HP 3000

SYSTEMS
PROGRAMMING
LANGUAGE

HEWLETT |’;ﬁ,| PACKARD

3000 computer systems

HP 3000

SYSTEMS
PROGRAMMING
LANGUAGE

00000000000

© Copyright, 1972, by HEWLETT-PACKARD COMPANY, 11000 Wolfe Road, Cupertino, California. All rights reserved.
Printed in the U.S.A.

Pages

Title .
Copyright
i . .
vitoxi .
1-1to 1-4.
2-1to 2-9.

3-1 to 3-38 .
4-1 to 4-19 .

5-1 to 5-35
A-1 to A-3
B-1

C-1to C-20 .

D-1 to D-2

E-1to E-12 .

F-1 to F-3
G-1 to G-2

List of Effective Pages

Effective Date

Nov.
Nov.
Nov.
Nov.
Nov.
Nov.
Nov.
Nov.
Nov.
Nov.
Nov.
Nov.
Nov.
Nov.
Nov.
Nov.

1973
1973
1973
1973
1973
1973
1973
1973
1973
1973
1973
1973
1973
1973
1973
1973

Printing History

Part No. Date
03000-90002 Nov. 1973

PREFACE

This is the reference manual for the HP 3000 Systems Programming Language (SPL/3000). A
prerequisite to this manual is previous experience with SPL/3000 gained through the HP 3000
Systems Programming Language Textbook (03000-90003) and/or a Hewlett-Packard training
course in SPL/3000.

This book is divided into five sections:

Section I — Program Components
Section II — Constants and Identifiers
Section III — Declarations

Section IV — Expressions

Section V — Statements
Each topic in SP1/3000 is discussed in four parts:

Purpose
Syntax
Semantics

Examples

At the end of this manual are appendices listing reserved words, the ASCII character set used
in SPL/3000, compiler commands, operating system commands, machine instructions, an
index of all syntax rules, and instructions for building an intrinsic file.

The SPL/3000 compiler and the machine code which it generates operate within the HP 3000
Multiprogramming Executive (MPE/3000). The relevant documents are

HP 3000 Multiprogramming Executive Operating System (03000-90005)
HP 3000 Multiprogramming Executive Console Operator’s Guide (03000-90006)

Information on HP 3000 hardware is contained in:

HP 3000 Reference Manual (03000-90019)

iii

PREFACE

INTRODUCTION

CONVENTIONS
SYNTAX NOTATIONS
Syntax References

SECTIONI PROGRAM COMPONENTS

PROGRAM STRUCTURE
COMMENTS
DELIMITERS

SECTION II CONSTANTS AND IDENTIFIERS

CONSTANT TYPES
INTEGER CONSTANTS
REAL CONSTANTS
LOGICAL CONSTANTS
STRING CONSTANTS
IDENTIFIERS

SECTION III DECLARATIONS

DECLARATION TYPES
DECLARATION CONCEPTS
Data Types .
Addressing Data
Address Allocation
Initialization
GLOBAL-EXTERNAL Attribute
Address Reference
DEFINE DECLARATION AND INVOCATION
EQUATE DECLARATION AND INVOCATION
SIMPLE VARIABLE DECLARATION
ARRAY DECLARATION
POINTER DECLARATION
LABEL DECLARATION
SWITCH DECLARATION
ENTRY DECLARATION

CONTENTS

3-1
3-3

3-4
3-4

3-8

3-8

3-11
3-12
3-14
3-16
3-22
3-25
3-26
3-27

PROCEDURE DECLARATION
INTRINSIC DECLARATION
SUBROUTINE DECLARATION

SECTION IV EXPRESSIONS

EXPRESSION TYPES
VARIABLES

FUNCTION DESIGNATOR
BIT OPERATIONS
ARITHMETIC EXPRESSIONS
LOGICAL EXPRESSIONS

SECTION V STATEMENTS

STATEMENT TYPES

ASSEMBLE STATEMENT
ASSIGNMENT STATEMENT
CASE STATEMENT

DELETE STATEMENT

DO STATEMENT

FOR STATEMENT

GO STATEMENT

IF STATEMENT

MOVE STATEMENT
PROCEDURE CALL STATEMENT
PUSH AND SET STATEMENTS
RETURN STATEMENT

SCAN STATEMENT
SUBROUTINE CALL STATEMENT
WHILE STATEMENT

APPENDIX A ASCII CHARACTER SET

APPENDIX B RESERVED WORDS

APPENDIX C COMPILER COMMANDS

APPENDIX D MPE/3000 SUBSYSTEM COMMANDS
APPENDIX E HP 3000 MACHINE INSTRUCTIONS
APPENDIX F BNF SYNTAX INDEX

APPENDIX G BUILDING AN INTRINSIC FILE

FIGURE

Figure 3-1. Example Data Area

TABLE

Table 3-1. Parameters Passed to Formal Parameters

vi

Page

3-28
3-36
3-37

4-1
4-3
4-6
4-8
4-11
4-14

5-1

5-2

5-6

5-8

5-10
5-12
5-13
5-15
5-17
5-21
5-25
5-27
5-29
5-30
5-33
5-35

A-l

C-1
D-1
E1
F-1
G-1

3-32

INTRODUCTION

SPL/3000 is a high-level, machine-dependent programming language that is particularly well suited
for the development of compilers, operating systems, subsystems, monitors, supervisors, etc.

SPL/3000 has many features normally found only in high-level languages such as PL/1 or ALGOL:
free-form structure, arithmetic and logical expressions, high-level statements (IF, FOR, GOTO, CASE,
DO-UNTIL, WHILE-DO, MOVE, SCAN, procedure call, assignment, and compound statements), re-
cursive procedures and subroutines, and variables and arrays of six data types (byte, integer, logical,
double integer, real, and long real). In addition, IF, FOR, CASE, DO-UNTIL, and WHILE-DO state-
ments can be indefinitely nested within each other and themselves. These features significantly re-
duce the time required to write programs and make them much easier to read and update.

In addition, however, machine-level constructs have been included to ensure that complete control
of the machine is available to the programmer when he needs it. These include direct register refer-
ences, branches based on actual hardware conditions, bit extracts, deposits, and shifts, delete state-
ments, register push/set statements and an Assemble statement to generate any sequence of machine
instructions.

CONVENTIONS

In the HP 3000, the bits of a word(s) are numbered from left to right starting with 0. Thus the
sign bit, or most significant bit, of a single word is bit 0 and the least significant bit is bit 15.

0 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15

vii

SYNTAX NOTATIONS

The syntax of SPL/3000 is described in an expanded version of Backus Normal Form (BNF)
notation. BNF is a symbolic description language that allows a very concise and precise defini-
tion of how the constructs of a language can be put together (i.e., how sentences in a language
can look). BNF does not tell what a construct does (its meaning or semantics), only how it is
analyzed into parts.

BNF consists of the following components:

<...>
SYMBOLS
{...}

Left and right broken brackets are used to set off a metalinguistic variable. Each
metalinguistic variable stands for one part of the language’s syntax and each is de-
fined by a metalinguistic formula. For English, <sentence>, <noun>, <verb>,
and <adverb> are all metalinguistic variables.

<program> <statement>

The symbol double-colon-equals (::=) ““is defined as” in BNF. It is always preceded
by a single metalinguistic variable and followed by the formula which defines the
structure of that variable from left to right.

<sentence> ::= formula

Formulas are composed of three things: metalinguistic variables, alternative defini-
tion indicators (‘‘or” signs), and literal symbols (characters which stand for them-
selves).

The symbol | means ‘“‘or.” It separates multiple definitions (formulas) of a meta-
linguistic variable.

<sentence> ::= <simple sentence> | <compound sentence>

Each metalinguistic variable in the formula must be defined in another BNF defini-
tion (each definition is called a “production”).

Characters standing by themselves (not enclosed in < >) are literal characters that
must appear in the program exactly as they stand in the definition. If any produc-
tion is traced through completely (i.e., the productions of all variables used are

also examined) the process will always come to a stop when productions are reached
that consist of all literals. Literal symbols require no further definition. For ex-
ample, in the formula below, BEGIN is a literal symbol:

<global head> ::= BEGIN <data group> <procedure group>

Brackets are used to enclose an English explanation that is inserted in a production
in place of a metalinguistic variable when the BNF required is either impossible or
too cumbersome. For example:

<empty> :.:= {acharacter string of zero length}

viii

list

Comments or notes within BNF products appear indented below the variable to
which they apply preceded by a F character. These comments are not metalin-
guistic variables; they are merely explanatory material.

<sign> 1= + |-

F the symbol —~ indicates two’s complement

The word “list” is used in metalinguistic variables to imply the common construct
of a list of items of the same class separated by commas.

<identifier list> ::= <identifier> | <identifier list>, <identifier>

This production says that an identifier list can consist of a number of identifiers
separated by commas. Productions of this type are assumed whenever a metalin-
guistic variable is combined with the word “‘list”’ in a formula.

In the description of symbolic constructs it is important to indicate where different data types
are allowed. Assume the following abbreviations:

i

o o o — =

Integer

Real

Logical

Byte

Double

Long (extended precision)

The symbol T with a subscript is used in the syntax to indicate allowable classes of data types:

T
Tilp
Ty

Integer, logical, byte, real, long, double.
Integer, logical, byte.

Integer, logical.

Tirlge Integer, real, logical, double, long.

T,

Integer, real, long.

The occurrence of one of these T symbols in a metalinguistic variable specifies that this symbol
must be replaced consistently (throughout the production) by the appropriate set of English
words. In some case this convention reduces the number of productions required dramatically.
For example the syntactic rule

<Tj, array identifier> ::= <identifier>

ix

corresponds to

<integer array identifier> ::= <identifier>
<logical array identifier> = <jdentifier>
<real array identifier> = <identifier>
or, in another case, the notation
<Tj), variable> ::= <T;;. simpvar identifier> | <Tj; pointer identifier>
expands to
<integer variable> ::= <integer simpvar identifier> | <integer pointer identifier>
<logical variable> = <logical simpvar identifier> | <logical pointer identifier>
<real variable> = <real simpvar identifier>

The way in which BNF can be used to describe syntax is easily demonstrated by an example.
Consider the structure of a telephone number:

area code — prefix — number — extension

All possible combinations of legal telephone numbers can be diagramed by this tree structure:

<telephone number>
<area code> — <prefix> — <number> — <extension>

<digit> <digit> <digit> <digit> <digit> <digit> <digit>

<digit> <digit> <digit> <letter> <digit> <digit>

,X-<ext number> <empty>

N

<digit> <ext number>

The definitions for <digit> and <letter> have been omitted from this diagram for clarity.
Branches in the diagram represent alternative forms. The tree above says that a phone num-
ber consists of an area code, prefix, number, and extension. The prefix can be a three-digit
number or a two-letter-digit exchange. The extension can be as long as desired or left off
(<empty>). Note that extension number can be indefinitly long because ‘“‘ext number’’ ap-
pears in the definition of ‘““ext numbers.” (Semantics may be used to restrict this indefinite
length.)

The BNF description of this structure is:

<telephone number> <area code> — <prefix> — <number> <extension>

<area code> = <digit> <digit> <digit>

<prefix> = <digit> <digit> <digit> | <letter> <letter> <digit>
<number> = <digit> <digit> <digit> <digit>

<extension> 1:= ,X-<ext number> | <empty>

<ext number> 1= <digit> | <ext number> <digit>

<digit> = 0111213141516 71819

<letter> ::= A|B|C|D|E|F|GIH|I|J|KILIM|N|O|P|RIS|T|UIVIW|X|Y
<empty> ::= {a character string of zero length; i.e., nothing }

Syntax describes what elements must appear in what order for something to be a *legal”
(qualified) telephone number. However, rules regarding how to combine these elements are
usually omitted from the syntax for clarity and must be described in English sentences else-
where. These omitted rules are called semantics and are as important in describing the gram-
mar of a language as is the syntax. '

For example, neither the area code nor the prefix in a telephone number can begin with the
digit zero, but nowhere is this mentioned in the syntax. This restriction could be incorporated
in the syntax, but such as inclusion might make the syntax clumsy and difficult to use. Instead,
this restriction is easily described (along with other similar restrictions) in an English sentence
(i.e., semantically).

Syntax References

The following notation is used after each block of syntax productions to provide references to
metalinguistic variables which are left undefined:

<logical primary> — III, LOGICAL EXPRESSIONS

metalinguistic variable — section, heading within section

xi

PROGRAM STRUCTURE

SECTION [/
Program Components

The SPL/3000 compiler accepts either complete programs or subprograms. In a subprogram
compilation global declarations allocate no space; code is generated for procedures only, not

for a main body.

Syntax

<program>

<global head>

<main body>
<compound tail>
<compound statement>
<subprogram>

<data group>
<procedure group>
<proc group>

<subdata group>

<empty>

<global head> <main body>.

BEGIN <data group> <procedure group>

<compound tail>

<statement> END | <statement> ; <compound tail>
BEGIN <compound tail>

BEGIN <subdata group> <proc group> END.

<data group> <data declaration> ; | <empty>

<proc group> <subroutine declaration> | <proc group>

<proc group> <procedure declaration> ; |
<proc group> <intrinsic declaration> ; | <empty>

<subdata group> <subdata declaration> ; |
<subdata declaration> ; | <empty>

{a character string of zero length }

Syntax References

<data declaration> — III, DECLARATION TYPES
<subroutine declaration> — III, SUBROUTINE DECLARATIONS
<procedure declaration> — III, PROCEDURE DECLARATIONS
<intrinsic declaration> — III, INTRINSIC DECLARATIONS
<subdata declaration> — III, DECLARATION TYPES
<statement> — V, STATEMENT TYPES

1-1

Semantics

The <global head> contains all the global declarations for a main program and the <main body>
contains all the statements of a main program. When procedures only are compiled
(<subprogram>), global data declarations allocate no space because the procedures will be
linked up with a main program (which is compiled separately) by the operating system. See
Appendix C, “Compiler Commands,” for details on subprogram compilation.

BEGIN and END are used as a delimiting pair and are matched, much like parentheses. Any
compilation is bracketed by a BEGIN and an END. Within the body of a main program or a
procedure, a BEGIN-END pair can be used to combine several statements into one. A program
is terminated by an END. or when all BEGINs are matched.

EXAMPLES:

<<program>>
BEGIN
INTEGER A,B,C, <<data group>>
PROCEDURE N(X,Y,Z); <<procedure group>>
INTEGER X,Y,Z;

X = X* (Y+Z);
FOR Y :=1 UNTIL 20 DO <<main body>>
N(A,B,C);
END.
<<compound statement>>
BEGIN
A :=B;
B :=D;
E :=F,;
END;
BEGIN
A :=B;
IF A> 10 THEN
BEGIN
C := A+20;
D := E-F,
G := A*F
END;
END;
<<subprogram>>
BEGIN

INTEGER N,M,0; <<allocate no space>>
EQUATE A := 101, B := 202; <<subdata group>>
PROCEDURE C;

BEGIN

END;

1-2

PROCEDURE D;
BEGIN

END;
PROCEDURE E;
BEGIN

<<main body, if any, is ignored>>
END

COMMENTS

A comment is used to document a program but has no effect upon the functioning of the program
itself (i.e., a comment generates no code). In SPL/3000 comments of two types can be inserted
wherever needed.

Syntax

<comment> ::= COMMENT {any sequence of ASCII characters except semicolon}; |
<< {any sequence of ASCII characters excluding>> }>>

Syntax Reference

ASCII characters - Appendix, C

Semantics

The first form of comment (COMMENT . . .;) is equivalent to a null statement and can be used
anywhere a statement (or declaration) would be expected. The second form of comment
(<<L....>>) can be used anywhere in a program, except within an identifier.

The characters within a comment are ignored by the compiler (they are not upshifted if
lowercase).

EXAMPLES:

<<comment>>

COMMENT CONTROL: MESSAGE;
<<This is a comment!>>
COMMENT

THIS

IS

A

COMMENT

1

b

DELIMITERS

Blanks are always recognized as delimiters in SPL/3000, except within character strings.
Special characters can also act as delimiters:

Semicolon (;)
Parentheses (())
Operators (+, -, *, /, *)
Brackets ([])

1-4

SECTION 1]
Constants and Identifiers

CONSTANT TYPES

Constants are literal values that stand for themselves.

There are two basic types of constants in SPL/3000: numerical constants and string constants.

Syntax

I

<constant> <number> | <string>

<number> Linteger> |

+ 16 bits
<real number> |

+ 32 bit floating point
<double integer> |

+ 32 bit integer
<long real number> |

T 48 bit floating point
<logical value>

+ 16 bits

Semantics

In SPL/3000 constants are merely bit patterns that occupy a given number of bits. A given
16-bit pattern can have many constant interpretations (two characters, an integer, a logical
value, etc.). Note that hardware instructions provide arithmetic capability for all of the con-
stant types mentioned here except for long (extended precision) real numbers; operations on
long data use library procedures.

INTEGER CONSTANTS

There are three representations for integer constants: decimal integers, based integers, and
composite integers. Any integer can be specified as type double by following it with a D.

Syntax

<integer> =

<decimal integer>

<unsigned integer>

<digit> 0=
<sign> =

<based integer> =
<base part> =

<base> =
<empty> =
<base digit> =

<composite integer>

<integer field>

It

<number of bits>
<double integer>

Syntax References

<equate invocation> —

Semantics

<unsigned integer> |
+ unsigned assumed positive
<sign> <unsigned integer>

<digit> | <decimal integer> <digit>

<decimal integer> | <based integer> | <composite integer> |
<equate invocation>

01112|3/4]516/7|8{9

+|-
F-is two’s complement

%<base part> <base digit> | <based integer> <base digit>

(<base>) | <empty>
F<empty> means octal

{any number of the set (2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) }
{a character string of zero length }

{any of the digits from 0 to <base> -1 inclusive, taken from the
set (0,19233’4959697,8599A9B5C5D1E9F) }

[<integer field list>]

<number of bits> / <decimal integer> |
<number of bits> /<based integer> |
<number of bits> / <composite integer>

<decimal integer>

<integer> D
+ up to 32 bits

III, EQUATE DECLARATION AND INVOCATION

Decimal integers are the simplest form of integer; they consist of a sequence of decimal digits.
Octal (base eight) integers are next in complexity; they consist of a sequence of octal digits

(0 to 7) preceded by a percent sign (%). Based integers consist of a base and a sequence of
digits legal in that base. All bases from 2 through 16 are allowed (the digits A, B, C, D, E, and
F stand for 10, 11, 12, 13, 14, and 15).

Composite integers are formed through left-to-right concatenation of binary bit fields. In each
bit field, unspecified leading bits are set to zero and bits exceeding the field size are truncated
on the left. The resulting composite integer is right-justified with leading bits set to zero.

The two’s complement of any integer can be formed by preceding it with a minus sign (-).

Integers without a D (double) must be capable of fitting into 16 bits (-32,768,, to +32,767,,).
Double integers can range from —214748364810 to +214748364710 .

Care should be exercised when using blank as a delimiter in the specification of based integers.
The based integer

%(16)ABCD
is not equivalent in size or value to the based integer
%(16)ABC D.

The blank inserted in the second case makes it type double.
EXAMPLES:

<<decimal integer>>
123456
34
57
999

<<based integer>>
%1777 <<octal>>
%(2)101110111
%(11)1092A
%(16)A012

<<composite integers>>
[3/2, 12/%5252] <<equals %52524>>
[2/211, 15/[3/%(2)101, 12/0], 10/123] D
<<equals %720000173>>

<<integer>>
-12345
-%(2)1110010
-1[3/2, 12/%5252]

2-3

REAL CONSTANTS

Real numbers can be either standard (32 bits) or long (48 bits). In both cases they consist of
a signed magnitude (e.g., -1056) and a signed decimal power (e.g., E20, L-15). Standard real
numbers are specified by a decimal point or an E before the exponent; long real numbers must
always contain an L to distinguish them from standard real numbers.

Syntax

<real number> ::= <unsigned real number> | <sign> <unsigned real number>

<unsigned real number> ;1= <fraction> | <decimal integer> E <power> |
<fraction> E <power> | <composite integer> E |
<based integer> E

<fraction> 1= <decimal integer> . | . <digit> | <fraction> <digit>

<power> ::= <decimal integer> | <sign> <decimal integer>

<long real number> ::= <unsigned long real number> |
<sign> <unsigned long real number>

<unsigned long real number> ::= <decimal integer> L <power> | <fraction> L <power> |
<composite integer> L | <based integer> L

<sign> =+ -

Syntax References

<decimal integer> — II, INTEGER CONSTANTS

<composite integer> — II, INTEGER CONSTANTS

<based integer> — 1I, INTEGER CONSTANTS

<digit> — II, INTEGER CONSTANTS
Semantics

As shown in the syntax, the magnitude part of a real number can be a decimal fraction, a
decimal integer, a composite integer, or a based integer and the power must be a decimal
integer (with or without sign). Real and long real numbers are accurate to 6.9 decimal digits
of magnitude and 11.7 digits respectively (0 can be represented exactly). The absolute value
can range from 8.6366 x 10® to 1.1579 x 1077

When a composite or based integer is used, <power> does not follow the L or E. The bit
pattern created for the integer is used directly as right-justified real number (it is not con-
verted to floating point form). This construct is useful for creating special floating point
constants such as the smallest positive number.

2-4

EXAMPLES:

<<real number>>
+1.324
-.1024
-1.105E-21
%(4)321000E
-%(2)111101111011E
[3/5, 5/273, 20/%(16)102AB39] E

<<long real number>>
9321.678975L72
-.111015L-27
%(8)37777777177L

2-b

LOGICAL CONSTANTS

Logical constants are 16-bit positive integers. Hardware operations on logical values are defined
for addition, subtraction, multiplication, division, and comparison.

Syntax

<logical value> ::= TRUE | FALSE | <integer>

Syntax References

<integer> — II, INTEGER CONSTANTS

Semantics

A logical value is considered true if its value is odd, false if its value is even (i.e., only the last
bit is checked). When the reserved words TRUE and FALSE are used, they are equivalent to
the integer values -1 (all ones) and 0 (all zeros) respectively. Since logical values are always
assumed to be positive they range from 0 0 to +65,535 0" When negative integers are used as
logical values they are interpreted as large positive numbers (e.g., -1 equals %177777).

STRING CONSTANTS

A string constant is a sequence of one or more ASCII characters bounded by quote marks ().
Each character is converted to its 8-bit representation and the characters can be packed two

per word.
Syntax
<string> 1:= “<character string>"’
<character string> ::= <character> | <character string> <character>
<character> ::= {a member of the set of ASCII character representations }

Syntax References

ASCII characters — Appendix, A

Semantics
A character string can contain from 1 to 64 ASCII characters. A quote (”’) is represented
within a character string by a pair of quotes (‘“ ”’) to avoid ambiquity with the string terminator.
EXAMPLE:

<<string>>
“THE CHARACTER” “IS A QUOTE MARK.”
“A NORMAL STRING WOULD LOOK LIKE THIS”
“Lowercase letters are not UPSHIFTED in strings”

2-7

IDENTIFIERS

Identifiers are symbols used to name data and code constructs in an SPL/3000 program. They
consist of uppercase letters and numbers, and are assigned uses by declarations. There is no
implicit typing assumed for identifiers.

Syntax

<identifier>

<T simpvar identifier>
<T identifier>

<T pointer identifier>
<T array identifier>
<procedure identifier>
<T proc identifier>
<proc identifier>
<entry identifier>
<label identifier>
<switch identifier>
<equate identifier>
<define identifier>
<subroutine identifier>
<T subr identifier>
<subr identifier>
<intrinsic identifier>
<letter>

<digit>

<letter> | <identifier> <letter> |
<identifier> <digit> | <identifier>'

<T identifier>

<identifier>

<identifier>

<identifier>

<T proc identifier> | <proc identifier>
<identifier>

<identifier>

<identifier>

<identifier>

<identifier>

<identifier>

<identifier>

<T subr identifier> | <subr identifier>
<identifier>

<identifier>

<identifier>

A|BICIDIE|F|GIH|I|JIK|LIM|N|OIP|QIRIS|T|U|VIW|X|Y|Z

0[1]2]3/415/6]78|9

2-8

Semantics

An identifier always starts with a letter and may contain from 1 to 15 contiguous characters
(letters, digits, and apostrophes). Identifiers larger than 15 characters are truncated on the
right (A123456789012345 = A12345678901234). Lowercase letters are allowed, but are
always converted to uppercase form (Aabc = AABC). The attributes of an identifier are de-
termined by a declaration, not by the form of the identifier (the syntax shows that all types
of syntax identifiers have the same form).

Reserved words are combinations of characters that cannot be used as identifiers, since they
are used with implied meanings in the language. (See Appendix B for a list of SPL/3000
reserved words.)

In the syntax, T is used as an abbreviation to indicate the following class of data types:

integer, logical, byte, real, long, double.

EXAMPLE:

< <identifier>>
MATRIX
Al rry B
AN'IDENTIFIER
MAT1
X

29

SECTION 111
Declarations

DECLARATION TYPES

A declaration defines the attributes of an identifier before it is used in a program or procedure.
All identifiers in SPL/3000 (with the exception of labels) must be explicitly declared once, and
only once, within a single program or procedure. There are two possible levels of declarations
in SPL/3000: global, for a main program and local, for a procedure. Global declarations can
be accessed throughout a program (even within procedures) and are grouped together at the
beginning of the program. Local declarations can be accessed only within the procedure where
declared and are grouped together at the beginning of the procedure body.

Syntax
<data group> ::= <data group> <data declaration> ; | <empty>
<data declaration> ::= <define declaration> |

T any order
<equate declaration> |
<global simpvar declaration> |
<global array declaration> |
<global pointer declaration> |
<label declaration> |
<switch declaration> |
<entry declaration>

<procedure group> <procedure group> <subroutine declaration> ; |
<proc group>

¥ subroutines last

<proc group> ::= <proc group> <procedure declaration> ; |
<proc group> <intrinsic declaration> ; |
<empty>
+ any order
<subdata group> ::= <subdata group> <subdata declaration> ; |

<subdata declaration> ; | <empty>
F subprogram compilations

3-1

<subdata declaration> ::= <define declaration> |
<equate declaration> |
<global simpvar declaration> |
<global array declaration> |
<global pointer declaration> |
<simpvar declaration> |
<pointer declaration> |
<array declaration>
F subdata declarations do not allocate global space

Syntax References
These declaration types are described in this section.

<define declaration>
<equate declaration>
<simpvar declaration>
<array declaration>
<pointer declaration>
<label declaration>
<switch declaration>
<entry declaration>
<procedure declaration>
<intrinsic declaration>

<subroutine declaration>

Semantics

As stated in Section I, “Program Structure,” the SPL/3000 compiler accepts either main
program or procedure-only compilations. When procedures are compiled alone they must be
linked up with some main program before they can be executed.

All data declarations (e.g., the data group) must occur before the procedure group. Within
the data group, data declarations can occur in any order. But, in procedure-only compilations,
any data declarations which imply storage locations must use address reference (see “Declara-
tion Concepts”). New global locations are never directly allocated in procedure-only compila-
tions.

After data declarations come procedures and intrinsic declarations, intermixed in any order.
The global subroutine declarations occur last, but are only allowed in main program
compilations,

Declarations can also occur within procedures. The declarations which are allowed locally are
described under “Procedure Declaration,”

3-2

DECLARATION CONCEPTS

Certain concepts are common to many declarations:

Data Types

Addressing Data

Address Allocation

Initialization
GLOBAL-EXTERNAL Attribute
Address Reference

Data Types

A data type specification in a declaration defines the set of instructions which can operate on
the item declared and the amount of storage its value will occupy. Six reserved words are used
for type assignment:

INTEGER

REAL

DOUBLE

LONG

LOGICAL

Single precision positive and negative integer values, including zero. 16-bit,
two’s complement representation which can range from -32,768 to +32,767.
Hardware provides addition, subtraction, multiplication, division, modulo,
negation, and comparison. Software provides exponentiation.

Single precision positive and negative floating-point values, including zero.
32-bit sign plus magnitude representation with an absolute value that can range
from 8.6366 x 10°7® to 1.1579 x 10*”” (zero can be represented exactly as a
special case). Real numbers are accurate to 6.9 decimal digits of magnitude.
Hardware provides addition, subtraction, multiplication, division, negation, and
comparison. Software provides exponentiation.

Double precision positive and negative integral values, including zero. 32-bit,
two’s complement representation which can range from -2,147,483,648 to
+2,147,483,647. Hardware provides only addition, subtraction, comparison,
and negation.

Extended precision positive and negative floating-point values, including zero.
48-bit sign plus magnitude representation with the same range as real, but with
11.7 decimal digits of accuracy. Hardware provides no operations; software
provides addition, subtraction, division, multiplication, negation, comparison
and exponentiation.

Single precision positive integer values, including zero. 16-bit, positive binary
representation which can range from 0 to +65,535. Hardware provides addi-
tion, subtraction, multiplication, division, modulo, or, and, exclusive or, com-
parison, and complement.

BYTE Half precision positive integer values, including zero. Eight-bit integral
representation which can range from 0 to 255. When type byte is used in
arithmetic operations, 16-bit integer arithmetic is performed on the top of the
stack. If the result is stored in a byte, it is always truncated to an 8-bit integer
(which must therefore be interpreted as positive, even if the 16-bit result was

| negative) and is stored in the left half unless indexed. Hardware provides moves,
- scans, and compares for strings of bytes.

Addressing Data

Identifiers can be declared globally (e.g., in a main program) or locally (e.g., in a procedure).
Global identifiers are recognized throughout the main program and all procedures (except that
subroutines are recognized only in the main program). Local identifiers are recognized only
within the procedure where they are declared. When a local identifier equals a global identifier
only the local identifier is recognized within the procedure.

2

Unless the programmer specifies otherwise, global data items are assigned DB-relative locations
and local data items are assigned Q-relative locations. The programmer can override this assign-
ment by asking that a global identifier be allocated Q relative or a local identifier DB-relative.

Data assigned DB-relative addresses or the index register can be addressed throughout the
scope of the entire program. That is, the locations can be addressed in all cases, although the
identifiers may not be recognized in some contexts. Data assigned Q-relative addresses can be
addressed only within the scope of the Q-register setting corresponding to where they are de-
clared. Data assigned S-relative addresses can be addressed consistently (i.e., the compiler cor-
rects for changes in S) within a statement.

The address field of the memory reference instructions (bits 6 through 15) determines the range
(in words) of each addressing mode:

Bits Range

6 7 8 9 10 11 12 13 14

P + relative

Displacement 8 bits (0:255)
8 bits (0:255)
8 bits (0:255)
7 bits (0:127)

1 0 Displacement ——— s 6 bits (0:63)

P - relative

0
0
DB + relative 1
1
1
1

Displacement

vYYY =

Q + relative

0 Displacement

0
1
0 Displacement
1
Q - relative 1
1

S - relative 1 1 Displacement ————— 6 bits (0:63)

Address Allocation

When data identifiers are declared they are allocated addresses in the data stack. Normally,
global identifiers are allocated the next available DB-relative locations and local identifiers are
allocated the next available Q-relative locations. The number of locations allocated depends on
the item being declared and its data type. It is also possible to assign data identifiers to specific
relative locations (see ‘“Address Reference”), thus overriding the normal default assignment.

3-4

SIMPLE VARIABLES

A simple variable is allocated the next available locations relative to DB or Q. The number
of locations allocated is

e One for integer, logical, or byte (actual byte data occupies bits 0 through 7 of word
allocated).

e Two for double or real.

e Three for long.

For example, if the next available DB location is DB+7 and three global variables are declared
(integer 1, real R, and byte B), the following locations are allocated:

DB+7g integer 1
DB+10g

real R
DB+11g
DB+124 byte B

DB+13 8 next available location

POINTERS

Pointers are always allocated only one location, regardless of the data type. Thus if three local
pointers (P1, P2, P3) are declared and the next available Q-relative location in that procedure is
Q+3, then:

Q+3 pointer P1

Q+4 pointer P2

Q+5 pointer P3

Q+6 next available location
INDIRECT ARRAYS

Normally, arrays are addressed indirectly through a data label (address). The data label is
allocated the next available DB or Q location and the actual array storage is allocated either in
the secondary DB (beyond the global variables) or on the top of the stack (beyond the local
variables).

For dynamic local arrays, the data label is allocated the next available Q-relative location.
When the procedure is entered, the upper and lower bounds are computed and the storage
for the array is allocated on the top of the stack.

The quantity of space allocated for an array of N elements is dependent on its data type:

N words for an integer of logical array.

2 times N words for a double or real array.
3 times N words for a long array.

(N + 1)/2 words for a byte array.

DIRECT ARRAYS
SPL/3000 allows the programmer to specify that an array will be accessed directly (without
going indirectly through a pointer). The total storage for a direct array is allocated starting
with the next available DB or Q cell. There are certain restrictions on direct arrays based on
the limited range of directly addressed locations.
EXAMPLES:
Assume that the following declarations have been made:
Main Program:
An indirect integer array, A, ranging from 0 to 72.
An integer simple variable, I.

A double pointer, P.

A direct logical array, AA, ranging from 0 to 9.

Procedure PROC:
A local integer simple variable, X.
A local integer simple variable, Y,

An indirect local logical array, B, ranging from 0 to 7.

When procedure PROC is called and has set up its local storage, the data area appears as
follows:

Address

DB+0

+1

+2

+3

+12

+13

+85

a+0

+1

+2

+3

+4

Q+11

Low Memory

Q-DB+4

High Memory

Description

data label for array A

cell for integer |

cell for pointer P

> > 10 cells for direct array AA

Primary DB

< _______

Secondary DB

< > Storage for indirect array A

Q register setting for current procedure (PROC)
cell allocated for integer X

cell allocated for integer Y

data label for array B

8 cells to array B

top of stack

> undefined area

Figure 3-1. Example Data Area

3-7

Initialization
Compile-time initialization of data items is allowed in SPL/3000 wherever possible.

Simple variables are initialized when declared by following the identifier with a := and a
constant of appropriate type. When execution of the program begins the variable has the
initial value specified.

Pointers can be initialized with the addresses of other data items when they are declared.

The only arrays that can be initialized are global arrays, local OWN arrays, and local PB-
relative arrays (all with defined bounds). The initialization consists of a list of constants
separated by commas; repeat factors are allowed before lists of constants in parentheses to
indicate that the list is to be repeated. Only the last array specified in a single array declara-
tion list can be initialized.

Generally the constants used in initialization must match the data type of the variable being
declared exactly. However, strings can be used to initialize any data type; bytes are used con-
secutively from the left. A remaining right byte, if any, is filled with a blank. In addition,
variables declared type byte can be initialized with integer constants that fit in 8 bits (the
constant is truncated on the left if too large and a warning is issued).

Local variables with initialization, except those declared OWN, are initialized every time the
procedure is entered. Since OWN variables are allocated in the DB area they are initialized
only once, before the start of the program.

GLOBAL-EXTERNAL Attribute

When a procedure is compiled separately, it is necessary to take special steps to establish a DB-
relative variable that can be recognized in both the procedure and the main program to which
it will eventually be linked by the operating system. The GLOBAL-EXTERNAL mechanism
is provided for this purpose.

When a local variable is declared EXTERNAL, the variable must be linked with a variable of

the same identifier and type declared GLOBAL in a main program. The GLOBAL-EXTERNAL
variable is allocated to specific DB-relative location when the operating system links the proce-
dure with the main program. This location can then be accessed by both the procedure and

the program using the same identifier.

Address Reference

Address reference allows variables to be equivalenced to locations relative to other variables or
the address registers. Generally, no storage is allocated when address reference is specified and
these variables can never be initialized. There are three forms of address reference: variable
reference, base register reference, and indexed identifier reference.

3-8

VARIABLE REFERENCE

The data item is assigned the location and addressing convention of a referenced identifier,
adjusted by a plus or minus number of words. The resulting address must be within the direct
address ranges (see ‘“ Addressing Data,” this section).

<identifier> = <identifier> |
<identifier> <sign> <unsigned integer>

Assume the variable A has been assigned the location DB+5. If an integer simple variable B is

" declared with variable reference to a (B=A), then B is assigned location DB+5. If a pointer P is
declared with variable reference to B+2 (P=B+2), then P is assigned DB+7. Variable reference
is allowed with simple variables, pointers, and arrays (undefined bounds only).

BASE REGISTER REFERENCE

The data item is assigned an address relative to one of the data register or equal to the index
register.

<identifier> = DB + <usi2b5> | F unsigned integer 255
Q + <usil27> | + unsigned integer 127
Q - <usi6d> | T unsigned integer 63
S — <usi63> | F unsigned integer 63
X + Index Register

Only simple variables of type integer, logical, or byte can be equivalenced to the index register.
All variables thus equivalenced refer to one value, the current value of the index register. Since
the index register is used in array indexing and other constructs, this value can change without
explicit reference to an identifier equivalenced to the index register. The compiler does not
save the value of any variables referenced to the index register; the programmer must maintain
the integrity of these variables.

Simple variables and pointers of all types can be referenced to base register relative locations,
but initialization is not allowed. If arrays are to be referenced to registers, they must have un-
defined bounds. If the undefined bounds specify an *, the referenced location is treated as
the zero element of a direct array. If the undefined bounds specifier is an @, the referenced
location is treated as a data label for an indirect reference to the zero element of an indirect
array.

INDEXED IDENTIFIER REFERENCE

An array with undefined bounds (*) can be equivalenced to the location of a previously declared
array or pointer.

<identifier> = <array identifier> <index> |

<pointer identifier> <index>
+ <index> is optional; no <index> specifies the zero element

3-9

The referenced item specifies the zero element of the new array. If the reference is to the zero
element and the referenced item is of compatible data label type (word or byte), then the data
label location of the reference item is used as the data label of the new identifier. If the
reference is to a direct array, the new array is direct also and no data label need be allocated.

However, if the reference is to other than the zero element, or the two items have different
data label types (word versus byte), a location must be allocated for a new data label. These

are the only cases in address referencing when storage is ever allocated.

For further details and examples, see ‘“Array Declaration.”

3-10

DEFINE DECLARATION AND INVOCATION

A define declaration assigns a block of text to an identifier. Whenever the identifier is used in
the program thereafter, the assigned text replaces the identifier. This provides a convenient
abbreviation mechanism to avoid repeating long constructs that are used many times through-
out a program.

Syntax
<define declaration> ::= DEFINE <definition list>
<definition> ::= <define identifier> = <text> #
<define identifier> 1= <identifier>
<text> ::= {any sequence of ASCII characters not including # except in a
string }
F symbols should make sense when inserted where the define
is invoked

<define identifier>
+ anywhere except within an identifier, string, or comment

<define invocation>

Semantics

At declaration time a define has no effect on the compilation of the program. It has effect
only in the context where it is invoked. For this reason, undeclared identifiers can appear in
defines; they only need to have been declared when the define is invoked. Similarly, the de-
fine text is checked for syntax errors in the context where invoked, not where declared.

Define declarations can be nested (define identifiers can be used in other definitions), but they
cannot be recursive (a define identifier appearing within its own text), since this leads to infinite
nesting when the define is invoked.

The number sign (#) terminates a define text only if it is not contained in a string. For example,
the string “ ABCD#”’# valid text (terminates on the second #). Incomplete comments cannot
appear in DEFINEs.

EXAMPLES:

DEFINE I = ARRAY B(0:1)#;

INTEGER I; <<INTEGER ARRAY B (0:1);>>
DEFINESUM=A+B+C+D+ E#;
J:=SUM;<<J:=A+B+C+D+E;>>

3-11

EQUATE DECLARATION AND INVOCATION

An equate declaration assigns an integer value (determined by an expression of integer constants
and other equates) to an identifier. The equate mechanism is only a documentation and mainte-
nance convenience; it does not allocate any storage, but merely provides a form of consistent
identification for constants. When an equate identifier is used, the appropriate constant is sub-
stituted in its place. When equates are used instead of actual constants, programs can be up-
dated easily; instead of replacing every occurrence of a constant, only the equate declaration is
changed.

Syntax

<equate declaration> ::= EQUATE <equate list>
<equate> 1:= <equate identifier> = <equate expression>

<identifier>

<equate identifier>

1l

<equate expression> <sign> <equate term> |
+ lowest precedence
<equate term> |

<equate expression> <addop> <equate term>

<equate term> <equate term> <muldiv> <equate primary> | <equate primary>

<equate primary> <unsigned integer> |
¥ highest precedence
<equate identifier> |

(<equate expression>)

<sign> =+ -
<addop> = 4 -
<muldiv> = ¥
<equate invocation> ::= <equate identifier>

+ anywhere that an integer constant is allowed

Syntax References

<unsigned integer> — II, INTEGER CONSTANTS

Semantics

The value to be assigned to an equate identifier is determined by an equate expression. Equate
expressions consist of operators (¥, /, +, -), unsigned integers, previously-defined equates, and
parentheses. Evaluation of the expression proceeds from left to right, except that multiplica-
tion and division (*, /) are done before addition and subtraction (+, -) and expressions in paren-
theses are done before the operators that surround them. Since equate identifiers can be used
in equate expressions, a series of related equate declarations can be set up such that changing
only the first changes all the rest.

Equate identifiers can be used anywhere in the program that an integer or unsigned integer
constant is allowed. Equate declarations are allowed globally and locally.

3-12

EXAMPLE:

EQUATE M =1, N =M+1, P = N+1;
EQUATE T=20*P/(20-P+M);
J:=136 * T,

<<M=1, N=2, P=3, T=3, J=408>>

3-13

SIMPLE VARIABLE DECLARATION

A simple variable declaration specifies the type, addressing mode, storage allocation, and form
of initialization for identifiers to be used as single data items. The type assigned a variable de-
termines the amount of space allocated to the variable and the set of HP 3000 instructions
which can operate on the variable.

Syntax

<global simpvar declaration> ::= <global attribute> <type> <var dec list>

<global attribute> ::= GLOBAL | <empty>
F linkage for external procedures

OWN <type> <nonref var dec list> |
EXTERNAL <type> <T simpvar identifier list> |

T linkage to main programs compiled separately
<type> <var dec list>

<local simpvar declaration>

<type> ::= INTEGER | LOGICAL | BYTE |
DOUBLE | REAL | LONG
<var dec> ::= <T simpvar identifier> <var reference> |

<T simpvar identifier> = X |
T equivalenced to the index register; integer, logical
byte only
<T simpvar identifier> <simpvar init>

?

<nonref var dec> ::= <T simpvar identifier> <simpvar init>
<T simpvar identifier> ::= <T identifier>

<T identifier> ::= <identifier>

<var reference> = <empty> |

T allocated next DB or Q cell
= <T data identifier> |

+ address reference
= <T data identifier> <sign> <usi> |
<base register reference>

<T data identifier> ::= <T simpvar identifier> |
<T array identifier> |
<T pointer identifier>

<base register reference> = DB + <usi> |
1 0 to 255
Q + <usi> |
+0to 127
Q - <usi> |
+ 0 to 63
S - <usi>
+ 0to 63
<usi> ::= <unsigned integer>
<simpvar init> = <empty> |
+ not initialized
1= <initial value>
<initial value> 1= <constant>

+ truncated on left if too large

3-14

Syntax References

<array> — III, ARRAY DECLARATION
<pointer> -— III, POINTER DECLARATION
<constant> — II, CONSTANT TYPES

Semantics

All of the topics discussed under ‘‘Declaration Concepts” apply to some extent in the
declarations of simple variables; refer to the appropriate portions of that discussion for gen-
eral information on data type, address assignment, initialization, GLOBAL-EXTERNAL,
variable reference, and register reference,

Simple variables can be declared globally or locally. An OWN option is available for local

“variables. The OWN option specifies that, although the identifier is to be recognized only
locally, the storage for the variable is to be allocated in the primary DB area (the global area).
This storage provides the procedure with a local variable which is not deleted when the proce-
dure exits.

Simple variables which are address referenced to arrays are assigned either the data label
location of the array (if indirect); or the zero element of the array adjusted by the word off-
set specified (if direct). In any case, the final address must be within the direct address range.

EXAMPLE:

BEGIN <<global declarations>>
INTEGER 1,J :=1245;
DOUBLE IL :=-1234579D;
REAL A,B,C :=1.321 E-21,
Z = DB+3;
LOGICAL INDX =X, LI=1,JI = J;
GLOBAL BYTE B1 := “$”;

PROCEDURE PROC; <<local declarations>>
BEGIN

INTEGER I; <<overrides global I>>
OWN REAL R;
LOGICAL QP = Q-3;
INTEGER TS = S-0;
LONG LN :=124.0 L.-25;
LOGICAL L9 := TRUE;

END;

END.

3-15

ARRAY DECLARATION

An array declaration specifies one or more identifiers to represent arrays of subscripted
variables. An array is a block of contiguous storage which is treated as an ordered sequence
of “variables’” having the same data type. Each ‘“‘variable” or element of the array is denoted
by a unique subscript (SPL/3000 provides one-dimensional arrays only — one subscript or
index, not a pair or more). An array declaration defines the following attributes of an array:

® The bounds specification (if any) which determines the size of the array and the
legitimate range of indexing.

® The data type of the array elements.
® The storage allocation method.

The initial values, if desired.

® The access mode (direct or indirect).

Syntax

<global array declaration> ::= <atype> ARRAY <g-array dec list> |
GLOBAL <atype> ARRAY <G-dec list>

T linkage to external procedures

<atype> ARRAY <l-array dec list> |
EXTERNAL <atype> ARRAY <E-dec list> |
OWN <atype> ARRAY <own array dec list>

<local array declaration>

<atype> = <type> |
<empty>
+ LOGICAL assumed
<type> ::= INTEGER | LOGICAL | BYTE
DOUBLE | REAL | LONG
<G-dec> ::= <T array identifier> (<db>) = DB <array init> |

T direct array, defined bounds, can be initialized
<T array identifier> (*) = DB |
F direct array, no bounds, user next cell as zero element
<T array identifier> (@) = DB |
T indirect array, no bounds, uses next cell as pointer to
zero element
<T array identifier> (<db>) <array init>
T indirect array, defined bounds

<g-array dec> = <G-dec> |
<T array identifier> (@) <indirect base register reference> |
+ indirect
<T array identifier> (<udb>) <reference part>
F direct or equivalenced

<identifier>

<T array identifier>

<db> ;1= <integer> : <integer>
+ defined bounds

3-16

<udb> =k
+ undefined bounds

<E-dec> ;1= <T array identifier> (<udb>) | <T array identifier> (@)
+ EXTERNAL linkage to main program compiled
separately. * = direct, @ = indirect
<l-array dec> ::= <T array identifier> (<db>) = Q <array init> |
T direct array, defined bounds, can be initialized
<T array identifier> (*) = Q |
T direct array, no bounds, uses next cell as zero element
<T array identifier> (@) = Q |
F indirect array, no bounds, uses next cell as pointer to
zero element
<T array identifier> (<db>) |
F indirect array
<T array identifier> (<db>) = PB : = <listelmt> |
T P-relative array of constants
<T array identifier> (<vb>) |
+ dynamic array
<T array identifier> (<udb>) <reference part> |
+ equivalenced array or direct (base register reference)
<T array identifier> (@) <indirect base register reference>
+ indirect array

<own array dec> ::= <T array identifier> (<db>) <array init>
<vb> 2= <Ty}, simpvar identifier> : <Ty;;, simpvar identifier>
F variable bounds

<reference part> ::= <var reference> |
= <indexed ident reference>

<indexed ident reference> ::= <T array identifier> |
+ zero element
<T pointer identifier> |
t zero element
<T array identifier> (<integer>) |
<T pointer identifier> (<integer>)

<array init> = <listelmt> |
<empty>
<listelmt> ::= <initial value> |

<decimal integer> (<initial value list>) |
F repeat factor allowed
<listelmt list>
+ one level deep only
+ no nesting
<initial value> ::= <constant>
F truncated on left if too large; assigned one constant
per element except that strings are used completely
from left to right
<var reference> := <empty> |
4 allocates next DB or Q cell as pointer cell; ARRAY
A (*) is equivalent to ARRAY A (@)
= <T data identifier> |
+ address reference
= <T data identifier> <sign> <usi>
<base register reference>

3-17

<T data identifier> ;1= <T simpvar identifier> |
<T array identifier> |
<T pointer identifier>

<sign> = o+ -

<indirect base register
reference> = <empty> |
¥ allocates next DB or Q cell as pointer to zero element
= <base register reference>

<base register reference> ::= DB+ <usi> |
+ 0 to 255
Q + <usi> |
T 0to 127
Q - <usi> |
+0to 63
S - <usi> |
+ 0to 63
<usi> ::= <unsigned integer>
<initial value> ::= <constant>

Syntax References

<simpvar> — HI, SIMPLE VARIABLE DECLARATION
<pointer> — III, POINTER DECLARATION
<constants> — II, CONSTANT TYPES

<unsigned integer> — II, INTEGER CONSTANTS

Semantics

All of the topics discussed under ‘““Declaration Concepts” apply to some extent in the
declaration of arrays; refer to the appropriate portions of that discussion for general infor-
mation on data types, address assighment, initialization, GLOBAL-EXTERNAL, variable refer-
ence, and indexed identifier reference.

Arrays can be declared globally or locally. Only global arrays can be declared with attribute
GLOBAL or with directly addressed storage in the DB area. Only local arrays can be declared
with attribute EXTERNAL, with variable bounds, with direct addressing in the Q area, PB
relative, or OWN. Run-time bounds checking is not provided in SPL/3000.

Local OWN arrays are allocated space in the DB area and thus are not deleted when a procedure
exists. A Q-relative data label pointing to the array is established each time the procedure is
entered. An OWN array can be accessed only by the procedure where it is declared or by
procedures to which the declaring procedure has passed it as a parameter.

When arrays are accessed, an index is specified which determines the element desired. The
index register is used in accessing index arrays and pointers. See ‘“‘Variables” in Section IV.

3-18

BOUNDS SPECIFICATION

Bounds specification can be defined, undefined, or variable (local only). Defined bounds
consist of a pair of integer constants, the first integer is the lower bound (lowest element
subscript) and the second is the upper bound (highest element subscript). The lower must be
less than or equal to the upper and the number of elements in the array is determined by sub-
tracting lower from upper and adding 1. Although all array references are relative to the zero
element, zero need not be included in the defined bounds of the array.

EXAMPLE:

INTEGER ARRAY DONE (-100 : 100),
START (-100 : -50);,

REAL ARRAY RVAL (0 : 20);

DOUBLE ARRAY DVAL (20 : 200);

Undefined bounds are specified by an * if a direct or equivalenced array is desired, or by a @
if an indirect array is desired. Arrays with undefined bounds are not allocated any space; they
must reuse storage allocated to other variables. An exception is when an array with undefined
bounds is not equivalenced (<empty> reference), this case always allocates the next location
as an indirect cell, whether the bounds specifier is @ or *.

EXAMPLE:

INTEGER ARRAY UNDEFINED (*) = DONE,
INDIRECT (@) = START,;

Variable bounds are allowed in local arrays. The bounds are specified by a pair of global
simple variables or simple variable parameters of type integer, logical, or byte. The first must
be less than the second each time they are evaluated. These bounds are calculated once each
time the array is called.

EXAMPLE:

PROCEDURE PROC (A,B); INTEGER A,B;
BEGIN ARRAY LOCVALUE (A:B);

END:

DATA TYPES

Arrays of all data types are allowed in SPL/3000. If a data type is not specified, type
LOGICAL is assumed.

3-19

STORAGE ALLOCATION

Only arrays with defined bounds are allocated space for elements. Global arrays are allocated
space relative to DB and local arrays relative to Q. Local OWN arrays are allocated space rela-
tive to DB and arrays specified P relative (=PB) are allocated space in the code segment (these
arrays cannot be modified during execution and must be fully initialized at compile-time).
Local arrays with variable bounds are allocated space on the top of the stack each time the
procedure is entered.

Data label locations are normally allocated only for indirect arrays with defined bounds.
However, if an indirect array is declared with undefined bounds and no address reference
(ARRAY L(@) or ARRAY L(*)), then the next available DB or Q location is allocated to it
as a data label which can be filled with an address by the program during execution. Also, if
an array is referenced to an indexed identifier a new data label location is required if the two
items do not match in data label type or if the reference is to other than the zero element.

EXAMPLE:

REAL ARRAY R(0 : 10);

REAL ARRAY R2(@); REAL ARRAY R1(*);
INTEGER ARRAY I (¥) = R(5);

BYTE ARRAY B(*) = R;

INITIALIZATION

Only arrays with defined bounds can be initialized and local PB arrays must be fully initialized.
Initialization consists of a : = followed by a list of numerical constants or strings. A group of
constants can be surrounded by parentheses and preceded by a decimal repetition factor (N) to
specify that the constants in parentheses are to be used N times in initializing the array before
going onto the next item in the list. These repeat groups cannot be nested. Elements are ini-
tialized starting with the lowest subscript and continuing up until the constant list is exhausted.
There is no default value for uninitialized variables.

EXAMPLE:

INTEGER ARRAY N(1:10):=10,9,8,7,6,5,4,3,2,1;
LOGICAL ARRAY M(0 : 5) := “ABCDEFGHIJKL”;
REAL ARRAY TEST(10:20):= 0.0, 10(1.0);

DIRECT/INDIRECT

Arrays can be direct or indirect. A direct array is always accessed without going through a data
label; therefore, its zero element must be within the direct address range. Indirect arrays are
accessed by refering indirectly through a data label; the data label must be in a directly addressed
location, but the storage for the elements can be elsewhere (secondary DB or top of the stack).

Indirect arrays are the default type for arrays with defined bounds such as

INTEGER ARRAY A(O : 20);

3-20

If this array is to be direct, the programmer must specify =DB (global only) or =Q (local only)
after the bounds:

INTEGER ARRAY A(O : 20) = DB;
PROCEDURE PROC:
BEGIN
INTEGER ARRAY A(0: 20)=Q;
END;

If the bounds specifier is * (ARRAY L(*) = DB or ARRAY L(*) = Q, the zero element of the
array is the next available location, but this location is not allocated. If the bounds specifier is
@, the array is indirect and the next location is used as the pointer to the zero element of the

array, but his location is not allocated.

For direct arrays with defined bounds, the zero element (if there is one) must fall within the
directly addressed range, assuming that the array storage is allocated starting with the next
available location.

With undefined bounds the direction must be specified explicitly. An @ bounds specifier indicates
that an indirect array is desired. If there is no reference part, the compiler allocates the next
available location as the data label for the array .

INTEGER ARRAY NUMB (@); <<ALLOCATES NEXT CELL>>
ARRAY TRUTH (@) = DB+7;

An * bounds specifier indicates that a direct or equivalenced array is desired. If there is no
reference part, the next available location is allocated as an indirect cell just as @ does. If
register reference is used, the referenced address is the zero element of the direct array. If
variable reference or indexed identifier reference is used, the array takes its direction from
the referenced item which is also the zero element. If the referenced item is a direct array or
variable the array is direct. If the referenced item is an indirect array or a pointer the array
is indirect.

INTEGER ARRAY A(O : 10), <<INDIRECT>>
B(0 : 10) = DB;<<DIRECT>>
LOGICAL ARRAY L(*) = A, <<INDIRECT>>
LM(*)=B, <<INDIRECT>>
LN (*); <<INDIRECT: NEXT CELL IS
ALLOCATED AS POINTER>>
INTEGER D; <<ZERO ELEMENT OF LN>>

3-21

POINTER DECLARATION

A pointer declaration defines an identifier as a ““pointer” — a single-word quantity used to
contain a DB-relative address. The address points to another data item — the object of the
pointer. A pointer declaration defines the following attributes of a pointer:

® The data type.

e The storage allocation method.

e The initial address to be stored in the pointer.

When the pointer is accessed the object is accessed indirectly through the pointer address. The
object is assumed to be (or treated as if it were) the type of the pointer.

Syntax

<global pointer declaration>
<local pointer declaration>

<pointer dec>

<T pointer identifier>
<pointer init>

<address specification>

<indexed ident reference>

<global attribute>

<atype>

<type>

<global attribute> <atype> POINTER <pointer dec list>

<atype> POINTER <pointer dec list> |

OWN <atype> POINTER <T pointer identifier list> |

EXTERNAL <atype> POINTER <T pointer identifier list>
¥ linkage to main program compiled separately

<T pointer identifier> <pointer init> |
T allocated next DB or Q cell
<T pointer identifier> <var reference>

<identifier>

:=@ <address specification> |
<empty>
+ not initialized

<T simpvar identifier> |
T initialization
<indexed ident reference>
<T array identifier> |
T zero element
<T pointer identifier> |
+ zero element
<T array identifier> (<integer>) |
<T pointer identifier> (<integer>)

GLOBAL |
+ linkage to external procedures
<empty>

<type> |
<empty>
+ LOGICAL assumed

INTEGER | LOGICAL | BYTE |
DOUBLE | REAL | LONG

3-22

<var reference> = <empty> |
F allocated next DB or Q cell
=< T data identifier> |
+ address reference
=<T data identifier> <sign> <usi> |
<base register reference>

<T data identifier> ;1= <T simpvar identifier> |
<T array identifier> |
<T pointer identifier>

<sign> = 4=
<usi> ::= <unsigned integer>
<base register reference> ::= DB+ <usi> |
+ 0 to 255
Q + <usi> |
F0to 127
Q - <usi> |
7 0to 63
S - <usi>
T0to63

Syntax References

<array> — III, ARRAY DECLARATION
<simpvar> — III, SIMPLE VARIABLE DECLARATION
<integer> — II, INTEGER CONSTANTS

Semantics

Many of the topics discussed under ‘‘Declaration Conecpts’ apply to some extent in the
declaration of pointers. The reader should refer to the relevant portions of that discussion for
general information on data types, address assignment, GLOBAL-EXTERNAL, variable refer-
ence, and register reference.

OWN pointers are allocated an address in the DB area but are recognized only in the procedure
where declared. Pointers are initialized with addresses of other variables, not constants. The
method is to follow the pointer by := and @ and a data reference (simple variable, pointer
element, or array element). The address of the specified data item (adjusted to the address
mode of the pointer) is stored in the cell allocated for the pointer.

ARRAY LOG(0:10);
POINTER P := @LOG(5);

See “Variables” in Section V for methods of referring to and through pointers. Pointers can
be indexed like arrays and can contain word or byte data labels.

3-23

DATA TYPE

Pointers can be declared with all data types; if no type is specified, type LOGICAL is assumed.
The type determines what data type the object of the pointer is assumed to have. This allows
objects declared with one type to be accessed as another data type by accessing them through
pointers.

STORAGE ALLOCATION

Pointers which are not address referenced are allocated the next available DB (global) or Q
(local) location and can be initialized. Pointers which are referenced use the address of the
referenced item or the specified register relative location and cannot be initialized.

EXAMPLE:

INTEGER A; LOGICAL B;

BYTE POINTER P := @A;

INTEGER ARRAY N(0:10);

INTEGER POINTER PN := @N(5);

POINTER P3 = DB+2, P4, P5 := @A, P6 := @B;

3-24

LABEL DECLARATION

A label declaration specifies that an identifier will be used in the program as a label (to identify
a statement). Labels are referenced when it is necessary to transfer control to a specific state-
ment within the program. In SPL/3000, labels can be declared implicitly when used to label a
statement; they need not be declared explicitly unless the programmer wishes.

Syntax

LABEL <label identifier list>
<identifier>

<label declaration>
<label identifier>

Semantics
Labels are used to identify statements as follows:

LABEL L1;

L1l: A:=B;

The syntax for labeled statements is given under “Statement Types” in Section V. In
SPL/3000 a label implicitly declares itself when it is used to identify a statement or as
the object of a GOTO statement or in a switch declaration. It need not be explicitly de-
clared in a label declaration except as desired for documentation purposes. See ‘“Go State-
ment,” Section V and “‘Switch Declaration,” Section III for uses of labels.

3-25

SWITCH DECLARATION

A switch declaration relates an identifier to an ordered set of labels. The switch is accessed as
a computed (or indexed) GO TO statement. The purpose of a switch is to allow selective trans-
fer of control to any of the statements identified by the labels in the switch declaration.

Syntax

<switch declaration>
<switch identifier>
<label identifier>

SWITCH <switch identifier> := <label identifier list>
<identifier>

<identifier>
¥ implicit label declaration

Semantics

Only one switch identifier can be declared in each switch declaration. Associated with each
label in the label list (from left to right) is an ordinal integer from 0 to N-1 (where N is the
number of labels in the list). This number indicates the position of the label in the list. When
the switch is invoked (see “Go Statement,” Section V), the value of an integer subscript deter-
mines which label is selected from the list. Bounds checking in this selection is optional. Entry
points are not allowed in SWITCH. Switch labels may not occur in subroutines.

EXAMPLE:

SWITCH SW := L1, L2, L3, L4, L5, L6, L7, L.8, L9,
SWITCH ERROR *SELECT := ERR1, ERR2, ERR3, ERR4, ERR5, ERR6;

3-26

ENTRY DECLARATION

The purpose of an entry declaration is to specify multiple entry points to a procedure or main
program (beyond the implicit entry point—the first statement of the program or procedure
body). Each entry identifier must occur somewhere in the body as a statement label, but

cannot be the object of a GOTO.

Syntax

ENTRY <entry identifier list>
<identifier>

<entry declaration>

<entry identifier>

Semantics

An entry declaration for a procedure is equivalent to another name for the procedure that can
be called with the same formal parameters, but begins execution of the procedure at a point
other than the natural beginning of the procedure. Local variables are set up and initialized

regardless of which entry point is used.

Programs can also have multiple entry points. By specifying the entry point to the operating
system the program can be started at other than its natural beginning.

EXAMPLE:

BEGIN ENTRY P1, P2, P3;

P1: A:=100;

P2: A :=200;
P3: A := 300;
END.

REAL PROCEDURE F(X); VALUE X; REAL X;
BEGIN REAL Y :=1.354,Z := 1.0 E-5;
ENTRY F1, F2;
F := Y*X+Z; <<entry point for F>>
RETURN;
F1: TOS := Y*X; <<entry point for F1>>
GOTO L1,
F2 : IF X<0.0 THEN <<entry point for F2>>
TOS := Y+X ELSE TOS := 0.0;
L1:F:.:=TOS;
END <<F, F1, F2>>;

3-27

PROCEDURE DECLARATION

A procedure declaration defines an identifier as a procedure and specifies what attributes the

procedure will have:

e Data type of result for function procedures.

® Type and number of formal parameters.

e Options (external body, variable number of parameters, etc.).

e Local variables.

Statements of the procedure body.

Procedures are called by means of the identifier and a list of actual parameters. Procedure
declarations are not allowed within other procedures unless they are declared without body

(i.e., optional external).

Syntax

<procedure declaration>

<ctype>

<type>

<proc head>
<procedure identifier>

<proc identifier>
<formal part>
<formal param>

<value part>

<specification part>

<ctype> PROCEDURE <proc head> <proc body>

<type> |

T determines data type of function
<empty>

F non-function procedure

INTEGER | LOGICAL | BYTE |
DOUBLE | REAL | LONG

<procedure identifier> <formal part> <option part> |
<procedure identifier> ; <option part>
F no parameters

<T proc identifier> |
+ typed or not
<proc identifier>

<identifier>
(<formal param list>) ; <value part> <specification part>

<identifier>
+ defined only within procedure

VALUE <identifier list> ; |
+ formal params
<empty>
F those formal params not mentioned in <part value>
are passed by reference

<specification> ; |
+ specify types of formal params
<specification part> <specification> ;

3-28

<specification> 1= <type> <identifier list> |
+ simple variables
<atype> ARRAY <identifier> |
+ array
LABEL <identifier list> |
T labels
<atype> POINTER <identifier list> |
+ pointers
<atype> PROCEDURE <identifier list>
+ procedures — no parameter checking

<atype> = <type> |
+ determines data type of parameter
<empty>
+ LOGICAL assumed

<option part> ::= OPTION <option list> |
<empty>

<option> ::= UNCALLABLE |
PRIVILEGED |
EXTERNAL |
CHECK {unsigned integer from 0 to 3 }|
VARIABLE |
FORWARD |
INTERRUPT |
+ see MPE/3000 documentation on external interrupt
procedures
INTERNAL

<proc body> 1= <statement> |
BEGIN <proc data group> <procedure group>
<compound tail> |
<empty>
+ no body when option EXTERNAL, FORWARD

<proc data group> 1= <empty> |
+ local declarations
<proc data group> <proc data declaration> ; |
<proc data declaration> ;

<define declaration> |

+ any order
<equate declaration> |
<local simpvar declaration> |
<local array declaration> |
<local pointer declaration> |
<label declaration> |
<switch declaration> |
<entry declaration>

<proc data declaration>

<procedure group> ::= <procedure group> <subroutine declaration> |
<proc group>
+ subroutines last

3-29

<:irroc group> <procedure declaration> ; |
+ EXTERNAL procedures only
<proc group> <intrinsic declaration> ; |
<empty>
T any order

<compound tail> 11= <statement> END |
<statement> ; <compound tail>

<proc group>

Syntax References

<statement> — 'V, STATEMENT TYPES
<define> — 1II, DEFINE DECLARATION AND INVOCATION
<equate> — III, EQUATE DECLARATION AND INVOCATION
<local simpvar> — III, SIMPLE VARIABLE DECLARATION
<local array> — 1II, ARRAY DECLARATION
<local pointer> — 1II, POINTER DECLARATION
<label> — III, LABEL DECLARATION
<switch> — III, SWITCH DECLARATION
<entry> — 1III, ENTRY DECLARATION
<subroutine> — III, SUBROUTINE DECLARATION
<intrinsic> — III, INTRINSIC DECLARATION
Semantics

A procedure is a self-contained section of code which is called to perform a function.
Procedures are very hardware-dependent in SPL/3000; they are called using the PCAL instruc-
tion and return using the EXIT instruction; the PRIVILEGED and UNCALLABLE options are
hardware-defined and checked; and local variables can be allocated realtive to the Q register
since it is set to a fresh area of the stack by the PCAL instruction. Because of the hardware

- capability provided for procedures, they can be called recursively (i.e., a procedure can call
itself). For the syntax and semantics of calling procedures see “Function Designator,”
Section IV and “‘Procedure Call Statement,” Section V. Multiple entry points for procedures
are covered under ‘“‘Entry Declaration,” this section.

DATA TYPE

If a data type is specified for a procedure, that procedure is a function and can be called within
expressions. It returns a value of the type specified by assigning the value to its name some-
where within the procedure body in an assignment statement. For details on calling functions,
see “Function Designator,” Section IV,

If a data type is not specified, the procedure does not return a value and cannot be called as a
function.

3-30

PARAMETERS

The formal parameters (if any) of a procedure must be fully specified as to type and
whether each is by value or by reference. The formal parameters can then be used within the
procedure body as if they were locally declared identifiers. When the procedure is called, an
actual parameter is supplied for each dummy or formal parameter.

Simple variables, arrays, labels, pointers, and procedures can be passed as parameters. Simple
variables and pointers can be passed by value or reference; procedures, labels, and arrays are
passed by reference only.

The VALUE list specifies which parameters are to be passed by value; parameters not listed in
the VALUE list are passed by reference. When a parameter is called by value, the value of the
actual parameter is specified by an expression and is loaded onto the stack. Value parameters
are handled exactly as local variables from that point on; any changes to them are limited to
the scope of the procedure. For reference parameters, the address of the parameter is loaded
onto the stack instead of a value; changes to reference parameters can change the value of the
actual parameter outside the procedure.

The VARIABLE option allows a variable number of parameters to be passed (see “‘Options,”
below).

Actual parameters (when the procedure is called) can be constants, expressions, simple
variables, array references, pointer references, procedure identifiers, label identifiers, or stacked
values (* in place of a parameter indicates that the parameter value or address has been loaded
by the user; see “Procedure Call Statement,”” Section V, for details).

If the formal parameter is a simple variable, it is passed the address (by reference) or actual
value (by VALUE) of a data item. If the formal parameter is an array, it is passed the address
of the zero element (thus, all arrays — even direct arrays — are effectively passed as indirect
arrays). If the formal parameter is a pointer, it is passed the address (by reference) or contents
(by VALUE) of a pointer.

Table 3-1 shows what actual parameters can be passed to what formal parameters (a blank
space is an error condition):

3-31

Table 3-1. Parameters Passed to Formal Parameters

Formal Parameter

Actual Simple Simple
Parameter Variables Variables Arrays ;(:f::i:\?: Po'\';;ft:eBy Procedures| Labels
By Reference | By Value
Warning (uses { Must be Warning (uses |Warning (uses | Warning (uses
Constant 1 word as same word | 1 word as 1 word as 1 word as
address) size. address) address) address)
Must be
Expression same word
size,
Simple Variable OK Must be OK, loads ad- OK, load ad-
Identifier same word | dress of simple dress of simple
size. variable variable
Array oK Must be OK OK
Reference same word
size.
Pointer OK Must be OK OK oK
Reference same word
size.
Procedure
ldentifier OK
Label ldentifier (01,4
*
oK oK OK oK OK OK

(stacked)

3-32

OPTIONS

The option part of a procedure declaration consists of the reserved word OPTION followed by
a list of option words separated by commas and terminated by a semi-colon. The meaning of
the various options is as follows:

UNCALLABLE

This option causes the ‘“uncallable’ bit to be turned on in the segment transfer table
entry for the procedure. Uncallable procedures can only be called by code executing
in privileged mode. If this option is not specified, the procedure is callable.

PRIVILEGED

This option causes the procedure to be run in privileged mode, assuming the person
running the program is allowed to execute in privileged mode by the operating system.
If this option is not specified, the procedure runs in user mode.

EXTERNAL

This option specifies that the procedure body (or code) exists external to the program
being compiled. The procedure body is deleted from the rest of the declaration and is
linked to the main program later by the operating system. If the programmer needs to
refer to a procedure compiled separately, he must include an OPTION EXTERNAL
declaration for the procedure which indicates to the compiler the type and number of
parameters. Intrinsics are the only procedures not requiring a procedure declaration
(see “Intrinsic Declaration,’” this section). When procedures are compiled separately
(to be called later as option EXTERNAL), they can use the EXTERNAL-GLOBAL
mechanism to establish data linkages (see ‘““Declaration Concepts,” this section).

CHECK

This option is provided for option external procedure declarations and full procedure
declarations which will subsequently be called as externals by other programs. The
option specifies how much checking is done by the operating system between the option
external declaration (in the calling program) and the actual procedure declaration as
compiled.

If this option is not specified, no checking is performed. Otherwise, the smaller of the
two parameters is used to determine the level of checking (except that intrinsics
determine their level of checking, never the caller). The check values are:

0 — no checking
1 — check procedure type only
2 — checks procedure type and number of parameters.

3 — checks procedure type, number of parameters, and type of each parameter.

3-33

VARIABLE

This option specifies that the procedure can be called with a variable number of actual
parameters. The compiler generates code (when the procedure is called) to provide the
procedure with a parameter bit mask in location Q — 4 (also Q — 5 if more than 16 param-
eters). If an actual parameter is missing e.g., NOW(A,,C); the corresponding bit in the

mask is set to zero. The correspondence is from right to left (the rightmost bit—bit
15—corresponds to the right parameter). In the procedure call, the occurrence of a right
parenthesis before the parameter list is filled, implies that the rest of the parameters are
missing. When the procedure is entered, it is the responsibility of the procedure to examine
the bit mask. Parameters will always occur in the same Q- addresses, but missing param-
eters will have garbage in their locations.

FORWARD

This option specifies that the complete procedure declaration will be introduced later in
the program. FORWARD is used to circumvent contradictions incurred by recursion

when a procedure calls itself indirectly (procedures must be declared before being refer-
enced).

INTERRUPT

This option specifies that the procedure is an external interrupt procedure. The structure
and uses of interrupt routines are covered in HP 3000 Multiprogramming Executive
Operating System (03000-90005).

INTERNAL

A procedure with this option cannot be called from another segment. This makes
processing of the procedure more efficient for the loader subsystem and allows more
than one segment to have a procedure with the same name. INTERNAL procedures
cannot be moved to another segment or called from another procedure.

LOCAL DECLARATIONS

Procedures can declare local variables that are known only within the procedure and are allocated
space in the Q+ area when the procedure is called. Thus, they occupy space only when the pro-
cedure is called and are deleted when the procedure exits. As indicated in the syntax, all declara-
tion types are allowed within procedures with these comments:

® Procedures declared within procedures must be option EXTERNAL,

® Data declarations (simple variables, arrays, pointers) must be of the “local’”’ form
(see the appropriate topic in this section.)

Many of the differences of local declarations are discussed under “Declaration Concepts,” this
section.

3-34

OWN variables are a special variety of local variable; they are allocated space in the DB area
rather than on the top of the stack. If initialized, they are initialized at the beginning of the
program, not every time the procedure is called. Since they are allocated in DB, they are not
deleted when a procedure exits, but are still in existence (with their last value) when the pro-
cedure is called again.

PROCEDURE BODY

The procedure body consists of the local declarations and the statements of the procedure,
preceded by a BEGIN and terminated by an END;. The body can contain any SPL/3000
statements. If the body contains no local declarations and only one statement, the BEGIN-
END pair can be omitted. The end of the body generates an EXIT instruction; additional
exits can be generated using the RETURN statement (see “‘RETURN Statement,” Section V).

EXAMPLE:

PROCEDURE BLANKBUF <<NAME>>
(BUFFER,COUNT); <<FORMAL PARAMETERS>>
VALUE COUNT; <<VALUE PART>>
LOGICAL ARRAY BUFFER; <<SPECIFICATION>>
INTEGER COUNT; <<PART>>
<<EMPTY OPTION PART>>
<<BODY>>
BEGIN
LOGICAL BLANK WORD := ¢ »; <<DATA GROUP>>
BUFFER := BLANKWORD ; <<STATEMENTS>>
MOVE BUFFER(1) : = BUFFER,(COUNT);
END; <<END DECLARATION>>

<<SAMPLE FUNCTION AND CALL>>
BEGIN
INTEGER NUM := 108, NIX;
INTEGER PROCEDURE VAL(A,B,C); <<FUNCTION DECLARATION>>
VALUE A,B,C;
INTEGER A,B,C;
VAL := (A+B)*C;
<<MAIN PROGRAM>>
NIX := NUM / VAL(4,5,6); <<THIS IS EQUIVALENT TO THE STATEMENT:>>
<<NIX := NUM / ((4+5)*6);>>
END.
<<OPTION FORWARD EXAMPLE>>

PROCEDURE PROC1;0PTION FORWARD <<dummy declaration>>
PROCEDURE PROC2;0PTION FORWARD; <<dummy declaration>>

PROCEDURE PROCL;IF X = (Y := Y+1) THEN PROC2; <<real declaration>>
PROCEDURE PROCZ2;IF X = (Z := Z+1) THEN PROC1; <<real declaration>>

3-35

INTRINSIC DECLARATION

An intrinsic declaration specifies that one of the system-provided procedures (an intrinsic)
will be used by the program. Intrinsics are pre-compiled procedures that are supplied to
SPL/3000 programmers for performing input/output, file access, and utility functions as part
of the Multiprogramming Executive (MPE/3000). SPL/3000 provides a simple interface to
intrinsics because SPL/3000 has no built-in construct for input/output (unlike FORTRAN,
BASIC, COBOL, and other high-level languages). Input and output of data in SPL/3000 pro-
grams must be performed by using the MPE/3000 file system intrinsics. The user can also
declare intrinsics from his own intrinsic file.

Syntax

<intrinsic declaration> INTRINSIC <intrinsic identifier list> |

INTRINSIC (<file>) <intrinsic identifier list>
<identifier>

Fequivalent to an option EXTERNAL declaration of
each intrinsic

<lintrinsic identifier>

<file> { any valid random-access file of the operating system }

Semantics

The identifiers in an intrinsic list must be included in an installation-defined intrinsic file. The
SPL/3000 compiler searches the file for the intrinsic name and, if it is found, inserts the declar-
ation for the intrinsic into the program. The declaration is equivalent to an option EXTERNAL
procedure declaration (see ‘‘Procedure Declaration,” this section) and specifies the procedure’s
parameters, etc. Operating system intrinsics are described in HP 3000 Multiprogramming

| Executive Operating System (03000-90005). These intrinsics are called like normal external
procedures.

The programmer can specify his own intrinsic file in parentheses. In this case, the compiler
searches for the procedure name and declaration in the file specified, rather than in the
system file. Appendix G describes how to build intrinsic files.

EXAMPLES:

INTRINSIC FOPEN,FREAD,FWRITE,PRINT,READ;
INTRINSIC (MYFILES) ASCII, CONVERT, OUTPUT, DATA’MAPS3;

3-36

SUBROUTINE DECLARATION

A subroutine declaration defines an identifier as a subroutine and specifies what attributes the
subroutine will have:

e Data type of result for function subroutines.
e Type and number of formal parameters.

e Statements of the subroutine body.

Subroutines are called by means of the identifier and a list of actual parameters. Subroutines
can be declared either globally or locally, but global subroutines cannot be accessed locally.
Local declarations are not allowed within subroutines.

Syntax

<subroutine declaration> <stype> SUBROUTINE <sub head> <sub body>

<sub head> ::= <subroutined identifier> <formal part> |
<subroutine identifier>
+ no parameters

<sub body> ::= <statement>
<subroutine identifier> ::= <T subr identifier> |
T typed
<subr identifier>
+ not typed
<subr identifier> ::= <identifier> X
<formal part> ::= (<formal param list>) ; <value part>
<specification part>
<formal param> ;1= <identifier>
+ defined only within subroutine
<value part> ::= VALUE <identifier list> ; |
+ formal params
<empty>

 Those formal params not mentioned in the
<value part> are passed by reference

<gpecification> ; |
+ specify types of formal params
<specification part> <specification>

<specification> 11= <type> <identifier list> |

+ simple variables

<atype> ARRAY <identifier list> |
t arrays

<atype> POINTER <identifier list> |
+ pointers

<ctype> PROCEDURE <identifier list>
T procedures — no parameter checking

<specification part>

3-37

<stype> = <type> |
F determines data type of function
<empty>
+ non-function subroutine

<ctype> = <type> |
T specifies data type of function procedure parameter
<empty>
+ non-function procedure parameter
<atype> = <type> |
T specifies data type of array/pointer parameter
<empty>
+ LOGICAL assumed

<type> ::= INTEGER | LOGICAL | BYTE | DOUBLE | REAL | LONG

Syntax References

<statement> — V, STATEMENT TYPES

Semantics

Subroutines have the same parameter conventions as procedures except that options such as
VARIABLE, EXTERNAL and CHECK are not provided and subroutines cannot be passed
labels. Subroutines can have a data type and can be functions just as procedures can. The
subroutine body consists of any SPL/3000 statement, including a compound statement, but
cannot contain declarations. Global subroutines can reference global variables and local sub-
routines can reference local and global variables. Subroutines can be called recursively. Sub-
routines are called using the SCAL instruction and return using SXIT. For details on calling
subroutines, see “Function Designator,” Section IV, and “Subroutine Call Statement,”
Section V.

EXAMPLE:

INTEGER SUBROUTINE S(A,B,C);
VALUE A,B,C;
INTEGER A,B,C;
S := (A~2) + (B*C);
SUBROUTINE ZERO (ARRAY ,HISUB);
VALUE HISUB;
INTEGER HISUB;
INTEGER ARRAY ARRY;

BEGIN
I := 0; <<global variable>>
WHILE I < = HISUB>
BEGIN
ARRY (I) :=0;
o I:=1I+1;
END;
END;

3-38

SECTION IV
Expressions

EXPRESSION TYPES

An expression is a sequence of operations upon constants, variables, and indexed items which
results in a single value of a specified data type. If the data type is logical, the expression is a
logical expression and logical operators are allowed within it. If the data type is numeric (byte,
integer, double, real, long), the expression is an arithmetic expression and arithmetic operators
are used within it. AnIF expression allows a choice to be made between two expressions of the
same word size based on a hardware and/or software conditions.

Syntax

<expr> 1= <T expr>
F results in value of type T

<Tiybde €XPr> <aexp> |. . .
¥ arithmetic expression

<Tirbde IF expr>

<logical expr> ::= <lexp> |
F logical expression
<logical IF expr>

<T IF expr> ::= IF <cond clause> THEN <expr> ELSE <expr>
t both <expr> must be of same word size; byte treated as one
word

Syntax References

<lexp>

l

IV, LOGICAL EXPRESSIONS
IV, ARITHMETIC EXPRESSIONS
V, IF STATEMENT

!

<aexp>

l

<cond clause>

4-1

Semantics

Expressions are used to determine values to be used in statements. Where <expr> is specified
in the syntax any type of expression is allowed: arithmetic, logical, or IF. When <aexp> is
specified, only an expression resulting in a numerical data type is allowed. When <lexp> is
specified only an expression resulting in a logical value is allowed. The T mechanism (see
“Introduction”’) is often used to specify an expression resulting in only certain data types.

The IF expression consists of two alternative expressions and a condition clause. The two
expressions must be of the same word size (byte is treated as one word). The condition clause
is a combination of logical expressions and hardware branch words which results in a true or
false value. If the condition clause is true, the expression after THEN is selected; if the condi-
tion clause is false, the expression after ELSE is selected. For the definition of condition
clause, see “IF Statement,” Section V.

- Within SPL/3000 expressions, only variables of the same data type can appear on either side
of an operator. That is, integer can be multiplied by integer, but not by real. The only excep-
tion to this is the exponentiate operator (~) in arithmetic expressions; real and long data types
can be exponentiated to integer powers. In all other cases the combination of data items of
differing types can only be accomplished through type transfer functions. For example, the
function FIXR converts an expression of type real into one of type double and rounds the
result to the closest integer:

FIXR(<Texpr>)
A corresponding function, FIXT, converts real to double and truncates the result:

FIXT(<Trexpr>)

There are not type transfer functions for all possible transformations. The following table
shows which transfers are provided and which functions should be used in each case. In some
cases it may be necessary to specify nested type transfer functions (e.g., to convert from real
to integer, either INTEGER (FIXR(<T expr>)) or INTEGER(FIXT(T expr>))).

To
From

Long Real Double Integer Logical Byte
Long — REAL
Real | LONG | — | Roew
‘Double | LONG | REAL — INTEGER | LOGICAL
Integer REAL | DOUBLE - LOGICAL | BYTE
Logical REAL | DOUBLE | INTEGER - BYTE
Bytg REAL | DOUBLE | INTEGER | LOGICAL -

NOTE: LOGICAL (Double) leaves the 32-bit value on the stack so that

a 32-bit divide (//) can be performed. If only 16 bits of the

double are desired, use LOGICAL (INTEGER (double)).

4-2

VARIABLES

Variables are one of the items that occur in expressions. Each variable, whether it be a simple

variable, an array element, a pointer reference, or the top of stack, is associated with one data

item of a specific type. The address of any data item can be used as an integer variable since it
is a 16-bit, signed quantity.

Syntax

< T variable> ::= <T simpvar identifier> |
<T pointer identifier> <index> |
<T array identifier> <index>
TOS
+ top of stack

<integer variable> ;= @ <T simpvar identifier> |
+ 16 bit DB-relative address
@ <T pointer identifier> <index> |
@ <T array identifier> <index> |
+ DB or PB relative
@ <label identifier> |
+ PB-relative address
@ <procedure identifier> |
+ PB-relative address of entry point
@ <entry identifier> |
+ PB-relative address of entry point
ABSOLUTE (<index>)
+ privileged access to contents of absolute location <index>

<index> 1= <empty> |
+ zero element
(<Tyy, expr>) |

+ element number
(<Tj}p, assignment statement>)

Syntax References

<simpvar> II[, SIMPLE VARIABLE DECLARATION
<pointer> 111, POINTER DECLARATION
<array> III, ARRAY DECLARATION

V, ASSIGNMENT STATEMENT
IV, EXPRESSION TYPES

<assignment statement>

bbb

<expr>

Semantics

The three most common types of variables (they occur in all data types) are the simple
variable, the array reference, or the pointer reference. Array and pointer references specify

an element by means of a subscript or index; the index must always be a one-word value (byte,
integer, or logical). The index value specifies an element index (not a word index). It is loaded
into the index register and used in an indexed memory reference instruction. If no index is
specified the reference is to the zero element. (This is more efficient than explicitly specifying
0 as the index; in the first case the index register is not used, in the second it is.)

TOS

This is a reserved symbol that always refers to the top of the stack; it can be used anywhere a
variable can be used. When TOS is used on the left side of an assignment statement (TOS : =
<expr>; see “Assignment Statement,” Section V), the normal store operation is omitted and
the result of the expression is left on the top of the stack. If TOS occurs in an expression, the
contents of the top of the stack are used as the next operand. TOS must be used carefully,
since the compiler does not keep track of the number of elements pushed onto the stack prior
to encountering TOS. The data type of TOS is determined by context; it takes the type of the
expression or other operand. Thus, in one context TOS might refer to the top word, in another
the top two words, or in another, the top three words. Note that TOS does not refer to the
same memory location from one statement to the next, since S is constantly changing. Also, the
default type for TOS is integer. A rule for determining the effect of TOS is to assume that TOS

is a variable and then delete all LOAD and STOR operations for TOS. There is only one excep-
tion to this:

INT. (BIT : FIELD) := TOS;<<XCH;DPF;STOR>>
TOS := 7; <<LOAD 7>>
A:=TOS+6;<<A=13>>

REALL := -TOS <<illegal if REAL1 is real>>

ADDRESSES (@)

When @ precedes a simple variable, it specifies that the DB-relative address of the simple
variable is desired. All addresses are signed, one-word integers and are treated as such in ex-
pressions. When @ precedes an array identifier, it refers to the DB- or PB-relative address of
the zero element of the array (whether direct or indirect). When @ precedes an array reference
(<array identifier> <index>), it refers to the DB- or PB-relative address of the array element.
When @ precedes a pointer identifier, it refers to the address contained within a pointer cell;
when an index is specified, @ refers to the address of the data element relative to the zero
element pointed at by the pointer. For example,

BEGIN
INTEGER A;
INTEGER ARRAY B(0:10);
POINTER P := @ B(5);
A ;= @A; <<A assigned address of A>>
A :=P; <<A assigned address of B(5)>>
A = @B; <<A assigned address of B(0)>>

4-4

ABSOLUTE

This construct can only be executed in privileged mode. It provides access to the contents of
an absolute memory location. The address (<index>>) is loaded into the index register. If
ABSOLUTE appears on the left side of an assignment statement (ABSOLUTE (<index>) :=
<expr>; see ‘“‘Assignment Statement,” Section V), a PSTA (privileged store) instruction is
generated which stores the top of the stack (<expr>) in the absolute memory location speci-
fied by the index register. If ABSOLUTE appears within an expression, a PLDA (privileged
load) instruction is generated which loads onto the stack the contents of the absolute location
specified by the index register. For example,

LOGICAL L1, L2, L3;
INTEGER A1, Q2, A3 =X;
L1 := ABSOLUTE (Al * A2);
ABSOLUTE (L2) := A1 + 5;
ABSOLUTE (A3) := Al + 5; <<A3 is index register>>
L1 := ABSOLUTE (ABSOLUTE (3));
L1 := ABSOLUTE (A3);

4-5

FUNCTION DESIGNATOR

Function designators are another of the possible components of an expression. A function
designator specifies a function identifier (a typed procedure or subroutine) to be executed

and a list of actual parameters (values or addresses) to be passed to the function. The func-
tion returns a value of the appropriate data type to the place in the expression where it was

called.

Syntax

<T function designator> ::

<actual param part>

<actual param>

<stacked param>

<reference param>

<value param>

Syntax Reference

<T proc identifier>
<T subr identifier>
<simpvar>
<array>

<pointer>

<label>

bbb

<T proc identifier> <actual param part> |
<T subr identifier> <actual param part>
F call to function procedure or subroutine

<empty> |
+ no parameters
(<actual param list>) |
+ no stacked params
(<stacked param list>) |
F all stacked params
(<stacked param list>, <acutal param list>)
+ stacked params must come first

<reference param> |
+ passes an address
<value param> |
+ passes a value
<empty>
¥ missing parameter; option VARIABLE only

t address or value and zero for function result are already
stacked by user

<T simpvar identifier> |

<T array identifier> <index> |
<T pointer identifier> <index> |
<procedure identifier> |

<label identifier>

<aexp> |
<lexp> |
<assignment statement>

III, PROCEDURE DECLARATION

III, SUBROUTINE DECLARATION

Ii1, SIMPLE VARIABLE DECLARATION
IIl, ARRAY DECLARATION

III, POINTER DECLARATION

IlI, LABEL DECLARATION

4-6

<assignment statement> — V, ASSIGNMENT STATEMENT

<index> — 1V, VARIABLES

<aexp> — IV, ARITHMETIC EXPRESSIONS

<lexp> — 1V, LOGICAL EXPRESSIONS
Semantics

The function, procedure or subroutine must have been previously declared (see ‘“Procedure
Declaration,” and ‘“‘Subroutine Declaration,’’ Section III). The actual parameters must match
one-to-one the formal parameters as specified in the declaration; correspondence is checked
left to right.

A stacked parameter is specified by an asterisk (*) in place of an actual parameter; this specifies
that the necessary address or value has already been loaded onto the stack by the user. Labels
cannot be stacked. If any parameter is stacked, all parameters to its left must be stacked too.
In addition, functions require that a 1-, 2-, or 3-word zero (depending on function type) be
pushed onto the stack before the function parameters for the return value. Normally, the
compiler provides this automatically. However, if stacked parameters are used, the program-
mer must arrange for this zero. For example,

INTEGER PROCEDURE COMPUTE (N);....... ;
ASSEMBLE (ZERO);

TOS := A;

B := COMPUTE (*) + 1000;

For more details on calling procedures and subroutines, see ‘“Procedure Call Statement,”” and
“Subroutine Call Statement,’” Section V.

Procedure calls use the PCAL instruction and subroutine calls use the SCAL instruction.

4-7

BIT OPERATIONS

Bit operations can be used in any type of expression. Bit extraction is the extraction of a
contiguous bit field starting at a particular bit position. Bit concatenation consist of extracting
a bit field from a specified position in one quantity and depositing it at a specified position in
another quantity. Bit shifts allow values to be shifted left or right, arithmetically, circularly or
logically. All bit operations are performed on copies of the specified quantities so that the
original variables remain unchanged.

Syntax

<T bit operation>

<Tilb bit extraction>

<bit extract field>
<left extract bit>

<extract field length>
<Tilb bit concatenation>
<bit cat field>

<left deposit bit>

<T bit shift>
<shift op>

<Tilb bit extraction> |
<Tilb bit concatenation> |
<T bit shift>

<Tjjp primary>. (<bit extract field>)

<left extract bit> : <extract field length>

<unsigned integer>
¥ bit to start with
from 0 through 15

<unsigned integer>
T number of bits to extract

from 1 through 15
<Tj)p primary> CAT <Tjjp, primary> (<bit cat field>)

<left deposit bit> : <bit extract field>

<unsigned integer>
T bit to start deposit with
0 through 15

<T primary> & <shift op> (<shift count>)

LSL |
¥ Logical Shift Left
LSR |
+ Logical Shift Right
ASL |
T Arithmetic Shift Left
ASR |
+ Arithmetic Shift Right
CSL |
F Circular Shift Left
CSR |
+ Circular Shift Right
DASL |
+ Double Arithmetic Shift Left
DASR |
F Double Arithmetic Shift Right
DLSL |
+ Double Logical Shift Left

4-8

<shift op> DLSR |
(cont.) + Double Logical Shift Right
DCSL |
+ Double Circular Shift Left
DCSR |
+ Double Circular Shift Right
TASL |
+ Triple Arithmetic Shift Left
TASR |
+ Triple Arithmetic Shift Right
TNSL
+ Triple Normalizing Shift Left

<shift count> ::= <integer expr>
T if this is not a constant the index register is used to
hold the variable shift count

Syntax References

<unsigned integer> — 1I, INTEGER CONSTANTS
<primary> — IV, ARITHMETIC EXPRESSIONS, LOGICAL EXPRESSIONS
<integer expr> — IV, EXPRESSION TYPES

Semantics

Bit extraction and concatenation are defined for one word quantities only. Bit shifts are
provided for one, two, and three word quantities. In all bit expressions the original primaries
operated upon are unchanged by the operation. See ‘Assignment Statement,” Section V, for
bit deposit.

BIT EXTRACTION

The purpose of bit extraction is to isolate a contiguous bit field from the 16 bits of a one-word
value. The result is a right-justified value with leading bits set to zero. The maximum field that
can be extracted in a single operation is 15 bits. Bit extraction uses the EXF (extract field) in-
struction. Extraction starts with the bit of the primary specified by <left extract bit> and
continues for <extract field length> bits to the right, wrapping around to bit 0, if necessary.
For example,

%125.(8:2) <<result is %1>>

BIT CONCATENATION

Concatenation permits the formation of a new value by extracting a bit field from one word
and depositing it at a specified position in another word. The <left deposit bit> indicates in
which bit position of the first primary (to the left of CAT) to deposit the field extracted from
the second. The <left extract bit> indicates at which position in the second primary to begin
extracting the bit field. The <extract field length> indicates how many contiguous bits to

4-9

extract and subsequently deposit. Bit concatenation uses both the EXF (extract field) and
DPF (deposit field) instructions. For example,

%(16)69A2 CAT %(16)ABCD(8:4:4) <<result is %(16)69B2>>

BIT SHIFTS

In the bit shifts the <shift op> is a mnemonic for a hardware shift operation. Consult the
hardware documentation for complete details. In general, logical shifts fill with zero bits as
they shift left or right; arithmetic shifts preserve the sign bit on a left shift (and fill with zeroes)
and propogate the sign bit on a right shift (e.g., fill with the sign bit); and circular shifts have no
fill bit (e.g., bits shifted off one end are shifted in at the other end). SPL/3000 performs no
type or word-size tests in bit shifts; if the programmer specifies a triple shift on a single word
quantity, a triple shift is generated. The programmer is responsible for maintaining compati-
bility. Note that if the shift count is not a constant less than 64, the index register is used.

For example,

(A:=A+1)&LSR(3)
VAR & DASL(6)
%1234D & DCSL(SHIFT)

4-10

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of operations upon numerical data which results in a
single value of a specific data type. Execution of operators occurs left-to-right unless higher
precedence operators or parentheses are encountered. Type mixing of operands across opera-
tors is not allowed, but type transfer functions are provided. Primaries, the basic components
of an arithmetic expression, can be constants, variables, bit expressions, arithmetic expressions
in parentheses or backword slashes (absolute value), function designators, or assignment state-
ments in parentheses.

Syntax

<Tirbde 2€XP> 1= <aexp> | <addop> <aexp>
+ lowest precedence
<anp> = <T1rbde term> |
<aexp> <addop> <Tirbde term>

<Tirbde term> o= <Tirbde factor> |
<Tjiype term> <mulop> <T;. factor>
+ no double multiply or divide
<Tjypge factor> 1= <Tjspge Primary> |
<Tpe factor> ~ <T;., primary>
F exponentiation
+ allowable combinations are: i*i,r"r,r"i,e"e,e"i
<Tjrpde Primary> ::= <Tj.qe Variable> |

t highest precedence
<constant> |
F if number, must match type of other operand; if string, 1
character can be used as T;,; 2 characters as Ty}, and 3 or 4
characters as T 4 only. Expressions containing only integer
constants are considered type integer, not logical

<Tirbde bit operation> |

(<aexp>) |
\<aexp>\ |
+ absolute value
<Tirbde function designator> |

(<Tjrpde assignment statement>)

<addop> =+ -
<mulop> := *| /| MOD

4-11

Syntax References

<variable>

<constant>

<bit

<function designator>

<assignment statement>

Semantics

— III, VARIABLES
— II, CONSTANT TYPES
operation> — IV, BIT OPERATIONS
— IV, FUNCTION DESIGNATORS
— 'V, ASSIGNMENT STATEMENT

An arithmetic expression defines a sequence of operations, which results in a single value of a
certain data type that is the expression’s result. What is done with this value depends upon
where the expression occurs.

SEQUENCE OF OPERATIONS

Arithmetic operations are ranked in order of precedence to determine the relative order in
which operations are executed. Higher precedence operations are performed first. When

operations are of the same rank, execution proceeds from left to right. The rank from high-
est to lowest, is as follows:

Rank 1: <primary>

Bit operations.
Expressions in parentheses.

Expressions in backward slants (absolute value).
Function designators.

Assignment statements in parentheses (value assigned to variable and
left on the stack).

Rank 2: <factor>

Exponentiation (~, circumflex character).
Defined for integer, real, and long data, plus real to integer power
and long to integer power.
Rank 3: <term>

Multiply (*) and divide (/) for integer, real, byte and long data; no
double multiply or divide.

Modulo (MOD) or remainder for integer and byte data.

Rank 4: <addop>

Addition (+) and subtraction (-) for integer, real, byte, double, and
long data.

4-12

The order in which operations are performed is determined by this rank. For example,

A-B+C Operators of the same rank are performed from left to right.
result
A+B*C Operators of different rank are performed according to their position in the

hierarchy of operators (highest rank first).

result
(A+B)*C Operators enclosed in parentheses take precedence over operators outside of
l | I parentheses, even those of higher rank.
result
A-B+C*D"E Left-to-right order is maintained until an operator occurs that is of lower
Ll_l’_L_rJ rank than the next operator or the next item is in parentheses.
result

A~ (B-C)*D/E MOD P~ G

:

result

TYPE MIXING

Mixing of data types across operands is not allowed in SPL/3000, except that real and long
values can be exponentiated to integer powers. Type transfer functions are available to handle
conflicts (see “Expression Types,” this section).

The type of the operands determines the type of both the operation result and the operator
used. Integer operations are used when the operands are of type byte.

413

LOGICAL EXPRESSIONS

Logical expressions are evaluated in the same manner as arithmetic expressions. However,
logical expressions use more and different operators; allow only data of type logical and pro-
vide specialized constructs, such as byte comparisons. The result of a logical expression is a
logical value which can be interpreted as a 16-bit unsigned integer or as true (odd) or false
(even). The truth value of alogical expression can be used to make decisions (see IF state-
ment). Logical primaries can be logical constants, variables, bit expressions, expressions in
parentheses, functions, or assignment statements in parentheses, or the complement of any
logical primary. The operators LAND and LOR should not be confused with AND and OR
(see “IF STATEMENT,” Section V).

Syntax

<lexp> ;1= <disjunction> |
+ lowest precedence
<lexp> LOR <disjunction> |
¥ logical or
<integer aexp> <= <integer aexp> <= <integer aexp>
t compare Range and Branch, uses index register

<disjunction> ::= <conjunction> |
<disjunction> XOR <conjunction>
+ exclusive or

<logical elem> |
<conjunction> LAND <logical elem>
t logical and

<conjunction>

<logical elem> ::= <logical term> |
<logical term> <relop> <logical term> |
F logical compare
<Tiypde 2exp> <relop> <Tirbde 2€XP> |

+ arithmetic compare
<byte ref> <relop> <byte ref> <count> <sdeca> |
<byte ref> <relop> *PB <count> <sdeca> |
+ stacked PB address
<byte ref> <relop> <string> <sdeca> |
<byte ref> <relop> (<listelmt>) <sdeca> |
<byte variable> = <btestword> |
+ test type of byte
<byte variable> < > <btestword>

<logical term> ::= <logical factor> |
<logical term> <logical addop> <logical factor>

<logical factor> <logical primary> |

<logical factor> <logical mulop> <logical primary>

<logical primary> <logical variable> |

+ highest precedence
<logical value> |
<string> |

t 1 or 2 characters only
<logical bit operation> |

(<lexp>) |

4-14

<logical primary> <logical function designator> |
(cont.) (<logical assignment statement>) |
NOT <logical primary>
+ one’s complement

<relop> = >
+ greater than
<
T less than
=
t equals
<>
T not equals
< =|
+ greater than or equal
< =
F less than or equal
<logical addop> = o+ -
<logical mulop> = K
+ multiply — 16-bit result
/1
+ divide — 16-bit dividend
MOD |
F remainder — 16-bit dividend
k¥ I
+ multiply — 32-bit result
/'
T divide — 32-bit dividend
MODD
+ remainder — 32-bit dividend
<byte ref> ::= <byte pointer identifier> <index> |

<byte array identifier> <index> |
ES

+ stacked byte address
<count> 1=, (<integer expr>)

<btestword> ::= ALPHA |
T “A” through “Z” and ‘“‘a” through “z”
NUMERIC |
F 0 through “9”
SPECIAL
+ all other characters

<sdeca> = <empty> |

T delete all values
, <sdec>

<sdec> = 0112
+ number of words to delete

<listelmt> ::= <initial value> |
<decimal integer> (<initial value list>) |
+ repeat factor
<listelmt list>
+ no nesting of repeats

<initial value> ::= <constant>
F truncated to 8 bits

4-15

Syntax References

<index> IV, VARIABLES

<aexp> 1V, ARITHMETIC EXPRESSIONS
<string> II, STRING CONSTANTS
<logical variable> IV, VARIABLES

<logical value> II, LOGICAL CONSTANTS

IV, BIT OPERATIONS

IV, FUNCTION DESIGNATORS
V, ASSIGNMENT STATEMENT
III, POINTER DECLARATION

<bit operation>
<function designator>
<assignment statements>

<pointer identifier>

el el

<array identifier> III, ARRAY DECLARATION
<constant> II, CONSTANT TYPES
Semantics

The purpose of a logical expression is to evaluate certain conditions and relations to produce

a value which can be interpreted either arithmetically (as a 16-bit positive number) or logically
(as “true” or “false’). A logical expression is not a statement of fact, but an assertion that
may be true or false at any given time.

Logical quantities in SPL/3000 are 16-bit positive integers, (see ‘“Logical Constants,” Section
). A logical value is considered true if its integer value is odd, false if its value is even (that
is, only the last bit is checked when using the result of a logical expression to make a decision.
Use of the reserved words TRUE and FALSE is equivalent to the numeric values -1 and 0
(%177777 and %000000).

In general, the result of a logical expression is left as a full word operand on the top of the
stack. An exception is when a relational operator is encountered, in which case a value -1
(true) or O (false) is left on the top of the stack. A further exception is when the result of a
relational operator is used to make a decision (see <cond clause> under “IF Statement,”
Section V); in this case, nothing is left in the stack and the status register is examined for
the result.

SEQUENCE OF OPERATIONS

Logical operations are ranked in order of precedence to determine the relative order in which

operations are executed. Higher precedence operations are performed first. When operations
are of the same rank, execution proceeds from left to right. The rank, from highest to lowest,
is as follows:

Rank 1: <primary>
Logical bit operation.
Logical expression in parentheses.
Logical function designator.
Logical assignment statement in parentheses (value assigned to variable
and left on the stack).
NOT (unary one’s complement)

4-16

Rank 2: <factor>

* (Logical multiply, one word result).

/ (Logical divide, one word dividend).

MOD (Logical modulo or remainder, one word dividend).

*k (Logical multiply, two-word result left on stack for user).

/] (Logical divide, requires two-word dividend; if dividend equals

a variable, two words are loaded from the location assigned
to be variable; if the dividend is a partially evaluated ex-
pression, the compiler assumes a two-word dividend on the
top of the stack).

MODD (Logical modulo or remainder, requres two-word dividend; same
conventions as //).

Rank 3: <term>
Logical addition (+) and subtraction (-); there is no logical unary minus.

Rank 4: <elem>

Algebraic and logical comparisons (=, <, >, < >, <=, >=), logical
compares use the LCMP instruction to perform a 16-bit com-
parison which treats bit O as a data bit, not a sign bit; algebraic
compares use one of three instructions (CMP, DCMP, FCMP)
which perform comparisons taking into account the sign bit
(negative numbers are less than positive numbers); the result is
a TRUE (-1) if the relation specified holds or a FALSE (0) if it
does not.

Compare bytes (see below).

Test bytes (byte variable is (=) or is not (< >) type alphabetic (ALPHA),
numeric (NUMERIC), or other (SPECIAL)).

Rank 5: <conjunction>
Logical and of 16 bits (LAND).

Rank 6: <disjunction>
Logical exclusive or of 16 bits (XOR).

Rank 7: <lowest>
Logical inclusive or of 16 bits (LOR).

Compare integer range (A <= B <= C, where A, B, C, are integer
expressions; this uses the CPRB (compare range and branch
instruction) instruction and the index register; result is TRUE
(-1) if the middle integer is within the range, FALSE (0) if not.

The order in which operations are performed is determined by this rank. For example,

A*B/C Operators of the same rank are performed from left to right.

gull

result

4-17

ALORBLANDC Operators of different rank are performed according to their

| | | position in the hierarchy of operators (highest rank first).

result

(ALOR B) LAND C Operators enclosed in parentheses take precedence over operators

| | | outside of parentheses, even those of higher rank.

result
A+B+C/ NOT D Left-to-right order is maintained until an operator occurs that is of
| | l | | lower rank than the next operator or the next item in parentheses.

result

NOT ((A MOD B LOR C=D) LAND E)

—

result

TYPE MIXING

Mixing of data types across operands is not allowed in SPL/3000, but type transfer functions
are available to handle conflicts. In logical expressions, logical operands are always used, ex-
cept in the special cases where the operands are arithmetic, but the result is logical (compares,
byte tests, and range tests). See ‘“Expression Types,” this section for all type transfer functions.

COMPARING BYTE STRINGS

Logical expressions provide a mechanism for comparing strings of bytes to determine whether
a relation between them is true or false. The instruction generated is CMPB (compare bytes).
The byte strings are compared, one by one, at their numeric values until the compared bytes
are unequal or until a specified number of comparisons have been made (<count>). If the
relation specified (<, >, =, <=, >=, < >) holds, the result is TRUE (-1), otherwise FALSE (0).

The string to the left of the <relop> can be specified by a byte pointer or array reference (DB
relative only) or a stacked DB byte address (*). The asterisk specifies that the user has already
loaded the stack with the byte address.

The string to the right can be specified by a byte pointer or array reference (PB or DB relative),
a stacked DB address (*), a stacked PB address (*PB), a literal string (no <count>), or a list
of contents in parentheses (see ‘“Array Declaration,” Section III) with no <count>.

The absolute value of the <count> specifies how many bytes to compare. A positive <count>
specifies left to right comparison while negative specifies right to left.

4-18

The <sdeca> operand specifies how many of the temporary values used by CMPB to delete

from the stack. An empty <sdeca> specifies sdec of 3 or delete all values. The values are
loaded on the stack in this order:

S-2 first address
S-1 second address
S-0 count

For example,

TARGET = SOURCE, (20)
* =% (72)

* < “SINCERE”, 0

BAR(5) > “BOB SMITH”, 0

4-19

SECTION V
Statements

STATEMENT TYPES

A statement is an order to perform some action. Statements are the components for the
bodies of programs and procedures. It is possible to label any statement and to combine any
sequence of statements into a single statement called a compound statement.

Syntax

<statement> 1:= <label identifier> := <statement> |
<compound statement> |
<assignment statement> |
<GO statement> |
<IF statement> |
<CASE statement> |
<FOR statement> |
<DO statement> |
<WHILE statement> |
<MOVE statement> |
<SCAN statement> |
<PROCEDURE call statement> |
<RETURN statement> |
<SUBROUTINE call statement> |
<DELETE statement> |
<PUSH and SET statement> |
<ASSEMBLE statement> |
<empty>

<compound statement> ::= BEGIN <compound tail>

<compound tail> ;1= <statement> END |
<statement> ; <compound tail>

Syntax References

<label identifier> — III, LABEL DECLARATION

All of the statement types referred to are covered in this section (in alphabetic order).

5-1

ASSEMBLE STATEMENT

The purpose of the ASSEMBLE statement is to generate any code desired by specifying literal
hardware instructions. Instructions within an ASSEMBLE statement can be labeled (and
branched to from without). Identifiers outside the ASSEMBLE statement can be used within,
but indirect references are never provided unless they are specified explicitly.

Syntax

<ASSEMBLE statement>

<instruction slist>

<instruction>

<opcode format>

<format-1>

<memory ref opcode>

<sub memref op>

<address part>

<var identifier>

<addr mode>
<usi 255>

<I-field>

<X-field>

<format-2>

1

ASSEMBLE (<instruction slist>)

<instruction> |
<instruction slist> ; <instruction>
T note that semicolon is delimiter

<label identifier> : <opcode format> |
<opcode format>

<format-1> | <format-2> | <format-3> |
<format-4> | <format-5> | <format-6> |
<format-7> | <format-8> | <format-9>

<memory ref opcode> <address part> <I-field> <X-field> |
<sub memref op> <label identifier>

<sub memref op> |
STOR | INCM | DECM | LDB |
LDD | STB | STD

LOAD | LDX | LRA | CMPM | ADDM | SUBM | MPYM |
BR { BL | BE | BLE | BG | BNE | BGE |
TBA | MTBA | TBX | MTBX

<var identifier> | <addr mode> <usi 255>

<T simpvar identifier> |
<T pointer identifier> |
<T array identifier>

DB+ | Q+| Q- | P+ |P-| 8-

<unsigned integer>
T less than an equal to 255

I
| + indirect
<empty>
+ direct
X |
T indexing
<empty>
+ no indexing

<stack opcode> |
F fills with NOP
<stack opcode> , <stack opcode>

5-2

<stack opcode>

<format-3>

<usid1l>

<usi63>

<argl>

<sign>

<branch subopl>

<non-branch subop1>

<format-4>

<sub subop2>

<format-5>
<format-6>
<K-field>

<special op>

<format-7>

<subop3>

NOP | DELB | DOEL | ZROX | INCX | DECX | ZERO |
DZRO | DCMP | DADD | DSUB | MPYL | DIVL | DNEG |
DXCH | CMP | ADD | SUB | MPY | DIV | NEG | TEST |
STBX | DTST | DFLT | BTST | XCH | INCA | DECA |
XAX | ADAX | ADXA | DEL | ZROB | LDXB | STAX |
LDXA | DUP | DDUP | FLT | FCMP | FADD |

FSUB | FMPY | FDIV | FNEG | CAB | LCMP | LADD |
LSUB | LMPY | LDIV | NOT | OR | XOR | AND |

FIXR | FIXT | INCB | DECB | XBX | ADBX | ADXB

<branch subopl> <argl>> <I-field> |
<non-branch subopl> <usi63> <X-field>

<unsigned integer>
¥ less than or equal to 31

<unsigned integer>
+ less than or equal to 63

<label identifier> |
P <sign> <usi31> |
* Jsign> <usidl>

+] -

IABZ | IXBZ | DXBZ | DABZ | BCY | BNCY |
CPRB | BOV | BNOV | BRO | BRE |

ASL | ASR | LSL | LSR | CSL | CSR | SCAW |
TASL | TASR | TNSL | DASL | DASR | DLSL |
DLSR | DCSL | DCSR | TBC | TRBC | TSBC |
TCBC

<sub subop2> <usi255> |
EXF <usi> : <usi>
DPF <usi> : <usi>

LDI | LDXI | CMPI | ADDI | SUBI | MPYT |
DIVI | PSHR | LDNI | LDXN | CMPN | SETR

RSW | LLSH | PLDA | PSTA
<special op> <K-field>

<unsigned integer>
F less than or equal to 15

PAUS | SED | XCHD { SMSK | RMSK | XEQ |
SIO | RIO | WIO | TIO | CIO | CMD | SIRF |
SIN | HALT

<subop3> <usi255> |
PCAL <procedure identifier> |

SCAL O |

LLBL <procedure identifier>

PCAL | SCAL | EXIT | SXIT | ADXI | SBXI |
LLBL | LDPP | LDPN | ADDS | SUBS | TSBM |
ORI | XORI | ANDI

5-3

<format-8> ::= <sub move op> <sadmode> |
T delete all values
<sub move op> <sadmode> <sdec> |
MVBW <cef> <sdeca> |

<scan op> |
F delete all values
<scan op> <sdec>
<sadmode> 1= <empty> |
+ DB
PB
+ PB rel. address
<sdeca> 1i= <empty> |
+ delete all values
<sdec>
<sdec> = 0112
<ccf> := A|N|AN | AS| ANS
<sub move op> ::= MOVE | MVB | CMPB
<scan op> ::= SCW | SCU | MVBL | MVLB
<format-9> ::= CON <const list> |
<const> ;= <constant> |
<label identifier>

F creates PB address

Syntax References

<label> — III, LABEL DECLARATION
<simpvar> — III, SIMPLE VARIABLE DECLARATION
<pointer> — 1II, POINTER DECLARATION
<array> — III, ARRAY DECLARATION
<unsigned integer> — II, INTEGER CONSTANTS
<procedure> — III, PROCEDURE DECLARATION
<subroutine> — III, SUBROUTINE DECLARATION
<entry> — 1II, ENTRY DECLARATION
<constant> — II, CONSTANT TYPES

Semantics

The ASSEMBLE statement allows the programmer to generate machine instructions of his
choice. Appendix E contains general information on the HP 3000 machine instructions,
but the programmer should refer to the hardware documentation for exact details. The

5-4

opcodes as listed in the hardward manuals are used in ASSEMBLE except that BCC (branch
on condition code) has been replaced by six mnemonics which specify the exact branch
condition:

BL Branch if less than (condition code equals 1)

BE Branch if equal (condition code equals 2)

BLE Branch if less than or equal (condition code equals 1 or 2)
BG Branch if greater than (condition code equals 0)

BNE Branch if not equal (condition code equals 0 or 1)

BGE Branch if greater than or equal (condition code equals 0 or 2)

The compiler does not modify P-relative displacements within an ASSEMBLE. Consequently,
branches out of range cause an error. The programmer must explicitly specify indirect when-
ever that is desired.

The format-9 opcodes are psuedo-opcodes; they do not generate machine instructions 'but are
used to generate constants within the code at the next PB-relative location. The CON opcode
can generate indirect addresses for labels as well as numerical and string constants.

EXAMPLES:

PROCEDURE OCTOUT(BUF,T,N), VALUE T,N;
BYTE ARRAY BUF;
LOGICAL T;
INTEGER N;
BEGIN <<CONVERT N OCTAL DIGITS OF T TO ASCII CHARACTERS IN BUF>>
LABEL LOQP;
ASSEMBLE (
LDX N;
DECX, NOP;
LOAD T;
LOOP: DUP;
ANDI 7;
ADDI %60,
STB BUF,1,X;
LSR 3;
DECX;
: BGE LOOP);
END;

5-5

ASSIGNMENT STATEMENT

The purpose of an assignment statement is to store the result of an expression into a variable

of the same size as the result. Multiple assignments allow the same result to be stored in several
variables and bit deposits allow a one-word result to be stored into a variable starting at a specific
bit position. Assignment statements can be of any data type (i.e., the variable assigned a value
can be of any type).

Syntax

<T assignment statement> ::= <T left part> := <right part> |
<T left part> : = <assignment statement>

+ multiple assignment

<T left part> ::= <T variable> |
<Tj variable> . (<deposit field>)

F when used with multiple assignments only the leftmost
assignment can be a deposit

<deposit field> ;1= <left deposit bit> : <deposit field length>

<left deposit bit> ;= <unsigned integer>
T bit to start deposit with; O through 15

<deposit field length> <unsigned integer>

+ 1 through 15

<right part> i:= <T expr>
+ must match left part in number of words

Syntax References

<variable> — IV, VARIABLES

<unsigned integer> — II, INTEGER CONSTANTS

<expr> — IV, EXPRESSION TYPES
Semantics

The result of an expression is stored in the variables (simple variable, array, or pointer) specified
on the left side of the assignment operator (:=). The result must be of the same word size (but
not necessarily the same type) as the assignment variable. Type byte is treated as if it were one
word.

When a deposit is specified, the result must be a one-word quantity. The number of contiguous
bits required (<deposit field length>) is taken from the rightmost bits of the result and deposited
(DPF instruction) in the variable, starting with the bit position specified (<left deposit bit>).

If a deposit is combined with multiple assignments, only the leftmost assignment can be a deposit.

Instructions used in assigning values include STOR (store word), STB (store byte), and STD
(store double).

5-6

EXAMPLES:

INTEGER I1,J; LOGICAL K,L;
BYTE B1, B2; REAL R1, R2;
DOUBLE D;

I:=K*L;

I(5:6) :=d :=L;

1(0:8) := B1;

R1 :=R1 := R1+(R2*REAL());
D :=R1;

5-7

CASE STATEMENT

The purpose of a CASE statement is to select one of a set of statements for execution by using
a variable index in a compound statement. The first statement has index 0 and the others are
numbered consecutively (1, 2, 3....). After execution of the specified statement, control trans-
fers to the statement follow the CASE statement.

Syntax

<CASE statement> CASE <Tyjj, expr> OF <case body> |

CASE * <T;;;, expr> OF <case body>
+ no bounds checking

<case body> ::= <compound statement>

BEGIN <compound tail>

<statement> END |
<statement> ; <compound tail>

<compound statement> ::

<compound tail>

Syntax References

<exp> — IV, EXPRESSION TYPES
<statement> — V, STATEMENT TYPES

Semantics

A CASE statement contains an integer expression specifying the statement desired and a
compound statement. The statements in the compound statement are numbered consec-
tively starting with 0. For example,

CASE J OF
BEGIN

A :=100; <<#£0>>

B :=200; <<#1>>

BEGIN

C := 300;

IF A<B THEN D : = 100;
END;

QR : = 500; <<#3>>
END;

Normally, if the integer expression evaluates to less than zero or greater than the acceptable
indices, control transfers to the statement following the CASE statement. However, if the *
option is specified, no bounds checking is performed and invalid indices will cause unpre-
dictable results.

EXAMPLES:

CASE (N*2)+(QR-3) OF
BEGIN
GOTO FIRST;
GOTO SECOND;
IF A <300 GOTO THIRD;
<<null statement #4>>;
IF A > 300 GO TO THIRD;

A :=512;
END;
CASE * J OF

BEGIN A :=0;
A:=1;
A :=2;
A:=3;
A:=4,;

END;

5-9

DELETE STATEMENT

The purpose of the DELETE statement is to generate one of these three hardware instructions:

® DEL (delete contents of S-0, decrement S register by one).

® DELB (delete contents of S-1 by storing contents of S-0 into it; decrement S register
by one).

® DDEL (delete contents of S-0 and S-1; decrement S register by two).

Syntax
<DELETE statement> ::= DEL|
+ delete TOS
DELB |
+ delete B
DDEL
+ double delete
Semantics

The Delete statements have the following effect:

Before DEL After DEL
S-2 7 S-1 7
S-4 6 S-0 6
S-0 5

Before DELB After DELB
S-2 7 S-1 7
S-1 6 S-0 5
S-0 5

Before DDEL After DDEL
S-2 7 S-0 7
S-1 6
S-0 5

These statements should be used with caution as they override the compiler’s management of
the stack.

5-10

EXAMPLES:

DEL; <<DEL instruction>>
DELB; <<DELB instruction>>
DDEL; <<DDEL instruction>>

5-11

DO STATEMENT

The purpose of the DO statement is to repeatedly execute a statement until a specified
condition clause becomes true. The condition clause is evaluated and tested after each execu-
tion of the statement. When the condition becomes true, execution transfers to the statement
following the DO statement.

Syntax

<DO statement> ;= DO <statement> UNTIL <cond clause>

Syntax References

<statement> —> 'V, STATEMENT TYPES
<cond clause> — V, IFSTATEMENT

Semantics

After the statement specified is executed the condition clause is evaluated and tested. If false,
the statement is executed again; if true, control transfers to the next statement following the
DO statement. Each time the loop statement is executed the condition clause is again checked.

The condition clause can consist of logical expressions and hardware branch words as described
under “IF Statement,” this section.

EXAMPLES:

DO A(I1:=1+1) :=1*2 UNTILI > 23;
DO BEGIN
I:=1+1;
IVAL(I) :=I/(X*Y+3);
BVAL(I) := (X*Y+3)/I;
END
UNTIL I > 20;

5-12

FOR STATEMENT

The purpose of the FOR statement is to repeatedly execute a statement, changing an integer
test variable by a specified amount each time, until the test variable exceeds a specified limit.
The FOR statement in SPL/3000 is very machine-dependent, because it makes use of loop
control instructions which require special stack markers.

Syntax

<FOR statement> <FOR clause> <statement>

<FOR clause> ::= FOR <integer simpvar identifier> : =
<Tjjp expr> <STEP clause>

UNTIL <Tllb expr> DO '

FOR * <integer simpvar identifier> : =
<Tjp expr> <STEP clause>

UNTIL <Tj, expr> DO

<STEP clause> = <empty> |
tstep=1
<Tllb expr>

Syntax References

<statement> — 'V, STATEMENT TYPES
<expr> — 1V, EXPRESSION TYPES
<simpvar identifier> — III, SIMPLE VARIABLE DECLARATION

Semantics

The initial value, step value, and final value are all integer values which are calculated once upon
entry into the FOR. The initial value is stored in the integer variable (FOR A :=) and tested be-
fore the loop statement is executed. After each execution of the loop statement, the variable is
changed by the step value and compared with the final value. If the loop variable is less than
or equal to the final value, the loop statement is executed again. If the loop variable is greater
than the final value, control transfers to the next statement following the FOR statement.

There are two variations allowed in FOR: the STEP clause can be omitted, in which case the
step is implicitly 1; and an * after FOR can be used to specify that the loop statement is to be
executed once before incrementing and testing the variable. This guarantees that the loop
statement is executed at least once even if the initial test should fail.

If the loop variable is equivalenced to the index register, the TBX and MTBX instructions are
used for loop control. If the loop variable is a simple variable, the TBA and MTBA instruc-
tions are used. Since all of these instructions use a series of values placed in the stack, unpre-
dictable results may occur if the user modifies the stack during the loop statement. If the
index register is used as the loop variable, any operations within the loop statement which
change the index register (such as array referencing) can destroy the loop control.

5-13

EXAMPLES:

FOR I := MAX STEP -RANGE/4 UNTIL MAX -RANGE
DO BEGIN
FOFI := A*I" 2+B*I+C;
SUM := SUM + FOFI;
END;
FORI := 3 UNTIL LIM DO A(I) := 1*¥2; <<IMPLICIT STEP OF 1>>
FOR *1 :=1 STEP 1 UNTIL LIM DO
SUM := SUM + NARN(I);

5-14

GO STATEMENT

The purpose of a GO statement is to transfer control unconditionally to a labeled statement.
The labeled statement can be specified by a label identifier or an indexed switch identifier
(selects one of a set of labels).

Syntax
<GO statement> ::= GO <label ref> |
GOTO <label ref> |
GO TO <label ref>
<label ref> = <label identifier> |
<switch identifier> (<sindex>) |
* <switch identifier> (<sindex>)
<sindex> = <Typ expr> | <Tj), assignment statement>

F must result in one-word value

Syntax References
<label identifier> — III, LABEL DECLARATION
IV, STATEMENT TYPES
<switch identifier> ~—~ III, SWITCH DECLARATION
<aexp> — IV, ARITHMETIC EXPRESSIONS
<lexp> — IV, LOGICAL EXPRESSIONS
<assignment statement> — V, ASSIGNMENT STATEMENT

515

Semantics

The object of a global GO statement must be global and the object of a local GO statement must
be local. There are no branches into or out of procedures, but procedures can go to labels passed
as parameters. Entry points cannot be the object of a GO statement. If a main program or pro-
cedure passes a label to a procedure as an actual parameter, the procedure can transfer to the label.
For example,

BEGIN
LABEL L1;
PROCEDURE PRO2(A,B,C); <<DECLARATION OF PROC2>>
VALUE A; INTEGER A,B; LABEL C;
BEGIN

GO TO C; <<REFERENCE TO LABEL PARAMETER>>
END; <<END OF PROC2 DECLARATION>>

<<MAIN PROGRAM>>
PROC2(2,N,L1); <<CALL TO PROC2>>

L1: <<SPECIAL RETURN POINT>>

END.

Switches are invoked using an indexed GO statement; the index is an integer value that specifies
the label desired (labels in a switch declaration are numbered consecutively starting with 0; see
“Switch Declaration,”” Section III). Normally, if the index value is less than zero or greater than
the number of labels minus one, control transfers to the statement following the GO statement.
However, if the asterisk (*) is specified, no bounds checking is performed and invalid indices
will cause unpredictable results:

SWITCH SW := L1, L2, L3;

GO TO SW(N); <<bounds checking>>
GO TO * SW(N); <<no bounds checking>>

5-16

IF STATEMENT

The IF statement chooses which of two statements to execute based on whether a condition
clause is true or false. The condition clause can consist of logical expressions and/or hardware-
defined branch words (overflow, carry, condition code, etc.). Indefinite nesting of IF state-
ments is allowed.

Syntax
<IF statement> ::= IF <cond clause> <THEN part> <ELSE part>
<cond clause> ::= <cond elem> |
¥ lowest precedence

<cond clause> OR <cond elem>
<cond elem> ;= <cond term> |

<cond elem> AND <cond term>
<cond term> ::= <cond primary> |

(<cond factor>)
<cond factor> ::= <cond primary> OR <cond factor> |

<cond primary> OR <cond primary>
¥ parens override precedence of AND but cannot be nested

<branch word> |
+ hardware test
<lexp>
F logical expression
<THEN part> ::= THEN <statement>
¥ true alternative; can be empty but cannot be null statement
(i.e. no semi-colon).
<ELSE part> = <empty> |
¥ no false alternative
ELSE <statement>
T false alternative

<cond primary> ::

<branch word> ::= CARRY | NOCARRY |
OVERFLOW | NOVERFLOW |
IABZ | DABZ |
IXBZ | DXBZ |
<relop>

<relop> = o=

F condition code equals 2
<>
F condition code equals 0 or 1

<]

+ condition code equals 1
>

+ condition code equals 0
<=

¥ condition code equals 1 or 2
> =

T condition code equals 0 or 2

5-17

Syntax References

<lexp> — IV, LOGICAL EXPRESSIONS
<statement> — V, STATEMENT TYPES

Semantics

The IF statement allows the programmer to select one of two statements for execution based
on a condition clause (see below). There are two formats of the IF statement: Format 1 with-
out an ELSE part, and Format 2 with an ELSE part.

FORMAT 1

In this case, control is transferred to the statement following the THEN if the condition is true;
if the condition is false, control falls through to the next statement following the IF statement.
For example,

IF A< BTHEN NX := A + B;
IF NO (FINAL LOR SUSPICIOUS) THEN
BEGIN
TEST’ DONE := FALSE;
GO TO AGAIN
END;

FORMAT 2

In this case, there are two alternative statements within the IF statement. If the condition is
true, control transfers to the statement following THEN; if the condition is false, control trans-
fers to the statement following ELSE. When the statement selected is complete, control trans-
fers to the next statement following the IF statement. For example,

IFA<BTHEN XA :=XA+A

ELSE XA := XA + B;

IF TESTVARTHEN Y :=Y +1
ELSE IF EXTRATEST THEN Y := Y - 1;

<<INVALID>>
IF TEST THEN A := A+ B; ELSE A : A - B;
<<NO SEMICOLON>>

5-18

NESTING

IF statements can be indefinitely nested (i.e., the alternative statements of an IF can them-
selves be IF statements). The innermost THEN is paired with the closest following ELSE and
pair proceeds outward. For example,

IF <cond clause>

(THEN
IF <cond clause>
THEN
< IF <cond clause>
THEN <statement>
ELSE <statement>
ELSE <statement> ;
g<<NO OUTERMOST ELSE>>

For details on the implications of branch words (overflow, DXBZ, condition codes, etc.) con-
sult the hardware reference manual.

Logical expressions and/or branch words can be combined using two special branch operators:
OR and AND. If two items are combined with OR, the result is true if either or both is true;
if two items are combined with AND, the result is true only if both are true. AND has prece-
dence over OR, but this can be overriden by putting OR’ed sequences in parentheses. For
example,

A <BOR DXBZ

A < BOR DXBZ AND CARRY

(A < BOR DXBZ) AND CARRY

l J [J (_{__I

CONDITION CLAUSE

The <cond clause> which is used to select the desired statement in IF is also used in the DO-
UNTIL and WHILE -DO statements as well as the IF expression (see ‘Expression Type,”
Section IV). It is composed of two types of items: logical expressions and hardware branch
words. Logical expressions (see ‘‘Logical Expressions,” Section IV) result in a value of true or
false. Branch words are hardware dependent branch conditions which are also either true or

false:

Branch Word True Condition
CARRY Carry bit on
NOCARRY Carry bit off
OVERFLOW Overflow bit on
NOVERFLOW Overflow bit off

5-19

Branch True Condition

1ABZ Increment TOS(S-0). True if then zero.
DABZ Decrement TOS(S-0). True if then zero.
IXBZ Increment index register. True if then zero.
DXBZ Decrement index register. True if then zero.
< Condition Code equals 1

Condition Code equals 2
Condition Code equals 1 or 2
Condition Code equals 0
Condition Code equals 0 or 1

V ANV A
vV

Condition Code equals 0 or 2

OR and AND use branch instructions such as BCC, BOV, BNOV, BCY, BNCY, BRO, BRE,
IABZ, IXBZ, DABZ, and DXBZ; they never generate arithmetic ands and ors. All parts of the
condition clause may not be executed every time, since OR and AND branch out of the condi-
tion as soon as the truth value of the condition is determined (e.g., if a series of items is ANDed
together, only one need be false for the total to be false).

EXAMPLES:

IFA>BTHENC := A;
IF A>BTHENC := AELSE C :=B;
IF B LOR C LAND NOT D THEN
GO TO START ELSE
GO TO FINISH;
IF OVERFLOW AND (N = 0) THEN
BEGIN
NO := 255;
GO TO RESTART;
END
ELSE
BEGIN
N:=N-1;
GO TO START;
END.

5-20

MOVE STATEMENT

The purpose of the MOVE statement is to move words or bytes from one location to another.
The locations are specified by means of DB- or PB-relative addresses. There are three types of
move operations, corresponding to three move-group instructions:

e Move words (MOVE instructions).
e Move bytes (MVB instruction).

e Move bytes while alphabetic and/or numeric, with or without upshifting of lowercase
letters (MVBW).

In any move operation, the original contents of the MOVE source are unchanged.

Syntax

<MOVE statement> = <MOVE stmt> <sdeca> |
<MOVE-WHILE stmt> <sdeca>

<MOVE statement> ::= MOVE <Tjjqe dest ref> := <Tj,4e pointarr> <count> |

T move words
MOVE <Tj;qe Pointarr> := * <sadmode> <count> |

F stacked source address
MOVE <Tjjjqe Pointarr> : = <string> |
MOVE <Tj;ge Pointarr> := (<Llistelmt>) |

MOVE <byte ref> := <byte pointarr> <count> |
+ move bytes

MOVE <byte ref> := * <sadmode> <count> |
tstacked source address

MOVE <byte ref> := <string> |

MOVE <byte ref> := (<listelmt>)

<Tirlde dest ref> =k
+ stacked destination address

<Tjpde Pointarr>

<MOVE-WHILE stmt> ::= MOVE <byte ref> := <byte ref> WHILE <cct>
<byte ref> ::= <byte pointarr> |
*

+ stacked byte address

<T pointarr> ::= <T pointer identifier> <index> |
<T array identifier> <index>

<count> ::= , (<integer expr>)

<sdeca> 1= <empty> |
F delete all values
, <sdec>

<sdec> = 01112
T stack decrement

5-21

<sadmode>

<ccf>

<listelmt>

<initial value>

Syntax References

<string>
<pointer>
<array>

<expr>

<decimal integer>
<constant>
<index>

Semantics

bbb

11,
I1I,
I1I,
IV,
11,
11,
IV,

<empty> |
+ DB stacked address

PB
T PB stacked address

Al

+ ALPHA only — condition code field
N|

+ NUMERIC only

AS |
7 ALSPH only, upshift

AN |
+ ALPHA or NUMERIC

ANS
+ ALPHA or NUMERIC; upshift

<initial value> |
<decimal integer> (<initial value list>) |

F only one level of repeat factors allowed
<listelmt list>

<constant>
F truncated on left to 8 bits for byte move

STRING CONSTANTS
POINTER DECLARATION
ARRAY DECLARATION
EXPRESSION TYPES
INTEGER CONSTANTS
CONSTANT TYPES
VARIABLES

The move statements in SPL/3000 are very machine-dependent because they are based upon

specific machine instructions.

SOURCE AND DESTINATION

The first reference after the MOVE is the destination address; the address, constant, or * after
the : = is the source address. Move words use integer, real, long, double, or long arrays or
pointer references as source and destination. Move bytes use only byte array or pointer refer-
ences. When the source is a string or a list of constants, the constants are generated into the
code stream and moved from there. The list of constants (<listemt>) is the same as described
under “Array Declaration,” Section III.

5-22

Where * or *PB appears in place of an address, the DB of PB address must have been previously
loaded onto the stack by the user. The source in move words or bytes (but not move bytes
while) can also be a PB-relative address specified either by a local P-relative array reference or a
stacked PB address (*PB). If both addresses are stacked, a byte MOVE is always assumed.

COUNT

The count value is an integer expression that specifies the number of words or bytes to move;

a positive count indicates a left-to-right move and a negative count indicates a right-to-left move.
At the completion of the move the count equals zero and the addresses have been changed to
point to the list character moved.

SDEC

The sdec value, or stack decrement operand, is an integer constant of value 0, 1, or 2 (or empty)
which specifies how many of the temporary values required by move should be deleted from the
stack after the move. An empty sdec restores the stack to its setting before the move statement.

The stacked values used by move words and bytes are as follows:

S-2 destination address
S-1 source address
S-0 count

The stacked values for move bytes while are as follows:

S-1 destination address

S-0 source address

In move bytes while, the <ccf> operand is the condition code field; it specifies the conditions
for continuing the move to the next character:

A current character is alphabetic.
N current character is numeric.
AS current character is alphabetic; upshift if lowercase.

AN current character is alphabetic or numeric.
ANS current character is alphabetic or numeric; upshift if lowercase.

5-23

EXAMPLES:

BYTE ARRAY BAR(0:20);
ARRAY DATA (0:100),DATAC(0:10);
MOVE DATA(4) := DATA(4),(4)2; <<moves 4 words, leaves destination addresses on stack>>

MOVE * := DATAC(3),(6); <<moves 6 words from DATAC into DATA starting
where previous move left off>>

MOVE DATA(0) := (5(0,1,2,3,4),10,20,99);
MOVE BAR := “ABCDEFGHIJKLMNOPQRST”,1;
DEST :=TOS;

5-24

PROCEDURE CALL STATEMENT

The purpose of a PROCEDURE CALL statement is to invoke a previously-defined procedure
and pass to it a list of actual parameters (addresses or values). When the procedure completes,
execution normally returns to the next statement following the call (unless the procedure itself
overrides the return).

Syntax

<PROCEDURE call statement> ::

<procedure identifier> <actual param part>

<actual param part> 1= <empty> |

t no parameters

(<actual param list>) |
+ no stacked params

(<stacked param list>) |
+ all stacked params

(<stacked param list> , <actual param list>)
+ stacked params must come first

<actual param> ::= <reference param> |
+ passes an address
<value param> |
T passes a value
<empty>
F missing parameter; option VARIABLE only

<stacked param> ce= %
+ address or value is already stacked by user

<reference param> ::= <T simpvar identifier> |
<T array identifier> <index> |
<T pointer identifier> <index> |
<procedure identifier> |
<entry identifier> |
+ formal parameter must be procedure
<label identifier>

<value param> = <aexp> |
<lexp> |
<assignment statement>

Syntax References

111, SIMPLE VARIABLE DECLARATION

<simpvar> —

<pointer> — III, POINTER DECLARATION
<array> — III, ARRAY DECLARATION
<procedure> — 1II, PROCEDURE DECLARATION
<label> — III, LABEL DECLARATION
<aexp> — 1V, ARITHMETIC EXPRESSIONS
<lexp> — 1V, LOGICAL EXPRESSIONS
<assignment statement> — V, ASSIGNMENT STATEMENT

5-25

Semantics

The procedure call statement generates a PCAL instruction to the procedure body associated
with the specified <procedure identifier>.

The parameter list contains the list of actual parameters to be passed to the procedure. These
must match the formal parameters, as declared in the procedure, in a one-to-one correspond-
ence. The legitmate actual parameters for each formal parameter are listed under ‘“‘Procedure
Declaration,” Section III.

Stacked parameters (specified by *) are parameters for which the user has already loaded the
address or value onto the stack. If any parameter is stacked, all parameters to the left must be
stacked too. Labels cannot be stacked. In addition, if the procedure is a function, the user
must push a one, two, or three word zero onto the stack prior to the parameters for the return
value. When stacked parameters are not used, the compiler generates this automatically. After
the procedure returns, the function value space is deleted. For example,

PROC2 (*, *, R2); <<2 stacked params>>
ASSEMBLE (ZERO; LOAD R1); <<push zero for integer function>>
PROC3 (*, R1, R2); << one stacked param; call to function procedure>>

If the procedure is declared with option VARIABLE, parameters can be omitted from the list
by leaving a comma to hold their place. See “Procedure Declaration,” Section III. For example,

PROCEDURE P(A,B,C.D,EF);....;
OPTION VARIABLE ;

P(R,,, R2); <<B,C,E,F missing>>
P(R); <<B,C,D,E,F missing>>

If the actual procedure identifier is itself a formal parameter (i.e., a procedure called from with-
in a procedure), no parameter checking is performed, and the actual parameters are treated as if
the corresponding formal parameters were all called by reference.

The procedure returns to the point of call when it reaches the final END of the procedure. Ad-
ditional returns can be included in a procedure with the RETURN statement (see “RETURN

Statement,” this section). In addition, the procedure can return to a point other than the nor-

mal return by using GOTO with a label passed to it is a parameter (see “GO Statement,’’ this
section).

EXAMPLE:

COMPUTE (23.0, L2, PROC5);

5-26

PUSH AND SET STATEMENTS

The purpose of the PUSH statement is to push the contents of any or all of the registers onto
the stack (PSHR instruction). The purpose of the SET statement is to set the contents of any
or all of the registers using values taken from the top of stack (SETR instruction).

Syntax

0

<PUSH and SET statement> PUSH (<register spec list>) |

SET (<register spec list>)

<register spec> = S| Q|X|STATUS | Z | DL | DB
+ privileged mode required to set DB, DL, STATUS,
orZ
Semantics

These two statements generate PSHR and SETR instructions for the registers specified. In a
SETR the programmer must have previously loaded the values. In a PSHR the values are
left on the top of the stack. The instructions operate as follows:

PSHR

If more than one register is specified, they are stacked in the order shown below (e.g., if all
were stacked, DB would be in S~0, DL-DB in S-1, etc.).

Register Specified Value Stacked
S S-DB (relative S before PSHR)
Q Q-DB (relative Q)
X Index register
STATUS Status register
Z Z~-DB (relative DB)
DL DL-DB (relative DL)
DB DB (absolute address)

SETR

The appropriate values must be loaded onto the stack before executing SETR. If more than
one register is specified, they are set in the order shown below (DB first, S last). After the
SETR instruction, the values have been deleted from the stack. SETR requires privileged
mode except to set the index register, Q, S, and bits 4 through 7 and 2 of the status register
(user traps, overflow, carry, and condition code).

5-27

Register Specified Value taken from Stack

DB DB (absolute address)
DL DB-DB (relative DL)
Z Z-DB (relative Z)
STATUS Status register
X Index register
Q Q-DB (relative Q)
S S-DB (relative S)

Relative addresses in the stack are added to the absolute value for DB before setting the
registers.

EXAMPLES:

PUSH(DB,STATUS,Q);
TDB := TOS;
TSTATUS := TOS;
TQ :=TOS;

TOS := TDB;

TOS := TSTATUS;

TOS :=TQ;
SET(DB,STATUS,Q);

5-28

RETURN STATEMENT

The purpose of a RETURN statement is to generate additional exit points within a procedure
or subroutine body. The final END of a procedure or subroutine declaration also generates an
exit, but only the RETURN statement allows the programmer to leave some or all of the pa-
rameters on the stack after exiting back to the point of call.

Syntax

<RETURN statement> RETURN <pcount>

<unsigned integer> |

+ number of words to delete on exit
<empty>

¥ delete all parameters

<pcount>

Syntax References

<unsigned integer> — II, INTEGER CONSTANTS

Semantics

A RETURN within a procedure generates an EXIT instruction; a RETURN within a subroutine
generates an SXIT. Multiple RETURNs within a single subroutine or procedure are allowed.

If the count in a RETURN is omitted, all parameters are deleted from the stack. If the count
equals N, then only the top N parameter words are deleted after exiting. If N equals zero, all
parameters are left on the stack.

The calling program must know how many parameters will be left on return from the procedure
or subroutine, because it must take care of them (examine them, save them, etc.). Integer, logi-
cal, and byte variables by value use one word; double and real use two words; and long variables
and labels use three. All other parameters use one word.

EXAMPLES:
PROCEDURE P(A,B); VALUE A; DOUBLE A; INTEGER B;
BEGIN
RETURN 1; <<EXIT 1; LEAVE A>>
RETURN; <<EXIT 3; DELETE BOTH>>
END;

5-29

SCAN STATEMENT

The purpose of a SCAN statement is to examine a contiguous string of bytes looking for two
specified characters (the test and terminal characters) without actually moving any data. When
the statement ends, pointers and indicators are left to show what was found and where. This
is the one SPL/3000 statement that cannot be used properly without explicitly accessing the
stack. There are two scan operations, corresponding to the two hardware scan instructions:

® Scan until a test character is found (SCU instruction).

e Scan while a test character is found (SCW instruction).

Syntax
<SCAN statement> ::= <SCAN-WHILE stmt> <sdeca> |
<SCAN-UNTIL stmt> <sdeca>
<SCAN-WHILE stmt> ::= SCAN <byte ref> WHILE <testword>
<byte ref> ::= <byte pointer identifier> <index> |
+ no PB arrays
<byte array identifier> <index> |
E
T stacked byte address
<testword> 2= <Ty; simpvar identifier> | <integer> |
“<char> <char>" |
+ terminal character — test character
%
+ stacked testword
<SCAN-UNTIL stmt> ::= SCAN <byte ref> UNTIL <testword>
+ no PB arrays
<sdeca> 1= <empty> |
+ delete all values
, <sdec>
<sdec> = 01112
<char> = {any member of the ASCII character set; «“ is represented by ““ ”’}

Syntax References

<pointer> — III, POINTER DECLARATION

<array> — III, ARRAY DECLARATION

<simpvar> — III, SIMPLE VARIABLE DECLARATION
<integer> — II, INTEGER CONSTANTS

<index> — IV, VARIABLES

5-30

Semantics

The scan statements in SPL/3000 are very machine-dependent because they are based on specific
machine instructions.

BYTE REFERENCE

The byte reference (which specifies where to start scanning) can be a byte array reference, a
byte pointer reference, or an asterisk (*) if the DB-relative address already is stacked by the
user. Local P-relative arrays cannot be scanned. The address of the byte reference is loaded
onto the stack.

TESTWORD

The testword is an integer logical simple variable, an integer constant, or a two character string
where the first character (bits 0 to 7) specifies the terminal character and the second character
(bits 8 through 15) specifies the test character. In both scans each byte is tested against the
test and terminal character.

In a scan until, the scan continues until either the test character or the terminal character is
found. In ascan while, the scan continues until a byte is found that matches the terminal
character or does not match the test character. The carry bit is set after a scan to indicate
whether the scan terminated because of the test character (carry = 0) or the terminal character
(carry = 1). This can be tested with an IF statement:

IF CARRY THEN............ ;
IF NOCARRY THEN............

SDEC

Sdec specifies how many words to delete from the stack after the scan. The stack decrement
factor is very important in scan because when the scan terminates, the address of the terminat-
ing byte is left in the stack. The stack for a SCU or SCW instruction appears as follows:

S-1 byte address
S-0 testword

A stack decrement of 1 deletes the testword but leaves the byte address which can be saved as
follows:

SCAN’STOP := TOS;

An empty sdec field generates a stack decrement of 2 and leaves the stack as it was before the
scan statement.

5-31

EXAMPLES:

SCAN INPUT UNTIL «“.$,1;

IF CARRY THEN GOTO FINAL;
SCAN * UNTIL “.X”1;

ADR :=TOS;

5-32

SUBROUTINE CALL STATEMENT

The purpose of a SUBROUTINE CALL statement is to invoke a previously-defined subroutine
and pass to it a list of parameters (addresses or values). When the subroutine completes, execu-
tion normally returns to the next statement following the SUBROUTINE CALL (unless the
subroutine itself overrides the return).

Syntax

<SUBROUTINE call statement>

<actual param part> = <empty> |

+ no parameters

(<actual param list>) |
+ no stacked parameters

(<stacked param list>) |
+ all stacked parameters

{<stacked param list> , <actual param list>)
t stacked parameters must come first

<subroutine identifier> <actual param part>

<actual param> ;1= <reference param> |
T passes an address
<value param> |
+ passes a value
<empty>
+ missing parameter; option VARIABLE only
<stacked param> =k)
+ address or value is already stacked by user
<reference param> ::= <T simpvar identifier> |
<T array identifier> <index> |
<T pointer identifier> <index> |
<T procedure identifier>

<value param> = <aexp> |
<lexp> |
<assignment statement>

Syntax References

<subroutine> — III, SUBROUTINE DECLARATION
<simpvar> — [II, SIMPVAR DECLARATION
<pointer> — III, POINTER DECLARATION
<array> — III, ARRAY DECLARATION
<index> — IV, VARIABLES
<procedure> — III, PROCEDURE DECLARATION
<label> — 11, LABEL DECLARATION
<aexp> — 1V, ARITHMETIC EXPRESSIONS
<lexp> — IV, LOGICAL EXPRESSIONS

— 'V, ASSIGNMENT STATEMENT

<assignment statement>

5-33

Semantics

The SUBROUTINE CALL statement generates an SCAL instruction to the subroutine specified.
In a main program only global subroutines can be called; within a procedure only subroutines
local to that procedure can be called.

The conventions for parameters are exactly the same as described under ‘“Procedure Declaration,”

Section II, and ‘““Procedure Call Statement,” this section, except that subroutines cannot have a
variable number of parameters and labels cannot be passed to subroutines.

EXAMPLES:

SUBROUTINE S(A,B,C);
INTEGER A,B,C;
BEGIN

END;
S(K,R5,TESTVAL);

5-34

WHILE STATEMENT

The purpose of the WHILE statement is to repeatedly execute a statement as long as a specified
condition clause is true. The condition clause is evaluated and tested before executing the state-
ment. When the condition becomes false, execution transfers to the statement following the
WHILE statement.

Syntax

<WHILE statement> ::= WHILE <cond clause> DO <statement>

Syntax References

<statement> — V, STATEMENT TYPES
<cond clause> — V, IFSTATEMENT

Semantics

The condition clause is always tested before executing the loop statement. When the condition
is false, control transfers to the statement following the WHILE statement.

The condition clause can consist of logical expressions and hardware branch words as described
under “IF Statement,” in this section.

However, the following exceptions hold for the WHILE statement.

<branch lexp> Action
IABZ Increment TOS. Execute <statement> if TOS is non-zero.
DABZ Decrement TOS. Execute <statement> if TOS is non-zero.
IXBZ Increment X reg. Execute <statement> if X register is non-zero.:
DXBZ Decrement X reg. Execute <statement> if X register is non-zero.
EXAMPLES:

WHILE 1 < 21 DO A(1:=1+1) :=2"1I;
WHILE 0 < N < =100< LAND NOT Q = “/”"DO

BEGIN
Q :=C5(1);
I :=1+1;
N := N*I;
END;

5-35

Graphic

Decimal
Value

CWOTIDNU WO

APPENDIX A

"ASCII Character Set

A-1

Octal
Value

Comments

Null

Start of heading
Start of text

End of text

End of transmission
Enquiry
Acknowledge

Bell

Backspace
Horizontal tabulation
Line feed

Vertical tabulation
Form feed

Carriage return
Shift out

Shift in

Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission block
Cancel

End of medium
Substitute

Escape

File separator
Group separator
Record separator
Unit separator
Space

Exclamation point
Quotation mark
Number sign

Dollar sign

Graphic

%
&

+ =~ ~

[

T OO WN O™

S<CH®RTOUWOZZICOCRS"TIZIQEHEUOQEEPO®XV I A

Decimal
Value

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

Octal
Value

45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127

Comments

Percent sign
Ampersand
Apostrophe
Opening parenthesis
Closing parenthesis
Asterisk

Plus

Comma
Hyphen (Minus)
Period (Decimal)
Slant

Zero

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Colon
Semi-colon
Less than
Equals
Greater than
Question mark
Commercial at
Uppercase A
Uppercase B
Uppercase C
Uppercase D
Uppercase E
Uppercase F
Uppercase G
Uppercase H
Uppercase I
Uppercase J
Uppercase K
Uppercase L
Uppercase M
Uppercase N
Uppercase O
Uppercase P
Uppercase Q
Uppercase R
Uppercase S
Uppercase T
Uppercase U
Uppercase V
Uppercase W

Decimal Octal

Graphic Value Value Comments

X 88 130 Uppercase X
Y 89 131 Uppercase Y
Z 90 132 Uppercase Z
[91 133 Opening bracket
\ 92 134 Reverse slant
1 93 135 Closing bracket
~ 94 136 Circumflex

95 137 Underscore
- 96 140 Grave accent
a 97 141 Lowercase a
b 98 142 Lowercase b
c 99 143 Lowercase ¢
d 100 144 Lowercase d
e 101 145 Lowercase e
f 102 146 Lowercase f
g 103 147 Lowercase g
h 104 150 Lowercase h
i 105 151 Lowercase i
j 106 151 Lowercase j
k 107 152 Lowercase k
1 108 154 Lowercase 1
m 109 155 Lowercase m
n 110 156 Lowercase n
o 111 157 Lowercase o
p 112 160 Lowercase p
q 113 161 Lowercase q
Y 114 162 Lowercase r
s 115 163 Lowercase s
t 116 164 Lowercase t
u 117 165 Lowercase u
v 118 166 Lowercase v
w 119 167 Lowercase w
X 120 170 Lowercase x
y 121 171 Lowercase y
z 122 172 Lowercase z
{ 123 173 Opening (left) brace
| 124 174 Vertical line
} 125 175 Closing (right) brace
~ 126 177 Tilde

127 177 Delete

A-3

APPENDIX B

Reserved Words

The following symbols have special meaning in SPL/3000 and thus, cannot be used as identifiers:

ABSOLUTE
ALPHA
AND
ARRAY
ASSEMBLE
BEGIN
BYTE
CARRY
CASE

CAT
CHECK
COMMENT
DABZ
DDEL
DEFINE
DEL

DELB

DO
DOUBLE
DXBZ

ELSE

END
ENTRY
EQUATE
EXTERNAL
FALSE
FIXR

FIXT

FOR
FORWARD
GLOBAL
GO

GOTO

IABZ

IF
INTEGER
INTERNAL
INTERRUPT
INTRINSIC
IXBZ

LABEL
LAND
LOGICAL
LONG

LOR

MOD

MODD

MOVE
NOCARRY
NOT
NOVERFLOW
NUMERIC
OPTION

OR
OVERFLOW
OWN
POINTER
PRIVILEGED
PROCEDURE
PUSH

REAL
RETURN
SCAN

SET

SPECIAL
STEP
SUBROUTINE
SWITCH
THEN

TO

TOS

TRUE
UNCALLABLE
UNTIL
VALUE
VARIABLE
WHILE

XOR

APPENDIX C
Compiler Subsystem Commands

In general, compiler options such as source input merging, listing format specification, or warning
message suppression are determined by default settings assigned by the compiler. However, the user
can override these settings and select different options by issuing compiler subsystem commands.
These commands take effect only after access to the compiler is established. They are directed only
to the compiler and are not effective during object program execution.

Compiler subsystem commands differ in both function and format from compiler language source
statements, and thus are not considered true SPL/3000 statements. (However, the compiler sub-
system commands accepted by SPL/3000 conform to the general formats for all other HP 3000
language translators. For each function performed by more than one translator, the same command
name is used; in most cases, the same command parameters also apply. This feature helps users
familiar with one translator subsystem to use another.)

SYNTAX AND FORMAT

In describing the syntax and format of compiler subsystem commands, these conventions are used
for consistency and clarity:

1.

2.

Entries that always appear exactly as shown are designated by UPPERCASE CHARACTERS.
Variable entries (such as class names) are indicated by lowercase characters.

Optional information is indicated by [brackets]. (However, the user does not enter these
brackets as part of the commands.) Where one member in a group of entries may be selected

and entered by the user, the entire group is surrounded by [brackets].

Where one member in a group of entries must be selected and entered by the user, the group
is surrounded by { braces } .

An item or group of items, within brackets or braces, that may be repeated an indefinite
number of times is followed by ellipses (. . .).

The general form of a compiler subsystem command is:
$[$] commandname [parameterlist]

The first dollar-sign ($) is required, and identifies the command as a compiler subsystem command.
It must be the first character in the text portion of the record containing the command. For com-
mands directed to SPL/3000, this dollar sign must appear in Position 1.

The second $, optional, suppresses transmittal of the command to newfile (if a newfile is created
during compilation). (For commands directed to COBOL/3000, this second $ must appear in
Position 2.)

The commandname specifies the function requested. It follows the first $ (or second $, if present),
with no intervening spaces.

The optional parameterlist, if present, specifies various command options. The list is separated from
the commandname by one or more spaces. Within the list, parameters are separated from each

other by commas, optionally followed and/or preceded by spaces. The parameterlist may continue
through Position 72 of the source record on which it appears.

The sequence field (Positions 73 through 80) of a record containing a compiler subsystem command
also is not part of the command; it may, however, be used for sequence-checking the record during
editing and merging operations, as described later.

Note: Only upper-case letters, and numbers and special characters
are used in entering compiler subsystem commands; when
lower-case letters are input as part of a command, the com-
piler interprets them as their upper-case equivalents (except
when the lower-case letters are contained within character
strings as defined below.)

Parameters

Within the parameterlist, a parameter may be any of the following four items:
® A character string.

® A symbolic name

® A keyword.

® A keyword with a subparameter.

C-2

A character string consists of a quotation mark (*’) that denotes its beginning, optionally followed
by one or more alphanumeric characters, followed by another quotation mark that terminates the
string. Blank characters (spaces) may be included in the string. Quotation marks within the string
are written as double quotation marks (two adjacent quotation marks, ¢ ’) to distinguish them
from the quotation marks that begin and end the string. A character string consisting only of be-
ginning and terminating quote marks is called an empty string.

A keyword is a reserved word (with respect to a given command) that consists of a letter followed
by one or more letters and/or digits.

A keyword with subparameter is a keyword followed by an equal sign, followed by a subparameter
consisting of a character string, a symbolic name, or a number. (A number consists of one or more
decimal digits.) The equal sign can be preceded and/or followed by one or more spaces. The general
format is:

keyword=subparameter

Comments

Within any command, comments may also be included. A comment is generally used to document
the purpose of coding or to make notations about program logic. A comment is not interpreted as
part of the command, and has no effect upon compilation. It is syntactically treated as a space, and
can appear in any of these locations:

L Following the commandname, separated from it by at least one space.
® Preceding or following any parameter in the parameterlist.

A comment cannot be embedded within a parameter; for instance, it cannot appear within a key-
word, preceding or following an equal sign, or within a quoted string. Furthermore, a comment
cannot be continued from one record to the next.

A comment can contain any characters from the ASCII character set. The comment must begin
with two adjacent less-than signs (<<) and terminate with two adjacent greater-than signs (>>)

as delimiters. (Since adjacent greater-than signs terminate a comment, they cannot appear within
the comment itself.) The comment may continue through Position 72 of the record on which it
appears. (This comment feature is provided in addition to the comment features of the SPL/3000
language.)

EXAMPLES

The following examples illustrate various ways in which comments can be included in compiler
subsystem commands.

1. Following the command name ($PAGE) in a command with no parameterlist.
$PAGE <<PAGE EJECT,NO TITLE CHANGE.>>

2. Following the last parameter in a parameterlist (where the comment effectively appears as a
separate field).

$SET X1=0ON,X2=0N,X3=0ON <<SWITCHES 1-3 ON.>>
3. Embedded within the parameterlist (preceding the last parameter):

$SET X1=ON,X2=ON, <<LAST SW OFF>> X3=0OFF

Continuation Records

When the length of a command exceeds one physical record (source card or entry line), the user can
enter an ampersand (&) as the last non-blank character of this record and continue the command on
the next record (called a continuation record). The text portion of the continuation record, in turn,
must begin with a dollar sign in Position 1. (Even when a command begins with the double dollar
sign ($$), its continuation records still begin only with a single dollar sign.)

Note: A subsystem command record must never be separated from
its continuation record by a SPL/3000 source record.

In continuing a command onto another record, the user cannot divide a primary command element
(a command name, keyword, subparameter (including quoted strings), or comment) — no primary
element is allowed to span more than one line.

When a command containing one or more continuation records is encountered by the compiler,
each continuation record is concatenated (beginning with the character following the $) to the
preceding record; each $ and continuation ampersand is replaced by a space.

EXAMPLE
The following $CONTROL command is continued onto a second record:

$CONTROL LIST, SOURCE, WARN, MAP, &
$CODE, LINES=36.

It is interpreted as:
$CONTROL LIST, SOURCE, WARN, MAP, CODE, LINES=36

Even though a comment cannot be divided over more than one line, extensive commentary text
requiring several lines can be entered by enclosing it within separate comments that each occupy one
line.

EXAMPLE
The following $CONTROL command includes commentary text spread over three lines.

$CONTROL NOWARN <<WARNING MESSAGES ON TRIVIAL ERRORS>>&
$ <<WILL NOT BE LISTED. BUT MESSAGES ON>>&
$ <<FATAL ERRORS WILL APPEAR.>>

Effects of Commands

A command does not take effect until all of its parameters have been interpreted. Thus, a command
that suppresses source listing output will not affect the listing of any continuation records within
the command itself. Parameters are interpreted from left to right. In some cases, parameters may be
redundant or supersede previous parameters within the same command. In other cases, certain

* parameters are allowed only once within a command.

EXAMPLE

In the following SCONTROL command, the redundant parameters LIST and NOLIST each appear
twice:

$CONTROL LIST, NOLIST, NOLIST, LIST

Because the final redundant parameter in any $CONTROL command always takes effect, the above
command is equivalent to:

$CONTROL LIST

COMMAND SUMMARY

A summary of the compiler subsystem commands for SPL/3000 appears in Table C-1. (Only the
commandnames are shown; the parameterlists are described later.)

Table C-1. Compiler Subsystem Command Summary

Command Purpose

$CONTROL Restricts access to listfile; suppresses source text, object code, and symbol table
listing; suppresses warning messages; sets maximum number of lines listed per
page; sets maximum number of severe errors allowed; starts a new segment; in-
itializes the USL file; lists mnemonics for code generated; assigns a name to the
outer block; allows subprogram compilation; makes outer block privileged; makes
outer block uncallable; lists address mode and displacement of variables declared.

$IF Interrogates software switches for conditional compilation.

$SET Sets software switches for conditional compilation.

$TITLE Establishes or changes page title on listing.

$PAGE Establishes or changes page title, and ejects page.

$EDIT Specifies editing options during merging (omitting sections of old source program

and/or re-numbering sequence fields).

LISTING AND COMPILATION OPTIONS ($CONTROL COMMAND)

When the user invokes the compiler without specifying compiler subsystem commands, several
listing control, error message, and object-file formulation options take effect by default:

1. The compiler is given unrestricted access to listfile.

2. All source records (passed to the compiler by its editor) are listed unless the listfile and primary
input file (normally the textfile) are assigned to the same terminal.

3. Warning messages are listed.
4. Listing of the symbol table is suppressed.
5. Listing of the object code generated is suppressed.

6. The number of lines appearing on each printed page (output to listfile) is a maximum of 60.

The maximum number of severe errors allowed before compilation is terminated is 100.
SPL/3000 is invoked in the program (rather than subprogram) mode.
Segment name is SEG’.

10. Outer block name is OB'.

11. Mnemonic listing suppressed.

12. USL file not initialized unless new file.

13. Callable, non-privileged outer block.

The above default options can be overriden by entering the $CONTROL compiler subsystem com-
mand. This command allows the user to restrict the compiler’s access to the listfile; suppress source
record listings; produce object code and symbol table listings; re-specify the maximum number of
lines per printed page; and otherwise alter the normal compiler control options. The format of the
$CONTROL command is:

$[$]1 CONTROL parameterlist

Each parameter in the parameterlist specifies a different option: the options are described below.
Unless otherwise noted, each parameter can appear in a SCONTROL command placed anywhere

in the source input. Each parameter remains in effect until explicitly cancelled by an opposing
parameter (for example, NOLIST cancelling LIST), or until access to the compiler terminates. In
any $CONTROL command, the parameterlist (containing at least one parameter) is always required.
Within the parameterlist, the parameters can appear in any order. In the descriptions below, default
parameters are shown in boldface type.

Parameter Option Requested

LIST Allows the compiler unrestricted access to listfile, permitting the
SOURCE, MAP, CODE, and LINES listing parameters described
below to take effect when issued. The LIST parameter remains in
effect until a SCONTROL command specifying the NOLIST
parameter (described below) is encountered. When neither LIST
nor NOLIST is specified at the beginning of the compilation,
LIST takes effect by default.

NOLIST Allows only source records that contain errors, appropriate error
messages, and subsystem initiation and completion messages to be
written to the listfile. NOLIST remains in effect until a $CONTROL
command specifying LIST appears.

SOURCE Requests listing of all source records input (as edited by the compiler’s
editor) while LIST is also in effect. When the compiler is invoked
with listfile and the primary input file assigned to the same terminal,
NOSOURCE is initially the default. In all other cases, SOURCE is
initially in effect as the default.

NOSOURCE Suppresses the listing of source text, cancelling the effect of any

previous SOURCE parameter. NOSOURCE remains in effect until
SOURCE is subsequently encountered.

C-7

Parameter

WARN

NOWARN

MAP

NOMAP

CODE

NOCODE

LINES=nnnn

Option Requested

Permits the reporting of doubtful minor error conditions in the

source input. These reports are transmitted to listfile in the form

of warning messages. The WARN parameter remains in effect until

a $CONTROL command specifying the NOWARN parameter
(described below) is encountered. When neither WARN nor NOWARN
has been specified, WARN takes effect by default.

Note: NOLIST does not suppress warning messages —
they are suppressed solely by NOWARN.

Suppresses warning messages; cancels the effect of any previous
WARN parameter. The NOWARN parameter remains in effect
until a SCONTROL command specifying WARN appears.

Requests printing of user-defined symbol following the listing of
the source text (if LIST is in effect). The MAP parameter remains
in effect until the NOMAP PARAMETER (described below) is
encountered. When neither MAP nor NOMAP is specified at the
beginning of the compilation, NOMAP is assumed by default.

Suppresses printing of user-defined symbols, cancelling effect of any
previous MAP parameter. The NOMAP parameter remains in effect
until MAP is again encountered.

Requests listing of object code generated following the listing of the
source text (if LIST is in effect). The CODE parameter remains in effect
until the NOCODE parameter (described below) is encountered. When
neither CODE nor NOCODE is specified, NOCODE is assumed by
default.

Suppresses listing of object code, cancelling effect of any previous
CODE parameter. The NOCODE parameter remains in effect until
a CODE parameter is again encountered.

Limits lines printed on listfile to nnnn lines per page. Whenever the
next line sent to listfile would overflow the line count (rnnnn), the
page is ejected and the standard page heading and two blank lines are
printed at the top of the next page, followed by the line to be
transmitted. (A page heading and its following two blank lines are
counted against the total line count, nnnn.) The subparameter nnnn
is an integer ranging from 10 to 9999. The LINES-nnnn parameter
remains in effect until another LINES=nnnn parameter appears. If this
parameter is omitted, the default value assigned is:

60 lines per page, for listing output through devices other than terminals.

32767 lines per page, for listings output through terminals.

Parameter Option Requested

ERRORS=nnn Sets the maximum number of severe errors allowed during compilation
to nnn;if this limit is exceeded, compilation terminates and the uslfile
is unchanged. (If the limit specified has already been exceeded when
this ERRORS=nnn parameter is encountered, compilation terminates
at this point.) If the ERRORS=nnn parameter is omitted, nnn is set to
100 by default.

USLINIT Initializes the usifile to empty status prior to generation of object
code. If no uslfile is specified by the user (and is thus supplied by the
compiler through default), or if the user supplies a usifile whose contents
are obviously incorrect, the compiler automatically initializes the uslifile
to empty status whether or not USLINIT is specified.

SEGMENT=segname
Starts a new segment with the specified segname. The segname can con-
sist of up to 15 alphanumeric characters, starting with an alphabetic
character, and may contain apostrophes (’).

ADR After each declaration, send a record to the listfile (if LIST is in effect)
showing the addressing mode and displacement of the variables declared.
This is turned off by NOLIST.

INNERLIST After each line of statement, sends an innerlist of unoptimized code
(using mnemonics) emitted by the compiler to the listfile (if LIST is in
effect). This is turned off by NOLIST.

MAIN=program-name
Assigns the specified name to the main program. Format for program
names is the same as for segment names. Replaces the heading (columns
13-27 inclusive) starting with page 2.

UNCALLABLE Makes the outer block entry point uncallable (i.e., can only be called by
code running in privileged mode). This command must be at the beginning

of the source file.

PRIVILEGED Makes the code segment containing the outer block privileged. This com-
mand must be at the beginning of the program.

SUBPROGRAM [(proc [,proc] .. .)]

Where proc is a procedure name or a procedure name followed by an asterisk (*). This command
places the compiler in subprogram mode and must occur at the beginning of a compilation.

If no parameters are specified, all of the procedures in the merged source program are compiled,
but not the outer block or main program, if any.

C9

If procedure parameters appear, only those procedures specified are compiled; all others are
skipped. In addition, procedure names followed by an asterisk (*) are compiled with LIST, CODE,
and MAP options on. Those without * are compiled, but not listed. The asterisk mechanism is over-
ridden by explicit CONTROL commands specifying LIST, ADR, etc.

The default mode is program mode, not subprogram mode.

Even in subprogram mode, global declarations and OPTION FORWARD and EXTERNAL procedure
declarations must be included in the source file, if they are to be referenced by the procedures being
compiled. The compiler includes these items in its symbol table, but does not allocate any space. All
INTERNAL procedures and secondary entry points should be declared OPTION FORWARD.

Compiler commands are recognized at any point in the source file. For segmented programs, the
segmentation scheme should be preserved in the subprogram mode. The compiler gives procedures
the last segment name declared and links each procedure to all other procedures in the same USL
file which have the same segment name, even those resulting from a previous compile. The compiler
also automatically CEASEs any existing procedures in the file with the same procedure name as one
being currently compiled, except for INTERNAL procedures.

EXAMPLE:

$CONTROL SUBPROGRAM
Compiles all procedures.
$CONTROL SUBPROGRAM (PROC1, PROC2%)
Compiles PROC1 without listing and PROC2 with listing.

The default parameters of CONTROL for SPL/3000 are:

LIST

WARN

MAP off

ERRORS=100 (decimal)

NOCODE

SEGMENT=SEG’

MAIN=0OB’

program mode, rather than subprogram mode
ADR off

INNERLIST off

LINES=60 (decimal)

USL file not initialized, unless new uslfile.
Callable, non-privileged outer block.

C-10

EXAMPLES

The following $CONTROL command requests unrestricted access to listfile; listing of all source
text, symbol table information, and object code; suppression of warning messages (but not error
messages. By default, the maximum number of lines per printed page is limited to 60, the maximum
number of errors allowed is 100, the usfile supplied by the user is not initialized to empty status,
and SPL/3000 is not placed in subprogram mode.

$CONTROL LIST,SOURCE,MAP,CODE,NOWARN

The following SCONTROL command illustrates the default values for the command parameters; it
produces the same effect as if no $CONTROL command were entered:

$CONTROL LIST,SOURCE,WARN,NOMAP,NOCODE,LINES=60,ERRORS=100

CONDITIONAL COMPILATION ($IF COMMAND)

Generally, when the user submits a program to the compiler, he wants to compile the entire program.
But, he may occasionally wish to compile only one or more portions of his program. He can request
such conditional compilation by delimiting the source code to be compiled (or omitted from
compilation) with a series of $IF compiler subsystem commands. These $IF commands interrogate
any of ten compiler toggle switches, namec X0 through X9, inclusive. (These switches are set on or
off by the $SET compiler subsystem command described later.) Thus, a $IF command can direct
the compiler to compile or ignore all source code between this $IF command and the next $IF
command encountered, if a particular relation is true or false.

The format of the $IF command is:

ON

$[$]1F [Xn= [OFF }]

C-11

The parameters and their resultant options are:
Parameter Option

Xn The letter X, followed by a digit (n) from 0 to 9 that specifies the
name of the switch to be tested — for example, X3. Spaces between
X and n are not allowed.

OFF The state that the switch is to be tested for in determining if the state-
ON ments following the $IF command are to be compiled. If the relation
is false (the switch is not in the state specified by this parameter),
the following source records (except $EDIT, $PAGE and $TITLE
commands) are ignored until another $IF command is encountered.
If the relation is true, succeeding source records are compiled
normally.

A $IF command can appear anywhere in the source text. The appearance of a $IF command
always terminates the influence of any preceding $IF command. When a $IF command is entered
and no parameter list is included, the following text is compiled in the normal way but the effect
of any previous $IF command is cancelled, regardless of whether conditional compilation occurs
or is suspended as a result of a $IF command.

1. $EDIT, $PAGE, $TITLE and $IF commands within the range of this $IF command are
interpreted and executed.

2. Normally-listable source text (regardless of whether or not it is compiled) is listed if the
$CONTROL command options LIST and SCURCE are in effect.

The textfile-masterfile merging operation and transmission of merged/edited text to the newfile
are not affected by $IF commands. (Merging and editing are described in the discussion of the

$EDIT command.)

An example illustrating use of the $IF command is presented under the discussion of the $SET
command below.

SOFTWARE SWITCHES FOR CONDITIONAL COMPILATION ($SET COMMAND)

When the compiler is invoked, all ten software toggle switches are initially turned off. The user can
turn them on (and off again) by using the $SET command.

$[$]SET [Xn= g};F ’ [, Xn= {811? l]]

C-12

The parameters and options are:
Parameter Option

Xn The letter X followed by a digit (n) from 0 to 9 that specifies the
name of the switch to be set.

OFF The state to which the switch is to be set. Either OFF or ON (but
ON not both) must be specified for each Xn parameter.

A $SET command can appear anywhere in the source text. If a $SET command that contains no
parameter list is encountered, all ten switches are turned off. If more than one parameter appears
in a $SET command, each parameter must be separated from its predecessor by a comma.

EXAMPLE

In the following source text, switches X4 and X5 are set on and interrogated, with the results
indicated by the comments:

$SET X4=0ON, X5=ON <<SETS SWITCHES X4 AND X5 ON.>>
$IF X4=ON <<REQUESTS COMPILATION OF SOURCE BLOCK 1.>>

(SOURCE BLOCK 1)

$IF X5=0FF <<REQUESTS THAT SOURCE BLOCK 2 BE IGNORED>>&
. <<BY CANCELLING PREVIOUS $IF COMMAND .>>
(SOURCE BLOCK 2)

$IF <<CANCELS PREVIOUS $IF COMMANDS SO THAT>>&
$ <<SOURCE BLOCK 3 IS COMPILED.>>

(SOURCE BLOCK 3)

C-13

PAGE TITLE IN STANDARD LISTING ($TITLE COMMAND)

On each page of output listed during compilation, a standard heading appears. Positions 29 through
132 of this heading are reserved for a title (usually describing the page’s content), optionally
specified with the $TITLE compiler subsystem command.

$[$])TITLE [string [,string] ...]

Each string parameter is a character string (bounded by quotation marks) that is combined with any
other strings specified to form the title. In forming the title, the strings are stripped of their
delimiting quotation marks, they are then concatenated from left to right. The entire parameter list
can specify up to 104 characters, including spaces within the string but excluding delimiters and
spaces between the strings. If the title contains fewer than 104 characters, the unused portion is
filled to the right with spaces. If no string parameters are present in the $TITLE command, or if

no $TITLE command (or $PAGE command with title specification, discussed below) is entered,

the title portion of the heading is blank. When a new $TITLE command is encountered, it supersedes
any previously specified title from that point on.

When a $TITLE command is interpreted and the NOLIST parameter of the §CONTROL command

is in effect, title specification or replacement occurs even when the $TITLE command appears
within the range of an $IF command whose relation is evaluated as false.

EXAMPLE
Consider the following $TITLE command, occupying two lines of code:

$TITLE “THE PROGRAM TITLE IS 7, &
$“RUN IIL.”

This command results in the following entry in the title field of the standard page heading:

THE PROGRAM TITLE IS RUN III.

PAGE TITLE AND EJECTION ($PAGE COMMAND)

The user can specify a program title (as with the $TITLE command) together with page ejection by
entering the $PAGE command. This allows varied listing formats. For example, individual sections
of the program can be listed starting on a new page, and each section can have its own descriptive
title. The $PAGE command format is:

= $[$]1PAGE [string[,string] ...]

C-14

Each string parameter has the same format, meaning, result, and constraints as in the $TITLE com-
mand. If no parameter is present in the $PAGE command, the current title (assigned by a previous
$TITLE or $PAGE command) or a blank title (if no previous $TITLE or $PAGE command occurred)
remains in effect.

Following title specification or replacement, if the LIST parameter of the $CONTROL command is
in effect, this action occurs:

1. The current page is ejected.
2. The standard page heading (including the new title) is printed, followed by two blank lines.

If no string was specified in the $PAGE command and LIST is in effect, the current page is ejected
and the standard page heading (including the old title) is printed, followed by two blank lines.

If LIST is not in effect, specified title replacement occurs, but no printing or page eject takes place.
Any new title will appear, however, after LIST is requested.

The $PAGE command itself is never listed.

SOURCE TEXT MERGING AND EDITING ($EDIT COMMAND)

The user can request the following merging and editing operations:

1. Merge corrections or additional source text (on textfile) with an existing source program and
commands (on masterfile) to produce a new source program and commands. This new input is
compiled and optionally copied to newfile, which can be saved for recycling through an
MPE/3000 :FILE command.

2. Check source-record sequence numbers for ascending order.

3. Omit sections of the old source program during merging.

4. Re-number the sequence fields of the records in the new, merged source program.

The editing done by the compiler is limited to linear source text modification. Extensive or more
sophisticated editing is possible with the HP 3000 Text Editor, EDIT/3000.

C-15

Merging

Merging is requested by simply equating actual file names to the textfile, masterfile, and (optionally)
newfile formal designators (SPLTEXT, SPLMAST, and SPLNEW, respectively). This equating is done
by using the MPE/3000 :SPL command when the compiler is invoked. Use of this command is
described in detail in HP 3000 Multiprogramming Executive Operating System (03000-90005). An
example appears below:

EXAMPLE

To specify merging of a textfile TFILE with a masterfile MFILE, the user could enter the following
:SPL command. The merged source text is copied to the newfile NFILE, with the object code
and listing output written to the default files SNEWPASS and $STDLIST, respectively.

:SPL TFILE, ,MFILE ,NFILE

Prior to merging, the records in both textfile and masterfile must be arranged in ascending order as
dictated by their sequence fields — that is, the value of the sequence field on any record, or it must

be blank. (The order of sequencing is based on the ASCII Collating Sequence. There are no restrictions
regarding blank sequence fields — the sequence fields of some or all of the records in either

textfile, masterfile, or both files can be blank, and such records can appear anywhere in either file.

The merging operation is also based on ascending order of sequence fields, according to the ASCII
Collating Sequence. During merging, the sequence fields of the records in both files are checked
for ascending order. If their order is improper, the offending records are skipped during merging
and appropriate diagnostic messages are sent to listfile. During each comparison step in merging,
one record is read from each file and these records are compared, with one of three results:

1. If the values of the sequence fields of the masterfile and textfile records are equal, then the
textfile record is compiled and (optionally) passed to newfile; the masterfile record is ignored;
and one more record is read from each file for the next comparison.

2. If the vlaue of the sequence-field of the masterfile record is less than that of the textfile record,
the masterfile record is compiled and (optionally) passed to newfile; the textfile record is
retained for comparison with the next masterfile record.

3. If the value of the sequence field of the textfile record is less than that of the masterfile record,
the textfile record is compiled and (optionally) passed to newfile; the masterfile record is
retained for comparison with the next textfile record.

During merging, a record with a blank sequence field is assumed to have the same sequence field as
that of the last record with a non-blank sequence field read from the same file (or a null sequence
field, if no record with a non-blank sequence field has yet been encountered in the file). Thus, a
group of one or more records with blank sequence fields residing on masterfile are never replaced by
records from textfile; they can only be deleted through use of the $EDIT command, as explained
later.

C-16

Records from masterfile that are replaced during merging and thus neither compiled nor sent to
newfile are not listed during compilation.

When an end-of-file condition is encountered on either textfile or masterfile, merging terminates
(except for the continuing influence of an unterminated VOID parameter in an $EDIT command,
‘as discussed later). At this point, the subsequent records on the remaining file are checked for
proper sequence, compiled, and (optionally) passed to newfile. (However, masterfile records within
the range of a VOID parameter are neither compiled nor sent to newfile.)

The sequence field values of records transmitted to newfile are not normally changed by the merging
operation. However, the user can request the assignment of new sequence characters by using the
$EDIT command.

Checking Sequence Fields

The presence of a masterfile during compilation implicitly requests checking of source records for
proper sequence. Thus, when the user specifies both textfile and masterfile as input files for the
compiler, or when he specifies masterfile alone, sequence-checking is done automatically on both
files. But when the user specifies textfile as the only input file, sequence checking does not occur.
Therefore, when the user wants source input sequence-checked but does not require merging of
two input files, he can transmit the input from either the textfile or the masterfile and equate the
unused file to $NULL.

EXAMPLE

The user could compile a program from the textfile SOURCE (with no masterfile input) and
implicitly request sequence checking with the following command:

:SPL SOURCE, , ,$NULL

Editing

Editing operations during merging consist of omitting sections of the old source program (residing
on masterfile) and/or re-numbering the sequence fields of the new, merged source program
(residing on newfile). Both of these operations are requested through the $EDIT command,
written in the following format:

$[$1EDIT [VOID=sequencevalue]
[,SEQNUM=sequencenumber]
,NOSEQ
[, INC=incnumber]

C-17

The parameters and options are as follows: the parameters can be specified in any order.
Parameter Option

VOID=sequencevalue Requests the compiler to bypass (during merging) all
records on masterfile whose sequence fields contain a
value less than or equal to sequencevalue, plus any
subsequent records with blank sequence fields. This
request remains in effect until a masterfile record with
a sequence-field value higher than sequencevalue is
encountered. The VOID request is initially disabled
when the compiler is invoked.

The sequencevalue subparameter can be either a legal
sequence number or a character string. If sequencevalue
is less than eight characters, SPL/3000 left-fills
sequence numbers with ASCII zeros and sequence
character strings with spaces.

SEQNUM-=sequencenumber Requests re-numbering of the merged source records
on newfile, beginning with the value specified by the
sequencenumber sub-parameter; this value replaces
the sequence number of the next record sent to
newfile. The sequence number of each succeeding record
is incremented according to the value specified by
the INC parameter (or its default), described below.
If the SEQNUM=sequencenumber parameter is present
but newfile does not exist, the re-numbering request
is ignored. If this parameter is present, and newfile
exists, the re-numbering request remains in effect until
an $EDIT command with the NOSEQ parameter is
encountered. When the merged output is listed, records
actually transmitted to newfile appear with the new
sequence numbers but records not sent to newfile appear
with blank sequence fields. The re-sequencing request is
initially disabled when the compiler is invoked.

The sequencenumber sub-parameter can be a legal sequence
number of one to eight digits. If less than eight digits,
SPL/3000 left-fills this value with ASCII zeros.

NOSEQ Suspend re-numbering of merged records on newfile;
current sequence numbers are retained. If neither SEQNUM
nor NOSEQ are specified, NOSEQ takes effect by defaule
until superseded by SEQNUM.

C-18

Parameter Option

INC=incnumber Sets increment by which records sent to newfile are
re-numbered if SEQNUM is in effect. The increment
is specified by incnumber, which can be a value ranging
from 1 through 99999999. Notice, however, that very
large increments are of limited value, since they may
cause the eight-digit sequence number to overflow.
Re-numbering only occurs if SEQNUM is specified (or
if the last parameter is not overriden by a NOSEQ
parameter) and a newfile exists. If SEQNUM is specified
but INC is not, the sequence number is incremented
by the default value of 1000 for each succeeding record;
this default value applies until an INC parameter specifying
a new value is encountered.

$EDIT commands are normally input from textfile. (Their input from masterfile is allowed, but is
not recommended since any $EDIT command containing a VOID parameter on masterfile could
void its own continuation records.) $EDIT commands themselves are never sent to newfile; thus,
the command form $$EDIT , while permitted, is redundant.

While sequence fields are allowed (and usually necessary) on records containing $EDIT commands,
continuation records for such commands should have blank sequence fields.

During merging, a group of one or more masterfile records with blank sequence fields are never
replaced by lines from textfile; they can only be deleted by an $EDIT command with a
VOID=sequencevalue parameter at least as great as the last non-blank sequence field preceding the
group. In this case, the entire group of masterfile records with blank sequence number fields is
deleted.

Since voided records are never passed to the usifile or newfile, their sequence is never checked, and
they never generate an out-of-sequence diagnostic message.

A VOID parameter does not affect records in textfile.
Any masterfile record replaced by a textfile record is treated as if voided, except that following
records with blank sequence fields are not also voided. If a replaced record would have been out-of-

sequence, the textfile record that replaces it produces an out-of-sequence diagnostic message.

In general, whenever a record sent to newfile has a non-blank sequence field lower in value than that
of the last record with a non-blank sequence field, a diagnostic message is printed.

C-19

EXAMPLE

The user wants to merge text input from the standard input device (default value for textfile,
designated by $STDIN) with an old program on the file OLDPROG, creating new source input on
the file NEWPROG. He wants to re-number the merged source records on NEWPROG beginning
with the value 50, incrementing the sequence number of each subsequent record by 10. After
logging on, the user enters:

:SPL ,,, OLDPROG, NEWPROG

$EDIT SEQNUM=50, INC=10 <<SPECIFIES EDITING PARAMETERS.>>

(New text or corrections to be merged with old program.)

TRACE COMMAND
$TRACE[program-unit] ,identifier [identifier] , .

The TRACE command specifies which identifiers within the outer block (no program-unit name
means the main program or outer block) or procedures of a program will be traced at run-time. The
tracing is implemented through calls to the SYMBOL TRACE. This subsystem allows references to
variables, arrays, pointers, labels, and procedures to be monitored with appropriate printout and
breakpoints. For further details, see the HP 3000 SYMBOL TRACE (03000-90015).

C-20

APPENDIX D
MPE/3000 Subsystem Commands

User access to the compiler is provided by three MPE/3000 commands. The :SPL command compiles
only; the :SPLPREP command compiles and prepares; and the :SPLGO command compiles, prepares,
and executes.

In the command descriptions below, the parameters all specify files; the actual file designator speci-
fied is equated to the formal file designator that corresponds to that parameter. If no parameter is
specified, a default actual file designator is assigned for the formal file designator. Brackets around a
parameter or list of parameters indicate an optional item. Trailing commas must be omitted. The
default actual file designators depend upon whether the context is a session or a batch job. Consult
the HP 3000 Multiprogramming Executive Operating System (03000-90005) for further details.

SPL—COMPILE ONLY
:SPL [textfile] {, uslfile} {, listfile} {, masterfile} {, newfile}

:SPL compiles a source program from the textfile, with code generated to the uslifile, listing
output on the listfile, and optional editing with masterfile and newfile. See the $EDIT com-
piler command for use of masterfile and newfile.

Parameter Use Formal File Designator Default Actual Designator

textfile Source program, SPLTEXT $STDIN
corrections, com-
piler commands.

listfile Output listing, SPLLIST $STDLIST

uslfile Object code output SPLUSL $NEWPASS/$OLDPASS
masterfile Old text for edit. SPLMAST $NULL

newfile New text for edit. SPLNEW $NULL

The code generated by :SPL can be passed to the Segmenter for preparation with :PREP through
the uslfile. Also the uslfile can be saved immediately following :SPL with the SAVE command
referring to SOLDPASS.

D-1

EXAMPLE:

:SPL Uses all default files, no editing.

:SPL PRQ27 Compiles from user textfile.

:SPL,,, PRQ27, PRQ28 Compiles from standard input, editing masterfile
PRQ27 and storing the new program on newfile
PRQ28.

:SAVE SCUSL = $OLDPASS

SPLPREP—COMPILE AND PREPARE
:SPLPREP [textfile] {, progfile} {, listfile} {. masterfile } {, newfile}
:SPLPREP compiles from textfile into a temporary uslfile created by the compiler, with out-
put listing on listfile and optional editing from masterfile to newfile. It then prepares the pro-
gram from the uslifile to profile. Profile can then be executed using the :RUN command. The

uslfile is still available after the command in $OLDPASS, unless the defauit is taken for profile.

All parameters except progfile are the same as :SPL.

Parameter Use Formal File Designator Default Actual Designator
progfile Destination for SPLPROG SNEWPASS
runnable pro-
gram.
EXAMPLE:
:SPLPREP Uses all default files, no editing.

:SPLPREP SPRING, SUMMER
:SPLPREP CORRECT , , , SPRING5,SPRING6

SPLGO—COMPILE, PREPARE, AND EXECUTE
:SPLGO [textfile] {, listfile} {, masterfile} {. newfile}

:SPLGO compiles a source program from textfile, with output listing on listfile, and optional
editing from masterfile to newfile. Both the uslfile used for object code and the progfile used
for preparing and execution are temporary files created by the command. After the program
runs, the progfile is still available in $OLDPASS, assuming the program itself did not open a
$NEWPASS. All of the parameters are the same as described for :SPL.

EXAMPLE:

:SPLGO
:SPLGO TEXT2A, LP, OLDER, NEWER

This appendix consists of four parts:

APPENDIX E

HP 3000 Machine Instructions

Alphabetic listing of all HP 3000 machine instructions by mnemonic.
HP 3000 consolidated coding sheet.
Opcode formats for ASSEMBLE statement.

Functional cross-reference of all HP 3000 machine instructions.

Mnemonic

ADAX
ADBX
ADD
ADDI
ADDM
ADDS
ADXA
ADXB
ADXI
AND
ANDI
ASL
ASR
BCC
BCY
BE
BG
BGE
BL
BLE
BN
BANCY
BNOV
BOV
BR
BRE

Function

Add Ato X
Add Bto X
Add

Add immediate
Add memory
Add to S

Add X to A

Add Xto B

Add immediate to X

And, logical

Logical AND immediate
Arithmetic shift left
Arithmetic shift right
Branch on Condition Code
Branch on carry

Branch on equals

Branch on greater than
Branch on greater than or equal
Branch on less than

Branch on less than or equal
Branch on next equal
Branch on no carry

Branch on no overflow
Branch on overflow

Branch

Branch on TOS even

E-1

ALPHABETICAL LISTING OF INSTRUCTIONS

Format

ORI B T U P N CR L
oo ® ® ®

[N
® 0,

See BCC

3a
3a
3a
1c
3a

Mnemonic

BRO
BTST
CAB
CIO
CMD
CMP
CMPB
CMPI
CMPM
CMPN
CPRB
CSL
CSR
DABZ
DADD
DASL
DASR
DCMP
DCSL
DCSR
DDEL
DDUP
DECA
DECB
DECM
DECX
DEL
DELB
DFLT
DIV
DIVI
DIVL
DLSL
DLSR
DNEG
DPF
DSUB
DTST
DUP
DXBZ
DXCH
DZRO
EXF
EXIT
FADD
FCMP
FDIV
FIXR
FIXT
FLT
FMPY
FNEC

Function

Branch on TOS odd

Test byte on TOS

Rotate ABC

Control I/O

Command

Compare

Compare bytes

Compare immediate
Compare memory
Compare negative immediate
Compare range and branch
Circular shift left

Circular shift right
Decrement A, branch if zero
Double add

Double arithmetic shift left
Double arithmetic shift right
Double compare

Double circular shift left
Double circular shift right
Double delete

Double duplicate
Decrement A

Decrement B

Decrement memory
Decrement X

Delete A

Delete B

Double float

Divide

Divide immediate

Divide Long

Double logical shift left
Double logical shift right
Double negate

Deposit field

Double subtract

Test double word on TOS
Duplicate A

Decrement X, branch if zero
Double exchange

Double push zero

Extract field

Procedure and interrupt exit
Floating add

Floating compare

Floating divide

Fix and round

Fix and truncate

Float

Floating multiply

Floating negate

E-2

%NNMNM;MNM[\D

®

W wN
oo

DNDNDNDNDNDNDDNDN-ISDNDNCGGWDDNDNSDN
o o (=2

Mnemonic

FSUB
HALT
IABZ
INCA
INCB
INCM
INCX
IXBZ
LADD
LCMP
LDB
LDD
LDI
LDIV
LDNI
LDPN
LDPP
LDX
LDXA
LDXB
LDXI
LDXN
LLBL
LLSH
LMPY
LOAD
LRA
LSL
LSR
LSUB
MOVE
MPY
MPYI
MPYL
MPYM
MTBA
MTBX
MVB
MVBL
MVBW
MVLB
NEG
NOP
NOT
OR
ORI
PAUS
PCAL
PLDA
PSHR
PSTA
RIO

Function

Floating subtract

Halt

Increment A, branch if zero
Increment A

Increment B

Increment memory
Increment index

Increment X, branch if zero
Logical add

Logical compare

Load byte

Load double

Load immediate

Logical divide

Load negative immediate
Load double from program, negative
Load double from program, positive
Load Index

Load X onto stack

Load X into B

Load X immediate

Load X negative immediate
Load Label

Linked list search

Logical multiply

Load

Load relative address
Logical shift left

Logical shift right

Logical subtract

Move words

Multiply

Multiply immediate
Multiply Long

Multiply memory

Modify, Test, Branch, A
Modify, Test, Branch, X
Move bytes

Move from DB+ to DL+
Move bytes while

Move from DL+ to DB+
Negate

No operation

One’s complement

Or, logical

Logical OR immediate
Pause

Procedure call

Privileged load from absolute address
Push registers

Privileged store into absolute address
Read I/O

Format

2
6
3a
2
2
1b
2
3a
2
2
1b
1b
4a
2
4a
7
7
la
2
2
4a
4a
7
5
2
la
la
3b
3b
2
8a
2
4a
2
la
le
le
8a
8c

®©
T

I.\DNJ[\’JN%)

(o210 S BN B BEN |

Mnemonic

RMSK
RSW
SBXI
SCAL
SCAN
scu
SCW
SED
SETR
SIN
SIO
SIRF
SMSK
STAX
STB
STBX
STD
STOR
SUB
SUBI
SUBM
SUBS
SXIT
TASL
TASR
TBA
TBC
TBX
TCBC
TEST
TIO
TNSL
TRBC
TSBC
TSBM
WIO
XAX
XBX
XCH
XCHD
XEQ
XOR
XORI
ZERO
ZROB
ZROX

Function

Read Mask

Read Switch register

Subtract immediate from X
Subroutine Call

Scan bits

Scan until

Scan while

Set enable/disable external interrupts
Set registers

Set interrup

Start I/O

Set external interrupt reference flag
Set Mask

Store A into X

Store byte

Store B into X

Store double

Store

Subtract

Subtract immediate

Subtract memory

Subtract from S

Subroutine exit

Triple arithmetic shift left
Triple arithmetic shift right
Test, branch, A

Test bit and set condition code
Test, branch, X

Test and complement bit and set CC
Test TOS

Test 1/0

Triple normalizing shift left
Test and reset bit, set condition code
Test, set bit, set condition code
Test and set bit in memory
Write I/O

Exchange A and X

Exchange B and X

Exchange A and B

Exchange DB

Execute

Exclusive or, logical

Logical Exclusive OR immediate
Push zero

Zero B

Zero X

E-4

NNNINOOOSNDNDDNOS®

G-H

HP 3000 CONSOLIDATED CODING SHEET

0 1]2'3 4 S 6 7 8 9f 10 11] 212 J13] 1« J15 0 112]3 ~Jsls]7 :lglmln lz;!l!!lills.
00 | STACK OPCODES 00 NOP 40 DEL 02 | SuB OPCODE 2 00 MINI OPS 14 RSW ERV
ALL 64 STACK 01 DELB 41 ZRO8 14 LLSH RESERVED 1
OPS MAY BE 02 DDEL 42 LOX8 15 PLDA RESERVED 0
USED IN 03 ZROX 43 STAX 15 PSTA RESERVED 1
EITHER POSI- 0% INCX [LDXA 01 SPARE
TION (STACK 05 DECX 45 DuP 02 Dl IMMEDIATE OPERAND N
OP A OR B) 06 ZERO 46 DDUP 03 LDXI " " "
07 DZRO 47 FLT 04 CMPI " " "
10 DCMP 50 FCMP 05 ADDI " " "
11 DADD 51 FADD 06 Susl " " "
12 DSUs 52 FSuB 07 MPYI " " "
13 MPYL 53 FMPY 10 DIVI hid " "
14 DIVL Sk FDIV 11 PSHR oB | o] z[stA[x[Q[s
15 DNEG 55 FNEG 12 LDNI TMMEDTATE OPERAND N
16 DXCH 56 CAB 13 LDXN " " "
17 CMP 57 LCMP 14 CMPN " " "
20 ADD 60 LADD 15 EXF BEGINNING BIT ¢ 4 OF BITS
21 SuB 61 LSuB 16 DPF " wou L)
22 MPY 62 LMPY 17 SETR Jos | o] 2] svaA] xT Q] s
23 DIV 63 LDIV 035 | SUB OPCODE 3 80 SPECIAL OP o0 SPARE
24 NEG 64 NOT 01 PAUS K FIELD
25 TEST 65 OR 02 SED wooow
26 STBX 66 XOR 03 XCHD " "
27 DTST 67 AND 04 SMSK woon
30 DFLT 70 FIXR 05 RMSK " "
31 BTST 71 FIXT 06 XEQ L
32 XCH 72 SPARE 07 s10 "o
33 INCA 73 INCB 10 R10 LA
34 DECA 74 DECB 11 wio woom
35 XAX 75 XBX 12 T10 LA
36 ADAX 76 ADBX 13 cI1o L
37 ADXA 77 ADXB 14 CMD "ooow
01 SUB OPCODE 1 x [oo ASL SHIFT COUNT L 15 SIRF L
x | o1 ASR " L 16 SIN LA
x | o2 LSL " L 17 HALT w oo
x | 03 LSR " noon 01 SCAL STT ENTRY & N
X oL cSsL " " " 02 PCAL " " © o
x { 0s CSR " L 03 EXIT N FIELD
x 1 06 SCAN 04 SXIT "o
i 07 1ABZ +/-] P RELATIVE DISPLACEMENT 05 ADXI L
x | 10 TASL SHIFT COUNT L 06 SBXI woom
x | 11 TASR " noon 07 LLBL PL- DISPLACEMENT N
1 12 1XBZ +/-| P RELATIVE DISPLACEMENT 10 LDPP P+ DISPLACEMENT
1 13 DXxBZ +/~- " " " 11 LDPN P~ DISPLACEMENT N
1 14 BCY /- " " " 12 ADDS IMMEDIATE OPERAND N
1 15 BNCY /-1 " " " 13 SuBS " " "
x | 16 TNSL; SHIFT COUNT L 14 TSBM DB+ DISPLACEMENT N
Yy | 17 SPAR 15 ORIl IMMEDIATE OPERAND N
x | 20 DASL SHIFT COUNT L 16 XORI " " "
X 21 DASR " \ " 17 AND1! " " "
x | 22 DLSL " noon [D) LOAD X 1 PDQS ADDRESS MODE & DISPLACEMENT
x | 23 DLSR " L [} TBA 0 0] +/- P RELATIVE DISPLACEMENT
x| 24 DCSL " L MTBA 0 1 0| +/- " " "
x | 25 DCSR " nooon TBX 1 0 0| +/- " " "
1] 26 CPRB +/-| P RELATIVE DISPLACEMENT MTBX 1 1 0| +/- " " "
1] 27 DABZ /- " " L STOR x 1 1 DQS ADDRESS MODE & DISPLACEMENT
1 30 80V +/- " " " 06 CMPM X 1 PDQS " ” (1) "
1 31 BNOV +/-f " " " 07 ADDM X 1 " " L "
x | 32 TBC 8IT POSITION 10 SUBM X 1 " " L "
x | 33 TRBC " " 11 MPYM b3 1 " " now "
X 34 TSBC " " 12 INCM X 1 0 I DQS " woow "
x 35 TCBC " " DECM X l l 1] " ” " "
! 36 BRO +/~] P RELATIVE DISPLACEMENT 13 LDX X 1 PDQS " L "
1137 BRE s/a) m " " 14 BR X 1 0 +«/- P RELATIVE DISPLACEMENT
02 | SUB OPCODE 2 00f MOVE OPS 0 MOVE PB/DB[RESERVED] SDEC BR X | 1 S ADDRESS MODE (INDIRECT) & DISPLACEMENT
1 MV " " " BCcC I [} 1 +7-"] P RELATIVE DISPLACEMENT
2 MVBL 0 " " 15 LDB x 1 0 DQS ADDRESS MODE & DISPLACEMENT
2 SCH 1 " " LDD X 1 l ” " " " "
3 "vLB o ” " 16 STa x I o ” " " " "
3 SCU l " " SfD x I l " " L L] "
4 MVBW cc6 Jcce Jceu] " 17 LRA X 1 PDQS " " on "
5 CMPB PB/DB| RESERVED] SDEC

OPCODE FORMATS

I

X
CAPITALS

[
{

]
}

opcode

label id

variab

le id

usi

procedure id

subroutine id

Format 1

(1a)

(1b)

(1c)

(1d)

opcode
opcode

BR {
BR

opcode {

Indirection

Index register

literals, options, opcodes; non-variable items

pick one item from within the brackets; the entire item is optional.
pick one item from within the brackets; the item is required.

one of the system/3000 opcodes that uses this format

a label which is within range of the opcode.

a variable which is within range of the opcode

an unsigned integer less than or equal to the specified number

a declared procedure identifier

a declared subroutine identifier

label id
variable id
DB+ usi 255
P+ usi 255
P- usi 255 LI LX)
Q+ usil1l27
Q- usi 63
S— usi63

variable id

DB+ usi 255
Q+ usil127 f [L.I1 [LX]
Q- usi 63
S— usi63

label id
P+ usi 265
P- usi 255

[.I1 [X]

Q+ usil127
Q- usi 63
S— usi 63

’I [’X]

label id
P+ wsi 31
P- usi 81

[.1]

DB+ usi 255]

(1e) label id
opcode P+ usi 255
P- usi 2565
Format 2
opcode
or Note: opcode must be stack op.
opcode, opcode
Format 3
(3a) label id
opcode P+ usi 255 LI
P- usi 255
(3b) opcode usi 63 [.X]
Format 4
(4a) opcode usi 255
(4b) { g);g } usi 15: usi 15
Format 5 RSW
LLSH
PLDA
PSTA
. Format 6
opcode usi 15
Format 7
opcode usi 255
or
PCAL procedure id
LLBL procedure id

E-7

Format 8

(8a)

(8b)

(8c)

|

MOVE
MVB
CMPB

MVBW

|

(PB]

AN
AS
ANS

MVBL
MVLB
SCW
SCV

Lo

T
-

E-8

FUNCTIONAL CROSS REFERENCE

A (8-0 or TOS) Bit Condition Code
ADAX SCAN BCC
ADXA TBC BTST
DECA TCBC CMP
DEL TRBC DCMP
DUP TSBC DTST
INCA TSBM FCMP
LDXA DPF LCMP
STAX EXF TEST
XAX TBC
IABZ Branch TCBC
DABZ BCC TRBC

BOY TSBC

Add BNCY TSBM
ADD BOV CMPI
ADDI BNOV CMPN
ADDM BR CMPB
DADD BRE
FADD BRO Decrement
LADD CPRB DECM
ADXI DABZ DECA
ADAX IABZ DECB
ADBX DXBZ DECX
ADXA IXBZ DABZ
ADXB MTBA DXBZ
INCM MTBX
INCA TBA Delete
INCB TBX DEL
INCX DELB

Byte DDEL

And LDB
AND STB Divide
ANDI MVB DIV

MVBW DIVI

Arithmetic Shift scu DIVL
ASL SCW FDIV
ASR BTST LDIV
DASL , .

DASR Circular Shift Double Integer Arithmetic
TASL CSL DCMP
TASR CSR DADD

DCSL DSUB

B (8-1) DCSR MPYL (double result)
ADBX DIVL (double dividend)
ADXB Compare DDEL
DECB CMP DNEG
DELB CMPM DOUP
INCB CMPI DZRO
LDXB CMPN FIXR
STBX DCMP FIXT
XBX FCMP DFLT
ZROB LCMP DXCH

E-9

Double Word

LDD
STD
LDPP
LDPN
DDEL
DDUP
DXCH

Double-Word Shift

DASL
DASR
DLSL
DLSR
DCSL
DCSR

Duplicate

DUP
DDUP

Exchange

DXCH
XAX
XBX
XCH
XCHD
CAB

Exclusive Or

XOR
XORI

Field

DPF
EXF

Fix
FIXT
FIXR

Float

FLT
DELT

Floating-Point
See Real Arithmetic

Immediate
CMPI
CMPN
ADDI

Immediate (cont.)

SUBI
MPYI
DIVI
ORI
XORI
ANDI
ADXI
LDI
LDNI
LDXI
LDXN
SUBXI

Increment

INCM
INCA
INCB
INCX
IABZ
IXBZ

Index Register

ADXI
SBXI
INCX
DECX
ZROX
LDX
DXBZ
IXBZ
MTBX
TBX
ADAX
ADBX
ADXA
ADXB
LDXA
LDXB
STAX
STBX
XAX
XBX
LDXI
LDXN
CPRB
PLDA
PSTA

Integer Arithmetic

CMP
ADD
SUB

MPY

E-10

Integer Arithmetic (cont.)

DIV
INCA
DECA
ADXI
SUBXI
INCX
DECX
CMPI
CMPN
ADDI
SUBI
MPY
DIVl
CMPM
ADDM
SUBM
MPYM
INCM
DECM

I/0-Interrupt-Common

CIO
CMD
RIO
RMSK
SED
SIN
SIO
SIRF
SMSK
TIO
WIO
RSW

Load

LOAD
LDX
LDB
LDD
LDPP
LDPN
LRA
LDXA
LDXB
LDXI
LDXN
LDI
LDNI

Logical Arithmetic
LCMP

LADD
LSUB

Logical Arithmetic (cont.) Move (cont.) Program Control
LMPY SCU PCAL
LDIV SCW EXIT
NOT SCAL
OR Multiply SXIT
XOR MPY HALT
ORI MPYI XEQ
XORI MPYL LLBL
ANDI FMPY NOP

LMPY

Loop Control Real Arithmetic
MTBX Negate FCMP
MTBA NEG FADD
TBX DNEG FSUB
TBA FNEG FMPY
CPRB NOT FDIV
IABZ FNEG
IXBZ Or FLT
DABZ DFLT
DXBZ OR FIXR

ORI FIXT

Memory Reference XOR DDVP
ADDM XORI DZRO
OMEM Privileged e
INCM CIO
LDB CMD Register Control
LDD RIO ADDS
LDPN RMSK SUBS
LDPP SED PSHR
LDX SIN SETR
LOAD SIO XCHD
MPYM E‘I;/IOSK Scan
STB WIO SCW
STD SCU
STOR HALT SCAN
MTBA PSTA ASL
MTBX LLSH ASR
BR MVBL CSL
BCC MVLB CSR

XCHD LSL

LSR
MOVQCMPB Procedures DASL
DASR
MOVE IP;(;(A;TL DCSL
MVB DCSR
MVBW DLSL
MVBL DLSR

MVLB

E-11

Shift (cont.) Stack op (cont.) Store

TASL DDUP STOR
TASR DECA STB
TNSL DECB STD
DECX STAX
Single-Word DEL STBX
LOAD . DELB
STORE DFLT Subroutines
MOVE DIV SCAL
MVLB DIVL SXIT
MVBL DNEG
PLDA g'?"[s{? Subtract
PSTA pTs SUB
LDX SUBM
DXCH
DEL
DZRO SUBI
XCH
' FADD DSUB
DELB
FCMP FSUB
DUP
FDIV LSUB
LDXA SBXI
FIXR
LDXB DECM
FIXT
STXA DEC
FLT ECA
STXB
FMPY DECB
XAX
FNEG DECX
XBX
FSUB Test
es
Single-Word SHift INCA
INCB BTST
CSL INCX TEST
CSR LADD LTST
ASL LCMP TBC
ASR LDIV TCBC
LSL LDXA TRBC
LSR LDXB TSRO
_ LMPY TSBM
Special LSUB TBA
LLBL MPY TBX
PLDA NEG MTBX
PSTA NOP
RSW NOT Triple-Word Shifts
OR TASL
Stack op STAX TASR
ADAX STBX TNSL
ADBX SUB CAB
ADD TEST
ADXA §]f3\§ Zero
ADXB XCH ZERO
AND
XOR DZRO
BTST
ZERO ZROB
CAB
CMP ZROB ZROX
DADD ZROX
DCMP
DDEL

E-12

APPENDIX F
BNF Syntax Index

This index lists all of the syntax productions or rules in this manual. They are in alphabetic order,
with the enclosing less than (<) and greater (>>) stripped off.

A

actual param, 4-6, 5-25, 5-33
actual param part, 4-6, 5-25, 5-33
addop, 3-12, 4-11

address part, 5-2

address specification, 3-22
adr mode, 5-2

aexp, 4-11

arg 1,5-3

array init, 3-17

ASCII characters, 1-3
ASSEMBLE statement, 5-2
atype, 3-16, 3-22, 3-29, 3-38

B

base, 2-2

based integer, 2-2

base part, 2-2

base register reference, 3-14,3-18, 3-23
bit cat field, 4-8

bit extract field, 4-8

branch subopl, 5-3

branch word, 5-17

btestword, 4-15

byte ref, 4-15, 5-21, 5-30

C

case body, 5-8
CASE statement, 5-8
ccf, 5-4, 5-22

char, 5-30

character, 2-7
character string, 2-7
comment, 1-3

composite integer, 2-2

compound statement, 1-1, 5-1, 5-8
compound tail, 1-1, 3-30, 5-1, 5-8
cond clause, 5-17

cond elem, 5-17

cond factor, 5-17

cond primary, 5-17

cond term, 5-17

conjunction, 4-14

const, 5-4

constant, 2-1

count, 4-15, 5-21

ctype, 3-28, 3-38

D

data declaration, 3-1

data group, 1-1, 3-1

db, 3-16

decimal integer, 2-2
define declaration, 3-11
define identifier, 2-8, 3-11
define invocation, 3-11
definition, 3-17

DELETE statement, 5-10
deposit field, 5-6

deposit field length, 5-6
digit, 2-2, 2-8
disjunction, 4-14

DO statement, 5-12
double integer, 2-2

F-1

E

E-dec, 3-17 intrinsic declaration, 3-36
ELSE part, 5-17 intrinsic identifier, 2-8, 3-36
empty, 1-1
entry declaration, 3-27 K
entry identifier, 2-8
equate, 3-12 K-field, 5-3
equate declaration, 3-12 L
equate expression, 3-12
equate identifier, 2-8, 3-12 label declaration, 3-25
entry identifier, 3-27 label identifier, 2-8, 3-25, 3-26
equate invocation, 3-12 label ref, 5-15
equate primary, 3-12 l-array dec, 3-17
equate term, 3-12 left deposit bit, 4-8, 5-6
expr, 4-1 left extract bit, 4-8
extract field length, 4-8 letter, 2-8
lexp, 4-14
F listelm, 3-17

listelmt, 4-15, 5-22

local array declaration, 3-16
local pointer declaration, 3-22
local simpvar declaration, 3-14
logical addop, 4-14

FOR clause, 5-13

formal param, 3-28, 3-37
formal part, 3-28, 3-37
format-1, 5-2

format-2, 5-2 logical elem, 4-14
format-3, 5-3 logical expr, 4-1
format-4, 5-3 logical factor, 4-14
format-5, 5-3 logical mulop, 4-15
;‘ggﬁgzg, gg logical primary, 4-14
format 8. 5.4 logical term, 4-14

format.9. 5.4 logical value, 2-6

FOR statement, 5-13
fraction, 2-4

G

g-array dec, 3-16
G-dec, 3-16

long real number, 2-4

M

main body, 1-1

memory ref opcode, 5-2
MOVE statement, 5-21
MOVE-WHILE stmt, 5-21

global array declaration, 3-16 a
global attribute, 3-14, 3-22 muldiv, 3-12

global head, 1-1 mulop, 4-11
global pointer declaration, 3-22 N
global simpvar declaration, 3-14
GO statement, 5-15 non-branch subopl, 5-3
nonref var dec, 3-14
I number, 2-1

identifier, 2-8 number of bits, 2-2

I-field, 5-2 o

IF statement, 5-17

index, 4-3 opcode format, 5-2
indexed identifier reference, 3-17 option, 3-29
indexed ident reference, 3-22 option part, 3-29
indirect base register reference, 3-18 own array dec, 3-17
initial value, 3-14, 3-17, 3-18, 4-15, 5-22

instruction, 5-2 P

instruction slist, 5-2

integer, 2-2 pcount, 5-29
integer field, 2-2 pointer dec, 3-22
integer variable, 4-3 pointer init, 3-22

F-2

power, 2-4

proc body, 3-29

proc data declaration, 3-29
proc data group, 3-29
PROCEDURE call statement, 5-25
procedure declaration, 3-28
procedure group, 1-1, 3-1, 3-29
procedure identifier, 2-8, 3-28
proc group, 1-1, 3-1, 3-30

proc head, 3-28

proc identifier, 3-28

program, 1-1

PUSH and SET statement, 5-27

R

real number, 2-4

reference param, 4-6, 5-25, 5-33
reference part, 3-17

register spec, 5-27

relop, 4-14, 5-17

RETURN statement, 5-29

right part, 5-6

S

sadmode, 5-4, 5-22

scanop, 5-4

SCAN statement, 5-30
SCAN-UNTIL stmt, 5-30
SCAN-WHILE statement, 5-30
sdec, 4-15, 5-4, 5-21, 5-30
sdeca, 4-15, 5-4, 5-21, 5-30
shift count, 4-9

shift op, 4-8

sign, 2-2, 2-4, 3-12, 3-18, 3-23, 5-3
simpvar init, 3-14

sindex, 5-15

special op, 5-3

specification, 3-29, 3-37
specification part, 3-28, 3-37
stacked param, 4-6, 5-25, 5-33
stack opcode, 5-3

statement, 5-1

STEP clause, 5-13

string, 2-7

stype, 3-38

sub body, 3-37

subdata declaration, 3-2
subdata group, 1-1, 3-1

sub head, 3-37

sub memret op, 5-2

sub move op, 5-4

subop3, 5-3

subprogram, 1-1

subr identifier, 2-8, 3-37
SUBROUTINE call statement, 5-33
subroutine declaration, 3-37
subroutine identifier, 2-8, 3-37

sub subop2, 5-3
switch declaration, 3-26
switch identifier, 2-8, 3-26

T

T array identifier, 2-8, 3-16

T assignment statement, 5-6

T bit operation, 4-8

T bit shift, 4-8

T data identifier, 3-14, 3-18, 3-23
testword, 5-30

text, 3-11

T function designator, 4-6

T identifier, 2-8, 3-14

T IF expr, 4-1

Tilb bit concatentation, 4-8

Tjj, bit extraction, 4-8

Tirbde aexp, 4-11

Tirbde expr, 4-1

Tirbde factor, 4-11

Tiypge Primary, 4-11

Tirbde term, 4-11

Tirlde dest ref, 5-21

THEN part, 5-17

T left part, 5-6

T pointarr, 5-21

T pointer identifier, 2-8, 3-22

T proc identifier, 2-8

T simpvar identifier, 2-8, 3-14

T subr identifier, 2-8

T variable, 4-3

type, 3-14, 3-16, 3-22, 3-28, 3-38

U

udb, 3-17

unsigned integer, 2-2

unsigned long real number, 2-4
unsigned real number, 2-4

usi, 3-14, 3-18, 3-23

usi 31, 5-3

usi 63, 5-3

usi 265, 5-2

\%

value param, 4-6, 5-25, 5-33
value part, 3-28, 3-37
var dec, 3-14
var identifier, 5-2
var reference, 3-14, 3-17, 3-23
vb, 3-17

W, X

WHILE statement, 5-35
X-field, 5-2

F-3

APPENDIX G
Building an Intrinsic File

The program BUILDINT is used to build or change intrinsic disc files. The program uses $STDIN
for input and $STDLIST for list output. The intrinsic data file is opened as SPLINTR.

The command to execute the program is

:RUN BUILDINT

The input data consists of SPL/3000 procedure head declarations (OPTION EXTERNAL is
required) and optional commands.

Without commands, the procedure head declarations are added to the intrinsic file.
Commands have the following purposes:
$PURGE Removes all entries from the intrinsic file.

$REMOVE Removes all entries which follow this command, until a
$BUILD. Input has the same format as for adding entries.

$BUILD Adds all subsequent input entries to the intrinsic file. $BUILD
is required only if $REMOVE is used.

Any input data which is not a procedure head terminates input. At this point, the program prints a
formatted list of all intrinsics and terminates.

For example,

:PURGE MYFILE

:BUILD MYFILE

:FILE SPLINTR=MYFILE

:RUN BUILDINT

INTEGER PROCEDURE M(A,B,C); VALUE A; INTEGER A,B;LOGICAL C;

OPTION EXTERNAL; PROCEDURE COMP(N,M'); VALUE N,M'; DOUBLE N;REAL M';
OPTION EXTERNAL;

PROCEDURE BYT(L,M,N,0; LABEL L; PROCEDURE M; BYTE ARRAY N;

LOGICAL POINTER O; OPTION EXTERNAL;

:EOD

See the next page for the formatted output for this file.

G-1

¢ O

PAGE 09002 HEWLETT<PACKARD SPL INTRINSIC BUILDER
TYPE OPTIONS PARAMETERS
N NONE @s19293 LEVEL OF CHECKING COLUMN 1 COLUMN 2 COLUMN 3
L LOGICAL E EXTERNAL v VALUE T SEE TYPE s SIMPLE VARIABLE
¢ INTEGER v VARIABLE R REFERENCE A ARRAY
8 BYTE 1 INTERRUPT P POINTER
D DOUBLE u UNCALLABLE T PROCEDURE
R REAL L LABEL
E EXTENDED
NAME TYPE OPTIONS #PAR PARAMETERS
1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19
BYT N (43 4 RNL RNT RBA RLP
ComMpP N o€ 2 VDS VRS
M I ot 3 VIS RIS RLS

NO. ERRORS=000

20

READER COMMENT SHEET

HP 3000 Systems Programming Language
03000-90002 November 1973

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Piease use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

- e e e ——— . —— — o ———— —— ———— - — — " —— — = ——— = A ams = e = e - e — ——— — — — — — —— —

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Manager, Technical Publications
Hewlett-Packard

Data Systems Development Division
11000 Wolfe Road

Cupertino, California 95014

03000-90002

	0001
	0002
	0003
	001
	002
	003
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	F-01
	F-02
	F-03
	G-01
	G-02
	replyA
	replyB
	xBack

