HP 3000 Computer Systems HEWLETT E PACKARD

MPE Debug/Stack
reference manual

i,

HP 3000 Computer Systems

MPE Debug/Stack Dump

Reference Manual

|

HEWLETT ﬁ PACKARD

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA 95050

Printed in U.S.A. 9/76

Part No. 30000-90012
Product No. 32002A

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors

contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition. Within
the manual, any page changed since the last edition is indicated by printing the date the changes were made on the bottom
of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears as a

prior update.

Pages Effective Date
Title ... Jun 1976
/s Jun 1977
Hitodv..oooo Jun 1977
VIO X Jun 1976
1-1to 1-8. . Jun 1976
2-1402-2. .. Jun 1976
b/ Sep 1976
2-4t02-15 ... Jun 1976
2-16 Sep 1976
2-17T 80 2-31 oo Jun 1976
2.3 Sep 1976
2.3 Jun 1976
2-34t02-35 ... Sep 1976
2-36 ..., Jun 1976
3-1t03-3. .. Jun 1976
3-4t03-5 .. Sep 1976
3610326 ... Jun 1976
32T Sep 1976
3-28 10 3-31 ... Jun 1976
4-1t04-2. Jun 1977
L Sep 1976
4-4to04-11 . Jun 1976
5-1t05-2. .o Jun 1976
Al to A4 .. Jun 1976
FltoI-4 ..o Jun 1976

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

The software product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and
conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one
correspondence between product updates and manual updates.

First Edition. e e Jun 1976
Second Edition. Sep 1976
Update No.1............ Jun 1977

Update Incorporated Oct 1978

PREFACE

This manual describes two facilities that can be used to locate and correct errors in programs
run under control of the MPE operating system. The two facilities are DEBUG and Stack
Dump. The manual is part of a set of manuals that describe operation of the Multiprogram-
ming Executive Operating System (MPE) for the HP 3000 Series II computer system. The
manual plan on the next page illustrates the relation between this manual (shaded box) and
others in the set.

This manual is organized as follows:
Section I Contains an introduction to the DEBUG and Stack Dump facilities.

Section II Describes the syntax of the DEBUG commands and the MPE commands and
intrinsics used by Stack Dump. The DEBUG commands are listed in alpha-
betic order followed by the Stack Dump commands and intrinsics; each com-
mand and intrinsic is described formally in this section.

Section IIT Describes how to use the DEBUG facility, first for users with standard capabil-
ity followed by an expanded description for users with privileged mode
capability.

Section IV Describes how to use the Stack Dump facility, first in case of abnormal pro-
gram termination, and then unconditionally.

Section V Describes the DEBUG error messages and the action to be taken when each
message is received.

Appendix A Tllustrates the output from program DECOMP, a useful tool for DEBUG users.

MANUAL PLAN

INTRODUCTORY
LEVEL
General Using
CONCEPTS Information the ELEMENTARY
Manual HP 3000 USAGE
STANDARD USER
LEVEL
COMMAND
USAGE UTILITY UTILITY INDEX
Index
Commands Segmenter System
Reference Reference Utilities to MPE
Manual Manual Manual Referance
Documents
A 4 A 4
Intrinsics Error
Reference Messages and
Manual Recovery Manual
| I
PROGRAMMATIC UTILITY DIAGNOSTIC
USAGE AID
ADMINISTRATIVE v
LEVEL v v
ACCOUNT
SYSTEM Ocﬂ"s;"‘f " SV7;em | mANAGING
perator’s anager/Supervisor
MONITORING Guide Manual SYSTEM
| | MODIFICATION
SUMMARY v
LEVEL
Sare | synTax anp
Guide ERROR MESSAGES

CONVENTIONS USED IN THIS MANUAL

NOTATION DESCRIPTION

(1 An element inside brackets is optional. Several elements stacked inside a pair of brackets means
the user may select any one or none of these elements.

Example: I:i;\:l user may select A or B or neither

{ } When several elements are stacked within braces the user must select one of these elements.
A
Example: B ; user must select A or B or C.
C
italics Lowercase italics denote a parameter which must be replaced by a user-supplied variable.

Example: CALL name
name one to 15 alphanumeric characters.

underlining Dialogue: Where it is necessary to distinguish user input from computer output, the input is
underlined.

Example: NEW NAME? ALPHAI1

superscript C Control characters are indicated by a superscript C
Example: Y€

return return in italics indicates a carriage return

linefeed linefeed in italics indicates a linefeed

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted.

vii

CONTENTS

Section I Page
INTRODUCTION TO DEBUG
AND STACKDUMP

DEBUG . .ot 1-1
Stack Dump Facilityot 1-2
Section 11 Page
COMMAND AND INTRINSIC
SPECIFICATIONS
Commandsvvii e 2-1
DEBUG Commandsccoiriinieiinienennnn 2-2
MPE Commandsiiiiiiiinnaannn 2-2
IntrInSICS o vt e e 2-3
DEBUG Specifications 2-4
ACommandcooiiiiiini e 2-5
BCommandcooiiiiiiiii i 2-6
CCommandcoiiiiiiii i 2-9
DCommandovoviniiiiii i 2-11
DR Commandooviniiiinineineneenneen. 2-13
DV Commandooiiiiniiiiin i 2-15
ECommandoviiiiiniiiin i, 2-16
FCommandooiiiriiiiii i, 2-17
LCommandcoovriniiin i 2-18
MCommandcoviiiiiii e 2-19
MR Commandonimiiiiii i, 2-21
RCommandcoiiiiiiiiiii i 2-23
TCommand ...ttt 2-25
UCommand......ooviiiuiiniiiiieiiiaaaannnn 2-26
= Command.........ooiii e 2-27
$Command 2-28
DEBUG Intrinsiccoviiniiii i 2-29
Stack Dump Specifications 2-30
RESETDUMP Intrinsiccoiiiiiinnnnnnn... 2-31
:RESETDUMP Commandcccovinn.. 2-32
SETDUMP Intrinsicovrieneeineenaennen 2-33
SETDUMP Commandcovvininveneenn. 2-34
STACKDUMP INTRINSIC ... 2-35
Section IIT Page
HOW TO USE DEBUG
Preparing to Use DEBUG 3-1
Using DEBUG With Standard Capability 3-5
What is a Breakpoint?.......................... 3-6
How to Establish Breakpoints................... 3-6
Repeated Breakpoints 3-7
Displaying Breakpoints 3-7

Clearing Breakpoints 3-8
Resuming Execution 3-9
Switching Display to Line Printer 3-9
How to Display and Modify Values............. 3-11
Displaying Values 3-12
Modifying Values 3-16
Displaying and Modifying Registers 3-16
Displaying Codeooiiit. 3-18
Displaying Stack Markers................... 3-20
How to Use the DEBUG Intrinsic 3-21
Running With the DEBUG Intrinsic 3-21
Using DEBUG With Privileged Mode
Capabilitycooiii 3-26
Setting Breakpoints in Privileged Mode 3-28
Switching Display to Line Printer
in Privileged Mode 3-28
Displaying Code, Data, and Disc Segments
in Privileged Model 3-29
Modifying Data in Privileged Mode 3-29
Display or Modify Registers in Privileged
Mode ..o 3-30
Display Registerso 3-30
Modify Registerso ... 3-30
Freezing/Unfreezing Segments in Privileged
Modeoiiii 3-30
Section IV Page
HOW TO USE THE STACK DUMP FACILITY
Stack Trace and Analysis 4-1
Using SETDUMP and RESETDUMP 4-2
Interactive Use of SETDUMP 4-3
Using :SETDUMP Command Interactively 4-3
Using SETDUMP Intrinsic Interactively 4.5
Using SETDUMP in Batch Mode 4-6
Using :SETDUMP Command in a Job 4-6
Using SETDUMP Intrinsic ina Job 4-6
Terminating With RESETDUMP 4-7
Using STACKDUMP.t 4-8
How to Call STACKDUMP 4-8
Analyzing the Stack Dump 4-10
Section V Page
DEBUG ERROR MESSAGES 5-1
Appendix A Page
USING DECOMPo, A-l

ILLUSTRATIONS

Title Page Title Page

Stack Dump Modes and selec Array Format 2-36 PMAP Listing for FORTRAN Program With

FORTRAN Compilation Showing Symbel and DEBUG Intrinsic 3-24
Label Mapsoovuiuiiin . 3-2 DEBUG Example From Program With

Result of Preparation With PMAP 3-4 DEBUG Intrinsicccooveeeeni. ... 3-25

DEBUG Example 3-10 Sample Stack Trace and Analysis.................. 4-1

Layout of Items in Data Stack 3-15 Sample FORTRAN Program With Error 4-4

Display Code Locations Example 3-19 Sample FORTRAN Program

Sample FORTRAN Program With Call Using STACKDUMP 0.0, 4-9
to DEBUG.............cooooiiiiiiii . 3-22 Sample Stack Dump ... 4-11

DECOMP Listingc.coviviininnnnno .. A-2

TABLES

Title Page Title Page

DEBUG Command Summary . .. = 2-4 Privileged Mode Command Capabilities3-27

Stack Dump Facility Summary 2-30 DEBUG Error Messagesc.ccuvvvvvnnn.. 5-2

INTRODUCTION TO
DEBUG AND STACKDUMP |[i

DEBUG

DEBUG is an intrinsic procedure which provides both non-privileged and privileged users with an
interactive debugging facility to enable checkout of their operating environments.

Non-privileged users are bounded by software protection checks to their private code segment domains
and (stack) data space. For privileged users the only bounds checking performed is that for stack
overflow (where the S register contains an address greater than that in the Z register).

The normal checks and limitations that apply to the stan-
dard users in MPE are bypassed in privileged mode. It is
possible for a privileged mode program to destroy system
integrity, including the MPE operating system software it-
self. Hewlett-Packard cannot be responsible for system in-
tegrity when programs written by users operate in
privileged mode.

With DEBUG, it is possible to:

e Establish one or more breakpoints in a program. The program will execute until a breakpoint is
reached, then stop and pass control to the user.

¢ Display and/or modify the contents of memory locations relative to the data stack bases DB, DL, Q,
and S.

e Display the contents of memory locations relative to the code bases PB, P, or PL.
e Display and/or modify the contents of registers.
® Trace and display stack markers.

e Calculate the value of expressions in order to determine the correct values for variables at a given
point in a program.

® Redirect displays to a list device.
e In addition, privileged users can:
Display and/or modify absolute data segments

Display code segments and disc sectors
Freeze (and subsequently unfreeze) code or data segments in memory.

11

DEBUG can be invoked by a direct external call to the DEBUG intrinsic, or by specifying the DEBUG
parameter in the :PREPRUN or :RUN commands or the CREATE intrinsic.

NOTE

See the MPE Commands Reference Manual for a discussion of the
:PREPRUN and :RUN commands and the MPE Intrinsics Refer-
ence Manual for a discussion of the CREATE intrinsic.

Once the DEBUG facility is accessed, control is passed to the user at the interactive terminal so the
user can establish breakpoints in his program. The program executes until a breakpoint is reached,
then DEBUG is called again and control is again passed to the user.

It is important to note that when DEBUG is called, the scope of access is determined solely by the
capability (non-privileged or privileged) of the user and not the calling program.

Upon entry to DEBUG, validity checks ensure that the user is in an interactive session and has
read/write access to the program file. If not, control is returned immediately to the user. Hence, a
DEBUG intrinsic call in a program running in batch mode is essentially regarded as a null statement
and DEBUG is not executed.

Four temporary registers, known as registers 1, 2, 3, and 4, are provided by DEBUG for the conve-
nience of the user. Each register is set to zero upon entry to DEBUG. These registers can be displayed
or modified in the same way as normal system registers and thus may be used to store values that are

used repeatedly in debugging a program.

See Section III for a description of how to use DEBUG.

STACK DUMP FACILITY

The stack dump facility is composed of two complementary, independent features:
® A callable intrinsic (STACKDUMP) that enables any program to selectively dump any part of the
stack to the standard list device or other file. This feature is a debugging aid inasmuch as it is a

simple method to dynamically monitor any or all variables of a program.

® A mechanism (abort stack analysis) that can be enabled or disabled by commands or intrinsics.
This facility causes the following special actions when the program aborts:

For a batch job, parts or all of the stack are dumped on the standard list device.

For an interactive session, an automatic call to DEBUG is generated.

1-2

The abort stack analysis mechanism can be enabled, in a batch job or an interactive session, in
three ways:

1. With the :SETDUMP command. (The :RESETDUMP command disables the mechanism.)
2. With the SETDUMP intrinsic. (The RESETDUMP intrinsic disables the mechanism.)
3. By specifying the DEBUG parameter of the CREATE intrinsic.
The stack dump facility provides the following features:
e Makes it simple for a user to obtain information necessary to determine the cause of an abort.
® Allows the information to be formatted in a way that is clear to read.

® Provides a means of limiting the amount of output in those cases where the entire stack does not
need to be dumped.

See Section IV for a description of how to use the stack dump facility.

1-3

COMMAND AND
INTRINSIC SPECIFICATIONS i

Specifications for the DEBUG commands are presented in this section in alphabetical order. The
DEBUG commands are followed by specification of the DEBUG intrinsic that can be used to request
the DEBUG facility when it is not requested by the DEBUG parameter in the RUN or PREPRUN
commands.

The STACKDUMP facility uses a set of intrinsics to request a stack dump during normal program
execution or only when the program terminates abnormally. The abort stack dump can also be
requested or disabled with a pair of MPE commands that parallel the stackdump intrinsics. The

specification of these commands and intrinsics are presented in alphabetic order following the DEBUG
commands.

COMMANDS

The command specifications contain the following information:

® The command name.

® The type of command (DEBUG command or MPE command). This information is shown in italics
directly under the command name. If the command can be used only in privileged mode, this
information is shown also.

® A brief summary of the command’s function.

® Syntax. The command syntax is highlighted by being shown in a shaded box.

® Parameter definitions, including meaning, constraints, and defaults.

e Examples.

® Text discussion. (The page in this manual where usage of the command is discussed.)

® Privileged mode capabilities, if any, for the various commands are enclosed in a box, as for
example,

Privileged Mode

All ST bits can be changed

2-1

DEBUG COMMANDS

DEBUG commands consist of the following elements:
® A question mark prompt, displayed by DEBUG.

® The command name, consisting of a one- or two-letter identifier. The command name must follow
the prompt with no intervening blanks.

® Parameters, if any, follow the command name. Blank characters may be used anywhere after the
command name, but are not required. For some commands, however, the first parameter must be
preceded by a comma. See the SYNTAX and EXAMPLES parts of the command specifications for
details about specifying parameters.

® Parameters that are numeric values (segment, offset, etc.) can be specified as an expression that,
when evaluated, results in a single precision number.

An expression can include any of the operators: +, —, /, or *. The operands in an expression are
assumed to be octal numbers unless indicated otherwise as follows:

prefix to decimal value; e.g., #10 is decimal value 10
% prefix to octal value; e.g., 10 or %10 is octal value 10

te 9y

enclose ASCII characters for which an octal equivalent is indicated; e.g., “A” indicates
octal equivalent 101.

enclose memory location of which the contents are indicated; e.g., ‘DB+ 4’ is the contents
of location DB+ 4.

$ prefix indicating contents of a register; e.g., $P is the current value of P.

a:b) extract bit field where a is the starting bit and b is the number of bits; e.g., $P!(8:8) is bits
8 through 15 of the contents of register P.

® Parameters used as an offset to a memory location base can be followed by a colon (:) to indicate
indirect addressing.

MPE COMMANDS

MPE commands consist of the following elements:

® A colon, required in all cases as an MPE command identifier. In an interactive session, MPE
displays the colon on the terminal when it is ready to accept a command. In a batch job, you must
enter the colon in the first column of the command record.

® The command name, which must follow immediately after the colon. MPE prohibits embedded

blanks within the command name, or between the colon and the name. A blank signifies the end of
the command name.

2-2

e Parameters, if any, follow the command name. You must separate the parameter list from the
command name by one or more blanks. When several parameters are used in a list, they must be
separated by commas (delimiters). Any delimiter can be surrounded by any number of blanks;
however, blanks may not be embedded within parameters. The end of the parameter list is
indicated by a carriage return in a session or the end of the record in a job. Positional parameters
have significance due to their position in the parameter list. For example, in the following instance

:COMMAND parameterl, parameter2, parameter3
parameter] must always be specified before parameter2 or parameter3

If an optional positional parameter is omitted from the parameter list, commas are used to denote
this as illustrated:

:COMMAND parameterl,,parameter3 (From middle of list)

:COMMAND ,parameter2,parameter3 (From beginning of list)

:COMMAND parameterl (From end of list. Commas are not required.)
INTRINSICS

The intrinsic specifications contain the following information:

e The intrinsic name. The word intrinsic, in italics, directly under the intrinsic name identifies it as
an intrinsic.

® A brief summary of the function of the intrinsic.

e The complete intrinsic call description, highlighted by being enclosed in a box. The format is:

LV
SETDUMP(flags);

Required parameters, such as flags, are shown in bold face italics.

Optional parameters are shown in regular italics. Superscripts (see LV above) are used to denote
the types of parameters and whether they must be passed by value, instead of by reference (the
default case). See Section I of the MPE Intrinsics Reference Manual for a discussion of passing
parameters by value and by reference.

Superscripts have the following meanings:

BA Byte array
DA Double array
I Integer
L Logical
Lv Logical by value
0-V Optional variable
Sep 1976 2-3

In addition to the superscripts shown over the parameters, the superscript O-V is shown following
some parameters to denote option variable. Option variable means that the intrinsic contains optional
parameters.

DEBUG SPECIFICATIONS

The specifications for the DEBUG commands are listed in the following pages in alphabetic order.
They are followed by the DEBUG intrinsic specification.

A summary of the commands and their purpose is given in table 2-1.

Table 2-1. DEBUG Command Summary

COMMAND MODE PURPOSE
A * Establish breakpoint mode as private or system.
B Set breakpoints in executing program.
C Clear established breakpoints.
D Display code or data stored in memory.
DR Display register contents.
DV * Display disc sectors.
E Delete values from top of stack or terminate program.
F * Freeze code or data segment in memory.
L Switch display to list device.
M Modify data stored in memory.
MR Modify register contents.
R Resume program execution and, optionally, set a new breakpoint.
T Trace and display stack markers.
U * Unfreeze frozen code or data.
= Calculate value of expression.
$ Modify value of single register.

An asterisk (*) in the Mode column indicates that this command can be used only in privileged mode.

2-4

A

DEBUG command
Privileged mode only

Switches between private and system breakpont modes.

SYNTAX

AS Switch to system breakpoint mode.

AP Switch to private breakpoint mode.

NOTE

System breakpoints are global; any program in the system will
break at those breakpoints. In private breakpoint mode, only the
program in which the breakpoints are established will break.

TEXT DISCUSSION

Page 3-28.

DEBUG command

Establishes one or more breakpoints within a program.

SYNTAX
B[[g] segment.:, offset l:: [@] I:countjl:l, C
or .

NOTE

B@ causes all breakpoints belonging to the current process to be
displayed.

Privileged Mode

To set a breakpoint to debug system segmented library, use prefix S as follows:
B[S segment.) offset | :[@][count]]

To set a breakpoint in absolute code segment (CST), use prefix A as follows:

Bl A segment.] offset [:[@][count]]

PARAMETERS

GorP To establish breakpoints in the group or account segmented library, use the prefix G
for group or P for account before the segment parameter. If omitted, breakpoints are
established in the currently executing program. (Optional parameter.)

segment The logical code segment to contain the breakpoint. If omitted, the currently executing
segment contains the breakpoint. (Optional parameter.)

offset The relative offset of the breakpoint from the start of the segment. (Required parame-
ter.) A register may be specified if preceded by $.

@ Makes breakpoint permanent until program terminates or breakpoint cleared by
explicit C command. If omitted, and if count is omitted, the breakpoint is cleared
(deleted) after first execution. (Optional parameter.)

B 20:@ Break each time location 20 is executed.

2-6

count An expression specifying when the breakpoint is executed. When count is reached, the
breakpoint is executed and, if @ is not specified, deleted. (Optional parameter.) If
omitted, breakpoint is executed the first time it is reached.

B 20:3 Break the third time location 20 is executed.

When @ and count are combined, the breakpoint is conditionally permanent, that is,
the breakpoint will break, but not delete after count executions.

B 20:@3 Break every third time location 20 is executed.

EXAMPLES

?B 4.55, 20:8, A45.44:20, Gl.22:012, $P+4

Breakpoints are set at:

Location 55 of program segment 4.
Location 20 of current program segment (permanent — break every time).

Location 44 of absolute code segment 45 (conditional — break and delete after 20th time).
(Requires privileged mode.)

Location 22 of group library segment 1 (permanent and conditional — break every 12th time).

Location defined by contents of register P+ 4.

NOTE

An optional form of the B command — B@, causes all breakpoints
belonging to the current process to be displayed.

Privileged Mode

B@ displays all system-owned breakpoints in AS mode; all user-owned break-
points in AP mode.

The display format for each breakpoint is

LCST = [F()}:\ Isn, P = pc, CST = asn, [@] tu

where:
P = Account Public System Library.
G = Group System Library.

2-7

lsn

pc

asn

Logical Code Segment Number.

Program Counter.

Actual Code Segment Index. (Privileged Mode only.)
Permanent breakpoint. (No @ indicates temporary breakpoint.)
Total number of executions allowed by conditional breakpoint.

Total number of times breakpoint actually executed.

TEXT DISCUSSION

Page 3-6; privileged mode 3-28.

2-8

C

DEBUG command

Clears one or more breakpoints.

SYNTAX
C,:[g] segment.:l offset, . ..
or
C@

NOTE

C@ clears all breakpoints in a program.

Privileged Mode

Includes all the above plus the following:

C[[i} segment.:l offset , . . .

where S indicates breakpoints in the system segment library
A indicates breakpoints in absolute code segment (CST).

C@ clears all system-owned breakpoints if operating in AS mode or all user-
owned breakpoints if operating in AP mode.

PARAMETERS

GorP Breakpoints to be cleared are in group segmented library (G) or in account segmented
library (P). If omitted, breakpoints in currently executing program are cleared.
(Optional parameter.)

segment The logical program segment containing the breakpoint. If omitted, the currently
executing segment applies. (Optional parameter.)

offset The relative offset of the breakpoint from the start of the segment. (Required parame-
ter unless the form C@ is used.)

2-9

EXAMPLES

?C50, 2.33, P4.77

Breakpoints are cleared at:

Location 50 in current program segment.

Location 33 in program segment 2.

Location 77 in public library segment 4.

TEXT DISCUSSION

Page 3-8.

2-10

D

DEBUG command

Displays memory contents of a specified number of locations relative to a given code base or data base.

SYNTAX

D [dispbase] [offset] [,count] [,mode]

PARAMETERS
dispbase One of the following stack (data) relative display bases:
DB, DI, Q, S

or one of the following code relative display bases:
PB, P, PL

If dispbase is omitted, DB is specified by default. (Optional parameter.)

Privileged Mode

Includes all of the above plus the following:

A = Absolute Relative (base = location 0).

SY = System Global Relative (base = system base).

CO = Code Segment Relative (base = base of segment).
DA = Data Segment Relative (base = base of segment).
DX = Current Absolute DB Relative (base = absolute DB).
EA = Extended Absolute Address (base = bank specified).

The bank number in EA mode follows EA; for example:

D EA2+ 10 Displays one word at location 10 of bank 2.
For CO and DA, the offset immediately follows the mnemonic (CO or DA)
unless it is an expression involving a calculation when it is enclosed in

parentheses; for example:

D DA22+6,6 Displays 6 words starting at location 6 of data segment
22.

D CO(4+6),3 Displays first 3 words of segment 12 (octal).

2-11

offset

count

mode

The offset relative to the display base which specifies the starting memory location of
the area to be displayed. It is written in the following format:

[+]1 expression [: [[+] expression]]
If no sign is given, positive offset is assumed. If expression is followed by a colon,
indirect addressing is indicated. The indirect addressing is relative to the specified
dispbase or, if omitted, to DB for stack relative display or PB for code relative display
bases.

The first expression can be followed by an additional offset expression. For example:

D 6:+2 Display contents of address found by adding two words to address
stored in DB+ 6.

Multiple levels of indirect are permitted. For example:

D 6:+Q+3: Display contents of address found by adding address stored in
Q+ 3 to address stored in DB+ 6.

If offset is omitted, location O is specified by default. (Optional parameter.)

An expression which defines the number of memory locations to be displayed. If
omitted, count is assigned a default value of 1. (Optional parameter.)

A one-character specifier to indicate the representation mode for output values: O for
octal, I for decimal, or A for ASCIL If omitted, default mode is octal. (Optional
parameter.)

EXAMPLES

?D5

DB+5 247516
?D N=-5

-5 177777

?D N-5:

DB+177777 2320029
?D N+1:,A

DB+% MA

?D N+1:2,45A

DB+ MAINPROG

Location DB + 5. DB is assumed when dispbase omitted.

Location Q — 5.

Location pointed to by Q — 5.

One word in ASCII at location pointed to by Q+ 1.

Four ASCII words at location pointed to by Q+ 1.

TEXT DISCUSSION

Page 3-11; privileged mode 3-29.

2-12

DR

DEBUG command

Displays contents of the X, ST, DL, Q, S, Z, P, 1, 2, 3, and 4 registers.

SYNTAX

DR [,register] [,register] , . . .

PARAMETERS

register The register whose contents are to be displayed. This can be ST, X, DL, Q, S, Z, P, or
temporary registers 1, 2, 3, and 4. If omitted, all these registers plus LCST (the index
to the logical code segment) are displayed. (Optional parameter.)

NOTE

If LCST is displayed and the breakpoint is set in a group seg-
mented library, the segment number is preceded by G; if set in a
public library, it is preceded by P; if in the current user program,
the segment number has a blank prefix.

Privileged Mode

Privileged mode, if displaying all registers (register parameter omitted), also
includes the following values:

PCB = Process Control Block Index.

CST = Absolute Code Segment Index.

STAK = Stack Segment Index.

DST = Extra Data Segment Index.

DX = Current value of DB register, if in absolute mode.
EA = Current bank number, if in absolute mode.

In addition, the segment number displayed as LCST is preceded by S for a system
library segment.

2-13

EXAMPLES

?DR
ST=603C1,X=0,DL=177602,Q=26,5=26,Z=1462,P=]66
1=0,2=0,3=0,4=0,LCST=0

DR with no parameters specified displays all registers.

?DR, ST, Z
ST=603081,Z=1462
DR, 1,2

1=0,2=0

?DR. Q

=26

Display registers ST and Z.
Display temporary registers 1 and 2.

Display register Q.

TEXT DISCUSSION

Page 3-16; privileged mode 3-30.

2-14

DV

DEBUG command
Privileged Mode Only

Displays a requested number of sectors of virtual memory or disc.

SYNTAX

DV [Idev] + startsector [,count] [,mode]

PARAMETERS

ldev The logical device number of the disc to be displayed. If omitted, the system disc is
specified by default. (Optional parameter.)

startsector An expression signifying the starting sector address to be displayed. If the sector
address requires more than 16 bits, it must be entered in the following form:

(high-order bits:low-order bits) (Required parameter.)

count An expression indicating the number of sectors to be displayed. If omitted, one sector is
displayed. (Optional parameter.)

mode One character to indicate representation mode of output values: O for octal, I for
decimal, or A for ASCIL. If omitted, octal output is assumed (Optional parameter.)

EXAMPLES

2DV2 + 2238,5

Displays 5 sectors from logical device number 2 starting at sector number
2230.

?DV (212345:3)

Displays 1 sector from the system disc starting at sector number 612345
where the low-order bits are 012345 (octal) and the high-order bits are 3
(octal).

TEXT DISCUSSION

Page 3-29.
2-15

E

DEBUG command

Exits from DEBUG and resumes program execution; optionally, deletes values from top of stack. Can
also be used to terminate program.

SYNTAX

E [parameternum]

or

E@

NOTE

E@ terminates the program.

PARAMETERS

parameternum An expression which specifies the number of values to be deleted from the stack
counting back from the top-of-stack, S. This expression cannot be greater than 255. If
omitted, and if @ is omitted, control returns to the instruction following a direct call to
DEBUGQG, or to the instruction which generated a break to DEBUG. (Optional

parameter.)

EXAMPLES

?E2

Delete 2 values (3-0 and S-1) from the stack and resume program execution.

TEXT DISCUSSION

I Page 3-9; 4-5

2-16 Sep 1976

F

DEBUG command
Privileged mode only

Freezes a code or data segment in main memory so that it is not swapped out.

SYNTAX

F co egnum
DA [*%8

PARAMETERS
CO Indicates code segment. CO or DA must be specified.
DA Indicates data segment. DA or CO must be specified.

segnum An expression indicating the segment number to be frozen. (Required parameter.)

EXAMPLES

?FDA22 Freezes data segment 22.

TEXT DISCUSSION

Page 3-30.

2-17

L

DEBUG command

Switches all display output to a file or, if in privileged mode, to a file or a specific logical device, instead
of to the interactive standard list device. The file or logical device must be equated to a line printer.

SYNTAX

L [filereference]

or
Lo
NOTE
L0 closes an open file and switches display back to interactive
device.
Privileged Mode
L [Ildev]
PARAMETERS
filereference The name (and optional group and account) of the file to which all output is to be
directed. If omitted, the file (assuming one is open) is closed and output again is
displayed on the interactive device. Omitting the filereference parameter has the same
effect as specifying L0. (Optional parameter.)
Privileged Mode
ldev The logical device number of a device to which the output is to be
directed. If omitted, the display is switched back to the interactive
device. (Optional parameter.)
EXAMPLES
?L PRINTER

Directs output to a file named PRINTER.

7L

Closes file PRINTER and directs further output to interactive device.

TEXT DISCUSSION

Page 3-9; privileged mode 3-28.

2-18

DEBUG command

Modifies the contents of a specified number of memory locations relative to a given base in the user’s

stack.

SYNTAX

M [modbase] [offset] [,count] [,mode]

PARAMETERS

modbase

offset

One of the following stack relative modification bases:
DB, DL, Q, S

If modbase is omitted, DB is assumed. (Optional parameter.)

Privileged Mode

Other values allowed for modbase:

A = Absolute Relative (base = location 0).

SY = System Global Relative (base = system base).

DA = Data Segment Relative (base = base of segment).
DX = Current Absolute DB Relative (base = absolute DB).
EA = Extended Absolute Address (base = bank specified).

The offset relative to the modify base which specifies the starting memory location of
the area to be modified. It is written in the following format:

[+] expression [: [[+[expression]]
If no sign is given, positive offset is assumed. If expression is followed by a colon,
indirect addressing is indicated. The indirect addressing is relative to the specified
modbase or, if omitted, to DB for stack relative or PB for code relative modify bases.

The first expression can be followed by an additional offset expression. For example:

M 6:+2 Modify contents of address found by adding two words to address
stored in DB+ 6.

Multiple levels of indirect are permitted. For example:

2-19

M 6:+Q+3: Modify contents of address found by adding address stored in Q+ 3
to address stored in DB+ 6.

If offset is omitted, location O is specified by default. (Optional parameter.)

count An expression which defines the number of memory locations to be modified. If
omitted, 1 is specified by default. (Optional parameter.)

mode A one-character specifier to indicate the representation mode for output values: O for
octal, I for decimal, or A for ASCIL. If omitted, default is octal. (Optional parameter.)

The M command causes the current contents of each specified location to be displayed. If mode is not
specified, the display is in octal. Following the display, DEBUG issues a :=. You can then enter a new
value. This value is octal unless preceded by # (decimal), by $ (register contents), surrounded by
quotes (ASCID), surrounded by apostrophes (location contents). If an invalid value is entered, DEBUG
repeats the prompt := until you enter an acceptable value, press return to retain the current value, or
enter “.” to terminate the command.

EXAMPLES
™
DB+0 B4H6501 :1=046502
?MS, 4
DB+5 A47516 :=0475035
DB+6 AU2440 :=041443
DB+7 A2AR4R ::=020%44
DB+1@ B46516 :1=047516

Modify stack location DB + 0 (default location
when no parameters are specified).

Modify four locations starting at stack DB + 5.

Privileged Mode

?MSY54 Modify relative location 54 in system global area.
?MDA26+ 5:,2 Modify two cells in data segment 26 starting at the location

pointed to by location 5 in the segment.

TEXT DISCUSSION

Page 3-16; privileged mode 3-29.

2-20

MR

DEBUG command

Modifies contents of ST, X, DL, Q, S, Z, P, 1, 2, 3, and 4 registers.

SYNTAX

MR [,register] [,register] , . . .

PARAMETERS

register

The register to be modified. Omitting this parameter indicates all registers. New
values then are requested, one at a time, in the form:

register = currentcontents :=

to which you respond with an expression to specify the desired new contents, termi-
nated by a carriage return.

If the input is invalid, ;= is repeated so you can enter valid characters. A carriage
return alone (null value input) preserves the current contents.

An ASCII period (“.”) terminates any further requests for modification. (Optional
parameter.)

NOTE
The following restrictions apply to the MR command:

1. The register contents must be such that

2. Only bits 2 through 7 of the ST register can be changed.

Privileged Mode —————

All ST bits can be changed.

2-21

EXAMPLES

MR

ST=62301:=2

X=@:1=444

DL=177602:=500
:2=177601

N=26:= return

§=26:=27

Z=1462¢ = return

P=166:=167

1 =@ s = return

2=0 3= return

3= :=47

4= :=124

MR command with no parameters. (All registers listed.)
Change to 2.
Change to 444.
Illegal entry.
Good value.
No change.
Change to 27.
No change.
Change to 167.
No change.

No change.
Change to 47.
Change to 124.

TEXT DISCUSSION

Page 3-16; privileged mode 3-30.

2-22

R

DEBUG command

Resumes program execution and optionally establishes another breakpoint.

SYNTAX

RI[[segment.] offset [: [@] count]]

NOTE

To resume and set a group or account breakpoint, use prefix G for
group or P for account before the segment parameter, as follows:

R {g} segment.] offset [: [@] count]]

Privileged Mode

To resume and set a breakpoint for system segmented library, use prefix S before
the segment parameter, as follows:

R [[S segment.] offset [: [@] count]]

PARAMETERS

segment The logical code segment to contain the breakpoint. If omitted, the current segment
applies. (Optional parameter.)

offset The relative offset of the breakpoint from the start of the segment. If omitted, no
breakpoint is set. (Optional parameter.)

@ Makes breakpoint permanent until program terminates or breakpoint cleared by
explicit C command. If omitted, and if count is omitted, the breakpoint is cleared

(deleted) after first execution. (Optional parameter.)

R 20:@ Resume and then break each time location 20 is executed.

2-23

count An expression specifying when the breakpoint is executed. When count is reached, the
breakpoint is executed and, if @ is not specified, deleted. (Optional parameter.) If
omitted, breakpoint is executed the first time it is reached.

R 20:3 Resume and then break the third time 20 is executed.

When @ and count are combined, the breakpoint is conditionally permanent, that is,
the breakpoint will break, but not delete after count executions.

R 20:@3 Resume and then break every third time 20 is executed.

NOTE

If the R command is used with no parameters specified, execution
resumes without establishment of a new breakpoint. Control is
returned to the instruction following a direct call to DEBUG, or to
the instruction which generated a break to DEBUG.

EXAMPLES

R 110

Resume, set a breakpoint at location 110 of the current segment, and run
until this breakpoint is encountered.

TEXT DISCUSSION

Page 3-9; privileged mode 3-28.

2-24

T

DEBUG command

Traces and displays stack markers.

SYNTAX

T

Privileged Mode

In privileged mode, T also displays absolute code segment index (CST).

NOTE

Listing format for each marker is:

P)
Q=4dq, LCST=| G |isn, P = pc, CST = asn
S
where:
dg = Displacement from current Q.
P = Account public segmented library.
G = Group segmented library.
S = System segmented library. If P, G, and S are
omitted, current program.
Isn = Logical CST number.
pc = P (relative) address.
asn = Absolute (actual) CST (privileged mode
only).
EXAMPLES
?T
-9 »LCST=0 »P=266
0-23 »LCST=S132,P=0

TEXT DISCUSSION

Page 3-20.

2-25

U

DEBUG command
Privileged Mode Only

Unfreezes a frozen code or data segment.

SYNTAX

CO
U {DA} segnum

PARAMETERS
CO Indicates code segment. CO or DA must be specified.
DA Indicates data segment. DA or CO must be specified.
segnum An expression indicating the segment number to be unfrozen. (Required parameter.)
EXAMPLES
?U €£0123 Unfreezes code segment 123.

TEXT DISCUSSION

Page 3-30.

2-26

DEBUG command

Calculates expression.

SYNTAX

= expression [,mode]

PARAMETERS

expression The expression to be evaluated. The expression can include octal values (default),
decimal values (must be preceded by #), ASCII values (must be enclosed in quotes, as
“A”), memory content (location must be enclosed in apostrophes, as ‘Q+ 2’), and regis-
ter content (must be preceded by $, as $X). The types of values may be mixed in an
expression. (Required parameter.)

mode The representation mode for the result. O specifies octal, I decimal, and A ASCII. If
omitted, the result is represented as an octal value. (Optional parameter.)

EXAMPLES

=8+ (5%2-3/C1+1)) Answer is 15 (octal).
=15

2=H4+(55%#12) =AY, Answer is +479 (decimal).
=+479

?7=3%1 Answer is current value of Q-register (41 octal)
=41

°f; 22:25 ! Answer is current contents of DB+ 26 (23420 octal)

TEXT DISCUSSION

Page 3-17.

2-27

$

DEBUG command

Modifies single register value.

SYNTAX

$ register := expression

PARAMETERS

register The register to be modified; may be ST, X, DL, Q, S, Z, P, or temporary registers 1, 2, 3,
and 4. (Required parameter.)

=expression An expression signifying the new value. The expression must be preceded by :=.
Unless specified otherwise, as described for the = command, all values in the expres-
sion are considered octal. (Required parameter.)

EXAMPLES

?282:=44
?DR, 2
2=44
?DR, S
S=26
?75S:=8S5+2
?DR, S
S=30

Set register 2 to the octal valuc 44.
Verify.

Display value of S register.
Increment S register by 2.

Verify

TEXT DISCUSSION

Page 3-17.

2-28

DEBUG

Intrinsic

Invokes the DEBUG facility in order to set breakpoints, and modify or display data stored in memory.

DEBUG;

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 3-21.

2-29

STACK DUMP SPECIFICATIONS

The specifications for the intrinsics and MPE commands that comprise the stack dump facility are
listed in alphabetic order in the following pages. Table 2-2 summarizes the commands and intrinsics
and their functions.

Table 2-2. Stack Dump Facility Summary

COMMAND INTRINSIC PURPOSE
RESETDUMP Programmatically disables stack dump in case of program abort.
:RESETDUMP Disables stack dump in case of program abort.
SETDUMP Programmatically enables a stack dump in case of program abort.
$SETDUMP Enables stack dump in case of program abort.
STACKDUMP Dumps selected portion of stack to file or list device.

2-30

RESETDUMP

Intrinsic

Programmatically disables the abort stack analysis facility for the calling process but has no effect on
any of the processes of the family.

RESETDUMP;

CONDITION CODES

CCE Request granted.

CCG Abort stack analysis facility was disabled prior to the RESETDUMP intrinsic call and
remains disabled.

CCL Not returned by this intrinsic.

TEXT DISCUSSION

Page 4-7.

2-31

:RESETDUMP

MPE command

Disables the abort stack analysis facility for the current process only.

SYNTAX

‘RESETDUMP

:RESETDUMP can be specified in a session or a job (not during a DEBUG break) to terminate the
effects of any previous :SETDUMP command. If no :SETDUMP has been specified, :RESETDUMP is
ignored.

TEXT DISCUSSION

Page 4-7.

2-32 Sep 1976

SETDUMP

Intrinsic

Programmatically enables the abort stack analysis facility for the caller process (and subsequent
sons).

v
SETDUMP(flags);

PARAMETERS

flags logical by value (required)

A logical word whose bits specify the following:

Bit 15 = If on, specifies a DL to Q initial dump.

Bit 14 = If on, specifies a Q initial to S dump.

Bit 13 = If on, specifies a Q-63 to S dump. This bit is ignored if bit 14 is on.
Bit12 = Ifon, causes an ASCII dump of the octal content along with the octal

values.

A 0 value for flags results in the display of registers and stack marker trace only.

CONDITION CODES

CCE Request granted.

CCG Abort stack analysis facility already enabled before SETDUMP intrinsic call. The facility is
now set up according to new specifications from this call.

CCL Not returned by this intrinsic.

TEXT DISCUSSION

Page 4-5; 4-6.

2-33

:SETDUMP

MPE command

l Enables the abort stack analysis facility for the current process and any subsequently created sons.

SYNTAX
l :SETDUMP [DB [,ST [,QS] 1[;ASCII]]
NOTE
DB, ST, and QS are keyword parameters and can be specified in
any order.
PARAMETERS
DB Specifies a DL to Q initial dump. (Optional parameter.)
ST Specifies a Q initial to S dump. (Optional parameter.)
QS Specifies a Q-63 to S dump. This parameter is ignored if ST is specified. (Optional
parameter.)
I ;ASCIIT Causes an ASCII conversion of the octal content to be dumped along with the octal
values. (Optional parameter.)
NOTE
In an interactive session, all parameters are ignored and the only
effect of the :SETDUMP command is to enable the stack dump
facility in order for the process to go to DEBUG in case of an
abort.
EXAMPLES
I (SETDUND D35ACCII

Specifies a DL to Q initial dump and an ASCII conversion along
with the octal values.

TEXT DISCUSSION

Page 4-3; 4-6.

2-34 Sep 1976

STACKDUMP

Intrinsic

Dumps selected parts of stack to a file.

SYNTAX
BA I L DA O-V
STACKDUMP(filename,idnumber,flags,selec);
or
BA I L DA 0OV
STACKDUMP’(filename,idnumber,flags,selec);

PARAMETERS

filename byte array (optional)
Contains the file name of the file where the information is to be dumped. When
filename contains the formal designator of the file, the file will be opened and closed by
the STACKDUMP intrinsic. If the secondary entry point (STACKDUMP’) is used to
enter this intrinsic, MPE assumes that filename(0) contains the file number of a file
which has been successfully opened prior to the call to STACKDUMP. In this case, the
file is not closed before returning to the user program. When a file number is passed
via the STACKDUMP’ secondary entry point, the record length must be between 32
and 256 words and write access must be allowed to the file.
Default: Dump is sent tc the standard list device.

idnumber integer (optional)
An integer which is displayed in the header of the dump to identify the printout.
Default: Identifying integer is not displayed.

flags logical (optional)
A logical value used to specify the following options:

Bit 15 = 1 Suppress ASCII dump.
Bit 14 = 1 Suppress trace back of stack markers.
Default: Bits 14 and 15 = 00. A corresponding ASCII dump is provided for all values
dumped in octal, and a trace back of stack markers is displayed.
selec double array (optional)

Specifies which stack areas are to be dumped. The format of the array is shown in

figure 2-1. The array has no predetermined length; the first double word containing

the values 0/— 1 indicates the end of the array. An entry for which the count is 0 is

understood to be a “skip” (i.e., go to next double word element in list).

Default: If missing, or if the first double word contains 0/—1 (indicating end of array),
then no dump (except for the header) occurs, unless flags bit 14 = 0, in which
case the trace back of stack markers is displayed.

Sep 1976 2.35

CONDITION CODES
CCE Request granted.

CCG Request denied. Bounds violation occurred and the dump was not completed. Record size
was not between 32 and 256 words.

CCL Request denied. File system error occurred from opening, writing, or closing of the file. The
file error number is returned to idnumber. See the MPE Intrinsics Reference Manual for a
discussion of file errors.

selec ARRAY USER STACK
o - Relative address
Mode, Count PCBX
i p———- etc,
2 - ——— }e(c. oL—*
QB —————— }etc,
[3]3) >
Dump DB Primary
Area
~ .':-JS // Secondary
/
/ Qi Spec. MPE Mark
/ Gniuat}
/
—— —7——— }Stopper /
/
/
WHERE //
S -
/ Dump Q63
* DB-relative address / Area
6] Count {>0]) -
e Q
e Dumo <
P e Area Q —
* S-relative address (<0 onty) // *
1 1—[Count (>0)]
| S —
B Abort Marker
* Q-relative address - -
HOI_ Count {>0)
Z —o|
* Signed integer, range:
-32768/32767 or -%100000/%77777
AND, FOR OPTIONAL CAPABILITY MODES ONLY
DS AREA DUMP (Extra Data Segment Capability)
| L’d_e: ”_0"" GE'-ESE_G _ Extra data segment 1s logically considered to be a succession of
1oo—|' Offset/512_[Count/256 256-word blocks.
3 78 15
DS AREA DUMP (Privileged Mode Capability)
| _Aist&te DS_lnﬁx_— _ Extra data segment can be dumped in this mode only if called
IO_IT Oﬂset/S‘lZT Count/256 from programs having privileged mode capability, or from privi-
leged mode code.
3 78 15

Figure 2-1. Stack Dump Modes and selec Array Format

TEXT DISCUSSION
Page 4-8.
2-36

HOW TO USE DEBUG

DEBUG is accessed by specifying the DEBUG parameter in a RUN or PREPRUN command, or by
inserting DEBUG intrinsic calls in your program. The purpose of DEBUG is to establish breakpoints
in an executing program so that you can examine or modify current values in memory or the current
values of program registers.

PREPARING TO USE DEBUG

In order to use DEBUG, it is important to know the memory locations where your program symbols are
stored, the beginning locations of each program unit, and the offset from these locations of each line of
code. This information is obtained in several ways depending somewhat on the source language of your
program.

A FORTRAN program should be compiled with the MAP, LABEL, and LOCATION parameters in the
$CONTROL command; COBOL and SPL programs should be compiled with the MAP parameter.
LABEL provides a label map showing the offset of each labelled statement, and LOCATION provides
the offset of every statement as part of the source listing. In an SPL program, this information is
provided automatically in your compilation listing. The MAP parameter generates a symbol map that
lists all the symbolic names in your program and the location in the data stack where the data is stored
for each symbol.

Any program to be debugged should be prepared with the PMAP parameter in order to determine the
beginning code location of each program unit and, if more than one segment is used, the segment
number.

If you want to use DEBUG but your program has already been compiled and prepared, you can run the

DECOMP program to obtain the necessary code locations. For COBOL, which does not have a
LOCATION parameter, this is usually necessary. To run DECOMP, enter:

:RUN DECOMP.PUB.SYS

You will be prompted for the program file name, the starting segment number and the program entry
point location. These numbers are listed when you prepare your program with PMAP. (Refer to
Appendix A for an example showing execution of DECOMP for the sample FORTRAN program used in
this manual.)

For the purposes of this manual, FORTRAN has been chosen as the language to be used in examples.
An SPL user will find that DEBUG has fewer complications for his language than it does for
FORTRAN and should simply skip over the descriptions of determining data locations that are
peculiar to the FORTRAN compiler.

Figure 3-1 shows a simple FORTRAN program used to demonstrate use of the DEBUG commands. The
compilation includes the MAP, LABEL, and LOCATION parameters. If you want an octal dump of the
program, you can also include the CODE parameter, but this is usually not necessary. Figure 3-2
shows the result of preparing the program using the PMAP parameter in the :PREP command. (Note
that PMAP can be included in :FORTPREP if you compile and prepare in one operation.) In both these

figures, significant entries are indicated by numbers keyed to the following discussion.

3-1

NOTE

All numbers in the PMAP listing except elapsed time and proc-
essor time are octal values; all numbers in the symbol map are
decimal; in the label map, the labels are decimal, the code offset is
octal. DEBUG itself expects octal values unless otherwise

indicated.

:FORTRAN DBTESTI

HP32102%.0@.0é

1

PAGE 0081
— e, e

90001088 $CONTROL MAP,LABEL,LOCATION,USLINIT
P0012 00PC2000 PROGRAM MAIN
P0012 00863000 CHARACTER*8 C,Cl1,C2(3)
90012 00004000 COMMON 14,15
0012 @B0B6000 DATA C/"DBTEST1"/
P0012 02037600 DATA C1/"MAINPROG™/,C2/"MONE", "MTWO", "MTHREE"/
08612 00008000 DATA 16/100600/,17/706/,18/800/
@e012 GOEB9668 16 DISPLAY C1,C2
96031 0BC10000 11 = -1
26033 00611000 12 = 1
#9035 00812000 13 = 10
Pe037 00013000 14 = 100
P004]1 POB14000 15 = 1000
P0043 GOB15000 DISPLAY "CALLING SUBROUTINE"
98075 0@P168608 20 CALL SUBROUT(C1,C2,11,12,13)
#0105 00017008 DISPLAY "BACK FROM SUBROUTINE"
90137 60018006 STOP
0140 08019800 END

®

SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS

P“

c CHARACTER SIMPLE VAR @+ 1,1
¢t CHARACTER SIMPLE VAR 0+ 2,1}4——4 :)
c2 CHARACTER ARRAY Q+ 2,1
I INTEGER SIMPLE VAR Q+ 6
12 INTEGER SIMPLE VAR Q+ 7
13 INTEGER SIMPLE VAR Q+ 8
14 INTEGER SIMPLE VAR o commom}
15 INTEGER SIMPLE VAR 1 coMMoN |~ (:)
16 INTEGER SIMPLE VAR Q+ 3,1
17 INTEGER SIMPLE VAR @+ 4,1}<_<:>
18 INTEGER SIMPLE VAR Q+ 5,1
SUBROUT SUBROUTINE

COMMON BLOCKS
NAME LENGTH
coM * 2

LABEL MAP
STATEMENT CODE STATEMENT CODE STATEMENT CODE
LABEL OFFSET LABEL OFFSET LABEL OFFSET
16 12 20 75

Figure 3-1. FORTRAN Compilation Showing Symbol and Label Maps

3-2

Q

e e,
ABBRS 020020000 SUBROQUTINE SUBROUT(D1,D2,J1,d2,J3)
203035 02p21000 CHARACTER*8 D1,D2(3)
22305 00n21190 COMMON J4,dJ5
23385 08322000 D1 = “SUBROUT"
821 @23232060 D2(1) = "SBONE®"
PA237 200224000 D2(2) = "“SBTWO"
23855 Ope25000 D2(3> = "SBTHREE"
20874 C0B26000 30 DISPLAY Dl1.,D2
27113 0re27068 Jl1 = -9
3115 0OB028080 J2 = 9
2117 0302029000 J3 = 9¢
PP121 @0930600 Ja = 909
0123 22831860 J5 = 9p9208
#3125 (0832600 49 DISPLAY *RETURNING TO MAIN PROGRAM™
0164 (0033000 RETURN
pA165 BP0342069 END
SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS
e
D1 CHARACTER SIMPLE VAR Q- 8,1
D2 CHARACTER ARRAY Q- 751
Ji INTEGER SIMPLE VAR Q- 6,1 <—<:>
J2 INTEGER SIMPLE VAR 8- 5,1
J3 INTEGER SIMPLE VAR Q- 4,1
Ja INTEGER SIMPLE VAR @ COMMON
J5 INTEGER SIMPLE VAR 1 COMMON
SUBROUT SUBROUTINE
COMMON BLOCKS
NAME LENGTH
coM* 2
LABEL MAP
STATEMENT CODE STATEMENT CODE STATEMENT CODE
LABEL OFFSET LABEL OFFSET LABEL OFFSET
38 74 49 125
ok %k % GLOBAL STATISTICS e * K kK
ok K % NO ERRORS. NO WARNINGS kk*x
TOTAL COMPILATION TIME @2:00:04
TOTAL ELAPSED TIME P:06:08

END OF COMPILE

Figure 3-1. FORTRAN Compilation Showing Symbol and Label Maps (Continued)

The key items in figure 3-1 are:

MAP parameter included to produce symbol map of each program unit; in this example, one

1
map for program MAIN and one for subroutine SUBROUT.
2 LABEL parameter included to produce a label map for each program unit.
3 LOCATION parameter included to produce location of each instruction relative to start of code.
4 Location of each instruction relative to start of code.

3-3

Memory address relative to Q location in data stack of each symbol except those declared
COMMON.

I indicates the address is indirect; used for all values declared in DATA statements or passed
from another program unit.

Location of symbol relative to start of common.

Location of each labelled instruction relative to start of code.

:PREP $OLDPASS, DBPROG 15 PMAP (E)
PROGRAM FILE DBPROGI.PUB.TECHPUBS
COMMON ARRAY ALLOCATION

NAME ADR LEN

coM® (:>~>31 2
SEG* (:)—>e

NAME STT CODE ENTRY SEG

SUBROUT 1 a o

TFORM" 3 2

FMTINIT® 4 ’

BLANKFILL' 5 ?

s10° 6 ?

ASIO" 7 ?

MAIN o 165 172

TERMINATE' 10 2

SEGMENT LENGTH 340
PRIMARY DB > INITIAL STACK 1440 CAPABILITY 600
SECONDARY DB 33 INITIAL DL @ TOTAL CODE 340
TOTAL DB 35 MAXIMUM DATA ? TOTAL RECORDS 6
FLAPSED TIME @0:01:15.845 PROCESSOR TIME 00:00.414
END OF PREPARE

Figure 3-2. Result of Preparation With PMAP

The key items in figure 3-2 are:

1

(@]

PMAP parameter included to list beginning code locations of each program unit and relative
location of common.

Location of unlabelled common relative to DB. If used in program, labelled common would follow.
Logical segment number of the program file.

Program unit entry point; corresponding question mark (?) under heading SEG indicates that the
procedure is external to the program.

Beginning location of code in the segment (start of code).

3-4 Sep 1976

USING DEBUG WITH STANDARD CAPABILITY

Figure 3-3 shows a sample execution of program DBTEST1 (program file DBPROG1) using DEBUG
commands to establish breakpoints, display values and registers, and modify values and registers.
This run illustrates use of DEBUG commands with the standard capability. (Use of the DEBUG
intrinsic is illustrated in figure 3-8. Use of DEBUG with privileged mode capability is discussed later
in this section. The stack dump facility is discussed in section IV.)

If you want to debug a compiled and prepared program, you specify the DEBUG parameter in the
:RUN command as follows:

:RUN program file name; DEBUG

The program file prepared in figure 3-2 is named DBPROG]1. To run this program in DEBUG mode,
enter:

:RUN DBPROG1;DEBUG

If the program has only been compiled but not prepared, you may include DEBUG in a :PREPRUN
command to prepare and execute in DEBUG mode. Since you will probably need a map, include the
PMAP parameter as follows:

:PREPRUN USL file name; DEBUG;PMAP
Or, assuming the program DBTEST1 has just been compiled:
:PREPRUN $OLDPASS;DEBUG;PMAP

Since both DEBUG and PMAP are keyword parameters, they can be entered in any order after the file
name.

In order to use DEBUG, you must have write access to the program and be operating in a session. MPE
checks whether you have read/write access to the program file and are in an interactive session. If
either condition is not true, control is returned to you.

When a program executed in DEBUG mode starts execution, it breaks before the first instruction so
that you can establish your breakpoints. At this initial break, a message is displayed indicating that
you are in DEBUG mode and specifying the entry point location relative to the start of code of the first
program unit to be executed. (Refer to item 1 in figure 3-3.) The message has the form:

DEBUG s.nnn
where

s is the segment number

nnn is the location of the entry point.

DEBUG then displays the prompt for DEBUG commands, a question mark. In response to this prompt,
you may enter any DEBUG command for which you have the capability. Usually, the first command
you enter is B or R in order to establish where you want to break during program execution. The B
command simply establishes breakpoints or displays the existing breakpoints. R both establishes
a breakpoint and resumes program execution. Whenever a break occurs, you must specifically request
execution to continue with an R command or, alternatively, the E command.

Sep 1976 3-5

WHAT IS A BREAKPOINT?

A breakpoint is a pause in program execution during which control is given to the DEBUG program
until you specifically request that execution resumes. During this pause, you may display any data
registers belonging to your program or any program registers that currently contain program code.
Bounds are set so that you cannot access data or code not belonging to your program. Exceptions to this
general rule are made if you have the privileged mode capability that allows you to display and modify
system areas.

When a breakpoint is reached, the program pauses just prior to the instruction specified in the B or R
command. Following the breakpoint that instruction is executed.

At each breakpoint, a message is issued showing the current breakpoint location. The form is:
BREAK s.nnn

where
s is the segment number of the current segment

nnn is the location of the breakpoint relative to the start of code.

HOW TO ESTABLISH BREAKPOINTS

In order to determine the breakpoints, look at the map produced during program preparation by
PMAP (figure 3-2). This program has only one unnamed segment listed as SEG’ with segment number
0 (see item 3). If you had divided your program into segments, the PMAP listing would show each
segment in ascending order by number. The segment number is only necessary in a segmented
program and then only if you want to set a breakpoint in a segment other than the currently executing
segment.

The offset from the start of the code must, however, always be specified. This offset is relative to the
start of code shown for each program unit in the PMAP listing. Refer to item 5 in figure 3-2 for the
start of code in the main program (location 165) and in the subroutine (location 0).

For example, suppose a program with five segments. The first entry point is in segment 0 and you want
to set a breakpoint in segment 4 at location 200 relative to the start of code in that segment, you enter:

?B 4.200+5 where 5 is the start of code, 4 is the segment number and you
want to break 200 (octal) locations past the start of code.

Returning to the sample program, suppose you want to break at a labelled statement, you can refer to
the label map in figure 3-1 for the offset of each program label from the start of code.

For example, to break at label 10 in the main program, enter:

?B 165+ 12 or ?B 177 (note that the offset is octal)

To break at label 30 in the subroutine, enter:

7B 74 (relative to location 0)

3-6

More than one breakpoint can be specified in one B command:

7B 165+ 12, 165+ 75, 74 (break at labels 10, 20, and 30)

To break at an unlabelled statement, use the location (item 4, figure 3-1) as the offset from the start of
code. For example, to break at statement 13 in the main program, enter:

?B 165+ 37 (37 is the offset to start of code in MAIN)

REPEATED BREAKPOINTS. If your program loops through a breakpoint more than once, you
may specify that the breakpoint be set:

e only at the nth occurrence (conditional breakpoint)
® at every occurrence (permanent breakpoint)
® at every nth occurrence. (permanent conditional breakpoint)

For example, to break the third time the program executes the instruction at location 155:

?B 155:3 (break the 3rd time 155 is executed)

Following this break, the breakpoint is cleared and no breaks will occur in subsequent executions of
location 155.

To break every time the program executes the instruction at 155, enter:
?B 155:@ or ?B 155:@1 (break each time 155 is executed)

This is a permanent breakpoint, indicated by @ , and remains in effect until the program terminates or
the breakpoint is specifically cleared.

To break every third time the instruction is executed, enter:

7B 155:@3 (break every third time 155 is executed)

NOTE
When a breakpoint is set, the program pauses in its execution

before the instruction at the specified breakpoint location is
executed.

DISPLAYING BREAKPOINTS. All existing breakpoints are displayed by the following
command:

B@

In response, the system prints the logical segment number (LCST) and the P register location of each
existing breakpoint. (Refer to item 3, figure 3-3.)

3-7

If a breakpoint is permanent, the @ symbol is displayed following the LCST and P values. The number
of times the program loops through such a breakpoint is also displayed followed by a slash zero if the
break is executed every time. For example:

?B 165+25:8@
?Be
LCST=0 2P=212 ,@1/0

If a conditional breakpoint is set, for instance to break every third time the statement at 165+ 25 is
executed, this is indicated in the breakpoint display as follows:

?B 165+25:03
?Be
LCST=0 »P=212 ,03/72

Each time the statement at 212 is executed, the count is increased by one. When the breakpoint is
taken, it is reduced to zero once again.

If the breakpoint is not permanent, but a count was specified, the breakpoint is cleared after the break
is executed on the nth pass through the statement. For instance, if a break on the third pass through
location 212 is specified:

?B 165+25:3

At a break following the second execution of location 212, the breakpoint is displayed as:

BREAK #.262
?Be
LCST=a »P=212 » 372

When the breakpoint at 212 is taken, the breakpoint is cleared:

BREAK Z.212
?Be
?__

CLEARING BREAKPOINTS. A breakpoint specified for one time only is cleared when execution
resumes after the break has occurred. A permanent breakpoint is cleared only when the program
terminates.

For example, if the following breakpoints are set:

?B 165+12, 165+ 75, 74, 125

When the break at location 165+ 12 has been taken, that breakpoint is cleared. Similarly with each of
the others.

If breakpoints are permanent as specified in the following command:

?B 155:@, 175:@5

The breakpoint at each of these locations is cleared only when the program terminates.

You may, however, clear any breakpoints that remain with the C command. For example, suppose the
breakpoint at 165+ 12 has been taken, before resuming execution of the program, you can clear all the
remaining breakpoints by entering:

?C@
If you only want to clear one of the remaining breakpoints, it must be explicitly specified, for instance,
as:

?2C 165+ 75
Several breakpoints may be cleared as follows:

?2C 165+ 75,125

If you attempt to clear a breakpoint that has not been set, the command is ignored.

RESUMING EXECUTION. When you have displayed or modified at the current breakpoint, you
can enter either R or E in order to resume execution. R with no parameters simply resumes execution
at the current breakpoint location. (Refer to item 4, figure 3-3.)

You can resume and also set a new breakpocnt with the R command. The breakpoint is specified in
exactly the same way as in the B command, except that only one breakpoint can be specified with R.
(Refer to item 4, figure 3-3.)

Another way to resume execution is by entering the E command with no parameters. Used in this way
it produces the same effect as R with no parameters. (Refer to item 6, figure 3-3.) With parameters E is
used to delete values from the top-of-stack, S. This capability is illustrated in section 4 in the
discussion of interactive use of :SETDUMP.

E@ can be used to terminate a program executing in DEBUG mode.

Used in this way, it is similar to pressing the BREAK key during normal program execution and then
entering the :ABORT command. (Refer to item 7, figure 3-3.)

SWITCHING DISPLAY TO LINE PRINTER

If you are at a CRT terminal and want hard copy of your output, or if your output does not easily fit a
teleprinter (as in a memory dump), you can switch your display to a line printer through the L
command. In this command, you identify the printer by a file reference. You must, therefore, equate
the file reference to a device in a :FILE command before running your program in :DEBUG mode.

For example:

¢tFILE PRINTERS DEV=LP
:RUN YOURPROG; DEBUG

DEBUG G177
7L PRINTER (opens PRINTER and directs output to line printer)

When output is complete, and before exiting from DEBUG, enter an L command to close the file
PRINTER:

L

Note that if your output is spooled, it will appear after the line printer is closed.

3-9

:RUN DBPROG 135 DEBUR

DEBUG @ . 172<—® :

7B _165+12,165+75
’B@

LCST=0 ,P=262}
LCST=0 »P=177
O :

BREAK 8.177

D _Q+6,3,1 %
o+ 6 +13056 +00080 +86193

?D 0+3:,3,1 %
DB+26 +10000 +00760 +00800
?D _Q+1

e+1 300004 .
?D DB+4/2,A @

DB+ 2 DB

?D DB+4/2,4,A

DB+ 2 DBTEST!
?D Q+2

&2 f280a14

D 14/2,4,A

DB+ 6 MAINPROG
?D 14/2+4,4,4
DB+12 MONE

?D _14/2+4%3,4,A

DB+ 22 MTHREE 4—@

?D #10@,#12,4

DB+ 12 MONE MTWO
IB+22 MTHREE
?D_DB+31,2,1 4_@
DB+ 31 +00008 +¢amama$
7Be
LCST=0 ,p=262}<_@
MAINPROG MONE MTWO MTHREE

CALLING SUBROUTINE
BREAK 0.262
?D Q+6,3,1

a+6 -P000) +00001 +30C10
D Q+3:,3,1

DB+26 +100008 +00700 +00880
7D DB+31,2, 1

DB+ 31 +00180 +01000

™ Q+#8,1

10 +00010 :=-20

7D _Q+#8,1 .

Q10 -ges16

™ Q+3:,5,1

DB+26 +10000 :=4#8

DB+27 +00700 :=#88

DB+ 30 +00808 := <_@
B+ 31 +00100 :=#3000

DB+ 32 +01008 :=

10006) 1~

?D Q+3:,5,1

DB+26 +00008 +00080 +0@800 +0SE00 +10000
™ DB+14/2,4,A

DB+ 6 MA:="SU”

DB+7 IN:="B-"

DB+10 PR:=

DB+11 0G:= 4_'@
D DB+14/2,4,A

DB+ 6 SUB-PROG

@-»m 74

Figure 3-3. DEBUG Example

3-10

BREAK G.74

?DR»1,2,3,4 .
1=0,2=9, 3=g:4=ﬂ} @

MR, 1

1=8:=0677777

™ Q-6:,3,1

DB+47 -88861 :=%1 .
DB+ 56 +00001 :=%1

B+51 +09019 :=%1

?D 8-6:,3,1

DB+ 47 +32767 +32767 +32767
?2%2:=166666 } .
?2$3:='DB+51"*

='DB+51'/2

=3771717 4_@

?=37777,1

=+16383

?%4:=*DB+51'/2
™ DB+26,3,1

DB+26 +80008 :=$2

DB+27 +86088 :=33

DB+ 36 +88800 :=34

2D DB+26, 3

B+26 166666 677777 @37777

?D DB+26,3,1

DB+26 34682 +32767 +16383
@_>?R 125

SUBROUT SBONE SBTWO SBTHREE

+BREAK* 8.125

7D _DB+47, 3,1

B+a7 ~B0089 +0FE69 +68890

2D DB+31,2,1

DB+ 31 +06908 +09080

DR
ST=66361,X=8,DL=177602,Q=62, S=62,Z=1475,P=125 !
1=0,2=0,3=0,4=0,LCST=0 J

Oz

END OF PROGRAM

Figure 3-3. DEBUG Example (Continued)

HOW TO DISPLAY AND MODIFY VALUES

The symbol map produced during compilation by the MAP parameter is the key to finding the location
of most values. For simple variables to which values are assigned dynamically in the program, the
map gives the Q-relative location where the assigned value is to be stored. (Refer to items I1, 12, and I5
in the main program symbol map, figure 3-1.)

If, however, the value has been assigned in a DATA statement, is a string value or array, or has been
passed from another program unit via a program call, the Q-relative location in the symbol table is
indirect, that is, it contains the address where the value is located. Indirect addresses are followed by
the letter I in the symbol map. (Refer to items C, C1, C2, 16, I7, I8, and J1, J2, J3 in the symbol maps,
figure 3-1.)

3-11

When the variable contains characters, the location is given as a byte rather than a word address. To
find the word address, some simple calculation is usually required. (Refer to items C, C1, C2, and D1,
D2 in the symbol maps, figure 3-1.)

Data stored in COMMON is specifically indicated in the symbol map. Its location is not given as a
Q-relative address but as an offset to the beginning of COMMON. This, in turn, can be found from the
PMAP listing (item 2, figure 3-2) where the start of COMMON is shown as a DB-relative address.
(Refer to items I4, I5, and J4, J5 in the symbol maps, figure 3-1.) In the example, only unlabelled
common is used; any labelled common would be listed immediately following unlabelled common in
the maps.

DISPLAYING VALUES. The location of values is usually specified relative to the display bases DB
or Q. To display values stored in a location relative to Q, enter:

?D Q+6 (Q is the display base, 6 the offset)

If you want to display more than one value, you must specify a count separated by a comma from the
offset. For instance, to display the three values stored in Q+ 6, Q+ 7, Q+ 8, enter:

?D Q+6,3

All values are displayed as octal numbers by DEBUG unless you indicate that you want them to be
decimal (I) or ASCII (A). The mode indicator may follow the offset separated by a comma or it may
follow the count, also separated by a comma. For instance, to display the value at Q+ 6 as a decimal
number, enter:

D Q+6,1

Any values for which you know the DB relative location can be displayed without specifying the
display base. For instance, to display the contents of DB+ 31, you can simply enter:

?D 31

So far, the display examples have used octal offsets. If you want to display the value in I3 stored at
location Q+ 8, you must either indicate that the offset is decimal, as:

?’D Q+#8
or you must enter the octal equivalent of the decimal number, as:
?D Q+10

Usually, it is simpler to use the indicator # than to convert for yourself. Because the symbol map
shows Q-relative locations as decimal values, you must be very careful to use the decimal indicator for
these locations. If you enter a decimal number in a DEBUG command without an indicator, you will
receive an error message. If, however, the number appears to DEBUG to be octal, but was meant to be
decimal, a value may be displayed from the wrong location or you may receive a BOUNDS violation.

Indirect Addressing. To display a value stored in an indirect address, follow the location with a
colon (:). For example:

7D Q+3:,3,1

3-12

If a count and/or a mode indicator is included, it must be preceded by a comma; the colon does not act as
a delimiter. (Refer to item 9, figure 3-3 for an example displaying indirectly addressed values.)

When indirect addresses are used, DEBUG displays the DB-relative location to which the Q-relative
address points.

Byte Addressing. The addresses of items containing characters are specified as bytes rather than as
words. Thus, if you display the contents of Q+ 1 (the address of character element C), this address is
given as the number of bytes relative to the start of DB rather than as the number of words. (Refer to
item 10, figure 3-3.) To determine the word address that you will need to display the character
element, you must divide this byte address by 2. For example, to locate item C:

D Q+1

Q+1 000004 (DB+ 4 bytes)
?D DB+ 4/2,A

DB+ 2 DB

Another method is to use the form that specifies the contents of a location. This allows you to perform
the same function in fewer steps. For example:

D ‘Q+172,A
DB+2 DB

Note that only the first two characters of C are displayed. In order to display the entire character
element, you must determine the number of words per element. In line 3 of the sample FORTRAN
program, CHARACTERS*8 defines the length of each of the succeeding character elements as eight
characters. To find the number of words per element, divide by 2. In this case, C, C1, and C2 require
four words per element. (If the number of characters per element is an odd number, you must add one
character before dividing by two.) This value gives you the count so you can display the entire element.
For example, to display all of C:

?D DB+2,4,A or 7D ‘Q+1/2,4,A
The characters in C1 are displayed in a similar manner. (Refer to item 11, figure 3-3.)

Array Addressing. Note that the address of the array C2 is stored in the same location (Q+ 2) as the
address of C1. This is because the FORTRAN compiler has stored C1 in the unused zero element of
array C2. This is done frequently in order to save space. In order to display the first element of array
C2, you must add the number of words per element to the word address calculated from the byte

address stored in Q+ 2. For example, to display C2(1), enter:

?D DB+ 14/2+4,4,A or D ‘Q+2°/2+ 4,4,A

To display the element C2(3), enter:

?D DB+ 14/2+4*34,A or D ‘Q+2/2+ 4*3,4,A

To display the entire array, enter as the count the number of words per element multiplied by the total
number of elements in the array. In the case of C2 with 3 4-word elements, enter:

?D DB+ 14/2+ 4,3%*4,A

3-13

If you wish, you can perform the calculations for count and expression and enter the results. In
performing these calculations, remember that DEBUG, by default, uses octal values and any decimal
values must be preceded by the prefix #.

The displays resulting from addressing arrays and array elements are shown in item 12, figure 3-3.
A general formula for finding the word address of the start of an array element is:

B2 + I*W
where:

B is the byte address provided by DEBUG
I is the index to the array element, i.e., 3 for C(3)

W is the number of words per element.

Addressing Common. The addresses for items in COMMON are shown in the symbol table as
relative to the start of COMMON. For example, items I4 and J4 are at location 0, I5, and J5 at location
1. The DB-relative address of the start of COMMON is given in the PMAP listing generated during
program preparation (figure 3-2). In this example, COMMON begins at location 31. Thus to display
either 14 or J4, enter:

"D 511
To display I5 or J5, enter

’D 32
(Refer to item 13, figure 3-3 for an example of displaying COMMON items.)

Figure 3-4 shows the Q-relative and DB-relative address for the data items used in the sample
FORTRAN program.

3-14

BYTE POINTERS

DL

T0 DB+ 4
DB+ 14

A
16
2

WORD POINTERS

T0 DB+26 > 26
> 27
DB + 30 > 30
31
32
DB + 47 — 47
50
DB + 51 - 51
e N—— 8
-« 7
—— 6
A A A I <«— 5
L« 1
3
2
-1
Q
L -« +1

AAAA

ONOOAWN

c
i
A
34
> C2
44
16
17
18
} COMMON
. {14,15/J4, J5)
<
I
32
43
° e
14
14
47
50
51
4
14
26
27
30
1
12
13

I —

L DB-RELATIVE

¢ Q-RELATIVE

Figure 3-4.

3-15

Layout of Items in Data Stack

MODIFYING VALUES. Values can be modified with the M command. This command mirrors the
D command in its specification so that the methods for finding values to be modified are the same as
those described for finding values to be displayed.

When the M command is executed, DEBUG prints the current value of each item to be modified
followed by :=. You either enter a new value or press return to retain the current value. The values you
enter are assumed to be octal unless surrounded by quotes (ASCII) or preceded by # (decimal).

When you specify a mode in the M command, this applies only to the display of current values; it does
not apply to the values you enter. For example, if you want to modify the decimal value in Q+ 10,
enter:

™ Q+10,1
DEBUG prints the current value as a decimal number and asks for a new value:

Q+10 +00010 :=

You must enter a value or else press return. If you want to enter a decimal value, precede the number
with #, otherwise, an octal value replaces the current value in Q+ 10. (Refer to item 14 in figure 3-3.)

If you want to modify more than one word, you enter a count:
M Q+6,3

DEBUG responds by printing the first value followed by :=. When you have responded, it prints the
second value followed by :=. This process continues until all requested values have been displayed and
modified. (Refer to item 15 in figure 3-3.)

If the value you enter is for some reason unacceptable, the request is repeated until you enter an
acceptable value. In item 16, figure 3-3, the value entered is too large. When a smaller value is
entered, DEBUG accepts it and issues the next prompt.

When character strings are to be modified, the string is displayed two characters (one word) at a time.
New character values must be surrounded by quotes. (Refer to item 17, figure 3-3.)

NOTE

Although your program code can be displayed (using DPB, DP, or
DPL), it cannot be modified. Any needed modifications should be
made to the source code followed by a recompilation.

DISPLAYING AND MODIFYING REGISTERS. A set of machine registers can be displayed and
modified with the DR and MR commands. (Refer to the DR description in section II for a list of these
registers.) In addition to the standard registers, four temporary registers, numbered from 1 through 4,
are provided by DEBUG. These registers are particularly useful during modifications. The temporary
registers are reset to zero at the start of each break so they cannot be used to transfer values past a
breakpoint. (Refer to items 18 at Break 74 and then in Break 125, figure 3-3.)

3-16

Suppose you want to set the value of three data items to 32767 (octal 77777), you can first set a
temporary register to that value:

?MR,1
1=0:=77777

Then use the register contents as a value for modification:

?M DB+ 26,3,

DB+ 26 +10000 :=$1
DB+ 27 +00700 :=$1
DB+ 30 +00800 :=$1

Note that the register must be preceded by a dollar sign ($) to indicate that it is a register, not a digit.
(Refer to item 19, figure 3-3.)

If you enter DR with no parameters, all available registers are displayed. (Refer to item 18 at Break
125, figure 3-3.) You can modify all registers by entering MR with no parameters. The MR description
in section II contains such an example.

Using the $ Command. Values can be assigned to any register using the $ command. For example,
to assign the octal value 077777 to register 1, enter:

?281:="77777

The value can take the form of an expression. Any numbers are assumed to be octal unless preceded by
a #, the contents of a location can be specified by enclosing the address in apostrophes (i.e., DB+ 26),
and an ASCII character can be specified by enclosing it in quotes. Since each register is one word in
length, no more than two characters can be assigned.

In each case, an octal value is assigned. For example, to assign the octal equivalent of the ASCII
character A to register 4, enter:

284:="A"

You can then display the register by entering:

?DR4
4=101 (DEBUG displays octal value of register 4)

(Refer to items 20 and 22 in figure 3-3 for examples using the $ command.)

Using the = Command. The result of any expression can be displayed by using the = command.
The expression itself can contain register contents ($Q), decimal values (# 100), or location contents
(‘DB+51°), as well as octal values.
For example, if you enter:

?7=30%42
DEBUG responds with the result of the calculation preceded by an equals sign:

=1560

The result is always displayed in octal unless a mode parameter is included. For instance, if you want
to display the contents of location Q+ 26 in decimal, enter:

?7="Q+26',1

DEBUG returns the decimal equivalent of the contents of this location:
=—1

In the following example, the expression is expanded:

?7="Q+ 26+ #20,I (request contents of Q+ 26 plus 20 in decimal)
=+19

Or you can find the decimal equivalent of an ASCII character as follows:

?= ((A”’I
=+65

(Refer to item 21, figure 3-3, for examples using the = command.)

DISPLAYING CODE. Ifyou want an octal dump of a portion of your program code, you can use the
DP, DPB, or DPL commands. (You can also see the octal code generated by a compiler by running the
program DECOMP or by including the CODE parameter in the $CONTROL command when you
compile. In both these cases, the entire program is dumped.) DP, DPB, and DPL are variations on the
D command that specify a program area to be used as the display base. DP displays code relative to the
program counter (P) that marks your current instruction.

DPB displays code relative to the program base (PB). DPL displays code relative to the program limit
(PL). The code in the currently executing program unit starts at location PB. The program limit PL
marks the end of the segment transfer table (STT) that follows each segment of code. (Refer to figure
3-5 for a diagram of the code layout.)

As with the D command, you can specify offsets, a count, and the mode of the display. Since you will
usually want an octal display, the mode is omitted from the examples in figure 3-5.

In item 1, figure 3-5, twenty words of octal code at the current P-counter location are displayed. These
words are the translation by the FORTRAN compiler of line 9 in the sample program (DISPLAY
C1,C2). The resulting machine instructions start at the entry point of program MAIN, location 172
relative to PB. Thus, you could achieve the same result by entering:

?DPB+ 172,20
If you specify an offset in a DP command, it is relative to the P-counter, as:

?DP+ 20 (20 words past P)
Suppose the P-counter is set to location 172, then the same result is achieved by entering:

?DPB+ 172+ 20

The resulting display is illustrated in item 2, figure 3-5.
3-18

END OF PROGRAM
sRUN DBPROG1; DEBUG

DEBUG @.172

?DP, 20

P+@ 334405 034404 040463 B35004 004000 G00787 82106062 170615
P+10 831004 241402 021010 003200 931006 621010 921063 G41482
?DP+28

P+20 621010

7D PB+172+28

PB+212 621018

R _74

MAINPROG MONE MTWO MTHREE

CALLING SUBROUTINE

BREAK B.74

?DP
P+ 208787 ‘_@
DPB+74

PB+74 886707
?DPB s
PB+3 g35001
?DPL-1
PL-1 200000
?DPL-2 @
PL-2 8o8172
7E®
Ee PB+0 -« W Program Base
END OF PROGRAM
P =74 (BREAK IN > SUBROUT
SUBROUTINE) PB*74
PB + 165 <
P =172 (BREAK IN PB +172
MAIN)
5 MAIN
PB + 340 /
STT
PL - Program Limit

Figure 3-5. Display Code Locations Example

3-19

As shown in item 3, figure 3-5, if you want to display the contents of location PB+ 0, enter:
DPB

PL, the program limit, is at the end of the area allocated to your program segment and thus can have
only a negative offset. As shown in item 4, figure 3-5, PL-1 contains the value zero. This is the last item
in the stack transfer table and points to the entry point to SUBR. PL-2 is displayed as 172, the entry
point to program MAIN. (Refer to the numbers under STT in the PMAP listing in figure 3-2. These
numbers indicate the value to be subtracted from PL to determine values in the segment transfer
table.) Note that the location pointed to by PL always contains the length of the STT in the right byte.

DISPLAYING STACK MARKERS. The T command allows you to trace stack markers through a
series of nested subroutines (FORTRAN) or nested procedures (SPL). When T is executed, it displays
for each routine, the displacement of Q to the initial Q, the relative P location and the logical segment
number (LCST) to which control returns upon exit. The trace is useful particularly when you have a
number of nested subroutines and you want to find out which calls which, where they return, and the
displacement of Q for each.

For example, if T is entered at a breakpoint in the main program of the sample FORTRAN program
used in this manual, the following values are displayed:

?T

Q-9 »LCST=S132,P=0

The current displacement of Q from initial Q is zero; the logical code segment to which control returns,
should you exit from the program other than through TERMINATE’, is system segment library
segment 132; the P register is zero, the initial setting for the start of the entire program.

If you enter T in a subroutine, the display shows the stack markers for the currently executing routine
at the top of the list, followed in turn by each nested routine back to the main program. In this case, the
main program T display follows that of the subroutine. For example:

T
Q:Z »LCST=0 ,P=0170o (SUBROUT marker)
n=-21 +LCST=S132,P=0 (MAIN marker)

In the subroutine, the displacement from the current Q is zero, the logical code segment to which
control returns should you exit from the program other than through TERMINATE’, is system
segment library segment 132; the P register is zero, the initial setting for the entire program. The
display for the main program is unchanged except for the displacement of initial Q which is shown as
21 locations less than the current Q.

T traces only the subroutines that have led to execution of the current routine, displaying one line for
each. Thus T displays only one line for the main program; and in the sample FORTRAN program, a
maximum of two lines are displayed by T. If, however, this subroutine had called another, the T
executed in a breakpoint to that routine would display three lines.

3-20

HOW TO USE THE DEBUG INTRINSIC

In order to use the DEBUG intrinsic in a FORTRAN program, you should insert in your program
declarations, the following statement:

SYSTEM INTRINSIC DEBUG

This defines the intrinsic to the program and allows you to make calls to DEBUG. Then all you need to
do is insert a call to DEBUG at the beginning of your program as the first executable statement. When
this call is executed, it places the program in DEBUG mode exactly as if you had run the program with
the DEBUG parameter in the :RUN command. Note that the intrinsic is ignored if the program is
executed in a batch job.

Figure 3-6 shows the compilation listing of the FORTRAN program DBTEST. The program is identical
to DBTEST1 used in the previous discussion except for the call to DEBUG and its declaration. (Refer to
items 1 and 2.) The new statement increases all subsequent locations by 1 so that the instruction at
label 10 is now at code offset 13, and the instruction at label 20 is at code offset 76. Otherwise, the
compilation listings for the two programs are identical.

Figure 3-7 shows the PMAP listing for program DBPROG (the prepared program file resulting from
preparation of DBTEST). This map is identical to the map for DBPROG] (see figure 3-2) except that

the intrinsic DEBUG requires a new STT entry, and the STT entry for TERMINATE’ has been
increased to compensate.

RUNNING WITH THE DEBUG INTRINSIC

When the call to DEBUG is executed, the program pauses at the next location. This break is
equivalent to the break at the location of the call to DEBUG. DEBUG displays the message:

DEBUG s.nnn (where s is the segment number; nnn the breakpoint)
The DEBUG prompt, a question mark, is then issued and you can respond with any of the DEBUG

commands exactly as if you had run the program with the DEBUG parameter, as described earlier in
this section.

3-21

:FORTRAN DBTEST

PAGE 2001 HP32102B.00.0

20001063 SCONTROL MAP,LABEL,LOCATION,USLINIT

we12 000026800 PROGRAM MAIN

%6012 @0002100 SYSTEM INTRINSIC DEBUG<—-—-®

60812 @o003000 CHARACTER#*8 C,(C1,C2(3)

%012 00004000 COMMON 14,15

29912 ©0086000 DATA C/"DBTESTI1"/

00312 Q0207000 DATA Cl/'MAINPROG"/,C2/"MONE", "MTWO", "MTHREE"/
9012 00008000 DATA 16/10000/,17/70@/,18/888/

20012 00008100 CALL DEBUG

0330908080 10 DISPLAY C1,C2

20032 G0010000 11 = -1
20634 00611000 12 =1
60036 006012000 13 = 10
00040 00813000 la = 100
GBG42 ©6O14000 15 = 1800
0044 00015600 DISPLAY "CALLING SUBROUTINE™
00376 00016000 20 CALL SUBROUT(C1,C2.11,12,13)
%3106 0PG17000 DISPLAY "BACK FROM SUBROUTINE”
Par1ag 00018080 STOP
eA141 @OG19000 END

SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS
c CHARACTER SIMPLE VAR Q+ 1,1
(o} CHARACTER SIMPLE VAR Q+ 2,1
c2 CHARACTER ARRAY Q+ 2,1
DEBUG SUBROUTINE
I INTEGER SIMPLE VAR Q*+ 6
12 INTEGER SIMPLE VAR Q+ 7
I3 INTEGER SIMPLE VAR Q+ 8
14 INTEGER SIMPLE VAR ? COMMON
15 INTEGER SIMPLE VAR 1 COMMON
16 INTEGER SIMPLE VAR @+ 3,1
17 INTEGER SIMPLE VAR Q+ 4,1
I8 INTEGER SIMPLE VAR Q+ 5,1
SUBROUT SUBROUTINE

COMMON BLOCKS
NAME LENGTH
coM* 2

LABEL MAP

STATEMENT CODE STATEMENT CODE STATEMENT CODE

LABEL OFFSET LABEL OFFSET LABEL OFFSET
10 13 20 76

Figure 3-6. Sample FORTRAN Program With Call to DEBUG

3-22

0P305 00020000 SUBROUTINE SUBROUT(D1,D2,J!,J2,d3)
200665 0p221000 CHARACTER*8 D1,D2(3)
PerAS ©@0821100 COMMON J4,J5
3685 80022000 D1 = *SUBROUT"
peB21 0023000 D2(1) = "SBONE"
02337 0QQC24000 D2(2) = "SBTWO"
PPR55 GB025030 D2¢(3) = "SBTHREE"
oBB74 QB0260820 36 DISPLAY Dl1,D2
23113 080276008 Jl = -9
8115 ©@6028060 J2 = 9
00117 ©OB329080 J3 = 99
23121 0GQ20300690 J4q = 908
3123 Q09318088 J5 = 9988
23125 GB332000 40 DISPLAY "RETURNING TO MAIN PROGRAM™
fa164 @00330600 RETURN
26165 O88340800 END
SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS
D1 CHARACTER SIMPLE VAR Q- 8,1
D2 CHARACTER ARRAY Q- 7,1
J1 INTEGER SIMPLE VAR Q- 6,1
J2 INTEGER SIMPLE VAR @- 5,1
J3 INTEGER SIMPLE VAR Q- 4,1
J4 INTEGER SIMPLE VAR g COMMON
Js INTEGER SIMPLE VAR 1 COMMON
SUBROUT SUBROUTINE
COMMON BLOCKS
NAME LENGTH
coM:* 2
LABEL MAP
STATEMENT CODE STATEMENT CODE STATEMENT CODE
LABEL OFFSET LABEL OFFSET LABEL OFFSET
30 74 49 125
ok ok k GLOBAL STATISTICS XKk ok
*k kK NO ERRORS, NO WARNINGS *k%x*

TOTAL COMPILATION TIME @:008:084
TOTAL ELAPSED TIME P:06:22

END OF COMPILE

Figure 3-6. Sample FORTRAN Program With Call to DEBUG (Continued)

3-23

tPREP $OLDPASS., DBPROG; PMAP

PROGRAM FILE DBPROG.PUB.TECHPUBS
COMMON ARRAY ALLOCATION

NAME ADR LEN
coM* 31 2

SEG' 4
NAME STT CODE ENTRY SEG
SUBROUT 2 2
TFORM®
FMTINIT®
BLANKFILL'
SI0*
ASIO’
MAIN
DEBUG
TERMINATE" 11 ?
SEGMENT LENGTH 340

LAV IS B BRI |

165 172

QOO R W—

N

PRIMARY DB 2 INITIAL STACK 1440 CAPABILITY 623
SECONDARY DB 33 INITIAL DL 4] TOTAL CODE 340
TOTAL DB 35 MAXIMUM DATA ? TOTAL RECORDS 6
ELAPSED TIME 00:01:02.274 PROCESSOR TIME 20:00.417

END OF PREPARE

Figure 3-7. PMAP Listing For FORTRAN Program With DEBUG Intrinsic

You can determine where the first break occurs in your program by adding the location of the first
instruction after the DEBUG call (item 3, figure 3-6) to the start of code for the main program (item 1,
figure 3-7). In the sample program, the first break will occur at a location determined as follows:

13 (octal) + 165 (octal) = 200 (octal)

(Refer to figure 3-8 for an illustration of running a program containing a call to DEBUG.) In this
example, all subsequent breakpoints are set when the program pauses for the first time because of the
call to DEBUG. Since this break is equivalent to a break at label 10, only the breakpoints at labels 20,
30, and 40 are set at this time. Otherwise, the breakpoints are the same as those set in figure 3-3,
either initially or with the R command. Figure 3-8 simply uses the D command to display items at each
of the four breakpoints. Since there is no difference in the use of DEBUG commands when a program is
run with the DEBUG parameter or contains a call to DEBUG internally, no attempt is made to
illustrate DEBUG commands in this example. Rather it illustrates the program flow at each of the
breakpoints as indicated in the following key to the numbered items.

Key to items in figure 3-8 are:
1 Location of first breakpoint at label 10 (165+ 13)

2 Set three more breakpoints at labels 20, 30, and 40

W

Display 16, I7, and I8 set by DATA statement

3-24

10

11

12

13

14

15

16

17

Display 8-character item C set by DATA statement

Display 8-character item C1 set by DATA statement

Display 3 elements of array C2 set by DATA statement
Location of second breakpoint at label 20 (165+ 76)

Display items 11, 12, I3 set between labels 10 and 20

Display items I4, and I5 set between labels 10 and 20

Location of third breakpoint at label 30 in SUBROUT

Display 8-character item D1 set prior to label 30 in SUBROUT
Display 3 elements of array D2 set prior to label 30

Display items J1, J2, and J3 passed from program MAIN
Display items J4 and J5, items common to I4 and I5 set in MAIN
Location of last breakpoint at label 40 in SUBROUT

Display items J1, J2, and J3 set between labels 30 and 40

Display items J4 and J5 set between labels 30 and 40

:RUN DBPROG
DEBUG e.eee«'@
7B 165+76,74,1254—@

?D Q+3:,3,51

mB+26 +109008 +@0730 +258054—@
?D_Q+1

@+ 1 2009384

?D 4/2545A

DB+ 2 DBTEST14—-®

?D_Q+2

&2 200014

?D 14/2,45A

DB+ 6 MAINPROG

D 14/2+4,4,A

mB+12 MONE

D 14/2+45,#125A

DB+12 MONE MTWO}4__@
B+22 MTHREE

R

MAINPROG MONE MTWO MTHREE

CALLING SUBROUTINE
BREAK @.263
?D Q+653,51

o6 -20001 +00001 +00010<8)
D 31,2,1

B+31 +00100 +01600<{9)

R

Figure 3-8. DEBUG Example From Program With DEBUG Intrinsic

3-25

BREAK 0.7 4<—(10)

?D Q-7
-7 20014
?D _14/2,4,A

87 6 suBrOUT<~—(11)

?D Q- #8

10 e6a14
D_14/2+4,#12,A

B+12 SBONE SBTWO }‘_@
DB+22 SBTHREE

D Q-6:,3,1

DB+47 -90001 +00001 +90010
?D 31,2,1

B+ 31 +201@0 +Glﬁ@ﬂ
R

SUBROUT SBONE SBTWO SBTHREE

?D B-6:,3,1

DB¥ 47 -00009 +00009 +08090 ~—(16)
7D 31,2,1

DB+ 31 +00900 +09000~—(17)

R

RETURNING TO MAIN PROGRAM
BACK FROM SUBROUTINE

END OF PROGRAM

Figure 3-8. DEBUG Example From Program With DEBUG Intrinsic (Continued)

USING DEBUG WITH PRIVILEGED MODE CAPABILITY

Additional commands and capabilities are available when you use DEBUG in privileged mode.
Mainly, privileged mode allows you to display and modify data up to the stack limit, Z, to display and
establish breakpoints in system code as well as in your own program, and to display disc sector
contents.

Four additional commands are allowed in privileged mode; also, most commands have enhanced
capabilities. (Refer to table 3-1 for a list of the new commands and the extra capabilities for the
standard commands.) In addition to the extra DEBUG capabilities, a user with privileged mode can
use the MPE :DEBUG command to debug the Command Interpreter. (Refer to the MPE Commands
Reference Manual for a discussion of this command.)

The normal checks and limitations that apply to the stan-
dard users in MPE are bypassed in privileged mode. It is
possible for a privileged mode program to destroy system
integrity, including the MPE operating system software
itself. Hewlett-Packard cannot be responsible for system
integrity when programs written by users operate in
privileged mode.

3-26

Use of DEBUG in privileged mode is essentially identical to use with standard capabilities. A minor
difference is that the message printed at the initial entry into DEBUG and at each breakpoint includes
the word PRIV to indicate that you are operating in privileged mode. For example, at the first entry
point, the following message is printed:

DEBUG PRIV 0.170 (Enter DERUG in privileged mode at location 170.)
At a subsequent breakpoint, the following might be printed:
BREAK PRIV 2.360 (Break in privileged mode in segment 2, location 360.)

The following discussion of using DEBUG in privileged mode gives only a summary of the additional
capabilities within the various functional areas.

Table 3-1. Privileged Mode Command Capabilities

PRIVILEGED COMMAND | CAPABILITY
A{ E} Establish breakpoint mode as private (P) or system global (S).
DV [/dev] + startsector Display s_pecmed numpgr of sectors (count) from specm‘ed device (Iqev) or
[count] [mode] system disc, from specified sector number (startsector), in octal, decimal, or
' ’ ASCIl (mode).
F CcO S Freeze code (CO) or data (DA) in the specified segment (segnum) so that it is
egnum
DA not swapped.
CO . -
U DA (S€gnum Unfreeze frozen code (CO) or data (DA) in specified segment (segnum).
STANDARD COMMAND PRIVILEGED CAPABILITY
B—[S] seament Segment location is extended to include system segmented library (S) or
[LA gment. | - - absolute code segment (A).
C'[S] ¢ Segment location is extended to include system segmented library (S) or
LA segment. | - - - absolute code segment (A).
A
(S:\({) Display base extensions allow display of absolute relative (A), system global
D DA relative (SY), code segment relative (CO), data segment relative (DA), current
DX absolute DB relative (DX), and extended absolute address (EA).
EA
DR When all registers displayed, display includes PCB (process control block
index), CST (absolute code segment index), STAK (stack segment index), DST
(extra data segment index). Also, if operating in absolute mode, DX (absolute
location of DB register) and EA (current block number).
L[/dev] Switches display to specified logical device number (/dev).
A
sy The modify base (modbase) extensions allow modification of absolute relative
MIDA] . .. (A), system global relative (SY), data segment relative (DA). Also, in absolute
EX mode, current absolute DB relative (DX) and extended absolute address (EA).
A
MR ,ST All ST bits, rather than only bits 2-7 can be modified.
R[[S] segment} . .. Segment location is extended to include system segmented library (S).
T Trace is extended to show absolute code segment index (CST).

Sep 1976 3-27

SETTING BREAKPOINTS IN PRIVILEGED MODE

Two modes are defined for breakpoints:

P private breakpoint mode (restricted to your own program)

S system breakpoint mode (includes entire MPE system)

When a system breakpoint is established, it is global; that is, any program will break at that point.
When a breakpoint is established in private mode, only the program in which the breakpoint is
established breaks.

The A command can be used to specify that subsequent breakpoints are private or global. Use AS to set
global breakpoints; use AP to return to private mode, the default. For example:

DEBUG PRIV 0.270
?AS

?B—5.301 (The first program to execute relative location 301, segment 5,
will break.)

.
.
.

BREAK SYS.PRIV 5.301 (In system global mode, the mode is indicated by SYS.PRIV in
the break message.)

?AP (Subsequent breakpoints only apply to your own program.)
To set breakpoints in the system segmented library, follow the B or R commands by S. For example:

?BS 3.160+ 10,160+ 57 (Breakpoints are set at locations 160+ 10 and 160+ 57 of seg-
ment 3 of the system segmented library.)

RS 3.324 (Resume execution and break at location 324 in segment 3 of
the system segmented library.)

To set a breakpoint in absolute code, follow the B command with A. For example:
?BA 52.173 (Breakpoint is set at code segment absolute 52, location 173.)

SWITCHING DISPLAY TO LINE PRINTER IN PRIVILEGED MODE

In privileged mode, you can specify a logical device number of the device to which you want the display
sent. For example, you can send output to a line printer equated to logical device 6 as follows:

’L6

When a logical device number rather than a file reference is specified, the line printer is preempted
immediately for the output. This means that if other users are printing to the same device, your output
can be interspersed with theirs. To avoid this, always check to insure that you are the sole user of a

line printer before using this form of the L command.

NOTE

The logical device must always be equated to a line printer.

3-28

DISPLAYING CODE, DATA, AND DISC SEGMENTS IN PRIVILEGED
MODE

The D command can be followed by a letter indicator in order to establish a display base other than the
stack relative bases DB, DL, Q, and S, or the code relative bases PB, P, and PL. The privileged mode
bases allow you to display absolute code locations in bank zero or in other banks, and to display data
relative to the absolute location of DB. For example, in order to display code starting at an absolute
location in bank 2, enter:

?D EA2+121144+ 372,20 (Display 16 words at location 372 relative to absolute location
121144 in bank 2.)

DEBUG returns the octal listing listing, 8 words per line as follows:

EA2+121536 00000 00103 00105 00000 00000 00314 00372 00402
EA2+121546 00000 00000 00000 00000 00000 00000 00000 00000

The privileged mode user can also display code or data relative to the system base, to the base of any
code segment or the base of any data segment. To display at a location relative to the system base,
enter:

?D SY 161 (Displays location 161 relative to the system base.)

When displaying relative to the base of a code or data segment, any offset within the segment is
separated from the relative segment number by a plus (+). For example:

?D DA 5+74,10,1 (Displays 8 words of data in decimal starting at location 74 of data
segment 5.)

?D CO 301+ 20,20 (Display 16 words of code starting at location 20 of user segment
301.)

?D CO(10+6)+ 10, # 64 (Display 64 words of code starting at location 10 of system seg-

ment 16; since the segment number is an expression, it must be
enclosed in parentheses.)

The contents of any segment of disc can be displayed with the DEBUG command DV. If a disc logical
device number is not specified, the system disc (Idev= 1) is assumed. The starting sector address must
be specified and, if more than one, the number of sectors to be displayed must be specified. Portions of a
sector cannot be displayed. For example:

?DV 2+32715,3 (Display 3 sectors starting at sector 32715 on logical device 2.)

MODIFYING DATA IN PRIVILEGED MODE

Although DEBUG cannot be used to modify code directly, in privileged mode code can be modified if
its absolute address is known. All the privileged mode extensions used with the D command, except
CO indicating a code segment, can be used with the M command. You can modify absolute code
locations in any bank, and modify data relative to the absolute location of DB. You can also modify
data relative to the system base or relative to the base of any data segment. If the data segment
number is an expression, it must be enclosed in parentheses. For example:

?M DA(62+ 20)+ 10,5,1 (Display 5 words of decimal data at location 10 in data segment
102 (octal).)

3-29

DISPLAY OR MODIFY REGISTERS IN PRIVILEGED MODE

The same commands, DR and MR, are used to display or modify registers in privileged mode. The
difference is that more registers are displayed in privileged mode and all ST bits, rather than just bits
2 through 7, can be modified.

DISPLAY REGISTERS. To illustrate, enter the command DR:

?DR
ST=60301,X=0,DL=177602,Q=4207,5S=4207,Z= 16013,P=0
1=0,2=0,3=0,4=0
PCB=27,CST=301,LCST=0,STAK=214
— - |

privileged mode only
where:

PCB is the index to the process control block.
CST is the index to your absolute code segment.

STAK is the index to your stack segment.
If operating in absolute DB mode, two additional registers are displayed:

DX absolute address of DB.

EA current bank number.

If you set breakpoints in the system library (BS command), the logical code segment number (LCST) is
preceded by the letter S.

If you are using extra data segments, one more register is displayed:

DST index to current extra data segment.

MODIFY REGISTERS. If you enter the MR command, you will be prompted to change the same
registers as if you entered the command in non-privileged mode. The only difference is that you can
change bits 0 and 1, and bits 8 through 15 of the ST register.

FREEZING/UNFREEZING SEGMENTS IN PRIVILEGED MODE

During DEBUG operations it is occasionally necessary to freeze your code and data so that swapping
does not alter the current locations. This is important particularly when you want to determine
absolute locations. The F command is used to freeze code (FCO) or data (FDA). The U command
unfreezes code (UCO) or data (UDA).

Suppose you want to freeze your code and data segments, first you can use DR to determine the
segment numbers, then freeze those segments:

?DR,CST,STAK
CST=301,STAK=214
?FCO 301

’FDA 214

3-30

You can then display the contents of the first 8 words (absolute address 0-7) of these segments as
follows:

?DCO 301,10
?DDA 214 ,10

You can then unfreeze these segments and continue by entering:

?0CO 301
?UDA 214

3-31

HOW TO USE THE
STACK DUMP FACILITY [v

The commands and intrinsics that comprise the stack dump facility of DEBUG allow you to dump all
or portions of your data stack, provide a trace and analysis of the stack, and in interactive mode, allow
you to use DEBUG commands to trace and possibly correct errors.

The STACKDUMP intrinsic allows you to dump the stack at any time and send the dump to a file. The
SETDUMP intrinsic or command provides a stack dump or stack marker analysis automatically in
case your program terminates abnormally (aborts).

The operation of SETDUMP differs depending on whether the program is executed interactively or is
part of a batch job. If the :SETDUMP command is entered during an interactive session or a program
containing a SETDUMP intrinsic is executed interactively, the stack is not dumped. When the
program aborts, you are given a trace of the stack markers and placed in DEBUG mode so that you can
enter any of the DEBUG commands described in Section III. If :SETDUMP is entered as a batch
command in a job or if a program containing the SETDUMP intrinsic is executed in a batch job, a trace
of the stack markers is provided when the program terminates and, optionally, a dump is provided of
all or portions of the stack.

Unless specified otherwise, the STACKDUMP intrinsic provides a trace of the stack markers in
addition to the stack dump.

The :RESETDUMP command or RESETDUMP intrinsic can be used to cancel the effect of the
:SETDUMP command or SETDUMP intrinsic, respectively.

STACK TRACE AND ANALYSIS

The stack trace and analysis provided automatically by SETDUMP and optionally by STACKDUMP
can be very useful. The values provided by the stack trace and analysis are illustrated in figure 4-1.

:SETDUMP
:RUN DBPPOG2

MAINPROG MONE MTWO MTHREE
ABORT :DBPROGQ-PUB.TECHPUBS.Z@.2231}@

PROGRAM ERROR #1: INTEGER OVERFLOW
#+* ABORT STACK ANALYSIS #%x @

>S=0800652 DL=177682 Z=001475
lrQ=@08056 P=080231 LCST= 008 STAT=U,1,1,L,8,8,CCL X=peoeee
G=0@A8441 /P=177777 LCST= S132 STAT=P,1,02,L.9,8,CCG X=000008

\—\,d
DERUS @o23]‘® @

Figure 4-1. Sample Stack Trace and Analysis

LRY

4-1 JUN 1977

The key items in figure 4-1 are:

1

Abort message indicating where the abort occurred (sector 0, relative location 231) and the type
of error (integer overflow).

Location of top of stack when the error occurred.

Location of Q after the error and after the four-word stack marker has been placed at the top of the
stack; note that Q is four words greater than S.

Value of program counter following abort; P-1 is location of statement that caused the abort.

Status word at the time of the error; the first line shows the status of the program unit that
caused the program to abort.

The second line provides the status of system area to which control normally returns at an
abort.

Logical Code Segment number assigned to the program by the segmenter at the time of PREP.
The S preceding the LCST number indicates it is a system code segment.

Since code segment S132 has not been entered yet, the program counter has no valid value.
This is indicated by printing -1, (177777).

This information is not only displayed for your use, but is placed at the top of the stack as the four-word
stack marker.

The status word (ST in the display) has the following format:

bt 0 1 2 3 4 5 6 7 8 15
Segment #
bit0 = 1 if program is privileged bit4 = 1 if overflow bit set (not set if user
0 if program is in user mode traps enabled)
0 if not
bit1 = 1 if external interrupts are enabled
0 if ;not bit5 = 1 if carry bit set
0 if not
bit2 = 1 if user traps enabled
0 if not bits 6,7 = 01 if CCL
10 if CCE
bit 3 = 1 if right stack operation pending 00 if CCG

0 if left stack operation pending

USING SETDUMP AND RESETDUMP

Whether entered as a command or included in your program as a call to the SETDUMP intrinsic,
SETDUMP only executes when and if your program aborts.

4-9 JUN 1977

Entered as a command, :SETDUMP remains active for the life of the session or job. If you want to
cancel SETDUMP before these points are reached, you can enter the :RESETDUMP command from
your terminal or from within a batch job.

Called as an intrinsic, SETDUMP remains in effect for the rest of the program unless specifically
cancelled by a call to the RESETDUMP intrinsic.

As a command or intrinsic, SETDUMP affects not only the current process but also any son processes
created after SETDUMP is executed. RESETDUMP, on the other hand, affects only the current
process and must be specified separately for any son processes for which SETDUMP enabled the stack
analysis facility.

INTERACTIVE USE OF SETDUMP

If you enter the :SETDUMP command before running your program or if the SETDUMP intrinsic is
included in a program run interactively, control transfers to DEBUG if the program terminates
abnormally. A stack trace analysis is displayed and then the program enters DEBUG mode so that you
can enter any of the DEBUG commands described in Section III. Any SETDUMP parameters are
ignored.

USING :SETDUMP COMMAND INTERACTIVELY. To illustrate the use of :SETDUMP in
interactive mode, suppose you are running program DBPROG2 for the first time. You can precede the
‘RUN command by a :SETDUMP command and, if the program aborts, you can then use DEBUG to
determine the cause and possibly correct it. In the example in figure 4-1, DBPROG2 terminates with
an integer overflow.

The status of the aborted program in the example, shows that the user traps are set (bit 2=1). As a
result, the overflow bit (bit 4) is not set even though an overflow occurred. This is a result of the way
the interrupt system operates.

Following the stack analysis, the DEBUG prompt is issued. In response, you can perform any of the
standard DEBUG operations. For instance, if you simply want to bypass the erroneous statement, you
can increment the P register and continue. Or you might want to terminate by entering E@. You can
also display the contents of the instruction where the program terminated and try to determine the
cause of the error. Since the error in this case is an integer overflow, you could look at the contents of
the last three or four words in the stack when the error occurred. Usually, you will also look at your
compilation listing. For this sample program, the listing of program MAIN is shown in figure 4-2; the
listing for SUBROUT and the PMAP listing from preparation are identical to those shown in figure
3-1 in Section III since only program MAIN has been changed.

Sep 1976 4-3

:FORTRAN DBTEST2

PAGE 0061 HP32102B.00.0
0pP21000 $CONTROL MAP,LABEL,LOCATION,USLINIT
o112 0PP02009 PROGRAM MAIN
90012 0@e0e3320 CHARACTER*8 C,C1,C2(3)
0eR12 00004008 COMMON 14,15
Pe@12 00006000 DATA C/"DBTESTI1"/
20012 Q2207000 DATA C1/"MAINPROG'"/,C2/"MONE", "MTW0", ""MTHREE"/
o212 Qepesaer DATA 16/10008/,17/7008/,18/800/
eea12 0B0e9009 12 DISPLAY Cl.,C2
202231 CoB10200 11 = -1
78033 00011000 12 = 1
2A@3S ©0e12000 I3 = 10
20037 00013000 14 = 100
20041 20014000 15 = 1062
(:)*ﬂﬂﬂ43 poR14100 15=32767+12
ner4a6 0230157200 DISPLAY "CALLING SUBROUTINE"
03101 02016020 20 CALL SUBROUT(C1,C2,I1,12,13)
22111 Q0017860 DISPLAY "BACK FROM SUBROUTINE"™
28143 0218330 STOP
272144 00019000 END
SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS
c CHARACTER SIMPLE VAR Q+ 1,1
Cl1 CHARACTER SIMPLE VAR @+ 2,1
ce CHARACTER ARRAY e+ 2,1
I1 INTEGER SIMPLE VAR Q+ 6
12 INTEGER SIMPLE VAR @+ 7
I3 INTEGER SIMPLE VAR @+ 8
I4 INTEGER SIMPLE VAR @ COMMON
15 INTEGER SIMPLE VAR 1 COMMON
16 INTEGER SIMPLE VAR @+ 3,1
17 INTEGER SIMPLE VAR Q+ 4,1
18 INTEGER SIMPLE VAR Q+ 5,1
SUBROUT SUBROUTINE
COMMON BLOCKS
NAME LENGTH
coM* 2
LABEL MAP
STATEMENT CODE STATEMENT CODE STATEMENT CODE
LABEL OFFSET LABEL OFFSET LABEL OFFSET
12 12 20 101

Figure 4-2. Sample FORTRAN Program With Error

4-4

Note item 1 in figure 4-2. This location relative to the start of code location at 165 gives the PB-relative
location 230. The program halted with the P register at 231 so this is the instruction containing the
error. If you want to continue ignoring this error, enter:

?MR,P
P=231 =233
R

The program continues execution with the statement at location 46 + 165. Assuming there are no
further errors, it will run until normal termination.

You could also terminate the program by entering:
’E@

The program terminates with the message END OF PROGRAM and returns control to the operating
system.

If you want to display the contents of the statement causing the error, enter:
?DP-1,3
The three octal words of the instruction will be displayed.

You can also display the contents of the stack at the time of the abort. The stack analysis showed that
S, at this time, was at DB-relative location 52. Thus, to display the last three words in the stack at that
time, enter:

?DDB+52-3,3

Depending on what you find, you may want to remove the values currently in the stack. You can do
this with the E command as follows:

E2 Remove 2 words from top of stack and resume.
R

Since the particular problems causing a program to abort vary widely, only suggestions can be given
here of the particular action to take from among the many options provided through the DEBUG
commands.

USING SETDUMP INTRINSIC INTERACTIVELY. You may include a call to the SETDUMP
intrinsic anywhere within your program. If you want to transfer to DEBUG in case of an abort
anywhere in the program, you should place the call at the beginning. If you only want DEBUG in case
of an abort in a specific section of the program, place the intrinsic call at the beginning of this section

and a call to RESETDUMP at the end.

Used interactively, no parameters need be included in the intrinsic call since they will be ignored;
control transfers to the DEBUG program exactly as if the :SETDUMP command had been entered in
an interactive session as described above. If, however, the program may be executed in batch mode,
you should include parameters to specify the portion of the stack you want dumped in case of an abort
in a batch execution. These parameters are described below under the heading USING SETDUMP
INTRINSIC IN A JOB.

4-5

USING SETDUMP IN BATCH MODE

When :SETDUMP is entered as a batch command or SETDUMP is included as an intrinsic in a
program executed in batch mode, the stack dump facility displays the stack trace and analysis as
illustrated in figure 4-1. Also, depending on the parameters specified, it dumps all or part of the stack.

USING :SETDUMP COMMAND IN A JOB. In a job, the SETDUMP parameters specify the
portion of the stack to be dumped and whether the dump will include ASCII as well as octal values. If
all parameters are omitted, only the stack trace and analysis is displayed in case of an abort.

If you want to dump the entire stack, you must specify two parameters, as follows:

:SETDUMP DB,ST

DB displays the stack from DL to Q, and ST displays the stack from Q to S.

If you want to display the parameters passed to the current subroutine and the stack markers at
Q—63 through Q—0, you can specify the command as:

:SETDUMP QS
QS displays Q- 63 through S. If ST is specified with QS, QS is ignored.

If you want the dump to include the ASCII conversion of the octal values, you must specify the ASCII
parameter. For example:

:SETDUMP DB,ST;ASCII

This command dumps the entire stack and includes the ASCII conversion.

USING SETDUMP INTRINSIC IN A JOB. You may include a call to the SETDUMP intrinsic
anywhere within your program. If you want a dump in case of an abort anywhere in the program you
should place the call at the beginning of the program. To only dump in case of an abort in isolated
sections of the program, these sections can be delimited by a call to SETDUMP at the start and a call to
RESETDUMP at the end of each section.

One parameter is specified in the SETDUMP intrinsic. The value of this parameter determines
whether or not a stack dump is made and, if so, what portion of the stack is dumped, and whether the

ASCII conversion is to be included.

The parameter is passed by value. It is a 16-bit logical value with the following format:

bit 0 12 13 14 15
AlQ|s|D
S|s|T1|8B

Only bits 12 through 15 have meaning. They are interpreted as follows:

bit DB =

1 dump DL to Q initial
ST = 1 dump Q initial to S

1

1

QS = dump Q- 63 to S (ignored if bit 14 = 1)

AS = dump ASCII as well as octal values

The remaining values are zero and, if the entire parameter is zero, only the stack trace and analysis is
provided.

Suppose you want to call the system intrinsic SETDUMP from a FORTRAN program and dump the
entire stack with ASCII equivalence, include the following call in your program:

CALL SETDUMP(%13) (Dump DL through S with ASCII)
Bits 12, 14, and 15 are set by this parameter, octal 13.
To simply dump the stack with no ASCII conversion, use the call:
CALL SETDUMP(3) (Dump DL through S, no ASCII)
If you want to dump Q—63 to S, use the call:
CALL SETDUMP#4) (Dump Q—-63 through S, no ASCII)
Set the entire parameter value to zero if you only want a stack trace and analysis upon abort:
CALL SETDUMP(0) (Stack trace and analysis only)

The stack trace and analysis is illustrated in figure 4-1. Refer to figure 4-4 for a sample of a stack
dump.

TERMINATING WITH RESETDUMP

:SETDUMP is terminated automatically when you log off in an interactive session. If, however, you
want to continue in the session without using :SETDUMP, you must specifically terminate with the
:RESETDUMP command by entering:

:RESETDUMP

Note that you must return to MPE control before entering :RESETDUMP; it cannot be specified
during program execution.

Specified in a batch job, the :SETDUMP command remains in effect until the end of the job unless you
specifically terminate with :RESETDUMP.

When the SETDUMP intrinsic is used in a program, it remains in effect during execution of that
program. You may set limits to its range by calling the RESETDUMP intrinsic at some point in your
program subsequent to SETDUMP. Thus, you can request a dump and stack analysis in case of an
abort in selected areas of your program.

4-7

USING STACKDUMP

The STACKDUMP intrinsic provides a dump of your stack from three points in the stack: counting up
from DB, counting down from S, and relative to initial Q between Q— 63 and S. The areas to be dumped
are, thus, similar to the areas dumped by SETDUMP in case of a program abort. The difference is that
STACKDUMP provides a dump in an executing program, not following an abort, and the dump is
taken at the point STACKDUMP is specified.

HOW TO CALL STACKDUMP

The parameters used for STACKDUMP are defined in section II. If no parameters are specified no
dump is taken so it is usual to set parameters.

The first parameter specifies the filename where the information is to be dumped. If this parameter is
omitted, the dump is sent to the standard list device, for a job, the line printer and in a session, your
terminal.

If you do specify a filename and plan to collect your dump from a pile of line printer output, you may
want to include the second parameter that is an integer printed on the dump to identify it. Also, if you
are making several calls to STACKDUMP within a program, you can use this parameter to differen-
tiate between the resulting dumps. It is also useful if you have several consecutive versions of the
program in order to document the changes.

The third parameter can be used to suppress the ASCII conversion that is otherwise printed automati-
cally beside the octal dump. It can also be used to suppress the trace and stack analysis normally
provided with the dump.

The fourth parameter allows you to select the portion of the stack you want dumped. Actually, you can
dump the entire stack from DB to S by specifying a positive count relative to DB. If the count is greater
than the number of words in your stack, the dump terminates when it has displayed the top of the
stack.

Figure 4-3 illustrates a sample FORTRAN program that calls STACKDUMP in order to dump the
stack in an upward direction relative to DB. Since STACKDUMP is a system intrinsic, it should be
declared in a SYSTEM INTRINSIC declaration (see item 1, figure 4-3). The call itself is shown in item
6, figure 4-3. The first parameter specifies the file to which the dump is sent, STDUMP, and the fourth
intrinsic specifies the name of the array containing the area to be dumped. The filename is contained
in a byte array declared in the program as an 8-character array (see item 2, figure 4-3). The contents of
this array, the filename, is specified in a DATA statement (see item 3, figure 4-3).

The array, S, containing the selec parameter value is declared in item 4, figure 4-3 to have three
double-word values. These values for S are defined in a DATA statement (see item 5, figure 4-3). Only
the first two double words are given values; the second word contains the terminator for the array: zero
in the first word and — 1 in the second. This value is specified as an octal integer 177777. Double word
constants in FORTRAN must be terminated by the letter J to indicate to the compiler that they
contain 32 bits. Only the second word need be specified; the first word is set to all zeros automatically.
The first double word of the array specifies the count and that the count is to be relative to DB+ 0.
When specifying a count relative to DB, the mode is zero. For this reason, only the count need be
specified; zero in the first word is relative to DB since the initial zeros in the second word indicate that
the mode is DB relative,

4-8

: FORTRAN DBTESTST

PAGE 0021
200201290

86015 00002000 PROGRAM MAIN 4//’<:>
80015 00003000 SYSTEM INTRINSIC STACKDUMP
20915 0004000 CHARACTER*8 C,C1,C2(3)
36015 02005000 CHARACTER*8 STDUMP <—-_—-——-—{:>
20915 00006000 INTEGER*4 s<3><____<:)
98015 00037000 COMMON 14,15
88915 00028000 DATA $/180J,%1777774/«— (%)
80015 20229099 DATA C/“DBTEST!'/
20015 00010000 DATA C1/"MAINPROG"/,C2/'"MONE", "MTWO" , "MTHREE"/
90015 00011000 DATA STDUMP/"STDUMP"/
20015 00012000 DATA 16/18000/,17/709/,18/800/
20915 09913968 18 DISPLAY C1,C2
00034 00014000 11 = -1
00036 08015000 12 = 1
8064P 00816000 13 = 10
00042 29317900 14 = 100
20044 00218000 15 = 1000
80046 00319000 CALL STACKDUMP(STDUMP. ., S)«—(6)
00054 60028000 DISPLAY "CALLING SUBROUTINE"
30166 00021068 28 CALL SUBROUT(C1,C2,11,12,13)
00116 00022000 DISPLAY "BACK FROM SUBROUTINE"
88156 00023300 STOP
80151 088924000 END
SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS
c CHARACTER SIMPLE VAR Q+ 2,1
c1 CHARACTER SIMPLE VAR Q+ 3,1
ce2 CHARACTER ARRAY a+ 3,1
11 INTEGER SIMPLE VAR Q+ 8<———i{7)
12 INTEGER SIMPLE VAR Q+ 9
13 INTEGER SIMPLE VAR Q+ 10
14 INTEGER SIMPLE VAR @ COMMON
15 INTEGER SIMPLE VAR 1 COMMON
16 INTEGER SIMPLE VAR Q+ 5,1
17 INTEGER SIMPLE VAR Q+ 6,1
18 INTEGER SIMPLE VAR Q+ 7,1
s INTEGER*4 ARRAY a+ 1.1
STACKDUMP SUBROUTINE
STDUMP CHARACTER SIMPLE VAR Q+ 4,1
SUBROUT SUBROUTINE
COMMON BLOCKS
NAME LENGTH
com* 2
LABEL MAP
STATEMENT CODE STATEMENT CODE STATEMENT CODE
LABEL OFFSET LABEL OFFSET LABEL OFFSET
10 15 20 186

HP32192B+00 0

$CONTROL MAP,LABEL,LOCATION,USLINIT

Figure 4-3. Sample FORTRAN Program Using STACKDUMP

4-9

If you want to select a dump relative to S, you must specify the first three bits of the second word as
octal 7 (bits O through 2=111). To do this, use a composite format as shown below:

DATA S/Z[l6/@:3/7:13/121@]«]:%1777‘77;7/
e R e, mammar’
S—0 mode = 111 count =100

The brackets allow you to indicate bit values within the word. As with the previous example, the
terminator is specified as a double-word octal value 177777.

ANALYZING THE STACK DUMP

When the program shown in figure 4-3 is executed, a stack dump is taken just prior to location 54 in
the listing. (The starting code location for this program unit MAIN is the same as that shown in the
PMAP in figure 3-2.) The trace and stack analysis shows the current program location to be at 240, or
165+ 53 (octal). (Refer to figure 4-4 for the printout resulting from execution of STACKDUMP.)

Since DB+ 100 was out of the bounds of the program’s stack, the dump stopped at location 72 (the
location of S) and a message is printed. The value of Q prior to the stack dump is shown in the second
line of the listing. The value of Q after the stack dump is four words greater than the top of the stack to
allow four words for the stack markers. This Q value is shown in the first line of the trace and stack
analysis.

Figure 4-4 shows how to determine Q and S from the trace and stack analysis. Once you know where
these values are and that the dump starts with DB+ 0, you can locate all the values shown in the
symbol map in figure 4-3. For example, look at the location Q+ 8 in the symbol map (item 7, figure 4-3).
This location contains the integer simple variable I1 that has been set to — 1 in the program. Then look
at the location Q+ 8 in the stack dump and you will see that it correctly contains the value 177777
(octal)

The character values in C, C1, and C2 are found indirectly through the byte addresses stored in Q+ 2
and Q+ 3. Note that Q+ 2 contains the value 20 and Q-+ 3 the value 30. Since these are byte addresses,
they indicate that C starts in the 20th byte or word 10 and that C1, which is word zero of the array C2,
starts in the 30th byte or word 14. Remember that all numbers shown in the dump are octal.

All other program values set when the dump was taken can be ascertained in this way.

NOTE

Before running a program in which a call to STACKDUMP
specifies a filename, be sure to equate the file name to a device
where you want the dump sent. Otherwise the dump is sent to a
null file.

4-10

sFILE STDUMP=$STDLIST
:RUN DBPROGST

MAINPROG MONE MTWO MTHREE
ok STACK DISPLAY *kk
{s=eees72] oDL=177602 Z=001587

A=080076 P=09240 LCST= 048 STAT=U,1,1,L,0,0,CCG X=0000820

[(=208253] P=177777 LCST= S132 STAT=P,1,8,L-2,0,CCG X=002000
«+DB.. 0CTAL ASCII
20099 BI0B43 BPO0LL BDOPOD DOB144 «# +3 oo oD
22004 020022 177777 002000 000080 ce e e e
22210 B42192 052105 851524 @30449 DB TE ST 1
29814 BA6501 044516 850122 847507 MA IN PR 0G
20220 846517 B4TI05 520040 020040 MO NE
20024 046524 853517 020240 020040 MT WO
20030 BA6524 B44122 BA2505 020040 MT HR EE
20034 #51524 B42125 346520 020040 ST DU MP
30040 723420 001274 001448 0090144 e e o WD
PPBA4L 201756 203603 177777 3208209 ce e e es
29259 000900 200000 142933 [B00004]T Q e+ oo oo oo
20054 200000 009020 300032 000010 ev se e o8
832360 000040 200041 2009042 177777« N A
20064 200001 200012 200272 800110 ce e o8 oH
22070 200009 S-0 co o

** AREA OUT OF BOUNDS **

CALLING SUBROUTINE Q+8
SUBROUT SBONE SBTWO SBTHREE

RETURNING TO MAIN PROGRAM

BACK FROM SUBROUTINE

END OF PROGRAM

Figure 4-4. Sample Stack Dump

4-11

DEBUG ERROR MESSAGES

When an error is detected by DEBUG, it issues a message in the form:

message n
where:

message indicates the type of error.

n indicates the character position in the command where the error was detected.
For example, suppose you enter the following command:

2DQ+ 1:,8,A
SYNTAX 6 message issued by DEBUG

This indicates that there is a syntax error following character position 6.
In this case, it is the decimal value 8 that is in error. To correct, re-enter the command:
DQ+1:#8,A

The five possible messages issued by DEBUG are defined in Table 5-1.

5-1

Table 5-1. DEBUG Error Messages

MESSAGE

MEANING

CORRECTIVE ACTION

BOUNDS

A specified location is outside the permitted
bounds. For example, in non-privileged
mode, you referenced a location above
S or below DL in the data stack; or, in
privileged mode, you referenced code out-
side the specified segment, or an absolute
address outside memory.

Check your command to make sure it is
entered correctly. If it is, lower or raise the
referenced location. Note that using an in-
direct address where you want direct can
produce a bounds violation.

CHECK

New breakpoint conflicts with established
breakpoint. This usually occurs when you
specify as new a breakpoint that already
exists.

This is a warning only. You may continue.
Any new breakpoints will be established,
existing breakpoints are not affected. If you
wish, check all existing breakpoints with
the B@ command.

FULL

The breakpoint table established at system
configuration is full.

Probably too many users are currently using
DEBUG. Wait and try again. If this message
happens consistently, request your system
manager to re-configure with a larger break-
point table.

NO-NO

Invalid information was provided in a com-
mand whose syntax is correct. For instance,
you specified a logical segment number
that does not exist.

Check the information provided in your com-
mand. For instance, if you entered R
5.166+ 70, make sure that you actually have
six segments in your code. Correct and
continue.

SYNTAX

The command syntax is in error.

Check the syntax and continue.

5-2

USING DECOMP

This appendix contains the compilation breakdown provided by the program DECOMP for the sample
FORTRAN used in this manual. The decompilation is generated by running program DECOMP as
shown below:

RN DECOMP .PIIB.SYS

*x HP32AZ DECOMPILER 2.0 xx

OUITPHMIT TO TERMINAL(T)Y 0P PRINTEP(P)? »
®A0G"AM FILE NAME? D3PR0G! -
NO. OF SEGMENTS: %1

THEY ARE NUMBEPED FROM ZERQ TIPWANDS
ENTER STAPTING SEGMENT (PRECEDED BY %)3%9

THIS SEG HAS LENGTH OF 7349
ENTER STARTING ®=-VALTE (PRECEDED BY 2%)37

END OF DPnOanAM

AARRR AR R AR AR AR A kAR R AR AR AR AR AR AR A AR R AN RA kAR AR AR A A Ak ARk Ak Ak kAR kAR k ok ko Ak Rk kA kAR d sk k kA Xk Ak kr k&

£
*
*
*
'Y
*
L1
*
*

SEGMENT 20

000000
000001
voeoue
vouo003
900004
000005
QQuo06
0guuu7
goouvtlo
000011
000012
000013
000014
000015
00001to
000017
000020
000021
000022
000023
oouved
000025
0000286
000027
000030
0000631
000032
000033
000034
000035
000036
000037
Qo040
voou4l
oQooue
000043
000044
000045
0o0046
0000647
VpousSo
000051
000052
uoeess
[YRDY)
[T
000056
00Qus7
vouoeY
ungniel
voulos
[GUTT-E
dovved
000065
0000beE
000067
uoone7o
uuuaT1
ooouv72
000073
oovu74
0ou07s
0o0L7e
ugoul7
000100
006101
vo0102
unelul
uovlud
Gou1nsS
uoo1us

HP 3000 peECUOUMPILER 2 . U

ANALYSIS OF DBPRUG1.FUB.TECHPUBS UN MON, MAR 1, 1976,
PRUGRAM CUNTAINS NU PRIVILEGED=-MUDE SEGMENTS

PROGRKAM CAPASILITY: BA,I1A

LENGTH=X340 NON=PRIVILEGED

035001 H ADDS %0001
041607 c. LUAD @Q= 007
023010 &, SuBRl 8

051607 S. STOR @G= 007
004000 .e DEL , NOP
041610 C. LOAD 4= 010
14000%) BR P+ 005
051528 Su STOR @+ 125
vdiri12e BR LOAD LB+122
04752% ou LOAD G+ 125,1,X
052004 T. MTBA P+ 004
170404 .o LRA P= 004
010201 .e LSL 1 BIT
021007 ". LDI 7

020042 " MVB PB=DB SOEC=2
021001 ". LDI 1

031008 2. PLAL BLANKFILL”
021001 ", LDl 1

ve23d1go " MPYI 8

041607 C. LOAD @G- 007
U0B0U0 .o LADL, NOP
140004 .e BR P+ 004
051502 SB STOR Q@+ 102
047518 ON LOAD @+ 116,I,X
04252% EV LOAD P= 125,1
170403 .e LRA P= 003
Q10201 .o LSL 1 BIT
021008 ", LDl S

020042 " MVB PB=-DB SOEC=¢
021008 ". LeI 3

031008 2. PCAL BLANKFILL®
v21002 " LOI 2

023410 ‘e MPY] 8

vid1607 c. LOAD @= 007
006000 .e LADD, NOP
1400048 .o BR P+ 004
051502 S8 STOR O+ 102
052127 W MTBA P+ 127
047528 oy LUOAD W+ 125,1,X
170403 .e LRA P= 003
0162014 . LSL {1 BIT
021005 " LDI 5

venou " Mvg PB-D8 SDEC=Z
y2diuuld ". Lol 3

H3i0us 2. PLAL BLANKFILL”
veliiud ". LDl 3

0e3uto ‘. MPY] 8

n4ie07 C. LOAD 0= 007
V0e0v0 .o LADD, NOP
tao0us .o 8r P+ 005
uS1502 58 STOR Q@+ 102
us2110 TH MTBA P+ 110
051108 RE STOR DB+10S
042525 EU LOAD P= 125,1
170404 .o LRA P= 004
n1g2vl . LSL {1 BIT
021007 ", Ler 7

neyHu " MVE PB=0DB SDEC=2
v21001 Y. LDI 1

031008 2. PCAL BLANKFILL®
go0707 .o DZRO, DZRO
uet1ooe " LDI 2

170015 .o LRA P+ 015
v31004 2. PCAL FMTINIT”
041610 C. LOAD Q= 010
021010 " LO1 8

003200 .o XCH , NOP
H3t0ue 2. PCAL S10°*
ue1010 ", Lul 8

921003 ", LOI 3

ub1607? C. LOAD G- 007

4311 PM

<== PRUCEDURE ENTRY POUINT

LR R N 2

KA AR RN R R R A A kAR R AR R AR AR AN AR RN Rk kA A R A AR A A AR AR AR A R AR AR R AR AR AR AR AR A RR AR RN RN KRR R A K I R RARA AR R A AR AN AN ANk

Figure A-1. DECOMP Listing (Sheet 1 of 3)
A-2

000107 021010 ". Lol 8

000110 006000 .e LADD, NOP
Uputll u31007 2. pPCaL ASlO0°
000112 w0v3toul 2. PCAL TFORM®
une113 u2sott x, LONT 9

000114 uS3606 W, STOR Q= 006,1
00L11S 421011 " LDI 9

000116 053605 W, STOR Q= 005,11
000117 v21132 "z LOI 90
006120 053604 No STOR Q= 004,1
upo12l v400612 d, LOAD P#+ 012
000122 053000 V. STOR 0DB+000,1
000123 04001l o, LOAD P+ 011
000124 u53001 ' STOR 0DB#001,1
000125 wy0707 . VZRU, DIZRO
0ovi1ee w210uR ". LDI 2

von127 172003 oo LRA P+ 003,1
000130 031004 2. PCAL FMTINIT”
000131 14002t e 8R P+ 021
000132 000032 .o NOP , XCH
00u133 v0told .e DxCH, INCX
tou134 021450 #(LOXT 40
Vo135 4S1105 RE STOR DB+105
000136 052129 Tu MTBA P+ 125
000137 051116 RN STOR DB+116
000140 ud4aSie IN LOAD P= 116,X
0nuldl wa3gdQ G LOAD Q¢+ 40,1
ngul42 652117 10 MTBA P+ 117
6o0l143 129115 M -

000144 udeS1t AT LOAD P- 111
000145 v47040 N LOAD D0B+040,I,X
¢p0146 050122 PR TBA P+ 122
000147 w47597 06 LOAD Q¢ 107,1,X
ugutlso wsS11ud RA STUR DB+101
Lpt151 k407 M, LOAD P= 007,1,X
0Qu152 wvesdl1s te LOXN 13
000153 w4440t I, LOAD P= 001,X
Ggulsd 01teoe .o IxBZ P42
00e155 140402 .o BR P= 002
vou156 021031 ", LOI 25
Uou1s7 171718 .o Lka S= 015
Ug0160 010201 .. LSt 1 81T
000161 031006 2. . PCAL SIO’
000162 03%41S 1Y SUBS %0015
ooules 031003 2. PCAL TFURM®
Covlod 031405 3. EXIT %0005
Q00165 uwoovL4d .o NOP , INCX
000166 UO0OULY .o NOP , DIVL
000167 000026 . NOP , STBX
000170 wvduv02? .o NOP , DTST
¢o0174 0ue030 . NOP , DFLT
VOUL7e 03440% S, MATNG LOPN %0005 <== MAIN PROG STARTS
000173 (34404 9. LDOPN %0004
000174 040u03 A, LOAD Pe- 003
000175 035004 H ADDS %0004
U176 0DUOLO o DEL , NOP
000177 Lu0707 .o DZRO, OZRO
woL2uy uv21i002 LI LDI 2

GoGeul t7001s .o LRA P+ 015
000202 031004 2e PCAL FMTINIT®
000203 041402 c, LOAD G+ 002
000204 021010 " LOI 8

0Qu2osS 003200 .o XCH , NOP
0ge206 131006 2, PCAL SIO”
00u2u7 uwetoto ", LOI 8

000210 021003 ", LDI 3

u0Gell 041402 C. LUOAD G+ 002
vooele 021010 ". Lol 8

000215 006000 .o LADDL, NOP
000214 ud1007 2. PCAL ASIO”
09021s 131003 2. PCAL TFORM?
000216 025001 *x, LONI 1

000217 051408 S. STUGR G+ 006
9Que20 0e10vt . LDI i

voveel (31407 S, STOR @+ 007
youeee wveinle ", LO1I 10
voueed uS1uto S. STUR G+ 010
000224 (21144 " LDI 100
000225 053000 Ve STOR DH+000,I
00u2eb6 040010 d, LOAD P+ 010
voueeT uS30u1 V. STUR DB+o01,I
000230 wuoTu? .o DZRG, UZRO
goues! 021v0e " LDI 2

0ove32 172003 .o LRA P+ 003,1
voue33 031004 2, PCAL FMTINIT®
060234 149014 .o BR P+ 014

Figure A-1. DECOMP Listing (Sheet 2 of 3)

A-3

000235
wpuele
woued7
u00240
00024t
000euse
o243
voue4d
uooe4s
000240
cooeur
000250
000251
upoese
00uess3
000254
000ess
000256
0ov2s57
00260
0002et
000262
000263
00026d
000265
000266
000267
000270
000271
000272
000273
0o0ue74
000275
000276
000277
000300
000301
600302
000303
000304
000305
000306
000307
0Gv310
000311
000312
000313
000314
000315
000316
000317
000320
000321
000322
000323
000324
000325
000326
000327
000330
000331
000332
000333
000334
000335
000336

ugyees
vu1750
041501
vldblty
044516
0d3a40
51529
vditea
Q67528
052111
047108
02541y
044491
ul12902
140402
21022
171711
010201
031006
035411
031003
041402
041402
021010
606000
171406
1714907
171410
031001
000707
021002
172003
V31004
149014
000029
041101
041513
V20106
051117
0464490
05152%
041122
04752%
052111
047108
02s412
044401
0112028
140402
021024
171712
010201
V31008
035412
031003
031010
177777
177717
101033
105524
116124
120113
104524
105124
000172
000000

e Z2HO0OT L O~ O
e s M« T D C 27 e

e s 3¢ &

OO N~

e Ne o o o

e
..

.
-

O m@e
X e

X
o™

oW
cxnC

s NUe o« 30 o et Z—
“ e e e s e 8 8 w My

A%
-

NOP , TEST

CMP , FCMP

LUAD G+ 101

LOAD P+ 114,],X

LOAD Pe 116,X

LOAD G+ 040,1

STUR W+ 125

LOAY DB+122

LOAD QO+ 125,1,x

MTIBA P+ 111

LOAD DB+105,1,X%

LOXN 9

LOAD P=- 001,x

IxBL P2

B8R P= 002

LOI 18

LRA S= 011

LSL 1 BIT

PCAL SIU”’

SUBS %0011

PCAL TFURM®

LOAD 9+ 002

LOAD @+ 002

to1 8

LADD, NOP

LRA G+ 006

LRa QG+ 007

LRA Qe 010

PCAL %0001

DZRO, DZRO

Lol 2

LRA P+ 003,1

PCAL FMTINIT”

BR P+ 014

NOP , TEST

LOAD DB+101

LOAD G+ 113

MVBL SDEC=2

STOR DB+117

LOAD P= 0uo,I,x

STOR @+ 125

LOAD DB+1R22

LUAD 0O+ 125,1,x

MIBA P+ 111

LOAD DB+105,1,X

LOXN 10

LOAD P= 001,X

IXBZ P42

BR P=- 002

LOI 20

LRA §- 012

LSL 1 BIT

PCAL SIO0°

SUBS %0012

PCAL TFURM’

PCAL TERMINATE®

LRA S= 077,1,%

LRA S= 077.1,x
SEGMENT TRANSFEK TABLE (PL=%010) SEGMENT %035 STT %9002
SEGMENT TRANSFER TABLE (PL=X%X007) SEGMENT X124 STT %013
SEGMENT TRANSFER TABLE (PL=%006) SEGMENT X124 STT %020
SEGMENT TRANSFER TABLE (PL=%005) SEGMENT %113 STT %040
SEGMENT TRANSFER TABLE (PL=%004) SEGMENT X124 SIT %011
SEGMENT TRANSFER TABLE (PL=X003) SEGMENT X124 STT %012
SEGMENT TRANSFER TABLE (PL~=X002) INTERNAL
SEGMENT TRANSFER TABLE (PL=%001) INTERNAL

Figure A-1. DECOMP Listing (Sheet 3 of 3)

INDEX

A

A command,
definition, 2-5
use, 3-28
A prefix,
D command, 2-12
M command, 2-20
= command, 2-27
Abort,
debug at, 4-1
Abort stack analysis, 2-31; 4-1
Absolute code,
breakpoints in, 2-6; 3-28
clear break in, 2-9
display, 2-11; 3-29
modify, 2-19; 3-29
Absolute code segment index (CST),
display, 2-13; 3-30
Absolute DB relative (DX),
display base, 2-11
modify base, 2-19
Absolute relative (A),
display base, 2-11
modify base, 2-19
Account segmented library,
break in, 2-6, 23
clear break in, 2-9
display location of, 2-25
Address,
in expression, 2-2
Addressing,
array, 3-13
byte, 3-13
common, 3-14
indirect, 2-2, 12, 19; 3-12
Array addressing, 3-13
ASCII characters,
in expression, 2-2
ASCII mode,
display, 2-11
expression result, 2-27
modify, 2-19
ASCII parameter, 2-34

B

B command,

definition, 2-6

use, 3-6

use in privileged mode, 3-28
Bank number absolute (EA),

display, 2-13; 3-30

extended absolute address base, 2-11; 3-29
Batch job,

using SETDUMP in, 4-6

I-1

Breakpoint,
conditional, 2-6, 23; 3-7
clear, 2-9; 3-8
definition, 3-6
display, 2-7; 3-7
establish, 2-6; 3-6
establish in privileged mode, 3-28
permanent, 2-6, 23; 3-7
private, 2-5; 3-28
repeated, 2-7, 23; 3-7
system global, 2-5; 3-28

Bit field,
extract, 2-2

Byte addressing, 3-13

C

C command,
definition, 2-9
use, 3-8
Code segment relative (CO),
display base, 2-11; 3-29, 31
freeze, 2-17; 3-30
unfreeze, 2-26; 3-30
Commands,
DEBUG, 2-2
MPE, 2-2
privileged mode summary, 3-27
specification, 2-1
summary, 2-4
Common,
addressing, 3-14
CST register,
display, 2-13, 25; 3-30

D

D command,
definition, 2-11
use, 3-11; 3-18
use in privileged mode, 3-29
Data segment index, extra (DST),
display, 2-13; 3-30
Data segment relative (DA),
display base, 2-11; 3-29, 31
freeze, 2-17; 3-30
modify, 2-19; 3-29
unfreeze, 2-26; 3-30
Data stack,
finding value in, 3-11 thru 3-15
DB absolute address, 2-11, 19
DB parameter, 2-34
DB register,
display absolute value of, 2-13
DB-relative addressing, 3-12

DEBUG facility,
capabilities, 1-1
command specifications, 2-2
command summary, 2-4.
execution with, 3-5
preparing to use, 3-1
privileged mode capability, 3-26
standard capability, 3-5

DEBUG intrinsic,
definition, 2-29
use, 3-21

Decimal mode,
display, 2-11
expression result, 2-27
modify, 2-19

Decimal value,
in expression, 2-2

DECOMP program,
example, A-1
use, 3-1

Disc sector,
display, 2-15; 3-29

Display,
code, 2-11; 3-18
privileged mode, 2-11; 3-29
register, 2-13; 3-16
stack marker, 2-25; 3-20
value, 2-11; 3-12

Display base, 2-11; 3-30

DL register,
assign value, 2-28; 3-17
display, 2-14
modify, 2-21; 3-16

DR command,
definition, 2-13
use, 3-16
use in privileged mode, 3-30

DST register,
display, 2-13; 3-30

Dump stack, 2-35; 4-8

DV command,
definition, 2-15
use, 3-29

DX register,
display, 2-13; 3-30

E

E command,
definition, 2-16
use, 3-9
EA register,
display, 2-13; 3-30
Error messages, 5-1
Expressions,
calculation of, 2-27; 3-17
use in DEBUG commands, 2-2
Extended absolute relative (EA),
display base, 2-11: 3-29
modify base, 2-19

I-2

Extra data segment index (DST),
display, 2-13; 3-30

Extract bit field,
in expression, 2-2

F

F command,
definition, 2-17
use, 3-30
Freezing segments, 2-17; 3-30

G

Global breakpoints, 2-5; 3-28
Group segmented library,
break in, 2-6, 23
clear break in, 2-9
display location of, 2-25

I prefix,

D command, 2-12

M command, 2-20

= command, 2-27
Indirect addressing, 3-12
Interactive session,

using SETDUMP in, 4-3
Intrinsics,

specification of, 2-3

summary, 2-30

Job,
using SETDUMP in, 4-6

L

L command,
definition, 2-18
use, 3-9
use in privileged mode, 3-28
Label map, 3-2
LABEL parameter,
use, 3-1
listing, 3-2
LCST register,
display, 2-13, 25
stack analysis, 4-1, 2
Line printer,
display to, 2-18; 3-9, 28
Logical code segment index (LCST),
display, 2-13, 25
stack analysis, 4-2

Logical device,
display to, 2-18; 3-28

M

M command,
definition, 2-19
use, 3-16
use in privileged mode, 3-29
MAP parameter,
use, 3-1
listing, 3-2
Memory location,
in expression, 2-2
Modify,
code, 2-11; 3-18
privileged mode, 2-19; 3-29
register, 2-21; 3-16
value, 2-19; 3-16
Modify base, 2-19
MPE commands,
specification, 2-2
use in DEBUG, 4-3, 6, 7
MR command,
definition, 2-21
use, 3-16
use in privileged mode, 3-30

o)

O prefix,
D command, 2-12
M command, 2-20
= command, 2-27
Octal mode,
display, 2-11
expression result, 2-27
modify, 2-19
Octal value,
in expression, 2-2
Offset,
display base, 2-12
modify base, 2-19

P

P register,

assign value, 2-18; 3-17

display, 2-13, 25

modify, 2-21; 3-16

stack analysis, 3-20; 4-2
P-relative addressing, 2-11; 3-18
Parameters,

DEBUG commands, 2-2

DEBUG intrinsics, 2-3

MPE commands, 2-3
PB-relative addressing, 2-11; 3-18
PCB register,

display, 2-13; 3-13

1-3

PL-relative addressing, 2-11; 3-20
PMAP parameter,

use, 3-1

listing, 3-4
Private breakpoints, 2-5; 3-28
Privileged Mode,

command summary, 3-27

use with DEBUG, 3-26
Process control block (PCB),

display, 2-13; 3-30

Q

Q register,
assign value, 2-28; 3-17
displacement from, 2-25; 4-2
display, 2-13; 3-16
modify, 2-21; 3-16
stack analysis, 3-20; 4-2
Q-relative addressing, 3-11, 12
QS parameter, 2-34

R

R command,
definition, 2-23
use, 3-9
use in privileged mode, 3-28
Registers,
assign value, 2-28; 3-17
display, 2-13; 3-16
modify, 2-21; 3-16
RESETDUMP command,
definition, 2-32
use, 4-7
RESETDUMP intrinsic,
definition, 2-31
use, 4-7
Resuming execution,
with E command, 2-16; 3-9
with R ecommand, 2-23; 3-9

S

S register,

assign value, 2-28; 3-17

display, 2-13; 3-16

modify, 2-21; 3-16

stack analysis, 4-2
Sector,

display, 2-15; 3-29
Segment number,

B command, 2-7

location, 3-6

R command, 2-23
Segments,

freezing, 2-17; 3-30

unfreezing, 2-26; 3-30
Session,

using SETDUMP in, 4-3

SETDUMP command,
definition, 2-34
use in job, 4-6
use in session, 4-3
SETDUMP intrinsic,
definition, 2-33
use in job, 4-6
use in session, 4-5
ST parameter, 2-34
ST register,
assign value, 2-28; 3-17
display, 2-14; 3-16
modify, 2-21; 3-16
Stack,
delete values from, 2-16; 4-5
STACKDUMP intrinsic,
definition, 2-35
use, 4-8
Stack dump,
analysis, 4-10
Stack Dump facility,
capabilities, 1-2
specifications, 2-30
use, 4-1
Stack markers,
display, 2-25; 3-20; 4-1
Stack segment index (STAK),
display, 2-13; 3-30
Stack trace and analysis, 4-1
STAK register,
display, 2-13; 3-30
Symbol map, 3-2

System global breakpoints, 2-5: 3-28

System global relative (SY),
display base, 2-11; 3-29
modify base, 2-19

System segmented library,
break in, 2-6, 23
clear break in, 2-9
display location of, 2-25

T

T command,
definition, 2-25
use, 3-30

14

Temporary registers,

assign value, 2-28; 3-17

display, 2-13; 3-16

modify, 2-21; 3-16
Terminate execution, 2-16; 3-9
Trace stack markers, 2-25; 3-20

U

U command,
definition, 2-26
use, 3-30
Unfreezing segments, 2-26; 3-30

X

X register,
assign value, 2-28; 3-17
display, 2-13; 3-16
modify, 2-21; 3-16

Z

Z register,
assign value, 2-28; 3-17
display, 2-13; 3-16
modify, 2-21, 28; 3-16

Special Characters

prefix, 2-2

$ command,
definition, 2-28
use, 3-17

% prefix, 2-2

= command,
definition, 2-27
use, 3-17

READER COMMENT SHEET

HP 3000 Computer Systems
MPE Debug/Stack Dump
Reference Manual

30000-90012 Oct 1978

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Did you have any difficulty in understanding concepts or wording? Where?

Is the format of this manual convenient in size, arrangement, and readability? What improvements would you
suggest?

Other comments?

FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO. 1020
SANTA CLARA
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States. Postage will be paid by

Publications Manager, Product Support Group
Hewlett-Packard Company

General Systems Division

5303 Stevens Creek Boulevard

Santa Clara, California 95050

Il

HEWLETTW PACKARD

Sales and service from 172 offices in 65 countries.
5303 Stevens Creek Blvd. Santa Clara California 95060

Part No. 30000-90012

Printed in U.S.A. 9/76
Update #1 Incorporated 10/78

	000
	001
	002
	003
	004
	005
	006
	007
	009
	010
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	5-02
	A-01
	A-02
	A-03
	A-04
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB
	xBack

