HEWLETT
PACKARD

A

RTE-IV Assembler

Reference Manual

RTE-IV Assembler

Reference Manual

(I’/” HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY .
Data Systems Division Library Index No.

11000 Wolfe Road 2RTE.320.92067-90003 MANUAL PART NO. 92067-90003
Cupertino, California 95014 Printed in U.S.A. April 1980

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain the latest replacement pages and write-in instructions to be merged into the
manual, including an updated copy of this Printing History page.

To replenish stock, this manual will be reprinted as necessary. Each such reprinting will incorporate all past Updates,
however, no new information will be added. Thus, the reprinted copy will be identical in content to prior printings of the
same edition with its user-inserted update information.

To determine the specific manual edition and update which is compatible with your current software revision code, refer to
the appropriate Software Numbering Catalog.

Third EQIEIon . . . oottt et ettt Jan 1980

Change 1 ... e e Apr 1980

Reprinted (Change 1 incorporated)...............c.oiiiiiiiiiiin, Apr 1980
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1980 by HEWLETT-PACKARD COMPANY

PREFACE

This manual describes the Assembler which is designed to operate under the control of HP 1000 RTE
based Operating Systems.

This manual assumes that the reader is an experienced assembly language programmer who is familiar
with operating systems and computer instruction sets.

HOW TO USE THIS MANUAL

The Assembler is a common program that executes under various HP Operating Systems and under
various machine instruction sets. This manual describes the Assembler in its totality. Therefore, the user
should keep in mind what operating system he is using and what machine the resulting object code is to
execute on.

All users should read Section I and II.

Section I attempts to guide the user to the proper machine instruction set(s). It also discusses the
assembly process in general, program relocation, assembly options, and assembler input and output.

Section I describes the source statement format that the Assembler accepts as input.

Section III describes all of the available machine instructions. It should be noted that while the
Assembler will correctly assemble these instructions, the resulting object code will correctly execute only
on the intended hardware. The above situation occurs because various machine’s instruction sets are
subsets of the total instruction set that the Assembler accepts. The user is encouraged to use the
appropriate hardware manual in conjunction with this manual to ensure that the assembly code written
will execute on the hardware that it is intended for. See Section I for details.

Section IV describes all of the available assembler pseudo instructions.

Throughout the manual, gray shaded areas indicate sections that are intended for specific CPU
hardware. The intention will be noted in the shaded area.

In addition, nine appendices are supplied, as follows:

Appendix A describes the Hewlett-Packard character set.

Appendix B summarizes all of the available machine and pseudo instructions (including instruction
formats).
Appendix C presents a one-sentence definition of all available machine and pseudo instructions,

arranged alphabetically by mnemonic.
Appendix D presents a tabular summary of the binary format of all available machine instructions.
Appendix E describes how to run an assembly.
Appendix F describes the valid instruction set for the M, E, F and L-SERIES computers.
Appendix G lists and describes all of the assembler error messages.
Appendix H presents output data formats.

Appendix I discusses the RTE Cross Reference Table Generator.

iii/iv

CONTENTS

Section I Page
INTRODUCING THE ASSEMBLER
HP 1000 L-Series Systemsc.c...... 1-1
Assembly Processing 1-1
Symbolic Addressingo, 1-1
Memory Addressingcovviiiiiiinnnn .. 1-2
Paging 1-2
Indirect Addressingcciiiiiiiinnn, 1-2
Program Relocation 1-2
Program Location Counter 1-2
Source Program i 1-2
Assembly Options............coiiiiiiiiiinnnn.... 1-3
Binary Output coiiiiiiiiiiiin., 1-3
Symbol Tablecoviviiniiiiiii ... 1-3
List OQutputcoiiiiiii e 1-6
Section II Page
SOURCE STATEMENT FORMAT
Statement of Characteristics....................... 2-1
Field Delimiters...........ovuiiiiiniieneniinnn, 2-1
Character Set ..., 2-1
Statement Length 2-1
Label Fieldooo i 2-1
Label Symbol i 2-1
Asterisk ... 2-2
Opcode Fieldc i, 2-2
Operand Fieldcoooii it 2-2
Symbolic Termscooviiiiiiiiiniineinnn. 2-2
Numeric Termsciiiiiiiiiiiinn... 2-4
Asterisk ..o e 2-4
Expression Operatorsccovvvvivennnnnn 2-4
Evaluation of Expressionscovvuun. 2-4
Expression Termsc.ciiiiiinn... 2-4
Absolute and Relocatable Expressions 2-4
Absolute Expressionscoviviinnnn. 2-4
Relocatable Expressions 2-6
Literals ... 2-6
Indirect Addressing 2-6
Clear Flag Indicatorc.ovvvvvinnnnn.. 2-7
Comments Field, 2-7
Section IIT Page
MACHINE INSTRUCTIONS
Memory Referenceccoviiiiiinennnnn. 3-1
Jump and Increment-SKkipcoiiinn... 3-1
Add, Load and Storec.ciiiiiiinn, 3-1
Logical Operationscvvvuivvveeennnnnns 3-2
Word Processingccovviiiiinineeinn.n. 3-2
Byte Processing i, 3-2
Bit Processing0iiiiiii 3-3
Register Referenceiiiiiiinninnnn. 3-4
Shift-Rotate Groupccviiiinveennnn.. 3-4
Alter-Skip Groupcoviiiiiiiiii e, 3-4
Index Register Groupcovvviviinnnnnn. 3-5
No-Operation Instruction 3-7

Input/Output, Overflow, and Halt 3-7
Input/Output ... 3-8
OVerfloW . oot e 3-8
Halt ... 3-9

Extended Arithmetic Unit (EAU) 3-9

Floating Point 3-10

Dynamic Mapping System (M, E, F-Series Only) ... 3-10
Memory Addressing 3-10
Status and Violation Registers 3-10
Map Segmentation 3-11
Power Fail Characteristicscooovunn. 3-11
Protected Mode 3-12
MEM Violationccocviiiin... 3-12
Dynamic Mapping System Instructions 3-12

HP 1000 Fence Registers..............cocovvvvnn. 3-18

HP 1000 M, E, F-Series Instruction

Replacementscooiii i, 3-18
Replacement Formats 3-18
HP 1000 M, E, F-Series Software
Replacementsc i, 3-19

Section IV Page

PSEUDO INSTRUCTIONS

Agsembler Controlcovviiiiiiiinnn., 4-1

Object Program Linkage 4-5
Program and System Common 4-7

Address and Symbol Definition 4-11

Constant Definitionoviiiiiiiinnn. 4-14

Storage Allocationcviiiiiiinenn, 4-19

RTE-L Pseudo Instructions 4-21
LOD Statementciviiiiiii.. 4-21
GEN Statementcovviiiiniiiiiin... 4-21

Assembly Listing Control 4-22

Arithmetic Subroutine Calls...................... 4-23

Define User Instructionccovvven. 4-23
“Jump to Microprogram” 4-23

Examplecooiiiiiiiiiii i 4-23
Combining Multiple Mnemonics................ 4-24
Example 4-24
Defining Constantsccovviiieinnn. 4-24
Example it 4-24
Alternate Microcode Reference Instruction...... 4-24
Examplecooiiiiiiiii i 4-24

Appendix A Page

HP CHARACTER SET A-1

Appendix B Page

SUMMARY OF INSTRUCTIONS

Machine Instructions, B-2
Memory Referencecoovvviiinnn.. B-2

Jump and Increment-Skip B-2
Add, Load and Storecov i, B-2
Logicalot B-2
Word Processingcvvvvinnnennnnn.. B-2
Byte Processingc..vouiiiiiiiiiinannn. B-3
Bit Processing............c. i, B-3

CONTENTS (continued)

Register Reference ...t B-3
Shift-Rotatec.coviieiiiiin i, B-3
No-Operationccoiveiiiinieneannnn B-4
Alter-SKip ... B-4
Index Register B-5

Input/Output, Overflow, and Halt B-6
Input/Output B-6
OVerfloW . .o vv et B-6
Halt o e B-6

Extended Arithmetic Unit...................... B-6

Floating Point ..., B-7

Memory Expansionooiiiiiaanai B-7

Pseudo Instructionscoiiiiiiiiiiain B-9

Assembler Controlot B-9

Object Program Linkage B-9

Address and Symbol Definition B-9

Constant Definition it B-10

Storage Allocationo B-10

Assembly Listing Control B-10

Define User Instruction B-10

Appendix C Page
ALPHABETIC LIST OF INSTRUCTIONS C-1
Appendix D Page
CONSOLIDATED CODING SHEETS D-1
Appendix E Page
RUNNING ASSEMBLIES

On-Line Loading of the Assembler E-1
Assembler Operationt E-1
Messages During Assembly E-3

vi

Appendix F
MACHINE INSTRUCTION SET SUMMARY F-1

Appendix G Page
ASSEMBLER ERROR MESSAGES G-1
Appendix H Page
TAPE FORMATS
NAM Recordoovitiiii i H-1
ENT Recordovvreirienennennnnneenns H-2
EXT ReCoTd . .o oot i i H-3
DBL Recordottt eee i H-4
ENDRecordovviviiiiieiiiiiinenn H-5
EMA Recordcovnviiiiin i H-5
LOADR/GENERATOR Information Record H-6
Absolute Format, H-6
Appendix 1 Page
RTE CROSS REFERENCE TABLE
GENERATOR
Computer Configurationcooovionan. I-1
Functional and Operational Characteristics I-1
Output Formatt I-1
Pseudo Processingccoiviiiiiiiinnn I-1
Double Defined Processingooon. I-1
Undefined Label Processing I-2
Unused Label Processingcccovivieeennn. I-2
Literal Processingcciiiiiinnenn. 1-2
Operation Directivec.ooeiinvnn. I-2
Boundscoviiiiii e 1-2
Sample Cross-Reference Generation 14

ILLUSTRATIONS

Title Page Title Page
Source Program 0o, 1-4 ENT, ENT for I/O Channel 4-9
Symbol Table Listingccvvvunn... 1-6 Label RPL Octal Valuec..... 4-10
Label Examplescccoviiiiiiivinennnnn... 2-3 DEF Examplescoueiiiiiiiiiniinnnnnnn. 4-11
Label Usage Examplescccvvueeennn... 2-3 Example of Incorrect Address Modification 4-11
Symbolic Operand Examples 2-5 Loader-Assigned Locations for Figure 4-3 4-12
Expression Operator Examples 2-5 Example of Correct Address
Indirect Addressing Example 2-7 Modificationcoiviiiiiiiii, 4-12
Clear Flag Examples..............ccoovvievnnnn.. 2-7 Loader-Assigned Locations for Figure 4-15 4-12
Basic Memory Addressing Scheme 3-10 ABSExamplesoooiiiniiiniiiiiininn 4-13
Expanded Memory Addressing Scheme 3-11 EQUExamplecoiiiiiiiiiininen.. 4-13
Map Segmentation................ciiiiiiin. ., 3-12 EQU Examplesoovviiiiie i, 4-14
HP 1000 M, E, F-Series Instruction ASCExamplecovviiiiiiiniiin i, 4-15
Replacement Formats 3-19 DEC Examples (Integer)c.ccovvvrinnnnn. 4-16
ORB Examplecooviiuiiiiiiiiiniininnans. 4-2 DEC Examples (Floating Point) 4-16
ORR Example (with Single ORG) 4-3 DEC Examples (Floating Point) 4-16
ORR Example (with Multiple ORG’s) 4-3 DEX Memory Formatcccovviiinin... 4-17
IFN/XIF and IFZ/XIF Example 4-4 DEX Examplesoooiuiiiiiiiiineinnninnn.. 4-17
IFZ/XIF Example ...t 4-4 OCT Examplesoovviiiiiiiiiinannaninn.n, 4-18
COM Examplesc.oviiinniini i, 4-6 BYT Examplescoviiiiiiiininnennn... 4-19
ENT/EXT Examplesc..oveivniiniiiniinn.n.. 4-8 EMA Logical Memory for Example
EXT with Offsetcooiiii i, '4-8 Programt 4-20
ENT in COMmon and ENT Defining an LOD Pseudo-Instruction Example 4-21
External I/O Reference 4-8 GEN Exzamplesoiiviiiii i, 4-21
TABLES
Title Page Title Page
Logical Memory Addresses/Pages 1-3 Base Set Instruction Codes in Binary D-2
Control Statement Parameters..................... 1-5 Extended Instruction Group Codes
MEM Status Register Format 3-11 inBinary D-3
MEM Violation Register Format.................. 3-11 XREF MeSSages . .. o.ovvrteeineninrensneiinnnns I-3

vii/viii

INTRODUCING THE ASSEMBLER

SECTION

The Assembler permits the programmer to use all sup-
ported machine instructions for HP 1000 Computers and it
is assumed that object programs produced by the Assem-
bler will be executed on an HP 1000 Computer.

The Assembler translates symbolic source language in-
structions into an object program for execution on the
computer. The source language provides mnemonic
machine operation codes, assembler-directing pseudo in-
structions, and symbolic addressing. The assembled pro-
gram may be absolute or relocatable.

The source program may be assembled as a complete en-
tity or it may be subdivided into several relocatable sub-
programs (or a main program and several subroutines),
each of which may be assembled separately. When re-
locatable object programs and subprograms are desired to
be executed, they are relocated and linked to one another
by the relocating loader.

Absolute object programs may be loaded by the Bootstrap
Loader. There are no intermediate steps needed to prepare
the code before it is executed.

The Assembler can read the source input from a disc file or
an input device. The Assembler outputs the resultant re-
locatable or absolute object program to a disc file or an
output device.

If the object programs produced by the Assembler are

relocated and executed under control of an operating sys-.

tem other than the RTE Operating System, the following
restrictions apply:

ENT pseudo instructions with absolute or common
symbols as operands must not be used.

I/O instructions using externally-defined select codes
must not be used.

I/0 select codes must not be defined via the ENT pseudo
instruction.

Memory reference instructions must not refer to exter-
nal symbols with offset values.

1-1. HP 1000 L-SERIES SYSTEMS

The L-SERIES instruction set is a subset of the HP 1000
instruction set. If the programmer is using L-SERIES
hardware and its associated operating system, refer him to
Appendix F and the HP 1000 L-SERIES REFERENCE
MANUAL for a guide to the valid instruction set. The
particular features of using the Assembler on an
L-SERIES system are documented throughout this man-
ual. The Assembler will correctly assemble any HP 1000

machine instruction. Therefore it is important that the
user of an L-SERIES computer refer to the above Appen-
dix and manual so that the proper instruction set is used
for assembly programs destined to be executed on
L-SERIES hardware.

1-2. ASSEMBLY PROCESSING

The Assembler is a two pass system. A pass is defined as a
processing cycle of the source program input.

In the first pass, the Assembler creates a symbol table
from the names used in the source statements and (if
requested) prints a symbol table listing on the standard
list output device. It also checks for certain possible error
conditions and prints error messages on the console device
if necessary.

During pass two, the Assembler again examines each
statement in the source program along with the symbol
table and produces the binary object program. It outputs
the object program to an output device or a disc file. If
requested, the Assembler also outputs the source program
listing to a list output device or a list file. Additional error
messages may also be printed on the system console
device.

If the source input is being read from a non-disc device, it
is written on the disc at the start of pass 1; for pass 2, the
source is then read from the disc. However, if there is not
sufficient space available on the disc to do this, the As-
sembler will be suspended until enough disc space is
available.

1-3. SYMBOLIC ADDRESSING

Symbols may be used for referring to machine instruc-
tions, data, constants, and certain other pseudo opera-
tions. A symbol represents the address for a computer
word in memory. A symbol is defined when it is used as a
label for a location in the program, a name of a common
storage segment, the label of a data storage area or con-
stant, the label of an absolute or relocatable value, or a
location external to the program.

Through use of simple arithmetic operators, symbols may
be combined with other symbols or numbers to form an
expression which may identify a location other than that
specifically named by a symbol. Symbols appearing in
operand expressions, but not specifically defined, and
symbols that are defined more than once are considered to
be an error by the Assembler.

11

Introducing the Assembler

1-4. MEMORY ADDRESSING
1-5. PAGING

The computer memory is logically divided into pages of
1024 words each. A page is defined as the largest block of
memory which can be addressed directly by the memory
address bits of a memory reference instruction (single-
length). These memory reference instructions have 10 bits
to specify a memory address, and thus the page size is
1024 locations (2000 octal). Octal addresses for each page,
up to the maximum memory size, are shown in table 1-1.

Provision is made to address directly one of two pages:
page zero (the base page, consisting of locations 00000,
through 01777,), and the current page (the page in which
the instruction itself is located). Memory reference in-
structions include a bit (bit 10) reserved to specify one or
the other of these two pages. To address locations in any
other page, indirect addressing is used. Page references
are specified by bit 10 as follows:

Logic 0 = page zero (Z)
Logic 1 = current page (C)

1-6. INDIRECT ADDRESSING

All memory reference instructions reserve a bit to specify
direct or indirect addressing. For single-length memory
reference instructions, bit 15 of the instruction word is
used; for extended arithmetic memory reference instruc-
tions, bit 15 of the address word is used. Indirect address-
ing uses the address part of the instruction to access
another word in memory, which is taken as a new memory
reference for the same instruction. This new address word
is a full 16 bits long, 15 bits of address plus another
direct-indirect bit. The 15-bit length of the address per-
mits access to any location in memory. If bit 15 again
specifies indirect addressing, still another address is ob-
tained. This multiple-step indirect addressing may be
done to any number of levels. The first address obtained in
the indirect phase which does not specify another indirect
level becomes the effective address for the instruction.
Direct or indirect addressing is specified by bit 15 as
follows:

Logic 0 = direct
Logic 1 = indirect

1-7. PROGRAM RELOCATION

Relocatable programs are relocated at absolute addresses
by the relocating loader.

Relocatable code assumes a starting location of 00000, and
this location is termed the relative, or relocatable origin.
The absolute origin (termed the relocation base) of a re-
locatable program is determined by the loader. The value
of the absolute origin is added to the zero-relative value of
each operand address to obtain the absolute operand ad-

1-2

dress. The absolute origin, and thus the values of every
operand address, may vary each time the program is
loaded.

A relocatable program may be composed of several inde-
pendently assembled or compiled subprograms. Each of
the subprograms will have a relative origin of 00000. Each
subprogram is then assigned a unique absolute origin
upon being loaded.

The operand values produced by the Assembler may be
program relocatable, base page relocatable, or common
relocatable. Each of these segments of the program has a
separate relocation base or origin. Operands that are ref-
erences to locations in the main portion of the program are
incremented by the program relocation base; those refer-
ring to the base page, by the base page relocation base;
and those referring to common storage, by the common
relocation base.

If the loader or system generator encounters an operand
that is a reference to a location in a page other than the
current page or base page, a link is established. A link is a
word in the base page or current page which is allocated to
contain the full 15-bit address of the referenced location.
The address of the link is then substituted as an indirect
address in the instruction in the current page. If other
similar references are made to the same location, they are
linked through the same link.

1-8. PROGRAM LOCATION COUNTER

The Assembler maintains a counter, called the program
location counter, that assigns consecutive memory ad-
dresses to source statements.

The initial value of the program location counter is estab-
lished according to the use of either the NAM or ORG
pseudo operation at the start of the program. The NAM
operation causes the program location counter to be set to
zero for a relocatable program; the ORG operation
specifies the absolute starting location for an absolute
program.

Through use of the ORB pseudo operation a relocatable
program may specify that certain operations or data areas
be allocated to the base page. If so, a separate counter,
called the base page location counter, is used in assigning
these locations.

1-9. SOURCE PROGRAM

Figure 1-1 shows an assembler coding form and the code
for a simple program which counts the number of 1’s and
0’s in the A-register. The first statement is the control
statement, which in this example contains the assembly
options R (for a relocatable source program), L (a program
listing is to be output to the list file), and T (a listing of the
symbol table is to be output to the list file). See paragraph
1-9 and Table 1-2 for a further discussion of control state-
ment parameters.

Table 1-1. Logical Memory Address/Pages

MEMORY OCTAL

SIZE PAGE ADDRESSES
0 00000 to 01777

4K 1 02000 to 03777
2 04000 to 05777

3 06000 to 07777

4 10000 to 11777

8K 5 12000 to 13777
6 14000 to 15777

7 16000 to 17777

8 20000 to 21777

12K 9 22000 to 23777
10 24000 to 25777

11 26000 to 27777

12 30000 to 31777

16K 13 32000 to 33777
14 34000 to 35777

15 36000 to 37777

16 40000 to 41777

17 42000 to 43777

18 44000 to 45777

24K 19 46000 to 47777
20 50000 to 51777

21 52000 to 53777

22 54000 to 55777

23 56000 to 57777

24 60000 to 61777

25 62000 to 63777

26 64000 to 65777

32K 27 66000 to 67777
28 70000 to 71777

29 72000 to 73777

30 74000 to 75777

31 76000 to 77777

Following the control statement, the first statement of the
program (other than remarks or a HED statement) must
be a NAM statement for a relocatable program or an ORG
statement to indicate the origin of an absolute program.
The last statement must be an END statement and may
contain a transfer address for the start of a relocatable
program. Each statement is terminated by an end-of-
statement or end-of-record mark if not on cards.

1-10. ASSEMBLY OPTIONS

The control statement must be the first statement in the
source program and it specifies the desired assembly
options:

ASMB;pan LI ’pﬂ

“ASMB,” is in positions 1-5 of the statement. Following
the comma are one or more parameters, in any order. The

Introducing the Assembler

parameters are shown in Table 1-2. The parameters in the
control statement may be overridden when the Assembler
is invoked. See Appendix E for options available at As-
sembler run time.

Since they contradict one another, F and X must never
appear in the control statement for the same source pro-
gram. Similarly, A and R must never appear together. If
neither A nor R is specified, R is assumed. If T is omitted,
the symbol table listing will not be output to the list file. If
L and Q are both specified, the one specified last will be
used. If B is specified, it is ignored.

“ASMB” alone or with either A or R as the only option
specified, will direct the Assembler to process the source
information without producing any output. Error mes-
sages will be output to the list device or list file, however.
Thus, the user may use this method to examine the source
for errors prior to producing the final object code.

1-11. BINARY OUTPUT

The binary output is defined by the ASMB control state-
ment. The binary output includes the object code for the
instructions translated from the source program. It does
not include system subroutines referenced within the
source program (arithmetic subroutine calls, .IOC., .DIO.,
.ENTR, etc.). If a binary output file name or logical unit
number is not specified in the run command for the As-
sembler, no binary output is produced.

1-12. SYMBOL TABLE

Figure 1-2 shows a sample symbol table listing produced
when a source program was assembled. Columns 1
through 5 contain the name of the label. Column 7
specifies the type of relocation for the operand field, and
columns 9 through 14 contain the value of the label. (In
the example shown in figure 1-2, the locations are relative
because the source program is relocatable.)

The characters that designate an external symbol or type
of relocation for the Operand field or the symbol are as
follows:

Character Relocation Base
Blank Absolute
R . Program relocatable
C Common relocatable
X External symbol
B Base page relocatable
S Substitution code
E Extended Memory Area

1-3

V1

weidold 3d1nog ‘1-T 2andig

sszow

HEWLETT-PACKARD ASSEMBLER

CODING FORM

l:iOGlAMM(l DATE I PROGRAM PAGE OF
St
, Lebel s Opetation " W“‘:'-’ " 25 _w . o o 0 . w o o :5 w
Als mls ,[R[, 1] Jr L % i }
vl |clololnr B | i
1] IclofonT] j 1 :
| 1A Plrlole[rlal! [ro! lclolu vt [Tjnie Mums elr| olel lones ltw THIE A-RlEesTER
ClounT| Woe
| clL B CLiEAR| B8 (B8] uSiEp| As clounT [oF i1']5)
Lbx| =D16 LOAD |l IMTO X (WITH| LITEIRAL)
Lloorl | |siLa ! 1s |A-REGIs|TER! |B8lzT 6 [oa? | |
| |z~e ! YEs,| [app 1] To iclouwt [IN B ‘
NiInm RoTATIE A-RlegrsiTler LelfrT 1 ; ;
Disx DECREMENT X 8 SKTp I|IF # (jpowNnEp)]
U Mp| |Loolp NOT plonve, |[REPEAT |
UMPpP| COUNT|, T RETURIN COUINT 15| IN B-RegI|sT SR
Dt 6 Et|l /e | '
e« o | .
i é ! L]
| S - !
| i
T
| i i
| | | E | |
| B NEERRENERE | EEEEE
f T ¥ T !
HEEEE ? 1
|
1 - 5 10 15 ‘20 — 25 - 30 ‘JS 40 45 * 50 * 55 60 65 0 75 &
[- S S AT Al 50806596

I3[quassy ay} Suronpoijuy

Introducing the Assembler

Table 1-2. Control Statement Parameters

PARAMETER MEANING

A Absolute assembly. The addresses generated by the Assembler are to be interpreted as absolute
locations in memory. The program is a complete entity; external symbols, common storage refer-

ences and entry points are not permitted. Note that an absolute program cannot be executed on
RTE.

R Relocatable assembly. The object program may be loaded anywhere in memory. All operands which
refer to memory locations are automatically adjusted as the program is loaded. Operands referring to
memory locations greater than 1777 must be relocatable expressions. Programs may contain ex-
ternal symbols and entry points, and may refer to common storage.

L List output. A program listing is to be output to the list file or list device. Columns 8-13 of the listing
will contain the object code of the instruction. This includes both the opcode and the address of the
operand if it is a memory reference instruction.

Q List output. A program listing is to be output to the list file or list device. Columns 8-13 of the listing
will contain only the operand address for single word memory reference instructions. The entire
object code will be listed otherwise.

T Symbol table print. A listing of the symbo! table is to be printed on the standard list output device.

N,Z Selective assembly. Sections of the program are to be included or excluded at assembly time
depending upon the option specified. See the descriptions of the IFN and IFZ pseudo instructions in
Section 1V of this manual.

C Cross reference table print. All references to statement labels, external symbols, and user-defined
opcodes are to be listed on the standard list output device after the end of the assembly.

F Floating point instructions. The floating point machine instructions are to be used instead of the
software simulation routines for the following floating point operations: FDV, FMP, FAD, and FSB.
Not applicable on L-Series hardware.

X No EAU hardware. Signifies that the object program will be executed on a machine which does not
have the Extended Arithmetic Unit (EAU) hardware. This parameter prevents the use of the following
EAU instructions: ASR, ASL, RRR, RRL, LSR, LSL, and SWP. In addition, it causes all occurrences
of the MPY, DIV, DLD, and DST instructions to be substituted with a call to the appropriate subroutine
in the relocatable library.

P Used as an override option when the assembler is invoked (see Appendix E). it has no effect when
specified in the control statement of an assembly language program but is included here for
completeness.

B Ignored if specified.

1-5

Introducing the Assembler

PAGE 0001 #01

0001 R 000001
COUNT R 000005
BITO R 000010
BIT1 R 000013
BIT2 R 000016
MORE R 000022
BIT3 R 000023
LESS1 R 000024
LESS2 R 000026
EVEN R 000027

#+ NO ERRORS PASS=1

1:30 PM TUE.,

6 DEC., 1977

ASMB,R,L,T

#*RTE ASMB 92067-16011x+»

Figure 1-2. Symbol Table Listing

1-13. LIST OUTPUT

Columns Content
1-4 Source statement sequence number gen-
erated by the Assembler

5-6 Blank

7-11 Location (octal)
12 Blank

13-18 Object code word in octal
19 Relocation or external symbol indicator
20 Blank

21-80 First 60 characters of source statement

Lines consisting entirely of comments (i.e., * in column 1)
are printed as follows:

Columns Content
1-4 Source statement sequence number
5-80 Up to 76 characters of comments

At the end of each pass, the following is printed on the list
device:

1-6

Pass 1 =
** NO ERRORS PASS#1 **RTE ASMB xxxxx-yyyyy**

or

nnnn ERRORS PASS#1 **RTE ASMB xxxxx-yyyyy

Pass 2 =
** NO ERRORS *TOTAL **RTE ASMB xxxxx-yyyyy**

or

nnnn ERRORS *TOTAL **RTE ASMB xxxxx-yyyyyy

The value nnnn indicates the number of errors. Pass 2
error count includes the total error count of pass 1 and
pass 2. xxxxx-yyyyy is the Assembler’s part number.

If there are errors, the message PG xxx is printed on the
list device immediately preceding the **nnnn ERRORS*
message, where xxx is the page number where the final
error was detected. The same message appears in the
listing following each error and it points to the page
number where the previous error was detected. The back-
wards pointer following the first error in the program is
PG 000.

A heading is printed by the Assembler at the top of every
page of the list output. The heading consists of the page
and tape number of the listing followed by the time of day.
The HED pseudo-instruction may be used to print out a
user-defined header in addition to the standard header.

SOURCE STATEMENT FORMAT

SECTION

A source language statement consists of a label, an opera-
tion code, an operand (or operands) and comments. The
label is used when needed as a reference by other state-
ments. The operation code may be a mnemonic machine
operation or an assembly directing pseudo code. An
operand may be an expression consisting of an al-
phanumeric symbol, a number, a special character, or any
of these combined by arithmetic operators. An operand
may also be a literal. Indicators may be appended to an
operand to specify certain functions such as indirect ad-
dressing. The comments portion of the statement is
optional.

2-1. STATEMENT OF
CHARACTERISTICS

The fields of the source statement appear in the following
order:

Label
Opcode
Operands

oW o=

Comments

2-2. FIELD DELIMITERS

One or more spaces separate the fields of a statement. A
single space as the first character of a statement signifies
that there is no label for this statement.)

2-3. CHARACTER SET

The characters that may appear in a statement are as
follows:

A through Z

0 through 9
(period)

* (asterisk)

+ (plus)

— (minus)

, (comma)

= (equals)

() (parentheses)

(space)

Any other ASCII characters may appear in the Comments
field. (See Appendix A.)

The letters A through Z, the numbers 0 through 9, and the
period may be used in an alphanumeric symbol. In the
first position in the Label field, an asterisk indicates a
comment; in the Operand field, it represents the value of
the program location counter for the current instruction.
The plus and minus are used as operators in arithmetic
address expressions. The comma separates several opera-
tion codes, or an expression and an indicator in the
Operand field. An equals sign indicates a literal value.
The parentheses are used only in the COM pseudo
instruction.

Spaces separate fields of a statement and operands in a
multi-operand field. They may also be used to enhance the
appearance of the listing. Within a field they may be used
freely when following +, —, ,, or (.

2-4. STATEMENT LENGTH

A statement may contain up to 80 characters including
blanks, but excluding the end-of-statement mark.

2-5. LABEL FIELD

The Label field identifies the statement and may be used
as a reference point by other statements in the program.

The field starts in position one of the statement. It is
terminated by a space. A space in position one signifies
that the statement is unlabeled.

2-6. LABEL SYMBOL

A label may have one to five characters consisting of A
through Z, 0 through 9, and the period.

Note: The Assembler allows the use of certain
other characters in the Label field. How-
ever, they are reserved for use in
Hewlett-Packard programs.

The first character must be alphabetic or a period. A label
of more than five characters could be entered on the source
statement, but the Assembler flags this condition as an
error and truncates the label from the right to five charac-
ters. Some examples are shown in figure 2-1.

Each label must be unique within the program; two or
more statements may not have the same symbolic name.
Names which appear in the Operand field of an EXT or
COM pseudo instruction may not also be used as state-
ment labels in the same subprogram. However, names

2-1

Source Statement Format

appearing in a COM pseudo instruction may be defined as
entry points in an ENT pseudo instruction. Some exam-
ples are shown in figure 2-2.

2-7. ASTERISK

An asterisk in position one indicates that the entire
statement is a comment. Positions 2 through 80 are avail-
able; however, positions 1 through 76 only are printed as
part of the assembly listing. An asterisk within a label is
illegal in any position.

2-8. OPCODE FIELD

The operation code defines an operation to be performed
by the computer or the Assembler. The Opcode field fol-
lows the Label field and is separated from it by at least one
space. If there is no label, the operation code may begin
anywhere after position one. The Opcode field is termi-
nated by a space immediately following an operation code.
Operation codes are organized in the following categories:

Machine operation codes:
® Memory Reference
® Register Reference
e Input/Output, Overflow, and Halt
¢ Extended Arithmetic Unit
’ ("M;'E and F-Sqries)
Floating Point ‘
Memory Mapping

® Decimal Arithmetic

Pseudo operation codes:

® Assembler control

® Object program linkage

® Address and symbol definition
® (Constant definition

e Storage allocation

e RTE-L Pseudo Instructions

® Arithmetic subroutine calls

e Assembly Listing Control

® Define User Opcodes

® Code-replacement definition

Operation codes are discussed in detail in Sections IIT and
V.

2-9. OPERAND FIELD

The meaning and format of the Operand field depend on
the type of operation code used in the source statement.
The field follows the Opcode field and is separated from it

2-2

by at least one space. If more than one operand is required,
they are separated from one another by at least one space.

An Operand may contain an expression consisting of one
of the following:

® Single symbolic term
e Single numeric term
® Asterisk

e Combination of symbolic terms, numeric terms, and
the asterisk joined by the arithmetic operators + and

An expression may be followed by a comma, an indirect
addressing indicator (see paragraph 2-20), and a Clear
Flag indicator (see paragraph 2-21). Programs may also
contain a literal value in the Operand field. (See para-
graph 2-19.)

2-10. SYMBOLIC TERMS

A symbolic term may be one to five characters consisting
of A through Z, 0 through 9, and the period. The first
character must be alphabetic or a period. Some examples
are shown in figure 2-3.

A symbol used in the Operand field must be a symbol that
is defined elsewhere in the program in one of the following
ways.

® As alabel in the Label field of a machine operation or
a user-defined instruction

® As a label in the Label field of a BSS, EMA, ASC,
DEC, DEX, OCT, DEF, BYT, ABS, EQU, DBL, DBR
or REP pseudo operation

® As a name in the Operand field of a COM or EXT
pseudo operation

® As a label in the Label field of an arithmetic sub-
routine pseudo operation

The value of a symbol is absolute or relocatable depending
on the assembly option selected by the user. The Assem-
bler assigns a value to a symbol as it appears in one of the
above fields of a statement. If a program is to be loaded in
absolute form, the values assigned by the Assembler re-
main fixed. If the program is to be relocated, the actual
value of a symbol is established on loading. A symbol may
be assigned an absolute value through use of the EQU
pseudo instruction.

A symbolic term may be preceded by a plus or minus sign.
If preceded by a plus or no sign, the symbol refers to its
associated value. If preceded by a minus sign, the symbol
refers to the two’s complement of its associated value. A
single negative symbolic operand may be used only with
the ABS pseudo operation.

Source Statement Format

HEWLETT-PACKARD ASSEMBLER CODING FORM

p— [Feoctan
Labe) Operation Cperond S‘"EMLN'CMmMH %.
1 5 10 15 20 25 30 35 a0 s 50 55 &0 of .
L[o]Al | Wiol [c|alslele | Il }
| I
f . |
aslelo [1]] vialL|1|p| |L|asleft ! | |l
.11|2]34] VialLi1lof [t]|A|BIE|L | i o
'y - — B ’¢~
al. 123 i vialL|z|p| 'lalBlele] || ! B
. L vialLlp| It|ABle|L ‘ |
T 1
AT |
i IL |
[4ld]
\[. |ABIC 1L LILILEG|A|L LABEL, -| IFIT|RS|T CHIAIRIAC T EIR |
N\UM[ER|T|C 14)] 4 Ay o
Algle|i |2[3 1] lticlelalalc] |ealelele] -] [tlolo! [ilolnle! ’
TiRlunle|alT|elv! [rio| [ABle[i]z] |)
! | ;
- 4 b
Al%Bic ILLEGAL] /LABEL| -] ASTERE sk |NoOT BN
AlL w[E 1N LABE|L
4 . |
AlBlc Njo| [LIAIBE|L - SPAJE im FiI s‘;] 1
Plo|sx|T{Lio|N| [~| [AlS|sEMBIL|ER| IATITIEMP|T] |
mlo| [TiMT|elriPir|elT] |algle] [als| [ain] |olelelolole /
| ShSInnEtl 52y
e | L -h“‘\\lﬁ I t J}/
LA
Figure 2-1. Label Examples
HEWLETT-PACKARD ASSEMBLER CODING FORM
clolm] Talelolwl([2lg]]. I8lc[([3]¢] IRERANAR 11T { I
> T [i ! ',
L8 Elau| |16l | VALIDﬂLXBE"I.j I ! |/
ENT| |AlBC L v
ElxiT| [X|L]1], |x|c|2 b .
S[TIARIT| |LDA] |LiB VAL ID| ILiABIE|L] ;
2/ vialLlr[o| |LialB I]
A i
| |
- 1
1 : R RE R Pigig At
X|L|2 ILILIElGAL] ILABEL| ~| USED| IN_EXT| |
BIC Tl iLlelalal] [Lialslel| - vislen| Tzlv 'elom [1 |
v[2)s 1leicelolal| [LialBE[L] |-| [PIRIE ViToulsiL]Y
\ ple|r|1|v]elo LT
N !
==] |
™ 1 I —y - B e

Figure 2-2. Label Usage Examples
2-3

Source Statement Format

2-11. NUMERIC TERMS

A numeric term may be decimal or octal. A decimal
number is represented by one to five digits within the
range 0 to 32767. An octal number is represented by one to
six octal digits followed by the letter B (0 to 177777B).

If a numeric term is preceded by a plus or no sign, the
binary equivalent of the number is used in the object code.
If preceded by a minus sign, the two’s complement of the
binary equivalent is used. A negative numeric operand
may be used only with the DEX, DEC, OCT, BYT and ABS
pseudo operations.

For a memory reference instruction in an absolute pro-
gram, the maximum value of a numeric operand depends
on the type of machine or pseudo instruction. In a relocat-
able program, the value of a numeric operand may not
exceed 1777;. Numeric operands are absolute. Their value
is not altered by the assembler or the loader.

2-12. ASTERISK

An asterisk in the Operand field refers to the value in the
program location counter at the time the source program
statement is encountered. The asterisk is considered a
relocatable term in a relocatable program.

2-13. EXPRESSION OPERATORS

The asterisk, symbols, and numbers may be joined by the
arithmetic operators + and — to form arithmetic address
expressions. The Assembler evaluates an expression and
produces an absolute or relocatable value in the object
code. Some examples are shown in figure 2-4.

2-14. EVALUATION OF EXPRESSIONS

An expression consisting of more than one operand is
reduced to a single value. In expressions containing more
than one operator, evaluation of the expression proceeds
from left to right. The algebraic expression A—(B—C+5)
must be represented in the Operand field as A—B+C—5.
Parentheses are not permitted in operand expressions.

The range of values that may result from an operand
expression depends on the type of operation. The Assem-
bler evaluates expressions as follows:t

Pseudo Operations:

2 or 3-word Memory Reference: modulo 25—1

1-word Memory Reference: modulo 2!°-1

Input/Output: 2% — 1 (maximum value)

TThe evaluation of expressions by the Assembler is com-
patible with the addressing capability of the hardware
instructions (e.g., up to 32K words through Indirect Ad-
dressing). The user must take care not to create ad-
dresses which exceed the memory size of the particular
configuration.

24

2-15. EXPRESSION TERMS

The terms of an expression are the numbers and the sym-
bols appearing in it. Decimal and octal integers, and sym-
bols defined as being absolute in an EQU pseudo operation
are absolute terms. The asterisk and all symbols that are
defined in the program are relocatable or absolute depend-
ing on the type of assembly. (RTE Assembler allows ex-
ternals with offset and indirect external references.)

Within a relocatable program, terms may be program re-
locatable or common relocatable or base page relocatable.
A symbol that names an area of common storage is a
common relocatable term. A symbol that is defined in any
statement other than COM or EQU is a relocatable term.
Within one expression all relocatable terms must be pro-
gram relocatable, common relocatable or base page re- .
locatable; the types may not be mixed.

ABSOLUTE AND RELOCATABLE
EXPRESSIONS

2-16.

An expression is absolute if its value is unaffected by
program relocation. An expression is relocatable if its
value changes according to the location into which the
program is loaded. In an absolute program, all expressions
are absolute. In a relocatable program, an expression may
be program relocatable, common relocatable, base page
relocatable, or absolute (if less than 2000;) depending on
the definition of the terms composing it.
2-17. ABSOLUTE EXPRESSIONS
An absolute expression may be any arithmetic combina-
tion of absolute terms. It may contain relocatable terms
alone, or in combination with absolute terms. If relocata-
ble terms appear, there must be an even number of them;
they must be of the same type; and they must be paired by
sign (a negative term for each positive term). The paired
terms do not have to be contiguous in the expression. The
pairing of terms by type cancels the effect of relocation;
the value represented by a pair remains constant.

An absolute expression reduces to a single absolute value.
The value of an absolute multi-term expression may be
negative only for ABS pseudo operations. A single
numeric term also may be negative in an OCT, DEX, BYT,
or DEC pseudo instruction. In a relocatable program the
value of an absolute expression must be less than 2000, for
instructions that reference memory locations (Memory
Reference, DEF, Arithmetic subroutine calls, etc.).

If P, and P, are program relocatable terms; C, and C,,
common relocatable; and A, an absolute term; then the
following are absolute terms:

A-C +C, A-P +P, C,-C, +A
A+ A P, - P -C, +GC, + A
* — P, -P, + P, -A -P, + P,

The asterisk is program relocatable.

Source Statement Format

HEWLETT-PACKARD ASSEMBLER CODING FORM

bocnmwn l oate l PrOGRAM
Lola] [a]i]2[3]4 V[alL]a]o] Joeler %5_ 171]7
Aplal 8] |1 vialLlzlo| lolrlele]aivo| I /
Tme| leNTR]Y vialLl1lo| lolele|rlalio] | [|]|] /
Lpla| [a[1]2]5]al+[s]. |1 |-[e]n[T]r]Y] | IVialL|r 0 OPERAN}D ‘
S|TIA I1ABic X LIEglalL! [olPlelr|AINID] || |FT|RIST
CHalR|Ale|TIE|R| WluMe Rl e
si7la| |al8lc|plelr 1l lelalale] lol|eirlalno] -] [Molrle] [Tlulaln| [elilviel | 1]
e|uialelalelrelr’s : Pl .
R RRaE
)5
. + 2
jEan i | S
Ll [i \\\\\ //
Figure'2-3. Symbolic Operand Examples
LDA SYM+6 ADD 6 TO THE VALUE OF SYM
ADA SYM-3 SUBTRACT 3 FROM THE VALUE OF SYM

JMP #45

STB -A+C-4

STA XTA-*

ADD 5 TO THE CONTENTS OF THE
PROGRAM LOCATION COUNTER.

ADD - VALUE OF A, THE VALUE OF C
AND SUBTRACT 4.

SUBTRACT VALUE OF PROGRAM
LOCATION COUNTER FROM VALUE OF
XTA.

Figure 2-4. Expression Operator Examples

2-5

Source Statement Format

2-18. RELOCATABLE EXPRESSIONS

A relocatable expression is one whose value is changed by
the loader. All relocatable expressions must have a posi-
tive value.

A relocatable expression may contain an odd number of
relocatable terms, alone, or in combination with absolute
terms. All relocatable terms must be of the same type.

Terms must be paired by sign with the odd term being
positive.

A relocatable expression reduces to a single positive re-
locatable term, adjusted by the values represented by the
absolute terms and paired relocatable terms associated
with it.

If P,, P,, and P; are program relocatable terms; C,, C, and
C,, common relocatable; and A, an absolute term; then the
following are relocatable terms:

P - A C, — A P, - P, +*
P,-P,+P, C -GC,+C, C, + A
*+ A *— P, + P, * — A
P, + A A+ G, - A-P +P,+P
C,-C+C,—-A A+*
-C +C +Cy
2-19. LITERALS

Literal values may be specified as operands in relocatable
programs. (Literals are not allowed in absolute programs.)
The Assembler converts the literal to its binary value,
assigns an address to it, and substitutes this address as
the operand. Locations assigned to literals are those im-
mediately following the last location used by the program.

A literal is specified by using an equal sign and a one-
character identifier defining the type of literal. The actual
literal value is specified immediately following this iden-
tifier; no spaces may intervene.

The identifiers are:

=D a decimal integer, in the range —32767 to 32767,
including zero.t

=F a floating point number; any positive or negative
real number in the range 1073 to 10°, including
zero.t

=B an octal integer, one to six digits, b;b,b;bsbsbs, where
b, may be 0 or 1, and b, — bs may be 0 to 7.t

=A two ASCII characters.t
=L an expression which, when evaluated, will result in

an absolute value. All symbols appearing in the ex-
pression must be previously defined.

+See CONSTANT DEFINITION, Section IV.

2-6

If the same literal is used in more than one instruction or
if different literals have the same value (e.g., =B100 and
=D64), only one value is generated, and all instructions
using these literals refer to the same location.

Literals may be specified only in the following memory
reference, register reference, EAU, and pseudo
instructions:

(M, E and F-Series)

ADA CPA MBT)

ADB CPB JRS

ADX DIV MPY

iﬁg }J%IZ g[B\;‘_,W > may use =D, =B, =A, =L
CBS LDB TBS

CBT LDX XOR

CMW LDY J

g]i{g gg;; FSB } may use =F

Examples are as follows:

LDA =D7980 A-Register is loaded with
the binary equivalent of

7980,.

Inclusive OR is performed
with contents of A-Register
and 777,.

A-Register is loaded with
binary representation of
ASCII characters NO.
B-Register is loaded with
the absolute value result-
ing from the expression.

" Contents of A- and

IOR =B777
LDA =ANO

LDB =LZETZ-ZOOM+68

FMP =F39.75 " Con :
L ; ' B-Registers multiplied by
- floating point constant
(L-Series)
JSB .FMP Jump to software simula-
DEF LIT tion routine (see Section
DEC 0 3-28). A- and B-Registers
multiplied by floating point
constant 39.75.
LIT DEC . 39.75
2-20. INDIRECT ADDRESSING

The HP computers provide an indirect addressing capabil-
ity for memory reference instructions. The operand por-
tion of an indirect instruction contains the address of
another location. The secondary location may be the
operand or it may be indirect also and give yet another
location, and so forth. The chaining ceases when a location

is encountered that does not contain an indirect address.
Indirect addressing provides a simplified method of ad-
dress modifications as well as allowing access to any loca-
tion in core. See Section I, paragraph 1-5 for a further
discussion of indirect addressing.

The Assembler allows specification of indirect addressing
by appending a comma and the letter I to any memory
reference operand. The actual address of the instruction
may be given in a DEF pseudo operation; this pseudo
operation may also be used to indicate further levels of
indirect addressing. An example is shown in figure 2-5.

A relocatable assembly language program, however, may
be designed without concern for the pages in which it will
be stored; indirect addressing is not required in the source
language. When the program is being loaded, the loader
provides indirect addressing whenever it detects an
operand which does not fall in the current page or the base
page. The loader substitutes a reference to a program link
location (established by the loader in either the base page
or the current page) and then stores an indirect address in
the particular program link location. If the program link
location is in the base page, all references to the same
operand from other pages will be via the same link
location.

2-21. CLEAR FLAG INDICATOR

The majority of the input/output instructions can alter the
status of the input/output interrupt flag after execution or

Source Statement Format

after the particular test is performed. In source language,
this function is selected by appending a comma and a
letter C to the Operand field. Some examples are shown in
figure 2-6.

2-22. COMMENTS FIELD

The Comments field allows the user to transcribe notes on
the program that will be listed with source language coding
on the output produced by the Assembler. The field follows
the Operand field and is separated from it by at least one
space. The end-of-record mark, the end-of-statement mark,

, or the 80th character of a statement ter-

minates the field. The statement length should not exceed
60 characters, the width of the source language portion of
the listing. A whole line (up to 76 characters), however,
can be specified as a comment by inserting an asterisk in
the first position. On the list output, statements consisting
entirely of comments begin in position 5 rather than 21 as
with other source statements. Any characters beyond the
above limits will not appear on the listing.

If there is no operand present, the Comments field should
be omitted in the NAM and END pseudo operations and in
the input/output statements, SOC, SOS, and HLT. If a
comment is used, the Assembler attempts to interpret it as
an operand. This limitation applies also to multi-operand
instructions.

AB LDA SAM, I
AC ADA SAM, I
AD ISZ SAM

SAM DEF ROGER

EACH TIME THE ISZ IS EXECUTED,
THE EFFECTIVE OPERAND OF AB AND
AC CHANGE ACCORDINGLY.

Figure 2-5. Indirect Addressing Example

STC 13B,C
OTB 168B,C

SET CONTROL AND CLEAR THE FLAG OF SELECT CODE 13 (OCTAL)
CLEAR FLAG OF SELECT CODE 16 (OCTAL) ALONG WITH OUTPUT TO DEVICE

Figure 2-6. Clear Flag Examples

2-7/2-8

MACHINE INSTRUCTIONS

SECTION

The Assembler language machine instruction codes take
the form of three-letter mnemonics. Each source statement
corresponds to a machine operation in the object program
produced by the Assembler.

Notation used in representing source language instruction
is as follows:

label Optional statement label

m Memory location — an expression

I Indirect addressing indicator

sc Select code — an expression

C Clear interrupt flag indicator

comments Optional comments

[l Brackets defining a field or portion of a
field that is optional

{ } Brackets indicating that one of the set
may be selected.

lit literal

Instructions shaded in gray are implemented on the M-
and E-Series computers that contain the optional DMS
instruction set. These instructions are not unplemented on
the L-SERIES computers. '

Instructions suffixed with an asterisk are instructions im-
plemented in software on the HP 1000 L-SERIES
hardware. If the user intends to code these instructions for
execution on L-SERIES hardware he should consult para-
graph 3-28 and Appendix F.

3-1. MEMORY REFERENCE

The memory reference instructions perform arithmetic,
logical, jump, word manipulation, byte manipulation, and
bit manipulation operations on the contents of memory
locations and the registers. An instruction may directly
address the 2048,, words of the current and base pages. If
required, indirect addressing may be used to refer to all
32,768,, words of memory. Expressions in the Operand field
are evaluated modulo 2'°.

External memory references may be made with + or —
offsets, with indirects or both.

If the program is to be assembled in relocatable form, the
Operand field may contain relocatable or absolute expres-
sions; however, absolute expressions must be less than
2000; in value. If the program is to be assembled in absolute
form, the Operand field may contain any expression which
is consistent with the location of the program. Literals may

not be used in absolute programs. Absolute programs must
be complete entities; they may not refer to external sub-
routines or to common storage.

3-2. JUMP AND INCREMENT-SKIP

Jump and Increment-Skip instructions may alter the nor-
mal sequence of program execution.

label i JMP i m [,I] i comments

Jump to m. Jump indirect inhibits interrupt until the
transfer of control is complete, or three levels of indirecting
have occurred.

label i JSB i m [,I] i comments

Jump to subroutine. The address for label+ 1 is placed into
thelocation represented by m and control transfers tom+ 1.
On completion of the subroutine, control may be returned
to the normal sequence by performing a JMP m,I.

label i 1SZ im [,I] icomments

Increment, then skip if zero. ISZ adds 1 to the contents of
m. If m then equals zero, the next single-word instruction
in memory is skipped.

3-3. ADD, LOAD AND STORE

Add, Load, and Store instructions transmit and alter the
contents of memory and of the A- and B-Registers. A
literal, indicated by “lit”, may be either =D, =B, =A, or
=L type. See Section II, paragraph 2-19 for a further
discussion of literals.

label ADA I hmt [’I]} comments
Add the contents of m to A.

label ADB E:; L] l comments
Add the contents of m to B.

label LDA {hmt L1 } comments

Load A with the contents of m.

Machine Instructions

1

label l LDB { Elt) } comments
Load B with the contents of m.

label STA m [I] comments
Store contents of A in m.

label STB m [,I] comments

Store contents of B in m.

In each instruction, the contents of the sending location is
unchanged after execution.

3-4. LOGICAL OPERATIONS

The logical instructions allow bit manipulation and the
comparison of two computer words.

[l | 1
AND l [m 1]

label comments

lit

The logical product (“AND”’) of the contents of m and the
contents of A are placed in A.

{ \ I
m [,I]
XOR ‘ lit l

The modulo-two sum (exclusive ‘“‘or’’) of the bits in m and
the bits in A is placed in A.

1 1
m [I]
lit

The logical sum (inclusive ‘“‘or”’) of the bits in m and the
bits in A is placed in A.

I 1 i
m [,I]
lit

Compare the contents of m with the contents of A. If they
differ, skip the next single word instruction; otherwise,
continue.

label comments

label IOR comments

label CPA comments

m [I]
s | [0

label comments

Compare the contents of m with the contents of B. If they
differ, skip the next single-word instruction; otherwise,
continue.

3-2

3-5. WORD PROCESSING

The word processing instructions allow the user to move a
series of data words from one array in memory to another or
to compare (word-by-word) the contents of two arrays in
memory.

label MVW comments

m [I]

literal]

Move words. The A-register contains the starting (lowest)
word address of the source array. The B-register contains
the starting (lowest) word address of the destination ar-
ray. These addresses must not be indirect. The number of
words to be moved is specified by literal or by the value
contained in m [,I]1. The specified number of words are
moved from the source array into the destination array.
As each word is moved, the A- and B-registers are incre-
mented by one. The source array is not altered.

literal
"
CMW: m LI]]

label comments

Compare words. The A-register contains the starting
(lowest) word address of array #1. The B-register contains
the starting (lowest) word address of array #2. These
addresses must not be indirect. The number of word com-
parisons to be performed is specified by literal or by the
value contained in m [I]. The two arrays are compared
word-by-word beginning at the specified addresses. The
operation is finished when an inequality is detected or
when the specified number of word comparisons have been
performed. When the operation is finished, the A-register
contains the word address of the last word in array #1
which was compared, except when the two arrays are
equal. In this case, the A-register contains the starting
address of array #1, incremented by the count parameter.
The B-register contains the starting address of array #2
incremented by the “count” parameter (literal or the value
in m [,ID. If the two arrays are equal, execution proceeds
at the next sequential source language instruction (P+3).
If array #1 is “less than” #2, execution proceeds at in-
struction P+4. If array #1 is “greater than” array #2,
execution proceeds at instruction P+5. The two arrays are
not altered.

3-6. BYTE PROCESSING

The byte processing instructions allow the user to copy a
data byte from memory into the A- or B-register, copy a
data byte from the A- or B-register into memory, copy a
series of data bytes from one array in memory to another,
compare (byte-by-byte) the contents of two arrays in mem-
ory, or scan an array in memory for particular data bytes.

A byte address is defined as two times the word address of
the memory location containing the particular data byte.
If the byte location is the low order half of the memory
location (bits 0-7), bit 0 of the byte address is set; if the
byte location is the high order half of the memory location
(bits 8-15), bit 0 of the byte address is clear. Byte addresses
may not be indirect.

| {
label I LBT* I comments

Load byte. The B-register contains the byte address of the
byte to be loaded. The specified byte is copied from memory
into bits 0-7 of the A-register (bits 8-15 of the A-register are
set to zeros). The B-register is then incremented by one. The
memory location is not altered.

| 1
label | SBT* | comments

Store byte. The B-register contains the byte address into
which the byte is to be stored. Bits 0-7 of the A-register are
copied into the specified memory byte location (bits 8-15 of
the A-register are ignored). The B-register is then in-
cremented by one. The A-register is not altered.

1 [l |
MBT* l literal }

label comments

m [,I]

Move bytes. The A-register contains the starting (lowest)
byte address of the source array. The B-register contains
the starting (lowest) byte address of the destination array.
The number of bytes to be moved is specified by literal or by
the value contained in m [,I]. The specified number of
bytes are moved from the source array into the destination
array. As each byte is moved, the A- and B-registers are
incremented by one. The source array is not altered.

| { i
literal
"
CBT { m 1] }

Compare bytes. The A-register contains the starting (low-
est) byte address of array #1. The B-register contains the
starting (lowest) byte address of array #2. The number of
byte comparisons to be performed is specified by literal or
by the value contained in m [,I]. The two arrays are com-
pared byte-by-byte beginning at the specified addresses.
The operation is finished when an inequality is detected or
when the specified number of byte comparisons have been
performed. If the two arrays are equal, execution proceeds
at the next sequential source language instruction (P+3);
the A-register contains the address of the next byte be-
yond the field length and the B-register contains the start-
ing byte address of array #2 incremented by the “count”
parameter (literal or the value in m [I]. If array #1 is “less
than” array #2, execution proceeds at instruction P+4. If

label comments

Machine Instructions

array #1 is “greater than” array #2, execution proceeds at

instruction P+5. In both of the not-equal cases the

A-register contains the byte address of the byte in array

#1 where the comparison stopped and the B-register con-

tains the starting byte address of array #2 incremented by

the “count” parameter. The two arrays are not altered.
[[l

label | SFB*

comments

Scan for byte. The A-register contains a test byte in bits 0-7
and a termination byte in bits 8-15. The B-register contains
the starting (lowest) byte address of the array to be scan-
ned. The array is compared byte-by-byte against both the
test and termination bytes starting at the specified ad-
dress. The operation is finished when a positive compari-
son is detected or when the end of memory is reached. If
the test byte is detected, execution proceeds at the next
sequential source language instruction (P+1) and the
B-register contains the address of the test byte in the
array If the termination byte is detected, execution pro-
ceeds at instruction P+ 2 and the B-register contains the
address plus one of the termination byte in the array.

The scanning operation will not continue indefinitely even
if neither the termination byte nor test byte exists in
memory. These bytes are in the A-register with byte ad-
dresses 000 and 001, respectively. Thus, if no match is
made by the time the B-register points to the last byte in
memory, the B-register will roll over to zero and the next
test will match the termination byte in the A-register with
itself.

3-7. BIT PROCESSING

The bit processing instructions allow the user to selectively
test, set, or clear bits in a memory location according to the
contents of a mask. In the descriptions below, addrl and
addr2 may be operand expressions.

literal
I addr1[I] } addr2[,I]

Test bits. literal is a test mask, addrI [I] is the address of a
memory location containing a test mask, and addr2[1] is
the address of a memory location containing the bits to be
tested. The bits in addr2[,I] which correspond to the “1”
bits in the mask are tested. All other bits in addr2| 1] are
ignored. If all the tested bits in addr2 [,I] are set, execution
proceeds at the next sequential source language instruc-
tion (P+3). If any of the tested bits in addr2[,I] are clear,
execution proceeds at instruction P+4.

label | TBS*

comments

SBS* ‘2;‘;5‘11[I]] addr2[,1]

label comments

3-3

Machine Instructions

Set bits. literal is a mask, addrI[,I] is the address of a
memory location containing a mask, and addr2[1] is the
address of a memory location containing the bits to be set.
The bits in addr2 [,I] which correspond to the “1” bits in the
mask are set. All other bits in addr2[,I] are not affected.
Functionally, the SBS instruction is a “logical OR” opera-
tion.

i l |
literal
l addrlLI]} addr2[,1]

label | CBS*

comments

Clear bits. literal is a mask, addrI[,I] is the address of a
memory location containing a mask, and addr2[,1] is the
address of a memory location containing the bits to be
cleared. The bits in addr2[,1] which correspond to the “1”
bits in the mask are cleared. All other bits in addr2[1] are
not affected.

3-8. REGISTER REFERENCE

The register reference instructions include a shift-rotate
group, an alter-skip group, an index register group, and
NOP (no operation). For the shift-rotate and alter-skip
groups, the instruction mnemonics within each group may
be combined into a single source statement to cause multi-
ple operations to be executed during one memory cycle. In
such cases, successive mnemonics within a single source
statement are separated from one another by a comma.

3-9. SHIFT-ROTATE GROUP

This group contains 19 basic instructions that can be com-
bined to produce more than 500 different single cycle opera-
tions.

CLE Clear E to zero

ALS Shift A left one bit, zero to least significant bit.
Sign unaltered

BLS Shift B left one bit, zero to least significant bit.
Sign unaltered

ARS Shift A right one bit, extend sign; sign unaltered

BRS Shift B right one bit, extend sign; sign unaltered

RAL Rotate A left one bit

RBL Rotate B left one bit

RAR Rotate A right one bit

RBR Rotate B right one bit

ALR Shift A left one bit, clear sign, zero to least
significant bit

BLR Shift B left one bit, clear sign, zero to least
significant bit

ERA Rotate E and A right one bit

ERB Rotate E and B right one bit

ELA Rotate E and A left one bit

34

ELB Rotate E and B left one bit
ALF Rotate A left four bits
BLF Rotate B left four bits

SLA Skip next single-word instruction if least sig-
nificant bit in A is zero

SL.B Skip next single-word instruction if least sig-
nificant bit in B is zero

These instructions may be combined as follows:

- A i -
ALS ALS
ARS ARS
RAL RAL
label |1 i‘ﬁg ¢ | [,CLE] [,SLA] |, iﬁ}f{‘ ¢ | comments
ALF ALF
ERA ERA
| VELA) | ELA
BLS [(BLS)|
BRS BRS
RBL RBL
label | ggg » | [,CLE] [,SLB] {, ggg comments
BLF BLF
ERB ERB
\ELB) | | \ELB

CLE, SLA, or SLB appearing alone or in any valid combina-
tion with each other are assumed to be a shift-rotate
machine instruction.

The shift-rotate instructions must be given in the order
shown. At least one and up to four are included in one
statement. Instructions referring to the A-register may
not be combined in the same statement with those refer-
ring to the B-register.

3-10. ALTER-SKIP GROUP

The alter-skip group contains 19 basic instructions that can
be combined to produce more then 700 different single cycle
operations.

CLA Clear the A-Register
CLB Clear the B-Register

CMA Complement the A-Register

CMB Complement the B-Register

CcCA Clear, then complement the A-Register (set to
ones)

CCB Clear, then complement the B-Register (set to
ones)

CLE Clear the E-Register

CME
CCE Clear, then complement the E-Register

Complement the E-Register

SEZ Skip next single-word instruction if E is zero

SSA Skip if sign of A is positive (0)
SSB Skip if sign of B is positive (0)

INA Increment A by one

INB Increment B by one

SZA Skip if contents of A equals zero

SZB Skip if contents of B equals zero

SLA Skip if least significant bit of A is zero
SLB Skip if least significant bit of B is zero

RSS Reverse the sense of the skip instructions. If no
skip instructions precede in the statement, skip
the next instruction

These instructions may be combined as follows:

CLA CLE
label CMA; | [,SEZ] |: {CME; | [,SSA][,SLA] [,INA] [,SZA] [,RSS] | comments
CCA CCE

Machine Instructions

1 !
label | CBY* I comments

Copy B to Y. The contents of the B-register are copied into
the Y-register. The B-register is not altered.

[
label | CXA¥* comments

Copy X to A. The contents of the X-register are copied into
the A-register. The X-register is not altered.

| l
label | CXB* l comments

Copy X to B. The contents of the X-register are copied into
the B-register. The X-register is not altered.

CLB CLE
tabel | | { cmB} | 1SEZ1 |/ {cmE} | (.SSB1 LSLBI LINB] {SZB] [RSS] | comments
CCB CCE

The alter-skip instructions must be given in order shown.
At least one and up to eight are included in one statement.
Instructions referring to the A-register may not be com-
bined in the same statement with those referring to the
B-register. When two or more skip functions are combined
in a single operation, a skip occurs if any one of the condi-
tions exists. If a word with RSS also includes both SSA and
SLA (or SSB and SLB), a skip occurs only when sign and
least significant bit are both set (1).

3-11. INDEX REGISTER GROUP

This group contains 32 instructions which perform various
operations involving the use of index registers X and Y.
Instructions in this group may directly address all
32,768,, words of memory. Indirect addressing may also be
used if desired.

1 |
label | CAX* l comments

Copy A to X. The contents of the A-register are copied into
the X-register. The A-register is not altered.

L |
label | CBX* | comments

Copy B to X. The contents of the B-register are copied into
the X-register. The B-register is not altered.

L
label | CAY* comments

Copy A to Y. The contents of the A-register are copied into
the Y-register. The A-register is not altered.

1
label | CYA* I comments

Copy Y to A. The contents of the Y-register are copied into
the A-register. The Y-register is not altered.

I 1
label | CYB* | comments

Copy Y to B. The contents of the Y-register are copied into
the B-register. The Y-register is not altered.

1
label I XAX* comments

Exchange A and X. The contents of the A-register are
copied into the X-register and the contents of the
X-register are copied into the A-register.

{ 1
label | XBX*

comments

Exchange B and X. The contents of the B-register are
copied into the X-register and the contents of the
X-register are copied into the B-register.

| |
label | XAY*

comments

Exchange A and Y. The contents of the A-register are
copied into the Y-register and the contents of the
Y-register are copied into the A-register.

[]
label | XBY* comments

Exchange B and Y. The contents of the B-register are
copied into the Y-register and the contents of the
Y-register are copied into the B-register.

3-5 -

Machine Instructions

1 i
label | ISX* | comments

Increment X and skip if zero. The contents of the
X-register are incremented by one and then tested. If the
new value in X is zero, the next sequential single-word
instruction (P+1) is skipped and execution proceeds at
instruction P+2; if the new value in X is non-zero, execu-
tion proceeds at instruction P+1.

i
label I ISY* comments

Increment Y and skip if zero. The contents of the
Y-register are incremented by one and then tested. If the
new value in Y is zero, the next sequential single-word
instruction (P+1) is skipped and execution proceeds at
instruction P+2; if the new value in Y is non-zero, execu-
tion proceeds at instruction P+1.

label | DSX* | comments

Decrement X and skip if zero. The contents of the
X-register are decremented by one and then tested. If the
new value in X is zero, the next sequential instruction
(P+1) is skipped and execution proceeds at instruction
P+ 2; if the new value in X is non-zero, execution proceeds
at instruction P+1.

1
label l DSY* comments

Decrement Y and skip if zero. The contents of the
Y-register are decremented by one and then tested. If the
new value in Y is zero, the next sequential single-word
instruction (P+1) is skipped and execution proceeds at
instruction P+2; if the new value in Y is non-zero, execu-
tion proceeds at instruction P+1.

Lox+ | | ™ L
literal

label comments

Load X from memory. The contents of the specified memory
location are copied into the X-register. Indirect addressing
may be used. The memory location is not altered.

Loy | | ™ b
literal

Load Y from memory. The contents of the specifiad memory
location are copied into the Y-register. Indirect addressing
may be used. The memory location is not altered.

3-6

label comments

1
| comments

label i STX* i m [,I]

Store X into memory. The contents of the X-register are
copied into the specified memory location. Indirect addres-
sing may be used. The X-register is not altered.

label i STY* i m [,I} i comments

Store Y into memory. The contents of the Y-register are
copied into the specified memory location. Indirect addres-
sing may be used. The Y-register is not altered.

1 L
label I LAX* m [,I] I comments

Load A from memory indexed by X. The contents of the
specified memory location are copied into the A-register.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
X-register to m or to m,I. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The X-register and the memory location are not al-
tered. :

| |
m [,I] | comments

1
label | LBX*

Load B from memory indexed by X. The contents of the
specified memory location are copied into the B-register.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
X-register to m or to m,I. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The X-register and the memory location are not al-
tered.

label i LAY* i m [,I] i comments

Load A from memory indexed by Y. The contents of the
specified memory location are copied into the A-register.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
Y-register to m or to m,l. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The Y-register and the memory location are not al-
tered.

| |
label I LBY* m [,I] I comments

Load B from memory indexed by Y. The contents of the
specified memory location are copied into the B-register.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
Y-register to m or to m,I. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The Y-register and the memory location are not al-
tered.

Machine Instructions

label I SAX* | m [,I] comments

Store A into memory indexed by X. The contents of the
A-register are copied into the specified memory location.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
X-register to m or to m,l. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The A-register and the X-register are not altered.

label I JLY* I m [,I] comments

Jump and load Y. Control transfers unconditionally to the
specified memory location and the address P+ 2 is loaded
into the Y-register. Indirect addressing may be used. This
instruction is used for calling subroutines. The sub-
routines use the Y-register to access parameters and to
return control (by way of the JPY instruction) to the cal-
ling program.

label I SBX* | m [,I] I comments

Store B into memory indexed by X. The contents of the
B-register are copied into the specified memory location.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
X-register to m or to m,I. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The B-register and the X-register are not altered.

label iSAY*i m [I] i

comments

Store A into memory indexed by Y. The contents of the
A-register are copied into the specified memory location.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
Y-register to m or to m,I. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The A-register and the Y-register are not altered.

label iSBY*i m [,I] l

comments

Store B into memory indexed by Y. The contents of the
B-register are copied into the specified memory location.
Indirect addressing may be used. The address of the mem-
ory location is computed by adding the contents of the
Y-register to m or to m,I. Note that indirect addressing (if
specified) is performed first and then the address is inde-
xed. The B-register and the Y-register are not altered.

i i |
label IADX* m [I]

comments

Add memory to X. The contents of the specified memory
location are algebraically added to the contents of the
X-register. Indirect addressing may be used. The memory
location is not altered.

i i i
label | ADY*I m [,I]

comments

Add memory to Y. The contents of the specified memory
location are algebraically added to the contents of the
Y-register. Indirect addressing may be used. The memory
location is not altered.

label I JPY* | m I comments

Jump indexed by Y. Control transfers unconditionally to
the specified memory location. Indirect addressing may not
be used. The address of the memory location is computed by
adding the contents of the Y-register to m. This instruction
is used for returning control from subroutines to the calling
program (assuming that they were entered by way of JLY
instructions).

3-12. NO-OPERATION INSTRUCTION

When a no-operation is encountered in a program, no action
takes place; the computer goes on to the next instruction. A
full memory cycle is used in executing a no-operation in-
struction.

label | NOP I comments

A subroutine to be entered by a JSB instruction should
have a NOP as the first statement. The return address can
be stored in the location occupied by the NOP during execu-
tion of the program. A NOP statement causes the Assem-
bler to generate a word of zero.

3-13. INPUT/OUTPUT, OVERFLOW,

AND HALT

The input/output instructions allow the user to transfer
data to and from an external device, to enable or disable
external interrupts, and to check the status of I/O devices
and operations. Input/output instructions are also used to
control CPU functions such as memory protect, power fail
recovery and overflow conditions.

Input/output instructions require the designation of a
select code, sc, which indicates one of 64,, input/output
channels or functions.

Note: When Memory Protect is enabled, execu-
tion of most I/0 instructions is
prohibited.

Expressions used to represent select codes must have a
value of less than 2°. The value specifies the device or
operation referenced. Unlike memory reference instruc-

3-7

Machine Instructions

tions, I/O instructions cannot use indirect links. The select
code (sc) may be a label which was previously defined as
an external symbol by an EXT pseudo-instruction. In such
a case, the entry point referred to by the EXT pseudo-
instruction must be an absolute value less than 64, (any
other value will change the instruction.

Since input/output instructions are generally hardware/
architecture dependent, the instructions presented here
are meant to be used as a summary and coding guide. The
user is referred to the appropriate CPU hardware manual
for a detailed description of the I/0 architecture and its
operation.

3-14. INPUT/OUTPUT

Assembly language programs normally perform I/O
through calls to EXEC. Consult the appropriate RTE Pro-
gramming and Operating manual for more information.

If the memory protect hardware option is present and
enabled, it protects the operating system from alteration.
Most instructions of this section cause memory protect
violations to occur. They are included here for users who
desire to write their own drivers.

To perform 1/O, the programming, installation and service
manuals of the CPU and I/O card being programmed
should be consulted for the meaning of these instructions.

RTE-L users should refer to the RTE-L Driver Designer’s
manual for the operating system and I/O conventions.

|
| comments

| |
label | STC | sc [,C]

Set 1/O control bit specified by sc.

[[1
label I CLC | sc [,C] I comments

Clear I/O control bit specified by sc.

(]
| comments

label i LIA i sc [,C]

Load into A the contents of the I/0 buffer indicated by sc.

label i LIB i sc [,C] i comments

Load into B the contents of the I/0 buffer indicated by sc.

label i MIA i sc [,C] i comments

Merge (inclusive ‘“‘or’’) the contents of the I/0 buffer indi-
cated by sc into A.

3-8

label i MIB i sc [,C] i comments

Merge (inclusive “‘or”’) the contents of the I/0 buffer indi-
cated by sc into B.

label OTA sc [,C] comments

Output the contents of A to the I/0 buffer indicated by sc.

label OTB sc [,C] comments

Output the contents of B to the I/0 buffer indicated by sc.

L i 1
label | STF I sC | comments

Set the flag bit indicated by sc.

L
| comments

! l
label | CLF | sc
Clear the flag bit to zero indicated by sc.

i
| comments

label i SFC i sc

Skip the next single-word instruction if the flag indicated
by sc is clear.

[
l comments

i
label SFS I sc

Skip the next single-word instruction if the flag bit indi-
cated by sc is set. If sc = 1, the overflow is tested.

3-15. OVERFLOW

The overflow bit may be accessed by the following
instructions:

1 i
label | CLO | comments

Clear the overflow bit.

1 i
label | STO | comments

Set overflow bit.

1
| comments

label i SOC i [C]

Skip the next single-word instruction if the overflow bit is
clear. The C option clears the bit after the test is
performed.

[
l comments

label i SOS i [C]

Skip the next single-word instruction if the overflow bit is
set. The C option clears the bit after the test is performed.

The C option is identified by the sequence “space C space”
following either “SOC” or “SOS”. Any letter other than a
“C” in this position will be treated as a comment.

3-16. HALT

[sc [,CI]
HLT { C] }

label comments

Halt the computer. The machine instruction word is dis-
played in the T-register. If the C option is used, the flag bit
associated with channel sc is cleared.

If neither the select code nor the C option is used, the
comments portion must be omitted.

3-17. EXTENDED ARITHMETIC UNIT
(EAU)

label MPY comments

m [,I]
|

The MPY instruction multiplies the contents of the A-
Register by the contents of m. The product is stored in
registers B and A. B contains the sign of the product and
the 15 most significant bits; A contains the least signifi-
cant bits.

m [,I]
DIV {lit }

The DIV instruction divides the contents of registers B
and A by the contents of m. The quotient is stored in A
and the remainder in B. Initially B contains the sign and
the 15 most significant bits of the dividend; A contains the
least significant bits.

label comments

DLD I [m L1l }

label comments

lit

The DLD instruction loads the contents of locations m and
m + 1 into registers A and B, respectively.

Machine Instructions

I |
I m [I] l comments

[
label | DST

The DST instruction stores the contents of registers A and
B in locations m and m + 1, respectively.

MPY, DIV, DLD, DST results in two machine words: a
word for the instruction code and one for the operand.

The following seven instructions provide the capability to
shift or rotate the B- and A-Registers n number of bit
positions to the right or left, where 1<n <16.

1 [l |
label | ASR I n ' comments

The ASR instruction arithmetically shifts the B- and
A-Registers right n bits. The sign bit (bit 15 of B) is
extended.

)

I comments

1 |
label | ASL | n

The ASL instruction arithmetically shifts the B- and
A-Register left n bits. Zeroes are placed in the least
significant bits. The sign bit (bit 15 of B) is unaltered. The
overflow bit is set if bit 14 differs from bit 15 before each
shift; otherwise, exit with overflow bit cleared.

label i RRR i n i comments

The RRR instruction rotates the B- and A-Registers right
n bits.

i |
label I RRL | n comments

The RRL instruction rotates the B- and A-Registers left n
bits.

[
I comments

label i LSR i n

The LSR instruction logically shifts the B- and
A-Registers right n bits. Zeroes are placed in the most
significant bits.

I comments

i [l
label | LSL | n

The LSL instruction logically shifts the B- and
A-Registers left n bits. Place zeroes into the least
significant bits.

[[
|swp| |

Exchange the contents of the A- and B-Registers. The
contents of the A-Register are shifted into the B-Register
and the contents of the B-Register are shifted into the
A-Register.

3-9

Machine Instructions

3-18. FLOATING POINT

The instructions in this group are used for performing
arithmetic operations on floating point operands. The user
specifies whether or not floating point machine instruc-
tions are available via a parameter in the control
statement (see table 1-2). If the floating point machine
instructions are not available, the instructions in this
group result in calls to arithmetic subroutines except for
FIX and FLT (see paragraph 4-7). The Operand field may
contain any relocatable expression or absolute expression
resulting in a value of less than 2000,.

[| i
e m [,I]
FMP { iy l

Multiply the two-word floating point quantity in registers
A and B by the two-word floating point quantity in loca-
tions m and m+1 or the quantity defined by the literal.
Store the two-word floating point product in registers A and

B.
I
m [I]
[=Fn

Divide the two-word floating point quantity in registers A
and B by the two-word floating point quantity in locations
m and m+ 1 or the quantity defined by the literal. Store the
two-word floating point quotient in A and B.

m [,I]
| Zex

Add the two-word floating point quantity in registers A and
B to the two-word floating point quantity in locations m and
m+ 1 or the quantity defined by the literal. Store the two-
word floating point sum in A and B.

]

m [I]
=Fn
Subtract the two-word floating point quantity in m and
m+1 or the quantity defined by the literal from the two-

word floating point quantity in registers A and B and store
the difference in A and B.

label comments

label FDV* comments

label FAD* comments

label FSB* comments

| i
label | FIX*

comments

Convert the floating-point number contained in the A- and
B-registers to a fixed-point number. The result is returned
in the A-register. After the operation is completed, the
contents of the B-register are meaningless.

Convert the fixed-point number contained in the A-register
to a floating-point number. The result is returned in the A-
and B-registers.

3-19. DYNAMIC MAPPING SYSTEM
(M, E AND F-SERIES ONLY)

The baszc addressmg space of the H? 1090 Computer
Series is 32,768 words, whxch is referred to as logical
memory. The amount of memory actually installed in the
computer system is referred to as physical memory. An HP
1000 Computer with the optional Dynamic Mappmg Sys-
tem (DMS) has an addressing capability for one million
words of memory. The DMS allows physical memory to be
mapped into ioglcai memory through the use of four
dynammally alterable memory maps

3-20. MEMORY AD RESSING

The bas:c memery addressmg scheme pmvxdes for addras—
sing 32 pages of logical memory, each of which consists of
1,024 words: This memory is addressed throagh a 15-bit
memotyaddressbusshown in ﬁgure3—1 The' oper 5 bits

this bus pmwde the page address and the lower 10 bxts

page address is eombmed wzth the orzgmal 10-b11; relative
37 a 20-bxt memory address bus . as shown in

3.2'1;.: STATUS AND VIOLA’PION

REGI&TERS

The MEM alsa mcludes a status regxster and a vwlatmn
register. As shown in table 3-1, the MEM status register
contents enable the programmer to determine whether the
MEM was enabled or disabled at the time of the last inter-
rupt and the address of the base page fence The MEM

W, ,‘ 7‘;“‘:‘,’ s L i{ L ‘\'o
PAGE ADDRESS 'RELATIVE WORD ADDRESS |

k J(f

~ 15-BIT MEMORY ADDRESS BUS

1 !
label I FLT* I comments

3-10

Figure 3-1. Basic Memory Addressing Scheme

14 10]9°
PAGE ADDRESS RELATIVE WORD ADDRESS
5
//
, Yy ; 10
19 10 A
MEMORY MAP ' '
//
. 5

20-BIT EXPANDED MEMORY ADDRESS BUS

Table 3-1. MEM Status Register Format

N and a minimum of 500 mmseconds is

SIGNIPIéAﬂcE ‘

BIT |
15 | 0 = MEM dlsabled atlast. mterrupt
, 1= ,MEM enableei at iast mterrupt ,
~ 14 0 = System map selected at last mtefrupt,;
1.1 = User map selectad atlast mtermpt
A3 1 0 = MEM dtsabled currentty
: 1 ==,,MEM enab%ed currently
12 | 0 ‘o System map se!ected curtently
; 1 = User map seiected currently
11] 0= ,Prmected mode d;sabled currently
5 1= Protected mode enabied currently
10 tPortton mapped
- Base page fencebng ok
8 Base page‘fengg bit8
7 | Basepage fence bit7
6 Base page fence bit 6
5 | Base page fence bit 5
4 | Base pa§e fenc;g bit 4
3 Base page fence bit 3' '
2 Base page fence bit 2
1 Bése page‘ fencebii 1
0

Base page fence bit 0

*Bit 10 | Mapped Address (M)

0
1

Fence < M <2000,

1 <M< Fence

Machine Instructions

violation register contents enable the programmer to' de-
termine whether a fault occurred in the hardware or the
software so that the proper eorre(.txve steps may be taken
Refer to table 3-2, ;

3-22. MAP SEGMENTATION

All registers within the memory map are dynamically al-
terable. The MEM includes four separate memory maps:
‘the User Map, System Map, and two Dual- -Channel Port
Controller (DCPC) Maps. See. ﬁgure 3.3 These (
addressed as a contlguous reglster block

3:23. POWER FAIL cmmcmms'rics i

A power fadure automatacally enahies th& Sy ster

rammer for executing a power fail routine. Since all maps
are disabled and none are considered valid upon the resto-

 ration of power, the power - fail routine shouid mciwde in-

stmctlons to save as many maps as desxred.

Table 3.2. MEM maﬁm Rg‘éiste} Format

BT | SIGNIFICANCE
15 | Reaa‘v;oiéﬁoa*i
14 :«Wnte vm}anon
13 Base page vsolatlon
s12] «Privateged mstructton vmianon
11| Reserved AT
10 - ’ ,:Ryeserved
| Reserved
% 'Resérved |
| 0 = MEbus dtsableda:violamon
-1 = MEbus enabied at woiat:cmﬁ
6 | ©0 = MEM disabled at violation
1 = MEM enabled at v:clataon
5 0 = System map enabled at vio!atum
~ 1 = User map enabled at vnolat:on
4 Map address bit4 :
3 Ma;ﬁ address bzt 3
2 Map address bit 2
1 Map address bit 1
0 Map address bit 0 |
*Significant when associated bit is set.

3-11

Machine Instructions

’?79 PORT B MAP 10
wo | weRecisTERs) 96

R | ~ PORTAMAP %

100 | (32REGISTERS) | e

T useRmae .

40 | (2REGISTERS) | a2
¥ 1 sysTeMmap 3,
e (32REGISTERS) |

FlgureS—.?Map S{egmentamn ,
3-24. pnomcmn MODE

Tixe pxotected mode of operation is a program stabe created
by the Dynamic Mapping System. The protected mode is
entered: byexecutmg an STC 05 instruction and is exited by
the CPU acknowledging an mterrupt; The protected mode

reserves a block of memory and prevents access to this

blockbyother users.

3-25 MEM VIOLATION

An mterrupt request wb;ch at:bempts to access the pro-
tected block of memory (whﬂe in the protected mode) wzll
cause a MEM vmlatwn ~

‘3;23. DYNAMIC MAPPING SYSTEM

INSTRUCTIONS

If the eompuﬁer on whlch the object program is to be run

includes a Dynamic Mapping System, the following g group
of mstmctmns may be used.

klapel l DJP l ’m'[,l} i comments

Disable MEM and jump. This instruction disables the
translatxon and protection features of the MEM hardware.
Prior to disabling, the P-register is set to the effective
memory address. As a result of executing this instruction,
normal /O interrupts are held off until the first opportun-

ity following the fetch of the next instruction, unless three

or more levels of indirect addressing are used.

This instruction will normally génei-ate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not

3-12

occur; however, if the System map is enabled, the instruc-
tion is allowed. If none of the maps are enabled, the in-
struction defaults to JMP*+ 11,

y

:ms' B

. 3
label l l comments

k . Disable MEM and jump to subroutine. This instruction

disables the translation and protection features of the
MEM hardware. Prior to disabling, the P-register is set

_ one count past the effective memory address. The return

address is written into the location specified by m [,1]. As
a result of executing this instruction, normal I/O inter-
rupts are held off until the first opportunity following the
fetch of the next instruction, unless three or more levels of

 indirect addressmg are used

* This instruction will nommlly generate a MEM v1olatmn

when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; ‘however, if the System map is enabled the instruc-

" tion m allowed.

gt N : '
label TJRS Iaddrl{ n}
ht/eral

addr2 [,I l comments

By Jump and restore status addrl contains the address of the
- status word memory location, literal specifies the status
- word, and addr2 contains the gump address.

. Thls instruction causes the'statusofMEM to be r&etored as
indicated by bits 15 and 14 of the status word. Only bits 15

and 14 of the status word are used; the remaining bits (13-0)

~ of the status word are ignored. Bits 15 and 14 restore the
MEM status as follows:

Bit 15 = 0 MEM is disabled
Bit 16 = 1 MEM is enabled
~ Bit 14 = 0 System map is selected
Bit 14 = 1 User map is selected.
As a result of executing this instruction, normal I/O inter-

rupts are held off until the first opportunity following the
fetch of the next instruction, unless three or more levels of

_indirect addressing are used.

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instruc-
tion is allowed.
1 |
label LFA

-commments

Load fence from A. This mstructlbn loads the contents of
the A-register into the base page fence reglster (The base
page fence register ‘contains the “fence” address, which

s;iecxﬁes the address where reserved (mapped) memory be-
gins. Attempts to access memory at any address below this -
fence will not be allowed.) Bits 9 through 0 of the A-register -
specify the address in page zero where shared (unmapped)
memory is separated from ‘reserved (mapped) memory. Bit
10 is used a8 folicws to speo:fy whxch purtum is mapped PR

Bn: 10 ' MappedAddress(M)

FeneesM< 2000, b
';,[1<M<Fence

Tlns instm(ftw wxll 'alwzys genemte a MEM vmlatmn Vi

Machine Instructions

'This instruction can cause a MEM violation only if read or
write protection. rules are v:oiataﬂ.k (F‘or exampie, 1f an
,attemptxsmadetowrrte - ;
memory) W

when étmted in the: prutected mode. In this case, the. o

where shared {unmapped) memory is separated from re-
served (mapped) memory.
whxch portwn is mapped. e

¢ onfloads tke contentsoff
B into the base page fence register. Bats?“?'x B
thmugh Oofthe B-regxsterspeclfythe addressin pagezero . D€ '.

Bit 10 is uﬁed as follows toapecxfy - will

This. mstmctzon will aiways generate a MEM vmlat:on. R

when executed in the protected mode. In this case; the » ©
fence is not altered. However, if the System map is ena-

bled, the mstructwn is. allowed in protected mode. .-
;y ! MBF | oommonts

label

(The alternate map is the map which is not enabled. For

example, if the system map is enabled, the User map is the -
alternate map and vice versa.) The A-register contains the _
source byte address and the B-register contains the desti-
nation byte address. The X-register contains the octal
number of bytes to be moved. Both the source and destina-

tion byte address must begm on even word boundanes

This mstmctaon is interruptible on an even number of byte

transfers, thus maintaining the even word boundanes in
the A~ and B-regmters ‘ ;

The mberrupt routine is expected to save and rwtore the
current contents of the A-, B-, and X-registers to allow

continuation of the instruction at the nextentry. Whenthe
byte string move is completed, the X-register willalwaysbe

zero and the A- and B-registers will contain their original
value incremented by the number of bytes moved.

' T oure nb aa nstbegm
Movebytesﬁoma}temate map This mstmctxon movesa ; _Boththesom@ceanédestxm 1? yte drsssesm

string of bytes using the alternate program map for source

readsandthecurrentlyenabledmapfordesunauonwntes.f . trhnsfers. thus-suintatbiig ’

- . be zero and the A- and B-regists
: nal value mcremented by the number of bytee moved.

; ’lahei B

“on even word- boundanes.
__ This instruction is mtermptib on ven number ofbyte
even wm‘d boundames in

the A- and B-registers. ‘

-The mtemxyt routine is expected m save md restore tha

current contents of the A-, B- and X-registers to allow

 continuation of the instruction-at the next entry. When the

 X-register will always
will contain their origi-

byte string move is completed,

_This instruction will always cause a MEM violation when
-executed in the pmteeted mo&e and no bytes will be trans—

ferred.

"MWF | comments

Move words from alternate imap.' "‘I"hyis‘ﬂ,ihéu'uctién moves a
string of words using the alternate program map for source
3-13

Machine Instructions

reads and the currently enabled map for destination writes.
The A-register contains the source address and the
B-register contains the destination address. The X-register
contains the octal number of words to be moved.

This instruction is interruptible. The interrupt routine is
expected to save and restore the current contents of the A-
B-, and X-registers to allow continuation of the instruction
at the next entry. When the word string move is completed,
the X-register will always be zero and the A- and
B-registers will contain their original value incremented
by the number of words moved.

This instruction can cause a MEM vwlatxon only ifread and
write protection mles are violated. ,

L i
label l MWI

~ comments

Move words into alternate map. This instruction moves a
string of words using the currently enabled map for source
reads and the alternate program map for destination
writes. The A-register contains the source address and the
B-register contains the destination address. The
X-register contains the octal number of words to be moved.

This instruction is interruptible. The interrupt routine is
expected to save and restore the current contents of the A-,

B-, and X-registers to allow continuation of the instruction
at the next entry. When the word string move is completed,

the X-register will always be zero and the A- and
B-registers will contain their orlgmal value mcremented
by the number of words moved

This 1nstruct;mn w:ll always cause a MEM vmlatmn when
executed in the protected mode and no words wﬂl be traas-
ferred.

|]
label I MWW

. comments -

Move words within alternate map. This instruction moves
a string of words with both the source and destination

addresses established through the alternate program map.

The A-register contains the source address and the
B-register contains the destination address. The X-register
contains the octal number of words to be moved.

This instruction is interruptible. The interrupt routine is
expected to save and restore the current contents of the A-,
B-, and X-registers to allow continuation of the instruction
at the next entry. When the word string move is completed,
the X-register will always be zero and the A- and
B-registers will contain their original value incremented
by the number of words moved.

This instruction will always cause a MEM violation when
executed in the protected mode and no words will be trans-
ferred.

label PAA comments

3-14

Load/store Port A map per A. This instruction transfers the
32 Port A map registers to or from memory. If bit 15 of the
A-register is clear, the Port A map is loaded from memory
starting from the address specified in bits 14-0 of the
A-register. If bit 15 of the A-register is set, the Port A map
is stored into memory starting at the address specified in
bits 14-0 of the A-register. When the load/store operation is
complete, the A-register will be incremented by 82to allow
multiple map instructions.

An attempt to load any map register when in the protected
mode will cause a MEM violation. An attempt to store the
Port A map is allowed w1thm the constraints of wrzte pro-
tected memory.
"
label PAB

comments

Load/store Port A map per B. This instruction transfers the
32 Port A registers to or from memory. If bit 15 of the
B-register is clear, the Port A map is loaded from memory
starting from the address specified in bits 14-0 of the

- B-register. If bit 15 of the B-register is set, the Port Amap is

stored into memory starting at the address specified in bits
14-0 of the B-register. When the load/store operation is
complete, the B-register will be mcremenwd by 32 to allow
multiple map mstmctmns

An attempt to load any map reglster when in the protected
mode will cause a MEM violation. An attempt to store the
Port A map is allowed within the constraints of write pro-
tected memory

label' ~ PBA

commént;s'

Ibad/store Port B map per A.This mstructmn transfers the
32 Port B registers to or from memory If bit 15 of the
A-register is clear, the Port B map is loaded from memory
starting from the address specified in bits 14-0 of the
A-register. Ifbit 15 of the A-register is set, the Port Bmapis
stored into memory starting at the address specified in bits
14-0 of the A-register. When the load/store operation is
complete, the A-register will be incremented by 32 to allow
multiple map instructions,

An attempt to load any map register when in the protected
mode will cause a MEM violation. An attempt to store the
Port B map is allowed within the constraints of write pro-

‘tected memory.

' .
label PBB

comments

Load/store Port B map per B. This instruction transfers the
32 Port B map registers to or from memory. If bit 15 of the
B-register is clear, the Port B map is loaded from memory
starting from the address specified in bits 14-0 of the
B-register. If bit 15 of the B-register is set, the Port Bmap is
stored into memory starting at the address specified in bits
14-0 of the B-register. When the load/store operation is
complete, the B-register will be incremented by 32 to allow
multiple map instructions.

An attempt to load any map register when in the protected
mode will cause a MEM violation. An attempt to store the
Port B map is allowed within the constraints of the write
protected memory.

} l
label RSA

comments

Read status register into A. This instruction reads the
contents of the MEM status register into the A-register.
This instruction can be executed at any time. The format of
the MEM status register is given in table 3-1.

Machine Instructions

System map, the P-register is set one count past the effec-
tive memory address. The return address is written into
the location specified by m [,I]. As a result of executing
this instruction, normal I/O interrupts are held off until
the first opportunity following the fetch of the next in-
struction, unless three or more levels of indirect address-
ing are used.

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instruc-
tion is allowed and effectively executes a JSB *+1,1.

| |]

label | " RSB I comments

Read status register into B. This instruction reads the
contents of the MEM status register into the B-register and
can be executed at any time. The format of the MEM status
register is shown in table 3-1.
1 . |
label I RVA

comments

Read violation register into A. This instruction reads the
contents of the MEM violation register into the A-register
and can be executed at any time. The format of the MEM
violation register is shown in table 3-2.

| ‘ N
label | RVB |

comments

Read violation register into B. This instruction reads the
contents of the MEM violation register into the B-register
and can be executed at any time. The format of the MEM
violation register is shown in table 3-2.

l ,
label SJP

l m [I] i comments”

Enable System map and jump. This instruction causes the
MEM hardware to use the set of 32 map registers, referred
to as the System map, for translating all programmed
memory references. Prior to enabling the System map, the
P-register is set to the effective memory address. As aresult
of executing this instruction, normal I/O interrupts are
held off until the first gpportunity following the fetch of the
next instruction, unless three or more levels of indirect
addressing are used.

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instruc-
tion is allowed and effectively executes a JMP *+1, 1.

i I i
label 8J8 I m [I] t comments

Enable System map and jump to subroutine. This instruc-
tion causes the MEM hardware to use the set of 32 map
registers, referred to as the System map, for translating
all programmed memory references. Prior to enabling the

label SSM I m [JI] l comments

Store status register in memory. This instruction stores the
16-bit contents of the MEM status register into the addres-
sed memory location. The status register contents are not
altered. This instruction is used in conjunction with the
JRS instruction to allow easy processing of interrupts,
which always select the System map (if the MEM is ena-
bled). The format of the MEM status register is listed in
table 34

This instruction can cause a MEM vmlatxon only if write
protection rules are violated.

label [SYA l comments

Load/store System map per A. This instruction transfers
the 32 System map registers to or from memory. If bit 15 of
the A-register is clear, the System map is loaded from
memory starting from the address specified in bits 14-0 of
the A-register. If bit 15 of the A-register is set, the System
map isstored into memory starting at the address specified
in bits 14-0of the A-register. When the load/store operation
is-complete, the A-register will be incremented by 32 to
allow muitxpie map instructions. -

Note: If not in the protected mode, the MEM
provides no protection against altering
the contents of maps while they are cur-
rently enabled.

An attempt to load any map in the protected mode will
cause a MEM violation. An attempt to store the System
map is allowed within the constraints of write protected
memory. ‘

; 1 :
label SYB comments

Load/store System map per B. This instruction transfers

the 32 System map registers to or from memory. If bit 15 of

the B-register. is clear, the system map is loaded from

memory starting from the address specified in bits 14-0 of

- the B-register. If bit 15 of the B-register is set, the System

map is stored into memory starting at the address
specified in bits 14-0 of the B-register. When the load/store
operation is complete, the B-register will be incremented
by 32 to allow multiple map instructions.

3-15

Machine Instructions

Note: If not in the protected mode, the MEM
provides no protection against altering
the contents of maps while they are cur-

rently enabled.

An attempt to load any map in the protected mode will
cause a MEM violation. An attempt to store the System
map is allowed within the constraints of write protected
memory.
| |
label UJP ‘ m [,I]

comments

Enable User map and jump. This instruction causes the
MEM hardware to use the set of 32 map registers, referred
to as the User map, for translating all programmed mem-
ory references. Prior to enabling the User map, the
P-register is set to the effective memory address. As a
result of executing this instruction, normal /O interrupts
are held off until the first opportunity following the fetch
of the next instruction, unless three or more levels of
indirect addressing are used. If the User map is already
enabled, the instruction defaults to JMP *+1,1.

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instrue-
tion is allowed.

c TR
labei.l uJs I m [I] I comments

Enable User map and jump to subroutine. This instruction
causes the MEM hardware to use the set of 32 map regis-
ters, referred to as the User map, for translating all pro-
grammed memory references. Prior to enabling the User
map, the P-register is set one count past the effective

memory address. The return address is written into the

location specified by m [,I]. As a result of executing this
instruction, nermal I/0 interrupts are held off until the
first opportunity following the fetch of the next instruc-
tion, unless three or more levels of indirect addressing are
used. If the User map is already enabled, the instruction
defaults to JMP *+1,1.

This instruction will normally generate a MEM violation
when executed in the protected mode. In this case, the
status of the MEM is not affected and the jump will not
occur; however, if the System map is enabled, the instruc-
tion is allowed.

| |
label USA

comments

Load/store User map per A. This instruction transfers the
32 User map registers to or from memory. If bit 15 of the
A-register is clear, the User map is loaded from memory
starting from the address specified in bits 14-0 of the
A-register. If bit 15 of the A-register is set, the User map is
stored into memory starting at the address specified in bits

3-16

14-0 of the A-register. When load/store operation is com-

plete, the A-register will be incremented by 32 to allow

multiple instructions.

Note: If not in the protected mode, the MEM
provides no protection against altering
the contents of maps while they are cur-

rently enabled.

An attempt to load any map in the protected mode will
cause a MEM violation. An attempt to store the User map is
allowed within the constraints of write protected memory.
1 |
label USB

. comments

Load/store User map per B. This instruction transfers the
32 User map registers to or from memory. If bit 15 of the
B-register is clear, the User map is loaded from memory
starting from the address specified in bits 14-0 of the
B-register. If bit 15 of the B-register is set, the User map is
stored into memory starting at the address specified in bits
14-0 of the B-register. When the load/store operation is
complete, the B-register will be incremented by 32 to allow
multiple map instructions.

Note: If not in the protected mode, the MEM
provides no protection against altering
the contents of maps while they are cur-
rently enabled.

An attempt to load any map in the protected mode will
cause a MEM violation. An attempt to store the User map
is allowed within the constraints of write protected mem-

ory.

| | | :
label XCA l m [I] l comments

Cross compare A. This instruction compares the contents of
the A-register with the contents of the addressed memory
location. If the two 16-bit words are not identical, the next
instruction is skipped; i.e., the P-register advances twq,
counts instead of one count. If the two words are identical,
the next instruction is executed. Neither the A-register nor
memory cell contents are altered.

This instruction uses the alternate program map for the
read operation. If neither the System map nor the User map
is enabled (i.e., MEM is disabled), then a compare directly
with physical memory occurs. This instruction will cause a
MEM violation only if read protection rules are violated.

! | |
label , XCB ' m [I]

comments

Cross compare B. This instruction compares the contents of
the B-register with the contents of the addressed memory
location. If the two 16-bit words are not identical, the next
instruction is skipped; i.e., the P-register advances two
counts instead of one count. If the two words are identical,
the next instruction is executed. Neither the B-register
contents nor memory cell contents are altered.

This instruction uses the alternate map for the read opera-
tion. If neither the System map nor the User map is enabled
(i.e., MEM is disabled), then a direct compare with physical
memory occurs.

This instruction will cause a MEM violation only if read
protection rules are violated.

| | |
label XLA l m []] | comments

Cross load A. This instruction loads the contents of the
specified memory address into the A-register. The contents
of the memory cell are not altered.

This instruction uses the alternate program map to fetch
the operand. If the MEM is currently disabled, then a load
directly from physical memory occurs.

This instruction will cause a MEM violation only if read
protection rules are violated.

label XLB I m []] l comments

Cross load B. This instruction loads the contents of the
specified memory address into the B-register. The contents
of the memory cell are not altered.

This instruction uses the alternate program map to fetch
the operand. If the MEM is currently disabled, then a load
directly from physical memory occurs.

This instruction will cause a MEM violation only if read
protection rules are violated.

|]
label XMA

comments

Transfer maps internally per A. This instruction transfers
a copy of the entire contents (32 map registers) of the
System map or the User map to the Port A map or the Port B
map as determined by the control word in the A-register, as
follows:

Bit No. Significance
15 0 = System map
1 = User map
0 0 = Port A map
1 = Port B map

(Bits 14-1 are ignored)

This instruction will always cause a MEM violation when
executed in the protected mode.

| |
label XMB

comments

Machine Instructions

Transfer maps internally per B. This instruction transfers
a copy of the entire contents (32 map registers) of the
System map or the User map to the Port A map or the Port B
map as determined by the control word in the B-register, as
follows:

Bit No. Significance
15 0 = System map
1 = User map
0 0 = Port A map
1 = Port B map

(Bits 14-1 are ignored)

This instruction will always generate a MEM violation
when executed in the protected mode.

| |
label XMM

comments

Transfer map or memory. This instruction transfers a
number of words either from sequential memory locations
to sequential map registers or from maps to memory. Bits
0-9 of memory correspond to 0-9 of the map and bits 14 and
15 of memory relate to bits 10 and 11 of the map. The
A-register points to the first register to be accessed and
the B-register points to the starting address of the table in
memory.

Maps are addressed as contiguous space and a wraparound
count from 127 to O can and will occur, It is the
programmer’s responsibility to avoid this error. The
X-register indicates the number of map registers to be
transferred.

A positive number in X will cause the maps to be loaded
with the corresponding data from memory. A negative
(two’s complement) number in X will cause the maps to be
stored into the corresponding memory locations.

The instruction is interruptible after each group of 16
registers has been transferred. A, B and X are then reset
to allow re-entry at a later time. The X-register will al-
ways be zero at the completion of the instruction; A and B
will be advanced by the number of registers moved. An
attempt to load any map register in Protected Mode will
generate a MEM violation. An attempt to store map regis-
ters is allowed within the constraints of Write Protected
memory.

label XMS comments

Transfer maps sequentially. This instruction transfers a
number of words to sequential map registers. The
A-register points to the first register to be accessed and

3-17

Machine Instructions

the B-register is the base quantity (page number). The
X-register indicates the number of map registers to be
affected. A positive quantity will cause the word found in
the page number to be used as a base quantity to be loaded
into the first register. The next register will be loaded
with the base quantity plus one, and so forth up to the
number of registers. Bits 0-9, 14 and 15 are used as de-
scribed in XMM. An attempt to load any map register in
Protected Mode will generate a MEM violation. An at-
tempt to store map registers is allowed within the con-
straints of Write Protected memory.

|
label . XSA

comments

m [I]

Cross store A. This instruction stores the contents of the
A-register into the addressed memory location. The previ-
ous contents of the memory cell are lost; the A-register
contents are not altered.

Th%s instruction uses the alternate program map for the
write operation. If the MEM is currently disabled, then a
store directly into physical memory occurs.

This instruction will always cause a MEM violation when
executed in the protected mode.

1 1
XSB l

label . comments

m [1]

Cross store B. This instruction stores the contents of the
B-register into the addressed memory location. The previ-
ous contents of the memory cell are lost; the B-register
contents are not altered.

This instruction uses the alternate program map for the
write operation. If the MEM is currently disabled, then a
store directly into physical memory occurs.

This instruction will always cause a MEM violation when
executed in the protected mode.

3-27. HP 1000 FENCE REGISTERS

There are two separate fences available on the HP 1000 M,
E and F-Series Computers: the memory protect fence and
the base page fence.

The HP 1000 L-SERIES Computer has a memory protect
fence.

The memory protect fence allows you to select a block of
memory which will be protected against alteration by any
programmed instruction. The memory protect fence regis-
ter (which specifies the upper bound of the protected area)

3-18

is loaded from the A- or B-register by an OTA or OTB
instruction. See the appropriate hardware manual for
specific details on the memory protect fence.

The base page fence is only available in HP 1000 M, E and
F-Series computers which have the Dynamic Mapping
System. This fence specifies which part of the base page is
mapped. This determines where shared memory is sepa-
rated from reserved memory on the base page. The base
page fence register is loaded from the A- or B-register by
an LFA or LFB instruction.

Instructions which modify the fence registers cannot be
executed while the computer is in the protected mode.

3-28. HP 1000 M, E, F-SERIES
INSTRUCTION REPLACEMENTS

The RTE-L system library contains software substitutions
for all the HP 1000 M, E and F-Series CPU instructions
that are not included in the HP 1000 L-SERIES instruc-
tion set except for the optional DMS instruction set which
is not simulated on the HP 1000 L-SERIES hardware.

These instruction replacements should enable most user
programs written in assembly language to be transported
from a HP 1000 M, E and F-Series computer to a HP 1000
L-SERIES by simply editing those instruction mnemonic
codes into the JSB .<mnemonic> format for the system
library routines in RTE-L.

If the user should happen to code an instruction that is not
valid for the L-SERIES hardware, the Assembler will not
report this fact as an error. The Assembler assembles the
full HP 1000 instruction set. The L-SERIES instruction
set is a subset of the HP 1000 instruction set. (See Appen-
dix F for a summary of the valid instruction sets for the M,
E, F and L-SERIES computers.) Since neither the Assem-
bler nor the Loader will report unimplemented instruc-
tions the L-SERIES processor will trap and report as an
error any instruction that is not valid for its instruction
set. The following error will be reported on the system
console:

Name ABORTED U1 Address
where:
Name is the name of the program and

Address is the address of the offending instruction.

3-29. REPLACEMENT FORMATS

The name of the software subroutine is formed by preced-
ing the instruction mnemonic with a period (decimal
point). The calling sequence is transformed as shown in
Figure 3-4. All instructions that are recoded to use the
software implementation must be declared as external to
the program.

Machine Instructions

1-word instructions:
LABEL XYZ COMMENTS is edited to -->

LABEL JSB .XYZ COMMENTS

2-word instructions:
LABEL XYZ <operand> COMMENTS is edited to -->
LABEL JSB .XYZ COMMENTS
DEF <operand>
3-word instructions (CBT, CMW, MBT, MVW):
LABEL MBT <operand> COMMENTS is edited to -->
LABEL JSB .MBT COMMENTS
DEF <operand>
DEC 0
3-word instructions (CBS, SBS, TBS):
LABEL CBS <operand 1> <operand 2> COMMENTS
is edited to -->
LABEL JSB .CBS COMMENTS

DEF <operand 1>
DEF <operand 2>

Figure 3-4. HP 1000 M, E, F-Series Instruction Replacement Formats

3-30. HP 1000 M, E, F-SERIES SOFTWARE THREE WORD
REPLACEMENTS ONE WORD TWO WORD (2 operand) (1 operand)

The following list represents the HP 1000 M, E, F-Series .CAX .FIX .ADX .LBY .CBS .CBT
instructions that have software substitutions in the .CAY .FLT .ADY .LDX .SBS . CMW
RTE-L system library. . CBX .LDY .TBS .MBT

.CBY .ISX .FAD . MVIW

.CXA .ISY .FDV .SAX

.CXB .FMP .SAY

.CYA .LBT .FSB .SBX

.CYB .SBY

«SBT .JLY .STX
.DSX .SFB .JPY .STY

.DSY
LXAX LAX
«XAY LAY
.XBX .LBX
. XBY

3-19/3-20

PSEUDO INSTRUCTIONS

SECTION

IV

The pseudo instructions control the Assembler and its
listed output, establish program relocatability, and define
program linkage as well as specify various types of con-
stants, blocks of memory, and labels used in the program.

4-1. ASSEMBLER CONTROL

The Assembler control pseudo instructions establish and
alter the contents of the base page and program location
counters, and terminate assembly processing. Labels may
be used but they are ignored by the Assembler.

The NAM statement, which must be the first statement in
an Assembler source program, includes optional parame-
ters defining the program type, priority, and time values.
This information is used to fill in the NAM record of the
program module (see Appendix H for the format of the
NAM record).

NAM name [,type,pri,res,mult,hr,min,sec,msec id]

name
is the name of the program.

type (RTE-IV)
is the program type. (Defaults to 3 if not specified):

0 — system program or driver.
1 — memory resident.

2 — real-time disc resident.

3 — background disc resident.

4 — background disc resident with Table Area II
access.

5 — program segment. (RT or BG).

6 — library, reentrant or privileged subroutines (note
that if called by a memory resident program,
these routines are relocated into the Memory Re-
sident Library. After memory resident loading
they become Type 7).

7 — library, utility subroutines (appended to calling
program).

8 —if program is a main, it is deleted from the system,
or,

if program is a subroutine, it is used to satisfy any
external references during generation; however,
it is not loaded in the relocatable library area of
the disc.

13 — (Table Area II) system entry points that contain
pointers and system values that are defined at

generation. Table Area II is a combination of
these relocated Type 13 modules and system
tables that are built by the generator.

14 — same as Type 6, but automatically included in the
Memory Resident Library. They become Type 7
after memory resident loading.

15 — (Table Area I) system entry points that must be
included in the system and user maps. Table
Area I is a combination of these relocated Type
15 modules and I/O tables that are built by the
generator.

30 — Subsystem Global Area (SSGA).

Note: In some cases the primary type code (i.e.,
1, 2, 3, 4) may be expanded by adding 8,
16, or 24 to the number. These expanded
types allow such features as: access to
real-time COMMON by background

programs, and access to SSGA.

CAUTION

The primary type code of a main pro-
gram and its segments must not be
changed because the relationship be-
tween the program and its segments
would be lost.

type (RTE-L)
is the program type. The only significant program types
in RTE-L are:

5 — program segment (RT or BG). The RTE-L
generator will not load segmented programs.
They must be loaded on-line.

6 — library, reentrant or privileged subroutines. The
user may direct the generator to relocate the pro-
gram into the Memory Resident Library. If so,
programs that reference this code will not have
the subroutine appended to it, they will use the
memory resident code. If not loaded in the Mem-
ory Resident Library, a copy of the code will be
appended to each referencing program.

7 — library, utility subroutines (appended to calling
program.) If the routine is included in the System
Relocation phase of a generation, all entry points
are not retained in the snap file.

All other program types are not significant in RTE-L.
Determining whether the program is Real-Time or
Background is made a load time by the appropriate
LOADR or GENERATOR command.

4-1

Pseudo Instructions

pri
is the priority (1 to 32767, set to 99 if not given).

res
is the resolution code

mult
is the execution multiple

hr

is hours
min

is minutes

sec
is seconds

msec
is tens of milliseconds

id
comments field (separated from operand by a space)

COMMENTS

The parameters of the NAM statement, beginning with
type and ending with msec, are separated by commas. A
blank space within the parameter field will terminate that
field and cause the Assembler to recognize the next entry
as the comment field (id). The first parameter must be
separated from the program name by a comma. The
parameters are optional, but to specify any particular
parameter, those preceding it must also be specified, as
shown below:

NAM EX1,2,99,1,999,10,20,30,30
NAM EX2,1,10 THIS IS ID OF PROGRAM.
Starting immediately after the first blank, the identifier

field is placed in the relocatable NAM record following the
parameters (a blank space separates the parameter and

comment fields). In the following example a part number
is shown in the comments field of the second line:

NAM PRGRM THIS IS ON RELOC. RECORD
NAM MYNAM,1,94 25117-80345B

The identifier (comments) field (id)can be a maximum of
73 characters due to the restriction of the source state-
ment size. The identifier will be truncated after column
80.

i ORB i comments

ORB defines the portion of a relocatable program that
must be assigned to the base page by the Assembler. The
Label field (if given) is ignored, and the statement re-
quires no operand. All statements that follow the ORB
statement are assigned contiguous locations in the base
page. Assignment to the base page terminates when the
Assembler detects an ORG, ORR, or END statement.

When more than one ORB is used in a program, each ORB
causes the Assembler to resume assigning base page loca-
tions at the address following the last assigned base page
location. An example is shown in figure 4-1.

An ORB statement in an absolute program has no signifi-
cance and is flagged as an error.

IORGI m|

comment

The ORG statement defines the origin of an absolute prog-
ram, or the origin of subsequent sections of absolute or
relocatable programs.

An absolute program must begin with an ORG statement.
The operand m, must be a decimal or octal integer specify-
ing the initial setting of the program location counter.

IAREA BSS 100

NAM PROG ASSIGN ZERO AS RELATIVE STARTING
. LOCATION FOR PROGRAM PROG.
ORB ASSIGN ALL FOLLOWING STATEMENTS

TO BASE PAGE.

ORR

ORB

ORR

CONTINUE MAIN PROGRAM.

RESUME ASSIGNMENT AT NEXT
AVAILABLE LOCATION IN BASE PAGE.

CONTINUE MAIN PROGRAM.

Figure 4-1. ORB Example

ORG statements may be used elsewhere in the program to
define starting addresses for portions of the object code.
For absolute programs the Operand field, m, may be any
expression. For relocatable programs, m must not be
common relocatable or absolute. An expression is evalu-
ated modulo 2'*. Symbols must be previously defined. All
instructions following an ORG are assembled at consecu-
tive addresses starting with the value of the operand.

Pseudo Instructions

ORR resets the program location counter to the value
existing when an ORG or ORB instruction was encoun-
tered. An example is shown in figure 4-2.

More than one ORG statement may occur before an ORR
is used. If so, when the ORR is encountered, the program
location counter is reset to the value it contained when the
first ORG of the string occurred. An example is shown in
figure 4-3.

[] I
If a second ORR appears before an intervening ORG or
I ORR I comment ORB the second ORR is ignored.
NAM RSET SET PLC TO VALUE OF ZERO, ASSIGN
FIRST ADA RSET AS NAME OF PROGRAM.
ADA CTRL ASSUME PLC AT FIRST+2280.
ORG FIRST+2926 SAVE PLC VALUE OF FIRST+2280
. AND SET PLC TO FIRST+2926.
JMP EVEN+1 ASSUME PLC AT FIRST+3004
ORR RESET PLC TO FIRST+2280.
Figure 4-2. ORR Example (with Single ORG)
NAM RSET SET PLC TO ZERO
FIRST ADA
LDA WYZ ASSUME PLC AT FIRST+2250

ORG FIRST+2500 SET PLC TO FIRST+2500

LDB ERA

ASSUME PLC AT FIRST+2750

ORG FIRST+2900 SET PLC TO FIRST+2900

CLE ASSUME PLC AT FIRST+2920
ORR RESET PLC TO FIRST+2250

Figure 4-3. ORR Example (with Multiple ORGs)

4-3

Pseudo Instructions

The IFN and IFZ pseudo instructions cause the inclusion of
instructions in a program provided that either an “N” or
“Z”, respectively, is specified as a parameter for the ASMB
control statement.t The IFN or IFZ instruction precedes
the set of statements that are to be included. The pseudo
instruction XIF serves as a terminator. If XIF is omitted,
END acts as a terminator to both the set of statements and
the assembly.

] l
] IFN | comments

XIF
All source language statements appearing between the
IFN and the XIF pseudo instructions are included in the

program if the character “N” is specified on the ASMB
control statement.

All source language statements appearing between the IFZ
and XIF pseudo instructions are included in the program if
the character “Z” is specified on the ASMB control state-
ment.

i \

I IFZ ' comments

XIF

When the particular letter is not included on the control
statement, the related set of statements appears on the
Assembler output listing but is not assembled.

Any number of IFN-XIF and IFZ-XIF sets may appear in a
program, however, they may not overlap. An IFZ or IFN
intervening between an IFZ or IFN and the XIF terminator
results in a diagnostic being issued during compilation; the
second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may be
used in the program; however, only one type will be selected
in a single assembly. Therefore, if both characters “N” and
“Z” appear in the control statement, the character which is
listed last will determine the set of coding that is to be
assembled. Some examples are shown in figures 4-4 and
4-5.

In figure 4-4, the program TRAVL will perform computa-
tions involving either or neither CAR or PLANE consid-
erations depending on the presence or absence of Z or N
parameters in the Control Statement.

In figure 4-5, the program WAGES computes a weekly
wage value. Overtime consideration will be included in
the program if “Z” is included in the parameters of the
Control Statement.

NAM TRAVL

IFZ

LDA CAR
CMA, SZA
JMP NO.GO
LDA MILES
DIV SPEED
STA GAS
X1F

IFN

LDA PLANE
CMA, SZA
JMP NO.GO
LDA TIME
CPA COST
X1F

NO.GO HLT 77

END

NAM WAGE

JSB HOUR

MPY TIME1
IFZ

JSB OVTIM
MPY TIME2

TIME1l DEC 40
TIME2 BSS ‘1
END

Figure 4-4. IFN/XIF and IFZ/XIF Example

Figure 4-5. IFZ/XIF Example

TSee “Assembly Options” in Section I of this manual.

44

The REP pseudo instruction causes the repetition of the
statement immediately following it a specified number of
times.

| |
label I REP | n

|
I comments

The statement following the REP in the source program is
repeated n times. The n may be any absolute expression.
Comment lines (indicated by an asterisk in character posi-
tion 1) are not repeated by REP. If a comment follows a REP
instruction, the comment is ignored and the instruction
following the comment is repeated.

A label specified in the REP pseudo instruction is assigned
to the first repetition of the statement. A label should not be
part of the instruction to be repeated; it would result in a
doubly defined symbol error.

Example:
CLA
TRIPL REP 3
ADA DATA

The above source code would generate the following:

CLA Clear the A-Register;
the content of DATA is

TRIPL ADA DATA tripled and stored in the
ADA DATA A-Register.
ADA DATA
Example:

FILL REP 100B
NOP

The example above loads 1003 memory locations with the
NOP instruction. The first location is labeled FILL.

Example:

REP 2
MPY DATA

The above source code would generate the following:

MPY DATA

MPY DATA

1 | |

| END | [m] | comments

This statement terminates the program; it marks the
physical end of the source language statements. The
Operand field, m, may contain a name appearing as a
statement label in the current program or it may be blank.
If this is a main program m must be specified. If a name is
entered, it identifies the entry point to the module.

Pseudo Instructions

If the Operand field is blank, the Comments field must be
blank also, otherwise, the Assembler attempts to interpret
the first five characters of the comments as the transfer
address symbol.

The label field of the END statement is ignored.

4-2. OBJECT PROGRAM LINKAGE

Linking pseudo instructions provides a means for com-
munication between a main program and its subroutines
or among several subprograms that are to be run as a
single program. These instructions may be used only in a
relocatable program.

The Label field of this class is ignored in all cases. The
Operand field is usually divided into many subfields, sepa-
rated by commas. In the case of the COM pseudo instruc-
tion, the first space not preceded by a comma or a left
parenthesis terminates the entire field.

l | i
|COMlnamel[(size.)] [,name,[(size)] , . . ., name,[(size,)]] | comments

COM reserves a block of storage locations that may be used
in common by several subprograms. Each name identifies a
segment of the block for the subprogram in which the COM
statement appears. The sizes are the number of words allot-
ted to the related segments. The size is specified as an octal
or decimal integer. If the size is omitted, it is assumed to be
one,

Any number of COM statements may appear in a subprog-
ram. Storage locations are assigned contiguously; the
length of the block is equal to the sum of the lengths of all
segments named in all COM statements in the subprog-
ram.

To refer to the common block, other subprograms must also
include a COM statement. The segment names and sizes
may be the same or they may differ. Regardless of the
names and sizes specified in the separate subprograms,
there is only one common block for the combined set. It has
the same relative origin; the content of the n™ word or
common storage is the same for all subprograms. An exam-
ple is shown in figure 4-6.

The LDA instructions in the two subprograms each refer to
the same location in common storage, location 7.

4-5

Pseudo Instructions

PROG1 COM ADDR1(5),ADDR2(10),ADDR3(10)

LDA ADDR2+1 PICK UP SECOND WORD OF SEGMENT
ADDR2+1

END
PROG2 COM AAA(2),AAB(2),AAC,AAD(20)

LDA AAD+1 PICK UP SECOND WORD OF SEGMENT
ADD+1.

Organization of common block:

PROG1 PROG2 Common
name name Block
ADDR1 AAA (location 1)
(location 2)
AAB (location 3)
(location 4)
AAC {location b)
ADDR2 AAD (location 6)
(focation 7)
(location 8)
(location 9)
(location 10)
(location 11)

(location 12)
(location 13)
(location 14)
(location 15)
ADDR3 (location 16)
(location 17)
(location 18)
(location 19)
(location 20)
(location 21)
(location 22)
(location 23)
(location 24)
(location 25)

Figure 4-6. COM Examples
46

The segment names that appear in the COM statements
can be used in the Operand fields of DEF, ABS, EQU, ENT
or any memory reference statement; they may not be used
as labels elsewhere in the program.

The loader establishes the origin of the common block; the
origin cannot be set by the ORG pseudo instruction. All
references to the common area are relocatable.

Two or more subprograms may declare common blocks that
differ in size. The subprogram that defines the largest block
must be the first submitted for loading.

4-3. PROGRAM AND SYSTEM COMMON

All common specified in an assembly language program
with the COM statement is named common which is often
called “labeled” common.

The use of system or program common is specified at load
time using the appropriate loader command.

Under RTE operating systems other than RTE-L the

generator will load those programs using common, so that
the common is system common.

Under the RTE-L operating system, by default the
generator will load those programs using common, so that
the common is program common. If the user wants to use
system common, he should use the LOD statement with
the appropriate loader command. See the section on
RTE-L PSEUDO INSTRUCTIONS and the RTE-L RE-
LOCATING LOADER REFERENCE MANUAL for
specific details on the use of the LOD instruction and
loader commands. The user can optionally specify to the
RTE-L generator that the common be system common
instead of program common.

Unlike program common, system common is shared by all
other programs on the system. This implies a great deal of
coordination. Any program that uses system common
should know how all other programs use system common.
Only in this fashion can the programmer ensure that his
data in system common will be secure. If the programmer
does not know the interaction process of other programs
who use system common, he should use program common.

Pseudo Instructions

| |
| ENT | name, [,name,,...,namep]

comments

ENT defines entry points to the program or subprogram.
Each name is a symbol that is assigned as a label for some
machine operation in the program. Entry points allow
another subprogram to refer to this subprogram. All entry
points must be defined in the program.

Symbols appearing in an ENT statement may not also
appear in an EXT statement in the same subprogram.
Labels defined as absolute by EQU statements or defined
by COM statements may be declared as entry points.

] |]
I EXT | name, [,name,,...,namey] | comments

This instruction designates labels in other subprograms
that are referenced in this subprogram. The symbols must
be defined as entry points by the other subprograms.

The symbols defined in the EXT statement may appear in
memory reference statements, certain I/O statements or
EQU or DEF pseudo instructions. An external symbol
may be used with a + or — offset or specified as indirect.
References to external locations are processed by the
loader as indirect addresses linked through the base page
or in some cases through a current page link.

Symbols appearing in EXT statements may not also ap-
pear in ENT or COM statements in the same subprogram.
The label field is ignored. Examples of the use of EXT and
ENT are shown in figures 4-7 through 4-10.

The RPL pseudo instruction is used to define a code re-
placement record for the RTE system generator or RTE
relocating loader.

| | |
label ‘ RPL | m

comments

The instructions to be replaced must be of the form = JSB
SUB where SUB is an external reference. The JSB SUB
will be replaced by the octal value of the RPL definition
whenever it is encountered by the generator or loader.
Examples are shown in figure 4-11.

4-7

Pseudo Instructions

PROGA NOP
LDA SAMD SAMD AND SAND ARE REFERENCED
. PROGA, BUT ARE ACTUALLY
LOCATIONS IN PROGB.
JMP SAND
EXT SAMD, SAND
ENT PROGA
END
PROGB NOP

SAMD OCT 767
SAND STA SAMD

ENT SAMD, SAND
JSB PROGA
EXT PROGA

END

IN

Figure 4-7. ENT/EXT Examples

EXT BUF,PTR

LDA BUF+1 EXTERNAL WITH + OR - OFFSET.
STA PTR, 1 EXTERNAL INDIRECT.

Figure 4-8. EXT with Offset

ENT CHAN, CMLBL

CHAN EQU 12B
COM CMLBL (20)

Figure 4-9. ENT in COMmon and ENT Defining
An External I/O Reference

Pseudo Instructions

ASMB,R,B, L
NAM MAIN

LYY .Y
@~ € I

DECLARE CHAN1l,CHANZ AS ENTRY POINTS

ENT CHAN1,CHAN2
EXT OUTPT, INPUT

START JSB INPUT INPUT A CHARACTER
JSB OUTPT OUTPUT TO DEVICE 2
LIA 1B READ SWITCH REGISTER
SSA IS BIT 15 ON?
HLT 55B YES, HALT
JMP START DO ANOTHER ONE

ns

s

DEFINE THE I/0 CHANNELS FOR THE DRIVERS INPUT,OUTPT BY
SETTING THE LABELS CHAN1,CHAN2 EQUIVALENT TO THE ABSOLUTE
LOCATIONS 10,11.

O fr v d

LYY

CHAN1 EQU 108
CHAN2 EQU 118B
END START

ASMB,R,B,L
NAM IOPRG

% SUBROUTINE ENTRY POINTS
ENT INPUT,OUTPT

% DECLARE I/0 CHANNELS TO BE EXTERNAL
EXT CHAN1, CHAN2

INPUT SUBROUTINE

INPUT NOP
STC CHAN1,C SET CONTROL ON CHANNEL 1
SFS CHAN1
JMP ¥-1 WALT ON FLAG
LIA CHAN1l. LOAD WORD

JMP INPUT, I RETURN
% OUTPUT SUBROUTINE
OUTPT NOP
OTA CHAN2 OUTPUT WORD
STC CHAN2,C STROBE TO DEVICE
SFS CHAN2 ,
JMP %-1
JMP OUTPT, I RETURN
END

Figure 4-10. EXT, ENT for I/O Channel

49

Pseudo Instructions

.FAD RPL 1050008
IFIX RPL 1051008B

EXT .FAD
JSB .FAD
JsSB IFIX

Figure 4-11. Label RPL Octal Value

The relocation of the program would result in the following:

165000

105100

Note that the instruction value is 105000
instead of 114XXX.

Note that the instruction value is 105100
instead of 114XXX.

4-10

4-4. ADDRESS AND SYMBOL
DEFINITION

The pseudo operations in this group assign a value, a word
address, or a byte address to a symbol which is used as an
operand elsewhere in the program.

|
I comments

label i DEF i m [,I]

The address definition statement generates one word of
memory as a 15-bit address which may be used as the object
of an indirect address found elsewhere in the source prog-
ram. The symbol appearing in the label is that which is
referenced; it appears in the Operand field of a Memory
Reference instruction.

The operand field of the DEF statement may be any posi-
tive expression in an absolute program; in a relocatable
program it may be a relocatable expression or an absolute
expression with a value of less than 2000;. Symbols that do
appear in the Operand field may appear as operands of EXT
or COM statements, in the same subprogram and as entry
points in other subprograms.

The expression in the Operand field may itself be indirect
and make reference to another DEF statement elsewhere
in the source program. Some examples are shown in figure
4-12,

The DEF statement provides the necessary flexibility to
perform address arithmetic in programs which are to be
assembled in relocatable form. Relocatable programs

Pseudo Instructions

should not modify the operand of a memory reference in-
struction. Figure 4-13 illustrates what not to do. If TBL
and LDTBL are in different pages, the Loader processes
TBL as an indirect address linked through the base page.
The ISZ erroneously increments the Loader-provided link
to the base page rather than the value of TBL. Assuming
that the loader assigns the absolute locations shown in
figure 4-14, the ISZ will index the contents of location
20003 which is a LDA 700,I, and change it to LDA 701,I.
Now we will use whatever happens to be in 701 rather
than the link we intended to use which is in 700. We
change the link instead of its contents.

LDTBL LDA TBL

ISZ LDTBL

TBL BSS 100

Figure 4-13. Example of Incorrect Address Modification

NAM PROGN
EXT SINE,SQRT

JSB SINE
LDA XCMA, I
XCMA DEF SCMA

JSB XSQ, I
XSQ DEF XSQR, I

XSQR DEF SQRT
END PROGN

ZERO-RELATIVE START OF PROGRAM.

COM SCMA(C20),SCMB(50)

EXECUTE SINE ROUTINE

PICK UP COMMON WORD INDIRECTLY.

SCMA IS A 15-BIT ADDRESS.

GET SQUARE ROOT USING TWO-LEVEL
INDIRECT ADDRESSING.

SQRT IS A 15-BIT ADDRESS.

Figure 4-12. DEF Examples

4-11

Pseudo Instructions

ABSOLUTE
LOCATION
INSTRUCTION PAGE OF CODE OPCODE
(Loader-assigned indirect
link on base page) (0) (700) DEF
LDTBL LDA TBL (1) (2000) LDA
ISZ LDTBL (1) (3000) 1SZ
TBL BSS 100 (2) (4000) BSS

OPERAND
(PAGE) &
LOCATION

4000

(0) 700 (1)

(1) 2000

Figure 4-14. Loader-Assigned Locations for Figure 4-13

The example shown in figure 4-15 assures correct address
modification during program execution. Assume that the
sequence shown in figure 4-15 is assigned (by the loader)
the absolute locations shown in figure 4-16. The LDA
2000,I picks up the contents of the location pointed to by
ITBL (location 40004). The ISZ 2000 indexes the pointer
DEF 4000 to point to 4001. The next LDA will reference
location 4001, DEF TBL+1. This is what we intend.

label ABS m comments

ABS defines a 16-bit absolute value to be stored at the
location represented by the label. The Operand field, m,
may be any absolute expression; a single symbol must be
defined as absolute elsewhere in the program. Examples

ITBL DEF TBL
LDTBL LDA ITBL,I

ISZ ITBL

TBL BSS 100

are shown in figure 4-17. Figure 4-15. Example of Correct Address Modification

ABSOLUTE OPERAND
LOCATION (PAGE) &
INSTRUCTION PAGE OF CODE OPCODE LOCATION
ITBL DEF TBL (1) (2000) DEF 4000
LDA ITBL,I (1 (2001) LDA (1) 2000,I
ISZ ITBL (1) (3000) ISZ (1} 2000
TBL BSS 100 (2) 4000 BSS

4-12

Figure 4-16. Loader-Assigned Locations for Figure 4-15

AB EQU 35 ASSIGNS THE VALUE OF 35

TO THE SYMBOL AB

M35 ABS -AB M35 CONTAINS -35.
P35 ABS AB P35 CONTAINS 35.
P70 ABS AB+AB P70 CONTAINS 70.
P30 ABS ABS5 P30 CONTAINS 30.
P36 ABS 36 P36 CONTAINS 36.

Figure 4-17. ABS Examples

(] [l Il
label l EQU ‘ m l comments
The EQU pseudo operation assigns to a symbol a value
other than the one normally assigned by the program
location counter. The symbol in the Label field is assigned
the value represented by the Operand field. The Operand
field may contain any expression. The value of the
operand may be common, base page or program relocat-
able as well as absolute, but it should not be negative.
Symbols appearing in the operand must be previously
defined in the source program.

The EQU instruction may be used to symbolically equate
two locations in memory, or it may be used to give a value to
a symbol. The EQU statement does not result in a machine
instruction. Some examples are shown in figures 4-18 and
4-19.

Pseudo Instructions

label DBL m comments

label DBR m comments

Define Left Byte and Define Right Byte. The DBL and
DBR pseudo instructions each generate one word of mem-
ory which contains a 16-bit byte address. For DBL, the
byte address being defined is the left half (bits 8-15) of
word location m; for DBR, it is the right half (bits 0-7).
Indirect addressing may not be used. A byte address is
defined as two times the word address of the memory
location containing the particular byte. If the byte location
is the left half of the memory location (bits 8-15), bit 0 of
the byte address is clear; if the byte location is the right
half of the memory lcoation (bits 0-7), bit 0 of the byte
address is set. In an absolute program, m may be any
positive expression. In a relocatable program, m may be
any absolute expression with a value less than 2004 or any -
relocatable expression. The generated word may be refer-
enced (via label) in the Operand field of LDA and LDB
instructions elsewhere in the source program for the pur-
pose of loading byte addresses into the A- and B-registers.

CAUTION

Care must be taken when using the label
of a DBL or DBR pseudo instruction as an
indirect address elsewhere in the source
program. The programmer must keep
track of whether he is using word addres-
ses or byte addresses.

NAM FAM

J3 BSS 2

MWH AND JFOUR

SED ASIDE Twd sNORPNDS FOR STORAGE:

LDA J3
ADA ONE
STA J3+1
JFOUR EQU J3+1 THE SYMBOLS JFOUR AND J3+1 BOTH IDENTIFY
. THE SAME LOCATION. THE '"AND'" OPERATION
. IS PERFORMED ON THIS LOCATION.

Figure 4-18. EQU Example

4-13

Pseudo Instructions

NAM STOTB

TABLB EQU TABLA+5

LDA TABLB+1

COM TABLA(C10) DEFINES A 10 WORD TABLE, TABLA.

NAMES WORDS 6 THROUGH 10 OF
. TABLA AS TABLB.

LOADS CONTENTS OF 7TH WORD

. COMMON INTO A. THE STATEMENT LDA
. TABLA+6 WOULD PERFORM THE SAME
. OPERATION
NAM REG
A EQU 0 DEFINES SYMBOL A AS 0 (LOCATION
B EQU 1 OF A-REGISTERD), AND SYMBOL B AS
1 (LOCATION OF B-REGISTER).
LDA B LOADS CONTENTS OF B-REGISTER

INTO A-REGISTER.

Figure 4-19. EQU Examples

Examples:
BYT1 DBL WORD1
BYT2 DBR WORD1

WORD1 NOP

If WORD1 has the relocatable address 2002,, then BYT1
will contain the relocatable value 4004; and BYT2 will
contain the relocatable value 4005;.

4-5. CONSTANT DEFINITION

The pseudo instructions in this class enter a string of one or
more constant values into consecutive words of the object
program. The statements may be named by labels so that
other program statements can refer to the fields generated
by them.

[l i

label l ASC l n, <2n characters> comments
ASC generates a string of 2n alphanumeric characters in
ASCII code into n consecutive words.t One character is
right justified in each eight bits; the most significant bit is
zero. n may be any expression resulting in an unsigned
decimal value in the range 1 through 28. Symbols used in
an expression must be previously defined. Anything in the
Operand field following 2n characters is treated as com-
ments. If less than 2n characters are detected before the
end-of-statement mark, the remaining characters are as-
sumed to be spaces, and are stored as such. The label rep-
resents the address of the first two characters. An example
is shown in figure 4-20.

i i
label | DEC I d,[.dy,...dy] | comments
DEC records a string of decimal constants into consecutive
words. The constants may be either integer or real (floating
point), and positive or negative. If no sign is specified,
positive is assumed. The decimal number is converted to its

1To enter the code for the ASCII symbols which perform some action (e.g., CR and LF), the OCT pseudo instruction must be used.

4-14

Pseudo Instructions

TTYP ASC 3,ABCDE

causes the following:

NOTE

Columns 7 and 15 below
will contain zeros.

ALPHABETIC
15 14 8 7 6 0
TTYP / A B
Z Z
= c = D
= =
= =
% E % (space)
EQUIVALENT IN OCTAL NOTATION
15 14 87 6 0
TTYP 10 1 E4 1 0 2
2 2
Z 1 0 3 Z 1 0 4
Z Z
=z 1 0 &5 4 0 4 0

Figure 4-20. ASC Example

binary equivalent by the Assembler. The label, if given,
serves as the address of the first word occupied by the
constant.

A decimal integer must be in the range of —2'5to 2* —1. It
is converted into one binary word and appears as follows:

15 14 0
SIGN-»{ s | number Bl

Some examples are shown in figure 4-21.

A floating point number has two components, a fraction
and an exponent. The exponent specifies the power of 10 by
which the fraction is multiplied. The fraction is a signed or
unsigned number which may be written with or without a
decimal point. The exponent is indicated by the letter E and
follows a signed or unsigned decimal integer. The floating
point number may have any of the following formats:

The number is converted to binary, normalized (leading
bits differ), and stored in two computer words. If either the
fraction or the exponent is negative, that part is stored in
two’s complement form.

15 14 0
Word 1 s

fraction (most significant bits)

binary point

sign of fraction

15 8 7 10

Word 2 fraction

exponent S

sign of exponent—J

4-15

Pseudo Instructions

INT

DEC 50,+328,-300,+32768,-32768

causes the following (octal representation)

Note:

INT

15 14 0
0 0 0 6 2
0 0 5 1 0
1 7 3 2 4
1 0 0 0 0
1 0 0 0 0

The values +2'5 (+32768) are both converted to 1000005 .

Figure 4-21. DEC Examples (Integer)

DEC .45E1
DEC 45.00E-1
DEC 4500E-3
DEC 4.5

are all equivalent to

45x10*

and are stored in normalized form as:

15 14

0

0j[t0010000000GO0O0O00O0

15 8

7 1

0

0000O0OO0CBCOO

0000011

0

DEC -.695,400E-4

are stored as:

1101 0011100001010

0011

1011

00000O00O

0

600117T1101011

1000

0101

1111100

1

4-16

Figure 4-22. DEC Examples (Floating Point)

Figure 4-23. DEC Examples (Floating Point)

The floating point number is made up of a 7-bit exponent
with sign and a 23-bit fraction with sign. The number
must be in the approximate range of 10738 to 10+%, Exam-
ples are shown in figures 4-22 and 4-23.

Pseudo Instructions

A four-word extended precision floating point number is
made up of a 55-bit fraction and sign and a 7-bit exponent
and sign.

This storage format is basically an extension of that used
for DEX, as previously defined.

label | DEX | d,[,d;,..dp] | comments
DEX records a string of extended precision ‘decimal con-
stants into coqsgcutive words with.in a program. Each such Word 1 r Sm I Fraction - I
extended precision constant occupies three words as shown
in figure 4-24. 15 14 °
An extended precision floating point number is made up of Word 2 | >_|
a 39-bit fraction and sign and a 7-bit exponent and sign. 15 0
This is the only form used for DEX. All values, whether Word 3 L >]
they be floating point, integer, fraction, or integer and
fraction, will be stored in three words as just described. This 15 0
storage format is basically an extension of that used for —
DEC, as previously described. Some examples are shown in Word 4 [>| Exponent | |
figure 4-25. 15 7 8 1.0
Legend: Sm = Sign of the fraction
Se = Sign of the exponent
Word 1 rSmI Fraction > |
15 14 0 Figure 4-24A. DEY Memory Format
Word 2 [;l
15 0 | , ,
Word 3 [- I Exponent l o l label | OCT I oy [,03,..,0] comments
15 7 8 1 0
Legend: Sm = Sign of the fraction OCT stores one or more octal constants in consecutive
Se = Sign of the exponent words of the object program. Each constant consists of one
to six octal digits (0 to 177777). If no sign is given, the sign is

Figure 4-24. DEX Memory Format

l l |
DEY I d1; [,dzy-"sdn]

label comments

DEY records a string of extended precision decimal con-
stants into consecutive words within a program. Each
such extended precision constant occupies four words as
shown in Figure 4-24A.

assumed to be positive. If the sign is negative, the two’s
complement of the binary equivalent is stored. The con-
stants are separated by commas; the last constant is termi-

nated by a space. If less than six digits are indicated for a
constant, the number is right justified in the word. A label,
if used, acts as the address of the first constant in the string.
The letter B must not be used after the constant in the
Operand field; it is significant only when defining an octal
term in an instruction other than OCT. Some examples are
shown in figure 4-26.

DEX 12,-.45
are stored as:
WORD 1 WORD 2 WORD 3
0110000000000000 0000000000000000 0000000000001000
WORD 1 WORD 2 WORD 3
1000110011001100 1100110011001100 1001101111111111

Figure 4-25. DEX Examples

Pseudo Instructions

OCT +0
OCT -2

NUM OCT 177,20405,-36

oct 51,77777,-1,10101

OCT 107642,177077

OCT 1976 ILLEGAL:
OCT -177777

OCT 1778B ILLEGAL

The above statements are stored as follows:

15 14
0 0 0 0] 0 0
1 7 7 7 7 6
NUM 0] 0 0 1 7 7
0 2 0] 4 0 5
1 7 7 7 4 2
0 0 0 0 5 1
0 7 7 7 7 7
1 7 7 7 7 7
0 1 0] 1 0 1
1 0 7 6 4 2
1 7 7 0 7 7
X X X X X X
0 0 0 0 0 1
X X X X X X

CONTAINS DIGIT 9

CONTAINS CHARACTER B

T The result of attempting to

define an illegal constant is
unpredictable

4-18

Figure 4-26. OCT Examples

Pseudo Instructions

label I BYT I by,bg, ... by comments

Define Octal Byte constants. The BYT pseudo instruction
generates octal constants in consecutive byte locations of
memory. Each constant in the Operand field (b;,b,, ... b,)
consists of one to three octal digits, must be within the
range 0 through 377, and may be preceded by a plus (+) or
minus (—) sign. If a constant is not signed, it is assumed to
be positive. If a constant is negative, the two’s complement
of the binary equivalent (truncated to eight bits) is stored.
If the Operand field contains an odd number of constants,
bits 0-7 of the final word generated will be clear (zeros).
Since the constants are assumed to be octal, the letter “B”
must not be used. Some examples are shown in
figure 4-27.

4-6. STORAGE ALLOCATION

The storage allocation statements reserve a block of mem-
ory for data or for a work area.

| | |
label I BSS | m

comments

The BSS pseudo operation advances the program or base
page location counter according to the value of the
operand. The Operand field may contain any expression
that results in a positive integer. Symbols, if used, must be
previously defined in the program. The label, if given, is
the name assigned to the storage area and represents the
address of the first word. The initial content of the area set
aside by the statement is unaltered by the loader.

label l EMA ‘ m,,m, ' ‘comments

The EMA pseudo-instruction defines an extended memory
area (EMA) where m, is the EMA size in pages and m; is
the mapping segment (MSEG) size in pages. m, and m,
must be expressions that evaluate to non-relocatable inte-
gers. m; must be in the range 0 to 1023 inclusive and m,
must be in the range 0 to 31 inclusive. If m, evaluates to 0
the maximum possible size for EMA will be assigned at
dispatch time. If m, evaluates to 0 the maximum possible
size for MSEG will be assigned at load time.

The EMA pseudo-instruction may only be used in a re-
locatable program. Only one EMA pseudo-instruction per
program is allowed.

An EMA pseudo-instruction must have a label which is
the name assigned to the storage area. This label repre-
sents the logical address of the first word in the MSEG and
is determined at load time. EMA labels may appear in
memory reference statements, and in EQU or DEF
pseudo-instructions.

References to EMA labels are processed as indirect ad-
dresses through a base page link at load time. EMA labels
may be referenced in other subprograms or segments by
declaring them as externals in the other subprograms or
segments. They should not be declared as entry points in
the program in which they appear.

The following restrictions apply to the use of EMA labels:
1. EMA labels may not be used with an offset.
2. EMA labels may not be used with indirect.

3. EMA labels may not appear in an ENT or COM
statement in the same subprogram.

ALF BYT 50,377,-10,2,-312

causes the following (octal representation):

15 14 0
ALF 0 2 3 7 7

1 7 0 0 2

0 3 0 o |. o

Figure 4-27. BYT Examples

419

Pseudo Insttﬁctions

The following example illustrates the use of a forty page
EMA that has a five page MSEG. In the example, the
main program calls MMAP to map the third MSEG into
its logical address space. Then it stores the value at the
start of the third MSEG into the 1028th word of the third
MSEG. Then it calls a subroutine to process that element.
The subroutine loads the value into the B-register to pro-
cess it, and then returns to the calling program. Refer to
Figure 4-28 for a pictorial explanation of the elements
that are being addressed. \ ' ;

NAM EMAPR,3

EXT EMASB

EXT MMAP
EMALB EMA 40,5 40 pages of EMA, 5 pages per MSEG
ADEMA DEF EMALB
D1027 DEC 1027

* CALL MMAP TO MAP THIRD MSEG INTO PRO-
GRAMS LOGICAL ADDRESS SPACE

EMAPR JSB MMAP

DEF RTN .
DEF IPGS Offeet in pages of MSEG being mapped
DEF NPGS ; Number of pages in MSEG

* STORE FIRST WORD OF THIRD MSEG INTO 1028TH
WORD OF THIRD MSEG

RTN LDA EMALD Firet word of MSEG referenced

directly
LDB ADEMA Use B-Reg to reference 1028th word
of MSEG ;
RBL,CLE ,SLB,ERB Resolve one indirect
LDB 11
ADB D1027 ‘
STA 11 Store A-Reg into 1028th word of

current MSEG

* JSB PASSING OFFSET ADDRESS TO SUBROUTINE

JSB EMASB
DEF D1027

.

Pass offset addrese as parameter

-

DEC 10
DEC 5

NAM EMASB,7

ENT EMASB

EXT EMALB
ADEMA DEF EMALB

IPGS
NPGS

External subroutines and seg
declare EMA as an external

* SUBROUTINE ENTRY POINT IS HERE, A-REG IS
USED TO COMPUTE ADDRESS

LDB ADEMA
RBL,CLE,SLB,ERB
LDB 1,1
ADA 1 Add in address of current MSEG start
LDB 0,1 Load 1028th word of current MSEG
. into B-Reg
ISZ EMASB
JMP EMASB,I Return io caller
END
A
< <
3 p3
5
S P .
offset passed
——— e [4€-10 SUbroutine.
40 ain program
‘ paggs stores this word
——] into 1028th word
of this MSEG.
5 L& N N N
5 A SIS AR SIS SE—

Logical Memory

EMASB NOP
LDA EMASB,I ' Ge address of offser
LDA 0, Get offset value

4-20

Figure 4-28. EMA Logical Memory for Example Program

4-7. RTE-L PSEUDO INSTRUCTIONS

The Assembler recognizes two new pseudo instructions for
use in the RTE-L operating system. Under RTE-IV opera-
ting systems the information records that are produced by
these two pseudo-instructions are ignored by the RTE-IV
loader and generator.

Two useful pseudo instructions are available to aid in the
loading and generation process of RTE-L programs and
systems. The LOD pseudo instruction allows the pro-
grammer to specify LOADR instructions at the program
code level rather than at load time.

The GEN pseudo instruction can help simplify RTE-L
system generations. With the GEN record the user can set
up interface and device driver defaults into the program
(i.e. driver) code which are then put into files and can be
accessed by the generator. This process simplifies the pre-
paration for generation by relieving the need of getting
and specifying all of the parameters needed for the Inter-
face Table (IFT) and Device Tables (DVT).

The use of LOD and GEN pseudo instructions does not
directly affect the size of a relocatable program or driver.
They occupy no code space.

4-8. LOD STATEMENT
| | |

label I LOD In,<ASCII Loader Command>|comments

LOD passes to the RTE-L loader the specified LOADR
command. The first operand, n specifies the number of
words occupied by the second operand. One character is
right justified in each eight bits; the most significant bit is
zero. n may be any expression resulting in an unsigned
decimal value in the range 1 through 28. Symbols used in
an expression must be previously defined. Anything in the
operand field following 2n characters is treated as com-
ments. If an odd number of characters is present or less
than 2n characters are detected before the end of the
operand field, the remaining characters are assumed to be
spaces, and are stored as such. Examples are shown in
Figure 4-29. :

The LOD command enables the user to programmatically
give commands to LOADR. For example a Real-Time pro-
gram is to be loaded with a priority of 10, containing 3
segments, and the user wants to minimize Base Page
links. A typical LOADR scenario might look like the fol-
lowing: (user responses are underlined).

RU,LOADR
LOADR: RTIME
LOADR: PRIORITY,10
LOADR: SGMENTS,3
LOADR: CPAGE
LOADR: RE,XEXMPL

LOADR: END

If this program is to be loaded in the same fashion
EVERYTIME, then the user may wish to “hard-code” the
LOADR commands into his program with the LOD com-
mand. See Figure 4-29 for examples. After coding in the

Pseudo Instructions

LOADR command the user has only to do the following to
accomplish the same tasks that were previously done
interactively.

RU,LOADR, , XEXMPL

See the RTE-LL RELOCATING LOADER REFERENCE
MANUAL for specific details on LOADR commands.

ASMB,L,C
NAM EXMPL
LOD 3,RTIME
LOD 6,PRIORITY,10
LOD 5,5GMENTS,3
LOD 3,CPAGE

Figure 4-29. LOD Pseudo-Instruction Example

49. GEN STATEMENT
I | |

label I GEN | n,<<ASCII Driver Defaults>| comments

GEN passes interface or device driver default parameters

-to the generator to be used in the process of system gener-

ation. The first operand, n specifies the number of words
filled by the second operand. One character is right jus-
tified in each eight bits; the most significant bit is zero. n
may be any expression resulting in an unsigned decimal
value in the range 1 through 28. Symbols used in an
expression must be previously defined. Anything in the
operand field following 2n characters is treated as com-
ments. If an odd number of characters, is present or less
than 2n characters are detected before the end of the
operand field, the remaining characters are assumed to be
spaces, and are stored as such. Examples are shown in
Figure 4-30.

The GEN statement simplifies the process of DVT and IFT
inputs to the generator. If the user is writing his own
interface or device driver, in the actual driver code, de-
faults such as time outs, table extensions, device ad-
dresses, etc., can be directly specified via the GEN record.
This process can simplify answer file preparation. See the
RTE-L SYSTEM DESIGN manual for additional informa-
tion on the use of the GEN statement.

From Driver: DD.30

Define Device Table Defaults for Discs
GEN 9,EDD.30,TX:25,DX:8

* 7902 Defaults (2 LUs)
GEN 11,M7902:0,T0:500,DT:30B
GEN 13,DP:2:0:0:0:3:134:DP:7:30:2

GEN 11,M7902:1,T0:500,DT:30B
GEN13,DP:2:1:0:0:3:134,DP:7:30:2

#+ 7906 Defaults (4 LUs)
GEN 11,M7906:0,DT:32B,T0:1100
GEN 13,DP:2:0:0:0:5:406,DP:7:48:1

Figure 4-30. GEN Examples
421

Pseudo Instructions

4-10. ASSEMBLY LISTING CONTROL

Assembly listing control pseudo instructions allow the
user to control the assembly listing Output during pass 2
of the assembly process.

| UNL

1
| comments

List output is suppressed from the assembly listing, begin-
ning with the UNL pseudo instruction and continuing for
all instructions and comments until either an LST or END
pseudo instruction is encountered. Diagnostic messages for
errors encountered by the Assembler will be printed, how-
ever. The source statement sequence numbers (printed in
columns 1-4 of the source program listing) are incremented
for the instructions skipped.

i LST icomments

The LST pseudo instruction causes the source program
listing, terminated by a UNL, to be resumed.

A UNL following a UNL, an LST following an LST, and an
LST not preceded by a UNL are not considered errors by the
Assembler.

SUP comments

The SUP pseudo instruction suppresses the output of addi-
tional code lines from the source program listing. Certain
machine and pseudo instructions generate more than one
line of coding. These additional code lines are suppressed by
an SUP instruction until a UNS or the END pseudo in-
struction is encountered. SUP will suppress additional code
lines in the following machine and pseudo instructions:

ADX DJS LAY MLB SBY
ADY DLD LBX MPY SJP
ASC DST LBY MSA SJS
BYT FAD LDX MSB STX
CBS FDV LDY MVW STY
CBT FMP MBT OCT TBS
CMW FSB MCA SAX UJP
DEC JLY MCB SAY uJs
DIV JPY MDB SBS XMM
DJP LAX MLA SBX XMS

The SUP pseudo instruction may be used to suppress the
listing of literals at the end of the source program listing

4-22

and also to suppress the printing of offset values for mem-
ory reference instructions which refer to external symbols
with offsets.

! 1
| UNS I comments

The UNS pseudo instruction causes the printing of addi-
tional coding lines, terminated by an SUP,to be resumed.

An SUP preceded by another SUP, UNS preceded by UNS,
or UNS not preceded by an SUP are not considered errors
by the Assembler.

i SKP i comments

The SKP pseudo instruction causes the source program
listing to be skipped to the top of the next page. The SKP
instruction is not listed, but the source statement sequence
number is incremented for the SKP.

(] []
Ispc|n

The SPC pseudo instruction causes the source program
listing to be skipped a specified number of lines. The list
output is skipped n lines, or to the bottom of the page,
whichever occurs first. The n may be any absolute expres-
sion. The SPC instruction is not listed but the source state-
ment sequence number is incremented for the SPC.

i HED | <heading>

The HED pseudo instruction allows the programmer to

-specify a heading to be printed at the top of each page of

the source program listing. This header is printed in addi-
tion to the standard header printed by the Assembler.

The heading, a string of up to 56 ASCII characters, is
printed at the top of each of the source program listings
following the occurrence of the HED pseudo instruction. If
HED is the first statement at the beginning of a program,
the heading will be used on the first page of the source
program listing. A HED instruction placed elsewhere in
the program causes a skip to the top of the next page.

The heading specified in the HED pseudo instruction will
be used on every page until it is changed by a succeeding
HED instruction.

The source statement containing the HED will not be
listed, but the source statement sequence number will be
incremented.

4-11. ARITHMETIC SUBROUTINE

CALLS

If an X appears in the control statement for the source
program, the Assembler generates calls to arithmetic sub-
routines external to the source program for the following
instructions: MPY, DIV, DLD, and DST. The instruction
formats and functions are as described in paragraph 3-17 of
Section III in this manual.

If an F does not appear in the control statement for the
source program, the Assembler generates calls to arithme-
tic subroutines external to the source program for the fol-
lowing instructions: FMP, FDV, FAD, and FSB. The in-
struction formats and functions are as described in parag-
raph 3-18 of Section III in this manual.

Each use of a statement from this group except FIX and
FLT generates two words of instructions. Symbolically,
they could be represented as follows:

JSB <.arithmetic pseudo operation>
DEF m [I]

An EXT <.arithmetic pseudo operation> isimplied preced-
ing the JSB operation.

In the above operations, the overflow bit is set when one of
the following conditions occurs:

o Integer overflow
o Floating point overflow or underflow

e Division by zero.

Execution of any of the subroutines alter the contents of the
E-Register.

4-12. DEFINE USER INSTRUCTION

! l 1
I MIC I opcode,fcode,pnum | comments

This pseudo instruction provides the user the capability of
defining his own instructions. opcode is a three-character
alphabetic mnemonic, fcode is an instruction code, and
pnum declares how many (0-7) parameter addresses are to
be associated with the newly-defined instruction. Both
fcode and pnum may be expressions which generate an
absolute result. A user-defined instruction must not appear
in the source program prior to the MIC pseudo instruction
which defines it. When the user-defined mnemonic is used
later in the source program, the specified number of
parameter addresses (pnum) are supplied in the Operand
field of the user-defined instruction separated from one

Pseudo Instructions

another by spaces. The parameter addresses may be any
addressable values, relocatable and/or indirect. The pa-
rameters may not be literals.

Note: All three operands (opcode, fcode, and
pnum) must be supplied in the MIC
pseudo instruction in order for the
specified instruction to be defined. If
pnum is zero, it must be expressly de-

clared as such (not omitted).

“JUMP TO MICROPROGRAM”
(HP 1000 M, E, F-SERIES ONLY)

4-13.

The MIC pseudo instruction is primarily intended to facili-
tate the passing of control from an assembly language
program to a user’s microprogram residing in Read-Only-
Memory (ROM) or Writable Control Store (WCS). Ordinar-
ily, to do this the user must include an OCT 101xxx or OCT
105xxx statement (where xxx is 140 through 737) at the
point in the source program where the jump is to occur. If
parameters are to be passed, they are usually defined as
constants (via OCT or DEF statements) immediately fol-
lowing the OCT 105xxx statement. With the MIC pseudo
instruction, the user can define a source language instruc-
tion which passes control and a series of parameter addres-
ses to a microprogram. If it is desired to pass additional
parameters to a microprogram beyond those pointed to by
the user-defined instruction, they must be defined as con-
stants (via OCT or DEF statements) immediately following
each use of the user-defined instruction.

4-14. EXAMPLE. Assume that the first two param-
eters to be passed from the assembly language program to
the user’s microprogram reside in the memory locations
PARM1 and PARM2 and that the third parameter resides
in the memory location pointed to by ADR. Also assume
that the octal code for transferring control to the particu-
lar microprogram is 105240,.

The following statement defines a source language in-
struction which passes control and three parameter ad-
dresses to the microprogram:

MIC ABC,105240B,3

Whenever it is desired to pass control from the assembly
language program to the microprogram, the following
user-defined instruction may be used in the source
program:

ABC PARM1 PARM2 ADR]I
4-23

Pseudo Instructions

4-15. COMBINING MULTIPLE
MNEMONICS

Another use of the MIC pseudo instruction is to assign a
single mnemonic to a multiple instruction (shift-rotate or
alter-skip) statement.

4-16. EXAMPLE. Instead of using the source
statement:

ALR,CLE,SLA,RAL

the user may define a single mnemonic as follows:

MIC XYZ,01472B,0

where 01472B is the octal instruction code for the four-
mnemonic statement shown above. Whenever XYZ is sub-
sequently used as an instruction mnemonic in the source
program, it is the equivalent of using the source
statement:

ALR,CLE,SLA,RAL

4-17. DEFINING CONSTANTS

The MIC pseudo instruction may also be used for defining
constants (opcode = mnemonic, fcode = constant, and
pnum = 0). Whenever the defined mnemonic is used as an
instruction mnemonic in the source program the Assem-
bler automatically replaces it with the specified constant.

4-24

4-18. EXAMPLE. The following statement defines
the constant 10,, and assigns it the mnemonic TEN:

MIC TEN,10,0

Whenever TEN appears as an instruction mnemonic later
in the source program, the value 10, is automatically
inserted in that location by the Assembler.

4-19. ALTERNATE MICROCODE
REFERENCE INSTRUCTION
(21MX Series and 2100 Only)

| I |
I RAM| m | comments

An alternate but somewhat restricted way to access mi-
croprogrammed functions from the Assembler language is
by employing the RAM (Random Access Memory) pseudo-
instruction. The RAM pseudo-instruction will generate an
executable machine instruction which when executed will
cause a jump to microcode. The high order bits of the
instruction will be 105 octal and the low order bits will be
the octal value of m. m must evaluate to an absolute
expression in the range 0 to 377 octal.

4-20. EXAMPLE. The following lines of assembly
code:

RAM BI16
B16 EQU 16B

will generate this octal object code:

105016

HP CHARACTER SET FOR
COMPUTER SYSTEMS

APPENDIX

A

9206- 1A

Effect of Control key * L
TN

|«— 0000378 —>|<— 040-077B ——»|<—— 100-137B —#-|4—140-1778 —|

b'bﬁbs o00 001 o10 o11 100 o, "1 i,
BITS COLUMN
y 0 1 2 3 4 5 6 7
bg by by by| ROW y
olofo]o 0 NUL | DLE sP 0 @ P p
ojofo]1 1 SOH DC1 ! 1 A o} a q
ojof1]o0 2 STX DC2 " 2 B R b r
olof1]1 3 ETX DC3 # 3 c S c 5
o|1]/ofo 4 EOT | Dc4 $ 4 D T d t
ol1]of1 5 ENQ | NAK % 5 E U e u
oj{1]1]0 6 ACK | SYN & 6 F v f v
of1]1]1 7 BEL ETB ! 7 G W g w
1/olo0]o0 8 BS CAN (8 H X h x
1001 9 HT EM) 9 | Y i y
1lo/1]0 10 LF suB * J z j z
1{o1]1 1 VT ESC + ; K [k {
101]0]0 12 FF FS , < L \ I !
1[1]o]1 13 CR GS _ = M] m }
1]1]1]0 14 so RS) > N A n ~
111101 15 sl us / ? o) _ o DEL
32 CONTROL)
Ui
<«—— 64 CHARACTER SET ——|
<—— 96 CHARACTER SET -
- 128 CHARACTER SET >

EXAMPLE: The representation for the character “’K'’ (column 4, row 11) is.

b7 bg bg by b3 by by

BINARY 1 0 0 1 0 1 1
N e’ e e’

OCTAL 1 1 3

* Depressing the Control key while typing an upper case letter produces
the corresponding control code on most terminals. For example,
Control-H is a backspace.

¢V

HEWLETT-PACKARD CHARACTER SET FOR COMPUTER SYSTEMS

This table shows HP's implementation of ANS X3.4-1968 (USASCII) and ANS X3.32-1973. Some devices may substitute alternate
characters from those shown in this chart (for example, Line Drawing Set or Scandanavian font). Consult the manual for your device.

The left and right byte columns show the octal patterns in a 16 bit word when the character occupies bits 8 to 14 (left byte) or 0 to 6 (right
byte) and the rest of the bits are zero. To find the pattem of two characters in the same word, add the two values. For example, “AB”

produces the octal pattern 040502. (The parity bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are character codes.

Octal Values Octal Values
PValue (;raphiu:1 Meaning Ds:::::' Character Meaning
Left Byte Right Byte Leit Byte Right Byte
0 000000 000000 NUL] Null 32 020000 000040 Space, Blank
1 000400 000001 SOH 5 Start of Heading 33 020400 000041 ! Exclamation Point
2 001000 000002 STX % Start of Text 34 021000 000042 ” Quotation Mark
3 001400 000003 EXT & End of Text 35 021400 000043 # Number Sign, Pound Sign
4 002000 000004 EOT & End of Transmission 36 022000 000044 $ Dollar Sign
5 002400 000005 ENQ & Enquiry 37 022400 000045 % Percent
6 003000 000006 ACK % Acknowledge 38 023000 000046 & Ampersand, And Sign
7 003400 000007 BEL Bell, Attention Signal 39 023400 000047 ! Apostrophe, Acute Accent
8 004000 000010 BS % Backspace 40 024000 000050 (Left (opening) Parenthesis
9 004400 000011 HT H Horizontal Tabulation 41 024400 000051) Right (closing) Parenthesis
10 005000 000012 LF Le Line Feed 42 025000 000052 * Asterisk, Star
1 005400 000013 vT Y Vertical Tabulation 43 025400 000053 + Plus
12 006000 000014 FF e Form Feed 44 026000 000054 y Comma, Cedilla
13 006400 000015 CR % Carriage Return 45 026400 000055 - Hyphen, Minus, Dash
14 007000 000016 e} % Shift Out } él;?r"ait& 46 027000 000056 . Period, Decimal Point
15 007400 000017 sl 5 Shift In Set 47 027400 000057 / Slash, Slant
16 010000 000020 DLE 9 Data Link Escape 48 030000 000060 0
17 010400 000021 DC1 Dy Device Control 1 (X-ON) 49 030400 000061 1
18 011000 000022 DC2 L Device Control 2 (TAPE) 50 031000 000062 2
19 011400 000023 DC3 L Device Control 3 (X-OFF) 51 031400 000063 3
20 012000 000024 DC4 % Device Control 4 (TAPE) 52 032000 000064 4
21 012400 000025 NAK % Negative Acknowledge 53 032400 000065 5 Digits, Numbers
22 013000 000026 SYN % Synchronous Idle 54 033000 000066 6
23 013400 000027 ETB B End of Transmission Block 55 033400 000067 7
24 014000 000030 CAN S Cancet 56 034000 000070 8
25 014400 000031 EM 1Y End of Medium 57 034400 000071
26 015000 000032 SuB] Substitute 58 035000 000072 Colon
27 015400 000033 ESC f Escape? 59 035400 000073) Semicolon
28 016000 000034 FS f5 File Separator 60 036000 000074 < Less Than
29 016400 000035 GS % Group Separator 61 036400 000075 = Equals
30 017000 000036 RS % Record Separator 62 037000 000076 > Greater Than
31 017400 000037 us % Unit Separator 63 037400 000077 ? Question Mark
127 077400 000177 DEL % Delete, Rubout?

9206-1B

195 10308IRYD JH

Octal Values Octal Values
Decim: . Character Meaning Decimal Character Meaning
Left Byte Right Byte Left Byte Right Byte
64 040000 000100 @ Commercial At 96 060000 000140 \ Grave Accent®
65 040400 000101 A 1 97 060400 000141 a \
66 041000 000102 B 98 061000 000142 b
67 041400 000103 C 99 061400 000143 [
68 042000 000104 D 100 062000 000144 d
69 042400 000105 E 101 062400 000145 e
70 043000 000106 F 102 063000 000146 f
71 043400 000107 G 103 063400 000147 g
72 044000 000110 H 104 064000 000150 h
73 044400 000111 1 105 064400 000151 i
74 045000 000112 J 106 065000 000152 i
75 045400 000113 K 107 065400 000153 k
76 046000 000114 L 108 066000 000154 |
77 046400 000115 M 109 066400 000155 m
Upper Case Alphabet,
78 047000 000116 N \ . 110 067000 000156 n Lower Case Letters®
79 047400 000117) Capital Letters 1M1 067400 000157 o r
80 050000 000120 P 112 070000 000160 p
81 050400 000121 Q 113 070400 000161 q
82 051000 000122 R 114 071000 000162 r
83 051400 000123 S 115 071400 000163 s
84 052000 000124 T 116 072000 000164 t
85 052400 000125 U 117 072400 000165 u
86 053000 000126 A 118 073000 000166 v
87 053400 000127 w 119 073400 000167 w
88 054000 000130 X 120 074000 000170 X
89 054400 000131 Y 121 074400 000171 y
20 055000 000132 z / 122 075000 000172 z y,
91 055400 000133 [Left (opening) Bracket 123 075400 000173 { Left (opening) Braces
92 056000 000134 AN Backslash, Reverse Slant 124 076000 000174 | Vertical Lines
93 056400 000135] Right (closing) Bracket 125 076400 000175 > Right (closing) Braces
94 057000 000136 Al Caret, Circumflex; Up Arrow* 126 077000 000176 ~ Tilde, Overiines
95 057400 000137 _« Underline; Back Arrow*
Notes: 1This is the standard display representation. The software and hardware in your system determine if the control code is
displayed, executed, or ignored. Some devices display all control codes as ||, “@", or space.
2Escape is the first character of a special control sequence. For example, ESC followed by “J” clears the display on a 2640
terminal.
3Delete may be displayed as “__", “@", or space.
“Normally, the caret and underline are displayed. Some devices substitute the up arrow and back arrow.
9206- 1C 5Some devices upshift lower case letters and symbols (\ through ~) to the corresponding upper case character (@

through A). For example, the left brace would be converted to a left bracket.

39§ 1990018YD) gH

HP Character Set

HP 7970B BCD-ASCil CONVERSION

ASCII ASCII
BCD EQUIVALENT BCD EQUIVALENT
SYMBOL (OCTAL CODE) (OCTAL CODE) SYMBOL (OCTAL CODE) (OCTAL CODE)

(space) 20 040 @ 14 100
! 52 041 A 61 101
" 37 042 B 62 102
13 043 C 63 103
$ 53 044 D 64 104
% 57 045 E 65 105
& T 046 F 66 106
’ 35 047 G 67 107
(34 050 H 70 110
) 74 051 | 71 111
* b4 052 J 41 112
+ 60 053 K 42 113
. 33 054 L 43 114
- 40 055 M 44 115
73 056 N 45 116

/ 21 057 (0] 46 117
0 12 060 P 47 120
1 01 061 Q 50 121
2 02 062 R 51 122
3 03 063 S 22 123
4 04 064 T 23 124
5 05 065 U 24 125
6 06 066 \% 25 126
7 07 067 w 26 127
8 10 070 X 27 130
9 11 071 Y 30 131
15 072 4 31 132

; 56 073 { 75 133
< 76 074 \ 36 134
= 17 075] 55 135
> 16 076 t 77 136
? 72 077 < 32 137

tThe ASCII code 046 is converted to the BCD code for a space (20) when writing data onto a 7-track tape.

A4

SUMMARY OF INSTRUCTIONS

APPENDIX

Symbols

label

m

I

C
(m,m-+1)
comments

[]

{)

P
()

> W > < & >

=

w
<)

(A/B)
(AB)

sC

lit
msb
Isb

Meaning

Symbolic label, 1-5 alphanumeric characters and periods
Memory location represented by an expression
Indirect addressing indicator

Clear flag indicator

Two-word floating point value in m and m+1
Optional comments

Optional portion of field

One of set.may be selected

Program Counter

Contents of location

Logical product

Exclusive “or”

Inclusive ‘“‘or”

A-register

B-register

E-register

Bit n of A-register

Bit n of B-register

Bit positions in B- and A-register

Complement of contents of register A or B
Two-word floating point value in register A and B
Channel select code represented by an expression
Decimal constant

Octal constant

Repeat count

Integer constant

Literal value

Most significant bits

Least significant bits

NOTE: Instruction groups shaded in gray are implemented in software on L-SERIES systems.

B-1

Summary of Instructions

B-1.

B-2.

B-3.

B-4.

B-5.

B-6.

B-2

MACHINE INSTRUCTIONS

MEMORY REFERENCE

Jump and Increment-Skip

ISZ m [,I]
JMP m [,I]

JSB m [,I]

Add, Load and Store

m [I] }

apA {1

LDB

{he 1
oA {p L1] }
e)

STA m [I]

STB m {,I]

Logical

Word Processing

MVW {E’t LI }

CMW { ; L] }

(m) + 1 — m: then if (m) = 0, execute P + 2 otherwise execute P + 1
Jump to m; m—>P

Jump subroutine to m: P + 1-m; m + 1->P

(m) + (A)>A
(m) + (B)->B
(m)->A
{(m)-B
(A)>m
(B)»m
(m)A(A)->A
(m)w(A)>A
(m)V(A)-A

If (m) +# (A), execute P + 2, otherwise execute P + 1

If (m) # (B), execute P + 2, otherwise execute P + 1

Move (m) words from array (A)—array (B)

. Compare {m) words of array (A) against (m) words of array (B); if the two arrays are

equal, execute P + 3, if array (A) is less than array (B), execute P + 4, if array (A} is
greater than array (B), execute P + 5 : '

B-7.

B-8.

B-9.

B-10.

Byte Processing

LBT
SBT
MBT { E L1 }

cpr {5}

SFB

Bit Processing

ms {5}

ses (& L1 }

ces {mt0)

n[I]

n [I]

n I}

Summary of Instructions

B contains a 16-bit byte address; ((B))->Ay_% 0's to A, _,,
B contains a 16-bit byte address; (A,_,)+(B)

A and B contain 16-bit byte addresses; move (m) bytes from array (A)-array (B)

A and B contain 16-bit byte addresses; compare {m) byfm of array (A) agamst {m)
bytes of array (B); if the two arrays areequal execute P +3; if array (A) is less than
array (B), execute P + 4; if array (A) is greater than array (B), execute P + 5

A,y .;contain the test byte, Ag_, s contain the terrmnation byte, and B contams al6-
bit byte address; scan array (B); if test byte found, execute P + 1, B contains

address of test byte; if termination byte found, execute P + 2, B contains address of
termination byte; if neither is found, execute P + 2, B contams zero

Compare all “set” bits in (m) against corresponding bits in (n); if all bits tested are
set, execute P + 3; if any of the bits tested are clear, execute P + 4

Set all bits in (n) which correspond to “set” bits in (m)

Clear all bits in (n) which correspond to *set” bits in (m).

REGISTER REFERENCE

Shift-Rotate

CLE
ALS
BLS
ARS
BRS
RAL
RBL
RAR
RBR
ALR
BLR
ERA
ERB
ELA
ELB
ALF
BLF
SLA
SLB

0->E

If (By) =

Shift (A) left one bit, 0>A,, A, unaltered
Shift (B) left one bit, 0 >By, B;5 unaltered
Shift {A) right one bit, (A;;)>A,

Shift (B) right one bit, (B;5)~B4

Rotate (A) left one bit

Rotate (B) left one bit

Rotate (A) right one bit

Rotate (B) right one bit

Shift (A) left one bit, 0—>A,5

Shift (B) left one bit, 0 >B;;

Rotate E and A right one bit

Rotate E and B right one bit

Rotate E and A left one bit

Rotate E and B left one bit

Rotate A left four bits

Rotate B left four bits

If (Ay) = 0, execute P + 2, otherwise execute P + 1

0, execute P + 2, otherwise execute P + 1

B-3

Summary of Instructions

Shift-Rotate instructions can be combined as follows:

ALS Y] ALS)]
ARS ARS
RAL RAL
RAR RAR
ALR [[CLE] [SLAI |.\ALR
ALF ALF
ERA ERA

| ELA | | |ELA] |

[(BLS BLS
BRS BRS
RBL RBL
RBR RBR
BLR [CLE] [SLB] |.{gpIm
BLF BLF
ERB ERB

| |ELB | (ELB) |

B-11. No-Operation

NOP Execute P + 1

B-12. Alter-Skip

CLA 0’'s—>A
CLB 0's—>B
CMA (A)>A
CMB (B)-B
CCA I's>A
CCB I's>B

CLE 0-E
CME (E)>E
CCE 1-E

SEZ If (E) = 0, execute P + 2, otherwise execute P + 1
SSA If (A;5) = 0, execute P + 2, otherwise execute P + 1

SSB If (B,s) = 0, execute P + 2, otherwise execute P + 1
INA (A) + 1-A

INB (B) + 1-B

SZA If (A) = 0, execute P + 2, otherwise execute P + 1
SZB If (B) = 0, execute P + 2, otherwise execute P + 1

SLA If (Ay) = 0, execute P + 2, otherwise execute P + 1
SLB If (By) = 0, execute P + 2, otherwise execute P + 1

RSS Reverse sense of skip instructions. If no skip instructions precede, execute P + 2

B-4

Summary of Instructions

Alter-Skip instructions can be combined as follows:

CLA CLE
L{ CMA}J [,SEZ] [,[CME}jl [LSSA] [,SLA] [(INA] [,SZA] [,LRRS]

CCA CCE
[CLB CLE
{CMB}] [,SEZ] [{CME}:\ [,SSB] [,SLB] [, INB] [,SZB] [,RSS]
CCB CCE
B-13. Index Register
CAX (A)>X
CBX (B) »X
CAY (A)~>Y
CBY (B) »Y
CXA {(X)—~A
CXB (X)-B
CYA (Y)~A
CYB (Y)-B
XAX (A)~X and (X)>A
XBX (B)~»X and (X)-B
XAY (A)>Y and (Y)>A
XBY (B)>Y and (Y)>B o
1154 (X) + 1-X, then test new (X); if (X) = 0, execute P + 2, otherwise execute P + 1
ISY (Y) + 1-Y, then test new (Y); if (Y) = 0, execute P + 2, otherwise execute P + 1
DSX | (X) - 1-X, then test new (X); if (X) = 0, execute P-+ 2, otherwise execute P + 1
DSY (Y) - 1Y, then test new (Y), if (Y) = 0, execute P + 2, othemse execute P + 1
LDX 1‘:1“1 (m)~X |
wy 2@y
STX m[I] (X)»m
STY mLl] (Y)om
LAX m[I] (m+(X)-A
LBX m[l] (m+ (X))»>B
LAY m[I] (m+(Y)-=A
LBY m [l (m#+ (Y)-B
SAX m[I] (A-m + (X)
SBX m[I] (B)om + (X)
SAY m LI (A)>m + (Y)
SBY m (] (B)>m + (Y)

ADX ﬁ‘t[’” (m) + (X=X

ADY g‘t[’” (m) + (Y)Y

JLY m[l] Jumptom; P+ 2-Y
JPY m Jump to m + (Y)
B-5

Summary of Instructions

B-14. INPUT/OUTPUT, OVERFLOW, AND HALT

B-15. Input/Output

STC sc [,C] Set control bitge, enable transfer of one element of data between deviceg, and bufferge
CLC sc [,C] Clear control bitge. If sc = 0 clear all control bits

LIA sc [,C] (bufferg,) >A

LIB sc [,C] (bufferg) V(A)— A Merge (inclusive or) the buffer into A.

MIA sc [,C] (bufferg,) V(B)—B Merge (inclusive or) the buffer into B.

MIB sc [,C] (bufferge) (B)—B

OTA sc [,C] (A)—bufferg,

OTB sc [,C] (B)—>bufferge

STF sc Set flag bitge. If sc = 0, enable interrupt system. sc = 1 sets overflow bit.

CLF sc Clear flag bitge. If sc = 0, disable interrupt system. If sc = 1, clear overflow bit.
SFC sc If (flag bitgc) = 0, execute P + 2, otherwise execute P + 1. If sc = 1, test overflow bit.
SFS sc If (flag bitge) = 1, execute P + 2, otherwise execute P + 1. If sc = 1, test overflow bit.

B-16. Overflow

CLO 0-overflow bit

STO 1-overflow bit

SOC [C] If (overflow bit) = 0, execute P + 2, otherwise execute P + 1

SOS [C] If (overflow bit) = 0, execute P + 2, otherwise execute P + 1
B-17. Halt

HLT [sc [,C}]] Halt computer

B-18. EXTENDED ARITHMETIC UNIT

MPY {m L1l

o b (A) x (m)>(Byypg, and Agp)

DIV (Bimsh and Ajpgp)/(m)—A, remainder -B

{i "}
DLD {m [’I]} (m) and (m + 1)-A and B
{ie)

lit
m [,I]
DST it (A) and (B)»m and m + 1
ASR b Arithmetically shift (BA) right b bits, B,; extended
ASL b Arithmetically shift (BA) left b bits, B, s unaltered, 0’s to Ay,

B-6

B-19.

B-20.

RRR b
RRL b
LSR b
LSL b
SWP

MEMORY EXPANSION

DJP

DJS

JRS

LFA

LFB

MBF

MBI

MBW

MWF

MWI

MWW

Summary of Instructions

Rotate (BA) right b bits
Rotate (BA) left b bits
Logically shift (BA) right b bits, 0’s to Bmgsp

Logically shift (BA) left b bits, o’s to Ajsp

Swap the contents of the A and B registers

 FLOATING POINT

(AB) x (m, m + 1)-—>AB

n L1 (AB)/(mm £ 1)-AB

3t (m m ;44;1: + ‘(ABJ?*AB‘ |

{AB) . (m, m + 1;»AB

W (AB’ converted from ﬂoaung-pomt to ﬁxed-pomt resuit -=A

A oonver%d from ﬁxed~pomt to floating- pomt; tesult >AB

Disable MEM and jump to m; m —P

Disable MEM and jump subroutine tom; P + 1 —m; m + 1 —P
Jump and restore status

A — fence

B — fence

Move bytes from alternate map. X<— 0; A«— A + no. bytes moved; B«— B + no.
bytes moved.

Move bytes into alternate map. X« 0; A« A + no. bytes moved; B« B + no.
bytes moved.

Move bytes within alternate map. X«— 0; A«— A + no. bytes moved; B« B + no.
bytes moved.

Move words from alternate map. X« 0; A<«— A + no. words moved; B« B + no.
words moved.

Move words into alternate map. X« 0; A«— A + no. words moved; B« B + no.
words moved.

Move words within alternate map. X« 0; A«— A + no. words moved; B« B + no.
words moved.

B-7

Summary of Instructions

B-8

PAA

PAB

PBA
PBB
RSA
RSB
RVA
RVB
SJP m [,I]
SJS m [,I]
SSM m [,I]
SYA

SYB

UJp m [I]
uJs m [I]
USA

USB

XCA m
XCB m

[
[
XLA m [I
XLB m [

XMA
XMB

XMM

XMS

XSA m [1]

XSB m [I]

If A(15) = 0, Port A map «— memory; if A(15) = 1, Port A map — memory.

If B(15) = 0, Port A map«— memory; if B(15) = 1, Port A map — memory.

If A(15) = 0, Port B map «— memory; if A(15) = 1, Port B map — memory.
If B(15) = 0, Port B map «- memory; if B(15) = 1, Port B map — memory.
A — status register

B « status register

A « violation register

B « violation register

Enable System map and jump to m

Enable System map and jump subroutine to m

m «— status register

If A(15) = 0, System map < memory; if A(15) = 1, System map — memory.

If B(15) = 0, System map «— memory; if B(15) = 1, System map — memory.

Enable User map and jump to m

Enable User map and jump subroutine to m

If A(15) = 0, User map «— memory; if A(15) = 1, User map — memory.
If B(15) = 0, User map « memory; if B(15) = 1, User map — memory.
Compare A with m; if A = m, execute P = 1; if A # m, execute P + 2.
Compare B with m; if B = m, execute P + 1; if B # m, execute P + 2.

Aem

B« m

If A(15) = 0 and A(0) = 0, Port A map«— System map. If A(15) = 0 and A(0) = 1, Port
B map+«— system map. If A(15) = 1 and A(0) = 0, Port A map«— User map. IfA(15) =
1 and A(0) = 1, Port B map «— User map.

If B(15) = 0 and B(0) = 0, Port A map«— System map.If B(15) = 0 and B(0) = 1, Port

B map«— System map. If B(15) = = 1 and B(0) = 0, Port A map«— User map. If B(15)
= 1 and B(0) = 1, Port B map «— User map.

A = register no., B = memory address, X = no. of registers. If X > 0, Maps «
memory; if X < 0, Memory « maps.

A = first register no., B = first page no., X = positive no. of registers. First

register is loaded with the page number indicated in B, the second register is
loaded with that value + 1, and so forth.

A —>m

B—-m

Summary of Instructions

B-21. PSEUDO INSTRUCTIONS

B-22,. ASSEMBLER CONTROL

NAM [name] Specifies relocatable program and its name.

ORB Gives relocatable program origin for the base page of relocatable program.

ORG m Gives absolute program origin or origin for a segment of relocatable or absolute program.
ORR Reset main program location counter at value existing when first ORG or ORB of a string

was encountered.

END [m] Terminates source language program. Produces transfer to program starting location, m,
if given.
REP r Repeat immediately following statement r times.
<statement>
IFN Include statements in program if control statement contains N.
<statements>
XIF
IFZ Include statements in program if control statement contains Z.
<statements>
XIF

B-23. OBJECT PROGRAM LINKAGE

COM name, [(size)][,name, [(size,)],...,namep[(size,)]]

Reserves a block of common storage locations. name, identifies segments of block, each of
length size.

ENT name, [,name,,...,namep]

Defines entry points, name,, that may be referred to by other programs.

EXT name, [,name,, . . name_ |

Defines external locations, name , which are labels of other programs, referenced by this
program.

label RPL [m]
Defines the code replacement for [JSB label | external references.

B-24. ADDRESS AND SYMBOL DEFINITION

label DEF m [,I] Generates a 15-bit address which may be referenced indirectly through the label.

label ABS m Defines a 16-bit absolute value to be referenced by the label.
label EQU m Equates the value, m, to the label.
label DBL m Defines a 16-bit byte address (left half, bits 8-15, of word location m) to be referenced

by the label.
B9

Summary of Instructions

label DBR m Defines a 16-bit byte address to be referenced by the label. The byte address is for the right
half (bits 0-7) of word location m.

B-25. CONSTANT DEFINITION

ASC n, <2n characters> Generates a string of 2n ASCII characters.

DEC d, [.d,,...,.d,] Records a string of decimal constants of the form:

Integer: =+n
Floating point: +n.n, 4+n., +.n, +nE+e, +n.nE+e, +n.E+e, +.nE+e

DEX d, [d,,...,.d,] Records a string of extended precision decimals constants of the form

Floating point: +n, +n.m, +n., +.n,
+nE+e, +n.nE+e, +n.E+e, +.nE+e

DEY d, [d,,...,d,] Records a string of four-word extended precision decimal constants in the same form
as DEX.

OCT o, [,07,...,0n] Records a string of octal constants of the form: 4000000

BYT b(,b ,...byl Records a string of octal byte constants of the form: +nnn (where nnn is 0 through
3775).

B-26. STORAGE ALLOCATION

BSS m Reserves a storage area of length, m.

EMA m,,m, Extended Memory Area of size m;m NSEG=m,.
B-27. RTE-L PSEUDO INSTRUCTIONS

LOD n,<2n characters> Generates a string of 2n ASCII characters representing a RTE-L loader command.

GEN n,<2n characters> Generates a string of 2n ASCII characters representing a RTE-L generator command.

B-28. ASSEMBLY LISTING CONTROL

UNL Suppress assembly listing output.

LST Resume assembly listing output.

SKP Skip listing to top of next page.

SPC n Skip n lines on listing.

SUP Suppress listing of extended code lines (e.g., as produced by subroutine calls).
UNS Resume listing of extended code lines.

HED <heading> Print <heading> at top of each page, where <heading> is up to 56 ASCII characters.

B-29. DEFINE USER INSTRUCTION
MIC opcode,fcode,pnum Defines a source language instruction. opcode = three-character alphabetic

mnemonic, fcode = instruction code, and prnum declares how many parameter
addresses are to be associated with the newly-defined instruction.

B-30. GENERATE AN EXECUTABLE MACHINE INSTRUCTION TO JUMP TO MICROCODE

RAM m Generates an executable machine instruction whose high order bits will be
105(octal), and whose low order bits will be the octal value of m. m must evaluate
to an absolute expression in the range 0 to 377 octal.

B-10

ALPHABETIC LIST OF INSTRUCTIONS

APPENDIX

C

Note:

ADA
ADB
ADX

ALF
ALR
ALS
AND
ARS
ASC
ASL
ASR

BLF
BLR
BLS
BRS
BSS
BYT

CAX
CAY

CBS

CBT
CBX
CBY
CCA
CCB
CCE
CLA
CLB
CLC
CLE

In the following list, those instructions
suffixed with an asterisk are dynamic
mapping instructions and cannot be used
unless the computer contains a Dynamic
Mapping System. Those instructions
shaded in gray are implemented in
software on RTE-L systems. They are
not available as RTE-L hardware
instructions.

Define absolute value

Add to A

Add to B

Add memory to X

Add memory to Y

Rotate A left 4

Shift A left 1, clear sign
Shift A left 1

“And” to A

Shift A right 1, sign carry
Generate ASCII characters
Arithmetic long shift left
Arithmetic long shift right

Rotate B left 4

Shift B left 1, clear sign

Shift B left 1

Shift B right 1, carry sign

Reserve block of storage starting at symbol
Defines octal byte constants

Copy Ato X

Copy AtoY

Clear bits. ,

Compare bytes

CopyBtoX

CopyBto Y

Clear and complement A (1’s)
Clear and complement B (1’s)
Clear and complement E (set E = 1)
Clear A

Clear B

Clear I/0 control bit

Clear E

CLF

CLO
CMA

CMB
CME
CMW
COM
CPA
CPB
CXA
CXB
CYA
CYB
DBL
DBR
DEC
DEF
DEX
DEY
DIV
DJP*
DJs*
DLD
DST

DSY
ELA
ELB
EMA
END
ENT
ERA
ERB
EQU
EXT
FAD
FDV
FIX
FLT
FMP
FSB

Clear 1/0 flag

Clear overflow bit
Complement A

Complement B
Complement E

- Compare words

Reserve block of common storage
Compare to A, skip if unequal
Compare to B, skip if unequal
Copy X to A '

CopyXtoB
- Copy Yto A

Copy Yto B

Define left byte (bits 8-15) address
Define right byte (bits 0-7) address
Define decimal constant

Define address

Define extended precision constant
Define four-word extended precision constant
Divide

Disable MEM and jump

DISABLE MEM and jump to subroutine
Double load

Double store

Decrement X and skip if zero

- Decrement Y and skip if zero

Rotate E and A left 1

Rotate E and B left 1

Extended Memory Area

Terminate program

Entry point

Rotate E and A right 1

Rotate E and B right 1

Equate symbol

External reference

Floating add

Floating divide

Convert floating-point be fixed-point
Convert fixed-point to floating-point
Floating multiply k

Floating subtract
C1

Alphabetic List of Instructions

HED
HLT

IFN

IFZ

INA
INB
IOR
IsX
IsY
ISZ

JMP
JPY
JRS*
JSB

LAY
LBT

LBY
LDA
LDB
LDX

LFA*
LFB*
LIA
LIB
LSL
LSR
LST

MBF*
MBI*
MBT
MBW#*
MIA
MIB
MIC
MPY

C-2

Print heading at top of each page
Halt

When N appears in Control statement, assem-
ble ensuing instructions

When Z appears in Control statement, assem-
ble ensuing instructions

Increment A by 1

Increment B by 1

Inclusive “or” to A
Increment X and skip if zero
Increment Y and skip if zero
Increment, then skip if zero

 Jump and load Y

Jump

" 'Jump indexed by Y

Jump and restore status

Jump to subroutine

Load A from memory indexed by X
Load A from memory indexed by Y

‘MMMm;

Load B from memory indexed by X
Load B from memory indexed by Y
Load into A

Load into B

Load X from memory

Load Y from memory

Load fence from A

Load fence from B

Load into A from I/O channel
Load into B from I/O channel
Logical long shift left

Logical long shift right

Resume list output (follows a UNL)

Move bytes from alternate map
Move bytes into alternate map
Move bytes

Move bytes within alternate map
Merge (or) into A from I/O channel
Merge (or) into B from I/O channel
Define jump to user microcode
Multiply

MVW
MWEF*
MWI*
MWw#*

NAM
NOP

OoCT
ORB
ORG
ORR
OTA
OTB

PAA*
PAB*
PBA*
PBB*

RAL
RAM
RAR
RBL
RBR
REP
RPL
RRL
RRR
RSA*
RSB*
RSS
RVA*
RVB*

SAX

SBS
SBT
SBX
SBY
SEZ
SFB
SFC
SFS

Move words
Move words from alternate map
Move words into alternate map

Move words within alternate map

Name relocatable program

No operation

Define octal constant

Establish origin in base page
Establish program origin
Reset program location counter
Output from A to I/0O channel
Output from B to I/O channel

Load/store Port A map per A
Load/store Port A map per B
Load/store Port B map per A
Load/store Port B map per B

Rotate A left 1

Generate executable jump to microcode
Rotate A right 1

Rotate B left 1

Rotate B right 1

Repeat next statement
Replace instruction definition
Rotate A and B left

Rotate A and B right

Read status register into A
Read status register into B
Reverse skip sense

Read violation register into A

Read violation register into B

Store A into memory indexed by X
Store A into memory indexed by Y
Set bits :

~ Store byte ,

Store B into memory indexed by X
Store B into memory indexed by Y
Skip if E = 0

Scan for byte

Skip if I/0O flag = 0 (clear) M

Skip if I/O flag = 1 (set)

Alphabetic List of Instructions

SJP* Enable System map and jump TBS Test bits
SJS* Enable System map and jump to subroutine
SKP Skip to top of next page UJp* Enable User map and jump
SLA Skip if LSB of A = 0 UJs* Enable User map and jump to subroutine
SLB Skip if LSB of B = 0 UNL Suppress list output
SoC Skip if overflow bit = 0 (clear) UNS Resume list output
SOS Skip if overflow bit = 1 (set) USA* Load/store User map per A
SPC Space n lines USB* Load/store User map per B
SSA Skip if sign A = 0 , - B
SSB Skip if sign B = 0 XAX.... Bachange A and X .- >
SSM* Store status register in memory ;{g: ixzznzeg a::i :

L v - EBxchange B a :
STA Store A XBY ExchangeB et
STB Store B XCA* Cross compare A
STC Set I/O control bit XCB* Cross compare B
STF Set I/0 flag XIF Terminate IFN or IFZ group of instructions
STO Set overflow bit XLA* Cross load A
STX StoreXintomemory =~ XLB* Cross load B
STY StoreY intomemory S XMA* Transfer maps internally per A
SUP Suppress list output of additional code lines XMB* Transfer maps internally per B
SWP Switch A and B XMM* Transfer map or memory
SYA* Load/store System map per A XMS* Transfer maps sequentially
SYB* Load/store System map per B XOR Exclusive “or” to A
SZA Skipif A =0 XSA* Cross store A
SZB Skip if B =0 XSB* Cross store B

C-3/C-4

'CONSOLIDATED CODING SHEETS

Table D-1 presents the binary codes for the base set instructions while Table D-2 presents those for the extended
instruction group.

D-1

Consolidated Coding Sheets

Table D-1. Base Set Instruction Codes in Binary

**Second word is Memory Address.

applicable) are required.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
D/t | AND 001 0 Z/C Memory Address
D/ | XOR 010 0 zZ/C
D/1 10R 011 0 zZ/C
D/t | JSB 001 1 z/C
D/1 JMP 010 1 zZ/C
D/I (Y4 011 1 zZ/C
D/t | AD* 100 A/B z/C
D/l cP* 101 A/B zZ/C
D/ { LD* 110 A/B zZ/C
D/1 ST* 1M1 A/B Z/C
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0 SRG 000 A/B 0 D/E | *LS 000 tCLE D/E #SL*| *LS 000
A/B] D/E *RS 001 D/E *RS 001
A/B 0 D/E | R*L 010 D/E R*L 010
A/B 0 D/E R*R 011 D/E R*R o1
A/B 0 D/E *LR 100 D/E *LR 100
A/B 0 D/E ER* 101 D/E ER* 101
A/B o D/E |eL* 110 D/E EL* 110
A/B o D/E |=*LF 111 D/E *LF 111
NOP 000 000 000 000
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 (4]
0 ASG 000 A/B 1 CcL* 01 CLE 01 | SEZ SS* SL* | IN* S§Z* RSS
A/B cm* 10 CME 10
A/B cc* 11 CCE 11
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 10G 000 1 H/C HLT 000 e—————— Select Code ————e——s
' 1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS 011
A/B 1 H/C MI* 100
A/B 1 H/C Li* 101
A/B 1 H/C oT* 110
0 1 H/C STC 111
1 1 H/C CLC 111
1 0 STO 001 000 001
1 1 CLO 001 000 001
1 H/C SOC 010 000 001
1 H/C SOS 011 000 001
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 EAG 000 MPY ** 000 010 000 000
DIvV** 000 100 000 000
DLD** 100 010 000 000
DST** 100 100 000 000
ASR 001 000 0 1
ASL 000 000 0 1
LSR 001 000 1 0 number
LSL 000 000 1 0 of
RRR 001 001 0 0 bits
RRL 000 001 0 0
Notes: * = A or B, according to bit 11. tCLE: Only this bit is required.
D/t, A/B, Z/C, D/E, H/C coded: 0/1. ZFSL*: Only this bit and bit 11 (A/B as

D-2

Table D-2. Extended Instruction Group Codes in Binary

Consolidated Coding Sheets

SAX/SAY/SBX/SBY
CAX/C/;\Y/CBX/CBY
LAX/LAY/LBX/LBY

STX/STY
CXA/CYA/CXB/CYB
LDX/LDY

ADX/ADY

XAX/XAY/XBX/XBY

ISX/18Y/DSX/DSY

JUMP INSTRUCTIONS

BYTE INSTRUCTIONS

BIT INSTRUCTIONS

WORD INSTRUCTIONS

15 14 13 12 11 10 4 3 2 1 o0
1]0 o o {am| 0 0 |x/vf 0o 0 0
110 o o |am| o 0 |X/¥Y] 0 0 1
110 o o lams| o o |xvl o 1 o
110 o o1 o o Ix/vl o 1
110 o0 o0 |A/B] O o |x/¥l 1 0o o
ilo o ol1 o o [x/yl 1 o 1
110 o o1 o o |Ixiyl 1 1 o0
110 o o l|ams| o o IX/¥p 1 1 1
1o o o1 o 1 [x/yp o oD
110 o o1 o 1/010
JUY= 0
Y= 1
7To o o1 o I /Y,
LBT=0 1 1
SBT=1 0 O
MBT=1 0 1
cCBT =1 1 0
SFB =1 1 1
Te o o1 o R
SBS= 0 1 1
cBS=1 0 O
TBS =1 0 1
170 o o1 O 1111/[
CMW = 0
MVW = 1

D-3

Consolidated Coding Sheets

Table D-2. Extended Instruction Group Codes in Binary (Continued)

MEMORY EXPANSION

DJP/DJS

SYB/USB/PAB/PBB/SSM/JRS

XMA/XLA/XSA/XCA/LFA

MBI/MBF/MBW/MWI/MWF /MWW

SYA/USA/PAA/PBA

15 14 13 12 11 10 2 1 0
17{0 0 o1 o
DJP =0 1
DJS =0 1
110 o0 o 10
SYB=0 0
USB=0 0
PAB =0 1
PBB =0 1
SSM=1 0
JRS =10
V///
110 o oo o
XMA =0 1
XLA=1 0
XSA =1 0
XCA =1 1
LFA =1 1
1jo o o |1 o //
MBI =0 1
MBF = 0 1
MBW =1 0
MWI =1 0
MWF = 1 1
MWW =1 1
1]o o oo o /
SYA=0 0
USA=0 0
PAA = 0 1
PBA = 0 1

D4

Consolidated Coding Sheets

Table D-2. Extended Instruction Group Codes in Binary (Continued)

15 141312 11 10 9 8 7 6 5 4 3 2 1 0
XMM/XMS/XMB/XLB 110 0 0o |1 0o 1|1 1 1 0 1 o //
XSB/XCB/LFB <
XMM = 0 0 0
XMS = 0 0 1
XMB = 0 1 0
XLB = 1 0 0
XSB = 1 0 1
XCB = 110
LFB = 1 1 1
RSA/RVA 100 oo o 11 1 1o 1 1
RSA = 0 0 0
RVA = 0 0 1
RSB/RVB/SJIP/SIS/UJIP/UIS 1100 of1 0o 1|1 1 1o 1 1 =z
RSB = 0 0 O
RVB = 0 0 1
SIP =100
SJs =1 0 1
UP =110
ws =1 11

D-5/D-6

ASSEMBLER OPERATIONS

E

The Assembler is a segmented program that executes
under control ofi RTE in the User Program Area of main
memory. The Assembler consists of a main program
(ASMB) and five segments (ASMBO, ASMB1, ASMB2,
ASMBS3, and ASMB4). It resides on disc, and is read into
main memory when called by the RU directive.

Source programg, accepted from either an input device or a
user file on the disc, are translated into absolute or re-
locatable object programs. ASMB will output the relocat-
able or absolute code to a disc file or device as specified by
the binary outppt parameter when the assembler is in-
voked. If the source is on a device other than a disc file, it

is stored on scratch tracks on the disc as it is being read. If -

there is insufﬁc;ient space on the disc, the Assembler is
suspended until more scratch tracks are available.

E-1. ON-LINE LOADING OF THE
ASSEMBLER

The following example illustrates the on-line loading of
the Assembler in an RTE-IV Operating System. The size
of the program should be increased to at least nine pages,
with twelve pages being a recommended size. The extra
space is needed by the assembler for its symbol table.

:RU,LOADR ‘ , ,
/LOADR: §8Z,12 *increase size of program
/LOADR: RE%4ASMB *relocate main module -
/LLOADR: SE,<%CLIB *search compiler library
/LOADR: RE,%4ASB0 *relocate segment 0
/LOADR: SE,%CLIB) *search compiler library
/L.OADR: RE,%4ASB1 *reldeaﬁe segment 1
/LOADR: SE%CLIB *search compiler library
/LOADR: RE,%4ASB4 *relocate segment 4
/L.OADR: SE,%CLIBI *gearch compiler library

/LOADR: EN +end LOADR operation

The Assembler must be loaded as a type 3 brogram which
is also the default type used by the LOADR.

RTE-L ON-LINE LOADING OF THE ASSEMBLER

The following ejé:ample illustrates the on-line loading of
the Assembler inh an RTE-L Operating System.

:RU,LOADR ;
LOADR: l}.lB,‘CLIB *use $CLIB to do a search
LOADR: $GMENTS ’ 5 *inform LOADER there is 5 segments
LOADR: REL 2 %ASMB *relocate the main and five segments

*which are all in the same file.
*end the load process, libraries are

LOADR: END

*now searched.

E-2. ASSEMBLER OPERATION

The RTE Assembler is initiated with a RU directive in the
following form:

. source [~ list binary [line .
‘RU,ASMB, input Loutput [,output [,count ,optzons]]]]

where:

source input

Name of an FMGR file or a logical unit number of the
device containing the Assembly source code; this entry
must conform to the format required by the FMGR
namr parameter. The source input must always be
specified.

If an interactive device is specified, the Assembler will
print a right bracket (]) on the device as a prompt. It
will then accept input a line at a time and output
another prompt until an END statement is entered.

list output

Choose one of the following:

— (minus symbol)
FMGR file name
logical unit number
null (omitted)

If the minus symbol is specified, and the source file
name begins with an ampersand (&), the list file name
will consist of the source file name with the ampersand
replaced by an apostrophe (). For example:

&FIL1
'FIL1

source file name
list file name

The list file is always forced to reside on the same
cartridge (cartridge reference code) as the source file. If
an FMGR file by this name does not already exist it is
created. The created list file is given the same file
security code as that of the source if it was specified in
the source namr of the run sequence.

If an FMGR file name is specified, it must conform to
the format required by the FMGR namr parameter.
The list file is created if it does not exist. If the file does
exist, the first character in the file name must be an
apostrophe (); otherwise, an FMP —~15 error will result
indicating that the file name is illegal.

E-1

Assembler Operations

If a logical unit number is specified, the list output is
directed to that logical device.

If this parameter is omitted, the logical unit of the
interactive input device is assumed. Furthermore, if
subsequent parameters are specified, the comma must
be used as a parameter placeholder.

binary output

Choose one of the following:

— (minus symbol)
FMGR file name
logical unit number
null (omitted)

If the minus symbol is specified, and the source file
name begins with an ampersand (&), the binary file
name will consist of the source file name with the
ampersand replaced by a percent sign (%). For example:

&FIL1 source file name
%FIL1 binary file name

This binary file is always forced to reside on the same
cartridge (cartridge reference code) as the source file. If
an FMGR file by this name does not already exist it is
created. The created list file is given the same file
security code as that of the source namr if it was
specified in the source namr of the run sequence.

If an FMGR file name is specified, it hust conform to
the format required by the FMGR namr parameter.
The binary file is created if it does not exist. If the file
exists, it is necessary that:

a. the first character of the file’s name be a percent
sign (%) or !

b. the existing file be of the type specified in the namr
parameter. If the file type is not declared in namr,
the file’s type must be type 5 or type 7, relocatable
binary.

If the above conditions are not met, an FMP-15 error
will result.

If a logical unit number is specified, the binary output
is directed to that logical device.

If this parameter is omitted, binary output is not pro-
duced. Furthermore, if subsequent parameters are
specified, a comma must be used as a parameter
placeholder.

line count

A decimal number which defines the number of lines
per page for the list device.

Specification of this parameter is optional. If it is omit-
ted, 55 lines per page are assumed.

E-2

options

Up to six characters that select control function op-
tions. No commas are allowed within the option string.
These characters are: A,R,B,LL,QTN,Z,C,F,X, and P
(see Table 1-2 for an explanation of these options). If
specified when the Assembler is run, these options re-
place (override) the options declared in the ASMB con-
trol statement.

The P option has a special meaning in this context. If P
is specified by itself, the Assembler will output the
object code (if the binary output parameter has been
specified) and the error reports and take no further
actions. The type of object code is determined by the
source program control statement. If the P option is
specified with any other option, the P option is ignored.

The R and A options cannot be overridden. Any attempt
to do so will cause the Assembler to generate a CS error
and abort. The R and A options are always determined
by the source program control statement.

Examples:

*RU,ASMB,&PROGA,—,—

Schedules RTE ASMB to assemble the source code in
file &PROGA. Listed output is directed to list file
"PROGA and binary relocatable code is directed to bi-
nary file %PROGA. The number of lines per list file
defaults to 55.

:RU,ASMB,&FIL1,LIST

Schedules RTE ASMB to assemble source file &FIL1.
Listed output is directed to list file 'LIST. No binary
relocatable code is generated. The number of lines per
list file page defaults to 55.

:RU,ASMB,&ABCD

-Schedules RTE ASMB to assemble source file &ABCD.

Listed output defaults the user terminal. No binary
relocatable code is generated. The number of lines per
list file page defaults to 55.

:RU,ASMB,&AAAA,—,—28L.Z

Schedules RTE ASMB to assemble source file &AAAA.,
Listed output is directed to list file ’"AAAA. Binary
relocatable code is directed to binary file %2 AAAA. The
number of lines per list file page is 28.

A listing will be produced because the L option has
been specified. The Assembler will perform a selective
assembly with respect to the Z option (see section IV on
the IFZ and IFN pseudo-instructions).

:RU,ASMB, &SFIL,—,—-,,TQC
Schedules RTE ASMB to assemble source file &SFIL.
Listed output is directed to list file 'SFIL. Binary re-

locatable code is directed to binary file %SFIL. T will
cause a symbol table listing to be output to the list file.

Q will cause the memory reference instructions in the
object code listing to appear as addresses only (the
opcode will ndt appear in the listing). C will cause a
cross-reference table to be output to the list file.

‘RU,ASMB, &SFIL, —,—,,P

The P option will cause the Assembler to produce only
object code and error messages. It overrides the control
options specified in the assembly language source
program.

E-3. MESSAGES DURING ASSEMBLY

a.

When the eléﬁd of a source tape is encountered, the
following message is output to the system console:

VO ET L #x E #y S #z

LU #x is unavailable until the operator declares the
associated EQT up using the RTE UP command:

UP,y

Assembly cantinues after the UP. More than one
source tape tan be assembled into one program by
loading the next tape before giving the UP.

If an FMP erfror occurs during the assembly, the As-
sembler will:print the following message on the sys-
tem console.

SOURCE
/ASMB: FMP—nn{ LIST
BINARY

where:

—nn is the FMP error number

either SOU@RCE,LIST, or BINARY will be printed
according td which file caused the error. The current
assembly is aborted.

The following% message on the system console signifies
the end of the assembly:

/ASMB: $END
If an error is found in the Assembler control state-
ment, the following message is output to the system
console.

/ASMB: $END CS

and the current assembly stops.

Assembler Operations

If an end-of-file condition on the source input occurs
before an END statement is found, the system console
signals:

/ASMB:
$END
XEND

and the current assembly stops.

If the source input file does not exist, the system
console signals:

/ASMB: $END NPRG

and the current assembly stops.

During pass 1, the Assembler will output error mes-
sages for each error it finds. Immediately above the
error message, the number of the tape containing the
error will be printed in the following form:

#nnn

The tape counter starts with one and increments by
one whenever an end-of-tape condition occurs (using
paper tape), or a blank card is encountered. When the
counter increments, the numbering of the source
statements starts over at one.

Each error diagnostic printed in the program listing
during pass two of the assembly is associated with a
different message (printed on a separate line just
above each diagnostic):

PG ppp

ppp is the page number (in the listing) of the previous
error diagnostic. PG 000 is associated with the first
error found in the program.

At the end of pass 2, the Assembler will display the
total error count on the system console in the follow-
ing form:

/ASMB: xxxx ERRORS TOTAL

where xxxx is “NO” if 0 errors occurred, or the number
of errors otherwise. The Assembler will also return
the number of errors that occurred to the program
that scheduled it as the first return parameter. This

parameter may be retrieved using a call to the library
subroutine RMPAR.

E-3/E-4

MACHINE INSTRUCTION SET SUMMARY

The following alphabetic list details the instructions that are available on the various HP 1000 computers. An asterisk in
the L-SERIES column indicates that the instruction is implemented in software (see Section 3 paragraph 3-28). An “NA”
indicates that the instruction is not available on that model of computer. It is assumed that the M, E and F-SERIES
computers contain the Dynamic Mapping System instructions.

Table F-1. M, E, F and L-Series Instruction Sets

INSTRUCTION M/E/F-SERIES L-SERIES
ABS Define absolute value
ADA Add to A
ADB Add to B
ADX Add memory to X *
ADY Add memory to Y *
ALF Rotate A left 4
ALR Shift A left 1, clear sign
ALS Shift A left 1
AND “And” to A
ARS Shift A right 1, sign carry
ASC Generate ASCII characters
ASL Arithmetic long shift left
ASR Arithmetic long shift right
BLF Rotate B left 4
BLR Shift B left 1, clear sign
BLS Shift B left 1
BRS Shift B right 1, carry sign
BSS Reserve block of storage starting at symbol
BYT Defines octal byte constants
CAX Copy A to X *
CAY Copy Ato Y *
cBS Clear bits *
CBT Cormpare bytes *
CBX Copy B to X *
CBY Copy Bto Y *
CCA Clear and complement A (1’s)
ccB Clear and complement B (1's)
CCE Clear and complement E (set E = 1)
CLA Clear A
CLB Clear B

Machine Instructions Set Summary

Table F-1. M, E, F and L-Series Instruction Sets (Continued)

INSTRUCTION M/E/F-SERIES L-SERIES
CLC Clear /O control bit
CLE Clear E
CLF Clear I/O flag
CLO Clear overflow bit
CMA Complement A
CMB Complement B
CME Complement E
CMW Compare words *
COM Reserve block of common storage
CPA Compare to A, skip if unequal
cPB Compare to B, skip if unequal
CXA Copy X to A *
CXB Copy X to B *
CYA Copy Y to A *
CYB Copy Y to B *
DBL Define left byte (bits 8-15) address
DBR Define right byte (bits 0-7) address
DEC Define decimal constant
DEF Define address
DEX Define extended precision constant
DIV Divide
DJP Disable MEM and jump NA
DJS Disable MEM and jump to subroutine NA
DLD Double load
DST Double store
DSX Decrement X and skip if zero *
DSY Decrement Y and skip if zero *
ELA Rotate E and A left 1 I
ELB Rotate E and B left 1
EMA Extended Memory Area NA
END Terminate program
ENT Entry point
ERA Rotate E and A right 1
ERB Rotate E and B right 1
EQU Equate symbol
EXT External reference
FAD Floating add *
FDV Floating divide
FIX Convert floating-point to fixed-point *

F-2

Machine Insructions Set Summary

Table F-1. M, E, F and L-Series Instruction Sets (Continued)

INSTRUCTION M/E/F-SERIES L-SERIES
FLT Conven fixed-point to floating-point *
FMP Floating multiply *
FSB Floating subtract *
HED Pﬁint heading at top of each page
HLT Halt
IFN When N appears in Control statement, assemble ensuing instructions
IFZ W:hen Z appears in Control statement, assemble ensuing instructions
INA Increment A by 1
INB Increment B by 1
IOR Inclusive “or” to A
ISX Increment X and skip if zero *
ISY Increment Y and skip if zero *
ISZ Increment, then skip if zero l
JLY Jump and load Y *
JMP Jump I
JPY Jump indexed by Y *
JRS Jump and restore status NA
JSB Jump to subroutine l
LAX Lgad A from memory indexed by X *
LAY Load A from memory indexed by Y *
LBT Load byte *
LBX Léad B from memory indexed by X *
LBY Load B from memory indexed by Y *
LDA Load into A
LDB Load into B 1
LDX Load X from memory *
LDY Load Y from memory *
LFA Load fence from A ' NA
LFB Load fence from B NA
LIA Load into A from I/O channel
LIB Load into B from |/O channel
LSL Logical long shift left
LSR Logical long shift right
LST Resume list output (follows a UNL)
MBF Move bytes from alternate map NA
MBI Move bytes into alternate map NA
MBT Move byte *

F-3

Machine Instructions Set Summary

Table F-1. M, E, F and L-Series Instruction Sets (Continued)

INSTRUCTION M/E/F-SERIES L-SERIES
MBW Move bytes within alternate map NA
MIA Merge (or) into A from /O channel
MiB Merge (or) into B from /O channel
MIC Define jump to user microcode
MPY Multiply
MVW Move words ¥
MWF Move words from alternate map NA
MWI Move words into alternate map NA
Mww Move words within alternate map NA
NAM Name relocatable program
NOP No operation
OCT Define octal constant
ORB Establish origin in base page
ORG Establish program origin
ORR Reset program location counter
OTA Output from A to I/O channel
oTB Output from B to I/O channel
PAA Load/store Port A map per A NA
PAB Load/store Port A map per B NA
PBA Load/store Port B map per A NA
PBB Load/store Port B map per B NA
RAL Rotate A left 1
RAM Generate executable jump to microcode
RAR Rotate A right 1
RBL Rotate B left 1
RBR Rotate B right 1
REP Repeat next statement
RPL Replace instruction definition
RRL Rotate A and B left
RRR Rotate A and B right
RSA Read status register in A NA
RSB Read status register into B NA
RSS Reverse skip sense I
RVA Read violation register into A NA
RVB Read violation register into B NA
SAX Store A into memory indexed by X *
SAY Store A into memory indexed by Y I *

F4

Machine Instructions Set Summary

Table F-1. M, E, F and L-Series Instruction Sets (Continued)

_ INSTRUCTION M/E/F-SERIES L-SERIES
SBS Sat Bits
SBT Store byte *
SBX Store B into memory indexed by X *
SBY Store B into memory indexed by Y *
SEZ SKip if E = 0 [
SFB Sdan for byte *
SFC Skip if I/O flag = 0 (clear)
SFS Skip if I/O flag = 1 (set)
SJP Enable System map and jump NA
SJs Enable System map and jump to subroutine NA
SKP Skip to top of next page
SLA Skip if LSB of A = 0
SLB Skip if LSB of B = 0
SOC Skip if overflow bit = 0 (clear)
SOs Skfip if overflow bit = 1 (set)
SPC Space n lines
SSA Skip if sign A = 0
SSB Skip if sign B = 0
SSM Store status register in memory NA
STA Store A
STB Store B
STC Set I/0 control bit
STF Set 1/O flag
STO Set overflow bit
STX Store X into memory *
STY Store Y into memory *
SUP Suppress list output of additional code lines I
SWP Switch A and B
SYA Load/store System map per A NA
SYB Load/store System map per B NA
SZA Skipif A =0 I
SZB SkipfB =0
TBS Test bits l *
UJpP Enable User map and jump NA
uJds Enable User map and jump to subroutine NA
UNL Suppress list output]
UNS Resume list output
USA Load/store User map per A NA
usB Load/store User map per B NA

F-5

Machine Instructions Set Summary

Table F-1. M, E, F and L-Series Instruction Sets (Continued)

INSTRUCTION M/E/F-SERIES L-SERIES

XAX Exchange A and X *

XAY Exchange A and Y *

XBX Exchange B and X *

XBY Exchange B and Y *

XCA Cross compare A NA
XCB Cross compare B NA
XIF Terminate IFN or IFZ group of instructions I

XLA Cross load A NA
XLB Cross load B NA
XMA Transfer maps internally per A NA
XMB Transfer maps internally per B NA
XMM Transfer map or memory NA
XMS Transfer maps sequentially NA
XOR Exclusive “or” to A I
XSA Cross store A NA
XSB Cross store B NA

F-6

ASSEMBLER ERROR MESSAGES

G

Errors detected 1n the source program are indicated by a 1- or 2-letter mnemonic followed by the sequence number and the
first 62 characteys of the statement in error. The messages are printed on the list output device during the passes indicated.
A message specifying the number of errors detected is printed on the system console device at the end of each pass.

Error listings préduced during Pass 1 are preceded by a number which identifies the source input file where the error was
found. Pass 2 eryor messages are preceded by a reference to the previous page of the listing where an error message was
written. The first error will refer to page “0”. The error count at the end of Pass 2 is preceded by the page number in the
listing where the final error was encountered.

Error Code

CS

DD

EN

EN UNDEF <symbol>

IF

Pass

2

Description

Control statement error:

a. The control statement contained a parameter other than the legal set.
b. Both A and R were specified.

¢. Both F and X were specified.

Doubly defined symbol: A name defined in the symbol table appears more
than once as:

a. A label of a machine instruction.

b. A label of one of the pseudo operations:

BSS DBL

EMA DBR

BYT EQU

ASC ABS

DEC OCT

DEF Arithmetic subroutine call
DEX

¢. A name in the Operand field of a COM or EXT statement.
d. A label in an instruction following a REP pseudo operation.

Any combination of the above.

An arithmetic subroutine call symbol appears in a program both as a
pseudo instruction and as a label.

The symbol specified in an ENT statement has already been defined in an
EXT statement, or is a label for an EMA pseudo-instruction.

The entry point specified in an ENT statement does not appear in the label
field of a machine or BSS instruction. The entry point has been defined in
the Operand field of an EXT statement.

An IFZ or an IFN follows either an IFZ or an IFN without an intervening
XIF. The second pseudo instruction is ignored.

G-1

Assembler Error Messages

Error Code

IL

LB

G-2

Pass

lor?2

lor 2

Description

Illegal instruction:

a.

C.

Instruction mnemonic cannot be used with type of assembly requested
in control statement. The following are illegal in an absolute
assembly.

NAM EXT EMA
ENT COM
Arithmetic subroutine calls

The ASMB statement has an R parameter, and NAM has been de-
tected after the first valid Opcode.

An EMA pseudo-instruction is encountered more than once.

Illegal character: A numeric term used in the Operand field contains an
illegal character (e.g., an octal constant contains other than +, —, or 0-7).
This code may also appear following an M error for missing operands.

Missing label in an EQU, RPL or EMA pseudo-instruction.

Illegal operand:

a.

b.

Operand is missing for an Opcode requiring one.
Operands are optional and omitted but comments are included for:

END
HLT

Operand is an external symbol or an indirect address for:

DBL
DBR

An absolute expression in one of the following instructions from a
relocatable program is greater than 1777,.

Instructions referencing memory locations:

DEF, DBL, and DBR
Arithmetic subroutine calls

A negative operand is used with an Opcode other than ABS, DEX,
DEC, OCT, and BYT.

A character other than I follows a comma with operands which can be
indirect.

Operand is an indirect address when used with JPY.
Using a literal as the second operand in the following instructions:

TBS
SBS
CBS

A character other than C follows a comma in certain I/O instructions.

A relocatable expression in the Operand field of one of the following:

ABS ASR RRL
REP ASL LSR
SPC RRR LSL

An ORG statement appearing in a relocatable program includes an
expression that is common relocatable or absolute.

A relocatable expression contains a mixture of program and common
relocatable terms.

The literal, literal code, or type of literal is illegal for the operation
code used (e.g., STA = B7).

Errorj Code

NO

OP

av

SO

SY

UN

Pass

lor2

1or2

1lor2

1lor?2

lor?2

Assembler Error Messages

Description

n. An integer expression in one of the following instructions does not
meet the condition 1 < n =< 16. The integer is evaluated modulo 2*.

ASR RRR LSR
ASL RRL LSL

The value of an ‘L’ type literal is relocatable.

p. The number of words, n, specified for an ASCII string definition, ASC
n, exceeds 28 decimal words.

q. There is no comma after the first operand in an EMA or MIC
pseudo-instruction.

r. One or both of the operands m, and m, for the EMA instruction do not
conform to the bounds specifications.

No origin definition: The first statement in the assembly containing a
valid opcode following the ASMB control statement (and remarks and/or
HED, if present) is neither an ORG nor a NAM statement. If absolute, the
program is assembled starting at 2000; if relocatable, the program is
assembled starting at zero.

Illegal Opcode preceding first valid Opcode. The statement being pro-
cessed does not contain an asterisk in position one. The statement is
assumed to contain an illegal Opcode; it is treated as a remarks statement:

Illegal Opcode: A mnemonic appears in the Opcode field which is not valid.
A word is generated in the object program.

Numeric operand overflow: The numeric value of a term or expression has
overflowed its limit:

1 = N = 16 Shift-Rotate Set

221 Input/Output, Overflow, Halt

2101 Memory Reference (in absolute assembly)

215 Data generated by DEC or DEX

2151 DEF and ABS operands and expressions concerned with
program location counter.

2161 ocCT

There are more symbols defined in the program than the symbol table can
handle.

Illegal Symbol: A Label field contains an illegal character or is greater
than 5 characters. A label with illegal characters may result in an errone-
ous assembly if not corrected. A long label is truncated on the right to 5
characters.

Illegal Symbol: A symbolic term in the Operand field is greater than five
characters; the symbol is truncated on the right to 5 characters.

Too many control statements: The source file contains more than one
control statement. The Assembler assumes that the second control state-
ment is a label, since it begins in column 1. Thus, the commas are consi-
dered as illegal characters and the “label” is too long. The binary object
program is not affected by this error. The first control statement processed
is the one used by the Assembler.

Undefined Symbol:

a. A symbolic term in an Operand field is not defined in the Label field of
an instruction or is not defined in the Operand field of a COM or EXT
statement.

b. A symbol appearing in the Operand field of one of the following
pseudo operations was not defined previously in the source program:

BSS ASC EQU ORG END EMA
G-3)G-4

OUTPUT DATA

FORMATS

APPENDIX

NAM RECORD
CONTENT
15 8,7 0,15 13,12 0,15
N
RECORD E
LENGTH N / CHECKSUM
001 /
// i
WORD 0 WORD 1 WORD 2
15 8,7 0,15 8,7 0,15 8,7
s Y M B L
WORD 3 WORD 4 WORD 5
15,14 0,15 0,15
LENGTH OF LENGTH OF LENGTH OF
2 MAIN PROGRAM BASE PAGE COMMON
c SEGMENT SEGMENT SEGMENT
(OR ZERO) (OR ZERO) (OR ZERO)
WORD 6 WORD 7 WORD 8
15 0,15 0,15 0,15
PROGRAM PRIORITY RESOLUTION EXECUTION
TYPE CODE MULTIPLE
WORD 9 WORD 10 WORD 11 WORD 12
15 0,15 0,15 0,15
HOURS MINUTES SECONDS TENS OF
MILLISECONDS
WORD 13 WORD 14 WORD 15 WORD 16
15 8,7 0 15 8,7
COMMENT | COMMENT COCN'H“’LiNT Cogmim
CHAR 1 CHAR 2 oo o
WORD 17 WORD n
(n < 60)

HATCH-MARKED AREAS SHOULD BE ZERO-FILLED
WHEN THE RECORDS ARE GENERATED

EXPLANATION
RECORD LENGTH = 9-60 WORDS
IDENT = 001

CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
IN RECORD EXCLUDING
WORDS 1 AND 3.

SYMBL: FIVE CHARACTER
NAME OF PROGRAM

A/C: BINARY TAPE PRECESSION

0 IF ASSEMBLER
PRODUCED OR LENGTH
IS EXACT.

1 IF COMPILER
PRODUCED AND LENGTH
IS UNKNOWN.

CROSS-HATCH-MARKED AREAS SHOULD BE SPACE
FILLED WHEN THE RECORDS ARE GENERATED

Output Data Formats

ENT RECORD
CONTENT
15 8,7 0,15 13,12 4,3 0,15 0
Y, E
) 7
RECORD £ R CHECKSUM
LENGTH N / ;
E
//, o // S
WORD 1 WORD 2 WORD 3
15 8,7 0,15 8.7 0.15 8,7
%
S Y M B L
%
WORD 4 WORD 5 WORD 6
15 0,15 8,7 0,15 8,7 0
UNRELOCATED
ADDRESS
FOR SYMBL OR S Y M B
REPLACEMENT INSTRUCTION
VALUE
WORD 7 WORD 8 WORD 9
15 8.7 3,20 15 0,15 0
V UNRELOCATED
ADDRESS
L R FOR SYMBL OR

7

REPLACEMENT INSTRUCTION

VALUE

WORD 10

H-2

WORD 59

EXPLANATION

RECORD LENGTH = 7-59 WORDS
IDENT = 010
ENTRIES: 1 TO 14 ENTRIES

PER RECORD; EACH ENTRY
IS FOUR WORDS LONG.

0
SYMBL: 5 CHARACTER ENTRY

POINT SYMBOL

R: RELOCATION INDICATOR

0 IN PROGRAM RELOCATABLE
1 IF BASE PAGE RELOCATABLE
2 |[F COMMON RELOCATABLE
= 3 IF ABSOLUTE

= 4 INSTRUCTION REPLACEMENT

[[

WORDS 4 THROUGH 7 ARE
REPEATED FOR EACH
ENTRY POINT SYMBOL.

>

EXT RECORD
CONTENT
15 8,7 0,15, 13,12 5 0,15
| ¢ E
7 N
RECORD E T
LENGTH N ? CHECKSUM
T E
10 S
WORD 1 WORD 2 WORD 3
15 8,7 0,15 8,7 0,15 8,7
SYMBOL
s Y M B I.D. NG
WORD 4 WORD 5 WORD 6
15 8,7 0,15 0,15 8,7
SYMBOL
s Y 1.D. NO.
WORD 7 WORD 60

Output Data Formats

EXPLANATION
RECORD LENGTH = 6-60 WORDS
IDENT = 100

ENTRIES: 1 TO 19 PER
RECORD; EACH ENTRY
IS THREE WORDS LONG

SYMBL: 5 CHARACTER
EXTERNAL SYMBOL

SYMBOL ID. NO.: NUMBER
ASSIGNED TO SYMBL FOR
USE IN LOCATING
REFERENCE IN BODY
OF PROGRAM.

WORDS 4 THROUGH 6 REPEATED
FOR EACH EXTERNAL
SYMBOL (MAXIMUM OF
19 PER RECORD).

Output Data Formats

DBL RECORD
CONTENT
15 8,7 0,15, 13,12 8,7 6,5 0,16
P 7
RECORD 7 ll) // NO. OF
E Z | INST. CHECKSUM
LENGTH N
/ N / WORDS
7 7.
WORD 1 WORD 2 WORD 3
15 0,15 13,12 109 76 43 1,015
-
z
UNRELOCATED ; ABSOLUTE
LoAD Fi| Fz| Ra| Ral Rsf VALUE
ADDRESS 5
¢
WORD 4 WORD 5 INSTRUCTION WORD
R = 000
15,14 0,15,14 0,15,14
15-BIT PROGRAM 15-BIT BASE PAGE 15-BIT COMMON
RELOCATABLE RELOCATABLE RELOCATABLE
VALUE VALUE VALUE
LD/l LD/l LD/I
INSTRUCTION WORD INSTRUCTION WORD INSTRUCTION WORD
R = 001 R =010 R=011
15,14 11,10 8,7 0,15,14 11,108 2,1,0,15
T 7]
EXTERNAL
N N
$¢ / EXTERNAL s ¢ ; SYMBOL | UNR\E,kc:S'gTED
L SYMBOL £B[{ ‘b.NO. R —OR—
U E / 1.D. NO. UE[]l -omr- OFFSET
s U § W zemo
LD/| D/IJ
INSTRUCTION WORD INSTRUCTION WORD
R =100 R =101
15 12 1 21015 0
T T
| |
| I'm RELOCATABLE
TYPE | | R BYTE
| | ADDRESS
]]
INSTRUCTIONWORD R =110

H-4

EXPLANATION

RECORD LENGTH = 6-60 WORDS
IDENT = 011
Z/C: RELOCATION OF LOAD
ADDRESS
= 0 FOR BASE PAGE
= 1 FOR PROGRAM
= 2 FOR ABSOLUTE
= 3 FOR COMMON
NO. OF INST. WORDS: 1 TO 45
LOADABLE INSTRUCTION
WORDS PER RECORD

RELOCATABLE LOAD ADDRESS:
STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW;

R's: RELOCATION INDICATORS:
000 = ABSOLUTE
001 = 15-BiT PROGRAM
RELOCATABLE
15-BIT BASE PAGE
RELOCATABLE
15-BIT COMMON
RELOCATABLE
EXTERNAL REFERENCE
MEMORY REFERENCE
BYTE ADDRESS

([l

010

011

100
101
110

R; IS RELOCATION INDICATOR
FOR INSTRUCTION WORD;; R.,
FOR INSTRUCTION WORD,; ETC.

D/I: INDIRECT ADDRESSING

0
1

DIRECT
INDIRECT

MEMORY REFERENCE INSTRUC-
TIONS USE TWO WORDS, WITHIN
THE TWO-WORD GROUP “MR”
INDICATES RELOCATABILITY OF
OPERAND SPECIFIED IN SECOND
WORDS:
00 = PROGRAM RELOCATABLE
01 = BASE PAGE RELOCATABLE
10 = COMMON RELOCATABLE
11 = ABSOLUTE

Output Data Formats

EXPLANATION

RECORD LENGTH = 4 WORDS
IDENT = 101

R: RELOCATION INDICATOR
FOR TRANSFER ADDRESS

0 IF PROGRAM RELOCATABLE
1 IF BASE PAGE RELOCATABLE
2 IF COMMON RELOCATABLE

3 IF ABSOLUTE

o

T: TRANSFER ADDRESS
INDICATOR

= 0 IF NO TRANSFER
ADDRESS IN RECORD

= 1 IF TRANSFER ADDRESS
PRESENT

EXPLANATION

RECORD LENGTH = 7 WORD

IDENT = 110

SYMBOL ID. NO.: NUMBER
ASSIGNED TO SYMBL FOR

USE IN LOCATING REFER-
ENCE IN BODY OF PROGRAM.

END RECORD
CONTENT
15 8,7 . 0,15 13,12 3,2,1,0,15 0
/ d 7
R
RECORD E .
RECORD E ReT CHECKSUM
" 7
WORD: 1 WORD 2 WORD 3
15,14 0
/-
2
; RELOCATABLE
; TRANSFER
7 ADDRESS
WORD 4
EMA RECORD
15 8,7 0,15 13,12 10,9 0,15 0
RECORD g EMA
L ENGTH . € SIZE CHECKSUM
/ T
WORD 1 WORD 2 WORD 3
15 8,7 0,15 8,7 0,15 8
s | v M | 8 | svmeoL
I | ' ID. NO.
| | l
WORD 4 WORD 5 WORD 6
15 5.4 0
/ v
/ S0
& z
/ E
WORD 7

H-5

Output Data Formats

LOADR/GENERATOR INFORMATION RECORD

EXPLANATION

IDENT =7

SUB FIELD = 0 GEN RECORD
= 5 LOD RECORD

EXPLANATION

RECORD LENGTH = NUMBER OF
WORDS IN RECORD EXCLUDING
WORDS 1 AND 2 AND THE
LAST WORD.

ABSOLUTE LOAD ADDRESS:
STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW

INSTRUCTION WORDS:
ABSOLUTE INSTRUCTIONS
OR DATA

CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
EXCEPT FIRST AND LAST

15 8,7 015 1312 87 0,15 0
D
RECORD suB HECKSUM
LENGTH / EI FIELD CHECKS
% T /A
WORD 1 WORD 2 WORD 3
PACKED ASCIl STRING UP TO 27 WORDS
WORDS 4 THRU 30
CONTENT
15 87 01514 015 0
v
7
RECORD) Aafgkg“ INSTRUCTION
LENGTH /V AGORERS WORD,
.
WORD 1 WORD 2 WORD 3
15 015 015 0
INSTRUCTION
Z WORD CHECK SUM
WORD n -1 WORD n

On paper tape, each word represents two frames arranged as follows:

Bit 8 — -— Bit0
+— Feed Holes
Bit 15 - -— Bit 7

H-6

RECORD LENGTH = 4-60 WORDS

RTE CROSS REFERENCE TABLE

GENERATOR |

This Real-Time Executive Operating System Cross Refer-
ence Table Generator routine (XREF) processes an assem-
bler source program and provides a list of all symbols and
symbol references used within the program.

I-1. COMPUTER CONFIGURATION

The routine requires a Real-Time Executive Operating
System with logical unit 1 as the system console and a
standard list device.

XREF can be loaded on-line using the RTE LOADR. The
LOADR 8Z command should be used to increase the pro-
gram size to reflect the number of symbols in the programs
to be crogs-referenced. The minimum recommended size is
eight pages, with fourteen pages or more preferred to
handle programs with large symbol tables. Refer also to
the discussion on Bounds for a method to cross-reference
only parts of the symbol table at a time.

The following example presents a typical on-line loading
of program XREF:

:RU,LOADR ’
/LOADR: S8Z,12 *size increased to 12 pages
. /LOADR: RE,%4XREF *relocate module
/LOADR: SE,%CLIB *search compiler library
/LOADR: EN :end LOADR operations

On-line loading off the program XREF under the RTE-L
operating system iis accomplished by the following:

:RU,LOADR
LGADR: LIB,$CLIB *use $CLIB to do a search
LOADR: RE,%XREF *relocate module
LOADR: END *end the load process,

*libraries are now searched

2. FUNCTIONAL AND OPERATIONAL
CHARACTERISTICS

Source program iI;lput may come from:
a. An input unit specified by a logical unit number,
b. A disc file.

c. The temporary work area of the disc which was set up
by the Assembler in a previous assembly.

I3. OUTPUT FORMAT
The general formdt of the output list is:

SSSSS DDDDD/’]?T RRRRR /TT ...RRRRR /TT
RRRRR ;TT ...RRRRR /TT

where:

SSSSS
is the symbol which may be any legal label to the
assembler.

DDDDD

is the statement number in decimal in which the label
was defined. It has a maximum value of 32767, when
using the no tape number option, and a maximum
value of 2047 when using tape numbers.

TT
is the decimal tape or file number (following a zero
length record) with a maximum value of 16.

RRRRR

is the statement number in decimal in which the label
was referenced. It has the same physical limits as the
defining statement numbers.

Note: The defined format and meaning of
SSSSS, DDDDD, and TT are used in the
following paragraphs.

1-4. PSEUDO PROCESSING

ORG, ORB, ORR, IFN, IFZ, XIF, MIC, and MIC-defined
OPCODES are listed as:

*ORB " »

#*ORR » ’”]
#**[FN » » ”
** X ”» ”» ”
#HMIC » ”» ”»
**XY7 » ” »

RRRRR/TT

(where XYZ’ is a ‘MIC’-defined opcode.)

The defining statement number is replaced by a string of
asterisks.

I-5. DOUBLE DEFINED PROCESSING

If a symbol has been defined more than once, it ig listed in
the symbol list in the following format:

SSSSS ######## RRRRR/TT.... RRRRR/TT
where:

SSSSS
is the symbol.

I-1

RTE Cross Reference Table Generator

I-6. UNDEFINED LABEL PROCESSING

A symbol is referenced but not defined. The entry in the
symbol list has the following format:
SSsSs 7227???? RRRRR/TT, RRRRR/TT

The defining statement number is replaced by question
marks.

I-7. UNUSED LABEL PROCESSING

If a symbol is defined but not referenced by a statement,
the entry in the symbol list has the following format:

@SSSSS DDDDD/TT

The symbol is preceded by a “@”.

I-8. LITERAL PROCESSING

If a literal of the type =L is referenced by a statement, the
characters following the =L are handled as a normal
symbol.

If a literal of the type =A, =B, =D, or =F is referenced by
a statement, the symbol list has the following format:

LLLLL RRRRR/TT, RRRRR/TT

LLLLL
is an exact copy of the literal. DDDDD, the defining
statement number, is replaced by dots.

If the literal is seven or more characters long: LLLLL is
a maximum length of seven characters, the defining
statement number does not have the first dot, and only
the first seven characters are used. For example,
=B12345 and =B123456 would be considered as the
same literal =B12345 and would have the format.

=B12345 RRRRR/TT, RRRRR/TT

I-9. OPERATION DIRECTIVE

The operation directive for the cross-reference symbol
table is:

ruRsE

LALBLCIII
where:
source namr

is an FMGR file or logical unit number containing the
source code.

I-2

If an interactive device is specified, XREF will print a
right bracket (]) on the device as a prompt. It will then
accept input a line at a time until an END statement is
entered.

list namr

is an FMGR file or logical unit number to which XREF
will output its listing. If not given, logical unit 6 is
used. A minus symbol (—) may also be specified, in
which case the same considerations apply to the list file
as in the Assembler invocation (see Appendix E).

A
is the bounds specification.

A=0 to specify no bounds.

A=any non-zero character to request the entering of
bounds from the system console to allow multiple
passes of the cross-reference routine (see section I-10)
for further explanation of bounds parameter).

B
is tape number or no tape number specification corre-
sponding to the mode used in the assembly.

B=0 to specify use of tape numbers and a tape length of
less than 2038 statements.

Note: A blank card inserted into a card deck
before statement 2038 indicates an end-
of-tape.

B=N to specify no tape numbers are to be used (se-
quence numbers can be as large as 32767).

B=-N to cause XREF to number pages consecutively
from the last RTE-ASMB page number (-N = —page
number).

C
is the number of lines per page.

C=0 to print 55 lines per page.
C=N to print N lines per page.

Note: The cross-reference routine can also be
requested to run immediately after an
assembly. XREF can be specified via a C
parameter in the ASMB control state-
ment. In this case, the following options
are assumed: A=0,B=0,C=55.,

I-10. BOUNDS

If the symbol table overflows when cross-referencing a
program, XREF should be invoked using the bounds pa-
rameter. This capability allows the cross-reference table
to be generated for only a specified set of symbols at a
time. By entering repeated bounds specifications the en-
tire cross-reference table may be listed.

If the bounds parameter is specified, XREF will display
the following query on the system console.

/XREF: ENTER LIMITS <LH> or </E>?}

The response to. the limits query should be made by
specifying either:

LH
or:
/E
where:
L indicates the low bound

H indicates the high bound
/E terminates XREF

RTE Cross Reference Table Generator

If LH is specified, XREF will output to the list namr a
cross-reference table for all symbols which are alphabeti-
cally between the values of L and H, inclusive. The stan-
dard ASCII ordering scheme is used, with blank being the
lowest character and left arrow being the highest charac-
ter. Following its output, XREF will repeat the query.

If /E is entered, XREF will terminate.

I-11. XREF ERROR MESSAGES

Table I-1 contains a list of messages (and their meanings)
the user may receive using the ON,XREF directive. The
messages are printed as follows:

/XREF: <message>

Table I-1. XREF Messages

MESSAGE

END OF FILE

TABLE OVERFLOW

/XREF: $END <34 >

ENTER LIMITS OR /E
NO SOURCE

> 16 TAPES!!

End of a user specified source file is reached before an END instruction is found. The
XREF routine terminates.

XREF routine does not have enough core space for the table entries. The XREF
routine can be made to run with the option for specifying lower and upper bounds
and use of multiple passes.

Termination Message. Absolute assembly sources appear as shown. Relocatable
sources contain NAM symbols: <NAME>.

A request is made to enter XREF bound limits from the system teleprinter.
The Logical Source is not defined, or for RTE: A = 0. The XREF routine terminates.

More than 16 tapes or zero-length records have been encountered. XREF terminates.

MEANING

I-3

RTE Cross Reference Table Generator

I-12. SAMPLE CROSS-REFERENCE GENERATION

The following pages show a sample Assembler program using cross-reference generation.

PAGE 0001 #01 1:30 PM TUE., 6 DEC., 1977
0001 ASMB,R,L,T,Z,C

002
DO 0019 THREE OCT 3
START R 000000
AGAIN R 000002

LOOP R 000005
NEXT R 000011
NOUSE R 000012
ADD R 000013
ADDR R 000016
TIMES R 000017
THREE B 000000
TWO B 000001
INIT R 000020
COUNT R 000026
ONE R 000027
DNUM B 000002
NUM R 000031
HERE R 000043

#»x0001 ERRORS PASS#1 =+RTE ASMB 92067-16011+#+

14

PAGE 0002 #01

0001
0002 00000
0003 00000
0004 00001
0005 00002
0006 00003
0007 00004
0008 00005
0009 00006
0010 00007
0011 00010
0012 00011
0013 00012
0014
0015
0016
0017
0018 00013
0019
0020 00014
0001 00015
0002 00011
0003 00011
0004 00016
0005 00016
0006 00017
0007 00000
0008 D000O
0009 100001
0010 00020
0011 00020
0012 00021
0013 00022
PG 000
UN 0014
0014 00023
0015 00024
0016 00025
0017 00026
0018 00027
0019 00030
0020 00002
0021 00002
0022 00031
0023 (00031
0024 00043
00043
00044
0025
PG 002

000000

016020R
062017R
072026R
062043R
172016R
042044R
036016R
036026R
026005R
06201 7R

040001B

072017R
026002R

026002R

000000
000000

000003
000002

000000
060002B
072016R

LDA
062000
072017R
126020R
000000
000001
000003

000031R

000000

000173
123456

ASMB,R,L,T,Z,C
NAM EXAMP
NOP
JSB
LDA
STA
LDA
STA
ADA
1sZ
I1sZ
JMP
LDA
IFN
ADA
XIF
IFZ
ADA
XIF
STA TIMES
JMP AGAIN
ORG NEXT
JMP AGAIN
ORR
NOP
NOP
ORB
DEC
DEC
ORR
NOP
LDA
STA

START
INIT

TIMES
COUNT
=D123

AGAIN

LooP

ADDR
COUNT
LOOP
TIMES

NEXT
NOUSE

ADD ONE

ADD TWO

ADDR
TIMES

THREE
TWO

N w

INIT
DNUM
ADDR

NEG10

LDA
STA
JMP
NOP
0CT
oCcT 3
ORB
DEF
ORR
BSS 10
EQU =

NEG10
TIMES

COUNT
ONE
THREE

-

DNUM NUM

NUM
HERE

END START

ADDR, I
=B123456 CALCULATE NEXT VALUE

INIT, I

RTE Cross Reference Table Generator

1:30 PM TUE.,

DO-NOTHING USEFUL

SET COUNTER FOR LOOP.
INITIALIZE FIRST VALUE

SAVE VALUE

BUMP COUNT
REPEAT UNTIL DONE

ONE IF BY ‘N’
TWO IF BY ‘2’

SECOND TAPE

*#0002 ERRORS +TOTAL ##RTE ASMB 92067-16011++

6 DEC.,

1977

I-5

RTE Cross Reference Table Generator

I-6

PAGE 000

3

EXAMP

CROSS-REFERENCE SYMBOL TABLE

**[FN

*x[F2

*x[RB

*%x0RG

»x(RR

*xXIF

ADDR

AGAIN

COUNT

DNUM

®HERE

INIT

LooP

NEG10

NEXT

@NOUSE

NUM

ONE

START

THREE

TIMES

TWO

LA R R EEEX]

LA R E R R XX]

* 3 % K % ¥ X ¥

LA S X SRR R)

(LEE R R R X R

LR XX R XN

HHREKSNSN

00005702

00005701

00017702

00021702

00024702

00011/02

00008/01

2722?2779 9

00012701

00013701

00023/02

00018/02

00003701

HHENSHNN

00006702

00009/02

000t4/01
00017701
00007702
00002/02
00004702
00016701
00009/01
00007701
00015701
00008701
00001/02
00006701

00012702

00004/01
00012701
00014702

00002702

00021702
00015701
00025/02
00008/02
00005701

00018/01

00020/02

00010/02

00019701

00018701
00010701
00003702

00011701

00016702

00019/02

00013701

00022/02

00013702

00020/01 00015702

DO-NOTHING USEFUL
1:30 PM TUE.,

6 DEC.,

1977

INDEX

ABS, 4-12, B-9, C-1
Absolute Expressions, 2-4
ADA, 3-1, B-2, C-1
ADB, 3-1, B-2, C-1
Add Instructions, 3-1
Address Definitibn Pseudo Instruction, 4-11
Address Expressions, 2-4
Addressing

Indirect, 2-6

Memory, 1-2

Symbolic, 1-1.
ADX, 3-7, B-5, C-1
ADY, 3-7, B-5, G-1
ALF, 3-4, B-3, C-1
Alphabetic List ¢f Instructions, C-1
ALR, 3-4, B-3, C-1
ALS, 34, B-3, C-1
Alter-Skip Instructions, 3-4
AND, 3-2, B-2, C-1
Arithmetic Subroutine Calls, 4-20
ARS, 3-4, B-3, C-1
ASC, 4-14, B-10, C-1
ASL, 3-9, B-6, C-1
ASMB Statement, 1-3
ASR, 3-9, B-6, C-1
Assembler Control Pseudo Instructions, 4-1
Assembler Error Messages, G-1
Assembly Listing Control Pseudo Instructions, 4-22
Assembly Options, 1-3
Asterisk, 2-2, 2-3, 2-4

BCD-ASCII Conversion, A-4
Binary Output, 1-3

Bit Processing Instructions, 3-3
BLF, 3-4, B-3, C-1

BLR, 3-4, B-3, C-1

BLS, 3-4, B-3, C:1

Bounds, I-2 :

BRS, 3-4, B-3, C-1

BSS, 4-19, B-10,.C-1

BYT, 4-19, B-10} C-1

Byte Processing Instructions, 3-2

CAX, 3-5, B-5, C-1
CAY, 3-5, B-5, C-1
CBS, 3-4, B-3, C-1
CBT, 3-3, B-3, C-1
CBX, 3-5, B-5, G-1
CBY, 3-5, B-5, C-1
CCA, 3-4, B4, (-1
CCB, 3-4, B-4, C-1
CCE, 3-4, B-4, C-1
Character Set, HP Computer Systems, 2-1, A-1
CLA, 3-4, B-4, C-1
CLB, 3-4, B-4, C-1
CLC, 3-8, B-6, C-1

CLE, 3-4, B-3, B4, C-1

Clear Flag Indicator, 2-7

CLF, 3-8, B-6, C-1

CLO, 3-8, B-6, C-1

CMA, 3-4, B4, C-1

CMB, 3-4, B4, C-1

CME, 3-4, B-4, C-1

CMW, 3-2, B-2, C-1

COM, 4-5, B-9, C-1

Comments Field, 2-7

Common, 4-7

Computer Configuration, I-1
Consolidated Coding Sheets, D-1
Constant Definition Pseudo Instructions, 4-14
Control Statement, 1-3

Counter, Program Location, 1-2
CPA, 3-2, B-2, C-1

CPB, 3-2, B-2, C-1
Cross-Reference Table (XREF), RTE, I-1
CXA, 3-5, B-5, C-1

CXB, 3-5, B-5, C-1

CYA, 3-5, B-5, C-1

CYB, 3-5, B-5, C-1

DBL, 4-13, B-10, C-1

DBR, 4-13, B-10, C-1

DEC, 4-14, B-10, C-1

DEF, 4-11, B-9, C-1

Define User Instruction Pseudo Instruction, 4-23
Delimiters, Field, 2-1

DEX, 4-17, B-10, C-1

DEY, 4-17, B-10, C-1

DIV, 3-9, B-6, C-1

DJP, 3-12, B-7, C-1

DJS, 3-12, B-7, C-1

DLD, 3-9, B-6, C-1

DST, 3-9, B-6, C-1

DSX, 3-6, B-5, C-1

DSY, 3-6, B-5, C-1

Dynamic Mapping System, 3-10

EAU Instructions, 3-9
ELA, 3-4, B-3, C-1
ELB, 3-4, B-3, C-1
EMA, 4-19, B-10, C-1
END, 4-5, B-9, C-1
ENT, 4-7, B-9, C-1
ERA, 3-4, B-3, C-1
ERB, 3-4, B-3, C-1
Error Messages, Assembler, G-1
EQU, 4-13, B-10, C-1
Evaluation of Expressions, 2-4
Expression Operators, 2-4
Expression Terms, 2-4
Expressions
Absolute, 2-4
Evaluation of, 2-4
Relocatable, 2-4

Index

EXT, 4-7, B-9, C-1

Extended Arithmetic Unit Instructions, 3-9

FAD, 3-10, B-7, C-1

FDV, 3-10, B-7, C-1
Fences, 3-18

Field Delimiters, 2-1

FIX, 3-10, B-7, C-1

Flag, I/O Interrupt, 2-7
Floating Point Instructions, 3-10
FLT, 3-10, B-7, C-1

FMP, 3-10, B-7, C-1
Format, Replacement, 3-19
FSB, 3-10, B-7, C-1

GEN instruction, 4-21

Halt Instruction, 3-9, B-6, C-2
HED, 4-22, B-10, C-2
HLT, 3-9, B-6, C-2

IFN, 4-4, B-9, C-2
IFZ, 4-4, B-9, C-2
INA, 3-5, B-4, C-2
INB, 3-5, B-4, C-2
Input
Increment-Skip Instructions, 3-1
Index Register Instructions, 3-5
Indicator, Clear Flag, 2-7
Indirect Addressing, 2-6
Input/output Instructions, 3-7
Instructions
Add, 3-1
Alter-Skip, 3-4
Bit Processing, 3-3
Byte Processing, 3-2
Dynamic Mapping, 3-10, 3-12
EAU, 3-9
Extended Arithmetic Unit, 3-9
Floating Point, 3-10
Halt, 3-7, 3-9
Increment-Skip, 3-1
Index Register, 3-5
Input/Output, 3-7, 3-8
1/0, 3-7
Jump, 3-1
Load, 3-1
Logical Operations, 3-2
Memory Reference, 3-1
No-Operation, 3-7
Overflow, 3-7, 3-9
Register Reference, 3-4
Shift-Rotate, 3-4
Store, 3-1
Word Processing, 3-2
Interrupt Flag, I/0, 2-7
I/0 Instructions, 3-7
1/O Interrupt Flag, 2-7
IOR, 3-2, B-2, C-2
ISX, 3-6, B-5, C-2
ISY, 3-6, B-5, C-2
187, 3-1, B-2, C-2

Index-2

JLY, 3-7, B-5, C-2
JMP, 3-1, B-2, C-2
JPY, 3-7, B-5, C-2
JRS, 3-12, B-7, C-2
JSB, 3-1, B-2, C-2
Jump Instructions, 3-1

L-Series

Systems, 1-1

Instruction Replacements, 3-18
Label Field, 2-1
LABEL Symbol, 2-1
LAX, 3-6, B-5, C-2
LAY, 3-6, B-5, C-2
LBT, 3-3, B-3, C-2
LBX, 3-6, B-5, C-2
LBY, 3-6, B-5, C-2
LDA, 3-1, B-2, C-2
LDB, 3-2, B-2, C-2
LDX, 3-6, B-5, C-2
LDY, 3-6, B-5, C-2
Length, Statement, 2-1
LFA, 3-12, B-7, C-2
LFB, 3-13, B-7, C-2
LIA, 3-8, B-6, C-2
LIB, 3-8, B-6, C-2
List Output, 1-6

Listing Control Pseudo Instructions, 4-22

Literals, 2-6

LOD Instruction, 4-21
Load Instructions, 3-1
Location Counter, 1-2
Logical Operations, 3-2
LSL, 3-9, B-7, C-2
LSR, 3-9, B-7, C-2
LST, 4-22, B-10, C-2

Map Segmentation, 3-11
MBF, 3-13, B-7, C-2
MBI, 3-13, B-7, C-2
MBT, 3-3, B-3, C-2
MBW, 3-13, B-7, C-2
MEM Violation, 3-12
Memory Reference Instructions, 3-1
MIA, 3-8, B-6, C-2
MIB, 3-8, B-6, C-2
MIC, 4-23, B-10, C-2
MPY, 3-9, B-6, C-2
MVW, 3-2, B-2, C-2
MWF, 3-13, B-7, C-2
MWI, 3-14, B-7, C-2
MWW, 3-14, B-7, C-2

NAM, 4-1, B-9, C-2
No-Operation Instruction, 3-7
NOP, 3-7, B-4, C-2

Numeric Terms, 2-4

Object Program Linkage Pseudo Instructions, 4-5

OCT, 4-17, B-10, C-2
Opcode Field, 2-2
Operand Field, 2-3

Operation Directive, I-2
Operators, Expr:ession, 2-4
Options, Assembly, 1-3
ORB, 4-2, B-9, ¢-2
ORG, 4-2, B-9, C-2
ORR, 4-3, B-9, C-2
OTA, 3-8, B-6, C-2
OTB, 3-8, C-6, C-2
Output

Binary, 1-3

List, 1-6
Overflow Instructions, 3-8

PAA, 3-14, B-8, C-2
PAB, 3-14, B-8,:C-2
Paging, 1-1
Passes, 1-1
PBA, 3-14, B-8,:C-2
PBB, 3-14, B-8,/C-2
Power Fail Chatracteristics, 3-11
Processing
Double Defined, I-1
Literal, I-2
Pseudo, I-1
Undefined Label, I-2
Unused Label, I-2
Program, Comnion, 4-7
Program, Source, 1-2
Program Locatipn Counter, 1-2
Program Relocation, 1-1, 1-2
Protected Mode; 3-12
Pseudo Instructions
Address Defihition, 4-11
Arithmetic Subroutine Calls, 4-20
Assembler Control, 4-1
Assembly Ligting Control, 4-22
Constant Definition, 4-14
Define User Instruction, 4-23
Linking, 4-5
Listing Control, 4-22
Object Program Linkage, 4-5
RTE-L, 4-21 -
Storage Allo¢ation, 4-19
Symbol Definition, 4-11

RAL, 3-4, B-3, C-2

RAM, 4-24, B-10, C-2

RAR, 3-4, B-3, C-2

RBL, 3-4, B-3, -2

RBR, 3-4, B-3, C-2

Register Reference Instructions, 3-4
Registers, Statys and Violation, 3-11
Relocatable Expressions, 2-4
Relocation, Program, 1-2

REP, 4-5, B-9, C-2

RPL, 4-10, B-9, C-2

RRL, 3-9, B-7, (-2

RRR, 3-9, B-7, C-2

RSA, 3-15, B-8, C-2

RSB, 3-15, B-8,/ C-2

RSS, 3-5, B-4, (-2

RTE-L Pseudo Instruction, 4-21

RVA, 3-15, B-8, C-2
RVB, 3-15, B-8, C-2

SAX, 3-7, B-5, C-2

SAY, 3-7, B-5, C-2

SBS, 3-3, B-3, C-2

SBT, 3-3, B-3, C-2

SBX, 3-7, B-5, C-2

SBY, 3-7, B-5, C-2

SEZ, 3-4, B-4, C-2

SFB, 3-3, B-3, C-2

SFC, 3-8, B-6, C-2

SFS, 3-8, B-6, C-2

Shift-Rotate Instructions, 3-4

SJP, 3-15, B-8, C-3

SJS, 3-15, B-8, C-3

SKP, 4-22, B-10, C-3

SLA, 3-4, 3-5, B-3, B-4, C-3

SLB, 3-4, 3-5, B-3, B-4, C-3

SOC, 3-8, B-6, C-3

508, 3-9, B-6, C-3

Source Program, 1-2, 1-3

SPC, 4-22, B-10, C-3

SSA, 3-5, B4, C-3

SSB, 3-5, B-4, C-3

SSM, 3-15, B-8, C-3

STA, 3-2, B-2, C-3

Statement
Characteristics, 2-1
Length, 2-1

STB, 3-2, B-2, C-3

STC, 3-8, B-6, C-3

STF, 3-8, B-6, C-3

STO, 3-8, B-6, C-3

Storage Allocation Pseudo Instruction, 4-19

Storage Instructions, 3-1
STX, 3-6, B-5, C-3

STY, 3-6, B-5, C-3

Summary of Instructions, B-1
SUP, 4-22, B-10, C-3

SWP, 3-9, C-3

SYA, 3-15, B-8, C-3

SYB, 3-15, B-8, C-3

Symbol, Label, 2-1

Symbol Definition Pseudo Instructions, 4-11

Symbols, 1-1
Symbol Table, 1-3
Symbolic Addressing, 1-1
Symbolic Terms, 2-2
SZA, 3-5, B-4, C-3
SZB, 3-5, B-4, C-3
Tape Formats, H-1
Terms

Numeric, 2-4

Symbolic, 2-2

Expression, 2-4

TBS, 3-3, B-3, C-3
UJP, 3-16, B-8, C-3

uJs, 3-16, B-8, C-3
UNL, 4-22, B-10, C-3

Index

Index-3

Index

UNS, 4-22, B-10, C-3
USA, 3-16, B-8, C-3
USB, 3-16, B-8, C-3

Word Processing Instructions, 3-2

XAX, 3-5, B-5, C-3
XAY, 3-5, B-5, C-3
XBX, 3-5, B-5, C-3
XBY, 3-5, B-5, C-3
XCA, 3-16, B-8, C-3

Index-4

XCB, 3-16, B-8, C-3
XIF, 4-4, B-9, C-3
XLA, 3-17, B-8, C-3
XLB, 3-17, B-8, C-3
XMA, 3-17, B-8, C-3
XMB, 3-17, B-8, C-3
XMM, 3-17, B-8, C-3
XMS, 3-17, B-8, C-3
XOR, 3-2, B-2, C-3
XSA, 3-18, B-8, C-3
XSB, 3-18, B-8, C-3

READER COMMENT SHEET

RTE-IV ASSEMBLER
Reference Manual

92067-90003 April 1980

Update No. ________
(if Applicable)

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.

Please use additional pages if necessary.

FROM:

Name

Company

Address

M e
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 141 CUPERTINO, CA.

— POSTAGE WILL BE PAID BY —

Hewlett-Packard Company

Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

ATTN: Technical Marketing Dept.

() yvrel

HEWLETT-PACKARD COMPANY

Data Systems Division

MANUAL PART NO. 92067-90003 11000 Wolfe Road
Printed in U.S.A. April 1980 Cupertino, California 95014

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	G-01
	G-02
	G-03
	G-04
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	index-1
	index-2
	index-3
	index-4
	replyA
	replyB
	xBack

