
HEWLETT PACKARD
Information Networks Division
19240 Homestead Rd.
Cupertino, CA

From: Craig Wassenberg
Bob Carlson

Date: 2 February 1984

Subject: Path Report Revision

To: John BaIza (CND)
Steve Booth (CND)
George Carter (IND)
Carl Dierschow (CND)
Frank Fiduccia (IND)
Anne Hathaway (IND)
Alex Lau (IND)
Lissa Martin Sesek (IND)
Mike Robinson (CND)
Dave Tribby (IND)
Jim Willits (CND)
Gregg Levin (IND)
Carl Morgenstern (IND)

Rick Bartlett (IND)
John Bugarin (CND)
Joe Devlin (IND)
Joel Dunning (PDD)
Atul Garg (IND)
Clark Johnson (IND)
Brian Lynn (IND)
Jack Repenning (IND)
Lynda Korsan (IND)
Mike Wenzel (CND)
Ed Yang (IND)
Chris Fuggitt (CND)
Deanna Dsborne (eND)

Attached is a new version of the path report specification. The
changes from the previous version include (1) a reorganization of
the group pid membership lists, (2) changes in the values of some
of the group pids, and (3) longer discussions of the syntax and
semantics of nodal path reports. Please direct any comments or
corrections you might have to either of us at IND.

Table of Contents

1 Introduction
1.1 Where Path Reports Fit In . · · · · · · · . · 1-2
1.2 Objectives · · · · · · · · · · · · 1-4
1.3 Compromises, Trade-offs, and Assumptions · · · · 1-5

2 Path Report Structure
2.1 Syntax: Backus-Naur Form (BNF) · · · · · 2-1
2.2 Semantics · · . · · · · · 2-2
2.3 Syntax Revisited: Message Form · · · · 2-9
2.4 Practical Applications of Path Reports · . · 2-10
2.5 Example Path Reports · · . . · · · · · · · · · · 2-11

3 Connect-Site Path Report Evaluation
3.1 The Relevant Questions ...
3.2 Example Evaluation Algorithm ..

3-1
3-3

4 Report Generation
4.1 One Possible Algorithm. 4-1

5 References

xxxii

-2

Path Reports

A Proposed Solution to the
Communicable Address Problem

Bob Carlson
Craig Wassenberg

14 June 1983
Revised: <840208.1102>

Introduction I CHAPTER 1 I

A conflict arises in computer network design between names and
addresses. When referencing objects like files, nodes, and IPC
sockets, humans prefer to use names while communication/transport
protocols prefer to use addresses -- names being more mnemonic and
addresses more efficient. OneNet's transport protocols can only
reference remote objects by address. Despite this limitation,
OneNet applications will permit their users to reference remote
objects by name. Under OneNet, the names that users use must be
mapped into the addresses that the transport protocols require
before remote objects can be successfully accessed.

IUsers

names
v

Applications

I addresses
v

Protocols

names
--------------->
<--------------

addresses IName Servers I
-,-

The PROBE protocol, the MONAD network directory, and the IPC socket
registry will all support remotely accessible name serving
functions at OneNet first release. PROBE and MONAD will map node
names into information about nodes, while the IPC socket registry
will map socket names into information about sockets. Sometimes
name servers will be clients of other name servers, for example,
the IPC socket registry will sometimes invoke either PROBE or MONAD
to resolve node names.

1-1

Name servers perform two basic functions: one of binding object
names to protocol/addressing information, another of retrieving
such information when sUbsequently queried with object names.
Before it can send a message to a remote object, a node must first
identify the protocols through which that object can be reached,
then it must determine which addresses are needed in conjunction
with those protocols. Having a name server available with the
needed protocol/addressing information relieves nodes from having
to supply it themselves. Furthermore, having a single name server
which can be accessed remotely relieves users and nodal managers
from having to place all of the name to protocol/address bindings
they need into their own local data bases -- a remotely accessible
data base can be shared across many nodes and many users. A
problem, however, with such remote name servers is that the
protocol/addressing information that they bind to names must
somehow be communicated to them, and they in turn must somehow
communicate the information when queried for it.

1.1 Where Path Reports Fit In

A path report is a data structure used to carry address information
pertaining to one or more network objects. Types of network
objects that may be described fall into two broad categories: nodes
and connect-sites. Some name servers, notably the IPC socket
registry, will traffic exclusively in connect-site reports. other
name servers, notably PROBE, will traffic in nodal reports.

Connect-site path reports carry very specific address information.
A "connect-site" is defined here to mean a logical location within
a machine to which messages intended for a particular network
object can be addressed. The majority of active connect-sites in a
OneNet network will have IPC sockets bound to them: it will be
through these sockets that applications and services will receive
their messages.

From a connect-site report, a source node can discover which
protocols and addresses should be used to send a message to a
particular remote connect-site. Such a report could be used to
describe how to address messages to, say, socket BARNEY at node
FRED. Typically, such a report would reveal FRED's internet
address(es) as well as the protocols and corresponding addresses
needed to address socket BARNEY.

A nodal report provides general information about a node. It
describes the node's VNAs, the well-known services it supports, the
protocols it supports, and the machine addresses that it can be
addressed by. Nodal path reports do NOT describe the particulars
of the protocols and addresses that must be used to send a message
to a particular object within a node, for example, a nodal report

1-2 .

may reveal that a node supports, say, NFT, but won't reveal the
well-known TCP port to which NFT's socket is bound.

For the most part, nodal reports are only useful to nodes having
considerable a priori knowledge of the HPDSN Canonical Addressing
Standard [2]. Only with such knowledge, can messages be addressed
to well-known services.

When talking about path reports, it is useful to make a distinction
between two types of routes: those between machines and those
within machines. In this paper the term "path" is used to refer to
routes within machines, and the term "route" to refer to routes
between machines. Paralleling the path-route distinction is the
distinction between "machine" and "dispatch" addresses. In this
paper, a "machine address" is one which references a particular
machine, and a "dispatch" address is one which references a
particular protocol. A protocol like ARPA's IP carries both
machine and dispatch addresses in its header. TCP carries only
dispatch addresses. A route can be expressed as a sequence of
machine addresses, a path as a sequence of dispatch addresses.

Path reports carry both machine and dispatch addresses. The
machine addresses uniquely identify a machine, while the dispatch
addresses, presented as parts of sequences, describe the paths by
which an inbound message may reach one or more of the objects on
that machine. Path reports really perform two functions: they
describe which nodes objects reside upon, and they describe where
within those nodes the objects may be accessed. Any nodal or
connect-site report might describe several paths because any node
might support several protocols at any given layer.

Described below is a typical event
connect-site path report.

sequence involving a

to communicate
routine which

(1) A user on node WISCONSIN creates a socket and names it
BuckyBadger.

(2) Another user, not on WISCONSIN, but wishing
with BuckyBadger calls IpcLookUp(), a
interacts with the IPC socket registry.

(3) The IPC socket registry prepares a name query message, puts
the name BuckyBadger in it, and then sends it off to some
socket name server -- a server which probably, but doesn't
necessarily, resides on WISCONSIN.

(4) The name server receives the query and is able to resolve
the name BuckyBadger. The name server prepares a
connect-site path report which describes all possible paths
to the socket BuckyBadger (let's assume the socket may be
accessed either via TCP or the NBS transport). The server

1-3

puts the path report into a query reply and sends it back to
the query initiator.

(5) When the query reply arrives, its
extracted. Then when the user is
connection to BuckyBadger the
information will be available.

path report will be
ready to initiate a

necessary addressing

The example above is interesting because the returned path report
describes two alternate paths, one involving TCP and the other
involving the NBS transport. A node wishing to initiate
communication to the object that a path report describes must
evaluate that report to determine which path is best. Sometimes
the choice will be simple, e.g., when one of the described paths
requires a protocol which the initiator doesn't support. At other
times the choice will be more involved, requiring the application
of relatively sophisticated heuristics (aside: source routing bears
many similarities to "source pathing" in that both operations
require a source node to choose some portion of a route to a
destination object, in the case of source routing the source node
chooses a route to a node's entry point, in the case of source
pathing the source chooses a route from the node's entry point to
the object1s entry point).

1.2 Objectives

The organization of a data structure can -- and usually does
have strong implications for the types of algorithms that can be
used to manipulate it. Recognizing this, we defined a set of
objectives that we felt a usable path report structure would have
to meet: these are listed below. While considering the list,
readers should understand that we hold the definition of packet
formats as a "non- objective," i.e., we have no intention of
defining what such packets look like.

A successful path report structure should

(1) satisfy the needs of the IPC name server, the PROBE protocol,
and the MONAD network directory. We envision these services
devoting portions of their packets for the conveyance of path
reports.

(2) be both easy to generate and easy to decode. The programming
techniques required should be realistic, efficient, and
reasonably simple; recursion, for example, would probably not
be realistic.

(3) complement rather
standard [2].

1-4

than subvert the canonical addressing

(4) be extensible. OneNet will grow, new protocols will be
introduced, and improved methods for offering distributed
services will be discovered. The path report format should
accomodate changes not impede them.

(5) be flexible. It should permit experimentation with alternate
protocol implementations. More specifically, it should permit
development groups to experiment with layer skipping and the
support of alternate protocol stacks.

(6) meet the needs of multi-homed nodes. Path reports should not
hinder the support of multi-homed nodes.

1.3 Compromises, Trade-offs, and Assumptions

The adoption of any particular path report format would probably
represent a compromise. Trade offs exist between generality and
specificity, space and time, static and dynamic configurations,
etc. Deciding between the various compromises and trade-offs would
be impossible unless some assumptions were made. In this section
we list the assumptions we made. If any of them are unreasonable
then portions of the design are probably inadequate and should be
changed. Readers are eagerly encouraged to submit comments
regarding areas for improvement.

(1) The ARPA IP protocol won't be a participant in all paths-­
some paths may skip the IP layer altogether. In addition, it
is likely that IP could be replaced by some other internet
protocol, especially in light of HF's customer's interest in
newly developing international protocol standards.

(2) Path reports should carry information about protocols existing
at layers below the internet (3i) layer, for if they did not
then either nodal configuration would be more involved or
network operation would be more inefficient. When MONAD
replies to node name queries it will return a path report.
This arrangement allows a user on, say, node FRED to request
communication with a peer user on node CHARLIE even though node
FRED has no information configured about CHARLIE. FRED would
send a query to MONAD referring to CHARLIE. MONAD would
resolve the name CHARLIE into a path report and return it to
FRED. Were the path report not to contain sub-3i information
then FRED would have to derive this information from some other
source -- either from configuration tables or from additional
queries, e.g., PBOBE.

(3) It is safe to permit path reports to depend on unique internet
address assignments. The major network architectures that
we're aware of (ARPA, ISO, Xerox NS, etc.) rigorously follow

1-5

the convention that all network nodes have (one or more) unique
internet addresses. HP plans to assist its users in choosing
unique assignments. The problems raised by non-unique
assignments are very troublesome and any solutions would
probably be complex (possibly involving the use of source
routing, a service not included under current OneNet plans).

(4) Path reports should be capable of handling multi-homed nodes.
A query concerning a multi-homed node should result in a
response which contains path reports relative to each of the
node's internet identities.

1-6

I Path Report Structure CHAPTER 2 I
--------------..

At first release, MONAD, PROBE, and the IPC socket registry will
return path reports in response to queries. While MONAD and PROBE
will probably traffic exclusively in nodal path reports, the IPC
socket registry will traffic in connect-site path reports. This
paper is not an attempt to define the protocols that these name
servers will use, it is only a proposal for the format of the data
to be returned in their query replies.

The path report structure has been organized around a few central
concepts. Understanding of these concepts is prerequisite to
understanding the path report structure. One central concept is
that of the Domain. A large catenet may contain several domains.
Although domains are roughly separable on the basis of the
protocols that are spoken within them, their truly distinguishing
feature is the way in which they permit unique identification of
member nodes. Nodes within the HPDSN domain, for example, may be
uniquely identified by their ARPA IP addresses. Similarly, nodes
within the Xerox domain may be uniquely identified by their IDP
addresses (IDP is the Xerox NS internet protocol). Usually it is
quite easy to identify the nodes within a domain, because usually,
although not always, some form of protocol address can be used.

Another important concept is that of the Virtual Network Address
(VNA). A VNA is nothing more than a (relatively simple) way to
uniquely identify a node within a catenet -- even in a multi-domain
catenet. Since no single internet protocol pervades all domains
the VNA can not be a true network or internetwork address, instead
it must be a "v irtual" network address. A node's virtual network
address is formed by concatenating an identifier for its domain to
its unique name/address within its domain.

Both nodal and connect-site reports contain one or more domain
reports. Each domain report contains a VNA address and a set of
one or more paths which may be used within the context of the
domain referenced in the VNA.

2.1 Syntax: Backus-Naur Form (BNF)

Note: The curly brackets denote repetition of the enclosed symbols
zero or more times.

2-1

<path report> <report length> {<domain report>}

<domain report>::= <domain report length> <version>
<virtual network address> <path list>

<virtual network address> ::= <domain>
[<ARPA IP addr>] I [<ISO addr>]
[<Xerox IDP>]

<path list >

<path>

<path element>

<pid>

<address info>

2.2 Semantics

·.-· .-
· .-· .-

{< path>}

<path length> {<path element>}

<pid> <element length>
[< address info>] [< pad byte>]

<individual pid> I <group pid>

[<service map>] [<sap>] [<machine address>]

Path Report: A list of zero or more domain reports.

Report Length: The sum length, in bytes, of all the domain reports
in the path report. This length field, just like all the other
length fields in path reports, is not self-referencing, i.e.,
does not include the number of bytes which it occupies. A
non-zero length guarantees that the path report contains at
least one domain report, while a zero length means the path
report describes no paths. The meaning of an empty path report,
returned in a query reply, is that the name specified in the
query could not be found.

Domain Report: There are two major categories of domain reports:
nodal reports and connect-site reports. At present it doesn't
seem as if there will ever be a case where both kinds of domain
reports will be returned in the same path report.

Domain Report Length: The length of the entire domain report
expressed in bytes. Domain report lengths must be an even
number of bytes in order to accomodate machines which don't
support byte addressing well. This field is not self
referencing.

Version: A
report.
number

value describing the format adherred to by domain
All first-release domain reports should carry a version

of zero. Later releases will carry higher version

2-2

numbers if the domain report format they use differs from the
version zero format. Introducing a new format version into a
functioning network could be disruptive. Were a node to attempt
to decode and act upon a domain report having a version number
for which the node wasn't configured could produce unexpected
results. Requiring that all of a network's nodes be upgraded
simultaneously would be unacceptable to many customers. In
light of these two observations we recommend first, that no node
attempt to decode a domain report carrying an unsupported
version number, and second, that newly upgraded nodes support
the most recent version as well as (at least) one previous
version.

One final note:
have their own
version numbers.

packets in which path reports
version numbers independent

are conveyed may
of path report

Virtual Network Address: This field uniquely identifies the node
which the path report references. Virtua: network addresses are
hierarchically arranged. The topmost level in the hierarchy is
termed a "domain." Domains qualify the type of internetwork
environment in which a node resides, e.g., ARPA, Xerox NS, etc.
Most internetwork domains employ quite different sets of
protocols, thus, some nodes which receive path reports may be
capable of communicating with nodes in some domains but not
others. Nodes can use the domain value to quickly weed out
domain reports from incompatible domains.

The lower hierarchical level of a virtual network address will
usually contain an internet address of the type carried by the
domain's internet protocol. In the "ARPA domain" virtual
network addresses would consist of an an ARPA domain identifier
prepended to an ARPA IP address. This splitting out of internet
addresses from the remainder of a domain report has at least one
advantage which isn't immediately obvious -- it permits an
evaluating node to determine which network a connect-site report
applies to even when the report describes an INTRAnet path
(i.e., a path which skips a domain's internet protocol
entirely) .

Some further points about virtual network addresses are the
following: (1) They don't permanently bind us to ARPA's IP-­
path reports refer to IP only when expedient. (2) Although
independent of all internet domains they nevertheless enable us
to take advantage of conventions employed in those domains. (3)
They result in some space savings since ARPA IP path elements
(explained later) need not carry network and node numbers, and
Router path elements need not carry node numbers.

Domain: Defines the internet domain that the path
to. Currently defined domain values are shown

report applies
in Table 2.1

2-3

below. The domain values are intended to correspond with those
used by the HP/DSN IPC service [6]. other domains may be
defined as necessary. The UNIX domain applies to communication
between programs running within the same UNIX machine and so
might never appear in a path report -- the entry is included
here for completeness only.

Domain Domain Associated Virtual Network
Name Number Address Protocol

HPDSN 1 ARPA IP

UNIX 2 None

NBS 3 ???

XEROX 4 Xerox IDP

ISO 5 ???

Table 2.1: Domain names, numbers, and associated internet
protocols.

ARPA addr: The thirty two bit ARPA internet address of the node
that the path report references.

Path List: Path lists for connect-site path reports will consist of
one or more lIindividual ll path elements (see below). Path lists
for nodal path reports will consist of one or more group path
elements and one or more individual path elements.

Path: Contains one or more path elements that IIbelong together. II
The path elements of a connect-site path describe all the
protocols and associated addresses needed to send a message to a
particular connect site. The path elements of a nodal path
report describe a node's location as well as the services and
protocols which it supports.

Path Length: The length of a complete path expressed in bytes.
This length does not include the length of the Path Length field
itself.

Path Element: IIIndividual path elements" reference a protocol and
an address to be used in conjunction with that protocol. II Group
path elements ll reference a particular protocol group and the
services offered by that group. Although two different nodes
might support the same general group they might not both support
all the possible services of that group.

2-4

Pid: "Pid" is short for "protocol identifier. 1I There are two kinds
of protocol identifiers: individual pids and group pids.
Individual pids appear in individual path elements, and group
pids in group path elements. An individual pid identifies a
particular protocol, e.g., TCP, UDP, IP, etc. Path reports sent
from IPC name servers will always be connect-site reports and
will only reference individual pids, never group pids. Table
2.2, below, shows the values to be used for individual pids;
these values correspond to the ones defined for use by HP/DSN
IPC users [6].

Protocol PID Service Service Name Bit
Name Map? Index

Ethernet 1 no none *
X.25 2 no none *
MAPLE 3 no none *
TCP 4 yes TCP CHKSUM 0

none 1-15

UDP 5 no none *
HPPXP 6 no none *
IEEE-B02 7 no none *
IP B no none *
telephone 9 no none *
NBS Transp. 10 no none *
HP RPM 20 no none *
HP NFT 21 no none *
HP VT 22 no none *

Table 2.2: Individual pid assignments.

Group pids identify sets of protocols or services, e.g., the set
of application protocols running above TCP, PXP, and UDP on
first release OneNet machines (see Figure 2.1 below). A group
pid will generally have a "service map" associated with it. The
bits of the service map indicate which of a group's
services/protocols a subject node supports. Group pids would be
appropriate for use in reports from MONAD's and PROBE's node
name servers.

2-5

EJ
I

<cs>

~
I

<cs>

IPC SR

I
<cs>

EJ
I

<cs>

MONAD

I
<cs>

Figure 2.1: Protocols which are members of the OneNet Services
group pid. The group element containing the pid
does not describe the addesses and protocols
necessary to send a message to any of the service's
connect-sites.

Table 2.3, below, shows all of the currently defined group pids
along with the bits defined for their service maps. other group
pids can be defined as needed, e.g., if the desktop computer
family decides to offer its own set of services.

Group Name PID Service Name Bit Index

OneNet_Services 255 NFT 0
VT 1
IPC SR 2
RPM 3
MONAD 4
RFA/3000 5
RDBA/3000 6

OneNet_Transport 254 TCP CHKSUM 0
TCP 1
HPPXP 2
MAPLE 3
UDP 4

Table 2.3: Group pid and associated service map bit assignments.

It is only appropriate to include group pids in a nodal report.
A nodal report is not intended to describe the particulars of
specific connect-site paths, but rather to describe a node's
machine address(es) and the protocols/services which it
supports. The path elements of any path contained in a nodal
report must be arranged in a top-to-bottom fashion, i.e., the
services groups must be placed at the top, the transport groups
lower down, and individual pids -- for the protocols that the
transports run over -- at the bottom. A single path may contain
multiple service group pids but only one transport group. It
will normally be true, however, that the paths carried in a
nodal report will be simple, containing a single services
element, a single transport element, and one or more individual

2-6

protocol elements.

Service and transport elements appearing within the same path
are related in that all of the marked services are guaranteed to
be accessible via all of the marked transport protocols. This
means that more than one path must be included in a nodal report
if one service, say RFA, can run across either TCP or UDP, but
another service, say NFT, can only run across TCP.

Individual pids are included in nodal path reports to carry
machine addresses, e.g., IEEE-802 station numbers, and X.25
addresses. When used in conjunction with a working knowledge of
the HP canonical addressing standard, these machine addresses
make it possible for one node to initiate communication to the
services of the target node. The sub-internet addresses which
may be included in a path report won't be of use to initiators
that aren't connected to the same local network as the target.
Nevertheless, the sub-internet addresses may save considerable
work for initiators that are on the same network as the target
(e.g., they can permit the initiator to forego invocation of the
PROBE protocol).

Element length: The length, in bytes, of the path element's address
info field. This value may be odd, in which case the address
info field will be followed by a pad byte. Note that including
the one byte length of the pad byte as part of the element
length would make it impossible to unambigously communicate
variable length addresses.

Address info: A protocol-dependent (pid-dependent) field which may
contain any or all of the following: a service map, a machine
address, and a sap. Path elements of group pids generally
contain only service map fields and not sap, location address,
and pad byte fields. The service maps of group pids describe
the protocols and/or services supported by those groups.

Path elements of individual pids almost always contain either
sap fields or location fields or both. This information will
usually end up in a protocol header if the path report is
accepted as the best connect-site path to a service access
point.

Service Map: A bit map roughly equivalent to a capability mask.
Group path elements usually include service maps describing
protocols and/or services supported within the group. The
OneNet_Services bit map has bits indicating which of the
standard OneNet application services the machine supports. The
OneNet_Transport bit map has bits indicating which of the
standard, first-release protocols the subject machine supports;
in addition, the map indicates whether the node's TCP supports
optional check-summing.

2-7

Some individual path elements will contain service maps. TCP,
currently has one, and it has one bit defined, bit zero, which
indicates whether check-summing is optional. All bits which are
undefined should be set to zero.

Sap: Most subject protocols of path reports carry some dispatching
information: TCP has a destination port field, IP a protocol
number field, Xerox IDP a socket field, etc. The sap fields of
path elements are set up to carry this dispatching information
in the same format as the protocol referenced by the path
element would carry it (see Table 2.4 below). Because sap
fields are sixteen bits long it will be necessary to right
justify this information for protocols which carry dispatch
fields narrower than sixteen bits. If some future protocol
carries dispatch field wider than sixteen bits then either the
path element of the protocol will be given a new format, or,
more likely, a new path report format and version will be
defined.

Protocol Field Name Field Length in Bits

TCP Destination Port 16
UDP Destination port 16
ARPA IP Protocol 8
Xerox IDP Destination Socket 16
Router Dest Protocol ID 16
X.25 Call User Data 16 (proposed)
IEEE-802 DSAP 8

Table 2.4: Correspondences between protocols and sap fields.

Machine Address: The sap field satisfies a protocol's intranodal
dispatching requirements. It does not, however, satisfy the
needs that some protocols have for specifying nodal locations.
The Machine Address field, therefore, is included in the path
elements of those protocols which require it. As a general
rule, most protocols - but not all _ that carry node numbers,
network numbers, station numbers, etc., will have Machine
Address fields included in their path elements. Exceptions to
this rule are made in cases where the necessary location
information for a protocol can be derived from the Virtual
Network Address field -- protocols in this later category
include ARPA IP, and Router.

2-8

Protocol Machine Address Name of- Corresponding
Field Length Field(s) in Protocol Header

IP 0 Conunent: Carried in Virtual
Network Address field

X.25 8 bytes DTE address - 14 BCD digits

Router 0 Conunent: Carried in Virtual
Network Address field

IEEE-802 6 bytes Station address

Table 2.5: Descriptions of Machine Address fields for
selected protocols.

2.3 Syntax Revisited: Message Form

This section illustrates path reports as they would be blocked out
as part of a message. The bit numbering convention used matches
the one used on HP3000s: the MSB and LSB are numbered zero and
fifteen respectively (the reverse of the order used on HP1000s).

2-9

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

report length

domain report length

version I domain

ARPA IP address, or ISO address, or ?
(field length is domain dependent)

path length

pid I element length

address info (variable length)

pid I element length

address info (variable length)

path length

pid I element length

address info (variable length)

\
virtual
network
address

/

\
\

\
one
complete
path

Figure 2.2: Path report message form.

2.4 Practical Applications of Path Reports

OneNet services probably won't use the full flexibility of path
reports very often. The majority of path reports will probably
only contain one or at most a very few alternate paths. Most
OneNet nodes won't support layer skipping or multiple protocol
stacks during the near term; this implies that these nodes won't
have any alternate paths to report about. The most frequently
reported paths will probably be the following: TCP-IP-802,
TCP-IP-ROUTER, TCP-IP-X.25, UDP-IP-802, and UDP-IP-X.25.

The path report format hasn't been fully optimized to reduce space.
Reducing path report space would increase the time required to
generate and evaluate path reports. To trade off space for time
would seem counter-productive given that path reports as they are
now defined require so little space.

2-10

2.5 Example Path Reports

In this section we present a few path report examples. The first
example, shown in figure 2.3, is a nodal path report. The node in
question supports only the protocols of the HPDSN domain. The
nodal report reveals that the node supports NFT, IPC socket
registry, RPM, and MONAD but not VT this information is
contained in the topmost (group) path element. The second from the
top path element reveals that the node supports almost the entire
set of first release OneNet protocols (i.e., all but MAPLE). The
last path element reveals that the node is a member of an IEEE-802
LAN. Note that the sap field of the IEEE_802 path element is set
to "meaningless" in this example since this dispatch value will
take on different values depending upon the which upper level
protocol an inbound message is sent to.

2-11

o 1
012 3 ~ 5 6 7 8 9 0 1 2 3 ~ 5

28

26

0 I 1

3~00b

33b

18

255 I 2

1 0 111 o 0 o 0 000 0 000

25~ I 2

o 1 1 1 0 1 0 o 0 000 0 000

7 I 8

*

0

0

537

<report length>

<domain list length>

<version (= 0» <domain (= 1»

<ARPA IP addr (net=7,node=27»

<path length>

<group pid> <element length>

<service map>

<group pid> <element length>

<service map>

<pid (=IEEE_802»<element length>

<sap (=not needed here»

<machine address>

Figure 2.3: Format of a path which describes a node running
on an IEEE-802 LAN.

The connect-site path report shown in Figure 2.~ is typical of one
that would be returned by the IPC Socket Registry in response to a
query. The single path in this report contains sufficient
information to describe both an intra- and an inter- net path-­
the intranet path would include TCP, IP, and X.25, while the
internet path would include only TCP and IP. If the path report's
subject node supported layer skipping then the path report might
also list a second path, one showing TCP running directly on top of
X.25.

2-12

o 1
o 1 2 345 6 7 8 9 0 1 2 345

32

30

0 I 1

10400b

33

22

4 I 4

100 o 0 0 0 o 0 0 0 o 0 000

32000

8 I 2

6

2 I 9

2400b

<14 BCD digit DTE address>

I 0

<report length>

<domain report length>

<version> <domain>

<ARPA IP addr (net=64,node=33»

<path length>

<pid (=TCP»<element length>

<service map>

<sap>

<pid (=IP»<element length>

<sap>

<pid (=X.25»<element length>

<sap>

<machine address>

<pad byte>

Figure 2.4: Format of a path to an IPC call socket.

2-13

Connect-Site Path Report Evaluation CHAPTER 3

This chapter examines the problem of evaluating connect-site path
reports. Such a report might be received, for example, in response
to a query to the IPC socket registry. The report would describe
all the ways by which a particular IPC socket could be accessed
through the protocols of the internet. The objective of path
evaluation is to find the best path that our source node can
support.

3.1 The Relevant Questions

There are several criteria against which an offered path should be
evaluated.

(1) Does the path reference any protocols which our source node
doesn't support. Obviously, a node which speaks only TCP and
IP on top of a LAN can't communicate with another node which
supports only the NBS Transport on top of Xerox lOP. Any path
requiring a protocol which our source node doesn't support must
be rejected.

(2) Can our source node support all of the path's protocol
adjacencies? Some machines may be capable of running, say,
HPPXP directly over IEEE-802 while others may not. Although
the two machines might both support the same protocols they
might not be capable of supporting the same protocol
adjacencies. A path specifying an unsupported protocol
adjacency must be rejected.

(3) Does the report describe an intra- or an inter- network path?
An intranetwork path, for our purposes, is one which can only
be used between two nodes coexisting on the same network.
Intranet paths can be optimized to take advantage of the
proximity of the two communicating nodes, e.g., in the OneNet
domain they could skip - for efficieny - the IP protocol layer
entirely. This is not to say that intranet paths must skip the
IP layer or that intranet path reports may not include IP path
elements. Intranet path reports will contain path elements for
protocols running below the internet (ISO 3i) level and may
include path elements for internet protocols like IP. Note
that an internet path (see below) may be extracted from an
intranet path that contains an internet protocol path element.

3-1

An internet path is one which can be used to support
communication between two nodes existing on different networks.
Internet paths reports must include path elements for an
internet protocol. An internet path may be derived from an
intranet path report if that report contains an internet
element, e.g., a path report with elements for TCP, IP, and
IEEE-802 specifies an intranet path which includes all three
protocols, but also contains an internet path which contains
only TCP and IP.

(4) If a path report contains multiple paths how does one determine
the best alternative? Disregarding multihoming for the moment,
finding the best path is equivalent to finding the "first fit ll

path if the paths have been placed in the path report in their
preferred order, i.e., best performing paths first. A few
simple assumptions make preference ordering possible -- faster
protocols are preferable to slower ones, and intranet paths are
preferable to internet paths.

The path report list for a multihomed node will contain
multiple path reports -- one for each of the node1s virtual
network addresses. The evaluator of such a list might discover
that each of the path reports contains a viable path or paths.
Preference ordering of the paths within a report means that
discovering a single report1s best path won't be a problem.
Deciding between the paths of competing path reports is more
troublesome however. Having the name server that delivers the
path reports put the alternative path reports in some kind of
preference order does not appear to be a viable solution to the
problem unless quite a bit of intelligence about network
topology is placed into the name server.

Consider a multihomed node, ABN, residing on both networks A
and B. ABN1s path report list will contain one path report
which is A-based and another which is B-based. An A-based
intranet path would be preferable to an A-resident node and a
B-based path to a B-resident node -- even though both the A­
and B- residents might be capable of supporting either of the
A- or B- based internet paths. If ABN were to generate the
path report list it could conceivably order the path reports
relative to the node that requested it. If, on the other hand,
a generalized network name server not residing on node ABN were
to serve up the path list it would have to evaluate the
relative positions of both ABN and the query initiator. This
problem, sometimes referred to as the "three node problem ll has
motivated us to place the burden of choosing between the viable
paths of competing path reports up to the query initiator and
not up to the name server.

3-2

3.2 Example Evaluation Algorithm

In this section we present an example path evaluation algorithm.
The algorithm uses a first fit acceptance criterion while
attempting to extract a viable path from a path report. The
example is supposed to show that the path report format is
reasonable to work with. This algorithm is included here only to
illustrate a few general concepts; different implementers will
probably create and tailor similar algorithms to satisfy their own
specific needs.

PROCEDURE ExtractPath (VAR report
intended_user

VAR pathstart
VAR pathlen
VAR result

ReportType;
Integer16;
Integer16;
Integer16;
Integer16);

{ }
{ Abstract:

Output parameters:

report: A fully formed path report -- presumably one obtained
from a remote name server.

path_start: An offset into the path report which indicates
the starting position of the located path. This value
is meaningless if the returned "result" parameter has
value NO_PATHS.

intended_user: The protocol id (pid) of the user that intends
to use this path. Values for this field might include
<IPC user>, <NFT>, <Net Management>, etc. A value of
<IPC user> would indicate that the caller was trying to
find a path that an IPC user could use to access a remote
socket. A value of <NFT> would indicate that NFT wanted
to find a path to its peer NFT.

ExtractPath tries to extract a viable path from a path
report. The length fields in the path report are used
to determine where the end of the path report is, where
paths begin and end, and where path elements begin and end.
This algorithm assumes (naively) that our machine has
reasonable byte addressing capabilities and that the path
report it is analyzing has its domain field set equal to
HPDSN.

{
{
{
{
{
{
{
{
{
{ Input parameters:
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

3-3

{ path_length: The length of the loca+ed path. Note that this
{ length could be less than the length specified in the
{ report's "path length II field -- this would happen if an
{ internet path was extracted from an internet path.
{
{ result: Returns SUCCESSFUL if a paLh was found and NO_PATH if
{ no path was found.
{ }

TYPE
Int16 = -32768 .. 32767;

ReportType = RECORD
CASE BOOLEAN OF
TRUE : (words
FALSE: (bytes

END; {RecordType}

PACKED ARRAY [l .. N] OF Int16);
PACKED ARRAY [l .. N] OF Byte);

CONST
CURRENT_VERSION = 0; {OneNet first release version number}

VAR
end_of_report
i
intranet_path
nets_match
nextpath
pid
satisfied
user

BEGIN

Int16;
Int16;
BOOLEAN;
BOOLEAN;
Int16;
Int16
BOOLEAN;
Int16;

i : = 2;
:nd_o~_report .- report.words[i DIV 2] + 1;
~ := ~ + 1;

«< evaluate the version and virtual network address fields.
If the network specified in the virtual network address
field matches a network that this node is connected to
then set nets match to TRUE. Initialize i so it indexes
path length fIeld of the report's first listed path.

>>>

satisfied := FALSE;

WHILE «NOT satisfied) AND (i <> end_of_report » DO
BEGIN

i := i + 1;
user := intended user;
nextpath .- report.words[i DIV 2] + i + 1;
i := i + 1; {points to pid field}

3-4

pathstart := i;

internet_path := FALSE;
rejected := FALSE;

{ Examine path elements in the currently indexed path.
{ Reject the path if we don't support one of the
{ protocols or adjacency relationships
{ }
WHILE «i <> nextpath) AND (NOT rejected» DO
BEGIN

{ }
{ Get the path element's pid and then make i index
{ the next path element.
{ }
pid:= report.bytes[i];
i := i + 1;

{ Advance index to the first byte after this path element.
{ }
i := i + report[i+1] + 1;

IF (NOT Supported(pid» THEN
BEGIN

rejected := TRUE;
i := nextpath;

END
ELSE IF (NOT Adjacent(user,pid» THEN
BEGIN

rejected := TRUE;
i := nextpath;

END
ELSE IF (pid = IP) AND (NOT nets_match) THEN
BEGIN

{ }
{ Our target node is on a remote network. We've
{ got an IP address. Therefore, we've got all the
{ information we need.
{ }
pathlen := i - pathstart;
i := nextpath; {So we can leave the while loop}
internet_path. TRUE;

END; {IF pid}

user := pid;
END; { WHILE i <> nextpath }

satisfied := (NOT rejected) AND (i <> pathstart) AND
(internet_path OR

(NOT internet_path AND nets_match»;

3-5

IF (satisfied AND (NOT internet_path)) THEN
BEGIN

pathlen := i - pathstart;
END; {IF satisfied}

END; { WHILE }
END; { PROCEDURE ExtractPath }

3-6

Report Generation I CHAPTER 4 I

There are probably an infinite number of algorithms and data
structures that could generate path reports. The best of these
would be fast and require little space. Unfortunately, space and
time reductions usually represent conflicting goals. We think that
with any reasonable data structure the storage space needed to
generate path reports will be small. Implementers should therefore
try to reduce the time required to generate reports.

4.1 One Possible Algorithm

One simple algorithm which could be used to generate path reports
relies on the use of "path templates. II A path template contains a
skeleton structure for a path -- it is actually an incompletely
specified path.

A path differs from a path template in only one major respect. The
address info fields of a path template might not all be
initialized. Each path has a topmost path element. Typically, the
address information carried in this topmost element is relatively
dynamic while the address information carried in lower elements is
static and derivable from the canonical addressing standard or some
other source. To convert a path template into a viable path one
must initialize the path template's dynamically determined address
info fields.

There will only be a limited number of possible topmost path
elements. Path reports generated from the IPC name server, for
example, will usually have paths whose topmost elements are any of
TCP, IP, UDP, or PXP. Path reports generated from MONAD's node
name server routines will have topmost paths which describe
protocol groups. Path templates can be stored which describe the
common paths to be used to access individual protocols (IPC case)
or to access protocol groups (MONAD case). When the IPC name
server, for example, needs to generate a path report for a
connection-oriented call socket it only needs to find all path
templates which have topmost elements whose protocols are bound to
the call socket. One way to do this would be through a path
template table.

A path template table is designed to make generation of path
reports easy. To use the template table for this purpose one must

4-1

know the pids of the topmost protocols or protocol groups which
will be topmost in the paths to be generated. The template table
itself consists of a string space and an array of records indexed
by pids. The records in the array contain (minimally) two fields:
the first a pointer to a string in the string space, and second the
length of the string pointed to. Each string will be a path
template list, i.e., it will be a list of path templates. The
topmost path element in each path template will have the same pid
value as was used to index the path template table. If the address
info field associated with the pid must convey dynamic address
binding information then these fields must be initialized inorder
to produce complete path descriptions.

Normally, only the topmost path elements carrying individual pids
will have uninitialized address info fields. The path templates
carrying group pids won't have uninitialized address info fields
and so won't ever require dynamic configuration.

= RECORD
: AddressType;
: Int16;

GLOBAL DECLARATIONS

TYPE
TemplateRecord

string_addr
string_len

END;

VAR
Templates : ARRAY [1, LAST_PROTOCOL] of TemplateRecord;

PROCEDURE GenerateReport (topmost_pids
associated addrs
num_pids -

VAR report

PidArray;
AddressArray;
Int16;
ReportType);

num_pids: The number of pids in the topmost_pids array.

associated_addrs: An array containing the addresses to be
used in association with the pids in the topmost_pids
array.

topmost_pids: An array of protocol identifiers representing
the topmost protocols to be found along paths to the
object about which the path report is to be generated.

{ }
{ Abstract:
{ Many liberties are taken in specifying this algorithm.
{
{ Input parameters:
{
{
{
{
{
{
{
{
{
{
{

4-2

report: A complete path report.

report: A partially completed path report -- presumably the
version, report length, and virtual network address fields
have been initialized.

{
{
{
{
{ Output parameters:
{
{
{ }

VAR
i
j
path_offset

Int16;
Int16;
Int16;

BEGIN
FOR i := 1 TO num_pids DO
BEGIN

path_offset := report.report_length;
pid := topmost_pids[i];

CopyString (templates[pid].string_addr,
templates[pid].string_len,
report[path_offset],
templates[pid].string_len);

InsertDynamicBindings (report[path_offset],
templates[pid].string_len,
associated_addrs[i]);

report.report_length :- report.report_length +
templates[pid].string_len;

END; { FOR }

END; { GenerateReport }

4-3

I References I CHAPTER 5 I

[1] David D. Clark, "Names, Addresses, Ports, and Routes," RFC
814, MIT Laboratory for Computer Science, July 1982.

[2] Clark Johnson, "Ds 1 83 Canonical Addressing
HP-Internal Document, 2 December 1982.

Standard,"

HP-Internal[3] Bob Carlson, "HP-DSN Addressing Standard,"
Document, Revision 2 (proposed), 15 October 1982.

[4] Rick Bartlett, Atul Garg, and Craig Wassenberg, "DS 1 83 Network
Architecture," HP-Internal Document, Draft- 7 April 1983.

[5] George Carter, "Node Naming Using MONAD, II HP-Internal Memo, 8
March 1983.

[6] John Bugarin, Bob Carlson, Brian Lynn, and Craig Wassenberg,
"HP-DSN Interprocess Communication External Reference and Protocol
Specification," HP-Internal Document, revision of 14 March 1983.

[7] David C. Plummer, "An Ethernet Address Resolution Protocol, II

RFC 826, November 1982.

[9] Andrew Birrell,
Schroeder, "Grapevine:
Communications of the
260-274.

and Yogen K. Dalal, liThe Clearinghouse: A
for Locating Objects in a Distributed

Office Products Division, Palo Alto, CA.,

[8] Derek C.
Decentralized
Environment,"
October 1981 ..

Oppen
Agent
Xerox

Roy
An

ACM,

Levin, Roger Needham, and Michael
Exercise in Distributed Computing, II

Vol. 25, No.4, April 1982, pp.

5-1

	Table of Contents
	1 Introduction
	2 Path Report Structure
	3 Connect-Site Path Report Evaluation
	4 Report Generation
	5 References

