TECHNICAIL SPECIFICATIONS
for

RTE-IV

RTE-IV TECHNICAL SPECIFICATIONS

SECTIONS
I . DISPATCHER
1T RTIOC
IIT EXECUTIVE/MEMORY ALLOCATION
Iv SCHEDULAR
v PARITY ERROR
VI SYSTEM LIBRARY
VIIT EMA FIRMWARE
VIII CONFIGURATOR (CURRENTLY UNAVAILABLE)
IX GENERATOR
X SWTCH (CURRENTLY UNAVAILABLE)
XTI LOADR (CURRENTLY UNAVAILABLE)
XIT MULTI-TERMINAL MONITOR

XIIT ASSEMBLER

TECHNICAL SPECIFICATIONS
FOK

DEF4 - RTE IV DISPATCHER

EJW
January 23, 1978
Project 1106

FIG.
FIG.
FIG.
FiG.
FIG.
F1G.
F1G.

TAELE CF CCONTENTE

General Cverview of Cperation

Exterral Communicaticn

2.1 E&ystem 'laples kefererncec

-

NNy N

NN N
> LN

¢« o

-L.
l'
1

w N =

1L Segment
Femcry Frotect Fence 1lable
Memory Allccation lable

System kase Fage Communication
Dispatcher Entry Fcints
Cispatcher 's External Tables ana Fointers

Detailec¢ Technicel Aspects c¢f Uperations

3.1 Initialization

3.2 -Dispatching
3.2.1 Memory Resident Frcgrams
3.2.2 Disc kKesident Frcgrams
3.2.3 UDisc Lkesident Mep Setup

3.3 Swapping

3.4 rother Fartitiocn Usage

3.5 (Clean Up

1 RYE IV IL Segment

z KIE IV nemory Protect Fence Table

3 KIE IV Memory Allccation Table

4 RTE IV Memory Allocaticn Table Entry

5 RTE IV Mother Fartiticns

6 RTE IV Dispatcher’s Allocated Partition Lists

7 RTE IV User Ease Fage

'.0 GENLRAL OVERVIEW CF OFLRATICN

‘Tﬁe Dispatcher module’s main function is to control program execution
by switching CPU control to the highest priority program in the
scheduled list if it is ready to run. The Dispatcher serves as the
return point from the operating system back to the user. If there
are no prcgrams scheduled, the Dispstcher prepares for execution of
the idle loop under the user map and waits for an interrupt to
occur. An interrupt is generated by an I/0 device, a user program
reguest, or an error condition signal which requires entry into
the operating system for a response. The Dispatcher turns control
over for program execution until the next interrupt.

In the process of turning control toc a user program, the Dispatcher
needs tc perform a number of smaller tasks. Once it is determined

- that a program should be executed, the Dispatcher needs to check
whether or not the program is present in memory. If the program is
not already in memory then it needs to be loaded from the disc. The Dis-
patcher is responsible for finding an empty partition of the proper type and
size, if one was not previously specified. If there are no free partitions,
it would be necessary tc swap out a dormant program or a lower priority
executing program to make the partition available for the load. Then
finally the user map and memory protect fence are set up before
executing the program, :

‘Other functions of the Dispatcher are to set up the partition list
"~ aders at initializaticn cf the operating system and to cocrdinate
wwe Ccleaning up of a program’s resocurces and system available
memory when a program is aborted.

2.0 EXTERNAL CCLMUNICAT IGH

The Lispatcher ccmmunicates with the rest ct the operating system
throuyh the system tables, pase page communicaticn area, and
cuproutine calls to/from the rest c¢f the system. There are no
direct paths of communicaticn between the Dispatcher and any

user proyram because there are no tunctions in the Lispatcher
which would pbe useful tc a calling progran.

2.1 System Taples Reterencea
z.1.1 1D Segment (Figure 1)

in ID segment is used fcr many things by the Dispatcher. Each

1L segment is linked intc the scheduled list by word 0. The
priority, type, and status are checked to determine whether or not
the program may execute. ‘“he memory protect fence table index
(,PFI1) ana number of pages are set intc word 21 by the system
generator or by the relcceting loader. The number of pages (which
does not include a base page) is the numper of pages actually
occupied by a program an¢ its largest segment (if any) or the
cverride size specifiec¢ by the user. The size of an EMA program
includes the mapping segmerit size (still excludes the base page).

1he program acdress pounds in wcrcds 22-25 are used by the
Dispatcher for loading the pregram intc memory. The program’s
disc adaress is in word 26. If the preogram is swappea cut,

the Dispatcher keeps the acdress of the swap tracks in wora 27.

IG Segment woru 2& is used by the Lispatcher to determine whether

Oor not a progralh is using an extended memory area (LMA). If

this worc¢ is zero, no bEMA is used. If the word is non-zero, the

Il bExtension is checked tc see if the default LA size was chosen. 1If it
was not defaultecd then tke vrcgram size (from word 21) minus the MSEG size
ic acdea to the Lila size plus pase page to cvetermine

the partiticn size required. 1f the EMA size was defaulted, the

lergest Mother partiticn size, SMCHN, is used as the partition

size reguirec (see fection 3.2.2).

Z2.1.2 Memory Prctect Fence Table (Figure 2)

The FMemory Protect Fence table (SMPFT) a table of addresses used
oy the Lispatcher to set the correct value for the memory protect
fence. 1his address isg ctcred in the base page word FENCE (1775).
tits 7-9 of word 21 irn the ID Segment contain the index into this
table.

. 7.1.3 Memory 2llecatior Table (Ficuve)

‘Egch partiticn c¢efineé by the user at generaticn time will have
an entry in the Memory Allocation Table. The table starts at
the entry point SMATA and extends upwards toward high memcry. The
word SMNP contains the total number of partitions (set by the
generator). Each partition entry (see Figure 4) is 7 wcrds leng.
The MAT Link Wword contains -1 if the partition is undefinec.

There are 3 different types <f partitions:

l. Ekeal Time Partiticne beacded by SRIFR at system start-up.
2. Backgrounc¢ Partiticns headed by S$BGFF at system start-up.
3. Mcther Fartitions headed by SCFR at system start-up.

These .3 lists are set up by the Generator in order of increasing

size. The prinary purpcse for having K1 partitions and BG

partitions is tc keep the two classes of programs, RT and BG,

from contending with each cther for nemcry. There are no

differences in the two classes cf partiticns. Mother Fartitions are pri-
marily for EFA pregrams.

Mother partiticns are cefined curing generation by a "YES" arnswer
to the prcmpt "SUBFAKRTITIONS?" when a partition is larger than
the maximum addressable space. Although Mother partitions are in
a separate list, subpartiticns may be linked into either a

‘ther partition (cee Figure 5) or linked into a BG or RT
worlither free or allocated) list. When the subpartitions are
part of a Mother partition, the Mother partition’s MAT entry
word 6 (Subpartition Link Word - SLVW) will pcint to the Link
Word (word 0) of the first subpartition whcse SLw will point to
the link word of the second subpartition and so on. The SLw of the
last subpartition will point to the Link Word cf the Mother. 1If
nc csubpartitions were actually defined but the prompt for
subpartitiorns was answered "YES" thern the SLW of the Mother
partition will peint tc the Link Word of the same MAT entry.

When a Mother partition is in use, the entire chain of subparti-
ticns is in use and this is indicated by the C bit being set.

In this case, all partition status information is kept in the
hother partition MAT entry; i.e.; priority, ID segment address,

and Read Completion flag. 1In addition, the chained partitions

are treated as a single entity whilje the C bit is set. Individual
subpartitions are not swappable in this case - the whole Mother
partition may be swappeé if needed.

N
1
(98]

The Dispatcker checks fcr empty partition lists at start-up
(see Section 3.1). It there are nc Real Time partitions then
the heacer of the k1 partitions list will point to the
Background partitions. 1If there are nc BG partiticns then the
k1l partiticns are used in the BG list. If there are noc Mother
partitions EG partiticns are useé unless there are no BG
partitions, in which case the RT partiticns are used.

The sizeeg of the largest partition of each type are kept in
3 wordes:

l. SMFIP - size of the largest non-reserved RT partition.
2. SMBGP - size of the largest ror-reserved BG .partitiocon.
3. G&MCHN - size of the largest ncn-reserved Mother partition.

2.2 System Base Fage Communication

* XIDEX 1645 IL EXT addr of current prog cr 0
* XMATE 1646 AT address cf current program or 0
* XI 1647 Pointer to current program’s X-Y csave area
*¥ SKEDD 1711 Head of schecduled list
* XEQT 1717-1733 Currert program’'s II' Segment pointers
SWAP 1736 Swap delay in bits 8§-15
BPAZ 1743 Last word user base page (add 1 for BP fence)
LBORG 1745 Logical address of Resident Library
* KRTDRA 1750 Dynamically set address
* AVMEM 1751 bounds for partitiocon
* BGDRA 1754 resident programs
* TATLG 1755 Dispatcher locks disc tracks for FMGEK
TATSL 1756 #lracks system disc
SECT2 1757 #Sectors LUZ
SECT3 176¢C #Sectors LU3
* FENCE 1775 Memory Frctect Fence value for user
* BGLWA 1777 Dynamically set bocund

* Set or charnged by the Lispatcher.

ia]

‘gKLDM

SBRED

SDMAL

T 'AXP

3 Dispatcher Entry Points

Subroutine, used by SCHEDULER to unlink a partition’s
MAT entry from the allocatec¢ list into the dormant list.

The calling seguence:

<A-reg> has ID Segment Address
JEE SALDM

Subroutine, usec py SCHEDULER to read in program segments.
The calling secuence:

<B-reg> has Il Sfegment Address
JSE $BRED_

Subroutine, usec¢ by SCHEDULER to unlink a partitien’s
MAT entry from the dormant list into the alloceted
list.

The calling seguence:

<A-reg> has Il Segment Address
JSB $DMAL

Subroutine, callec by the routine $PEEKR when

a partition is uncefined cr by the SCHEDULFR when a
partiticn’s "reserved" status is changed by the RS command.
This subroutine searches the MAT to determine the values of
$MBGP, $MKTF and $MCHN by scanning each MAT entry for

the largest partition of the specified type and update

the appropriate word., $MAXP may have to update more than
ore (and maybe all) if the size words if any of the
partition lists were initially empty. 7This is necessary
because the DISPATCHER would have changed the list

pointers of the empty list(s) to pecint to a non-empty

~list.

The calling Sequence:

JSB $MAXP
<return>

SPKCN

SRENT

SSMAF

$UNPE

SXLM

$LLZZ

2-5

Suproutire, callec by DISPATCHLR and SCHEDULER to
relink a partiticn in the allocated list by
priority.

Calling seguence:

<A-reg> has ID Segment Acdress

<B-reg> has new priority

JSE SPRCN

Entry point, JMP there from the DISPATCHER and EXEC for
setting up the Kecident Library address in the memory
protect fence.

Subroutine, calleda by DISPATCHER and KRTIOC to set up
the user map. Unused pages are write-protected.

Calling seguence:

<A-reg> has length of program to map in pages
<B-reg> has HAT entry adudress

JSE $SSMAF

Suproutine, called by $PERR to unlink partition MATA entries and
uncefine the partition where a parity error is detecteé in it.

Callinag sequence:

<E-reg> has MATA address of partition
JSB SUNFE

Entry point, actual entry for $XEQ where the main
dispatching algcrithm is performed.

Subroutine, called by non-privileged drives to set
up user mapg.

Calling sequence:

<A-reg> has 1D Segment Addr
JEE SKXLMP (Entry via Table Area 11 entry point)

Entry point, useu by DISPATCHEF and SCHELDULER as the
head of the program avort list. This entry point
is used as a subroutine during the start-up sequence.

" 4 Dispatcher’s External Tables ana Pointers

X 11 of these entry points ax@ located in Table Area 2 unless
otherwise specified. .

SBGFR Pointer, BG free list initialized by the Generator.
SCFR Pointer, free list header of Mother partitions,
initialized by Generator.
scrsT \Value, start page number of COMMON area, set up by the Generator.
SEMRP Address, last word-of memory resident program area,

set by the Cenerator.

SENDS Value, number of pages occupied by the system, its base
page. Both table areas, System Driver Area, driver
partitiocn area, Common, and the first 2K of System
Available Memory. 7This word is initialized by the
Generator.

SIDEX Pointer, ID Extension list.

3.0 DETAILED 1ECHNICAL ASFECIS CF CPERALION

This pcrticn ot the lechnical Specifications is a detailed
agescripticn cf major pcrticre of the DISPATCHEK code as
cutlined in the general overview (Secticn 1.0). It is
assumed that the reader has a gccd general understanding cf
the R1E operating system.

3.1 1Initializaticn

Y4277 serves as the entry point of the initialization subroutine
which is executeu only once during system initialization.

The routine first sets up the starting address of SSGA in

$SCAF for the LXEC. “Then $22%2 loads the user map with the
memory resident map registers which were built by the Generator
in SMEKMP. Whenever a memory resident program is dispatched,
SMRMF is used tc set up the user map.

Next, the $%Z227Z routine will set the base rage fence so that all
adaresses between 1l6XX ana 1777 are not mapped. 7The fence value
mirue one is contained in base page location P2 (1743) which is the
accress of the last available user link.

A number of system dependent address and sizes are calculated and saved so

that they may be reused by the DISPATCHEK without being recalculated each tin
Some of these "constants" include the address of the memory resident library,
the number cf pages in the memory resident library, the starting register number
anc the number of registers to pe used for mapping chunks of EMA to be

swapped.

I'he partition free lists are also checked by the Lispatcher
during the initialization of the system. If the BG free list
neacer (5bGKhR) is zerc, meaning that it is empty, then the RT
free list pointer ($KTFK) is stored into S$BGFK. If there were
nc kK1 partiticns then the K! free list pointer will be set

equal SEGFR. 'lhe maximum unreserved partition size words, $MRTP
ard SMBGF, will be update¢ accordingly. If the Mother partition
list is empty the $BGIFF pointer will be used, assuming that the
LG list is not empty since we’'ve already done the check above.
SMCHN will alsoc pe updated. However, if it turns out that the
BG list is empty cecause the RT list was empty, then with all
three lists empty the ¢CHELULER will report an error cn any
scheauling attempts. This code is in subroutine LSTIN which is also
called by SMAXE.

ihe last thing core curing initialization ic the scheduling of

the File Manager program, FMGK. ‘The Dispatcher first locks

all cf the aisc tracks by saving the numper of tracks word (TATLG)
in the ¥MGLE s firest parameter worc and then replacing TATLG

with -1,

3-2

‘e DISPATCHER'S initializaticn code is overlayed by the dise
!’ triplets which are built for doing progran loads anc swaps.

3.2 Llispatching

$x%CC (user map entry point, S$SXEQ) is the entry pcint intc the
L1:FATCHEER code wliich performs the allocation of executicn time
tc programs. 7The primary objective of $XCQ is to execute the
highest priority program in the schedulecd list, SKEDD, if
pessible.

Firet the LISPATCHLE checks tc see if there are any programs
which were aborted (see Section 3.5). If no programs were
aported, then the DISPATCHER checks the scheduled list. 1If

there are no programs in the scheduled list, or for some reason
the programs in the list can’t be executed at this time, the
"iaole loop" is executed inctead of a user program. The bace

page point-ct-suspension word, xSUSP, is set to the idle loop
code address and the base page register save area pointers (XA,
b, HEC and XI) are set up tc use a two-word dummy cave area.

The idle loop cocde ($IDLE) and dummy save area are located in
Table Area I so the user map may be used. The base page word XEQT
is cleared to indicate that no program is executing, the memory
protect fence register is set to zero and stored in FENCE on base
page. Then it exits the system via $IKRT to enable memory
protect, the interrupt system and¢ the user map.

It there are programs to pe scheduled in the SKEDD list, the
CISPATCHER makes the decision to execute a program based on
the program’s priority, status, type, and address space needs.

If the currently executing program is of equal or higher priority
then the program in the scheduled list, execution of the current
program is resumed. If the program in the scheduled list

1s higher, a check is made to see if the program is in memory

and if it can be executed. If it can be executed the user map
registers are set up with the program’s physical page numbers.
The program’s logical address bounds are set up in RTDRA, AVMEM,
EKLKA and BKLWA. The ID Segment pointers are set up in base page
at XEQT. 'The X and Y regicsters save area address is also set

up at XI.

Ncw that the program is ready to execute, the address of where

to pegin or resume execution is determined. If the pcint of
suspensicn addrese is zero, control is given to the program at

the primary entry pcint. 1t the point of suspension is non-zero,
control ic returned to that address. The memory protect fence is
set up according to the Memcry Protect Fence Table index in the ID
Segment., 1hen control is turned cver tc the program by exiting
through $IRT which enables memory protect, enables the interrupt
system, and enables the user map.

"“e general cispatching procedure descripbed above is slightly
wriferent for different types of programs.

3.2.1 Memory Resident Programs

If the scheduled program is a Memory Resident Program, the memory
protect fence may be set differently since these programs are
the only type which may reference the Resident Library. The
Dispatcher will clear the Write Frotect bit from the Residernt
Library pages in the Memory Resident Map by clearing the sign
bit from those words when the User Map is being set up. All
the other registers would remain the same as in the Memory
Resident Map Table ($MRMP) which is never changed. Then the
memory protect fence is set at LEUKG if the reentrant bit is
set in the Il Segment. 1This code has an entry point of $RENT
for access by the EXEC.

3.2.2 Disc Resident Frograms

If the scheduled program is a disc resident program, it needs to

be loaded from the disc into a partition which was allocated

for it. If a partition was pre-assigned at relocation time,

that MAT entry will be checked to see if it is available or if

its resident program is swappable. 1f either case is true, the

MAT entry will be set up for the new program and will be

linked into the allocated list of the pertinent type. The MAT
try will not be modified or relinked if its current resident
the program which RTE is trying to dispatch.

If a partition was not specified at lcad time, the MAT entry for
the partition in which the prcgram was last resident will be
checked to see if the program is still resident. The MAT entry is
first checked to see if the partition still exists. The partition
may be undefined if a parity error was detected in one of its
pages since the program was last resident there. If the partition
still exists anc¢ the proyram was the last cccupant in there,

the partition is set up tc be used and the program is dispatched
there after the user map is built (see Section 3.Z.3).

If the program is no longer resident in the partition or the
partiticn became undetined, & default partition list will be
scanned for a free partition. The default partition types are:

a. RT program (Type 2) - RT partition (SRTFR)

D. BG program (Type 4) - BC partition (SEGFR)

C. Privileged program (Type 3) - BG partitior ($BGFEK)
d. EMA prcgram - Mother partition (S$CFK)

ror kKT, 6 anc privileged precqramse, the arpropriate free list will

be scanred for the smallest free partiticr in which the program

can fit. LEMA prograins which have a specific EMA size declared will get
the smallest free Mother partitiorn. But, LMA programs which let the EMA
slze defavlt will take cn the maximum Mother partition size ($MCHN).

This size minus the program ccde cize igs then put intc word 29 of the

IC segment tc prevent the problem where a swapped cut program may

be reloacded into a smaller partition if SMCHN was changed because

of a parity error on the partiticr cr it became reserved.

If a free partition is not available, the appropriate dormant
list (R1DM, BCDNM or CDNM) will be scannec for a partition with
a swappeble program. The cormant lists are a subset of the
allocated lists (see Figure 6). The last entry in the dormart
list pcints tc the ellccatecd list so if the cormant list is
empty, the dormant list just pcints tc the allocated list.

Upcn finding a suitable partition, the occupant will be swappec¢ out.
The MAT entry will be reset anc relinked, and prepared for loading
of the cisc resident program. I1f no dormant partition qualifies

fcr the swap, the allocated list (K1PK, BGPK or CPR) will be

scennea for the lowest pricrity program which can be swappec.

The same procedure cescrivec for the dcrmant swap will be followed.

3.2.3 Disc kesident liap Set Up

Cnce a partition is allocated for a program, the user mep is set
up for the program. 1f the program is being schedulec initially
(program’s first dispatch) the User Map registers must be

loaded by the DISPATCHEK and a copy of it saved in the user’s
protectec portion of base page (see Figure 7). If the program
is being re-dispatched, tc continue after being suspended or
after being "bumpec" by a higher priority program, the User

Map registers are set up by copying them from the saved copy

in the protected pcrtion of the user s base page.

A program’s first dispatch is identified by the fact that the
pcint of suspensicn word (XSUSP) is 0 in the program’s ID
Segment. 1he base page register (logical page () is loaded with
the page value in worc 3 cf the MAT entry. The next registers
are then loadec sequentially with numbers starting at one end
incrementea by one in each successive register. The number of
registers set in this manner depends on the progyram type

or whether or not the program uses CCMMON.

the program type is 2 or 3, the number
Of registers set sequentially is determinea by one less than the
value of §$SDA acddec to $SL12. Actually the number of registers
mepped is one less than $SDA. The next registers mapped
(number of registers is determined by $SDT2) have the write-protect
bit set. This maps into the User Map: Table Area 1, the Driver
Partition Area, CCMMON (including SSGa), write-protected System
Driver Area and write-protected Table Area 2.

If the program is not type 3, the Memory Protect Fence Table Index
(in the ID Segment) is checked to see if the program uses any
COMMON or E£SCGA. If COMMON or SSGA is used, the number of v
registers set up follcwing the base page register is determined

by one less than the value in $CMST. If COMMON or SSGA is needed,
the value $SDA -1 is the number of registers to map in Table Area 1,
the Driver Partition Area, and COMMON. The user program is mapped
in the registers following these registers peinting to the

system areas.

The next registers are loaded with the next physical page numbers
sequentially following the page used for the user base page. These

are loadec into the map registers until the number of registers

specified in word 21 of the ID Segment have been set up. The non-standard
MSEG bit (bit 15 of word 0 in the ID Segment extension) is set if the
program is an EMA program to force the EMA subroutines to remap.

“wrfc remaining registers in the user map will be read/write protected
to insure that a program cannot access memory outside of its
partition. 1his mapping is done in $SMAP which is the only ccde
which lcads the user map to describe a specific program. It is also
calle¢ by KTICC. :

A copy of the user map is saved in the last 32 words of the user’s
physical base page (see Figure 7). The system’s map register for
the driver partition ($DLVPI) is used to map in the user’ s base page.
This portion of the base page is not used during the program’s
execution since the system communication area is always mapped in
or. the top portion of the user base page. '

wWwith all of the above done the program is ready for dispatch.

3.3 Swapping

A program is swapped cut of memcry to make a partition available

for another program to run. The first programs chosen to be swapped
are the ones in the dcrmant list. These programs are the ones

which have terminated with either the save resources or serially
reusable opticn. Ctherwise, programs with the lowest priority

will be checkec for swappability.

Programs are nct swappavle it any of the following are true:

A memory lock is in effect.

1f has & higher priority than the program to be scheduled.
It is dormant pbut is higher priority and is in the time list
tc be scheduled in less than the minimum permissible amount
of time specified in SwWAP.

4. 1t is I/C suspended with the buffer in the program area.

W N =
e

wWwhen a swap is required, the necessary number of tracks needed to
swap the program out are computed and a request is made to SDREQ
for the contiguous disc tracks. The number of tracks is computed
by rounding up the number of sectors (to next even sector) needed
for the base page and rcouncing up the number of sectors (to the
next even sector) needec for the Main Code. The number of sectors
is then converted to tracks and it is then rounded up to the end
of a full track. 1If tracks are not currently available, swapping
cannot take place and the LISPATCHEK proceeds to check the next
program in the scheduled list (if any). If tracks are available,
the necessary $XSIU parameters are computed.

SETUP is the subrcutine which creates the parameters for the $XSIG
disc calls. EETUP guarantees that all calls to read or write disc
tracks are broken down intc groups of smaller I/0 recuests. Each
one of these smaller groups of 3 words each (triplets) define an 1I/0
request which will not cross a track boundary. The triplets have
(1) starting memcry address cf the piece of data, (2) the number

of words to transfer, and (3) the starting track and sector address.
These triplets are built in memory overlaying the DISPATCHER’S.
initialization code (code following $Z22%2Z). There may be up to
seven triplets for a $XSIO call (enough for a 32K transfer with 6K
words per track). fThe triplets are terminated by a zero.

There are five separate $XSIO calls, one for each type

load/swap 1/C so that each call car be started independently and
overlap in time. Disc accesses for each type of partition can be
completed at different times depending on their sizes. For each of
these calls, there are triplets tables. The following table

shows the names used by LISFATCHER.

- e —— - = — —————— e " ——— - - M S W G ! W T b e W W - NS Wk fre. Gn SBe e . . o

| | | | | |
| Type of | Code | Triplets | Triplets | Triplets |
| $XSIC CALL| Busy | Area | Terminator | Area I
| | Flag | Terminator | Address | Pointer |
| I I I | |
R e [=== == e R et R i LT |
I _ I | | | |
RT	RUSWER	RTRIP	, RYKPA	RTRP
BG	BGEWE	BTRIP	" BTKPA	BTRP
Mother	CHEWP] CTEIP	CTRPA	CTRP	
EMA	CHSwW2	CTEKIF	CTRPA	CTRP2
Segment	SGSWP	S1RIP	STRPA	STRP

N — - — 1 ———-. o— " ———- o o o —— . — 1 S W, — —— G . - Bhe S . ———— o~ — O - Yo ——— -

When a swap out is completecd, the disc logical unit track address
and number of tracks are storec¢ in the ID Segment (word 27, SMAN).

When a program is loadec¢ (or swapped back) into memory, $XSIO is
called using parameters computed by SETUP. 1D Segment value

DMAN (wora 26) 1is used for the disc address if the program is not
swappeda cut; and SMAN if the program is swapped cut. The program’s
dispatching status in wcrd 5 ¢f the MAT entry is cleared to
indicate that a program reac is in progress. The program’s status
is changed to I/0 suspend via SLIST. When the read is complete,
any swap tracks are released via $DHEL and the program is scheduled
via $LIST. A check is made to see if the read was correct.

If not, the program is aborted via $ABRT which sets it dormant,
releases its tracks, ané removes it from the time list. If the
read wae correct, the dispatching status is set to one to indicate
program is read in. The program ic ready to execute,.

When an LMA program needs to be swapped, the swap out to the disc is done in
two parts. ‘1he program’s code up to the page where the mapping segment
starts (MSEG) and the program’s base page are swapped out first using the
CHSWP $XSI0 call, The number of swap tracks needed is computed

by adding the nuiber of integral tracks needed for the program code

and base page tc the number of integral tracks needed for the EMA

area. The program is swepped just like any other aisc resident program.
Note that in the ID tegment word 27, the number of tracks refer

tc just those used for the program code.

The EMA area is swappeé cut rext, bkeginning at the next even sector
bouncéary following the program coce’s swap tracks. EMA is swapped

out in large chunks equal in size to the maximum logical address space
in the user map (up to a maximum of 28K words). The User Map registers
from $CMST to the end cf the the map, inclusive, define the number of
pages in each chunk. 'he chunk is mappedé in the User Map, the triplets
are built and then the chunk is swapped out using the CHSW2 $XSIO call.
wWhen the transfer is completed, the next chunk is mapped and

swapped. This process repeats until all of the EMA is swapred. A
similar process tekes place when swapping into memory.

The computaticn for the number of swap tracks needed must allow an
extra sector for each chunk. The number of tracks for the EMA

area ie savec¢ in wora 2 cf the program’s ID Segment Extension.

The number of tracks is needed so that the correct number of

tracks can pe release¢ when the program terminates or gets aborted.

when a program is swapped cut, the program’s map is used. When a
program is mapped in, it is necessary for the map to be rebuilt
according to the information in the ID segment rather than using a

copy of the user map in the protected portion of base page (because

it is swappeéG cut con the disc). Programs which cdo their own

mapping must lock itself in memory. Because these

programs can’ 't be swapped back with the altered map registers. EMA
programs which have been swapped back intco memory will have the MSEG
registercs recalculated and remapped because the program may have been
swapped back into a different mother partition (and therefore different
physical page numbers). This calculation is performed by determining
the number of pages offset from the beginning of the EMA and using

the same offset in the new EMA. The physical page number of the first
page 1n the currently mappec MSEG is saved temporarily in the ID segment
extension in place of the current MSEG number during the time the program
ie swapped cut. Wwhen the program is swapped back into memory, the MSEG pages
are remapped after calculating the offset into the new partiticn. The
remaining pages remaining in the MSEG which are past the end of the EMA
are read-write protected. If no MSEG was mapped at the time of the swap
out, the MSEC pages will all be read-write protected when the program is
swapped back into memory.

3.4 lkcther Partition uUsaqge

1t a program (any type) is assigned to a Mother partition or an

EFA program defaults to any Mother partition, there is more handling
‘involved than is the casge with RT or BG partitions. If a Mother
partiticn ic used when it is in the free list (SCFK), each
subpartition must be checked. 1If a subpartiticn is either free

or is occupied by & swappable program the C bit is set in word 4

of the MAT entry to prevent the subpartition from getting used

while the Lispatcher continues to check each subpartitior. If all
of the subpartitions are either free or swappable, a second pass

is made on all of the subpartitions to perform the necessary

swaps. 1he subpartitions are unlinked from any lists they might

be in.” when all of the subpartitions are free, the Mother partition
is unlinked from the free list (SCFR) and linked into the allocated
list. ‘The program can then be loaded into the Mother partition.

If any one ot the subpartitione has a memory-locked program or a
program which is doing 1/0 in it’s own program space the subpartition
can’t be mave availaole by swapping. All of the C bits must be
cleared from each one of the previously scanned subpartitions and

the dispatch is terminated. The next program in the scheduled list
is examined.

When a program terminates and it was using a Mother partition, the
Mother partition is relinkeé in the free list. All of the
subparetitions are linked intc the free list of the appropriate
type (BG or K7T).

When the C-bits are set on the subpartitions (set in chained mode) , programs
which are assigned tc these subpartiticn will have to wait if the DISPATCHEK
ie still in the process of swapping cut any subpartitions. If a program is

alreacdy in the Mother Partition the normal swappability checks apply.

In the case where a program of lower priority was in the process of loading

a Mother Partiticn and a scheduled program is assigned to a subpartition the
loading process is aborted. Then the subpartitions are released from chainec
mode and relinked intc the proper free list. A special check is made (at
SMAET) when a Mother Fartition load needs to be aborted to free up a specific
subpartiticn. 1f the partition type is BG and the BGSWP call is busy, the
abort is not performed. If the type if RT and the RTSWP is busy, the abort
alsc does not take place. This check prevents a deadlock which could keep
the interrupt system off and the busy RT or BG call would not be able to
complete. When it ig necessary to clear out all the subpartitions for a
Fother Fkartition the CHSWP call is used 80 that regular RT/BG partitions may
continue to be used for other programs.

t.hen a RT or BG program is scheculed and it is not assigned to a partition, 4'%
a search is made for a partition of the same type which is large enough.

If none can pbe fourd in the free list, none in the dormant list, and none

can ce found in the allccated list cr it contains non-swappaole programs, then
the dormant Mother partition list will be searched for one which has a
subpartition ¢f the correct type and size. If a suitaple subpartition can be
found, the dormant program in the Mother partiticn will be swappe out.

3.5 Clear Uy

vhenever @ progran is terminated, e¢ither by ar EXLC call 6 or
abortco by the cysten weceuse ¢f an error, the program is put

intc the corment state and the list prcoccessor adds the program’s

1D Segment intc a list headec by $22zZ. 7The linking is through

worc & of the ID fegment (the point ¢f suspensior save area)

since the prcgram will begin execution at the primary entry point

if it is reschedulec¢. Lverytime the system goes to SXEQ, $222%2 is
checkec. If it is non-zerc the DISPATCHEE performs five mejor clean
up tasks.

First, 1f the prcgren is c¢isc resident, any swap tracks it may have
are released. This may happen if a program is aborted whbile it is
swapped out. When tracks are released by S$DREL in the EXEC module

it will alsc call the list prccessor at SLIST to reschedule any
programs waiting for disc tracks. If the procgram was an EMB prcgram,
it will be necessary tc call SLREL twice; once for the prcgram

swap tracks, and cnce for the EMA swapr tracks.

Second, SABEE in the $EXECUTIVE is called to return any reentrant
memory the program may heve. This may happen if a program
terminates or is aborte¢ while in a reentrant subroutine. If
SABRE returns any wmemcry programs waiting for memcry will be
reshceduled.

Third, the DISPATCHER calle S$WATK in the SCHELULEE to reschedule
ary prcgrams which were waiting tc schecule (EXEC 23,24) this
program.

Fourth, the DISPATCHER calls $TRRN which calls SULLU to unlock any
LUs which may have been locked by the program. S$STRRN also unlocks
any locally locked RNs and cdezllocates any locally allocateé RNs
the program way have. Lach of these processes may call $SCD3 to
reschecule eany programs waiting for these resources.

Fifth and lest, if the program is a disc resident program and
it is still resident in the partiticrn, the partition is linked
into the free list.

TLOHNICAL EPECIFICATICKS FCE

RiE=-1v KTICC

EJVi
1/12/78
Project #1106

1.0 CENEFAL COVEFVILW OF CVERATION

1he BKLICC mcdule contrcls all agpects cf the eystem’s input and cutput
cperatiors. It serves as the centrelizec 1/C interrupt handler which
ivuentifies the source cf an interrupt and turns contrcl cver to the
apprepriate processcr. All I/0C reguests are macde to thie mocule either
by LALC calls from user precgrams or by $X8IC calls from the other garts
¢t the operating system. The 1/0 requests are passed directly to the
appropriate cevice criver if the driver is available. ' he I/C module
alsc queues I/C reqguests for busy Grivers or for butferec requests. All
the necessary mepping and base page communication area words needed to
perforim I/C will be done by RTIOC. Upcn completion of I/C, the next
request (if any) is started and control is returnec¢ to any waiting
programs. RTIOC alsc detects and reporte errcors at various rhases of
the process and performs any necessary clean-up.

2-1

2.0 LI IEERNAL CCHIWUNICLTION

RT1CC commuricates tc the rest of the operating system thrcugh tapble
structures, the scysten’s base page communication area, and by sub-
toutines aveileble only tc the system mocdules.

2.1 Tables Usec oy ETICC
2.1.1 Ecuipment “enle (Figure 1,2)

Each 1/C contrcller anc cevice controlled by the IOC/driver relatiorship
is define¢ by static and dynamic informeticn in the Equipment Table.
Each ECT entry isc ccmposed of 15 words. If there is an ECT extension,
the address cf the extensicn is in LQT Word 13 and the size of the
extensicn is in E(CT Wora 12. This table is built by the Generator.

2.1.2 Interrupt Yable (Figure 3)

A table, crdered ny haruware interrupt priority, designates the associated
software procesescr anc¢ the procedure for initiating the processor. This
table is constructec by the System Generator on information supplied by

the vser in cenfiquring the system. The table consists of one entry per
interrupt source--each entry contains only one word. The contents of

each valid entry ie the identifier cf the processcr. System processors

are notea oy pcgitive values, user processors by negative values, and a zero
derotes an unucec entry.

2.1.3 Device Keference Table (Figures 4,5)

The Device keferernce Table provides the user for logical addressing of
physical units cefired in the Equipmernt Table. "I[RT" consists of two-
word entries correspording to the range of user-specified "logical

vnits," 1 tc n where n is less than or egual to 63 (decimal). All word 1°s
are in one table fcllowed immediately by a seccnd table containing all DRT
worc 2°s. The conterts of DRT word 1 for a given lcgical unit is the
relative position of the EQT entry éefining the assigned physical unit,

in bits 0-5, and the subchannel of the EQT entry to be referenced by

this lcgical unit number, in bits 11-15. 1The LU lock flag (the resource
numoer being used for the lock) is in bits €-10. An unassigned unit con-
tains entry value of zero.

DRT word Z contains a flag (bit 15) indicating whether a device (lu) is
up or down (0/1). 1If & device is cown, then all I/0 associated with the
device iec stackec on the major LU (first LU for this device in the DRT)
in pits 0-14 of LKT worda Z. It the cdowned LU is not the major LU, then
bits 0-14 of DRY word 2 will ccntain the LU number of the cevice’s major
LU.

Corteir lecicald unit nukvers cre nernorertly aseigned te tacilit.te
fystei, ieer enc cystew surporl 1/0(crperations. ''hese are:

- it sucket

L

1l - Cystewn Leletysewriter
2 - Lystew Lisc

- Fuxiliary iisc
- “Otencera" Gutput Urit
o

Ltaencard” Input Unit
"Llerdarc" List Unit

(R

PO O
| I

Asslgned by user

(9%

2ol 4 “drack Agsigrment laple (Figure 6)

ihe 12T is a table cescriking the availability of esch track on the
systew Cilsc ana buxiliary Disc (if inclucded in the cenfiaguraticn).
Ta% is orcered py track numpber &nd ccnsicts cf a one-word entry ger
ihe value cf arn ertry defines ite availability.

U - svailable for assignment tc user or system
160C0G

- Assicred toc system (cr nct available)
Uwirii7il - fgsigned glcbally
U77776 - Resigred to file management package

<l Eegment &ddress> - The 1D Segment address of the ascsigned
' user program.

Y he
track.

z.1.5 LU Switch Taple
RLICC will scar a two entry table for each call made for I/0C with the

Latih tleg set. If the reguest LU does not refer tc a disc and is
founc, the LU will be switched to the table definec LU. This -able

will

give ar LU to LU trenstcrm for BATCH pregrame only. 2he table format is:

LT SLOULU
CSLOTU LEC —p

RLE v

cen -1

Lach ective word ir cet with the ecodress Lo in the lew S=-Lite and the
Lu tc e vegeo in ite piecce in the high ¢= Lits. “here moy e up te N
crtriec in any crdécr. 1hic takble will be aererated by the Ceneratcr and

dainteired oy the LatCo wcritor. ‘
ol G Uriver Fartiticn dap 1lanle (Figure 7)

Lach LCY will have @sscciated with it, & two-worc driver mar table entry
wiiich incdicetes whether the ariver for that ECT is in the System Driver
s#rea (CLA) ¢r ie in a driver partiticn anc whether the drivel {if it is in
“L&) coes its own sepping or not. If the ériver ie in a partiticn, the
entry contaire the stertiny paje number ¢f the partiticrn. ‘Lhis page
nurper is put intce the evpropriate system mep cr user ey registers to

wapz in the driver.

‘e seccnd woro of each entry is usec when I/C it started on the ccrres—
penaing driver. Yhe sign pit ot the sccond word indicates whether or not,
I/t ie peirg done fcr & meacry resicent program. The werd is zero for
fystem 1l/C. 4be low 1U oits coentein the page number of the user s physical
vése page if it is o pertiticn resident program. 'his word is used to

feve timwe cn sctting un the proper map orn wrcceseing interruptes.

Z.2 L01CC Entry Fcints

Y10 velne - nep zerco if requests are queued cr bit bucket

SELLC velue - low pufifer limit

sEL UL Velue - higl puffer limit

HCICC tLrtry pecint - jumps here from SCIC for interrupt processing

SLELO fukrocvtine - check if peloew the tuffer limit on the current
L

Celling Yeaquence:

gk BCELC

yeinl frtry point - driver completion return
SCLN2 Intry pcint ~ <river continvaticn returrn

ihe code tc enter thé driver’s continuatcer secticn imust
we in all wags since drivers return via the acdress
resulting from a suproutire call. KilGC wiil é&o a JME
SUCOL when reccy to enter a ¢river’e continuator cecticn
uncer the coer mals.

YUVEG Cukrcutine - converts arn LY entry number irtc the actual LCT
acaress onG celle LLULC toe set up the pase page EL1 pcointers.
al Lntry gcirt - juacse here from $YCIC to skip the CLF anda L1a
in kTICC et SCIC.
UL Lntry pcint - junws here frem the system clock routine
when a cevice times out.
SLLAY Subroutine - uvsed Loofe il Lo Tanoont “olay initiation

cof an 1/0 cperaticn on a timed-out EGT.

£

Calling tevuerces
Lo i;(,,‘- w1

Jul »iL Ay

Value-zdércse of the aummy LCU uged for bit bucket operations
Valuc~-Lyraiiic wrapping Lystem stetus is saved here when :
$CIC is ertered. 1t ig useo 0y SPEFK,

ubroutine - tets up the map registers for entry tc a cériver
after the pese pege LOT poirters are aélready ovilt in base
Fage. fce Dectior 3.3.5 for detaile ot SLEVH, Callec oy RTICC
anc Lyvk4:z,

Celling Secuerce:
(ECT1-00115 alreacy set up)
Jbb SILVE
returned> s-req and L=regy <ame as cn er.try
L=C peed t¢ enter driver in System ap
b=1 nced to enter driver in User lwep

Luprovtine-cets up the pase wege ECL pointers LYT1-FCI15
ntry pceint - tc set an LU or LLT down. ‘Yhis prccesses any
cperctor DL request (from the scheauler s message
precesscer) thet a device (LU) eor an I/C slct (EQT) be down.
it first determines if an LU or LGCT is being set down.

1f ar {7 is being set down, it checks the validity of

the LOL via the <IODNE> subrcutine. [t also determines if
the ELCS (L/C slot) to be set down is associated with the
system cecnscle. If either error conditicn exists, it
prints an "INEUT EKROK" lLessage ena returns to the Scheduler
mcdule ‘g leggage processcr. Otherwise it uses <XUPIO> to
get all downed LU s on this EQT into the "up" state and
uses <RUNLh> tc down the EQT by getting its availability
incicater (pite 14-15 of EQT 4) to (Gl. After suspending in
the gerneral wzit list any programse queued making unbuffered
1/C requests, it returns to the Cispatcher.

L an LU (device) is beirg set docwn, it first checks the

validity of the LU and whether the user is trying tc

cowr: LU 1 or an LU pcinting to the bit bucket. If one

¢f these error conditions exists, the message "INPUT LKLKOKR"

1$ issuec¢ and return is made to the Scheduler module’s message
trecesscr. If the LU s ECT is down, then the LU is simply
marked aown'(set-bit 15 DRT word 2). " If the EQY is up,

thern set the LU and all other LU's associated with the device
down and relink any I/0 on the device s major ~ LU (first

LU for the device in the CRYT) . keturn is made to the Dispatcher.

SICKC intrypcint = 211 EXEC calls for 1/0 relateu requests
are proceLcec tere. ‘

$ICUEF Lntrypcecint - 10 make an EQT available again. This
processes any operator request (from the Scheduler’s
 message prcecegsor) to set a Gevice "Up". It first checks
the velidity cf the EQT numpber of the device to be set
up via the <IOQIN5> subroutine. If valid, it next
schewules all progqrams waiting on a dewned EQT or LU. Next
it uses <XUPIC> to set up all Lu"s associated witn this
ECT. <XUPIO> will use <S$SXXUP> to relink cn to the EQT
any 1/0 fcund ¢n a dowrned LU. 1f the EQT was down or
availaple, the "up" processor will reset the EgT "up"
ancg return to a point in <ICCCM> to start the next request.
Utherwise, return is made tc the Cispatcher.

YIKY Entrypecint - Common exit point from the system pack to

the user. $IRT is & routine usecd in exiting from the system
cack to the user program. It does ncthing except clear the
memcry prctect flag in a necn-privileged system and restores the
registers. In a privileged system, $IRT clears contrcl on the
privileged interrupt card sc that when the interrupt system is
reenacled for all devices, &ll devices can interrupt.

1ne exit from $IRT back to the user program is &

"Geer wmap eraole énd jump" instructicn. Note that $IRT always
enables the user map. The map is lcaded before $IRT gets
contrcil. :

$EYKCG Suprcutine, system errcr message output. This routine
-rovides for the output cf system wessages and errcr
diagrosgtice cn the system conscle. 1The rcutine maintains a
"retating" buffer area consistincg cf five l0-word blocks;
i.e., the maximum length ¢f a message is 1§ characters
(Y woraus) plug 1 word prececinrg the message which contains
the character count.

SULNLK Subroutines, uged to unlink 1I/0C requests from the
current Q%1 1/0 reguest queue, This is called when an LU
is eet down and all of the I/0 for that LU ic moved tc the
LU s down aueue.

fUF Lntrypeint - jumped to by SUPIC from Table Area 1 via SJF
Lhhis entry is used by drivers to automatically "UP" the BQT
ar.¢ is essentially the same code as $ICUP.

L

FiLAC fubreutine - callea uy the operating SyRien woaules
te perfcrn 1/C,

TaX0F fubrcutirce - takes arn 1/C queue and pcsiticns the

i/C requeste (by calling the LINK subrcutine) in the current
L'l fueue according to their pricrity. 1t returrs a flag

il &an I/C operaticn should be initiatec,.

calling seguence: .
A=req 1s 0T address of ¢ld device
L-rey ig address of first stacked I/C reqguests tc
e linked cnto the current EQI
JEU SiAuUp
b=reg is U on return :
A-rey is the address of the head cf the current queue
with a@n I/C operaticr to be initistec.

P tace rage CLcamunicovicn

X1
EG1A
ECTH
Cid
LUMAX
INTEA
INTICG

[NGE
oL E S

FLY KL
EQUTI-LET15
1TEG

CYETY
ROCHY

ECL L
RCPLI-REET
ALQT etc
CEATH
LdhMY
TATLC
TATSL
SECTZ
DLCT3
LCOUTE
LCCC
LETEL

1hese are &ll locatec in the System Communication Area cf Ease Page.

LI the Lser e ie reecec, crtiry te the wriver’s
certinuctor seclion is entered by a JrP SUCCLH. 1f the
gystei uap is usec, the siuple JEE E,1 will be cone.

3.2 I/C Fegueste

ALT input/output cperaticrse are performed concurrently with pregram
computeticr in the cversll system. & pregram is I/C suspended until

the trarsmicsicn cr cpereticn ie completecd urless autcmetic buffering
(cutput cnly) was cpccified for the device cr the request was a class
L/t request. In these two cases the puffer is moved to systen availanle
menory ana the user pregram ie not suspended.

It ¢ prograr is J/C suspencded with the Duffer in the user progranm area
the program is not cvappeole. If the cuffer is in commern or system
availetle iremcry, the pregram is swappeaole. 2 user may cell REIO tc
meve Lis ouffer to system aveilable remcry end make the 1/C call.

W

The user pregram making the recuest is scheduled inmecietely if return
¢cde 4 1e used by @ criver. %he 5 return is mace by a criver if it

neecs 11/ tc we the currert recuest put the [DHA bit ig not set in the LQ1.
3.Z241 User 1/C Eecuests

L1l uwser 1/0C reyuests are channeled to GICKC after initiel reguest pro-
cessing oy "LAFC", SIOLD performs validity checks cn the reguect
parameters anc sets the addresses of the referenced L(T entry. (Crror
cenditicns anc disgrestics are descrived¢ later.) The buffer acéress

ard lerngth is examineé for legality for input requests tc insure that
protectec aemcry ie nct wltered Guring the transfer. 7The last page of
1/C butfers in the Uger irap are checked for read/write protect status to
irsure velic mencry accesses.

Lisc 1/C Lecuests

Tt - ——— ———— o

[t the referenced 1/0 device is & aisc unit, the request is cnecked to
ingure thot persncters are supplied. If the disc LU number iec either

L or 3, tle recuest is edditicnally checked to insure that the disc
track and secctor runbere are legal anc¢ that the transfer does nct exceecd
a track ceocundary. If the request is ovtput, & referenced track on Lu 2
cr 3 muot teleryg to the user (i.e., the 11 entry address aust equal the
LU fegmert bddress cf the uger) unless the track isc a locac=-and-gc¢ track
a¢r @ glocel track.,

If & write cr Lcntrel recuest refererces a device for which the user
Gesignatec auvtcmatic nwuffering, & wlock eaual to the buffer size, plus
centrel infcrivaticn (5 worde), 1s requested for allocation in the system
aveilacle irencry areeé. (Cell to $ALC.) 2 (Class 1/0 reguest is

alsc meved intc system availerle memory.

1t the blcchk cannct be allocatec, the user program is suspenc~d and
lirkec intc the memory suspension list. (The memory processor (SRIN)
will cauce the ucer prooram tc pe scneduled as csocn as a block is
released.)

After a plcchk 18 allccated, the contrcl informaticn (CCNWL and buffer
length), pricrity ané¢ buffer (if a Write reguest) are moved into the
twleck., lhe first word of the block is used for linking into the device
list. (fee Secticn 3.3.1.)

RKormal User keouests erco HUIC kecuests

The parameters coi & user recuest (which is rct buifered as above) are
mcved intce the bH-woru temporary area in the 1D Segment of the program.
hword 1 ¢f the I fegrient ie usec for linking into the device list.

(Hee fection 3.3.1.)

Ihe vger prcoran is suspended with a suspension code cf 2 (1/C suspension).
ihie ig alsc cone for en REIC call. The only difference is that the

butfer acdress will pecint tc system availeble memory instead cof the user
area., ‘Ihe sign bit of the buffer acddress in the tempcrary words of the

I segment is cet 1if the duffer is mcved as the result ¢f an $SREIO call.
“hie is to tell the systenr that the cdriver must process that I/0 reguest
uncer the zsystem map.

Errcr Conditions and Liagncctics
Letection of the fcllecwing error conditions causes & dignostic identifying

the errcr type, ¢ prouram name and location ot the request to ve printed
¢ri the systen teletype. 4Yhe program is then aborted ($ABRT in EXEC).

[T RN SN

- - — - - ——

iC ol Incws ficient 4 ¢l request veraneters.
e 11lcgal logicel unit 4, cr lese than 5 perameters
with A-01it set.
w3 I1llegal ECY refcrence, select ccée = U,
d User ouffer viclates esystem (or LRezl-Time) oouncary.
ul o 1llegal disc track or secter # in c¢isc request.
(P hrite reference to protectec track.
] Lilver rejcctec the recuest as illegal for the
CCcevice (unkuffered reguests only).

U trensfer ecxceece track bouncary.
U Flew of loec-ard-go aree.
lu LLY occurrea and cne GET cell cutstencing on

thice cleass.
11 Illegal user map request in Syectem Driver Moo,

ARO) fystem L/C Feclest rrocessor <SnOIC>

£oprivilegeod entry is provided at 5X¢10 te allecw mocules of Real-Time
Lxecvtive to cell ftor 1/C operations withcut incurring the cverheac

anc proeceoures invelved vith veer I/L requests. No errcr checking is
rericrwec, the reguest is linked into the eppropriate I/C list et =
sricrity ol zerc (highest pricrity) ewxcept that disc request may soecify
@ gricrity, end contrel ic ilsmediately returred tc the first word
fcllowinag the recquect.

tequest pcrwat: & gystea 1/0 reguest differs from the user T/C reguest
in ftermet ore pewer. ECvecificelly, & cystem disc call can specify - serics
o trersfers to be performed before the next cperaticon ic iritiated.

dress car be srecifiec for operaticn cf arn cpern susrcutine
at the zrd he ¢peraticn. Othie tacility. is cnly availanle tc systew
recutinces arc is vseful for resetting flags, etc., because an I1/C
ciperacicr is always Lufferec tc the svstem. 2 zero cermpleticn

eudrese Incicates zuserce of a comnpleticn rcocutine.

cocripletion ad
T cl t
o

GG
Lt ol 1C
1 JE L +ae1C
Z ol <legicel unit nunber>
3 Lt £ {completior rcutine address> cr 0
4 B <list pointer wcrd-set by "LINK">
5 “Ci «<control intormation/recuest codc>
o DLF pouffer address, or location of disc contrel>
7 LEC . buffer length cr <disc request priority>
G aee Mep word

vera 5 is in the game field format as the control word in a user request
¢xcept that the reauest ccde replaces the lcgical unit.

wCrd 6 is set to zZero if the reguest is tc be processed urnder the gystem
wap. It the vser wep is requirea, the werd 8 must contain the ID segment
aucdress cof the pregrauw tG be cescribed. Verd & is 100000 (octal) if the
reguest is tc pe prcececssed under the User rap as it is currently-without
change. Wcrd & is et tc an 1L segment accdress with the sign bit set if a
wocified user mag is use¢ (e.g., when the Dispatcher is swapping a portion
Gl oLia) . *

sleo, the $x51C call uses the same routine, URIVR, to set up for and then
enter the driver.

Disc version of keguest: w.CrG 6 points tc an array containing "n"
sete ot tripiete ¢esignating the putfer control, for each transfer. The
array cf triplete ie cpen-ended and terminated by & zero wora:

Ve ra
L DRy ' <obutfer address>
Z LG <puffer length>
3 G <track/sector#>>
r CCy G

wora 7 in this cese is used as the priority of the reqguest.

iriticticn ol 1/0 bLeauesis

e central wora is set up oz tcollowes

|
Isf1epdriact v
ELUL 2> | <k
I T N (O |
I

B - Uesr reguest (I=xLAU, Z=uRITLE, 3=CONLACL)

Lol - bidigh » cits ol subchannel

sty = Tow 3 wite of subchaennel :

it - Yet only for a disc reguest. Indicates if disc is
gyctem auxiliary, cr peripheral

1 - keguest tyge identifier

bt = Leger (NMormal Cperaticr)

Ul = Lecr (Automatic Bufifering)
14 = 13 VE tei .

11 Lias

0

I/C

Slter the recessery legality checks are wade, the reguest is
linkec 1rktc tle gueue for the referenced 1/0 device. 1T the
test 1¢ a rormal user reguest, the paramcters are set in

the tempcrary ctcrage area of the 1D segumert. If the requcst is

clase I/C or the cdevice has autcwatic vuffering (cutput or
centrel enly), the reguest parameters are meveo into system
wvallaoole wencry.,

/e regueste are linked in & lizt for each device accoruing to
sricrity. ibe regueste are user (rcrwmal), user (autcmatic
output putfering), class I/G, cr svstem. 1dentificaticn ot
the requect type is the code in pits 15-14 of the centrol word
ir eacr reqguest tormat. This field, the “o® field, identifies
the recuocst as:

(normal cperaztion)
(eutcimatic buffering)

1)

<)

* -
WECY

(recr..cel ¢yocraticre)

ite peramcters ircom the request are stcred in the tenpcrary

alea

¢i the vroaram LIb Segment. The link word of the

scgrrent ig uvsce te cortain the linkage for the I/C list.

wWword

1

[5 JRTU S AN

~J

Contents

lirkage word
T,caertrel inforaaticn,recuest coce

vuffcr eadress or contrcl parameter
culler length
disc track § cr opticnal parameter or zero

cisec sterting sector § or optional parameter or zero
program nricrity -

resaincer

ct
It Hegrnent

veer (Autoinatic CGutput Euffering)

hegueste ¢f Lhis type are constructed irn the system
avallacle cencry ared.

rord

Contents
lirkage word
Tycontrol informatior,request code
pricrity of requesting procgran
totel Llock length in werds
user buifer length
werd 1 of user pbuffer

wGrd n of user buffer

1f the device or controller is "down" or "busy", no action is taken and
return is made tc the caller. If a L#A channel is required but no
channel is available, the "av" field in the EQT is set to 3 (waiting for
'MA), cone is added tc "LIFACKF" for the number of devices waiting for DMP,
and return is made tc the csller. :

If the cevice ie available (end a DFA channel is assigned if required),
the device time-out clock is set from the clock reset value (in EQT14),
“the subchannel is set intc EQT4 (frem EQ16), anc preperaticns are made
for calling the c¢river. LDRVMP is called tc do the driver map set up
(see fecticn 3.3.4). 1If a DMA channel is being used, DK.VR also sets

up the DIYA map by copying either the System Map cr the Usger Map into the
correct pecrt map. NKote that the DMA map does not need to be reloaded
until it is reallccated. 1f the driver needs the user map, that map
must be relcaded before each entry intc the driver.

3.3.4 CLVMP

This coce is calle¢ tc set up and enable the necessary maps for the driver.
The preparation for setting up the maps for the driver cell includes
checking word 1 ano setting up word 2 of the Driver Mkapping Table

(Figure 7). The first woré in the table is found by using the E{T number

tc index from $LVKP. The second word is found by adding EQT# to the
address of the entry’s first word.

If the driver is in the System Driver Area and does its own mapping,
the driver is always entered under the System Map. NOTE: $XSIO calls
must have zero in the eighth parameter, no checks are made.

If the driver is in the System Driver Area but does nct do its own
mapping, the T-field cof the request is examined. If the T-field is

zerc (normal user) the program must be privileged (type 3) in order to

use the unmcdified user map. The second word of the driver s Mapping Tacle
erntry is set to the physical page number of the program’s base page

(firet page cof partition). 2Any other types cf I/C requests or types

of progrems requesting I/0 for a driver which doesn’t do mapping and is in
the System Criver Area will cause the request to be rejected (a prograra
will be aborted with an 1011 error message). NOTE $XSIO calls may not

be used tc call a driver in the System Driver Area if the driver does not
do its own mapping! The 101l error message will also be issued in this
case, the request will be rejected and returns contrecl tc the X510 caller.

)
!
[
N

If the driver is in a criver partition, the 1T-fielé is checkec. If

the T-field is 2 (system request), the eighth wcrd is checked to see

if it is either a disc program load request or a special c¢isc 1/C
request. If the eighth wcord of the $XSIC request is 100000 (octal),

it is a2 special reguest which specifies that the current User Map

is used. The special request is used by the DISFATCHER and by the recon-
figurator. If the eighth werd is a positive value, it is the ID

Segment address of a program tc be lcaded. The program’s map is built
py $SMAP. 1f the eighth worc is negative, it is an ID segmert address
with the sign pbit set. 7his form is used¢ by the Dispatcher for swapping
channels cof EMA. 2 special user map is kept in the user’s prc.ected
portion of base page jret below the normal copy of the user s map. The
physical page number of the Lase page is set into the second

werd of the Lriver Memping Table entry is set to zero.

All buffered user recuest anc class I/0 requests use the modified system
map. If the T-field incicates that it is an unbuffered user requecst,

the second word of the uvriver Mapping lable (see Figure 7) is checked tc
see if the request was made by a Memory Resident pregram. If it was, the
MR bit of the second word of the Lriver Mapping Table Entry is set and

the modifiec Memcry Resident map is used. If it was not a Memory

Resident pregram recguest, the first page number cf the program’s partition
is entered into the secona word of the Driver Mapping Tanle entry and

the modified User Map is used.

When a driver is in a driver partition, the map under which the driver
is entered must be charged to address the physical pages of the
partition. The modified map is saved if it was a user map (other than
when 1/C is being cdone by a liemory Resident prcgram) that was modified.
The purpcse cf this is to save set up time on each continuvation interrupt.
The page numcer in the seconé word of the Driver Mapping Table entry is
loaded into the System Map’s driver partition register ($DVF1) to map

in the user’s physical base page (see Figure §). 1The copy of the
mociified User s tlap is then stored in the top portion of the physical
base page via & cross-map stcre throuoh the driver partition register in
the system map.

3.3.5 SLEVE Subrcutine

When a driver needs to be called as a recult of an interrupt (continuation)
SDRVM is callec to check the Lriver Mewping lable entry. f1he first word

of the entry cetermines whether or nct & driver partition’s pages need

to be set up in a map. The secord word indicates which map to use.

If the second word is zero, the System Map is used. If the driver iz in a
partition (Weré¢ 1 hes the partition’s starting page number) the System

Map itc modifiec tc address this partiticn. 1f the driver is in the System
Driver Area, ro mcuificaticn is recesgary. SCRVM returns with an
indication thet the System wep is to Le used (L=0).

5=13~

0 the cecend wera boo the cign Bit set the LUy Levident Map i¢

uscd. Ule currert uscr may e saved in a buttfor (SVUShK)« Then

the User fcew 1¢ sct up with the Hewcry Lesident dap and the driver
certiticr regictere cre zet up accorcing to were 1 cf the mapping teble.
sbhve returrne with en irncication that the User rap is needed (E=1).

it thte secocnd wore fes a pege numoer, the necessary user map is already
gct up ard is stered in the last 32 worde of the indicated page.

vLEVE saves the cuorrent user map in SVUSH. kRegaraless c¢f the driver’s
ares ol residence, the User hag is specified (n=1).

lkcte that the user map ie¢ raved and set up to the required map cnly if
it is not already meoped in the user ap. This caves time in setting up
cuplicete menc,

Jedab SECIH Tucrcutire

This routine ig celle¢ cn every return from a driver. It checks the
flag EVEEFS to sce if the user map was charged. If it was, HSTUS reloacs
the veer map with its criciral contents (saved by LEVMP cr $DRVIE) and
clears fleg LvaPS.

3ea.7 I/¢ Triver Initicticn heturn

Lion return from the criver RE is called to restore the user map

(ir it was changec) to ite stetus prior te driver ertry. ‘Yhe driver
returns & ccce tc LEIVED incicating whether the cperaticr was accepted
cr rejectec ar¢ the ceause c©f the reject. 1hic code is in A on return:

¢ - ¢reration successfully initiatec
Ea

1 - reac¢ cr write recuest illegal fcr device
4 - Contrel reguest illegal or not defined

3 - cqguipment maliuncticn or not reacdy
4 - cperaticn successful-immediate completicn
5 - driver requirez & Li.Z channel fer this cperaticn
€-5% - hneserves for HPF R1E tystem modules anc system drivers
6U-99% - Leserved fcr user drivers.

1t the ccce 1s 5 a LKA ellocaticon is attempted and if successful, the
driver is reenterec¢ witht he request. :

If the opercticn wos ctherwise rejected, CLIVR returns to P+2 of the
call with the rejecct code in .
It the code in & ig 3, the device was found tc be unavailable for I/CG (not
ready). 1lhe device aveilakility indicator is set to 01. If a [itA

charnel was allccatec, 1t is releasea. The "NHE" diagnostic is printed

ang ICCM ie erited cither back tc $XFQ in the Scheduler cr tc the
cempleticr routine fpecified in a system reguest. If the code in A is

1, z, 4, & ¢or greater, ccntrol is transferred tc subroutine <ILLCLY>.

If a zerc isg returred, I/0 wes initiated successfully, with subsequent
device interrupt expected, and control is transferred to $XE¢ in the
Scheduler mocuvle tc switch to the next lower priority which reguires
executicn tire.

J.3.0 o Charnnel Allecaticn
lre two LPL ‘arrLJ ¢re cynaaicelly allocated to the hich-speed and
gynchroncus devices idertified to RTICC (bit 15-1 of word 4 in the EQT

entry) . 1hc asSLqrmcrt rrocess consiste of setting the EQT address
Oi the device in the LiiA chiannel entry in the Interrupt Table and
cctting the channel numoer in the word "ChAN" in the Ccommunications
Lrea. ’

Aodriver with ite [£7 N2 kit not set may alsoc request a "MA channel by
getting #=5 and returning tc the system at initialization of the
I/C reauest,

It mare thern cne device is waiting for a channel, the order of priority
for agsiorment is the order of the Fositions in the Equipment Table.
There ere twe excepticns to thisg scheme:

1) 1f the first entry in the EQT is waiting fcr & DMA, the
channel ig assigned tc that device, which is assumed to be
the gystem disc

<) I1f the firet entry encountered (other than entry #1) just
released a LKA channel, then the next lcwer pricrity device
waiting for LIliA is used. This allows for & "switching"
cperatior in the allocaticn of a ODMA channel.

tpecial processing is required by any 1/C ariver which uces the interrupt
cn a Lbp chennel to perfora date transmission with the device. 4

scitware flag wust be set after a DA channel is initiated tc indicate
thzt the chennel ig active and that a completicn interrupt is expected.
The cetting ci this fleg ig to set £it 15=1 in the Interrupt Tawle word
corresocrding to the DkA channel:

wlILL (1) -~ channel §1 (locatiocn 6)
;wiP (2) - chanrel #2 (locaticn 7)

lhe adcress of 1INTil ie¢ contained in the word "INTEA" in the Ease Fage
Commuricaticn Area. When it 15 is set, the rest of the wora must not
we elterec. Thig cveraticn must be done only if CUMMY is non-zero.

Wheri a system bas privilegec drivers, i.e., DUMMY = (¢, control is
clesrec cn octh Lid channels overytlmo en interrupt is processed through
CIC - ir crder to let the privileged interrupts be the only cnes "on".
“hus it & ¢river neecds that [MA interrupt, it must set bit 15 in the
apprepriate werc. $1EY checks these words and if the bit is set, it
reenanles the LA interrupt.

5.4 Coemplaoticn ¢t 1,0

lhe returr necint py er L/C cdriver (from & call by CIC) indicates the
centinuaticn cr conpleticrn of the 1/C operaticn. In KTE IV, the user
map is restorec if it wees mocified for driver entry. ESTUS ig the
routince called tc oc this.

L. #eturn at (F4+1): Ccmpleticr of the operation. CIC
trarnsfers directly to the 10C completicn
secticn &t "1CCOM."

Z. Return at (¥+Z): Continuaticr of the Cperation. CIC
restores &ll registers and returns tc the
point cf interrupticn, with the excepticr
cf special processing which must be done
for operator attenticn: If thre flag is Rase
Vage Comnmuriication Area "CEATN" is cet = 0
control ic transferred tc STYFPE in SCHED:
"OPATN" is set = 0.

r

3.4.1 LCCOL

Thieg section ic regpenesitle for the initiatieon of stacked I/C operaticneg,
Flacing a poregrem seck in the scheduled State when its I/0 operation is
conmpleted, dyramic allccaticn of the two LCLA channels among syrchronous
cevices, an¢ celling for operator notification of eguipment errcrs or
malfuncticn.

ClCLOM> is entercce cirectly from <CIC> when an 10 operaticn is terminated
ancu all errcr recovery proccéures have beer attempted. Cn entry tc this
gecticn, (L) contains the rumper of woras (cr characters) transferred.
((b)=track § on which errer cccurred if disc.)

the addresses cf the Lguipment Table entry are in E(11 to EQT15 in the
Cernmunicaticon trea in Lage Fege frem the CIC pre-preccessing. The device
time-out clcck is clearec. :

~#lter completing the prccessing for the completed successful coperations,
ICCCH checks & stacked recuest for the device. IFf nocne, IOCM transfers
te "IOCx." 1he user prcgram for the completed cperation has already been
rescheduled.

It a request ic stackecd, the subroutine LRIVE is called to initiate the
operaticn.

Ihe IUCCHL exit scctior "I1CGCKR" transfers centrel to:
1} <Cempleticon ncutine> if the system 1/C recuest specified.

<) L.136 if the pit bucket has 1/C stacked cn it which must be
completed.,

3) $UYYI (in SCmLL) it the Ccperator attenticn flag is set (the flag is
alec cleared py "1CcLx").

3=-19

3.4.3 ILICL Subrcutine

This sucrcutine is entered primarily if ar illegal request is aetected
by an 1/C driver. %he reascn is e Read cr write cperaticn is illegal
fcr the device or a control request is meaningless for the device.

An additicral reescn for transfer toc this cecticn is ar "Immediate
Completicn" (Code 4) return from the driver; it is prcoccessed as a con-
trol reject.

Adcditional errcr essages may be defined by HP system c¢r user drivers
asg fcllows:

=59 FEkeservec for HP RUE system modules anc¢ system drivers.
20-29 Leserved for the Spcel Monitor (see Spcol IMA).
tU-99% keserved for user crivers.

Lrrer procedure is:

l. If the reqguest iec precessed as buffered cutput, the temporary
tleek is released te avallable memory.

4. The reject is ignered if a systen pregram gererated the request
--however, a completion routine, if specified in the request,
is cperated. (WOTE: thise philoscphy is base¢ on the assumption
that this conditicn shtcould never aoccur.,)

3. & usger centrol request (A=2 or 4, refer to Pg. 22) which is rejected
treated as if it was performed. The program is linked back into the
schecule list.

4. A unpbufferec user read or write request reject (A=1) causes a
dieagnostic to be icsued ("I0 07") and the program aborted.

5. Uther reject codes (A>5) for unbuffered user read ¢r write reguests
will be mapped¢ intc an 10xx €rror message where "xx" is the error
Ccode and the procgram will be aborted.

3.5 liscellaneous Ekoutines

<$I0CL> Subroutine

The function of thisg routine is tc remove & program from an I/0 hang-up

condition resulting from an input request not being completed by the
device. '

This "clearing" procecure ic initiatec oy the cperatcr in using the
1/C Abort versicn of the "Ob, xXX%X, 1" commara. The "OF" statement
prccesscr in “SCHLL™ calls ttis cecticn if the referenced program is
Suspended fcr an I1/C input request.

‘The list cf each ECT entry and Gown LRI entry is searcheci to find the
gucuec recquest ccrrespending te the I begment of the referenced program.
ihe entry ic removed frem the list and the list is apprcprivtely linked
tc reflect the change. If the entry was the first cne in an EQT list
(i.e., an active request) and the EQ1 is not down or in DMA .ait then a
clear recuest (160003L) is forcec¢ inte the initiator. 7This can be done
only after the Lriver liapping lable entry is checked anc the driver is
mapped in if needec¢. If the reguest is accepted then an interrupt is
expected and the cdevice set busy with &an arbitrary timeout of 1 second,
ihe sigrn bit of £CT were 1 is cet indiceting device clearing. The
timeout will be trappec in <SCEVY> and routed to <ICCOM>. <IOCOoM>
reccgnizes special interrupts on timecuts asscciated with device clearing
vy checking the sign pit of LT word 1. If the request is not accepted,
then the tineout it cleared ang contrel is given to <IOQCGHM> for initiating
the next request.

CIGLNE> Subroutine

This subroutine checks the legality of an ECGT number. If it is valid, it
returne to the caller; ctherwise, it sets up tc print out the diagnostic
"INFUY LRECE" and goes tc the Echeduler mcdule’s message processor.

3.6 Class I/C Reguegts

Class 1/0 refers tc nc-wait I/C in whick the user directs the completicn
informaticn tc a "class" by number. The user requests I/C on a class.

The RiICC requests buffer memory for the request, moves the request to

the buffer Wemory, queues the request cn the specified ECT, and enter in
the clase gueue that a request is pending. Cn completion, the completed
request is cueued in the clase Jueue, and any program waiting for the class
is restartec. ;

“The class takle ig cdefinecd ét generaticn time and is lcocated at s$CLac.
The table consists cf 2 length worc defining the number of classes,
followed by cne word for each class.

3-21

Clasg 1/C "{ueue Lorwat apce ite use

—— i ——— o — o oA " W Y m—— " - " Pon G Sl v v —

o sueve cén e in four Jdifferent states.
o014 13 e 11 3¢ ¢ e ouid 06 U5 4 03 62 0l ¢O
GE OF ¢ ¢ G ool ¢ oF ¢ ¢ of o) o] o] of ©f

S - - Ty A o St i T an oy WO S UM . WV S O o Sam M W e L . G S —— et G A Gy G I Ao ot ma T Gy o

Stete 1: Class dealloceted, available ,
s 14 13 12 11 10 09 G& 07 06 (5 04 03 02 GL1 00
I‘UI LLILDBEESSE CF FIRIY LNTRY |

T o e G S it T s N e i S e St St e e — AN Y —- - W Sen W e S e M - A S S

ftate 2: Fointer tc tirst entry in clase gueue
15 14 .13 12 11 10 ¢9 ©¢& 07 06 U% (4 03 ¢2 01 00
| 1] ¢} 2ISECURITY CCLE | NUKBDE CF FENDING KES |

—— . - - - — T — G e . S S Wt - S ks — . . i} > - S~ - b o e S —

ftate 3: Class allccatec, nc one waiting on class. Number of pending
recuests ccocunter nay wve (-255 ‘
I5 14 13 12 11 1o 0% €& 07 06 G5 €4 03 02 01 0O
I 11 3 [#] SFCURITY COULL] UUELLf CF PLNDING FEQS|

S . - o €O v T e 0 Mt s U o i G P B L S S S W S U BB W v e e W S VR Gme SR S S e G —

Ytate 4: Clase allccatec, someone waiting (suspended). fumber cf pending
reguests . counter meay be (-255.

reticre Lo pe taken when handling ¢ class 1/C or get request depend on the
current state cf the class cueue head.

Get Fegueste:

State 1. ékort the wrograr 1000, no class

State 2. leturn the cdate from class buffer

Btate 2. lel the scwe cre weiting bit (bit 14), suspend progran

ttate 4. Frcrt the ¥Frograw 1000, cnly one program may be suspended
per class.

(lase 1/C Fegueste:

ftate 1. Ctate 5 iz set up, security code is low 5 bits of prcgram 1L
: Wumber, ccunter is set to 1.

state 2, lhe counter at end ct gueve it incremented by 1
State I, 'the courter ie incrementec by 1
State 4. ‘the ccunter ic incremented py 1

Un Coempletion cf Class 1/0 fFecuests:

State 1. Illegal--shculd never happer—-buffer is returned and the
ccaupletion is igneored :

Ltate 2. Yhe new cata is acded at the enc cf the list (FIFC) and
the counter is decremented by 1

ctete 3. ke new cCate is added at the end cf the list (FI[LC) and
the counter is cdecremented by 1

“tate 4. be walting program is schedulec¢ ané the cocunter is
gecreirentec Ly 1 and the scmecone waiting cit (BEit 14) is
clearea.

LGur

EC1¢=N

iV oloudpue nt

fanle

T . w—e s e - - —— — Y T - - —

T e S e - - —— - — - . — - o~

mFatl | -
[
.
°
.

S e -~ - — - S~ — ——— -

FICUKL 1

(CCTE*15) words

Fabl=INv PO TOMUHT 1ARTL URNTY

| wera | Certente ---------——-m‘---“.---‘-_-l.
I 1S 14 13 12110 16 ol 6 7 615 4 312 1 01
I 1 1 1/C vecuest List Fointer)
|2 1 rriver "Iritistion" Scotion iceress 1
I' 5 iriver "Cenpleticn” Gection addrese 1

R st v T - —— T — - — - — o -

bood boel e b et | unit # | Charnel # I

I s 1 av 1 ig aves coerr T swmue
I ¢ | COMT (Current 1/C Remuest wore)]
| 7 | keguest botfer sadress T
| ¢ | Request iutffer ferath T
| ¢ | Temporary Storage for Cptional rarameter
1 10 | temporary ftorage for Cpticnal rarameter |
111 | tenporery ftorage for oriver T
| 12 | Temperary ftorage for Criver ST
113 | temperary Sterage for briver)
________ e o e e e e e e e e e e e i e e e e e e e e e e e
| 14 | I'evice iime-Cut Keset Value |

| 15 | Levice Time-Cut Clock |

- —————— —— —— — o) S i —— o~ ——— -

FIGURE 2

PLLLEL L ocen Tt

Where:

L= 1 38 vy reaquirec

go= 1 if autcmatic cutput puffering used

Fo= 1 if driver ig to process power fail

O o= 1 if cdriver ic¢ toc process time-cut

T o= 1 if device timed cut (system geéts tc zero pefore each

I/¢C request)
Unit = Lect sub-chonrel addrecse
Channel= 1/¢ selcct code for the I/L controller (lower number if
& HUltl“bO(rb inter face)

by o= 1/C centreller availability indicator:
= cvailarlo for use
= isabled (down) :
2= uuuy(currcntly in operation)
1= waitinyg for an available DMA channel

STATUE

il

the actuel physical status or simulatec status at the end
cf e¢ach operation. For paper tape cevices, two status
conditions are simulated: EBit 5 = 1 means end-of-tape
on input, or tape supply lcw on output.

Lo = type cf device. When this octal number is

TYVI ‘ linked with "nvCx," it identifies the device s
Ccol scftware c¢river routine

COMwlr = user ccntrol word "uppllec in the I/0 EXEC call

(see Secticn II1).

3=26

t2Ll-Iv ILTLLKUGT TALLI

INTHE e

T —— . — —— —— ———— o —_—
el e e L pe————

ey G - — o ———————

__________________ INTLG

[INTLG+H4 |
|SELECT CODE l
| LNTLG+5 |

FICUEE 3

FTL=Tv FEVICH WEFPGINCY TARIL

LT et o o e e e e e
| TL 1 |
| L |
{ LU 3 I 1
e e e e e o e e LUMAK WOLLE
. FIEST WORDE ONLY

B e Lt ey U —
————————————————————————
————————————————————————
————————————————————————

LUMAX WORDS

. SECOND WOKLCS ONLY

| LU LUMAYX |

FIGUEL 4

L

~CEL

foaB=Iv LivIct TFLERLEACL 4AEIL INYRY

T o o i = T et e e e - — " ———— i — > " o " o

T T T N s e T e S e S G e v > o Yot . o0 . o S S st s

ST S S T s B o —— - — - > —— o~ T~ — . = " o— o~ —

“

o o oo = o o T i e e - = —— —— — Tt~ — " 32 P2 v S, S S S 1 B T o

I Major LU or Lecwn 1I/C Queue |
Up/l:cwn

FIGUFE 5

Ritl=Tv TUACH ADE TGa v TARLY

1A —m e ——————

T o . - " i o — ——— w—
e - — o —— - —. -

| TRaCh 2 | TATED

- ——— .

o s . —— - " — - ——

| 1LACh o - -TATLG

o ————] —

. — - — > @ -~ o -

. —— " —— T~ — T

FIGORL &

PLVET

Lrtry
First
erd

(static
infa)

bLntry
Lecornd
WOEG

BT 4

words

(¢vramic
infae)

Ril-1Iv

Ll

L

L

FC

| 3%

¥

[

3-30

LLIVEE T elPIne 9200

15 14 13 12 11 161 % 8 7 6 5 4 3 2 1 ¢

“I l |

C l |
I I |
| I b l

.
fed | |
[[? I
[| [
l Pl I l
o | I |
I | |

| | |
I I N |
I | |

T e ame S M e e M e e SND S S - G S e W o T W W D B A —— - —— " ———
.

AT M e e v e une G e e o — — T o — ————— - P -

| I | I |

FIGURLE 7

LXEC & SALC

Mike Manley
January 19, 1978
Froject #1106

Aprencices

SAERYG O CF CONTENTE

Irtroducticn

tysten Keguest Analyzer

Resicert Library ILxecuticn Centrcl
Ffivileged & Reentranrt fubrcutine Frccesscrs
Uigc Track 2llccation & Kelease Processors
Error Messages

Eystem Available Memcry Processor

A-lFeentrant List Structure :
b-Zpecial Entry Points JZREHT, .ZPRIV

1. Irtrccucticr

ihie part of the techrnicsal specs manual c¢eals with the LXEC ano system
availeble newory perticn ¢f the EFTLI-1V Operating System. The EXEC ic
that porticn cf the cperating system that checks for legality of all
ucer EXFC requests, vectors legal reauests tc appropriate Frocessors,
vectors illegal requeste to the. sbert frocessors, handles reentrant
processing, and allcws users to execute with the interrupt system off
(privileged subrcutines). ' '

The $ALC pcrtion of the system allocates System Available Memory (SAN)
to system processors that reguest memory for buffer, tables, etc.

ihe I¥I'C modules containg five major sections:

- tyftem Fequest Analyzer (Memory Frotect Violation Contrcl)

- FResident Library Execution Ceontrcl (Dynamic Mappirg Violation Control)
» Privileged &nd keentrant Subroutine Frocessors

. Iisc Track Allocaticn and EFelecsce Frocessors

. Ceneral Error lMessage and Frogram Abort Processors

In crder tc understard hcw the system receives and handles an EXEC request,

it is necessary tc understand system memory protect and the rudiments of
interrupt processing. %The discussicn below is a very brief description of
interrupt prccessing with memory protect. '

Suppose the user wiches tc do output tc the line printer from a high level
larguage like FURTEAN. He may code scmething likes

CAHLL EXEC (2,6,IBUFR,IBUFL)

where the 2 is & Write xeguest, the 6 is the LU,IBUFR is the buffer to
write, end IEUFL is the buffer length.

ihe FORTIAN conpiler would change this to something like:

JEE EXEC

LEF RETFN FKeturr address
LEF IWEIT MAcdress cf Request Code
LLEF LU L0 to write to
DEF IkRUEE iuffer Address

DLF IQUFL wuffer Length

RETEN=

kWher thie ccce is exccuted the Jil LNEC will Jererate & wewery
grcetect. In fect ary Jip, JCE, 1%z, €1A, &7, £ST, CET, JLY, JPY,
Eviy, bVV, 2k, 82Y, SE., 0¥, 09y, or S1Y instructicn which would
elther c¢irectly or ircdirectly effect a mewory location below the MP
fence will be inhicited anc memcry rrotect will force an interrupt
tc Lcocaticon 5. 7The lcwer beunéd of protected memcry is Locaticn 2
the upper bcund is set by the op system with an OTA 5 (or CIE 5)
where A is the address of the highest prctectea word.

Thus the JEE LYLC wes rever executed, rather the contente of trap
cell 5 (the interrupting lccaticn) was executed. The contents

¢t trap cell 5 ig a J{L $CIC,T. 1his now allcws us to enter the
cp systewr intc & mcedule called KIIOC.

LY10C i¢ obliged to f£ind cut where the interrupt came from and what
kind cf interrupt it was. Ly executing a I.IA 4 RTIOC will receive-
the irnterrupt code # of last interrupt. If the interrupt code
correspends to the Time Fase Generator KTICC jumps to $CLCFK in the
FLIME mccdule. If the interrupt code is £ (Dynamic Mepping, Memory
Frotect or Perity) RTII1CC jumps tc LXEC. If the interrupt ccée is
anything elee FTICC uccs the interrupt table to lcok up the apprc-
.riate processcr. '

If the interrupt was cn interrupt code 5, then a IIA 5 (or LIE 5) will
¢ive the viclaticr adcrecs; i.e., the address of the JSE EXEC.

Figure 1 shcws & orapbic rerresentaticn c¢f a JSB EXEC.

e now know Pow the systew erters the EXEC.

FICulm 1

([JSB EXEC

---------;}F&~ --- MEMORY PROTECT
FENCE

RTIOC MODULE

—— ICIC__ NOP
CLF p

JMP $RQST
EXEC MODULE

$RQST LIB 5

LIA 4 <
JSB $CIC,I

The user tries tc execute a JSB EXEC, memory protect catches this and
instead executes the contents of trap cell 5. This causes an entry
intc the medule FTICC. RIICC turns off the interrupt system analyzes
where the request ig to o and turng control over to the apprcpriate
Processcr.,

(1) LXEC Cell Frccescscor

Lihe primary function ci this section is to provide fcr general checkirng
énc exarinaticn c¢f EAEC CALL regquests (EX¥EC requests) and to call the
appropriate processing rcutine.

lhise secticn if celled cirectly from the Central Interrupt Control (CIC)
secticr (in wTICC) when & memory protect (lP) or cynamic mapping
vicolation (DN) is recognized. (All system requests from & user program
cause a protect viclaticn.,) This section alsc determines non-legitimate
protect viclaticne in user programs such as executing halt or I/0
instructiorns or ettempting to write into a non mapped or protectec area.
it alsc receognizes uger calle for resident library routines, re-
ertrant, or privileged processing.

pcr entry freoem CIC EXEC must decide whether the viclaticn was a true
mernory wvrctect, parity error, or mapping viclaticon. The EXEC request
analyzer examines &ll memory prectect and Lynamic Mapping viclations. If
the viclaticn ie legal, the EXEC jumps tc the appropriate processcr.

A Dbk viclaticn is distinguishea from & FP viclaticn by executing a SFS (5
instructicn. 2 [N errcr will set the flag on charnel 05, & MP errcr will
clear the flag.

Since parity error and memory protect share the same interrupt locations,
it is necessary tc distinguish which type of error is responsiple for the
interrupt. A parity error is indicated if, after the LIA (or LIB) 05
instruction is executed, pit 15 of the selecteu register is a logic 1; »
& memory protect viclaticn is incicated if bit 15 is & logic 0. 1In either
cace, the remaining 15 cits cf the selected register ccontains the address
of the error locaticn. MNote, however, that parity errcors are cetected

in ITIOC not LXEC.

Cnly one form cf IS viclation is legal. This LM& violation will occur
when a memory resident pregram tries to enter the memory resident library.
The memory resivent library is used cnly by memory resident programs. The
physical address cf the library will be above the memory prctect fence

if the program is using ccmmon; however, the pages containing the library
cre write protected. Thug any JSB, JNF, etc. to the library will cause a
DM violation. EXEC, after determining that the violation is a DMS
viclaticr, will check fcr three conditicns. They are: '

1) That the c3ll ies & JSL
2) That the destinaticn is in the memcry resicent library
3) Thet the prograi ie a memory resident program-Type 1

Tre TLL (Zempcrary Lata clceck) arnd return adjustment is cnly fox re-
entrant format. ‘ile return adjustmenrt ror re-enrtrant tormat in the exit
call is ufec¢ tc vary the return point to the calling program. The
return address arnd return adjustment ere acdded to determine the final
return accress. :

The parameter fcllowirg the JSE SLIEL (DFF DB, or NOP) identifies
the subrcutine format tc the system arnd the type of processing that is
recuired. 2 MNP signifies & priviledged subroutine.

ke-entrant progrems may call cother re—-entrant anc privilegyed programs.
licwever, privilegeu prcgrams may conly cell privileged programs. '

ihe 08k JLIER is intercepted by LXLC because it causes & memory
frotect. ‘

PLKIVILECLD & RUENGEANT PRCCESSING

Friveleged cr reentrant processing starts whenever the initial nemory
pretect or LMA viletion for that service is detectec. This can bappen
in twe ways.

Consiucr the twe cases below:

Cage 1 ARY FROCUEAY

. all in the same program

SUL

SLIER

CrEE 2 EESGEY RLSICIYL YECGRAM

J&E CUPR

|

I

I sie LOF |
| JER SLILL |
| EQE

|

|

Ir Case 1 ell ccce is withir the users precgram. The JSE S$LIBR causes the
memcry protect. As menticned earlier $LIBEE is & valid memory protect and thus
the system sterts the privileged or reentrant run.

In Case Z, however, & [viclaticn resulted due tc the JSE SUB. This is
vecause EUE regices in the memcry recident library. Here the privileged or
reentrent run startec at the JSE SUB. LXEC places the return address

(P4l cf JSB EUB) intc SUE that is, it simulates the JSB instruction and
eventually returns contrcl to three worde past the SUB NCP (i.e., the target
of the JEP). 1In this case the JSP SLIBE was never executed. '

2 all subroutines that are lcaded into the memory

fe cen be seern from Cage
e € svbrcutines) must be in the privileged or reentrant

regident library (tyg
format.

LXEC examines the werd (P+1) fcllowing the JSB $LIBR. If (P+1)=0 (NOP),

the celled subrcutine is "privileged". ¢$LIER restores the registers, adds

1 to "S$IVCN" (privileged subrcutine nest count), leaves the interrupt system
disabled, (which alsc means KF disabled) and transfers control to the word
following the $IIER cell (i.e., P+2). The return address to the program
(F+1) of the JSE SUE ie stcred in the entry point of the library subroutine
if & protect viclaticn occurred con the original call. ,

1f the (P+1) of the JSE SLIER is non-zerc, the value is the address of the
Temporary Lata Llock c¢f the re-entrant subroutine. The lst word of the
TTE is checked. If it is zero, then the subroutine is not being reentered.-

“rhe let vere ds then set up tc peirt to the 2nd werd of a 4 word bleck cf
memory sct up for €ach JEF SLIED usew ip a reentranmt run. This block is
lecated in system availaple memory (&AM). The contents of this second
word is the ID addrese of the program using the TDB. (More uiscussion on
this reentrant liect structure will be found in the following secticns.
keferencing to the list structure in Appendix A at this time should help
ir understonding the discussicn helow.) ‘

If the 1irk wecrd ic rcn—zerc, the subroutine is bieng r.-entered (i.e., twc
Jemory resicdent programs want the same gubroutine) and S$ALC is called by the
LAEC #9LE routine to allccaste a block in available memory equal to the lengt.
cf the UL (word 2Z). 1If $2IC rejects the allocation request, the main user
program is cuspended ard linked inte the memory suspend list, S

1t the kblcck ic allccated, the TDE is moved to the new block. If the new
bleck is cne word lenger than recuested (refer to discussion on $ALC), word
< (word length of 1LE) in the new blcck is set negative as a flag. The 1lst
word cf the mcved TPE in the system map is chnged tc point to the 1lst word
cf the original 40'F ir the user mag.

The address of the criginal program call is set in word 3 of the program TDB
as the return address. 7The re-entrant program must not modify the first thre
words of the TDE. EXIC then calls SRENT in the Gispatcher who sets the
merory orotect fence tc the beginning of the Resident Library area, removes
LrKE write protect, and restcres the rrogram registers. The interrupt system
ie enabled, memory prctect turnec cn, and contrcl transferred tc the program,

Fcr privileged subcrutines the syster saves all registers going into the
gubrcutine and restores them when the subroutine starts to execute. With
nested privileged subroutines the system does not save the registers on the
2,3,4, etc., call but reither does the system destroy the registers. That
ig, the »,8,Y,%X,F ané ¢ registers may be used to rass parameters to

ano from rrivileged subroutinecs (énd reentrant subrcutines).

The return tc the main pregrar at the ené cof a reentrant or privileged
subroutine is performed by a JSE SLIEX. "The execution of this instruction

is executed airectly if a rrivileged program is executing; it causes a memory
protect vicleticn if & re-entrant program is executing. 1n the latter case,
“BREC transfers control to SLILX indirectly after the initial protect violatic
precessing.

1L the executing prograr is privileged ~- i.e., (SEVCN>U) one is
fubtrancted frcm $PVCk., If SEVCN is still ncn-zero, control is returned
directly, with registers restored, tc the return point in the calling
privileged program. If now $PVCN=C, control is returnec to the caller
with the interrupt eystem erabled and the memory protect fence set to the
beginniny of the area of the original celling program.

1f the executing pregram wes reentrant tht return acdaress is calculeted by
adding the corterts cf tte jr¢ worc ot the IbL which centains the F+l of the
crigingl J&B GLL anc the T+Z of the JSB $LIEX which may contain a return .
cdjustment. Uhic address ic placed into the ID segments point of suspension.,
lr adciticn, the necessary adjustments are made tc the reentrant list and

tc system avzileble memory. Thig structure is ¢iscussed below. -

#11 S$LIPE ce&lle require ar esggcciateu $LIEX call.
FReentrant Lict EStructdre

Every reentrant cell recuires the creation of a 4-wcrd table in system
available memory csllec @ reentrant table. All of these tables are

cennectec thrcugh @ list structure with ite head in the EXEC (DHED) (the - .
reentrant list). The list ie a two dimensicnal list. The lst dimension is

a stack ard is one entry per prograrm. The 2nd dimensicn is for programs that
rmake nestec reentrant calls anc ie a push down stack after the lst entry
(i.e., the cne that got the pgrogram in the list in the first place.

The purpose, structure, and content of this Reentrant ID list is
graphically deccumented in Appendix 2.

£otrech, 1f ellccated to & vrogren, it such that orly that progran
which requested it cen write on it crd/zer release it. Any pregram
cen read from it. :

2 glcbel treck is such that any pregram cen read from it, write on it,
and/cr release it.

Track contrcl ie maintained via the Track Assignment Table (TAT). _
Feripherel disce (MCOT LU 2 cr LU 3) are not managed thrcugh the track
asgignment table.

Figure 3 shows the structure of the system disc (LU 2). The system disc.
has three distinct aress. The first area, from Track 0 tc approximately
track 20 (this area will vary deperding on the size of the system, 15

tc 40 trecks is typical) is the system area of the disc. The virgin
copy c¢f the operatinc system, drivers and all user prcgrame loaded at
generaticn time sre stcred in this location. :

The second area from epproximete track 2C to say track 100 is the track
Fool or scratch area of the disc. The upper boundary of this

area is cdeterminecd the first tine a generated system is booted up.

The bouncary is set by the File Menagyer initialize command. (IN,
Faster sec code, -LU, certridge ref., lebel, start track, # of tracks).

The Track Fcol is uvsed by the system for eswapping, text editing, loading
rermanent program additions, etc. ‘4Ghere must be a minimum of 8 track
pool tracks or IU 2, however, a minimum of 70 track poecl tracks is
recommended,

If the Externded memcry Feature of KTE IV is being used more track pcol crea
may be necessary to allow swapping of large arrays. The additional space
neecec con be gauged by recalling that cne disc track contains space for
6144 wordes.

The third aree of the system disc is for user files. The File
Menager mainteins this area.

An auxiliary ¢isc (LU 3), Figure 4, can be used with RTE to extend
the size of the track pcol if desired.

Figure 3

FMP
FILE AREA

- TRACK 100

TRACK
POOL

(SCRATCH

TRACKS)
- TRACK 15 to 40

SYSTEM
TRACKS

- JTRACK 0

LU 2

FIGURE 4

FMP
FILE AREA

- TRACK 50

EXTENDED
TRACK
POOL

- JRACK O

Figure 3

CFMP
FILE AREA

- TPACK 100

TRACK
POOL

(SCRATCH
TRACKS)

SYSTEM
TRACKS -

- ' TRACK 15 to 40

TRACK 0

LU 2

4

FIGURE 4

FMP
FILE AREA

EXTENDED
TRACK
- POOL

- TRACK 50

- TRACK 0

lrack resesigrment lable (127)

The 1AT is & varieble lengthk table oescrlblng the avallablllty of each
ciec tracP cn the system anc¢ auxiliary discs. The TAT is constructec

by "Li4CL" based cn user verameters declaring the size cf the system

¢isc and the evailability and size of an auxiliary disc. Each track is
representec by a cre-weord entry. The first words of the table correspond
tc the "n" tracks cf the system disc. The word "TATSD" in the Lase Page
Communication Zrea contains the size of the system disc as & pcsitive
integer. 1If an auxiliary disc is included, the rest of the TAT contains
crne-worc entries tc describe the tracks on that disc.

"‘I4CN" initializes the protected tracks of the system disc to be
assigred tc the systew (permanently unavailable).

The cortents of a track assgignment entry word mey be one c¢f the five
veluee:

Centente cf Track Zssigrment Table

Contenteg Meaning

G Availeble
iu0000 Assignec to fystem (cr protectec)
077777 Assigred globally (anybody can write)
077776 fssigred to FMCR (FMF Fackage)
XXXX XX ID segment adcdress cf cwner

T o e e T S o S it e o S " ——— ———— —— o~ (o e Sl o e s ——— - —

Base Fage Wcrcas Used for Track Assignment

BY Wword Mame Purpose

1é56 1AT FWA of Track Assignment Table

1755 TATLG NEGATIVE length of Track Assignment Table
1756 TATSC # cof lracks of System Disc

1757 SECTZ 4 of fectors/Track on System Disc (LU 2)

1760 SECL3 of Sectors/Track on Rux Disc (LU 3)

T e e e . e o o e e o ™ s T i et S e T — T~ —— " —— 47— b 7 s ——— - ——— ————— ————

GCrophicelly Lhe 127 ic scarched as ghown below:

(.
op ' ,
SYSTEM IUSER‘REQUEST
TRACK
Lu2 J POOL

EMP
TRACK
Lu3 POOL
FMP Isvsn-:n REQUEST

From the ciegram above, the user can see how to optimize system search .
time for free tracks. No FMP area (cr a very small area) on LU 3, 8
tracks of track pccl cn LU 2 (minimum required) will cptimize system
search time for system tracks. The user can alsc improve system
rerfcrmance physically by putting LU 2 and LU 3 on separate physical.
discs,. ' .

LU 2 &anc LU 3 are veth limited to a maximum of 256 tracks.

The LXFC will detect five classes of errors temory Frotect (MP),
Lynanic t.apping (L), Lecuest Code (KC), keentrant Subroutine errors
(L), arnc Farity ERRCES (FL). '

All of these crrcrs will ceuse program apocrtion (even if the no abort bit is
get). The error message and the errcr is discussed below:

MEMORY PROTECT

IN ®[F 4 TAF OFFRATING SYSTEM IS PROVECTED RY A HARDWARE

MFMORY PROTECT., THIS MFanNS THAT AnY PROGRAM THAT I1LLEGALLY

TRIES TO MODIFY UR JUMP TO THE OPFRATING SYSTEM wILL CAUSE -
A MEMOKY PROTECT TNTFRUPT. THE OPERATING SYSTEM TINTERCEPTS

THE INTERUPT AND DETERMINES 1T7°S LEGALITY., IF THE MEMORY

PRUTECT 1S ILLEGAL, THEN THE PROGRAM TS ABRORTFL AND THE FOLLOWING
MESSAGE IS REPURIED 10 THF SYSTEM CONSOLE

MP INST = XXXXXX XXXXX = OFFFNDING OCTAL INSTRUCTION CODE

ABE PPPPFP ARANOAY R COWTENTS OF A,B & E REGISTERD AT ABOKT

XY PPPPPP Ogfluidy K CONTENST OF X,Y & O REGISTERS AT ABOKT

MP YYYYY 17727 YYYYY = PRUGRAM NAME, 27277 = VIULATION ADDRESS

YYYYY ABORTED

VDYNAMTC MAPPING VIOLATION

A DYNAMIC MAPPING VIOLATION OCCUKRS WHEN AN TILLEGAL READ OR
WRITE UCCURS Tu A PRUTECTED PAGE OF MEMORY., THIS MAY HAPPEN
WHEN ONE USER TRIES TO wWrRITE BEYOND HIS OWN ADDRESS SPACE T0O
NON EXISTANT MEMORY OR SOMEONE ELSES MEMURY, [N THIS CASE THE
PRUGRAM 13 ABDKTED AND THE FOLLOWING MESSAGE IS PRINTED:

DM VIUL = wwwww WwwHww = CONTENTS OF DMS VIOLATION REGISTER
DM INST = XXXXXX -

ABE PPPPPP wQQAWA R
XYO PPPPPP WAQUUWA R
DM YYYYY 722217
YYYYY ABORTED

£X ERRURS

IT IS POSSIBLE TO EXECUTE IN THE PRIVLEDGED MODE (IE INTERUPT
SYSTEM OFF) IN THIS CASE THE USER MAY NOTVT MAKF EXEC REQUESTS
BECAUSE MEMORY PROTECT, wHICH 1S THE ACCESS VFHICLE TO EXEC IS OFF,.
AN ATTEMPT To MAKE AN EXEC CALL WITH THE INTERUPT SYSTEM OFF

WILL CAUSE THE CALLING PROGRAM T0 BE ABORTED AND THE FULLONING
MESSAGE PRINTED ¢

cX YYYYY 72717
X ARBUORTED

This error is detected in $TB1. The error is detected by virtue of the fact that
EXEC was entered directly instead of causing a Memory Protect.

UWEXPECTFD DM AND MP ERKORS

THE UPERATING SYSTEM HANULES ALL MP AND (M VIOLA)TONS,
CERTATIN UOF THESF VIOLATTUNS ARE LFGAL AND UTHFRS AKF NOT,
IN AnY CaSt jHe UPERATING SYSTEM ASSUCTIAIFS THESE VIOLATIONS
WITH PROGRAM ACTIVITY. |F A DM UR MP ERROK UCCUKS AND NU FRUGRAM
WAS ACIIVE THEN, THIS IS Awn UNEXPECTED MP UR DM VILATIUN,
SINCE MO PROUGRAM TS PRESENT, THERE IS w0 PROGRAM TQ ABORT
IN THIS CASE THE FULLOWING MESSAGE WILL BF PRINTED ¢

DM VIOL = wwAww

DM INST = xxx¥xxx OR MPOINST = XXXXX
ABE PPPPPF GOQANGA R ABE PPPPPP QuwQQQW R
XYOD PPPPPP @agilGgn R XYU PPPPPP BQREAW R
DM <INT> 0 MP <INT> = 0

WNARNING WNARNING WARNING WARNING WARNING WARNING

p----—---—--n--—------q-—---u------

- THE ABOVE MESSAGE NHICH SFECIFIES <INTI> AS 1HE PROGRAM

NAME 1S A SIGNAL 10 THE USER THAT AN UNEXPECTED MEMORY PROTECT

OR DYNAMIC MAPPING VIOLATION ERROR HAS OCCURED. THIS IS A
SERIOUS VIOLATION OF UP SYSTEM INTEGRITY. MOST TIMES IT MEANS
USER @WRITIEN SOFTWARE: (DRIVER, PRIVLEDGED SUBKOUTINE) HAS DAMAGED
THE OPERATING SYSTFM™ INTEGRETY OR INADAQUATELY PERFURMED REQUIRED
(DRIVER) SYSTEM HOUSEKEEP ING, IT MaY ALSUO MEAN THAT THE CPuU

HAS FAILED AND [HAT THE OPERATING SYSTEM CAUGHT THF FAILURE

IN TIME TO AVOIU A SYSTEM CRASH, : :

IF THIS ERROR OCCURS IT IS SUGGES1ED THAT USERS SAVE WHATEVER
THEY WEKRE DOING (IF FINISH UP EDITING, ETC) AND REBOOT THE SYSTEM,
IF ONLY H=P SYSTEM MOLULES ARE PRESENT IN THE OPERATING SYSTEM,

CPU FAILUKE IS HIGHLY SUSPECTED AND CPU DIAGNOSTICS SHOULD BE RUN,

SYSTELR AVAILAELL MELCRY

Allocation of the System Available bMemory for the Keentrant ID List and
Moved 1LL ‘s

The reentrant processing of reentrant subrcutines and automatic
buffering tc low-speed 1/C devices requires the temporary use of blocks
of memory. &4 secticn of the computer memory must be cdesighated as the
System Avajlable Memory for this purpcse. The size of this area is
designatec by the user when the system is generated.

The management cof the available memory area is perfocrmed by the routines
$ALC and $RIN. These rcutines maintain a chained linkage in a circular
fashion of the availatle plocks in the area.

If 2 block size reguestec is not available, SALC returnc a reject
indication to the caller. S$KRIN checks the lict cf programs suspended
waiting for memcry each time a blcck is released. ¢$RTN calls S$SLIST
to cschecule &ll waiting prcgrams (list type #4).

Calling Seguences;

1) saILC (£llocate cecticn)
(F) JEE $AIC
(P+1) (# woras needecd)
(F+2) -Return-

On return;

(&)
(BE)

non

FWA ¢f allccated block, or = 0 if reject
worde allocatec (may be 1 greater than # requested)

If no block is large enough tc allocate the reguested length, (A)=0
on return.

2) SETN (Return blcck section)
(F) JSE SHIN f
(P+1) (FwA of buffer)
(P+2) (# words returned)
(F+3) -Return: Fkegistere meaningless-

There are no error conditions cetected by these sgecticns.

Lue tc the way $ALC is linked¢, it can happen that the user will ask
SALC for i words and instead get N+l. This happens when a request for
N woraue would only leave 1 word cf gystem available meirory left cver.
Since SALC requires 2 words for its link structure and only one word
would be left, $SALC gives the other word to the user to force him to
keep track ct it. Zppencdix 2 alsc shows Low thig one extra word is
carriec along if the need arises.

Lemery 12 elleceted ir certigucus churke; howover, S&IC i® wiitten

£¢ that £.l. neec rot Lo coentiguous wenary. The ¢iscennected bloeke

¢i wencry are linkeo tlrcugl the first twe words of each block. 2 drawing
ci the linkege for KIL-1I is showvn below sc the reader will understand
hew the rcutine will work irn the ceneral case. '

------------ ——————— iligh Memory

Jegment 3

W - - G ——— —— o - " —— o> o

| 17777 !
l 13 I

T ——— —— -~ ——— o —~

| o ' !
I |

o ————— - 2 — T~ —— o —

|SAN O WORDS | Segrent 2
- I
== e - |
| G ¥
SALC+174E |Feinter to SAN | ——ccemmemm e o
e e |
$ALC+173E |Memory Avail.Now| | , |
e m———————— e | |
SALC+1728 |DEF *+1 | e e e o
__________________ | , . |

CSALC | . | |SAM P VCEDS | Segment 1
|) P B
| . e
it B bkl
l P |
The -1 in the DUHMY SALC list =—meceemcmcommmee o
means nc weiory in the first I : |
blcck ie the dummy blcck. | . |

» S s e—mme—ee—e——e————— LoOW Memory
First word c¢f each blcck=t cof words fin the block (B,Q,R)
second wora c¢f each blcck=Pointer to lst word of next
blcck or 77777 if no more
clocks.
FIGURE A

LCw gupposc the user retvrre (=0 (o0 words)

SAL now lccoks like:

Start cf 3ra¢
block which
used tc be Znc
block

End ¢f new

Z2nd Elock
E
L
e
E
End cf let
blcck has
changecd=Start S\

of new 2nd Rlock

——— o o — v — " —

SALC+174E |Fointer tc SaMm|

——— —— . —— —— - —

| liem Avail Now |

——— o —— ——— o — o ——_ -

| DEF *+1 |

o —— o — o o - — -~} —

Also;

- . ——— - e G — — ————— — o -~

|
[
|
|
[
_____________________ |
|100 words Allccated | |
Iby lsgt Call oo
_____________________ I
|100 worde Allocated| |
Iby 2nd call o
DT VS
| ||
[== e e

| 80 | K==
[== |
|100 wWords Allocated |
by 4th Call |

-—=>] 600 |

YT S - —— ——— t—— f— d———— T —— oo

Pointer to next
block

Fcinter tc
Kext EBlock

Fointer to
next Block

Feturned memory is always concatenated if that memory is found to be

centiguous to a free blcck akove
irsures continual maximum block s

collection.

or below the returned memory. This
ize and eliminates need for garbage

Asking $RLC fcr mcore corticuous memory then is currently available
(fecuning that that much will ever be available), will force the
recuesting precgrarm into the unavailable memory suspend state (state
4) . S$PLC perfcrms the necessary SLIST call and places the % of

words reguested (put unsatisfied) into word 2 of the reauesting
rrogram’ s II segment. Thereafter, everytime memory is returnecd to
the syctem SEUN checks te see if the suspended program cen be given
encugh memery arc rescheculed., Until that preogram can be rescheduled
‘LG nmere temwory is civen away to programs of lower pricrity. $RTN
checks only the lst prcgram in the unavailable memory suspend list.
Thie insures that the highest priority program gets the memory first.
(Fecall that the vravailable memory suspend list is ordered by
proegram pricrity.)

AFFLRCIX A

APFENDIX A

Re-entrant List Structures

The first word, TDB, will be used by the system as followe:

0 - subroutine is availeble
=0 - points at 4 word block describing current "owner";
i.e. the program currently executing in the subroutine.

Wwhen the TDE is mcved to system memory, the lsit ord is changed to
point tc the locaticn the TDB must be moved back ‘ro.

The sign bit cf the 3rd word cf the block indicates if the block
was moved or not. The sign bit of the ID-address indicates if the
4 word block is 4 words (0) or 5 words (1) long. (This is caused
by a one wcré¢ inprecision in memory allocaticn.)

The ID Extension List is a two dimensional one way linked list. The
HEAD of the list points tc all programs processing reentrant sub-
routines. They are added to the head of the list as each JSB S$SLIER
is processec. . The cther dimensicn is a list of all reentrant sub-
routines being processed by one program; that is, on reentrant
subrcutine calling another.

T GRS e S o Gk e G G SRR EE S S S —— v A B N Gl e S S i M WA b St S S M B S S A e Vo e S i Mt Wi T b S B S . S~

S S e S e S o S S . v G W, S — " — "~ - (s St o i, S Gt P S e W S S M S Vo Sl S Gt i M VO S i B S

of — PROG] —yp PROGZ_____’.PROGB(]) 4 PROG4 —p-P

PR0G3(4)

PROGB(3)

!

PROG3(2)

|

P

Subscripts of PROC3 refer to order in which the FKOG3 reentrant
subroutines were called. PROC4 was the first to enter a reentrant
routine; PEOGl was the last. '

APPENDIX 2

Figure 1

Cne 4-wcrd blcocck is created each time a reentrant routine is

entered.

s enterec¢ its

DHED DEF *+1

Re-entrant
List head

fiD Address }e

TDB_PT

p

Frcgram A ard B are bocth in reentrant subroutines.
rcutine first.

: »

A
f

SYSTEM
etc. MAP

TOB in
sub-
routine

---first word points at ID
segment address of
Owning program

USER
MAP

‘“

APPENDIX A

"L'" ie euspendec -- program "C" reenters "E£'s" subroutine.

NOTE: Yhe moved status is indicated by "B S" TBED pcinter
not peinting in turn t E's ID seqment address.

DHED DEF *+1 |
' C . B A
Re-entrant
list head J"' ht » et —> p
M |ID Address M {ID Address
@ [TDB PT \ TDB PT
etc.
) P
SYSTEM
MAP
ey U Points to place
USER ' to move back to
MAP [
[
T0B in | # of words| Total TDB Size
subroutine | somewhere
. in system
l memory

EFFLEDIN &

Frogram "(" existsc the rcutine.

DHED DEF *+1

B A
Ke-entrant
1 —)
List head W {10 Address
1 TDB PT etc.
g
SYSTEM MAP
|
USER MAP
|
) < I —~
. , # of Words Total TDB Size
1n sub- Somewhere
| in system
rmmony A’

v

The routine is available - Bs memory will be moved back when the dispatcher
is committed to run it.

AFPPENDIY A

Figure 4

Suppose in figure 2, program "L" was to be executed prior tc "C’g"
exit from the reentrant routine. Then "C’s" core must be saved
and "E e" movece back in.

HED DEF *+1 |
C B A
Re-entrant R L »]
List head , - P
M | ID Address M_{1D Address
1 |TDB PT g | TDB PT etc.
) ' ‘ P
SYSTEM
_ MAP
t | -
I | MAP
. —p
N i B L
Total TDB somewhere n | subroutine
Size | system memory

— e o — S ov——— — —

AVPERTIA A

——— o —— o~

Figure 5

cuppese ctarting at fFigure 2, routine

"C LU

now calls crother re-
entrant subroutine -- the list structure is row:

MAP

DEF *+1
c B A
g-entrant . , B | S P
List head M| ID Address M 1D Address
| TDB PT 1 | TDB PT
SYSTEM v e
MAP
[T S
‘ -
+|M | ID Address ‘] | [# Of wordS|lq— . Total Z&R
TDB PT TDB in somehwere '
' zagigutine | in system
memory
| | '
- - - = - |
08 in |
Second
Routine |
USER

20

C PHEDL Decirl / »

TD8 /N
Sug *1

708 N
su8 ®<

Noyre épudé),«’& ReS7T S7lueTHlE~

- Fae peoge. THE ¥ K poed of THE

TABRE 185 wSED owly oo THE

EX7EY n7r TAE KEpd oFf A€ Lss7
AFTER ZHE NERAD oF YHE K457, 706
Dowvraed KLos7 o5 A Hesa JaazA/

STARCL .

FIeaE
FR06D FRoge FR0&8 PROG 7
- v/l
ZD ALY ID #ddL Id ADOR Hzp posk
T8 AT To8 Avr T8 TR 1| 1p8 Frrk
12 Z &
708 N
. - Sus®3
TD DD
TOB ANTR
ZO AODR #
TO8 AVIR
708 1N
Sus™2
I
ZO RO
TO8 PNTRK
&
IN S/s Ao x
| PlovEd
/”[/”a’(/ & 7D8 of
SUB¥2
Betong s
7o 140GAH

AFFENDIX ©

The externals .ZFRV arc .ZEi9 cre treated as "special" entry

pocinte in the RTE Disc-Uesec Creratiny Systoms, in RYE-I1,

FTE-1TII anc RTE-IV. The k1L Cenerator moc¢ifies the cocde that

is lcaded for subroutines that reference these c¢xternals, the
changes macde cepenc con wiether or not the ccde is loaded into

the ccre resident library (ané hencce may be shareable) or if the
cocde is loacded¢ with the prcgram (not shareable), in the latter case
the externalcs are satisfied by replacing the calls to .ZPRV or
«ZEN1 with en RKES (i.e., .ZPRV,DF,2001). These KkPF’'s are passed

tc the on-line lcader in the same manner as an cperatcre RF command
at KIGEN time, thue, the on-line lcader can perfcrm the same
functicne as the KIL-Ceneratcr with respect tc the externals

«LERV, JZEw1l, $11bE, &éno $LILX. 1he follcwing examples should

help to illustrate how &rn assenvled subrcutine is modified.

**¥NOTL - The capanility of handling cells te REIC must also be
added for ccompatiicility reasons since the new library
references this rcutinc.

The coce cf IFHUF and JENTK is inclucded.

COKE FLSIDENT 1M CCRE BESIDENYT
L 1ERARY LILEAI

——— - . W S W o S —— " o o N T - S BT G R G W S S Y S G U . - S W 2 R e s v o T M o W S v W . W S tom

I G SO R FRIVILLIDGEDU I S R U A
¥ SUE S NGE UL WOTE
H SR S (A JEE SLIDE , Beo
I Ilcx HCE LLE LIBk
L.it¥ JkKF SUL,I LIEX JLE SLIBX L ILX JME SUB, I
CLF SUE LEF sUB LY SUB

—— —— ————— " W oy — Tt — o S W S S e San s S e S Mo S S N (o M s S o S

EARMY NOP BALK] WOF FARKL NCP

PARNZ LCVF EARINZ NOF FARMZ2 NCGF

cuk NGP SUE NCP SUB NCP
Joh JEPRV J8E SLIEE REE
PEF LILZE LOP LLE LIk
Jel JENTE JS5b JEN1P Jek JLNTP
DEF PAEML DEF FERAML DEE PRAML

IIbx JMP SUL,I . LIEX JSE SLIEX LIBX JmMP &UL,I
DEF SUL DEF SUbL DLE SUR

- o o S Al SEL an W G S M e SOV SR Sm A S NS AN MR G S GRS G e M et N S A A A Vo — . St

SUE WCE SUE KOP SUb KOP
JEL o ZEL1 JSE $L1Dk FES
DEF LIEX DEF 7TDE DEF LILX
182 SUL 182 SUB 157 UL
182 TLE+2 ISZ TDB+2 ISz TLL+2
NOP : NOP NOT

LIEN JRY SUL,I LIEX JSE $LIEX LIBX JMP SUL,1
DEF TLE DEF 1DD DIE TLi
DEC 0 DEC © BIC C

T S e el e A S e e T - ——] — . o T2 —— o A - - 2120

EReLY NCE FREM]1 NOF FEAM1 NOF
FRAMZ NCUF PRALZ NOFE ER2AMZ NCE
HUL LGl &k LOF SOt NCE

JEB L ablit JEE SLILK KS5S
CrF LILX DEF 1DE DEF LIBX

Jb JLWlE S5 JENTP JEL JENIP
LLEF Flakl CILF PRAM DLF FREM1
STA 1Lb+Z STA TDEBE+2 STA TLDE+Z

Libx J&F GLL+42,1 LIEX JSB $LIBX LIBX JMF 1LB+2,1
CLY TEE CLF TCB DEF TDE
LEC O orC ¢ LEC C

SCHEDULER TECHNICHL SPECS

HIKE MANLEY
1/725/748

Project 41106

TABLE OF CONTENTS

GENRERS OWERY . LN
st Prhooes
ol Frocess
TCEESGY
Steon~t Up
Gaes T Marigie s
MAJOR FHNLTIOGNS

Fraogram T
Fragran 35
“nring Pa
Schedular

aenifn
-

1

nterfaces with Dispatcher

HPPENDIA A

t Segment

D Extension

keyword Block .

I Extension fFeyuword Bleck

i
i
APPENDIN B

pisputcher Interface To List Processor

APPENDIX C

$LI16T celiz availuble to drivers

INTRODUCTIOH

e e e r e e e Wl e e e

The scheduler is the RTE IV module which oversees progren state
traensititions, responds to aperator input commands. begins susten
start up at boot up, and satisfies or vectors to ottt r processes
eieven EXEC call requests (EXEC 6,7,8,9,10,11,12.14,27,23 and 24,
A1l of this processing is done completely from within e systen
BGp .

Calls to the scheduler moy come from either the user or other parts

of the system itself and thus from either the user nep or system map.

Far this reasaen a preanble to certain sections of the scheduler are

found in Table Area 1 uhich is in both naps. The entry points that

start in the preanble are $LIST, $MNESS, $IDMO, end $SCD3. In esgsence the
purpose of this preamnble is to get the current OMS status faor return
purposes. enacble the system map., and jump to the appropriate processar.
dhile this code is not specifically part of the scheduler, it is, so

o speak., the front doar.

The technicel discussion on the scheduler uwhich follows assunes that

the recder is completely familiar with the 33 ward RTE-IY ID segnent and
3 uword ID extensian. For those uho are not, Appendixn A at the end

of this menual contains o complete description of every word, bit

andg field.

1
[
1

LIST PROCESSOR

e et e e ben e e m e ee s

The list processor is « subroutine in the scheduler that is called

to move a pragran from one state to another. In RTE ¥ a progran
i5 always scid to be in a state. The stutes are:
STRATE HUMBER f STHTE

e DORMANT

1 SCHEDULED

2 I/0 SUSPEND

3 GENERAL WalIT SUSPEND

NEWOGRY SUSFEND
3 DISC SUSPEND
] OPERATOR SUSPEND

L

The state nunber is the nunher used in the status field Tuword 18) of
the ID segment to indicate that o progrem is in o« particular state.
For each of these states, except the dormant stete, o« linearly linked

1ist of all programs in that state is kept. The schduler mnanages 5
of these lists. The listz asnd their hesds are!
LACATION { HAJGR STATE

P e

1 SCHEDULED LIST

3 GENERAL HAIT LIST

4 HEHWORY SUSPEMHD LIST

3 DISC TRACK WALIT SUSPEND
¢ OPERATOGR SUSPEHD

The I/0 suspend state hues a list headed at each EQGT but these lists are
manusged by RTIOC not the scheduler.

Frograms are maved in and out of these lists as their mojor state
changes. The lists are maintained in priority order with the
highest priority programs first. Programs of the sane priority are
added to the list bheh:nd the others of same priority. Each list

i5 threascded through ID segment word t end is terminated with a zero.

Any number of things can couse q program to move froms state to

state. For example,. suppose FHGR was executing. entering «
*35,FNGR on the system console would couse the system (list
pracessor) to move FMGR from stote I to state o . Thus FHGR's

status field would change from | to 6, word | of FHGR’3s 1D
segnent would be tuken aut of the scheduled list and pdl into
the operactor suspend list.

There is no user interface to the list processor. Rll calls to
the list processor come from other system nodules. User requests
are first processed in the EXEC or scheduler and then g0 to the
list processor.

CALLING SEQUENCE

J58 FLIST

acty (Address Code){Functian Code)

DEF (Address) <(This word not alweys required)
ON RETURN :

If A = ¢, then no hessage & B = PROG 1D hddress
If A not = 0, the A = ASCII error code address
4 B contains decimal errar code

Address codes of 0, 6, & 7 are reserved for drivers.
The only function code allowed with these address
codes is | (schedule)
If successful @ 9 ELSE

B 3 ILLEGAL S3TATUS

B 3 MO SUCH PROG

H an

Far a driver that wants to convert & prog nome to an
Il address: JSB SLIST

acr 217

DEF PHAME (Prog MName)

This perforns a sinple list move like changes to priaority. <(If
the progrem is dormant it’s a big NOP). Upon a successful return
fA = 0) B will be the ID address of the programn. If the progran
is scheduled many times doing this removes the search tine forp
the Il seg of the progran.,

Function Code
= Dormant Request
Schedule Request
I/0 3uspend Request
General Wait List Request
Memory Available Request
Disc Allocatiaon Regquest
Operator Suspend Raquest
Relink Progran Request
hru 146 are not assigned

i - RN S NP SN
€T M MO8 4oy oy

-

For

===0,7,8b (Faur Drivers}

J88 $LIST
acT 901

DEF RETRH
0CT IDADR
DEF PRANI
DEF PRARZ
DEF PRANSZ
DEF PRANSG
DEF PRANS

JSB SLIST
UGCT 4XK

I0D ADR IN B REG

fiddress Code

ID segment address (5 paranet
ID segment address (az next o
proagramn name address (a

H =

1 =

2 =

2 = ID

4 = ID

3 = 10

6 = ID

7 o=
avanple

JsB
ocT
DEF
DEF
DEF
DEF
DEF
DEF
DEF

$LIST Jse
701 ocT
RETRN 0CT
PNAME OCT
PRAML
PRAM2
PRAM3
PRAMS
PRAMS
- . e 5.._._...
JSB $LIST
6CT 5%%
ID DR IH

ASCII

ers passed)

ct wa
DEF)

lye)

segment address in wark {(no DEF addr
seghent address in B-Reg<ino CEF addr.)
segment address in XEQ1 {no DEF addr.)
segment address (HNext pran

inte B Re

_____ R R - ——g .

$LIST J4SB $LIST JSs
601 0CT 1X¥ 0CT
IDADR OCT IDADR DEF
BYAL

(NG IHNDIRECT DEFS

-

NEQT

)

s volue to put
y @ susp)

$LIST
2R
PHANME

t)

ASCII prag anme {passes 5 parameters)

158
ac Y
ip

- -

$LIST
IRK
AOR IN SWORK

The list processor breaks Up the requests shoun in the calling
sequence into four genercl casges:

1 Dormant Request
2. Schedule Request
3. Operator suspend request
4 Hon-operctor suspend request
Q. I/0 suspend
b. Unavailable Hemory suspend
€. Unavailable disc spuace suspend

In general, before o call tg the list processar i5 nade other
modules have done a considerable epount of error checking to

zee if the chunge is legitimate. These checks are of the nature
"Does the program exist™? gr "Were the parameters in the proper
range”? etc, The list processor perforns ¢ was - will be check.

That is, what was the last state! what will be the next stute;
are the two compatible? If the compatibility answepr ;s yes, then

the requested transition is fade . If the answer is no. then the
list processor decides an what the proper new state will he. In
addition, one other answer can be made. The answer ;s "yes,

but not now". In this case a hit is set to flag an action to be
deferred. The R.D and 0 bits are deferred wction Gits in the ID
segrnent

The transitian pracessing by the list processar is done as
foliows:

Doarment Request

TN @b me e me me e e e e we e e e

L If the abort bit is set then:

L. The § tenporary ID segment words are Clecred.

2. The programn is placed into = push down stack, linked through
word 9 of the ID segment, and headed ot $2272 in the
dispatcher. <(Refer to cppendix B for what the dispatcher does
to this stack.

3. KEQT is cleared (Base Page word 1717).

The entire status word is clesred and the CL bit,

3. If this is the currently executing program $PUCH. the privileged
rest counter., is cleared.

6. Link processor is called to do the list move. iLink
broecessor is discussed in the next section.

-

i the
1. Previous stotus iz [/0 suspend {state

abert bit i3 not set and

2Y or 0 bit set.

then only zet D bit and call link processor.

L5 I 154

If

Eits.,

gxecuting program sat the

set status to zero; if this is not the currently.

precaeszar

S5chedule Reguest

The schedule request partion of the list processor checks actuatl

srogran status information in the ID segment to see

i3

schedulable.

iin a schedule attempt if the program’s status is not 0, 2, or &

[ho
(93

If dornant bit set jump to dormant request processar.

If the ¥ bit is set, chenge the status field to 3 and call
tink pracessor to put the progran in the general wait tist.
ar 2 above set entire status word = | this clears out all
other bits; then

then:

4L

M

43, If not
A4 Call

link pracesscr to schedutle progran.

1

the current statuzs is 6 and

Save resource bhit not set then go do Al through A3 above.

rezource save bit set and O bit not set then CLEAR R&D

no partameters bit, and -all link

if the program

the

Dborment bit set too, then set status to ¢, clear R&D bits., and
tink praocessaor to make dormant.

catt
Hait
call
Else
done

bit set too,
link pracessor to put progranm

call link processor to put progran

Al

throeugh A4,

in scheduled list.

then change stotus to 3 (general wait) and
into general woit state.

That

is

If the current status is I/0 suspend, stute 2,

1. If O bit set., and R or 0 bit set then change stotus field v
to a 6 and call link processer to make program ~veractor suspended.
L2, If D bit set jump to dormant request praocessor.

[f the current status is 0, that is, first despatch, then:

Dl1. Ferform €1 and C2 in cese the program was in the timne list and
C on 35 connand set the 0 bit.

D2. Check to see if the pragramn is disc resident. If s0, then check
the proper $HATA table entry to see if the progran terminated
saving resources or serially reusable and is still i the
partition. If no go do Al - A4,

D3 If stil in partition then call the dispatcher routine $DMAL
to set the partition up to be reused. Then go do Al - a4,

LIST CALLS BY DRIVERS‘

Certain 3LIST calls have been set aside for use by drivers. These gre
list calls with function codes of o, &, and 7. The form of the call is:

JSB $LIST JSB s$LIsT JS5B $LIST

O0CT 00t OCT 7¢1t 0CT 691

DEF RETRH DEF RETRH 0CT IDADR

0CT IDWDR DEF PHANE 0CT BVAL

DEF PRAML DEF PRAMNI

DEF PRaM2 DEF PRANZ

DEF PRaAN3 DEF PRAYU3

DEF PRam4 DEF PRaM4

DEF FRaN3 DEF PRANS
For function codes of 0 and 7 up to 5 paraneters May be passed. At
least one parameter must be supplied. The five parcmneters are put inte

the XTEWP area of the ID segunent and may be picked up by calling RNPAR,

The LEF RETRN nust delimit the parameters and no indirect DEF’'s gre
«ilowed. For function code of 1, the ID «ddress CIDADR) nmust be in the
call. For functian code of 7 PHAM points to a 3 word erray containing
the ASCII program neme. For functian code & BYAL is placed in word 11
«f the ID segment, the B register at suspension.

Unly schedule requests may be made. No other requests are allowed. Note
that $LIST does almost no error checking for drivers and none for

the op systen. It is sssumed thet if you call $LIST you know uhat you
are doing.

Operator Suspend Request

- ma o e e e we M e me en e e bt e e we G e wa Ml me e

El. If the entire status ward is @ and Lthe program is not in the time list
or the status field = 4, then mauke an "Illegel Stetus™ error return.
E2. If current status field = 2., [/0 suspend., then set O bit.
£3. If status field = 0 {i.e. other bits =0) then set R&D bits,
make status field = 6, and call link processor to make list
pove .
E4. If not 1,2 or 3 above set status to € and call link processor.

Hon Operator Suspend Request

v - s e e aw e Um we e e e e e e e ee e S e s e e e

i. Put requested future stostus into stetus field of prograen’s ID
segnent saving all the upper bits of the sane word.

2. tall link processor to nmgke list trensition.

On return fraom $LIST

A =) paagns sucCcess

B = ID address of progren referenced
else

A ASC1I error code address and

2] numeric arror code

3 means illegal stotus (not dormant)
5 no such progran

nouw 8 n

LINK PROCESS0R

e e e e e e 8w e

The REAL TIME EXECUTIVE "LINK PROCESSOR® function to renove
pragram from one list to add the progran to another list.

Yhen removing ¢ program from a 1ist, a check is made of the pragran
status to see if it is in the /0 suspend list. NOTE: The 1/9
suspend list is not kept in SCHED, but is kept by I/0 processor
CRTIOGC). Thus, if the progrem i5 in I/0 suspend list, the program
remnoval portion of the routine is bypassed. If program is not in
the I/0 suspend state, the removal request code value is used to
conpute the address of the °top of list" ward for the particular

Tist, If the program cannot be found in the list, or it is a nultl
list, the pragram returns as if the acticn hes heen performed. This
should he an impossible case. Rssuming thet the prograem is found

v list, the actiaon tuken depends on where the praograem is5 in the list.

..10-.

Tne ranawal af pragrem “ron o l.st consists of:

i If 1/0 tist ccode 21, tnen this is special case snd does not
requitre remowal

2. f O HULL tist. then error exit ftaoken.
If first and anty program in list, then list value set to zero.

4 I+ first progran in list, but not the aonly progren in list
('inkage not zero), then set list velue to the linkage value.

i if in middle of list, the linkage of the ID segment which points
tn the progran to be renmoved is set %o the linkage value of the -
program that is renoved.

b If last program in list, the linkege value of previous program
in list iz set to zero.

G#fter the program has conpleted the removel portion of the routine.
.t con then ke added to another list. The c«ddition code value is
=ngmined to see if it is to be added %o I/0 suspend list., in which
case return i35 made to colling progran. UOthervwise, the ecdditien
reguest code value is used fto compute the cddress of the "top of
{vst” word for the particulsr list. Progrons are added to a list
according to priority. The progran is added %o the list just prior
ta the praogram of lower priority. The program is andded to the list
in the following manner:

1 if 170 tist (code 23, then this is special case and no addition
made to list.

o

If NULL l:st, then list value set to point fto id segment or pro-
gren to be added and the linkage set to zerao.

3. If not null list, the progran is inserted into liszt according to
priority level and linkages chahged to reflect this insertion.

4 . If a louer piror. than eny preogran in list, then last linkage
is set to point to the prograem to be wcdded and the prograwn
tinkage i35 cigared. :

-11~

3. Message Frocessor

The operator input message processor, $HESS, accepts input comnmands
programaticaliu, generally through the system library routine HESSS
ar from the systen console via the $TYPE routine.

The $TYPE routine is entered by an interrupt created .y the operator
striking any key an the system teletype. Upon entry, the systen
teletype ready flag is checked for busy. If the flag is busy.

then control is given to $XEQ. If the flag i5 zero, then an =
fasterisk) is output to system teletype via $%SI0 and ¢ request

for teletype input is made to the systen teletype via $XS510 with

the conmpletion address TYPLG. The system teletype flag is set

and control given to $XEQ@. When the aperctor has input his request
{signified by LF), the operator mnessage processor routine ($MESS)

is called. Upon return from $MESS, the A register is checked for
Zero or non-zero. If non~zero, then ¢ message is to be output

from $MHESS on the system teletype. The A register contains the
address of the buffer which contains the message. The first ward of
this buffer contains the nunber of characters to be output and the
ASCII messege begins a«t the next word. This message is output

via $X5I0 and teletype busy flag is cleared and control given to $XEQ.
[f the # register is zero upon return from $MESS, the teletype flag
is cleared and control given to $XEQ.

The entry point $HESS is in Table firea 1. It i5s a front end to
the actuc! processing itself. It contains:

$§MESS MaP
56M S$MEU
SJdP FHSGE

The entry point $NEU will then contain the DNS status of the systen
when the $MESS call was made. This status will be restored when
$HESS returns.

$HESS is not « closed subroutine. For exanple, the OF commaend will ceuse
a progrem to be aborted and the associacted clean up code to be executed.
The return is to the dispatcher not to the caller of $MHESS.

12

The following things are done for calls to $HESS:
i. The command’'s existence is verified.

2. The commnand 15 parsed.

[

The command is dispatched.

The first of these aperations is done by checking the transmission
log. If zero characters were received, $MESS just exits.

If, upon entry to $HMHESS, character count is non zero then the
internal parsing routine is called and parses the entire operator
input. The output of the parse routine is o 33 word internal
buffer. The calling sequence and two exanples are shoun below:

The Parsing roeutine scons the ASCII input buffer and stores the
data into paraneter tables. Connas are used to flag separation

of paraneters, The cheracter count from teletype driver is assumed
to be in the B register upon entry.

R parameter may be up to six ASCI! characters in length. There
sy be up to seven parcmeters and one operatinon code input with g
Mmaxinum of eighty characters. Rs the input is scenned, o caunt of

parameters and count of characters for each paracmeter is kept .
Characters are stored left adjusted in the buffer. Hord PARAN
contains the paraneter count and GP.PL,....P7 contains the ASCII
parapeter values. The character count for each parameter is kept

in word just prior to huffers. PARAM is kept as positive integer and
chaoracter counts are negetive integers.

,_13_.

3YSTEM PHRZE ROUTINE
1

Call:hg sequence:

438 4PARS

DEF PBUFER 33 word buffer for parsed output
#-fAEG = input buffer nddress
3-REG = positive character count
The parse routine w:l. accept up to 8 paramneters delimited by
CoOWMGS Each parameter is parsed into 4 woerds uwhere the first
ward describes the type of parameter. The formnagt is shovwn below:
HORD # ! CONTENTS
Ut CTYPEY + ¢ f null, 1 if numeric, 2 if ASCII
H
2 b bhinary & if type = 1, lst twe ASCI! char’'s if type = 2
H
3 t used for ASCII only = 2nd two ASCII characters
. !
4 i used for ASII only = 3rd two ARSCII characters
{
Examnple:

Fa, P @ RST,55,.,10B,556377%, ABCDEFGHIY
Motes:!

All blanks are ignored.
finy ASCII characters past
the first 6 are ignored
To enter A3CII 77 enter
7T X, where % is

any PSCII character

[

(5]

-14-

After the cosmand is parsed its existance nust be verified. This
is done by a table look up. The Table is ot LDOPC and i5 just «
sinple list of ASCII opcodes. If the opcode is valid, then «

junp is moede through table LDJINP. Each entry in LDOPC has a
corresponding entry on LDJHP. LDJWP contwins the address of the
various processors. Note how easy this moakes asdding nem comnmands.
Uine merely places the #SCII opcode into LDOPC and the address of
the processor into LOJHP. '

Conmands not in the table are dispatched to a routine which
returns the praper error.

Errors are returned to the caller of $MESS to be printed in the
proper place {or not at a«ll). Recall that $MESS can be called fronm
n pgrograem viac MHESSS (see the library section of yaour menual.

4. SYSTEM START UP

e b e e e e o W e W e ws @

Mhen the user pushes the run button the final time on systen boot

up a junp is made to the $STRT routine in the scheduler. $STRT's jab
is to get the system going. This section of code is euecuted

ance and is later overlayed.

The first thing thaet the start up routine does is to set up
the suysten nap. '

To begin with the first 32K of physicol menory vwill be the systen

nap none of which, to begin with, will be uwrite protected. A4

58 is then nude to $CHFG, the slouw boot routine. This will allow
the user to reconfigure system available menory. I/0. and partitions.
ffter this the slavw boot returns to $5TRT so that set up of the
system map can be finished. This mapping routine uses the following
informnation about system available menory.

Ist PHYSICAL "CHUNK® of SAH

e me ew et R Gee e W e e Am e G B G MR LY G N e e N B NS N W W W

15 19 9 Y
$HPSH { % aof PAGES | PHYSICAL START PHGE |
BP 1660 LOGICAL START ADDRESS

BP 1661 HUWBER OF WORDS

4n e A e b e s AY s me e e mm e e e Ak e b e ma e o e e R

i 9
$MpS2 I # OF PAGES I PHYSICAL STA4RT PAGE |
BEP lee2 LOGICAL STHRT ADDRESS
6P 1663 HUMBER OF W4RDS
BP 1669 LOGICAL START ADDRESS
gf 1665 HUMBER OF WJRUDS
BF 1e6é@ LOGICAL STARY ADDRESS
8P teo7 MUMBER OF HORDS
gp 1470 LGGICAL START ADDRESS
#p 1671 HUMBER OF WQRDS
The first area of SAM, which (5 a nininum of 2 pages. i3 set up
By the generator and does nat charge. Physically .t is located
directiy behind Lthe operating systenm The second area 35 set up
“t generation time but is changuble via SCHFG ot boot up. It

physrcally resides uftér the mewmory resident progran area Ci.e .,
wefore the first program partitioni.

Nate thet the secand ares is divided inte four pieces. This
allows the user (uith Yhe slow boot) to work his way around any bad
pages of nepary thet muy z2xist within Sa0.

“hile the tue aress are not physically contigious, they will bhe made
cagically contigious. This is done by *eking the physical page

nunbers of both areas of SAM and placing these nunmbers contigigusliy

into the OMS registers corresponding to their logical sddress in the
zystem nmap SRTH. the system aveilable memory return routine is

then called at least twice to fill up 54H with the nou cohtigious menory.

ihen this calculation is conplete the system map 5 reset. Typicaliy
tt would lecok az shown beiou.

-1 6~

The $5TRT routine also initializes the contents of a feu sgsten
entry points for later use by other systenm modules. The following
entry points are set.

FCHST Starting page of common.

Hote that logical aund physical pages are the same for

§CHST. ,

FCMST = bits 14-10 of $DLP shifted down

$0LP = disc resident program load point set up by generatar
FCaML Humber of pages of conmmon

$LOML - bits 14-1¢ shifted doun of [HPFI (3) + BGCON-$DLFP]
and then «dd ' to this result.
Where: BGCOM = bese page 1753 length of backround common

MPFIC3) = fourth entry in nemory protect fence
teble. Sturt of backround comman.
$50aA Starting puge of system driver arec.

$50A = $CHST + $COML ,
Note that logical and physicul peges are the same for
$50A .

$50T72 Humber of pages occupied by the system driver area
and table area 2.
$30T2 = Bits 14-10 shifted down of $PLD-$50A
Where: $PLD is the privileged program load point set up
by the generatar.

FRLB Logical starting page of the nemory resident library.
$RLB = bits 14-10 shifted doun of LBORGC (Buse Page
location 17451 LBORG is the address of &he library set
by the generatoar.

SHRLH Humber of pages in nemnory resident library. ‘
~ $RLH = bits 14-10 shifted down of [HPFICL) - LBORG]

After initializing these values $5TRT calls the $2777 routine in the
dispatcher. At this time XEAT is cleared: the interrupt sustem is
cleared; the memory protect fence register is set to ¢, swap delay
is set up; a check is made to see if there are bauckround, real time,
und chained partitions and if not the partition list headers are
reset., end lastly FMHGR is scheduled. This section of code is anly
executed once and is later overlayed . A return is made to $STRT. -

,*
-1

The last thing $STRT does is5 pick up the ID address of FMGR, D .RTK,
and 5MP. These addresses are used later by the systenm for

various types of error chechking. $STRT then juaps to the EXEC to
finish the system start up.

.AEC also seves D.RTR’'s «ddress for error checking so that .ts
disc tracks are nhot relessed impraperly by the user. EREE t£. an
junps to SCGRH in the $TRRN module to set up the resource number
tuble. A last jump is made then to $SCLK in RTIME to start up the
real time clock.

‘The $5CLK routine starts the tine base generator., uses the RTIOC
routine $IYMG to primt out ‘SET TIME’ and lastly ,umps to $XEQ
in the dispatcher. The system is now ready to go.

= EAEC REQUEST HANDLERS

o mn e e8 as me e me e e e a en ms e e e we me e

Currently there are eleven EXEL FEQUESTS involwed in the scheduler .
They are:

EXEC REGUEST ¥ PURPOSE ' EMTRY POINT
) Progran Completion $MHPTH
7 Pragram Suspend $MPTZ
2 Load Backround Program $HPT3
Segnent
3 Schedule w/uait $MP T4
13 Schedule w/0 wait SMPTS
11 System Time Request SMPTox
ta Schedule at absolute tine FHPTT =+
or with tine offsat
14 GET ar put string $HPTA
22 Program Swap Contral §NPTY
P Schedule w/uait and w/queue $MPT4
24 Schedule w/o wait and u/queue $HPTS

#* The processing of these requests is shared with the system module
RTINE .

..18..

Cantrol is transferred to the entry points shoun above from the
EXEC. Briefly, the EXEC call creates « nenmory protect interrupt
which qoes ta the $CIC routine in the RTIOC module. $CIC transfers
control to EREC after finding that the interrupt was due to memory
pratect. EXEC checks the parcmeters for verious error conditians
(refer fto the EXEC technicoel specs) and if all is well “ransfers
centrol to the apropricte entry point.

As cuen be seen fram the table above many of the requests ultinately
deal with the list processor. In general, the processors pull

in the request paramneters locally, check them for validity, and

if the parameters are walid, « caell to the list processor is

nade .

Four of these request are briefly discussed here. The other
requests ore discussed in conjunction with other scheduler functions.

FROGEAM SUSPEHD RERQUEST

@Y Gs em me ot Wu e e e e v et e e Me e me e e e e wa e

This is5 an EXREC 7 Regquest. The processor first chechks the program’s

Bateh it If set, an €09 error iz generasted and the programn achorted.
This is becouse prograns under batch nay not he suspended. If clear, $ALDH
LJubooh is ¢ dispatcher subroutine that will move the partition out of the
allocated list and into the dormant list, is called. Lastly, $LIST

is called Yo operator suspend the program.

SEGMENT LOAD REGUEST

Wh we e e ms e ws e i MR AN N Wb s e e e e e e

"This is an EXEC B request . The processor first looks at the request
count. If bad an SCO1 error is generated. If 0K the system subroutine
THAHE is called to get the ID address of the segment. If it is not
found on 3CU5 errvor is generated. The entry point cddress of the
seqnent is then fetched «nd made the return address of the segment
logd EXED call . $BRED in the dispatcher is called to do the cctual
logd. Any paraneters that ore to be passed are placed in the
tesporary words of the ID seguent. Control is then fransfered to
$XEQ .

-{19-

SYSTENM TIMNE REQUEST

“h e am e s Bw N e am e W e W G W e

This is an EREC 11 request. - It returns the current system time.
The time is kept in two words. “$TIME and $TIME+1) in Table Ares
2. Each bit corresponds to !0 MSEC with the most significant
bits in the uppzr byte of the second vord.

The scheduler checks the input parameters for errors., picks up the
tine words and turns the rest of the processing over to the

$TINY routine in the RTIMNE nmodule. $TIHY tokes the words and
formats them into hours, dous, minutes and 1Qths of MNSECs.

TIiNE SCHEDULE REGBUEST

B I I

Only the request count and resolution codes are checked in the
scheduler. GETID is called to get the progrems ID address. All
cther processing is turrned over to ¥TINR in the RTIME module.

Program Ternination

in RTE IV there are 9 wayz o user nay terninate his proaraoam . In
addition. the system may abort programs too. The user has three
variastions of the OF command, five varistions of the EXEL 6
request, «nd the EXEC 12 REQUEST. Some of these may be grouped,
hovever, in terms of what the system does.

[TYPE 1 S50FT ABORTY
b. CALL ENEC (6,¢,2)

2. TYPE 2 HARD ABORT
a. NDF,PROG, 1
b. CALL EXEC (6,0.,3)
C. SYSTEM ABORT

3. TYPE 3 Remove progran fronm Systen
G . DF,PROG., 8

4. TYPE 4 TERHINATE SAYING RESOURCES
a. CALL EXEC (6.,0,1)
b. CALL EXEC (12, ...)

TYPE 3 TERWINATE SERIALLY REUSABLE
a. Call EXEC ¢(6,0.,-1)

hn

B . TYPE & NORMAL PROGRAMNATIC COHRFLETION
a. CALL EXETC (85,90,0)

tie shall discuss esch of these types in the order aof increased
system processing requirements. ‘

The type 6, normal comnletion request., requires the least processing
and is by far the most common of program terminations. It is mostly
done in the scheduler TERM subroutine.

The TERHN routine first calls the list processor to put the program dormant.

If the father’s waiting bit (FW) is set for this progranm,

then the system finds the father and clears his ‘W’ bit which was set)

and if he is in state 3, the list processor is called to schedule
hin. It is possible that the father is waiting but is not in state

d. This vwould indicate that he is possibly dormant because his
foather nade him dormant or that he is in another stoate with the ‘W’
bit set. For this reason he is rescheduled only if he is in stote
3. For other cases the list processor pichks up the fact thaet he

should be schedulad by the indication that was left by clearing
the "4’ bit. The TERM routine then clears «ll but the "RN".,"RE",

..21..

"PY and "RN" bits in words 21 of the program being put dormant,
and returns. The RN bit of the ID seqment indicates that the
progran hes resource numbers. The RM flag indicates that it

has re-entrant menory that has been moved. These resources wiltl
be released by DISPA when it finds the program linked into the
abort list at "$I2727" (refer to Appendix B for o description of
this process). . o

The last thing to happen in the normal termination is that any
optional paraneters supplied in the termination request are placed
in the 5 word temporary word of the ID segment. This «llows the
original scheduling pearameters (or any others) to be picked up
with the system subroutine RNPAR.

This is the minimnum processing for program completion.

The Type 1., soft abort terminatiaon, requires a Inttle nore processing.
The soft aebort sturts with o call to the SABRT subroutine in the
scheduler .

The first thing S#BRT does is to clear the ‘R’ and D bit in the
status vord. This will force the list processor ($SLIST) to truly
put the progran dormant. The system then calls STREMN <in RTIME),
which will renove the program from the time list. This clecrs the
ID segments T bit.

The ¥ bit is cheched next. if set then this program is o father
waiting for a son. {Recall that son’s ID address is in word 2

of foethers ID segment.) In this case the sons FU bit is cleared.
This insures proper processing when the son terminates.

The TERH subroutine, described earlier is next called.

Lastly the SABRT routine checks to see if this program is the son
of another progran. [f so then a 1090098 is placed into word
2 aof the fathers D segment and the dddress of word 2 is placed
into word 11, the B register ot suspension word. This allous the
father to do & RMPAR call and to get back a word (the first of
5) that indicates theat the son progran vwas aborted. This is how
FHGR, for example., knous to generate the "ABEND XXkXX ABORTED"
message . :

Next in order of processing is type 2, the hard abort. The hard
abort is performed in the $ABRT subroutine. However, befora2 calling
this routine a check is nade of the prograns current stoatus.

If the status is I/0 suspend (stote 2) a jump is made to the RTIOC
routine $I10CL. -

rS
[

Briefly, $I0CL CLEARS out any ‘hang up’ conditions coused by progran
input or output. It scans all the EQT’s I/0 linked lists looking

to see if the pragram is in the list. {Linked fthrough first vword

in ID seguentl. If any I/0 is found the progran is delinked and

the I/70 clesred. $I0CL then calls $ABRT to finish the abort.

FABRT sets the abort ("A") bit in the progrens status word {racocll fthat

we discussed this bit in the $LIST discussion). The "A" b:it being
set indicates a hard abhort to $LIST and forces it to set the
pragram dornant . $ABRT then calls SABRT uwhich we just discussed.
$48BRT then calls $SORL in EREC which releases any disc tracks the
pragran ouns. and, if any are released, calls $LIST to schedule all
prograns waiting for disc tracks. The exception here is that 3$SDRL
will not release tracks belonging to 0 .RTR. After $SDRL returns,
$98FT sets up the progren abort nessage and sends it to $§YNG in
RTIOC which will send it o the system console.

Hext in order of processing is the pouer cochort. type 3. Noermally
this i5 not done prograenmaticelly (call to $HMESS), it is done

with the 0F comnmand. The power asbort cgils $ABRT to do the hard
ahort first. The TH bit is next checked if the TH bit is set, it
indicates thot the program uwes locded tempararily online. a«nd there
is no copy of its ID~segnent on the disc. Only in this case can
the OF processor clear the ID segment. The rest of the OF code
conputes the number and location of the tracks holding the progranm
Cuwords 23-27V of the ID segment) calls $DREL in EXEC to relesse the
tracks. The OF request assumes on ID segment ouns a track only

if it references sector 0 on that track. This convention prevents
double release of tracks in cases vhere background segments start
in the niddle of a track. Furhternore, $DREL will only release
the tracks if they are owvned by the system ¢(i.e., it will not

free FMNP trachks). $DREL also reschedules any prograns waiting for
disc tracks by calling $LIST.

When SDREL returns, the OF routine clears the 3 name uords (except
tfor the S% bit, which indicetes a short ID-segment, and the track
assighnent words). it releases any EMA ID extension, and then goes tao

The type 4. save resources termination is & special case of the
nornal termination. In this case the dispatcher subroutine $ALDH
is colled. This routine unlinks the partition the progran executed
in from the allocated list ond puts the partition into the dormant
list. The $HATA entry D bit is clso set. Hext the R bit in the

I segment is set. This is done so that the list processor uwill
nat put the prograem in the clean up stack headed at $2222Z. <{(Refer
to fippendix B) (3LIST will clear the R bit).

$XER.

..23..

How if this case is a father terminoting his son then all that
is left to do is a $LIST call to place the progran dormant. The
more general case. however, is the progran terminating itself.

In this coese the SUATR routine is called. Al $WATR does is
~rhech the PUW bik to see if wny other progrenm wants Lo schedule

this progran that is doing the save resources terninction. if
the bit is set then o search of the general wait list s made to
see who is waiting., <(Recali word 2 of the waiting progran

will have the prospective son’s ID address. The prospective son
is5 now doing the save resaources termination). If the prospective
father con be found o $LIST call is made to reschedule hin. This
allows the schedule request to be reissued. The rest of the

pracessing is done exactly like the narmal progrem terningtion.

lLestiy there 15 the sericlliy reusaeble cowmpletion. A check is nade
to make sure o fother is not trying to termninate ¢ son as serially
reuseble. If this is detected o normael terminetion results. It

the prograem is terminating itself then the TERM subroutine is
called. Hext the least significent bit of the father ID nunber
word i5 set s a flag to the dispatcher clean up routine (refer

to Appendix B3 that the programs partition is not to be put in the
free list. $ALDM is then called to toke care of the partition.
Lastiy any optional paremeters supplied are placed in the 1D
seqnant temporary atrec.

FROGRAN SCHEDULING

fhere wre four ways to schedule a program in RTE I¥. The pregran
can be scheduled by tine., event, cperctor commend., or another
program.

To schedule o« praogram by time the progrem must huave been in the
time list already. fThis would require the operctor OH request
garlise). Every time the time baese generator interrupts contratl
is transiered to the $CLCK routine in the RTIME module. Here
every progran in the time list (threaded through ID word 171} i3
cheched to see if it is time fto execute. I¥ words 19 % 24 of the
I0 segrent equal fthe system time stored ot $STINE & $TIHE+1 and if
the prograemn is dorpant. a coll is pade to the list processor to

schedule the program. Regqardless of praogran stete. tha next
stert time is calculated and stored back into the ID segnent.
{The new time iz not caomputed i¢f the nultinle walue is 0. This

means the progran is to be rempovad from tha tine lisf.)

-4 -

scnedisling By event is ty::ccliy done by drivers. DYRGO and
GHROGT for ezanpla. schedule the program PRHPY due to an event,

that 3. an intepript Tthis scheduling is done by 6 $LIST call.

The OH end R cosnmends ars another way to schedule a progran. These
tusc commands differ in that the RU commend will schedule & program
rod reqardless of the tiwe list paramneters. The ON commend s
cespable of putting o« progran in the time list and/or scheduling

the progran inmnediately. in both cases a call is mude to $LIST

to do the scheduling

before fthe $LI3T caell is made the program is checked to see if it

is dormant . It not an "illega! status" message is returned. If

the "IH’ was not entered in the schedule comnmand end paraneters are
sllowed on schedule (i 2. HP bit Clear), then any parameters supplied
with the command are put into a string block in system available
venary. The f.rst five of the purwumeters are placed into the temporary
words of the [D segmnent. (§tring processing is discussed in the

next section.) In the cuse of the RU command the $LIST call is

nade naxt and that’'s the end of the RY processing.

The OH processor looks at the programs ID seqment resolution code

to determine the next process. If the resolution code is 9, only
6 SLIST call is made. I the resolution code is not o then

the $OHTM precessor in RTIME finishes the processing. Basically
FONTH checks for the NO (HOW) in the cowmmand. If present then

tha program iz put inte the time list and executes at the current
system time and (0 milleseconds. I¥ the HG is absent $0GHTH places
the program into the time list. The progras then executes at the

tise specified in vords 19 and 20 of it’s 1D segment.

The lest way to schedule o progrem is programmatically 7EXEC 9,

190,23 and 24 requests). The processing here is sonewhat more

inwalved than the ON or RU :ommands because « father szon relation-

ship is involwaed. Most of the processing i5 done in the IDCHE

subroutine The routine does the following

1. Makes sure the progrem exists, else generates an 5C¢5 error.

& Makes sure the neme specified is not a segment name. else
generates an SCOF errar .

3. Hukes sure the proagramw will find o partition large enough to execute
in: else qenerates an SC09 or SCCUB error.

4 . Places perspective son’s NP bit and bits 0-3 of stetus field into
the percspective father s A-Register at suspension word.

9. Colls the string pessing routines if necessary. f{i.e., if RGPS

= 0 no string pessing.
4 Hakes sure that the first five optional scheduling paraneters
are put nto the sons Il tenmporary words.

-25~

For exec 9, 10, 23, and 24 requests. the RU, OH. §Z2 and AF commands, the
SIZIT subroutine is called o see if o partition exists that is large
enough to execute the praogran. Thus insuring that o program scheduled
is dispatchable. For nemory resident programs the check is ignored.

For non EMNA prograns the check uses the # of pages field. vord 22, of the
ID segment and conpares this against:

of pages $MBGP if the pragram is background

{
of pages < SHRTP if the pragram is5 real time

Alternatively., if the program is essigned to a partition {RP bit in

Il segment set) Lthen the partition # field is used as an index into the
$MHATH teble to see if the destination partition is large enough

for the progran and if the partition is still defined. (Note progranms
alreedy in memory vwith «n allocoted partition nay not have their

sizes chanhged. The SZ operactor request error check routine guards
against this.)

It may also'happen that $MBGP or $HRTF is larger than o 32K address
space. In this caese the check ¥ of pages < HAX ADDRESS SPACE is
used. -

If the program i3 an EWA program, the following check iz used.

4 OF PAGES - MBEG + EMA SIZE ¢ S$HCHN OR ASS5IGNED PARTITION SIZE

mwhere MSEG is in word L of the Il extension, EHA size is in word 29 of the

ID segment, and $MCHAN is the size of the largest MHother Fartition.

If the chech fails on SC09% or SCU8 error {§812E ERRORI will result.
However., if the DE bit (EMA default) is set then the EWA size is reset to
and the check is performed again. [f the check nouw passes «ll is well

and the EHA s5ize of 1 will be used by the dispatcher as a flag to give
the program the largest possible EHA size.

If the reader has alrecdy reed the sections on the AS and 52 caomnands,
the question may come up "Why check for size, this is already done in
the LOADR and for on line commands?® the reasson is thet the FMGR 'SP/
and ‘RP’ commands allow the user to save prograns whose size or
assigrnment may not match the currently defined partitions. The

error checking prevents o mismatch of program and partition franm
causing system praoblenms.

NOTE thaet every time a praogram is scheduled $MCHH, $HBGP ar

$HRTP (or the destination paertition size) is used as a check to see if
the program cen fit into a partition. If SHCHM., $MRTP or $HBGP = ¢,
then no partitions of fthat type is avaeileble and the program is not
dispatchable. Thic may happen if o« parity error causes « partition

or pertitions to become undefined. Should the scheduler detect this
conditian, the pragraem will not be scheduled and an 8C08, SC09, or
“SIZE ERROR’ will be reported to the systen console.

i

STRING PASSING

Upon scheduling a program with the RU, ON ar GO commands, o section
ef system-available-menmory (SAMY will be ellocated for storage

of any conmand string and entered in a push down staclk linkad through
the first word of each block (see Figure 11. The head of the stack
will have the name $STRG and reside in the SCHED module. A command
string is defined as everything follouwing the pronpt in a scheduling
call.

If the progroem is scheduled by o« RUIH,ONIH, or GOIH, then the string
storage portion of the command will be inhibited. The first word

of each block of memory will contecin a pointer to the next memary
block. The last block of memory in the staock will contain 0 in

its link word. The second word of each block of Remnary wilt

contain the ID address of the scheduled progrem. The sign bit,

when set, will indicate that the memory blaock has an additional

word (see systen description of the memary allocation routine,
($ALC) .

The third word of each block will contain the character count of

the conmmand string. The fourth through N+l +3 words will contein
2

the N cheracters in the conmand string.

._.2""..

Upon scheduling a progran with the RU. dN or GO command, the
following steps will occur ot paraneter storage time!

b, If there i3 no parameter string. continue at Step 5. .

2. Store parsed parametersz into ID segment words 2 to & as before.

3. If the comnand is RUIH, OHIH or GOIH then do not strre parameter
string and continue at 9. i

4 Dealliocate any string blocki(s) nssociated with the . heduled

pragram .

Aliocate o black from 58N, store the entire command string
into the block and enter it inte the stack. If S4H is not
avaitable, them the request is ignored., the foallowing erraor
message iF issued to the operator’s terminall

CHD ILGHORED - HO MEM

end control is5 returned to the system at $SKEQ.
5. Schedule the program for execution.

The user can retrieve the string by using the EXEC 14 request or
the system library routine GETST. Both routines release the string
memory back fto the system. Alternately, progrens can still recover
the first five paraneters {treated as one conmputer word each) by
using the RMPAR call as the first call in the progran.

ﬁng‘tine ¢ progran goes dornant, normalliy or abnermelly, any command
string block essigned to the program will be returned to SAH. This
is acconplished in the ABORT routine of the disputcher.

SCHEDULER THTERFACE WITH DISPATCHER

deveral portions of the scheduler interface to the dispatcher.
The list processor portion of the scheduler interfaces on progran

scheduling. The list processor alsa

interfaces with the dispatcher on program conpletition as described

in fippendix B. In addition, the UR, AS and $2 oaperator commands
affect the dispatchability of o prograen. The error checking for these

connghds i discussed helaoy.

The A% and SZ both require the program referenced to be dormant and not
menory resident. Horeower, the progran mrust not still own the last

partition in which it executed. (Recall that a serial reuscble. save resourd
termination, operator suspension does not release the partition.)

The partition # field of word 22 is used as on index into the $HATA table
and the $HATA residency word is checked %o make sure the referenced progran
no longer ouns the partition. If any of these conditions are not

met the "ILLEGAL STATUS HESSAGE"™ is output.

-2~

Some other errar checking is performed for the AS cownmand. The
Partition must exist and the size of the progran iz checked against
the size of fthe referenced partition. For non EMA prograns the # of
" poges field is conpared against ond must not be greafter than the
partitions $HATA entry. For EMR programns fthe fornule used iz:

¥ of Fages - MSEG SIZE + EMA SIZE ¢ MOTHER PARTITION S1ZE

wherae:! MSEG SIZE is in ward | of the ID extension, ENA SIZE is in
word 23 of the ID segment, and HOTHER PARTITION S1ZE is in the
$HATH table.

EHA programs may be assigned to regular partitions in addition to
chained ones. The size check formula used in this case is

¥ OF PAGES - MSEG+EMA SIZE ¢ PARTITION SIZE

If at the end of all the error checking, the A4S command is deterqined
to be valid, then the RP bit is set and the partition 4 is set into
partition # field,

(Partitions count from ¢. That is: AS,PROGX.,? will result in a
& being placed into the partition # field.)

The 8Z conmand pracessor performns the progrem pertition and size checks

mentioned earlier plus « fev nore. HWord 30 of the program ID
segment for segmented programs or word 24 for nan segnented pragrans
is used as the lover Limit of the errar check. The upper limnit

is defined by the program type as follous:

new SIZE-1¢ $MBGP for backround programs
new SIZE-1< 3IMRTP for real tipe prograns

-29-

If the program is5s assighed to o partition

rnew SIZE-1 ¢ ASSIGNED PARTITIOGH SIZE

C(The minus one is because $MBGP % SMRTP does not include Base Page.)

If the size is found to be walid then the # of pages field is
updated to reflect the new size. (Hote that the # of pages field
does not include base page.) - ‘ '

HOTE also thot $HRETP, $MBGP, or the partition size is not used if the
MAY address space is snoller than these values. That is, a progran
plus the aszsociated system tables may not exceed a 32K address space.

EMR programns have « special form of the 82 commaend ¢i.e., SZ,PROG.P1L.,

P21. As mentioned earlier checks for paertition and program staetus

are nade. UOther checks atre also made. The DE bit, word 1 of the

ID extension mnust be set Lo change EMA s5ize or the comnand is invaelid.
Recall thaet o set DE bit means defaeult EMA (not recessarily MSEG) was taken.

In this case Pl i35 the new EMA size and P2 is the neuw MNSEG size.
Pl is checked asz: '

Pl + PROG CODE SIZE ¢ $MCHM or assigned partition size

P2 is checked as!

P2 + PROG CODE SIZE < PROG Address space
If both of the above are satisfied Pl, the new EHA size is placed into
the EMA size field of word 29 of the ID segment and P2 is placed into
the MWIZEG field of the lst word of the ID extension.

The last operctor command that offects pertitions is the UR command.
This coamand clears the R bit in the referenced partition’s $MATA
tuble entry. This commnand nay a«ffect the system entry points

$HCHN. SMBGP and $MRTP. These entry points contain the size of the
lergest unreserved partition of that tupe (i.e. Mother, background and
real time)d.

If a partition i5 being unreserved and it would then be the largest
unreserved partition of its type then $HAXP will be called to do the
appropricte updating. :

RPPEHDIX A

The RTE IV ID Segment Table

The RTE V¥ ID segment for disc resident praograns is 33 words lang. In
addition, all EMA Type prograns have o three word ID extension.

Hemory resident progrums have o 25 word ID segmnent and progran
segmnents have o 9 word ID segment. The format for the ID segmnent and
ID extension is shoun on the next page. A description of the

Marious words, fields and bits follous.

Word 1 is the linkage word for the pragram. HWhenever the progran
i put into o state (scheduled op suspend., etc.) the program is
put into a« linked list threaded through word |. This word is also
used to queue the prograem up on EQT’s for I/0 processing.

Words 2-6, called XTEMP, are used dynamically in the ID segment

for operating system infornation regarding the prograr . Initially
at program schedule, the scheduler places the schedule paramneters
into this 9 word erea. For example. o RU.PROGX.,1.2.3 wiuld couse
words 2-6 in the Il segwent to contain 1,2.3,0 and & respectively.
The scheduler also takes the address af Word 2 and places this

into word 11 of the ID segment, the B-Register ot suspension word.
When the program sterts executing the system library subroutine
RMPAR can be called; it uses word 11 to pick up the run parameters.
The words are also used for unbuffered 1/0.

Yord 2 of the ID segment is also used to specify why a programn is in
the general wait stute. A program can get into the general wait
state in eight ways. The reason for being in a« state is specified
in ID segment vword 2 by the following rules:

FREHASON CONTEMWTS OF ID WORD 2

Waiting for Resource # allocation Address of $RNTH

LU# locked Bits 6-10 of DRT for LU reference
= RN}

Resource # lochked Rddress of referenced RN ¥

Waiting for class & allocation fddress of $CLAS

Baiting for Class Get Conmpetition Address of $CLAS entry referenced

Device (LU or EQT) dowun 4

Baiting for Son to conmplete Son’s ID address

Buffer Linited EQT address

Word 2 is also used by the $ALC routine anytime « program needs

nore system awailable memory than is currently availoble, assuming
that thet much menory can ever be available. In this case $ALC
places the nunber of wards requested in Word 2 of the requesting
programs ID segment. Every time memory is returned through $RTH,
word 2 of the highest priority memory suspended progras is checked to
zee if the memory suspended program can be rescheduled. No lower
priority menaory suspended prograns are suspended until the highest
priority memnory suspended progranm is rescheduled.

Word 7 iz the priority ward. This has the priority of the program.

Priorities range from | to 32767 for user programs . Doccasianally,
systems progreans give themseluss g pricrity of 0. FHGR does this
at Boot up. This allows the program to run ot tha highest possibla

priority.

Word 8 iz the primary entry point of the prograw or pragran sey ment .
It is the relocated address of the first instruction in the progran
to be executed.

Hord 9 is the point of suszpension. Everytime o program (s suspended or
interrupted UWord 9 iz the address uithin the progran to stourt the continuantion
of that prograem when it is reschaduled. Whenever a programn

terminates this word is set to zero. However. if the program terminctes

sevwing rescurces (HOT SERIALLY REUSABLE) ward 9 is naot reset beccuse
to terminate s3aving rescurces is to save the point of suspenzion.
Then whenever the program is rescheduled. execution will begin at
the address specified in word %.

This word does have one ather use which is not generally known. The
word can also be used as a debug tool for the systems level progranmer .
Since the word always defines the point of suspension. it always
defines the area of o program which is in an infinite loop. This is

especially useful for the assembly language progranmer becouse the
infinite loop loacation can be quickiy pinpointed.

Words 1¢,11,12 contain the 4.B and E/0 registers at suspension.
Words 13,14 ond the upper byte of word 15 contain the 3 ASCIE
chaeracters of the program name.

The lower byte of word 15 contains the TH,CL.,AH and 85 bits plus
the type field. Word 16 contains the NA,MP. W, R.0,R and D bits

plus the status field. These bits and fields are used as follous:
TH This bBit is set if the pragran is temporary That is. there is
no permenant copy of the 1D segment in the systen areq of
the disc. If the bi%t is clear the program i3 o permngrnent cne.
cL Hemory lock (core lock! bit This bit is set by the EXEL 22 request if

the user wishes to lock the progran into memory and thus
prevent suaepping.

$5 Short segment bit. If set, then the ID segment 15 o 9 yord
ID segment used for segments in « segnented program. This
is set up bu the generstor and hever cthanged .

Type FIELD. This field of word 15 specifies the program type
Memory Res = 1, Real Time = 2, Backround = 3. Large Backround = 4,

Segment = 5 {(refer to sumnary af types in user manual.

HA Ho abort bit. This bit is set if the sign bit of the current
EZEC call is set. It informns the system that certain errors
are in this request to be handled by the program itself
and should not couse the program to be a«borted. <. P,RQ.RE.,PE,
and DM errars will abort the prograem regardless). HNote
thet setting the sign bit of the EXECL request also increments
the normal return address of the EXEL request by one.

NP Ho paraneters allowed on reschedule. This bit iz set if
no parcneters should be passed to the progranm on reschedule. .
This bit is set if the program i5 operator suspended or if
¢ father suspends o son.

] ~ The wait (¥ bit iz set whenever a progranm (fother) has
scheduled another program (son) with wait (EXEC 9 aor 23).
The son’s ID oddress will be found in word 2 of the father’'s
1D segment.

A This is the ahort bit. This bit is set when o program is
to be aborted. If the A bit is ever set on o LIST processor
entry, no matter what the request, the progran is immediately
put dormant. The 8 bit is set by the systewm on detection of
certain errors.

0 : The operator suspend (0) bit. This bit is set when an
aperator suspension is attempted at a time when it is not
feasible to do it directly. The bit indicates that the systenm
should do it ot some loter time. This is what is meant by
deferred actien. The systen tried to do something, found
out, for one reason or another, that it wasn’'t feasible s0 it
urote o note to itself C(set a bit) to renind it to do the
requested action &3 soon a5 it is feasible. Uncompleted DISC
1/0 would be one reason for deferred action.

R The save resocurces (R) bit is set to indicate that the progran
would like to seve its resources when it goes dormant. The
R bit, for the most part, is also o deferred action bit in
that it indicates how & progran is to be set dormant when it
is set dormant. (This bit has nothing to do with
a serianlly reusable programn termination.! When the program is
set dornant the bit is cleared. Word 9 = @ is the flag by
wuhich the system knous thet the progranm terminated saving
resources.

D The dormant (D) bit is o deferred action bit which is set
if &« program cannot be set dormant orn request. It indicates
thet the program is to be set dormant as soon as feasible.

Stetus FIELD. This is the current state of the program. States
are 9.1,2,3,4,5,6 - dormant, scheduled, 1/0 suspend. general

wait, memory suspend, disc suspend. and I/0 suspend
respectively.

Words 17,18,19 and 20 contain tine scheduling informnation about
the program. The four wvords are used in the operator conmand
*5T,PROGX to give time informatiaon about the progran.

Word 17 is the tine list linkage word. All prograns in the tine
list will be linked together through this word.

Resolution (bits 15-13) in word 18 contains the resolution code. Mutlti-
plier (bits 11-0) contain the multiplier for the resolution. The T bit
is set if the program is in the time list. Words 19 and 20 contain

the system time in 10’'s of milliseconds of when the progran is to
erecute next. The tuo words give a 10 millisecond resolution for a

24 hour perioad. Word 20 contains the high order bits of the time.

Hord 21 of "the ID segment contains the BA,FW . MTH, AT, RN, RE,P¥ and RN
bits plus the father ID segnent nunber field. They are used as
follows:

84 Batch bit. This bit is set if the program i3 running
under batch Program JOB or the FMGR :J0 command set this
bit. The batch bit is praopagated from father to son.
That is, if the father is under botch and schedules a s0n
the son’s BA bit will be set.

Fi Father waiting bit. If the father, scheduled with wait .
(EXEC 9 or 25) The son’s FW bit is set. If the father
scheduled N/0 wait the bit is clear.

MTH Hulti Terminal Monnitor Bit. This bit is set if the prograen is
operating under the session mode. Like thae BA bit, this bit is
propagated from father to son.

AT - Attention bit also called the breck bit. This bit is set
by the BR aperctor command and cleared by the [FBRK systen
library routine and program termnination. ,

RH Reentrant memory moved bit. This bit 15 set if the progran
has information (Temporary Data Block) in system aveilable
memory that must be moved into the prograun areas before the
progran can continue to execute.

RE Reentrant rautine in control nou. This bit i5 set snytine
a reentrant subroutine of this progran is executing.

Py Program wait bit., This bit is set when some progran wishes
to schedule this progran with wait {EXEC 9 or 253 but this
progran is currently active. The perspective father will be

in the gener«l wait state with the prospective son’'s ID oddress
in word 2 of the prospective fathers I1D.

R H This bit is set uwhen o resource number is either ouned or
locked by this progran.

Fother FIELD. The field is used if this progran is a
son . The field will have the ordinal number of the father’s
ID segnent. The numnber will be there regardiess of the
type of schedule i.e., EXEC 9.14,23 ar 24. The least significaont
bit is also set if the progrum terminates serially resucble.
This bit is a fleg for the dispatcher to avoid certein progran
clean up praocedures. The bit is cleared luter.

Word 22 contuihz the RP bit, the # of pages field, memory protect
i

fence index field, and the partition nunber field.

e RPeserved partition bit. This bit is set if the program is
aszigned to a partitian. The partition number will be in
the partition nunber field. The numbers start counting fronm

L2

of PAGES FIELD. This field contains the number of puges the

progran takes up not counting base page. For segmented programs
itse is the # of pages of the main,subroutines and largest
segnent . Far EWA programs the size includes main,subroutines,

lurgest seguent and the MSEG size.

Far non EMA Programs
V4 % of pages (MAKXINUM LOGICAL ADDRESS SPACE (in pages!

- .

Far ENMA PROGRHAMS ‘
2 4 % of PRAGES < MAXIWUM LOGICAL ADDRESS SPACE + MSEG S5I2E

MPFI FIELD. This is the menrory protect fence index field, This

field contains an index (U-5) which uhen added to the start of the

memory protect fence ftable gives a location containing the
proper mnemory protect address for this progran. This is
set by the LOADR or generator and does not change.

Partitian # fieid. Thiz field cantains the partition nunmbep thot
the progranm last executed in. [Counts fraom 0.}

Words 23 and 24 cantains the high main +1 and low muin addrezs
respectively of this prograen. The high +1 «ddress does not include
the high nmain *+1 of and program segments.

Words 25 and 26 contain the low and high base poge sddress of
the program. high +1 doesz not include link address for any praogram segments.

bord 27 contuins the disc address of the virgin copy of the pragran
on the disc. The program may only reside an LUZ or LUJ. If on LU2
then bit 15 i35 clear, if on LUI bit 15 is set. Bits 14-7 contcin
the track # (0-253) and bits 0-6 contain the sector number. Yord
28 is formatted as word 27 but is the suwap addreszs in the track
pool for the progran.

Word 29 is used only for EHA pragrams and is zero for non EHA
prograns. Bits 13-10 contain the ordinal nunber of the 3 word ID
extension associated with this prograen. Bits 9-9 contain the ENA
size of this progran. The value here will be | if ¢ default EHA
Size is taken and the program has not yet run. Else the value will
be « mininun of 2 to the maxinun size of the largest partition
minus the program size.

'Hord 30 is used only for segnented prograns and is the High Mgin
+1 address of the program. subroutines, and largest segment . If the
progran is not seqgmented it is O.

Words 31, 32 «nd 33 ere session monitar words .

ID EXTENSION

Word 1 and 2 of the ID extension contains the 1./0 bit, DE bit,
the current MSEG field. the MS5EGC Size field, starting prog page
MSEG field, and stert page EMA field.

1/¢ This bit is5 set whenewer the MSEG is madified in order %o
do 1/0 which crosses an MSEG boundary. It indicates the
current HSEG number is not walid.

DE This bit is set if the default EMNA size 15 talklen the bit
is not effected by MSEG.

MSEG This i5 the size in pages af the current napping segmnent. 1t
can be deciared by the user program or defaulted. For defaoutt
MSEG = Maxinum Logical Address Spece ~[PROGRAM SIZE
+LARGEST SEGHENT
+3UBROUVTIHES]

Current HWSEG. Hunber of the currently mapped HSEG.

START PROG PAGE MSEG. This is5 the logical starting page of the
mapping segnent .

STYART PAGE DHaA . Physicaul starting page # of the EMA-i.2.., first
mapping segmnent directly behind the progran.

The last word of the [0 extension i3 the swup address of the EHA

areas of the program. It is the nunber of tracks of EMA arrcy swapped
to the disc. The swap location of the EMA array will begin on the
first track following the swepped progran.

KEYWORD BLOCK

e e ws o v ae e me e s -

BEecause ID seqgmnent sizes vary (nemary rezident size = 2%, disc

resident size 32, program segrent size = A), some wmethod of
indexing to the first word or the name wopd of an ID segments is
necessary . The keyuword block is used for this purpose.

Location 1657B on base Poge specifies the first entry in the
keyvord biock. The keyuord block in turn contains l-word entries.

each pointing to an ID segmnent, Last entry=¢. Keyword Blaock entries

are ordered at generatian by proagran type; nemory resident.
resl tine disc resident, bechround disec resident, avagilaoble ID
segments, and the progran sednent ID segments.

The keyuword block entry (ID address)y + 132 alvays points to the

nane-vord . Thus, leyword entries for short ID's don’t point to
the first word of the ID.

HOTE Keyword +12 aluways points to name.

ID EXTENSIOHN KEYMORD BLOCK

Like the keyuword block for ID segments, the ID EXTENSIONS also have
a fable of pointers also terminated by « 9. UWord $IDEX points to
the ID extension hkeyword blaock. Each word in that block points to

an ID EXTENSION.

APPENDIY B

DISPATCHER INTERFHCE TO THE LISY PROCESSQR

As mentioned earlier $LIST pushes programs that termincte into a
stack through word 9 of the ID segmnent headed at $2222 in the
dispatcher. The disputcher uses this stack to do progran clean up.
Every time the system has nothing else to do, it jumps to $XEQ in

Every time the
non-zero it

the dispatcher.
$2222. If it is
program!

sets the
program is to be run
resident, any suwap tracks 1t nmuay
if o program thot is swapped out
his son cousing this condition.

in the EXEC. $DREL aiso maukes a
reschedule any praograns thaet may

First it
case the

The dispatcher then calls $ABRE
menory fthe progran may have.

system qoes to SREW it
does the following to clegn

praogran’s point
later

in EXEC to
This may happen

first checks
up evary

ot CI0 word 9) to 9 in

ig disc

suspensian
Hext it the proegran
have are released. This mey happen
is aborted. A tather may «lsoe chort
The tracks are relecsed by $DREL
call to $LIST in the scheduler to
have been waiting for disc space.

return
if

any reentrant
¢ progran terninates

or is aborted while in « reentrant subroutine. If the $HBRE routine
= returns any menory via the $RTH subroutine in $ALC, programs waiting for mewmory
mey be rescheduled by calls to the list processor.
Hext a call is mede to the $RTST rouwtine in the scheduler. This
routine returns any string memory the progran nay oun. If any
nenmory is returned, prograns vaiting for mpemory may be scheduled
by ¢ call to the list processor . The system then calls FUATR in the
scheduler to schedule any progreas thaet moede SCHEDULE WITH QUEYUE requests
CEXEC 23,24) for the progran. $WATR colls $5CD3 which calls $LIST far any

such prograns $3C03 scans the general wait list (major state=3) looking
for entries which have vord 2 of their 1D segnent equel to the ID segnent
address of the terminating progran. Programs in the general weit list
will have word 2 of their ID seqgaert set as follaws:

REASOHS CONTENTS OF [D(21

WalT TO SCHEDULE A PROGRANM The prograns ID segment address

WATIT FOR COMPLETION
RH ALLOCATE WAIT

RH LOCK HAIT

LY LOCK WAIT

OF A "SON"

DOYN DEVICE
BUFFER LIMIT EXCEEDED

The "sons” ID segrent address
Rddrecss of the RH table

Hddress of the RH nunber

Address of the RH number gssorcigted
with the LU LOCK

4

Address of the E£87 on which
timitation wus excecded

the

MOTE thet this call alsc handles the proaraens thet scheduled vwith
QUEUE.

After $WATR returns, the system calls S$TRRN which calls $ULLU tg

unlock any itock LU’s the progran has . $THREN also unlocks any local
RN locks and deallocates any laocel RN cliocates the prograen may

hawe. Each of these processes may call $§CD3 to pich vp and schedule
waiting prograns . If there wre any such prograns $5C03 will call
FLIST.

Lestlu, if the proaram is o disc resident pragram and the progran

still ouwns the partition but did not make o serial reusable
termination, then that partition is releacsed and made availahle
to aother programs.

The fallowing poge is a quick sunmary of a«ll this activity.

$LISTY CaL LS USED M DYR4O, UVROS. DYRI?

DYROO and DYROS both schedule the system progran PREPT with o $LIST
call. In addition, the B regizter at suspension fword L1) iz set
to point to the E@T word 4 of the EGT af the tnterupting device.
Both of theze functicns were seperate bLut now will be comdencad
into one $LIST call. The calling sequence is:

J5B $LISTY

0CT 601

0CT IDADR (1D ACDRESS

GCT BYAL <THIS ¥ALUE PLACED INTO ID WORD 4

The HPIB dr:iver will schedule a progres on interrupt and pass
three wards intc the temporary area of that programs ID segment.
The $LIST calling sequence to do thiz ig!

58 $LISY
geT

DEF RITH
DEF IDADR
DEF P1
DEF P2
DEF P32

RTH

It is up to the HPIB subroutine librery ton correctly find ID awddress
of the progren to be scheduled and pass thiz to the driver,

TECHNICAL SFECIFICATIONS
IOk

PERR4 - RTE~IV PARITY EREOF MODULE

E.J.W,
2/11/78
Project #1106

et
.
-

fAul L OF COMTENTS

Lurreral cvorview of Creraticon

Pxtone coasuriestioen

2.1 ocysten Tanles Reterenced
2.2 nystem sase Page Commuricator
L3 Lxternzl Subroutine Called

Letailec Techrical Aspects of Cperations

J.1 Farity 4rror Cetecticr

Jee tarity brror verificatior

Jes tarity Lrrer recovery Philosophy
G4 it Parity Error

Seb wmoHarity Error

CN) rrogram Farity krror

3.7 tarity Frror

GENEEAL GVERVIEW OF OPEERATCEN

The parity Error module s main task is to report
parity errors detected vy the hardware and to
continue operation of the RIL-IV system if possible.
PEFR4 also tries to reprocuce parity' errors to
identify andé warn system users of soit parity errors:
errcrs which mey be intermitten or may ko gererated
errcnecusly.

ERATEERNAL COaP LN ICATION

Ihe Farity Lrror mocule commuricates with the

rest ¢t the crerating systein through the system
tebles, bese page communicatiorn area, and subrcutine
calls to aother <odules in the system.

2.1 Systen 'raplec “eferenced

The Lystem taovles used by FEKR4 are:
G 1U Segment entry for accesgsing program
status.
L. SMALA table for accessing partition
cerficuration information.
Cc. 1HT tatle for determining PCORT map status.

2.2 bystem Lase Page Communication
AT 1646 Address of current “AF entry
19TERE 1654 Address of interrunt tacle
Lol lo60C hadress of current [QT entry
AT 1717 Acdrecs of current program ID

Segment entry.
2.3 Lxternal &ubiroutineg Called

saLEY = set up ABE,XYO regiter repcorting mecsagec
eand print them on gcystem ccnecle

vl - convert number to 2ASCII (one word)

»LV3 - convert number to ASCII (three words)

GERMC - used by PFKP4 tc nrint "PIL" errcr message
and abort user program

ikl - reestevulish waximum cize words of
unreserved partiticne

¥8YMG - print messace on svster cornscle

SUNFE - unlink & partitior entry from the proper
list ard uncefine the mnertition.

2.4 CUther '®ternal Keferences

SCIC - entry pcint to Central Irterrupt Control
rcutire (cortains cddress of last point of
interrupt).

SLkE - two word save area.
worc 1 - Dy status at last interrupt
word 2 - Interrupt status at last interrupt

U it o, 1 if CFF.

SHQL - entry weint of icpatcher. This is used
instead of the return point at $CIC when
a nrogran is aborted,

CUTAILED TECHMNICAL ASVECTS OF CFERATIONS

Thie portion of the lechnical ¢pecificaticns is a detailed
description of the major portions of the Parity Error module,
PLUER4. It is assumed the reader is familiar with

the cetailed cperaticns of the Dispatcher (DISP4) and

the 1/0 module (RTIC4).

3.1 Farity Frror Letection

Because parity error interrupts can occur even

when the interrupt system is off, the coce at

$C1C must be able tc save the complete system
status. The major hole in being able to save

the complete state is in saving the interrunt
system state. 1In order to do this in both the 21MX
and the 21XF the instruction 103300 was used to
bcth test the interrunt system and turn it off.

Perity error interrupts may be gererated at

almost anytime because DCPC transfers may be
stealina memory access cycles. If it occurs while
the system is in the idle loop, S$CIC can’t save
the registers in %A, ¥8, etc. because all of these
are actuelly one location. It was necessary for
$CIC to identify the source of interrupt before saving
all the registers. Only the A-register needs

to be saved temporarily so that LIA 4 and a LIA 5
can be done. PERR4 is entered cnly when

LIA 4 = 5 and LIA 5 = lxxxxXx.

PERR4 saves all registers in local lccations.

It reguires that 2 words be set up at entry pcint

$DMS by $CIC. 1The first word being the DMS status
regicter contents containing the memcry protect status
and mapping information. The second word indicates the
status of the interrupt system at the last interrupt
(the parity error interrupt). The logical parity
error address from the violaticn register is

saved. The contents of location 5 are saved and
replaced by a JE¢B indirect through a base page
location tc a PERR4 routine.

Parity Error Verification

The routine TRYPE is called to test if the

parity error is in the system map. '[The DMS
status word cannot be used to determine the map
under which the parity error occurred because
certain DMS instructions change maps in the

course of their execution and do not change the
DMS status register.] TRYPE saves the map
indicator value and then re-enables the parity
errcr system. If the system map is needed, a
regular load is done frcm the logical address

of the parity error. The next instruction ‘s
executed if there is no parity error at tested
location. If the user map is needed, a cross-map
load instructicn is used to read from the logical
address of the parity error. The next instruction
is executed if no parity error is detected. CLF 5
is used to turr off parity error until another
verification attempt is made. A NOP is needed
between the XLA LOGPE,I and the CLF 5 because of
timing delays required by the 21MX/21XE.

If a parity error cannot be reprcduced in the
system map an attempt is made in the port maps.
The user map is saved before the Port Maps are
checked. The interrupt table is checked to see
DCPC channel 1 is busy. If it is, the Port A
map registers are copied into the user map. The
TRYPE routine is called to try and reproduce

the parity error. If no error is found the

next DCPC channel is tested in the same manner.

After both DCPC channels have been tried without
success, the user map registers are restored and

TRYPE is called cnce again. fThe user map is tried last
tc avoid an erroneous report in the case where a swap
ocut was taking place in one of the port maps. The

user map may still contain a copy of the same user
(left over from the set up for the port map by RT104).

s

Farity I'rrer Recovery rhiloscphy

While it is possible to always detect the occurance
of a rarity error, it is not alwaye possible to
effect a complete recovery from a parity error.
There are a number of reasons why 100% recovery

is nct possible; these will be explained below.

The overriding philosophy is to maintain system
operation whenever possible and eliminate, if
feasible, the possibility of future parity errors.

1. Who dunnit?

Vihen a parity error is detected, the viclation
register records the logical address of the word
containing bad parity. The P-register saved in the
interrupt handler “s entry point may or may not

pcint to the instruction which caused the bad
location to be referenced. This is especially
difficult to trace back when the instruction was

a multiple word instruction such as XLA, MVW, or DLD.
S0 while we may verify that a lcocaticon in the system
contains bad parity, we cannct determine that a user
proaram cauvsed the reference to the bad location

via vuse of a XLA instruction.

2. The sudden blow.

A parity error detected during a DCPC transfer while

the system map was enabled means the operating system
was executing and it is a privileged system. Since

the system may still be in RT10C following a DCPC
initiation, in the DISPATCHEER in the EXEC abort routine,
or in the system console driver; these routines

would have to be reentered tc print parity errcr
messages Or abort & program. So these are not
recoverable.

3. It’s an inside job.

A paritv error detected within the cperating system
itself may cause errorenous execution of the

system. For example, if a parity error was in a JMP
iretructicn, it is possible the P-register may not
get set correctly. This type of error is alsc

not recoverable.

Soft tarity trrcr

1t a narity errcr cannot be reprccucea (by reading a
word at the lecgical parity errcr address in the
system meap, tort » map, Fort B mar, and user

mep) then it is considered to be a soft parity
error. This type of error usually indicates

an equipment problem: There may be intermittent
memory parity errors, it may be a memory coztreller/
vackplene problem, or even a firmware error.

Soft parity errors cause a message to be printed
which gives tke logical parity errcr address and
the DMS status register contents at the time of the
interrupt. 1These messages should help indicate
where intermittent failures may be located,
especially if these scft parity error messages
become more frequently reported.

System Parity ILrror

Parity errors in memory locations in the system
itself cannot be recovered as described in
section 3.3. The system is halted (102005) with
the A-register containing the physical page
number and the B-register cortaining the logical
parity error acddress. The table areas anc system
COMMON areas are also concsidered te be part of
the sgystemn.

User Program Parity Error

Parity errors within the memory resident area

will cause the program to be aborted. The

physical page number, ABEXYO register contents

and the logical parity error addresses are printed
on the system console in addition to the program
abort message. The system then continues operating.

Parity errors within a disc resident program

require the partition or partitions affected to be
undefined. The program’s MATA (Memory Allccation
Table) entry is examined to see if it is in a regular
partition, a subpartltlon, or a mother partition,

If the parity error is detecteé in a program in

a regular partition or a subpartition, an attempt is made
to check if the physical page number of the parity
errcr is actually within the partition’s

physical page definition. If the page is not

in the partition, the error ics treated ac if it were
in the system area and halts (102005). If the page is
in fact part of the partition, the partition MATA
entry address is saved. The partition is then
unlinked from any partition lists and is undefined

by a call to $SUNPE. If there is a Mother

partition, SUNPE is also called to undefine that

that partition.

If the parity error is in a program which occupies

a Mother partiton. The partition MATA entry

address is saved. Then a search is made through all
of its subpartitions to see which subpartition is also
affected. That subpartition’s MATA address is then
saved and the subpartition is removed from the system
by SUNPE. SUNPE also releases all the other subpartitions
back into the appropriate regular partiticn free list.

Finally the partition number or numbers are printed
out as being downed. Then the program is aborted
along with the parity error messages as in the case
for memory resident programs.

DCPC Farity Errors

If a parity error is verified to have occurred

under a DCPC transfer, the DMS status register

is checked (this is almost the only time when

DMS status register can reliably indicate the
correct map which was enabled at the time of the
parity error interrupt). If the system was

enabled at the time of the interrupt, a halt (103005)
is necessary because the oprating system must

not be reentered. If a user or the idle lcHp was
interrupted, the I/0C request currently gqueued on the
EQT which had the DCPC channel is examined. If the
request was a system or buffered request, a halt (102005)
is done. 1If it was a user request, the parity error
is treated as in the case of a user program parity
error as in section 3.6.

SYSTEM LIBRARY

- e e e e el e e e e e e

Showila Kapoor
February 8, 1978
Project 81146

LN

TABLE OF CONTENTS

Summary of Systenm Library Changes

Tecﬁnicul Details of EMA Routines

2a . .ENAP
2b . .EMNIO
2c. HMap

2d. EMAST

2e. Microcoded Routines

1. Sumnary of 3ystem Library Changes

Changes had to be made in several systen library routines to make

them conpatible with RTE IV. The susten entry points n--essary

for $ALRN, RNRG, LURG, COR.A, EQLU, IFBRK, PRTH aund HESSS routines are
included in Table Area 1. The only changes nade to these routines vere
to do crossmap loads and stores to entries in the system. Routines KCVYT,
THVYAL. INPRS., CHUMO, CNUMD and PHRSE need to use routines in the systen
whose entry points are not avaeilable to the user. The code for these
routines ($CYTLl, $SCVYT3, $TIMY and $PARS) is duplicated in the

system library routines that call then.

five new routines COR.B., .ENAP, MHAP, .EMIO and EMA were added to the
system library. COR.B routine returns in the B register, the first word
of free available memory of the program if there are no segments. If
the program is segmented then COR.B returns the high «ddress + 1 of

the largest segment. If the id segment address passed to COR.B is

that of o« short id segment, COR.B nakes an error return with ¢ -1 in
the A register. .EMAP resalves array addressing for nornal arrays

and for EHR's. NHAP maps mapping segnents for EMA’s, .ENIO handles
EMA addressing and mapping for special cases to insure the entire
buffer needed is napped into the logical sddress space and EMNA

returns information on EMA. These new routines ere described in

the next section.

EMAP., MMAP und .EWIO can be RP’ed in «n RTE IV generction for use
on o« 2IMNX E~Series computer with instructions which will link to

microcoded versions of these routines. CEWAP ond .ENIO ond MHAP are
interruptible. The opcodes for the EHA microcode are!

.EMAP 105257

CENIO 105249

HMAP 105241

2. Technical Details for EMA Routines

2a . .EHAP:
This routine is used to resolve cddressing of an element in an
n-dimensional arrau. The algorithmn used to calculate displacenent
for an array element (A , A ., A ,. ..AR . A) ist
i 2 3 n-1 n
Displacemant=
CLgi. L. LCA -L dad #Ca -L DA 4.
non n-1 n-t n-1 h-2

SR ~L dYxD +LA ~L 2)xD #{A -L)% SHvords/elenment

3 3 2 2 2 1 it 1
where A , ... A are subscript values defining an element in an
n~dinen;ionql :rrag; L ...,L are the lover bounds of the dimensions.
p,D . aure the na;nitudeg of subscript declarators (Di=Ui~-Li+l, where
l n-

Y is the upper bound of the ith dimension]
i : :
for dinensions | thru n-1, 8 uwords/elements is the numnber of wards per
element in the array (for e.g. 2 for real constants, 3 for double
precision constants, etc.). The leftmost dimension (A is the
1
subscript value) is varied the fastest to calculate the displacenent.

The user {conpiler in the cose of the higher level languages) nust

build o« teble containing the number of dimensions in the array., the

negative of the lawer bounds for every dimension., the magnitude of subscript
declerators for dinensions | thru n-1, and the number of vwords per element.
and two offset words if the array is in EMA. The format of the table is:

- o e em e e e o WS e ws s G e RO W e me W e W

TABLE

of words/elerent
offset word 1{low

16 bits}

offset word 2{high
16 bits?}

used only for EHA

S s e - m—— —— o ow—~ a— -~ v A - amn mas w AwA e e e omn

there Li is the lower bound and Di is the nagritude of the ith dimension.

The calling sequence for .EHAP is:

3B . EMAP

DEF RTH Return address

DEF ARRAY start of the array

DEF THABLE Table containing the array paraneters

DEF A Subscript value for the nth dimension
n

DEF a4 Subscript value for the (n-13st dimnension
n-1

6EF A subscrit value for the 2nd dimension
2

DEF n subscript vealue for the lst dimension
) ‘

RTN error return A Req = 15 (Ascii), B Reg = EW <ascii)
RTN+1 narmal return B Reg = address of the element

If the XIDEX. base page locotion in the communication uareas
containing the currently executing progranm’s id segnent
extension address is not zero and the start address of the array
is greater than or equal ito the sterting logical page of HSEGQ
for this program, then the array for which addressing has to

be resolved is an EMA. The procedure followed by .EMNAP to resolve
element addresses for EMA and non-EHA arrays is the seme except for
two-word calculations being performed for the ENA. Following steps

describe address evaluation for an element in EXHa.

1. Initialize pointer PTABL to point to the first entry in
TABLE and set the two summation wards SUMY and SUM2 to o.

z Get % of dimensions, if negative then error, if 0 then skip to Step 10.

3. Add ~Li to Ai and add it to the current sum of previous
terns (5UM1). '

4 . If Bit 19 of the summation word {SUML1) is set, then increment
SUHZ by 1. Clear bit 135 in SUHT.

3. Hultiply SUMI by D . Save A & B
i-1
registers in SUMl and SUM3 respectively.

-

Shift bit 15 of SUML into the bit 0 position of SUN3. Clear bit
15 of SURL.

7. If SUM2 is not equal to 0 smultiply it by D
i-1

13.

13.

Add SUM3 to SUNZ.

All dimensions done? [f not, go to step 2 %o evaluate displace-
nent for fthe next dimension.

Get MBEG size and the logicael start page of EMA from the first and
second words of the id segment extension of the progran.

Get the two offset words from the table. Adjust them so that the
first word containg low 15 bits (bits 9-14) and the second word
contains bits 15-31 of the double word offset. Error if second offse
word was negotive.

fidd offset vord 1| to SUML and offset word 2 to SUNZ. Erraor if -
overflow occurs either into the sign bit or out of the sign bit of
suNz. :

The array i5 an ENA. To get the # of pages in the displacenent
movwe bits 10-14 of SUML into the least significant bits of
sUH2. Then SUN2 is the # of pages in the displecenent. The
renainder in SUMU is the offset intoc the last page for the
element address.

Get EMA size from the id segment of the progran. If % of pages in
the displacenent from start of ENHA +1 >EMA size then error.

Divide SUMZ by MSEG size. HSEGH = quotient. The nunmber of words dis
placement into the mapping segment = Rewnainder #2000 + SUMIL. The

8
address of the element in the mapping segment = displecement + base
cddress.

The number of pages displacement fromn start of the ENA upto the start
of the HSEG to be napped JPES=(number of pages displacement fram the
start of the ENA upto the page containing the element -¥%of paeges
dispiacement from the stort of the MSEG to be mapped upto the page
containing the element),

If the supping segment number in the id segnent entension =

MOEGH and bit 15 of word % of the id segment extension is

not set, then go to step 24.

To determine the highest possible HSEGH, divide ENA
size by MH3EG size and if the remasinder is equal to 0 subtract
i from the quotient.

The highest possible HSEGH® is HMSEG = quotient.

If the remainder is not ¢, the mapping segnent size of HMSEG =
remsinder -1 otherwise it is the stundard HSEG size.

If the nupping segment to be mapped is HMSEG then its size is that
of HHSEG and jump to step 23. T

22. The nmapping segment to be napped is not the highest Nupping segment
therefore the number of pages to be napped is equivalent to the
standard mapping seguent size.

23. Call MNAP to map the mapping segment uwith IPGS. mapping
segmnent size and mapping segrnent # as paraneters.

24. Return with B register = the cddress of the elemnent calculated
in step 15 at locetion RTH+1.

dh . CEHIO

This routine is used when the user wants to access « certain
portion of the external memary area and wants to insure that the

entire portion will be mapped in the mapping segment . .EWIO
checks if the requested length of buffer is5s contuined within the
current mapping segment or within any stendard NSEG. If not,

ENIC maps the pages that contauin this buffer into the MSEG
logical memory.

The calling sequence for .EHIO routine is:

dSB .EMIO
DEF RTHN Return address
DEF BUFL # of words in the buffer
DEF THBLE Teble containing the array pereaneters.
DEF A subscript velue for the nth dimensian
n
DEF A subscript velue for the in-1ist dimension
n-1
DEF A subscript value for the 2nd dimension
2 .
DEF & subscript value for the 1st dinension
i
RTH errar return A reg = 16 (fiscii), B reg = EM (Hscii
RTN+1 normal return B reg = address of the elemnent
Hhere the element i locuted at <A ,4 ,... .4 +A 1 in the array. TABLE

i 2 n-1 n
is the tuble containing array peramneters «s described in .EHAP routine
and BUFL is the length of the buffer to be accessed. The teftmost
dinension <A is the subscript value) is varied the fastest to calculate
1
the displacement .

-~

CEMIO routine follous these steps:

Check IDEX locuation on base puge . If contents ar+ 0 then not an EMA
progran, return with error.

Get the buffer length and set up the pointer to the table of array
parameters.

Calculate element cddress following steps 1-16 described under .ENAP.

Add buffer length and number of words displecement from stert of MSEG
upto the start of the buffer. Convert to pages,

If this nunbér of pages is greater than the stondard nepping segment
size, go to Step 7 to map a non-standard mapping segnent for this
buffer. '

Add the nunber of pages displacement from the sturt of the EMA upto
start of the NSEG containing the element to the number of pages
calculaeted in Step 4. If this resultant nunmber of pages is gregter tha
EMA size., then the buffer desired overflaws beyond the EMH, make an
errar return. (Otherwise the buffer fits inside the standard mapping
segment, follow steps 17-23 described in .EMAP to map this standard
mapping segment. MNeoke o normal return to RTH+l location vith the
sddress of the element in the B register.

The buffer does not fit within o stendard rapping segmnent, therefore

« special mapping segment must be mepped to include the entire buffer.
The number of pages to he nupped is calculated by converting the number
of words between the start of the pege contacining the element and the
buffer length into pages. The nunmber of pages offset will be the # of
pages from the start of EMA upto the page containing the element.

et MSEG 8 to -1, Call MHAP to map the non-standard napping segment .
HMAF will make an error return if the number of pages asked to map
is greater than the standard MSEG size or it overflous the EHNA.

Return to the calling program with the start sddress of the buffer in
the B register. .

MHAP

This routine is used to Rap o« sequence of physical pages into the
happing segnent area within the logical address space of the progran.
The calling sequence is:

JG5B MMAP
DEF RTHN return address
DEF IPGS displecement in # of pages from start
of EMA upto the start of the napping
segment to be mapped.
DEF HNPGS # of puges to be mapped.
RTH
Returns: A reg = 0 if narmncl return
=-1 if error return

MMNAP routine has three entry points:

MMAP is the mecin entry point intao the routine, .. MP is used by
.EHIO0 routine to nmup the non-standard Mepping segment, _HHKAP is
used by . ENAP and .EMIO to naep the stendard mapping segmnent .

MMAP routine follows these steps!

1. If IPGS and NPGS are negetive values then error return.

2. If EMA is not defined in the calling progran, error return is
nade. Get EMA size from word 28 of the id segment, and
MSEG size from the first word of the id segnent extension af the
program.

3. Divide IPG3 by the mepping segment size. If the remainder is
0, fhe pages to be mapped start at o standard MSEG boundary and the
quotient is the MSEG nunber to be mapped . If the remainder is not
?: « non-standard mapping segmnent has to be mapped.

4. If IPGS+NFGCS is greacter than ENA size or the number of pages to he
napped (NPGS) is grester than MSEG size, then an error return.

3. Hext, MMAP adjusts the number of peges to be mapped {HPGSI to the
standard MSEG size +1 {for the overflou pagel. If IPGS+MSEG zize
+l is greater than EMNA size, then HPGS is adjusted to EHA size-[PGS
i.e., nhunber of pages upto the end of ENH.

D29

HMAP qoes privileged at this point. Get the physical start page
hunber of EMA from the second word of the progran’s id segnent
extension. Add the IPGS to this value to get the physical =start
page number of the mapping segmnent .

¢ The user nap residing in the upper 32 locationsz of the unnapped
portian of the user base page has to be changed to point ta the
hew mwapping segment. The DM buse page fence is set such that
these upper locetians cannot be accessed wsith the normal user
nap setting. To work around this. HMAP reads DHS register 440
C3
which is the first OMS reqgister for the user nap and contains

the user base page number.

19

1.

t2.

The system entry point $DVPT comtains the togical stert page
nunber for the driver partition in the user map. HMAP changes
the DHKS register in the user map corresponding to $DVPT to
point to the user base page.

The user mep in the upper 32 locations of the user bhase page
cah how be addressed through $DYPT. The logical address
et which HNAP starfts changing MSEC page numbers is:

HLOC=30VYPT*2000 +1740 +start logical page of MNSEG.
8 3

The user map is chenged for HPES starting at physical start
page of the segment to be mapped. If HPGS is less then the
MSEG size+l, the rest of the peges in NSEG size+l are read-
write pratected.

Transfer MSEG size+l locations starting at HLOC into the DNS
register starting ot (40 +logical start page of NSEG).

3 ,
If HSEG number is -1, set bit 1S of the first word of the id
segnent extension to indicate a non-staondard mapping segment.
Othervise cleagr bit 15 and set up bits 5-14 of the first word
of the id segnment extension fo reflect the HSEGC # mapped.
Return.

2d. EMNAST

This routine returns the total ENA size, MSEG size and the starting logical
page # for MSEG. ALl of this information is picked up fram word 29 of the
ID seagment and words 0 and 1 of the ID seguent extension af the currently
executing pragram.

The calling sequence is!

JGB EMAST Return address

DEF RTH

DEF HEMA f{returned) Total EHA size

DEF NMSEG ‘{returned) Total MSEG size

DEF IMSEG (returned) Starting logical page MSEG

RTH
Upan return R register = 0 if normal return end -1 if error return.

dn error return is made if an EMHA does not exist i.e., RIDEX location
oh base page commnunication area is 9. ‘

2e. Microcoded Rautines

The major time savings realized by microproegranning the .ENAP, .ERIOQ

and MHAP routines derives from two areas. The first is handling

map register modifications from the mnicrocode without the overhead

of going priveleged in order to execute the appropriate DNS instruction.

This will eliminate approxinately 300 microseconds. The sec nd areg
is comman to both .EMAP and .EMID and envolves the arithmetic
calculations necessary to deternine elenent address. Ewvery subscript

gast one will cause an additional iterction through this calculation
ioap adding an approxinate 40 microseconds softuwanre (19 nicroseconds
micraexecution). The follouwing table summorizes tining differences
iar the softuare versus microcoded routines:

Softuare Firnvagre
mMap j 49 + 1.2 x (4 pages)
CEHAP ! 39 0+ 10 % (% dim
no remapping
.EHAP 88 + 10 » (% din) ¢+ 1.2 x (8 pages)
remapping
CENIO : 40 + 10 x (% din)
no remapping i
CENID : 92 + 10 % (% dim) # 1.2 (4§ pages)

remapping
Rl11 times are approximnete and worst case in microsecaonds.

The approvinete nanufacturing cost based on using six 1K PROM's
iz 940%.

in order to nodify maps fron the microecode without DHS generating a
nenory protect violetion, the microprogranned mnop routines disable
memory protect and re-encble it upon conpletion. This is acconplished
ky specifying I0G in the special fi=2ld creating & menory protect
wjolation. 16K is then specified in the speciacl field of the next
microinstruction executed {occurs ot To. The IAK is received by
manory protect and it is diseabled {(assuming ¢ noen-I/0 instruction

5 present in the instruction register IR). Mewmory Protect is
re-enabled by building « S¥YC 3 in the IR and junping to the I/0

group routine in the baese set. Because of this, it is not possible to
zall the firnware ENG routines from privileged subroutines., although
the softuware versions can be called fron a privileged subroutine.

The operstion of the firmnware is essentially the same as the
software with o few exceptions. Steps 4 through 6 of .EHAP
"Section 2a¢) which do double precision calculations are
someuwhat different. The low order word is treated as a 16 bit
quantity rather than 15 bits as in the softuare . The flag

COUT is used for carries into the high order word. This is
possible becaouse the firnware does the required nultiply
directly rather than calling the nultiply routine which is

used by the software. Sign correction is not dane, so the
result is a 1é bit unsigned nultiply, which is whet is required.

The other difference is in the way base page is updated when a
maep change is required. The firmware uses user nep register

one <{reg 41B) to map in the user base page. The map reg contents
are referenced with addressed 37408 to 3777B. The previous

contents of map register 418 ere restored before the firnvare
conpletes .

fwuo procedures are asvailable to verify the proper instelilation and
cperation of the firmuare. A fourth opcode is provided which, when
executed in single step mode, loads 102977 into the § register.

The procedure to run this test follows:

1. Set P to 9

2. Load A with 143242
3. Push Preset

9. Push Single Step

The displey indicator should be § and the display register should be
102077 Any other result is an error. The firnvare simply builds a
102077, puts it on the displey register, sets the display indicator
toe 5. and returns. It does test for single step so the instructions
105242 is a HNOP if executed while running.

The second procedure i35 to run the EMNA verifier {names BEMNA) in RTE-IV.

This does a complete test of all the operations of the firmuare.

TECHNICRL SPECS FOR EMA MICROCODE

Don Yenhaus
23/78

Project #119¢

Hicrocoded Routines

The major time savings realized by microprogranning the .EMAP, .EMIO

and MHAP routines derives from two arecs. The first iz hundling

nap register modifications from the microcode without the overhead

«f going priveleged in order to execute the appropricte DNS instruction.

This will elininate approximately 390 microseconds. The second areq
i3 common to both EMAP and .EMIO0 and envolves the arithn tic
celculations necessary to deternine element cddress. Every subscript

past one will cause an additional iteration through this calculation
loop adding an epproxinate 40 microseconds softvare (19 nicrosecohds
miocroexecution). The following table summarizes tining differences

for the softuwuare versus microcoded routines:

Saftuare Firnvare

MAAP 49 + 1.2 % (4 pages)

.EHAP I3F 4 10 % % dim)

fno remipping

.EHAP {(firmvare EMAP always remaps)
remapping ,

CEHIG 43 + 10 x (& din)

no remapping

LERIQ 30 0+ 10 x (# dind + 1.2 (% pages)

remRcpping
Wil times are approximate and worst case in microseconds.

The spproximate Nanufacturing cost based on using six 1K PROM's
[‘5’\'5

in arder to mod:ify nmaps from the microcode without DHS generating «
nenory protect vialation, the microprogramned map routines disable

menatry protect and re-encble it upon completion, Thiz is scconplished
Ly specifying IOG in the special field creating a menory protect
vialaticn. IAK is5 then specified in the special field of the next
sicroinstruction executed {(occurs at T6). The I[AK is received by
mamory protect and it is disabled fassuming @« non-1/0 instruction

-5 present in the instruction register IR}, Menory Protect is
ra-~enabled by building « STC § in the IR and jumping to the [/0

qeogup rautine in the base set. Because of this, it is not possiblae to

call the firmware EMAR routines from privileged subroutines, although
the software versiaons caen be called from a privileged subroutine.

It should be noted that the operation of the firmvaore version of
.EHAP is5 not identical to the softueare wversion. The calling sequence
is the sane and the result is the sane (that is., the address of the
element is returned in B). However, the firmware version of .EMAP
does not use staendard HSEGs. Instead., it maps in only the page
contuining the elenment and the following page, if possible. -

Tuo procedures are uvailaeble to verify the proper installation and
aperaction of the firmwere. A fourth aopcode is provided which, when
executed in single step mode, loads 102077 into the § register.

The procedure to run this test follows:

1. Set P to 0

2. Load A with 105242

3. Push Preset

4. Push Single Step

The display indicotor should be § and the display register should be
192077. #Any other result is an error. The firnuwaere sinply builds q
102077, puts it on the display register, sets the display indicator
to S, end returns. It does test for single step se the instructions

105242 is a HOP if executed while running.

The second procedure is to run the EMA verifier (naned ¥ENA) in RTE-IV.
This does o complete test of all the operations of the firmuare.

The opcodes for the EMA microcode are!
.ENAP 105257

CENIO 1052409
nHap 1035241

The following discussion assunes that the EMA microcode at
band and that the HE microprograuming maenual is availaoble.

Address references are to micre control! store addresses.

£
-
~
——
v
=)
z
o

ENN?

22000-232917°7

These are the 16 ovailable entry points into this module.
EMAP is the last one so0 that o jump is not required, There
is no reason for the entry points not being sequential.

22017

A read is started to fetch the array address. P is incre-
mented to point to the table pointer. The flag is cleared
to indicated to MMAP (if it is called) that is was called

froem o nicroroutine rather than with o 105241 opcode. Hote

that the return auddress is5 not fetched here. It is fetched
in the exit code.

22¢20

Since M hes the cddress of the arrey address, H-1 is the
address of the return point. This is saved in Y for
returning and in case of an interrupt. Y will have the
location of the calling apcade +1,

22421-22034

GETPARMH is a subroutine which fetches a paraneter. The
address is left in BM. This section of code saves the

array address and the table address. The address of the
address of the ID extension (1643) is built and put into
53, which is never used for aenything else. The contents

of 16435 is fetched and if zero, the non-EMAd cddress calculations
are used.

22035-22043

Hord 1 of the ID.EAT, is fetched and nasked to give the logical
start of the MSEG. If the sturt of the array is below the log
sturt MSEG, then it is not an EMA erray.

-2
22044

The RESOLYE subroutine calculates o 31-bit cddress offset
into EMA from the subscripts provided.

22443-220851

This section of code scves the address within the svage
and converts the 31 bit address returned by RESOLVE to a
physical page offset into EHA. If bits were shifted

out then there waos an error. '

GETARD28 fetches ward 28 of fthe ID segnent. Hext we put
17778 in L to do some nasking. The LSE part of the 32

bit address iz mashed to give the address within the page
of the desired element. S4 {(which was loasded at 220440) is
nashked to give phys start page ENA. Finally. the EMNA

size is put intoe L and subtraocted from the required offset.
If the ansver is positive then OFFSETY> EMRSIZE which is an
error. If the result is -1, then the second page must

be protected. Thisz is signaled by setting the flag.

22002-22063

fidd the physical start EHA to the offset to give the required
physical page.

221464-2206¢

Form the logical staert page of the MHSEG in B.
22487

Check interrupts hefore we crash MP.
22070-2207%

The I0G here forces o Nemory Profect interrupt. The TAK four
lines douwn acknouvledges the interrupt and thus disables MP.
in the next line CIR is5 checked to see who raceived the I[AK.
It can only be MP{SCS)I or Powerfail(S5C4). It is possible
thot o powerfail eccurred between the JHP CHOXR HOI and the
106. If it did: we innediately bail out. Since UG happens
at T2 and IAK happens ot T6. there is5 some dead time which
can be used. First the logical start pege of the HSEG

is mnasked out and saved in X. Then o 200448 is built in 62
" This will be used For setting the MEM «ddress register.

22477
3ince an interrupt alvays suwitches to the systen mnap, HEM
nust be set back to the user nap.

22100-221407

3ince this revision of EHAP doesn’t use stoendard HSEGs.,
the nonstandard MSEGC bit must be set. The word is
fetched and if thaet bit is not set, ;t is set and written
back .

22110-22121

Now set the NEAR to map 498 which is the users base page.
Get the users physical base page and put it in the log start
of H3EG map register. Base pege cah then be updated by
writing into location (log start acddress MSEG + 17408 »

Log start Page MSEG). This wes done so that it wasn’'t
necessary to save a different map register and restore

it when finished.

22122-22131

How urite into BP the tug physical pages which will he
napped in. If the flag is set, the protect bits are set
on the second page.

22132~-221490

MEWR is set to the MAP at the logical start of WSEG. The
physicel pages required are in 59 and 510 While loading
the map registers. there i5s some dead time due to the
requirenent for o READ., WRTE, or RJI30 exactly tuwo micro-
instructions before o @ ,8 , or @ micro order. A STCS

o 1 e
will be required, so it is built now.

22141-22147

The address of the return address is in Y. This nust be
retrieved to do a proper return. The cddress which nust

be returned in the B register i5s the address of the elenent
in the pauge plus the logical start of the HSEG. The return
address is incremented by one becouse the normal return
goes to rtn+l. The JHP I0G with STCS in the instruction
register is required to turn HP buack on, since it Wwas
turned off by the I0G.. IAK combinatian.

221599-22215

This section does the subscript calculation for non-EHA
arrays. There is no magic here,

2221622245

This is the erraor return section. The error code is
dependent uwupon uwhich EHA routine was called. Howewer,
tiveay all take the same error exit. It is not possible
T3 just check the Counter {uhich i5 the low 38 bits of
tte IR) becouse i% may have been used. Therefore, the
cpcode nust be fetched to determine the proper error
reture . The error return exits by doing « jump to
fetch “location ¢) rather than « return because the
errar rsutine may have been jumped to by a subroutine
csuch as EMASY. # RTH would return to the ceglling micro-
pragran roather then terminating the microprogran.

Section 2 ENIQ

22246-32260

The buffer length is fetched and saved in $§9. The
address of the return cddress is saved in VY. The
address of the table is put in %. L6458 (the address
of the ID extension address) is built in S$3.

22261-22267

The address of the ID ext.. is fetch. If it is zero.
then error. MWord | of the ID ext is retrieved via
XLOAD and masked to give the log start address of the
MSEG in S.

222790

EMAS will do the required subscript calculetions and
conpute the NSEGC required.

22271-22301

The cddress of the elenent in the page plus the buffer
length gives the number of wvords which nust be nopped.
This is converted to pages and saved in S$11.

22302-22345

If the nunber of pages for the buffer plus the aoffset is
bigger fthan EMA size then error (buffer extends beyaond
end of EMA).

22306-22322

%1 15 the offset in the HSEG te the element. §2 + 39 con-
verted to pages gives the standord NSEG size required %o
hold the buffer. If this will fit in o standard NSEG., then
we can nap & standerd NSEG as calculated bn EMAS .

3t

(3]

22323-23

Must calculate the nonstandard MSEG necessary to hold the
fufier. ©1 is the logical sddress of the buffer. 53 is the
nunber of pages needed to haold the buffer. 56 i5 set

to the poge displacement into EMA to the payge containing

the element. The flag is set to tell MHAP that it wes
called from a micro routine. MHAPO2 is an entry point in
MEEP. B is set to the address of the Buffer and o nornal
2xit tahen.

22332

fome here if the buffer will fit in o standerd HSEG. EMAT
will mnap the proper MSEG if required.

22333-22342

This sectieon of code gets the return oddress and sets P to
rtn+l. It also checks to see if a STC5 is in the IR.

If not, then a normal return i3 done. If there is a

GTC5 in the IR, then maopping occurred and we nust return
through the bese set to turn MNP bouck on. '

Section 3 MHAP
22343-223%9

The flag is cleared so that the napping routine will not
return to a calling routine but will exit. Tha page
displacement is fetched. During the dead time 1645 is
built in §3.

22331-223061

Fetch the nunber of pages and put into §5. Get the 1D
extensiaon aeddress and put into SP.

22362-224¢2

The number of pages in a stendard MSEG is retrieved fron
ID . EXT. word zero and saved in P. The logical start of

the MSEG is fetched from word 1 of ID.eXT. and put in §9.
The physical start of EMA is put in 8. The displacenent

is added to phys. start page to give phys start

of MSEG in 57. The displacenent is divided by MSEGC size

to see if o standard HSEG is being mapped (which is true if
the remainder is zero) and to get the MSEG number.

22403-224907

The MSEG number C(ar all 1’s if « nonstandard MSEG is being
napped) is put in 54. Subtract the number of pages to

be mapped fram the HSEG size. If the result is negative
then error.

27410~22428

Get the EMNA& size and put in L. #Hdd the Sturt page of EMA
and sawe in B This gives the last physical page uwhich can
be wapped. Hext, the phys start page of the MNSEG i35 ~
added to the requasted number of pages to give the last

page requested. If (SPHIEGH+REGSIZEI {(SPENA+ERASZ), the
request waes far too many pages. If (SPHSEG+STAN HSEG.SIZE)>
COSPEHA+ENASIZE Y, then maup only up to end of EMA, otherwvise
man o standard MSEG nunber of pages.

In other wvords map to the end of EMB or the NSEG, whichever
cones {first.

2427224346

i3

The map routinezs will always map the HSEGL size +1 number of
puages., if posszible. This section checks to see if that last page
5 with EMa. If it is5 not then it must be protected. Then a
check for a pending halt or interrupt 's done.

22437-225842

Menory protect is disabled by forcing and acknouledging a MP
interrupt. This is necessary in order to losd base page and

the DMS registers. The Lentral Interrupt Register is checked

to see if the powerfail fail interrupt received the IAK.

This is possible if a pouwerfail happened after the last interrupt
check. Feturn to the bese set if powerfail uns pending.

22443

The interrupt forced o switch to the systesn nap. DMS must
be set back to the user map.

22444~22456

The constaent 200448 will be used to set the Memary Expaension
Address Register to the users physical bhase page. The

page nunber is stored in S56. The content of user map
register 1 is saved so that the buse puge can be accessed
through mep reg. 1. Hap reg. 1 is then set to the users
physical base page. Because of the requirement for ¢ READ,
R430 or YRTE exactly twe instructions before sone of the

DHS instructions, there iz sone dead tine. This is used ¢to
build some of the constunts which will be required later,

22457-22463

The logical start page of the HSEG is computed to deftermine
the first of the map register to be changed. 83 is loaded
with STANSIZE+]l because vwe coluays load that many map
registers, although sone may be protected.

22463-22471

The location 3740B is the start of the user maps in BP
tremenber the physical base pege was loaded intoe user map
reg. 1). The logical start page of HSEG is sdded to 37400

to give the place to start changing the mep regiszters.

This address is saved in S6. The counter is locded with

the number of maps to be done. L is cleared so0 no recd/urite
protect bits are sef.

22472-2254¢

iaj

This heroivc laop writes the required mrup register contents
ihtn base page. The counter {previously §5) starts uwibh
the nunber of mup register to be loaded bt not read/uprite
protected. The rest of the registers., up to MSEGSIZE+1,

are recd uwrite protected. If cntr=HSEGSIZE+]l no pages are
protected.

220504-22514

This section reads the map regq cantents from base page

ahd leads the DMS registers. The counter Nust be decremented
in the loop because ICNT foliowed inmediately by JHP CNDX CHT!
does not always work. Hote that the bottom 8 bits of the
nddress is the negative of the nunber of times through the

toap. In other vords, if the counter counted up ue stop
when it gets to 000 (the last map to be loocded is 1777 in
BPY. Since the counter must count doun. we use the negative

of the bottom 8 bits of the address.

Restore user map reg 1. Form ID EXT word ¢ (HSEGH etc .)
and cross store. In the meantime, build o STC 5 in the IR

22532

If the ¥flag was set, then we were called by o mnicro-
routine end mpust return. Otherwize return Lhrough I0G to
turn on HP.

Section 4 EWAS
225340
Resolve computes a 31 bit address from the array subscripts.
22541-225¢61

The standard MNSEGC size is fetched and put in 85. The log start of
the MSEC is seved in $8. The required page is comnputed

and saved in §2 and A. If the page displacenent is greater

then EMA size then error.

22562-22575

The offset to the element is divided hy WSEG size to

give MSEG number. MSEG number is saved in 54. The

rencinder is subtracted fron the page offset to element to

give page offset to MSEG. The remainder is converted to words and.
added to the bottom 10 bits of the 31 bit ocddress to give

the word offset in the MSEG. B8 is set to log stort NSEG.

(Hote: B+51 gives address of element.)

Resolve
22%70-22060

This routine converts the array subscripts to a 31 bit address.

EHAT
Check to see if mapping is necessary.
22661-22687

The logical wddress of the element if formed in S1.

Bit 13 aof the ID EXT word zero is checked to see if «
naonstandaerd HKSEG i5 mapped. If bit 13 is set, then nmust
rescp.

22670-22674

The MSEG number in ID EXT word 0 is conpared to the required
MSEG nunber . If equal, then don’t have to remap.

22675-22723

The Phys Start EMA is fetched. Phys start EMA + offset tao
MSEG gives Start Page WNSEGL. Next, the EMA size is divided
by MSEG to give max MSEGC nunber. If this is the HSEG
required we use the reacinder as MSEGSIZE, otherwise

use the standard HNSEGSIZE. An entry into HMAP is used

to do the mapping. (HNote the fley is set so AHAP returns.)

GETPARN
22724

start a read inh caese this address is indirect. Cet the
results and locd H.

22725-2273¢

If the lust address wes not indirect, return with o« read
on the paranmeter initicted. If it was indirect, fetch
its contents and try agein. If halt or int. is pending.,

go service it, unless it is single stepped.

22731-2273¢2

The address of the EMA opcode+l was saved in Y. P is
reset to this value and the interrupt handled. The EMA
nicrocode will be restarted.

22733-~-22742

This code used when interrupts are checked at various
places.

POSDIY
22743-22747

Does a positive divide of A by L. GQuotient in A,
renainder in B. -

GETAD2B

22750-22734

Get word 28 of the ID segment. Flous into XLOAD.

ALOAD

227355-22761

toes a =ross load. Zan’t return on the seme line as
TRB bscause word Type I may not work right after TAB.
Must bhawe 511 in S-buz field so ve can da conditionatl
junps basel OM refrisvaed volue,

-

P

Xy

0 2-22876;

Lt

IT powerfoul occcurred before the [AK then cone here,
reset P go to base set after IAK. :

22764-22771

This section of code builds a 102077 in the § register.
This can be executed from the front panel to verify
proper installation of the ROHNs.

TECHNICAL SPECIFICATIONS
FOR THE ONLINE

fGENERATOR, RT 4GN

February 4, 1977 - KFH
Updated January 9, 1978 - KFH

TABLE CF CONTENTS -
PAGE

INTRODUCTION

—
1
ot

LA B AR R R B O B B D R B I I AR I I T I S SR S I R S R SN R S R

lol General OverVieW.....-.o.....................--.....
102 Op@ration....-......-c-.....-....-..n--.....-.-.....

YO
T

Gl;t\!EBArl(ION SE‘QUENCE;...QO.....I....0.‘....."..0'........‘

w
I

E‘II;E‘ IN’IYEF‘.-FACE‘..0....0...0000‘.0..QO........I..OO..OO.O.

3.1 Interface ROUtINES....eeeeeseseonces
Scratch File.l.......0.!.......0'..0
Relocatable INPULt...eeeeeeecncecoesns

® 60 o0 0205 000 e 00 o0

® 6 &5 60600600008 000

® © 00 00 080008088000

Answer b‘ile............l'..........
Echo/List Cutput Tree Struture.....

LiSt Fileoo..o..oaooto.oooooo.-0.0000..0.0.00....00.

e~ s WN

3
.
® 6 0 068 000000800 00
.

Echo.--.....oo..;...o00.0-0..o.o-n.onaooono.--'o.o.o

BOC’tStrap 'F‘ileob..oo-..oo.oooooooo.-.no.o.o.c.o...co

Wwwuwwww
wwwwciuwwu

[}
NN WW R [

AESOLU’I’E OU’I‘PUT‘..C....C.......l..t...'..."........-...0.

>
I

.1 Absolute Output File TruncatioN...eeeeesecessscssons
2 Header i%ecOrc’iSQ.'O.....C......‘...............I...I..
3

Output RoutineSQo.o.o.noto..-oooo.l.oo..coooo'oooou'

e sbe o
|

4
4-
4.
PROGRAM INPU’I\ PHASE...-.o.-o..o.ot.-o..o.l'oo..lc-o-o.o.'

5.1 DISPLAY COMMANG PIOCESSOL eoeeveeceesooocsecnosssassss
REL (OCATE) CoMManNd PrOCESSOL. cveeoeeccscosncsoacsonss
MAP CoOmMMANd PrOCES SOl e eececesscoccsncsonossosncsecanssssse
LINES COmMMand PrOCEeS SOl a ceeesoceeccancnasansnssssesss
/E COMMANd PrOCESSOL «oeeeeseoaossesscssscsasssncessse

T
WWMNNH = UM

(SO IS, S,

L]

.
O W

IDENT,LST, FIXUP TABLE STRUCTURES ..ccceececcccccccsnnossaos

Pointers and INAiCES..eeeeeeeeececsesonvsssscnnossss
Table PrOCESSOLS.ieeeceseasossncsasscsscssssnsosssse
IDENT TADble FOIMat .. eeeesasccceocsscsosssescsanoans
LST Table FOIMaAt..eeeesessoscsscoccosssosssscscscascssse
FIXUP Table FOIMAt..seeeeeeooceceanosoenccnsansnaossssse
LET InNdeX FOr JZBRNT...eteeccceccncocnsconsacssosssssescs

11
(=T, W, B Ul N

o) 0= 0o We le Wey}

AU WN

AN ()] [S2RC, RS VRS
!

7.0

8.0

10.0

7.4

Entry Point Availability Per Program TYP€ eeeeeceeesel-1
Relocation by Types.......-...-......;-..........-..7—4
Libraries-.....................................-....7-5
7.3.1 Memory Resident Library...ceeoceeeeecccecceceasl=b
7.3.2 Relocatable Disk Resident Library....eeceeee..7=5
7.3.3 Library Entry Points LiSt.ieeceeeecccccocecaee?=5
Undefined Entry POiNtS..cececcccscecccctcccscccscsosl=6

SIZE RESTRICTIONSO..OO.lo..'oooo..o..oooo..oo...o.oo.l.ooe-l

8.1

Page Alignmentsll.I.Q.Q....QQI‘..'..I.I.'.O..‘...Q.le-l

MISC- AREAS..'........Ol.l‘..l...........".0'0!0.00..0..09-1

Base Page...........................-............-..9'1
System Communication Are€a...cccccscececcccccoccscscassd=3
COMMON e e st eeenssocsecscnsscsssscscscssssscnosccsecsssdI=B
CoNfigUrator..eeeiieceeeccescescccescocascsscassensesd=10
Bootstrap and EXtensSioOn.:.ccceeccccccocescsacsccsnncessdI=1l0

TABLE AREASIAND III00..0....0!.l..l.....l..l.."..‘l.l0010-.1

10.1
10.2
10.3
11.0
12.0

EQT,DRT,INT.....................q......-............10~2
Drivers and DVMAP..uo.c-.oo.no-oooo-oooaaoc.ooocn-0010-3
10.2.1 SYStem Driver Area-................-........10*4
10.2.2 Driver Partitions..c.c.ccieeeeeeecececcensoaessl0=4
ID Segments and ExtensSioOnS...ceeevcesccccscconcoceseasll=7

EXTENDED MEMORY AREA...--..»..........-00.00-;;ooaocll-l'.‘
PARTITION DEFINITION PHASE..........................12-1

12.1 Program Page Requirements and SizeS....eeee...12-1
12,2 System Available MemMOILY...cveeeecececncnonsosal2=l
12.3 Partition DefinitioN.seeeseececececcencsossessl2=3
12.4 Modify Program Page RequirementsS..cceeeeeeess 128
12-5 ASSign Program PattitiOnS...-.-............-..12"8
12.6 Memory Protect Fence Table..ceieeeeeesceeenssl2=9
12.7 Memory Resident Program MaP..cececesescscsasesal2=9
12.8 Setting System Entry Point ValueS.....eeeee...12=11

13.0

APPL
APPE
APPL

APPL

FIGU

——

ERROR PROCESSING: eeeeencocnos

13.1
13.2
13.3

15.4
13.5
-‘Lj '6
13.7
13.3
NDIX A
NDIX 2
NDIX C

NDIX

2

RES

“C'lc‘ ’

Generation ErrorsS.....
File LIrOCSeeciecocesss
Termination..
NABCKe e eseeees

Abortive
13.3.1
13.3.2

Driver Partition Overflow

NIERMe ceeocoonnnses
Misc. Error ProcessOrS...
Lrror SuspensionS..cecess
Answer Flle CrrofSeceeeces

EXrror COUC S e eeseooseocacs

LOGICAL MEMORY LAYOUT..

DISC LA

LIGRARY LAYOUTS. cveeense

PAYSICA

LIST FILY

YOULD OF SYSTEM. .

L “EMORY LAYOUT.

TREE STRUCTURE,
i‘jEA‘ADE}-\I R.;‘ICRD #l.l...‘.........

ABADER RECORD #2.......
LOGICAL MEHORY
DISC LAYOUT OF

DIisic

RESIOENT

PHYSTICAL AEMOR

TABLE
IDHNT
LT T

ADDRESST
IABLE BN
ABLE ENTR

HAPS e 00
RTG-IV..
LIBHARY..
Y LAYOUT.

NGeoosooo

TRY ¢ o 00 ee

Yo'ol..oo

FIAUP TABLE ENTRYeooooen
PROGRAM TYPES e eeseovsens
AM TYPE REFERRUNCES.
3ASE PAGE FORMATS.eeee
AABNT FORMAT « v en e

PROGK

I sE

1EYMORY PROTECT FENCE

AECORY

RE3TIENT

TABLE. .
TABLY
'WAE)'....QO

E;}.\i\’{)}%. Coi)Es.......'.......

13-1

13-1
13-2
13-2
13-2
13-3
13-3

13-5

onw?»»u
= b b b= W0 DO S

i
| DWW U SN

=
oo
1

e o}

12-9
12-10
13-5

1.0 INTRODUCTION

This section is intended to serve as an aid to the programmer when
modifying the online generator program RT4GN. It should be used in
conjunction with the generator source listings, as it in no way attempts
familiar with RTE-IV and its generation process, and has run

the generator. It assumes familiarity with the RTE-IV online

generator reference manual outlining the generation process.

1.1 General Overview

The modularity of the RTE software makes it easy to configure a
real-time operating system tailored to particular application
requirements for input/output peripherals, instrumentation,
program development, and user software. With the online generator
a configuration can be achieved under control of the present RTE
system, concurrent with other system activities. The online
generation process utilizes the file management features of BSM
for the retrieval of the generation parameters and software
modules, for the output of the system bootstrap loader and for
the actual storage of the absolute system code and its
associated generation map. The special utility program SWTCH
performs the switchover from the present system configuration

to that of the new. i

1.2 Operation

RT4GN is a type 2 or 3 segmented program requiring Table Area II access in
RTE-IV. The generator accepts its command input from an "answer" file locatea
on disc, a logical unit, or a combination of the two. These parameters direct
the generator in building and defining the system tables and values,

the logical memory layout, the physical memory layout, and in relocating

the software modules to be included in the system. All relocatable

modules must exist in FMP file format and are specified by file

name to be included in the system. The absolute, memory-image system

being built is itself stored in a type 1 FMP file, which is then

transferred by SWTCH.

2.0 GENERATION SEQUENCE

LIST FILE NAME?

ECHO?

EST # OF TRACKS IN OUTPUT FILE?

" QUTPUT FILE NAME?

SYSTEM DISC?

- for HP 7900/7901 Disc Only:

CONTROLLER SELECT CCDE?

#TRKS, FIRST TRK ON SUBCHNL?
0?2

or for HP 7905/7920 Disc Only

CONTROLLER SELECT CCDE?

#TRKS,FIKST CYL #,HEAD,# SURFACES,UNIT,# SPARES FOR SUBCHNL:
00?2

’ 14 ’ 4 L4

SYSTEM SUBCHNL?

AUX DiSC? T

NO YES T~ # TRACKS

AUX DISC SUBCH LY

1
. #1280 WORD GECTORS/TRACK

N

i

TBSG CHNL?

TBC SELECT CODE?

PRIV. INT. SELECT CODE?

MEM. RES. ACCESS TABLE AREA II?

RT MEMORY LOCK?

BG MEMORY LOCK?

SWAP DELAY?

MEM SIZE?

BOOT FILE NAME?

PROG INPUT PHASE:

/E
PARAMETERS

/E
CHANGE ENTS?

/E

Table Area I
Equipment Table Entry
EQT 017

’ r

EQT 022

’ ’

EQT 032

4 ’

EQT 042

’ ’

EQT 05?

’ ’

/E
Device Reference Table

1

EQT #?

’

N
I

EQT #7?

4

w
It

EQT #?

14

>
L}

EQT #?

’

Interrupt Table

4 ENT SPOWR

LN TR TR N T T S T UL]
L T N U U I T B B

/E
TABLE AREA I MODULES

l lcad map

DRIVR PART 00002
CHANGE DRIVR PART?

DPOl:

l locad map

SUBSYSTEM CLOBAL AREA

L load map

RT COMMON XXXXX
CHANGE RT COMMON?

RT CCM ADD YYYYY

BG COMMON XXXXX
CHANGE BG COMMON?
BG COM ADD YYYYY

BG COMMON XXXXX
SYSTEM DRIVER ARFA

_load map

TABLE AREA II

OF I/0 CLASSES?

OF LU MAPPINGS?

OF RESOURCE NUMBERS?

BUFFER LIMITS (LOW,HIGH)?

4

¥ OF BLANK ID SEGMENTS?

OF BLANK SHORT 1D SECMENTS?

¥ OF BLANK ID EXTENSIONS?

IAXIMUM # OF PARTITIONS?

FABLE AREA II MODULES

L load map

3YSTEM

l load map

2=1

PARTITION DRIVERS

DP 02: load maps
\4

DP 03:

. \ 4

MEMORY RESIDENT LIBRARY

l lcad map

MEMOERY RESIDENTS

l load map

RT DISK RESIDENTS

l load map

BG DISK RESIDENTS

l load map

RY PARTITION REQMTS:
PNAME XX PAGES E

BG PARTITION REQMTE:
PNAME XX PAGES *E

MAXIMUM PROGRAM SIZE:
W/0 COM YY PAGES
W/ COM 2Z PAGES
W/ TA2 XX PAGES

S5Y5 AV MEM XXXXX WORDS

1ST PART PC YYYYY
CHANGE 1ST PART PG?

SYS AV MEM XXXXX WORDS
PAGES REMAINING: XXXXX

DEFINE PARTITIONS
PART 017

SUBPARTITIONS?

/E

MODIFY PROGRAM PAGE REQUIREMENTS?

/E
ASSIGN PROGRAM PARTITIONS?

/E

SYSTEM STORED ON DISC

SYS SIZE: XX TKKS, YYY SECS
RT4GN FINISHED

22772 ERRORS

3.0 FILE INTERFACE

All I/0 within the generator is handled through FMP calls, be it to
answer, list, boot, echo, relocatable, absolute, or scratch files. Where
I/0 to a specific lu is allowed (answer file, list file, boot file, or
echo) a dummy type 0 file DCB is created so that the same READF,

WRITF, and CLOSE calls are used throughout. Six DCB s are set up

and used (and sometimes reused) for file I/0:

\ADCB Absolute output file - always open to a file
\LDCB List file - always open to a file or 1lu

\IDCB 1Input file - always open to a file or lu (changes as TR s and
errors occur)

\EDCB Echo - always open to lu of operator console but not necessarily
used if \IDCB or \LDCB are used to same lu, or if option denied.

\RDCB Relocatable input file - used tc reference all relocatable
files during generation, open to only one file at a time

\BDCB Boot file - created only when boot file is output by PTBOT
routine.

\NDCB Modified NAM records file (@ENME@A) - scratch file open
when being built and when referenced during relocation

All files except the answer file(s) and relocatable input files

are created by the generator. The above two file categories cannot be
actual type 0 files, as the generator may reference them by

record number. In the case of the relocatable files, the generator
actually opens and clcses each file many times.

3.1 Interface Routines

\CRET - is passed a DCB address and creates a file whose name is at
PARS2+1,+2,+3, security code is at PARS3+l, and crn is at
PARS4+1.

\CRET first calls FOPEN which calls TYPO - if a type 0 dummy DCB
was built then that is sufficient and /CRET returns. If it was a
file, then that file is closecd¢ (no error check done here

on file since may never have existed), and then created by

a -CREAT call. '

\CLUS -

\OPEN -

TYPO -

A CREAT call is made with the assumption that whoever called
\CRET checks the FMP error parameter FMRR.

iz passed the DCR address and truncate option. For a
file, a simple CLOSE call is made, leaving the \CLOS
caller the responsibility of checking \FMRR (not usually
done) .

For a dummy type 0 file, however, word 9 is merely set to

0. If the type 0 file being closed is the list file, then a
page-eject control request is made to it. The no-abort bit
is set on the control request to prevent abortion of the
generator to a device with no EOF code (like the console).

is passed a DCB address, and attempts tc open a file whose name
is in PARS2+1,+2,+3, security code in PARS3+l, and crn in
PARS4+1.

A call to TYPO determines if a lu was specified in the first
parameter and TYPO sets up the dummy DCB \FMRER is always cleared).

For a file, an OPEN call is made leaving the check of FMRR
up toc the caller of \OPEN.

is passed the DCE address in the A-reg. It determines whether
a numeric parameter was specified as a file name, in which
case it will continue with the building of a dummy DCB. LU's
are allowed by the generator for answer, list and boot files;
echo is always to the lu of the operator console (ERRLU).

The dummy DCB format and initial values are:

Word 0 0 directory entry address

Word 1 0 of file

Word 2 0 type

Word 3 read/write subfunction, 1lu

Word 4 EOF control subfunction, 1lu

Word 5 0 no spacing legal

wWord 6 100001 read/write legal

Word 7 100001 security codes agree; update open
word 8 ————

Word 9 ID segment address of generator (from 1717)
Word 10 --=--

Word 11 -—---

Word 12 ———w-

Word 13 0 (initial value) in buffer and write flag
Word 1 (initial value) record count

b~
-9

3-3

Special checks are made in determining the EOF control of subfunctions.
For driver types >=17 and for DVR0O5 exclusive of subchannel 0, a 0100

is merged with the lu. For DVROO, DVRO2, DVR0O5, ard DVRO7 (subchannel

0 only), the EOF control subfunction 1000 is merged with the lu. For
all other driver types between 1 and 16, 1100 is the merged subfunction.
For non-type 05 or 23 devices, an EOF will be sent immediately -

causing leader or a page eject, respectively.

3.2 Scratch File

The generator creates a temporary file of its own for stusage of
modified NAM records, @@NM@A. Modified NAM records result when the
program length of a compiled program has been determined (during

the Program Input Phase), or when a program’s priority or execution
interval are changed during the Parameter Phase. If such a modified
NAM record does exist for a program, then bit 14 of ID5 in its IDENT
entry is set so that the correct values may be retrieved during
relocation.

The generator purges this scratch file during final clean-up or its

own abortion clean-up. The file will still remain, however, if the
generation is aborted by some other means. When the generator tries

to create the scratch file during initialization and finds that it
already exists, it will increment the last character of the name (eg, A-B)
and create a new one. It gets confused if there exist o0ld entries in

a file left over from a previous generation.

3.3 Relocatable Input

All relocatable input is handled through the routines \RNAM and

\RBIN (both in the main). \RNAM sets up the parse buffer to cpen

the file specified in the current IDENT entry (words \ID9 through
\ID13). A non-zero B-reg on entry to \RNAM lets us assume that

the file is still open. Otherwise, the relocatable file currently
open to \RDCB is closed. \RBIN is called to (pcssibly) open the
file, and to read the record specified by \ID14 through \ID16. \RBIN
may also be called to merely read the next relocatable record of

a file, and optionally to get its position.

3.4 Answer File

Upon start-up, the generator determines thru RMPAR and GETST calls whether
an answer file name or lu was specified via the turn-on parameters.

If the first parameter was 0, lu 1 will become the default

command (answer) lu. If parameter 1 was numeric, that lu will be

used for command input (in an MTM environment, this would be the

operator console’s lu provided no parameters were specified). A

dummy DCB will be created in TYPO for the 1lu, or the answer

file specified in the Namr parameters will be opened via FMP, If

an error occurs on the answer file open call, the appropriate error message
will be displayed on the console via an EXEC call, and contrcl will be
transferred to lu 1.

An "error 1lu" is also defined at start-up. If an lu was obtained
from either the turn-on parameter or the default command lu 1, then
that lu becomes the error lu provided it represented an interactive
device. If it was not interactive, the photcocreader for example,
then the error 1lu would default to 1lu 1.

when an error occurs, the error message (s) is sent to both the
list file and the error lu. For many errors, control will be
transferred to the error lu for corrective action by the operator.
This is done by stuffing a "TK,ERRLU" into the command buffer,
where ERRLU represents the two digit error lu. The error
processor \GNER then calls TRCHK which processes the TR command.
If the command input was already from an interactive lu then the
control i# not transferred from it.

All command input is handled by the \PRMT routine, which also
issues the prompting message. \PRMT filters the input

locking for a !! starting in Column 1 - indicating the operator
wishes to abort the generator; or for a , : or TR - indicating
that a transfer is to be done. An EOF encountered in an answer
file/lu results in the simulation of a "TR" command which pops
the input stack.

The parse routine \PARS is called with the input buffer address,
and returns the parameters in the following format. FParameter 2 is
the file name or lu, Parameter3 the security code, and Parameter4
the CRN:

PARS2Z, PARS 3, PARS4 Type: O0O=null, l=numeric, 2=ASCII
PARS2+1 PARS3+1 PARS4+1 O number ch 1l & 2
PAKS2+2 PARS3+2 PARS4+2 0 0 ch 3 & 4

PARS2+3 PARS3+3 PARS4+3 0 0 ch 5 & 6

Asterisks (*) are not allowed within tilenames, security codes or
cartridge labels. As socn as an * is encountered the beginning
of a ccmment is assumed and \PARS returns.

\PRMT does some checks to determine whether or not to send the.
response just received to the list file. If the list file is to
the lu of the operator console and if that’s the current command
input lu (CMDLU) then the response is not sent; otherwise \LOUT is
called \LOUT does more checks for echoing).

TRCHK determines if the command input stack is to be pushed or
popped. If the current command buffer contains a TEK (or : or,)

with no parameter, then the stack is popped to the previous source
of command input; otherwise the stack is pushed with the new element.
Ten entries may be placed on the stack by the user. (GEN ERR 19 on
overflow or underflow) with each entry of the form:

Word 0 entry type: 1=Type 0(lu), 2=file

Werd 1 1lu, else CH1 and CH2

Word 2 C, else CH3 & CH4

Word 3 0, else CHS & CH6

Word 4 Security Code

word 5 Crn

Word 6 0,else record count for next record to read

An eleventh entry to lu 1 is hard-coded at the bottom cf the stack.

On a transfer, the current file is first closed. The routine PUSH
will then save the next record number of that file in its stack

entry, for repositicning when the file is later reopened. PUSH then
Picks up the file name/lu from the parse buffer and builds the new
stack entry. 1If overflow results, no push is done (recovery handled
in TRCHK). POF on the other hand merely decrements the STACK pointers
to the previous entry - on underflow no pop is done and TRCHK handles
the reccvery. Before returning to TRCHK, both PUSH and POP call the
routine STATE which performs status checks on the new source of
command input setting CMDLU (0, else input lu) and IACOM (1 if an
interactive 1lu, 0 if a file name or non-interactive 1lu). TIACOM is
used in determining the echo of input/output to the list file or
console. STATE also checks the validity of an lu specified as the new
command input source. 1If invalid, STATE does an error return, as does
PUSH, and TRCHK issues a GEN FRR 20 and handles the recovery. This
error won’t occur on a POP as the command input source we’re

returning tc would have already been checked at the original
transfer.

3.5
\ENAM CMER
1
\READ \SPAC \GNER
CMDIN
v DISPT \CrIL
\PRMT
\'ME
\TE RM J
y
\LouT interactivel
input 1lu
LIST ECHO
file 1lu (if enabled)

Figure 1 - Tree structure for generator command input and
echo/list cutput routines.

3.6 List File

The operator chooses where they wish to send the generation listed
output. If a file name was specified, then a file of size

64 blocks is created by the generator (extents are created as
needed by FMP). Since a CREAT assumes an exclusive open, the

file is then re-OPENED with the non-exclusive option. This permits
examination of the list file concurrent with generation.

For list output to an lu, a dummy DCB is created in the routine TYPO.
If the lu specified is to a non-interactive device, then an attempt
is made to lock it. If unsuccessful, the generator issues the appro-
priate message (not in the form of an error) and reissues the lu lock
call with the wait bit set. The generator is suspended until that
time when the resource becomes available.

If the lu was interactive then the flag IALST is set to 1. IALST
and JACOM are then used in the list output routines \MESS and

LOUT to prevent duplicate output to the operator console. A line
is always sent to the list file (using \LDCB) via \LOUT. If the
list file was not an interactive 1lu (IALST=0) but the command
input/answer file was (IACOM=1), then the line is sent to the
operator console (using \IDCB) as well. The status of the command
input mode reflected in IACOM changes as TR's are encountered or
errors are detected - so it is necessary to perform the..e checks
every time list output is done.

See the Error processing section for the handling of list file
errors. :

3.7 Echo

The operator must always answer the ECHO? prompt even where not
applicable (as when list file is lu of operator console, or
generator is to be directed interactively). If the operator
requests an echo, then checks are made in \LOUT to see if both
IALST and IACOM are equal to 0, meaning neither the listed output
or command input are an interactive device. If IALST or IACOM
indicate an interactive lu, then one further check is made with
either LSTLU or CMDLU against ERRLU to see if they represent the
same interactive lu, in which case no ECHO is done. If more
than one lu points to a particular interactive device, no checks
are done to determine if they reference the same EQT. Note that
because echo is dependent on the command input mode it may
change as TR’ s are done to and from the operator console or when
errcr mode is enabled.

3.8 Bootstrap File
At \BOTO0,\BOT5 the moving head bootstrap loader may be sent to an FMP

file or to an lu: a 0 response by the operator implies no boot is
desired. The "0" must be specifically checked for as the

4.0 ABSOLUTE OUTPUT

The absolute output file for the system being generated must be a type
1l file because of its fixed length, quick random access features.
Because type 1 files are not extendible, the user must over-
estimate the track size of the new system, with the routine \TRUN
truncating any excess file space at the end of the generation.

The file size specified is checked for a 15 track mininum, as is

a size so large that it results in a negative number of blocks
(#tracks x 48). when the file created is too small, a GEN ERR 17
will occur at that point where the end-of-file is passed, usually
a considerable way into the generation. Because the generator has
to abort, the user usually has to learn this lesson only once!

Since RTE requires locations of items on the disc, disc addresses
within the generated system are relative to the start of the disc
and thus are relative to the start of the absclute output file
(exclusive of header records).

4.1 Absolute Output File Truncation

The routine \TRUN is called at the end of the generation during
the cleanup processing. It closes the absolute output file,
truncating any unused file area. Immediately preceding the call
is a forced access to the last record +1 (using \DSKI) to make the
truncate work. A special situation results when the area

used by the new system is exactly equal to the created size of
the file. When the forced access is done, an FMP-12 error

occurs because we ‘ve overflowed the file. The record was
obviously not read in (makes no difference because it was a dummy
read anywey), and most impcrtent, the track and sector adcresses
in /AICB were not set. So /TRUN must check the FMEF errcr code
still in FMER from DISKL s READF call - and if it’s negative, no
truncation is to be done.

The truncation is dcne by determining the number of unused blocks
in the file, and deletinc them in the \CLCS call:

(# blocks in file) - (current block #) = TMP
where the current block # is cbtained as follows:

(last file track - first file track)*fsectors per track -
(first file sector + last file sector) *2

4.2 header kecords

The absolute cutput file contains two, 128-wcrd header records.
These &are used as a means of passing pertinent information to
SWICH, without SWICH having tc go searching through the absclute
output file fcr it. The track map table (1IMT) buffer is used

for stcrage of the header record information as it's being built.

After \STBL send the Track Map Table to the system storage area,

it uses the TMT buffer Th30 tc send header record #2. 1In the case
of a 7905/7920 this header record will not be identical to

$TB32 because it does nct contain the number of subchannels, but
does contain the spares for each subchannel. See Figures 3a and 3B
for the header record #2 formats.

After record #2 is sent, record #1 is built in bits and pieces. The
EQT information is obtained while the EQT s are being built. 1IOADD,
the channel, is placed in the high byte, and IOTYP, the EQT type,

is placed in the low byte of word pointed to by HEADR (the next
header record entry). When the lu cf the system console has been
assigned, the correspcnding channel is retrieved.

Cnce FSECT has rewrittern the track 0 sector 0 boct extension with the

correct values, it builds the remainder of record #1 as well.

The format of record #1, and where some of its values are
oftained, is:

S v S T G e G g S G ——— o —— - —— O —— -

C
CHANNEL/EQT 1YFE OF EQT #2

word 0 * lll SYSTEM SUBCHANNEL # | SYSCH

| I

1 |SYSTEM DISC EQT # | DRT2
| |

2 |# OF EQT'S IN SYSTEM | CEQ1
| |

3 | PRIVILECED INTERRUPT CHANNEL | PIOC
| |

4 | TBG CHANNEL | TBCHN
I |

5 |# OF DISC | SYSTEM | #SURC/CCNTENTS OF
| SUBCHANNELS | CONSOLE CHANNEL | TTYCH+3
I |

6 |CHANNEL/EQT 1YPE OF EQT #1 | IOADD/IOTYP
| |
| |
| |
] |
I I

CHANNEL/EQT TYPE OF EQT #n

e e e T e i -~ ——— - ————

FIGURE 2 - Header Record #1

4-3

* bit 1€ is set gince the absclute output file contains the seccend
header record; this is ucec so the RIL-1V version of SWICh can
check against RT2GN/R13GN-produced output files.

HEADEF RECORD #2 (128 words)

7900 disc:
word 0 | FIKSET TRACK, subchannel
| FIRST TRACK, subchannel
| FIRST TRACK, subchannel
FIRST TRACK, subchannel
FIRST TRACEK, subchannel
FIRST TRACK, subchannel
FIRST TRACK, subchannel
FIRST TRACK, subchannel
of TRACKS, subchannel
of TRACKS, subchannel
of TRACKS, subchannel
of TRACKS, subchannel
of TRACKS, subchannel
of TRACKS, subchannel
of TRACKS, subchannel
of TRACKS, subchannel

—
o
| ——— e —
NOUBWNHFHONOUIE WK O

P o= b o e ot ot S o

FIGURE 3A - Header Record #2

or

7905/7906/7920 disc:

T T e T e e e e - —————— — —————— ——

word 0 | STAKTING CYLINLER # [
1 * | # SURFACLS, STARTING HEAD, UNIT |~ subchannel 0
2 | # TFACKS |
3 u # SPARES I
_______________________________________ '
4 | STARTING CYLINLER # I
5 | # SURFACLS, STARTING HEAL, UNIT | subchainel 1
6 | # TRACKS |
7 | # SPARES |
e |
8 | STARTING CYLINDER # |
g | # SURFACES, STARTING HEAL, UNIT | subchannel 2
10 | # TRACKS |
11 | # SPARES [
e Ry |
12 | [
13 | . I
14 | |
14 | . |
. | I
. | . |
. | | subchannel 31
127 | I

T e e e e e e o o i e - -~ —————— ———————~— — —

* format: 15-12: # SURFACES 11-8: STARTING HEAD 3-0: UNIT

FIGURE 3B - Header Record #2

4.3 Gutput Routines

The following 5 routines ccntrol the output of code to the core-
image output file.

\ABDC -~

May be the most useful routine in the generator. It is used to
read or write words from the absolute output file, using the
memory address of the word in the target systewn. \ABDO
Operates using a 3-word map giving the base disc location,
the memory address referencing that location, and the highest
memory address referenced using this map. \ABDC puts out

the current absolute code word (in A-reg) at the memory
address (in B-reg) under the current map. Gaps are filled
with zero codes if the current word falls beyond the

highest previously generated word. For convenience, three
"maps" are automatically maintained. These are for the

- system, a driver partition or a user program, and a user program

\DSKD -

\DSEKA -

segment. Subroutines \SYS,\USER, and \SEGS are used to
activate these respective maps. Other maps could be constructed
and activated by SETDS.

Translates a disc address to a record number in the Type 1
absolute output file, thus satisfying the file’s random
access nature. FMP READF and WRITE calls are used

to access the output file in 128-word (sector-sized)
chunks. Note that an FMP-12 error (EOF sensed) is
ignored on READF. The reason behind this is that during
Clean-up, there is a forced access to the last record
used, +1, before \TRUN is called. This is to set up the
proper track addresses in the DCB \ADCB so \TRUN can
truncate the absolute output file to the last referenced
record. \DSKI is used to read in that record but it is
never rewritten (where the error would be sensed).

In the special case when the header records are written,
the memory address in the B-reg is set to negative to
indicate record #1. For record #2 the A-reg containing
the disc address as well as the B-reg are negative. See
Header Record Section for the record formats.

Increments the current disc address to that of the succeeding
sector. SDE# is used in determining track crossings and
equals the number of 64 word sectors per track.

\LSKI - Controls input from the disc (at specified disc and core

addresses) and uses a buffer making the disc appear to
have 64 word sectors.

\DSKO - Controls output to the disc as \DSKI controls input.

5-1

5.0 PROGRAM INPUT PHASE

T ———— o—— —— v —— — e m—

During the Program Input Phase, the generator will accept one of
Many responses to its prompt. Because of this, segment 2 contains
its own command scanner and branch mnemonic table. At PRCMD/NXTCM
the routine CMDIN is called to retrieve the next command, SCAN is
called to determine the correct command Processor, and control is

eéntered). CMDIN issues the prompt and receives the COmmand via
\PRMT (which filters and handles all TR's and gtc.).

SCAN is used by PRCMD/NXTCM to search for the command keyword,
returning a processor index in the A-reg. Scan is also called by
Some of the individual command processors to search only their
portion of the command table such ag MODULES, GLOBALS, LINKS, OFF
or ALL for the MAP command. PTARBL is the branch table for the

QGETC catches all * following the PIP commands (on the same line),
while GETAL catches all those following non-pIp commands - in both
cases the remainder of the line is ignored for Processing.

allowable keyword - if an abbreviation is eéxactly the same as

the beginning of a longer keyworad (e.g. REL and RELCCATE) the
longer must appear first. Each entry in the table contains two
Pieces of info: bits 15-8 indicate the number of characters in

the Ascii keyword, andg bits 7-0 contain the offset into table CMTBIL
Oof the Ascii value for that keyword. The ordering of entriesg

in both pTABL and CTABL must not be changed, whereas that of cMTBL
is of no importance.

When called by the individual Processors (of DISPLAY, MAP or
LINKS) scan Operates on their individual keyword tables (LTABS,
MTABS and 17ap Fespectively), again returning the matched keyword
index in the A-req.

5.1 DISPLAY Command Processor

DSPST makes usge of the error return (P+l) from SCAN, when neither
UNDEFS or TABLF were indicate r and Consequently searches the LsT
for an entry point. If not found, the entry point name followedg by
an "UNDEFINED" is printed.

LSPST will always send its cutput to both the operator concole and

list file. 1Therefore it is necessary for RT4GN to simulate a 1R to the
operator console (unless already in the interactive mode), do the
dgisplay, and then pop that TR from the stack. The operator never
realizes that this even happens. If either TABLE or UNDEFS was

specif ied, then the rcutine EPL is utilized (A-reg on entry = 1 means
list LST entry pts, = 0 means list LST undefined’s). If a DISPLAY UNDEFS,

TR is request, the “pop’” will not be done if there existed any undefs
(A-REG is nonzero on return from EPL).

5.2 REL(CCATE) Command Processor

RELST is the most complicated PIP command processor because of

the optional mocdule name specification allowed before the file name.
Eecause an lu cannot be specified for relocatable input, special
checks are done at CHFNM to insure that one was not entered. \RNAM
and \RBIN will catch an invalid file name. Note that because of
the special format of the RELOCATE command - no comma until
immediately before the filename - \PARS will stick the filename,
security code and crn in the usual parse buffer locations (see

File Interface). If a module name was specified, RELST stores

the name in buffer XNAM; if none specified, XNAM's value is 0.

So when a Nam record is read checks are performed at LDRC3 to
determine whether or not to load the module. If no module name was
specif ied in XNAM, then the entire file is unconditionally loaded
(note that "lcaded" here refers to module entries being placed

in the LST and ILENT tables - actual relocation is done later).

If a module name was specified, then it is determined if there
exists a match between the XNAM module name and that of the

current Nam. If no match resulted then those relocatable records
through the next End record are skipped, otherwise that module

only is loaded. Two variables are used to control loading:

SERFG = 0 indicated a module is to be loaded, -1 that its to be
skipped; NAME. = 0 when a Nam record is expected (either at
beginning of file, after an END record, or in record skipping
mode), = 1 means one is not.

5.3 MAP Command Frocessor

MAPST controls the memory map listing during the relocation phases.
The value of MAPMD is stored in bits 3-0 of ID5 of all IDENT

entries. MAPMD settings (bit 0 for globals, bit 1 for mcdules,

bit 2 for links) are in effect for all IDENTS entered thrcugh
subsequent RELOCATE commands. Options can be turned off only

by entering a MAP OFF command, and then entering another MAP

command listing the desired options (more than one can be specified).
A MAP statement is processed left to right - therefore MAP MODULES,

o=3

ALL,LINKS,OFF,GLOBALS would result in GLOBALS only being mapped
(MAPMD = 000001). The initial (default) value of MAPMD is off.

5.4 LINKS Command Processor

LNKST controls the linkage mode during relocation. As for the MAP
command, the option specified is in effect for all IDENTS entered
through subsequent RELOCATE commands. The initial (default) value
for LNKMD is 0 for base page mode; 1 indicates current page mode.

The value of LNKMD is stored in bit 15 of all IDENT entries. Current
page linking is never done on assembled type 3,4 or 5 programs (and
their variations).

5.5 /E Command Processor

EOL terminates the Program Input Phase by exiting thru PRCMD s success
return. Before returning however, it calls EPL indicating a listing of
the undefined EXT's (if any) - this listing goes only to the list

file (not to operator console, as did the DISPLAY UNDEFS

command) . '

6.0 IDENT, LST, and FIXUF Table Structures

The ICLN1 table contains en entry for each relocatable module
which is specified by RELOCATE commands during the Program Input
Phase. There is one entry in the LST for each entry point defined
in each relocatable module; entries are alsoc created by the
generator (e.g. for $CLAS, SLUEW, SRNTB, SLUAV, $TE31/2) and for
those ENT's suplied by the user during the Parameter Phase.

F1XUP entries are used during relocation when an entry point is
accessed before it has been defined (no address in the LST).

These three tables are stored in the available memory space
starting at the first word following the end of Segment 3, and

ending at LWAM. Note that the assumption is made that Segment 3
is the largest segment.

There must exist at least 512 words of undeclared memory in order
to insure at least one sector’s worth of words for each table.
Initially the space is allccated: 1/4th for the FIXUF table and
3/8th’s each for the LST and IDENT tables. Once a block of space
is allocated, it is truncated to a sector-multiple number of

words. The block size must alsc be divieible into the track size
(so that when many blocks are swapped out none will cross a

track boundary); thus a block may be truncated further by one or
more sectors. All truncated words are collected and added to

the LST block, as it usually needs the greatest space and is
accessed the most. 1Its block size must still fulfill the above two
restrictions, hcwever. The maximum block size is 6144 words (ie, one
track’s worth of informaticn).

Six tracks are cbtained for the swapping cf these tables: 1 for

the FIXUF, 2 for the LST, and 3 for the ILDENT., If these tracks
cannot be obtained, the generator issues the appropriate message and
suspends itself (by re-issuing the call without the no-suspend bit)
until the tracks become available.

word
word
werd

word

werd

word

word
word

word
word
word
word
word
word
word
word

IDENT TABLE ENTRY FORMAT

1: Irl -
2 IDZ2 -
3: ID3 -
4 Ic4 -
5: IDS -
6: ID6 -~
7: In7 -
8: ID8 -~
or
or
or
9: 1D9
1C: ID1O
11: 1D11
12: ID12
13: 1r13
14: 1Dp14
15: 1p15
16: 1IDl6

NAME 1,2
NAME 3,4

(15-8)
(2-0)

(15)
(14-0)
(15)
(14)
(13-4)
(3-0)

(15)

NAME 5

USAGE FLAGS:

2 this module was loaded as part of a segment
1 must load this module (ext defined by it)
0 this module was loaded

set if main program module

CCMMON LENGTH

BASE/CURRENT PAGE LINKING FLAG=1/0

NEW NAM RECORLD FLAC

EMA SIZE

MAP OFTIONS:

2 links

1 modules

0 globeals

EMA DECLARELD

(14-10)MSEG SIZE

(6-0)

TYPE
4 SSGA
3 REVERSE COMMON

LOWEET DBI. ADDRESS
DISK LENGTH FOR UTILITY RELOCATAELES
MAIN IDENT INDEX FOR SEGMENTS

(15-8)
(7-0)
(15)
(14)
(13)
(13-0)

- FILE
- FILE
- FILE

FAGE REQUIREMENTS
KEYWCRD INDEX

"EQT defined

SDA declared
SDCA own mapping
DRIVER LENGTH
NAME 1,2

NAME 3,4

NAME 5,6

= SECURITY COLDE

- CARTRIDGE LABEL
= RECORD NUMBER

= RELATIVE BLOCK
- BLOCK OFFSET

TABLE 2

6.4

wecrd
word
word

wcrd

word

word
word

word
word

LST ENTERY
1: LeTl
2: LST2
3: LST3
4 LST4
5: LSTS

F

OCEMAT

NAME 1,2

NAME 3,4

(15-8) NAME 5
(7-0) ORDINAL
IDENT INCEX

cr 2 if COMMON

or 3 if ABSOLUTE
or 4 if REPLACE
or 5 if UNDEFINED
or 6 if EMA
SYMECL VALUE

cor IDENT INDEX if EMNA

TABLE 3

FIXUP TABLE ENTEKY FORMAT

1:

2

FIX1
FIX2

MEMOEY ADDRESS

(15-11) instr. code

(10) byte instr. indicator
(9) upper BP link indicator
(2-0) CLEBL reccrd type

OFFSE1

INDEX OF LST ENTKY REFERENCED
0 if lcocal symbol

-1 if LJZRNT

TABLE 4

LST Index for .ZRNT

Since the indices tc.the LST entries begin with zero (unfortunately)
there may be confusion with the value of FIX4,I whose value is either
the index of the LST entry referenced, or zero for no reference.

It turns out the .ZRNT is always the first entry in the LST because
the generator places it there, so it always has the 0 index.
Therefore, during the DBL relocation processing in segment 4 (at
DBL45 to be exact) when a .ZRNT reference is detected (a special
case as it is), then the corresonding FIX4,I entry is set to -1.
DFIX will later check this value (where here 0 mezns to use a

zero value), but since .2ZRNT is a replace operation (\LST4 = 4)

then the bogus -1 value of FIX4,I is never used.

~J
CWONANINLD WNI=O .
%0 ee 0 48 00 4¢ o0 o

e
[
*e (1] (1] LI T

=
w N

14:
15:
16:

PRCGRAM TYFES

SYSTEM

MEMCRY RESIDEN1T

RT DISK RESIDENT

BG DISK RESIDENT W/ TAII ACCESS

BG DISK RESIDENT W/O TAII ACCESS

SEGMENT

LIBRARY/UTILITY

UTILITY

UTILITY LOAD ONLY 70 SATISFY EXTERNAL REFERENCES
MEMORY RESILDENT USING BACKGROUND COMMON

RT DISK RESIDENT USING BACKGROUND COMMON

BG DISK RESIDENT USING REAL TIME COMMON W/ TAII ACCESS
BG DISK RESIDENT USING REAL TIME COMMON W/O TAII ACCESS
TABLE AREA I

TYPE 6 BEING FORCE-LOADEL INTQ RESIDENT LIBRARY

TABLE AREA I

SLOW BOOT

17,18,19,20,25,26 ,27,28: TYPES 1,2,3,4,9,10,11,12 (RESPECT.)

30:

with access to SSGA
SUBSYSTEM GLOBAL AREA

21-24,29,31-99: UNUSED :

(TYPE +80 IS USED TO DESIGNATE AUTC SCHEDULE AT
STARTUP, BUT MAY CONLY BE ENTERELC IN THE PARAMETER
PHASE. +80 IS JUST A FLAG TO THE GENERATCR AND IS
NCT STCRED IN THE ID-SEGMENT.)

TABLE 5

7.1 Entry Point RAvailability Per FProgram Type

Because system entry points are not available to every program type,
and entry points in the memory resident library are available

to memory resident programs only, certain checks must be made to
prevent illegal references. (See Table 6.)

System entry points defined in type 0 and 16 modules can be

referenced only by the system and its tables (types 0,13,15 respec-
tively), the slow boot configurator (type 16), by SSGA (type 30) and by
type 3 (11,19,27) programs.

" Library entry points defined by type 6 and 14 modules can be
referenced only by the memory resident library and memory resident
programs (types 1,9,17,25). Outside the memory resident area

all type 6 and 14 modules are treated as type 7 modules so

they will be appended to all programs referencing them.

For all programs, Type 7 modules will be appended to each module
referencing them.

System Table Area entry points defined by type 13 and 15 modules

can be referenced by anyone. If Table Area II was not included

in the, user map, cross-map loads must be used to reference it (nocte
that it’s write-protected).

ESGA modules (type 30) can be referenced only by modules
specifically declaring SSGA access, types 17-20 and 25-28
and another type 30 module.

Checks must be done at load time rather than during relocatable
input because of the parameter change capability.

- meed

asE

'
)

,'E':

. ¢
i

S =3
L]

F

[y
e

LA

-
S IR

>
- { o
“veterencer!

-t 1“{\’

0 s

SRR 3RO X <SR X X XX X R U

HK

U R

— e e v MV v e o — = VY
- - =Vl Ve oL -V
- -V - —==vh

i
t

> KW
O acs

H

= a4 44 \n ot
TLBBETE
8 A0} 1213 K415

L]

veferencee.
I

o —.‘v 5 \/‘/\/

uT

a
[~

Vo— = = -
e — — ——
——‘— —— S em—
/-

CTITIRVTIIITULL I T I
- - - e e m =V - - - - - o
L SV - B
R e e
I TR VvV V- = - — = - -
T T S A
- - - -V e ;_ -- ‘/.‘/1—:/ V = - - - T ==
Cm e - e VYR mmm = VWY = —— = T
A mmmm gV v~ - — Y nV e e
e —m - GV v — — = VWV VoL oo oo
i T gy
I e R el e e
I VY
R A ViV - - - — = T
T U
v gV e s m— - VY~ = = = o=
S -tV uve s o=V - - - - - - -
R e Vv - - - - - .-z -

v’ allowed references
X disallowed references
don't care references

Note 1 - allowed only when Toaded with a type 3, 11, 19 or 27 main
Note 2 - all references to type 6 and 14 library routines are treated as
type 7 utility references when outside the memory resident area.

Program Type References.

TABLE 6

7-3

8 sse

R T T S T 3 S I I Nra

SN S

AN

7. Relocation by types

[%]

type.lS's in Table Area I

type 0 drivers in partition #1

type 30 s in ssca

type C system drivers

type 13°s in Table Arega 11

type 0 SYSTEM

type 16 configurator

type 0 drivers in partitions #2 onward

type 6 & 14 memory resident library

memory resident’s: type 1,(9,17,25)

Real Time DR'S: type 2,(10,18,26) plus any type 5 segments
Background DR s type 3,(11,19,27) Plus any type 5 segments

Background DR’s: type 4, (12,20,28) plus any type 5 segments

7.3 Libraries
7.3.1 Memory Resident Ilibrary (MRL)

The memory resident library containeg all type-14 force-loaded
modules, and all type 6 modules referenced oy type 14

modules or memory resident prcgrams. In order to pick up the
type 6 modules, a pseudo-lcad of all memory resident

programs is done.

Because library routines can be referenced only when in the memory
resident map, they must be made available to disc resident programs.
"Therefore, after memory resident loading, all type-6 and 14 modules
are demoted by /DEML to type 7 (utility) modules, so they will be
appended to all DR prcgrams referencing them. Type 30 SSGA modules
are not demoted. If referenced before the MRL is relocated, they
are treated as type 7°s.

7.3.2 Relocatable Disk Resident Library

The relocatable library contains all type 7 modules. Note that
these modules include all demoted type 6 and 14 modules, some
of which may have been included in the memcry resident library.

7.3.3 Library Entry Points list

The entry points available tc the user are sent to the disc in
three passes. See Appendix C for the physical disc layout and
the entry formats.

PASS 1: all entry pcints defined by type 0 & 16 (system) modules
are sent

PASS 2: all entry points defined by type-30 modules and by type 15
and 13 modules (Table Areas I and II respectively) are
sent, in addition to LST types 2 (common), 3 (absolute),

4 (replace).

PASS 3: All entry points defined by type-7 modules (includes
all type 6 and 147s).

The output of pass 1 starts on a sector boundary = DSCLE,
and contains SYSLN entries. The output of passes 2
and 3 contains DSCLN entries.

7-6

7.4 Undefined Entry Points during generation

To recover from an undefined entry point, the user must enter a
"DISPLAY UNDEFS,TR" before exiting from the Frogram Input Phase. These
undefined externals will be listed on both the operator console
(regardless of echo) and the list file. If undefs existed, a TR will
automatically be done to the console for opticnal recovery.

The LST type for an undefined external will be 5 until that point
where it becomes defined. (Note that a CHANGE ENT will do it even
after exiting from the PIP). Once exiting from the PIF, it will be
treated like a type 4 during program relocation; the value will

be zero (a NOP). No error diagnostics will be printed when an unde-

8.0 SIZE RESTRICTICNS

The following limits for an KTE-IV System must be enforced due
to the 32K (15 bit) logical address space of 21XX computers,
base page ianored. Extended memory &reas are not included.

P (Area x) is defined as the smallest number of pages which
campletely contains area X.

SYSTEM:

p (Table Area I) + p (Driver Prtition) + p (Common) +
P (System Driver Area + Table Area II + System + Configurator) < 31 pages
MEMORY RESIDEN1S:

p (TAI) + p (DP) + p (COM) + P (SDA+ TAII) +
P (Memory Resident Library + Memory Resident Programs) < 31 pages

where p (COM) and p (SDA + TAII) are optional

R1 AND BG DISK RESIDENTS:
p (TAII) + p (DP) + p (COM) + p (SDA + TAII) +

P (a RT or BG Disk Resident program) < 31 pages

LARGE BG DISK RESILENTS:
p (TAI) + p (DP) + p (COM) + p (a large BG Disk Resident Program) < 31 pages

where p (COM) is optional

8.1 PAGE ALIGNMENTS

The following areas are automatically aligned by the generator
to start on a page boundary:

Base Fage

Table Area 1

Driver Partition

Common

System Driver Area

Resident Library

Memory Resident Programs (first one only)
Disk Resident programs

5.0 MISC AREAS
9.1 BASE PAGL

Table 7 describes the various base page formats. Only one (each)
system and memory resident base page exists, but each disk resident
program has its own copy of base page. The base page links used

by a disk resident program are stored in the next disk sector

following the program’s code. The system base page is both

legically and physically page 0 and is stored starting at track 0
sector 2 of the system. The memory resident base page MRBI resides

in physical memory after the last driver partition page, and the memory .
resident library (MKL) starts on the physcial page after that. Physically
the MRBP links are stored on the next disk sector following the last
memory resident program’s code.

The System Communication Area (SCOM) and all Table Area I, SSGA, Table Area

ITI and drive links are resident in both system and user maps, the SCOM residin
in BP locations 1777-1645 and the upper BP links from 1644 downward. After th
track 0 sector 0 boot extension has been sent to the disk, the

dummy base page (it resides in core overlaying the initialization

code of the generator MAIN) is written for the sole purpose of

reserving its disk space. The system links (including configurator)

always start at location 100 and grow upward toward the SLOM. The

partition drivers links are not allocated until the PRD’s have

been relocated, so checks are done for overflow of these

driver links into the system links The system base page on disk

is updated at the end of the system s relocation for the trap

‘cells and system links. Note that trap cells referencing programs

are fixed-up as the programs are relocated. The BP driver links

are updated on disc after all the PRD’s have been relcocated, and

the SCOM is updated during the final generation cleanup.

Memory resident and disk resident program llnke start at BP location 2
and grow upward. A GEN ERR 16 is issued on

each overflow into the upper link area. In MRBP the memory resident
library links are allccated first, followed by those links

necessary for all the memory resident programs.

Areas,SSGA, |
| Driver |
Links

SYSTEM

I
|
I
I
I
LINKS |
I
I
I
I
I

T e i o ———— - —————— q———

EP

I'river |

)

TALLL 7

Memory Res. BP

SCOM I

|
|
R T |
I |
=Table Areas,S5GA, |
I

Driver |

Links |

I

I |
| MEMORY |
| RESILCENT |
| PRCCGRAM |
| LINKS |
R ey
| Resident |
| Library Links |
|
I

N

9.2

The
133

SYSTEN CCOMMUNICATIGM ARFA (8&CCM)

SCCOM is built at the end of generation during final clean-up.

octal words below the label USRTR are initialized to 0 anc
overlaid as SCOM is built, transferred tc the cummy base page,
thenr sert tc the disk using /ABDO.

set by the generatcr variables as follows:

1645
1646
1647
1650
1651
1652
1653
1654
1655
1656
1657
1660
1661
1662
leé63
1664
1665
1666
l667

The base page locations are

and

XIDEX ID extencicn address of currently executing program <=0

XMATA MAT entry address of currently executing program

XI
‘EQTA
EQT#
DRT
LUMAX
INTBA
INTLC
TAT
KEYWD
EQTl
EQT2
EQT3
EQT4
EQTS5
EQT6
EQT7
EQTE

address cf index register save area
first word address of equipment table
number of EQT entries
first word address cof device reference table
number of logical units in DRT
first word address of interrupt table
number of interrupt table entires
first word address of track allocation table
first word address of keyword block
address of SAM#1
words
address of SAM#$2
words
address of SAM#0

words

<=0

<=0

<=AEQT

<-CEQT

<=ASQT

<=CE&QT

<=AINT

<-CINT

<=ADICT

<-KEYAD
<~LWSYS+1
<-SAM#1
<-LWSYS+1+SAM#1]
<-SAM#2
<-LWTAI+1
{-CPADD- (LWTAI+
<=0

<=0

EQTY
EQT1U
EQT11
CHAN
TBG
SYSTY
RQCNT
RORIN
ROPL
ROF2
RQP3
ECPA4
RQES
RQF6
RQP7
ROPS
ROPY

SKEDL

SUSP2
SUSP3
SUSP4

SUSPS

current [MA channel number

I/C address of time base card

EQT entry address of system TTY

number of request parameters, less 1

return point address

address

address
address
address

address

Addresses
of request
parameters
(set

for a

maximum

cf

of
of
of

of

of
nine
parameters)

system “schedule’ list

‘“wait suspend’ list
“available memory’ list
‘disc allocation’ list

‘operator suspend’ list

<~TBCHN

{=SYSTY

<-0

KEQ1T

XLINE

. XTLEP

XTEMP
XTEMP
XTEMP
XTEMP
XPEIO
XPENT
XSUSP
XA

XB
XEO
OPATN
OPFLG
SWAP

LUMMY

Bral
BEA2
BPA3

LECRG

10

1rc

ID

Ip

ID

ID

1C

1D

ib

ID

ID

IC

segment
segment
segment
segment
segment
segment
segment
segment
segment
segment
segment
segment

segment

addr. of current program
linkage

temporary

temporary

temporary

temporary

temporary

priority word

primary entry point
point of suspension
A-Fegister at suspension
B-Register at suspension

E and overflow reg. at suspension

operator/keyboard attention flag

operator communication flag

RT disc resident swapping flag

I/C address of dummy interface card (PI)

disc address of first ID segment

position within sector of first ID segment

FWA user
LWA user

FWA user

base page link area
base page link area

base page link

FWA of resident library area

<-SWAFPF

<-PIOC

<-DSKSY

<-IDSP

<=2

<-~LOLNK-1

<=2

<-LBCAL

1746
1747
1750
1751
1752
1753
1754
1755
1756
1757
1760
1761
1762
1763
1764
1765
1766
1767
1770
1771
1772
1773

1774

FTCKG
RTCONM
ETDRA
AVMEM
BGORG
BGCOM
ECDRA
TATLG
TATSD
SECTZ2
SECT3
DSCLB
DECLN
DSCUT
SYSLN
LGOTK
LGOC

SFCUN
MPTFL
EQT12
EQT13
EQT14

ECT15

FWA of real-time common

length of real-time common

FihA of real-time partition

LWA+1l of real time partition

FWA of background common

length of background common

FWA of background partition

negative length of track assignment table
number of system disc tracks

number of sectors per track on 1lu 2 (system)
number of sectors per track on lu 3 (aux.)
disc address of entry point library

of user available entry points in library
disc address of reloc. disk resident library
of system entry pcints in library

load and go: 1u, starting track, # of tracks
éurrent load and gc track/sector address

log source: 1lu, disc address

memory protect on/cff flag (0/1)

<=RTCAD
<-COMRT

<-MEM6

<-SYMAD

<-EGCAD

<-COMBG

<=MEM12

<- - (DSIZE+DAUXN)
<-DSIZE |
<-SDS#

<-ADS#

<-DSKLB

<-LBCN1

<-DSKUT

<-SYCNT

1775 FENCE memory potect fence address <=0

1776 <-0

1777 BGLWA last word memory address of BG partition <-LWASM

9.3 COMMON

The RT and BG commons along with the Subsystem Global Area (SSGA,
type 30 module) occupy a single area collectively known as "COMMON".
Since any program using any of the three areas can "see" (ha:z

map entries for) the others, only the memory protect fence table can
provide any protecticn (see its format under MBFT writeup).

The order of the three areas was chosen such that a hierarchical
protection is preserved:

C |lmmmmmm e e |

| RT COMMON | page boundary
B |-ommmmmmm e I

I |

| ssca |

I |
A = -

The memory protect fence will be placed at R, B, or C if a prcgram
is using COMMOCN.

When the ILDENT s are scanned for ID segment allccation at the
end of the PIP, the ccmmon sizes of each program stored in \ID4
bits (14-0) is used to set the maximum RT and BG common sizes,
COMRT and COMBG respectively.

Starting on a page boundary after the driver partition all SSGA modules
are lcaded first, followed by the allocation of the RT and BG
common area.

The RYT common size is displayed, the user is given the option
of increasing it, and the starting address is displayed:

PT COMMON XXXXX <——mm——mn decimal words
CHANGE EKT COMMON?
NNNNN 0 means no change; GEN ERR 14 issued on an invalid response

RT COM ADD XX%XXX {=—==m—em cctal address

KICAD is set to the RT common starting address from PPREL, and
COMPT, the number of worde, maybe updated; EGBND is set to the
starting address cf EG Common, PPREL+COMFT. Before COMBG is
displayed, it is updated to include that area from BGBND to the
end of the page (because the SDA is automatically aligned on

the next page boundary after BG common). The following sequence
occurs for BG common determination: : '

BG COMMON XXXXX(==——=---decimal words (new size)

CHANGE BG COMMON?

NN 0 means no change; GEN ERKR 14 issued on an invalid response
BG COM ADD XXXXX

BC CCMMON XXXXX<----decimal words

BEG Common size is increased in page multiples so COMBG has NN*1024
added to it, and is redisplayed.

9-10

9.4 CONFICURATCE PRCCEAM

The confiqurator program is a special system module of type l6. It
has access to all the system entry points and is loaded immediately
atter the system in what will later be the beginning of System
Available Memory (SAM #1). 1Its base page links are included with
those of the system. The last word must not be greater than

77577B or a GEN ERR 18 will result and the generation will

be aborted. The memory above 77577 must be reserved for the disc ROM
loader. The last word of both the system code and configurator code
must be saved (in LWSYS and LWSLB respectively) in order to ccapute
the size of SAM #1 at the beginning of the Partition Definition
Phase. SAM #1 will include that specific memory area covered by

the confiqurator plus any remaining area left on the last page occupied
by the confiqurator.

The confiqurator references the Table Area II entry point $SBTB which is
the first word of the following 6 word table:

SSETE disc address of driver partiticns
of pages for all driver partitions
disc address cof memory resident base page
of pages for memory resident base page
disc address of memory resident library and programs
cf pages for all memory resident library and programs

The values are stuffed into $SBTE when the generator sets the
values of all the Table Area II entry points specified in $$TB2 at
the end of the partition definition phase (see Section 12.8).

9.5 BOOTSTRAP AND EXTENSICN

The generator builds both the track 0 sector 0 boot extension and

moving head bootstrap loaders for either the 7900 or 7905/7920 discs.
Generator segment 1 builds the 7900 bootstrap loader whereas segment 7
builds it for the 7905 etc. The generator stores the system

subchannel disk cspecifications in the bootstrap loader (i.e., first track,
¥ of tracks, starting head, # surfaces, etc.), and for the

moving head bootstrap loader, confiqures the disk I/C instructions to the
select code of the system disc. The high address of the configurator

is stored in the track 0 sector 0 boot extension in HIGH so the

first chunk of memory can be read in from the disc starting at

track 0 sector 2. The generator also sets the following values in
the boot extension:

TBAEE

U#NIT

B#MSK 7900 only
SKCMD

R#CMD

BHD#

#$HLS

WAK

SKECMD 7905/20 only
AD$#RC

R#CMD

S#TAC

LuU=~L

10.0 TABLE ARFAS I AN II

The generator-built track map table ($TB31 or $TB32), EQ1’°s and
extensions, DVMAP table, DRT, INT and all type 15 modules will be
loaded and/or stored in Table Area I (in that order). Table Area 1I
exists in all maps. The user-available entry points to system

code will be loaded into Table Area I from the type 15 module SSTB1.
Note that all user-defined track map tables will have to be

type 15 modules in order to exist in all maps. The space left on
the last page occupied by Table Area I is allocated to SAM (SaM #0).

Table Area II contains (in the following order):

$CLAS table

SLUSW table

SRNTB table

SLUAV table

SIDEX table

IU extensions
keyword table

ID segments

SMATA table

SMRMP map

SMPFT table

Track Allocation Table
$$TB2 entry points
type 13 modules

Type 13 module STB2 contains the entry points to system tables

most of whose values are set when the $SMATA, S$MRMP, and $MPFT

tables are built during the Partition Definition Phase. Since

Table Area II is included only in the system, memory resident
(optional), and type 2 RT and type 3 BG program address spaces, those
type 4 BG programs wanting to access any Table Area II entry

points must do so via cross-map loads.

All external references from the Table Areas are resolved thru fixups
once the system and all drivers are relocated. The Table Areas can
reference each other, the system, and types 6, 7 and 8 utility modules.
Their links are included with those of the system. Table Area I starts
on a page boundary, following the base page. Table Area II immediately
follows the System Driver Area in memory, so both are mapped in

when either is referenced.

10-2

10.1 EQUIPMENT TABLE (EQT), DEVICE REFERENCE TABLE (DRT), &
INTERRUPT TABLE (INT) SIZES

The maximum number of EQT and DRT entries is 63 and 255, respectively.
Since both the EQT and DRT entries are sequentially prompted, the
generator will issue a GEN ERR 35 for all entries past the 63rd or 255th
until a /E is encountered. The size of the DRT is always twice

the number of LU s defined (CsQT), with the second zero-filled

chunk of size CSQT following the first. The first CSQT words of

the DRT are set as follows by the generator:

o o o o e e e e e e e e - = i . — ——— e = w —— —

of device of device

The INT contains entries for each channel from 6E thru 77E, even
though the user may not have defined up to the maximum. The entire
channel spectrum must be present for possible 1I/0 channel reconfigura-
tion at slow boot time. This also implies that base page location
100B will always be the first SYSTEFM base page link. all I/0
locations from 2B thru 778 are initialized to the absolute code for
"J5B $CIC,I", except that lccation 4 is initialized to "HLT 04".

The INT records are processed as follows:

1. N1,EQT,N2 - The address of the EQT entry specified by N2 is set
into the INT entry designated by Ml., The INT location contains
"JSB $CIC,1I".

2. N1,PRC,PNAME - The 2°¢ complement of the IL Segment ALDR for
PNAME is set into the INT entry N1. The interrupt location
contains "JSB $CIC,1I".

3. NI1,ENT,ENTRY - The INT entry specified by N1 is set = 0 and
the interrupt locatiocn N1 is set to contain "JSE X,1", where
X is the BP link address containing the address of ENTRY.

4. N1,ABS,XXXXXX - The INT entry specified by N1 is set = 0 and
the interrupt location N1 is set to contain "XXXXXX",

All locaticns in the Interrupt Table from 6B to 77B which are not
specified by INT records are set = G. For N1 = 4 the only legal entries
are types 3 and 4. All INT records must be entered in increasing N
order, with the excepticn of 4.

For ENT type entries, the entry point referenced must be contained in
& type 0 mocule. 1If that type 0 module is a driver (IDENT word 8 bit

15 is set) then that driver must be in the System Driver Area (IDENT
word 8 bit 14 is set).

10-3

10.2 TRIVERS and L[VMAE

Lrivers will be relocated to reside in either a driver partition or

the System Lriver Area (&DA). The I/G tables (EQT s, DVMAF, DRT

and IN1) are stcred in fYable Area I, and are therefore Huill bhefore

¢ry drivers have been relccatecd. Fixups are then

resolved for EQT words 3 and 4 once a driver’s initiation and

completion sections are relocated. The two FIXUP table entries

will automatically be allocated when the EQT is built. The fixup entries
are built as follows:

word 1: memory location (in EQT) where address of I.XX or C.XX to
be stored :

word 2: instr. code = 0, DBL record type=5

word 3 offset = ¢

word 4 LST index of I.XX or C.XX
Setting the DEL record type in word 2 equal to 5 simulates an external
reference with cffset. With the instruction code equel to 0 this indicates
a DEF to an external with offset (of 0) at fixup time, therefore making
it direct.

All drivers (identified as type 0 mcdules beginning with "DV") will be sent
to driver partitions unless so specified by an S or M in their EQT
definitions as an SLCA type. Those drivers without an EQT and

possibly not beginning with "DV" will be relocated with the system.

If an SDA driver is to do its own mapping, then an M in addition to

or in place of the S may be specified. "

When an EQT is defined, the IDENT table entry for the named driver
is retrieved (a GEN ERR 25 is issued if not found). After the EQIT
is built the driver’s IDENT word §, bit 15 is set to indicate that a
valid EQT existed, bit 14 is set if SDA was declared, and bit 13 is
set if the SDA driver is to do its own mapping. If an M is specified
without an S, then an $ is assumed and both bits 14 and 13 are set.
If bit 15 indicates that a driver had already been specified in a
previous EQT, then the new type must match that of the old. i.e.,
bits 14 and 13 of the current entry must match the values to be set
by the new entry, otherwise a GEN ERR 23 would be issued and the

EQT would have tc be redefined.

The system disc driver cannot reside in SDA. When an EQT s select .
code matches the "CONTRCLLER CHNL?" response, the system disc EQT is
assumed and a check is made to make sure that SDA was not declared
for this driver - or a GEN FRR 23 occurs.

The first half of the driver map table DVMAP is dynamically built

in a buffer as the EQT s are defined. DVMAP consists of two
consecutive chunks of size CEQT (the number of EQCT 's). After all the
EQ1°s and EQT extensions have been built, space is reserved for the
DVMAP and it is sent tc the disc. Table Area II entry point S$SDVMP

is set (later) to its address. The first CEQT chunk has values stored
in it by the generator, while the second CEQT chunk is zero-filled
for user by RTIOC. A 64-word buffer (maximum # of EQT s) is used

for building the first part of DVMAF. The dummy entries are built

as follows, with word 0 corresponding to EQT1,...word CEQT-1
correspeonding to EQT CEQT:

15 14 8 7 0
| 11 INENT incex of ariver | for a partition resident
--- ¢river (FRD)
or:

15 0
T“I_T_-_-_----_——-—_——_--—----—-_T-I—I tor a System Lriver "“rea driver
oA driver | dces own mepping

The PRC entries in LVMAF are updated on disc when those drivers are

relocated; the SDA entries are left as defined. The final PRL form
is: g

T e e . (- G ————————— - — " ———— = —— ——— — v -~ —

of driver partition

Wher a PRD is relccated into a partition, all the EQT entries in
DVMAF must be scanned for an IDENT index matching that of the driver.

All matching DVMAF entries are then replaced with the dGriver partition
starting page.

10.2.1 ©SYSTEM DRIVER AREA (SD2)

All drivers going into the System Driver Area are relocated fcllowing
the construction of Ccmmon. Since Common always ends on a page
boundary, the SCA always begins on one.

10.2.2 DRIVER PAKIITICNS

The defaulted driver partition size is two pages - large enough to hold

any HP partition-resident driver. As many drivers are relocated into a

DF as will fit, so increasing the DP size will allow more drivers to fit
into a particular partition - possibly saving physical pages if a lot

of leftover page space can be used. For partition-resident drivers

greater than 2 pages, the DF size must be overridden in order to accomocdate
it. Ctherwise, if the driver overflows a DP at reloccation time the
generation will be aborted with a GEN ERR 56.

The current DP size is displayed in decimal number of words, and the user
is given the option of increasing it:

DRIVR PART 00002 PAGES
CHANGE DRIVR PART?

A U response implies no change, otherwise the new size must be >=

CPLN and less than 17 (a blue-sky estimate). If an invalid respcnse

is entered then a GEN EER 01 is issued and the query re-prompted. The
new value of DPLN is used to set the Table Area II entry point S$DLTH.
The last word occupied by Table Area I is founded up to the next page
boundary and stored in DPADD (the skipped memory is later allocated to
SAM). CLCPADD converted to a logical page number is used to set Table
Area II entry point $pvPpT (starting lcgical page of driver partition).
Memory skipped in the page alignment is "sent" to the disc by updating the
relocation addres PPREL. When \ABDO is called the next time, that

disc space will be zero-filled since PPREL will be grea.=r than the
address of the highest previously generated word-in the system map

(MXABC,I of the \ABLO specification table for the system).

After the relocation of Table Area I, the first driver partition

is relocated. The system disc driver must be relocated into this
partition for use by the configurator program; this driver is determined
by using DRT2 (the system disc EQT #) to offset into the temporary

DVMAP table in order to pick up its IDENT index.

Once a driver is relocated, a check is made to see if the logical

address space used for a driver partition has been overflowed. If not,

the IDENT table is scanned for a driver that will fit into the remaining
space of the DP. The scan always begins at the beginning of the IDENT
table stopping when a driver’s sigze specified in \ID8 of its entry indicate
that it will fit. 1In addition, the routine CPL? is called to check for

the memory requirements when current page links are in effect. If the
above two checks pass, the driver is relocated, otherwise the scan

through the IDENT table is continued.

Note, that however, that a driver may still overflow a partition.

This may happen when referenced subroutines are appended to the driver
during relocation. Upon overflow, the violating driver is ‘backed-up’ over,
an error (actually a warning) is issued, and the IDENT table scan is
continued, searching for another driver that will fit. The DVMAP entries
are not updated for the overflowed driver. When Fixups to driver entry
points are resolved during relocation, the entries are not deleted from

the FIXUP table. Thus in the Case where a driver is relocated more than
once, the references are gimply re-fixed up to the final value. The
violating driver will be relocated into a subsequent partition.

. When no more drivers can fit into a partition, the remainder is zero-
filled. For driver partition #1 zero-fill is done to the last word of a
DP, but for the other DP’s zero-£ill is done only to the last word of the
last page used. With this feature pages may be saved where one or more
complete pages of a DP are unused.

For each new DF, the scan is then begun at the beginning of the IDENT table
for the next unrelocated partition-resident driver. If none exist, the

driver partiticns are done. The fixup table is cleared before the memory
resident library is built.

¥

10-6

For driver pertitions #2 onwara the \2EDO specificatin map is
changed from that of the system to that of driver partitions. This
is done pbecause these driver partitions reside logically in

the system area, but physically on the disc and physically in

péges above the system area. TIrom then on, when each new DP is
started, the LCP map’s disc address ABDSK,I is updated but ABCOE,I
and MXABC,I are reset to DPADL,

After a driver is loaded, the physical starting page of that driver
partition is stored in all the DVMAP entries referencing that driver.
The fixup entries pertaining to EQT words 3 and 4 are also resolved.
Note that the \ARDC map must be changed to that of the system in order
to perform these Table Area I updates. When a new driver partition is
started it’s starting physical page ic set: PAGE#<---PACE# + number of
Pages required by previcus driver partition (<KDPLN). PACE# is initially

set, for driver partiticn #2, to S$ENDS which is the physical page

immediately following SAM#l. (See the physical memory map in Appendix D.)

The physical page for CP#l is the same as its logical page, SLVPT.

Fartition driver links start at BP location 1644 and grow downward.
Since the system usually has already been relocated, checks must be made
during PLELC relocation for overflow of links into those occupied by

the system -2 CEN ERK16 results and the generation is aborted.

Ncte, a user-entered disc Track Map Table (e.g. $TB31 or $TB32) must
be defined as a type 15 module so it will be placed in Table
Area I for access by drivers.

10-7

10.3 ID SEGMENTS AND EXTENSICNS

During the construction of Table Area II, space is reserved for

long ID segments (33 words leng), mem. res. ID segments (29), short ID
segments (9), and ID extensione (3). Long 1ID segments are allocated

to real-time and background disk resident programs; mem. res.

ID segments to memory resident programs; short ID segments

for each program segment; and ID extensions for each long ID segment of
an EMA program. The minimum number of each type necesrcary is obtained
by scanning the IDENTS keying off the program type and EMA flag in
\ID6. The user is given the opportunity to have blank _" segments and
extensions allocated thru the gueires:

of BLANK ID SEGMENTS?
of BLANK SHORT ID SEGMENTS?
of BLANK ID EXTENSIONS?

He g o

A GEN ERR 60 is issued if the total number of long and mem. res. ID
segments is >254. If more than 254 long ID segmented are required before
any blanks are requested, then the generator aborts after giving the

GEN ERR 60. A GEN ERR 01 is given if the number of ID EXTENSIONS exceeds
the number of long ID segments.

The keyword table and ID extension table (SIDEX) have one word
allocated for each ID Segment and ID extension, respectively - plus
one "stop" word equal to zero. The keyword table entries are set to
the ID segment addresses as the ID segments are being built, or
during final cleanup for the blank ID segments generated. The

ID extension table and the ID extensions preceed the keyword table
and ID segments. When built, the ID extension table ($IDEX) is
initialized to the addresses of the ID extension entries (3 words

each). See the EMA secticn for the description of the values stored
in the ID extension entry.

ID segment entries are built as follows:

o

ID SEGMENT WOKRLE SET DURING CGENERATION

0 0
1-5 0 ‘F\
6 PRIOKITY from WAM reccrd
7* PRIMARY ENTERY POIN1
8 0
9 0
10 address of ID segment word 1
11 0 ‘ MEMUORY
12* ID1 gives NAMELl & 2 RESIDENT
13=* ID2 gives NAME3 & 4
14%* IC3 (15-8) gives NANMES; ID6 (2-0) gives TYPE ID
15 optiocnally set bit 0 if the scheduled program SEGMENT
16 0
17 resolution code and execution multiple from plus
NMAM record words .
18 Time word from NAM record 30, 31, 32
19 . Time word from NAM record
20 0
21 ** (cee below)
22% low main address from PPREL
23% high main address from TPREL
24%* low BF address from PBREL ‘J
25%* high EP address from TBREL
26 main aisk address from DSKMI
27%* 0
285 ID EXT# & EMA SIZE - see EMA section
Z9 high main of largest segment = TPMAX, else 0
30 0 (session monitor word 1)
31 0 (sessicn monitor werd 2)
32 0 (session monitcr werd 3)

* short ID segments

** RP bit 15 may be set during the Partition Definition Phase.
pages required (14-10) set at end of main program lcad by IDFIX; for
EMA programs includes MSEG size; may be changed fcor non-EMA
programs during the Partition Definition Phase.
MPFI (9-7) set at ena of main prcgram lcad by IDFIX.
Fartition # (5-0) may be set if assigned during PDP.

TABLE 8 .

leoz FARTILICL LilinluiICy

The mewcry allcoceticn tawle (AT) anc the entry points cescribing
it ere lccatec¢ in %Sable Area 1I. When the maximum number of
pertitions $MM- ie set by the vser, the space for that rnumber of
MIT ertries is reserved with $MATA pointing tc the first entry.

ihe number of remasining physicel pages (DEAFI, the memory size ctored
in NUMPG minus the first partition page PACE#) is next displayed to

the user for partiticn definiticns. The link word (werd 0) of each MAT
ertry is iritislized tc -1 to indicate an undefined par*ition,

whereas worce 1-6 are get to 0. Note that since the MAT is already

on the disc it must be referenced thru ite absolute memory address,
updating the code cor the diek via \ABIC. See Table 9 for the format

of a MAT ertry. :

The user ic prompted fcr the definiticrn of each partition starting
with "FART (1?", ardé stopping wher a "/¥" ie entered by the user.
The physical pages will pe sequentially allocated to the MAT erntries
ar¢ the first -1 link will thus indicate the end of the defined
partitions. The user enters the number of pageg, partition type
(either K1, BG or &) ard cptionally the reserved flag.

ihe number of pages, less 1 to exclude the base page, i stored in
MAT word 4 bpite (9-0). If a REY partiticn, bit 15 is set in MAT wcrd
5 (cleered for BC partitions). If a reserved partiticn bit 15

ie set in MAT wcrd 4. If the partiticn size is greater than the
maximum addressable size MAXFC, then the user is asked if they

want to define subpartitions. A NC response cimple results in a

large unchained partition being defined. If the user responds YLES

then that partition beccmes a mcther partition with bit 15 set in

werd 3 of its MAT entry and the NAT subpartition link word (6) of

the mother partiticn is initialized tc point to itself. At this

tinie ornly can subpartiticre for a mother partition be cefined.

The user has the option of respoending YES and still not defining

ary suppartitions; thic would result in a chained partiticn with the
mcther partition the only element in the chain. The generator prompts
fcr the next partition definitior. 1If the type code is & then this is a
subpartition for the current mother partiticn. The partition type
(either I or FG) is cerried from the mcther to the subpartiticns.

The size of the subpartitior cannot be greater thar that of the mother,
or a GFM I'RE 5¢ will he issued and the partition must be redefined, it
can hcwever be larger thern MAXEG, but further subpartiticning is rot
allowecd.

The sum of the subpertiticon sizes carnot exceed the gize of the
mother, but may be less - & CGEN EFR 46 results con that subpartition
definition causing the overflow, and that partiticn must be redefined.
It the type ie K1 or BG, then we've left the subpartition mode and

are proceeding as ncrpmal. ‘

MAT THILY FORUAT

15 14 13 G 2 0
woré ¢ | ERLE L1e% LINK WORD |
v PRIOKITY CF RUSIDENT T
2 | In SEGLEnT arpRESS T
5 0e 1t 1 emamie mace |
4 Twicl 1 vuers eacce |
ST © 1 re cenpl
6 | cubpartition Link Word N

- — . T o— g —— o ——- —— P S e MER G S G GRS SE GRS SN CEN W G G WA ek NN M- W ST SN G, qms Gah AN A -

M = INother partitior bit

B o= Dermant bit

K = Reservec bit

C = Chain in effect bit

Ri= teal-time partiticrn bit

Lké= heaa completion

TEBLE ¢

1i-5

l2.2.1 ke fcllevira fequerce occurs for & partiticon definiticn:

B
e

E'

If t1T¥1P=M2YPT then sct the xX ir the prowpt tc¢ blanks.

Serc the prompt "FAET XX?" for the definiticn of partition XX

and get the respcnse. If "/E" is enterecd, the generator proceeds
to the partitiocn cleanup at C. If NEXTP > $MNE then no

ore MAT entries can be entered and the generator issues a GEN
ERR 49 ard qaces back to p.

Fetrieve the partition size, subtract 1 for the bac- page, and
store in DPSIZ. DFSIZ must be betweer 1 and 1024 pages, else
issue GFN EER 45 and ge to A,

~EFetrieve the partition type (RT,BG or &); if neither RT,BG or

S ther issue 2 CEN FERP 46 and go tc » (after clearing SUBS?).

If & then SUEMD must = 1 indicating subpartitioning enabled, else
iseue a GEN [RR 46 and go tc A.

It CPSIZ+1> MOMEZ (size of mother partition) then issue & GEN
EEK 56 and go tc a.

If LPSIZ + SULT+1l (current subpartition page tctal) > MOMSZ then
issue GEM ERFR 56 and go to A.

Increment # of pages covered by subpartitions, SUBT<--SUBT+DPSIZ+1;
get type of subpartition to that of mether, DETY<--MOMTY. Co to J.

If ¥T or BECG then ite 3 regular partition (i.e., non-subpartition)
ard SUBMD is set to O (may have already beer in regular mode),
cet DFTY to 1 fer RT sc bit 15 ot word 5 can be set.

If DECIZ > MAXFC (largest logical partiticn size) then thig
partiticn may be eplit into gubpartitions. Subpartitions them-
selves may be >MAXPG, but they cannot be further subdivided.
Theretore the subportition mode flag SUBML is checked; if = @
then the gererator is in regular mode anc this partition may be
Subpartitioned - =o SURS? is set to 1 indicating that the user
is to be asked if they want to define subpartitions at I..

M.

(v.’ .

12-6

Retrieve reserved flag. If one entered, set bit 15 for wcrd 4
(I'PESV<—-0, =1 ctherwise).

1f SUES? = (O thep aots N, else prompt the user "SUEPARTITIONS?".

If ®C then gc tc M. If YiS: erable subpartiticr mode SUEMD<--1;
ctore address of currert (mother) MAT acddress in NMOMAL; save
mother partiticn size for subpartition checking, MOMSZ<--DPSIZ+1;
clear subpartiticn tectal, SUET<--(; save mcther partiti n type
for ite subpartitiors, MOMIY<--DFETY; and set bit 15 fcr word 3 of
current AT entry making it 2 wother partiticn (DPMONM = -1, 0
otherwice). '

Build the new MAT entry (words 0 & 3 are completed c¢uring
nartiticn cleanun).

word (0: set to 0 tc incdicate & cefined entry.
word¢ 3: DPMCM is used to (cpticnzlly) set bit 15 if a

mcther partition
wor¢ 4: DEFPSV is used tc (opticnally) set pit 15 if a reserved
partition, and LCFSIZ is stcred in bits 9-0.
CPTY is used to (cpticnally) set bit 15 if a RT partition
if cUBMI'=1 ther set tc MOMAL, else 0. Thie will set the SLW
(Subpartition Lirnk Word) to point to itself if the
mother partiticr, or to the mother MAT entry if & new
subpartition at the end¢ cf the chain.

word 5
werd 6

1f SULML=1 and SUES?=t then at least cne subpartitjon has peen
defined. The current subpartition must then be linked to the
previcus MAT entry (which is either the previcus subpartition

in the chain or the mother partiticr). €ince CURHAT is the memory
acdrese of the current MIT entry, ther §$(CURMAT~1)<-~CUEMAT.

SURrSs?=0, CPMONML=-~(0. Bump NEXTF, Co to 2.
bPartiticn Definiticon Clearnup., The PAT is scanned, summing up the

individual partiticn sizes, until the first undefined entry is
found (link werd ¢ = -1) cr the end cf the table is reached.

Only the regular and mcther partiticr sizes are included in

the total, end 1 is sdded te cach of thesce sizes becaucse the hasge
page was not includec¢ in the size stored in word 4, Subpartition
cizes are not incluced, their pages having already been included in
the mother partiticn; a subpartiticn MAT entry is cetected by

word 6 (JIW) being nornzero and the mother bit (15) not being

set in word 3. If the total numper c¢f pages occupied by the
defined partiticns (UPTCT) docs not ecual the number available
(CEATE), then a CI'N FRR 53 in issued and all the partitions must

be redefined. ‘

1z2.3.2 FFRIE LIstg

The memory allccaticn table (resident on the disc) is sorted irte
three free lists each basec on increasing partiticn sizes, by
setting the link addresses in word 0 of each MAT entry. The lists,
separating real-time, background and chained (mother) partitions,
are referenced thru the Table Area II entry points S$RTFR, $BGFR
anc $CFR respectively.

The generator starts scanning the MAT with the first pa-tition’s

entry and stops when the end it encountered (SMNP entries have

been threacded) or when the first undefined entry is found (link

word = -1). The three list headers DPETL, DPEGIL and LECL are

initialized to 0, and are peinted to by LDPRT., I'PBG., and PPC., respective]
The list headers (and their lists) are accessed ard updated by

getting DPLH.,I where DPLH. ic set tc one of the header pcinters,

depending c¢n the partition type. The partition type is determined as
follows:

If the mother bit of word 3 is set then both RT & BG mother
partitions go into SCFR, or if the RT bit of werd 5 is set
then it’s the $RIFR list, and the remaining go into the S$BGFR
list. The type of list being threaded is irrelivant cnce the
pérticular header address has beer set.,

AsS a particular MAT entry is linked intc a list, its starting

physical vage is stored in word 3 bits 9-0. DPCGRC is initially set tc the
first physicel page for partitions from PAGE4#, and is updated as

rages are allccated toc a partition. Wwhen a mother partition is
encountered, MCEFG is set before DPORG is updated to the start of

the next partiticn. Wwhen MORG is non-zero, the next set of sub-

partiticn entires in the MAT have their starting physical page

set by MCRG (which is incremented after each gubpartition). when the

hext non-subpartiticn is encountered, MOKG is cleared and sterting

pbages are set by DPCRC again.

When the threading is completed, the last element in each list
is retrieved and the Taple brea 1I entry pcints SMRTP, S$SMBGE
ard SMCHN are set to the page sizes of the largest non-reserved partition

in the real-time, backgrcund, and mother free lists, respectively.

12-&

12.4 MODIFY FREGCRAM PAGE RECQURENMENTS

The IDLNT entry for the named program is retrieved; a GEN ERR 4§

is issued if the prcgram name can’t be fcund or if it is of
iticcrrect type. Cnly disk resic¢ent precgrames (masked types 2,3,

arn¢ 4) executing in uger partitions can have their page requirements
increased. 'lhe page recuiremernts of an EMA program cannot be
overidaden, sc if bit 15 cof \ID6 is set, a GEN LFER 55 ig issuved.

wWwhen the program’s 1L segment is built, the keyword offset is

storecd in the program’s IIEHT entry word 8 pits (7-0). The routine
ILDFND retrieves the proaram’s ID segment address by going thru

\1C& and the keyword s value stored on disc. Before the program’s.ID
seqgment wcrd 21 can be updated, the new page size must be verified.

" The program’s lcw mein is retrieved from ID segment word 22 and is
converted to its starting page to which is added the new page
requirements (less 1, stcred in DPSIZ). 1If cverflow occurs (>32)

then a GEN kKR 51 results. A procgram’s page requirements, stored in
ite ICFMT entry wecrd 8 bits (15-8) when the I segment was built,

are compared against the override in DPSIZ - if DPSIZ is less than

a GEM FRR 51 egaein is issued. Otherwise DPEIZ is stored in 1D

segment word 21 bits (14-10) of the named¢ procgram, The page requirement
in \IC8 is not updated, however tc allpw a re-cverride. ‘

12.5 ASSIGN PRCGRAM FARIITICNS

The ILINT entry and IL segment address for the named prcgram are
retrieve¢ as when modifying a program’s page reguirements., Only
¢isk resident programs may be assigned to partiticns, provided the
pertition is large enough to hold the program. A CGEN ERR 4¢

ie issued if the partition number specified in LENUM is greater than
the maximum allccated (MAXPT) or if the partition is undefined
(link word 0 = -1). The size of the partitiocn is '

retrieved frcm ite MAT entry word 4 bits (9-0) and stored in
LECIZ. The page reguirements cf a non-I'MA program are retrieved
from 1L segment word 21 compared against DPSIZ. A GEN ERK 50 is
issued if the program is too large for the specified partition,
otherwise werd 21 bits (5-0) cof the program’s ID segment are set to
rprum -1 ard the RP bit 15 1i¢ cet,

For EMA pregrams (bit 15 c¢f \ID6 is set) the page regquirements stored
in \ILE bits (15-8) include the MSEC size, but it is the EMA size that
must be included when ccnsidering whether or not the program will

fit in a partiticn. The program code size is determined by subtracting
the MSECG size in \IL6 bits (14-1U) from the page

12-9

reguirements in 1IL&, and adding the EMA size in IL5 (13-4) - adding
1 if the I't'P was defzulted-anc stering the result in DPORG. If the
resulting page cize <DPS1Z then 1D segment wora 21 ies updated as
menticred above tc reflect the partition assignment, otherwise

a GEN ERE 50 results.

12.6 MEMORY FROTECT FENCE TABLE

The € wora MFFT stored in Table Area II on the disk is updated to
reflect the lcgical fence addresses for the follewing pioagram
ceteqcries:

word 0 type 4 BC disk resident without common
memory recident

any prcgram using BT common

ary prcgrem uging EG common

any prcgram using SSscCa

RT or type 3 BC disk resident without common

(S0 PN SR

TAELE 10 - MEFFT

Table Prea 11 entry point S$DPL (load pcint for disc resident
program) sets word (.

The variable FWIEF (first word of memory resident program) sets
word 1.

The variable EK1CAD (real-time common address) sets word 2.

The variable BCEND (background common address) sets word 3.

The variable S8GA. (SSGA starting address) sets word 4.

lable Area II entry vpcint S$pLP (load pcint for privileged pregrams)
sets word 5,

Table frea II entry point $MPFT will coptain the address of the MPFT.
12.7 MIMOFY RESIDENY FRECCEAM MAE

The I'h& men for nemory resicent progrars, MENMP Stored con the digc in
Ta~le free 11, is uncated fer vese by the Mienatcher., The feRIVE,

aadresse¢ by Table Area I1 ertry poirt SMEMP, ic 32 words long having
one wcrd per plysicel register. Tre map is built as fellowe:

- ——r W o - ———— — > —— -

l2-1C

1117 . I
|11 . !
(11 . I
- e o e e e e leftover ayea**
11 1 !
FEMEL 111 ¢ |
40V —mmmrmeme e e A
| epbeb 68 |
| LrBE+MFEH$-1 I
————————————————————— memcry
| . I resicent
| . | prcarams
| . | & library*
| MLBF+3 |
| LIEP42 |
. | LREE+1 I .
FPEL] wemmeesemc o e me—e—— -
. | FRMrT =1 | CETICGNEL 3
b it (Teble Area 11,*
| FEMLIT=2 | System Driver
e e lree*, & Commcn)
| . | plus Lriver
| . | Partition and
| . | Table Ares 1
| 2 !
2 e ————— ————
| 1 |
] mmmmmmmmem e -
| FPMDE I } lMemcry Resldent Ease Fage
‘\' G Gy G GRS S G GED GHD G SRR G ST NS I GED PR Gmp W WS
A
I
|
valucs ‘set

TAELEF 1] - Memory Recident Map

*Qystem Lriver Area, Table Area II, and the Memory Resident
library are write-prctectecd (bit 14 is cset).
**1.oth read and write-protectec.

12-11

ero 6 is get te the phbysical memory resident bese page FEMEE.

The Tirset wecrc cf the memcry residert library is convertec to

ite logicel nege address and is stcored in PRVEL. Werde 1 thru

FEMIT -1 &re thus set tc their lcgical ard pinvsical pege eddresses,

I thruv FEMII=-1. If the fystem ['river Prea &rd Table Area II are to

ve inclucded in the map (I'RiA2=1) ther their pages are write-prctectecd.
MRP{ cortzins the rumber of reges occupied by the memory recsidert
lircrary ¢rd programs. The mep words FFMEL thru (FEMEL + MEFGE-1)

are thus set to their ccrrespcrnding physicel pages, MEBE+)1 thru
(MREL+MEFCE) . The library pages (FPMEE+]1 tc FPMEF-1) are always
write-prctected. 1The remeinina mep werds (FPMII+FFECE) thru 31 ere set
starting cver &t page 0 - this erea ccrrespenés to the lecaical

acdress space sbove the memory resident area and eesch page is therefore
reac- end write- prctected (bits 15 ard 14 ere set in ite MIMP ertry).

1208 CEYITING £YETEE ENTFY FCINMUE

Cruciel values are passec¢ tc the systerm from the gereratcr. This
ig cone by stuffing values intc lccaticons defined as ertry points
in Teble Area 1I. 1The code tc update these values on digc is
teble-driven, with a table entry ccreisting of these 5 worde:

laiel LEF *+2

<velue tc be stcred>

ASC 3,<entry point name>
or LEC O (last entry)

before upcatina the entry points, the values ir the teble are
filleé ir. 7The fcllowire evtry point values are set as incdicated:

SECFER,
SCPR,

SEMET,
SLVEE,
SLVET,
SLTTH,

S)I‘P‘P,

SMETT,
v SInER,
STLE,
SYLP,
SLINE,
SELLIC,

SLELHI,

12-12

mempory address of memcry residert map
vhysical pasge follcwing EAL#L
memory address of mewmcry alloceticn table

$ D&

es/sterting page of Sab#l

O

[

{ pages/starting page of SApME
memory address of memory protect fence table
MPT entry address of real-time free list bteacder
MpT entry addéress cf backarcund free list header
MAT entry address cf ctained free list treader
ast werc ecdcdrecs of memcry residert progrem aree
memcry address of Driver lMaw Table
legical sterting page of c¢river partiticn
nunper of pages wer driver partiticn
maximum number cf wvartiticneg
page cize of largest mother partiticn
nzge size cf lergest beckground pertiticr
reqge size cf laraoest real-time partiticn
mercry adadrecs cf IL extergion table
lecad poirt addreses for Ki/BEC DF programs withcut cocmmor
load point address for rrivileged LT proarams
last wcrd +1 acddress of memcry resicdert library
negative lcwer puffer limit

rnegative vpper buffer limit

vhen cone settira the above values there are six values to be stored
in the fcllcwing table (for use py the cenfiqurator):

starting at S$SETE: disc address cf driver pertitions #2 onward

t ¢f pages fcr driver pertiticns #2 cnward
disc address of wemcry resident base page

of pages fcr memory resident bece page
disc address of memory resident lib/proorams
of pages for memory resident lib/programs

13=-1

13.0 EPROR PRCCESSING

There are two clasces of errors that occur durin¢ ceneration: FMP
EER ¢ resulting from files being accessed through FMP calls, and
GEN ERR’s resulting from an illegal generator response or an
erroneous condition detected during the generation. 1In most cases
an FMP error will cause a GEN eérror &s well. A count ERCNT is kept
for the number of errors occurring during a generation, and is
displayed after both normal and abortive generator terminations,

in the form: XXXX ERRORS

On many errors control will be passed to the operator console by calling
TRCHK with a "TE,LU" stuffed in the input buffer, LU being the lu of the
operatcr console ERRLU. The current input source is pushed down

the stack, so after the cperator corrects the error (probably by
re-entering the respconse), a simple Tk will return them to the next
response in that answer file.

List file errors encountered after the list file has been created
are detected in /LCUT. The error that occurs most frequently
results when an extent to the list file cannot be created due to
lack of @disc smace on the Same subchannel. Because this error can
occur anytime during generation, the status of the input/output
buffers LBUF and TEUF must be maintained as they may contain
relocatable or absolute ccde. The FMP and GEN errors reported
upcr. the occurrence of a list file error are therefore, issued via
EXEC call writes.- (Using the normal error reporting routines
would result in an eventual call tc /LOUT - but recursion doesn’t
work!) The user is the prompted with an "CK TC CONTINUE?" On a NO
respense the generator aborte via \TERM call. On a YES response,
LFFRR is cleared to indicate that all future list file errors
enccuntered in /LOUT are to pe ignored. The ECHO option must then
be turned en (if not already on).

13.1 GENERATION ERRORS

\GNER outputs all errors of the form "GEN ERR XX" where XX is the
two digit Ascii error ccce passed in the A-register. If the A-
register is negative, then it implies that we have an error type

for which no TR to the ERRLU is tc be done (these codes typically
pertain to duplicate names or entry points). Otherwise \GNER checks
as did \CFIL to determine if contrcl is to be transferred to the
operator console; it alsc saves/restores the return address when
calling TRCHK. The flag EOFFL is set in \PRMT to signal that an

13=2

FOF had been encountered in tle areswer file. Thus when the FPOP
ic done on the arswer tile stack cnly to fin¢ nothing therec, a
GEN ELRR 19 will not be printed - ccentrol will simply be
transtferred to the console as intended. Since calling \GNER is
the realization of an actuel error, it is up to the caller to
take ccrrective acticn.

13.2 FILE LERCEE

All FMP errors are detectec ardé processeé in the routine \CFIL. \CFIL
s cellec after each F¥F call is mede (i.e., all READF,WRITF,C"“LAT,
CLOST,OPEN,L.LOCF ,APCET and PRNDF calle) and checks the error

parameter \FMEE. CNUMD is called tc ccnvert tlhe error ccde to Ascii
and stutf it into the message "FMP [RE-¥X FLMAME". The DCB address

it passed to \CF1lL in tre A-Feg. Frcm the DCh werds 0 ard 1, the

file ¢irectory entry address cr the lu is retrieved. An EXEC call
read ic done to that track and sector and the tile name is transferred
from words U-2 cf the directcry entry tc the error message buffer. '
1f word ¢ of the CCE is 0 then it was a type 0 file and the file

name in the error message is set tc the lu, "LU 2x". cince \CFIL issues
€rror messages, an error carn Geccur on ar CFEN or CREAT call in which
case the DCE ic nct set up correctly. Therefore if the A-Reg LCB
address is zero indicating a check following an CPEN or CEKLEAT

call, then the file name is picked up from FARS2+1,+2,+3 since it
always contains the file to be opered. An €rror never occurs cn

the OFEN/CFEAT of a type 0 file since the generator routine TYPO
builds the actual ©UCB, so this combination is not encountered.

\CFIL alto determines whether or not a transfer of control to the
operatcr is necessary, in which case TRCHK is c¢one. Some return
addresses are saved and restored in case it was TRCHE who originally
called \CFIL. \CFIL has two returns with the error return being

at (F+l). It is up tc the caller of \CFIL to determine the course of
action when a file errcr occurec.

13.3 AECELIIVLE TEFMINATION
13.3.1 \ABOR

\ALCl issues ite own errcr of the form "CEFNw ERK 00 XXXXX" where
XXXXX ic the octal address of the caller of \ABCL. Decause \ABCK

ie called from several places, the address helps in tracing down

the problem. After ocutputting the message, \TERM is called fcr
clean-up befcre terminaticn. 171he abort may result if there exists a
oroblem with the generator’s LST,1GENT, or F1IXUP table cr its

l3=-3

scretch file (&RNME&A) - such that an entry is no longer there.

lhe loss of & table ertry would result from an imcomplete disc

swap of a teble block - this could be an actual generator problem

or it could be & hardware problem. Pacst experience recommends

cne to check the hardware first on all GEN ERR 00°s. Obviously

this error should never occur - so only strange conditions will cause
it.

13.3.2 \TEERM

\TERM is called when the cperator aborts the generator with a 11
command, when a GEN ERR 00, ¢z, 07, 17, 18, 21, 38, 57, 59, 60, 61
occcur, or after file errors toc \NDCB, \FDCB, \RDCE, \IDCB OR \ADCE. The
absolute output file, bcot file and modified Nam record file are purged
(using a CLOSE call with truncate option), and the list file,
relocatable input file, and arswer file are closed. The abort

message is printed, the generator releases the scratch tracks

allocated to it, and the generator terminates.

13.4 MISC. ERFROR PROCESSORS
\INER and \IREF

\INER ig called from several places in the main and segments 1,

5 and 7 to issue the initialization response error GEN ERR 0l.

It merely calls \GNER where the transfer of control is done to
the console. The caller of \INER then reissues the questions for
the corrected response from the operator.

\IREE calls \GNER for the irrecoverable errors 07, 12 and 21,
followed by a call to \TERM to perform clean-up and abortion.

NROOM and CMER

NROOM issues errore (02 (not enough space for tables, 512 word
minimum) and 38 (ID segment cf segment 3 cannot be found) by
calling \GNEK, then aborts the generation with a \TEEM call.

CMER in Segment 2 issues a GEN ERR 06 when an invalid Program Input
Phase command was entered, or when an FMP EREFE-XX FNAME occurred on a
file referenced in a RELOCATE command. NXTCM then prompts (=) for the
next command.

13-4

13.5 EKRGE SUSPENSIONS

The generator detects two errcr conditions which result in a
mesgage sent tc the conscle (cnly) and the suspensicn of the
genrerator until the situaticr is resclved. When the generator
requests its 6 ecratch tracke arc they are not available, then

it issues the message "CIVEPATOR WAITING FOR TRACKS", anc reissuecs
the EXFC 4 call with the weit pit set. The same seguence of
operation occurs when ar attempt is made to lcck the list file
(provided it wes to 2 non-interactive lu) where "GENERATOR WAITING
ON LIST LU LCCK" is displayed cn the console.

13.6¢ ANSWEER FILL ERRCGKS

When doing trarsfers within “RCHEK, special prccessing must be

done for FUSL/POF errors. At FCFRE, which results from Tk stack
underflow, & GEN I'FR 19 ic issued with & forced "TR,ERRLU". At
PUSHk, resultirg frcm TF steck cverflow, the stack address is
cdecreirented by ore to pcint tc word 6 if the previcus entry (actually
current since the PUSH wasc mnever cdone) ané RECOV isc called. RECOV
pceps the stack to the previcus entry, thus enabling a "TR,ERRLU"

to be done on return ir scme cases. When an invalid lu was specified
cn a FUSH, at TR3 RECOV is again called before issuing the GEN ERK 20;
the same holds true at Tk4 when an errcor occurred con the rew input
file, cnly here we have to save the error code while RECOV is being
called.

Wwhen an invalid lu cr file was specifica in the turr-on parameters,
OTRT2 issues its own errcre rather than cell \GNEF or \CFII befcre
the answer file and IACOM have heen established. Cnce the lu of
the operator console has beer cetermired (default is 1) the Rescii
of that lu is stored in the "7F,¥X"™ message tc be used later with
all "7R,ERRIU" calls to 1RCHE.

13.7 TUFIVLIE FARTITICON CVERFICE

When multiple crivers are being relocated into a driver partition and a
driver overflows the logical mermory snace reserved for the DP, a warning
nessate of the form: :

"CRIVLE PARTITION OVLEFLGW'

is lscued. This does nct constitute &n error condition and no TE,LKRLU
i¢ done. 7The messaqge ise infcrmative only, essentially telling the user
tc ignore the load map printed for the driver just relocated. That
driver will be re-relocated irto a subsequent driver partition.

SYSTEM

MEMORY RESIDENT

SAM EXTENSION

SAM

SYSTEM

MEMORY
RESIDENT
PROGRAMS

RESIDENT LIB.

TABLE AREA 1II

TABLE AREA II

SYSTEM DRIVER
AREA

SYSTEM DRIVER
AREA

COMMON

COMMON (if used)

DRIVER PARTITION

DRIVER PARTITION

SAM

SAM

TABLE AREA I

TABLE AREA I

SYSTEM
BASE PAGE

Apage boundaries

MEMORY RESIDENT
BASE PAGE

Opt.
> P

DISC RESIDENT

TYPE 4BG
DISC

RESIDENT
PROGRAMS

COMMON (if used)

DRIVER PARTITION

SAM

TABLE AREA I

DISC RESIDENT
BASE PAGE

PRIVILEGED D.R.

TYPE 2RT and 3BG
DISC

RESIDENT
PROGRAMS

TABLE AREA TI

SYSTEM DRIVER
AREA

COMMON

DRIVER PARTITION

TABLE AREA I

DISC RESIDENT
BASE PAGE

APPENDIX A

DISC LAYOUT OF AN RTE-IV SYSTEM

FIGURE C-1 DIAGRAMS THE ALLOCATION OF DISC SPACE
BY RT4GN WHEN IT CREATES AN RTE-IV SYSTEM.

DISC PROTECT AVAILABLE DISC SPACE
BOUNDARY LIBRARY ENTRY POINTS LIST
RELOCATABLE LIBRARY AND UTILITIES

BASE PAGE LINKS REPEATED FOR ALL BG DISC
BACKGROUND DISC RESIDENT RESIDENTS AND SEGMENTS

BASE PAGE LINKS REPEATED FOR ALL RT DISC
REAL-TIME DISC RESIDENT RESIDENTS AND SEGMENTS

MEMORY RESIDENT BASE PAGE
MEMORY RESIDENT PROGRAMS
MEMORY RESIDENT LIBRARY

PARTITION RESIDENT DRIVERS
SYSTEM

> bbb DD BDDPD> D

TYPE 13 MODULES

TRACK ALLOCATION TABLE

$ MATA, $ MRMP, $ MPFT TABLES
KEYWORD TABLE, ID SEGMENTS

ID EXTENSIONS, $ IDEX TABLE

$CLAS, $ LUSW, $ HNTB, $ LUAV TABLES

TABLE AREA Il

al SYSTEM DRIVER AREA

REAL-TIME COMMON

BACKGROUND COMMON
8§SGA

PARTITION M RESIDENY DMVERS

TYPE 16 MODULES

INT

DRT

$ DVMP TABLE

EQT, EQT EXTENSIONS
TRACK MAP TABLE $ TB3X

TABLE AREA |

SYSTEM COMMUNICATION AREA
UPPER BASE PAGE LINKS
SYSTEM LINKS

TRAP CELLS

SYSTEM BASE PAGE

a| BOOT EXTENSION

4 SECTOR BOUNDARIES

APPENDIX B. RTE-IV SYSTEM DISC LAYOUT

DSCUT

<§?d of system

A sector boundaries

entry points

entry points;
all ABS,RP,
COMMON, entry
points

SYSLN DSCLN_
; Disc System User- User
¢ Resident Only 'Available Entry Free Track Area
¢ Relocatable Entry System Points
z Library Points Entry
g Points
a
track boundary
all type 6,7,§ 14 type 0,16 type 13,15 & 30 all type 6,7,
programs modules modules & 14 modules

entry points

NOTE:

LIBRARY ENTRY POINTS LIST

FORMAT :

flag bits:
000
001
010
011
100

word 1
word 2
word 3
word 4

name 1,2
name 3,4

name 5, flag bits

value

memory Tresident
disc resident
common

absolute
replace

SYSLN § DSCLN
contain the
number of 4-word
entries

APPENDIX C

S>>

>

o >

DISC RESIOENT PARTITION #M

fe e c——— —— —— o

— TBASEPAGE

DISC RESIDENT PARTITION #1

= e e e o o Gm—n | et —— — — —

BASE PAGE

SYSTEM AVAILABLE
MEMORY EXTENSION

MEMORY RESIDENT PROGRAMS

MEMORY :RESIDENT LIBRARY

MEMORY RESIDENT BASE PAGE

DRIVER PARTITION #N

DRIVER PARTITION #2

SYSTEM AVAILABLE
'MEMORY

SYSTEM

TABLE AREA (I

SYSTEM DRIVER AREA

BG COMMON

RT COMMON

SSGA

DRIVER PARTITION #1

TABLE AREA |

SYSTEM BASE PAGE

|

JL__ L1l

Il

JL

L

] = USER-DETERMINED SIZE
A = PAGE BOUNDARIES

APPENDIX D. RTE-IV PHYSICAL MEMORY ALLOCATION

D-1

4

MTH TECHNICHL SPECS

HH
1/18/78

A nunber of changes huve been made to the nodules that interface
to MTH and several new system library routines howe been created.
The new system libraery routines uere sufficiently discussed in

the HTH ERS. This section discusses the changes to the scheduler.
MESSS, and the flow of control between PRMNPT and REPHS .

SCHEDULER

Two changes have heen mude in the scheduler. The first is in the

$TYPE routine, the second is the progranmatic schedule regquest
(EAEC 9, 10, 23 and 247 ot SHPTS.

$TYPE accepts operator communds and is the system console’s
interface to $MESS uhich praocesses these commands. $TYPE now
screens the aperator input conmands for ‘Q¥’ or ‘RUS. If either
of these comnncnds were entered and were successful, then

cession waord 3 <10 segnent word 321 will haove a -1 pleced in it

cession word 3 will be used two ways. If the sign bit is clear
the program i3 'n the session mnode . I¢ the sign bit is set., the
the word has the negative LU number of the console at which the
progran was scheduled. Thus $TYPE pluces a -1 in the word
meaning that the program i3 not in session and was scheduled at
Ly 1.

hnother change in the scheduler was nade «t $MPTS which handles
EXEr scheduie requests. Processing was added to propugete session
word 3 froanm foether Lo son. The father was ccheduled from and thus
LU to issue messuges Lo,

which

MESSS

MESSS is o system library routine that allous users to interface

to $HESS in the scheduler. MESS5S is used by many programns to
schedule progrems when the 'OH’ aor 'RU’ conmand is issued at an

MTH terminal. MESSS now performs the same operction as $TYPE, that
is, if the 'OH' or 'RU’ uwas entered and was successful (no

returned nessage fronm S$MESS) then the progran to be scheduled will
have its session uword 3 set to the negative HTM LU number.

PRHPT - RSPHS$

The guts of NTHM is really tuo praograms. PRNPT and RPN. PRMPT is a
pragran that is scheduled by interrupt. This means thot PRHPT must
be relocated ot generation ftine and then one entry XX,PRG.PRMPT be
made in the Interrupt Table phause of generation for every select
code address.: XX, where the user wishes HTN terminsl handling.

PRMPT is the prograem that issues the XX) prompt and issues o class
I1/0 read on the terminal. R$PNS does the class get and handles ahy
input typed into the terminal. The one exception to this is for MTH
scheduling a copy of FNGR. This is PRMPT's responsibility.

The flow of contral in MTM actually starts before the ihterrupt. As
mentioned PRHPT must be set up at generation time. The terminal
must also be enabled before MIM will do any processing. Typically

a fterminsl is enabled with the :CH, LUB., 20B conmand. It may be
disabled with the :CH, LU#%., 218 connand.

Enebiing the terminal ollous the driver to place PRMPT's D
addreszs into the azscciated EQT. The driver tukes the ID

address out of the interrupt toble Cit‘s in 2's] conplement
form) and pleces it into a temporary vord in the EGT or EAT

extension {as a positive aeddress!. The interrupt table entry
is then replaced with the first word cddress of the
referenced EGT . HTH is now ready toc handle the terninal.

An interrupt {from the CRT (TTY) device is genercted by
hitting any key. $CIC in RTIOC is entered and vectors the

interrupt to the appropriate driver. The driver fthen
deftermines if the terminal is esnabled. if not the interrupt is
ighored. If the terminal is emnabled, the driver schedules PRHPT

wia the system routine $LIST and pesses the address of the fourth
sword of the appropriate ERT.

PREPTY

PRHPT tukes the address of word four of the ERT and calls TRMLY.
TRMLY {5 o new system library routine. Its responsibility is to
match up the E@T gddress to an interactive LU number. This is

done by conmparing the passed EQT address to the contentz of the
device reference table “DRT). Recall that the lower sin bits of the
ODRT has the ordinal nunber of the EQT aszociated with that LU.

TRHLY also insures that the LU number returned iz an

interactive LU. This is done by cheching for driver type. If the
driver iz DVROD, DYR0S5 and subrechannel zero., or DVYRGT then the

device is interactive.

When TRHLU returns PRHPT has both the LU number and the E@GT. Checks

are pade to insure that the EQ7T and LU are up. The avalubility
bits are chechked in the EAT «nd the sign bit is checked in part tuwo
of the ORT to insure that the LU is5 up. H chechk s also made to szee

if the CRT LY s loccked If the LU is lochked bits 149~3 of the DRT
will hove the resaurce number (RN3) of the lochk. If that field iz non-
zero, then the LU is laocked.

It is paossible to write through en LU lock. Paraneter nine (RAPI)
of all I/0 EXEC requests has been reserved a5 an LU lock bypass uvard.
The word is configured as:

TTTA MU ms e i el i e e e o es e eh W eE e e e e = ms e me Mm Mt o me wm e o e e e mn e e e e e

i RHY owner { RH# from DRT {

AT eR w mS s e e ed e me Mmoo e W e e e ar e WS W e ke e e e e em e AR e e e e mn e e

The RN# ouner can be retrieved by indexing into the RN# Table

and isolating the lower byte. If the «bove word is configured and ¢
CEF is made to it in RAPY, then the systen will not suspend the
executing pragram and will honor the I1/0 request.

Hext a check is made to see if a FHGXX exists, if s0 the promnpt
KEKIFHGXX is sent to the terminal and FMGRXY is scheduled with the

list device set to ¥X%. The schedule request uses the string
pass feature to send FNGXX to the HI file before control is
transferred to the terminal. Lastly PRHPT reenables the terminal

and terminates saving rescurces.

If FHGXX does not exxist or is busy, then the prompt XX> is issued,
a class read is performed on terminal LU %X, R$PHS is scheduled
passing the class number. In the case of DVYROG and DYROS5, the
terminal is disabled to «void mutiple promnpts from being uritten.
For DVYRO7, an edit mode control request is made.

PRMFT does perform one other task. After the very first successful
cless read, which also requests the cless nunber, PRNPT saves the
returned class nunker in $MTH in Table Area 1. This insures that
abarts of PRHPT or RPH do not alsc lose the class number.

R$PHNS

REPNS is the MTM module that does class gets with wait. That is,
it receives all input to the terminal, screens it, and passes it on

to the operating system vic direct call to the operating system routine
FMESS.

hen R$PNS§ is ffnst scheduled, it picks up the claess number and
tracks down the ID address of FMNGR, SHP, and 0O.RTR for later use.

R5PHS$ then performs a class get to get the nput data. This
get is performed over and over aguih 50 that REPHE 5 always
qet suspended.

The systen recschedules RFN whenever there are any input

aoperator commands to pracess. R4PHE, on reschedule perfornms

the same E&T. LU, and LU ltock checks as deoes PRHFT. It I/0 to the
CRT iz possible, ewecution continues. [f the EQT or LU is down,

the request iz ignored gnd RPN goes back to the class get to
suspend itselif . '

If [/0 is poszible then three coamagnds are screened. BR, #AB. and
FL comnands asre handled locatlly in RIPHIY. Howewver., if no FHGHX
gxists anly the FL comrund is honcred. In this caese. BR and AB
are just passed an to the sysfem.

If the input command was not AB.BR, or FL., then the cowmand is

sent to the aperacting systen mnodule $HESS. Yhen $MESS returns any
messages returned from the systen a«re set Lo terminal XY with o
ctass write call. This insurez buffered writes to unbuffered
devices. Lastly. the ferminal i5 reenabled if fthe driver was

DVRUI or DYRHYS and o class get is performed so that R$SPHS nay
suspend iftself.

HOTE thaot R$FHS does claess gets to retrieve its ouwn cless urite
information and PRHPT' s ¢lass read infornation.

B T —— S v v ——

j - - - - —— —— TR (5 s S s W W W, o S 40 . Mo W . M VR 6 . S s . S

AbSBELLLEK

2. Introcduction

At Bl At s Bt St it e gt it et b

there &re two major Changes made in the Klik~Assembler. A seuado
opcoae LA was added to the assmebler. This opcode allows the
user to declare an external memcry array. nNext, 1/0 from and to
Lo/LG areas is replacea by 1/0 from and to file manager (iles
dedrniy fhe cempiler librery. List cutput can alsc be girected

tc a file manzger file. ihe crcss—-reference generator XREF is
alsc cnanged te ao file L/U.

T R S) i S . . S 1 o i . S, . . s 0.

I
l
I

et e et e o 0 0 S O U W

1

38

o oo s e e . s < - -

3a. LIA pscucc Opccce
inhe Lb& lnstructicn 1s cellnec as:
Label bLta bLA size,lsSEG Size,

EMA ie assignea 5 as an cpcode icentifier. 1In pass 1 of the
assembler, the prccessing for the LMA instruction is done in

the tMP prccesscr. dere &LCihT tlag is checked to determine if
it is 0. Lt this flag is non-zero, then ancther LEMA instruction
was encounterea gprevicusly. Uince only one EMA instruction per
program is allowec, an “IL7, illegal instruction errcr message
is printed fcr the second “blkA’ instructicn encountered. 'Lhe
CHOP routine is czlleé next to evaluate the two cperand values.
ElP checks to nake sure the two values returnec by ChlUp are
absclute, a ‘Un’~ = uncefined symbol error is printec ctherwise.
The LKA size must be positive ana less than 1024. ‘‘he MSEG size
must be positive, less than ke size (unless EMA size 1s 0) and
less than 3z. 1t any of the akove conditicns are not met, 'M'=-
illegal operand error is printed. an bLbA instruction must have
a latel. 11 & lovel ie not presernt an ‘Lt”, label not present
error message is printec. ‘Ihe synwol type asslgned tc the LMA label
is 4 - the same as that for arn external symboul. 7The undefined
bit, kit 15 ct woru 1 of the sympol takle entry is set to
distinguish between an external symbol anu an EMA lakel whenever
necessary. ‘the lakel for an EQu to EMA lakel is given the symbol
type 5 with the uncefinec vit set. the starting addrecss of the
external nerory array is the beginning ot the tirst page in free
availakle memory anc can be defined only at load time.

The assemcler creates a speclal 7-worc biiA binary record with

the recorc¢ igentitication number as 6. Reter to the RIE manual for

a description ot the LMA binary record. This binary record is

set up and cutput &t the beginning of pass 2, Jjust after all the

EX1 binary reccras are output. ‘he relocaticn indicators in the

UBL recorce for instructicne using EMA lakel are: 4 for instructions
using EMA label anc 5 for EMA lekel with cffset. The assembler

does not make & distinction between EXT and biA symboles while
processing the memcry reference instructions.

I l
| |
l |

o o . S S A . S P S . S S S W B e . . v W o Mo T M S o o W B A M S A0 S S S (A Sl S S e

e

e . - S o s e

OO U W
<

e
WK

14

—— - —— — ————- . . -

|7 e e e

APPENLLX:

UPCOLE Table rormat:

R St B et s St s St Uy S S St Bt Bt Bt Pk e i B

Each entry has the following format:

|1st CHAR | 2nd CHAER |
[o e e e e f o e e e o e e ;

3rog ChAR | Cuut

f o e e e e e e e |

LS TRUCTION FORMAT

S B e e G R G A8 s B s Bt it e P st Bt Mt g St s S8 St Skt St o

Code

during assenbly.
Oor the loccation of the processo

is one of 64 (8-kit) iuentifiers used to process the OPCODE

SYMBOUL TAnLE

Ccntains:

a. Labels
b. Lxternal symbcls
C. CUMMUN names

15 |

14 | 13 | 12 | 11

Instruction F

|

161 9| 8

l

706 15141 3

___;-_n-l__u_;_-_-|_-__;”-_-'_~_|-__,,_ug_uw‘-__;_-_l_,-

P

I

ormat 1s the instruction format
r for the opccde.

241110

‘.........’......._’._._...

fu | WUK LS | | TYPE | lst CHAR |
P f | I |
b e e e e e e e e f o e e e e e |
f f |
| 2nad ClLAR | 3rd CHAR |
| : I I
f e e e e e e e e R D T |
i | i
| 4th ChAR] 5th CHAR |
| | |
b e e e e e e e e |
| |
i VALUL [
f

S e G Bt et Bt At i Bk N Gt e B St Yk S e e g St .--—u._-—.--....-.—_-—-———-—u—-—w-—-——--———w.—m--.ﬂu_—-.—-.-n—-n--—c—---—_u-.

——

[

L

HHERFRREEO~GUs W

BN NN N b e ot

'

NN NN
WMol M

wWww
M) bt

w W
o 0

n

t

W w
~1

(98]
o

B B DD B W
U W -O W

£-N
~

Lo
o e

- i . — - ot -

U =

WURL

E =

TYPkL

VALU

a.

undefinec bit: U = Syrbol defined
1l = Synpbol undefined cr EMA (symbol
type 4 or 5)
8 = wumber of wcrag in entry (2-4)
Entry peint bit: 1l = symkbol has been declared an entry
pecint
0 = wot &n entry point
= S5ympol lype: 0 = Absclute
1l = Relccatable
2 = Base Page Kelocatakle
3 = CUMMUIi name
4 = pxternal or EMA
5 = Lakel equated tc kxternal symbol
or bMA label
& = Code replacement (LNT)
7 = Literal

E = Symbcl value:

Absolute value (type ()
Value relative to relocetion base for types 1, 2, 3
External or EMA symbol crdinal (types 4, 5)

I'he value will ccntein the location of the literal relative
toc the end of the main program at object time.

——— - —

	Title
	Table of Contents
	01_001_DSP4_Jan78
	01_002
	01_1-01
	01_2-01
	01_2-02
	01_2-03
	01_2-04
	01_2-05
	01_2-06
	01_3-01
	01_3-02
	01_3-03
	01_3-04
	01_3-05
	01_3-06
	01_3-07
	01_3-08
	01_3-09
	01_3-10
	01_3-11
	01_3-12
	02_001_RTIOC_Jan78
	02_1-01
	02_2-01
	02_2-02
	02_2-03
	02_2-04
	02_2-05
	02_2-06
	02_2-07
	02_3-03
	02_3-04
	02_3-05
	02_3-06
	02_3-07
	02_3-08
	02_3-11
	02_3-12
	02_3-13
	02_3-14
	02_3-15
	02_3-16
	02_3-19
	02_3-20
	02_3-21
	02_3-22
	02_3-23
	02_3-24
	02_3-25
	02_3-26
	02_3-27
	02_3-28
	02_3-29
	02_3-30
	03_001_EXEC
	03_002
	03_01
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	03_09
	03_10
	03_11
	03_12
	03_13
	03_14
	03_15
	03_16
	03_17
	03_18
	03_19
	03_20
	03_21
	03_A-01
	03_A-02
	03_A-03
	03_A-04
	03_A-05
	03_A-06
	03_A-07
	03_A-08
	03_B-01
	03_B-02
	03_B-03
	04_001_Scheduler
	04_002
	04_01
	04_02
	04_03
	04_04
	04_05
	04_06
	04_07
	04_08
	04_09
	04_10
	04_11
	04_12
	04_13
	04_14
	04_15
	04_16
	04_17
	04_18
	04_19
	04_20
	04_21
	04_22
	04_23
	04_24
	04_25
	04_26
	04_27
	04_28
	04_29
	04_A-01
	04_A-02
	04_A-03
	04_A-04
	04_A-05
	04_A-06
	04_A-07
	04_A-08
	04_A-09
	04_A-10
	04_B-01
	04_B-02
	04_B-03
	05_001_PARITY
	05_01
	05_02
	05_03
	05_04
	05_05
	05_06
	05_07
	05_08
	05_09
	06_001_SysLibr
	06_01
	06_02
	06_03
	06_04
	06_05
	06_06
	06_07
	06_08
	06_09
	06_10
	06_11
	06_12
	06_13
	06_14
	07_001_EMA_Firmware
	07_01
	07_02
	07_03
	07_1-01
	07_1-02
	07_1-03
	07_1-04
	07_2-00
	07_2-01
	07_3-00
	07_3-01
	07_3-02
	07_3-03
	07_4-01
	07_4-02
	07_4-03
	07_4-04
	08_001_RT4GEN
	08_002
	08_003
	08_004
	08_01-01
	08_02-01
	08_02-02
	08_02-03
	08_02-04
	08_02-05
	08_02-06
	08_02-07
	08_02-08
	08_03-01
	08_03-02
	08_03-03
	08_03-04
	08_03-05
	08_03-06
	08_03-07
	08_04-01
	08_04-02
	08_04-03
	08_04-04
	08_04-05
	08_04-06
	08_05-01
	08_05-02
	08_05-03
	08_06-01
	08_06-04
	08_06-05
	08_06-06
	08_07-01
	08_07-02
	08_07-03
	08_07-04
	08_07-05
	08_07-06
	08_08-01
	08_09-01
	08_09-02
	08_09-03
	08_09-04
	08_09-05
	08_09-06
	08_09-07
	08_09-08
	08_09-09
	08_09-10
	08_10-01
	08_10-02
	08_10-03
	08_10-04
	08_10-05
	08_10-06
	08_10-07
	08_10-08
	08_12-03
	08_12-04
	08_12-05
	08_12-06
	08_12-07
	08_12-08
	08_12-09
	08_12-10
	08_12-11
	08_12-12
	08_13-01
	08_13-02
	08_13-03
	08_13-04
	08_A-01
	08_B-01
	08_C-01
	08_D-01
	12_001_MTM
	12_01
	12_02
	12_03
	12_04
	12_05
	13_01
	13_02
	13_03
	13_04

