HEWLETT-PACKARD

T10/260
Programming Manual

HP

HP 260 Computer Systems

TIO

Programming Manual

HEWLETT
() PACKARD

HERRENBERGER STRASSE 130, D-7030 BOEBLINGEN

Part No. 45120-90006 Printed in Federal Republic of Germany 09/86
E0986 '

FEDERAL COMMUNICATION COMMISSION RADIO
FREQUENCY INTERFERENCE STATEMENT
(for U.S.A. only)

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in
accordance with the instructions manual, may cause interference to radio communications. It has been
tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part
15 of FCC Rules, which are designed to provide reasonable protection against such interference when
operated in a commercial environment. Operation of this equipment 1n a residential area is likely to
cause interference in which case the user at his own expense will be required to take whatever measures
may be required to correct the interference.

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that
is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1985 by HEWLETT-PACKARD COMPANY

CONTENTS

Section 1
INTRODUCTION
Prerequisite Reading 1-1
Introduction to TIO. 1-1
What’sin This Manual 1-2
TIO Port Functionality. e, 1-3
Section 2
TIO STATEMENTS
Syntax Conventions. e e 2-1
The On-Condition Statements it 2-1
The ON BREAK # Statement 2-3
The ON CONNECT/DISCONNECT # Statements 2-3
The ON INPUT # Statement i 2-5
The AREADS Function e e e 2-6
Cancelling Input 2-6
Echoing Input. e e 2-7
The ON OUTPUT # Statement. ittt 2-7
HP 3000 Input / Qutput. 2-8
Input . . 2-9
Ready for Output e 2-9
Block Mode 2~-10
One-Character Qutput 2-11
Break Output. e 2-11
BASIC Statements Used With TIO. i .. 2-11
REQUEST / RELEASE. e e e, 2-11
DISABLE / ENABLE s e 2-12
The CURKEY Function 2-12
Section 3

PROGRAMMING WITH TIO

Programming OVEIVIEW it e e e e e e e 3-1
Programming Tips. o i e 3-2
Input / Output States. 3-2
Branching Statements. e e e 3-2
Programming Approaches e 3-5
Straight Line Approach. e 3-5
Modular Approach. e 3-6
Array Addressing Mode. e 3-7
Executive Mode. e 3-8
Structured Programming. e e 3-8
Basic Structural Flow 3-9

SEP 86

CONTENTS (continued)

SEP 86

Example Program 3-10
Transaction Driven Applications. ittt 3-11
State Machine Model e 3-12
State Transition Diagrams. ittt i e 3-12
Example: File List Utility o e 3-13
Controlling Your Application. 3-16

Appendix A
ASCII CHARACTER CODES

Appendix B
SYNTAX REFERENCE

Appendix C
THE LK 3000 UTILITY

Log=-On Procedure. e C-1
Log-Off Procedure 0 it e e e Cc-2
Terminal Operation. e e C-3
Transferring Files o e e Cc-4
HP 3000 to HP 250/260 Data Transfer C-4
HP 250/260 20 HP 3000 Data Transfer, C-5
Terminating File Transfers i i C-6
Data Transfer EITOIS i it e e e e e e e e e e e e C-6
Using Modems ot Cc-1
Operating Considerations. i e C-8

Appendix D
TIO ERROR CODES

Appendix E

SETTING ASI PORT FUNCTIONALITY
Setting the Pcrts on an HP 260 Series 30 or an HP 260 Series 40 E-1
Setting the Ports on an HP 260 (with Product No. 45261D). E-1
Setting the Pcrtsonan HP 250. E-1

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions,
contain additional and replacement pages to be merged into the manual by the customer. The dates on
the title page change only when a new edition or a new update is published. No information is
incorporated into a reprinting unless it appears as a prior update; the edition does not change when an
update is incorporated.

The software code printed alongside the date indicates the version level of the software product at the
time the manual or update was issued. Many product updates and fixes do not require manual changes
and, conversely, manual corrections may be done without accompanying product changes. Therefore, do
not expect a one to one correspondence between product updates and manual updates.

First Edition Feb 1985 B.07.00
Second Edition Sep1986. B.08.00

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the most recent version of each page in the manual. To
verify that your manual contains the most current information, check the dates printed at the bottom of
each page with those listed below. The date on the bottom of each page reflects the edition or subsequent
update in which that page was printed.

Effective Pages Date

all. .. Sep 1986

SECTION

En
1]

INTRODUCTION

The TIO DROM (Disc Resident Optional Module) and the Asynchronous Serial Interface (ASI) provide a
means to connect up to ten RS-232 asynchronous devices to your computer system. The devices may be
terminals, printers or HP 3000 computers.

NOTE

The TIO DROM is supplied with the operating systems of the following
computer systems:

¢ all HP 250 Small Business Computer Systems

¢ all HP 260 Small Business Computer Systems
This manual describes operation of the TIO DROM for the most recent
version operating system of the previously mentioned computer systems.

(At this edition of the TIO Programming Manual, B.08 is the most recent
version of the operating system for these computer systems.)

NOTE

Throughout this manual, the name "HP 250/260" is used to refer to the
HP 250 and HP 260 Small Business Computer Systems; other computer
systems are referenced by name or as simply "the remote system".

PREREQUISITE READING

This manual assumes that you are familiar with your computer system and that you have read and
understood your system’s BASIC Programming Manual. It is also assumed that you have read the manuals
which accompany the remote printers and terminals, and that you understand the devices. Use of the HP
3000 requires a thorough understanding of that computer’s operating system.

INTRODUCTION TO TIO

Using the CONFIG utility, each asynchronous port of your computer can be configured as any of the
following:

e "None" - the port is not used.

SEP 86
1-1

Introduction

e "Workstation" port - a port that is used for both input and output; the computer monitors the
port for input (reading data from the ASI input buffer) and sends data to the workstation display
(writing data to the ASI output buffer).

o "Printer” port - a port that is used only only for output; when the ASI output buffer for the port
is available, a PRINT or PRINT USING statement is used to send output data.

e "Terminal” port - a port that is used for both input and output. The program reads data from the
port’s ASI input tuffer. Then the remote device sends more data. The program can send output
when the port’s output buffer is empty. A terminal operates in half-duplex fashion; it is ready
for either input or output at any one time. The program determines which one.

e "Computer" port - a port that is always enabled for input; an HP 3000 may transmit data at any
time to your computer. Before your computer can output to a "Computer" port, the HP 3000
must first send vour computer a signal enabling the port for output; the program on your
computer detects the signal sent from the HP 3000 and then outputs the data to the "Computer”
port.

e "General" port - see the TIO-II manual for the use of a general port with terminal input/output
controlled applications.

Your computer’s installat:on manual describes the hardware configuration necessary to connect ports to
the various devices. (If your system is an HP 250, this information is located in the ASI Installation Note,
part number 45120-90055.) Configuring the TIO software into the system is described in the section
titled "System Configuration" in your computer’s Utilities Manual.

An application program can be written to send output to and receive input from asynchronous devices.
TIO statements allow the application program to determine the state of each asynchronous port. (These
statements are described in the section of this manual titled "TIO Statements".) The program uses
PRINTER IS, PRINT ALL IS or SYSTEM PRINTER IS (coupled with the device address) to direct output
to the remote device. The device address is calculated from the port number to which the device is
connected; for example, tte device connected to port | has a device address of 11, the device connected to
port 2 has a device address of 12, etc.

The TIO DROM keeps status information on each port. (For example, "Is the device connected or
disconnected™ and "Is the input/output buffer full or empty?'.) This information can be transferred to
the application program tarough interrupts, by including TIO statements in the program.

Additionally, TIO provides statements for sending and receiving data to/from an HP 3000. Still other
TIO statements control "ir odes" of communication.

WHAT’S IN THIS MANUAL

The next section of this manual describes the syntax and function of each statement provided by the TIO
DROM; this section is titled "TIO Statements".

The section titled "Progranming with TIO" will help you structure your application program; additionally,
it provides many tips for programming with TIO as well as descriptions of programming approaches.

SEP 86
1-2

Introduction

This manual’s appendices contain helpful reference information, such as ASCH character codes, TIO error
codes, and a condensed syntax reference. Additionally, the appendix titled "The LK 3000 Utility" teaches
you how to use the LK3000 Utility for connecting your computer to an HF 3000 and transfering data
files between these computers.

TIO PORT FUNCTIONALITY

There are a maximum of 12 asynchronous ports on your HP 260.
e 5 ports on each of the two ASI boards

e 2 integrated serial ports on the processor board of the HP 260 Series 30 and Series 40
computers.

With the current revision of the Operating System, the integrated serial ports are not supported by the
TIO DROM. Therefore, the term "asynchronous port", in this manual, refers to any of the ports on the ASI
board(s) of your HP 250/260.

SEP 86
1-3

SEP 86
1-4

SECTION

TIO STATEMENTS -

SYNTAX CONVENTIONS

The statements in this manual use the same syntax conventions as in the BASIC Programming Manual.

All shaded keywords and characters must appear as shown.

italics All parameters (user selectable values) are shown in italics
cee An ellipsis indicates that the previous parameter can be repeated.
[] All parameters in brackets are optional. If there are brackets within

brackets, the parameter within the inner bracket may only be specified if
the parameter in the outer bracket is specified. Parameters may also be
stacked in brackets. For example A or B or neither may be selected when
the following is shown:

A
B
} One parameter must be selected from those stacked within braces. For
example A or B or C must be selected when the following is shown:

t

THE ON-CONDITION STATEMENTS

The TIO statements operate similar to the ON KEY # statement* | in that the program continues
execution until a preset condition occurs. When the condition occurs, the program branches to a specified
routine.

The syntax of the "ON" statements is as follows:

DN condition § device address [

riority] branching statement
The condition can be one of the following:
When a break is received, the interrupt occurs.

When the remote device is connected, the interrupt occurs.

*ON KEY # is described in the Branching and Subroutines section of the BASIC Programming Manual.

SEP 86
2-1

TIO Statements

When the remote device is disconnected, the interrupt occurs.
When an input terminator (CR) is received, the interrupt occurs.
When the output buffer is empty, the interrupt occurs.

When a DC1 is received from the HP 3000, the interrupt occurs.

The device address is the port number plus 10; e.g., the device attached to port 3 has a device address of
13.

Before an ON-condition statement is executed, the program must have exclusive use of the device. This is
done with the REQUEST statement which is described later in this section.

The priority parameter is used by the system to determine which interrupt to service first. The priorities
range from 1 - the lowest, thru 15 - the highest.

A priority of 1 is assumed when the parameter is not used. The first interrupt condition to occur with a
priority greater than the current execution priority will be processed.

The branching statement can be a GOTO, GOSUB or CALL statement. If the branch is a GOTO
statement, the execution priority remains the same as before the interrupt occurred. If the branch is a
GOSUB or CALL statement, the execution priority changes to the priority specified in the ON statement
until the end of the subroutine or subprogram. It is then restored to the execution priority in effect before
the interrupt occured.

When an interrupt occurs with the sufficient priority, the
program branches to the specified line and continues
execution. The program cannot return to the line where the
interrupt occurred. The GOTO statement uses less system
overhead than the GOSUB or CALL statements use.

When an interrupt occurs, the program branches to the
subroutine. After the subroutine has been executed, the
program returns to the line where the interrupt occurred.

When an interrupt occurs, the program branches to the
subprogram. After the subprogram has been executed, the
program returns to the line where the interrupt occurred.
Parameters cannot be passed.

Subprograms create a new environment during their execution. If an interrupt condition occurs during a
subprogram and the action is another CALL with priority higher than the current execution priority, then
the interrupt is serviced. If the action is a GOTO or GOSUB, the interrupt is not serviced until the
subprogram exits with a SUBEXIT or SUBEND.

An interrupt generally occurs after execution of the current line. However, if an interrupt occurs during
execution of a WAIT or INPUT statement, execution of the statement is suspended while the interrupt is
serviced.

To prevent interrupts during critical portions of a program, use DISABLE statements to enclose the lines.
Once the DISABLE statement is executed, no interrupts occur until the ENABLE statement is executed.

SEP 86
2-2

TIO Statements

THE ON BREAK # STATEMENT

The terminals supported on the HP 250/260 have a key labeled BREAK. If this key is pressed,.the ON
BREAK # statement will detect it.

AK # device address (priority) branching statement

If the break occurs when the port is in the output state, the remainder of the current output buffer is
discarded, the break interrupt is activated and the port remains in the output state. The interrupt routine
specified in the ON BREAK # statement should output a prompt to the remote terminal user to indicate
the break has been serviced. The interrupt routine would typically enable input from the terminal
through the ON INPUT # statement in order to determine the operation desired by the user.

If the break occurs when the port is in the input state, then the input state is cancelled and the port is set
in the output state. The input buffer is discarded. The interrupt routine may then output a prompt as
outlined above.

The ON BREAK # condition is cancelled by executing an OFF BREAK # statement.

BREAK # device address

If the program has not established a break interrupt routine, or has cancelled the condition by execution
of an OFF BREAK # statement, pressing the BREAK key on the remote terminal while the port is in
output mode has no effect. Pressing the BREAK key while in the input mode, however, causes the current
input line to be rejected (as if the remote terminal user pressed X) and a new input line is begun.

Examples:
ON BREAK # Terminal,§ GOTO Break
OFF BREAK # Terminal

ON BREAK # 14 CALL Break
ON BREAK # Terminal+10Priority GOSUB Break

THE ON CONNECT/DISCONNECT # STATEMENTS

The program can detect if a device has been connected or disconnected by use of the ON CONNECT # or
ON DISCONNECT # statements.

device address (, priority) branching statement
I # device address (, priority) branching statement

Only one of these statements may be in effect at any time. The ON CONNECT # statement cancels
execution of the ON DISCONNECT # statement. The ON DISCONNECT # statement cancels the ON
CONNECT # statement. The ON DISCONNECT # statement should be executed at the beginning of
program execution, or when the device is first addressed. If the port is actually disconnected, then the
interrupt condition is satisfied immediately. The ON CONNECT # statement should then be executed in
response to the disconnect interrupt. If the port is connected, then the interrupt condition is satisfied and
the device can be used.

SEP 86
2-3

TIO Statements

NOTE

These inte-rupts are serviced according to the setting of the ports on the
ASI board Refer to the appendix titled, “Setting ASI Port Functionality"
for a desc-iption of how to select the functionality of the ports on your
computer’s ASI board.

The program may terminate detection of the connect/disconnect interrupt condition by use of the
correspondinz OFF CONMECT # or OFF DISCONNECT # statement:

" § device address
device address

SEP 86
2-4

TIO Statements

Examples:
FOR Device=1 TO 5
ON DISCONNECT #Device+10 CALL Disc
NEXT Device
ON CONNECT #12 GOTO Int__ 12
ON CONNECT #14 Priority GOSUB Connect
OFF CONNECT #Device

OFF DISCONNECT #14

THE ON INPUT # STATEMENT

The ON INPUT # statement explicitly enables input from a terminal and informs the system of the
desired action to be taken when a complete input line is received.

UT # device address [priorityllbranching statement]

The ON INPUT # statement remains in effect until input is received, an ON OUTPUT # statement
addressing the same port is executed or an OFF INPUT # statement is executed.

If the branching statement is omitted, TIO assumes that an ON INPUT # statement specifying a branch
was previously executed.

For example, assume the subroutine Txy is called whenever input is available. The first ON INPUT #
statement would have a branching statement of GOSUB Txy. When input is received from the terminal
an interrupt occurs and program execution continues in the Txy subroutine. Before the subroutine is
ended with a (RETURN), the ON INPUT # statement with no branch is executed. When input is received
from the terminal, an interrupt occurs and the action statement in the previous ON INPUT # statement,
GOSUB Txy, is executed.

As the terminal user enters a line of information, the ASI echoes each character as it is accepted and stores
it in the input buffer associated with the port. The input buffer holds up to 255 characters. The user can
backspace and retype one or more characters by means of the ASCII backspace character, H, or
the backspace key (not the editing keys) the user can also cancel the entire line and retype it from the
beginning by means of the cancel character X . The ASI updates the port input buffer
accordingly so the HP 250/260 is not concerned with the editing operations.

The remote terminal user indicates the end of the entry by a carriage return. The ASI echoes the carriage
return , terminates the input staie of the remote terminal and notifies the HP 250/260 of the available
input. TIO informs the program of the available input data through a software interrupt. The branching
statement is then executed and the application program accepts the input line for processing.

SEP 86
2-5

TIO Statements

The AREADS Function

The string function AREADS transfers data from the ASI input buffer to a string variable.

variable § {device address})

If the AREADS function is attempted when no terminal input line is present in the ASI input buffer,
execution error 315, "NO INPUT AVAILABLE", results. The carriage return character is not transferred
to the string variable.

When the program has completed processing the input, the program explicitly re-enables further terminal
input by means of the ON INPUT # statement.

Examples:

REQUEST 12 Wait
IF Wait=] THEN Queue
ON INPUT #12,3 GOSUB In__12
[]
[]
In_ 12: Next_ line$=AREADS$(12)
®
®
RELEASE 12
RETURN
Queue: !

REQUEST 12
ON INPUT #12 GOSUB Input

[]
[]
Input: Next_ lire$=AREADS$(12)
IF Next__line$="EXIT" THEN 550
o
L]

530 ON INPUT #12
540 RETURN

550 RELEASE 12
560 RETURN

Cancelling Input

Unusual conditions may arise after a program has enabled input from a remote terminal by means of an
ON INPUT # statement, but before the terminal user has supplied a carriage return. For example, the
remote user needs to be informed of some pending event (such as the computer is about to be turned off).
These conditions require the capability for the program to terminate the input state in order to perform
output.

#device address

TIO Statements

Once the OFF INPUT # statement is executed, any input characters already received by the ASI will be
discarded. Even if the terminal user has supplied a carriage return, if the input available interrupt is
being held pending by the operating system due to execution priority considerations, the entire input line
is discarded. The execution of an OFF INPUT # statement addressing a port not currently in the input
state results in no operation and is not an error.

Examples:
OFF INPUT #12

OFF INPUT #Device

Echoing Input

As each character is entered from a terminal, the ASI places it in the port’s input buffer and then echoes
the character back to the terminal. Some operations , such as data entry from a CRT form or data
cartridge, require suppression of input character echoing.

#device address
The default mode, established by successful execution of a REQUEST statement, is input echoing on.

If input echoing is disabled, then the ASI does not perform the normal character and line editing functions
(backspace and cancel line). Any Hor X characters received with echo disabled are stored
in the input buffer.

Examples:

IF Flag=1 THEN ECHO OFF #Terminal
ECHO ON #13

THE ON OUTPUT # STATEMENT

The program can direct output to a terminal or remote printer using the PRINTER IS, SYSTEM
PRINTER IS and PRINT ALL IS statements.

When the program is communicating interactively with more than one remote device, the programmer
must be concerned with output buffer overflow. The ASI output buffer holds up to 255 data bytes,
including carriage return and line feeds. If the output buffer fills, then the task is blocked until the
buffer becomes empty. Unless the program logic considers this possibility, the generation of output for one
device may temporarily prevent processing of input and generation of output to all other devices.

The ON OUTPUT # statement detects when the output buffer is empty.

SEP 86
2-7

TIO Statements

ON OUTPUT #device address,priority][branching statement]

The ON OUTPUT # state nent remains in effect until an ON INPUT # statement is executed, another ON
OUTPUT # statement is executed or an OFF OUTPUT # statement is executed.

The action :outine would normally contain one of the print statements which directs output to a
particular device. Then any statement which causes output (PRINT, PRINT USING, CAT, etc.) can be
used. If the branching stztement is omitted, TIO assumes that an ON OUTPUT # statement specifying a
branch was executed prev ously.

For example, assume the nain program executes an ON OUTPUT # statement with a branch of GOSUB
Txy. When the ASI out)jut buffer for the port is empty, an interrupt occurs and program execution
continues in the Txy sub-outine. Before the subroutine is ended with a RETURN, the ON OUTPUT #
statement wi:h no action ;tatement is executed. When the ASI output buffer is empty, an interrupt occurs
and the bran:h in the previous ON OUTPUT # statement, GOSUB Txy, is executed.

Here are two more examp.es:

ON OUTPUT #Printer ,4 CALL Out__print
[]
[J
SUB Out__ print
Printer=1 1+ CURKEY-25)/3
Wa t=1
REQUEST Print:r ;Wait
IF Wait=] THEN GOSUB Queve
PRINTER IS Printer
PRINT "Next output"
[]
®

SUBEND

ON OUTPUT # 2 GOTO Output
®
®
Output PRINTER IS 12
®
L
ON OUTPUT # 2
RETURN

HP 300C INPUT ./ OUTPUT

TIO allows a program to communicate with an HP 3000 computer system. A small utility program , called
LK 3000, which emulates ‘in interactive terminal to the HP 3000 exists on the system disc. An HP 3000 to
HP 250/260 file transfer utility also exists. Refer to the appendix titled, "The LK 3000 Utility" for
details.

In this section, "input” refers to data received by the HP 250/260 and "output" refers to data sent by the
HP 250/260.

SEP 86
2-8

TIO Statements

Input

The program does not explicitly enable input since the HP 3000 may transmit data at any time. The ON
INPUT # statement establishes an interrupt routine which is activated whenever an input line from the
HP 3000 is available in the ASI input buffer. The interrupt routine reads the input line by means of the
AREADS function.

The ASI input buffer for an HP 3000 port is capable of stacking input lines, since the HP 3000 is always
enabled for input and the program may not be able to accept and process one input line before the next
one arrives. An ENQ / ACK protocol is used to prevent the ASI input buffer from overflowing. (The HP
3000 sends an ENQ [enquiry] after every 80 characters. The HP 250/260 sends back an ACK
[acknowledgement] if there is room for at least an additional 80 characters.)

The convention of ENQ / ACK protocol limits the maximum useful length of each input line to 165
bytes. By disabling the ENQ / ACK protocol (possibly by logging on the HP 3000 with TERM = 9 for
example), the full 2535 bytes are available (with some risk of input buffer overflow).

Since HP 3000 input is always enabled, the ON INPUT # statement need not be executed following
processing of each line.

The HP 3000 terminates input with either a carriage return or ASCII DC1 (device control one). The

carriage return (if any) is included as the last character of the string returned by the AREADS function.
The DC1 terminator is not included in the input string.

Ready for Output

The HP 3000 must explicitly enable the port for output from the HP 250/260. To do this, the HP 3000
terminates its data transmission with a DC1. The ON TRIGGER # statement cletects the ready state.

Executing the ON TRIGGER # statement informs the system of the action to be taken upon receipt of
the DC1 from the HP 3000. The interrupt is activated only after the program has accepted all the data in
the ASI input buffer which was received from the HP 3000 prior to the DC1.

TIO sets the state of the port to output when the interrupt is activated. The ON TRIGGER # branching
statement is then executed. The ON TRIGGER # statement remains in effect and does not need to be
re-executed after each interrupt.

The interrupt routine directs output to the HP 3000 port that was earlier specified by the PRINTER IS
statement. Only one line of output may be sent to the HP 3000. Output is sent using a PRINT or PRINT
USING statement. (ON OUTPUT # is not used.) Once a carriage return has been transmitted, TIO
terminates the output state of the port.

Only the output state of the port is affected by the ON TRIGGER # and an interrupt routine. The port is
always enabled for input.

SEP 86
2-9

TIO Statements

Example:

1000 ON TRIGGER #12 GOTO Outl12

1001 !

2940 Outl12: ON ERROR GOTO Outl13

2950 FOR I=1 TO LEN(C$) !Send command string to computer

2960 PRINT CS$[1;1] Icharacter-by-character.

2970 WAIT 24000/Baud(Baud) 'Delay to allow character turnaround
2980 NEXTI

2990 PRINT Cr§; terminate the command string

3000 OFF ERROR

3010 [F Debug AND (State<>1) THEN LDISP CHRS$ (137)&"COMMAND"&
FNState S& CHR $(12§)&" "&C$

3020 Command=LiiN(C$) IFlag command sent---the command
3030 ENABLE Istring will be echoed and must be
3040 WAIT ignored when received.
3050 !
Block Mode

Certain applications, suct as file transfers from the HP 250/260, require the link from the HP 250/260
to the HP 2000 to use the full output data rate. TIO provides a means to simulate the Block Mode
Transfer fearure of Hewlett-Packard terminals. This mode ensures reliability of data transfers at the full
data rate.

Ol #device address

DFF $device address

After execution of the Bi.OCK MODE ON # statement, when TIO receives a DCI1 from the HP 3000, it
sends a DC2 back. Wher the HP 3000 is ready to receive data in the Block mode, it again sends a DC1.
TIO then activates the ON TRIGGER # interrupt.

When Block mode is enabled, the output data is not echoed back to the HP 250/260.
Successful execution of a REQUEST statement (to the HP 3000) sets Block mode off.
Example:

REQUEST HP3000

BLOCK MODE ON #HP3000

ON TRIGGER #HF3000,5 GOSUB File__trans
[]

L]

BLOCK. MODE OFF #HP3000

SEP 86
2-10

TIO Statements

One-Character Output

The HP 250/260 can send certain one-character output transmissions to the HIP 3000 when the computer
ready condition has not been established. For example, many HP 3000 utility programs respond to
Y by terminating the current operation. The SEND statement sends the transmission.

The character code is a numeric expression which represents the character. ASCII character codes are
listed in Appendix A of this manual. The character code for Y is 25.

If the state of the port has been enabled for output, the output state is terminated after the character
code is sent.

Break Output

The program can break data transfer to the HP 3000 with the SEND BREAK # statement.

If the state of the port was enabled for output, the output state is terminated.
Examples:
SEND BREAK #HP3000

IF Flag=1 THEN SEND BREAK #15

BASIC STATEMENTS USED WITH TIO

Four BASIC statements are used frequently with TIO. The statements are described fully in the BASIC
Programming Manual. They are briefly described here for your convenience.

REQUEST / RELEASE

Before any ON condition statement is executed, the program must have exclusive access to the required
device.

Successful execution of the REQUEST statement gives the program exclusive use of a device. When the
program is finished with the device, the RELEASE statement is used.

Successful execution of a REQUEST statement addressing a terminal causes TIO to implicitly execute the
OFF INPUT # and ECHO ON # conditioning statements. For an HP 3000, TIO executes a BLOCK MODE
OFF #.

SEP 86
2-11

TIO Statements

ST device address|, wait option]
If the wait option is omitted and the device is already reserved by another program, an error 131 results.

If the wait option is present, its initial value specifies whether or not the program is to be delayed if the
device is already reserved. The wait option must be a variable.

Wait = 0 the requesting program may be delayed.
Wait # O the requesting program may not be delayed.

If the initial value is 0, then TIO resets the value to indicate the results of the request attempt.

Wait = 0 exclusive access granted.
Wait = | device already reserved.

Exclusive access is relinquished by the RELEASE statement.

. device address

DISABLE / ENABLE

The DISABLE statement inhibits all interrupts (including ON KEY # interrupts), interrupts are still
recorded. When the ENABLE statement is given, interrupts are serviced according to their priority. If
two interrupts have the same priority, they are serviced according to their port number (port 15, then 14,
13, etc.).

The CURKEY Function

CURKEY is a function which returns a number indicating the source of an ON condition interrupt.

Y numeric variable

The values CURKEY returns are shown in the following table:

SEP 86
2-12

TIO Statements

Value Condition

0 No interrupts have occurred
1-24 Softkeys 1-24

25-27 Port 1, device address 11
28-30 Port 2, device address 12
31-33 Port 3, device address 13
34-36 Port 4, device address 14
37-39 Port §, device address 15
40-42 Port 6, device address 16
43-45 Port 7, device address 17
46-48 Port 8, device address 18
49-51 Port 9, device address 19
52-54 Port 10, device address 20

Three values are allocated for each port. An ON INPUT # or ON OUTPUT # interrupt returns the first
value (25 for port 1, 28 for port 2, etc.). The second value is returned for an ON BREAK # interrupt. ON
CONNECT # and ON DISCONNECT # interrupts cause the third value to be returned.

SEP 86
2-13

SEP 86
2-14

SECTION

E
XN

PROGRAMMING WITH TIO

PROGRAMMING OVERVIEW

TIO application programs can control remote terminals which are dedicated to an application. Since the
terminal is not used as a workstation, the user is not confused by system messages or error codes. The
application program can be tailored to the terminal user. Passwords and security features embedded in the
programs can control access to sensitive information.

The ON-condition statements overlap 1/0 and processing. For example, instead of waiting for a terminal
to respond to a prompt, the program does other processing until a carriage return is received from the
terminal. Depending upon relative priorities, the program can either accept the input immediately or
finish the current processing before accepting the input. If the input is not received before processing is
finished, the program uses the WAIT statement to explicitly wait for the input.

Overlapping I/0O and processing of other tasks is particularly useful in applications where several
terminals are serviced by a single program. For example:

TERMINAL 1 {_IneUT | | INPUT
l A
PROGRAM PrOCESS | PROCESS PROCESS | PROCESS

TERMINAL 2 —_—d INPUT [I™e0T

TIME

SEP 86

Programming with TIO

PROGRAMMING TIPS

Input / Output States

The three types of 1/0O ports: terminal, computer, and printer, can be set in either an input or an output
state. The printer is obviously an output device, thus the port is always in the output state. The computer
port is always ready for input from the remote computer. When the remote computer sends a DCI to the
HP 250/260, the the port will accept output, but it is still ready to accept input. Similarly when receiving
input, one-character output (such as (CONTROD-Y), or a break can be output.

A terminal port can be in only one state at a time. The program specifies which one. The state of a
terminal is output at power-up or after is pressed. To enable input from a terminal, the
ON INPUT # statement must be executed.

The change from output state to input state is never automatic. To re-enable output, successful execution
of an OFF INPUT # or REQUEST statement is required. The output state is automatically enabled after
an AREADS function and after a break is detected.

Branching Statements
The action and consequences of each of the branching statements should be understood well.

GOTO - When the interrupt condition is satisfied, execution branches to the line specified in the GOTO
statement.

The execution priority is not changed.

10 REQUEST 11 ‘Execution priority = 0
20 PRINTER IS 11

30 PRINT "ENTER YOUR NAME"

40 ON INPUT #11 GOTO 60

50 WAIT

60 NAME$=AREAD$(11) Execution priority = 0
70 .

80 .

The GOTO statement is not recognized in other (subprogram) environments.

SEP 86
3-2

Programming with TIO

10 REQUEST 11

2 ON INPUT #11, 5 GOTO 40
30 CALL X
40 A$=AREADS(11)

[]

[}
100 SUB X The interrupt can never occur in this
110 WAIT environment (X) because the branching
120 SUBEXIT statement is not defined.

There is no "return” with a GOTO statement.

10 REQUEST 11 If the interrupt occurs between line 20
20 ON INPUT #11 ,2 GOTO X and line 400, the program will branch

° out of some processing. It is impossible

° to return to complete the processing because
400 WAIT the system does not remember where it was
410 X: AS$=AREAD$(11) when the interrupt occurred.

GOSUB - Program execution branches to the subroutine specified when the interrupt condition is
satisfied. When a RETURN is encountered, execution continues at the point the interrupt occurred.

The execution priority is raised to the value given in the ON-condition statement.

10 REQUEST 11 Execution priority = 0
20 ON INPUT #11 ,3 GOSUB X

30 FOR I=1 TO 1E99

40 DISP I ;

50 NEXT I

60 END

100 X: AS$=AREADS(11) Execution priority = 3

L]

L]
150 RETURN

The GOSUB statement is not recognized in other (subprogram) environments. This is the same as the
GOTO statement.

Execution resumes at the point of interruption after the subroutine has completed execution. In the
example program above, if the interrupt occured when line 40 was executing, execution would resume at
line 50 after the subroutine was done.

CALL - Program execution in the current environment is suspended when the interrupt condition is
satisfied. A new environment is created and remains in effect until a SUBEXIT or SUBEND is
encountered or another CALL statement is executed.

The execution priority is raised to the value given in the ON~-condition statement. This is the same as the
GOSUB statement.

The CALL statement is recognized in all successive environments including the one containing the
statement.

SEP 86
3-3

Programming with TIO

10
20

[]
100
110
120

REQUEST 11
CALL X

CALL

SuB X
ON INPUT #11 CALL Y
CALL Z

SUB 2 CALL

I

SUB Z

!

SUB X

MAIN
PROGRAM

This program is a good example of how NOT to program with ON-condition statements. When
subprogram X is called, the ON INPUT # statement is executed. The interrupt is defined in subprogram X
and in subprogram Z. When both X and Z are exited, however, the interrupt is no longer defined.

SEP 86

Programming with TIO

NO BRANCHING STATEMENT - Informs the system of the programmer’s intent to re-establish an
interrupt condition in a previous environment. This serves to turn on the input or output interrupt. It is
useful when switching environments or when changing a port’s input/output state.

10 REQUEST 12
20 ON INPUT #12 CALL X
30 WAIT

100 SUB X
110 A$=AREAD$(12)

170 ON INPUT #12
180 SUBEXIT

Using ON OUTPUT #, OFF OUTPUT # or OFF INPUT # clears the branching statement of the ON
INPUT # statement which was executed in the same environment. Therefore, an ON INPUT # with no
branching statement will subsequently be ineffective.

10 REQUEST 12
20 ON INPUT # 12 CALL X

30 CALL Y

100 SUB X

110 OFF INPUT #12

120 PRINTER IS 12 The OFF INPUT #12 and ON INPUT #12

130 PRINT "..." statements are executed in a different
environment than the initial

180 ON INPUT #12 ON INPUT #12 statement.

190 SUBEXIT

PROGRAMMING APPROACHES

Once TIO statements and the concepts are understood, you are ready to begin programming. The most
useful program approaches are introduced next.

Straight Line Approach

The following program communicates with one terminal. It demonstrates the ease of programming for
one remote device. Later, the same program will be expanded for multiple terminals.

SEP 86
3-5

Programming with TIO

5 OPTION BASE 1
10 DIM A$[254] ,B$[254]
20 Port=11

30 REQUEST Port

40 PRINTER IS Port ,WIDTH(-1)

50 PRINT "Please enter your name:";

60 ON INPUT #Port GOTO Ini

70 WAIT

80 Ini: A$=AREAD$(Port)

20 PRINT "What’s your street address"&A$&"?"
100 ON INPUT #Port GOTO In2

110 WAIT

120 In2: B$=AREAD$(Port)

Modular Approach

Input data from the
remote terminal;

quivalent to LINPUT
AS$ directed to the
main console.

The modular approach to programming is useful when input from the terminal will determine which task

is to be done.

In the following example, the program accepts a command from the terminal and the FNInterp function

determines the task (X1, X2, ...) to be done.

5 OPTION BASE 1

10 DIM Commd$[254]

20 Port=11

30 REQUEST Port

40 PRINTER IS Port ,WIDTH(-1) !This is the default width
for all TIO devices

50 PRINT "Please enter a command";LIN(1);":";

60 ON INPUT #Port GOSUB Service

70 HWAIT

80 END

100 Service: Commd$=AREAD$(Port)

110 ON FNInterp(Commd$)+1 GOTO 120;140;160
120 PRINT "ERROR: COMMAND NOT RECOGNIZED."
130 GOTO 200

140 CALL X1(Commd$)

150 GOTO 200

160 CALL X2(Commd$)

170 GOTO 200

®
200 PRINT ";";
210 ON INPUT #Port
220 RETURN

SEP 86

Programming with TIO

Array Addressing Mode

Expanding a program from accepting input from one terminal to accepting input from several terminals
can be accomplished with little difficulty if the initial program was designed properly.

In the following example, the initial program is shown in the straight line approach example:

10 OPTION BASE 1

20 DIM A$(5)[254], B$(5)[254]
30 DISABLE

40 FOR Port=11 TO 20

50 REQUEST Port

60 PRINTER IS Port ,WIDTH(-1)

70 PRINT "Please enter your name:";
80 ON INPUT #Port GOTO Ini

90 NEXT Port

100 ENABLE

110 HWAIT

200 1Ini: DISABLE

210 Port=(CURKEY-25)/3+11 1CALCULATE PORT NUMBER
220 A$(Port-10)=AREAD$(Port)

230 PRINTER IS Port,WIDTH(-1)

240 PRINT "What’s your street address "&A$"?"
250 ON INPUT #Port GOTO In2

260 ENABLE
- 270 WAIT

300 1In2: DISABLE

310 Port=(CURKEY-25)/3+11

320 B$(Port-10)=AREAD$ (Port)

The DISABLE and ENABLE statements are used to protect critical sections of code from GOTO
interrupts.

This program can communicate with five terminals because the system always knows where to go when it
gets an input line from a terminal. Having the system keep track of program state flow in this manner is
called an Implicit State Machine. This is further discussed later in this chapter.

SEP 86
3-7

Programming with TIO

Executive Mode

In the following example the Service subroutine is used as an input/output traffic manager. It is referred
to as an Executive Routine.

5 OPTION BASE 1

10 DIM A$[254], B$[254], Input$[254]
20 DIM Buff$(5)[750]

25 State=1

30 DISABLE

40 FOR Port=11 TO 20

50 PACK USING P1;Buff$(Port-10)
60 REQUEST Port

70 PRINTER IS Port

75 PRINT "Please enter your name:";
80 ON INPUT #Port GOSUB Service
90 NEXT Port

100 ENABLE

110 WAIT

120 P1: PACKFMT State, A$,B$

130 ¢

200 Service: Port=(CURKEY-25)/3+11
210 Input$=AREAD$(Port)

220 UNPACK USING P1 ;Buff$(Port-10)
230 PRINTER IS Port

240 GOSUB X

250 PACK USING P1;Buff$(Port-10)
260 ON INPUT #Port

270 RETURN

280 !

300 X: ON State GOTO S1,S52,S3
310 S1: A$=Input$

320 PRINT "What’s your street address "&A$&"?"
330 State=2

340 RETURN

350 !

360 S2: B$=Input$

This program demonstrates how PACK and UNPACK can be used to swap variables into and out of a
common area. This program also illustrates how to use the Explicit State Machine approach.

STRUCTURED PROGRAMMING

When the application program addresses one remote device with one task, you may only need to add a few
statements to the current non-TIO program to drive that device. For example, assume a report is written
at the end of the working day. Instead of outputting the report to the local (default) printer, the report is
now to go to a remote printer. If this is the only remote I/O function the program performs, the only

SEP 86
3-8

Programming with TIO

modifications needed are changing the device address in the PRINTER IS statements in the appropriate
places.

The creation of a more complex TIO application program, however, usually consists of many tasks which
may be executing concurrently. In the TIO environment, each remote device may be associated with a
task which controls the processing and input/output associated with the others. If interaction is desired
among tasks, however, you must ensure that it happens efficiently.

The multi-tasking environment is more complex than that of sequential programing for one task. The
problems demand a highly organized and structured approach. Without such an approach, you may have
a program containing persistent (but unrepeatable, under debugging conditions) interference problems
among the tasks.

Structured programming is concerned with improving the programming process through better program
organization. Structured programming techniques, such as constructive use of subroutines and

subprograms, ensure that a program is understandable, easily modified and documented, and easier to
debug.

Basic Structural Flow

The following diagram can be used for many TIO applications.

START ¥ | N1TIALIZE
IDLE
TRSKS
v 1
INPUT 4 3 \ oUTPUT
TRAFFIC [3 b———s | TRAFFIC
MANAGER [~ - MANAGER
TERMINALS
PRINTERS
COMPUTER

SEP 86
3-9

Programming with TIO
Structured Programming Diagram

Notes on the above Diagram

Initialize - the logic flow begins with the devices being initialized. This can include logging on to the
HP 3000, testing whether a printer is connected, or sending prompts to the terminals.

Wait - once the initialization is complete, the program waits for input from one or more of the devices.
Input Traffic Manager - input goes to the Input Traffic Manager routine which initiates a task.
Tasks - each task is processed according to its priority.

Output Traffic Manager - if output is required, the Output Traffic Manager initiates and completes it to
the appropriate device.

Terminals, Printers, Computer - the program waits in an idle state until the next input from the devices
or until one of the traffic managers begins the next task.
Example Program

The program used to demonstrate the Executive Mode of programming was designed according to the
preceding structural flow diagram.

(5 OPTION BASE 1
10 DIM A$[254], B$[254], Input$[254]
20 DIM Buff$(5)[750]
25 State=1
30 DISABLE
40 FOR Port=11 TO 20
<50 PACK USING P1;Buff$(Port-10)
60 REQUEST Port
70 PRINTER IS Port
75 PRINT "Please enter your name:";
80 ON INPUT #Port GOSUB Service
920 NEXT Port
(100 ENABLE
110 WAIT
120 P1: PACKFMT State,A$,B$
130 ¢
(200 Service: Port=(CURKEY-25)/3+11
210 Input$=AREAD$(Port)
220 UNPACK USING P1;Buff$(Port-10)
{230 PRINTER IS Port
240 GOSUB X
250 PACK USING P1;Buff$(Port-10)
260 ON INPUT #Port
270 RETURN
280 ¢
(300 X: ON State GOTO $1,S82,S3
310 S1: A$=Input$

SEP 86
3-10

Programming with TIO

{320 PRINT "What’s your street address "&A$&"?"
330 State=2
340 RETURN

Izyso !
360 S2: B$=Input$

[]
\

TRANSACTION DRIVEN APPLICATIONS

The design techniques described here are suitable for the creation of application programs driven by
external events, such as remote terminals controlled by users. The application program and each user
exchange data in an interactive fashion. The program usually supplies prompts to facilitate
communication. The user might supply commands consisting of keywords and perhaps parameters to
direct the program into specific operating modes and input data when requested by the current operating
mode. In response to user commands (or perhaps by default), the program may display CRT forms to
facilitate data entry and may generate and transmit reports either directly to the user’s remote terminal
or to some other output device. Finally, in response to user commands which cannot be fulfilled, the
program generates messages which give the user the proper course of action.

A transaction consists of a logically complete interchange of prompts, commands, processing, input data
and output reports. A transaction may be as simple as typing in a single command, in which case the
transaction is just the action performed by that command. Transactions should be kept as simple as
possible, otherwise the operational requirements (user training, program reliability, etc.) become extremely
demanding.

Transactions may be categorized as follows:

¢ Security and overhead operations such as user sign on and sign off

e Data retrieval operations accessing a data base or a normal file in read-only mode. The objective
of the data retrieval may be either quick "on-~line" access to information or a printed report.

¢ Batch data-entry operations resulting in an intermediate or transaction file which is not the final
end product of the application. The transaction file is later used as input in batch mode to a
program which creates or updates the final end product (usually a data base).

e Interactive data—-entry operations in which the data base is updated immediately, making the
updated information available to other users as soon as the transaction is complete. If this
technique is chosen, the parallel maintenance of a transaction file, as in batch data entry, should be
strongly considered to allow backup and recovery from errors.

Generally, an application program offering interactive data entry transactions must ensure that multiple
users and their associated tasks are protected from one another. In the worst case, the designer may have
to prevent any other access to the data base while an update transaction is in progress. This includes data
retrieval access in read-only mode since reporting of partially updated data may be unacceptable to the
application.

SEP 86
3-11

Programming with TIO

STATE MACHINE MODEL

The State Machine Model is a conceptual framework for designing a TIO application package. It is used to
keep track of where you are in the program, and how you got there. For example, in the array addressing
mode example, the variable Port is used to inform the system of which terminal supplied input and where
the input is to be stored.

In the executive mode example, the variable State is given a value when a routine has completed
processing. When input is received from a terminal, State is used to determine the next task to perform.
This method is called the Explicit State Machine Approach because the variable is explicitly assigned a
value.

STATE TRANSITION DIAGRAMS

The designer applies the state machine model to his problem by creating a state transition diagram which
specifies all possible states of a remote device, all acceptable external events for each state, the transition
(that is, the next state) for each external event, and a brief description of the processing taking place
during each transition. An example diagram is shown next.

DISCONNECT

DISCONNECT BREAK

I

BRERK,
OUTPUT BUFFER
STRRT) CONNECT SEND EMPTY SEND PROMPT INPUT AVRILABLE ACCEPT

ENABLE INPUT —> |——————————) | INUT BUFFER
<

WELCOME
/' 7
[oX..- 3 Yes
FILE SEND ERROR
MESSAGE
Yes
NO LisT
SEND BEGIN o SEND ERROR T
LIST MESSAGE ﬁq& MESSAGE

o | ¢ INPUT AVAILABLE . FSK FOR NTE No
FILE ; ENBLE INPUT
BRERK
—
ouTPUT
BFFER
ey

READ AND SEND
NEXT RECORD

END NO
L@>4

SEP 86
3-12

Programming with TIO

EXAMPLE: FILE LIST UTILITY

This program outputs a file listing to the requesting terminal. It uses the example state transition
diagram shown on the preceding page.

The program is initiated at a workstation and accepts a list of port numbers; the program attempts to
attach each specified port. The program sends each connected terminal an identifying welcome message
and the prompt character ">". The program accepts one command from the remote terminal : "LIST"
(typed in either upper or lower case); the name of the desired file may follow the command name
(separated by at least one blank). If the file name is not given in the "LIST" command, the remote terminal
user is asked to supply the file name. The program then opens the file (assumed to consist of ASCII string
data) and outputs the file to the user’s terminal. The user may terminate the file listing at any time by
pressing the terminal’s BREAK key. When the end of the file is detected, the program informs the user,
sends the prompt character, and awaits the next command. The single-line function, FNT, defined in line
60, returns the port number (11 thru 20) of the currently interrupting terminal. The function is
recommended for all TIO programs.

(10 ! HP 260 FILE LIST UTILITY FOR REMOTE TERMINALS
20 !

60 DEF FNT=INT((CURKEY-25)/3)+11 State=1

70 INTEGER Port(1;10),I,H,Port

80 DIM C$[255],Bell$[1],Esc$[1],Home$[2],Clear$[2]
90 Bell$=CHR$(7)

100 Esc$=CHR$(27)

110 Home$=EscP&"H"

120 Clear$=Esc$&"J"

130 DISP “HP 260 FILE LIST UTILITY FOR REMOTE TERMINALS"
140 DISP "Enter port numbers (each 1..10): ; ; ; ; ;"
150 CURSOR (XPOS-10)

160 INPUT " ";Port(#)

170 DISABLE

180 FOR I=1 TO 10

190 IF Port(I) THEN GOSUB Startport
<200 NEXT I

210 ON HALT GOTO Exit

220 ENABLE

230 WAIT

2490 1

250 Startport: Port=Port(1)+10

260 IF (Port>10) AND (port<21) THEN 300

270 DISP "PORT";Port(I);"IS OUT OF RANGE"

280 Port(I)=0

290 RETURN

300 W=0

310 REQUEST Port,H

320 IF NOT W THEN 360

330 DISP "CAN'T GET EXCLUSIVE ACCESS TO PORT";Port(I)
340 Port(I)=0

350 RETURN

360 ON CONNECT #Port GOTO C1

370 RETURN

SEP 86
3-13

Programming with TIO

380 ¢

390 Exit: DISABLE

400 FOR I=0 TO 10

J410 IF NOT Port(I) THEN RELEASE Port(I)+10
420 NEXT 1

430 ENABLE

440 DISP "END OF PROGRAM"

(450 STOP

460 ¢

470 C1: DISABLE

480 PRINTER IS FNT

490 PRINT Home$&Clear$&"HP 260 FILE LISTER UTILITY"
500 ¢

510 C2: ON DISCONNECT #FNT GOTO D1

520 ON OUTPUT #FNT GOTO 01

530 ON BREAK #FNT GOTO 01

540 ENABLE

550 WAIT

560 1

570 D1: DISABLE

580 OFF OUTPUT #FNT

590 OFF BREAK #FNT

600 ON CONNECT #FNT GOTO C1

610 ENABLE

620 WAIT

630 !

640 Of1: DISABLE

650 PRINTER IS FNT

660 !

670 02: PRINT ">";

680 ON INPUT #FNT GOTO I1

690 ENABLE

700 HAIT

710 1@

720 I1: DISABLE

730 PRINTER IS FNT

740 C$=TRIMS(AREADS(FNT))

750 IF NOT LEN(C$) THEN 02

760 IF POS (UPCH(C$)&" ","LIST ")=1 THEN List1
770 PRINT "Sorry, command not recognized."
780 GOTO 02

7% 1

800 List1: DISABLE

805 C$=TRIMS(C$[POS(UPCSH(CS)&" ","LIST ")+5])
810 IF LEN(C$) THEN List3

820 PRINT "Enter name of file to list: ";
830 ON INPUT #FNT GOTO List2

840 ENABLE

850 WAIT

geo ¢

870 List2: DISABLE

880 PRINTER IS FNT

890 C$=TRIMS(AREADS(FNT))

900 IF NOT LEN(C$) THEN 02

SEP 86

3-14

210

920

930

940

950

960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370

!

List3: ON ERROR GOTO List?
ASSIGN #FNT-10 TO C$
BUFFER #FNT-10
ON END #FNT-10 GOTO List5
OFF ERROR

PRINT "Begin listing of file: ";C$;LIN(1)

ON OUTPUT #FNT GOTO List4
ON BREAK #FNT GOTO List6
ON DISCONNECT #FNT GOTO List8
ENABLE
WAIT
H
List4: DISABLE
PRINTER IS FNT
ON ERROR GOTO List?
READ #FNT-10;C$
OFF ERROR
PRINT C$
ENABLE
WAIT
!
List5: ON ERROR GOTO 1150
ASSIGN #FNT-10 TO #
OFF ERROR
PRINT LIN(1);"END OF FILE"
GOTO C2
!
List6: DISABLE
PRINTER IS FNT
ON ERROR GOTO 1230
ASSIGN #FNT-10 TO #
OFF ERROR

PRINT LIN(1);Bell$&"FILE LIST TERMINATED BY BREAK"

GOTO C2

!

List7: ON ERROR GOTO 1280
ASSIGN #FNT-10 TO
OFF ERROR

PRINT Bell$&"ERROR IN ACCESSING FILE "&C$

GOTO C2

!

List8: DISABLE
ON ERROR GOTO 1360
ASSIGN #FNT-10 TO #
OFF ERROR
GOTO D1

Programming with TIO

This program implements one transaction type (the listing of a named file to the terminal). This is data
retrieval transaction. The program supports five remote terminals as readily as one, with no interference
among the terminals (other than possible delays waiting for access to the same disc device). Except for
initialization and termination, the program utilizes no variables other than the string buffer C$. Even
this buffer is shared by all attached terminals. This is an extreme example of the implicit state marker

SEP 86
3-15

Programming with TIO

technique; all state variable information associated with each terminal is maintained by the operating
system and is invisible to the program. The program requires only five states to implement the
specifications.

CONTROLLING YOUR APPLICATION

The definition and priorities of the softkeys on the workstation you use to control the terminal(s) used in
your application can have a strong influence on the performance of the application.

Therefore you must be aware of the relative priorities of the softkeys and the operations in your
application. With this knowledge you will avoid unexpected results when running your application.

For example, if you decide that pressing a softkey on the workstation should never be allowed to interrupt
your application, you should set the priority of all of the softkeys to a value lower than the priorities
specified in your application program. This is done using the ON KEY# statement (refer to the BASIC
Programming Manual for the details of this statement).

SEP 86
3-16

ASCIl CHARACTER CODES

APPENDIX

e
A

SEP 86
A-1

ASCII Character Codes

ASCIl Character Codes

ASCII | EQUIVALENT FORMS ASCII | EQUIVALENT FORMS
Char. Binary Dec Char. Binary Dec
NULL 00000000 0 space 00100000 32
SOH 00000001 1 ! 00100001 33
STX 00000010 2 " 00100010 34
ETX 00000011 3 # 00100011 3§
EOT 00000100 4 $ 00100100 36
ENQ 00000101 5 % 00100101 37
ACK 00000110 6 & 00100110 38
BELL 00000111 7 ’ 00100111 39
BS 00001000 8 (00101000 40
HT 00001001 9) 00101001 41
LF 00001010 10 * 00101010 42
VT 00001011 11 + 00101011 43
FF 00001100 12 , 00101100 44
CR 00001101 13 - 00101101 45
SO 00001110 14 00101110 46
S1 00001111 15 / 00101111 47
DLE 00010000 16 0 00110000 48
DC, 00010001 17 1 00110001 49
DC, 00010010 18 2 00110010 50
DC, 00010011 19 3 00110011 51
DC, 00010100 20 4 00110100 52
NAK 00010101 21 5 00110101 53
SYNC 00010110 22 6 00110110 54
ETB 00010111 23 7 00110111 55
CAN 00011000 24 8 00111000 56
EM 00011001 25 9 00111001 57
SUB 00011010 26 00111010 58
ESC 00011011 27 ; 00111011 59
FS 00011100 28 < 00111100 60
GS ¢oo11101 29 - 00111101 61
RS 00011110 30 > 00111110 62
Us 00011111 31 00111111 63

SEP 86

A-2

ASCIl Character Codes

ASCII Character Codes

ASCII | EQUIVALENT FORMS ASCII | EQUIVALENT FORMS

Char. Binary Dec Char. Binary Dec
@ 01000000 64 01100000 96
A 01000001 6S a 01100001 97
B 01000010 66 b 01100010 98
C 01000011 67 c 01100011 99
D 01000100 68 d 01100100 100
E 01000101 69 e 01100101 101
F 01000110 70 f 01100110 102
G 01000111 71 g 01100111 103
H 01001000 72 h 01101000 104
I 01001001 73 i 01101001 10§
J 01001010 74 J 01101010 106
K 01001011 75 k 01101011 107
L 01001100 76 1 01101100 108
M 01001101 77 m 01101101 109
N 01001110 78 n 01101110 110
o) 01001111 79 0 01101111 111
P 01010000 80 p 01110000 112
Q 01010001 81 q 01110001 113
R 01010010 82 r 01110010 114
S 01010011 83 01110011 115
T 01010100 84 t 01110100 116
8) 01010101 85 u 01110101 117
A 01010110 86 v 01110110 118
w 01010111 87 w 01110111 119
X 01011000 88 x 01111000 120
Y 01011001 89 y 01111001 11
z 01011010 90 z 01111010 122
[01011011 91 { 01111011 123
\ 01011100 92 01111100 124
] 01011101 93 } 01111101 125
~ 01011110 94 - 01111110 126
01011111 9§ DEL 01111111 127

SEP 86
A-3

SEP 86
A-4

SYNTAX REFERENCE

APPENDIX

v
' B |

variables$ = AREADS :{devwe address‘}'

device address
Turns on character echoing to a remote terminal The default echo
mode is echo on.

device address
Cance s the execution of the ON BREAK # statement.

ECT # device address

écﬁtion of the ON DISCONNECT # statement.

I # device address
he execution of the ON INPUT # statement.

(# device address[, priority] branching statement
an interrupt when the terminal BREAK key is pressed.

CT # device address[; priority] branching statement
C uses an interrupt when the device is connected to the port.

" # device address[; priority][branching statement]
~ Causes an interrupt when a carriage return is sent to the ASI input
buffer from a terminal. A carriage return or DC1 sent from an
HP 3000 causes the interrupt.

¥ devwe address[, priority)[branching statement]
Causes an interrupt when the ASI output buffer is empty.

ER # device address[, priority] branching statement

Causes an interrupt when the HP 3000 sends a DC1 as the data transmission

SEP 86
B-1

Syntax Reference

terminator and when the ASI input buffer is empty. This signals
the program that the HP 3000 is ready to accept output.

device address ;, character code

Semﬁ a one-character code to the HP 3000.

device address
Sends a break to the HP 3000.

SEP 86
B-2

APPENDIX

THE LK 3000 UTILITY -
- | c |

The LK 3000 Utility is a run-only, BASIC-language program which allows you to:

e Use the HP 250/260 as a remote terminal in an HP 3000 computer system.

e Transfer ASCII data to or from the HP 3000.

¢ Transfer BASIC programs to or from the HP 3000.
The utility is provided with the operating system of the HP 250/260. The utility requires that the TIO
DROM is configured into the operating system and that the HP 250/260 contains an Asynchronous Serial
Interface board. The HP 3000 can be connected to the HP 250/260 either directly with cables, or

indirectly via modems (see the sub-section titled, "Using Modems", later in this section). The example
operations in this appendix assume a direct interface to the HP 3000.

LOG-ON PROCEDURE

To load LK 3000 and log on:

1. Load the HP 250/260 operating system and execute:

2. The utility first requests the port number at which the HP 3000 is connected:

RUN "LK3000"
HP 250/3000 INTERACTIVE LINK, for use with MPE V,
Enter port number (1. . 10): __

The HP 250 has five ASI ports and the HP 260 can have either five or ten ASI ports. Type in the
port number you want and press (RETURN):

RUN "LK3000"

HP 260/3000 INTERACTIVE LINK

Enter port number (1. . 10). §

3. The HP 3000 system prompt (:) indicates that you are connected and can log-on by entering your
assigned name and account. For example:

SEP 86
C-1

The LK 3000 Utility

: HELLO JOHN.ACCOUNTS

To ensure using the correct protocol, append ";Term=10" to the log-on sequence when files are to
be transferred. For example:

: HELLO JOHN.ACCOUNTS ;TERM=10

The standard log-on message and system prompt indicate the computer is waiting for your next
command:

: HELLO JOHN.ACCOUNTS
HP3000 / BLOGGS COMPANY A THU, MAR 20, 1986, 10:30 AM

You can now execute HP 3000 commands and call any available subsystems, as described in your
HP 3000 Users Manual.

LOG-OFF PROCEDURE

To end your session with the HP 3000, simply enter BYE in response to the system prompt:

: BYE

CPU=6. CONNECT=17. THU, MAR 20, 1986, 10:47 AM

This closes your account and disconnects you from the HP 3000. Press (HRALT) to terminate the LK 3000

utility.

The following message is then displayed:

END OF HP 260/3000 INTERACTIVE LINK

SEP 86
C-2

NOTE

Exiting the LK 3000 utility before logging off (e.g., by pressing (or
(BREAK)) or powering off) leaves your HP 3000 account open. To return to
the point where you left off, execute RUN "LK3000" and enter the port
number.

The LK 3000 Utility

TERMINAL OPERATION

The LK 3000 utility allows interacting with the HP 3000 using the full HP 250/260 keyboard and
display control keys. Press to transmit each command to the HP 3000.

After you have logged onto the HP 3000, the utility defines these softkeys to aid in terminal operation:

CONTROL Y - Sends a control character, which halts operation in the current subsystem and returns the
subsystem prompt.

CARRIAGE RETURN - Enters a CR character, which returns the display cursor to the start of the
current line.

DATA LINK BREAK - Sends a BREAK signal, a prolonged NULL, to interrupt computer operation and
returns to the system prompt.

BAUD RATE - Selects the data transmission rate. The selected rate is displayed below the softkey label.
This rate must match the rate set for the HP 260’s port.

TRANSFER FROM 3000 - Initiates a procedure which transfers information from a source file in your
HP 3000 account to a file created on the HP 250/260.

TRANSFER TO 3000 - Initiates a procedure which transfers the contents of an existing type DATA file
to a source file created in your HP 3000 account.

HARD COPY - Selects the output device to be used for terminal output operations. The address of the
currently-set device is shown below the softkey label. To select another available device, press the softkey
until the device address is displayed. The default printer is usually configured at device address 0.

REMOVE KEY DISP - Removes the softkey definitions and and labels, providing more display work area.
Press SFK 8 again to re-define the other softkeys.

Two additional SFKs are available which do not have a definition shown on the CRT.

SFK 17 - Allows you to type in an HP 250/260 command to be executed. Such commands as CAT,
PURGE, MSI are useful. After the command has executed, the LK 3000 utility resumes processing.

SFK 20 - Toggles the debug mode to the LK 3000 utility. The current contents of the display are not
affected by pressing this key. In debug mode, all commands sent to the HP 3000 are displayed with an
indication of current program state (input or output).

SEP 86
C-3

The LK 3000 Utility

TRANSFERRING FILES

The two special procedures within the LK 3000 utility, TRANSFER TO 3000 and TRANSFER FROM
3000, provide an easy means to transmit information to or from an HP 3000 account. Whether
transmitting data or programs, the information must be in ASCII- coded format. This means only HP
250/260 type DATA files and HP 3000 source files (created using EDITOR/3000 or TDP) can be used at
the originating end. Each special procedure automatically creates the appropriate file at the destination.
The HP 3000 uses the FCOPY utility.

Each program stored in a type PROG file can easily be duplicated into a type DATA file before using the
LK 3000 utility to transfer the program to the HP 3000. For example:

LOAD "SALES" (load type PROG file)
SAVE "sales" (save in type DATA file)

After BASIC program lines have been transferred from the HP 3000 to a type DATA file, they can be
stored into a type PROG file:

GET "orders" (get program into memory)

STORE "ORDERS" (store in type PROG file)
PURGE "orders" (erase type DATA file)

HP 3000 to HP 250/260 Data Transfer
To transfer the contents of an existing HP 3000 source file to the HP 250/260:
1. If you haven’t done so already, log on as explained earlier.
2. When the system prompt appears, press the TRANSFER FROM 3000 softkey:

HP 3000 TO 260 FILE TRANSFER UTILITY
HP 3000 source file name: _

3. Enter the name of the source file containing data or BASIC program lines to be transferred to the
HP 250/260. For example:

HP 3000 source file name: SFORM
HP 3000 file SFORM contains 55 records of 102 bytes each.
HP 260 destination file name: _

SEP 86
c-4

The LK 3000 Utility

NOTE

The maximum record-size that is guaranteed to be transferred from the
HP 3000 to the HP 250/260 is 155 bytes. Depending on the asynchronous
configuration of your HP 3000, you might find it possible to transfer files
with records larger than 155 bytes. The absolute maximum record-size that
can be handled in an HP 3000 to HP 260 file transfer is 240 bytes.

If you have difficulty transferring files that have record-sizes greater than
155 bytes, you should change the structure of the file on the HP 3000 so
that its records are 1535 bytes long (or shorter).

4. Enter the name of a destination file, a type DATA file to be created on the HP 250/260 default
drive:

HP 260 destination file name: SFORM1
START FILE TRANSFER

The utility creates the destination file and then each record from the source file. If the data already
exists, LK 3000 asks if the file is to be purged then resaved. The final display is:

FILE TRANSFER COMPLETE

END OF PROGRAM

If the utility cannot create the destination file, or if an error is encountered during data transfer, the
utility exits the procedure and displays a message. See page C-8 for details.

HP 250/260 to HP 3000 Data Transfer

To transfer the contents of an existing type DATA file HP 3000:

1. Log on as explained earlier.

2. When the system prompt (:) appears, press the TRANSFER TO 3000 softkey:

ﬁP 260 TO HP 3000 FILE TRANSFER UTILITY
HP 260 source file name:

3. Enter the name of a type DATA file containing data to be transferred to the HP 3000. For
example:

SEP 86

The LK 3000 Utility

HP 260 source file name: DATA

HP 260 source file DATA contains 22 records of 256 bytes each.
Enter estimated record count to override catalog value: 139
Enter actual maximum record size to override catalog value: 160
HP 3000 destination file name: DATA

Once the source file has been located, its size is displayed. If the file was SAVEJ, its record size is
always 256 bytes and record count is just sufficient to contain the program. However, there is a
maximum of 160 bytes of data in a SAVEdJ file, and there can be no size-dependent problem with the
transfer of SAVEd files.

On the HP 250/260, strings may cross record boundaries within HP 250/260 files. This is not true on
the HP 3000. Therefore, LK 3000 gives you an opportunity to supply the record size and record count
of the HP 3000 destination file. The record size must be the size of the longest string in the HP
250/260 data file. The record count must be the number of strings in the file. If exact values are not
known, aiways supply overestimates for these values. Underestimates will result in lost data. If the size
and count of the HP 250/260 file is the correct size and count for the HP 3000 file, press
without entering new values.

NOTE

The maximum record size that can be transferred from the HP 250/260 to
the HP 3000 i1s 255 bytes.

4. Enter the name of the destination file, which must be a new file (the destination file cannot be a
file that already exists in your HP 3000 account):

HP 3000 destination file name: PAYROL
START FILE TRANSFER

The utility creates the new source file and transfers each record from the HP 250/260 DATA file.
The final display is:
FILE TRANSFER COMPLETE

END OF PROGRAM

Terminating File Transfers

If you decide not to transfer a file, whenever a file name is asked for press without giving a file
name. This terminates the file transfer.

SEP 86
C-6

The LK 3000 Utility

If the transfer is already in progress, press to terminate the transfer. Press the CARRIAGE

RETURN softkey repeatedly until the FCOPY prompt ">" appears. Then type EXIT to terminate
the FCOPY utility.

Data Transfer Errors

If the subprogram encounters an error while creating a file or transferring data, it automatically exits the
procedure and displays a message. For example:

HP 3000 TO 260 FILE TRANSFER UTILITY

HP 3000 source file name: SFORM

HP 3000 file SFORM contains 55 records of 102 bytes each.
HP 260 destination file name: SYSTEM

ERROR IN CREATING FILE

END OF FILE TRANSFER

If you abort the transfer operation (via power off), you must first RUN "LK3000", enter the port number
and abort operation in the HP 3000’s FILE COPIER subsystem. For example:

HP 3000 TO 260 FILE TRANSFER UTILITY

HP 3000 source file name: SFORM

HP 3000 file SFORM contains 55 records of 102 bytes each.
HP 260 destination file name: SFORM1

RECORD 39 TRANSFERRED HALT pressed during file transfer.

END HP 260/3000 INTERACTIVE LINK
RUN "LK3000"

HP260/3000 INTERACTIVE LINK
Enter port number (1 . . 10): 5 re-establish link

EXPECTED "YES" or "NO". (CIWNARN 990)
ABORT? YES respond to prompt to abort FILE COPIER subsystem

PROGRAM ABORTED PER USER REQUEST. (CIERR 989)
HP32212A.3.20 FILE COPIER (C) HEWLETT-PACKARD CO. 1984

: return to operating system

If other HP 3000 operating system errors occur while running LK 3000, use the CONTROL Y,
CARRIAGE RETURN, and/or DATA LINK BREAK softkeys to recover from the error. In some cases
re-running LK 3000 and logging-on again may be required.

)

SEP 86
C-17

The LK 3000 Utility

There is a special-case error which is not recognized as such by the LK3000 utility. This error occurs if
you under-specify the record size of the new file to be created on the HP 3000. This error shows itself by
the termination of the data file transfer without the display of the message :

END OF FILE TRANSFER
USING MODEMS

The LK 3000 data communication link can be used with direct connection between the HP 3000 and the
HP 250/260, and also when the devices are connected indirectly using modems.

Your HP 260 will operate with the following types of modem:

BELL 103J
BELL 212A
European standard CCITT V.21 modems
European standard CCITT V.22 modems

Operating Considerations

Be sure to consider these points when using LK 3000.

¢ Program (PROG) files cannot be transferred
from the HP 250/260 without first making them DATA files.

o IMAGE files cannot be transferred. If you wish to transfer

a data base or data set, first write an HP 250/260 program to read
the data set. Then, create a DATA file and write the appropriate
information into the file using PACK and UNPACK statements.

e The HP 250/260 and HP 3000 do not have the same floating point
capabilities. When transferring information to the HP 3000,

checks should be made to ensure that the numbers do not

overflow or underflow on the HP 3000.

¢ Binary (BIN) files cannot be transferred.

Floating Point Ranges

Limit HP 250/260 HP 3000
Maximum 9.9E99 5.7896E76
Minimum 1E-99 1.727E-717

SEP 86

APPENDIX

oo
(D]

TIO ERROR CODES

TIO may produce the following error codes for problems detected at execution time.

310 Port ordinal out of range. This error results from the execution of any TIO statement in which the
value of the expression specifying the addressed port ordinal is not in the range 11 thru 20.

311 Priority value out of range. This error results from the execution of a TIO on-interrupt statement in

which the value of the expression specifying the interrupt execution priority is not in the range
1 thru 18.

312 Invalid on-interrupt statement. This error results from the execution of a TIO on-interrupt
statement in which one of the following conditions is detected:

(1) The addressed port is not a terminal, printer, or computer.

(2) An ON INPUT # statement addresses a printer port, or a port whose
state is not input available, output active, or output buffer empty.

(3) An ON OUTPUT # statement addresses a computer port, or a port whose
state is not output active or output buffer empty.

(4) An ON BREAK # statement addresses a computer port.
(5) An ON TRIGGER # statement addresses a port which is not a computer.

(6) An ECHO ON # or ECHO OFF # statement addresses a port which is not
a terminal.

(7) A BLOCK MODE # statement addresses a port which is not a computer.

314 Ownership error. This error results from the execution of any TIO statement addressing a port to
which the running task has not obtained exclusive access by means of the REQUEST statement.

31§ No input available. This error results from the execution of an AREADS$ function addressing a port
whose state is not input available.

316 Invalid SEND statement. A SEND or SEND BREAK statement addresses a port which is not a
computer.

TIO may produce the following error codes during the processing of the indicated main system statements
which link to TIO. Note that reference to the PRINTER IS statement includes the variants SYSTEM
PRINTER IS and PRINT ALL IS. Reference to the PRINT statement includes PRINT USING and other
output generating statements such as CAT and LIST.

130 Logical device ID out of range (PRINTER IS, REQUEST, and RELEASE statements). The addressed
port ordinal is not in the range 11 thru 20.

131 Resource busy (PRINT statement, REQUEST statement with wait parameter omitted). Another

running task has been granted exclusive access to the addressed port.

SEP 86
D-1

TIO Error Codes

132 Device is not printer (PRINTER IS statement). The addressed port is not a printer, terminal, or
computer.

133 Printer down or disconnected. The addressed port of a PRINTER IS is disconnected. This error also
results from the execution of a PRINT statement addressing a port whose state is not output active
or output buffer empty.

SEP 86
D-2

SETTING ASI PORT FUNCTIONALITY

ThlS appendlx describes how to set the functions of the ports on the ASI board of your computer so that
I statements are properly serviced.

Setting the Ports on an HP 260 Series 30 or an HP 260 Series 40

The ASI ports of the HP 260 Series 30 and the HP 260 Series 40 computers are set through software.
When you select the mode of communication for each ASI port (using the CONFIG utility), the
functionality of the port with respect to the TIO DROM is also defmed If you define a port as a "Modem
communication” port, the port will support the &

Refer to the UTILITIES MANUAL that was supplied with your system for the details of how to configure
the ASI ports using the CONFIG utility program.

Setting the Ports on an HP 260 (with Product No. 45261D)

Each port on the ASI board has two banks of DIP switches associated with it. The left bank of switches is
used to select the mode of communication for the port (that is, RS-232, RS-422 or current loop). The
right bank of switches is used to select the control line parameters, and it is this right bank that affects
programming with TIO.,

To enable the BN ' statements, switch 1 in the right bank must be in the
closed position and switch 2 in the rlght bank must be in the open position.

Setting the Ports on an HP 250

The computers with the ASI board of part number 45120-66550 are referred to in this section as the
HP 250.

The ASI board (Part Number 45120-66550) has ten jumpers associated with each of its five ports.
and the BN

To enable the & statements, jumper 9 must be in the "B" position.

NOTE

It is also necessary to connect devices to the port with a MODEM cable
Direct connect cables cannot handle the § - and ON
statements.

SEP 86

(bﬁ HEWLETT

PACKARD

Part No. 45120-90006 E0986

Printed in Federal Republic of Germany HERRENBERGER STRASSE 130
September 1986 D-7030 BOEBLINGEN

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	E-01
	xBack

