ALPHAMIC
THE MICROPROGRAMMING LANGUAGE FOR THE

HEWLETT-PACKARD HP3000

(PRODUCTION PROTO TYPE VERSION REVISED)

MARCH 28, 1972

w2l Reus| scus | Fon, | st | smee | sreck| skiP | med®
1% .
co| -PL T CIR TASL LRZ MinsK CCB | ZERO oo
of SR sP TASRKR LLE ToA ccPY | nHero ot
o2] 2 PADD remX | st1 | £obD SR@ | zvENw d 02
03| mree fomi SRl | migs | HALT oDo d o3
oy | FRDD | €rX| Jss RRE | eUSLT| SIFG | NSmE d 04
os | RRUS-| mop ¢end | gLz | Bseg®| soFe | RITG d oS
ot x | cexz XOR RoT | Busu™| <TF | BITS ©6
o7} JXC SweH ARD NOP DaTh CF3 | woFL d o7
‘10 S Qowitd ovs8 PUSH INSK CRRY 1C
1L RC Ion UBRNT PL ccSR HCRrRY il
12} RSB Ied CADO Z "INCN | POS o -
3 RA MASKE | suao QUP | Ther | NEG d 13
14} sPl cTrl dmpP SPl HBF F1 d 14
Is]| sP¢ | cTrH RNDT SPO FHB NF1 el 15
16 | URUS | tRruS CAD CTRL CLIB F2 16
1 nop | sevs | sus eTRH | 4BF NF2 d 17
20 P PNLR+ P SF2 .| SKRZ 1Y
2 . Q PNLS + Q CcF2 SRNZ : 21
22 p8 RomXI sm C F1 SRY a 22
23 sm Rom + 0B SF SRNH d 23
29 STA REPC + STA SCRY | INDR | RwAN ° |24
25 sP3 REPH + SP3 CcRY | sRL2 I § 1Y
26 OPND TOR X POPA NPrY 5 26
cC CTSD + \ RAR PCP SRLB | Rwran 127
RD MI7AD + RD sov RSB cmd {35
Rc INCcO t RC cLO dLUT CRL 131
(4§ CRS + RB cez TEST NIR |32
RA ADDO + RA cCcL CTRM -{ RwnN 13
DL cTss + -.bL . CCG F3 OPKD | ZY
sf2 TNC + SP2 cCcE NEXT | RNwAR |35
P3 RPTY + P& ccA UNC cwn |36
NOFP ADD + WOoP NOP NOP fwh {27

THESE FunwNCTIONS CAUSE AN 'HDD'.; -
THIS RwaN 0PTIoN ErmaTlend BY ,udsse—mgtetz
DoN'T CARE '

RA} M

or[zzu

-
5

ve— Piyrsicac £AYOUT .
6 718 9 rolu 2 sl 15 1]z 18 19]0 21 22

!
23 2y 2¢] 26 27 35{29 30 3

.

|STORE

EPN T

i CounT lsper|seeczaL | R
FuarctIosny 5 KIP
Jr:-:l')) s] JL!I?)P T/‘}/\)GET
any ROM |X] RO CONSTANI

THESE STORE OPTIONS NOP THE SPECIAL FIEtlk Fuveriovs AND
. CAUSE THE FI1E£¢D TO BE USED FOR MCU "OPT/0NS, :

A BRIEF EXPLANATION OF THE MICROINSTRUCTION FIELDS

There are nine fields in the microinstruction:

The LABEL field may be any characters in columns 1-4 prov1ded that
the first character is not the blank character, an asterisk (*), a number 51gn
(#), or a slash (/). The asterisk indicates a comment card which will appear
on the listing but not affect the assembly. The number sign indicates the end
of an ALPHAMIC assembly. The slash forces the next assembled word to reside in
the location immédiately following the slash. If no number is present after the
slash, the next assembled word will be assembled to the start of the next 256
word sector boundary point.

The R-BUS field in columns 6-9 points to the register to be placed in the
R-BUS register.

The S-BUS field in columns 11-14 points to the register to be placed in
the S-BUS register.

The FUNCTION field in columns 16-19 gives the function that the arithmetic
logic unit (ALU) is to perform on the two operands contained in the R-BUS and
S-BUS registers or a special function.

The SHIFT field in columns 21-24 denotes how the information resulting
from the ALU and placed on the T-BUS should be shifted and placed on the U-BUS.

The STORE field in columns 26-29 points to a reglster in which the contents
of the U-BUS are to be stored.

The SPECIAL field in columns 31-34 has many varied uses which are best
explained in that section of this document.

The SKIP field in column 36-39 denotes conditions of the CPU that logical
decisions in the micro-program can be made.

Top of the Stack

The stack has a topmost element which is LOGICALLY the quantity A.
Similarly, there is a LOGICAL quantity B, C, and D corresponding to the
second, third, and fourth word of the stack, respectively. The LOGICAL
quantities A, B, C, and D may be either in registers or in memory. This
is determined by the SR register. If the SR register is 0 then none of the
logical quantities A, B, C, or D are in registers but rather they are located
in memory locations (SM), (SM-1), (SM-2), and (SM-3), respectively.

At all times however, there are four registers RA, RB, RC, and RD,
which are named by a hardware naming device. In the micro-program the
micro-options RA, RB, RC, and RD refer to the hardware named registers and
NOT TO THE LOGICAL QUANTITIES A, B, C, and D. There is a correspondence
however. For any of the LOGICAL quantities A, B, C, and D, the state of SR
indicates where it is located by A, B, C, and D, the state of SR indicates
where it is located by the following table:

SR A B c b

0 (SM) (SM-1) (SM-2) - (SM-3)
1 RA (SM) (SM-1) (SM-2)
2 ‘RA RB (SM) (SM-1)
3 RA RB RB (SM)

4 RA RB RB RD

Note then that if SR = 1, B is in (SM) and if the micro-op RB is used, the
contents of the register named RB will be affected, NOT THE LOGICAL quantity B.

The micro-store field instruction PUSH does three things:
1. Stores the output of the shifter into the register RD.
2. Increments the SR register.
3. Renames the registers so that
N(RA) := RB, N(RB) := RC, N(RC) := RD, N(RD) := RA where
N(RA) is read 'the name of RA'.

Similarly the micro-spec field instruction POP does two things:
1. Decrements the SR register

2. Renames the registers so that
N(RA) := RD, N(RB) := RA, (N(RC) := RB, N(RD) := RC.

The micro-functions QUP, QDWN,'MREG read and stores, are fully explained
in the field descriptions and should be used very seldomly since the stack will
be preadjusted in most cases.

INTERRUPTS

The following is a brief explanation of the hardware interrupt
information available to the microprocessor and hardware dependent sequences
that the microprocessor must execute to handle interrupts correctly. Interrupts
are detected via the interrupt status registers CPX1 and CPX2. CPX1 contains
all run state interrupts, that is, those that occur while the CPU is executing
instructions, and CPX2 contains all control panel interrupts and status information.
The special field option CCPX is used to control the information in the interrupt
registers and hardware dependent sequences.

Note that all interrupt bits in both CPX1 and CPX2 will cause a hardware jump
to ROM location 2 if a NEXT skip field option is executed and will cause the
TEST skip condition to be true.

Control of the interrupt bits is accomplished by the run-halt state.
‘In run state, all interrupt bits in CPX1 are allowed, while all interrupt bits
in CPX2 are held off. In halt state, front panel interrupts are allowed, while
all interrupt bits in CPX1 are held off. Note that this operation may be
overridden with control panel options.

Each interrupt bit in CPX1 except integer overflow is cleared by
executing a CCPX special option with the appropriate bit on the U-BUS. Note
that the clearing of the power fail inhibits all other interrupt bits in both
CPX1 and CPX2. A1l interrupt bits in CPX2 are cleared by executing a CCPX with
bit 15 of the U-BUS being a 1.* Note that run, execute %witches, and single
instruction interrupts must be cleared before the execution of a NEXT. In
the case of run interrupt, the CCPX (15) enables the interrupt bits in CPX1 to
come through. A CCPX (15) after a cold load or cold dump interrupt enables the
run state. The interrupt stack and dispatcher flags are cleared by executing a
CCPX with the appropriate bits. CCPX (13) lights the system halt lamp on the
front panel, while CCPX (14) causes the CPU to freeze. These conditions are
irrevocable. CCPX (@) gates the contents of NIR register to CIR register,

The look-up table function may be disabled by executing CCPX(P) in a repeat Toop.
The CPU timer bit (CPX1(4)) must be cleared after a CPU reset.

* Interrupt bits include CPX2(0:6) and CPX2(15).

BIT

W 00 NN O O A w NN — O

-
=

11
12
13
14
15

NOTES:

TABLE 1

UBUS/CPX BIT ASSIGNEMENTS

CPX1

Integer Ovfl

System Parity Error

Addr. Parity Error
Data Parity Err
CPU Timer

BNDV

Module Viol

Module INTRP
External Intrp
Console Intrp.
Power Fail

p

S e v e

CPX1 bits 2, 3, and 6 catch CPU — Memory errors only.
errors are invisible.

ccpx

NIR to CIR

Clear SPE FF

Clear APE FF

Clear DPE FF

Clear Timer FF
Clear BNDV FF
Clear MOD V FF
Clear MOD INTFF
Clear EXTINT FF
Reset Fnt. Pan. FF
Turn off intrps
Clear INT Stk Flg
Clear Disp. Flag
Set Error Light
uCode Halt

Reset Fnt. Pan. FF

CCPX U9 clears general Intrp. Ckt on1y.'
CCPX U15 clears general intrp, sing. instr/exeq, and MCU CMP halt

ckts.

CCPX U10, U13, U14 are irrevocable.

CPx2 -

‘Run FF

Cold Load
Single Inst
Load Reg
Display Mem
Load Mem
Execute SW
Incr. Addr
Decr. Addr.
Inhibit Auto Rest
1/0 Timer
INTRP Stk Flag
Dispatch Flag
p

8
Cold Dump

170

(blank)

MREG

PADD

PL

RB

RBUS

RC

RD

SPP

SP1

SR

UBUS

R-BUS Field
Zero is placed in the R-BUS register.

SP1(14:15) are added to the contents of the namer register

to get a temporary name. This is used to reference a memory
element that happens to lie in the TOS. Register SP1(14:15)
contains S-E.

A TOS used as a store option on the line immediately preceding
this instruction will assume this temporary name.

The pre-adder contents is placed in the R-BUS register.

The Program Limit register, PL, is placed in the R-BUS register.

The register named RA by the hardware namer is placed in the
R-BUS register.

The register named RB by the hardware namer is placed in the
R-BUS register.

The R-BUS register is unchanged.

The register named RC by the hardware namer is placed in the

.R-BUS register.

The register named RD by the hardware namer is placed in the
R-BUS register.

Scratch Pad f, SPP, is placed in the R-BUS register.
Scratch Pad 1, SP1, is placed in the R-BUS register.

The Stack Register counter, SR, is placed in the R-BUS
register, preceded by 13 leading zeros.

The output of the shifter or U-BUS is placed in the R-BUS
register. :

X The index register, X, is'placed in the R-BUS register.

XC . If the index bit of the current instruction is zero,
then 0 is placed in the R-BUS register, otherwise the
index register is placed in the R-BUS register.

Z The stack limit Register is placed in the R-BUS register.

NOTE: Indirect bit = (CIR(4). Mem Ref + CIR(5)- Mem Ref).CLIBFF

S-BUS Field

(Blank) Zero ié'placed in the S-BUS register.
*CC SBUS(8:9) := STATUS(6:7)
and if STATUS (6:7) = 00 then S-BUS(7) :=1
' else S-BUS(7) := 0
All other bits of SBUS are zeroed.
CIR The contents of current instruction registeriis placed in the
S-BUS register.
CPX1 Interrupt status register, active only when the micro-processor

is in RUN mode, is placed in the S-BUS register.

CPX2 Interrupt status register, active only when the micro-processor
is in HALT mode, is placed in the S-BUS register.

*CTRH S-BUS REG(4:9) ¢= CNTR(0:5). This will be used mostly in
floating point exponent manipulations.

*CTRL S-BUS REG(10:15) <= CNTR(0:5)

DB The data base register, DB, is placed in the S-BUS register.
DL The data limit register, DL, i; placed in fhe S-BUS register.
I0A The I/0 address register is placed in the S-BUS register.

" (Reads Interrupting Device NO).

IOD The 1/0 data register is placed in the S—BUS'register.
(Reads Direct Data Buffer).

MASK The Mask register is placed in the S-BUS register.

MOD A constant is brought to the S-BUS register in the following way:
' S-BUS(0:4) <= 0;
S-BUS(5:7) <= Interrupting module number
S-BUS(8:15) <= If CPUl then 4 else §.

*Unless otherwise noted, remaining bits are zero.

— See explanation of interrupts.

OPND _ The operand register is placed in the S-BUS register.

P " The P?ogram counter, P, is placed in the S-BUS register.

PADD - The pre-adder contents.is placed in the S-BUS register.

PB The Program Base register, PB, is placed in the S-BUS register.

Q The Stack Markér Pointer register, Q, is placed in the S-BUS
register.

QDWN It takes the lowest TOS register and put it in the S-BUS

register in the following way: the TOS registers are
renamed by NAMER + SR. RD is dispatched to the S-BUS and
TOS registers are returned to their former names. A TOS
register used in the STORE field of the previously executed
instruction will assume a temporary name.

A DCSR Special Option is needed to complete the Operation.

RA The register named RA by the hardware namer is placed in
the S-BUS register.

RB The register named RB by the hardware namer is placed in the
S-BUS register.

RC “The register named RD by the hardware namer is placed in the
S-BUS register.

RD The register named RD by the hardware namer is placed in the
S-BUS register.

SBUS The S-BUS register is unchanged.

SM The memory Top of Stack pointer register, SM, is placed in
the S-BUS register.

SP1 Scratch Pad register 1, SP1, is placed in the S-BUS register.

5p2 Scratch Pad registef 2, SP2, is placed in the S-BUS register.

SP3 Scratch Pad register 3, SP3, is placed in the S-BUS register.

STA The Status register, STA, is placed in the S-BUS register.
SWCH The switch register contents is placed in the S-BUS register.

UBUS The output of the shifter or U-BUS is placed in the S-BUS
register. :

ADD

ADDO

AND

TASL

TASR

BNDT

Fﬁnction Field

The contents of the R-BUS and the S-BUS registers are added and
the result is left on the T-BUS.

The contents of the R-BUS and the S$-BUS are added and the
result is left on the T-BUS. The overflow and carry bits
are enabled. CCA is set from the U-BUS.

The logical AND of the R-BUS and the S-BUS is left on the T-BUS.

Causes a 3 Register Arithmetic Shift left of the UBUS,

SP1 and the R-BUS Register containing the most, middle, and
least significant words, respectively. SL1 is required in the
Shift field and the direction of the shift is left. The sign
bit is preserved.

T-BUS:= SREG;

UBUS (@) := TBUS(9);
UBUS(1:14):= TBUS(2:15);
UBUS(15):= SPi(p);
SP1(P:14):= SP1(1:15);
SP1(15):= R REG(P);
RREG{f:14):= RREG(1:15);
RREG(15):= @;

Causes a 3 Register Arithmetic Shift Right of the UBUS, SP3,

and the S-BUS Register containing the most, middle and least

significant words respectively. SRl is required in the shift
field and the direction of the shift is Right. The sign bit

is propagated.. '

TBUS:= RREG;

UBUS{P:1):= TBUS(P);
UBUS(2:15):= TBUS(1:14); -
SP3(P):= TBUS(15);
SP3(1:15):= SP3(0:14);
SREG(@):= SP3(15);
SREG(1:15):= SREG(#:14);

This operation performs a hardware bounds test of an address.
T-BUS := R-BUS - S-BUS. If CARRY = 1, the next microinstruction
is fetched. If CARRY = 0, and the machine is in user mode, a
hardware micro-jump is made to address 2. BNDT takes precedence
over the skip field.

CAD The 1's complement of the S-BUS:is added to the R-BUS and
the result placed on the T-BUS.

CADO Same as CAD with addition that the carry and overflow bits
are enabled. CCA is set from the U-BUS.

CAND T-BUS := R-BUS AND (S-BUS).

CRS The T-BUS is circular shifted right(SR1) or left(SL1) one bit
and put on the U-BUS. U(0) := T(15) if SR1, or U(15) := T(0)
if SL1. Implied T-BUS := R-BUS + S-BUS. o

CTSD This function performs a double register shift of the T-BUS

and a scratch pad register. A left shift, indicated by an

SL1 in the shift field, expects the least significant word in
SP1. A right shift(SR1) expects the least significant word in
SP3. The type of shift is determined from the contents of the
CIR as follows. T-BUS := R-BUS + S-BUS implied.

CIR(7) =1 Circular shift
CIR(7:8) = 0,1 Logical shift
CIR(7:8) = 0,0 Arithmetic shift

NOTE: Both SP1 and SP3 get shifted on CTSD.

CTSS The T-BUS is shifted in a manner determined by CIR(7:8) as
follows. Implied T-BUS := R-BUS + S-BUS.

CIR(7) =1 Circular shift
CIR(7:8) = 0,1 Logical shift .
CIR(7:8) = 0,0 Arithmetic shift

NOTE: The direction is determined by shift field.

DVSB This function performs the subtract, shift, and test necessary
to implement a divide algorithm. To start, F2 = 0, the divisor
is in the S-Reg., and the double word dividend is in the R-Reg.
(MSW) and SP1. SL1 must be in the shift field. One bit quotient
comes in SP1(15).

DVSB ALGOL DEFINITION:
TBUS:= RBUS-SBUS;
UBUS (f:14):= TBUS(1:15); <<BY SL1 in shift field>>"
If ALU carry or F2=1 then
BEGIN
RREG(@:14) := UBUS(@:14);
- RREG(15) := SP1(#);
SP1(f:14) := SP1(1:15);
SPI1(15) :=1
(

F2 := TBUS (9);

INC

INCO

I0R

JMP

JSB

MPAD

END
else

BEGIN
.RREG(£:14) := RREG(1:15);
RREG(15) := SP1(§);
SP1(p:14) := SP1(1:15);

SP1(15) := §;
F2 := RREG (£);
end;

T-BUS := R-BUS + S-BUS + 1

Same as INC with the addition that the carry and overflow
bits are enabled. CCA is set from the U-BUS.

The R-BUS and S-BUS are logically ORed together and the result
placed on the T-BUS.

This function performs a micro-jump to the ROM address specified

in bits 20 to 31 if the condition contained in the skip field

is met. If the skip condition is not met, the next ROM instruc-
tion in sequence is fetched. Also, implied U-BUS := T-BUS := S-BUS.
Execution requires two clock cycles for non-data-dependent SKIPS
and 3 cycles for all data dependent SKIPS.

This function causes a subroutine jump, and is executed like

the JMP function with the following addition. The RAR register
is stored into the SAVE register before the target address is
transferred from the ROR. The return address is saved in the
SAVE reg. Since there is 1 SAVE, subroutihes may be nested only
1 deep. '

This function performs the shift, test, and add functions
necessary to implement a multiply algorithm. To start, the
multiplier is in SP3, the multiplicand is in the R-BUS register,
and the S-BUS register = 0. An SRl is required in the shift field.
One bit result comes in SP3(0).

T-BUS := R-REG + S-REG; U-BUS(1:15) := T-BUS(0:14)

U-BUS(0) := ALU carry; if SP3(15) = 1, then S-Reg :=

U-BUS, SP3(1:15) := SP3(0:14); SP3(0) := T(15); else

S-REG(1:15) :=-S-REG(0:14),SP3(1:15) := SP3(0:14},

'SP3(0) := S-REG(15).

PNLR A control panel function. The appropriate register selected
from the front panel is brought to the T-BUS through ALU.
This is executed out of ROR2 giving garbage on the first cycle.

PNLS A control panel function. The U-BUS is stored in the appropriate
register selected from the front panel.

NOTE: Store and SKIP field must be NOPS.

The following two functions are repeat commands and operate in the following
manner. The microinstruction following the repeat command is executed over and
over until the skip field condition of the repeated instruction is met. The
instruction is then terminated and normal microprocessing proceeds. The skip
field of the repeat instruction may not be used, except as shown below. The
two repeat functions differ only in what they do during their execution, not
in the operation of the repeated instruction.

REPC Normal repeat function that has implied T-BUS := R-BUS + S-BUS.

REPN Send skip field contents to CNTR, CNTR(0) = 1, and implied T-BUS
:= R-BUS + S-BUS.

ROM Bits 16-31 of this instruction are placed in the R-BUS reg.
Implied T-BUS := R-BUS + S-BUS. Note that immediate operand
voids the shift, R, special, and skip fields.

ROMI Same as ROM except implied inclusive - OR of R and S BUS.
ROMN This function is like ROM except implied T-BUS := R-BUS
AND S-BUS.
ROMX This function is like RQM éxcept implied T—BﬁS := R-BUS XOR S-BUS.
RPTY T-BUS := R-BUS + S—éUS. This function reverses parity generation

for diagnostic use only.

SUB T-BUS := R-BUS - S-BUS.

SUBO Like SUB, except carry and overflow bits enabled. CCA is
set from the U-BUS.

UBNT Unconditional bounds test. T-BUS := R-BUS - S-BUS. 1If no
carry, than a hardware jump to ROM ADDRESS 2.

XOR T-BUS := R-BUS EXCLUSIVE OR S-BUS.

(blankj

LLZ

LRZ

RLZ

ROT

RRZ

SL1

SR1

Shift Field
No shift, U-BUS := T-BUS.

"Left to left and zero'! places the left byte of the
T-BUS in the left byte of the U-BUS and places zeros
in the right byte of the U-BUS.

""Left to right and zero'" places the left byte of the T-BUS
in the right byte of the U-BUS and places zeros in the left
byte of the U-BUS.

"Right to left and zero' places the right byte of the T-BUS
in the left byte of the T-BUS and places zeros on the right
byte of the U-BUS.

"Rotate' places the right byte of the T-BUS in the left byte
of the U-BUS and the left byte of the T-BUS in the right in the
the right byte of the U-BUS.

"Right to right and zero' places the right byte of the T-BUS in the
right byte of the U-BUS and places zeros in the left byte of the
U-BUS. ‘

"Shift left one'" shifts the T-BUS one bit left onto the U-BUS.
When used with TASL, CTSS, CRS, CTSD and DVSB in the function
field, refer to those descriptions to determine the action taken.
This option may be used alone to perform a‘single logical shift
where zero is brought in and bit § is lost.

"Shift right one" shifts the T-BUS on right onto the U-BUS.
When used with TASR, CTSS,.CRS, CTSD and MPAD in the function
field, refer to those descriptions to determine the action
taken. This option may be used alone to perform a single
logical right shift where zero is brought in and bit 15 is lost.

(blank)
BSPD

BUSH

BUSL

CTRH
CTRL

DATA

DB

DL
* JOA

* 10D
* MASK

MREG

* NOTE:

Store Field

No store.

Stores U-BUS 1nfo the COR and into SP§. It disables the
special field and enables the MCU options, one of wh1ch must
be used. It issues a LO Request.

Stores U-BUS in COR (CPU Output Register) and makes a BUS-HI
request. It disables the special field and enables the MCU options,

one of which must be used.

COR := U-BUS. Initiates a Tow request for the bus. It disables
the special field and enables the MCU options, one of which must
be used.

Counter high stores U-BUS(4:9) in the counter.
Counter low stores U-BUS(10:15) in the counter.

Stores the U-BUS into the COR and issues a high request and
transfers data to the moduie last addressed by the "T0" register.

Stores the U-BUS in the Data Base Register, DB.

Stores the U-BUS in the Data Limit register, DL.

Stores the S-BUS into the I/0 Address register.
Stores the S-BUS into the I/0 Data register.
Stores the S-BUS in the Mask register.

The contents of Namer is added to two bits SP1(14:15) to obtain
temporary name. This is used to reference a memory element that
happens to lie in the TOS registers. SP1(14:15) contains S-E.

TOS registers used in the R and S fields following th1s instruction
will assume the temporary name.

A CF] special option must be executed after the occurrence of these
options to restore F1 to CPU use. The data is taken from the S-BUS
option on the instruction following the I/0C store option.

PB
PL

PUSH

QUP

RB

RC

RD

SM

SP9

Sfores the U-BUS into the program counter, P.
Stores the U-BUS into the Program Base register, PB.
Stores the U-BUS into the Program Limit register, PL.

Stores the U-BUS into the RD register, increments the

SR register by one and at the end of the microinstruction
cycle renames the TOS registers such that:

N(RA) := N(RB) : RC, N(RC) := RD, N(RD) := RA.

Stores the U-BUS in the Stack Marker Pointer, Q.

The TOS registers are renamed by NAMER + SR. Temporarily
named RA := U-BUS. The TOS register names are returned

to NAMER - however incrementing of SR is not implicit.
INSR (inc. SR) must appear in the special field in order
to increment SR. TOS registers used in the R and S fields
following this instruction will assume the temporary name.

Stores the U-BUS in the register named RA at the beginning
of the cycle.

Stores U-BUS(4:15) in the RAR(0:11). This takes 3 cycles.

Stores the U-BUS in the Register named RB at the beginning

of the cycle.

Stores the U-BUS in the Register named RC at the beginning
of the cycle. . :

Stores the U-BUS in the Register named RD at the beginning
of the cycle. '

Stores the U-BUS into the memory stack pointer, SM.

Stores the U-BUS intec scratch pad register §, SPP.

SP1

SP2

SP3

STA

Stores.

Stores
Stores
Stores
Stores

Stores

the

the

the

the

the

the

U-BUS
U-BUS
U-BUS
U-BUS
U-BUS

U-BUS

into

into

intc

into

into

into

scratch pgd régister 1, SP1l.
scratch pad register 2, SP2.
scratch pad register 3, SP3.
the Status Register.

the index register,'X.

the stack limit pointer, Z.

Special Field

NOTE: If store field is "BUSH",''BSPP" or "BUSL" then special field is disabled
and MCU options field is enabled.

(blank) No special option.
CCA ' Sets the condition code bits in the status word to
CCL if T-BUS < O.
CCE if T-BUS = 0.
CCG if T-BUS > 0.
CCE Sets the condition code bits in the status word to CCE.
CCG Sets the condition code bits in the status word to CCG.
CCL Sets condition code bits in status word to CCL.
CCPX Clears the interrupt status register bits as specified by the

true bits on the U-BUS. (See explanation of interrupts.)
CCRY Clear the carry bit in the status word.

ccz Sets condition code bits in status word to CCE if T-BUS =0
and CCG if T-BUS not equal @.

CF1 At the. end of the cycle, CF1l clears Flag 1.
CF2 At the end of the cycle, CEZ clears Flag 2.
CF3 At the end of the cycle, CF3 clears Flag 3.
CLIB At the end of the cycle, CLIB clears the indirect line until

a NEXT option is encountered.

CLO At the end of the cycle, CLO clears the overflow bit in the
status word.

CTF Stores the ALU carry in Flag 1 at the end of the cycle.

DCSR Decrements the SR counter by 1.

INCN Increments the Namer RA <« RD, RB<=RA, RC«RB, RD «RC.
FHB U-BUS(0) := FLAG1

HALT Enables the front panel by setting CPX(0) := 0.

HBF FLAGl := U-BUS(0)

INCT Increments the counter by 1 (modulo 64).

INSR Increment SR by 1I.

LBF ‘Low bit to flag 2. F2 := U-BUS(15).

POP This option decrements the SR by 1 and then renames the TOS

registers such that: :
N(RA) := RD, N(RB) := RA, N(RC) := RB, N(RD) := RC.

POPA Exactly like POP, except CCA is set on the contents of the
U-BUS.

SCRY Set the carry bit in the status word.

SDFG Sets the dispatcher flag CPX2(12) := 1.

SF1 Sets flag { at the gnd éf the cycle.

SF2 Sets flag 2 at the end of the cycle.

SIFG Sets the interrupt flag CPX2(11) := 1.
SOV Sets the overflow bit in the status word at the end of the cycle.

SRp Sets SR to zero, during the cycle. Note: No other SR operation
during the cycle is allowed.

CCB Sets CCB on contents of SP1(8:15):
CCL = Special
CCE = Alphabetic
CCG = Numeric
NOTE: CCL = STA (6:7) = §1
CCE = STA (6:7) = 19
CCG = STA (6:7) = g9

Skip Field
The skip field does one of two things :

1. Sets the condition met flag or

2. Initiates a hardware micro-jump. A hardware micro-jump needs no jump
target in the micro-instruction.

The condition met flag after a REPN or REPC function option indicates
the condition on which to terminate the repeated micro-instruction. Otherwise
it indicates that the next micro-instruction is to be skipped.

(blank) . No skip option
==BIT6 Condition met if bit 6 of the U-BUS is a 1.
=BIT8 Condition met if bit 8 of U-BUS is a 1
**=CRRY Condition met if the carry out of the ALU is a one.

(Note: this is not the carry bit in the status word.)

CTRM Condition met if the counter is all ones.
(NOTE: When INCT CTRM options occur the counter is tested before
it is incremented.) :

==EVEN Condition met if the U-BUS(15) = 0.
F1 VCondition met if at the beginning of the cycle, flag 1 is set.
F2 Condition met if at the begiﬁning of the cycle, Flag 2 is set.
F3 - Condition met if flag 3 is set.
*INDR Condition met if the indirect bit of the current instruction

register is set.

JLUI Conditional hardware microjump to the address that the lookup
table is displaying if the indirect bit of the CIR is not set.
CLIB must be used to guarantee a jump on all instructions.

*INDR= (CIR(4)-MEM REF + CIR(5) - MEM REF) -CLIBFF

== NCRY Condition met if the carryout of the ALU is zero.
(Note this is not the carry bit in the status word.)

= NEG Condition met if U-BUS(0) = 1.

NEXT This function causes the hardware to get the next user
instruction and decode it. If stackop A has just been
executed and stackop B is not a NOP, then the hardware
executes stackop B. Any other instructions in the CIR
causes COR := P and an RWN to be dispatched to memory.
P := P+ 1. CIR := NIR, and NIR awaits the data from
memory. CIR is then decoded, the preadder adjusted and
sent to the R-BUS register. This action primes the pipe
for the first microinstruction fetch. Implies R-BUS +
S-BUS during the first cycle. The S-BUS register con-
tains a Base register in memory reference instructions.

NF1 Condition met if at the beginning of the cycle, flag 1 is
cleared. ‘
NF2 Condition met if at the beginning of the cycle, flag 2

is cleared.

NPRV Condition met if at the beginning of the cycle the
privileged mode bit is not set.

= NSME Condition met if all the bits of the T-BUS are not the same.
== NZRO Condition met if the T-BUS is non-zero.

= oDD Condition met if the U-BUS(15) = 1.

f' NOFL Condition met if overflow out of the ALU does not occur.

(Note this is not the overflow bit in the status word.)
== POS Condition met if the U-BUS(C) = 0.

RSB Hardware micro—jump to the address held in the SAVE
register. The SAVE register contents is transferred to
the RAR register.

SR4
SRLZ
SRL3
SRN4
SRNZ
SRZ
TEST
UNC

== ZERO

Condi#ion
Condition
Condition
Condition
Condition
Condition
Condition
Condition

Condition

met

met

met

met

met

met

met

met

met

if the

if the

if the.

if the

is the

if the

if any

SR

SR

SR

SR

SR

SR

register

register

register

register

register

register

is

is

is

is

is

is

less than 2.
}ess than 3.
not 4.
non-zero.

Z€r0.

interrupt is pending.

unconditionally.

if the T-BUS is zero.

= Note: These options, when used with JMP or JSB functions, cause

cycle freeze.

al

MCU OPTIONS (override special field if there is 'BUSH', 'BSPO' or
'BUSL' in store field).

CMD MCU '"to" lines and command Bus are taken from the CRL
Register on the Bus transfer.

CRL Takes the MCU bus and stores it in the CRL register. It is
used as BUSH CRL.

CWA Clear write address initiates a bus request for a memory
and tells the memory that the data on the bus is an address,
and that the data will be sent on the next transmission.
Memory will hold the address in the memory address register.
The memory will be busy for all modules until the data is
received via the DATA using a high bus request.

NiR 'Next instruction Register'. NEXT in the skip field brings
the new instruction in NIR. ‘

OPND Takes information from MCU bus and puts it in OPND register
{(used as BUSH OPND).

RNWA Read no write address initiates a bus request for a memory
and tells the memory that the data on the bus is an address
the contents of which is to be sent back to the OPND
register and not to complete the write cycle leaving all
ones in the word read.

RWA Read write address is the same as RNWA except that the original
contents of the cell are restored.

RWAN Read Write Address and Next Instruction is the same as
RWA except the results are returned to both the OPND and
the NIR registers.

RWN Like RWA with the exception that instead of sending the memory
cell contents to OPND.register, it sends it in NIR (next in-
struction register).

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26

