Session Monitor

User's Student Course Book
Volume |

mmnmm duto systems
training center

" September 1, 1979

22999-90220
updated August 1, 1980

~© Copyright. Al rights reserved. No part of this work may be reproduced or copied in any form or by any means — graphic,
eisctronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems — without written permis-
sion of Hewiett-Packard Company.

22999-90220 Session Monitor User Student Workbook

The following pages were updated in this manual Aug.80:

1-28 2-35 3-2 4-2 5-10 thru 14 6-3

-32 -7 -6 -16 -12

-34 -9 -32 -18 -13

-35 -14 -21 : -26

-18 thru -45 -22 ‘

7-6 8§-9 9-4 10-12 12-20 f Title pg.
-7 -13 -6 " .32 Chpt. 17
20-2

-3

-6 thru -20

-Total=80 pages

HP 1000 RTE-IVB/SESSION MONITOR
- USER’S COURSE
STUDENT WORKBOOK — VOLUME 1

This volume of the Student Workbook is for use during week 1 of the
2 week HP 1000 RTE-IVB/Session Monitor User’s Course.

The schedule below indicates the chapters of the Student Workbook
to be used during the week and the corresponding lab exercises.
The topics to be discussed in each chapter are summarized in the
Table of Contents.

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

8 [INTRODUCTION 1 Review Review Review Review 8
and 3. RTE 5. PROGRAM 7. USING RTE's 10.USING FILES
g | WELCOME ORGANIZATION | . DEVELOPMENT 1 SERVICES ‘] PROGRAMMATICALLY) 4
1. AN INTRCDUCTION PROGRAMMATICALLY] — FMP CALLS
T0 ATE o
10 + + -+ -+ <+ <+ 10
LAB § LAB 7 LAB 10a
11 == .o - -+ -+ o= 11
LAB 1 LAB 3
12 12
1 1
Review Review Review Review Review
2. USING YOUR | 4. FILE MANAGEMENT | 6. PROCEDURE 8. INTERACTING (MORE FMP CALLS)
2 4 RTE SYSTEM 4 SYSTEM L FILES 4 wITH YOUR i 42
PROGRAM
3 T 7 T 9. TYPE 6 FILES 3
LAB 4 LAB 6 LAB 8, 9 LAB 10b
LAB 2
4 4+ + <+ 4
5 5

TABLE OF CONTENTS — VOLUME 1

CHAPTER

1. AN INTRODUCTION TO RTE

A. RTE o
B. The File Management System
C. Session Monitor
D. Booting Up RTE

2. USING YOUR RTE SYSTEM

A. Introduction to FMGR
B. Introduction to Program Development in RTE

3. RTE ORGANIZATION

A. BREAKMODE — Interactlng with FITE
B. RTE Concepts —-
memory management,
prcgram management (states),
/O structure
C. Troubie Shooting
D. BREAKMODE vs SYSTEM Commands

4, FILE MANAGEMENT SYSTEM

A. File Management System Overview
B. Using Disc Cartridges

C. Using Files -

D. Accessing Non-disc Devices

5. PROGRAM DEVELOPMENT

A. The Program Development Process
B. FTN4 and ASMB

C. LOADR

D. COMPL/CLOAD

TABLE OF CONTENTS — VOLUME 1

CHAPTER

6. PROCEDURE FILES

A. What is a Procedure File?

B. Generalized Procedure Files

C. Nested Procedure Files

D. Interacting with Procedure Files

7. USING RTE’s SERVICES PROGRAMMATICALLY

A. Introduction to EXEC Calls
B. I/O Processing

8. INTERACTING WITH YOUR PROGRAM

A. Passing Information
B. Suspending Programs
C. Terminating Programs

9. TYPE 6 FILES

10. USING FILES PROGRAMMATICALLY — FMP CALLS

Why FMP Calls?

How FMP Calls Work

Using FMP Calls

More on How FMP Calis Work
More FMP Calls

moomp

APPENDIX

A. LAB EXERCISES
Labs 1 to 10

WV

1
AN INTRODUCTION
TO RTE

SECTION
A RTE 1-3
B THE FILE MANAGEMENT SYSTEM 1-16
C SESSION MONITOR | 1-24
o

BOOTING UP RTE 1-33

1-2

1A. RTE

THE REAL TIME EXECUTIVE
OPERATING SYSTEM

AN OPERATING SYSTEM IS:

an organlzed collection of routines Whlch

manages the use of system resources for users
and their programs. -

1-3

RTE MANAGES SYSTEM
RESOURCES

SYSTEM RESOURCES INCLUDE:

e CENTRAL PROCESSING UNIT (CPU)

— executes user programs and the routines of the
operating system

* MEMORY

— contains the operating system (tables, routines,
data areas)

— contains user programs and their data areas

¢ PERIPHERAL DEVICES
— are used for secondary storage

— are used to input or output information to or
from the computer

1-4

RTE IS A

REAL-TIME

MULTIPROGRAMMING

TIME-SLICING

OPERATING SYSTEM

1-5

REAL-TIME

8 AM
\
PROG 1 PROG 1
EXECUTES EXECUTES
PROG 2
EXECUTES
time we——g-

Y

PROG 1
EXECUTES

external event

® programs can be scheduled to execute at specific times

PROG 1
EXECUTES

PROG 2
EXECUTES

time "

® programs can execute in response to external events

RTE IS A
REAL-TIME
SYSTEM

® RTE maintains a SYSTEM CLOCK which is
updated every 10 milliseconds.

RTE is INTERRUPT DRIVEN.

1-7

RTE IS INTERRUPT DRIVEN

An INTERRUPT is a voltage pulse that the computer
interprets as the signal of an event.

All RTE actions are in response fo interrupts:

1. You strike a key on a terminal. The terminal
sends an inferrupt fo the computer. RTE
responds fo the interrupt by printing a
command prompf.

2. The line printer finishes outputting a
character. It sends an interrupt back to the
computer to request the next character.

J. A steam turbine is about to go critical. A
temperature sensor sends an interrupt to the
computer. RTE recognizes the inferrupt and
responds by running a program which shuts
off the fuel.

1-8

MULTIPROGRAMMING

PROG 1 PROG 1 PROG 1
EXECUTES | PRINTS EXECUTES
PROG 2 PROG 2 PROG 2
EXECUTES EXECUTES PRINTS
PROG 3
EXECUTES
time ———p

® while one program is waiting for a data transfer to
complete, the CPU can execute another program.

® programs appear to execute in

concurrently).

1-9

parallel (or

RTE IS A
MULTIPROGRAMMING
SYSTEM

¢ PROGRAMS EXECUTE BY PRIORITY

If a program is executing when a higher priority
program is scheduled, the higher priority program will
begin execution.

e PROGRAMS ARE SUSPENDED WHILE WAITING
FOR DATA TRANSFERS (AMONG OTHER THINGS)
TO COMPLETE

While a program is suspended, RTE will not consider it
for execution. When the data transfer completes, RTE
will again consider the program for execution, according
to its priority.

1-10

RTE IS A
TIME-SLICING
SYSTEM

High priority

RN G ARTS GMRED AR D L WA S w—

Low priority

1-11

USING RTE

RTE offers many services for its users, including
management of

® programs
® memory
e |/O operations

You can request RTE services with

e INTERACTIVE commands entered at your
terminal:

*RU,PROG6

N

command to name of program
run a program to be run

e PROGRAMMATIC REQUESTS (EXEC CALLS)
issued by a program:

CALL EXEC (9,NAME)

/N

request code to array containing the
run a program name of program

to be run
1-12

RTE RUNS PROGRAMS FOR YOU

MEMORY
user
program
area
ID Segment
PROGA
system

In RTE, a program has two parts:

MEMORY IMAGE CODE
® resides on the disc

® contains the program’s
instructions and data
areaqs

® s created when the
program is loaded

1-13

DISC

ID_SEGMENT

® resides in mem:ory

® identifies the program

® contains the location of
the program’s Memory
Image Code on disc

® s filled in (using a blank
ID segment) when the
program is Run

RTE HANDLES I/0 FOR YOU

LU 6 LU 7
line printer line printer
1 2

user terminal LU 65

MEMORY
\ ,
user
program

area COMPUTER
(CPU)

v— c— c— co—

system /

user terminal LU 66

2
mag system
tape console

LU 8 LU 1

When an RTE system is generated, the System Manager assigns
each peripheral device a LOGICAL UNIT (LU) number.

You can then refer to a peripheral device by specifying the
appropriate LU.

"RTE — A REAL-TIME,
MULTIPROGRAMMING,
TIME-SLICING
OPERATING SYSTEM

RTE OPERATING SYSTEM

HP 1000
HARDWARE

RTE manages system resources

® program execution
® memory management
® I/O operations

via interactive and programmatic commands

18. THE FILE MANAGEMENT
SYSTEM

FILE MANAGEMENT SYSTEM

RTE OPERATING SYSTEM

HP 1000
HARDWARE

THE FILE MANAGEMENT SYSTEM

® acts as a user interface to RTE via interactive commands

e manages files for users via interactive and programmatic
commands

(&)
THE FILE QE\;)

MANAGEMENT SYSTEM

FMGR
The program FMGR accepts new commarids which

® interface the user to RTE

® allow the user to manipulate files interactively

You normally use the system through FMGR.

FMP LIBRARY
A set of routines which manage files.

Your programs can manipulate files via calls to the
routines in the FMP library.

FMGR uses these routines to do its job.

1-17

FILES &
RECORDS

A FILE is a collection of related pieces of information

¢ temperature measurements taken last month
® names and addresses of all students in this class

® FORTRAN statements in a FORTRAN source program

A RECORD is an individual piece of information in a file

~ ® a single temperature measurement
® the name and address of one student

® a single statement in a FORTRAN source program

RECORD 1 | RECORD 2 |...| RECORD N | EOF
A —

~—

A FILE which might reside

— on disc
— on mag tape
— on cards

1-18

DISC ORGAMIZATION

When generating the RTE system, the System Manager
divides the disc into several areas. Each of these areas is
assigned a Logical Unit number. For example,

7906

e
e
\ 256 tracks LU 2
256 tracks; LU 3
141 tracks LU 30
141 tracks LU 32
401 tracks LU 31

HP 1000
Computer

(LOGICAL) DISC CARTRIDGES

Each disc LU operates independently of the others and can
be thought of as a separate ‘“logical” disc.

LU 2 256 tracks

ﬂ 256 tracks

LU 30 141 tracks

\@ 141 tracks
401 tracks

-

Disc LU’s are frequentiy called DISC CARTRIDGES or
CARTRIDGES.

HP 1000
Computer

CARTRIDGE ORGANIZATION

GIEM ARES
SYSTEM
TRACK_POOL

LU 2 — USER FiLE
. AREA
the system cartridge (FMP AREA)

SYSTEM
TRACK POOL

LU 3 — USER FILE
the auxiliary cartridge (FMQRESEA)

LU x — USER FILE AREA
a peripheral cartridge (FMP AREA)

1-21

FILE DIRECTORIES

Each cartridge contains a FILE DIRECTORY which

¢ contains information about that cartridge

® lists the names and locations of all the files residing in the
FMP Area of that cartridge

TN

LU 31 info

LU 31

FILE

DIRECTORY FILE 1 |~
N
N FILE 2 ~ N\

\ FILE 3 =< N\

1-22

QILES vs PROGRAMS

e FILE MANAGEMENT SYSTEM e RTE
creates schedules
stores terminates
renames suspends
FILES PROGRAMS
* FILES CONTAIN e PROGRAMS CONTAIN
ASCIl data Memory Image Code
binary data .
source code
relocatable code
e FILES RESIDE IN ' s PROGRAMS RESIDE IN
the FMP area of a the system track pool
cartridge area of LU 2§ or 3
e FILE DIRECTORIES e ID SEGMENTSj
identify FILES identify PROGRAMS

1-23

1C. SESSION MONITOR

SESSION MONITOR

FILE MANAGEMENT SYSTEM

RTE OPERATING SYSTEM

HP 1000
HARDWARE

SESSION MONITOR
e restricts access to the system and its resources
e protects users from each other

e provides a friendly multiuser environment

1-24

w SESSION MONITOR 3+

RESTRICTS ACCESS TO THE SYSTEM AND ITS
RESOURCES

Each user=» must have an account

=> may be given restricted access to peripheral
devices

-» may be given limited use of commands

PROTECTS USERS FROM EACH OTHER

=> users can share disc cartridges or have exclusive access to
one or more cartridges

-» user programs are protected from the activities of other
users |

PROVIDES A FRIENDLY MULTIUSER ENVIRONMENT

=> users do not need to know about ““system configixration”
— every user’s terminal is LU 1

=» a user at a terminal has the impression of having the
system to himself

1-25

W USERS & GROUPS -

The System Manager can view the users of an RTE system
as both individual users and members of groups of users.

GROUPS

ALL USERS OF THE SYSTEM

| ASSEMBLY | ADMIN

/

PROG DEV |

A\

USERS

JIM

JANE

HAL | | PETER| [FRANK | [KAREN] [ALICE |

1-26

USER ACCOUNTS

® Each user must have an account set up by the System Manager.
The user’s account describes what the user ‘‘can and cannot”’
do when using the system.

® A user’s account consists of a

"user name — identifies the individual user
group name — identifies the user’s group
password — protects the user’s account
-capability level— restricts the use of commands

Session Switch Table ‘
(8ST) — identifies the peripheral devices which the

user can access

® The parameters of each user account are stored in the
ACCOUNTS FILE which is maintained by the System
Manager.

1-27

LOGGING ON

1. Strike a key on a terminal; the system will ask you to
log-on.

PLEASE LOG ON: KAREN.PROGDEV
PASSWORD?----===~-

The system checks the validity of your responses, and
then

2. Prints information about the time of log-on and messages
from the system manager about the status of the system.

SESSION 65 ON 7:16 PM FRI., 20 JULY, 1979
PREVIOUS TOTAL SESSION TIME:2689 HRS., 48 MIN., 03 SEC.

.**************ir********************if**

*
* *
x *
: WELCOME TO :
* RTE IVB WITH SESSION MONITOR :
X | .
% ke e ok Kk e e ek Tk e sk ke ke ok ke ke ke ke k ke ok ok ko o ke Kk
THE SYSTEM WILL BE DOWN ON JULY 25 FROM 6 AM TO 9 AM.

3. Lets you know if you have any messages from other
users:

MESSAGES WAITING

1-28

4. Runs a copy of FMGR at your terminal:

‘® FMGR processes a HELLO file set up by the System
Manager to greet you.

HI KAREN, USE THESE LU’S TO REFER TO
I/0 DEVICES OR DISC CARTRIDGES:

LU 1 - YOUR TERMINAL

LU 4 - THE LEFT CTU

LU S - THE RIGHT CTU

LU 2 - THE SYSTEM CARTRIDGE

LU 3 - THE AUXILIARY CARTRIDGE
LU 6 - THE PRINTER IN ROOM 9
LU 8 - THE MAG TAPE UNIT

* FMGR then prompts you for a command

f

waiting for a command

You are now logged onto a SESSION.

1-29

) SESSION SWITCH TABLE¢,

When defining a user’s account, the System Manager specifies
those peripheral devices available to the user. This is done by
putting the appropriate LU numbers in the user’s Session Switch

Table (SST).

account entry for
KAREN.PROGDEV

r

RTE uses these
LU's to accomplish
/0 requests.

|

T

system

KAREN
PROGDEV
%KRP
30
SST

LU {session LU

o~wn | | |

1 (terminal)
4 (LCTU)

5 (RCTU)

2 (sys cart.)
3 (aux cart.)
6 (line ptr.)
8 (mag tape)

TN

1-30

ACCOUNT FILE

KAREN.PROGDEV

uses these LU’s to
refer to /O devices
and disc cartridges.

SESSION CONTROL BLOCK

If you specify a valid account when logging on, the system
creates a Session Control Block (SCB) for you.

SCB IN MEMORY

KAREN-PROGDEV
30

These are filled in SST
when you log-on at

a specific terminal system LU |session LU

65
71
72

oL L~

~NWwh

The SCB is then used to restrict your access to peripheral
devices and interactive commandis.

1-31

LOGGING OFF

/

To end your session, use the FMGR EX command to log off.

tEX
$END FMGR
FMGES REMOVED

SESSION 65 OFF 7:23 PM FRI., 20 JULY, 1979
CONNECT TIME: 00 HRS., 07 MIN., 06 SEC.

CPU USAGE: 00 HRS., 00 MIN., 01 SEC., 40 MS.
CUMULATIVE CONNECT TIME:28689 HRS., 55 MIN., 09 SEC.

MESSAGES WAITING
END OF SESSION

The system logs you off by:

1. terminating any active programs you have.

2. releasing any system resources allocated to you (e.g.
releasing any ID segments belonging to your programs;
releasing your SCB).

3. postiﬂg your connect time, CPU usage time and log off time
to your account entry in the ACCOUNTS FILE.

4. printing a log off message at your terminal.

1-32

10. BOOTING UP RTE

RTE resides permanently in the system area of LU 2 (the
system cartridge). It must be loaded into memory

(booted-up) to execute.

Bootup can be done either manually or automatically.

MEMORY LU 2

User
Program
Area

FMP Area
(user file area)

System

THE COMPUTER

DISPLAY REGISTER
. 0 O “0l000I00VI0O0I0O0I00O
@ OVERFLOW EXTEND 15 14 13 12

11 10 9

EBBEBEBBBHBQQQB@
1000 COMPUTER
REGISTER SELECT
PARITY P o~ N
O pre- 0] O O O O O O O Oistrine
RUN SET INTERRUPT POWER A/x Bly M/m T/e P/f S/s STEP M/m STORE
SYSTEM FAIL/
ik B e TR
HALT I1BL/ CLEAR DEC MODE
TEST
E-SERIES

DISPLAY M/m

MANUAL BOOTUP is done from the computer’s
front panel.

1-34

MANUAL BOOTUP

With the LOCK/OPERATE switch inside the computer set to
OPERATE, the operator must enter information into the S-register
to bootup RTE. |

Perform these steps to bootup RTE manually:

1. Press HALT
2. Turn on all devices
3. Select the S-Register
4. Enter the following bit pattern into the display register.
15 |14 |13 1211 (10|98 |7|6]5[a[3]2]1]0
01 0jo]o
S— - l / —
- Disc loader Octal select code Surface#
ROM Number of system disc of system
~ disc
1 indicates manual boot from S-register
S. Press STORE to load the display register into the S-Register
6. Press PRESET
7. Press IBL
8. Press PRESET (again)
9. Press RUN

RTE IS NOW UP AND RUNNINGIII

1-35

BOOT INTERNALS

The DISC LOADER ROM contains a program which loads
the BOOT EXTENSION from disc into memory.

The BOOT EXTENSION is also a program. It loads the
RTE system from disc into memory and causes it to be
executed.

The BOOT PROCESS STEPS are:

1. Pressing IBL loads the program in the DISC
LOADER ROM into memory.

.2. Pressing RUN executes this program causing the
BOOT EXTENSION to be loaded into memory.
Control is automatically transferred to the BOOT
EXTENSION which loads and runs the RTE system.

3. The system displays ‘‘SET TIME’’ on the system
console and runs FMGR.

4. FMGR processes a “WELCOM?”’ file set up by the
System Manager.

1-36

AUTOMATIC BOOTUP
I

Vith the LOCK/OPERATE switch inside the
computer set to. LOCK, RTE will bootup
automatically when:

the RPL switch is set correctly.
the system console is on and on-line.
the system disc is on and on-line.

the CPU power switch is turned from OFF
to ON.

b ODN =

The bootup procedure reads the RPL switch
seftings. fo obtain the information needed to
‘boot up RTE.

1-37

10C. USING FMP CALLS

The FILE MANAGEMENT SYSTEM supports two types of files,
which differ only in their max_imum sizes.

Files allocated by —

blocks 128 block multiples
(STANDARD FILES) (EXTENDED FILES)
max file size 16383 blocks 32767 x 128 blocks
max record size . 32767 words 32767 words
max number of
records per file 215-1 records 231-1 records

Since FORTRAN integer variables (1 word) have a maximum
value of 32767, double word integers are needed to create or
access extended files. Therefore

TWO TYPES OF FMP CALLS

STANDARD FMP CALLS — to manipulate standard files (or
access extended files in
sequential order only)

EXTENDED FMP CALLS — to manipulate extended files (or
standard files)

10
USING FIL

LS

PROGRAMMATICALLY
~ FMP CALLS

10-1

uto

Section

10A
10B
10C
10D
10E

Why FMP Calls?

How FMP Calls Work

Using FMP Calls

More on How FMP Calls Work

. More FMP Calls

10-2

Page

10-5
10-8
10—-14
10-26
10-34

U10.2

SELF—-EVALUATION QUESTIONS

After the end of this module, the student
should be able to answer the following self-
evaluation questions.

1.
2.

List some of the uses of FMP calls.

When doing I/0 to the disc, how does RTE
transfer data?

What is a Data Control Block (DCB) and how

is it used?

What is an extended file?

What are the steps to using FMP calls in a
program? 4 |

Explain the difference between update and
non-update mode?

What is the difference between a logical and
a physical read?

Why do type 1 files have the fastest transfer
rate?

What are two ways of accessing a non-disc
device as a file?

10-3

u10.3

10-4 . U10.4

10A. WHY FMP CALLS?

Logical
Memory LU xx
User e
Program < Data Buffer &
Area
(/
Systemn < \

File "ADATA"

FORTRAN READS/WRITES

\%ERILI\’IPE (lu,format)——————

EXEC READS/WRITES

CALL EXEC (Jlu,—————~)
can be a parameters must
disc lua specify the exact

track and sector
address of the
desired record.

10-5 U10.5

ACCESSING DISC FILES
VIA FMP CALLS

FILE MANAGEMENT SYSTEM

FMGR FMP LIBRARY D.RTR

User programs can call these routines
to manipulate disc files.

10-6 u10.6

WHAT CAN YOU DO WITH FMP CALLS?

* Create disc files

Access disc files to:

— read records in sequential or random order
— write records in sequential or random order
— position the file at arbitrary locations
Purge files

Rename files

Obtain information about the cartridges
in your cartridge list

Control non—disc devices by treating
them as if they were disc files

10-7 u1o.7

10B. HOW FMP CALLS WORK

When a program does I/0 to a non—disc device,
data is usually transferred directly between the
device and a buffer in your program.

For example, consider a file with 100 25-word
records on a mag tape.

Logical LU 8
Memory Mag Tape
User
Program ¢ IBUF <
Area
System ﬁ
LU = 8

CALL EXEC (1,ILU,IBUF,25)

When you input 25 words of data, the mag tape
drive reads 25 words from the tape and stores the
data in the program's buffer.

10-8 u10.8

ACCESSING THE DISC

When a program does I/0 to the disc, RTE always
transfers data in blocks of 128 words, regardless
of the size of the records being transferred.

For example, consider a disc file with 100 25—word
records: .

Logical
Memory LU xx
Progtigg: 4 IBUF o
Areg /[\ <
|)
i !
l |
| l
| |
System < | the disc supplies
. 128 words of data
the desired 25 word record is then

transferred to the program's buffer

IDEA - wh%/ not save all 128 words of data in another
buffer in your program? Then, to input the next
record, you only need to access memory, not the
disc itself.

10-9 u10.9

DATA CONTROL BLOCK

FMP calls do I/0 to disc files via a DATA
CONTROL BLOCK (DCB) located in your program.

* The DCB is an intermediate memory
- buffer used in transferring data
between a program and a disc file.

* Data is temporarily stored in the DCB
and transferred to/from the disc only
when necessary or explicitly requested.

* All actions are transparent to the user.

10-10 u10.10

FOR EXAMPLE - READING
RECORDS FROM A DISC FILE

Logical Disc
Memory File
IBUF
= | 1
DCB

EOQF

When the program reads the first record of
the disc file:

1. a 128 word block of data is input from
the disc file into the DCB. This is called
"physical read".

2. the first record is then transferred from
the DCB to the program's data buffer.
This is called a "logical read'.

10-11 : U10.11

DCB PARTS

The DCB consists of two parts:

CONTROL INFORMATION
(clways 16 words)

PACKING BUFFER

(multiple of 128 words)

The control information includes:

1. where the file is located on disc,
2. what type of file is being accessed,
. 3. what records are in the DCB

The packing buffer contains the
actual data from the disc file.

10-12 u10.12

ADVANTAGES TO USING FMP CALLS

" FMP calls read/write to disc files by
name rather than by disc track and
sector. Therefore the files can be
moved without affecting program
execution.

If a piece of data to be read is already
in the packing buffer, it is not
necessary to do a physical read. This
saves time.

10-13 U10.13

FMP ERRORS

Each FMP call requires an error parameter. If
an FMP error occurs when the call is
executed, the File Management System
returns an error code in that parameter. Your
programs should always check for errors and
respond accordingly.

For example, if a program is wrifing records
to a disc file:

CALL WRITFCIDCB, [ERR, IBUF)
IFCIERR.LT.0)GO TO 999

(continue on with processing)

C ERROR REPORTING SECTION

999 CONTINUE
. WRITEC1,101)IERR
101 FORMAT("FMP ERROR"™,15,'"OCCURRED")
CALL CLOSECIDCB)
STOP

10-14

STEPS TO USING FMP CALLS

Each program using FMP calls needs the following
parts:

1. Declare an array of at least 144 words to serve
as the DCB for your FMP calls.

2. Open the disc file to the program by
calling OPEN for an existing disc file or

calling CREAT to create a file and open it.

Opening a file sets an open flag in the file
directory and associates the user specified DCB
with the file. :

3. Manipulate the disc file as desired, perhaps by
calling READF, WRITF, etc.

4. Close the file by calling CLOSE to clear the open

flag in the file directory and disassociate the
DCB from the file.

10-15

A PROBLEM TO CONSIDER

Suppose file &PROGA contains a source
program, has a security code of “RT” and
resides on cartridge LU 47 (CRN SS).

Write a program to list the file at your terminal.

Open the file

B

Input a record |.

@ yes

no

List the record

Close the file

10-16

OPENING A FILE

oCALL OPENe

OPEN will

1. close the DCB if it was left open previously.

2. associate the DCB with the named file and mark the file
open.

3. position the file at the first record.

CALL OPEN €IDCB, IERR, INAM, IOPT,ISC, ICR, IDCBZ)

size of DCB
packing
buffer if
>128 words

cartridge

security code

type of open

array containing
the file name

error parameter

array serving as
the DCB

10-17

DIFFERENT WAYS TO OPEN A
FILE

EXCLUSIVE vs NON-EXCLUSIVE ACCESS

A file opened exclusively may only be accessed by
the program that opened the file. A file opened
non-exclusively may be shared by up to 7
programs at the same time.

UPDATE vs NON-UPDATE MODE

If a file is opened in update mode, whenever a
record is written to the disc file, a physical read is
done first to insure that the data in the DCB is
current.

If you plan to do random writes to a disc file, you
need to open the file in update mode.

If you are only going to read data from or write
data to each record in the file sequentially, you
only need to open the file in non-update mode.

10-18

CREATING DISC FILES

®CALL CREATe
(CALL ECREA)D

“reates a file on a disc cartricdlge by
1. making an eniry in the file directory

2. allocating disc space for the file (with no data)

CALL CREAT (IDCB, IERR,INAM,ISIZE,ITYPE,ISC,ICR,IDCB2Z)

packing
buffer
size

cartridge

security code

file type

file size

array containing
file name

error parameter

array for DCB
The CREAT (or ECREA) call will

1. close any file currently associated with IDCB
2. create the file

3. open the file exclusively and in update mode. A
cail to OPEN may be made to change the type of
open to non-exclusive or non-update if desired.

10-19

READING RECORDS FROM A FILE

*CALL READFe
(CALL EREAD)

Transfers a record from the file currently associated with the DCB
to a buffer in the user’s program.

CALL READF (IDCB,IERR,IBUF,IL,LEN,NUM)

number of the
record to

access (type 1 or 2
files)

number of words actually
transferred

number of words requested

array (user buffer) to receive
the data

error paramefter

DCB

10-20

WRITING RECORDS TO A FILE

SCALL WRITFe
(CALL EWRIT)

Transfers a record from a buffer in the user’s program
to the disc file currently associated with the DCB.

CALL WRITF CIDCB, IERR, IBUF, IL,NUM)

number of the record to
access (type 1 or 2 files)

number of words to
be transferred

array (user buffer) containing
data to be transferred

error parameter

DCB

10-21

CLOSING FILES

eCALL CLOSEe
(CALL ECLOS)

Closes the file associated with the specified
DCB by

— writing the DCB to the disc if it was
modified

— clearing the open flag in the file
directory

— disassociating the DCB from the file

CALL CLOSE (IDCB, IERR, ITRUN)

allows truncating unused
blocks or extents

error parameter, only needed
if fruncating is attempted

DCB

Once closed, IDCB can be associated with
another file.

10-22

A SOLUTION TO OUR PROBLEM

&LISTF T=00004 IS ON CR S8 USING 00002 BLKS R=0000
0001 FTN4,L

0002 PROGRAM LISTF
0003 ¢

0004 C THIS PROGRAM LISTS FILE “&PROGA:RT:SS’° ON THE
0005 C USER’S TERMINAL. »
0006 C

0007 C

0008 INTEGER DCB(144), IBUF(40)

0009 INTEGER FILE(3), SEC, CART

0010 C ,
0011 DATA FILE/2H&P,2HRO,2HGA/, SEC/2HRT/, CART/2HSS/
0012 cC

0013 ¢

0014 ¢ OPEN THE FILE TO BE LISTED

0015 C

0016 CALL OPEN(DCB,IERR,FILE,0,SEC,CART)

0017 IF(IERR .LT. 0) GOTO 999

0018 ¢

0019 ¢

0020 ¢ READ RECORDS FROM THE FILE,

0021 C LIST EACH TO TERMINAL UNTIL EOF

0022 ¢

0023 10 CONTINUE

0024 CALL READF (DCB,IERR,IBUF,40,LEN)

0025 IF(IERR ,LT. 0) GOTO 999

0026 IF(LEN .EQ. ~-1) GOTO 90

0027 ¢

0028 ¢

0029 cC LIST RECORu, LOOP BACK FOR NEXT RECORD
0030 C

0031 WRITE(1,101) (IBUF(I),I=1,LEN)

0032 101 FORMAT (1X,40A2)

0033 GOTO 10

0034 C

0035 C

8036 C AFTER EOF IS FOUND, CLOSE FILE AND QUIT
037 C

0038 90 CALL CLOSE(DCB)

0039 CALL EXEC(6)

0040 C

0041 ¢

0042 C ERROR REPORTING SECTION

0043 C

0044 999 CONTINUE

0045 WRITE(1,102) IERR

0046 102 FORMAT(/“FMP ERROR ",I15)

0047 CALL CLOSE(DCB)

0048 END

00459

10-23

100. MORE ON HOW FMP CALLS
WORK

The DCB acts as a “window’ through which
your program looks at your file.

Logical Memory File

DCB

/

The packing buffer of
the DCB must be multiples
of 128 words

The size of the packing
buffer must evenly
divide the file into
pieces

10-24

‘ ACTUAL vs DECLARED DCB SIZE

The FMP routines will only use part of your declared DCDB’s
packing buffer if the packing buffer does not evenly
divide the file.

For example, for a file of 6 blocks (6 x 128 words):

Declared DCD Actual DCD

packing buffer size packing buffer used
128 words 128 words

2 x 128 2 x 128

3 x 128 J x 128

4 x 128 3 x 128

5 x 128 J x 128

6 x 128 6 x 128
-7 x 128 6 x 128

The size of the “actual DCB” used can be obtained by:

IUSED = IDCBS (IDCB)

DCB associated with your file

Actual DCB size used
(control words + packing buffer)

10-25

LOGICAL vs PHYSICAL

READS/WRITES
Logical Memory File
IBUF
Logical DCB
Reads/Writes /
e Physical
Reads/Writes

When a program reads or writes a record, a
“logical read or write” is done; "physical

reads or writes” cre done only if the desired
record is not in the current DCB.

10-26

WHEN I€E A PHYSICAL WRITE
DONE?

The contents of the DCB are written to the disc file
when:

1. the user’s program calls CLOSE (or ECLOS) and
the DCB contains modified records.

2. the user’s program accesses (i.e., reads/
writes/positions to) a record not in the current
DCB and the DCB contains modified records.

3. the user’s program calls POST. POST will write
the contents of the DCB to the disc if the DCB
contains modified records and set a flag to indicate
that there is no data in the DCB.

CALL POST CIDCB, IERR)

error parameter

DCB for the file

10-27

WHEN IS A PHYSICAL READ
| DONE?

e
V4 m'\

When a DCB is associated with a new ‘‘piece’’ of a disc
file, the data may or may not be input from the disc file
into the DCB.

® data is not input to the DCB when

— the file is first opened

— a program calls WRITF (or EWRIT) and the file
was opened in non-update mode

e data is input to the DCB when
— a program calls READF (or EREAD)

— a program calls WRITF (or EWRIT) and the file
was opened in update mode

10-28

TYPE 2,3,.... FILE ACCESS

Even though type 2,3,. ... files have differing
characteristics, these types of files are accessed in
similar manners:

® records are accessed via the packing
buffer in the DCB associated with the
file

® data transfers are done record by record

Logical Memory _ File
IBUF

o

g
Logical DCsB
Reads/Writes /

________ "
et t Physical
Reads/Writes

10-29

TYPE 1 FILE ACCESS

Each record in a type 1 file is 128 words long. Since
the disc drive transfers data in 128 word blocks, the
FMP routines transfer data directly between the
disc file and the user program’'s data buffer for
type 1 files.

Logical Memory File
IBUF] 28 words
128 . <
WOl‘ds \ }1")8 Words
DCB
}128 words
rd
e
]1 words
}128 words

the packing buffer
is not used to store data when
accessing a disc file of type 1.

Type 1 files have the fastest transfer rate because
transfers are directly to or from the users buffer.

o All files, except type 0 files, may be acicessed
as type 1 files, i.e., direct transfer through the

users buffer.
10-30

e Data transfers with type 1 files are not limited to the 128
word record length.

— for writes, data is transferred in muitiples of 128 words

| |
- | | 128 worgg
A — LU xx
4 (disc)
_______ / 256
) 150
150 words ’ 128
specified in WRITF User \ 128 words
Buffer
Y)

256 words will actually be
written to the disc file

— for reads, data is transferred in the exact amount

requested
LU xx
(disc)
150 words
specified in READF User

Buffer

the disc drive will read 256 words;
the FMP routines will only transfer
150 words to your data buffer.

10-31

10E. MORE FMP CALLS

The FMP calls may be grouped as follows:

Standard Call Extended Call Special Call
CREAT ECREA
File CRETS CRETS
e OPEN ‘ OPENF
Definition CLOSE ECLOS
PURGE
File READF EREAD
Access WRITF EWRIT
POSNT EPOSN
File RWNDF
Positioning LOCF ELOCF
APOSN EAPOS
POST
Special IDCBS
Purpose NAMF
FSTAT
FCONT

10-32

NON-DISC DEVICES

With FMP Calls, you can access non-disc devices just
as you would access disc files. This might be done in
two ways.

o Via a type B file
e Via an OPENF call

CALL OPENF (IDCB, IERR, INAM,IOPTN,ISC, ICR}, IDCB2)

size of
DCB
packing
buffer if
>128
words

cartridge

DCB security code

error parameter | open options

three word array containing a file name
or

lu number of a device to be accessed
as if there were a type @ file

10-33

CONTROLLING NON-DISC DEVICES

®CALL FCONTe

To control a device through its type O file or

to control a device opened via OPENF, use the
FCONT routine.

CALL FCONT CIDCB, IERR,ICON1,ICON2)

more control
information

control function

error parameter

DCB

10-34

LISTING MOUNTED CARTRIDGES

oCALL FSTATe
The FSTAT routine returns information about

® the cartridges accessible by your session

® qall cartridges currently mounted

CALL FSTAT CISTAT,ILEN, [FORM,IOP, IADD)

error parameter

type of cartridge listing

format selection
(show owner of cartridge?)

length of ISTAT

array where the cartridge
information is returned

10-35

e Reading or writing random records may be
- done directly in the READF (EREAD) or WRITF
(EWRIT) calls.

CALL WRITF (IDCB, IERR, IBUF,IL,NUM)
or CALL READF (IDCB, IERR, IBUF, IL,LEN,.:!UM)

/

— positive record number to read or write

— negative number of records to bcckspcce
before the read or write

e The file may be positioned to (but not
accessed) any random record by calling
POSNT (or EPOSN).

CALL POSNT (IDCB, IERR,NUR,IR)

L

y .
- forward space or backspace a relative
number of records

— position to an absolute record

10-36

RANDOMLY ACCESSING
SEQUENTIAL (TYPE =3) FILES

® Type 3 and above files may be positioned to any
random record by calling POSNT (or EPOSN).

CALL POSNT (IDCB, IERR,NUR, IR)

Positioning is done by READING SEQUENTIAL
RECORDS until the desired record is found.

® Type 3 and above files may be accessed in a
truely random fashion if you build a table of
record locations in your program and then use
this table whenever a record is to be accessed.
The routines LOCF (or ELOCF) and APOSN (or
EAPOS) allow you to do this.

10-37

ABSOLUTE RECORD LOCATIONS?

What do you need to know about a given
record in order to access that record without
doing sequential reads?

Logical Memory File

IBUF

?
We want to -)
read record 472
or DCB

?

1. which “"window” in the file contains the record

2. the location of the record within that
“window”

10-38

OBTAINING ABSOLUTE RECORD
LOCATIONS

oCALL LOCFe
(CALL ELOCF)

These routines return information about the
— size and location of your file.

— location of the record at which the file is currentiy
positioned.

retums returns

information about the information about

location of the current the file
record . \

" e

CALL LOCF (IDCB, IERR, IREC IRB, IDFF JSEC JLU,JTY,JRECD

|
record number / record
length
relative block number - file type
LU of cartridge

relative word number file size in sectors
(within the block)

10-39

POSITIONING A FILE TO AN ABSOLUTE
RECORD LOCATION

°CALL APOSNe
(CALL EAPOS)

These routines use — the record number
— the relative block number
— the relative word number

to position a file at a specified record.

CALL APOSN (IDCB, IERR, IREC, IRB, IOFF)

. record number //
obtained from {relative block number /

LOCF (or ELOCF) | |01 otive word number

10-40

USING YOUR RTE

SECTION

A INTRODUCTION TO FMGR 2-3

B INTRODUCTION TO PROGRAM
DEVELOPMENT IN RTE 2-15

2-2

2A. INTRODUCTION TO FMGR

Remember, when you successfully log on, the system
runs a copy of the program FMGR at your terminal.

FMGR accepts commands which allow you to use your
RTE system. ‘

!

waiting for a command |

FMGR uses three devices to perform its functions.

INPUT DEVICE

FMGR accepts commands from the input' device.

LIST DEVICE

FMGR outputs the results of certain commands to
the list device. ‘

LOG DEVICE

FMGR outputs error messages and accepts corrective
commands irom the log device.

2-3

CAPABILITY LEVELS FOR FMGR COMMANDS

CAPABILITY LEVEL

HE

AC MC TE 10
CL ME WH
DC *sSL 7?7
DL SM &+
LI

AN DP RN 20
CN DU ST
co LL SV
CR PK

CT PU

CS

+0F RT SL 30
RP RU &SP

CA PA SE 40
IF LO

SL 50

IN 60
oF

EX SY TR J 1

* Single parameter only
+ Program must be under session’s control

{z—_ Messaces < ypll

Users can send messages back and forth between each
other. RTE keeps a MESSAGE FILE for each of lts users.

:SM, user. group, filename, message string

user rece:ving
the message

file containing a
message

character string
to be sent as a
message

USER’S
MESSAGE
FILE

ME ’:’}:‘;vlename [,clear:l :]
A
fooo/

where the message(s) save (0) or clear (1)

are to be displayed the message

2-5

WHAT LU’s
CAN YOU ADDRESS?

The FMGR SL command will display the session LU’s which
you can use and their corresponding system LU’s.

:SLI, 1ul

y .

if specified, displays the system LU of
the specified session LU

for example,

:SL

SLU 1=LU # 21 = E §

SLU 2=LU # 2 = F 1

SLU 3=LU # 3 =E 1 S 6

SLU 4sLU # 4 = FE § S 1

SLU 5=LU # § =E 5 5 2

SLU e=LU # 6 =E 6

SLU 7=LU # 10 = E21

SLU 8=LU # 8 = FE 8

SLU 25=LU # 25 = E 1 S16

SLU 28=LU # 28 = E 1 S 1

SLU 38=LU # 38 = E 1 § 2

SLU 47=LU # 47 = E 1 S11
or

:SL,1

SLU 1=LU # 21 = E §

The SL command directs its output to the log device.

2-6

WHAT DISC CARTRIDGES CAN YOU ACCESS?

@

The FMIGR CL command prmts a list of the disc cartridges
which you can access.

:CL
LU LAST TRACK CR LOCK P/G/S

02 00255 00002 S
03-- - 00255 00003 S
28 00149 5P S

* Access to LU 2 and LU 3 is read only uniess you are the
system manager, ’ '

The CL command directs its output to the list device.

2.7

To see what files are stored on a particular cartridge, use
the FMGR DL command to list the contents of that
cartridge’s file directory.

:DL[,cartridgel

the LU (negative) or CRN (positive) of the
cartridge whose file directory is to be listed

for exampie,

:DL, -25
CR=01500
ILAB=DC0021 NXTR= 00000 NXSEC=076 #SEC/TR=096 LAST TR=00050 #DR TR=01

NAME TYPE SIZE/LU OPEN TO

FILEY1 00003 00024 BLKS
DATAF 00004 00010 BLKS
&PROG 00003 00004 BLKS

:DL,1500
CR=01500
ILAB=DC0021 NXTR* 00000 NXSEC=076 #SEC/TR=096 LAST TR=00050 #DR TR=01

NAME TYPE SIZE/LU OPEN TO
FILE1 00003 00024 BLKS

DATAF 00004 00010 BLKS
&PROG 00003 00004 BLKS

The DL command directs its listing to the list device.
2-8

WHAT DOES THIS FILE CONTAIN?

The FMGR LI command will display the contents of a
specified file.

LI, filename

1\
the name of a file whose contents are to
be listed

for example,

iL1,&PROG
4PROG T=00003 IS ON CR SS USING 00004 BLKS R=0000

0001 FTN4,L

0002 PROGRAM SFAVG(), FORTRANM PROGRAM, CALCULATE INTEGER AVERAGE
0003 ¢ :
0004 WRITEC1,101)

0005 101 FORMATC"“ THIS PROGRAM CALCULATES INTEGER AVERAGES,’*)
0oo0e WRITEC1,102)
0007 102 £ FORMATC’‘WHEN ASKED, ENTER AN INTEGER > 0./7)

0008 WRITEC1,103)
0009 103 FORMATC’’(ENTER 0 TO TERMINATE INPUT)’/)
0010 ¢

0011 ICT = 0

0012 ISUM = 0

0013 ¢

The Ll command aiso lists on the list device.
2-9

CHANGING THE LIST DEVICE

You can chénge your list device with the FMGR LL command.

:LL, lu
an LU which is to become the new list device

for example,

:CL
LU LAST TRACK CR LOCK P/G/S

02 00255 00002
03 00255 00003
28 00149 SP S

w w

:LL,8
:CL
sLL,1
:CL
LU LAST TRACK CR LOCK P/G/S

02 00255 00002 S
03 00255 00003 S
28 00149 spP S

2-10

RUNNING PROGRAMS

Use the FMGR RU command to run a program. FMGR% requests
RTE to schedule the program for execution and then waits for
the program to complete before issuing another prompt.

:RU, program name

name of a program to be run

for example,

:RU, SFAVG

THIS PROGRAM CALCULATES INTEGER AVERAGES,
WHEN ASKED, ENTER AN INTEGER > 0.

(ENTER 0 TO TERMINATE INPUT)D

INPUT AN INTEGER VALUE: 482
INPUT AN INTEGER VALUE: 412
INPUT AN INTEGER VALUE: 437
INPUT AN INTEGER VALUE: 0
YOU ENTERED 3 VALUES
.THE SUM WAS 1331

THE AVERAGE WAS 443

FMGR ERROR MESSAGES

FMGR uses error messages to report

— information

— input errors or illegal commands
FMGR error messages are of the form:

FMGR nnn

|

a positive or negative error number

for example,

:LI,AFILE
FMGR-006
:DK, =25
FMGR 010
DK,?

:SE, 24
FMGR 046

2-12

WHAT DOES THAT ERROR NUMBER MEAN?

-

There are two ways to get information about a FMGR error.

LEVEL | Use the FMGR ?? command to see a one-line
explanation of a FMGR error.

:??(,error number]

error number to be expiained; the explanation
is printed on the list device

for example,

tLI,AFILE

FMGR-0086

:??

FMGR -06 FILE NOT FOUND.
$??,10

FMGR 010 INPUT ERROR

2-13

“"HELP

The file *"HELP contains explanations about
e system errors
e FMGR errors
¢ LOADR errors
e etc.

A second way to get information about a FMGR error is to
consult the *"HELP file.

LEVEL Il Use the FMGR 'HE command to see the **HELP file
explanation about one of these errors.

:HE,[, keyword [, lu]]

iu where the explanation is printed

keyword of the error to be explained, i.e. FMGR-006

:LI,AFILE

FMGR-006

tHE

FMGR-006

FILE NOT FOUND

AN ATTEMPT WAS MADE TO ACCESS A FILE THAT CANNDOT BE FOUND CHECK THE
FILE NAME OR THE CATRIDGE REFERENCE.

tHE, IO 12 .
HELP PROGRAM ERROR HELPD0O02
KEYWORD NOT FOUND)
KEYWORD WAS NOT FOUND IN THE HELP FILE. IF THE
KEYWORD WAS SPECIFIED IN THE COMMAND, CHECK IT.
tHE, 1012
ID12
AN 1/0 REQUEST SPECIFIED A LOGICAL UNIT NOT DEFINED FOR USE BY
THIS SESSION. THE "SL" COMMAND WILL REPORT ALL LOGICAL UNITS
AVAILABLE TO YOUR SESSION.

2-14

2B. INTRODUCTION TO PROGRAM
DEVELOPMENT IN RTE

(START >

k

use EDITR to create/
correct source program

I. The source program consists of
I your FORTRAN or Assembly

use FTN4/ASMB to nguage statements.
compile/assemblie the
source program 2. The FORTRAN compiler or RTE

Assembler processes the source
statements and creates the
relocatable code.

syntax

A

yes errors ;
3. LOADR relocates and links your
program’s routines and any needed
. library routines and fills in an ID
use LOADR to relocate segment in memory and creates
and link the the memory image code on disc for
relocatable code your program.
— 4, When you run your program, the
run the program memory'y image code is loaded from
disc into memory and then
executed.
logical
errors 5. If you need to correct your
program, you will need to release
‘ its ID segment and disc tracks
- remove the program before loading a new version.

2-15

PROGRAM DEVELOPMENT IN RTE

FTN4
or
EDITR ASMB

LU X - a peripheral
cartridge

.LOADR

//' PARTITION
:RU,program

ID Segment
\ SYSTEM
. PROG
system Y
track pool .
LU 2 - the system PHYSICAL MEMORY

cartridge

2-16

The EDITR program provides an easy means
to

® create an ASCII file containing «

source program, data or text.

® modify an existing ASCII file.

® append (merge) files together.

2-17

EDITR WORK AREAS

EDITR automatically allocates two work areas

on the disc

e source work area

e destination work area

SOURCE
FILE

AREA

/
SOURCE |
WORK

EDITR

OPERATOR
COMMANDS

DESTINATION
WORK
AREA

ouTPUT
FILE

The EDITR commands are used to modify lines
of ASCII data in the source work area. EDITR

automatically moves the corrected lines into the
destination work area.

2-18

RUNNING EDITR

To invoke EDITR, use the RU command.

for example,

:RU,EDITR

- SOURCE FILE?

/

!

The slash (/) is EDITR’s prompt for input.
Here, EDITR is asking you for the name of
the ASCIl file to be edited. Enter

o a file name; EDITR will copy the file into
its source work area

e zero (0) to inclicate you want to create a
new file (use a fresh work area)

o colon (:) to terminate EDITOR

:RU,EDITR

SOURCE FILE?

/ &PROG

FTN4,L -<«——— EDITR prints the first line
/ <——— and then prompts for an

EDITR command

2-19

TYPES OF EDITR COMMANDS

DISPLAY Control the pending line or
supply information

LINE EDITS Edit one line at a time

CHARACTER EDITS Edit individual characters
within a line

PATTERN EDITS Edit pattern sequences and
blocks of text

W

2-20

AN EDITING EXAMPLE

Suppose file &PROG contains this source program.

:LI,4PROG
&PROG T=00003 IS ON CR SS USING 00004 BLKS R=0000

0001 FTN4,L

0002 PROGRAM SFAVG

0003 ¢C

0004 WRITEC1,101)

0005 101 FORMATC’‘THIS PROGRAM CALCULATES INTEGER AVERAGES,’’)
0006 102 FORMATC(’ “WHEN ASKED, ENTER AN INTEGER > 0.’')

0007 WRITEC1,103)

0008 103 FORMAT(C

0002 103 FORMATC//CENTER 0 TO.TERMINATE INPUT’’/)

0010 C

0011 ICT = 0
0012 Isum - 0
0013 C

0014 10 WRITEC104)
- 0015 104 FORMATC’’ INPUT AN IMTEGER VALUE:_’’)

00186 READ(1,+9) VAL

0017 IFCIVAL .LE. 0) GOTO 98
0018 ICT = ICT + 1

0019 ISUM = [SUM + IVAL
0020 GaTO 101

0029 C

0022 99 IFCICT .LE. 0 GOTO 10
0023 IAVG = ISUM/ICT

0024 WRITEC1,108) ICT

0025 105 - FORMAT(/’’YQU ENTERED ‘“,I5,7’ VALUES’’)
0026 WRITEC1,108) IsSuM

0027 108 FORMATC(/**THE SUM WAS ’‘,18)

pozsg WRITC1,107) 1AVG

0029 107 FORMATC/’ “THE AVERAGE WAS “‘,15)

0030 END

0031 ENDS

2-21

DISPLAY COMMANDS

These commands control the pending line or supply

information:

command

description

/P
/Ln

//

/+n

- /®n
/N
/n
/HL
(and others)

list the pending line

list the pending line and the next “n” lines,
making the last line the new pending line

advance the pending line by one

advance the pending line by “n” lines (/ +1 is
the same as /+ or //)

back up “n” lines
display the line number of the pending line

make line ‘“‘n” the pending line
display column numbers

2-22

EXAMPLES OF DISPLAY COMMANDS

BB B E e

:RU,EDITR
SOURCE FILE?
/ &PROG
FTN4,L
/P
FTN4,L
/L5
FTN4,L -
PROGRAM SFAVG
. C '
WRITEC1,101) : |
101 FORMATC’’ THIS PROGRAM CALCULATES INTEGER AVERAGES,’‘)
102 FORMATC’‘WHEN ASKED, ENTER AN INTEGER > 0.°’)
/A
101 FORMATC’’THIS PROGRAM CALCULATES INTEGER AVERAGES,’’)
/1
FTN4,L

2-23

EXAMPLES OF LINE EDIT COMMANDS_

/1

FTN4,L
//

PROGRAM SFAVG
/HL

llll’/llll1l’lll/lll’Izllll/lll'alIll/llll4llll/lllIsllll/llllsllll/llll

‘8

/R PROGRAM SFAVG
/P
PROGRAM SFAVG
/7
c
/7
WRITEC1,101)
/o
101 FORMATC’’ THIS PROGRAM CALCULATES INTEGER AVERAGES,’’)
/ WRITEC1,102)
/P
WRITEC1,1022
//
102 FORMATC’ “WHEN ASKED, ENTER AN INTEGER > 0.’7)
//
WRITEC1,1032
/7

103 FORMAT(

103 FORMATC’‘(ENTER 0 TO TERMINATE INPUT)’’/)

2-24

LINE EDIT COMMANDS

These commands edit one line at a time:

command
/R text

/1 text

/A text

/-n

(and others)

description

Replace the pending line with *“‘text”

Insert “text” before pending line

Insert “text” after pending line, make
“text” new pending line

Delete ‘‘n”’ lines, starting with the pending
line

(note: A is a blank)

2-25

****#

CHARACTER EDIT COMMANDS

These commands edit individual characters within a line:

command

description

/P////text

/P////text

T
O or ®

/Pl xxx

©/

/P////'
@

(and others)

Replace the characters in the pending line
with the characters in**text’’, character
by character according to position.

The slash (/) represents a placeholder, to
preserve existing characters.

Insert the characters in ‘‘text’’ into the
pending line.

Cancel (delete) characters in the pending
line corresponding to the placeholder

Ter
Vgt 'g,

Truncate the pending line.

(Note: O represents a CONTROL character)

2-26

es

EXAMPLES OF CHARACTER EDIT
COMMANDS

s

103 FORMATC’(ENTER 0 TO TERMINATE INPUTI?’/)
/+3 '

IsuM - 0
IR/I111111171=
ISUM = 0
7/
c

//
5)
10 WRITEC104)
IPI/117717177777,

10 WRITE(1,104)
/+2

READC1,+#9) IVAL ¢)
IPII111101111111

READC1,*) IVAL
/+4

: GOTO 10:P"’_,,,,459
IPI11111111111711

GOTO 10

2-27

>,

PATTERN EDIT COMMANDS

=

These commands edit pattern sequences of characters:

command description

/G old text/new text Replaces each occurrence of
“old text” with “new text” in
the pending line.

 /Fx text Search for the next line which
contains ‘““‘text” and make that
a control option line the pending line.
— a slash
— an escape
— nothing

and other
commands

2-28

12

EXAMPLES OF PATTERN

NA N
N EDIT COMMANDS
/+3
IAVG = ISUM/ICT
/GIAVG/ IAVG
IAVG = ISUM/ICT
/F/WRIT
WRITEC1,108) ICT
/F/WRIT(C
WRITC1,107) I1AVG
/GWRIT/WRITE
WRITEC1,107) 1AVG
//

107 FORMATC(/’‘’THE AVERAGE WAS “‘,15)
// -
END
a
ENDS'

2-29

rERMINATING EDITR

After editing, you must tell the EDITR to store its destination
work area in a file you specify. Use one of these commands:

/EC filename End and Create a new file
called ‘“filename”

/ER filename End and Replace the contents
of file “filename”

/ER End and Replace the contents
of the file you named as the
source file.

To abort the EDITR without saving your work or altering any
existing files, use the command:

/A Abort the EDITR without
saving the destination work
area.

2-30

COMPILING, LOADING AND
RUNNING
YOUR PROGRAM

(sTART) -

I

K J
use EDITR to create/
correct source program

A
use FTN4/ASMB to

~ compile/assemble the
. source program

syntax

yes errors

use LOADR to relocate
and link the
reilocatable code

Y
run the program

logical

errors no

remove the program

+ <+——— Now' that you have a correct (?) source

program, you need to:

<——— compile the source program,

S,

/

2-31

load the relocatable code,

and run the program.

FTN4 — THE FORTRAN IV
COMPILER

N s Tt e ot ol
The RTE FORTRAN IV compiler takes FORTRAN IV source
statements as input and outputs:
1. relocatable code
2. a program listing
3. diagnostic error messages if errors occurred
The relocatable code is in a format suitable for the RTE LOADR.

Run FTN4 by —

:RU,FTN4, source file name, list lu, relocatable file name
contains the where to print where to put the
source program the listing : relocatable code

2-32

RUNNING FTN4 — AN EXAMPLE

{RU,FTN4,&PROG, 1, XPROG
PAGE 0001 FTN. 8:53 AM THU., 31 MAY , 1879

0001 FTN4,L

goo02 PROGRAM SFAVG

0003 C

0004 WRITEC1,101)

0005 101 FORMATC’ ‘ THIS PROGRAM CALCULATES INTEGER AVERAGES,’’)
0006 WRITEC1,102)

0007 102 FORMATC’ ‘WHEN ASKED, ENTER AN INTEGER > 0.‘‘)
0008 WRITEC1,103)

0009 103 FORMATC’ “CENTER 0 TO TERMINATE INPUTY’’/)
0010 C

0011 ICT = 0

0012 Isum = 0

0013 C

0014 10 WRITEC1,104)
0015 104 FORMATC’ INPUT AN INTEGER VALUE:_’’)

0018 READC1,#*) IvAL

0017 IFCIVAL .LE. 0) GOTO 99

0018 ICT = ICT + 1

0019 ISUM = ISUM + IVAL

0020 GOTO 10

0021 C

0022 99 [FCICT .LE. 0) 6OTO 10

0023 IAVG = ISum/ICT

0024 WRITEC1,108) ICT

002s 108 FORMATC/’ “YOU ENTERED 7,15, VALUES’“)
002e WRITEC1,108) ISUM

0027 106 FORMATC/’THE SUM WAS “,15)
0028 WRITEC1,107) IAVG

0029 107 FORMATC(/’ ‘THE AVERAGE WAS ‘*,I15)
0030 END

FTN4 COMPILER: HP92080-16092 REV. 1913 (790208)

#+ NO WARNINGS #+ NO ERRORS ++ PROGRAM = 00211 COMMON = 00000
PAGE 0002 FTN. 8:53 AM THU., 31 MAY , 1979
0031 ENDS

$END FTN4: NO DISASTRS . NO ERRORS NO WARMINGS
2-33

(%3 LOADR — THE RTE IV LOADER &

The RTE LOADR takes relocatable code as input and outputs:

1. memory-image code in the system track pool area of
LU 2 or 3.

2. an ID segment in memory.
J. a load map.

4. diagnostic error messages if any occurred.

Run LOADR by -—

:RU,LOADR, , relgcatable file name, list lu

/

contains the where to print
relocatable code the listing

2-34

RUNNING LOADR -.

+RU,LOADR, ,%PROG, 1
SFAVG 40042 40364

FMTIO 40365 41663 24998-16002 REV.1926 790417
FMT.E 41664 41564 24998-16002 REV.1901 781107
PNAME 41465 41732 771121 24998-16001

REIO 41733 42057 92067-16268 REV.1903 790316

FRMTR 42060 45515 24998-16002 REV.1926 790503
+.CFCR 45516 45573 750701 24998-16001

4 PAGES RELOCATED 4 PAGES REQ'D NO PAGES EMA
LINKS:BP PROGRAM: BG LOAD:TE COMMON :NC
/LOADR:SFAVG READY AT 2:27 PM THU., 1 MAY , 1980

/LOADR:$END

2-35

AN EXAMPLE

NO PAGES MSEG

Z5> RUNNING YOUR PROGRAM

Once you have created the memory image code and filled in
an ID segment, you can run your program:

:RU,SFAVG

THIS PROGRAM CALCULATES INTEGER AVERAGES,
WHEN ASKED, ENTER AN INTEGER > 0.

C(ENTER 0 TO TERMINATE INPUT)

INPUT AN INTEGER VALUE: 425
INPUT AN INTEGER VALUE: 413
INPUT AN INTEGER VALUE: 465
INPUT AN INTEGER VALUE: 478
INPUT AN INTEGER VALUE: 436
INPUT AN INTEGER VALUE: 0
YOU ENTERED S VALUES
THE SUM WAS 2217

THE AVERAGE WAS 443

2-36

REMOVING PROGRAMS

RTE only allows one program for each program name; if you wish
to re-load a program which already exists, you must release its ID
segment and disc tracks.

The FMGR OF command will do this for you.

:0F, program name

The FMGR 0OF command will:
® terminate the program if it is executing.

® release the program’s ID segment and the disc tracks
containing its memory image code.

2-37

RTE ORGANIZATION

SECTION

A BREAKMODE — INTERACTING WITH RTE 3-3
8 RTE CONCEPTS 3-9
C TROUBLE SHOOTING 3-29

D BREAKMODE vs SYSTEM COMMANDS 3-44

3-2

3A. BREAKMODE — INTERACTING
WITH RTE

Consider this program:

PROGRAM INF

C

10 CONTINUE
GO TO 10
END

If you run this program,
tRU, INF

~-——FMGR will wait
for your program
to complete
before issuing
another prompt.

BREAKMODE vs FMGR COMMANDS

il

FILE MANAGEMENT
(FMGR)

SYSTEM

RTE OPERATING SYSTEM

HP 1000
HARDWARE

A

e

You normally operate

at this level, using
FMGR commands.

\\

RTE will also accept
‘commands. Enter any
breakmode command in

response to a breakmode

prompt:

S:.-

3-4

xx COMMAND? T

waifing

for

a
breakmode
command

COMMAND FORMATS

FMGR COMMANDS —

icommand,p1,p2,p3,...

"

v

FMGR command, Parameters used to further

only the first two specify the command
characters are significant |

BREAKMODE COMMANDS —

S = xx COMMAND? xx,p1,p2,p3,...

]

gl

A two character Parameters used to further

mnemonic for the specify the command
breakmode command

3-5

There are several types of breakmode commands:

GET STATUS OF SYSTEM
T1 displays current system time
ST displays status of a program

TO displays timeout value of a device

CONTROL PROGRAMS AND I/O OPERATIONS
UP make a peripheral device available
SS suspend a program

OF terminate a program

ALTER SYSTEM PARAMETERS
TM set system time
QU change time-slicing parameters

TO change the time-out value of a device

3-6

CAPABILITY LEVELS FOR
BREAKMODE COMMANDS

CAPABILITY LEVEL

HE (:}1)
10

$BL RS *TO
+BR #SL UP
*EQ ST WH
FL TE
QU TI

+GO RT +SS
+0F RU 82

AS ON UR
IT PR

BL GO SsS
BR LU TM
DN OF TO
EQ QU

+

Single parameter only
Program must be under session’s control
No parameters permitted

3-7

EXAMPLES OF BREAKMODE SERVICES

There are several types of breakmode commands:

* GET STATUS OF SYSTEM

Tl — displays current system time
ST — displays status of a program
TO — displays timeout value of a device

* CONTROL PROGRAMS AND I/0 OPERATIONS

UP — make a peripheral device available
SS — —-suspend a program
OF — terminate a program

* ALTER SYSTEM PARAMETERS

™ — set system time
QU - change time-slicing parameters
TO — change the time-out value of a device

3-8 L us.8

3B. RTE CONCEPTS

RTE OPERATING SYSTEM

HP 1000
HARDWARE

/

/
/

RTE manages system resources.

® MEMORY
® |/O OPERATIONS
* PROGRAMS

3-9

MEMORY MANAGEMENT

Suppose you have two programs, PROG1 and
PROG2. PROG1 is currently executing and so
resides in the user program area of memory;
PROG2 is waiting its turn for execution.

Memory
User SELRI
Program PROGH TFUS\Z:iTEgOL
Area
ID Segments FMP AREA
| PROGH
System _ -,
PROG2

1If PROGH1 initiates a data transfer, how does the CPU
begin execution of PROG2?

3-10

SWAPPING

If PROG1 initiates a data transfer, then the CPU can
execute PROG2. PROG1 must first be swapped out of
memory so PROG2 can be loaded into memory and
executed.

Memory
User — LU 2
Program PROG2 S\TRACK POOL
Area N
NS
SuES
ID Segments | " FMP AREA
PROG1 |
System _
PROG2

User
Program
Area 3

User
Program
Area 2

User
Program
Area 1

System

PARTITIONS

Memory

fe. e s amws A e e e e

ID Segments
PROGA

If we add more memory
and create several “user
program areas”,
separate programs
could be loaded in
memory at the same
fime.

N STEM AHEq
SYSTEM
TRACK POOL

FMP AREA

PROG2

2
&
&

PROG?Z)

Separate user program dareas are called
PARTITIONS. Partitions are defined when the RTE
system is generated.

TOO MUCH MEMORY?

HP 1000 computers have 15 bits for addressing; hence,
you can access 32K words or memory locations.

An RTE system with several partitions might have
memory sizes as follows:

Memory
Partition 3
22K words Suppose a program in partition 2
requests an RTE service with an
EXEC cail.
Call EXEC
20K words
Partition 1
15K words
System
~30K words |+ = = = o - m -
EXEC Module i
The EXEC module of RTE resides in

the system area of memory, more
than 32K words away from the

program in partition 2.
3-13

DYNAMIC MAPPING SYSTEM

The DYNAMIC MAPPING SYSTEM (DMS) allows an HP
1000 computer to access up to 1024K words of ‘“‘physical
memory”’ using 15 bits for addressing.

With DMS, the 32K words which your program can
“logically” address only needs to include that part of physical
memory needed to execute the program.

Partition 3
22K words

Partition 2
20K words

Partition 1
15K words

System

Physical Memory

PROGA

i

Area 2 —
RTE Routines, Data

Area 1 —

Tables, Entry Points

Suppose PROGA is executing in
partition 2. PROGA needs to
“logically” address —

the memory making up
partition 2 and

part of the system area of physical
memory

AREA 2 needs to be addressed only when
the actual RTE routines are executing.

AREA 1 needs to be addressed by both
RTE and user programs in partitions.

LOGICAL vs PHYSICAL
MEMORY

RTE, in conjunction with DMS, allows access to only those parts of

physical memory which are needed by the currently executing
program.

Physical Memory

Partition)
22K
Partition 2
20K
Logical Memo J2K Logical M 3
ogi emory () Partifion 1 gical Memory (32K)
2K unused 13K
S —— - 4K unused
System System | N\ N\ _ ___ N
Area 2 Area 2 ?:e;ail;:g;m;
~20K ~20K p éK
e o e S D W comr———— (e . w—— - w— ——q—-————————-—-—--———-—
Area 1 Area 1 Area 1
~10K ~410K ~10K
* " B

When the operating system
is executing, DM3 makes
memory look like this.

When the user program in
Partition 2 is executing, DMS
makes memmly look like
this.

BACKGROUND vs REAL-TIME

Partitions may be defined as

BACKGROUND or REAL-TIME PARTITIONS

Programs may be defined as
BACKGROUND or REAL-TIME PROGRAMS
¢ BACKGROUND programs will run in BACKGROUND
partitions.
e REAL-TIME programs will run in REAL-TIME partitions.

¢ If only one type of partition is defined, all programs will run
in that type of partition.

e Programs may be assigned to a partition; a partition may be
reserved for a specific program.
Both BACKGROUND and REAL-TIME programs reside on the

disc, hence the terms:

REAL-TIME DISC RESIDENT PROGRAMS
BACKGROUND DISC RESIDENT PROGRAMS

Both types of disc resident programs can be swapped.

3-16

MEMORY RESIDENT PROGRAMS

RTE also allows you to define Memory Resident
Programs which

® are resident in memory at all times

® are not swappable

e are included in the system when it is generated

Physical Memory

Background
Partition
Bz;’cl;%ix;?u:d When a Memory Resident Program is
artitio executing, DMS makes memory look
like this.
Real-Time
Partition 5’
Logical Memory
Memory Resident
Programs
\ Unused
System | @ TSL. 000 e e e e
Memory
Area 2 Resident
\ Programs
= e e wws o e * ——————
' Area 1 Area 1
-

3-17

RTE and
MEMORY MANAGEMENT

Logical Memory:
how memory
looks to the

currently
executing
program.
Physical
_ _Unused Memory: the
actual
Disc- organization of
Resident RTE in memory.
Program
e | Background
Area 1 Partition
Background
Unused Partition
" Memory |
Resident Real-Time
Area 1 Memory Resident
Programs
Unused System
. Area 2
System —_————————-
Area 2 Area 1
Area 1

3-18

I/0 STRUCTURE

Each peripheral device is connected by a cable to an
interface card. The interface card is plugged into a
numbered 1/0 SLOT in the back of the computer.

MAG TAPE 25
USER TERMINAL 2 g;
USER TERMINAL 1 22

21
20
17
16
15
14
13
12
11

18

LINE PRINTER 2
LINE PRINTER 1
SYSTEM CONSOLE
DISC DRIVE

i

////////4//

Select codes: determine the priority of
a device’s interrupt

When an RTE system is generated, the select code
assignments are incorporated into RTE’s I/0 structure.

3-19

EQT’s

At generation time, each device is assigned an
EQUIPMENT TABLE (EQT) number. This number
represents an entry in RTE’s EQUIPMENT TABLE

(EQT).

EQT

Eqt select driver last subchannel
numbers\ code addressed

1 11 DVR32 (disc)

2 12 DVR@5 (system console)

3 13 DVA12 (line printer 1)

4 14 DVA12 (line printer 2)

5 15 DVR@S ‘(user terminal 1)

6 16 DVR#S (user terminal 2)

7 17 DVR23 (mag tape)

3-20

SUBCHANNELS

Some devices have several component pars.
Each component part is identified by a
SUBCHANNEL number.

for example,
EQT 5

/ Terminal
(2645)

Subchannel

¥ CRT & Keyboard
{ ———Left CTU

3-21

SYSTEM LOGICAL UNIT (LU) NUMBERS

When the RTE system is generated, each
EQT-SUBCHANNEL pair is assigned a SYSTEM
LOGICAL UNIT (LU) number. This represents an entry
in RTE’s DEVICE REFERENCE TABLE (DRT).

® 2N Wt s W N e

g
3
32

65
66

71
72
73
74

T

Logical Unit (LU) Numbers

DRT

Eqt # Subchannel

2)
2 1
2 2
3)
4 g
7 g
5 g
6 g
5 1
5 2
6 1
6 2

~ *n w - - ~ -

EQT

select driver last subchannel

code addressed
11 DVR32 (disc)
12 DVRgS (system console)
13 DvaAl2 (line printer 1)
14 DVAI2 (line printer 2)
15 DVR@S (user terminal)
16 DVR@S (user terminal 2)
17 DVR23 (mag tape)

3-22

DISC CARTRIDGES

When RTE is generated, the System Manager
divides the disc into areas, each of which
becomes a subchannel.

For example,

Select Code 11] 7906

Eqt 1 1 sﬁ

Subchannel g s

Subchannel 1 -~

Subchannel 2 —~

Subchannel 3 —

Subchannel 4 —

3-23

[8]

® 3 O U s W

3
31
32

65
66

71
72
73
74

T

DISC LU’s

Each disc area (an Eqt-subchannel pair) is assigned a
System Leogical Unit (LU) number, perhaps:

System LU Eqt Subchannel

2 1 0

3 1 4

39 1 1

31 1 2

32 1 3
DRT EQT

Eqt # Subchannel select driver last subchannel
code addressed
2 g
1 1 DVR32
1 g 2 12 DVR@S
1 4 3 13 DVAI2
2 1 4 14 DVAL2
2 2 5 15 DVRYS
3 p 6 16 DVR#S
7 17 DVR23

4 g
7 8
1 1
1 2
| 3 %
5
6]
5 1
5 2
6 1
6 2

Legical Unit (LU) Numbers

3-24

(disc}

isystem console)
(line printer 1)
(line printer 2)
(user terminal 1)
(user terminal 2)

(mag tape)

SESSION LU NUMBERS

With SESSION MONITOR, users reference devices via the
SESSION LU’s set up when their accounts are defined.

For example, if KAREN.PROGDEYV logs on at user terminal 1:

DRT

Eqt # Subchannel

1 2 g SCB
2 1 g KAREN.PROGDEV
3 1 4 g
4 2 1 SST
System LU Session LU
5 2 2
65 1
6 3 g 7 4
7 | 4 g 72 5
2 2
8 7 g 3 3
7 6
8 8
30 1 1
31 1 2
32 1 3
EQT
65 5]
select driver last subchannel
66 6 ﬂ code addressed
H 11 DVR32 (disc)
2 12 DVR#S (system console) |
7 3 1 3 13 DVAIL2 (line printer 1)
4 14 pvaiz | (Iine printer 2)
72 5 2
s 15 DVRgS (user terminal 1)
& 6 1 6 16 DVR@S (user terminal 2)
74 6 2 7 17 DVR23 (mag tape)

T

Logical Unit (LU) Numbers

3-25

PROGRAM MANAGEMENT

A program’s STATE describes the relationship
between the program and RTE, which is managing

the program’s execution.

/O Initiated

Executing

\

First in
Line

@uuled

Suspended

/O Completed

STOP

Dormant

Operator commands, program calls or changes in the
environment cause RTE to change a program’s state.

Changes in a program’s state are called

STATE TRANSITIONS

3-26

State

Status 2 1

Dormanf

Scheduled or Executing

I/O suspended

General wait

Unavailable memory suspend
Disc allocation suspend

Operator suspend or programmed
suspend

3-27

USER PROGRAM STATE
DIAGRAM

DORMANT
0

RTE changes a program’s state because of operator

commands, program requests or changes in the
environment.

3-28

3C. TROUBLE SHOOTING

Breakmode is usually needed for trouble
shooting programs or system operation.
Trouble shooting aids include

¢ breakmode commands
RS

SL
EQ
UP

ST
OF

WH
o utfility programs

WHZAT

LGTAT

3-29

AN IO PROBLEM

Suppose you use the FMGR DU command to dump the
contents of a file onto a minicartridge in your left CTU.

:DU, &PROG, 4
IODNRL* 4ESS 1 #x»

3-30

RESTARTING YOUR SESSION

The breakmode RS command aborts and
reschedules your Session’s copy of FMGR.

:DU, &PROG, 4
IONRL* 4 E5 S 1 ##

S=65 COMMAND?RS
FMGES5 ABORTED

3-31

DISPLAYING 1/0 CONFIGURATION AND
STATUS OF DEVICES

The breakmode SL command will

e return the system LU, Eqt number, and
status of a specified session LU

S=65 COMMAND ?SL,4
SLU 4=LU/#21 = E S5 S 1 D\

session system Eqt Subchannel Down
LU LU

e report all of the user’s session LU’s if no
LU is specified in the command

3-32

DISPLAYING EQT INFORMATION

The breakmode EQ command returns information
about an EQT entry.

S=xx COMMAND ?EQ,eqt

for example,

S=65 COMMAND ?EQ,5S

/15 DV.05 0 B U 0 0
select // / \\IOQicai

code dr!ve/r last status
no DMA buffering subchannel
(0,D) {(0,B) addressed g available
1 down
2 busy
3 waiting
for DMA
3 %
72 S AN

3-33

MAKING DEVICES AVAILABLE

When a device goes down and the problem
is corrected, you must tell RTE that the
problem has been fixed.

The breakmode UP command declares an
Eqt entry available for 1/0.

S = xx COMMAND?UP,eqt

for example,

S = - COMMAND?UP,S

3-34

BACK TO OUR 1I/0O PROBLEM

. You tried to dump a file to your
DUEPROS. 4 .— LEFT CTU but got an error

message.

S=65 COMMAND ?SL,4

4= 71 = £ 5 1D : : :
SLU L ¢ S After having inquired about the LU

S=65 COMMAND ?EQ,5 of the LCTU, you try to ‘‘up the

1S pv.05 0 B U 0 O
Eqt’’ but get another error message.

- 5=65 COMMAND ?UP,S
IONR L* 4 E 5 5 1 *»«¢

Looking at the minicartridge, you discover that the
“record’’ slide is set for ‘‘write protect.”’ You slide it to
record and —

S=65 COMMAND ?SL, 4
SLU 4=LU 4 71 = E 5 5§ 1 D-«— The device is still down

S=65 COMMAND ?UP,5 w— et
:SL, 4 ' — Tell RTE the device is fixed now

SLU 4=LU $ 71 = E 5 5 1

N

After the dump is complete, we get another FMGR prompt.

3-35

SETTING EQT’s cr DEVICES DOWN

Az

A single device or all devices associated with an
EQT may be declared down with the breakmode
DN command.

S
S

xx COMMAND?DN,eqt
xx COMMAND?DN, ,system lu

for example,

65 COMMAND?DN, 4
S = 65 COMMAND?EQ,4
14 DV.12 0 B U 0 1

wn
0

the logical status is

3-36

DISPLAY THE STATUS OF A PROGRAM

The breakmode ST command will display a
program’s status.

e display the status of a specified program

S = 21 COMMAND?ST, INF
99 1 0 0 0000

o vl

o, o

priority state deals with time scheduled programs

o display the status of the currently executing -

program
S = 21 COMMAND?ST, 0
/R$'PN $ 1 ~_
surrently executing \ its partition
program

e display the name of the program currently
residing in a specified partition

S = 21 COMMAND?ST, 4
INF

S

current resident of
partition 4

3-37

TERMINATING PROGRAMS

The breakmode OF command terminates programs (and
possibly releases a program’s ID segment and disc tracks).

S = xx COMMAND?0OF
will terminate the program most recently run
with the FMGR RU command
.) 0
S = xx COMMAND?0F,program |, 1
, 8

3 terminates a program. If the program is
/O suspend, the program is terminated
after the 1/0 operation is completed.

;1 immediately terminates (aborts) a
program, clearing any current I/O
operation.

,8 immediately terminates (aborts) a program; if

the program is temporary on-line loaded, the
program is removed from the system.

3-38

UTILITY PROGRAM — WHZAT

You can use WHZAT to look at the current status
of the programs and partitions in your system.

WHZAT may be run in several ways:

| :RU,WHZAT [, lul ,option]
S = xx COMMAND? RU,WHZAT [, lul ,option]

s WH [,lut,,option]
S = xx COMMAND? WH [, lul ,optionl

where
Ia — where to print the display

option — (default) | |
AL program status displays

SM
PA partition status display

3-39

SAMPLE WHZAT
PROGRAM STATUS DISPLAY

: WH

14:28:36: 50

PRGRM T PRIOR PT SZ DO.SC.I0.WT.ME.DS.OP. .PRG CNTR. .NEXT TIME.
**FMG74 3 00090 23 10 * * * * 3 WHZT74 * * *x * % pP:4G363

WHZ74 3 00001 31 4 . 1, . & v ¢ o « o o o o« & P:43177

TRK 300099 34 2 . . . v ¢ 4 4 s 6, . . . P:40110

DOWN LU'S, 97

ALL EQT'S OK

LOCKED LU'S (PROG NAME) 8(Jsa0l), ll(spouUT), 70(E..70), 82(E..82),
MAX CONT. FREE TRKS : 73, LU 3

- o - — . " - - - — " " - T — " -~ - —

14:28:37:210

3-40

SAMPLE WHZAT

PARTITION STATUS DISPLAY

3-41

tWH, ,PA
14:28:58:100
PTN# SIZE PAGES BG/RT PRGRM
1 2 56- 57 BG QCLM
-2 3 58- 60 BG RQCNV
3 3 6l- 63 BG RPCNV
4 3 64~ 66 BG DLIST
S 4 67- 70 BG CNSLM
6 8 71- 78 BG PTOPM
7 8 79- 86 BG EXECM
8 6 87~ 92 BG EXECW
9 17 93- 109 BG RFAM
10 17 110~ 126 BG OPERM
11 17 127- 143 BG PROGL
12 17 144~ 160 BG QUEX
13 17 161- 177 BG FLUSH
14 17 178- 194 BG E..70
15 17 195- 211 BG LOGON
16 17 212~ 228 BG FMG93
17 17 229- 245 RG RSPNS
18 17 246~ 262 BG FMG82
19 17 263- 279 BG SPOUT
20 17 280~ 296 BG SMP
21 17 297- 313 BG E..82
22 17 314~ 330 BG FMGO1l
23 17 331~ 347 BG FMG74
24 17 348~ 364 BG LGOFF
25 17 365- 381 BG FMG68
26 17 382~ 398 BG FMG73
27 17 399~ 415 BG FMG89
28 17 416~ 432 BG FMG94
29 27 433~ 459 BG FIL78
30 27 460~ 486 BG WHZ74
31 27 487~ 513 BG E..94
32 27 514~ 540 BG RUNGS "
33 27 541~ 567 BG JSAO0L
34 27 568~ 594 BG TRK
35 17 595- 611 BG FMG66
36 17 612- 628 BG E..78
37 11 629~ 639 BG DBONC
38-64 <UNDEFINED>
14:29: 0:900

UTILITY PROGRAM — LGTAT

K/

LGTAT displays information about the tracks on
- the system disc cartridge (LU 2) and the
auxiliary disc cartridge (LU 3).

S = xx COMMAND?RU,LGTAT[,lu[,option]]
or
:RU,LGTAT [, lu[,option]|

where

lu — where to display the
information

option — @ abbreviated output
1 complete output

3-42

tRU,LGTAT,1,1
TRACK ASSIGNMENT TABLE

TRACK

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

0
SYSTEM
FMGR2&
SPOUT&
ACCTS&
LIBRY
LIBRY
E. .68

-
-
-
——
——

FMP
FMP
FMP
FMpP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMp
FMP

AUXILIARY DISC

s
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

THE LS TRACK(S) ARE UNDEFINED
TOTAL AVAILABLE TRACKS =

FIL70"
FMP
FMP
FMpP
FMP
FMP
FMP
FMP
FMP
FMp
FMP
FMP
FMP
FMP
FMP
FMP
FMP

1
SYSTEM
FMGR4 &
RFAM &
ACCT2s&
LIBRY
LIBRY
E..70

Fmp

FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMpP

6
AUTOR&
LOGON&
RQCNV&
LIBRY
LIBRY
LIBRY
E..G6
MACRO&
GLOBAL

-
-
-

FMP
FMP
FMP
FMP
FMP
FMp
FMP
FMP
FMP
FMpP
FMP
FMP

7
JOoB &
LGOFF&
HELP &
LIBRY
LIBRY
LIBRY
E..82
PASSl&
GLOBAL

FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP

8
rres &
LGOFF&
LOADRS
LIBRY
LIBRY
ENTS
TRK &
POSTP&
GLOBAL

9
FMGRLl &
GASPl&
ACCTS&
LIBRY
LIBRY
D.RTR
E..78
POSTP&
SFAVGS

FIL82" FIL82" FIL94"~ FIL94™ FIL94" FIL70" FIL70"

& =PROG " =SwWap
2 3 4 5
SYSTEM SYSTEM SYSTEM SYSTEM
FMGR6& FMGR7& FMGR9& LOGON&
OPERM& QCLM & EDITR& REMATS&
ACCT3& ACCT4& LIBRY LIBRY
LIBRY LIBRY LIBRY LIBRY
LIBRY LIBRY LIBRY LIBRY
WHZAT& E..78 E..70 E,..82
E..70 SLXFR& - -
- T5IDM& GLOBAL GLOBAL
- LSTEN& TMP & -
- PRTSV& PROGA& MAIN &
FMP FMP FMP Fmp
FMP FMP FMP FMP
FMP FMP FMpP FMP
FMP FMp FMP FMP
FMp FMP FMP FMp
FMP FMP FMP FMP
FMP FMp FMP FMP
FMpP FMP FMP FMP
FMP FMP FMP FMP
FMP FMP FMP FMp
FMP FMP FMP FMP
FMP FMpP FMP FMP
FMP FMP D.RTR
- FILA8" FIL68" FILE8"
FILg82"
FMP FMP FMP FMP
FMP FMP FMP FMP
FMP FMP FMp FMP
FMP FMP FmMp FMP
FMP FMP FMp FMP
FMP FMP FMP FMP
FMP FMP FMP FMP
FMp FMP FMP FMP
FMP FMP FMP FMP
FMP FMP FMP FMp
FMP FMP FMP FMP
FMp FMP FMP FMP
FMP FMP FMp FMp
FMP FMP FMP FMP
FMP FMP FMP FMP
FMP FMP D.RTR
130
73

LARGEST CONTIGUOUS TRACK BLOCK =

H

3-43

FMP
FMp
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMp
FMP
FMP

FMp
FMP
FMP
FMp
FMpP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP

FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMpP
FMP
FMP
FMP

FMP
FMP
FMP
FMP
FMP
FMP
FmMp
FMP
FMP
FMP
FMP
FMP
FMP
FMP
FMP

3D. BREAKMODE vs SYSTEM
COMMANDS

To enter a breakmode command from FMGR use

:SYxx,parameters

two character breakmode command

FMGR will pass the breakmode command directly
to RTE.

:SYTI
1979 1586 15 0 50

:SYEQ, 4
14 DV.12 0 B U 0 0

:SYOF ,PROGE, 1

BREAKMODE vs SYSTEM COMMANDS

strike
a key

\
[~

PRMPT
not logged already
/ %‘lon
PLEASE LOG-ON: , S=xx COMMAND?
LOG ON RPNS
l command entered was:
FMGR prompt: FL,HE,RS,
SL,TE, ‘
OF* ,BR+*,S6#,G0* ,UP*
¢ these commands are
FMGR SYxx 8ys emd processed by
command comman RSPN$
/
/
/

| ¥ ¥

FMGR RTE (#if no parameters are
specified)

3-45

o
N
-

SYSTEM

o
e
N
o

R

PP I/ A4

NPT N P

Al

~ A\~

\)
Ll

M m, VV%%V ////.//4//

L

SECTION

A

m ©O O o

FILE MANAGEMENT SYSTEM
OVERVIEW

USING DISC CARTRIDGES
USING FILES

ACCESSING NON-DISC DEVICES

SWITCHING LU’S

4-2

4-3
4-8
4-19
4-28

4-32

4A. FILE MANAGEMENT SYSTEM
OVERVIEW

FILE MANAGEMENT SYSTEM

FMGR

FMGR

FMP LIBRARY D.RTR

~ an interactive program that

¢ interfaces users with RTE
o allows users to manipuiate files

EMP_LIBRARY a set of routines which manages files

e are used by FMGR
o can be used by your programs

the program which manages file
directories |

4-3

FILE C‘.HARACTER\ST\CS

Files may be categorized in several ways.

e METHOD OF ACCESS

RANDOM vs SEQUENTIAL ACCESS

e RECORD LENGTH

FIXED LENGTH vs VARIABLE LENGTH RECORDS

© FILE EXTENDABILITY

FIXED LENGTH vs EXTENDABLE FILES

o FILE CONTENT

ASCIl vs BINARY DATA

4-4

FILE

TYPES
Category Type Description
Non-Disc File 0 Handle non-disc
devices just like disc
files
Fixed-iength 1 128 word record
record, length
Random Access,
Non-extendable 2 User-defined record
length
3 Variable record
length
4 Source program
Variable-length (ASCH)
record, | 5 Relocatable code
sequential . (binary relocatable)
access, .
automatic extents | 6 Memory image
program

7 Absolute Code
(binary absolute)

\>7 User defined

4-5

KKK FILE

SIZES

The File Management System allocates space for
files in either

e multiples of 128 blocks

The maximum sizes associated with files are:

Files allocated by —

blocks 128 block multiples
maximum size 16383 blocks 32767 x 128 biocks
maximum record 32767 words 32767 words
length
maximum number 215.4 2314
of records per file

(1 block = 128 words)

4-6

FILES AND DISC CARTRIDGES

Files may be stored in the user file areas (FMP
areas) of LU 2 or LU 3 or on any other

peripheral cartridge.

SYSTEM
TRACK POOL

LU 2, the system cartridge

FMP AREA

LU x, a peripherai cartridge

4-7

> FILE
DIRECTORY

FILE 1

HEADER

}

1 entry for
each file
stored on this
cartridge

cartridge
information

4B. USING DISC CARTRIDGES

e Disc cartridges (or disc subchannels) are defined
and assigned LU numbers when an RTE system is
generated.

e Before you can use disc files via the File
Management System, you must tell the File
Management System that you want to use a
particular disc cartridge to hold your disc files. This
is done by using a FMGR command to ‘‘mount a
cartridge’’.

e Session Monitor permits you to use only those disc
cartridges which were

— mounted by you

— not mounted by you but are still available for your
use.

48

YOUR CARTRIDGE LIST

The FMGR CL command displays a list of those
disc cartridges which you can access.

For example, if KAREN.PROGDEV does a CL —

:CL

LU LAST TRACK CR LOCK P/G/S

32 00140 SS P
30 00140 01500 G
02 002585 00002 S [
03 00255 00003 S
31 00400 00031 S

X

4-9

DISC LOGICAL UNIT NUMBERS
VS
CARTRIDGE REFERENCE NUMBERS

:CL

LU LAST TRACK

32
30
02
03
31

00140
00140
00255
00255
00400

CR

SS
01500
00002
00003
00031

LOCK P/G/S

numwae v

Disc cartridges have two identifiers:

e LOGICAL UNIT (LU) NUMBERS — are
assigned when the disc cartridges are
defined during the generation of an RTE
system. For disc cartridges, the SYSTEM
LU and SESSION LU numbers are the

same.

o CARTRIDGE REFERENCE NUMBERS
(CRN’s) — are alternate identifiers for
disc cartridges. They are usually
assigned by users when cartridges are
mounted.

4-10

RESTRICTED CARTRIDGE ACCESS

:CL

LU LAST TRACK

32
30
02
03
31

00140
00140
00255
00255
00400

CR LOCK P/G/S

SS P
01500 G
00002 S
00003 S
00031 S

The P/G/S indicates which user "mounted” that cartridge and
which user(s) can access that cartridge.

For the cartridge list displayed by KAREN.PROGDEV,

& p _ PRIVATE

The cartridge was "mounted” by KAREN.PROGDEV and
can only be accessed by her.

4N G — GROUP

The cartridge was "mounted” by a user in the PROGDEV
group and can be accessed by any user in that group.

Us s _ SYSTEM

These cartridges “"belong” to the System Manager but
can be accessed by any user (LU 2 and 3 are “read
only” however).

DISPLAYING ALL CARTRIDGES

The CL command lists those carridges which a

gsLer can access; suppose PETER.ADMIN enters a

:CL

LU LAST TRACK CR LOCK P/G/S

02 00255 00002 s y these are the

03 00255 00003 g | cartridges which
PETER.ADMIN

31 00400 00031 S

cdn access

An expanded version of the CL command lists all
carnridges mounted and indicates who "owns”
those canridges. Suppose PETER.ADMIN enters a
CLAL —

:CLAL

LU LAST TRACK CR LOCK P/G/S USER/GROUP

02 00255 00002 S MANAGER.SYS
03 002585 00003 S MANAGER.SYS
30 00140 01500 G PROGDEV

31 00400 00031 S MANAGER.SYS
32 00140 SS P KAREN.PROGDEV

4-12

DEDICATED vs SPARE CARTRIDGES

When setting up the Session Monitor Accounts
System, the System Manager can classify the disc
cartridges defined in the system to be either

DEDICATED or SPARE cartridges. For example,

7906 |

Dedicated cartridges have
specific uses, either for the
system or for various users
or groups. |

Spare cartridges have no specific
uses and are available to users
for temporary disc work space.
They are grouped together to form

LU 30 the Spare Cartridge Pool.

06 60

4-13

ALLOCATING A CARTRIDGE FROM THE SPARE
CARTRIDGE POOL

Use the FMGR AC command to allocate (mount)
a cartridge from the Spare Cariridge Pool

:AC, crn |, P
/ G
CRN to be assigned mount the cartridge as
to the cartridge PRIVATE or GROUP

The AC command will:
e find the first available cartridge in the pool
e initialize the cartridge

e mount the cartridge

4-14

EXAMPLES OF ALLOCATING
CARTRIDGES

KAREN.PROGDEV might have done the following
fo mount cartridges:

H R
LU LAST TRACK CR LOCK P/G/S
02 002S5 00002 S
03 00285 00003 S
31 00400 00031)

tAC,SS

CL
LU LAST TRACK CR LOCK P/G/S
32 00140 SS P
02 00255 00002 S
03 00255 00003 S
31 00400 00031 S

:DL,SS

CR= SS

ILAB=DC0032 NXTR= 00000 NXSEC=000 #SEC/TR=096 LAST TR=00140 #DR TR=01
NAME TYPE SIZE/LU OPEN TO '

tAC,1500,6

:CL
LU LAST TRACK CR LOCK P/G/S
32 00140 SS P
30 00140 01500 G
02 00255 00002 S
03 00255 00003 S
31 00400 00031 S

:DL,1500

CR=01500

ILAB=DC0030 NXTR= 00000 NXSEC=000 #SEC/TR=096 LAST TR=00140 #DR TR=01
NAME TYPE SIZE/LU OPEN TO

tARC,1000
FMGR 064
)

FMGR 064 NO DISCS AVAILABLE FROM DISC POOL

4-15

YOUR SCB v
CARTRIDGE LIST ™

Y -
.)»%% 7
*

® Your SCB contains a list of the PRIVATE or
GROUP cartridges currently mounted to your
account or to your group.

SCB

KAREN.PROGDEV
30

SST
system LU session LU

65
71
72
2
3
7
8
31 31
32 32
30 30

cartridge list: 32, 30

DWW B =

LU LAST TRACK CR LOCK P/G/S

32 00140 SS P~
30 00140 01500 G

02 00255 00002 S -
03 00255 00003 N
31 00400 00031 S

4-16

SYSTEM CARTRIDGE LIST
Vs
YOUR SCB'S CARTRIDGE LIST

In addition to the cartridge list in your SCB, the File
Management System maintains a list of all currently
mounted cartridges.

This list, the SYSTEM CARTRIDGE LIST, is kept in the
system area of the system cartridge (LU 2).

File Directory

FMP Area
(User File Area)

System
Track Poal

System
Cartridge —— |
List

System Area

System Cartridge
(LU 2)

4-17

3% LOG OFF

Parameters to the FMGR EX command specify

whether to save or return cartridges when you log
off. |

LEX [,:g [,RG]}

/

SP — save private RG — release group
RP — release private (otherwise save)

When you log-on again, any private or group
cartridges saved are still available for your use.

4-18

4C. USING FILES

Many FMGR commands can refer to either disc files
or non-disc devices, for example.

LI, file name
lu

the parameter can be either the name of a disc file or the
LU of a non-disc device

The term NAMR refers to such a parameter:

’

a8 non-disc LU

NAMR

filename:security:cartridge:type:size:record

code size
ey - "4 oy »

v

needed lo reference !
a file

4-19

WHY SPECIFY CARTRIDGES?

I

Suppose you have two files, both called
“DATA”.

LU LAST TRACK CR LOCK P/G/S

32 00140 SS P ———first “DATA"”
30 00140 01500 G stored here

02 00255 00002 S\

03 00255 00003 S second “DATA”
31 00400 00031 S stored here

When you run EDITR,

:RU,EDITR
SOURCE FILE?
/DATA

which file will you
be editing?

4-20

SEARCHING THE FILE DIRECTORY

@ Use the FMGR DL command to list the file
directory of a specified carridge.

:DL[,cartridgel

positive CRN or
negative LU

@ Use the FMGR DL command to search for a
particular file on one or all of the carridges
in your cartridge list.

:DL, namr

if a canridge is specified, search only
that carridge, otherwise search all the
carfridges in your cartridge list

@ For example,

:DL,DATA
:DL,SO0URCE:::3
:DL,&-----::-24

4-21

CREATING FILES - W

ASCIl source, text or data files may be created
by using EDITR.

:RU,EDITR
SOURCE FILE?

/0

EOF

/AFTN4, L

/A3 PROGRAM MAIN
/A3 INTEGER PARM(S)
/4 .

/A3END
/A3ENDS
/EC filename:security code:cartridge

L — v
g

file to be created

EDITR will create a type 4 file whose size is the
number of blocks needed to contain the file
being created.

(A
(3

space)
EDITR tab character)

4.2

CREATING FILES — y

You can also create a file and store data in it-
with the FMGR ST command.

:ST,namr1,namr2l,record format]

a non-disc LU or file to be created type of data in

disc file containing and filled with namrl:

data to be stored data, or a

in the new file non-disc LU to BR — binary relocatable

receive the data AS — ASCII

If a file is specified for namr2, it must not
already exist; the ST command tries to create
a file for you.

4-23

for example,

use the ST command to enter a file
from your terminal:

:ST,1,DATA:FF

JACK

SAM

LINDA

PETER

MARY
) (Control — D acts as an EOF
: to terminate input)

% input a binary relocatable file from a
mag tape (LU 8):

:ST,8, 4PROG,BR
% duplicate a file on another cartridge:

:ST,TSPD: :DP,TSPD::2000

4-24

CREATING FILES — Y

To create a file without supplying data, use the FMGR
CR command:

:CR, namr

file to be created; in addition to the file
name you must specify file type, file size
(and record length for type 2 files).

for example, if you wish to list the file directories of

all your cartridges but store the list in a file, you
might:

tCR, DLIST::-24:4:10
:LL, DLIST

:DL

sLL, 1

4-25

STORING vs DUMPING FILES

Both the FMGR ST and DU commands allow data to
be transferred between a source namr and a
destination namr.

if a disc file is specified,
it must already exist

U, namr1, namr2l,record formatl

N TN

disc file or disc file or type of data
non-disc LU non-disc LU in namr |
containing data receiving the

to be transferred data

N/

:ST, namr1, namr2 [,record formatl

if a disc file is specified,
it must not already exist

4-26

MORE FILE MANIPULATIONS

PURGING FILES

:PU, namr
file to be purged

RENAMING FILES

:RN, namr, new file name

\

file to be renamed its new name

LISTING FILES

:LI, namr[,formﬁat[,line 1[,line 2:H]

/ lines to be listed

list in:

S ASCIl format
B binary format
D directory info only

4-27

4D. ACCESSING NON-DISC
DEVICES

You can also use FMGR
commands to manipulate
non-disc devices, either by
referring to their LU
numbers or to type O files
associated with the devices.

4-28

TYPE 0 FILES

I

Type O files allow you to refer to a non-disc
device by a file name rather than by the
device’s LU number.

RELAD]
namr, lu, WRIITE]
BOI(TH]
type O file lu of the I/O mode of
to be created non-disc device the device
to be associated
with the type
0 file

4-29

CONTROLLING A NON-DISC DEVICE

- The CN command allows you to control devices
via their LU numbers or type O files.

:CN[,namr[,function[,subfunctioﬁm

\

device to be function to be more control
controlled performed information

4-30

L0 .8 0 0 0 & & & & e
CONTROLLING TERMINALS

Terminals may be controlled with the FMGR
CN or CT commands.

,namr funct mn[subfunct ion[,message]ﬂ
interactive ~ control function additional control
device to be performed information

message to be
displayed on
the terminal

4-3

4E. SWITCHING LU’S

In addition to displaying the LU’s in your SST, the SL
command may be used to

® add a new Session LU

:SL,4

SLU 4=LU #120
:SL,10,120
:SL,10

SLU 10=LU #1120
:SL,10,-

:SL,10

SLU 10=NOT DEFINE

El19 s 1

El9 S 1

® add a new System LU

:SL,6

SLU 6=LU # 6
:SL,6,7 nl
:SL,6

SLU 6=LU % 7
:SL,6,-

:SL,6

SLU 6=LU ¢ 6

n
M
(o))

]
(]
~1

]
m
()]

4-32

DEVELODMENT

SECTION

A THE PROGRAM DEVELOPMENT PROCESS
B8 FTN4 AND ASMmB
C USING LOADR

(o] COMPL/CL.OAD

5-2

5A. THE PROGRAM DEVELOPMENT
PROCESS

FTN4
or
EDITR ASMB

LU X - a peripheral
cartridge

LOADR

///" PARTITION
:RU,program

ID Segment
\\\ SYSTEM
~ N PROG
| e
LU 2 - the system PHYSICAL MEMORY

cartridge

5-3

58. FTN4 AND ASMB

FORTRAN source programs have this format:

FTN4, compiler options

PROGRAM name [(type,pr tority,res,mult,hr ,min, sec ,msec),comments]

END
ENDS$

ASSEMBLER source programs have this format:

ASMB, assembler options

NAM name [,type,prior'xty,res,mult ,hr,min,sec,msec A id]

END entry

5-4

INVOKING FTN4 OR ASMB

You run FTN4 or ASMB by using the FMGR or system RU
command.

:RU, FTN4, source, list, binary, line count, options
ASMB

source — FILE OR LU containing the source code

list — file or LU to receive the listing of the compilation
or assembly

binary — file or LU to receive the relocatable code
line count — number of lines to be printed per page

options — any compiler/assembler options specified here |
replace those specified in the control statement.

avavRvaviy

FILE NAMING CONVENTIONS
FOR PROGRAM DEVELOPMENT

First character of

file name Type of file
& Source code file
’ List file

% Relocatable code file

5-6

v USING FILE NAMING CONVENTIONS %

When you invoke FTN4 or ASMB, you may specify the lisi or binary
parameters as “—"" (minus sign).

If the source file name begins with “&’, then the compiler or
assembler will use a list or binary file whose name begins with «“ 7"
or “%’’ respectively.

For example, :RU, FTN4, &PR0OG, 1, -

!

the compiler will store the relocatable code
in file *“%PR0OG”

:RU, ASMB, &APGM, —, -

the assembler will store the listing in file
“2APGM” and the relocatable code in file
“%APGM”’

The list and binary files will:
o reside on the same cartridge as the source file
o will be given the security code of the source file
o will be created or replaced as needed

*

5.7

ASMB
INTEBIFACI'NG FTN4 AND

FORTRAN programs and subprograms can invoke
Assembler subprograms

OR

Assembler programs and subprograms can invoke
FORTRAN subprograms

IF
you follow the “, ENTR calling sequence,”

. ENTR is a subprogram (in RTE’s relocatable
library) designed to handle passing parameters
between programs and subprograms or
subprograms and other subprograms.

FTN4 uses ,ENTR for your subprograms in
FORTRAN. If you code your Assembler programs or
subprograms to use ,ENTR, then they will be
compatible with FORTRAN programs or
subprograms.

1]
L

BIIET RN N N NN .

................................

5-8

SC.

USING LOADR

After you have compiled (or assembled) a source program,
you need to use LOADR to relocate and link the resulting
relocatable code.

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023

0024
0025
0026
0027
0028
0029
0030
0031
6032
0033
0034
0035
0038
0037
0038
0039
0040
0041
0042
0043
0044
0045

FTN4,L,Q

00000
00000
00000
00000
00000
00000
00031
00041
00041
00041
00041
00041
00063
00063
00063
00063
00071
00103
00103
00103
00103
00103

00178
0017S
00000
00000
00000
00015
00015
00015
00015
00021
00023
00044
00044
00044
00044
00056
00060
00072
00111
00111
00117
00120

OO0

101

00 OOOM
o

102

PROGRAM MAIN
DIMENSION DATAC10)

INPUT 10 VALUES
DO 20 I = 1,10
WRITEC1,101) 1
FORMATC’/ INPUT VALUE *°¢,12,77 2_**)
READC1,+) DATACI)
USE SUBROUTINE STAT TO FIND AVERAGE, STANDARD DEVIATION
CALL STAT(DATA,10,AVG,STDDEV)
OUTPUT RESULTS
WRITE(1,102) AVG, STDDEV
FORMAT(/’*RESULTS ARE: "’/

‘*AVERAGE - ‘’,F10.5/

** STANDARD DEVIATION - “‘,F10.5)
END
SUBROUTINE STAT(ARRAY,NELE,AVG,STDDEV)
DIMENSION ARRAY(NELE)

SUM = 0.0
SUMsa = 0.0

FIND AVERAGE OF ARRAY ELEMENTS

DO 50 I = 1,NELE
SUM = SUM + ARRAYC(I)
AVG = SUM / FLOAT(NELE)

FIND STANDARD DEVIATION

DO 60 I = 1,NELE

DEV = ARRAY(I) - AVG
SUMSQ = SUMSQ + DEV#=2
STDDEV = SQRT(SUMSQ)

RETURN
END

PROGRAM RELOCATION

LOADR displays a “load map’ showing the results of
relocating and linking the program in the specified
relocatable code file.

:RU,LOADR, ,¥MAIN,1

MAIN
STAT

FMTIO
FMT.E,
PNAME
REIO

ERRO

SQRT

«RTOI
« FPWR
ERO.E
FRMTR
.CFER

40042
40237

40400
41677
41700
41746
42073
42163
42265
42361
42423
42424
46062

40236
4037

41676
41677
41745
42072
42162
42264
42360
42422
42423
45061
46137

5 PAGES RELOCATED
LINKS:BP
/LOADR:MAIN

, First, the modules in the
relocatable file are ‘loaded”’

24998-16002 REV.1926 790417)
24998-16002 REV.1901 781107

771121 24998-16001 Then, the disc
92067-16268 REV.1903 790316 resident library
771122 24998-16001

780424 24998-16001 (Is searched for any
780921 24998-16001 routines needed by
781106 24998-16001 the program.

750701 24998-16001
24998-16002 REV.1926 790503
750701 24998-16001 /

5 PAGES REQ'D NO PAGES EMA NO PAGES MSEG

PROGRAM: BG LOAD:TE COMMON:NC

READY AT 1:22 PM THU., 1 MAY , 1980

/LOADR: $END \\\\\\\
Finally,

LOADR tells you the name of the
program just “loaded.”

5-10

LOADING PROGRAMS

fills in an ID Segment

/ in memory

Relocatable

Code LOADR

-
™~

— \ :RU,MAIN
N\
ROUTINES FROM
DISC RESIDENT
LIBRARY 40400 |
STAT 40237 The Memory Image Code
produced by LOADR is a disc
MAIN 40042 resident version (“image’) of
what the program will look like
SYSTEM when it is loaded into memory
for execution.

LOGICAL MEMORY
5-11

USING LOADR INTERACTIVELY

If you invoke LOADR without any parameters, LOADR will
prompt you for a command telling it what to do.

tRU,LOADR

/LOADR:

MAIN
STAT

/LOADR:

FMTIO
FMT.E
PNAME
REIO

ERRO

SQRT

.RTOI
. FPWR
ERO.E
FRMTR
.CFER

RELOCATE ,$MAIN

40042
40237

END

40400
41677
41700
41746
42073
42163
42265
42361
42423
42424
46062

40236
40377

41676
41677
41745
42072
42162
42264
42360
42422
42423
46061
46137

5 PAGES RELOCATED

LINKS:BP

/LOADR:MAIN

/LOADR:$END

24998-16002 REV.1926 790417
24998-16002 REV,1901 781107
771121 24998-16001
92067-16268 REV.1903 790316
771122 24998-16001

780424 24998-16001

780921 24998-16001

781106 24998-16001
750701 24998-16001
24998-16002 REV.1926 790503
750701 24998-16001

5 PAGES REQ'D NO PAGES EMA NO PAGES MSEG

PROGRAM: BG LOAD:TE COMMON :NC

READY AT 1:23 PM THU., 1 MAY , 1980

The RELOCATE command says to relocate and link the
relocatable code in the specified file.

The END command says this is the last command, search
the disc resident library to satisfy any remaining unsatisfied
external references and create the program.

5-12

SEPARATE COMPILATIONS

If relocyatable code exists in more than one file, additional
RELOCATE commands are used.

:RU,LOADR
/LOADR: RE,$SFSRT

SFSRT 40042 40265 PROGRAM TO INPUT AND SORT INTEGERS
/LOADR: RE,$BSORT

BSORT 40266 40416 BUBBLE SORT ROUTINE
/LOADR: EN

FMTIO 40417 41715 24998-16002 REV.1926 790417
FMT,E 41716 41716 24998-16002 REV.1901 781107
PNAME 41717 41764 771121 24998-16001
REIO 41765 42111 92067-16268 REV,1903 790316
FRMTR 42112 45547 24998-16002 REV.1926 790503
.CFER 45550 45625 750701 24998-16001

4 PAGES RELOCATED 4 PAGES REQ'D NO PAGES EMA NO PAGES MSEG
LINKS:BP PROGRAM:BG LOAD:TE COMMON :NC
/LOADR:SFSRT READY AT 1:37 PM THU., 1 MAY , 1980

/LOADR:$END

5-13

.cecs DISPLAYING UNDEFS e---.

The LOADR DISPLAY command lists all currently unsatisfied or
undefined external references (UNDEF’s).

:RU,LOADR
/LOADR: RE,%SFSRT

SFSRT 40042 40265 PROGRAM TO INPUT AND SORT INTEGERS
/LOADR: DL

/LOADR:UNDEFINED EXTS

/LOADR: .DIO,

/LOADR: . I10.

/LOADR: .DTA.

/LOADR:EXEC

/LOADR:CLRIO

/LOADR:BSORT
/LOADR: RE,$BSORT

BSORT 40266 40416 BUBBLE SORT ROUTINE
/LOADR: EN

FMTIO 40417 41715 24998-16002 REV.1926 790417
FMT.E 41716 41716 24998-16002 REV.1901 781107
PNAME 41717 41764 771121 24998-16001

REIO 41765 42111 920€67-16268 REV.1903 790316
FRMTR 42112 45547 24998-16002 REV.1926 790503
.CFER 45550 45625 750701 24998-16001

4 PAGES RELOCATED 4 PAGES REQ'D NO PAGES EMA NO PAGES MSEG
LINKS:BP PROGRAM: BG LOAD:TE COMMON :NC
/LOADR:SFSRT READY AT 1:39 PM THU,, 1 MAY , 1980

/LOADR:S$END

a2\
LIBRARIES

® A LIBRARY is a collection of routines which may be
used by many different programs.

® The DISC RESIDENT LIBRARY is created when
RTE is generated and consists of: |

— the system library
— the relocatable library

— user libraries (if included in the
generation process)

® LOADR automatically searches the Disc Resident
Library when you specify the END command.

® USER LIBRARIES not included in the RTE system

must be searched by using the LOADR SEARCH
command.

I

AN EXAMPLE OF A USER LIBRARY

Suppose %SRTLB contains a collection of sorting
routines —

%SRTLE i
:RU,LOADR
7LOADR: RE, 3PROGA
PROGA 40042 40265
/LOADR: SE,%SRTLB
BSORT 40266 40416
/LOADR: EN
FMTIO 40417 41715
FMT.E 41716 41716
PNAME 41717 41764
REIO 41765 42111
FRMTR 42112 45547
.CFER 45550 45625

4 PAGES RELOCATED
LINKS:BP
/LOADR:PROGA READY AT 1:41 PM THU., 1 MAY , 1980

/LOADR:SEND

BSORT
(bubble sort)

HSORT
(heap sort)

QSORT
(quick sort)

SSORT
(shell sort)

SPECTRUM DATA ANALYSIS

BUBBLE SORT ROUTINE

24998-16002 REV.1926 790417
24998-16002 REV,1901 781107
771121 24998-16001
92067-16268 REV.1903 790316

24998-16002 REV,1926 790503
750701 24998-16001

4 PAGES REQ'D NO PAGES EMA

PROGRAM: BG LOAD:TE COMMON :NC

5-16

NO PAGES MSEG

' REAL-TIME VS BACKGROUND
PROGRAMS

When you load a program, you can specify it to be a
REAL-TIME DISC RESIDENT PROGRAM
or a
BACKGROUND DISC RESIDENT PRQGRAM
The LOADR command —
OP,RT specifies REAL-TIME

OP,BG specifies BACKGROUND

5-17

LOCAL COMMON

The following main program and subprogrém share a

LOCAL (unnamed or blank) COMMON BLOCK.

FTN4,L
PROGRAM MAIN
COMMON// 1ARCS00)

END
SUBROUTINE SUBR
COMMON// IARCS500)

END

sRU,LOADR
/LOADR: RE,$MAIN

COoM 40042 41025

MAIN 41026 41077

SUBR 41100 41117
/LOADR: EN

FMTIO 41120 42416 24998-16002 REV,1926 790417
FMT.E 42417 42417 24998-16002 REV.1901 781107
PNAME 42420 42465 771121 24998-16001"

REIO 42466 42612 92067-16268 REV.1903 790316
FRMTR 42613 46250 24%98-16002 REV.1926 790503
.CFER 46251 46326 750701 24998-16001

5 PAGES RELOCATED 5 PAGES REQ'D NO PAGES EMA
LINKS:BP PROGRAM: BG LOAD:TE COMMON:NC
/LOADR:MAIN READY AT 1:45 PM THU,, 1 MAY , 1980

/LOADR:S$SEND

5-18

NO PAGES MSEG

LOGICAL MEMORY

(

User DISC RESIDENT

Program < LIBRARY ROUTINES Both MAIN and SUBR
Area can access array IAR
- SUBR in COM ‘
MAIN 9
\ com
System « SYSTEM

\

A LOCAL COMMON BLOCK

® can be shared between a main program and its
subprograms or just between subprograms

® is within the program itself

® is swapped with the program

5-19

SYSTEM COMMON

An UNLABELED COMMON BLOCK may be shared between
programs if the COMMON BLOCK is associated with
SYSTEM COMMON.

user
program ¢
area SYSTEM COMMON

| background
: ' real time
swmm< ____________ N ——

LOGICAL MEMORY

S

SC
RC
"NC
SS

The LOADR command gpP allows your program

to access one or more of these System Common areas.

5-20

:RU,LOADR

/LOADR: OP,SC

pa i A2
/LOADR: RE,3MAIN
MAIN 40042 40113
SUBR 40114 40133

/LOADR: EN

FMTIO 40134 41432
FMT.E 41433 41433

REIO 41502 41626
FRMTR 41627 45264

4 PAGES RELOCATED

LINKS:BP PROGRAM: BG LOAD:TE

/LOADR:MAIN
/LOADR :$END

User
program <
area

System <

4 PAGES REQ'D

ROUTINES FROM
DISC RESIDENT
LIBRARY

SUBR -

MAIN -

[“background |

LOGICAL MEMORY

SYSTEM COMMON

24998-16002 REV.1926 790417
24998-16002 REV.1901 781107,
PNAME 41434 41501 771121 24998-16001
92067-16268 REV.1903 790316

24998-16002 REV.1926 790503
.CFER 45265 45342 750701 24998-~16001

NO PAGES EMA NO PAGES MSEG

COMMON:SC
READY AT 1:46 PM THU.,

1 MAY , 1980

Both MAIN and SUBR can
access the array IAR
in System Common.

Any other program could
also access IAR if it
had been loaded to
access System Common.

® allows program to program communication

® is external to the program

® is always resident in memory

(it’s never swapped)
5-21

* % W * * * Y Kk *

COMMANDS TO
CONTROL LOADR OPERATION

/A Terminates the LOADR

LL,namr Directs the load map to “namr”

FM,DB Appends the DBUGR to the program
MP |

FM,CP Selects linking mode
BP

cx kYW K ko

5-22

\

\Y/

=/

/

= INVOKING LOADR Z

.

There are a variety of ways to use LOADR.

INTERACTIVELY :RU,LOADR

/LOADR:
/LOADR:
/LOADR:
/LOADR:

IN_A SINGLE RUN COMMAND

6
, SC
RE , 4PROG
END

f

o
U

:RU,LOADR, , %PROG,6,SC

FROM A COMMAND FILE

If file PLOAD contains -—

LL,6

0P, SC

RE , 4PR0OG
END

Invoke LOADR with —

:RU,LOADR, PLOAD

5-23

command file containing
LOADR commands

LISTING ID SEGMENTS

LOADR will list information about the ID Segments in

your system and the programs currently using them.

:RU,LOADR

/LOADR:

NAME

ZHZAT
D.RTR
PRMPT
SYCOM
EXTND
UPLIN
QUEUE
GRPM
RTRY
SRQ.P
QUEZ
TTYEV
LGTAT
AUTOR
SMpP
JOB
rrrrv
FMGR
LOGON
LGOFF
RSPNS
GASP

TY

WWWWWWRRNRN b b b s b

OP,LI

PRIOR

41
1
5

10

10
3
2
4

20

30

LMAIN

44000
46156
66324
67316
67511
67737
71265
71534
72372
72620
72734
73025
73037
40000
40000
40000
40000
40000
40000
40000
40000
40000

HMAIN LO BP HI BP

46156
66324
67316
67511
67737
71265
71534
72372
72620
72734
73025
73037
75213
41151
50737
51400
44150
46003
64035
60523
44420
51107

22

26
250
262
262
265
305
307
331
332
335
336

[¥§)
W
~

NN N

26
250
262
262
265
305
307
331
332
335
336
337
362

13
315
177
207

60
426
377

46
135

s2

EMA MSEG

This information can also be listed by —

:RU,LOADR,,,lu,Ll

or

:RU,LDADR,,prggram,lu,LI

5-24

PTN TM

PE
PE
PE
PE
PE
PE
PE

PE

COM S-ID

NC
NC
NC
NC
NC
S8
Ss
SS
S8
ss
88
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC

CcCoOCcCCcCooOoOocTCC

SD. COMPL/CLOAD

COMPL — this utility will examine the source program and
run the appropriate compiler or assembler.

:RU,COMPL, source, list, binary, control statement
»

same as control statement replaces
FTN4 or ASMB that in the program
CLOAD — this utility will examine the source program and

run the appropriate compiler or assembler (as
does COMPL) and then run the LOADR.

:RU,CLOAD, source, list, binary, control statement

5-25

SECTION

A WHAT IS A PROCEDURE FILE 6-3
8 GENERALIZED PROCEDURE FILES 6-9
C NESTED PROCEDURE: FILES 6-28

[+ INTERACTING WITH PROCEDURE FILES 8-30

6-2

6A. WHAT IS A PROCEDURE FILE?

Procedure Files are very similar to subprograms. A

main program and a subprogram might be structured
like this.

PROGRAM MAIN SUBROUT INE SUBR (K, X,M)
CALL SUBR (I,X,L)

N RETURN
=ND END

6-3

PROCEDURE FILES

A PROCEDURE FILE is:

1. a series of FMGR commands stored in a file or on a
device.

2. designed to execute a frequently used series of
FMGR commands.

commands entered commands in a file
at a terminal
: TR, namr—

-\ ;
\:TR

The FMGR TR command will invoke (transfer control to) a
specified procedure file.

A TR command at the end of the procedure file will return
control back to your terminal.

The commands in the procedure file will be echoed on the log
device as they are executed.

6-4

A PROCEDURE FILE EXAMPLE

commands entered commands in file /MAIN

at a terminal

i | = :RU,FTN4,&MAIN, 6, “MAIN
FTR, /MAIN :RU,LOADR, , 4MAIN .6

) : TR

The procedure file /MAIN can be used whenever you
wish to compile and load the program in &MAIN.

FMGR COMMENTS

You can comment a FMGR procedure file by using the
FMGR *#* command.

:**% commentis
or

:*# . commentis
or

:* B comments (b = blank)

When FMGR encounters a “comment” command, it

ignores the command and proceeds to the next
command.

:+* THIS IS A PROCEDURE FILE TO
:#% COMPILE AND LOAD THE PROGRAM
:#% STORED IN FILE &MAIN

KX

:RU,FTN4,&MAIN,6, ZMAIN
:RU,LOADR, ,#MAIN, 6

: TR

6-6

HELLO FILES

Session Monitor allows a System Manager to create a
HELLO file for each user. The HELLO file is just a
personalized procedure file.

After a user successfully logs on, FMGR will automatically
fransfer control to that user's HELLO file (if one was
specified in the user's account).

HELLO files can be used to

— display informative messages

— set up an operating environment for the user who
is logging on.

For example,

:RU, ANALY
+EX

6-7

FMGR COMMENTS

You can comment a FMGR procedure file by
using the FMGR * command.

DRk comments
or
2k, comments
or
=+ I comments (# = blank)

When FMGR encounters a '"'comment'" command,
it ignores the command and proceeds to the
next command.

*x THIS |S A PROCEDURE FILE TO

:xx COMPILE AND LOAD THE PROGRAM
xx STORED IN FILE &MAIN

Sk

‘RU,FTN7X,&MAIN, 6,7%MAIN
:RU,LOADR,,ZMAIN, 6

‘TR

6-8 Ue.s

68. GENERALIZED PROCEDURE
| FILES

:RU,FTN4,&MAIN,6, “MAIN

procedure file :RU,LLOADR, , “MAIN.G
| /MAIN - TR

6-9

MR

A GENERALIZED PROCEDURE FILE
TO COMPILE AND LOAD A PROGRAM

A procedure file to compile and load any program and list to any
device might be —

] unspecified unspecified unspecified
*RU,FTN4, < source > < list * \ relocatable

unspecified <unspecified>
:RU,LOADR,, \relocatable/, list

: TR
You “specify the unspecified” when invoking the procedure file.

:TR,/MAIN,&MAIN,B6,%MAIN -

A7 4 ™~
specify the specify the specify the
source list relocatable
PPN

6-10

JUST LIKE A SUBPROGRAM

A generalized procedure file is analogous to a subprogram with
parameters.

For example,

SUBROUTINE PSUM CI,J,LU)
ISUM=T1+J
WRITE CLU, 101) ISUM

101 FORMAT (/'sum Is"™, I5)
RETURN
END

Variables I, J, LU are “unspecified” values:

they are assigned values when the subprogram
is invoked.

The calling program might contain these statements,

K=15
CALL PSUM (K, 35,8)

S

The unspecified parameters (I,J,LU) are then
assigned values: K—|

35 —J
6 —=LU

6-11

GLOBA\-S
* *
*

x
%

FMGR has a set of variables, called GLOBALS, that may be set, modified
or examined by FMGR commands entered interactively or via a
procedure file.

GLOBALS in a procedure file serve to generalize the procedure file.

® GLOBALS represent the unspecified parameters of the
commands in the procedure file.

® Values are passed to these unspecified parameters (GLOBALS)
when the procedure file is invoked.

G GLOBALS

FMGR has 12 G GLOBALS called —

0G 16 2G 3G 4G 5G 6G 7G 8G 9G 106G 11(.9
Each G GLOBAL can contain

1. nothing (null value)

2. an integer value
3. up to 6 ASCII characters

Only G GLOBALS 1G—~9G may be set or modified by a
FMGR command (interactive or in a procedure file).

6-13

<28 e =ee=220 el

PASSING VALUES TO G GLOBALS

—togratog =t =t=at

An extended form of the TR command will invoke a procedure
file and pass up to 9 values to the Globals 1G—=9G.

: TR, namrl,v1,v2,v3,v4,v5,v6,v7,Vv8,VvI]

- -

~

up to 9 optional values passed to 1G— 9G
® values are passed according to position

® omitted values cause no change to the
corresponding G GLOBAL

e the value may be specified as a constant
or another GLOBAL

For example,

: TR, /MAIN,,7,THIS, 25
: TR, /PROG, 76

6-14

A GENERALIZED COMPILE AND LOAD

PROCEDURE FILE

Procedure file /MAIN might be generalized as follows:

X
E X
X
XY
X
X
X

:RU,
:RU,

: TR

PROCEDURE FILE TO COMPILE AND
LOAD A PROGRAM

GLOBAL 16 REPRESENTS SOURCE FILE
2G REPRESENTS LIST
3G REPRESENTS RELOCATABLE FILE

FTN4,1G,26G, 3G
LOADR, ,3G,26G

/MAIN might be invoked with:

: TR,

/MAIN, &PROGA, 1, 4PROGA

L

1G 2G 3G

6-15

N

SPECIAL G GLOBALS

G GLOBALS 0G and 10G have special uses:
0G contains FMGR’s input device LU

10G LOADR places the name of the program
just loaded into 10G

For example, /MAIN can be modified to compile, load
and run a program:

:RU,FTN4,1G,2G, 3G

:RU,LOADR, , 3G, 26

:RU, 106
: TR

/MAIN might be invoked with:

:TR,/MAIN, &FILE,0G, 4FILE

6-16

DISPLAYING GLOBAL VALUES

The FMGR DP (DISPLAY) command will display constants,
character strings and values of GLOBALS on the log device.

:DP,x1,x2,x3 .

_—

parameters to be displayed

for example

:DP,17,0G,THIS IS A STRING,106G
17,1, THIS IS A STRING, PROGX

6-17

You can also use the FMGR SE command to assign values to
G GLOBALS.

:SE,x1,x2,x3,x4, . . . ,x9

o

values to be assiéned to 1G—=9G
® position determines which G GLOBAL is
assigned a value

e omitted values do not affect the value of the
corresponding G GLOBAL

® values may be constants, character strings or
other GLOBALS

For example, :SE,17,-13,FTN4,2000B
:DP,16G, 2G, 3G, 4G

:SE, ,-15
:DP,1G, 2G

:SE, 26
:DP,1G,26

6-18

CALCULATING G GLOBALS

A third way to assign a value to a G GLOBAL is with the
FMGR CA command.

:CA, global number, expression
A number, 1 to 9 an expression whose value is assigned to
the specified G GLOBAL

The expression is of the form:

t1, op1, t2, op2, t3

/N

operands operators
® constants + O (OR)
e globals - X (XOR)
* A (AND)
/
for example, :SE,3
:SE,,,15

:CA79757+»3G7/72
:DP,1G,3G,9G6

:CA,8,150
:DP,8G

DECISIONS AND LOOPS
IN PROCEDURE FILES

The FMGR IF command allows you to alter the normal flow of
control in a procedure file.

:IF, o1, relation, o2, skip

)

operands whose relation to number of
values are to be be tested commands to skip
compared if relation is true
® constant EQ (default is 1)
e global NE
LT
GT
LE
GE

THE IF COMMAND MAY NOT BE USED INTERACTIVELY!

6-20

IF COMMAND EXAMPLES

A DECISION Procedure file /DEC is to be invoked with one
value passed fo it (in 1G). /DEC should
examine rhe value and print either POSITIVE or

NON-POSITIVE.
o @ ves
NON-POSITIVE POSITIVE
: 'll'R

A LOOP Procedure file /LOOP is to be invoked with rwo
values passed fo it. IG is a program name; 2G
is the number of times 1G should be run.

no
run the program

|

decrement 2G

|
—

: TR

INTERNAL G GLOBAL STRUCTURE

G Type Globals are stored as four words each as follows:

0 TYPE
1 DATA 1
2 DATA 2
3 DATA 3
where:
TYPE = 0 if the global is null
= 1 if DATA 1 is an integer
= 3 if DATA 1—=DATA 3 are ASCIl characters
GLOBAL FORMAT
GLOBAL TYPE=0 | GLOBAL TYPE=1 GLOBAL TYPE=3
WORD 0 (NULL) (NUMERIC) (ASCH)
WORD 1 0 INTEGER CHARACTERS 1,2
WORD 2 0 1] CHARACTERS 3,4
WORD 3 0 0 CHARACTERS 5,6

6-22

GLOBAL EQUIVALENCE

G P G P
-40 Type | . -20 Type
.39 -19
0 5
-38 -18
.37 -17
-36 Type -16 Type
-35 -15
1 6
-34 -14
.33 -13
-32 Type -12 Type
231 -11
2 7
-30 -10
.29 9
-28 Type - 8 Type
.27 7
3 8
.26 6
.25 5
24 Type 4 Type
.23 3
4 9
.22 2
221 1
0 Type
1
10
2
3
4
5
11
6
7
8
9

6-23;

X ¥ x
3 *

P GLOBALS

r}“(x}

P GLOBALS may be examined, set or modified exactly
like G GLOBALS, except that they refer to one word
only and are interpreted as integer values.

You can use the FMGR CA (CALCULATE) command to
assign values to the P GLOBALS —

-36 P to -1P (correspond to 1G—=9G)
or ,
1P to 5P

The command format is —

:CA, n:P, expression

n can be — \

-36 to -1 an expression whose value
or is assigned to the specified
1to 5 P global

6-24

Example 1 EXAMPLES{Z
:SE,15,,14
:CA,3:P,1G,-,36 e
:DP, 3P w X

Example 2

=SE7) ,15
:CA,-23:P,5
:DP,-23P, 4G

Example 3 Procedure file /DUMP will read a file from a mag tape and
store it into a disc file. 1G is used for the mag tape LU; 2G is
used for the disc file. /DUMP should check to see if the mag
tape LU specified is a positive numerical value.

store file

g

—

print error

7

: TR

6-25

SPECIAL USES OF P GLOBALS

FTN4

LOADR

P GLOBALS 1P to 5P are set to values reflecting the
number of errors found in the source program just
compiled.

1P total number of disasters, errors and warnings
2p number of disasters

3P number of errors

4P number of warnings

SP revision number of the compiler

For a successful load —

1P
2P } program name
3P

4P }

spaces
5p P _

For an unsuccessful load —

1P

2P } 6 character mnemonic error code
3P

4P L-

5p 0

6-26

SPECIAL P GLOBALS

SPL—CCHTPADNSZLASTWERIKIR]VUI[BEP%FTMDNIEQEE@
7P —CONTAINS CURRENT SEVERITY CODE .

8P —~CONTAINS YOUR SESSION IDENTIFIER
9P—-CONTAINS YOUR CAPABILITY LEVEL

EXAMPLE

:CR, XYZ:::4:1
tCR,XYZ:::4:1
FMGR-002
:DP,6P

-2

6-27

6C. NESTED PROCEDURE FILES

Procedure files may invoke other procedure files just as
subprograms may invoke other subprograms.

commands entered file 1 file 2
at a terminal contains contains
. y
TR,file 1— /
\ :TR,file 2
\ . TR
TR

FMGR keeps track of nested procedure files with a
TRANSFER STACK. The Transfer Stack may contain up
to 10 entries.

"MORE ON THE TR COMMAND

Additional forms of the FMGR TR command allow various means of
controlling the nesting of procedure files.

e invoke a procedure file
:TR, namr, paramelers

e transfer back one procedure file in the stack
: TR

e transfer back a specified number of files in the stack
:TR, - integer

e transfer back to the previous procedure file, but go back the
specified number of commands in that procedure.

:TR,: - integer

For example

commands

entered '

from a file 1 file 2 file 3 file 4
terminal contains contains contains contains
:TR,file1/: : /:TR,file 4/:

:TR, file?2 : TR, file3

a : TR I——-ETR, -2

;TR ‘TR, :-2 ‘TR

t TR

6-29

6D. INTERACTING WITH PROCEDURE
FILES

MESSAGES

You can use FMGR commands to send messages to be printed at
the: '

LOG DEVICE, use the FMGR DP (DISPLAY) command

:DP, message

LIST DEVICE, use the FMGR AN (ANNOTATE) command

:AN, message

SYSTEM CONSOLE, use the FMGR TE (TELL) command

:TE ,message

SUSPENDING AND RESTARTING A
PROCEDURE FILE

The execution of a procedure file may be suspended and control
transferred to an interactive device with the FMGR PA (PAUSE)
command.

at the specified LU
from a procedure file (default is log device)

(the PA
:PA, lu, message command

: / : is echoed)

o D *

:’ A, lu, message : (you then interactively
enter commands

as desired)

: TR (transfer back to
procedure file)

6-31

ERRORS IN PROCEDURE FILES

When FMGR encounters an error while executing a procedure file,
control is transferred to the log device so corrective action may be taken.

procedure file log device (interactive)

: _~FMGR-006 (file not found)
: //// :ST,8,FILEA

:LI, FILEAS——:TR, : -1 you then take
:LI, FILEB corrective action
: and transfer

: back to the

: TR procedure file

By setting FMGR's SEVERITY CODE you can control
e echoing of commands

e listing of errors
e transferring to the log device on errors

6-32

USING DTE®s SFDVICES
MATICALLY

SECTION
A INTRODUCTION TO EXEC CALLS 7-3

B8 170 PROCESSING

7-2

7A. INTRODUCTION TO EXEC
CALLS

You call EXEC to request RTE services as follows:

CALL EXEC CICODE,pl,p2,p3,...pn)

N\

a request code, identifies parameters further specifying
the service requested the request

For example,

An EXEC 11 ICODE = 11) is a request for RTE’s current time of
day.

DIMENSION ITIMEC(S)

ICODE = 11 |
CALL EXEC CICODE,ITIMEL,IYEARI)

/ RTE returns the

RTE places the
4 digit year in

— day
— hour this variable

— minute

— second

— 10’s of milliseconds
(centiseconds)

in this array. 7-3

SUCCESS? @

A request for an RTE service might be:

SUCCESSFUL

UNSUCCCESSFUL

control is returned to the
statement following the
EXEC call

status information may
be available in the A
and B registers

your program will
usually be aborted and
an error message will be
displayed at your
terminal (and at the
system console)

7-4

sl

RETRIEVING INFORMATION FROM
THE A and B REGISTERS

An EXEC 1 request is for input —

ICODE = 1 '
CALL EXEC C(ICODE,1,1,1)

/CALL ABREG (IA,IB)

The library routine ABREG stores the A successful READ request will

A register contents in the first returmn with:
parameter, the B register contents A register: device status

in the second parameier B register: number of words
(characters)

tfransferred

You should call ABREG immediately after the call

to EXEC.

:RU,TMP

ENTER AN INDEX VALUE:
I0l2 TMP 40237
TMP ABORTED
ABEND TMP ABORTED
+HE
I012
AN I\O REQUEST SPECIFIED A LOGICAL UNIT NOT DEFINED FOR USE BY
THIS SESSION. THE "SL" COMMAND WILL REPORT ALL LOGICAL UNITS
AVAILABLE TO YOUR SESSION,

DEBUGGING EXEC ERRORS

The compiler listing and load map for program

TMP are —
0001 PFTN4,L,Q
0002 (00000 PROGRAM TMP
0003 00000 INTEGER ARRAY (100)
0004 00000 C
0005 00000 C INITIALIZE ARRAY 1 TO 100, BACKWARDS
0006 .00000 C
0007 00000 DO 10 I = 1,1n0
0008 00151 10 ARRAY(101=-I) = I
0009 00151 C
0010 00167 20 CONTINUE
0011 00167 WRITE(1,101)
0012 00175 101 FORMAT (/"ENTER AN INDEX VALUE:")
0013 0017% CALL EXEC(1,15,INDEX,1)
0014 00203 CALL ASCBN(INDEX)
0015 00206 IF(INDEX .ED. 0) GOTO 99
0016 00215 IVAL = ARRAY (INDEX)
0017 00221 WRITE(1,102) IVAL
0018 00231 102 FORMAT (/"THE CORRESPONDING ARRAY.ELEMENT IS ",IS5)
0019 00231 GOTO 20
0020 00231 C
0021 00231 99 CONTINUE
0022 00232 END
:RU,LOADR
/LOADR: RE, $TMP
TMP 40042 40354
/LOADR: RE,$ASCBN
ASCBN 40355 40502
/LOADR: END
FMTIO 40503 42001 24998-16002 REV.1926 790417
FMT.E 42002 42002 24998~16002 REV.1901 781107
PNAME 42003 42050 771121 24998-16001
REIO 42051 42175 92067-16268 REV.1903 790316
FRMTR 42176 45633 24998-16002 REV.1926 790503
.CFER 45634 45711 750701 24998-15001
4 PAGES RELOCATED 4 PAGES REN'D NO PAGES EMA NO PAGES MSEG
LINKS:BP PROGRAM: BG LOAD:TE COMMON :NC
/LOADR : TMP READY AT 2:24 PM THU., 1 MAY , 1980

/LOADR:$SEND

HANDLING EXEC ERRORS
PROGRAMMATICALLY

For less severe errors, a user can specify that a
program should not be aborted if an EXEC error
occurs. If this option is selected however, the
program should process an error itself.

The "no abonr” option is selected by setting bit 15
of the ICODE parameter of an EXEC call; the "no
abort” option is then in effect for that particular
call.

ICODE = 1 + 100000B
caLL EXEC CICODE,1,I1,1)

sy P g Pt

—_—N

RTE returns here if an error occurred

RTE returns here if the
call was successful

The error return point should always contain a GO
TO statement.

7-8

RETRIEVING ERROR INFORMATION

When an EXEC error occurs, RTE stores error
information in the A and B registers.

A ‘registér' — 2 character (ASCIl) error code: SC,
LU, 10, DR or RN

- 2 digit (ASCIl) error number: 01,

B register
02,03.....

For example,

ICODE = 1 + 1000008
CALL EXEC CICODE,1,1,1)

GO TG 99
10 WRITEC1,101)1

93 CALL ABREGCIA,IB)
WRITEC1,201)1A, IB
FORMATC/"EXEC ERROR ON INPUT:"/

201
“ERROR CODE™,2A2)

*

STOP

7-9

MEMORY PROTECT FENCE

| B o e p——

Logical Memory

User
Program

Area Call Exec (....)
g - Memory Protect
4 Fence

System < ——————————
Exec

.

RTE has a MEMORY PROTECT FENCE to protect
itself from user programs. User programs crossing
the fence will be aborted with an MP error.

7-10

78. /O PROCESSING

I/0 requests made with FORTRAN READ/WRITE
statements are first processed by the FORTRAN
FORMATTER and then sent to RTE for the actual I/0

operation.

By using EXEC I/0 requests, you can request I/0
operations directly.

Logical Meinory

User
Program <
Area

Data Buffer =

> >

I/0 Device

System (

7-11

EXEC READS & WRITES

EXEC READ (EXEC 1) — inputs data from a device
into a buffer in your
program

ICODE = 1

CALL EXEC CICODE, ICNWD, IBUFF,ILEN)

EXEC WRITE (EXEC 2) — outputs data from a buffer in
your program to a device

ICODE = 2
CALL EXEC CICODE, ICNWD, IBUFF,ILEN)

where ICODE — the EXEC request
ICNWD — control word : specifies "how -
and where” to perform the 1/0
operation
IBUFF — array in the program acting

as the data buffer

ILEN — positive number of words or
negative number of
characters to be transferred

7-12

ICNWD

ICNWD is a control word containing information that
tells RTE “how and where” to perform the data

transfer.

v
[1~9

3121110

bit ——115[14[13|12]11{10| 9 [8 [7]
value ———=1 0 | 0| 0 0] 0|X|{A|K|V|M

. 7 \a

" e

FUNCTION . LOGICAL
CODE UNIT

.

"

WHERE;

Logical Unit = LU number of device to use in
transfer. “Where to perform the
I/O operation”

control bits used to control device
driver (device driver dependent).
“How to perform the I/O
operation”

Function Code

0 = bits used by the system that should
be set to 0.

7-13

FUNCTION CODE

The function code field of ICNWD is used to control the
device driver. The meaning of the bits depends on the
driver type.

bit ——{15 [14]13]12|11{10} 9
value — 0 l0]0]0]0|{Xx|A|K]|VIM|—|—|—|—|—|—

®
R |
(=]
wm
' =Y
»
(V)
oy
o

FUNCTION LOGICAL
CODE UNIT

For example:

M = O data is ASCI

} for a CTU READ or WRITE
data is binary

<
i
o -

use first column as carriage control |
_, for a line printer
print the first column

N
il
O -

no echo on an EXEC read
for a terminal
echo on an EXEC read

>
i
O o N

terminal enabled character/block read
for a terminal

—

program enabled block read

X = 0 use V bit for control information

} for a line printer
1 user supplies CR, LF, FF controls

7-14

AN EXAMPLE OF EXEC
READS & WRITES

0001 FTN4,L

0002 PROGRAM TEXEC

0003 INTEGER IBUF(S)

0004 C

0005 C THIS PROGRAM REQUESTS UP TO 10 CHARACTERS FROM THE
0006 C TERMINAL CLU 1) AND PRINTS THEM ON THE LINE
0007 C PRINTER (LU 6).

0008 C

0009 WRITEC1,101)

0010 101 FORMATC/"PLEASE TYPE UP TO 10 CHARACTERS:")
0011 C

0012 C EXEC READ TO RETRIEVE INPUT,

0013 C SET THE “K" BIT FOR ECHO.

0014 C

0015 ICNWD = 1 + 400B

0016 CALL EXECC1, ICNWD,IBUF,-10)

0017 C

0018 C GET THE NUMBER OF CHARACTERS ACTUALLY ENTERED.
0019 C

0020 CALL ABREG(IA,I1B)

0021 ILEN = IB

0022 C

0023 C EXEC WRITE TO PRINT THE STRING,

0024 C SET THE "V* BIT TO PRINT THE FIRST CHARACTER.
0025 C

0026 ILEN = -ILEN

0027 ICNWD = 6 + 200B

0028 CALL EXEC(2, ICNWD,IBUF,ILEN)

0029 ¢C

0030 END

7-15

EXEC DEVICE CONTROL

An EXEC 3 call will allow you to programmatically
control I/O devices, for example

— enable/disable a terminal

— rewind a mag tape

— issue a form feed to the line printer

ICODE = 3
CALL EXEC C(ICODE, ICNWD, IOP1)

"where

ICNWD — control word specifying the control
function and LU
15 1110 65 0

function LU
code

f

specifies control function to be performed

I0P1 — optional parameter, required by
some control functions for extra
information

7-16

% OBTAINING DEVICE STATUSX

® DEVICE STATUS AFTER AN EXEC READ/WRITE

After a successful EXEC 1 or 2 request, the A regisrer' contains
the device status (Eqt word 5). o

o DEVICE STATUS WITH AN EXEC 13 REQUEST

The EXEC 13 call will return information about a device,
including the device type and its last reported status.

ICODE = 13
CALL EXEC C(ICODE, ICNWD,IST1,I1ST2,1ST3)

where

ICNWD — LU of device being queried

IST1 — returned with word 5 of EQT
IST2 — returned with word 4 of EQT
IST3 — returned with subchannel of device and “up”

or “"down” information

7-17

NORMAL 1/O

A program doing EXEC READS or WRITES to a
(unbuffered) device is requesting a data

transfer directly between the device and a
buffer in the user program area of memory.

Logical Memory

User
Program
Area

Data Buffer

\ /0 operation

> T~

Device

System <

7-18

"AUTOMATIC OUTPUT BUFFERING

Some devices (such as terminals or line printers) may be
specified to be BUFFERED devices for output operations.

This specification is done when the RTE system is
generated or by using the system EQ command (high
capability).

Logical Memory

User
Program
Area Data Buffer
Qutput Operation
> SAM I Buffered
Data Buffer ~(For Output)
____________ Device
System <
L

SYSTEM AVAILABLE MEMORY (SAM) is a dynamic data
areq in the system area of memory.
7-19

REENTRANT /O

The library routine REIO will perform I/0 operations
such that: |

¢ the program becomes swappable

CALL FEEID(E)ODE , ICNWD, IBUFF, ILEN)
“

same as for EXEC 1 or 2
(only non-disc devices)

REIO will always perform the requested I/0 operation;
however, the program will be swappable if

e TLEN is less than 130 words
- o IBUFF is at least 5 words from the beginning

of your program

REIO uses a data buffer in SAM to hold the data from
your program so that your program may be swapped
if needed.

7-20

1/0 SUMMARY

PROGRAM STATE SWAPPABLE?

FORTRAN

READ
WRITE

7-21

TTH

SECTION

A PASSING INFORMATION 8-3

8 SUSPENDING PROGRAMS 8-9

C TERMINATING PROGRAMS 8-12

82!

8A. PASSING INFORMATION

Values may be passed o

#* subprograms when you call them

CALL SUBR (I,J,K)

#* procedure files when you transfer to them

:TR,/MAIN,&MAIN,B, ZMAIN

¥ programs when you run them

:RU,LOADR, ,%MAIN, B

8-3

RMPAR

When a program is run, up to 5 integer values (or
pairs of ASCII characters) may be included as
parameters in the RU command.

S= xx COMMAND ?RU,KYDMP,KF,IL,E1
:RU,LISTR,6,TE,XT,F4

The program can then use the library routine RMPAR
to retrieve these values and store them in an array in
the program.

:RU7PRUG711375>7v9 PROGRAM PROG
. INTEGER PARM (5)
\ CALL RMPAR (PARM)
PROG’s
ID Segment array PARM now
contains values
1,3,5,7,9

1
3
5
7
9

The call to RMPAR should be the first executable
statement in your program.

RETURNING VALUES TO FMGR FROM A
PROGRAM

If you run a program with the FMGR RU command,
your program can refurn up to 5 integer values (or
ASCIl character pairs) to FMGR. FMGR retrieves

these values and stores them in globals 1P to 5P.

The library routine PRTN is used to return velues, for

example:
0001 PTN4,L
0002 PROGRAM INODT
0003 ¢ :
0004 C THIS PROGRAM IS TO BE RUN WITH 5 VALUES PASSED
0005 C TO IT. THE PROGRAM WILL RETRIEVE THE 5 VALUES
Q006 C AND THEN PASS THEM BACK TO FMGR IN REVERSE ORDER.
0007 ¢ :
0008 INTEGER IPARM(5) , RPARM(S)
0009 C
0010 C RETRIEVE THE PASSED VALUES
0011 ¢
0012 CALL RMPAR(IPARM)
Q013 ¢
0014 DO 101 = 1,5
0015 10 RPARM(I) = IPARM(6-1)
0016 ¢
0017 ¢ RETURN THE VALUES TO FMGR
Qois ¢
0019 CALL PRTN (RPARM)
0020 ¢ -
0021 END

:RU, INOUT,1,2,3,4,5

1DP ,lP.2P ’3P'4P e SP
5,4,3,2,1

3RU'IN°UTI +¢UP,DN

1DP,10G
DNUP

8-5

PASSING STRINGS TO PROGRAMS

Strings of characters may also be passed to a
program, for example

:RU,GRSTR,THIS IS A STRING
string of ch;racters to be
passed to GRSTR

A program can retrieve a string via

e EXEC 14 — the EXEC 14 will retrieve
REQUEST the ‘‘run string”’

:RU,GRSTR,THIS IS A STRING

EXEC 14 will retrieve this

o GETST — the library routine GETST
will retrieve the ‘‘parameter

string’’ (any characters after
the second comma)

:RU,GPSTR,THIS IS A STRING

GETST will retrieve this

8-6

RETRIEVING THE RUN STRING

The EXEC 14 will retrieve the command that scheduled

the program.

ICODE=14 |
CALL EXEC (ICODE,1,IBUFF,ILEN)

says to retrieve array to receive positive number of words

the run string

For example,

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020

the run string or negative number of
characters to retrieve

PTN4,L

000n

aoan

101

PROGRAM GRSTR
INTEGER IBUF (35)

RETRIEVE THE RUN STRING VIA EXEC 14
SPECIFY THE MAX NUMBER OF WORDS TO BE RETRIEVED.

ILEN = 35

ICODE = 14

CALL EXEC(ICODE,1l,IBUF,ILEN)
CALL ABREG(IA,IB)

ILOG = 1B

PRINT THE RUN STRING,
USING THE ACTUAL NUMBER OF WORDS RETRIEVED.

WRITE(1,101) (IBUF(I),i=1,ILOG)

FORMAT (/"THE RUN STRING IS:"/
-35A2)

END

tRU, GRSTR,THIS IS5 A STRING
THE RUN STRING IS:

RU,GRSTR,THIS IS A STRING
3

8-7°

RETRIEVING THE PARAMETER

STRING

A call to GETST will retrieve the parameter

string part of the command that scheduled the

program.

CALL GETST (IBUF,ILEN,ILOG)

_——

—_ " :
array to receive positive number of number of words or
the parameter words or negative characters actually
string number of retrieved
character to
retrieve

For example,

0001
0002
0003
0004
0005
0006
0007
coo8
0009

0016

0011
0012
0013
0014
0015
0016
0017

FTN4,L

aonnNna

non0an

101

PROGRAM GPSTR
INTEGER 1BUF(35)

RETRIEVE THE PARAMETER STRING VIA GETST,
SPECIFY THE MAX NUMBER OF WORDS TO BE RETRIEVED. -

ILEN = 35
CALL GETST (IBUF,ILEN, ILOG)

PRINT THE PARAMETER STRING,
USING THE ACTUAL NUMBER OF WORDS RETRIEVED.

WRITE(1,101) (IBUF(I),I=1, ILOG}
FORMAT (/"THE PARAMETER STRING 1S:"/

L 35A2)
END

: RU,GPSTR,THIS IS A STRING

THE PARAMETER STRING IS:
THIS IS A STRING

8-8

8B. SUSPENDING PROGRAMS
— INTERACTIVELY —

You can INTENTIONALLY suspend a program
and then restart its execution by using the
system SS and GO commands.

S=xx COMMAND? SS,program

“program’’ will be suspended

S=xx COMMAND? GO,program

“program” will be rescheduled

(If “program” is not specified,
the current Session program is
suspended or rescheduled)

8-9

SUSPENDING PROGRAMS
— PROGRAMMATICALLY —

A program can suspend itself and then be
rescheduled by an operator via

¢ issuing a READ request and waiting for
the operator to respond.

® executing a FORTRAN PAUSE statement
and waiting for the operator to enter a
"*GO,program'" command.

PAUSE xxxx

octal value displayed in a PAUSE
message at your terminal

¢ making an EXEC 7 request and waiting for
the operator to enter a '""GO,program"*
command.

ICODE=7
CALL EXECCICODE)

PASSING VALUES WHEN RESTARTING A
PROGRAM

The GO command may pass up to 5 integer values
(or ASCIl character pairs) to the program that is
being restarted. RMPAR is used by the program to
retrieve the values.

PROGRAM PROGA
INTEGER PARM(S)

CALL EXEC(C7)
CALL RMPAR (PARM)-=

PARM then contains
5,6,1,3,8

8C. TERMINATING PROGRAMS

A program may be terminated in several
ways:

% FORTRAN STOP statement

STOP xxxx

octal value displayed in a STOP message
at your terminal

EXEC 6 REQUEST

CALL EXEC(8&)
+ FORTRAN END statement
END

The END statement causes the FTN4
compiler to generate an EXEC 6 request
automatically.

0z
K7\

TERMINATING A PROGRAM EARLY

If you want to terminate a program before its
normal termination —

® use the system OF command

, 0
S=xx COMMAND? OF,program [,1]
or

S=xx COMMAND? OF

® your program may be created to allow an

early termination by examining its “‘break
bit”.

g-13

PROGRAM BREAKS

One of the bits in a program’s ID segment is the
“break bit’’. The library routine IFBRK allows a
program to check its break bit (and clear it if it was
set).

I=1IFBRKCIDUM)

returned as: 0 if break bit is not set
negative if break bit is set

Your program can then take an appropriate course of
action.

You can set a program’s break bit with the system BR
command.

S=xx COMMAND? BR,program

if “program” is not specified, the break bit in the
current session program is set.

TYDE € FILFS

LOADR CREATES A TEMPORARY
DISC RESIDENT PROGRAM

System_Areg
,//System N

Track Pool \\
// FMP Area \ \

FMP Area

% Logical Memory \
:RU, LOADR, , APROG \
/
|/
1/
ID Segment A
/
\ PROG g
LN //
~
o

8-3

SAVING PROGRAMS

You can use the FMGR SP command to “save” a
program as a type 6 file.

, PR
:SP, namr {,GR (,capability]]

The type 6 file created by the SP command
consists of a copy of the program’s ID segment
and Memory Image Code appended together.

" Type 6 files are not affected by the log-off process
or the boot-up process.

: SP,PROGA

w2

ma
- System

/
/ Trag_s_iool \

- ~
4 FMP Area

™~
\
\‘save"

Memory Image
Code

Logical Memory

\\savell
ID Segment

ID Segment

\ PROGA

LAB 1 - AN INTRODUCTION TO RTE

l. Your instructor should supply you with the
following information

the Disc Loader ROM Number

the Octal Select Code of the System Disc
the Surface Number on the System Disc
which contains the RTE system -
for the system you will use for your lab exercises.

Use this information to boot up the system.

LAB 2 - USING YOUR RTE SYSTEM

l. Log on to the system using the account given to you
by your instructor.

What are the Session LU’s which you can access?
What are their corresponding System LU’'s?

2. Retrieve any messages waiting for you, without purging
them, Retrieve the messages again, this time purging
the messages so you will not see them again., If you
then enter a ME command, what will happen?

3. File &LAB23 contains a FORTRAN source program with a
number of errors. You should -

* create a copy of the source file for
your own use, giving it a unique file
name.

* edit the source file, correcting any
errors and giving the program a new name.

* compile, load and run the program,

4, File &LAB24 also contains a FORTRAN source program
with a number of errors. Repeat the steps of
problem 3 with this source program,

A-5

1.

3.

5.

LAB 3 - RTE ORGANIZATION

For every Session LU in your SST, determine its =

a. corresponding System LU
b. EqQt and subchannel number
c. select code

d, driver

File sLAB32 contains a FORTRAN source program which
outputs several lines to the line printer. Make a

copy of the source file for your own use and give the
program a unique name. Then compile and load the program.

Before you run the program, turn the line printer off-line,
Run the program and see what happens, Turn the printer
back on-line and get your program’s output.

Try the same exercise again but this time run the
program with the System (RTE) run command.

(How do you enter a System command from FMGR?)

You can submit a System command with the FMGR SY prefix
but you can’t submit a Breakmode command this way. .
Try using the SY prefix with the Breakmode commands and
see what happens.

(See the Terminal User’s Manual description of the SY
command.)

what LU and track(s) contain the Memory Image Code for the
program you used for problem 272

Use two different methods to find the priority of your
copy of FMGR.

a) Enter the following command at your terminal -
:DL

Wwhat three commands can you enter to stop the output
and get your FMGR prompt back?

b) File sLAB36 contains a FORTRAN program which goes into
an infinite loop, printing messages at your terminal.
Make a copy of the source file for your use (with a new
program name, of course) and then compile, load and run
the program. Use the three commands you selected above
and note what happens. ’

A-7

1,

2.

3.

4.

LAB 4 - FILE MANAGEMENT SYSTEM

Allocate (mount) a private cartridge from the Spare
Cartridge Pool.

What is the LU of the cartridge allocated?

Wwhat are the names of all the type 6 files on LU 2?
The names of all the source files (first character

of the file name an "&") on the system “lab exercises"®
cartridge? !

The FORTRAN program in source file &LAB43 contains READ
statements directed to LU 5 and WRITE statements directed
to LU 6.

* Create a copy of the source file for your use,
Give the program a new name but DO NOT change the
I1/0 statements,

* Compile and load your program,

* Run the program but cause the input and output to
be directed to your terminal.

Wwhat are two ways (two FMGR commands) to tell if there
is a file called &LAB3l on the system "lab exercises"
cartridge?

Use the FMGR ST command to store a file containing
relocatable code onto a minicartridge (or magnetic tape).
Then use the ST command to input the relocatable code
from the tape into a new disc file,

Can you repeat this exercise using the FMGR DU command
instead of the ST command?

6., Store 4 files on a minicartridge or a magnetic tape.
use the FMGR CN command to rewind the tape

use the CN command to position the tape
(forward space) to the third file

use the FMGR DU command to list the third
file at your terminal

use the CN command to backward space the tape
to the second file

* use the DU command to list the 2nd file
at your terminal

Could you use the FMGR LI command instead of the DU command?

7. Use the FMGR LI command to list a source file. List the
file again but specify the "B" option. Compare the
two listings.

A-11

3.

LAB 5 PROGRAM DEVELOPMENT

File &LAB51 contains a FORTRAN source program with the
following control statement:

FTN4,L

Without editing the source file (or a copy), compile the
program with

- a mixed listing
- a "Q" listing
- an "L" listing with a symbol table

What is similar about the mixed and the "Q" listings?

Make a copy of source file &LABS2, giving the program a new
name. Compile the program and lcad it as a "real-time"
program., Use LOADR to verify that the program really is a
"real-time" program. Finally, run the program,

Write a FORTRAN program whose source code is contained in two
files. One file should contain a main program which calls a

subprogram; the other file should contain the source code
for the subprogram,

After you compile the two source files, load the program using
LOADR ' ’

- interactively
- from a command file

Could you use CLOAD to compile and lcad this program?

Files %GLIB and %XGLIB contain the relocatable code of two
library files.

File &LABS54 contains a FORTRAN source program which uses some of
the routines in these two libraries. Make a copy of the source
program, giving the program a new name, Compile and load the
program, searching the two library files for any needed routines
(search %XGLIB before 3GLIB)., If you want to run the program
you need to use a 2648 terminal,

Try loading the program using the LOADR LIBRARY command (see the
Terminal User’s Manual for a description of the LIBRARY command).

How could you determine the names of all the routines in each of
these two library files?

A-13

D e

Write two FORTRAN programs which will communicate with each other
via a word in System Common.

Program 1 should enter a loop, requesting an integer value from
the operator and storing this value in System Common. When the
value 555 is entered, the program should store the value in
System Common, jump out of the loop and terminate.

Program 2 should also enter a lcop, printing the value it finds

in System Common on a terminal., When the value 555 is found,
the program should print this value, jump out of the loop and
terminate.

Some suggestions:

- be careful when using System Common if someone else is
also doing this exercise.

- tun’the two programs from separate terminals so they
don t interfere with each other when doing I/O.

3.

=~ PROCEDURE FILES

Log on as user LOW.CAPABILITY and see what this user can do.
List the user’s HELLO file (“LOWCP::2).

What FMGR command can you use to determine your account’s
command capability level?

What are 4 ways to determine your Session Identifier
(the System LU of your terminal)?

Write a procedure file to compile, load and run a program,
The procedure file is to be invoked with

:TR,procedure file,source file, list lu

/

N\

name of your - file containing list 1lu
procedure file your source code
version 1 ignore the poésibility of compiler or LOADR errors.

version 2

version 3

version 4

version 5

‘OF " the program after it is run to avoid getting
duplicate program errors on subsequent loads.

use a file called %TEMP to hold the relocatable code.
Will your procedure file work equally well if the
relocatable file is called TEMP? See the RTE
FORTRAN IV Reference Manual, appendix on compiler
Operations,

if a compiler error(s) occurs, print a messaje and
transfer back to the operator.

if a LOADR error(s) occurs, print a message and
transfer back to the operator.

require that the first character of the source file

name be an "&". If not, print a message and transfer
back to the operator.

make use of the “&" as the first character in the

source file name by specifying "-* as the relocatatle
file in the :RU,PTN4..,.. command.

A-17

L]

5. Write a procedure file which will store 4 disc files on a mini-
cartridge or a magnetic tape. Store the procedure file on the
tape as the first file, then invoke the procedure file to store
the 4 files on the tape. Your tape should then look like this -

50T EOT

procedure file 1 file 2 file 3 file 4
file

Transfer the 4 files pack from the tape into 4 new disc files by

- storing the procedure file from the tape to a
new disc file,

.~ editing the procedure file just input from tape
SO it will store 4 files from tape into 4 new
‘disc files.

- invoking the new procedure file to read the 4
files from the tap=.

The EDITR "X" command will be of use in editing the procedure file,

6. Write a procedure file which will accept the name of an existing

file and then create a copy of that file for you witn a new name.
For example,

:TR,procedure file,file name

if you specified FILED, the procedure
file will create a file called "FILExx",
where "xx" is your Session Identifier,
and store the contents of FILED into
FILExx.

Suggestions:
- assume the file name to be at least 4 characters
.~ use the FMGR ST command to create the new file

and transfer the data from the original file to
the new file.

A-19

ll

LAE 7 = USING RTE’'S SERVICES PROGRAMMATICALLY

Files &LB711 and &LB712 each contain a FORTRAN source program,
Each program prompts for an LU and then outputs a messaje
identifying itself on that device,

Make a copy of each source file, givinjy the programs new names.
Then compile and load the two programs.,

For this exercise, you will need to use a terminal in
addition to your own, With the second terminal displaying
& FMGR prompt,

- Set the priority of one program to 25.
Set the priority of the other to 30.

- Run the priority 30 program, directing the message to
tnhe second terminal.

Fun the priority 25 program, also directing the message
to the second terminal.

- Hit the return key on the second terminal.

In what order do the messages appear? Repeat this exercise
but use priorities of 85 and 90.

Using EXEC READS and WRITES, write a program which prompts
the operator to enter up to 40 characters and then prints
those characters (and only those characters) on the line
printer. Have your program repeat this process until the
ocperator enters a null string (just a carriage return)

in response to the prompt issued by your program,

I1f you like, you can use a FORTRAN WRITE for the prompt,

3. Write a program which inputs an integer value and then sets

the time-out of your terminal to that value.

Ee careful about the value you enter since time-outs are
in units of 10°'s of milliseconds!

If you like, you can use FORTRAN READS and WRITES for the

program’s I/0; use an EXEC Call to set the terminal’s
time~-out,

A-21

4, Write a program which prompts the operator for an LU number
and then prints a message statinj whether that LU is

- a terminal

- a magnetic tape drive
- a printer

- none of the above

Again, you can use FORTRAN statements for the I/O; use an
EXEC Call to determine the device information.

Wwhat happens if you enter an LU not in your SST?

Modify your program to print a message if you specify
an LU not in your SST.

A-23

LAB 8 =~ INTERACTING WITH YOUR PROGRAM

l, Write a program that prints a message on a device to be
specified when the program is run. For example,

sRU,program,6

print the message on LU 6
(assume non-disc devices)

2. Write a program that tells you how many characters are
in your first name. Design your program so that it
can be run in two ways -

tRU,program,nane {The program determines the
numbers of characters in the
specified name,)

tRU,program {(The program should prompt the
user to enter a name,)

3., File &LAB83 contains a FORTRAN source program which accepts
a string of 4 to 6 ASCII characters and renames the string
for your Session., For example,

tRU,program,FILEDD

The program uses PRTN to return the string
"FILExx", where “"xx" is the Session ldentifier
of the user who ran the program.

If the passed string has less than 4 or more
6 characters, the program will print a message
and pass back a 0 in the first return parameter,

Make a copy of the source file (giving the program a
new name), then compile and load the program.

l.ook at the procedure file you wrote for problem 6 of the
procedure file lap (a procedure file to accept the name of
a file and create a copy of the file with a new name,
determined by your Session Identifier).

vModify the procedure file so that it uses this program
to determine the new file name. Your procedure file
can then use this new name in the FMGR ST command to create

the new file and transfer the data from the original file to
the new file,

K

Write a program which goes into a loop, writing lines on

your terminal until you "break it."™ Your program should

tnen suspend itself. When you reschedule the program,

include a parameter which will specify one of two options:
- print 1 line on the line printer and then stop
- stop without doing any more printing.

While your program is suspended, use WHZAT to determine its
state,

A-27

LAB 9 - TYPE 6 FILES

l. Write a FORTRAN program which contains an infinite loop,
Frinting a message at your terminal. After compiling and
loading your program,

= run the program

- terminate the program with the system ‘OF°
command

- save the program as a type 6 file

- release the program’s ID Segment and disc
tracks containing its Memory Image Code

.~ run the program

- terminate the program with the system ‘OF°
command .,

A-29

LAB 10 - USING FILES PROGRAMMATICALLY,
FMP CALLS

* PART A *

1.

File TLBl01l contains an ASCII text file whose maximum record
length is 10 words.

Write a program to list the contents of the file at your
terminal.

Some considerations =

Remember that other people may be using the file at
the same time you are.

You mignt write your program so you can "break it,"

Wwrite a program that will create a type 2 file with

length - 5 blocks
record length = 1 word

Your program should store the value 1l into the first record,
the value 2 into the second record, the value 3 into the
third record and so on.
After your program terminates, use the FMGR LI command to
verify the operation of your program,
File &LBl103 contains a FORTRAN source program designed to
modify the file you created in problem 2, The program will
- open the file,
- store the value 7777B into the first record and then
- terminate,
Make a copy of the source file, giving the program a new

name. Compile, load and run the program. Then use the
FMGR LI command to check the program s operation.

File VLB1l04 is a type 1 disc file containing 640 real values.

Write a program to input the values and then calculate and
print the average of the values.

A-31

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	9-01
	9-03
	9-04
	9-05
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32

