HEWLETT W PACKARD

RTE Assembler

Reference Manual

PRp—

RTE Assembler

Reference Manual

I

HEWLETT h0; PACKARD

HEWLETT-PACKARD COMPANY

11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Library Index No.
2RTE.320.92060-90005

PUBLICATION NOTICE

Information in this manual describes the RTE Assembler. Changes in text to document software updates subsequent to the
initial release are supplied in manual update notices and/or complete revisions to the manual. The history of any changes
to this edition of the manual is given below under “Publication History.” The last change itemized reflects the software
currently documented in the manual.

Any changed pages supplied in an update package are identified by a change number adjacent to the page number.
Changed information is specifically identified by a vertical line (revision bar) on the outer margin of the page.

PUBLICATION HISTORY

Fourth Edition Apr 79 (Software Rev. Code 1639)

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
JTAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1979 by HEWLETT-PACKARD COMPANY

ii

PREFACE

This manual describes the Assembler which is designed to operate under control of the
RTE Operating System.

This manual assumes that the reader is an experienced assembly language program-
mer who is familiar with operating systems.

The Assembler permits the programmer to use all supported machine instructions for
the HP 21MX Computer and it is assumed that object programs produced by the As-
sembler will be executed on an HP 21MX Computer. However, the object program may
be executed on other HP 2100 Series computers (2114, 2115, 2116, or 2100) if the
following machine and pseudo instructions are not used:

Word Processing (described in paragraph 3-5)

Byte Processing (paragraph 3-6)

Bit Processing (paragraph 3-7)

Index Register Group (paragraph 3-11)

Floating Point (paragraph 3-18)

Dynamic Mapping System (paragraph 3-19)

DBL and DBR: Define Left Byte and Define Right Byte (paragraph 4-3)
BYT: Define Octal Byte Constants (paragraph 4-4)

MIC: Define User Instruction (paragraph 4-8)

The Floating Point instructions (paragraph 3-18) may be used on a 2100 A/S with the
12901A Floating Point Option.

If the object programs produced by the Assembler are relocated and executed under
control of an operating system other than the RTE Operating System, the following
restrictions apply:

ENT pseudo instructions with absolute or common symbols as operands must rot be
used.

I/O instructions using externally-defined select codes must not be used.
1/0 select codes must not be defined via the ENT pseudo instruction.

Memory reference instructions must not refer to external symbols with offset values.
When assembling programs to be run under control of the Basic Control System (BCS)

(see the Basic Control System Manual, part no. 02116-90017), the following restrictions
also apply:

Absolute operands greater than 77g are illegal in relocatable programs. However,
such usage will not be diagnosed as errors by the loader; instead, it will result in
errors during execution of the object program.

The content of this manual is as follows:

Section I discusses the assembly process in general, program relocation, as-
sembly options, and assembler input and output.

Section I1 describes the source statement format.
Section III describes all of the available machine instructions.

Section IV describes all of the available assembler pseudo instructions.

iti

In addition, nine appendices are supplied, as follows:

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E
Appendix F
Appendix G
Appendix H

Appendix I

describes the Hewlett-Packard character set.

summarizes all of the available machine and pseudo instructions
(including instruction formats).

presents a one-sentence definition of all available machine and
pseudo instructions, arranged alphabetically by mnemonic.

presents a tabular summary of the binary format of all available
machine instructions.

describes how to run an assembly.

describes use of the Formatter.

lists and describes all of the assembler error messages.
presents tape formats.

discusses the RTE Cross Reference Table Generator.

Section I Page
INTRODUCING THE ASSEMBLER
Assembly Processing 1-1
Symbolic Addressing .:............ e 1-1
Memory Addressing ...t 1-1
Paging 1-1
Indirect Addressing il 1-2
Program Relocationcciiuin, 1-2
Program Location Counter 1-3
Source Program oo, 1-3
Assembly Options...........c.oiiiiiiiiiiinennn.. 1-3
Binary Output. ...t 1-3
Symbol Tablecoiiiiiiiiii e, 1-3
List Output c...ccoienon.. 1-6
Section II Page
SOURCE STATEMENT FORMAT
Statement of Characteristics....................... 2-1
Field Delimiters...............oviiivininnn..n. 2-1
Character Setcooiiiiiiiiiinine.. 2-1
Statement Length 2-1
Label Field ... 2-1
Label Symbolo 2-1
Asterisk ... 2-2
Opcode Field 2-2
Operand Field 2-2
Symbolic Termscccoiiiriiiiien ... 2-2
Numeric Termscooiiiiiiiiiiiie... 2-4
Asterisk 24
Expression Operatorscovvevinennen... 2-4
Evaluation of Expressions 2-4
Expression Termscccviiiiieenn... 2-4
Absolute and Relocatable Expressions 2-4
Absolute Expressionsoevun... 24
Relocatable Expressionscc.ovu... 2-6
Literals. ..o 2-6
Indirect Addressing 2-6
Clear Flag Indicator 2-7
Comments Fieldl 2-7
Section III Page
MACHINE INSTRUCTIONS
Memory Referenceccooiiiiiiannn. 3-1
Jump and Increment-Skip 3-1
Add, Load and Store 3-1
Logical Operations 3-2
Word Processing (21MX Series Only) 3-2
Byte Processing (21MX Series Only) 3-2
Bit Processing (21MX Series Only) 3-3
Register Reference 3-4
Shift-Rotate Groupl 3-4
Alter-SKip Groupo vt 3-4
Index Register Group (21MX Series Only) 3-5
No-Operation Instruction 3-7
Input/Output, Overflow, and Halt 3-7

Imput/Output................ 3-8
Overflowcooii i 3-9
Halt ..o 3-9
Extended Arithmetic Unit (EAU) 3-9
Floating Point 3-10
Dynamic Mapping System (21MX Series Only) 3-10
Memory Addressingcoiiiiiiinn, 3-11
Status and Violation Registers 3-11
Map Segmentationciiiinnia.. 3-11
Power Fail Characteristics 3-11
Protected Mode 3-12
MEM Violationccciiiiiiinn. . 3-12
Dynamic Mapping System Instructions 3-12
HP 21MX Series Fences 3-18
Section IV Page
PSEUDO INSTRUCTIONS
Assembler Control e 4-1
Object Program Linkage 4-5
Address and Symbol Definition 4-11
Constant Definition 4-14
Storage Allocationccooea.... 4-19
Assembly Listing Control 4-19
Arithmetic Subroutine Calls...................... 4-20
Define User Instruction (21MX Series Only) 4-21
“Jump to Microprogram” 4-21
Examplel 4-21
Combining Multiple Mnemonics................ 4-21
Example ... 4-21
Defining Constants 4-21
Example 4-22
Appendix A Page
HP CHARACTER SET A-1
Appendix B Page
SUMMARY OF INSTRUCTIONS
Machine Instructions B-2
Memory Reference B-2
Jump and Increment-Skip B-2
Add, Load and Store......................... B-2
Logical i B-2
Word Processingcoiiiiiii.. B-2
Byte Processingo, B-3
Bit Processing ..., B-3
Register Reference, B-3
Shift-Rotatecoiiiii it B-3
No-Operationccciiiiiineninnnn. B-4
Alter-SKip e B4
Index Registercoiiiiiia. B-5
Input/Output, Overflow, and Halt B-6
Input/Output B-6
Overflow ... B-6
Halt ... e e B-6
Extended Arithmetic Unit B-6
Floating Point ...t B-7

CONTENTS (continued)

Memory Expansionol B-7
Pseudo Instructionscoooiiiiiii e B-9
Assembler Controlot B-9
Object Program Linkage B-9
Address and Symbol Definition B-9
Constant Definition, B-10
Storage Allocation i eeaeteerer e, B-10
Assembly Listing Control B-10
Define User Instruction B-10
Appendix C Page
ALPHABETIC LIST OF INSTRUCTIONS C-1
Appendix D Page
CONSOLIDATED CODING SHEETS D-1
Appendix E Page
RUNNING ASSEMBLIES
Assembler I/O o i E-1
Assembler Operationcooiiiiii.t. E-1
Messages During Assembly E-2
Appendix F Page
THE FORMATTER
Input and Output............ ..o, F-1
Recordscoviiiiiiiiiiii i F-1
Formatted Input/Output F-1
Format Specifications F-4
Conversion Specifications F4
Editing Specifications F4
E Specification oo F4
Output............... e F4
Input ...t e F-5
Rules for E Field Input F-5
F Specificationo F-5
Output.........ooiiiiiiiiiii e F-5
Inmput ... F-5
I Specification F-5
Output.. ..o vei i F-5
Inputcoiiii F-6
0, K, and @ Specifications F-6
Output. ..o e F-6
Input ... F-6
A and R Specifications F-6
Output ... F-6

vi

Input ... F-7
X Specification............cooiiiiiiiiiiiiiian F-7
Output..........oooiiiii i F-7
Imputo F-7
H and * ” Specifications (Literal Strings) F-7
Output. ... e s F-7
Input ..o F-8
/Specificationo i F-8
How to Put Formats Together F-8
Free-Field Inputo o it F-9
Data Item Delimiters F-9
Floating-Point Input F-9
Octal Inputoo i F-9
Record Terminatorccceen .. F-10
Comments Within Input....................... F-10
Example Calling Sequences F-10
Internal Conversioncccciviiiiininn. F-10
Buffered I/O with the Formatter F-11
Appendix G Page
ASSEMBLER ERROR MESSAGES G-1
Appendix H Page
TAPE FORMATS
NAMRecordcooiiiiiiiiii i H-1
ENT Recordcoiiiiiiiiiiiiiion. H-2
EXTRecord..........o oottt H-3
DBLRecord.............coiiiiiiiiiiiii i H-4
END Recordcoiiiiiiiiiiiiiiiinenn. H-5
Absolute Tape Format H-6
Appendix I Page
RTE CROSS REFERENCE TABLE
GENERATOR
Computer Configurationc.oo0h. I-1
Functional and Operational Characteristics I-1
Output Formato it I-1
Pseudo Processingcoiiiiin I-1
Double Defined Processing I-1
Undefined Label Processing I-1
Unused Label Processingooovvnnn. I-2
Literal Processingcciiiiinneann. I-2
Operation Directivecooiiiiiiiaa... 1-2
Boundsccooviiiiiiii 12
Sample Cross-Reference Generation 1-3

ILLUSTRATIONS

Title Page Title Page
Source Programciiiiiiiiiaii, 1-4 Label RPL Octal Valuecovnunnnn. .4-10
Symbol Table Listingccocvereeieunnnen... 1-5 DEF Examplesoovviirieeninnneaneennennn. 4-11
Label Examples coveiiireninnenenninenn. 2-3 Example of Incorrect Address Modification 4-11
Label Usage Examplescoin.. 2-3 Loader-Assigned Locations for Figure 4-84-12
Symbolic Operand Examples 2-5 Example of Correct Address
Expression Operator Examples 2-5 Modificationot 4-12
Indirect Addressing Example 2-7 Loader-Assigned Locations for Figure 4-10 4-12
Clear Flag Examples..........c.ooiiiiiiiiin.. 2-7 ABS Examplesccooiiiiiiiiiiiiii 4-13
Basic Memory Addressing Scheme 3-11 EQU Examplecooviiiiiiiiiii .. 4-13
Expanded Memory Addressing Scheme 3-11 EQU Examplescooiiiiiiiiiiiiinnnn, .4-14
Map Segmentation oo 3-12 ASCExamplecooviiiiiiiiiiiiii i .4-18
ORBExamplecoiviniiiiieieiiianennnnn, 4-2 DEC Examples (Integer) 4-16
ORR Example (with Single ORG) 4-3 DEC Examples (Floating Point) 4-16
ORR Example (with Multiple ORG’s) 4-3 DEC Examples (Floating Point) 4-16
IFN/XIF and IFZ/XIF Example 44 DEX Memory Format 4-17
IFZ/XIF Example 4-4 DEX Examplescoeninimiiiiiiiiinne.. 4-17
COM Examplesoourvneeniiiiiia i 4-6 OCT Examplesooovvvrnrvnnieeeienanneannn 4-18
ENT/EXT Examplesc.coovviiiiiiiiiinnn.. 4.7 BYT Examplesovviiiiieieeinaiainen.. 4-19
EXT with Offset ... 4-8 Input Calling Sequence Selection F-2
ENT in COMmon and ENT Output Calling Sequence Selection F-3

Defining An External I/O Reference 4-8 Buffered IO with the Formatter F-12
EXT, ENT for I/O Channel 4-9

TABLES

Title Page Title Page
Logical Memory Addresses/Pages 1-2 MEM Violation Register Format.................. 3-12
Control Statement Parameters..................... 1-5 Base Set Instruction Codes in Binary D-2
MEM Status Register Format 3-11 Extended Instruction Group Codes in Binary....... D-3

vii/viii

INTRODUCING THE ASSEMBLER

_SECTION

The Assembler translates symbolic source language in-
structions into an object program for execution on the com-
puter. The source language provides mnemonic machine
operation codes, assembler-directing pseudo instructions,
and symbolic addressing. The assembled program may be
absolute or relocatable.

The source program may be assembled as a complete en-
tity or it may be subdivided into several relocatable sub-
programs (or a main program and several subroutines),
each of which may be assembled separately. When re-
locatable object programs and subprograms are desired to
be executed, they are relocated and linked to one another
by the relocating loader.

Absolute object programs may be loaded by the Basic Bi-
nary Loader or the Basic Binary Disc Loader. There are no
intermediate steps needed to prepare the code before it is
executed.

The Assembler can read the source input from paper tape,
punched cards, magnetic tape or the LS Area of the disc.
The Assembler outputs the resultant object program on
the standard punch output device and/or to the LG Area of
the disc in a format acceptable to the RTE Relocating
Loader.

1-1. ASSEMBLY PROCESSING

The Assembler is a two pass system. A pass is defined as a
processing cycle of the source program input.

In the first pass, the Assembler creates a symbol table from
the names used in the source statements and (if requested)
prints a symbol table listing on the standard list output
device. It also checks for certain possible error conditions
and prints error messages on the console device if neces-
sary.

During pass two, the Assembler again examines each
statement in the source program along with the symbol
table and produces the binary object program. It outputs
the object program to the standard punch output device
and/or to the LG Area of the disc. If requested, the Assem-
bler also prints the source program listing on the standard
list output device. Additional error messages may also be
printed on the console device.

If the source input is being read from a non-disc device, it is
written on the disc at the start of pass 1; for pass 2, the
source is then read from the disc. However, if there is not
sufficient space available on the disc to do this, the source
input will have to be read through the non-disc device at
the start of pass 2. In such a case, the Assembler prints
$END ASMB PASS on the console device at the end of
pass 1. The operator responds by reloading the source
input into the non-disc device and then entering GO,
ASMB through the console device.

1-2. SYMBOLIC ADDRESSING

Symbols may be used for referring to machine instructions,
data, constants, and certain other pseudo operations. A
symbol represents the address for a computer word in
memory. A symbol is defined when it is used as a label for a
location in the program, a name of a common storage seg-
ment, the label of a data storage area or constant, the label
of an absolute or relocatable value, or a location external to
the program.

Through use of simple arithmetic operators, symbols may
be combined with other symbols or numbers to form an
expression which may identify a location other than that
specifically named by a symbol. Symbols appearing in
operand expressions, but not specifically defined, and sym-
bols that are defined more than once are considered to be in
error by the Assembler.

1-3. MEMORY ADDRESSING

14. PAGING

The computer memory is logically divided into pages of
1024 words each. A page is defined as the largest block of
memory which can be addressed directly by the memory
address bits of a memory reference instruction (single-
length). These memory reference instructions have 10 bits
to specify a memory address, and thus the page size is 1024
locations (2000 octal). Octal addresses for each page, up to
the maximum memory size, are shown in table 1-1.

Provision is made to address directly one of two pages:
page zero (the base page, consisting of locations 00000,
through 017775), and the current page (the page in which
the instruction itself is located). Memory reference in-
structions include a bit (bit 10) reserved to specify one or

11

Introducing the Assembler

the other of these two pages. To address locations in any
other page, indirect addressing is used. Page references
are specified by bit 10 as follows:

Logic 0 = page zero (Z)
Logic 1 = current page (C)

1-5. INDIRECT ADDRESSING

All memory reference instructions reserve a bit to specify
direct or indirect addressing. For single-length memory
reference instructions, bit 15 of the instruction word is
used; for extended arithmetic memory reference instruc-
tions, bit 15 of the address word is used. Indirect addressing
uses the address part of the instruction to access another
word in memory, which is taken as a new memory reference
for the same instruction. This new address word is a full 16
bits long, 15 bits of address plus another direct-indirect bit.
The 15-bit length of the address permits access to any
location in memory. If bit 15 again specifies indirect ad-
dressing, still another address is obtained. This multiple-
step indirect addressing may be done to any number of
levels. The first address obtained in the indirect phase
which does not specify another indirect level becomes the
effective address for the instruction. Direct or indirect ad-
dressing is specified by bit 15 as follows:

Logic 0 = direct
Logic 1 = indirect

1-6. PROGRAM RELOCATION

Relocatable programs are relocated at absolute addresses
by the relocating loader.

Relocatable code assumes a starting location of 00000, and
this location is termed the relative, or relocatable origin.
The absolute origin (termed the relocation base) of a re-
locatable program is determined by the loader. The value of
the absolute origin is added to the zero-relative value of
each operahd address to obtain the absolute operand ad-
dress. The absolute origin, and thus the values of every
operand address, may vary each time the program is
loaded.

A relocatable program may be composed of several inde-
pendently assembled or compiled subprograms. Each of the
subprograms will have a relative origin of 00000. Each
subprogram is then assigned a unique absolute origin upon
being loaded.

The operand values produced by the Assembler may be
program relocatable, base page relocatable, or common re-
locatable. Each of these segments of the program has a

1-2

separate relocation base or origin. Operands that are refer-
ences to locations in the main portion of the program are
incremented by the program relocation base; those refer-
ring to the base page, by the base page relocation base; and
those referring to common storage, by the common reloca-
tion base.

If the loader or system generator encounters an operand
that is a reference to a location in a page other than the
current page or base page, a link is established. A link is a
word in the base page or current page which is allocated to
contain the full 15-bit address of the referenced location.
The address of the link is then substituted as an indirect
address in the instruction in the current page. If other
similar references are made to the same location, they are
linked through the same link.

Table 1-1. Logical Memory Address/Pages

MEMORY OCTAL

SIZE PAGE ADDRESSES
0 00000 to 01777

4K 1 02000 to 03777
2 04000 to 05777

3 0ROON tn 07777

4 10000 to 11777

8K 5 12000 to 13777
6 14000 to 15777

7 16000 to 17777

8 20000 to 21777

12K 9 22000 to 23777
10 24000 to 25777

1" 26000 to 27777

12 30000 to 31777

16K 13 32000 to 33777
14 34000 to 35777

15 36000 to 37777

16 40000 to 41777

17 42000 to 43777

18 44000 to 45777

24K 19 46000 to 47777
20 50000 to 51777

21 52000 to 53777

22 54000 to 55777

23 56000 to 57777

24 60000 to 61777

25 62000 to 63777

26 64000 to 65777

32K 27 66000 to 67777
28 70000 to 71777

29 72000 to 73777

30 74000 to 75777

31 76000 to 77777

1-7. PROGRAM LOCATION COUNTER

The Assembler maintains a counter, called the program
location counter, that assigns consecutive memory addres-
ses to source statements.

The initial value of the program location counter is estab-
lished according to the use of either the NAM or ORG
pseudo operation at the start of the program. The NAM
operation causes the program location counter to be set to
zero for a relocatable program; the ORG operation specifies
the absolute starting location for an absolute program.

Through use of the ORB pseudo operation a relocatable
program may specify that certain operations or data areas
be allocated to the base page. If so, a separate counter,
called the base page location counter, is used in assigning
these locations.

1-8. SOURCE PROGRAM

Figure 1-1 shows an assembler coding form and the code for
a simple program which counts the number of I’s and ’sin
the A-register. The first statement is the control statement,
and contains the assembly options R (for a relocatable
source program), B (the program is to be punched on the
standard punch device in binary form), L (a program listing
is to be printed on the standard list device), and T (a listing
of the symbol table is to be printed on the standard list
device). See paragraph 1-9 and table 1-2 for a further dis-
cussion of control statement parameters.

Following the control statement, the first statement of the
program (other than remarks or a HED statement) must be
a NAM statement for a relocatable program or an ORG
statement to indicate the origin of an absolute program.
The last statement must be an END statement and may
contain a transfer address for the start of a relocatable
program. Each statement is terminated by an end-of-
statement or end-of-record mark if not on cards.

1-9. ASSEMBLY OPTIONS

The control statement must be the first statement in the
source program and it specifies the desired assembly op-
tions:

ASMBp, p,. - - Py

“ASMB,” is in positions 1-5 of the statement. Following
the comma are one or more parameters, in any order: The
parameters are shown in table 1-2. If output to the LG
Area is specified in the ON,ASMB directive

Introducing the Assembler

(ON,ASMB, . . . ,99), the control statement does not re-
quire the B parameter for relocatable output to be gener-
ated onto the LG Area. (Only specify B if punched form
required.)

Since they contradict one another, F and X must never
appear in the control statement for the same source prog-
ram. If neither A nor R is specified, R is assumed. If T is
omitted, the symbol table listing will not be printed. If B is
omitted, the object program will not be punched on the
standard punch output device (it may, however, be re-
tained in the LG Area of the disc if so specified in the
ON,ASMB RTE directive).

“ASMB” alone or with either A or R as the only option
specified, will direct the Assembler to process the source
information without producing any output. Error mes-
sages will be printed on the list device, however. Thus, the
user may use this method to examine the source for errors
prior to producing the final object code.

1-10. BINARY OUTPUT

The binary output is defined by the ASMB control state-
ment. The binary output includes the object code for the
instructions translated from the source program. It does
not include system subroutines referenced within the

source program (arithmetic subroutine calls, I0C., .DIO.,
.ENTR, etc.)

1-11. SYMBOL TABLE

Figure 1-2 shows the symbol table listing produced when
the source program was assembled. Columns 1 through 5
contain the name of the label. The R in column 7 specifies
that the source program is relocatable and columns 9
through 14 contain the location (in octal) where the label
symbol is stored. (In the example shown in figure 1-2, the
locations are relative because the source program is re-
locatable.)

The characters that designate an external symbol or type of
relocation for the Operand field or the symbol are as fol-
lows:

Character Relocation Base
Blank Absolute
R - Program relocatable
C Common relocatable
X External symbol
B Base page relocatable
S Substitution code

Introducing the Assembler

I =] T T T -
G [
4 T
I
O
g N R 2
= [3 T
W o i i
® [
L @ +—
— -
nNU [0y ~ 1 L
< [© ~ 1 T T
[a] # ol i~ o~
Qi i - [Y4
Qi < ~ Fd o
EETSES) [B
x W o a %) 1
w v x| w ~ H
iz : RS al < % -
oz 2| N~ Y o
= f.0- 2 [N 2] ZTe] [] § -
L H H [<) ofHuLlW [1 -
wn 2 [N Wl o
(2] 5 v [=
<) N~ F3 a Z
x a1 : a O vl o <Cw i
nKn . Ll Twie W Wi o
13 [<] [ty ¥ Ol n ®io !
Mh S Olwlel el TwlE r
a o [u X 2 T i i
v 8] o 2Tw —Tedl T o5 T
- © Nl b [Xe) [
m X va g 2wy
o) o o w! a wig
z 2 — @ q w £ 0 2
® o ! WA
u [<99 nag >
T T wial o e ol i
; L 4 Q0 Vw o wlolw -
! Oldn>~iQi2 X
8 T H
z
= T
Q H i
3 %] - ——
i - [
N z/ 2 © 9 [N _
23 - Q2
SIES) a 1K)
INSYES 1] =
2| 0 <
H 1N olaja x|qglo]u]xfafaiaq
fldisizigioldlaidflafw[ETE[2
< 12lwio vl Alunlklxc[al5] 5w
o o
A ol -
g1). [2 a
ERRERES <[> <) T
g %) [2) S
2] o< *[O =
MO255

5080-6596

LINE TERMINATED 8Y RETUAN LINE FLED ® LF)
LINE 15 OF LET£D 8Y RUBOLY BEFORE & LF

= ALPHA L
2 ALPHA Z

108 1~ ONE
2=1W0

O ALPKA O

0+ 26RO

Figure 1-1. Source Program
14

Introducing the Assembler

Table 1-2. Control Statement Parameters

PARAMETER MEANING

A Absolute assembly. The addresses generated by the Assembiler are to be interpreted as absolute
locations in memory. The program is a complete entity; external symbols, common storage refer-
ences and entry points are not permitted. Note that an absolute program cannot be executed on
RTE.

R Relocatable assembly. The object program may be loaded anywhere in memory. All operands
which refer to memory locations are automatically adjusted as the program is loaded. Operands
referring to memory locations greater than 1777, must be relocatable expressions. Programs may
contain external symbols and entry points, and may refer to common storage.

B Binary output. An absolute or relocatable object program is to be output on the standard punch
device.

List output. A program listing is to be printed on the standard list device. Error messages will still

L be printed if “L" is not specified.
T Symbol table print. A listing of the symbo! table is to be printed on the standard list output device.
N,Z Selective assembly. Sections of the program are to be included or excluded at assembly time

depending upon the option specified. See the descriptions of the IFN and IFZ pseudo instructions in
Section 1V of this manual.

C Cross reference table print. All references to statement labels, external symbols, and user-defined
opcodes are to be listed on the standard list output device after the end of the assembly.

F Floating point instructions. The floating point machine instructions are to be used instead of the
software simulation routines for the following floating point operations: FIX, FLT, FDV, FMP, FAD, and
FSB.

X No EAU hardware. Signifies that the object program will be executed on a machine which does not

have the Extended Arithmetic Unit (EAU) hardware. This parameter prevents the use of the following
EAU instructions: ASR, ASL, RRR, RRL, LSR, LSL, and SWP. in addition, it causes all occurrences of
the MPY, DIV, DLD, and DST instructions to be substituted with a call to the appropriate subroutine in
the relocatable library.

PAGE o021
20Ny ASMB,R,B,L,T
LOOP R 200071
COUNT R 27220205
BRITe R avce1e
AIT1 R @¢rield
BIT2 R AvQ216
MORE R 022
BITI R 220023
LESS1 R arnp24
LESS2 R mpru2s
EVEN R QORCn27

*%x NO ERRORS»

Figure 1-2. Symbol Table Listing
1-5

Introducing the Assembler

1-12. LIST OUTPUT

Columns Content

1-4 Source statement sequence number gen-
erated by the Assembler

5-6 Blank

7-11 Location (octal)

12 Blank

13-18 Object code word in octal

19 Relocation or external symbol indicator

20 Blank

21-80 First 60 characters of source statement

Lines consisting entirely of comments (i.e., * in column 1)
are printed as follows:

Columns Content
1-4 Source statement sequence number
5-80 Up to 76 characters of comments

At the end of each pass, the following is printed on the list
device:

Pass 1 =
~ ™ NO ERRORS PASS#1 “*RTE ASMB xxxxxyyyyy™

i

tor

ERRORS PASS#1 **RTE ASMB xxxxx-yyyyy*™

The value nnnn indicates the number of errors. Pass 2
error count includes the total error count of pass 1 and
pass 2. XxxxX-yyyyy is the Assembler’s part number.

If there are errors, the message PG xxx is printed on the list
device immediately preceding the **nnnn ERRORS* mes-
sage, where xxx is the page number where the final error
was detected. The same message appears in the listing
following each error and it points to the page number where
the previous error was detected. The backwards pointer
following the first error in the program is PG 000.

SOURCE STATEMENT FORMAT

. SECTION

A source language statement consists of a label, an opera-
tion code, an operand (or operands) and comments. The
label is used when needed as a reference by other state-
ments. The operation code may be a mnemonic machine
operation or an assembly directing pseudo code. An
operand may be an expression consisting of an al-
phanumeric symbol, a number, a special character, or any
of these combined by arithmetic operators. An operand may
also be a literal. Indicators may be appended to an operand
to specify certain functions such as indirect addressing. The
comments portion of the statement is optional.

2-i. STATEMENT OF CHARACTERIS-
TICS

The fields of the source statement appear in the following
order:

Label
Opcode
Operands

Comments

L

2-2. FIELD DELIMITERS

One or more spaces separate the fields of a statement. A
single space as the first character of a statement signifies
that there is no label for this statement.

2-3. CHARACTER SET

The characters that may appear in a statement are as
follows:

A through Z

0 through 9
{period)

* (asterisk)

+ (plus)
(minus)

, (comma)

= (equals)

() (parentheses)
(space)

Any other ASCII characters may appear in the Comments
field. (See Appendix A.)

The letters A through Z, the numbers 0 through 9, and the
period may be used in an alphanumeric symbol. In the first
position in the Label field, an asterisk indicates a comment;
in the Operand field, it represents the value of the program
location counter for the current instruction. The plus and
minus are used as operators in arithmetic address expres-
sions. The comma separates several operation codes, or an
expression and an indicator in the Operand field. An equals
sign indicates a literal value. The parentheses are used
only in the COM pseudo instruction.

Spaces separate fields of a statement and operands in a
multi-operand field. They may also be used to enhance the
appearance of the listing. Within a field they may be used
freely when following +, —, ,, or (.

2-4. STATEMENT LENGTH

A statement may contain up to 80 characters including
blanks, but excluding the end-of-statement mark.

2-5. LABEL FIELD

The Label field identifies the statement and may be used as
a reference point by other statements in the program.

The field starts in position one of the statement. It is termi-
nated by space. A space in position one signifies that the
statement is unlabeled.

2-6. LABEL SYMBOL

A label may have one to five characters consisting of A
through Z, 0 through 9, and the period.

Note: The Assembler allows the use of certain
other characters in the Label field. How-
ever, they are reserved for use in
Hewlett-Packard programs.

The first character must be alphabetic or a period. A label of
more than five characters could be entered on the source
statement, but the Assembler flags this condition as an
error and truncates the label from the right to five charac-
ters. Some examples are shown in figure 2-1.

Each label must be unique within the program; two or more
statements may not have the same symbolic name. Names
which appear in the Operand field of an EXT or COM
pseudo instruction may not also be used as statement labels

2-1

Source Statement Format

in the same subprogram. However, names appearing in a
COM pseudo instruction may be defined as entry points in
an ENT pseudo instruction. Some examples are shown in
figure 2-2.

2-7. ASTERISK

An asterisk in position one indicates that the entire
statement is a comment. Positions 2 through 80 are avail-
able; however, positions 1 through 76 only are printed as
part of the assembly listing. An asterisk within a label is
illegal in any position

2-8 OPCODE FIELD

The operation code defines an operation to be performed by
the computer or the Assembler. The Opcode field follows
the Label field and is separated from it by at least one space.
If there is no label, the operation code may begin anywhere
after position one. The Opcode field is terminated by a space
immediately following an operation code. Operation codes
are organized in the following categories:

Machine operation codes:
o Memory Reference
e Register Reference
¢ Input/Output, Overflow, and Halt
o Extended Arithmetic Unit
o Floating Point
e Memory Mapping
@ - Decimal Arithmetic

" Pseudo operation codes:

P - Assembler control

~ » Object program linkage ;
e Address and symbol definition

 Constant definition
: torage allocation
o Anthmetic subroutme callk
Assembly L:st'ng ontro

Operation codes are discussed in detail in Sections III and
IV.

2-9. OPERAND FIELD

The meaning and format of the Operand field depend on the
type of operation code used in the source statement. The

2-2

field follows the Opcode field and is separated from it by at
least one space. If more than one operand is required, they
are separated from one another by at least one space.

An Operand may contain an expression consisting of one of
the following:

Smgle symbohc term.
‘e Single numer;c term e
o Asterlsk

An expression may be followed by a comma, an indirect
addressing indicator (see paragraph 2-20), and a Clear Flag
indicator (see paragraph 2-21). Programs may also contain
a literal value in the Operand field. (See paragraph 2-19.)

2-10. SYMBOLIC TERMS

A symbolic term may be one to five characters consisting of
A through Z, 0 through 9, and the period. The first charac-
ter must be alphabetic or a period. Some examples are
shown in figure 2-3.

A symbol used in the Operand field must be a symbol that is
defined elsewheie in the prograin iu vue of the fuliowing

ways:

@ As a label in the Label field of a machine oper-
ation or a user-defined instruction

@ Asalabel in the Label field of a BSS, ASC, DEC,
DEX, OCT, DEF, BYT, ABS, EQU, DBL, DBR.
~or REP pseudo operation :

e Asanamein the Operand field of a COM or EXT
. pseudo operatmn i

e Asalabel in the La’oel fiekl uf an anthmetlc sub-, L
R mut.me pseudo operatm o :

The value of a symbol is absolute or relocatable depending
on the assembly option selected by the user. The Assembler
assigns a value to a symbol as it appears in one of the above
fields of a statement. If a program is to be loaded in absolute
form, the values assigned by the Assembler remain fixed. If
the program is to be relocated, the actual value of a symbol
is established on loading. A symbol may be assigned an
absolute value through use of the EQU pseudo instruction.

A symbolic term may be preceded by a plus or minus sign. If
preceded by a plus or no sign, the symbol refers to its
associated value. If preceded by a minus sign, the symbol
refers to the two’s complement of its associated value. A
single negative symbolic operand may be used only with
the ABS pseudo operation.

Source Statement Format

HEWLETT-PACKARD ASSEMBLER CODING FORM
lPiOGiAMMER DATE] PROGRAM
i Lasel Operation Cperana = Comments
1 5 1©e 15 2 25 3¢ 35 aC E 50 55 60 42 |
* Lol | wio| clalslele T Y
1 i } : i i
]
Llaislep viaLilp| lLlasell il ,
.[1:234 i VALIID| LIABE|L
al. 123 Sl VAL T LABE[L
o . |viavrip| LABEfL
L i)
[. ;
\|. ABC ILLEG|AL LABEL =-| FIRST CHARACTE[R
NUMER|I ¢ '
Algieit[2[3 T Thhleelad] talged] -[Too |Long ‘ L
‘ TRUNC|ATEED [To ABle 12 ; :
i | B C i ‘ i |
AkBe ILLEGAL LABEL | ASTERISK [WOT '
ALLowleDd 1N LABE[L 1
ABiC ! i ! NOl LABEL =~| SPAcle IN [FIRST
" ! PlojstT|LoN -| As|sEMBLER] ATTEMPTS
Tlo, INTERPRIET ABjc AS /AN ‘oPleoidE
; I P
| T o
\/
Figure 2-1. Label Examples
HEWLETT-PACKARD ASSEMBLER CODING FORM
PROGRAMMER]‘ DATE ! PROCRAM
clolw ACOE(ZG):‘ Blel(sg] || 1] T } BN ERERENERERRREERN
. T T RE 7
Lig Elau| [1l6jg] | [IviaL 1| iLjaBlel L
elnr| |alBic| | ;
‘ x| xiLit] x| ‘ .
S[TART| |LIDA| [LIB i | [VAILID| LABEL i . : |
|25 vALID| LIABE[L : 2B iR]
| ! A T T « |
X|L 2 ; ILLEGAL LABEL -| USED| IN EXT 7
B|IC i TLLEGAL LABEL -| USED| IN cCloM
N[25] ‘ ! "jILLEGWML LABEL -| PREVIOUSL|Y
\\\\ ; ‘ DEFINED ;
N P

Figure 2-2. Label Usage Examples
2-3

Source Statement Format

2-11. NUMERIC TERMS

A numeric term may be decimal or octal. A decimal number
is represented by one to five digits within the range 0 to
32767. An octal number is represented by one to six octal
digits followed by the letter B (0 to 177777B).

If a numeric term is preceded by a plus or no sign, the
binary equivalent of the number is used in the object code.
If preceded by a minus sign, the two’s complement of the
binary equivalent is used. A negative numeric operand
may be used only with the DEX, DEC, OCT, BYT and ABS
pseudo operations.

For a memory reference instruction in an absolute prog-
ram, the maximum value of a numeric operand depends on
the type of machine or pseudo instruction. In a relocatable
program, the value of a numeric operand may not exceed
1777,. Numeric operands are absolute. Their value is not
altered by the assembler or the loader.

2-12. ASTERISK

An asterisk in the Operand field refers to the value in the
program location counter at the time the source program
statement is encountered. The asterisk is considered a re-
locatable term in a relocatable program.

213. EXPRESSION OPERATORS

The asterisk, symbols, and numbers may be joined by the
arithmetic operators + and — to form arithmetic address
expressions. 'I'he Assembler evaluates an expression and
produces an absolute or relocatable value in the object code.
Some examples are shown in figure 2-4.

2-14. EVALUATION OF EXPRESSIONS

An expression consisting of more than one operand is re-
duced to a single value. In expressions containing more
than one operator, evaluation of the expression proceeds
from left to right. The algebraic expression A-(B—C+35)
must be represented in the Operand field as A-B+C-5.
Parentheses are not permitted in operand expressions.

The range of values that may result from an operand ex-
pression depends on the type of operation. The Assembler
evaluates expressions as follows: ¥

2-15. EXPRESSION TERMS

The terms of an expression are the numbers and the sym-
bols appearing in it. Decimal and octal integers, and sym-

bols defined as being absolute in an EQU pseudo operation
are absolute terms. The asterisk and all symbols that are
defined in the program are relocatable or absolute depend-
ing on the type of assembly. (RTE Assembler allows ex-
ternals with offset and indirect external references.)

Within a relocatable program, terms may be program re-
locatable or common relocatable or base page relocatable.
A symbol that names an area of common storage is a
common relocatable term. A symbol that is defined in any
statement other than COM or EQU is a relocatable term.
Within one expression all relocatable terms must be prog-
ram relocatable, common relocatable or base page relocat-
able; the types may not be mixed.

2-16. ABSOLUTE AND RELOCATABLE
EXPRESSIONS

An expression is absolute if its value is unaffected by
program relocation. An expression is relocatable if its
value changes according to the location into which the
program is loaded. In an absolute program, all expressions
are absolute. In a relocatable program, an expression may
be program relocatable, common relocatable, base page
relocatable, or absolute (if less than 20005) depending on
the definition of the terms composing it.

2-17. ABSOLUTE EXPRESSIONS. An absolute ex-
pression may be any arithmetic combination of absolute
terms. It may contain relocatable terms alone, or in combi-
nation with ahsclute terms. If releeatable terms appear,
there must be an even number of them; they must be of the
same type; and they must be paired by sign (a negative
term for each positive term). The paired terms do not have
to be contiguous in the expression. The pairing of terms by
type cancels the effect of relocation; the value represented
by a pair remains constant.

An absolute expression reduces to a single absolute value.
The value of an absolute multi-term expression may be
negative only for ABS pseudo operations. A single numeric
term also may be negative in an OCT, DEX, BYT, or DEC
pseudo instruction. In arelocatable program the value of an
absolute expression must be less than 20005 for instruc-
tions that reference memory locations (Memory Reference,
DEF, Arithmetic subroutine calls, etc.).

If P, and P, are program relocatable terms; C, and C,,
common relocatable; and A, an absolute term; then the
following are absolute terms:

tThe evaluation of expressions by the Assembler is compatible with the addressing capability of the hardware instructions (e.g., up to 32K
words through Indirect Addressing). The user must take care not to create addresses which exceed the memory size of the particular

configuration.

24

Source Statement Format

HEWLETT-PACKARD ASSEMBLER CODING FORM
PROGRAMMER I DATE _ I PROGRAM B B
5 LDAWA125; NVALI; ops:mpo[f I i 63 1 W} | - . ;;?
ADA| [B. 1 vialLIp| o|PlE|R|AND T ! 5
IMP| [ENTRY vialL1|p| olelelR|ajnp| | i | 1 /
Lipa| |Al1]2{34]|+8]. [1|-|[ENTR|Y VIAIL[I D, OoPlERAND :
: o
sitial ialgle’ [7711 EiLLelglal] orlerano| - lF1lrls T !
i cHagalelTER Womerlle ‘ i
s/Ta| [ABe|DE|F ° TLLElglal opjeranD| |- MoRE THAN Fil|vE : ;
‘ CHMARA[CTERS ‘ i g
! [T 1 T [T ‘/{/
| 1 I
e el \\ -
Figure 2-3. Symbolic Operand Examples
LDA SYM+6 ADD 6 TO THE VALUE OF SYM
ADA SYM-3 SUBTRACT 3 FROM THE VALUE OF SYM
JMP #+5 ADD 5 TO THE CONTENTS OF THE
PROGRAM LOCATION COUNTER.
STB -A+C-4 ADD - VALUE OF A, THE VALUE OF C
. AND SUBTRACT 4.
STA XTA-% SUBTRACT VALUE OF PROGRAM
LOCATION COUNTER FROM VALUE OF
XTA.

Figure 2-4. Expression Operator Examples
2-5

Source Statement Format

The asterisk is program relocatable.

2-18. RELOCATABLE EXPRESSIONS. A relocat-
able expression is one whose value is changed by the loader.
All relocatable expressions must have a positive value.

A relocatable expression may contain an odd number of
relocatable terms, alone, or in combination with absolute
terms. All relocatable terms must be of the same type.
Terms must be paired by sign with the odd term being
positive.

A relocatable expression reduces to a single positive re-
locatable term, adjusted by the values represented by the
absolute terms and paired relocatable terms associated
with it.

If P,, P,, and P; are program relocatable terms; C,, C, and
C,, common relocatable; and A, an absolute term; then the
following are relocatable terms:

P, -A C-A P, -P, +*
P,-P,+P; C;-C,+C3 C,+A
* 4+ A *_P; +P, *- A
P, +A A+C -A-P, +P, +P5
P, - ¥ C,-C,+C3-A A+*
-C; +C, + G5
2-19. LITERALS

Literal values may be specified as operands in relocatable
programs. (Literals are not allowed in absolute programs.)
The Assembler converts the literal to its binary value,
assigns an address to it, and substitutes this address as the
operand. Locations assigned to literals are those im-
mediately following the last location used by the program.

A literal is specified by using an equal sign and a one-
character identifier defining the type of literal. The actual
literal value is specified immediately following this iden-
tifier; no spaces may intervene.

The identifiers are:

=D a decimal integer, in the range -32767 to 32767,
including zero.t

=F a floating point number; any positive or negative
real number in the range 10738 to 1038, including
zero.T

=B an octal integer, one to six digits, b;b,b;b,bsb,
where b, may be 0 or 1, and b,-b; may be 0 to 7.1

=A two ASCII characters.t

=L an expression which, when evaluated, will result in
an absolute value. All symbols appearing in the ex-
pression must be previously defined.

If the same literal is used in more than one instruction or if
different literals have the same value (e.g.,, =B100 and
=D64), only one value is generated, and all instructions
using these literals refer to the same location.

Literals may be specified only in the following memory
reference, register reference, EAU, and pseudo instruc-
tions:

ADA CPA MBT
ADB CPB JRS
ADX DIV MPY
ADY IOR MVW
AND LDA SBS
CBS LDB TBS
CBT LDX XOR
CMW LDY

may use =D, =B, =A, =L

DLD FDV FSB

FMP FAD may use =F

Examples are as follows:
LDA =D7980 A-Register is loaded with
the binary equivalent of
7980;¢ -

Inclusive OR is performed
with contents of A-Register
and 777.

A-Register is loaded with
binary representation of
ASCII characters NO.

LDB =LZETZ-ZOOM+68 B-Register is loaded with
the absolute value resulting
from the expression.

Contents of A- and B-
Registers multiplied by
floating point constant
39.75.

2-20. INDIRECT ADDRESSING

IOR =B777

LDA =ANO

FMP =F39.75

The HP computers provide an indirect addressing capabil-
ity for memory reference instructions. The operand portion
of an indirect instruction contains the address of another
location. The secondary location may be the operand or it
may be indirect also and give yet another location, and so
forth. The chaining ceases when a location is encountered
that does not contain an indirect address. Indirect addres-
sing provides a simplified method of address modifications
as well as allowing access to any location in core. See
Section I, paragraph 1-5 for a further discussion of indirect
addressing.

The Assembler allows specification of indirect addressing
by appending a comma and the letter I to any memory

tSee CONSTANT DEFINITION, Section IV.

2-6

reference operand. The actual address of the instruction
may be given in a DEF pseudo operation; this pseudo
operation may also be used to indicate further levels of
indirect addressing. An example is shown in figure 2-5.

A relocatable assembly language program; however, may
be designed without concern for the pages in which it will
be stored; indirect addressing is not required in the source
language. When the program is being loaded, the loader
provides indirect addressing whenever it detects an
operand which does not fall in the current page or the base
page. The loader substitutes a reference to a program link
location (established by the loader in either the base page
or the current page) and then stores an indirect address in
the particular program link location. If the program link
location is in the base page, all references to the same
operand from other pages will be via the same link location.

Note: The Basic Control System provides prog-
ram links to the base page only (not the
current page).

2-21. CLEAR FLAG INDICATOR

The majority of the input/output instructions can alter the
status of the input/output interrupt flag after execution or

Souree Statement Format

after the particular test is performed. In source language,
this function is selected by appending a comma and a letter
C to the Operand field. Some examples are shown in figure
2-6.

2-22. COMMENTS FiELD

The Comments field allows the user to transcribe notes on
the program that will be listed with source language coding
on the output produced by the Assembler. The field follows
the Operand field and is separated from it by at least one
space. The end-of-record mark, the end-of-statement mark,

@ , or the 80th character of a statement ter-

minates the field. The statement length should not exceed
60 characters, the width of the source language portion of
the listing. A whole line (up to 76 characters), however,
can be specified as a comment by inserting an asterisk in
the first position. On the list output, statements consisting
entirely of comments begin in position 5 rather than 21 as
with other source statements. Any characters beyond the
above limits will not appear on the listing.

If there is no operand present, the Comments field should
be omitted in the NAM and END pseudo operations and in
the input/output statements, SOC, SOS, and HLT. If a
comment is used, the Assembler attempts to interpret it as
an operand. This limitation applies also to multi-operand
instructions.

AB LDA SAM, I
AC ADA SAM, I
AD ISZ SAM

SAM DEF ROGER

EACH TIME THE ISZ IS EXECUTED,
THE EFFECTIVE OPERAND OF AB AND
AC CHANGE ACCORDINGLY.

Figure 2-5. Indirect Addressing Example

STC 13B,C

SET CONTROL AND CLEAR THE FLAG OF SELECT CODE 13 {(OCTAL)
OTB 16B,C CLEAR FLAG OF SELECT CODE 16 (OCTAL) ALONG WITH QUTPUT TO DEVICE

Figure 2-6. Clear Flag Examples

2.7/2-8

MACHINE INSTRUCTIONS

~SECTION-

The Assembler language machine instruction codes take
the form of three-letter mnemonics. Each source statement
corresponds to a machine operation in the object program
produced by the Assembler.

Notation used in representing source language instruction
is as follows:

label Optional statement label

m Memory location — an expression

I Indirect addressing indicator

sc Select code — an expression

C Clear interrupt flag indicator

comments Optional comments

[1 Brackets defining a field or portion of a
field that is optional

{ } Brackets indicating that one of the set

may be selected.
lit literal

3-1. MEMORY REFERENCE

The memory reference instructions perform arithmetic,
logical, jump, word manipulation, byte manipulation, and
bit manipulation operations on the contents of memory
locations and the registers. An instruction may directly
address the 2048,, words of the current and base pages. If
required, indirect addressing may be used to refer to all
32,768,, words of memory. Expressions in the Operand field
are evaluated modulo 2'°.

External memory references may be made with + or —
offsets, with indirects or both.

If the program is to be assembled in relocatable form, the
Operand field may contain relocatable or absolute expres-
sions; however, absolute expressions must be less than
2000, in value. If the program is to be assembled in absolute
form, the Operand field may contain any expression which
is consistent with the location of the program. Literals may
not be used in absolute programs. Absolute programs must
be complete entities; they may not refer to external sub-
routines or to common storage.

3-2. JUMP AND INCREMENT-SKIP

Jump and Increment-Skip instructions may alter the nor-
mal sequence of program execution.

1 i
label I JMP I m[,I] comments
Jump to m. Jump indirect inhibits interrupt until the
transfer of control is complete, or three levels of indirecting
have occurred.

i
l comments

label i JSB i m [,I]

Jump to subroutine. The address for label+ 1 is placed into
the location represented by m and control transfers tom+ 1.
On completion of the subroutine, control may be returned
to the normal sequence by performing a JMP m,l.

label i ISZ im [,I] icomments

Increment, then skip if zero. ISZ adds 1 to the contents of m.
If m then equals zero, the next instruction in memory is
skipped.

3-3. ADD, LOAD AND STORE

Add, Load, and Store instructions transmit and alter the
contents of memory and of the A- and B-Registers. A lit-
era, indicated by “lit”, may be either =D, =B, =A, or =L
type. See Section II, paragraph 2-19 for a further discus-
sion of literals.

label ADA ‘ { E:; LIl] I comments
Add the contents of m to A.
[] [1
label ADB | { Et BY ” comments

Add the contents of m to B.
1 i
label | LDA m [1] }I comments

lit

Load A with the contents of m.
[[l

label l LDB {m Lo }‘ comments

lit

Load B with the contents of m.
3-1

Machine Instructions

label STA m [,I] comments
Store contents of A in m.
label STB m [,I] comments

Store contents of B in m.

In each instruction, the contents of the sending location is
unchanged after execution.

3-4. LOGICAL OPERATIONS

The logical instructions allow bit manipulation and the
comparison of two computer words.

label AND comments

m [,I]
lit

The logical product (‘“AND”’) of the contents of m and the
contents of A are placed in A.

| | |
m 1]
XOR l lit }

The modulo-two sum (exclusive ‘“‘or’’) of the bits in m and
the bits in A is placed in A.

| [1
IOR ‘ m [}

label comments

label comments

lit

The logical sum (inclusive “or’’) of the bits in m and the
bits in A is placed in A.

| 1 !
m [I]
coa | {21

Compare the contents of m with the contents of A. If they
differ, skip the next instruction; otherwise, continue.

label comments

m [I]
CPB | lit

label comments

Compare the contents of m with the contents of B. If they
differ, skip the next instruction; otherwise, continue.

3-5. WORD PROCESSING (21MX ONLY)

The word processing instructions allow the user to move a
series of data words from one array in memory to another or
to compare (word-by-word) the contents of two arrays in
memory.

3-2

label comments

MVW { literal }

m [I]

Move words. The A-register contains the starting (lowest)
word address of the source array. The B-register contains
the starting (lowest) word address of the destination ar-
ray. These addresses must not be indirect. The number of
words to be moved is specified by literal or by the value
contained in m [,I]. The specified number of words are
moved from the source array into the destination array.
As each word is moved, the A- and B-registers are incre-
mented by one. The source array is not altered.

| 1 1
literal
cMw (feal }

Compare words. The A-register contains the starting
(lowest) word address of array #1. The B-register contains
the starting (lowest) word address of array #2. These
addresses must not be indirect. The number of word com-
parisons to be performed is specified by literal or by the
value contained in m [,I]. The two arrays are compared
word-by-word beginning at the specified addresses. The
operation is finished when an inequality is detected or
when the specified number of word comparisons have been
performed. When the operation is finished, the A-register
contains the word address of the last word in array #1
which was compared, except when the two arrays are
equal. In this case the A-register contains the starting
address of array #1, incremented by the count parameter.
The B-register contains the starting address of array #2
incremented by the “count” parameter (literal or the value
in m [ID. If the two arrays are equal, execution proceeds
at the next sequential source language instruction (P+3).
If array #1 is “less than ” #2, execution proceeds at in-
struction P+4. If array #1 is “greater than” array #2,
execution proceeds at instruction P+5. The two arrays are
not altered.

label comments

3-6. BYTE PROCESSING (21MX ONLY)

The byte processing instructions allow the user to copy a
data byte from memory into the A- or B-register, copy a
data byte from the A- or B-register into memory, copy a
series of data bytes from one array in memory to another,
compare (byte-by-byte) the contents of two arrays in mem-
ory, or scan an array in memory for particular data bytes.

A byte address is defined as two times the word address of
the memory location containing the particular data byte.
If the byte location is the low order half of the memory
location (bits 0-7), bit O of the byte address is set; if the
byte location is the high order half of the memory location
(bits 8-15), bit 0 of the byte address is clear. Byte addresses
may not be indirect.

label i LBT i

comments

Load byte. The B-register contains the byte address of the
byte to be loaded. The specified byte is copied from memory
into bits 0-7 of the A-register (bits 8-15 of the A-register are
set to zeros). The B-register is then incremented by one. The
memory location is not altered.

label i SBT i comments

Store byte. The B-register contains the byte address into
which the byte is to be stored. Bits 0-7 of the A-register are
copied into the specified memory byte location (bits 8-15 of
the A-register are ignored). The B-register is then in-
cremented by one. The A-register is not altered.

i 1 !
literal
MBT I | m L] }

label

comments

Move bytes. The A-register contains the starting (lowest)
byte address of the source array. The B-register contains
the starting (lowest) byte address of the destination array.
The number of bytes to be moved is specified by literal or by
the value contained in m [I]. The specified number of
bytes are moved from the source array into the destination
array. As each byte is moved, the A- and B-registers are

incremented by one. The source array is not altered.

label

literal }
comments

|
CBT ! [m (1]

Compare bytes. The A-register contains the starting (low-
est) byte address of array #1. The B-register contains the
starting (lowest) byte address of array #2. The number of
byte comparisons to be performed is specified by literal or
by the value contained in m [,I]. The two arrays are
compared byte-by-byte beginning at the specified address-
es. The operation is finished when an inequality is de-
tected or when the specified number of byte comparisons
have been performed. When the operation is finished, the
A-register contains the byte address of the last byte in
array #1 where the comparison stopped; the B-register
contains the starting byte address of array #2 incre-
mented by the “count” parameter (iteral or the value in m
[,I1). If the two arrays are equal, execution proceeds at the
next sequential source language instruction (P+3). If
array #1 is “less than” array #2, execution proceeds at
instruction P+4. If array #1 is “greater than” array #2,
execution proceeds at instruction P+ 5. The two arrays are
not altered.

[] 1
label | SFB I comments

Machine Instructions

Secan for byte. The A-register contains a test byte in bits 0-7
and a termination byte in bits 8-15. The B-register contains
the starting (lowest) byte address of the array to be scan-
ned. The array is compared byte-by-byte against both the
test and termination bytes starting at the specified ad-
dress. The operation is finished when a positive compari-
son is detected or when the end of memory is reached. If
the test byte is detected, execution proceeds at the next
sequential source language instruction (P+1) and the
B-register contains the address of the test byte in the
array. If the termination byte is detected, execution pro-
ceeds at instruction P+2 and the B-register contains the
address plus one of the termination byte in the array.

The scanning operation will not continue indefinitely even
if neither the termination byte nor test byte exists in
memory. These bytes are in the A-register with byte ad-
dresses 000 and 001, respectively. Thus, if no match is
made by the time the B-register points to the last byte in
memory, the B-register will roll over to zero and the next
test will match the termination byte in the A-register with
itself.

3-7. BIT PROCESSING (21IMX ONLY)

The bit processing instructions allow the user to selectively
test, set, or clear bits in a memory location according to the
contents of a mask. In the descriptions below, addr! and
addr2 may be operand expressions.

1] i |
literal
TBS : addrl[,I] }

Test bits. literal is a test mask, addr1 [I] is the address of a
memory location containing a test mask, and addr2[1] is
the address of a memory location containing the bits to be
tested. The bits in addr2[,1] which correspond to the “1”
bits in the mask are tested. All other bits in addr2[I] are
ignored. I all the tested bits in addr2 [I] are set, execution
proceeds at the next sequential source language instruc-
tion (P+3). If any of the tested bits in addr2| I] are clear,
execution proceeds at instruction P+4.

label

addr2[,I] l comments

literal
SBS laddrl[,I]} addr2[,I]

Set bits. literal is a mask, addr1[]I] is the address of a
memory location containing a mask, and addr2[1] is the
address of a memory location containing the bits to be set.
The bits in addr2[1] which correspond to the “1” bits in the
mask are set. All other bits in addr2[,I] are not affected.
Functionally, the SBS instruction is a “logical OR” opera-
tion.

label comments

3-3

Machine Instructions

[] l]
literal
CBS [addri[.I]] addr2{,1]

label comments

Clear bits. literal is a mask, addrl [,1] is the address of a
memory location containing a mask, and addr2[1] is the
address of a memory location containing the bits to be
cleared. The bits in addr2[1] which correspond to the “1”
bits in the mask are cleared. All other bits in addr2[1] are
not affected.

3-8. REGISTER REFERENCE

The register reference instructions include a shift-rotate
group, an alter-skip group, an index register group, and
NOP (no operation). For the shift-rotate and alter-skip
groups, the instruction mnemonics within each group may
be combined into a single source statement to cause multi-
ple operations to be executed during one memory cycle. In
such cases, successive mnemonics within a single source
statement are separated from one another by a comma.

3-9. SHIFT-ROTATE GROUP

This group contains 19 basic instructions that can be com-
bined to produce more than 500 different single cycle opera-
tions.

CLE Clear E to zero

ALS Shift A left one bit, zero to least significant bit.
Sign unaltered

BLS Shift B left one bit, zero to least significant bit.
Sign unaltered

ARS Shift A right one bit, extend sign; sign unaltered

BRS Shift B right one bit, extend sign; sign unaltered

RAL Rotate A left one bit

RBL Rotate B left one bit

RAR Rotate A right one bit

RBR Rotate B right one bit

ALR Shift A left one bit, clear sign, zero to least
significant bit

BLR Shift B left one bit, clear sign, zero to least
significant bit

ERA Rotate E and A right one bit

ERB Rotate E and B right one bit

ELA Rotate E and A left one bit

ELB Rotate E and B left one bit

ALF Rotate A left four bits

BLF Rotate B left four bits

SLA Skip next instruction if least significant bit in A
is zero

SLB Skip next instruction if least significant bit in B
is zero

34

These instructions may be combined as follows:

- - _ -
ALS ALS
ARS ARS
RAL RAL
label iﬁll: ¢ | [,CLE] [,SLA]/[, iﬁlf:: ¢ | comments
ALF ALF
ERA ERA
A ELA | ELA
BLS BLS
BRS BRS
RBL RBL
label ggg [,CLE] [,SLB] |- g’gll: comments
BLF BLF
ERB ERB
| ELB] | ELB]

CLE, SLA, or SLB appearing alone or in any valid combina-
tion with each other are assumed to be a shift-rotate
machine instruction.

The shift-rotate instructions must be given in the order
shown. At least one and up to four are included in one
statement. Instructions referring to the A-register may
not be combined in the same statement with those refer-
ring to the B-register.

3-10. ALTER-SKIP GROUP

The alter-skip group contains 19 basic instructions that can
be combined to produce more then 700 different single cycle
operations.

CLA Clear the A-Register
CLB Clear the B-Register
CMA Complement the A-Register
CMB Complement the B-Register

CCA Clear, then complement the A-Register (set to
ones)

CCB Clear, then complement the B-Register (set to
ones)

CLE Clear the E-Register

CME Complement the E-Register

CCE Clear, then complement the E-Register
SEZ Skip next instruction if E is zero
SSA Skip if sign of A is positive (0)

SSB Skip if sign of B is positive (0)

INA Increment A by one
INB Increment B by one
SZA Skip if contents of A equals zero

SZR Skip if contents of B equals zero

SLA Skip if least significant bit of A is zero
SLB Skip if least significant bit of B is zero

RSS Reverse the sense of the skip instructions. If no
skip instructions precede in the statement, skip
the next instruction

These instructions may be combined as follows:

CLA CLE

label cva bl | sez] | {oME 1.SSA] | SLA] [INA] [.SZA] {.R$S] | comments
cca CCE
CLB CLE

label CcMB |.SEZ] | .{CME |.SSB| | SLBI [.INB] |.8ZB| | .RSS| | comments
CCB CCE

The alter-skip instructions must be given in order shown.
At least one and up to eight are included in one statement.
Instructions referring to the A-register may not be com-
bined in the same statement with those referring to the
B-register. When two or more skip functions are combined
in a single operation, a skip occurs if any one of the condi-
tions exists. If a word with RSS also includes both SSA and
SLA (or SSB and SLB), a skip occurs only when sign and
least significant bit are both set (1).

3-11. INDEX REGISTER GROUP (21MX
ONLY)

This group contains 32 instructions which perform various
operations involving the use of index registers X and Y. An
instruction may directly address the 2048,, words of the
current and base pages. If required, indirect addressing
may be used (except where noted otherwise) to refer to all
32,768,, words of memory. Expressions in the Operand field
are evaluated modulo 2'°.

| 1
label | CAX l comments

Copy A to X. The contents of the A-register are copied into
the X-register. The A-register is not altered.

1 |
label | CBX 1 comments

Copy B to X. The contents of the B-register are copied into
the X-register. The B-register is not altered.

[[l
label I CAY I comments

Copy A to Y. The contents of the A-register are copied into
the Y-register. The A-register is not altered.

Machine Instructions

i
l comments

i
label | CBY

Copy B to Y. The contents of the B-register are copied into
the Y-register. The B-register is not altered.

1
I comments

L
label | CXA

Copy X to A. The contents of the X-register are copied into
the A-register. The X-register is not altered.

label CXB comments

Copy X to B. The contents of the X-register are copied into
the B-register. The X-register is not altered.

i
I comments

]
label | CYA

Copy Y to A. The contents of the Y-register are copied into
the A-register. The Y-register is not altered.

[
l comments

L
label I CYB

Copy Y to B. The contents of the Y-register are copied into
the B-register. The Y-register is not altered.

label I

1
XAX | comments

Exchange A and X. The contents of the A-register are
copied into the X-register and the contents of the
X-register are copied into the A-register.

1 !
label l XBX l comments

Exchange B and X. The contents of the B-register are
copied into the X-register and the contents of the
X-register are copied into the B-register.

i
label l

|
XAY l comments

Exchange A and Y. The contents of the A-register are
copied into the Y-register and the contents of the
Y -register are copied into the A-register.

| |
label | XBY I comments

Exchange B and Y. The contents of the B-register are
copied into the Y-register and the contents of the
Y-register are copied into the B-register.

3-5

Machine Instructions

label i ISX l comments

Increment X and skip if zero. The contents of the X-register
are incremented by one and then tested. If the new value in
X is zero, the next sequential instruction (P+ 1) is skipped
and execution proceeds at instruction P+ 2; if the new value
in X is non-zero, execution proceeds at instruction P+ 1.

(
| comments

1
label] ISY

Increment Y and skip if zero. The contents of the Y-register
are incremented by one and then tested. If the new value in
Y is zero, the next sequential instruction (P+1) is skipped
and execution proceeds at instruction P+ 2; if the new value
in Y is non-zero, execution proceeds at instruction P+ 1.

label I DSX i comments

Decrement X and skip if zero. The contents of the
X-register are decremented by one and then tested. If the
new value in X is zero, the next.sequential instruction
(P+1) is skipped and execution proceeds at instruction
P+2; if the new value in Y is non-zero, execution proceeds
at instruction P+1.

|
label I

l
DSY ' comments

Decrement Y and skip ifzero. The contents of the Y-register
are decremented by one and then tested. If the new value in
Y is zero, the next sequential instruction (P+ 1) is skipped
and execution proceeds at instruction P+ 2; if the new value
in Y is non-zero, execution proceeds at instruction P+1.

1 l 1
m [I]
literal

Load X from memory. The contents of the specified memory
location are copied into the X-register. Indirect addressing
may be used. The memory location is not altered.

label LDX comments

m [I]
LDY ‘h’teral }

Load Y from memory. The contents of the specified memory
location are copied into the Y-register. Indirect addressing
may be used. The memory location is not altered.

label comments

3-6

label STX m [,I] comments

Store X into memory. The contents of the X-register are
copied into the specified memory location. Indirect addres-
sing may be used. The X-register is not altered.

! {
I m [,I] I comments

|
label | STY

Store Y into memory. The contents of the Y-register are
copied into the specified memory location. Indirect addres-
sing may be used. The Y-register is not altered.

1] |
label I LAX I m [,I] I comments

Load A from memory indexed by X. The contents of the
specified memory location are copied into the A-register.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
X-register to m or to m,I. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The X-register and the memory location are not al-
tered.

|]
label LBX I m [,I] | comments

Load B from memory indexed by X. The contents of the
specified memory location are copied into the B-register.
Indirect addressing may be used. The address of the mem-
ory locaticn is computed by adding the contents of the
X-register to m or to m,l. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The X-register and the memory location are not al-
tered.

label i LAY i m [,I] i comments

Load A from memory indexed by Y. The contents of the
specified memory location are copied into the A-register.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
Y-register to m or to m,I. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The Y-register and the memory location are not al-
tered.

label i LBY i m [,I] i comments

Load B from memory indexed by Y. The contents of the
specified memory location are copied into the B-register.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
Y-register to m or to m 1. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The Y-register and the memory location are not al-
tered.

Machine Instructions

label | SAX | m [I] comments
Store A into memory indexed by X. The contents of the
A-register are copied into the specified memory location.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
X-register to m or to m,I. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The A-register and the X-register are not altered.

label I JLY I m [,I] I comments

Jump and load Y. Control transfers unconditionally to the
specified memory location and the address P+2 is loaded
into the Y-register. Indirect addressing may be used. This
instruction is used for calling subroutines. The sub-
routines use the Y-register to access parameters and to
return control (by way of the JPY instruction) to the cal-
ling program.

label |SBX I m [,I] l comments

Store B into memory indexed by X. The contents of the
B-register are copied into the specified memory location.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
X-register to m or to m,I. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The B-register and the X-register are not altered.

label iSAYi m [,I] i

comments

Store A into memory indexed by Y. The contents of the
A-register are copied into the specified memory location.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
Y-register to m or to m,L. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The A-register and the Y-register are not altered.

i | i
label | SBY | m [I]

comments

Store B into memory indexed by Y. The contents of the
B-register are copied into the specified memory location.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
Y-register to m or to m,l. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The B-register and the Y-register are not altered.

label |ADxi m [I] i

comments

Add memory to X. The contents of the specified memory
location are algebraically added to the contents of the
X-register. Indirect addressing may be used. The memory
location is not altered.

label iADYi m {,I] i

comments

Add memory to Y. The contents of the specified memory
location are algebraically added to the contents of the
Y-register. Indirect addressing may be used. The memory
location is not altered.

| |
label I JPY I m | comments
Jump indexed by Y. Control transfers unconditionally to
the specified memory location. Indirect addressing may not
be used. The address of the memory location is computed by
adding the contents of the Y-register to m. This instruction
is used for returning control from subroutines to the calling
program (assuming that they were entered by way of JLY
instructions).

3-12. NO-OPERATION INSTRUCTION

When a no-operation is encountered in a program, no action
takes place; the computer goes on to the next instruction. A
full memory cycle is used in executing a no-operation in-
struction.

label I NOP | comments

A subroutine to be entered by a JSB instruction should
have a NOP as the first statement. The return address can
be stored in the location occupied by the NOP during execu-
tion of the program. A NOP statement causes the Assem-
bler to generate a word of zero.

3-13. INPUT/OUTPUT, OVERFLOW,

AND HALT

The input/output instructions allow the user to transfer
data to and from an external device via a buffer, to enable
or disable external interrupts, and to check the status of
I/0O devices and operations. A subset of these instructions
permits checking for an arithmetic overflow condition.

Input/output instructions require the designation of a
select code, sc, which indicates one of 64,, input/output
channels or functions. Each channel consists of a control
bit, a flag bit, and a buffer of up to 16 bits. Usually, the
setting of the control bit starts operation of the device
associated with the channel. The flag bit is set automati-
cally when transmission between the device and the buffer
is completed. Instructions are also available to test or clear
the flag bit for the particular channel. If the interrupt
system is enabled, setting of the flag causes program inter-
rupt to occur; control transfers to the interrupt location
related to the channel.

3-7

Machine Instructions

Note: When Memory Protect is enabled, execu-
tion of all /O instructions except those
which reference the switch register
(select code 01) or the overflow bit is
prohibited.

Expressions used to represent select codes (channel num-
bers) must have a value of less than 2°. The value specifies
the device or operation referenced. Instructions which
transfer data between the A or B register and a buffer,
access the switch register when sc = 1. The character C
appended to such an instruction clears the overflow bit
after the transfer from the switch register is complete.
Unlike memory reference instructions, I/O instructions
cannot use indirect links. The select code (sc) may be a
label which was previously defined as an external symbol
by an EXT pseudo-instruction. In such a case, the entry
point referred to by the EXT pseudo-instruction must be
an absolute value less than 64,, (any other value will
change the instruction).

3-14. INPUT/OUTPUT

Assembly language programs normally perform I/0
through calls to EXEC. Consult the appropriate RTE Pro-
gramming and Operating manual for more information.

If the memory protect hardware option is present and
enabled, it protects the operating system from alteration.
The instructions of this section all cause memory protect
violations to aceur. They are included here for users whe
desire to write their own drivers.

To perform I/O, the software must set and clear the control
and flag bits to communicate with the hardware devices.
The installation and service manual of the I/O card being
programmed should be consulted for the meaning of these
bits for a specific device.

| i |
label | STC I sc [,C] | comments

Set I/0 control bit for channel specified by sc. STC transfers
or enables transfer of an element of data from an input
device to the buffer or to an output device from the buffer.
The exact function of the STC depends on the device; for the
2752A Teleprinter, an STC enables transfer of a series of
bits. If sc = 1, this statement is treated as NOP. The C
option clears the flag bit for the channel.

1] I
label l CLC I sc [,C] l comments

Clear I/0 control bit for channel specified by sc. When the
control bit is cleared, interrupt on the channel is disabled,
although the flag may still be set by the device. If sc = 0,
control bits for all channels are cleared to zero; all devices

are disconnected. If sc = 1, this statement is treated as
NOP.

3-8

[]
sc [,C] I comments

1
label ' LIA

Load into A the contents of the I/0 buffer indicated by sc.

I
sc [,C] I comments

i
label I LIB

Load into B the contents of the I/0 buffer indicated by sc.

1 \ i
label l MIA I sc [,C] l comments

Merge (inclusive “‘or’’) the contents of the I/0 buffer indi-
cated by sc into A.

i | I
label | MIB I sc [,C} I comments

Merge (inclusive ‘““or’’} the contents of the I/0 buffer indi-
cated by sc into B.

i [1
label | OTA I sc [,C) I comments

Output the contents of A to the 1/0 buffer indicated by sc.

[i [|
label I OTB I sc [,C} | comments
Cutput the contents of B o ihe 1/0 buffer indicated by sc.

1
I comments

| |
label I STF I sc

Set the flag bit of the channel indicated by sc. If sc = 0,
STF enables the interrupt system. A sc code of 1 causes the
overflow bit to be set.

i 1
label I CLF sc l comments

Clear the flag bit to zero for the channel indicated by sc. If
sc = 0, CLF disables the interrupt system. If sc = 1, the
overflow bit is cleared to zero.

] i i
label I SFC | sc I comments

Skip the next instruction if the flag bit for channel sc is
clear. If sc = 1, the overflow bit is tested. If sc = 0, the
status of the interrupt system is tested.

label SFS

sc | comments

Skip the next instruction if the flag bit for channel sc is
set. If sc = 1, the overflow is tested. If sc = 0, the status of
the interrupt system is tested.

3-15 OVERFLOW

In addition to the use of a select code of 1, the overflow bit
may be accessed by the following instructions:

| |
label | CLO I comments

Clear the overflow bit.

1 1
label l STO | comments

Set overflow bit.

]
I comments

1 |
label | SOC | [C]

Skip the next instruction if the overflow bit is clear. The C
option clears the bit after the test is performed.

1
I comments

label i SOS i [C]

Skip the next instruction if the overflow bit is set. The C
option clears the bit after the test is performed.

The C option is identified by the sequence “space C space”
following either “SOC” or “SOS”. Any letter other than a
“C” in this position will be treated as a comment.

3-16. HALT

[[sc [CII }
[C]

label HLT comments

Halt the computer. The machine instruction word is dis-
played in the T-register. If the C option is used, the flag bit
associated with channel sc is cleared.

If neither the select code nor the C option is used, the
comments portion must be omitted.

3-17. EXTENDED ARITHMETIC UNIT
(EAU)

If the computer on which the object program is to be run is
an HP 21MX, this group of instructions may be used to
increase the computer’s overall efficiency.

If an HP 2114, HP 2115, HP 2116, or HP 2100 computer is
being used, this group of instructions may be run if the
computer contains an EAU.

Machine Instructions

The user specifies whether or not an EAU will be available
via a parameter in the control statement (see paragraph
1-9). If an EAU will not be available, the instructions ASR,
ASL, RRR, RRL, LSR, LSL, and SWP carnot be used in the
source program (they will be flagged as errors) and the

4 + MDDV MYV N1 3 1
instructions MPY, DIV, DLD, and DST will result in calls

to arithmetic subroutines (see paragraph 4-7).

1 1 [|
m [,I]
e | [27]

The MPY instruction multiplies the contents of the A-
Register by the contents of m. The product is stored in
registers B and A. B contains the sign of the product and
the 15 most significant bits; A contains the least signifi-
cant bits.

label comments

comments

m [,i]
label DIV ‘ lit]

The DIV instruction divides the contents of registers B
and A by the contents of m. The quotient is stored in A
and the remainder in B. Initially B contains the sign and
the 15 most significant bits of the dividend; A contains the
least significant bits.

[1
m [,I]
L

The DLD instruction loads the contents of locations m and
m + 1 into registers A and B, respectively.

label DLD comments

|
| comments

| i
label I DST ‘ m [I]

The DST instruction stores the contents of registers A and
B in locations m and m + 1, respectively.

MPY, DIV, DLD, DST results in two machine words: a-
word for the instruction code and one for the operand.

The following seven instructions provide the capability to
shift or rotate the B- and A-Registers n number of bit
positions to the right or left, where 1<n <186.

1 [] I
label | ASR] n ' comments

The ASR instruction arithmetically shifts the B- and
A-Registers right n bits. The sign bit (bit 15 of B) is
extended.

39

Machine Instructions

[
I comments

i i
label I ASL I n

The ASL instruction arithmetically shifts the B- and
A-Register left n bits. Zeroes are placed in the least
significant bits. The sign bit (bit 15 of B) is unaltered. The
overflow bit is set if bit 14 differs from bit 15 before each
shift; otherwise, exit with overflow bit cleared.

[1 1
label | RRR | n I comments

The RRR instruction rotates the B- and A-Registers right
n bits.

|
n I comments

| (|
label I RRL I

The RRL instruction rotates the B- and A-Registers left n
bits.

[
I comments

! l

label | LSR | n
The LSR instruction logically shifts the B- and
A-Registers right n bits. Zeroes are placed in the most
significant bits.

]]
label | LSL I n l comments
The LSL instruction logically shifts the B- and
A-Registers left n bits. Place zeroes into the least
significant bits.

] (] [
ISWPI |

Exchange the contents of the A- and B-Registers. The
contents of the A-Register are shifted into the B-Register
and the contents of the B-Register are shifted into the
A-Register.

3-18. FLOATING POINT

The instructions in this group are used for performing
arithmetic operations on floating point operands. The user
specifies whether or not floating point machine instruc-
tions are available via a parameter in the control state-
ment (see table 1-2). If the floating point machine instruc-
tions are not available, the instructions in this group re-
sult in calls to arithmetic subroutines (see paragraph 4-7).
The Operand field may contain any relocatable expression
or absolute expression resulting in a value of less than
2000s.

{ m [,I]
=Fn

label FMP comments

3-10

Multiply the two-word floating point quantity in registers
A and B by the two-word floating point quantity in loca-
tions m and m+1 or the quantity defined by the literal.
Store the two-word floating point product in registers A and
B.

i i
m [,I]
=Fn

Divide the two-word floating point quantity in registers A

and B by the two-word floating point quantity in locations

m and m+ 1 or the quantity defined by the literal. Store the
two-word floating point quotient in A and B.

label FDV comments

] l i
m [I]
FAD { —FN]

Add the two-word floating point quantity in registers A and
B to the two-word floating point quantity in locations m and
m+ 1 or the quantity defined by the literal. Store the two-
word floating point sum in A and B.

label comments

| | l
m (1]
FSB { —Fn ;

Subtract the two-word floating point quantity in m and
m+1 or the quantity defined by the literal from the two-
word floating point quantity in registers A and B and store
e difference in A and B.

label comments

|
label FIX | comments

Convert the floating-point number contained in the A- and
B-registers to a fixed-point number. The result is returned
in the A-register. After the operation is completed, the
contents of the B-register are meaningless.

| !
label I FLT l comments

Convert the fixed-point number contained in the A-register
to a floating-point number. The result is returned in the A-
and B-registers.

3-19. DYNAMIC MAPPING SYSTEM
(21MX ONLY)

The basic addressing space of the HP 21MX Computer
Series is 32,768 words, which is referred to as logical mem-
ory. The amount of memory actually installed in the com-
puter system is referred to as physical memory. An HP
21MX Computer with the optional Dynamic Mapping Sys-
tem (DMS) has an addressing capability for one million
words of memory. The DMS allows physical memory to be
mapped into logical memory through the use of four
dynamically alterable memory maps.

3-20. MEMORY ADDRESSING

The basic memory addressing scheme provides for addres-
sing 32 pages of logical memory, each of which consists of
1,024 words. This memory is addressed through a 15-bit
memory address bus shown in figure 3-1. The upper 5 bits of
this bus provide the page address and the lower 10 bits
provide the relative word address within the page.

The Memory Expansion Module (MEM), which is part of
the DMS option, converts the 5-bit page address into a
10-bit page address and thereby allows 1,024 (2!°) pages to
be addressed. This conversion is accomplished by allowing
the original 5-bit address to identify one of the 32 registers
within a “memory map.” Each of these map registers con-
tains the new user-specified 10-bit page address. This new
page address is combined with the original 10-bit relative
address to form a 20-bit memory address bus as shown in
figure 3-2.

3-21. STATUS AND VIOLATION REGIS-
TERS

The MEM also includes a status register and a violation
register. As shown in table 3-1, the MEM status register
contents enable the programmer to determine whether the
MEM was enabled or disabled at the time of the last inter-
rupt and the address of the base page fence. The MEM

14 1019 0
PAGE ADDRESS RELATIVE WORD ADDRESS

5 10

(1 1

15-BIT MEMORY ADDRESS BUS

Figure 3-1. Basic Memory Addressing Scheme

14 1019 0
PAGE ADDRESS RELATIVE WORD ADDRESS
5
//
Y 10
19 10 A
MEMORY MAP
10
A
y Y

20-BIT EXPANDED MEMORY ADDRESS BUS

Figure 3-2. Expanded Memory Addressing Scheme

Machine Instructions

Table 3-1. MEM Status Register Format

BIT SIGNIFICANCE
ib5 0 = WMEM disabied at iast interrupt
1 = MEM enabled at last interrupt
14 0 = System map selected at last interrupt
1 = User map selected at last interrupt
13 0 = MEM disabled currently
1 = MEM enabled currently
12 0 = System map selected currently
1 = User map selected currently
11 0 = Protected mode disabled currently
1 = Protected mode enabled currently
10 Portion mapped®
9 Base page fence bit 9
8 Base page fence bit 8
7 Base page fence bit 7
6 Base page fence bit 6
5 Base page fence bit b
4 Base page fence bit 4
3 Base page fence bit
2 Base page fence bit 2
1 Base page fence bit 1
0 Base page fence bit 0

Mapped Address {M)

0 Fence < M < 20004
1 1 <M< Fence

violation register contents enable the programmer to de-
termine whether a fault occurred in the hardware or the
software so that the proper corrective steps may be taken.
Refer to table 3-2.

3-22. MAP SEGMENTATION

All registers within the memory map are dynamically al-
terable. The MEM includes four separate memory maps:
the User Map, System Map, and two Dual-Channel Port

Controller (DCPC) Maps. See figure 3-3. These maps are
addressed as a contiguous register block.

3-23. POWER FAIL CHARACTERISTICS

A power failure automatically enables the System Map,
and a minimum of 500 microseconds is assured the prog-
rammer for executing a power fail routine. Since all maps

311

Machine Instructions

Table 3-2. MEM Violation Register Format are disabled and none are considered valid upon the resto-
ration of power, the power fail routine should include in-
structions to save as many maps as desired.

BIT SIGNIFICANCE
Sk 3-24. PROTECTED MODE
15 Read violation
14 Write violation™ The protected mode of operation is a program state created
by the Dynamic Mapping System. The protected mode is
13 Base page violation™ entered by executing an STC 05 instruction and is exited by
. . . L the CPU acknowledging an interrupt. The protected mode
12 Priviteged instruction violation .
reserves a block of memory and prevents access to this
11 Reserved block by other users.
10 Reserved
3-25. MEM VIOLATION
9 Reserved
8 Reserved An interrupt request which attempts to access the pro-
tected block of memory (while in the protected mode) will
7 0 = ME bus disabled at violation cause a MEM violation.
1 = ME bus enabled at violation
6 = MEM di iolati
Y 2 M sabled at violation 3-26. DYNAMIC MAPPING SYSTEM IN-
STRUCTIONS
5 0 = System map enabled at violation
1 = User map enabled at violation If the computer on which the object program is to be run
) includes a Dynamic Mapping System, the following group
4 Map address bit 4 of instructions may be used.
3 Map address bit 3 | .
}
2 Map address bit 2 label I DJP l m [I] l comments
1 Map address bit 1
_ Disable MEM and jump. This instruction disables the
0 Map address bit 0 translation and protection features of the MEM hardware.
Prior to disabling, the P-register is set to the effective
*Significant when associated bit is set. memory address. As a result of executing this instruction,
normal /O interrupts are held off until the first opportun-
ity following the fetch of the next instruction, unless three
or more levels of indirect addressing are used.
This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instruc-
127 tion is allowed. If none of the maps are enabled, the in-
177 . *
8 PORT B MAP 10 struction defaults to JMP*+1,1.
140 (32 REGISTERS) 96
137 PORT A MAP % i | Il
100 (32 REGISTERS) 64 label I DJS | m [,I] comments
n USER MAP 63
4 (32 REGISTERS) 39 _) i o .
0 Disable MEM and jump to subroutine. This instruction
37 SYSTEM MAP 31 disables the translation and protection features of the
(32 REGISTERS) MEM hardware. Prior to disabling, the P-register is set
0 0 one count past the effective memory address. The return
address is written into the location specified by m [,I]. As
a result of executing this instruction, normal I/O inter-
rupts are held off until the first opportunity following the
fetch of the next instruction, unless three or more levels of
Figure 3-3. Map Segmentation indirect addressing are used.

3-12

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instruc-
tion is allowed.

| |
addr2 [1]

|
label JRS comments

I{addrl (1] }

literal

Jump and restore status. addrl contains the address of the
status word memory location, literal specifies the status
word, and addr2 contains the jump address.

This instruction causes the status of MEM to be restored as
indicated by bits 15 and 14 of the status word. Only bits 15
and 14 of the status word are used; the remaining bits (13-0)
of the status word are ignored. Bits 15 and 14 restore the
MEM status as follows:

Bit 15 = 0 MEM is disabled

Bit 15 = 1 MEM is enabled

Bit 14 = 0 System map is selected
Bit 14 = 1 User map is selected.

As a result of executing this instruction, normal I/O inter-
rupts are held off until the first opportunity following the
fetch of the next instruction, unless three or more levels of
indirect addressing are used.

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System mabp is enabled, the instruc-
tion is allowed.

|~ !
LFA

label

comments

Load fence from A. This instruction loads the contents of
the A-register into the base page fence register. (The base
page fence register contains the “fence” address, which
specifies the address where reserved (mapped) memory be-
gins. Attempts to access memory at any address below this
fence will not be allowed.) Bits 9 through 0 of the A-register
specify the address in page zero where shared (unmapped)
memory is separated from reserved (mapped) memory. Bit
10 is used as follows to specify which portion is mapped:

Bit 10 Mapped Address (M)

0 Fence = M < 20004
1 < M < Fence

This instruction will always generate a MEM violation
when executed in the protected mode. In this case, the
fence is not altered. However, if the System map is ena-
bled, the instruction is allowed in protected mode.

| |
label LFB

comments

Machine Instructions

Load fence from B. This instruction loads the contents of
the B-register into the base page fence register. Bits 9
through 0 of the B-register specify the address in page zero
where shared (unmapped) memory is separated from re-
served (mapped) memory. Bit 10 is used as follows to specify
which portion is mapped:

Bit 10 Mapped Address (M)
0 Fence <= M < 20004
1 1 < M < Fence

This instruction will always generate a MEM violation
when executed in the protected mode. In this case, the
fence is not altered. However, if the System map is ena-
bled, the instruction is allowed in protected mode.

label MBF comments

Move bytes from alternate map. This instruction moves a
string of bytes using the alternate program map for source
reads and the currently enabled map for destination writes.
(The alternate map is the map which is not enabled. For
example, if the system map is enabled, the User map is the
alternate map and vice versa.) The A-register contains the
source byte address and the B-register contains the desti-
nation byte address. The X-register contains the octal
number of bytes to be moved. Both the source and destina-
tion byte address must begin on even word boundaries.

This instruction is interruptible on an even number of byte
transfers, thus maintaining the even word boundaries in
the A- and B-registers.

The interrupt routine is expected to save and restore the
current contents of the A-; B-, and X-registers to allow
continuation of the instruction at the next entry. When the
byte string move is completed, the X-register will alwaysbe
zero and the A- and B-registers will contain their original
value incremented by the number of bytes moved.

This instruction can cause a MEM violation only if read or
write protection rules are violated. (For example, if an
attempt is made to write to the reserved (mapped) section of
memory.)

label | MBI comments

Move bytes into alternate map. This instruction moves a
string of bytes using the currently enabled map for source
reads and the alternate program map for destination
writes. The A-register contains the source byte address and
the B-register contains the destination byte address. The
X-register contains the octal number of bytes to be moved.
Both the source and destination byte addresses must begin
on even word boundaries.

This instruction is interruptible on an even number of byte
transfers, thus maintaining the even word boundaries in
the A- and B-registers. The interrupt routine is expected to

3-13

Machine Instructions

save and restore the current contents of the A-, B-, and
X-registers to allow continuation of the instruction at the
next entry. When the byte string move is completed, the
X-register will always be zero and the A- and B-registers
will contain their original value incremented by the
number of bytes moved.

This instruction will always cause a MEM violation when
executed in the protected mode and no bytes will be trans-
ferred.

label MBW comments

Move bytes within alternate map. This instruction moves a
string of bytes with both the source and destination addres-
ses established through the alternate program map. The
A-register contains the source byte address and the
B-register contains the destination byte address. The
X-register contains the octal number of bytes to be moved.
Both the source and destination byte addresses must begin
on even word boundaries.

This instruction is interruptible on an even number of byte
transfers, thus maintaining the even word boundaries in
the A- and B-registers.

The interrupt routine is expected to save and restore the
current contents of the A-, B- and X-registers to allow
continuation of the instruction at the next entry. When the
byte string move is completed, the X-register will always
be zero and the A- and B-registers will contain their origi-
nal value incremented by the number of bytes moved.

This instruction will always cause a MEM violation when
executed in the protected mode and no bytes will be trans-
ferred.

label MWF

comments

Move words from alternate map. This instruction moves a
string of words using the alternate program map for source
reads and the currently enabled map for destination writes.
The A-register contains the source address and the
B-register contains the destination address. The X-register
contains the octal number of words to be moved.

This instruction is interruptible. The interrupt routine is
expected to save and restore the current contents of the A-
B-, and X-registers to allow continuation of the instruction
at the next entry. When the word string move is completed,
the X-register will always be zero and the A- and
B-registers will contain their original value incremented
by the number of words moved.

This instruction can cause a MEM violation only if read and
write protection rules are violated.

| |
label l MWI

comments

Move words into alternate map. This instruction moves a
string of words using the currently enabled map for source

3-14

reads and the alternate program map for destination
writes. The A-register contains the source address and the
B-register contains the destination address. The
X-register contains the octal number of words to be moved.

This instruction is interruptible. The interrupt routine is
expected to save and restore the current contents of the A-,
B-, and X-registers to allow continuation of the instruction
at the next entry. When the word string move is completed,
the X-register will always be zero and the A- and
B-registers will contain their original value incremented
by the number of words moved.

This instruction will always cause a MEM violation when
executed in the protected mode and no words will be trans-
ferred.

| |
label ' MWW

comments

Move words within alternate map. This instruction moves
a string of words with both. the source and destination
addresses established through the alternate program map.
The A-register contains the source address and the
B-register contains the destination address. The X-register
contains the octal number of words to be moved.

This instruction is interruptible. The interrupt routine is
expected to save and restore the current contents of the A-,
B-, and X-registers to allow continuation of the instruction
at the next entry. When the word string move is completed,
the X-register will always be zero and the A- and
B-registers will contain their original value incremented
by the number of words moved.

This instruction will always cause a MEM violation when
executed in the protected mode and no words will be trans-
ferred.

label PAA comments

Load/store Port A map per A. This instruction transfers the
32 Port A mabp registers to or from memory. If bit 15 of the
A-register is clear, the Port A map is loaded from memory
starting from the address specified in bits 14-0 of the
A-register. If bit 15 of the A-register is set, the Port A map
is stored into memory starting at the address specified in
bits 14-0 of the A-register. When the load/store operation is
complete, the A-register will be incremented by 32 to allow
multiple map instructions.

An attempt to load any map register when in the protected
mode will cause a MEM violation. An attempt to store the
Port A map is allowed within the constraints of write pro-
tected memory.

label PAB comments

Load/store Port A map per B. This instruction transfers the
32 Port A registers to or from memory. If bit 15 of the
B-register is clear, the Port A map is loaded from memory

starting from the address specified in bits 14-0 of the
B-register. If bit 15 of the B-register is set, the Port Amapis
stored into memory starting at the address specified in bits
14-0 of the B-register. When the load/store operation is
complete, the B-register will be incremented by 32 to allow

multiple map instructions.

An attempt to load any map register when in the protected
mode will cause a MEM violation. An attempt to store the
Port A map is allowed within the constraints of write pro-
tected memory.

|]
PBA

label comments

Load/store Port B map per A. This instruction transfers the
32 Port B registers to or from memory. If bit 15 of the
A-register is clear, the Port B map is loaded from memory
starting from the address specified in bits 14-0 of the
A-register. If bit 15 of the A-register is set, the Port Bmap is
stored into memory starting at the address specified in bits
14-0 of the A-register. When the load/store operation is
complete, the A-register will be incremented by 32 to allow
multiple map instructions.

An attempt to load any map register when in the protected
mode will cause a MEM violation. An attempt to store the
Port B map is allowed within the constraints of write pro-
tected memory.

| |
label PBB [comments

Load/store Port B map per B. This instruction transfers the
32 Port B map registers to or from memory. If bit 15 of the
B-register is clear, the Port B map is loaded from memory

starting from the address specified in bits 14-0 of the’

B-register. If bit 15 of the B-register is set, the Port Bmap is
stored into memory starting at the address specified in bits
14-0 of the B-register. When the load/store operation is
complete, the B-register will be incremented by 32 to allow
multiple map instructions.

An attempt to load any map register when in the protected
mode will cause a MEM violation. An attempt to store the
Port B map is allowed within the constraints of the write
protected memory.

]]
RSA

label comments

Read status register into A. This instruction reads the
contents of the MEM status register into the A-register.
This instruction can be executed at any time. The format of
the MEM status register is given in table 3-1.

| |
Jabel l RSB

comments

Read status register into B. This instruction reads the
contents of the MEM status register into the B-register and
can be executed at any time. The format of the MEM status
register is shown in table 3-1.

Machine Instructions

label RVA comments

Read violation register into A. This instruction reads the
contants of tha MEM vinlatian racgictar inta tha A_racigtor
contents of the MEM viglation register into the A-register

and can be executed at any time. The format of the MEM
violation register is shown in table 3-2.

RVB comments

label

Read violation register into B. This instruction reads the
contents of the MEM violation register into the B-register
and can be executed at any time. The format of the MEM
violation register is shown in table 3-2.

| | |
label SJP I m [1]

Enable System map and jump. This instruction causes the
MEM hardware to use the set of 32 map registers, referred
to as the System map, for translating all programmed
memory references. Prior to enabling the System map, the
P-register is set to the effective memory address. As aresult
of executing this instruction, normal I/O interrupts are
held off until the first opportunity following the fetch of the
next instruction, unless three or more levels of indirect
addressing are used.

comments

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instruc-
tion is allowed and effectively executes a JMP *+1, 1.

label SJS
i

l m [[I] comments
Enable System map and jump to subroutine. This instruc-
tion causes the MEM hardware to use the set of 32 map
registers, referred to as the System map, for translating
all programmed memory references. Prior to enabling the
System map, the P-register is set one count past the effec-
tive memory address. The return address is written into
the location specified by m [,I]1. As a result of executing
this instruction, normal I/O interrupts are held off until
the first opportunity following the fetch of the next in-
struction, unless three or more levels of indirect address-
ing are used.

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instruc-
tion is allowed and effectively executes a JSB *+ 11

| | |
label SSM I m [1]

comments

Store status register in memory. This instruction stores the
16-bit contents of the MEM status register into the addres-
sed memory location. The status register contents are not
altered. This instruction is used in conjunction with the

3-15

Machine Instructions

JRS instruction to allow easy processing of interrupts,
which always select the System map (if the MEM is ena-
bled). The format of the MEM status register is listed in
table 3-1.

This instruction can cause a MEM violation only if write
protection rules are violated.

label | SYA comments

Load/store System map per A. This instruction transfers
the 32 System map registers to or from memory. If bit 15 of
the A-register is clear, the System map is loaded from
memory starting from the address specified in bits 14-0 of
the A-register. If bit 15 of the A-register is set, the System
map is stored into memory starting at the address specified
in bits 14-0 of the A-register. When the load/store operation
is complete, the A-register will be incremented by 32 to
allow multiple map instructions.

Note: If not in the protected mode, the MEM
provides no protection against altering
the contents of maps while they are cur-
rently enabled.

An attempt to load any map in the protected mode will
cause a MEM violation. An attempt to store the System
map is allowed within the constraints of write protected
memory.

7

LU IR Qere
1apel O1D

]
I colnenis

Load/store System map per B. This instruction transfers
the 32 System map registers to or from memory. If bit 15 of
the B-register is clear, the system map is loaded from
memory starting from the address specified in bits 14-0 of
the B-register. If bit 15 of the B-register is set, the System
map is stored into memory starting at the address
specified in bits 14-0 of the B-register. When the load/store
operation is complete, the B-register will be incremented
by 32 to allow multiple map instructions.

Note: If not in the protected mode, the MEM
provides no protection against altering
the contents of maps while they are cur-

rently enabled.

An attempt to load any map in the protected mode will
cause a MEM violation. An attempt to store the System
map is allowed within the constraints of write protected
memory.
| | |

UJP I m [I]

label comments

Enable User map and jump. This instruction causes the
MEM hardware to use the set of 32 map registers, referred
to as the User map, for translating all programmed mem-
ory references. Prior to enabling the User map, the
P-register is set to the effective memory address. As a
result of executing this instruction, normal I/O interrupts
are held off until the first opportunity following the fetch

3-16

of the next instruction, unless three or more levels of
indirect addressing are used. If the User map is already
enabled, the instruction defaults to JMP *+11.

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instruc-
tion is allowed.

| |]
label l uJs | m [I] I comments

Enable User map and jump to subroutine. This instruction
causes the MEM hardware to use the set of 32 map regis-
ters, referred to as the User map, for translating all pro-
grammed memory references. Prior to enabling the User
map, the P-register is set one count past the effective
memory address. The return address is written into the
location specified by m [,I]. As a result of executing this
instruction, normal I/O interrupts are held off until the
first opportunity following the fetch of the next instruc-
tion, unless three or more levels of indirect addressing are
used. If the User map is already enabled, the instruction
defaults to JMP *+11.

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instruc-
tion is allowed.

| |
USA

label

comments

Load/store User map per A. This instruction transfers the
32 User map registers to or from memory. If bit 15 of the
A-register is clear, the User map is loaded from memory
starting from the address specified in bits 14-0 of the
A-register. If bit 15 of the A-register is set, the User map is
stored into memory starting at the address specified in bits
14-0 of the A-register. When load/store operation is com-
plete, the A-register will be incremented by 32 to allow
multiple instructions.

Note: If not in the protected mode, the MEM
provides no protection against altering
the contents of maps while they are cur-
rently enabled.

An attempt to load any map in the protected mode will
cause a MEM violation. An attempt to store the User mapis
allowed within the constraints of write protected memory.

USB comments

label

Load/store User map per B. This instruction transfers the
32 User map registers to or from memory. If bit 15 of the
B-register is clear, the User map is loaded from memory
starting from the address specified in bits 14-0 of the
B-register. If bit 15 of the B-register is set, the User map is

stored into memory starting at the address specified in bits
14-0 of the B-register. When the load/store operation is
complete, the B-register will be incremented by 32 to allow
multiple map instructions.

Note: If not in the protected mode, the MEM
provides no protection against altering
the contents of maps while they are cur-
rently enabled.

An attempt to load any map in the protected mode will
cause a MEM violation. An attempt to store the User map
is allowed within the constraints of write protected mem-

ory.

| | |
label XCA l m [1]

comments

Cross compare A, This instruction compares the contents of
the A-register with the contents of the addressed memory
location. If the two 16-bit words are not identical, the next
instruction is skipped; i.e., the P-register advances two
counts instead of one count. If the two words are identical,
the next instruction is executed. Neither the A-register nor
memory cell contents are altered.

This instruction uses the alternate program map for the
read operation. If neither the System map nor the User map
is enabled (i.e., MEM is disabled), then a compare directly
with physical memory occurs. This instruction will cause a
MEM violation only if read protection rules are violated.

| 1
XCB I m [1]

|
label | comments

Cross compare B. This instruction compares the contents of
the B-register with the contents of the addressed memory
location. If the two 16-bit words are not identical, the next
instruction is skipped; i.e., the P-register advances two
counts instead of one count. If the two words are identical,
the next instruction is executed. Neither the B-register
contents nor memory cell contents are altered.

This instruction uses the alternate map for the read opera-
tion. If neither the System map nor the User map is enabled
(i.e., MEM is disabled), then a direct compare with physical
memory occurs.

This instruction will cause a MEM violation only if read
protection rules are violated.

| | |
label XLA I m [1]

comments

Cross load A. This instruction loads the contents of the
specified memory address into the A-register. The contents
of the memory cell are not altered.

This instruction uses the alternate program map to fetch
the operand. If the MEM is currently disabled, then a load
directly from physical memory occurs.

This instruction will cause a MEM violation only if read
protection rules are violated.

Machine Instructions

label XLB I m [I] | comments

Cross load B. This instruction loads the contents of the
specified memory address into the B-register. The contents
of the memory cell are not altered.

This instruction uses the alternate program map to fetch
the operand. If the MEM is currently disabled, then a load
directly from physical memory occurs.

This instruction will cause a MEM violation only if read
protection rules are violated.

|]

label XMA comments

Transfer maps internally per A. This instruction transfers
a copy of the entire contents (32 map registers) of the
System map or the User map to the Port A map or the Port B
map as determined by the control word in the A-register, as
follows:

Bit No. Significance
15 0 = System map
1 = User map
0 0 = Port A map
1 = Port B map

(Bits 14-1 are ignored)

This instruction will always cause a MEM violation when
executed in the protected mode.

|
label | XMB

comments

Transfer maps internally per B. This instruction transfers
a copy of the entire contents (32 map registers) of the
System map or the User map to the Port A map or the Port B
map as determined by the control word in the B-register, as
follows:

Bit No. Significance
15 0 = System map
1 = User map
0 0 = Port A map
1 = Port B map

(Bits 14-1 are ignored)

This instruction will always generate a MEM violation
when executed in the protected mode.

3-17

Machine Instructions

label XXMM comments

Transfer map or memory. This instruction transfers a
number of words either from sequential memory locations
to sequential map registers or from maps to memory. Bits
0-9 of memory correspond to 0-9 of the map and bits 14 and
15 of memory relate to bits 10 and 11 of the map. The
A-register points to the first register to be accessed and
the B-register points to the starting address of the table in
memory.

Maps are addressed as contiguous space and a wraparound
count from 127 to 0 can and will occur. It is the
programmer’s responsibility to avoid this error. The
X-register indicates the number of map registers to be
transferred.

A positive number in X will cause the maps to be loaded
with the corresponding data from memory. A negative
(two’s complement) number in X will cause the maps to be
stored into the corresponding memory locations.

The instruction is interruptible after each group of 16
registers has been transferred. A, B and X are then reset
to allow re-entry at a later time. The X-register will al-
ways be zero at the completion of the instruction; A and B
will be advanced by the number of registers moved. An
attempt to load any map register in Protected Mode will

onorate a MEM islatisn An attomnt o store man regis.
CHCTGLC & avaalava ViIC.GUISH. AN 4Tl oG 5UCYC INap Ir'egis
g g g =}

ters is allowed within the constraints of Write Protected
memory.

label XMS

comments

Transfer maps sequentially. This instruction transfers a
number of words to sequential map registers. The
A-register points to the first register to be accessed and
the B-register is the base quantity (page number). The
X-register indicates the number of map registers to be
affected. A positive quantity will cause the word found in
the page number to be used as a base quantity to be loaded
into the first register. The next register will be loaded
with the base quantity plus one, and so forth up to the
number of registers. Bits 0-9, 14 and 15 are used as de-
scribed in XMM. An attempt to load any map register in
Protected Mode will generate a MEM violation. An at-
tempt to store map registers is allowed within the con-
straints of Write Protected memory.

]] |
label ‘ XSA l m [I] l comments

3-18

Cross store A. This instruction stores the contents of the
A-register into the addressed memory location. The previ-
ous contents of the memory cell are lost; the A-register
contents are not altered.

This instruction uses the alternate program map for the
write operation. If the MEM is currently disabled, then a
store directly into physical memory occurs.

This instruction will always cause a MEM violation when
executed in the protected mode.

| | |
label XSB | m []] l comments

Cross store B. This instruction stores the contents of the
B-register into the addressed memory location. The previ-
ous contents of the memory cell are lost; the B-register
contents are not altered.

This instruction uses the alternate program map for the
write operation. If the MEM is currently disabled, then a
store directly into physical memory occurs.

This instruction will always cause a MEM violation when
executed in the protected mode.

3-27. HP 21MX FENCES

There are two separate fences available on the HP 21MX
Computer: the memory protect fence and the base page
fence.

The memory protect fence allows you to select a block of
memory which will be protected against alteration by any
programmed instruction. The memory protect fence regis-
ter (which specifies the upper bound of the protected area)
is loaded from the A- or B-register by an OTA 05 or OTB
05 instruction.

The base page fence is only available in 21MX computers
which have the Dynamic Mapping System. This fence
specifies which part of the base page is mapped. This
determines where shared memory is separated from re-
served memory on the base page. The base page fence
register is loaded from the A- or B-register by an LFA or
LFB instruction.

Instructions which modify the fence registers cannot be
executed while the computer is in the protected mode.

PSEUDO INSTRUCTIONS

SECTION

IV

The pseudo instructions control the Assembler and its
listed output, establish program relocatability, and define
program linkage as well as specify various types of con-
stants, blocks of memory, and labels used in the program.

4-1. ASSEMBLER CONTROL

The Assembler control pseudo instructions establish and
alter the contents of the base page and program location
counters, and terminate assembly processing. Labels may
be used but they are ignored by the Assembler.

The NAM statement, which must be the first statement in
an Assembler source program, includes optional paramet-
ers defining the program type, priority, and time values.

NAM

name [,type,pri,res,mult,hr,min sec,msec id]

name
is the name of the program.

type
is the program type. Set to:

0 = System program

1 = Real-time memory resident in RTE-II

2 = Real-time disc-resident

3 = Background disc-resident (default value)

4 = Background memory resident (RTE-II only)
5 = Background segment

6 = Library (re-entrant or privileged)

7 = Library, utility

8 = If program is a main, it is deleted from the system
or

8 = If program is a subroutine, then it is used to
satisfy any external references during genera-
tion. However, it is not loaded in the relocatable
library area of the disc.

14 = Memory-resident library

Add 8 to the program type (types 1-5 for RTE-IL; types 1-4
for RTE-III) for reversed common (RT programs to access
BG Common, BG programs to access RT common).

Add 16 to the program type (types 1-5) for declaring use of
the Subsystem Global Area (SSGA) for RTE-III.

pri
is the priority (1 to 32767, set to 99 if not given).

res
is the resolution code

mult
is the execution multiple

hr
is hours

min
is minutes

sec
is seconds

msec
is tens of milliseconds

id
comments field (separated from operand by a space)

COMMENTS

The parameters of the NAM statement, beginning with
type and ending with msec, are separated by commas. A
blank space within the parameter field will terminate that
field and cause the Assembler to recognize the next entry
as the comment field (id). The first parameter must be
separated from the program name by a comma. The
parameters are optional, but to specify any particular
parameter, those preceding it must also be specified, as
shown below:

NAM
NAM

EX1,2,99,1,999,10,20,30,30
EX2,1,10 THIS IS ID OF PROGRAM.

Starting immediately after the first blank, the identifier
field is placed in the relocatable NAM record following the
parameters (a blank space separates the parameter and
comment fields). In the following example a part number
is shown in the comments field of the second line:

NAM PRGRM THISIS ON RELOC. RECORD
NAM MYNAM,1,94 25117-80345B

The identifier (comments) field (id)can be a maximum of
73 characters due to the restriction of the source state-
ment size. The identifier will be truncated after column
80.

4-1

Pseudo Instructions

1 4
I ORB | comments

ORB defines the portion of a relocatable program that
must be assigned to the base page by the Assembler. The
Label field (if given) is ignored, and the statement re-
quires no operand. All statements that follow the ORB
statement are assigned contiguous locations in the base
page. Assignment to the base page terminates when the
Assembler detects an ORG, ORR, or END statement.

When more than one ORB is used in a program, each ORB
causes the Assembler to resume assigning base page loca-
tions at the address following the last assigned base page
location. An example is shown in figure 4-1.

An ORB statement in an absolute program has no signifi-
cance and is flagged as an error.

IORG[

m | comment
The ORG statement defines the origin of an absolute prog-

ram, or the origin of subsequent sections of absolute or
relocatable programs.

An absolute program must begin with an ORG statement.
The operand m, must be a decimal or octal integer specify-
ing the initial setting of the program location counter.

ORG statements may be used elsewhere in the program to
define starting addresses for portions of the object code. For
absolute programs the Operand field, m, may be any ex-
pression. For relocatable programs, m must not be common
relocatable or absolute. An expression is evaluated modulo
215, Symbols must be previously defined. All instructions
following an ORG are assembled at consecutive addresses
starting with the value of the operand.

i ORR i comment

ORR resets the program location counter to the value ex-
isting when an ORG or ORB instruction was encountered.
An example is shown in figure 4-2.

More than one ORG statement may occur before an ORR
is used. If so, when the ORR is encountered, the program
location counter is reset to the value it contained when the
first ORG of the string occurred. An example is shown in
figure 4-3.

If a second ORR appears before an intervening ORG or
ORB the second ORR is ignored.

IAREA BSS 100

NAM PROG ASSIGN ZERO AS RELATIVE STARTING
. LOCATION FOR PROGRAM PROG.
ORB ASSIGN ALL FOLLOWING STATEMENTS

TO BASE PAGE.

ORR CONTINUE MAIN PROGRAM.

ORB RESUME ASSIGNMENT AT NEXT
AVAILABLE LOCATION IN BASE PAGE.

ORR CONTINUE MAIN PROGRAM.

Figure 4-1. ORB Example

4-2

Pseudo Instructions

NAM RSET SET PLC TO VALUE OF ZERO, ASSIGN
FIRST ADA RSET AS NAME OF PROGRAM.

ADA CTRL ASSUME PLC AT FIRST+2280.

ORG FIRST+2926 SAVE PLC VALUE OF FIRST+2280

AND SET PLC TO FIRST+2926.
JMP EVEN+1 ASSUME PLC AT FIRST+3004
ORR RESET PLC TO FIRST+2280.
Figure 4-2. ORR Example (with Single ORG)

NAM RSET SET PLC TO ZERO
FIRST ADA

LDA WYZ ASSUME PLC AT FIRST+2250

ORG FIRST+2500 SET PLC TO FIRST+2500

LDB ERA ASSUME PLC AT FIRST+2750

ORG FIRST+2900 SET PLC TO FIRST+2900

CLE ASSUME PLC AT FIRST+2920

ORR RESET PLC TO FIRST+2250

Figure 4-3. ORR Example (with Multiple ORGs)

4-3

Pseudo Instructions

The IFN and IFZ pseudo instructions cause the inclusion of
instructions in a program provided that either an “N” or
“Z”, respectively, is specified as a parameter for the ASMB
control statement.t The IFN or IFZ instruction precedes
the set of statements that are to be included. The pseudo
instruction XIF serves as a terminator. If XIF is omitted,
END acts as a terminator to both the set of statements and
the assembly.

]]
] IFN | comments

XIF
All source language statements appearing between the
IFN and the XIF pseudo instructions are included in the

program if the character “N” is specified on the ASMB
control statement.

All source language statements appearing between the IFZ
and XIF pseudo instructions are included in the program if
the character “Z” is specified on the ASMB control state-
ment.

‘ IFZ . comments
l I

XIF

When the particular letter is not included on the control
statement, the related set of statements appears on the
Assembler output listing but is not assembled.

Any number of IFN-XIF and IFZ-XIF sets may appear in a
program, however, they may not overlap. An IFZ or IFN
intervening between an IFZ or IFN and the XIF terminator
results in a diagnostic being issued during compilation; the
second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may be
used in the program; however, only one type will be selected
in a single assembly. Therefore, if both characters “N” and
“Z” appear in the control statement, the character which is
listed last will determine the set of coding that is to be
assembled. Some examples are shown in figures 4-4 and
4-5.

In figure 4-4, the program TRAVL will perform computa-
tions involving either or neither CAR or PLANE consid-
erations depending on the presence or absence of Z or N
parameters in the Control Statement.

In figure 4-5, the program WAGES computes a weekly
wage value. Overtime consideration will be included in
the program if “Z” is included in the parameters of the
Control Statement.

NAM TRAVL

IFZ

LDA CAR
CMA, SZA
JMP NO.GO
LDA MILES
DIV SPEED
STA GAS
X1F

IFN

LDA PLANE
CMA, SZA
JMP NO.GO
LDA TIME
CPA COST
X1F

NO.GO HLT 77

END

NAM WAGE

JSB HOUR
MPY TIMEL
IFZ

JSB OVTIM
MPY TIME?2

TIME1l DEC &40
TIME2 BSS 1
END

Figure 4-4. IFN/XIF and IFZ/XIF Example

Figure 4-5. IFZ/XIF Example

TSee ““Assembly Options’ in Section I of this manual.

44

The REP pseudo instruction causes the repetition of the
statement immediately following it a specified number of
times.

| | |
label | REP I n I comments

The statement following the REP in the source program is
repeated n times. The n may be any absolute expression.
Comment lines (indicated by an asterisk in character posi-
tion 1) are not repeated by REP. If a comment follows a REP
instruction, the comment is ignored and the instruction
following the comment is repeated.

A label specified in the REP pseudo instruction is assigned
to the first repetition of the statement. A label should not be
part of the instruction to be repeated; it would result in a
doubly defined symbol error.

Example:
CLA
TRIPL REP 3
ADA DATA

The above source code would generate the following:

CLA Clear the A-Register;
the content of DATA is

TRIPL ADA DATA tripled and stored in the
ADA DATA A-Register.
ADA DATA
Example:

FILL REP 100B
NOP

The example above loads 1003 memory locations with the
NOP instruction. The first location is labeled FILL.

Example:

REP 2
MPY DATA

The above source code would generate the following:

MPY DATA
MPY DATA

[1 i

| END |

[m] | comments

This statement terminates the program,; it marks the phys-
ical end of the source language statements. The Operand
field, m, may contain a name appearing as a statement
label in the current program or it may be blank. If a name is
entered, it identifies the location to which the loader trans-
fers control after a relocatable program is loaded.

Pseudo Instructions

If the Operand field is blank, the Comments field must be
blank also, otherwise, the Assembler attempts to interpret
the first five characters of the comments as the transfer
address symbol.

The label field of the END statement is ignored.

4-2. OBJECT PROGRAM LINKAGE

Linking pseudo instructions provides a means for com-
munication between a main program and its subroutines or
among several subprograms that are to be run as a single
program. These instructions may be used only in a relocat-
able program.

The Label field of this class is ignored in all cases. The
Operand field is usually divided into many subfields, sepa-
rated by commas. In the case of the COM pseudo instruc-
tion, the first space not preceded by a comma or a left
parenthesis terminates the entire field.

i
I COM |name, [(size,)] [,name,[(size;)] , .. ., name,|(size,)]] | comments

COM reserves a block of storage locations that may be used
in common by several subprograms. Each name identifies a
segment of the block for the subprogram in which the COM
statement appears. The sizes are the number of words allot-
ted to the related segments. The size is specified as an octal
or decimal integer. If the size is omitted, it is assumed to be
one.

Any number of COM statements may appear in a subprog-
ram. Storage locations are assigned contiguously; the
length of the block is equal to the sum of the lengths of all
segments named in all COM statements in the subprog-
ram.

To refer to the common block, other subprograms must also
include a COM statement. The segment names and sizes
may be the same or they may differ. Regardless of the
names and sizes specified in the separate subprograms,
there is only one common block for the combined set. It has
the same relative origin; the content of the n™ word or
common storage is the same for all subprograms. An exam-
ple is shown in figure 4-6.

The LDA instructions in the two subprograms each refer to
the same location in common storage, location 7.

4-5

Pseudo Instructions

PROG1 COM ADDR1(5),ADDR2(10),ADDR3(10)

LDA ADDR2+1 PICK UP SECOND WORD OF SEGMENT
ADDR2+1

END
PROG2 COM AAA(2),AAB(2),AAC,AAD(C20)

LDA AAD+1 PICK UP SECOND WORD OF SEGMENT
ADD+1.

Organization of common block:

PROG1 PROG2 Common
name name Block

ADDR1 AAA (location 1)
(location 2}
AAB (location 3)
(location 4)
AAC (location 5)
ADDR2 AAD (location 6)
(location 7)
(location 8)
(location 9)
(location 10)
{location 11)
(location 12)
(location 13)
(location 14)
{location 15)
ADDR3 (location 16)
(location 17)
(location 18)
{location 19)
(location 20)
(location 21)
{location 22)
{location 23}
(location 24)
(location 25)

Figure 4-6. COM Examples
4-6

The segment names that appear in the COM statements
can be used in the Operand fields of DEF, ABS, EQU, ENT
or any memory reference statement; they may not be used
as labels elsewhere in the program.

The loader establishes the origin of the common block; the
origin cannot be set by the ORG pseudo instruction. All
references to the common area are relocatable.

Two or more subprograms may declare common blocks that
differ in size. The subprogram that defines the largest block
must be the first submitted for loading.

{ | i
l ENT | name, [,name,,...,namey]

comments

ENT defines entry points to the program or subprogram.
Each name is a symbol that is assigned as a label for some
machine operation in the program. Entry points allow
another subprogram to refer to this subprogram. All entry
points must be defined in the program.

Pseudo Instructions

Symbols appearing in an ENT statement may not also
appear in an EXT statement in the same subprogram.
Labels defined as absolute by EQU statements or defined
by COM statements may be declared as entry points.

] i |
I EXT I name,; [,name,,....,namey] | comments

This instruction designates labels in other subprograms
that are referenced in this subprogram. The symbols must
be defined as entry points by the other subprograms.

The symbols defined in the EXT statement may appear in
memory reference statements, certain I/O statements or
EQU or DEF pseudo instructions. An external symbol
may be used with a + or — offset or specified as indirect.
References to external locations are processed by the
loader as indirect addresses linked through the base page
or in some cases through a current page link.

Symbols appearing in EXT statements may not also ap-
pear in ENT or COM statements in the same subprogram.
The label field is ignored. Examples of the use of EXT and
ENT are shown in figures 4-7 through 4-10.

PROGA NOP
LDA SAMD

JMP SAND

EXT SAMD, SAND
ENT PROGA

END

PROGB NOP

SAMD OCT 767
SAND STA SAMD

ENT SAMD, SAND
JSB PROGA
EXT PROGA

END

SAMD AND SAND ARE REFERENCED IN
PROGA, BUT ARE ACTUALLY
LOCATIONS IN PROGB.

Figure 4-7. ENT/EXT Examples

4-7

Pseudo Instructions

EXT BUF,PTR

LDA BUF+1 EXTERNAL WITH + OR - OFFSET.
STA PTR, I EXTERNAL INDIRLCT.

Figure 4-8. EXT with Offset

ENT CHAN, CMLBL

CHAN EQU 12B
COM cMLBL (20)

4-8

Figure 4-9. ENT in COMmon and ENT Defining
An External I/O Reference

Pseudo Instructions

ASMB,R,B, L
NAM MAIN

® DECLARE CHAN1,CHANZ AS ENTRY POINTS

ENT CHAN1, CHAN2
EXT OUTPT, INPUT

START JSB INPUT INPUT A CHARACTER
JSB OUTPT OUTPUT TO DEVICE 2
LIA 1B READ SWITCH REGISTER
SSA IS BIT 15 ON?
HLT 55B YES, HALT
JMP START DO ANOTHER ONE

® DEFINE THE I/0 CHANNELS FOR THE DRIVERS INPUT,QUTPT BY
® SETTING THE LABELS CHAN1,CHAN2 EQUIVALENT TO THE ABSOLUTE
® LOCATIONS 10,11.

CHAN1 EQU 10B
CHAN2 EQU 11B
END START

ASMB,R,B, L
NAM I10PRG
SUBROUTINE ENTRY POINTS
ENT INPUT,OUTPT
% DECLARE I/0 CHANNELS TO BE EXTERNAL
EXT CHAN1, CHAN2

® INPUT SUBROUTINE

INPUT NOP
STC CHANI,C SET CONTROL ON CHANNEL 1
SFS CHANI

JMP #-1 WAIT ON FLAG
LIA CHAN1. LOAD WORD
JMP INPUT, I RETURN

OUTPUT SUBROUTINE

OUTPT NOP
OTA CHAN2 OUTPUT WORD
STC CHANZ2,C STROBE TO DEVICE
SFS CHANZ2
JMP #-1
JMP OUTPT, I RETURN

END

Figure 4-10. EXT, ENT for I/O Channel
49

Pseudo Instructions

The RPL pseudo instruction is used to define a code re-
placement record for the RTE system generator or RTE
relocating loader.

|
label l

The instructions to be replaced must be of the form = JSB
SUB where SUB is an external reference. The JSB SUB
will be replaced by the octal value of the RPL definition
whenever it is encountered by the generator or loader.
Examples are shown in figure 4-11.

RPL ! m comments
.FAD RPL 1050008B
IFIX RPL 1051008
EXT .FAD
JSB .FAD
JSB IFIX
]

Figure 4-11. Label RPL Octal Value

The relocation of the program would result in the following:

105000

105100

Note that the instruction value is 105000
instead of 114XXX.

Note that the instruction value is 105100
instead of 114XXX.

4-10

4-3. ADDRESS AND SYMBOL
DEFINITION

The pseudo operations in this group assign a value, a word
address, or a byte address to a symbol which is used as an
operand elsewhere in the program.

|
I comments

label i DEF i m [,I]

The address definition statement generates one word of
memory as a 15-bit address which may be used as the object
of an indirect address found elsewhere in the source prog-
ram. The symbol appearing in the label is that which is
referenced; it appears in the Operand field of a Memory
Reference instruction.

The operand field of the DEF statement may be any posi-
tive expression in an absolute program; in a relocatable
program it may be a relocatable expression or an absolute
expression with a value of less than 2000;. Symbols that do
appear in the Operand field may appear as operands of EXT
or COM statements, in the same subprogram and as entry
points in other subprograms.

The expression in the Operand field may itself be indirect
and make reference to another DEF statement elsewhere

in the source program. Some examples are shown in figure
4-12.

The DEF statement provides the necessary flexibility to
perform address arithmetic in programs which are to be
assembled in relocatable form. Relocatable programs

Pseudo Instructions

should not modify the operand of a memory reference in-
struction. Figure 4-13 illustrates what not to do. If TBL
and LDTBL are in different pages, the Loader processes
TBL as an indirect address linked through the base page.
The ISZ erroneously increments the Loader-provided link
to the base page rather than the vaiue of TBL. Assuming
that the loader assigns the absolute locations shown in
figure 4-14, the ISZ will index the contents of location
200038 which is a LDA 700,1, and change it to LDA 701,I.
Now we will use whatever happens to be in 701 rather
than the link we intended to use which is in 700. We
change the link instead of its contents.

LDTBL LDA TBL

I1SZ LDTBL

TBL BSS 100

Figure 4-13. Example of Incorrect Address Modification

NAM PROGN
EXT SINE,SQRT

JSB SINE
LDA XCMA, I
XCMA DEF SCMA

JSB XSQ, I
XSQ DEF XSQR, I

XSQR DEF SQRT
END PROGN

ZERO-RELATIVE START OF PROGRAM.

COM SCMA(20),SCMB(50)

EXECUTE SINE ROUTINE

PICK UP COMMON WORD INDIRECTLY.
SCMA IS A 15-BIT ADDRESS.

GET SQUARE ROOT USING TWO-LEVEL
INDIRECT ADDRESSING.

SQRT IS A 15-BIT ADDRESS.

Figure 4-12. DEF Examples

4-11

Pseudo Instructions

OPERAND
(PAGE) &
INSTRUCTION PAGE OPCODE LOCATION
(Loader-assigned indirect
link on base page) (0) DEF 4000
LDTBL LDA TBL (1) LDA (0) 700 (1)
ISZ LDTBL (1) 1Sz (1) 2000
TBL BSS 100 (2) BSS
Figure 4-14. Loader-Assigned Locations for Figure 4-8
The example shown in figure 4-15 assures correct address
modification during program execution. Assume that the
sequence shown in figure 4-15 is assigned (by the loader) ITBL DEF TBL
the absolute locations shown in figure 4-16. The LDA LDTBL LDA ITBL.I
2000,1 picks up the contents of the location pointed to by ’
ITBL (location 40004). The ISZ 2000 indexes the pointer *
DEF 4000 to point to 4001. The next LDA will reference
location 4001, DEF TBL+1. This is what we intend. .
ISZ ITBL
| |]
label l ABS | m | comments ’
ABS defines a 16-bit absolute value to be stored at the TBL BSS 100
location represented by the label. The Operand field, m,
may be any absolute expression; a single symbol must be

defined as absolute elsewhere in the program. Examples

are shown in figure 4-17. Figure 4-15. Example of Correct Address Modification

4-12

ABSOLUTE OPERAND
LOCATION (PAGE) &
INSTRUCTION PAGE OF CODE OPCODE LOCATION
ITBL DEF TBL (1) (2000) DEF 4000
LDA ITBL,I (1) (2001) LDA (1) 2000,!
1SZ ITBL (1) (3000) ISZ (1) 2000
TBL BSS 100 (2) 4000 BSS
Figure 4-16. Loader-Assigned Locations for Figure 4-10

AB EQU 35 ASSIGNS THE VALUE OF 35
TO THE SYMBOL AB

M35 ABS -AB M35 CONTAINS -35.

P35 ABS AB P35 CONTAINS 35.

P70 ABS AB+AB P70 CONTAINS 70.
P30 ABS AB-5 P30 CONTAINS 30.
P36 ABS 36 P36 CONTAINS 36.

Figure 4-17. ABS Examples

label | EQU i

(1
m ’ comments

The EQU pseudo operation assigns to a symbol a value
other than the one normally assigned by the program loca-
tion counter. The symbol in the Label field is assigned the
value represnted by the Operand field. The Operand field
may contain any expression. The value of the operand may
be common, base page or program relocatable as well as
absolute,but it should not be negative. Symbols appearing
in the operand must be previously defined in the source
program.

The EQU instruction may be used to symbolically equate
two locations in memory, or it may be used to give a value to
a symbol. The EQU statement does not result in a machine
instruction. Some examples are shown in figures 4-18 and
4-19.

Pseudo Instructions

label DBL m comments

label DBR m comments

Define Left Byte and Define Right Byte (21MX only). The
DBL and DBR pseudo instructions each generate one word
of memory which contains a 16-bit byte address. For DBL,
the byte address being defined is the left half (bits 8-15) of
word location m; for DBR, it is the right half (bits 0-7).
Indirect addressing may not be used. A byte address is
defined as two times the word address of the memory loca-
tion containing the particular byte. If the byte location is
the left half of the memory location (bits 8-15), bit 0 of the
byte address is clear; if the byte location is the right half of
the memory location (bits 0-7), bit 0 of the byte address is
set. In an absolute program, m may be any positive ex-
pression. In a relocatable program, m may be any absolute
expression with a value less than 2005 or any relocatable
expression. The generated word may be referenced (via
label) in the Operand field of LDA and LDB instructions
elsewhere in the source program for the purpose of loading
byte addresses into the A- and B-registers.

CAUTION

Care must be taken when using the label
of a DBL or DBR pseudo instruction as an
indirect address elsewhere in the source
program. The programmer must keep
track of whether he is using word addres-
ses or byte addresses.

NAM FAM

LDA J3

ADA ONE

STA J3+1
JFOUR EQU J3+1

MWH AND JFOUR

J3 355 2 SEL ASIDE Twad wOBDS FOR STQRAC:

THE SYMBOLS JFOUR AND J3+1 BOTH IDENTIFY
THE SAME LOCATION. THE "AND'" OPERATION
IS PERFORMED ON THIS LOCATION.,

Figure 4-18. EQU Example

4-13

Pseudo Instructions

NAM STOTB

TABLB EQU TABLA+5

LDA TABLB+1

COM TABLAC10) DEFINES A 10 WORD TABLE, TABLA.

NAMES WORDS 6 THROUGH 10 OF
TABLA AS TABLB.

LOADS CONTENTS OF 7TH WORD
COMMON INTO A. THE STATEMENT LDA

. TABLA+6 WOULD PERFORM THE SAME
. OPERATION
NAM REG
A EQU 0 DEFINES SYMBOL A AS 0 (LOCATION

B EQU 1 OF A-REGISTER), AND SYMBOL B AS
. 1 (LOCATION OF B-REGISTER).
LDA B LOADS CONTENTS OF B-REGISTER
INTC A-REGISTER.

Figure 4-19. EQU Examples

Examples:
BYT1 DBL. WORD1
BYT2 DBR WORD1
WORD1 NOP

If WORD1 has the relocatable address 20025, then BYT1
will contain the relocatable value 40043 and BYT2 will
contain the relocatable value 4005,.

4-4. CONSTANT DEFINITION

The pseudo instructions in this class enter a string of one or
more constant values into consecutive words of the object
program. The statements may be named by labels so that
other program statements can refer to the fields generated
by them.

]
comments

[1
label I ASC | n, <2n characters>

ASC generates a string of 2n alphanumeric characters in
ASCII code into n consecutive words.t One character is
right justified in each eight bits; the most significant bit is
zero. n may be any expression resulting in an unsigned
decimal value in the range 1 through 28. Symbols used in
an expression must be previously defined. Anything in the
Operand field following 2n characters is treated as com-
ments. If less than 2n characters are detected before the
end-of-statement mark, the remaining characters are as-
sumed to be spaces, and are stored as such. The label rep-
resents the address of the first two characters. An example
is shown in figure 4-20.

d,[.d,,....dy]

i
label | DEC comments

DEC records a string of decimal constants into consecutive
words. The constants may be either integer or real (floating
point), and positive or negative. If no sign is specified,
positive is assumed. The decimal number is converted to its

1To enter the code for the ASCII symbols which perform some action (e.g., CR and LF), the OCT pseudo instruction must be used.

4-14

Pseudo Instructions

TTYP ASC 3,ABCDE

causes the following:

NQTE

Columns 7 and 15 below
will contain zeros.

ALPHABETIC
15 14 876 0
7
TTYP A L B
—
=z c % D
Z Z
% E % (space)
EQUIVALENT IN OCTAL NOTATION
15 14 876 0
™ E4 1 0 1 4 1 o0 2
z Z
/ 1 0 3 / 1 0 4
Z Z
% 1 0 5 / 0 4 0

Figure 4-20. ASC Example

binary equivalent by the Assembler. The label, if given,
serves as the address of the first word occupied by the
constant.

A decimal integer must be in the range of -2 to 2> —1. It
is converted into one binary word and appears as follows:

I “number

Some examples are shown in figure 4-21.

A floating point number has two components, a fraction
and an exponent. The exponent specifies the power of 10 by
which the fraction is multiplied. The fraction is a signed or
unsigned number which may be written with or without a
decimal point. The exponent is indicated by the letter E and
follows a signed or unsigned decimal integer. The floating
point number may have any of the following formats:

+nn #n. *znnE+e *nEzxe =*=nEzxe z*=nEze

The number is converted to binary, normalized (leading
bits differ), and stored in two computer words. If either the
fraction or the exponent is negative, that part is stored in
two’s complement form.

- fraction (most significant bits) | -

o slgn of fraction :

_ fraction. exponent | s|

: sign of exponent -—J

4-15

Pseudo Instructions

INT DEC 50,+328,-300,+32768,-32768

causes the following (octal representation)

15 14 0
INT 0 0 0’ 0 6 2

0 0 0 5 1 0

1 7 7 3 2 4

1 0 0 0 0 0

1 0 0 0 0 0

Note: The values +2'5 (+32768) are both converted to 1000005 .

Figure 4-21. DEC Examples (Integer)

DEC .45E1
DEC L45.00E-1
DEC 4500E-3
DEC 4.5 DEC -.695,400E-4
are all equivalent to are stored as:
45x10! 1Mf01001T1T1T00001010
and are stored in normalized form as: 00111011/000000010
15 14 0
0|1 00100000000O0O00O 0j17010001T11T1T01T011
1000017101171 1T11001I1
15 8 7 10
00000CO0O06O|0O0OO0CO0O0T1T1]0

4-16

Figure 4-22. DEC Examples (Floating Point) Figure 4-23. DEC Examples (Floating Point)

The floating point number is made up of a 7-bit exponent
with sign and a 23-bit fraction with sign. The number must
be in the approximate range of 1073¢ and zero. Examples
are shown in figures 4-22 and 4-23.

[l |

label i DEX | d, [,dg,eenrdy]

comments

DEX records a string of extended precision ‘decimal con-
stants into consecutive words within a program. Each such
extended precision constant occupies three words as shown
in figure 4-24.

An extended precision floating point number is made up of
a 39-bit fraction and sign and a 7-bit exponent and sign.

This is the only form used for DEX. All values, whether
they be floating point, integer, fraction, or integer and
fraction, will be stored in three words asjust described. This
storage format is basically an extension of that used for
DEC, as previously described. Some examples are shown in
figure 4-25.

] ! 1
label % OCT | o, [,os,...,01] E comments

OCT stores one or more octal constants in consecutive
words of the object program. Each constant consists of one
to six octal digits (0to 177777). If no sign is given, the sign is
assumed to be positive. If the sign is negative, the two’s
complement of the binary equivalent is stored. The con-
stants are separated by commas; the last constant is termi-

Pseudo Instructions

nated by a space. If less than six digits are indicated for a
constant, the number is right justified in the word. A label,
ifused, acts as the address of the first constant in the string.
The letter B must not be used after the constant in the
Operand field; it is significant only when defining an octal
term in an instruction other than OCT. Some examples are
shown in figure 4-26.

Word 1 Sm Fraction)
i5 14 0
Word 2 \
/
15 0
Word 3 H Exponent Se
15 87 10
Legend: S, = Sign of the fraction
S¢ = Sign of the Exponent

Figure 4-24. DEX Memory Format

DEX 12,-45

are stored as:

WORD 1 WORD 2 WORD 3
0110000000000000 0000000000000000 0000000000001000
WORD 1 WORD 2 WORD 3
1000110011001100 1100110011001100 1001101111111111

Figure 4-25. DEX Examples

4-17

Pseudo Instructions

OCT +0
OCT -2
NUM OCT 177,20405,-36
oCT 51,77777,-1,10101
OCT 107642,177077

OCT 1976 ILLEGAL: CONTAINS DIGIT 9
OCT -177777
OCT 1778B ILLEGAL : CONTAINS CHARACTER B

The above statements are stored as follows:

15 14 0

0 0 0 0 0 0

1 7 7 7 7 6

NUM 0 0 0 1 7 7

U 2 0] 4 0 5

1 7 7 7 4 2

0 0 0] 0 5 1

0 7 7 7 7 7

1 7 7 7 7 7

0 1 0 1 0 1

1 0] 7 6 4 2

1 7 7 0 7 7

X X X X X X
The result of attempting to

0 0 0 0 0 1 /define .an illegal constant is
unpredictable

X X X X X X

Figure 4-26. OCT Examples
4-18

[] i
label | BYT | b,,by, ... by

comments

Define Octal Byte constants (21MX only). The BYT pseudo
instruction generates octal constants in consecutive byte
locations of memory. Each constant in the Operand field
(by,bs, ... by) consists of one to three octal digits, must be
within the range 0 through 377, and may be preceded by a
plus (+) or minus (—) sign. If a constant is not signed, it is
assumed to be positive. If a constant is negative, the two’s
complement of the binary equivalent (truncated to eight
bits) is stored. If the Operand field contains an odd number
of constants, bits 0-7 of the final word generated will be
clear (zeros). Since the constants are assumed to be octal,
the letter “B” must not be used. Some examples are shown
in figure 4-27.

4-5. STORAGE ALLOCATION

The storage allocation statement reserves a block of mem-
ory for data or for a work area.

label i BSS i m i comments

The BSS pseudo operation advances the program or base
page location counter according to the value of the operand.
The Operand field may contain any expression that results
in a positive integer. Symbols, if used, must be previously
defined in the program. The label, if given, is the name
assigned to the storage area and represents the address of
the first word. The initial content of the area set aside by
the statement is unaltered by the loader.

Pseudo Instructions

4-6. ASSEMBLY LISTING
CONTROL

Assembly listing control pseudo instructions allow the user
to control the assembly listing Output during pass 2 of the
assembly process.

(]
‘ UNL I comments

List output is suppressed from the assembly listing, begin-
ning with the UNL pseudo instruction and continuing for
all instructions and comments until either an LST or END
pseudo instruction is encountered. Diagnostic messages for
errors encountered by the Assembler will be printed, how-
ever. The source statement sequence numbers (printed in
columns 1-4 of the source program listing) are incremented
for the instructions skipped.

i LST i comments

The LST pseudo instruction causes the source program
listing, terminated by a UNL, to be resumed.

A UNL following a UNL, an LST following an LST, and an
LST not preceded by a UNL are not considered errors by the
Assembler.

SUP comments

The SUP pseudo instruction suppresses the output of addi-
tional code lines from the source program listing. Certain
machine and pseudo instructions generate more than one

ALF BYT 50,377,-10,2,-312

causes the following (octal representation):

15 14 0
ALF 0 2 4 3 7 7

1 7 4 0 0 2

0 3 3 0 0 0

Figure 4-27. BYT Examples

419

Pseudo Instructions

line of coding. These additional code lines are suppressed by
an SUP instruction until a UNS or the END pseudo in-
struction is encountered. SUP will suppress additional code
lines in the following machine and pseudo instructions:

The SUP pseudo instruction may be used to suppress the
listing of literals at the end of the source program listing
and also to suppress the printing of offset values for mem-
ory reference instructions which refer to external symbols
with offsets.

| 1
l UNS I comments

The UNS pseudo instruction causes the printing of addi-
tional coding lines, terminated by an SUP,to be resumed.

An SUP preceded by another SUP, UNS preceded by UNS,
or UNS not preceded by an SUP are not considered errors
by the Assembler.

I SKP . comments
I I

The SKP pseudo instruction causes the source program
listing to be skipped to the top of the next page. The SKP
instruction is not listed, but the source statement sequence
number is incremented for the SKP.

| {
|SPC|n

The SPC pseudo instruction causes the source program
listing to be skipped a specified number of lines. The list
output is skipped n lines, or to the bottom of the page,
whichever occurs first. The n may be any absolute expres-
sion. The SPC instruction is not listed but the source state-
ment sequence number is incremented for the SPC.

i HED i <heading>

The HED pseudo instruction allows the programmer to
specify a heading to be printed at the top of each page of the
source program listing.

4-20

The heading, a string of up to 56 ASCII characters, is
printed at the top of each of the source program listings
following the occurrence of the HED pseudo instruction. If
HED is the first statement at the beginning of a program,
the heading will be used on the first page of the source
program listing. A HED instruction placed elsewhere in
the program causes a skip to the top of the next page.

The heading specified in the HED pseudo instruction will
be used on every page until it is changed by a succeeding
HED instruction.

The source statement containing the HED will not be
listed, but the source statement sequence number will be
incremented.

4-7. ARITHMETIC SUBROUTINE
CALLS

If an X appears in the control statement for the source
program, the Assembler generates calls to arithmetic sub-
routines external to the source program for the following
instructions: MPY, DIV, DLD, and DST. The instruction
formats and functions are as described in paragraph 3-17 of
Section III in this manual.

I ain T does noé appear in e conirol statement for ihe
source program, the Assembler generates calls to arithme-
tic subroutines external to the source program for the fol-
lowing instructions: FMP, FDV, FAD, and FSB. The in-
struction formats and functions are as described in parag-
raph 3-18 of Section III in this manual.

Each use of a statement from this group except FIX and
FLT generates two words of instructions. Symbolically,
they could be represented as follows:

An EXT <.arithmetic pseudo operation> isimplied preced-
ing the JSB operation.

In the above operations, the overflow bit is set when one of
the following conditions occurs:

o Integer overflow
o Floating point overflow or underflow
e Division by zero.

Execution of any of the subroutines alter the contents of the
E-Register.

4-8. DEFINE USER INSTRUCTION
(21MX SERIES ONLY)

]
I MIC | opcode,fcode,pnum | comments
i] i

This pseudo instruction provides the user the capability of
defining his own instructions. opcode is a three-character
alphabetic mnemonic, fcode is an instruction code, and
pnum declares how many (0-7) parameter addresses are to
be associated with the newly-defined instruction. Both
feode and pnum may be expressions which generate an
absolute result. A user-defined instruction must not appear
in the source program prior to the MIC pseudo instruction
which defines it. When the user-defined mnemonic is used
later in the source program, the specified number of
parameter addresses (pnum) are supplied in the Operand
field of the user-defined instruction separated from one
another by spaces. The parameter addresses may be any
addressable values, relocatable and/or indirect. The pa-
rameters may not be literals.

Note: All three operands (opcode, fcode, and
pnum) must be supplied in the MIC
pseudo instruction in order for the
specified instruction to be defined. If
pnum is zero, it must be expressly de-

clared as such (not omitted).

4-9. “JUMP TO MICROPROGRAM”

The MIC pseudo instruction is primarily intended to facili-
tate the passing of control from an assembly language
program to a user’s microprogram residing in Read-Only-
Memory (ROM) or Writable Contro! Store (WCS). Ordinar-
ily, to do this the user must include an OCT 101xxx or OCT
105xxx statement (where xxx is 140 through 737) at the
point in the source program where the jump is to occur. If
parameters are to be passed, they are usually defined as
constants (via OCT or DEF statements) immediately fol-
lowing the OCT 105xxx statement. With the MIC pseudo
instruction, the user can define a source language instruc-
tion which passes control and a series of parameter addres-
ses to a microprogram. If it is desired to pass additional
parameters to a microprogram beyond those pointed to by
the user-defined instruction, they must be defined as con-
stants (via OCT or DEF statements) immediately following
each use of the user-defined instruction.

4-10. EXAMPLE. Assume that the first two paramet-
ers to be passed from the assembly language program to the
user’s microprogram reside in the memory locations
PARM1 and PARM2 and that the third parameter resides
in the memory location pointed to by ADR. Also assume
that the octal code for transferring control to the particular
microprogram is 105240,

Pseudo Instructions

The following statement defines a source language instruc-
tion which passes control and three parameter addresses to
the microprogram:

Whenever it is desired to pass control from the assembly
language program to the microprogram, the following
user-defined instruction may be used in the source prog-

ram:

4-11.

COMBINING MULTIPLE
MNEMONICS

Another use of the MIC pseudo instruction is to assign a
single mnemonic to a multiple instruction (shift-rotate or
alter-skip) statement.

4-12. EXAMPLE. Instead of using the source state-
ment:

the user may define a single mnemonic as follows:

where 01472B is the octal instruction code for the four-
mnemonic statement shown above. Whenever XYZ is sub-
sequently used as an instruction mnemonic in the source
program, it is the equivalent of using the source statement:

ALR,CLE,SLA,RAL

4-13. DEFINING CONSTANTS

The MIC pseudo instruction may also be used for defining
constants (opcode = mnemonic, fcode = constant, and

4-21

Pseudo Instructions

prnum = 0). Whenever the defined mnemonic is used as an
instruction mnemonic in the source program the Assem-
bler automatically replaces it with the specified constant.

4-14. EXAMPLE. The following statement defines the
constant 10,, and assigns it the mnemonic TEN:

4-22

 MIC TENJ100 .o

Whenever TEN appears as an instruction mnemonic later
in the source program, the value 10,, is automatically in-
serted in that location by the Assembler.

HP CHARACTER SET FOR | IR
COMPUTER SYSTEMS| A

Effect of Control key *
TN

|«— 0000378 »]4— 040-0778 —#-|«—100-1378 —#-|—140-1 78—

b7b6b5 000 o01 010 o o fo, (N "
BITS COLUMN
N 0 1 2 3 4 5 6 7
bg bz by by| ROW y
ololojo 0 NUL | DLE sp 0 @ P p
0lo[0]1 1 SOH | DC1 ! 1 A Q a a
ojof1]o0 2 STX | Dc2 g 2 B R b r
00|11 3 ETX DC3 # 3 C S c s
oj1]o0]0 4 EOT | DC4 $ 4 D T d t
ol1]/0]1 5 ENQ | NAK % 5 E U e u
oj11]0 6 ACK | SYN & 6 F v f v
o111 7 BEL | ETB ' 7 G W g w
1/o/o]o 8 BS CAN (8 | H X J h x
1,000 1 9 HT EM) s | 1 Y y
1101 .0 10 LF . SUB - J z i z
EﬂTo 11 11 VT ESC + K C o« L]
1,100/ 12 FF* FS ., < Lo\ [
1100 1 13 R Gs I B Y] m }
101 13‘0 14 o) RS . > N A n ~
111 1 15 sl us / ? o
32 CONTROL)
s
<—— 64 CHARACTER SET ——|
<—— 96 CHARACTER SET >
- 128 CHARACTER SET >

EXAMPLE: The representation for the character “K’* (column 4, row 11) is.

b7 bg bg by b3 by by
BINARY 1 0 0 1t 0 1 1

N s e

OCTAL 1 1 3

* Depressing the Control key while typing an upper case letter produces
the corresponding control code on most terminals. For example,
Control-H is a backspace.

9206- 1A

Al

(4

HEWLETT-PACKARD CHARACTER SET FOR COMPUTER SYSTEMS

This table shows HP's implementatiori of ANS X3.4-1968 (USASCII) and ANS X3.32-1973. Some devices may subslitute
alternate characters from those shown in this chart (for examiple. Line Drawing Set or Scandanavian font) Consult the manual

for your device.

The left and right byte columns show tne octal patterns in a 16 bit word when the character occupies bits 8 to 14 (left byte) or 0
10 6 (right byte) and the rest of the bits are zero. To find the paltern of two characters in the same word. add the two values. For
example. "AB" produces the octal pattern 040502 (The panty bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are character codes

Octal Values
Decimal Mnemonic Graphic' Meaning
Value Left Byte Right Byte
0 000000 000000 NUL N, Nul*
1 000400 000001 SOH E Start of Heading
2 001000 000002 STX Ek Start of Text
3 001400 000003 ETX B End of Text
4 002000 000004 EOT Er End of Transmission
5 002400 000005 ENQ By Enquiry
6 003000 000006 ACK A Acknowledge
003400 000007 BEL Q Bell. Attention Signal
3 004000 000010 BS & Backspace
9 004400 000011 HT Hr Hor:zontal Tabulation
10 005000 000012 LF Le Line Feed
‘1 005400 000013 VT N Vertical Tabulation
12 006000 000014 FF Fe Form Feed
13 006400 000015 CR R Carnage Return
14 007000 000016 SO % Shift Out Alternate
15 007400 000017 S 5, Shift In Character Sat
16 010000 000020 DLE o Data Link Escape
17 010400 000021 DC1 Dy Device Control 1 (X-ON)
18 011000 000022 DC2 02 Device Control 2 (TAPE)
19 011400 000023 DC3 Dy Device Control 3 (X-OFF)
20 012000 000024 DC4 o, Device Control 4 (TAPE)
Al 012400 000025 NAK Ne Negative Acknowledge
2 013000 000026 SYN % Synchronous |dle
'3 013400 000027 ETB EE End of Transmission Block
24 014000 000030 CAN X Cancel
25 014400 000031 EM) End of Medium
015000 000032 SuUB S Substitute
015400 000033 ESC EC Escape?
28 016000 000034 FS Fg File Separator
29 016400 000035 GS G Group Separator
30 017000 000036 RS R Record Separator
31 017400 000037 us S Unit Separator
27 077400 000177 DEL % Delete, Rubout?

9206- 183

Octal Values

Decimal Character Meaning
Value Left Byte Right Byte

32 020000 000040 Space. Blank

33 020400 000041 ! Exclamation Point

34 021000 000042 ” Quotation Mark

35 021400 000043 # Number Sign, Pound Sign

36 022000 000044 $ Doliar Sign

37 022400 000045 % Percent

38 023000 000046 & Ampersand, And Sign

39 023400 000047 4 Apostrophe. Acute Accent

40 024000 000050 (Left (opening) Parenthesis

41 024400 000051) Right (closing) Parenthesis

42 025000 000052 * Asterisk, Star

43 025400 000053 + Plus

44 026000 000054 R Comma, Cedilla

45 026400 000055 - Hyphen, Minus, Dash

46 027000 000056 . Period, Decimal Point

47 027400 000057 / Slash, Slant

48 030000 000060 0

49 030400 000061 1

50 031000 000062 2

51 031400 000063 3

52 032000 000064 4

53 032400 000065 5 Digits, Numbers

54 033000 000066 6

55 033400 000067 7

56 034000 000070 8

57 034400 000071 9

58 035000 000072 Colon

59 035400 000073 H Semicolon

60 036000 000074 Less Than

61 036400 000075 = Equals

62 037000 000076 Greater Than

63 037400 000077 ? Question Mark

108 10308IRYY) JH

gV

Octal Values Octal Values
Decimal Character Meaning Decimal Character Meaning
Value Left Byte Right Byte Value Left Byte Right Byte
64 040000 000100 @ Commercial At 96 060000 000140 * Grave Accent®
65 040400 000101 A 97 060400 000141 a
66 041000 000102 B 98 061000 000142 b
67 041400 000103 C 99 061400 000143 c
68 042000 000104 D 100 062000 000144 d
69 042400 000105 E 101 062400 000145 e
70 043000 000106 F 102 063000 000146 f
71 043400 000107 G 103 063400 000147 g
72 044000 000110 H 104 064000 000150 h
73 044400 00C111 | 105 064400 000151 i
74 045000 000112 J 106 065000 000152 |
75 045400 000113 K 107 065400 000153 k
76 046000 000114 L 108 066000 000154 |
77 046400 000115 M 109 066400 000155 m
78 047000 000116 N Upper Case Alphabet. 110 067000 000156 n Lower Case Lellers®
79 047400 000117 o Capital Letters 1 067400 000157 o
80 050000 000120 P 112 070000 000160 p
81 050400 000121 Q 113 070400 000161 q
82 051000 000122 R 114 071000 000162 r
83 051400 000123 S t15 071400 000163 s
84 052000 000124 T 116 072000 000164 t
85 052400 000125 U 117 072400 000165 u
86 053000 000126 \ 118 073000 000166 v
87 053400 000127 W 119 073400 000167 w
88 054000 000130 X 120 074000 000170 X
89 054400 000131 Y 121 074400 000171 y
90 055000 000132 z 122 075000 000172 z
91 055400 000133 | Left (opening) Bracket 123 075400 000173 { Left (opening) Brace®
92 056000 000134 AN Backslash, Reverse Slant 124 076000 000174 1 Vertical Line®
93 056400 000135) Right (closing) Bracket 125 076400 000175 } Right (closing) Brace®
94 057000 000136 AT Caret, Circumflex: Up Arrow* 126 077000 000176 ~ Tilde, Overline®
95 057400 000137 o« Underline: Back Arrow*
Notes 'This is the standard display representation. The software and hardware in your system determine if the control code is
displayed. executed. or ignored. Some devices display all control codes as =", "@", or space

2Escape is the first character of a special control sequence. For example, ESC followed by "J” clears the display on a 2640

termmal

3Delete may be displayed as ", "@". or space

“Normally. the caret and underhine are displayed Some devices substitute the up arrow and back arrow

sSome devices upshift lower case lelters and symbols (N th:ough ~) to the corresponding upper case character (@ through

9206- 1C A). For example, the left brace would be converted to 2 left bracket

398 19908IRYD JH

HP Character Set

HP 7970B BCD-ASCI| CONVERSION

ASCIHI ASCII
BCD EQUIVALENT BCD EQUIVALENT
SYMBOL (OCTAL CODE) (OCTAL CODE) SYMBOL (OCTAL CODE) (OCTAL CODE)

(space) 20 040 @ 14 100
! 52 041 A 61 101
' 37 042 B 62 102
13 043 C 63 103
$ 53 044 D 64 104
% 57 045 E 65 105
& t 046 F 66 106
! 35 047 G 67 107
(34 050 H 70 110
) 74 051 I 71 111
* 54 052 J 41 112
+ 60 053 K 42 113
, 33 054 L 43 114
- 40 055 M 44 115
73 056 N 45 116
/ 21 057 0O 46 117
0 12 060 P 47 120
1 01 061 Q 50 121
2 02 062 R 51 122
3 03 063 S 22 123
4 04 064 T 23 124
5 05 065 u 24 125
6 06 066 \" 25 126
7 07 067 w 26 127
8 10 070 X 27 130
9 11 071 Y 30 131
15 072 z 31 132
; 56 073 [75 133
< 76 074 \ 36 134
= 17 075] 55 135
> 16 o076 1 77 136
? 72 077 <« 32 137

tThe ASCII code 046 is converted to the BCD code for a space (20) when writing data onto a 7-track tape.

A-4

SUMMARY OF INSTRUCTIONS

APPENDIX-

Symbols

label

m

I

C
{m,m+1)
comments

[]

t

P
()

o o =~ B G G

=

T W
=)

(A/B)
(AB)

sC

lit
msb
Isb

Meaning

Symbolic label, 1-5 alphanumeric characters and periods
Memory location represented by an expression
Indirect addressing indicator

Clear flag indicator

Two-word floating point value in m and m+1
Optional comments

Optional portion of field

One of set may be selected

Program Counter

Contents of location

Logical product

Exclusive “or”

Inclusive ‘“‘or”

A-register

B-register

E-register

Bit n of A-register

Bit n of B-register

Bit positions in B- and A-register

Complement of contents of register A or B
Two-word floating point value in register A and B
Channel select code represented by an expression
Decimal constant

Octal constant

Repeat count

Integer constant

Literal value

Most significant bits

Least significant bits

B-1

Summary of Instructions

B-1.

B-2

B-5.

B-6.

B-2

MACHINE INSTRUCTIONS

MEMORY REFERENCE

Jump and Increment-Skip

ISZ m [I]
JMP m [I]
JSB m [,I]

Add, Load and Store

ADA {ft B }
ADB { n L1 }
LDA {E‘t L1l }
LDB {E L1 }
STA m[]]
STB m[]]
Logical

Word Processing

MVW { E By }

CMW {E By }

(m) + 1 — m: then if (m) = 0, execute P + 2 otherwise execute P + 1
Jump to m; m—>P

Jump subroutine to m: P + 1-m; m + 1->P

(m) + (A)->A

(m) + (B)-B

(m)>A

(m)—>B

(A)->m

(B)»>m

(m)A(A)>A

(m)*A)->A

(m)Vv(A)->A

If (m) # (A), execute P + 2, otherwise execute P + 1

If (m) # (B), execute P + 2, otherwise execute P + 1

Move (m) words from array (A)-array (B)

Compare {m) words of array (A) against (m) words of array (B); if the two arrays are
equal, execute P + 3, if array (A) is less than array (B), execute P + 4, if array (A) is
greater than array (B), execute P + 5

B-7. Byte Processing

LBT
SBT
MBT { i By }

CBT { i By }

SFB

B-8. Bit Processing

TBS {E[’I]} n 1]

SBS { I L1 } n [1]

CBS { 1‘1 LI } n [I]

Summary of Instructions

B contains a 16-bit byte address; ((B))>Ay_5 0's to Ag_;5

B containg a 16-bit byte address; (A;_)->(B)

A and B contain 16-bit byte addresses; move (m) bytes from array (A)—»array (B)

A and B contain 16-bit byte addresses; compare (m) bytes of array (A) against (m)
bytes of array (B); if the two arrays are equal, execute P + 3; if array (A) is less than
array (B), execute P + 4; if array (A) is greater than array (B), execute P + 5

A, _,contain the test byte, Ag_; s contain the termination byte, and B contains a 16-
bit byte address; scan array (B); if test byte found, execute P + 1, B contains

address of test byte; if termination byte found, execute P + 2, B contains address of
termination byte; if neither is found, execute P + 2, B contains zero

Compare all ““set”” bits in (m) against corresponding bits in (n); if all bits tested are
set, execute P + 3; if any of the bits tested are clear, execute P + 4

Set all bits in (n) which correspond to ‘““set’” bits in (m)

Clear all bits in (n) which correspond to “set” bits in (m)

B-9. REGISTER REFERENCE

B-10. Shift-Rotate

CLE 0—-E

ALS Shift (A) left one bit, 0>A,, A,; unaltered

BLS Shift (B) left one bit, 0 By, B;5 unaltered

ARS Shift {A) right one bit, (A;5)>A 4

BRS Shift (B) right one bit, (B,5)>B1a

RAL Rotate (A) left one bit

RBL Rotate (B) left one bit

RAR Rotate (A) right one bit

RBR Rotate (B) right one bit

ALR Shift (A) left one bit, 0> A s

BLR Shift (B) left one bit, 0—>B;5

ERA Rotate E and A right one bit

ERB Rotate E and B right one bit

ELA Rotate E and A left one bit

ELB Rotate E and B left one bit

ALF Rotate A left four bits

BLF Rotate B left four bits

SLA If (Ay) = 0, execute P + 2, otherwise execute P + 1
SLB If (By) = 0, execute P + 2, otherwise execute P + 1

B-3

Summary of Instructions

Shift-Rotate instructions can be combined as follows:

ALS ALS
ARS ARS
RAL RAL
RAR RAR
ALR [CLE] [SLA]l |.{AlR
ALF ALF
ERA ERA
[{ELA | | (ELA]
BLS BLS
BRS BRS
RBL RBL
RBR RBR
BLR [CLE] [SLBl |,\gIR
BLF BLF
ERB ERB
| {ELB | (ELB

B-11. No-Operation

NOP Execute P + 1

B-12. Alter-Skip

CLA 0s—>A
CLB 0's>B
CMA (A)-»A
CMB (B)-B
CCA I's—>A

CCB 1I's >B
CLE 0-E
CME (E)-E
CCE 1-E

SEZ If (E) = 0, execute P + 2, otherwise execute P + 1
SSA If (Ays5) = 0, execute P + 2, otherwise execute P + 1
SSB If (Bys) = 0, execute P + 2, otherwise execute P + 1
INA (A) + 1A

INB (B) + 1»B

SZA If (A) = 0, execute P + 2, otherwise execute P + 1
SZB If (B) = 0, execute P + 2, otherwise execute P + 1
SLA If (Ay) = 0, execute P + 2, otherwise execute P + 1
SLB If (By) = 0, execute P + 2, otherwise execute P + 1

RSS Reverse sense of skip instructions. If no skip instructions precede, execute P + 2

B-4

Summary of Instructions

Alter-Skip instructions can be combined as follows:

CLA CLE
H CMA}-I [LSEZ] IV,{CME}j' [,SSA] [,SLA] [,INA] [,SZA] [,RRS]

Ltcca) L \CCE
CLB CLE

UCMB}:I [LSEZ] \:,{CME‘:] [,SSB] [,SLB] [,INB] [,SZB] [,RSS]
CCB CCE

B-13. Index Register

CAX (A)-X

CBX (B)-»X

CAY (A)-Y

CBY (B)>Y

CXA (X)=A

CXB (X)->B

CYA {Yi-A

CYB (Y)»B

XAX (A)>X and (X)~>A

XBX (B)>X and (X)—~>B

XAY {A)>Y and (Y)->A

XBY (B)>Y and (Y)—>B

IsX (X} + 1-X, then test new {X); if {(X) = 0, execute P + 2, otherwise execute P + 1
ISY (Y) + 1-Y, then test new (Y); if (Y) = 0, execute P + 2, otherwise execute P + 1
DSX (X) - 1-X, then test new (X); if (X) = 0, execute P + 2, otherwise execute P + 1
DSY (Y) - 1Y, then test new (Y); if (Y) = 0, execute P + 2, otherwise execute P + 1
LDX I LIy -x

LDY e LI)y

STX m [,I] (X)»>m

STY m [,I] (Y)>m

LAX m [,I] (m + (X))~A

LBX m [,I] (m + (X))>B

LAY m [I] (m + (Y))—>A

LBY m [I] (m + (Y))»B

SAX m [,I] (A)>m + (X)

SBX m [,I] {(B)->m + (X)

SAY m [,I] (A)»m + (Y)

SBY m [,I] (B)»m + (Y)

ADX g‘t[’n (m) + (X)>X

apy Mmooy

JLY mI[J] Jumptom; P+ 2-Y

JPY m Jump to m + (Y)

B-5

Summary of Instructions

B-14.

INPUT/OUTPUT, OVERFLOW, AND HALT

B-15. Input/Output

B-16. Overflow

B-17.

B-18.

B-6

STC

CLC

LIA

LIB

MIA

MIB

OTA

OTB

STF

CLF

SFC

SFS

CLO
STO
SOC

S0S

Halt

HLT

sc [,C]
sc [,C]
sc [,C]
sc [,C]
sc [,C]
sc [,C]
sc [,C]
sc [,C]
sc

sc

sc

sC

(C]

(C]

Set control bitgc, enable transfer of one element of data between deviceg, and bufferg,
Clear control bitge. If sc = 0 clear all control bits

(bufferg,)—~A

{bufferse) V (A) — A Merge (inclusive or) the buffer into A

(buffery.) V (B) — B Merge (inclusive or) the buffer into B.

(buffersc) (B)—B

(A)—bufferg,

(B)~bufferge

Set flag bitge. If sc = 0, enable interrupt system. sc = 1 sets overflow bit.

Clear flag bitse. If sc = 0, disable interrupt system. If sc = 1, clear overflow bit.

If (flag bitse) = 0, execute P + 2, otherwise execute P + 1. If sc = 1, test overflow bit.

If (flag bitsc) = 1, execute P + 2, otherwise execute P + 1. If s¢c = 1, test overflow bit.

0—overtlow bit
1-overflow bit
If (overflow bit) = 0, execute P + 2, otherwise execute P + 1

If (overflow bit}) = 0, execute P + 2, otherwise execute P + 1

[sc [,C]] Halt computer

EXTENDED ARITHMETIC UNIT

MPY

DST

ASR

ASL

{

e

{A) x (m)->(B b and Aigp)

+ms

{Bimsp and Aygp)/(m)—A, remainder ~B

(m) and (m + 1)>A and B

(A) and (B)»>m and m + 1

Arithmetically shift (BA) right b bits, B,; extended

Arithmetically shift (BA) left b bits, B;s unaltered, 0’s to Aisp

Summary of Instructions

RRR b Rotate (BA) right b bits

RRL b Rotate (BA) left b bits

LSR b Logically shift (BA) right b bits, 0’s to Bmgsh
LSL b Logically shift (BA) left b bits, o’s to Ajgp
SWP Swap the contents of the A and B registers

B-19. FLOATING POINT

FMP (AB) x {m, m + 1)->AB

FDV {E L1) } (AB)/(m, m + 1)~>AB
FAD {. LN (m, m + 1) + (AB)>AB
lit]
FSB {E [’I]} (AB) - (m, m + 1) >AB
FIX (AB) converted from floating-point to fixed-point; result -A
FLT (A) converted from fixed-point to floating-point; result ~AB

B-20. MEMORY EXPANSION

DJP m [,I] Disable MEM and jump to m; m —P

DJS m [,I] Disable MEM and jump subroutine tom; P + 1 -m; m + 1 —P

JRS m, [I] m, [I] Jump and restore status

LFA A — fence

LFB B — fence

MBF Move bytes from alternate map. X«— 0; A« A + no. bytes moved; B« B + no.

bytes moved.

MBI Move bytes into alternate map. X« 0; A« A + no. bytes moved; B« B + no.
bytes moved.

MBW Move bytes within alternate map. X« 0; A« A + no. bytes moved; B« B + no.
bytes moved.

MWF Move words from alternate map. X« 0; A— A + no. words moved; B«— B + no.
words moved.

MWI Move words into alternate map. X« 0; A« A + no. words moved; B« B + no.
words moved.

MWW Move words within alternate map. X« 0; A« A + no. words moved; B« B + no.
words moved.

B-7

Summary of Instructions

B-8

PAA

PAB

PBA
PBB
RSA
RSB
RVA
RVB
SJP m [I]
SJS m [I]
SSM m [I]
SYA

SYB

UJP m [1]
UJs m [1]
USA

USB

XCA m
XCB m

XLA m

XMA

XMB

XMM

If A(15) = 0, Port A map « memory; if A(15) = 1, Port A map — memory.

i

If B(15) = 0, Port A map«— memory; if B(15) = 1, Port A map — memory.

If A(15) = 0, Port B map < memory; if A(15) = 1, Port B map — memory.
If B(15) = 0, Port B map «— memory; if B(15) = 1, Port B map — memory.
A « status register

B « status register

A « violation register

B « violation register

Enable System map and jump to m

Enable System map and jump subroutine to m

m «— status register

If A(15) = 0, System map «— memory; if A(15) = 1, System map — memory.
If B(15) = 0, System map «— memory; if B(15) = 1, System map — memory.
Enable User map and jump to m

Enable User map and jump subroutine to m

If A(15) = 0, User map < memory; if A(15) = 1, User map — memory.

If B(15) = 0, User map «— memory; if B(15) = 1, User map — memory.
Compare A with m; if A = m, execute P = 1; if A # m, execute P + 2.
Compare B with m; if B = m, execute P + 1; if B # m, execute P + 2.
A—m

Bem

If A(15) = 0 and A(0) = 0, Port A map+«— System map. IfA(15) = 0 and A(0) = 1, Port
B map <« system map. If A(15) = 1and A(0) = 0, Port A map«— User map. IfA(15) =

1 and A(0) = 1, Port B map <« User map.

If B(15) = 0 and B(0) = 0, Port A map«— System map. If B(15) = 0 and B(0) = 1, Port
B map+« System map. If B(15) = = 1 and B(0) = 0, Port A map« User map. If B(15)

= 1 and B(0) = 1, Port B map < User map.

A = register no., B = memory address, X = no. of registers. If X > 0, Maps «

memory; if X < 0, Memory < maps.

A = first register no., B = first page no., X = positive no. of registers. First
register is loaded with the page number indicated in B, the second register is

loaded with that value + 1, and so forth.

A—-m

B-om

Summary of Instructions

B-21. PSEUDO INSTRUCTIONS

B-22. ASSEMBLER CONTROL
NAM [name] Specifies relocatable program and its name.
ORB Gives relocatable program origin for the base page of relocatable program.
ORG m Gives absolute program origin or origin for a segment of relocatable or absolute program.
ORR Reset main program location counter at value existing when first ORG or ORB of a string
was encountered.
END [m] Terminates source language program. Produces transfer to program starting location, m,
if given.
REP r Repeat immediately following statement r times.
<statement>
IFN Include statements in program if control statement contains N.
<statements>
XIF
IFZ Include statements in program if control statement contains Z.
<statements>
XIF

B-23. OBJECT PROGRAM LINKAGE

COM

ENT

EXT

label

name, [(size)]{,name, [(size,)],...,namep[(sizey)]]

Reserves a block of common storage locations. name, identifies segments of block, each of
length size.

name, [,name,,...,namey]

Defines entry points, name,, that may be referred to by other programs.

namel[,namez, .. .,namen]

Defines external locations, name , which are labels of other programs, referenced by this
program.

RPL [m]

Defines the code replacement for [JSB label | external references.

B-24. ADDRESS AND SYMBOL DEFINITION

label DEF m [,I] Generates a 15-bit address which may be referenced indirectly through the label.

label ABS m Defines a 16-bit absolute value to be referenced by the label.

B-9

Summary of Instructions

B-25.

B-26.

B-27.

B-28.

B-10

label EQU m Equates the value, m, to the label.

label DBL m Defines a 16-bit byte address (left half, bits 8-15, of word location m) to be referenced
by the label.

label DBR m Defines a 16-bit byte address to be referenced by the label. The byte address is for the right
half (bits 0-7) of word location m.

CONSTANT DEFINITION

ASC n, <2n characters> Generates a string of 2n ASCII characters.

DEC d, [,d,,....dp]

DEX d, [.d,,---,dy]

OCT 04 [,02,...,0n]

BYT b[b ,...by]

Records a string of decimal constants of the form:

Integer: =+£n
Floating point: +n.n, +n., +.n, +nE+e, +n.nE+e, +n.E+e, +.nE+e

Records a string of extended precision decimals constants of the form

Floating point: +n, +n.m, +n., +.n,
+nE+e, +n.nE+e, +n.E+e, +.nE+te

Records a string of octal constants of the form: +000000

Records a string of octal byte constants of the form: +nnn (where nnn is 0 through
377,).

STORAGE ALLOCATION

BSS m

Reserves a storage area of length, m.

ASSEMBLY LISTING CONTROL

UNL Suppress assembly listing output.

LST Resume assembly listing output.

SKP Skip listing to top of next page.

SPC n Skip n lines on listing.

SUP Suppress listing of extended code lines (e.g., as produced by subroutine calls).
UNS Resume listing of extended code lines.

HED <heading> Print <heading> at top of each page, where <heading> is up to 56 ASCII characters.

DEFINE USER INSTRUCTION

MIC opcode,fcode,pnum Defines a source language instruction. opcode = three-character alphabetic

mnemonic, fcode = instruction code, and pnum declares how many parameter ad-
dresses are to be associated with the newly-defined instruction.

ALPHABETIC LIST

OF INSTRUCTIONS

Note:

BLF
BLR
BLS
BRS
BSS
BYT

CAX
CAY
CBS
CBT
CBX
CBY
CCA
CCB
CCE
CLA
CLB
CLC
CLE
CLF
CLO

In the following list, those instructions
suffixed with an asterisk are dynamic
mapping instructions and cannot be used
unless the computer contains a Dynamic
Mapping System.

Define absolute value

Add to A

Addto B

Add memory to X

Add memory to Y

Rotate A left 4

Shift A left 1, clear sign

Shift A left 1

“And” to A

Shift A right 1, sign carry

Generate ASCII characters

Arithmetic long shift left

Arithmetic long shift right

Rotate B left 4

Shift B left 1, clear sign

Shift B left 1

Shift B right 1, carry sign

Reserve block of storage starting at symbol
Defines octal byte constants

Copy A to X

Copy Ato Y

Clear bits

Compare bytes

Copy Bto X

CopyBtoY

Clear and complement A (1’s)
Clear and complement B (1’s)
Clear and complement E (set E = 1)
Clear A

Clear B

Clear I/O control bit

Clear E

Clear I/O flag

Clear overflow bit

CMA
CMB
CME
CMW
COM
CPA
CPB
CXA
CXB
CYA
CYB

DBL
DBR
DEC
DEF
DEX
DIV
DJP*
DJS*
DLD
DST
DSX
DSY

ELA

ELB

END
ENT
ERA
ERB
EQU
EXT

FAD
FDV
FIX
FLT
FMP
FSB

Complement A

Complement B

Complement E

Compare words

Reserve block of common storage
Compare to A, skip if unequal
Compare to B, skip if unequal
Copy X to A

Copy X to B

Copy Yto A

Copy Y to B

Define left byte (bits 8-15) address
Define right byte (bits 0-7) address
Define decimal constant

Define address

Define extended precision constant
Divide

Disable MEM and jump

Disable MEM and jump to subroutine
Double load

Double store

Decrement X and skip if zero

Decrement Y and skip if zero

Rotate E and A left 1
Rotate E and B left 1
Terminate program
Entry point

Rotate E and A right 1
Rotate E and B right 1
Equate symbol

External reference

Floating add

Floating divide

Convert floating-point be fixed-point
Convert fixed-point to floating-point
Floating multiply

Floating subtract

C-1

Alphabetic List of Instructions

HED
HLT

IFN

IFZ

INA
INB
IOR
ISX
ISY
1Sz

JLY
JMP
JPY
JRS*
JSB

LAX
LAY
LBT
LBX
LBY
LDA
LDB
LDX
LDY
LFA*
LFB*
LIA
LIB
LSL
LSR
LST

MBF*
MBI*
MBT
MBW*
MIA
MIB
MIC
MPY

C-2

Print heading at top of each page
Halt

When N appears in Control statement, assem-

ble ensuing instructions

When Z appears in Control statement, assem-

ble ensuing instructions
Increment A by 1

Increment B by 1

Inclusive “or” to A
Increment X and skip if zero
Increment Y and skip if zero

Increment, then skip if zero

Jump and load Y

Jump

Jump indexed by Y
Jump and restore status

Jump to subroutine

Load A from memory indexed by X
Load A from memory indexed by Y
Load hyte

Load B from memory indexed by X
Load B from memory indexed by Y
Load into A

Load into B

Load X from memory

Load Y from memory

Load fence from A

Load fence from B

Load into A from I/O channel
Load into B from I/O channel
Logical long shift left

Logical long shift right

Resume list output (follows a UNL)

Move bytes from alternate map
Move bytes into alternate map
Move bytes

Move bytes within alternate map
Merge (or) into A from I/O channel
Merge (or) into B from I/O channel
Define jump to user microcode
Multiply

MVW
MwWF*
MWTI*
MWW#

NAM
NOP

OCT
ORB
ORG
ORR
OTA
OTB

PAA*
PAB*
PBA*
PBB*

SAX
SAY
SBS
SBT
SBX
SBY
SEZ
SFB
SFC
SFS

Move words
Move words from alternate map
Move words into alternate map

Move words within alternate map

Name relocatable program

No operation

Define octal constant
Establish origin in base page
Establish program origin
Reset program location counter
Output from A to I/O channel
Output from B to I/O channel

Load/store Port A map per A
Load/store Port A map per B
Load/store Port B map per A
Load/store Port B map per B

Rotate A left 1

Rotate A right 1

Rotate B left 1

Rotate B right 1

Repeat next statement
Replace instruction definition
Rotate A and B left

Rotate A and B right

Read status register into A
Read status register into B
Reverse skip sense

Read violation register into A

Read violation register into B

Store A into memory indexed by X
Store A into memory indexed by Y
Set bits

Store byte

Store B into memory indexed by X
Store B into memory indexed by Y
Skip if E = 0

Scan for byte

Skip if I/0 flag = 0 (clear)

Skip if I/0 flag = 1 (set)

SJ’P*
SJS*
SKP
SLA
SLB
SOC

SOS

SpPC
SSA
SSB
SSM*

STA
STB
STC
STF
STO
STX
STY

SUP
SWP
SYA*
SYB*
SZA
SZB

Enable System map and jump

Enable System map and jump to subroutine
Skip to top of next page

Skip if LSBof A =0

Skip if LSB of B = 0

Skip if overflow bit = 0 (clear)

Skip if overflow bit = 1 (set)

Space n lines

Skip if sign A = 0

Skip if sign B = 0

Store status register in memory

Store A

Store B

Set I/0 control bit
Set 1/0 flag

Set overflow bit
Store X into memory

Store Y into memory

Suppress list output of additional code lines
Switch A and B

Load/store System map per A

Load/store System map per B

Skipif A =0

Skip if B =0

TBS

UJp*
UJS*
UNL
UNS
USA*
USB*

XAX
XAY
XBX
XBY
XCA*
XCB*
XIF
XLA*
XLB*
XMA*
XMB*
XMM*
XMS*
XOR
XSA*
XSB*

Alphabetic List of Instructions

Test bits

Enable User map and jump

Enable User map and jump to subroutine
Suppress list output

Resume list output

Load/store User map per A

Load/store User map per B

Exchange A and X

Exchange A and Y

Exchange B and X

Exchange B and Y

Cross compare A

Cross compare B

Terminate IFN or IFZ group of instructions
Cross load A

Cross load B

Transfer maps internally per A
Transfer maps internally per B
Transfer map or memory
Transfer maps sequentially
Exclusive “or” to A

Cross store A

Cross store B

C-3/C-4

CONSOLIDATED CODING SHEETS

APPENDIX

Table D-1 presents the binary codes for the base set instructions while Table D-2 presents those for the extended

instruction group.

D-1

Consolidated Coding Sheets

Table D-1. Base Set Instruction Codes in Binary

D/1, A/B, Z/C, D/E, H/C coded: 0/1.
**Second word is Memory Address.

15 | 14 13 12 1 10 9 8 7 6 5 4 3 2 1 (]
D/l | AND 001 0 zZ/C Memory Address
D/ | XOR 010 0 z/ic
D/l | I0R o011 0 z/c
D/1 | JSB 001 1 z/c
D/l | JMP 010 1 zZ/C
D/l | 1SZ 011 1 z/c
D/l | AD* 100 A/B zic
D/ | cP* 101 A/B z/C
D/l | LD* 110 A/B zic
D/ | sT* 111 A/B z/c
15 | 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0 | SRG 000 A/B 0 D/E | *LS 000 tCLE D/E ISL*| *LS 000
A/B 0 D/E |*RS 001 D/E *RS 001
A/B 0 D/E [R*L 010 D/E R*L 010
A/B o0 DJ/E |R*R 011 D/E R*R 011
A/B 0 D/E |*LR 100 D/E *LR 100
A/B 0 D/E |ER* 101 D/E ER* 101
A/B o D/E |EgL* 110 DJ/E EL* 110
A/B 0o D/E |=LF 111 D/E *LF 111
NOP 000 000 000 000
15 | 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 | AsG 000 A/B 1 cL* o1 CLE 01 | SEZ SS* SL* | IN* Sz* RSS
A/B cM* 10 CME 10
A/B ccr N CCE 1
15 | 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 10G 000 1 H/C HLT 000 | 4———————— Select Code ——————em—
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS 011
A/B 1 H/IC MI* 100
A/B 1 H/C LI 101
A/B 1 H/C OT* 110
0 1 H/C STC 11
1 1 H/C CLC 11
1 0 STO 001 000 001
1 1 CLO 001 000 001
1 H/C SOC 010 000 001
1 H/C SOS 011 000 001
15 | 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 |eAaG 000 MPY ** 000 010 000 000
DIV** 000 100 000 000
DLD** 100 010 000 000
DST** 100 100 000 000
ASR 001 000 0 1
ASL 000 000 0 1
LSR 001 000 1 0 number
LSL 000 000 1 0 of
RRR 001 001 0 0 bits
RRL 000 001 0 0
Notes: * = A or B, according to bit 11. tCLE: Only this bit is required.

£SL*: Only this bit and bit 11 (A/B as
applicable) are required.

Table D-2. Extended Instruction Group Codes in Binary

Consolidated Coding Sheets

SAX/SAY/SBX/SBY

CAX/CAY/CBX/CBY

LAX/LAY/LBX/LBY

STX/STY

CXA/CYA/CXB/CYB

LDX/LDY

ADX/ADY

XAX/XAY/XBX/XBY

ISX/ISY/DSX/DSY

JUMP INSTRUCTIONS

BYTE INSTRUCTIONS

BIT INSTRUCTIONS

WORD INSTRUCTIONS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
116 o olasjo 111 1+ 111 o lx/vio o6 o
1/0o o olaBlo 111 1 1)1 olxwvlo o 1
110 o olaslo 111 1 1|1 olxvlo 1 o
1o o ol1 o 1|1 1 101 olxxvlo 1 1
110 o olfaslo 111 1 111 ofxxvl1 o o
110 o of1 o 1|1 1 1|1 o xNl1 o 1
11lo o of1 o 11 1 1|1 olx|]1 1 o0
1lo o olaslo 111 1 1|1 o |xvl1 1 1
1710 o o1 o 111 1 111 1 {xy|lo oD
110 o o1 o 1|1 1 1{1 1 // 0 1 o0
Y= 0
Y= 1

1o o o1 o 1|1 1 11 1 o /////////
LBT=0 1 1

SBT=1 0 O

MBT=1 0 1

BT =1 1 0

SFB=1 1 1
1le o o1 o 1{1 1 1]1 1 1////////////
SBS= 0 1 1

CBS=1 0 O

TBS =1 0 1
1lo o o1 o 111 1 1)1 1 11 1 //
CMW= 0

MVW = 1

D-3

Consolidated Coding Sheets

Table D-2. Extended Instruction Group Codes in Binary (Continued)

MEMORY EXPANSION

DJP/DJS

SYB/USB/PAB/PBB/SSM/JRS

XMA/XLA/XSA/XCA/LFA

MBI/MBF/MBW/MWI/MWF /MWW

SYA/USA/PAA/PBA

15 14 13 12 11 10 2 1 o0
110 0 O 1 0
]
DIP=0 10
DIS=0 11
110 0 o 1 0
]
SYB=0 0 O
USB=0 0 1
PAB=0 1 0
PBB=0 1 1
SSM=1 0 0
JRS =1 0 1
110 0 o0}o o
XMA=0 1 ©
Xla =10 0
XSA =1 0 1
XCA =110
LFA =1 1 1
170 0 o1t O
MBI =0 1 0O
MBF =0 1 1
MBW=1 0 O
MWI =1 0 1
MWF=1 10
MWW=1 1 1
170 0 01]0 O 7
P
SYA=0 0 ¢
USA =0 0 1
PAA=0 1 0
PBA =0 1 1

D-4

Consolidated Coding Sheets

Table D-2. Extended Instruction Group Codes in Binary (Continued)

15 14 13 12 11 10 9 8 7 6 5 4 3 2z 1t ©
XMM/XMS/XMB/XLB 110 0 O 1 0 1 11 1 o 1 O
7
XSB/XCB/LFB
XMM = 0 0 0
XMS = 0 0 1
XMB = 0 1 0
XtB =1 0 0
XSB =1 0 1
XCB =1 10
LFB = 1 1 1
=
RSA/RVA 1000001111011/
RSA = 0 0 0
RVA = 0 0 1
RSB/RVB/SJP/SJS/UJP/UJS 1 0 0 O 1 0 1 1 1 1 0o 1 1
RSB = 0 0 O
RVB = 0 0 1
SIP =100
SIS =10 1
ur =110
uls =1 1 1

D-5/D-6

RUNNING ASSEMBLIES

APPENDIX

E

The Assembler, a segmented program that executes in the
main-memory User Program Area, operates under control
of RTE. The Assembler consists of a main program
(ASMB) and five segments (ASMBD, ASMB1, ASMB2,
ASMB3, ASMB4), and resides on the disc. The main prog-
ram is read into main memory when called by a ON direc-
tive.

Source pograms, accepted from either an input device or a
user source file on the disc, are translated into absolute or
relocatable object programs; absolute code is punched in
binary records, suitable for execution only outside of RTE.
ASMB can store relocatable code in the LG Area of the
disc for on-line execution, as well as punch it on paper
tape.

A source program passes through the input device only
once, unless there is insufficient disc storage space. In the
latter case, the Assembler informs the user that two pas-
ses are required.

E-1. ASSEMBLER /O

The Assembly Language I/O EXEC calls should specify
the proper logical unit numbers for the system configura-
tion.

If the memory protect hardware option is present (and
enabled), it protects the resident supervisor from altera-
tion. It interrupts the execution of a user program under
these conditions:

e Any operation that would modify the protected area or
jump into it.

e Any I/O instruction, except those referencing the
switch register or overflow register.

e The halt instruction.
Memory protect gives control to RTE when an interrupt

occurs, and RTE checks whether it was an EXEC call. If
not, the user program is aborted.

E-2. ASSEMBLER OPERATION

The RTE Assembler is initiated with a ON directive.
However, before entering the ON directive, the operator
must place the source program in the input device. If the

source program is on the disc, the operator must first set
up the LS Area with the editor, and set parameter p, = 2
in the ON directive. The ON directive for Assembler
should take the following form:

where:

Py
logical unit number of input device (default is 5; set to 2

for source file input indicated by a LS directive or set by
the editor)

By
Logical unit number of list device (default is the lu of
the interactive input device)

Py
logical unit number of punch device (default is 4)

171
lines/page on the source listing (default is 56)

99

the LG parameter. If present, the object program is
stored in the LG Area for later relocation. Any re-
quested punch output still occurs. (The 99 may occur
anywhere in the parameter list, but terminates the
list.)

All parameters are optional. Parameters P, through P,
however, are positional (if present they must appear in the
order shown above). Thus, unless all of the parameters P
through P, are omitted, the associated (trailing) comma
must be included to denote which parameters are omitted.

For example,
ON,ASMB,.B, ,,F, (P, and Fj omitted)
ON,ASMB,P, ,,B; ,F, (P, omitted)

If the 99 is omitted, the binary output is not placed in the
LG Area.

E-1

Running Assemblies

E-3. MESSAGES DURING
ASSEMBLY

When the end of a source tape is encountered, the following
is output on the system console:

LU #n is unavailable until the operator declares it up:

Compilation continues after the UP. More than one source
tape can be compiled into one program by loading the next
tape before giving the UP.

The following message on the system console signifies the
end of assembly:

$END ASMB

If another pass of the source program is required, this
message is output at the end of pass one.

 $END ASMB PASS

The operator must replace the program in the input device
and enter:

If an error is found in the Assembler control statement, the
following message is output on the system console:

and the current assembly stops.

If an end-of-file condition on the source input occurs before
an END statement is found, the console signals:

E-2

and the current assembly stops.

If source input from logical unit 2 (disc) is requested, but no
file has been declared, the system console signals:

and the current assembly stops.

If the 99 parameter is edited, but no LG tracks were allo-
cated, the following message is printed on the system con-
sole:

The Assembler is then aborted.

If the LG Area, where binary code is stored by a 99
parameter, overflows, assembly continues but the follow-
ing message is output on the system console:

The Assembler is then aborted.

The next message is printed on a separate line just above
each error diagnostic printed in the program listing during
pass 1.

L #nnn.

nnn is the “tape” number on which the error (reported on
the next line of the listing) occurred. A program may con-
sist of more than one tape. The tape counter starts with one
and increments by one whenever an end-of-tape condition
occurs (paper tape) or a blank card is encountered. When
the counter increments, the numbering of source state-
ments starts over at one.

Each error diagnostic printed in the program listing during
pass 2 of the assembly is associated with a different mes-
sage (printed on a separate linejust above each diagnostic):

ppp is the page number (in the listing) of the previous error
diagnostic. PG 000 is associated with the first error found
in the program.

THE FORMATTER

APPENDIX

NOTE

This appendix is included for those users who wish to run
programs under the Basic Control System (BCS)

The formatter is a subroutine that can be called by relocat-
able programs to perform formatted data transfers, to in-
terpret formats, to provide unformatted input and output
binary data, to provide free-field input, and to provide
buffer-to-buffer conversion. The formatter is first given a
string of ASCII characters that constitutes a format code.
This code tells the formatter the variables to transfer, the
order, and the conversion (on input, ASCII characters are
converted to binary values and on output, binary values are
converted to ASCII characters). Then the calling program
gives the formatter a string of variables to be output or
filled by input.

F-1. INPUT AND OUTPUT

In languages such as FORTRAN and ALGOL, when the
programmer uses a READ or WRITE statement the com-
piler generates all the necessary calls to the formatter.

In assembly language, however, the programmer is respon-
sible for all calls to the formatter. For each I/O operation,
the programmer must first make an initialization call (to
entry point .DIO. for decimal input/output, or .BIO. for
binary input/output). This call establishes the format to be
used (if any), the logical unit, and whether the operation is
inputor output. Then, for each data item, the program must
make a separate call which depends on the type of data.
Finally, for output only, the program must make a termi-
nation call that tells the formatter to output the last record.

The flowchart in figure F-1 shows the process of selecting

an input calling sequence and figure F-2 contains a flow-
chart showing the output calling sequence.

Variable items in the calling sequence include:

unit is the logical unit number of the desired I/O
device.
format is the label of an assembly language ASC

pseudo-instruction that defines the format
specification.
end of list is the location following the last data call to
the formatter. When an error occurs in the
format specification or the input data, the
formatter returns to this location.

real is the address of the real variable.

integer is the address of the integer variable.

is the number of elements (not the number of
memory locations) in the array. Maximum
length of an external physical record is 67
words for formatted data and 60 words for
binary data. Formatted data blocks can be of
any length if the format breaks the data in
multiple records using “/” and unlimited
groups. If binary data exceeds 60 words, the
record is read in or written out and the for-
matter skips to the next record.

length

(Note: For this reason, binary data should
be read in with the same variable
list as that used to write it out.)

address is the first location of the array.

F-2. RECORDS

Unformatted I/O through the formatter is limited to physi-
cal records of 60 words maximum. If a variable list contains
more than 60 words of data, the data is broken into more
than onerecord. (For example, 100 words of data are broken
into two records of 60 and 40 words each.)

When paper tape or unit record devices are used (tele-
printer, mark sense card reader, etc.), however, only 59
words of each record contain data. The first word issued is
for the record length.

F-3. FORMATTED INPUT/OUTPUT

Formatted input/output is distinguished from unformatted
input/output by the presence of an ASCII string format
specification. The ASCII characters consist of a series of
format specifications or codes. Each code specifies either a
conversion or an editing operation. Conversion specifica-
tions tell the formatter how to handle each variable in the
data list.

Format specifications may be nested (enclosed in parenth-
eses) to a depth of one level. Conversion specifications tell
the formatter how to convert variables into ASCII output
and how to convert ASCII input into binary variable data.
Editing specifications tell the formatter what literal
strings to output, when to begin new records, and when to
insert blanks.

F-1

The Formatter

No FORMATTED
?

A Wote: If the length in "DEC length" is
negative, bits 14:0 are treated

as the address of the length.

INITIAL CALL INITIAL CALL INITIAL CALL 4

LDA unit LDA unit LDA unit
CLB, INB cL8, IiB CLB, INB
JsB .BIO. JsB .DIO. JSB .DIO.
ocT @ OEF format ANY
DEF end of list DEF end of list MORE DATA?

1 v v

ARRAY?

o

EXTENDED REAL

DOUBLE REAL DOUBLE REAL

EXTENDED REAL

INTEGER INTEGER

DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL
LDA Length LDA Length LDA rength LDA Length JSB . I0R. JSB .I0I. JSB . X10. JSB .TI0.
LDB address LDB address LDB address LDB address DST Real STA Integer DEF Extended| | DEF Double
JSB .TAR. JSB . RAR. JSB . IAR. JSB . XAR.

or or or
JSB .TAY. JSB .RAY. or or JSB .RIO. or
DEF Address DEF Address JSB . IAY. JSB . XAY. DEF Real JsB . 110.
DEC Length DEC rength DEF Address DEF address DEF Integer
DEC Length DEC rength

v v v ¥ v v v y

7700-422
Figure F-1. Input Calling Sequence Selection

F-2

The Formatter

DOUBLE REAL

INTEGER

INITIAL CALL

LDA unit

DEF format
DEF end of list

START

FORMATTED?

INITIAL CALL

LDA unit
CLB
JSB .BIO.

ARy
MORE DATA?

EXTENDED REAL

TERMINATION CALL
JSB .DTA.

T intecer

DOUBLE REAL

h \ 4 y A

DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL DATA CALL
LDA Length LDA Length LDA Length LDA Length DLD mreal LDA Integer JSB . XI0. JSB .TIO0.
LDB aAddress LDB Address LDB address LDB address JSB .I0R. JSB .I0I. DEF pouble DEF Double
JSB .TAR. JSB .RAR. JSB .IAR. JSB .XAR.

or or or or or or

JSB .TAY. JSB .RAY. JSB . IAY. JSB . XAY. JSB .RIO. JSB .110.
DEF address DEF address DEF address DEF address DEF Real DEF Integer
DEC Length DEC Length DEC Length DEC Length

v

7700-423

Figure F-2. Output Calling Sequence Selection

F-3

The Formatter

F-4. FORMAT SPECIFICATIONS
A format has the following form:

(spec, . .. rispec,. . .)spec, . .)
where:

spec
is a format specification.

r
is an optional repeat factor which must be an integer.

F-5. CONVERSION SPECIFICATIONS

Conversion specifications are as follows:

rEw.d Real number with exponent (E specification)
rFw.d Real number without exponent (F specifica-
tion)

rlw Decimal integer (I specification)

r@w Octal integer ! 0.K, and @]

R o P T BT specifications AT w
r\w, row vlldl Liveger y -] Avvvaevauaws d

with 4k
rAw, rRw ASCII character (A and R formatter
specifications)

where:

r
is an integer repetition factor.

w
is a non-zero integer constant representing the width of
the field.

d

is an integer constant representing the digital fraction.

F-6. EDITING SPECIFICATIONS

Editing specifications are as follows:

nX Blank field

nH Character string

r’ Character string

rl Begin new record.

F4

where:

n
is a non-zero integer constant representing the width of
the field in the external character string.

r
is an integer repetition factor.

F-7. E SPECIFICATION

The E specification defines a field for a real number with
exponent.

F-8. OUTPUT. On output, the E specification con-
verts numbers (integer or real) in memory into character
form. The E field is defined in a format by the presence of
the E specification (Ew.d). The field is w positions in the
output record. The variable is printed in the field as

w
—_’—_\
—.X;. ..Xq Exee
Nt pe—

d
where:

X;. . .Xgq
are the most significant digits of the value.

ee
are the digits of the exponent

w
is the width of the field.

d
is the number of significant digits.

is present if the number is negative.

The w must be large enough to contain the significant
digits (d), the sign, the decimal point, E, and the exponent.
In general, w should be greater than or equal to d + 6.

If w is greater than the number of positions required for the
output value, the quantity is right justified in the field with
spaces to the left. If w is not large enough (e.g., less thand +
6), then the value of d is truncated to fit in the field. If this is
not possible, the entire field is filled with dollar signs ($).

Examples

FORMAT DATA ITEM RESULT
E10.3 +12.34 bb.123E +02
E10.3 -12.34 b—.123E+02
E12.4 -12.34 bbb.1234E+ 02
E12.4 -12.34 bb—.1234E+02
E7.3 +12.34 \12E+02
E5.1 +12.34 33333

F-9. INPUT. On input, the E specification tells the
formatter to interpret the next w positions in the record as a
real number with exponent. The formatter then converts
the field into a number and stores it into the variable
specified in the variable list.

The input field may consist of integer, fraction, and expo-
nent subfields:

Integer ﬁeld——j
p—— — e,

*n...nn..nExee

N
Fraction m

N Exponent field

where the format equals Ew.d.

F-10. Rules for E Field Input. Rules for E field input
are as follows:

1. Thewidth of the inputitem must not be greater than w
characters, with w > d.

2. Initial + and E are optional, for example,
123. = +123.
12.+6 = 12.E6

3. IfEispresent, the initial + of the exponent is optional,
for example,
123.4E06

4. Ifthe decimal point is left out, the formatter inserts it
by multiplying the integer field by 104, for example,

= E9.4, then
= 12.3456E+6

if format
123456E+6

5. Any combination of integer field, fraction field, and
exponent field is legal:

123.456E6
.456E6
.456
123.E6
123.
E6

F-11. F SPECIFICATION

The F specification defines a field for a fixed-point real
number (no exponent).

F-12. OUTPUT. On output, the F specification con-
verts numbers (integer or real) in a format by the presence
of the F specification (Fw.d). The field is w positions in the
output record. The variable is printed out right-justified in
fixed-point form with d digits to the right of the decimal
point:

The Formatter

Integer fieldﬁ ‘—Fraction field

e — e,
—X...X.XX. .X

where:

w
is the total width of the field.

d
is the length of the fraction field (ifd = 0, fraction field is
empty)

is present if the number is a negative value (positive
numbers can be unsigned).

If wis greater than the number of positions required for the
output value, the quantity is right-justified in the field with
spaces to the left. If w is not large enough to hold the data
item, then the value of d is reduced to fit. If this is not
possible, the entire field is filled with dollar signs ($).

Examples:

FORMAT DATA ITEM RESULT
F10.3 +12.34 bbbb12.340
F10.3 -12.34 bbb—12.340
F12.3 +12.34 bbbbbb12.340
F12.3 -12.34 bbbbb—12.340
F4.3 +12.34 12.3
F4.3 +12345.12 $$3%

F-13. INPUT. Input to an F field is identical to an E
field. All the rules under the E specification apply equally
to the F specification.

F-14. 1SPECIFICATION

The I specification defines a field for a decimal integer.

F-15. OUTPUT. On output, the I specification converts
numbers (integer or real) in memory into character form.
The I field is defined in a format by the presence of the I
specification (Iw). The field occupies w positions in the
output record. The variable is converted to an integer, if
necessary, and printed out right-justified in the field
(spaces to the left) as:

e X0 Xy
N— ———
w

F-5

The Formatter

where:

X,. . . X34
are the digits of the value (maximum = 5).

w
is the width of the field in characters.

is present if the number is negative.

If the output field is too short, the entire field is filled with
dollar signs ($).

Examples:
FORMAT DATA ITEM RESULT
15 -1234 —-1234
15 +12345 12345
I4 +12345 $$8$
16 +12345 b12345

F-16. INPUT. The I specification on input is equival-
ent to the Fw.0 specification. The input field is read in, the
number is converted to the form suitable to the variable
(integer or real), and the binary value is stored in the
variable location.

During input, if a value is

verted to +32767.

acc thoa 2070Q k3o aen
TOO Lilaii 941 001g, it 13 CUL-

Examples:
INTERNAL
FORMAT INPUT FIELD RESULT
15 -b123 ~123
15 12003 12003
I4 b102 102
11 3 3
F-17. 0O, K, AND @ SPECIFICATIONS

The O, K, and @ specification types are equivalent; they all
are used to convert octal (base eight) numbers.

F-18. OUTPUT. On output, the octal specifications (O,
K, @) convert an integer value in memory into octal digits
for output. The octal field is defined by the presence of the O
(Ow), K (Kw), or @ (@w) specification. The field is w octal
digits wide. The integer value is converted and right-
justified in the field as:

...bbd,. . d,
N ————
w

F-6

where:

d,...d,
are the octal digits (6 maximum).

. .bb
are lead spaces.

w

is the width of the field.

Ifwisless than 6, the w least significant digits are written.

F-19. INPUT. On input, the octal specification tells the
formatter to interpret the next w positions in the input
record as an octal number. The formatter converts the
digits into an octal integer and stores this value in an
integer variable.

If w is greater than or equal to six, up to six octal digits are
stored. Non-octal digits with the field are ignored.

If wis less than six or if less than six octal digits occur in the
field, the result is right-justified in the variable with zeros
to the left. If the value of the octal digits in the field is
greater than 177777, the results are unpredictable.

Examples:
INTERNAL
FORMAT INPUT FIELD RESULT

@6 123456 123456

@7 —123456 123456

2KA 23423492342 023423 and 042342

2@4 ,396E—05 000036 and 000005
F-20. A AND R SPECIFICATIONS

The A and R specifications define a field of one or two
ASCII characters. ASCII characters are stored as two 8-bit
codes per integer variable, four 8-bit codes per real varia-
ble, six per extended real, and eight per double real. The
number of characters per variable will always be referred

e 9

to as “v".

F-21. OUTPUT. On output, the A and R specifications
transfer ASCII character codes from memory to an exter-
nal medium. The field is defined by an A or R specification
(Aw or Rw). The field is w positions wide in the output
record. For w = v, A and R are equivalent: the field is
blank filled to the left of the data. For w>v, the A specifi-
cation uses the left-most characters in the variable, and
the R specification (and A if OLDIO) uses the right-most.

Examples:

VARIABLE FORMAT OUTPUT FORMAT

ABCD A4 & R4 ABCD
ABCD A6 & R6 bbABCD
ABCD A3 ABC
ABCD R2 CD

A string of n*v characters may be output from (or input to)
n variables (e.g. using an array of length n) using a repeat
factor.

Examples:

VARIABLE VARIABLES FORMAT INPUT OR

TYPE OUTPUT
4 integers AB,CD,EF,GH 4A2 ABCDEFGH
2 reals ABCD,EFGH 2A4 ABCDEFGH
1 double real ABCDEFGH A8 ABCDEFGH

F-22. INPUT. On input, the A and R specifications
transfer ASCII character codes from an external medium
to internal memory. The field is defined by an A or R
specification (Aw or Rw) and is w positions wide. If w > v,
the rightmost characters are taken from the input field.
For the A specification with w<v, data is left-justified and
blank filled in the variable. For the R specification (and A
if OLDIO) with w<v, data is right justified and zero-filled.

Examples:
INPUT FIELD FORMAT REAL
VARIABLE
MN A2 MNbb
MN R2 zzMN
MNOP A4 R4 MNOP
MNOPQRS A7 R7 PQRS

z=binary zero

F-23. X SPECIFICATION

The X specification produces spaces on output and skips
characters on input. The comma following X in the format
is optional.

F-24. OUTPUT. On output, the X specification causes
spaces to be inserted in the output record. The X field is
defined by the presence of an X specification (nX) in the
format, where n is the number of spaces to be inserted. (X
alone = 1X; 0X is not permitted.)

The Formatter

Examples:

FORMAT
E8.3,5X,F6.2,5X,14

DATA VALUES
+123.4, —12.34, —123

OUTPUT FIELD
.123E + 03bbbbb— 12.34bbbbb— 123

F-25. INPUT. On input, the X specification causes
characters to be skipped in the input record. The X field is
defined by the presence of an X specification (nX) in the
format, where n is the number of characters to be skipped.

Examples:

FORMAT
8X,12,10X,F4.2,10X,F5.2

INPUT FIELD
WEIGHTbb10bb$1.98bbTOTALbb$19.80

INTERNAL VALUE
10, 1.98, 19.80

F-26. H AND *” SPECIFICATIONS
(LITERAL STRINGS)

The H and “ ” specifications provide for the transfer, with-
out conversion, of a series of ASCII characters (except that
quotation marks () cannot be transferred using “ 7). A
comma after this specification is optional.

F-27. OUTPUT. On output, the ASCII characters in
the format specification (there is no associated variable
since this is only an editing specification) are output as
headings, comments, titles, etc. The specifications are of
the form:

»

nHgc,c,. . .c, or “cic,. . .c,

where:

n
is the number of characters to be transmitted.

CiC. . Cp
are the characters themselves.

H
is the specification type.

€t 9

is the specification type.

(H alone = 1H; OH is not permitted.)
F-7

The Formatter

Examples:

FORMAT

20H THIS IS AN EXAMPLE
“THIS ALSO IS AN EXAMPLE”
3“ABC”

RESULT

bTHIS IS AN EXAMPLE
THIS ALSO IS AN EXAMPLE
ABCABCABC

F-28. INPUT. If H is used on input, the number of
characters needed to fill the specification is transmitted
from the input record to the format. A subsequent output
statement will transfer the new heading to the output re-
cord. In this way, headings can be altered at run time.

If “ ” is used on input, the number of characters within the
quotation marks is skipped on the input field.

Examples:

FORMAT
31Hbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

INPUT
H INPUT ALLOWS VARIABLE HEADERS

RESULT
31HH INPUT ALLOWS VARIABLE HEADERS

F-29. /SPECIFICATION

The/ specification terminates the current record. The / may
appear anywhere in the format and need not be set off by
commas. Several records may be skipped by preceding the
slash with arepetition factor (r-1 records are skipped for r/).

On output, a new record means a new line (list device), a
carriage return-linefeed (punch device), or an end-of-record
(magnetic tape). Formatted I/O records can be up to 67
words (134 characters) long.

On input, a new record is a new card (card reader), is
terminated by a carriage return-linefeed (teleprinter), or is
terminated by an end-of-record (magnetic tape).

Note: When the formatter reaches the end of a
format and still has values to output, it

starts a new record.

F-8

Examples:

FORMAT
22x,6HBUDGET///6HWEIGHT ,6X,5HPRICE ,9X,5HTOTAL,8X

RESULT

(line 1) bbbbbbbbbbbbbbbbbbbbbb BUDGET

(line 2)

(line 3)

(line 4) WEIGHTbbbbbbPRICEbbbbbbbbbTOTA Lbbbbbbbb

F-30. HOW TO PUT FORMATS
TOGETHER

Formats can be specified together as follows:

1. When two specifications follow each other they are
concatenated.

Format: E9.4]16

E field | field

9 characters 6 characters

2. To leave space between numbers use X.

Format: E9.4,3X,16

E field X | field

9 characters 3 characters | 6 characters]

To start a new line, use /
Format: E9.4/16

E field

9 characters

| field

6 characters

4. Specifications can be gathered together into groups
and surrounded by parentheses.

Example: (E9.3,2X,16)
]
These groups can be nested one level deep.
For example,

(E9.3,3(2X,16))

e D b <[

(E9.3,3(2X,16)2X2(18))

[X[e Ix[e e x|

5. Usetherepetition factor to repeat single specifications
(except nH) or groups of specifications. This is done by
preceding the specification or parenthetical groups
with a repeat count, r. The conversion is repeated up to
r times, unless the list of variables is exhausted first.

3(E9.3,2X,16,2X)/

[e I Ix[e [x[r [x[e |x]r [x |
Le Ix[t x|e [x]v Dde xr |x]

6. Use the principle of unlimited groups — when the
formatter has exhausted the specifications of a format
and still has list items left, it inputs a new record for a
READ or outputs the present record for a WRITE and
returns to the last, outer-most unlimited group within
the format. An unlimited group is a set of specifications
enclosed in parentheses. If the format has no unlimited
groups, the formatter returns to the beginning of the
format.

Example: Format = (I5,%(3X,F8.4,8(I2))j

Format = (I5,2(3X,F8.4,8(I2I2)),4X,3(16))]

Format = (I5,3X,4F8.4,3X)
A]

7. Keep in mind the accuracy limitations of your data.
Although the formatter will print out or read in as
many digits as specified, only certain digits are sig-
nificant:

Integer variables can be between —32,768,, and
+32,7674,.

Floating-point numbers can guarantee 6 digits of accu-
racy (plus exponent).

8. On input, blanks are not evaluated as part of the data
item.

F-31. FREE-FIELD INPUT

When free-field input is used, a format specification is not
used. Special symbols are included within the input data to
direct the conversion process.

For example,

Space or comma data item delimiters.

/ record terminator.

+ - sign of item.
.E+-D floating-point number.
@ octal integer.

“.7 comments.

The Formatter

All other ASCII non-numeric characters are treated as
spaces (and delimiters). Free-field input may be used for
numeric data only.

F-32. DATA ITEM DELIMITERS

Any contiguous string of numeric and special formatting
characters occurring between two commas, a comma and a
space, or two spaces, is a data item whose value corresponds
to a list element. A string of consecutive spaces is equival-
ent to one space. Two consecutive commas indicate that no
data item is supplied for the corresponding list element; the
current value of the list element is unchanged. An initial
comma causes the first list element to be skipped.

Examples:
1. Input data: 1720, 1966, 1980, 1392

Result in Memory: 1720
1966
1980
1392

2. Input Data: 1266, , 1794, 2000

Result in Memory: 1266
1966
1794
2088

F-33. FLOATING-POINT INPUT

The symbols used to indicate a floating-point data item are
the same as those used in representing floating-point data
for format specification directed input, as follows:

Integer ﬁeld\Fraction ﬁ& Exponent ﬁeld:]

+n...n.n...n*=Eee
Decimm

If the decimal point is not present, it is assumed to follow
the last digit. For example, 3.14, 314E-2, 3140E-3,
.0314+ 2 and .314E1 are all equivalent to 3.14.

F-34. OCTAL INPUT

An octal input item has the following format:

@zx,. . .Xq

The symbol @ defines an octal integer. The x’s are octal
digits each in the range of 0 through 7. List elements
corresponding to the octal data items must be type integer.

F-9

The Formatter

F-35. RECORD TERMINATOR

A slash within a record causes thenextrecordtobereadasa
continuation of the data list. The remainder of the current
record is skipped as comments.

Example:

INPUT DATA
987, 654, 321, 123/DESCENDING
456

RESULT IN MEMORY
987 654 321 123 456

F-36. COMMENTS WITHIN INPUT

All characters appearing between a pair of quotation
marks in the same line are considered to be comments and
are ignored.

For example,

“6.7321” is a comment and is ignored.

6.7321 is a real number and is stored as such.

F-37. EXAMPLE CALLING
SEQUENCES

Example 1: Unformatted output Example
PURPOSE

1000 2-word elements in the array ARRAY are punched
on the standard punch unit. The output will consist of 60
word records (59 data words and 1 control word) until the
entire array is punched.

LDA PUNCH Output unit number

CLB Output flag

JSB .BIO. Binary initialization entry
point

LDA =D1000 Number of elements in array

LDB ADRES Location of array

JSB .RAR. Real (2-word) array entrance

JSB .DTA. Output termination

—

PUNCH DEC 4
ADRES DEF ARRAY
ARRAY BSS 2000

Unit number
Location of ARRAY
Defines 1000 2-word elements.

Example 2: Internal Conversion and Free-Field Input

F-10

PURPOSE

The ASCII data starting at BUFFR is converted in free
field form to binary. R will contain the binary represen-
tation of .0001234 and I will contain the binary rep-
resentation of 28.

CLA Internal conversion
flag

CLB,INB ASCII to binary flag

JSB .DIO. Initialization

DEF BUFFR Location of ASCII data

ABS 0 Specifies ASCII data is
in free-field form

DEF ENDLS End of list
JSB IOR Declare real variable
DST R Store binary item in R
JSB IO0L Declare integer vari-
able
STA I Store in I
ENDLS —
R BSS 2 Real variable
I BSS 1 Integer variable
BUFFR ASC 6,123.4E-6,28 ASCII data to be con-
verted to binary.
F-38. INTERNAL CONVERSION

The formatter provides the programmer with the option of
using the conversion parts of the formatter only, without
any input or output. This process is called “internal conver-
sion.”

On input, ASCII data is read from a buffer and converted
according to a format (or free-field) into a variable list (this
is known as decoding). On output, binary data is converted
to ASCII according to a format and stored in a buffer (this is
known as encoding).

Internal conversion ignores “/” specifications or unlimited
groups. The concept of records does not apply during inter-
nal conversion.

OUTPUT CALLING SEQUENCE (BINARY TO ASCII
CONVERSION): ENCODING

CLA

CLB

JSB .DIO.

DEF buffer (destination)
DEF format

DEF end of list

Calls to define each variable (same as regular calls)
Te.rmination Call

(Same as regular calls)

where buffer is a storage area for the ASCII output.

INPUT CALLING SEQUENCE (ASCII TO BINARY
CONVERSION): DECODING

Formatter Free Field

CLA CLA

CLB, INB CLB, INB

JSB .DIO. JSB .DIO.
DEF buffer DEF buffer
DEF format ABS 0

DEF end of list DEF end of list

Calls to define each variable (Same as regular calls)

where buffer is a storage area containing ASCII characters
which will be converted by the formatter into binary val-
ues.

The Formatter

F-39. BUFFERED 1/O WITH THE
FORMATTER

Normally, when a program uses the formatter, it can exe-
cute only one I/O operation at a time. The internal conver-
sion feature of the formatter, however, can be used with
direct calls to .IOC. to provide both buffered and formatter
I/0.

The flowchart in figure F-3 shows how a program can read
in data from two units (U1 and U2) into two buffers (B1 and
B2) at the same time by calling .IOC. When unit Ul is
complete, buffer B1 is converted into list L1 by the format-
ter (while input continues on unit U2).

F-11

The Formatter

‘ START ’

y

10C. - Begin read
from U1 into B1

(wv-w)

Yes
N
——OQOC. - U1 complete?)
Yes

Y

.10C. - Begin read
from U2 into B2

v

10OC. - Begin read
from U2 into B2

4

No
—————(JOC. - U1 complete)

Yes

FRMTR - Convert B1

into L1
A4
No
—(10C. - U2 complete?
Yes
A\ d

FRMTR - Convert B2
into L2

F-12

Figure F-3. Buffered 'O With the Formatter

ASSEMBLER ERROR MESSAGES

APPENDIX

Errors detected in the source program are indicated by a 1- or 2-letter mnemonic followed by the sequence
number and the first 62 characters of the statement in error. The messages are printed on the list output
device during the passes indicated. A message specifying the number of errors detected is printed on the
system console device at the end of each pass.

Error listings produced during Pass 1 are preceded by a number which identifies the source input file where
the error was found. Pass 2 error messages are preceded by a reference to the previous page of the listing
where an error message was written. The first error will refer to page “0”. The error count at the end of Pass
2 is preceded by the page number in the listing where the final error was encountered.

Error
Code

CS

DD

EN

EN UNDEF <symbol>

Pass

Description

Control statement error:
a) The control statement contained a parameter other than the legal set.
b) Both A and R were specified.

¢) There was no output parameter (B, T, or L) and the Job Binary parameter
was not specified.

Doubly defined symbol: A name defined in the symbol table appears more than
once as:

a) A label of a machine instruction.

b) A label of one of the pseudo operations:

BSS DBL
BYT DBR
ASC EQU
DEC ABS
DEF OCT
DEX Arithmetic subroutine call

¢) A name in the Operand field of a COM or EXT statement.
d) A label in an instruction following a REP pseudo operation.
e) Any combination of the above.

An arithmetic subroutine call symbol appears in a program both as a pseudo
instruction and as a label.

The symbol specified in an ENT statement has already been defined in an EXT
statement.

The entry point specified in an ENT statement does not appear in the label
field of a machine or BSS instruction. The entry point has been defined in the
Operand field of an EXT statement (or has been equated to an absolute value
of zero — this is not an error, but is noted).

G-1

Assembler Error Messages

Error
Code Pass Description

IF 1 An IFZ or an IFN follows either an IFZ or an IFN without an intervening XIF.
The second pseudo instruction is ignored.

IL 1 Illegal instruction:

a) Instruction mnemonic cannot be used with type of assembly requested in
control statement. The following are illegal in an absolute assembly:

NAM EXT
ENT COM
Arithmetic subroutine calls

b) The ASMB statement has an R parameter, and NAM has been detected
after the first valid Opcode.

lor2 Illegal character: A numeric term used in the Operand field contains an illegal
character (e.g. an octal constant contains other than +, —, or 0-7). This code may
also appear following an M error for missing operands.

LB 1 Missing label in an EQU or RPL pseudo instruction.

M 1lor2 Illegal operand:
a) Operand is missing for an Opcode requiring one.
b) Operands are optional and omitted but comments are included for:

END
HLT

¢) Operand is an external symbol or an indirect address for:

DBL
DBR

d) An absolute expression in one of the following instructions from a relocata-
ble program is greater than 1777.

Instructions referencing memory locations

DEF, DBL, and DBR
Arithmetic subroutine calls

e) A negative operand is used with an Opcode other than ABS, DEX, DEC,
OCT, and BYT.

f) A character other than I follows a comma with operands which can be
indirect.

g) Operand is an indirect address when used with JPY.
h) Using a literal as the second operand in the following instructions:

TBS
SBS
CBS

i) A character other than C follows a comma in certain I/O instructions.

j) A relocatable expression in the Operand field of one of the following:

ABS ASR RRL
REP ASL LSR
SPC RRR LSL
k) An illegal operator appears in an Operand field (e.g. + or — as the last
character).

1) An ORG statement appearing in‘a relocatable program includes an expres-
sion that is common relocatable or absolute.

m) A relocatable expression contains a mixture of program and common re-
locatable terms.

n) An external symbol appears in an operand expression or is specified as
indirect.

G-2

Error
Code

NO

OP

ov

SO

SY

UN

Pass

lor?2

lor?2

lor2

lor2

lor2

Assembler Error Messages

Description

o) The literal, literal code, or type of literal is illegal for the operation code
used (e.g., STA = B7).

p) An integer expression in one of the following instructions does not meet the
condition 1 = n = 16. The integer is evaluated modulo 24,

ASR RRR LSR
ASL RRL LSL

q) The value of an ‘L’ type literal is relocatable.

r) The number of words, n, specified for an ASCII string definition, ASC n,
exceeds 28 decimal words.

No origin definition: The first statement in the assembly containing a valid
opcode following the ASMB control statement (and remarks and/or HED, if
present) is neither an ORG nor a NAM statement. If absolute, the program is
assembled starting at 2000; if relocatable, the program is assembled starting at
zero. :

Illegal Opcode preceding first valid Opcode. The statement being processed does
not contain an asterisk in position one. The statement is assumed to contain an
illegal Opcode; it is treated as a remarks statement.

Illegal Opcode: A mnemonic appears in the Opcode field which is not valid. A
word is generated in the object program.

Numeric operand overflow: The numeric value of a term or expression has
overflowed its limit:

1 = N = 16 Shift-Rotate Set

221 Input/Output, Overflow, Halt

2101 Memory Reference (in absolute assembly)

215 Data generated by DEC or DEX

2151 DEF and ABS operands and expressions concerned with prog-
ram location counter.

216—1 OCT

There are more symbols defined in the program than the symbol table can
handle.

Illegal Symbol: A Label field contains an illegal character or is greater than 5
characters. A label with illegal characters may result in an erroneous assembly
if not corrected. A long label is truncated on the right to 5 characters.

Illegal Symbol: A symbolic term in the Operand field is greater than five
characters; the symbol is truncated on the right to 5 characters.

Too many control statements: The source file contains more than one control
statement. The Assembler assumes that the second control statement 1s a label,
since it begins in column 1. Thus, the commas are considered as illegal charac-
ters and the “label” is too long. The binary object program is not affected by this
error. The first control statement processed is the one used by the Assembler.

Undefined Symbol:

a) A symbolic term in an Operand field is not defined in the Label field of an
instruction or is not defined in the Operand field of a COM or EXT state-
ment.

b) A symbol appearing in the Operand field of one of the following pseudo
operations was not defined previously in the source program:

BSS ASC EQU ORG END

G-3/G-4

APPENDIX

TAPE FORMATS

NAM RECORD

CONTENT EXPLANATION

15 8,7 0,15 13,12 0,15 0 RECORD LENGTH = 9-60 WORDS

I V,
/ /// IDENT = 001
RECORD
CHECKSUM CHECKSUM: ARITHMETIC .
1 / TOTAL OF ALL WORDS
IN RECORD EXCLUDING

LENGTH /
7
WORDS 1 AND 3.

S4zmo-

WORD 0 WORD 1 WORD 2
15 8,7 0,15 8,7 0,15 8,7 0 SYMBL: FIVE CHARACTER
NAME OF PROGRAM
S Y M B i
WORD 3 WORD 4 WORD 5
15,14 0,15 0,15 0 A/C: BINARY TAPE PRECESSION
=0 IF ASSEMBLER
A LENGTH OF LENGTH OF LENGTH OF PRODUCED OR LENGTH
g MAIN PROGRAM BASE PAGE COMMON IS EXACT
[} SEGMENT SEGMENT SEGMENT =1 IF COMPILER
(OR ZERO) (OR ZERO) (OR ZERO) PRODUCED OR LENGTH
1S UNKNOWN
WORD 6 WORD 7 WORD 8
15 0,15 0,15 0,15 0
PROGRAM PRIORITY RESOLUTION EXECUTION
TYPE CODE MULTIPLE
WORD 9 WORD 10 WORD 11 WORD 12
15 0,15 0,15 0,15 0
HOURS MINUTES SECONDS TENS OF
MILLISECONDS
WORD 13 WORD 14 WORD 15 WORD 16
15 8,7 0 15 8,7 0
COMMENT COMMENT COCMHNLERNT Cog'HNLiNT
CHAR 1 CHAR 2
2n-1 2n
WORD 17 WORD n
(n < 60)
w HATCH-MARKED AREAS SHOULD BE ZERO-FILLED CROSS-HATCH-MARKED AREAS SHOULD BE SPACE
/l WHEN THE RECORDS ARE GENERATED FILLED WHEN THE RECORDS ARE GENERATED

H-1

Tape Formats

ENT RECORD
CONTENT
15 8,7 0,15 13,12 43 015
7 | 7 £
: !
RECORD N R CHECKSUM
LENGTH N A
E
// 016 /A s
WORD 1 WORD 2 WORD 3
15 8,7 0,15 8.7 0.15 8,7 32 0
7
S % M B L /
7
WORD 4 WORD & WORD 6
15 0,15 8.7 0,15 8,7 0
UNRELOCATED
ADDRESS
FOR SYMBL OR s Y M B
REPLACEMENT INSTRUCTION
VALUE
WORD 7 WORD 8 WORD 9
15 8 320 15 0.15 0
UNRELOCATED
ADDRESS

FOR SYMBL OR

VALUE

REPLACEMENT INSTRUCTION

WORD 10

H-2

WORD 59

EXPLANATION

RECORD LENGTH = 7-59 WORDS
IDENT =010

ENTRIES: 1 TO 14 ENTRIES
PER RECORD; EACH ENTRY
IS FOUR WORDS LONG.

SYMBL: 56 CHARACTER ENTRY
POINT SYMBOL

R: RELOCATION INDICATOR
=0 INPROGRAM RELOCATABLE
=1 1F BASE PAGE RELOCATABLE
=21F COMMON RELOCATABLE
=3 IF ABSOLUTE
= 4 INSTRUCTION REPLACEMENT

spees

REPEATED FOR EACH
ENTRY POINT SYMBOL.

EXT RECORD
15 8,7
T -
;;// D N
RECORD E T
CHECK
LENGTH N R sum
AT E
/] 10 S
WORD 1 WORD 3
15 8,7 8.7
SYMBOL
S 1.D. NO.
WORD 4 WORD 6
15 8.7 8,7
s SYMBOL
1.D. NO.
WORD 7 WORD 60

N\

Tape Formats

EXPLANATION
RECORD LENGTH = 6-60 WORDS
IDENT = 100

ENTRIES: 1 TO 19 PER
RECORD; EACH ENTRY
IS THREE WORDS LONG

SYMBL: 5 CHARACTER
EXTERNAL SYMBOL

SYMBOL ID. NO.: NUMBER
ASSIGNED TO SYMBL FOR
USE IN LOCATING
REFERENCE IN BODY
OF PROGRAM.

WOCRDS 4 THROUGH 6 REPEATED
FOR EACH EXTERNAL
SYMBOL (MAXIMUM OF
19 PER RECORD).

H-3

Tape Formats

DBL RECORD
CONTENT
15 8,7 0,15, 13,12 8,7 6,5 0,15 0
s 7
N/
RD E Z | InsT. CHECKSUM
LENGTH N C
= / WORDS
A //
WORD 1 WORD 2 WORD 3
15 0,15 13,12 109 76 43 1,015 0
g
UNRELOCATED ; ABSOLUTE
LOAD Fi| Rz| sl Ra) Relp VALUE
ADDRESS %
1
WORD 4 WORD 5 INSTRUCTION WORD
R = 000
15,14 0,15,14 0,15,14 0
15-BIT PROGRAM 15-BIT BASE PAGE 15-BIT COMMON
RELOCATABLE RELOCATABLE RELOCATABLE
VALUE VALUE VALUE
L D/I L D/t LD/I
INSTRUCTION WORD INSTRUCTION WORD INSTRUCTION WORD
R =001 R =010 R=0m1
15,14 11,10 8,7 0,15,14 11,109 2,1,0, 15 0
VU ! EXTERNAL
N N V) R
N ¢ / EXTERNAL Sc U] svweoL |, UNRELOCATED
TO SYMBOL TOV b.noO R VALUE
R D R D V] L N —OR—
U E 1.D. NO. UE[1 —oRr-
c c A OFFSET
T /A T ZERO
Ao ond
INSTRUCTION WORD INSTRUCTION WORD
R=100 R =101
15 12 11 21015 0
I i
| | ™ RELOCATABLE
TYPE | | R BYTE
; | ADDRESS
]]
INSTRUCTION WORD R =110

H-4

R's:

EXPLANATION

RECORD LENGTH = 660 WORDS
IDENT =011

Z/C: RELOCATION OF LOAD
ADDRESS
=0 FOR BASE PAGE
=1 FOR PROGRAM
=2 FOR ABSOLUTE
=3 FOR COMMON
NO. OF INST. WORDS: 1 TO 45
LOADABLE INSTRUCTION
WORDS PER RECORD

RELOCATABLE LOAD ADDRESS:

STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW;

RELOCATION INDICATORS:

000 = ABSOLUTE

001 = 15-BIT PROGRAM
RELOCATABLE

010 = 15-BIT BASE PAGE
RELOCATABLE

011 = 15-BIT COMMON
RELOCATABLE

100 = EXTERNAL REFERENCE

101 = MEMORY REFERENCE

110 = BYTE ADDRESS

1RO 1n]

R 'S RELOCATION INDICATOR

FOR INSTRUCTION WORD; Ry,
FOR INSTRUCTION WORDo; ETC.

D/1: INDIRECT ADDRESSING

0 =DIRECT
1 = INDIRECT

MEMORY REFERENCE INSTRUC-
TIONS USE TWO WORDS, WITHIN
THE TWO-WORD GROUP ““MR"
INDICATES RELOCATABILITY OF
OPERAND SPECIFIED IN SECOND
WORDS:

00 = PROGRAM RELOCATABLE
01 = BASE PAGE RELOCATABLE
10 = COMMON RELOCATABLE
11 = ABSOLUTE

END RECORD
CONTENT
15 8,7 0,15 13,12 3,2,1,0,15
’/ /, v f
% N7
rEeers : di
N
7 /A /A

WORD 1 WORD 2

-
(&
N
»H
o

%
/] RELOCATABLE
4 TRANSFER
% ADDRESS
7

WORD 4

Tape Formats

EXPLANATION

RECORD LENGTH =4 WORDS
IDENT =101

R: RELOCATION INDICATOR

FOR TRANSFER ADDRESS

IF PROGRAM RELOCATABLE
IF BASE PAGE RELOCATABLE
IF COMMON RELOCATABLE
IF ABSOLUTE

I n uwonu

wWN =0

TRANSFER ADDRESS
INDICATOR

=0 IF NO TRANSFER
ADDRESS IN RECORD

=1IF TRANSFER ADDRESS
PRESENT

H-5

Tape Formats

ABSOLUTE TAPE FORMAT

CONTENT
15 87 01514 015
4
7%
RECORD) A"fgkg“ INSTRUCTION
LENGTH , et WORD,
//
WORD 1 WORD 2 WORD 3
15 015 015
INSTRUCTION
WO, CHECKSUM
WORD n-1 WORD n

On paper tape, each word represents two frames arranged as follows:

Bit 8 — -— Bito0
<+ Feed Holes

Bit 15 — - Bit7
H-6

EXPLANATION

RECORD LENGTH = NUMBER OF
WORDS IN RECORD EXCLUDING
WORDS 1 AND 2 AND THE
LAST WORD.

ABSOLUTE LOAD ADDRESS:
STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW

INSTRUCTION WORDS:
ABSOLUTE INSTRUCTIONS
OR DATA

CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
EXCEPT FIRST AND LAST

RTE CROSS REFERENCE TABLE GENERATOR

-APPENDIX-

This Real-Time Executive Operating System Cross Refer-
ence Table Generator routine (XREF) processes an assem-
bler source program and provides a list of all symbols and
symbol references used within the program.

I-1. COMPUTER CONFIGURATION

The routine requires a Real-Time Executive Operating
System with logical unit 1 as the system console and a
standard list device.

2. FUNCTIONAL AND OPERATIONAL
CHARACTERISTICS

Source program input may come from:
a. An input unit specified by a logical unit number,

b. ‘EDITR-CREATED FILE (Logical Source Pointer
must be set) or,

¢. The temporary work area of the disc which was set up
by the Assembler in a previous assembly.

1-3. OUTPUT FORMAT

The general format of the output list is:

SSSSS DDDDD/TT RRRRR /TT ... RRRRR /TT
RRRRR ;TT ... RRRRR /1T
where:
SSSSS

is the symbol which may be any legal label to the as-
sembler.

DDDDD

is the statement number in decimal in which the label
was defined. It has a maximum value of 32767, when
using the no tape number option, and a maximum
value of 2047 when using tape numbers.

TT
is the decimal tape or file number (following a zero
length record) with a maximum value of 16.

RRRRR

is the statement number in decimal in which the label
was referenced. It has the same physical limits as the
defining statement numbers.

Note: The defined format and meaning of
SSSSS, DDDDD, and TT are used in the
following paragraphs.

I-4. PSEUDO PROCESSING

ORG, ORB, ORR, IFN, IFZ, XIF, MIC, and MIC-defined
OPCOQODES are listed as:

**ORB ” g g
*ORR " ” ”
*IFN ” ” ”
k¥ XIF i ”» 2
*MIC ” ,
*»XYZ ” ”

(where XYZ’ is a ‘MIC’-defined opcode.)

The defining statement number is replaced by a string of
asterisks.

I-5. DOUBLE DEFINED PROCESSING

If a symbol has been defined more than once, it is listed in
the symbol list in the following format:

SSSSS ######## RRRRR/TT....RRRRR/TT
where:
SSSSS

is the symbol.

I-6. UNDEFINED LABEL PROCESSING

A symbol is referenced but not defined. The entry in the
symbol list has the following format:

29999992

SSSS8S RRRRR/TT, RRRRR/TT

The defining statement number is replaced by question
marks.

I-1

RTE Cross Reference Table Generator

I-7. UNUSED LABEL PROCESSING

If a symbol is defined but not referenced by a statement,
the entry in the symbol list has the following format:

@SSSSS DDDDD/TT

The symbol is preceded by a “@”.
I-8. LITERAL PROCESSING

If a literal of the type =L is referenced by a statement, the
characters following the =L are handled as a normal sym-
bol.

If a literal of the type =A, =B, =D, or =F is referenced by
a statement, the symbol list has the following format:

RRRRR/TT, RRRRR/TT

where:

LLLLL
is an exact copy of the literal. DDDDD, the defining
statement number, is replaced by dots.

If the literal is seven or more characters long: LLLLL is
a maximum length of seven characters, the defining
statement number does not have the first dot, and only
the first seven characters are used. For example,
=B12345 and =B123456 would be considered as the

wn latamal -1 AR - Loavrn 4o Ln +
same litergl =B12345 and would have the format.

=B12345 RRRRR/TT

I-9. OPERATION DIRECTIVE
*ON,XREF A [,B,C,D,E]

where:

A
is input area or device.

A = 2 input from SOURCE file of disc defined by LS
directive *LS,LU,START TRACK
= N input from logical unit device N

—LU/ST Assembler supplied code for RTE
Assembler-scheduled processing (‘C’
control statement option).

B
is character limits specification

B=0to spécify no limits

= Nto request the entering of limits from the tele-
printer and to allow multiple passes of the cross
reference routine.

1.2

C
is tape number or no tape number specification corres-
ponding to the mode used in the Assembly.

C = 0 to specify use of tape numbers and a tape length
less than 2048 statements

Note: A blank card inserted into a card deck
before statement 2048 indicates an end-
of-tape.

N to specify no tape numbers are to be used (sequ-
ence numbers can be as large as 32767).

—N XREF will number pages consecutively from
the last RTE-ASMB page number (-N =
—page no.)

D

is the number of lines per page

D = 0 to print 57 lines per page
= Nto print N lines per page

E
is the list device LU #

E = 0 default to LU #6
E = Noutput to LU #N

Note: The cross reference routine can also be
requested to run immediately after an
asscmbly. XREF can be specified via a
“C” parameter in the ASMB control
statement. When the XREF routine is
scheduled via the “C” parameter, the fol-
lowing options are assumed: B = 0, C =
0,D = 57, E = Assembler list parameter.

I-10. BOUNDS

If the second parameter of the ON, XREF directive is
non-zero, this message is printed,

/XREF: ENTER LIMITS <LH> OR </E>?

enter the XREF bound limits from the system teleprinter
using this format:

w) @) o ® @R @)

where:

L

is lower bound character. (Lowest is a blank, space bar
on teleprinter)

H
is upper bound character. (Highest is a left arrow<)

/E
indicates XREF limit termination and exit to system.

RTE Cross Reference Table Generator

Table I-1 contains a list of messages (and their meanings)
the user may receive using the ON,XREF directive. Enter
the following format to receive these messages:

/XREF: <message>

Table I-1. XREF Messages
MESSAGE MEANING

END OF FILE End of a user specified source file is reached before an END instruction is found. The
XREF routine terminates.

TABLE OVERFLOW XREF routine does not have enough core space for the table entries. The XREF
routine can be made to run with the option for specifying lower and upper bounds
and use of multiple passes.

SEND <®RRRX> Termination Message. Absolute assembly sources appear as shown. Relocatable
sources contain NAM symbols: <NAME>.

ENTER LIMITS OR /E A request is made to enter XREF bound limits from the system teieprinter.

SOURCE LS? The Logical Source is not defined, or for RTE: A = 0. The XREF routine terminates.
>16 TAPES!! More than 16 tapes or zero-length records have been encountered. XREF termi-
nates.

i-11. SAMPLE CROSS-REFERENCE
GENERATION

The following pages show a sample Assembler program
using cross-reference generation.

PAGE 20901
201 ASMB,R,B,L,T,Z,C
¥ po2

DO @219 THREE 0OcT 3
START R gdpRon

AGAIN R pggBn2

LOOP R yop285

NEXT R @opot}

NOUSE R @ouRi12

ADD R pogetd

ADDR R pQgdie6

TIMES R 0@@g017

THREE B pogp0ng

TWO B 94Q001

INIT R 90¢02¢

COUNT R ¢Q@226

ONE R gpagaz7

DNUM B @@2gR02

NUM R 4200314

HERE R 0@2043

++0001 ERRORS PASS#1 #+RTE ASMB 750420+
I-3

RTE Cross Reference Table Generator

PAGE 0002 %21

geny

2802 0ovoe
2283 00pee
0004 Q0¢al
005 Qo2
2006 00003
207 ©Q@pA4
P208 Paped
009 @2vade6
P29 0©00az7
011 @02wv10
9212 00ely
P213 0Doui2
pa14

0015

pele

Boyz

@018 00g13
poB3o

P22¢ Q014
@201 00915
pog2 00eit
P23 02u1l
20084 QQpi6
2085 0Ogl6

anaﬁ AArs @Y
Tow wwirs

02@7 00gae
0008 00eadw
J009 0Q0e0}
9012 Q2ev2e
P11 0@oe2e
P212 pog21
2013 0Qou22

PG 0ca
UN 2014
9014 00523
00315 00B24
9016 B0OY25
B217 ©0@26
gz18 pep27
2019 00@3e
@c2a ©oga2
9221 00002
ge22 @0g31
P23 @0p34
@224 00p43
0043
20@44
po25

PG 202

ASMB,R,8B,L,T,Z,C
NAM EXAMP DO=NOTHING USEFUL
0e00d@ START NOP
216022R JSB INIT
@62217R AGAIN LDA TIMES
072026R STA COUNTY SET COUNTER FOR LOOP
P62043R LDA =D123 INITIALIZE FIRST VALUE
172016R LLOOP STA ADDR,I SAVE VALUE
P42044R ADA aB123456 CALCULATE NEXT VALUE
R36016R I18Z ADOR
236026R I8Z COUNT BUMP COUNT
B2600Q5R NEXT JMP LOOP REPEAT UNTIL DONE
P62017R NOUSE LDA TIMES
IFN
ADD ADA ONE ONE IF BY 'N!
XIF
1FZ
24ppaiB ADD ADA TwQ TWO IF BY Z2¢
XIF
@72017R STA TIMES
P26002R JMP AGAIN SECOND TAPE
ORG NEXTY
P2600Q2R JMP AGAIN
ORR
220022 ADDR NOP
2goe2a TIMES NOP
ORB
PeRed3 THREE DEC 3
2200202 THWO DEC 2
ORR
gepPo@ INIT NOP
0600028 LDA DNUM
B72016R STA ADDR
LDA NEG1O
062000 LDA NEG1O
B72017R STA TIMES
126029R JMP INIT,1
PeE@e@ COUNT NOP
peeeRy ONE QcT ¢
Peoee3 THREE OCT 3
ORB
PeB03LR DNUM DEF NUM
ORR
eooRg NUM BSS 10
HERE EQU »
2p0o173
123456
END STARTY

*+2P02 ERRORS *TOTAL *+RTE ASMB 75042Q#«

I-4

PAGE Q@03

**IFN sakaunssd
2xIF7 AkdakkiR
AxQRB kaddudid
Ax0RC akaktid
$a0RR Mkt
a2 XIF sadddkred

2812345 490000

spiad
ADD
ADDR
AGAIN
COUNT
DNUM
#HERE
INIT
LOOP
NEGLO
NEXT
eNOUSE
NUM
ONE
START
THREE
TIMES

TWO

98080 e

HEHGRARR
e@aes/02
apees/et
geei7/e2
ev221/02
ppR24/92
geet1/02
geeessol
222222732
ggat12/014
oen13/01
PuR23/02
gé2i8/02
eu203/01
Hunguuna
QpY0PB6/02

QQ0a9sn2

EXAMP

RTE Cross Reference Table Generator

CROSS=REFERENCE SYMBOL TABLE

eo@14/01
erpt7/e1
vapazse2
p2p02/02
¥epR4/02
820816/,01
@oo09 /01
a2pe7 /021
@2e15/21
eep28,al
gogelsee
2ap06,a!

eegi2/02

00p24/01
veglasol
eool4s02
¥epB2sa2

vea21/02
aP@15/021
¥0e25/s@2
pepessa2
92p05/01

v2p18/21

geaze/e2

geaig/el
28019/21

opp18/al
goeia/el
20003/02

gaai1/ad

gente6/02

gaesg/sn2

gea1dsa}

0epB22/02

2013/02

peo2a/81 0BA15/02

DO=NOTHING USEFUL

15/1-6

INDEX

ABS, 4-12, B-9, C-1
Absolute Expressions, 2-4
ADA, 3-1, B-2, C-1
ADB, 3-1, B-2, C-1
Add Instructions, 3-1
Address Definition Pseudo Instruction, 4-11
Address Expressions, 2-4
Addressing
Indirect, 2-6
Memory, 1-1
Symbolic, 1-1
ADX, 3-7, B-5, C-1
ADY, 3-7, B-5, C-1
ALF, 34, B-3, C-1
Alphabetic List of Instructions, C-1
ALR, 3-4, B-3, C-1
ALS, 3-4, B-3, C-1
Alter-Skip Instructions, 3-4
AND, 3-2, B-2, C-1
Arithmetic Subroutine Calls, 4-20
ARS, 3-4, B-3, C-1
ASC, 4-14, B-10, C-1
ASL, 3-10, B-6, C-1
ASMB Statement, 1-3
ASR, 3-9, B-6, C-1
Assembler Control Pseudo Instructions, 4-1
Assembler Error Messages, G-1
Assembly Listing Control Pseudo Instructions, 4-19
Assembly Options, 1-3
Asterisk, 2-2, 2-3, 2-4

BCD-ASCII Conversion, A-4
Binary Output, 1-3

Bit Processing Instructions, 3-3
BLF, 34, B-3, C-1

BLR, 3-4, B-3, C-1

BLS, 3-4, B-3, C-1

Bounds, I-2

BRS, 3-4, B-3, C-1

BSS, 4-19, B-10, C-1

BYT, 4-19, B-10, C-1

Byte Processing Instructions, 3-2

CAX, 3-5, B-5, C-1
CAY, 3-5, B-5, C-1
CBS, 3-4, B-3, C-1
CBT, 3-3, B-3, C-1
CBX, 3-5, B-5, C-1
CBY, 3-5, B-5, C-1
CCA, 34, B4, C-1
CCB, 34, B4, C-1
CCE, 3-4, B4, C-1
Character Set, HP Computer Systems, 2-1, A-1
CLA, 3-4, B4, C-1
CLB, 34, B4, C-1
CLC, 3-8, B-6, C-1

CLE, 34, B-3, B4, C-1

Clear Flag Indicator, 2-7

CLF, 3-8, B-6, C-1

CLO, 3-9, B-6, C-1

CMA, 3-4, B4, C-1

CMB, 3-4, B4, C-1

CME, 3-4, B4, C-1

CMW, 3-2, B-2, C-1

COM, 4-5, B-9, C-1

Comments Field, 2-7

Computer Configuration, I-1
Consolidated Coding Sheets, D-1
Constant Definition Pseudo Instructions, 4-14
Control Statement, 1-3
Conversion, Internal, F-10
Counter, Program Location, 1-3
CPA, 3-2, B-2, C-1

CPB, 3-2, B-2, C-1
Cross-Reference Table (XREF), RTE, I-1
CXA, 3-5, B-5, C-1

CXB, 3-5, B-5, C-1

CYA, 3-5, B-5, C-1

CYB, 3-5, B-5, C-1

DBL, 4-13, B-10, C-1

DBR, 4-13, B-10, C-1

DEC, 4-14, B-10, C-1

DEF, 4-11, B-9, C-1

Define User Instruction Pseudo Instruction, 4-21
Delimiters, Field, 2-1

DEX, 4-17, B-10, C-1

DIV, 3-9, B-6, C-1

DJP, 3-12, B-7, C-1

DJS, 3-12, B-7, C-1

DLD, 3-9, B-6, C-1

DST, 3-9, B-6, C-1

DSX, 3-6, B-5, C-1

DSY, 3-6, B-5, C-1

Dynamic Mapping System, 3-10

EAU Instructions, 3-9
ELA, 3-4, B-3, C-1
ELB, 3-4, B-3, C-1
END, 4-5, B-9, C-1
ENT, 4-7, B-9, C-1
ERA, 34, B-3, C-1
ERB, 3-4, B-3, C-1
Error Messages, Assembler, G-1
EQU, 4-13, B-10, C-1
Evaluation of Expressions, 2-4
Expression Operators, 2-4
Expression Terms, 2-4
Expressions
Absolute, 2-4
Evaluation of, 2-4
Relocatable, 2-4

Index-1

Index

EXT, 4-7, B-9, C-1

Extended Arithmetic Unit Instructions, 3-9

FAD, 3-10, B-7, C-1
FDV, 3-10, B-7, C-1
Fences, 3-18

Field Delimiters, 2-1
FIX, 3-10, B-7, C-1
Flag, I/O Interrupt, 2-7
Floating Point Instructions, 3-10
FLT, 3-10, B-7, C-1
FMP, 3-10, B-7, C-1
Formatter, The, F-1
FSB, 3-10, B-7, C-1

Halt Instruction, 3-9, B-6, C-2
HED, 4-20, B-10, C-2
HLT, 3-9, B-6, C-2

IFN, 4-4, B-9, C-2
IFZ, 4-4, B9, C-2
INA, 3-5, B4, C-2
INB, 3-5, B-4, C-2
Input .
Data Item Delimiters, F-9
Floating-Point, F-9
Free-Field, F-9
Octal, F-9
Record Terminator, F-10
Input, Comments Within, F-10
Increment-Skip Instructions, 3-1
Index Register Instructions, 3-5
Indicator, Ciear Fiag, 2-7
Indirect Addressing, 2-6
Input/Output Instructions, 3-7
Instructions
Add, 3-1
Alter-Skip, 3-4
Bit Processing, 3-3
Byte Processing, 3-2
Dynamic Mapping, 3-10, 3-12
EAU, 3-9
Extended Arithmetic Unit, 3-9
Floating Point, 3-10
Halt, 3-7, 3-9
Increment-Skip, 3-1
Index Register, 3-5
Input/Output, 3-7, 3-8
1/0, 3-7
Jump, 3-1
Load, 3-1
Logical Operations, 3-2
Memory Reference, 3-1
No-Operation, 3-7
Overflow, 3-7, 3-9
Register Reference, 3-4
Shift-Rotate, 3-4
Store, 3-1
Word Processing, 3-2
Interrupt Flag, 1/O, 2-7
I/O Instructions, 3-7
I/0O Interrupt Flag, 2-7
IOR, 3-2, B-2, C-2

Index-2

ISX, 3-6, B-5, C-2
ISY, 3-6, B-5, C-2
ISZ, 3-1, B-2, C-2

JLY, 3-7, B-5, C-2
JMP, 3-1, B-2, C-2
JPY, 3-7, B-5, C-2
JRS, 3-13, B-7, C-2
JSB, 3-1, B-2, C-2
Jump Instructions, 3-1

Label Field, 2-1
LABEL Symbol, 2-1
LAX, 3-6, B-5, C-2
LAY, 3-6, B-5, C-2
LBT, 3-3, B-3, C-2
LBX, 3-6, B-5, C-2
LBY, 3-6, B-5, C-2
LDA, 3-1, B-2, C-2
LDB, 3-1, B-2, C-2
LDX, 3-6, B-5, C-2
LDY, 3-6, B-5, C-2
Length, Statement, 2-1
LFA, 3-13, B-7, C-2
LFB, 3-13, B-7, C-2
LIA, 3-8, B-6, C-2
LIB, 3-8, B-6, C-2
List Output, 1-6

Listing Control Pseudo Instructions, 4-19

Literals, 2-6

Load Instructions, 3-1
Location Counter, 1-3
Logical Operations, 3-Z
LSL, 3-10, B-7, C-2
LSR, 3-10, B-7, C-2
LST, 4-19, B-10, C-2

Map Segmentation, 3-11
MBF, 3-13, B-7, C-2
MBI, 3-13, B-7, C-2
MBT, 3-3, B-3, C-2
MBW, 3-14, B-7, C-2
MEM Violation, 3-12

Memory Reference Instructions, 3-1

MIA, 3-8, B-6, C-2
MIB, 3-8, B-6, C-2
MIC, 4-21, B-10, C-2
MPY, 3-9, B-6, C-2
MVW, 3-2, B-2, C-2
MWF, 3-14, B-7, C-2
MWI, 3-14, B-7, C-2
MWW, 3-14, B-7, C-2

NAM, 4-1, B-9, C-2

No-Operation Instruction, 3-7

NOP, 3-7, B-4, C-2
Numeric Terms, 2-4

Object Program Linkage Pseudo Instructions, 4-5

OCT, 4-17, B-10, C-2
Opcode Field, 2-2
Operand Field, 2-3

Operation Directive, I-2
Operators, Expression, 2-4
Options, Assembly, 1-3
ORB, 4-2, B-9, C-2

ORG, 4-2, B-9, C-2

ORR, 4-2, B-9, C-2

OTA, 3-8, B-6, C-2

OTB, 3-8, B-6, C-2

Output SFC, 3-8, B-6, C-2
Binary, 1-3 SFS, 3-8, B-6, C-2
List, 1-6 Shift-Rotate Instructions, 3-4

Overflow Instructions, 3-9

PAA, 3-14, B-8, C-2 SKP, 4-20, B-10, C-3
PAB, 3-14, B-8, C-2 SLA, 3-4, 3-5, B-3, B4, C-3
Paging, 1-1 SLB, 3-4, 3-5, B-3, B-4, C-3
Passes, 1-1 SOC, 3-9, B-6, C-3
PBA, 3-15, B-8, C-2 SOS, 3-9, B-6, C-3
PBB, 3-15, B-8, C-2 Source Program, 1-2, 1-3
Power Fail Characteristics, 3-11 SPC, 4-20, B-10, C-3
Processing Specifications

Double Defined, 1I-1 A and R, F-6

Literal, 1-2 Conversion, F-4

Pseudo, 1-1 E, F4

Undefined Label, I-1 Editing, F-4

Unused Label, I-2 F, F-5
Program, Source, 1-3 Format, F-4
Program Location Counter, 1-3 Hand “ 7, F-7

I, F-5

Program Relocation, 1-1, 1-2

Protected Mode, 3-12

Psuedo Instructions
Address Definition, 4-11
Arithmetic Subroutine Calls, 4-20
Assembler Control, 4-1
Assembly Listing Control, 4-19
Constant Definition, 4-14
Define User Instruction, 4-21
Linking, 4-5
Listing Control, 4-19
Object Program Linkage, 4-5
Storage Allocation, 4-19
Symbol Definition, 4-11

SAX, 3-7, B-5, C-2
SAY, 3-7, B-5, C-2
SBS, 3-3, B-3, C-2
SBT, 3-3, B-3, C-2
SBX, 3-7, B-5, C-2
SBY, 3-7, B-5, C-2
SEZ, 3-4, B-4, C-2
SFB, 3-3, B-3, C-2

SJP, 3-15, B-8, C-3
SJS, 3-15, B-8, C-3

0, K, and @, F-6

X, F-7

/, F-8
SSA, 3-4, B4, C-3
SSB, 3-4, B-4, C-3
SSM, 3-15, B-8, C-3
STA, 3-2, B-2, C-3
Statement

Characteristics, 2-1

Length, 2-1
STB, 3-2, B-2, C-3
STC, 3-8, B-6, C-3
STF, 3-8, B-6, C-3
STO, 3-9, B-6, C-3

Index

RAL, 3-4, B-3, C-2 Storage Allocation Pseudo Instruction, 4-19
RAR, 34, B-3, C-2 Store Instructions, 3-1

RBL, 3-4, B-3, C-2 STX, 3-6, B-5, C-3

RBR, 3-4, B-3, C-2 STY, 3-6, B-5, C-3

Register Reference Instructions, 3-4 Summary of Instructions, B-1

Registers, Status and Violation, 3-11 SUP, 4-19, B-10, C-3

Relocatable Expressions, 2-4 SWP, 3-10, B-7, C-3

Relocation, Program, 1-2 SYA, 3-16, B-8, C-3

REP, 4-5, B-9, C-2 SYB, 3-16, B-8, C-3

RPL, 4-10, B-9, C-2 Symbol, Label, 2-1

RRL, 3-10, B-7, C-2 Symbol Definition Pseudo Instructions, 4-11
RRR, 3-10, B-7, C-2 Symbols, 1-1

RSA, 3-15, B-8, C-2 Symbol Table, 1-3

RSB, 3-15, B-8, C-2 Symbolic Addressing, 1-1

RSS, 3-5, B4, C-2 Symbolic Terms, 2-2

Running Assemblies Under DOS-III, E-1 SZA, 3-5, B-4, C-3

RVA, 3-15, B-8, C-2 SZB, 3-5, B-4, C-3

RVB, 3-15, B-8, C-2

Index-3

Index

Tape Formats, H-1
Terms
Numeric, 2-4
Symbolic, 2-2
Expression, 2-4

TBS, 3-3, B-3, C-3

UJP, 3-16, B-8, C-3
uJs, 3-16, B-8, C-3
UNL, 4-19, B-10, C-3
UNS, 4-20, B-10, C-3
USA, 3-16, B-8, C-3
USB, 3-16, B-8, C-3

Word Processing Instructions, 3-2

Index-4

XAX, 3-5, B-5, C-3
XAY, 3-5, B-5, C-3
XBX, 3-5, B-5, C-3
XBY, 3-5, B-5, C-3
XCA, 3-17, B-8, C-3
XCB, 3-17, B-8, C-3
XIF, 4-4, B-9, C-3
XLA, 3-17, B-8, C-3
XLB, 3-17, B-8, C-3
XMA, 3-17, B-8, C-3
XMB, 3-17, B-8, C-3
XMM, 3-18, B-8, C-3
XMS, 3-18, B-8, C-3
XOR, 3-2, B-2, C-3
XSA, 3-18, B-8, C-3
XSB, 3-18, B-8, C-3

READER COMMENT SHEET

RTE ASSEMBLER
Reference Manual

92060-90005 APR 1979

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Company

Address

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Hewlett-Packard Company
Data Systems Division
11000 Wolfe Road
Cupertino, California 95014

ATTN: Technical Marketing Dept.

PART NO. 92060-30005
REV. CODE 1639 Sales and service from 172 offices in 65 countries,
Printed in U.S.A. 4/79 11000 Woife Road, Cupertino, California 95014

HEWLETT W PACKARD

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	G-01
	G-02
	G-03
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	I-01
	I-02
	I-03
	I-04
	I-05
	index-1
	index-2
	index-3
	index-4
	replyA
	replyB
	xBack

