ST = 0. FOR A MOVING HEAD DISC IT
RANGES FROM 0 TO SOME MAXIMUM WITH A
NON-EQUAL PROBABILITY. THE SEEK TIME
DEPENDS ON THE LAST ACCESSED TRACK
NUMBER.

HP 7900/7901
— — HP 2771
— + =— HP 7905

EXAMPLE:

USING THE ABOVE PRINCIPLES AND GIVEN THE
FOLLOWING DATA FOR AN HP 7900 DISC, WE CAN PLOT
THE LOAD/SWAP TIME AS A FUNCTION OF THE NUMBER OF
WORDS. NOTE THAT THE NUMBER OF WORDS IS AFFECTED
BY THE “ALL OF COREBIT."”

FOR AN HP 7900: RT = 25 MS
#RT'S/ITRACK =2
#WORD/RT =3K

Figure 6-4. Swap Delay Graph

6-19

RTE-III

Defective tracks are reported as shown below:

BAD TRACK SUBCHNL x
000yyy

where yyy is the logical track number and is needed when
initializing the file manager for the subchannel (x) reported.

7905 DISCS — Bad tracks are automatically spared by the
disc controller to tracks set aside for that purpose in the
initialization phase. If there are not enough spare tracks
available, RTGEN issues the error message ERR43 and then
restarts the initialization phase. Bad tracks reported and
spared during generation will not prevent operation of the
system and should not be specified during file manager ini-
tialization of a cartridge on the subchannel.

Defective tracks are reported as shown below:

LOGICAL CYL HD UNIT

BAD TRACK XXXX XXXX X X
SPARED TO XXXX XXXX X X
STEP 13 — The punch boot question is optional. If the

computer is equipped with a built-in disc loader, the boot-
strap tape may not be needed to initialize the system. This
depends on where the first track of the system is located.
Refer to Part 1. Otherwise this blank requires a minimum
of one YES answer. Write in YES for as many bootstrap
tapes as you desire. Write in NO for termination.

PROGRAM INPUT PHASE

At this point in the generation, all the relocatable modules
are loaded into the system.

Due to the large number of tapes to be loaded, it is recom-
mended that they be placed on a table in the following
order. That way they are handy when the time comes to
start loading.

Memory Resident System

/0O Drivers

Power Fail (DVP43)

System Programs written by the user
Multi-Terminal Monitor

Memory Resident Programs

6-20

Real-Time Disc Resident Programs

Assembler (Main and its Segments)

FORTRAN (Main and its Segments) and/or

FORTRAN IV (Main and its Segments) but not both
FORTRAN IV Versions

ALGOL

Auto Restart

Relocating Loader

Editor

Batch Monitor

Other Background Disc-Resident Programs and their
respective segments, if any.

System Library

Batch Monitor Library

Library Programs

Utility Programs

NOTE

Some of the above relocatable modules may not
be present in some configurations.

PARAMETER INPUT PHASE

During the parameter input phase, the operator can modify
the type, priority, or execution intervals and the ENT
(entry) records of any of the programs entered during the
program input phase (except that the primary type code of
background mains and their segments cannot be changed
without losing their relationship to each other)

RTGEN has an additional feature that applies to memory
and disc resident programs. During the Parameter Input
Phase one program can be scheduled to execute automati-
cally whenever the RTE-III System is loaded from the
system disc. This is accomplished by adding 80 to the
program’s type code. For example, if PROG is originally
a type 2 program (real-time disc-resident), it can be
changed to:

PROG,82], priority] [,execution interval]

This will cause PROG to be scheduled automatically each
time the system is loaded into core from the disc and after
the file manager has been scheduled for initialization. If
more than one program is assigned for automatic scheduling,
only the last one entered will be recognized.

STEP 14 — Write in the parameter records on the
worksheet using the following general form:

name, type[,priority] [,execution interval]

Where:
name is the name of the program.

type is the program type code (the following are

primary types):

0 — system program or driver

1 — memory resident

2 — real-time disc-resident

3 — background disc-resident

4 — not used

5 — background segment

6 - library, re-entrant or privileged (Note that

these routines are relocated into the memory
resident library if called by a memory resi-
dent program. If not called by a memory
resident program, they become type 7.)

7 — library, utility

8 — if program is a main, it is deleted from the
system

— or —

8 — if program is a subroutine, then it is used
to satisfy any external references during
generation. However, it is loaded in the
relocatable library area of the disc.

14 — same as type 6 but automatically included
in the resident library

The primary type may be expanded in some cases by adding
8 or 16 to the number. These expanded types allow such
features as access to real-time common by background
programs and access to SSGA. See Appendix I for a list

of expanded program types.

is the program priority from 1 to 32767 with
1 the highest priority

priority

execution is a list of six parameters (shown below)

interval specifying the times the program should be
scheduled for execution, once it is turned on.
The first two values specify the execution inter-
val, and the last four specify an initial absolute
starting time:

[res{,multf ,hour,min,sec,1 Omsec]]]
res resolution code (0 to 4):
0 — no execution interval

1 — tens of milliseconds
2 — seconds

Preparing Generator Responses

3 — minutes
4 — hours

mult execution multiple (0 to 4095); the resolution
code gives the units for the execution multiple.

hour,min, initial absolute starting time (four values):
sec, :

10msec hours (0-23)
minutes (0-59)
seconds (0-59)
tens of milliseconds (0-99)

Fill in the blanks on the worksheet for any programs that
are to be modified.

STEP 15 — The next set of blanks are for creating and
modifying type 3 (absolute) and 4 (replace) entry (ENT)
records. Each ENT record takes the following form:

entry, type, value

Where
entry is the entry point name.
type is the entry point type.
AB = Absolute
RP = Replace
value is the entry point instruction value. Octal

numbers are assumed unless the letter “D”
follows the number which signifies decimal.

When an entry point is declared absolute (type = AB) its
value is added to the referencing instruction to obtain the
final instruction value.

When an entry point is declared as replace (type = RP) the
loader will replace each reference to it with the octal (or
decimal) value. For example:

.FMP,RP,105040

This would cause each JSB .FMP instruction (floating point
multiply) to be changed to the microcode floating point
multiply instruction (105040). Other floating point (or
fixed point EAU) type instructions that could be entered
are:

6-21

RET-III

Floating Point Fixed Point

.FAD, RP, 105000 — Add .MPY,RP, 100200
-FSB, RP, 105020 — Subtract .DIV, RP, 100400
-FMP, RP, 105040 — Multiply .DLD,RP, 104200
FDV, RP, 105060 — Divide .DST,RP, 104400
IFIX, RP, 105100 — Fix

FLOAT,RP, 105120 — Float

Other uses include 1/O configuration at load time, and con-
figuring tables that are assembled as DEF statements to
externals.

If you have loaded DVR32 into your system for the HP
7905 MH Disc, you may take advantage of the move words
microcode by making the following entry point change:

.MVW, RP, 105777

If you want to protect the FMP peripheral cartridges from
alteration by user programs, you may enter a change to an
entry point when the generator issues the prompt CHANGE
ENTS?. To protect these cartridges, specify: ‘

$PDSK,AB, 1

STEP 16 — The next item on the worksheet concerns
blank ID segments. One blank ID segment is required for
each program that will be loaded into the system on-line by
the RTE-III relocating loader. If five ID segments are
allocated, then only five additional programs can be loaded
at any one time into the system on-line. If a temporary pro-
gram is deleted from the system by an OF,name,8 operator
command, or a permanent program is deleted from the
system by the ON,LOADR,, 4 command, the program’s
ID segment is returned to the system to use for another
on-line load. Each disc resident program ID segment re-
quires 29 words in the system memory resident area
(28-word ID plus one key word). Fill in the number of
blank ID segments required. (Note: 0 is changed to 1 to
allow loading at least one program.) The total number of
program ID segments, including memory resident and disc
resident programs, is limited to 256.

STEP 17 — The next item on the worksheet concerns
blank background segment ID segments, or short ID
segments. These ID segments require 10 words (9-word
ID plus one key word) and are used only for background
program segments. One short ID segment is required for
each program segment. If an on-line load is done, and
there are no blank short ID segments available, a regular
29-word one will be used.

STEP 18 — The maximum number of partitions (64) is
determined by dividing up the pages remaining after SAM.
Directions for dividing up the memory into partitions is
found in Part 1, Planning. Fill in the blank.

6-22

STEP 19 — The next item on the worksheet is for the
address of the first word available on base page for memory
resident program links (FWA BP LINKAGE). This address
must be above the last used I/O select code. It may be
convenient to defer filling in this answer until step 26 has
been completed.

SYSTEM LOADING PHASE

The System Loading Phase requires no user inputs. During
this phase the system starts relocating the programs
previously entered.

TABLE GENERATION PHASE

The Table Generation Phase is the part of the generation
where the user builds the EQT table, LU table, interrupt
table, and satisfies other system parameters.

STEP20 — The first blank in the Table Generation
Phase concerns Class Input/Output numbers. Multiple
terminal operation requires one Class Number; spooling
requires two, and there must be one Class Number for each
Class GET call simultaneously outstanding (see Section III).
For example, if you specify ten Class Numbers here, ten
programs can simultaneously process class requests. Enter
a number between 1 and 255 (note that 0 is changed to 1).

STEP 21 — The next blank concerns a table (configured
by the generator) called LU Mappings that cross reference
real logical unit numbers to logical unit numbers within the
Batch System. The number entered here is the table size
and is related to the maximum number of logical unit
numbers referred to in a single job within the Batch and
Spool Monitor. A common entry would be ten. If the
Batch and Spool Monitor is not used, zero can be entered
but is defaulted to one.

STEP 22 — The next blank concerns the allocation of
Resource Numbers (RN’s). Spooling requires four RN’s and
there must be one RN for each resource to be controlled.
See the Resource Management Call in Section III. For ex-
ample, if you specify ten RN numbers here, ten resources
(e.g., I/O device or file) can be managed and used by cooper-
ating programs. Enter a number between 1 and 255 (note
that O is changed to 1).

STEP 23— The next blank concerns current buffer
limits. Setting upper and lower memory limits here can
prevent an inoperative or slow I/O device from monopolizing
available system memory. Each time a buffered I/O request
is made (Class 1/O requests are buffered), the system totals
the lengths of all buffers for I/0 requests queued to that
EQT entry and compares the number to the upper limit

set here (or by the BL command). If the sum is less than
the upper limit the new buffered request is added to the
queue. If the sum is larger than the upper limit the re-
questing program is suspended in the general wait (STATUS
=3) list. When a buffered I/O request completes, the sys-
tem adds up the remaining words in I/O requests queued to
that EQT entry and compares the number to the lower

limit set here (or by the BL command). When the sum is
less than the lower limit, any programs suspended for ex-
ceeding the buffer limits on this EQT are rescheduled and
may reattempt their request. A suggested entry of 100 and
400 can be entered and later changed on-line with the BL
command if desired. Note that programs with priorities of
1 through 40 are not suspended for buffer limit.

EQUIPMENT TABLE ENTRY (EQT TABLE)

STEP 24 — The first table to be completed is the
Equipment Table. Most entries are located on the 1/O work-
sheet and are transferred to this table. EQT number one
should be the system disc and is either DVR31 for the 7900
or DVR32 for the 7905. Note that each EQT entry con-
tains a blank for the driver name which contains five char-
acters, starts with the characters “DV” and ends with a
two-digit octal number (e.g., DVynn). The entry point
names are four characters in léngth and start with either
“I” (e.g., Ixnn for initiation section), or ““C” (Cxnn for
Completion section), and usually end with the same two-
digit octal number used in the driver name. However, since
RTGEN does not examine the driver’s NAM record, the
driver may in fact be renamed to support more than one
device type. The rules for the choice of “x” and “y” above
are as follows:

If “y” iS nOt “R” then “x” = “y”

If 66y” is CGR,’ then GCX” —= 6647

Using the above rules, more than one driver with the same
name can be configured into the system by changing the
third character in the name. For example, the system has
two line printers of different types. Each line printer uses
a different driver but the drivers have the same common
name, DVR12. Both drivers could be configured into the
system by changing the name of one to DVA12. Itsentry
points for the Interrupt Table would then become IA12
and CA12. The other driver would be DVR12 with entry
points of .12 and C.12. The remaining blanks on the EQT
entry line are for D (DMA required), B (buffered output),
T (time-out), and X (extended EQT). The blanks are
filled in as shown in the example in Figure 6-5.

If T is specified, a value for T must be entered in the T =
blank. The value must be a positive decimal number up to
32767. This is then the number of time base generator
interrupts (10 msec intervals), starting at I/O initiation for
the device before which the device should have interrupted.

Preparing Generator Responses

(Note that for privileged drivers T must be long enough to
cover the period from I/0 initiation to transfer completion.)
If the device has not interrupted by this time, it is consid-
ered to have timed-out and is set down, except in the case
of the system teletype and devices controlled by drivers
handling their own time-out. For a device controlled by
driver DVROO (e.g., teleprinter), or DVRO5 (DVROS re-
served for future system control device), T should not be
less than 500. Also, devices controlled by DVROO require
special subchannel assignments to make the time-out
feature effective. Refer to the DVROO Small Programs
Manual, HP Part No. 29029-95001.

If “X” is specified (on the I/O Configuration Worksheet) a
value for “X” must be entered in the “X’” = blank. The
value must be a positive decimal number up to three digits.
This number of words of buffer space is appended to the
EQT for the driver’s use, and is called an EQT extension.
The result of this entry is recorded in the driver’s EQT
table, words 12 and 13. EQT word 12 contains the number
of words of buffer space, and word 13 contains a pointer
to the buffer. An example use of the EQT extension is for
the Batch and Spool Monitor Driver DVS43. An entry
must be made for each spool file that will be active, or cur-
rently doing I/O. For example, assume 6 files can be active
at one time. The entries (referencing unused I/O slots)
might be:

30,DVS43.X = 18

31,DV832,X = 18
32,DVS43,X = 18
33,DVS43.X = 18

34,DVS43.X = 18
35,DVS843X = 18

Refer to the I/O Worksheet (Table 6-3) and write in the
octal select code number, DVR number, and D,B,T, and

X options if applicable, for each EQT number in sequential
order. Note that the driver’s identifying suffix letter is not
included. An EQT entry specifying a non-existent (not
loaded) driver results in generator error ERR 25.

DEVICE REFERENCE TABLE (DRT TABLE)

STEP 25 — The Device Reference Table, which contains
the logical unit (LU) numbers, is cross referenced to the EQT
entries here. Refer to the I/O Worksheet (Table 6-3) to
obtain the EQT entry number, LU number, and subchannel
number. Fill in the blanks as shown in Figure 6-6. LUO (bit
bucket) is a system mechanism that allows immediate I/O
completion (i.e. data buffer is written to or read from a
non-existent device) The first seven LU numbers are reserved
for system devices as follows:

6-23

RTE-III

6-24

Equipment
Table
Number

Octal
Select
Code
Number
(slot)

Driver
Number
Name

Output

Buffering

Requested
(B)

Memory
Access
Required
(DMA)
(D)

Number

of 10 ms.

Increments

Before

Timeout
T=n

Number
of Words
For
Extended
Memory

EQT 7

=7

DVR23, B, D, T =200, X =160
]

A

»

A A /

I
|
|
Direct }
|
l
}

Figure 6-5

. EQT Table Example

TPRTE-14

LUO — Bit bucket (no entry required)
LU1 — System console

LU2 — System mass storage

LU3 — Auxiliary mass storage

LU4 — Standard output device

LUS5 — Standard input unit

LU6 — Standard list unit

LU8 — Recommended for magnetic tape

Extra LU numbers can be assigned using EQT number zero
and may be changed on-line to reference other EQT’s as
desired.

Decimal
Logical
Unit
Number

»-2 = EQT.No.?

1,1

Equipment ’
Table

Number

Subchannel l
Number j

TPRTE-15

Figure 6-6. DRT Table Example

INTERRUPT TABLE (INT TABLE)

STEP 26 — This table allows the user to establish interrupt
links that tie the octal select codes back to EQT numbers.
Each I/O card (select code), in ascending order, is referenced
back to its EQT entry number that was established in the
Equipment Table Entry part. If dummy I/O slots were used
to reference EQT numbers for the Batch and Spool Monitor
Driver DVS43, interrupt links for those entries are also
necessary. For example (refer to the sample generation in
Appendix C), EQT number one (the first entry) was assigned
to I/O slot 21, DVR31. Now, in the interrupt table, I/O slot
21 will be referenced back to EQT number one. In this
manner, an interrupt occurring on I/O slot 21 will be
directed to EQT number one which has the address of
DVR31 and that driver will be entered. The format for the
entry is shown in Figure 6-7.

Refer to Figure 6-7 and construct the entries for the inter-
rupt table as follows:

octal select code number is taken from I/O Worksheet
(Table 6-3) in ascending order.

Preparing Generator Responses

Octal
Select
Code
Number

Option

——

Equipment
Table
Number
Entry

TPRTE-16

Figure 6-7. INT Table Example

option directs the system in handling the interrupt; there
are four options:

select code,EQT,n2 relates channel to EQT
entry n2. |
select code,PRG name causes program name to be

scheduled upon interrupt.

causes control to transfer to
the entry point of a user-
written system program upon
interrupt.

select code,ENT ,entry

Places the absolute octal value
xxxxxx (instruction code) in
the interrupt location. Do not
place anything other than a
JMP or JSB in the trap cell
(see Appendix I).

select code, ABS ,xxxxxx

The 7900 disc controller I/O cards both require an interrupt
link to their EQT entry number. Reference the select code
numbers to the DVR31 EQT entry number as shown below.

21,EQT,1
22,EQT,1

For other devices or subsystems that have more than one I/O
card, refer to the I/O card or subsystem documentation
covering the device and driver. In all cases, each I/O card
must have an interrupt entry. Note that interrupt location 4
(power fail) may be changed from its present HLT 4 to an

6-25

RTE-III

ENT entry if a power-fail routine is to be included in the
system. For example:

4,ENT,$POWR

where $SPOWR is an entry point in the power-fail routine.

PROGRAM LOADING PHASE

Planning generation responses may be difficult beyond this
point since some of the responses are based on-data not yet
known. Examining the worksheet shows that the generator
relocates the library and SSGA area, printing out boundaries
and requesting changes. The merits of changing these bound-
aries is discussed in Part 1, Planning. The remainder of this
part may therefore be used as a reference in planning, and
during generation.

STEP 27 — The library and SSGA areas are relocated.
Real-time common default size is printed in decimal words.
Enter the real-time common size desired in decimal words,
or 0 (zero) for no change (only increases are allowed). The
first word available (FWA) of real-time common is then
printed.

STEP 28 — In this step the background default size is
printed in decimal words. Enter the background common
size desired in decimal words, or 0 (zero) for no change
(only increases are allowed). The first word available (FWA)
of background common is printed.

STEP 29 — The last word available (LWA) of background
common is printed and the user is asked if he wants to align
the end of common at the next page boundary (for protect-
ion of memory resident programs). Enter YES to align the
end of common to the next page boundary. The updated
last word address of background common is printed.

PARTITION DEFINITION PHASE

After answering the last question the generator relocates
memory resident programs, real-time disc resident programs,
and background disc resident programs. When these pro-
grams are all relocated, the generator print the name of
each disc resident program and how many pages in memory
they occupy (including base page). The largest addressable
partitions, both with common and without common, are
also listed. Partitions larger than these numbers can be de-
clared, but the extra pages will not be accessable.

STEP 30 — The last word address of the memory resident
program area is printed and the user is asked if he wants to
align the end of the area to the next page boundary (for
protection of the system available memory). Note that those

6-26

words skipped are wasted. Enter YES to align the end of the
memory resident program area to the next page boundary.
If YES is entered, the generator automatically allocates one
page of memory to the system available memory (SAM)
area. If NO is entered, the generator allocates that area
between the last word of the memory resident program

area and the next page boundary, to SAM (this could be
between 1 and 1024 words. The updated first word address
of SAM is printed. The generator then prints the size of
SAM.

STEP 31 — The first page available for disc partitions is
printed and is the page boundary that ends SAM. The user
may increase this number which increases the area (in pages)
for SAM. Enter a new decimal page number or 0 (zero) for
no change. The updated size of SAM, in decimal words, is
then printed.

STEP 32 — The decimal number of pages of physical
memory remaining are printed. This area must be subdivided
into real-time and/or background partitions. The surn of
partition sizes must equal the number of remaining pages.
Enter each partition description using the format described
below. The last entry is /E.

Format: part # size, class [,R]

Where: part# is a number between 1 and maximum
number of partitions (entered earlier
in step 18). This number is the ‘“‘name”
of the partition.

size is partition size in decimal number of
pages (a partition must include enough
pages for a program plus one page for
the program’s base page)

class is RT for real-time or BG for background

R is reserved flag; if specified, partition

may only be used by programs
specifically assigned to it (see step 34
below).

The order in which partition definitions are entered is up to
the user. Partition numbers may be skipped if desired; how-
ever, pages will be assigned in order by partition number
(lower numbered partitions get lower numbered pages). An
example of defining the partitions is shown below:

1,15,BG (partition no. 1, 15 pages, background)

2,2,RT R (partition no. 2, 2 pages, real-time, reserved)

STEP 33 — At this point the operator can modify disc
resident program page requirements. The default size of each

program was just prior to step 30 after the generator relocated

the programs. This step allows the user to override the page
requirements for those programs needing dynamic space for
symbol tables or buffers. Refer to Table 6-5 for the standard
RTE-III programs requiring a size override. Enter each disc
resident program override using the format described below.

Format: program name, pages
Where: program is the name of the program
name
pages is the decimal number of pages re-

quired to run this program (include
one page for base page).

An example of entering the program override is shown below:

EDITR,8

The edit program EDITR is assigned 8 pages and will not be
run in a partition with less than that number.

Preparing Generator Responses

STEP 34 — The last step in the generation is assigning
programs to run in a specific partition. Enter only those
programs you wish to assign to a partition using the format
described below with /E as the last entry.

Format: program name, part #
Where: program s the name of the program
name
part# is a number between 1 and maximum

number of partitions (entered
earlier)

An example of assigning programs to partitions is shown
below:

HENRY,1
The program HENRY will run only in partition number 1.
This concludes the operator inputs to the generator. The
last thing the generator prints is the message that the system

is stored on the disc and how many tracks and sectors it
used.

6-27

RTE-III

(1

(2)

(3)

(4}

(5)

()

(7)

6-28

INITIALIZATION PHASE

7900/7901 DISC

MH DISC CHNL?
(1
#TRKS, FIRST TRK ON SUBCHNL:
0?

1?

4? (2)

/E

#128 WORD SECTORS/TRACK?

Table 6-6. Generator Input Worksheet

SYSTEM SUBCHNL?

SCRATCH SUBCHNL?

AUX DISC (YES OR NO OR #TRKS)?

START SCRATCH?

TBG CHNL?

PRIV.INT.CARD ADDR?

PRIV. DRIVERS ACCESS COMMON?

-

7905 DISC
CONTROLLER CHAN
(8}
TRKS, FIRST CYL #, HEAD, # SURFACES, UNIT, # SPARES FOR SUBCNL:
0?
. . . ' (9)
1?
. (10)
2?
32
47 (1)
5?
6?
7?
/E
(12)
(13)

FG CORE LOCK?

B“G CORE LOCK?
SWAP DELAY?

MEM SIZE?

PRGM INPT?

LIBR INPT?

PRAM INPT?
INITIALIZE SUBCHNL:

0?

2?

4?

PUNCH BOOT?

TPRTE-20

(14)

{15)

(16)

7

(18)

(19)

Table 6-6.

PROGRAM INPUT PHASE

CORE RESIDENT SYSTEM

1/0 DRIVERS

USER’S SYSTEM PROGRAMS

FOREGROUND CORE RESIDENT PROGRAMS

FOREGROUND DISC RESIDENT PROGRAMS

BACKGROUND CORE RESIDENT PROGRAMS

BACKGROUND DISC RESIDENT PROGRAMS
AND THEIR RESPECTIVE SEGMENTS

LIBRARY PROGRAMS

UTILITY PROGRAMS

SUBROUTINES

NO UNDEF EXTS
PARAMETER INPUT PHASE

NAME, TYPE
10'S/MS] 111

[[PR [, RES [, MULT [,

HR,

Preparing Generator Responses

Generator Input Worksheet (Continued)

TABLE GENERATION PHASE

*#OF 1/0 CLASSES?

/E
CHANGE ENTS?

/E
#OF BLANK 1D SEGMENTS:

#OF BLANK BG SEG. 1D SEGMENTS?

MAX NUMBER OF PARTITIONS?

FWA BP LINKAGE?

SYSTEM LOADING PHASE
(NO USER INPUT)

(20)
* # OF LU MAPPINGS?
(21)
* # OF RESOURCE NUMBERS?
(22)
* BUFFER LIMITS (LOW, HIGH)?
(23)
* EQUIPMENT TABLE ENTRY
MIN, SEC, EQT 017
DV , . ,I= X =
EQT02?
' ,DV , s T= L, X =
EQT 03?
, DV I= X =
EQT 04?
DV I-= X =
EQT 057
(24) , DV , T = X =
EQT 06?
,DV , I= X =
EQT 07?
DV , ,I= X =
EQT 08?
bV . . ,I= X =
EQT 09?
, DV , TI= L X =
EQT 10?
,DV , ,I= X =
/E TPRTE-22a

6-29

RTE-IIL

6-30

(25)

3

Table 6-6. Generator Input Worksheet (Continued)

* DEVICE REFERENCE TABLE

(SYSTEM TELEPRINTER)

(SYSTEM MASS STORAGE)

(AUXILIARY MASS STORAGE)

(STANDARD PUNCH UNIT)

(STANDARD INPUT UNIT)

(STANDARD LIST UNIT)

(MAG TAPE RECOMMENDED)

1= EQT #?
2= EQT#;?
3=EQT #lf?
4 = EQT #7?
§5=EQT #?
6 = EQT #?
7 = EQT #7?
8 = EQT #?
9 = EQT #7?
10 = EQT #?
11 = EQT #?
12 = EQT ;ﬂt?
13 = EQT #1
14 = EQT #?
15 = EQT #7?
/€ |

(26) 4

* INTERRUPT TABLE

.

/E

TPRTE-22b

Preparing Generator Responses

Table 6-6. Generator Input Worksheet (Continued)

RT COMMON XXXXX

(27) MODIFY PROGRAM PAGE REQUIREMENTS?
CHANGE RT COMMON?

v

RT COMMON XXXXX
(28) BG COMMON XXXXX
CHANGE BG COMMON?

BG COMMON XXXXX
(29) LWA BGCOMMON XXXXX
ALIGN AT NEXT PAGE? (33) W

LWA BG COMMON XXXXX

PARTITION DEFINITION PHASE

LWA MEM RESIDENT PROG AREA XXXXX

(30) Al |GN AT NEXT PAGE?
/E
LWA MEM RESIDENT PROG AREA XXXXX
SYS AV MEM: XXXXX WORDS ASSIGN PROGRAM PARTITIONS?
31
B STDSKPG XXXXX ,
CHANGE 1ST DSK PG?
SYS AV MEM; XXXXX WORDS)
PAGE REMAINING: XXXXX
(34) 1
DEFINE PARTITIONS
| E
SYSTEM STORED ON DISC
SYSSIZE: ______ TRKS' SECS (10)
a2 4 , , ,

/E

6-31/6-32

Performing System Generation

PART 3
Performing System Generation

The final part of this section provides directions on
running the system generation program RTGEN, to con-
figure the system planned in Parts 1 and 2. The operation
of the generator is presented, followed by a step-by-step
discussion of the sample generation listing in Appendix C,
and details of starting-up the newly configured system.
RTGEN error messages are explained at the end of part 3.

It is assumed that the user has planned his configuration
and responses to generator questions with the aid of parts

1 and 2 of this section. Most of the answers required during
generation will be taken directly from the worksheets.

COMPUTER CONFIGURATION

RTGEN will run on the same minimum configuration as
required for an RTE-III system. The system disc controller
must have the same select code during generation to be
used in the RTE-III system being generated. (The Dynamic
Mapping System and instructions unique to 21MX series
computers are not required during generation).

GENERATOR FEATURES

SWITCH REGISTER OPTIONS

Several generation options (see Table 6-7) are selected by
setting bits in the switch register. The switch register
should be set before starting RTGEN and checked when
restarting after an error. The switch register setting may
be altered during generation at any time to reflect the
user’s changing requirements. This ability provides, for
example, control over the amount of information listed
during program relocation. Refer to the heading, “Sample
Generation,” for details on switch register usage during
the program input phase.

HALTS

The generator normally halts in several places with the
code 102077 in the memory data register. The message,
“HALT 77 — SET SWR AND PRESS RUN”, is dis-
played on the list device to notify the operator of the halt
and the opportunity to change switch register (SWR)

settings. (Several error halts are possible and are discussed
at the end of this part).

CURRENT PAGE LINKING

Bit 14 of the switch register enables the current page

linking option during module relocation, With this bit set,
as each module is loaded it is checked to see if it crosses a
page boundary. If it does, a linkage buffer is created before
and after the module. Instructions which reference locations
outside their own page are linked indirectly through an
address in one of these buffers. If no buffer exists on the
referencing page, if the buffer overflows, or if the link is

to an external entry point, base page links are used.

The current page linking mechanism is desirable when base
page space is critical. The program size is increased while
the base page requirement is decreased. It might be desire-
able, for example, to enable this option only while the
system and library modules are being loaded, since these
base page links reduce the amount available to disc and
memory resident programs.

NOTE

EXT references and Assembly Language type 3 or
5 programs still use base page exclusively when
establishing links. However, this is not true for
subroutines referenced by these programs.

RESPONSES AND COMMENTS

Normal responses are entered as a line, left-justified, and
followed by a carriage-return, line feed (CR, LF) sequence.
A response in error is corrected by entering a “rubout”
followed by CR,LF then retyping the response. Whenever
a response is expected, one or more comments may be
entered followed by the response line. A comment begins
with an asterisk (*) and ends with CR,LF. A comment
may also follow a response on the same line, with at least
one blank separating the response and the comment.
Comments are useful for documentation purposes and when
switching response input from console to paper tape as
discussed below, under “ANSWER TAPE.”

6-33

RTE-II

ERROR MESSAGES

The generator produces numbered error messages of the
form, “ERR XX,” where XX is a two digit decimal
number. These messages are presented along with their
meanings and the appropriate action at the end of part 3.
Note that after an error, the next response is read from the
operator’s console, even if the previous responses had been
through paper tape.

NUMBER SYSTEMS

The generator uses octal (base 8) numbers when listing
word addresses (including interrupt trap cell locations and
device select codes). Responses specifying addresses must
be made in octal. All other quantities, including page
addresses, are expressed in decimal.

ANSWER TAPE

If desired, a paper tape may be prepared consisting of all
(or some of) the responses to be entered during generation.
Each response should be left-justified in a line which ends
with carriage-return, line-feed (CR,LF). By selecting the
appropriate switch register option, the paper tape is read
rather than the console keyboard when a response is
required.

If relocatable programs are to be entered from paper tape,
leave a gap (a few inches of null characters) for visual
identification just before starting the Parameter Phase
responses. When the generator halts after the Initialization

Phase, remove the answer-tape and proceed with the program

Input Phase. After reading the last relocatable tape, replace
the answer tape in the photoreader and position the gap
under the read head after reading the final program tape.

When RTGEN halts (for example, at the start of the
Partition Definition Phase), the operator has a convenient
point at which to change from paper tape back to console
responses and proceed interactively.

If a particular response is not known in advance when
punching the answer tape, and a halt is not conveniently
near, punch a response with a known error on the tape at
the spot you wish to stop. When the error is encountered,
control automatically reverts to the keyboard. The operator
can then enter the correct response before continuing with
the answer-tape. If several responses are to be entered inter-
actively, turn off the answer-tape option in the switch
register before entering the corrected response; further
responses will then be read from the keyboard. To revert
back to the tape, wait until a response on tape is needed,

6-34

then set the answer tape bit in the switch register (position
the tape if necessary), and enter a “‘comment” response
(*comment) through the console.

RESTARTING

If an error is discovered by the user after a response has
been entered, or if RTGEN reports an uncorrectable
error, it may be possible to restart the generator at some
earlier point without reloading the program. Restart is
accomplished by setting the program address to octal
location 100 and pressing RUN. RTGEN will resume pro-
cessing at the beginning of the most recently passed of 4
possible phases: either Initialization, Program Input,
Parameter, or Partition Definition. Restarts after the final
“/E” response at the end of the Partition Definition Phase
are not allowed and will result in an irrecoverable error
message. This is because RTGEN is involved in clean-up
operations which cannot be repeated without reinitializing.

To restart the generator follow these steps:

a. Halt the computer and set the program address to
resume at octal 100.

b. Check switch register options and make sure it applys to
the restart point.

c. Position the answer-tape (if used).
d. Press Run

e. If using an answer-tape and restarting after an error
message, it may be necessary to type a comment (*”’)
at the console to get the tape started.

GENERATOR INPUT/OUTPUT

With the exception of the disc, I/O operations to peripheral
devices are carried out through SIO drivers. The System
Input/Output drivers must be configured as described in
the SIO System Configuration Manual. The following
devices require SIO drivers if used:

Teletype — required.

Line printer — optional. If used, all teletype output goes
to the line printer.

Photoreader — optional. For program/response input.

Punch — optional. For punching bootstrap and/or
echoing questions and responses.

Mag Tape

optional. For program input.

The configured SIO drivers may be punched as a single
absolute tape for subsequent generations.

PREPARING RELOCATABLE TAPES

Relocatable modules should be loaded during the program
input phase in the order shown below. Users with a magnetic
tape unit may choose to prepare a tape containing all or
most relocatables before starting the generation. Follow the
instructions given in the Prepare Tape System Manual (HP
Part No. 02116-91751). The instructions given in the manual
for DSGEN apply directly to RTGEN.

In Section III of the PTS Manual under Operating
Instructions, substitute the following information under
step 1.

1. Gather all the relocatable system and user program tapes.
The suggested order for loading onto the magnetic tape.

Memory Resident System

I/O Drivers

Power Fail (DVP 43)

System Programs written by the user

Multi-Terminal Monitor

Memory Resident Programs

Real-Time Disc-Resident Programs

Assembler (Main and its Segments)

FORTRAN (Main and its Segments) and or

FORTRAN IV (Main and its Segments) but not both
FORTRAN IV Versions

ALGOL

Auto Restart

Relocating Loader

Editor

Batch Monitor

Other Background Disc-Resident Programs and their
respective segments, if any.

System Library

Batch Monitor Library

Library Programs

Utility Programs

NOTE

Some of the above relocatable modules may not be
present in some configurations.

GENERATOR START-UP

The following steps begin the generation of the RTE-I11

system:

a. Apply power to all equipment. Insert any removable disc
cartridges to be used into the disc drive. Refer to the
appropriate disc drive hardware manual and disable any
protection mechanisms on the discs to be configured
during the generation.

b. Refer to the 21MX Computer Reference Manual, HP Part
No. 02108-90002 for the computer under “cold start”
and load the appropriate RTGEN tape through the photo-
reader; 92060-16029 for HP 7900, 92060-16032 for HP
7905. Similarly, load the configured SIO drivers (or load
and configure individually). Note that if a magnetic tape
SIO driver is used, it must be loaded last (after the gener-
ator and other SIO drivers).

Performing System Generation

¢. Study Table 6-7 and set the switch register for any
desired initial options. Most options can be preset at the
beginning even though not used until later. Note that
during the Program Input Phase, bit 15 may need to be
changed if an error occurs, and bits 0 and 1 will require
attention at least once in that phase.

d. Place the answer tape (if used) in the photoreader.

e. Set the starting address of the program to octal 100
and press RUN to start.

When RUN is pushed RTGEN begins asking questions on
the input device. After each question is printed, the
operator responds with the required answer as previously
described.

SAMPLE GENERATION

The following pages discuss an actual RTE-I1I generation in
a step-by-step procedure where the system is configured

on an HP 7900 Moving Head Disc. Note that the first two
questions would be different if the disc were a 7905. Refer
to Part 2 steps 1 and 2 for the difference.

The listing, or generator printout, is included in this
manual as Appendix C.

RTGEN requests the higher priority select code (octal) of
the system disc controller

DISC CHNL?

RTGEN requests the starting track and number of tracks
(decimal) of each subchannel that will be assigned to the
system. Up to eight track assignments can be entered, one
for each existing subchannel. The even numbered subchan-
nels are the fixed platters and the odd numbered subchan-
nels are the removable platters (i.e., subchannel O is the
fixed platter and subchannel 1 is the removable platter of
the first drive.

#TRKS, FIRST TRK ON SUBCHNL:

0?

Operator responds with the decimal number of tracks and
starting track number for subchannel 0. If there are no
tracks from subchannel O assigned to the system, enter a
0. RTGEN continues to request the track assignments for
each subchannel up to seven or until /E is entered.

0?

6-35

RTE-III

Table 6-7. Switch Register Options

Bit Function When to Set
15 1 = The program just read will be purged. Input data is ignored After error 2, 3, or 4 during
until the next NAM record. The same program starting from the Program Input Phase
the beginning or the next program will then be read.
0= The program just read is not purged. The last record can be
re-read.
Print the entry point list. Before answering FWA BP
LINKAGE? (change any time)
14 Establishes current page-linking mode. Before answering FWA BP
LINKAGE? (change any time)
13 Print base page linkage listing. Before answering FWA BP
LINKAGE? (change any time)-
6 Print only errors on list device. The generation printout is Anytime
omitted.
5 Answers are read from the tape reader instead of the teletype. If Beginning/during
an input error occurs, control is automatically returned to the generation
teletype for the next command only. If the error is meaningless
(e.g., an unwanted routine is referenced), input from the tape
reader can be resumed by entering an asterisk (followed by any
comments if desired) and carriage return, line feed. The switch
can be turned off at this time in order to enter multiple inputs
from the TTY.
4 Questions and answers are punched on the punch device. Beginning/during generation
Questions and answers are printed on the list device. This assumes Beginning/during
the list device is a line printer because RTGEN will list to only generation
one device.
1 Switches 1 and O are set as follows: Beginning of generation
1 0 Meaning and during Program
. . Input Phase
00 Load from program input unit
10 Load from library input unit
0 1 Print list of undefined externals and halt.
0 11 If still set terminate program Input Phase.
NOTES

L.

When answers are from the photoreader, and an error occurs, the generator transfers control to the keyboard
automatically. Type in the correct answer or a comment to continue (ignoring the error).

A comment must be prefaced with an asterisk. Comments may appear at the end of any input line and may
be the only thing on a line.

The switch setting is examined each time the action it controls is started. Thus the setting may be examiried
at any time.

6-36

RTGEN requests the number of 128 word sectors (dec-
imal) per logical track on the system disc.

128 WORD SECTORS/TRACK?

NOTE

The following two questions con-
cerning system subchannel and
scratch disc subchannel are not
asked if only one subchannel is as-
signed to the system.

RTGEN requests the subchannel number of the system disc
(LU2). This is the disc that the absolute code will be stored
upon and can be any one of the subchannels assigned to the
system. The operator responds with a subchannel number
(from the worksheet) that contains enough tracks for the
absolute code.

SYSTEM SUBCHNL?

RTGEN requests the subchannel number of the scratch
disc. This is the area required for the relocatable modules
used to build the system, and can be any one of the sub-
channels assigned to the system. It is reccommended that the
scratch area not be located on the system subchannel. Then
the absolute area cannot overlay the relocatable modules
before they are used.

Performing System Generation

SCRATCH SUBCHNL?

RTGEN asks if there is to be an auxiliary disc (LU3) and its
number of tracks. YES means there is an auxiliary disc
and it’s on the same controller as the system disc. Answer
NO if there is no auxiliary disc. Answer with the number of
tracks if there is an auxiliary disc and its not on the same
controller as the system disc.

AUX DISC (YES OR NO OR # OF TRKS)?

If the above question had been answered with a number de-
noting how many tracks on the auxiliary disc (on a different
controller than the system disc), then the next question asked
would have been:

128 WORD SECTORS/TRACK?

If the answer to the AUX DISC? question was NO, then
RTGEN skips to the START SCRATCH? question. Since the
answer to the AUX DISC? question was YES, RTGEN
requests the auxiliary disc subchannel number. The
operator responds with a valid subchannel number (not the
system subchannel).

AUX DISC SUBCHNL?

RTGEN requests the track number starting the disc scratch
area. The operator responds with a decimal relative track
number. For example, subchannel 4 has tracks addressed 50
to 150 available. To start the scratch area on the first avail-
able track (50) enter a zero (0). To start the scratch at track
75, enter 25. Note that if the scratch subchannel is the
same as the system subchannel, entering a zero defaults the
start scratch to the midpoint of the “available disc space on
the system subchannel.

START SCRATCH?

RTGEN requests the select code of the time base generatar
(octal).

TBG CHNL?

RTGEN requests the address of the pfivileged interrupt I/O
card (if present).

6-37

RTE-II

PRIV.INT. CARD ADDR?

Operator responds with the octal select code of the privi-
leged interrupt HP 12620 card (and all devices in higher
priority slots become privileged) or zero if the card is not
used.

RTGEN asks if the common area should be included in the
System Map for access by privileged drivers. Answer YES
or NO.

PRIV. DRIVERS ACCESS COMMON?

RTGEN asks if any real-time disc resident program is allow-
ed to be locked into memory. Answer YES or NO.

RT CORE LOCK?

RTGEN asks if any background disc resident program is
allowed to be locked.into memory. Answer YES or NO.

BG CORE LOCK?

RTGEN next requests the amount of swap delay time. En-
ter a decimal number between 0 and 255 (meaning tens of

milliseconds).

SWAP DELAY?
30

RTGEN requests the size of physical memory in pages.

MEM SIZE?

Operator responds with the decimal number of pages in
the system.

RTGEN requests the type of input unit for relocatable pro-
gram modules.

PRGM INPT?

Operator responds with PT (for paper tape), TY (for tele-
printer), or MT (for magnetic tape).

6-38

RTGEN requests the type of input unit for relocatable li-
brary programs.

LIBR INPT?

Operator responds with PT, TY, or MT.

NOTE

Any type of program can be
entered through the program input
unit or the library input unit.

RTGEN requests the type of input unit for parameters
describing the relocatable programs.

PRAM INPT?
Operator responds with PT OR TY. Even though TY is

specified, parameters will be read from an answer tape if
the switch register is set appropriately.

RTGEN asks if the operator wishes to initialize disc sub-
channels other than the system, auxiliary, and scratch
subchannel. RTGEN asks this question only for those
subchannels assigned to the system but not declared as
LU2, LU3, or scratch, these subchannels being
automatically initialized by RTGEN. Operator responds
with a YES or NO. If the disc is new or has any write
protect flags written on it, it must be initialized. If the disc
has data stored on it in the system designated area, and the
user does not want to disturb it, the answer is NO.

INITIALIZE SUBCHNL:

2?

If there are any bad tracks, they will be
reported here. Refer to Part 2 step 12.

Next RTGEN checks the hardware disc protect switch. If
the disc is protected RTGEN prints

TURN OFF DISC PROTECT — PRESS RUN

and halts with the Memory Data Register = 102032. The
operator must turn off the disc protect switch and press
RUN to continue to the next phase. If the switch is already
off the above message is not printed and RTGEN proceeds
to the PUNCH BOOT question. If the response to PGM
INPT or LIB INPT was MT, the magnetic tape unit will
rewind to the load point, and then space forward to relo-
catable file number two. A HALT 102044 indicates that
the magnetic tape unit is not ready. Set it up and press
RUN.

RTGEN asks if a paper tape bootstrap is to be punched. If
the RTE-III System is located on subchannel 0 or 1 and
starts on track 0, the bootstrap tape is not required. Other-
wise the first answer should be YES. Note that the boot-
strap is unique to the first track of the system subchannel,
amount of CPU space, and LU of the disc. RTGEN keeps
repeating the question until NO is entered, then executes a
HALT 102077. In this fashion the user can punch as many
bootstraps as he feels he needs.

PROGRAM INPUT PHASE

During the program input phase, RTGEN accepts reloca-
table programs from the program input unit and library
input unit specified during the initialization phase. The op-
erator selects the input device by setting switch register bits
0 and 1.

00 = program input unit

10 = library input unit

01 = print list of undefined externals, or after the
printout

01 = terminate input phase

If an error is detected during the Program Input Phase, the
name of the offending program is printed. At this point the
operator can set or clear bit 15 before pushing RUN to
accomplish one of the following:

Bit 15=1 The program just read will be purged. Input
data is ignored until the next NAM record. The
next program will then be read.

Bit 15=0 The program just read is not purged. The last
record can be re-read.

Performing System Generation

Relocatable programs should be loaded in the following
order. Note that some of the programs may not be present
in some configurations.

Memory Resident System

I/O Drivers

Power Fail (DVP 43)

System Programs written by the user

Multi-Terminal Monitor

Memory Resident Programs

Real-Time Disc Resident Programs

Assembler (Main and its Segments)

FORTRAN (Main and its Segments) and/or

FORTRAN IV (Main and its Segments) but not both

FORTRAN IV Versions

ALGOL

Auto Restart

Relocating Loader

Editor

Batch Monitor

Other Background Disc-Resident Programs and their respec-
tive segments, if any.

System Library

Batch Monitor Library

Library Programs

Utility Programs

NOTE

If a program is being loaded from
paper tape, and was not generated
with the type code in the NAM
record, the operator can modify
it during the Parameter Input
Phase.

The operator presses RUN. After a program is loaded, the
message “*EOT” is printed whenever an end-of-file or end-
of-tape occurs. The computer halts.

At this point, the operator has several alternatives:

a. Additional programs can be loaded through the
same device by pushing RUN.,

b. Input can be switched to the other input device
by setting the switch register bits to binary 00 or 10.
c. After each *EOT message, a list of all unde-
fined externals can be printed by setting the switch
register bits to binary Ol and pushing RUN. At this
point the operator can reset the switches to point to
the desired input device, and load additional routines
needed to satisfy any undefined externals. If there are
none, the message NO UNDEF EXTS is printed and
the computer executes a HALT 77. To continue load-

6-39

RTE-III

ing programs, reset the switch register to binary 00,
or 10, place the program in the input device, and
push RUN.

d. To terminate the program input phase, set the
switch register to binary 01 and push RUN. (RUN
must be pushed again after NO UNDEF EXTS is
printed.) If magnetic tape is used for the program
input, it will rewind and go off-line at this point
(after the second RUN).

e. To restart this phase go to the starting address
of the program, octal 100, set the switch register

and push RUN.

PARAMETER INPUT PHASE

If the teletype was not specified as the PRAM INPT device
during initialization, the computer executes a HALT 77 to
wait for the parameter tape to be inserted in the photo-
reader. Push RUN to continue. If there are any errors on
the parameter tape, they will be printed on the list device.

During the parameter input phase, the operator can modify
the type, priority, or execution intervals (in decimal) of any
of the programs entered during the program input phase
(except that the primary code of background main
programs and their segments cannot be changed without
losing their relationship to each other).

Each parameter record is of this general form:

name, type [,priority | [,execution interval |
Refer to the Configuration Worksheet and enter any modi-
fication parameters that are listed. If there are none, enter a

/E on the teletype. In the example (see Appendix C) the
operator responds with:

RTGEN requests if there are any entry records to be
changed. The numbers are assumed octal unless followed by

a “D” which signifies decimal. Note the comments
prefaced by the asterisk.

6-40

CHANGE ENTS?

RTGEN requests the number of blank 28-word ID segments
to be allocated for on-line loading of programs by the relo-
cating loader. The operator responds with a one or two
digit decimal number (zero is changed to one, because one
is required to do any on-line loading); 29 words are reserved
in the resident table area for each blank ID segment.

OF BLANK ID SEGMENTS?

RTGEN next requests the number of blank 9-word ID seg-
ments to be allocated for background segments. The oper-
ator responds with a one or two digit decimal number (zero
is legal); 10 words are reserved in the resident table area for
each blank BG ID segment.

'OF BLANK BG SEG. ID SEGMENTS?

RTGEN requests the maximum decimal number of
partitions to be defined so that table space (6 words each)
may be set aside.

MAX NUMBER OF PARTITIONS?

RTGEN requests the first word of available main memory in
base page. Operator responds with the first available octal
select code number after the last 1/O card.

NOTE

The generator will begin system loading following
this response. Any desired switch register options
affecting relocation should be set before answer-
ing. (These may be set at the beginning of
generation.)

FWA BP LINKAGE?

SYSTEM LOADING PHASE

Disc loading begins with the modules of the system, includ-
ing I/O drivers. As RTGEN loads these programs, it prints
SYSTEM, followed by a memory map giving the starting
locations and, if switch register bit 15 is set, the entry
points for all main programs and subroutines (subroutines
are indented two spaces). Also, if bit 13 is set, the base page
linkage is reported after each module is loaded.

TABLE GENERATION PHASE

After the last system module is loaded RTGEN requests
how many Class 1/O numbers are to be allocated.

F I/0 CLASSES?

RTGEN next requests the maximum number of logical unit
numbers referred to in a single job within the Batch and
Spool Monitor.

*# of LU MAPPINGS?

RTGEN next requests how many Resource Numbers are to
be allocated.

*# OF RESOURCE NUMBERS?

RTGEN next requests the buffér limits.

BUFFER LIMITS (LOW,HIGH)?

Next, RTGEN generates the three 1/O tables: Equipment
table, device reference table, and the interrupt table.

RTGEN requests the equipment table entries

Performing System Generation

*EQUIPMENT TABLE ENTRY

Operator responds with a series of EQT entries, which are
assigned EQT numbers sequentially from one as they are
entered. The EQT entry relates the EQT number to an I/O
channel and driver. Refer to the Configuration Worksheet
and enter the Equipment table entries. The Appendix C
example is entered as follows:

EQT 04?

EQT 13?

EQT

EQT 16?

6-41

RTE-III

* DEVICE REFERENCE TABLE

1 =EQT #?

*SYSTEM CONSOLE

*SYSTEM DISC

3= EQT #?
: * AUXILIARY DISC

EQT 21?7
*PAPER TAPE PUNCH

*PHOTOREADER

*LINE PRINTER

EQT 25? *BACKGROUND TERMINAL

EQT 26? *MAGNETIC TAPE, UNIT 0

*MAG TAPE, UNIT 1

*MAG TAPE, UNIT 2

RTGEN requests the logical unit number assignments for the *MAG TAPE, UNIT 3

device reference table.

*DEVICE REFERENCE TABLE *CARD READER
For each logical unit number, RTGEN prints .
BIT BUCKET

n=EQT#?
where n is a decimal integer starting with one. *PERIPHERAL DISC
Operator responds with an EQT entry number appropriate *
to the standard definition of # and the subchannel number PERIFHERAL DISC
if appropriate. Logical unit numbers O through 6 are pre-
defined in the system as: *PERIPHERAL DISC
0 — bit bucket (no action allowed)
I = system console *PERIPHERAL DISC
2 - system mass storage
3 - auxiliary mass storage
4 — standard 'output dnge *PERIPHERAL DISC
5 - standard input unit
6 — standard list unit

*PERIPHERAL DISC

Refer to the Configuration Worksheet and enter the Device
Refe;rencfe HTablfa entries. The Appendix C example is en- 20 = EQT #

tered as tollows: 12 *TERMINAL
6-42

Performing System Generation

*TERMINAL
42 = EQT #?
*TERMINAL
EQT #?
*TERMINAL
24 = EQT # 44 = EQT #?
16 *TERMINAL
25 =EQT #? 45 = EQT #?
*TERMINAL
46 = EQT #?
*TERMINAL
47 = EQT #?
27 = EQT #?
*TERMINAL

EQT #?

28 = EQT #?

49 = EQT #?

50 = EQT #?

*H.P. 2313B SUBSYSTEM

EQT #?

31=EQT #? *SPOOL LU
*H.P. 6940 SUBSYSTEM
. 52 = EQT #?
32 = EQT #? H.P. 91200 TV INTEC *SPOOL LU
53 = EQT #?
=EQT #? *SPOOL LU
EQT # .
34 = EQT #? SPOOL LU
55 =EQT #?
EQT #? *SPOOL LU
56 = EQT #?
36 = EQT #? *SPOOL LU
QT #7
37=EQT #? *POWER FAIL

58 = EQT #?

39 = EQT #?

40 = EQT #?

RTGEN requests the interrupt table entries.
6-43

RTE-I1

*INTERRUPT TABLE

Operator responds with an entry for each I/O card, in as-
cending order (except 1/O location 4).

Note that the entry for location 4 (power-fail) may be en-
tered out of order. This is the only location allowed out of
order. The Appendix C example is entered as follows:

PROGRAM LOADING PHASE

The switch register setting affects current page linking for
modules relocated in this phase and determines what infor-
mation will be reported by the generator.

The Memory Resident Library and the Subsystem Global
Area (if any) are loaded first. SSGA is considered part of
common for mapping purposes, and the remaining two
common subareas are established next.

RTGEN reports the default size of Real-time common
(decimal) and asks for an override. 200 (decimal) words are
requested in the sample. Enter O for no change.

6-44

RT COMMON 00000
CHANGE RT COMMON?

The starting address (octal) of Real-time common is
reported:

RT COM 40755

The same sequence is followed for Background common. In
the sample 200 decimal words are requested. Enter O for
no change.

BG COMMON 00000
CHANGE BG COMMON?

The starting address of BG common is reported:

BG COM 41265

The last address in commion is reported and the user is asked
if it should be aligned at the next page boundary (alignment
protects the upper neighbor, memory resident programs).

LWA BG COMMON 41574
ALIGN AT NEXT PAGE?

Since YES was entered, RTGEN reports the new last address
of common.

LWA BG COMMON 41777

Program loading (relocation) now continues with memory
resident, real-time disc resident, and background disc
resident programs. When finished, the computer will HALT.

PARTITION DEFINITION PHASE

Before beginning this phase by pushing RUN, check: the
switch register options (see Table 6-7) for a possible change
(e.g. change from answer-tape to manual input through

the console). The partition size requirements for Real-time
and Background programs are listed.

RT PARTITION REQMTS:

SMP 04 PAGES
JOB 04 PAGES
WHZAT 02 PAGES
AUTOR 04 PAGES

BG PARTITION REQMTS:

FMGR 06 PAGES
EDITR 05 PAGES
GASP 07 PAGES
ASMB 06 PAGES
XREF 05 PAGES
LOADR 06 PAGES

The largest partition size which can be addressed by any
program are reported (including base page).

LARGEST ADDRESSABLE PARTITION:

W/O COM 16 PAGES
W/ COM 16 PAGES

The size and boundaries of System Available Memory
(SAM) are established in the following sequence. SAM
normally begins after the Memory Resident Program

area. RTGEN reports the last word of the Memory
Resident Program area and then asks if you want to align
it at the next page boundary. If YES is answered, the
beginning of SAM is aligned at the page boundary, not the
end of the Memory Resident Program Area. That area in
between the two is lost. if NO is answered, the beginning
of SAM is aligned at the end of the Memory Resident

Program Area and extends only to the next page
boundary. Aligning the start of SAM at a page boundary

affords SAM protection from unauthorized access.

LWA MEM RESIDENT PROG AREA 45434
ALIGN AT NEXT PAGE?

Since YES was entered, RTGEN reports the new last
address of the Memory Resident Program Area.

LWA MEM RESIDENT PROG AREA 45777

The default size of SAM is reported (decimal). Since the
beginning of SAM was aligned at a page boundary above,
its default size is one page.

SYS AV MEM: 01024 WORDS

If the beginning of SAM had not been aligned at a page
boundary, then the area for SAM would have been the
number of words between LWA MEM RESIDENT PROG
AREA and the next page address.

The first page available for disc partitions ends System
Available Memory. Refer to Figure 6-1. In the sample, this

Performing System Generation

page number is increased by one page to add 1024 words to
the default SAM size:

1ST DSK PG 00020
CHANGE 1ST DSK PG?

The final size of SAM is reported as two pages. This is one
page (default) plus the page just added.

SYS AV MEM: 02048 WORDS

The decimal number of pages remaining for disc partitions
is reported and the operator divides this area into partitions:

PAGES REMAINING: 00043
DEFINE PARTITIONS

RTGEN next allows the operator to override the page
requirements for those programs needing dynamic space
for symbol tables or buffers:

MODIFY PROGRAM PAGE REQUIREMENTS?

The final entries assign specific programs to be run in
specific partitions. No assignments wre made in the sample.

ASSIGN PROGRAM PARTITIONS?

The generation ends as the system size on disc is reported
(size includes the system, and disc resident programs in
memory-image format plus the relocatable library).

SYSTEM STORED ON DISC
SYS SIZE: 20 TRKS, 031 SECS (10)

RTGEN halts. (The standard halt message is printed even
though the program does not continue from this point.)

6-45

RTE-I

INITIATING AN RTE-III SYSTEM

The newly configured system is started up in the following
steps:

a. Turn-on any disc protection features which were dis-
abled for generation.

b. Refer to 21MX the Computer Reference Manual HP Part
No. 02108-90002 for program loading (“cold start™)
instructions. If the computer contains a build-in (e.g.,
ROM) disc loading program, execute it. If the disc boot
is not built-in, use the paper tape bootstrap program to
load the RTGEN boot punched during generation. Exe-
cute the RTGEN boot starting at location 100 (octal).

In either case, when the computer halts after the disc
boot is executed, press run.

¢. The message “SET TIME” should appear on the
operator console.

d. File Manager initilization errors may be printed. For
details on how to initialize the File Manager system, see
Batch-Spool Monitor Reference Manual (92060-90013).

e. The operator either sets the clock to current time
using the TM operator request, or enters any other
request (the system starts with time set to 8:00 on
approximate release date).

ERROR HALTS

The following halts can occur during use of the bootstrap.

Halt
Code Cause Recovery Action
102011 Disc error status is in Check that the disc
the A-Register. drive is ready —push
RUN to retry.
102031 Same as above, Occurs Check that the disc

during execution of
disc-resident part of
bootstrap.

drive is ready—push
RUN to retry.

The following halts can occur during the operation of
RTGEN.
102000

System error Irrecoverable

102001 Magnetic tape not

ready.

Check that the mag-
netic tape is ready—
push RUN to retry.

6-46

102032 Disc protect switch Turn off switch and
in protect position. press RUN.

102044 Magnetic tape not Check that the mag-
ready. netic tape is ready—

push RUN to retry.

102066 Punch error Check tape punch.

102077 Normal halt. Set switch register
Additional data and push RUN.
required.

RTGEN ERROR MESSAGES

The following messages may be printed on the list device
during execution of RTGEN:

MESSAGES DURING INITIALIZATION AND INPUT

PHASE

Meaning:

Action;

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

ERR 01

Invalid response to initialization request.

Message is repeated. Enter valid reply.

ERR 02

Checksum error on program input.

Computer halts; reposition tape to beginning of
record and press RUN to reread. If input is
from MT or DF, it is automatically backspaced
when RUN is pressed unless bit 15 is set.

ERR 03

Record out of sequence.

Same as ERR 02.

ERR 04

[llegal record type.

Same as ERR 02.

ERR 05

Duplicate entry point.

Revise program by re-labeling the entrv points
(the current entry point replaces the pre.ious
entry point).

Meaning:

Action:

Meaning:

Action:

Not used

ERR 07

Program name or entry point table overflow of
available memory.

Irrecoverable error. Revise or delete programs.

ERR 08
name

Duplicate program name.

The current program replaces the previous pro-
gram.

MESSAGES DURING THE PARAMETER PHASE

ERR 09
Meaning: Parameter name error (no such program).
Action: Enter valid parameter statement.
ERR 10
Meaning: Parameter type error.
Action: Same as ERR 09.
ERR 11
Meaning: Parameter priority error.
Action: Same as ERR 09.
ERR 12
Meaning: Execution interval error.
Action: Same as ERR 09.
GENERAL MESSAGES
ERR 13
Meaning: BG segment precedes BG main disc-resident
program.
Action: Irrecoverable.

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Performing System Generation

ERR 14

Invalid background bounds or illegal résponse .
to CHANGE FWA SYS MEM? or to CHANGE
BP LINKAGE?

Message is repeated. Enter valid reply.

ERR 15

Type 6, 14, or 30 module illegally calling a
module that is not type 0, 6, 14, or 30.

Revise the calling module.

ERR 16

Base page linkage overflow into system commu-
nication area.

Diagnostic printed for each word required
(communication area is used). Revise order of
program loading or CHANGE BP LINKAGE
answers to reduce linkage requirements.

ERR 17

Current disc address exceeds number of avail-
able tracks. '

Irrecoverable error.

ERR 18

Memory overflow (absolute code exceeds LWA
memory).

Diagnostic printed for each word required (ab-
solute code is generated beyond LWA). Revise
program or BG BOUNDARY answer.

ERR 19

Not used

ERR 20

Not used

ERR 21

Module containing entry point
loaded.

$CIC not

Irrecoverable error.

6-47

RTE-1I

Meaning:

Action:

Meaning:

Action:

ERR 22

Read parity/decode disc error. A-Register bits
7-14 show track number; bits 0-6 show sector
number.

After ten attempts to read or write the disc
sector, the computer halts. To try ten more
times, press RUN.

ERR 23

Invalid FWA BP LINKAGE.

Message repeated; enter valid reply.

MESSAGES DURING I/O TABLE ENTRY

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning;:

Action:

Meaning:

Action:

6-48

ERR 24

Invalid channel number.
Enter valid EQT statement.

ERR 25

Invalid driver name or no driver entry points.

Same as ERR 24.

ERR 26

Invalid or duplicate D, B, T operands.

Same as ERR 24.

_ERR 27

Invalid logical unit number.

Enter valid DRT statement.

ERR 28

Invalid channel number.

Enter valid INT statement.

ERR 29

Channel number decreasing.

Same as ERR 28.

ERR 30
Meaning: Invalid mnemonic.
Action: Same as ERR 28.
ERR 31
Meaning: Invalid EQT number.
Action: Same as ERR 28.
ERR 32
Meaning: Invalid program name.
Action: Same as ERR 28.
Meaning: Invalid entry point.
Action: Same as ERR 28.
ERR 34
Meaning: Invalid absolute value.
Action: Same as ERR 28.
ERR 35
Meaning: Base page interrupt locations overflow into
linkage area.
Action: Re-start Disc Loading Phase at FWA BP LINK-
AGE? request.
ERR 36
Meaning: Invalid number of characters in final operand.
Action: Same as ERR 28.
GENERAL MESSAGE
ERR 37
name
Meaning: Invalid declaration of common in system or li-
brary programs (name is the illegal program).
Action: Revise the program.

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

ERR 38

System area overflows scratch area. (This error
sometimes possible when restarting disc loading
phase; irrecoverable.)

Check order of loading programs or move
scratch boundary up.

ERR 39
name

System illegally referenced a type 6 program
(name is the type 6 program).

Revise the program.

ERR 40

First system track defective or first scratch
track defective.

Redefine the track areas.

ERR 41

More than 10 bad tracks on system, auxiliary
and scratch discs combined.

Redefine track area.

ERR 42

Absolute system area contains a bad track.

Redefine track area.

ERR 43

Disc specifications do not conform to system
disc.

Redefine
answers,

track area or sectors per track

ERR 44

Invalid partition number entered.

Reenter partition description with valid decimal
number, between 1 and maximum defined
during initialization.

Meaning:

Action:

Meaning:

Action:

Meaning;:

Action:

Meaning:

Action:

Meaning:

Action:

Meaning:

Action:

Performing System Generation

ERR 45

Invalid partition size.

Reenter partition description with valid decimal
size, between 1 and 1024 pages.

ERR 46

Invalid partition type.

Reenter partition description with valid type,
BG or RT.

ERR 47

Invalid reservation parameter.

Reenter partition description. Fourth parame-
ter must be “R” to reserve a partition.

ERR 48

Invalid or unknown program name.

Reenter response with corrected name or enter
/E to end this sequence.

ERR 49

Invalid partition number.

Reenter response with corrected number or
enter /E to end this sequence.

ERR 50

Program specified is too large for partition
assigned.

Assign program to a larger partition or continue
without assigning this program.

6-49

RTE-III

Meaning:

Action:

Meaning:

Action:

6-50

ERR 51

Invalid page size. Either smaller than the pro-
gram size, or larger than maximum addressable
partition size.

Reenter response with valid size or continue
without overriding this program’s page
requirements.

ERR 52

Module being relocated references an SSGA
entry point but does not have proper program
type to allow SSGA access.

Restart generation from Parameter Phase and
change the main program involved to a type
allowing SSGA access or to a type 8 to delete
it from the generation.

Meaning:

Action:

Meaning:

Action:

ERR 53

The sum of all partition sizes does not equal the
number of pages remaining after System Avail-
able Memory.

Redefine all partitions.

ERR 54

A subroutine or segment has declared more
common than the associated main program.

Recompile the main pragram declaring the
maximum common needed by any segment or
subroutine to be used.

APPENDIX A
SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

APPENDIX A Octal Location Contents Description

This appendix contains the following information: SYSTEM TABLE DEFINITION

01647 X1 Address of index
SYSTEM COMMUNICATION AREA register save area
) X 01650 EQTA FWA of equipment table -
Base page locations of area used for 01651 EQT# No. of EQT entries -
system communication. 01652 DRT FWA of device reference -
word 1 table
01653 LUMAX No. of logical units (in DRT)
PROGRAM ID SEGMENT MAP 01654 INTBA FWA of interrupt table -
. 01655 INTLG No. of interrupt table entries -
Format of ID segments kept in system area 01656 TAT FWA of track assignment
for user programs. table
01657 KEYWD FWA of keyword block
1/0 MODULE/DRIVER COMMUNICATION
EQUIPMENT TABLE 01660 EQT1 W Addresses
Format of Equipment Table entries for RTE 01661 EQT2 O,f
devices. 01662 EQT3 first
01663 EQT4 11-words
01664 EQT5 of
01665 EQT6 (current
01666 EQT7 EQT
DEVICE REFERENCE TAB
LE 01667 EQTS8 entry
Format of table relating logical units to devices 01670 EQT9 (see 01771
in Equipment Table. 01671 EQTI10 | forlast
01672 EQT11 4 words)
01673 CHAN Current DMA channel No.
01674 TBG I/O address of time-base card
DISC LAYOUT 01675 SYSTY EQT entry address of system
Allocation of disc space for RTE system. TTY
SYSTEM REQUEST PROCESSOR/ EXEC COMMUNICA-
TION
01676 RQCNT No. of request parameters - 1
SYSTEM COMMUNICATION AREA 01677 RQRTN Return point address
01700 RQP1) Addresses of
A block of storage in base page, starting at octal location 01701 RQP2 request
1647, contains the system communication area and is used 01702 RQP3 parameters
by RTE-III to define request parameters, I/O tables, 01703 RQP4 (set
scheduling lists, operating parameters, memory bounds, etc. 01704 RQP5 (for
The Real-Time Assembler allows relocatable programs to 01705 RQP6 maximum
reference this area by absolute addresses 1647-1777 octal. 01706 RQP7 of 9
- User programs can read information from this area, but 01707 RQP8 J parameters)
cannot alter it because of the memory protect feature. 01710 RQPY9

A-l

RTE-ITI

Octal Location Contents

Description

ADDRESSES OF SYSTEM LISTS

01711 SKEDD ‘Schedule’ list

01713 SUSP2 ‘Wait suspend’ list
01714 SUSP3 ‘Available:memory’ list
01715 SUSP4 ‘Disc allocation’ list
01716 SUSPS ‘Operator suspend’ list

DEFINITION OF EXECUTING PROGRAM ID SEGMENT

01717 XEQT ID segment addr. of current
program

01720 XLINK ‘Linkage’

01721 XTEMP ‘Temporary’ (5-words)

01726 XPRIO ‘Priority’ word

01727 XPENT ‘Primary entry point’

01730 XSUSP ‘Point of suspension’

01731 XA ‘A-Register’ at suspension

01732 XB ‘B-Register’ at suspension

01733 XEO ‘E and overflow’register

suspension

SYSTEM MODULE COMMUNICATION FLAGS

01734 OPATN Operator/keyboard attention
flag

01735 OPFLG Operator communication flag

01736 SWAP RT disc resident swapping
flag

01737 DUMMY 1/O address of dummy
interface card

01740 IDSDA Disc addr. of first ID segment

01741 IDSDP Position within sector

DEFINITION OF MEMORY ALLOCATION BASES

01742 BPA1 FWA user base page link area
01743 BPA2 LWA user base page link area
01744 BPA3 FWA user base page link
01745 LBORG = FWA of resident library area
01746 RTORG FWA of real-time common
01747 RTCOM Length of real common
01750 D RTDRA FWA of real-time partition
01751 D AVMEM LWA+1 miemory real-time
partition
01752 BGORG FWA of background common
01753 BGCOM Length of background
common
01754 D BGDRA FWA of background partition

A2

UTILITY PARAMETERS

01755 TATLG Length of track assignment
table

01756 TATSD #of tracks on system disc

01757 SECT2 # sectors/track on LU 2
(system)

01760 SECT3 #sectors/track on LU 3
(aux.)

01761 DSCLB Disc addr of res lib entry pts

01762 DSCLN # of res lib entry points

01763 DSCUT Disc addr. of RTE Library

01764 DSCUN #of RTE Library routines

01765 LGOTK LGO: LU#, starting track,
of tracks (same format as
ID seg word 28)

01766 LGOC Current LGO track/sector
address (same format as ID
seg word 27)

01767 SFCUN LS: LU# and disc address
(same format as ID seg
word 27)

01770 MPTFL Memory protect on/off flag
(0/1)

01771 EQT12 Address of

01772 EQT13 last 4

01773 EQT14 words of

01774 EQT15 current EQT

01775 D FENCE memory protect fence
address

01777 BGLWA LWA memory background
partition

The letter D indicates the contents of the location are set
dynamically by the dispatcher.

PROGRAM ID SEGMENT

Each user program has a 28 word 1D segment located in the
system area. The format of the ID segment is shown in
Table A-1. The address of each ID segment is located in the
Keyword Table (see location 01657). The ID segment
contains static and dynamic information defining the
properties of a program. The static information is set during
generation time or when a program is loaded on-line, and
the dynamic information is maintained by the Executive.

The number of ID segments contained in a system is set
during generation time, and is directly related to the
number of programs that can be in core at any given time.
If all the ID segments are in use, no more programs can be
added on-line.

Short ID segments requiring nine words are used only for
background program segments. One short ID segment is
required for each program segment. If an on-line load is
done and there are no blank short ID segments available,
a regular 28 word one will be used.

Table A-1. ID Segment Map

System Tables and Communication Area

WORD CONTENTS
15 14 13 12 1 10 9 8 7 6 5 4
-1 X-REGISTER AT SUSPENSION (MEMORY RESIDENT PROGRAMS ONLY}
0 Y-REGISTER AT SUSPENSION (MEMORY RESIDENT PROGRAMS ONLY)
1 LISTl LINKAGE ' : '
2-6 5 WORD TEMPORARY AR ELA USED FOR SPECIA:L, FLAGS IN QUE(’JES (ETC)
7 PRI(%RITY : x : :
[J 8 PR[M;;(Y ENTRY POINT ' - ' :
9 POH\:IT OF SUSPE;\I;;(_)_N (XS,USP) .' :
10 A REGISTER AT SUSPENSlON (XA) ' '
1 a B RErGISTER AT SUSPENSIOTN (XB) I ' PORTION OF
“1; 1 E/O REGISTERS AT SUSPENS|ON (XEO)) 4 # N :\l%%l?\/lGAr\ALELNYTUSED

N

t 4 BY MEMORY RES-

WHERE:

*

™

JDO>r

® 13 NAME (FIRST AND SECOND CHARACTERS) IDENT PROGRAMS ;
; X X - LINK ISSTILL TO
® 14 NAME (THIRD AND FOURTH CHARACTERS) WORD 1.
® 15 NAME (FIFTH CHARACATER| T™ | cL| AM | ss TYPE
16 NA‘ * I NP| w [A J x | 0 l* R | o . STATUS
17 TIME LIST LINKAGE WORD ‘ ‘
18 RESjOLUTION [T] - MULTIPLE
19 LOW ORDER 16 BITS OF EXECUTE TIME LESS 24 HRS. IN 10s MS. ‘
20 HIGH ORDER 16 BITS OF E;(ECUTE TIME ‘
21 BA | FW | « [AT l RM] RE | pPw ‘ RN | %A;'HER ID-SEG. NUMBER
22 RP ‘ # OF PAGES l * l N PARTITIgl\Vli: o
® °j LOW. MAIN ADDRESS) o
® 24 HI M:AIN ADDRESS +1 I ‘ ’
® LOW BASE PAGE ADDRESSI I I
® HI BIASE PAGE ADDRESS +1 ‘ o
® 27 DISC ADDRESS (LU (15,) TRACK (14-7), SECTOR (6-0) ‘ j
28 SWA'P DISC ADDRESS (LU (15), TRACK (14-7), < TRACKS (60))
® WORDS USED IN SHORT ID SEGMENT

Dormant bit {set dormant on next schedule
attempt).

Time list entry bit (program is in the time list).
= Batch (program is running under batch).

= Father is waiting (he scheduled with wait).

= Attention bit (operator has requested atten-

= Re-entrant memory must be moved before
dispatching program.

= Re-entrant routine in control now.

= Program wait (some program wants to schedule
this one).

= Resource number either owned or
locked by this program.

= Reserved partition—only for programs that
request it.

These bits are reserved for future improve- D B
ments.
. T
Temporary load (copy of ID segment is not on BA
the disc). FW
Core lock (program may not be swapped). AT
All memory (program uses all of its area). tion).
Short segment (indicates a 9-word |D segment). RM
No abort (pass abort errors to the program
instead). RE
No parameters allowed on reschedule. PW
Wait bit (waiting for program whose 1D seg-
ment address is in word 2). RN
Abort on next list entry for this program.
Operator suspend on next schedule attempt. RP
Resource save (save resources when setting
dormant). MPF] =

Memory protect fence index.

RTE-III
THE EQUIPMENT TABLE

The Equipment Table (EQT) has an entry for each 1/O
controller recognized by RTE-III (these entries are
established by the user when the RTE-III System is
generated). These 15-word EQT entries reside in the
system, and have format as shown in Table A-2.

Table A-2. EQT Table Entries

Word Contents

150141312(11109]876(543[210

1 I/O Request List Pointer

2 Driver “‘Initiation” Section Address
3 Driver **Completion” Section Address
DB |[P|S|T}| Unit# Channel #
AV |EQ TYPE CODE STATUS

CONWD (Current I/O Request Word)

Request Buffer Length

Temporary Storage for Optional Parameter

4
5
6
7 Request Buffer Address
8
9
0

Temporary Storage for Optional Parameter

11 Temporary Storage for Driver
12 Temporary Storage for Driver
13 Temporary Storage for Driver

14 Device Time-Out Reset Value
15 Device Time-Out Clock

Where:
D= 1 if DMA required.
= 1 if automatic output buffering used.
pP= 1 it driver is to process power fail.
S= 1 if driver is to process time-out.
T= 1 if device timed out (system sets 1o zero
before cach 1/0 request).
Unit = Last sub-channel addressed.

Channel = /O select code for the I/O controller (lower
number if a multi-board interface).

AV = 1/0O controller availability indicator:
0= available for use.
1= disabled (down).
2= busy (currently in operation).
3= waiting for an available DMA channcl.

A4

STATUS = the actual physical status or simulated status at
the end of each operation. For paper tape
devices, - two status conditions are simulated:
Bit 5 = 1 means end-of-tape on input, or tape
supply low on output.

EQ = type of device. When this octal number is
TYPE linked with “DV«,” it identifies the device’s
CODE software driver routine as follows:

00 to 07 = paper tape devices (or system control devices).
00 = teleprinter (or system keyboard control device).
0l1= photoreader.

02 = paper tape punch.

05 sub 0 = console (or system keyboard control device).
05 sub 1| _ mini cartridge.

05 sub 2| devices.

10 to 17 = unit record devices.

10 = plotter.

11= card reader.

12 = line printer.

15= mark sense card reader.

20 to 37 = magnetic tape/mass storage devices.
31= 7900 moving head disc.

32 =7905 moving head disc.
40 to 77 = instruments.

CONWD = user control word supplied in the I/O EXEC
call (see Section III).

DEVICE REFERENCE TABLE

Logical unit numbers numbers from decimal 1 to 63 pro-
vide logical addressing of the physical devices defined in

the EQT and the subchannels within the physical devices
(if applicable). These numbers are maintained in the Device
Reference Table (DRT), which is created by the generator,
and can be modified by the LU operator request (see Figure
A-1). Base page location 1652 contains the address of the
DRT first word table. Base page location 1653 contains

the number of LU entries (LUMAX).
Word 1

Y

Subchannel No. | LU Lock Flag EQT Number

6]14'13'12]11'10'9|8 ' 7'6]5'4'3[2"1"0

F Downed 1/O Request List Pointer
A

Word 2
F (up/down flag) = O if device is up
1 if device is down

Figure A-1. Device Reference Table

The first DRT word contains the EQT entry number of the
device assigned to the logical unit, and the subchannel
number within the EQT entry. The second DRT word
contains the logical unit’s status (up or down) and a
pointer to any downed I/O requests. If the pointer is less
than 64, it is the LU number off of which the downed I/O
requests are queued. If several LU’s point to the same
device, the requests are queued off the lowest LU number

(the major LU). If the pointer is greater than 64, it points
to the device’s downed I/0 request list. There are separate

tables for words orfe and two, with the word two table

located in memory immediately following the word one
table. The functions of logical units 1 through 6 are pre-
defined in the RTE-III System as:

1 — system console

i

Nk W
i

reserved for system

- reserved for system
standard output unit’
standard input unit
— standard list unit

DISC LAYOUT OF RTE-II SYSTEM

Figure A-2 diagrams the allocation of disc space by the
system generator when it creates an RTE-III System. The
bottom portion of the figure shows the difference between

loader area in the moving head and fixed head system.

DISC PROTECT
BOUNDARY

TABLES

AVAILABLE DISC
SPACE (For Swapping, scratch files)

RELOCATABLE
LIBRARY AND UTILITY
PROGRAMS

LIBRARY ENTRY POINTS

BASE PAGE LINKAGES

.BACKGROUND DISC RESIDENT

BACKGROUND RESIDENTS

BASE PAGE LINKAGES

REAL-TIME DISC RESIDENT

COMMON AREAS

REAL-TIME RESIDENTS

RESIDENT LIBRARY
SYSTEM 1/0 TABLES
REAL-TIME EXECUTIVE

SYSTEM COMM. AREA
RESIDENT BASE PAGE LINKAGES

SYSTEM COMM. AREA
RESIDENT BASE PAGE
LINKAGES

RT SYSTEM LOADER

Repeated for all
Background Disc
Resident and Back-
ground Segments

Repeated for all
Real-Time Disc

Residents

TPRTE-23

Figure A-2, Disc Space Allocation in RTE-III System

System Tables and Communication Area

A-5/A-6

APPENDIX B
REAL-TIME DISC USAGE

This appendix covers the following subjects:

Track Configuration
Multiple CPU/7905 Operation
Source Record Format

TRACK CONFIGURATION

The configuration of disc tracks is normally done through
the interactive generation process described in Section VI.
However, when more than one disc controller is needed,
the generator dialogue cannot be used and a track map table
must be defined in a user program. Because they differ,
this process is described separately for the 7900 and 7905
discs.

For both the 7900 and 7905, when a program tries to access
a track by a track number greater than the number of tracks
assigned to a given subchannel, the driver sets bit 5 in the
status word (end-of-disc) and exits with the transmission

log set to the number of tracks assigned to the subchannel.
To obtain this information, a program can request an im-
possible track number once and thereafter stay within the
bounds on the subchannel.

If a parity error occurs during disc transfer, a special error
message is printed (see’ Appendix E). For peripheral disc
transfers, a parity error causes the transmission log to be
returned to the calling program as -1.

7900 EXTRA CONTROLLER TRACK CONFIGURATION

The track map table used for a 7900 disc system must
contain the following:

® Number of sectors per logical track
® First track number on subchannels O through 7

® Number of tracks on subchannels O through 7

The information needed to properly configure a disc is
fully described in Section VI. The most necessary infor-
mation is recapitulated here.

The 7900 Disc Drive has a maximum of 203 tracks per
platter. The two platters on each drive are divided as follows:

128 words per sector
48 sectors per track
203 tracks per platter

The RTE 7900 Disc Driver treats a logical track as:

64 words per sector
96 sectors per track

SUBCHANNELS

The moving head driver for an HP 7900 disc system can
have four drives chained to a single controller. There may
be two platters per drive, and each disc platter is a sub-
channel accessed through a logical unit number that is
referenced back to the equipment table (EQT) entry
number of the controller. Thus, the disc system can
control a maximum of eight subchannels, numbered 0
through 7.

Subchannels are numbered so that even-numbered sub-
channels are fixed platters and odd numbered sub-
channels are removable platters.

SECTORS

READ DATA. The drivers divide cach track into 64-word
sectors. Whenever more than 64 words are transmitted, the
READ request is fastest when begun on an even scctor.

WRITE DATA. WRITE requests starting on an odd sector
or ending in an even sector require more time; thus, the
fastest transfers are WRITE requests that start on an even
sector and end in an odd sector, The system always organ-
izes programs and swaps them out in such a way that trans-
fers start on an even and end on an odd sector, thereby
minimizing program load and swap times. The WRITE re-
quest data can be checked forrecoverability by setting bit 10
in the control word (ICNWD). This check on all data written
slows the WRITE process.

B-1

RTE-111

TRACKS

Each subchannel may contain from 0 to 203 tracks. 203
tracks are the maximum available on the 7900 physical
disc. The first track may be any track on the platter.
Tracks available to the driver are numbered relative to the
first track assigned to the system on each subchannel;
thus, if the first available physical track on a subchannel
is 10, access by the user to this track must specify logical
track number 0.

DEFINING 7900 TRACK MAP TABLE

When an extra controller is used, tracks can only be
mapped by defining a table in the user program as
follows:

ASMB,R,B,L
NAM $TB31,0
ENT $TB31

$TB31 DEC -n
DEC FTO,FTL,FT2,FT3,FT4,FT5,FT6,FT7
DEC NOO,NO1,NO2,NO3,NO4,NO5,NO6,NO7
END

where n is the number of 64-word sectors per track
FTO through FT7 are the first track numbers for each
subchannel 0 through 7
NOO through NO7 are the number of tracks on sub-
channels 0 through 7

Example:
Assume a 7900 disc with two subchannels, O and 1. Place

tracks O through 100 on subchannel 0 and tracks 20 through
80 on subchannel 1.

ASMB,R,B,L
NAM §$TB31,0
ENT §$TB3l

$TB31 DEC -96 96 sectors per track
DEC 0,20,0,0,0,0,0,0
DEC 101,61,0,0,0,0,0,0
END

7905 EXTRA CONTROLLER TRACK CONFIGURATION

The table used to map the 7905 contains the following
information:

® Number of sectors per track

® Total number of subchannels on drive

B-2

And for each subchannel, the following must be specified:
Cylinder number of track O

Number of surfaces per cylinder

Head number of track O

Unit number of disc drive

Number of tracks on subchannel

To properly configure a track on the 7905, certain infor-
mation is given here; a full description of track configura-
tion can be found in Section VI.

The HP 7905 Disc Drive provides three surfaces per disc
drive. Each surface is divided as follows:

128 words per sector
48 sectors per track
411 tracks per surface

The RTE 7905 Disc Driver treats a logical track as:

64 words per sector
96 sectors per track

SUBCHANNELS

The HP 7905 disc system can control up to eight disc drives
connected to one controller. Each disc drive consists of two
platters of which one surface is reserved leaving three sur-
faces to record data. Unlike the 7900, the 7905 subchannels
are not directly related, one per platter, to the disc drive and
the 7905 is not restricted to eight subchannels.

Each subchannel is a contiguous group of tracks on a single
drive. There may be more than one subchannel per drive,
but subchannels cannot cross drive boundaries. The exact
number of subchannels is specified by the user. There may
be as many as 32 subchannels per drive. Subchannels are
numbered sequentially from zero; no numbers may be
skipped.

SECTORS

The discussion of sectors for the 7900 is also true for the
7905.

TRACKS

Each disc drive has 411 cylinders (or head positions) re-
sulting in a maximum of 1,233 tracks (411 head positions
times the 3 disc surfaces). Theoretically, this number of
tracks could all be assigned to one subchannel, however,
there are program limitations. Peripheral disc subchannels
used by the Batch-Spool Monitor must not have more than
1024 tracks, excluding spares, per subchannel. On system
or auxiliary discs (logical units 2 or 3), each subchannel is
limited to 256 tracks excluding spares.

Head positions (cylinders) are numbered from 0 through
410. There is one head for each surface, numbered 0, 1, 2.

SURFACE ORGANIZATION

Subchannels may be on one, two, or three surfaces, one
head per surface. It is best to alternate surfaces when more
than one surface is used. This minimizes head movement.
For example, if track O is at cylinder (head position) 10 on
head 0, then track 1 should be at cylinder 10 on head 1 and
track 2 at cylinder 11 on head 0. The implications of split-
ing a subchannel between fixed and removable platters are
discussed in Section VI under Disc Planning.

UNIT NUMBER

The unit number is a number associated with each 7905
disc drive. It may be set by the user behind the front panel
of the drive, and is always displayed on the front panel.
There may be eight units, numbered O through 7.

DEFINING THE 7905 TRACK MAP TABLE

When an extra controller is needed, tracks are mapped in a
table defined as follows:

ASMB,R,B,L
NAME $TB32,0
ENT $TB32

$TB32 DEC 96 number of 64-word sectors must
be 96

n is the total number of subchannels
cylinder number of track O for sub-

channel 0 (SCO)

DEC -n
SCO DEC «x

OCT «a a is defined below
DEC t t is the number of tracks this sub-
channel
SC1
repeat for next subchannel
SCn-1
until all subchannels are defined
END
Where:

a is defined as:

bits 15 - 12 = number of surfaces per cylinder
bits 11 -8 =head number of track 0
bits 3 -0 =unit number of the disc

Spare: tracks can be specified by skipping tracks after each
subchannel when constructing the table. A good rule of
thumb is to have 11 spare tracks for every 400 tracks; this is
the same as 11 spare tracks per surface. To skip tracks, set
the cylinder number of track O for each subchannel to a
number greater than the cylinder number of the last track
of the next lower subchannel on that surface.

Real-Time Disc Usage

Example:

Define 10 HP 7905 subchannels using two surfaces of the
removable disc cartridge. The number of tracks on each
subchannel is 76 plus 4 spare tracks per subchannel. Each
subchannel starts at head 0. Only the first three subchannel
definitions are fully shown in the following code:

ASMB,R,B,L
NAM $TB32,0
ENT $TB32
$TB32 DEC 96
DEC -10 total of 10 subchannels

SCo DEC o0 first subchannel (subchannel 0)
starts at cylinder O

two surfaces, head 0, unit 5

76 tracks for subchannel O
Second subchannel starts at
cylinder 40 (4 spare tracks)
OCT 20005

DEC 76

SC2 DEC 80

OCT 20005
DEC 76
SC1 DEC 40

third subchannel starts at cylin-
der 80 (4 spare tracks)
OCT 20005
DEC 76
SC3 DEC 120
continue for remaining sub-

channels through SC9
SC9 DEC 360
OCT 20005
DEC 76
END

MULTIPLE CPU/7905 SYSTEM OPERATION

In a multiple CPU/7905 System environment, the 7905 disc
drivers and the controller prevent destructive interference
during transfers of data to and from the disc. If a CPU is not
to share access to the same physical disc addresses with any
other CPU, this is adequate protection,

If a file or set of files is to be shared by more than one CPU,
a procedure is needed to prevent the following possible
events:

a CPU A reads a sector to update it.
b. CPU B reads the same sector to update it.
c. CPU A writes its updated sector back to the disc.

d. CPU B writes its updated sector back to the disc, de-
stroying the effect of CPU A access.

To allow software to be written to effect multiple CPU/
7905 System operation without destructive interference,
the HP 7905 driver (DVR32) services a lock/unlock func-
tion call. This call can be issued from one CPU to lock the
disc during an I/O operation or set of I/O operations. No
other CPU can access the disc until an unlock function call
is issued by the original CPU.

B-3

RTE-HI

DVR32 LOCK/UNLOCK FUNCTION CALL

The I/0 Control request (see Section III) is used to hold a
Resource Number (RN) and, subsequently, to release the

RN. The RN must be aliocated and set as a global RN prior
to issuing the I/O Control request. For a description of Re-
source Numbering, see Resource Management in Section III.

The FORTRAN [V calling sequence for an I/O Control
request containing a lock/unlock function call is:

ICODE=3

ICNWD=control word
IRNUM-=resource number

CALL EXEC(ICODE,ICNWD,IRNUM)

ICNWD defines a one-word octal value containing control
information. For DVR32, control word bits 12-6 contain a
function code for the following control states:

Function Code

(bits 12-6) Meaning
15 Lock
00 Unlock

IRNUM is specified only for function code 15. IRNUM
contains the RN to be cleared when the lock function call
is executed. If a lock is currently in effect from another
CPU, the calling program is suspended until the disc is avail-
able. If the lock is obtained immediately, the I/O Control
request completes immediately. If a lock is already in force
by this disc controller, the request completes with the RN
cleared.

The lock/unlock function codes are provided to alleviate
any CPU contention problem. If a CPU wishes to modify
the same disc area as another CPU, the following code se-
quence could be executed from both units to prevent their
interfering with each other:

ICODE=12B Allocate and
CALL RNRQ(ICODE,IRNUM,ISTAT) set global RN

CALL EXEC(3,IDLU+1500B,IRNUM) — Issue lock call,
function code
=15

CALL RNRQ(5,IRNUM,ISTAT) —Set/clear the

RN

Lock is
granted by
this point

B4

Next, read the
disc and
modify data

CALL EXEC(1,IDLU,....)

CALL EXEC(2,IDLU,....) — Then, write it

back.

— Now, issue
unlock call,
function code
=0

CALL EXEC(3,IDLU)

To use the lock/unlock function, each CPU operating sys-
tem must support it.

The sequence described previously for CPU A and CPU B
using the lock/unlock function would now be:

a;. CPU A requests a lock from the driver and it is
granted (no other CPU has a lock in force).

a;. CPU A reads a sector to update it.

b;. CPU B requests a lock from its driver. Because CPU
A has a lock, CPU B must wait.

¢y. CPU A writes its updated sector back to the disc.
¢;. CPU A releases its lock.

b,. CPU B disc driver gets an interrupt from the disc
controller informing it that the lock is now available
and completes the lock requested by B at step by .

bs. CPU B reads the same sector to update it.

d,;. CPU B writes its updated sector back to the disc.
The sector now has both updates.

dy. CPU B releases its lock.

SOURCE RECORD FORMATS

The source format used for the disc records by the system
programs Editor, Assembler, ALGOL, FORTRAN and
FORTRAN 1V, is given in Table B-1. All records are
packed ignoring sector boundaries. Binary records are
packed directly onto the disc. After an END record, a
zero word is written and the rest of the sector is skipped.
If this zero word is the first word of the sector, it is not
written. Binary files are always contiguous so a code
word is not required.

Table B-1.

Source Format

Real-Time Disc Usage

Word 1

Where L is the record length in words excluding

Word 1

Word 2

[f Word 1 =@ then end of TAPE

15

8

7

L

ZERO

CHARI1

CHAR2

If Word 1 = —1 then end of FILE

Odd characters are padded with blanks to make a full word. The last
word on any given track in a multi-track filé is a code word that points

to the next track in the file.

Where LU# is either 2 (system) or 3 (auxiliary) depending on which

platter the track is on.

Code Word Format

15

7

LU#

TRACK

B-5/B-6

APPENDIX C
SAMPLE RTE-III
GENERATION

NOTE

The two completed workshects included

in this Appendix are samples of an HP

7905 Disc Configuration. The generator
listing is from an HP 7900 Disc Configuration

C-1/C-2

STEP 1

CYLINDER

HEAD 0 —>»

HEAD 1 ———»

HEAD 2

FILL IN UNIT NUMBER:

p

CYLINDER Oﬂ

/— CYLINDER 410

Sample RTE-III Generation

Table C-1. Completed Worksheet Giving Suggested 7905 Disc Configuration

l STEP 3 TRANSLATE STEP 2 TO NUMBERS:

HEAD 0 —1
HEAD 1 - []
]
[L=
TIMING Sys7em %
HEAD] é»,4())(;&.14':)' oON
Flxep Dise
e _—D \—-/
[T
I
TRACKS SHOWN END-TO-END ON THREE SURFACES—CIRCLE SUBCHANNELS:
0 40 80 120 150 200 240 280 320 360 400 410
»
SUBCHA vk L | A H
4 | 6 B L. 1 hal)} REMOVABLE
(FM 6 R) gogsz 1 921 Spress
T
” z J36 TRETY SUBNMAM%E‘— E S ; FIXED
. 143 TR Y t'
(_SYSTE) &/ sparES .3 (Avx) o lsparts:
969
SUBCHANNEL ¢ | oL
NUMBER OF
TRAGKS O | 286 | /43 | &8
STARTING
CYLINDER ¢ 649 ﬂ
STARTING
HEAD > & &
NUMBER OF
SURFACES / / 2
NUMBER OF
SPARES & 7 3L
SYSTEM ?
(v) /
AUXILIARY
(v) v_
SCRATCH ?
(v)

C-3

RTE-II

STEP 1

STEP 2

CYLINDER

HEAD 0 ——»

HEAD 1 ——-'

HEAD 2

Table C-2. Completed Worksheet Giving Suggested 7905 Disc Configuration

FILL IN UNIT NUMBER:
/—CYLINDER 410

CYLINDER 0 —~

UNIT #- ¢#

HEAD 0 —1
I SYSTEM oA
HEAD 1 _/ ™~ REMoVABLE
T Dse
|| L
TIMING
HEAD]
e — __/
[T
o
TRACKS SHOWN END-TO-END ON THREE SURFACES—CIRCLE SUBCHANNELS:
O 40 80 120 150 200 240 280 320 360 400 410
—tii L
/ lgascquu £ svacHAMrEd J "‘7
356 TRE] 43 TREKS ' :
¢ SPHRES S 5“, SPARGS :S REMOVABLE
\[GYTe . THMG L T
s - - -4 - -
FIXED
SUBCHANAMEL | qoch's, " SPF S
(Fm6R)

STEP 3 TRANSLATE STEP 2 TO NUMBERS:

SUBCHANNEL ¢ I
st | §92

133~

NUMBER OF
TRACKS

STARTING
CYLINDER

STARTING
HEAD

NUMBER OF .
SURFACES

NUMBER OF
SPARES

SYSTEM ?
(v)

AUXILIARY -
(v)

.SCRATCH ?
(v)

A /!

’\c&vpﬁa

Sample RTE-III Generation

MH DISC CHNL?
21

TRKS, FIRST TRK ON SUBCHNL?
07
203,0
1?7
2m3,0
27
203,0
3t
203,90
47
203,00
57
2m3,0
67
203,90
7%
203,90

128 WORD SECTORS/TRACK?
48

SYSTEM SUBCHNL?
2

SCRATCH SUBCHNL?
2

AUX DISC (YES OR NO OR # TRKS)?
YES

AUX DISC SUBCHNL?
!

START SCRATCH?
[

TAG CHNL?
13

PRIV, INT, CARD ADDR?
@

PRIV, DRIVERS ACCESS COMMON?
ND

RT CORE LOCK?
YE

BG CORE LOCK?
YE

SWAP DELAY?
50

CbH

RTE-1II

MEM SIZE?
64

PRGM INPT?
MY

LIBR INPT?
PY

PRAM INPT?
TY

INITIALIZE SUBCHNLS
2?
NO
27
NO
3?7
ND
47
NO
57
ND
67
NO
7?
NO

PUNCH BOOQY?
YE

PUNCH BOOT?
ND

HALT 77 = SET 8SWR 8 PRESS RUN
*EOQT

HALT 77 =« SET SWR & PRESS RUN

NO UNDEF EXTS

HALT 77 = SET SWR & PRESS RUN

PARAMETERS

D.RTR,1,1

WHZAT,2,1

ASMB, 3,95

XREF,3,08

EDITR, 3,80
/E

CHANGE ENTS?

C-6

+EAU MACRO!'S
«.MPY,Rp,184200
2D1V,RP,100400
.DLD/RP,194200
.DST,RP,124400
+HFP MACRO'S
L,FAD,RpP,1250300
FS8,RP, 135020
JFMP ,RP, 185040
JFDV,RP, 1850264
IFIX,RP, 195109
FLOAT,RP, 125120

* %» »

*

.GOTO,RP, 125221
. .MAP,RP, 105222

LENTR,RP, 105223

TENTP,RP, 105224

Sample RTE-III Generation

¢01MX EXTENSION MALRO'S

*

MVW,RP, 1085777

*FFP MX

+FFP MACROIS

%

Hh B % % % %

DBLE,RP, 125201

SNGL,RP, 185202

JXMPY,RP,105203
JXDIV,RP, 105204
.DFER,RP, 105285
.XADD,RP,125213
JXSUB,RP,105214

+PWR2,RP, 105225
JFLUN,RP, 145226
_PACK,RP, 135234
.XFER,RP,1A522Q
L XPAK,RP, 1115286
XCOM,RP, 195215
.»DCM,RP, 105216
DDINT,RP,1a5217
XADD (RP, 145227
XSUB ,RP, 145210
XMPY JRP,145211
XDIV ,RP, 105212
/E

OF BLANK ID SEGMENTS?

1@

OF BLANK BG SEG,

25

SEGMENTS?

MAX NUMBER OF PARTITIONS?

10

FWA BP LINKAGE?
100

SYSTEM

SCHED(vR99)02035 A53aS5
*SLIST @2077
*$MESS M2435
*$CVT3 Q4357
wSCVT] 024423
*$ABRT @4515
*S$TYPE 04427
*$MPT1 Q4557
wSMPT2 04732
*SMPT3 04745
*SMPT4 A5035
«SMPT5 a5n55
*SMPT6 a5n74
#$PARS m2845
*3STRT Q343a
*$8CD3 n5m13
*SINER 24n714
*$MPT7 05126

92¢60A~16020 REV,A 7592505

C-7

RTE-III

C-8

*SASTM Q2500
*"SMPT8 05252
*SIDNO 05113
"SWORK 02045
*"SWATR 04722
wSIDSM 74143
wEMPSA Q3566
BP LINKAGE 91640
RTIOC(P099)085444
w$CIC 05444
#8$XSI0 07620
*$SYMG 1@721¢
*$I0RG 05657
=S$YOUP 110707
»$IODN 10656
*SETEQ 11033
*SIRT A5575
*$XCIC 05460
«SDEVT 10877
«$GTI0 p6676
wSUPID 10710
wSCVEQ (101
»3YCIC (M5461
*$BLLO 01637
*8BLUP 016402
w«SDVYM nr232
*JRSM n74114
*$10CL 11072
*S$LUPR (1207
*$SEQ8RY 11352
*SCHTO 11449
BP LINKAGE 21531
EXECD(P@R99)11646
*EXEC 11646
wSERMG 13443
*SRAST 11650
*S$OTRL 13200
*SLIBR 12062
*$LIBX 126407
*$DREQ 13232
*SDREL 13316
*$80RL, 13205
«$808K 13334
*SERAB 13173
*SPYCN (2202
*$REJO 12356
*SCREL 1307 4
*$RSRE 12440
*"SABRE 12544
*$PWRS 11735
*SMVBF 12437
BP LINKAGE 014786
SALC (00P99)13624
*$ALC 13624
*SRTN 13725
BP LINKAGE ®1465

RTIME(AA99) 14054 14625

11602

13610

14091

92060~16016 REV,A 750505

02060=-16018 KEV,A 750505

02260-16017 REV,A 750505

92n6A=16Q14 750305

*$TADD 14525
wSCLCK 14054
*$TREM 14347
*STIME 142886
wSTIMY 14324
*SETTM 14472
wSTIMR 14420
*JONTM 14371
*STMRQ 14578
*S$SCLK 14278
*3BATM 14253
BP LINKAGE 01482

DISPM(0099) 14647

#SRENT 15216
*$BRED 17322
“$Z27Z 17403
wS$XEQ 14724
*SMRMP 15144
*SENDS 15145
*S$MATA 15146
*SMPFT 15147
*$BGFR 15150
*SRTFR 15182
wSALDM 16254
*$SDMAL 16257
*ESMAP 15320
*$PRCN 16303
*SEMRP 151141
*$LPSA 15112
*SXDMP 15413
BP LINKAGE 21434

STRRN(0Q99)17632

*3TRRN 17632
*$CGRN 17676
wSULLYU 17720

BP LINKAGE 01432

$ASCM(B099)17776

*S0PER 20Mm26
*SERIN 20046
*SNOPG 20036
*SILST 17776
"#§NQLG 20007
*$LGBS 20017
BP LINKAGE 21424
SYSLB(RRA99)20056

BP LINKAGE m1424

$BALB(OM99)20A56
BP LINKAGE 01424

$SPOL (B099) 20056
BP LINKAGE n1424

Pvs43(ea99)2p126
*1843 20126
*(C843 21576
*SMPID 20434

17515

17773

20055

20855

20055

20055

22430

92060=16013 REV,A 758585

92060-16019

9226016015

920nt~16005

920n2-16406

92002~16004

92p60~16R09

750326

741120

REV,B

REV,C

REV,C

REV, A

741120

750312

750416

750505

Sample RTE-III Generation

C-9

RTE-IIT

*N,SEQ 21735
BP LINKAGE m1422

DVP43(00@99)22431 23211 92p60~i60m1 REV,A 750505
*SPOWR 22431
*IP43 23187
*CP43 23m6@

BP LINKAGE n1418

DVRPO(2099)23241 24329
«I,00 23241
«C,20 23610
1,01 23244
*C,01 23610
*1,02 23241
*C,02 236102
B8P LINKAGE n1446

DVR11(0299)24342 235471
wC,lt 25124
wl, i1 24342

BP LINKAGE 0314486

DVR12(0099)2%5476 26025
wl,12 25476
«(C,12 25636

BP LINKAGE 91404

DVR23(un99)26026 26671 92202~16AA1 REV, A
»1,23 26026
*C,23 26643

BP LINKAGE n140Q4

DVR31(ea99)26705 30075
«],31 27552
BP LINKAGE 91404

DVRB2(¥P99)30101 31275 m2313~-16081 REV,A 7555
wl,62 Jai01
wC,62 0377

BP LINKAGE @140}

DVR63(0099)31322 33266 N9611~16005 REV,A 75m4ny
*x1,63 31346
«C,63 32771

BP LINKAGE @1377

DVA13(0a99)33304 33452 91200=-1600)1 REV,A 742325
w1413 33304
*CALY 33432

BP LINKAGE 21377

F4D,C(2A99) 33483 33452
BP LINKAGE 04377

F2F,B(0099)33453 33452
BP LINKAGE Q1377

w# OF 1/0 CLASSES?

C-10

Sample RTE-III Generation

16

wi OF LU MAPPINGS?
8

»# OF RESQURCE NUMBERS?
32

BUFFER LIMITS (LOW, HIGH)?
{oR.400

«* EQUIPMENT TABLE ENTRY

EQT 217
21,DVR31,D

EQT 027
15,0VR20,B,T832767

EQT @37
40,DVAL3,D

EQT 04?

EQT 857
16,DVR21,T232767

EQT 06?

EQY @772
25,0VR00,8,7832767

EQT o8?
23,0VR23,D,B,T232767

EQT a97?
26,DVRE2

EQT 107
27,DVR63

EQT 1172
14,DVR11,D

EQT 127
30,0VROQ,B,Ta32767

EQT 137
31,DVReQA,B,Ts32767

EQY 147
32,0VRQQ,B,Te32767

EQT 157
33,DVRR0,8,T832767

EQT 167
34,DVR20,B,T=32767

C-11

RTE-III

C-12

EQT 177

3%5,0VRe0,B,T=32767

EQT 187

36,0VR20,B,Tn32767

EQT 197

37,0VYROQ2,B,Ts32767

EQT 2087

72,Dv843,xXs18

EQT 217

73,Dv843,%x=18

EQT 227

74,0v843,X=18

EQT 237

75,D0v843,xs18

EQT 247

76,0V843,%318

EQT 257

77,D0V843,x=18

EQT 267
4,0VP43

EQT 277
/E
» DEVICE

{ = EQT
2,0

2 s EQT
1,0

3 = EQT
1,1

4 5 EQY
4,4

5 = EQT
6 3 EQT
7 s EQGT
8 s EQY

8,0

9 = EQT

REFERENCE TABLE

LXi

#?

He

47

#?

#e

H?

H?

H?

* SYSTEM CONSOQLE

* SYSTEM QISC

* AUXILTIARY DISC

* PAPER TAPE PUNCH

* PHOTOREADER

* | INEPRINTER

* TERMINAL

* MAG TAPE'

UNIT 2

Sample RTE-IIT Generation

8,1 w MAG TAPE, UNIT |
10 = EQT %7

8,2 % MAG TAPE, UNIT 2
11 = EQT ®?

8,3 * MAG TAPE, UNIT 3
12 = EQT w7

11 « CARD READER

13 = EQT 7

(") » BIY BUCKET

14 & EQT u7?

1,2 * PERIPHERAL DISC
15 » EGQT 47

1,3 » PERIPHERAL DISC
16 = EQT 47

1,4 % PERIPHERAL DISC
17 = EGT #7

1,5 « PERIPHERAL DISC
18 = EQT #?

1.6 « PERIPHERAL DISC
19 = EQT %7

1,7 « PERIPHERAL DISC
28 = EQT a7

12 * TERMINAL

2y = EQT m7?

13 « TERMINAL

22 = EQY w7

14 * TERMINAL

23 s EQT %2

15 w TERMINAL

24 & EQT #7

16 x TERMINAL

25 s EQT &7

17 * TERMINAL

26 = EQY 47

18 w TERMINAL

27 = EGQGT 47

19 « TERMINAL

28 = EQT &7

/)

29 = EQT w7

)

C-13

RTE-III

C-14

EQT

EQT

EQT

EGQT

EQY

EQY

EQT

EQY

EQY

EQT

EGQT

EQT

EQY

EQT

EQT

EQT

EQT

EGT

EQT

EQY

“?

u?

L]

LX¢

47

u7

H?

#?

H?

LX)

#?

4?

#?

w7

#?

a?

H?

?

#?

H?

* H,P,

v H, P,

* H,P,

23138 SUBSYSTEM

69403 SUBSYSTEM

91200 TV INTFC

50 = EQT #7
(]

51 = EQT #?
20

52 = EQT #7
21

53 = EQT w?
22

54 s EQGT #7?
23

55 = EQT w7
24

56 s EQT #»?
25

57 s EQT #H?
26

58 = EQT 47
/E

SPOOL

SPOOL

SPOOL

SPOOL

SPOOL

SPOOL

POWER

* INTERRUPT TABLE

A,ENT,SPOWR
14,EQT,11
15,PRG,PRMPY
16,EQ7,5

17 ,EQT, 4
20,EQT,6
21,EQ7,1
22,EQT,1
23,EQT,8
24,EQT,8
25,PRG,PRMPT
26,EQT,0
27,EQT, 10
30,PRG,PRMPY
31,PRG,PRMPT
32,PRG,PRMPT
33,PRG,PRMPT
34,PRG,PRMPT
35,PRG,PRMPTY
36,PRG,PRMPT
37,PRG,PRMPT
42,EQT,3
72,EQT,20
73,EQT, 214
74,EQT,22
75,EQY,23
76,EQT,24
77,EQT,25

/E

BP LINKAGE 21371

Lu

Lu

Lu

Lu

LU

LU

FALL

Sample RTE-III Generation

C-15

RTE-III

LIBRARY
EQLU ADQABQ 40125 92001~16005 741120
+ENTR 40126 4p215
PRTN 49216 4p320 9200116005 741120
LURQ 40321 4P645 9200116005 741120
SALRN 40646 40753 S2001~160@5 741106
SUBSYSTEM GLOBAL MODULES
S$P,CL 140754 40754 92060m16034 REV,A 750505
RT COMMON @ooOn
CHANGE RT COMMON ?
200
RY COM 40755
BG COMMON po@QQ
CHANGE BG COMMON ?
200
BG COM 41265
LWA BG COMMON 41574

ALIGN AT NEXT PAGE?

YES
LWA

BG COMMON

41777

MEMORY RESIDENTS

C-16

PRMPT(0N103)420002 42119 92@801~160n3 REV,B 741216
RSPNS (A1) 4211) 42257 92¢A1=~16003 REV,B 741002
MESSS 42260 42352 92pm1~16005 741120
U RTR(RAB1)42353 44271 9200n2~160087 750102
P.PAS 44272 44320 92002-16006 740801
EXTND(P®10)44321 44505 92p60-16010 REV,A 750505
RMP AR 44506 44530
GETAD 44531 44546
SPOUT(2A1?@) 44547 45425 92p60-16D14 REV,A 752508
.DRCT 45426 45434 92001-16005 741129

RT DISC RESIDENTS

SMP (an30n)42002 45122 92062~16007 REV,A 750505
RNRQ 45123 45350 920n1-16005 741120
«DRCT 45351 45357 92001~16005 7441120
OPEN 45360 45545 92002~16006 7412053
READF 45546 46273 92002~160M6 740801
REIO 46274 46376 92001-16005 741127
CLOSE 46377 46505 92002-16006 74080}

POST 46506
SOPEN 46535
P,PAS 46744
RWSLB 46773
RWND$ 47245
R/WS 47356
W XFER 47512
RMPAR 47556
GETAD 47601

JOB (0A3n) 42002
RNRQ 43406
LDRCT 43634
REIO 43643
OPEN 43746
READF 44134
CLOSE 44662
POST 44771
$OPEN 45020
P.PAS 45227
RWSUB 45256
RWNDS 45530
R/WS 4564
«XFER 45775
RMPAR 460414
GETAD 46064

WHZAT(A001) 42002
TMVAL 437014

AUTOR(AAA1) 42002
TMVAL 42410
FMTIO 42430
FRMTR 43661
DBLE 464214
SNGL 46456
. XPAK 46524
. XCOM 46721
. XFER 46772
CLRIO 47038
JFLUN 4a7m41
JPACK 47062
1AND 47178
PAUSE 47206
+ZRLB 47352
,OPSY 47413

BG DISC RESIDENTS

FMGR (409m)42002

FM,CH
LDRCTY
IFBRK
OPEN

CLOSE
SOPEN
RWNDS
RIWS

RMPAR

42755
44604
44613
44638
45023
45132
45341
45452
456086

46334
46743
46772
47244
47355
47511
47555
47602
476486

43405
43633
43642
43745
44133
44661
44770
45017
45226
45255
45527
45640
45774
46040
46063
46101

A3700
43720

42407
42427
43660
46420
46455
46523
46720
4677
47035
47040
47061
47175
47205
47351
47412
47452

42754
446803
44612
44634
45922
45131
45340
45451
45605
45630

920M2~16006
92002~16006
92002~16006
92002=16006
92p02~16006
92002~ 6006

92002~16005
92p01-16005
92001~1600a5
92001~=16005
9200216006
92002~16006
9200A2~16006
92002=~16006
92002~16006
92002~16A06
92002~16006
92002~16026
92002~160Q6

WHZAT FOR RTE~III

740801
740801
740801
740801
7408014
742801

REv,C 750128
741120
741120
741120
741205
740801
7402801
740801
740801
740801
740801
740801
740801

92001=16@R5 741120

92001~16005 741120

92002~16028 REV,C 750312

92001=16005
92001-16005
92002~16006
92002=16006
92p02~16006
92002~16006
92002»1 6006

741120
741120
7412058
740801
740801
740801
740801

7502492

Sampte RTE-III Generation

C-17

RTE-II

C-18

GETAD 45631
FMGRD (PA99) 45647
PK, . 45655
COR,A 47273
CR,. 47307
REANF 50413
REXO 51141
RWNDF 81244
NAM,, 51326
P.PAS 51423
RWSUB 51452
LOCK, 51724
FM UT 51774
CREA, 53117
CREAT 53171
. XFER 53447
FMGR1 (AA99) 45647
JPARS 45763
C.TAB 47005
CA,. 47136
REA,C 47331
EE.. 47414
TR, . 47456
MR, , 47700
SE,., 50035
IF ., 50222
AB, 50433
DP,. 506268
INPRS 50666
READF 50763
REIO 51511
POSNT 51614
P.PAS 52051
RWSUB 52100
WRLG 52352
CK,SM 52370
. XFER 52504
AWRIT 52550
LOPSY 53251
FMGR2(AM99)45647
INJIT 45661
IN,, 46607
MC, . 50461
RC,, 50771
U, 51157
PURGE 51402
NAM, . 51521
JL.PUT 51876
1PUT 51623
FID. 51644
MSC, 51764
L0CK, 52021
FM UTY 52071
CNT, 53214
FCONT 53435
JXFER 53527

FMGR3 (PP99)45647

45646

45654
47272
47306
50412
51140
51243
51325
51422
51454
51723
51773

53116

53179
53446
53512

45762
47004
47133
47330
474143
47455
47677
50034
50221}
50432
50625
50665
50762
51510
51613
52059
52077
52351
52367
52503
52547
33250
53310

45669
46606
50460
50772
51156
51401
51500
51575
51622
51643
51763
5202a
52070
53213
53434
53526
53572

45654

92vm2-16008
92¢01~160085

92402~16006
92001=16305
92002~16006
92002=16006
92002~16006
92p0B2-16006

929n2=16006

92302~16008

920uM2=16008
9200M2~16008

020MP1~16205
92002=~16006
920m1~16005
92002=16006
920M2~16006
92002-16006
92P02=16006

920m2-16008

920m2~16006
920032~16006
920N2~16006
92002~16006

92002~16006

9200n2=16008

74081
741120

740801
741120

740801
7408014
740891

740801

741022

741223

740801
741119

741119
740801
741120
740801
740801
740801
740801

740801

740801
740801
7408014
742801

7408014

740801

Llee 45655
Dlas 47318
READF 50835
REIOD 51263
LOCF 51366
P.PAS 51554
RWSLB 51603
msc, 52055
FM, UT 52112
» XFER 53235
FMGR4(2N99) 45647
S$T,DU 45664
CO.e 471219
FoUTM 47624
OPMES 47773
CREAT 50174
READF 50452
REIO 51200
RWNDF 51303
LOCF 51365
NAM,, 51553
P.PAS 5165@
RWSUB 51677
FM,UT 52154
CREA, 53274
CK,8M 53346
« XFER 53462
FMGR5(0099) 45647
2240 45657
RU, ., 47773
RP .4 50434
TLae 51576
READF 51616
REIO 52344
LOCF 52447
P.PAS 52635
RWSUB 52664
J.PUT 53136
IPUT 53163
ID,A 53204
BUMP, 53274
SET.T 53333
TL, 53362
ST,TM 53412
XFER 53447
FMGRE (0M99) 45647
CN., 45660
JO,, 45721
RNRQ arm17
KCVT 47245
EO,. 47260
MESSS Sa1e4
0F,, 50177
LG, 50273
NAMF 50370
READF 50542
REIO 51270
POST 51373

47314
50534
51262
51365
51553
51602
52054
52111
53234
533ea

45663
47120
47623
47772
50173
50459
51177
51392
51364
51552
51647
51676
521502
53273
53345
53461
53525

45656
47772
50433
51575
51615
52343
524486
52634
52663
53135
53162
532023
53273
53332
53364
53411
53446
53512

45657
45720
47216
47244
47257
50103
50176
50272
50367
50549
51267
51372
51421

920n2=16006
92004i~16005
92002=16006
92002~-16006
92002~16006

02002=16008

92002=16006
92002~16006
92001~16005
92002~16006
92002~160206
92¢M2=16006
920M2~16006
92202=16006

92002~16008
92002~16008

92pa2«160n6
92pa1=16005

- 92002~16006

92002~16006
92p0n2=16006
920n2=16006
92pn2=16006

9290n2~16006
920m2~16006
92pn2~16006
92002«160206

92002~16008
92p01=16005
920P1-1600a5
920m1~16005
927M02~16006
92002~16006

92001-16005
92002=16006

7408014
741129

740801
740801

740801

740801

741022
740801
741129
740801
740801
743801
740801
740801

740801
740801

740891
741120
74n801
740801
740801
7408014
740801

741025
742801

741025
741223

7408014
741120
741120
741120

740801
74p8014

741120
740801

Sample RTE-III Generation

C-19

RTE-III

C-20

NAM,, 51422
P.PAS 51517
RWSUB 51546
SPOPN 52020
SET,T 52071
ST.TM 52120
B.FLG 52155
LuLu, 52224
RANGE 52320
ONOFF 52344
EX,TM 52710
IPUT 53077
FREE, 53120
LU,CL 53170
AVAIL 53232
o XFER 53325

FMGR7 (8099) 45647
Cl,. 45657
NX,J8 4614}
RNRQ 47007
LU, 47235
KCVT 50310
CS,. s0323
READF 50521
REIO 51247
FSTAT 51352
POSY 51377
P.PAS 51426
RWSUB 51455
SPOPN 51727
B.FLG 52000
LULY, 82047
RANGE 52143
AVAIL 52167
« XFER 52262

FMGRS (0899) 45647
8A,, 45656
SP,, 46631
MS, ., 47431
READF 47745
REIO 50473
RWNDF 52576
LOCF 50660
P.PAS 51046
RWSUB 51075
IPUT 51347
CREA, 51370
CREAT 51442
NAM,, 51720
CK,SM 52m15
ID,A 52131
WRISS 52221
READ, 52260
«XFER 52305
XWRIS 52351
SREAD 52641
«0PSY 53377

EDITR(Q057) 42002

51516
51548
52017
5207n
52117
52154
52223
32317
52343
52727
53076
53147
53167
532314
53324
533708

45656
46149
47006
47234
50307
5322
50529
51246
513514
51376
51425
51454
51726
51777
52048
52142
32166
522614
32328

45653
46630
474502
47744
50472
58373
50657
51045
51074
51346
51367
51441
517417
52014
52130
52220
52257
52304
523509
52649
53376
53436

46456

920M2=16006
92002~160a46
92002~16006
92002=16006
92002~16006
92002+~160A6
02002~16006
920M2~16006
92002~16006
92002«16006
92002~16006
92002~16006
920M2-16006
920A2~16006
92p02=16006

92002-160078

92001~160025

92001=160a5

92002~16206

92pN1~16005
92002=16206
920N2-16206
92002~16006
92002~16006
92002=16006
9200216006
92002~16006
92002=16006
92002~-16026

92p02=16008

920022~16006
92001~16005
92002-16206
92002=16006
92002-16006
92002~16006
92002=16006

920n2~16006
92002~16006

92002=-16006
920m2~16006

92002~16010

740801
740801
740801
741025
740801
741223
741118
740801
740801
750128
741008
740801
740881
740801
741231

740801

741120
741120

740801
741120
749801
7408021
740801
7408014
741025
741118
742801
740801
741231

740804

740801
741120
740801
740801
740801
740801
740801

741022
742801

740801
740801

REV,.C

75m413

REIO 46457
CREAT 46562
OPEN 470840
READF 47226
CLOSE 47754
CLOSE 47754
SOPEN 50160
P.PAS 50367
RWSUB 50416
RWNDS 50670
R/WS 51001
JXFER 51135
RMPAR 51201
GETAD 51224
GASP (208@)42n02
RNRQ 43400
REID 43626
KCVT 43731
PARSE 43744
OPEN 43764
READF 44152
CLOSE 44700
POST 45007
S$OPEN 45736
P.PAS 45245
RWSUB 45274
RWNDS 45546
R/WS 45657
GICEX 46013
8T,LU 46115
,ORCT 46245
GIROT 46254
61CDJ 46404
Gi1CCY 46771
G1CDS 47333
61C?? 50663
GISTM 51474
CNUMD 51667
GAQIP 51707
GICKS 52123
GICIN 52713
CREAT 54175
NAM, , 54453
G1CDA 54550
PURGE 55125
XFER 55224
RMP AR 55270
GETAD 55313

ASMB (Q095)42002

ASMBD (@n99) 47550

ASMBYL (0199)47550

ASMB2(0099)47550

ASMB3 (P199)47550Q

ASMB4(2m99)47550

46561
47037
47225
47753

-5p062

50062
50366
50418
50667
31000
51134
51200
51223
51249

43377
43625
43730
43743
43763
44151
44677
45006
45035
45244
45273
45545
45656
46042
46114
46244
46253
46423
467792
47332
5p662
51473
51666
51708
52122
52712
54174
54452
54547
55124
55223
55267
55312
55339

47547
50356
51544
52046
50637
51301

92001~16005
92008216006
92002-16006
92002~16006
92002~16006
92p02=16006
92202=16006
92002~16006
92002~16006
02002=16006
92002~16006

92¢01~16005
92001~16005
92001~16005
9200a1~16005
92202=16006
92002~16006
92002+16006
920P2»16006
92002=16006
92002~16006
92002~16006
S2002~16006
9200216006

920n2-16001

92004~16005
92002~16001

920M2=1601}
p2ap2~160014
92002~16001
920@1~16005
92ep2=1600)

9200216006
920m2~16006

9200216006

92060~16222
92068=16023
92060~16024
92060~16025
92p60~16026
92060~=16027

741120
741022

741205
740801
740801
74089

740801

740801
740801
740801
740801

741120
741122
741129
741129
741205
7408@1
740801
740801
740801
7408014
740801
740801
7408914

741025

741120
741027

741030
741027
740807
741129
741007

741022
740801

740801

REV, 750424
REV, 750429
REV, 750420
REV,., 750420
REv, 750420

REV, 750420

Sample RTE-III Generation

C-21

RTE-III

C-22

XREF (0@98)42002 50240 92060~16028 REV, 750420
«0PSY 50241 Se3pa

LOADR (an9m)42m02 53211 9206@=160A5 REV,A 75255

HALY 77 = SET SWR & PRESS RUN

RT PARTITION REQMTS1I
SMP V4 PAGES
JoB 04 PAGES
WHZAT 22 PAGES
AUTOR @4 PAGES

BG PARTITION REQMTS!
FMGR @6 PAGES
EDITR 05 PAGES
GASP @7 PAGES
ASMB 06 PAGES
XREF 25 PAGES
LOADR v6 PAGES

LARGEST ADDRESSABLE PARTITION?
W/0 COM 16 PAGES
W/ COM 16 PAGES

LWA MEM RESIDENT PROG AREA 45434
ALIGN AT NEXT PAGE?

YES

LWA MEM RESIDENT PROG AREA 45777

SYS AV MEMI n1@24 WORDS

1ST DSK PG oam20
CHANGE 1ST DSK PG?
21

SYS AV MEMY m2248 WORDS

PAGES REMAINING! P0®43
DEFINE PARTITIONS
1,4,RT

2,4,RT

3,14,B6

4,7,86

5,7,B6

6,7,86

/E

MODIFY PROGRAM PAGE REQUIREMENTS?
EDITR,7

ASMB, 14

XREF,14

LOADR,14

/E

ASSIGN PROGRAM PARTITIONS?
/E

RTE-III Sample RTE-III Generation

SYSTEM STORED ON DISC
3yS SIZE! 2m TRKS, @31 SECS(12)

HALY 77 = SET SWR & PRESS RUN

C-23/C-24

APPENDIX D
SUMMARY OF EXEC CALLS

ASSEMBLY LANGUAGE FORMAT

EXT EXEC Used to link program

to RTE-IL

Transfer control to
RTE-III:

JSB EXEC

DEF *+n+l Defines point of
return from RTE-III, #
is number of
parameters; must be

direct address

DEF pl Define addresses of
parameters which may
occur anywhere in
program; may be
multi-level in-
direct

DEF pn

Continue execution
of program

return point

. Actual parameter
. values

pn -

For each EXEC call, this appendix includes only the
parameters (p/ through pn in the format above) of the
Assembler Language calling sequence.

FORTRAN/FORTRAN IV FORMAT

CALL EXEC(7)
—-or-

ICODE = 7

CALL EXEC(ICODE)

Equivalent
calling sequences

CALL EXEC(ICODE,pZ2...pn)

Where:

p2 through pn are either integer values or integer variables
defined elsewhere in the program.

Note that some EXEC call functions are handled auto-
matically by the FORTRAN compilers or special sub-
routines. Refer to FORTRAN, Part2, Section IV and
the specific EXEC calls.

READ/WRITE

Purpose:

Transfers input or output.

Assembly:

ICODE DEC 1=READ, 2 = WRITE
17 = Class READ
18 = Class WRITE
20 = Class WRITE/READ

ICNWD OCT Control Word, see Section
III.

IBUFR BSS Buffer of n words

IBUFL DEC Same n; words (+), charac-

ters (-)

IPRM1 DEC p optional parameter. Used
for disc track in disc
call.

IPRM2 DEC ¢ optional parameter. Used
for disc sector in disc
call.

ICLAS OCT Class Word, see Section
I1I.

FORTRAN:

REG=EXEC(ICODE,ICNWD,IBFR,IBFL,IP1,IP2,ICLS)

RTE-III

/O STATUS

{/0 CONTROL

Purpose:

Carry out control operations

Assembly:

ICODE DEC 3or19 3 = Control
19 = Class Control

ICNWD OCT Control Word, see Sec-
tion III.

[PRAM DEC n (Optional parameter
required by some
CONWD:s)

ICLAS OCT Class Word, see Section
I11.

FORTRAN:

REG=EXEC(ICODE,ICNWD,IPRAM,ICLAS)

Purpose:
Request device status.
Assembly:

ICODE DEC 13

ICNWD DECn Logical unit number

ISTA1 NOP Word 5 of EQT entry
returned here

ISTA2 NOP Optional parameter for
word 4 of EQT

ISTA3 NOP Optional parameter for
LU status

FORTRAN:

CALL EXEC(ICODE,JCNWD,ISTA1,ISTA2,ISTA3)

DISC TRACK ALLOCATION

CLASS I/O- GET

Purpose:
Request device status.
Assembly:

ICODE DEC 21

characters (-)

IRTN1 NOP Return for [PRM1
IRTN2 NOP Return for IPRM2
IRTN3 NOP Return for ICLAS
FORTRAN:

CALL EXEC(ICODE,ICLAS,IBUFR IBUFL,IR 1,
IR2,IR3)

ICLAS NOP Class Word, see Section I
IBUFR BSS Buffer of n words
IBUFL DEC Same n; words (+),

Purpose:

Request allocation of contiguous tracks.

Assembly:

ICODE DEC4or 15 4 = Allocate track to
program, or |5 =
allocate track globally.

ITRAK DEC# Number of contiguous
tracks desired. If bit 15
= [, do not suspend
until available.

ISTRK NOP Starting track returned
here, or -1, not
available.

IDISC NOP Disc logical unit
returned here.

ISECT NOP Number of 64 word
sectors returned here.

FORTRAN:

CALL EXEC (ICODE,ITRAK,ISTRK, IDISC,ISECT)

D-2

DISC TRACK RELEASE

Summary of EXEC Calls

PROGRAM COMPLETION

Purpose:

Release some disc tracks assigned to the program.

Assembly:

ICODE DEC Sor 16

ITRAK DEC~#

ISTRK NOP

IDISC NOP

FORTRAN:

5 = Release program’s
tracks, or 16 = release
global tracks.

If = -1, release all
program tracks. If =n,
the number of conti-
guous tracks starting at
ISTRK.

Starting track number.

Logical unit.

CALL EXEC(ICODE,ITRAK,ISTRK,IDISC)

Purpose:

Signal end of program.

Assembly:
ICODE DEC6

INAME ASC 3, name

INUMB DEC

IPRM1

IPRMS5

FORTRAN:

Name of program to be
terminated (0 if this
one).

0 = Normal completion
-1 = Serial resuability

1 = Make dormant but
save suspension point
2 = Terminate on next
schedule; save tracks.

3 = Terminate immedi-
ately and release tracks.

Up to 5 optional parameters

REG = EXEC (ICODE,INAME,INUMB,IPRM1 . . IPRM5)

CALL RMPAR (IPRM1 . . IPRMS) pram pick-up

RTE-I

PROGRAM SUSPEND

PROGRAM SCHEDULE

Purpose:

Suspend calling program.
Assembly:

ICODE DEC7
FORTRAN:

PAUSE library subroutine generates this call.

PROGRAM SEGMENT LOAD

Purpose:
To schedule another program.

Assembly:

ICODE DEC 9 = immediate, wait

10 = immediate, no wait
23 = queue, wait

24 = queue, no wait
INAME ASC 3,xxxxx xxxxx is the program name

IPRM1
: Up to 5 optional parameters
IPRMS5

IBUFR BSS Optional buffer of n words

IBUFL DEC Same n; words (+) or
characters (-)

FORTRAN:

REG = EXEC(ICODE,INAME,IPRM1 . . . IPRMS3,
IBUFR, IBUFL)

TIME REQUEST

Purpose:
Load segment of calling program.
Assembly:

ICODE DEC 8
INAME ASC 3, xxxxx

XXXxXxXx is segment name

IPRM1
) Up to 5 optional parameters

IPRMS5
FORTRAN:

REG = EXEC (ICODE,INAME,IPRM1 . . [IPRM5)

Purpose:
Request the 24-hour time and day.
Assembly:

ICODE DEC 11

ITIME BSS5 Time values: tens of
milliseconds, seconds,
minutes, hours, day,
returned in that order.

IYEAR BSSI Year (optional)

FORTRAN:

CALL EXEC(ICODE,ITIME,IYEAR)

D-4

STRING PASSAGE

Summary of EXEC Calls

TIMED EXECUTION (Absolute Start)

Purpose:

Pick up command string or pass buffer to “Father.”
Assembly:

ICODE DEC 14

IRCOD DEC 1=retrieve command string
2=pass buffer

IBUFR BSS Buffer of n words
IBUFL DEC Same n; words (+) or

characters (-)
FORTRAN:

CALL EXEC(ICODE,IRCOD,IBUFR,IBUFL)

TIMED EXECUTION (Initial Offset)

Purpose:
Schedule a program to start after a delay.
Assembly:

ICODE DEC 12

IRESL DEC x Resolution code
MTPLE DECy Execution multiple
IOFST DEC-z z (units set by x) equals

the initial offset.
FORTRAN:

CALL EXEC(ICODE,IPROG,IRESL MTPLE,IOFST)

Purpose: -
Schedule a program to start at a particular time.
Assembly:

ICODE DEC 12

RS (3SC Same Sehedlerame |+
IRL DEC x Resolution code

MT DECy Execution multiple

[HRS DECa

MINS DECbH

ISECS DEC ¢ Defines absolute start-time
MSECS DECd

FORTRAN:

CALL EXEC(ICODE,IPRG,IRLMT,IHMLIS MS)

D-5

RTE-III

PROGRAM SWAPPING CONTROL

LOGICAL UNIT LOCK

Purpose:

Allows program to lock itself into core.

Assembly:

ICODE DEC 22

IOPTN DEC 0 =swap OK
1 = swap not OK
2 = swap program only
dent area.

FORTRAN:

CALL EXEC (ICODE,IOPTN)

3 = swap all disc resi-

RESOURCE MANAGEMENT

Purpose:
Locks an 1/0 device.

Assembly:

JSB

IOPTN OCT

LUARY DEC
NOLU DEC

FORTRAN

LURQ

0x0000=unlock specified lu
1x0000=unlock all lu’s
0x0001=lock with wait
1x0001=lock without wait
(x is no abort bit)

Array of lu’s to be locked/
unlocked.

Number of Iu’s to be
locked/unlocked.

CALL LURQ(IOPTN,LUARY ,NOLU)

PARTITION STATUS

Purpose:
Allows cooperating programs to manage resources.
Assembly:

JSB RNRQ
ICODE OCT Control word, see Sec-

tion III.

IRN BSSI Resource number
ISTAT BSSI Status of resource
FORTRAN:
CALL RNRQ(ICODE,IRN,ISTAT)

D-6

Purpose:

Return status on specified partition

Assembly:

ICODE DEC 25
IPART DECn
IPAGE BSS 1

IPNUM BSS 1

ISTAT BSS 1

FORTRAN:

Partition number

Starting page number return-
ed here

Number of pages returned
here

Partition status

CALL EXEC (ICODE,IPART,IPAGE,IPNUM,ISTAT)

APPENDIX E
SUMMARY OF ERROR MESSAGES

OPERATOR REQUEST ERROR MESSAGES

When an operator request is in error, RTE-III rejects the
request and prints one of the messages below. The operator
enters the request again, correctly.

Message Meaning

OP CODE ERROR Illegal operator request word.

NO SUCH PROG The name given is not a main
program in the system.

INPUT ERROR A parameter is illegal.

ILLEGAL STATUS Program is not in appropriate
state.

CMD IGNORED-NO Not enough system available

MEM memory exists for storing the
program’s command string.
Re-enter the command (RU,
ON, GO) or enter the inhibit
(IH) form of the command.

EXEC CALL ERROR MESSAGES

When RTE-Illdiscovers an error in an EXEC call, it
terminates the program, releases any disc tracks assigned to
the program, prints an error message on the operator
console, and proceeds to execute the next program in the
schedule list.

When RTE-IIlaborts a program, it prints the following
message:

name ABORTED

When a memory protect violation occurs that is not an
EXEC cali or $LIBX or $LIBR call, the following message
is printed: (address is the location that caused the viola-
tion.)

MP name address

When an EXEC call contains an illegal request code, the
following message is printed: (address is the location that
made the illegal call.)

RQ name address

An RQOO error means that the address of a returned
parameter is below the memory protect fence.

The following errors have the same format as “MP” and
“RQ” errors.

Error Meaning
TI Batch program exceeds allowed time
RE Re-entrant subroutine attempted recursion
(call itself)
DM Program tried to access a page not includ-

ed in its logical memory (similar to MP)
The general error format, for other errors, is:
type name address
where type is a 4-character error code
name is the program that made the call
address is the location of the call (equal to the

exit point if the error is detected after the
program suspends)

ERROR CODES FOR DISC ALLOCATION CALLS

DROI = Not enough parameters

DR02 = Number of tracks is << zero; illegal logical unit
or number of tracks to release is zero or
negative.

DR03 = Attempt to release track assigned to another

~ program

E-1

RT

E-TIT

ERROR CODES FOR SCHEDULE CALLS

SCO0 =

SCO1 =

SCO2 =

SCO3 =

Batch program attempted to suspend
(EXEC(7))

Missing parameter
Illegal parameter

Program cannot be scheduled

SC03 INT name. Occurs when an external interrupt
attempts to schedule a program that is already sched-
uled. RTE-II ignores the interrupt and returns to the
point of interruption.

SC04 =

SCOS =

SC06 =

SCo7 =

SC10=

name is not a subordinate (or “son”) of
the program issuing the completion call.

Program given is not defined.

No resolution code in EXECUTION TIME
EXEC call (not 1, 2, 3, or 4).

Prohibited core lock attempted.

Not enough system available memory for
string passage.

ERROR CODES FOR I/O CALLS

1000 =

1001 =

1002.=

1003 =

1004 =

1005 =

1006 =

1007 =

1008 =

Illegal class number. Qutside table not
allocated, or bad security code

Not enough parameters

Illegal logical unit or less than 5 parameters
and X-bit set

Not used
Illegal user buffer. Extends beyond FG/BG

area or not enough system memory to
buffer the request

Illegal disc track or sector

Reference to a protected track; or using
LG tracks before assigning them (see LG,
Section II)

Driver has rejected call

Disc transfer longer.than track

1009 = Overflow of load-and-go area
ERROR CODES FOR PROGRAM MANAGEMENT CALLS
RNOO = No option bits set in call
RNOI = Resource number not defined
RN02 = Resource number not defined

RNO3 = Unauthorized attempt to clear a LOCAL
resource number

ERROR CODES FOR LOGICAL UNIT LOCK CALLS

LUOI = Program has one or more logical units locked
and is trying to LOCK another with WAIT

Luo2 = Illegal logical unit reference (greater than
maximum number)

LUO03 = Not enough parameters furnished in the call,
logical unit reference less than one, or
logical unit not locked to caller

INPUT/OUTPUT ERROR MESSAGES

ILLEGAL INTERRUPTS

When an illegal interrupt occurs, RTE-III prints this message:
ILL INT xx

Where xx is the octal channel number.

RTE-II clears the interrupt flag on the channel and returns
to the point of interruption,

EQUIPMENT ERROR MESSAGES

Message Meaning

I/OETL #x E #y S #2 End-of-tape condition on LU #x,
defined by EQT #y subchannel
#z. Correct the condition and
set I/O controller (EQT) UP.

I/OTOL #x E #y S #z Device (LU #x) defined by EQT
#y subchannel #z has timed out.
Examine device. Correct problem
and set I/O controller (EQT) UP.

I[/ONRL #x E #y S #2z Device (LU #x) defined by EQT
#y subchannel #z is not ready.
Make it ready and set I/O con-
troller (EQT) UP.

I/OPEL #x E #y S #z Parity error in data transmission
from device (LU #x) defined by
EQT #y subchannel #z.
Examine device.

TR nnnn EQT eqt, Irrecoverable disc transfer parity

Upp S (or U) error. If the transfer is to a
system or auxiliary disc the fol-
lowing applies.

Where: a. If user request (U), then

nnn = Track number program is abnormally term-

eqt = EQT number inated and track is made un-
pp = Unit or sub- available for further opera-

channel number tions. If the user request was
an on-line modification with
the RTE-II loader, the parity
error could be the result of
failing to turn off the hard-
ware disc protect switch. The
loader should be executed
again with the protect switch
off.

b. If system request (S), the
program transfer terminates.

If user request to peripheral disc,
a transmission log of -1 is re-
turned to the calling system.

FORTRAN COMPILER ERRORS

More than one source tape can be compiled into one
FORTRAN program by leaving off the $END statement on
all but the last source tape. When the end of each source
tape is encountered (end-of-tape or EOT condition), RTE
Driver DVROO can interpret it in two ways. An EQT can set
the tape reader down (make it inactive), or not set it down.
The action depends on how DVROO was configured during

Summary of Error Messages

generation. In any case, an EOT does not suspend the

FORTRAN complier. Therefore, it is recommended that
when compiling multiple tapes, DVROO be configured to
set the tape reader down on EOT. For more information
refer to the DVROO Manual (HP Part No. 29029-95001).

If an EOT causes the tape reader to be set down, the RTE
system will output a message to the operator:

I/OETL #x E #y S #z

The operator must place the next source tape into the tape
reader and set the tape reader up with the UP operator
command.

UP, #x

If an EOT does not cause the tape reader to be set down,
the RTE-III System does not output any message and the
compiler is not suspended.

At the end of compilation (when the compiler detects the
$END statement), the following message is printed.

$END,FTN

Two 1/0O error messages may be generated by RTE-III when
FTN attempts to write on the LG tracks (RTE-III aborts
FTN).

1006

1009

I006 means that the LG tracks were not defined by an LG
operator request, and 1009 means that the LG tracks over-
flowed. The operator must define more LG tracks with LG
and start compilation over again.

The compiler terminates abnormally if:

a. No source file is declared by LS, although
logical unit 2 is given for input. Compiler error
E-0019 (FTN2), or ERROR 05 (FTN4) is printed on
the list device.

RTE-II

b. The symbol table overflows. Compiler error
E-0014 (FTN2), or ERROR 03 (FTN4) is printed on
the list device. SEND,FTN does not appear after the
error message using FTN2, but does appear when
using FTN4,

ALGOL ERRORS

More than one source tape can be compiled into one
ALGOL program. When the end of each source tape is
encountered (end-of-tape or EOT condition), RTE Driver
DVROO can interpret it in two ways. An EOT can set the
tape reader down (make it inactive), of not set it down. The
action depends on how DVRO0O was configured during
generation, In any case, an EOT does not suspend the
ALGOL compiler. Therefore, it is recommended that when
compiling with multiple tapes, DVROQ be configured to set
the tape reader down on EOT. For more information refer
to the DVROO manual (HP Part No. 29029-95001).

If an EOT causes the tape reader to be set down, the
RTE-III System will output a message to the operator:

I/OETL #x E #y S #z

The operator must place the next source tape into the tape
reader and set the tape reader up with the UP operator
command.

UP, #x

If an EQT does not cause the tape reader to set down, the
RTE-III System does not output any message and the com-
piler is not suspended.

At the end of compilation (when the compiler detects the
ENDS$ statement), the following message is printed.

$END ALGOL

If source input is indicated to be from the disc and the
source pointer is not set, the diagnostic .

NO SOURCE

is printed on the system console and compilation ceases.

At the end of a program, a program-termination request is
made to the Executive. No message is printed. In case of a
PAUSE statement, the following message is printed.

E-4

name: PAUSExxxx
Where:
name = program name
xxxx = a number which has no significance.
Execution is then suspended. To restart the program type:
GO,name|,pl,pl,p3,p4,p5]

See the GO operator command in Section Il for a definition
of the parameters.

Two [/O error messages may be generated by RTE-IIT when
ALGOL attempts to write on the LG tracks (RTE-III aborts
ALGOL).

1006
1009

[006 means that the LG tracks were not defined by an LG .
operator request, and 1009 means that the LG tracks over-
flowed. The operator must define more LG tracks with LG
and start compilation over again.

ASSEMBLER ERRORS

When a paper tape is being input through the tape reader,
RTE-III Driver DVROO can interpret an end-of-tape (EOT)
in two ways. An EOT can set the tape reader down (make it
inactive), or not set it down. The action depends on how
DVROO was configured during generation. In any case, an
EOT does not suspend. the Assembler. Therefore, it is
recommended that when assembling multiple tapes, DVR0OO
be configured to set the tape reader down on EOT. For
more information refer to the DVR0OO manual (HP Part No.
29029-95001).

If an EOT causes the tape reader to be set down, the
RTE-III system will output a message to the operator:

I/OETL #x E #y S #z

The operator must up the tape reader with the UP operator
command.

UP, #x

If an EOT does not cause the tape reader to be set down,
the RTE-III System does not output any message and the
assembler is not suspended.

At the end of aséembly, the following message is printed:
SEND ASMB

If another pass of the source program is required, the
following message appears at the end of pass one.

$END ASMB PASS

the operator must replace the program in the input device
and type:

GO,ASMB

If an error is found in the Assembler control statement, the
following message appears:

$END ASMB CS
The current assembly aborts.

If an end-of-file condition occurs before an END statement
is found (LS File only), the console signals:

$END ASMB XEND
The current assembly aborts.

If source input for logical unit 2 (disc) is requested, but no
file has been declared (see LS, Section II), the console
signals:

$END ASMB NPRG

The current assembly aborts.

RTE-III generates two messages when ASMB attempts to
write on the load-and-go tracks (RTE-III aborts ASMB).

1006
1009

1006 means that the LG tracks were not defined by an LG
operator request, and 1009 means that the LG tracks have
overflowed. The operator must define more LG tracks with
LG and start compilation over again.

Summary of Error Messages

The next message is, associated with each error diagnostic
printed during pass 1.

#tape numb

tape numb is the “tape” number where the error (reported
on the next line of the listing) occurred. A program may
consist of more than one tape. The tape counter starts with
one and increments whenever an end-of-tape condition
occurs (paper tape), or a blank card is encountered, or a
zero length record is read from the disc. When the counter
increments, the numbering of source statements starts over
at one,

Each error diagnostic printed during pass 2 of the assembly
is associated with a different message:

PG page numb

page numb is the page number (in the listing) of the
previous error diagnostic.

PG 000 is associated with the first error in the program.

These messages occur on a seperate line, above each error
diagnostic in the listing.

RELOCATING LOADER ERRORS
Messages are printed in this format:

/LOADR: message

WARNING (W) MESSAGE

W17 — Number of pages required by the program exceeds
the partition size. The loader cannot find a partition
large enough for the program. It can be relocated
successfully but cannot be executed. You can
generate a new system containing a partition large
enough for the program or you can revise the program.

“L” ERROR MESSAGES
LO1 — checksum error

L02 — illegal record

These errors are recoverable (except in Batch mode). The
offending record can be reread by repositioning the tape
and typing:

GO,LOADR

RTE-II

LO3 —

L0o4 —

LOS —

LO6 —

LO7 —

LO8 —

L09 —

L10—

L1l -

L12 —

L13 —

L14 —

Li5 —

Memory overflow
Base page linkage area overflow
Symbol table area overflow

Common block error

a. Exceeding allocation in a replacement or addi-
tion.

b. In a normal background load, first program did -

not declare largest common block.
Duplicate entry points

No transfer address (main program) in the program
unit. Another program may be entered with a GO
operator request. (This also occurs when the

LG track area is specified, but no program

exists in that area.)

Record out of sequence

Operator request parameter error. GO requests
may be retyped; ON requests may not.

Operator attempted to replace or purge a
memory resident program.

LG track area used without resetting (input option
=2 in “GO”). Input option was not specified as 99
previously.

LG track area has been illegally reset (i.e. over-
written). Program addition on this area not allowed
if it has already been specified for program input.
Or area was once used for force loading with input
option =99 and it is again being used with input
option =99, (must = 2).

Assembler or compiler produced illegal relocatable.
A DBL record refers to an external which has not
been defined (the original can not be found in the
symbol table).

Forward reference to a type 3 or type 4 ENT or to
an EXT with offset which has not yet been
defined, or a forward indirect external reference.

L16 — Illegal partition number. Value must be in

the range from 1 through 64.
L17 — Number of pages required by the program
exceeds assigned partition size. A specific
partition has been assigned for this pro-
gram. The program requires more pages
than are available in the partition.

L18 — Total number of pages required exceeds
32. The sum of required pages must be in

the range from 1 through 32.
ADDITIONAL MESSAGES
NO BLANK ID SEGMENT

This message is printed when no available (i.e., blank) ID
Segment is not found. The loader calls for program
suspension. The operator may then delete a program from
the system (OF jiame,8 operator request) or may terminate
the loader.

WAITING FOR DISC SPACE

This message is printed when a track allocation cannot be
made. The loader repeats the disc request and is suspended
until space becomes available.

UNDEFINED EXTS

This message is printed followed by a list of all remaining
undefined external symbols after a scan of the library.
Additional programs may be loaded by the GO operator
request.

LOAD

This message is printed and the loader is suspended
whenever an End-of-Tape condition is detected from the
input unit.

DUPLICATE PROG NAME—name

This message is printed when a program name is already
defined in the system for a normal load or a program
addition. The loader changes the name of the current
program by replacing the first two characters with periods
(e.g., JIMB1 becomes..MBI1). The second duplicate
program name aborts the loader.

RTE-II1

SET PRGM INACTIVE

This message is printed when an end-of-tape condition is
detected from the input device being used for library input
and the loader needs the library to be scanned again.

At the end of a normal load, or after loading the last
segment, the loader prints the following message and
terminates itself.

/LOADR: name READY
/LOADR: $END

LOAD LIB

This message is printed when an end-of-tape condition is
detected from the input device being used for library input
and the loader needs to scan the library again.

Summary of Error Messages

SYSTEM HALTS

Several system halts are located within the protected sys-
tem area. They are as follows:

Halt

0

2
3
4

Reason
JSB EXC with memory protect off.
Tried to execute location 2.
Tried to execute location 3.

System was in halt mode when power failed;
or, no EQT entry for DVP43 power fail routine.

E-7/E-8

APPENDIX F

SUMMARY OF OPERATOR REQUESTS

BL[lower limit, upper limit]

BR,name
DN ,eqt
7]
EQeqt
UN
E ’
Qeqt [BU]

GO

GOIH)name [’pl[n? ..

IT,name/ ,res,mptf hr,minf ,sec{,ms [] |

LG,numb
LS disc lu, trk numb

LU, lu

Lp5]1111

LU, u’ Z t[subch numb]

,0
OF,name | ,1
8

ON

ONIH ,name [NOW] [,p1[,..[.05]]]]]

PR, name,numb

RU
RUIH ’

RT,name
SS,name

ST, name

name [,pl[, .

. [p5]111]

Abort current BATCH program.
0 = save tracks
1 = return tracks

Sets buffer limits

Sets a break flag in name
Set EQT (1/O controller) or LU (I/O device) down.

Print status of EQT entry eqt.

UN = delete buffering
BU = specify buffering

Reschedule program name

Schedule program to execute at specified times.
Allocate numb L & G tracks or release L & G tracks (numb = 0).
Declare disc number disc lu, track number trk numb as source file.

Print status of logical unit /.

Assign EQT number eq¢ (subchannel subch numb) to LU number /u.

Terminate name 0 = save tracks, 1 = return tracks, 8 = purge name

Schedules name. NOW means ignore time values.

Set priority of name = numb
Schedule program name

Release name’s tracks
Suspend name

Print status of name

F-1

RTE-III

ST,0

ST,part numb

TI

TM, year,day(,hr,min,sec/
TO,eqt

TO,eqt, numb

UP,eqt

F-2

Print name and partition number of current program

Prints name of current program in part numb.

Print current real-time

Specify year, day and 24 hour time.

Print time-out value of EQT number eg¢.

Assign time-out value numb to EQT number eqt

Set EQT number eqt and any associated LU’s up.

APPENDIX G
HP CHARACTER SET

Effect of Control key *
Y ﬁ

|«— 000-0378 —»]4—— 040-0778 —#-|4—100-1378 —s|a—140-1 778—w]

b'b6b5 % | %, | %9 | %y | Tog | Mo, | Mg | M,
BITS COLUMN
N 0 1 2 3 4 5 6 7
bg bz by by| ROW y
ojo|ojfo 0 NUL | DLE sp 0 @ P p
o{ofof1 1 SOH | DC1 ! 1 A Q a q
olo|1]0 2 STX DC2 " 2 B R b r
0{of1(1 3 ETX DC3 # 3 c s c s
ol1]/ofo 4 EOT | Dc4 $ 4 D T d t
o{1]o0f1 5 ENQ | NAK % 5 E U e u
ol1/1]0 6 ACK | SYN & 6 F v f v
of1/1/1 7 BEL ETB ! 7 G w g w
1|lojo]o 8 BS CAN (8 H X h x
1]olo[1 9 HT EM) 9 I Y i v
1lol1]o0 10 LF SuB * J z j z
1]of1]1 11 VT ESC + ; K [K {
1]1/0]0 12 FF FS , < L \ | !
1/1]0]1 13 CR GS - = M] m }
1(171(0 14 SO RS . > N A n ~
1111 15 sI us / ? o _ o DEL
Ne—
32 CONTROL)
o,
<—— 64 CHARACTER SET ——»]
<—— 96 CHARACTER SET -
- 128 CHARACTER SET >

EXAMPLE: The representation for the character “K'’ {column 4, row 11) is.

b7 bg bg bg bz b by
BINARY 1 0 01 0 1 1
N — ———

OCTAL 1 1 3

* Depressing the Control key while typing an upper case letter produces
the corresponding control code on most terminals. For example,
Control-H is a backspace.

9206- 1A

(4]

HEWLETT-PACKARD CHARACTER SET FOR COMPUTER SYSTEMS

This table shows HP's implementatiori of ANS X3.4-1968 (USASCH) and ANS X3.32-1873. Some devices may substitute
alternate characters from those shown in this chart (for example, Line Drawing Set or Scandanavian font) Consult the manual
for your device.

The left and right byte columns show the octal patterns in a 16 bit word when the character occupies bits 8 to 14 (left byte) or 0
to 6 (right byte) and the rest of the bits are zero. To find the pattern of two characters in the same word, add the two values. For
example, "AB" produces the octal pattern 040502. (The parity bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are character codes.

I-41d

Octal Values Octal Values
Decimal Mnemonic Graphic' Meaning Decimal Character Meaning
Value Left Byte | Right Byte Value Left Byte Right Byte
0 000000 000000 NUL Ny Null 32 020000 000040 Space, Blank
1 000400 000001 SOH i Start of Heading 33 020400 000041 t Exclamation Point
2 001000 000002 STX S Start of Text 34 021000 000042 ” Quotation Mark
3 001400 000003 ETX B¢ End of Text 35 021400 000043 # Number Sign, Pound Sign
4 002000 000004 EQT Er End of Transmission 36 022000 000044 $ Dollar Sign
5 002400 000005 ENQ & Enquiry 37 022400 000045 % Percent
6 003000 000006 ACK A Acknowledge 38 023000 000046 & Ampersand, And Sign
7 003400 000007 BEL Q Bell, Attention Signal 39 023400 000047 / Apostrophe, Acute Accent
8 004000 000010 BS =H Backspace 40 024000 000050 (Left (opening) Parenthesis
9 004400 000011 HT He Horizontal Tabulation 41 024400 000051) Right (closing) Parenthesis
10 005000 000012 LF Le Line Feed 42 025000 000052 * Asterisk, Star
" 005400 000013 vT A Vertical Tabulation 43 025400 000053 + Plus
12 006000 000014 FF Fe Form Feed 44 02