HEWLETT |hﬁ' PACKARD

HP 3000 Series II Computer System

APIA3000

— Reference Manual

HP 3000 Series I1 Computer System

API\3000

Reference Manual

HEWLETT hp; PACKARD

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA 95050

Printed in U.S.A. 11/76

Part No. 32105-90002
Product No. 32105A

PRINTING HISTORY

New editions incorporate all update material since the previous edition. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The date on the title
page and back cover changes only when a new edition is published. If minor corrections and updates are incorporated,
the manual is reprinted but neither the date on the title page and back cover nor the edition change.

First Edition. November 1976

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
JAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors

contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright ® 1976 by HEWLETT-PACKARD COMPANY

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the most recent date on which the technical material on any given page was altered. If
a page is simply re-arranged due to a technical change on a previous page, it is not listed as a changed page.

Page Effective Date Page Effective Date
Title Nov1976 11-1to11-14 Nov1976
fitoxiv. Novl1976 12-1t0129 Nov1976
11tol7 Nov1976 AltoA7 Nov197e
21to2-12. Novl1976 B-1toB4 Nov1976
31to361. Novl976 CltoC2 Nov197e
41to4-23. Novigie DltoD-2. Novl19ie
51to57 Nov1976 EltoE2 Nov1976
6-1to6-14. Novl976 FltoF2 Novl1976
T1to7-7 Novl97e G1Nov197e6
81to812. Novl97e H1Nov1976
91to912. Nov19ie I1tol-11 Nov1976

10-1to10-15. Nov1976

iii

PREFACE

This publication is the reterence manual for APL\3000, a high=level
programming language developed for use on the HP 3000 Series II
Computer System,

Because ot the unique structure of APL, this manual difters from most
reference manuals, in that function descriptions are not arranged in
alphabetical order, and more comprehensive descriptions are provided
than would be necessary for better known languages such as FORTRAN or
COBOL, Examples of all functions, however, are contained in
alphavetical order in Appendix B, *

Althougn it is possible to learn how to program in APL\3000 using this
manual, such 1s not its main purpose, and therefore this manual
assumes a knowledge of APL by the user, Further, because APL is an
advanced computer language which has many applications in mathematical
problem solving, it is assumed that readers have had mathematics
training, For example, such terms as "non~singular arrays," "linearly
independent columns," and so forth are introduced but not explained;
and the reader is expected to be familiar with linear equations,
logarithms, and pythagorean and hyperbolic functions.

Other publications which should be available for reference are:
MPE Intrinsics Reference Manual = Part Number 30000-90010

MPE Commands Reference Manual = Part Number 30000-90009
Console Operator’s Guide = Part Number 30000-90013

This manual is divided into twelve sections, eight appendices, and a
cross=reference jindex as follows:

Section I - Introduction to APL\3000

Section II = Elements of APL\3000

Section I1I = APL\3000 Primitive Functions and Operators
Section IV - System Functions and System Variables
Section V = Shared Variaples

Section VI = APLN3000 File System

Section VII Function Definition

Section VIII APL\3000 Editor

Section IX

APLGOL

Section X Function Execution

Section XI

Section XII

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Index

o ™ m O N

System Commands

Error Messages

APL\3000 Character Set

APLN\3000 Primitive Functions and Operators
APLN\30Q0 System Commands

APL\3000 System Variables

APLN\3000 System Functions

APL\3000 Edit Instruction Syntax

APLGOL Statement Syntax

System Supplied Utility Shared Variables

vi

CONVENTIONS USED IN THIS MANUAL

NOTATION DESCRIPTION

[1 An element inside brackets is optional. Several elements stacked inside a pair of brackets means
the user may select any one or none of these elements.

Example: [ﬁ] user may select A or B or neither

{} When several elements are stacked within braces the user must select one of these elements.
A
Example: B user must select A or B or C.
C
underlining Underlined words denote parameters which must be replaced by user-supplied variables.

Example: CALL name
name one to 15 alphanumeric characters.

user input Where it is necessary to distinguish user input from computer output, the input is underlined.

Example: ©~ NEW NAME? ALPHAl
return return underlined indicates a carriage return

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted. :

vii

CONTENTS

Section I Page
INTRODUCTION TO APL\300OQ

APL\3000 Character Set,,ssnseessvessrovoensenasossonsnane 1v1

APL KeY?oard...Q.',”....'Q.9"...'......’.."."”"‘.’ 1.3

Initiating an APLN\3000 S5es5S10N,.eeseacacsrecnsnsosereanse 174

Running‘APL\BOOO.............-.q..ao.......-.......--a.. 1«6

Terminating an APL\300O0 SQSSiOﬂ.novon:oqsucnopqcso!"'!o 1=7

Section I1I Page

ELEMENTS QOF APL\3000

APL ConstantS,esseerecenrsserosnnesnsennoonesssnessncnens 2%1
Scalar Constants........,..-.....-....-..-...a...-.. 2=2
Vector COnStantS,onesevvnscassnsennesnssorcosnansoves 272
Cnaracter ConstantSeassevrnrernesvronravssnensrsnnce 272

APL EXPresSSlONS,cssssceeosennrsnrenseronensnsssnnnsossass 23

APL FUNCLiONSesneessssescanernsnenseranrrsnnnssnsnrernsas 275
Monadic FUQCtionscooo-ooonccncqﬁnounvoqocco-o-p;opoc 2=5
Dyadic FURCLiONSspeneennnsrannrennsossssrecvcssrssnans 2%5
Niladic FUNCLLONSesesesersvsetvcerasservavarsssrrosnsns 275
Primitive FUNCLIiONS snennvosensneserrrsntonnensvonsos 276
User=Defined FUNCLiONSeseevensnssersessvnsosronssnss 270

System COMMaNAS seesnsassnssessrsscrssrevsassensocssnscscane 276

APL Order of AsSOClationN,enensecovsosenvoresnesonssesnscees 279
Arrays.!..Q!O'Qtl'QO!'l!!OQQQO9’.0!!9.!0.0000'0’.!!!0!'. 2=9
Workspaces and Libreries..q.........-.-..............--. 2=12
Section III Page

APLN3000 PRIMITIVE FUNCTIONS AND CPERATURS
Primitive Scalar FUnCLtiONSseeesescsnsonesecrnnaseresssons
Plus, Minus, Times, and Divide FuUnctionNS,seeecesenere
Residue FUNCEiO0N aesoaoneesasnanrrrsnesnrernnensonnos
Conjugate FUNCLiON,snsesncrnsssecnnncosossennrorsanes
Negative FUNCLIONssssnenravsavansnvncssovsncsonsrensne
Signum FUNCL IO M gsavevnoevsncononornsnenasnrorsnnsennne
Reciprocal FunctliON,sseasevsencnvroosnessenssscsnsnnssns
Magnitude FUNCLIiON.sevseresneoscsnoosssnrcerosnsonnes
Boolean FUNCLiONSsuesnnsnveacsnsronnsesnssnsesesssonses
Relational FUNCLIiONSsseanesnserrasnnesnnersconnnannns
Minimum and Maximum FUNCTiOnS,aeeeveernnsosencosnone 3=11
Floor and Ceiling FUNCLiONS sgensnesavesnoscencsennses 3=11
Roll (Ranaom Number) FUNRCtIiON, e, cevsveonrorneennsnne =11
Power FUNCLiON,sespsnennssneonnssanssersnennernssoee 3712
Exponential FUNCtiCN,ssessensenrvancrovesesenssnnnee 3°12
Natural Logarithm FUNCLION,seneersensernenenescsnennse 3%13
General Logarithm FUNCtiONeesonsorronvsarsasscnsoeree 3%13
Circular Hyperbolic and Fythagorean FUNCLiONSeesasnes 3=13
Factorial FUNCL 10N eenevnononnnasnonensnanesnsossosnnress 3=16
Binomial FUnNCtiONsssesovaseosvransnconnssssasennnnse 316

L
A0 AW~~~ I N e

viii

CONTENTS (continued)

OPeTrAt O S gnsnrsnnsnessnssnnorersessssnsssenssssnesaseres 3=17
Reduction OpPArAtOr yevevrvsrrsesossesnsrsasssvessnconey 3=17
SCAn Pera3t Ol svevsssssavsnscnsarssssenrsseesssssensoons 3»19
AXls OperatOr esecensonancnsrnsrsnsassnracccssenssenens 3=20
Inner ProduCt DPeratOlseessssecacsvcosrnsensessnsanes 3°22
Quter Product OperatOr ssevesaseanssasstrrornsssscennnse 3=24

Mixed FUNCLiONSeaevesnnrsnverenssesnensasrencosesrsnennes I=25
Structural FunCtionSeasensresnsssscvessersossnsnsnnenge 3=29

Snape Function,.,...-.........-..--e.........-.. I=30
Ravel FUNCLiON,oesevasnsnnnesrsanrsnsnosnnnonsane 3=30
Reshape FUNCLiONaaeesrnossnsronorssrnsespsosnasnn 3=32
Reversal FUNCLIiOMNesasssnassarasoscenreosasnsvsenes 332
Rotate FUNCLiON,easesannsnnsasesvssassoreersonves 3%33
Catenate FUNCLiON,esnvnsuceorresnsvcronsssgsnnes 3°35
Laminate FUNCLION s ssesassvssonssenssarssssensnne 3=37
Transpose FUNCLiONessenssresrenonrossrosonsnevone 3=39
Selection FUNCLiONSesessseresnasrrsencossesersrsnane 3740
Take FUNCLiONsoenspsrvsnesesnnsannssrerscssennan 3=40
Drop FUNCEiOIeaevovronesssnnsossaraneratanosncany 3e4]
Compress FUNCLiON psnsnersnrsncsnosssosscansssns I=42
Expand FUnCLiON pesesessesnsesennssnsrconnsnoncey I=d4
IndexXxing FUNCtiONesecserssnsssssessnscercntsavsnse 3=45
Selector Generator FUNCtiONS,sesseacsonvsnssavnsasnes 3748
Index GereratOr csenesssnsneraressrsonnescnscsnnnns 3=48
IndeX Of gusenasrsssoesesesesennnsnsnsnsssancerenonsy 3=48
Membership FUNCLiON.esrerrnossncosnnvsonnarensens 3°49
Grade FUnNCtiONSssesoretsarosernensnsssvssssnrennes 3=49
Deal Function.gonnuqo-Qopo’naoto..onaq!quu:pa!o! 3=50
Numerical FUNCLiONS,seesesnvrnrsorrsssnsasesenssnssas 3251
Matrix Inverse and Matrix Divide FunctionSeeeess 3°51
Decode FUNCLiON,sesesennvseorceraasnnonsssnsossnnnsns 3733
Encode FUNCLiONenesevensvansronnccrssaspenesnnss 3=53
Data TransformationNS,eeseeevnercencoesnoensnnesassanese 3754
Execute FUNCLIiON eassnnsrenscsrsrarssesncsnsones 3=54
Format FUNCLiONesssveenennscsnnconsonssenncesons 3755
Monadic FOrMat yenssesnsescseoncnnsensasnssnse 3°55

Dyadic FOrmat,soevesenrnserncrsrosensnrnnsnne In55

Control PaAirS,sssvevensnncsnsssseveacevsssssasnens 3=56
Width CONntrolesssssesasesnsnnssnsreonsrnssens 3°36

Shave and Precision ContrOlesesvsesansosensys 3=56
ControlePair FormatiONeoseeenesenonrnerosnnsse 3I=56

Dyadic Format Conditions,ceeeeevssenssvrsens 357

@uad OUtDUL aseavesvesnssrseesssesssrnsnnenes 3=58

Quad INPUL seeesenenesnsrsosonsnsnsnsoossssns 3-59

Quote Quad ODULPUL qserevsvnossveonnsogrssones 3=60

Quote QuAad INPULyeesesvecrrecersnnsssssenssns 3760

CONTENTS (continued)

Section IV Page

SYSTEM FUNCTIONS AND SYSTEM VARIABLES

System FUNCLiONSseeecenronnsnnrannsecrsorrsasnsccnrssensons 4=1
Canonjcal Representation FunCtioN.sseeresesesesereee 43
Vector Representation FunCtiOfN,seesvsrsrnvscnscesens 44
Function EStﬁbliShment....,.....,...,..,,.,,....,q.' 4=5
Expunge FUNCLiON,sesnesenensosrsncssonnsronescsasees 476
Name List FUNCLION.essonosnsnennssnnssvsonensvossnnse 470
Name Classification FunctloNaessessesesensssnssnneasnse 4=9
Delay FUNCtiON,senasscesssrsonsnsvsonsensasrssnoncessy 479

System VariableS.sseesescsnssvasesscrrocrsnnsesannssnens 4=10
Comparison TOleraAnCe eonesvesreasenranssosnsnsesosnsrstss 4=13
IndeX OriQiNesserenseencereesosornrveessssnnsreaense 4°15
Latent EXpPressSioNeesssasesrnansssosseonsosssasrsneas 3716
RaNAom LiNKseseoennsnnssennsssnessonasnsnsssossnssrras 4=17
Printing PrecisioN,seegssreecersernrorssoncsssesscnee 4718
Printing Width,.sseeecceoncescescsenscnssonarsrsnssnnsrens 4°18
Account INtOrmMatiON,ssssssersncrsrancsvsssvrenrsnecece 4°19
Atomic VeCtOr apenensrososenssnsscescrensserssonsnses 4=19
Line COUNTeT s 00esnenvennosrsoscnsonessssssnscensssons 4=19
StacKk NAMEeSeysasrensersnsssssncsrsnsscsnnssvsesonsonee 4°20
Workspace IdentificatioONssssecenrassssscocsansrrnese 4220
Time STAMPeevesssansronrsnseonsnsnsosenvevcnesansones 4220
Assertion Level,.oeereneonesnsnnssasnnrssrssosennssns 3220
Execution Trace,,eseessceeessscsssronnsssesoncessvess 4=21
Branch TracC@easessenssosessssssnsavsesnnssnsrsnsernns 4=21
Virtual MemoOrVY,.ssrsesesnsneevronnncssnsensaveasnnonnee 421
LangUaTe sasasensseasresvesonsreernrsoesssoronnnssnss 4721
Terminal TYPCssenncsesoavoressreonnernsssnssnssnense 422
Horizontal TabS,eecnvoneseencnnoseesssocrossoonovrnee 4=22
Work Area Available.cssevesensonevsesssrsrcncesensnses 4°22
Character System VarlableS,essrssresvssonrsnnnnsnenns 4=23

Section V Page
SHARED VARIABLES
Dff@rSeenernonesonerasasssnsnsnnsssnssnsnressrnasoncnsses O"1
ACcesSS CONtrOlssersessccsnsecasosssnsasnnsnntestnssncnsns 5«3
REtLIrACtiONcenevnsnsornosennnsrssenvnasssnnsnassstosasssnns 5=7
INQUITieS,arenevesrneseosennsoncsssassossosnsscsentasonsse O%7

Section VI Page

APLN3000 FILE SYSTEM

Control Variablesceesnesesnenavrnsosanranssenssareersnnses 0=l

Data VariaPle,,eesessnsrnnonsserosssnsnncrrvssrssessessee 5°9
Writing to @ Fll€esesrsensnssnensesrssnsrnesnsssness 6°10
Reading @ Flle,ssusnvenrnessasasnsncssnsosnonsnennes b=11

CMNDS Variable,eseveneesncassonescoansssananresssnnonsess O°11

Data ConversioONsssnsssssecaosansssornsennssseressnseerone 6=12
External to Internal APL ConversiONesssssesnvsonnnsee 6712
Internal APL to External ConversiON,eseonsesnnennnse 6213

CONTENTS (continued)

Section VIl
FUNCTION DEFINITION

Canonical Representation and Function Establishment,,see¢ 71
Function Header,.seooeperessransonssosvsnnsvencensesnnses 773
Local and Global Names...'.Q.,Q..'.”Q.IQ....'.."Q"... 7-4
Branching and Line NUMBDeY S eannssnsreressrssescscsasssens /%5

Labels"’l.‘.IQQCOOQO.Q..IIOQ.'.l..ll.....'!.!ﬂl.!l'll(l 7'6

Commentsli..'IQ'.QQ.QQI.'.!QO!Q....!'Q..Q"'!Q..Q.QQ‘.QI 7.7

Section VIII
APLN\3000 EDITOR

Editor FeatureS,vsveesceesrensansenssnnnsncenansnsenencsns 8=l

Edit Instruction SyntaX.eesessessesssssessesscssesnasesess 852

Edit InStrUCtiOﬂS.colvno'o'canponngopocaavl!ouoconooc't! Bwd
ADD INStructioN.seseseesoseosasensnsssssvrensrnacenes 8%¢
BRIEF Instruction.,....,o...........q.,.-..........o B=4
CHANGE Instruction....,..,..........q..-......,-..-. E=5
COFY INStrUCTiON,sqenesescrsncosssnsnosvnsssransnpese 8%5
CURSOK INSLIUCT1ON,asrsvsnserarsroconsnssscserrsnnonss 576
DELETE INStrUCtiON,seseavsavsssconsanesssessssennsns 876
DELTA INStruUCtiON,ceasvvseevsncoscasanssosenosssrnseonse 8°7
END Instruction...............‘.--......-.....,a.q.. Be7
EXPLAIN INnStruCtiONesensacerrensvesnconsnnssonanesnnss 8°7
FIND InStruCtiONesvevnerssevennnsrssneevassonvseseens 827
HELP InstructionuoQIOQQ-QOOQQGQ.OCOQQOQ‘!l"t‘!’!.Ol g=8
LIST INStrUCtiONeseossoesnoraveosnarssscnressseassnpe 5°B
LOCK INStruUCtiOlioepveeonennnenncensceonnseosnsssnnennses B=9
MATRIX Instruction.n'.-ceooopo:-caoaouq.nccv:!taiono B=9
MODIFY Instructionoacpgo-n-upnooononqn!quoconuoocct 8=9
QUIT INStruCtioONeseasescnssencosreoescrssassrnesenes 810
REPLACE INStruUCtiONessvesersvassoesesrsssscsccnnnnnss 8210
RESEQUENCE INStruUCtiONssesesvnessorsscersnsnssnnssnpe 5=11
UNDU InstruCtiQng.q'.g'..-poucu:to:o-!Q!'!"QO!QQ’Q' 8'12
VECTOR INStIUCtiON . ponevsnoncesvvnseronnnescnsernsenes 85°12
VERBQSE IﬂStrUCtiONopnn;uoooo.q.ooo.cooucooqovilqecQ B=12

Section IX
APLGQL

Page

General APLGUL FUnction FOIMa8Cecovesensessesosnssssnseces 92
APLGOL StatementSessesssvnesosnssernresssnssnsnssersnssess %4
NULL Statement"!'tﬂ"scoo;-qaaowttcvcov!oa-ec-QOvco 9=4
EXIT Statement sovesonsnsosssovasscessancncrsossasnsnnns 774
BEGIN StatemenNt,sseseensresosnssnsconansescresensnsse 974
HALT Statement"""""0'!'!O!OOQOOOQOOQQQQolenlli 9=5
ASSERT StatemeNt,ssosonsranovessnasssrssascrsenssnses 275
IF Statementypeeseeevenesenscornsncssssvsesnsasncssency 3°5
WHILE Statement yencosesnvsanvesossncresrnersnenrosanses 377
REPEAT StatemeNt,esesvssvsnesrcsvnsorsncsonvncenesene 2°7

xi

CONTENTS (continued)

FUREVER DO Statement,seseesecevscocensssvnsesososresnre 9°7
Branch StatementS,ossesensensencrsscsoronsecnsssnsens I°7
CASE StatemenNt,ceessssersvsrnrcncssnessevnctsnsseosee 9°8

Section X Fage
FUNCTION EXECUTION
Halted ExeCUtionpt"nntconpaﬁqqngoooooaoglaoo9c990901§!0 10=2
State Indjicator System COMMANdegenensnosernssnsnresssnsene 10=2
State Indicator Damage ,,vesesnrecsncresrssoesnannsnnss 10«3
APLN\3000 Extended Control FUNCLiONS ,peneesesrevvsnsseree 104
Capture Stack Environment System FUnCtiON,spssveneass 10m4
Release Stack Environment System FunctioD,sessvseeese 10=5
Extended Dyadic Execute Primitive FunCtionN,sseeseneps 105
Stack Names System FunctiOngppaQ'Q"nglpoltpgQ.QQQ..;.QQ 107
State Indicator and State Indicator with VariableSsasesee 10=7
RESET Systen Commandpo-u--!'vonnatqognn.o'gu,gqesonioaoo 10=7
DEPTH System Command."O‘....Ql".!.’.,..'..'Q.”!I....' 10.8
RESUME system COMMANd s s nevnenesrenensarsnsessosesaossnnns 10=8
Debugging AldSsesssnensersocsernsnnessnnrsnsnrerenntonnapen 10=8
Set Trace, Set 5top, and Set Monitor FUNCtionNS,.eees 10=10
Reset Trace, Reset Stop, and Reset Monitor Functions 10=10
Monitor Values FUNRCLiON.coenovnenessnansernsnnnsnene 10=10
Query Trace, Guery Stop, and Query Monitor Functions 10«11
Locked FUNCLiONSsseeserevensoennssrsconcrsvsrsnonavennans 10=11
Debugqing Aid EXamPleS,eeeesessensnrnssvensssscarsneensy 10=13

Section XI Page
SYSTEM COMMANDS
Initial Values In 4@ WOrkSPACE€,sassvsnnsevensscsnnssnssans 1171
JCLEAR Command....-;g.-..............................--- 11=}
)ERASE Command..."Q'..‘.."......"ﬂ.’.....'.”"’.’,.. 11'4
)CDPY Command.’@."Q'.",.'.".,’Q!..".'...‘.’.".",'. 11.5
)PCOPX Command"".".....".’!.’Q‘...'l!".......’..‘.' 11.5
JFNS COMMANGassnsessrnenragscessnernrsssnssnaspranspesasnas 116
JVARS COMMANAesnesnassaerssnnensosnesenpsssnssnssnnvcanse 11™6
JSI Command,ssssessaseassssnnossesvsnsnsnenrrnntenreeonnee 1176
ISIV COmmManNCagessanssonronoonseransnrsnsansrsesosnsnesssosae 1177
Workspace Storade and Retrieval,ssenesvenssssanansnssses 1127
Libraries of Saved WOrKSPA8Ce@S,pesesesrvrensnnresncens 11=7
Names and Passwords of WOIrKSPACEeS,eenrnssevnnnenssgnn 1178
JIWSID Command,eseeseosnsorssnacrosrsncsssnssrssscesssenrerses 11°8
JSAVE Commandeesessovovessonsanosnsrossnsesvnsesnrnensrese 11°8
JCONTINUE Commandessesesreenssessssscrsnasnesnsnsnonessee 11°9
JLOAD Commandesesesvessssnsensnnassnnsevssccescesensenrsee 11%9
)DRDP Command saanaeasssersreessssonanseporasrancsnsssease 11710
JLIB Command,senessnsvesreosseosannsnsensosssnossennssenss 11710
)HELP Command....‘...l."'.Q...'."..'..""."."."".’ 11.10
JTERM COMMANG, coaavrnssnnennsoncerannsonsnsnsnosessnesses 1111

xii

CONTENTS (continued)

JTERSE Command......-....-..............--....--o.--.--m 11=11
JVERBOSE COMMAaNndesesanessesessasvsanennensvecssnasoseoree 11w12
JBIND COmmand,sessesenesvrecsseneesrsnansesrsscencsnsvessena 1112
)FILES ComMaNdaseanssensssarasosnssrsnsssosnssresasennnses 11=12
)MPE Command'.!....’..".".....’..".Q'..'.'.’..'...". 11-13
JTIME Command..,.............-................-...,,oo.. 11=13
Terminating an APL S5€55i0Nsesrsesesvronoencrentocreesssy 11=13

Section X1I

Page

ERROR MESSAGESI'l""’.Q'Qlltltl.'l'.'l.!!'!l.'!Q.Q!.!!! 12.1

Appendix
APLN3000

Appendix
APLN\3000

Appendix
APL\30Q00O

Appendix
APL\3000

Appendix
APLN\3000

Appendix
APLA\3000

Appendix

A

Page

CHARACTER SETO'QOlQ"'l'!Q’IQQQ!.Q'.!CQQ!'."" A'I

B

Page

PRIMITIVE FUNCTIONS AND OPERATORS yeveevcnvesoes Bol

C

Page

SYSTEM COMMANDS!D!!O99lIDQ!!!.!Q'QOQ!!!Q.!OQQ" Cel

D

Page

SYSTEM VARIABLES,eeevesecsvnenstconsascosrsncerse D=l

E

Fage

SYSTEM FUNCTIUNS,.0!09oqoqoocoooopvuooooOQQQOOQ Eel

F

Page

EDITOR INSTRUCTION SYNTAXepeseonasnovessonseese EFwl

G

Page

APLGOL STATEMENT SYNTAXeseaenvsosovereocovosnseovnssnnas G=1

Appendix

H

Page

SYSTEM SUPPLIED UTILITY SHARED VARIABLES,seeaerenenseess Hel

Index‘.‘..'.""'.!'!l!ll’.l!!'.Q!.'.OQQQQ'!QQIQQQQ‘Q".. I’i

xiii

ILLUSTRATIONS

Title
APL\3009 Character

‘ﬁet.l!'.l.!ﬂlQ.O.QlIQ'Q.Q'Q!QQIQPQROQQ

APL KeyboaTd,esesrnensoasrssannensornrsosssssasnsrensssss
APLN\3000 Primitive FUNCLL1ONS sganevsnnennsverenssonpensee
Pythagorean FuUNnCLiONSsesnesgaasesnsrosnvnnnersnnnesosrnvnonnse
Scalar=vVector Supstitutions for Mixed FUNCLiONS,revernne
Rank Of Arrays.'cnonol!'unoctnounl!00399000009000100010'
Access Control of a Shared Varilable,,oeencrcsenrrrnsvsne
Procedure Statement Flow Chartlessaeesssnsoresscornnssnes
FOREVER DO Statement Flowehnart sessnnsvserstsnosssnsssnns
Single=Arm Conditional 1F Statement Flow Chart,eseseersre
Double=Arm Conditional IF Statement Flow Chartecessrenee
REPEAT Statement FlowWw CRArl.sesessscensnnsrssssnsosnrnnesas
WHILE Statement F1low ChaAltessessscesnssssnrsocrossnnnnne
CASE Statement F1low ChAart.spsessenvecereservosessronnenee

TABLES

Title

Monadic Primitive Scalar FUNCLiONS sensserersnensssnnnenn

DYadic Primitive Scalar Functions.,,.,.,,.........;-cqnn
Identity Elements of Dvadic Primitive Scalar Functions,,
Truth Table for Boolean FUNCLIONS,ppesvevnsnaansscennnens
Structural Mixed FUNCLiONSseencesssnsncescvasnnnessnvenes
Selection Mixed FUNCLIONS,nevenssersnonsnessnasersnsosee
Selector Generator Mixed FUNCLiONS,easnssccsrevcrnsenssn
Numerical Mixed FUNCLiONS ,0op0eevnvecesrnsrsrsnassessnnvee
Data Transformation Mixed FUNCLIONSsqavarvsvnvesnsnnrsee
System FUNCLiONS,sapasvrvessvsennscrsnsenascssnscncnsnnenss
System VariableS,cesrescsoncnnsnrssnarsosssosnssonnennnre
System Functions for the Management 0f ShariNGesresnnnse
Access Control Vector SettindS.cosovraseonssosensscncosnrye
Edit INnStruUCtiONS,sseovencsnesassnsnsrnonscvnonsnnnnnsre
APLGOL SYNUAXsevrasnnnesnsssncsnenceenonssrnsnsosseanneons
System Functions Used for Debudging.sensssasrnesseonssnsa
System COMMANGS gesasesevcsennsronssosonssrsnsraaspnensnane
Initial Values In a WOrkKSpPaACe,sepeevnvnnensssncsssensonse
APLN30O00 Error MesSSaJdeSepssvsevssrsosonnsnanssossnsescosreons
File System (FCHECK) Error MesSSageS.senesevsennsencannsnee

Xiv

INTRODUCTION TO API\3000

APLN\3000 1is a highelevel programming language based on APL (A
Programming Language) as developed by Dr, Kenneth Iverson,

Significant features of APL\3000 are as follows:

* APL\N3000 is an interactive, terminal=oriented, problem solving
language,

* APL\3000 provides a large set of functions and operators; thus
programs may be written gquickly and concisely and can be
maintained with less effort than most high=~level 1language
programs,

Intermediate code is compiled for each statement when it is tirst
executed, Associated with the statement are binding parameters
such as data types and array shapes., If these binding parameters
are unchanged on subseguent executions, the statement need not be
re~analyzed nor the intermediate code recompiled,

A virtual memory scheme 1ls used which allows extremely large.,
virtual work spaces,

* An additional structured=programming facility, APLGOL, 1is
provided for creating user~defined functions,

*# A modern cursor~oriented APL editor is provided to compose and
edit APL programs,

* APL\3000 operates under control of the Multiprogramming Executive

Operating System (MPE), allowing it to run in a multi-~language
environment,

APLN\3000 CHARACTER SET

The APLA3000 character set consists of alphabetic characters,
underscored alphabetic <characters, numeri¢ characters, the blank
character, and special characters or graphic symbols, The complete set
of characters 1is shown {In figure 1-1, Note that the names for the
special characters are for ¢the characters themselves, and not
necessarily for the functions tney represent,

With the exception of 4 A wa V c o2 nu & =~40a () [3 : :4% £ 1.
the special characters are used to denote primitive APL functions or
APL operators (see Section II1), and have tixed meanings in APL.
Alphabetic <c¢haracters are uysed to form names of variaples and
user-defined functions (see Section 1I), Numeric characters are used
to form constants and may be used in conjunction with alphabetic
characters to form names, The first character of a name must be

1-1

alphabetic,

separate

or A
names,

or 4,
operators,

used to form names,

functions,

or constants,

Any number o0f blank characters may be used to
and may not be

€ X > V A

!

T cocno o9t

dieresis
not greater
greater
and

times
omega
tilde

iota

left (arrow)
upstile

del

quad

open shoe
cup

stile

quote
semicolon
dot

dollar
open bracket

delta under
log

circle stile
nand

base null
quote dot
domino

0123456789

+ %

.A\}—U’_‘D'_\LO_)m

overbar
equal
not equal
plus
divide
epsilon
up (arrow)
circle
right (arrow)
downstile
delta
open bracket
close shoe
base
slash
open parenthesis
colon
space
left tack
close bracket

The following characters are formed by overstriking

del stile
circle bar
slash bar
nor

top nuli
I-beam

ABCDEFGHIJKLMNOPQRSTUVWXYZ

* — D

v/—i3~~01 Q

1

ABCDEFGHIJKLMNOPQRSTITUVWXYZ

p-—- Ay LI A N1 LKy TR T I e S Aay AR

B > 44 »r 28 &

less

not less

or

bar

query

rho

down (arrow)
star

alpha
underbar

null

close bracket
cap

top

slope

close parenthesis
comma

right tack
diamond

delta stile
circle slope
slope bar
del tilde
cap null
quote quad

Figure 1-1. APL\ 3000 Character Set

APL KEYBOARD

APL, programs are generally composed and executed using terminal
devices having special APLL, Kkeyboards., The Kkeyboard for the
Hewlett=Packard HP 2641A APL terminal 1s shown in figure 1=2,
Alphabetic characters are shown in uppercase but are accessed without
using the shift key, while most special characters are accessed by
depressing tnhe SHIFT Kkey (uppercase), then striking the special
character key, Overstruck characters may be created by entering either
character first, backspacing, then entering the other character,
Alternatively, an expression may be created by entering characters in
any order and overstriking in any order, as long as the visual effect
is the correct expression, This 1is referred to in APL as visual
fidelity, (Note that the letter E cannot be produced by entering F,
packspace, then L.,)

APL\3000 also permits the use of standard ASCII terminals to create
and run programs, These terminals of <course do not have the special
APL. character set shown on the keys. Appendix A shows how to form
these special characters from such non=APL terminals,

w
2
— , N — ; o |
N B = anr
§sioRFRGE 2« B B R ¢
— _— - . {
,,,,, . R | 3 i R | —
BcRvasENEvE B 3§

Figure 1-2. APL\3000 Keyboard

1-3

INITIATING AN APLN\3000

SESSION

An APLMN30Q0 session is

initiated by entering

eslusername[/userpassw)] ,acctnamef[/acctpassw)

[/grouppasswli]

rmtypel

usecs])

nputpriority]

(APL) Lsessionnam
lrgroupname
[; TERM = te
[;TIME = cp
BS
CS
[;: PRI =
DS
ES
[3INPRI = {
[sHIPRI]
where
sessionname
username
userpassw
acctname

Arbitrary name used in conjunction with username

and accthame parameters to form a fully~
qualified session identity, Contains from 1 to
8 alphanumeric characters, beginning with a
letter, Default: null session name,
Note: A fully=qualified session identity
consists of:
[sessionname,lusername,acctname
and furnishes the minimum information
required for log~on, Embedded blanks are
forbidden in the username,acctname

combination,

A user name,
that
name
from
with

established by the Account Manager,
allows logging on under this account, This
is unique within the account and contains
1 to 8 alphanumeric characters, beginning
a letter,
lJser password, optionally the
Account - Manager, Contains from 1 to 8
alphanumeric characters, bpeginning with a
letter, Separated rrom username by a slash with
no surrounding blanks, as in username/userpassw,

assigned by

Name of
Manager,
characters,

account, as established by the System

Contains from 1 to 8 alphenumeric
beginning with a letter,

Note: Must be

delimiter,

preceded by a period as a

1-4

acctpassw

groupnhame

grouppassw

termtype

cpusecCs

PRI

Account password, optionally assigned by the
System Manager., Contains from 1 to 8
alphanumeric characters, beginning with a
letter, Separated from acctname by a slash with
no surrounding blanks, as in acctname/acctpassw,

Name of file group to be used for local file
domain and central processor unit time charges,
as established by the Account Manager, Contains
from 1 to 8 characters, beginning with a letter,
Default: Home group if assigned by Account
Manager,

Group password, optionally assigned by the
Account Manager. Contains from 1 to 8
alphanumeric characters, beginning with a
letter, Separated from groupname by a slash
with no surrounding blanks., as in
groupname/grouppassvw, (Net needed when logging
on under home group.,)

Type of terminal wused for input, Possible
values are:

AJ - Anderson=Jacobson

ASCII

ASCII terminal

BP = Bit=pairing

CDI - Computer Devices, Inc,
CP - Cnaracter-pairing

DM = DataMedia

GS1I » GenCom Systems, Inc,

HP - Hewlett=Packard

Maximum central processor unit time that session
can use, entered in seconds, When this limit is
reached, session 1is aborted, Must be a value
from 1 to 32767, To specify no limit, enter
question mark or omit tnhis parameter,

The execution priority class that the command
interpreter uses for the session, and also the
default priority for all programs executed
within the session., BS 1is highest priority; ES
is 1lowest, If & priority is specified that
exceeds the highest permitted for the account or
user name by the system, MPE assigns the highest
priority possible below BS, Default: CS,

1-6

inputpriority

HIPRI

The system prints the

Relative input priority used in checking against
access restrictions imposed by the job fence, if
one exists, (See the Console Operator’s Guide
for a description of the job fence.) Takes
effect at log=on time, Must be a value from 1
(lowest priority) to 13 (highest priority), 1f
a value is supplied that 1is less than or equal
to the current Job fence set by the Console
Operator, session is denied access, Default: 8
if session/job initiation is enabled, 13
otherwise,

Request for maximum session=selection input
priority, causing session to be scheduled
regardless of current Jjob fence or execution
limit for sessions,

Note: This parameter can be specified only by
users with System Manager or System
Supervisor capability.

message

APL\3000 HP32105 time and date

and awalts the first command,

RUNNING APLN\3000

Once a session is initiated, APL can be run in either of two modes:

calculator or immediate execution mode, or function definition mode.

In calculator (immediate execution) mode, expressions are created and

the results may be

displayed on the terminal immediately after

entering a carriage return,

For example.

6+7x(56%7)

6+7
‘i3
5+7-9
4
62

8§+3

2 45

5 7 9 11

Assign a value to the varjiable A:

4«14+88.5

Note that a left arrow (assignment arrow) is used to specifty the APL

assignment function,

1-6

If just the name of the variable is entered, APL displays its value:

(RS

112.5

In function definition node, the APL editor is used ¢to form
expressions into user=-defined tfunctions for later use, These
user~defined functions formed with the editor may then pe invoked from
calculator mode or from within another function to perform the
computation,

For example, CIRCLEAREA is a user~defined function to compute the
areas of sectors of circles,

o] AREA<RADIUS CTRCLEARPREA DEGRERS
[11] AREA«(ORADIUS*2)xDRGREES+360

RADIUS and DEGREES are arguments of the function. RADIUS denotes the
radius of the «circle and DEGREES denotes the angle the sector
sybtends,

To run this wuser=defined function, the name is entered with the
appropriate arguments as follows:

163.2 CIRCLEAREA 37.4
8692.791898

The value 163,2 is assigned to RADIUS and 37.4 is assigned to DEGREES,
APL, computes the area and displays the result,

The result can be assigned to the variable AREA by entering:

AREA«163.2 CIRCLEAREA 37.4
ARF A
8692.791899

TERMINATING AN APL\3000 SESSION

To terminate an APL session, either the)OFF or)CONTINUE command is
used:

YJOFF

See Section XI for <complete discussions of the)OFF and)CONTINUE
commands,

1-7

ELEMENTS OF APN\3000

APL CONSTANTS

APL accepts both numeric and character constants, All numeric
constants are decimal, and may include a decimal point if appropriate,
They may be entered In the conventional manner as, for example,

23
23

3.14158
3.1415¢9

or In scaled form, The scaled form consists of an integer or
fractional decimal number called the fraction followed by the letter E
followed by an integer called the scale, The scale 1s the power of
ten by which the fraction 1s multiplied, Examples of scaled form are

2Ry

g

20000
28y
.0002

L0587
500000

Note that an overbar may be used to denote a negative scale but a plus
sign may not be used with a positive scale,

Spaces are not allowed between the fraction and the E or between the E
and the scale or an error message results., For example,

SYNTAX EEROR
.05 E7
+
.05F 7
SYNTAX ERKOR
L0858 7
*

Negative numbers are specified by an overbar immediately preceding the
number. For example,

45.6
45.6

_53
753 _

1773
.001

T1E3
1000

The overbar is used only in specifying a negative constant, It is not
the equivalent of the bar (=), which is an APL function used either
monadically to negate a value or dyadically to compute the difference
between two arguments, For example,

A<b6.3

I

SCALAR CONSTANTS

APL, treats a single constant such as
297
2.97E8

34
5

as a scalar constant.
VECTOR CONSTANTS
A vector constant is entered as a sequence of numeric values, Each

value must be separated from the next by one or more blank characters
(spaces). The form of vector constants is

ABC«2 4 6 8 10
AEC

000 2800 1F12 2.34F 04 9.75%01 6.4FE01 3.14159%500

CHARACTER CONSTANTS

Character constants are entered by placing the characters between
quote marks (° 7) as follows:

APL displays the constant without the enclosing quotes as shown above,
APL\3000 treats a single character as a scalar character constant and

a string of characters as a vector character constant. An empty vector
(zero length) is specified by a consecutive palr of quote marks.

2-2

Examples:?

C«'CHARACTER VECTOR'
c
CHARACTER VECTOR

FYPTY/EC<""
EMPTYVEC

If a quote character is to be included in a character string, it must
be entered as a consecutive pair of guotes to distinguish it from the
quotes enclosing the string. For example,

QUOTE«" """
TIME«'1 0''CLOCK'

is accepted and displaved by APL\3000 as

QUITE

TIME
1 0'CLOCK

APL EXPRESSIONS

The expression is the basic executable unit in APL. An expression is
written using names (variablies and user~defined functions), constants,
and APL functions or APL operators., For example,

Constants

NN

YIELD«10000%x.05

Variable -————/ / Function

The expression Jjust shown assigns to the variable YIELD the value
resulting when 10000x,05 (also an expression) is -evaluated, The
specification arrow (<) 1is an APL primitive function (see Section III)
and means %is specified by,.," Thus YIELD is specified by the value
500, Several separate expressions may be written on one line if they
are separated by diamonds (Q), as for example

YIRLD«10000x ., 05QTNCOME«YTIELD+12

The result of an expression is displaved on the terminal unless the
leftmost APL primitive function in the expression 1s an AFL branch
arrow (), an APL assignment function (<), or the leftmost element is

2-3

the nare of a user=defined function which does not return & value, For
example,

10000x.05
500 = APL displays value
¥ APL assignment arrow
A«12.3
¥ APL branch arrow (see Section VII)
+>5+7
"= User-defined function (see SectionVI1)
ROOTS

Alternatively, if a variable has been assigned a value, that value can
be displaved by entering the name of the varjable,

YIELD

500
INCOME
41.66666667

The result of any portion of an expression can be displayed by
assigning it to the output variable guad ([]) (see Section IIl) at the
appropriate point in the expression, For example,

Beb+«ut+]«18

18
22

The specification arrow may appear any number of times in an
expression and 1is treated 1In the same way as other primitive APL
functions such as +, =, x, + and so forth,

A<B+Belb+l«1l
A
30
B
18
c
14 -

A second expression type is the branch expression, which may appear in
a user-defined function to modify the normal order of execution,
Typically, a branch evaluates the expression to the right of the arrow
and transfers contrel to the 1line number of the APL function
corresponding to the value of this expression, Branch expressions are
described and illustrated in Section VII,

The final type of expression in APL 1is used to invoke a user=defined

function. This type of expression also is described and illustrated
in Section VII,

2-4

APL FUNCTIONS

An APL function may operate on zero, one, or two arguments, and
optionally return a result, For instance, the primitive dyadic APL
scalar function sum (+) takes two arguments and returns their
algebraic sum as the result, This result then may be used as an
argument for another function. For example,

Arguments
N\
7+6
13 Ll Function
/ Result
5x13

55

MONADIC FUNCTIONS

A monadic function operates on oOnly one argument, Negation, for
example, 1is a monadic function which operates on the argqument
appearing to the right of the bar as follows:

o~

“45
-4

45

DYADIC FUNCTIONS

A dyadic function operates on two arguments, one to the left and one
to the right of the function, Thus, the functions sum, difference,
product, and quotient (represented by +, =, x, and +, respectively)
require two arguments, APL graphic symbols often have both monadic
and dyadic meaning. For example, A-B signifies subtraction of B from
A (dyadic), whereas =A signifies negation of A (monadic); and A:B
signifies the quotient of A and B (dyadic), whereas <A signifies the
reciprocal of A (monadic).

Dyadic Functions Monadic Functions
7+6 +6
13 6
7x6 x5
42 1
7:6 i6
1.166656667 .1666666667

NILADIC FUNCTIONS
A niladic function has no argument, For example, if T is a user=

defined function that returns the time of day, then entering T will
cause APL to return the current time (no argument exists),

2-5

PRIMITIVE FUNCTIONS

A primitive APL function is a part of the APL language and cannot be
redefined by the user, Such primitive APL functions are usually
represented by a special graphic symbol, For example, + -xd ¥V « + are
primitive functions, A primitive function differs from a used~defined
function 1In that a user~defined function consists of a number of
expressions defined by a user to perform a specific computation,

The set of primitive functions 1s shown in figure 2~1, They are
defined in Section IIf.

Primitive functions c¢an produce different functional effects by
combining an operator with the primjtive function, For example, the
sum of the elements 0f & vector constant will be computed if the sun
(+#) primitive scalar function 1is combined with the reduction (/)
primitive operator, as follows: i

VEC«2 4 6 8 10
+/VEC

30

Operators are discussed in Section III1,

USER=DEFINED FUNCTIONS

A user-defined APL function is a series of APl expressions combined
into one or more 1lines to form a function, This user~defined APL
function then <c¢an be invoked from an APL expression to perform a
computation on zero, one, or two arguments, For example, a
user~defined function to return the distance traveled could be used in
an APL expression as follows:

30 D 10

If 30 represented miles per hour and 10 represented minutes, APL then
would return 5, Note that spaces or other special characters must be
used to separate the name of a user~defined function from its
arguments, User~defined APL functions are discussed and illustrated
in Section VII,

SYSTEM COMMANDS

In addition to wusing the APL language, it is also necessary to
communicate directly with the APL system, A set of system commands is
provided for this purpose, These commands are used for such things as
logging on and off, saving a workspace for later use, and establishing
passwords that lock workspaces so that they cannot be accessed by
other users. System commands are discussed in Section XI,

2-6

PRIMITIVE SCALAR FUNCTIONS

Monadic Dyadic
+ conjugate + plus
- negative - minus
x signum X times
+ reciprocal + divide
[magnitude | residue
L floor L minimum
r ceiling r maximum
? roll
* exponential * power
® natural logarithm ® general logarithm
o pi times o circular
' factorial ! binomial
~ not
A and
v or
A nand
» nor
< less
< not greater
equal
= not less
> greater
#* not equal
PRIMITIVE STRUCTURAL FUNCTIONS
Monadic Dyadic
P shape P reshape
, ravel , catinate/laminate
e reversal ® o rotate
& transpose Q transpose

Figure 2-1. APL\ 3000 Primitive Functions (Sheet 1 of 2)

2-7

PRIMITIVE SELECTION FUNCTIONS

Dyadic
) take
! drop
| compress
X N\ expand
[1 index

PRIMITIVE SELECTOR GENERATOR FUNCTIONS

Monadic Dyadic
1 index generator 1 index of
4 grade up
V grade down
€ membership
? deal

PRIMITIVE NUMERICAL FUNCTIONS

Monadic Dyadic
B matrix inverse B matrix divide
1 decode
T encode

PRIMITIVE TRANSFORMATION FUNCTIONS

Monadic Dyadic
4+ execute 4+ execute
+ format T format

Figure 2-1. APL\ 3000 Primitive Functions (Sheet 2 of 2)

2-8

APL ORDER OF ASSOCIATION

In APL, there is no hierarchy of association among functions (such as
associating division before addition), Within a given level of
parentheses in an expression, association is strictly right to left,

If parentheses are used, then the part of the expression within
matching parentheses is associated rignt to left before applying its
result to any function outside the parentheses. For example,

18+6+3
2
18:5(6+3)
2
- (18:8)+3
6

ARRAYS

An array 1is a collection of zero or more values (elements), all of
whic may be represented by an array name, An array with zero
elements is an empty array: a scalar (single) value is dimensionless;

and a vector value such as

2 468 10

is a single-dimensional array and is considered to be of rank 1. A
matrix, which has two dimensions, or axes, such as

is a two~dimensional array of rank 2. APL\3000 allows arrays up to
and including a maximum of 63 dimensions.,

The elements of a vector (one-dimensional) array may be selected by
enclosing the indices of the desired elements in brackets, called
indexing. For example, variable XQR has the following values

XOR«2 4 6 8 10 12 14 16 18 20 22 24 25 28 30

If 1-origin indexing is in effect (see page 2-11), elements 3, 4, and
8 can be indexed by entering XGR[3 4 8]. APL returns

XRR[3 u 8]
6 8 16

Another example:
CHAR<«'CHARACTER STRING'

CHARLS5 6 7 14 15 16]
ACTING

APL

can be

dimensions
The left
shape of
with two
with four

For exampl

Note

displays a vector array on one
formed

or more output lines,
complex structure,

The vector

into & more containing more

¢ With the reshape (0) function (see Section 1II):

2 6pXAR
2 L 5) 8 10 12
14 16 18 20 22 24
4 LplHAR
CHAR \;‘ Name of vector
ACTE Reshape function
kR ST Number of columns
RING Number of rows
arguments in the above examples (2 6 and 4 4) specify the
the resulting array. The first example produces an array
rows and six columns. The second example produces an array
rows and four columns., More complex shapes can be created,

€,

12
34
56
78

90
AB
cD
EF

GH
IJ
KL
My

that when all the values of one axis have been displaved,

CHAR«'1234567890ABCDEFGHIJKLMN

SHAPE«3 4 20CHAR

SHAPZ ' Vector name
Reshape function
Number of columns

Number of rows

I

Number of planes

Name of array

a line

is skipped and the next set of axis values 1is then returned,

The

shape of an array can be determined by entering the monadic shape

(p) function (see Section 1II) followed by the array as its argument,

2 5
by
3 0y

The elements of a multi~dimensional array can be selected by indexing
in the same manner as snown for vector arrays, except that an index {s
provided for each axis, For example, to select and display the fourth
element in the second row of array RESHAPE1:

RESHAPE1
2 4 5 g8 10 12
i4 16 18 20 22 24
RESHAPE1[234])

20

The next example selects the second, third, and fourth elements fron
the third and second rows of array RESHAPEZ2,

RESHAPE?2
1234
5678
90AB
CDEF
RESHAPE2(3 232 3 4]

045
578

To select the second column of the first four rows of the second plane
of SHAPE:

SHAPE
12
34
56
78

90
43
oD
EF

X
1J
KL,
A
SHAPEL231 2 3 4321

0BDF

The foregoing examples assume that the elements are numbered 1, 2, 3,
+es DN, and therefore is called 1=origin indexing, Indices may begin
with 0, callea Oe=origin incexing, by setting the index origin to 0

2-11

with the system variable [JI0 (see Section IV), For example,

CHAR
1234567890ABCDEFGHTJKLMY
0I0<«1
CAARL2 u 6]
246 - ™. Selects elements 2, 4, and 6
O7T0<0

)
U]

HAR[?2 4 6] -
357 -— \ Selects elements 3, 5, and 7

WORKSPACES AND LIBRARIES

When an APL session is initiated, the system reserves a block of
storage for this session, This storage is <called a workspace, and
contains all the information ¢to perform calculations, save the
results, etc, This workspace also contains the definitions of
user~defined functions as well as the names and values o0f any
variables, The workspace also includes areas used by the system for
the temporary storage of intermediate results while a calculation is
in process, etc, The workspace being used is called the active
workspace, Workspaces may have names asslgned to them so that they
can be saved as duplicates of the active workspace for later use,
These saved workspaces are called stored workspaces,

The set of saved workspaces is called a library. Each workspace is
identified by group and account names as well as the actual name
assigned to it, 1In referring to workspaces in the user’s own library.
however, the group and account names may be omitted, because they are
supplied automatically,

In systems with multiple APL users, it is often convenient to use
functions or variables contributed by others, A user may activate an
entire workspace saved by another user, Or he may copy selected items
from another user’s workspace, In order to copy another user’s
workspace, the group and account names, if different, must be supplied
together with the workspace name,

Some 1librarles (usually identified by a special group and account
name, for example, PUB,SYS) are rnot assigned to individual users, but
are designated as puyblic 1lipraries, There may be restrictions,
however, on who can save, delete, or modify a workspace in a public
library, In general, a public library workspace can be re-saved or
deleted only by the user who first saved it,

APL\3000
PRIMITIVE FUNCTIONS AND OPERATORS|[

Primitive functions in APL consist ot two types: primitive scalar
functions and primitive mixed functions, Primitive scalar functions
operate on scalar arguments or arrays on an element=by~element basis.,
producing results of the same rank and shape, Primitive mixed
functions also operate on scalars and arrays, but may produce results
which differ in rank and shape from the original argument arrays.

Four primitive operators can be applied to the primitive scalar dyadic
functions to produce different effects, Operators are discussed
starting on page 3-17 ,

PRIMITIVE SCALAR FUNCTIONS
Primitive scalar functions are of two types: monadic and dyadic,

A monadic primitive scalar function applies to one scalar argument, or
to each element of one array argument, If the argument is an arraye
the result is an array of the same shape as the argument, Each element
of the resulting array is produced as the monadic function is applied
to the corresponding element of the original argument array., For
example,

A
"7 38.1 ~6.035 155.64
-4

7 T34.1 6.035 ~155.64

A dyadic primitive scalar function applies to a pair of arguments, The
arguments can be scalars or arrays. If arrays are used, both must be
of the same rank and shape, or, if not, one must be a scalar or unit
{one~element array),

When arrays of the same shape are used as arguments, each element of
the 1left argqument 1is paired with the corresponding element in the
right argument, For example,

A
"7 34,1 ~6.035 155.64
£
"3 1.2 .35 10
AxB

21 u40.S 2.11225 1556.4

I1f one of the arguments is a scalar or unit (one~element) array, then
that element 1is paired with every element of the other argument
(extended) as follows:

14

45,3
B

"3 1.2 ~.35 10
CxB

135.9 54.36 15.855 1453

Primitive scalar functions are typically applied to all numbers with
the exception that arguments to the boolean functions (A v ~# ¥ ~) are
restricted to the binary values 0 and 1, Additionally, the functions
= and = may be applied to character arguments,

Monadic primitive scalar functions are shown in table 3=1 and dyadic
primitive scalar functions are shown in table 3~=2, Note that most
symbols (such as + and =) are used both monadically and dyadically;
whether they are interpreted as monadic or dyadic depends on the
context in which they are used,

Some primitive dyadic scalar functions possess a left identity and/or
a right identity. A left identity is such that 1f L is the left
identity for the function fn, then LfnX equals X for all X,

For a right identity K, XfnR equals X for all X

Taple 3=3 shows the identity elements o0f the primitive dyadic
functions, Note that the relational functions equal (=), not equal
(2)s less (<), greater (>), not less (=), and not greater (<) do not
possess true identity elements when used as relational functions, but
do when wused as boolean functions (applied only to the values 0 and
1),

PLUS, MINUS, TIMES, AND DIVIDE FUNCTIONS

Plus (+), minus (=), times (x), and divide (+) are dyadic functions
which perform the same functions in APL as they do in standard
arithmetic operation, (Note that in APL, 030 returns a value of 1;
however, when X =z 0, X+0 results in an error.,)

Examples of these four functions are:

"7 T6.035 155.64 1

~ - -

.35 10 .75 1

“7.35 3.965 154.89 O

.65 ~16.035 156.39 2

v 2.45 ~60.35 116.73 1

667 28.5 20 .6035 207.52 1

“12 T11.035 150.64 4

3-2

Table 3-1. Monadic Primitive Scalar Functions

SYMBOL NAME DEFINITION EXAMPLE
+ Conjugate +Ais A 4
5}
+4
6
- Negative —-Ais0- A A
)
R -A
)
X Signum X A is (A>0)—-A<O0 A
6
x A
1
+ Reciprocal +Ais1 + A A
6
3 A
.166566566667
Magnitude Absolute value b _
u,743 4,743
| B
4.743 4,743
L Floor Least integer B_
4.743 4,743
_ LB
4 5
r Ceiling Greatest integer B
4,743 T 4.743
_ B
5 4
? Roll ?A is random choice from set of o
A consecutive integers & 5 6 & 6 6
beginning at [JIO. 20
1 3 4 2 5 2
* Exponential er A
S
* 4
403.4287935
® Natural in A orlog. A A
logarithm 5]
&4
1.791759469
o Pi times aXxXA D
1 2
oD

3.141592654 6.283185307

Table 3-1. Monadic Primitive Scalar Functions (continued)

! Factorial A= AxA-1x. . .xl A
6
LA
720
~ Not ~1is 0, ~0 is 1. Truth table E
defined for 0 and 1 only. 1
~F
0
Table 3-2. Dyadic Primitive Scalar Functions
SYMBOL NAME DEFINITION EXAMPLE
+ Plus Add 6+7
13
- Minus Subtract 5-7
"1
X Times Multiply 6x7
y2
+ Divide Divide 67
.8571428571
| Residue Remainder after divide 7143.36
1.36
L Minimum Smaller of two values 6L 7
5
r Maximum Greater of two values 67
7
* Power Product of Bx B Atimes. 2%8
(B4 256
® General logs A
logarithm 1001003

3.001300933

34

Table 3-2. Dyadic Primitive Scalar Functions (Continued)

SYMBOL NAME DEFINITION
o Circular, Hyperbolic, ~70X = Artanh X
and Pythagorean ~60X = Arcosh X
functions ~50X = Arsinh X
~“4oX = ("1+X*2)*.5
~30X = Arctan X
~20X = Arccos X
10X = Arcsin X
0oX = (1-X*2)*.5
10X = Sine X
20X = Cosine X
30X = Tangent X
40X = (1+X*2)*.5
50X = Sinh X
60X = Cosh X
70X = Tanh X
! Binomial (A)
B
A And A B AAB | AvB | A#B | A~¥B
v Or 0 0 0 0 1 1
0 1 0 1 1 0
A Nand 1 0 0 1 1 0
1 1 1 1 0 0]
» Nor
< Less Resuit is 1 (TRUE) if relation holds and 0 (FALSE)
if it does not hold. For example, 4<6is 1, 4>6is 0.
< Not greater
= Equal
= Not less
> Greater
Not equal

Table 3-3. Identity Elements of Dyadic Primitive Scalar Functions

" FUNCTION SYMBOL IDENTITY ELEMENT LEFT OR RIGHT
Plus + 0 Both
Minus - 0 Right
Times X 1 Both
Divide + 1 Right
Residue | 0 Left
Minimum L The largest Both

representable number
Maximum r The greatest in Both
magnitude of
representable negative
numbers
Power * 1 Right
Logarithm ® None
Circle o None
Binomial ! 1 Left

And A 1 Both
Or % 0 Both
Nand A None
Nor ~» None
Less 0 Left
Not greater < 1 Left
Equal = 1 LApply for boolean Both
Not less = 1 farguments only Right
Greater > 0 Right
Not equal # 0 Both

RESIDUE FUNCTION
Residue (|) 1is a dyadic primitive scalar function which returns the
remainder when a value X 1is divided into a value Y; that is, Xi¢
returns the remainder when X is divided into Y,
The following rules apply for zero and non=zero values:

If X =0, X|Y - Y,

* If X

1]

0, X|Y <> a value between 0 and X, The result can equal 0
but not X (equal to ¥=N|X for some integer N),

Examples of the residue function are

4

5 34,2 7 ~6.035 155.64 1
B

"3 1.2 ~.35 10 .75 "1
AlB _

2 1.2 .35 2.07 154.89 0

B
T1E00 68F 01 2.2204460u49F 16 3.955%00 3.6F 01 0F00
CONJUGATE FUNCTION

Conjugate (+), a monadic primitive scalar function, returns the value
of its argument unchanged, For example,

A
5 34.2 7 ~5.035 155.64 1

+4
5 34.2 7 "6.035 155.54 1
NEGATIVE FUNCTION

The monadic primitive scalar function negative (=) returns the value
of its argument with the opposite sign, For example,

A

5 34.2 7 ~6.035 155.64 1
-

s T34.2 7 6.035 155.64 1

SIGNUM FUNCTION

The signum function (x) is a monadic primitive scalar function which
returns a value that is dependent upon the sign of its argument, If A
is negative, then xA is~1; if A is positive, xA is 1; if A is 0, then
xA is O.

Examples of the signum function are:

4
5 34.2 7 "6.035 155.64 1
X

1 1 "1 T1 01 1

37

RECIPROCAL FUNCTION

The monadic primitive scalar ftunction reciprocal (+) returns the value
1+X for the argument X, For example,

A
5 34.2 7 ~6.035 155.64 1
. x4 - - - -
2E°01 2.923976608E 02 1.4285714298 01 1.657000829F 01 6.425083526F 03
1E00

Note that when X is 0, an error results,

MAGNITUDE FUNCTION

The magnitude (]) monadic primitive scalar function returns the
absolute value of its argument, For example,

5 34.2 7 T6.035 155.64 1
|

5 34.2 7 6.035 155.64 1
BOOLEAN FUNCTIONS

The five boolean functions apply only to the values 0 and 1, APL
interprets 1 as being true and 0 as being false,

Four of the boolean functions are dyadic, the other, not (~), 1is
monadic, A truth table for the functions is:

AND OR NAND NOR NOT
X Y XAY XvY XAY X»Y ~X| ~Y
1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0
0 0 0 0 1 o1 1 1

RELATIONAL FUNCTIONS

The relational functions are dyadic primitive scalar functions and are
listed below,

Less (<)

Not greater (<)
Equal (=)

Not less (>)
Greater (>)

Not egqual (=)

The functions <€ < = > only apply to numeric arguments, while = and =

apply to numerlc and character arguments, Note that the result of
1*=1 is always 0 and that "1°#1 is always 1,

38

The result is 1 (true) if the compared relation is true and 0 (false)
if the compared relation is false, For example,

A

5 3.2 7 "6.035 155.64 1
B

"3 1.2 .35 10 .75 "1
A<B

0 0 1 1 0 O
A>B

The results of comparing the arguments of relational functions are not
absolute, but are within a certain comparison tolerance whose value is
contained in the system variable [UCT, The question "is A equal to B"
is straightforward unless floating=point numbers representea in a
finite number of bits (64 bits for APL\3000) are involved, The A=B
question then becomes harder to answer because many floating=point
numbers cannot be represented exactly in 64 bits, Thus, problems
arise 1if the equals test is defined to be "exact." The following
example illustrates this point,

A+:97CA

1.030927835F 02
[CT<«0 aA THIS MAKES '=' AN EXACT TEST
1=97xA

A BECAUSE 1/97 CANYOT BE STORED EXACTLY
an THEN 'A' IS NOT A NUMBER THAT CAW
an BE MULTIPLIED BY 97 TO RETURN 1

This particular way to define = is then not very consistent with the
way = would be expected to act, Thus the definition of = (and some
related functions) is not an "exact" definition, but is relative to
the magnitude of the operands and the value of [ICT, The definition {is

X«|A-B {11
Y«f/C14),1B (21
ITF (Yx{CT)2X THEWN £31l

A IS EQUAL TO B

Notice that the preceding set of equations, while concise and correct,
is difficult to understand, Paraphrasing them as follows may help:

Equation ({1} sets the variable X to the absolute value of the
difference of the two arguments A and B.

Equation (2] sets Y to the absolute value of the larger of the two
arguments A and B,

The third (and crucial) equation [3) states that the arguments are
defined to be equal if [CT times the larger of the arguments (Y¥)
is larger that the difference between the arqguments,

39

Note that U0UOCT does not specify the absolute difference between the
arguments but the difference relative to the size ¢of the arguments,
Thus two big numbers need not be as close, in an absolute sense, as
two small numbers., Note that under this definition, if OCT is 0, the
equals test 1s exact in that the difference hetween the arguments A
and B must be 0, exactly, for equation (3] to be true,

There are several APL functions (such as index of, index generator,
deal, roll, etc) which will result in an error unless the operand(s)
are considered "integers," In APL\3000, this test for integer is done
in the following way:

1) First, the integer closest to the argument is obtained,

2) Second, the integer obtained in 1) 1is compared in a relative
sense to the argument,

3) If the 1integer from 1) is relatively equal to the argument,
that integer is used as the argument,

An examples:

A«<300011000

AL250]
250

A[250+1% 11]
250

A{250+1%F 107
DOMAIN ERROR _
A{250+.1F 091
Qu

The relational functions act as boolean functions when they are used
with the boolean arguments 0 and 1, Table 3=4 shows the pboolean
functions and relational functions for all possible values o0f the two
boolean arguments,

Table 3-4. Truth Table for Boolean Functions

NOT
NOT NOT EQUAL
AND | OR | NAND | NOR | LESS | GREATER | EQUAL | LESS | GREATER | (XOR) NOT
XY [XAY [XVY | X&aY | XvY | X<Y X<Y X=Y X=Y xX>Y X#Y ~X | ~Y
1 1 1 1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 1 0 0 0 0 1 1 1 0 1
0 1 0 1 1 0 1 1 0 0 0 1 1 0
0 0 0 0 1 1 0 1 1 1 0] 0 1 1

3-10

MINIMUM AND MAXIMUM FUNCTIONS

The minimum (L) and maximum ([) functions are dyadic primitive scalar
functions that compare two values and return the smaller or larger of

the two, Examples are

A

5 34.2 7 76.035 155.64 1
B

"3 1.2 T.35 10 T.75 "1
ALB

"3 1.2 7 T6.035 .75 "1
ALB

5 34.2 .35 10 155.64 1

FLOOR AND CEILING FUNCTIONS

Floor (L) and ceiling () are monadic primitive scalar functions, The
floor function returns the largest integer value which does not exceed
the value of its argument, The ceiling function returns the smallest,
integer value which is not less than the value of its argument,

Examples are

A
5 34.2 7 ~65.035 155.64 1
14
5 34 7 ~7 155 1
4
5 35 7 "6 155 1

The results returned by the floor and ceiling functions depend on the
value of the comparison tolerance (OCT), See page 3-9 for a
description of results which are dependent on UCT, An example is:

X+97x1%97
Lx
1
ix
1
OCT«0
X
0
ix
1

ROLL, (RANDOM NUMBER) FUNCTION
Roll (?) is a monadic primitive scalar function (named atter the roll

of a die) which produces a pseudowrandom choice with replacement
between [JI0 and A-1=[I0 (depending on the index origin presently in

3-11

effect), For example, if the argument is 6 and the index origin is 1,
then 76 will produce a random integer between 1 and 6,

Examples are

OI0«1

?6 6 6 56 6 6 6
6 4 1 3 2 2 5

27 7 77 17 7 1
2 8 2 2 7 6 17

OI0<«0

?6 6 6 6 6 6 6
3 4 0 5 1 3 0

27 7 7 77 7 17
&6 4 0 1 6 5 0

The result produced bpy the roll function {is always a non=negative
integer.

POWER FUNCTION

The power function (#) is a dyadic primitive scalar function which, in
the form X#N, raises X to the power N, X#%=N therefore is the
reciprocal of X#N, and X%:N is the Nth root of X,

Examples are

4y 6 "2 6

A

5§ 3u.2 7 T6.035 _155.64 1
N Y
A

2.5E01 1.36805773E06 1.17649E505 2.745651746% 02 1.704178616% 09 1E00
*0

o

1

Note that APL defines the indeterminate case 0%#0 as 1.

The power function results in a domain error {f the following two
restrictions are not observed for X#N:

1, If X = 0, N must be non=negative,

2, If X < 0, N must be an integer or a rational number with an
odd denominator,

EXPONENTIAL FUNCTION

The exponential function (#) is a monadic primitive scalar function
where #X is exX and e 1is the natural logarithm base, which is
2,718281828459045,

Examples are

A

5 34.2 7 76.035 155.64 1
*4

1.484131591F02 7.126417816EK14% 9.1188196567% 04 2.393496527E 03 3.922772873E67
2.718281828E00

312

NATURAL LOGARITHM FUNCTION

The natural logaritnm tunction (®) is a monadic primitive scalar
function and the inverse of the exponential function. The domain of
the natural logarithm function is limited to positive numbers,

Examples of the natural logarithm function are

%1

X«2 4 6 8 10
%
.6931471806 1.3862943611 1.7917594692 2.0794415417 2,302585093

GENERAL LOGARTIHM FUNCTION

The general 1logarithm function (@) 1is a dyadic vprimitive scalar
function in which B®A is the "log base B of A," The general logarithm
function {s the inverse of the power function in that B#Be®A anao BeB#)
both equal A,

Examples of the general logarithm function are

X

2 % 6 8 10
28X

1 2 2.584962501 3 3.321928095
108X

.3010299957 .6020599%913 .7781512504% .903089%887 1

CIRCULAR HYPERBOLIC AND PYTHAGOREAN FUNCTIONS

The symbol o0 signifies a monadic primitive function which returns a
value egual to PI times the argument, For example,

Y«0 1 2 4 6 8 10
oY

0 3.141592654 6.283185307 12.566370614 18.849555922 25.132741229
31.415926536

The same symbol also can be used to specify a dyadic primitive scalar
function to signity 15 circular, hyperbolic, and pythagorean
functions, When used in this manner, an integer in the range ~7 to 7
as the left argument signifies the particular function:

313

“70X = Arctanh X
~60X = Arccosh X
50X = Arcsinh X
740X = (T1+X#2)%,5
—30X = Arctan X
—20X = Arccos X
10X = Arcsin X
00X = (1=X%2)%,5
10X = Sine X
20X = Cosine X
30X = Tangent X
40X = (1+X%2)#%,5
50X = Sinh X
60X = Cosh X
70X = Tanh X
The six circular functions are:
10X = Sin
20X = Cos
30X = Tan
10X = Arcsin
T20X = Arccos
—30X = Arctan
The right argument of the above circular functions is in radians. For
example.,
2+°7.°5 "3 7101 35 7
- 10z - -
.6569865987 .95892'427147 .1411200081 .8414709848 0 .841u70984u48
.1411200081 .9589242747 .6569865987
207 _
.753902%'43 .2836621855 ~ .9899924966 .5403023059 1 .5403023059
.9899924966 .2836621855 .7539022543
302
T.8714479827 3.3805150062 1425465431 1.5574077247 0 1.5574077247
C.1425465431 3.3805150062 .8714479827
302
'1.!628875-5722 1.3734007669 1.2490457724 T.7853981634 0 .7853981634
1.2490457724 1.3734007669 1.4288992722
The six hyperpolic functions are:
50X = Sinh
60X = Cosh
70X = Tann
“50X = Arcsinh
“60X = Arccosh
~70X = Arctanh
The functions sinh (50X) and cosn (60X) are ¢the odd and even
components of the exponential function, For example, 50X is odd, 60X
is even, and the sum (50X) + 60X is equivalent to =X,

3-14

>q
o

-
50X
1490.478826
60X
1490.479161
(50Xx)+60X
2980.957987
ﬁ&
2980.957987

>

The tanh function (70X) is similar
which 1is
sinh
tanh =
cosh
thus
70X
.3938998387749
(50X):60X
.9999997749

The three pythagorean functions are:

(1=X*2)%,5

0oX =
40X = (T14X#2)%,5
40X = (1*x*2)*05
The pythagorean functions

triangle as shown in figure 3-1,

are related to the

to the definition of the tangent,

properties of a right

AC=1
AB=00BC
BC=09°AB
AE=40°DE
DE="4°AE

Figure 3-1. Pythagarean Functions

Each of
inverse

the circular, hyperbolic,
in the same famjly; thus,

3-15

and pythagorean functions has an
(=I)oX is the inverse of loX. Some

of the functions are not isomorphic, however, and thus their inverses
can have many values, The principal values are shown below:

ARCCOSH V< 60X V=20

7« 40Y V20
ARCCOS 7« 20Y (V20)A(X<01)
ARCSIN V<« 10X (]V)<0.5

V«00X Vz0
VeloX V>0

Domain restrictions are as follows:

ARCTANH “70Y 1>1Y
ARCCOSH "0y Y21

“yov 1<y
ARCCOS “20Y

_ 121Y
ARCSIN 10Y

0oy Y<1

FACTORIAL FUNCTION

The factorial function (!) is a monadic primitive scalar function. For
a positive integer argument X, !X is the product of all positive
integers wup to and including X. Thus, !X = Xx!X=1, or lX=1 = (1X):X,
This relation is used to extend the function to both positive integer
and non=integer values and to negative non-integer values, Negative
integer values are excluded from the domain of the factorial function
because the relation described above Jleads to the expression (!0):0,
or 10 for !-t,

Examples of the factorial function are:;
X«<"2.5 1.4 ~,5 01 2 3 4 5§

A
X
2.363271801 3.722980622 1.772453851 1 1 2 6 24 120

BINOMIAL FUNCTION

The binomial function (!) is a dyadic primitive scalar function, For
non=negative integer arguments X and Y, the function X!Y is defined as
the number of different ways X things can be chosen from Y things, The
expression (PY)+CLXIx(iY=X), however, produces an equivalent
definition which is used to extend the binomial function definition to
all numbers,

Unlike the factorial functjion, which excludes negative integers fronm
its domain, the binomial function does not, This is because any
implied division by zero in the numerator !Y is accompanied by a
corresponding division by zero in the denominator, Thus, the binomial
function extends correctly to all numbers, :

3-16

Examples of the binomial function are:

1 2 3 45

X<0
Y<6

>
0~<

1

20 15 8
QPERATORS

Operators are combined with dyadic primitive scalar functions to
produce different functions, FOr example, the reduction operator (/)
can be compined with the dyadic primitive scalar function plus (+) to
sum the elements of a vector to produce a scalar sum as follows:

15

The four major operators are:

* Reduction (/)

#*# Scan (\)

*# Inner product (.)

* Quter product (°.)
Additionally, an auxiliary axis operator may be used in conjunction
with the scan and reduction operators and the primitive nmixed
functions to specify the coordinate (axis) over which the operation is
to occur.
REDUCTION OPERATOR
The reduction operator (/) applies a dyadic primitive scalar function
which precedes it to elements in the right argument, producing a
result whose rank is one less than that of the argument (thus reducing
the rank),., For example,

VECTOR«<2 4 6 8 10
+/VECTOR

30
-/VECTOR
6

+/VECTOR 1is the equivalent of 2+4+6+8+10
=/VECTOR 1is the equivalent of 2-4-6=8=10
The reduction operator performs as though the function were placed

between adjacent pairs of elements of VECTOR and associating righte
to=left,

3-17

The last example demonstrates the right-to~left association, which
causes ~/VECTOR to result in the alternating sum of the elements ot
VECTOR, The alternating sum 1s the sum obtained after multiplying
alternate elements of a vector by I and ~1, Thus, if ALTER<~1-1 171 1,
then +/VECTORxALTER and =/VECTOR are equal, as demonstrated below:

VECTOR
2 4 6 8 10_ _
ALTER«1 "1 1 "1 1

_ VECTORxALTER
2 L 6 g 10
+/VECTORXALTER
6
-/VECTOR
6

An alternating product can be obtained by +/VECTOR. For example,

VECTOR
2 4 6 8 10
_ ALTER
1 711 11
x/VECTOR*ALTER
3.75
t/VECTOR
3.75

When the reduction operator 1is applled to any scalar or vector
argument, the result is a scalar value, The value resulting from a
scalar or unit array argument is the argument itself, The eftect of
applying the reduction operator to multi=-dimensional arrays is
discussed under the axis operator on page 3-20 ,

If the reduction operator and a primitive scalar dyadic function are
applied to an empty array, the identity element of the function
becomes the result if an identity element exists for that function, If
an identity element does not exist for the function, a domain error
results, Note that an empty array may be of type character or numeric
and identity elements differ depending on these types, For example,
the identity elements for the times function (%) is 1 for numbers, and
none exists for the nand tunction,

3-18

&y

<«

/

~/E
DOMAIN ERROR
~/E
1;
+/E

(@]

00

X
iy

1

E"OO, L
x/E
DOMAIN ERROR
x/E
Q.
~/E
DOMAIN ERROR
n/F
’
+/E
DOMAIN ERROR
+/E
+

The 1identity elements (or the domain error resulting when no identity
element exists) of all functions when they are combined with the
reduction operator and applied to an empty vector are shown in table
3-3,

SCAN OPERATUR

The scan operator (\) applies the dyadic primitive scalar function
which precedes it to the argument, The scan operator performs a
cumulative reduction over arrays. The result of this operator is an
array of the same shape as the operand, in which the nth element
corresponds to the result of the reduction over the first n elements,

YECTOR
2 4 6 8 10
+/VECTOR
30
+\VECTOR

2 6 12 20 30

3-19

Other examples of the scan operator are:

VECTOR

2 % 6 8 10
x\VECTOR

2 8 48 384 3840
VBC«1 1 1 0 0 0 1

AVEC

1 1 1 0 0 0 0
VAVEC

11 1 1 1 1 1
*\VEC

i1 0 1 1 0 0 O

The results obtained when the scan operator is applied to arrays other
than vectors is discussed under the axis operator,

AXIS OPERATOR

The discussion o0of the reduction and scan operators described what
happens when those operators are coupled with a dyadic primitive
scalar function and applied to a vector, The reduction operator,
however, also can be applied to arrays, which c¢an be thought of as
collections of vectors. For example, consider an array that has two
axes:

> AXIS 2

Y
AXIS 1

The columns extend along axis 1 and rows extend along axis 2.

» AXIS 2 (Columns)

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
v5 10 15 20 25
AXIS 1 (Rows)

Reduction o0f an array c¢an be defined as the vector of results produced
by reduction of eacn of the column vectors or the row vectors.

The axils operator s signified by brackets [] enclosing an

3-20

expressione. The expression, when evaluated, vields the index of the
axis., For example,

ARRAY«4 6p1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
ARRAY

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

189 20 21 22 23 24

+/L1]ARRAY

40 44 48 52 56 60
+/[2JARRAY

21 57 93 128
+\[1JARRAY

1 2 3 4 5 6
8 10 12 14 16 18

21 24 27 30 33 36
40 44 48 52 56 60
+\[2JARRAY
1 3 6 10 15 21
7 15 24 34 45 57
13 27 42 58 75 93
19 39 60 82 105 129

Note that the scan operator produces a result whose shape is the same
as that of the argument while the reduction operator produces a result
whose shape is the shape 0f the argument with the reduction axis
removed, That 1s, the shape vector of the result has one fewer
elements,

If no axis operator 1is included with reduction and scan, these
operators apply along the last axis as follows:

ARRAY
1 2 3 I 5 6
7 8 g 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
+/[LJARRAY
21 57 93 129
1 3 5 10 15 21
7 15 24 3y 45 57
13 27 42 58 75 93
19 39 60 82 105 129

The symbols # and X may also signify reduction and scan (also
compression and expansion), respectively; and, in the absence of the
axls operator, these operators apply along the first axis, as follows:

+FARRAY
40 44 48 52 56 60
+XARRAY
1 2 3 4 5 6
8 10 12 14 16 18
21 2% 27 30 33 3B
40 44 48 52 56 60

321

If an axis operator is used with # or X, it signifies the nth from
last axls, as opposed to nth from first axis with / or \,

See the discussions of the mixed functions reverse, rotate, compress,
and expand for additional applications of the axis operator,

INNER PRODUCT OPERATOR

Sets of data can be arranged into vectors of the same shape to perform
numerous useful computations, For example, i1f vector A represents a
list of parts and B represents a list of prices, and A and B are the
same shape, then the expression +/AxB would produce the total cost of
inventeory,

Expressions of the same form using other functions also are useful,
For example,

17 4 3.95 8.96 10

A X=Y < Comparison of X and Y
0

+/X=Y = Number of agreements between X and Y
2

The inner product operator (,) applies the two functions that enclose
it to a left and a right argument to produce functions equivalent to
the examples shown above,

Thus, Afnl.fn2B 1is equivalent to £n1/Afn2B, For example, for
vectors/scalars:

245.38
Ax ,*B
4.91058931%28
x/A*xE
4.91058931F28

When applied to arrays, the inner product operator extends to the last
axis of the left arqument and the ¢tirst axis of the right argument,
The lengths of the two axes must agree, The axes operated on by the

3-22

inner product operator are deleted and the shape of the result 1s the
catenation of the remaining shapes ot the operands, as for example,

VEC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A«3 SpVEC
B+5 upVEC

o =
~
[e o]
[Te]
-
o

B

1 2 3 [

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20
A+ .xB

175 180 205 220
400 440 480 520
625 690 755 820
B«5pVEC
B
1 2 3 4 5
A
1 2 3 y 5
() 7 8 9 10
11 12 13 14 15
A+ .xB
55 13 205
A«8poVEC
B«8pVEC

The inner product A+,xB is also known as the matrix product. Examples
are

<

EC
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A+L4oVEC
i
3

1 2

1 2 4
BOOL«1 1 1 11 00010100000
B+4 u4pBOOL

B

(SR
oc:o»w
OR o
coom

A+ .xB

B+ .xA
10 1 L 0
B+.xB

ON P W
O
[« WSN)
O P

3-23

Examples of other inner products:

O P R
COoOOm

joNeleNe)
OO O

O RN =
O e

i
O RN
O b2 D

The preceding examples show that either argument can be of any rank,
so 1long as the rank of the result 1is <63, and the last dimension of
the left argument is compatible with the first dimension of the right
argqument, that 1s,

((T1404)=1408)vie(14p4),14R

Thus, A+,.,x1 is equivalent to +/A and 1+,.,xA is equivalent to +/A, For
example,

4«2 4 6 8 10

74
30

A+.x1
30

27
30

1+.x4
30

OUTER PRODUCT OPERATOR

The outer product operator is signified by the symbols °, and precedes
the function to which it is applied, The outer product operator can be
applied to any dyadic primitive scalar function, When the outer
product is applied to a function, that function is evaluated for each

3-24

element of the Jleft argument paired with each element of the right
argument, For example,

A
2 4 6
B
2 4 6 8 10
Ao . +B
4 5 8 10 12
65 8 10 12 1b
8 10 12 14 16
Ao .xB

4 8 12 16 20
8 16 24 32 40
12 24 3% 48 60

Ao . *B
4 16 614 256 1024
16 256 4096 65536 1048576
36 1296 46656 1679616 60466176
Ao .<B
o 17 1 1 1
o0 1 1 1
o0 0 1 1
4o . >B

60 0 0 0O 0
1 0 ¢ 0 0
11 ¢ 0 O

These examples show that the shape of the result of X°.fnY is equal to
(oX)roY. The expression (pX)eoY Produces the shape for any arguments
X and Y,

MIXED FUNCTIONS

There are five <classes of mixed functions, grouped according to
whether they are concerned wlth:

* The structure of arrays.,

* Selection from arrays,

* The generation of selection information,
*# Numerical calculations,

Transformations of data such as that between numbers and
characters,

These five groups of mixed functions are listed in tables 3=5 through
3=-9, Included in each table are the names of the mixed functions, the
symbols used to denote the functions, a definition or example of each
function, and restrictions on the ranks of arguments that may be used
with each mixed function,

3-25

Table 3-5. Structural Mixed Functions

NAME SYMBOL FORM DEFINITION
Ravel) A Produces vector whose elements are
’ the elements of the right argument in
row major order.
Shape p pA Produces vector whose elements are
the dimensions of A.
Reshape P ApB Reshapes the ravel of right argument to
shape specified by left argument.
Reversal o or ® Aor Reverses elements in the right argu-
<] eA ment. When ¢ is used, elements along
the last coordinate are reversed; with
o, elements along the first coordinate
are reversed.
Rotate o or A®B or Causes elements of the right argument
) AeB to be rotated. When ¢ is used, ele-
ments along last coordinate are
rotated; with © , elements along first
coordinate are rotated.
Catenate [LA] Joins two arrays along an existing
axis.
Laminate [A[B] Joins two arrays along a new axis.
Transpose ® QAor Reverses the order of (transposes) the
AxB axes of an array. If used dyadically, as
ARB, arranges axes of B to conform to
argument A.

3-26

Table 3-6.

Selection Mixed Functions

SPECIAL
NAME CHARACTER FORM DEFINITION

Take 1 NTA Takes N elements from A. If N is
positive, first N elements are taken; if
negative, /ast N elements taken.

Drop l NJA Drops N elements from A. If N is
positive, first N elements are dropped;
if negative, /ast N elements dropped.

Compress / N/A Selects elements from an array as
determined by boolean argument N.
For each 1 in N, the corresponding
elementin A is selected; for each 0, itis
ignored.

Expand \ N\A Fills array with spaces (if alphabetic) or
zeros (if numeric) depending on
boolean argument N.

Indexing {1 Al Selects elements from A depending on
expression enclosed in brackets. If A is
246810, A[3] selects 6 if T-origin
indexing is in effect.

Table 3-7. Selector Generator Mixed Functions
NAME SYMBOL FORM DEFINITION

Index 1 1A Produces first A integers in order,

generator beginning with index origin in effect.

Index of 1 A1B Produces the index of first occurrence

of B in A.
Membership € AcB Determines if each element of A is a
member of B.

Grade up) LA Sorts the elements of a vector in

ascending order, returning indices.

Grade down] YA Sorts the elements of a vector in

descending order, returning indices.

Deal ? A?B Selects A random integers without

replacement from 1B.

3-27

Table 3-8. Numerical Mixed Functions

NAME SYMBOL FORM DEFINITION
Matrix 5] BA Produces the inverse of a non-singular
inverse matrix. Columns of A must be linearly
independent.
Matrix B ABB Produces a result equal to
divide (BB) + . x A
Decode L ALB Computes the sum of all the elements
of B raised to a power specified by the
base value of A. If Ais2andBis123
45 then AL Bis101.
Encode T ATB Converts the value of A into its
representation in the number system
specified by the base value of B.
Table 3-9. Data Transformation Mixed Functions
NAME SYMBOL FORM DEFINITION
Execute 4 +A Executes the character expression A.
Format, L TA Monadic form A produces character
monadic representation of A to current default
printing precision.
For example,
A<o1
‘Pl IS EQUAL TO '5A
produces
Pl IS EQUAL TO 3.14159265
Format, ¥ ATB Produces result based on data B
dyadic displayed in accordance with control
argument A.
For example,
4 293.14159
3.14
Quad output O O<A Generates carriage return/linefeed
when displaying A.
Quote quad m 0<A Outputs A with no carriage return/
output linefeed.
Quote quad m Al Reads a line of characters typed in by
input user and creates a character vector
result.
Quad input] A<D Evaluates a line of input from the

terminals.

3-28

3=2 contains a list of
and vector arguments mey be substituted,

those mixed functions for which

scalar

1. A scalar may be used in place of a one-element vector:

a. as left argument of

reshape 2p5 < (,2)p5
take 4T 6 <> (’4)T 6
drop -4] 6 (,4)| 6
expand 1\,6 (,2)\ .6
transpose 1¢,4 (1.4
format 6F4.5 (,6)T45 <« 0 6%4.5
rotate 20A (,2)pA

b. as right argument of -
execute »X 4, X

2. A scalar is extended to conform to a vector:

a. as left argument of
compress 1714 © 111114
rotate 162 2 pi14 < 11¢ 2 2014

b. as right argument of
compress 101/2 © 101/222
expand 101\2 © 101\22

3. A unit array is permitted in place of a scaler:
a. as left argument of

deal (4?75 < 475

b. as right argument of

index generator ,6 © 6
deal 27,6 <~ 276

Figure 3-2. Scalar-Vector Substitutions for Mixed Functions
STRUCTURAL FUNCTIONS
The structural functions consist of:
Ravel (/)

Shape (0)

3-29

* Reshape (0)

Reverse (¢ or o)

Rotate (¢ or o)

Catenate (,[1)

Laminate (,[J)

* Transpose (R)
For monadic structure functions, the argument may be of any type.,
numeric or character, For dyadic structure functions, the right

argument may be of any type, but the left argument (which serves as an
index or other selection generator) must be numeric integer,

SHAPE FUNCTION. The monadic shape function (©) applied to an array
argument, yields the shape 0ot the array as a vector whose elements are
the dimensions of the array, For example,

ARRAY
2
n
5
8

10
pARRAY

O 3 W =

5 2

00ARRAY
2

ppoARRAY
1

The result produced by poARRAY contains one component for each axis of
ARRAY, For example, 5 2 (above) signifies that ARRAY is a matrix of
five rows and two columns. Thus, the expression poARRAY produces the
rank of ARRAY, and popARRAY produces the shape of the array resulting
from the expression ooARRAY, (Note that ppoARRAY is always 1,)
Figure 3~3 illustrates arrays from rank 0 (scalar) up to rank 6., Note
that the function o applied to a scalar vields the empty vector, Note
also that a one~dimensional array is rank 1, two~dimensional is rank
2, and so forth,

RAVEL FUNCTION, The monadic ravel function (,) applied to an array,
produces a vector whose elements are the elements of the array in row
major order, For example,

ARRAY
1 2 3 b4
5 6 7 8
g 10 11 12
13 14 15 16
VYECTOR« ,ARRAY
VECTOR

12 3 4 5 6 7 8 9 10 11 12 13 14 1

w

16

3-30

If the ravel function is applied to a vector argument, the result 1is
equivalent to the argument itself, If applied to a scalar argument,
the ravel function produces a vector of length 1,

AQ+«1
0AQ
RANK 0

PpAQ

0
Al«uoVED
p41

y RANK 1
ppA1l

1
22«4 4oVEC |
04?2

o0b RANK 2
ppA2

2
A3«4 4 YpVEC
pA3

o4 b RANK 3
npA3

3

—

Abely 4 U4 Yp¥FEC
pA4u

L L RANK 4
opAl

n
AS«l4 4 4 4 UpVEC
045

Bk bbb RANK 5
ppAS

5
ABel 4 4 4 4 LpVR(
p4ds

bW w4 oy oy RANK 6
poAb

)

Figure 3-3. Rank of Arrays

3-31

RESHAPE FUNCTION, The dyadic reshape function (,) reshapes the ravel
of its right argument to the shape specified by its left argument, For
example,

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4 5p4

1 2 3 4 5

6 7 8 g 10

11 12 13 14 15

16 17 18 19 20

For the reshape expression LpoR, if the total number of elements in the
right argument R is equal to the total number of elements required by
the left argument L (as above), the ravel of LoR is equal to the ravel
of R (the elements are equal)., If L specifies a value that requires
less elements than are contained in R, only the first x/L elements of
R are used; if L requires more elements than are contained in R, the
elements of R are repeated cyclically., For example,

2 304
1 2 3
4 5 B

5 6pA

1 2 3 4 5 8
7 8 9 10 11 12
13 14 15 16 17 18
19 20 1 2 3 4
5 6 7 8 9 10

Any one or more of the axes of an array may have zero length, thus,
OpAr O 3p0A, and 0 O 0pA are all valid. Such an array is called an
empty array. If A is a numeric empty vector, then ApB 1s a scalar
containing the first element of ravel B,

REVERSAL FUNCTION, The monadic reversal function 1is denoted by the
symbols ¢ or e and is used to reverse the elements along a particular
axis of the argument, For example,

ES

1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Y.
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

When ¢A is used, the reversal occurs along the last axis (the columns
are reversed) ot the array, For example,

ARRAY
1 2 3 4
5 5 7 8
9 10 11 12
13 14 15 16
dARRAY

4 3 2 1
8 7 6 5
12 11 10 9
16 15 14 13

3-32

When the o symbol is specified, the reversal occurs along the first
axis (the rows are reversed), as for example,

8ARRAY
13 14 15 16
9 10 11 12
5 1) 7 8
1 2 3 y

The auxiliary axis operator can be applied to the reversal function to
specity a particular axis for the reversal, For example,

SL1IARRAY

13 14 15 16
¢ 10 11 12

5 6 1 8

1 2 3 4

®L21ARRAY

4 3 2 1
8 7 6 5
12 11 10 9
16 15 14 13

The previous example shows that ¢A is equivalent to ¢lppoAlA or ¢(1]A,
and oA is equivalent to o(1]A,

ROTATE FUNCTION, The dyadic rotate function is denoted by the symbols
¢ or © and rotates elements in the right arqument by amounts specified
in the left argument,

If S 1is a scalar or unit and Vv is a vector, then S¢V results in a
cyclic rotatjon of V, as follows?

For 1=~origin indexing, Sév = v[1+(pV) 1+S+107]

Vi(pV)|S+1p7]

For O~origin indexing, S¢v

General expression: Sév = V{OI0+(o?7)|(-0I0)+S1pV]

The axis operator can be used with the rotate function to specify the
axis along which the rotation is to be performed, The form is

SéInlv

3-33

For general arrays, the vector along the nth axis of V is rotated as
signified by the corresponding element of S5, and the shape of S5 must
equal the remaining dimensions of V., For example,

YECTOR
1 2 3 ¥ 5 5 7 8
X«4 YoVECTOR

[{e]

10 11 12 13 14 15 16

X
1 2 3 u
5 6 7 8
9 10 11 12
13 14 15 16

1 2 3 ud{1lx
5 10 15 4
g 1y 3 8
13 2 7 12
1 6 11 16
1 2 3 ud{21x

2 3) 1
7 8 5 5
12 g 10 11
13 14 15 16

The symbol © can be used to signify rotation along the first axis of
an array and therefore AeB is equivalent to Ae(1]B, as follows:

VEC«1160VEC
1 2 3 b 5 6 7 8 g 10 11 12 13 14 15 16
B«4 SpoVECOB
1 2 3 L 5
6 7 8] 10
11 12 13 14 15
16 1 2 3 4
(15)eR
5] 12 2 L
11 1 3 9 15
y
3

16 2 8 1
1 7 13
(w4)ef11B
2 3 L 5 1
8 9 10 6 7
ib 15 11 12 13
u 16 1 Vi 3

3-34

CATENATE FUNCTION, The dyadic catenate function (,) is used to join
two arrays along an existing coordinate, The number ot elements in
the resulting array 1is equal to the total number of elements in the
two arguments, For example,

A
1 2 3 i 5
6 7 8 g 10
11 12 13 14 15
16 17 18 19 20
B
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 4o
AB
1 2 3 4 5 21 22 23 24 25
6 7 8 S 10 26 27 28 29 30
11 12 13 14 15 31 32 33 34 35
16 17 18 19 20 36 37 38 39 40

A numeric vector cannot be catenated with a character vector,

The axis operator can be applied to the catenate function to signify
the axis along which the arguments are to be catenated. For example,

A
2 4 6 8 10 12 14 16 18

B+3 3pA
B

2 Y 6

8 10 12

14 16 18
B,{1]B

2 mn 6

8 10 12

14 16 18

2 4 6

8 10 12

14 16 18

B,{2]8

2 4 6 ? 4 5
g8 10 12 8 10 12
14 16 18 14 16 18

Arrays of different shapes can be catenated along an axis n 1f they
have the same number of elements along that axis and they differ in
rank by 1, For example,

(2 3p1100),2 10p91(100)
1 2 3 100 99 98 97 96 95 94 93 92 91
4 5 % 30 89 88 87 86 85 84 83 82 81

335

Some other examples:

10

18

12

14

16

18

10

12

£ N

ARR1
6
ARR?2
4 6 8
12 14 16
2 4 6
ARR3
4 6 8
14 16 18
) 8 10
16 18 2
8 10 12
18 2 4
10 12 14
2 4 6
12 14 16
4 6 8
14 16 18
6 8 10
ARR1,ARR2
2 4 6
10 12 14
18 2 4
ARR2 ,4RR3
2 4 5
12 14 16
4 6 8
14 16 18
6 8 10
16 18 2
8 10 12
18 2 4
10 12 14
2 4 6
12 14 16
4 6 8

10

12

14

16

18

10

12

16

18
10

10

12

14

16

18

10

12

A scalar or unit argument {s repeated along the appropriate axis when
used as an argument in the catenate function, For example,

A1
ARR?2
2 i 6 8
10 12 14 16
18 2 L o)
ARR2 ,{114
2 L 6 8
10 12 14 16
18 2 L 6
1 1 1 1
ARR2,[2]4
2 4 6 8 1
10 12 14 16
18 2 4 5 1

-

LAMINATE FUNCTION, The dyadic laminate function is denoted by a comma
followed by the lamination coordinates enclosed in brackets ,[1, The
lamination c¢oordinate is a non~integral index number signifying a new
coordinate between existing coordinates along which the lamination 1is
to occur,

The laminate function Joins two arrays of Jidentical rank and shape
along a new axis; this new axis is indicated by the index number, For
example, 1lf the new axis is to be inserted between existing axes 1 and
2y the index number must be between | and 2; for laminating between
existing axes 2 and 3, the index number must be between 2 and 3, and

so forth, If the new axis is to be inserted before the existing first
axis, the index number must be between § and 1. (If O~origin indexing
Is 1In effect, subtract 1 from the above index numbhers,) If the new
axis is to be added after the existing last axis, the fractional index
number must exceed the last axis number by a fractional amount between
0 and 1-

3-37

Examples of lamination are:

A F+<A,[2.5]1BOE

ABCD ; a1

EFGH B2

TJKL C3

MYOP Du
B

1234 ES

5678 76

9012 G

3456 H8
c«A,[.51BOC

AECD T9

EFGH J0

TJKL X1

MYOP L2

1234 M3

5678 My

9012 05

3456 Pg
D«A,[1.51BOD pC

ABCD 2 4y 4

123y oD

4 2 4

RFGH pE

5678 4 o4 T2

IJKL

9012

MNOP

3456

The shapes o0f the resulting arrays in the above examples are 2 4 4, 4
2 4, and 4 4 2, Note that the resulting array in each case is one
rank greater than the rank of A and B, and has the same shape except
for the insertion of the new axis, The 2 in 2 4 4, 4 2 4, and 4 4 2
shows where the new axis was inserted and also denotes the length of
the new axis,

3-38

When wused with the laminate function, a4 scalar or unit argument is
extended as necessary., For example,

A«3 3p'ABCDEFGHI'
B“'l'
A

ABC
DEF
GHI

B
1

A,[2.5]B

A1
B1
c1

D1
E1
F1

71
H1
Il

TRANSPOSE KFUNCTION, The dyadic transpose function is signified by the
character & and reverses the order of (transposes) the axes ot A, An
element (I,J) in the result is equal to [J,I) in the argument, Thus,
{1;2) in the argument is equal to [2;1] in the result, For example,

Monadic Transpose Examples

A A
ARC 1 2 3 0
DEF 5 6 7 8
GHT g 10 11 12
2 184 04
ADG 3 4
BSH A<l A
CFI z
RESULT«?2 1RAQRESIULT 1 5 Q
ADG 2 6 10
BRY 3 7 11
CFI 4y 8 12
Al1;2]
B B
RESULT(2:1] HOWNOWOLDCOW
B B«4 3pB
B
How
NOW
aLn
cOoW
8B
HNOC
00LO
VW DY

3-39

The dyadic expression 2 1 QA reverses the order of the axes of A, Lkor
example,

SELECTION FUNCTIONS
The selection functions include:
* Take (4)

* Drop (V)

* Compress (/)
* Expand (\)
* Indexing ([})

The arguments whose elements are being selected may be any type of
array, while the other arqument, which specifies the selection, must
be numeric integer or bit. For the expand and compress functions, the
numeric values must be boolean,

TAKE FUNCTION, The take function (%) selects elements from an array.
The elements selected are dependent on the numeric left argument, If
the values of N are positive, the first N elements are selected; if
the values of N are negative, the last N elements are selected, If N
is greater than the number of elements in the array, the result is
filled with =zeros if the array is numeric or spaces if the array 1is
alphabetic,

3-40

Examples of the take function being applied to a vector are:

4«2 4 6 8 10
214

2 4
LrA

2 4% 6 8
6t4

2 4 6 8 10 O
84

2 4 6 8 10 0 0 O
844

0 0 0 2 4 6 8 10
B«'123u5"
248

12
448

1234
518

12345
'A' ,84B

412345
"A', 84B

A 12345

Note that the zeros (or spaces) are added on the right if the left
argument is positive and on the left if the left argument is negative,

If the lett arqgument is a vector, then the expression V4+A is valld
only {f V has one element for each axis in array A, For example, if A
is unit or {f A has two axes, then V can have only two elements,

The rank of the result of the take function is the same as the rank of
the right argument,

DROP FUNCTION, The drop function (+) is the opposite of the take
function, and removes specified elements from an array. If the number
of elements dropped from an array equals or exceeds the number of
elements along the axis, the result has zero length for that axis,

Examples of the drop function are:

4
2 4 6 8 10
2¥A
6 8 10
by A
10 j
244
2 4 6
YA
2

341

The rank of the result of the drop function is the same as the rank of
the right argument,

COMPRESS FUNCTION, The compress function (/) selects elements from an
array as determined by a boolean argument, For each 1 in the boolean
argument, the corresponding portion in the array 1s selected; for each
zero in the boolean argument, the corresponding portion in the array
is not selected, For example, a boolean arqument 1 0 1 0 1 selects
the first, third, and fifth elements of an array as follows:

A
2 % 6 8 10
1010 1/4
2 6 10

The dimensions of the arguments must agree, except that scalar
arguments are extended, Thus, 1/A equals A and 0/A equals an empty
vector, as shown below:

A

2 4 6 8 10
1/ 4

2 4 6 8 10
0/ A
p0/A

0

3-42

The axis operator can be used with the c¢ompress function. For an
expression A/Iln)B, the shapes of A and B conform if pA equals (pB)Inl,
or A is a unit, An example,

A<l4 ULpr16

A
1 2 3 L
5 5 7 8
9 10 11 12
13 14 15 16

1 01 0/[1)A
1 2 3 m
g 10 11 12

1 01 0/[2]4

1 3
5 7
9 11
13 15
Bel Up'ABCDEFGHIJKLMNOP'OR
ABCD
EFGH
IJKL
MYOP
101 0/[11B
ABCD
TJKL
1 0 1 0/(218
AC
EG
IK
MO

The # symbol can be used to denote compression along the first axis,
as follows,

A
1 2 3 N
5 6 7 8
g 10 11 12
13 14 15 18
1 0 1 0F4

1 2 3 Y
¢ 10 11 12

The rank of the result of the compress function equals the rank o0f the
right argument, and jpresult, along the axis of compression equals
+/1left argument,

3-43

EXPAND FUNCTION, The expand function (\) expands an array, filling
identity elements as determined by a boolean argument, If the array
is numeric, the identity elements are zeros where the array is
expanded; 1f the array 1is alphabetic, the identity elements are
spaces,

Examples of the expand function are:

X<'"THEQUT
Y«1 1 1 0
Y\X

THE QUICK BROWYN FOX
C«5 UpXOC

CKBROWNFOX'
11 1 1

1 0111110111

THEQ
UICK
BROW
NFOX
THEQ
10 10 1 1\C
£Q
CK
oW
oX
EQ

BT VS R
SN

The axis operator can be used with the expand function. For example,

A
1 2 3 n
5 6 7 8
g 10 11 12
13 14 15 16
1101 0 1\[114
1 2 3 i
5 6 7 8
0 0 0 0
g 10 11 12
0 0 0 0
13 14 15 16
110 1 0 1\[214
1 2 0 3 0 m
5 6 0 7 0 8
9 10 0 11 0 12
13 14 0 15 0 16

3-44

The X symbol can be used to denote expansion along the first axis as
follows,

A
1 2 3 4
5 5 7 8
9 10 11 12
132 14 15 186
1 01 0 1 1X%A4
1 2 3 y
0 0 0 0
5 6 7 8
0 0 0 0
9 10 11 12
13 14 15 16

The rank of the result of the expand function is equal to the rank of
the right argument, and the length of the result along axis of
expansion is ,left argument,

INDEXING FUNCTION, The indexing function 1is denoted by brackets and
may be 1=origin or O=origin as specified by UIO, For 1=origin
indexing, the function A(l] 1indicates the 1Ith element of A; for
O-origin, A[I) indicates the I+1 element 0of A, For example,

A«<1 2 3 4 5 6 7 8 980

0I0«1

AL3]
3

AL6]
6

0I0+0

AL3]
u

AL6]
7

If a vector V is used within the brackets, such as AlV], elements are
selected from A as indicated by the elements of V, For example,

V<1 3 5 7 9
'ABCDEFGHIJKLMNOP' [V]

ACEGI

3-45

If the value speclfies an element outside the range of A, an error
message results, In general, the shape of A{I] 1is the shape of I.
Thus, 1if I 1is scalar, the result of A{I] is scalar; and if I is an
array of any rank, then A[(lI] is an array of that rank, For example,

A<' ABCDEFGHIJKLMNOP'
Aful

7«3 5p1 2 3 4 2 3 4 1 3 4% 1 2 4 3 21
ALV

ABCDB
CDACD
ABDCB

If A is a matrix, it must be indexed in the form (R;C}. The first
index, R, signifies the row (or rows) and the second index, C,
signifies the column (or columns). Thus, AlL2;1) selects the element
from the second row, column 1, 1f either index is a vector, the rows
or columns specified by all values of the vector are selected, For
example,

ABCD
EFGH
TJKL
MNOP
ABCD
A<y upA
A
ABCD
ERGH
IJKL
MNOP
202 3311
EI
AfY4 3 232 3 4]

Nop
JKL
FGH

In general, the shape of the result of A[R;C) is (pR),pC, Thus, if R
and C are botn vectors, the result is a matrix; if R and C are both
matrices (rank 2), the result is an array of rank 4, Similarly, if K
and C are both scalars, the result is scalar; 1if R is vector and C
scalar, or vice versa, the result is a vector,

3-46

Examples:

A
ABCD
EFGH
IJKL
MNOP
A[23; 3] Both scalars
G
AL2:;3 4 2] Scalar and a vector
GHF
A{2 432 3 U4]e———Bothvectors
FGH
NOP
R«2 2p2 3 1 4
C«2 2p4% 1 3 2
i
2 3
1 4
<
41
3 2
ALR:(C] Both matrices
HE
GF
LT
K
DA
CB
PH
onN

Omitting one of the members of the index denotes all rows or columns,
depending on which is omitted, Thus, A[;C] specifies all rows (the
row index 1s omitted), and ALR;] specifies all columns (the column
index is omitted), For example,

4
ABCD
EFGH
IJKL
MYNOP

AL 3u4]
DHLP

Al43]
MNOP

The left=hand part of an assignment exXpression may be an indexed
expression as 1long as it is of the correct shape and size, For

347

example, t0 change elements 3 and 10 of array A to the values 4 and 2,
respectively,

A«'ABCDEFGHIJKLMNOP'
AL3,10]«'42"
A
AB4DEFGHI2KLMNOP

SELECTOR GENERATOR FUNCTIONS
The selector generator functions consist of:
1ndex generator (1)
* Index of (1)
* Membership (€)
* Grade up (A)
* Grade down (V)

* Deal (?)

Each of these selector dgenerator functions produce integer results
which are useful in a varjety of applicatjons as discussed for each
function following,

INDEX GENERATOR, The index generator is signified by the symbol 1 and
c¢an have as an argument a non=~negative scalar integer N to produce a
vector containing N integer values in order, beginning with the index
origin in affect, For example, 16 produces the vector 1 2 3 4 5 6 if
the index origin is i, and 0 1 2 3 4 5 if the index origin is 0, If
zero is used as the argument, an empty vector is produced,

INDEX OF, When the 1 function is used dyadically with a vector and a
scalar argument in the form VECTOR1SCALAR, the index generator
function results in the index of the first occurrence 0f each element.
of VECTOR in SCALAR,

If the scalar 1s ditferent from all elements of the vector, a value
one greater than the index of the last element of VECTOR is returned,
as for example,

VECTOR«'ABCDEF'
SCALAR«'J"'
VECTOR\SCALAR

Note that the result of VECTOR'SCALAR is origin dependent,

348

MEMBERSHIP FUNCTION, The mempership function is denoted by the symbol
€ If A is an array, the expression A<B produces an array with the
same shape as A byt consisting of boolean values only (B may be 0f any
shape), The elements of the result have a value of 1 if the
corresponding element of A also exists in B, and a value of 0 if the
corresponding element of A does not exist in B, For example,

A
ABCD EFGH IJKL MNOP QRST UVYX
B

BAD NEWS
AeB

110 1 1 1 0 0 0 1 0 0 0 0 1 0 1t 0 0 1 0 0 1 0 1 0 O
1 0

The arguments of the membership function do not have to be of the same
shape or rank. See below,

A
ABCD EFGH IJKL MNQOP QRST UV¥X
B
BAD NEWS
C+5 6pAQOC
ABCD E
FGH TJ
KL MXYNO
P QRST
DVH XA
CehB
1 1 0 1 1 1
0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 0 1 O
i 0 0 1 0 1
D<2 u4pBOD
BAD
NEWZS
Cel
1 1 0 1 1 1
0 0 0 1 0 0
¢ 0 1 0 1 0O
0 1 0 0 1 O
1 0 0 1 0 1

GRADE FUNCTIONS, The two grade functions, grade up (4) and grade down
(V), apply only to numeric vectors and are sorting functions, The
grade up function sorts the elements of a vector in ascending order
and produces a vector of the same length as the argument, containing
the indices of the sorted elements of the argument, For example, if
A<10 6 1 3 2, MA produces 3 5 4 2 1, in which the index of the lowest
value of A is first, the index of the next lowest value is second, and
so forth, In order to access the elements of A in ascending order,

349

rather than the indices of the elements, the expression A[AA)] is used,
For example,

A«<10 5 3 2 1

24

5 4 3 2 1
ALAA]

1 2 3 5 10

If two or more elements of a vector are the same, the order is
determined by their positions in the vector, For example,

A«6 6 56 4 3 6
[y,
1

S 4 2 3 8

The grade down function (V) produces a vector of indices of the
elements ©0f a vector sorted in descending order. Equal elements are
sorted according to their position in the vector just as they are for
the grade up function,

Examples of the grade down function are:

A«3 10 6 1 2

V4

2 3 1 S5 4
ALVA]

10 6 3 2 1
4«3 10 3 3 6
N

2 5 1 3 4

Note that the results of grade up and grade down are origin dependent,

DEAL FUNCTION, The deal function (?) selects pseudo~random integer
selections from the vector of integer values produced by the index
generator function (1), No two of the selections are the same, Both A
and B are limited to scalar or unit array arguments, Each selection
from the 1B set of integers is in accordance with the method described
for the roll function, That is, A?B produces A integers selected in
random fashion without replacement from the set of B, A?B is origin
dependent,

Examples of the deal function are:

629
2 4 5 8 1 3
DOMAIN ERROR
6?73
*
375
3 5 1
426
5 2 5 n

3-50

To select N elements at random from a vector V, the following form can
be used:

VINZ?oV])
NUMERICAL FUNCTIONS
The numerical functions consist of:
* Matrix inverse (H)
* Matrix divide (E)
* pecode (1)
* Encode (T)

The numerical functions apply only to numeric arguments and produce
only numeric results,

MATRIX INVERSE AND MATRIX DIVIDE FUNCTIONS, The matrix inverse and
matrix divide functions are both denoted by the domino symbol (H).

The matrix inverse function is of the form
EA
This function produces the inverse of a non-singular matrix, (A

non=singular matrix is one in which all rows and all columns are
linearly independent, FOr example,

2 2 22
2 222
is a singular matrix,)

An example of matrix inverse is

A

1 2 3 4
2 3 4 5
3 4 5 6
4 5 & 7
. B
4.,270079647E15 _3.“69439713E15 _5.87135951&E15 “5.07071958E15
‘8.006399338E15 8.006399338F15 _8.006399338E15 8.006399338%15
«3.202559735E15 _5.60“&79536?15 1.601279868E15 “8.006399338K14
5.337599558F1u 1.067519912F15 3.736319691F15 T2.135039823F15

The result is such that (EA)+.xA vyields an identity matrix (that is,
produces a left inverse),

The matrix divide function is of the form

AElB

3-61

The matrix divide expression
X<ABEB

can be used to solve systems of linear equations, For example,

A Cey 201 2 3 4 2 4 6 8
1 0 1 0 <z
1 1 0 0 1 2
1 1 1 0© 3 4
1 1 1 1 2 1
B4 5 8
11 "1 0 R«CHA
10 1 0 A+ _xP
0 1 1 0 1 2
0 0 "1 1 3y
A+ . xFA 2 u
1 0 0 O 6 8
0 1 0 0 (BA)+ . xC
0 0 1 0 2 2
0 0 0 1 1 2
B«2 4 6 8 100
X<BiEA4 4y
X
0 4 2 2
A+ . xX
2 4 6 8
(84)+.xB
0 4 2 2

The matrix inverse and matrix divide tunctions apply to singular and
non=square matrices, and to vectors and scalars, but not to arrays ot
rank greater than 2 (this produces a rank error), The expression

Ha

will produce a result only if A is @ non=singular array and the
columns of A are linearly independent,

Similarly, the expression
R<AEB

will produce a result only if:

A and B have the same number of rows,

The columns of B are linearly independent,
A vector arqument is treated by matrix inverse and matrix divide as a
one=column matrix and a scalar argument is treated as a matrix of
p«+1 1, For scalar arguments A and B, the expression fB is egquivalent

to B and the expression AEB is equivalent to A:B, except that 0HO
produces a domain error (whereas 0:0 does not),

3-562

DECODE FUNCTION, The dyadic decode (base value) function (1)
evaluates two arguments and computes the sum of all the elements of
the right argument raised to a power specified by the base value of
the left argument, For example, if A«5 2 8 3 7 and B+«1 2 3 4 5, then
ALB equals 768,

If the left argument is scalar or unit, the scalar value is extended
for all the elements 0f the right argument, as follows:

A<?2
B«g8 8 10 2 8 10
ALB

4398

The decode function is extended to arrays as follows:; each of the
vectors along the last axis of the first argument is applied to each
of the vectors along the first axls of the second argument, If either
0of the axes 1s of length 1, it will be extended as necessary to match
the length of the axis of the other argument,

Examples of the decode function are:

A<8
B«1 7 7 7 7 17
418
65535
818
65535
A«l4 Lo8
B«4 4Lp?
A
g8 8 8 8
8 8 8 8
g8 8 8 8
8 8 8 8
B
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
ALB

——

1170 1170 1170 1170
1170 1170 1170 1170
1170 1170 1170 1170
1170 1170 1170 1170

ENCODE FUNCTION, The dvadic encode (representation) function (T) is
the inverse of the decode function for some arguments, For example,

A<8 8 8
Bel 7 7
218
565535
AT65535
1 7 7 7 i 7

8 8 8
7 7 1

3-53

The above is not true when the left argument is scalar and the right
argument is vector. For example,

4«8
B«1 7 7 7 7 17
418
65535
AT55535
7

The encode function applies to arrays in the same manner as the decode
function, That 1is, each vector along the last axis of the left
argument is applied to each of the vectors along the first axis of the
right argument, For example,

A«4 Up8

B«Y4 uUp?

C<«A1LBOC
1170 1170 1170 1170
1170 1170 1170 1170
1170 1170 1170 1170
1170 1170 1170 1170

DATA TRANSFORMATIONS

The two data transformation functions are format and execute, The
format function transforms numeric data in its argument to a character
representation of this data, In general, the execute function can be
considered the inverse of format, that is, it produces a numeric
result from a character argument,

EXECUTE FUNCTION, The execute function, denoted by the symbol ¢, is
both monadic and dyadic and applies to character right arguments and
numeric left arguments, The character argument can be scalar, vector
or unit,

The execute function considers its character argument to be an APL
expression and it executes this expression, 1If the argument does not
constitute a well=formed APL expression, an error results, Note that
only valid APL expressions can be used as arguments; system commands
are invalid argquments,

An empty vector or one containing only spaces can be used with execute
if no assignment arrow is placed to the left of the execute character,
as for example,

, A<e' !
VALUE ERROR
A«e' !
1.
!']

Domain errors result if a non=character arqument is used as the right
argument of the function,

3-54

FORMAT FUNCTION, Format (%) is a monadic or dyadic function which
converts numeric data to character arravs.

Monadic Format, The monadic format function is of the form:
TA

The result of the monadic format function 1ooks 1identical to the
result produced by the argument without the tormat function, however,
the format function converts the data to a character representation,
as follows:

‘PI IS EQUAL TO ',%01
PI IS EQYAL TO 3.141592653589793

The argument A may be numeric or character, Numeric values are
displayed in accordance with the print precision in effect (see
Section IV), The display converts to scaled form if any of the numbers
in the data are such that the number of significant digits is greater
than the precision in effect,

Examples of monadic format are:

A«3 4p6
¥A

6 6 6 6

56 6 6 6

6 6 6 6
A«?2 L4p23*8
¥ A

7.831098528F10 7.831098528%F10 7.831098528£10 7.831098528%F10
7.831098528F10 7.831098528%10 7.831098528E10 7.831098528E10
A+4 5p' ABCDEFGHIJKLMNOPQRSTUVWX'
¥4
ABCDE
FGHIJ
KLMNO
PQRST

Dvadic Format, Dyadic format is of the form

ATB
where A is the control argument and B iIs the data argument,

The data argument, B, may be any APL expression that produces a
result,

* [f B is empty (at least one element of oB is zZero), the result is
the same shape as B except that it is always of type character,

Jf B already 1s a character variable, the result 1s a copy of B,
Jf B is scalar, it 1s treated as a one~element vector,
* Jf B is an array of rank 2 or greater, it is formatted according

to the contents of argument A,

3-65

CONTROL PAIRS, A control pair describes how to format a number by
giving the number of characters available for the result, the type of
formatting, and the precision of the formatted number,

Width Control. The first number in the controlw=pair is called the
width, This number must be an integer between 0 and 32767. The width
controls how many characters the resultant formatted output will
ocCcupY. A width value of zero causes the minimum number of characters
to be used such that there are two spaces in front of the number, 1If
the width allows more characters that the formatted number requires,
spaces are added on the left,

Shape and Precision Control.,. The second number in a control=pair is
called the precision, The sign of the precision controls whether to
format the number in decimal form or in scaled form, If precision is
positive, the data is displayed as a sign (no sign for positive data),
followed by the integer portion of the data, followed by a decimal
point, followed by the fractional part of the data,

The magnitude of precision controls how many fraction digits to
return, If the precision is zero, no fraction digits or decimal point
are displayed, All numbers are rounded or padded with zeros to obtain
the proper number of fraction digits,

If the precision of the control=pair 1is negative, the data is
formatted as a sign (no sign for posjitive data), &a one=digit
characteristic, the mantissa digits, an "E’ followed by an exponent
sign (no sign if positive), and two exponent digits,

For example,

2,3462E02

The nunmber of mantissa digits displayed is controlled by the absoclute
magnitude of precision. The result is rounded or padded with zeros to
fit the precision specified, If the precision value s "1, the
characteristic digit is returned with no decimal point (the E(sign)xx
is returned), If the exponent is 20, a trailing blank replaces the
leading sign,

Control~=Pair Formation, Dvadic format requires one control=palir for
each column in the data, It is possible, however, to specify the
control argument as & scalar, unit, one=element vector, two=element
vector, Or a vector with one control=pair (two elements) for each data
column, When the control variable is a scalar, unit, or one-element
vector, then it is treated as a one-control=pair with a width value of
Zero, If the control variable has only one controle=pair, the
control=pair is used on all columns, Note that with dyadic format, the
precision for at least one controlwpair must be specified,

3-56

Dyadic

Format Conditions., There are several conditions controlling

dyadic format, as follows:

1,

z,

Note:

It the resulting formatted output is a vector and the width
value s zero, any leading blanks are omitted, This is done by
not allowing the normal column separation spaces to be placed in
front of the first column,

The rounding process is performed on the absolute magnitude of
the number, thus negative numbers round differently than
positive numbers,

There are several conditions under which the dvadic format will
generate errors:

a., Domain Error

1) One of the numbers in the data variable would not fit
into the specified width,

2) The width portion of one of the control=pairs was
negative, or was greater than 32767, or was not an
integer .

3) The precision portion of one of the control=pairs was

not in the range ~32768 to +32767, or the value was not
an integer,

b, Length Error

1) The number of elements in the control variable is not
one, two, or the number of data columns times two,

C. Rank Error
1) The control variable is higher dimension than a vector,
unless it is a unit,

See Section XI for a further discussion of errors,

357

Examples of dyvadic format with

A+6 6p3421.789473

A
3421.789473
3421.789473
3421.789473

3421.789473
3421.789473
3421.789473

control=pairs are:

3421.789473
3421.789473
3421.789473

3421.789473
3421,.789473
3421.789473

3421.789473
3421.789473
3421.789473

3421.,789473
3421.7839473
3421.789473

3421.789473 3421.78%473 3421.789473 3421.789473 3421.789473 3421,789473
3421.789473 3421,.789473 3421.789473 3421,789873 3421.789473 3421.789473
3421.789473 3421.789473 3421.789473 3421.789473 3421.789473 3421.789473

B«10 3¥%4

B
3421,789 3421.789 3421.789 3421.789 3421.789 3u421.789
3421.789 3421.789 3421.789 3421.789 3421.789 3421.789
3421.789 3421.789 3421.789 3421.789 3421.789 3u421.789
3421.789 3421.789 3421.789 3421.789 3421.789 3421.789
3421.789 3421.789 3421.789 3421.789 3421.789 3421.789
3421.789 3421.789 3421.789 3421.789 3421.789 3421.789

B+«9 2¥4

B
3421.79 3421.79 3421.79 3421.79 3421.79 3421.79
3421.79 3421.79 3421.79 3421.,79 3421.79 3u421.79
3421.79 3421.79 3421.79 3421.79 3421.79 3421.79
3421.79 3421.79 3421.79 3421.,79 3421.79 3421.79
3421.79 3421.79 3421.79 3421,79 3421.79 3421.,79
3421.79 3421.79 3421.79 3421.79 3421.79 3421.79

B«9 “3¥4

B

3.42FE03 3.42E03 3.42E03 3.42FK03 3.42E03 3.42F03

3.42E03 3.42FE03 3.42K03 3.42E03 3.42E03 3.u42F03

3.42F03 3.42E03 3.42F03 3.42E03 3.u2F03 3.42E03
3.42E03 3.42803 3.42E03 3.42E03 3.42FE03 3.42E03
3.42F03 3.42E03 3.42E03 3.42F03 3.42E03 3.42F03
3.42E03 3.42E03 3.42E03 3.42F03 3.42E03 3.42F03
B+10 u4v¥A
B
3.422E03 3,.422E03 3.422K03 3.422F03 3.422F03 3.422%03
3.422FE03 3.422E03 3.422E03 3.422F03 3.422E03 3.422FK03
3.422E03 3.422E03 3.422E03 3.422E03 3.422FE03 3.422F03
3.422E03 3.422F03 3.422E03 3.422F03 3.422F03 3.422E03
3.422E03 3.422E03 3.422F03 3.422E03 3.422F03 3,422K03
3.422E03 3.422E03 3.422E03 3.422F03 3.422F03 3.422E03

Quad Output, Quad output is of the form

O+«a
where A is any APL expression which returns a result,
If A 1is a character variable, the data is displayed starting at the
left margin, If the printing width in effect is reached before the
last column is printed, a carriage return/linefeed is generated and
printing resumes on the next line, indented sixX spaces, Arravs of
rank three or higher are printed with extra lineteeds in between each
dimension, Thus, a three=dimensional variable will print as several
two=dimensional arrays with one bplank 1line between each plane,

Similarly, -a four=-dimensional array will print as several groups of
three~dimensional arrays with two blank lines between each plane,

3-68

Examples of quad output are:

A+L4 6p123*8
o

5.2389094u43E16
5.238909%uu43F16
5.2389094u43FK16
5.238909443F16
5.2389038443F16
5.238909443F16
5.238909443EFE16
5.238909443F16

A«y4 80p'ABCD'

5.2389094u43FK16
5.2383094u43E16
5.238909443F16
5.238909u443E16
5.238909u443F16
5.238909443F16
5.238909443FK16
5.238909443F16

5.238909443%F16
5.238909443E16
5.238909443%16

5.238909443F16

5.238909u443F16
5.2389094u43F16
5.2389094u43%F16

5.238309443F16

A
ABCD
ABCD
ABCD
ABCD

BELT

ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDARCD
ABCD
ABCD
ABCD

A<y 4 u4p'ABCD'
<4

ABCD
ABCD
ABCD
ABCD

ABCD
ABCD
ABCD
ABCD

ABCD
ABCD
ABCD
ABCD

ABCD
ABCD
ABCD
ABCD

Quad Input,
[J+«A

The systen
next 1line, indented six spaces,
APL expression may be entered.

result is used as the value of A,

Quad input example:

writes the characters

Quad input is of the form

0: and
and awaits input,
This

3-69

At this point,

unlocks the Kevboard on the

any

expression is evaluated and the

Quote Quad Output, Quote quad output is of the form
<A
where A is any APL expression,

Operation of gquote gquad output is exactly the same as gquad output
except that the concluding carriage return/linefeed is not generated,
This 1is useful in the case where either the next output results from
quote gquad or the next input request results from guote guad, In
these two cases the carriage starts where it left off with the last
quote quad output,

Quote dquad output example:

N«'THIS IS A 'ON«'TEST'
THIS IS A TEST
'THIS'O'IS A TEST'

TAIS

IS A TEST
A<4 30123*8
MR

5.238909443F16
5.238903443F16
5.238909443F16
5.238909443F16

5.238909%443F16
5.238909u443%516
5.238909443F16
5.238909443F16

5.238909443%16
5.238909443F16
5.238909443%16
5.238909443%F16

Quote Quad Input. Quote qgquad input is of the form

A<
where the result is always a string of zero or more characters,

Quote guad input reads in the line of characters typed by the user and
creates a character vector result to c¢ontain that input. ANy
characters may be entered from zero characters (carriage return) up to
the maximum number of characters allowable by the system (the printing
width in effect is ignored), 1In the case where a preceding qguote quad
output has left the carriage somewhere other than the left margin, the
result of the guote quad input is as if the carriage hada been spaced
to the current carriage position before entering the characters, The
system allows backspacing to a point to the left of the last output
before entering data, and this is reflected in the result, Note that
if c¢haracters are entered which do not cause the carriage to advance,
visual fidelity (see Section I) will not be preserved in the output,
because the computer treats every output character as if it caused a
carriage movement of one space to the left,

3-60

Quote quad input example?

4«
3.14159
4
3.14159
A<l
THE JALUE OF 4 IS READ BY THE SYSTEM AS IT IS TYPED IW
A
THE VALUE OF A IS READ BY THE SYSTRM AS IT IS TYP®D IN

3-61

SYSTEM FUNCTIONS
AND SYSTEM VARIABLES |[v

The set of primitive APL functions described in Section III deals only
with abstract items such as numeric and character arrays, To deal with
concrete items, such as system resources, a set 0f system variables is
ldentified for wuse in communicating among the user, APL, and the
system (MPE) in which APL resides,

The system varlables are used for interaction between APL and its
environments however, there are situations where it 1is more convenient
to use functions based on system varlables whenr the system variables
themselves may not be explicitly avallable to users, Such functions
are called system functions,

System variables and system functions are denoted by distinguished
names, These are formed by the quad symbol ([]) feollowed by a name
denoting the variable or function (for example, [IO or [ISVQ), Such
names cannot be used tor yserwdefined objects, and cannot be copled or
erased,

SYSTEM FUNCTIONS

Twenty four system functions are provided
Canonical representation [CE
Capture stack environment [ICSE
Convert [ICV
Delay 0ODL
Expunge [JEX
Function establishment [JFX
Monitor values [MV
Name classification UNC
Name 1ist [INL
Query monitor [JGM

Query stop GS

4-1

Query trace [QT

Release stack environment [IRSE

Reset monitor [IRM

Reset stop RS

Reset trace [IRT

Set monitor [JSM

set stop (sS

Set trace (ST

Shared variable contrel USVC

Shared variable offer [ISVO

Shared variable retract [SVR

Shared variable query [ISVQ

Vector representation (VR
Four system functions == shared variable control ([5V0), shared
variable offer ([ISV0), shared variable query (0SVQ), and shared
variable retract ([JVR) =« are concerned with the management of the

shared=mvarlable facility and are describved in Section V,

The convert (0OCV) system function performs data conversions and is
described in Section VI,

The capture stack environment (UCSE) and releaSe Stack environment
(URSE) system functions are used with the extended control facility
and are described in Section X,

The following system functions are used as debugging aids and are
described in sSection X:

Monitor values ([IMV)
Query monitor (Uam)
Query stop (0JQS)

Query trace (0GT)

Reset monitor (LRM)
Reset stop (UKRS)
Reset trace (URT)
Set monitor (LSK)
Set stop (UsS)

Set trace (UST)

The renrmaining seven system functions are listed in taple 4=1 and are
described in this section,

System fuynctions c¢an bhe referenced or executed like any other
function, They are monadic or dyadic, as appropriate, and have
explicit results, In most Ccases, they also have jimplicit results, in
that their execution causes a change in the environment, The explicit
resylt always indicates the status of the environment relevant to the
possible implicit result,

CANONICAL REPRESENTATION FUNCTION

The canonical representation function is denoted py the name [UCR, When
applied to a character argument representing the name of an already
estaplished usere~defined function, the [CKR function produces the
user=defined function’s canonical representation, For example, {if
ROOTS 1s a user=defined function,

dCRrR 'ROOTS!

ROOTS

'ENTER A NUMBER'

YAND THE COMPUTER WILL COMPUTE THE SQUARE ROOT'
'AND THE CUBE RNOT'
LABEL1: N+l
LABEL2:A«N*x%?
LABEL3 :B«N*%3

'THE SQUARFE ROOT IS ',¥4

‘THE CUBE ROOT IS ',¥B

'ENTER O IF YOU DO NOT WISH TO CONTINUE®
LABELY : N<[]

+(N=0)/5

4-3

The status of the original function ROOTS {s unchanged and it can be
executed by entering ROUTS,

ROOTS
ENTER A& NUMBER
AND THFE COMPUTER WILL COMPUTE THE SQUARE ROOT
AND THE CUBE ROOT
0:
s
THE SQUARE ROCT IS 6.708203932
THE CUBF ROOT IS 3.556893304
ENTER O IF YOU DO NOT WISH TO CONTINUE

Pt

[RRS

o

When applied to any argument which does not represent the name of an
unlocked defined function, UCR returns a matrix of dimensions 0 ¢, For

example,

pLICR 'NONE'

o 0

Possiple error reports for UUCR are rank error it the argument is not a
vecter or scalar, or domain error if the argument is not character,

VECTOR REPRESENTATION FUNCTION

The vector representation function (UJVR) is similar to the canonic
representation function (OCR), the ditference being that the result of
UVR is a vector with carriage return characters used to separate lines
of the function, instead of trailing blanks, Note that there is no
carriage return on the last line of the result, Note also that the
result of [OVR usually takes considerably less storage space than does
that of [ICR when executed with the same argument, because there are no
blank characters needed to fill each row of the matrix result of CR,

An example:

ve 'ROOTS!

ROOTS

'ENTER A NUMBER'

YAND THFE COMPUTER WILL COMPUTE THE SQUARE ROOT'
"AND THE CUBE ROOT'
LABEL1:N<[1
LABEL2 :A«N*3:?2
LABEL3:B«N*:3

'"THE SQUARE ROOT IS ',%4A

'"THE CUBE R0NOT IS ',¥B

"ENTER O IF YOU DO NOT WISH TO CONTINUE'
LABELY : N<[]

+(N=20)/5

4-4

Table 4-1. System Functions

REQUIREMENTS

NAME SYMBOLS RANK LENGTH DOMAIN EFFECT ON ENVIRONMENT EXPLICIT RESULT
Canonical JcrR N 1=ppN Character | None. Canonical representation of N.
representation array. The result for anything other than

an unlocked defined function
has the dimensions 0 0.
Function OFXN None Character | Fix (establish) definition of the | A vector representing the name
establishment matrix, function represented by N, | of the function established, or
vector, or | unless its name is already in use | the scalar row index of the fault
unit. for an object other than a func- | which prevented establishment.
tion which is not halted.
Expunge OEXN 2=ppN Character | Expunge (erase) objects named | A boolean vector whose /th
array. by rows of N, except groups, | element is 1 if the /th name is
labels, or halted functions. now free, or 0 if the /th name is
not free.
Name list ONL N 1=ppN 1=p,S | A/Ne1 234 | None. A matrix of rows (in random
(monadic) order) representing names of
designated kinds in the dynamic
environment: 1, 2, 3, 4 for labels,
variables, APL functions, and
APLGOL functions respectively.
Name list AONLN 1=ppN AMe1 234 | None. As for the monadic form, except
(dyadic) Elements that only names beginning with
of A must letters in A will be included.
be alpha-
betic.
Name Onc A 2=ppM Character | None. A vector giving the usage of the
classification array. name in each row of A:
0-name is available
1-label
2-variable
3-APL function
4-APLGOL function
5-name unavailable
Delay ObL N 1=ppN Numeric None, but requires N seconds | Scalar value of actual deiay.
value. to complete.
Vector OvR N 1=ppN Character | None. Vector representation of N. The
representation vector result for anything other than an

unlocked defined function has
the dimensions 0 0.

FUNCTION ESTABLISHMENT

A function can be created with the system function denoted by [JFX, The

argqument

must
with

produces
function
function),
denoting

nuymeric

to

(this

was found,

the

function must be a
be a matrix or vector canconical representation,
the character representation ¢f the function as {its argument and
a5 an explicit result a character
the name contained in
1f OFX cannot establisnh the function,
the line nuymber (10

is

4-5

character vector or matrix,

and
[JFX is executed

vector of the name of the
tne first statement 0f the
it returns a scalar
dependent) Iin which the error

The [FX function returns the name of the function being created
(BOOTS), For example,

TEST<CR 'ROOTS?
TEST[1:2]1«'B"’
T&EST
BOOTS
"ENTER A NUMBER'
'AND THE COMPUTER WILL COMPITE THE SQUARE ROOT '* !
'AND THE CUBE ROOT'
LABEL1:N<«{]
LABEL2:A«N*x%2
LABKL3:B+«N%x%+3
'THE SQUARE ROOT IS ',¥4
‘THE CUBE ROOT IS ',¥B
‘ENTER O IF YOU DO NOT WISH TO CONTINUE'
LABELY : N<[]
+(¥=20)/5

EXPUNGE FUNCTION

The expunge function s denoted by the name UEX and is used to
eliminate an object from the active workspace,

The [EX ¢tunction will not expunge a lapel or a halted tunction, (A
label is a name used to identity a specific statement in a defineg
function, and a halted function is a function that has been halted
while in execution mode,)

The [EX function returns a logical vector result of 1 if the name is
presently avallable, or a result of 0 if it is not, A 0 also is
returned {if the arqument used witp UEX 1is not a well~formed name, A
rank error is vreported {f the argument is of higher rank than a
matrix, or a domain error if the argument is not character,

An example of the [EX function is as follows:?

DEX 'ROOTS'

NAME LIST FUNCTION

The name 1list function 1is denoted by the name [INL and can pe used
monadically or dyadically, [NL returns a character matrix, each row
of which represents the name of a labtel, variable, or function
currently in the dynamic environment,

When used dyadically, the left argument i{s a scalar or vector which

restricts the names produced to those whose initial letter is the same
as a letter occurring in the argument, For example, if the left

4-6

argument 1Is A, then only names beginning with A will be produced by
the [NL function, The right argument of [UNL 1s a scalar or vector
whose values may ke the integers 1, 2, 3, or 4, The values {, 2, 3,
and 4 respectively produce the names ©0f 1labels, variables, APL
functions, and APLGOL functions.,

If the vector value 1 2 3 4 is used as the right argument of [INL, the
names from all categories are produced, The results produced are in
the order in which the names first appeared in the workspace,

Exampiles of the [UNL function used dyadically are:

'BERT' [NL 2 3

I

=

rROOTS
B
EDIT1
RESHAPE1
RESHAPE?
'B' [INL 2 3
B
'R' [ONL 3
ROOTS

When used monadically, there is no restriction on initial letters, The
right argument pertorms the same as when uysed dyadically. An exanmple
of monadic use is:

ONL 2 3
CIRCLEAREA
B

ROOTS

MO @S =

EDIT1
APLGOL1
APLGOL?2
APLGOL3
APLGOLu
APLGOLS
APLGOLS®
APLGOL7
APLGOLS
APLGOLSY
APL11
APL31
APL3?2
APL33
APL34
APL35
APLS1
APL5?2
APL61
APL62
APL101
APL10?2
APL103
APL10OY
APLSET
YIELD
INCOME-
VEC

XQR
CHAR
SHAPE
RESHAPE1
RESHAPE?
D

X

Z
VECTOR
ALTER
ARRAY

48

Further uses of the [NL function include the following:

¥ In conjunction with the expunge fuynction (JEX), all the objects
of a certain class can pe dynamically erased; or a function can
be defined that will clear a workspace of all but a preselected
set of objects,

#* In conjunction with the canonical representation function ([ICR),
functions can he written to display automatically the definitions
of all or certain functions in the workSpace, or to analyze the
interactions ameong functions and variables,

The dyadic form of [UNL can be used as a convenient guide in the
choice of names while designing or experimenting with a
workspace,

NAME CLASSIFICATION FUNCTION

The monadic name classification function is denoted by the name [INC,
Tnis function accepts scalar, vector, or matrix arguments and returns
a numerical indication of the class of the name (or names) represented
by the argument, For example,

e _'RrRoors:
3
CINC ' ABA
0
owe _'c:
2
aNe a0
2

The result of tne [NL function can be used as an argument for UNC, but
other character arrays may also be used, The results are integer
values from 0 to 5, The jintegers 1, 2, 3, and 4 have the same
meanings as for ONL; a result of 0 signifies that the corresponding
name is available for any use: and a result of 5 signifies that the
name {s not valid because it is a distinguished name, or |is
incorrectly formed,

DELAY FUNCTION

The delay function is denoted by the name [IDL and causes a pause in
the execution of the statement in which it appears, The duration of
the pause, 1in seconds, 1s determined bpy the argument of the [IDL
function; the accuracy,» however, is limited by possible contending
demands on the system when the statement is executed, Additionally,
the delay can be overridden by a hard interrupot,

The result of the [ODL function is a scalar value equal to the actual
delay, If the argument used¢ with [IDL is not a numeric scalar value, a
rank or domain error is reported,

Because the delay function uses only a small amount of computer time
compared to connect time, it can be wused repeatedly in situations
where it is desirable to determine 1f an expected event has occurred,
This 1is usefyl in Interactions between a program and the user, and in
work with shared variables as discussed in Section V,

Examples

TIME«[DL 3QTIME
3.032000065

SYSTEM VARIABLES

System variables are shared between a workspace and the APL systemn,
thus they are instances of shared variables which are discussed in
Section v, Sharing occurs automatically when a workspace |is
activated, or, when a system variable is used in a function, each time
that function 1is used, ‘

The characteristics of shared variables that are significant here ares

When a varlable 1s shared by twe processorss the value 0f the
varlable may be different for each processor,

Each processor is free to use or not use the value specified by
the other processor for a variable,

System varlables are shown in table 4=2, Included ls the name of each
variable, the name used to denote the variable, its purpose, its value
in a <clear workspace (where appropriate), and its meaningful range,
Note that there are two classes 0f system variables, as follows:

1, The value specified py tne user (or avallable in a clear
workspace) for a system variable is used by the processor in
operations relating to this variaple, If the value is
inappropriate, a dorain error occurs at assignment execution,
Included in this class are:

Assert level [JAL
Comparison tolerance UCT,
Horigzontal tabs [HT,
Index origin 010,
Language.DLA

Latent expression 0OLX,

410

Table 4-2. System Variables

INITIAL MEANINGFUL
NAME SYMBOLS PURPOSE VALUE RANGE
. Contains the comparison tolerance. 5
Comparison OocT Used in monadic 1E-13 Oto1
tolerance dyadic< < = = > # ¢
- Contains the index origin.
Index origin oo Usedinindexingandin ?2 A ¥ ® (JFX ! 0.1
Latent OLX Executed on activation of workspace “ characters
expression (empty vector)
Printing aOpPP Contains the print precision. Affects 10 11016
precision numeric output and monadic format
Printing OPw Contains printing width 80 20 to 255
width
Random link CIRL Contains the random link. Used in 0 0to 1
roll and deal primitive functions
Account Al Contains connect time this session and — Cannot be set
information CPU time this session, in milliseconds
Atomic vector AV Contains all available characters in APL See page 4-17 Cannot be set
Line counter OoLc Contains statement numbers of func- 0 Cannot be set
tions in execution or halted, most
recently activated first
Time stamp aoTs Contains year, month, day of month, — Cannot be set
hour (24-hour clock), minute, second,
millisecond.
Assertion OAL Contains the APLGOL assertion used 0 —32768 to
level in APLGOL assertion-checking 32767 (integer)
Execution OXT Contains trace information. Prints value Any value
trace in TRACE format
Branch trace OoBT Prints value in TRACE format as if Any value
value were argument to branch (—)
Virtual Ovm Contains virtual memory paging 256 T24 N[1] : 2°X
memory scheme parameters 7sX=s12
N[2] : X>0 -
2xY
2<Ys<L
X<0:2=sX<L
L stack size
dependent
Language LA Contains language setting ‘APL’ ‘APL’
‘APLGOL’
Terminal type goTrT Contains internal terminal type Same as See page 4-22

previous workspace

411

Table 4-2, System Variables (Continued)

INITIAL MEANINGFUL
NAME SYMBOL PURPOSE VALUE RANGE
Horizontal OHT Contains tab positions 10 Non-negative
tab setting integer
vector

Work area OwWA Contains amount of space still unused 1610474 Cannot be set

available in workspace (in bytes) bytes

Stack names SN Contains character matrix of names of 00p " Characters

suspended functions

Workspace awil Contains workspace identification « Characters.

identification

Backspace OB Backspace character ASCII 8 Cannot be set
0-origin [JAV [148]

Linefeed oL Linefeed character ASCII 10 Cannot be set
0-origin [JAV [140]

Return OR Carriage return (new line) character ASCII 13 Cannot be set
0-origin [JAV [152]

Tab aT Tab character ASClle Cannot be set
0-origin AV [141]

Null ON Null character ASCII 0 Cannot be set
0-origin [JAV [138]

Escape OE Escape character ASCII 27 Cannot be set
0-origin LJAV [166]

Alphabet OA Alphabet ABCDEFGHIJKLM Cannot be set
NOPQRSTUVWXY

Digits b Digits 0123456789 Cannot be set

Printing precision 0OPP,

Printing width 0PW,

Random 1link [RL,

Terminal type 0OTIT

Virtual memory [OVM

Workspace identification [OWI

412

2, The value specified by the user is not used, The APL processor
always resets the variable before it is used,

Included in this class are:
Account information (Al
Alphabet [lA

Atomic vector [JAV
Backspace [IB

Branch trace [BT

Digits (b

Escape UE

Execution trace [XT
L.ine counter ULC
Linefeed (L

Null [N

Return [R

Stack names [ISN

Tab 0T

Time stamp UTS

Working area [JWA

COMPARISON TOLERANCE

The comparison tolerance system variaple is denoted by the name [CT
and 1is used to establish the tolerance for the monadic functions less
(<), not greater (<), equal)l (=), not less (=), greater (>), not equal
(), floor (L), and ceiling (I); and the mixed functions index of (1)
and mempership (<), '

4-13

In APLN\3000, as witn all languages, floatinge=point numbers are
represented In a finite number of bits, This makes some floating=
point numbers difficult to represent exactly, For example, the
question "is A equal to B" s straightforward unless fleoating=point
numbers represented in a finite number of bits (64 bits for APL\3000)
are 1involved, The A=B question then becomes harder to answer because
many fleating= point numbers cannot he represented exactly in 64 bits,
Thus, problems arise if the eguals test 1s defimed to be "exact," The
following example illustrates this point,

A€39704

1.030927835% 02
[CT«0 A THIS MAKES '=' AN EXACT TEST
1=4%x97

A BECAUSE 1/97 CANNOT BE STORED EXACTLY
a THEN 'A' IS NOT A NUMBER THAT CAY
e BE MULTIPLI®D BY 97 T0O RETIRN 1

This vparticular way to define = is then not very consistent witn the
way = would be expected to act, Thus the definition of = (and some
related functions) is not an "exact" definition, but is relative to
the magnitude of the operands and the value of [UCT, Tne definition is

X<|A4-B

Y«[/(14),]B

IF (Yx0CT)2X THEN
4 IS EQUAL TO B

I
Ad Lad Lt

1
2
3

Notice that the above set of equations, while concise and correct:, is
difficult to understand, Paraphrasing them as follows may help:

Equation [1] sets the variable X to the absolute value 0f the
difference of the two arquments A and B,

Equation [2) sets Y to the absolute value of the larger of the two
arguments A and B,

The third (and crucial) equation (3] states that the arguments are
detined to be equal it UCT times the larger of the arguments (Y)
is larger tnat the difference between the arguments,

Note that [CT does not specify the absolute difference petween the
arguments but the difference relative to the size of the arguments,
Thus two big numbers need not be as close, in an abselute sense, as
two small numbers, Note that under this definition, if UOCT is 0, the
equals test is exact in that the difference between the arguments A
and B must be 0, exactly, for equation [3] to be true,

4-14

The functions (less, not greater, egual, not less, greater, not equal,
floor, celling, index o0f, and membership) for which OCT establishes
the tolerance result in an error unless the operand(s) are considered
"integers," In APL\300G, this test for integer 1is done {in the
following way:

1) First, the integer closest to the argument is opbtained,

2) Secondes the integer obtained in 1) is compared in a relative
sense to the argument,

3) If the integer from 1) is relatively equal to the argument,
that integer is used as the arqument,

A comparison tolerance example!

A«34x:504
2.024397458
B«33%:508
2.012346617
A=B
0
O0CT«1E 4
A=B
0
dcT«18" 2
1

INDEX ORIGIN

The index origin system variable is denoted by the name [II0 and is
used to establish the index origin (l=origin or O=oriain) for the
monadic function roll (?); the mixed functions deal (?), index
generator ('), index of (1), grade up (4), grade down (V), and
transpose (R)3 and the system fynction fix (OFX), For example,

A«1 2 3 4 56 78 90

(10«1

Al 4]
y

10«0

Alu]
5

4-15

LATENT EXPRESSION

The Jlatent expression system variable is denoted by the name [LX, The
AFL statement represented bpy a latent expression s executed
automatically whenever a workspace is activated, For example, if the
expression

OLX ***THIS IS WORKSPACE 3°°*°

is entered and workspace WS3 is saved, the phrase THIS IS WORKSPACE 3
will be displayed when WS3 is activated, See below,

(OLX«'''THIS IS WORKSPACE 2'''
)SAVE WS?2

SAYED 11:12 10/1u4/76 WS§2
YLOAD WS?2

SAVED 11:12 10/1u4/76

THIS IS WORKSPACE 2

The torm (OLX+*-0LC* can be used to restart a suspended sunction
automatically and the form [ULX<«*TEST’ also may be used to activate the
function TEST when a workspace is activated, For example,

OQLX«'TEST!

YEDIT
{01 TEST ;LY
(1] OLX«'[0C ,pll«' " LATENT EXPRESSION DEMONSTRATION'"®
£21] YFUNCTION TEST WILL BE CALLED AUTOMATICALLY'
[3] retum

>SEND
YSAVE W51
SAYED 11:14 10/14/76 ¥S1
YLOAD WS1
SAYED 11:14 10/14/76
FUNCTION TEST WILL BE CALL%D AUTOMATICALLY

Note that system commands may be used with [OLX, For example,
OLX+*)FNS® is valid,

4-16

RANDOM LINK

The random link system variable is denoted by the name [URL, The random
link is a value used by AFL to generate random numbers for tnhe reoll
(?) and deal (?) functions, The random 1link variable has a value of 0
when a workspace in first activated, After a roll or deal function {is
executed, the vrandom link is changed, 50 that when the roll or deal
function s executed again the same set of random numbers i{s not
repeated, FoOr example,

RL
0
729
1 8 6 2 98 5 y
ORL
9.928070009E 02
729
4 5 3 8 2 9 6
.5041744709

If the random link is set by the User bhefOre exeCuting a roll or deal
function, this value is used by APL as the link value, For example,

[
o

R
?

«

Q

<

[{e}

2 9 5 4
<«

3o
h
o

R

7?9

1 8 66 2 9 5 4y
729

4y 3 7 9 1 8
[JRL+«.5576
779

b 3 7 9 1 8 b

<

o

4-17

PRINTING PRECISION

The printing precision system variable ([JPP) contains the precision of

values displayed, Examples are:

opp
10 -

A<34%12

A
2.386420584E18

(PP«8

A
2.3864207E18

OPP<«6

A
2.38642E18

PP<«y

A
2.386%18

PRINTING WIDTH

The printing width system variable
for values displayed by APL,

An example$

gopw

80 -
A+<18004

1 2 3 & 5 6 7 8 9 10 11 12
23 24 25 26 27 28 29 30
42 43 44 45 46 47 48 49
61 62 63 64 65 66 67 68
80
O0PW+4004

1 2 3 % 5 6 7 8 9 10 11 12

4-18

13

31
50
69

(OPW) contains the printing width

14 15 16 17 18 19 20 21 22
32 33 34 35 36 37 38 39 40 41
51 52 53 5S4 55 656 57 58 59 50
70 71 72 73 74 75 76 77 78 179

ACCOUNT INFORMATION

The account information system variable is denoted by the name [JAI,
Its result 1is the CPU time and the connect time used so far in the
session, in milliseconds,

An example of the [JAI system variable is:

Uar
39525 1610229

JAT
39871 1619113

ATOMIC VECTOR

The atomic vector system variable is denoted by the name [JAV, 1Its
value s a 256=element character vector containing all possible APL
characters,

Indices of known characters, such as A, By =, <, and so torth, can be
determined by an expression sucnh as [JAVi*AB=<’,

Examples of tne [HAV variable are:

04v

SeYeIvIMErYIt RV e S LAYV aAt o AL 202

Note that printing of AV may result in erratic terminal behavior due
to the output of contreol characters,

LINE COUNTER

The 1line counter system varlable, denoted py the name [ULC, produces a
vector of the statement numbers of functions in execution or halted,
The most recently activated statement numbers are displayed first, For
example,

ROOTS

ENTER A NUMBER

AND THE COMPUTER WILL COMPUTE THE SQUARE ROOT
AND THE CUBE ROOT

O:

34
ROOTS[5]*

gLe
5

26
ROOTSL71=*

OLc
7

210
0.

9

4-19

STACK NAMES

The stack names system variakle ([JSN) returns the names of all
user~defined functions on the stack, For example.,

ROOTS
ENTER £ NJMBER
AND THE COMPUTER WILL COMPUTE THE SQUARE ROOT
ROOTS[3]~*
sy
ROOTS
210
0

jo

WORKSPACE IDENTIFICATION

The workspace identification system varlaple (OWI) contains the name
of the active workspace, 1If the workspace is unnamed, an empty vector
is returned, For example,

oI

YLOAD WS?2
SAVED 11:12 10/14/76
THIS IS WORKSPACE 2
Owr

WS?2

TIME STAMP

The time stamp system variable is denoted by the name [TS and returns
the vyear, month, day of the month, hour (24~hour clock), minute,
second, and millisecond, For example, .

grs
1876 10 14 11 33 1 700

ASSERTION LEVEL

The assertion level system variable (UAL) establishes APLGOL assertion
checking level, The AL system variable indicates the lower bounds of
assertions to be checked, Each time an ASSERT statement |is
encountered in an APLGOL user~defined program, the assertion level is
checked against the first expression in the ASSERT statement, 1If the
assertion level is smaller than the level set by [JAL, the entire
statement s regarded as a comment and is not executed, See Section
IX for a further discussion of the APLGOL ASSERT statement,

4-20

EXECUTION TRACE

The execution trace (OXT) system variable s used to trace the
execution of a statement, or to determine the type (character or
numeric), shape, and value, of the result of an APL expression, When
read, [XT always has the value ** (empty character vector), Upon
assigning a value to [XT, however, the type, shape, and value are
displayed on the terminal in the same format as when tracing a
function with the ST system variable, See Section IX for a
discussion of [UST and trace format,

BRANCH TRACE

The branch trace system variable ([JBT) causes APL to display values in
trace format as 1f the value is an argument of a branch arrow (—+), See
Section IX for & discussiocn of trace format,

VIRTUAL MEMORY

The virtual memory system variable (VM) allows & user to control the
paging scheme used by APL in managing the active workspace, When read,
OvM vyields a four=element integer vector Wwhose elements are the page
size (in bytes), the number of vages to rte used, the number of page
faults which have occurred since the last assianment of VM or the
last)SAVE,)LOAD, or JCLEAF (whichever occurred last), and the stack
size of the HP 3000 stack used (in words), When assigning a value to
[JVM, an integer vector is wused, the first two elements ©f which
replace the first two elements of [UVM, and the rest is ignores,

The first element of the valye assigned to JVM muyst be a power o0f two
between 2#%7 and 2#12, The second element can either be positive or
negative, If positive, it implies a congruent set paging scheme, and
myst be a power of two between 2%2 and a number dependent on the stack
size, If the second element is negative, it implies a linked list
paging scheme, and can be any integer between =2 and a negative numbper
again dependent on the stack size,

If either of the first two elements of the vector being assigned to
OVM is out of range, the assignment has no effect,

LANGUAGE

The 1language system variable ((JLA) contains the default language Of
the translator, When the APL\3000 editor or trhe [OFX function is used
to <create a user-defined function, the function 1is assumed to be in
either APL or APLGOL, The argument of [JLA is a character vector °‘APL*
or "APLGOL*® to speclfy the translator to bhe used.

4-21

TERMINAL TYPE
The terminal type system variable (OJTT) contains the terminal type,
The terminal type 1is specified by a character vector argument as
follows:

‘AJ* = Anderson Jacobson

*ASCII’ = ASCII

‘CDI’ = Computer Devices, Inc,

‘GSI* = GenCom Systems, Inc,

‘DM* = DataMedia

*BP” = Bit Pairing

'CPO

Character Pairing

Oﬁpf

Hewlett=Packard HP 2641A .

HORIZONTAL TABS

The horizontal tabs system variable (OHT) is used to set internal tab
stops and the interpretation o0f the tab c¢haracter on input, [OHT can
be assigned an integer vector, each element of which denotes the
number of character positions bpetween a tab stop and the left margin,
The vector need not be in any particular order, Upon reading JHT, the
tab stop positions, in ascending order, are returned, Assigning an
empty vector to [JHT causes operation to be as though there were no tab
stops,

The [OHT system variable has no effect if the terminal type (JTIT) is
ASCII, If [OTT = *ASCII*, an implicit UHT is preserved but jgnored,
Upon suopsequent resetting of the terminal type to non=ASCIlI, an
implicit OHT<«UHT is performed and the stored value becomes effective,

WORK AREA AVAILABLE

The work area availabple system varaible (OWA) has as its value an
integer representing, in bytes, the approximate amount of storadge
still available in the active workspace, This system variable is not
explicitly changeable, but changes every time storage in the workspace
is used or released,

4-22

CHARACTER SYSTEM VARIABLES

Six control character system variables, and three character sequence
variables are available, These are scalar (in the case of the control
characters) or vector (in the case of the character seguences)
variables, whose values are constant from one read to the next, These
variables are:!

ASCII VALUE ATOMIC VECTOR (AV)
NAME CHARACTER DECIMAL OCTAL INDEX (O0=0QRIGIN)
0B Backspace 8 10 148
dL Linefeed 10 12 140
UR Carriage Return 13 15 152
OoT Raw Tab 9 11 141
UN Null 0 0 136
UE Escape 27 33 166
A Alphabet ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ*
0o Digits *0123456789°*
AV Atomic Vector (See page 4-19)

4-23

SHARED VARIABLES

Shared variables are used to communicate between two processes, This
allows two jndependent concurrently operating processes to cooperate
witn one another by sharing information which each process can use for
its own purposes, Currently, variables may be shared pbetween the
active workspace, the APL system, and the file system,

Shared variables may either be global or 1local, and are similar to
ordinary variables except that shared variables may not be used with
indexed assignments, A shared variable may appear on the left of an
assignment statement, 1in which case its value 1is said to be set, or
written; or it may be used elsewhere in a statement, in which case its
value 1is sald to be used, or read, Either form is defined as an
access,

A shared variable <c¢an have only one value at any given instant;
however, either process can change the value, Thus a process using a
shared variable may find its value different from that which it
assigned previously, or from one read to the next,

Although a process can share variables with any number of other
processes simultaneously, each sharing is bilateral; that is, each
shared variable nas only two ownhers, This does not detract from the
efficiency of the system because one process can share variables
bilaterally with several other processes, controlling their access to
these variables as required,

Four system functions are provided to establish the sharing of
variables, Two 0f the functions are used for the actual management of
the shared variables, and the other two are used to provide related
information, The functions are listed in table 5-1,

QFFERS

An offer to share a variable is performed by the system function [SvO,
This function can be used monadically or dyadjcally. The monadic form
is (0SVD PN, where PN is a character vector representing a shared=~
variable identifier, The dyadic form is PI (JSVO PN, where PI is a
character vector identifying the other process with which sharing is
to pe accomplished, and PN is as noted above,

The shared-variable jdentifier generally consists of two names. The
first name indicates the variable to pe shared, and the second name is
a substitute, or surrogate, name which is offered to match a name
offered by the other process, The surrogate name is not necessary.,
only one name need be used, (In this case, the name 0f the variable
is its own surrogate,)

5-1

Table 5-1. System Functions for the Management of Shafing
REQUIREMENTS*
SYMBOL NAME RANK LENGTH DOMAIN | EFFECT ON ENVIRONMENT EXPLICIT RESULT

PI-5vO PN Dyadic 2=ppPN | (x/~1]P)e1,1|pN | Characters | Tenders offer to process P if | Degree of coupling now in

offer first (or only) name of a pair | effect for the name pair.
is not previously offered and | Dimension: x/~1|pN.
not already in use as the
name of an object other than
a variable.
Osvo PN Monadic 2=ppPN | None ** None Degree of coupling now
offer in effect for the name pair.
Dimension:x/~1]pN.
csve PN Access 2=ppPN | (1=ppC)At=x/pC |A/Ce0 1 Sets access control. New setting of access
control or control.
2=2ppC [(C)=(1]pN)4 |™ Dimension: (-1}pN),4.

Oosvec PN Access 2=ppPN |None b None Existing access control.

control.

OSvR PN Retraction 2=ppPN | None > Retracts offer (ends sharing). | Degree of coupling before
this retraction. Dimension:
x/~1]pN.

Osvao P Inquiry 1=ppP Vector Characters | None If P is empty: Vector of identi-
fication of processers making
offers to this user.

If P=vector: Matrix of names
offered by process P but
not yet shared.

*If a requirement is not met the function is not executed and a corresponding error report is printed.
**Each row of N (or N itself if 2=ppN) must represent a name or pair of names. If a pair of names is used for an offer (dyadic[JSVO), either
the pair, or the first name only, can be used for the other functions.

The
of the
operate
name
may be
this is done,
associated

with

no
used by the other process,
used for offers to several

with

however,
a different variable name

surrogate name has no effect
shared variables,
direct knowledge of,
In addition,
processes at the same time.
each use 0f a particular surrogate name must be

thus making it

or

because a

shared with only one other process at any given time,

The explicit

result

of

the expression PI OSVD

coupling of the name or name pair in PN, as follows:

0 = Sharing is not completed,

2 = Sharing is completed,

An
other

offer of a name to any
offer has been made (0 couplingl,

52

other than controlling the matching
possible for one process to
concern with,
the same surrogate name

the variable
When

variable may be

PN is the degree of

other process increases the coupling if no
and the name is not the name

of a label, function, group, or previously shared variable, An offer
never decreases the coupling,

An example of the dyadic use of the offer function 1s as follows:

'FILE' {1SV0O 'ABC CTRLO'

2

The monadic form of the offer function (OSVO PN) does not affect the
coupling of the variable contained in PN; however, the degree of
coupling 1s reported as the explicit result, I1f the degree of
coupling 1is 2, a repeated offer to share tnis variable has no further
implicit result, 1In this case, the monadic or dyadic form may be used
for inquiry to determine the degree of coupling,

An example of the monadic use of the offer function is as follows:

0svo 'ABC!
2

The offer function will not produce the proper result unless all the
requirements listed in table 5~1 are met, An appropriate error report
is generated when the requirements are not met,

A set of offers can be made with one dyadic offer function by using a
character matrix lett argument, or a scalar, vector, or unit argument
which 1is (automatically) extended, with a character matrix right
argument, Each of the rows of the right argument represent a unique
name or name pair, The offers are treated in sequence; the explicit
result is a vector of the resulting degrees of coupling,

ACCESS CONTROL

As mentioned previously, the value of a shared variable may be changed
by either of the processes sharing 1it, For most applications, it is
important to0 be able to determine whether a new value has been
assigned, or whether use has been made of a current value before a new
value is assigned, An access control mechanism is incorporated in the
APL shared variable facility for this purpose,

The access control uses the dyadic form of the system function SVC to
inhipit the setting or use of a shared variable by either of its
owners, depending on the access state of the variable, and the value
of an access control matrix (ACM) which is set jointly by the two
owners.

A delay 1is caused by an inhibition of an access, resulting in a
negligible amount of computer time, The keyboard is locked during
this period, A hard interrupt during the delay will abort the access
and unlock the keyboard, ‘

The three possible access states for a shared variable, the possible
transitions between states, and the potential inhibitions imposed by

5-3

the access control matrix, ACM, are shown 1in figure 5=1, ASM in the
figure refers to the access state matrix., The codes for the access
state matrix are as follows:

0 011 - Initial ASM (can be used by process A or B),
01 01 =~ Can be set by process A,

1 010 -« Can be set by process B,

The operations permissible for any state are indicated by the zeros in
the expression ACMaAASM, Thus, referring to figure 5~1, each 0f the
following statements can be validated,

If ACMIl;tl=1 = Two successive sets by A require an intervening
access (set or use) by B,

If ACM{1;2)J=1 = Two successive sets by B require an intervening
access (set or use) by A,

If ACMI2;1)=1 = 1Two successive uses by A require an intervening
set by B,

If ACM([2:2]=1 = Two successive uses py B require an intervening
set by A

The value o0of the access state matrix (ASM) is not directly available
to a user, but the value of the access control matrix (ACM) is, The
ACM can be obtained from the monadic function [USVC *N*, where N is the
name of tne shared variable of interest,

Note that if two owners use the function [SvC “N’, the results are
reversed, In other words, if user A enters [SVC *N”, the result is
the access control vector 1 4pACM, User B, however, on using the same
expression, will obtain the reverse of the access c¢ontrol vector, or
dACM, The reason for the reversal is that sharing is symmetric; that
is, neither process has precedence over the other, and each sees a
control vector in which the first one of each pair of control settings
applies to that process’ accesses, This can be seen from figure 5e1;
if the rows of A and B are reversed, the access control matrix will be
the row reversal of the matrix shown,

The access control matrix setting for a shared variable is determined
in a manner that retains the functional symmetry, An expression such
as L [OsSvVC *N” executed by user A assigns the value of the left
argument L to a four=element vector, A similar action by user B also
results in a four=element vector, If these vectors are called VA (for
user A) and VB (for user B), then the value of the access control
matrix can be determined as follows:

ACM«(2 2p7A)Ad2 2pVB

5-4

SETBY A

0101
ACCESS STATE
MATRIX
SET BY B

USED BY B
1010
ACCESS STATE
MATRIX
SET BY A
SET | SETS
By | BY
A B
USED | USED
BY | By
A B q4
@
" ACCESS N
¢ (5N CONTROL 2 N
o <, MATRIX & @
o) @ Q
) R4 &
% $

USED
BY

0011
ACCESS STATE
MATRIX
INITIAL STATE

A one in an element of ACM inhibits the associated access.
Allowable accesses are given by the zeroes in ACMAASM,
Access control vectors as seen by A and B, respectively, are
,LACM and ,dACM.

The access state matrix represents the last access: ones occur
in the last row if it is not a set, and in a column if it is, the
first column if set by A and the last if set by B.

Figure 5-1. Access Control of a Shared Variable

5-5

Because the ones in the access control matrix inhibit the
corresponding actions, it can only be the case that a user can
increase, and not decrease, the degree of control imposed by the other
user, A user can, however, restore the control to the minimum level
available to him by using the [0SVC function with a left argument of
all zeros,

The 1initial values of VA and VB when sharing is first offered are
zZzero, Access control can be imposed only after a variable is offered,
however, after once being offered, access control can be imposed
whether or not the sharing 1is completed, In other words, access
control can be imposed either before or after the degree of coupling
reaches two,

The access state when a variable is first offered (the degree of
coupling is one) is always the initial state as shown in figure 5~1,
Completion of sharing does not change this access state, however, if
the variable is set or used before the offer is accepted, the access
state changes accordingly.

Table 5=2 lists several settings of the access control vector, These
settings also could be represented by omjitting the control matrix from
figure 5=1 and deleting the lines representing accesses which are
inhibited for each particular case, For example, all inner paths in
figure 5=1 would be deleted when maximum restraint (all ones) is
imposed,

Table 5-2. Access Control Vector Settings

ACCESS CONTROL

VECTOR AS SEEN BY COMMENTS
A B

0000 0000 No constraints.

0011 0011 Half-duplex. Ensures that each use is
preceded by a set by partner.

1100 1100 Half-duplex. Ensures that each set is
preceded by an access by partner.

1111 1111 Reversing half-duplex. Maximum
constraint.

0110 1001 Simplex. Controlled communication

from B to A. (For card reader, efc.)

Several access control matrices can be set by using matrix arguments
in the [OSVC functions as follows:

To set N access control matrices, use an N by 4 matrix left
argument for [SVC and an N-~rowed right arqument of variable names,

The explicit result produced is an N by 4 matrix of the current values

5-6

(the 1 4p) of the control matrices, 1f control is being set for all
inhibits, the 1left argument can be a single 1; for no inhibits, the
left arqument canp be a single O,

RETRACTION

The system function denoted by the name USVR is wused to retract
sharing offers, The argument of the USVK function can be a single
name to retract a single offer or a matrix of names to retract several
offers.,

The explicit result of the USVR function is the degree of coupling for
each name specified in the argument prior to retraction, The implicit
result 1s to reduce the degree of coupling for all specified names to
zero,

The APL system retracts sharing automatically if the connection to the
computer is interrupted, if the user logs off, or it a new workspace
is loaded (including <c¢learing the active workspace), Sharing of a
variaple also is retracted automatically if the variable is erased by
either user or, 1f it is a local variable, upon completion of the
function in which it appeared,

The value o0f a shared variable set by one process often will not be
represented in the partner process’ workspace until it is actually
required to be there. Conditions requiring the value to be
represented are when the variable is to be used or when sharing is
terminated,

Under any of the above conditions, it is possibple that a WS FULL error
message will be reported, The prior value of the variable remains in
effect in this case, and, after corrective action, the particular
action that caused the error message c¢an be repeated and the current
value of the variable will be brought into the workspace,

INQUIRIES

The monadic system functions [08SV0O and [SVC (already discussead), and
JSvQ produce information concerning the shared variable environment
but do not alter it,

If the [SVQ function is executed with an empty vector argument, the
result is a vector <containing the identification of each process
making any sharing offers,

If the argument to the [OSVQ function specifies a particular process,
the result {s & matrix of variable names offered by the identified
process, This matrix does not contain the names of variables which
have been accepted by counter offers,

To produce a character matrix showing the names of shared variables in
a dynamic environment, the expression shown below c¢an be used:

M<ONL 20M (0=205V0 M)+M

The names now will be in variable M,

5-7

API\3000 FILE SYSTEM

Interface between APL\3000 and MPE is provided by the shared variable
facility, A process named ‘FILE’ shares certain variables when they
are offered by an APL user,

The variables which can be shared by the APL workspace and the file
process must be offered with the specific surrogate names ‘CTRL”" or
‘DATA” followed by the single digit 0 through 9, For example,

CTRLO DATAQ

CTRL? DATA7
The digit refers to the file being offered, thus CTRLO and DATAO refer
to the same file, A maximum of ten files c¢an be shared at the same
time,
A third variable ("CMNDS’) can be shared between APL and MPE in order

to issue certain MPE commands from APL, See page 6-11 for a
discussion of the CMNDS variable,

CONTROL VARIABLE

Before a file can be used, it must be opened, The control variable,
issued with the surrogate name CTRLn, is used for this purpose,. The
APL system then invokes the MPE FOPEN intrinsic to open the file., The
file name 1is converted from internal APL <c¢haracters to ASCII, The
foptions parameter of FOPEN is specified as %2003, aoptions as %4, and
default values are taken for all other FOPEN parameters, This means
that the file s opened as an o0ld binary file, with fixed= length
records and no carriage control, These options can be overridden by
the file label or the specification of a :FILE command (see the MPE
Commands Reference Manual), Additionally, the name is that of a file
(as opposed to that of a file equation), and the file is opened for
read/write, single record access, buffering, and exclusive access,

Note: See the MPE Intrinsics Reference Manual for a complete
discussion of the FOPEN intrinsic,.

The shared variable offer system function ([ISVD) is used to offer to
share the control variable with the file system, As described in
Section V, the left argument of the [OSVU function specifies the
process to which the offer is being made. The process name in this
case is ‘FILE’, thus the character vector *FILE” must be specified as
the left argument of USvO,

6-1

The right argument of [JSV0 is a character vector which consists of two
names: the control variable and the surrogate name CTRLn, where n is
a digit from 0 through 9, The form of the complete statement is

‘FILE* [USVO ‘“lcontrolvariablel] CTRLn’

For example,
*FILE” [OSVO “ABC CTRLO”’

When the above statement is executed, it returns the degree of
coupling, as follows:

0 = The offer is not accepted (usually because of an error, for
example, misspelling, or name already shared, etc¢,),

2 = The offer 1s accepted,

For example,

'FILE' [1SV0 'ABC CTRLO'

If a 2 is returned, the attempt at establishing communication with the
file system was successful, If a 0 is returned, the attempt was
unsuccessful,

The control variable (ABC in the above example) must be assigned the
name of the file (the "formal file designator®) being accessed. This
is accomplished as follows:

ABC«'FILE1'
ABC

The resulting condition code from the FOPEN attempt can be obtained by

accessing

the control variable (ABC),

The

file system will signify

the condition code returned by FOPEN by returning one of the following
values in the control variable:

CONDITION CODE

CCE 1
CCG 0
CCL Negative

APL DISPLAYS

of the error number returned by

the FCHECK intrinsic,

Note:

APL

The numbers
are not returned by MPE,
error numbers

and~1002
These are
which have the

—1000, 71001,

following meanings:

“1000

1001

1002

A condition code example,

Note:

- File already opened,
Remains as previously
opened,

= File not yet opened,

made to
file with a
which would
overflow,

= An attempt
write ¢to a
record size
cause a stack

was

ABC+«'FILE?'
FIL%Y ERROFR
ABC<«'FILE?2'
+
1BC
52
/ 4 Referenced file does not exist
Only an existing file can be accessed

created if none exists under the
variable), An MPE
can be backereferenced as follows:

tFILE command can

(38 new file will not be
name assigned to the control
pe entered and the file

‘FILE® [SVO 3 5, “DATAQCTRLUCMNDS”

2 2 2

CMNDS « “FILE L;DEV=LP”® (CMNDS
1

CTRLO “"®L~*

CTRLO
1

The # means turn off the
FOPEN,

6-3

"no file equation” bit in

If FILE1 exists:

ABC«'FILE1'
ABC

The control variable also may be assigned numeric vector vglues which
direct the file system to perform c¢ertain actions (through MPE
intrinsics), The first element 0of the vector value must be:

0 =~ Issues an FCLOSE, Elements 2 and 3 of the vector specify the
disposition and sec¢code parameters of FCLOSE, For example,

ABC+0 4 0

The above statement closes the file identified by the control
variable ABC and deletes the file from the system, If element
3 1is omitted, it is assumed to be 0, Subsequent reading of
the control variable causes the file system to return a scalar
value signifying the <condition code returned by FCLOSE as
follows:

Condition codes:
CCE (1) = Successful

CCL (<0) = Unsuccessful. The valuye returned is the negative of
the error number returned by the FCHECK intrinsic.

An example,

ABC<«0 4 0
ABC

Note: Issuing @& shared variable retract (OSVR) on the <control
variable will close the file with FCLOSE disposition of 0 (no
change = if the file is NEW, it is deleted; otherwise, it is
returned to its previous disposition domain),

1 = Calls the FCONTROL intrinsic, Elements 2 and 3 of the vector
specify the controlcode and param parameters of FCONTROL, For
example,

ApC<«1 6 0

The above statement writes an endw=of=file mark on the file
associated with ABC,

64

The following actions are available through the FCONTROL
Some of these actions only apply to certain types ot
example, terminals, tapes, and so forth), See the MPE

intrinsic.
files (for
Intrinsics

Reference Manual for details.

VECTOR([2] OPERATION
0 General device control,
1 Line control,
2 Complete input/output,
4 Set time=out interval.
5 Rewind tape.
6 Write end=of=tile,
7 Space forward to tape mark,
8 Space backward to tape mark,
9 Rewind and unload tape,
10 Change terminal input speed.
11 Change terminal output speed,
12 Turn ECHO on or off,
14 Disable BREAK,
15 Enable BREAK,
16 Disable CONTROL=-X,
17 Enable CONTROL~Y,
18 Disable tape mode,
19 Enable tape mode,
20 Disable input timer.
21 Enable input timer,
23 Disable parity checking,
24 Enable parity checking,
25 Define line~termination character,
26 Disable binary transfers,

6-5

27 Enable binary transfers,

28 Disable user block mode transfers,

29 Enable user block mode transfers,

34 Disable line deletion echo suppresion,
35 Enable line deletion echo suppression,
36 Set parity,

37 Allocate a terminal,

38 Set terminal type,

39 Obtain terminal type information,

40 Obtain terminal output speed,

41 Set unedited terminal mode,

Condition codes:
CCE (1) = Successful

CCL (<0) = Unsuccessful. The value returned is the negative of
the error number returned by the FCHECK intrinslic.

2 = Calls the FSPACE intrinsic., The second element specifies the
number of records to skip (forward 1if positive, backward if
negative), For example,

ABC+2 6
skips forward 6 records on the file associated with ABC,
Condition codes:
CCE (1) = Successful
CCG (0) = End=of-=file

CCL (<0) =« Unsuccessful, The value returned is the negative of
the error number returned by the FCHECK intrinsic,

3 =~ Calls the FPOINT intrinsic, The second element specifies the
number of the record at which the file is to be positioned,
For example,
ABC<«3 4

points to record 4 in the file associated with ABRC,

6-6

Condition codes:

CCE (1) = Successful,

CCG (0) = End=of~file,

CCL (<0) = Unsuccessful,

The value

returned is the negative of

the error number returned by the FCHECK intrinsic.

4 = C(Calls the FSETMODE intrinsic,

The second element specifies

the modeflags parameter of FSETMODE. For example,

ABC+4

0

calls FSETMODE and sets modeflags to O,

Condition codes:

CCE (1) = Successful

CCL (<0) = Unsuccessful,

The value

returned is the negative of

the error number returned by the FCHECK intrinsic,

5 = Calls

the FGETINFO

concerning the file,

ABC<+S

requests

a full

intrinsic
For example,

and requests "full status"

status report (from FGETINFO) for the file

associated with ABRC,

ABC<«5QABC
MPEFILEINFO
FILENAME<'FILE1

GRPNAME

«'GOoODUIN

ACCTNAME<«'TEST
FOPTIONS+1025
AOPTIONS+4

RECSIZE
DEVTYPE

+«128
<0

DEVSUBTP<3

Logv
DRT
UNIT

4
«5
«1

FILECODE<«Q

RECPTR
EOF
FLIMIT

«0
<0
<1023

LOGCOUNT+0
PHYCOUNT<O

BLKSIZ#
EXTSIZE
NIMEXTS
USERLAB
CREATOR
LABADDR

«128

+128

+8

+0
«'GOODVWIN
«67110318

1

'

)

Reading ABC returns a 25 by 20 character
array containing the file information, as follows:

6-7 -

6 = Calls the FLOCK intrinsic to lock the file. The second
element specifies the lockcond parameter of FLUCK (1 for TRUE,
0 for FALSE lock), For example,
ABC+6 1

locks the file associated with ABC unconditionally (lockcond =
TRUE) .

Condition codes

The condition codes possible if lockcond = TRUE are
’ CCE (1) = Successful
CCG (0) = Not returned when lockcond = TRUE,

CCL (<0) = Request denied pbecause this file was not opened
with the dynamic locking aoption specified in the
FOPEN {Intrinsic, or the request was to lock more
than one £file and the calling process does not
possess the Multiple RIN Capability (see the MPE
Intrinsics Reference #Manual).

The condition codes possible when lockcond = FALSE are
CCE (1) = Successful

CCG (0) = Request denied because the file was locked by
another process.,

CCL (<0) = Regquest denied because this file was not opened
with the dynamic locking aoption specifieada in the
FOPEN intrinsic, or the reguest was to lock more
than one file and the calling process did not
possess the Multiple RIN Capability (see the MPE
Intrinsics Reference Manual),

7 = Calls the FUNLOCK intrinsic to unlock the file, For example,
ABC<«7

unlocks the file associated with ABC,

Condition codes:
CCE (1) = Successful

CCG (0) = Request denied because the file had not been locked by
the calling process,

CCL (<0) =~ Request denied because the file was not opened with the

dynamic locking aoption of the FOPEN intrinsic, or the
filenum parameter is invalid,

6-8

8 =« Controls auto~ASCI1 conversion, The second element is a 0 to
turn auto=convert OFF, or a 1 to turn auto~convert 0ON, wWhen
executing with auto=convert ON, APL-t0o~ASCI]l conversion is
performed implicitly:; when autoe=convert is OFF, no such
implicit <conversion 1is performed, All files are initially
opened with autow-convert OFF, Once set == either by the user
or by the open == auto=~convert does not change £for the
duration of the open unless explicitly set by the use of
CTRLN,.

Note: See the MPE Intrinsics Reference Manual for a discussion of the
FCLOSE, FCONTROL, FSPACE, FPOINT, FSETMODE, FGETINFO, FLOCK,
and FUNLOCK intrinsics.

When a file is first opened, a *FILE ERROR MODE” flag is set to zero,
When this flag is 0, any attempt to perform an operation on the file
system which causes a non+=l return into the control variable will
cause APL to suspend execution, An error report is printed,
consisting of the line on which the error occurred and the words ‘FILE
SYSTEM ERRUOR,’

The control variable may then bpe read to determine which error
occurred,

The ‘FILE ERROR MODE’ flag may be altered through the use of the
control variable, Setting control with the vector 9 0 will set the
flag to zero, thus causing APL to report errors. Setting control with
the vector 9 1 will cause APL to ignore file system errors (which may
still be checked by the return from the control variable),

DATA VARIABLE

Once & file has peen opened, data can be written or read from tnis
file using the data variable,

The data variable 1is offered for sharing with the shared variable
offer system function (0SVO) and the surrogate name DATAn, where n is
a value from 0 through 9, The process named ‘FILE’ must be used as
the 1left argument of the [SV0O function. The form of the complete
statement is as follows:

‘FILE® [ISVD *[datavariable] DATAn°®
For example,
*FILE® [ISVO “DID DATAOQ®

When the above statement is executed, it returns the degree of
coupling, as follows:

0 = Sharing is not completed,

2 = The offer is accepted,

6-9

For example,

YFILE' UJSV0O °'DID DATAQ'
2
4 Offer accepted

WRITING TO A FILE

If a character vector 1s assigned to the data variable, the file
system will perform an FWRITE to the file == using the actual bhyte
values of the characters as the data, The length (o) of the character
vector being written Jis used as the length parameter in the FWRITE
intrinsic. The FWRITE control parameter 1is always 1, thus allowing
embedded carriage control, The condition code status returned by
FWwRITE can be obtained by reading the control variable,

Condition codes:
CCE (1) = Successful
CCG (0) = End-=of~file while attempting a write,

CCL (<0) = Unsuccessful, The value returned is the negative of
the error number returned by the FCHECK intrinsic.
An example of writing to a tile is as follows:

DID<«'THIS IS RECORD 0O
DID«'THAIS IS RECORD 1'

1
DID«'THIS IS RECORD 2!
DID«'THIS IS RECORD 3!
DID<«'THIS IS RECORD 4'
ABC

1

Writing 1is performed sequentially; thus record O is written first,
then record 1, record 2, and so forth, To write data to a specific
record in the file, a numeric scalar representing the record number is
assigned to the data variable before assigning the character data,., The
FWRITEDIR intrinsic is invoked in this case. For example,

DID«12
DID«'DIRECT WRITING'
ABC

1

Again, the status of the FWRITE is returned in the control variable,
as followss

CCE (1) = Successful
CCG (0) = End~of=file
CCL (<0) = Unsuccessful. The value returned is the negative of

the error number returned by the FCHECK jintrinsic.

6-10

READING A FILE

Reading the data variable directs the file system to use the FREAD
intrinsic, A character vector representing the contents of a record
in the file will be returned. The FREAD is performed sequentially.,
and successive records are read each time the data variable is read,
The number of words per record in the file as opened is used as the
length parameter of FREAD, The condition code status returned by
FREAD can be obtajined by reading the control variable.

Examples of reading a file are

DID
THIS IS RECORD O
DID
THIS IS RECORD 1
ABC

1
DID
THIS IS RECORD 2
DID
THIS IS RKCORD 3
DID
THIS IS RECORD 4
ABC
1

Reading the control variable returns the status of the condition code:
CCE (1) = Successful
CCG (0) = End=of~tile

CCL (<Q0) = Unsuccessful. The value returned is the negative of
the error number returned by the FCHECK intrinsic,

To read a specific record in the file, a scalar value representing the
record number 1is assigned to the data variable, This positions the
file to that record, and the next time the data variable is read, the
record 1is read, The FREADDIR intrinsic is used in this case, For
example,

DID+2
DID
THIS IS RECORD 2

CMNDS VARIABLE

The CMNDS variable allows MPE commands to be used from APL by using
the MPE COMMAND intrinsic.

6-11

The CMNDS variable is offered for sharing with the shared variable
offer system function (0SV0), as follows:

'FILE' [1SV0 'CMNDS'

2

Note that the surrogate name c¢an be reserved,

The MPE command to be issued then is assigned to CMNDS as a character
vector.

CMNDS«'FILE LIST3;DEV=LP'

The condition <code status returned by the COMMAND intrinsic can be
obtained by reading the CMNDS variable,

CHMNDS

The negative of the error number is returned if an error occurred,

CMNDS«'LISTF TEST1'
cMyDS

108

/

Non-existent file

DATA CONVERSION

All data read or written by the file system is represented by APL
characters, The internal value of any character may be obtained with
the atomic vector system varijiable (JAV) by executing [AVC, where C 1is
a vector of characters for which the internal values are desired, APL
will return a vector representing the indices of these characters in
the 256~element atomic vector (see Section IV), For example,

Jav/v'142."
2 12 ©8 93

The system function UCV can pe used to convert data from internal APL
format to external formats compatible with other MPE subsystems, and
from external formats to the internal APL format, The left argument of
OCcv is a scalar value used as a control to specify the type of
conversion, or a 256=element vector which is indexed by the right
argument of [JAV to obtain a result, The right argument is the data to
be converted; the result is the converted data,

EXTERNAL TO INTERNAL APL CONVERSION

The following values of the left argument (control) of UUCV produce the

6-12

following external to internal APL conversions:

control

1

The right argument must be a character vector or unit or
scalar character, The result is a character vector which
is formed by treating the right argument characters as
ASCI1 and performing an input conversion from external
ASCI1I to internal APL. (See Appendix A for a conversion
table,)

Converts every two characters in the right arqgument to a
numeric value in the result using integer conversion, If
the input vector 1is of o¢dd length, the last byte {is
ignored,

Converts every four characters in the right argument to a
numeric value in the result using double integer
conversion, If between one and three bytes are left over at
the end of the rignt arqument, they are ignored,

Converts every four characters in the right argument to a
numeric value 1in the result using real conversion,., If
bpetween one and three bytes are left over at the end of the
right argument, they are ignored,

Converts every eight characters in the right argument to a
numeric value in the result using real conversion, If bytes
are left over at the end of the right argument, they are
ignored.,

Note: An APL statement eguivalent to 2 [OCV VEC {is:

2561LR((L0.5xp78C) ,2)p((-1II0)+IIATA\VELD)

INTERNAL APL TO EXTERNAL CONVERSION

The following values of the left argument (control) of [ICV produce the
following internal APL to external conversions:

control

1

Converts the right argument, which must be characters, to
external ASCII and returns a character vector result,

Converts each right argument element to two characters in
the result, The right argument must be a numeric scalar,
vector, or unit in which each element is an integer between
=32768 and 32767, or a domaln error will occur,

Converts each data value in the right argument to a
four=character result., The right argument must be a scalar.,
unit, or vector numeric value in which each element is an
integer between =~2,147,483,648 and +2,147,483,647, or a
domain error will occur,

6-13

4 Each data value in the right argument is converted to four
characters in the result, The right argument must be numeric
scalar, unit, or vector.

5 Each data value in the right argument is converted to eight
bytes in the result, The right argument must be numeric
scalar, unit, or vector,

In the Jast four of the above converslions, each result character is
obtained by dividing the right=-argument element into bytes and using
these bytes as an index into AV, This is simulated in APL, for
-2 0CV, by

AV [OIN+,8256 2567VEC]
where VEC is the right argument of [CV,
If the right argument of [ICV is a 256~element vector (of any type), a
translation 1is performed whereby each character in the right argument
is used, essentially, as an index into the left argument, The result
has the same shape as the right argument (which must be a character
vector), and is the same type as the left argument,
In this mode, UCV is equivalent to the APL expression

leftargl(lAVairightarg]

6-14

FUNCTION DEFINITION

A user~defined function is a function written by a user to perform a
specific computation. A user~defined function (or, more simply, a
defined function) can be established in a workspace in one of four
ways:

1., An existing defined function can be obtained from a stored
workspace using the)LOAD, JCOPY, or)JPCOPY commands (see
Section XI).

2, A defined function <c¢an be established with the [JFX system
command,

3. A defined function can be created and saved using the APL\3000
editor,

4, A new defined function can be created by modifving an existing
defined function with the APL\N3000 editor.

Once established in a workspace, a defined function c¢an be displayed

or executed, modified using the APL\3000 editor (see Section VIII),
stored in a saved workspace, or deleted (destroyved),

CANONICAL REPRESENTATION AND FUNCTION ESTABLISHMENT

A canonical representation is a character matrix which must satisty
the following requirements:

1, The first row of the matrix is the function header and must be
in one of the forms described under the heading FUNCTION
HEADER, below,

2, The remaining rows, if any, of the matrix constitute the
function pody, and may consist of any combinations of
characters, except that there may be no blank rows,

The canonical representation of a defined function can be obtained by
executing the UCR system function, and the vector representation of a
defined function can be obtained by executing the [JVR system function,
A character vector argument containing the name of the function must
be specified as the argument of [JCR and VR,

7-1

An example of [OCR is:

TEST«ICR 'ROOTS'
TEST
ROOTS
'ENTER 4 NUMBER'
YAND THE COMPUTER WILL COMPUTE THFE SQUARE ROOT'
'AND THFE CUBE ROOT'
LABEL1 : 8«
LABEL2 : A«N*x32
LABEL3:B«N*3%3
'THE SQUARE ROOT IS ',¥4A
'"TPHE CUBE ROOT IS ',¥B
"ENTRR O IF YOU DO NOT WISH TO CONTINJE'
LABELY s N+«]
»>(¥=0)/5

See Section IV for complete discussions of the [OCR and OVR system
functions,

If ROOTS is expunged with the [JEX system function (see Section 1IV), it
is no longer available for use:

Orx 'RooTS!
1
ROOTS
VALUE ERROR
ROOTS
4'~

The function can be Tre~established by executing the [OFX system
function with TEST (the variable to which the canonical representation
of ROOTS had been assigned) as its argument:

HFX THEST

e e s

ROOTS

The function [OFX produces as an explicit result a character vector
representing the name of the function being fixed, while replacing any
existing definition of the function with the same name, The function
ROOTS now can be used again:

ROOTS
FYTER A NUMBER
AND THE COMPUTER WILL COMPUTE THE SQUARE ROOT
AND THE CIUBE ROOT
K
125
THE SQUARE ROOT IS 11.18033989
THE CUEBE ROOT IS 5
ERTER O IF YOU DO NOT WISH TO CONTINUE
.

0

7-2

The expression [OFX n will establish a function {f the following
conditions are met:

*# The argument n is a valid representation of a function, Any
character vector or matrix which differs from a vector or
canonical representation only in the addition of non~significant
spaces (other than rows consisting of spaces only) is a valid
representation,

*# The name of the function to be established does not conflict with
an existing use of the name for an executing or halted function,
or for a label or variable,

If the expression [UFX n fails to establish a function, no change
occurs in the workspace and the expression returns a scalar index of
the row in the argument where the fault was found, See Section IV for
a complete discussion of [FX,

FUNCTION HEADER

A defined function may or may not return a result, and it may have one
argument (monadic), two arquments (dyadic), or no arguments (niladic),

If the function header contains a specification (left) arrow, the
function returns a result, and the name to the left of the arrow is
the name used within the function to identify the result,

The valence of a defined function 1is defined as the number of
arguments it takes, Thus, a defined function may have a valence oOf
zero (no argument), one (one argument), or two (two arguments), This
allows six possible header forms as follows:

EXPLICIT NO EXPLICIT
TYPE VALENCE RESULT RESULT
Dyadic -2 R<A FUNCTIONNAME B A FUNCTIONNAME B
Monadic 1 R«FUNCTIONNAME B FUNCTIONNAME B
Niladic 0 R«FUNCTIONNAME FUNCTIONNAME

The name of a defined function is global (see LOCAL AND GLOBAL NAMES,
below), The names used for arguments of a function are local to the
function, Additional local names may be designated by listing them in
the function header after the function name and argument name(s),
These additional names must be separated from the function name and
argument(s), and from one another, by semicolons, For example,

AREA<RADIUS CIRCLEAREA DEGREES;LOCAL13;LNCAL?2

A name, except the function name itself, may not be repeated in the
function header, Argument names uysed in the function header do not
need to be used within the body o0f the function,

7-3

LOCAL AND GLOBAL NAMES

When a function is executed, it often is necessary to use intermediate
results or temporary functions which have no significance outside the
function, The use of names local to the function, so designated by
their appearance in the function header, or by being used as labels,
relieves the programmer of the reguirement of keeping track of such
transient names, and allows greater freedom in the choice of names
(the same name can be used independently in several functions as long
as it is local to its function).

The name of the function itself, and names used in the function body
that are not designated as local by being included in the function
header, are defined as global names, Global names have significance
both inside and outside the function and may be referenced in the
workspace (assuming that the function is established in the
workspace), For example, the following function computes the areas of
sectors of circles,

CR _'CIRCLEAREA'
AREA«RADIUS CIRCLEAREA DEGREES;LOCAL13LOCAL?2
AREA«(ORADIUS*2)xDEGREES+360
DIAMETER«RADIUSx2
AaTHIS IS A COMMENT

The names RADIUS and DEGREES are argument names defined as local by
being included in the function header, The name CIRCLEAREA is the
function name and is globhal, In addition, the name DIAMETER is global
because it is included 1in the body of the function but not in the
function neader, The names CIRCLEAREA and DIAMETER, being global, can
be referenced from the workspace outside the function, Note that
names global to one function may be local to another calling function,
Therefore local/global distinction is on a function=by=function basis.

348 CIRCLEARFEA 12.852
13582.401889
DIAMETER

696

A local name may be the same as a global name, and any number of names
local to different functions may be the same, During the execution of
a defined function, a local name will temporarily exclude from use a
global object of the same name, If the execution of a function is
interrupted (leaving it either suspended or pendent; see Section X),
the local objects retain their dominant position during the execution
of subseqguent APL operations, until such time as the halted function
is completed,

The localization of names is dynamic, that is, a local name has no
effect except when the defined function is being executed, When a
defined function uses another defined function during its execution, a
name local to the first (or outer) function continues to exclude
global objects of the same names from the second (or inner) function.,
This means that a name 1localized in an outer function has the

significance assigned to it in that function, but has no further
localigzation in an inner function. The same name Jlocalized in a
sequence o0of nested functions has the significance assigned to it at
the innermost level of execution,

The shadowing of a name by localization is complete, in that once a
name has been localized its global values are inaccessible, even if
nothing is assigned to it during execution of tne function in which it
is localized,

BRANCHING AND LINE NUMBERS

Lines in a function are normally executed sequentially, from line 1
through the highest nuymbered line, and execution terminates at the end
0of the last line in the function, This normal order can be modified
by branching, Branching is used in iterative procedures, in choosing
one out of a number of possible 1lines, and in other situations where
the normal order of line execution is not desired,

Lines in a function have reference numbers associated with them,
starting with the number one for the first line in the function body
(the function header is number 2zero), and continuing with successive
integers, Thus, the statement +11 specifies a branch to tnhe eleventh
line in the function body., When the expression Is executed, branching
occurs and 1line number 11 is executed next, regardless ot where the
branch statement itself occurs, (The pranch statement -11 may be in
line 11, in which case an infinite lo0p may result until interrupted
by an action from the terminal,)

A branch statement always starts with the branch (or right) arrow on
the 1left, followed by any expression, For the statement to be
effective, however, the expression must evaluate to an integer, to a
vector whose first element is an integer, or tc¢ an empty vector, Any
other value results 1in a DOMAIN or RANK error., 1If the expression
evaluates to a valid result, then the following rules apply:

If the result is an empty vector, the branch has no effect and
the next statement in the function 1s executed. 1If there is no
next statement (the branch is the last statement), the function
terminates normally.

* If the expression evaluates to the number of a 1line in the
function, that line is the next to be executed,

Tf the result of the evaluation iIs a number out of tne range of
line numbers in the function, the function terminates, (The
number 0 and all negative numbers are outside the range of line
numbers for any function,)

Because zero is often a convenient result to compute, and it is never
the number of a line in the body of a tunction, it 1s often used as a
standard value for a branch intended to end the execution of a
function,

7-5

An example of branching:

“0OCR 'ROOTS'

ROOTS

‘ENTER A NUMBER'

'AND THE COMPUTER WILL COMPUTE THE SQUARE ROOT'
YAND THE CUB% ROOT'
LABEL1:N<[]
LABEL2:A«N*:2
LABEL3 :B«N*x:3

'THE SQUARE ROOT IS ',%A

'THRE CUBE RNOT IS ',¥B

‘ENTER O IF YOU DO NOT WISH TO CONTINUE'
LABELY : N«{]

>(N=z20) /5= Branch statement

ROOTS
ENTER A NUMBER
AND THE COMPUTKR WILL COMPUTE THE SAQIUALRE ROOT
AND THE CIUBE ROOT
O
574
THE SQUAR® ROOT IS 23.9582971
THE CUBE ROOT IS 8.310694107
ENTER O IF YOU DO NOT WISH TO CONTINUE
0O

0 —-— Terminates execution when 0 entered (does not branch)

The compression function in the form U/V (the statement »(N=z0)/5
above) gives V if U is egqual to one (true), and an empty vector if U
is equal to 0 (false), Thus, the statement ~(N#0)/5 in ROOTS is a
branch statement which causes a branch to line 5 if the condition NZ0
is true, and a branch to an enmpty vector (normal sequence) when the
condition is false., In this case, there is no next statement and the
function terminates,

LABELS

If a 1line occurring in the body of a function is prefaced by a name
and a colon, the name is assigned a value equal to the line number
automatically upon function execution, A name used 1in this way is
called a label. Labels are advantageous when it is expected that a
function may be chandged, becayse a label automatically assumes the new
line number of its associated line as other 1lines are inserted or
deleted,

The name of a label is local to the function in which it appears, and
must be distinct from other label names and trom local names 1in the
function header,

A label name may not appear immediately to the left of a specitication
arrow, In effect a label acts like a local constant,

7-6

Examples of labels are:

OCR '"ROOTS'
ROOTS
'"ENTER A NUMBER'

'AND TH% COMPITRER WILL COMPIUTE THE SOUARE ROOT'®
'AND THE CUBE ROOT'

//,LABEbl:N*D
LABEL2 :A«N*x%+2
:::LABEL3:8+N*%3
"THE SQUARRE ROOT IS ' ,¥A
"PHE CUBE ROOT IS ',¥B
"ENTER 0 IF YOU DO NOT WISH TO CONTINUR'
LABELY : N[
7 >(N=0)/5

Labels
COMMENTS

The symbol P signifies a comment., A comment is inserted in a function
for informative purposes only, and is not executed, The symbol may
occur anywhere within a line; however, everything to the right of the
comment symbol in the line is ignored at execution, A comment may not
be placed in the header line,

A comment example:

(JCR "CIRCLWAREA'
AREA«RADIUS CIRCLEARZA DEGREES
ARE A« (ORADIUS*2)xDEGRERES#360
DIAMETER«RADIUS*?2
ATHIS IS A COMMENT

7-7

APL\3000 EDITOR

The APL\3000 editor is wused to <create and modify AFL or APLGOL
functions anad to create and modify one~ or twoe=dimensional character
data, The editor recognizes lines of input and operates on lines of
text and on characters within these 1lines, within the editor, both
line numbers and a cursor to0 the line <currently being edited are
maintained, so that editing may specify line numbers or a line
position relative to the cursor,

EDITOR FEATURES

#*# The editor retains instruction parameters from one edit
instruction to the next, so that in successive applications of an
edit instruction, the parameters often need not be respecified.

* Most edit instructions may be abbreviated.

In the absence of specified parameters, default parameters are
assumed,

In all instructions which require that a line be specified
(except ADD), the position of the <cursor is assumed 1f an
explicit 1line number is absent. If a line number is specified,
it will be used and the cursor is adjusted to reflect the new
current line, The instructions which are used to set patterns
(DELTA, CURSOR, and so forth), may be useda without parameters to
determine the current parameter setting,

In some instructions, a character string may be specified instead
of a line number, 1n this case, the next line starting with the
line in which the string is located is the selected line,

Line numbers may range between 0,000 to 99999,999 for a maximum
of 100,000 lines,

To access the editor, the system command JEDIT is entered, optionally
followed by the name of an existing function or character variable to
be edited, 1If a name is not specified, the editor immediately enters
ADD mode, and new lines may be entered, If the name of an existing
function or character variable is specified, the editor prompts with a
“"greater than" (>) symbol for an edit instruction,

8-1

An example of accessing the editor is as follows:

YEDIT ROOTS-<——————Existing function specified
APL FUNCTION

>ADD
{121 a THIS IS A COMMENT
[13] return
>END
YEDIT = Editor enters ADD mode when no existing function specified
Lol THIS IS LINE 7ZERO
(11l TAIS IS LINE ONE
2] LTNE TWO
[£3] THREE
f[u] N
(5] 5
(6] 6
L71 return
>

EDIT INSTRUCTION SYNTAX

Table 8~=1 lists all edit instructions and shows the syntax and the
abbreviation (where applicable) for each instruction,

Table 8-1. Edit Instructions

A{DD] {linespec {deltal
string

B(RIEF)

CI[HANGE] ([character ([patternstring) character [changestringl
character [rangelist]]

Co(PY] lineblock

lineblock = linerange ‘ }1inespec {delta])

’
blank

'cutasoaj} linespec
* + integer
- integer
string
|/
DIELETE) [string]
Lrangelist

delta = [,] linenumber

‘DELT[A]} [f] {decimalnumber)
A] <

8-2

Table 8-1. Edit Instructions (continued)

END [APL]
APLGOL

FIND (stringl [rangelist]

EXPLAIN
?

{H[ELP] }[instructipn)

linerange = [linespec
<linespec¢> <separator> <linespec>
<linespec> <separator>
<separator> <linespec>
separator
ALL

linespec = |[line number
' FIRST

LAST

CURSOR

*

LI{IST] [rangelist
string
ALL
FIRST
LAST

LOCK [APL }
APLGOL

MATIRIX] {variablename]

MIODIFY] [string
[rangelistl

QUIT

rangelist ={linerange (,linerangel, . , {slinerangel
rnge [,rlist]

R{EPLACE] |[string [delta)
rangelist

RES[EGUENCEJ 1lineblock

separator = r]
|

8-3

Table 8-1. Edit Instructions (continued)

string = <character> <text not containing character> <character>

UNDO f{integer] lgrainspec]

grainspec = ' LIINES]
i CI[OMMANDS]
blank

VEC[TOR] ([variablename]

VERIBOSE]

EDIT INSTRUCTIONS

ADD INSTRUCTION

The form of the ADD instruction is

AIDD] |linespec| I[delta]
string

The ADD instruction places the editor into a mode to accept new lines
of input, 1If parameters are not specified, the text is added to the
end of the edit file using the present value of delta to increment the
line numbers., If linespec 1Is specified, the text iIs added starting
with the specified line and thereafter increasing the line number by
the delta specified, or by the default delta supplied by the system
(the 1initial default value is one), 1If the line number specified
already exists, the text 1s added following that line by applving the
proper delta. If this is not possible, an error is reported. A null
line, that is, & line with just a carriage return, terminates the ADD
instruction, The system retains a delta value, initially set to one,
which is updated by any edit instruction specifving a delta parameter,
The delta value can be specified once, therefore, and retained as long
as necessary without further respecification, When there is no more
room to add 1lines using the present delta, the system divides the
delta by 10 so that more lines c¢an be added, This 1s repeated until
delta becomes ,001,

BRIEF INSTRUCTION
The form of the BRIEF instruction is
BLRIEF]
The BRIEF 1instruction is wused ¢to set the editor response mode to
brief, in which case messages are either shortened or are omitted, The

opposite setting of the instruction response mode is VERBOSE (the
default mode),

84

CHANGE INSTRUCTION
The form of the CHANGE jinstruction is

C[HANGE]} (character [patternstring] character {changestring]
character (rangelist]

The CHANGE instruction is used to chandge one pattern within a range of
lines to another pattern (which may pe null)., 1If rangelist is not
specified, the current line is assumed, If both patterns are omitted,
whatever patterns were most recently associated with a CHANGE
instruction are wused again, If a single pattern is specified, it
becomes the new change pattern and the former search pattern is
retained, 1f both patterns are specified, the first string
(patternstring) is a search pattern and the second string
{changestring) is the change pattern,

An example of the CHANGE instruction is shown below:

>LIST 0O

Lol THIS IS LINE ZEROD
>CHANGE 'ZER0O'0' O

ol THIS IS LINZ O
>LIST 0

(o] THIS IS LINE O

>

COPY INSTRUCTION

The form of the COPY instruction is
CO(PY] 1lineblock

where

lineblock = linerange linespec (deltal

’
blank

The COPY instruction is used to duplicate one or more lines of text
elsewhere in the text, This instruction requires the specification of
a linerange to be copied and a linespec to specify the target point
for copying, It is not possible to delete existing lines within the
COPY instruction by overlaying a copied line number on top of an
existing line, .

An example of the COPY instruction is shown below:
>COPY 2 17
(21 => (7]

>LIST 17
L7 LINE TWO

85

CURSOR INSTRUCTION
The form of the CURSOR instruction is

{CU[RSURJ’ linespec

* + integer
- {nteger
string

The CURSOR instruction is used wither to indicate the current position
of the «cursor or ¢to reposition it, To find the current cursor
position, either the word CURSOR or the symbol # may be entered
without other parameters, Tnhe addition of parameters to the CURSOR
instruction causes the cursor to be relocated according to the
parameters, If linespec is specified, the cursor moves to the
specified 1line; if string is specified, the cursor moves to the next
line beyond the present cursor position in which the string is
located, The + jinteger and = integer parameters move the cursor
forward or backward iIn the text relative +to the present cursor
location,

An example of the CURSOR instruction is shown belows

>CURSOR
CURSOR = [7]
>%

CURSOR = [7]
>CURSOR 0
WAS (7]

>

DELETE INSTRUCTION
The form of the DELETE instruction is
D(ELETE] [?tring]
t

rangelis

The DELETE instruction is used to delete 1lines from the text, If no
parameters are specified, the line <currently indicated by the cursor
position s deleted, 1If string is specified, the next line in which
the string occurs is deleted, If rangelist is specified, the lines in
the list are deleted,

Note: In VERBOSE mode each line is printed as it is deleted,

An example of tne DELETE instruction is shown below:

>DELETE 17
{71 LINE TWO
>

8-6

DELTA INSTRUCTION

The form of the DELTA instruction is

{DELT[AJ]{=’ (decimalnumber]
A <

The DELTA instruction is used to set the increment value for adding,
replacing, copyving, and resequencing lines, The default value of delta
is one, The optional specification of a delta in the COPY,
RESEQUENCE, ADD, and REPLACE instructions automatically changes the
value of the default delta,

An example of the DELTA instruction is shown below?

>DELTA=.1

wASs [11]

>ADD

(6.11] THE INCREMENT IS .1
[6.2]

>

END INSTRUCTION

The form of the END instruction is

END [APL
APLGO#]

The purpose of the END instruction is to terminate editing and to
translate the text into internal APL or APLGOL form suitable as a
function for execution by APL, If a former version of the function
existed, the new version now replaces the former. If, in translation
to the internal form, errors are discovered which make it impossible
to create a new internal form, an indication of the error and a
listing of the line in which the error was found are displayed, and
the system retains the internal form as well as the text in the editor
for further editing, If the error is hard ¢to correct, either the
MATRIX or VECTOR instruction may be used to0 save the text as a
character matrix or vector for later editing,

The optional APL and APLGOL parameters specify the particular
translator to be used (that is, the kind of function being edited).

EXPLAIN INSTRUCTION

See the HELP instruction below,

FIND INSTRUCTION
The form of the FIND instruction is

FLIND] [string] [rangelist]

8-7

The FIND instruction is used to locate the line containing the next
occurrence of the string starting witn the cursor position, If the
string 1is not specified, the search string from the last FIND
instruction is used. The rangelist parameter may be used to limit the
searche.

An example of the FIND instruction is shown below:

>FIND 'LINE TWO'
[2] LINE TWO

HELP INSTRUCTION

The form of the HELP instruction is

EXPLAIN
?

{H[ELPJ : {instruction)

The HELP instruction lists permissiple edit instructions. 1If followed
by an instruction parameter, a brief explanation 0f that particular
instruction is provided,

Examples:

>HELP .

THE EDIT COMMANDS ARE: ADD, BRIEF, CHANGE, COPY, CURSOR, DELETE,
DELTA, END, FIND, HELP, LIST, LOCK, MATRIX, MODIFY, QUIT,
REPLACE, RESEQUENCE, TUINDO, VECTOR, AND VERBOSE.

TO OBTAIN FURTHER DATA ON ANY OF THESE COMMANDS, ENTER
'"HELP' FOLLOWED BY THE COMMAND NAME.

>HELP MATRIX
THE MAT [RIX] COMMAND IS USED TO CRFRATE A CHARACTER MATRIX FROM
THE TEXT IN THE EDIT BUFFER. THE CHARACTER VARIABL®R MAY THEN BFE
USED AS DATA WITHIN THE SYSTEM OR LATER TURNED INTO A PROCEDURE
MATRIX WITHOUT A NAME WILL STORE THE DATA IN THE. VARIARBLE WHICH
WAS EDITED (IF ANY), MATRIX <VARIABLE NAME> WILL STORE IN THE
SPECIFIED NAME. (SEE VECTOR)

LIST INSTRUCTION
The form of the LIST instruction is

L{IST] [rangelist
string
ALL
FIRST
LAST

The LIST instruction is used to print 1lines, If a parameter is not
specified, the 1line currently indicated by the cursor is listed, If
string is specified, the next line starting with the line In which the
string occurs is listed, 1If rangelist is specified, lines in the list
are listed,

88

An example of the LIST instruction is shown below:

>LIST ALL

ol THIS IS LINE 0O

£11] THIS IS LINE ONE
(2] LINE TWO

(3] THRER

[u] u

{5] 5

(6] &

{6.1] THE TNCREMENT IS .1

LOCK INSTRUCTION
The form of the LOCK instruction is

LOCK [}PL]
APLGOL

The LOCK instruction is similar to the END instruction, in that it is
used to terminate the editing of a function and have the function
translated into internal APL or APLGOL form for execution, If the
translation 1is successful, however, the function then is marked as
locked, and it 1is not possible thereafter for the function to be
unlocked, edited, or read,

MATRIX INSTRUCTION
The form of the MATRIX instruction is

MAT[RIX] {variablename]

The MATRIX instruction stores the edit text as a character matrix with
rows sufficiently long to contain the longest text line, The variable
may be edited later and a function or other variable produced, If
variablename 1is omitted, the name of the function or variable used in
the)EDIT command is replaced by the character matrix.

MODIFY INSTRUCTION
The form of the MODIFY instruction is

M[ODIFY] |string
rangelist

The MODIFY instruction is used to modify the contents of a8 line or
range of lines, depending on the parameter specified. If no parameter
is specified, the 1line currently indicated by the position of the
cursor 1is modified; if string is specified, the next line starting
vith the line in which the string is located is modified; 1f rangelist
s specified, lines in the list are modified, one at a time,

89

When a line is to be modified, the 1ine number is printed, followed by
the 1line, after which special modification <c¢haracters may be used as
sub=editing 1instructions to alter the contents of ¢the line, A
subrediting template line is created by spacing out under the line to
the point where the sub-editing is to be done and then entering the
appropriate single character instruction, possibly followed by
replacement or insertion text, When this is done, the edited line 1is
printed again to reflect the modifications, and further modifications
can be entered, A null line (signified by just a carriage return)
terminates the modification process,

MODIFICATION INSTRUCTION MEANING
D Delete the above character,
R starting at the above position, replace

the following text,

I Starting immediately before the above
position, insert the folliowing text,

/ Delete entire line.

Note: A string of delete (D) characters may be followed by a single
insertion (I) or replacement (R) character, followed by the
insertion/deletion text; otherwise only one action may be
specified per modification template line,

An example of the MODIFY instruction is shown below:

>MODIFY 1

{11

THIS IS LINE ONE
DDDI1

THIS IS LINFE 1

QUIT INSTRUCTION
The form of the QUIT instruction is

QUIT
The QUIT instruction terminates all editing, deletes any text being
edited, and returns to immediate execution mode in the APL system,
Note that a function is not changed if the GUIT instruction is
performed,
REPLACE INSTRUCTION
The form of the REPLACE instruction is

RIEPLACE) |[string [delta]
rangelist

8-10

The REPLACE 1instruction 1is used to replace one or more lines,
depending on the parameters specified, If no parameters are
specified, the line currently indicated by the cursor is replaced, If
string 1is specified, the next line containing the string is replaced,
If rangelist 1is specified, each line in the 1list is replaced, In
replacing a line, the current line is listed, and the replacement line
may then be entered, Once the rangelist is exhausted, the editor
switches to the ADD mode, so0 that 1lines may be replaced and
immediately followed with new lines without having to use multiple
instructions, The optional delta specification is used for the ADD
mode incrementing, Entering a null line (carriage return) terminates
the process,

An example of the REPLACE instruction is shown below:

>REPLACE 1,5

1] THIS IS LINE 1

[13 THIS IS A NEW LINE 1
{51 5

(5] THIS IS THE NEW LINE S
[5.1]

>LIST ALL

(ol THIS IS LINE 0

(1] THIS IS A NEV LINE 1
(2] LINE TVO

[3] THREE

(4] y

(5] THIS IS THE NEY LINE 5
6] 6

£713 LINE TWO

(7.11 THE INCREMENT IS .1

>

RESEQUENCE INSTRUCTION
The form of the RESEQUENCE instruction is

RES[EQUENCE)} lineblock
The RESEQUENCE instruction is used either to resequence portions or
all of a function or data, or to rearrange lines of the function or
data to appedar elsewhere, thus in effect acting as a move instruction,

It 1is not possible to overlay existing 1lines with resequenced line
using the RESEQUENCE instruction,

8-11

An example of the RESEQEUNCE instruction is shown below:
>RESEQURENCE 0,.5

[0]1=>[0.5]

>LIST ALL

{0.51] THIS IS LINE 0O

(1] THIS IS A NEW LINE 1
(2] LINE TWO

{31 THRER

[u] 4

(5] THIS IS THRE NEY LINE 5
(6] 6

£71] LINE TWO

[7.1] THE INCREMENT IS .1

UNDO INSTRUCTION
The form of the UNDUO instruction is

UNDO [integer] Igrainspec)
The UNDO instruction negates the effect of the last command, that is,
it "yndoes" a command,. UNDO affects ADD, CHANGE, DELETE, COPY,
MODIFY, REPLACE, and RESEQUENCE (note that this does not include UNDO
itself),
The grainspec parameter specifies whether to UNDO on a line<by= line
{LINES] basis, or on a command~by=command [COMMANDS] basis, The

default is LINES, The integer parameter specifies how many "grailns®
to UNDO, that is, how many LINES or COMMANDS., The default is one,

VECTOR INSTRUCTION
The form of the VECTOR instruction is

VEC[TOR] I[variablename]

The VECTOR instruction stores the edited teXxt as a character vector
with <carrlage return characters used to separate the lines., The
variable may be edited later and a function or other variable
produced, If varjablename Is omitted, the name of the function or
variable used in the)EDIT command {s replaced by the character
vector.

VERBOSE INSTRUCTION
The form of the VERBOSE instruction is
VER[BOSE])
The VERBOSE instruction 1is used to set the editor response mode to
verbose, in which case messages regarding the effect of instructions

are fully printed, The opposite setting of the instruction response
mode is BRIEF, The default mode is VERBOSE,

8-12

APLGOL

IX

APLGOL 1s a language which is a superset of APL, adding additional
statement-sequence control structures, A workspace may contain any
mixture of APL and APLGOL functions, which <can be used 1in any
combination, A single function, however, must be all APL or all
APLGOL: the two languages may not be mixea within the same function,

In APLGOL, Kkeywords are used 1in conjunction with APL expressions
(except APLL branch expressions, which cannot be used in APLGOL) to
describe the control flow within a given procedure, For example, the
APL procedure

Z«FACT N
+(~¥<1)/L

7«1

+0

L:Z«NxFACT N-1

is comparable to the APLGUL procedure

PROCEDURE Z<FACT W
IF N<1 THEN
YA
ELSK
Z«NxFACT ¥-1;
END PROCEDURE

APLGOL keywords are formed from an alphabetic string,

The external attributes of an APLGOL function are the same as those of
an APL function; it 1is named according to the same rules as APL
functions and has an optional result: Zero, one, Or two arqguments;
and zero or more local variables,

The header 1line of an APLGOL function {s similar to an APL header
except 1t is preceded by the keyword PROCEDURE, and terminated with a
semicolon,., The list of local variables, if any, is separated by commas
instead of semicolons. For example,

PROCEDURE 7Z<«L FUNC R,L1,L2,0I90;

defines an APLGOL function header equivalent to the APL function
header

2«L FUNC R3L13L2:0710

9-1

GENERAL APLGOL FUNCTION FORMAT

In addition to the header, an APLGOL function is composed of one or
more statements followed by END PROCEDURE, Statements are written in
free~field format and are terminated by semicolons,

APLGOL comments are placed between paired comment symbols (W), while
in APL a comment is defined as anything on a line to the right of the
leftmost comment symbol,

APLGOL functions are written iIin a free~field format, while APL
functions are line-oriented, APLGOL statements may be entered in any
convenient format, When the function is subsequently edited, the
listing will be formatted to show a canonic form with indenting used
to depict the depth and shape of the nested control structures,

For example, an APLGOL procedure could be entered as:

PROCEDURE SAMPL; IF A=B THEN BEGIN A«C; WHILE J2L(N-1+4I)%2

DO BEGIN L2+L3«L4L-J-1;L4«-L-1+pY+77777 DYADF L; END; END; ELSE;
A«<D; IF 2=ppZ2 DO EXIT C[2]«(1%p2)-N; Z+N,C,¥N,P,Q,R; END
PROCEDURE

while subseguent editing would show it as:

{ol PROCEDURE SAMPL

{11 IF A=2B THEN

{2] BREGIN

3] A«(C;

(4] WHILE J2L(N-1-T):2 DO
{5] BEGIN

[6] L2«L3«L4L-J-1
(71 Lu«-L-1¥pY¥Y«7 DYADF L;
[8] END;

[9] END

{101 ELSE

{111 A<D

{12] IF 2=pp02 DO

[13] EXIT CL21«(1¥pZ) N3
{14] 7«N,C,P,0,R;

{1s] END PROCEDURE

Table 9~1 lists the syntax for all APLGOL statements,

Table 9-1. APLGOL Syntax

aplgol function = PROCEDURE header ; statement list
END PROCEDURE

header = [identifier] ldentifier (identifier])
lidentifjierl. . » (identifier]

statement list = [statement]) [statement list]

statement = expression

NULL
EXIT (expression]

BEGIN statement list END

HALT [expression]
FOREVER DO statement

ASSERT expression ¢ expression

1F expression DO statement

IF expression THEN statement ELSE
R statement

WHILE expression DO statement

REPEAT statement list UNTIL expression

CASE expression OF integer constant
BEGIN subcase list + END CASE

branch = [BRANCH
LEAVE
ITERATE
| RESTART

control =[PROCEDURE
FOREVER
IF

WHILE
REPEAT

| CASE

subcase ::= subcase label : statement

subcase label =|integer scalar constant
integer vector constant

Table 9-1. APLGOL Syntax (continued)

subcase list = subcase [subcase 1list]

DEFAULT

comment = lamp symbol [text not containing a lamp symbol]
lamp symbol

Note: Comments may appear anywhere except in the middle of a
vector constant, within a keyword, or within an identifier,

APLGOL STATEMENTS

NULL STATEMENT
The form of the NULL statement is
NULL
NULL is a no-operation statement. It is used when a dummy statement

is needed to complete a control structure but when no other action is
necessary.

EXIT STATEMENT
The form of the EXIT statement 1is
EXIT l(expressionl
The EXIT statement is used to return ffom the current procedure, If

the optional expression is specified, the expression is executed just
prior to returning,

BEGIN STATEMENT
The form of the BEGIN statement is

BEGIN statement list END

The BEGIN statement is the usual compound statement which is used to
group multiple statements, so that they can be treated as a single
statement within the control structure, Note that a BEGIN/END pair
does not constitute a block as in ALGOL (permitting a new name scope);
local variables may only be specified in a function header line,

An example:

o] IF KLARN < 6 DO

[1] BEGIN

[2] 'ARGGH: KLARN IS BELOW SEVEN, NAMELY, ',¥ KLARWN;
(3] EXIT;

[u] END;

9-4

HALT STATEMENT
The form of the HALT statement is
HALT [expressionl

When a HALT statement is encountered, execution ls suspended and the
system enters immediate execution mode, If the optional expression is
specified, 1t 1is evaluated just prior to the suspension, 1f a HALT
statement is used in place of a call to an unwritten module, the
expression can be wused to print a message that the particular
procedure has reached this point before suspending. At this point, it
is possible to simulate the effect of the missing module before
continuing further execution.

For example, a compiler system control routine might be started as:

o3 PROCEDURE COMPILE

[1] FOREVER DO

[2] BEGIN a LOOP TO PROCESS EACH INPUT n
[31 SCANNER; n INVOKE THE SCANNER MODULE
(] PARSER; a INVOKE THE PARSER MODULE =
[51] HALT 'INTERPRETER'; A NO INTERPRETER YET n

(61 END;

{71 END PROCEDIRE

When 1line [5] is executed, the text INTERPRETER is printed and
execution is suspended.

ASSERT STATEMENT
The form of the ASSERT statement is

ASSERT expression : expression

The ASSERT statement is intended as an aid in the proof~of=Correctness
programming approach, The ASSERT statement allows the programmer to
make assertions regarding the program which the system may optionally
test, The second expression in the statement is a boolean expression
giving a scalar (unit) truth value for the assertion. For example, if
the variable I must lie between 0 and 9 inclusively, the assertion
would be:

ASSERT 10: (I=20)AI<9;

which would evaluate to a | if true and a 0 if false,

The first expression is used to give the relative importance of the
assertion and must evaluate to an integer between ~ 32768 and 32767,
For example, a value of 1 would indicate a trivial assertion, while a
value of 10 would indicate a less trivial one and a value of 100 would
indicate a major assertion,

The actual mechanics of executing ASSERT statements depends on the
system variable [AL, which contajins the <current assertion checking

9-5

level, This variable indicates the lower bound of assertions to be
checked and has an integer range between —32768 and 32767, Each time
an ASSERT statement 1is encountered, the assertion level is checked
against the first expression in the statement, If the assertion level
is smaller than the system variable the statement is regarded as a
comment and not executed,

If the first expression 1is larger than or equal to the assertjion
level, however, the second expression is evaluated, 1f the result of
the evaluation is true, the program continues; otherwise execution is
suspended, and an ASSERTION FAILED message 1is printed together with
information to locate the assertion in the procedure, At this point
the system suspends execution to allow the user to correct the
sitvation,

If the assertion level is lower than the lowest specified level, all
assertions are checked, An example of assertion wusage might be: a
program may be debugged initially with the assertion level set low to
check all assertions, Wwhen the assertions no 1longer fail, the
assertion level may be raised to the highestevalued assertion in the
program, so that only the most major assertions are checked. Should a
malfunction subseguently occur in a program assumed to be checked out,
the assertion level can adgain be lowered to check all of the original
assertions again, Assertion statements remain as comments in a
completed program and are intended to be useful documentation and
debugging aids,

IF STATEMENT

APLGOL has two separate forms of IF statements, The single=arnm
conditional evaluates the expression after the I¥, and if it is true,
executes the statement following the DO. The form of the single~arm
conditional IF statement is

IF eXxpression DO statement

For example,

ITF A>5 DO
B«A|5;

The double=arm conditional evaluates the expression after the IF and
executes the statement following the THEN if it is true; otherwise it
executes the statement following the ELSE, The form of the double=arm
conditional IF statement is

IF expression THEN statement ELSE statement

For example,

IF £>5 THEW
A<« 25

ELSE
A« A+1

9-6

Note that the expression must evaluate to a boolean (0 or 1) scalar,
unit, or vector result, 1f the expression evaluates to a multi-
element vector, an implicit 1W expression is performed to select the
first element,

WHILE STATEMENT

The form of the WHILE statement is

WHILE expression DO statement

The WHILE statement first evaluates the expression which must evaluate
to a boolean scalar, vector, or unit result, 1f the first element of
expression is true, the statement is performed and the process is
started over with the re=~computation of the expression, Otherwise,
control proceeds to the next statement,

REPEAT STATEMENT
The form of the REPEAT statement is

REPEAT statement list UNTIL expression

The WHILE statement is termed a pre=checked loop; the REPEAT statement
is referred to as a post=~checked loop, A post=checked loop means that
the statement 1list 1is performed at least once, after which the
expresslion following the UNTIL is evaluated and checked, If the first
element of this expression, which must evaluate to a boolean scalar,
vector, or unit, is false, control will <continue with the next
statement; otherwise control returns to the first statement in the
statement list following the REPEAT, WNote that several statements may
be contained between the REPEAT and the UNTIL, since this keyword pair
forms a natural block, whereas in the WHILE statement a BEGIN/END must
be used to specify the statement list,

FOREVER DO STATEMENT
The form of the FOREVER DO statement is
FOREVER DO statement
The FOREVER DO statement causes statement to execute endlessly. In
order to exit the scope of the FOREVER statement a special EXIT or

branch statement 1iIs required, A FOREVER DO may be interrupted by
generating a hard or soft terminal interrupt,

BRANCH STATEMENTS
APLGOL branch statements are of the form

branch : [controll+

97

The only branch statements permitted in APLGOL are those directed to a
key point in & control structure which encloses the point in which the
branch 1is located, Three key points, termed LEAVE, ITERATE, and
RESTART, are associated with each of the following control structures:
PROCEDURE, FOREVER, I1F, WHILE, REPEAT, and CASE,

Each branch statement c¢onsists of a keyword specifying the type of
branch, followed by a colon and a list of control structure Keywords
which is processed left=to-right, Each element in the list specifies
a4 control structure in which the branch statement is located, and each
successive control structure 1is exited until the last one in the list,
Control 1is tnen transferred to the appropriate point in the outermost
control structure shown in the list, The nesting is defined by the
lexical structure of the function, not the run=time execution
structure, For example, LEAVE: WHILE will effect & branch to the
leave point in the innermost WHILE statement relative to the location
of the LEAVE statement,

Examples:
RESTART: FOREVER FQREVER:

results in leaving the innermost FOREVER statement and branching to
the restart point of the next innermost FOREVER statement,

ITERATE: WHILE REPEAT;

exits the current inner WHILE statement and branch to the iterate
point in the next innermost REPEAT statement,

The LEAVE, ITERATE, and RESTART points are defined on tpe flowcharts
at the end of this section,

CASE STATEMENT
The form of the CASE statement is

CASE expression OF integer constant BEGIN
subcase list + END CASE

The CASE statement uses the value of the expression following CASE to
select one of the subcases and execute it, The expression must
evaluate to a non=negative integer, 1If the value is non=-single, the
value of the first element is used, The value must be between 0 and
the value of the integer constant following OF, The integer constant
indicates the largest number for a subcase in the statement, although
not all sybcases need be specified, A single subcase may be
associated with more than one value of the expression,

Note that no more than 1024 subcases (numbered 0 through 1023) are
permitted,

The case body is delimited by BEGIN and END CASE, Inside it are the

9-8

subcases, in any order, The syntax of a subcase is as follows:

subcase = subcase label : statement
subcase list = subcase [subcase list]

The subcase label can be a constant integer scalar, or a constant
integer vector, in which <case the assocjated statement will be
executed 1if the value of expression following CASE is an element of
the subcase label, The subcase label can also contain the Keyword
DEFAULT, 1in which case the accompanying statement will be executed if
the value o0f the selector expression is in range but does not match
any of the specified values in the other subcase labels, 0nly one
DEFAULT subcase may be permitted in a case statement,

For example:

CASE T|J 0OF 15
BEGIN
0: I+J«13:K;
2: NULL:
1: HALT 'CASE 1 IS SYSTEM ERROR';
10 12 14
BEGIN
I«I-1;
J"‘J"l;
END;
5: EXIT J<«J-1;
DEFAULT :
HALT ‘'TUNKNOWN CASE POSSIBILTITIES';:
END CASE;

The flow diagrams contained in figures 9~1 through 9=7 show the flow
0of control for each of the APLGOL statements, The key branch points
of each statement structure associated with the three types of
branches are jindicated by IT, the jiterate point, RS, the restart
point, and LV, the leave point,

PROCEDURE A

l RS, IT

body of A

1LV

Figure 9-1. Procedure Statement Flow Chart

99

FOREVER DO statement

RS, IT
\
statement
Lv

Figure 9-2. Forever Do Statement Flow Chart

IF expression DO statement

true

expression

statement

Figure 9-3. Single-Arm Conditional If Statement Flow Chart

9-10

IF expression THEN statement -1 ELSE statement -2

RS

/ IT IT\

V4

true false

statement -1 expression

N

statement -2

lLv

Figure 9-4. Double-Arm Conditional If Statement Flow Chart

REPEAT statement-list UNTIL expression

RS

Y

statement-list

. false
expression

Figure 9-5. Repeat Statement Flow Chart

9-11

WHILE expression DO statement

RS

A

expression

statement

lLV

Figure 9-6. While Statement Flow Chart

CASE expression OF integer BEGIN [subcase;] + END CASE
l RS

select expression

IT T IT IT
y \ Y Y
subcase subcase subcase subcase
Y Y A
LV

Figure 9-7. Case Statement Flow Chart

9-12

FUNCTION EXECUTION

User~defined functions (or simply, defined functions) may be used in
the same manner as primitive functions, except that they may not be
used as arguments of primitive operators, A deftined function may be
used in calculator mode or it may be called from within another
defined function,

When a defined function 1s invoked, its execution begins with the
first statement, then successive statements are executed in order.,
except as this order is changed by branch instructions,

For example, consider the function CIRCLEAREA:

OCR '"CIRCLEAREA'
AREA«RADIUS CIRCLEARFKA DEGREES;LOCAL13;LOCAL?
AREA«(ORADIIIS*2)xDEGREES+360

When this function is executed with the statement

265,3 CIRCLEAREA 16.67
the value 265,3 1is assigned to the local name RADIUS and the value
16.67 is assigned to the local name DEGREES. Tne body of the function
then is executed and the statement

AREA (OKRADIUS#2)xDEGREES 360
computes a value for the result variable AREA,

A function like CIRCLEAREA, which produces an explicit result, may be
used in compound expressions. For example,

PRICE«<12x36000x12.4 CTRCLEARFA 36.2
PRICE
20983747.88

The value computed for the result variable AREA in the function
CIRCLEAREA 1is wused to compute PRICE, Thne result variable, AREA, is
treated the same &8s any 1local variable ana therefore has no
significance after the function is executed:

AREA
VALUZ ERKOR
ARE A
+

10-1

HALTED EXECUTION

Execution of &a function may be stopped bhefore completion in the
following ways:

*# By an error report,

By an interrupt trqm the terminal.,

* By use of the stop control system function 0SS (see page 10-10).
By execution of the HALT statement,

When a function 1is stopped before its execution 1is complete, the
function 1is suspended, The name 0f the function is displayed, with a
line number beside it. If the suspension 1is because of an error or
interrupt from the terminal, the line 1s displayed with an appropriate
message and an indication o¢of the point of interruption, Unless
multiple specification arrows or other used-defined functions appear
in the 1line, the state of computation was restored to the condition
existing before the line started to execute,

The displaved number generally is the number of the line that wouid be
executed next if the function were to continue normally, Execution of
the suspenaed function can be resumed by entering a branch arrow to
the 1line counter system function (IJLC), or by entering)RESUME (see
page 10~8 tor a discussion of the)RESUME command),

Entering -0, or a branch tc a number outside the range of statement
numbers in the function causes an immediate exit from the function.

All normal activities are possiple when a function is in the suspended
state, Statements or system commands may be executed, or execution of
the function may be resumed at any point, or the editor may be invoked
to edit any function which is not pendent (see pelow),

STATE INDICATUR SYSTEM COMMARND

The state indicator system commanc)SI displays the state indicator, A
typical display has the form

)S1
Al4] =
Ble]
Dl4]
clz21 =
Di1]

and indicates that execution was halted before completing execution of
line 4 of function 4, the current use of function A was called in line
6 of function B, function B was called in D{4}, the use of function C
was halted at line 2, and that function C was called in D(1}. The
asterisks appearing to the right of Ai4} and C(C(2) indicate that
functions A and C are suspended, The functions B and D are detined as

10-2

being pendent, because their execution c¢an be resumeq only as a result
of function A resuming its executlon, The term halted is used to
define a function which is either pendent or suspended,

Additional functions can be invoked when 1n the suspended state, For
example, 1f C were called now and a further suspension occurred in
statement 3 of function D, itselt invoked in statement 7 of C, the
state indicator display would be:

)SI
DL3]
CL7]
Al4} #
b6
Di4]
clz21 =+

DL1])

Because the line counter, OLC, holds tnhe current statement numbers of
functions that are in execution, its value at this point would be the
vector 3 7 4 6 4 2 1, The seguence from the last suspension to the
preceding suspernsion can be cleared by entering & single branch arrow:

>
)Sl
Al4g] *
Blel
Di4)
Cl2y =
DL1)
drc
4 6 4 21

Repeated use o©0f the branch arrow will <c¢lear the state indicator and
restore [LC to an empty vector, (The)RESET system command (see page
10-7) nas the same effect,) The cleared state indicator is displayed
as a blank line, See page 11-6 for further applications of the state
indicator system command,

STATE INDICATUK DAMAGE

If a function name occurs in the state indicator list, erasure of that
function or replacement of that function by copyving an object with the
same name (even another example of the same function) makes it
impossible for the original execution to be resumed, In this case, an
SI DAMAGE message is reported,

If an SI DAMAGE message 1s reported for a suspended function, it will

be impossible to resume its execution, pbut the function can be invoked
again, with or without prior clearance of the state indicator,

10-3

APL\3000 EXTENDED COUNTEOL FUNCTIONS

The state indicator)SI displavs a list of pendent and suspended
functions 1in the order in which they were called, It also displays
the line number on which each function 1s suspended and optionally, if
}JSIV is used, a list of all variables shadowed by each function call,
Eacnh of the usere~defined function names which appear on the state
indicator 1is termed a control point and the collection of all control
points displayed by the state indicator is termed an environment, The
current control point is the function which is currently executing or
suspended, and the current environment is the set of function calls
which would pe displayed by the state indicator if it were called at
the current control gpoint,

In order to facllitate the execution of APL statements in environments
other than the current environment, two system functions are available
in APL\3000 which allow the saving of new environments for later use,
An arbitrary AFL expression can then pe executea in one 0of these saved
environments through the use 0f the extended eXecute function,

CAPTURE STACK ENVIRONMENT SYSTEM FUNCTIUN
The form of the capture stack environment system function is

A+F [ICSE C s D

where
A = assigned environment number
F = function name
C = count (scalar, unit, or 1 to 3 element vector)
S = starting environment
D = desired environment numbher

The [JCSE function searches down the 1list of control points beginning
with the starting environment for the control point specitied by count
and with the designated function name, If the required control point
is found, it is assigned, along with its environment, to the assiagned
environment number (& number between 1 and 15 which can be used to
access the captured environment at a later time), Environment Q0 is
always defined as the current environment,

If function name 1is not specified, the control point specified by
count (regardless of name) will be captured. Although the execute and
evaluated input functions (¢ ana [J) appear in the status indicator,
they are not considered as control points. They cannot be captured by
[ICSE and do not participate in the count, 1f the function name is not
specified and the count exceeds the number of user=defined functions
in the starting environment, the global environment is captured.,

If & desired environment number 1is not specified in the right
argument, the next available environment number is chosen, If the
environment limit is exnausted, an error messadge 1s returned,

10-4

It a desired environment number is specified in the right argument,
any environment previously assigned to that number is released before
the new environment is captured,

If a starting environment is not specified, the current environment
(environment 0) is assumed, JIf a starting environment is specified,
the search starts in that environment but control always returns to
the current environment,

RELEASE STACK ENVIRONMENT SySTEM FUNCTION
The form of tne release stack environement system functjion is

RL [0RSE kL

where
RL = released environnent list
EL = environment list

The [ORSE functioen releases a list of environments previously captured
by OCsE. Tne released environment 1list contains & 1list of
environments actually released, this may be different from the
environment list because some of the environments in environment list
may be empty ov non=existent. URSE may be used with the current
environment (number zero) which will cause the current environment to
be reduced to the empty environment,

EXTENDED DYADIC EXECUTE PRIWITIVE FURCTION

The form of the extendea dyedic execute primitive function is

environment number
character scalar, vector, or unit representing the APL
expression to be evaluated

[
" u

The dvadic form of execute evaluates an APL expression in the same way
that the monadic form evaluates these expressions, except that the
dvadic form evaluates the eXpression in the environment specitied by
environment number, which may be different from the current
envirenment, It E does nrot contain a branch, the resulting value
(that 1is, the result of the expression evaluated in the specified
environment) is returned to tne current environment as the value of
the execute function.

If £ results in a4 branch, the branch is executed as if it had occurred
in the environment specified by environment number, and the
environment from whicn execute was called 1is released unless 1t has
been explicitly captured using 0OCsE,

10-5

The following examples illustrate possible uses 0f the extended stack
control functions:

Example 1,
Suppose APL is being used to simulate machine code for a hypothetical

machine, and one 0f tne instructions simulated is a relative branch,
This can pe simulated as follows:

{(0) CODLE

{11 LD A This simulated machine code program

{21 LbI 1 will continuously ada 1 to the contents
{31 ADD of memory location A,

[4] STO &

[5] BR =4

The BR program can be written using the extended control functions as
follows:

[0} BR OFFSET; ENVIRONMENT:; NEXTLINE

(1] A CAPTYURE THE ENVIRONMENT OF THE FUNCTION WHICH CALLED BR
[21] ENVIRONMENT<+OCSE 2 0 1

(3] a CALCULATE THE LINE TO BRANCH TO

[u] NEXTLINE<OLC [2] + OFFSET

(5] n EXECUTE THE BRANCH IN THE FUNCTION YHICH CALLED BR

(6] ENVIRONMENTS'+' ,¥NEXTLINE

A shorter version of this program is shown pelow:
(0csSE 2 0 1) e'->[0LC+' ,¥0FFSET

Exanple 2.

Suppose that function TEST has local variaple A, and the system is
suspended in TEST, The following sequence will return the global
(unshadowed) value of A,

A«'GLOBAL A'

OCrR 'TEST'
TEST; A
A<«'"LOCAL A’
A
2 088 'TEST' o STOP BEFORE EXEZCUTION OF LINE 2
2
TEST
ESTL2] =
A
LOCAL A
OCSE 2 na CAPTURE GLOBAL ENVIRONMENT
1 ,
1e'A'" o GLOBAL ENVIRONHMENT CAPTURED AS ENVIRONMENT 1
GLOBAL A

10-6

The following system variaples c¢an be used to facilitate the use of
the extended stack control system functions.,

STACK NAMES SYSTEM FUNCTIUN

The stack names system tunction (USN) returns A character matrix
containing the names of the user~defined functions halted in the
environment in which [USN is evaluated, For example, 1o°0SN’ will
return a matrix of the function names halted in environment 1.

STATE INDICATOR AND STATE IsDICATUOR wITH VARIABLES

The state indicator ang state indicator witn varianles system commands
are entered as

}1SI n

}IS1V n

where n 1is an integer opetween 0 and 15 (default 1is 0}, The
environment displayed will pe environment n. 1f environment n is not
the current environment (environment 0), some of the function names
may appear with a o (shift letter o in the APL character set)
following the name, A 0 tollowing the function name indicates that
the function 1s not halted in the current environment,

For example, suppose tinat the state indicator displays & suspended and
a pendent function as follows:

)51
TESTL2] *
TEST1134

If this environment is captured and the stack 1s then cleared, the new
state indicator is shown nelow:

LUCSE 1 0 2 ACAPTURE ENVIRONMENT 2

ACLEAR CURRENT ENVIRONMENT
)81
JSI 2
TEST(2]1 ®
TEST1(3) o

This indjicates that the functions TEST and TEST1 are no longer in the
current environment, although they are contained in environment 1,

RESET SYSTEM COMMAND

The torm of the KRESET svstem command is
JRESET n

where n is an integer between 0 and 15 (detftault is 0), The RESET

10-7

system command releases the environment specified by n, If n is
omitted, the current environment 1s released,)RESET n is equivalent
to executing URSE n.

DEPTH SYSTEM COMMAND

The form of the DEPTH system command is
JDEPTH n

where n is an integer specifying the size of the execution stack, The
execution stack contrcls the numper ot nested functions allowed, FoOr
example, 1f n is set to 64, up to &4 functions can be nested at any
one time, A DEPTH EKKOR willl be returned 1if the number of nested
functions exceeas the size of tne execution stack,

RESUME SYSTEM COMMAND

The)RESUME system command resumes execution of & suspended tunction,
Examples of the)RESUME command are shownh starting on page 10-13 .

DEBUGGING AJDS

The system tunctions shown in table 10~1 are used to debug lines of
unlocked user~defined functions,

10-8

Table 10-1. System Functions used for Debugging

MONADIC DYADIC

(All lines) NAME (Specified lines) RESULT
0JsT ¥ Set Trace N [ST F L
Oss F Set Stop v [J8ss F L
Osm F Set Monitor N 0OsMm F L
ORrRT ¥ Reset Trace N ORT ¢ L
OrS F Reset Stop N UOrs F L
OrM F Reset Monitor H [OrRM F L
dar ¢ Query Trace B
das F Querv Stop B
gaM F Query Monitor B
OMv F Monitor vValues N [OMV F M

Notes:

F 1is a character vector denoting the name of an unlocked
user~detined function,

N is a numeric vector of line numbers,
L 1s a numeric vector of lines with property (set, reset),

is a boolean vector, | if the property is set, 0 if not set.
(One element per line including header.,)

M 1s a matrix of monitor values., The first column contains
the number of executions, and the second column contains the
execution or compute time for each 1line for which values are
requested, First row corresponds th header, second row to
line 1, and so0 forth, Values for header signify number ot
times function executed and CPU time for function.

The monadic forms 0f the debugging system functions apply to &all lines
including tne heacer line (line 0), The dyadic forms apply only to
the lines specified in the left argument.,

During function execution, tne effects of the aids are as follows on
encountering a line:

PEADER LINE BODY LINE
Trace kesult returned py function Result
Stop Suspend prior to return Suspend prior to
from ftunction execution ot line
Monitor Increase number of calls Increase number of times
to function and total cpu line has peen eXecuted
time in function and increase Cpu time

in line execution

10-9

The trace result forms are

Function name tline number]}

Function name [line number)

tyrve (ghape) value

Function name [line number]

The first form above occurs if
second form occurs. The third form
branch,

The type is C ftor character cor
vector representing the result of

N for numeric.

(shape) value

no result is possible; otherwise, the
occurs when a line results in a

The shape is a numeric

monadic o , and value is the normal

displayed value (printed beginning on next line if po>1),

The stop result form is

Function name (line number) #*

SET TRACE, SET STOP, AND SET MONITOK FUNCTIONS

The set trace, set stop, and set monitor functions (UST, 0SS, and [UsSM,
respectively) set the trace, stop, ano monitor states of lines of a
user~defined function, These set functions can be used either
monadically or dyvadically. If these functions are used monadically,
the appropriate state is set for all the lines of the function
specified by the character scalar, vector, or unit right argument, If

used dyvadically.
the numeric scalar, vector,
as their

state is now set,

Note
called:; lines
not affected,

RESET TRACE, RESET STUP, AND

The reset trace (ORT).,

that

the state is set for
7 or unit lett argument,
results numeric vectors denoting

that these functions do not reset

reset

functions are analoaous to the set functions (described above),
they reset the designated state.

only those lines specified in
Both forms return
those lines for whicn the

the states each time they are

which are not (implicitly or explicitly) referenced are

RESET MONITOR FUNCTIONS

reset monitor (LRM)
except
Their arquments are the same as

stop (RS), and

those for the set functions; their results are analogous,

MONITOR VALUES WUNCTIOHN

The
function
lines of
unit right argument,
values for all tne

returns

monitor values systen function (OMV)
an array of execution
the function specified by
It the function is used monadically,
lines of

18 dyadadic or menadic. Tnis
count and execution time for
its character scalar, vector, or
the monitor
returned, If usea

the function are

10-10

dyadically, only values for tnhose 1lines specified py the numeric
scalar, vector, or unit lert argument &are returned,

The accumulated number of milliseconds is contained in UMV, A time of
0 indicates unmonjitored lines or monitorea lines that have not been
executed, Thus, monitoring ell lines over a period of execution is an
eftective way to determine if some program path has reacned each line,
and also the time spent in each line,

If a line contains a call on another function, any time spent in that
called function is accumulated there, instead of in the calling line,

The result of [Juv 1s a matrix of shape nx¢, where n is the number of
lines in the function (including the neader) if used monadically, or
the 1length of the left argument 1f used dyadically. The first column
contains the number of times the line has been executed since the last
set monitor of the line: the second column is the compute time used by
that 1line (excluding that used by user~defined tunctions called by
that line) in milliseconds. The values for line number zero indicate
the number of times the tunction has been called and the amount of
computer time it has used,

QUERY TRACE, GQUERY STOP, AND GQUERY MONITOR FUNCTIONS

The gquery trace (0QT), oquery stop (UGS), and guery monitor (0aM)
functions take as their only argument a character scalar, vector, or
unit specifying the name of a function whose trace, stop, or monitor
states are to pe gueriea,

The results ot tnese tunctions are boolean vectors, with a one
denoting that the state (trace, stop, or monitor) 1is set for that
line, and 3 zero denoting that tne state is not set, The elements oOf
the result correspond to the lines ¢0of the function, with the first
element corresponding to line zero, the second t¢ line one, and so
forth,

Examples of the debugging aid system functions are provided at the end
of this section,

LOCKED FUNCTIONS

It LOCK is wused instead of EMD in the editor to save a defined
function, the function becomes locked, A locked function cannot be
edited or displaved, Any assoclated stop control or trace control
function is nullified atter the function is locked,

A locked function is treated in the same panner as a primitive, ana
its statements are concealed as much as possible. Execution of a
locked function jis terminated by any error occurring within it, or by
a strong interrupt from the terminal. If execution stops, the
function is never suspended but 1s immediately abandoned, The message
displayed tor a stop is a DUMAIN error if an error of any kind
occurred, WS FULL if the stop resulted from a system limitation, or
INTERRUPT if it was stopped from the terminal.

10-11

A locked function 1is never pendent, and if an error occurs in any
tunction called either directly or indirectly by a locked function,
the execution o0f the entire sequence of nested functions is abandoned,
I1f the outermost locked function was called by an unlocked function,
the outermost function is suspended; 1f it was callea by an entry from
the terminal, an error message 1s displaved with a copy of the
statement that calleda the function.

When a soft iIinterrupt from the terminal 1s encountered in a locked
function, or in any tunction that was called by a locked function,
eXxecution continues normally up to the first interruptable point,
which is either the next statement in an unlocked function that called
the outermost locked function, or the completion of the terminal entry
that used tnis locked function, In the latter case, the soft
interrupt has no net effect on function execution, only on display of
output 1f the explicit result of the function is not directly used.

Locked functions may be used to keep a function definition

proprietary, or as part of & security scheme for protecting other
proprietary information,

10-12

DEBUGGING AID EXAMPLES

[iQS 'ROOTS'

i1 0 ¢ 0 0 O O O O 0 o0 1
RS 'ROQTS'

60 1 2 3 4% 5 6 7 8 9 10 11

0es 'ROOTS'
0o 0 0 0 O O O 0 0O 0 0 O
0ss 'RooTSs!
0 1 2 3 4% 5 & 7 8 9 10 11
095 'ROOTS'
11 1 1t 1 1 1 1 1 1 1 1
ROOTS
ROOTS{11~*
YRESUME
ENTER A NIMBER
ROOTS[2]1*
YVARS
A B LABEL1 LABEL? LABEL3 LABELY
YRESUME
AND THE COMPUTER WILL COMPUTE THE SQUARE ROOT
ROOTS({31%*
YRESUME
AND THE CUBE ROOT
ROOTS{ 4 1%
)SI
ROOTSLUu J*
)SIV
ROOTS{ 4]1* LABEL1 LABEL?2 LABEL3 LABRLY
YRESUME

3
64
ROOTS(5]*
(v11) ORS 'ROOTS'
1 2 3 4 5 5 7 8 g 10 11
YRESUME
THE SQUARE ROOT IS 8
THE CUBE ROOT IS u
ENTER O IF YOU DO NOT WISH TO CONTINUR
Ois

90
THE SQUARE ROOT IS S.486832981

THE CUBE ROOT IS 4%.481404747

ENTER O IF YOU DO NOT WISH TO CONTINUE
O

0
ROOTSLO 1%
YRESUME

10-13

)V ARS

A B N
)RESUME
QS 'ROOTS'

1 0 0 0 0 0 0 0 0
0 15 8 [JsM 'ROOTS'

0 1 5 8
0ss 'RrooTS!'

0o 1 2 3 4 5 6 7 8
048 'ROOTS'

1 1 1 1 1 1 1 1 1
0a¥ 'ROOTS'

11 0 0 0 1 0 0 1
ROOTS

ROOTS{1]*
OrRS 'ROOTS'

0 1 2 3 4 5 & 7 8
)RESUME

ENTER A NUMBER

AND THE COMPITER WILL COMPUTE

AND THE CUBE ROOT

0

THE SQUARE ROOT IS 6.480740598
ROOT IS 3.476026645
WISH TO CONTINUE

THE CUBE

42

ENTER O IF YOU DO

-
e
O:

e
9S8 'RoorSs!

NoT

6 o o 0 O 0 O
JgT 'ROOTS!

60 0 0 0 0 0 O
6 ST 'ROOTS'

ROOTS

ENTER A NUMBER
AND THE COMPUTER
AND THE CUBE ROOT

1

ROOTS(6]

9

¥ () 2.080083823

THA%E SQUARE ROOT IS 3
THE CUBE ROOT IS 2.080083823

ENTER O IF YOU DO NOT
0

0

10-14

9

10

THE

WILL COMPUTE THE

11

SQUARE ROOT

SQUARE ROOT

WISH TO CONTINUE

OO ONOONODONN

gor

'ROOTS!

0
gRT

0

0 0
'ROOTS!

2
My

3

¥ 5
"ROOTS

1583
87
0

1

5

0

7

0

8

10-15

0

9

0

10

0

11

SYSTEM COMMANDS

System commands are used for sucn things as monitoring and modifying
the workspace environment, saving and then reactivating copies of a
workspace, accessing the APLN\3000 editor, resuming suspended
functions, and terminating an APL session,

System commands are prefixed by a right parentheses and can only be
entered in immediate execution mode; they cannot be used as part of a
defined function, The complete set of system commands is shown in
table 11~-t,

INITIAL VALUES IN A WORKSPACE

Some items in a workspace are set to certain standard values when the
workspace is first accessed, In particular, the workspace contains
the settings of the state indicator and several system variables.,
These settings are shown in table 11=2,

JCLEAR COMMAND

The form of the)CLEAR command is

JCLEAR
The)CLEAR command is used to c¢lear (and discard) the contents of the
active workspace and reset the workspace to the standard initial
values (see table 11=-2),
An example of the)CLEAR command is shown below:

JCLEAR
CLEAR WS

Table 11-1. System Commands

NAME SYNTAX PURPOSE

Bind)BIND Sets the BIND flag ON or OFF

Clear JCLEAR Clears the active workspace

Continue YJCONTINUE Saves CONTINUE file and terminates APL session

Copy)JCOPY [namelist] Obtains objects from saved workspace

Depth)DEPTH num See Section X

Drop)DROP wsname Purges workspace

Edit JEDIT [name] Accesses APL \ 3000 editor

Erase YERASE [namelist] Deletes objects from workspace

Files)FILES [groupname.acctname] Lists all files in user’s library or, optionally, all files in speci-
fied group and account.

Functions)FNS [letter] Lists user-defined functions in the active workspace.

Help YHELP [cmdname] Displays information on system commands

Library JLIB [groupname [acctname]] Lists workspaces in specified library

Load JLOAD wsname Replaces active workspace with duplicate of saved
workspace

MPE JMPE Exits APL and enters MPE

Off)JOFF Terminates APL session

Protected YPCOPY wsname [namelist] Obtains objects from named workspace. Does not replace

copy named objects in active workspace.

Reset JRESET See Section X

Resume JRESUME See Section X

Save YSAVE wsname Saves duplicate of active workspace

State)SI Lists state indicator in the active workspace

indicator

State)SIv Lists state indicator in the active workspace with names

indicator local to user-defined functions

with

variables

Terminal YTERM [termiype] Sets terminal type

type

Terse YJTERSE Sets error messages to “terse”

Time)TIME Returns elapsed wall time and elapsed CPU time

Table 11-1. System Commands (Continued)

NAME SYNTAX PURPOSE
Variables)VARS [/etter] Lists variables in the active workspace
Verbose YVERBOSE Sets error messages to “verbose”
Workspace YWSID [wsname] Displays the active workspace name, or, when wsname is
identification included, renames workspace.
namelist = name [name] [name] . . . [name]

wsname = workspace identification [/lockword] [.groupname [.accountname]]

Note: All workspaces are saved with MPE lockwords. If the lockword parameter is not supplied by the user, APL ™
3000 supplies APL0O000O.

The reason is that if an attempt is made to open a file containing a lockword, and the lockword parameter is
omitted, MPE prints

LOCKWORD: fileid
on the output device.

If the output device is an APL character=set device, it prints

O N'wopl.
To change the lockword of a saved workspace, enter)DROP, then)SAVE with new lockword.

Table 11-2. Initial Values in a Workspace

Latent expression, OLX Empty
Depth,)DEPTH 66

Line counter, OLC Empty
Stack names, [ISN Empty
State indicator,)SI Cleared
Workspace identification,)WI Empty (UNNAMED WS)
Printing precision, [OPP 10
Printing width, UPw 80
Comparison tolerance, UCT 1E 13
Random 1link, ORL 0
Language, [LA “APL’
Assert level, [JAL 0
Horizontal tabs, [HT 0
Virtual memory, 0OVM 256 =24
Index origin, IO 1

JERASE COMMAND

The form of the)ERASE conmmand is
JERASE (namelist]

The YERASE command deletes objects (functions and variables)
identified by the namelist parameter from the workspace, Shared
variable offers pertaining to any of these objects are retracted,

If a halted function is erased, the report SI DAMAGE is displayed, It
is not possible to resume the execution ot an erased function, and the
the state indicator should be cleared of indications of damage (see
Section X),

If an object specified in the namelist parameter cannot be erased, the
message NOT ERASED: is reported, followed by the name 0f the object
not erased,

11-4

An example o0f the JERASE command is shown below:

JVARS
A ALTER APL101 APL102 APL103 APL104 APL11 APL31 APL32 APL33
APL34 APL35S APLS51 APLS52 APL61 APL62 APLGOL1 APLGOL2 APLGOL3 APLGOLM
APLGOLS APLGOL6® APLGOL7 APLGOL8 APLGOLS APLSET ARRAY B ¢ CHAR
D E EDIT1 INCOME N RESHAPE1 RESHAPE?2 SHAPE
TIME VEC VECTOR X XQR Y YIELD 4

JERASE ALTER VEC XXOQR

JVARS
A APL101 APL102 APL103 APL104 APL11 APL31 APL32 APL33 APL 34
APL3S APL51 APLS2 APL61 APL62 APLGOL1 APLGOL2 APLGOL3 APLGOL4 APLGOLS
APLGOL6 APLGOL7 APLGOL8 APLGOLS APLSET ARRAY B c CHAR D
E EDIT1 INCOME W RESHAPE1 RESHAPE?2 SHAPE TIME
VECTOR X Xgr Y YIELD 4

JCOPY COMMAND

The form of the)COPY command is

JCOPY wsname ([namelist]

The)JCOPY command coplies the objects specified in the napmelist
parameter from the workspace jindicated by wsname (the source
workspace) into tne active workspace, If namelist is omitted, all
objects (except system variables) in the source workspace are copied,

When an object to be copied has the same name as an object in the
active workspace, the copied object replaces the object in the active
workspace, If there is a shared variable offer pending with respect
to the object thus replaced, the offer is retracted,

If names eXplicitly inciuded in the)COPY command are not the names of
objects 1in the source workspace, APL reports NOT COPIED:, followed by
a list of the objects not found.

An example of the JCOPY command is shown below:?

SAVED 12:u44 10/14/76

JPCOPY COMMAND

The form of the)PCOPY command is

JPCOPY wsname [namelist]

The)PCOPY (protected copy) command works like the J)COPY command,
except that if the namelist parameter specifies objects having the
same name of objects in the active workspace, the objects in the
source workspace are not copied, APL reports objects not copied for
this reason by displaying

NOT COPIED: 1list of objects

11-5

An example 0f the)PCOPY command is shown below:

YPCOPY WS2 ROOTS
NOT COPIED: ROOTS
SAVED 12:u44 10/1u/76

JFNS COMMAND

The form of the)FNS command is
JFNS [letter]

The)FNS command lists functions in the active workspace in alphabetic
order, starting with the letter specified, 1f letter is omitted, all
functions are listed,

An example 0f the)FNS command 1is shown below:

)FUS
BOOTS CIRCLEAREA GOLFSCORE ROOTS

JVARS COMMAND

The form of the)VARS command is

JVARS ([letter]
The JVARS comnand 1lists variables in the active workspace in
alphabetic order, starting with the letter specitied. If letter is
omitted, all variables are listed.,

An example of the)VARS command is shown below:

JVARS
A ALTER APL101 APL102 APL103 APL104 APL11 APL31 APL32 APL33
APL34 APL35S APL51 APL52 APLG61 APL62 APLGOL1 APLGOL2 APLGOL3 APLGOLM4
APLGOLS APLGOL6 APLGOL7 APLGOL8 APLGOL9 APLSET ARRAY B ¢ CHAR
D E EDIT1 INCOME N RESHAPE1L RESHAPE?2 SHAPE
TIME VEC VECTOR X XQR Y YIELD Z

JVARS G
INcoME N RESHAPE1 RESHAPE?2 SHAPE TIME vec VECTOR
X XQR Y YIELD Z

)SI COMMAND

The form of the)SI command is

)SI N

The)SI command displays the state indicator, which shows the status
of halted functions, The most recently halted function is listed
first, If N is specified, it must be an integer between 0 and 15, and
it causes the environment specified by N to be displayed, See Section
X for a discussion of the use of environment numbers.

The 1list shows the name of the function and the number of the line at
which the function halted, Actions which can be taken with respect to
a halted function are discussed in Section X.

Suspended tunctions are denoted in the state 1indicator list by an
asterisk, while pendent functions appear without an asterisk.

An example of the)SI command is shown below:

~

SI
ROOTS{31%

JSIV COMMAND

The form of the)SIV command is
JSIV N

The)SIV command displays the state indicator in the same way as the
)JSI command, but in addition, lists names local to each function.

If N 1s specified, it must be an integer between 0 and 15, and it
causes tnhe environment specified by N to be displayed. See Section X
for a discussion of the use of environment numbers,

An example of the)SIV command is shown below:

YSIV
ROOTS(31=* LABEL1 LABEL2 LABEL3 LABFLY

WORKSPACE STORAGE AND RETRIEVAL

A duplicate of the active workspace for may be saved later use, When
this duplicate 1is subsequently reactivated, the entire workspace is
restored as it was, except that varlables which were shared in the
active workspace when saved are not shared automatically again when
the workspace is reactivated,

LIBRARIES OF SAVED WORKSPACES

The set of saved workspaces is called a librarvy. Each workspace is
identified by group and account names as well as the actual name
assigned to it, 1In referring to workspaces in the user’s own library,
however, the group and account names may be omitted, because they are
supplied automatically.

11-7

In systems with multiple APL users, it often 1is convenient to use
functions or varlaples contributed by others, A user may activate an
entire workspace saved by another user, or he may copy selected items
from another user’s workspace, In order to copy another user’s
workspace, the group and account names, if different, must pbe supplied
together with the workspace name,

Some 1libraries (usually identified by a special dgroup and account
name, for example, PUB,SYS) are not assigned to individual users, but
are designated as public lipbraries, There may be restrictions,
however, on Wwho can save, delete, or modify a workspace in a public
library. In general, a public library workspace c¢an be re=saved or
deleted only by the uyser who first saved it,

NAMES AND PASSWORDS OF WORKSPACES

A saved workspace must be named, The name of a workspace may
duplicate a name used for an APL object within the workspace, A
password may be used with the name of a workspace, 1f a password is
used, any reference to the saved workspace must specify this password,

JWSID COMMAND

The form of the)YWSID command is
JWSID wsname

The)WSID command renames an active workspace with the name specjified
by wsname,

APL displays WAS, . . fOllowed by the former name,
Another form of the)WSID command with no parameters 1is
JWSID
This form reports the identification of the active workspace, listing
the group and account names (if other than the user‘’s) and the

password,

Examples of the)WSID command are shown below:

JWSID

IS5 NOT NAMED
)WSID WSh

WAS NOT NAMED
)WSID

IS WSy

)SAVE COMMAND

The form of the)SAVE command is

)JSAVE wsname

11-8

The)SAVE command saves a duplicate of the active workspace with the
name specified py wsname, The workspace is saved in the group library
associated with the user unless otherwise specified, A password is
included in the name if the password portion of wsname is specified,

APL acknowledges saving by a report listing the date and time at which
the workspace was saved, and the wsname,

An example of the)SAVE command is shown below:

)SAVE WS2
SAVED 14:05 10/14/76 WS?2

JCONTINUE COMMAND

The form of the JCONTINUE command is
JCONTINUE

The JCONTINUE command saves the active workspace under the name
CONTINUE and terminates the session,

Additionally, when a session is aborted for any reason except a normal
log~0off (such as the connection to the computer being broken), the
workspace is saved with a name such as A2661516, where the first three
digits specify the day of the year (the 266th day in this case), and
the last four digits specify the time ot day (3:16 PM in this case).

An example of the)CONTINUE command is shown below:

YCONTINUE

JLOAD COMMAND

The form of the)LOAD command is
JLOAD wsname

The)LOAD command discards the active workspace and then transfers a
duplicate of the saved workspace specified by wsname into the active
workspace, Shared variable offers in the tormer active workspace are
retracted,

APL, displays the date and time at which the loaded workspace was last
saved, The latent expression (ULX) in the loaded workspace is
executed automatically.

An example of the)LOAD command is shown below:

YLOAD WS?2
SAVED 14:05 10/1u4/76

JDROP COMMAND

The form of the)DROP command is
YDROP wsname

The)PROP command removes the workspace specified by wsname from the
library in which it is contained, The password is required in the
wsnhame parameter to drop a workspace,

The)DROP command has no effect on the active workspace,

An attempt to drop & workspace by someone other than the user who
saved it is rejected with the error report IMPROPER LIBRARY REFERENCE,

An example of the)DROP command is shown below?

YDROP WS1
DROPPED

)DROP W53
WS NOT FOUND

JLIB COMMAND

The form of the)LIB command is

JLIB [groupnamel,accountnamel]]

The)LIB command displays the names of the workspaces, in alphabetic
order, in the specified library,

An example of the)LIB command is shown below:

JLIB
A2881407 CONTINUE JWSAVE WS2 Y5y

JHELP COMMAND

The form of the)HELP command is

JHELP [cmdname]
The)JHELP command returns a listing of the system commands, If the
optional cmdname parameter is specified, the)HELP command returns a
brief description of the specified command,

Examples:

JHELP
COMMANDS LEGAL FROM CALCULATOR MODE:
CLEAR CONTINUE COPY DROP EDIT ERASE FILES FNS
MPE HELP LANGUAGE LIB LoAD OFF pCoOPY BIND
RESET RESUME SAVE SI SIV VARS WSID TIME
DEPTH TERM TERSE VERBOSE
ENTER)HELP <COMMAND> FOR A BRIEF DESCRIPTION OF THE COMMAND

JHELP MPE

THE)MPE COMMAND IS USED TO LEAVE APL AND ENTER MPE.

11-10

JTERM COMMAND

The form of the)TERM command is

JTERM (termtype)
where termtype signifies the type of terminal being used. Possible
values for termtype are:

ASCITI = ASCII terminal

BP = Bit=pairing

CDI = Computer Devices, Inc,

CP = Character=pairing

DM = DataMedia

GSI = GenCom Systems, Inc,

HP = Hewlett~Packard

An example of the)TERM command:

)TERM
IS ASCII

JTERM HP
WAS ASCII

) TERSE COMMAND

The)TERSE command sets error messages to "terse." For example,

60
RFAL DIVIDE BY O
630
*
6:0
DOMAIN ERROR
60
$

11-11

JVERBOSE COMMAND

The)VERBOSE command sets error messages to "verbose.ﬁ For example,

DOMAIN ERROR
6+0
*
YVERBOSE
REAL DIVIDE BY 0
6%0
*

Verbose is the default mode,

JBIND COMMAND

The)BIND command sets a BIND flag on or off, If off when the)BIND
command is entered, the flag is turned on; if on, the flag is turned
off,

If & binding error occurs during program execution and the BIND flag
is on, the statement in which the binding error occurred is listed
along with an indication of the position ¢of the binding error,

An example of the)BIND command is shown below:

NOw ON
NOW OFF

JFILES COMMAND

The form of the)FILES command is

JFILES [groupname.,acctnhame]

The)FILES command is used to list all files in the user’s account, If
followed by the optional groupname.acctname parameter, all files in
the account specified are listed,

An example of the files command is shown below:

JFILES
A2881u407 JWSAVE WS2 7Sy

11-12

JMPE COMMAND

command is used to exit APL and

For example,

The)MPE
system,

FILENAME

A2881412 JWSAVE vS2 ¥su

:RESUME

Note that when the MPE :RESUME command

message is not displayed

JTIME COMMAND

The)TIME command turns on or off
times for an APL function to execute,. It off,
reporting on; if on, the reporting is turned off,

returned is the elapsed wall time,

An example of the)TIME command is shown below:

) TITME

NOW ON

TIMES: .0, .009
A«11000

TIMES: .5, .218
B«A%:12

TIMES: ¥.9, 3.534
C«Bxy

TIMES: 7.7, 4,640
) TIME

NOW OFF

TERMINATING AN APL SESSION

An APL either the

commands,

session may be terminated with

the active workspace is
is not

If the)OFF command is used, :
it has not been saved with the)SAVE command,

The)JCONTINUE command terminates the sessjion and

workspace under the name CONTINUE,

11-13

is entered,
(as it is when BREAK is used).

enter the MPE operating

the READ PENDING

the reporting of wall/CPU elapsed

JTIME turns the
The first value

the second value is the CPU time,

JOFF or)CONTINUE

discarded and, if

retrievable,

saves the active

Examples of the)OFF and)CONTINUE commands are shown below:

)JOFF
:LISTF

FILENAME

JWSAVE wS2 ¥ySu4

JCONTINUE
tLISTF
FILENAME
CONTINUE JWSAVE WS2 WS4

CONTINUE file saved

11-14

ERROR MESSAGES

Table 12~1 contains error messages produced by APL\3000, Table 12=2
contains file system (FCHECK) error messages and the corresponding
APL\3000 error numbers,

Table 12-1. APL\ 3000 Error Messages

TERSE VERBOSE

TRANSLATION ERRURS

SYNTAX ERROR
SYNTAX ERROR
DOMAIN ERROR
LABEL ERROR
DEFN ERROR
SYNTAX ERROR
SYNTAX ERROR
LABEL ERROR
LABEL ERROR
DOMAIN ERROR
DOMAIN ERROR
SYNTAX ERROR
LABEL ERROR
DEFN ERROR
DEFN ERROR
DEFN ERROR
DEFN ERROR
SYNTAX ERROR

DEFN ERROR

CONSTANT ERROR

COMMENT ERROR

EXPONENT OVERFLOW
DUPLICATE LABEL

DUPLICATE NAME IN HEADER
SYNTAX ERROR

NON-EXISTENT CORTROL STRUCTURE
CASE LABEL TOO BIG

REAL CASE LABEL

CASE RANGE TOO BIG

CASE RANGE MUST BE INTEGER
DUPLICATE DEFAULT CASE
DUPLICATE CASE LABEL
MISSING NAME

TOO MANY NAMES

ILLEGAL IN HEADER

LOCAL LIST ERROR

ERROR IN EMPTY STATEMENT

KEYWORD * PROCEDURE ¢ MISSING

12-1

Table 12-1. APL\3000 Error Messages (continued)

DEFN ERROR

CONST BLK OVFLW

SCODE BLK OVFLW

CMNT BLK OVFLW

EXECUTION ERRORS

CHARACTER ERROR

SYNTAX ERROR
DEPTH ERROR
DOMAIN ERROR
DEFN ERROR
INDEX ERROR
LABEL ERROR
LENGTH ERROR
RANK ERROR
SYMBOL TABLE
SYSTEM ERROR
VALUE ERROR
WS FULL
DOMAIN ERROR
DOMAIN ERROR
DOMAIN ERROR
DOMAIN ERROR
DOMAIN ERROR
DOMAIN ERROR
NONCE ERROR

SYNTAX ERROR

FULL

FUNCTION ALREADY EXISTS
CONSTANT BLOCK OVERFLOW
SECCODE BLOCK OVERFLOW

COMMENT BLOCK QVERFLOW

ILLEGAL CHARACTER
SYNTAX ERROR

FUNCTION CALLS TOO DEEP
DOMAIN ERROR

DEFN ERROR

INDEX ERROR

LABEL ERROR

LENGTH ERROR

RANK ERROR

TOO MANY SYMBOLS IN WS
SYSTEM ERROR

VALUE ERROR

WORKSPACE FULL

INTEGER DIVIDE BY O
REAL DIVIDE BY ZERO
INTEGER OVERFLOW

REAL OVERFLOW

INTEGER UNDERFLOW

REAL UNDERFLOW

NOT YET IMPLEMENTED

FUNCTION VALENCE CHANGED

12-2

Table 12-1. APL\3000 Error Messages (continued)

INCORRECT COMMAND
INTERRUPT

BINDING ERROUR

DOMAIN ERROR

DOMAIN ERROR

NO ENVIRONMENTS
ASSERTION FAILED

EDITOR ERRORS

INTERNAL OVERFLOW
SYNTAX ERROR

MUST BE APL OR APLGOL
ILLEGAL LINE RANGE
NUMBER TOO LARGE

TOO MANY DECIMAL POINTS
ILLEGAL NAME

NUMBER TOO LARGE
'MISSING COLON

MISSING START LINE
MISSING LINE COUNT
MISSING DELTA

MISSING ASSIGNMENT
MISSING DELTA VALUE
ILLEGAL DELTA VALUE
NO SUCH COMMAND
CHANGE STRING NOT DEFINED

FIND STRING NOT DEFINED

INCORRECT COMMAND

INTERRUPT

BINDING ERROR

NON=EXISTENT ENVIRONMENT
ENVIRONMENT NOT ON STACK
ENVIRONMENT LIMIT EXHAUSTED

ASSERTION FAILED

INTERNAL OVERFLOW
SYNTAX ERROR

MUST BE APL OR APLGOL
ILLEGAL LINE RANGE
NUMBER 7100 LARGE

TOO MANY DECIMAL POINTS
ILLEGAL NAME

NUMBER TOO LARGE
MISSING COLON

MISSING START LINE
MISSING LINE COUNT
MISSING DELTA

MISSING ASSIGNMENT
MISSING DELTA VALUE
ILLEGAL DELTA VALUE

NO SUCH COMMAND

CHANGE STRING NOT DEFINED

FIND STRING NOT DEFINED

12-3

Table 12-1. APL\3000 Error Messages (continued)

PATTERN STRING NOT DEFINED PATTERN STRING NOT DEFINED
NO LINE NUMBER ROOM NO LINE NUMBER ROOM

NONCE ERROR NOT YET IMPLEMENTED

LINE NOT FOUND LINE NOT FOUND

STRING NOT FOUND STRING NOT FOUND

WS FULL WORKSPACE FULL

LIBRARY COMMAND ERRORS

SYSTEM ERROR UNEXPECTED FILE ERROR

WS LOCKED INCORRECT PASSWORD SUPPLIED

WS NOT EDUND WORKSPACE DOES NOT EXIST

FILE NOT WS FILE IS NOT AN APL WORKSPACE

NO SPACE NO DISC SPACE AVAILABLE

NOQ SUCH LIB ACCOUNT OR GROUP NON=EXISTENT
BAD WSID INCORRECT WORKSPACE NAME

ACCESS ERROR CANNOT OBTAIN EXCLUSIVE ACCESS
ACCESS ERROR SECURITY DISALLOWS ACCESS
ACCESS ERROR FILE CREATOR CONFLICT

NO SPACE DIRECTORY OVERFLOW

FILE EXISTS NOT SAVED « FILE ALREADY EXISTS
UNNAMED WS NOT SAVED = WORKSPACE HAS NO NAME
INTERRUPT INTERRUPT = WS NOT LOADED
INTERRUPT INTERRUPT = WS NOT SAVED

EDITOR ERRORS

WILL NOT OVERLAY LINE WILL NOT OVERLAY LINE

INTERRUPT

12-4

Table 12-1. APL\3000 Error Messages (continued)

FILE SYSTEM ERRORS

~1000
71001
71002

FILE SYSTEM ERROR
SYSTEM ERROR
WS LOCKED

WS NOT FOUND
FILE NOT WS
NUO SPACE

NO SUCH LIB
BAD WSID
ACCESS ERROR
ACCESS ERROR
ACCESS ERROR
NO SPACE
FILE EXISTS

UNNAMED WS

FILE ALREADY OPENED

FILE NOT OPEN

STACK OQVFLW

FILE SYSTEM ERROR

UNEXPECTED FILE ERROR
INCORRECT PASSWORD SUPPLIED
WORKSPACE DOES NOT EXIST

FILE IS NOT AN APL WORKSPACE
NO DISC SPACE AVAILABLE

GROUP OR ACCOUNT NUMBER
INVALID WORKSPACE NAME

CANNOT OBTAIN EXCLUSIVE ACCESS
SECURITY DISALLOWS ACCESS

FILE CREATOR CONFLICT
DIRECTORY OVERFLOW

NON=WS FILE BY THAT NAME

NOT SAVED = WORKSPACE HAS NO NAME
FILE ALREADY OPENED

FILE NOT YET OPENED

RECORD SI1ZE TOO LARGHE

12-6

Table 12-2. File System (FCHECK) Error Codes

APL
ERROR ERROR
NUMBER MEANING NUMBER
20 Invalid operatjion 100
21 Data parity error, 100
22 Software time=~out, 100
23 End of tape, 100
24 Unit not ready. 100
25 No write ring on tape, 100
26 Transmission error, 100
27 Input/output time=out, 100
28 Timing error or data overrun, 100
29 Start input/output (SI10) failure, 100
30 Unit failure. 100
31 End of line indicated by special character 100
terminator,
32 Software abort of input/output operation, 100
33 Data lost, 100
34 Unit not on=line, 100
35 Data set not ready, 100
36 Invalid disc address, 100
37 Invalid memory address, 100
38 Tape parity error, 100
39 Recovered tape error, 100
40 Operation inconsistent with access type, 100
41 Operation inconsistent with record type, 100
42 Operation inconsistent with device type, 100

12-6

Table 12-2. File System (FCHECK) Error Codes (continued)

43

44

45

46

47
48
49
50
51
52

53

54
55
56
57

58

59
60
61
62

63

Transfer count (tcount) exceeds record size
parameter (recsize) vwhen multi=record write
(aoption) not specifled when file opened,
FUPDATE intrinsic requested but file is
positioned at record zero; FUPDATE must
reference last record read but no previous
record was read,

Privileged file violation,

Insufficient disc file space on all discs in
specified device class,

Input/output error while accessing file label,
Invalid operation due to multiple file access.,
Unimplemented function,

Referenced account does not exist,

Referenced group does not exist,

Referenced permanerit file not found in system
directory,

Referenced temporary file not found in job
directory,

Invalid file reference,

Referenced device is not available,

Device specification is invalid or undefined.
Virtual memory insufficient for specified file,

File not passed; typically caused by reqguest
for $OLDPASS when there is no SOLDPASS,

Standard label violation.

Global RIN not available.

Group disc file space exceeded,
Account disc file space exceeded,

User does not have nonw=sharable device (ND)
capability required by this operation.

100

100

100

104

100
100
100
105
108
102

102

106
100
100
100

100

100
100
104
104

100

12-7

Table 12-2. File System (FCHECK) Error Codes (continued)

64 User does not have multiple RIN (MR) capability 100
required by this operation,

71° Too many files opened for process, 100

12 Invalid f£ile number, 100

73 Bounds check violation, 100

80 Configured maximum number of spoolfile sectors 100
exceeded by this output request,

81 SPDOL c¢lass not defined in system, 100

82 Insufticient space in SPOOL class for this 100
input/output request,

83 Extent size greater than 65K (maximum allowed), 100

84 Device 1In SPOOL class is down; that is, next 100

extent in this spoolfile is on device that is
not available to system,

85 Reqguested operation inconsistent with spooling; 100
for example, an attempt to read hardware
status.,

86 Spool process internal error, 100

87 Offset to data is greater than 255 sectors. 100

89 Power failure, 100

90 Calling process requested exclusive access to 107
file being accessed by another process,

91 Calling process requestéd access to tile to 107
to which another process has exclusive access,

92 Lockword violation. 101

93 Security violation. 108

94 Conflict in use of FRENAME intrinsic because 109
user is not the creator.

100 Puplicate permanent file name in system file 102
directory,

101 Duplicate temporary file name in job file 102
directory,

12-8

Table 12-2. File System (FCHECK) Error Codes (continued)

102
103
104
105
106
107

110

Directory input/output error,
System directory overflow,

Job directory overflow,

Illegal variable block structure,
Extent size exceeds 65K (maximum allowed).,
Offset to data exceeds 255 sectors.,

Attempt to save permanent system file in job
(temporary) directory,

100
110

110

100
100

100

129

API\3000 CHARACTER SET

APPENDIX

A

FUNCTION

CHARACTER OR USE APL ASCI 3-CHAR | 0-ORIGIN ASCIl - | ASCHIl | OVERSTRUCK

NAME MONADIC DYADIC SYMBOL | SYMBOL | “AscCii’ | [JAV INDEX | DECIMAL | OCTAL| CHARACTER
Zero NUMBERS | NAMES 0 0 0 48 60
One 1 1 1 49 61
Two 2 2 2 50 62
Three 3 3 3 51 63
Four 4 4 4 52 64
Five 5 5 5 53 65
Six 6 6 6 54 66
Seven 7 7 7 55 67
Eight 8 8 8 56 70
Nine 9 9 9 57 71
Space Separator \ 10 32 40
A NAMES A A 11 65 101
A-underscore A “UA 12 A —
B B B 13 66 102
B-underscore B “uB 14 B —
C C C 15 67 103
C-underscore C “uc 16 C —
D D D 17 68 104
D-underscore D “UbD 18 D —
E E E 19 69 105
E-underscore E “UE 20 E —
F F F 21 70 106
F-underscore F “UF 22 F —
G G G 23 71 107
G-underscore G “UG 24 G —
H H H 25 72 110
H-underrscore H “UH 26 H —
| 1 | 27 73 111
l-underscore | “ul 28 | —
J J J 29 74 112
J-underscore J “Ud 30 J —
K K K 31 75 113
K-underscore K “UK 32 K —
L L L 33 76 114
L-underscore L “UL 34 L —
M ' M M 35 77 115
M-underscore NAMES M “UM 36 M —_

FUNCTION
CHARACTER OR USE APL ASCII 3-CHAR | 0-ORIGIN ASCIl ASCIl | OVERSTRUCK
NAME MONADIC DYADIC | SYMBOL | SYMBOL | “Ascii” |[JAV INDEX | DECIMAL | OCTAL | CHARACTER
N N N 37 78 116
N-underscore N “UN 38 N —
(o} (0} (o} 39 79 117
O-underscore o ~“UN 40 o] —_
P P P 41 80 120
P-underscore P “Up 42 ‘ P —
Q Q Q - 43 81 121
Q-underscore Q “UuQ 44 Q -
R R R 45 82 122
R-underscore R “UR 46 R —
S S S 47 83 123
S-underscore S “Us 48 S —
T T T 49 84 124
T-underscore T “UT 50 T —_
U U u 51 85 125
U-underscore U “Uu 52 U —
v \Y% \' 53 86 126
V-underscore \ “uv 54 \" —_
W w w 55 87 127
W-underscore w “Uw 56 w —
X X X 57 88 130
X-underscore X “UX 58 X —_
Y Y Y 59 89 131
Y-underscore Y Uy 60 Y —
Z z z 61 90 132
Z-underscore Y Z “uz 62 z —
DELTA NAMES A “LD 63
DELTA-Under NAMES A “DU 64 A —_
less less < < 65 60 74
not greater not “LE 66
greater =<
greater greater > > 67 62 76
not less not less > “GE 68
equal equal = = 69 61 75
not equal not % “NE 70
equal

FUNCTION

0-ORIGIN

CHARACTER OR USE APL ASCll 3-CHAR ASCII ASCIl | OVERSTRUCK
NAME MONADIC DYADIC SYMBOL |SYMBOL | “Ascii” |[JAV INDEX | DECIMAL |OCTAL | CHARACTER
or or \ “OR 71
and and “ND 72
tilde not ~ “NT 73
epsilon member € “EP 74
up (arrow) take 1 tor 75 94 136
down (arrow) drop ! “DP 76
base decode 1 “BV 77
top encode T “RP 78
slash compress / / 79 47 57
slope expand \ \ 80 92 134
open paren Grouping Grouping ((81 40 50
close paren Grouping Grouping)) 82 41 51
open bracket Indexing Indexing [[83 91 133
close bracket Indexing Indexing 1 1 84 93 135
overbar neg. constant — # 85 35 43
right (arrow) branch - “RA 86
left (arrow) assign -« «or 87 95
del None None v “DL 88
quad Input, Out- Input, Out- “QD 89
puit, Distin- | put, Distin- O
guished guished
Names Names
quote Char. Char. 1 | 90 39 47
Constants Constants
null Outer ° “uT 91
Product
dot Operator . ° 92 46 56
Number
Consts.
semicolon List List ; ; 93 59 73
Separator Separator
colon Labels Labels 94 58 72
diamond Statement Separator O “DI 95
bar neg. minus - - 96 45 55
plus conjugate plus + + 97 - 43 53
divide reciprocal divide = “DV 98
times signum times X “TM 99
query roll deal ? ? 100 63 77
rho shape reshape p “RO 101
iota index index of 1 “10 102
generator circular

A-3

FUNCTION

CHARACTER OR USE APL ASCII 3-CHAR | 0-ORIGIN ASCH ASCIl | OVERSTRUCK
NAME MONADIC DYADIC SYMBOL | SsYMBOL | “Ascli” |[JAV INDEX | DECIMAL | OCTAL | CHARACTER
circle wtimes Hyperbolic, o) “CR 103
etc.
star exponential | power * * 104 52 42
upstile ceiling maximum r “MX 105
downstile floor minimum L “MN 106
stile magnitude | residue | “RD 107
comma ravel catenate , , 108 44 54
log Natural General ® “LG 109 0 X
Logarithm Logarithm
circle bar 1st coordin- | 1st coordin- e “CD 110 0 —
ate reverse | ate rotate
circle slope transpose transpose Q@ “TP 111 0 \
quote dot Factorial Binomial ! ! 112 33 41 ’ e
domino Matrix Matrix B “DM 113 O %
Inverse Division
nor Nor ~ “NR 114 v ~
nand Nand A~ “NA 115 A ~
circle stile Reverse Rotate) “RV 116 0 |
I-beam None None I “IB 117
del stile Grade] “GD 118 v |
Down
delta stile Grade up A “GU 119 A |
quote quad INPUT OUTPUT M “QQ 120 ' O
cap hull Comment Comment il “CM 121 n °
slope bar 1st coordin- X “BD 122 \ -
ate Expand
slash bar 1st coordin- d “SD 123 / -
ate Com-
press
del tilde None None ~ “DT 124 v ~
base null Extended Execute £ “CX 125 4 o
Execute
top nuil Format Format ¥ “FT 126 T °

FUNCTION

CHARACTER OR USE APL ASCII 3-CHAR | 0-ORIGIN ASCHl ASCll | OVERSTRUCK
NAME MONADIC DYADIC SYMBOL | sYMBOL | “Asci” | JAV INDEX | DECIMAL | OCTAL [CHARACTER

out INTERRUPT ® “Ou 127 ouT

dieresis NONE “DR 128

left tack NONE [“LK 129

right tack NONE - “RK 130

doliar NONE $ $ 131 36 44

omega NONE ® “OM 132

alpha NONE o “AL 133

open shoe NONE C “PS 134

close shoe NONE D “BS 135

cup NONE U “SU 136

cap NONE n “Sl 137

cnul null «C @° 138 0 0

attn attention Ye Ye 139

linefeed linefeed line- Je 140 10 12

feed

tab cbel tab bell tab Ge Ic Ge 141 142 9, 11,

csoh start of heading Ac Ac 143 1 1

cstx start of text Be Be 144 2 2

cetx end of text Ce Ce 145 3 3

ceot end of transmission De De 146 4 4

ceng enquiry E° E° 147 5 5

backspace backspace back- He 148 8 10

cack acknowledge Fe Fe 149 6 6

cvt vertical tab Ke Ke2c 150 11 13

cff form feed Le Le 151 12 14

return return return Me 152 13 15

cso shift out Ne Ne 153 14 16

csi shift in O¢ Oc 154 15 17

cdle data link escape pe p¢ 155 16 20

cdci device control | Qe Qe 156 17 21

cdc2 device control 2 Re Re 157 18 22

cdc3 device control 3 Se Se 158 19 23

cdc4 device control 4 Te Te 159 20 24

cnak negative acknowledge Ue Ue 160 21 25

csyn synchronous idle Ve Ve 161 22 26

FUNCTION

CHARACTER OR USE APL ASCIl 3-CHAR | O0-ORIGIN ASCIl ASCll | OVERSTRUCK
NAME MONADIC DYADIC SYMBOL | symBoL | “asci” | AV INDEX | DECIMAL |OCTAL | CHARACTER
cetb end of transmission block We We 162 23 27
ccan cancel line Xe Xe 163 24 30
cem end of medium Ye Ye 164 25 31
csub substitute ze ze 165 26 32
escape escape escape escape 166 27 33
or[¢

cfs file separator o° ° 167 28 34
cgs group separator {¢ I 168 29 35
crs record separator Xe teor © 169 30 36
cus unit separator AC - 170 31 37
delete delete delete 171 127 177
doublequote NONE delete 172 34 42
underbar NAMES — “NL 173

eol APL Terminal Control 174

eof APL Terminal Control 175

charerr unprintable character 176

pound NONE # 177 35 43
percent % 178 37 45
ampersand & 179 38 46
atsign @ 180 64 100
open brace { { 181 123 173
close brace 3 } 182 125 175
a a 183 97 141
b b 184 98 142
c c 185 99 143
d d 186 100 144
e e 187 101 145
f f 188 102 146
g g 189 103 147
h h 190 104 150
i i 191 105 151
j j 192 106 152
k k 193 107 153
| \ | 194 108 154

FUNCTION

CHARACTER OR USE APL ASCII 3-CHAR | O0-ORIGIN ASCII ASCIl | OVERSTRUCK
NAME MONADIC DYADIC SYMBOL | sYMBOL | “Asci’ |[JAV INDEX | DECIMAL | OCTAL | CHARACTER
m NONE m 195 109 155
n n 196 110 156
[} o 197 111 157
p p 198 112 160
q q 199 113 161
r r 200 114 162
S S 201 115 163
1 t 202 116 164
u u 203 117 165
v v 204 118 166
w w 205 119 167
X X 206 120 170
y y 207 121 171
ASCII not 209 126 176
ASCII vdash 210 124 174
grave accent \j 211 96 140

API\3000
PRIMITIVE FUNCTIONS AND OPERATORS || B

NAME SYMBOL SYNTAX
And A XAY
Arccosine 0 “20X
Arcsine 0 “loX
Arctangent 0 “30X
Axis operator] [expression)
Binomial : AlB
Catenate ’ A,B
Ceiling r A
Compress / or 7 boolean argument/A
Conjugate + +A
Cosine 0 20X
Deal ? A?B
Decode 1 ALB
Divide * A:B
Drop ¥ AVB
Encode T ATB
Equal = A=B
Execute ® ¢A or AsB
Expand \ or X boolean argument\A
Exponential * #*A
Factorial H iA
Floor L LA

B-1

NAME SYMBOL SYNTAX
Format 7 TA or A'B
General logarithm ® A®B
Grade down ¥ VA
Grade up A AA
Greater > A>B
Hyperbolic arccosine 0 “6oX
Hyperbolic arcsine 0 “SoX
Hyperbollc arctangent o ~70X
Hyperbollic cosine o 60X
Hyperbholic sine) 80X
Hyperbolic tangent 0 70X
Index generator L 1A
Index of 1 AlB
Indexing {1 Alexpression]
Inner product operator . Afnl,.£n2B
Laminate el] AslfractionlB
Less < A<B
Magnitude | | A
Matrix divide 8 AEB
Matrix inverse 5] EHA
Maximum r AlB
Membership € Ac€B
Minimum L ALB
Minus - A=B
Nand * X~y

B-2

NAME SYMBOL SYNTAX
Natural logarithm ® ®A
Nor N X~y
Not ~ ~A
Not equal 2 AzB
Not greater < A<B
Not less > AzB
Or v XvyY
Quter product operator i A°,fnB
Pi times 0 oA
Plus + A+B
Power #* A¥B
Pythagorean (T1+X#2)%#,5 o} 40X
Pythagorean (1+X#2)#,5 0 40X
Pythagorean (1=X#2)#%,5) 0cX
Quad input a A+
Quad output i O+A
Quote guad input M A«[1
Quote quad output 0 M<«a
Ravel ' 'R
Reciprocal 3 A
Reduction operator / primitive function/a
Reshape o ApB
Residue \ Al B
Reversal ¢ or e oA or oA
Roll 7 A

B-3

NAME SYMBOL SYNTAX

Rotate ¢ or e A¢B or AeB

Scan operator \ primitive tunction\A
Shape P oA

Signum X XA

Sine o 10X

Take + A+B

Tangent o 3oX

Times X AxB

Transpose) AgB

B-4

APN\3000 SYSTEM COMMANDS

APPENDIX

C

NAME

SYNTAX

Bind
Clear
Continue
Copy
Depth
Drop
Edit
Erase
Files
Functions
Help
Library
Load

MPE

Namelist = name [name] [name],

Off

Protected copy
Reset

Resume

Save

State indicator

State indicator with variables

JBIND

JCLEAR

JCONTINUE

JCOPY [namelist)
JDEPTH num

JDROP wsname
JEDIT [name)
JERASE ([namelist]

JFILES (groupname,acctname]

JFNS [letter])
JHELP (cmdname]

JLIBR [groupnamefl.accountnamel]

JLOAD wsname
)MPE

«[namel
)OFF

JPCOPY wsname (namelist]

JRESET [n)
YRESUME
)SAVE wsname
)81 ([nl

)SIV [n])

NAME

SYNTAX

Time

Terminal type
Terse
Variables
Verbose

Workspace identjfication

JTIME

JTERM [termtype]l
)JTERSE

YVARS ([letter]

) VERBOSE

JWSID ([wsnamel

Wsname = workspace identification (/lockwordl

[groupnamel.accountname]

C-2

APIN\3000 SYSTEM VARIABLES

APPENDIX

NAME FORM SYNTAX
Account information UAI UAI
Alphabet Ua 0a
Assertion level UAL OAL({«value]
Atomic vector UAV UAV
Backspace 08 UB
Branch trace 0BT UBT
Comparison tolerance acr OCTl«valuel
Digits up 0p
Escape Oe UE
Execution trace OxT UXTl«valuel
Horizontal tab setting OHT OHT[«integer vector]
Index origin g1o U1ol«valuel
Language OLA OLA« [’APL']

*APLGOL’

Latent expression OLX OLX{«’expression’]
Line counter oLc ULc
Linefeed oL UL
Null UN ON
Printing precision app OPPl+value]
Printing width OPw UPwl«~value])
Random 1link URL ORL{«~valuel
Return Ur R

D-1

NAME FORM SYNTAX

Stack names UsN Usn

Tab ar ar

Terminal type orT OTT(+~termtypel

Time Stamp ars 0Ts

Virtual memory OvMm Uvmi«integer vector])
Work area available OwA (Wa

Workspace identification UwI Uwr

D-2

APIN\3000 SYSTEM FUNCTIONS

NAME FORM SYNTAX
Canonical representation [CR OCR ‘name”’
Capture stack environment OCSE A<F [OCSE C § D
A = assigned environment
number
F = function name
C = count
S = starting environment
D = desired environment
number
Convert acv control [ICV data
Delay OpL 0OPL seconds
Expunge OeXx UEX *name’
Function establishment OF X OFX name
Monitor values MV (OMV *name”
Name classification ONC ONC ‘name’
Name 1list ONL {“letters”) UNL integers
Query monitor e}t 0QM “name”’
Query stop oas 0@s “name’
Query trace geT 0QT “name”’
Release stack environment [ORSE RL, JRSE EL
RL = released stack
environment

EL = environment list

Reset monitor URM URM ‘name”’
Reset stop URS RS ‘name’
Reset trace ORT ORT “name”’
Set monitor OsM 0SM *name”’

E-1

NAME FORM SYNTAX

Set stop 0ss Uss “name’

Set trace st UST “name’

Shared variable control Usvce svC [‘processid’l

Shared variable offer gsvo [“processid”] [UsvD “shared
varjiable
ia’

Shared varlable retract USVR USVR “shared variable id°

Shared variable guery Osva 0svQa [(“processid’]

Vector representation UVR OVR ‘name’

E-2

APL\3000 EDIT INSTRUCTION SYNTAX

A[(DD]) llinespec {deltal
string

B{RIEF]

C[HANGE] [character ([patternstringl] character (changestringl
character [rangelistl]

COCPY] 1lineblock

lineblock = linerange : linespec [deltal

’
blank
CUIRSOR] iinespec—
» + integer
= integer

string
DIELETE] [string
rangelist

delta = [,] linenumber

{DELT[A]} {=| {decimalnumber]
A <

END [APL
APLGOL

FIND [stringl] (rangelist]

H{ELP]) (instructionl
EXPLAIN
?

linerange = [linespec
<linespec> <separator> <linespec>
<linespec> <separator>
<separator> <linespec>
separator
ALL

F-1

linespec = |line number
FIRST
LAST
CURSOR
*

LIIST] [rangelist
string
ALL
FIRST
LAST

LOCK [APL]
APLGOL

MATIRIX]) {variablename]

MIODIFY) |string
rangelist

QUIT

rangelist ={linerange \(,linerangel. « « [rlinerangel
rnge (,rlistl

RIEPLACE] |string [delta]
rangelist
RES{EQUENCE] lineblock

separator =[q
|

string = <character> <text not containing character> <character>

UNDO [integer] [grainspec])

grainspec = ’ ‘L[INESJ
{ i } C [OMMANDS]

blank

—————

VEC(TQOR] [variablenamel

VER[BOSE]

APLGOL STATEMENT SYNTAX

APPENDIX

G

ASSERT expression : expression

BEGIN statement list END

CASE expression OF integer constant
BEGIN subcase list + END CASE

EXIT [(expression]

FOREVER DO statement

HALT [(expression]

IF expression DU statement

IF expression THEN statement ELSE
statement

NULL

REPEAT statement list UNTIL expression

WHILE expression DD statement

G-1

SYSTEM SUPPLIED
UTILITY SHARED VARIABLES || K

PROCESSOR: UTIL
VARIABLES: VERBOSE FLAG
INPUTCONTROL

VERBOSE FLAG = Boolean, 1 1f error messages is in VERBUSE mode;
0 otherwise, Can be set dynamically.

L {]

INPUTCONTROL Takes as input a 1 or 2 element vector of integers
from =32768 to 32767 (unjit or scalar extends to
l»element vector), If second value is omitted,

the system sets it to O,

The two values are used as the two parameters
for the FCONTROL intrinsic on the standard APL
input file ’‘APLIN",

After FCONTROL executes, the value of the second
parameter (which may be changed by MPE) is
saved,

For a READ, the value saved is returned (saved
from the last WRITE call) and initialized to 0
s0 that a READ before any WRITE will return an
answer,

H-1

INDEX

A

Abondoned functions, 10=11
Aborted sessions, 11~9
Access control, 5=3
Access control matrix, 5=3
Access control mechanism, 5=3
Access control of a shared variable, 5=5
Access control vector, 5«6
Access state, 5=3
Access state matrix, S=4
Accessing the editor, 7«3
Account information system variable, 4=19
Active workspace, 2=12
Add editor instruction, 8=4
Alphabet system varianble, 4=23
Alternating product, 3=ig8
Alternating sum, 3=18
And function, 3-8
APL assignment function, 2+3
APL constants, 2=3
APL expressions, 2=3
APL functions which devend on absolute values, 3=9
APL, functions which depend on comparison tolerance, 3=i1
APL functions, 2+=5
APL order of association, 2~9
APL, translation, 8=9
APLGOL branch statements, 9=7
APLGOL function tormat, 9=2
APLGOL header lines, 8ei
APLGUL statement syntax, 9=3
APLGOL translation, 8=9
APLGOL, 9+=1
APL\3000, aported session, 11=9
character set, 1=2, A=1
definition, 1=~}
editor, 8=}
exiting and entering MPE, 11=13
extended control functions, 10=4
file system, o=l
initisting a session, 1=4
keyboard, 1=3
running, 1=6
terminal, 1=3
terminating a session, 1=7
terminating a session, 11=13
Arguments, 1=7
Arguments, extending, 3=1
Arrays, 2~9

ASCII terminals, 1=3

Assert APLGOL statement, 9=%
Assertion level checking, 9=6
Assertion level system variable, 4=20
Assignment arrow, 1=6

Assignment function, 2=3

Atomic vector system variaeble, 4=19
Auto convert, 6=9

Auto=ASCII conversion, 6~9

Axis operator, 3=20

B

Backspace system variabhle, 4=23
Base value, 3+53

Begin APLGOL statement, 9=4
Bilateral sharing, 5e=1

Binding error, 11=12

Binding parameters, 1=}

Bind system command, 1112
Binomial function, 3~=ié

Boolean functions, 3=8

Branch arrow, 2=3

Branch expression, 2=¢
Branching, 7=5%

Branch statements, 7=5

Branch trace system variable, 4=21
Brief editor instruction, B=4

C

CPU time, 4=19

Calculator mode, 1=6

Canonical representation function, 4=3
Capture stack environment system function, 10=4
Carriage return system variable, 4=23
Case APLGOL statement, 9=8

Catenate function, 3=35

Celling function, 3=11

Change editor instruction, 8=5
Character constants, 2=2

Character set, l=1, A=l

Character system variables, 4=23
Circular functions, 3=13

Clear system command, 1i~1

Closing a file, 6=4

Column vector, 3«20

Commands variable, 6=11

Comments, 7«7

Communicating between processes, 5=1
Comparison tolerance system variable, 4=13
Compress function, 3=42

Compression function, 7=6

Condition codes, 6=3

Conjugate function, 3=7

Connect time, 4=19

Constants, 2=1

Continue system commana, 11i-9
Control arguments, 3=5%

Control pairs, 3=56

Control points, 10=4

Control variakle, 6=1

Conversion system function, 6=1?2
Copy editor instruction, 8e=5
Copy system command, 11=5
Copving objects into the active workspace, 11=5
Current environment, 10«4

Cursor edjtor instruction, 8=6

D

Data arguments, 3=55

Data conversion, 6=12

Data transtormation functions, 3=28, 3=54
Data variable, 6=9

Deal function, 3=50

Debugging aid examples, 10=13

Debugging aids, 10=8

Decimal constants, 2=1

Decode function, 3=53

Defined functions, 7-1

Defined function valence, 7=3

Degree of coupling, 5=2

Delay function, 4=9

Delete editor instruction, 8=6

Deleting objects from the workspace, 11-=4
Delta editor instruction, 8«7

Depth system command, 10=8

Desired environment numoer, 10=4

Digits system variable, 4=23

Displayina the environment, 10=7

Divide tunction, 3=2

Domain error, 12=1

Double integer conversion, 6=13
Double=arm conditional IF statement, 9«6
Drop function, 3=41

Dropping a workspace from a library, 11=10
Drop system command, 11=10

Dyadic format function, 3«55

Dyadic functions, 2=%

Dyadic primitive scalar function, 3=1i

E

Edit instruction syntax, 8e3
Editor, B8ei

Editor errors, 12«3, 12=4
Editor line numbers, 8=i
Editor prompt character, 8={

Empty array., 2-9, 3=32
Empty vector, 2=2, 3=30
Encode function, 3=53
End editor instruction, 8=7
Environment, capturing, 10=4
¢ displaying, 10=7
¢y releasing, 10-8

Environments, 10=4 '
Equal function, 3=8
Erase system command, 11=4
Error messages, 12«1
Errors, binding, 11=12

domain, 12=1

editor, 12=3

error codes (FCHECK), 12=6

execution, 12=2

file system, 12=5

library command, 12=4

messages, 12«1

syntax, 12+=1

translation, 12+1
Escape system variable, 4-23
Establishing a user~defined function, 7=1
Execute function, 3=54, 10~5
Execution errors, 12=2
Execution modes, 1-6
Executlon trace system variable, 4=21
Exit APLGOL statement, 9«4
Exiting APLA3000 and entering MPE, 11=13
Exiting a suspended function, 10=2]
Expand function, 3=44
Explain editor instruction, 8=7
Exponential function, 3=12
Expunge function, 4=6
Extended control functions, 10«4
Extended dyadic execute primitive function, 10=5
Extending arguments, 3e}
External to internal APL conversion, 6~12

F

Factorial tunction, 3=16
Fcontrol intrinsic, 6=4
Fille system, 6=}
File system errors, 12=5
File system (FCHECK) error codes, 12«6
Files, APL\N300Q0 file system, 6e1
closing, &~4
listing, 11=12
opening., 6=2
reading, 6«11
writing to, 6=10
Files system command, 1i+12
Find editor instruction, 8«7
Floating=point numbers, 3=9

Floor function, 3=-11
Forever DO APLGOUOL statement, S=7
Formal file designator, 6«2
Format function, 3=55
Fraction, 2-1
Freeefield format, 9=2
Function establishment (fix) function, 4=5
Functions (FNS) system command, 11-6
Functions, arguments, 17, 2«5
definition mode, 1«8
execution, 10~}
header, 7=3
line numbers, 7=5%
dependent on comparison tolerance, 4=13
abandoned, 10-11
deleting from the workspace, 11=4¢
dyadic, 2=5
erasing, 11-4
invoking a user~detfined, 2-4
locked, 10-11
monadic, 2=5
niladic, 2-5
primitive, 2=6
user~defined, 2=6

G

General logarithm function, 3=13
Global names, 7=4

Grade down function, 3=49

Grade up function, 3=49

Greater function, 3=%

H

Halt APLGOL statement, 9=5%

Halted execution, 10=2

Halted functions, 7=4, 10=2

Help editor instruction, 8=8

Help system command, 11=10

Horizontal tabs system variable, 4=22
HP 26414 terminal, 1=3

Hyperbolic functions, 3=13

I

Identities, 3=2

Identity matrix, 3=51

If APLGOL statement, 9=5%

Immediate execution mode, 1=6
Index gemnerator function, 3=48
Index of function, 3~48

Index origin system variable, 4=15
Index origin, 2~9, 2-11

Indexing, 2-9

Indexing function, 3=4%

Indices of APL characters, 4+-19
Inhibiting an access, 5=3

Initiating an APL\3000 session, 1=4

Inner functions, 7=4

Inner product operstor, 3«22

Integer values, 3~10

Intermediate code, 1=

Internal APL to external conversion, 6=13
Interrupted functions, 7=4

Intrinsics, 6=3

Inverse of a nonesinqular matrix, 3=51
Invoking a defined function, 106=1
Invoking a user~defined function, 2+=4
Issuing MPE commands with the CMNDS variable, 6=12
Iterate point, 9=8

L

Labels, 7=6

Laminate function, 3=37

Language system variable, 4=21
Latent expression system variable, 4~16
Leave point, 9=8

Left arrow, l=6

Left identity, 3=2

Left inverse, 3=51

Less function, 3=8

Libraries, 2=12, 11=7

Library command errors, 12+=4

Library system command, 11=10

Line counter systenm variable, 4=~1 99
Line numbers, 7=5

- Linear eguations., 3=52

Linearly=independent columns, 3=5}

Linefeed system variable, 4=23

List editor instruction, B8=8

Listing functions in the active workspace, 11e=6
Listing variables in the active workspace, 1i-6
Load system command, 11=9

Loading a workspace, 11=9

Local names, 7=4

Localization of names, 7=4

Lock editor instruction, 8=9

Locked functions, 10=11

M

Magnitude function, 3=8
Magnitude of precision, 3=56
Matrix divide function, 3=51
Matrix editor instruction, 8=9
Matrix inverse function, 3=51
Maximum function, 3=11
Membership function, 3=49

Minimum function, 3=11

Minus tunction, 3-=2

Mixed functicns, 3=25

Modify editor instruction, B=9

Monadic format function, 3=5%

Monadic functions, 2=5%

Monadic primitive scalar function, 3=i
Monitor values system function, 10=10
MPE; 1=}

MPE system command, 11=13
Multiedimensional arrays, 2+=9
Multiprogramming Executive Operating System, 1=}

N

Name classification function, 4-9
Name list function, 4=6

Names and passwords of workspaces, ii=8
Nand function, 3=8

Natural logarithm function, 3=13
Negative constants, 2-1

Negative function, 3=7

Niladic functions, 2=5
Non=sinqular matrix, 3=51
Nonwsquare matrices, 3=52

Nor function, 3-8

Not egual function, 3=&

Not function, 3-8

Not greater function, 3-8

Not less function, 3-8

Null APLGOL statement, 9=4

Null system variable, 4=23
Numerical functions, 3=51

0

Obtaining descriptions of system commands, 11«10
Obtaining information on shared variables, 5=7
Obtaining status report for files, 6=7
Offering to share a variable, 5=1

Offers, 5=1

One~element array, 3=i

Dpening a file, 6=2

Operators, 3=17

Or function, 3«8

Outer functions, 7=4

Cuter product operator, 3=24

Overbar, 2-1

Overstruck characters, 1=3

P

Parentheses, 2+=9
Pendent functions, 7=4, 10=3
Plus function, 3=2

Post=checked loop, 9=7

Power function, 3-12

Pree=checked loop, 9=7

Precision control, 3=5e6

Primitive functions, 2=6

Primitive numerical functions, 2=8, 3=28
Primitive scalar functions, 2+7, 3=

Primitive selection functions, 2~8, 327
Primitive selector generator functions, Z=8, 3=27
Primitive structural functions, 2=7, 3=29
Primitive transformation functions, 2+8, 3=28, 3=54
Printing precision system variable, 4~18

Printing width system variable, 4=-18

Process communication, 5=1

Protected copy system command, 11=5

Public libraries, i1i=8

Pythagorean functioens, 3=13

Q

Quad input function, 3=59

Guad output function, 3«58

Query monitor system function, 10=11
Query stop system function, 10ei1
Query trace system function, 10=11
Quit editor instruction, 8=10

Quote character, 2-=3

Quote quad input function, 3=60
Quote quad output function, 3=60

R

Random link system variable, 4-17
Random numbers, 3-11

Rank, 2-9

Rank of arrays, 3=31

Ravel function, 3+=30

Raw tab system variable, 4=23
Reading a file, 6=11

Real conversion, 6«13

Reciprocal function, 3-8

Reduction operator, 3=17

Relational functions, 3+=8

Release stack environment system function, 10=5
Released environment list, 10=5
Releasing the environment, 10=%
Renaming the active workspace, 11=8
Repeat AFLGQOL statement, 9=7

Replace editor instruction, B=10
Reporting elapsed time, 11=13
Representation, 3=53

Representing floatinge«point numbers, 3~9
Resequence editor instruction, 8=11
Reset monitor system function, 10=1i0
Reset stop system function, 10«10

Reset system command, 10«7

Reset trace system function, 10=10
Reshape function, 3=32

Residue function, 3=7

Restart point, 9=8

Result of an expression, 2=3

Resume system command, 10=8
Resuming a suspended function, 10=2
Retrieving a stored workspace, 1lie=7
Reversal function, 3=32

Right i{dentity, 3=2

Right=to=~leftt assoclation, 2+=9

Roll function, 3=11

Rotate function, 3-33

Row vector, 3=20

Running APLA3000, 1=6

S

Save system command, 1ie=2
Savinag a duplicate of the active workspace, 1i=8
Scalar constants, 2=-2
Scalar value, 2=9
Scalar=vector substitutions for mixed functions, 3+29
Scale, 2=}
Scaled=~form constants, 2+1
Scan operator, 3-19
Selecting elements of an array, 2«11
Selection functions, 3=40
Selector generator functions, 3=48
Session, fully=gualified name, 1=4
initiating, 1=4
Set monitor system funection, 10=10
Set stop system function, 10=10
Set trace system function, 10=10
Setting error messages to terse, 1i-11
Setting errcr messages to verbose, 11-172
Setting the bind flag on and off, 11=12
Shadowing of names, 7=5
Shape control, 3=56
Shape functien, 3-=30
Shape of arrays, 2«10
Shared variable environment, 5=7
Shared variable offer system function, 5=1, 6el
Shared variable query system function, 5=7
Shared variable retraction system function, S5e7
Shared=variable identifier, 5=}
Shared variables, S5=1i
Sharing variables, Se1
Signum function, 3+=7
Single=warm conditional 1F statement, 9=5
Single=dimensional array, 2-9
Singqular matrices, 3«52
Specification arrow, 2=3
Stack names system function, 10=7

Stack names system variable, 4=20

Standard ASCII terminals, 13

Starting environment, 10=~4

State indicator damage, 10=3

State indicator system command, 10=2, 10=7, {1=7
State indicator with variables system command, 10=7, 11i=7
Storage availaple in the active workspace, ¢=22
Stored workspace, 2=12

Storing a workspace, ll=7

Structural functions, 3=29

Subcase level, 9=9

Subcases, 9=8

Surrogate names, Swi

Suspended functions, 7=4, 10=2

Syntax error, 12=1

System commands, 2=6, 11=1

System functions, 4=~1

System functions used for debugaing, 10=9

System supplied utility shared variakles, Hel
System variables, 4~10

T

Take function, 3=40

Terminal system command, 1i=i}
Terminal types, 1=5, 4=22, 11-11}
Terminal type system variables, 4=22
Terminating an APL session, 17, 119, 11=13
Terse system command, 11=i}

Times function, 3+=2

Time stamp system variable, 4~20
Time system command, 11=~1{3

Trace format, 10~40

Translation errors, 12=-1
Translators, 8=9

Transpose function, 3-39
Two=dimensional array, 2=9

u

Undo editor instruction, 8=12

Unit array, 3=t

User=detined tunctions, 2«6, 7=1
Using parentheses to meodify the order of association, 2=9
Using the FCHECK intrinsic, 6=6
Using the FCONTROL intrinsic, 6=4
Using the FGETINFO intrinsic, &6=7
Using the FLOCK intrinsic, 6=8
Using the FREAD intrinsic, é=11}
Using the FREADDIR intrinsic, 6=11
Using the FSETMODE intrinsice, 6=7
Using the FSPACE intrinsic, 6=6
Using the FUNLOCK intrinsic, 6=8
Using the FWRITE intrinsic, 6«10
Using the FWRITEDIR intrinsic, 6=10

1-10

v

Valence of a defined function, 7=3
variables (VARKS) system command, 11=6
Vector constants, 2=2

Vector editor instruction, 8=12
Vector representation function, 4«4
Vector value, 2=9

Vernose editor instruction, E&=12
Verbose system command, 11~12
Virtual memory., 1=1

Virtual memory system variable, 421
Visual effect, 1=3

Visual fidelity, 1=3, 3+60

W

While APLGOL statement, 9=7
Width control, 3=56
Work area available system variable, 4=22
Workspace identification system variable, 4-20
Workspace identification (4W8ID) system command, 11=8
Workspace storage and retrieval, 11=7
Workspace, copying objects from a source workspace, 11=5
definition
deleting tunctions from, 11=4
deleting obiects from, 11=4
displaying names of, 11=10
dropping from a library, 11=10
jdentification, 11=8
inftial values in, 1i=1
listing functions in, 11=6
listing variables in, {1=6
loading & duplicate, 11~9
names and passwords, 11=8
password, 1i=8
renaming, 11=8
saving under the name CONTINUE, 1419
saving, 11=8
storage avalilable, 4=22
storage and retrieval, lie=?
Wwriting to a file, 6~10

READER COMMENT SHEET

HP 3000 Series Computer System
APL\3000 Reference Manual

32105-90002 November 1976

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Did you have any difficulty in understanding concepts or wording? Where?

Is the format of this manual convenient in size, arrangement, and readability? What improvements would you
suggest?

Other comments?

FROM:

Name

Company

Address

— e - - e . e - o = e e v M e Mme = = o e - e . o e - o e vm = i e e e e e - m—— - — = - — — — — —

FIRST CLASS
PERMIT NO. 1020
SANTA CLARA
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States. Postage will be paid by

Publications Manager, Product Support Group
Hewlett-Packard Company

General Systems Division

5303 Stevens Creek Boulevard

Santa Clara, California 95050

- e - — —— - ——— - —— — —en e - - - = m S e S s W Aee Smm mam m— wm G T e mme e e en e e e e e e M - e —

HEWLETT @

Sales and service from 172 offices in 65 countrie
5303 Stevens Creek Blvd., Santa Clara, California 95050

PACKARI

Part No. 32105-90002
Printed in U.S.A. 11/76

