HEWLETT W PACKARD

HP 3000 Computer System

Machine Instruction Set

‘“(A\‘.*“ ’#(3‘&‘,]
A b yz,

HP 3000
COMPUTER SYSTEMS

MACHINE INSTRUCTION SET
REFERENCE MANUAL

Manual Part No. 30000-90022
Index No. 3GENL.320.30000-90022

Printed in U.S.A. 2/80

© HEWLETT-PACKARD
GEMERAL SYSTEMS DIVISION
19447 PRUNERIDGE AVENUE, CUPERTINO, CALIFORNIA, 95014

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied or reproduced without the prior written consent of
Hewlett-Packard Company.

Copyright © 1980 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the most recent date on which the technical material on any given page was altered. If
a page is simply re-arranged due to a technical change on a previous page, it is not listed as a changed page. Within the
manual, changes are marked with a vertical bar in the margin.

All Pages in this manual are original third edition issue.

iii

- PRINTING HISTORY

New editions incorporate all update material since the previous edition. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The date on the title

page and back cover changes only when a new edition is published. If minor corrections and updates are incorporated,
the manual is reprinted but neither the date on the title page and back cover nor the edition change.

First Edition June 1976
Second Edition........................... August 1978

Third Edition February 1980

iv

PREFACE

This manual contains information on the machine instruction set for the HP 3000 Computer Systems. The
contents of this manual are organized as follows:

Section I contains general information on traps and interrupts, condition code, and the instruction formats
used in the machine instruction description in Sections II through IV.

Section II contains information on the base instruction set furnished with the computer systems.

Section III contains information on the extended instruction set furnished with the computer systems.

Section IV contains information on the language extension instructions furnished with the computer
systems.

Appendix A is an alphabetical listing of all machine instructions that gives the page on which the instruction
is defined.

Except where specified, the content of this manual applies equally to all HP 3000 Computer Systems.

STACK OP INSTRUCTIONS

MNEMONIC NAME PAGE MNEMONIC NAME PAGE
ADAX Add A to X 2-7 FIXT Fix and truncate 2-5
ADBX Add B to X 2-7 FLT Fioat an integer 2-3
ADD Add A to B 2-1 FMPY Floating point multiply 2-4
ADXA Add X to A 2-7 FNEG Floating point negate 2-4
ADXB Add Xto B 2-7 FSUB Floating point subtract D,C — B,A 2-4
AND Logical AND of A and B 2-6 INCA Increment A 2-6
BTST Test byte on TOS and set CC 2-9 INCB Increment B 2-6
CAB Rotate A-B-C 2-8 INCX Increment X 2-6
CMP Integer compare B, A and set CC 2-2 LADD Logical add A + B 2-5
DADD Double integer add D,C + BA 2-2 LCMP Logical compare B, A and set CC 2-5
DCMP Double integer compare and set CC 2-3 LDIV Logical divide C,B + A 2-5
DDEL Double delete TOS 2-9 LDXA Load X into A 2-7
DDIV Double integer divide 2-3 LDXB Load X into B 2-7
DDUP Double duplicate TOS 2-9 LMPY Logical multiply B x A 2-5
DECA Decrement A 2-6 LsSuB Logical subtract B — A 2-5
DECB Decrement B 2-7 MPY Multiply integers, integer product 2-1
DECX Decrement X 2-6 MPYL Multiply integers, long integer
DEL Delete TOS 2-9 product 2-2
DELB Delete B 2-9 NEG Integer negate 2-2
DFLT Floating a double integer 2-3 NOP No operation 2-10
DIv Integer divide B by A 2-1 NOT Logical complement TOS 2-6
DivL Divide long integer C.B + A 2-2 OR Logical OR of A, B 2-6
DMUL Double integer multiply 2-3 STAX Store A into X 2-7
DNEG Double integer negate 2-3 STBX Store B into X 2-7
DSuUB Double integer subtract D,C — BA 2-2 SuB Integer subtract B — A 2-1
DTST Test double word on TOS and set CC 2-9 TEST Test TOS and set CC 2-9
DUP Duplicate TOS 2-9 XAX Exchange A and X 2-8
DXCH Double exchange 2-8 XBX Exchange B and X 2-8
DZRO Push double zero onto stack 2-8 XCH Exchange A and B 2-8
FADD Floating point add D,C + B,A 2-4 XOR Logical exclusive OR of A, B 2-6
FCMP Floating point compare and set CC 2-3 ZERO Push integer zero onto stack 2-8
FDIV Floating point divide D,C + BA 2-4 ZROB Zero B 2-8
FIXR Fix and round 2-4 ZROX Zero X 2-8

SHIFT INSTRUCTIONS

MNEMONIC NAME PAGE MNEMONIC ’ NAME PAGE
ASL | Arithmetic shift left 2-10 DLSR Double logical shift right 2-11
ASR Arithmetic shift right 2-10 LSL Logical shift left 2-10
CsL Circular shift left 2-10 LSR Logical shift right 2-10
CSR Circular shift right 2-11 QASL Quadruple arithmetic shift left 2-12
DASL Double arithmetic shift left 2-11 QASR Quadruple arithmetic shift right 2-13
DASR Double arithmetic shift right 2-11 TASL Triple arithmetic shift left 2-12
DCSL Double circular shift left 2-11 TASR Triple arithmetic shift right 2-12
DCSR - Double circular shift right 2-12 TNSL Triple normalizing shift left 2-12
DLSL Double logical shift left 2-11

FIELD AND BIT INSTRUCTIONS

MNEMONIC NAME - | pAGE MNEMONIC NAME PAGE
DPF Deposit field, A bits to B 2-14 TCBC Test and complement bit, set CC 2-14
EXF, Extract specified field, right-justifiy 2-14 TRBC Test and reset bit, set CC 2-13
SCAN Scan bits 2-13 TSBC Test and set bit, set CC 2-13
TBC Test specified bit and set CC 2-13

vi

BRANCH INSTRUCTIONS

MNEMONIC NAME PAGE MNEMONIC NAME PAGE
BCC Branch on specified CC 2-16 BRO Branch on TOS odd (bit 15 = 1) 2-15
BCY Branch on carry 2-15 CPRB Compare range and branch 2-16
BNCY Branch on no carry 2-15 DABZ Decrement A, branch if zero 2-15
BNOV Branch on no overflow 2-15 DXBZ Decrement X, branch if zero 2-14
BOV Branch on overflow 2-15 IABZ Increment A, branch if zero 2-14
BR Branch unconditionally 2-16 IXBZ Increment X, branch if zero 2-14
BRE Branch on TOS even (bit 15 = 0) 2-15
MNEMONIC NAME PAGE MNEMONIC NAME PAGE
CMPB Compare bytes in two memory blocks 2-18 MVB Move bytes in memory, addresses -+ /-~ 2-17
MABS Move using absolute addresses 2-20 MVBL Move words from DB+ to DL+ area 2-19
MDS Move using data segments 2-22 MVBW Move bytes while of specified type 2-18
MFDS Move from data segment 2-21 MVLB Move words from DL+ to DB+ area 2-20
MOVE Move words in memory, address +/— 2-17 SCU Scan bytes until test or terminal byte 2-19
MTDS Move to data segment 2-21 SCW Scan bytes while equal to test byte 2-19
MNEMONIC NAME PAGE MNEMONIC NAME PAGE
LDEA Load double word from extended PSTA Privileged store into absolute address 2-22
address 2-23 SDEA Store double word into extended

LSEA Load single word from extended address 2-23
address 2-23 SSEA Store single word into extended

LST Load from system table 2-23 address 2-23

PLDA Privileged load from absolute SST Store into system table 2-23
address 2-22

MNEMONIC NAME PAGE MNEMONIC NAME PAGE
ADDI Add immediate to integer in A 2-24 LDXI Load X immediate 2-24
ADXI Add immediate to X 2-25 LDXN Load X negative immediate 2-25
ANDI Logical AND immediate with A 2-26 MPY! Multiply immediate with A 2-24
CMPI Compare A with immediate, set CC 2-24 ORI Logical OR immediate with A 2-25
CMPN Compare A with negative immediate 2-25 SBXI Subtract immediate from X 2-25
Divi Divide immediate into A 2-24 SUBI Subtract immediate from A 2-24
LDi Load immediate to TOS 2-24 XORI Logical exclusive OR immediate 2-25
LDNI Load negative immediate to TOS 2-25

MNEMONIC NAME PAGE MNEMONIC NAME PAGE
ADDS Add operand to stack pointer 2-27 SETR Set specified registers from stack 2-26
PSHR Push specified registers onto stack 2-26 SUBS Subtract operand from stack pointer 2-27
RCLK Read clock 2-27 XCHD Exchange DB and TOS 2-27
SCLK Store clock 2-27

vii

PROGRAM CONTROL AND SPECIAL INSTRUCTIONS

MNEMONIC NAME PAGE | MNEMONIC NAME PAGE
DISP Dispatch 2-29 PSEB Pseudo interrupt enable 2-30
EXIT Exit from procedure 2-28 RCCR Read system clock counter** 2-31
HALT Halt 2-30 RSW Read switch register 2-31
IXIT Interrupt exit 2-29 SCAL Subroutine call 2-28
LLBL Load label 2-29 SCLR Set system clock limit** 2-32
LLSH Linked list search 2-31 SINC Set system clock interrupt** 2-32
LOCK Lock resource* 2-30 SXIT Exit from subroutine 2-28
PAUS Pause, interruptable 2-30 TOFF Hardware timer off** 2-32
PCAL Procedure call 2-28 TON Hardware timer on** 2-32
PCN Push CPU number 2-31 UNLK Unlock resource* 2-30
PSDB Pseudo interrupt disable 2-29 XEQ Execute stack word 2-31

*Series || Computer Systems only.
**Series 30/33 Computer Systems only.
I/O INSTRUCTIONS

MNEMONIC NAME PAGE | MNEMONIC NAME PAGE
CIOo Control I/O, direct* 2-34 SEML Semaphore load™ 2-37
CMD Send command to module, direct* 2-35 SIN Set interrupt* 2-35
DUMP Load soft dump program** 2-35 SIO Start I/0O, block transfer* 2-33
HIOP Hlat /O program** 2-37 SIOP Start 1/O, program** 2-36
INIT Initialize I/O channel** 2-36 SMSK- Set device mask 2-33
MCS Read memory controller** 2-36 STRT Initiate warmstart** 2-37
RIO Read I/0, direct* 2-34 TIO Test 1/0O, direct” 2-34
RIOC Read I/O channel** 2-37 WIO Write /O, direct* 2-34
RMSK Read device mask 2-33 WICC Write I/O, channel** 2-35
SED Set enable/disable external interrupts 2-33 *Series 1/l Computer System only.

**Series 30/33 Computer System only.
LOOP CONTROL INSTRUCTIONS
MNEMONIC NAME PAGE MNEMONIC NAME PAGE
MTBA Modify variable, test against limit, TBA Test variable against limit, branch 2-38
branch 2-38 TBX Test X against limit, branch 2-38
MTBX Modify X, test against limit, branch 2-38
MEMORY ADDRESS INSTRUCTIONS

MNEMONIC NAME PAGE MNEMONIC NAME PAGE
ADDM Add memory to TOS 2-41 LDX Load X 2-39
CMPM Compare TOS with memory 2-41 LOAD Load word onto stack 2-39
DECM Decrement memory 2-41 LRA Load relative address onto stack 2-40
INCM Increment memory 2-41 MPYM Multiply TOS by memory 2-41
LDB Load byte onto stack 2-40 STB Store byte on TOS into memory 2-40
LOD Load double word onto stack 2-39 STD Store double on TOS into memory 2-40
LDPN Load double from program, negative 2-39 STOR Store TOS into memory 2-39
LDPP Load double from program, positive 2-39 SUBM Subtract memory from TOS 2-41

viii

EXTENDED INSTRUCTION SET

MNEMONIC NAME PAGE MNEMONIC NAME PAGE
Extended-Precision Floating Point Decimal Arithmetic
EADD Add 3-1 ADDD Decimal add 3-5
ECMP Compare 3-2 CMPD Decimal compare 3-6
EDIV Divide 3-2 CVAD ASCIt to decimal conversion 3-3
EMPY Multiply 3-2 cvBD Binary to decimal conversion 3-4
ENEG Negate 3-2 CVDA Decimal to ASClI conversion 3-4
ESUB Subtract 3-1 CcvDB Decimal to binary conversion 3-5
DMPY Double logical multiply 3-8
MPYD Decimal multiply 3-8
NSLD Decimal normalizing left shift 3-7
SLD Decimal left shift 3-7
SRD Decimal right shift -7
SUBD Decimal subtract 3-6
LANGUAGE EXTENSION INSTRUCTIONS
MNEMONIC NAME PAGE | MNEMONIC NAME PAGE
ABSD Absolute decimal 4-15 ENDP End of paragraph 4-2
ABSN Absolute numeric 4-14 LDDW Load double word 4-16
ALGN Align numeric 4-13 LDW Load word 4-16
CMPS Compare strings 4-12 NEGD Negate decimal 4-15
CMPT Compare translated strings 4-12 PARC Paragraph procedure call 4-1
CVND Convert numeric display 4-14 TR Translate 4-11
EDIT Edit more instructions 4-2 XBR External branch 4-1

ix/x

GENERAL INFORMATION

SECTION

1-1. INTRODUCTION

This manual contains information on the machine
instruction sets of the HP 3000 Computer Systems.
Section I contains general information about the
instruction sets. Section II describes each of the
instructions included in the basic instruction set, Section
III describes each of the instructions which are part of the
HP 30012A Extended Instruction Set (EIS), and Section
IV describes each of the instructions which are part of the
language extension set. Appendix A contains an
alphabetical listing of all instructions together with the
page numbers on which the instructions are to be found.

1-2. BASIC INSTRUCTION SET
1-3. INSTRUCTION DECODING

As the CPU executes a user program, it fetches these
instructions from memory. A ROM address of a micropro-
gram stored in a microprogram ROM is generated for
these instructions. There is a microprogram in ROM for
each of the machine instructions. The ROM address is
stored in a ROM address register (RAR). The RAR is used
first to access the initial microinstruction and is then
incremented to point to the next microinstruction. Thus,
the entire microprogram for a particular machine instruc-
tion is called and executed by the CPU.

1-4. TRAPS AND INTERRUPTS

Only those traps and interrupts which occur as a result of

instruction execution over which the user has some con-
trol are used in the instruction descriptions provided in
Sections II and III. They are defined here by segment # 1
segment transfer table number.

a. STT #1; BNDV — Bounds Violation. An operand or
instruction is outside of the legal bounds for a particu-
lar mode of addressing.

b. STT #17; STTV — Segment Transfer Table Violation.
A variety of conditions can force this trap as follows:

e The STT number in an external program label is
greater than the STT length pointed to by PL in
the referenced segment. This error can occur in
PCAL, LLBL, and the firmware interrupt hand-
ler while attempting to set up a new segment.

e In LLBL, the label fetched from PL-N is an inter-
nal label and N is greater than 128 (%177). This
would require too large an STT number when
creating the external label.

1-1

e In PCAL and interrupt handler when settingup a
new segment, the STT number in the external
program label points to an external program
label in the new segment.

e In SCAL, (PL-N) is an external label.

STT #18; CSTV — Code Segment Table Violation. An
attempt is made to transfer to Segment 0 or 192, or a
segment number is greater than the CST length.

STT #19; DSTV — Data Segment Table Violation.
The data segment number referenced by MFDS,
MTDS, or MDS is greater than the DST length or is 0.

STT #20; STUN — Stack Underflow. The process
being executed or being transferred to is non-
privileged and SM is less than DB.

STT #21; MODE — Privileged Mode Violation. The
code segment being executed is non-privileged (bit 0
of the Status register is 0) and an attempt is made to
execute a privileged instruction. This violation also
occurs in EXIT if an attempt is made to exit from user
to privileged mode or, if exiting from user mode, the
External Interrupts bit in the Status register has
been altered.

STT #24; STOV — Stack Overflow. SM is greater
than Z or may become greater as a result of the cur-
rent instruction.

STT #25; ARITH — Arithmetic. All User Traps will
be executed in the segment # 1 routine pointed to by
STT #25. The error conditions and their parameters
are as follows:

Octal
Interrupt Type Parameters

Integer Overflow 000001
Floating Point Overflow 000002
Floating Point Underflow 000003
Integer Divide-by-Zero 000004
Floating Point Divide-by-Zero 000005
Extended Precision FP Overflow 000010
Extended Precision FP Underflow 000011
Extended Precision FP Divide-by-Zero 000012
Decimal Overflow 000013
Invalid ASCII Digit 000014
Invalid Decimal Digit 000015
Invalid Source Word Count 000016
Result Word Count Overflow 000017
Decimal Divide-by-Zero 000020

Geqera} _‘Infqrmation«

Octal parameters 000010 through 000020 are traps
for the Extended Instruction Set and are shown here
for completeness only.

i. STT #31; ABS CST — Absent Code Segment. The
absence bit in the CST entry for the referenced seg-
ment is set. The interrupt handler and PCAL stack a
(second) marker; others including EXIT, IXIT, etc., do
not.

j- STT #32; TRACE — Code Segment Trace. Code seg-
ment is being traced.

k. STT #33; UNCALL — Uncallable STT Entry. The
uncallable bit in a local label or, if the STT number is
0, in (PL) is set. This trap does not stack a (second)
marker.

1. STT #34; ABS DST — Absent Data Segment. The
absence bit in the DST entry for the referenced seg-
ment is set.

1-5.
1-6.

EXTENDED INSTRUCTION SET
INSTRUCTION DECODING

Firmware in the main (basic) microprogram interprets the .

instructions of the extended instruction set. The operation
is then like that of the basic instruction set.

1-7. INTERRUPTS

The instructions of the extended instruction set are not
interruptable. If these instructions are performed by
software simulation procedures, interrupts are recognized

in the manner established for the instructions which make
up each procedure.

1-8. EXTENDED PRECISION FLOATING
POINT INSTRUCTIONS

Instruction Commentary 1 in Section III provides infor-
mation on these instructions.

1-9. DECIMAL ARITHMETIC
INSTRUCTION SET

Instruction Commentary 2 in Section III provides infor-
mation on these instructions.

1-10. LANGUAGE EXTENSION SET

Firmware in the main (basic) microprogram interprets the
instructions of the language extension set. The operation
is then like that of the basic instruction set. Instruction
Commentary 1, 2, and 3 in Section IV provide additional
information on these instructions.

1-11. CONDITION CODE

Bits 6 and 7 of the CPU Status register are used for the
Condition Code. Although several instructions make spe-
cial use of the Condition Code, the Condition Code typi-
cally indicates the state of an operand (or a comparison
result with two operands). The operand may be a byte,
word, doubleword, tripleword, or quadrupleword, and may
be located on the top of the stack, in the Index register, or
in a specified memory location. Three codings are used, 00,
01, and 10. The “11” is not used. Except for the special
interpretations, there are four basic patterns, table 1-1, for
interpreting these codes.

Table 1-1. Condition Codes

PATTERN

CODE INTERPRETATION

Arithmetic CCA sets CC

€CG (00) if operand greater than 0
CCL (01) if operand less than 0
CCE (10) if operand equals 0

Byte CCB sets CC

1

i

CCG (00) if numeric (%060-071)
CCL (01) if special character (all others)
CCE (10) if alphabetic (%101-132 and %141-172)

Comparison CCCsetsCC =

CCG (00) if operand 1 is greater than operand 2
CCL (01) if operand 1 is less than operand 2
CCE (10) if operand 1 equals operand 2

Direct 110 CCDsetsCC =

CCG (00) if device not ready (busy)
CCL (10) if non-responding device controller
CCE (10) if responding controller and/or device ready

1-2

Pattern A is the most common Condition Code pattern. In
this CCA pattern, the Condition Code is set to 00 if the
operand is greater than zero, to 01 if the operand is less
than zero, or to 10 if the operand is exactly zero. Since the
usage of this pattern is so common, the three codes 00, 01,
and 10 are named to reflect these meanings. Thus 00 is
CCG (“Greater”), 01 is CCL (“Less”), and 10 is CCE
(“Equal”). These names are primarily used for documenta-
tion convenience.

Pattern B for the Condition Code, designated CCB, is used
with byte oriented instructions. In the CCB pattern, the
Condition Code is set to 00 if the operand byte is an ASCII
numeric character, which would be represented by octal
values 060 through 071. The code is set to 10 if the byte is
an ASCII alphabetic character, which would be rep-
resented by octal values 101 through 132 for upper case
letters and 141 through 172 for lower case letters. The
code is set to 01 if the byte is an ASCII special character
1epresented by the remaining octal values.

Pattern C for the Condition Code, designated CCC, is used
with comparison instructions. The code is set to 00 if
operand 1 is greater than operand 2, or to 01 if operand 1 is
less than operand 2, or to 10 if the operands are equal. In

1-3

Machine Instruction Set

the instruction definitions, the first mentioned operand is
“operand 1”. For example, the definition for CMP reads:
“The Condition Code is set to pattern C as a result of the
integer comparison of the second word of the stack with
the TOS.” The second word of the stack is therefore
operand 1 and the TOS is operand 2.

Pattern D for the Condition Code, designated CCD, is used
with some I/O instructions. The code is set to 00 if the
device is not ready. This is usually caused by the device
being busy. The code is set to 01 if the device controller
does not respond. Some examples of what could cause this
is power off the device or controller, problems with the
device or controller, or waiting for a response to an inter-
rupt request. The last would be used with a Controller
Processor. The Condition Code is set to 10 if the device and
controller responded and the instruction completed
normally.

1-12. INSTRUCTION FORMATS

Instruction formats are provided by figures 1-1 through
1-6.

General Information

SUB OP CODE 00, STACK OP CODE 00 - 77

o|1[2]3]a]s]e[7]8]o |10[11]12]13)14]15
[o]Jo 0 o

| 1 -]

00
Bits4 -9 Bits4 -9

Mnemonic or 10-15 Mnemonic or 10 - 15
NOP 00 DEL 40
DELB 01 zROB 41
DDEL 02 LDXB 42
ZROX 03 STAX 43
INCX 04 LDXN a4
DECX 05 DUP 45
ZERO 06 DDUP 46
DZRO 07 FLT 47
DCmP 10 FCMP 50
DADD 1 FADD 51
DSUB 12 FSUB 52
MPYL 13 FMPY 53
DIVL 14 FDIV B4
DNEG 15 FNEG 55
DXCH 16 CAB 56
CMP 17 LCMP 57
ADD 20 LADD 60
suB 21 LsuB 61
MPY 22 LMPY 62
DIV Pz LDIV 63
NEG 24 NOT o4
TEST 26 OR 65
STBX % XOR 66
DTST 27 AND 67
DFLT 30 FIXR 70
BTST 31 FIXT 7
XCH 32 INCB 73
INCA 33 DECB 74
DECA 34 XBX 75
XAX 36 ADBX 76
ADAX 36 ADXB 77
ADXA 37

Figure 1-1. Subopcode 00 Formats

1-4

Machine Instruction Set

SUBOPCODE 01, OPCODES 00 - 17 SUBOPCODE 01, OPCODES 20 - 37
ol1]2{3la[s]e[7]8]9 Jro[11]12]r3fia]15 of1]2]3]4]s[e[7]8]s J1o]11]izfiafiais
[ofo 0 1 ol
(R - T 1] Ny -]
o1 o1
Mnemonic | 4 | Bits5-9 | Bits10-15 Mnemonic | 4 | Bis5-9 | Bits 10- 15
ASL x 00 | SHIFT COUNT pasL | x 20 | SHIFT COUNT
ASR x 01__| SHIFT COUNT DASR | x 21| SHIET COUNT
LSL x 02 | SHIFT COUNT DLSL | x 22 | SHIFT COUNT
LSR x 03 | SHIFT COUNT DLSR | x 23__| SHIFT COUNT
CSL x 04 | SHIFT COUNT DCSL_ | x 24__| SHIFT COUNT
CSR x 05 | SHIFT COUNT DCSR_ | x 25| SHIFT COUNT
SCAN | x 06 CEEROS . CPRB_ | | 26| #| DISPLACEMENT
IABZ I 07 | #] DISPLACEMENT DABZ | | 27 | #| DISPLACEMENT
TASL | x 10 | SHIFT COUNT BOV i 30| | DISPLACEMENT
TASR__ | x 11| SHIFT COUNT BNOV | | 31| #| DISPLACEMENT
IXBZ | | 12| 2] DISPLACEMENT TBC x 32| BIT POSITION
DXBZ | | 13| #| DISPLACEMENT TRBC | x 33__| BIT POSITION
BCY i 14| #| DISPLACEMENT TSBC | x 34| BIT POSITION
BNCY | | 15 | #| DISPLACEMENT TCBC | x 35 | BIT POSITION
TNSL | x 16 LLZEROS T BRO 1 36 | 8] DISPLACEMENT
QASL__| 0/] 17 | SHIFT COUNT BRE i 37 | &| DISPLACEMENT
QASR | 1 17 | SHIFT COUNT
X = INDEX BIT

I = INDIRECT BIT
SHADED BITS ARE RESERVED BITS

Figure 1-2. Subopcode 01 Formats

General Information

SUBOPCODE 02, MOVE OPCODES 00,0 -5

SUBOPCODE 02, MINI OPCODES 00, 14 - 17

o[112]a]a]s]e [7]8]9 [10]11[12|13]14]15

[o]o 1 o]o 0 o]0

L 4t T 1 I |
0'2 00

Mnemonic | Bits8-10 Bits 11 - 16
MOVE 0 B | SDEC
MVB 1 B | SDEC
MVBL 2 0 0 | SDEC
MABS 2 0 1 SDEC
SCW 2 1 o ["8 | SDEC
MTDS 2 1 1 SDEC
MVLB 3 0 0 |"B® | SDEC
MDS 3 0 1 SDEC
scu 3 1 0 } 9] SDEC
MFDS 3 1 1 SDEC
MVBW 4 N A U | SDEC
cMPB 5 8 0 | SDEC

Shaded bits are reserved
A = Alphabetic

B = PB/DB

N = Numeric

SDEC ='S Decrement

U = Upshift

o[1]2]3]4]s5]e |7]8 |9 [10]11]12]13]14]i5
[o]o 1 o]o o o]0
L J L | [] L]
| |
02 00
Mnemonic | Bits 8 - 11 Bits 12- 16
RSW 14 0
LLSH 14 1
PLDA 15 0]
PSTA 15 1
LSEA 16 o] o
SSEA 16 o 1
LDEA 16 1] o
SDEA 16 010 [1] 1
IXIT 17 ol ofol o
LOCK" 17 0] o [o] 1
PCN 17 ol o [1] of
UNLK* 17 oo 1] 1

*Series || Computer Systems only.

Figure 1-3. Subopcode 02 Formats (Sheet 1 of 2)

1-6

Machine Instruction Set

SUBOPCODES 02, OPCODES 01 - 17

of1]2[3]4]s[e]7][8]o [10[11[1z]13[1afi5
(oo 1 0
| — T] (| }
02
L)
Mnemonic | Bits4 -7 Bits 8 - 15
DMUL o1 CIR (8:15) = % 170
DDIV 01 CIR (8:15) = % 171
LDI 02 IMMEDIATE OPERAND
LDXI 03 IMMEDIATE OPERAND
CMPI 04 IMMEDIATE OPERAND
ADDI 05 IMMEDIATE OPERAND
suBl 06 IMMEDIATE OPERAND
MRY! 07 IMMEDIATE OPERAND
DIVI 10 IMMEDIATE OPERAND
PSHR 1n 1
LDNI 12 IMMEDIATE OPERAND
LDXN 13 IMMEDIATE OPERAND
CMPN 14 IMMEDIATE OPERAND
EXF 15 START BIT #] # OF BITS
DPF 16 START BIT #| # OF BITS
SETR 17 t

$BIT 8 =STACK BANK REGISTER
BIT 9 =DB BANK, DB REGISTER
BIT 10 = DL REGISTER
BIT 11 = Z REGISTER
BIT 12 = STATUS REGISTER
BIT 13 = X REGISTER
BIT 14 = Q REGISTER
BIT 15 = S REGISTER

Figure 1-3 Subopcode 02 Formats (Sheet 2 of 2)

O

1-7

General Information

SUBOPCODE 03, SPECIAL OPCODES 00

o[1]2]3]a]s]e [7]8]9 |10]11]12]1314]15

{ofo 1 1]o 0o oo

1 T | L 4 1 J L
03 00
Mnemonic | Bits8 - 11 Bits 12 - 15
LST 00 K FIELD
PAUS 01 0jotlolo
SED 02 ol oo x
XCHD 03 ol ololo
PSDB 03 0ol o o1
DISP 03 ol ol[1]o
PSEB 03 ol o[11
SMSK 04 0] o o] o
SCLK 04 0] o[o1
RMSK 05 0] o oo
RCLK 05 0] o [o]
XEQ 06 K FIELD
s10 07 K FIELD
RIO 10 K FIELD
Wi0 1 K FIELD
TIO 12 K FIELD
clo 13 K FIELD
CMD 14 K FIELD
SST 15 K FIELD
SIN 16 K FIELD
HALT 17 K FIELD

SUBOPCODE 03, OPCODES 01 - 17

ol1]2]3]a]s]e[7]8]9 [10[11]12|13]14]15
[oJo 1 1]1 ‘
1 | L 1]
03

Mnemonic | Bits4 -7 Bits 8 - 15
SCAL 01 N FIELD
PCAL 02 N FIELD
EXIT 03 N FIELD
SXIT 04 N FIELD
ADXI| 05 IMMEDIATE OPERAND
SBXI 06 IMMEDIATE OPERAND
LLBL 07 PL — DISPLACEMENT
LDPP 10 P+ DISPLACEMENT
LBPN 1 P~ DISPLACEMENT
ADDS 12 IMMEDIATE OPERAND

SUBS 13 IMMEDIATE OPERAND
ORI 15 IMMEDIATE OPERAND
XOR| 16 IMMEDIATE OPERAND
ANDI 17 IMMEDIATE OPERAND

Shaded bits are reserved and ignored.

x=10r0.

Figure 1-4. Subopcode 03 Formats

Machine Instruction Set

o[1]2]3]a]s]6]7]8]o [10]11]12}1314]15

[1 0]
.
Mnemonic | Bits0 -3 Bits 4 - 15
LOAD 04 X [MODE AND DISPLACEMEN T
TBA 05 0 | o | o] 2] DISPLACEMENT
MTBA 05 0 1 0] | DISPLACEMENT
TBX 05 1 0 | o] | DISPLACEMENT
MTBX 05 1 1 o] 2| DISPLACEMENT
STOR 05 x I 1| MODE AND DISPLACEMENT
CMPM 06 x 1 MODE AND DISPLACEMENT
ADDM 07 x | MODE AND DISPLACEMENT
SUBM 10 x] MODE AND DISPLACEMENT
MPYM 1 x I MODE AND DISPLACEMENT
INCM 12 x I 0] MODE AND DISPLACEMENT
DECM 12 x 1 1| MODE AND DISPLACEMENT
LDX 13 x I MODE AND DISPLACEMENT
BR 14 x | 0 s| DISPLACEMENT
BR 14 x 1 1 MODE AND DISPLACEMENT
BCC 14 | o | 1| >J=[<]s]| DISPLACEMENT
LDB 16 x 1 0! MODE AND DISPLACEMENT
LDD 15 x | 1| MODE AND DISPLACEMENT
sT8 16 x 1 0| MODE AND DISPLACEMENT
STD 16 x i 1| MODE AND DISPLACEMENT
LRA 17 x i | MODE AND DISPLACEMENT
X = INDEX BIT
I = INDIRECT BIT

Figure 1-5. Subopcode 04-17 Formats

1-9

General Information

10 [11 [12]13[1a]15

o[1]2]afa[s]6|7]8]s
o10foo001 00

0 0 1

JoL J

041

Mnemonic | Bits 13- 15
EADD 0
ESUB 1
EMPY 2
EDIV 3
ENEG 4
ECMP 5

S
SC

SHADED BITS ARE RESERVED BITS

STACK DECREMENT
SIGN CONTROL

o|1]2]3]4]s]e[7]8]9 [10]11]12]13]14]1s
[ofo 1 ofo o 0of1 10
L T J i J L J
0206
Mnemonic | 9 [10[11] Bits12- 15
DMPY o1
CVAD 02
CVDA 03
CVBD 04
CVDB 05
SLD 06
NSLD 07
SRD 10
ADDD 11
CMPD 12
SUBD 13
MPYD 14

Figure 1-6. Extended Instruction Set Formats

1-10

INSTRUCTION SET

SECTION

This section defines‘each of the machine instructions in
the computer system instruction set. Where additional in-
formation would be helpful in understanding the operation

STACK OP INSTRUCTIONS

INTEGER INSTRUCTIONS

of a particular instruction, an instruction commentary re-
ference is given following the definition. In such cases, refer
to the corresponding number under the heading, “Instruc-
tion Commentary”, at the end of this section.

ADD Add. The top two words of the stack are added in integer o 1T2]3]e]s]e[7]8] o]ro[11[1z]ra]ra]ss
forrn and are then deleted. The resulting sum is pushed [0fo o oJo 1 oo 0 o
onto the stack. ' . y
Stack opcode: 20 Alternate
Indicators: CCA, Carry, Overflow Position
Traps: STUN, ARITH

SUB Subtract. The TOS is subtracted in integer form from the ol l 2 I 3la I 5] 6l7 I 8] 9110 111]12 15[14 l15
second word of the stack and both words are then deleted. [ofo o ofo 1 ofo o0 1
The resulting difference is then pushed onto the stack. N — y
Stack opcode: 21 Alternate
Indicators: CCA, Carry, Overflow Position
Traps: STUN, ARITH

MPY Multiply. The top two words of the stack are multiplied o[1T2]3]a]s e]8]o]ro]t1[iz]rs]ia]is
in integer form. The two words are deleted and the least [ofo o ofo 1 ofo 7 0
significant word of the double length product is pushed N .)
onto the stack. If the high order 17 bits of the double Alternate
length product (including the sign bit of the second word) Position
are not all zeros or all ones, Overflow is set.
Instruction Commentary 1.
Stack opcode: 22
Indicators: CCA, Overflow
Traps: STUN, ARITH

DIV Divide. The integer in the second word of the stack is ol 1 l zl 3| a | 5 l 67] 8] 9 10111 |12 13]14]15
divided by the integer on the TOS. The second word is [o]o o ojo 1 ofo 1 1
replaced by the quotient, and the top word is replaced by N g y
the remainder. Alternate

Position

Stack opcode: 23 .
Indicators: CCA on quotient, Overflow
Traps: STUN, ARITH

2-1

Instruction Set

NEG

CMP

Negate. The integer in the TOS is replaced by its two’s
complement.

Stack opcode: 24

Indicators: CCA, Overflow, Carry

Traps: STUN, ARITH

Compare. The Condition Code is set to pattern C as a
result of the integer comparison of the second word of the
stack with the TOS. Both words are deleted.

Stack opcode: 17

Indicators: CCC

Traps: STUN

DOUBLE INTEGER INSTRUCTIONS

DADD

DSUB

MPYL

DIVL

Double add. The two doubleword integers contained in
the top four elements of the stack are added in double
length integer form (D,C + B,A) and they are deleted.
The doubleword integer sum is pushed onto the stack
(B,A).

Stack opcode: 11

indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

Double subtract. The doubleword integer contained in
the top two words of the stack is subtracted from the
doubleword integer contained in the third and fourth
words of the stack (D,C — B,A). The top four words of the
stack are deleted and the doubleword integer result is
pushed onto the stack (B,A).

Stack opcode: 12

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

Multiply long. The top two words of the stack are multi-
plied in integer form. The words are replaced by the
double length product, with the least significant half on
the TOS. Overflow is cleared. Carry is cleared if the low
order 16 bits represent the true result (i.e., if the high
order 17 bits are either all zeros or all ones); otherwise,
Carry is set.

Instruction Complementary 1.

Stack opcode: 13

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

Divide long. The doubleword integer in the second and
third elements of the stack is divided by the integer in
the TOS (C,B + A). The three words are deleted, and the
quotient and remainder are pushed onto the stack (quo-
tient in B, remainder in A).

Stack opcode: 14

Indicators: CCA, Overflow

Traps: STUN, ARITH

of 1[2{3]a]s]e]7]8]o]io]ii]r2 13]14 15
foJo o oJo 1 o)1 0 0o
) Altevmate ’
Position
0 1[2]3 4]5]6 7]8[9 10[11]12 13[14]15
{foJo o ofo o 1J1 1 1
) Alte'rnate ’
Position
of1[2f3fa]s]efs[s]ofro]st]iz]rafialrs
{oJo o ofo o 1j0 0 1
| v S—
- Alternate
Position
of1]2]3fa]s]e]7]a]ofro[1i]rz]ra]ra]ss
[o]o o oJo o 1Jo 1.0
) Altevrnate ’
Position
of1[2]3 4[5]6 7]8]9Jiofi1]s2 13[4 [15)
[ofJo o ofo o 10 1 1 1
) Alte:nate
Position
of1]2]3 als]e]7]s]e 1011 [12f13f1a]rs
[ojo o ofo 0 1]1 0 o

v
Alternate
Position

DNEG

DCMP

DMUL

DDIV

Double negate. The doubleword integer contained in the
top two words of the stack is negated (two's com-
plemented) and replaces the original doubleword
integer.

Stack opcode: 15

Indicators: CCA, Overflow

Traps: STUN, ARITH

Double compare. The Condition Code is set to pattern C
as a result of the doubleword integer comparison of D,C
and B,A. The two double words are deleted from the
stack.

Stack opcode: 10

Indicators: CCC

Traps: STUN

Double integer multiply. The two’s complement double
integer contained in D and C is multiplied by the two’s
complement double integer contained in B d¢hd A. The
four words are popped from the stack and the least sig-
nificant doubleword of the product is pushed onto the
stack. If the high order 33 bits if.the 64-bit product are
not all zeros or all ones, overflow is set.

Sub-opcode 2: 01, bits 8-15 = 170

Indicators: CCA

Traps: STUN, ARITH

Double integer divide. The two’s complement double in-
teger contained in D and C is divided by the two’s com-
plement double integer contained in B and A. The four
words are popped from the stack, the 32-bit quotient is
pushed into D and C, and the 32-bit remainder is pushed
into B and A.

Sub-opcode 2: 01, bits 8-15 = 171

Indicators: CCA on qguotient Overflow

Traps: STUN, ARITH

FLOATING POINT INSTRUCTIONS

DFLT

FLT

FCMP

Double float. Converts the doubleword integer contained
in the top two words of the stack to a floating point
number with rounding.

Instruction Commentary 2.

Stack opcode: 30

Inclicators: CCA

Traps: STUN

Float. Converts the integer on the TOS to a 32-bit float-
ing point number with rounding. The TOS is deleted and
the doubleword floating point result is pushed onto the
stack.

Instruction Commentary 2.

Stack opcode: 47

Indicators; CCA

Traps: STUN, STOV

Floating compare. The Condition Code is set to pattern C
as a result of the floating point comparison of D,C with
B,A. The two floating point double words are deleted.
Stack opcode: 50

Indicators: CCC

Traps: STUN

2-3

Machine Instruction Set

o

[oJo o ofo o0 1]

1[2]3]a]s]e 7](&;]? 10 11 [12fisia s

v
Alternate
Position

o

1{2]sfa]s]e]7]8]oo]i]iz]is]ra]is

[ofo o ofJo 0 1]Jo 0 o

~—
Alternate
Position

[=]

1[2]3]als[e]7]8]o]ro]11]12]1a]1a]rs

[ofo 1 ofo o of1fo 1]1 1 1]Jo 0 0

J

Y
CIR 8:8

[=]

1]2]3fals|e]7][8]o]ro]i1]rz]is]ra]is

[0]Jo 1 oJo o of1 0o 1J1 1 1]0o 0 1

J

v

CIR 8:8

of 1]2]sfals]e]7]8]o]ro]ii]i2]ia]ra]is
[o]o o ofo 1 1]Jo 0 o
| — v —
Alternate
Position

Q

1[2]afals]|ef7]8]9 10[11]12 13]14]15

[oJo o of1 0 o1 1 1

(¥

.
Alternate
Position

(=]

1[2]3fa]s]e]7]8]o]io]11]i2]r3]sa]1s

{oJo o of1 0 1]o 0 O

J

—
Alternate
Position

Instruction Set

FADD

FSUB

FMPY

FDIV

FNEG

v iXR

Floating add. The two floating point numbers contained
in the top four words of the stack are added in floating
point form. The top four words of the stack are deleted
and the two-word sum is pushed onto the stack.
Instruction Commentary 2.

Stack opcode: 51

Indicators: CCA, Overflow

Traps: STUN, ARITH

Floating subtract. The floating point number contained
in the top two words of the stack is subtracted in floating
point form from the floating point number contained in
the third and fourth words of the stack. The top four
words of the stack are deleted and the two-word differ-
ence is pushed onto the stack.

Instruction Commentary 2.

Stack opcode: 52

Indicators: CCA, Overflow

Traps: STUN, ARITH

Floating multiply. The two floating point numbers con-
tained in the top four words of the stack are multiplied in
floating point form. The top four words of the stack are
deleted and the two-word result is pushed onto the stack.
Instruction Commentary 2.

Stack opcode: 53

Indicators: CCA, Overflow

Traps: STUN, ARITH

Floating divide. The floating point number contained in
the third and fourth words of the stack is divided by the
floating point number contained in the top two words of
the stack. The top four words of the stack are deleted and
the two-word quotient is pushed onto the stack.
Instruction Commentary 2.

Stack opcode: 54

Indicators: CCA, Overflow

Traps: STUN, ARITH

Floating negate. The floating point number contained in
the top two words of the stack is negated in floating point
form.

Stack opcode: 55

Indicators: CCA

Traps: STUN

Fix and round. The floating point number contained in
the top two words of the stack is converted to fixed point
form and rounded to the nearest double word integer.
Carry is cleared if the low order 16 bits of the double
word result (TOS) represent the true integer value (i.e.,
if the high order 17 bits are either all zeros or all ones);
otherwise Carry is set.

Instruction Commentaries 1 and 2.

Stack opcode: 70

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

2-4

o 1]2]3]a]s]s 7]8]9 10]11]12 13]14 15
040 0 0f1 0 110 0 1
L v J
Alternate
" Position
of 1]2]3]a]s]s 2BE 101112 13[14]15
0Jo 0 011 0 1}0 1 0
) Alt;nate ’
Position
of1]2]s]a]s]s]7[8]o]ro]n]iz]sasa]is
[v00~01o1o11
) Alte:nate ’
Position
of1]2]3]4]sTs 7 [8[o]io]i]r2 13J1aJ1s
[oJo o o1 0 11 0 0
. ~ J
Alternate
Position
o] 1]2]3]a]s]e]7]8]e 1011]12]13]sa]ss
[o]o o of1 0 111 0 1
) Alte:wte ’
Position
_'“1[2]3 alsle 71819 10]11[12 13[14]15
[o]o 0o of1 1 170 0 0

(.

iy
Alternate
Position

Machine Instruction Set

FIXT Fix and truncate. The floating point number contained ol [2]s]a]s]e[7[8]o[ro]ri [i2]is]ra]ts
in the top two words of the stack is converted to fixed [ofo o of7 7 1fo 0
point form and truncated to a double word integer. Carry . v ”
is cleared if the low order 16 bits of the double word Alternate
result (TOS) represent the true integer value (i.e., it the Position
high order 17 bits are either all zeros or all ones); other-
wise Carry is set.
Instruction Commentaries 1 and 2.
Stack opcode: 71
Indicators: CCA, Carry, Overflow
Traps: STUN, ARITH

LOGICAL INSTRUCTIONS

LCMP Logical compare. The Condition Code is set to pattern C of1T2af«]s]e]7]s]o]ro]n1]i2]is]ra]is
as a result of the comparison of the second word of the [o]o o0 of1 0 1]71 1 1
stack with the TOS. The two words are then deleted from . g)
the stack. Alternate
Stack opcode: 57 Position
Indicators: CCC
Traps: STUN

LADD Logical add. The top two words of the stack are added as 0 1| 213 4]516 7[819 10111112 13114115
16-bit positive integers, and they are deleted from the o]0 0 o1 1 0o o0 o
stack. The resulting sum is pushed onto the stack. . o~ y
Stack opcode: 60 Alternate
Indicators: CCA (as a 2's complement result), Carry Position
Traps: STUN

LSUB Logical subtract. The top word of the stack is subtracted 1[2]3fa]s]e] 78]o]ro]t1]r2]ia]ra]ss

o

in logical form from the second word and they are de- [o]o 0 of7 1 oo 0 1

leted. The resulting difference is pushed onto the stack. - iy)
Stack opcode: 61 Alternate
Indicators: CCA (as a 2's complement result), Carry Position
Traps: STUN

LMPY Logical multiply. The top two words of the stack are

o

] 2[3fa]s]e]7]8]o o] i2]pa]ia]ss

multiplied as 16-bit positive integers. The words are [ofJo o ofJ1 1 ofo 1 o
replaced by the double length product with the least < —)
significant half on the TOS. Carry is cleared if the TOS Alternate

word of the result represents the true integer value (i.e., Position

if the high order 16 bits are all zeros); otherwise, Carry is
set.

Instruction Commentary 1.

Stack opcode: 62

Indicators: CCA (as a 2's complement result), Carry
Traps: STUN

LDIV Logical divide. The 32-bit positive integer in the second

1[2]3]a]s]e]7[8]oroi1]i2]pa]ia]s

(=]

and third words of the stack is divided by the 16-bit [0[o o of1 1 o]0 1 1
positive integer on the TOS (C,B + A). The top three \)
words are deleted. The quotient is pushed onto the stack Alternate

(B) and then the remainder (A). If overflow occurs, the Position

quotient will be modulo 26,

Stack opcode: 63

Indicators: CCA on quotient (as a 2's complement result),
Overflow

Trap: STUN, ARITH

2-5

Instruction Set

NOT

One’s complement. The top word of the stack is converted
to its one’s complement.

Stack opcode: 64

Indicators: CCA

Traps: STUN, ARITH

BOOLEAN INSTRUCTIONS

OR

XOR

AND

Logical OR. The top two words of the stack are merged by
a logical inclusive-OR. The two words are deleted and
the result is pushed onto the stack.

Stack opcode: 65

Indicators: CCA on the new TOS

Traps: STUN

Logical exclusive-OR. The top two words of the stack are
combined by a logical exclusive-OR. The two words are
deleted and the result is pushed onto the stack.

Stack opcode: 66

Indicators: CCA on the new TOS

Traps: STUN

Logical AND. The top two words of the stack are com-
bined by a logical AND. The two words are deleted and
the result is pushed onto the stack.

Stack opcode: 67

Indicators: CCA on the new TOS

Traps: STUN

INCREMENT/DECREMENT INSTRUCTIONS

INCX

DECX

INCA

DECA

INCB

Increment X. The content of the Index register is incre-
mented by one in integer form.

Stack opcode: 04

indicators: CCA, Carry, Overflow

Traps: ARITH

Decrement X. The content of the Index register is de-
cremented by one in integer form.

Stack opcode: 05

Indicators: CCA, Carry, Overflow

Traps: ARITH

Increment A. The TOS is incremented by one in integer
form.

Stack opcode: 33

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

Decrement A. The TOS is decremented by one in integer
form.

Stack opcode: 34

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

Increment B. The second word of the stack is incre-
mented by one in integer form. The TOS is unaffected.
Stack opcode: 73

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

0 1]2[3 4]5{6 7]819 10]11[12 131415
[ofo o of1 1 o]1 0 0
. v —
Alternate
Position
0 1]2[3 4]5]6 718!9 10]11[12 13[14]15
[ofo o0 of1 1 o1 0 1
« ~— J
Alternate
Position
0 1]2]3 4]5]6' 718L9 10111[12 13]14]15
[o]o o of1 1 o1 1 0
) Alt;nate ’
Position
of1]2]s 4[516 7]8{9 10]11[12 13]14[15
[0]o o of1 1 of1 1 1
- ~ J
Alternate
Position
0 1[2]3 4]5[6 7]8]9 10]11[12 mlmbs
[o]o o0 oJo o of1 0 0o
- ~v- J
Alternate
Position
of 1]2]3 4[5]5 7]8]9 10111112 13[14[15
[o]o o oJo o o]1 0 1
) Alternate ’
Position
0 1]2]3 4]5[6 718]9 10]11[1; 13]14[15
[o]Jo o ofJo 1 1Jo 1 1
\ ~v— J
Alternate
Position
ol [2]s]a]s]s]7[8]e]ro]nn]r2]ra]a]is
[o]o o ofo 1 1]1 0 o :
- ~ A
Alternate
Position
o 1] 2]s]als]e]7]s]o]rolni]iz]is]ra]s
[ofo o of1 1 1o 1 1
) AHET(\MP. ’
Position

DECB

Decrement B. The second word of the stack is de-
cremented by one in integer form. The TOS is unaffected.
Stack opcode: 74

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

INDEX INSTRUCTIONS

STBX

ADAX

ADXA

LDXB

STAX

LDXA

ADBX

ADXB

Store B into X. The second word of the stack replaces the
content of the Index register.

Stack opcode: 26

indicators: CCA, on the new X

Traps: STUN

Add A to X. The TOS is added in integer form to the ‘

content of the Index register. The sum replaces the con-
tent of the Index register, and the TOS is deleted.
Stack opcode: 36

Indicators: CCA on the new X, Carry, Overflow

Traps: STUN, ARITH

Add X to A. The content of the Index register is added to
the TOS, and the sum replaces the TOS.

Stack opcode: 37

Indicators: CCA on the new TOS, Carry, Overflow
Traps: STUN, ARITH

Load X into B. The second word of the stack is replaced
by the content of the Index register. The TOS is
unaffected.

Stack opcode: 42

Indicators: CCA on the new B

Traps: STUN

Store A into X. The TOS replaces the content of the Index
register, and TOS is deleted from the stack.

Stack opcode: 43

Indicators: CCA on the new X

Traps: STUN

Load X onto stack. The content of the Index register is
pushed onto the stack.

Stack opcode: 44

Indicators: CCA on to the new TOS

Traps: STOV

Add B to X. The second word of the stack is added in
integer form to the content of the Index register, and the
result replaces the content of the Index register.

Stack opcode: 76

Indicators: CCA on the new X, Carry, Overflow

Traps: STUN, ARITH

Add X to B. The content of the Index register is added in
integer form to the second word of the stack, and the sum
replaces the second word of the stack.

Stack opcode: 77

Indicators: CCA on the new B, Carry, Overflow

Traps: STUN, ARITH

2-7

Machine Instruction Set

0 1|2]3 aIs[s 7l8|9 10111]12 13]14[15
[oJo o o1 1 11 0 0
) Alt(;‘nate ’
Position
0 1]7[? qs]e 7[8f9 10[11[12 13174 15]
[0Jo 0 o]o 1 of1 1 o]
- Allanate ’
Position
0 1[2]3 4[5[6]]BJQ i 13114115
[0jo 0 0]o 1 1]7 1 0
- Altevrndte ’
Position
0 1(2[3 4—[516 7]8[0 10}11]12 13]15 15]
[0fo 0 ofo 1 1]1 1 1)
) Aller‘rnate)
Position
ol J2]s]e]s]e]7[8]o o]t [rz]a]ia]rs]
[o]Jo o o1 0 oo 1 o
- v vl
Alternate
Fosition
0 1[2[3 4]516 7[8]9 10]11]12 13]14]15
[oJo o0 of1 o oo 1 1
: [} v)
Alternate
Position
o 1]2]s 415]6 7[8[9 io]nlw 13114]15
[o]o o of1 0o of1 0 o
) AIteTnate ’
Position
ol 1]2]s]4]s]s 7l819 1011]iz]isfra]is
[oJo o o]1 1 1]1 1 0
- v J
Alternate
Position
of1[2]s]a]s]e]7]8]olrosr]i2]ia]sa]is
{oJo o ot 1 1J1 1 1

v
Alternate
Position

Instruction Set

EXCHANGE INSTRUCTIONS

DXCH

XCH

XAX

CAB

XBX

Double exchange. The top two doubleword pairs are in-
terchanged on the stack.

Stack opcode: 16

indicators: CCA on the new TOS double word

Traps: STUN

Exchange A and B. The top two words of the stack are
interchanged.

Stack opcode: 32

Indicators: CCA on the new TOS

Traps: STUN

Exchange A and X. The content of the TOS and the Index
register are interchanged.

Stack opcede: 35

Indicators: CCA on the new TOS

Traps: STUN

Rotate A,B,C. The third word of the stack is removed
from the stack, the two top words are compressed onto
the rest of the stack, and the original third word is
pushed onto the stack.

Stack opcode: 56

Indicators: CCA on the new TOS

Traps: STUN

Exchange B and X. The second word of the stack is
interchanged with the content of the Index register.
Stack opcode: 75

Indicators: unaffected

Traps: STUN

ZERO INSTRUCTIONS

ZROX

“ERO

‘RO

ZROB

Zero X. The content of the Index register is replaced by
zero.

Stack opcode: 03

Indicators: unaffected

Traps: None

Push zero. A zero word is pushed onto the stack.
Stack opcode: 06

Indicators: unaffected

Traps: STOV

Push double zero. Two words containing all zeros are
pushed onto the stack.

Stack opcode: 07

Indicators: unaffected

Traps: STOV

Zero B. The second word of the stack is replaced by zero.
The TOS is unaffected.

Stack opcode: 41

Indicators: unaffected

Traps: STUN

2-8

0 1[2]3 4[5|e 7]3[9 10[11[12 13[14[15
[0Jo o oJo o 1]1 1 0o
) Alt-e:nate ’
Position
ol 1]2]s]a]s]e]7]8]o]i0]11]r2 13[14]15
[oJo o ofJo 1 1]o 1 0
\ - J
Alternate
Position
of 1 T2]3]a]s]e]7]8]o]ro]ri]i2]is]1a]is
[0Jo o oJo 1 1]1 0 1
— — J
Alternate
Position
of 1 J2]s]a]s]e]7]8]o]o]r1]r2]13]1a]ts
[o]Jo o o]1 0 1]1 1 0
\ v J
Alternate
Position
of 1 T2]s]a[s]e]7]8]o]iofi1]iz]ia]ra]ss
[o]o o of1 1 1]1 0 1
N ~——— J
Alternate
Position
of1]2]3]a[s]e]7]8]o]io]n]r 13]14 15
[o]Jo o oJo o ofo 1 1
AW v -
Alternate
Position
of 1 [2]sfa]s]e]7]8]o o1 [r2fis]a]ss
[o]o o o]Jo o o1 1 0
.. ~- J
Alternate
Position
of1]2[a]a]s[e]7[8]ofio]rr]i2pafra]is
[o]o o ofJo o o1 1 1
- - J
Alternate
Position
of 1] 2]afals]e]7]8]ofro]n]iz]ia]sa]ss
[oJo o o]1 o ofo 0 1
" o —
Alternate
Position

DUPLICATE AND DELETE INSTRUCTIONS

DELB

DDEL

DEL

DUP

DDUP

Delete B. The second word of the stack is deleted and the
stack is compressed. The content of the TOS is
unchanged.

Stack opcode: 01

Indicators: unaffected

Traps: STUN

Double delete. The top two words of the stack are deleted.
Stack opcode: 02

Indicators: unaffected

Traps: STUN

Delete A. The top word of the stack is deleted.
Stack opcode: 40

Indicators: unaffected

Traps: STUN

Duplicate A. The top word of the stack is duplicated by
pushing a copy of the TOS onto the stack.

Stack opcode: 45

Indicators: CCA

Traps: STUN, STOV

Double duplicate. The double word in the top two words
of the stack is duplicated by pushing a copy of it onto the
stack.

Stack opcode: 46

Indicators: CCA on new TOS double word

Traps: STUN, STOV

TEST INSTRUCTIONS

TEST

DTST

BTST

Test TOS. The condition code is set to pattern A accord-
ing to the content of the TOS word.

Stack opcode: 25

Indicators: CCA

Traps: STUN

Test double word on TOS. The condition code is set to
pattern A according to the contents of the top two words
of the stack. Also, Carry is cleared if the low order 16 bits
of the doubleword result (TOS) represent the true integer
value (i.e., if the high order 17 bits are either all zeros or
all ones); otherwise, Carry is set.

Instruction Commentary 1.

Stack opcode: 27

Indicators: CCA, Carry

Traps: STUN

Test byte on TOS. The Condition Code is set to pattern B
according to the contents of the byte contained in the
eight least significant bits of the TOS word (bits 8-15).
Stack opcode: 31

Indicators: CCB

Traps: STUN

2-9

Machine Instruction Set

0 1[2[3 4IST6 7[8]9 10[11[12 13]14&
[oJo o oo o ofo o 1
\ ~v J
Alternate
Position
o[[e 7 e o ol o[a oo
[0]o o ofo o ofo 1 0
- ~ J
Alternate
Position
0 1[2[3 4]5[6 7[8[9 10]11]12 13]14]15
[oJo o0 o1 0 o]Jo 0 o
) Alr;rnata ’
Position
of 1]2]3s 4]5]6 7[8[9 10[11[12 13114]15
[0Jo o0 o1 o of1 0 1
) Alt?mate ’
Position
0 1[2]3 4]5]6 7[8]9 10[11]12 13114115
[ofo o of1 0o of1 1 0
AN v —
Alternate
Position

0 1[213 4]5]6 718]9 0[]z HE
[oJo o ofJo 1 o1 0 1
« v J
Alternate
Position
of 1]2]3]als]e]f7]8]o 10]11]12 1311‘115
[0fo o oJo 1 of1 1 1
| — v- J
Alternate
Position
of 1 Ta]sfals]e]7]s]o]ro]i1]i2]ra]sa]is
{o]o o ofJo 1 1]Jo o0 1

- J

v
Alternate
Position

Instruction Set -

NO OP INSTRUCTION

NOP

No operation. The user’s program space and data space
remain unchanged.

Stack opcode: 00

Indicators: unaffected

Traps: None

o] 1]2]3 415[6‘7[819 0]]2 13[14115
[o]Jo o oJo o oJo 0 o
) Ailovrnate ’
Position

SHIFT INSTRUCTIONS

SINGLE WORD SHIFT INSTRUCTIONS

All single word shift instructions: Instruction Commentary 3.

ASL

ASR

LSL

LSR

CSL

Arithmetic shift left. The TOS is shifted left n bits, pre-
serving the sign bit. The value of n (modulo 64) is the
number specified in the argument field plus, if X is
specified (bit 4), the content of the Index register.
Sub-opcode 1: 00

Indicatars. CCA

Traps: STUN

Arithmetie shift right. The TOS is shifted right n places,
propagating the sign bit. The value of n (modulo 64) is
the number specified in the argument field plus, if X is
specified, the content of the Index register.
Sub-opcode 1: 01

Indicators: CCA

Traps: STUN

Logical shift left. The TOS is shifted left n bits logically.
The value of n (modulo 64) is the number specified in the
argument field plus, if X is specified, the content of the
Index register.

Sub-opcode 1. 02

Indicators: CCA

Traps: STUN

Logical shift right. The TOS is shifted right n bits logi-
cally. The value of n (modulo 64) is the number specified
in the argument field plus, if X is specified, the content of
the Index register.

Sub-opcode 1. 03

Indicators: CCA

Traps STUN

Circular shift left. The TOS is shifted left n bits circu-
larly. The value of n (modulo 64) is the number specified
in the argument field plus, if X is specified, the content of
the Index register.

Sub-opcode 1. 04

Indicators: CCA

Traps: STUN

2-10

of1]2]3]s sLs 71819 10111[121}3[14[15
[oJo o 1]x]|o ojo 0 o
[v S
Shift
Count
of1[2]3falsie]7]|8]o]ofit|i2fafia]ss
[o]Jo o 1]x]Jo oo o0 1
' v ——
Shift
Count
of 1 [2]3]a]s]e 718]9 10[11[12'13114[15
[oJo o 1]x]o oo 1 0
\ v o
Shift
Count
of112]afals]e 7]8[9 10[11[12 13[14[15
[0fo o 1]x]o ofo 1 1
| - J
Shift
Count
o 1]2]3]s 5[6 7[8[9 10L11T12 13{14 15
foJo o 1]x]o of1 0 o
- Shvlft ’
Count

CSR

Circular shift right. The TOS is shifted right n bits circu-
larly. The value of n (modulo 64) is the number specified
in the argument field plus, if X is specified, the content of

the Index register.

Sub-opcode 1. 04
Indicators: CCA

Traps: STUN

DOUBLE WORD SHIFT INSTRUCTIONS

All double word shift instructions: Instruction Commentaries 3

and 4.

DASL

DASR

DLSL

DLSR

DCSL

Double arithmetic shift left. The double word contained
in the top two words of the stack is shifted left n bits,
preserving the sign bit (bit O of B). The value of n (mod-
ulo 64) is the number specified in the argument field
plus, if X is specified, the content of the Index register.
Sub-opcode 1. 20

Indicators: CCA

Traps: STUN

Double arithmetic shift right. The double word contained
in the top two words of the stack is shifted right n bits,
propagating the sign bit (bit 0 of B). The value of n
(modulo 64) is the number specified in the argument
field plus, if X is specified, the content of the Index
register.

Sub-opcode 1: 21

Indicators: CCA

Traps: STUN

Double logical shift left. The double word contained in
the top two words of the stack is shifted left n bits logi-
cally. The value of n (modulo 64) is the number specified
in the argument field plus, if X is specified, the content of
the Index register.

Sub-opcode 1. 22

Indicators: CCA

Traps: STUN

Double logical shift right. The double word contained in
the top two words of the stack is shifted right n bits
logically. The value of n (modulo 64) is the number
specified in the argument field plus, if X is specified, the
content of the Index register.

Sub-opcode 1: 23

Indicators: CCA

Traps: STUN

Double circular shift left. The double word contained in
the top two words of the stack is shifted left n bits circu-
larly. The value of n (modulo 64) is the number specified
in the argument field plus, if X is specified, the content of
the Index register.

Sub-opcode 1: 24

Indicators: CCA

Traps: STUN

2-11

Machine Instruction Set

of 1]2]s 5]6 7]8]o 10]11[12 131{;1]"1?
[o]o o 1]x]o of1 0 1
) Sl"l'ift ’
Count
of1]2]s 5|6 718]9 mJnln 13]14J15
[0]o 0 1 1 0Jooo
\ v J
Shift
Count
of1]2]3 s[ef7]s oot [r2]iaia]rs
[ofjo o 1 1 0Jo 01
- ~ Vi
Shift
Count
0 1[213 5[6 718[9 0] [i2]13]ha 15
oo o 1 1 0Jo 1 0 ,,-,
IR
C'w!
0 1]2!3 516 71819 1(1]»171l12 13‘[14[1‘;
[0]o o 1 1 0lo v] T
- ~ J
Shift
Count
of 1 T2]3 s [6]7]8]oio]n]iz]iafia]is
[o]o o0 1 1 0]1 0o
\ v —
Shift
-Count

Instruction Set

DCSR

Double circular shift right. The double word contained in
the top two words of the stack is shifted right n bits
circularly. The value of n (modulo 64) is the number
specified in the argument field plus, if X is specified, the
content of the Index register.

Sub-opcode'1: 25

Indicators: CCA

Traps: STUN

TRIPLE WORD SHIFT INSTRUCTIONS

All triple word shift instructions: Instruction Commentaries 3

and 5.

TASL

TASR

TNSL

Triple arithmetic shift left. The triple word integer con-
tained in the top three words of the stack is shifted left n
bits, preserving the sign bit (bit 0 of C). The value of n
(modulo 64) is the number specified in the argument
field plus, if X is specified, the content of the Index
register.

Sub-opcode 1: 10

Indicators: CCA on the new TOS triple word

Traps: STUN

Triple arithmetic shift right. The triple word integer
contained in the top three words of the stack is shifted
right n bits, propagating the sign bit (bit 0 of C). The
value of n (modulo 64) is the number specified in the
argument field plus, if X is specified, the content of the
Index register.

Sub-opcode 1: 11

Indicators: CCA on the new TOS triple word

Traps: STUN

Triple normalizing shift left. The top three words of the
stack are shifted left arithmetically until bit 6 of C is a
“1”, Bits 0 through 5 of C are cleared (“0”). The shift
count is stored in the Index register. The instruction
initially elears the Index register unless X is specified
(“1” in bit 4 of the instruction).

Sub-opcode 1. 16

Indicators: CCA on final value of top three words
Traps: STUN

QUADRUPLE WORD SHIFT INSTRUCTIONS

Quadruple word shift instructions: Instruction Commentaries 3

and 6.

QASL

Quadruple arithmetic shift left. The four-word integer
contained in the top four words of the stack is shifted left
n bits, preserving the sign (bit 0 of word D). The value of
n (modulo 64) is the number specified in the shift count
plus the contents of the Index register.

Sub-opcode 1: 17, bit 4= 0

Indicators: CCA on the new TOS quadruple word
Traps: STUN

2-12

(=]

Te[afalsTe]7e]o]ofri]iz]pa]ra]ue)

[0]o o 1] x]1 of1 0 1

| S —

Shift
Count

[e]7Tslooln[rz]ia]iae]

Y

Shift Count

[=]
N
—
w
o

s[e]7]8]0 o]]rz2]isfras

[oJo o0 1[x]o 1]o 0 1

~ v 2

Shift Count

[ooo;xo1”1 1 610[/;1179’///59

“ J
v

Reserved

o

;l;[i 401(5)11: :[f[? 1o]iz]isfafis

—
Q

\ vl

Shift Count

Machine Instruction Set

QASR Quadruple arithmetic shift right. The four-word integer of 1 T2]s]4]s]s[7[8]o[ro]r1 r2]ra]ra]is
contained in the top four words of the stack is shifted [ofo o 1[1 0 1|1 1 1
right n bits, preserving the sign (bit 0 of word D). The . S
value of n (modulo 64) is the number specified in the shift Shift Eount

count plus the contents of the Index register.
Sub-opcode 1. 17, bit 4 = 1

Indicators: CCA on the new TOS quadruple word
Traps: STUN

FIELD AND BIT INSTRUCTIONS

[=]

SCAN Scan bits. The TOS is shifted left until bit 0 contains a 1] 2] 3lals l 6l lg l 9 ’OI"]12 13]14 [15
“1”, then is shifted left one more bit. The shift count is [0]o o 1[x]o of1 1 o GH LG Y
left in the Index register, indicating the bit position - S
which contained the “1”. The instruction normally sets Res;\,‘,d
the Index register to —1 before beginning the shifts.

However, if X is specified, the shift count adds on to the
existing Index register content. If TOS is all zeros, the
count will be 16 if unindexed, or X + 16 if indexed.
Sub-opcode 1: 06

Indicators: CCA on final TOS

Traps: STUN

TBC Test bit and set Condition Code. One bit of the TOS word 1 l 2'3 4 5[5 7] g]g 10[111,2 13114T,5
is tested and the Condition Code is set to a special pat- [ofo o 1[x]1 1Jo 1 0
tern depending on the state of the bit. The bit position to \ - s
be tested is specified by the argument field of the instruc- Bit Position
tion plus, if X is specified, the content of the Index regis-
ter. If the number specified exceeds 15, the bit position
indicated is modulo 16; e.g., bit 0 is tested for counts of 0,

16, 32, 48, etc.
Sub-opcode 1. 32
Indicators: CCE if the bit was 0"
CCL or CCQG if the bit was “1”
Traps: STUN

[=]

(=]

TRBC Test and reset bit, set Condition Code. The operation of 1] 5 I alals] A E lg I 9 10]11 112 13114115
this instruction is identical to that of TBC except that [ofo o 1[x]1 1o 1 1
the tested bit is reset to “0” after the test. \ . ,
Sub-opcode 1: 33 Bit Position
Indicators: CCE if the bit was “0"
CCL or CCG if the bit was “1"

Traps: STUN

o

TSBC Test and set bit, set Condition Code. The operation of this 1[2]3]a]s[e]7]8]o o]t]i2]ia]ia]is
instruction is identical to that of TBC except that the [o]o o 1]x]|1 1]1 0o o
tested bit is set to “1” after the test. N iy v}
Sub-opcode 1: 34 Bit Position
Indicators: CCE if the bit was "0"
CCL or CCQG if the bit was 1"
Traps: STUN

2-13

Instruction Set

TCBC Test and complemen pit, set Condition Code. The opera- 5 [A E [8] 9 10]11 Iwz 13]14]:5
tion of this instruction is identical to that of TBC except (oo o *[x]71 1[7 0 1
that the tested bit is complemented after the test. . - S
Sub-opcode 1: 35 Bit Position
ndicators: CCE if the bit was 0"
CCL or CCG if the bit was "1"
Traps: STUN

o
LS}
[
o

<]
(=3
- N

—
o w

tracted and right justified, and the result, with high [0 T 1 ol
order zeros, replaces the TOS. The J field specifies the < g .
starting (leftmost) bit number in the source field, and the - J

K field specifies the number of bits to be extracted. Starting Number
Instruction Commentary 7 Bit = of bt
Sub-opcode 2: 15

Indicators: CCA on the new TOS

EXF Extract field. A specified set of bits in the TOS are ex- als]e]7]8]o]o]m ll;wu F;g
K

Traps: STUN

DPF Deposit field. A specified number of the least significant of 1 T2a]a]s[6]7[s]erolsi]i=]1s]re] o
bits of the TOS are deposited in the second word of the [ofo 7 o7 1 1]o
stack, beginning at the bit number specified by the J . y A y y
field; the remair.ing bits of the second word of the stack J K
are unchanged. The K field specifies the number of bits Starting Number
to be deposited. The source operand is deleted from the Bit = of bits

stack.

Instruction Commentary 7
Sub-opcode 2: 16

Indicators: CCA on the new TOS
Traps: STUN

BRANCH INSTRUCTIONS

IABZ Increment A, branch if zero. The TOS is incremented. If 1 l 5
the result is then zero, control is transferred to P = [ofo o
displacement; otherwise to P+ 1.

Sub-opcode 1. 07
Indicators: CCA, Carry, Overflow
Addressing modes: P relative (+/-)
Direct or indirect
Traps: STUN. BNDV if user or privileged, ARITH

[=}
-

of11 112 13]14 115

I: als]sf7]8]o

R —
Displacement

IXBZ Increment X, branch if zero. The Index register is incre- 0 ,T7 I 312 s [617 l a 19 10 ”Ji? 13 IM I,5
mented if the result is then zero, control is transferred to [0 o0 1hilo ilo 7 o
P + displacement; otherwise to P+ 1.
Sub-opcode 1. 12
Indicators: CCA, Carry, Overflow
Addressing modes: P relative (+/—).

Direct or indirect

Traps: BNDV if user or privileged, ARITH

| Uy ——

Displacement

DXBZ Decrement X, branch if zero, The Index register is de- ol I 2 I 3lals] 617 l 8] 9 [t In 13]14 [15
cremented. If the result is then zero, control is trans- [ofo o 1|10 1o v 1]*
ferred to P = displacement; otherwise to P+ 1.])
Sub-opcode 1: 13 Displacement

indicators: CCA, Carry, Overflow

Addressing modes: P relative (+/—)
Direct or indirect

Traps: BNDV if user or privieged, ARITH

2-14

Machine Instruction Set

DABZ Decrement A, branch if zero. The TOS is decremented. If o T[] [s[e]7Teo o] [z[is]a e
the result is then zero, control is transferred to P + oo o i[i|7 of7 7 1=
displacement; otherwise to P+ 1. =
Sub-opcode 1: 27 —

Disp!
Indicators: CCA, Carry, Overflow isplacement

Addressing modes: P relative (+/-)
Direct or indirect
Traps: STUN, BNDV if user or privileged, ARITH

Q

BCY Branch on carry. If the Carry bit of the Status register is 1[2[3[]s[e]7[e]sJro]nn [re[aa]s
set (“1”), control is transferred to P + displacement; [ofo o0 1[1]0 1

otherwise to P+ 1. UL L
Sub-opcode 1: 14 Displacement
Indicators: Carry cleared
Addressing modes: P relative (+/-)
Direct or indirect
Traps: BNDV if user or privileged
BNCY Branch on no carry. If the Carry bit of the Status register ol 1] 21 aTals I sl 7 I a I o T1ol11 l,2 ,3IM |,5
is clear (“0™), control is transferred to P + displacement; [0]o o 1[1]o 1|7 0 1|=
otherwise to P+ 1. ”
Sub-opcode 1: 15 Displacement

Indicators: Carry cleared

Addressing modes: P relative (+/—)
Direct or indirect

Traps: BNDV if user or privileged

BOV Branch on overflow. If the Overflow bit of the Status T2]a]«15[e[7]s s [io[n 2] i3 a5
register is set (“1”), control is transferred to P+ dis- fofo o a1 1fo 0 o=
placement; otherwise to P+ 1.
Sup—opcode 130 Displacement
Inclicators: Overflow cleared
Addressing modes: P relative (+/-)
Direct or indirect
Traps: BNDV if user or privileged

o

BNOV Branch on no overflow. If the Overflow bit of the Status]] 5 [T-T5 [6 ;]B lg 1o I12 13 [,4
register is clear (*0”), control is transferred to P + dis- [ofo o 1[iT7 iJo o 1]%
placement; otherwise to P+ 1.
Sub-opcode 1: 31
Indicators: Overflow cleared
Addressing modes: P relative (+/-)

Direct or indirect
Traps: BNDV if user or privileged

16

(=]

| S —
Displacement

BRO Branch on TOS odd. If the TOS is odd (bit 15 = 1), control) 1] ?l T2 5[6 7] 819 o ”I” 13114[15
is transferred to P = displacement; otherwise to P+ 1. [ARG FREEEE ERE B
The TOS is deleted. N
Sub-opcode 1: 36 Displacement
Indicators: unaffected
Addressing modes: P relative (+/-)

Direct or indirect

Traps: STUN, BNDV if user or privileged

BRE Branch to TOS even. If the TOS is even (bit 15 = 0), of 1] 2{3 4 516 7J 890 ﬂu 131”1_'_54
control is transferred to P + displacement; otherwise to [ofo o 1]t 11 1]:
P+ 1. The TOS is deleted. S
Sub-opcode 1. 37 Displacement

Indicators: unaffected

Addressing modes: P relative (+/-)
Direct or indirect

Traps: STUN, BNDV if user or privileged

2-15

Instruction Set

CPRB

BR

BCC

Compare range and branch. The integer in the Index
register is tested to determine if it is within the interval
defined by the upper bound integer on the TOS and the
lower bound integer in the second word of the stack. The
Condition Code is set by the comparison to a special
pattern: CCE if within range, CCL if below range, CCG if
above range. If the integer in the Index register is within
the specified range, control is then transferred to P =
displacement; otherwise to P+ 1. The top two elements of
the stack are deleted in either case.
Sub-opcode 1: 26
Indicators: CCE, CCL, CCG
Addressing modes: P relative (+/-)

Direct or indirect

Traps: STUN, BNDV if user or privileged

Branch unconditionally. For P relative mode, control is
transferred unconditionally to P := displacement, plus (if
specified) the value in X; may be indirect. For DB, Q, and
S relative modes, control is transferred indirectly (only)
via the location specified by DB, Q, or S = this displace-
ment; the content of the location so specified is added to
PB (plus post-indexing if X is specified) to obtain the
effective address for P.
Instruction Commentary 8
Memory opcode: 14, bits 5, 6 = 00, 10, or 11
Indicators: unaffected
Addressing modes: P relative (+/—), direct or indirect

: DB+ relative, indirect
Q+ relative, indirect
Q- relative, indirect
S— relative, indirect
indexing available
BNDV, BNDV on P and P relative if user or
privileged

Traps:

Branch on Condition Code. The Condition Code in the
Status register is compared with conditions named in the
CCF field of the instruction. If the named conditions are
met, control is transferred to P + displacement; other-
wise to P+ 1. The displacement is limited to = 31. Control
is transferred to the branch address under the following
conditions:

IfCCF = 0, never branch
= 1, branch if CC = CCL
= 2, branch if CC = CCE
= 3, branch if CC = CCL or CCE
= 4, branchif CC = CCG
= 5, branch if CC = CCG or CCL
= 6, branch if CC CCG or CCE

= 17, always branch
Memory opcode: 14, bits 5,6 = 01
Indicators: unaffected
Addressing modes: P relative (+/—)
Direct or indirect

Traps: BNDV if user or privileged

2-16

of 1]2]3fa]s]s 7[8]9 1011[12 13114]15
[oJo o 1]1[1 ofr 1 of:
—
Displacement
0 1[2[3 als|efr[s]o 1011 12 13]14 15
[1]1 o o]x]1 of:
) Dnspla?emem ’
P Relative
0 1]7[3 4 5]6 7]8!9 10111]12 13]14[15
[1]r o ofx]1 1
Displacement
DB+ {0
ar |10 I4—~———-—»—>
Q- 17110
S- 1111 L
of 1]2[3fa]s]s 7]8]o 10[11[12 13[14]15
[1]17 0 o]1]e 1] E L|: '

CCF

Displacement

MOVE

MVB

MOVE INSTRUCTIONS

NOTE

All Move instructions are interruptable after
each word (or byte) transfer and will continue
from the point of interrupt when control is
returned to the instruction.

Move words. This instruction transfers a specified
number of words from one area of primary memory to
another. The instruction expects a signed word count in
A, a DB or PB relative displacement for a source address
in B, and a DB relative displacement for a target address
in C. As long as the word count in A has not been counted
to zero, the transferring of data will continue as follows:
The content of the memory location specified by DB + B
or PB + B is transferred to the location specified by DB +
C. If the word count in A is positive, the source and
target displacement values in B and C are incremented
by one on each transfer, and the word count is de-
cremented by one. If the word count in A is negative, the
source and target displacement values in B and C are
decremented by one on each transfer, ar.d *he word count
is incremented by one. Note that the word count is al-
ways changed by one toward zero. On completion of the
block transfer, the instruction deletes from the stack the
number of words specified by the SDEC (S decrement)
field of the instruction; the range of this field is 0
through 3.
Instruction Commentary 9
Move opcode: 0
Indicators: unaffected
Acldressing modes: DB+ or PB+ for source
DB+ for target

Traps: STUN, STOV, BNDV, BNDV on P relative if user or

privileged

Move bytes. The MVB instruction transfers a specified
number of bytes from one area of primary memory to
another. The instruction expects a signed byte count in
A, a DB or PB relative displacement for a source byte
address in B, and a DB relative displacement for a target
byte address in C. As long as the word count in A has not
been counted to zero, the transferring of data will con-
tine as follows: The content of the byte address location
specified by DB + B or PB + B is transferred to the byte
address location specified by DB + C. If the byte count in
A is positive, the source and target displacement values
in B and C are incremented by one on each transfer, and
the byte count is decremented by one. If the byte count in
A is negative, the source and target displacement values
in B and C are decremented by one on each transfer, and
the byte count is incremented by one. Note that the byte
count is always changed by one toward zero. On comple-
tion of the block transfer, the instruction deletes from
the stack the number of words (0, 1, 2, or 3) specified by
the SDEC field of the instruction.

2-17

Machine Instruction Set

0 1]2]3 4]5[6 7 8]9 1011 1213 'I/lIT_S.1
0jo 1 0jo0o 0 ojojJo Ofo0 ’
PB:DB S
SDEC
of 1 [2]3]4a]s]s 8 o]]i2]ra]ia]is
foJo 1 0o]Jo 0 0o 0 o] 7
PB/DB S
SDEC

Instruction Set

Instruction Commentary 9
Move opcode: 1
Indicators: unaffected
Addressing modes: Byte addressing
DB+ or PB+ for source
DB+ for target
Traps: STUN, STOV, BNDV, BNDV on P relative if user or
privileged

o

MVBW Move bytes while of specified type. This instruction 1[2] 3] [sTe[7[e]e o[[2]s 1415
transfers an unspecified number of bytes from one area o 1 0lo o olol™ ofo ‘
of primary memory to another. The instruction expects a R ; 1_ -

(=}

source byte address in the TOS and a DB relative dis- CCF SDEC
placement for a target byte address in the second word of Alphabetic: 0 1 Upshift
the stack. As long as the source byte is of the type Numeric: 10
gpecified in the CCF field, it is moved to the target area.

The target displacement value in B is incremented by

one on each transfer. If the byte to be moved is a lower

case letter and the upshift bit is on, the target byte will

be an upshifted copy of the source byte. Byte transfers

continue until the source byte is not of the proper type.

On completion of the block transfer, the instruction de-

letes from the stack the number of words (0, 1, 2, or 3)

specified by the SDEC field of the instruction.

instruction Commentary 9

Move opcode: 4

Indicators: CCB on the last character scanned

Addressing mode: Byte addressing, DB+

Traps: STUN, STOV, BNDV

CMPB Compare bytes. This instruction scans two byte strings ol l 2 l ala 15 [6]7]8]o]rofrfr2]ia]ra 115
simultaneously until the compared bytes are unequal or [oJo 7 oo o ofo[7 o] \
until a specified number of comparisons have been made. PB/DB ——
CMPB expects a signed byte count in A, a DB or PB : SDEC
relative displacement for a source byte address in B, and
a DB relative displacement for a target byte address in
C. As long as the word count in A has not been counted to
zero, the comparison proceeds as follows: The content of
the byte address location specified by DB+ Bor PB+ B
is compared with the content of the byte address location
specified by DB + C. If the byte count in A is positive, the
source and target displacement values in B and C are
incremented by one after each comparison, and the byte
count is decremented by one. If the byte count in A is
negative, the source and target displacement values in B
and C are decremented by one after each comparison,
and the byte count is incremented by one. Note that the
byte count is always changed by one toward zero. The
instruction terminates when either a comparison fails or
the byte count in the TOS reaches zero. The Condition
Code is set to a special pattern to indicate the terminat-
ing condition. On termination, the instruction deletes
from the stack the number of words (0, 1, 2, or 3)
specified by the SDEC field of the instruction.
instruction Commentary 9
Move opcode: 5
Indicators: CCE if byte count = 0

CCG if target byte > source byte (final)
CCL if target byte < source byte (final)

2-18

SCW

SCU

MVBL

Addressing modes: Byte addressing
DB+ or PB+ for source
DB+ for target
Traps: STUN, STOV, BNDV, BNDV on P relative if user or
privileged

Scan while memory bytes equal test byte. The SCW
instruction expects the TOS to contain a test character in
the right byte and a terminal character in the left byte.
The second word of the stack contains a DB relative
displacement for a source byte address. The source byte
is tested against the test character. If they are equal the
source byte address is incremented and the next byte is
tested. This continues until a source byte is found that is
not the same as the test character. If the last character
scanned is the same as the terminal character, the Carry
bit is set; if not, the Carry bit is cleared. On completion of
the scan, the instruction deletes from the stack the
number of words (0, 1, 2, or 3) specified in the SDEC field
of the instruction.
Instruction Commentary 9
Move opcode: 2, bits 11,12 = 10
Indicators: Carry

CCB on the last character scanned
Addressing mode: Byte addressing, DB+
Traps: STUN, STOV, BNDV

Scan until memory byte equals test byte or terminal
byte. The SCU instruction expects the TOS to contain a
test character in the right byte and a terminal character
in the left byte. The second word of the stack contains a
DB relative displacement for a source byte address. The
source byte is tested against the test and terminal char-
acters. If the source byte differs from both of these char-
acters, the byte address is incremented and the next byte
is tested. This continues until either the test character of
the terminal character is encountered. The address of
character remains in the second word of the stack. If the
last character scanned was the same as the test charac-
ter, the Carry bit is cleared; if it was the same as the
terminal character, Carry is set. On completion of the
scan, the instruction deletes from the stack the number
of words (0, 1, 2, or 3) specified in the SDEC field of the
instruction.

Instruction Commentary 9

Move opcode: 3, bits 11,12 = 10

Indicators: Carry

Addressing mode: byte addressing, DB+

Traps: STUN, STOV, BNDV

Move words from DB+ to DL+. This instruction trans-
fers a specified number of words from the DB+ area of
the data segment to the DL+ area. The instruction ex-
pects a signed word count in A, a DB relative displace-
ment for a source address in B, and a DL relative dis-
placement for a target address in C. As long as the word
count in A has not been counted to zero, the transferring
of data will continue as follows: The contents of the
memory location specified by DB + B is transferred to
the location specified by DL + C. If the word count in A is
positive, the source and target displacement values in B

2-19

Machine Instruction Set

0 1L2L3 4[5]6 7 8191011 12 1314[15
[oJo 1 ofo o0 ofofo 1jo]i]o0
e
SDEC

of 1]2]s 415[6 78]9 o]]i2]h3 14115

[o]o 1 o]o o ofofo 1]1]1]0 Y
—
SDEC

of 1]2]s 4[5]6 78900 12]13]1a 15

[oJo 1 oo o ofof{o 1]o]o o8]
[——
SDEC

Instruction Set

MVLB

MABS

and C are incremented by one on each transfer, and the
word count is decremented by one. If the word count in A
is negative, the source and target displacement values in
B and C are decremented by one on each transfer, and
the word count is incremented by one. Note that the word
count is always changed by one toward zero. On comple-
tion of the block transfer, the instruction deletes from
the stack the number of words (0, 1, 2, or 3) specified by
the SDEC field of the instruction. This instruction can
use split stack.
Instruction Commentary 10
Move opeode: 2, bits 11,12 = 00
Indicators: unaffected
Addressing modes: DB+ for source

DL+ for target
Traps: STUN, STOV, MODE
This is a privileged instruction.

Move words from DL+ to DB+ . This instruction trans-
fers a specified number of words from the DL+ area of
the data segment to the DB+ area. The instruction ex-
pects a signed word count in A, a DL relative displace-
ment for a source address in B, and a DB relative dis-
placement for a target address in C. As long as the word
count in A has not been counted to zero, the transferring
of data will continue as follows: The contents of the
memory location specified by DL + B is transferred to
the location specified by DB + C. If the word count in A is
positive, the source and target displacement values in B
and C are incremented by one on each transfer, and the
word count is decremented by one. If the word count in A
is negative, the source and target displacement values in
B and C are decremented by one on each transfer, and
the word count is incremented by one. Note that the word
count is always changed by one toward zero. On comple-
tion of the block transfer, the instruction deletes from
the stack the number of words (0, 1, 2, or 3) specified by
the SDEC field of the instruction.
Instruction Commentary 10
Move opcode: 3, bits 11,12 = 00
Indicators: unaffected
Addressing mode: DL+ for source

DB+ for target
Traps: STUN, STOV, MODE
This is a privileged instruction.

Move using absolute addresses. This instruction expects
to find a signed word count in A, an absolute source
address in C and B (memory bank address in C), and an
absolute target address in E and D (memory bank ad-
dress in E), Words from the source area are moved into
the target area with increasing addresses if the word
count in A is positive or with decreasing addresses if the
word count in A is negative. The positive word count in A
is decremented towards zero or the negative word count
is incremented towards zero with each word transferred.
The transfer of words terminates when the word count
reaches zero, then the instruction pops the number of
words (0 through 7) specified in the SDEC field from the
stack.

2-20

ol 1]2]s 4[5}6 7~8]91011 121;14[15
[ofJo 1 o]o o ofofo 1]1]o
e
SDEC
ol 1]2[3]a]s[e]7[8]o]ro]i1]i2]iz]sa]rs}
[oJo 1 o]o o0 ofo o0 1]Jo 0 1
SDEC
S-4 E Target bank address
S-3 D Absolute target address
S-2 C Source bank address
S-1 B Absolute source address
S A Signed (+ or -) word count

MTDS

MFDS

Move opcode: 2, bits 11,12 = 01
Indicators: unaffected

Traps: MODE, STUN

This 1s a privileged instruction.

Move to data segment. This instruction expects to find a
positive word count in A which represents the size of the
block of words to be transferred, a DB-relative address in
B to be used in calculating the source address of the first
word to be transferred, and an offset into a target data

segment in C to be used with the target data segment.

number in D to determine the address of the first target
word location. The DST pointer is fetched from memory
location 1 and added to four times the target data seg-
ment number in D to determine the desired target DST
entry. A target address for storing the first word is then
formed by adding the offset into the data segment con-
tained in C to the segment base address contained in the
fourth word of the DST entry. (The memory bank address
for the segment is the third word of the DST entry.) A
DB-relative source word address is formed by adding the
DB address of the source segment and the DB-relative
address in B. The source word pointed to is moved to the
target location, the address pointers are incremented to
point to the next source and data words, and the word
count is decremented. Words from the source area con-
tinue to be moved to the target area until the word count
reaches zero. The stack is then popped by the number of
words (0 through 7) specified in the SDEC field.

Move opcode: 2, bits 11,12 = 11

Indicators: unaffected

Traps: MODE, DSTV, STUN, ABS DST

This is a privileged instruction.

Move from data segment. This instruction expects to find
a positive word count in A which represents the size of
the block of words to be transferred, an offset into a
source data segment in B to be used with the source data
segment number in C to determine the address of the

first source data word, and a DB-relative address in D to

be used in calculating the target address for the first
word transfer. The DST pointer is fetched from memory
location 1 and added to four times the number in C to
determine the desired DST entry. A source word is then
formed by adding the offset into a data segment value
contained in B to the segment base address contained in
the fourth word of the DST entry. (The memory blank
address for the segment is the third word of the DST
entry.) A DB-relative target word address is formed by
adding the target DB address and the DB-relative ad-
dress in D. The target word address thus pointed to
receives a word from the source word address, the ad-
dress pointers are incremented to point to the next
source word and target word locations, and the word
count is decremented. Words from the source area con-
tinue to be moved to the target area until the word count
reaches zero. The stack is then popped by the number of
words (0 through 7) specified in the SDEC field.

2-21

Machine Instruction Set

of1{2]3]e]s]e]7]8]o 10]11]12 131415
[0]Jo 1 o]o o ofo o 1o 1 1
SDEC
S-3 D Target data segment number
S-2 C Offset into target data segment
S-1 B Source DB-relative address
S A Positive word count
of 1T2]afa]s[e]7[8]o]ro]r1]i2]1a]1a]ss
[0Jo 1 o]o o ofJo 0 1]1 1 1
SDEC
S-3 D Target DB-relative address
S-2 C Source data segment number
S1 B Offset into source data segment
S A Positive word count

Instruction Set

MDS

PLDA

PSTA

Move opcode: 3, bits 11,12 = 11
Indicators: unaffected

Traps: MODE, DSTV, STUN, ABS DST
This is a privileged instruction.

Move using data segments. This instruction expects to
find a signed word count in A which represents the size of
the block of words to be transferred, an offset into a
source data segment in B to be used with the source data
segment number in C to determine the address of the
first source data word, and an offset into a target data
segment in D to be used with the target data segment
number in E to determine the address of the first target
word. The DST pointer is fetched from memory location 1
and added to four times the source data segment number
in C to point to the desired source DST entry and to four
times the target data segment number in E to point to
the desired target DST entry. A source word address is
then formed by adding the offset contained in B to the
segment base address contained in the fourth word of the
source DST entry and a target word address is formed by
adding the offset contained in D to the segment base
address contained in the fourth word of the target DST
entry. (The memory bank address for a data segment is
the third word of the DST entry.) Words from the source
area are moved into the target area with increasing
addresses if the count in A is positive or with decreasing
addresses if the count in A is negative. The positive
count is decremented or the negative count is incre-
mented with each word transferred. The transfer of
words terminates when the count in A reaches zero, then
the instruction pops the number of words (0 through 7)
specified in the SDEC field from the stack.
Move opcode: 3, bits 11,12 = 01
indicators: unaffected
Traps: MODE, DSTV, STUN, ABS DST

This is a privileged instruction.

of+1]2]s

als[e[7]8]a]ro]i]2 13]14]15

[o]Jo 1 0

0 0 OJ0 0 1j1 0 1

SDEC

Target data segment number

Offset into target data segment

Source data segment number

Offset into source data segment

S5-4 E
S-3 D
S-2 C
S-1 B
S A

Signed (+ or -) word count

PRIVILEGED MEMORY REFERENCE INSTRUCTIONS

Privileged load from absolute address. The content of the
Index register is a 16-bit absolute address in bank 0; the
content of this address is pushed onto the stack.
Mini-opcode: 15, bit 15 = 0

Indicators: CCA

Addressing mode: absolute

Traps: STOV, MODE

This is a privileged instruction.

Privileged store into absolute address. The content of the
Index register is a 16-bit absolute address in bank 0; the
top word of the stack is stored into memory at the ad-
dress, and then deleted from the stack.

Mini-opcode: 15, bit 15 = 1

Indicators: unaffected

Addressing mode: absolute

Traps: STUN, MODE

This is a privileged instruction.

2-22

o

1]2]3

N

4]5l6 7 8]9 10[111 13]14 15

oJo 1 ofo o ofo[1 1[0 1 RN 0
of1T23]e]s]e[7[8]o]ro]r[i2]is]ia]rs
[0]Jo 1 oJo 0 o]0 1]o 1 1

Machine Instruction Set

LST Load from system table. The X register contains a value o T2]sfe]s[e]7]s]o o]t]rz]r3]1a]rs]
which is used to index into a table pointed to by the [o]Jo 1 1]o o ofJo o0 ofo o
contents of location %1000+K if K is non-zero, or by the [

contents of location %1000+A if K is zero. The table K
pointer itself is also relative to location %1000. The data

accessed in the table is pushed onto the stack if K is

non-zero or replaces A if K is zero.

Special opcode: 00

Indicators: CCA

Traps: STUN, STOV, MODE

This is a privileged instruction.

SST Store into system table. The X register contains a value ol 1] 2] ¥4 I 5] 617] 8 I 9 10[11 12 13]14115
which is used to index into a table pointed to by the [ofo 7 1{o 0 ofo 1 1]o 1
contents of location %1000+K if K is non-zero, or by the . y
contents of location %1000+ A if K is zero. The table K

pointer itself is also relative to location %1000. The data
contained in A if K is non-zero or in B if K is zero is stored
into the calculated address. The stack is then popped by
one if K is non-zero or by two if K is zero.

Special opcode: 15

Indicators: unaffected

Traps: STUN, MODE

This is a privileged instruction.

LSEA Load single word from extended address. A bank address ol l 2 l 314 [5 [6 7]8 |9 10|” 12T13 Tha 115
isin B and A is a 16-bit absolute address of a lpcation in [0Jo 1 0Jo 0 oJo 1 1|1 0 00
that bank. The word at that address is pushed onto the 4
stack.
Mini-opcode: 16, bits 14,15 = 00
Indicators: CCA
Addressing mode: absolute
Traps: STUN, STOV, MODE
This is a privileged instruction.

SSEA Store single word into extended address. A bank address ol [2] P I s l 17 l a] sTho [11 123 14]15
is in C and B is a 16-bit absolute address of a location in [ofo 1 oo 0o 0jo 1 7|1 0 0 3
that bank. The TOS is stored in the location pointed to
and the stack is popped.

Mini-opcode: 16, bits 14,15 = 01
Indicators: unaffected
Addressing mode: absolute
Traps: STUN, STOV, MODE

This is a privileged instruction.

LDEA Load double word from extended address. A bank ad- 1[2]ala]s[e]7]8]o]r0]ni]12]i3]1a]1s
dress is in B and A is a 16-bit absolute address of a [ofo 71 ofo o ofo 1 1|1 o 91 o
location in that bank. The double word at that address is
pushed onto the stack. The word in B is the most
significant.

Mini-opcode: 16, bits 14,15 = 10
Indicators: CCA

Addressing mode: absolute
Traps: STUN, STOV, MODE

This is a privileged instruction.

SDEA Store double word into extended address. A bank address p I 2T . D I 51 5 7T 81 5 ’Ol” 12Thalia 1,5
is in D and C is a 16-bit absolute address of a location in (ofo 1 oJo o ofo 1 1]7 o
that bank. The double word on the top of the stack is
stored in the location pointed to and popped from the
stack. The word in B is the most significant.
Mini-opcode: 16, bits 14,15 = 11
Indicators: - unaffected
Traps: STUN, MODE
This is a privileged instruction.

(=]

[=]

2-23

Instruction Set

LDI

LDXI

CMPI

ADDI

SUBI

MPYI

DIVI

IMMEDIATE INSTRUCTIONS

Load immediate. The immediate operand N is pushed
onto the stack. The value of N is given in the argument
field of the instruction, and is expressed as a positive
integer in the range 0 through 255.

Sub-opcode 2: 02

Indicators: CCA on the new TOS

Traps: STOV

Load X immediate. The Index register is loaded with the
immediate operand N. The value of N is given in the
argument field of the instruction, and is expressed as a
positive integer in the range 0 through 255.
Sub-opcode 2: 03

Indicators: unaffected

Traps: None

Compare immediate. The Condition Code is set to pat-
tern C as a result of the comparison of the TOS with the
immediate operand N. The value of N is given in the
argument field of the instruction, and is expressed as a
positive integer in the range 0 through 255. The TOS is
deleted.

Sub-opcode 2: 04

Indicators: CCC

Traps: STUN

Add immediate. The immediate operand N is added to
the TOS in integer form, and the sum replaces the TOS.
The value of N is given in the argument field of the
instruction, and is expressed as a positive integer in the
range O through 255.

Sub-opcode 2: 05

Indicators: CCA on the new TOS, Carry, Overfiow
Traps: STUN, ARITH

Subtract immediate. The immediate operand N is sub-
tracted from the TOS in integer form, and the result
replaces the TOS. The value of N is given in the argu-
ment field of the instruction, and is expressed as a posi-
tive integer in the range 0 through 255.

Sub-opcode 2: 06

Indicators: CCA on the new TOS, Carry, Overflow
Traps: STUN, ARITH

Multiply immediate. The immediate operand N is mul-
tiplied with the TOS in integer form; the 16-bit integer
result replaces the TOS. The value of N is expressed as a
positive integer in the range 0 through 255.
Sub-opcode 2. 07

Indicators: CCA on the new TOS, Overflow

Traps: STUN, STOV, ARITH

Divide immediate. The immediate operand N is divided
into the TOS in integer form; the 16-bit integer quotient
replaces the TOS. The value of N is expressed as a posi-
tive integer in the range 0 through 255.

Sub-opcode 2. 10

Indicators: CCA on the new TOS

Traps: STUN, ARITH

2-24

o] 1T2]s]a]s]s 8 o]] 13[1411?
[o]Jo 1 oo o0 1
- v J
Immediate Operand
ofi1]2[3]a]s]s 8 [o o]]i2]iafra]is
[0Jo 1 oo o0 1
Immedlat:: Operand
ofr1f2]3f4a]s]s 8|9 10]11]12 13]14[15
[oJo 1 o]0 1 0
\ ~v— J
tmmediate Operand
0 1[2[3 4]5[6 819]zl
[oJo 1 oo 1 0
. —_—— J
Immediate Qperand
0 1[2[3 4]5]6 8]9 10]11]12 13]|4l15
[0fJo 1 oo 1 1
— — J
{mmediate Operand
of1]2]3]a]s]s 8]9 101112 13]»4]15
{ofo 1 o]o 1 1
| ~ J
Immediate Operand
of 1J2]3]4]s]e 8 o]z 13]1a[15
[0]Jo 1 o1 o ajo

-

J

Immediate Operand

LDNI

LDXN

CMPN

ADXI

SBXI

ORI

XORI

Load negative immediate. The immediate operand N is
two’s complemented and pushed onto the stack as a
negative integer. The value of N is expressed as a posi-
tive integer in the range O through 255.

Sub-opcode 2: 12

Indicators: CCA on the new TOS

Traps: STOV

Load X negative immediate. The Index register is loaded
with the 16-bit two’s complement of the immediate
operand N. The value of N is expressed as a positive
integer in the range 0 through 255.

Sub-opcode 2. 13

Indicators: unaffected

Traps: None

Compare negative immediate. The Condition Code is set
to pattern C as a result of the comparison of the TOS
with the two’s complement of the immediate operand N.
The value of N is expressed as a positive integer in the
range 0 through 255. The TOS is deleted.

Sub-opcode 2. 14

Indicators: CCC

Traps: STUN

Add immediate to X. The immediate operand N is added
to the content of the Index register in integer form. The
sum replaces the Index register content. The value of N
is expressed as a positive integer in the range 0 through
255,

Sub-opcode 3. 05

Indicators: CCA on X

Traps: None

Subtract immediate from X. The immediate operand N is
subtracted from the content of the Index register in in-
teger form. The result replaces the Index register con-
tent. The value of N is expressed as a positive integer in
the range 0 through 255.

Sub-opcode 3: 06

Indicators: CCA on X

Traps: None

Logical OR immediate. The immediate operand N is ex-
panded to 16 bits with high order zeros and merged
(inclusive OR) with the TOS; the result replaces the
TOS. The value of N is expressed as a positive integer in
the range 0 through 255.

Sub-opcode 3: 15

Indicators: CCA

Traps: STUN

Logical exclusive OR immediate. The immediate
operand N is expanded to 16 bits with high order zeros
and is combined by exclusive OR with the TOS; the
result replaces the TOS. The value of N is expressed as a
positive integer in the range 0 through 255.
Sub-opcode 3: 16

Indicators: CCA

Traps: STUN

2-25

Machine Instruction Set

of1[2]s]als]e]7[8]o]ro]ri]12]ia]ia]is
foJo 1 of1 0 1]o
\ v 7
Immediate Operand
of1]2]3]a]s]e]7]8][o]tofrr]i2]ra]ia]is
[ofo 1 o]1 0 1]
| — v —
Immediate Operand
of 1] 2]3]a]s[e]7][8]9]io]11]i2]13]1a]15
[o]Jo 1 o]1 1 o]0
— v J
Immediate Operand
of1]2]s als]e]7]8]o]ro]i1]r2]ia]1a]is
[0]Jo 1 1]0 1 o1
[§ — J
Immediate Operand
of 1 T2]3]a]s[e]7]8]o]tof11]i2]ia]1a]is
foJo 1 1]o 1 1]o
1% J
Immediate Operand
o 1]2]3]a]s]e]7[8]o an]u 13[14]15
[oJo 1 1]1 1 o1

v

fmmediate Operand

o

1]2]3

als|e

8o

10]11]12

13|14lva

0 1 1

1 11

.

J

Immediate Operand

Instruction Set

ANDI Logical AND immediate. The immediate operand N is ol 1 [2 I 3] a I 5 l 6718] 9 .01” l,z 13 [M l15
expanded to 16 bits with high order zeros and is com- [olo 1 17 1 1
bined by logical AND with the TOS; the result replaces < -)
the TOS. The value of N is expressed as a positive integer Immediate Operanc

in the range 0 through 255.
Sub-opcode 3. 17
Indicators: CCA

Traps: STUN

REGISTER CONTROL INSTRUCTIONS

[=]

SETR Set registers. The registers specified by bits 8 through 15 1 l 5 l 3la I 5 l 61718 19liol11li2lh3fa s

of the instructiorn are filled by an absolute value from the [ofo 7 of7 v 1]

DL Z Sta X Q S

TOS for the Index, Status, DB, DB-Bank, and S-Bank ! o
S-Bank

registers, and an absolute value computed by adding
(new) DB to the TOS (displacement value) for the others.
If more than one register (or displacement) is specified,
the registers will be loaded in the order shown below,
such that if all nine were specified, the S-Bank register
would receive the first TOS and the value for S would be
computed from the ninth TOS. The TOS is deleted after
each register is set. SETR is a privileged instruction
except for setting of the Index register, Q, S, and bits 2
and 4 through 7 of the Status register. (The Status bits
are user traps enable/disable, Overflow, Carry, and Con-
dition Code. Attempts to set other bits of Status will be
ignored and will not cause a MODE trap.)
Ifbit 9 = 1, load S-Bank from TOS
*If bit 9 1, load DB from TOS
*If bit 10 1, load DL from (DB+ TOS)
*If bit 11 1, load Z from (DB+ TOS)
*If bit 12 1, load Status from TOS
If bit 12 1, and not privileged mode: load Status
bits 2 and 4 thru 7 from same bits of
TOS
If bit 13 1, load Index register from TOS
If bit 14 1, load Q from (DB+ TOS)
fbit15 = 1, load S from (DB+ TOS)
Sub-opcode 2: 17
Indicators: unaffected (may be changed if bit 12 = 1)
Traps: STUN, STOV, MODE
“These are privileged operations.

[(R

It

1

I

PSHR Push registers. The content of a register (or the dis-] I 5 I a1] 5 !6 T8 e ol ialiaTeaTas

(=]

placement it represents) specified by any bit 8 through [0 1 o]71 0 o |1
15 is pushed onto the stack. If more than one register (or
displacement) is specified, the contents will be stacked in T_:
the order shown below, such that if all nine were
specified, S-Bank would be on the TOS after execution,
DB next, etc. Note that when S-DB is pushed, the value
stacked will be as it existed before the execution of this
instruction. Stack overflow occurs if the original S+9
exceeds Z, regardless of the number of registers pushed.

BDL ¢ St x O
S-Bank

2-26

XCHD

ADDS

SUBS

RCLK

SCLK

fbit156 = 1, push S-DB

lfbit14 = 1, push Q-DB

fbit 13 = 1, push Index register

Ifbit12 = 1, push Status register

Ifbit11 = 1, push Z-DB

Ifbit 10 = 1, push DL-DB

“Ifbit 9 = 1, push DB Bank and DB register
Itbit 8 = 1, push S-Bank

Sub-opcode 2: 11

Indicators: unaffected

Traps: STOV, MODE

*These are privileged operations.

Exchange DB and TOS. This instruction expects a new
DB value on the TOS and a new DB-Bank at TOS-1. The
current DB-Bank, DB replaces these values in TOS-1,
TOS, while the new values are placed in DB-Bank, DB.
Special opcode: 03, bits 12-15 = 0000

Indicators: unatfected

Traps: STUN, MODE

This is a privileged instruction.

Add to S. The immediate operand N is added to S unless
N is zero; if N is zero, the TOS content, minus one, is
added to S instead.

Instruction Commentary 11

Sub-opcode 3: 12

Indicators: unaffected

Traps: STUN, STOV

Subtract from S. The immediate operand N is subtracted
from S unless N is zero; if N is zero, the TOS content, plus
one, is subtracted from S instead.

Instruction Commentary 11

Sub-opcode 3. 13

Indicators: unaffected

“Traps: STUN, STOV

Read clock. This instruction pushes the contents of the
Process Clock register onto the top of the stack.
Special opcode: 5, bits 12-15 = 0001

Indicators: unaffected

Traps: STOV

Store clock. This instruction expects to find a 16-bit word
on the top of the stack that it uses to set the Process
Clock register. The stack is then popped.

Special opcode: 4. bits 12-15 = 0001

Indicators: unaffected

Traps: STUN, MODE

This is a privileged instruction.

Machine Instruction Set

o

1|2]3

4]5[6

10[n |12

13]14 15

o 1 1

0 0 O

00

1 110

0 0 0

(=]

1]2]3

als]s

ABE

10[11]12

13]14]15

0 11

10 1

]

lmmediate Operand

v

[=]

112]3

7[8]0

10111]12

13]1a]15

0 1 1

J

Immediate Operand

(=]

1]2[3

ABE

10& 12

13|14

o1 1

0 0 1

0 1|0

00

1] 2]

ABE

10]i]i2

0 1 1

0 01

0 0 0

=l

Instruction Set

SCAL

PCAL

SXIT

TXIT

PROGRAM CONTROL AND SPECIAL INSTRUCTIONS

Subroutine call. Control is transferred to the location
pointed to by the evaluation of the local label at PL- N,
unless N is zero; if N is zero the local label is taken from
the TOS and then deleted. The return address is then
pushed onto the stack. Only local labels are allowed;
non-local label gives STT Violation trap.
Instruction Commentary 12
Sub-opcode 3: 0t
Indicators: unaffected
Addressing modes:

Indirect via: PL — N (if N 0)

TOS (if N = 0)

Local Labe!: PB+

Traps: STUN, STOV, STTV, BNDV if user or privileged

Procedure call. Control is transferred to the location
pointed to by the evaluation of the program label at PL —
N, unless N is zevo, the program label is taken from the
TOS and then deleted. Then a four word stack marker is
placed on the stack, and Q and S are updated to point at
this new marker. The program label may be local or
external. If the Trace bit is on in the target CST entry, a
call will be made to Trace, segment #1, STT #32
(decimal). If a privileged user is calling a user segment,
it will run in privileged mode.
Instruction Commentary 13
Sub-opcode 3. 02
Indicators: unaffected
Addressing modes:

Indirect via: PL — N (if N # 0)

TOS (f N = 0)

Local Label: PB+

External Label: via CST to local label in target segment
Traps: STUN, STOV, CSTV, STTV, ABS CST, TRACE,

UNCALL, BNDV if user or privileged

Exit from subroutine. This instruction is used to return
from a subroutine called by the SCAL instruction. The
SXIT instruction assumes that the return address is on
the TOS, and returns program control to this address.
The TOS is then deleted, plus N number of subroutine
parameters. The value of N may be any number from 0
through 255.

Instruction Commentary 12

Sub-opcode 3. 04

Indicators: unaffected

Traps: STUN, STOV, BNDV if user or privieged

Exit from procedure. This instruction is used to return
from a procedure called by the PCAL instruction or by
some interrupts. A normal exit occurs by restoring the
return address to P, restoring the previous contents of
the Index and Status registers, and deleting all stack
variables incurred by the called routine plus its marker,
plus N number of procedure parameters. The value of N
may be any number from 0 to 255 for exits from PCAL
routines; it must be 0 for exits from interrupt routines. If
bit O of the return-P marker word is a “1”, control is
transferred to Trace, segment #1, STT #32 (decimal).

2-28

0 1]2]3 4]5[6 8{9 1011]2 13[14[15
[oJo 1 1]o 0 0

N
0 1]2[3 4[516 HLQ 10[11[12 13114115
[ofo 1 1]o o 1]o

N
of 1[2]3]a]s]s 8|9 10[11L12 13114[15
Jofo 1 1{o 1 o

N
of1]2]s]a]s]s 819 aob‘lw 13]1ais

0 0 1

J

<

LLBL

IXIT

DISP

PSDB

Instruction Commentary 13

Sub-opcode 3: 03

Indicators: Restored to values before PCAL

Traps: STUN (going to user mode), STOV, MODE, CSTV,
TRACE. ABS CST, BNDV if user or privileged

Load label. The label in the Segment Transfer Table
(STT) at PL—N is loaded onto the TOS. The value N is a
displacement given in the argument field of the instruc-
tion. If the label is local, it is converted to external type
when loaded. To be valid, the value N must point to a
location which is actually in the STT (i.e., N < STTL) in
all cases; additionally, in the case of local labels, N must
not exceed octal 177 (decimal 127), since this is the
maximum range for the STT # in the external label
result.

Instruction Commentary 14

Sub-opcode 3: 07

Indicators: unaffected

Addressing mode: PL—

Traps: STOV, STTV

Interrupt exit. This instruction is used to exit from those

interrupt service routines which always run on the

Interrupt Control Stack (ICS). This results in a return to

the interrupted process (which may be another interrupt

or the Dispatcher) or a transfer to the Dispatcher’s entry

point. The action taken depends in part on the sequence

of DISP, PSDB, and PSEB instructions which have been

executed. IXIT is also used by the Dispatcher to exit to a

process being launched.

Instruction Commentary 15

Mini-opcode: 17, bits 12-15 = 0000

Indicators: Restored to those before interrupt or as

specified for the Dispatcher

Traps: MODE, STOV, CSTV, TRACE, ABS CST, BNDV if
user or privileged

This is a privileged instruction.

Dispatch. This instruction is used to transfer to the Dis-

patcher’s entry point; or to request such a transfer if

executed while on the ICS or within the range of a

PSDB-PSEB pair.

Instruction Commentary 15

Special opcode: 03, bits 12-15 = 0010

Indicators: See instruction commentary.

Traps: MODE, CSTV, TRACE, ABS CST, BNDV if user or
privileged

This is a privileged instruction.

Pseudo interrupt disable. The PSDB and PSEB instruc-
tions are used in pairs and may be nested. They are used
to prevent a dispatch during critical sections of code, and
to avoid unnecessary restarting of the Dispatcher. The
effect of any DISP instructions executed within the
range of a PSDB-PSEB pair located outside of the Dis-
patcher is postponed until the numbers of PSDB and
PSEB instructions executed are equal. DISP is effec-
tively a NOP when executed within the range of a
PSDB-PSEB pair located in the Dispatcher.

2-29

Machine Instruction Set

ofif2]s]a]s]e]” 8]9 10]11]12 13]14]15
[0fJo 1 1Jo 1 1|
D|sp|a:;emem
PL.-

of1[2]3]a]s]s 7|8 9ol]z 13]1a 15
[0Jo 1 oJo o oJo 1 1]1 1 oo 0 o
of1[2{3fa]s]e]7]s]o]ro]r1]r2 13]14]15
{oJo 1 1J0o o oJo o 0ofJ1 1 ofo 1 O
of1[2]3]a]s]e]7]8]o]ro]ni]r2]az]1a]1s
[0Jo 1 1]o o ofo o of1 1 oJo o0 1

Instruction Set

PSEB

PAUS

HALT

LOCK*

UNLK*

Instruction Commentary 15

Special opcode: 03, bits 12-15 = 0001
Indicators: unaffected

Traps: MODE

This is a privileged instruction.

Pseudo interrupt enable. See description of PSDB in-

struction just given.

Instruction Commentary 15

Special opcode: 083, bits 12-15 = 0011

Indicators: See instruction commentary.

Traps: MODE, CSTV, TRACE, ABS CST, BNDV if user or
privileged

This is a privileged instruction.

Pause. The computer hardware pauses; interrupts may
occur. Bits 12 through 15 are ignored.

Special opcode: 01

Indicators: unaffected

Traps: MODE

This is a privileged instruction.

The computer hardware halts; interrupts may not occur
and manual intervention is required to restart the com-
puter. Bits 12 through 15 are ignored.

Special opcode: 17

Indicators: unaffected

Traps: MODE

This is a privileged instruction.

This instruction provides a means for one CPU to lock
out another CPU in a two-CPU system. A typical appli-
cation would be in a multiprogramming system when a
CPU is going to use a critical portion of code that is
shared by both CPUs. The LOCK instruction tests the
lockword pointed to by the contents of the Index register
and at the same time sets a bit in the lockword corre-
sponding to its CPU number. Bit 15 is set for CPU
number one and bit 14 is set for CPU number two. If the
lockword contents was zero, no one had the resource, and
the CPU executing the LOCK instruction gets the re-
source. If the lockword was not equal to zero, indicating
that the other CPU has the resource, the instruction goes
into a pause mode and will require an interrupt to re-
start the LOCK instruction from the beginning.
Mini-opcode: 17, bits 12-15 = 0010

Indicators: unaffected

Traps: MODE

This is a privileged instruction.

This instruction releases a resource previously locked by
the same CPU which executed the LOCK instruction to
secure the resource. The lockword is fetched and an
interrupt is sent to the other CPU if it is in the pause
mode after an unsuccessful attempt to execute a LOCK
instruction. The interrupt thus “awakens” the other re-
source requester and the instruction clears the lockword
releasing the resource. The other CPU will then
(successfully) re-execute its LOCK instruction.
Mini-opcode: 17, bits 12-15 = 0011

Indicators: unaffected

Traps: MODE

This is a privileged instruction.

*Series II Computer Systems only. 2-30

of1]2]3fa]s]s 78]9 o]]i2]ia]ra]ss

[ofo 1 1]o 0o o]Jo o o]1 1 oo 1 1

o[1]2]s]a]s]e]7]s]o]io]ii]r2 13[14 15

[ofo 1 1]0o o ofofo oo KON\

-

Not Used

of1]2]s als|e]7 89| |i2 13[14 [15
[0Jo 1 1]o 0 0o 1 1)1 1

—

K

of 1 T2]3]als]e]7]8]o]io]11]ri2]r3]ra]ss

foJo 1 0Jo o0 0Jo 1 1]1 1 0ofJo 0 1

o] 1]2]3]4a]s]s 78] o]ro[i]i2]ria]ra]is

[o]o 1 o]o o ofo 1 1]J1 1 ofJo 1 1

Machine Instruction Set

LLSH A bank address is in B and A contains a 16-bit absolute 1 I 2 | 3fa
address in the bank which points into a linked list. Each [o]o 1 ofo
double word link in the list is an absolute memory ad-
dress which points to the next link. C contains a test
word and D contains an offset which indicates the posi-
tion, relative to each link, of a target number. At each
step, the test word is compared to the target number. If
the test word is logically less than or equal to the target
number, the instruction terminates. Otherwise, the con-
tents of B and A is replaced by the next link, the count in
the Index register is decremented, and the instruction
repeats.

Instruction Commentary 16

Mini-opcode: 14, bit 156 = 1

Indicators: CCL if terminated by X = 0
CCE if terminated by target = C
CCG if terminated by target =2'¢ — 1

Addressing mode: absolute + offset

Traps: STUN, MODE

This is a privileged instruction.

(=]

Is]s 2805 BDEE 13[14 15
0 ofoj1 1o o QY 1

XEQ Execute stack word. The content of the word in the stack of 1]2]s]a[s]e]7]8]o]ro]n]
at S-K is placed in the Current Instruction Register to be [0 0 1 1Jo o ojJofo 1J1 0O
executed. After execution, control is returned to the in- —
struction after the XEQ unless a transfer of control was K
executed (branch, PCAL, etc.). If the word to be executed
is a Stack Op, only the first position (bits 4 through 9
may be used; bits 10 through 15 must be a NOP. The
value of K is to 0 through 15 (decimal).

Instruction Commentary 17

Special opcode: 06

Indicators: set by the execution instruction

Traps: BNDV and traps possible during the executed
instruction’s execution

N

13[14 15

RSW Read Switch register. The content of the Switch register ol 1] Py l 314 l 5] sl718 Ig 10111 121134 s
is pushed onto the stack. [o]Jo 1 oJo o oJol1 1]o o N8y 0
Mini-opcode: 14, bit 15 = 0
Indicators: CCA
Traps: STUN, STOV

—

o

o

PCN Push CPU number. This instruction pushes a number 1] 2] ala] 5 i 67] 8 | 9 10[11 [12 13]14[15
onto the stack identifying the type of CPU executing the olo 1 olo o ofo 1 1|1 1 oflo 1 o
PCN instruction. This will be either 1 or 2. (1 = Series IT; 2
= Series III.)
Mini-opcode: 17, bits 12-15 = 0010
Indicators: unaffected
Traps: STOV, MODE
This is a privileged instruction.

WORD 1

RCCR* Read system clock counter. The contents of the 12-bit ol T2TaTalslel7T3s o ol 1] 12813 1a] 15
system clock counter are pushed onto the stack. olol1Tolololololol1lololol1]o]o0
Opcode: 00 ofojojofojojofolo[ofofo]ofolo]0
Indicators: unaffected WORD 2

Traps: Stack overflow

*Series 30/33 Computer Systems only.

2-31

Instruction Set

SCLR* Set system clock limit. The lower 12 bits of the word on
the top of the stack are loaded into the system clock limit
register and the stack is popped.

Opcode: 0t
Indicators: unaffected
Traps: none

TOFF* Hardware timer off. Turns the CPU hardware timer off.
This timer is used to simulate both System and Process
clocks, so turning it OFF will disable them. The timer
will be turned OFF by the CPU on LOAD, RESTART,
PON and PWF.

Opcode: 03
Indicators: unaffected
Traps: none

SINC* Set system clock interrupt. The most significant bit of
the System Clock status register is set. If external inter-
rupts are enabled, there is an immediate trap to seq. 1,
STT 12. If external interrupts are disabled, then the sys-
tem clock status register is incremented and no trap
taken.)
Opcode: 10
Indicators: unaffected
Traps: see above

TON* Hardware timer on. Turns the CPU hardware timer on.
(See TOFF.)
Opcode: 02
Indicators: unaffected
Traps: none

*Series 30/33 Computer Systems only.

2-32

Machine Instruction Set

I/O INSTRUCTIONS

SED Set “enable/disable external interrupts” bit. The inter-
rupt system is enabled or disabled according to the least [
significant bit (bit 15) of the instruction. If K is equal to
1, bit 1 of the Status register is set, thus enabling exter- _viE/
nal interrupts. If K is equal to 0, bit 1 of the Status
register is cleared, thus disabling external interrupts. If
the instruction changes bit 1 of the Status register from 1
to 0, any pending interrupts will occur immediately fol-
lowing the SED instruction.

Special opcode: 02
Traps: MODE
This is a privileged instruction.

[=]

1]2]afafs]e] 8 [ofrofni[i2]iafra]is
0 1 1]0 0 0ofjo|o Of1 o|{0]0O}O

1[2]s 4]5[5 7|8]9 1011 [12]isfia s
0 1 110 0 0JO0j0 110 0|0fj0 OO

SMSK Set mask. The SMSK instruction assumes that the TOS
contains the mask word and transmits this word to all 0
device controllers. Each “1” bit in the mask word sets
each Mask flip-flop in the group of device controllers
which are specifically wired to be controlled by that bit.
Each “0” bit in the mask clears each Mask flip-flop in its
group. If there is an I/O error (no acknowledgement), the
SMSK instruction sets CCL Condition Code, and leaves
the mask on the TOS. If there is no I/O error, the SMSK
instruction deletes the mask from the stucl: ~» sets the
CCE Condition Code. The mask word is also stored in
memory at location 7 for CPU #1 or at location %13 for
CPU #2.

Special opcode: 04, bits 12-15 = 0000
Indicators: CCE if no error
CCL if error
Traps: STUN, MODE
This is a privileged instruction.

[=]

RMSK Read mask. This instruction loads the 16-bit mask word 1[2]s[]seV7e[o o] [2[a]va s
from memory into the TOS. [oJo 1 1o o oio o ito itelo o
Special opcode: 05, bits 12-15 = 0000
Indicators: unaffected
Traps: STOV

[=]

SI0* Start I/O. The SIO instruction expects the absolute start-

[=)

1] 2[afe]s]s]7[8]o o]]2 1314 15

ing address of an I/O program to be on the TOS, and a [oJo 7 1Jo o ofofo 1|1 1
device number to be in the stack at S-K. The instruction \ '
first checks if the device is ready for an SIO by checking K

bit 0 of the device controller’s Status register. Bit 0 is the
“SIO OK” bit. If it is ready (bit = “1”), the TOS is stored
into the first location of the DRT entry for the device
specified at S-K; an SIO command is then issued to the
device controller to begin execution of its I/O program. If
the device is not ready (bit 0 of the device status = “0”),
the content of the device controller’s Status register is
pushed onto the stack and the Condition Code is set to
CCQG. If the device controller does not respond, the Con-
dition Code is set to CCL and the instruction is termi-
nated. If the device is ready, the TOS is deleted and the
Condition Code is set to CCE.

Instruction Commentary 18

Special opcode: C7

*Series II/III Computer Systems ‘only. 2-33

Instruction Set

Indicators: CCL = non-responding device controller
CCE = device ready
CCG = device not ready

Traps: STUN, STOV, MODE
This is a privileged instruction.

RIO* Read 1/0O. This instruction expects a device number to be o 1] 2 l ala [5 [el7]s8 [3 10]11 1213]14 |15
given in the stack at S-K. RIO first checks if the device is [ofo 1 1]o o o]of1 ofo o
ready by checking bit 1 of the device controller’s Status —
register. If it is ready (bit = “1”), the 16-bit data word K

from the device is pushed onto the stack and the Condi-
tion Code is set to CCE. If it is not ready (bit = “0”), the
content of the device controller’s Status register is
pushed onto the stack and the Condition Code is set to
CCG. If the device controller does not respond to the
readiness test, the Condition Code is set to CCL and the
instruction is terminated.

Special opcode: 10

Indicators: CCL = non-responding device controller
CCE = device ready
ZCG = device not ready

Traps: STOV, MODE
This is a privileged instruction.

WIO* Write I/0. This instruction assumes that the TOS con- B E [2 1 ala] 5 | 6718] 9 10]11 12]13 114]15
tains a data word and expects a device number to be [o]o 7 1]o o ofo]1 oo 1
given in the stack at S-K. WIO first checks if the device -
is ready by checking bit 1 of the device controller’s Status K

register. If it is ready (bit = *1”), the word is transmitted
to the specified device and then deleted from the stack;
the Condition Code is set to CCE. If it is not ready (bit =

“0”), the content of the device controller’s Status register
is pushed onto the stack and the Condition Code is set to

CCQG. If the device controller does not respond, the Con-
dition Code is set to CCL and the instruction is

terminated.

Special opcode: 11

Indicators: CCL = non-responding device controller
CCE = device ready
CCG = device not ready

Traps: STUN, STOV, MODE
This is a privileged instruction.

TIO* Test I/O. This instruction expects a device number to be ol] P l afa] 5 [6l71s [9 10 [n 12113]14 115
given in the stack at S-K. TIO obtains a copy of the [oJo 7 1o o ofolv o7 0
device status word from the device controller, pushes it -
onto the stack, and sets the Condition Code to CCE. If the K

device controller does not respond, the Condition Code is

set to CCL and the instruction is terminated.

Special opcode: 12

Indicators: CCE == responding device controller
CCL = non-responding device controller.

Traps: STOV. MODE

This is a privileged instruction.

CIO* Control I/0. This instruction assumes that the TOS con- ol l 2 l 3fa l 5 I 617 |8 [9 10]11 1213]M]15
tains a control word and expects a device number to be [ofo 7 7]o o ofo|1 o1 1
given in the stack at S-K. CIO transmits the TOS to the e
specified device controller, along with a CIO signal. If K

the device controller acknowledges receiving the word,
the TOS is deleted and the Condition Code is set to CCE.

¥Series 1I/1IT Computer Systems only. 2-34

CMD*

SIN*

DUMP**

WIOC**

If the device controller does not respond, the Condition

Code is set to CCL and the instruction is terminated.

Special opcode: 13

Indicators: CCE = responding device controller
CCL = non-responding device controller

Traps: STUN, MODE

This is a privileged instruction.

Command. This instruction assumes that the TOS con-
tains a 16-bit data word to be sent to a system hardware
module and expects a command word in the stack at S-K.
Bits 13 through 15 of the command word specify the
module number, and bits 10 and 11 are used to specify a
module command. (The four possible commands are in-
terpreted by the target module and do not form a part of
this instruction’s definition.) CMD sends the 16-bit data
word and the 2-bit command over the central data bus to
the specified module, and then deletes the TOS. (Note: if
the destination module is not ready, the CPU will not
proceed until that module becomes ready.)

Special opcode: 14

Indicators: unaffected

Traps: STUN, MODE

This is a privileged instruction.

Set interrupt. This instruction expects a device number

to be given in the stack at S-K. SIN sets the Interrupt

Request flip-flop in the specified device controller and

sets the Condition Code to CCE. If the device controller

does not respond, the Condition Code is set to CCL and

the instruction is terminated.

Special opcode: 16

Indicators: CCE = responding device controller
CCL = non-responding device controlter

Traps: MODE

This is a privileged instruction

Load Soft Dump program. A dumpload from the device in
(8) is initiated, following the LOAD/START/DUMP pro-
cedure. (See Instruction Commentary 20.)

The device is assumed to be a disk; 1 sector (#3 for
DUMP) is loaded from device (S), head # (S-1), and exe-
cuted as a channel program. The effect is the same as
using the “DUMP” front panel keys. If the instruction is
successful, the result is a LOAD trap to SEG 1, STT 24;
any error results in a system HALT (See Instruction
Commentary 29.)

Opcode: 12

Traps: LOAD; Stack Underflow; Non-responding device

Write I/O channel. This instruction expects an IMB
“read channel” command in S-1 and a data word in (S). If
the abort bit is not set for the device the data word in
TOS and the command in (S-1) are sent to the channel, or
channels if global, and the data word and command are
popped from the stack. This instruction provides full
software control of the channel and devices of any type.
Opcode: 03

Indicators: If error then CCL else CCE

Traps: Stack Underflow; Non-responding device.

This is a privileged instruction

+*Series 1I/11I Computer Syster= unly.
*+Saries 30/33 Computer Systems only. 2.35

Machine Instruction Set

[}

1]2]3

c 10111 12 13[14]15
[o]o 11]

o s
[=Rs
[= RN
o~
-
o
o

of 1 T2]sfa]s]e]7[8]o]io]ni2]ia]ia]rs
[ofo 1 1]0 o ofof1 1]1 0]
(S

K

WORD 1

ol 121alalsl6b7]8]o foli]i2fia]ra[1s
ofo0}1 0 oj1{t1jolo|ojof1]o
ofo|ojojojolojojo|Ofjo0|Of{1]jO0]|1]0
WORD 2

WORD 1

0 1 2 3 415 [} 718 9 f1o0]11]12413§14| 15

Instruction Set

WORD 1
13]1afs

0f140

N
w
S
5}
(=]
©
(=]
-
=

SUNPFEt - Start 1/0 program. This instruction expects a channel of1
program pointer in (S) and channel/device number in ojo
(S-1). The third word of the device DRT entry (DRT3) is ofo [ofo]o
read with a semaphore read. This delays execution of the) WORD 2
instruction by a possible independent program channel
until all the information is in place. If bit 2 of DRT3 (the
abort bit) is 1, the instruction is aborted and CCL is set.
If the channel program is halted (if bits 0,1 of DRT3 are
both 0), or if an HIOP instructicn has been issued but not
yet serviced and the channel is in a wait instruction state
(bits 0,1 of DRT3 are 0 and 1 and bit 15 of DRT3 is a 1),
then the channel program pointer in (S) is placed in
DRTO of that device, bits 0,1 of DRT3 are set to 1,1 (SIO
starting state), an SIO command is sent to the channel
and CCE is set. Otherwise if the above conditions are not
met then CCG is set.
Opcode: 00
Indicators: Condition Code
Traps: Stack Underflow; Non-responding device

O =im]
—
(=]
o

=)

o

°<
oloi~

od

=}

=3

o

=}
‘oo

fhis is a privileged instruction.
WORD 1

INTT** Initialize I/O channel. The INIT instruction initializes ojt1fe 8 | o o] *2 13]14] Yé
the channel designated by bits 9-12 in the TOS by ojojt1|ojojojojojt|1]ojojo]ol1]o
Terminating operations in progress on the channel; ofofo[olofo]o]ololo]ofololi]7]¢c
Clearing the channels interrupt enable bit; T WORD 2
Setting channel registers to defined initial values;
Setting the channel HP-IB bus to the idle state;
Clearing the 4th word of every DRT entry for this
channel;
“learing the mask bit for that channel in mem loc. 7.
Devices controlled by I/0 software can be cleared only by
being issued a DCL or SDC Interface Command (refer to
HP Interface Bus Standards).
Opcode: 06
Indicators: If not system controller then CCG, else CCE
Traps: Stack Underflow; Non-responding device
This is a privileged instruction

w
>
(4]
=]
~

WORD 1

MCE*™ Read memory controller. An IMB “MCRS” operation is ofjt1j2faja|s|efd7is]ofrol1|12f13]14]1s
done. Address lines are set from (S-1), (S). If address bit ojojt1jogofojojJoj1|1fofolojol1]o
13 is 0, the returned data word is pushed on the stack; olofofolololofolololololol1 1117

otherwise the data word is put in TOSA and (S) is in- T WORD 2

cremented but is actually not written to memory. (Note:

this means that if the returned word is to be saved or

used, it must be recovered from TOSA using a “STAX”

instruction (or something similar)). The actual functions

performed by the MCRS instruction are dependent upon

the particular memory controller used in the system.

Opcode: 07

Traps: Stack Underflow; Non-responding device

**Series 30/33 Computer Systems only.

2-36

HIOP*

SEMI+*

RIOC**

STRT**

Halt I/O program. This instruction expects a device
number on the top of the stack. If DRT3 (0:2) of that
device indicates that the device channel program is
starting or running, a halt I/O program command is sent
to the channel to stop execution of that device’s channel
command program at the occurrence of the next WAIT
channel command. If starting, a “halting in WAIT” state
is get to properly terminate the channel program. If now
the channel program is halting but not yet halted and
not in a WAIT instruction, CC is set to CCG. All other
states are set to CCE including the already halted state.
When halted, the DRT entry for that device points at the
WAIT instruction at which the channel program halted,
bits 0 and 1 of DRT3 are set to 0. If the channel program
was not at a wait instruction when the HIOP was issued,
an interrupt request will be generated when the channel
program is halted.

Opcode: O1

Indicators: Condition Code

Traps: Stack Underflow; Noriresponding device

This i1s a privileged instruction

Semaphore load. The contents of the memory location
addressed by (3-1), (S) are read by a special memory
operation that reads the location and replaces its con-
tents with 1’s in one step. The original contents of the
location is pushed onto the stack.
Opcode: 10
Indicators: CCA on new TOS.

Carry setif (£) = -1
laps: Stack Underflow; Non-responding device

Read /O channel. This instruction expects an IMB “read
channel” command to be on the top of the stack. If the
abort bit is not set for the device, the RIOC command
from the TOS is sent to the channel (or channels if global
command) and the data read is pushed onto the stack
Opcode: 02

Indicators: Condition Code

Traps: Stack Underflow; Non-responding device

This is a privileged instruction.

Initiate warmstart. A warmstart from the device in (S) is
initiated, following the LOAD/START/DUMP procedure.
(See Instruction Commentary 20.) The device is assumed
to be a disk; 1 sector (#2 for STRT) is loaded from device
(8), head # (5-1), and executed as a channel program.
The effect is the same as using the “START” front panel
key. If the instruction is successful, the result is a LOAD
trap to SEG1, STT24; any error results in a SYSTEM
HALT (See Instruction Commentary 21.)

Opcode: 11

Traps: Stack Underflow; Non-responding device

**Garies 30/33 Computer Systems only.

2-37

Machine Instruction Set

WORD 1
o1 51637 10|11 '1‘2 1314’15
ofo ofofo ololojol1]0
oo ojojo ofo[o]ofol1

WORD 2

WORD 1
o1 516]7 1op11]12]13 1415
ofo ofo]o oflo]o]o]1]0
ofo o[ofo ofo]1]o]ofo
T T T woRD 2

WORD 1
o111 51617 1011|1213 }J14] 15
oo olofo olo[~]o[1]0]
ofo ofofo olofo]o]1}o

WORD 2

WORD 1
oq1 51687 1011|1213 |14 |15
0o olo]o olo[o]o[1]0
0o]o ofofo ofof1]o]o]1

WORD 2

Instruction Set

TBA

MTBA

TBX

MTBX

LOOP CONTROL INSTRUCTIONS

Test and branch, limit in A. This instruction expects the
top three elements of the stack to be initialized as fol-
lows: A contains a limit, B contains a step size, and C
contains a DB+ relative displacement for the address of
a variable. TBA tests the variable against the limit. If
the limit is not exceeded, control is transferred to the
branch address at P + displacement. If the limit is ex-
ceeded, the top three elements of the stack are deleted
and execution continues at P+ 1.

Instruction Commentary 19

Memory opcode: 05, bits 4,56 = 000

Indicators: unaffected

Addressing mode: P relative (+/—)

Traps: STUN, STOV, BNDV, BNDV on P if user or
privileged

Modify variable, test and branch, limit in A. This in-

struction expects the top three elements of the stack to be

initialized as follows: A contains a limit, B contains a

modifying step size, and C contains a DB+ relative dis-

placement for the address of a variable. MTBA adds the

step size to the variable in integer form, replaces the old

variable with this new sum, and tests the new sum

against the limit. If the limit is not exceeded, control is

transferred to the branch address at P = displacement. If

the limit is exceeded, the top three elements of the stack

are deleted and execution continues at P + 1.

Instruction Commentary 19

Memory opcode: 05, bits 4,56 = 010

Indicators: unaffected

Addressing mode: P relative (+/-)

Traps: STUN, STOV, BNDV, BNDV on P if user or
privileged.

Test and branch, variable in X. This instruction requires

that the Index register contains the variable and that the

top two elements of the stack are initialized as follows: A

contains a limit and B contains a step size. TBX tests the

variable in X against the limit. If the limit is not ex-

ceeded, control is transferred to the branch address at P

+ displacement. If the limit is exceeded, the top two

elements of the stack are deleted and execution con-

tinues at P + 1.

Instruction Commentary 19

Memory opcode: 05. bits 45,6 = 100

Indicators: unaffected

Addressing mode: P relative (+./-)

Traps: STUN, BNDV if user or privileged

Modify variable in X, test and branch. This instruction
requires that the Index register contains the variable
and that the top two elements of the stack are initialized
as follows: A contains a limit and B contains a modifying
step size. MTBX adds the step size to the variable in
integer form, replaces the old Index register contents
with this new sum, and tests the new sum against the
limit. If the limit is not exceeded, control is transferred to
the branch address at P + displacement. If the limit is
exceeded, the top two elements of the stack are deleted
and execution continues at P + 1.

Instruction Commentary 19

Memory opcode: 05, bits 4,56 = 110

Indicators: unaffected

Addressing mode: P relative (+/-)

Traps: STUN, BNDV if user or privileged

2-38

of 1 {213 415]6 8]9 10[11I|2 13[14115
[of1 0 1Jo 1 0
- v J
Displacement
0 1|213 4[5[6 7 8[9 10]11]12 \3[14]15
[of1 o 1]1 0 of:
\ v)
Displacement
0 112]3 415[6 7 8[9 10[11[12 13]14[15
[o]1 o 1{o o of:
AN ~ J
Displacement
0 1]2[3 a[s]e]7[8]0 mJn[u 13[14115
[of1 0 1]+ 1 o]

v

Displacement

Machine Instruction Set

MEMORY ADDRESS INSTRUCTIONS

LOAD Load word onto stack. The content of the effective ad-

(=]

1]2]3]als[ef7]8]e o]]2 13]1a[1s

dress location is pushed onto the stack. (o7 o ofx]|
Memory opcode: 04 N)
Indicators: CCA Mode and Displacement

Addressing modes: P+, P—, DB+, Q+, Q—, S— relative
Direct or indirect
Indexing available

Traps: STOV, BNDV

[=]

LDX Load Index. The content of the effective address memory]] 2 I 3lals]e]7 | 8] 9 10111 112 13]14]15
location is loaded into the Index register. 1o 1 x|
Memory opcode: 13 N .)
Indicators: CCA Mode and Displacement
Addressing modes: P+, P—, DB+, Q+, Q—, S+ relative :
Direct or indirect
Indexing available

Traps: BNDV

STOR Store TOS into memory. The content of the TOS is stored]] P l sTals

into the effective address memory location, and is then [o[7 0 1[x
deleted from the stack. N ,
Memory opcode: 05, bit 6 = 1 Mode and D‘;splacement
Indicators: unaffected
Addressing modes: DB+, Q+, Q—, S— relative

Direct or indirect

Indexing available

Traps: STUN, BNDV

o
[=2]

7] 8|9 fo]r]iz]iz]ia]is

[=]

LDPP Load double from program, positive. The double word 1 l 2[3] a] 5 [NEE] 9 ’Ol” [12 13|14 [15
contained at P + N is pushed onto the stack. [ofo 7 1]7 o o]0
Sub-opcode 3. 10 . . »
Indicators: CCA P+ Displacement
Addressing mode: P+ relative
Traps: STOV, BNDV

(=]

LDPN Load double from program, negative. The double word ,lg] ala [5 l6 7 |8]9 101” [,7 ,3[,4 |15
contained at P — N is pushed onto the stack. [ofo v 1]7 o0 o3
Sub-opcode 3: 11 . iy i
Indicators: CCA P- Displacement
Addressing mode: P-— relative

Traps: STOV, BNDV

[=]

LDD Load double. The contents of the effective address mem-] l 21 NRERE l 3 l 9 ’Ol”l‘7 ,31141,5
ory location (E) and the succeeding location (E + 1) are O BDE
pushed onto the stack. The content of E, the most sig- . . ,
nificant word, is loaded into B; the content of E + 1, the Mode and Displacement
least significant word, is loaded into A. If indirect ad-
dressing is used, the word referenced by the initial ad-
dress (base + displacement) contains a DB+ relative
word address. If indexing is used, the effective address is
obtained by adding twice the contents of the Index regis-
ter to the relative word address.

Memory opcode: 15, bit 6 = 1
Indicators: CCA
Addressing modes: DB+, Q+, Q—, S— relative
Direct or indirect
(for final indirect: DB+ only)
Doubleword indexing available
Traps: STOV, BNDV

'2-39

Instruction Set

STD

LRA

LDB

STB

Store double. The top two words of the stack are stored
into the effective address memory location (E) and the
succeeding location (E + 1), and are theun deleted from
the stack. The content of B, the most significant word, is
stored into E; the content of A, the least significant word,
is stored into E + 1. If indirect addressing is used, the
word referenced by the initial address (base + displace-
ment) contains a DB+ relative word address. If indexing
is used, the effective address is obtained by adding twice
the contents of the Index register to the relative word
address.
Memory opcode: 16, bit 6 == 1
Indicaturs: unaffected
Addressing modes: DB+, Q+, Q—, S— relative

Direct or indirect

(for final indirect: DB+ only)

Doubleword indexing available

Traps: STUN, BNDV

Load relative address. The effective address is computed,
then the appropriate base register (PB for P+ or P-
addressing or DB for DB+, Q-+, Q—, and S— addressing)
is subtracted. The resulting relative address is pushed
onto the stack.
Memory opcode: 17
Indicators: unaffected
Addressing modes: P+, P--, DB+, Q+, Q--, 5— relative
Direct or indirect
Indéxing available
Traps: STOV, BNDV if indirect

Load byte. The content of the effective byte address
memory location is loaded right justified onto the TOS. If
indirect addressing is used, the word referenced by the
initial address (base + displacement) contains a DB+
relative byte address. If indexing is used, the effective
byte address is obtained by adding the positive byte
index in the Index register to the relative byte address.
Memory opcode: 15, bit6 = 0
Indicators: CCB
Addressirig modes: Byte addressing

DB+, Q+, Q—, S— relative

Direct or indirect

Byte indexing available
Traps: STQV, BNDV

Store byte. The right byte (bits 8 through 15) of the TOS
is stored into the effective byte address memory location
and the TOS is deleted. If indirect addressing is used, the
word referenced by the initial address (base + displace-
ment) contains a DB+ relative byte address. If indexing
is used, the effective byte address is obtained by adding
the positive byte index in the Index register to the rela-
tive byte address.
Memory opcode: 16, bit 6 = 0
Indicators: unaffected
Addressing modes: Byte addressing

DB+, Q+, O—, S— relative

Direct or indirect

Byte indexing available
Traps: STUN, BNDV

2-40

of1]2]3 6]7]8]ofrofi]r2fis]ialin
1l 1 ox 1
L - ~ —
Mode and Displacement
of 1123 6 7[819 10[11 [12]13]1a 15
[1]1 1 1
Mode and Dvisplacement
of 1]2]3 BEBEE 1lo[11[12 13[14]1s
[F[1 01 0 :
\ v —
Mode and Displacement
of1]2]s 6 7[8[9 10[11]12 13]14[15
M1 1 o]x 0

—

Mode and Displacement

INCM

DECM

ADDM

SUBM

MPYM

"MPM

Increment memory. The content of the effective address
memory location is incremented by one in integer form.
Memory opcode: 12, bit 6 = 0
Indicators: CCA, Carry, Overflow
Addressing modes: DB+, Q+, Q-, S~ relative -
Direct or indirect
Indexing available
Traps: BNDV, ARITH

Decrement memory. The content of the effective address
mermory location is decremented by one in integer form.
Memory opcode: 12, bit 6 = 1
Indicators: CCA, Carry, Overflow
Addressing modes: DB+, Q+, Q—, S— relative

Direct or indirect

Indexing available
Traps: BNDV, ARITH

Add memory to TOS. The content of the effective address
memory location is added in integer form to the TOS.
The result replaces the operand on the TOS.
Memory opcode: 07
Indicators: CCA, Carry, Overflow
Addressing modes: P+, P—, DB+, Q+, Q. S— relative
Direct or indirect
Indexing available
Traps: STUN, BNDV, ARITH

Subtract memory from TOS. The content of the cffective
address memory location is subtracted in integer form
from the TOS. The result replaces the operand on the
TOS.
Memory opcode: - 10
Indicators: CCA, Carry, Overflow
Addressing modes: P+, P—, DB+, Q+, Q—, S relative
Direct or indirect
Indexing available
Traps: STUN, BNDV, ARITH

Multiply TOS by memory. The TOS is multiplied in
integer form by the content of the effective address mem-
ory location. The least significant word of the result
replaces the operand on the TOS.
Memory opcode: 11
Indicators: CCA, Overflow
Addressing modes: P+, P—, DB+, Q+, Q~, S— relative
Direct or indirect
Indexing available
Traps: STUN, STOV, BNDV, ARITH

Compare TOS with memory. The Condition Code is set to
pattern C as a result of the comparison of the TOS with
the content of the effective address location. The TOS is
then deleted.
Memory opcode: 06
Indicators: CCC
Addressing modes: P+, P—, DB+, Q+, Q—, S— relative
Direct or indirect
Indexing available
Traps: STUN

2-41

H
o]

Machine Instruction Set

4ls]e 7[8]9 10[11]12 13[14115
[1fo i oix]|iTo B
. ~ J
Mode and Displacement
0 1[2[3 als{ejr]s]o 10[n]i2 13]14 15
[ifo v oix|i]
A, — J
Maode and Displacement
of 1] z2[z2]a]s]e 18] 10Jn|12 13]_14_[2
[ofr 1 1}x . T 1
. - J
Mode and Displacement
of1]2]3fa]s]efr]n]o 10}11]1573]14115
[Mjo o ofx|1
v J
Mode and Displacement
of1]2]3fa]s]s 7[8]9 1011 12 13]1a s
[1jo o 1yx]i
Mode and Dvisplacement
of1]2]a3f4]s]s 7[3]9 10[11]12 13[14 15
[o]1 t ofx]1

2/

Mode and Displacement

Instruction Set

INSTRUCTION COMMENTARY

1 MPYL, MPY, DTST, FIXR, FIXT, LMPY. These
six instructions provide for the deletion of the most sig-
nificant word of a doubleword result. The assumption is
that the result of the instruction (e.g., multiplication pro-
duct) does not require more than 16 bits to represent it.
The MPY instruction deletes automatically during execu-
tion; the remaining five instructions simply test the result
and provide an indication (Carry bit) to note whether or
not the low order word fully represents the true result.
Thus, for these five, the programmer may choose to insert
a delete sequence (see figure 2-1) to delete the high order
word if it is insignificant.

For MPYL, DTST, FIXR, FIXT, and LMPY, the Carry bit
is cleared if the high order 17 bits are all zeros or all ones.
This test ensures that the sign bit of the single-length
result will be the same as the sign of the double-length
result. If this is not the case, Carry is set, and the most
significant word should not be deleted. For MPY, Overflow
will be set if the test fails, meaning that MPYL should
have been used instead of MPY.

2 DFLT, FLT, FADD, FSUB, FMPY, FDIV, FIXR,
FIXT. These eight floating point instructions are rounding
or truncation in computing a final result and except for
DFLT and FLT, are subject to both overflow and under-
flow. The following paragraphs explain these conditions as
they apply to the HP 3000 Series II Computer System.

Rounding and Truncation. Figure 2-2 illustrates both
rounding and truncation. Rounding is a simple matter of
adding a “1” to whatever is in bit position 32. For FIXR,
the binary point of the fixed point result follows bit posi-
tion 31. If bit 32 is a “1” (case A in the figure), adding “1”
will cause a carry into bit 31, thus incrementing the repre-
sentable value. If bit 32 is a “0” (case B), adding “1” will
not cause a carry, and the representable value is not
changed.

Truncation is used only by the FIXT instruction and con-
sists of discarding all fractional bits after computing the
effective binary point position. This is shown in the lower
part of figure 2-2, which illustrates the case of truncating
t1e decimal number 3.5 to 3. The biased exponent (octal
401) represents an exponent of 1. The fraction, as stored, is
.11 which, when combined with the assumed leading 1
gives a resultant mantissa of 1.11. The positive exponent
of 1 implies that the effective binary point position is one
place to the right. Thus the true binary value represented
is 11.1, which is 3.5 in decimal. Therefore, in this case,
truncation of the fraction consists of discarding all low
order bits from 11 through 31.

Overflow and Underflow. Figure 2-3 illustrates overflow
and underflow for the 32-bit floating point instructions.
Overflow is caused by these instructions when the com-
puted result (either positive or negative) is too large to be

2-42

represented. Underflow is caused when the computed re-
sult is too small to be represented. The limits are defined
in figure 2-3.

When user traps are enabled, an overflow or underflow
trap will occur to indicate which type cf error resulted. If
the traps are not enabled, the Overflow b.t will be set on
either type of error.

It is possible to reconstruct correct answers from overflow
or underflow results. If the exponent and fraction are both
zero and there is an underflow, the result should be taken
as +/— (depending on sign bit) 272°%, In all other cases, test
bit 1 (most significant bit of exponent). If this bit is 0, add
512 (decimal) to the exponent; if it is “1”, subtract 512
from the exponent to reconstruct the correct biased
exponent.

3 ASL, ASR, LSL, LSR, CSL, CSR. The actions of
the six single word shift instructions are shown in figure
2-4. It is assumed that the shift count specified in the
argument field of the instruction, is 3 in each case. The
before and after conditions of the TOS word are shown for
each example.

In the case of arithmetic shifts, the sign bit is always
preserved. When shifting left, the bits shifted out of bit 1
(most significant bit next to the sign bit) are lost; zeros are
filled into the vacated low order bit positions. When shift-
ing right, the sign bit is copied into the vacated high order
bit positions, and bits shifted out of bit 15 (least significant
bit) are lost.

In the case of logical shifts, all bits are shifted. Bits are
lost out of the high end when shifting left and out of the
low end when shifting right. Zeros are filled into the vac-
ated bit positions.

In the case of circular shifts, no bits are lost. Bits shifted
out of the high end when shifting left are filled into the

Sign of a Sign of a
Double-length Single-length
Integer integer
0) 15 0 15
ISR RNENEENERRIERRRRNEEREREREAN
0000000000000000 OX-~----=--=-~-----~- X
111111111111 1T111 1 X-~----~-----~=~~~ X
\, J\ J
Y v
High Order Significant
17 Bits Data Bits
Example delete sequence:
MPYL;
BCY »+2;
DELB:

Figure 2-1. Deleting a High Order Word

vacated low order bit positions. When shifting right, bits
shifted out of the low end are filled into the vacated high
order bit positions.

Note that, for all shift instructions, the number of shifts is
determined either by the value specified in the argument
field of the instruction or, if X is specified (“1” in bit 4), by
adding the argument field value to the Index register
contents. This permits the number of shifts to be computed
as well as explicitly specified.

Al shift instructions except TNSL use the shift count in a
modulo 64 manner. Thus if the final shift count is 100
octal (64 decimal), the data is not shifted at all. Further-
more, if the number of shifts equals or exceeds the number
of magnitude bits (whether single, double, or triple word),

Machine Instruction Set

the following will occur: for left arithmetic shifts and all
logical shifts, the magnitude will be all-zero; for right
arithmetic shifts, all magnitude bits will be the same as
the sign bit; for circular shifts, the circular shifting will
continue until the specified number of shifts (up to 63)
have been achieved.

Except for TNSL (see Instruction Commentary 5) the
execution of shift instructions does not alter the content of
the Index register.

4 DASL, DASR, DLSL, DLSR, DCSL, DCSR. The
actions of the six double word shift instructions are shown
in figure 2-5. The shift count, specified in the argument
field of the instruction, is assumed to be 3 in each case.

ROUNDING
(4] 10 15 0 15
P01 110 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 311321
1 | :
1 '
! 1. ‘¢ Fraction =:
| 1
<« Unsigned fixed point result for FIXR
FixedpointJ
0 1
+1 A
Decimal 1)
Examptes: +1.% - - -1]50 .- - - ——p X m - - 2
TS 15 S 1]49 - - - — 1Ko e 1
AR o m - 1lso- - - — ALK m e mm - 2 0o 0
AX--------1]40--- —p K m e m - 1
+1 B
o -
TRUNCATION
— Truncate
01 2 3 4 5 6 7 8 9 10

[o]1 0 oJo o ofo o 1]

1 oJo o o] [o]o 0 oo o ofo

0 oJo o ofo 0 o]

\ s\

J

+
Exp =1

v~

Mantissa = 1.11

v~

VALUE = 11.1 (or 3%)

|——9 Truncate

Figure 2-2. Rounding and Truncation

2-43

Instruction Set

BINARY REPRESENTATION
VALUE
(Mantissa) Exponent s Exponent Fraction
)] Decimal Binary
OVERFLOW tee :
(too large .
to represent} (2) 2255\\ :g:z
1 0| +255 .
11679 X 1077 (29712 9155 o™~ U111 1 | 11311111111 177111311711
Decimal
(=)
10| +255 111111111 0000000000000000000000
+127
RANGE OF
POSITIVE NUMBERS +63
+31
A Ry 4] 0 100000000 0000000000000000000000
-32
-64
-128
= -256
T P
. 0 000000000 0000000000000000000001
UNDERFLOW (s l
(too small -256
to represent) -2§7
ZERO 00— 0 000000000 0000000000000000000000
UNDERFLOW 957
(too small _256
to represent) -1 9-256 -
“ 1 .
¥ semz2x10 " 2239 255 1 l 000000000] ©0000000000000000000001
Decimal
(=3 -256
-128
-64
-32
RANGE OF R 1] o 100000000 0000000000000000000000
NEGATIVE NUMBERS +31
+63
+127
1] +255 111111111 0000000000000000000000
(=4
Decimal - 55
-(2-2 22) 22
, _ -1is79xio” L f1] +255 [111110117 11119111111111111111111
255/ +256
OVERFLOW (-2)2 +257
{too large .
to represent)

Figure 2-3. Ranges of 32-Bit Floating Point Numbers
2-44

The before and after conditions of the two top words of the
stack are given in each example. The TOS contains the
least significant half of double word integers, and the
second word (B, or TOS-1) contains the most significant
half.

Double word arithmetic, logical, and circular shifts are the
same as the corresponding single word shifts described
above under Instruction Commentary 3 except for the
word length. This means that, when shifting left, bits
<hifted out of the high end of the low order word are filled
mto the low end of the high order word. When shifting
right, bits shifted out of the low end of the high order word
are filled into the high end of the low order word. Simi-
larly, on circular shifts, bits shifted out of one end of the
double word are filled into the opposite end of the double
word.

5 TASL, TASR, TNSL. Figure 2-6 illustrates the
actions of the three triple word shift instructions. Two of
these, the arithmetic shifts, are the same as the single and
double word shift instructions previously described in In-
struction Commentaries 3 and 4, except that three words
are shifted. The TOS contains the least significant word, B
{or TOS-1) contains the middle word, and C (or TOS-2)
contains the most significant word.

The TNSL (Triple Normalizing Shift Left) instruction is a
special case. Instead of specifying a shift count, TNSL
shifts left arithmetically until a “1” is shifted into bit 6 of
the most significant word, and the number of shifts is
counted in the Index register. The argument field is ig-
nored. Bits 0 through 5 of the most significant word are
cleared.

The TNSL instruction clears the Index register before
beginning to shift unless X is specified in bit 4 of the
instruction. If X is specified, the shift count adds on to the
existing contents of the Index register. If bit 6 of C and all
lower order bits are zero, a “1” cannot be shifted into bit 6
of C. TNSIL, initially tests for this condition and, if true,
bypasses the shift operations and simply puts 42 into (or
adds 42 to) the Index register and does not clear bits 0
through 5 of C. This is the value that wouid exist if the
shifts were actually executed.

The purpose of the TNSL instruction is to normalize a
triple word floating point number. Such a number has a
42-bit mantissa consisting of: a leading “1”, 38 represent-
able fraction bits, a rounding bit, and two guard bits at the
least significant end. TNSL assumes that the number has
previously been left-shifted three places in order to in-
clude the rounding and guard bits in the least significant
word. Thus the leading “1”, instead of being assumed to
exist in the bit 9 position of C (see figure 2-6) is now moved
to the bit 6 position.

2-45

Machine Instruction Set

Arithmetic Shift Left
Lost

ASL 3

ALY
LI DT TPTTTIT]

SEEEERE

HEEE iOiOiOi-—o

Arithmetic Shift Right

ASR 3

Lost

Pt/

OEEEEEE

INEEEEER

(sisisisf [||

LTI TT

e

Logical Shift Left

Lost

NN

LSL 3

LTI

IEREEEEER

rﬁllll

[[[][]ofo[ojso

Logical Shift Right LSR 3
LOSI./

T T L]

o[TTTT T T I T TT]

Circutar Shift Left CSL 3
T I IITITTIIIT1]
Lllllllllllllmcj-]
CSR 3

Circular Shift Right

Ll TTT

[T TT Jefefe

[TTTTITT]

thlsllll

Figure 2-4. Single Word Shifts

Instruction Set

TOS - 1 | TOS

Double Arithmetic Shift Left

Lost

DASL 3

AN\
GIITTTTTTTITITIT AT T 1]

s lllllllllll%lllllll

Double Arithmetic Shift Right

DASR 3

Lost

BEEEEEN

[TTTTTI I Pl I

|

HEEEE

s[s]s[s] | |

I

lllllm’lllllll

l

[

LI

Double Logical Shift Left

Lost

DLSL 3

N
CLT LT

[1

[TTTTTTICL LI T Tl

[

HEEEEN

[1

IIIII%HIHH

Double Logical Shift Right

DLSR 3

EEEEEE

[TTTTTIJ PP eitd

Illllmlllllll

o—ofoo] | | |

[]

|

Doubte Circular Shift Left

DCSL 3

| |

[T 11 HjEEEEEREEE

]

IDOEER
rﬁﬁlu

[|

[TT] %1111111

Doubte Circutar Shift Right

DCSR 3

HEEEEN

|

EEEEEEREEEENEEEE

C(hlll

Illllmllllll

l

Figure 2-5. Double Word Shifts
2-46

6 QASL, QASR. The two quadruple word shift in-

structions are the same as described previously for the.

single, double, and triple word shift instructions in In-
struction Commentaries 3, 4, and 5, respectively, except
that four words are shifted. The TOS (A) contains the least
significant word and D contains the most significant word.

7 EXF, DPF. Figure 2-7 compares the operations
of EXF and DPF. In the case of EXF, only the TOS word is
affected. Assuming values of 2 for J and 8 for K, bits 2
through 9 will be extracted and moved to bits 8 through 15
(i.e., right-justified). Bits 0 through 7, in this example, are
filled with zeros. In the case of DPF, the two top words of
the stack are affected. The second word of the stack (S—1)
is assumed to contain a word that is arbitrarily rep-
resented here by the letters “a” through “p”. Assuming
values of 4 for J and 6 for K, the six least significant bits of
the TOS word are deposited into the second word, begin-
ning at bit 4 and ending at bit 9. The remaining bits of the
second word are unchanged, and the combined result be-
comes the new TOS. Note that since the J and K fields

Machine Instruction Set

each have four bits, they may specify values from 0
through 15 (decimal). The field may wrap around the end
of the word; i.e., bit 15 is one bit to the left of bit 0.

8 BR. The P relative mode of BR, the uncondi-
tional branch instruction, is a conventional P relative
branch except for the indexing capability and the ex-
tended displacement range. Bits 8 through 15 are avail-
able to specify displacement, which therefore can be up
to + 255.

The DB, Q, and S relative mode , however, are unconven-
tional in that they permit indirect branches through the
data stack. (It is both illegal and impossible to have a
direct branch to the stack; the coding of “01” for bits 5 and
6 encodes the BCC instruction.)

Figure 2-8 shows an example of the S— relative mode.
Assume that the instruction in location P specifies the S—
relative mode, with a displacement of 4, and indexing.
This causes an indirect branch to S—4 in the data stack.

[TOS - 2 |

TOS - 1

| TOS |

Triple Arithmetic Shift Left TASL 3

Lost

sSLIL DL LI TP T T T T T O T T T T T TTITTTT1TT]

i

LTI P TPV T PP T T T T CO T T T T TTTTTT [ofefo}—o

Triple Arithmetic Shift Right TASR 3

Lost

i

CESEEEEEEEEEREEN RN NEEEEEEENEEEREEREENEEEREREEN

[1]

Triple Normalizing Shift Left TNSL

[ﬂﬂﬂsfl]llll[lll Je i rrrrrrrny HEENEEERERENE

(L[[[fofoJofofofof] JJEIT TP T TIFPTTTITILITTITTITTITTITITITITITITI

,r/’/,,—/

/’/’/,//

fofojofojojofr[| [[T [P P JULIA LI PTIPITTTT]]IELETTTTTTJofofoJoJo]oJo}0

Figure 2-6. Triple Word Shifts

2-47

Instruction Set

The content of S— 4 is then added to PB, thus pointing at
location “a” in the code segment. Since indexing is
specified, the value contained in the Index register is also
added to the address being computed. Thus the ultimate

effective address for the branch (next P) is location “a
displaced by the index value.

Note particularly that the indirect address given in the
stack is relative to the program base, PB, not to P as is
usually the case. Also note that the displacement is rela-
tive to a location in the stack (DB, Q, or S), and that
indexing is applied after the indirect addressing has been
accomplished.

The displacement range for the DB, Q, and S modes de-
pends on which mode is selected. For DB+, bits 8 through
15 provide a range of 0 through +255. For Q+, bits 9
through 15 provide a range of 0 through +127. For Q—

and S—, bits 10 through 15 provide a range of 0 through
-63.

9 MOVE, MVB, MVBW, CMPB, SCU, SCW. These
six instructions are members of the move group and as

such deal with strings of words or bytes. The first three
physically move a word or byte string from one block of
locations in primary memory to another. The CMPB in-
struction does not move data but compares data in two
complete strings, byte by byte. The last two also do not
move data but scan a data string testing the string byte by
byte against a test character and a terminal character.

SOURCES. The MOVE, MVB, and CMPB instructions
may take source data from either the code segment or the
data segment. (For reference purposes, “source” and
“target” terminology is retained for CMPB, even though
there is no move operation.) If bit 11 of the instruction is a
“0”, source addresses are PB+ relative — i.e., from the
code segment. If bit 11 is a “1”, source addresses are DB+
relative — i.e., from the data segment. Figure 2-9 illus-
trates both cases. Note that the target for either case is in
the DB+ area. (Disregard move-direction arrows for
CMPB.) Both source and target (MVBW) addresses are DB
relative for MVBW, SCU, and SCW. The target need not
be “higher” than the source; figure 2-9 shows examples
only.

AFTER

BEFORE
EXF Extract Field
J =2
K =18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. J
ag

JENENEEEREEEEEEN s[ofoJofofofofoJo] T [[[| | |
0o 1 2 3 a4 5 6 7 8 9 10 11 12 13 14 15 o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
u v -/ - v B
. S 4
Extract
DPF Deposit Field
J =4
K=16
Deposit
(Y
S-1lalb|lc|d|e|lflagjh|ililx|t|{m|{n]olp SaIblcld[IIIIleIIlmlnloIp
s b J

9 10 11 12 13 14 15

|

Figure 2-7. EXF and DPF Operation
2-48

ASCENDING/DESCENDING ADDRESSES. The MOVE,
MVB, and CMPB instructions have the capability of
generating ascending or descending addresses for source
and target locations. The direction is established by the
sign of the count word, which is bit 0 of A, as shown in
figure 2-9. If this bit is a *0”, the sign is “+”, and succes-
sive addresses are ascending (B and C incremented). If
this bit is a “1” the sign is “~”, and successive addresses
are descending (B and C decremented). Note the + Count
and — Count arrows in figure 2-9. The MVBW instruction
uses only ascending addresses; this instruction does not
Use a count word, and the source and target pointers are in
A and B instead of B and C. SCU and SCW also only use
ascending addresses; terminal and test characters are in
A, the source pointer is in B.

METHOD OF TERMINATION. The MOVE and MVB in-
structions are terminated only when the word or byte
count becomes zero. The MVBW instruction is terminated
only when a character of a specified type, either alphabetic
or numeric, is encountered. The CMPB instruction has
two methods of termination: when the byte count becomes
zero, or when any two bytes being compared are unequal.
SCU scans until the terminal or test character is found,
SCW scans while the string equals the test character.

SPECIAL FEATURES. The MVBW instruction includes
an “upshift” bit (bit 13). This bit, when set (“1”), will
transpose any lower case source characters to upper case
during the transfer. If not set (“0”), the source characters
are unaltered by the instruction.

Machine Instruction Set

MOVES BEYOND TOS. In the event that the source or
target of any move instruction advances into the instruc-
tion parameters on the top of the stack or beyond, the
parameters (top four if more than four) will not be affected
since these values are contained in the top-of-stack regis-
ters. The memory locations directly corresponding to these
registers will be used for the move (or comparison). How-
ever, this situation is normally a software error.

INTERRUPTS. All Move instructions are interruptable
and will continue their operation after return from the
interrupt. To do this, the count, source, and target ad-
dresses are kept updated and deleted from the stack, if
specified, only upon completion of the instruction.

10 MVBL, MVLB. These two instructions have
many characteristics of the other move instructions de-
scribed above (Instruction Commentary 8). However, since
they move data into or out of the data area between DL
and DB, MVBL and MVLB are privileged instructions.
The following paragraphs summarize the actions of these
two instructions. Refer to figure 2-10.

For MVBL, source data is taken from the DB+ area and
the target is in the DL+ area. (A large enough displace-
ment could put the target in the DB+ area.) For MVLB,
source data is taken from the DL+ area and the target is
in the DB+ area. Addresses for both instructions can be
ascending or descending, depending on the state of the
count sign. If this bit is a “0”, the sign is “+”, and succes-

CODE DATA
=
PB
DB
a PB + (S-4)
Next P l PB +(S-4) + X
p Q
S-4 |/
S Displacement
toi

Figure 2-8. Indirect Branch via Stack

Instruction Set

sive addresses are ascending (B and C incremented). If
this bit is a “1”, the sign is “—”, and successive addresses
are descending (B and C decremented).

Both MVBL and MVLB are terminated when the word
count becomes zero. The comment on “Moves Beyond
TOS” under Instruction Commentary 8 also applies to
these two instructions.

11 ADDS, SUBS. The reason for the “minus one”
when using the TOS content to modify S is to delete the
modifying parameter. A typical application of the ADDS
instruction is to reserve a block of stack locations for
procedure variables. The number of locations so reserved
may be either explicitly given in the instruction’s operand
field, or computed and accessed via the TOS. The effect of
the instruction is simply to advance the top-of-stack
pointer a given number of locations without specifying
any contents. The SUBS instruction, conversely, deletes a
specified number of stack locations.

12 SCAL, SXIT. Figure 2-11 illustrates the opera-
tions for calling and exiting from a subroutine. Since only

local labels may be used, operation is entirely within the
current code segment. Assume that the system is execut-
ing instructions in the code segment shown in figure 2-11.
At some point, P will encounter the “SCAL N” instruction,

. where N is some value 0 through 255. If the value of N is

not 0, e.g., 8, this value will be subtracted from PL (i.e.,
PL- 8), thus pointing at the ninth cell counting backward
from PL. This must be within the Segment Transfer Table,
whose first entry is PL— 1. The eighth entry, in this case,
contains a local program label (bit 0 = 0), which is a PB
relative address pointing to the start of the subroutine.
This address is converted to absolute (add to PB) and is
loaded into the P-register, while the former value of P,
plus one, is stored in the TOS as the return address.
However, if N were 0, it would be assumed that the TOS
contains the local label (subroutine starting address). This
address, then, (made absolute) would be loaded into the
P-register, while the former value of P, plus one, replaces
the label on the TOS as the return address. In either case,
once the P-register has its new address, the location so
indicated will be fetched and subroutine execution begins.

The final instruction of the subroutine is SXIT. At this
time the return address, pushed onto the stack by SCAL,

CODE DATA
SEGMENT SEGMENT
PB DL
{-Count)
> 7
PB Relative Source DB
(+Count) " h
P (-Count)
p -)
v DB Relative Source
(+Count)
PL
A 4
- L > {-Count)
Target
G- \ =
(+Count)
INCREASING (+) (-)
ADDRESSES incr Decr C Target
incr Decr B Source
l l Decr Incr Alt] Count
Z

Figure 2-9. Examples of Moves

2-50

is assumed to be on the top of the stack. It is the responsi-
bility of the subroutine to provide this condition, which
normally means deleting all variables incurred by the
subroutine. The SXIT instruction simply takes the ad-
dress contained in the TOS and puts it in the P-register,
thus effecting a return to the calling routine. As a final
step, SXIT deletes the TOS, since the return address is no
longer needed, and may additionally move S back some
number of locations specified by N. This would typically be
used for deleting some of the parameters passed to the
subroutine.

13 PCAL, EXIT. These two instructions perform
basically the same function as the SCAL and SXIT in-
structions described above (Instruction Commentary 12).
That is, to call a routine and return from it to the point
where it was called. However, since the routines in the
case of PCAL/EXIT may be external to the current seg-
ment, possibly not even present in main memory, the
operation is somewhat more complex.

The following paragraphs describe the operations of PCAL
and EXIT on a step-by-step basis, referring to flowcharts.
It will frequently be assumed that the reader has a work-
ing knowledge of the intents and purposes of the various
steps.

PCAL Sequence. Figure 2-12 illustrates the operations of
the PCAL instruction. If the call is within the current
segment (local label), only the steps shown on the left side
of the diagram are performed. For calls outside the current
segment, the steps on the right side are added.

The first step is to fetch the program label. From the
PCAL instruction definition, we see that the label can be
obtained from one of two places: from the TOS if N is zero,
or from PL~ N if N is not zerc. This operation can be seen
in the SCAL operation of figure 2-11, where the label is
fetched from either the Segment Transfer Table, at PL— N,
or from the TOS.

Thus, referring to figure 2-12, PCAL initially checks N to
see if the label is on the TOS. If not (block 1) the label is
fetched from PL—N and a check is made to see if that
location is actually within the bounds of the Segment
Transfer table. (N must be < STTL value in the PL loca-
tion.) If out of STT bounds, an STT violation is incurred;

otherwise, the PCAL sequence continues. If the label is on .

the TOS (block 2), the label is put into temporary storage
in the CPU and S is decremented to delete the label from
the stack. At this time, the CPU has the label but does not
know whether it is local or external, or if it is valid.

The next step is to place a standard four-word stack
marker onto the stack (block 3) and update the Q pointer
by loading it with the content of S (block 4). Both Q and S
are now pointing at the last word (delta Q) of the new
stack marker.

Machine Instruction Set

Now the label is checked to see if it is a local label (bit 0 =
0). If it is, the sequence goes directly to block 11 (skip to
paragraph starting “Block 8 sets”).

If the label is external (bit 0 = 1), bits 8 through 15 are
checked to see if the segment number specified is valid. If
the segment number does not have an entry in the Code
Segment Table, a CST violation is incurred. Otherwise,
the PCAL sequence continues. Next, absolute addresses
for PB and PB are calculated from the CST entry and
loaded into these two registers (block 5).

Block 6 sets the privileged mode in the Status register if
the mode bit in the CST entry indicates privileged mode,
or if the caller was executing in privileged mode (i.e., if the
privileged mode bit in Status already was set). (Although
not shown, the Reference bit in the CST is set at this time,
for statistical purposes.)

Block 7 stores bits 8 through 15 of the label into bits 8
through 15 of the Status register. This indicates to the
system that we are now operating in the called segment.

DL
MVBL MvLB
(-Count)
™ {
Target Source
{+Count)
DB
4 4
{- Count)
¢ ' i
Source Target
—— —
(+Count)
(+) (-}
Incr Decr C Target
Incr Decr B Source
INCREASING Decr Incr A[t] Count
ADDRESSES
: z

Figure 2-10. Examples of MVBL, MVLB

Instruction Set

A check is then made to see if the called segment is absent
from main memory. If it is, an absent code segment trap is
incurred. A similar check is made for TRACE by checking
the CST entry for the called segment.

The next check is to see if bits 1 through 7 of the label are
0. These bits specify which STT entry in the target seg-
ment contains the desired local label. Since a value of 0
would point at the STTL word in PL, the value of 0 is
specially defined to indicate that P should be set to PB of
the called segment, i.e., the local label equals 0. A check is
then made to see if the PB entry is callable if it is being
called from user mode. Assuming that bits 1 through 7 of
the external label are not 0, the value so indicated will
point to one entry in the Segment Transfer Table. If it does
not (i.e., if the value exceeds the STTL value), or if the
entry pointed to is not a local label (i.e., if bit 0 = 1), there
will be an STT Violation. But if the label is valid, it is then
checked to see if the procedure is callable if being called
from user mode by checking bit 1 (must be 0).

Block 8 sets the P-register to the starting address of the
procedure. The CPU at this point has a local label,
whether it is in the same segment as the PCAL or in a
segment external to the calling segment. The value for P
is calculated by adding the contents of bits 2 through 15 of
the local label to the contents of PB. As a final check, this
value for P is checked to see if it is between PB and PL.
The resultant absolute value is then loaded into the
P-register, and the location so indicated is fetched and
execution of the procedure begins.

EXIT Sequence. Figure 2-13 illustrates the operation of
the EXIT instruction. If the exit is within the current
segment only the steps on the left side of the diagram are
performed. For returns to another segment the right side
is also executed.

The first step (1) is to fetch the 4-word marker pointed to
by Q, which was placed on the stack when the current
procedure was called. S is set equal to Q, deleting any local
storage being used by the current procedure. If the current
procedure is executing in user mode, the privileged and
external interrupt enable bits in the marker status are
compared with the current status to ensure that the user
has not modified these in the marker. Then X is restored
from the marker.

In step 2, if the current segment and the segment in the
marker are the same steps 3 through 6 are omitted,
otherwise continue.

Steps 3 and 4 are similar to the equivalent steps in PCAL
(figure 2-12).

In step 5, if in user mode the privileged bit in the CST
entry for the return segment must be off. (Although not
shown, the reference bit in the CST entry is set at this.
time for statistical purposes.)

An absent code segment trap occurs following step 5 if the
return segment is absent. A trace trap occurs in step 6 if

SCAL
Code Stack
PB
P/ SCAL N
7/
(
! —_—~
: Subroutine S
~
| S [~
| |
! | |
! I '
i] . |
| K‘ Segment !
1 Transfer |
| PL } N Table |
1 |
N J

*Store P+1 in TOS

SXIT

Code Stack
PB
P o

SXIT N ('

_L__. S Return P N

PL
\. < _J

Figure 2-11. Subroutine Call and Exit

2-562

Machine Instruction Set

2

Fetch label
from TOS
and delete

Yes

E Set PB, PL from

» CST entry
Fetch
label from ﬂ
PL-N
Set or clear
privileged
mode bit M
in Status

;

Put segment

Is N
within STT

Push 4-word
stack marker
onto stack

.

Move Q up
to S {AQ
marker word)

number of
called seg in

Status (8:15)

bounds

STT |
L s
Violation ABS CST Yes called segment
Interrupt absent
?
Is
TRACE Trace bit

Interrupt on

?

Segment
number legal

STT
Violation local label
CST Interrupt legal

Violation ?

Set new P
from local
label

Is
procedure
callable*

*and being
called from
user mode

Replace
Procedure local label
with 0 STT Uncallable

Figure 2-12. PCAL Instruction Flowchart
2-53

Instruction Set

EXIT

REPLACESWITHQ

FETCH 4-WORD SET PB,PL
MARKER AT (Q) b FROM GST
THRU (Q-3) CNTRY
ﬂ CHECK PRIVILEGED
YES AND EXTERNAL CHECK
INTERRUPT BITS IN PRIVILEGED
MARKER BIT IN CST
ENTRY
NO
RESTORE'X
rrROMMARKeR [¢ IS
RETURN
SEGMENT ABS CST
ABSENT INTERRUPT
EXIT g 3
EGMENT
23 TO SAME oMBER
SEGMENT ‘-E?AL TRACE BIT TRACE
(N MSSKER) INTERRUPT

CST VIOLATION

BOUNDS
VIOLATION

RESTORE STATUS
FROM MARKER
SET §:=Q-4-N
SET Q:=Q-dQ FROM
MARKER
SETP

RETURN
PROCEDURE

Figure 2-13. Exit Instruction Flowchart
2-54

bit 0 of delta P in the marker is set. This bit is normally set
by the trace routine which would have been called when
the current procedure was entered.

At step 7 return “P = P — delta P” from the marker, must
be between PB and PL. The STATUS register is restored
from the marker; Q is set pointing to the previous marker,
then S is decremented by 4 to delete the marker on the top
of the stack and by N (specified in the EXIT instruction) to
delete any parameters passed to the procedure being
exited. P is set to return P and execution begins within the
return procedure.

14 LLBL. The LLBL instruction will convert a local
label to external type of it is not already of this type. The
conversion is accomplished by forcing bit 0 of the TOS to
the “1” state, loading bits 1 through 7 with the value of N
(which is the STT entry number), and loading bits 8
through 15 with the corresponding bits of the Status regis-
ter (i.e., the number of the currently executing code
segment).

15 DISP, IXIT, PSDB, PSEB. The Dispatcher, ex-
ternal interrupts, and some internal interrupts execute on
the Interrupt Control Stack (ICS). Normally the Dispatch
(DISP) instruction is used to enter the Dispatcher and the
Interrupt Exit (IXIT) is used to exit from the Dispatcher.
Also, when “ICS” type interrupt service routines are en-
tered in response to appropriate events, the instruction
IXIT is used to exit from these. The exit may be from the
Dispatcher to the process being launched or from interrupt
service routines to the interrupted procedure or, in certain
cases, to the Dispatcher entry point. The instructions
Pseudo Interrupt Disable (PSDB) and Pseudo Interrupt
Enable (PSEB) are used to prevent entry to the Dispatcher
during critical sections of code.

The instruction DISP causes a transfer to the Dispatcher’s
entry point unless it is executed while on the ICS or while
the Dispatcher is disabled. The Dispatcher is disabled
when the Dispatcher Flag is non-zero, (QI-18) » 0. The
address of QI is located at 4 times the CPU number plus 1.
Condition code CCE is set when the Dispatcher is entered;
the Status register is set as specified for the Dispatcher.
The transfer is executed in a manner similar to an ICS
interrupt. If a DISP instruction is executed on the ICS or
while the Dispatcher is disabled, bit 0 of (QI) is set and
CCG is set in the Status register, This bit is checked by
those instructions (IXIT and PSEB) which may remove
the conditions inhibiting the Dispatcher.

The instruction PSDB increments (QI— 18); PSEB decre-
ments (QI- 18). Starting the Dispatcher is disabled unless
this location is zero. Outside the Dispatcher and not on the
ICS, a PSEB which decrements (QI- 18) to zero effectively
does a DISP instruction if bit 0 of (QI) is set.

Within the dispatcher, a PSEB which decrements (QI-18)
to zero clears (QI), eliminating any pending Start Dis-
patcher requests. PSDB and PSEB are used at the begin-

2-56

Machine Instruction Set

ning of the Dispatcher to prevent any interrupts which
request a dispatch from causing the first portion of the
Dispatcher to be unnecessarily repeated. PSEB instruc-
tions which do not transfer to the Dispatcher set CCG in
the Status register.

Figure 2-14 is a simplified flowchart of IXIT operation.
IXIT operates in one of two manners. The first, (1) in the
figure, is by the dispatcher to transfer to a process being
launched; the second, (2) through (6), is to exit from ICS
interrupt service routines.

If an interrupt service routine is not in segment #1, it is
assumed to be an external interrupt routine and a “Reset
Interrupt” is sent to the device whose device number is at
Q+3. (Q+3) is assumed to be valid in memory, which is
normally the case since the device number supplied to
external interrupt routines as a parameter is written into
memory.

If bit 0 of (Q) is zero, (Q(0)) = 0, then if Q = QI, the return
is to be interrupted process (2). Otherwise the return is to
a lower priority interrupt which was interrupted (3).

If (Q0)) = 1 and (QI(0)) = 0, the return is to the Dis-
patcher which was interrupted (4).

If (Q(0)) = 1 and (QI(0)) = 1, a DISP ingtruction has been
executed and the request to start the Dispatcher is still
pending. If (QI- 18) = 0, the Dispatcher is not disabled, QI
is cleared, and a transfer is made to the Dispatcher’s entry
point (5) or (6). It doesn’t matter whether a process, Q =
QI, or the Dispatcher, Q # QI, was interrupted. If (QI- 18)
0, starting the Dispatcher is disabled and the DISP
request cannot be carried out at this time. Instead IXIT
returns to the interrupted Dispatcher, Q # QI (4a), or to
the interrupted process, @ = QI (2a). The “Start Dis-
patcher” request is still pending, (QI(0) = 1.

16 LLSH. Figure 2-15 illustrates the basic opera-
tion of the LLSH instruction. As shown, the top-of-stack
(A) contains a 16-bit absolute address within a bank
designated by the contents of B. At all times, in successive
fashion, this link pointer contains the absolute address of
the link word in the segment currently being tested. Loca-
tion C in the stack is the test word, which would typically
be a 16-bit number indicating the size of the segment
which is to be brought into memory. Location D is an offset
indicating how far the target word is from the link word.
Thus as shown, the comparison is between the test word
and each target word.

On termination of the instruction, location A of the stack
contains the absolute address of the searched-for segment,
and a Condition Code of CCE indicates that the search was
successful. If the search is not successful, Condition Code
CCL or CCG will indicate the cause of termination.

17 XEQ. The reason why the use of a second stack
opcode (bits 10 through 15) is illegal is that there is no

Instruction Set

START
((ICSFLAG = 1)

DISPATCHER
FLAG = 1?

IN DISPATCHER
YES EXIT TO
P rrOCESS

SEND RIL TO
DEVICE

(Qion =17

(Qio)=1?

{Qi - 18) = 0?

RETURN TO
INTERRUPTED
PROCESS.

©)

RETURN TO A
LOWER PRIORITY
INTERRUPT

P ROUTINE THAT

WAS @

INTERRUPTED

RETURN TO
INTERRUPTED
DISPATCHER.

O)

NO N

START OR
RESTART
p| DISPATCMER.
® on
RETURN TO
TRIED TO GO TO
DISPATCHER BUT INTERRUPTED
WAS PSEUDO- ————$1 PROCESS.
DISABLED, @
TRIED TO RESTART RETURN TO
BUT WAS PSEUDO- INTERRUPTED
P DISABLED SO CONT-|—————p| DISPATCHER.
INUE WHERE LEFT ®
OFF,

Figure 2-14. IXIT Instruction Flowchart

2-56

guarantee that it will be executed. If there should be an
interrupt between the execution of the two stack opera-
tions, the second opcode will be lost since both came from
the data stack rather than a code segment. The interrupt
will return to the instruction following the XEQ. However
if no interrupt occurs, both stack opcodes will be executed.

18 SIO. There are five I/O instructions in the HP
3000 Command System instruction set. These are:

SIO Start I/O
RIO Read I/O
WIO Write I/O
TIO Test I/O
CIO Control I/0

These instructions are fully defined in Section II under the
heading “I’O and Interrupt Instructions”. The distinction
to note here is that the SIO instruction is used in conjunc-
tion with an I/O program, and the remaining four are not.
That is, the SIO instruction commands a device controller
to begin executing its associated /O program, which ef-
fects a block transfer of data between an /O device and
memory. This is termed an “SIO transfer” mode. The other
four instructions, on the-other hand, transfer only one

word per instruction, between the device and the top-of-
stack in the CPU.

An SIO type data transfer is initiated by the CPU execut-
ing a Start I/O instruction for a particular device. The
instruction assumes that there is an I/O program stored in
main memory. The hardware I/O system executes the I/0
program independently of the CPU. The CFU is then free
to continue processing in parallel with the I/O operations.

Figure 2-16 illustrates the order pair format of the double
words which are used in I/O programs. The general format
is shown at the top of the figure and then the actual format
of each of the nine orders is shown beneath. The first word
of an order pair is designated as the I/O Command Word,
or IOCW, and the second word is designated as the I/O
Address Word, or IOAW. The IOAW does not necessarily
always contain an address, as the figure shows.

The nine 1I/O orders are defined as follows:

JUMP. If bit 4 of the IOCW is a “1”, a conditional jump of
I/O program control is made to the address given by the
IOAW at the discretion of the device controller. If bit 4 of
the IOCW is a “0”, an unconditional jump is made.

RETURN RESIDUE. This causes the residue of the count
to be returned to the IOAW. The residue is obtained from
the multiplexer or selector channel. Each multiplexer or
selector channel has its own count. The count is initialized
from the least significant 12 bits of all IOCWs except
Return Residue and Set Bank.

SET BANK. This instruction loads the bank register of
the multiplexer or selector channel with bits 14 and 15 of
its IOAW. The execution of an SIO instruction automati-

2-b7

Machine Instruction Set

cally clears the bank register, therefore, if the data buffer
for this device resides in some bank other than 00, the [/O
program must contain a SET BANK order prior to a
READ or WRITE order.

INTERRUPT. This order pair causes the device controller
to set its interrupt request flip-flop and therefore to inter-
rupt the CPU.

END. End of the I/O program. If bit 4 of the IOCW is a *1”,
the device controller also interrupts the CPU. Returns
device status to the IOAW.

Memory
Stack Segment 1
Link
Offset
o= Target
r—!-ﬂ
:Compare=
Lem e d
D] Target Offset 3
c| TestWord }4----’
B] Link Pointer J
A] Link Pointer
Memory
Segment 2
Link
T } Offset
Target
P,
Memory
Segment 3
Link
Offset
Target
Figure 2-15. LLSH Operation

Instruction Set

CONTROL. This causes transfer of a 16-bit control word
in the IOAW to the device controller, as well as the 12 low
order bits of the IOCW. The IOCW is always available, but
a strobe to the device is provided only for Control.

SENSE. This causes transfer of a 16-bit status word from
the device controller to the IOAW.

WRITE. This causes “count” words of data to be trans-
ferred between main memory and the device, starting at
the address given by the IOAW, within a given bank.

READ. This causes “count” words of data to be transferred
between the device and main memory, starting at the
address given by the IOAW, within a given bank.

Data chaining occurs for Write and Read orders if bit 0 of
the IOCW is a “1”. This bit may be a “1” for a Write order
followed by a Write or for a Read order followed by a Read.
This will permit the hardware to treat the counts of each
order as a continuous chained count, without reinitializ-
ing for each order. The DC bit should be “0” for all other
orders.

The count field for Read and Write orders contains the
least significant 12 bits of a negative two’s complement
count value. The count is a word count, independent of the
particular recording format (bytes, words, or records). For
a Control order, these 12 bits are used for control informa-
tion in addition to the 16 bits in the IOAW (a total of
28 bits).

TYPICAL I/O PROGRAM OPERATION. Figure 2-17
shows the sequence of operations occurring as the result of
an SIO instruction. The sequence is as follows.

The SIO instruction, decoded by the CPU, fetches
the device number given at S-K in the stack, and
puts the TOS into the first word of the DRT as the
I/O program pointer.

SIO then loads the device number into the eight
least significant bits of the IOP Control Register,
and loads an SIO command into bits 1, 2, and 3.

The I/0 Processor issues the SIO command to the
device controller, and execution by the hardware
begins. The CPU is now free to continue execution
elsewhere.

(93]

[

On demand from the multiplexer channel, the I/O
Processor obtains the program pointer from the
Device Reference Table. (The selector channel ob-
tains the program pointer directly, not via the
IOP.) The address is obtained by multiplying the
device number by four. The program pointer is the
first word of the four-word DRT entry.

7 The program pointer points to the first double word
of the I/O program. The pointer is updated to point
at each I/O program double word as the program

progresses. (The selector channel, to minimize
memory fetches, copies the pointer value into a
register and updates the pointer internally; the
multiplexer channel, however, updates the pointer
directly in the DRT.)

m

8 The sample I/O program is assumed to operate as
follows. The first double word contains a CON-
TROL order which enables the hardware I/O sub-
system for this device number. The second double
word contains a SET BANK order, which is re-
quired if the data buffer for the device resides in
some bank other than bank 0 and a Read or Write
order is to be processed. The third double word
contains a Read order, which causes the subsystem
to read a total of 4096 words (or 8192 bytes) into
the data buffer whose starting location is given in
the IOAW word. Since the data chaining bit is on,
the fourth double word is also a Read order, which

0 1-3 4 15
[[o1e1}} DC[ORDER I#OF WORDS (NEGATIVE)*/CONTROL INFO
10AW DATA ADDRESS/CONTROL INFO/SENSE STORAGE
ORDER 0 1-3 4 6 15
009 [Jump | cl
JUMP TARGET ADDRESS
10CW (4) = 1 = CONDITIONAL
0 1-3 4 15
RETURN
@01 RESIDUE 0
RESIDUE OF WORD COUNT
0 1-3 4 14 15
SET
991 BANK | '
[x]x
XX=BANK ADDRESS
0 1-3 4 16
010 [INTERRUPT|
0 1-3 4 5 15
g1 ["enD TinT|
STATUS (will be returned)
IOCW (4) = 1 = INTERRUPT
0 1-3 4 15
100 [cONTROL] CONTROL WORD #1 12 BITS
CONTROLWORD #2
0 1-3 4 16
101 | | SENSE |
STATUS (will be returned)
0 1-3 4 15
110 [oc] WRITE | % OF WORDS INEGATIVE COUNT)

ABSOLUTE ADDRESS
10CW (#) = 1+ DATA LHAIN
0 1-3 4 15
DC| READ | # OF WORDS (NEGATIVE COUNT)
ABSOLUTE ADDRESS

*%OF WORDS for /O order pair 1-4096
DC = DATA CHAINING .

Figure 2-16. I/O Order Pairs

specifies the remaining count required to fulfill the
1/0 request. (Additional Read orders could be given
for larger requests.) The IOAW may specify a buf-
fer area contiguous to the first 4096-word buffer if
desired, or in another part of memory if a scatter
read is desired.

When the transfer is complete, the fifth double
word, a CONTROL order, turns off this I/O subsys-
tem. The final double word contains an END order,
which obtains the result of the transfer (device

status) and loads it into the IOAW; the END order -

then generates an interrupt to inform the software
that the transfer is complete.)

At the completion of an I/O program, the selector
channel returns the current program pointer value
to the DRT. The multiplexer does not take any
special action since it updates the DRT after each
order fetch.

19 TBA, MTBA, TBX, MTBX. These four instruc-
tions perform essentially the same function, and that is to
provide a simple mechanism for loop repetition, loop
counting, and loop exit, all in one instruction. The differ-
ences are that: ’

For TBA and MTBA, the variable is located in the
stack; for TBX and MTBX the variable is located in
the Index register.

a.

Machine Instruction Set

For TBA and TBX, modification of the variable is
assumed to have been done earlier in the loop,
whereas MTBA and MTBX automatically modify the
variable as part of their execution function.

With these differences understood, one of the instructions
may be taken as a typical example for discussion. Figure
2-18 illustrates one use of MTBA, which is to execute the
SPL/3000 FOR statement. As shown, the intent is to vary
the value I from 1 to 10 while repeating a certain proce-
dure ten times. (The TBA at the beginning is used to test if
the loop is to be executed zero times in the general FOR
statement.)

In assembly form, three instructions would be used to
initialize the stack. The LRA I instruction puts the DB+
displacement for the variable onto the stack (C), and LDI 1
and LDI 10 push the values 1 and 10 (or octal 12) onto the
stack to specify the step increment (B) and limit (A) re-
spectively. The loop is then entered. (If the loop control
instruction at the end were TBA or TBX, one of the in-
structions in the loop would add B to the variable.)

The last instruction of the loop is MTBA, which checks to
see if the variable has exceeded the limit. If it has not,
control is transferred back (four locations in this example)
to the beginning of the loop. The range is P + 255. At the
end of the final loop, MTBA increments the variable to 11,
thus exceeding the limit and causing the next instruction

DEVICE
STACK REFERENCE
TABLE
Q=+ 1/0
PROGRAM
P—o| 3] o [siof «] a 7 o] 7
l Enable----
/—-J R TBEV NG. ~—P]_PROG PTR -LS_B_L__-W{ DATA
BUFFER
1| Read 4K
| e
. Read Rem
@ ~ " Address |
ST o] _____ _
Disabl
lE&lejﬁtesr:@L- V‘:Ig?gs
Status
I0OP Control | | l
[sio P4 pevio. | Register | :
| |
@ 4 times Remainder
Start 1/0 Dev No. l
to Hardware Note: SB = SET BANK
SI0 INSTRUCTION

9002018

Figure 2-17. Typical I/O Program

2-69

Instruction Set

in line to be fetched. The three words on the TOS relating
to this loop are automatically deleted. The FOR statement
has now been executed.

Values for the limit, step, and variable may be negative
(two’s complement) as well as positive. If step is negative
(bit 0 = 1), exit from the loop will occur when the variable
becomes smaller (more negative) than the limit, which
may be either a positive or a negative number. For MTBA
and MTBX, the loop will also be terminated if there is an
overflow or underflow when modifying the test variable.

SPL/3000
FOR I = 1 STEP 1 UNTIL 10 DO
BEGIN
END;
ASSEMBLY
LRA 1
LDI 1
LDI 10
TBA *+2
BR *+6
l h— Loop
MTBA -4
STACK
DB
Displacement
—p Variable
\— ¢ [DB~ Dispiacement
8 Step (1)
A Limit (10}

Figure 2-18. Example of Loop Control with MTBA

2-60

20 This commentary explains the COLD-LOAD and
WARM-START procedures for the Series 30/33 Computer
Systems.

It is possible for TP to load and execute a specially con-
structed program from an I/O device (magnetic tape or
disc). This load operation is started by:

1 — pressing the LOAD or START button on the system
front panel. (CPU halted).

2 — pressing the LOAD or START keys on the console
front panel. (CPU halted).

3 — executing the “STRT” CPU instruction. (CPU
running).

Any of these will cause the CPU to enter a special
firmware routine which does the following:

1 — if entered from STRT or DUMP instructions,
(S)=channel and device number (CDEV); (8-1)=
disc head # (HD#).

2 — ifentered from either system or console front panel,
read CDEV & HD# from the system front panel.

3 — wait 1 sec. (HP 7902 is busy for 1 sec after LOAD/
START/DUMP keys are pressed).

4 — find the size of main memory (# of 128K-byte
banks present).

5 — if LOAD/START, initialize all main memory to
%030360. (= “HALT %0”).

6 — copy the contents of CPU registers to %1401-1422
in main memory: (this is really useful only for
DUMP)

CDEV

X

DL

DB-bank

DB

Q

S

S-bank

Z .

STATUS

PB-bank

PB

P

PL

CIR

memory size (# banks)
system halt #

ISR (interrupt register)

7 — copy the System Interrupt Mask and the LOAD/
START/DUMP device DRT entry to %1515-1521:
(useful only for DUMP)

%1516:= (7) system interrupt mask

6:= DRT 0 (CDEV*4)
7:= DRT 1 (CDEV*4+1)
20:= DRT 2 (CDEV*4+2)
1:= DRT 3 (CDEV*4+3)

8 — do TOFF; I0CL; INIT(CDEV); IDENTIFY(CDEV);
INIT(CDEV); CLEAR.

9 — copy the appropriate channel program to %1423-
1505, If the 1st IDENT byte returned by the device
is 0, then copy the DISC chan program (for HP
7902,06,'20,’25); otherwise, copy the TAPE chan
program (for HP7970E).)

10 — if the 1st IDENT byte was 0 (DISC) and the opera-
tion is LOAD/START, then modify the chan pro-
gram SEEK command to seek to sector 2. Other-
wise (DUMP, CDEV is DISC), the seek will be to

sector 3.

10 — if the IDENT code was 0 (DISC) and the
operation is

LOAD/START, then modify the chan pro-
gram SEEK command

to seek to sector 2. Otherwise (DUMP,
CDEV is DISC),

the seek will be to sector 3.

261

Machine Instruction Set

11 — setup a DRT for CDEV; do SIOP(CDEV).

The channel program will load 256 bytes from the DISC or
TAPE. Those bytes are assumed to be a bootstrap channel
program (boot) which will actually load the CPU program
to be executed. It is further assumed that the first byte
will be a checksum of the rest:

checksum := (sum of 127 bytes) + %123456.

The boot is loaded to. %7100 for LOAD, %1530 for DUMP.
If the chan program does not end within 25 sec, there will
be a SYSTEM HALT #6 (timeout).

12 — when the chan program halts, compute & check the
boot checksum. A checksum error will cause a SYS
HALT #7.

13 — if LOAD/START then do SIOP(%7101,CDEV);
if DUMP then do SIOP(%1531,CDEV).
(execute the boot, loaded at %7100 or 1530).
It is assumed that the boot will end with “IN H
%0”.
If the boot does not end within 25 sec, there will be
a SYSTEM HALT #6 (timeout).

14 — when the boot halts, if (CPVA) <> %100000 then
SYSHALT #10 (boot aborted or did non-standard
halt). Otherwise, setup the ICS and trap to seg 1,
STT 44.

mstruction Set

TP LOAD/DUMP Chan program for DISC

%1423:
4:

g:
6:
7:
30:
1:

2:
3:

4:
S:
6:
7:
40:

s se sa es o

e s

n

e s o5 se e

o

X146

ONOUNIAE WOV NN AWM= ~NNO Na2WN -

R

S:
6:
7:
1500:

2:

%]

1000
0

2010
2
0
0
1476

1000

2010

1503

1410

4
0
0
1504

1000
0

2010
6
0
0
1477

1000
0

2010
2
0
0
1502

1400
400
0

0
1530

1000
0

600
0

177777
7405
1000

0
3
2400
1400
0
0

WAIT <<wait for 1st ppoll>>»

WR 10,%X1476,2 <<set FILEMASK for HP7920>>

WAIT

WR 10,%1503,2 <<issue READ.STATUS command>>

RR 10,%1504,4 <<read 4 status bytes>»>

WAIT

WR 10,%1477,6 <<issue SEEK command>>

WAIT

WR 10,%X1502,2 <<issue READ command>>

RR 0,%1530,400 <<read 128 bytes to %7100>>

<<note: read to'l1530 for DUMP,>>

<< %7100 for LOAD.>>
WAIT

IN H <<done - interrupt>>
END
FILE .MASK

SEEK command
>>note: head= 1 for "split 7906", 0 else>>
<<note: sector= 3 for DUMP, 2 for LOAD>>
READ command
STATUS command
buffer for status bytes
buffer for status bytes

2-62

Machine Instruction Set

TP LOAD/DUMP Chan Program for TAPE (HP 7970E)

%1423: 2001
4: 1
S: 0
6: 42000
7: 1424

30: 1000
1: 0
2: 2400
3: 0
4: 0
S: 2001
6: 1
7: 0

40: 42000
1: 1476
2: 1000
3: 0
4: 2400
5: 0
6: 0
7 1400

50 400
1: 2100
2: 100000
3: 7100
4: 0
S: 2
6: 0
7: 177761

60: 2007
1: 1
2 0
3: 42000
4: 1477

%1465: 1402
6: 2
7: 0
70: 2000
1: 1500
2: 1000
3: 0
4:; 600
S: 0
6: 10
7: 23

1500: 0

WR 1,%1422,1 <<select unit #0>>
WAIT

DSJ <<tape needs it>>

WR 1,%1474,1 <<issue READ command>>
WAIT

DSsJ <<tape needs it>>

RB 1,%7100,400 <<read boot. chan prog>>

JUMP #+2 <<done reading...>>

JUMP #-1§ <<burst done... do another>>
WB 7,%1475,1 <<issue END command>>

RR 2,%1476,2 <<read XFER COUNT>>

WAIT <<NOTE: boot must do DSJU>>
IN H €< done >»>

READ command
END command
BUFFER for XFER count

2-63

Instruction Set

21 This commentary explains the Series 30/33
Computer System Halt. Certain error conditions are ir-
recoverable, and will cause the CPU to enter the System
Halt state. This state is identical to a normal Halt state,
except for the way Halt was entered and the value in NIR
(NIR=0 for normal halt). The particular cause of any
System Halt can be determined by examining NIR (visible
in the LED’s on the CPU board):

normal halt (no error).

STT violation in segment 1.

code segment absent on the ICS.

Segment 1 absent or traced.

stack overflow/underflow on the ICS.

CSTL=0. (code segment table length)

LOAD/STRT/DUMP — chan program timeout.

LOAD/STRT/DUMP — bootstrap chan prog
checksum error.

10 LOAD/STRT/DUMP — bootstrap chan prog

abort.
11 PSEB instruction found (QI-18)<0.

SO WO

The System Halt state is cleared (NIR:=0) by the System
Reset.

2-64

EXTENDED INSTRUCTION SET

SECTION

This section describes each of the six extended-precision
floating-point instructions and each of the 12 decimal
arithmetic instructions which complement the basic
instruction set of the HP 3000 Computer Systems.
Instruction Commentary 1 which follows immediately

after the instruction descriptions provides additional
information on the extended-precision floating-point
instructions. Instruction Commentary 2 then provides
additional information on the decimal arithmetic
instructions.

EXTENDED-PRECISION FLOATING POINT INSTRUCTIONS

EADD Extended-precision floating point add

Stack before execution:
TOS-2, target address

. TOS-1, operand-1 address
TOS, operand-2 address

[=]

1[2]3]s]s]e]7]8]e]ro]11]12]13]14]15
[o0]Jo 1 ofJo 0o o]J1 o0 o0oJo o0 1]Jo o0 o

Operand-2 is added to operand-1, and the rounded nor-
malized sum is stored at the target address. If there is no
overflow or underflow, the three addresses are deleted

from the stack.
Instruction Commentary 1

Indicators: CCA, Overflow indication for overflow or

underflow,

Traps: Extended-precision overflow (%10), extended-

precision underflow (%11).
STUN, STOV
Addressing mode: DB+ relative

ESUB Extended-precision floating point subtract

Stack before execution:
TOS-2, target address
TOS-1, operand-1 address
TOS, operand-2 address

ofi1]2[a]a]s][e]7]8]e 10[11]12]13]14]1s
[0010000100001001

Operand-2 is subtracted from operand-1, and the
rounded normalized result is stored at the target ad-
dress. If there is no overflow or underflow, the three

addresses are deleted from the stack.
Instruction Commentary 1

indicators: CCA, Overflow indication for overflow or

underflow.

Traps: Extended-precision overflow (%10), extended-

precision underflow (%11).
STUN, STOV
Addressing mode: L.~ ielative

Extended Instruction Set

EMPY Extended-precision floating point multiply

EDIV

ENEG

“CMP

Stack before execution:
TOS-2, target address
TOS-1, operand-1 address
TOS, operand-2 address

Operand-2 is multiplied by operand-1, and the rounded
normalized result is stored at the target address. If there
is no overflow or underflow, the three addresses are de-
leted from the stack.
Instruction Commentary 1
indicators: CCA, Overflow indication for overflow or
underflow.
Traps: Extended-precision overflow (%10), extended-
precision underflow (%11).
STUN, STOV
Addressing mode: DB+ relative

Extended-precision floating point divide

Stack before execution:
TOS-2, target address
TOS-1; operand-1 address
TOS, operand-2 address

Operand-2 is divided into operand-1, and the rounded
normalized result is stored at the target address. The
remainder, if any, is discarded. If there is no overflow
and no underflow, and no attempt to divide by 0, the
three addresses are deleted from the stack.

Instruction Commentary 1

indicators: CCA, Overflow indication for overflow, under-

flow, or divide-by-zero.

Traps: Extended-precision overflow (%10), extended-
precision underflow (%11), extended-precision
divide-by-zero (%12).

STUN, STOV

Addressing mode: DB+ relative

Extended-precision floating point negate

Stack before execution:
TOS, source operand address

An algebraic negate is performed on the source operand.
The result is stored at the address of the source operand.
TOS is deleted from the stack.

Instruction Commentary 1

Indicators: CCA

Traps: STUN

Addressing mode: DB+ relative

Extended-precision floating point compare
Stack before execution:
TOS-1, operand-1 address
TOS, operand-2 address

Operand-1 is compared with operand-2. Condition Code
CCG, CCL, or CCE is set to indicate that operand-1 is

3-2

o[1[2]3]«]s]e]7]e]o]ro]11]r2]3]14]1s
[o]o 1 oJo o of1 0 0fo 0 1]o 1 0
o[]2]3]a]s]e] 7] 8] o]r0]11]12]13]14]15
[0Jo 1 0Jo 0 of1 0 ofo o 1[0 1 1]
of1]2[3]a]s]e]7]e]e]r0]11]r2]1a]14]15
[ofJo 1 ofo o o]J1 0 0ofo o 1]1 0 0
of1]2]3]a]s]e]7]8]o]ro]r1]12]s3]14]15
[ofo 1 o]o o o1 0o0Jo 0 11 0 1

Machine Instruction Set

greater than operand-2, operand-1 is less than operand-
2, or operand-1 equals operand-2, respectively. The ad-
dresses are deleted from the stack.

Instruction Commentary 1

Indicators: CCC

Traps: STUN

Addressing mode: DB+ relative

DECIMAL ARITHMETIC INSTRUCTIONS

CVAD ASCII to decimal conversion 0 1[2]3 41516 7] 8]0 10[11]12]13[14]15
[ofo 1 0ofo 0 of1 1 4 oo 1 o

LSDEC

Stack before execution:
TOS-3, target byte address
TOS-2, target digit count
TOS-1, source byte address
TOS, source digit count

Source digits in external-decimal are converted to
packed-decimal digits. Source digits except for the
rightmost in the field must be leading blanks (%040) or
%060-%071. The rightmost digit must be one of those in
table 3-1. Leading blanks are converted to packed-
decimal zeros. Blanks between digits, or between digit
and sign, are illegal. An all-blank field converts to an
unsigned (absolute) zero target field. An unsigned
external-decimal operand produces an unsigned
packed-decimal result. If the number of target digits is
less than the number of source digits, the source is con-
verted until the target field is filled, producing a left
truncated result. In this case, the remaining source di-
gits are not examined for validity. (It is advisable that
the source digit count be less than or equal to the target
digit count to take full advantage of the digit checking
done in this instruction.) If the source digit count is less
than the target digit count, left zero fill is placed in the
target field. A stack-decrement (SDEC) bit (instruction
word bit 11) will either leave the target address and digit
count on the stack or delete all parameters, as specified
below. Both digit counts must be in the range 0<n< 28.
If either the source or target digit count is zero, the
stacked parameters are deleted in accordance with
SDEC, and execution continues with the next

instruction.
SDEC = 0, delete 2 source parameters
SDEC = 1, delete all 4 parameters

Instruction Commentary 2

Indicators: CCA, Overflow

Traps: Invalid ASCII digit (%14)
invalid decimal operand length-(%17)
STUN, STOV

Addressing mode: byte addressing, DB+ relative

3-3

Extended Instruction Set

CVDA Decimal to ASCII conversion ol | zl 3 4[51 6 7[g8lofio]11]12 13[1411

5
[o0]Jo 1 0fJo o0 of1 1 oJo 1 1]

L— SDEC
Sign Controi

Stack before execution:
TOS-2, target byte address
TOS-1, target digit count
TOS, source byte address

The source packed-decimal digits are converted to fill the
target field. An unsigned source operand produces an
unsigned external-decimal result. SDEC (bit 11) allows
leaving the target address and digit count on the stack or
deleting all parameters, as specified below. Two options
which affect the low-order result byte are coded in in-
struction word bits 9 and 10. If bit 9 is a 1, the sign of the
source is ignored and an unsigned (absolute) low order
external-decimal digit is produced (%060-%071), table
3-1). If bit 10 is 1, one of two result signs are produced. If
the source sign is negative the result low-order byte is
%175 (—=0) or %112 to %122 (-1 to —9). Otherwise an
unsigned low-order byte (%060 to %071) is produced. If
neither bit 9 nor bit 10 is 1, all 30 bytes listed in table 3-1
can be produced Jdepending on the sign of the source. The
condition code is set in accordance with the stored result.
An unsigned result is considered positive, so only CCG or
CCE can be set if instruction word bit 9 is 1. The effect of
bit 9 over-rides the effect of bit 10. If the target digit
count is zero, the parameters are deleted in accordance
with SDEC and execution continues with the next
instruction.

SIGN CONTROL = 00, target sign same as source

SIGN CONTROL = 01, target sign negative if source

negative, else unsigned
SIGN CONTROL = 10, target unsigned
SIGN CONTROL = 11, target unsigned

SDEC 0, delete source address
SDEC = 1, delete all 3 parameters
Instruction Commentary 2
Indicators: CCA, Overflow
Traps: Invalid decimal digit (%15)
Invalid decimal operand length (%17)
STUN, STOV
Addressing mode: byte addressing, DB+ relative

N

CVBD Binary to decimal conversion ol l 21 3 al 5 [6l 7 I 8lolio|11f1 QL{QE
[o]o 1 0o o o1 1pBYP] [of1 0 0
TOS-3, target byte address f_
TOS-2, target digit count SDEC
TOS-1, source word address
TOS, source word count

The number of 16-bit two’s-complement binary words
specified in the source word count is converted to
packed-decimal digits and stored in the target field. If
the word count is not in the range 0<<=n<=6, a trap
occurs. If the target digit count is not in the range 0-
= n= 28, a trap occurs. After the binary source is con-
verted, leading zeroes are stored until the target field is
filled. If the number of digits generated is greater than
the target digit count, the partial result is stored and a
decimal overflow trap occurs. SDEC (bit 11) allows leav-
ing either the target address and digit count on the stack

3-4

Machine Instruction Set

or deleting all parameters. If either the target digit or
source word count is zero, SDEC is performed and execu-
tion continues with the next instruction.

SDEC = 0, delete 2 source parameters
SDEC = 1, delete all 4 parameters

Instruction Commentary 2
Indicators: CCA, Overflow
Traps:. Decimal overflow (% 13)
Invalid source word count (% 186)
Invalid decimal operand length (% 17)
STUN, STOV
Addressing mode: DB+ relative word addressing for
source, DB+ relative byte address-
ing for target.

CVDB Decimal to binary conversion o 1]213 41515 7[8 o]1of11}s
[0]o 1 0o]o o of1

N

1:ﬂ14l15

1 0 1

o

Stack before execution: L
TOS-2, target word address SDEC
TOS-1, source byte address

TOS, source digit count

The number of decimal digits specified in the source digit
count is converted to two’s complement binary 16-bit
words which are stored in the target field. The number of
words produced for various source digit counts is as

follows:
Source Digit Count Target Words
l1to4 1
5t09 2
10 to 18 4
19 to 28 6

SDEC (bit 11) allows leaving either the target address on
the stack or deleting all parameters. If the source digit
count is zero, SDEC is performed and execution con-
tinues with the next instruction.
SDEC = 0, delete 2 source parameters
SDEC = 1, delete all 3 parameters
Instruction Commentary 2
Indicators: CCA, Overflow
Traps: Invalid packed-decimatl digit (% 195)
Invalid digit count (% 17)
STUN, STOV
Addressing mode: DB+ relative byte addressing for
source, DB+ relative word address-
ing for target.

ADDD Decimal add o[1]2]3 a[s5]e]7[8]o 10]11]12]13]1a]1s
Stack bef olo v o]Jo o o1 1Y 1]o o0 1

tack before execution: \)

TOS-3, operand-2 byte address SDEC

TOS-2, operand-2 digit count
TOS-1, operand-1 byte address
TOS, operand-1 digit count

The two operands are added and the result is restored in
operand-2 field. A decimal overflow occurs if all signifi-

cant digits of the resvl* ds not fit in the operand-2 field.

3-5

Extended Instruction Set

This results in a trap, and the left-truncated result is
stored in operand-2 field.

SDEC = 00, delete no parameters
SDEC = 01, delete operand-1 parameters
SDEC = 10, delete all 4 parameters

Instruction Commentary 2

Indicators: CCA, Overflow

Traps: Decimal overflow (% 13)
Ilegal decimal digit (% 15)
lllegal decimal operand length (% 17)
STUN, STOV

Addressing mode: byte addressing, DB+ relative

SUBD Decimal subtract 1[2]3 415]6 7]8]e 10111 12 13[14]15

o

-

[0]o 1 ofo o o] 1 0 1 1

Stack before execution: \)
TOS-3, operand-2 byte address SDEC
TOS-2, operand-2 digit count

TOS-1, operand-1 byte address

TOS, operand-1 digit count

Operand-1 is subtracted from operand-2 and the result is
stored into the operand-2 field. If overflow occurs, that is,
if the result digits do not fit in the operand-2 field, the
left truncated result is stored in operand-2 and a trap

occurs.
SDEC = 00, delete no parameters
SDEC = 01, delete operand-1 parameters
SDEC = 10, delete all 4 parameters

Instruction Commentary 2

Indicators: CCA. Overflow

Traps: Decimal overflow (% 13)
llegal decimal digit (% 15)
Illegal decimai operand length (% 17)
STUN, STOV

Addressing mode: byte addressing, DB+ relative

CMPD Decimal compare of1]2]s]a]s]e]7]8]o]ro]11]12]13]14]1s

NE
-

[o]o 1 oJo o of1 1 010

Stack before execution: \ ,
TOS-3, operand-1 byte address SDEC
TOS-2, operand-1 digit count

TOS-1, operand-2 byte address

TOS, operand-2 digit count

Operand-2 is compared to operand-1 and the condition
code is set. The operands remain unchanged at their
original addresses.
SDEC = 00, delete no parameters
SDEC 01, delete operand-1 parameters
SDEC = 10, delete all 4 parameters
Instruction Commentary 2
Indicators: CCC, Overflow
Traps: lllegal decimal digit (% 15)
lllegal decimal operand length (% 17)
STUN, STOV
Addressing mode: byte addressing, DB+ relative

I

SLD Decimal left shift of1]2]3]a[s]e]7]s]o]ro[1]12]ra]14]is

[0]Jo 1 oJo o of1 1}% ofr 1 0

Stack before execution: .
TOS-3, operand-2 byte address SDEC

Machine Instruction Set

TOS-2, operand-2 digit count
TOS-1, operand-1 byte address
TOS, operand-1 digit count

Operand-1 is moved to the operand-2 field with its digits
offset to the left of its sign by the shift amount in the
low-order 5 bits of the X register. Leading or trailing
digits in the result field which are not supplied by the
source operand, will be zeroes. Digits shifted out of the
operand-2 field are lost, and carry is set to indicate that
significant digits were lost.

SDEC = 00, delete no parameters
SDEC = 01, delete operand-1 parameters
SDEC = 10, delete all 4 parameters

Instruction Commentary 2

Indicators: CCA, Carry, Overflow

Traps: lllegal decimal digit (% 15)
lllegal decimal operand length (% 17)
STUN, STOV

Addressing mode: byte addressing, DB+ relative

NSLD Decimal normalizing left shift o[1]2[3]4]s]e]7]8]o]r0[11]r2]13]14]15
o0jo 1 0ofJo 0 o1 1 ojt 1 1
TOS-3, operand-2 byte address ——
TOS-2, operand-2 digit count SDEC
TOS-1, operand-1 byte address
TOS, operand-1 digit count
Operand-1 is moved to the operand-2 field with its digits
offset by the shift amount in the low-order 5 bits of the X
register. Leading or trailing digits in the result field
which are not supplied by the source operand, will be
zeroes. If the shift amount is large enough that signifi-
cant digits of operand-1 would be shifted out of the
operand-2 field, the effective shift amount is reduced so
operand-1 is left-justified in the operand-2 field. In addi-
tion, a number equal to the difference between the
specified and actual shift amounts is left in the X regis-
ter, and carry is set. If the length of the operand-2 field is
such that significant digits would be lost even with a
shift amount of zero, a decimal overflow trap is reached
and no data movement occurs.
SDEC = 00, delete no parameters
SDEC = 01, delete operand-1 parameters
SDEC = 10, delete all 4 parameters
Instruction Commentary 2
Indicators: CCA, Carry, Overflow
Traps: Decimal overfiow (% 13)
Ilegal decimal digit (% 15)
lllegal decimal operand length (% 17)
STUN, STOV
Addressing mode: byte addressing, DB+ relative
SRD Decimal right shift 1I2]3 4!5]6 7]3 9 10]11 12 13[14115

[o]o

0 10]o0 o0 of]1 1[4 1Joo o

Stack before execution: . ,
TOS-3, operand-2 byte address SDEC
TOS-2, operand-2 digit count

TOS-1, operand-1 byte address

TOS, operand-1 digit count

3-7

Extended Instruction Set

Operand-1 is moved to the operand-2 field with its digits
offset to the right relative to its sign, by the shift amount
in the low-order 5 bits of the X-register. Digits shifted
into the sign are lost. Zeros are shifted in from the left
and high order zeros are inserted to fill the operand-2
field, if necessary. Digits shifted or moved out of the
operand-2 field are lost.

SDEC = 00, delete no parameters
SDEC = 01, delete operand-1 parameters
SDEC = 10, delete all 4 parameters

Instruction Commentary 2

Indicators: CCA, Overflow

Traps: lllegal decimal digit (% 15)
llegal decimal operand length (% 17)
STUN, STOV

Addressing mode: byte addressing, DB+ relative

MPYD Decimal multiply

o
~

1[2]3]a]s[ef7[8]o]ro]n |1 13J1a]is

[oJo 1 oJo o0 o]1 1 11 00

Stack before execution: ——
TOS-3, operand-2 byte address SDEC
TOS-2, operand-2 digit count

TOS-1, operand-1 byte address

The operand-2 field is replaced by the product of the
operand-1 field times the operand-2 field. If the signifi-
cant digits of the result do not fit into the operand-2 field,
an overflow trap occurs. The results stored in this case
will be left truncated unless the actual result is greater
than 28 digits. If over 28 digits, nothing will be stored.
SDEC = 00, delete no parameters
SDEC = 01, delete operand-1 parameters
SDEC 10, delete all 4 parameters
Instruction Commentary 2
Indicators: CCA, Overflow
Traps: Decimal overflow (% 13)
llegal decimal digit (15)
lllegal decimal operand length (% 17)
STUN, STOV
Addressing mode: byte addressing, DB+ relative

I

DMPY Double logical multiply 0 1‘|2|3 a[s]e] 7] 8]o]io]i1]s

N

13114[15

o

0 0 1

[o]o 1 o]o o of1 18I,

Stack before execution:

TOS-3, low-order end of operand-2
TOS-2, high-order end of operand-2
TOS-1, low-order end of operand-1
TOS, high-order end of operand-1

The two double-word operands on the top of the stack are

logically multiplied. The two operands are replaced by

the 4-word logical product. Carry is cleared if the high-

order 32 bits are all zeros; otherwise, carry is set.

Instruction Commentary 2

Indicators: CCA (as a 2's complement 4-word integer),
Carry

Traps: STUN

Addressing mode: byte addressing, DB+ refative

Machine Instruction Set

INSTRUCTION COMMENTARY

1 This commentary explains the use of floating-
point numbers in the HP 30012A Extended Instruction
Set of the computer system. Figure 3-1 shows the data word
format. The word consists of 64 bits, made up of four 16-bit
words. The four words are stored in adjacent locations in
memory.

Floating-point numbers are stored in a binary sign-
magnitude format. Bit 0 of word A is the sign (a 0 repre-
sents +; a 1 represents —). Bits (10:15) of word A and
words A+ 1, A+ 2, and A+ 3 contain the mantissa and bits
(1:9) of word A contain the base 2 exponent.

The exponent, stored in bits (1:9) of word A, is biased. To
calculate the actual exponent, 256 decimal must be sub-
tracted from the stored exponent. Figure 3-2 gives some
examples of exponents in the extended precision floating-
point format. As the figure shows, the unbiased exponent
can range from — 256 to + 255.

The binary point of the mantissa is to the left of bit 10 in
word A. Each extended precision instruction normalizes
the result produced so that there is an assumed 1 to the
left of the binary point unless the result is zero. Similarly,
data input to computer is placed in normalized form when
converted to floating-point format.

When an instruction produces a new mantissa (as the
result of addition, subtraction, multiplication, or division),
the amount is always rounded before being stored.

The 55-bit mantissa (including the assumed 1) is equiva-
lent to approximately 16.6 decimal digits.

Figure 3-3 shows some examples of floating-point num-
bers. In the first example, the mantissa is 1 (the assumed
1). The biased exponent is 2°%. The unbiased exponent is
2°, indicating multiplication by 1. The entire number is
therefore 1, and it is positive because the sign bit of the
mantissa is 0.

The second example in figure 3-3 also represents 1, but
this time the amount is negative because the mantissa
sign-bit is 1.

In the representation of + 2, the biased exponent is 2%7,
making the unbiased exponent 2!, which equals 2. The
mantissa is 1, and the total amount is 2 X 1, or 2. The sign
is +.

In the next example the biased exponent is 22*, and the
unbiased exponent is 27!, With the mantissa being 1, the
total amount is 1/2' x 1, equal to 0.5.

In the representation of + 256, the biased exponent is 2264,
and the unbiased exponent is 28. 28 x 1 is 256.

In the last example the unbiased exponent is 2%, and the
binary mantissa is 1.1. Binary 1.1 equals decimal 1.5,
making the total amount 384.

A simple method to determine whether a floating-point
number is less than 1 is to examine bit 1 of word A. If the
bit is 0, the floating-point number has a value less than 1.

Zero in floating-point form is a special case. Because of the
assumed 1, there is no exponent of 2 by which the man-
tissa can be multiplied to yield zero. Therefore, the format
for zero has been established as 64 zeroes (zeroes com-
pletely filling the 4-word floating-point number). The
floating-point representation of zero is shown at the top of
figure 3-4.

The special need for representing zero makes it necessary
to disallow the numbers + 27%¢ (+ 8.63 . . . X 107%)
and — 2726 (— 8.63 ... X 107), (The — 27%° may be
treated as — 272% or zero if supplied as an operand to the
extended precision floating-point of the HP 30012A. As a
result, both + 272¢ and — 2% if generated are treated as
underflow cases.)

—

INCREASING ADDRESSES IN MEMORY

I LT O O D OO T T

Figure 3-1. Format of Extended-Precision Floating Point Number

3-9

Extended Instruction Set

UNBIASED

(ACTUAL) BIASED BITS (1:9},

MULTIPLIER MULTIPLIER WORD A
2258 » [o]ofo[e]eo[o]o[o]
2285 o (o] ofo]o]o]o[o]o]1}
2t 2 o]y
2 2% [1]o]o[o]eo[o[o[o
2! 27 [1]o[o[o]ofofo]o[]
2% AN nInnuann

Figure 3-2. Examples of Exponents

IR B .
v CIEERREERERE 5 BRER
: I1L1h’J°l°1°l°l°l°1i o] 5 [T
[oMololololololo] o[o] ~: - ool
loiolwl'l]l‘l"l} o[o] Zor_ [fole[o)

I°I»1|°I°l°l°l'l°I°1I.° o0 0E0

+384 ﬁPPPMﬂdﬂJOﬂHZ@iEEEB

Figure 3-3. Floating Point Numbers and
Conversion Formulas

Figure 3-5 shows the range of decimal numbers which can
be represented by the 64-bit floating-point number. (The
decimal numbers in figure 3-5 are carried to only 11
places.) Intervals G and L in the illustration represent
amounts too close to zero to be represented (underflow). If
a number in this range results from a floating-point opera-
tion, the exponent actually stored is modulo 512 with
respect to the true biased exponent. The mantissa is cor-
rect. (A number expressed modulo 512 is the remainder
which results when 512 is divided into the number.)

3-10

SIGN

1

[ELRERREE

0.

BIASED

EXPONENT FRACTION

DECIMAL
NUMBER

[}

10 47
0

olol?)'i_ ofo]o

(=]

1078 x +8.6361685551 [0]o[0]o[o]o]oo]o]o

(INVALID NUMBER) Io[_?_"_ l°|°|°|°|

1.

1078 x 86361685651 [1]0]o]oo[o]olo]o]o
(INVALID NUMBER)

ofo] 1073- Jao]o]o]

1.

Figure 3-4. Representation of Zero

If the result of a floating-point operation has an absolute
magnitude greater than can be represented (overflow), the
exponent is expressed modulo 512 and the mantissa is
expressed correctly. In figure 3-5, these amounts are above
the most positive value shown and below the most nega-
tive value shown.

The instructions EADD, ESUB, EMPY, EDIV, and ENEG
set condition code A (CCA) in the CPU status register.
This indicates whether the result is greater than zero
(CCG), equal to zero (CCE), or less than zero (CCL). When
this is done, bits 6 and 7 of the CPU status register are
respectively set as follows:

e To 00 (CCG) if the result is in interval G or is any
other positive quantity, including a positive result too
great to be represented.

e To 10 (CCE) if the result is zero.

e To 01 (CCL) if the result is in interval L or is any

other negative result whose magnitude is too great to
be represented.

The instruction ECMP sets CCG if operand-1 is greater
than operand-2, CCE if operand-1 equals operand-2, and
CCL if operand-1 is less than operand-2.

The memory address of a 4-word floating-point number is
identified by the address of word A. (See figure 3-1.) Word
A+1, A+ 2, and A+ 3 are in successively higher addresses.

The microcoded extended-precision floating-point instrue-
tions are not interruptable. When these instructions are
performed by the simulati.n procedures, interrupts of
extended-precision floating-point instructions are recog-
nized in the manner established for the instructions which
make up each procedure.

Ifan EADD, ESUB, EMPY, or EDIV instruction results in
an overflow or underflow, CCA is set in the CPU status
register, the exponent is modulo 512, and the mantissa is
correct as described previously. If the user traps bit (CPU

status register bit 2) is clear, the overflow bit (CPU status
register bit 4) is set, the three operand addresses are
deleted from the stack, and the next instruction is fetched,
If the user traps bit is set, the overflow bit is cleared, the
top two addresses are deleted from the stack, and a pa-
rameter (000010 octal for overflow, 000011 octal for
underflow) is pushed onto the stack. A call is then made to
segment # 1, STT #25 (decimal).

A divide-by-zero error in EDIV is handled in a similar
manner. The dividend is stored as the answer and CCA is
set to indicate whether the dividend is positive, zero, or
negative. If the user traps bit is clear, the overflow bit is
set, the three addresses are deleted from the stack, and the
next instruction is fetched. If the user traps bit is set, the
overflow bit is cleared, the top two addresses are deleted
from the stack and 000012 octal is pushed onto the stack.
A call is then made to segment #1, STT # 25 (decimal).

If any operands referenced by floating-point instructions
reside outside of the stack, a bounds violation trap will
occur if executing in user mode. Also, erroneous results
will be produced if any of the operand addresses on the
stack are part of any of the operands.

Machine Instruction Set

2 This commentary explains the use of the decimal
arithmetic instructions of the HP 30012A Extended In-
struction Set. Most of the instructions use the packed-
decimal number format; two use external-decimal number
format.

The format of a packed-decimal number is shown in figure
3-6. The left-most byte in the illustration contains the
high-order digit. If this digit is in bit positions 4-7, posi-
tions 0-3 of the same byte are ignored. (A digit count
specifies the number of digits to be recognized.) The char-
acteristics of a packed-decimal number are as follows:

¢ Each decimal digit is represented in BCD form by four
bits.

® The sign is represented by four bits.

¢ In storage, the four sign bits may be in the following
bit positions of a 16-bit word; (12-15) or (4-7). Expres-
sed in different terms, the sign is always in positions
(4-7) of an 8-bit byte; the byte is byte 0 or byte 1 of a
16-bit word.

VALIDITY

DECIMAL NUMBER

FLOATING POINT NUMBER

MOST POSITIVE —

LEAST POSITIVE —+

LEAST NEGATIVE

MOST NEGATIVE ——

NOTE:
INTERVALS G AND L NOT SHOWN TO SCALE.

7049-8

+1.1679208924 X 10*77 M]1]1]1]1[1]:|1|1 1[1]:Ts_ l1 11 1|

+8.6361685551 x 1078 [o[oJo]o]o]o]o]oJo]o]o]o] :o-_:: [o]o]o]1]

-se361685661 x 1078 [1]o]o]o]o]oJo]o]o]o oIoI: (Es: {o]o]o]o]

-1.1579208924 X 10'77 [1]1]1[1]1[1]1[1]1[1 1]11:-5- [1]1]1]1]

BIASED
S EXPONENT FRACTION
0 1l g 0w ——— - ———— 63

1.

1

(o]e]o[e]eJe[e[o[o]o]o]o] o5 ~ [o[o]o]o]

[¢]

1

Figure 3-5. Valid Number Range

Extended Instruction Set

e If the sign is in (4-7) of a 16-bit word, (8-15) of the
same word is not part of the number field and may
have any contents.

® Succeeding 4-bit groups to the left of the sign (figure

4-1) contain successively higher-order digits.

® There are no unused bits between the sign and the
high-order digit.

When a packed-decimal number is source data for a
decimal arithmetic instruction, sign bits 1101 are rec-
ognized as minus. All other bit combinations are rec-
ognized as plus, except that the CVDA instruction
recognizes 1111 as designating an unsigned number.

e When a packed decimal number is the result of a
decimal arithmetic instruction, sign bits 1100 indi-
cate plus and 1101 indicate minus. There are no un-
signed result operands except for the CVAD; the
CVAD instruction furnishes 1111 to indicate an un-
signed number.

A leading nonsignificant packed-decimal digit is not
modified by any instruction other than CVAD which
inserts a zero.

Two decimal arithmetic instructions, CVAD and CVDA,
make use of external-decimal numbers. Figure 3-7 shows
the format of this type of number.

The characteristics of an external-decimal number are as
follows:

e Each digit is represented by eight bits.

e Included in the representation of the lo-~-order digit is
an indication of the sign of the number.

e Instorage, the low-order digit may be in byte 0 or byte
1 of a 16-bit word. (Byte 0 is the high-order byte of the
16-bit word.)

e If the low-order digit is in byte 0, byte 1 of the same
word may have any contents.

® Succeeding bytes to the left of the low-order digit

(figure 3-7) contain successively higher-order digits of
the numbers.

e There are no unused bytes between the low-order
digit and the high-order digit.

If the high-order digit is in byte 1, byte 0 of the same
word may have any contents.

Table 3-1 shows the low-order digit for positive, nega-
tive, and unsigned numbers. The letters A through R
in the table, and the braces, are the ASCII equivalent
of the 3-digit code shown.

UNUSED)
OR LOW-ORDER
oiGIT DIGIT DIGIT oiGiT DI/G\IT m};\w DIJ(iIT SIGN
01 2 34 s 6 70 ‘0 1 2 374 5 & 7° o 1 2 374 5 6 7 o 1 2 3745 8 7°
CITTIITO CITTITT [/ CITCITIT) CIIIITTT]
—>
INCREASING ADDRESSES IN MEMORY
7507-25
Figure 3-6. Packed-Decimal Format
r_
LOW-ORDER
HIGH-ORDER DIGIT
DIGIT DIGIT DIGIT AND SIGN
A A\ N VAN
0 1 2 3 4 5 6 7 61 2 3 4 5 6 7" \

7507-26

INCREASING ADDRESSES IN MEMORY

Figure. 3-7. External-Decimal Format

3-12

Table 3-1. Low-Order Digits

Machine Instruction Set

Table .3-2. Error Traps

7507-27

Figure 3-8 Typical Packed-Decimal
Number in Data Stack

LOW-ORDER DIGIT, TRAP
LOW-ORDER DIGIT, EXTERNAL-DECIMAL NUMBER ERROR ABORT MESSAGE PARAMETER
DECIMAL NUMBER
UNSIGNED POSITIVE NEGATIVE Packed-decimal overflow Decimal Overfiow %13
0 %060 %173 { %175 } In\é?éii? external-decimal Invalid ASCII digit %14
! %061 %101 A %i12.J Invalid packed-decimal | Invaiid decimal digit %15
2 %062 %102 B %113 K digit
3 %063 %103 C %114 L Source word count >6 or Invalid source word %16
4 %064 %104 D %115 M negative count
: iR (i P B
6 %066 %106 F %117 O
7 %067 %107 G %120 P
8 %070 %110 H %121 Q
9 %071 %111 | %122 R ® Digits other than the low-order digit conform with the
“UNSIGNED” column of table 3-1.
Each packed-decimal or external-decimal number is
stored in the form of a quantity of 8-bit bytes. Each byte
occupies bit positions (0-7) or (8-15) of a 16-bit storage
location. Successive 16-bit locations are used (if required)
to store the entire number. At each end of the number
there may be an unused byte in a 16-bit location; this byte
may be part of a different number. The storage address of
a number is the byte address of the high-order digit.
BITS 0-7 (WORD) BITS 8-15 (WORD) .
BITS 0-7 (BYTE 0) BITSO-7 (BYTE 1) To illustrate byte addressing, assume that operand-1 of an
A A ADD instruction consists of four significant digits and the
/ “\/ \ byte address is DB+ 7. The sign bits must be in positions
DB %0 %1 4:7 of a byte, and in this case they are ip ppsitioqs 12:15 of
word address DB+4 (figure 3-8). This is equivalent to
DB +%!1 %2 %3 positions 4:7 of byte address 11 (positions 12:15 of word
address DB+ 4). The low-order digit is in posi‘ions 0:3 of
DB +%2 %4 %8 byte address 11 (positions 8:11 of word address DB+ 4).
OB +%3 %6 %7 Two digits are in byte address 10. The high-order digit is
in positions 4:7 of byte address 7. Positions 0:3 of byte
DB +%4 %10 %11 address 7 may have any contents; because the digit count
OB +%5 %12 13 is 4, this part of the byte is ignored.
DB +%6 %14 %15 The decimal arithmetic instructions make checks for im-
proper data as listed in table 3-2. When an incorrect condi-
DB +%7 %16 %17 tion is found, one of the following occurs:
DB +%10 %20 %21 e If the User Traps Bit is 0, the Overflow Bit is set to 1.
(The User Traps Bit is position 2 of the CPU Status
Register. The Overflow Bit is position 4 of the CPU
status register.) The stack is decremented as
specified.
%7(BYTE ADDRESS) TOS-1 o Ifthe User Traps bit is 1, a “trap parameter” is pushed
on the stack and a call is made to segment #1, STT
%4(DIDGIT COUNT) TOS #25 (decimal). Stack decrementing specified by the
instruction is not performed.
Packed-decimal overflow is the condition in which a

packed-decimal result has too many significant digits for
the specified storage size. (The target digit count is too
small.) Except for the NSLD and MPYD instructions,
when this occurs the low-order digits of the result are
stored; surplus high-order digits are discarded. The NSLD
instruction stores nothing in this case. The MPYD in-

Extended Instruction Set

struction stores the left truncated result if the full result
could be contained in 28 digits; otherwise, it stores
nothing.

Two of the error conditions in table 3-2 are for invalid
digits. An invalid digit has a bit combination for which
there are no provisions in the number system being used.

Decimal arithmetic instructions check the validity of di-
gits as follows:

e In a packed-decimal source operand, all digits are
checked.

e In an external-decimal source operand, the digits
checked are those specified by the target digit count.

An invalid external-decimal digit is one of the following:

e For the signs a bit combination not shown in table 3-1
unless the field is all blanks.

e If other than a low-order digit, a bit combination not
shown in the “UNSIGNED” column of table 3-1. Lead-
ing ASCII blanks (%040) are valid; blanks between
digits are not valid.

The CVAD instruction checks for invalid external-decimal
digits. Only the quantity if source digits specified by the
target digit-count are checked by CVAD.

An invalid packed-decimal digit has a value greater than
1001 binary. (In hexadecimal notation, the invalid bit
combinations represent the letters A through F.) All dec-
imal arithmetic instructions which use a packed-decimal
source operand check each BCD digit for validity; sign bits
are not checked.

3-14

An error trap occurs if the digit count is greater than 28 or
negative. If an instruction uses two digit counts (source
and target counts), either count can set the error
condition.

An error trap occurs if the source word count is greater
than 6 or negative. This error trap is used only by the
CVBD instruction, which makes no change at the target
address if the trap conditions occurs.

Each decimal arithmetic instruction sets CCA in the CPU
Status Register in accordance with the result operand. As
an exception, CMPD sets CCC.

If a result is truncated because the target digit count is too
small, CCA is set in accordance with the truncated result.

When the stored result is truncated because the target
digit count is too small, CCE (operand = 0) may be indi-
cated when the full result is not zero. This occurs when the
stored portion of the result is zero, but unstored high-order
digits are not zero.

Except for the CVDA and CVAD instructions, a negative
zero result is not stored.

When executed by the HP 30012A Expanded Instruction
Set, the decimal arithmetic instructions cannot be inter-
rupted. However, when these instructions are performed
by the simulation procedures, interrupts are recognized in
the manner established for the instructions which make
up each procedure.

The ADDD, CMPD, MPYD, NSLD, SL.D, SRD, and SUBD
instructions can specify overlapping operand fields pro-
vided the two signs coincide (share the same byte address).

LANGUAGE EXTENSION INSTRUCTIONS

SECTION

iV

This section describes the language extension instructions
which complement the basic instruction set of the HP 3000
Computer Systems. Instruction Commentary 1 which fol-
lows immediately after the instruction description ex-
plains the possible traps for the language extension

instructions. Instruction Commentary 2 provides addi-
tional information for the CMPS and CMPT instructions.
Instruction Commentary 3 provides examples of the EDIT
subprograms.

PROGRAM CONTROL INSTRUCTIONS

XBR External branch

Control is transferred unconditionally to the location

ofg1]|2|3fj4|5|6)7|8]9 1 13114156

pointed to by the evaluation of the two word label taken
from the top of stack. The format for the label is as

follows:

S-1 PB rel. address

S-0 SEG#

Both parameters are deleted from the stack.
Traps:

Priv. Mode Violation, Absense, Trace
Indicators: Unaffected

PARC Paragraph procedure call

Control is transferred to the location pointed to by the

Stack Underflow, Bounds Violation, CST Violation

15

evaluation of the two word label at S-2, S-1. The para-
graph number given at S-0 is not modified and is used by
the END OF PARAGRAPH instruction. The two word
label is replaced with a PB relative return address in S-2
and a copy of the status register in S-1. The status regis-
ter is used to obtain the current segment number. The
format for the stack before and after is as follows:

before
S-2 PB rel. address
S-1 SEG#
S8-0 paragraph #
after
S-2 PB rel. rtn adar
s1 STATUS
S-0 paragraph #

None of the parameters are deleted from the stack.

Traps: Stack Overflow, Stack Underflow, Bounds Viola-
tion, CST Violation, Priv. Mode Violation, Absence,
Trace

Indicators: Unaffected

4-1

Language Extension Instructions

ENDP

End of paragraph

The current paragraph number contained in S-0 is com-
pared to the paragraph number of the terminating para-
graph in S-1 (which was left by the PARC instruction). If
the two paragraph numbers are equal the two words S-3,
S-2 which contain PB relative return address and status
are used to return from the call made by the PARC
instruction. If the two paragraph numbers are not equal
the exit is not taken. The format for the stack prior to
execution is as follows:

S-3 PB rel. address [ees

S-2 SEG# : left by PARC inst.
S-1 paragraph # J -:

S-0 paragraph #

If (S-0) equals (S-1) then all the parameters are deleted
from the stack else only S-0 is deleted.

The ENDP instruction requires the presence of a para-
graph number on the stack. The paragraph number is
left on the stack by the execution of the PARC instruc-
tion. At the entry of a main or subprogram a dummy
paragraph number must be placed on the stack. This
dummy paragraph number should be an illegal number
(such as -1). The entire three word stack marker is not
required since no exit will ever be executed using it.

Traps: Stack Underflow, Bounds Violation, CST Violation,
Priv. Mode Violation, Absence, Trace
Indicators: Unaffected

EDITED AND NONEDITED MOVE INSTRUCTIONS

EDIT

The EDIT instruction moves a string of characters from
the source buffer to the target buffer under the control of
an EDIT subprogram.

The EDIT instruction, prior to its execution, requires the
condition code to be set to reflect the sign of the number
being processed for numeric editing. A second indicator,
the significance trigger, is maintained by the EDIT
instruction, and is set to a 1 when the first non-zero digit is
encountered. These indicators control leading zero sup-
pression and replacement, sign insertion, and sign over-
punch. Three 8-bit values are maintained by the EDIT
instruction and hold the definitions of the fill character,
the float character, and loop count. The defaults are as
follows:

INDICATOR or DATA ITEM DEFAULT
Significance Trigger 0
Fill Character SPACE
Float Character “g”
Loop Count 0 (equiv.
to
256)

4-2

oft1]2]3jai5]6f7]|8|9f10j11]12413|14]15
ofof1 o[of1 1[1{1[1[1]o
Ofg1]|2] 3f4j5|67]|8|9¢%10|11}12413]14]15
fofo[1]oJo]o]o]1]ofo]1]1][1]olo]y

010}y

When Y = 0, the location is in the PB area.
When Y = 1, the location is in the DB area.

The EDIT instruction also maintains three pointers. The
three pointers are the Source Pointer, the Target Pointer,
and the Operation Code Pointer. These pointers point to
the current byte in progress for the respective areas. At
the beginning of an EDIT instruction these pointers are
set to the values contained in the three words on top of
stack. The three buffers (source, target, and subprogram)
may overlap in any way desired. When overlap occurs it is
possible to get unpredictable results or encounter an error
condition by modifying either the source or the subpro-
gram. The stack prior to execution is as follows:

83 | EDIT subprogram
address
S-2 | target address
S-1 | source address
S-0 | ZERO Interrupt Restart Word

The EDIT instruction is interruptable after each subpro-
gram instruction, and will continue from the point of in-
terruption when control is returned to the instruction. The
zero word on top of the stack allows restarting the instruc-
tion in the middle of an EDIT sub-program. On completion

Machine Instruction Set

of the sub-program all four parameters are popped from
the stack. The Condition Code and Carry bits are not mod-
ified. Overflow may be set. (See Instruction Commentary
1)

The EDIT subprogram can perform a variety of operations
including leading zero suppression and replacement, lead-
ing or trailing insertion of the sign, leading or trailing
sign overpunch, floating character insertion, punctuation
control, and text insertion.

The EDIT subprogram is made up of 8-bit instructions
followed by zero or more 8-bit operands. Instructions are
included for edited moves, character or sign insertion,
pointer modfication, setting and testing the significance
trigger and looping. The EDIT subprogram is processed
sequentially unless instructed to do otherwise. The op-
code pointer is updated after each operation to point to the
next sequential op-code. The EDIT instruction will con-
tinue to process op-codes until directed to stop by the ter-
minate edit (TE) op-code or an error condition is detected.
The EDIT subprogram is located either in the PB or DB
relative area.

The 8 bit instructions are divided into two 4-bit fields as
follows:

immediate operand |
4 5 6 7

op-code
01 2 3

bits

Table 4-1. EDIT Instruction Set Summary
4-BIT
OPCODE MNEMONIC INSTRUCTION DESCRIPTION
0 MC n Move n characters
1 MA n Move n alphabetics
2 MN n Move n numerics
3 MNS n Move n numerics suppressed
4 MFL n Move n numerics with floating insertion
5 IC n.x Insert character "x"' n times
6 ICS n.x Insert character “x” n times suppressed
7 ICI n.x Insert n characters immediate
%10 ICSI n.x Insert n characters suppressed immediate
%11 BRIS d Branch d bytes if significance equals 1
P12 SUFT d Subtract d from target pointer
%13 SUFS d Subtract d from source pointer
%14 ICP m Insert character punctuation
%15 ICPS m Insert character punctuation suppressed
%16 IS m Insert m characters depending on sign
%17 This opcode is subdecoded to provide those instructions which require no immediate
operand. The operand field is decoded to provide 1 of 16 functions as described in
table 4-2.

4-3

Language Extension Instructions

Table 4-2. EDIT Instruction Set Summary For Opcode = % 17

4-BIT
OPCODE MNEMONIC INSTRUCTION DESCRIPTION
0 TE Terminate EDIT
1 ENDF END floating insertion
2 SST1 Set significance to 1
3 SSTO Set significance to 0
4 MDWO Move digit with overpunch
5 SFC X Set fill character equal to x
6 SFLC xy Set float character depending on sign
7 DFLC xy Define float character depending on sign
%10 SETC n Set loop count to n
%11 DBNZ d Decr. loop count and branch if non zero

EDIT Instruction Immediate Operands

All of the instructions defined by op-codes in the range of 0 to %16
contain at least one operand. The maximum value for the
immediate operands is 15. To allow operands outside the range of 1
to 15 the immediate operand may be set to zero and the next
sequential byte is used as the operand. This is allowed for only
those instructions whose op-codes are in range of 0 to %13. The
interpretation of the extended operand is as follows:

op-code range extended operand range
min. max. min. max.
0 to %10 0 to 255
%11 to %13 —128 to 127

EBIT SUBINSTRUCTIONS

Following is a description of each of the EDIT subinstructions
which may be used to construct an EDIT subprogram. (For
examples, see Instruction Commentary 3.)

fORMAT TYPE #1 (for instructions: MC,MA ,MN,MNS,MFL).
The instruction format for the instructions with only
immediate operands is as follows:

0 3 4 7 0 7
opcode immediate extended operand
operand (optional)
byte 1 byte 2

Note: The immediate (or extended) operand indicates
the number of characters to be moved from the
source buffer to the target buffer.

4-4

MC

MA

MN

MNS

MFL

Move Characters (format # 1). The MC instruction
transfers a specified number of bytes from the source
buffer to the target buffer. The immediate (or extended)
operand defines a positive byte count. Both the source
pointer and the target pointer are increased by the byte
count.

Traps: Bounds Violation

Indicators: None

Move Alphabetic (format # 1). The MA instruction
transfers a specified number of alphabetic characters
(A-Z, a-z, & SPACE) from the source buffer to the target
buffer. The immediate (or extended) operand defines a
positive byte count. Both the source pointer and the
target pointer are increased by the byte count.

Traps: Bounds Violation, Invalid Alphabetic Character
Indicators: Overflow

Move Numerics (format # 1). The MN instruction trans-
fers a specified number of numeric characters (0-9 &
leading SPACE) from the source buffer to the target
buffer. When the first non-zero digit is encountered, the
significance trigger is set to 1. The immediate (or ex-
tended) operand defines a positive byte count. Both the
source pointer and the target pointer are increased by
the byte count.

Traps: Bounds Violation, Invalid ASCII Digit

Indicators: Overflow

Move Numerics With Zero Supression (format # 1). The
MNS instruction transfers a specified number of numeric
characters (0-9 & leading SPACE) from the source buf-
fer to the target. While the significance trigger is 0 all
zeros and spaces are replaced with the fill character.
When the first non-zero digit is encountered the signifi-
cance trigger is set to a 1. The immediate (or extended)
operand defines a positive byte count. Both the source
pointer and the target pointer are increased by the byte
count.

Traps: Bounds Violation, Invalid ASCII Digit

Indicators: Overflow

Move numerics With Floating Insertion (format # 1),
The MFL instruction transfers a specified number of
numeric characters (0-9 & leading SPACE) from the
source buffer to the target. While the significance trigger
is 0 all zeros and spaces are replaced with the fill charac-
ter. When the first non-zero digit is encountered the sig-
nificance trigger is set to a 1 and the float character is
placed in the target buffer followed by the non-zero digit.
The immediate (or extended) operand defines a positive
byte count. The source pointer is increased by the byte
count. The target pointer is increased by the byte count
plus one if the significance trigger changes from 0 to 1
else the target pointer is increased by the byte count.
Traps: Bounds Violation, Invalid ASCIt Digit

4-5

Machine Instruction Set

immediate
operand

immediate
operand

immediate
operand

immediate
operand

immediate
operand

Language Extension Instructions

FORMAT TYPE # 2 (for instructions: IC, ICS). The instruction

format for the instructions with immediate operands and
a single insertion character is as follows:

3 4 7 0 7 0 7

opcode

immediate extended insert
operand operand character
(optional)

IC

ICS

byte 1 byte 2 byte 3

Note: If the immediate operand is non-zero then the
insert character would appear in byte 2 (not byte
3).

Note: The immediate (or extended) operand indicates
the repeat factor to be used for insertion.

Insert Character (format # 2). The IC instruction in-
serts a single character into the target buffer a specified
number of times. The imn.ediate (or extended) operand
defines a positive repeat count. The character to be in-
serted is specified in the second or third byte of the IC
instruction. The target pointer is increased by the repeat
count.

Traps: Bounds Violation

Indicators: None

Insert Character Suppressed(format # 2). The ICS
instruction inserts a single character into the target buf-
fer a specified number of times if the significance trigger
is set to a 1. If the significance trigger is set to a 0 the fill
character is inserted into the target buffer a specified
number of times. The immediate (or extended) operand
defines a positive repeat count. The character to be in-
serted is specified in the second or third byte of the IC
instruction. The target pointer is increased by the repeat
count.

Traps: Bounds Violation

Indicators: None

FORMAT TYPE # 3 (for instructions: ICI,ICSI). The instruction

format for the instructions with immediate operands and
an insertion character string is as follows:

0 3 4 7 0 7 0 7
opcode immediate extended character
operand operand string
(optional)
byte 1 byte 2 bytes 3 -
257

Note: If the immediate operand is non-zero then the
character string would start in byte 2 (not byte
3).

Note: The immediate (or extended) operand indicates
the length of the character string to be inserted.

4-6

immediate
operand

immediate
operand

ICI

ICSI

Insert Characters Immediate (format # 3). The ICI
instruction inserts a character string of specified length
into the target buffer. The immediate (or extended)
operand defines a positive character count. The charac-
ter string to be inserted is specified by a byte array which
starts in the second or third byte of the instruction. The
target pointer is increased by the character count.
Traps: Bounds Violation

Indicators: None

Insert Characters Suppressed Immediate (format # 3).
The ICSI instruction inserts a character string of
specified length into the target buffer if the significance
trigger is set to 1. If it is O then the string inserted will be
replaced by the fill character. The immediate (or ex-
tended) operand defines a positive character count. The
character string to be inserted is specified by a byte
array which starts in the second or third byte of the
instruction. The target pointer is increased by the
character count.

Traps: Bounds Violation

Indicators: None

FORMAT TYPE # 4 (for instructions: BRIS,SUFT,SUFS). The

BRIS

SUFT

instruction format for the instructions with immediate
operands to form displacements to modify pointers is as
follows:

0 3 4 70 7
opcode immediate extended operand
operand (optional)
byte 1 byte 2

Note: The immediate operand indicates a positive
(1-15) displacement. If it is equal to 0, the ex-
tended operand indicates a two’s complement
displacement.

Note: For BRIS the displacement is added to the opcode
pointer. For SUFT and SUFS the displacement is
subtracted from the corresponding pointer.

Branch If Significance Trigger Is Set (format # 4). The
BRIS instruction adds a displacement to the opcode
pointer if the significance trigger is a 1. The displace-
ment is specified by the immediate (or extended)
operand as above. The addition is to the address of the
byte containing the displacement (i.e. byte 1 or byte 2).
Traps: Bounds Violation

Indicators: None

Subtract From Target Pointer (format # 4). The SUFT
instruction subtracts a displacement from the target
pointer. The displacement is specified by the immediate
(or extended) operand as above. At this point the target
pointer is pointing to the next byte to be transferred
(stored).

Traps: Bounds Violation

Indicators: None

4-7

Machine Instruction Set

immediate
operand

immediate
operand

immediate
operand

immediate
operand

Language Extension Instructions

SUFS

Subtract From Source Pointer (format # 4). The SUFS
instruction subtracts a displacement from the source
pointer. The displacement is specified by the immediate
(or extended) operand as above. At this point the source
pointer is pointing to the next byte to be fetched.

Traps: Bounds Violation

indicators: None

FORMAT TYPE # 5 (for instructions: ICP,ICPS). The instruction

Icp

ICPS

format for the instructions with only immediate
operands to generate punctuation characters is as fol-
lows:

0 3 4 7

opcode immediate
operand

byte 1
Note: The immediate operand indicates an index into
the ASCII character set. The character formed is
equal to index+%40.

Insert Character Punctuation (format # 5). The ICP
instruction inserts a single character into the target buf-
fer. The immediate operand defines the ASCII character
to be inserted. The ASCII character inserted equals the
operand plus %40. The target pointer is increased by one.
Traps: Bounds Violation

Indicators: None

Insert Character Punctuation Suppressed (format # 5).
The ICPS instruction inserts a single character into the
target buffer if the significance trigger is set to a 1. If the
significance trigger is set to a 0 the fill character is in-
serted into the target buffer. The immediate operand de-
fines the ASCII character to be inserted. The ASCII
character inserted equals the operand plus %40. The
target pointer is increased by one.

Traps: Bounds Violation

Indicators: None

FORMAT TYPE # 6 (for instructions: IS). The instruction format

for the insert sign instruction which has one immcdiate
operand and two insertion character strings is as follows:

0 3 4 70 7 0 7
opcode immediate character string if | character string if
operand sign is pos. sign is neg.
byte 1 bytes X0 - X1 bytes X2 - X3

Note: The length of the character strings is given by
the immediate operand. Typically this would be 1
or 2. The relations between the immediate
operand and the byte positions X0,X1,X2, and X3
are as follows:

X0 equals 2

X1 equals 1+m
X2 equals 2+m
X3 equals 1+m*2

where m is the immediate operand

4-8

4

7

immediate
operand

immediate
operand

immediate
operand

Machine Instruction Set

IS Insert Characters Depending On Sign (format # 6). The 0 3 4 7
IS instruction inserts one of two specified character immediate
. . . N . 1 1 1 0
strings depending on the sign of the source as specified in operand

the condition code. If the sign is positive (= CCG or CCE)
the first character string will be inserted else the second
character string will be inserted (see format #6 for the
byte positions). The immediate operand specifies the
length of both character strings. The target pointer is
increased by this length.

Traps: Bounds Violation

Indicators: None

FORMAT TYPE # 7 (for instructions: TE,ENDF,SST1,SSTO,
MDWO). The instruction format for those instructions
which are one byte long and have an opcode of %17 is as
follows:

%17 secondary
opcode

byte 1
Note: The secondary opcode is in the range of 0 to 4.

TE Terminate EDIT (format # 7). The TE instruction ter- 0 3 4 7
minates the EDIT subprogram and deletes all parame- b1 1
ters from the stack.

Traps: Stack Underfiow
Indicators: None

-

B
o
o
o

ENDF End Floating Insertion (format # 7). The ENDF 0 3 _4 7
instruction inserts the float character into the target buf- .+ 1+ 1710 o o 1]
fer and increases the target pointer by 1 if the signifi-
cance trigger is set to a 0. If the significance trigger is set
to a 1 then no action is taken.

Traps: Bounds Violation
Indicators: None

SST1 Set Significance Trigger To One (format # 7). The SST1 0 3 4 ’
instruction sets the significance trigger to a 1. g1t 1 | 0 o 1 o}
Traps: None
Indicators: None

SSTO Set Significance Trigger To Zero (format # 7). The SSTO 0 3 4 7
instruction sets the significance trigger to a 0. [+ 1 1]Jo o 1 1]
Traps: None
Indicators: None

MDWO Move Digit With Overpunch (format # 7). The MDWO 0 3 4 7
instruction transfers a single numeric character (0-9 & [1 1 1 1] o0
leading SPACE) from the source buffer to the target

-
Qo
(2]

Language Extension Instructions

buffer. The actual character placed in the target buffer is
a function of the digit and the sign of the number as

follows:

Source Digit Target Diglt | Target Digit
If Positive If Negative

O-or space f { or %173 . } or %175
1 A or %101 Jor %112
2 B or %102 Kor %113
3 C or %103 L or %114
4 D or %104 Mor %115
5 E or %105 N or %116
6 F or %106 . O ofr %117
7 Gor%107 | Por %120
8 H or %110 Q or %121
9 | or %111 | Ror %122

Both the target pointer and the source pointer are
increased. by one.

Traps: Bounds Violation, Invalid ASCH digit

Indicators: Overflow

FORMAT TYPE # 8 (for instructions: SFC,SFLC,SETC,DBNZ).

SFC

SFLC

The instruction format for those instructions which are
two bytes long and have an opcode of %17 is as follows:

0 3 4 7 0 7
%17 secondary operand T byte
opcode (required)
byte 1 byte 2

Note: The secondary opcode is in the range of 5 to %11.

Set Fill Character (format # 8). The SFC instruction
defines the fill character which is used in the MNS, MFL,
ICS, ICSI, and ICPS instructions to suppress leading
zeros and fixed insertion characters. The second byte of
this instruction specifies the ASCII character to define
the fill character.

Traps: None

Indicators: None

Set Float Character (format # 8). The SFLC instruction
defines the float character which is used in the MFL
instruction to provide floating sign insertion. The second
byte of this instruction specifies two characters as two 4
bit operands. The ASCII character which defines the
float character is equal to the operand plus %40. The first
operand is used if the sign of the source as specified by
the condition code is positive (CCG or CCE) else the
second eperand is used. B

Traps: None

Indicators: None

4-10

(1

3 4
1]o
3 4
10

SETC

DBNZ

Set Loop Count (format # 8). The SETC instruction
defines a loop count. The loop count is defined by the
second byte of this instruction. When initialized to 0, the
count is equivalent to 256.

Traps: None

Indicators: None

Decrement Count, Branch If Non-zero (format # 8). The
DBNZ instruction decrements the loop count as defined
by the SETC instruction and adds a displacement to the
opcode pointer if the resulting value of the loop count is
not equal to zero. The displacement is specified by the
second byte as a two’s complement integer. The branch is
relative to the last fetched byte of the sub-program — i.e.
to byte 2.

Traps: Bounds Violation

Indicators: None

FORMAT TYPE # 9 (for instructions: DFLC). The instruction

DFLC

TR

format for those instructions which are three bytes long
and have an opcode of %17 is as follows:

0 3 4 7 0 7 0 7

%17 secondary
opcode

1st operand
(required)

2nd operand
(required)

byte 1 byte 2
Note: The secondary opcode is in the range of 5 to %11.

Define Float Character (format # 9). The DFLC instruc-
tion defines the float character which is used in the MFL
instruction to provide floating sign insertion. The second
and third bytes of this instruction specify two ASCII
characters. The first operand is used if the sign of the
source as specified by the condition code is positive (CCG
or CCE) else the second operand is used.

Traps: None

Indicators: None

Machine Instruction Set

0 o o

3 4
1]
3 4
11
3 4
1 [o

11 1]

CODE CONVERTING AND COLLATING INSTRUCTIONS

Translate. The TRANSLATE instruction converts a
string of characters from one character set to another
character set. The bytes from the source string are used
as arguments to reference the translation table. The
bytes selected from the table are placed in corresponding
positions in the target string. The format of the stack
prior to execution is as follows:

S-3 byte address of
translation tbl

S-2 byte addreds of
source string

S-1 byte address of
' target string

S-0 length of
source string

4-11

of1 516 819 f10|11}12§13 |14} 15
to]o NEEOEE
0f 1 5|6 8] B |10}11] 12813 }14]15
{ofo ojojofof1]o]jo]1]o]Y

When Y = 0 the location is in the PB relative area.
When Y = 1 the location is DB relative.

Language Extension Instructions

The source and target string byte addresses are DB-
relative. The translation table byte address is PB- or
DB-relative. If the byte count = 0, the stack is popped by
4 and execution continues with the next instruction. This
instruction is interruptable after each byte transfer. On
completion of the instruction all 4 parameters are

deleted from the stack.
Traps: Stack overflow, Stack underflow, Bounds Violation

Indicators: Unaffected.

CMPS Compare Strings. The CMPS instruction compares bytes oli1|2)3)a|ls|{e)7]|8]|9ofto]11]|12f13|1a|1s

from a DB-relative source string to those of a PB- or Io ol1{olololof1lo]lol1]1f1Yo]1]Y

DB-relative target string. If the strings are of unequal
length the ASCII blank is used as the fill character for

the shorter string. The stack prior to execution of the When Y = 0, the location is PB relative; When Y =
instruction is as follows: 1, the location is DB relative.
S.3 byte address of
: target string
.2 length o.f
target string
S.1 byte address of
B source string
length of
8-0 source string

The instruction terminates when an unequal comparison
has been made or the maximum length has been com-
pared. Comparisons are made left-to-right. This instruc-
tion is interruptable between each byte comparison. On
completion of the instruction, all 4 parameters are
popped from the stack. (See Instruction Commentary 2.)
Traps: Stack Overflow, Stack Underflow, Bounds Violation
Indicators: CCE if no mismatch over max. length is found,
or if both lengths = 0 on entry
CCG if target byte < source byte
CCL if target byte > source byte

CMPT Compare Translated Strings. The CMPT instruction ol 1lz2]alalstel7le|s]olti]12}1a]1afrs
compares byte strings using a DB-relative translation |0 ol1lololololilofoftl1l111]1(1
table. A DB-relative source byte is used as an index into
the table to obtain the first byte to be compared. If the
instruction is DB-relative then the DB-relative target ol 1lz2lalalslel7 1819 iol11]12]13[14]15
byte is used as an index into the same table to obtain the [oJofofo]o[ofofofofofofofof1]1]Y
second byte to be compared — otherwise the PB-relative
target byte is the second (untranslated) byte for the com-
parison. If the strings are of unequal length the (always When Y = 0, the location is PB relative; when Y =
translated) ASCII blank is used as the fill character for 1, the location is DB.
the shorter string. The stack prior to execution of the
instruction is as follows:

S-4 byte address of
translation tbl

byte address of
target string

length of
target string

S-3

S-2

S-1 byte address of
source string

length of
source string

S-0

4-12

Machine Instruction Set

The instruction terminates when an unequal comparison
has been made or the maximum length has been com-
pared. Comparisons are made left-to-right. This instruc-
tion is interruptable between each byte comparison. On
completion of the instruction, all 5 parameters are
popped from the stack. (See Instruction Commentary 2.)
Traps: Stack Overflow, Stack Underflow, Bounds Violation
indicators: CCE if no mismatch over the max. length is
: found, or if both lengths = 0 on entry
CCG if target byte < source byte
CCL if target byte > source byte

NUMERIC CONVERSION AND LOAD INSTRUCTIONS

ALGN Align Numeric. The ALGN instruction transfers a of1l2]aslalsfel7}a]o)to|rn]12]1a]ra]1s
numeric item from the DB-relative source buffer to the Io o[1]o]Jolojo]t1lo]|oj1|t]ojoioO|S
DB-relative target buffer. The transfer aligns the source
item to the target item by decimal point. The lengths and
the number of digits to the right of the decimal point are Where S
bytes. The stack before execution is as follows:

SDEC.

il

S-3 Target Byte Address

S-2 F1 L1 (target)
S-1 Source Byte Address
S-0 - F2 L2 (source)

L1 and L2 specify the length of the data item for the
target and the source. F1 and F2 specify the number of
digits to the right of the decimal point for the target and
the source. L1, L2, F1, and F2 are restricted as follows:

F1 <= L1 <= 28 and F2 <= L2 <= 28
The alignment will be performed as follows:

1) The source will be truncated as necessary as de-
fined by the target (i.e. at either end — however
non-transferred characters will still be
validated).

2) Leading Blanks in the source will be treated as
zeros (converted to 0’s in target if transferred).

3) The target will be zero filled.

4) The source may contain only numeric characters
(0-9 & leading space) and trailing overpunch.

5) Ifthe last char. of the source is overpunched, then
the last char. of the target will be overpunched.

The SDEC bit allows leaving either the target address on
the stack or deleting all parameters. If the source or
target character count is zero the SDEC operation is
performed and execution continues with the next

instruction.
SDEC = 0, delete all parameters except target address

SDEC = 1, delete all 4 parameters

Traps: Invalid ASCII Digit, Invalid Operand Length
Stack Overflow, Stack Underflow, Bounds
Violation

Indicators: Overflow

4-13

Language Extension Instructions

CVND Convert Numeric Display. The CVND instruction pro- ofl1]2]afalsfe}7|s]|ofroft1|2)3]ra]1s
duces a default numeric display item (a target string) [o olt|{ojojojof1jojo1]1[1)1]|1]1
from a signed or unsigned numeric display item (a source
string). The default numeric display item is a string of
ASCII numeric characters where the low order digit may ob1l2[30slslel7]8olio]11}s2f1al14]15
be a numeric character or an overpunch character. Three [ofofoJoJofoJo]Jo]ofofo |1 [x]x{x]s
bits within the instruction specify if the source is signed
or unsigned and the location of the sign for signed items.

The combinations are as follows: Note: Bits 11-15 of the 2nd op range from %20 to
%37
0 0 O sign is leading separate xxx = Sign Control Field (as above)
0 0 1 sign is trailing separate S = SDEC field
0 1 0 sign is leading overpunch
0 1 1 sign is trailing overpunch or unsigned
1 X X source is unsigned

The source itern may contain characters from each of the
following groups of characters:

numeric (0-9 & leading SPACE)

sign (SPACE, +, —-)

overpunch ({, A,B,C,D,E, F, G, H, I,
LI, K,LLM,N,O,P,QR,)

Note: sign is leading overpunch may not contain
leading blanks.

The overpunch characters are described in the EDIT
instruction description (see MDWO instruction). Lead-
ing spaces are converted to 0’s. For the first four cases,
the target string will have its last character overpunched
in accordance with the source sign (NOT the condition
code). The last case will yield an unsigned target string.
The SDEC bit allows leaving either the target address on
the stack or deleting all parameters. If the source charac-
ter count is zero the SDEC operation is performed and
execution continues with the next instruction. Byte ad-
dresses below are DB-relative.

The stack before execution is as follows:

S-2 Target byte Address
S-1 Source byte Address

S-0 Source Character Count

SDEC 0, delete both source parameters

SDEC 1, delete both parameters

Traps: Invalid ASCH Digit
Invalid Source Character Count
Stack Overflow, Stack Underflow, Bounds
Violation

indicators: Overflow

ABSN Absolute Numeric. The ABSN instruction produces an 0 1213]14] 15
unsigned numeric display item from a default numeric Io oj/1lolololol1{olol1l1lolol1]s
display item and sets the condition code to reflect the
sign of the source. The default numeric display item is a
string of ASCII numeric characters where the low order Where S

-
~
[
FN
o
>
~
©
©
]

SDEC

il

4-14

Machine Instruction Set

digit may be a numeric character or an overpunch
character. The source item may contain characters from
each of the following groups of characters:

numeric (0-9 & leading SPACE)
overpunch ({, A,B,C,D,E, F, G, H, I,
}7J,K’ L) M’ N?07P7Q,R1)

The overpunch characters are described in the EDIT
instruction description (see MDWO instruction). Lead-
ing spaces are converted to 0’s. The SDEC bit allows
leaving either the source address on the stack or deleting
all parameters. If the source character count is zero the
SDEC operation is performed and execution continues
with the next instruction.

The stack before execution is as follows:

S-1 Source byte Address

S-0 Source Character Count

SDEC 0, delete count

SDEC 1, delete both parameters

Traps: Invalid ASCII Digit
Invalid Source Character Count
Stack Overflow, Stack Underflow, Bounds
Violation

Indicators: Overflow

1l

ABSD Absolute Decimal. The ABSD instruction changes the of1f2]|afalsje]7|e]s Jrof1}ra}iafialss
sign of a packed decimal value to %17. This produces an lofoftJoJofofof1]lofjo 1 111]1]1
unsigned packed decimal result. The SDEC bit allows
leaving either the target address on the stack or deleting
both parameters. The stack before execution is as ofl1|2]afals]elz]|s]ofoltn].2]ta]ralis

follows: [0Jo]ofoJo]ofoJofofof1fofo]1]1]s

S-1 Byte Address

S-0 Digit Count Where S = SDEC
SDEC = 0, delete digit count parameter
SDEC = 1, delete both parameters

Traps: Invalid digit count
Stack Overflow, Stack Underflow, Bounds
Violation

Indicators: CCA on original source, Overflow

NEGD Negate Decimal. The NEGD instruction negates a of1l2l3Yalis]sdz]8]fof10]t1]12}a|14]15
packed decimal value. The SDEC bit allows leaving (oJo[1fofofolof1]ofof1fr1]1]1]1]1
either the target address on the stack or deleting both
parameters. The stack before execution is as follows:

S-1 | Byte Address [ofo]ofoJofoJoJofofo]1]o]1]o]o]s
S-0 Digit Count

Where S = SDEC

SDEC = 0, delete digit count parameter
SDEC = 1, delete both parameters
~ Traps: = Invalid digit count
Stack Overflow, Stack Underflow, Bounds
Violation

Indicators: CCA on result, Overflow

4-15

Language Extension Instructions

LDW

Load Word (2 Consecutive Bytes). The LDW instruction ol1[2TsVals|ef7|8]e Jro]11]|r2fafra]ts
loads two bytes to the TOS from the DB relative address jojoj1|ojofojog1fojofrf1j1]1]1]1
on TOS. The SDEC bit allows leaving or deleting the
address on the stack.
ofltl2]3ba]s|e]7]s]orofjr1]12)iafr4]1s
The stack before execution is as follows: Io olololololololo]of1lo]ofofo}ls
S-0 DB relative byte address
Where S = SDEC
SDEC = 0, leaves address on the stack
SDEC = 1, deletes address from stack
Traps: Stack Overflow, Stack Underflow, Bounds
Violation
Indicators: Unaffected
LDDW Load Double Word (4 Consecutive Bytes). The LDDW of1]2[afa[s]ef7{s]o]o|n]izafialra]rs
instruction loads four bytes to the TOS from the DB foJof1jofofofof1jojojtf1[1]1]1]1
relative address on TOS. The SDEC bit allows leaving or
deleting the address on the stack.
of«Jalalas)ef7]a]odroft1frafrajra]1s
The stack before execution is as follows: olololoJlololofo]ofo]1jo]ofol1ls
S5-0 DB relative byte address
Where S = SDEC
SDEC = 0, leaves address on the stack
SDEC = 1, deletes address from stack
Traps: Stack Overflow, Stack Underflow, Bounds

Violation
indicators: Unaffected

INSTRUCTION COMMENTARY

1 This commentary explains the traps for the Lan-
guage Extension Instructions. For these instructions a
variety of traps is possible.

If an invalid count or an invalid ASCII digit is detected,
the instruction terminates at the point of error, and one of
two possibilities occurs (note: check “Indicators” for a par-
ticular instruction to see if this type of trap can occur). If
the User Traps bit (STA(2)) is not set, the Overflow bit
(STA(4)) is set, the stack is popped in accordance with the
instruction, and execution continues with the following
instruction. If the Traps bit is set, the Overflow bit is not
set, the stack is not popped, and a trap to the Traps seg-
ment, segment 1 is taken.

For the cases of Stack Overflow, Stack Underflow, Bounds
Violation, CST Violation, and Privileged Mode Violation,
the instruction is aborted at the point of error and an

4-16

unconditional trap is taken to Segment 1. In general, the
state of the stack is not known in these cases. These traps
are handled the same as for the basic machine instruction
set.

Unimplemented instructions also trap to segment 1 as in
the basic instruction set. The X-register will contain the
contents of the CIR-register. This is the actual unim-
plemented opcode in the case of single word instructions,
or %020477 in the case of double word instructions. In
either case, the delta P value in the stack marker, when
added to PB, points to the next true instruction (i.e. not to
the second word of a double word instruction).

2 The following commentary provides a further
explanation of the comparison instructions CMPS and
CMPT.

There are four types of alphanumeric comparisons which
are described in the table below:

Case | Translation | Filling Equal | Target

Required Required | Length | Location
1 none none equal | DB+/PB+
2 none blanks no DB+/PB+
3 yes (source) | blanks no PB+
4 yes (both) blanks no DB+

Note: source location and translation table are always
DB-relative. Target location may be either PB- or
DB-relative. Note also that the Condition Codes
CCG and CCL are reversed from that of the CMPB
instruction, and the PB indicator applies to the
target instead of the source.

Machine Instruction Set

CASE #1. This case compares two strings of equal length
and provides no translation of operands. This can be im-
plemented using the CMPB instruction.

CASE #2 CMPS Compare Strings. This case compares two
strings of different length and provides no translation of
operands. The ASCII blank character is used as the fill
character for the shorter string.

CASE #3 CMPT Compare Translated Strings. This case
compares two strings of different length while converting
the source string using a translation table (see TRANS-
LATE instruction). The translation of the ASCII blank is
used as the fill character for the shorter string, regardless
of whether it is the source or target string.

CASE #4 CMPT Compare Translated Strings. This case
compares two strings of different length while converting
both strings using a translation table (see TRANSLATE
instruction). The translation of the ASCII blank is used as
the fill character for the shorter string.

3 The following commentary provides various examples of EDIT subprograms.
PICTURE SIGN SOURCE TARGET
* ok %k % Kk Kk k¥ * %k ko % ok ok Kk Xk Xk * % k ¥ Kk Xk
EXAMPLE #1
9999.99 + 000123 0001.23
EDIT subprogram:
MN 4 icp “.” MN 2 TE
EXAMPLE #2
*Exx .09 + 001234 **12.34
EDIT subprogram:
SFC A MNS 4 Icp “.” MN 2

TE

Machine Instruction Set

PICTURE SIGN SOURCE TARGET
* ok ok ok Kk Kk ok *® Kk Xk %* * ok ok ok Xk % * ok Xk Kk K ¥
EXAMPLE #7
---9.99 - 00123 -1.23
EDIT subprogram:
SFLC woommn MFL 2 ENDF MN 1
IcCP “.” MN 2 TE
EXAMPLE #8
t***.** + 00000 ****.**
EDIT subprogram:
SFC MNS 4 Icp “.” MN 2
BRIS 4 | SUFT 2 Ic 2 TE
EXAMPLE #9
22272.22 + 000001 .01

EDIT subprogram:

MNS 4 IcP " MN 2 BRIS 4 SUFT 3
IC 3 .o TE
EXAMPLE #10
+++++ + 0000

EDIT subprogram:

SFLC B A MFL 2 BRIS 2 icp «

TE

4-19

Language Extension Instructions

TARGET

PICTURE SIGN SOURCE
® k kK kK ® x X % %k ok W ® ok %k X ¥ % * k Kk k K &
EXAMPLE #11
AAABAA ABCDE ABC DE
EDIT subprogram:
MA 3 IcCP * MA 2 TE
EXAMPLE #12
$999CR - $012CR
EDIT subprogram:
ICP u$n MN 3 IS 2 “ " o
“gr “R” TE
EXAMPLE #13
AX9AX9 V" #$%& 1" #8%5%&
EDIT subprogram:
MC 6 TE
EXAMPLE #14
+$S5VSES - 0123 - $123
EDIT subprogram:
IS 1 T " MFL 2 ENDF
MN 2 BRIS 4 SUFT 7 IC 7 “
TE

4-20

APPENDIX

A

Table A-1. Alphabetical Listing of Instructions

ABSO
ABSN
ADAX
ADBX
ADD
ADDI
ADDM
ADDS
ADXA
ADXB
ADXI
ALGN
AND
ANDI
ASL
ASR

BCC
BCY
BNCY
BNOV
BOV
BR
BRE
BRO
BTST

CAB
CIO
CMD
CMP
CMPE
CMPI
CMPM
CMPN
CMPS
CMPT
CPRB
CSL
CSR
CVND

DABZ
DADD
DASL
DASR
DCMP
DCSL
DCSR
DDEL
DDIV
DDuP
DECA
DECB
DECM
DECX
DEL
DELB
DFLT
DISP
DIV.
Divi
DIvVL
DLSL
DLSR
DMUL
DNEG
DPF
DsuB
DTST
DUMP
DUP
DXBZ
DXCH
DZRO

EDIT
ENDP
EXF
EXIT

FADD
FCMP
FDIV

2-15
2-2
2-11
2-11
2-3
2-11
2-12
2-9

2-9
2-6
2-7
2-41
2-6
2-9

2-3
2-29
2-1
2-24
2-2
2-11
2-11
2-3
2-3
2-4

2-9
2-35
29
2-14
2-8
2-8

4-2
2-14
2-28

2-4
2-3

FIXR
FIXT
FLT
FMPY
FNEG
FSuB

HALT
HIOP
IABZ
INCA
INCB
INCM
INCX
INIT
IXBZ
IXIT

LADD
LCMP
LDB
LDD
LDDW
LDEA
LD}
LDV
LDNI
LDPN
LDPP
LDW
LDX
LDXA
LDXB
LDXI
LDXN
LLBL
LLSH
LMPY
LOAD
*LOCK
LRA
LSEA

2-4
25
2-3
2-4
2-4
2-4

2-30
2-37
2-14
2-6

2-6

2-41
2-6

2-36
2-14
2-29

2-5

2-5

2-40
2-39
4-16
2-23
2-24
2-5

2-25
2-39
2-36
4-16
2-39
2-7

2-7

2-24
2-25
2-29
2-31
2-5

2-39
2-30
2-40
2-23

LSL
LSR
LST
LsuUB

MABS
MCS
MDS
MFDS
MOVE
MPY
MPYIi
MPYL
MPYM
MTBA
MTBX
MTDS
MVB
MVBL
MVBW
MvLB

NEG
NEGD
NOP
NOT

OR
ORI

PARC
PAUS
PCAL
PCN

PLDA
PSDB
PSEB
PSHR
PSTA

2-10
2-10
2-23
2-5

2-20
2-36
2-22
2-21
2-17
2-1
2-24

2-2 -

2-41
2-38
2-38
2-21
2-17
2-19

2-18-

2-20

2-2
4-15
2-10
2-6

2-6
2-25

4-1

2-30
2-28
2-31
2-22
2-29
2-30
2-26
2.22

QASL
QASR

RCCR
RCLK
RIO
RIOC
RMSK
RSW

SBXI
SCAL
SCAN
SCLK
SCLR
SCU
SCW
SDEA
SED
SEML
SETR
SIN
SINC
SIO
SIOP
SMSK
SSEA
SST
STAX
STB
STBX
STD
STOR
STRT
suB
susl
SUBM
SUBS

2
2-13

2-31
2-27
2-34
2-37
2-33
2-31

2-25
2-28
2-13
2-27
2-32
2-19
2-19
2-23
2-33
2-37
2-26
2-35
2-32
2-33
2-36
2-33
2-23
2-23
2-7

2-40

2-40
2-36
2-37

2-24
2-41
2-27

SXIT

TASL
TASR
TBA
TBC
TBX
TCBC
TEST
TIO
TNSL
TOFF
TON
TR
TRBC
TSBC

UNLK

WIO
WIOC

XAX
XBR
XBX
XCH
XCHD
XEQ
XOR
XORt

ZERO
ZROB
ZROX

2-28

2-12
2-12
2-38
2-13
2-38
2-14
2-9

2-34
2-12
2-32
2-32
4-11
2-13
2-13

2-30

2-34
2-35

4-1

2-27 |

2-31

2-25

2-8

2-8
2-8

EIS

ADDD 3-5
CMPD 3-6
CVAD 3-3
cvBD 34
CVDA 3-4
CvDB 3-5
DMPY 3-8

EADD 3-1
ECMP 3-2
EDIV ~ 3-2
EMPY 3-2
ENEG 3-2
ESUB 3-1

MPYD 3-8
NSLD 3-7
SLD 3-6
SRD 3-7
SuBD 3-6

HEWLETT lhﬂ’; PACKARD

Part No. 30000-90022 Sales and service from 172 offices in 65 countries.
Index No. 3GENL.320.30000-90022 5303 Stevens Creek Blvd., Santa Clara, Cafifornia 95050
Printed in U.S.A. 2/80

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-19
	4-20
	A-01
	xBack

