hp: PACKARD

HEWLETT

RTE-III

General Information Manual

HELy:

RTE-I11

General Information Manual

Il

* PACKARD

S

HEWLETT

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Library Index Number

2RTE.310.92060-90009
Printed in U.S.A. 2/76

PART NO. 92060-90009
PRODUCT NO. 92060

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1976 by HEWLETT-PACKARD COMPANY

PREFACE

This manual presents the basic capabilities of the HP RTE-III Real-Time Executive Operating
System to prospective and new users of this HP product.

Section I presents some basic concepts of operating systems and real-time operating sys-
tems.

Section II presents the HP RTE-III Operating System, a Hewlett-Packard approach to the
concepts presented in Section I. The basic capabilities of RTE-III are discussed. In addition,
RTE-III terminology is defined.

Section III discusses how RTE-III manages main memory.

Section IV lists and briefly describes RTE-III system commands including operator com-
mands and program calls to the system executive.

Section V contains a list and brief description of the Batch-Spool Monitor operator com-
mands and program calls.

This manual presents the concepts and capabilities of RTE-III in general terms. The following
manuals provide detailed information about RTE-IIL:

e HP RTE-IIL: A Guide for New Users (Part No. 92060-90012). This guide presents the

fundamentals for using RTE-III. You may use it as a workbook which provides examples
that you can try from a terminal as you read the explanation of system features.

HP RTE-III Programming and Operating Manual (Part No. 92060-90004). This manual
provides RTE reference material and experienced programmers may use it as a program-
ming guide to the RTE-III system.

HP RTE-III Interactive Editor Reference Manual (Part No. 92060-90014). This is the
reference manual and programming guide to the RTE Interactive Editor (EDITR).

Batch-Spool Monitor Reference Manual (Part No. 92060-90013). This is the reference man-
ual and programming guide to file management, batch processing, and I/O spooling in the
RTE-III Operating System.

The following documentation map gives the titles and part numbers of the complete set of
RTE-III manuals and illustrates their relation to each other.

iii

DOCUMENTATION MAP

START
RTE-I 2100 Series
General Relocatable
information Subroutines
Manual Manual
92060-90009 02116-91780
A
21MX
RTE-1: A Guide Operator’s HP FORTRAN IV
ReferenceManual
for New Users Manual
92060-90012 02108-90004 5951-1321
RTE-1il Programming
I languages HP FORTRAN
:/"::‘S;era’mg Reference Manual
92060-90004 02116-9015
ALGOL
4 4 4 Reference Manual
02116-9072
RTE Interactive Batch-Spocl RTE Operating System

Editor Reference
Manual
92060-90014

Monitor Reference
Manual
92060-90013

Drivers and Subroutines
Manual
92200-93005

quick reterence

RTE and BSM
Pocket Guide <

RTE ASSEMBLER
Reference Manual
92060-90005

Mulzi-User
Real-Time BASIC

Reference Manual
92060-90016

er-or messages

92060-90010

iv

CONTENTS

Section I Page
WHAT IS AN OPERATING SYSTEM
What is a Real-Time Operating System 2
Section II Page
THE HP RTE-III OPERATING SYSTEM
System Generation and Installation 3
Control of RTE-IITt 4
Operator Controloovvvvciiiin s, 4
Program Controlo viiiiiiiiin 4
Language SUpportoeeeuvuieeeviniiaaiean 4
Program Categories.c.ovvveveoriiiaieanens 4
Program Identificationc..ooiiiiit 5
Program ATeasouiiraieerieiiaiinns 5
Permanent Programs ..ot 5
Temporary Programs ... 6
Program Statesoooiiiiiiiiiiiiies 6
Scheduling Programsccoooeeeiiiininies 7
Program Executiono 7
Real-Time Programsccoeieeievnniannnes 7
Background Programs ..ot 7
Scheduling Program Execution 7
Multiprogrammingooeeeveeiiiiiiiiiaens 7
Memory Partitioning 8
Resource Managementc.ooviininieeenns 10
Input/Output ..o .vvvi i 11
Multi-Terminal Operation............ccovveevennns 12
Distributed Systemscoviiiiiiiiiiiiie 14

Section II Page
Central System ..., 14
Satellite Systems 14

On-Line Program Development..................... 16

Section III Page

MEMORY MAPPING

System Mapoovviirieir 19

USEr Map oottt it 19

Port Maps . .cc.vvvninneeiiren et nneaaneeens 20

Section IV Page

RTE-III COMMANDS

Command Structurecoieevevrrnenaeeins 25

Operator Commandscooviiiiiiiii e 25

Program Calls to EXEC ..., 27

Section V Page

BATCH-SPOOL MONITOR

File Management Package (FMP) 31
FMGR Program.........coovieeeenanneneneenanss 31
FMP CallsS. ... vteeirieaiiineeeneans 33

Spool MONItoroovvtiiiie e 33
GASP Programc.ccovneieiininininanees 37
SMP Calls . o oottt 37

ILLUSTRATIONS

Title Page Title Page
RTE-III Program Statesc.c.ouu... 6 Dynamic Mapping Scheme 21
Program Execution Flow 9 Physical Memory Configuration 22
Resource Number Sharing 10 Logical Memory Configurations 23
Program-to-Program Communication 13 Batch Job Processing without Spooling 34
Multiple Terminal Environment 14 Batch Job Processing with Spooling 35
Distributed System Environment 15 Batch Job Flow with Spooling 35
On Line Program Development Flow 17 Spooling Event Chartcooveenrnn .. 36
Title Page Title Page
RTE-III Operator Commands 26 FMGR Commandscocovvvuneueinnnnnn. .. 32
RTE-IIIEXEC Callscoooviiuie i, 28 FMP Subroutine Calls 33
Batch-Spool Monitor Components 31 GASP Operator Commands 37

vi

SECTION

WHAT IS AN OPERATING SYSTEM?

The principal function of an operating system is to manage the use of system resources by your
programs. Your programs compete for use of system resources such as central processor (CPU)
time, main memory, disc storage, input/output devices, and system library software. You
assign a priority value to each of your programs. The operating system uses this value to
determine which program among those competing for a specific resource will actually be given
access to that resource. The program with the highest priority value is granted access to the
resource first.

An operating system may be defined as an organized collection of programs which increases
the productivity of a computer by providing control and management capabilities together
with common functions shared by user programs. Once the computer system is generated and
running, the operating system takes responsibility for control of the system environment.

Included among the major functions provided by an operating system are:

e SYSTEM EXECUTIVE (Resource Allocation)

The system executive controls the operating system environment by allocating resources
such as main memory, central processor (CPU) time, input/output, and mass storage.
Communication between your programs and the system is handled through calls to the
executive.

e SCHEDULING (Program Scheduling)

The system scheduler organizes and schedules your programs for execution. The scheduler
activates, terminates, suspends, or prepares programs for execution.

e I/0 CONTROL (Input/Output Scheduling and Transfer)
Two important tasks of I/O control are scheduling of I/0 and the transfer of data.

For scheduling, the operating system accepts the request for I/O and sets up the operation
necessary to perform the requested action.

The transfer of data (that is, the movement of data between main memory and I/O devices or
mass storage) is handled by I/O “driver” programs which support the I/O devices associated
with your system. The I/O device driver sets up the operation conditions, flags and buffers
and then activates the I/O device.

e DATA MANAGEMENT
The data management functions include file management and I/O support.

File management provides for the creation of new data files and the modification or
elimination of existing files. In addition, security is provided for your files to prevent
unauthorized access.

1

What is an Operating System

The 1I/O support function provides for uniform and consistent access to the I/O devices for
your programs.

® SYSTEM GENERATION

An operating system may include generation routines that allow you to create an operating
system tailored to your hardware and application requirements. That is, a master operating
system can be customized during system generation to support your configuration. You
select the necessary modules including support programs such as language compilers,
utility programs, and data management routines that are required specifically for your
application.

WHAT IS A REAL-TIME OPERATING SYSTEM?

A real-time operating system may be defined as one which controls its environment by
reviewing data, processing that data, and taking action with sufficient speed to affect im-
mediately the functioning of the environment.

* MULTIPROGRAMMING

A real-time operating system should be capable of concurrent or parallel execution of more
than one program.

¢ MEMORY MANAGEMENT

Real-time main memory must be managed so that the most efficient use of memory is
maintained. Memory is used to execute programs, to accept data from input devices, and to
hold data to be transferred to output devices. The operating system must monitor the use
and allocation of memory just as it would any of the system resources.

* MULTIPLE MEMORY PARTITIONS

Partitioning of memory is used to allow more than one program to be resident in main
memory at a time. This decreases the amount of time required to switch execution from one
program to another. The system can switch execution between programs within main
memory from 50 to 100 times faster than when a program must be transferred into main
memory from disc storage.

¢ PROGRAM SCHEDULING BY PRIORITY

In real-time computer systems, some events must be acted upon without delay. This can be a
problem if two or more events simultaneously demand attention. One solution is to assign
an execution priority to every program in the system. Then, if several programs are
competing for the central processing unit, execution will occur in order of program priority.

THE HP RTE-lll OPERATING SYSTEM

The HP RTE-III Real-Time Executive Operating System controls a computer system based on
the HP 21MX Computer series with expanded memory.

RTE-III is a multiprogramming operating system. Programs are scheduled for execution by
priority. Through a unique memory mapping system,utilization of up to 256K words of main
memory is possible. Parallel execution of two or more programs is accomplished using these
features. The minimum amount of main memory required for operation is 32K words.

RTE-III is a real-time multiprogramming operating system which provides the following
features:

System Generation and Installation
Operator and Program Control of RTE-III
Multiple Language Support
Program Management
Multiprogramming

Memory Partitioning

Resource Management
Input/Output Management
Multi-Terminal Operation

Program Development

Distributed Systems Support

SYSTEM GENERATION AND INSTALLATION

You generate your system using the same hardware on which the system will operate. You use
a generation program (RTGEN) to perform the initial system generation. Using RTGEN, you
incorporate RTE-III Executive modules together with library routines and your programs into
a real-time operating system. The system modules reside in main memory. Your programs
may be either main memory resident or disc resident. You can declare routines that require
immediate response to real-time conditions or small programs that must execute often as
memory resident programs, saving critical load time. Because disc resident programs must be
loaded into a memory partition at least once, they take longer to run to completion.

Before executing RTGEN, you should plan the structure of your system. Disc and I/O planning
worksheets are included in the RTE-III Reference Manual for this purpose. Once you formu-
late the system plan, you use generator input worksheets to record the information required by
RTGEN. The generator worksheets are in the form of the actual questions which RTGEN will
display on the system console. You need only write the appropriate response on the blank line
provided for each question.

Once RTGEN begins execution, you can follow the displayed dialog with your input worksheet
and enter the information from the console keyboard. When you have completed entering the
appropriate responses, RTGEN stores the configured system on the system disc and reports
this fact to you together with the size of the system on the disc tracks. At this point you can
start up the system using the procedure outlined in the RTE-III Reference Manual.

3

The HP RTE-III Operating System

CONTROL OF RTE-III

You control the RTE-III system through operator commands entered from a system console
device (or auxiliary terminal) or through system commands included within your programs.

OPERATOR CONTROL

Operator control over the RTE-III operating system is exercised using a set of RTE-III operator
commands. These commands are used interactively (see Section IV). The system issues an
appropriate response to each command you enter. The response may be a message or simply a
line feed. Additional operator commands are provided by the Batch-Spool Monitor, a subsys-
tem of RTE-III. Batch-Spool Monitor supplies extensive file management and I/O spooling
capabilities (see Section V). You may use all of these operator commands interactively to
monitor and control RTE-III activity from several terminals via the Multiple Terminal
Monitor, another subsystem of RTE-III (see Multi-Terminal Operation).

PROGRAM CONTROL

In addition to operator control, your programs can include calls to the system executive
module, EXEC (see Section IV). The EXEC calls are the communication link between each
executing program and RTE-III. The Batch-Spool Monitor increases program control capabi-
lites by supporting calls to the File Management Package and the Spool Monitor (see Section
V).

LANGUAGE SUPPORT

RTE-III provides several programming languages and a relocatable subroutine library. The
languages provided are:

® Real-Time HP 21MX Assembler

¢ Real-Time HP FORTRAN IV Compiler

® Real-Time HP FORTRAN Compiler (compiles FORTRAN II programs)

® Real-Time ALGOL Compiler

¢ Optionally, the HP Multi-User Real-Time BASIC software can be added to RTE-III

The relocatable subroutine library includes mathematical subroutines and utility subroutines.
You can use these routines in a shared (re-entrant) mode or append them to your program.

PROGRAM CATAGORIES

There are three program categories within RTE-III:

® Memory Resident Programs
® Real-Time Disc Resident Programs
® Background Disc Resident Programs

4

The HP RTE-III Operating System

Each of these categories contains several program types depending on the type of common
used. There is a special program category for system modules, subroutines, background
segments, and Subsystem Global Area (SSGA) modules.

PROGRAM IDENTIFICATION

Before any program can be executed, it must be known to the system. RTE-III maintains an ID
segment for each of your programs loaded during system generation. In addition, during
system generation, you should declare a specific number of blank ID segments; one for each
program you intend to load during operation of the system.

When a program is loaded on line, RTE-III assigns a blank ID segment to that program. This
segment identifies and controls program linkages until the program is removed from the
system. The ID segment then becomes available to another program.

The ID segment is the program identifier. It contains static information about the program
such as the program name, priority (priority can be changed by an operator command),
primary entry point, and so forth. RTE-III maintains dynamic information in the ID segment
such as a list link word, point of program suspension, track and sector location on disc, and so
forth. A main program requires a 28-word ID segment. A program segment requires a 9-word
ID segment.

PROGRAM AREAS

There are two areas within main memory where your programs execute, the memory resident
program area and the disc resident program area.

The memory resident program area must exist within the first 32K words of physical main
memory. This area contains all of your memory resident programs which are loaded during
system generation. It immediately follows the common area within main memory.

The partitioned portion of main memory is the disc resident program area, that is, the area of
main memory in which your disc resident programs will execute. You can load disc resident
programs during system generation and on line during normal system operation. For on line
program loading, use the RTE-III Relocating Loader (LOADR). You may declare disc resident
programs either permanent or temporary programs.

PERMANENT PROGRAMS

Because a permanent program ID segment exists in the system area of the disc and is loaded
into main memory with the system, permanent disc resident programs are always available to
RTE-III even through a system shut down and subsequent start up. The permanent program,
ID segment is saved on disc through system shut down and restart.

You create permanent programs during system generation and with LOADR. You can purge
(delete) permanent programs from the system only by using LOADR or by regenerating the
system.

The HP RTE-III Operating System

TEMPORARY PROGRAMS

Temporary disc resident programs are lost to the system following a shut down. A temporary
program ID segment exists only in main memory and its information is lost whenever the
system is shut down except for a power fail/automatic restart operation. You can purge (delete)
temporary programs from the system using an RTE-III operator command, OFF (see Section
IV).

PROGRAM STATES

In a running RTE-III system, there are four general program states:

® Executing

® Scheduled for Execution

® Suspended from Execution
® Dormant

At a given instant, only one program is executing. RTE-III maintains a list of programs
scheduled for execution and a list of programs suspended from execution. The WHZAT
program described in RTE-III: A Guide for New Users (Part No. 92060-90012) can be executed
to display the scheduled and suspended programs and their status. Programs that have run to
completion or that are not executing and not in the scheduled or suspended lists are in the
dormant state. Figure 2-1 illustrates these lists and programs states.

y

DORMANT PROGRAMS

EXECUTING
PROGRAMS ><: SCHEDULED PROGRAM

—— FOR
y
EXECUTION

PROGRAMS

SUSPENDED

FROM

EXECUTION

Figure 2-1. RTE-III Program States

The HP RTE-III Operating System

SCHEDULING PROGRAMS

Programs can be scheduled for execution by:
e External Event Interrupt

L Opel;ator Request

e Program Call to EXEC

e Time Intervals on the System Real-Time Clock

PROGRAM EXECUTION

For programs in the scheduled list, execution begins immediately for the program having the
highest priority. For example, if program ONE is executing when program TWO with a higher
priority is scheduled, program ONE is suspended from execution while program TWO
executes.

REAL-TIME PROGRAMS

These programs execute in response to an event that must be acted upon immediately. The
action taken by the program must be quick enough to affect the current status of the event.

The most critical real-time programs should reside in main memory where they can be
executed without delay. Programs of less critical nature can reside on disc and will be loaded or
swapped, if necessary, into a main memory partition from the disc.

BACKGROUND PROGRAMS

The background disc resident programs generally have the lowest priority in the system.
These programs are run during that part of CPU time not used by higher priority programs.
Program development (editing, compiling, debugging, and so forth) is an example of
background program operation.

SCHEDULING PROGRAM EXECUTION

Under real-time computer control, some events must be acted upon without delay. This can be
a problem if two or more events simultaneously demand attention. The solution is to assign an
execution priority to every program in the system. Then, if several programs are competing for
the central processor, they are executed in order of priority.

MULTIPROGRAMMING

Multiprogramming is the parallel execution of two or more programs which compete for
system resources within a single central processor unit. For example, while the execution of
one program is suspended for completion of an 1/0 operation, another program executes.
Program execution occurs at such speed as to appear concurrent.

7

The HP RTE-III Operating System

In a batch processing computer system, you submit the programs to be executed to the system
one after the other. The first program entered into the system is the first program executed.
The second program entered into the system cannot execute until the first program completes
execution.

In a time-sharing computer system, the execution of two or more programs is interleaved so
that each program gets an equal portion of CPU time in which to execute.

In a multiprogramming computer system, the execution of two or more programs is performed
in parallel (or concurrently). Because a single CPU is capable of executing only one program at
a time, a scheme must be devised which permits many programs to be prepared for execution
and then to interleave the execution of those programs. For example, suppose that three
programs (named PROG1, PROG2, and PROGS3) reside in main memory and are ready to
execute. All system resources are available to each program. A priority scheme is used to
interleave program execution — PROG1 has the highest priority and PROGS3 has the lowest
priority. The operating system passes control to PROG1 first. PROG1 has control of the system
until it completes execution or until it must wait for a system resource such as an I/O
operation. When PROGI goes into a wait cycle, control is passed to PROG2 (having the next
lower priority) which executes until it terminates, until it must wait for a system resource, or
until PROG1 is again ready to execute. If PROG2 terminates or goes into a wait cycle, then
control is given to PROG3. If PROG1 again becomes ready to execute control is given to
PROG1 because control always goes to the program having the highest priority which is ready
to execute.

Now, suppose that PROG1, PROG2, and PROG3 each have the same priority. PROG1 is in
execution and goes into a wait cycle. Control is given to PROG2 and PROG1 is placed in the
wait queue behind PROGS3.

Figure 2-2 illustrates the execution of separate programs in batch processing, time-sharing,
and multiprogramming environments.

MEMORY PARTITIONING

The portion of main memory remaining after the RTE-III operating system is loaded (includ-
ing main memory resident programs), is divided into blocks of pages (1,024 words per page)
called partitions. The disc resident user programs (your programs) execute in these partitions.
This scheme reduces program transfers (swapping) between disc and main memory since as
many of your disc resident programs as there are available partitions can be present in main
memory ready for execution. You can declare a maximum of 64 numbered, fixed-length
partitions within a physical memory of up to 256K words.

You define the partition size and partition number during system generation. At the same
time, you may declare a partition class of real-time or background. This allows you some
control over which programs compete for partitions in which to execute because, by default,
real-time programs execute in real-time partions and background programs in background
partitions. However, you may assign a program to a specific partition regardless of partition
type. In addition, you can reserve a partition for execution of programs assigned to it,
excluding other programs from using that partition.

Partitions always begin and end on a page boundary. Each partition must have at least two
pages: a base page (communications area for system and program linkages) and one additional
page for disc resident program execution. Above this minimum, partition size depends on

8

The HP RTE-III Operating System

program requirements. During system generation, RTGEN reports the size of each program in
the system. Programs which use dynamic buffering (for example, the Interactive Editor)
require additional pages within a partition for the buffers. You must allow for these extra
pages at generation time. You use the information reported by RTGEN to determine the size of
the partitions. Normally, partitions will be between 2 and 18 pages in length.

BATCH PROCESSING PROG1 PROG2 PROG3
TIME-SHARING PROG1 PROG2 PROG3 PROG1 PROG2 PROG3 j .o
MULTIPROGRAMMING PROG1 PROG1 PROG1
- COMPUTE LIST COMPUTE
PROG2 PROG2 PROG2
COMPUTE COMPUTE LIST
PROG3
COMPUTE
TIME—p

Figure 2-2. Program Execution Flow

The HP RTE-III Operating System

RESOURCE MANAGEMENT

Your programs compete for use of system resources such as central processor unit (CPU) time,
* main memory, disc storage, and input/output devices. You assign a priority value to each of
your programs. The system uses this value to determine which program among those compet-
ing for a specific resource will actually be given access to that resource. The program with the
highest priority value executes first.

Another level of resource management exists which provides “user defined” resource sharing.
That is, you determine which of your programs will share a resource. You accomplish this
through a resource numbering call to the system executive module. For example, you may
wish to share a resource such as an I/0 device, file, or subroutine between several programs
and require that only one of your programs have access to the resource at any time. One
program issues the call to allocate a resource number. Following allocation of the resource
number, any of the cooperating programs can issue a call to lock the number for exclusive use
of the resource associated with that number.

A resource number is not a physical entity, nor is it assigned logically to a resource. The
RTE-III system is always aware of the resource number but not aware of the resource with
which it is associated. The programs sharing the resource number must agree on which
resource is associated with which number.

Resource number (RN) locking allows two or more programs to access sensitive areas of their
own code on a “one at a time” basis. Figure 2-3 illustrates this process. Assume PROGA
obtains the locked RN first. In this case, PROGB is suspended until PROGA unlocks the RN at
which time PROGB is reactivated. Then, PROGB locks the RN which prevents PROGA (or any
other program) from obtaining a lock on the same RN. PROGA and PROGB cooperate in their
use of the RN. That is, both programs agree to use the same RN and may control more than one
RN to protect other areas of code.

PROGA PROGB
————— o
\ b
N\ /
AN /
AN /

CRITICAL N/ CRITICAL
CODE PN CODE
y N
v N

N

7 AN
UNLOCK RN UNLOCK RN

Figure 2-3. Resource Number Sharing
10

The HP RTE-III Operating System

INPUT/OUTPUT

An RTE-III system module handles the scheduling and control of your program I/O requests.
This centralized scheduling and control feature together with logical referencing of physical
/O devices provides programming capabilities independent of the system I/O devices. That is,
your executing program accepts input data, processes it, and releases output data without
concern for which type of I/O device is handling the data.

Included among the automatic functions of the I/O scheduling and control module is the
maintenance of an I/O wait list. If you issue a request for /O to a busy device (the device is
handling some other I/O operation), your request is placed in a waiting list in order of your
programs priority. Your I/O request will be processed when the device becomes not busy and
when your request has the highest priority in the wait list for this device. Execution of your
program is suspended while the I/O request is in the wait list.

Optional I/O functions available include:
e Device Time-Out

When you generate your RTE-III system, you can set a time-out value for any I/O device.
Setting a time-out value for a device prevents your program from being suspended indefi-
nately because of an incomplete I/O operation. For example, a hardware malfunction could
prevent the return of an “I/O completed” signal. In this case, when the specified time
interval has elapsed, the system will place the I/O device in “down” status and transmit a
warning message to the system console. A down device cannot be accessed for I/O operations
until you correct the situation. In addition to system handling of device time-out, you can
code the I/O device driver software to direct the action to be taken when a time-out
condition is encountered.

e 1/O Buffering

You may select automatic I/O buffering on low or medium speed devices. When you select
this capability your programs can initiate an output operation and proceed without waiting
for completion of the I/O operation. For input buffering, see “Class 1/O”.

e Re-entrant I/O

You can choose to have your I/O processing operations re-entrant. In this case, your disc
resident programs may be swapped to disc storage even if you are suspended for I/O. This
allows programs with a higher priority to use the partition and I/O device which were
associated with a program having a lower priority.

e Exclusive Logical Unit Assignment

Temporarily, you can assign a logical unit to your program. This prevents any other
program from accessing the assigned logical unit until you unlock it.

e Class I/O

Program-to-program communication normally occurs through the system common area.
The class I/O function provides you with a method of program-to-program communication
other than through the system common area.

11

The HP RTE-1II Operating System

You can accomplish program-to-program communication by using a class WRITE/READ
call. There is no I/0 ‘device associated with this call, logical unit zero is assumed. Data is
written into the class buffer by one program and read from the class buffer by one or more
other programs. The class WRITE/READ calls use a “mailbox” scheme for data transfers.
One program places data in the mailbox (class buffer) and cooperating programs can access
the mailbox to retrieve the data. Figure 2-4 is a sample of communication between two
programs.

In addition to program-to-program communication, data transfers between programs and
multiple I/O devices is possible using class I/O.

A class is a numbered account associated with a buffer area in system available memory.
You establish class numbers (up to 256) during system generation. When a program issues
an initial class I/O call, the system assigns a class number to the calling program and
allocates a buffer. The calling program can perform class I/O operations and pass the class
number to other programs which, in turn, can use the class number to make class I/0 calls
and pass the class number to other programs. Any of the cooperating programs can release
(deallocate) the class number back to the system.

For example, program A requests a class READ operation to read data from an input device
into the class buffer. Then program A issues a call to EXEC to schedule program B for
execution, passing the class number to program B in the parameter list. Program B requests
a class GET operation to obtain the program A data from the class buffer. The GET call can
be coded to either retrieve the data and destroy the contents of the buffer, or retrieve the
data and leave the buffer contents intact. In the latter case, other programs can access the
same data. Following execution of any class I/O call, the A-register contains the completion
status of the call.

You may use a similar procedure to call a class WRITE operation. A class WRITE operation
transfers program data through the class buffer to an output device designated by a logical
unit number. The program continues to execute. You must issue the class GET call to check
the completion status.

MULTI-TERMINAL OPERATION

RTE-III supports the simultaneous operation of more than one terminal device in addition to
the system console through the Multiple Terminal Monitor (MTM) package. Users at these
terminals have access to the system and to disc files containing programs or data. Several
users at separate terminals can manipulate files and perform edit operations at the same time.
Compile, assemble, or load operations also can be performed from any of the multiple termi-
nals, however, only one user at a time should attempt these operations because there is only
one logical source (LS) and one load-and-go (LG) track area from which to work.

The entire set of supported languages is available to you in the multiple terminal environ-
ment. Whenever you need to include a new program or to change programs within your
RTE-III system, you can accomplish the program development work and loading on line. The
normal real-time operation of your system need not be interrupted. The RTE-III Assembler,
FORTRAN compilers, ALGOL compiler, and Multi-Terminal Real-Time BASIC are available
as programming languages. In addition, the Interactive Editor (EDITR) is available. EDITR is
used to edit program and data files which reside on disc storage.

12

The HP RTE-III Operating System

FTN,L

OO0

OO0

FTN,L

OO0

OOO0

PROGRAM PROGA
DIMENSION IBFR(32),INAME(3)

DO CLASS WRITE/READ TO LU ZERO.

ICLAS=0
CALL EXEC(20,0,IBFR,-64,IDUMY,JDUMY,ICLAS)

SCHEDULE PROGB AND PASS CLASS NUMBER.
INAME(1)=50122B
INAME(2)=475078

INAME(3)=41800B
CALL EXEC(18,INAME,ICLAS)

END

e e e e e — —— —— —— — ——— — — — — — — — — — —— — — — — — e e]

PROGRAM PROGB
DIMENSION IBFR(32),IPRAM(S)

SAVE CLASS NUMBER, IPRAM(1).
CALL RMPAR(IPRAM)

ACCEPT DATA FROM PROGA USING CLASS GET CALL
AND RELEASE CLASS NUMBER.

CALL EXEC(21,IPRAM(1),IBFR,32)

END

Figure 2-4. Program-to-Program Communication

13

The HP RTE-III Operating System

On completion of program development, you can use the on line loader (LOADR) to prepare the
program for loading into a partition for execution or debugging. Figure 2-5 illustrates multiple
terminal operation.

EDITING
TERMINAL 1 A PROGRAM
SYSTEM ~ RTE-1 EDITING ANOTHER
CONSOLE SYSTEM TERMINAL2 | BROGRAM
'\ DEBUGGING
TERMINAL 3 A PROGRAM

Figure 2-5. Multiple Terminal Environment

DISTRIBUTED SYSTEMS

The term “distributed systems” encompasses a set of compatible hardware and software
packages (interfaces plus communications software) that support network communications
between a central computer system and one or more satellite computer systems.

CENTRAL SYSTEM

The central system is based on the HP RTE-II or RTE-III operating system. Central mass
storage and peripheral equipment capabilities together with network monitoring functions are
provided.

SATELLITE SYSTEMS

The distributed satellites are based on a variety of HP Operating Systems such as RTE-II,
RTE-III, RTE-B, and RTE-C. The satellite systems have access to mass storage at the central
system. Using remote file access (RFA) calls to the RTE File Management Package, you (at a
satellite system) can create, rename, open and close files, read and write to specific records, or
obtain the status of a file at the central site.

Remote EXEC calls include functions to schedule program execution at the central site, load
programs from central into a satellite for execution, send messages between systems, and
access the central real-time clock.

Program-to-program communication provides for data transfer between application programs
in the satellite and central systems. This is accomplished via a “master/slave” program
relationship. The master program in either the central or a satellite system assumes responsi-
bility for initiating the data link and data transfers between the programs. The slave program
operates much like a peripheral device.

14

The HP RTE-III Operating System

You can develop new programs and then store them at the central site. The central system can
then force a “down load” of the program to any satellite in which the program can execute. This
forced down load capability allows satellite systems to run unattended by an operator.

Further, you can establish a communication link with computer systems outside the distri-
buted system environment. You can exchange data with such computer systems as the HP
3000, another HP RTE-III system, or an IBM 360/370 system. Figure 2-6 shows the relation-
ship of the distributed system computers.

Information about HP Distributed System software is contained in the following manuals:

HP Distributed System CCE Central Communication Executive, Programming and Operating
Manual, part no. 91700-93001.

HP Distributed System SCE-1 Satellite Communication Executive, Programming and Operat-
ing Manual, part no. 91700-93003.

HP Distributed System SCE-3 Satellite Communication Executive, Programming and Operat-
ing Manual, part no. 91703-93001.

HP Distributed System SCE-4 Satellite Communication Executive, Programming and Operat-
ing Manual, part no. 91704-93001.

HP Distributed System SCE-5 Satellite Communication Executive, Programming and Operat-
ing Manual, part no. 91705-93001.

HP RDTS Remote Data Transmission Subsystem, Programming and Operating Manual, part
no. 91780-93001.

HP 3000
HP RTE-11I
IBM 360/370

+

COMMUNICATION
LINK

v

RTE-III
(CENTRAL)

RTE-C RTE-B RTE-1I/IN
(SATELLITE) (SATELLITE) (SATELLITE)

Figure 2-6. Distributed System Environment

15

The HP RTE-III Operating System

ON LINE PROGRAM DEVELOPMENT

You can use the RTE-III operating system to extend your operation into new areas without
interrupting current system functions. You can code, edit, compile or assemble, test, debug, or
load new programs at the same time the system is executing existing programs.

EDITR accepts a source file from you, places it into a working area, and transfers control to
you for the editing process.

LOADR accepts relocatable code from you. You may link a relocatable program file produced
by the compilers or by the assembler to one or more library files using the loader. You may
relocate (load) the resultant program into the RTE-III system. You may use the loader to
replace programs in the system, and to obtain a list of program ID segments and general
information.

Using the File Manager capability of Batch-Spool Monitor, source code, object code, and
memory-image code can be saved in named files.

Figure 2-7 illustrates one of the paths that you may take to develop a program on line. The

path starts at a terminal where the program is created as a file using the File Manager. A
description of the program development flow follows:

1. RU,EDITR — Execute the Interactive Editor to perform edit operations on the file.

2. /ECSOURC — When the editing is completed, create a file and store it as a source file
named SOURC.

3. :MS,SOURC — Move the file SOURC to the logical source (LS) track area.

4. *LG,1
*FTN4,2,99 — Compile the program in file SOURC; the resultant code is placed in the LG
track area.

NOTE

The following step, 5, is necessary only if your file is to be saved

as a relocatable file. You can then use Step 6 to move the file to

the LG track area at some later time.
5. :SA,RELOC — Store the LG track area contents as a relocatable file named RELOC.
6. :MR,RELOC — Move the relocatable file, RELOQOC, to the LG track area.
7. *RU,LOADR,99 — Execute the loader to load the program as memory image code.
8. :SP,PROGX — Save the memory image code as a program named PROGX in a type 6 file.
9. :RP,PROGX — Restore the program PROGX which was saved with the SP command.

10. *RU,PROGX — Schedule the program PROGX for execution.

16

The HP RTE-III Operating System

DISC
SYSTEM MEMORY
IMAGE
TRACK POOL P
0,
&
%
G
@
\ [N/
‘RURROGX & &
\ S
\
\
\
\\
‘RP,PROGX
‘MS, ® \
SOURC (®:MR,RELOC 4
(9):sP,PROGX o‘?:l \
Q«‘“‘\pg’% N
():sA.RELOC S N
LG “RU,PROGX 4 :
| — g |
START |
AT (@/EcsOURC |
TERM:NAL “RU,LOADR 99, , 9
OLIY @:Le!
EDITR *RU,FTN4,2,99 (D)*RU,LOADR,99
D
SEGMENTSP
PERM.
TEMP.
\ A \
EDITR COMPILER LOADR
BACKGROUND BACKGROUND BACKGROUND
PROGX
BACKGROUND
MEMORY

Figure 2-7. On Line Program Development Flow

17/18

MEMORY MAPPING

The RTE-III system requires at least 32K words of main memory. At your option, the amount
of main memory can be expanded up to 256K words. This additional memory space can be
divided into partitions (up to 64). Utilizing this maximum, as many as 64 of your disc resident
programs can occupy main memory at a time, one in each partition. This reduces the amount of
swapping necessary between main memory and disc storage.

RTE-III includes a dynamic memory mapping system which provides access to memory space
greater than the 32K word limitation imposed by the 15-bit address length.

The total amount of memory available to the system (up to 256K words) is called “physical”
memory. The 32K words that can be addressed at any given time is called “logical” memory.
Logical memory is made up of 32 pages of physical memory. Each page is 1,024 words (1K
words) in length. The 32 pages of physical memory that make up the logical memory address
space need not be contiguous; they can exist anywhere within the physical memory space
available.

Access to logical memory is accomplished using memory maps and the dynamic mapping
system. Four maps are provided:

System Map
User Map

Port A Map
Port B Map

Only one map is in control (enabled) at one time. Each map consists of 32 registers. Each
register contains the address of one page (1K words) of physical memory. That is, the enabled
map describes the 32K words of logical memory address space currently accessible. A 10-bit
page address in the enabled map is combined with a 10-bit relative word address resulting in a
20-bit address pointing to one word within a page.

SYSTEM MAP

The System Map is created by RTE-III during initialization of the system and remains
unchanged during system operation. It resumes control whenever an interrupt occurs. The
System Map describes the logical memory space which includes:

RTE-III System

System Base Page

Memory Resident Library

Common or SSGA (optional)

System Available Memory (system work space)

USER MAP

The User Map is loaded with the appropriate set of page addresses each time a memory
resident or disc resident program is dispatched for execution. Thus, the User Map is dynamic.

19

Memory Mapping

Memory resident programs share a single set of page addresses which describe:

RTE-III System

System Base Page

Memory Resident Library

Common or SSGA (if used by program)
Memory Resident Program Area

Each disc resident program has its own set of page addresses which describe:

RTE-HI System

® Memory Resident Library

¢ Common or SSGA (if used by program)

® Program

® Program Base Page/System Communication Area

PORT MAPS

The Port A Map or Port B Map is automatically enabled each time a data transfer occurs on a
Dual Channel Port Controller (DCPC) channel. The Port A Map describes the buffer space of
the calling program each time a transfer occurs on DCPC channel one. The Port B Map
describes the buffer space each time a transfer occurs on DCPC channel two.

Figure 3-1 illustrates the scheme used for dynamic memory mapping.

20

Memory Mapping

32
REGISTERS

M-REGISTER

MAP INDEX
5 BITS

RELATIVE WORD
ADDRESS 10 BITS

PORT B MAP

SYSTEM MAP USER MAP PORT A MAP
10 BITS |
.
MEMORY ADDRESS BUS PAGE ADDRESS | WORD ADDRESS
(20 8ITS! 10 BITS | 10BITS
I
vy

MAIN MEMORY

t— 1 WORD (16 BITS)
[

1 PAGE (1, 024 WORDS)

UP TO 256 PAGES (256K WORDS)

Figure 3-1. Dynamic Mapping Scheme

21

Memory Mapping

Figures 3-2 and 3-3 illustrate physical memory and logical memory configurations respec-
tively.

HIGH MEMORY
(UP TP 256K WORDS)

PARTITION O

DISC RESIDENT
PROGRAM AREA

PARTITION 2 BASE PAGE

PARTITION 1

PARTITION 1 BASE PAGE

SYSTEM AVAILABLE MEMORY

MEMORY RESIDENT PROGRAM™

MEMORY RESIDENT PROGRAM 3
MAIN MEMORY RESIDENT
PROGRAM AREA

(MUST EXIST WITHIN FIRST
32 PAGES OF MEMORY)

MEMORY RESIDENT PROGRAM 2

MEMORY RESIDENT PROGRAM 1

BACKGROUND COMMON

RTE-tII SYSTEM

SYSTEM PAGE BASE

LOW MEMORY

Figure 3-2. Physical Memory Configuration

22

Memory Mapping

DESCRIBED BY

SYSTEM MAP THREE POSSIBLE CONFIGURATIONS DESCRIBED BY USER MAP
MEMORY DISK RESIDENT DISK RESIDENT
RESIDENT PROGRAM & PROGRAM, W/O
SYSTEM PROGRAM COMMON COMMON
UNUSED AREA
READ/WRITE
PROTECTED
L]
MEMORY
RESIDENT
PROG n
i DISK DISK
SYSTEM Py RESIDENT RESIDENT
AVAILABLE PROGRAM PROGRAM
MEMORY ™ AREA AREA
MEMORY
RESIDENT
PROG 2
MEMORY RESI-
DENT PROG 1
BG COMMON BG COMMON
COMMON <
(OPTIONAL IN RT COMMON RT COMMON
SYSTEM MAP) <
SUBSYSTEM GLOBAL SUBSYSTEM GLOBAL
<« - <
RESIDENT LIBRARY RESIDENT LIBRARY RESIDENT LIBRARY RESIDENT LIBRARY
]]]]
SYSTEM SYSTEM SYSTEM SYSTEM
COMMUNICATION COMMUNICATION
AREA SYSCTEM AREA, SYSTEM LINKS COMMUNICATION COMMUNICATION
LINKS, & RESIDENT & RESIDENT PROG AREA, SYSTEM LINKS, AREA, SYSTEM LINKS,
PROGRAM LINKS LINKS & PROGRAM LINKS & PROGRAM LINKS

See Note (1)

See Note (2)

See Note (3)

Notes: (1) -System Available Memory + Resident Library -+ System < 32K

(2) Memory Resident Programs + Common + Resident Library + System < 32K

(3) Disc Resident Program Area + Common + Resident Library + System < 32K
(4) Disc Resident Program Area + Resident Library + System < 32K

-— — POSSIBLE PAGE ALIGNMENTS

See Note (4)

<« INDICATES POSSIBLE
MEMORY PROTECT
FENCE SETTINGS

Figure 3-3. Logical Memory Configurations

23/24

RTE-lIl COMMANDS

COMMAND STRUCTURE

Interaction between you and RTE-III is accomplished through operator commands which you
enter from a terminal keyboard or through calls from your programs to the executive (EXEC)
module.

OPERATOR COMMANDS

The operator commands are the interactive communication link between you and the system.
These commands can be entered through a keyboard device to:

Turn a program on or off.

Suspend or restart a program.

Schedule a program for execution.

Change program priority.

Purge a temporary program (background disc resident).
Check status of a partition, program, or I/O device.

Set up a source file.

Allocate an LG track area.

Declare an I/O device up or down.

Dynamically alter logical unit number assignments for I/O.
Dynamically alter I/O device buffering assignment.
Examine or dynamically alter I/O device time out value.
Release disc tracks assigned to dormant programs.
Initialize the real-time clock.

Obtain the current time from the real-time clock.

Operator commands consist of a two-character command word that may be followed by
descriptive parameters. Upon entry, the command is examined for validity. If the command is
legally specified, it is executed.

You must inform RTE-III that you wish to enter an operator command. This is accomplished
by pressing any key on the console keyboard. RTE-III will acknowledge your signal by

displaying an asterisk (*) on the console. Following the display of this system prompt, you may
enter any legal command.

Table 4-1 is a list of RTE-III operator commands.

25

RTE-III Commands

Table 4-1. RTE-III Operator Commands

COMMAND FUNCTION

AB Abort. Terminate the current batch job.

BL Buffer Limit. Examine or modify the current I/O buffer limits.

BR Break. Set the aftention flag in the program ID segment to allow the program to
respond to the flag if desired.

DN Down Device. Declare an I/O device unavailable to RTE-III.

EQ 1. Equipment Status. Obtain a description and status report of an 1/O device.

2. Equipment Buffering. Change the buffer designation of an I/O device.

FL Flush Buffer. Eliminate the output from an I/O device buffer. This command is for use
with Multiple Terminal Monitor (MTM) only and can be legally entered only from a
terminal other than the system console.

GO Go Program. Reschedule a program previously suspended by the Suspend (SS)
operator command or equivalent EXEC call.

(T Initialize Time. Set program execution time value.

LG LG Track Control. Allocate or release disc tracks for an LG operation.

LS Logical Source. Designate source file location (disc logical unit number and starting
track number).

LU 1. Logical Unit Assignment. Obtain a report of the EQT entry number and device

subchannel number associated with a specific logical unit number.
2. Logical Unit Reassignment. Modify a logical unit number assignment.

OF Off Program. Terminate a program or remove a temporary disc resident program
from the system.

ON On Program. Schedule a program for execution by placing it into the time list.

PR Priority Change. Modify the priority value of a program.

RU Run Program. Schedule a program for execution. This command does not affect the
program time list entry.

RT Release Tracks. Release disc tracks assigned to a program.

SS Suspend Program. Place an executing or scheduled program in the suspended list.

ST 1. Status, Program. Report the status (priority, current list, and time value) of a

specified program.

2. Status, Memory. Report the name and partition number of the currently executing
program.

3. Status, Partition. Report the name of the program currently occupying a specified
partition.

Tl Time Request. Report the current year, day, and time of day from the real-time clock.

™ Time Set. Initialize or change the time value in the real-time clock.

TO Time Out Device. Report or change the time out value for an I/O device.

up Declare an I/O device available to RTE-III.

26

RTE-III Commands

PROGRAM CALLS TO EXEC

EXEC calls are the communication link between your executing program and RTE-III. Using
calls to EXEC, your program can:

Perform I/O operations.

Allocate and release disc space.

Suspend or terminate itself.

Schedule other programs for execution.

Set time of execution cycles.

Obtain partition status information.

Obtain the current time from the real-time clock.
Load a background disc resident program segment.

When compiled, EXEC calls result in a block of words beginning with a jump-to-subroutine
(JSB EXEC) instruction followed by a list of parameters defining the request. Execution of the
JSB EXEC instruction results in a memory protect violation interrupt and a transfer of control
to the EXEC module. EXEC examines the parameter list and, if the call is valid (legally
specified), initiates processing of the request.

In FORTRAN, calls to EXEC are coded as CALL statements or as FUNCTION calls if the A-
and B-register contents are to be checked.

In ALGOL, these calls are declared as CODE procedures with parameters called by name.

In Assembly Language, calls are coded as JSB EXEC instructions followed by parameter
definitions.

Table 4-2 is a list of RTE-III EXEC calls.

27

RTE-IIT Commands

Table 4-2. RTE-III EXEC Calls

CALL

REQUEST
CODE

FUNCTION

11O Read
11O Write

I/O Control

Class I/0O Read

Class I/O Write

Class I/O Control

Class /0O Write/Read

Class /O Get

110 Status

Disc Track Allocation:
1. Program

2. Gilobal

Disc Track Release:
1. Program

2. Global

Program Compiletion

Program Suspend

Program Segment Load

1

2

3

17

18

19

20

21

13

15

16

Transfer information from an external I/O device.
Transfer information to an external /0O device.

Pass control information such as rewind (mag-
netic tape) or form feed (line printer) to the 1/O
device.

Initiate the transfer of information without wait
from an external non-disc 1/0 device or program
which may be shared with other programs.

Initiate the transfer of information without wait to
an external non-disc /O device or program
which may be shared by other programs.

Pass control information such as rewind (mag-
netic tape) or form feed (line printer) to the /O
device in a Class I/O environment.

Initiate the transfer of information without wait to,
then from (write, then read) an external non-disc
I/O device or program which may be shared
with other programs.

Complete the data transfer initiated by a Class
I/O Read, Write, or Write/Read call.

Obtain /0O device status information from the
device EQT entry.

Allocate and assign a specific number of con-
tiguous disc tracks to the calling program.

Allocate a specific number of contiguous disc
tracks which will be available to any program.

Release some or all disc tracks previously
assigned to the calling program.

Release some or all disc tracks previously
allocated as global tracks.

Terminate execution of calling program or a
specified program.

Suspend the calling program from execution.
Load calling program segment into background

partition and transfer control to segment entry
point.

28

RTE-III Commands

Table 4-2. RTE-III EXEC Calls (Continued)

REQUEST
CALL CODE FUNCTION

Program Schedule:
1. Immediate with wait 9 Schedule a specified program for execution
immediately (wait for completion).

2. Immediate without wait 10 Schedule a specified program for execution
immediately (no wait for completion).

3. Queue with wait 23 Schedule a specified program for execution
(wait for completion). If the program to be
scheduled is not available (not dormant) the
calling program is placed in queue until the call
can be processed.

4. Queue without wait 24 Schedule a specified program for execution (no
wait for completion). If the program to be
scheduled is not available (not dormant) the
calling program is placed in queue until the call
can be processed.

Time Request 11 Obtain current time from the real-time clock.

Timed Execution 12 | Schedule the calling program for execution
either after an initial offset time value or at a
specified time.

Program Swapping Control 22 It the generated system allows it, the calling
program can lock itself into main memory so
that it will not be swapped to the disc in favor
of a program with higher priority.

Partition Status 25 Obtain status information about a specified
partition number.

Resource Management *-- Allow cooperating programs to utilize the same
system resource without interleaving 1/0.

Logical Unit Lock -- Allow up to 31 programs the exclusive use of an
I/O device.

*This is not an EXEC call but is a library call. It is included here for your convenience.

29/30

BATCH-SPOOL MONITOR

The Batch-Spool Monitor operates under supervision of the RTE-III Operating System to
provide control of files, programs, batch job processing, and input/output spooling. These
capabilities are provided through two separate but related subsystems — the File Manage-
ment Package and the Spool Monitor. Table 5-1 lists the components of the Batch-Spool
Monitor.

Table 5-1. Batch-Spool Monitor Components

BATCH-SPOOL MONITOR
1. File Management Package

a. FMGR Program (FMGR Operator Commands)
b. FMP Subroutine Library (FMP Subroutine Calls)
c. *D.RTR Program (Directory Maintenance)

2. Spool Monitor

a. GASP Program (GASP Operator Commands)
b. SMP Program (SMP Calls)

c. JOB Program (Job Input Spooling)

d. *SPOUT Program (Output Spooling)

e. *DVS43 Program (Spool Driver)

f. *EXTND Program (File Extender)

“You cannot directly request these programs.

FILE MANAGEMENT PACKAGE (FMP)

The File Management Package handles FMGR operator commands which are used to create
files, manipulate files and cartridges, and control batch jobs. It also links program calls to FMP
library routines which control file access and maintenance.

FMGR PROGRAM

The FMGR program is used to manage files and to control batch processing. You schedule
FMGR for execution using either the RTE-III RUN or ON command. After displaying a prompt
character, the program accepts FMGR operator commands from you. FMGR is also called by
the JOB program for batch processing operations. Table 5-2 is a list of FMGR commands. The
command list is organized functionally.

31

Batch-Spool Monitor

Table 5-2. FMGR Commands

?7?

EX
LL
LO
SV
‘TE
‘AN

CR
PU
ST
‘DU
L

:CN
‘RN

‘MS
LS
LG
‘MR
:SA
:SP
‘RP
‘RU

:OF
RT

TR

PA
DP
:SE
:CA
F

JO
‘EO
‘AB
TL
LU
:CS

FMGR Operation

Request error code explanation.

Terminate FMGR and return to RTE control.
Change logical unit number of list output device.
Change logical unit number of log output device.
Change severity code.

Print message to operator at system console.
Send message to job list device.

File Creation and Manipulation

Create a file (disc or non-disc).

Purge a file.

Store data in device or file (create file).
Dump data to device or created file.
List file contents on list device.

Control non-disc file.

Rename disc file.

Program File Creation and Manipulation

Mave source program to logical source area (LS).
Set or clear pointer to a logical source area (LS).
Allocate the LG track area.

Move relocatable program to LG track area.

Save LG or LS area as file (create file).

Save memory-image file for execution.

Restore memory-image file for execution.

Execute program, program file, or procedure file (transfer
file).

Remove program and ID segment from memory.
Release disc tracks assigned to program.

Procedure File Manipulation

Transfer control to procedure file (transfer file) or logical
device.

Pause and send message to log device.

Display parameter values.

Define global parameters.

Calculate values of global parameters.

Test and Branch on parameter values.

Batch Job Control

Initiate job.

Indicate end-of-job.
Terminate job.

Set time limit within job.
Switch logical units within job.
Change spoo! logical units.

32

Batch-Spool Monitor

Table 5-2. FMGR Commands (Continued)

FMP Cartridge Manipulation

:MC Mount cartridge.

AN Initialize cartridge.

:CL List cartridge directory.

DL List file directories.

:.DC Dismount cartridge.

PK Pack cartridge.

.CO Copy all files from cartridge to cartridge.
FMP CALLS

The FMP subroutine calls are issued from your program to access, maintain, and manipulate
files. Table 5-3 is a list of FMP calls and their functions.

Table 5-3. FMP Subroutine Calls

CALL FUNCTION

APOSN Position a file to a specific record.

CLOSE Close a file.

CREAT Create a file.

FCONT File control.

FSTAT File directory status request.

IDCBS Data Control Block (DCB) buffer size request.

LOCF File status request.

NAMF Rename a file.

OPEN Open a file.

POSNT Position a file to a record relative to the previous record.
POST Data Control Block (DCB) buffer flush (write to a file).
PURGE Purge (delete) a file.

READF Transfer a record from a file to a buffer.

RWNDF Reset position pointer to beginning of file.

WRITF Transfer a record from a buffer to a file.

SPOOL MONITOR

The Spool Monitor is an optional segment of the Batch-Spool Monitor. If selected, it operates in
conjunction with the File Management Package (FMP). Use of the Spool Monitor adds spooling
capabilities to the batch job processing operation.

A batch job is a set of FMGR commands which fit together to perform tasks. The set of
commands must begin with a JO command and end with an EO command.

33

Batch-Spool Monitor

Batch job processing without spooling is a simple “input/process/output” procedure. FMGR
reads the job commands directly from the input device and transfers processed data directly to
an output device. Figure 5-1 illustrates this type of batch job processing.

: BATCH

OUTPUT

m PROCESSOR DEVICE
(FMGR)

Figure 5-1. Batch Job Processing without Spooling

Spooling is the buffering of batch job input and output on disc files called spool files. The
addition of spooling capabilities to batch job processing increases the amount of data that can
be processed within a specific time period. Slow input and output devices do not hinder the
processing of data because the data is “spooled” into disc files and, subsequently, out of these
spool files. Figure 5-2 illustrates batch job processing with spooling.

Functions provided by the Spool Monitor include:

® Opening and closing spool files. Upon close of a spool file, the contents of the file are written
to a user selected non-disc device for output.

® Maintaining a record of the current status of all jobs and spool files in the system.

® Translating non-disc device references in program I/O calls into references to disc files
known as spool files.

The process of spooled input is called inspooling while that of spooled output is called outspool-
ing.

Inspooling is the process of accepting a job from a serial input device and placing that job in &
disc file called a spool file. The job is executed from the spool file according to its priority.
Resultant output is placed in a spool file.

Outspooling is automatic for jobs entered via the JOB program, no interaction with the system

is required to complete a job. Figure 5-3 is a simplified diagram of batch job flow using the
Spool Monitor. Figure 5-4 shows the events that occur during the spooling process.

34

Batch-Spool Monitor

INSPOOLING BATCH PROCESSING OUTSPOOLING
INPUT SPOOL FILES SPOOL FILES
! 1 1
i | |
v v v
INPUT BATCH OUTPUT
SPOOLER 7 PROCESSOR SPOOLER
(JOB) (FMGR) (SPOUT)
| » T |
| \] ! !
\ I v v
SPOOL / SPOOL OUTPUT
FILES \ / FILES DEVICES
\ !
\ |
< A 4
R — JOBFIL

SPLCON

INFORMATION FLOW
CONTROL FLOW

Figure 5-2. Batch Job Processing with Spooling

EXECUTES 18T

JoB
2
JOB 3-PRIORITY=3 g 08 3 EXECUTES 2ND LIST OUT
JOB JOB 2
JOB 2-PRIORITY=1 — JOB 1
| L LIST OUT LISTED
JOB 1-PRIORITY=2 JOB 2 SECOND
] EXECUTES LAST JOB 1
JOB 1 soe]l—"| ustout
3 JOB 3
EXECUTION
BY
INPUT BATCH INPUT SPOOLS PRIORITY OUTPUT SPOOLS OUTPUT LISTS
INPUT DEVICE DISC cPU DISC OUTPUT DEVICE

Figure 5-3. Batch Job Flow with Spooling

35

Batch-Spool Monitor

inspooling
(JOB Program)

Processing
(FMGR Program)

Outspooling
(SPOUT Program)

JOB is started:
Reads input

JOB finishes
reading a job:
Updates JOBFIL
queue, schedules
FMGR:

JOB starts read-
ing next job.

JOB finishes read-
ing a job.

Job continues
operating until
there is no more
input to read.

FMGR starts:
Looks at JOBFIL.
queue and finds
job to process.
Sets up read
spool. Sets
write spools.
FMGR continues
to process this
job.

FMGR finishes job.
Closes spool files
and gets next job.

FMGR continues
processing until
there are no more
jobs left in the
JOBFIL queue.

SPOUT is scheduled
when first write
spool is set up.
Starts transferring
data to devices as
soon as a file is
gueued and output
exists.

36

Figure 5-4. Spooling Event Chart

Batch-Spool Monitor

GASP PROGRAM

The GASP program permits you to interactively control I/O spooling operations. You schedule
GASP for execution using either the RTE-III command RUN or ON. After displaying a prompt
character, GASP accepts entry of commands which control the spool environment. The follow-
ing commands (Table 5-4) are supported by the GASP program:

Table 5-4. GASP Operator Commands

COMMAND FUNCTION

AB Abort a job before it is run.

CJ Change job status (job priority, or hold/release state).

CS Change spool status (spool priority, or hold/release state).

DA Deallocate all spool files and spool control files.

DJ Display job status.

DS Display Spool Status.

EX Exit (terminate) GASP program.

KS Kill (purge) spool file in outspooling queue.

RS Restart outspooling operation from the beginning.

SD Shut down Batch-Spool Monitor.

SU Start up Batch-Spool Monitor following a shut down.

?7? Request an explanation of an error (expand message).
SMP CALLS

The Spool Monitor program (SMP) provides a callable subroutine named SPOPN which is used
to open a spool file. Once a spool file is open, SMP calls are available to control outspooling
from user programs. These calls are used to:

Save a file at the end of an operation.

Purge a file at the end of an operation.

Pass the spool file to the outspooling queue immediately.

Close the spool file and pass it to the outspooling queue.

Change the outspooling logical unit number, or priority.

Set the buffering flag in the outspooling EQT entry.

Clear the buffering flag in the outspooling EQT entry.

Obtain spool file position information; that is, the position of the record pointer.
Change the spool file starting position.

37/38

INDEX

ALGOL Language, 4, 12
Allocation, Resource, 1

Area, Disc Resident Program, 5
Area, Memory Resident Program, 5
Assembler Language, 4, 12

Background Programs, 4, 7
Batch Processing, 8
Batch-Spool Monitor, 16, 31
Buffering, I/O, 11

Calls to EXEC, 4
Central System, 14
Class 1/0, 11
Class READ, 12
Class WRITE, 12
Class WRITE/READ, 12
Command Structure, 25
Commands, FMGR, 32
Operator, 4, 25
RTE-III, 25
Communication, Program to Program, 12, 14
Components, Batch-Spool Monitor, 31
Control, I/0, 1
Operator, 4
Program, 4

Data Management, 1

Data Transfer, 1

Device Time-Out, 11

Disc Resident Programs, 4
Disc Resident Program Area, 5
Distributed Systems, 14
Dormant State, Program, 6
Down Load, 1€

Dynamic Mapping Scheme, 21
Dynamic Memory Mapping, 19

EDITR, 12, 16

Exclusive Logical Unit Assignment, 11
EXEC Calls, 4, 27, 28

Executing State, Program, 6
Execution, Program, 7

Executive, System, 1

External Event Interrupt, 7

File, 1, 31

File Management, 1, 16, 31
File Manager, 16

FMGR Commands, 32

FMGR Program, 31

FMP, 31

FMP Subroutine Calls, 33
FORTRAN Compiler Language, 4, 12
FORTRAN IV Language, 4
FORTRAN Language, 4

GASP Program, 37
GASP, Operator Commands, 37
Generation, System, 2, 3

/0, 1
I/0, Buffering, 11

Control, 1

Scheduling, 1

Support, 1

Transfer, 1

Wait List, 11

Class, 11

Re-entrant, 11
ID Segment, 5
Identification, Program, 5
Input, 11
Input/Output, 11
Inspooling, 34
Installation, System, 3
Interrupt, External Event, 7

Language Support, 4
Language, ALGOL, 4, 12
Language, Assembler, 4, 12
FORTRAN IV, 4
FORTRAN, 4
Language, Multi-User Real-Time BASIC, 4, 12
Library, Relocatable Subroutine, 5
List, I/O Wait, 11
LOADR, 14, 16
Locking, Resource Number, 10
Logical Memory, 19
Logical Memory Configurations, 23
Logical Unit Assignment, Exclusive, 11

Management, Data, 1
Map, Port A, 19
Port B, 19
System, 19
User, 19
Mapping, Dynamic Memory, 19
Maps, Port, 19
Memory, 2
Memory Management, 2

I-1

Memory Partitioning, 2, 8 Read, Class, 12

Memory Resident Programs, 4 Re-entrant I/O, 11
Memory Resident Program Area, 5 Real-Time Clock, 7
Memory, Logical, 19 Real-Time Programs, 7

Physical, 19 Relocatable Subroutine Library, 4
MTM, 12 Resource, 10
Multi-Terminal Operation, 12 Resource Allocation, 1
Multi-User Real-Time BASIC Language, 4, 12 Resource Management, 10
Multiple Terminal Monitor, 12 Resource Number, 10
Multiple Terminal Environment, 14 Resource Number Locking, 10
Multiprogramming, 2, 7, 8 Resource Sharing, 10

RTE-III Commands, 25
RTE-III Control, 4

Number, Resource, 10 RTE-III EXEC Calls, 28
RTE-III Operator Commands, 26

RTGEN, 3
On Line Program Development, 16, 17

Operation, Multi-Terminal, 12
Operator Commands, 4, 25
Operator Commands, GASP, 37 Scheduled State, Program, 6
Operator Control, 4 .
Scheduling, 1

Operator Request, 7 . .
Outout. 11 Scheduling Programs by Priority, 2

wput, Scheduling Programs, 7
Scheduling, External Event, 7
Segment, ID, 5

Satellite System, 14

Outspooling, 34

Partitioning, Memory, 2, 8 SMP Calls, 37

Permanent Program, 5 Spool Monitor, 31, 33
Physical Memory, 19 Spool Monitor Functions, 34
Physical Memory Configuration, 22 Spool Monitor Program, 37
Port A Map, 19 Spooling, 34

Port B Map, 19 Spooling Event Chart, 36
Port Maps, 19 Support, 1/0, 1

Priority, Program Scheduling, 2 Language, 4

Program Area, 5 Suspended State, Program, 6
Program Calls to EXEC, 27 System Executive, 1
Program Control, 4 System Generation, 2, 3
Program Development, 14 System Installation, 3
Program Development, On Line, 16 System Map, 19

Program Development Flow, On Line, 17 System, Central, 14
Program EXEC Call, 7 Satellite, 14

Program Execution, 7 Systems, Distributed, 14

Program Identification, 5
Program Scheduling, 1
Program Scheduling by Priority, 2

Program State, Dormant, 6 Temporary Program, 6
Executing, 6 Time-Out, Device, 11
Scheduled, 6 Time-Sharing, 8
Suspended, 6 Transfer of Data, 1

Program States, 6 Transfer, 1/0O, 1

Program to Program Communication, 12, 13, 14
Program, Permanent, 5
Scheduling, 7

User Map, 19
Temporary, 6
Programs, Background Disc Resident, 4, 7
Disc Resident, 4
Memory Resident, 4 WRITE, Class, 12
Real-Time, 7 WRITE/READ, Class, 12

I-2

READER COMMENT SHEET
RTE-Ill General Information Manual

92060-90009 FEB 1976

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO.141
CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL ————

No Postage Necessary if Mailed in the United States Postage will be paid by I

Manager, Technical Publications EE——
Hewlett-Packard Company S———"
Data Systems Division SE—
11000 Wolfe Road —

Cupertino, California 95014 S

e e e e e e e e e e e e e e wm e e e e - e . o . m . . o o —— — —— - — — . e — — —— o —

HEWLETT 'hﬁ, PACKARD

PART NO. 92060-90009

Sales and service from 172 offices in 65 countries.
Printed in U.S.A. 2/76 11000 Wolfe Road, Cupertino, California 95014 :

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	I-01
	I-02
	replyA
	replyB
	xBack

