[AFAFARAGAGANAGALARAGAFARALAY
WWWWWWWWWWwWwWwww

CONTENTS

Intrinsic Interface Definitions.........c.iiiniiiiiiniinunnenanss 2
B € o o - | N 2
2 IPCONAME . .ttt ittt it ettt e e e e S
3 IPCNAMERARSE . o ¢t ittt ittt ittt tianaeneetteneoaeannanns 7
4 TPCLOOKUD . ¢ it ttieteeiteei ettt ieineasueeenosenesnonasennenns 8
8 IPCRECVCN. .ttt vttt ittt ittt ittt ittt neneaans 10
T IPCCONNME T . ¢ttt ttet ittt iee e iattenaeeeaaenaeenaranennenans 14
Lo o 0 T P 19
10 IPCRECV . .ttt ittt ittt ittt ittt et e e 22
B € Y 217
B s € - P 29
13 IPCCONTROL.....vvvirinenanneannnns A e e 30
18 IPCSHUTDOWN. & ottt ittt ettt it ettt e e e cneaimaennaennnn 36
19 IPCDES . o ittt ittt i et e i 39

Wednesday, Rpril 8, 1987

3.3 Intrinsic Interface Definitions
3.3.1 1IPCCreate
Function:

Creates a socket.

Declaration:
PROCEDURE IPCCreate (socket_kind : integer;
protocol : integer;
var flags : flags_type;
var opt : opt_type;
var sd . : descriptor_type;
var result ¢ integer);

socket_kind (imput)
Defines the type of socket to be created. Valid types are:
3 - call
4 - pxp request (privileged users only)
5 - pxp reply (privileged users only)
Datagrams are not supported.
protocol (input)
Defines the protocol module the user will be interfacing to. If this

value is zero, a default protocol will be used. For call sockets, the
default protocol is TCP. Supported values are:

2 - X.25
4 - TCP
6 - HP-PXP
13 - 0SI'SS

For OSI'SS, TCP and X25 tte only allowed socket type is cait. Any others
will produce a sockerr 10

flags (input)

.
32 bits, each specifying an optional capability. The only flag which is
currently supported is:

flags [protect J (bit 0, imput)
If this bit is set, ther tne socket will te privileged

opt (input parameter)

Array of options, constructed with ADDOPT. The options currently allowed
are:

max_msg_size (code=1, len= 2, 2 byte integer) (inmput)

This option defines the maximum expected message size. This opt can
only be used with datagram, pxp request, or pxp reply sockets This
optiori does not necessarily limit the user to the specified = -e. it
is intended to be used by IPC and/or the protocol module in
determining how much resources should be allocated i 3 use ven
protocol may or may not take advantage of ftris ‘fo. - 0N

max_conn_reqs que: v len=2, 2 by. .rteger input)
Used to specilty the .aximum number of unreceived connection requests
tha* - be queued to a call socket. Valid only for connection
o+ - =3 protocols.

max_mesgs_queue_in (code=7, len=2, 2 byte integer) (input)

For datagram or [.-p sockets. This parameter specifies the numue. of
unreceived messages the user expects to be queue” to this socket at
any one time. This does not necessarily limit the user to this
number; it is intended to be used by IPC and/or the protocol module in
determining what resources need to be allocated for the user.

pxp_ietry_count ode=9, len=2, 2 byte integer) (input)

Specifies the number of retries for a pxp request socket.

pxp_timeout_val (code=10, len=2, 2 byte array) (input)

Specifies the timeout value for pxp request sockets.

protocol_rel_addr (code=128, n-byte integer) (input)

The protocol relative address assigned to the newly created socket.
For privileged users, the address may be up to 16 bytes long. For
non-: ivileged users, the address must be exactly 2 bytes (otheruise
sockerr 165), and the address must be in the range X74057 to X77777
(otherwise sockerr 164). This option tells IPC to create the socket
with the specified protoco! address rather than dynamically allocating
an address.

X25_net_name (code=140, len=8, 8 character array) (input)

Specifies the X25 network interface name, telling IPC which X25
instance the socket should be identified with. For X25 call sockets,
this option is required. Otherwise, a sockerr 141 will result. IPC
automatically upshifts the characters in the supplied name to all
capital letters.

protocol_flags (code=144, len=4, 4 byte integer) (input)

32 bits of protocol-specific flags. Currently, only X25 uses these
flags. For IPCCREATE, only one is defined; any others will cause a
SOCKERR 1585.

catch-zll-socket (bit #2) (input): Defines the socket as a
catch-211l. The catch_all_socket is a CALL socket that gets all
incciing calls whose relative address is not assigned to a specific
socket. Only one catch-all socket can be defined for each directly
connected X25 network. This flag is meaningless for permanent
virtual circuits and also for the process which is initiating a
cali. (privileged users only)

sd (output)

Socket descriptor. Value returned which is to identify the created
socket

result (output)

Resultant error code, else zero.

Discussion:

The IPCCRERTE intrinsic is called to create a socket. The intrinsic returns
a socket descriptor which is used to identify the socket when using other
IPC intrinsics.

The relative address field is used by X25 to find the CALL socket an
incomii.g call is intended for. X25 uses the first four bytes of the
connection call user data (CUD) field as an ajdress. This address is
matched to the relative address asssigned to all the X25 call socket< If a
call socket's relative address matches the CUD address then the incom.ng
call is routed to that sockct. If no match is found then the incoming call
is routed 1o the ~atch all socket. The catch all socket is defined by
creating a socks ~ alth the catch all flag set. Only one catch all socket can
be defined per ., =ctly connected network. Finally, if the CUD address does
not match ary (ell sockets and no catch all socket is defimed. then the
incomi 1 cail is clezred.

If a nom-privilesed user wents to specify the address to be assigned -
new sockst, tre reange %74087 to %77777 must be used. For a privileged .= ,

there i3 10 wp=citic e Jn on the address range. However, it is.
recommended thet nly 3uu. csses between %1 and X74056 be used. This will
prevent duplict = of addresses with those that are automatically allocated

wher the uter dv > 0l provide opt 128.

Y

3.3.2 IPCNRME
Function:

Associates a name with a socket.

Declaration:
PROCEDURE IPCNARME (sd ¢ descriptor_type;
VAR socket_name : socket_name_type;
nlen : integeT;
VAR result : integer);
Parameters:
sd (input)

Socket descriptor of socket to be named. If a connection descriptor is
given, SOCKERR #30 will result; for a pxp request descriptor, a SOCKERR
#104 will occur

socket _name (input tput)
Name' to be given to socket.

nlen (input)
Byte length of specified socket name. Maximum is 16.

If the specified name length is zero, an eight byte name will be randomly
generated for the user an’ returned in the socket_name parameter.

result (output)

Resultant error code, else zero.

Discussion:

The IPCNAME intrinsic allows a user to bind a name to a socket. Using the
IPCLookUp intrinsic, another user can obtain access to the socket by knowing
its name. The syntax of the socket name is defined in Section 3.2.1.

Note that this intrinsic binds a name to a socket, not an address. That is,
when the socket is destroyed the name will be removed from the registry.

Up to four names may be assigned to a single socket. If a fifth name is
attempted, SOCKERR #35 will occur. However, the same name may not be used
for multiple sockets. If IPCNAME is called with 3 name which already is
used, a SOCKERR #31 will result.

This intrinsic may not be called in split stack. Otherwise, SOCKERR #32.

All alpha characters in the name are automatically upshifted. Therefore,
names may not be distinguished by case of the alpha characters.

If the intrinsic call fails for any reason, the condition code will be set
to CCL.

3.3.3 IPCNARMERASE

Function:

To delete a socket name.

PROCEDURE I+ - WRASE (VAR socket_name : socket_name_type;

nlen : integer;

VAR .t : integer);

Parameters:
socket_name (input)

Name currently bound to & socket that is to be removed.
nlen (input)

Byte length ot - .i-11ed socket name. Maximum is 16.
result (output)

Resultant error code, else zero.

Discussion:

If a socket has been named with the IPCNAME intrinsic, the ouwner of the
socket may remove the name with the IPCNAMERASE intrinsic. If the user is
not the owner of the socket which has the specified name bound to it, the
intrinsic will terminate with a SOCKERR #38. If the name is not found (no
socket has the name), a SOCKERR #37 will occur.

1f the intrinsic fails for any reason, the conditior code will be set to
C

3.3.4 IPCLookUp
Function:

To obtain a destination descriptor for a named call socket.

Declaration:
PROCEDURE IPCLookUp (VAR socket_name : socket_name_type;
nlen : integer;
VAR location : location_type;
loclen : integer;
VAR flags : flags_type;
VAR dest_descriptor : descriptor_type;
VAR protocol : integer;
VAR socket_kind : integer;
VAR result : integer);
Parameters:

socket_name (input)

Name of the socket for which the search will be conducted and for which a
destination descriptor will be defined.

nlen (input)
Byte length of the supplied socket name. Maximum length is 16. If the
nlen is not at least one or is greater than 16, sockerr #28 will be
returned. .

location (input)
1f specified, this is the name of the node where the socket is assumed to
reside. This is the node on which a search for *the specified name will
occur. If not given, then the search will take rlace locally. This
pAaameter is optional. However 1if it is giver tnen the loclen must also
“e given Otherwise a socker« #27 will occur

i+ en (input)
Byte length of the node name. This parameter is optional, but if it is
given then the location must also be given. The loclen parameter may be
zero indicating the lookup is to take place on the local node. The
maximum length is 50. Otherwise, a sockerr #38 will occur.

flags (input)
various option flags. Only one is defined:

flags [protected] (bit #0, input)

If this flag is set, the destination descriptor will be protected and
can only be accessed by privileged users. If this flag is set by a
non-privileged user, sockerr #7 will result.
dest_descriptor (output)
Descriptor which can be used by the calling process to access the socket
that had been looked up. This descriptor 1s required by other
intrinsics, including IPCCONNECT
protocos (output)

Protocol 1d resuit.ng from the socket search. Identifies the level 4
protocol module used by the socket.

socket_kind (output)
Socket type which was founa 1urat- e search.
result (output)

Resultant error code, else zero.

Discussion:

The IPCLOOKUP intrinsic is used to gain access to a socket whose name is
known. (The name was previously defined with an IPCNAME operation.) The
destination descriptor is associated with that name, and the calling process
thereafter uses the descriptor to access the named socket.

In addition to the socket's name, the user may specify where the registry
search is to take place. If no location is specified the registry search
will be performed on the local node If the name is not found, a sockerr #37
will be returned.

For a remote search, the protocol and socket type combination must be valid.
Currently, the only combinations which will not result in a sockerr #46 are
call socket with TCP protocol, or pxp reply socket with pxp protocol.

Required parameters are socket_name, nlen, and dest_descriptor.

3.3.8 IPCRECVCN

Function:

To receive a3 connection request on 3 call socket.

Declaration:
PROCEDURE IPCRecvCn (sd H descrlptor type;
VAR cd : descriptor_type;
VAR flags : flags_type;
VAR opt : opt_type;
VAR result : integer);
Parameters:
sd (input)

cd

Socket descriptor for a call socket.
(output)

Connection descriptor 1dent1fy1ng the local endpoint of the connection
which is established with the call to this intrinsic.

flags (input/output)

Option flags. 32 bits. Defined are:
flags [protect] (bit 0, input)

If this bit is set, the created connection descriptor will be
protected and can only be accessed by privileged users.

flags { tcpmsg] (bit 1, input)

If true, then TCP 1s instructed to operate in message mode.
otherwise, stream mode will be used on the connection.

flags Lno_output_flags] (bit 16, input)

If true and this intrinsic is call in nowait mode, the flags parameter
will not be updated when the intrinsic completes. P

flags [defer] (bit 18, input)
1f set, completion of the connection will be deferred, and the user
can later decide whether to accept or reject the connection with
IPCCONTROL .

flags [checksum] (bit 21, input)

10

If set then the protocol module will be instructed to enable
checksumming on the established connection. (Currently, the only
protocol module which supports checksumming is TCP.)

flags [discarded] (bit 25, output only)

This flag indicates that call user data was ['esent, but some or all
of it had to be discarded. This orcu.s when no call_user_data_recv
option was given or if the space ted was to small to hold the
data received If flags bit #16 1s ot on the initial call to
IPCRECVCN and nowait mode Jsed, the discarded flag will not t-
output when the intrinsic completes.

flags [vectored] (bit .. input)

If set, then the received call user data is expected to be vectored,
meaning that the data will be placed in a memory location specified by
the user rather than directly into the buffer of the option entry. The
target location is specified with one or tw’ ~ctors which ir. -ate a
DST and offset.

opt (input/output parameter)

Byte array containing various options. The entries are assembled with an
INITOPT/RDDOPT sequence. The defined opts are:

max_send_size (code=3, len= 2, 2 byte integer) (input)

This option may be used to inform the protocol of the length ot the
largest message to be sent by the user on this connection. The
default is 1024 for TCP.

max_recv_size (code=4, len=2, 2 byte integer) (input)

This option may be used to inform the protocol of the length of the
largest message to be received by the user on this connection. The
default is 1024 ro TCP.

call_user_data_recv (code=5, len=n, n byte buffer) (output)

This option specifies that call user data may be received during the
connection establishment. (Not supported by TCP.) The data can be
either vectored or non-vectored, depending upon the state of flags bit
31 when the intrinsic is called. If not vectored, the data will be
returmed into this buffer area of the opt array. See IPCCONNECT for a
descripton of the vector format. The maximum non-vectored length is
512 bytes.

The actual byte count received is available to the user. If the data
is not vectored, then the byte count will be placed in the length
parameter of the option entry and may be determined with a RERDOPT
intrinsic call. If the data is vectored, then the location of the
received count depends upon whether nowait I/0 is being used. If

11

waited, then the count is put in the length parameter of the FIRST
vector (which is assumed to still be in its origin3l place in the opt
entry). This will be the number of TOTAL bytes received, even if there
were two vectors. If nowait I1/0 is selected and the data is vectored,
then the total byte count will be available in the tcount parameter of
the IOWAIT.

If not enough buffer space was allocated for the actual amount of call
user data received, then the discarded flag will be set.

send_burst_size (code=134, len=2, 2-byte integer) (input)

Informs the protocol module of the send burst size to be used. The
integer must be in the range 1 to 7, setting the number of messages
which can be sent on this connmection to the remote node without the
;emo%g peer actually accepting them. The default send burst size is 3
or P.

recv_burst_size (code=135, len=2, 2-byte integer) (input)

Informs the protocol module of the receive burst size. The integer
must be in the range 1 to 7, with a default of 3 for TCP. The local
protocol module is instructed to accept up 1o this number of incoming
messages, even if the local receiver has not yet processed them.

update_threshold (code=136, len=2, 2-byte integer) (input)

The integer value is sent to the protocol module to specify houw the
receive window is to be updated. The integer value must be in the
range of 0 to 100. This specifies a percentage of the total window
size which must be available before an update packet is sent to the
remote node. (TCP only at this time.)

calling_node_addr (code=141, max len=8, 8 byte buffer) (output)

1f-this opt is specified, the protocol module is requested t~ =upply
the address of the calling nade. This is primarily an X255 {- e,
although IPC d~es no protocol checking on this opt. If the _th is
no 8, then SOuL:-ERR 144 will occur.

protocel flags (code=144, len=4, 4 byte buffer) (input/output)

This opt contains 32 bits of protocol-specific flags. If the length is
not 4 bytes, then SOCKERR 155 is returned. Currently, only X25 uses
these flags, although IPC does no protocol crecking on this opt. If
flags bit #16 is set on the initial call to IPCRECVCN &nd nowait mode
is being used, the protocol flags will not be output when the
intrinsic completes. The defined flags are:

pad_call (bit #14) (output):

If this bit is set, the the protocol module has received an
indication that the connection request originated from a pad. The

12

X25 protcol module makes this determination by examining bit #1 of
the first octet in the call user data field.

calling_node_add_available (bit #16) (output):

This flag indicates that the calling node address was present in the
call request message. The address will be placed in the appropriate
entry of the opt array.

q bit_flag (bit #18) (output):

Indicates the state of the Q bit in the X25 packet received by the
protocol module. For connection establishment with X25, this bit
should never be set.

result (output) .

Indicates whether the request was successful. It nowait I/0 is used, the
1esult parameter will give information about the initial call to the
intrinsic, but the parameter will not be updated upon final completion of
the request. To examine the result of the IPCRECVCN complet.un, the user
can call IPCCHECK to view both the protocol module error and the IP
error.

Discussion:

The IPCRECVCN intrinsic allows users to receive connection requests and
establish a VC socket (identified by the returned connection descriptor).
The user can then use the IPCSEND and IPCRECV intrinsics to send and receive
data on the connection.

The call user data which can be received on connection establishment can be
either vectored or not. There are two primary reasons for using vectored
data: 1. The user wants the data to be scattered into two different
locations, perhaps because the meaning of the two portions is different, 2.
The user does not want the data to be returned into the stack area. This can
be important 1f the available stack-relative space is limited or if the user
cannot guarantee that upon completion of a nowait call to this intrinsic
that the location of the original opt array will still be valid.

13

3.3.7 IPCConnect
Function:

Initiates a connection request.

Declaration:
PROCEDURE IPCConnect (sd 1 descriptor_type;
dest_descriptor : descriptor_type;
VAR flags : flags_type;
VAR opt : type_opt;
VAR cd : descrlptor type;
VAR result : integer);
Parameters:
sd (input)

Socket descriptor. Refers to a call socket the user has prev1ously
created. This parameter is optional. If it is not given or if it is -1,
then a "ghost" call socket will be created by IPC for the purpose of
establishing the connection. This is a temporary socket which wlll be
closed when IPCCONNECT completes. If the destination node is using X25
protocol, then a call socket must be spec1f1ed (no ghost socket is
allowed). Otherwise, a SOCKERR 27 will be given.

dest_descriptor (input) .

Descriptor which the user has prevlously obtained that identifies the
socket that is to receive the connection request.

flags (input)
32 bits, specifying various optional capabilities. Supported flags are:
flags [protect] (bit 0, input)

If this bit is set, then the connection will be protected and can only
be accessed by privileged users.

flags [tcpmsg] (bit 1, input)
If set, this bit tells the TCP protocol to operate in message mode I1f
set false, then TCP will be in stream mode (default). This capability
is available only to privileged users (SOCKERR 7 for non-privileged
users) .

flags [checksum] (bit 21, input)

14

If set, the protocol module is instructed to use checksumming on the
connection. Currently, only TCP supports this feature. Note that
checksunming will degrade performance of the data transfers.

flags [vectored] (bit 31, imput)

If sét, this flag specifies that the call user data in the opt array
will be vec+ored. If vectored, then the CUD will be located in user
* ‘s (o 2 buffers allowed), and the opt entry will contain

- rs tc¢ - .«zse buffers

optL . input)

Array of options, defined with an ADDOPT. Entries with a code other than
those listed here ca.se an error. This includes a code of zero.

call .ser_data_send (code=2, len=n, n byte array) wnput

Data to be sent when the connection is establishing. Tre 113 may be
vectored or not, according to the state of flags [vectored]. If not
vectored, the actual data will be in the opt entry. The maximum length
of »n-vectored data is

X25 protocol with noaddress flag set: 16 bytes
X25 protocol with noaddress flag not set: 12 bytes
all other pr¢ -.0ls: 512 bytes

If vectored, the data will reside in user buffers (2 maximum,,k and the
information in the opt entry will be vectors to the buffers. A vector
consists of four words and has the following format:

| TYPE | Type:

|==--=m==-=--- | 0 - Address is stack relative

| DST | 1 - Address is relative to a data

|- | segment index as returned b.

| OFFSET | the GETDSEG intrinsic. The

| === { user must be privileged.

| BYTE COUNT | - Address is relative to the

----------- . specified DST. The user must
be privileged.

Offset:
A DB-relative byte ofset for type 0.
For types 1 and 2, an offset relative
to the start of the DST.

Byte Count:
The length of the user buffer

15

For vectored data, the length parameter of the opt entry (specified
with an ADDOPT) must be either 8 or 16, indicating the length of the
vector(s).

max_send_size (code=3, len= 2, 2 byte integer) (input)

This option may be used to inform the protocol of the length of the
largest message to be sent by the user on this connection. The
integer must be in the range 1 to 32,000. If the value is smaller than
previously set, the option will be ignored. If this option is not
specified, the protocol module will default to a send message size of

max_recv_size (code=4, len=2, 2-byte integer) (input)

This option may be used to inform the protocol of the length of the
largest message to be received by the user on this connection. The
valid range is 1 to 32,000 with a default of 1024. If the value is
smaller than previously set, the new value will be ignored.

protocol_rel_address (code=128, len=2, 2-byte integer) (input)

Allows the user to define the source address for the connection. TIf
the user is not privileged, the address must be in the range X74057 to
£77777. Otherwise a SOCKERR 164 will be returned. The address length
must be two bytes (otherwise SOCKERR 165).

send_burst_size (code=134, len=2, 2-byte integer) (input)

Informs the protocol module of the send burst size to be used. The
integer must be in the range 1 to 7, indicating the number of messages
which can be sent to the remote node without that node having
processed them. Default is 3. (Privileged users only.)

recv_burst_size (code=135, len=2, 2-byte integer) (inmput)

Informs the protocol module of the receive burst size. The intege:
must be a number in the range 1 to 7. This sets the number ~f messages
which may be received without the local user having processed them.
This burst size is used to calculate the window size which TCP
advertises to the remote end. (Privileged users only.)

update_threshold (code=136, len=2, 2-byte integer) (input)
The integer value is sent to the protocol module to specify how the
receive window is to be updated. The value must be between 0 and 100,
indicating the percentage of the total window size which must be
available before TCP will send an update packet to the remote end.
The default is 50%.

facilities_set_name
(code=142, len=8, packed array of 8 characters max) (input)

16

This option allows the user to specify a facilities set name which
will be associated with the connection (an X25 capability).

protocol_flags (code=144, len=4, 4 byte buffer) (input)

The bits of this four-byte option are taken as flags which are unique
to the protocol. If any undefined flags are specified, SOCKERR 155
will occur. The only currently-defined flag bit is:

no_address (bit #17 of the double word option entry)

If set. this flag allows the maximum length of the X2§
call user data to be 16 bytes. Otheruise, the maximum
is 12 bytes for X25.

cd (output;

Connection descriptor. Returned value ut := used in succeeding
intrinsics to identify the connection.

result (output)

Resultant error code else zero.

Discussion:

This intrinsic is used to establish a connection. The user will generally
have a call socket to use in the intrinsic call. However, if no call socket
is specified, then a "ghost" socket will automatically be created and used
for the comnection initiation. This ghost socket will be destroyed before
the IPCCONNECT completes. However, ghost sockets are not allowed for X25.

I1f the protocol is not TCP or OSI’SS then the address of the call socket
will be used for the source. For TCP and OSI’SS, the user may specify the
source address. Non-privileged users are limited in the range of the address
which can be specified. Privileged users are not limited to a certain range,
but it is suggested that they use only addresses between X1 and X77777. This
will prevent possible overlap with any addresses which are automatically
allocated when the user does not specify the source address. If the
TCP/0SI’SS user does not specify the address, then one will be allocated in
the range X100000 to X123777. (Addresses %124000 to X177777 are used for
connection sockets.)

A successful result only means that the connection request has been
initiated. The user must call IPCRecv with cd to determine the success or
failure of the request.

Use and specific meaning of the options is determined by the actual protocol
implementation.

17

Burst sizes for user sockets are only supported for protocols which preserve
message boundaries. They may also be supported for NS applications using
'message mode' TCP.

To establish a connection, the destination socket must also be a call socket
using the same protocol.

18

3.3.9 1IPCSend

Function:

Sends data on a connection.

Declaration:
PROCEDURE IPCSend (cd : descriptor_type;
VAR data : data_buffer:
dlen : integer;
VAR flags : flags_type
VAR opt © opt_type;
VAR result - integer);
Parameters:
cd (input)

Connection descriptor which identifies the virtual carcuit to be u.-. tor
the send. If the connection is shared by more tham one process, the first
word of cd must contain the process identification number of the process
uwhich created the connection. If the current process is the connection

creator, then the first word may be zero.

data (anput)

This parameter contains either the actua’ data to be sent or vectors
pointing to users buffers whicr. contain ne data. If flags bit #31 is
set, then the data is assumed to contain one or two vectors.

A vector consists of four words and has the following format:

1 TYPE | Type:
|==========-= | 0 - Address is stack relative
| DST | 1 - Address is relative to a data
oo | segment index as returned by
| OFFSET { the GETDSEG intrinsic. The
|========---- | user must be privileged.
| BYTE COUNT | 2 - Address is relative to the
------------ specified DST. The user must
be privileged.
Offset:
A DB-relative byte offset for
type 0, otherwise relative to
start of OST
Byte Count:

The length of the user buffer

19

Note that if the data is to be vectored, the 'data’ array must contain
exactly 8 or 16 bytes, and the ’dlen’ paramter must be either 8 or 16.

dlen (input)

If the data is not vectored, then dlen must be greater than one and not
greater than X72460. This is the byte count of the data. If the data is
vectored, then dlen must be either 8 or 16, indicating the byte length of
the vectors contained in the data parameter.

flags (input only)
Option flags. Defined are:
flags [shared_conn] (bit #0, input)

This flag indicates that the connection specified by the cd parameter

is being shared by more than one process. In this case, the first word
of cd must indicate the PIN of the process which owns the connection.

This is a privileged function; if this flag bit is set and the user is
not privileged, a sockerror 7 will result.

The only sender on_a shared connection who can use nowait I/0 is the

connection owner. To use nowait I/0 on a shared connection, the ouner
must call IPCSEND without the shared_conn flag set.

flags [more_data] (bit #26, input)

This bit is intended for use with stream protocols to provide the user
some control over the buffering and transmission of data at the
sender’s end of the connection. If set, the protocol module should
expect more data to be sent. If this bit is not set, then the
protocol module is instructed to send (push) the data immediately. If
set, then the protocol module can use its own algorithm to decide how
to concatehate and send the user data. The reader is directed to the
documcnts for the protocol module for a complete description of
“normalt stream mode. (The initial implementation of TCP will always
push, so this bit has no effect with that protocol.)

flags | vectored] (bit #31, input)
If this bit is set then the data to be sent is to be gathered from the
addresses given in the data parameter. Up to two user buffers may be
specified from which the data will be taken.
opt (input)
Array of options, assembled with an ADDOPT intricsic. Defined are:

data_offset (code=8, len=2, 2 byte integer, input option)

20

Defines a byte offset from the data parameter’'s address where IPC is
to begin looking for the data. This opt must not be used if the data
is to be vectored!
protocol_flags (code=144, len=4, 4 byte buffer) (input only)
This opt . -tains 32 bits of protocol-specific flags. Currently, only
X25 uses these flags, although IPC does no protocol checking on this
opt. The defined flags are:
d bit flag (bit * input): Specifies the state of the D bit in
the X755 packet. e it is used tc request end-to-end
acknowledgement of the data.
bit_flag (bit #19) (input): Specifies the state of the Q bit in
the X2?5 packet to be sent by the protocol module. The Q bit is used
to mark the data as control information intended for a pad.

urgent_data_flag (bit #27) (input): If set, this bit will cause the
data to be marked as urgent

Any flay= >ther than these will cause a SOCKERR 155.
Discussion:
This intrinsic may be called in split stack.
Up to seven output operations may be pending at one time per connection.

If the connection is being shared, IPCSEND will always be a blocking
operation; nowait will not be in effect.

Note that a connection may be shared only for sends. The receiving end of
a connection may not be shared.

21

3.3.10 IPCRECVY

Function:
To receive 3 reply to a connection request or to receive data on an
established connection.
Declaration:
PROCEDURE IPCRecv (cd : descriptor_type;
VAR data : data_buffer;
VAR dlen : integer;
VAR flags : flags_type;
VAR opt : opt_type;
VAR result : integer);
Parameters:
cd (input)

Connection descriptor identifying the conmnection endpoint. Since a
connection cannot be shared for receipt of data, the first word of the
connection descriptor must not contain the pin of the calling process.
(See IPCSEND.)

data (input/output)

During connection establishment, this parameter is not used.

On an established connection, this array is either the buffer where the
data is to be placed or a list of addresses indicating where the received
data is to be scattered. If flag bit #31 is set, then the data will be
scattered (vectored), and the user is expected to supply one or tuwo
vectors as input. These specify where the data is to be placed. A vector
consists of four words and has the following format:

| TYPE | Type:
jmwmmmmm————— | 0 - Address is stack relative
| DST | 1 - Address is relative to a data
R ittt | segment index as returned by
| OFFSET | the GETDSEG intrinsic. The .
|=-- = | user must be privileged.
| BYTE COUNT | 2 - Address is relative to the
------------ specified DST. The user must
be privileged.
Offset:

A DB-relative byte offset for
type 0, otherwise relative to
start of DST

22

Byte Count:
The length of the user buffer

Note that if the data is to be vectored, the ’'data’ array must contain
exactly 8 or 16 bytes, and the 'dlen’ paramter must be either 8 or 16.

dlen (1nput/output®

If receiving a response to a + -nectior request, this parameter is not
used.

If receiving data on an established connection, this parameter is bot
input and output. On input, it gives the maximum number of unvect:.-ed
bytes the user is willing tc¢ <reive. This value must be greater tnan

zero and no larger than 30,000. For vectored data - specifies the
length of the vectors (8 or 16). On output, dlen .. 1ind ate how many
bytes were actually received if waited I/0 was use* rour c. ait 1/0, the

actual byte count will be placed in the tcount patometer of IOWRIT.

flags (input/output parameter)

Option flags This parameter is not required. Defined flags ar+
flags [no_output_flags] (bit #16, input)

If this bit is set and the intrinsic is called in nowait mode, the
flags parameter will not be updated upon completion of the intrinsic.
This allows a calling procedure to have a local flags parameter and
still complete before the IPCRECV completes.

flags [discarded) (bit #>° ,utput)

This flag is used only on the ipcrecv following an ipcconnect. It
indicates that some of the call user data returned with the connection
request reply message had to be discarded because the user's buffer
was too small. Note that all flags are optional, so if the user has
not specified a flags parameter 1n the IPCRECV call, the RESULT
parameter must be examined for a value of 142.

flags [more_data] (bit #26, output)

In general terms, this bit is intended to indicate that there is (or
may be) more data to be received after the completion of the IPCRECV.
This bit gets set when:

a. The TCP protocol is operating in stream mode. The ass imption
here is that there could always be more data.

b. R message was received which was larger than the user chose to
accommodate. In this case, the remaining data will be available
in the protocol module’'s buffer and can be read with another
IPCRECV if the destroy_data flag was not set.

23

For connection completion, this flag bit is not used; if call user
data was received and the user buffers could not accommodate all the
data, then the discarded flag will be set.

1f flags bit #16 is set when the intrinsic is called, the more data
flag will not be presented to the user if nowait mode is being used.

flags [destroy_data] (bit #28, input)

With this flag, the user can direct IPC to throw away any data
remaining after the user’'s buffers have been filled. The only way the
user will know that data has been discarded is that in message mode
(TCP), the more_data flag will be set upon completion of the IFCRECV.
In stream mode, there is no mechanism for the user to detect this.
Therefore, it is recommended that this flag not be used in stream
mode. This flag is not used during connection initiation.

flags { preview] (bit #30, input)

If set then the user can preview the received data. This means that
the data can be obtained from the 'data’ array, but will not be
removed from the protocol module’'s buffer. This flag should be
mutually exclusive with the destroy_data flag, and if the user sets
both then an IPC error will result. This flag is used only on an
established connection.

flags [vectored] (bit #31, input)

I1f set then the data is to be scattered. This means that vectors must
be supplied on input in the ’data’ array to indicate where the
received data is to be placed. If bit #31 is not set, the received
data will be placed directly into the 'data’ array. A maximum f two
vectors may be provided.

This flag also selects vectored/non-vectored for call user data.
However, in this case, the vectors are olaced in the opt array.

opt (input/output)
Array of options, assembled with an RDDOPT intrinsic ‘efineg are:
call_user_data_recv (code=5, len=n, n byte buffer) (output)

This option specifies that call user data may be received durir~ tre
connection establishment. The data can be either vectored or
non-vectored, depending upon the state of flags bit 31 when the
intrinsic is called. See the above discussion of the 'data’ parareter
for a descripton of the vector(s). The maximum non-vectored length is
512 bytes. Non-vectored data is placed in the opt entry ares, whe
vectored data 1s put into the buffers specified by the vectors.
Therefore, if nowait I/0 is desired and the call user data buffer
(which is part of the opt record) is to be released after the initial
call to IPCRECV, vectored data should be selected. Otherwise, the

24

e

location previously held by the call user data buffer will be
overuritten with the data, possibly creating undesirable results.

The actual byte count received is available to the user. If the data
is not vectored, then the byte count will be placed in the length
parameter of the option entry and may be determined with a RERDOPT or
by explicit knowledge of the location of this parameter within the opt
array. If the data 1s vectored, then the location of the received
count depends upon whether nowait I/0 is being used. If waited, then
the count is put in the length parameter of the first vector (which is
assumec -0 st'1i be in its ori~ nal place in the opt entry), This will
be the w-. - . JTAL bytes ::ceived, even if there we < two vectors.
If nowait I. is selected anc the data is vectured, the. the total
byte count will be available in the tcount parameter of the IOWAIT.

If not enough buffer space was allocated for the actual amount of data
received, then the discarded flag will be set. However, the flags
parameter is optional - ~ 1f it is not given in the initial call to
this intrinsic, there be no indicatior »f discarded data.

data_offset (code=8, len=2, 2 byte intege: 1input option)

Defines a byte offset from the data parameter’'s address where IPC is
to begin placing the received data. This opt must not be used 1f the
data 1s to be vectored!

protocol_flags (code=144, len=4, 4 byte buffer) (output)

This opt contains 32 bits of protocol-specific flags. Currently, only
X25 uses these flags, although IPC does no protocol checking on this
opt. Undefined flags cause a SOCKERR 155. If bit #16 of the flags
parameter is set and nowait is being used, the protocol flags will not
be updated upon completion of IPCRECV. The only flags defined for this
intrinsic are:

d bit flag (bit #18) (output): Indicates the state of the D bit in
the X75 packet. The D bit is used to specify end-to-end
acknowledgement of the data. This bit is not used by IPCRECV for
connection establishment. (There is no D bit for call user data.)

q bit_flag (bit #19) (output): Indicates the state of the Q bit in
the X75 packet received by the protocol module. During connection
establishment, IPCRECV does not change this bit. On an established
connection, this bit specifies that the data is control information
intended for a pad.

urgent_data_flag (bit #27) (output): This flag is used only on an
established connection and indicates that urgent data has been
received. This bit is not output to the user if flags bit #16 is set
when the intrinsic is called in nowait mode.

result (output)

Indicates whether the request was successful. If nowait I/0 is used, the
result parameter will give information about the initial call to the
intrinsic, but the parameter will not be updated upon final completion of
the request. To examine the result of the IPCRECV completion, the user
can call IPCCHECK.

Discussion:

The IPCRecv intrinsic serves two purposes: 1) to receive a response to a
connmection request, and 2) to receive user data on a connection. When
receiving data, a user can choose to preview the data and/or recieve it into
user buffer(s).

In receiving a response to a connection request (a call to IPCConnect), the
intrinsic returns nothing in the data buffer. A result of zero indicates a
successful connection establishment. Various error codes indicate
unsuccessful establishment. One such error code will indicate rejection by
the destination. Call user data if available will be returned in the buffer
provided by the option call user_data_recv or into user buffers if vectored
data is selected.

When receiving data, the user will be waited until some data arrives (or a
timeout occurs). The dlen parameter will reflect how much data was
received. If there is more data than was requested, the more_data bit will
be set and the remaining data can be received with the next call to IPCRecv.
A user will never receive any data beyond an end of message marker with a
single call to IPCRECV.

26

3.3.11 IPCGIVE
Function:

To give a socket or connection endpoint to another process.

Declaration:
PROCEDURE IPCGIVE (descriptor : descriptor_type;
VA= give name : socket_name_type;
nlen ¢ integer;
VRR flags . flags_type-*
VAR result : integer

Parameters:

descriptor (input)
Socket or connection descriptor of ertity to be passed

give_name (input/output)
Socket name to be temporarily assigned to the socme. Or connection to be
given away. This value must be matched by the user attempting to get the
connection/socket. If the user specifies a length of zero for this name,
an eight byte value will be randomly assigned and returned in this
parameter. If the name is supplied by the user, it must be no more than
sixteen bytes.

nlen (input)

Byte length of the specified name. This value may be zero indicdling the
IPC facility is to assign the name.

£lags (input/output)
Option flags. No flags are currently defined.
result (output)

Resultant error code, else zero.

Discussion:

The IPCGIVE intrinsic is used to pass a socket or connection to another
process. R name will be associated with the connection/ socket which must
be matched by the process trying to receive the connection/socket. This
name can either be specified by the user or assigned by the IPC facility.
This name will be temporary (until the connection/socket is taken or
destroyed) and can only be referenced by the IPCGET intrinsic (not by
IPCLOOKUR) .

27

The syntax of the of the name is the same as for the other socket intrinsics
permitting names (see Section 3.2.1). Thi< allows users to use a socket’s
well known name for the IPCGive and IPCGet intrinsics.

Once this intrinsic has been invoked, the user no longer has access to that
socket or connection descriptor. If a process expires after giving away a
socket/connection but before another process receives it, the connection or
socket will be destroyed. It should be noted that some systems may wish

implement a means for a8 process to give away a8 socket/connection and expire
without destroying the socket or connection.

Users may continue sending data to a socket or conection while it is being
given away. It is the user's responsibility to notify other users that a
socket/connection has been given away, and what name has been assigned for
retrieving the socket or connection.

28

3.3.12 IPCGet
Function:

To receive a connection endpoint or socket which has been given away.

Declaration:
PROCEDURE IPCGet (VAR give name : socket_name_type;
) nlen : inteqer;
VAR 1 ags : flar type;
VAR descriptor : dest ..tor_type;
VAR result : integ);

Parameters:
give_name (input)

Name assigned to the socket or connectius: when 1t was given away.
nlen (input)

Length, in bytes, of specified name.
flags (input/output parameter)

Option flags. None are currently defined.
descriptor (output)

Connection or socket descriptor for socket/cornnection received.
result (output)

Resultant error code, else zero.

Discussion:

The IPCGet intrinsic is used to take a connection or socket which has been
relinquished via the IPCGive intrinsic. The name identifies

28

3.3.13 IPCCONTROL
Function:

Performs special operations.

Declaration:
PROCEDURE IPCCONTROL (descriptor : descriptor_type;
request : integer;
VAR wrtdata : data_butfer;
wlen : integer;
VAR readdata : data_puifer;
VAR rlen ¢ integer;
VAR flags : flags_tvpe;
VAR result : integer
Parameters:

descriptor (input)
Either a socket descriptor or a connection descriptor.
request (input)

Defines what control operation is to be perfc-med. See t'.e Jdiscussion
below for a list of the defined requests.

wrtdata (input)
Byte array used to present any input data. For ceriain requests, wrtdata
will contain the actual data, whereas cther r=ques's @.low list of
addresses (vectors).

wlen (input)
Byte length of the wrtdata array.

readdata (output)
If the request results in data being returiza to the wuser, this parameter
is the destination.

-

rlen (input/output)
On input, used to specify the maximum amourt of data the user is willing
to receive. On output, tells the user how much data actually was
received. See the various requests for detalls.

Option flags. 32 bits, each selecting an option. Defired is:
flags [vect/transtrace] (bit #31, input)

30

This flag bit has a dual usage, depending on the request code. If the
request is to enable IPC trancing, then this bit is used to select

whether transport tracing should also be enabled. If the request is to
accept or reject a deferred connection, then the bit is used to select

vectored data (data which will be gathered from user buffers).

result (output)

Indicates the result of the request.

Discus

The IPCCONTROL intrinsic 1s usec to perform special regquests on sockets. A
request can include recelving . icrmation about a socket. The currently
defined control functions are: ’

1 -

Er - - nowait (asynchronous) I/0 for the specified socket or
cewooection. (Uses Descriptor, Request, and Result.) If this ~equest
is selected, then the user’'s proc=ss can continue its activ. while

the 1/0 intrinmsic waits for the requested *ransfer to complerc
Operations such as IPCSEND, IPCRECV, and ™ 2ECVCN will not actually
complete until the user calls the IOWRIT . -insic.

s :arm waited (synchronous) I/0 for the specified socket or
correction. (Uses Descriptor, Request, and Result.) This means that
the calling process will wait for the intrinsic to complete the
operation before ontinuing. If the user tries to switch from nowait
I1/0 to waited I when there is uncompleted I1/0, sockerr 71 will be
returned. Rlso, Lf the user tries to enable waited I/0 ‘when software
interrupts are enabled, error 112 will be returned. (enhancement in
near future)

Allows the user to change the default timeout for receives. The
wrtdata array must contain 2 bytes of timing value in tenths of
seconds. A zero time value turns off receive timeouts. The default
timeout will be sixty (60) seconds. The maximum time is 3,276.7
seconds. If a larger value is requested, error 76 is returned.

When an IPCRECV is called by the user, the timer is set to the value
specified. ¢ the TPCRECV completes before the timer pops, then the
timer is aburted.

If a timeout occurs before the receive intrinsic completes. the
result parameter of the IPCRECV will be updated to shouw error #59,
and the dlen parameter will be set to zero. (This is true only for
nowait I/0.) The pending receive will be terminated , but the
connection, if established, will not be closed.

ACCEPT_DEFER_CONN, This request tells the protocol module to accept a

deferred connection. The source socket which received the call must
be in deferred call acceptance mode, or error #166 is returned.

31

10 -

11 -

12 -

13 -

15 -

The user may send call-related data along with this message to the
protocol module. If the wrtdata array is specified with this request,
then the contents of the array will be interpreted as “"call user
data". The format of the wrtdata array is the same as the opt
parameter of other intrinsics and must be specified with an
INITOPT/ADDOPT sequence. The call user data may be vectored 1f
flags bit #31 is set for this request, then the wrtdata array is
assumed to contain one or two (maximum) vectors which point to user
buffers. For this request, the wlen parameter is not used.

RESET_VC. This request causes X25 to send a reset packet on the
virtual circuit associated with the connection socket. It is only
valid on connection sockets and only for X25. Wrtdata may contain the
cause and diagnostic fields for inclusion in the reset packet. Wlen

must be 2. No readdata is associated with this request.

INTERRUPT_VC. This request causes X25 to send an interrupt packet on
the virtu3l circuit associated with the connection socket. UWrtdata
must contain 1 byte of user data to be put in the interrupt packet
user data field. This request is only valid on connection sockets and
only on X25.

WHY. This request returns the reason for the IPC error or event on an
X25 connection. The readdata parameter is required, and rlen must be
4. The first byte of readdata contains the type of packet that caused
the error (reset, clear, restart) or the unsolicited event
(interrupt). If the type is reset or clear, the third and fourth
bytes will contain the cause and diag bytes from the packet (the
second byte will be zero). If the event was an interrupt, the second
byte will contain the interrupt code from the packet, and the last
two hytes will be zero. This request is only valid on an X25 connect
socket.

Note that the WHY request is only useful if the user needs to obtain
the data associated with the event; the type of event is indicated by
the error cocde returned. For example, if a SOCKERR #146 occurs, the
user knows that a reset packet was received. An IPCCONTROL will be
nece~sary only if the cause is of interest.

NO 1+ TTY 11MEQUT. This request sets the no activity timeout value
(¥25 o . . if no user generated activity occurs on the connection
for this amcunt of time, then the comnection is automatically cleared
and an error is returned on any subsequent IPC routine call. The user
aet use the IPCSHUTDOWN intrinsic to remove the connection socket.
L, 1data must contain a 16 bit integer representing the timeout value
in mirutes. If the value is equal to zero, the timer will be
disabled. Wlen is 2. Readdata is not used for this request. This
request is only valid on connection sockets. A default timeout value
is d-fi- 1 ot configuration time.

REJECT _DEFLAED_CONNECTION. This request is used to reject a
connecTion request which was previously deferred. The connection must
be in the vc wait confirm state, otherwise a SOCKERR #166 will be

32

260 -
261 -

262 -

returned. If the wrtdata array is given, then call-related data will
be sent back to the protocol module (and presumably back to the
requesting node). The format of the wrtdata array is the same as for
the opt array used by other intrinsics, and it must be initialized
with an INITOPT/RDDOPT sequence. The call user data can be vectored
by setting flags bit #31 and putting one or two vectors in the
uwrtdata array. The wlen parameter is not used.

Enable nowait receives/disable nowait sends.
Enabic “ouwait sends’disat .c ‘owalt receives.
ABORT UVUTSTANDING NOWRIT RECEIVES. The conne. ion is not abor ted.

ENRBLE USER TRACING. This request enables tracing for a socket and
possibly also for the protocol module. The wrtdata array can contain
up to three optional entries for the tracing. This array must be
initialized with an INITOPT/ADDOPT sequence. The three available opt
entry codes are-

131 - Specify trace file name. The data in the wrtdata entry
contains the name of the trace file to be used. The name
length must be greater than zero and less than 36.

132 - Specify the number of logical records in the troce file.
The wrtdata entry must be two bytes, giving a 16-bit
number of records.

133 - Specify the maximum number of user bytes to be traced.
The wrtdata entry must be two bytes with a value no larger
then 8192.

The readdata array if specified will return the actual name of the
trace file, including the group and account. If the user specified
the file name, then the current group and account will be appended.
1f no user file was specified, then one will be created. The file
name so created will be of the form SOCK?2??, where 27?2 is four
random digits.

If bit #31 of the flags parameter 1s specified with this request,
then protocol module t-acing will be enabled along with user data
tracing. «This is not allowed for a TCP call socket.)

DISABLE TRACING.

ENRBLE_IMMEDIATE _ARCK. This request instructs the TCP protocol module
to acknowledge received frames immediately.

ENABLE_SEND_TIMEOUT. Sets a timer for connection send operations. The
wrtdat3 array contains the timeout value in tenths of seconds and
must be exactly two bytes in length. R time value of zero will
disable the timer. The default is no send timeout. If the user tries

33

512 -

513 -

514 -

515 -

to set a timeout on a connection which is being shared, a SOCKERR 167
will occur.

ALLOW_SHARED_CONNECTION. Rllows other processes to share the
connection for sending data. An error will be returned if the
descriptor is not a connection. (Call sockets cannot be shared.)
Also, if a timer has been enabled for sends on the connection, an
error will be reported. There can be a maximum of eight shared
connections per process. This request is available only to privileged
users.

ENRBLE_SOFT_INTERRUPTS. This request is used to enable or disable
software interrupts on the socket. The wrtdata array should contain
two bytes which define the user's plabel. R plabel of zero will
disable software interrupts. If there is any I/0 outstanding, the
request to enable software interrupts will be denied. Privileged
users only.

A future enhancement will disallow software interrupts with waited
1/0 and will also not allow software interrupts to be disabled with
1/0 outstanding.

RETURN_SOCK_ADDRESS. For privileged users, the specified socket's
address will be returned in the readdata array. The readdata array
should be at least six bytes long to accommodate the returned string.
The rlen parameter is not used as an input, but will be updated on
output to indicate the actual length of the address. The returned
address has the following meaning:

DESCRIPTOR TYPE ADDRESS MEANING

<all socket port address of socket
(for TCP, len = 2 bytes)

corvmection from IPCCONNECT local port address of connection
socket (for TCP, len = 2 bytes)

corev=ri jon from IPCRECVCN remote port address of connection
socket in bytes 0 and 1: remote
internet address of node in bytes
2 through 5 .

SET_TCP_wInmQ_PARMS. This request is available to privileged users
only and is onJy valid for conmnections (not call sockets) using TCP.
Varlous pz'ameters which control the sending and receipt of TCP
messages <na e 3ltered with this request. The wrtdata parameter
contains 3 code for the specific parameter to be altered. The wrtdata
array is formatted with an INITOPT/ADDOPT sequence. Request 515 is

34

intended for use with TCP message mode only. The supported opt codes
are:

3 - Maximum send message size in bytes. The wrtdata entry must
contain 2 bytes in the range 1 to 32,000. If the value is
smaller than previously set, the request will be ignored. The
default is 1024.

4 Maximum receive message size in bytes. The wrtdata array must
contain 2 bytes in the ‘ange i *: 22,000. If the value is
smaller than previous: se *ne equest will be ignored. The
default is 1024.

134 - Maximum send burst The uwrtdata parameter - .t co' ..n two
byes which specify a number in the range + 1+ 7. This number
sets the number o1 messages that can be p.pelined to the other
end of the connection without the messages necessarily being
processed by the peer. A user car continue sending messaaes
without forcing the peer to p- w'ess them, if the numher
outstanding messages is smalle: than the burst size a ° ere
is sufficient window space. The default burst size 1s 3.

135 - Maximum receive burst. The wrtdata parameter must contain two
bytes representing a number in the range 1 to 7. This is the
number of messages wshich can be pipelined to the receiver’s
end of the connection without being processed. This burst
size is used to calculate the window which TCP will be
advertising. That is, the window is the maximum receive size
times the receive burst size. The default receive burst size
is 3.

136 - Window threshold. The wrtdata a* ay contains two bytes which
represent a number ir the range to 100. This is the
percentage of the total window that must be utilized before
sending a8 window update packet to the remote peer. It is used
to prevent TCP from generating packets merely for updating the
window. However, packets for piggybacked updates will
continue to be sent. The default window threshold is 50X.

The IPCCONTROL intrinsic is "option variable". That is, the number of
parameters actually supplied in the intrinsic call is variable. The request
code and the descriptor must always be supplied, but other parameters may
not be required for the specific request.

This intrinsic cannot be called in split stack.

35

3.3.18 TIPCSHUTDOUN
Function:

To release a call socket, destination descriptor, or connection descriptor.
Associated resources are also released.

Declaration:
PROCEDURE IPCSHUTDOUN (descriptor : descriptor_type;
VAR flags : type_flags;
VAR opt : type_opt;
VAR result : integer)
Parameters:

descriptor (input)

Either a socket descriptor, connection descriptor, or destination
descriptor.

flags (input)
32 bits of optional actions. The only defined flag is:
flags [graceful_release] (bit #17, input)
I1f this flag is set, the connection will be gracefully released.
opt (input)

Array of options, initialized with an INITOPT/RDDOPT sequence. Defined

is:

reason_code (code=143, len=2, 2 bytes, input)
This option allows tre user to specify two bytes of informat-~n~ ahout
the shutdown reason. The reason code 1is only allowed for 2% oroany
other protocol, a sockerr #145 will occur. The bytes are p.3. "3 . *he
cause (first byte) and diagnostic (second byte) fields of the X25
clear packet. The reason information may be supplied only for a
connection socket. Otherwise, a sockerr #8 will occur.

result (output parameter)

Resultant error code, else zero.

Discussion:

The descriptor is the only required parameter.

36

This intrinsic may not be called in split stack.

This intrinsic permits a user to close a socket or release a connection. If
a call socket is being shut down, users may continue using any associated
connections which have been established. The effects of shutting down a call
socket are:

1. Any timers set on the socket are aborted.
2. If software interrupts were set for the socket, they are disabled.

3. If there are any pending connection requests on the socket, the
requests are rejected.

4. Any names associated with the socket are removed.
5. If tracing is enabled for the socket, the ‘trace file will be closed.

6. If logging is enabled on the socket, the closure will be logged in the
active NMLG file.

The effects of shutting down a connection are:

1. If the connection was being shared by several processes, error
messages are sent to the other users. This causes any outstanding
requests on that connection to immediately complete.

2. If software interrupts were enabled on the connection, they will be
disabled.

The graceful release capability is intended to allow closing a connection
without loss of inbound data. When one node initiates a graceful release, a
message is sent to the remote node informing it of the event. The comnection
will then go into a simplex state with the initiating node being able to
receive but not send. Therefore, if data is in transit to the initiating
node, it will not be lost. The remote node must at sometime call IPCRECV to
know that this has happened. The connection will remain in a simplex state
until the remote node initiates a graceful release or until the local node
calls IPCSHUTDOWN without the graceful release option.

A sockerr #102 will result if graceful release is selected and any of the
following conditions exist:

1. The connection is in the vc’wait'confirm state. That is, a connection
request has been received, but the connection has not been accepted.

2. The connection is in the vc'simplex’in state. This could happen, for
example, if an established connection has already been gracefully
released.

3. The connection is in the vc’connecting state. In this case, a connect
request was issued, but the connection is not yet established.

37

. The connection has been aborted, possibly due to an irrecoverable

error.

. The pending outcount on the connection is not zero. For example,

IPCSEND was called in nowait mode and has not completed.

. The protocol module does not support graceful release.

38

3.3.19 IPCDest
Function:

Creates a destination descriptor.

Declaration:
PROCEDURE IPCDest (socket_kind : integer;

. VAR location : location_type;
location_len : integer;
protocol : integer;

VAR proto_addr : packed array of bytes;
addr_Ten . integer;

VAR flags ¢ type_flags;

VAR opt : type_opt;

VAR dest_descrip : descriptor_type;

VAR result : integer);

Parameters:
socket_kind (input)

Defines the type of socket. Refer to the IPCCREATE discussion for a of
list socket kinds. There is no default.

location (input)
Name of the node on which the remote socket resides. This parameter may
be omitted, in which case the location is assumed to be local. If
omitted, then the location_len parameter must also be omitted.

location_len (inmput)
Byte length of the destination node name. If this parameter is given,
then the locagion parameter must also be given. However, the location_len
may be zero, indicating a local destination (loopback).

protocol (input)

Defines the protocol used by the remote socket. Refer to the IPCCRERTE
discussion for a list of valid protocols.

proto_addr (input)
Protocol relative address which will be associated with the destination
descriptor. For non-privileged users, the address value must be in the
range X74057 to X77777. Otherwise, sockerr #164 will occur.

addr_len (input)

39

Byte length of the protocol address, if given. For privileged users, the
length may be no less than one and no greater than 16 bytes. For non-
privileged users, the addr_len must be 2 bytes. Otheruwise, sockerr #165
will occur.

flags (input/output)

Option flags. No flags are defined for this intrinsic. If any flags are
given, a sockerr #7 will occur.

opt (input/output)
Array of options. None are defined for this intrinsic. If the opt
parameter is given, then its length must be zero. Otherwise, sockerr #8
will result.

dest_descrip (output)

Destination descriptor. Value returned which is to identify the
destination socket.

result (output)

Resultant error code, else zero.
Discussion:

This intrinsic may not be called in split stack.

The required parameters are socket_kind, proto_addr, addr_len, and
dest_descrip.

The IPCDEST intrinsic is an alternative to the IPCLOOKUP intrinsic and

allows the user to create a destination descriptor which can be used for
establishing connections and sending data.

40

	Contents
	3.3 Intrinsic Interface Definitions
	3.3.1 IPCCreate
	3.3.2 IPCNAME
	3.3.3 IPCNAMERASE
	3.3.4 IPCLookUp
	3.3.8 IPCRECVCN
	3.3.7 IPCConnect
	3.3.9 IPCSend
	3.3.10 IPCRECV
	3.3.11 IPCGIVE
	3.3.12 IPCGet
	3.3.13 IPCCONTROL
	3.3.18 IPCSHUTDOWN
	3.3.19 IPCDest

