HP 3000 Computer Systems

MACHINE INSTRUCTION SET

Reference Manual

(2} Fckars

19447 PRUNERIDGE AVENUE, CUPERTINO, CA 95014

Part No. 30000-90022 Printed in U.S.A. 06/84
E0684 .

FEDERAL COMMUNICATION COCMMISSION RADIO
FREQUENCY INTERFERENCE STATEMENT

The United States Federal Communications Commission (in Subpart J, of Part 15§, Docket 20780)
has specified that the following notice be brought to the attention of the users of this product:

“Warning: This equipment generates, uses, and can radiate radio frequency energy
and if not installed and used in accordance with the instructions manual, may cause
interference to radio communications. It has been tested for compliance with the
limits for Class A computing devices pursuant to Subpart J of Part 15 of FCC Rules,
which are designed to provide reasonable protection against such interference.
Operation of this equipment in a residential area is likely to cause interference in
which case the user at his own expense will be required to take whatever measures
may be required to correct the interference.”

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for inciden-
tal or consequential damages in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced or trans-
lated to another language without the prior written consent of Hewlett-Packard
Company. oo

Copyright (c) 1976, 1978, 1980, 1982, 1984 by HEWLETT-PACKARD Comparny

it

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition, and lists the dates of all
changed pages. Unchanged pages are listed as "ORIGINAL". Within the manual, any
page changed since the last edition is indicated by printing the date the changes were made
on the bottom of the page. Changes are marked with a vertical bar in the margin. If an
update is incorporated when an edition is reprinted, these bars and dates remain. No in-
formation is incorporated into a reprinting unless 1t appears as a prior update.

FifthEdition. e eeoes. June 1984
Effective Pages Date
TitlePage, 1. v v v o v o v e v o v v a .. JUN 1984
R 2 OCT 1984
VEATU X & o v v vt e e e e e e e e e e e JUN 1984
XTthru xvi . .« & . . 0 0 v i et e e e . OCT 1984
{=lthrul-12........0....... JUN 1984
2-1thru2-132 v i v e i ... JUN 1984
3-1thru3-28.o, JUN 1984
4-1thrud-38. i venu.en.. JUN 1984
S-lthruS-16. . ¢ . i v i v v v v v JUN 1984
6-1thrué6-5/6-6.¢..... OCT 1984
Index-1,Index-2. JUN1984
Index-3thrulndex-8 OCT 1984

OCT 1984

oy
b
e e

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued be-
tween editions, contain additional and replacement pages to be merged into the manual by
the customer. The date on the title page and back cover of the manual changes only when
a new edition is published. When an edition is reprinted, all the prior updates to the edi-
tion are incorporated. No information is incorporated into a reprinting unless it appears as
a prior update. ,

FIFStEGUSEN @ 4 ¢ o o o o e o o o o o o o o o » JUN1G7E
SEIEPaETIET & i v s e e e e e s e e s e e e« AUG1G78
Thrd Ed100 + = 4 v o o &+ « o s o o s s o » o « FEE 1880
FOuwtnECHEN. & ¢ « ¢« « s o s s s « » o o « o« « DEC 1882
FHIREGMEN 4 v v o o v o o o o o o o o « s o o JUNTEBS
UPT3TE 51 4 4 v v s 4 s s e s s s s e e e s . o OCT 1684

iv ' OCT 1984

CONTENTS

PREFACE

SECTION I - GENERAL INFORMATION

Page
INTRODUCTION . . i ¢ ¢ ¢ e 6 o e o o oo oo s oas e e e e e e e e e e e e e e 1-1
BASIC INSTRUCTIONSET. e e e e e e e e e e e e e s Gt e et e 1-1
Instruction Deceding e e e e e et e e e 1-1
Traps and Interrupts e e e e s e e ee e e e e e e e s e e e s e e e e 1-1
EXTENDED INSTRUCTIONSET . . o i v v v v ot v o v v v 0 o oo e e e e e e e e e 1-3
Instruction Decoding . .. ¢ ¢ ¢ ¢ o v v v v v v vt 0 o S
Interrupts . ¢ .« ¢ v o 0 0 0 0 e e s e s s e e e s e e e e e e e e e e .1-3
Extended Precision Floating Point Instructionsc.0.00. 1-3
Decimal Arithmetic Instruction Set ¢ ¢ i v ittt ettt oot v e 1-3
LANGUAGE EXTENSIONSET &+ v v v o ¢ o o o s t o o o oo e s oo s s oo e e e e 1-3
CONDITIONCODE e e e s e e s e s et ee e e e e e e e e e e e e 1-4
INSTRUCTIONFORMATS . . -« v v v e 0 0 0 o o e e e e e e e e et e e e e 1-5
SECTION II - INSTRUCTION SET
Page
STACK OP INSTRUCTIONS
INTEGER INSTRUCTIONS
o) 0 TR V- V- K R 2-1
SUB Sub . . v v v o v v ewone e e e e ettt e e e e e e 2-1
MPY Multiply e 2-2
DIV Divide e e e et et e e e e e e e e e e e 2-2
NEG Negate e e e e e e e e e s e e e e e e e 2-2
CMP Compare s e s e e e e e e et bt e e e s e e e e e e e e e 2-3
DOUBLE INTEGER INSTRUCTIONS
DADD Double AQd & v v v v e ot o o o o o o s s o v s o o v o s s o o a s o oo oo oo 2-3
DSUB Double subtract e e e e e e e et e e e e 2-3
MPYL Multiply ong . . « « « « « « o & e e et e e e et e e 2-4
DIVL Divide 1ODE + « « v ¢ « o e e o s v s oo o s o o v s ouooe e e e e e e e e 2-4
DNEG Double Negate « « « « . . et e e e e e e e e e et 2-4
DCMP Double compare e e e e e e e et s e e e e e e e 2-5
DMUL Double integer multiply v v ¢ v o v it v v et ot v v oo oo v o 2-5
DDIV Double integer divide . . . ¢ ¢ o v o v ot vt o o s 0t ottt e 00 ae e 2-5
FLOATING POINT INSTRUCTIONS '
DFLT Double float.+ .. e e e e e e e e e e e 2-6
FLT Float . .« v v v v v v v e et e e e e e e e 2-6
FCMP Floating compare. e et e et e e 276
FADD Floating add. e e e e e e e e ee e e e e e e ...2-7
FSUB Floating subtract . . . ¢ o o v v o v o v o ot oot s o s o oo oo o oo 2-7
FMPY Floating multiply t et e et e et e e et e 2-8
FDIV Floating divide e s s e e e e e e e et 2-8
FNEG Floating negate« .. e e e e e e e 2-8
FIXR Fix and round« «c«+ o . S 2-9
FIXT Fix and truncate . . o o o o o o o o o o o o o s o o o s s a8 o s s o o s s s oo . 2-9

CONTENTS (cont)

Page
STACK OP INSTRUCTIONS (Continued)

LOGICAL INSTRUCTIONS
LCMP Logical COMPAre . . « v v v o o ot oo o o o s o 2o on e e e e e e e e 2-10
LADD Logical add ¢ ¢ o o Che e e e e s e e s s e s e e e e e e 2-10
LSUB Logical subtracts ¢ oo v oo e e s e s e e s e s e e . 2-11
LMPY Logical multiply. s e ee e e e et e e e e et e e ce. 2-11
LDIV Logical divide ¢ e 0. et e e e e e e e s e e e e e 2-11
NOT One's complement e e e e e e e s e 2-12
BOOLEAN INSTRUCTIONS
OR Logical OR . v'v v v v e v v o s o v o s c e e e e e Gt e s s e s s e e e e e e 2-12
XOR Logical exclusive-OR. e e s e st s e e at e e e e e e e 2-12
AND Logical AND . . . v vt v v v v v o o s oo oo o s s et s e e e s e e e e e 2-13
INCREMENT/DECREMENT INSTRUCTIONS
INCX Increment X . i v o o o o o o o o o o oo oo o et e e e e et e e e e 2-13
DECX Decrement X . v v ¢ v v vt o v o o o o o s o o s o o o o et e e et e e e e 2-13
INCA Increment A . . ¢ v v v v v v v v oo v v s e e e et e e e e 2-1L
DECA Decrement A . v v v v v v v vt o s o oo s e e e e et e e et 2-1Y4
INCB Increment B e e e e e e e e e e e 2-14
DECR Decrement B v v i v v v o o o o o o o o o o o o o s s s s s s o s s o o o 8 o o s 2-15
INDEX INSTRUCTIONS
STBX Store B Into X & v v v v v v v 6 o o o o o o o s s o s o o o o o v o o o oo oo 2-15
ADAX Add A 20 X i i v e e e e e e et e e e s e e e e e e e e 2-15
ADXA Add X 0 A . i i it i it e e e e e e et e 2-16
LDXB Load X 3Rt0 B v v v v v v v e v e e o et o ot ot ot et s ae e 2-16
STAX Store A into X v v v v v v vt v v v o v o oo v o a e e e e e e 2-16
LDXA Load X ontostackc0c.0c.oo. ettt e e e e e e e 2-17
ADBX Add Bto X....... e e e e e e e e e s e e e e e e e e 2-17
ADXB Add X to B..... G h e e e e c et e e e e et e e e e e 2-17
EXCHANGE INSTRUCTIONS
DXCH Double €XChaNEE & ¢ ¢ v v o v o v ¢ o o s o o s s o o o s o s s o s oo oo 2-18
XCH Exchange A and Bt i i i i it it ittt ot e oot o oo s aan 2-18
XAX Exchange A and X e et e e e e e 2-18
CAB Rotate A, B,C . i i v i i i it e bt e e s o e s oo oo s a s o o o s oo o v oo 2-19
XBX Exchange Band X Gt e e e e e e e e e e e e 2-19
ZERO INSTRUCTIONS
ZROX Zero X. o i i v i it it e e e et e e e c e e e s et v e e e e 2-19
ZERO Push zero. . . . v v v v v v ot vt et v o s o v e e e e e e e e e e e 2-20
DZRO Push double zero. e e e s e e s et e e e e e e s e e e, 2-20
ZROB Zero B. ot et e e e e e e e e e r e e e e e e 2-20
DUPLICATE AND DELETE INSTRUCTIONS
DELB Delete B . . . i it vt i vttt o oo neeseas et e e e e e e e e 2-21
DDEL Double delete ¢ v v vt e v e o s oo e e s e e e e st s e e e e e 2-21
DEL Delete A . . . ¢ i i i ittt o ot oo eeanoes Gt et e e s e e e e e e e e 2-21
DUP Duplicate A. ¢ttt it et e e e et e e s e e . 2-22
DDUP Double duplicate. . . . ¢« v v v o v vt e s v e 0 o s o o e e s e e s e e e s 2-22
TEST INSTRUCTIONS
TEST TeSt TOS &t v vt v v vt o et ot ne aneoenansnnsa e e e Lo2-22
DTST Test double word on TOS . . . oo vt vt v vt v v v v ottt nnn oo oo 2-23
BTST Test byte on TOS . . . v ¢ ¢ ¢ ¢ ¢ v o v v v o e e s e e e e e e e e s 2-23
NOP No operation . . i i v v v v v i et o o s v o s o s s s o s s s o s s a s o n o 2-23

vi

CONTENTS (cont)

SHIFT INSTRUCTIONS
SINGLE WORD SHIFT INSTRUCTIONS
ASL Arithmetic shift left C e e s e e e s s e e s s s e e e s e
ASR Arithmetic shift right e e e e e e e b s e s s e e e e e e
LSL Logical shift left ieiieon v e s s e s s e s s s
LSR Logical shift right et e st s et s e e e . e
CSL Circular shift left . . . ¢t i it o o v e e v o o o o s oo oo c e et e e e
CSR Circular shift right.. ... et e e e e e e e s e e e e e e e . e e e
DOUBLE WORD SHIFT INSTRUCTIONS
DASL Double arithmetic shift left...... ... e e s e e e e e s e e
DASR Double arithemetic shift right e e et s e e e e
DLSL Double logical shift left........... e e e e s e e e e e e e
DLSR Double logical shift right e e e e e e e .
DCSL Double circular shift left ¢ v e v v e e s e e e e s .
DCSR Double circular shift right ¢ v v i i i v i it vttt it oo oo
TRIPLE WORD SHIFT INSTRUCTIONS
TASL Triple arithmetic shift left.o v ee e
TASR Triple arithmetic shift right...... ... e e e e
TNSL Triple normalizing shift left............... e e e e e
QUADRUPLE WORD SHIFT INSTRUCTION
QASL Quadruple arithemetic shift left vttt o v
QASR Quadruple arithmetic shift right........... ... e e e e e e

FIELD AND BIT INSTRUCTIONS

: SCAN Scan DitsS. ¢ v ¢ v vt o v st o o o o o o o o s s o oo o oo s o s oo s oo
TBC Test bit and set Condition Code e e e e e e e e e
TRBC Test and reset bit. ¢ ¢ e e e ee e e b e e e s e
TSBC Test and set bit e e e e s e e s e e e e e e
TCBC Test and complement bit, set condition code ¢ oo
EXF Extract field. ¢ v v v o v v s o e e e e s e n e e e s e e e e
DPF Deposit field. e v oo o e e s e s e e e e ae e e e e e e e e e

BRANCH INSTRUCTIONS
IABZ Increment A, branch if zero...... e e e e e s e e e e e e e e e
IXBZ Increment X, branch if zero e e e e e e e e s e
DXBZ Decrement X, branch if zero+ ¢ oo e e e e e e e
DABZ Decrement A, branch if 2zerc ¢ v v v e .o et e e e e e e
BCY Branch On NO CATTY + - « ¢ ¢ o « o o o s o a s o o o o s o e e e st e e e e
BENCY Branch On DO CaTTY ¢ v v o ¢t o ¢ o o o o s o o o c e e e e e e e e e e
BOV Branch on overflow v ¢ v v o vt o v s oo e e e e e e e e e e e e s
BNCV Branch on nNo overfloW . ¢ ¢ v o « o o o s o o o e o o s o o o s o oo s oo
BRO Branch on Tos odd. e s e s e s b e e e s s e e e e c e e e e

-BRE Branch to TOS @Ven . ¢« v « ¢ o o ¢ o o s o o s o o “ e e e e e s e e e e e

CPRB Compare range and branch e e e s e s e e e e e e e e e
BR Branch unconditionally . « ¢« « ¢ ¢ ¢ v ¢ s 0 ¢ 0 o v o e s e e s s e e e s
BCC Branch on Condition Code . . v v ¢ ¢ o ¢ 0 ¢ 0 o o o e e e s e e e e e

MOVE INSTRUCTIONS)
HMOVE & i i it et s s ot o o oo oo o oo s oaeceeeeenose e e s s e s s s e e e
MVB Move bytes. . . ¢t v vt v e v o vt o o s o e s oo e e e s e s e e e e e .
MVBW Move bytes of specific type . . . ¢ i v vt v i et vt e a e cee e
CMPB Compare bytes e+ oo e e e e e e e e
SCW Scan memory byte equal test byte. e e e s e e e e e e e e e e

vii

Page

CONTENTS (cont)

MOVE INSTRUCTIONS (Continued)

SCU Scan until memory byte equals test byte or term. byte
MVBL Move words from DB+ to DL+ . . & v v i vt v v v o s o vt oot ot v oo
MVLB Move word from DL+ to DB+. e et e e e . v e
MABS Move words using absolute addresses st et e e e
MIDS Move to data segment e e e s s s e s e e e e
MFDS Move from data segment. S e e e e s e e e s e e e .
MDS Move using data segments ¢ v v v v v oo oo e e e e e e e e s
PRIVILEGED MEMORY REFERENCE INSTRUCTIONS
PLDA Privileged load from absolute address . . . v v v v v v v v o v o o o oo
PSTA Privileged store into absolute e e et s e e e e e e e .
LST Load from system table . . . i i i v i i v it b it o e e e oo e osonsoen
SST Store into system table. . . . ¢t v i v v i i ittt bt v o 0 bttt e
LSEA Load singleword from extended address ¢ v v vt v e v v oo
SSEA Store single word intc extended address ¢ v e v v o v b e e . .
LDEA Load doubleword from extended address v ¢ ¢ v o v v v o o o v .
SDEA Store doubleword into extended address ¢ v v v o v et 0 0 v v .
IMMEDIATE INSTRUCTIONS
LDI Load immediate . v v v v i v v i o e v v o st 6 s o e o oo oo e e e e
LDXI Load X immediate . ¢ v v v v v v v v o o o o o v o o o o o v oo o oo aoaoos
CMPI Compare immediate . . & @ vt i v v v o v v ot v b o 0 o o oo e e o e oo
ADDI Add immediate . . . ¢ i i i i i i it e e et e e e e e e e e et e e e ...
SUBI subtract immediate . . . v i i i i it i it e e e e e e e e e e e e e e
MYPI multiply immediate i i i v i i i i i i e e e e ettt o asenenns
DIVI Divide immediate . « o« v ¢ v o v v o ot e e v v o o o o oo o v oo on o e
LDNI Load negative immediate @ i i i i i i it v i it v ittt e e e
LDXN Load X megative . & v v v v vt it ittt ittt et oo esoeneon
CMPN Compare negative immediate i i i i i i it v v vt o v ennn
ADXI Add immediate to K . . i i i i it i e e e e e e e e e e e et e e
SBXI Subtract immediate from K. . . v i v i v v i i i i e e e e e e e e e e
ORI Logical Or immediate i i i i i i i i i it e et e et ae e e
XORI Logical exclusive OR immediate ¢ v v e v v v vt v o v v v wenn
ANDI Logical AND immediate+ 4 e v eweoeo. et s e e e e e
REGISTER CONTROL INSTRUCTIONS
SETR Set registers. et e e st e b e e e e e e e e e
PSHR Push registers . . . i i v i v v i it i vt ottt o o e oo oo eeonnsen
XCHD Exchange DB and TOS . & & & &t i v v v e v o v o o o o oo oot e nneenoos
BDDS Add £0 S & v i i it e et e et e e e e e e e e e e e
SUBS Subtracts from S. . . i v v v v 0 vt v e v v v e v e e e s e s e e e s e
RCLK Read CcloCK ¢ v v v v i i i i it i i e ot e e et o oo oot s e oeannns
SCLE Store clock . . v i vt ittt v it e et ettt e e e v e s e s
PROGRAM CONTROL AND SPECIAL INSTRUCTIONS
SCAL Subroutine call i i i it i it et e et et ettt e
PCAL Procedure Call i v i i i v it ot bttt o oo e oottt eene o
SXIT Exit from subroutine ot e h e s e e e s e c et e e e e
EXIT Exit from procedure. e e e e e e e e e

LLBL Load label

IXIT InterTuPt XAt & v v v i i i it o e et b ettt bt e et et e ae e ae e
DISP Dispatch i o i it i et e e e et e e e e e e e e
PSDB Psuedo interrupt disable e e e e

CONTENTS (cont)

Page
PROGRAM CONTROL AND SPECIAL INSTRUCTIONS (Continued)
PSEB Pseudo interrupt enable ¢ o vt v s vt vt e s a oo e e ... 2-69
PAUS PauUS@ .« v v o o o v o o o o e o o o o o oo oo anenonns e e e e e .. . 2-69
HALT The computer hardware halts . . . v v v v v v v v v v o oo oo v oeaonn 2-69
LOCK LoCk resourCe. & « ¢ v « s « ¢ o o o ¢ o o s o e e e s e e e e e e e e e 2-70
UNLK Unclock IresSoUXCe . ¢ v v o o o o o ¢ o o o o s e e e s e e s e e e e e 2-70
LLSE Linked list search e e e e e e e s e et e e 2-71
XEQ Execute Stack Word . v v v v v o v v o o o ot e e e et ... 2-T1
RSW Read Switch register. e e e e e e e e e e e e e e 2-72
PCN Push Switch register. . . . @ v i i v it vt it o e e o o o s et o s s e s oeas 2-T2
RCCR Read system clock cOUnter. « v & v ¢ v v i vt vttt et oo s oo oo onn 2-72
SCLR Set system clock limit.......... ... e e e e e e e e e s e e e 2-73
TOFF Hardware timer of £ . . i v i i i v o i o o o ot e ot o s o s oo o s aesaen 2-73
SCIN Set system clock dnterrupt ¢ ¢ v v v it it ittt i v v v vt e 2-73
TON Hardware tiMer OIl v v v v v o v o o o o v o o o o et e o e v e oo eene s 2-74
SBM Set DanK MasK « ¢ ¢ v ¢ o o v ¢ 0 s o o v o o o o e ot et et e 2-74
1/0 INSTRUCTIONS
SED Set enable/disable external interruptso 2-75
SMSK Set mask 0c et e 8 4 e e s e s et e e s e e e et e e e 2-75
RMSK Read MasK. ¢ v v v v v v v o o o o o o o v o v o v e v o e e e e e e e 2-76
SIO Start I/0 & v i i i i i e 2-76
RIO Read I/0 . @ v i it it it et et ettt e ettt e en e e e e e e 2-77
WIO Write I/0 . i v i i i i i i e e e e e e e it et et et ettt 2-77
TIO Test I/0 @ i v v i i i i i e o e e e e ottt ottt a e oo s et eeeeea 2-78
CIO Control I/0 & v v i i i i e e e et e e e e e et e o ma s e i 2-78
CMD Command. ¢ & v v ¢ ¢ o s o e s o e s b e e b et e s e e e e e e 2-79
SIN Set Interrupt. . . i i i o i i i i e e e e e ettt e e e e e e s 2-79
DUMP Load s0ft DUMD ProOgram. ¢ v v t 4 o o o o vt o o e o v v o o v e oo o n e e 2-80
WIOC Write I/O chanmnel . . v v v v v v v o v o v o v oot e oo oo a oo oeaas 2-80
SIOP Start I/O PrOZTaM . & v o v v v v o ot o o o m o e ot o e e o et e e annn 2-81
INIT Initialize I/O channel....... e e e e e et e e e e e e 2-82
MCS Read memory controller i i i i v it it ittt vt 2-82
HIOP Halt I/O PrograM . « v v o o o v o o e o o o o o oo o oo oo mme s e oo 2-83
SEML Semaphore 1oad . . ¢t i v v v v v v v o o o o s o oo oo o o o oo oo v o oo 2-83
RIOC Read I/0 Chammel . & v v vt e o v o o o o o o o o o o oo oo oo e nenean 2-8L4
STRT Initiate WaImMsSLart . & v o v i v v i v e o e ot e et v o ot ot oeenas 2-84
LOOP CONTROL INSTRUCTIONS _
TBA Test variable against limit, branch. ¢ i v vt v 2-85
MTBA Modify variable, test against limit, branch e e ... 2-85
TBX Test X against limit, branch e e e e e e e e e e e 2-86
MTBX Modify X , test against limit, branch ¢ v v v v oo, ... 2-86
MEMORY ADDRESS INSTRUCTIONS '
LOAD & i it e o v e s et t oo oo ooeeneneneeosas e e e et e e 2-87
ILDX Load indeX. . ¢ v i v o v o ot o ottt ot e e en oo e e e e e s e 2-87
STOR Store TOS into MemOTy & & ¢ v v v v i v i v o o v oo o oo s s a e e o 2-87
LDPP Load double from program, positive. 2-88
LDPN Load double from program, negative. e e e e e e e ee e 2-88 .
LDD load double........ e e e et ettt e e 2-89
STD Store double e s e et et e e e et e e e e e e 2-90
LRA Load relative address onto stack. . ¢ &t ¢ v v v v v v i v i b b e o v v v e 2-90

CONTENTS (cont)

Page
MEMORY ADDRESS INSTRUCTIONS (Continued)
LDB Load byte onto stack......... o e e e Gt e e e e e e ee. 2-91
STB Store byte. et e e e e e e e e s et et e ee e e e 2-61
INCM Increment MEMOTY « ¢ ¢ « ¢ o o o o o o o o o o . . Gt e st s 2-92
DECM Decrement MEMOTY « « v ¢ v ¢ ¢ s ¢ s o o o o o o o .o e et e e e e 2-92
ADDM Add memory to TOS . v v v v v o o v et i v v o o a o o v oo C e e e e e e s 2-93
SUBM Subtract memory from TOS ¢t i i i i o v o o v 6 o s o e s s s o s o s 2-93
MPYM Multiply TOS by MEMOTY « « « ¢ v ¢ v v e o o o o o v o s o s oo o o v ovas . 2-64
CMPM Compare TOS With MEMOTY . « ¢ v v v v v v v ot ottt ot s o s o v o 2-94
INSTRUCTION COMMENTARY
Commentary for MPYL, MPY, DIST, FIXR, FIXT, LMPY 2-95
Commentary for DFLT,FLT,FADD,FSUB,FMPY,FDIV,FIXR,FIXT. 2-95
Commentary for ASL, ASR, LSL, LSR, CSL, CSR, . . ¢« ¢« v ¢ v v ¢« vt v o v e s v 2-97
Commentary for DASL, DASR, DLSL, DLSR, DCSL, DCSR v v v v v o v . 2-100
Commentary for TASL, TASR, TNSL.« ¢ vt i i it i it ittt a oo 2-100
Commentary for QASL, QASR . . . ¢ ¢ ¢t i i i i i i it e s o st s st o n s o a o 2-103
Commentary for EXF, DPF . . . @ i i i i i i i s i et e e e et st oo a o s e 2-103
Commentary £or BR . . & . v v i i i i et e e e e e e e e e e e e e e e e 2-103
Commentary for MOVE, MVB, MVBW, CMPB, SCU, SCW ¢t v v 2-103
Commentary for MVBL, MULB . . . v i v vt vt i b e e e et e e et et n e oo e o 2-106
Commentary for ADDS, SUBS . & & v ¢ v v v v o o o o o o o o o o o s s o oo oo 2-109
Commentary for SCAL, SZIT . . . & i i i i i v o v o e i e o e s e ot o v v oo s o 2-109
Commentary for PCAL, EXIT . & & v ¢ v v v o v o 0 o o o 6 o o o s o s o s o s o oo 2-111
Commentary for LLBL . . ¢ v v v v i v i b e e i e e e et v et e v o s ot o s e aa 2-115
Commentary for DISP, IXIT, PSDB, PSEB. . ¢ v v ¢t ¢ ¢ v ¢t 0 0t v 0 o o 0o o o o 2-115
Commentary for LLSH . . . ¢ i i i i v i it it e s e e et e o s o st o e s o 2-117
Commentary for ZEQ. ¢ v v i v i v 6 i v bt e e e et et et et e e e e e e e 2-117
Commentary for SIO. . @ v v i v i i v i it et i st et et e e e e e 2-117
Commentary for TBA, MIBA, TBX, MIBX i & ¢« ¢ ¢ i i v et ot o o o o 2-123
Commentary for COLD-LOAD/WARM-START (Series 3X/UX systems) 2-125
Commentary for System HALT (Series 3X/UX systems) 2-131
SECTION I1I - EXTENDED INSTRUCTION SET
Page
EXTENDED-PRECISION FLOATING-POINT INSTRUCTIONS
EADD Extended-precision fleoating-point add 3-1
ESUB Extended-precision floating-point subtract 3-2
EMPY Extended-precision floating-point multiply 3-2
EDIV Extended-precision floating-point divide 3-3
ENEG Extended-precision floating-point negate¢. ... 3-3
ECMP Extended-precision floating point compare., 3-4
DECIMAL ARITHMETIC INSTRUCTIONS
CVAD ASCII to decimal CONVErSion . v v v v v v v v v v o o v o oo e ee o n e e 3-4
CVDA Decimal to ASCII conversion ¢ o v v v ot ot o ot v oo oeenons 3-6
CVBD Binary to decimal conversion. . .« . ¢ v v v v o o ot v o 0 o o o v o . . 3-7
CVDB Decimal to binary conversion.......... e e e e e e e e e 3-8
ADDD Decimal add . . . v v v i i i i i it e e et e e s e e et e e e e e 3-9
SUBD Decimal subtract . . . o v v v i i i it i et s e e e e s e e e e e e e 3-10
CMPD Decimal COMPATe . . v v v v v v v v o v o o v v o o e e e e e e e . . 3-11
SLD Decimal left shift . . . i i i v it it et i it s ot s st o e e n o ans s 3-12

CONTENTS (cont)

DECIMAL ARITHMETIC INSTRUCTIONS (Continued)

NSLD Decimal normalizing left shift e e e e e e e e e 3-13
SRD Decimal right shift e e et e e e e e e e e e e e e 3-14
MPYD Decimal multiply . . . v ¢ ¢ v e v e e oo o oo e s s e s e s e e e e 3-15
DMPY Double logical multiply e e et e e 3-16

INSTRUCTION COMMENTARY
Commentary for floating-point numbers of the HP 300124

Extended Instruction Set e e s e e s e e e s e e s s e ee e e 3-17
Commentary for the decimal arthmetic instructions of the
HP 30012A Extended Instruction Set. . . ¢ ¢ ¢ ¢« v v v vt e v v o o v o v o s o s 3-23

SECTION IV - LANGUAGE EXTENSICON INSTRUCTIONS

PROGRAM CONTROL INSTRUCTIONS

XBR External branch ¢ v e e e e e e e 4-1
PARC Paragraph procedure control ¢ o v e vttt v v vt vttt e e 4-2
ENDP End of ParagrabPh . o o vttt v v o v v v v v st ot oo en oo o eaae s o 4-3
EDIT AND NONEDITED MOVE INSTRUCTIONS
3015 11 I 4-4
EDIT Instruction Immediate Operands . . « ¢ v v o v v o o v s o o v o v v o oo oo 4-7
EDIT SUBINSTRUCTIONS ‘
FORMAT TYPE #1 e e o s s s e s e s s e s e s e aa e e e e L-7
MC Move Characters........ e e et e e e e e e e e e L-8
MA Move alphabetic .« v v v v v v v o o o v o o o o o o s v s o s o v o oo s o e s v o as 4-8
MN Move NUMETICS v v v o o v o o v o o v o o o a s oo o s s oo e e e e e e e e L-9
MNS Move Numerics With Zero Suppression. v v v v v v v v o v v v v v v 4-9
MFL Move numerics With Floating Insertion e e e e e e e 4-10
FORMAT TUPE 2 . i v ¢ v v e o o v o s s o o o o o o o s s oo o o v s o oo sacssaa L-10
IC InSert CRATaCter . & ¢ vt v o v v v o o v o o o o o o o e o o o oo o v n o s o L-11
ICS Insert character sSUPPressed. . . . v ¢ v ot v v o o o o o o e o o o o o o n o an 4-11
FORMAT TUPE #3 & & & v o v 6 et o e o s o a o e o o o o o o o o o o o s o os oo 4-12
ICI Insert characters immediate v v v v v v v ot v v o o v v oo v nuon 4-12
ICSI Character suppressed immediateo v v vt ov oo 4-13
FORMAT TYPE #4 i i ittt v v v e e st s s e s e et se s e e ae s 4-13
BRIS Branch if significance trigger is set L-14
SUFT Subtract from target Pointer. . . « v v v v v v v v o v v v v v o oo o s o L-14
SUFS Subtract from source pointer...... e e e e et e e e 4-1Y4
FORMAT TYPE #5 . v ¢ ¢ v ¢ ¢ ot o o oo o o o o C e e 4 e e s e e e e e s e e e e 4-15
ICP Insert character punctuationo v v et o v oo voceeen. 4-15
ICPS Insert character punctuation suppressed 4-15
FORMAT TYPE #6 . .« ¢ vt vt et o oo s s s oo aoe @ e e e e e e e e e e e e e 4-16
IS Insert characters depending on sign ¢c. e v e+ ... b4-16
FORMAT TYPE #7 . ¢ ¢ ¢ ¢ ¢ v o 6 o e oo v vt v s o v oo oo e e s e e e s e e e e 4-17
TE Terminate EDIT. . . v v v i i v o v o o o ot o o o oo oo n oo o maoos oo 4-17
ENDF End floating insertion........ e e e e e e e et e L-18
SST1 Set significance trigger to one. e e e e e e e e 4-18
SSTO Set significance trigger to 2ero o oo v v v oo L-18
MDWO Move digit with overpunch. v v v i v vt v vt v i v v e e e v 4-19

Xi

CONTENTS (cont)

EDIT SUBINSTRUCTIONS (CONTINUED)

FORMAT TYPE #B . . i v i i i it e et et et e a e e e s e e e e e e e 4-19
SFC Set fill character . . ¢ v v v v v v v v v o o v oo oo o e e e e e e 4-20
SFLC Set float character. e et e e e e e V.. b-20
SETC Set 1oop €ount . v v v v o v o v v o v o v n v on et e e e e 4-20
DBNZ Decrement count, branch if non-zero. ¢ e v e oo e e e .. b-21
FORMAT TYPE #9 . . . ¢ i it v o i v o o s o o o s o s o e e e e e e se e e ... b-22
DFLC Define float character. e e e e e e e e e e e e 4-21
CODE CONVERTING AND COLLATING INSTRUCTIONS
TR Translate . o v v v vt v v v o o o o oo oo v s oeaas e e e e e 4-22
CMPS Compare STTINES v v v v v v o v o v o v o o o o o o o o o o oo oneneeenos L4-23
CMPT Compare translated strings e e e e e e e L-2y4
NUMERIC CONVERSION AND LOAD INSTRUCTIONS
ALGN Align MUMETicC « v v v v v v v e e v o vt e e e e o e e e e e e e e 4-25
CVND Ccnvert numeric display . .« ¢ v v v o v v o v o v o o ot o e oo e en e 4-27
ABSN Absolule NUMETIIC . & v v v v o v v o v o o vt o v o o o e s e nneoso oo L4-29
ABSD Absolute decimal . . . v i v i i i i it e et e e e e e e e e e 4-30
NEGD Negate decimal i i i i i i it i et et e ettt et st n e nee 4-31
LDW Load word (2 consecutive bBytes) . . v v v i v v i i v o v v o v v o v e 4-32
LDDW Load double word (4 consecutive bytes) v v v v v v v v v ... L-33
INSTRUCTION COMMENTARY
Commentary on traps for the Language Extension Instructions. L-3L
Commentary on the comparison between CMPS and CMPT. 4-34
Commentary providing examples of EDIT subprograms¢. ... L-35
SECTION V = MACHINE INSTRUCTIONS SPECIFICALLY FOR SERIES 64/68
MCMD Message communication ¢ o i i i v i i i ittt e e e e e e 5-1
FLSH Flush (Cache) . v v v i v i i i i e e i e e e e it et oot tson et e e 5-3
RDCU Read DCU LOZ « v v v o v v vt e e e e e e e e e e e e e e e e e e e 5-4
1/0 INSTRUCTIONS
SIOP Start I/O ProBraM . v v v v v v et o e o o v e ot o o et ot ee o n e e ne s 5-5
HIOP Halt I/O PrOBTaM . v v v v v v ot o o o o ot v oo o oo oo o eneoneenos 5-7
INIT Initialize I/Ochannel. v ov... e e e e e e e s e e e 5-8
RIOA Read I/O adapter chanmnel v ¢ v v v o ot o o v oot v o s noeeneas 5-9
WIOA Write I/0 adapter chammel. . . . v v v i v v v v v v e v v e et et e e e 5-10
SMSK Set Mask . . v v i v i i i it e et et ettt e et b e oo e e e .. 5-11
RMSK Read mMask. . v v v v v v o o v o i it o ot o o ot o o o o e s oo e o e oo oo 5-11
STRT Initiate Warmstart e e e e s e e e @ e e e e e e e 5-11
DUMP Load Soft DUump Program. . . . v v v v v v v v v o o o v o ot oo v oo e e un 5-12
DEVICE REFERENCE TABLE (DRT). v v v v v v v v v v v v v e e e e e s e e e s 5-13
I/0 MODULE MAPPING. © & v v v v v v v e o e ot oo ot o ot o oo nnenesnees 5-15
GLOSSARY OF TERMS FOR SERIES 6U/68. v v i it it it ettt e e e e n 5-16

xii OCT 1984

CONTENTS (cont)

SECTION Y1 - MACHINE INSTRUCTIONS SPECIFICALLY FOR SERIES 37

DUMP Load Soft Dump Program. . . « v v v v v v v v v v e e e e e e e e 6-1
"FIRMVER Set Firmware Version . v v v v v v v v v v ittt e e ot ot ae e €-1
MCS Read Memory Controller e et e e e e B
OSSIGNAL Operating System Signal cue.u.. e e e e e e 6-3
PFL Power Fail. it veunun.. e e et e e e e e e e 6-4
RTOC Read Time of Century CloCK « v v v v v v v vt o v e e v e et e e e ee e nnn 6-4
SINC Set System Clock Interrupt et e e et e e 6-4
STRT Initiate Warmstart v v v v v v v v v v v v e e e e e e e 6-5
WIOC Write to Time of Century CloCK . & v ¢ i i i v i v v b e e e e e e s o e oo 6-5

INDEX

OCT 1984 xiii

ILLUSTRATIONS

Title
Subopcode 00 Formats . « v v v v v v v v v v v e e e e e e e e e e e e e 1-6
Subopcode Ol FOIMAtS - v v ¢ v v o v v o o o o s o o s o v o o o o o n o s o s v o oo oo oo 1-7
Sibopcode 02 Format (Sheet 1 of 2)o v vt i vttt o it oennason 1-8
Subopcode 02 Format (Sheet 2 Of 2) e e e e e e e e e e e e...1-9
Subopcode 03 Formats v v v e v v o v v 0 v o e et e e e e e e e et e s .. 1-10
Subopcode Ol FOrmats . « v v v v v v v v o v v e oo v oo n o a s oo s oo B R 5 &
Extended Instruction Set Formats . o v ¢ v v vt t v e e 6 v s o v o v o o o 0 0 o s oo 1-12
Deleting a High Order Word v . v vt it v v ettt oot s v oo oo o v oo 2-95
Rounding and Truncating . « « ¢ v v v o v v v e o o o v e e v o v e b e e e e e 2-96
Ranges of 32-Bit Floating-Point Numbers 2-98
Single Word Shifts it v vt v v e et v v o b e e s e e s e e e e e e 2-99
Double Word Shifts . v v v v v v i i i it e e o o e o et o e s o o ot oo s v s oo o 2-101
Triple Word Shifts @ i i i i i i it et ittt et et e e 2-102
EXF and DPF Operations. .« . v v v v v v v it i vt ottt ettt e oo e e et e 2-10L4
Indirect Branch via Stack . . v v v v i i i i it e e e e e e e e e e e e e e e e 2-105
Examples of Moves R T T T TP 2-107
.Examples of MVBL, MVLB. . . .t s i i i ittt et e et e e e e e e o e e an oo 2-108
Subroutine Call and EXIT . . & i ¢t i i i i i v v e v e o e b et oo st o s e e e 2-110
PCAL Instruction Flowchart. @ v i v i v v i v v oo e e e e e e e e e 2-112
EXIT fustruction Flowchart . o v v v vt v v v v b e s ot s s o oo s s n n e s oo n o 2-114
IXIT Instruction FloWChart . v v v v v v v v v e o o o o ot a e o o oo e oo n e e e 2-116
LLSH OPeration . . v v v v v v v v o v vt o s s oo vt m e et m e e s aaa e e e e e 2-118
I/0 Order Pairs o v v v v i i it et e 2-120
Typical I/0 PIOGIamis « v vt v o v v v v v e e e oo ot ot et oo e o e ean s e 2-.22
Examples of Loop Control with MTBA o i i v i it ittt e e vt e e e v 2-124
Format of Extended-Precision Floating-Point Number 3-18
Examples of EXPONENES . &t v o v vt i it vttt e e e e e e e e e e 3-18
Floating-Point Numbers and Conversion Formulas 3-19
Representation of Zero. ¢t v o v i i i i it i i et et e e e e e e e e e 3-21
Valid Number Range . . & . ¢ i i i v o i i it o bt v st v ot o s s s e e s s e e ae 3-21
Packed-Decimal Format . v v v v v v v v v m o e e o e e et e e e e e e e e e e e 3-24
External-Decimal FOIMat « v & v v v v v v e et o et e e e e e e et e e e e 3-24
" Typical Packed-Decimal Number in Data Stacko, 3-28
TABLES
Title
Table 1-1. Condition Codes . . . v v v v v v v v v v v o ot oo ot ot o a oo s an e as 1-4
Table 3-1. Low-Order Digits . . . ¢ v v v v i v v o v i e e e ettt e s et o et e s o 3-5
Table 3-3. EITOr TrapS « v v v v v v v o et e o ot ot e et ottt e e o e e e e a 3-26
Table b-1. EDIT Instruction Set SUMMAry cc v v v v v v v b v vt v o v v v us L-6
Tstle 4-2. EDIT Instruction Set Summary for Opcode—%l? L-6

xiv ' . OCT 1984

PREFACE

This manual contains information on the machine instruction set for the HP 3000
Computer Systems. The contents of this manual are organized as follows:

Section I contains general information on traps and interrupts, condition code, and the in-
struction formats used in the machine instruction description in Sections II through VI.

Section Il contains information on the base instruction set furnished with the computer
systems.

Section III contains information on the extended language instructions furnished with the
computer systems.

Section IV contains information on the language extension instructions furnished with the
computer systems.

Section V contains information on the Series 64/68 instructions.

Section VI contains information on the Series 37 instructions.

Except where specified, the content of this manual applies equally to all HP 3000
Computer Systems.

OCT 1984 xv/xvi

GENERAL INFORMATION

1-1. INTRODUCTION

This manual contains information on the machine instruction sets of HP 3000 Computer Systems.
Section 1 contains general information about the instruction sets. Section Il describes each of the
instructions included in the basic instruction set. Section Il describes each of the instructions which
are part of the HP 30012A Extended Instruction Set (EIS), and Section IV describes each of the
instructions which are part of the language extension set. Section V contains the specific instructions
for the Series 64/68. An index comprises an alphabetical listing of all instructions together with
the page numbers on which the instructions are to be found.

1-2. BASIC INSTRUCTION SET

1-3. Instruction Decoding

As the CPU executes a user program, if fetches these instructions from memory. A ROM address
of a microprogram stored in a microprogram ROM is generated for these instructions. There 1s a
microprogram in ROM for each of the machine instructions. The ROM address is stored 1n a ROM
address register (RAR). The RAR is used first to access the initial microinstruction and is thenin-
cremented to point to the next microinstruction. Thus, the entire microprogram for a par-
ticular machine instruction is called and executed by the CPU.

1-4. Traps and Interrupts
Only those traps and interrupts which occur as a result of instruction execution over which the

user has some control are used in the instruction descriptions provided in Section II and 1II. They
are defined here by segment transfer table number.

a. STT #1; BNDV - Bounds Violation. An operand or instruction is outside of the legal bounds
for a particular mode of addressing.
b. STT #17; STTV - Segment Transfer Table Violation. A variety of conditions can force this trap

as follows:

o The STT number in an external program is greater than the STT length pointed te by PL in
the referenced segment. This error can occur in PCAL,LLBL, and the firmware interrupt
handler while attempting to set up a new segment.

1-1

h.

General Information
o In LLBL,the label fetched from PL-N is an internal label and N is greater than 128 (%177).
This would require too large an STT number when creating the external label.

o In PCAL and interrupt handler when setting up a new segment, the STT number in the
external program label points to an external program label in the new segment.

o In SCAL, (PL-N)is an external label.

. STT #18; CSTV - Code Segment Table Violation. An attempt is made to transfer to Segment O
or 192, or a segment number is greater than the CST length.

. STT #19; DSTV -Data Segment Table Violation. The data segment number referenced by MFDS,
MTDS, or MDS is greater than the DST length or is 0.

. STT #20; STUN - Stack Underflow. The process being executed or being transferred to is non-
privileged and SM is less than DB for Series I, II, IIT or less than Q for Series 3X/4X/6X.

. STT #21; MODE - Privileged Mode Violation. The code segment being executed is non-

privileged (bit O of the Status register is 0) and an attempt is made to execute 2 privileged in-
struction. This violation also occurs in EXIT if an attempt is made to exit from user to
privileged mode or, if exiting from user mode, the External Interrupts bit in the Status register
has been altered.

. STT #24: STOV - Stack Overflow. SM is greater than Z or may become greater as a result of the
current instruction.

STT #25; ARITH - Arithmetic. All User Traps will be executed in the segment #! routine
pointed to by STT #25. The error conditions and their parameters are as follows:

Interrupt Type Octal Parameters
Integer Overflow 000001
Floating Point Overflow 000002
Floating Point Underflow 000003
Integer Divide-by-Zero 000004
Floating Point Divide-by-Zero 000005
Extended Precision FP Overflow 000010
Extended Precision FP Underflow 000011
Extended Precision Divide-by-Zero 000012
Decimal Overflow 000013
Invalid ASCII Digit 000014
Invalid Decimal Digit 000015
Invalid Source Word Count 000016
Invalid Decimal Operand Length 000017

Octal parameters 000010 through 000017 are traps for the Extended Instruction Set and are
shown here for completeness only.

General Information

i. STT #31; ABS CST - Absent Code Segment. The absence bit in the CST entry for the
referenced segment is set. The interrupt handler and PCAL stack a (second} marker; others
including EXIT, IXIT, etc., do not.

j. STT #32; TRACE - Code Segment Trace. Code segment 1is being traced.

k. STT #33; UNCALL - Uncallable STT Entry. The uncallable bit in a local label or, if the STT
number is 0, in (PL) is set. This trap does not stack a (second) marker.

1. STT #34; ABS DST - Absent Data Segment. The absence bit in the DST entry for the referenced
segment is set.

1-5. EXTENDED INSTRUCTION SET
1-6. Instruction Decoding

Firmware of the main (basic) microprogram interprets the instruction set. The operation is
then the same as the basic instruction set.

1-7. Interrupts

The instructions of the extended instruction set are not interruptable. If these instructionsare
performed by software simulation procedures, interrupts are recognized in the manner established
for the instructions which make up each procedure.

1-8. Extended Precision Floating Point Instructions

Instruction Commentary in paragraph 3-22 provides information on these instructions.

1-9. Decimal Arithmetic Instruction Set

Instruction Commentary in paragraph 3-23 provides information on these instructions.

1-10. LANGUAGE EXTENSION SET

Firmware in the main (basic) microprogram interprets the instructions of the language exten-
sion set. The operation is the same as that of the basic instruction set. Instruction
Commentary in paragraph 4-355 provides additional information on these instructions.

1-3

General Information

1-11. CONDITION CODE

Bits 6 and 7 of the CPU Status register are used for the Condition Code. Although several in-
structions make special use of the the Condition Code, the Condition Code typically indicates the
state of an operand (or a comparison result with two operands). The operand may be a
byte, word, doubleword, tripleword, or quadrupleword, and may be located on the top of the
stack, in the Index register, or ina specified memory location. Three codings are used, 00, Ot,
and 10. The "11" isnot used. Except for the special interpretations, there are four basic patterns.

(Refer to table 1-1, for interpreting these codes.)

Table 1-1. Condition Codes

PATTERN CODE INTERPRETATION

Arithmetic CCA sets CC = CCG (00) if operand greater than 0
= CCL (01) if operand less than 0
= CCE (10) if operand equals 0

Byte CCB sets CC = CCG €00) if numeric (%060-071)

= CCL (01) if special character
(all others)

= {CE (10) if=alphabetic (%101-132
and %141-172)

Comparison |CCC sets CC = CCG (00) if operand 1=is greater
than operand 2

= CCL (01) if=operand 1 is less than
operand 2

= CCE (10) if operand 1=equals
operand 2

Direct 1/0 CCD sets CC = CCG €00) if device not ready(busy)

= CCL (01) if non-responding device
controller

= CCE (10) if responding controller
and/or device ready

1-4

General Information

Pattern A is the most common Condition Code Pattern. In this CCA pattern, the Condition Code
is set to 00 if the operand is greater than zero, to Ol if the operand is less then zero, or to 10 if
the operand is exactly zero. Since the usage of this pattern is so common, the three codes 00, 01,
and 10 are named to reflect these meanings. Thus 00is CCG ("Greater"), 01l is CCL ("Less"),
and 10is CCE ("Equal"). These names are primarily used for documentation convenience.

Pattern B for the Condition Code, designated CCB, is used with byte oriented instructions. In the
CCB pattern, the Condition Code is set to 00 if the operand byte is an ASCIlI numeric charac-
ter, which would be represented by octal values 060 through 071. The code isset 10 if the byte is
an ASCII alphanumeric character, which would be represented by octal values 101 through 132 for
upper case letters and 141 through 172 for lower case letters. The code is set to 01 if the byte is
an ASCII special character represented by the remaining octal values.

Pattern C for the Condition Code, designated CCC, is used with comparison instructions. The code
is set to 00 if operand 1 is greater than operand 2, or to O} if operand 1 is less than operand 2,
or to 10 if operands are equal. In the instruction definitions, the first mentioned operand 1is
"operand 1". For example, the definition for CMP reads: “The Condition Code is set to pattern
C as a result of the integer comparison of the second word the stack with the TOS." The second
work of the stack is therefore operand 1 and the TOS is operand 2.

Pattern D for the Condition Code, designated CCD, is used with some 1/0 instructions. The code
is set to 00 if the device is not ready. This is usually caused by the device being busy. The code is
set to 01 if the device controller does not respond. Some examples of what could cause this is power
off to the device or controller, problems with the device or controller, or waiting for a response to an
interrupt request. The last would be used with a Controller Processor. The Condition Code 1s set 10
of the device and controller responded and the instruction completed normally.

1-12. INSTRUCTION FORMATS

Instruction formats are provided by figures 1-1 through 1-6.

General Informaticon

SUB OP CODE 00, STACK OP CODE 00 - 77

o[1T2[a[¢]5 6|7 18] [to]11[12h3}a]1s

0j0 0 O

L I _J L 1
OIO

Bits 4 -9) Bitsd -9

Mnemonic or 10 - 15 Mnemonic or10-15
NOP 00 DEL 40
DELB 01 ZROB 41
DDEL 02 LDXB 42
ZROX 03 STAX 43
INCX 04 LDXN 44
DECX 05 DUP 45
ZERO 06 DDUP 46
DZRO 07 FLT 47
DCMP 10 FCMP 50
DADD " FADD s1
DSUB 12 FSUB 52
MPYL 13 FMPY 53
DIVl 14 FDIV 54
DNEG 15 FNEG 55
OXCH 16 CAB 56
CMP 1? LCMP 57
ADD 20 LADD 60
sus 21 LSUB 61
MPY 22 LMPY 62
Div 23 LDIV 63
NEG 24 NOT 64
TEST 25 OR 65
STBX 26 XOR 66
DTST 27 AND 67
DFLT 30 FIXR 70
BTST 31 FIXT 71
XCH - INCB 73
INCA 33 DECB 74
DECA 34 XBX 75
XAX 35 ADBX 76
ADAX 36 ADXB 77
ADXA 37

Figure 1-1. Subopcode 00 Formats

General Information

SUBOPCODE 01, OPCODES 00 - 17 SUBOPCODE 01, OPCODES 20 - 37
ol1[2]3]ais|s|7]8]9 |10]11]12]13]141s ol1{2{3fa|s]e|7]8]9 |10]11}1213}1a]is
{olo o 1 0
(- ' 3 L] 1 J 1 i J L] L J
o1 01

Mnemonic | 4 | Bits5-9 | Bis10-15 Mnemonic | 4 | Bits5-9 | Bits10-15
ASL x 00 | SHIFT COUNT DASL | x 20 | SHIFT COUNT
ASR x 01| SHIFT COUNT DASR_| x 21| SHIFT COUNT
LSL x 02 | SHIFT COUNT DLsL | x 22 | SHIFT COUNT
LSA x 03 | SHIFT COUNT DLSR__ | x 23| SHIFT COUNT
csL x 04 | SHIFT COUNT DeSL_ | x 24| SHIFT COUNT
CSR x 05 | SHIFT COUNT DCSR__ | x 25| SHIFT COUNT
SCAN | x 06 ALL ZEROS CPRB__| 1 26|] DISPLACEMENT
1ABZ | 1 07 | 2] DISPLACEMENT DABZ | | 27| 1| DISPLACEMENT
TASL | x 10 | SHIFT COUNT BOV ! 30 | #| DISPLACEMENT
TASR | x 11| SHIFT COUNT BNOV | 1 31| *| DISPLACEMENT
X8z | I 12| 2| DISPLACEMENT TBC x 32| BIT POSITION
DXBZ | | 13| 2| DISPLACEMENT TRBC | x 33__| BIT POSITION
BCY i 14__| 3| DISPLACEMENT TSBC | x 34| BIT POSITION
BNCY | 15 | 2| DISPLACEMENT TCBC | x 35 | BIT POSITION
TNSL | x 16 ALL ZEROS BRO] 36| 2] DISPLACEMENT
QASL__ [0-] 17 | SHIFT COUNT BRE i 37 | #| DISPLACEMENT
QASR | 1 17 | SHIFT COUNT

X = iNDEX BIT
1 = INDIRECT 8IT
SHADED BITS ARE RESERVED BITS

Figure 1-2. Subopcode O] Formats

1-7

General Information

SUBOPCODE 02, MOVE OPCODES 00,0 -5 SUBOPCODE 02, MINI OPCODES 00, 14 - 17
o{1]2]3]4]s]6|7]8o l0]i1|12]13}4]15 ol1]2]3]4]s |6 |7]8]9 J1o[11]12]13]14]15
folo 1 ojo 0 olo [o]o 1 oo 0 oo
L | . | J L J L oL) L)} L J
) U | |
02 00 - 02 00
Mnemonic | Bits8 - 10 Bits 11-15 Mnemonic | Bits 8- 11 Bits 12-15
MOVE 0 B | o}l o] spec RSW 14 0iojo} o
MVB 1 B | 0] 6] SDEC LLSH 14 0j o0 o]
MVBL 2 o| o} ol soEc PLDA 15 o[o0 fo o
MABS 2 o | 1 SDEC PSTA 15 0] o jo| 1
Scw 2 1 o | o] soec LSEA 16 0] 0 o 0
MTDS 2 1 1 SDEC SSEA 16 0l o [of 1
MVLB 3 0 0 0 | SDEC LDEA 16 0 0 1 0
MDS 3 o | 1 SDEC SDEA 16 oo [1
scu 3 1| o | o] soEc IXIT 17 0l o o] 0
MFDs 3 1 1 SDEC LOCK" 17 0 0 0 1
MVBW 4 N A v SDEC PCN 17 0 0 1 0
CMPB 5 B |:0 0 | SDEC UNLK® 17 0 0 1 1
Shaded bits are reserved "Series | Computer Systems only.
A = Alphabetic
B = PB/DB
N = Numeric
SDEC = S Decrement
U = Upshift

Figure 1-3. Subopcode 02 Formats (Sheet 1 of 2)

1-8

General Information

SUBOPCODES 02, OP CODES 01 - 17
ol1[2/3]als|e 789 T10]11[i2fi3hafis

[ofo 10

L J L J L]

H
02

Mnemonic | Bits4 -7 Bits8-15
DMUL 01 CIR (8:15) = % 170
DOIV 01 CIR (8:15) = % 171
LDI 02 IMMEDIATE OPERAND
LDXI 03 IMMEDIATE OPERAND
CMPI [IMMEDIATE OPERAND
ADDI 05 IMMEDIATE OPERAND
susB! 06 IMMEDIATE OPERAND
MPY! 07 IMMEDIATE OPERAND
DIVI 10 IMMEDIATE OPERAND
PSHR 1 1
LDN!I 12 IMMEDIATE OPERAND
LDXN 13 IMMEDIATE OPERAND
CMPN 14 IMMEDIATE OPERAND
EXF 15 START BIT #| # OF BITS
DPF 16 START BIT #| # OF BITS
SETR 17 1

$BIT 8=STACK BANK REGISTER
BIT 9=DBBANK, DB REGISTER
BIT 10 = DL REGISTER
BIT 11 = Z REGISTER
BIT 12 = STATUS REGISTER
BIT 13 = X REGISTER
BIT 14 = Q REGISTER
BIT 15 = S REGISTER

Figure 1-3. Subopcode 02 Formats (Sheet 20of 2)

1-9

General Information

SUBOPCODE 03, SPECIAL OPCODES 00

SUBOPCODE 03, OPCODES 01 - 17

o[1]{2]|3]a|s|s |78]9 [10][11]12]13[1a]15 ol1]2]3]a|s[6]7]8]s [ro]11]i2]13]1a]1s
tofo 1 1]o o0 ofo folo 1 1|4
L —) L] J [L 1 L L J
03 0[0 Oia
Mnemonic | Bits8-11 Bits 12-15 Mnemonic | Bits4 -7 Bis8-15
LST 00 K FIELD SCAL .01 N FIELD
PAUS 01 0 0 0 0 PCAL 02 N FIELD
SED 02 0 0 0 X EXIT 03 N FIELD
XCHD 03 0 0 0 0 SXIT 04 N FIELD
PSD8 03 0 0 0 1 ADX! [+L] IMMEDIATE OPERAND
DIsSP 03 0 0 1 0 SBX! 06 IMMEDIATE OPERAND
PSEB 03 0 0 1 1 LLBL 07 PL — DISPLACEMENT
SMSK o4 2]] 0 0 LDPP 10 P+ DISPLACEMENT
SCLK 04 o] 0 0 1 LBPN 11 P- DISPLACEMENT
RMSK 05 0 0 0 0 ADODS 12 IMMEDIATE OPERAND
RCLK 05 0 0 0 1 SUBS 13 IMMEDIATE OPERAND
XEQ 06 K FIELD ORI 15 IMMEDIATE OPERAND
Si0 07 K FIELD XORi 16 IMMEDIATE OPERAND
RIO 10 K FIELD ANDI 17 IMMEDIATE OPERAND
wio 1 K FIELD .
TI0 12 K FIELD Shaded bits are reserved and ignored.
CI0 13 K FIELD x=10r0.
CMD 14 K FIELD
SST 15 K FIELD
SIN 16 K FIELD
HALT 17 K FIELD

Figure 1-4. Subopcode 03 Formats

1-10

General Information

o[1]2]3[a]s[e]7]s]s [10]11]12]13]1a]1s
rl j L J
|
Mnemonic | Bits0-3 Bits4-15
LOAD 04 X | 1 | MODE AND DISPLACEMENT
TBA 05 0 | 0 | 0] 2] DISPLACEMENT
MTBA 05 0 | 1 | O] 2| DISPLACEMENT
TBX 05 1 | 0o | o] 2| DISPLACEMENT
MTBX 05 1 | 1 | 0l 2| DISPLACEMENT
STOR 05 x I | 1] MODE AND DISPLACEMENT
CMPM 06 x | 1 MODE AND DISPLACEMENT
ADDM 07 x | 1 MODE AND DISPLACEMENT
SUBM 10 x | | MODE AND DISPLAZEMENT
MPYM 11 x | | MODE AND DISPLACEMENT
INCM 12 x | | | 0] MODE AND DISPLACEMENT
DECM 12 x | 1 1| MODE AND DISPLACEMENT
LDX 13 x | MODE AND DISPLACEMENT
B8R 14 x 1 0 2| DISPLACEMENT
BR 14 x | 1 | 1| MODE AND DISPLACEMENT
BCC 14 1 | o | 1] >[={<[2| pisPLacEMENT
LDB 15 x | | | 0| MODE AND DISPLACEMENT
LDD 15 x | 1 | 1] MODE AND DISPLACEMENT
sT8 16 x | | | 0] MODE AND DISPLACEMENT
STD 16 x | | 1] MODE AND DISPLACEMENT
LRA 17 x | | | MODE AND DISPLACEMENT
X = INDEX BIT
I = INDIRECT BIT

Figure 1-5

. Subopcode 04 Formats

General Information

of1]2[3a]s]6 [7]8 |9 |10 11 [12]13[14]15
{oJo 1 0]Jo o 0ft 0 00 0 1
L } L j

Mnemonic | Bits 13- 15
EADD 0
ESUB 1
EMPY 2
EDIV 3
ENEG 4
ECMP 5

SHADED BITS ARE RESERVED BITS
S = STACK DECREMENT
SC = SIGN CONTROL

o|1]2[3[4]s][e]7]8]9 [ro[11]12]13]1415
[ofo 1 oo 0o of1 10
— T] L] L. J
0206

Mnemonic | 9 {10{11| Bits12. 15

DMPY [0f0 |0 01

cvap _{ojols 02

cvoa | sc |s 03

cveo | olols 04

cvos lofols 05

SLD ol s 06

NSLD Tol s 07

SRD ol S 10

aoobd ol s K

cMPo ol s 12

SUBD ol s 13

MPYD |gl s 14

Figure 1-6. Extended Instruction Set Formats

INSTRUCTION SET

This section defines each of the machine instructions in the computer system instruction set.
Where additional information would be helpful in understanding the operation of a particular in-
struction, an instruction commentary reference is given following the definition. In such
cases, refer to the corresponding number under the heading,"Instruction Commentary", at the

end of this section.

2-1. STACK OP INSTRUCTIONS
2-2. INTEGER INSTRUCTIONS

2-3. ADD Add. The top two words of the stack are added in
integer form and are then deleted. The resulting sum
is pushed ontc the stack.

Stack opcode: 20
Indicators: CCA, Carry, Overflow
Traps: STUN, ARITH

0|1 2 3j4 56;7 89|10 11 12|13 14 15

0{0 0 0j0 1 0(0 00

L J

F T i
Alternate Position

2-4. SUB Subtract. The TOS is subtracted in -integer form
from the second word of the stack and both words are
then deleted. The resulting difference is then pushed
onto the stack.

Stack opcode: 21
Indicators: CCA, Carry, Overflow
Traps: STUN, ARITH

0/1 2 3|456|7 85|10 11 12/13 14 15

0j0 00{010/001

'f : 4
Alternate Position

2-1

Instruction Set

2-

2-5.

t9

5.

MPY

DIV

NEG

Multiply. The top two words of the stack are
multiplied in integer form. The two words are deleted
and the least significant word of the double length
product is pushed onto the stack. If the high order
17 bits of the double length product(including the
sign bit of the second word) are not all zeros or all
ones, Overflow is set.

Instruction Commentary 2-235.

Stack opcode: 22

Indicators: CCA, Overflow

Traps: STUN, ARITH

7 8 9(10 11 12{13 14 15

wmn
()]

0{1-2 3|4

0{0 00{010{010

| J

T "
Alternate Position

Divide. The :irntagar in the second word of the stack
is divided by the integer on the TOS. The second word
is replaced by the quotient, and the top word is
replaced by the remainder.

Stack opcode: 23

Indicators: CCA on quotient, Overflow

Traps: STUN, ARITH

0|1 2 3|4 5 6{7 89110 11 12(13 14 15

0{0 0 0|0 1 0{0 11

L K|
I T 1
Alternate Position

Negate. The integer in the TGOS is replaced by its
two's complement.

Stack opcode: 2Uu

Indicators: CCA, Overflow, Carry

Traps: STUN, ARITH

0}1 2 3|4 S6{7 89|10 11 12{13 14 15

0{0 00|01 0j1 00

— 4
Alternate Position

[
]
[o8]

2-8.

CMP

Instruction Set

Compare. The Condition Code is set to pattern C as a
result of the integer comparison of the second word
of stack with the TOS. Both words are deleted.
Stack opcode: 17 .
Indicators: CCC

Traps: STUN

0(1 2 3|4 56{789]10 11 12{13 14 15

o{o 00|00 11111

k- 1 |
Alternate Position

2-9. DOUBLE INTEGER INSTRUCTIONS

2-16. DADD Double Add. The two doubleword integers contained

2-11.

in the top four elements of the stack are added in
double length integer form (D,C + B,A) and they are
deleted. The doubleword integer sum is pushed onto
the stack(B,A).

Stack opcode: 11

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

01 2 3]456{7 8810 11 12{13 14 15

0{0 00{001j001

L g
I T !
Alternate Position

DSUB Double subtract. The doubleword integer contained

in top two words of the stack is subtracted from the
doubleword integer contained in the third and fourth
words of the stack(D,C - B,A). The top four words of
the stack are deleted and the doubleword integer
result is pushed onto the the stack (B.A).

Stack opcode: 12

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH .

0{1 2 3|4 56{7 89|10 11 12|13 14 1§

oloooloo1{o10

J
T ul
lternate Position

L
-
A

2-3

Instruction Set

2-12. MPYL

2-13.

DIVL

Multiply long. The top two wordy of the stack are
multiplied in integer form. The words replaced by
the double length product, with the least significant
half on the TOS. Overflow is cleared. Carry is
cleared if the low order 16 bits represent the true
result (i.e.., if the high order 17 bits are either
all zeros or all ones); otherwise, Carry is set.
Instruction Commentary 2-235.

Stack opcode: 13

Indicatours: CCA, Carry, Overflow=0

Traps: STUN, ARITH

0{t 2 3|4 56|7 8 9]10 11 12|13 14 15

c{o 0 0j0 0 1{0 11

L N

r T |
Alternate Position

Divide long. The doubleword integer in the second
and third elements of the stack is divided by the
integer in the TOS(C,B / A). The three words are
deleted, and the quotient and remainder are pushed
onto the stack (quotient in B, remainder in A).

Stack opcode: 1L

Indicators: CCA (on quotient), Overflow

Traps: STUN, ARITH

ol1 234 56/789[10 11 12[13 14 15

0;0 00001100

L J
I T 1
Alternate Position

2-14. DNEG Double Negate. The doubleword integer contained in

the top two words of the stack is negated (two’s
complemented) and replaces the original doubleword
integer. Stack opcode: 15

Indicators: CCA, Overflow, Carry

Traps: STUN, ARITH

0(1 2 3|4 56(7 8910 11 12|13 14 15

0{0 0 0{001{101

Lo J

r T *
Alternate Posi1tion

2-4

2-15. DCMP

2-16. DMUL

2-17.

Double compare. The Condition Code is set to pattern
C as a result of the doubleword integer comparison of
D,C and B,A. The two double words are deleted from
the stack.

Stack opcode: 10

Indicators: CCC

Traps: STUN

0j1 23

456

788

10 11 12

13 14 15

ojo oo

001

000

L

J

r T !
Alternate Position

Double integer multiply. The two's complement double
integer contained in D and C is multiplied by the
two’s complement double integer contained in B and A.
The four words are popped from the stack and the
least significant doubleword of the product is pushed
onto the stack. If the high order 33 bits and if the
6L4-bit product are not all =zercs or all ones,
overflow is set.

Sub opcode 2: 01, bits 8-15 = 170

Indicators: CCA, Overflow

Traps: STUN, ARITH

0{1 2 3]456|7 891011 12(13 14 15

0j0 1 0{010j1j01 1 1 110 0 O

L [J.
CIR 8:8

DDIV Double integer divide. The two’s complement double

integer contained in D and C is divided by the two’'s
complement double integer contained in B and A. The
four words are popped from the stack, the 32-bit
quotient is pushed into D and C, and the 32-bit
remainder is pushed into B and A.

Sub-opcode 2: 01, bits 8-15 = 171

Indicators: CCA (on quotient), Overflow

Traps: STUN, ARITH

0|1 2 3|4 56{7 89{10 11 12|13 14 15

0j010/010j1j01f 1 1 110 0 1

2-5

Instruction Set

Instruction Set

2-18. FLOATING POINT INSTRUCTIONS

2-19. DFLT Double float. Converts the doubleword integer
contained in the top two words of the stack to 2

floating point number with rounding.

Instruction Commentary 2-236.
Stack opcode: 30

Indicators: CCA

Traps: STUN

0|1 2 3|4 56{7 8 9{10 11 12

13 14 15

olo o001 1000

L

)

I T g
Alternate Position

2-20. FLT Float. Converts the integer on the TOS to 2 32-bit
floating point number with rounding. The TOS 1is

deleted and the doubleword floating
pushed onto the stack.

Instruction Commentary 2-236.

Stack opcode: N7

Indicators: CCA

Traps: STUN, STOV

point result is

ol1 2 3|4 5 6{7 89|10 11 12

13 14 15

olo o 0l1 001 11

)

L
-
A

T
lternate Position

|

2-21. FCMP Floating compare. The Condition Code is set 10
pattern C as a result of the floating point
comparison of D, C with B, A. The two floating point

double words are deleted.
Stack opcode: 50
Indicators: CCC

Traps: STUN

o{1 2 3|4 5 6/7 89|10 11 12

13 14 15

0ol0 0 0{101{000

L,

]

I T 1
Alternate Position

2-

29

- b .

FADD Floating add. The two floating point numbers

contained in the top four words of the stack are
added in floating point form. The top four words of
the stack are deleted and the two-word sum is pushed
onto the stack. :
Instruction Commentary 2-236.

Stack opcode: 51

Indicators: CCA, Overflow

Traps: STUN, ARITH

0 1 2 3la 5867 89[10 11 12{13 14 15

olo oolt1to1{o01

"

— — {
Alternate Position

2-23. FSUB Floating subtract. The floating ©point number

contained in the top two words of the stack is
subtracted in floating point form from the floating
point number contained in the third and fourth words
of the stack. The top four words of the stack are
deleted and the two-word difference is pushed onto
the stack.

Instruction Commentary 2-236.

Stack opcode: 52

Indicators: CCA, Overflow

Traps: STUN, ARITH

ol1 2 3|14 56{7 89|10 11 12{13 14 15

0|0 00|1 01010

L _
I T 1
Alternate Position

2-7

Instruction Set

Instruction Set

2-24. FMPY Floating multiply. The two floating point numbers
contained in the top four words of the stack are
multiplied in floating point form. The top four
words of the stack are deleted and the two-word
result is pushed onto the stack.

Instruction Commentary 2-236.
Stack opcode: 53
Indicators: CCA, Overflow
Traps: STUN, ARITH

0|1 2 3|4 56{7 8810 11 12{13 14 15

0{0 0 O}1 0 1j0 1 1

b T |
Alternate Position

2-25. FDIV Floating divide. The floating point number contained
in the third and fourth words of the stack is divided
by the floating point number contained in the top two
words of the stack. The top four words of the stack
are deleted and the two-words quotient is pushed onto
the stack.

Instruction Commentary 2-236.
Stack opcode: 54

Indicators: CCA, Overflow
Traps: STUN, ARITH

0/|1 2 3|4 56{7 89|10 11 12|13 14 15

0({0 0 0|1 01{1 00

) : i
Alternate Position

2-26. FNEG Floating negate. The floating point number contained
in the top two words of the stack is negated in
floating point form.

Stack opcode: 55
Indicators: CCA
Traps: STUN

0l1 2 3l4 56|78 9[10 11 12{13 14 15

0{0 0 0j1 01{1 01

L J

r T 1
Alternate Position

2-8

2-27.

2-28.

FIXR Fix and round. The floating point number contained

in the top two words of the stack is converted to
fixed point form and rounded to the nearest double
word integer. Carry is cleared if the low order 16
bits of the double word result (TCS) represent the
true integer value (i.e., if the high order 17 bits
are either all zeros or all ones); otherwise Carry is
set.

Instruction Commentaries 2-235 and 2-236.

Stack opcode: TO

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

0|1 2 3]4 56|7 8910 11 12{13 14 15

0/0 0 0j1 11000

- 1 —
Alternate Position

FINT Fix and truncate. The floating point number contained

in the top two words of the stack is converted to
fixed point form and truncated to a double word
integer. Carry is cleared if the low order 16 bits
of the double word result (TOS) represent the true
integer value (i.e., if the high order 17 bits are
either zeros or all cnes); otherwise Carry is set.
Instruction Commentaries 2-235 and 2-236.

Stack opccde: Tl

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

ol1 2 3|4 5 6/7 89/10 11 12{13 14 15

6{0 0 0j1 1 1{0 01

L |
o

" T
Alternate Position

Instruction Set

Instruction Set

2-29. LOGICAL INSTRUCTIONS

2-30. LCMP Logical compare. The Condition Code is set to pattern

2-31.

LADD

C as a result of the comparison of the second word of
the stack with the TOS. The two words are then
deleted from the stack.

Stack opcode: 5T.

Indicators: CCC

Traps: STUN

0|1 2 3|4 56/7 8910 11 12{13 14 15

olo o of1 0 1l111

L J
r T |
Alternate Position

Logical add. The top two words of the stack are
added as 16-bit positive integers, and they are
deleted from the stack. The resulting sum is pushed
onto the stack.

Stack opcode: 60

Indicators: CCA (as a 2°'s complement result), Carry
Traps: STUN '

0|1 2 3/]456{789[10 11 12|13 14 15

0|0 0 0}110{000

L N}

y T]
Alternate Position

Instruction Set

2-32. LSUB Logical subtracts. The top word of the stack is
subtracted in logical form from the second word and
they are deleted. The resulting difference is pushed
onto stack.

Stack opcode: 61
Indicators: CCA (as a 2’s complement result), Carry
Traps: STUN

0{1 2 3]4 5§ 6|7 89{10 11 12{13 14 15

of0 0 0|11 0({001

— 4
Alternate Position

2-33. LMPY Logical muptiply. The top two words of the stack are
multiplied as 16-bit positive integers. The words are
replaced by the double length product with the least
significant half on the TOS. Carry is cleared if
the TOS word or the result represents the true
integer value (i.e., if the high order 16 bits are
all zeros); otherwise, Carry is set.

Instruction Commentary 2-235.

Stack opcode: 62

Indicators: CCA (as a 2’s complement result), Carry
Traps: STUN

0{1 2 3|4 56|7 8910 11 12{13 14 15

0/0 0041 10{010

—— .
Alternate Position

2-34. LDIV Llogical divide. The 32-bit positive integer in the
second and third words of the stack is divided by
the 16-bit positive integer on the TOS (C,B / A).
The top three words are deleted. The quotient is
pushed onto the stack (B) and then the remainder
(a). If overflow occurs, the quotient will be
modulo 2**16.
Stack opcode: 63
Indicators: CCA on quotient(as a 2’s complement result), Overflow
Traps: STUN, ARITH

0|1 2 3|4 56{7 89|10 11 12{13 14 15

ojo 0 0|11 0{011

: I 4
Alternate Position

2-11

Instruction Set

2-35.

NOT

One’s complement. The top word of the stack is
converted to its one’s complement.

Stack opcode: 6L .

Indicators: CCA

Traps: STUN

0/1 2 3|4 56{7 89[10 11 12{13 14 15

0j0 0 0{1 1 0{1 00

L N
r T 1
Alternate Position

2-36. BOOLEAN INSTRUCTIONS

2-37.

2-38.

OR

XOR

Logical OR. The top twe words of the stack are
merged by a logical inclusive-OR. The two words are
deleted and the result is pushed ontoc the stack.
Stack opcode: 65

Indicators: CCA on the new TOS

Traps: STUN

ol1 2 3la 567 8910 11 12[13 14 15

0({0 0 0|1 1 041 01

L J
I T !
Alternate Position

Logical exclusive-OR. The top two words of the stack
are combined by a logical exclusive-OR. The two
words are deleted and the result is pushed onto the
stack.

Stack opcode: 66

Indicators: CCA on the new TOS

Traps: STUN

0|1 2 3|4 56{7 89|10 11 12|13 14 15

0{0 0 0|1 10(110

L]
I T |
Alternate Position

Instruction Set

2-39. AND Logical AND. The top iwo words of the stack are
combined by a logical AND. The two words are deleted

and the result is pushed onto the stack.

Stack opcode: 67
Indicators: CCA on the new TOS

Traps: STUN

0|1 2 3|4 56/7 89|10 11 12{13 14 15

oi0 0 0j1 1 011 11 i
L |
I T *
Alternate Position

2-40. INCREMENT/DECREMENT INSTRUCTIONS

2-41. INCX Increment X. The contents of the Index register is
incremented by one in integer form.

Stack opcode: Ok
Indicators: CCA, Carry, Overflow

0{1 2 3]4 56{7 88{10 11 12{13 14 15

0{0c 0 0{00O0{100

L J
r T i
Alternate Porition

2-42. DECX Decrement X. The content of the Index register is
decremented by one in integer form.

tack opcecde: 05 .
Indicators: CCA, Carry, Overflow

Traps: ARITH

0|1 2 3]456{7 89|10 11 12{13 14 15

0jo 0000 0{1 01

L J
i T !
Alternate Position

Instruction Set

Increment A. The TOS is incremented by one in

integer form.
Stack opcode: 33
Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

2-43. INCA

0/1 23/456{7 89|10 11 12[13 14 15

0|0 0 0j0 1 1j0 1 1

————
Alternate Position

2-34. DECA Decrement A. The TOS is decremented by one in

integer form.

Stack opcode: 3k

Indicators: CCA, Carry, Overflow
Traps: STUN, ARITH

0{1 2 3|4 56|/7 89|10 11 12|13 14 15

0{0 00{0 11100

. , 4
Alternate Position

2-45. INCB Increment B. The second word of the stack is incre-
mented by one in integer form. The TOS is unaffected.
Stack opcode: T3
Indicators: CCA, Carry, Overflow
Traps: STUN, ARITH

01 2 3|4 56(7 8910 11 12{13 14 15

0{0 0 Ot 1 10 1 1

L]
r T L
Alternate Position

Instruction Set

2-46. DECB Decrement B. The second word of the stack is decre-
mented by one in integer form. The TOS is unaffected.
Stack opcode: Tk
Indicators: CCA, Carry, Overflow
Traps: STUN, ARITH

0/1 2 3|4 56{7 83[10 11 12{13 14 15

ofc 0 0|1 11j1 00

) . i
Alternate Position

2-47. INDEX INSTRUCTIONS

2-48. STBX Store B into X. The second word of the stack
replaces the contents of the Index register.
Stack opcode: 26
Indicators: CCA on the new X
Traps: STUN

0/1 2 3|4 56/7 898,10 11 12{13 14 15

0j0 0 0j010{110

% : i
Alternate Position

2-49. ADAX Add A to X. The TOS is added in integer form to the
contents the of the Index register. The sum replaces
the contents of the Index register, and the TOS is
deleted. ’

Stack opcode: 36
Indicators: CCA on the new X, Carry, Overflow

Traps: STUN, ARITH

0{1.2 3|4 5 6|7 8 8{10 11 12{13 14 15

ofo00j01 11110

L J
Iy T g g
Alternate Position

Instruction Set

2-50. ADXA Add X to A. The content of the Index register is
added TOS, and the sum replaces the TOS.

Stack opcode: 37
Indicators: CCA on the new TOS, Carry, OVerflow

Traps: STUN, ARITH

0|1 2 3|4 56{7 89[10 11 12{13 14 15

0jo 0 0f0 1 1]1 11

L -l

I’ T 1
Alternate Position

2-51. LDXB Load X into B. The second word of the stack

is replaced by the contents of the Index register.

The TOS is unaffected.

Stack opcode: 42
Indicators: CCA on the new B

Traps: STUN

0{1 2 3|14 56|78 9|10 11 12|13 14 15

0({0 001 00(010

L J
I T *
Alternate Position

2-52. STAX Store A into X. The TOS replaces the contents of the
Index register, and TOS is deleted from the stack.

Stack opcode: 43
Indicators: CCA on the new X

Traps: STUN

0|1 2 3|4 56|7 8910 11 12{13 14 15

0{0 0 0|1 00j011

L J

r T "
Alternate Position

2-53. LDXA Load X onto stack. The contents of the Index register

2-54.

2-55.

ADBX

is pushed onto the stack.

Stack opcode: Lk _
Indicators: CCA on the new TOS
Traps: STOV

0|1 2 3|4 5 6|7 8910 11 12|13 14 15

0fo 0 0|1 00|71 00

g f {
Alternate Position

Add B to X. The second word of the stack is added
in integer form to the contents of the Index register,
and the result replaces the Index register.

Stack opcode: 76

Indicators: CCA on the new X, Carry, Overflow

Traps: STUN, ARITH

0|1 2 3|4 56{7 89{10 11 12|13 14 15

o{0o 00111110

F T 4
Alternate Position

ADXB Add X to B. The contents of the index register is

added in integer form to the second word of the
stack, and the sum replaces the second word of the
stack.

Stack opcode: T7

Indicators: CCA on the new B, Carry, Overflow

Traps: STUN, ARITH

0|1 2 3|4 56{7 8910 11 12{13 14 15

0{o 0 Of1 1 11 11

L J
r T !
Alternate Position

Instruction Set

Instruction Set

2-56. EXCHANGE INSTRUCTIONS

2-57. DXCH Double exchange. The top two doubleword pairs are
interchanged on the stack.
Stack opcode: 16
Indicators: CCA on the new TOS double word
Traps: STUN

0j1 2 3|4 5678910 11 12/13 14 15

0j0 0 0j0 011110

——— %
Alternate Position

2-58. XCH Exchange A and B. The top two words of the stack are
interchanged.
Stack opcode: 32
Indicators: CCA on the new TCS
Traps: STUN

0{1 2 3]456|789]10 11 12{13 14 15

0{0 00j{0 11010

- I 4
Alternate Position

2~59. XAX Exchange A and X. The content of the TOS and the
Index register are interchanged.
Stack opcode: 35
Indicaters: CCA on the new TOS
Traps: STUN

0[1 2 3j4 56|78 9|10 11 12{13 14 1§

0{0 0 0|01 1|1 01

P 4
Alternate Position

2-60. CAB

2-61.

XBX

Rotate A,B,C. The third word of the stack is removed
from the stack, the two top words are compressed onto
the rest of the stack, and the original third word is
pushed onto the stack.

Stack opcode: 56

Indicators: CCA on the new TOS

Traps: STUN

0/1 2 3|4 56|7 89|10 11 12|13 14 15

0[0 00j1 01110

y ; {
filternate Position

Exchange B and X. The second word of the stack is
interchanged with the contents of the Index register.
Stack opcode: 75

Indicators: unaffected

Traps: STUN

0l1 2 3|4 567 88{10 11 12{13 14 15

0{0 0 0O{111{101

L J
r T y!
Alternate Position

2-62. ZERO INSTRUCTIONS

2-63. ZROX Zero X. The contents of the Index register is

replaced by zero.

Stack opcode: 03
Indicators: unaffected
Traps: none

0|1 2 3|]456{7 89{10 11 12{13 14 15

0|0 0 0j0 0 0f0 11

% : 4
Alternate Position

2-19

Instruction Set

Instruction Set

3-64. ZERO Push zero. A zero word is pushed onto the stack.
Stack opcode: 06
Indicators: unaffected
Traps: STOV

0l1 2 3|4 56[789[10 11 12{13 14 15

0/0 00j000f110

L J
I T y
Alternate Position

2-65. DZRO Push double zero. Two words containing all zeros
are pushed onto the stack.
Stack opcode: OT
Indicators: unaffected
Traps: STOV)

0|1 2 3|4 56{7 8 9|10 11 12|13 14 15

0|0 0 0{0 0 Oj1 1 1

L N|

r T !
Alternate Position

3-66. ZROB Zero B. The second word of the stack is replaced by
zero. The TOS is unaffected.
Stack opcode: Ll
Indicators: unaffected
Traps: STUN

0/{1 2 3|4 56|78 9|10 11 12{13 14 15

0{0 0 0}1 0 0j0 01

% ‘ —]
Alternate Position

2-20

IISLTULLIVIL OCt

2-67. DUPLICATE AND DELETE INSTRUCTIONS

DELB Delete B. The second word of the stack is deleted
and the stack is compressed. The contents of the TOS

is unchanged.
Stack opcode: 01
Indicators: unaffected

Traps: STUN,

2-68.

ol1 2 3l4 5 6{7 8910 11 12{13 14 15

010 0 0j0 0 0|0 O 1

F T “%
Alternate Position

2-69. DDEL Double delete. The top two words of the stack are

deleted.

Stack opcode: 02
Indicators: unaffected
Traps: STUN

0|1 2 3]4 56|7898{10 11 12{13 14 15

0|0 00j000j010

L J
r T 0
Alternate Position

2-70. DEL Delete A. The top word of the stack is deleted.

Stack opcode: L0
Indicators: unaffected

Traps: STUN

0{1 2 3|4 56{7 89|10 11 12{13 14 15

0{0 0 0{100j000

L J
I~ T y
Alternate Position

"~

-21

Instruction Set

2-71. DUP Duplicate A. The top word of the stack is duplicated
by pushing a copy of the TOS onto the stack.
Stack opcode: U5
Indicators: CCA
Traps: STUN, STOV

0{1 2 3|4 56|78 9|10 11 12|13 14 15

0{0 0 0}1 0 0}1 01

L J

I T !
Alternate Position

2-72. DDUP Double duplicate. The double word in the top two
words of the stack is duplicated by pushing a copy
of it onto the stack.

Stack opcode: L6
Indicators: CCA on new TOS double word
Traps: STUN, STOV

0{1 2 3|4 56{7 89|10 11 12/13 14 15

0({0 0 0j1 00110

]
Alternate Position

2-73. TEST INSTRUCTIONS

2-74. TEST Test TOS. The condition code is set to pattern A
according to the content of the TOS word.
Stack opcode: 25
Indicators: CCA
Traps: STUN

0|1 2 3|4 56{7 8910 11 12|13 14 15

0{0 0 0{0 1 011 01

I u |
Alternate Position

2-22

2-75. DTST

Test double word on TOS. The Condition Code is' set
to pattern A according to the contents of the top
two words of the stack. Also, Carry is cleared if
the low order 16 bits of the doubleword
result (TOS)represent the true integer value{i.e., if
the high order 17 bits are either all zeros or all
ones); otherwise, Carry is set.

Instruction Commentary 2-235.

Stack opcode: 27

Indicators: CCA, Carry

Traps: STUN

0/1 2 3]456|7 89[10 11 12|13 14 15

o{o 0 0j0 1 0f1 11

J

F’ T gl
Alternate Position

2-76. BTST Test byte on TOS. The Condition Code is set to

2-717.

NOP

pattern B according to the contents of the byte
contained in the eight least significant bits of the
TOS word (bits 8-15). =

Stack opcode: 31

Indicators: CCB

Traps: STUN

0{1 2 3{4 5 6|7 8910 11 12{13 14 15

0j0 0 0j0 1 1{0 01

! 2
r T 1
Alternate Position

No operation. The user’s program space and data
space remain unchanged.

Stack opcode: 00

Indicators: unaffected

Traps: None

0|1 2 3|4 5 6{7 89110 11 12{13 14 15"

0/0 0 0j0 00|000O

L J
I T 1
Alternate Position

2-23

Instruction Set

Instruction Set

2-78. SHIFT INSTRUCTIONS

2-79. SINGLE WORD SHIFT INSTRUCTIONS

All single word shift instructions: Instruction Commentary 2-237

2-80. ASL
2-81. ASR
2-82. LSL

Arthimetiec shift left. The TOS is shifted 1left n
bits, preserving the sign bit. The value of n
(modulo 64) is the number specified in the argument
field plus, if X is specified (bit L), the content
of the Index register.

Sub-opcode 1: 00

Indicators: CCA

Traps: STUN

0j1 2 3|4 56|789|10 11 12|13 14 15

0{o 0 1]|xjo 0jo 00

T
Shift Count

Arithmetic shift right. The TOS is shifted rightn
places, propagating the sign bit. The value n (modulo
64) is the number specified in the argument field plus,
if X is specified, the content of the Index register.
Sub-opcode 1: 01

Indicators: CCA

Trap: STUN

0{1 2 3/]456{789[10 11 12{13 14 15

0/0 0 1]x]0 0{0 0 1

-¥
L

T
Shift Count

Logical shift left. The TOS is shifted left n bits
logically. The value of n (modulo 6L4) is the number
specified in the argument field plus, if X is
specified, the content of the Index register.
Sub-opcode 1: 02

Indicators: CCA

Traps: STUN

0{1 23{456{7893|10 11 1213 14 15

0{0 0 1{x|0 0{0 10

~—
-

T
Shift Count

2-83. LSR
2-84. CSL
2-85. CSR

Logical shift right. The TOS is shifted right n
bits logically. The value of n (modulo 6L4) is the
number specified in the argument field plus, if X is
specified, the content of the Index register.
Sub-opcode 1: 03

Indicators: CCA

Traps: STUN

ol1 2 3l4 5 6{7 89|10 11 12{13 14 15

olo 0 1]x|o 0jo 11

T
Shift Count

Cirecular shift left. The TOS is shifted 1left n
bits circularly. The value of n (modulo 6L) 1is the
number specified in the argument field plus, if X is
specified, the content of the Index register.
Sub-opcode 1: Ol

Indicators: CCA

Traps: STUN

ol1 2 3l4 56{7 8210 11 12{13 14 15

0lo 0 1{xjo 0}1 00

L —
Shift Count

Circular shift right. The TOS is shifted right n

bits circularly. The value of n (modulo 64) is the
number specified in the argument field plus, if X is
specified, the content of the Index register.
Sub-opcode 1: 05

Indicators: CCA

Traps: STUN

ol1 2 3|4 56[7 8910 11 12{13 14 15

0|0 0 1{x|o 0}1 0 1

T
Shift Count

2-25

Instruction Set

Instruction Set

2-86. DOUBLE WORD SHIFT INSTRUCTIONS

All double word shift instructions: Instruction Commentaries 2-235 and
2-238

2-87. DASL Double arithemtic shift left. The double-word
contained in the top two words of the stack is
shifted left n bits, preserving the sign bit (bit O
of B). The value of n (modulo 6u4) is the number
specified in the argument field plus, if X is
specified, the content of the Index register.
Sub-opcode 1: 20
Indicators: CCA
Traps: STUN

0/1 2 3{4 56{7 89{10 11 12|13 14 15

0]0 0 1|x]1 0l0 0 0

—
-

T
Shift Count

2-88. DASR Double arithmetic shift right. The double word
contained in the top two words of the stack is
shifted right n bits, propagating the sign bit (bit 0
of B). The value of n (modulo 64) is the number
specified in the argument field plus, if X 1is
specified, the content of the Index register.
Sub-opcode 1: 21
Indicators: CCA
Traps: STUN

0|1 2 3]4 56{7 8 9|10 11 12{13 14 15

00 0 1{x]|1-0{0 0 1

T
Shift Count

2-26

Instruction Set

3-89. DLSL Double logical shift left. The double-word contained
in the top two words of the stack is shifted left n
bits logically. The value of n (modulo 6L4) is the
number specified in the argument field plus, if X is
specified, the content of the Index register.
Sub-opcode 1: 22
Indicators: CCA
Traps: STUN

0{1 2 3|4 § 6|7 8 9{10 11 12{13 14 15
0{0 0 1{X|1 0j0 10
L l J
Shift Count

2-90. DLSR Double logical shift right. The double-word contained
in the top two words of the stack is shifted right n
bits logically. The value of n (modulo 64) is the
number specified in the argument field plus, if X is
specified, the content of the Index register.
Sub-opcode 1: 23 '
Indicators: CCA
Traps: STUN

0{1 2 3|4 5678910 11 12|13 14 15
0jo0 0 1 X|1 0101 1
L J
T "
Shift Count
2-91. DCSL Double circular shift left. The double- word

contained in the +top two words of the stack is
shifted 1left n bits circularly. The value of n
(modulo 6L) is the number specified in the argument
field plus, if X is specified, the content of the
Index register.

Sub-opcode 1: 24

Indicators: CCA

Traps: STUN

0|1 2 3|4 56{7 89|10 11 12|13 14 15

0lo 0 1]x|1 0]1 00

—a.

i

l .
Shift Count

Instruction Set

2-92. DCSR

Double circular shift right. The double word
contained in the top two words of the stack is
shifted right n bits circularly. The value of =n
(modulo 6U4) is the number specified in the argument
field plus, if X is specified, the content of the
Index register.

Sub-opcode 1: 25

Indicators: CCA

Traps: STUN

0|1 2 3|4 56/7 8910 11 12{13 14 15

0/0 0 1{X|1 0f1 0 1

Tr‘

T
Shift Count

2-93. TRIPLE WORD SHIFT INSTRUCTIONS

All triple word shift instructions: Instruction Commentary 2-239

2-94. TASL

Triple arithmetic shift left. The triple-word
integer contained in the top three words of the
stack is shifted left n bits, preserving the sign
bit (bit 0 of C). The value of n (modulo 64) is the
number specified in the argument field plus, if X is
specified, the content of the Index register.
Sub-opcode 1: 10

Indicators: CCA on the new TOS triple word

Traps: STUN

0|1 23/456(7 89|10 11 12{13 14 15

0{0-0 1{X|0 1(0 0O

17"

J

T
Shift Count

2-28

2-95. TASR

2-96. TNSL

Triple arithmetic shift right. The triple-word
integer contained in the top three words of the
stack is shifted right n bits, propagating the sign
bit (bit 0 of C). The value of n (modulo 6U4) is the
number specified in the argument field plus, if X is
specified, the content of the Index register.
Sub-opcode 1: 11

Indicators: CCA on the new triple word

Traps: STUN

0{1 2 3|4 56{7 8910 11 12|13 14 15

0/o 0 1{x[0 1{0 0 1

T
Shift Count

Triple normalizing shift left. The top three words
of the stack are shifted left arithmetically until

bit 6 of C is a "1". Bits O through 5 of C are
cleared ("0"). The shift count is stored in the
Index register. The instruction initially clears

the Index register unless X is specified ("1" in bit
4 of the instruction).

Sub-opcode 1: 16

Indicators: CCA on final value of top three words
Traps: STUN

0|1 2 3]4 567 88{10 11 12|13 14 15

0/0 0 1{X]0 1/1 10

-
=

T
Reserved

2-29

Instruction Set

Instruction Set

2-97. QUADRUPLE WORD SHIFT INSTRUCTION

Quadruple word shift instructions. Instruction Commentary 2-2L0

2-98. QASL

Quadruple arithmetic shift left. The four-word
integer contained in the top four words of the stack
js shifted left n bits, preserving the sign bit (bit
0 of word D). The value of n (modulo 6U) is the
number specified in the shift count plus the
contents of the Index register.

Sub-opcode 1: 17, bit 4 =0

Indicators: CCA on the new TOS quadruple word
Traps: STUN

0|1 2 3|4 56|789]10 11 12]13 14 15

0j0 01{00 1111

—————
Shift Count

2-99. QASR Quadruple arithmetic shift right. The four-word

integer contained in the top four words of the stack
is shifted right n bits, preserving the sign bit
(bit 0 of word D). The value of n (modula 64) is the
number specified in the shift count plus the
contents of the Index register.

Sub-opcode 1: 17, bit 4 =1

Indicators: CCA on the new TOS quadruple word

Traps: STUN

0|1 2 3|4 56{7 8910 11 12{13 14 15

0j0 01{1 0 1)1 11

T
Shift Count

2-30

2-100. FIELD AND BIT INSTRUCTIONS

2-101. SCAN Scan bits. The TOS is shifted left until bit O

2-102. TBC

contains a2 "1", then is shifted left one more bit.
The shift count is left in <the Index register,
indicating the bit position which contained the

1", The instructions mnormally sets the Index
register to -1 before beginning the shifts.
However, if X is specified, the shift count adds on
to the existing Index register content. If TOS is
all zeros, the count will be 16 if un-indexed, or X
+16 if indexed.

Sub-opcode 1: 06

Indicators: CCA on final TOS

Traps: STUN

0|1 2 3|4 56(7 89|10 11 12|13 14 15

0/0 0 1{x|0 0]1 1 0

-5

|
T 1
Reserved

Test bit and set Condition Code. One bit of the TOS
word is tested and the Condition Code is set to a
special pattern depending on the state of the bit.
The bit position to be tested is specified by the
argunent field of the instruction plus, if X 1is
specified, the contents of the Index register. If
the number specified exceeds 15, the bit position
indicated is moduloc 16; e.g., bit 0 is tested for
counts of 0, 16, 32, L8, etc.
Sub-opcode 1: 32
Indicators: CCE if bit was "0"

CCL or CCG if bit was "1"
Traps: STUN

0/{1 2 3|4 567 89|10 11 12{13 14 15{

0/0 0 1|x|1 1{0 10

L . 1
Bit Position

Instruction Set

Instruction Set

2-103. TRBC

2-104. TSBC

2-105. TCBC

Test and reset bit, set Condition Code. The
operation of this instruction is identical to that
of TBC except that the tested bit is reset to "0O"
after the test.
Sub-opcode 1: 33
Indicators: CCE if bit was "0"

CCL or CCG if bit was "1"
Traps: STUN

0{1 2 3|/4 56/{7 89}10 11 12|13 14 15

oo 0 1[x|1 1]{0 1 1

l

-

T
Bit Position

Test and set bit, set Condition Code. The
operation of this instruction is identical to that
of TBC except that the tested bit is set to "1"
after the test.
Sub-opcede 1: 34
Indicators: CCE if bit was "0"

CCL or CCG if bit was "1"
Traps: STUN

01 2 3|4 56/7 89|10 11 12{13 14 15

0lo 0 1|x|1 1|1 00

-

J
i)

T
Bit Position

Test and complement bit, set condition code. The
operation of this instruction is identical to that
of TBC except that the tested bit is complemented
after the test.
Sub-opcode 1: 35
Indicators: CCE if bit was "0"

CCL or CCG if bit was "1"
Traps: STUN

0/]1 2 3|4 56{7 89|10 11 12|13 14 15

00 0 1{x|1 1{1 0 1

L ‘ J
Bit Position

2-32

2-106. EXF

2-107. DPF

Extract field. A specified set of bits in the TOS
are extracted and right Jjustified, and the result,
with high order zeros, replaces the TOS. The J
field specifies the starting (leftmost) bit number
in the source field, and K field specifies the
number of bits to be extracted. TOS is circularly
rotated until bit J is positioned to position 15-K.
The least significant K bits are then masked so that
2ll other bits become zero.

Instruction Commentary 2-2hl.

Sub-opcode 2: 15

Indicators: CCA on the new TOS

Traps: STUN

0|1 2 3l4a 58678810 11 12{13 14 15

0{0 1 0|1 1 01}

L JoL)
r mr !
J K
Starting Number

Bit # of bits

Deposit field. A specified number of the least
significant bits of <the TOS are deposited in the
second werd of the stack, beginning at the bit
number specified by the J field; the remaining bits
of the second word of stack are unchanged. The K
field specifies the number of bits to be deposited.
The source operand is deleted from the stack. TOS
is circularly rotated until bit J is positioned to
occupy 15-K. The least significant K bits are then
masked so that all other bits become zero.
Instruction Commentary 2-241.

Sub-opcode 2: 16

Indicators: CCA on the new TOS

Traps: STUN

01 2 3|4 56{7 89]10 11 12{13 14 15

/0 1 0|11 1/0]

L J L J
r T r 1
J K
Starting Number

Bit # of bits

2-33

Instruction Set

Instruction Set
2-108. BRANCH INSTRUCTIONS

2-109. IABZ Increment A, branch if 2ero. The TOS is incremented.
If the result is then zero, control is transfered to

P+/- or displacement; otherwise to P + 1.

Sub-opcode 1: 07

Indicators: CCA, Carry, Overflow

Addressing modes: P relative (+/-)
Direct or indirect

Traps: STUN, BNDV if user or privileged, ARITH

0|1 2 3|4 56{789[10 |11 12[13 14 15

0l0 0 1/1]0 01 1 1]+/-]

L
" T
Displacement

2-110. IXBZ Increment X, branch if zero. The Index register is
decremented if the result is then zero, control is
transfered to P +/- displacement; otherwise to P + 1.
Sub-opcode 1: 12
Indicators: CCA, Carry, Overflow
Addressing modes: P relative (+/-)

Direct or indirect

Traps: BNDV if user or privileged, ARITH

0|1 2 3|4 5 6[7 8 9[10 |11 12|13 14 15

0/0 0 1|1]0 1{0 1 0|+/-]

L J

¥ |
Displacement

2-111. DXBZ Decrement X, branch if zero. The Index register is
decremented. If the result is then zero, control is
transfered to P +/- displacement; otherwise to P + 1.
Sub-opcode 1: 13
Indicators: CCA, Carry, Overflow
Addresssing Modes: P relative (+/-)

Direct or in direct

Traps: BNDV if user or priviliged, ARITH

0|1 2 3|4 56{7 89[10 |11 12|13 14 15

010 0 1{I|0 1{0 1 1]+/-]|

b d

" T 1
Displacement

2-34

Instruction Set

The TOS is decremented.

2-112. DABZ Decrement A, branch if zero.
control is transferred

If the result is then zero,

tc P +/- displacement; otherwise to P+ 1.

Sub-opcode 1: 27

Indicators: CCA, Carry, Overflow

Addressing modes: P relative (+/-)
Direct or indirect

Traps; STUN, BNDV if user or privileged, ARITH

ol1 2 3|4 56/7 89[10 |11 12{13 14 15

0{0 0 1]1]1 of1 1 1|+/-]

L J
I T "
Displacement

2-113. BCY Branch on carry. If the Carry bit of the Status
register is set ("1"), control is transfered to
P +/- displacement; otherwise to P + 1.
Sub-opcede 1: 1k
Indicators: Carry cleared
Addressing modes: P relative (+/-)
Direct or indirect

Traps: STUN, BNDV if user or privileged

ol1 2 3|4 56|7 89|10 |11 12|13 14 15

o{o 0 1]1]0 1}1 0 0|+/-]

R

T *
Displacement

2-114. BNCY Branch on no carry. If the Carry bit of the Status
register is clear ("0"), control is transferred to
P +/- displacement; otherwise to P + 1.
Sub-opcode 1: 15
Indicators: Carry cleared

Addressing modes: P relative (+/-)
Direct or indirect

Traps; BNDV if user or privileged

0{1 2 3|4 5 6/7 89)10 |11 12|13 14 15

L J
L

I T
Displacement

Instruction Set

2-115. BOV

Branch on overflow. If the Overflow bit of the
Status register is set ("1"), control is transferred
to P +/- displacement; otherwise to P + 1.
Sub-opcode 1: 30
Indicators: Overflow cleared
Addressing modes: P relative (+/-)

Direct or indirect
Traps: BNDV if user or privileged

0|1 2 3|4 56/7 89|10 |11 12{13 14 15

00 0 1{IJ1 1]0 0 Of+/-|

b J

r T 1
Displacement

2-116. BNOV Branch on no overflow. If the Overflow bit of the

2-117. BRO

Status register is set ("0"), control is transferred
to P +/- displacement; otherwise to P + 1.
Sub-opcode 1: 31
Indicators: Overflow cleared
Addressing modes: P relative (+/-)
Direct or indirect

Traps: BNDV if user or privileged

0{1 2 3|4 56{7 89|10 |11 12|13 14 15

0[0 0 1{I|1 1[0 0 1]+/-]

L

-

T
Displacement

Branch on TOS odd. If the TOS is odd (bit 15 = 1),
control is transferred to P +/- displacement;
otherwise to P + 1. The TOS is deleted.
Sub-opcode 1: 36
Indicators: unaffected
Addressing modes: P relative (+/-)
Direct or indirect
Traps: STUN, BNDV if user or privileged

0/1 2 3|4 56/7 89|10 |11 12[13 14 15

0/0 0 111 11 1 0f+/-]

ik
Displacement

2-118. BRE

2-119. CPRB

Branch to TOS even. If the TOS is even (bit 15 = 0),
control is transferred to P +/- displacement:
otherwise to P + 1. The TOS is deleted.
Sub-opcode 1: 37
Indicators: unaffected
Addressing modes: P relative (+/-)
Direct or indirect
Traps: STUN, BNDV if user or privileged

0/1 2 3[]456/7 89|10 |11 12[13 14 15

00 0 1{I]1 1[1 1 1[+/-]

L. J

T
Displacement

Compare range and branch. The integer in the Index
register is tested to determine if it is within the
interval defined by <the upper bound integer on the
TOS and the lower bound integer in the second word
of the stack. The Condition Code is set by a
compariscn to a special pattern: CCE if within
range, CCL if below range, CCG if above range. If
the integer in the Index register is within the
specified range, control is then transferred <to P
+/-. The top two elements of the stack are deleted
in either case.
Sub-opcode 1: 26
Indicators: CCE, CCL, CCG
Addressing modes: P relative (+/-)

Direct or indirect
Traps: STUN, BNDV if user or privileged

0j1 2 3|4 5 6|7 8 2{10 |11 12{13 14 15

0/0 0 1]I]1 01 1 0]+/-]

J

L
r T
Displacement

Instruction Set

Instruction Set

2-120. BR

Branch unconditionally. For P relative mode,

control is transferred unconditionally to P +/-

displacement, plus (if specified) the value in X; may

be indirect. For DB, Q, and S relative modes,

control is transferred indirectly (only) via the

location specified by DB, Q, or S +/- this

displacement; the content of the location so

specified is added to PB (plus-indexing if X is

specified) to obtain the effective address for P.

Instruction Commentary 2-242.

Memory opcode: 1k, bits 5,6 = 00, 10, 11

Indicators: unaffected

Addressing modes: P relative (+/-), direct or indirect
DB+ relative, indirect
Q+ relative, indirect
S- relative, indirect
Indexing available

Traps: BNDV, BNDV on P and P relative if user or privileged

0/{1 23/456| 7 89|10 11 12|13 14 15

111 0 o|x|1]0|+/-|

L

= =

y T
Displacement

0{1 2 3|4 56/7 8910 11 12|13 14 15

l Displacement

o

-
P T o
. =)

-0

2-33

2-121.

BCC

Branch on Condition Code. The Condition Code in the
Status register is compared with conditions named in
the CCF field of <the instruction. If the named
conditions are met, control is transferred to P +/-
displacement; otherwise to P+l1. The displacement is
limited to +/- 31. Control is transferred to the
branch address under the following conditions:

If CCF = 0, never branch
= 1, branch if CC = CCL
= 2, branch if CC = CCE
= 3, branch if CC = CCL or CCE
= 4, branch if CC = CCG
= 5, branch if CC = CCG or CCL
= 6, branch if CC = CCG or CCE

T, always branch

Memory opcode: 1k, bits 5,6 = 01

Indicators: unaffected

Addressing modes: P relative (+/-)
Direct or indirect

Traps: BNDV if user or privileged

011 2 3|4 56/7 8 810 [11 1213 14 15

1110 0{1J0 1|6 E L|+/-]

1k T 1
CCF Displacement

¥
-

2-39

Instruction Set

Instruction Set

2-122. MOVE INSTRUCTIONS

NOTE

Move instructions are interruptable after each word
(or byte) transfer and will continue from the point of
interrupt when control is returned to the instruction.

2-123. MOVE Move words. This instruction transfers a specified
number of words from one area of primary memory to
another. The instruction expects a signed word
count in A, a DB or PB relative displacement for a
source address in B, and a DB relative displacement
for a target address in C. As long as the word
count in A has not been counted to =zero, the
transferring of data will continue as follows: The
contents of the memory location specified by DB + B
or PB + B is transferred to the location specified
by DB + C. If the word count in A is positive, the
source and target displacement values in B and C are
incremented by one on each transfer, and the word
count is decremented by one. If the word count is
negative, the source and target displacement values
in B and C are decremented by one on each transfer,
and the word count is incremented by one. Note that
the word count is always changed by one toward
zero. On completion of the block transfer, the
instruction deletes from the stack the number of
words specified by SDEC (S decrement) field of the
instruction; the range of this field is 0 through 3.
Instruction Commentary 2-2u3.

Move opcode: O
Indicators: unaffected
Addressing modes: DB+ PB+ for source
‘ DB+ for target
Traps: STUN, STOV, BNDV, BNDV on P relative if user or
privileged

0/1 2 3|4 56{7 82|10 11 1213 14 15

ofo 1 o{o 1 o]ojo ojo | | o} o]

PE/DB p—o

SDEC

2-40

Instruction Set

2-124. MVB Move bytes. The MVB instruction transfers a speci-
fied number of bytes from one area of primary memory
to another. The instruction expects a signed byte
count in A, a DB or PB relative displacement for a
source byte address in B, and a DB relative
displacement for a ‘target byte address in C. As
long as the byte count in A has not been counted to
zero, the transferring of data will continue as
follows: The content of the byte address location
specified by DB + B or PB + B is transferred to the
byte address location specified by DB + C. If the
byte count in A is positive, the source and target
displacement values in B and C are incremented by
one on each transfer, and the byte count is
decremented by one. If the byte count in A is
negative, the source and target displacement values
in B and C are decremented by one on each transfer,
and the byte count is incremented by one. Note that
the byte count is always changed by one towards zero.
On completion of block transfer, the instruction
deletes from the stack the number of words (o, 1, 2,
or 3) specified by the SDEC field of the
instruction.

Instruction Commentary 2-2u3.
Move opcode: 1
Indicators: unaffected
Addressing modes: Byte addressing
DB+ or PB+ for source
DB+ for target
Traps: STUN, STOV, BNDV on P relative if user or
privileged

0l1 2 3|4 56{7 88|10 11 12{13 14 15

olo 1 0jo 1 0jojo o1]| | 0] 0

PB/DB
SDEC

"~

-41

Instruction Set

2-125. MVBW Move bytes while of specified type. This instruction
transfers an unspecified number of bytes from one
area of primary memory to another. The instruction
expects a source byte address in TOS and a DB
relative displacement for a target byte address in
the second word of the stack. As long as the source
byte is of the type specified in the CCF field, it

is moved to the target area. The target
displacement value in B is incremented by one on
each transfer. If the byte to be moved is a lower

case letter and the upshift bit is on, the target
byte will be an upshifted copy of the source byte.
Byte transfers continue until the source byte is not
of the.proper type. On completion of the block
transfer, the instruction deletes from the stack the
number of words (0, 1, 2, or 3) specified by the
SDEC field of the instruction. Series II, III users
should make sure MVBW parameters are at addresses >
Q if their program is also run on a 30 or a 33.
Instruction Commentary 2-2u3.

Move opcode: 4

Indicators: CCB on the last character scanned
Addressing mode: Byte addressing DB+

Traps: STUN, STOV, BNDV

0|1 2345678910 11 12|13 14 15

0jo 1 0f00o0fo|1to0lo] | |

CCF SDEC
Upshift

Alphabetic: 0 1
Numeric: 1 0

2-42

Instruction Set

2-126. CMPB Compare bytes. This instruction scans two byte
strings simultaneously until the compared bytes are
unequal or until a specified number of comparisons
have been made. CMPB expects a2 signed byte count in
A, a DB or PB relative displacement for a source
byte address in B, and a DB relative displacement
for a target byte address in C. As long as the word
count in A has not been counted to =zero, the
comparison proceeds as follows: The content of the
byte address specified by DB+ B or PB + B is
compared with the content of the byte address
location specified by DB + C. If the byte count in
A is positive, the source and target displacement
values in B and C are incremented by one after each
comparison, and the byte count is decremented by
one. If the byte count in A is negative, the source
and target displacement values in B and C are
decremented by one after comparison, and the byte
count is incremented by one. Note that the byte
count is always changed by one toward zero. The
instruction terminates when either a comparison
fails or the byte count in the TOS reaches zero.
The Condition Code is set to a special pattern to
indicate the terminating condition. On termination,
the instruction deletes from stack the number of
words (0, 1, 2, or 3) specified by the SDEC field of
the instruction.

Instruction Commentary 2-243.
Move opcode: 5
Indicators: CCE if byte count = O
CCG if target byte > source byte (final)
CCL if target byte < source byte (final)
Addressing modes: Byte addressing
DB+ or PB+ for source
DB+ for target
Traps: STUN, STOV, BNDV, BNDV on P relative if user or
privileged

0|1 2 3|4 56/7 89|10 11 12|13 14 15

0olo 1 0o 0 olojt of1 | | o] o

PB/DB p—rod

SDEC

2-43

Instruction Set

2-127. SCW

Scan while memory byte equals test byte. The SCW
instruction expects the TOS +to contain a test
character in the right byte and a terminal character
in the left byte. The second word of the stack
contains a DB relative displacement for a source
byte address. The source byte is tested against
the test character. If <they are equal the source
byte is incremented and the next byte is tested.
This continues until a source byte is found that is
not the same as the terminal character,. If the last
character is the same as the terminal character, the
Carry bit is set; if not, the Carry bit is cleared.
On completion of the scan, the instruction deletes
from the stack the number of words (0, 1, 2, or 3)
specified in the SDEC field of the instruction.
Instruction Commentary 2-2u43.

Move opcode: 2, bits 11,12 = 10

Indicators: Carry, CCB on last charachter scanned
Addressing mode: byte addressing, DB+

Traps: STUN, STOV, BNDV

0{1 2 3]4 56|78 9110 11 12|13 14 15

00 1 0{00o0f0j0 1[0] 1] 0] 0]

SDEC

2-44

2-128. SCU

Scan until memory byte equals test byte or terminal
byte. The SCU instruction expects the TOS to
contain a test character in the right byte and a
terminal character in the left byte. The second
word of stack contains a DB relative displacement
for a source byte address. The source byte is
tested against the test and terminal characters. If
source byte differs from both of these characters,
the byte address is incremented and the next byte is
tested. This continues until either the test
character or the terminal character is encountered.
The address of character remains in the second word
of stack. If <the last character scanned was the
same as the terminal character, the Carry bit is
cleared; if it was not the same as <the terminal
character, Carry is set. On completion of the scan,
the instruction deletes from the stack the number of
words (0, 1, 2, or 3) specified in the SDEC field of
the instruction.

Instruction Commentary 2-2L3.

Move opcode: 3,bits 11,12 = 10

Indicators: Carry

Addressing mode: byte addressing, DB+

Traps: STUN, STOV, BNDV

01 2 3]456{7 8910 11 12{13 14 15

0j0o 1 0{000[0j0 1|1 | 1] 0] 0]

SDEC

2-45

Instruction Set

Instruction Set

2-129. MVBL Move words from DB+ to DL+, This instruction
transfers a specified number of words from DB+ area
of the data segment to the DL+ area. The
instruction expects a sign word count in A, a DB
relative displacement for a source address in B, and
a DL relative replacement for a target address in C.
As long as the word count in A has not been counted
to zero, the transferring of data will continue as
follows: The contents of the memory - location
specified by DB + B. is transferred to the location
specified by DL + C. If the word count in A is
positive, the source and target displacement values
in B and C are incremented by one on each transfer,
and the word count is decremented by ocne. If the
word count in A is negative, the source and target
displacement values in B and C are decremented by
one on each transfer, and the word count is
incremented by one. Note that the word count is
always changed by one toward zero. On completion of
the bleck transfer, the instruction deletes from the
stack the number of words (0, 1, 2, or 3) specified
by the SDEC field of the instruction. This
instruction <c¢an use split stack.

Instruction Commentary 2-2uk.

Move opcode: 2,bits 11,12 = 00

Indicators: unaffected

Addressing modes: DB+ for source
DL+ fer target

Traps: STUN, STOV, MODE

This is a privileged instruction.

0j1 2 3]4 56{7 8 910 11 12|13 14 15

0{o 1 0{0o 0 o0f0jo 1{0 | 0] 0] 0]

SDEC

2-46

Instruction Set

2-130. MVLB Move words from DL+ to DB+. This instruction
transfers specified number of words from the DL+
area of the data segment tc the DB+ area. The
instruction expects a signed word count in A, a DL
relative displacement for a source address in B, and
a DB relative displacement for a target address in
C. As long as the word count in A has not been
counted to zero, the transferring of data will
continue as follows: The contents of the memory
location specified by DL + B is transferred to the
location specified by DB + C. If the word count in
A 1is positive, the source and target displacement
values in B and C are incremented by one on each
transfer, and the word count is decremented by one.
If the word count in A is negative, the source and
target displacement values in B and C are
decremented by one on each transfer, and the word
count is incremented by one. Note that the word
count is always changed by one towards zero. On
completion of the block transfer, the instruction
deletes from the stack the number of words (0, 1, 2,
or 3) specified by the SDEC field of the
instructien.

Instruction Commentary 2-2Lk.

Indicators: Unaffected

Move opcode: 3, bits 11,12 = 00

Addressing mode: DL+ for source
DB+ for target

Traps: STUN, STOV, MODE

This is a privileged instruction.

ol1 23l456|78910 11 12[13 14 15
—

olo10j000joo1f1 0 of 0

SDEC

Instruction Set

2~-131. MABS

Move using absolute addresses. This instruction
expects to find a signed word count in A, an
absolute source address in C and B (memory bank
address in C), and an absolute target address in E
and D (memory bank address in E). Words from the
source area are moved into the target area with
increasing addresses if the word count in A is
positive or with decreasing addresses if the word
count in A is negative. The positive word count in
A is decremented towards zero or the negative word
count is incremented towards zero with each word
transferred. The transfer of words terminates when
the word count reaches zero, then the instruction
pops the number of words (0 through 7) specified in
the SDEC field from the stack. :

Move opcode: 2, bits 11,12 = 01

Indicators: unaffected

Traps: MODE, STUN

This is a privileged instruction.

0j{1 2 3j4 56(7 8 9|10 11 12|13 14 15

0j0 1 0j000{001; 0 0 1

SDEC
S-4 E Target bank address
S-3 D Absolute target address
S-2 C Source bank address
S-1 B Absolute =ource address
S A Signed (+ or -) word count

2-48

Instruction Set

2-132. MTDS Move to data segment. This instruction expects to
find a positive word count in A which represents the
size of the block of words to be transferred, a DB-
relative address in B to be used in calculating the
source address of the first word to be transferred,
and a offset into a target segment in C to be wused
with target data segment in D to determine the
address of the first target word location. The DST
pointer is fetched from memory location 1 and added
to four times the target data segment number in D to
determine the desired target DST entry. A target
address for storing the first word is then formed by
adding the offset into the data segment contained in
C to the segment base address contained in the
fourth word of the DST entry. (The memory bank
address for the segment is the third word of the DST
entry.) A DB-relative source word address is formed
by adding the DB address of the source segment and
the DB-relative address in B. The source word
pointed to is moved to the target locaticn, the
address pointers are incremented to point to the
next source and data words, and the word count is
decremented. Words from source area continue to be
moved to the target area until the word count
reaches zero. The stack 1is then popped by the
number of words (0 through 7) specified in the SDEC
field.

Move opcode: 2, bits 11, 12 = 11
Indicators: unaffected

Traps: MODE, DSTV, STUN, ABS DST
This is a privileged instruction.

0j1 2 3|4 567 89210 11 12{13 14 15

gjoro0joo0c0oCc1 0 1 1

SDEC
S-3 D Target data segment number
s-2 c Offset into target data segment
S-1 B Source DB-relative address
S A Positive word count

2-49

Instruction Set

2-133. MFDS Move from data segment. This instruction expects to
find a positive word count in A which represents the
size of the block of words to be transfered, an
offset into a source data segment in B to be wused
with source data segment number in C to determine
the address of the first source data word, and a DB-
relative address in D to be used in calculating the
target address of the first word transfer. The DST
pointer is fetched from memory location 1 added to
four times the number in C to determine the desired
DST entry. A source word is then formed by adding
the offset into the a data segment value contained
in B to the segment base address contained in the
fourth word of the DST entry. (The memory bank
address address for the segment is the third word of
the DST entry.) A DB-relative target word address
is formed by adding the target DB address and the
DB-relative address in D. The target word address
thus pointed to receives a word from the source word
address, the address pointers are incremented to
point to the next source word and target word
locations, and the word count is decremented. Words
from the source area ccntinue to be moved to the
target area until the word count reaches zero. The
stack is then popped by the number of words (O
through 7) specified in the SDEC field.

Move opcode: 3 bits 11,12 = 11
Indicators: unaffected

Traps: MODE, DSTV, STUN, ABS DST
This is a privileged instruction.

0{1 2 3j456|789|10 11 12{13 14 15

0l0 10600 0(001 ‘ 11

SDEC
S-3 D Target DB-relative address
S-2 c Source data segment number
S-1 B Cffset into source data seghent
S A Positive word count

2-134. MDS

Move using data segments. This instruction expects
to find a signed word count in A which represents
the the size of the block of words to be
transferred, an offset into the source data segment
in B to be used with the source data segment number
in C to determine the address of the first source
data word, and an offset intc a target data segmeni
in D to be used with the target data segment number
in E to determine the address of the first target
word. The DST pointer 1is fetched from memory
location 1 and added to four times the target data
segment number in C to point to the desired target
DST entry and to four times the target data segment
in E to point to the desired target DST entry. A
source address is then formed by adding the offset
contained in B to the segment base address contained
in the fourth word of the source DST entry and a
target word address is formed by adding the offset
contained in D to the segment base address contained
in the fourth woerd of the target DST entry. (The
memory bank addrecss for a data segment is the third
word of the DST entry.) Words from the source area
are moved into the target area with increasing

addresses if the count in A 1is negative. The
positive count is decremented or the negative count
is incremented with each word transferred. The

transfer of words terminates when the count in A
reaches zero, then the instruction pops the number
of words (0 through 7) specified in the SDEC field
from the stack.

Move opcode 3, bits 11,12 = 01

Indicators: unaffected

Traps: MODE, DSTV, STUN, ABS DST

This is a privileged instruction.

0|1 2 3|4 5 €7 83|10 11 12|13 14 15

0|01 0(000001}1 1 0 1

SDEC
S-4 E Target data segment numbef
S-3 D Offset into target data segment
5-2 C Source data segment number
S-1 B Offset into source data segment
S A Signed (+ or -) word count

Instruction Set

Instruction Set

2-135. PRIVILEGED MEMORY REFERENCE INSTRUCTIONS

2-136. PLDA Privileged load from absolute address. The content
of the Index register is a 16-bit absolute address
in bank 0; the contents of this address is pushed
onto the stack.

Mini opcode: 15, bit 15 = 0
Indicators: CCA

Addressing mode: absolute

Traps: STOV, MODE

This is a privileged instruction.

0|1 2 3{456/789[10 11 12|13 14 15

0{0 1 0/0 0 0[O0t 1/ 0 1] 0] 0 0} 0

2-137. PSTA Privileged store into absolute address. The
content of the Index register is a 16-bit absolute
address in bank O0; the top word of the stack is
stored into memory at the address and then deleted
from the stack.

Mini-opcode: 15, bit 15 =1
Indicators: unaffected
Addressing mode: absolute

Traps: STUN, MODE

This is a privileged instruction.

0j1 23/456/789/10 11 12{13 14 15

0{0 1 0{0 0 0[{0]1 1/ 0 1] 0] 0 O] 1

2-52

2-138. LST

2-139. SST

Load from system table. The X register contains a

value which is used to index into a table pcinted to

by the contents of location %1000+K if K is non-zero,
or by the contents of location %1000+A if K is zero.
The table pointer is also relative to location %1000.

The data accessed in the table is pushed onto the

stack if K is non-zero or if K is zero.
Special opcode: 00

Indicators: CCA

Traps: STUN, STOV, MODE

This is a privileged instruction.

0{1 2 3|4 567 89[10 11 12{13 14 15

0{0 1 1/000(000] 0 Of

. 3

L
.

Store into system table. The X register contains a
value which is used to index into a table pointed to
by the contents of location %1000+k if K is non-
2ero, or by the contents of location %1000+A if K is
zero. The table pointer itself is also relative to
location %1000. The data contained in A if K is
non-zero or in B if K is zero 1is stored into the
calculated address. The stack is then popped by one
if K is non-zero or by two if K is zero.

Special opcode: 15

Indicators: unaffected

Traps: STUN, MODE

This is a privileged instruction.

0j|1 2 3]456;7 83|10 11 12{13 14 15

0{011/000f0

=
-

0 1

[N o
r U

Instruction Set

Instruction Set

2-140. LSEA Load single word from extended address. A bank
address is in B and A is a 16-bit absolute address
of a location in the bank. The word at that
address is pushed onto the stack.

Mini-opcode: 16, bits 14,15 = 00
Indicators: CCA

Addressing mode: absolute

Traps: STUN, STOV, MODE

This is privileged instruction.

0l1 2 3|4 567 89[10 11 12{13 14 15

o 10{oo00fo1 1|1 0 ofofojo

into extended address. A Dbank

2-141. SSEA Store single word
is a 16-bit absolute address of a

address in C and B

location in that bank. The TOS is stored in the
location pointed to and the stack is popped.
Mini-cole: 16, bits 14,15 = 01
Indicators: unaffected
Addressing mode: absolute
Traps: STUN, STOV, MODE
This is a privileged instruction.
0l1 2 3|4 s 6|7 8 9110 11 12{13 14 15
0{0 1 0/000{0 111 0| 0 0| 0 1
2-142. LDEA Load double word form extended address. A bank

is in B and A is a 16-bit absolute address
The double word at that
The word in B is

address
of a location in that bank.
address is pushed onto the stack.
the most significant.
Mini-opcode: 16, bits 14,15 = 10
Indicators: CCA
Addressing mode:
Traps: STUN, MODE
This is a privileged instruction.

cCcA

2 3|4 56/7 89|10 11 12{13 14 15

(o}

101000{01 11 0j0}jO0]1 O

2-54

Instruction Set

2-143. SDEA Store double word into extended address. A bank
address is in D and C is a 16-bit absolute address
of a location in that bank. The double word on the
top of the stack is stored in the location pointed
to and popped from the stack. The word in B is the
most significant.

Mini-code: 16, bits 1k, 15 = 11
Indicators: unaffected

Traps: STUN, MODE

This is a privileged instruction.

0{1 2 3{4 S6{7 8910 11 12|13 14 15

0{0 1 0{000|011] 1 0] 0] 0] 1 1

2-144. IMMEDIATE INSTRUCTIONS

2-145. LDl Load immediate. The immediate operand N is pushed
~ onto the stack. The value of N is given in the
argument field of instruction, and is expressed as 2
positive integer in the range 0 through 255.
Sub-opcode 2: 02
Indicators: CCA on the new TOS
Traps: STOV

0}1 2 3j4 567 89{10 11 12|13 14 15

0/0 1 0{0 0 1{0]

Immediate Operand

Instruction Set

2-146. LDXI

2-147. CMPI

2-148. ADDI

Load X immediate. The Index register is loaded with
the immediate operand N. The value of N is given in
the argument field of the instruction, and is
expressed as a positive integer in the range O
through 255.

Sub-opcode 2: 03

Indicators: unaffected

Traps: None

0|1 2 3j4 S 6|7 89|10 11 12{13 14 15

olo 1 0f0 0 1]1]

L J
" L
Immediate Operand
Compare immediate. The condition Code is set to
pattern C as a result of the comparison of the TOS
with the immediate operand N. The value of N |is

given in the arguvment field of the instruction, and
is expressed as a positive integer in the range 0
through 255. The TOS is deleted.

Sub-opcode 2: 0L

Indicator: CCC

Traps: STUN

0/1 2 3|4 56{7 8 8|10 11 12}13 14 15

olo 1 0{o 1 ofo]

Immediate Operand

Add immediate. The immediate operand N is added to
the TOS in integer form, and the sum replaces the
TOS. The value of N is given in the argument field
of the instruction, and is expressed as a positive
integer in the range 0 through 255.

Sub-opcode 2: 05

Indicator: CCA on the new TOS, Carry, Overflow
Traps: STUN, ARITH

0/]1 2 3|4 S 6|7 89|10 11 12|13 14 15

0l0 1 0{0 1 0|1]

Immediate OUperand

2-56

2-149. SUBI

2-150. MYPI

2-151.

DIVI

Subtract immediate. The immediate operand N is sub-
tracted from the TOS in integer form, and the result
replaces the TOS. The value of N is given in the
argument field of the instruction, and is expressed
as a positive integer in the range 0 through 255.
Sub-opcode 2: 06

Indicators: CCA on the new TOS, Carry, Overflow
Traps: STUN, ARITH

0l1 2 3|4 56|7 8910 11 12{13 14 15

0lo 1 0{0 1 1/0]

-
i .

Immediate Operand

Mupltiply immediate. The immediate operand N is
multiplied with the TOS in the integer form; the 16-
bit integer result replaces the TOS. The value of N
is expressed as a positive integer in the range 0
through 255.

Sub-opcode 2: 07

Indicators: CCA on the new TOS, Overflow

Traps: STUN, STOV, ARITH

7 8 9{10 11 12{13 14 15

m
(]

c{1 2 314

o

010/01 11

|

-

:
Immediate Operand

Divide immediate. The immediate operand N is divided
jnts TOS in integer form; the 16-bit integer
guotient replaces the TOS. The value of N is
expressed as a positive integer in the range O
threugh 255.

Sub-cpcede 2: 10

Indicators: CCA on the new TOS, Overflow

Traps: STUN, ARITH

0{1 2 3|4 56{7 89[10 11 12|13 14 15

olo 1 of1 0 0|o0]

Immediate Operand

Instruction Set

Instruction Set

2-152. LDNI

Load negative immediate. The immediate operand N is
two' s complemented and pushed onto the stack as a
negative integer. The value of N is expressed as a
positive integer in the range 0 through 255.
Sub-opcode 2: 12

Indicators: CCA on the new TOS

Traps: STOV

0[1 2 3]456|789({10 11 12{13 14 15

-
L.

Immediate Operand

2-153. LDXN Load X negative immediate. The Index register is

loaded with the 16-bit two’s complement of the
immediate operand N. The value of N is expressed as
positive integer in the range O through 255.
Sub-opcode 2: 13

Indicators: wunaffected

Traps: None

0(1 2 3|4 S6{7 89(10 11 12113 14 15

Immediate Operand

2-154. CMPN Compare negative immediate. The Condition Code is

set to pattern C as a result of the comparison of
the TOS with the the two's complement of the
immediate operand N. The value of N is expressed as
a positive integer in the range 0 through 25S5. The
TOS is deleted.

Sub-opcode 2: 14

Indicators: CCC

Traps: STUN

0{1 2 3|4 567 8 9{10 11 12|13 14 15

—
-

Immediate Operand

2-155. ADXI

2-156. SBXI

2-157. ORI

to X. The immediate operand N is
added to the content of the Index register in
integer form. The sum replaces the Index register
content. The value of N is expressed as a positive
integer in the range 0 through 255.

Sub-opcode 3: 05

Add immediate

Indicators: CCA on X
Traps: None
0l1 2 314 56/7 8910 11 12{13 14 15
0/0 11]010 11
L J

Immediate Operand

Subtract immediate from X. The immediate operand N
is subtracted from the content of the Index register
in integer form. The result replaces the Index
register content. The value of N is expressed a as
positive integer in the range 0 through 255.
Sub-opcode 3: 06

Indicators: CCA cn X
Traps: None
ol1 2 3l14 56{7 8910 11 12{13 14 15
0{0 1 1{0 1 1]0|
| 4
Immediate Operand
Logical OR immediate. The immediate operand N is

expanded to 16 bits with high order zeros and merged
(inclusive OR) with the TOS; the result replaces the
TOS. The value of N is expressed as a positive
integer in the range O through 255.

Sub-opcode 3: 15

Indicators: CCA

Traps: STUN

2345678910 11 1213 14 15

Imnediate Operand

(]

-59

Instruction Set

Instruction Set

"2-158. XORIl Logical exclusive OR immediate. The immediate
operand N expanded to 16 bits with high order zeros
and is combined (exclusive OR) with the TOS; the result
replaces the TOS. The value of N is expressed as a
pesitive integer in the range 0 through 255. -
Sub-opcode 3: 16
Indicators: CCA
Traps: STUN

0({1 234 56{7 89|10 11 12|13 14 15

J
i

2-159. ANDI Logical AND immediate. The immediate operand N is
expanded to 16 bits with high order zeros and is
combined by logical AND with the TOS; the result
replaces the TOS. The value of N is expressed as a
positive integer in the range 0 through 255.
Sub-opcode 3: 17
Indicators: CCA
Traps: STUN

0{1 2 3[4 56|7 89|10 11 12{13 14 15

0{0 1 1|11 1]1]

ll_._
Immediate Operand

J
i

2-60

Instruction Set

2-160. REGISTER CONTROL INSTRUCTIONS

2-161. SETR Set registers. The registers specified by bits 8
through 15 of the instruction are filled by an
absolute value from the TOS for the Index, Status,
DB, DBBank, and S-Bank registers, and an absolute
value computed by adding {(new) DB to TOS
(displacement value) for the others. If more than
one register (or displacement) is specified, the
registers will be loaded in the order shown below,
such that if all nine were specified, the S-Bank
register would receive the first TOS and the value
for S would be computed from the ninth TOS. The TOS
is deleted after each register is set. SETR is a
privileged instruction except for setting of the
Index register, Q, S, and bits 2 and Y4 through T of
the Status register. (The Status bits are user
traps enable/disable, Overflow, Carry, and Condition
Code. Attempts to set other bits of Status will be
ignored and will not cause a MODE trap.)

*1f bit 8 = 1, load S-Bank from TOS
*If bit 9 = 1, load DB from TOS
*If bit 10 = 1, load DL from (DB+ TOS)
*If bit 11 = 1, load Z from (DB+ TOS)
*If bit 12 = 1, load Status from TOS
*If bit 12 = 1, and not privileged mode: load Status
bits 2 and 4 thru 7 from same bits of
TOS
If bit 13 = 1, load Index register from TOS
If bit 14 = 1, load Q from (DB+ TOS)
If bit 15 = 1, load S from (DB+ TOS)
Sub-opcode 2: 17

Indicators: unaffected (may be-changed if bit 12 = 1)
Traps: STUN, STOV, MODE
*These are privileged operations.

0|1 2 3j]456{789 |10 11 12 {13 14 15

0{0 1 0f1 1 11] | || b

DBDLZ Sta X Q@ S

S-BANK

2-61

Instruction Set

2-162. PSHR

Push registers. The content of a register (or the
displacement it represents) specified by any bit 8
through 15 is pushed onto the stack. If more than
one register (or displacement) is specified, the
contents will be stacked in the order shown below,
so that if 2ll nine were specified, S-Bank would be
on the TOS after execution, DB next, etc. Note that
when S-DB is pushed, the value stacked will be as it
existed before the execution of this instruction.
Stack overflow occurs if the original S+ 9 exceeds
Z, regardless of the number of registers pushed.

If bit 15 = 1, push S-DB
If bit 14 = 1, push Q-DB
If bit 13 = 1, push Index register
If bit 12 = 1, push Status register
If bit 11 = 1, push Z-DB
If bit 10 = 1, push DL-DB
*If bit 9 = 1, push DB-Bank and DB register

*If it 8 =1,
Sub-opcode 2: 11
Indicators: wunaffected
Traps: STOV, MODE
*These are privileged operationms.

push S-Bank

0{123/456|(789 |10 11 12 |13 14 15

0{o 1 0{100[1] | || ||

DBDLZ Sta X @ S

S-BANK

2-62

2-163. XCHD

2-164. ADDS

2-165. SUBS

Instruction Set

Exchange DB and TOS. This instruction expects a new
DB value on the TOS and a new DB-Bank at TOS-1. The
current DB-Bank, DB replaces these values in TOS-1i;
TOS, while the new values are placed in DB-Bank, DB.’

Sub-opcode: 03, bits 12-15 = 0000
Indicators: unaffected
Traps: STUN, MODE

This is a priviliged instruction.

0|1 2 3|4 56/7 89110 11 12{13 14 15

0i10 1 1{000 0]0 0} 1 1| 0 0 0 O
Add to S. The immediate operand N is added to S
unless N is zero; if N is zero, the TOS content,

minus one, is added to S instead.

Instruction Commentary 2-245.

Sub-opcode 3: 12
Indicators: unaffected
Traps: STUN, STOV

0{1 2 3|4 56{7 8910 11 12{13 14 15

0{0 1 1)1 0 1{0]

b J
Immediate Operand

Subtracts from S. The immediate operand N is

subtracted from S unless N is a zero; if N is zero,
the TOS content, plus one, is subtracted from S
instead.

Instruction Commentary 2-2L5.

Sub-opcode 3: 13

Indicators: unaffected

Traps: STUN, STOV

2 3|4 56{7 89310 11 12{13 14 15

0 1|1]

Immediate Operand

2-63

Instruction Set

2-166. RCLK Read clock. This instruction pushes the contents
of the Process Clock register onto the top of the
stack.

Special opcode: U, bits 12-15 = 0001

Indicators: unaffected

Traps: STOV

This is a prvileged instruction for the Series LO/LL.

ol1 23las6/789[10 11 12|13 14 15

olo11/000jo0o1f 0 1] 0l 0 of1

2-167. SCLK Store clock. This instruction expects to find a 16-
bit word on the top of the stack that is used to set
the Process Clock register. The stack 1is then
popped.

Special opcode: L,. bits 12-15 = 0001
Indicators: unaffected

Traps: STUN, MODE

This is a privileged instruction.

0{1 2 3|4 56789110 11 12{13 14 15

0|j0 110000010 0 00 0 1

2-168. PROGRAM CONTROL AND SPECIAL INSTRUCTIONS

2-169. SCAL Subroutine call. Control is transferred to location
pointed to by the evaluation of the local label at
PL-N, unless N is zero; if N is zero the local label
is taken from the TOS and then deleted. The return
address is then pushed onto the stack. Only local
labels are allowed; non-local label gives STT
Violation trap.

L]

-64

2-170. PCAL

Instruction Commentary 2-2L6.
Sub-opcode 3: 01
Indicators: unaffected
Addrassing modes:

Indirect via: PL - N (if N (not=) 0)

TOS (if N = 0)

Local Label: PB+

Traps: STUN, STOV, STIV, BNDV if user or privileged

0{1 2 3][456|7 89j10 11 12|13 14 15

0{011/{000[1]

L J
r 1
N

Procedure call. Control is +transferred to the
location pointed to by the evaluation of the program
label at PL-N, unless N is zero. If N is zeroc the
program label is taken from the TOS and then deleted
and then a four word stack marker is placed on the
stack, and Q and S are updated to point at this new

marker. The program label may be local or extermal.
If the Trace bit is on in the target CST entry, a
call will be made to Trace, segment #1, STT #32
(decimal). If a privileged user is calling a user
segment, it will run in privileged mode.
Instruction Commentary 2-2447.
Sub-opcode 3: 02
Indicators: unaffected
Addressing modes:

Indirect via: PL-N (if N (not=0)

TOS (if N = 0)
Local Label: PB+

Instruction Set

External Label: wvia CST to local label in target segment

Traps: STUN, STOV, CSTV, STTV, ABS CST, TRACE, UNCALL,

BNDV IF user or privileged

0({1 2 3{4 56|78 9|10 11 12|13 14 15

0{0 1 10 0 1/0]

2-65

Instruction Set

2-171. SXIT Exit from subroutine. This instruction is used to
return from a subroutine call by SCAL instruction.
The SXIT instruction assumes that the return address
is on the TOS, and returns program control to this
address. The TOS is then deleted, plus N number of
subroutine parameters. The value of N may be any
number from O through 255.

Instruction Commentary 2-246.

Sub-opcode 3: Ob

Indicators: unaffected

Traps: STUN, STOV, BNDV if user or privileged

0/1 2 3|4 56{7 89|10 11 12|13 14 15

0o 1 1|0 1 0|0|

L J
I i
N
2-172. EXIT Exit from procedure. This instruction is used to
return from a procedure called by the PCAL
instruction or by some interrupts. A normal exit

occurs by restoring the return address to P,

restoring the previous contents of the Index and

Status registers, and deleting all stack variables

incurred by the called routine plus its marker, plus

N number of procedures parameters. The value of N

may be any number from 0 to 255 for exits from PCAL

routines; it must be 0 for exits from interrupt

routines. If bit 0 of the return-P marker word is a

“1", control is transferred to Trace, segment #1, STT

#32 (decimal).

Instruction Commentary 2-2uT.

Sub-opcode 3: 03

Indicators: Restored to values before PCAL

Traps: STUN (going to user mode), STOV, MODE, CSTV, TRACE,
ABS CST, BNDV of user or privileged

0|1 2 3|4 56/7 89|10 11 12(13 14 15

0jo 1 1[0 0 1{1]

2-66

2-173. LLBL Load label. The 1label in the Segment Transfer

2-174. IXIT

Table (STT)at PL-N is loaded onto the TOS. The value

N is a displacement given in argument field of the

instruction. If the label is local, it is converted
to external type when loaded. To be valid, the value
N must point to a location which is actually in the
STT(i.e., N(</=) STTL) in all cases; additionally, in
the case of local labels, N must not exceed octal 177
(decimal 127), since this is the maximum range for
the STT # in the external label result.

Instruction Commentary 2-2u8.

Sub-opcode 3: 07

Indicators: unaffected

Addressing mode: PL-

Traps: STOV, STIV

0|1 2 3|4 56|7 89]10 11 12{13 14 15

1?
-l

Displacement
PL-

Interrupt exit. This instruction is wused to exit
from interrupt service routines which always run on
the Interrupt Control Stack (ICS). This results in a
return to the interrupted process (which may be
another interrupt or the Dispatcher) or a transfer to
the Dispatcher’s entry point. The action taken
depends in part on the sequence of DISP, PSDB, and
PSEB instructions which have been executed. IXIT is
also used by the Dispatcher to exit to a process
being launched.

Instruction Commentary 2-2k9.

Mini-opcode: 17, bits 12-15 = 0000

Indicators: Restored to those before interrupt or as

specified for the Dispatcher

Traps: MODE, STOV, CSTV, TRACE, ABS CST, BNDV if user

or privileged
This is a privileged instruction.

0/1 2 3|4 56|7 89|10 11 12|13 14 15

olo 1 1j000{0111 1 0,0 0 O

2-67

Instruction Set

Instruction Set

2-175. DISP

2-176. PSDB

Dispatch. This instruction is used to transfer to

the Dispatcher’s entry point; or to request such a

transfer if executed while on the ICS or within the

range of a PSDB-PSEB pair.

Instruction Commentary 2-249.

Special opcode: 03, bits 12-15 = 0010

Indicators: See instruction commentary.

Traps: MODE, CSTV, TRACE, ABS CTST, BNDV if user or
privileged

This a privileged instruction.

0{1 2 3{456|789(10 11 12/13 14 15

ofo11j000f000, 1 1 0f0 1 O

Psuedo interrupt disable. The PSDB and PSEB
instruction are wused in pairs and may be nested.
They are used to prevent a dispatch during critical
sections of code, and to avoid unnecessary restarting
of the Dispatcher. The effect of any DISP instruction
executed within the range of a PSDB-PSEB pair located
cutside of the Dispatcher 1is postponed until the
numbers of PSDB and PSEB instructions executed are
equal. DISP is effectively a NOP when executed
within the range of a PSDB-PSEB pair located in the
Dispatcher.

Instruction Commentary 2-249.

Special opcode: 03, bits 12-15 = 0001

Indicator: unaffected

Traps: MODE

This is a privileged instruction.

0{1 23]/456(7 89|10 11 12{13 14 15

0/j011j000j000; 1 1 00 0 1

2-68

2-177. PSEB

2-178. PALUS

Instruction Set

Pseudo interrupt enable. See description of PSDB

instruction just given.

Instruction Commentary 2-2L49.

Special opcode: 03, bits 12-15 = 0011

Indicators: See instruction commentary.

Traps: MODE, CSTV, TRACE, ABS CST, BNDV if user or
privileged

This is a privileged instruction.

0{1 2 3|4 56(7 89|10 11 12{13 14 15

ojo 1 1j000f1t10,1 1 00 1 1

Pause. The computer hardware pauses; interrupts may
occur. Bits 12 through 15 are ignored.

Special opcode: 01

Indicators: Unaffected

Traps: MODE

This is a privileged instruction.

0{1 2 3|14 56|7 8910 11 12{13 14 15

0i101 140 0 0 0]0 0| O 1[

L)

I !
Not Used

2-179. HALT The computer hardware halts; interrupts may not

occur and the manual intervention is required to
restart the computer. Bits 12 through 15 are
ignored.

Special opcode: 17

Indicators: unaffected

Traps: Mode

This is a privileged instruction.

0|1 2 3|4 56{7 8 9{10 11 12{13 14 15

o{o 1 1|0 0 0jojo o] 0 1]

L J
i
Not Used

2-69

lnstruciion Set

2-180. LOCK* This instruction provides a means for one CPU to
to lock out another CPU in a two-CPU system. A
typical application would be in a multiprogramming
system when a CPU 1is going to use a critical portion
of code that is shared by both CPU’s. The LOCK
instruction tests the lockword pointed to by the
contents of the Index register and at the same time
sets a bit in the lockword corresponding to its CPU
number. Bit 15 is set for CPU number one and bit
14 is set for CPU number two. If the lockword
contents was zero, no one had the resource, and the
CPU executing the LOCK instruction gets the resource.
If the lockword was not equal to zero, indicating
that the other CPU has the resource, the instruction
goes into a pause mode and will require the LOCK
instruction from the beginning. :

Mini-opcode: 17, bits 12-15 = 0010
Indicators: unaffected

Traps: MODE

This is a privileged instruction.

0/]1 2 3|4 56|78 9|10 11 12{13 14 15

ojfo11j000{t10, 1 1 00 1 0

2-181. UNLK* This instruction releases a resource previously
locked by the same CPU which executed the LOCK
instruction to secure the resource. The lockword is
fetched and an interrupt is sent to the other CPU if
it is in the pause mode after an unsucessful attempt
to execute a LOCK instruction. The interrupt thus
"awakens' the other resource register and the
instruction clears the lockword releasing the
resource. The other CPU will then (successfully) re-
execute its LOCK instruction.

Mini-opcode: 17, bits 12-15 = 0011
Indicators: unaffected

Traps: MODE

This is a privileged instruction.

0l1 2 3/4 56{789[10 11 12{13 14 15

ojlo10j000Cf0O1T 11 1 00 1 1

*Series I Computer Systems only.

2-70

Instruction Set

2-182. LLSH A bank address is in B and A contains a 16-bit
absolute address in the bank, which points into a
linked list. Each double word link in the list is an
absolute memory address which points to the next
link. C contains a test word and D contains an
offset which indicates the position, relative to each
link, of a target number. At each step, the test
word is compared to the target number. If the test
word is logically less than or equal to the target
number, the instruction terminates. Otherwise, the
contents of B and A is replaced by the next link, the
count in the Index register is decremented, and the
instruction repeats.

Instruction Commentary 2-250.

Mini-opcode: 1L, bit 15 =1

Indicators: CCL if terminated by X = 0
CCE if terminated by target > or = C
CCG if terminated by target = 2%**16 - 1

Addressing mode: absolute +/- offset

Traps: STUN, MODE

This is a privileged instruction.

0{1 2 314 56|7 89|10 11 12{13 14 15

olo 1 ofo 0 ojoj1 1] 0 o] of 0 0] 1

2-183. XEQ Execute stack word. The content of the word in the
stack at S-K is placed in the Current Instruction
Register to be executed. After execution, control is
returned to the instruction after the XEQ unless a
transfer of control was executed (branch, PCAL,
etc.). If the word to be executed is a Stack Op,
only the first position (bits 4 through 9) may be
used; bits 10 through 15 must be a NOP. The value of
K is to O through 15 (decimal).

Instruction Commentary 2-251.

Special opcode: 06

Indicators: set by the executed instruction

Traps: BNDV and traps possible during the executed
instruction’s execution

0|1 2 3|4 5 6|7 89|10 11 12|13 14 1§

0{o 1 1]o 0 0f0j0 1| 1 o

i,
 y

—_

2-71

Instruction Set

2-184. RSW

2-185. PCN

2-186. RCCR** Read system clock counter.

Read Switch register. The content of the Switch
result is pushed onto the stack.

Mini-opcode: 17, bits 15 =0

Indicators: CCA

Traps: STOV, MODE

This is a privileged instruction.

0{1 2 3j]4 56(7 89110 11 12|13 14 15

0olo 1 0[/00o0{oft 1] 0 ojo|/o o0

Push CPU number. This instruction pushes a number
onto the stack identifying the type of CPU executing
the PCN instruction. This will be either 1 or 2.
(1= Series II;2 = Series III.)

Mini-opcode: 17,bits 12-15 = 0010

Indicators: unaffected

Traps: STOV, MODE

This is a priveleged instruction.

0{1 2 3j456{7 89|10 11 12{13 14 15

0j010/00001T1 1 1 0,0 1 0

The contents of the 12-
bit system clock counter are pushed onto the stack.

Opcode: 00
Indicators: unaffected
Traps: Stack overflow

0{1 23{456{78 910 11 12{13 14 15

0j010/000(001} 0 0 0/ 1 0 O| WORD 1

 0{000/000/00O0f0 O O[O0 0 Of WORD 2

**Series 3X/4X/6X Computer Systems only.

2-72

Instruction Set

2-187. SCLR** Set system clock 1limit. The lower 12 bits of the
word on the top of stack are loaded into the system
clock limit register and the stack is popped. -

Opcode: 01
Indicators: unaffected
Traps; none

0{1 2 3|4 56|77 89|10 11 12{13 14 15

0{0 1 0{000{001, 0 0 0|1 0 0| WORD 1

0jo 0 0000|000, 0 O 0] 0 O 1| WORD 2

2-188. TOFF** Hardware timer off. Turns the CPU hardware timer
' off. This timer is used to simulate both System and
Process clocks, so turning if OFF will disable them.
The timer will be turned OFF by the CPU on LOAD,
RESTART, PON and PWF.
Opcode: 03
Indicators: unaffected
Traps: see above

0{1 23/456{7 89|10 11 12|13 14 15

0j01 0000001, 0 0 01 0 O WORD1

ojo 0o0j00O0j0O0O0L 0O O 00 1 1 WORD 2

2-189. SCIN** Set system clock interrupt. The most significant
bit of the System Clock status register is set. If
external interrupts are enabled, there is an
immediate trap to seq. 1, STT 12. If external
interrupts are disabled, then the system clock status
register is incremented and no trap taken.

Opcede: 10
Indicators: unaffected
Traps: see above

0[{1 23|]456|783|10 11 12{13 14 15

0f010(000{001, 0 0 0[1 0O Of WORD 1

0j600j000 000 0 0 10 0 O} WORD 2

**Series 3X/4X/6X Computer Systems only.

2-73

Instruction Set

2-190. TON** Hardware timer on. Turns the CPU hardware timer on.
(See TOFF.)
Opcocde: 02
Indicators: unaffected
Traps: none

0/1 2 3/456|789(10 11 12{13 14 15

0{010/000{001; 0 0 01 O 0] WORD 1

0{000j{00O0{COO0 C O Of 0 1 O] WORD 2

2-191. SBM* Set bank mask. Initializes a masking register inside the
Series LU for use in evaluating CST and DST entries.
This instruction can be written, but not read. The
upper 8 bits of the word on the top of stack are
loaded intec the mask register and the TOS is
decremented.
Opcode: Ou
Indicators: Unaffected
Traps: Stack underflow, Priv. Mocde Violation
This is a privileged instruction for operating system use only.

011 23/456{7 8910 11 12{13 14 15

0j010/000001, 0 0 O0f1 0 0] WORD 1

0j0 000000000 O Of 1 0 0 WRD 2

**Series 3X/4X/6X Computer Systems only.
*Series 44 Computer System only.

(2]
]
-~
S

Instruction Set

2-192. I/O INSTRUCTIONS

The I/O instructions for the HP 303L41A HP-IB Interface Module are described in
the HP 30341A HP-IB Interface Module Reference/Training Manual (P.N. 30341
-90002) in Section II System Overview. .

2-193. SED Set ‘“"enable/disable external interrupts” bit. The
interrupt system is enabled or disabled according to
the least significant bit (bit 15) of the
instruction. If K is equal to 1, bit 1 of the Status
register is set, thus enabling external interrupts.
If X is equal to 0, bit 1 of the Status register is
cleared, thus disabling external interrupts. 1If the
instruction changes bit 1 of the Status register from
1 to 0, any pending interrupts will occur immediately
following the SED instructien.

Special opcode: 02

Indicators: Unaffected

Traps: MODE

This is a privileged instruction.

01 2 3]4 56{7 8 9|10 11 12{13 14 15

olo 1 1[0 00jojoo| 1 o] of o] 0f 0

D/E
L J
t

K

2-194. SMSK Set mask. The SMSK instruction assumes that the TOS
contains the mask word and +transmits the word to all
device controllers. Each "“1" bit in the mask word
sets each Mask flip-flop in the group of device
controllers which are specially wired to be
controlled by that bit. Each "0" bit in the mask
clears each Mask flip-flop in its group. If there is
an I/0 error (no acknowledgement), the SMSK
instruction sets CCL Condition Code, and leaves the
mask on the TOS. If there is no I/0 error, the SMSK
instruction deletes the mask from the stack and sets
the CCE Condition Code. The mask word is also stored
in memory at location 7 for CPU #1 or at location %13
for CPU #2. For the Series 30/33/40/bl4 there is one
CPU and the mask word is stored at location 7.
Special opcode: 04, bits 12-15 = 0000
Indicators: CCE if no error

CCL if error
Traps: STUN, MODE
This is a privileged instruction.

Instruction Set

(SMSK cont.)

0j1 2 3j456(7 8 9(10 11 12113 14 15

0o 1 10 0 0jojo 1] 0 of 0] 0 o] 0

2-195. RMSK Read mask. This instruction loads the 16 bit mask

2-196. SIO*

word from memory into the TOS.

Special opcode: 05, bits 12-15 = 0000
Indicators: unaffected

Traps: STOV

0{1 23{456{7 8910 11 12]13 14 15

ofo 1 1fo 0 o0jojo1| 0 1] 0] 0 0] 0

Start I/0. The SIO instruction expects the absolute
starting address of an I/O program to be on the TOS,
and a device number to be in the stack at S-K. The
instruction first checks if the device is ready for
an SIO by checking bit O cf the device controller's
Status register. Bit 0 is the "SI0 OK" bit. If it
is ready (bit = "1"), the TOS is stored into the
first location of the DRT entry for the device
specified at S-K; an SIO command is then issued to
the device controller to begin execution of its 1I/0
program. If the device is not ready (bit 0 of the
device status= "0"), the content of the device
controller’s Status register is pushed onto the stack
and the Condition Code is set to CCG. If the device
controller does not respond, the Conditien Code is
set to CCL and the instruction is terminated. If the
device 1is ready, the TOS is deleted and the
Condition Code is set to CCE.
Instruction Commentary 2-252.
Special opcode: 0T
Indicators: CCL = non-responding dev1ce controller
CCE = device ready
CCG = device not ready
Traps: STUN, STOV, MODE
This is a privileged instruction.

" Hou

0(1 2 3|4 5 6|7 83|10 11 12{13 14 15

0{0 1 10 0 0[0[0 1] 1 1]

le
h i

*Series 11/111 Computer Systems only.

Instruction Set

2-197. RIO* Read I/0. This instruction expects a device number
to be given in the stack at S-K. RIO first checks if
the device is ready by checking bit 1 of the device
controller’s Status register. If it is ready (bit=
“1"), the 16-bit data word from the device is pushed
onto the stack and the Condition Code is set to CCE.
If it is not ready (bit= "0"), the content of the
device controller’s Status register is pushed onto
the stack and the Condition Code is set to CCG. If
the device controller does not respond to the
readiness test, the Condition Code is set to CCL and
the instruction is terminated.

Special cpcode: 10

Indicators: CCL = non-responding device controller
CCE device ready
CCG = device not ready

Traps: STOV, MODE

This is a privileged instruction.

0{1 2 3]4 56{7 8910 11 12{13 14 15

0{0 1 1{0 0 0{0|1 0] O O]

L |
r 1

K

2-198. WIO* Write 1I/0. This instruction assumes that the TOS contains
’ a data word and expects a device number to be given in the

stack at S-K. WIO first checks if the Device is ready by
checking bit 1 of the Device Controller’s Status register.
If it is ready (bit="1"), The word is transmitted to the
specified device and then deleted from the stack; the
Conditin code is set to CCE. If it is not ready (bit="0"),
the content of the Device Controller’s Status register is
pushed onto the stack and the Condition Code is set to CCG.
If the Device Controller does not respond, the Condition Code
is set to CCL and the instruction is terminated.
Special opcode: 11

Indicators: CCL = non-responding device controller

CCE = device ready

CCG = device not ready
Traps: STUN, STOV, MODE
This is a privileged instruction.

0|1 2 3{456/7 8910 11 12{13 14 15

0{0o 110 0 o0foj1 0] 0 1]

Lo J
r R

*Series II/I1I Computer Systems only.

2-77

Instruction Set

2-199. TIO*

2-200. ClO*

Test I/0. This instruction expects a device number
to be given in the stack at S-K. TIO obtains a copy
of the device status word from the device controller,
pushes it onto the stack, and sets the Condition Code
to CCE. If the device controller does not responi,
the Condition Code is set to CCL and the instruction
is terminated.

Special opcode: 12
Indicators: CCE = responding device controller
CCL = non-responding device controller
Traps: STOV, MODE
This is a privileged instruction.

0|1 2 3|4 56{7 89|10 11 12/13 14 15

0/0 1 1[0 0 0{0]1 O 1 1]

L -l
v 1

Control I/0. This instruction assumes that the TOS
contains a control word and expects a device number
to be given in the stack at S-K. CIO transmits the
TOS to the specified device controller, along with a
CIO signal. If the device controller acknowledges
receiving the word, the TOS 1is deleted and the
Condition Code 1is set to CCE. If the device
controller dces not respond, the Condition Code is
set to CCL and the instruction is terminated.

Special opcode: 13
Indicators: CCE = responding device controller
CCL = non-responding device controller
Traps: STUN, MODE
This is a privileged instruction.

0|1 2 3|4 56|7 89|10 11 12{13 14 15

0/o 1 1[0 0 ojoj1 o 1 1]

Lo J
I 1

*Series I1/111 Computer Systems only.

Instruction Set

2-201. CMD* Command. This instruction assumes that the TOS
contains 16-bit data word to be sent to a system
hardware module and expects a command word in the
stack at S-K. Bits 13 through 15 of the command word
specify a module number, and bits 10 and 11 are used
to specify a module command. (The four possible
commands are interpreted by the target module and do
not form a part of this instruction’s definition.)
CMD sends the 16-bit data word and the 2-bit command
over the central data bus to the specified module,
and then deletes the TOS. (Note: if the description
module is not ready, the CPU will not proceed until
that module becomes ready.)

Special opcode: 1l

Indicators: unaffected

Traps: STUN, MODE

This is a privileged instruction.

0{1 2 3|4 5 6{7 89|10 11 12/13 14 15

0{0 1 1[0 0 00|11} 0 0|

L
r 1

2-202. SIN* Set interrupt. This instruction expects a device
number to be given in the stack at S-K. SIN sets the
Interrupt Request flip-flop in the specified device
controller and sets the Condition Code to CCE. If
the device controller dces not respond, the Condition
Code is set to CCL and the instruction is terminated.
Special opcode: 16
Indicators: CCE = responding device controller

CCL = non-responding device controller
Traps: MODE
This is a privileged instructien.

0|1 2 3|4 56{7 89|10 11 12|13 14 15

olo 1 1{0 0 ofo|1 1| 1 0]

=

fe
-

#Series 11/111 Computer Systems only.

2-79

Instruction Set

2-203. DUMP** Load soft Dump program. A dumpload from the device
in (S) 1is initiated, following the LOAD/START/DUMP
procedure. (See Instruction Commentary 2-252.)
The device is assumed to be a disk; 1 sector (#3
for DUMP) is loaded from device (S), head # (S-1),
and executed as a channel program. The effect is
the same as using the "DUMP" front panel keys. If
the instruction is successful, the result is a LOAD
trap to SEG 1, STT 2L; any error results in a
system HALT (See Instruction Commentary 2-25L4.)
Opcode: 12 :

Traps: LOAD; Stack Underflow; Non-responding device

0{1 23/456/7 89|10 11 12{13 14 15

0{010/000011] 0 0 00 1 0f WORD 1

ojcoo0j00O000CO0; 0 O 1,0 1 Of WORD 2

2-204. WIOC** Write I/O channel. This instruction expects an IMB
"read channel” command in S-1 and a data word (S).
If the abort bit is not set for the device the data
word in TOS and the command in (S-1) are sent to
channel, or channels if global, and the data word and
command are popped from the stack. This instruction
provides full software control of the channel and
devices of any type.

Opcode: 03

Indicators: if error then CCL else CCE

Traps: Stack Underflow; Non-responding device.
This is a privileged instruction.

0f{1 23{456{789|10 11 12{13 14 15

6/j010{000j01T1, 0 0 0)0 1 O0f WORD 1

0/|0 00000000, 0 0 0/ 0 1 1| WORD 2

**Series 3X/4X Computer Systems only.

2-80

program
(s-1).
is read
of the
channel
bit 2

instruction is

channel program
both 0),
but not yet serviced and the channel
instruction state
bit 15 is a 1),

placed in DRTO of that device,
set to 1,1
send to the channel and CCE is set.

2-205. SIOP** Start I/0 program. This instruction expects a channel

pointer in (S) and channel/device number in
The third word of the device DRT entry (DRT3)
with a semaphore read. This delays execution
instruction by a possible independent program
until all the information is in place. If
of the DRT3 (the abort bit) is 1, the
aborted and CCL is set. If the
is halted (if bit 0, 1 of DRT3 are
or if an HIOP instruction has been issued
is in a wait
(bits 0, 1 of DRT3 are 0 and 1 and
then the channel pointer in (S) is
bits 0,1 of DRT3 are
state), an SIO command is
Otherwise if the

(SI0 starting

above conditions are not met then CCG is set.

Opcode: 00
Indicators: Condition Cede
Traps: Stack Underflow; Non-responding device

This is a privileged instruction.

12 3/456{7 8910 11 12|13 14 15
010/000{011;,0 0 0 0 1 0| WORD 1
0lo 00{00O0/{00O0] 0 0 0,0 O O} WORD 2

**Series 3X/4X Computer Systems only.

2-81

Instruction Set

Instruction Set

2-206. INIT** Initialize I/0 channel. The INIT instruction

2-207. MCS**

initializes the channel designated by bits 9-12 in the
TOS by:

Terminating operations in progress on the channel;

Clearing the channels interrupt enable bit;

Setting channels registers to defined initial values;

Setting the 4th word of every DRT entry for this

channel;

Clearing the mask bit for that channel in mem loc 7.
Devices controlled by I/O software can be cleared
only by being issued a DCL or SDC Interface Command
(refer to HP Interface Bus Standards).

Opcode: 06 ‘

Indicator: If not SYS Controller Then CCG, else CCE
Traps: STUN, Non-responding device

This is a privileged instruction.

ol1 2 3l4a 56/7 88910 11 1213 14 15

0|0 1 0/000/011, 0 0 00 1 0 WORD 1

0{0 0 0{00O0{C0COl O O Oj1 1 Of WORD 2

Read memcry controller. An IMB "MCS" operatiocn is
derie. Address lines are set from (S-1), (S). If
address bit 13 is 0, the returned data word is
pushed on the stack; otherwise the data word is put
in TOSA and (S) 1is incremented but is actually not
written to memory. (Note: this means that if the
returned word is to be saved or used, it must be
recovered from TOSA using a "STAX" instruction (or
something similar)). The actual functions performed
by MCS instructions are dependent upon the
pzrticular memory controller used in the system.
Opcode: 07

Traps: Stack Underflow; Non-responding device

0i1 2 3|4 56;7 89|10 11 12|13 14 15

0/010{000{011},0 0 00 1 0f WORD 1

clooojooo0j0o00} 0 O Of1 1 1] WORD 2

*+Series 3X/4X Computer Systems only.

2-82

Instruction Set

2-208. HIOP** Halt I/0 program. This instruction expects a device
number on the top of the stack. If DRT3 (0:2) of
that device indicates that the device channel program
is starting or running, a halt I/O program is sent to
the channel to stop execution of that device’s
channel command program at the occurence of the next

WAIT channel command. If starting, a “halting in
WAIT" state is set to properly terminate the channel
program. If now the channel program is halting but

not yet halted and not in a WAIT instruction, CC is

set to CCG. All other states are set to CCE

including the already halted state. When halted, the

DRT entry for that device points at the WAIT
" instruction at which the channel program halted, bits

0 and 1 of DRT3 are set to 0. If the channel program

was not a wait instruction when the HIOP was issued,

an interrupt request will be generated when the

channel program is halted.

Opcode: 01

Indicators: Condition Code

Traps: Stack Underflow; Non-responding device

This is a privileged instruction.

0|1 2 3|4 56{7 8310 11 12{13 14 15

0{0 1 0{000{011, 0 0 0/ 0 1 0 WORD 1

0|0 00{00O0/OOO| 0 O O 0 O 1| WORD 2

2-209. SEML*** Semaphore load. The contents of the memory location
' address (S-1), (S} are read by a special memory
operation that reads the location and replaces its
contents with 1’s in one step. The original contents
of the location is pushed onto the stack.
Opcode: 10
Indicators: CCA on new TOS
Carry set if (E) = -1

Traps: Stack Underflow; Non-responding device

0l1 2 3|4 56{7 8 3|10 11 12|13 14 15

olo10{000{011,0 0 00 1 O0f WORD 1

0|0 00{000C0O00C 0O O 1} 0 0 O} WORD 2

+*Series 3X/4X Computer Systems only.
*3%Serjes 30/33 Computer Systems only.

2-83

Instruction Set

2-210. RIOC** Read 1I/0

©2-211. STRT**

command from TOS is sent to the channel

channel.

if global command)
the stack.

Opcode:

02

Indicators:

Traps:

This instruction expects am IMB
"read channel” command to be on the top of the stack.
If the abort bit is not set for the device,

the RIOC

(or channels

and the data read is pushed onto

Condition Code
Stack Underflow; Non-responding device

This is a privileged instruction.

23

456

789

10 11 12

13 14 15

10

000

011

0 0 0

0{0

00

000

000

0 0 O

Initiate
(S) is

procedure.
is assumed to be a disk;
is loaded from device (S),
channel program.

"START"

device
STRT)
executed

warmstart.
initiated,

as

a

same as using the

instruction is successful,
STT2h;

to SEG1,

any

WCRD 1

WORD 2

A warmstart from the device in

following the
(See Instruction Commentary 2-252.)
1l sector
(s-1), and

head #

LOAD/START/DUMP

The
(#2 fer

The effect is the

front panel key.
the result is a LOAD trap
error results in a SYSTEM HALT

(See Instruction Commentary 2-254.)

Opcode:
Traps:

11
Stack Underflow; Non-responding device

23

456

7889

10 11 12

13 14 15

000

011

0 0 O

01 0

0(j0 00

000

000

0 0 1

0 0 1

** Series 30/33/40/44 Computer Systems only.

o

-84

If the

WORD 1

WORD 2

Instruction Set

2-212. LOOP CONTROL INSTRUCTIONS

2-213. TBA Test and branch, limit in A. This instruction
expects top three elements of the stack to be
initialized as follows: .- A contains a 1limit, B
contains a step size, and C contains a DB+ relative
displacement for the address of a variable. TBA
tests the variable against the limit. If the limit
is not exceeded, control is transferred to the
branch address at P +/- displacement. If the limit
is exceeded, the top three elements of the stack are
deleted and execution continues at P + 1.
Instructions Commentary 2-252.

Memory opcode: 05, bits 4,5,6 = 000

Indicators: unaffected

Addressing mode: P relative (+/-)

Traps: STUN,STOV, BNDV, ENDV on P if user or
privileged

0(1 2 3|4 7 89110 11 12113 14 15

m
[\

0/1 0 10 0 0]+/-|

L J
|

Displacement

2-214. MTBA Mcdify variable, test and branch, limit in A. This instruction
expects the top three elements of the stack to be initialized as
follows: A contains a limit, B contains a modifying step size, and
C contains a DB+ relat ive displacement for the address of a vari-
able. MTBA adds the step size to the variable in integer form,
replaces the old variable with this new sum, and tests the new sum
against the 1limit. If the 1limit is not exceeded, comtrol is
transf erred to the branch address at P +/- displacement. If the
limit is exceeded, th e top three elements of the stack are
deleted and execution continues at P+1l.

Instruction Commentary 2-253.

Memory opcode: 05, bits 4,5,6 = 010

Indicators: unaffected

Addressing mode: P relative {(+/-)

Traps: STUN,STOV, BNDV, BNDV on P if user or
privileged)

0{1 2 3|4 56{7 89|10 11 12{13 14 15

01 01|01 0f+/-]

Displacement

2-85

Instruction Set

2-215. TBX Test and branch, variable in X. This instruction
requires that the Index Tregister contains the
variable and that the top two elements of the stack
are initialized as follows: A contains a limit and B
contains a set size. TBX tests the variable in X
against the limit. If the limit is not exceeded,
control is transferred to the branch address at P +/-
displacement. If the limit is exceeded, the top two
elements of the stack are deleted and execution
continues at P + 1.

Instruction Commentary 2-252.

Memory opcode: 05, bits 4,5,6 = 100
Indicators: unaffected

Addressing mode: P relative (+/-)
Traps: STUN, BNDV if user or privileged

0f1 2 3|4 56{7 89|10 11 12|13 14 15

0{1 0 1[1 0 0f+/-]

L,

-

Displacement

2-216. MTBX Modify wvariable in X, test and ©branch. This
instruction requires that the Index register
contains the variable and that the top two elements
of the stack are initialized as follows: A contains
a limit and B contains a modifying step size. MTBX
adds the step size to the variable in integer form,
replaces the old Index register contents with this
new sum, and test the new sum against the limit. If
the limit is not exceeded, control is transferred to
the branch address at P +/- displacement. If the
limit is exceeded, the top two elements of the stack
are deleted and execution continues at P + 1.
Instruction Commentary 2-253.

Memory opcode: 05, bits 4,5,6 = 110
Indicators: unaffected

Addressing mode: P relative (+/-)
Traps: STUN, BNDV if user or privileged

0|1 23/]4586|7 823{10 11 12|13 14 15

01 0 1{1 1 0|+/-]

le
U

—.

Displacement

2-217. MEMORY ADDRESS INSTRUCTIONS

2-218. LOAD Load word onto the stack . The content

2-219. LDX

2-220. STOR Store TOS intc memory. The content

of the
effective address location is pushed onto the stack.

Memory opcode: Ob

Indicators: CCA

Addressing modes: P+, P-, DB+,Q+, Q-, S- relative
Direct or indirect
Indexing available

Traps: STOV, BNDV

0/1 2 3[4 56|/7 8910 11 12{13 14 15

01 0 0|x|I]

L

J
y
Mode and Displacement

Load Index. The content of the effective address
memory location is loaded intc the Index register.
Memory opcode: 13
Indicators: CCA :
Addressing modes: P+. P-, DB+, Q+, Q- S- relative
Direct or indirect
Indexing availatle

Traps: NDV

0/1 2 3|4 56|77 8910 11 12{13 14 15

110 1 1{x] 1]

-
—

Mode and Displacement

of the TOS is

stored inte the effective address memory locatien,
and is then deleted from the stack.
Memory opcode: 05, bit 6 =1
Indicators: unaffected
Addressing modes: DB+, Q+, Q-, S- relative
Direct or indirect
Indexing available

Traps: STOV, BNDV

0/1 2 3|4 56|7 89|10 11 12}13 14 15

0{1 0 1|x|I]1

L J
r 1
Mode and Displacement

2-87

Instruction Set

Instruction Set

2-221. LDPP Load double from program, positive. The double word
contained at P + N is pushed onto the stack.
Sub-opcode 3: 10
Indicators: CCA
Addressing mode: P+ relative
Traps: STOV, BNDV

0/1 2 3|4 56{7 89|10 11 12{13 14 15

P+ Displacement

(8]
]
[8]

2

9

. LDPN Load double from program, negative. The double word
contained at P - N is pushed onto the stack.
Stack-opcode 3: 11
Indicators: CCA
Addressing mode: P- relative
Traps: STOV, BNDV

0{1 2 3|4 56|78 9{10 11 12{13 14 15

0lo 1 1[1 00[1]

P+ Displacement

2-88

Instruction Set

2-223. LDD Load double. The contents of the effective address
memory location (E) and the succeeding location (E+1)
are pushed onto the stack. The content of E, the
most significant word, is loaded into B; the content
of E+1, the least significant word, is loaded into A.
If indirect addressing is used, the word referenced
by the initial address (base + displacement) contains
a DB+ relative word address. If indexing is used,
the effective address is obtained by adding twice the
contents of the Index register to the relative word
address.

Memory opcode: 15, bit 6 =1
Indicators: CCA
Addressing modes: DB+, Q+, Q-, S- relative
Direct or indirect
(for final indirect: DB+ only)
Doubleword indexing available
Traps: STOV, BNDV

0f1 2 3j4a 56;7 88110 11 12;13 14 15

1110 1]x]1]1

L N}

k
Mode and Displacement

2-89

Instruction Set

2-224. STD

2-225. LRA

Store double. The top two words of the stack are
stored into the effective address memory location (E)
and the succeeding location (E + 1), and are then
deleted from the stack. The content of B, the most
significant word, is stored into E; the content of A,
the least significant word, is stored into E + 1. 1If
indirect addressing is used, the word referenced by
the initial address (base + displacement) contains a
DB+ relative word address. If indexing is used, the
effective address is obtained by adding twice the
contents of the Index register to the relative word
address.
Memory opcode: 16, bit 6 =1
Indicators: unaffected
Addressing modes: DB+, Q+, Q-, S- relative

Direct or indirect

(for final indirect: DB+)

Doubleword indexing available
Traps: STUN, BNDV

0|1 23/456/7893|10 11 12[13 14 15

1111 0{x] 1|1

L J

y
Mode and Displacement

Load relative address. The effective address is
computed, then the appropriate base register (PB for
P+ or P- addressing or DB for DB+, Q+, Q-, and S-
addressing) is subtracted. The resulting relative
address is pushed onto the the stack.

Memory opcode: 17

Indicators: unaffected

Addressing modes: P+, P-, Q+, Q-, S- relative
Direct or indirect
Indexing available

Traps: STOV, BNDV if indirect

01 23/456{7893|10 11 12{13 14 15

111 1 1|x]1]

L

J
i

2-90

Instruction Set

2-226. LDB Load byte. The content of the effective byte address

2-227. STB

memory location is loaded right Jjustified onto the

TOS. If indirect addressing is used, the word
referenced by the initial address {base +
displacement) contains a DB+ relative address. If

indexing is used, the effective byte address is
obtained by adding the positive byte index in the
Index register to the relative byte address.
Memory opcode: 15, bit 6 = 0
Indicators: CCB
Addressing modes: Byte addressing-
DB+, Q+, Q-, S- relative
Direct or indirect
Byte indexing available
Traps: STUN, BNDV

0{1 2 3|14 56/7 88|10 11 12{13 14 15

111 0 1{x]1]0

L J
)
Mode and Displacement

Store byte. The right byte (bits 8 throughl5)
of the TOS is stored into the effective byte address
memory location and the TOS is deleted. 1If indirect
adéressing is used, the word referenced by the initial
address (base + displacement) contains a DB+ relative
byte address. If indexing is used, the effective byte
address is obtained by addint the positive byte index
in the Index register to the relative byte address.
Memery opcode: 16, bit 6 = 0
Indicators: Unaffected
Addressing modes: Byte addresing

DB+, Q+, Q-, S- relative

Direct or Indirect

Byte indexing available
Traps: STUN, BNDV

0]1 2 3j4 56{7 89|10 11 12{13 14 15

111 1 0{x|1]0

L J
y
Mode and Displacement

2-91

Instruction Set

2-228. INCM

2-229. DECM

Increment memory. The content of the effective
address memory location is incremented by one in

integer form.

Memory opcode: 12, bit 6 =0

Indicators: CCA, Carry, Overflow

Addressing modes: DB+, Q+, Q-, S- relative
Direct or indirect
Indexing available

Traps: BNDV, ARITH

0|1 2 3]4 56/7 89|10 11 12|13 14 15

110 1 0{x|1]0

L

J
r - Ny
Mode and Displacement

Decrement memory.' The content of the effective
address memory location 1is decremented by one in
integer form.
Memory opcode: 12, bit 6 =1
Indicators: CCA, Carry, Overflow
Addressing modes: DB+, Q+, Q-, S- relative

Direct cr indirect

Indexing available

Traps: BNDV, ARITH

0|1 2 3|4 56{7 89|10 11 12|13 14 15

110 1 0{x|1|1

L N

b
Mode and Displacement

2-92

2-230 ADDM

Instruction Set

Add memory to TOS. The content of the effective
address memory location is added in integer form to
the TOS. The result replaces the operand on the TOS.
Memory opcode: 07
Indicators: CCA, Carry, Overflow
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative
Direct or indirect
Indexing available

Traps: STUN, BNDV, ARITH

0/1 2 3/]4 56{7 895{10 11 12|13 14 15

0|1 1 1{Xx|1]
L : J
Mode and Displacement

2-231. SUBM Subtract memory from TOS. The content of the

effective address memory location is subtracted in
integer form from the TOS. The result replaces the
operand on the TOS.
Memory opcode: 10
Indicators: CCA, Carry, Cverflow
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative
Direct or indirect
Indexing available
Traps: STUN, BNDV, ARITH

0{1 2 3j4 5€|7 89|10 11 12{13 14 15

110 0 0|1

L J

Mode and Disﬁlacement

Instruction Set

2-232. MPYM

2-233. CMPM

Multiply TOS by memory. The TOS is multiplied in
integer form by the content af the effective address
memory location. The least significant word of the
result replaces the operand on the TOS.
Memory opcode: 11
Indicators: CCA, Overflow
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative
Direct or indirect
Indexing available
Traps: STUN, STOV, BNDV,. ARITH

0/|1 23|14 56{7 8910 11 12{13 14 15

110 0 1]x]1]

Mode and Displacement

Compare TOS with memory. The Condition Code is set
tc pattern C as a result of the compariscn of the TOS
with the content of the effective address location.
The TOS is then deleted.
Memory opcode: 06
Indicators: CCC
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative
Direct or indirect
Indexing available

~Traps: STWN

0{1 2 3|4 56/7 8910 11 12{13 14 15

0l1 1 0fx|1]

J
i

b

Mode and Displacement

2-94

Instruction Set

2-234. INSTRUCTION COMMENTARY
2-235. Commentary for MPYL . MPY, DTST, FIXR, FIXT, LMPY

These six instructions provide for the deletion of the most significant word of a doubleword
result. The assumption is that the result of the instruction (e.g., multiplication product) does not
require more than 16 bits to represent it. The MPY instruction deletes automatically during
execution; the remaining five instructions simply test the results and provide an indication
(Carry bit) to note whether or not the low order word fully represents the true result. Thus, for
these five, the programmer may choose to insert a delete sequence (see figure 2- 1) to delete the
high order word if it is insignificant.

For MPYL, DTST, FIXR, FIXT, and LMPY, the Carry bit is cleared if the high order 17 bits are
all zeros or all ones. This test ensures that the sign bit of the single-length result will be the same as
the sign of the double-length result. If thisis not the case, Carry is set, and the most significant
word should not be deleted. For MPY, Overflow will be set if the test fails, meaning that MPYL
should have been used instead of MPY.

2-236. Commentary for DFLT.FLT .FADD, FSUB, FMPY, FDIV, FIXR, FIXT

These e:ght floating point instructions are rounding or truncating in computing a final result
and except for DFLT and FLT, are subject to both overflow and underflow. The following para-
graphs explain these conditions as they apply to HP 3000 Computer Systems.

Rounding and Truncation. Figure 2-2 illustrates both rounding and truncation. Rounding 15 2
simple matter of adding a "1" to whatever 1s in bit position 32. For FIXR, the binary point of
the fixed point result {ollows bit position 31. If bit 321sa "1"(case A in the figure}, adding "1°"
will earry into bit 31. thus incrementing the representable value. If bit 321is "0" (case B), add-
g “1" will not cause a carry, and the representable value is not changed.

Sign of a Sign ot a
Doubie-lengtn Single- length
integer integer

/

<

. 0 .
(NS IEEESERENENEIEEEEENERENERERS

0000000000000000 OX---~===-c-mwaex-- X
1111111111111 111 1 X=-----cnccenas %
~ > / -)
High Order Sigruficant
17 Bits Data Buns

Exampie deiete sequence
MPYL.

BCY --2.
DELB.

Figure 2-1. Deleting a High Order Word

o
]
O
(¥,

Instruction Set

ROUNDING

10 154 0

15

[T I T T T T I iTT]

Ho
_—
_—

[[T 11

P01 E'IO 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31;132)
1 \ H
']
! 1 e Fraction >
“ Unsigned fixed point result for FIXR P'e
FixedpointJ
0 1
+1 A
Decimal 1 -t
Examples: 1 X e v e e mm - 1150--- ——p 1N eeeeeeea 2
M1 Xemmmmmm 1049--- — H1Xea-a---- 1
AX e mmmm - 1]50--- —» -IX-c--o--- 2 0 o
I T P 1la9--- —_— 1 X-aeeeea- 1
-1 B
0 -
TRUNCATION
= Truncate
0 1 2 3 4 5 6 7 8 9 10
o]+ 0 ofo o ofo o 1]+1{1 ofo o o] oo o ofo 0o ofo 0 ofo 0 ofo 0 0]
Exp =1 Manuissa = 1.11

v

VALUE = 11.1 (or 3%}

}—0 Truncate

Figure 2-2. Rounding and Truncation

2-96

Instruction Set

Truncation is used conly by the FIXT instruction and consists of discarding all fractional bits after
computing the effective binary point position. This is shown in the lower part of figure 2-2, which
illustrates the case of truncating the decimal number 3.5t0 3. The biased exponent {octal 401)
represents an exponent of 1. The fraction, as stored, is .11 which, when combined with the assumed
leading 1 gives a resultant mantissa of 1.11. The positive exponent of ! implies that the effective
binary point position is one place to the right. Thus the true binary value represented 1s 11.1,
which is 3.5 in decimal. Therefore, in this case, truncation of the fraction consists of discarding all
low order bits from 11 through 31.

Overflow and Underflow. Figure 2-3 illustrates overflow and underflow for the 32-bit floating
point instructions. Overflow is caused by these instructions when the computed result (either posi-
tive or negative) is too large to be represented. Underflow is caused when the computed result is
too small to be represented. The limits are defined in figure 2-3.

- When user traps are enabled, an overflow or underflow trap will occur to indicate which type of er-
ror resulted. If the traps are not enabled, the Overflow bit will be set on either type of error.

It is impossible to reconstruct correct answers from overflow or underflow results. If the exponent
and fraction are both zero and there is an underflow, the result should be take as +/- (depending
on sign bit) 2¥*-256. In all other cases, test bit I(most significant bit of exponent). If this bat 1s
0, add 512 (decimal) to the exponent; if itis "1", subtract 512 from the exponent to reconstruct
the correct biased exponent.

2-237. Commentary for ASL, ASR, LSL, LSR, CSL, CSR

The actions of the six single word shift instructions are shown in figure 2-4. It 1s assumed that the
shift count specified in the argument field of the instruction 1s 3 1n each case. The before and af-
ter conditions of the TOS word are shown for each example.

In the case of arithmetic shifts, the sign bit is always preserved. When shifting left, the bits
shifted out of bit 1 (most significant bit next to the sign bit) are lost; zeros are filled into the va-
cated low order bit positicas. When shifting right, the sign bit is copied into the vacated high or-
der bit positions, and bits shifted out of bit 15 (least significant bit) are lost.

In the case of logical shifts, all bits are shifted. Bits are lost out of the high end when shifting
left and out of the low end when shifting right. Zeros are filled into the vacated bit positions.

In the case of circular shifts, no bits are lost. Bits shifted out of the high end when shifting left
are filled into the vacated low order bit positions. When shifting right, bits shifted out of the
low end are filled into the vacated high order bit positions.

Note that, for all shift instructions, the number of shifts is determined either by the value specified
in the argument field of the instruction or, if X 1s specified ("1" in bit 4), by adding the argument
field value to the Index register contents. This permits the number of shifts to be computed as well
as explicitly specified.

2-97

Instruction Set

BINARY REPRESENTATION

VALUE
{Mantissa) Exponent s Exponent Fraction
Decimal Binary
OVERFLOW =
(100 1arge .
resent) 2)23%% +257
to represent (2) ~ 256
3
1187921 x 10" (2_2_21)2155/ 0 +255 111111111 IER R R R R R REREEERRRRREE]
Decimal
(=)
0] +255 111111111 0000000000000000000000
+127
RANGE OF
POSITIVE NUMBERS +63
+31
+1 0 0 100000000 0000000000000000000000
-32
-64
-128
= -256
Decimal
-8 (1+2722) 2250
8.63617 X 10 0 T 000000000 0000000000000000000001
UNDERFLOW (mz-ase” l
{100 smait -256
to represent) '2_57
ZERO 0 — 0 000000000 0000000000000000000000
UNDERFLOW 257
ftoo smait -256
10 represent) (_”2—‘156 T
4 -8.63817x10°"® 0 2_2’,2_:“/ 1 l 000000000 0000000000000000000001
Decimai BARAS
(= -256
-128
-64
-32
RANGE OF i 1] o 100000000 0000000000000000000000
NEGATIVE NUMBERS +31
+63
+127
11 +25 [111111111 0000000000000000000000
=
-1 15:)9.:;";10” -(2-277%) 2”5\
. 1 +255 T"M11111 1 IREEEREERERERRREREREREEREE
OVERFLOW 2245 i
1190 rarge .
to represent)

Figure 2-3. Ranges of 32-Bit Floating Point Numbers

2-978

Instruction Set

Arithmetic Shift Left ASL 3
Lost

LN
CENEEEENEEEEEEEE

st T T ITPT i1] felofoj=o

Arithmetic Shift Right ASR 3

Lost

SEENEEENENEEEEER

(sisfs{si TV T 0TV ITTP]

—

Logical Shift Left LSL 3

Lost

\
IEENEENEEEERRENE

i
LI TP]] Jefojof—o

Logical Shift Right LSR 3
o
QHHHIIHHHI
N

o—fejofo] [V[[]I TTJI]]

Circular Shift Left CSL 3

ICONEEEEERNEEEEE
rﬁnuuuﬁﬁﬁ

Circular Shift Right CSR 3

IEENERERENERNONE

(OHbHHJIHHHIl]

Figure 2-4. Single Word Shifts

2-99

Instruction Set

All shift instructions except TNSL use the shift count in a modulo 64 manner. Thus if the final
shift count 15 100 octal (64 decimal), the data is not shifted at all. Furthermore, if the number of
shifts equals or exceeds the number of magnitude bits (whether single, double, or triple word),
the following will occur: for left arthithmetic shifts and all legical shifts, the magnitude will be all-
zero; for right arthithmetic shifts, all magnitude bits will be the same as the sign bit; for cir-
cular shifts, the circular shifting will continue until the specified number of shifts (up to 63) have
been achieved.

Except for TNSL (see Instruction Commentary 2-238) the execution of shift instructions does not
alter the content of the Index register. '

2-238. Commentary for DASL, DASR, DLSL, DLSR, DCSL, DCSR

The actions of the six double word shift instructions are shown in figure 2-5. The shift count,
specified in the argrument field of the instruction, is assumed to be 3 in each case. The before and
after conditions of the two top words of the stack are given in each example. The TOS contains
the least significant half of double word integers, and the second word (B, or TOS-1) contains the
most significant half.

Double word arthithmetic, logical, and circular shifts are the same as the corresponding single
word shifts described above in Commentary 3 except for the word length. This means that, when
shifting left, bits shifted out of the high order end of the low order order word are filled into the
low end of the high order word. When shifting right, bits shifted out of the low end of the high
order word are filled into the high end of the low order word. Similarly, on circular shifts, bits shift-
ed out of one end of the double word are filled into the opposite end of the double word.

2-239. Commentary for TASL, TASR, TNSL

Figure 2-6 illustrates the actions of the three triple word shift instructions. Two of these, the ar-
thithmetic shifts, are the same as the single and double word shift instructions previously described
in Instruction Commentaries 2-335 and 2-336, except that three words are shifted. The TOS con-
tains the least sigmificant word, B (or TOS-1) contains the middle word, and C (TOS-2) contains the
most significant word.

The TNSL (Triple Normalizing Shift Left) instruction is a special case. Instead of specifying a shift
count, TNSL shifts left arithmetically until a “1" is shifted into bit 6 of the most significant
word. and the number of shifts is counted in the Index register. The argument field is ignored.
B:its O through § of the most significant word are cleared.

The TNSL instruction clears the Index register before beginning to shift unless X is specified in bit 4
of the instruction. If X is specified, the shift count adds on the existing contents of the Index
rezister. If bit 6 of C and all lower order bits are zero, s "1" cannot be shifted into bit 6 of C.
TNSL initially tests for this condition and, if true, bypasses the shift operation and simply puts
42 into (or adds 42 to) the Index register and does not clear bits O through S of C. This is the
value that would exist if the shifts were actually executed.

The purpose of the TNSL instruction is to normalize a triple word floating point number. Such a
number has 42-bit mantissa consisting of a leading "1", 38 representable fraction bits, a round-
ing bit, and two guard bits in the least significant word. TNSL assumes that the number has
previously been left-shifted three places in order to include rounding and guard bits in the least sig-
nifcant word. Thus the leading "1", instead of being assumed to exist in the 9 position of C (see
figure 2-6) is now moved to the bit 6 position.

Instruction Set

[TOS - 1 | T0S |
Doubie Arithmetic Shift Left DASL 3

M

SEEEEEEEEEEEEEE N EEEEREEREEEEE

Pa—

GLITTTITTIIT] CILTITTI Tt] fofoJof—o
Double Arthmetic Shitt Right DASR 3

SEEEEEEEEEESREEN EENEEREREN

MSISISHHHHH%HHHH

Doube Loa.ca: Shift Left DLSL 3

-

1
!

Doubte Circutar Shift Letr DCSL 3

IDOEEEEEENEEENEEIEEEREREEN

UIHH!HHIH%HUNH

lleld‘j
Double Circular Shidt Right DCSR 3
SEEEEEEREEENEEER]EEEEEREEEEEENOOE
RN

(ﬂmbhﬂlllllTHllI] HEEEERRE

Figure 2-5. Double Word Shifts

2-101

Instruction Set

[TOS - 2 [TOS - 1 [TOS |

Triple Arithmetic Shift Left TASL 3

Lost

b
CEEEEEEENSEREEEE R EEEEEEEEEEEEERE R EEEEEERERREREEER

e

\
LUV LT PP PP P LT T T LT TP TP T LI T T T T T T TTTT Teolo}—o

Triple Arithmetic Shift Right TASR 3

Los:

i’
JENEEERSEEEEEEEE RS EEEEEEEEENEEEEE R ENREENEEERENENEE

N

HS000EEEEESEEEEEE R IEEEEEEEEEEEEEER R ERERNERERRREEEER

—

Triple Normahizing Shift Left TNSL

s1[1] [Jofolofofofol [YT TTTTTITTITTITI[IITITTTTITITITITIT]

Lolofolofolo W[TTTTTT T ITTTTTTTT T (T TTTTTT [ofolelole]e[o}0

Figure 2-6. Triple Word Shifts

2-102

Instruction Set

2-240. Commentary for QASL, QASR

The two quadruple word shift instructions are the same as described previously for single,
double, and triple word shift instructions in Instruction Commentaries 2-335 through 2-237 respec-
tively, except that four words are shifted. The TOS (A) contains the least significant word and D
contains the most significant word.

2-241. Commentary for EXF, DPF

Figure 2-7 compares the operations of EXF and DPF. In the case of EXF, only the TOS word 1s af-
fected. Assuming values of 2 for J and 8 for K, bits 2 through 9 will be extracted and moved to
bits 8 through 15 (i.e., right-justified). Bits O through 7, in this example, are filled with zeros In
. the case of DPF, the two top words of the stack are affected. The second word of the stack (S-1)
is assumed to contain a word that is arbitrarily represented here by letters "a" through “"p".
Assuming values of 4 for J and 6 for K, the six least significant bits of the TOS word are deposited
into the second word, beginning at bit 4 and ending at bit 9. The remaining bits of the second
word are unchanged, and the combined result becomes the new TOS. Note that since the Jand K
fields each have four bits, they may specify values from O through 15 (decimal). The f{ield may

wrap around the end of the word; i.e., bit 15 isone bit to the left of bit 0.
2-242. Commentary for BR

The P relative mode of BR, the unconditional branch instruction, is a conventional P relative
branch except for the indexing capability and the extended displacement range. Bits & through 13
are available to specify displacement. which therefore can be up to +/- 255. The DB, Q, and S
relative mede. however, are unconventional in that they permit indirect branches through the data
stack. (It is both illegal and impossible to have a direct branch to the stack; the coding of "01"
from bits § and 6 encodes the BCC instruction.)

Figure 2-8& shows an example of the S- relative mode. Assume that the instruction in location P
specifies the S- relative made, with a displacement of 4, and indexing. This causes an indirect
branch to S-4 in the data stack.

The content of S-4 is then added PB, thus pointing at location "a" in the code segment. Since in-
dexing is specified, the value contained in the Index register is also added to the address being
computed. Thus the ultimate effective address for the branch (next P) is location "a" displaced by

the index register.

Note particularly that the indirect address given in the stack is relative to the program base. PB,
not to P as is usually the case. Also note that the displacement is relative to a location 1n the stack
(DB, Q. orS), and that indexing is applied after the indirect addressing has been accomplished.

The displacement range for the DB, Q, and S modes depends on which mode is selected. For
DB+, bits & through 15 provide a range of O through +235. For Q+, bits 9 through 135 provide a
range of Othrough +127. For Q- and S-, bits 10 through 15 provide a range of O through -63.

2-243. Commentary for MOVE, MVB, MVBW k6 CMPB, SCU, SCW

These six instructions are members of the move group and as such deal with strings of words or bytes.
The first three physically move a word or byte string from one block of locations in primary memory
to another. The CMPB instruction does not move data but compares data in two complete strings,
byvte by bvte. The last two also do not move data but scan a data string testing the string byte by
byte against a test character and a terminal character.

2-103

Instruction Set

BEFORE AFTER
EXF Extract Field
J = 2
K =8
JEEEEEEENEREREEN s{olofotofojojojof | [[] I I |
2 3 4 5 & 7 8 9 10 1l i2 13 13 15 o] 1 2 35 4 5 8 7 8 2 1C 1l i 12 .8 it
It s B
Extract
DPF Deposit Fieid
J = 4
K =6
Deposit
B Y
s-1 plejdle|tliglnl il xltlimlniolp Sa{blc[d{lll[[lk!'lmln[oln
$ e o e o e . > ———— -
P02 3 a4 5 8 7 8 9 10 1112 i3 i 15] 2 3 4 ¢ & 7 8 9 1C 12 13 43 s

g

;’—_4

Figure 2-7.

2-104

EXF and DPF Operation

CODE

P8

Next P

Instruction Set

PB - (S-4)

|
¥ PB+(S-4)+X

2-105

Figure 2-8. Indirect Branch via Stack

o]}

T Displacement
=4

Instruction Set

SOURCES. The MOVE, MVB, and CMPB instructions may take source data from either the code
segment or the data segment. (For reference purposes, “source" and "target" terminology is
retained for CMPB, even though there is no move operation.) If bit 11 of the instruction isa "0",
source addresses are PB+ relative - i.e., from the code segment. If bit 11 of instructionisa "1",
source addresses are DB+ relative - i.e., from the data segment. Figure 2-9 illustrates both cases.
Note that the target for either case is in the DB+ area. (Disregard move-direction arrows for
CMPB.) Both source and target (MVBW) addresses are DB relative for MVBW, SCU, and SCW.
The target need not be "higher" than the source; figure 2-9 shows examples only.

ASCENDING/DESCENDING ADDRESSES. The MOVE, MVB, and CMPB instructions have
the capability of generating ascending or descending addresses for source and target locations.
The direction is established by the sign of the count word, which is bit O of A, as shown in figure
2-9. If this bitisa "0", thesign is "+", and successive addresses are ascending (B and C incre-
mented). If this bit is a “"1" the sign is "-", and successive are descending (B and C decre-
mented). Note the + Count and -Count arrows in figure 2-9. The MVBW instruction uses only
ascending addresses; this instruction does not use a count word, and the source and target peinters
are in A and Binstead of B and C. SCU and SCW also only use ascending addresses; terminal
and test characters are in A, the source pointer is in B.

METHODS OF TERMINATION. The MOVE and MVB instructions are terminated only when
the word or byte count becomes zero. The MVBW instruction is terminated only when a charac-
ter of a specified type. either alphabetic or numeric, is encountered. The CMPB instruction has
two methods of termination: when the bvte count becomes zero, or when any two two bytes being
compared are unequal. SCU scans until the terminal or test character 1s found; SCW scans while the
string equals the test character.

SPECIAL FEATURES. The MVBW instruction includes an “upshift" bit (bit 13). This bit, when
set ("1"), will transpose any lower case source characters to upper case during the transfer. If not
set ("0"), the source characters are unaltered by the instruction.

MOVES BEYOND TOS. In the event that the source or target of any move instruction advances
into the instruction parameters on the top of the stack or beyond, the parameters (top four if more
than four) will not be affected since these values are contained in the top-of-stack regzisters.
The memory locations directly corresponding to these registers will be used for the move (or com-
parison). However, thissituation is normally a software error.

INTERRUPTS. All Move instructions are interruptable and will continue their operation after
return from the interrupt. To do this, the count, source, and target addresses are kept undated
and deleted from the stack, if specified, only upon completion of the instruction.

2-244. Commentary for MVBL, MVLB
These two instructions have many characteristics of the other move instructions described above
(Instruction Commentary 2-242). However, since they move data into or out of the data area

between DL and DB, MVBL and MVLB are privileged instructions. The following paragraphs
summarize the actions of these two instructions. Refer to figure 2-10.

2-106

Instruction

w

o

.

P8

PL

CODE
SEGMENT

{-Count)

5

4
'

{+Count)

>

PB Relative Source

-

INCREASING
ADDRESSES

¢

>

(=} (-
tncr Decr
Incr Decr
Decr Incr

DL
DB
L3
- <
DB Relative Source
— -4
v

o
Target i
L Ny
L

PoO

DATA
SEGMENT

{-Count)

1-Count!

T
v

\

{«Coun.:

Target

So.rzte

Count

Figure 2-9. Examples of Moves

Instruction Set

MVBL MVLB
s > r <
Target Source
——> ——
F 3 y
M——— —
Source Target
— < . -
(R3] ()
Incr Deer
incr Decr
INCREASING Decr Incr
ADDRESSES

{

DL

bB

{-Count)

$

{+Count)

(- Count)

}

v

{+Count)

Target

Source

=] Count

Figure 2-10. Examples of MVBL, MVLB

(9]
]
o
o]

Instruction Set

For MVBL, source data is taken from the DB+ area and the target is in the DL+ area. (A large
enough displacement could put the target in the DB+ area.) For MVLB, source data is taken from

DL+ area and the target isin the DB+ area. Addresses for both instructions can be ascending or
descending, depending on the state of the count sign. If this bit isa "0", the signis "+", and suc-
cessive addresses are ascending (B and C incremented). If this bitisa "1", the sign os "-", and suc-

cessive addresses are descending (B and C decremented).

Both MVBL and MVLB are terminated when the word count becomes zero. The comment on
"Moves Beyond TOS" under Instruction commentary 2-242 also applies to these two instructions.

2-245. Commentary for ADDS, SUBS

The reason for the "minus one" when using the TOS content to modify S is to delete the
modifying parameter. A typical application of the ADDS instruction is to reserve a block of
stack locations for procedure variables. The number of locations so reserved may be either explicitly
given in the instruction’s operand field, or computed and accessed via TOS. The effect of the in-
struction is simply to advance the top-ofstack pointer a given number of locations without specify-
ing any contents. The SUBS instruction, conversely, deletes a specified number of stack locations.

2-246. Commentary for SCAL, SXIT

Figure 2-11 1illustrates the operation for calling and exiting from a subroutine. Since only local
labels may be used, operation is entirely within the current code segment. Assume that the sys-
tem is executing instructions in the code segment shown in figure 2-11. At some point, P will
encounter the "SCALN" instruction, where N is some value O through 255. If the value of N is not
0 (e.g., 8), this value will be subtracted from PL (i.e., PL-8), thus pointing at the ninth cell
counting backward from PL. This must be within the Segment Transfer Table, whose first entry is
PL-1. The eighth entry, in this case, contains a local program label (bit O= 0), which is 2 PB rela-
tive address pointing to the start of the subroutine. This address is converted to absolute (add to
PB) and isloaded into the P- rezister, while the former value of P, plus one, is stored in the TOS as
the return address. However, if N were 0, it would be assumed that the TOS contains the lo-
cal label (subroutine starting address). This address, then, (made absolute) would be loaded into
the P-register, while the former value of P, plus one, replaces the label on the TOS as the return
address. In either case, once the P-register has its new address, the location so indicated wiil
be fetched and subroutine execution begins.

The final instruction of the subroutine is SXIT. At this time the return address, pushed onto the
stack by SCAL, is assumed to be on the top of the stack. It is the responsibility of the subroutine
to provide this condition, which normally means deleting all variables incurred by the sub-
routine. The SXIT instruction simply takes the address contained in the TOS and puts it in the
P-register, thus effecting a return to the calling routine. Asa final step, SXIT deletes the TOS, since
the return address is no longer needed, and may additionally move S back some number of locations
specified by N. This would typically be used for deleting some of the parameters passed to the
subroutine.

2-109

Instruction Set

SCAL SXIT
Code Stack Code Stack
P8 P8
P/ SCAL N p
Ve /'
{
| “— — —
I Subroutine \\\ T N{ ('
: s\ - . - ——p S Qe
! !
!
I
I
! ' ' }
| !
| K_ Segment ;
| Transter |
| PL } N | Table I‘ PL
l '
e e e e e ————— J L " —
1fN=0

*Store P+1.n TOS

Figure 2-11. Subroutine Call and Exit

Instruction Set

2-247. Commentary for PCAL, EXIT

These two instructions perform basically the same function as the SCAL and SXIT instructions
described above (Instruction Commentary 2-245). That is, to call a routine and return from it to
the point where it was called. However, since the routines in the case of PCAL/EXIT may be ex-
ternal to the current segment, possibly not even present in main memory, the operation 1s
somewhat more complex.

The following paragraphs describe the operations of PCAL and EXIT on a step-by-step basis,
referring to flowcharts. It will frequently be assumed that the reader has a working knowledge of
the intents and purposes of the various steps.

PCAL Sequence. Figure 2-12 illustrates the operations of the PCAL instruction. If the call is
within the current segment (local label), only the steps shown on the left side of the diagram are
performed. For calls outside the current segment, the steps on the right side are added.

The first step is to fetch the program label. From the PCAL instruction definition, we see that
the label can be obtained from one of two places: from the TOS if N is zero, or from PL-N1if N 15
not zero. This operation can be seen in the SCAL operation of figure 2-11, where the label is
fetched from either the Segment Transfer Table, at PL-N, or from the TOS.

Thus, referring to figure 2-12. PCAL initially checks N to see if the label 1s on the TOS. If not
(block 1), the label is fetched from PL-N and a check is made to see if that location is actually within
the bounds of the Segment Transfer table. (N must be </= STTL value 1n the PL location.) If out
of STT bounds. an STT violation 1s incurred; otherwise, the PCAL sequence continues. If the
label 1s on the TOS (block 2), the label is put into temporary storage in the CPU and Sis decre-
mented to delete the label from the stack. At this time, the CPU has the label but does not know
whether 1s 15 local or external, or if it is valid. :

The next step is to place a standard four-word stack marker on the stack (block 3) and update the
Q pointer by loading it with the content of S (block 4)}. Both Q and S are now pointing at the last
word (delta Q) of the new stack marker.

Now the label is checked to see if it is a local label (bit 0=0). Ifitis, the sequence goes directly to
block 11 (skip to paragraph starting "Block 8 sets").

If the label 1s external (bit 0 = 1), bits & through 15 are checked to see if the segment number
specified 1s valid. If the segment number does not have an entry in the Code Segment Table, a CST
violation is incurred. Otherwise, the PCAL sequence continues. Next, absolute addresses for PB
and PL are calculated from the CST entry and loaded into these two registers (block §).

Block 6 sets the privileged mode in the Status register if the mode bit in the CST entry indicates
privileged mode, orif the caller was executing in privileged mode (i.e., if the privileged mode bit 1n
Status already was set). (Although not shown, the reference bit in the CST is set at this ime for
statistical purposes.)

2-111

Instruction Set

5 " Set PB, PL from

» CST entry
Is)
labei on Fetch
TOS labei from
? PL-N
Set or clear
privileged
mode bit M
in Status
Fetch label
from TOS l
and delete
Put segment
Yes IsN number of
within STT called seg in
bounds Status (8:15)
Push 4-word
stack marker
onto stack STT |
. . s
Violation ABS CST called segment
l Interrupt absent
Move Q up
oS {aQ
marker word)
TRACE
interrupt
Segment
number legal
? STT Is
Violation local 1abel
CsT Interrupt legal

Violation ?

Is
procedure
calilabie*

Bounds
Violation

?

*and being
calied from
user mode

Set new P Replace
from local Procedure local label
label with 0 STT Uncallabie

Figure 2-12. PCAL Instruction Flowchart

2-112

Instruction Set

Block T stores bit & through 15 of the label into bits 8 through 15 of the status register. This
indicates to the system that we are now operating in the called segment. A check is then made to see
if the called segment is absent from main memory. If itis, an absent code segment trap is incurred.
A sinmnlar check is made for TRACE by checking the CST entry for the called segment.

The next check is to see if bits 1 through 7 of the label are 0. These bits specify which STT entry in
the target segment contains the desired local label. Since a value of 0 would point at the SSTL word
in PL, the value of O is specially defined to indicate that P should be set to PB of the called segment,
i.e., the local label equals 0. A check is then made to see if the PB entry is callable and if it is being
called from user mode. Assumming that bits 1 through 7 of the external label are not O, the value
so indicated will point to one entry in the Segment Transfer Table. If it does not {i,e., if the value
exceeds the STTL value), or if the entry pointed to is not a local label (i.e., if bit O= 1), there will
be an STT Violation. But if the label is valid, it is then checked to see if the procedure is callable if
~ being called from user mode by checking bit 1 (must be zero).

Block & sets the P-register to the starting address of the procedure. The CPU at this point has a
local labe!, whether it is in the same segment as the PCAL or in a segment external to the calling
sezment. The value for P is calculated by adding the contents of bit 2 through 15 of the local label
to the contents of PB. As a final check, this value of P is checked to see if it is between PBand PL.
Tie resultant absolute value 1s then loaded into the P-register, and the location so indicated 1s
fetched and execution of the procedure begins.

EXIT Sequence. Figure 2-13 illustrates the operation of the EXIT instruction. If the exit is within
the current segment only the steps on the left side of the diagram are performed. For returns to
another segment. the right side is also executed.

The first step (1} 1s to fetch the 4-word marker pointed to by Q, which was placed on the stack
when the current procedure was called. Sis set equal to Q, deleting any local storage being used by
the current procedure. If the current procedure is executing in user mode, the privilesed and
external interrupt enable bits in the marker status are compared with the current status to ensure
that the user has not modified these in the marker. Then X is restored from the marker.

Insiep 2. if the current segment and the segment in the marker are the same, steps 3 through 6 are
onmitted. otherwise continue.

Steps 3 and 4 are similar to the equivalent steps in PCAL (figure 2-12).

Instep 5. if in user mode, the privileged bit in the CST entry for the return segment must be off.
(Althouzh not shown. the reference bit in the CST entry is set at this time for statistical
purposes.) :

An absent code segment trap occurs following step S if the return segment is absent. A trace trap
occurs in step 6if bit O of delta P in the marker is set. This bit is normally set by trace routine
which would have been called when the current procedure was entered.

Instruction Set

?

REPLACESWITHQ
FETCH 4-WORD
MARKER AT (Q)

o

FRCM MARKER +

THRU (Q-3)
CHECK PRIVILEGED
YES AND EXTERNAL
INTERRUPT BITS IN
MARKER
NO
RESTORE X

R

—

|
YES
‘
YES
L 4

SEGMENT
NUMBER
LEGAL
?

CST VIOLATION

SET PB.,PL
FROM CST

ENTRY
CHECK
YES PRIVILEGED
BIT IN CST
ENTRY
NO i
‘j J
1S
RETURN YES
SEGMENT ABS CST.
ABSENT INTERRUPT
TRACE
INTERRUPT

NO BOUNDS
VIOLATION

RESTORE STATUS
FROM MARKER
SET S:=Q-4-N
SET Q:=Q-dQ FROM
MARKER

SET P

RETURN
PROCEDURE

Figure 2-13. EXIT Instruction Flowchart

.1
-

i

14

Instruction Set

In step 7, return "P= P-delta P" from the marker must be between PB and PL. The STATUS register
1s restored from the marker; Q is set pointing to the previous marker, then Sis decremented by 4 to
delete the marker on the top of the stack and by N (specified in the EXIT instruction) to delete any
parameters passed to the procedure being exited. P is set to return P and execution begins within
the return procedure.

2-248. Commentary for LLBL

*The LLBL instruction will convert a local label to external type if 1t is not already of this type.
The conversion 1s accomplished by forcing bit 0 of the TOS to the "1" state, loading bits |
through 7 with the value of N (which is the STT entry number), and loading bits 8 through

15 with the corresponding bits of the Status register (i.e., the number of the currently executing
code segment).

2-249. Commentary for DISP, IXIT, PSDB, PSEB

The dispatcher, external interrupts, and some interrupts execute on the Interrupt Control Stack
(ICS). Normally the Dispatch (DISP) instruction is used to enter the Dispatcher and the
Interrupt Exit (IXIT) is used to exit from the Dispatcher. Also, when "ICS" type interrupt service
routines are entered 1in response to appropriate events, the instruction IXIT i1s used to exit from
these. The exit may be from the Dispatcher to the process being launched or from interrupt ser-
vice routines to the interrupted procedure or, in certain cases, to the Dispatcher entry point. The
instructions Psuedo Interrupt Disable (PSDB) and Psuedc Interrupt Enable (PSEB) are used to
prevent entry to the Dispatcher during critical sections of code.

The instruction DISP causes a transfer to the Dispatcher’s entry point unless it 1s executed while
on the ICS or while the Dispatcher is disabled. The Dispatcher i1s disabled when the Dispatcher
Flag 1s non-zero, (QI-18) =/ 0. The address of QI is located at 4 times the CPU number plus 1.
Condition code CCE is set when the Dispatcher is entered; the Status register 1s set as specified for
the Dispatcher. The transfer is executed in a manner similar to an ICS interrupt. If a DISP in-
struction is executed on the ICS or while the Dispatcher is disabled, bit 0 of (QI) is set and CCG is set
in the Status register. This bit is checked by those instructions (IXIT and PSEB) which may remove
the conditions inhibiting the Dispatcher.

The instruction PSDB increments (QI- 18); PSEB decrements (QI- 18). Starting the Dispatcher i1s
disabled unless this location is zero. OQutside the Dispatcher and not on the ICS, a PSEB which
decrements (QI- 18) to zero effectively does a DISP instruction 1f bit 0 (QI) 1s set.

Within the dispatcher, a PSEB which decrements (QI- 18) to zero clears (QI), eliminating any
pending Start Dispatcher requests. PSDB and PSEB are used at the beginning of the Dispatcher to
prevent any interrupts which request a dispatch from causing the first portion of the Dispatcher to
be unnecessarily repeated. PSEB instructions which do not transfer to the Dispatcher set CCG 1n the
Status rezister.

Figure 2-14 1s a simplified flowchart of IXIT operation. IXIT operatesin one of two manners. The
first, (1) in the figure, is by the dispatcher to transfer toa process being launched; the second, (2)
through (6), is to exit from ICS interrupt service routines.

If an interrupt service is not in segment # 1, it is assumed to be an external interrupt routine and a
“Reset Interrupt"” 1is sent to the device whose device number is at Q + 3. (Q + 3) 1s assumed to be
valid in memory, which is normally the case since the device number supplied to external inter-
rupt routines as a parameter 1s written Into memory.

2-113%

Instruction Set

START
(ICSFLAG = 1)

IN DISPATCHER
YES EXIT TO

DISPATCHER >
PROCESS

FLAG = 1?

SEND RILTO
DEVICE

RETURN TO
INTERRUPTED
PROCESS.

©)

{aton =1?

RETURN TO A
LOWER PRIORITY
INTERRUPT

P! ROUTINE THAT
WAS
INTERRUPTED

RETURN TO
INTERRUPTED
$| DISPATCHER.

®

NO

(Qi{0))=1?

START OR
RESTART
»{ DISPATCHER.

®r®

Q1 - 18) = 0?

TRIEDTOGOTO | RETURN TO
DISPATCHER BUT INTERRUPTED
WAS PSEUDO- ——» PROCESS.
DISABLED.
TRIED TO RESTART RETURN TO
BUT WAS PSEUDO- INTERRUPTED
DISABLED SO CONT-}—————p] DISPATCHER.
INUE WHERE LEFT @
OFF, .

2-116

Figure 2-14. IXIT Instruction Flowchart

Instruction Set

If bit Oof (Q) is zero, (Q(0))= O, then if Q = QI, the return is to be interrupted process (2).
Otherwise, the return is to a lower priority interrupt which was interrupted (3).

If (Q(0))= 1 and (QI(0))= O, the return is to the Dispatcher which was interrupted (4).

If (Q(0))= 1 and (QI(0))= 1, a DISP instruction has been executed and the request to start the
Dispatcher is still pending. If (QI- 18) = O, the Dispatcher is not disabled, QI is cleared, and a
transfer is made to the Dispatcher’s entry point (5) or (6). It doesn’t matter whether a process, Q=
QI, or the Dispatcher, Q =/ QI, was interrupted. If (QI- 18) =/ 0, starting the Dispatcher is
disabled and the DISP request cannot be carried out at this time. Instead IXIT returns to the inter-
rupted process, Q = QI (2a). The “Start Dispatcher" request is still pending, (QI(0)) = 1.

2-250. Commentary for LLSH

Figure 2-15 illustrates the basic operation of the LLSH instruction. As shown, the top-of-
_stack (A) contains a 16-bit absolute address within a bank designated by the contents of B. Atall
times, in successive fashion, this link pointer contains the absolute address of the link word in the
segment currently being tested. Location C in the stack is the test word which would typically be
a 16-bit number indicating the size of the segment which is to be brought into memory.
Location D is an offset indicating how far the target word is from the link word. Thus as shown,
the comparison is between the test word and each target word.

On termination of the instruction, location A of the stack contains the absolute address of the
search-for segment, and a Condition Code of CCE indicates that the search was successful. If the
search is not successful, Condition Code CCL or CCG will indicate the cause of termination.

2-251. Commentary for XEQ

The reason why the use of a second stack opcode (bits 10 through 15) isillegal is that there is no
guarantee that it will be executed. If there should be an interrupt between the execution of the two
stack operations, the second opcode will be lost since both came from the data stack rather than a
code segment. The interrupt will return to the instruction following the XEQ. However if no
interrupt occurs, both stack opcodes will be executed.

2-252. Commentary for SIO
There are five 1/0 instructions in HP 3000 Command System instruction set. These are:

SIO Start1/0
RIO Read 1/0
WIO Write I/0
TIO Test 1/0
CIO Control I/0

These instructions are fully defined in Section II under the heading "“I/O and Interrupt
Instructions”. The distinction to note here is that the SIO instruction is used in conjunction with an
1/0 program, and the remaining four are not. That is, the SIO instruction commands a device con-
troller to begin executing its associated 1/0 program, which effects a block transfer to data be-
tween an 1/O device and memory. This is termed an "SIO transfer” mode. The other four in-
structions, on the other hand, transfer only one word per instruction between the device and the
top-of -stack in the CPU.

2-117

Instruction Set

POOOD

Stack
—— e
R it
.
! Compare |
| IR |
Target Offset :
Test Word_F4----'
Link Pointer J
Link Pointer

Memory
Segment 1

Target

S
Memory
Segment 2
Link
Target W

Memory
Segment 3

Link

Target

Figure 2-15. LLSH Operation

Link
) } Oftset

} Offset

} Ottser

Instruction Set

An SIO type data transfer is initiated by the CPU executing a Start I/O instruction for a particular
device. The instruction assumes that there is an I/O program stored in main memory. The
hardware I/0 svstem executes the 1/O program independently of the CPU. The CPU is then free to
continue processing in paraliel with the 1/O operations.

Figure 2-16 illustrates the order pair format of the double words which are used in 1/O programs.
The general format is shown at the top of the figure and then the actual format of each of the nine
orders is shown beneath. The first word of an order pair is designated as the I/O Command Word, or
IOCW . and the second word is designated as the I/0 address Word, or IOAW. The IOAW does not
necessarily always contain an address, as the figure shows.

The nine I/O arders are defined as follows:

JUMP. If bit 4 of the IOCW isa "1", a conditional jump of I/O program control is made to the
address given by the JOAW at the discretion of the device controller. If bit 4 of the IOCW isa "0",
an unconditional jump is made.

RETURN RESIDUE. This causes the residue of the count to be returned to the IOAW. The
residue is obtained from the multiplexer or selector channel. Each multiplexer or selector chan-
nel has its own count. The count is initialized from the least significant 12 bits of all IOCW's ex-
cept Return Residue and Set Bank.

SET BANK. This instruction loads the bank register of the multiplexer or selector channel with
bits 14 and 15 of the IOAW. The execution of an SIO instruction automatically clears the banx
register, therefore, if the data buffer for this device resides in some bank other than 00, the 1/0
program must contain a SET BANK order prior to a READ or WRITE order.

INTERRUPT. This order pair causes the device controller to set its interrupt request flip-flop and
therefore to interrupt the CPU.

END. End of the 1/0 program. If bit 4 of the IOCW isa "1", the device controller also interrupts
the CPU. Returns device status to IOAW.

CONTROL. This causes transfer of a 16-bit control word in the IOAW to the device controller,
as well as the 12 low order bits of the JOCW. The IOCW is always available, but a strobe to the
device is provided only for Control.

SENSE. This causes "count"” words of data to be transferred between main memory and the
device, starting at the address given by the IOAW, within a given bank.

2-119

Instruction Set

0 1-3 4 15

OC| ORDER [# OF WORDS INEGATIVEI*/CONTROL INFO

toaw

DATA ADORESS/CONTROL INFO/SENSE STORAGE

ORDER

0 1-3 4 5 15

[Towe Tc]

JUMP TARGET ADORESS

IOCW (4] = 1 = CONDITIONAL

] 1-3

a0

4
RETURN °
RESIDUE

RESIDUE OF WORD COUNT

] 1-3 4 15

(1 2}

SET
BANK

[

| x|x

XX=BANK ADDRESS

Q 1-3 4 15

INTERRUPT]

0 1-3 4 5

[AR

| _END TINT]

STATUS {will be returned)

IOCW (4} = 1 = INTERRUPT

0 1.3 4 15

[conTROL] CONTROL WORD =1 12 8ITS

CONTROLWORD =2

1-3 15

SENSE |

STATUS {wail be returned)

1-3 15

119

WRITE | * OF WORDS INEGATIVE COUNT)

ABSOLUTE ADDRESS

IOCW (8 = 1 > DATA CHAIN

1.3 4

m

READ | # OF WORDS (NEGATIVE COUNT)

8

ABSOLUTE AUDRESS

*# OF WORDS for 1/O order paw 14096
DC » DATA CHAINING

Figure 2-16. 10 Order Pairs

2-1

Instruction Set

WRITE. This causes "count” words of data to be transferred between remain memory, starting
at the address given by the IDAW | within a given bank.

READ This causes "count” words of data to be transferred between main memory and the device,
starting at the address given by the IOAW, within a given bank.

L]
Data chaining occurs for Write and Read orders if bit O of the IOCW isa "1". This bit may be a
“1" for a Write order followed by 2 Write or for a Read order followed by a Read. This wall per-
mit the hardware to treat the counts of each order as a continuous chained count, without
reinitializing for each order. The DC bit should be "0" for all other orders.

The count field for Read and Write orders contains the least significant 12 bits of a negative
twe's complement count value. The count is a word count, independent of the particular
recording format (bytes, words, or records). For a Control order, these 12 bits are used for con-
trol information in addition to the 16 bits in the IOAW (a total of 28 buts).

TYPICAL 1/O PROGRAM OPERATION. Figure 2-17 shows the sequence of operations occurring
as the result of an SIO instruction. The sequence is as follows:

1 The SIO instruction, decoded by the CPU, fetches the device number given at S-K 1n the
stack, and puts the TOS into the first word of the DRT as the I/O program pointer.

SIO then loads the device number into the eight least significant bits of the IOP
Control Register, and loads an SIO command into bits 1, 2, and 3.

4w

S The 1/0O Processor issues the SIO command to the device controller, and execution by
the hardware begins. The CPU is now free to continue execution elsewhere.

6 On demand from the multiplexer channel, the I/O Processor obtains the program pointer
from the Device Reference Table. (The selector channe! obtains the program poimnter
directly, not via the IOP.) The address is obtained by multiplying the device number by
four. The program pointer is the first word of the four-word DRT entry. The program
pointer points to the first double word of the I/O program. The pointer is updated to
peint at each I/0O double word as the program progresses. (The selector channel. to
minimize memory fetches, copies the pointer into a register and updates the pointer
internally; the multiplexer channel, however, updates the pointer directly in the DRT.)

8 The sample 1/0 program is assumed to operate as follows. The first double word con-
tains a CONTROL order which enables the hardware I/O subsystem for this device
number. The second double word contains a SET BANK order, which is required if the
data buffer for the device resides in some bank other than bank 0and a Read or Write
order is to be processed. The third double word contains a Read order, which causes
the subsystem to read a total of 4096 words (or 8192 bytes) into the data buffer
whose starting location is given in the IOAW word. Since the data chaining bit 1s
on, the fourth double word is also a Read order, which specifies the remaining count
required to fulfill the 1/O request. (Additional Read orders could be given for larger
requests.) The IOAW may specify a buffer area contiguous to the first 4096~-word
buffer if desired, or in another part of memory if a scarrer read 1s desired.

Instruction Set

STACK

Q —»

f—J L&b {OEV NO

A
10P Control
[TSIO % BEV NO] Register

v
Start 1/0O @
to Hardware Note: SB = SET BANK

SIO INSTRUCTION

DATA
BUFFER

DEVICE
REFERENCE
TABLE
1/0
PROGRAM
lemel]
l [" " TEnabie
~—»{ PROG TR 18l]
|0T1
1[Reag] 4k __]
Agdress
q_Fleacﬂ Rem
T T Acaress
el
Disable
[[ENOF Interruor |
Status
|
|
|
g 4 times
Dev No.

4096
Wecrds

|

|

Remainder

|

h 4

80020-18

Figure 2-17.

Typical 1/O Programs

D

[2]
(9]

Instruction Set

When the transfer is complete, the fifth double word, a CONTROL order. turns off
this 1/0 subsvstem. The final double word contains an END order, which obtains the
result of the transfer (device status) and loads it into the JOAW; the END order then
generates an interrupt to inform the software that the transfer is complete.

At the completion of an 1/O program, the selector channel returns the current progfam
pointer value to the DRT. The multiplexer does not take any special action since 1t
updates the DRT after each order fetch.

2-253. Commentary for TBA, MTBA, TBX, MTBX

These four instructions perform essentially the same function, and that 1s te provide a simpie
mechanism for loop repetition, loop counting, and loop exit, all in one instruction. The dif-
ferences are that:

a. For TBA and MTBA, the variable is located in the stack; for TBX and MTBX the vanable 1s
located in the Index register.

b. For TBA and TBX. modification of the variable 1s assumed tc have been done earher in the
loop. whereas MTBA and MTBX automatically modify the vanable as part of their execution
function. ’

With these differences undersiood, one of the instructions may be taken as a typical example for
discussion. Figure 2-18 illustrates one use of MTBA, which is to execute the SPL/3000 For state-
ment. As shown. the intent 1s to vary the value I from 1 to 10 while repeating a certain procedure
ten times. (The TBA at the beginning is used to test if the loop is to be executed zero umes in
the general FOR statement.)

In assembly form. three instructions would be used to initialize the stack The LRA I instruct:on
puts the DB+ displacement for the variable onto the stack (C). and LDI! and LDI10 push values |
and 10 (or octal 12) onto the stack to specify the step increment (B) and limit (A} respectiveiv. The
loop is then entered. (If the loop control instruction at the end were TBA or TBX, one of the in-
structions in the loop would add B to the variable.)

The last instruction of the loop 1s MTBA, which checks to see if the variable has exceeded the it
If it has not, control is transfered back (four locations in this example) teo the beginning of the loop.
The range is P +/- 255. At the end of the final loop, MTBA increments the variable to 11. thus
exceeding the limit and causing the next instruction in line to be fetched. The three words ¢
the TOS relating to this loop are automatically deleted. The FOR statement has now bee
executed.

o
"

il

Values for the limit, step, and variable may be negative (two’s complement) as well as positive. If
step is negative (bit = 1), exit from the loop will occur when the variable becomes smaller (more
negative) than the limit, which may be either a positive or a negative number. For MTBA and
MTBX, the loop will also be terminated if there is an overflow or underflow when modifving
the test variable.

Instruction Set

SPL/3000
FOR I = 1 STEP 1 UNTIL 10 DO
BEGIN
END;
ASSEMBLY
LRA |
LDi 1
LDI 10
TBA »+2
BR -+
I E } Loop
MTBA -4
STACK
[s]:)
Displacement
> Variapie
“— c [OB~ Disolacement
g s:teo T
A Lrmat (10
Figure 2-18. Examples of Loop Control with MTBA

2-124

Instruction Set

2-254. Commentary for COLD-LOAD and WARM-START procedures (Series 3X/4X)

It is possible for TDP to load and execute 2 specially constructed program from an 1/0 device
(magnetic tape or disc).

This load operation is started by:

] - pressing the LOAD or START button on the system front panel. (CPU halted).

2 - pressing the LOAD or START Kkeys on the console front panel. (CPU halted).

3 - executing the "STRT" CPU instruction. (CPU running).

Anv of these will cause the CPU toenter a special firmware routine which does the following:

1 - if entered from STRT or DUMP instructions, (S)=channel and device number {CDEV}; {S-1)=disc
head # (HD#).

- if entered from either system or console front panel, read CDEV & HD# from the system front
panel

[3]

3 - wait | second (HP 7902 is busy for I second after LOAD/START/DUMP keys are pressed)

4 - find the size of main memory (# of 128K -byte banks present).

- if LOAD/START, initialize all main memory to %030360. {= "HALT #%0").

L

6 - copy the contents of CPU registers to %1401-1422 in main memory: (this is really only for
DUMP).

#1401:= CDEV

»

-bank

B e SR I SN
"
o w

-bank

[y

0:

ATUS
-bank

]
VYN VNODUOX

5
- Ba’]
- ww

~) ON b B WD

;= CIR

20:= memory size (#banks)
1 := system halt#

2:= ISR {interrupt register)

Instruction Set

7 - copy the System Interrupt Mask and the LOAD/START/DUMP device DRT entry to
%#1515-1521: (useful only for DUMP)

%1515:= (7) system interrupt mask
6:» DRT 0 (CDEV*4)
7:=DRT 1 (CDEV*4+1])

20:« DRT 2 (CDEV*4+2)
1:» DRT 3 (CDEV*4+3)

8 - do TOFF; IOCL; INIT(CDEV); IDENTIFY(CDEV); INIT(CDEV); CLEAR.

9 - copy the appropriate channel program to %1423-1505. If the Ist IDENT byte returned by the
device is 0, then copy the DISC chan program (for HP 7902,06,20,25); otherwise, copy the
TAPE chan program (for HP797CE)

10 - if the Ist IDENT byte was O (DISC) and the operation is LOAD/START, then modify the
chan program SEEK command to seek to sector 2. Otherwise (DUMP, CDEV is DISC), the seek
will be te sector 3.

11 - setup a DRT for CDEV; do SIOP{CDEV)

The channel program will load 256 bytes from the DISC or TAPE. Those bytes are assumed to be
a bootstrap channel program (boot) which will actually load the CPU program to be ex-
ecuted. It isfurther assumead that the first byte will be a checksum of the rest:

checksum ;= (sum of 127 bytes) + %123456.

The beot is loaded to %7100 for LOAD, %1530 for DUMP. If the chan program does not end
within 2§ sec, there will be 2 SYSTEM HALT #6 (timeout).

12 - when the chan program halts, compute & check the boot checksum. A checksum error will
cause a SYS HALT #7.

13 - if LOAD/START then do SIOP(%7101,CDEV);
if DUMP then do SIOP{#1531 ,CDEV).
(execute the boot. loaded at %7100 or 1530). It is assumed that the boot will end with "IN H
%0". If the boot does not end within 25 sec, there will be a SYSTEM HALT #6 (timeout).

14 - when the boot halts, if (CPVA)< >%100000 then SYSHALT #10 (boot aborted or did non-
standard halt). Otherwise, setup the ICS and trap toseg 1, STT 44.

ro
|
—
to
6,

%1423

Instruction Set

TP LOAD/DUMP Chan program for DISC

4:

~ O\

(73]
., O

W~

B e AV

DB Wk —

(o)

~)

1006 WAIT <<wait for st poll>>
0
2010 WR 10, %1476,2 <<set FILEMASK for HP7920>>
2
0
0
1476
1000 WAIT
0
2010 WR 10,%1503,2 <<issue READ.STATUS command>>
2
0
0
1503
1410 RR 10,%1477,6 <<read 4 status bytes>>
4
0
0
1504
1000 WAIT
0
2010 WR 10,%1477,6 <<issue SEEK command>>
6
0
0
1477
1000 WAIT
0
2010 WR 10,%1502,2 <<issue READ command>>
2
0
0 <<note: read to %1530 for DUMP >>
1502 <« %7100 for LOAD.>>
1400 RR 0,%1530,400 <<read 128 bytes to #7100>>
400
0 .
0 <<note: read to %1530 for DUMP,>>
1530 << %7100 for LOAD.>>
1000 WAIT
0
600 INH <<done - interrupt>>
0

2-127

Instruction Set

§: 177777 END

6: 7405 FILE.MASK

7: 1000 SEEK command
1500: 0 <<note: head= | for "split 7906", O else>>
: 3 <<note: sector= 3 for DUMP, 2 for LOAD>>
2400 READ command
1400 STATUS command

0 buffer for status bytes

0 buffer for status bytes

L e P

TP LOAD/DUMP Chan Program for TAPE (HP 7970E)

%1423: 2001 WR 1,%1422,1 <<select unit #0>>
4. i

S: 0
6: 42000
7: 1424

30: 1000 WAIT
0

—
..

2400 DsJ <<tape needs it>>
0
0
2001 WR 1,%1474,1 <<issue READ command>>
1
0
42000
1476
1000 WAIT
0
2400 DsJ <<tape needs it>>
0
0
1400 RB 1,%47100,400 <<read boot. chan prog>>
400
2100
: 100000
7100

yuw‘éqo\mamu-—g\la\mhww

4: 0 JUMP *+2 <<done -eading...>>
S: 2

6: 0 JUMP*-15§ <<burst done... do another>>
7: 177761

60: 2007 WB 7,41476,2 <<issue END command>>

1: 1

2: 0

3: 42000

4: 1477 :
%1465: 1402 RR 2,%41476,2 <<read XFER COUNT>>

6: 2

7: 0

70: 2000

1: 1500

2: 1000 WAIT <<note: boot must do DSJ>>

4: 600 INH << done >>

S: 0

2-129

Instruction Set

Instruction Set

6: 10 READ command
7: 23 END command
1500: 0 BUFFER for XFER count

2-130

Instruction Set

2-255. Commentary for System HALT (Series 3X/4X)

This commentary explains the Series 30/33/40/44 Computer System Halt. Certain error conditions
are irrecoverable and will cause the CPU to enter the System Halt state. This state is identical to a
normal Halt state except for the way Halt was entered and the value in NIR (NIR=0 for normal
halt). The particular cause of any System Halt can be determined by examining NIR (visible in the
LED’s on the CPU board):

normal halt (no error).

STT violation in segment |.

code segment absent on the ICS.

Segment | absent or traced.

stack overflow/underflow on the ICS.

CSTL= 0. (code segment table length)

LOAD/STRT/DUMP - chan program timeout.
LOAD/STRT/DUMP - bootstrap chan prog checksum error.
10 LOAD/STRT/DUMP - bootstrap chan prog abort.

11 PSEB instruction found (QI-18}<0

NO AW - O

The System Halt state 1s cleared (NIR:=0) by the System Reset.

2-131/2-132

EXTENDED INSTRUCTION SET

This section describes each of the six extended-precision, floating=-point instructions and each of
the 12 decimal arithmetic instructions which complement the basic instruction set of the HP 3000
Computer Systems. Instruction Commentary 3-22, which follows immediately after the instruc-
tion descriptions, provides additional information on the extended-precision, floating-point in-
structions. Instruction Commentary 3-23, then provides additional information on the decimal
arithmetic instructions.

'3-1. EXTENDED-PRECISION FLOATING-POINT INSTRUCTIONS

3-2. EADD Extended-precision floating-point add

Stack before execution:
TOS-2, target address
T0S-1, operand-1l address
TOS, operand-2 address
Operand-2 is added to operand-1, and the rounded
normalize sum is stored at the target address. If
there is no overflow or underflow, the three
addresses are deleted from the stack.
Instruction Commentary 3-21.
Indicators: CCA, Overflow indication for overflow
or underflow.
Traps: Extended-precisien overflow (%107,
extended-precision underflow (%11)
STUN, STOV, BNDV
Addressing mode: DB+ relative

0/1 2 3{4 56]78910 11 12{13 14 15

0|01 0{000{100/ 0 0 10 0 O

Extended Instruction Set

3-3.

3-4.

ESUB Extended-precision floating point subtract

EMPY

Stack tefore execution:
TOS-2, target address
TOS-1, operand-1 address
TOS, operand-2 address

and the
target
the

Operand-2 1is subtracted from operand-l,
rounded normalized result is stored at the
address. If there is no overflow or underflow,
three addresses are deleted from the stack.
Instruction Commentary 3-22.
Indicators: CCA, Overflow indication

for overflow or underflow
Extented-precision overflew (%10),
extended-precision underflow (%11)
STUN, STOV, BNDV
Addressing mode: DB+ relative

Traps:

0|1 23/456(7 89|10 11 12|13 14 15

0;01reCj0o0O0O410O0L 0 0C 10 0 1

Extended-precisicn flcating point multiply

Stack before execution:
TO0S-2, target address
TOS-1, operand-l address
TOS, operand-2 address

Operand-2 is multiplied by operand-1l, and the rounded
normalized result is stored at the target address.
If there is no overflcw or underflow, the three
addresses are deleted from the stack.
Instruction Commentary 3-22.
Indicators: CCA, Overflow for overflow or underflow.
Traps: Extended-precision overflow (%10), extended-
precision underflow (%11).
BNDV, STUN, STOV
Addressing mode: DB+ relative

0|t 2 3]456{7 89|10 11 12|13 14 15

of0 1 0|j00Q0{100,0 0 1,0 1t O

3-5.

3-6.

Extended Instruction Set

EDIV Extended-precision floating point divide

ENEG

Stack before execution:
TOS-2, target address
TOS-1, operand-1 address
TCS, operand-2 address

Operand-2 is divided into operand-l, and the rounded
normalized result is stored at the target address.
The remainder, if any, is discarded. If there is no
overflow and no underflow, and no attempt to divide
by 0, the three addresses are deleted from the stack.
Instruction Commentary 3-22.

Indicators: CCA, Overflow indication for overflow,
underflow, or divide-by-zero.
Traps: Extended-precision overflow (%10), extended-

precision underflow (%11), extended-precision
divide-by-zerc (%12).
BNDV, STUN, STOV

Addressing mcde: DB+ relative

2 3]4 56{7 88110 11 12{13 14 15

oocoj1o0o¢f0 0 11 0 O

Extended floating point negate

Stack before execution:
TOS, source operand address

An algebraic negate 1is performed on the source
operand. The result is stored at the address of the
source operand. TOS is deleted from the stack.
Instruction Commentary 3-22.

Indicaters: CCA

Traps: STUN, BNDV

Addressing mcde: DB+ relative

23/4586/7883[10 11 1213 14 15

coo0jto00j0 0 11 0 O

3-3

Extended Instruction Set

3-7. ECMP Extended-precision floating point compare

Stack before execution:
TOS-1, operand-1l address
TOS, operand-2 address

Operand-1 is compared with operand-2. Condition Code
CCG, CCL, or CCE is set to indicate that operand-l is
greater than operand-2, operand-1 is less than
operand-2, or operand-l equals operand-2
respectively. The addresses are deleted from the
stack.

Instruction Commentary 3-22.

Indicators: CCC

Traps: STUN, BNDV

Addressing mode: DB+ relative

0{1 2 3|]456(7 89|10 11 12{13 14 15

gjo1o0f000|t00f 0 0 1,1 0 1

3-8. DECIMAL ARITHMETIC INSTRUCTIONS

3-9. CVAD ASCII to decimal conversion

Stack before execution:
TOS-3, target byte address
TOS-2, target digit count
TOS-1, source byte address
TOS, source digit count

Source digits in external-decimal are converted to
packed-decimal digits. Source digits except for the
rightmost in the field must be leading blanks (%040)-
or %060-%071. The right most digit must be one of
those in table 3-1. Leading blanks are converted to
packed-decimal zeros. Blanks between digits, or
between digit and sign, are illegal. An all-blank
field converts to an unsigned (absolute) zero target
field. An unsigned external-decimal operand produces
an unsigned packed-decimal resuit. If the number of
target digits is less than the number of source
digits, the source is converted until the target is
filled, producing a left truncated result. In this
case, the remaining source digits are not examined
for validity. (It is advisable that the source digit
count be less than or equal to the target digit count

3-4

Extended Instruction Set

to take full advantage of the digit checking done in
this instruction.) If the source digit count is less
than the target digit count, left zero fill is placed
in the target field. A stack-decrement (SDEC) Dbit
(instruction word bit 11) will either leave the
target address and digit count on the stack or delete
all parameters, as specified below. Both digit
counts must be in the range 0<n<28. If either the
source or target digit count is zero, the stack
parameters are deleted in accordance with SDEC, and
execution continues with the next instruction.
SDEC = 0, delete 2 source parameters
SDEC = 1, delete all L parameters
Instruction Commentary 3-23.
Indicators: CCA, Overflow
Traps: Invalid ASCII digit (%1l)
Invalid decimal operand length (%17)
STUN, STOV, BNDV
Addressing mode: byte addressing DB+ relative

0{1 2 3|4 5678910 11 12{13 14 15

olo 1 0{0o 0o0f1 10l 0] | o]0 1 O

1__spec

Table 3-1. Low-Order Digits

LOW-ORDER DIGIT,
LOW-ORDER DIGIT, EXTERNAL-DECIMAL NUMBER
DECIMAL NUMBER
UNSIGNED POSITIVE NEGATIVE
¢ %060 %173 { %175}
%0861 %101 A %112 J
2 %062 %102 8 %113 K
3 %0€3 %103 C %114 L
4 %064 %104 O %115 M
s %065 %105 E %116 N
6 %066 %106 F %1170
7 %067 %107 G %120 P
8 %070 %110 H %121 Q
e %071 %111 %122 R

3-5

Extended Instruction Set

3-10. CVYDA Decimal to ASCII conversion

Stack before execution:

TOS-2, target byte address
TOS-1, target digit count
TOS, source byte address

The source packed-decimal digits are converted to
fill the target field. An unsigned source operand
produces an unsigned external-decimal result. SDEC
(bit 11) allows leaving the target address and digit
count on the stack or deleting all parameters, as
specified below. Two options which affect the low-
order result byte are coded in instruction word bits
9 and 10. If bit 9 is a 1, the sign of the source is
ignored and an unsigned (absolute) low order
external-decimal digit is produced (%060-%071), refer
to Table 3-1. If bit 10 is 1, one of the two result
signs are produced. If the source sign is negative
the result low-order byte is %175(-C) or %112 to %122
(-1 to -9). Ctherwise an unsigned low-order byte (%06
to %071) is produced. If neither bit 9 nor bit 10 is
1, all 30 bytes listed in table 3-1 can be produced
derending on the sign of the source. The condition
code is set in accordance with the stored result. An
unsigned result 1is considered positive, so only CCG
or CCE can be set if instruction word bit 9 is 1.
The effect of bit § over-rides the effect of bit 10.
If the target digit count is zero, the parameters are
deleted in accordance with SDEC and execution
continues with the next instruction.
SIGN CONTROL 00, target sign same as source

SIGN CONTROL = 01, target sign negative if source
negative, else unsigned

SIGN CONTROL = 10, target unsigned

SIGN CONTROL = 11, target unsigned

SDEC = 0, delete source address
SDEC = 1, delete all 3 parameters
Instruction Commentary 3-23.
Indicators: CCA, Overflow
Traps: Invalid decimal digit (%15)
“Invalid decimal operand length (%17)
STUN, STOV, BNDV
Addressing mode: byte addressing DB+ relative

0]1 2 3j4 56|78 9{10 11 12|13 14 15

ojo1ofoooft 1| | |of0 1 1

p—ﬂf—snsc
Sign Control

3-6

Extended Instruction Set

3-11. CVBD Binary to decimal conversion

TOS-3, target byte address
TOS-2, target digit count
TOS-1, source digit count
TOS, source word count

The number of 16-bit two’s-complement binary words
specified in the source word count is converted to
packed-decimal digits and stored in the target field.
If the word count is not in the range O<=n<=6, a trap
occurs. If the target digit count is not in the
range O<=n<=28, a trap occurs. After the binary
source is converted, 1leading zeroes are stored until.
the target field is filled. If the number of digits
generated is greater than the target digit count, the
partial result is stored and a decimal overflow trap
occurs. SDEC (bit 11) allows leaving either the
target address and digit count on the stack or
deleting all parameters. If either the target digit
or source word count is =zero, SDEC is performed and
execution continues with the next instruction.
SDEC = 0, delete 2 source parameters
SDEC = 1, delete all L parameters

Instructicn Commentary 3-23.
Indicators: CCA, Overflow
Traps: Decimal overflow (%13)

Invalid source word count (%16)

Invalid decimal operand length (%17)

STUN, STOV, BNDV
Addressing mode: DB+ relative word addressing for source.

DB+ relative byte addressing for target.

0|1 2 3|4 S 6|7 8 8|10 11 12;13 14 1E

0l0 100 0o0[11j0] 0f |Of1 0 0

t——-SDEC

Extended Instruction Set

3-12. CVDB Decimal to binary conversion

Stack before execution:

TOS-2, target word address
TOS-1, source byte address
TOS, source digit count

The number of decimal digits specified in the source
digit count is converted to two’s complement binary
16-bit words which are stored in the target field.
The number of words produced for source digit counts
is as follows:

Source Digit Count Target Words
l1tod 1
5 to 9 2
10 to 18 L
19 to 28 6

SDEC (bit 11) allows leaving either the target
address on the stack or deleting all parameters. If
the source digit count is zero, SDEC is performed and
execution continues with the next instructien.
SDEC = 0, delete two source parameters
SDEC = 1, delete all three parameters
Instruction Commentary 3-23.
Indicators: CCA, Overflow
Traps: Invalid packed-decimal digit (%15)
Invalid decimal operand length (%17)
STUN, STOV, BNDV
Addressing mode: DB+ relative byte addressing for source,
DB+ relative word addressing fer target.

0|1 2 3|4 S6(7 89|10 11 12{13 14 15

001 0/000f11]0l0f |Oof1 0 f

L—SDEC

3-8

Extended Instruction Set

3-13. ADDD Decimal add

Stack before execution:

T0S-3, operand-2 byte address
TOS-2, operand-2 digit count
TOS-1, operand-1l byte address
TCS, operand-1l digit count

The two operands are added and the result is restored
in operand-2 field. A decimal overflow occurs if all
significant digits of the result do not fit in the
operand-2 field. This results in a trap, and the
left-truncated result is stored in operand-2 field.

SDEC = 00, delete no parameters
SDEC = 01, delete cperand-l parameters
SDEC = 10, delete all four parameters

Instruction Commentary 3-23.

Indicators: CCA, Overflow

Traps: Decimal overflow (%13)
Invalid decimal (%15)
Invalid decimal operand length (%17)]
STUN, STOV, BNDV

Addressing mcde: byte addressing, DB+ relative

1
0|1 2 3|4 56{7 8 9]10 11 12|13 14 15

0/0 1 0f{0 0 0]1 1|0 | 1] 0 0 1

|.-—-Ej-SDEC

3-9

Extended Instruction Set

3-14. SUBD Decimal subtract

Stack before execution:

TOS-3, operand-2 byte address

TOS-2, operand-2 digit count

TOS-1, operand-1l byte address

TOS, operand-1 digit count
Operand-l is subtracted from operand-2 and the result
is stored intc the operand-2 field. If overflow
occurs, that is, if the result digits do not fit in
the operand-2 field, the left truncated result is
stored in operand-2 and a trap occurs.

SDEC = 00, delete no parameters
SDEC = 01, delete coperand-l parameters
SDEC = 10, delete all four parameters

Instruction Commentary 3-23.

Indicators: CCA, Overflow

Traps: Decimal overflow (%13)
Invalid decimal digit (%15)
Invalid decimal operand length (%17)
STUN, STOV, BNDV

Addressing mode: byte addressing, DB+ relative

0|1 2 3|4 56|78 9|10 11 12{13 14 1§

0/0 1 0{0 0 0|1 10 | 170 1 1

F_—{::iSDEC

3-15.

CMPD Decimal compare

Stack before execution:

TOS-3, operand-2 byte address
TOS-2, operand-2 digit count
TOS-1, operand-1 byte address
TOS, operand-1l digit count

Extended Instruction Set

Operand-2 1is compared to operand-l1 and the condition
code is set. The operands remain unchanged at their

original addresses.

SDEC = 00, delete noc parameters
SDEC = 01, delete operand-l parameters
SDEC = 10, delete all four parameters

Instruction Commentary 3-23.

Indicators: CCC, Overflow

Traps: Invalid decimal digit (%15)
Invalid decimal operand length (%17)
STUN, STOV, BNDV

Addressing mode: byte addressing, DB+ relative

0{1 2 3|4 56{7 89|10 11 12|13 14 15

0{0 1 0/0 0 01 1/0 | 110 1 0

F_ESDEC

3-11

Extended Instruction Set

3-16.

SLD

Decimal left shift

Stack before execution:

TOS-3, operand-2 byte address
TOS-2, operand-2 digit count
TOS-1, operand-1l digit count

Operand-1 is moved to the operand-2 field with its
digits offset to the left of its sign by the shift
amount in the low-order 5 bits of the X register.
Leading or trailing digits in the result field, which
are supplied by the source operand, will be zeros.
Digits shifted out of the operand-2 field are lost,
and carry is set to indicate that significant digits
were lost.

SDEC = 00, delete no parameters
SDEC = 01, delete operand-l parameters
SDEC = 10, delete all four parameters

Instruction Commentary 3-23.

Indicators: CCA, Carry Overflow

Traps: Invalid decimal digit (%15)
Invalid decimal operand length (%17)
STUN, STOV, BNDV

Addressing mode: byte addressing, DB+ relative

0|1 23/456(7 8910 11 12/13 14 15

0j0 1 00 00|t 1]0 loj1 1 0

I -

3-12

Extended Instruction Set

3-17. NSLD Decimal normalizing left shift

TOS-3, operand-3 byte address

TOS-2, operand-2 digit count

TOS-1, operand-l byte address

TOS, operand-1 digit count
Operand-1 is moved to the operand-2 field with its
digits offset by the shift amount in the low-order 5
bits of the X register. Leading or trailing digits
in the result field which are not supplied by the
source operand, will be zeroes. If the shift amount
is large enough that significant digits of operand-1
would be shifted out of the operand-2 field, the
effective shift amount is reduced so operand-1 is
left-justified in the operand-2 field. In addition,
a number equal to the difference between the
specified and actual shift amounts is left in the X
register, and carry is set. If the length of the of
the operand-2 field is such that significant digits
would be lost even with a shift amount of zero, 2
decimal overflow trap is reached and no data movement

occurs.
SDEC = 00, delete no parameters
SDEC = 01, delete operand-l parameters
SDEC = 10, delete 2ll four parameters

Instruction Commentary 3-23.

Indicators: CCA, Carry, Overflow

Traps: Decimal overflow (%13)
Invalid decimal digit (%15)
Invalid decimal operand length (%17)
STUN, STOV, BNDV

Addressing mode: byte addressing, DB+ relative

0|1 2 3|4 56/7 89|10 11 12|13 14 15

0{0 1 0/0 0 0f1 1|0 | oj 1 1 1

-

3-13

Extended Instruction Set

3-18. SRD Decimal right shift

Stack before execution:

TOS-3, operand-2 byte address
TOS-2, operand-2 digit count
TOS-1, operand-1 byte address
TOS, operand-1l digit count

Operand-1 is moved to the operand-2 field with its
digits offset to the right relative to its sign, by
the shift amount in the low-order 5 bits of the X-
register. Digits shifted into the sign are lost.
Zerces are shifted in from the 1left and high order
zeros are insorted to fill the operand-2 field, if
necessary. Digits shifted or moved out of the
operand-2 field are lost.

SDEC = 00, delete no parameters
SDEC = 01, delete operand-l parameters
SDEC = 10, delete all four parameters

Instruction Commentary 3-23.

Indicators: CCA, Overflow

Traps: Invalid decimal digit (%15)
Invalid decimal operand length (%17)
STUN, STOV, BNDV

Addressing mode: byte addressing, DB+ relative

0|1 23/456{7 89|10 11 12{13 14 15

0j0 1 00001 1]0 [1] 0 0 0

i.----.{:-_--‘{—SDEC

Extended Instruction Set

3-19. MPYD Decimal multiply

Stack before execution:

TOS-3, operand-2 byte address
TOS-2, operand-2 digit count
TOS-1, operand-l byte address
TOS, operand-1 digit count

The operand-2 field is replaced by the product of the
operand-1l field times the operand-2 field. If the
significant digits of the result do not fit into the
operand-2 field, an overflow trap occurs. The
results stored in this case will be left truncated
unless the actual result is greater than 28 digits.
If over 28 digits, nothing will be stored.

SDEC = 00, delete no parameters
SDEC = 01, delete operand-l parameters
SDEC = 10, delete all four parameters

Instruction Commentary 3-23.

Indicators: CCA, Overflow

Traps: Decimal overflow (%13)
Invalid decimal digit (%15)
Invalid decimal operand length (%17)
STUN, STOV, BNDV

Addressing mode: byte addressing, DB+ relative

0|1 2 3|4 56|7 8910 11 12{13 14 15

0{0 1 0{0 0 0|1 1]0 11 0 o0

i.—_—{::'{-SDEC

Extended Instruction Set

3-20. DMPY Double logical multiply

Stack before execution:

T0S-3, high-order end of operand-2
T0S-2, low-order end of operand-2
TOS-1, high-order end of operand-1
TOS, low-order end of operand-l

The double-word operands on the top of the stack are
logically multiplied. The two operands are replaced
by the U-word logical product. Carry is cleared if
the high-order 32 bits are all zeros; otherwise,
carry is set.
Indicators: CCA (as a 2's complement 4-word integer),
Carry
Traps: STUN

0/1 2 3|4 56{7 89|10 11 12{13 14 15

0/0 1 0{0 0 0|1 1]0] 0] 0] 0] O 0 1

Extended Instruction Set
3-21. INSTRUCTION COMMENTARY

3-22. Commentary for floating-point numbers of HP 30012A Extended Instruction Set
g-F

Figure 3-1 shows the data word format. The word consists of 64 bits, made up of four 16-bit
words. The four words are stored in adjacent locations in memory.

Floating-point numbers are stored in a binary sign-magnitude format. Bit 0 of word A is the the
sign (a Orepresents +; a | represents ~). Bits (10:15) of word A and words A+1, A+2, and A+3
contain the mantissa and bits (1:9) of word A contain the base 2 exponent.

The exponent, stored in bits (1:9) of word A, is biased. To calculate the actual exponent, 256
decimal must be subtracted from stored exponent. Figure 3-2 gives some examples of ex-
ponents in extended-precision floating-point format. As the figure shows, the unbiased exponent
can range from =256 to +256.

The binarv point of the mantissa is to the left of bit 10 in word A. Each extended-precision in-
struction normalizes the result produced so that there is an assumed | to the left of the binary point
unless the result is zero. Similarly, data input to computer is placed in normahzed form when
ccnverted to floating- point format.

When an instruction produces a new mantissa (as the result of addition, subtraction, multiplica-
tion, or division), the amount 1s always rounded before being stored.

The §5-bit mantissa (including the assumed 1) is equivalent to approximately 16.6 decimal digits.

1

Figure 3-3 shows some examples of floating-point numbers. In the first example, the mantissa 1§ }
(the assumed 1). The biased exponent is 2¥*256. The unbiased exponent is 2%*(Q indicating mul-
tiplication by 1. The entire number is therefore 1, and it is positive because the sign bit of the man-
tissa 1s 0.

The second example in figure 3-3 also represents 1, but this time the amount is negative because the
mantissa sign-bit is 1.

In the representation of +2, the biased exponent is 2¥*¥257. and the unbiased exponent is 2*¥¥1,
which equals 2. The mantissa is 1, and the total amountis 2 X I, or 2. The sign 1s +.

In the next example the biased exponent is 2**255, and the unbiased exponent is 2*¥*¥-1. With
the mantissa being 1, the total amount is 1/2*¥*1 X 1, equal to 0.3.

3-17

Extended Instruction Set

aIHHHH INSEREREENENSEEREEREEREREARERERERRNRERERRNERRNERARRRENEEE

—

INCREASING ADDRESSES IN MEMORY

Figure 3-1. Format of Extended-Precision Floating-Point Number

UNBIASED
{ACTUAL) BIASED 8iITS 1 9)
MULTIPLIER MULTIPLIER WORD &

2-25%6 20 olojoicioiolojaio

2255 2 ojojojojoialajo:

2! 2255

20 2256 alojojolotoialo

2 2287 ojojojojoloje}r

2255 2511

Figure 3-2. Examples of Exponents

3-18

Extended Instruction Set

S BIASED
EXPONENT FRACTION

DECIMAL \l
NUMBER [

o [CLEEEERERE 6 B

9 10 @ = - e ——— 5]

1

-1 [1]1]o]ojololo[alof0 °I°T:€‘:L°l°i°j°}

1 -

2 [o]JoJe[efo]ee el To[o] _&:_ JoJe[e[c]

1

+05 10[0}1[1[;[1[1]111[! ojo] —o:_-[olo[olo]

v/
~256 {ol1{olojoloit{ojclo o;oi:g_'s: {ojoojo]

V7

+384 [e{:Teiole]ol icfcle 1{0]:0—‘:— {ofololc}

7

Figure 3-3. Floating-Point Numbers and Conversion Formulas

In the representation of +256, the biased exponent is 2¥*264, and the unbiased exponent 1s 2¥*8 2¥*¢8
X 11s 256.

In the last example the unbiased exponent is 2¥**8 and the binary mantissa is 1.1. Binary 1.1 equals
decimal 1.5, making the total amount 384.

A simple method to determine whether a floating-point number is less than 1 is to examine bit | of
word A. If the bitis O, the floating~point number has value less than 1.

Zero in floating-point form is a special case. Because of the assumed 1, there is no exponent of 2
by which the mantissa can be multiplied to yield zero. Therefore, the format for zerc has been es-
tablished as 64 zeros (zeros completely filling the 4-word floating-point number). The floating-
point representation of zero is shown at the top of figure 3-4.

The special need for representing zero makes it necessary to disallow the numbers + 2¥*¥256 (+
863 ... X10**-78) and - 2%*-256 (- 8.6 3 ... X 10**-78). The - 2**-256 may be treated as -
2%*- 256 or zero if supplied as an operand to the extended-precision floating-point of the HP
30012A. Asaresult, both + 2¥*-256 and - 2*¥*-256 if generated are treated as underflow cases.

Extended Instruction Set

Figure 3-5 shows the range of decimal numbers which can be represented by the 64-bit
floating-~point number. (The decimal numbers in figure 3-§ are carried to only 11 places.)
Intervals G and L in the illustration represent amounts too close to zero to be represented (under-
flow). If a number in this range results from a floating-point operation, the exponent actually
stored is modulo 512 with respect to the true biased exponent. The mantissa is correct. (A
number expressed modulo §12 is the remainder which results when §12 is divided into the number).

If the result of a floating-point has an absolute magnitude greater than can be represented
(overflow), the exponent is expressed modulo 512 and the mantissa is expressed correctly. In figure
3-5, these amounts are above the most positive value shown and below the most negative value
shown.

The instructions EADD, EBSUB, EMPY , EDIV, and ENEG set condition code A (CCA) in the CPU
status register. This indicates whether the result is greater than zero (CCG), equal to zero (CCE), or
or less than zero (CCL). When this done, bits 6 and 7 of the CPU status register are respectively set
as follows:

o To 00 (CCG) if the result is in interval G or is any other other positive quantity, including a
positive result too great to be represented.

o To 10 (CCE) if the result is zero.

0 To Ol (CCL) if the result is in interval L or is any other negative result whose magnitude is
too great to be represented.

3-20

Extended Instruction Set

178 x o
m:mv:Lfosﬁl::s&s,v folofofololofc[olo]e

10-78 X .8 6361685551
{INVALID NUMBER)

SIGN BIASED
EXPONENT FRACTION
M o v 0 »
0 [o]ooiojojojcjolelofoio] o |oiojcio]

0

o|o[:cl’.x:lo!o{cio]

1

11]o[ojolojolojofe]lo

oE[:o:‘io]cioio]

Figure 3-4. Representation of Zero

VALIDITY

DECIMAL NUMBER

FLOATING POINT NUMBER

MOST POSITIVE =

LEAST POSITIVE ==

LEAST NEGATIVE =~

MOST NEGATIVE ——

NOTE

N N

BIASED

S EXPONENT

FRACTION

0) ————— e § 10 >

- ——)

stsrszomezmnezxie?? To[s bl v jriengsd
- 1

+8.636188555004445 x 1078 oio;cio}c:a;o}cgcgo!cxo; 01 io;a;oﬁ]
i
V7

0 [elotcloiojoioiaiojoioicr o3 foicicio]
)
0

- es3616asssopeass x 101078 [1]u]o]ojojolalolojoloiol os jeloloio]
4

-1157920892373162 x 10 *77 N'[H“l‘l'!'['l'[‘

INTERVALS G AND L NOT SHOWN TO SCALE

Figure 3-5. Valid Number Range

3-21

Extended Instruction Set

The instruction ECMP sets CCG if operand-l is greater than operand-2, CCE if operand-1
equals operand-2, and CCL if operand- 1 is less than operand-2.

The memory address of a 4-word floating-point number is identified by the address of word A. (See
figure 3-1) Word A+1, A+2, and A+3 are in successively higher addresses.

The microcoded extended -precision floating-point instructions are not interruptable. When these in-
structions are performed by the simulation procedures, interrupts of extended-precision floating-
point instructions are recognized in the manner established for the instructions which make up each
procedure,

If an EADD, ESUB, EMPY, or EDIV instruction results in an overflow or underflow, CCA is
set in the CPU status register, the exponent is modulo 512, and the mantissa is correct as described
previously. If the user traps bit (CPU status register bit 2) is clear, the overflow bit (CPU status
register 4) is set, the three operand addresses are deleted from the stack, and the next instruction
i1s fetched. If the user traps bit is set, the overflow bit is cleared, the top two addresses are
deleted from the stack, and a parameter (000010 octal for overflow, 000011 octal for underflow)
1s pushed onto the stack. A callis then made tosegment #1, STT #25 (decimal).

A divide-by-zero error in EDIV is handled in a similar manner. The dividend is stored as the
answer and CCA 1s set to indicate whether the dividend is positive, zero, or negative. If the user
traps bit is clear, the overflow bit isset, the three addresses are deleted from the stack, and the next
instruction is fetched. If the user traps bit is set, the overflow bit is cleared, the top two addresses
are deleted from the stack and 000012 octal is pushed onto the stack. A call is then made to seg-
ment #1, STT #2125 (decimal).

If any operands referenced by floating-point instructions reside outside of the stack, a bounds
violation trap will occur if executing in user mode. Also, erroneous results will be produced if any
of the operand addresses on the stack are part of any of the operands.

3-22

Extended Instruction Set

3-23. Commentary for the decimal arithmentic instructions of the HP 30012A Extended
Instruction Set

Most of the instructions use the packed-decimal number format; two use external-decimal number
format. -

The format of a pack-decimal number is shown in figure 3-6. The left-most byte in the 1llustration
contains the high-order digit. If this digit is in bit positions 4-7, positions 0-3 of the same byte are
ignored. (A digit count specifies the number of digits to be recognized.) The characteristics of a
packed-decimal number are as follows: '

[¢)

Each decimal digit is represented in BCD form by four bits.
The sign is represented by four bits.

In storage, the four sign bits may be in the following bit positions of a 16-bit word; (12-135) or
(4-7). Expressed in different terms, the sign is always in positions (4-7) of an & bit byte; the
byvte 1s byte O or byte | of a [6-bit word.

If the sign is in (4-7) of a 16 bit word, (8-15) of the same word 1s not part of the number field
and may have any contents.

Succeeding 4-bit groups to the left of the sign (figure 4-1) contain successively higher-order
digits.

There are no unused bits between the sign and the high-order digit.

When a packed-decimal number is source data for a decimal arthmetic instruction, sign bits 1101

are recognized as minus. All other bit combinations are recognized as plus, except that the CVDA
instruction recognizes 1111 as designating an unsigned number.

When a packed decimal number is the result of a decimal arithmetic instruction, sign bits 1100
indicate plus and 1101 indicated minus. There are no unsigned result operands except for the
CVAD; the CVAD instruction furnishes 1111 to indicate an unsigned number.

A leading nonsignificant packed-decimal digit is not modified by any instruction other than
CVAD which inserts a zero.

Two decimal arithmetic instructions, CVAD and CVDA, make use of external-decimal numbers.
Figure 3-7 shows the format of this type of number.

3-23

Extended Instruction Set

UNUSED
oR LOW.ORDER

DIGIT DIGIT oIGIT DIGIT oIGIT oIGIT DIGIT SIGN
/\ I\ A A A A\ A /_/;\
1 2 37a s 8 10 7o 1 2 34 5 & 1" 01 72 374 5 8 7° [3’74 5 8

CITTTTTD CITTD

CTITTIIT]

11 [/ (I

—>

INCREASING ADDRESSES {N MEMORY

7507 2%
Figure 3-6. Packed-Decimal Format
HIGH ORDER LOWOEDER
DIGIT 0IGIT DIGIT ANDC;g;EN
/ N— / A A
01 2 3 4 5 § 7 ox234ss7\ 1134557\ ‘001 2 3 4 5 6 7
CCTTTTTT) COTTrrrn [/ COTTTTTD) (oo
INCREASING ADORESSES IN MEMORY
1907 28

Figure 3-7. External-Decimal Format

Extended Instruction Set

The characteristics of an external-decimal number are as follows:

o FEach digit is expressed by eight bits.

o Included in the representation of the low-order digit is an indication of the sign of the number.

o In storage, the low-order digit may be in byte 0 or byte 1 of a 16-bit word. (Byte Ois the high-
order byte of the 16-bit word.)

o If the low-order digit is in byte O, byte 1 of the same word may have any contents.

o Succeeding bytes to the left of the low-order digit (figure 3-7) contain successively higher-order
digits of the numbers.

"o There are no unused bytes between the low=order digit and the high-order digit.
o If the high-order digit is in byte 1, byte O of the same word may have any contents.

o Table 3-1 shows the low-order digit for positive, negative, and unsigned numbers. The letters A
through R 1n the table, and the braces, are the ASCII equivalent of the 3-digit code shown.

o Digits other than the low-order digit conform with the the "UNSIGNED" column of table 3-1.

Each packed-decimal or external-decimal number is stored in the form of a quantity of &-bit
bytes. FEach byte occupies bit positions (0-7) or (8-15) of a 16-bit storage location
Successive 16-bit locations are used (if required) to store an entire number. At each end of the
number there may be an unused byte in a 16-bit location; this byte may be a part of a different
number. The storage address of a number is the byte of the high- order digit.

To illustrate byte addressing, assume that operand-1 of an ADDD instruction consists of four sig-
nificant digits and the byte address is DB+7. The sign bits must be in positions 4:7 of a byte ",
and in this case they are in positions 12:15 of word address DB+4 (see figure 3-8). This is equiv~-
alent to positions 4:7 of byte address 11 (positions 12:15 of word address DB+4). The low-order
digit is in positions 0:3 of byte address 11 (positions &:11 of word address DB+4). Two digits are in
byte address 10. The high-order digit is in positions 4:7 of byte address 7. Positions 0:3 of byte
address 7 may have any content; because the digit count is 4, this part of the byte is ignored.

The decimal arithemetic instructions make checks for improper data as listed in table 3-2.
When an incorrect condition is found, one of the following occurs:

o If the User Traps Bit is O, the Overflow Bit is set to 1. (The User Traps Bit is position 2 of the
CPU Status Register. The Overflow Bit is position 4 of the CPU status register.) The stack is
decremented as specified. :

o If the User Traps bitis 1, a "trap parameter" is pushed on the stack and a call is made to segment
#1,STT #25 (decimal). Stack decrementing specified by the instruction is not performed.

3-25

Extended Instruction Set

Table 3-2. Error Traps

TRAP
ERROR ABORT MESSAGE PARAMETER

Packed-cecmal overflow Decimai Qverfiow %13

Invahd exlernai-decimai Invaid ASCII gigit %14
digt *

invaiild pacxed-dec'mal Invahd decimal digit %15
a.gn

Lource word count >6 of invalid source word %16
negative count

Digut count >28 or ’ Invand cecimal %17
negative operanc length

Packed-decimal overflow is the condition in which a packed decimal result has too many significant
digits for the specified storage size. (The target digit count is too small). Except for the NSLD and
MPYD instructions, when this occurs the low-order digits of the result are stored; surplus high-
order digits are discarded. The NSLD instruction stores nothing in this case. The MPYD instruc-
tion stores the left truncated result if the full result could be contained in 28 digits; otherwise,
it stores nothing.

Two of the error conditions in table 3-2 are for valid digits. An invalid digit has a bit combina-
tion for which there are no provisions in the number system being used.

Decimal arithemetic instructions check the validity of digits as follows:

o In a packed-decimal source operand, all digits are checked.

o In an external-decimal source operand, the digits checked are those specified by the target digit
count.

An invalid external-decimal digit is one of the following:
o For the sign a bit combination not shown in table 3-1 unless the field is all blanks.

o If other than a low-order digit, a bit combination not shown in the "UNSIGNED" column of
table 3-1. Leading ASCII blanks (%040) are valid; blanks between digits are not valid.

Extended Instruction Set

The CVAD instruction checks for invalid external-decimal digits. Only the quantity if source digits
specified by the target digit count are checked by CVAD.

An invalid packed-decimal digit has a value greater than 100! binary. (In hexadecimal notation,
the invalid bit combination represents the letters A through F.) All decimal arithemetic instruc-
tions which use a packed-decimal source operand check each BCD digit for validity; sign bits are not
checked.

An error trap occurs if the digit count is greater than 28 or negative. If an instruction uses two
digit counts (source and target counts}, either count can set the error condition.

An error trap occurs if the source word count is greater than 6 or negative. This error trap is
used only by the CVBD instruction, which makes no change at the target address if the trap con-
ditions occurs.

Each decimal arithemetic instruction sets CCA in the CPU Status Register in accordance with the
result operand. As an exception, CMPD sets CCC.

If a result is truncated because the target digit count is too small, CCA is set in accordance with the
truncated result. When the stored result is truncated because the target digit count is toc small,
CCE (operand = 0) may be indicated when the full result is not zero. This occurs when the stored
portion of the result is zero, but unstored high-order digits are not zero.

Except for the CVDA and CVAD instructions, a negative zero result is not stored

When executed by the HP 30012A Expanded Instruction Set, the decimal arithemetic instructions
cannot be interrupted. However, when these instructions are performed by the simulation
procedures, interrupts are recognized in the manner established for the instructions which make up
each procedure.

The ADDD, CMPD, MPYD, NSLD, SLD, SRD , and SUBD instructions can specify overlapping
operand fields provided the two signs coincide (share the same byte address).

3-27

Extended Instruction Set

BITS 0-7 (WORD) BITS 8-15 (WORD)
8ITS 0-7 (BYTE Q) BITSO-7 (BYTE 1)
— \
DB %0 %1
DB +%1 %2 %3
0B +%2 %4 %5
OB +%3 %6 %7
DB +%4 %10 %11
DB +%5 %12 %13
DB +%6 %14 %15
DB +%7 %16 %17
D8 +%10 %20 %21
%7(BYTE ADDRESS) TOS-1
%4(DIDGIT COUNT) TOS

7507-27

Figure 3-8. Typical Packed-Decimal Number in Data St;ck

3-28

LANGUAGE EXTENSION INSTRUCTION

This section describes the language extension instructions which complement the basic instruction
set of the HP 3000 Computer Systems. Instruction Commentary 4-56, which follows immediately
after the instruction description, explains the possible traps for the language extension instructions.
Instruction Commentary 4-57. provides additional information for the CMPS and CMPT in-
structions. Instruction Commentary 4-58 provides examples of the EDIT subprograms. ’

4-1. PROGRAM CONTROL INSTRUCTIONS

4-2. XBR External branch

Control is transferred unconditionally to the
location pointed to by the evaluation of the two word
label taken from the top of stack. The format for
the label is as follows:

S-1 PB rel. address

S-0 SEG #

Both parameters are deleted from the stack.

Indicators® Unaffected

Traps. Stack Underflow, Bounds Violation, CST Violation
Priv. Mode Violation, Absence, Trace

0j1 2 3|14 56(7 89|10 11 12/13 14 15

ojoj1]ojojojolt]ojo] 1] 1] 1| 1] 0] ©

Language Extension Instructions

4-3.

PARC Paragraph procedure call

Control is transferred to the location pointed to by
the evaluation of the two word label at S-2, S-1.
The paragraph number given at S-0 is not modified and
is used by the END of PARAGRAPH instruction. The two
word label 1is replaced with a PB relative return
address in S-2 and a copy of the status register in
S-1. The status register is wused to obtain the
current segment number. The format for the stack
before and after is as follows:

before
S-2 .| PB rel. address
S-1 SEG #
S-0 Paragraph #
after
S-2 PB rel. rtn addr
S-1 STATUS
S-0 Paragraph #

None of the parameters are deleted from the stack.

Traps: Stack Overflow, Stack Underflow, Bounds Violation
CST Violation, Priv. Mode Violation, Absence,
Trace

Indicators: Unaffected

0|1 2 3|4 56{789}10 11 1213 14 15

ojoft1]ojojojojt|ajo| 1| 1| 1| 1] O} 1

4-2

Language Extension Instructions

4-4. ENDP End of paragraph

The current paragraph number contained in §-0
is compared to the paragraph number of <the ter-
minating paragraph in S-1 (which was left
by the PARC instruction). If the twc paragraph
numbers are equal, the two words S-3, §-2
which contain PB relative return address and
status are used to return from the call made by
the PARC instruction. If <the two paragraph
numbers are not equal, the exit is not taken.
The format for the stack prior to execution is
as follows:

s-3 PB rel. address

S-2 SEG » left by PARC
S-1 Paragraph # |

S-0 Paragraph #

If (S-0) equals (S-1) then all the parameters
are deleted from the stack else only S-0 is
deleted.

The ENDP instruction requires the presence
of a paragraph number on the stack. The para-
graph number is left on the stack by the execu-
tion of the PARC instruction. At the entry of
a main or subprogram a dummy paragraph number
must be placed on the stack. This dummy para-
graph number should be an illegal number
(such as -1). The entire three word stack
marker is not required since no exit will ever
be executed using it.
Traps: Stack Underflow, Bounds Vieolaticn, CST Violation,
Priv. Mode Violation, Absence, Trace
Indicators: Unaffected

0/1 2 3|14 56{7 89|10 11 12{13 14 15

ofof1]o]ojojo1[ojo| 1] 1] 1| 1] 1] 0

4-3

Language Extension Instructions
4-5. EDIT AND NONEDITED MOVE INSTRUCTIONS

4-6. EDIT The EDIT dinstructien moves a string of
characte from the source buffer of the target
buffer under control of an EDIT subprogram.

The EDIT instruction, prior to 1its execu-
tion, requires the condition code to be set to
reflect the sign of the number being
processed for numeric editing. A second

indicator, the significance trigger, is main-
tained by the EDIT instruction, and is set to

a 1 when the first nonzero digit is encoun-

tered. These indicators control leading zero
suppression and replacement, sign insertion, and
sign overpunch. Three 8-bit values are main-

tained by the EDIT instruction and hold
definitions of the fill character, the float
character, and loop count. The defaults are as

follows:
INDICATOR or DATA ITEM DEFAULT
Significance Trigger 0
Fill Character SPACE
Float Character ng
Loop Count 0 (equiv. to 256)

0|1 23/456;7 8310 11 12|13 14 15

ojoj1]ojojojoftjofol 1] 1] 1| o] 0| Y

When Y
When Y

0, the subprogram locatiocn is in the PB area.
1, the subprogram location is in the DB area.

The EDIT instruction also maintains three
peinters. The three pointers are the Source
Pointer, the Target Pointer, and -the Operation -
Code Pointer. These pointers point to the
current byte in progress for the respective
areas. At the beginning of an EDIT instruction
these pointers are set to the values con-
tained in the three words on top of stack.
The three buffers (source, target, and sub-
program) may overlap in any way desired. When
overlap cccurs it is possible to get urpredict-
able results or encounter an error condition by
modifying either the source or the subprogram.

4-4

Language Extension Instructions

The stack prior to execution is as follows:

S-3 EDIT Subprogram
S-2 Target Address
S-1 Source Address
S-0 ZERD Interrupt Restart Word

The EDIT instruction is interruptable after each subprogram in-
struction, and will continue from the point of interruption when
control is returned to the instruction. The zero word on top of the
stack allows restarting the instruction in the middle of an EDIT sub-
program. On completion of the sub-program all four parameters are
popped from the stack. The Condition Code and Carry bits are
not modified. Overflow may be set. (Refer to Instruction
Commentary 4-56.)

The EDIT subprogram can perform a variety of operations in-
cluding leading zero suppression and replacement, leading or trail-
ing insertion of the sign, leading or trailing sign overpunch, float-
ing character insertion, punctuation control, and text insertion.
{Refer to table 4-1 and table 4-2.)

The EDIT subprogram is made up of &-bit instructions followed by
zero Or more 8-bit operands. Instructions are included for
edited moves, character or sign insertion, pointer modification, set-
ting and testing the significance trigger and looping. The EDIT
subprogram is processed sequentially unless instructed to do other-
wise. The op-code pointer is updated after each operation to point
.to the next sequential op-code. The EDIT instruction will con-
tinue to process op-codes until directed to stop by the terminate
edit (TE) op-code or an error condition is detected. The EDIT
subprogram is located either in the PB or DB relative area.

The 8 bit instructions are divided into 4-bit fields as follows:

34 7

Op-Code

Immediate
Operand

Language Extension Instructions

Table 4-1. EDIT Instruction Set Summary

4-BIT
OPCODE MNEMONIC INSTRUCTION DESCRIPTION
0 MC n Move n characters
1 MA n Move n aiphabetics
2 MN n Move n numerics
3 MNS n Move n numerics suppressed
4 MFL n Move n numerics with ficating insertion
5 IC n,x Insert character “x" n times
6 ICS n.x insert character “x" n times suppressed
7 ICI n.x Insert n characters immediate
%10 ICSI nx Insert n characters suppressed immediate
%11 BRIS d Branch d bytes if significance equals 1
%12 SUFT d Subtract d from target pointer
%13 SUFS d Subtract d from source pointer
%14 ICP m Insert character punctuation
%15 ICPS m Insert character punctuation suppressed
%16 IS m Insert m characters depending on sign
%17 This opcode is subdecoded to provide those instructicns which require no immeaiate
operand. The operand field is decoded to provide 1 of 16 functions as described in
table 4-2.
Table 4-2. EDIT Instruction Set Summary For Opcode = %417
4-BIT
OPCODE MNEMONIC INSTRUCTION DESCRIPTION
0 TE Terminate EDIT
1 ENDF END floating insertion
2 SST Set significance to 1
3 SSTO Set significance to 0
4 MDWO Move digit with overpunch
5 SFC x Set fill character equal to x
6 SFLC xy Set float character depending on sign
7 DFLC x.y Define float character depending on sign
%10 SETC n Set loop count to n
%11 DBNZ d Decr. loop count and branch if non zero

4-6

Language Extension Instructions

4-7. EDIT Instruction Immediate Operands

All of the instructions defined by c¢p-codes in the range of 0 to

%16 contain at least one operand. The maximum value for the

immediate operands is 15. To allow operands outside the range of

1l to 15, the immediate operands may be set to zero and the next
sequential byte is used as the operand. This is allowed for only

those instructions whose op-codes are in range 0 to %13. The

interpretation of the extended operand is as follows:

Op-Code Range Extended Operand Range
min. max. min, max.

0 to %10 0 to 255
%11 to %13 | -128 to 127

4-8. EDIT SUBINSTRUCTIONS

Following is a description of each of the EDIT subinstructions
which may be used to construct an EDIT subprogram. (For example,
see Instruction Commentary u4-58.)

4-9. FORMAT TYPE #1 (for instructions: MC, MA, MN, MNS, MFL,). The
instruction format for the instructions with only immediate
cperands is as follows:

" 34 70 7
opcode | immediate | extended operand
operand (optionald
byte 1 byte 2
NOTE

The Immediate (or extended) operand indicates the
number of characters to be moved from the source
buffer to the target buffer.

4-7

Language Extension Instructions

4-10. MC

4-11.

MA

Move Characters (format #1). The MC instruction
transfers a specified number of bytes from the source buffer to
the target buffer. The immediate (or extended) operand

defines a positive byte count. Both the source pointer and
the target pointer are increased by the byte count. Traps:
Bounds Violation Indicators: None

0 34 7

0000 Immediate
Operand

Move Alphabetic (format #1). The MA instruction
transfers a specified number of alphabetic characters
(A-2, a-z, &SPACE) from the source buffer to the
target buffer. The immediate (or extended) operand
defines a positive byte count. Both the source
pointer and the target pointer are increased by the
byte count.

Traps: Bounds Violation, Invalid Alphabetic Character
Indicators: Overflow

0 34 7

0001 Immediate
Operand

4-13.

MNS

Language Extension Instructions

Move Numerics (Format #1). The MN instructicn
transfers a specified number of numeric characters
{0-9 & leading SPACES) from the source buffer to the
target buffer. Leading spaces are converted to "0".
When the first non-zero digit 1is encountered, the
significance trigger is set to 1. The immediate (or
extended) operand defines a positive byte count. Beth
the source and target pointers are increased by the
byte count.

Traps: Bounds Violation, Invalid ASCII Digit
Indicators: Overflow

0 34 7

0010 Immediate
Operand

Move Numerics With Zero Supression (format #1). The
MNS instruction transfers a specified number of nu-
meric characters (0-9 & leading SPACES) from the
scurce buffer to the target. While the significance
trigger is 0, all leading zeros & spaces are replaced
with a fill character. When the first non-zero digit
is encountered, the significance trigger is set to 1.
immediate (or extended) operand defines a positive
byte count. Both the source and target pointers are
increased by the byte count.

Traps: Bounds Viclation, Invalid ASCII Digit
Indicators: Overflow

0 34 7

0011 Immediate
Cperand

4-9

Language Extension Instructions

4-14. MFL Move numerics With Floating Insertion (format #1).
The MPL instruction transfers a specified number of
numeric characters (0-9 & leading SPACE) from the
source buffer to the target. While the significance
trigger=0, all leading zeros and spaces are replaced
with the fill character. When the first non-zero
digit is encountered, the significance trigger is set
to 1 and the float character is placed in the target
buffer followed by the non-zero digit. The immediate
(or extended) operand defines a positive byte count.
The source pointer is increased by the byte count.
The target pointer is increased by the byte count
plus one if the significance trigger changes from 0
to 1 else the target pointer is increased by the byte
count.

Traps: Bounds Violation, Invalid ASCII Digit
Indicators: Overflow

0 34 7

01 00| Immediate
Operand

4-15. FORMAT TYPE #2 (for instructions: IC,ICS). The instruction
format for the instructions With immediate operands
and a single insertion character follows:

C 34 70 70 7
opcode | immediate | extended insert
operand operand character
(optional)
byte 1 byte 2 byte 3
NOTE

If the immediate operand is non-zero then the in-
sert character would appear in byte 2 (not byte 3).

NOTE

The immediate for extended) operand indicates the
repeat facter to be used for insertion.

4-10

4-16.

IC

Language Extension Instructions

Insert Character (format #2). The IC instruction
asserts a single character into the target buffer a specified
number of times. The immediate (or extended) operand

defines a positive repeat «count. The character to be inserted
is specified 1in the second or third byte of the IC instruc-
tion. The target pointer is increased by the repeat count.
Traps: Bounds Violation Indicators: None

0 34 7

0101 Immediate
Operand

Insert Character Suppressed (format #2). The ICS
Instruction inserts a single character into the
target buffer a specified number of times if the
significance trigger 1is set to a 1. If the
significance trigger is set to a 0, the fill character
is inserted into the target buffer a specified number
of times. The immediate (or extended) operand
defines a positive repeat count. The character to be
inserted is specified in the second or third byte of
the IC instruction. The target pointer is increased
by the repeat count.

Traps: Beunds Violation

Indicators: None

0 34 7

0110 Immediate
Cperand

Language Extension Instructions

4-18. FORMAT TYPE #3 (for instructions: ICI, 1ICSI). The
instruction format for the instructions with
immediate operands and an insertion character string
is as follows:

0 34 70 70 7
opcode | immediate | extended character
operand operand atring
(optional)
byte 1 byte 2 bytes 3 - 257
NOTE

If the immediate operand is non-zero the charac-
ter string would start in byte 2 (not byte 3).

NOTE

The itmmediate (or extended) operand indicates
the length of the character string to be inserted.

4-19. ICI Insert Characters Immediate (format #3). The ICI

instruction inserts a character string of specified length into
the target buffer. The immediate (or extended) operand defines
a positive character count. The character string to be inserted is
specified by a byte array which starts in the second or third
byte of the instruction. The target pointer is increased by the

character count. Traps: Bounds Violation Indicators:

0 34 7

0111 Immediate
Operand

Language Extension Instructions

4-20. ICSI Insert Character Suppressed Immediate (format #3).
The ICSI instruction inserts a character string of
specified 1length into the target buffer if the
significance trigger is set to 1. If it is 0, then
the string inserted will be replaced by a (fill
character. The immediate (or extended) operand
defines a positive character count. The character
string to be inserted is specified by a byte array
which starts in the second or third byte of the
instruction. The target pointer is increased by the
character count.

Traps: Bounds Violation
Indicators: None

0 34 7

100 0] Immediate
Cperand

4-21. FORMAT TYPE #4 (for instructions: RIS, SUFT, SUFS). The
instruction format for the instructions with
immediate operands to form displacements to modify
pointers is as follows:

0 34 70 7
opcode | immediate | extended operand
operand (optionald
byte 1 byte 2
NOTE

The immediate operand indicates a positive (1-13)
displacement. If it is equal to 0, the extended
operand indicates a two’s complement
displacement.

NOTE

For BRIS the displacement is added to the opcode
pointer. For SUPT and SUFS the displacement 1s
subtracted from the corresponding pointer.

4-13

Language Extension Instructions

4-22.

4-23.

4-24.

BRIS Branch If Significance Trigger Is Set (format #U4).

The BRIS instruction adds a displacement to the opcode point-

er if the significance trigger is a 1. The displacement

specified by the immediate (or extended) operand as above.

The addition is to the address of the byte containing

displacement (i.e., byte 1 or byte 2). Traps: Bounds Violation

Indicators: None

0 34 7

1001 Immediate
Operand

SUFT Subtract From Target Pointer (format #4). The SUFT
instruction subtracts a displacement from the
target pecinter. The displacement 1is specified by
the the immediate (or extended) operand as above.
At this point the target pointer is pointing to the
next byte to be transferred (stored).

Traps: Bounds Violation
Indicators: Neone

0 34 7

1010 Immediate
Operand

SUFS Subtract From Source Pointer (format #4). The SUFS
instruction subtracts a displacement from the source
pointer. The displacement 1is specified by the
immediate (or extended) operand as above. At this
point the source pointer is pointing to the next byte
to be fetched.

Traps: Bounds Violation
Indicators: None

0 34 7

1011 Immediate
Operand

4-25.

4-27.

Language Extension Instructions

FORMAT TYPE #5 (for instructions ICP, ICPS). The instruction

ICPS

format for the instructions with only -immediate
operands to generate punctuation characters is as

follows:

0 34 7

Op-Code Immediate
Operand

byte 1

NOTE

The immediate operand indicates an index into
the ASCII character set. The character formed is
equal to index +%40.

Insert Character Punctuation (format #5). The ICP
instruction inserts a single character into the target buff-

er. The immediate operand defines the ASCII character to be
inserted. The ASCII character inserted equals the operand plus
%40, The target pointer is increased by one. Traps: Bound

Violation Indicators: None

0 34 7

1100 Immediate
Operand

Insert Character Punctuation Supressed (format #5).
The ICPS instruction inserts a single character into
the target buffer if the significance trigger is set
to a 1. If the significance is set to O the fill
character is inserted into the target buffer. The
immediate operand defines the ASCII character to be
inserted. The ACSII character inserted equals the
operand plus %40. The target pointer is increased by
one.

Traps: Bounds Viclation

Indicators: None

0 34 7

1101 Immediate
Operand

4-15

Language Extension Instructions

4-28. FORMAT TYPE #6 (for instructions: 1IS). The instruction
format for the insert sign instruction which has one
immediate operand and two insertion character strings

follows:
0 34 7
opcode | immediate character string if | character string
operand sign is pos. if sign is neg.
byte 1 bytes X0 - X1 bytes X2 - X3

NOTE

The length of the character strings is given by the
immediate operand. Typically this would be 1 or
2. The relations between the immediate operand
and the byte positions X0, X1, X2, and X3 are as
follows:

X0 equals 2

X1 equals 1 +m
X2 equals 2+ m
X3 equals 1 +m¢*2

where m is the immediate operand.

4-29. IS Insert Characters Depending On Sign (format #6).
The IS instruction inserts one of the two specified
character strings depending on the sign of the source
as specified in the condition code. If the sign is
positive (= CCG or CCE), the first character string
will be inserted else the the second character string
will be inserted. (See format #6 for the byte
positions.) The immediate operand specifies the
length of both character strings. The target pointer
is increased by this length.

Traps: Bounds Violations
Indicators: None

1110 Immediate
Operand

Language Extension Instructions

4-30. FORMAT TYPE #7 (for instructions: TE,ENDF,SST1, SSTO, MDWO).
The instruction format for those instructions which
are one byte long and have an opcode of %17 follows:

0 34 7

%17 Secondary
Opcode

Note: The secondary opcode is in the range of 0 to 4.

4-31. TE Terminate EDIT (format #7). The TE instruction
terminates the EDIT subprogram and deletes all
parameters from the stack.

Traps: Stack Underflow
Indicators: None

0 34 7

11110000

Language Extension Instructions

4-32. ENDF End Floating Insertion (format #7). The ENDF

4-33. SST1

instruction inserts the float character into the
target buffer and increases the target pointer by 1
if the significance trigger 1is set to a 0. If the
significance trigger is set to a 1, no action is taken.
Traps: Bounds Violation

Indicators: None

0 34 7

11110001

Set Significance Trigger To One (format #7). The
SST1 instruction sets the significance trigger to a 1.
Traps: None

Indicators: None

0 34 7

111110010

4-34, SSTO Set Significance Trigger To Zero (format #7). The

SSTO instruction sets the significance trigger to a 0.
Traps: None
Indicators: None

0 34 7

11110011

4-35. MDWO Move Digit With Overpunch

Language Extension Instructions

(format #7). The MDWO

instruction transfers a single numeric character {(0-9
& leading SPACE) from the source buffer to the target
buffer. The actual character placed in the target
buffer is a function of the digit and the sign of the
numbers as follows:

Source Digit Target Digit Target Digit
If Positive If Negative
0 or space C or X173) or %175
1 A or %101 J or %112
2 B or %102 K or %4113
3 C or %103 L or %114
4 D or %104 M or %115
) E or %105 N or %116
=] F or %106 0 or %117
7 G or %107 P or %120
8 H or %110 Q or %121
IS I or %111 R or %122

Both the target pointer and

2ero prior to the overpunch.

the source pointer are
increased by one. A leading space is converted to a

Traps: Bounds Viciation, Invalid ASCII digit

Indicators: Overflow

0 34 7

1T1T110100

4-36. FORMAT TYPE #8 (for instructions:

SFC, SFLC, SETC, DBNZ).

The instruction format for those instructions which are
two bytes long and have an opcode of %17 follows:

0 34 70 7
%17 Secondary operand 1 byte
opcode (required)
byte 1 byte 2

The secondary opcode is in the range of Sto %11.

4-19

Language Extension Instructions

4-37.

4-38.

4-39.

SFC

SFLC

SETC

Set Fill Character (format #8). The SFC instruction
defines the fill character which is used in the MNS,
MFL, ICS, 1ICSI, and ICPS instructions to suppress
leading zeros and fixed insertion characters. The
second byte of this instruction specifies the ASCII
character to define the fill character.

Traps: None

Indicator: None

0 34 7

11110101

Set Float Character (format #8). The SFLC
instruction defines the float character which is used
in the MFL instruction to provide floating sign
insertion. The second byte of this instruction
specifies two characters as two U4 bit operands. The
ASCII character which defines the float character is
equal to the operand plus %Uu0. The first operand is
used if the sign of the source as specified by the
condition code is positive (CCG or CCE) else the
second operand is used.

Traps: None

Indicators: None

0 34 7

11110110

Set Loop Count (format #8). The SETC instruction
defines a loop count. The loop count is defined by
the second byte of this instruction. When

initialized to O, the count is equivalent to 256.
Traps: None
Indicators: None

0 34 7

1111117000

4-20

Language Extension Instructions

4-40 DBNZ Decrement Count, Branch If Non-zero (format #8).
The DBNZ instruction decrements the loop count as
defined by the SETC instruction and adds a displace-
ment to the opcode pointer if the resulting value of
of the loop count does not equal zero. The displace-
ment is specified by the second byte as a two’s
complement integer. The branch is relative to the
last fetched byte of the subprogram i.e., to byte 2.
Traps: Bounds Violation
Indicators: None

0 34 7

11111001

4-41. FORMAT TYPE #9 (for instructions: DFLC). The instruction
format for those instructions which are <three bytes
long and have an opcode of %17 follows:

0 34 70 ‘ 70 7
%17 secondary | 1st operand | 2nd operand
opcode (required) (required)
byte 1 byte 2 byte 3

The secondary opcode is in the range of 5to %11.

4-42. DFLC Define Float Character (format #9). The DFLC
instruction defines the float character which is used
in the MFL instruction to provide floating sign
insertion. The second and third bytes of this
instruction specify two ASCII characters. The first
cperand is used if the sign of the source as
specified by the condition code is positive (CCG or
CCE) else the second operand is used.

Traps: None
Indicators: None

0 34 7

11110111

Language Extension Instructions
4-43. CODE CONVERTING AND COLLATING INSTRUCTIONS

4-44. TR Translate. The TRANSLATE instruction converts a
string of characters from one character set to
another character set. The bytes from the source
string are used as arguments to reference the
translation table. The bytes selected from the table
are placed in corresponding positions in the target
string. The format of the stack prior to execution
follows:

S-3 | byte address of
translation tbl

S-2 | byte address of
source string

S-1 byte address of
target string

S-0 length of
source string

The source and target string byte addresses are DB-

relative. The translation table byte address is PB-

or DB-relative. If the byte count = 0, the stack s

porped by 4 and execution continues with the next

instruction. This instruction is interruptable after

each byte transfer. On completion of the instruction

all 4 parameters are deleted from the stack.

Traps: Stack overflow, Stack underflow, Bounds
Violation

Indicators: Unaffected

0|1 2 314 5678210 11 12{13 14 15

oj0o 1 0j000f1t00 1T 1 11 11

0|1 2 3|4 56{7 89|10 11 12{13 14 15

olooo0j0o0O0j0OO0O] 1T 0O 01 0 Y

When Y=0, translation table location 1s in PB relative area.
When Y=1, transiation table locaticn 1s DB relative.

Language Extension Instructions

4-45. CMPS Compare Strings. The CMPS instruction compares bytes
from a DB-relative source string to those of a PB- or
DB-relative target string. If the strings are of
unequal length the ASCII blank is used as the fill
character for the shorter string. The stack prior to
execution of the instruction is as follows:

S-3 byte address of
target string

S-2 length of
target string

S-1 | byte address of
source string

S-0 length of
source siring

The instruction terminates when an unequal comparison
has been made or the maximum length has been
compared. Comparisons are made left-to-right. The
instruction is interruptable between each byte
comparison. On completion of the instruction, all 4
parameters are popped from the stack. (See
Instruction Commentary 4-57..)
Traps: Stack Overflow, Stack Underflow, Bounds Violatien
Indicators: CCE if no mismatch over max. length is found.

or if both lengths = 0 on entry

CCG if target byte < source byte

CCL if target byie > source byte

0{1 2 3|4 56{7 88|10 11 12{13 14 15

olo01 00001001 1 10 1Y

When Y=0 the target location is in the PB relative area.
When Y=1 the target location is DB relative.

4-23

Language Extension Instructions

4-46.

CMPT

Compare Translated Strings. The CMPT instruction
compares byte strings using a DB-relative translation
table. A DB-relative source byte is used as an index
into the table tc obtain the first byte to be
compared. If the instruction is DB-relative, the DB-
relative target byte 1is used as an index into the
same table to obtain the second byte to be compared;
otherwise, the PB-relative target byte is the second
(untranslated) byte for the comparison. If the
strings are of unequal length, the (always translated)
ASCII blank is used as the £ill character for the
shorter string. The stack prior to execution of the
instruction follows:

S-4 | byte address of
translation tbl

S-3 | byte address of
target string

S-2 length of
target string

S-1 | byte address of
source string

S-0 length of
source string

The instruction terminates when an unequal comparison
has been made or the maximum length has been made or
the maximum length has been compared. Comparisions
are made left-to-right. This instruction is
interruptable between each byte comparison. On
completion of the instruction, all five parameters

are popped from the stack. (See Instruction Commentary

4-57.)

Traps: Stack Overflow, Stack Underflow, Bounds Viclation

Indicators: CCE if no mismatch over the max. length is

found, or if both lengths = 0 on entry
CCG if target byte < source byte
CCL if target byte > source byte

0|1 2 3]4 56|77 89(10 11 12{13 14 15

0|01 0(000(1 00 1 1 11 1 1

Language Extension Instructions

0|1 2 3j4 56/7 89|10 11 12|13 14 15

0060, 0 0 01 1 Y

[on)

0(000j00

When Y=0 the target location is PB relative area.
When Y=1 the target location is DB relative.

4-47. NUMERIC CONVERSION AND LOAD INSTRUCTIONS

4-48. ALGN Align Numerie. The ALGN instruction transfers a
numeric item from the DB-relative source buffer to
the DB-relative target buffer. The transfer aligns
the source item to the target item by decimal point.
The lengths and the number of digits to right of the
decimal point are bytes. The stack before execution
follows:

0 7 8 18

S-3 Target Byte Address

S-2 F1 L1

S-1 | Source Byte Address

S-0 F2 L2

L1 and L2 specify the length of the data item for the
target and the scurce. F1l and F2 specify the number
of digits to the right of the decimal point for the
target and thesource. L1, L2, Fl, and F2lare
restricted as follows:

Fl<=L1<=28and F2<=1L2<=28

Language Extension Instructions

The alignment will be performed as follows:

1) The source will be truncated as necessary as
defined by the target (i.e., at either end;
however non-transferred characters will still
be validated).

2) Leading Blanks in the source will be treated as
zeros (converted to O's in target if transferred).

3) The target will be zero filled.

4) The source may contain only numeric characters
(0-9 & leading space) and trailing overpunch.

S)If the last char. of the source is overpunch,
then the last char. of the target will be over-
punch.

The SDEC bit allows leaving either the target address
on the stack or deleting all parameters. If the
source or target character count 1s zero the SDEC
operation 1s performed and execution continues with
the next instruction.

SDEC = 0, delete all parameters except unmodified

target address

SDEC = |, delete all 4 parameters

Traps: Invalid ASCII Digit, Invalid Operand Length
Stack Overflow, Stack Underflow, Bounds Violation

Indicators: Overflow

0(1 2 314 56{7 89|10 11 12{13 14 15

0|01 0j000I*T00 1T 1 00

0 S

Where S = SDEC

Language Extens:on Instructions

4-49. CVND Convert Numeric Display. The CVND instruction
produces a default numeric display item (a target
string) from a sigred or unsigned numeric displayed
item (a source string). The default numeric display
item is a string of ASCII numeric characters where
the low order digit may be a numeric character or an
overpunch character. Three bits within the
instruction specify if the source 1is signed or
unsigned and the location of the sign for signed
items. The combinations follow:

sign is leading separate

sign is trailing separate

sign is leading overpunch or unsigned
sign is trailing overpunch or unsigned
source is unsigned

HPoOoOooo
MR OO
MY oRro

The source item may contain characters from each of
the following groups of characters:

numeric { 0-9 & leading SPACE)
sign (SPACE, +, -)
overpunch ({, A,B,C,D,E,F,G,H,I,

{)
}QJS $L’M’N’O’P7Q’R’)

Note: sign 1is leading overpunch may contain
leading blanks, if data is unsigned. If
it is signed, the first character must be
a valid overpunch.

The overpunch characters are described in the EDIT
instruction descripticn (see MDWO instruction).
Leading spaces are converted to 0’s. For the first
four cases, the target string will have its last
character overpunch in accordance with the scurce
sign (NOT the condition code). The last case will
yield an unsigned target string. The SDEC bit allows
leaving either the target address on the stack or
deleting all parameters. If the source character
count is zero, the SDEC operation 1is performed and
execution continues with the next instruction. Byte
addresses below are DB-relative.

4-27

Language Extension Instructions

The stack before execution follows:

S-2

Target Byte Address

S-1

Source Byte Address

S-0 |Source Character Count

SDEC = 0, delete all
SDEC = [, delete all

except target parameters
parameters

Traps: Invalid ASCII Digit
Invalid Source Character Count

Stack Overflow
Violation

, Stack Underflow, Bounds

Indicators: Overflow

2 34 56/7 83|10 11 12

13 14 15

100001001 1 1

11 1

01

2 3j4 56(7 8938110 11 12

13 14 15

cjlo00j00o0j000; 0 1 0

0 0 S

Bits 11-15 of the 2nd op range from %20 to %37
xxx = Sign Control Field (as above)

S = SDEC field

Language Extension Instructions

4-50. ABSN Absolute Numeric. The ABSN instruction produces an
unsigned numeric display item from a default numeric
display item from a default numeric display item and
sets the condition code to reflect the sign of the
source. The default numeric display item is a string
of ASCII numeric characters where the low order digit
may be a numeric character or an overpunch character.
The source item may contain characters from each of
the following groups of characters:

numeric (
overpunch (

The overpunch characters are described in the EDIT
instruction description (see MDWO instruction).
Leading spaces are converted to 0’s. The SDEC bit
allows leaving either the source address on the stack
or deleting all parameters. If the source character
count is zero, the SDEC operation is performed and
execution continues with next instruction.

The stack before execution follows:

S-1 Source Byte Address

S-0 Source Character Count

SDEC = 0, delete count and leave byte address unmodified
SDEC = 1, delete both parameters
Traps: Invalid ASCII Digit
Invalid Source Character Count
Stack Overflow, Stack Underflow,
Bounds Violation
Indicators: Overflow, CCA on original source

0|1 23{456|7883[10 11 12|13 14 15

olo1o0j000(100f 1 1 00 1 S

Where S = SDEC

4-29

Language Extension Instructions

4-51.

ABSD Absolute Decimal. The ABSD instruction changes the
sign of a packed decimal value to %17. This produces
an unsigned packed decimal result. The SDEC bit
allows leaving either the target address on the stack
or deleting both parameters. The stack before
execution follows:

S-1 Byte Address

S§-0 | Digit Count

SDEC = 0, delete digit count parameter

SDEC = |, delete both parameters

Traps: Invalid digit count, Stack Overflow, Stack
Underflow, Bounds Violation

Indicators: CCA on original source, Overflow

0|1 2 3|]456|789|10 11 12{13 14 15

~J

ofo10/000{7 001 1t 111 1 1

0{1 2 3|]456{7 89|10 11 12{13 14 15

oloooj0o0o0j000f 1t 0 01 1 S

Where S = SDEC

Language Extension Instructions

4-52. instruction negates a

NEGD Negate Decimal. The NEGD
packed decimal value. The SDEC bit allows leaving
either the target address on the stack or deleting

both parameters. the stack execution follows:

S-1 Byte Address

S-2 Digit Count

SDEC = 0, delete digit count parameters
SDEC = 1, delete both parameters
Traps: Invalid digit count
Stack Overflow, Stack Underflow,
Bounds Violation
Indicators: CCA on result, Overflow

123

456

7889

10 11 12

13 14 15

010

000

100

1 11

111

123

456

7889

10 11 12

13 14 15

000

000

000

1 0 1

0 0 S

Where S = SDEC

4

31

Language Extension Instructions

4-53. LDW Load Word (2 Consecutive Bytes). The LDW instruction
loads two bytes to the TOS from -the DB relative
address on TOS. The SDEC bit allows leaving or
deleting the address on the stack.

The stack before execution follows:

S-0 | DB relative byte address

SDEC = 0, leaves address on stack
SDEC = 1, deletes address from stack
. Traps: Stack Overflow, Stack Underflow,
Bounds Violation
Indicators: Unaffected

0f{1 2 3/456(789]10 11 12|13 14 15

ojo 1 0/j000jto00; 1 1 11 1 1

011 2 3|4 56|7 8310 11 12/13 14 15

g|j0 00000000} 1 O 0[O0 1 S

Where S = SDEC

Language Extension Instructions

4-54. LDDW Load Double Word (U4 Consecutive Bytes). The LDDW
instruction loads four bytes to the TOS from the DB
relative address on TOS. The SDEC bit allows leaving
or deleting the address on the stack.

The stack before execution follows:

S-0 DB relative byte address

SDEC = 0, leaves address on the stack

SDEC = |, deletes address from the stack

Traps: Stack Overflow, Stack Underflow, Bounds
Violation

Indicators: Unaffected

0|1 23/456{783{10 11 12{13 14 15

ojfoto0j0oo00GCj100; 1 1 111 1 1

0/1 23|/456{789{10 11 12[13 14 15

¢foociooog000]t 0 0j0 1 S

Where S = SDEC

4-33

Language Extension Instructions
4-55. INSTRUCTION COMMENTARY

4-56. Commentary on traps for the Language Extension Instructions
For the Language Extension Instructions, a variety of traps is possible.

If an invalid count or an invalid ASCII digit is detected, the instruction terminates at the point of
error, and one of two possiblities occurs (note: check “Indicators" for a particular instruction to
see if this type of trap can occur). If the User Traps bit (STA(2)) is not set; the Overflow bit
(STA(4)) is set, the stack is popped in accordance with the instruction and execution continues
with the following instruction. If the Traps bit is set; the Overflow bit is not set, the stack is not
popped, and a trap to the Traps segment, segment | is taken.

For the cases of Stack Overflow, Stack Underflow, Bounds Violation, CST Violation, and
Privileged Mode Violation, the instruction is aborted at the point of error and an unconditional trap
is taken to Segment 1. In general, the state of the stack is not known in these cases. These trapsare
handled the same as for the basic machine instruction set.

Unimplemented instructions also trap to segment | as in the basic instruction set. The X-register wiil
contain the contents of the CIR-register. This is the actual unimplemented opcode in the case of
single word instructions, or %020477 in the case of double word instructions. In either case, the
delta P value in the stack marker, when added to PB, points to the next true instruction (i.e.,
not to the second word of a double word instruction).

4-57. Commentary on the comparison between CMPS and CMPT

There are four types of alphanumeric comparisons which are described in the table below:

Case | Translation | Filling Equal Target

No. Required Required Length | Location

1 none none equal DB+/PB+

2 none blanks no DB+/PB+

3 yes (source)| blanks no PB+

4 yas (both) blanks no DB+
NOTE

Source location and translation table are always DB-
relative. Target location may be either PB- or DB-
relative. Note also that the Condition codes CCG and
CCL are reversed from that of the CMPB instruc-
tion, and the PB indicator applies to the target in-
stead of the source.

4-34

Language Extension Instructions

CASE #1. This case compares two strings of equal length and provides no translation of operands.
This can be implemented using CMPB instruction.

CASE #2 CMPS Compare Strings. This case compares two strings of different length and provides no
translation of operands. The ASCII blank character is used as the fill character for the shorter
string.

CASE #3 CMPT Compare Translated Strings. This case compares two strings of different length
while converting the sourced string using a translation table (see TRANSLATION instruction). The
translation of the ASCII blank is used as the fill character for the shorter string, - regardless of
whether it is the source or target string.

.CASE #4 CMPT Compare Translated Strings. The case compares two strings of different length
while converting both strings using a translation table (see TRANSLATE instruction). The transla-
tion of the ASCII blank is used as the fill character for the shorter string.

4-58. Commentary providing examples of EDIT subprograms

PICTURE S1GN SOURCE TARGET

* x & 3 3 5 = s = " » s ® s 8 s 5 & s 3 3 &®

EXAMPLE #1

9999.98 + 000123 0001.23

EDIT subprogram:

MN 4 ICP "." MN 2 TE

EXAMPLE #2

*e**,89 + 001234 **12.34

EDIT subprogram:

SFC e MNS 4 Icp " MN 2

TE

4-35

Language Extension Instructions

PICTURE SIGN SOQURCE TARGET
EXAMPLE #3
222299 + 001234 1234
EDIT subprogram:
MNS 4 MN 2 TE
EXAMPLE #4
++++,99 + 00123 +1.23
EDIT subprogram:
SFLC R R MFL 3 ENDF icp -,
MN 2 TE
EXAMPLE #5
++4+,+++,.99 + 0123456 +1,234.56
EDIT subprogram:
SFLC Y- MFL 2 ICPS MFL 3
ENDF ice . MN 2 TE
EXAMPLE #6
++++ T + 00001 +.01
EDIT subprogram:
SFLC R MFL 3 ENDF iIcep -.”
MN 2 BRIS 4 SUFT 4 IC
TE

Language Extension Instructions

PICTURE SIGN SOURCE TARGET
EXAMPLE #7
---9.99 - 00123 -1.23
EDIT subprogram:
SFLC =" MFL 2 ENDF MN
IcP *.” MN 2 TE
EXAMPLE #8
"‘...‘ + OOOOO “".t.
EDIT subprogram:
SFC - MNS 4 Icp .” MN
BRIS 4 SUFT 2 IC 2 . TE
EXAMPLE #9
22272.22 + 000001 .01
EDIT subprogram:
MNS 4 ICP MN 2 BRIS 4 SUFT
IC 3 TE
EXAMPLE #10
+++ T+ + 0000
EDIT subprogram:
SFLC o MFL 4 BRIS 2 icP
TE

4-37

Language Extension Instructions

EXAMPLE #11

PICTURE

" ® 85 s e

AAABAA

EDIT subprogram:

SIGN SOURCE

s ¢ 0 s 8 9 8

ABCD

E

TARGET

ABC DE

MA 3

ice " MA 2

-TE

EXAMPLE #12

$999CR

EDIT subprogram:

$012CR

s e o 2 o ®

iIcp “g”

e

EXAMPLE #13

AX9AXS9

EDIT subprogram:

1" #8

MC 6

TE

EXAMPLE #14

+5838VsS

EDIT subprogram:

- 0123

% &

IS 1

MFL 2

ENDF

MN 2

BRIS 4

SUFT 6

TE

4-38

MACHINE INSTRUCTIONS
SPECIFICALLY FOR SERIES 64/68

This section defines each of the machine instructions that apply specifically to the Series 64/68.
These instructions are in addition to the other instructions in this manual that apply to the Series
64/68. Also, additional information is provided to understand how these instruction apply to
the Series 64/68s operation.

§-1. MCMD Message Communication Instructioen

The Message Communication instruction is to allow the system soft-
ware to communicate with any module that is on the Central System
Bus (CSB). The instruction will send a 32-bit message to a given
module using a 16-bit command word. Its instructiocn format is
as follows:

0 10 11 12 13 14 15

Word (m) %20104

Word (m+1) 0 0 1 0 0

The instruction expectsa !6-bit command word on the
TOS, indicating the type of bus operation on the CSB,
the destination module, and the three control
options. It also expects on TOS-1 and TOS-2 the 32-
b1t message to be sent onto the CSB.

0123456789 101112 13 14 15

= X X X X X X| BUSOP TO CODE | 1B |BF |RE
S-1 Lower Message
S-2 Upper Message

BUSOP - CSB operation:
1010 --- Send Word command
1011 --- Send Address command

TO CODE - Destination module number.

00G --- Does not exist
001 ~-- IOA1 Module
010 --- I0OA 2 Module
011 ---I0A 2 Module
100 ===~ Unassigned

5-1

Series 64/68 Machine Instructions

101 --- CPU Module
110 --- Unassigned
111 --- Memory Module

IB - Ignore busy bit. The message will be sent to the destination
module regardless that the module is busy.

BF - Busy flag. The CPU will go busy after sending the message; and
will stay busy until it 1s cleared with a BUSC command to Go
Unbusy.

RE - Reply expected. This bit isset to | if the CPU expects a
reply from the destination module.

Begin {MCMD }
Go Busy;
If no message interrupt pending then
Begin
CC := CCE;
Send message;
If no reply expected then
S:=S-3 {popSby 3}
Else
Begin
Wait for reply;
If timeout then

CC :=CCL
Else
Begin
(S-1) := Upper reply word;

(S-2) := Lower reply word;
S:=S-1; {popS}
End;
End;
Go unbusy;
End;
End;

The MCMD instruction is a privileged instruction, and it provides
a maximum amount of flexibility in controlling the CSB
operations. It can also be used for diagnostic purposes and CPU-
to-CPU communication. Therefore, it is important for the user to
be aware when a reply will be generated by a destination module,
and whether or not the message reply bit (RE) should be set. It
1s equally important that the Ignore Busy and Busy Flag bits are
handled appropriately. The Ignore Busy will allow the CPU (the
sending module) to ignore the BUSY signal line of the module to
which the message is being sent. The Busy Flag will allow the
CPL to go busy, so that no other module can cause an interrupt
while a message is being transmitted. The CPU will stay busy
until 1t 1s specifically cleared with another BUSC command with
bit 14 =0.

w
1
[

Series 64/68 Machine Instructions

5-2 FLSH Flush (Cache) Instruction
This instruction will allow the power fail routine in software to
do the flushing o¢f both the CPU and the IOA caches in the system

into main memory. Its instruction format is as follows:

0 10 11 12 13 14 15

Word (m) %20104

Word (m+1) 0 0 1 0 1

FLSH is a privileged instruction, and it will

1) push all valid TOS registers into memory.

2) set the FLUSH bit (CPX2(11)) to speed up the flush.
3) flush CPU cache to main memory.

4) flush all IOA caches in the system to main memory.

5) send SHUTDOWN message to memory to prevent any further memory
accesses.

6) wait for the power to go down.
This instruction should always be the last one executed by a

software power fail routine. There is no exit from this
instruction.

5-3

Series o4/68 Machine Instructions

5-3. RDCU Read DCU Log Instruction (RDCU)

The Diagnostic Control Unit (DCU) maintains a log of system
information, such as overtemperature conditions, overvoltage
transients, when the system is powered on, when the operating
system is brought up, the 1level of system microcode that was
loaded, etc. This instruction will allow the DCU Log information
to be saved in MPE’s log file for permanence and for further
analysis. Its instruction format is as follows:

0 10 11 12 13 14 15

Word (m) %20104

Word (m+1) 0 1 1 0 0

This instruction expects two 16-bit words on TOS. The word at
TOS conveys the tvpe of operation desired. If TOS.(0:8) = | then
the instruction is just enabling the DCU logging function. If
TOS.(0:8) = 0 then it is passing information to the system
microcode that will actuallv do the data transfer. The bank
number and address that the data will be written to will be in
TOS (8-2) and TOS-1, respectively. After the data transfer has
been started it is controlled completely by the DCU and system
microcode. When the transfer has been completed, the system
microcode sets up an interrupt tosegment# 1, STT %17, with the
'‘number of bvtes transfered as the parameter.

012345678910 11 12131415

S 0600000O0T Bank Number

S-1 Address

T - Enable Transfer / Transfer Data Flag

This is a privileged instruction. Both words are popped from the
stack when the instruction completes.

5-4

Series 64/68 Machine Instructions

5§-4. 1/O INSTRUCTIONS

All the I/0 instructions in Series 64 with the exception of RMSK
and SMSK are coded as a double word, and they must all be
executed in privileged mode with the exception of RMSK. The
double word instruction format is as follows:

0 10 11 12 13 14 15

Word (m) %20302

Word (m+1) 0 Op-Code

The op-code assignments of the 1/0O instruction set are listed

below. Opcodes 2 to § (RIOC, WIOC, ROCL, and IOCL, respectively)
are not implemented, and if detected, they will cause an
Unimplemented Instruction trap (Segment 1, STT# &) If a channel
isillegal {i.e., channel # =0) asystem halt with firmware

error code of O00E will occur.

All the I/0 instructions with the exception of RMSK and SMSK
contain a twobit logical module number (MM), and the firmware
will use these two bitsto determine which IOA 1s to be
addressed. This logical number will be mapped to a physical IOA
module number in the Series 64 svstem as follows: (refer to
paragraph 3-15. for I/O Module Mapping).

IMB number I0A number
(logical) (physical)

0 1

1 2

2 3

3 4 (does not exist 1n

current system)

§~5. SIOP < Start I/0 Program > Opcode = 0

012345678910 11 12131415

S-1 ooogoooommMmc C €C C D DD

S Channel Program Pointer

5-5

Series 64/68 Machine Instructions

< S-1 > := Module~channel-device number
<S> :=Channel program pointer

if DRT3.(2:1) = I then CCL

else
begin << OK to execute SIOP >>
CC := CCG;
if DRT3.(0:1) = O then
begin << DRT3.(0:2) = 00 or 01 >>

if DRT3.(1:1)=0or << Halted >>
(DRT3.(1:1)=1and DRT3.(15:1) = 1) then
<< Halting in WAIT state >>

begin
DRTO := (S); << Channel program pointer >>
DRT3 := 1C000; < Set up in RUN state >>
Send SIOP command to the module-channel;
CC := CCE,;
end;
end;
end:
S:=S-2; << PopSby22>

This instruction expects on the TOS a 16-bit absolute memory
address of the start of the channel program for the I/O device,

and the TOS - | to contain a 9-bit module-channel-device number.
The instruction will do the followings :

1. Translate the logical module number to physical module number
(refer to paragraph 5-15. I/O Module Mapping).

). Check for valid channel number; it will cause a system halt of
error code 'E if channel is zero.

3.Set CCL and exit if DRT3.(2:1) =1, which means that no SIOP
for the device may be executed.

4. Set CCE if the channel program 1s halted with the DRT3.(0:2) =
00 00, orif an HIOP instruction has been issucd but not yet
serviced AND the channel is in wait state with the
DRT3.(0:2,15:1) =01,1. The channel program pointer in TOS
will then be loaded into the DRTO of the device, and DRT3 will
be set to !C000. An SIOP command will be issued to the
channel to start requesting service on behalf of the device.

5. Otherwise, set CCG if the above conditions are not met.

6. Pop S by 2 and exit.

[P
1
o

Series 64/68 Machine Instructions

5-6. HIOP < Halt I/0 Program > Opcode = 1

012345678910 11 12 13 14 15

S poooo0oo0o0omMMC C C C D DD

<S> := Module-channei-device number

if DRT3.(0:2) <> O then

begin << Running state or service pending >>
if DRT3.(0:1) =1 then
begin << Requested start of channel program >>
~if DRT3.(1:1) =1 then DRT3.(15:1) := 1; << Set to WAIT state >>
DRT3.(0:2) := 01; << Service pending >>
Send HIOP command to the module-channel;
End;
CC := CCE;
if DRT3.(15:1) = 0 then CC := CCG;
end;
else CC := CCE; << Already halted >>
S:=S-1; << Pop S >>

This instruction expects on TOS a module-channel-device number in
bits 7 - 1S5. It will halt execution of the channel program for
the selected device if channel program is in WAIT state.

1. Tranlate the logical module number to its physical module number.
Refer to paragraph 5-15. for I/O Module Mapping).

2. Check for valid channel number; it will cause a system halt of
error code !E if the channel 1s zero.

3. If DRT3.(0:2) = 00, set CCE, pop S by ! and exit.

4. If DRT3.(0:2) = 0!, set CCG; or if DRT3.(15:1) = 1, set CCE. Then,
pop S by 1 and exit.

5. If DRT3.(0:2) = 10and DRT3.(15:1) = 0, set CCG, and DRT3 := 14000;
all others set CCE, and DRT3 := 400X, where X is the channel
program status for the device. Then, issue a HIOP command to the
module-channel to start requesting service on behalf of the device.

6. PopSby ! and exit.

Series 64/68 Machine Instructions

§-7. INIT < Initialize I/O Channel > Opcode = 6

012345678910 111213 1415

S poooooomMmc C C C 0 0 O

<S> :=Module-channel number

Clear the module-channel’s bit in interrupt mask word;
Send INIT command to the channel;
Clear DRT3's of all 8 device DRT’s on this channel;
CC = CCG;
If System Controller then
Begin
bring controller on line as Controller-in-charge;
CC :=CCE
If unsuccessful
begin
take 1t offline;
CC = CCG:
end;
End:
S:=S-1; <<'Pop S >>

The INIT instruction initializes the module-channel designated by bits
7 - 12 in the TOS. This instruction will do the following:

1.

Translate the logical module number in TOS.(7:2) to its physical
module number. Refer paragraph 5-135. for I/O Module Mapping.

. Send an INIT command to the selected channel on the module, which

will terminate all the channel activities.

. Clear the DRT3 entries for all & devices on this channel.

. Reset the channel’s bit in interrupt mask in the absolute memory

locations !'1A to !'1D.

. Set CCG if the channel is determined to be not a system controller.

Pop S by 1 and exit.

. If the channel 1s a system controller, bring it online as a HP-IB

controller-in-charge. Set CCE, pop S by 1 and exit.

. If the channel cannot be made controller-in-charge take it offline,

set CCG, pop Sby | and exit.

5-8

Series 64/68 Machine Instructions

5-8. RIOA < Read I/O Adapter Channel > Opcode = B

012345678910 11 12131415

s-1 | 0000O0OO0OOMMC C C C D DD

S BEBBBRRROOO 0 0 0 0 0 O

< S-1> ;= Module-channel-device number
<S > := Read channel command

If not global command then
If DRT3.(2:1) = O then
Begin << abort bit not set >>
Send RIOA command to the module-channel;
Loop until the data returned is valid;
CC = CCE;
S := < data returned >,
End;
else
CC :=CCL;
else
Begin
Send RIOA command to the module-channel;
Loop until the data returned is valid,
CC := CCE;
S := < data returned >;
End;
S=S5-1; << Pop S >>

This instruction expects a module-channel-device on the TOS - 1,
and the IMB read command on the TOS. It will allow software to
read an 1/0 controller register or to read information from all
the channels if it is global command (bit 0 of TOS=1). On
exit, the two parameters will be popped, and the data returned
will be pushed onto the stack.

Series 64/68 Machine Instructions

§-9. WIOA < Write 1/0 Adapter channel > Opcode = C

012345678910 11 12 13 14 1§

Ss-2|0000000MMC C C C D DD

S-1 { BBBBRRROOO 0 0 0 0 0 O

DATA

< §-2 > :» Module-channel-device number
< S-1 > := Write channel command
<S> :=Data word

If not global command then
If DRT3.(2:1) = 0 then
begin << abort bit not set >>
Send WIOA command and data word to module-channel;
CC = CCE;
end;
else
CC = CCL;
else
begin
Send WIOA command and data word to module-channel;
CC = CCE;
end;
S:=S-3; << Pop S by 3>>

This instruction expectsa |6-bit data word on TOS, a write
channel command on TOS - 1, and the module-channel-device number
in bits 7 - 12 on TOS - 2. This instruction will allow software

to write data to all the module-channels if global command (bit O

of TOS - 1 = 1), or write data into an 1/O controller register.

All three words will be popped from the stack when it exits.

Series 64/68 Machine Instructions
5-10. SMSK < Set Mask » Instructicn Format - %30100

The four words on the Top of Stack are stored into the absolute
" memory locations 001A - 001D. Then, each of these words will be
broadcast to all the I/O channels on those IOA’s which are marked
present in the system during the initial power-on and coldload
sequence. (Refer to paragraph 5-15. I/0 Module Mapping for
determining the existence of each IOA in the system.) Each I0A
has its own mask word and each bit position of the word
corresponds to its channel number. If the bit is O, the channel
controller may not request an external interrupt for the device.
If the bit is 1, it may request an interrupt. The stack is
popped by four at completion of the instruction.

TOS - 3 mask for IOAL, written into location 001D
TOS - 2 mask for JOA3, written into location 001C
TOS - 1 mask for I0A2, written into location 001B
TOS mask for IOAl, written into location OO0lA

5-11. RMSK < Read Mask > Instruction Format - %30120

This instruction will read the four absolute memory locations
001A 001D and push them ontec the stack. Each memory location
represents a mask for each IOA. There are always 4 words for the
RMSK, even though there may be less than 4 IOA’s in the system
configuration. Each bit of the word is to disable/enable the
channel controller to reguest external interrupts for the device.
RMSK is NOT a privileged instruction. On completion of the
instruction, the four words on the TOS will contain the masks for
each of the IOA’s.

TOS - 3 mask for IOAL, read from location 001D
TOS - 2 mask for IOA3, read from location 001C
TOS - 1 mask for 1042, read from locaticn O001B
TOS mask for I0Al, read from location 0ClA

§-12. STRT < Initiate Warmstart > Opcode = 9

Refer to paragrpah 5-13. on DUMP for information on STRT
instruction. :

Series §4/68 Machine Instructions

§-13. DUMP < Load Soft Dump Program > Opcode = A

012345678910 11 1213 14 15

S coooooommcCc €C C C D DD

A warmstart or dumpload function is executed with the module-
channel device specified on the TOS in bits 7 = 15. The device
specified can be either a disc or a magnetic tape for STRT, but

must be a disc for DUMP. STRT will perform the same function of
coldload as the DCU commands C>START or C>LOAD except that system
microcode is not loaded nor checksummed, and 10A module mapping
will be skipped. The DUMP instruction will perform a memory dump
of the system by copying all the CPU register contents and other
system information to a reserved area of main memory starting at
'0301. Then, it will proceed to perform a coldload of the system
'Soft Dump Facility’ of MPE, which 1s actually residing on the
systemn disc at HEAD 0, SECTOR #3 (#2 for STRT). This facility is
loaded by the same initial coldload bootstrap channel program in

the system firm~are.

For DUMP only:

10301 - Module-Channel-Device
2 - X register
3 - DL register
4 - DB-Bank register
S - DB register
6 - Q register
7 - SM rezister
8 - S-Bank register
9 - Z register
A - STATUS register
B - PB-Bank register
C - PB register
D - P register
E - PL register
F - CIR register

0310 - number of banks in the system
1 - CPX1 register
2 - CPX2 register

034D - NIR register
E - DRTO
F - DRTI

0350 - DRT2
1 - DRT3
2 - DRT Bank offset
3 - DRT Address offset
4 - Interrupt mask for IOAl
5 - Interrupt mask for IOA2
6 - Interrupt mask for IOA3
7 - Interrupt mask for IOA4

S-12

Series 64/68 Machine Instructions

5§-14. DEVICE REFERENCE TABLE (DRT)

The Device Reference Table (DRT) address in this documentation is
calculated by taking the module-channel-device number times &
plus the base, which is contained in the absolute memory
locations 8 and 9, the DRT bank and offset addresses,
respectively. Therefore, the DRT is no longer required to reside
in bank 0. Instead, +the DRT can be in any bank and begin at any
location as long as there is adequate room for the entire table
in the same bank.

DRT address := (Module-channel-device #) * L4 + (Base)

DEVICE REFERENCE TABLE

DRTO Channel Program Pointer
DRT1 Channel Program Variable Area
DRT2 Interrupt Handler Label
DRT3 Channel Program Status

The DRT consists of a 4-word entry for each of the 1/0 devices on
the system. Although the Series 64 can support up to four IMBs,
there is a physical constraint in the system backplane, which can
currently handle only three IMBs. The software is responsible
for initializing the four words of the DRT prior to the starting

of the device [/O program.

The first word of the UL-word DRT is the device channel program
pointer, which is the address in memory of the channel
instruction to be executed next. The second word is the memory
address of the start of the Channel Program Variable Area (CPVA),
which indicates the types of interrupt from the channel program
of the device. The third word contains a program label of the
system code segment for the interrupt handler for the device.
The fourth word indicates the device channel program status, and
should never be modified by software. This status word contains
all the vital information the processor needs in order to execute
the device channel program properly. Since there is only one
word reserved for each of the entries, the device channel
programs and their variable areas must reside in bank O.

Series 64/68 Machine Instructions

Valid ranges for the IMB module, channel and device numbers are
as follows:

Module Numbers (logical) 0 =< MM =< 3
Channel Numbers : 1 =< CCCC =< 15
Device Numbers : 0 =<DDD =<7

The following abbreviations are used by the I/0 instructions:

MM = Module number
CCCC = Channel number
DDD = Device number
BBBB = IMB command code
RRRR = Channel register number
X = don't care

All the I/0 instructions with the exception of RMSK and SMSK
contain a two bit logical module number (MM), and the firmware
will use these two bits to determine which IOA is to be
addressed. This logical number will be mapped to a physical IOA
module number in the Series 6L system as follows: (refer to
paragraph 5-15. for I/O Module Mapping).

IMB number IOCA number
(logical) (physical)
0 1
1 2
2 3
3 L4 (does not exist in

current system)

S

14

Series 64/68 Machine Instructions

5-15. 1/0 MODULE MAPPING

On power fail recovery or initial coldload of the system the DCU
will leave a bitmap in the RB register corresponding to each IOA
that exists on the system. The DCU determines the presence of an
I0A by attempting tc shift a pattern into the IOB, and reading it
back. This mechanism may not necessarily guarantee the existence
of the IOB and IMBI set. It only means that there is an IOB in
the system.

RB bit # Meaning

1 set if IOAl exists
2 set if IOA2 exists
3 set if IOA3 exists
Y (reserved for IOAL)

A message is sent to each of the existing IOA’s in the system to
enable its CSRQ and IRQ masks. Four extended registers, XRA80 -
XRAB3 of set 1, are reserved as a module mapping table, and each
of the registers are initialized to contain the physical module
number in bits 10 - 13, that corresponds to each of the existing
I0A’s as determined by RB. For those that do not exist, -1 is
stored.

There are two bits (7 & 8) of module number in all the I/O
instructions that will determine which logical IOA is to be
addressed. With this logical number, the firmware will vector to
the appropriate physical module number using the mapping table.
If the module does not exist, i.e., if -1 is detected, a trap to
the NONRESPONDING MODULE trap handler (Segment 1, STT#3) will be
taken. The physical medule number will be stored into XRAQ of
set 0.

Series 64/68 Machine Instructions
§-16. GLOSSARY OF TERMS FOR SERIES 64/68

NOTE: All registers indicated are 16 bit unless otherwise noted.

XC - Shifted index register value for byte or double-word
instruction addressing.

CIR - Current instruction register under execution.

NIR - Next instruction register containing next instruction to be
executed in pipeline.

XRn - Extended register file used microder for storing off
partial results.

CPX1 - CPU internal hardware register used for monitoring the
system run mode interrupt status.

CPX2 - CPU internal hardware register used for monitoring the
system halt mode interrupt status.

DSPL - Displacement value from CIR for the current software
instruction. Size of displacement field determined by
the Look-Up Table Entry.

FSS - Split bank flag indicating that DB-bank is different from
S-bank.

RAR - Return address registers (stack of 16) for stacking return
addresses on subroutine jumps.

RAC - Return address counter that points to current RAR that is
valid.

BNKD - DB bank register containing the memory bank number of the
data base stack.

BNKS - S bank register containing the memory bank number of the
current user stack.

BNKP - P bank register containing the memory bank number of the
pProgram code segment.

BKX3/BKX7 - Hardware CPU scratch pad registers used for memory
bank pointers during memory operations.

CTRS - Internal CPU register used as a repeat counter by the
microcoder and used as index into extended registers.

CIR - Lower 8 bits of CTRS register.

CTX - Upper 8 bits of CTRS register.

MACHINE INSTRUCTIONS
SPECIFICALLY FOR SERIES 37

This section defines each of the machine instructions that apply specifically to the Series 37. The in-
structions in Sections II through IV apply to the Series 37, except where otherwise noted.

6-1. DUMP < Load Soft Dump Program >
This instruction is a double word I/0 instruction and must be executed in privilege mode.

0 15

Word (n) %020302

Werd (n+1) 4000011

The DUMP instruction will use the DRT specified in the TOS (must be system disc) to execute a
memory dump of the system. Then it will perform a coldload of the system "Software Dump
Facility™.

Traps: STUN, MODE

6-2. FIRMVER < Set Firmware Version >
This instruction is a double CPU instruction and must Ce executed in privilege mode.

0 15

Word (n) %020104

Word (n+1) %#000022

The FIRMVER instruction, if needed, should be executed as soon as possible after Initial Program
Load (IPL). FIRMVER is used by MPE and DUS to inform the microcode which firmware version
(MPEV/P or earlier versus MPEV/E or later). The version selected will be determined by a value
stored in TOS. If this instruction is not implemented, the microcode will use a default value that is
initialized when the system is first powered up.

Firmware version value in TOS
0 = MPEV/P or earlier
1 = MPEV/E or later

TOS is popped by execution of this instruction.

Traps: STUN, MODE

OCT 1984 6-1

Series 37 Machine Instructions

Which version of microcode is running affects only the following instructions:

NOTE

If a value other than O or 1 is passed, this instruction
will do nothing other than pop the value off the stack.

PCAL, EXIT, IXIT, SCAL, LST, SST, DISP, PARC (COBOL),

ENDP (COBOL), XBR (COBOL), LLBL, LRA/PCAL 0 (BASIC),
and the Interrupt Handler.

6-3. MCS < Read Memory Controller >

This instruction is capable of performing one of four operations, depending on the bit pattern of two
bits. The bits in question are the most significant bit (X) of the ADDRESS word in TOSA and the
least significant bit (Y) of the BANK word in TOSB. The bit patterns and the operation they evoke

are as follows:

Bits Operation

XY

00 Wrnite Word O
01 32 Bit Write

10 Write Word 1

11 Read Error Latch

TOS contents before execution of MCS:

0 15
TOSA Address X
TOSB |Y Bank
TOSC Data »

* Except when Read Error Latch is selected.

TOS contents after execution of MCS:

The arguments on TOS are deleted. In the case of Read Error Latch and Write Word 0, the check bits

are returned onto TOSA.

TOSA

0

15

Check Bits

The 32 Bit Write and Write Word 1 operations just pop the Stack.

6-2

OCT 1984

Series 37 Machine Instructions

6-4. OSSIGNAL <Operating System Signal Instruction >
This is a double CPU instruction and must be executed in privilege mode.

0 15

Word (n) 4020104

Word (n+1) %000023

This instruction is used by MPE and DUS to signal when either is executing. It sets the RunState flag
to the value at TOS and pops it. RunState reflects what operating system software is loaded and run-
ning. This will enable Power-Fail recovery when RunState 1s set to 2 (DUS) or 3 (MPE).
Input Conditions:
All CPU Registers valid
TOS new RunState value:
0 = Nothing executable loaded
1 = Program other than MPE or DUS running
2 = DUS running
3 = MPE running
Output Conditions:
STA not affected
TOS popped
RunState
Traps: STUN, MODE
It is recommended that only the values 2 (DUS and 3 (MPE) be passed with this instruction. There 1s

no checking done by the instruction for valid (0-3) values. An invalid value for RunState will cause
the same behavior as 2 RunState of 1 (Other Program Loaded).

OCT 1984 6-3

Series 37 Machine Instructions

6-5. PFL < Power Fail >
This is a2 double CPU instruction and must be executed in privilege mode.

0 15

Word (n) %020104

Word (n+1) 000021

The PFL instruction is executed by software when a powerfail sequence is being performed.

Traps: MODL

6-6. RTOC < Read Time of Century Clock >

0 15

Word (n) %#020104

Word (n+1) %000017

This instruction reads the Time of Century Clock and returns a 32 bit integer which represents the to-
tal number of seconds that have elapsed since WOV 1, 1972, The 32 bit number 1s returned 1n TOSA
and TOSB (LSB and MSB respectively) and CCFE is set. If the date on the TOC is too large to be
ceturned in 3! bits (no negatives allowed), zero is returned and CCG 1s set.

Indicators: CCE = Successful execution
CCG = TOC value to larze

Traps: MODE, STOV

5-7. SINC < Sct System Clock Interrupt >

0 15

Word (n) 4020104

Word (n+1) %000010

This instruction sets the most significant bit of the System Clock Status register (SCST) which is at ab-
solute memory location #000026. If external interrupts are enabled, there is an immediate trap to
segment 1, STT 12 (MPE timer trap). If external interrupts are disabled, then the system clock status

register is incremented and no trap is taken.
Indicators: Unaffected
Traps: MODE

6-4 OCT 1984

Series 37 Machine Instructions

6-8. STRT < Initiate Warmstart >
_This instruction is a double word I/0 instruction and must be executed in privilege mode.

0 15

Word (n) %020302

Word (n+1) . 4000011

TOS:

TOSA - DRT (must be system disc)
TOSB - Start parameter:

0 = Start

1 =Warm
2 = Cool

10 =Load
11 =Cold
13 = Reload
14 = New

6-9. WTOC < Write to Time of Century clock >

0 15

Word (n) 4020104

Word (n+1) 4000020

This instruction pops the 32 bit integer in TOSA and TOSB (LSB and MSB respectively), representing
the second of the century. Then it stores that value in the TOC registers in a form similar to the one
the TOC uses. If WTOC receives a negative number it will not perform the write. It will set CCG

and exit. If the number received is valid, WTOC will write the new time to TOC, set CCE, and exit.
In either case, TOSA and TOSB are deleted.

Indicators: CCE = Successful execution
CCG = Double word integer on TOS is too large (negative)

Traps: MODE, STUN

OCT 1984 6-5/6-6

Page
ABSD Absolute decimal. . . v v v vt t o it o b e et s e e e e e e e e e 4-30
ABSN Absolute RUMETiC. v ¢ ¢ ¢ ¢ v o o o v o o s s o s s s o s o o s oo e e e e e 4-29
ADAY Add A 0 K. . ¢ v i it i e e ittt s e e e e c s e e e s e e e e s e s e e e 2-15
ADBX Add B to X. . . it it et e st e e e T 2-17
ADD Add PP e 2-1
ADDD Decimal add . . . ¢ v v ¢ ot o s o e o e e st s e s e e s e e o e o s s s e e e e e 3-9
ADDI Add immediate. « v v v v v v e e et e s e e a e s eee o e e e e e 2-56
ADDM Add memory to TOS. s e e e e e e e e e e s e e s e e e e e e .. 2-93
ADDS Add t0 S . v vt i et e e e e e e et e e aa e e et e s e s e e e e 2-63
ADZA Add X 20 A. i v i 4 it e s s e e s e e s e s s e e s c o e s e s e e e ... 216
ADXB Add X to B.......... e e e e et e e e e c e e s e s e s e s e e e 2-17
ADXI Add immediate to X e a0 e o o s s e s s e e e e s e e oo 2-5%
ALGN Align DUMETIC. . « v v v e v v v v o o o s o oo v o v e e e e e e e e 4-25
AND Logical AND. . . vt v v o et e s s o ot o oo oo s oo en e s e e e e e s e 2-13
ANDI Logical AND immediateo c e v eeuennn e e e e e e 2-60
ASL Arithimetic shift left . . . ¢ v v v v v vt v v v o o v oo e e e e e e e e 2-2k
ASR Arithemtic shift right ¢ v v v v v ittt v v it v oo e e e e 2-24
BASIC INSTRUCTION SET . . ¢ v ¢t ¢t v v ¢ o o s o s o s o s oo s oo e e e s e e e e e e e 1-1
BCC Branch on Condition Code. . . . ¢« v ¢ vttt v o s oo o o e e e e e e e e e e 2-39
BCY Branch ON NO CABITY « « « « = o o o s = o s o » s e s s e s s n et e e s 2-35
BNCY Branch OR TIO CATTY .+ « o « « « o s o o s o s s s o s o o v s s o oo oo oo oo 2-35
ENOV Branch ON NO OVEIVIEW .« v v v o o o o s o s o s o o s s s s st o s s o oo s oo oo 2-36
BOOLEAN INSTRUCTIONS . v ¢ ¢ ¢ v o ¢ o o o o s s a s o a o s a s o0 o . e s s e e e e e 2-12
BOV Branch on overfloWw.+ e e e e e e e e e e e e e e e e 2-36
BR Branch unconditionally . . .« ¢ e e v v c o o s s o e e e e e e e e e e 2-38
BRANCH INSTRUCTIONS. @ v v v« s ¢ o o o s a o s o s s 008 e e o m e e e e e e e s 2-34
BRE Branch to TOS even e e e e e e e e e e s e e e e e e e e e e 2-37 -
BRIS Branch if significance trigger is set e e e e e L-14
BRO Branch on Tos 0dd. . . . v v v v v o o v o s @t s e e e s v oa s aoeaeaees 2-36
BTST Test byte on TOS. . . . ¢ . ¢ v v v e v v v oo e e e e e e e s e e e e s 2-23
CAB Rotate A,B,C i ittt et o v e oossoocesooessssse e e e e e e 2-19
CIO Control I/0. .« v i v v v v v o v v v conaneas e e e e e e e e e 2-78
CMD Command . . v v « ¢« c o o o o o o o o s s st o0 s e e et e et e e e s 2-7%
CHMP COMPAT@ . « « ¢ ¢ o o v s o o o o s o o s o s s s o s s s o oo s s o o s oo e oo 2-3
CMPB Compare DYteS. « « « c o e o e o o s o o s s s s oo s v e e e e s e e e 2-43
CMPD Decimal COMPATe . . o o o o« o ¢ o s o s o o oo o e e e e e e s e e 3-11
CMPI Compare immediate. oo e e e e e e e e e e 2-56
CMPM Compare TOS with memory. . . + o o ¢ ¢ o o o o o« e e e e e e s e e ... 2-9L
CMPN Compare negative immediate. e e e e e e e e e e e 2-58
CMPS Compare StTings c: oo oo oo eenenn e e et e e e e e e L-23
CMPT Compare translated strings. e et e e L-24
CODE CONVERTING AND COLLATING INSTRUCTIONS s e e s s e s s e e e s s eaee L-22
CONDITION CODE & 4 v ¢ o o o o e s e s a s s o o o o a s oo e s esoeos oo as G« e e e e e 1-4
CPRB Compare range and branch e e e e e it e et e e 2-37
CSL Circular Shift 1eft « o o c e e o o oo seoeosonconansasssesesss 2725
CSR Circular shift right« et c et vt e e e e e e 2-25
CVAD ASCII to decimal conversion« v e v v vt oo oo e e e e e 3-4
CVBD Binary to decimal conversiono vt v oo cnivocc e 3-7
CVDA Decimal to ASCI] CONVEISiO0N o « ¢ o o o s o s o o s s s s s s o s o s v o s oo e 3-6

Index-1

INDEX (cont)

Page
CVDB Decimal to binary conversion e e e e e e e e 3-8
CVND Convert numeric display« .o o v v v oo e e e e e e e L-27
Commentary for MPYL, MPY, DIST, FIXR, FIXT LMPY. e e e e e e . 2-95
Commentary for DFLT, FLT, FADD, FSUB, FMPY, FDIV, FIXR, FIXT 2-95
Commentary for ASL, ASR, LSL, LSR, CSL, CSR . v ¢ v ¢ 4+ s v s o v s o s« e s e e a. 2-97
Commentary for DASL, DASR, DLSL, DLSR, DCSL, DCSR e e e e e e 2-100
Commentary for TASL, TASR, TNSL ¢ e v vt oo e e e e e e e e e e e e 2-100
Commentary for QASL, QASR . v & ¢ i 4 ¢t v e e v e v o s o s s o s s s s s s eseesces 2-103
Commentary for EXF, DPF . . . ¢ v v ¢ ¢ ¢ 4 0 et s 0 o 0 s e s s e e s s e e e e e 2-103
Commentary for BR. . e e e e e e e e ee et e e et e ... 2-103
Commentary for MOVE, MVB MVBW, CMPB, SCU, SCW . . . v ¢ v v v v v v o oo oo oo 2-103
Commentary for MVBL, MVLBE . . . i v i v v v v ittt ot o o st s aan oo nenaans 2-106
Commentary for ADDS, SUBS . 4 ¢ ¢ v ¢ ¢ v s o o o s s o s o o o s s s s s s o oo s aaes 2-109
Commentary for SCAL, SXIT i i i i i i it et o s e s o s a2 o e s s s s s aas 2-109
Commentary for PCAL, EXIT e e e e et e e e et e e e e e et 2-111
Commentary for LLBL. . . & ¢t v v i i i i e e b et o s o e o s s o s s s a o s s o oeas 2-115
Commentary for DISP, IXIT, PSDB, PSEB . . . v ¢ « i ¢ ¢ ¢ o 0 v s o s s s s o s o 2-115
Commentary for LLSH. . . . i i i i i i i i i i i it it e et e sttt e s s s s e 2-117
Commentary for KEQ .« v i v i i 6 it i e o e o s s o s s o o o s s o s s e e e e 2-117
-Commentary for SIO . . i v i v i i i i e i e e e e e e e e e s e et e 2-117
Commentary for TBA, MTBA, TBX, MIBX. i i i i i it sttt e e e ns 2-123
Commentary for COLD-LOAD and WARM-START (Series 3X/LX)........ W e .. 2-125
Commentary for System HALT (Series 3X/LX). i i i i i i i i i it v 2-131
Ccmmentary for floating-point numbers of the EP 300124
Extended Instruction Set i v v v v vt it b e s s e e e e s s e e 3-17
Commentary for the decimal arthmetic instructions of the
HP 30012A Extended Instruction Set v i v i i v v vt o vt v oot o v o o 0 s 3-23
Commentary on traps for the Language Extension Instructions L-3Yy
Commentary on the comparison between CMPS and CMPT ¢ ¢ vt v v oo L-34
Commentary providing examples of EDIT subprograms ¢ ¢ v o oo L-35
CABZ Decrement A, branch if zero i v i i i i i i it it e e et et e a e o 2-35
DADD Double Add. . . & i v v v i v vt e e e e et e ot o e a et e e et 2-3
DASL Double arithmetic shift left i v v vt v vt vt v ottt v neenneas 2-26
DASR Double arithemetic shift right i it i i i i it ittt e nnenn 2-26
DBNZ Decrement count, branch if NON-zer0. . . ¢ v v v v ¢ s v ¢ o s e v o o o v oo L-21
DCMP Double compare « v v v o e o o s s e e e e e e e et e e e e 2-5
DCSL Double circular shift left. . . . @ i v i v v i i i i i i it oo oot oo aawn 2-27
DCSR Double circular shift right ¢ i i i i i i i i it ittt i o n e 2-28
DDEL Double delete. . . . v v v v v it ottt o o o s o o s s a s s s s s oo o avoeaoas 2-21
DDIV Double integer divide et e et et e e e . 2-5
DDUP Double dAuplicate. . . . ¢ v v vt o o s e v v o o o o o s o o s s o s o s s s o oewa 2-22
DECA Decrement A v ot ot oot ot oot ooseeenonsesensssnseas 2-1L4
DECB Decrement B i v it v v v vt o s st o v s v oo ensosesoseeess 2-15
DECIMAL ARITHMETIC INSTRUCTION SET . v v v v v vt v o o e ¢ o o o o o s s n o s oo oo 1-3
DECIMAL ARITHMETIC INSTRUCTIONS . @ v v v i v v o v v s o st o o s s o oo s s o s o s 3-u
DECM Decrement MemOIY. « = + v ¢ ¢ 4 ¢ s o ¢ 0 o s o s s s o« e e et e e e e e e e e 2-92
DECX Decrement X . . . i . i v i i i v v v ottt e e e e ot s s st st s e an e 2-13
DEL Delete A. i i i it it i e e e e e e e e e e e e e e e e e e e 2-21
DELB Delete B i i i it i it ettt bttt et et e et et e e e e e 2-21
DEVICE REFERENCE TABLE (DRT) v v v v v v vt vt e et e ettt ot e e a e e o n s s 5-13

Index-2

INDEX (cont)

Page
DFLC Define float character« . . v o v v oo v voooon e e e et e e e 4-21
DFLT Double float . . .« v v v e v o v oo e e e e e e e e e e 2-6
DISP DispatCh ¢ v v v v v vt ittt ettt e e e aaannn e e e 2-68
DIVI Divide immediate. « « « ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o 0 o s s s 060 o o e e e e s e e e 2-57
DIVL Divide long . « ¢ ¢ v v v e v e v v o e e et e e e e e e e svee..s2-b
DIV Divide . ¢ ¢ v v v v v vt v v v v oo e et e s e e s e e e e c o0 . .2-2
DLSL Double logical shift left e e s e e e e e e o oe . 227
DLSR Double logical shift right. ¢ v vt vt cce e e e e 227
DMPY Double logical multiply . . . o v v v v v o v v v v v oo uuenonon c e e e ..., 3-16
DMUL Double integer multiply . . « « ¢ v ¢ e v ¢ v e v o 0 o 0 a0 v oo C e e e e e e 2-5
DNEG Double Negate. . v v v v v ¢ o o o v v oo oo s o s o n o oo e e e e e 2-4
DOUBLE INTEGER INSTRUCTIONS . . ¢ ¢ ¢ v v v e v ot v v oo e e e e s e e e e e 2-3
DOUBLE WORD SHIFT INSTRUCTIONS & & v v v v ot o o s o o o o o s o o o o s o oo s oo 2-26
DPF Deposit field . . ¢ v v v v v i it it e it et o e o st e s oo oosceeesss 2-33
DSUB Double subtract¢.. ... e e e e s s s s s s s s e e ae s s as e 2-3
DTST Test double Word on TOS . & v v v v v vt v v v e v v e et v oo s s e aa e aa o 2-23
DUMP Load Soft Dump PrOETEaM . ¢ v v v v v v v o v o s s o o o v o o oo o e oo o n s 2-80
DUMP Load Soft Dump program (Series 64/68) 5-12
DUMP Load Soft Dump program (Series 37) .« ¢ v v v v v v v v it v v v oo oo ...6-1
DUP Duplicate A. . . . i vt v vt vttt vt v oo v oo onn e e e e e e e e e e e 2-22
DUPLICATE AND DELETE INSTRUCTIONS . & ¢ ¢ ¢ ¢t v v v v e e e o o oo oo o o oo oooaes 2-21
DXBZ Decrement X, branch if Zero . . v v v v vttt v v v ot o o v v o oo e e ... 2-34
DXCH Double eXChaNEZE . « ¢ v o v o o o o o s e o s s o o o s s oo s oo oo oenossas 2-18
DZRO Push double zero.« ¢ v e o v o v o o o s o e e et s e e e e e e e e e 2-20
EADD Extended-precision floating peint add 3-1
ECMP Extended-precision floating point compare 3-4
EDIT AND NONEDITED MOVE INSTRUCTIONS . & i ¢ v v v v vt o e o v o e o o s o s oo s oon L4-4
EDIT Instruction Immediate OperandsS. . . . v v v v o v v o o o e o o o o oo o o oo oo 4-7
EDIT SUBINSTRUCTIONS e e e e e e e e e e e e 4-7
EDIT v i e e v oo et oo s oo e o oo oe s e e e e e et et e L-4
EDIV Extended-precision floating point divide 3-3
EMPY Extended-precision floating point multiply v v v oo 3-2
ENDF End floating insertion . . . v v v v v v v v v ot oo v o vt oo o s o neoooes 4-18
ENDP End of ParagraPh. « « ¢ o v o o v s o o o o s o o o s o o s oo o n v oo oo onnoos 4-3
ENEG Extended floating point negate ¢ i v i i it vt v v oo3-3
ESUB Extended-precision floating point subtract................... 3-2
EXCHANGE INSTRUCTIONS & v i v v s o o o v o s e s s s o o o o oo o oo eooosoeeoes 2-18
EXF Extract field . & i v v i i v i i i ot o et ot o o v o o o a s oo o neoonooeensa 2-33
EXIT Exit from ProcedUI® . . ¢« v v v ot o o o o o o s o o oo s o oo ooneeeeas 2-66
EXTENDED INSTRUCTION SET. . ¢ ¢t v v v o oo o o o o o oo e e e e e e e e ae e ..1-3
Extended Precision Floating Point Instructions et e e e e e e e e 1-3

OCT 1584 Index-3

INDEX (cont)

Page

FADD Floating add ¢ e v v v ot vttt v oo oo e e e e e e e e e 2-7
FCMP Floating compare. . . .« .« « v v o v s s o & e e e e e e e e ... 26
FDIV' Floating divide e e et e e e e e e e e e s e e e e 2-8
FIELD AND BIT INSTRUCTIONS f e et e e e e e e e e e 2-21
FIRMVER Set Firmware Version (Series 37) 6-1
FIXR Fix and round. . . . ¢ v ¢ ¢ o o 0 0 ¢ s o o s e e e e e . e e s s e e e e 2-9
FIXT Fix and truncate. .« . v ¢ v vt v i v e o v o o o o o o o oo o oo oeoeos e e e e s 2-9
FLOATING POINT INSTRUCTIONS o e et s st s e e e e e e e et eee e 2-6
FLSH Flush (cache)......... e e e e e e e e et e et et 5-3
FLT Float. i i i i ittt v ennnnn et e e e et e e e e et e e 2-6
FMPY Floating mUltiply @ & v v v v i i i e e b o e o o v o oo oo v oo amesonenens 2-8
FNEG Floating negate v ¢ et v e v ot v avanas e e e e e e e 2-8
FORMAT TUPE #1 . & v v i i i i i i e i o e e o o o o o o o o o oo o oo s oo v oeneeeens 4-7
FORMAT TYPE #2 . . o v i i it i i e e i o et ot o o e s oo m s oo an oo ea e 4-10
FORMAT TYPE #3 . & . i i ittt i i e e b e e ot s o ot o o oo o oo oo eaeeeseea 4-12
FORMAT TYPE #U . . o i i i i i it e it e et e et e ettt et ettt et eeee 4-13
FORMAT TYPE #5 & o & v o v i i e i e s o o o e s s o o o s s s oo s o s oo oasoseeeas L-15
FORMAT TYPE #6 . o o . v v i v it ettt it oot o e ot s mas oo e aeeneneas L-16
FORMAT TYPE #7 « & ¢ o o v v e e e i s e o o o s s o o s ot o oo s oo aoosoa oo 4-17
FORMAT TUPE #8 . i v v v it et e ettt ettt o et et e eeeeeeeeeneas L-19
FORMAT TYPE #9 . & v v v i i ittt it it o ettt o s oot e e et ettt et eenn L-21
FSUB Floating subtract . . . v v v v v v i i it e o v o s o s ot o ot oo oo o ae e 2-7
GLOSSARY OF TERMS FOR SERIES 6LU/6B . . . v i i v it i it ettt e e e et ee e 5-16
HALT The computer hardware halts ¢ v v v i v v vt v v v o oo e a e o e e s n 2-69
HIOP Halt I/O PrOgraM. o v v v v v v o v o v o ot e et o ot oo oo oo oanennes 2-83
HIOP Halt I/0 program (Serles BL/6B) . i e e e e e e e e 5-7
I/0 INSTRUCTIONS . & v v v v i e b e s o e ot e e m e ot o e m e oo enee oo eeens 2-Tu
I/0 INSTRUCTIONS (Series 6h/68) 5-5
I/0 MODULE MAPPING (Series 6L/68) . . . i i i i v i i it it e e e e e e e e e e e us 5-15
IABZ 1Increment A, branch if Zero . . . i i i i i v i it i v o v ot ot o v o n e enn 2-34
IC Insert Character & . v v v v i e i e e e o et e et e e ot e ettt et see e 4-11
ICI Insert characters immediate. e et e e e e e e e e 4-12
ICP 1Insert character punctuation i i v i i i i i it it et oo o e L-15
ICPS 1Insert character punctuation suppressed « « « « v e o v o e o o o v o & 4-15
ICS Insert character SUPPIesSSed . « v c v v vt o o o o o o o o o v oo oo v n s oo 4-11
ICSI Character suppressed immediate ¢ i i i i it i v vt v o v v 4-13
IMMEDIATE INSTRUCTIONS. & i i i v v v o v e ot t e v o o ot oo eooaceeneeeees 2-55
INCA Increment A . . i i i i i i v it o ot s ot o o a oo o esooenesenoneees 2-14
INCB Increment B i i i i i i it it i et et e eennoos e e e e e e e e 2-1Y4
INCM Increment memory. e s e e s e s G e e e s et e s e s et e e s 2-92
INCREMENT/DECREMENT INSTRUCTIONS v & v ¢t c v 6 v v o v o v o oo o s oo oo s a e 2-13
INCX Increment X......... B I T T T N T T T 2-13
INDEX INSTRUCTIONS . . i i i i i i it e o o o o s o 0 o s o e o oo nsoeeeeeaenes 2-15
INIT Initialize I/O chammel . . v v v v v v v v v o ot v o v o e oo oo o e 2-82
INIT Initialize I/O channel (Series 64/68) e e e e e e e 5-8
OCT 1984

Index-4

INDEX (cont).

Page
INSTRUCTION COMMENTARY . & & v v e e v e o ot s ot e o s o s o o s o s o o o o oo s s oo 2-95
INSTRUCTION COMMENTARY. o ¢ v ¢ v ¢ o s o ¢ o et e e e s s e e e e s e e e s e ... U4-34
Instruction Decoding Gt e e s e s e s e s e e s e e e e e s e 1-1
Instruction Decoding . v v v c v i o vt i v o v b b e e e et 1-3
INSTRUCTION FORMATS e e e e s e e e e s e e et et e et e 1-5
Integer INStrUCtIONS & & v v ¢t v v v v v o o v o o o ottt o s b o s et s e e 2-1
INLEITUPES &t v e o o e o e o o o o o o o s o s o o ot oo s s s s o oot o s st o s oo 1-3
INTRODUCTION & v v v e e e o o o o o o o o o a s s e o o s s oo s aeoeoos B £ S
IS Insert characters depending on Sign . . . v v v v v v vt v v v ot v v v v o nan 4-16
IXBZ Increment X, branch if zero e e e e e e e 2-34
IXIT Interrupt exit........ e e e e e e e et et e e e e e 2-67
LADD Logical add......... e e e e et e e e e e e e e e e s e e s ee e 2-10
LANGUAGE EXTENSTION SET & 4 ¢ ¢ ¢ o o o o o o o o o o o s s o o o o o s o o s o oo eeoeoeos 1i-3
LCHP Logical COMPATE v v v o v o o v o o o 6 o s o o s s a s o s a o a s o oo v s o oo on 2-10
LDB Load byte onto stack . . . v v i i i i i i i i i i e et e et e e e e e 2-91
IDD Load GoUbBle. v v v v vt e i v e 2-89
LDDW Load double word (U4 consecutive bytes). v v v v v v v v v v v v v oo 4-33
LDEA Load doubleword from extended addresSsS . « ¢« ¢ ¢ ¢ v ¢ ¢ ¢ e o s 0 o a0 o o s 2-5Y4
DI Load immediate. & v v v v v vt bt et e e e e e e s et e e e et e et e e e e e 2-55
LDIV Logical divide . . . vt v v i i i i i it e et e e e e e e e e e e 2-11
LDNI Load negative immediate v ¢ v v v v v v v o o v ot v v v et e 2-58
LDFN Load double from program, negative it i vttt e 2-88
LDFP Load double from program, positive i it i i v v v v v 2-88
LDW Load word (2 consecutive bytes) i i i i i i i i ittt et e e 4-32
IDX Load ZNAE@X + v v v v v v o o o o o s s o e s o o o s s s e e et e 2-87
IDXA Load X onto StaCK . & v v i v i i o i o b e e o o e o o e oo o s s o s e s e 2-17
IDXB Load X A0t0 B. v v v v v v v e v e et e o e e et e e e e e e 2-16
LDXI Locd X immediate. v v v v v v .. e e e e e e e e e e e e 2-56
LDEN Load X megative . . . v v v v v o o v o v v o u e e e e e e e e e e 2-58
LLBL Load label. ¢t v vvnvuunnn e e e e e e e e e 2-67
LILSH Linked list S@arch . . v v v ot v i v o o i o v o s v o o o o o s o s o o oo ooaon 2-T1
LMPY Logical multiply. v v v v v v v e e e e e e e e e e e e e 2-11
LOAD ittt e e e e e e e e e e e e et . 2-87
LOCK LOCK IeSCUI . & & i i it a4 e e o s o o o o s o o s s o o s o o o s oo oo ooeas 2-70C
LOGICAL INSTRUCTIONS . & vt i i i e v o o o o o s s s o o o s s s oo essosasonnos 2-10
LOOP CONTROL INSTRUCTIONS e e e e e S et e s e e e e 2-85
LRA Load relative address onto stack e e e e e e e e e e e e 2-90
LSEA Load singleword from extended address e e e e e e e e 2-54
LSL Logical shift left. v veveen. e e e e e e e e 2-24
LSR Logical shift right e e e e e e e e s e e e e e e e e e 2-25
LST Load from system table . & o o v o o o v e o e o o o o o o s s o o o o o o oo oo oo 2-53
LSUB Logical subtracts c ¢ e v v v v oo e oo e e e e s e e e e e e e e e 2-11
MA Move alphabetic. i v vt v v v v e e e e et e et 4-8
MABS Move words using absolute addresses. e e e e e e e e e e e e 2-18
MC Move Characters. v v v v v o o v st o oo o ssoeoes e e e e e e 4-8
MCMD Message communication e e s e s s s e e s e s e s e s e e e 5-1
MCS Read MemOTY CONTIOLler v v v v v v v vt v v o e o o oo s o oo m o s oseessoesn 2-82
MCS Read memory controller (Series 37) « v « c v vt ot v v e e o v o o oo e v oo as 6-2
MDS Move using data segments . . . ¢ v ¢ v ¢t b v e e e et e e e e e e e e C e e .. 2-51
MDWO Move digit with overpunch i ¢ i i ittt vttt v e o v v v oo s e 4-19
OCT 1984

Index-3

INDEX (cont)

- Page
MEMORY ADDRESS INSTRUCTIONS Gt e e e e e e s e e e e e e e e oo 2-87
MFDS Move from data segment s e e e e e e e e e e s e e e 2-50
MFL Move numerics With Floating Insertion........... e e e 4-10
MN Move Numeries e e e e et e e e e e e e et ...k4-9
MNS Move Numerics With Zero Suppression c v e e e s e e ee.l-9
MOVE INSTRUCTIONS e e e e e e c i e e e e e s eee e e e e .. 2-k0
MOVE e e e e e e et et ce ... 280
MPY Multiply. oo e s s s s s s e e e s s e s s e s e e e e 2-2
MPYD Decimal multiply. e e e s e e e G o s e e s e et st st es 3-15
MPYL MULEiply L1OME. « « + ¢ o ¢ o v o o v v oo oo oot o s oo s asaosonsnssoss 2-4
MPYM Multiply TOS DY MEMOIY « & v o o o o o o o s s s ot o s ot o o s oo v ononos 2-94
MTBA Modify variable, test against limit, branch 2-85
MIBX Modify X , test against limit, branch 2-86
MTDS Move to data SeEmMeNt . « ¢ ¢ v v v v v v o v v o s o oo o o o o v o o s n o s oo 2-49
MUB MOVE BYLES .« v v v o v o o v v oot m o a s e a oo a s s v s s o oo n e o e 2-41
MVBL Move words from DB+ £0 DLt . o v ¢t v v v v v v o o v o oo n o oo oo oo s oo 2-46
MVBW Move bytes of specific type« vt i i i vt i i ittt i e e 2-42
MVLB Move word from DL+ t0 DB+ . . v v v v v v o v o v o o o o s o s o v o n o s o non 2-47
MYPI multiply immediate oo e e s e s e e e e 2-57
NEG Negate . . v v v v v v vt v v vttt v et e s v i e s e m st s o s o oo enn 2-2
NEGD Negate on decimal . . . v o v vt v vt v ot v oo v oo oo oo v aeonons oo 4-31
NOP No operation 2-23
NOT One’s complemMent . . « v oo vt v s ot o o o o v o o o s o s s oo o s s s oo oo 2-12
NSLD Decimal normalizing left 3+ 15 2 O 3-13
NUMERIC CONVERSION AND LOAD INSTRUCTIONS . . v ¢ ¢ ¢ o e v o v v o o o o o o o o o s 4-25
OR Logical OR . . v v v v it v v vt e s s e oot o s s oo e oo s e s o s oo oo 2-12
ORI Logical Or immediate v v v vt vt v v v vt i vt v vt e s et 2-59
OSSIGNAL Operating System Signal (Series 37) oo v v, 6-3
PARC Paragraph procedure control v vt v vt i ittt it e L-2
PAUS PaUSE &« « v v « o s o o e st o o ot ot oo oo e s o n o s s s osssnooenosanss 2-69
PCAL Procedure €211 . & v v v v v v v v o e v s et oot s st s s s e s e 2-65
PCN Push PCU NUMbBET &« v v v« & v o o o o o t o o s o o s o s s o o s o o o s o o s s oo o 2-72
PFL Powerfail (Series 37) « « v « v e v v v v o o o v o o o o s oo o s s s s s oo n o 6-L
PLDA Privileged load from absolute addresso 2-52
PRIVILEGED MEMORY REFERENCE INSTRUCTIONS . . & ¢ v v e o v v v s v o s o o s oo oo 2-52
PROGRAM CONTROL AND SPECIAL INSTRUCTIONS . . & v v v v v v v v v o o s o o o o o oo 2-6Y4
PROGRAM CONTROL INSTRUCTIONSo e v et e e s e e e s s e e e e 4-1
PSDB Psuedo interrupt disable ¢ v vt v v v vt ottt et 2-68
PSEB Pseudo interrupt enable. e e e et e e e e 2-69
PSHR Push TegiSterS « v v v v o v v o o o o o o v v o o v oo oo nooeceonnsons . 2-62
PSTA Privileged store into absolute e e et e e e e e 2-52
QASL Quadruple arithemetic shift left................. e e e e e e e 2-30
QASR Quadruple arithmetic shift right....... B 2-30
QUADRUPLE WORD SHIFT INSTRUCTION. . v ¢ v v e o v o o s v o o oo s o v e o s o s oo 2-30
RCCR Read system clock counter oo o v v o v o oo oeosesocsness 2-72
RCLK Read clock. . . v v v v v v v v v v an e e e ettt e 2-64
RDCU Read DCU 10E + + v v v ¢ v v v o o v oo 0 o s oo e e e e e e e e e e 5-4
REGISTER CONTROL INSTRUCTIONS e e e e e e s e e e e s e e e 2-61
RIO Read I/0. . v v v v v it v vt o s oo s oo e vosss e e e e e e e e e e 2-77
RIOCA Read 1/0 adapter channel Gt e e s e e e e ess5-0
RIOC Read I/O chammel. . . v v v v v v o o o o v o o o o s o s s s o s o s o s o o s oo 2-8L

Index-6 ' OCT 1984

INDEX (cont)

Page
RMSK RE2A MASK « v v v v o o v v o e o o o o s ot s oo o s s a e oo noenseseaonss 2-76
RMSK Read mask (Series 64/68) e e e e e e e e e . 5-11
RSW Read Switch register e e e e e e e e A 14
RTOC Read time of century clock (Series 37). ..+ c v v v v e v oot Y
SBM Set Dank Mask . . « ¢ v o o o s o o o o o o e e e e e e e e e 2-Th
SBXI Subtract immediate from X s o s e e s e e e e s e s s e s ae e e 2-59
SCAL Subroutine call Gt e e e e e e e et 2-64
SCAN Scan bits . . . ¢ o v e v oo o G e s e e e e e e e e e e e e e e s e e s e e e . 2-31
SCIN Set system clock interrupt......... e s e e e e s a e e s e e . 273
SCLK Store clock e e e e e et ettt e e et 2-64
SCLR Set system clock limit . . .« vt v v o v v vt v oot a i e et oo 2-73
SCU Scan until memory byte equals test byte or term. byte 2-L5
SCW Scan memory byte equal test byte oo v v v v vt 2-LL
SDEA .Store doubleword into extended address. ¢ ¢ o o v v v et v 00 e o0 2-55
SED Set enable/disable external interrupts e ... 2-75
SEML Semaphore 102 « « v ¢« v v v o o o s v s o e e e e e e s e e e 2-83
SETC Set 1oop COUNt . v v v v v v o v v v s o e e e e e e e et 4-20
SETR Set TegiStersS. . o v v v v v v v oo ot o v o m oo oo s osasnsosesensas 2-61
SFC Set Fill Character v v v v v e v v v o o s e s c o a s o o o a oo o v oo o oaoseaen 4-20
SFLC Set £10at CRATACLET « o v « v o ¢ o o o o s o s s o s s s o s s o v o s s oo s oo L4-20
SHIFT INSTRUCTIONS . ¢ v ¢t o v o o o o o o s o o 6 o s oo oo oo e e e e e e e e e e 2-24
SIN Set interrupt . . ¢ v v vt e v v v v s s e 0 e e e e e s e e e e s e e e 2-79
SINC Set system clock interrupt (Series 37). vt v v 6-4
SINGLE WORD SHIFT INSTRUCTIONS« C e e e e e et e et e e 2-24
SIO StaTt I/0 v i v v v v v e o e o o s s o o st s s e o e e e 2-76
SIOP Start I/O Program.o oo oo e e e e e e e e e e e e e e 2-81
SIOP Start I/O program (Series 6L/68). it 5-5
SILD Decimal left shift &« v v v v v 6 0 it 4 ¢ o o o o o o s a o o o o s e s oo s o o0 o 3-12
SMSK St MASK « v v o o o o o o o o o o o o o o o s s s s o o o s o s s o s o s o oo 2-75
SMSK Set mask (Series BL/68) . .« v v v i it i i i e e e e e 5-11
SRD Decimal right Shift . . v v v v it i i ittt et et e et e ot teae 3-14
SSEA Store single word into extended addressot e v vt oo 2-5Y4
SST Store into system table ¢ i v v v v ittt b e et s et e 2-53
SSTO Set significance trigger to0 2ero. ¢ o v v v vt oo v e v oo v oo L-18
SST1 Set significance trigger 0 ON€ . . . ¢ . vttt v v v v v v o v s s a0 o oo 4-18
STACK OP INSTRUCTIONS ¢ ¢ o e s e e s e e e e e e e e e e e e s 2-1
STAX Store A into X . .+ o v v v v v o e s o s s s s s st et steeetaees 2-16
STBX Store B into X...... I T 2-15
STE Store DYLE@ . o v ¢ v v v s o o o o o s s o o s o o s o s s o oo s oo oo o e e e e e e 2-G61
STD Store double . . v i ¢t ¢ v v o 6o v ¢ o o e o o oo e v e e e e e e e e e e s e 2-90
STOR Store TOS into MEMOTY . « v « v ¢ v o o o« & e e e e e e e et e 2-87
STRT Initiate Warmstart e e e e e e e e e et e e ... 2-84
STRT Initiate Warmstart (Series 64/68) e e e e e e e e 5-11
STRT Initiate Warmstart {(Series 37) e e e e e e e e e e e 6-5
SUB Subt e v oo t e s e e e e e e et et e e e c e e e e 2-1
SUBD Decimal subtract. . . v v ¢ ¢ 4 o e v ¢« o o e o o v o a s s s s s o s o o o s e 3-10
SUB] subtract immediate . . . ¢ « ¢t v ¢t ot o o o o o o s e et e s e e s e s e e 2-57
SUBM Subtract memory from TOS s e s s e s s e e e s s s e e e 2-93
SUBS Subtracts frem S. e e e e e e et e e e e e e 2-63
SUFS Subtract from source pointer e oo e oo s o e e oot oo s oo L-14
OCT 1984

Index~7

INDEX (cont)

Page
SUFT Subtract from target pointerot oecnenn L-14
SXIT Exit from subroutine............ e e e b e e s e e e 2-66
TASL Triple arithemetic shift left.............. e e e e, 2728
TASR Triple arithmetic shift right........ e e e e e e e s e e 2-29
TBA Test variable against limit, branch N 2-85
TBC Test bit and set Condition Code s e e s e s s s e e e . 2-31
TBX Test X against limit, branch e e e e e e e e ... 2-86
TCBC Test and complement bit, set condition code e e e e s . 2-32
TE Terminate EDIT« e e e e e et e e . e e .. 4-17
TEST Test TOS ¢ v ¢ ¢ ¢ o o o o o o o s s o o s o G e et e s e e e v e e s aae . . 2-22
TEST INSTRUCTIONS . . ¢ ¢ v v ¢ ¢« o o o o e e e e v e s e e e e e e e e e e e e e s s s s 2-22
TIO Test I/0. .. . ¢ v o v v v oot e s e e s s s e e i e s e e s e e e e 2-78
TNSL Triple normalizing shift left.......... c e e e saae e s s e sa e 2-29
TOFF Hardware timer off . . ¢« v v v v ot v i v v o o et oo m e o v s o oo o o oo 2-73
TON Hardware TiMer ON. « « o o o v o o o v o o s o o o o ot s o o o o o o o s oo s oo 2-Th
TR Translate. « « v v o v o o o v s s o o v oo s oo oo o oo s s oo e e e e e e ... b-22
Traps and Interrupts T 1-1
TRBC Test and reset bit . . . ¢ v vt v v i v v v v ettt oo e o v v oo v oo 2-32
TRIPLE WORD SHIFT INSTRUCTIONS e e e s e s s e e e s e e e 2-28
TSBC Test and set bit. . v v v v o v o v e e v s v s ot ot o v o s oo s s e o n s o oo 2-32
UNLK URCLOCK TE@SOUICE. « v « « « s s o o o s ¢ o o s s s s o s o o o v o o oo s s s oo 2-T0
WIO Write I/O (Series II, II) . v v v v i v v vt oo v s oo oo an oo v 2-77
WIOC Write I/O channel (Series 3X/LX).o 2-80
WIOA Write 1/0 adapter channel (Series 6U/68)c... 5-10
WTOC Write to time of century clock (Series 37) ¢ vt vt oo oo €-5
XAX Exchange A and X . . v v v v vt vt ot oo ot m bt 2-18
XBR External Branch . . ¢ v o v v v v o o o v v o o v s oo oo o s s s oo oot s oo 4-1-
XBX Exchange B and X . . . o v v vttt vt vttt it ana st anos e 2-19
XCH Exchange A and B . . . v vttt vt v ot ottt i o s oo me e 2-18
XCHD Exchange DB and TOS . . v v v v v v v vt a o v o s o nensnnnsonsssns 2-63
XEQ Execute stack word vt v vt vt v i ittt e e se e 2-71
XOR Logical exclusive-OR S A T 2-12
XORI Logical exclusive OR immediatet enn s 2-60
ZERO PUSH Z@IO .+ « v v v o o v o o t o s st o v o s o o s s o s s o v o oo v oo e e e e e e 2-20
ZERO INSTRUCTIONS . & v v o v ot v o s s o o o s o s s s s s s o oo o s oo os v oo 2-19
ZROB Zero B + v ¢ v o ot o s o s o s o o v s o s s s a o e s s e e e s s e e e e e 2-20
ZROX Z@TO0 X + v v v o o o s o ot s o s o o s o a s o s s s s o s s s o s s s s e o oo 2-1

Index-8 OCT 1984

READER COMMENT SHEET

Machine Instruction Set Reference Manual

30000-90022 April 1984

We welcome your evaluation of this manual. It 1s one of several that serve as a reference source for
HP 3000 Computer Systems. Your comments and suggestions help us to improve our publications and
will be reviewed by appropriate technical personnel. HP may make any use of the submitted sugges-

tions and comments without obligation.

Is this manual technically accurate? Yes [I No]
Are the concepts and wording easy to Yes [] No [}
understand?

Is the format of this manual convenient Yes [INo]

in size, arrangement and readability ?

Comments:

(if no, expiain under Comments, below.)

(if no, explain under Comments, below.)

(If no, explain or suggest improvements
under Comments, below.)

We appreciate your comments and suggestions. This form requires no postage stamp if mailed in the
U.S. For locations outside the U.S., your local HP representative will ensure that your comments are

forwarded.

Date:

FROM:

Name

Company

Address

..

BUSINESS REPLY MAIL i

FIRST CLASS PERMIT NO. 1070 CUPERTINO, CALTFORNIA EEET TG

-

POSTAGE WILL BE PAID BY ADDRESSEE BTl

Documentation Manager/47U | e thedant s |
Hewlett-Packard Campany R
Camputer Systems Division T
19447 Pruneridge Avenue RSN
Cupertino, Califarnia 95014

--

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	6-04
	6-05
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	replyA
	replyB

