EDINBURGH

2nd-7th OCTOBER 1983

HP 3000 INTERNATIONAL
USERS GROUP

1983 HP 3000 INTERNATIONAL CONFERENCE
EDINBURGH OCTOBER 2-7

THE ASSEMBLY ROOMS AND

MUSIC HALL COMPLEX, GEORGE STREET
EDINBURGH, SCOTLAND

2 PROCEEDINGS

Architectural Changes for MPE V

David N. Holinstat
Development Engineer
Hewlett-Packard GmbH
Boblingen, Baden-Wirttemberg
Federal Republic of Germany

ABSTRACT

MPE V supports 255 code segments per program, as well as allowing most MPE
Tables to reside anywhere in the first iMb of memory. These expansions
necessitated several modifications to the HP3000 architecture. Relocation of
MPE*'s Tables required changes to the LST and SST instructions. Removal of the
code segment limitations and expansion of the Code Segment Table involved
adding a new table, the Logical Segment Transfer Table (LSTT), to the HP3000
architecture. 1In addition, alterations were made to the PCAL, SCAL, EXIT,
IXIT, PARC, ENDP, and XBR instructions, the Segment Transfer Table (STT), and
one bit in the Stack Marker.

The presentation will quickly review the original HP3000 architecture, then
explain the alterations for MPE V.

70-1

ARCHITECTURAL CHANGES FOR MPE ¥
David N. Holinstat

Since 1ts first 1introduction, the HP3000 arohitecture has changed several
times. For example, the Series I and its predecessors allowed a total of 255
code segments for the entire machine, including MPE and all users. When the
Series II was introduced, the architecture was modified to provide 192 code
segments for MPE, plus up to 63 code segments for every program. Series II
also provided 6U-bit Extended Precision Floating Point, an improvement over
the 48-bit precision found on Series I. Introduction of the Series 33 brought
an entirely new 1/0 system to support the HP-IB peripherals.

The most recent change, part of the recently announced Series 42, 48, and 68
systems, will remove many of the current "maximums" caused by the HP3000
architecture itself. These architectural changes, along with the new MPE V
operating system, will allow each program to have 255 code segments (private
or shared), as well as allowing many critical MPE tables to double or
quadruple in size. This will allow wany more jobs, sessions, terminals,
programs, etc., to be supported as were on MPE IV.

General Table Expansion

"MPE has a table for everything.®™ The MPE Tables manual currently has 20
chapters and is several hundred pages in length. All the data required to
control user processes, check security, handle memory and 1/0 resources, etc.,
is kept by MPE in its tables. So, as the number of terminals, sessions and
Jjobs supported has grown, HP has needed to expand MPE's tables. However, for
reasons which will become apparent, many of MPE's tables must be kept in Bank
0 of memory. And recently, as the number of terminals and sessions allowed
quickly grew, it became apparent that Bank 0 is not an unlimited resourcel

Historically, MPE has kept its data in an area known as the System Global Area
(SYSGLOB), beginning at location %1000 in Bank 0 of memory. When MPE wanted
to access this data, it would set DB to 0.%31000. (We write "0.%1000" for Bank
0, loc. %1000.) It could then access tables (which are Just arrays that
happen to contain MPE's data) using the normal LOAD and S3TOR instructions
(Fig. l1a). These inatructions can direotly address DB+0 through DB+255, so
MPE keeps pointers to the most important tables and a few very commonly used
variables in this area (from %1000 to $1377). When DB is set to SYSGLOB, many
tables can be accessed with normal LOAD and STOR Indirect instructions. For
example, suppose location $1005 points to the I/0 Request Queue (IOQ). We can
access the 20th word in the I0Q with the following code sequence:

Instruction Function
(a) LDXI 20 X 1= 203
LOAD DB+5,I,X TOS := ((DB+5) + DB + X)
= ($4000 + %1000 + %24)
= ($5024);

[Please see Fig. 2 for the sample SYSGLOB layout to be used in these examples.
Note that "(¥nnnn)" means the contents of loc. ¥nnnn. Also, since all

Store~type 1instructions function exactly like the Load-type instructions as
far as address calculation goes, all examples use the Load-type instructions.]

70-2

It became apparent that it was very uneconomical to always switeh the DB
register of SYSGLOB when accessing system tables, because the actual act of
switching can take significant CPU time. Thus, the Load System Table (LST)
and Store System Table (SST) instructions were designed. These instructions
reference tables in SYSGLOB without actually switching the DB register (Fig.
1b). So, code sequence {a) can be replaced by sequence (b), without regard to
the current content of the DB register:

{b) LDXI 20 X 1= 20}
LST 5 TOS 1= ((SYSDB+5) + SYSDB + X)
= ($4000 + $£1000 + $24)
= ($5024);

The addressing range of LST is 0-15, because only 4 bits could be spared in
the opcode. (Such are the problems with adding instructions after the
original designl) So, in order to make the instruction more useful, LST 0 was
given a special meaning. When an LST 0 is executed, the offset to the array
pointer is taken from TOS, thus giving an even greater range than the other
Load instruotions. For example, reading the 30th word of the Example Table
(pointer at DB+134) could be done as follows:

(c) LDXI 30 X 1= 30;
LDI 134 TOS := 1343
LST o0 TOS 1= ((SYSDB+(TOS)) + SYSDB + X)

(($206) + $1000 + $36)
(£101400 + %1000 + %36)
(2102436)

Examples (b) and (c¢) certainly require as many or more instructions as does
(a). However, they don't require DB to be set, an operation taking dozens
(possibly hundreds) of instructions.

There is one fault, however, with both of the above approaches to system table
aocess. Whether we use the normal LOAD instruction with DB-relative
addressing (implying DB set to 0.%$1000), or the LST instruction, which
addresses relative to SYSGLOB (0.%1000) implicitly, we have one critical
limitation: we are always addressing somewhere in Bank 0., This means that
any tables addressed using one of the preceding methods must be in Bank O.
When you recall that a bank of memory on the HP3000 oontains exactly 65,536
words, you realize that as MPE grows larger, we will have a problem finding
space for all of the tables. And the need for space becomes partiocularly
acute when adding terminals and sessions, since each terminal requires one
entry in each of several I/0O-related tables, and each session requires entries
in many job-related tables.

One possible solution would be to use absolute addressing for all tables.
There are problems with this, however: First of all, our degrees in Computer
Science would all be retroactively revokedl More seriously, an absolute
address takes 2 words, one for Bank and one for Offset. This means that the
255 locations in SYSGLOB that are directly addressable could hold only 127
pointers maximum, instead of the 255 possible today. Also, some tables
contain cross-references to several other tables. Today these cross-reference
pointers are usually SYSGLOB-relative. Thus, a table entry containing
pointers to 5 other tables would have to be 5 words longer to hold abaolute

70-3

address pointers to the 5 other tables. If the table has 100 entries, we have
Just used 500 more words! So, absolute addressing was ruled out to the extent
possible.

Instead, it was decided to change the format of system table pointers, and
change the LST and SST instructions as well. Instead of a 16-bit
SY5Q0LOB-relative pointer, LST and SST will now expect a pointer with the
following format:

| Base.(0:11) | Bank |

| i |
0 10 1 15

Bits (11:5) specify the bank in which the table will be found. The base
address 1s calculated by setting the bank bits (11:5) to zero and adding
$1000, Note that the base address is calculated as it ourrently is, except
that the low order 5 bits are 3set to =zero. The new format has several
ramifications:

1) The use of 5 bank bits allows MPE tables to be loaded anywhere in
the first 32 banks (4 Mb) of memory.

2) MPE tables are required to begin on 32-word boundaries, since the
last 5 bits of a table address will always be zero.

3) Compatibility with Serles II, III, 30, 33, 40, and 44 is maintained.
Separate versions of MPE will not be required.

Point 3 needs some clarification. Beginning with MPE V, INITIAL will always
ocreate those tables referenced via LST/SST on 32-word boundaries. However, it
will also determine whether it 1is running on a wmachine with MPE V 1level
firmware or not. If not, INITIAL will simply locate all such tables in Bank
0. The old LST instruction then sees a 16-bit pointer whose low order bits
happen to be 0; this points (correctly) to the beginning of the table. If one
were now to install the MPE V firmware and do a COQLSTART, the new firmware
will see the same table addresses, this time pointing specifically to Bank 0.
So, MPE ¥V will run on both old and new firmware without problem. Of course,
if MPE V i3 configured with larger table sizes than can possibly fit in Bank
0, and 1s so 1installed on a machine with the old firmware, you will get the
old, friendly "OQUT OF MEMORY"™ message from INITIALI!

Code Segment Table Expansion

Recently some HP3000 users have attempted to run several large applioations
systems on the HP3000 simultaneously -- and have been rewarded with the
message "OUT OF CST ENTRIES--UNABLE TO LOAD PROGRAM TO BE RUN". Upon
examination of the configuration, they find that the Code Segment Table is
configured to its maximum 192 entries. These users have often asked, "Why
doean't HP just change the maximum size of this silly table?”™ Unfortunately,
expanding the CST is not just a matter of changing the size of an array in 2
or 3 MPE modules and recompiling} It has taken a major revision of MPE and of
the 3000 architecture to allow each program 255 code segments. The following
gsection will explain the Code Segment Table (CST) structure, both new and old,
as wWell as the difficulties involved in changing 1it.

70-4

Let's quickly review the concept of a code segment. All memory on the HP3000
is divided into code segments, data segments, and free areas. All program
code 1is kept in code segments, and all data in data segments. But these
segments can be located anywhere in memory. So, to begin running a program in
code segment 2, we first have to find oode segment 2. To do that, we look in
the Code Segment Table (CST), where there is a four-word entry for code
segment 2 (Fig. 3). Among other things, this entry tells whether the segment
is in memory ("Present") or on diso ("Absent"). If present, the CST entry
tells where the code segment is located and how long it is. To begin
executing code within this segment (after a PCAL or EXIT), the 3000 sets PBank
t= Bank, PB := Base, P ;= Base + desired offset into segment, and PL := Base +
{Length/4)®4, The format of the Code Segment Table entry hasn't changed much
since the original 3000. What has changed 1s the way in which we find the
appropriate entry. In other words, the layout of the CST has changed, but the
content remains the same. Changing the layout once more with the release of
the new Series 42-48-68 machines has enabled us to remove the 192 entry
limitation, as described below.

The first point to discuss is a very important limitation: A code segment 1s
identified by its number, which 13 between 1 and 255. This limitation comes
from the fact that only 8 bits are allowed for the segment number (Seg#) in
the Status register. Changing this limitation directly would cause incredible
problems| For example, suppose we wanted to quadruple the addressing range to
1024, which would require 10 bits for Seg# instead of 8, First, to hold the
extra bits, we would have to make the Status register an 18-bit register.
(Those of you with microprocessor experience know how easy it is to find a
register chip with 18 bitsl) Furthermore, the extra 2 bits would have to go
in the stack marker. We can get one bit reasonably easily, but not twoj
therefore, we would have to go to a 5-word stack marker. Changing to a 5-word
stack marker would mean that all of MPE and all user programs in the world (1)
would have to be recompiled. Except, of course, SPL programs, which would
have to be rewritten! Given that HP likes to brag about compatibility, this
"brute force™ method of adding more code segments can be quickly rejected.

The Code Segment Table architecture has been modified once before. The Series
I and its predecessors had the simplest CST structure. At any given time
there were 255 code segments available on the machine, numbered 1 to 255 (Fig.
y). The total number of code segments assigned to MPE and all running
programs oould never exceed 255. Of course, since the 3000 was introduced
with a maximum memory size of 64K words, this was quite reasonable. As the
system grew and more users were added, resources became more preoious. One
result was the first CST expansion, whioh was introduced with the Series 1I,

With the advent of the Series II, the Code Segment Table was divided into 2
domains: the system Code Segment Table (CST) with entries for segments 1-191,
followed by the Code Segment Table Extension (CSTX) (Fig. 5). In the CSTX are
blooks of entries, one block per program. Each block contains entries for
segments 193-255 (%$301-%£377). MPE segments are assigned entries in the system
CST, as are user segments that come from a Segmented Library (SL). Program
segments have their entries in the CSTX. So, if a program has 6 oode
segments, there will be a block of entries in the CSTX for segments $301~%306.
A program having 63 segments will have a CSTX entry block containing entries
for segments £301-%377. A pointer in absolute memory looc. 1 points to the
block of CSTX entries in use at any given time; this pointer is updated by the
MPE Dispatcher whenever it launches a process. This architecture is the basis
for the current CST limitations: 191 system and SL code segments, and 63 code

70-5

segments per program. One can easily imagine 20 programs running, each with
63 code segments; this is a vast improvement from the 255 code segment maximum
on Series I.

However, there is still a problem with the above method. As noted, there is a
block of CSTX entries for each program. But only code segments that are part
of a program can have entries in the CSTX, because these segments are only
accessible when that program is running. Sharable segments--i.e., segments
coming from an SL--are not associated with any particular program. Therefore,
to allow them to be accessed from any program, they must be given entries in
the system CST. Since MPE can use up to 100 of the 191 available entries,
there 1is olearly a rather strict limitation on the number of SL segments a
program can use. Unfortunately, large application systems, such as HP's own
MM4/3000 and HPFA, use many sharable segments in the interest of efficiency:
If a code segment is included in 5 different programs (for example, using an
RL), then when all 5 programs are running, 5 copies of the segment must reside
in memory; but if the segment is put into an SL, it is made sharable, and one
copy can be used for all 5 programs. This takes, however, another CST entry.
So, for MPE V, a scheme was developed to allow more entries in the CST by
introducing the concept of "“code segment mapping®.

Under the new system, a code segment can be "logically mapped” or "physically
mapped"®, Physically mapped code segments will be located as they are
today--with entries from 0 through 255 beginning at the CST Base address
stored in absolute 1loc. 0. There can only be 255 physically mapped code
segments, and these will all be reserved for MPE. All user segments will be
logically mapped, including subsystems such as EDITOR and COBOL. Program
segments will have entries in the CSTX, similar to the current (Series II ->
64) systems. Sharable user segments (i.e., SL segments) will have entries in
the CST with physical segment numbers of 256 and greater. A CPU-internal flag
will control the current mapping state of the CPU: physioal or logical. This
will not be held in the Status register, because (as mentioned previously)
there is no space available there.

When the CPU transfers control to a logically mapped code segment, it looks
first at a new table, the Logical Segment Transform Table (LSTT) (Fig. 6).
Each program has its own LSTT, which i3 pointed to by absolute loo.
£1221-%1222 whenver that program is running. (The Dispatcher updates these
locations, as well as loo. %1223, the number of CSTX segments in the progran,
whenever a process 1is launched.) To transfer to logical segment 2, the CPU
looks at Entry 2 in the current LSTT, which contains the physical segment
number of the target segment (Fig. 7). The CPU then uses this physical CST
number to index into the system CST, where the appropriate entry points to the
code segment in the usual manner. This physical segment number can be as high
as 2047, which is the new maximum number of CST entries.

When the CPU transfers control to a new code segment, it must determine
whether the segment 1is physically or logically mapped. To do this, changes
were made to gome familiar architectural structures: the STT (Segment
Transfer Table) and the Stack Marker.

To explain the differences between the old and new approaches, we should firat

look at a few examples of the old (current) method. PCAL will be used as an
example; refer to Fig. 8 for illustration.

70-6

Suppose a PCAL 1 is executed. First, a Stack Marker is written on the stack.
Then, the CPU checks to see if 1 (the PCAL operand) is less than or equal to
the number of Plabels in the STT (STT Length), found at PL-0. If so, the
Plabel at PL-1 is read. Bit 0=0 signifies that this is a local Plabel, in the
format shown. If Bit 1 (U)=1 the segment is uncallable, and user mode callers
will abort with an STT Uncallable Violation. Finally, Bits 2-14 are a
PB-relative offset into the current segment. After bounds checking assures
that (PB <= PB + new Delta-P <= PL), PB and P are set to the new values, which
tranafers control to the new procedure.

Now, suppose a PCAL 5 is executed (Fig. 9). A stack marker is written, and if
5 <= # of Plabels, PL-5 is read. Bit 0=1 signifies that this is an external
Plabel. That means the procedure we want 1s in another code segment, and the
first order of business is to find that other segment. The segment number is
in the Plabel, bits 8-15. (Note that Seg# is only 8 bits long here as welll)
If Seg# is less than 192, the CPU looks in the CST; otherwise it looks in the
CSTX. The #-word CST entry piotured in Fig. 3 begins at the following
address:

For CST: Seg# ® 4 + CST Base
For CSTX: (Seg# - 192) ®* 4§ + CSTX Base

The CST Entry tells the CPU if the segment is present or absent. If absent,
the PCAL stops here, and MPE is awakened via an Absence Trap. If the target
segment 1is present, the CST Entry gives the absolute starting address (Bank
and Base) as well as the segment length. Assuming the segment is 1in memory,
the new PL value is calculated, and the Plabel at (new PL - STT#) is read,
where STT# is bits 1-7 of the Plabel already read from the current segment.
The new Plabel read from the target segment must be in internal format;
otherwise the process will abort with an STT Violation. At this point, bounds
ohecking is performed and control transferred as described above.

With MPE V and the new firmware, the STT will look a bit different (Fig. 10).
Bit 0 of a Plabel will no longer be used to signify internal/external, but
instead to indicate whether the target code segment 1s physically or logically
mapped. The internal/external determination will be made via word 0 of the
STT, which will hold "number of local Plabels" as well as "number of Plabels®.
The local Plabels are always written at the beginning of the STT, so for a
PCAL n the determination is made as follows:

0 -> Use Plabel from TOSj; defined to be in external format.
0 < n <= #local Plabels =~ - -> Local format

#local Plabels < n <= #Plabels -> External format

#Plabels < n - = - =~ = <> STT Violation

When an internal PCAL 1is performed (calling a procedure in the current
segment), PCAL will operate exactly as today, as described previously. But if
an external PCAL is done, the CPU will behave quite differently (Fig. 11a).
First, the stack marker will be written and the Plabel at PL-n read as before.
If bit 0 of the Plabel is 1, signifying a physically mapped segment, the
segment number is used to directly access the CST as before, although the
allowable range of segment numbers will now be 1-255 instead of 1-191., The
CPU's mapping flag is set, and control is transferred. However, if bit 0 of

70-7

the Plabel is 0, then the CPU must first check memory loc. %1223, which tells
how many segments the program file has. If segment number <= # program
segments, then the code segment entry will be found in the CSTX entry block
for this program (Fig. 11b). (As previously described, memory loc. 1 points
to the current CSTX block.) If Segé > # program segments, then this is a
shared (SL) segment (Fig. 11c); furthermore, the Segf# that we have 15 a
logical number. We must look in the LSTT at loe. (2 % logical Seg#) to find
the physical Seg#é. This physical Seg# is then used to access the CST, which
now has 2047 as largest possible segment number. Note that the Status
register reflects the logical segment number, but the mapping flag says
"logical mapping"”. This enables the CPU to know where to look for a given
code segment.

Suppose the CPU has been executing in logical segment 5, and then does a PCAL
to logical segment 6, where both segments are SL segments with entries in the
CST. The Mapping flag shows logical mapping, but this is an internal flag,
not accessible to the program. To leave seg. 6, the procedure does an EXIT
instruction. EXIT finds the return segment number in the old Status regilster,
stored at Q-1 in the stack marker. However, the old Status register merely
says "S" for Seg #; this could be an EXIT to either physical seg. 5 or logical
seg. 5. How does the CPU know which? With MPE V and the new firmware, a bit
in the stack marker has been reassigned to save the mapping flag (Fig. 12).
Bit 0 of the Delta-P (Q-2) has always meant that a Control-Y interrupt was
pending; this is set by MPE when a Control-Y interrupt is received. Bit 1
signified that a Trace interrupt was pending, again set by MPE., With the new
system, Bit 0 will indicate that either a Control-Y interrupt or a Trace
interrupt is pending. Because of the way this was defined in the past, it
will be easy for MPE to differentiate between the two. Bit 1 of Delta-P will
be the old mapping flag. Thus, the stack marker contains both the segment
number and the mapping flag. When the EXIT i3 executed, the CPU can find the
appropriate code segment by getting its entry from the CST or CSTX, using the
LSTT if returning to a logical segment. The method used is the same as for
PCAL, except that the STT is not referenced. There 13 no need to find a
Plabel, because we already know the target segment number and PB-relative
return address.

Some of you who see memory dumps from time to time will notice that the
Delta-P values of MPE segments (in an MPE V dump) seem unreasonably large.
Actually, you are seeing the old mapping flag laid down in the stack marker.
MPE segments are usually physically mapped, and Delta-P Bit 1=1 for physilcally
mapped segments--so 1t looks as if all MPE segments have a Delta-P of %£40000
or larger.

You may have noted in Fig. 6 that the LSTT 1s divided into 2 parts. 1In the
first part 1s a two-word entry for each logical segment used in this program,
containing the physical segment number and a pointer to an "External Label
List", The second part contains an External Label List for those shared (SL)
segments which are referenced by this program. The reason is, the STT of a
sharable segment cannot contain a logical segment number in an external Plabel
since more than one program may be sharing that segment.

70-8

For example, imagine the following procedure in a sharable segment:

procedure Aj
begin

B}
end}

Imagine that B is also in a sharable (SL) segment. Now, I run PROGX, which
has 2 segments and calls A. The loader will set up the STT in PROGX such that
segments | and 2 are the PROGX segments, Seg. 3 contains A, and Seg. I
contains B. Now, since A calls B, the STT of A must reflect the fact that B
is in Seg. 4. (See Fig. 13) So far, so good--~-but now you run PROGY, which
also calls A, and has only one segment. The loader must assign the number "i"
to the PROGY segment, and "2" and "3" to the segments containing A and B. But
now, the STIT for A must reflect that B 1is in logical Seg. 3---whioch 1is
scmewhat difficult, since it must also show that B 1s in logical Seg. U1

The problem is solved by using "0" as the logical segment number of every
sharable segment called by another sharable segment. In other words, the STT
of a sharable segment contains 0 as the Seg# for those Plabels referencing
other sharable segments. When the CPU encounters "logical seg. 0" during a
PCAL, it looks at the LSTT to find the External Label List for the ocurrent
segment.

Using the above example, when A does a PCAL n to get to B, the CPU finds a 0
for Segf at PL-n. It then looks in the Status register to get the ourrent
logical Seg#, and reads LSTT(2%Seg#+1). It can then index into the External
Label List, which contains all the External Labels for this particular
execution of the ocurrent segmentj there it will find the correct Plabel. [The
Plabel 1s actually found at (beginning of External Label List) - n + # local
Plabels. This is because only the external Plabels are there, so we add in
the n;mber of local Plabels to effectively "skip over™ the nonexistent lccal
ones.

In the preceding examples, only PCAL and EXIT have been discussed. Several
other instructions were also changed to support the new CST/STT acocessing
scheme. These changes are briefly desoribed below:

LLBL - Fetches a Plabel in the same manner as PCAL, accessing
the LSTT if necessary.

IXIT - Performs a transfer of control just like EXIT (in faot,
it executes the same microcode).

SCAL - Works the same as it always has, but has to know about
the new STT format to know if the target Plabel is internal
or external.

Interrupts - Interrupts do implicit PCAL'*s to MPE interrupt
routines. These implicit PCAL's work just like ordinary
PCAL's.

COBOL T4 instructions -~ The instructions XBR, PARC, and ENDP are

special intructions generated by the COBOL 74 compiler to
create more efficient COBOL object code. They provide a

70-9

method of transferring directly from one code segment
relative address to another, using a segmeng # and offset
instead of an STT with a Plabel. Hence, these instructions
resemble EXIT in their method of control transfer. When the
transfer 18 external (to another code segment), the same
considerations are in effect--the LSTT must be consulted if
the target segment is logically mapped.

We've discussed the architectural changes necessary to support the advances in
the MPE V operating system. However, it should be noted that the bulk of the
engineering work went into improvements to MPE itself, not into the firmware
changes described here. It 1is beyond our scope to discuss all of the
improvements tc MPE, but the 1list 1is substantial, and hundreds of
"engineer-montha™ were required to complete the project. Other presentations
will discuss methods used to coordinate all the work done on MPE, as well as
some of the implications of the new software.

I couldn't olose without thanking Dan Mathias of CSY Scftware R&D for his
help, both in helping me to understand the whole mess (!), and in permitting
me to use some of his working documents in this paper.

70-10

I 33118

1SS/1ST peTiTpouw

1¢ ybnoays ¢ siyueg

ITq-99
9I-dH

(18 "T12uT)
uexHoxd zad 557+
IdH 55T

1SS/1s1

0 Yueg

319-%9

9I-dR

wexboxd zad go+
(3dW "T2uT) 1S Z6T

15S/151

0 Yueg

319-%9

(018)
TeTaualajzFTa/TTTRIRd

wexboxd zad go+
(3dR “TduT) 1S Z6T

¥OLS/QvoT

0 urg

ITq-gY

(018)
TeTaualazITa/TeTTRIR]

1314

IRTA passasde
:uT 2pTSaI 3ISNuW
S3TqRl JUSPTISIH AIOWeR

3dnW

uot3yejuasaxdax
jutod butaeord
UOTSTI3Ig pPapuaIxI

0/I

(uarTxeur)
sjuaubag apod

89 ‘st ‘zy saraas

$9'by'0b’'cc’0c Sataag

III ’'II satxas

I satxas

SINZWJOTIAIA TVHLOIZLIHOYY 000€dH QaLOTIIS

70-11

STOR

LOAD

SST

Store TOS into memory. The content of the TOS is stored
into the effective address memory location. and is then
deleted from the stack.
Memory opcode 05, it 6 = 1
Indicators: unaflected
Addressing modes DB+. Q+. Q- S- relalive

Direct o indirect

indexing available

Traps STUN, BNDV

Load word onto stack. The content of the effective ad-
dress Jocation is pushed onto the stack.

Memory opcode 04
Indicators CCA
Addressing modes P+, P~ DB+, Q+. Q- S~ relalive
Duect of ndwect

indexing available

Traps STOV. BNDV

Load from systen table. The X register contains a value
which is used to index into a table pointed o by the
contents of location % 1000 +K if K is non-zero, or by the
contents of location %1000+A if K is zero The table
pointer itself is also relative to location %1000. The data
accessed in the table is pushed onto the stack if K is
non-zero or replaces A if K is zero.

Special opcode 00

Indicators CCA

Traps STUN, STOV. MODE

This 1s a puvileged instruclion

Store into system table. The X register contains a value
which is used to index into a table painted ta by the
contents of location 7 1000 +K if K is non-zero. or by the
contents of location % 1000+A if K is 2ero The table
pointer itsell is also relative to Jocation < 1000. The duta
contained in A if K is non-zero or in B if K is zero is stored
into the calculated address. The stack is then popped by
one if K is nou-zero or by two if K is zero.

Special ppcode 15

Indicaiors. unaliecied

Traps STUN, MODE

Trus 15 a puvileged nsliuchion

Mode and Displacenient

c

sTalsals sl e ool o]t
[o]s o ofx]a] |

-
Mode and Disniacement

Machine Instruction Set

o Tzl «]sTs]7 e o fre[ve a1 s
foJo 1 1Jo 0 o]0 o oo o
K

a[srefur]rz]ra[re]is
vi)o 1|

For the new LST and SST, the phrase "The table pointer jitself is also relative

to location %1000" is replaced by "The table pointer contains the bank of the

table in bits 11:5.

The base address is computed by taking the 16-hit table

pointer, setting bits 11:5 (the bank address) to 0, adding %1000, then adding

X,

Figure 1

70-12

Referencing the System Global Area (SYSGLOB)

Example Layout

Memory
Loc.
\1000|
1001
1005. 84000 (SYSDB-relative pointer to base of 10Q)
1006
1205|
1206 $101400 (SysDB-relative pointer to base of Example Table)
1207

5023
5024| %123456 (20th word of 10Q)
50251

102435

102436 3654321 (30th word of Example Table)
1024371

end of SYSGLOBI

Examples (a) and (b): Read DB+5 (=%1005) = %4000

Now, compute the effective address
E = 84000 + DB + X = %4000 + %1000 + %24 = \5024
Now, read the word at %5024 (%123456) and push it onto TOS.
(For case (b), substitute SYSDB for DB. SYSDB is always %1000.)
Example (c): Push 134 (=3206) onto 105 and execute an LsT 0.
Read SYSDB + TOS (%1000 + %206) = %101400.
Now compute the effective address:

E = 8101400 + SYSDB + X = %101400 + %1000 + %36 = %102436.

Now read (E) = %654321 and push it onto TOS.

Figure 2

70-13

Locating a

Code Segment via the CST Entry

CST Entry

AMRT [Length/4

Registers

PBank
PB

+~——»PL

Figure 3

70-14

Code Segment

PBank

PB4

P—

PL~—>

-t

Code Segment Table Structure

Series I and Previous Systems

Memory
Loc.
0 | 812000 (example) CST Base
1
2
L]
]
L]
]
r 212000 {V77 (example) CST Length (# of entries)
(Entry 0)
212004
< (Entry for Seg. 1)
'
:
212374
{(Entry for Seg. %77}
\, 212377

To find entry for Seqg. 2, look at CST Base (%12000)} + 2 * entry size

= %12000 + 810 = %12010.

Figure 4

70-15

Memory Loc.

Code Segment Table Structure

Series II through Series 64 (Pre-MPE V)

$12000 (example) CST Base
$13500 {example) Current CSTX Base

$12000
12004
12008

13370
13374
13400
13404
13410
13414
13420
13424
13430
13434

13500
13504
13510
13514
13520
13524
13530

Entry 0 (4 words per entry)
Entry 1
Entry 2

Entry %276
Entry %277

CST Extension Header: 1length of entire CSTX

CSTX Block Header: # Segs in block (example:
Entry %301
2302
3303

3)

CSTX Block Header: # Segs in block = 1
Entry %301
CSTX Block Header
i

CSTX Block Header: W Segs in block = 5
Entry %301
%302

. csT

| CSTX

Current CSTX

303
%304
%305

CSTX Block Header

Block

Figure 5

70-16

Logical Segment Transform Table(LSTT)

iy +
| # of Logical Segments |
D R ittt bt bt ikttt +
| Length of LSTT |
L R ittt ettt ettt + =
| Physical Segment # |
e + logical segment 1
| Ptr to External Label List |
L ettt R P T + —--
| Physical Segment # |
e e L L e Lt + logical segment 2
| Ptr to External Label List |
R et bttt * ———
i |
] I
I |
I I
$mmm e —————————— + -—
| Physical Segment # |
e et e + logical segment n
| Ptr to External Label List | (max 255)
gy g + —--
IM| STT # | SEG # i
Bt T + External Labels
|M| STT # | SEG # | from Logical
o + Segment 1
| . | (if needed)
| . [
R Rkt et +
|M| STT # | SEG # |
e e ——— + -
| |
| |
|]
I I
e, ——c———————— 4 ———
IM} STT # | SEG # |
Sttt ettt + External Labels
IM| STT # | SEG # | from Logical
D i it + Segment n
[. | (if needed)
i |
e ——— +
[M| STT # | SEG # |
o e ———— e 4+ -
Figure 6

70-17

Memory

Loc.,
0 |CST Base
1

Code Seqment Table Structure

Series 42,

48, 68 (MPE V)

CSTX Pointer

%1220

1221
1222

LSTT Bank
LSTT Base

1223

Prog Segs

Logical
seg #

LSTT

Entry
0

Entry

Entry

Physical Seg #

Physical Seg #

External
Label

Lists

(Bit 15=1 for

Pointer to Current CSTX Block

new firmware)

Pointer to Current LSTT

of Code Segments coming from program file
= # of segments to be found in CSTX Block)

CST

w N = O

254
255

)

256
257
258

260

3943

944

Figure 7

70-18

Physically
Mapped
Segments

CSTX

Entry O

Block Hdr.

Seq. 1
2
3
4

Block Hdr.

Seq. 1
2
3

Block Hdr.

Seq.

1
2
3
4
5
6

Code Segment and Present STT Structure

o e e —————— ———— +
PB | |
| Code |
| |
| |
gy L —
| |
| |
et b bt Dol et + External
1] STT # | SEG # | Labels
Formmm e — et ——,———— +
(1] STT # | SEG # {
e e, ——— + -
| |
} |
e bl + Local
|oIU}l Address | Labels
Sy U +
|0lU| Address |
gy g U S + -
PL |OjU| 0 |# of Labels |
Ly +

Bit 0 of the label designates whether the entry is an
internal or external label. "U” designates whether the local
label is callable or uncallable,

Figure 8

70-19

External PCAL Example

{Series II through 64)

Calling Code Segment Code Segment 20

PB —3 Of fset &)
100
p —¥| pCAL 5; 134 P2
¢
200 EXIT
Program Program
Code Code
[a2
I
L——) 134
0|0 address
PL— P} 6 Iﬂ

Figure 9

70-20

Code Segment and STT Structure
for Logical Mapping

+

PB | |
| Code |
| i
I |
P rrrr e e e ————-— + -
i |
| |
e e e e + External
|M] STT # | SEG # | Labels
bomr e ——————— +
IM| STT # | SEG # |
ot e — e ———————— 4 —-
| I
| |
o= + Local
| 1Vl Address | Labels
Fomm e ————— . — - —————— +
] JU} Address }
P e i, ., ———-—— + -

PL |#Local Labels|# of Labels |
e e e ——————— +

Whether a label is local or external is determined by
using the two counts at the head of the STT. "M" is used
to designate whether the segment number in the label is a
physical CST number or it is a logical CST number and must
undergo a logical mapping through the LSTT to obtain the
physical CST number (l=physical, 0=logical).

Figure 10

70-21

External PCAL Examples

{(Series 42, 4B, 68B)

iy e et e
:f:.)ry 1220 1 —0 o
1221 | (LsTT !
1222 Pointer) - 1 1 2
1223 2 } .
2 2 :
—)3 457 b 19
Current
Code Segment ——> 20
PB—Y 4 21
(a) PCAL 4; : :
(b) PCAL 2, : :
(c) PCAL 3; 456
: - 457 Ly
458
a} h 2| 20 : :
(c) o 1 3 CSTX | l
(b) Jo 1 1 Seg. Block Hdr.
Q 0] addr . ——L__) SE—
PL—) IJ 4

(a)

(b)

(c)

& W N

PCAL 4 transfers directly to STT #2 of Seg. 20, because this Plabel specifies
physical mapping.

This Plabel specifies logical mapping. Seg. M is 1, which is less than the
number of program segments; so, this is a program segment, and we have to look
at Entry 1 in the current CSTX Block.

Since the Plabel specifies logical mapping, and 3 is greater than the number
of program segments, we look at LSTT Entry 3 to find the physical code segment
number; this is seen to be 457. We then look in the CST for Entry 457, which
points to the code segment.

Figure 11

70-22

New Stack Marker

Q-3 X
Q-2 |T IM I ap
0-1 | MITROCEL l Seg #
Q-0 890

T = Trace or Control-Y interrupt pending
M = Physically mapped code segment

Figure 12

70-23

A Problem with Shareable Segments

EEII
(/]
1
PROGX 2
Seq. 1 Seg. 2 3 A Seg.
MYPROC; 4 ® B seq.
Z; Procedure
. MYPROC;
%' begin;
end;
1 TERMINATE
o] 2 L} (B) B;
ol 2] 3 |mw ol 2] a4 |
0] 2 2 {MYPROC) o O JV
o|ld adar. -—- A Seg. B Seg.
1 5 2] 3
— |[Procedure A; Procedure B;
begin begin
B; end;
end;
PROGY
Seq. 1
of 2| 4 |m
Ay 0 O
N
LSTT
1 TERMINATE " 0
o] 2 3 (B) 1
ol 2 2 (a) 2| A seq.
0 I addr. 3| B seq.
K 4
Figure 13

70-24

Using the External Label List

PROGX
LSTT
V]
1 |seg ¥ E%tr.
2
A Seg. B Seg.
3 |A Seq g) (p)
4 |B Seg (B)
4 Procedure A; —>|Procedure B;
H begin begin
External B; end;
Label end;
Lists
OI 2 I 4
o| 2 | 0 olol »
PROGY Seg # ELL Ptr.
L.
STT 0 when PROGX is run, and A calls B, A will reference
1 A's External Label List (ELL) for PROGX; thus, it
2| A seq. g) will call Seg. 4.
3| B Segqg.)7 wWhen PROGY is rup and A calls B, through the

same mechanism, A calls Seq. 3 instead of 4.
These are, however, just different names for
the same physical segment,

Figure 14

70-25

