
.:.i

* * * DRAFT * * *

rli~ HEWLETT
a:~ PACKARD

Information Networks Division

Location Code: 66-7860

Project Number: 6651-1131

February 10, 1986

David St. John

* lIP Confidential *

Copyright © 1996 HEWLETT-PACKARD CQM.PANY

_PR_O_D_U_C_T_I_D_EN_T_I_FI_C_A_T_IO_N I~

Name

Mnemonic

Project Number

Project Manager

Project Engineer

Product Manager

Product Assurance

Documentation

Off-Line Support

On-Line Support

HP/3000 DON Services: FTP

none

6651-1131

Doug Heath

David St. John

Dennis King

Karen Dillon

Mike Genevro

Bruna Byrne

Susan Gennrich
Lorraine Mehrtens
Jim Zepp

* Review Copy *
1-1

_D_E_S_IG_N_O_VE_R_V_IE_W ---'I~

2.1 DESIGN APPROACH

File Transfer Protocol (FfP) is one of three main required services protocols currently defined by the

Department of Defence for the Defence Data Network (DDN). The other services are Simple Mail

Transfer Protocol (SMTP) for electronic mail and Telnet, a network virtual terminal protocol

2.1.1 DDN Model

The DDN architecture model also has defined lower layer protocols, including Transmission Control

Protocol (TCP), Internet Protocol (IP), and X. 25. The figure below shows the standard defined model:

DON Full Service Host Implementation

DON Backbone Network (I MPl

,* HP Confidential *,
2-1

Design Overview

Hewlett-Packard's FTP service will provide file access from a 3000 to any of its other machines or to

those of other vendors that follow the standard, Militar.Y..Standard: Fil0ransfe!:"yrotocol (Mil-Std). This

design is intended for the HP3000 computer, but it will be designed with the objective to be por'table to

other systems with a minimum of effort. The design will follow the standard in all matters and the final

product must prove that it has by qualifying for inclusion on the DDN (see Defens~Data NetworLHost

Interface Qualification Testing, Hjgher-Lev~Protocols). It is recommended that the Mil-Std as well as

the External Specifications be read before this document.

2.1.2 FTP Model

There is also a model for the FTP service. This diagram is taken directly from the Mil-Std.

USER ~~
USER

INTERFACE

.,
'.'

USER -"
FTP COMMANDS SERVER

PI
...... ",

PIFTP REPLIES

"
eo

'0'
.-

ALE USER ,.. DATA SERVER
~f-7

ALE

~f?SYSlEM DTP CONNECTION DTP SYSTEM

USER-FTP

FTP MODEL

SERVER-FTP

The USER-FTP and SERVER-FTP above are actually two processes and those items within these two

large boxes will be within each of those processes. The user-FTP process receives the user commands via

its interface. This interface has been defined in DDN_Ff~HP3000:-External~~cificationsand should

be consulted for details. The User-PI is the protocol interpreter which translates those user commands

into the standard FTP commands for transmission to the remote Server-FTP process. Some of these

commands may also require that a data connection be established between the two processes for file

transfer. The Server-FfP process is activated when an FrP command connection has been made from a

remote User-FTP process. The Server-PI interprets the FrP commands as they are received across that

connection and replies to them depending upon certain conditions in that host. If a file transfer is

necessitated by one of those FTP commands, the Server-DTP opens the data connection, supervises the

transfer, and closes the connection when the transfer is complete. This FTP model will serve as the design

model for this implementation

,* HP Confidential *'
1-1

Design Overview

2.2 OVERVIEW OF OPERATION

This section includes discussion of other network products. It is assumed that the reader is familiar with
NS Services, NS Transport, ports, NetlPC, and Network Manager; if not HP internal documents exist to aid
the reader. The FrP product, as well as the other two services, will be designed to integrate into these and
other existing products as much as possible. There are several advantages to this:

1) fewer system resources will be necessary for the operation of FTP e.g., if the user has NS, redundant
data structures, processes, etc. will be present. .

2) the release of FTP will be advanced by using these existing structures.
3) some of the products must be altered and included for DDN, e.g., TCP/IP.
4) the release of FrP will not be dependent upon any changes directly to MPE.
5) the Network Manager will have a network-independent interface for network supervision and

administration.

Many of these products are making enhancements to include DDN Services. It is not the object of this
document to discuss those changes. The reader should refer to DDN Services/HP3000: Investi&-ation
Re.QQrt for details. We shall only include those that are directly involved in the operation of FrP.

The models below are the general guide for the design of FfP/HP3000.

USER DSDAD
CI PROCESS

PROCESS

........... PORT

USER-FTP
,/

DICTIONARY
FILE ./

SYSTEM
............. PROCESS

NETWORK CONNECTION(S}
.............

/

LOCAL FTP STRUCTURE

,* HP Confidential *,
2-3

~,-\.\::--p

-;1'\\S ~~ 'tl\>~)
\';. \ \~-\'-

Design Overview '0D'J'l ~u"C5 -,
(I.'.J . \..i(\l J

~
~~\»--"'\ \if>-(f\"-

1) The above state begins when the user asks the CI to run the FTP user progra ,thereby creating the
FTP user process.

2) The FTP process will check the Port Dictionary to ascertain if the UP service has been allowed. The
"FTPL" entry in the Dictionary will be placed there by DSDAD when the Network Manager includes
the service in the NSCONTROL START command. If the port entry is not found, the FTP program
would exit in an error state. Note that unlike NS local server processes the user FTP process will not be
a child of DSDAD at any time.

3) A NetIPC request will be made for a virtual connection. All interfacing with the lower layers of the
DDN model will be through NetIPC.

DSDAO REMOTE
./ '".. - .. -........ PROCESS CI""-

PROCESS
---.
<f)-

~ z
Ia: 0

0 .-
3 0 I.- w
w z
z z

0
u SERVER-

FTP FILE
/'"

PROCESS SYSTEM

REMOTE FTP STRUCTURE

The above diagram illustrates the structure on the remote 3000 and the following events.

1) If the FTP service is started in the NSCONTROL START command, DSDAD will listen on Port 21 for
a connection request. When that request arrives it gives the connection to a FTP server process that it
has created. The server owns the connection until it is terminated by the user. The FTP server process
remains the child of DSDAD until the user logon string arrives from the FTP user process.

2) The first FTP command that should be received on the connection should be the USER command. That
logon string will be used to establish a session on the 3000. A combination of t\1PE and NS intrinsics
will be used to establish the session. A null pseudo-terminal will be obtained and the user information
will be passed to DEVLOGON. When the remote session has been created by MPE the remote FTP

'* HP Confidential *,
')-.d..

Design Overview

server will adopt itself into that session. The server will remain a part of that session until the
connection is closed or a new USER command is received.

3) The FTP commands will be accepted from the command connection and will be responded to by the
server. Any data transfer will occur through a data connection. That connection is only made when
such a request is made and is not still open from a previous transfer. The data connection will be made
on Port 20 to the user port or to any port previously indicated via a received PORT command. After
completion of the data transfer the data connection may be closed according to the file structure.

4) When the QUIT command is received from the user FrP process the server should finish any data.
transfer that may be in progress. If no data transfer is active or when it is finished, the server process
will begin to release gracefully the command connection. The server will adopt itself back under
DSDAD to be either terminated or returned to a reserve pool. It will then ask M~E to log off the
remote session and deallocate the remote null pseudo-terminal. DSDAD will be notified when these
events have been accomplished.

5) As a consequence of the remote closing of the command connection the user FrP process will also close
its side of the connection. The user process may not terminate depending upon the user command it
has received. If the user FrP process is exited, the local user will return to a CI prompt after
termination of the process.

2.3 MAJOR MODULES

Consistent with the operation overview given above, there will be two major modules involved in the
design of FrP/HP3000.

2.3.1 User FTP Module

This process will be started when the user runs the FTP program or uses the CREATEPROCESS intrinsic.
It must first check the port dictionary to ascertain if the local FTP server has been started via the
NSCONTROL command. It will next initialize its data structures and all defaults as specified by the
Mil-Std. If the user has included the name of the remote host or when the user does an open to a remote
host, the process will request via NetIPC a connection to the remote. The process will then accept user
commands through its user interface and translate those into the appropriate FTP command. All replies
will be interpreted from the· command connection received from the remote FTP server. Those replies
will determine the next event which the FrP user must create. If a data transfer is necessary based upon
the FrP command, a passive open will be done through NetIPC to await a connection request from the
server process. After the data transfer the data connection mayor may not be closed by the server. The
process will return necessary information to the user and will return to the subsystem command
interpreter.

It is the responsibility of the user process to notify the remote server that the user wishes to close the
command connection and to wait for a reply to that request. It will then close its side of the connection.
Upon termination of the program any open connection will be terminated before ending.

2.3.2 Server FTP Module

Upon creation of the remote FTP server by DSDAD it will initialize its data structures, create a port via
which it can communicate with DSDAD, and await notification of a remote connection request. \Vhen
the notification arrives it will respond and get the connection which DSDAD will give away. The server
then awaits commands from the user process and replies according to the state on that system. The first
executable FTP command must be a USER command at which point it will start operations necessary to
create a session on that system and to adopt itself into that session. If any subsequent cOlnmands require

,* HP Confidential *'
2-5

Design Overview

file transfer, it will establish a connection on Port 20 to the specified system, will transfer or receive the

data, and may close the data connection. Upon a request to close the command connection the server

must respond according to its current state and if appropriate close the connection. The server must then

have the remote session logged off and readopt itself under DSDAD to be disposed of as it wishes.

2.4 MAJOR DATA STRUCTURES

No major external data structures will be directly required for FTP. No system tables will be accessed.

No extra data segments will be required. User files may be accessed for transfer through the MPE file

system. Other files will be accessed internally for the operation of FTP, including Network Directory,

DDN catalog file, etc. Internal data structures will have to be used for information about the current

state of the processes. Any file buffering will be done in the process stack via NS buffer management

intrinsics.

2.5 MAJOR INTERFACES

LOCAL REMOTE

DSDAO

BUFFER
BUFFER

MGR. USER-FTP () () SERVER- MGR.
0- 0-

PROCESS i= i= FTP
w lLJ
Z z PROCESS

FILE
RLE

SYSTEM
SYSTEM

MAJOR INTERFACES

The above illustration shows the major interfaces required for both user and server FTP processes. The

'"* HP Confidential *'

Design Overview

common interfaces will be addressed first and then the process-particular ones.

1) BufferManagement: NS buffer management routines will be used when they are required. No extra

data segments will be necessary. These intrinsics include creating, deleting, and transferring data to

and from them. The interface is well described in N~3000~Overview_Internal.. Maintenance

fu?ecifications.
2) Fi~fu.rstem: MPE file system intrinsics will be used to access any user files which must be transferred.

These include FOPEN, FCLOSE, FWRITE, FREAD, and FCONTROL to mention only a few. The

interface is well defined in MPE-!.ntrinsic.!..Referenc~anual.

3) NetlPC: All circuit connections, controls, sends, receives, and clo~ures will be done through NetlPC

intrinsics which are defined in N~3000 Use.!LPr.Q&rammeLReferenc~Manual.No exception will be

made for communication to lower layers.

. 4) Port Procedures: The user FrP process will only do a port dictionary lookup to ascertain if the service

has been allowed. The server process will establish a port for communication with DSDAD. The

procedure interface is outlined in Port Procedures: Externa!]~cifications.

5) DSDAD: The server FrP process will have to communicate to DSDAD using the standard port messages

outlined in N~3000~Overview2nternaLMaintenanc~~cif
ications.No changes to port messages

should be necessary with the addition of FTP.

6) MPE: The server will also have to cause the creation and deletion of remote sessions on the system.

These will be done through a combination of MPE and NS intrinsics which are defined in the above

references. It will also use the COMMAND intrinsic to execute certain user commands.

2.6 PERFORMANCE CONSIDERATIONS

Performance will be a key issue in the design of FTP. As stated in earlier Product Life Cycle documents

the goal is to make it comparable to that on machines similar to the HP3000. We are projecting that the

performance will be equal to DSCOPY in interchange mode over a comparable connection. The Mil-Std

specifies that the FTP command connection is a dialog between the user process and the server process.

This means that user process must wait for a reply or replies to a previous command before sending the

next. This will make the performance at the command level largely dependent upon that of the network.

There are some design features which can be incorporated within the strictures of the specification,

especially for data transfer.

1) The choice of FrP Stream Mode was chosen because it calls for little file processing before

transmission. The other modes call for adding headers or compressing the data. For lIFile" Structure it

is a steady stream of bytes with implied EOF by closure of the data connection. This means that

multiple send buffers can be used within the limits of the lower layers. Multiple send buffers can also

be used in Record Structures since only EOF and EOR must have special handling.

2) No-wait I/O will be used as much as possible to allow the processes to be event-driven. These include

IPCRECV, IPCSEND, DSDAO port, etc. This mechanism will also allow the processes to continue

processing new file records while previous ones are in transit.

3) Event look-ahead will be used as much as possible. If time can be saved by using potentially idle time

for other purposes, it will be so used.

4) The file transfer operations will especially be the focus of concentration for increased performance.

2.7 LOCALIZATION CONSIDERATIONS

The current plan for DON Services is to include a catalog with the product. All keywords) delimiters)

replies) and error messages will be accessed from that catalog. This mechanism will allow one to change

)* lIP Confidential *,
2-7

Design Overview

those things in the file and to use theMAKECAT program to make it a valid catalog file. FrP will not
have any assumptions about any of the above. Keywords and delimiters will be loaded upon initialization
of the processes. This only applies to the user interface; the wording and structure of FTP commands are
set by the specification. No direct warning, error, or reply messages will be included in the code. All of
these will be generated from the message catalog. An exception for this will be the three digit FTP reply
code which is set by the Mil-Std. There will be no translation of the ascii string following the FTP reply
code from a remote server.

,* HP Confidential *'
"l 0

,---"M_O_D_U_L_E_D_E_S_IG_N I~

The two major modules) user and server, discussed in the previous section will be outlined in greater detail.
There are several transforms which will be discussed under the appropriate major module.

Structured analysis was used for this section. The figures are based on Data Flow Diagrams. The data
dictionary for the user module DFD's are located in Appendix A. A separate one is available for the
server module in Appendix B.

If the reader is not familiar with structured analysis of DFD) a good reference is The Pratic~Guide to
Structured Systems Desig!!, by Meilir Page-Jones. His definition of DFD is lla network representation of a
system) and shows the active components of the system and the data interfaces between them. '1p. 59] Data
flows are arrows that show movement of data between other elements of the DFD. A process is shown"as
a bubble which transforms the structure of the data or the information within the data. Data stores are
symbolized by two parallel lines and are time-delayed repositories of data. Sources and sinks are shown as
rectangles. They are the source and/or sinks of certain data flows.

3.1 FTp·USER MODULE

USER
FTP f£Jl.y

NETIPC

Function: The FTP user module is the program file which will allow the user to transfer files between
itself and a remote FTP server.

Interface: There are two main external interfaces for the user FTP process: 1) the user interface and 2) the
NetIPC interface which need to be addressed. The external user interface has been discussed in the
External Specifications for this service. This describes how the FTP program will look to the user and the
subsystem commands available and should be referred to for that level of interface.

* HP Confidential *
3-1

Module Design

1) The FTP program can be entered only through the MPE command, RUN, for the interactive user.

There will be no intrinsic· as. there is with DSCOPY. The user may include an optional

l;INFO=<host_name>" with the RUN command, as outlined in MPE_V COMMANDS~eference

Manual. The host_name will be used to open a connection to the specified host. The PARM option

will not be used by the FTP program. There will be no entrypoint other than the primary one.

In addition there will be programmatic access to the FfP program through the MPE intrinsic,

CREATEPROCESS, as discussed in MPE V-.!ntrinsics Reference Manual. The INFO string can still

be passed to the newly created process by using the Uitemnums" options 11 and 12. Any other

parameters used in either the RUN command or CREATEPROCESS intrinsic will not be directly

used by the program once it has started.

1) All connection requests, connection controls, and data transmissions will be done through NetIPC

procedures as outlined in NS/3000-.!Jse.!.lPr.Qgrammer Reference ManuaL These include ADDOPT,

INITOPT, IPCCHECK, IPCCONNECT, IPCCONTROL, IPCCREATE, IPCDEST, IPCERRMSG,

IPCRECV, IPCRECVCN, IPCSEND, and IPCSHUTDOWN. This list may change depending upon the

implementation of NetlPC dependencies as stated in DDN_Services/HP300Q.Jnvestigation R~ort.

There will be no other method used to communicate with the lower layers, including X.25.

If IIFfPLII not found in port dictionary then terminate with error message

Create port to receive ServerStop message in case service is aborted by Network Management

Initialize all variables and data structures

Load keywords, control Y responses, and configurable IPCSEND, IPCRECV, etc. buffers from DDN

catalog file
If HOST_NAME specified In info string then request the command connection via

OPEN_SEQUENCE
Enter into Command Interpreter transform (see Diagram 0)

Program terminates upon return from the Command Interpreter

Loca!"pata Structures: The FTP user process will have a record of information necessary for opening and

maintaining connections to the remote host server. This will include:

1) Remote host name
2) Command connection virtual circuit descriptor

3) Command connection state
4) Data connection virtual circuit descriptor

5) Data connection state
6) Command connection destination IP address

1) Parameter values for Type, Structure, and Mode commands

8) Internal error number
9) Last FTP command
10) Last FTP reply from remote server

This record will be accessed and possibly changed in all following transforms.

-J: HP Confidential *
3-1

Module Design

3.1.1 Diagram 0

DIRGRRM 0

<XMlU.. y

STIl..[ST

The above figure shows the first level of the FTP user process. Each of these 7 transforms will be
explained separately. The seventh, USER DATA, has its own diagram which will follow the discussion of
this one.

* HP Confidential "*
3-3

Module Design

3.1. 1. 1 Command Interpreter (1)

Function: The command interpreter will handle the processing of the FTP subsystem user commands.
Those commands are explained in the External Specifications. The data dictionary in Appendix A
contains the definitions of the grouping of subsystem commands by types. Based upon the command type,
the appropriate transform will be called. If the user enters an invalid command, it will be rejected at this
level. The command interpreter will not accept another subsystem command until the previous one has
been finished.

Interface: The user interface has already been discussed in the External Specifications and is defined in
the data dictionary. The command line will be stored in a local array which will be shared with the
tranforms called by the CI. The CI will not change the connection record discussed above.

Issue prompt to user and accept COMMAND
Update connection record's last FfP command
If command keyword matches one of keywords from DDN catalog then call appropriate transform

else print error message to user
Set FrPJCW from connection record
Continue until exit command is given

Data~tructures: None exist that are private to this transform.

3. 1. 1~ 2 User Open (2)

Function: It is the responsibility of this transform to open the command connection to the remote FTP
server, based upon the host name, via NetlPC intrinsics.

Interface: There will be no input or output parameters for this transform. In order to accomplish its
function, it will deal mostly with IPC intrinsics. IPCDEST will be called for a destination descriptor,
based upon the host name parameter of the command and the reserved TCP port for FrP command
connection. IPCCREATE will be called to create a call socket. IPCCONNECT will be given the call
socket descriptor for a destination descriptor in order to make a connection; it will return the virtual
circuit descriptor. IPCSHUTDOWN will release the call and destination descriptors. IPCRECV will
return the connection reply for the virtual circuit.

Create call socket if necessary and obtain destination descriptor
Request connection to remote host
Close call socket and destination descriptor
Receive reply from connection request
Update record host name, command connection vc, state, dest. IP

DataJitructures: Call socket and destination descriptors will be local variables since they will not be
needed outside this transform. The parts of the host record updated by the module are stated in the
algorithm.

3. 1. 1.3 User Close (3)

Function: There are two user commands which will invoke this module. It will close the command
connection if it is open. It will notify the remote server that it wishes to terminate the session and will
then close all connections via IPCSHUTDO\VN. It will have no input or output parameters.

-i- HP Confidential *
3-4

Module Design

Interface: NetlPC intrinsics will be used with the virtual circuit descriptor including IPCSEND,
IPCRECV, and IPCSHUTDOWN.

If logged onto remote system then send FTP_QUIT and analyze FTP_REPLY
If data connection open then close it
If command connection open then close it
Update record host name, command and data vc, IP, and states unless EXIT command

Data~tructures: There are no private variables for this transform. It will update the connection record
as noted above.

3.1.1.4 User Help (4)

Function: The help module will handle a local request for program information. This is not to be
confused with the FTP HELP command, which is used to gain information about the remote server. A
description of the program, of the keywords, and of the syntax for commands will be printed for the user.

Interface: Th~re are no input or output parameters for this transform.

Print help text from catalog file to output

Data Structures: There are no data structures exclusive to this transform.

3. 1. 1.5 User User (5)

Function: This transform will be called by the CI when a USER command has been entered by the user.
It will format the proper FTP command to start a session on the remote system via the remote server.
The logon string specified by the user will be passed to the remote server. It will ask the user for any
passwords or account information requested from the remote server.

Interface: It has no input or output parameters. IPCSEND and IPCRECV will be used to send and receive
data from the remote server on the command connection virtual circuit.

Format FfP_USER with USER_NAME
If FrP_REPLY indicates password needed then

Turn off echo and prompt user for PASSWORD
Format FTP_PASS command and send to server

If FrP REPLY indicates account needed then
Prompt user for ACCOUNT_NAME
Format FTP_ACCT command and send to server

Update record command state

Data~tructures:A local character array will be used to hold password(s) and account name.

* HP Confidential *
3-5

Module Design

3.1.1.6 User File (6)

Function: This transform will handle all file related commands which will not require any transfer across
a data connection. These are reserved for the User Data transform. These commands both include setting
certain FTP parameters and remote file manipulation (i. e., renaming and purging files).

Interface: The transfer of FfP commands and replies will be done by IPCSEND and IPCRECV on the
command connection.

If TYPE_COMMAND then
Send FTP_TYPE command
Update record type parameter

If RENAME_COMMAND then
Send FrP_RNFR command
Analyze FrP_REPLY
Send FrP_RNTO command

If PURGE_COMMAND then send FTP_DELE command
Analyze FrP_REPLY

Data~tructures: No internal data structures are necessary for this transform. The connection record will
only be updated for the TYPE command.

3.1.1.7 User Data (7)

Function: This transform will be called when the CI receives a command which will involve data transfer
over a data connection. This will involve either sending a file to the remote, receiving a file, or receiving
a list of files as specified by the user. This transform contains the local file system interface, the
translation of file types if needed, and control of the data connection. The control Y handler will also be
contained within this transform.

This transform is more complex than the other modules at level O. The details will be reserved for the
following section.

"* HP Confidential *
3-6

Module Design

3.1.2 Diagram 7

DIRGRRM ?

As mentioned above the User Data transform will handle all file transfer requests including remote file
listing. Because of the complexity, it has been divided into three separate transforms which will be
discussed below.

3.1.2.1 Data Command Interpreter (7.1)

Function: This module will be the one called by the subsystem command interpreter when a data
command is received from the user. It will request a data conne"ction and send the necessary FTP
commands on the command connection. It will enable the control Y handler (7.3) and call the data
control transform (7.2) to handle the data transfer.

Interface: NetIPC intrinsics used will be the same as for User Open above in order to establish the data
connection. One modification in this is that the IPCRECVCN will be done with a fully specified passive
open using the destination IP address of the command connection and the TCP dedicated port for FTP
data transfer (20). File system intrinsics will also be necessary. FOPEN will be used to either open a file
on the local system or create a new file. Once the file has been successively opened, FGETINFO may be
used to extract certain information about the file. Once the data transfer is finished, FCLOSE will be
called in order to close the local file. The file system interface is described in more detail in Section 4.

NS buffer management routines will be used to allocate space, move data, and deallocate space. The NS
buffer management will be discussed in Section 4.

If structure parameter is not Record then send FTP_STRU command with lIR" parameter and analyze
FTP_REPLY

FOPEN local file if store, retrieve, or append

i: HP Confidential -1:

3-7

Module Design

If retrieve or append file non-existant then FOPEN to create new file
If store file then return in error
If store operation then

Call FGETINFO for foptions and file and record sizes
Send FrP_TYPE if parameter not properly set and analyze FTP_REPLY
Send FrP_ALLO command for disc allocation, record size and analyze FTP_REPLY

If necessary allocate buffer space for file transfer
If necessary open data connection with fully specified passive
Send DATA_SEQUENCE and analyze FTP_REPLY
Enable control Y for transform (7.3)
Receive connection request from remote server
Update record data vc descriptor and state
Pass control to the data control transform (7.2)
Analyze FTP_REPLY
Disable Control Y.handler (7. 3)
If abort requested by user through control Y then send FTP_ABOR and analyze FTP_REPLY
If STRU parameter is "F' then close IPC data connection
Close the local file

Data Structures: Local variables for this transform will be the call socket and destination descriptors.
Other variables will be shared between this transform and the others at this level, including file number,
transfer type (i.e., store, retrieve, or append), and file system information. Parts of the connection record
will be updated as noted above. -

3.1.2.2 Data Control (7.2)

Function: The Data Control transform will supervise the flow of data across the data connection. It will
:read or write data across the connection dependent upon the type of transfer required. Locally that may
either translate into reading or writing to a local file or writing a list of remote files to the standard
output device of the program. This transform will also perform any data transformation which is
necessary (e.g., stripping <CRLF» before writing a record to the file in question or adding a control byte
for EOR or EOF from an FREAD before transmitting the record, per the Mil-Std. It is also the function
()f this transform to check the data connection state to see if it should be aborted. If that is the case, it
will cease sending or receiving data and pass control back to 7. 1 which is responsible for sending FTP
commands across the command connection. After the successful completion of the data transfer, control
will be passed back to 7. 1.

Interface: The main IPC interface will be through IPCSEND or IPCRECV on the data connection virtual
circuit as set up.by the previous transform. Only one IPCRECV will be posted at a time, but there may be
several outstanding IPCSEND's. The number of IPCSEND's will be configurable in the DDN catalog file
(see section 4 on Interface). There will also be a file system interface using FWRITE and FREAD based
upon the file number of the file that was opened in 7.1. A further discussion of the file system interface
will be addressed in the next section.

The input parameters for this transform will be the file number of the file in question, type of transfer
operation G. e., store, retrieve, list, append), and error parameter which will be the output parameter for
the module.

If transfer type is for local storage or append then
Post IPCRECV
Transform data from Mil-Std format into record format

-.I: HP Confidential -.I:

3-8

Module Design

Write data into file
If transfer type is for local retrieve

Read file record
Transform as per Mil-Std
If buffer space still available then continue

Else send data across data connection

If transfer type is list then
Post IPCRECV
Write record to output device

Update data transfer count in connection record

If data state indicates abort then
Set error output parameter
Exit to caller (7. 1)

Else continue as above until finished

Data Structures: The input parameters will be used, but not changed during the operation of the module.

The error output parameter will be altered. There may be some minor variables involved in the module.

The connection record will be checked for the abort data state and the transfer byte count will be

changed after every transfer block.

3.1.2.3 Control Y Handler (7.3)

Function: This module will handle the subsystem break when the user hits Control Y. It will be enabled

by 7. 1 just before calling data control (7.2). It will also be disabled by the same module after completion

of the data transfer module. It will print a choice of options for the user to select. These choices will be

to 1) continue with the operation, 2) abort the data transfer, and 3) return status about the data transfer.

The status will return the local and remote file names and the current transfer count in bytes. Asking for

the abort option will set the connection record data connection state to the· abort·.state. The data transfer

module will check this state after the completion of every IPCSEND or IPCRECV. If there was a request

to abort the operation, the error parameter will be set to signal it by 7.2. Transform 7. 1 will actually

format the FTP_ABOR request and send it on the command connection.

Interface: The only interface will be to the interactive user who has hit the control Y key of the

terminal. The transform will print the options to the user, get the subsystem break command, and react

accordingly.

Print 3 options to output device

If continue option then send FTP_NOOP and exit module

If status option then send FTP_NOOP and print status

If abort option then set data abort state

Data~tructures: There will be a local variable to read the user option command. The transfer byte count

and data state are parts of the connection record; the file names are a part of the global command array.

* HP Confidential *
3-9

Module Design

3.2 FTP- SERVER -MODULE -

DSDAD

NETIPC

a..OSE SEOlENCE

MPE

Function: The server module will not be directly run by the user as was the user module. As the

complement of the user program, it will serve as the program to be run for remote users on the remote

system. It will be started as a child of DSDAD and will await a remote connection request from that

process. It will take the command connection from DSDAD after the request has been received from the

network. It will then accept FrP commands across the connection, act accordingly, and send a reply to

the command. If any of those commands require data transfer, it will oPen a data connection, transfer

the data., and eventually close the data connection. -

Interface: The externals for the server are three:

1) NetIPC intrinsics will be used for communication through the network. The same procedures as

outlined in the user module will be used here as well for connection opening, sending and receiving

data across both connections, and connection closing. One other intrinsic, IPCGET, will also be used

to accept the command connection when DSDAD has received a server request.

2) DSDAD will serve as the original parent of the server module. It will create the server when a

connection request arrives to port 21 on which it should be listening, if the system manager has

allowed the service to be started. It and the server will communicate to each other using port

procedures. Once the server module has taken the command connection and adopted itself under

the session which it will request, it will no longer be a child of DSDAD. Once the remote user has

requested that the command connection be closed, the server will adopt itself back under DSDAD.

All communications with DSDAD will be through NS port messages.

3) MPE will also be a major interface for the FTP server. It will include session creation and deletion,

MPE commands (e. g., rename and purge), and file system intrinsics. Each of these will be addressed

in the following subsections.

Initialize all variables and data structures

Create port for communication with DSDAD

Enter name of server (FTPSERxx) in Port Dictionary

* HP Confidential "*
~-10

Module Design

Load keywords from DDN catalog file

Call Server Open to await REMCNCTREQ from DSDAD

Call Server Command Monitor

When Command Monitor returns

Close command connection
Send DSDAD a SERVERDONE message for termination

Data~tructures: The server will have a connection record similar to that of the user module with a few

changes. This will be shared by all transforms. These include:

1) Command VC descriptor
2) Command VC source IP and port address

3) Command connection state

4) Data VC descriptor
5) Data VC destination IP address and port

6) Data connection state
7) Parameter values for Type, Structure, and Mode commands

g) Internal error number
9) Last FTP reply error code
10) Last FTP command received

11) Local user process id number

12) Rename from file name
13) User session ID number
14) Pseudo-terminalldev
15) FTP_ALLO parameters

This record can be altered by all of the following transforms. There will also be a global array to hold the

command line.

* HP Confidential *
3-11

Module Design

3.2.1 Diagram 0

DIAGRAM 0

Each of the seven transforms above will be addressed separately in this section. They roughly correspond

to the seven transforms outlined for the user module in its Diagram O.

3.2. 1. 1 Server Command Monitor (1)

Function: This transform is similar to the command interpreter of the user module. Its commands,

however, come from the command connection and consist of FTP commands rather than user commands.

It will determine which of the transforms numbered 3-7 will be called to handle the request. It will

always be the transform receiving requests from the command connection. Transform 2, Server Open, is

-i- HP Confidential "*

Module Design

not called by the Command Monitor since it is not designed to handle any particular FTP command. It is
only used to handle communication with DSDAD in setting up the command connection.

Interface: The server external interface will bethrough NetlPC intrinsics as outlined earlier. It will only
communicate over the command connection and, in no circumstances, over the data connection.

Issue now~it IPCRECV in.order to receive an FTP_COMMAND
If Telnet negotiation then refuse request
If not a valid or supported command then reject
Else call transform 3-7 based on FTP_COMMAND
Continue after transforms return until FTP_QUIT processed

Data-litructures: No private major variables will be needed by this module. It will have no input or
output parameters. It will have the FTP commands hard-coded unlike the user commands) because they
are set by the standard and should not be changed by customers.

3.2.1.2 Server Open (2)

Function: This transform will receive the command connection from DSDAD in preparation for the
server monitor module. It will communicate with DSDAD; the server command monitor will
communicate with the network. This was done to isolate these two functions.

Interface: Port procedures will be used to communicate with DSDAD through NS port messages. The
NetIPC intrinsic, IPCGET, will be used to get the connection being given away by DSDAD.

Wait for REMCNCTREQ port message from DSDAD
Get command connection based upon give name in port message
Update connection record command connection VC, state) source IP and port
Send DSDAD CNCTRECVED port message
Go to Server Command Monitor (I)

Data-litructures: There are no private major variables for this transform. It will update parts of the
connection record as outlined above.

3.2. 1.3 Server Close (3)

Function: This transform will be called by the command monitor whenever an FTP_QUIT command is
received from a user process. It will handle the request as stated in the Mil-Std) i.e. the command
connection will not be closed if file transfer is taking place. When the module is ready to act upon the
request to close the command connection, it will adopt itself back under DSDAD) kill the local session, and
notify DSDAD that it has finished its function.

Interface: NetlPC IPCSEND will be used to transmit the appropriate FTP replies and messages. NS
session handling procedures will be used as well as port messages. MPE will be requested to stop the user
session via the ABORTSESS intrinsic.

If file transfer in progress then update connection record command state

* HP Confidential *
3-13

Module Design

Else
Close data connection if open
Send FTP_REPLY for FrP_QUIT command

Close command connection gracefully

Adopt server back under DSDAD process

Call Abortsess to destroy session
Deallocate null pseudo-terminal

Send SERVERDONE port message to DSDAD

Update connection record

Data~tructures: No private variables will be used. It will use the connection record and update it.

3.2.1.4 Server User (4)

Function: Server User will handle the FfP_ USER command. It is this transforms's responsibility to have

a user session created on the 3000. The user_name string passed with the user should have enough

information to create a session on the 3000. The only thing that can be omitted are passwords for

account, group, and/or user. Once the session has been successfully created, the transform will adopt the

server into that session.

Interface: NetIPC intrinisics will be used to send replies to the user program. The transform must have

some method of getting a null pseudo-terminal through Telnet (these details have not been designed by

the Telnet engineer). The MPE procedure DEVLOGON will be used to create the session. Any requests

for passwords will be processed and requested from the user as per the Mil-Std. ADOPT' procedure will

be used to change the parent of the FrP server.

If process is not already logged on then

Get a null pseudo-terminal from Telnet

Else
Adopt back under DSDAD
Abortsess existing user process

Call Devlogon with USER_NAME

If passwords required then send the FrP_REPLY and string to specify which password

Receive FrP_PASS and call Devlogon

Adopt server under new user process from DSDAD

Send completion FrP_REPLY

Update connection record

Data~tructures: There will be some local variables for this transform, which will not be needed later,

including password strings, etc. Parts of the connection record will be altered, especially the command

connection state, pseudo-terminalldev number, and user session id number.

3. 2. 1. 5 Server File (5)

Function: This transform will handle those commands that do not require file transfer over the data

connection or those already covered. Those include setting the type, structure, and mode parameters as

well as some commands that will interface to MPE/file system.

Interface: The interface with the network will be through NetIPC intrinsics over the command

connection. The MPE COMMAND intrinsic will be used to perform the renaming of a file and the

purging of a local file.

7: HP Confidential *
3-14

Module Design

If FTP_RNFR command then Update connection record

If FTP_RNTO command then
Check that preceding command was FTP_RNFR

Call Command intrinsic using Rename with FILE_NAMEs

If FTP_DELE command then call Command intrinsic using Purge command with FILE_NAME

If FrP_TYPE, FfP_STRU, or FTP_MODE command then update connection record if parameter is

supported
If FrP_ALLO command then update connection record

If FTP_PORT then update connection record

Send FTP_REPLY

Data~tructures: There will be no internal variables. The connection record state, rename from file name,

reply code, etc. will be altered.

3.2.1.6 Server Abort (6)

Function: This transform will mark the connection record in order to signal the following transform that

the user has requested that the data transfer be halted. The record will be checked before each IPC

transfer on the data connection.

Interface: The only interface for this transform IS to send an FTP reply back for the FTP ABOR

command.

If data transfer in progress then mark abort in connection record data state

Send FTP_REPLY

Data Structures: There will be no internal variables for this transform. It may alter the connection

record as noted above.

3.2.1.7 Server Data (7)

There will be a brief description of this tranform. Most of the discussion will be found in the following

discussion under Diagram 7.

Function: All data transfer requests and the resulting file transfers will be performed here within.

Interface: Both the command and data connections will be used via NetIPC intrinsics. File system

. intrinsics will also be used (see discussion under Interface Design section).

Receive file transfer request
Open data connection if not already opened

Open file and transfer
Close data connection if Hfile" structure

Close file

Data Structures: These will be discussed in the following section.

"* HP Confidential "*
3-15

Module Design

3.2.2 Diagram 7

DIRGRRM 7

As mentioned in the previous section the Server Data transform has more than one part. The two in

question are shown above. One is in charge of the command connection and the other of the data

connection. Both will interface to MPE and file system.

3.2.2.1 Data Command Interpreter (7.1)

Function: Transform 7. I will be called by the Server Command Monitor for any of the data sequence

commands requiring data transfer over a data connection. It will analyze the command and set up the

necessary steps to complete it It will open the files, request transform 7.2 to transfer the file in question,

and close the file. It may open and close the data connection. It will also ask MPE to make a list of files

in a temporary file for transfer to the user module.

Interface: There are no input or output parameters for this transform. Its main interface will be with

the following module, 7.2. It will also be receiving and sending replies through NetIPC intrinsics over the

command connection only. It will use the MPE intrinsic, COMMAND, with the LISTF command. It will

provide a temporary file name for the optionallistfile. In that way the following module can transfer it

as it would any other file. It will also use NS buffer management routines (see Interface Design section

following this one).

If FTP_NLST then call Command using Listf with FILE_NAME and listfile

FOPEN file name or temporary listfile

If retrieve command and file non-existant then

Send FTP_REPLY
Return from transform

If file non-existant then create file using parameters from connection record

Establish buffer space if not already done

Open data connection with source TCP port and destination IP/port indicated if not already open

-.t HP Confidential *
'l_tf...

Module Design

Send intermediary FTP_REPLY
Call Data Control (7.2)
Close local file
Send final FTP_REPLY

Data Structures: The transform will use the connection record for establishing the data connection. Some

internal, unshared variables will be used to set up a call socket and destination descriptors.

3.2.2.2 Data Control (7.2)

Function: It will supervise the file transfer over the data connection. It will not use the command

connection. It will supervise the transfer, transform the data if necessary, and abort the data transfer if

necessary.

Interface: It will use NetIPC intrinsics to send and receive the data depending upon the direction of

transfer. It will also use NS buffer management procedures to handle the buffering of file records. File

system intrinsics will be used to read records to and from the local file. The input parameters to this

module will be the file number for the file involved in this transfer, the transfer type (i.e., store, retrieve,

append), and a variable in which to return the status of the transfer back to module 7. 1.

If abort data state then return with error condition

If retrieve type then
Read record
If type parameter is File then add <CRLF> to end of record

Else add Record control bytes for EOR and EOF

Send buffer to remote when full

Else
Issue IPCRECV for file data
Transform data to 3000 file structure

Write record to file
Continue until EOF or data connection closed from remote

Data Structures: A few local variables will be necessary. Other than that, the connection record will be

used.

* HP Confidential *
3-17

I.-..--IN_T_ER_F_A_C_E_D_E_S_IG_N I~

There are three major interfaces which will be discussed in this section. They are:

1) DDN Catalog
2) NS Buffer Management Routines
3) File System

4.1 DDN CATALOG

There will be several message sets in the catalog file for all DDN services (SMTP, FrP, and Telnet). FTP
will require 3 message sets. These include:

1) User keywords, delimitors, configurable parameters, control Y response/action, and user module error
messages

2) User module help facility text
3) Server module reply messages

The catalog file will be opened by both processes. The user module will load the keywords, delimitors, and
control Y information into a search dictionary in the process stack. These will be used to parse the FTP
user subsystem commands as well as the control Y response. The configurable parameters will include
number and size of data buffers; this will allow for changing easily during testing and for optimizing
performance at customer sites.

The help set will only be accessed when the user asks for it. The GENMESSAGE intrinsic will be used to
read the text from the catalog file. The same procedure will be used for FTP error messages for the user
module.

The server module will have the 3 digit reply codes "hard-coded into the body of the program. The
accompanying ASCII string message will be pulled from the catalog file when needed.

MPE error messages will be taken from the file CATALOG. PUB. SYS based upon the CIERROR number.
File system error messages will be returned from the FERRMSG intrinsic after FCHECK has been called.

The catalog file will be closed before termination of either the user or server modules.

4.2 NS BUFFER MANAGEMENT

NS buffer management routines will be present on systems with DDN services. These routines are
discussed in NSL3000-9vervie~Intern~MaintenanceSpecifications. It is not our object to discuss these
in this document. We wish to limit ourselves to discussion of buffer space usage.

Buffers will be located in the DL-DB area of the user or server stack. An extra data segment buffer will
be avoided. The buffer space will include buffers for IPCRECV and IPCSEND as well as for data
transformations necessary before the send or after the receive (FTP Mil-Std, p. 12-13,15). The latter will
consist of one buffer based upon the record size of the file in question. If the record siz.e is unknown, as

"* HP Confidential "*
4-1

Interface Design

may often be the case, certain assumptions will have to be made to compensate for the shortcomings of the
standard. The discussion of file system interface follows.

As far as concerns the buffer space for the IPC intrinsics, there will be several factors to determine the
size and number. The number and size of send buffers will be determined by configured parameters in
the catalog file. Defaults will be specified in the code in case they are missing, they will be 2 for the
number of outstanding sends and 4096 bytes for the size of each buffer. These two values may be
changed before product release, if it is determined that performance would improve.

The receive buffers are a different matter since only one IPCRECV can be outstanding at one time in
nowait mode. The same buffer size as above will be used. The same number of buffers will also be used.
This will allow the processes to post another receive before emptying the buffer from the previous one. If
it is determined that performance will not be improved by this method, the number of buffers will be
reduced to the fixed number of 1.

4.3 FILE SYSTEM

FrP was designed to be a file transfer program between heterogenous systems as well as homogenous. In
consideration of different implementations of systems' file systems, the Mil-Std has allowed little
opportunity for one system to describe the file which is to be transferred. The NS version of NFT follows
an HP internal standard which allows one HP system to describe the file in question in great detail
Among these are record size, file size, file code, file disposition, etc. None of these are required for
minimum implementation of FTP, and, therefore, we can not assume that all implementations will have
them. Indeed, there is no mechanism in the standard for passing any of this information save the file and
record size. As a consequence several assumptions will have to be made about the file in advance. These
assumptions can be overwritten by the user via the MPE BUILD command, if it is seen that the
assumptions are not adequate for a particular file. The rest of this section will not direct itself to the
discussion about the interface with the file system and the intrinsics that will be used for file transfer.
That was discussed in Section 3 where applicable. We shall devote ourselves to discussing the assumptions
and the impact that they will have on the program and the 3000.

4.3.1 File Structure

The Mil-Std has made allowances for three types of file structures. Those are 1) file, 2) record, and 3)
page. File and Record are part of the minimal implementation and are supported by this product. The
3000 file structure is based upon records. We must, however, be able to accept files that are not
structured into records. Both the user and server modules will have the capability to transform records
into a "fileH structure and to reverse the process. End of records will be changed into <CRLF> and the
reverse will be done upon receipt of file data. EOF will be done by closing the data connection.
Whenever the file structure is "recordll based, which is the case of 3000-3000 transfer, a control byte
followed by either a EOR or EOF marker will be inserted into the record before transmission. The
control byte and marker will be removed before the file is stored. The transition should be reversable,
that is a data stored with either record or file structure can be retrieved, sent to the original producer, and
match the original file, although the file structure may be different.

File structure will also affect the buffering and data transformations. File structure requires only a
<CRLF> placed at the end of the record. For that reason we sha.ll only use the send buffer directly for
the FREAD target. If it is determined that the next record will not fit into the remaining space of the
send buffer, the FREAD target will be a record-size buffer and the remaining send buffer filled from the
beginning of the record data. The rest of the record will be moved into the next send buffer before the
next file read if one is available. Upon receiving data into the receive buffer, a scan will be done for the

7: HP Confidential *
4-2

Interface Design

<CRLF>, the preceding data written to the file by a FWRITE, and skip the <CRLF> to the next record.

An extra record-size buffer will be used to hold any partial records that may be received in one

IPCRECV. If no <CRLF> is discovered before the record-size buffer is filled, the data will be written as

one record.

A scan must be done of the file data in record structure. For that reason a record-size buffer will be used

for the FREAD. If a data byte is the same as a control byte, it and the preceding data will be moved to

the send buffer, the control byte added to the send buffer, and the scan continues. If the EOR or EOF is

encountered, the preceding data will be moved to the send buffer and the control byte/marker sequence

added. Data in the receive buffer may not be moved to the record-size buffer before the FWRITE, if a

double control byte is not encountered. The record-size buffer will be used for a split record as

mentioned above. If the EOR is not encountered before the record buffer is filled, the data will be

written.

It has been decided to not allow the user to set the file structure parameter. The fact that the 3000 file

system is based upon a record format can not be changed. The user module will always send a U5TRU R II

command to the remote server. Although both record and file are required for all implementations, this

author has seen some implementations which will not accept this command. For that reason this

implementation will be designed, as mentioned above~ to transform that data within the user module if

Record is refused by the server. There is no mechanism within the standard for the server process to

notify the user process of the file structure, if it is to be the producer in the transaction. Therefore we

will design the server module to perform both transformations as well.

4.3.2 File Mode

It has been decided to support only the STREAM type of transmission mode. For that reason the user will

not have the option of setting it to different modes. All requests for other options will be refused by the

server. The ramifications of this upon the data transfer and the file structure have been discussed above.

The user module will have the capability to send a MODE command, but there will be no opportunity

since stream mode is the default. It will be included in the design for completeness in case of future

enhancements.

4.3.3 File Type

Two file types will be supported by this implementation, ASCII and binary. We have made the decision to

allow the user to set this parameter. This has been done only so the user process might have at least some

information about the file as it exists on the remote server. Like so many of the file commands, this one

is only allowed from the user process to the server, which does not allow the user to have any idea about

the remote file it may be receiving. The user will be encouraged to set this parameter in case of

Iemote-to':'local transfer, in case the default) ASCII) should not be used. For local-to-remote files) the

user module will use the FGETINFO intrinsic to determine whether the file is ASCII or binary and send a

TYPE command, if it is not the current parameter value.

4.3.4 FOPEN Assumptions

Since we may have little information important for accepting a file from a remote file system, certain

assumptions or defaults must be used. The standard does specify that an existing file must be overwritten

if it does exist. That will provide the user with a mechanism for setting many of the parameter

specifications as set in the FOPEN intrinsic. The BUILD command may be the best method of

accomplishing this.

*" HP Confidential *"
4-3

Interface Design

The following subsections will discuss this for user as source, user as target, server as source, and server as

target. This is necessary because the relationship between the user and server is not a balanced one. We

will then address the consequences of the append command for the server process.

4.3.4.1 USER AS SOURCE. This is the best of the four options. The user process will have information

about the file and the ability to pass some of that information on to the server. The file will be opened

with the name specified by the user and foptions=%2 (old permanent or temporary file). If the file does

not exist or can not be accessed, an error condition will be reached. FGETINFO intrinsic will then be

called with the file number to ascertain the following:

1) FOPTIONS - (13: 1) will tell us if the file is ASCII or binary. If the current TYPE parameter is not

set to that of the file, a new TYPE command will be sent to the server process.

2) FLIMIT - The maximum number of records which could exist in this file. This with the following

information will be used to calculate the space that should be allocated for this file.

3) RECSIZE - The size of each record (positive for words, negative for bytes). This and the preceding

parameter can be used to calculate the first parameter for an ALLO command.

If recsize is positive: RECSIZE * 2 * FLIMIT

If recsize is negative: -(RECSIZE) * FLIMIT .

The second parameter of the ALLO command will be RECSIZE, converted to positive number of

bytes. RECSIZE will also be used to calculate the size of the record buffer, discussed under buffer

management above, for data target in calls to FREAD.

The source file will be closed and unchanged.

4.3.4.2 USER AS TARGET. Unfortunately the remote server process has no way to change the STRU or

TYPE parameters and can not pass any information similar to the ALLO command. The STRU will be set

to Record by the 3000 user process. The type parameter will be left as is since we have no way to know

what the type will be. The user should be made aware of the advantage of setting the type in advance.

FOPEN will be called using the target file name, or the source file name if the target name is to default to

that. The foptions will be %3 to ascertain if the file already exists. If it does then the existant file will be

overwritten without changing any of the other parameters that were set when the file was created.

Aoptions will be %101 to claim exclusive access and to write over any data which may already be in the

file. FGETINFO will be called to return the RECSIZE parameter. That information will be used as

above to determine the size of the record buffer.

If the previous FOPEN returns an error code indicating that the file ,is non-existant, a second FOPEN will

be done to create the file. The following parameters will be specified:

1) FORMALDESIGNATOR - The target file name or the source file name if the optional target name

was not included.
2) FOPTIONS - This parameter will vary according to the TYPE parameter set in the connection

record. If the parameter is ASCII, foption will be %104; if binary, %100. The other bit that is set in

both cases is the record format specifications. If the user process has no information about the file it

will be receiving, it will open the file using variable-length records. The actual useful data size of

the record will be determined by the FWRITE's to the file. This mechanism is the best option

available to us.
3) AOPTIONS - This parameter will be %101. The first bit opens the file exclusively for this process.

That will be done to insure that no other process is accessing the file since we must overwrite the

information that is in the file before accepting the new file data. The second bit is write access

1: HP Confidential 1:

Interface Design

only. This will purge the current contents of the file, set EOF to 0, record pointer to 0, and accept

only writes to the file.
4) RECSIZE - This value will be determined by the TYPE parameter. If the file type is ASCII, the

record size will be 256 bytes. If the file type is binary, it will be 128 words. Although the record

size is the same in both cases, binary files are always expressed in words and ascii files in bytes.

The rest of the FOPEN parameters will not be specified in the creation of the file. All the defaults will

be in effect, e. g., filecode=O, filesize=l 023.

4.3.4.3 SERVER AS SOURCE. Although the server will have as much information about its file as the

user process does when it is the producer, there is no mechanism in FTP for the server to share that

information with the user file system. FOPEN will be used with source file name and foption %3. If the

file is non-existant or unavailable, it will be closed and a negative reply will be sent the user. FGETINFO

will be called to determine the record size of the file; this will be used to determine the size of the record

buffer.

4.3.4.4 SERVER AS TARGET. The first thing to determine is whether the file exists before the data

transfer commences. FOPEN will be called with the specified file name, foption=%3, aoption=%101. If

the file exists, it will simply be overwritten. FGETINFO will be called to extract the record size for

record buffer allocation.

If the file does not exist, certain different parameters and commands can determine the way in which we

will want to open the file. The TYPE parameter will tell us if the file will be ASCII or binary.

STRUCTURE a.nd MODE parameters will not influence the way in which the file is created, only in the

transformation we must do before writing to the file. The server mayor may not have been sent an

ALLO command by the user process. We shall examine these different possibilities in the following

parameter discussion.

1) FORMALDESIGNATOR - The file name sent with the store command.

2) FOPTIONS - %100 for binary files and %104 for ASCII. See "User as Targetll above for details.

3) AOPTIONS - %101 (see above).

4) RECSIZE - 128 words or 256 bytes will be the default (see above). If an ALLO command preceded

the STORE command, the record size parameter will be used for this parameter. The file will still

remain in variable-length format.

5) FILESIZE - This can only be specified when an ALLO command has preceded the STORE command.

This will be computed in reverse of the formula above. Blockfactor of I will be assumed as well.

The other FOPEN parameters will use the defaults provided by the file system.

4.3.4.5 SERVER APPEND. Append file actions are very similar to the those taken for the store

command. If the file does not exist before the transfer, the actions and parameters are exactly the same as

above, basically an append to a non-existant file is the same as a store to that file. If the file does exist,

aoptions will change to %103 (append access only).

* HP Confidential *
4-5

·!IMPLEMENTATION PLAN

5.1 CODING CONVENTIONS

I~

Pascal will be the language used for the FfP modules. In-code comments will constitute about 40-50% of
the final finished source code. As mentioned in other documents, all 3000-specific type instructions will
be avoided in order to provide easier portability of the finished product. Standard ANSI Pascal will be
used as much as possible, avoiding the Pascal/3000 adaptations. Each transform will be well-documented
at the beginning with global data structures used and/or changed, input and output parameters, and a
discussion or overview of the transform's function within the program. Further comments will be added
within the transforms where further elucidation is considered important.

5.2 DESIGN ORDER

The basic philosophy behind the order of design will be to divide the user process into manageable parts
based on the Data Flow Diagrams starting at the top and working down to lower sub-modules. Upon the
completion of one part the corresponding part of the server process will be developed, if there is one. In
this way the interplay of the parts can be tested before the whole of one process is finished. The
following list gives the order in which the transforms will be developed using lI(Ult to signify User
Transform 1.

1) User interface and initialization of user process (U 1)
2) Outer block of server (51)
3) FIP commands for OPening and closing connections (U2&U3)
4) Server processing of opening and closing connections and with proper reply codes (52&53)
5) FTP user creation command (U5)
6) Session creation and deletion for server process (54)
7) Other FTP commands which will not require data transfer across the data connection (U6)
8) 5erver processing of commands from 7) above (55)
9) User commands involving eventual data transfer including file system interface (U7)
10) Server handling of data transfer requests and file system interface (S7)
11) Server handling of data transfer abort (S6)
12) User's help facility (U4)

5.3 DESIGN SCHEDULE

The schedule is based upon the above 12 parts of the design order.

1) 2/3/86 - 2/17
2) 2/17 - 3/3
3) 3/3 - 3/17
4)3/17-3/31
5) 3/31 - 4/14

* HP Confidential *
5-1

Implementation Plan

6)4/14-4/28
7) 4/28 - 5/5
8) sis - S/19
9) S/19 - 6/9
10) 6/9 - 7/14
11) 7/14 - 7/28
12) 7/28 - 8/4

*" HP Confidential *"
~-7

_US_E_R_D_A_T_A_D_IC_T_IO_N_A_R_Y ---'I~

COMMAND =[OPEN_COMMAND I CLOSE_COMMAND I HELP_COMMAND I USER_COMMAND
I FILE_COMMAND I DATA_COMMAND]

OPEN_COMMAND =ltOPENlt + HOST_NAME

USER_COMMAND ="USER" + USER_NAME

CLOSE_COMMAND = "CLOSElt IltEXIT'

HELP_COMMAND =ltHELplt

FILE_COMMAND =[TYPE_COMMAND I RENAME_COMMAND I PURGE_COMMAND]

DATA_COMMAND [LISTF_COMMAND
APPEND_COMMAND]

TYPE_COMMAND = "TYPElt + ["ASCnltl"BINARY"]

PUT_COMMAND

RENAME_COMMAND = "RENAME" + FILE_NAME + "," + FILE_NAME

PURGE_COMMAND = ltpURGE" + FILE_NAME

LISTF_COMMAND ="LISTP' (+ FILE_NAME)

HOST_NAME = l{alpha} (+ O{alpha I digit I"." Ilt-"}61 + l{alpha I digit}~

FTP_COMMAND [OPEN_SEQUENCE I QUIT_SEQUENCE
FILE_SEQUENCE I DATA_SEQUENCE I FrP_ABOR]

OPEN_SEQUENCE = IPC connection

QUIT_SEQUENCE =(FTP_QUIT) + IPC shutdown

USER_SEQUENCE = FTP_USER (+ FrP_PASS) (+ FTP_ACCT)

USER_SEQUENCE

FILE_SEQUENCE = [FTP_DELE I FTP_RENAME I FTP_STRU I FTP_MODE I FTP_TYPE]

DATA_SEQUENCE = [FTP_STOR I FrP_RETR FrP_APPE I FTP_NLST] + (FTP_PORT) +
(FTP_ALLO) + (FTP_NOOP)

FTP_USER = "USER" + USER_NA~1E

FTP_PASS ="PASS" + PASS\VORD

* HP Confidential *
A-I

User Data Dictionary

FIP_ACCT ="ACCT' + ACCOUNT_NAME

FrP_DELE =IlDELEIl + FILE_NAME

FTP_RENAME = FTP_RNFR + FTP_RNTO

FrP_RNTO ="RNTOII + FILE_NAME

FTP_STRU ="STRU' + [IlP'IIlRIl]

FrP_MODE = "MODE S"

FTP_TYPE = ''TYPE'' + ["A" I "I"]

FrP_STOR ="STOR" + FILE_NAME

FrP_RETR = IIRETR" + FILE_NAME

FIP_APPE = "APPE" + FILE_NAME

FrP_NLST ="NLST' + (FILE_NAME)

TIP_PORT = "PORT' + IP_ADDRESS + PORT_NUMBER

FTP_ALLO = "ALLO" + integer (+" R II + integer)

FTP_ABOR = "ABOR"

FIP_NOOP = "NOOP"

FfP_QUIT = "QUIT'

IP_ADDRESS = 4{O.. 255}

PORT_NUMBER = 1.. 64K

PASSWORD = 1{ascii printable characters}*

ACCOUNT_NAME = 1{ascii printable characters}*

FILE_NAME = 1{ascii printable characters}*"

USER_NAME = I{ascii printable characters}*"

FTP_REPLY = I{1.. 5} + 1{O.. 5} + l{O.. 9} + ASCII_STRING

ASCII_STRING = 128 printable ASCII characters, except <CR> and <LF>

*" HP Confidential *"
A-2

_SE_R_V_E_R_D_A_T_A_D_I_C_TI_O_N_A_RY I~

FrP_COMMAND [OPEN_SEQUENCE I CLOSE_SEQUENCE I USER_SEQUENCE
FILE_SEQUENCE I DATA_SEQUENCE I QUIT_SEQUENCE I FrP_ABOR]

OPEN_SEQUENCE = IPC connection

QUIT_SEQUENCE =FfP_QUIT + IPC shutdown

CLOSE_SEQUENCE = IPC shutdown .

USER_SEQUENCE = FfP_USER + (FfP_PASS)

FILE_SEQUENCE = [FfP_DELE I FTP_RENAME I FTP_STRU I FTP_MODE t FTP_TYPE
FfP_PORT t FTP_ALLO]

DATA_SEQUENCE = [FfP_STOR I FTP_RETR I FTP_APPE I FTP_NLSTl + (FTP_ABOR) +
(FTP_NOOP)

FTP_USER = "USER" + USER_NAME

FTP_PASS ="PASS" + PASSWORD

FTP_RENAME = FfP_RNFR + FrP_RNTO

FTP_RNFR == "RNFR" + FILE_NAME

FTP_MODE = "MODE S"

FTP_TYPE ="TYPE" + ["A" + ("N") IITI]

FTP_STOR == "STOR" + FILE_NAME

FTP_APPE = "APPE" + FILE_NAME

FTP_NLST ="NLSTI + (FILE_NAME)

FTP_PORT = "PORT I + IP_ADDRESS + PORT_NUMBER

FTP_ALLO = "ALLO" + integer + IlRIl + integer

7;: HP Confidential 7;:

B-1

Server Data Dictionary

IP_ADDRESS = 4{G.• 255}

PORT_NUMBER = {1..64K}

FfP_REPLY =HI.. 5} + l{G.. 5} + l{G.. 9} + ASCII_STRING

ASCII_STRING = 128 printable ASCII characters, except <CR> and <LF>

PASSWORD = 1{ascii printable characters} 8

FILE_NAME = 1{ascii printable characters}26

USER_NAME = l{ascii printable characters}*

* HP Confidential *
B-2

Table of Contents

Section 1
PRODUCT IDENTIFICATION

Section 2
DESIGN OVERVIEW

2. 1 Design Approach ~ 2-1

2. 1. 1 DDN Model
2-1

2. 1.2 FrP Model
2-2

2. 2 Overview of Operation
2- 3

2.3 Major Modules•................. 2- 5

2.3. 1 User FrP Module
2- 5

2. 3. 2 Server FrP Module . 2- 5

2.4 Major Data Structures.
2-6

2. 5 Major Interfaces . 2-6

2. 6 Performance Considerations•..................... 2-7

2. 7 Localization Considerations•...................... 2-7

Section 3
MODULE DESIGN

3. 1 FrP User Module
3-1

3.1.1 DiagramO................................•.•..•••.••.................... 3-3

3. 1. 1. 1 Command Interpreter (1)•..••.•...•..•...•..••.. 3-4

3. 1.1.2 User Open (2)................................•................... 3-4

3. 1. 1. 3 User Close (3)
3-4

3.1.1.4 User Help (4)
3-5

3. 1. 1. 5 User User (5)
3-5

3. 1. 1.6 User File (6)
3-6

3.1.1.7 User Data (7)
3-6

3.1.2 Diagram 7
3-7

3.1.2. 1 Data Command Interpreter (7. 1) •.•.•.•••••••.••.••••••••••••..•••• '..•• 3-7

3. 1. 2.2 Data Control (7.2)
3-8

3. 1. 2.3 Control Y Handler (7.3)
3-9

3. 2 Server Module. 3- 10

3. 2. 1 Diagram O. 3-12

3.2. 1. 1 Server Command Monitor (0 3-12

3. 2. 1. 2 Server Open (2) . 3-1 3

3.2. 1. 3 Server Close (3) . 3-13

3.2. 1. 4 Server User (4). 3-14

3.2. 1. 5 Server File (5) . 3-14

3.2.1.6 Server Abort (6)
3-15

3.2. 1. 7 Server Data (7). 3-15

3. 2. 2 Diagram 7. 3- 16

3.2.2. 1 Data Command Interpreter (7. 1) • • 3-16

3.2.2.2 Data Control (7.2)
3-17

Section 4

Table of Contents

INTERFACE DESIGN

4. 1 DON Catalog
4-1

4. 2 NS Buffer Management. 4-1

4. 3 File System. 4- 2

4. 3. 1 File Structure. 4-2

4. 3. 2 File Mode
4- 3

4. 3. 3 File Type. • . 4- 3

4. 3. 4 FOPEN Assumptions
4- 3

4. 3. 4. 1 User as Source••.•........•...................... 4-4

4. 3. 4. 1 User as Target
4-4

4. 3. 4. 2 Server as Source. 4- 5

4. 3. 4. 3 Server as Target. • . 4- 5

4. 3. 4. 4 Server Append. 4- 5

Section 5
IMPLEMENTATION PLAN

5. 1 Coding Conventions ~ . 5-1

5. 2 Design Order . 5- 1

5. 3 Design Schedule. . .. 5-1

Appendix A
USER DATA DICTIONARY

Appendix B
SERVER DATA DICTIONARY

** END OF FORMATfING **
TDP/3000 (A.03.11) HP36578 Formatter
MON, FEB 10,1986, 6:30 PM
NO ERRORS
INPUT =ID.FfP.DDN

. OUTPUT = *HP2680

#J183
#J183
IJ183

#02621
102621
#02621

III

I<

I<

10, DAVID.DDN SLP
10, DAVID.DDN SLP
10, DAVID.DDN SLP

III MON, FEB la, 1986,
III MON, FEB la, 1986,
I< MON, FEB la, 1986,

6 58 PM
6 58 PM
6 58 PM

#J183
#J183
#J183

#02621
#02621
102621

lit

lit

Ie

ID, DAVID.DDN SLP
10, DAVID.DDN SLP
10, DAVID.DDN SLP

ll: MON, FEB la, 1986,
I< MON, FEB la, 1986,
Ie MON, FEB la, 1986,

6 58 PM
6 58 PM
6 58 PM

#J183 tt02621
#J183; #02621
#J183; 102621

Ie

I<

I<

ID, DAVID.DDN SLP
ID, DAVID.DDN SLP
10, DAVID.DDN SLP

lit MON, FEB la, 1986,
I< MON, FEB la, 1986,
I< MON, FEB la, 1986,

6:58 PM
6'58 PM
6:58 PM

#J183
#J183
#J183

#02621
#02621
#02621

I<

I<

ll:

10, DAVID.DDN SLP
10, DAVID.DDN SLP
10, DAVID.DDN SLP

Ie MON, FEB la, 1986,
I< MON, FEB la, 1986,
ll: MON, FEB la, 1986,

6 58 PM
6 58 PM
6 58 PM

	Section 1 Product Identification
	Section 2 Design Overview
	Section 3 Module Design
	Section 4 Interface Design
	Section 5 Implementation Plan
	Appendix A User Data Dictionary
	Appendix B Server Data Dictionary
	Table of Contents

