S

ms
ter Syste
Compu

HP 3000

SHtey

N %?&%G%B“ NG
A NENG
O ‘? ??‘

)

HP 3000 Computer Systems

IMAGE

Data Base Management System

Reference Manual

i

HEWLETT hp, PACKARD

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA 95050

Printed in U.S.A. 4/78
Changed: 9/78

Part No. 32215-90003
Product No. 32215B

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright ©1978 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and the dates when pages were changed in updates to that
edition. Within the manual. any page changed since the last edition has the date the changes were made on the bottom of the
page. Changes are marked with a vertical bar in the margin. When an update is incorporated in a subsequent reprinting of the
manual, these bars are removed.

First Edition. Apr 1978
Changed Pages Effective Date Changed Pages Effective Date
ilithruv Sept 1978 540thrubd42 Sept 1978
viithrux Sept 1978 549 thrub50 Sept 1978
23thru2-b Sept 1978 554 . e Sept 1978
216 . . Sept 1978 6-1thru6-6 Sept 1978
35thrud6a Sept 1978 6-8 . Sept 1978
318 . Sept 1978 6-14 . . . Sept 1978
3-21thrud-23 Sept 1978 6-16 thru6-16e. Sept 1978
4-1thrud-6 Sept 1978 6-18thru6-29 Sept 1978
48 . Sept 1978 7-3athru74 Sept 1978
4-10thru4-21 Sept 1978 T6 . e Sept 1978
4-23thru4-25 L. Sept 1978 810 Sept 1978
4-29thrud-34 Sept 1978 A9thru A-12. Sept 1978
4-37thrud-50 Sept 1978 Al4thru A-15. Sept 1978
50 e Sept 1978 A-1l7TthruA-22a Sept 1978
511thrub-14 Sept 1978 A25thru A-26. Sept 1978
5-25thrud-2ba. Sept 1978 G-l Sept 1978
5-29thrub-32, Sept 1978 DlthruD-2....... Sept 1978

iti

PRINTING HISTORY

New editions «tv printed when extensive changes are made to the manual. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The edition printing
date on the titie page and back cover of the manual changes only when a new edition is published. When the manual is
reprinted, the current update, if any, is incorporated into the manual. No new content is added to the manual; neither the
printing date on tie title page nor back cover, nor the edition number change. The date of the incorporated printing is added
to the back cover.

The software product part number printed beside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes. and
con\'erse]_\'l manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual updates.

First Edition. Apr1978 32215B.00.00
Update #1 Sep1978 32215B.01.00

PREFACE

This manual describes the IMAGE/3000 Data Base Management System for HP 3000 computers*. It
is the reference document for all persons involved in designing and maintaining a data base and the
applications programmers who write programs to access a data base.

Designers of IMAGE data bases will find knowledge of the HP 3000 Multiprogramming Executive
(MPE) operating and file systems useful in determining the amount of system resources, such as disc
space and computation time, needed to maintain a specific data base. Because access to IMAGE data
bases requires the use of a host programming language, applications programmers need familiarity
with at least one of the programming languages available on the HP 3000 computer: COBOL,
FORTRAN, SPL, BASIC, or RPG.

In addition to this manual, you may need to consult the following manuals:

Manual

BASIC/3000 Compiler Reference Manual

BASIC Interpreter Reference Manual
COBOL/3000 Reference Manual

Console Operator’s Guide

EDIT/3000 Reference Manual

Error Messages and Recovery Manual

FORTRAN Reference Manual

General Information Manual

MPE Commands Reference Manual

MPE Intrinsics Reference Manual

QUERY Reference Manual

RPG/3000 Compiler Reference and Application Manual
System Manager/System Supervisor Manual
Systems Programming Language Reference Manual
DS/3000 Reference Manual

Machine Instruction Set Manual

Part Number

32103-90001
30000-90026
32213-90001
30000-90013
03000-90012
30000-90015
30000-90040
30000-90008
30000-90009
30000-90010
30000-90042
32104-90001
30000-90014
30000-90025
32190-90001
30000-90022

*For 3000 systems which are operating with MPE-C, refer to the IMAGE Reference Manual
(30000-90041).

CONVENTIONS USED IN THIS MANUAL

NOTATION

[l

italics

underlining

superscript C

return

linefeed

upper case

DESCRIPTION

An element inside brackets is optional. Several elements stacked inside a pair of brackets means
the user may select any one or none of these elements.

Example: [g:l user may select A or B or neither

When several elements are stacked within braces the user must select one of these elements.
A

Example: B} user must select A or B or C.
C

Lowercase italics denote a parameter which must be replaced by a user-supplied variable.

Example: CALL name
name one to 15 alphanumeric characters.

Dialogue: Where it is necessary to distinguish user input from computer output, the input is
underlined.

Example: NEW NAME? ALPHA1

Control characters are indicated by a superscript C
Example: Y€

return in italics indicates a carriage return
linefeed in italics indicates a linefeed

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted.

Words in upper case appearing in format statements must appear exactly as shown.

Example: SETS:

vi

CONTENTS

Section I Page
INTRODUCTION
What is a Data Base and Why Use One? 1-1
HowtoUseIMAGE. 14
How to UsethisManual 14
Data Base Personnel. 1-6
Section 11 Page
DATA BASE STRUCTURE AND PROTECTION
DataElements 2-1
Dataltems. 2-1
Compound Dataltems. 2-2
DataTypes. i 2-2
DataEntries. 2-2
DataSets. i 2-2
Data Set Types and Relations 2-2
Master DataSets 2-2
Detail DataSets 2-3
Paths. 2-5
Automatic and Manual Masters 2-5
Example 2-6
Manual vs. Automatic DataSets. 26
Primary Paths. 2-6
SortItems00, 2-7
The STORE DataBase 2-7
DataBase Files. 2-10
RootFile. 2-10
DataFiles 2-10
RecordSize 2-10
Blocks. 2-10
Protection of the DataBase. 2-11
Privileged File Protection 2-11
Account and Group Protection 2-11
User Classes and Passwords 2-11
Read Class Lists and Write Class Lists 2-12
Access Modes and Data Set Write Lists 2-13
Granting a User Class Access to a Data Element. . . .2-13
Examples. 2-15
Users Classes and Locking. 2-16
Protection in Relation to Library Procedures 2-16
Protection Provided by the IMAGE Utilities. 2-16
Section III Page
DEFINING A DATA BASE
Data Base Description Language. 3-1
Language Conventions 3-1
Schema Structure 3-2
Password Part............................ 3-3
TItemPart. 34
DataltemLength 34
IMAGE Data Types and Program Language
DataTypes. . . . oo v i i it e e et e e e 3-5
DataItemsof TypeP................... 3-6
Complex Numbers. 3.7
QUERY and Data Types. 3-7
SEP 1978

vii

Data Item Identifiers 3-7
Set Part (Masters) 3-8
Set Part (Details). 3-10

Master and Detail Search Items 3-11

Data Set Identifiers 3-11
Schema Processor Operation 3-12

Creating the Textfile 3-13

The Data Base Creator 3-13
Schema Processor Commands 3-15

Continuation Records 3-15

$PAGECommand. 3-16

S$TITLECommand 3-17

$CONTROL Command 3-18

Selecting the Block Size 3-19
Schema Processor Output 3-20

Summary Information 3-20

SchemaErrors 3-22
Schema Processor Example 3-22
Section IV Page
USING THE DATA BASE
Openingthe DataBase 4-2

Data Base Control Block. 4.2

User Local Control Block 4-2

Passwords it 4-2a

AccessModes 4-2a

Concurrent AccessModes 4-3
Data Base Operations. 4-4
Selecting an AccessMode 4-5
Dynamic Locking 4-6
Entering Data in the DataBase. 4-6

Sequence for Adding Entries 4-7

Access Mode and User Class Number. 4.7

Search Items. 4-8
ReadingtheData. 4-8

CurrentPath. 4-8

ReadingMethods. 4-8

Directed Access. i 4-10

Locking. 4-10
Serial Access. e 4-10
Locking. 4-10
Calculated Accesscuu... 4-11
Chained Access. i, 4-11
Locking. 4-11

Re-reading the Current Record 4-11a
UpdatingData 4-11a

Access Modes and User Class Numbers. 4-11a
Deleting Data Entries. - .4-12

Access Modes and User Class Numbers. 4-12
Using the Locking Facility 4-13

Lock Descriptors. 4-13

How LockingWorks. 4-13a

Conditional and Unconditional Locking. 4-13b

Access Modes and Locking 4-13b

Automatic Masters. 4-13b

LockingLevels 4-13b

CONTENTS (continued)

Deciding on a Locking Strategy 4-13c
Choosing a Locking Level 4-13c
Locking at the Same Level 4-13c
Length of Transaction 4-13c
Locking During User Dialog. 4-13d
Choosing a Data Item for Locking 4-13d
Examples of Using the Locking Facility. 4-13d
Issuing Multiple Calls to DBLOCK 4-13f
Releasing Locks 4-13¢g
Obtaining Information About the Data Base Structure . .4-14
Special Uses of DBINFO. 4-15
Closing the Data Base ora DataSet. 4-15
Checking the Status of a Procedure. 4-15
Interpreting Exrors. 4-16
Abnormal Termination. 4-16
Using the IMAGE Library Procedures 4-17
Intrinsic Numbers, 4-17
Data Base Protection 4-17
Unused Parameters 4-17
The Status Array. 4-17
DBCLOSE 4-18
Rewinding and Closing DataSets 4-18
DBDELETE. 4-20
Master DataSets 4-20
Detail DataSets 4-21
Data Set Internal Information 4-21
DBERROR 4-22
Using the DBERROR Messages 4-22
DBEXPLAIN 4-26
Message Format 4-26
DBFIND e 4-29
Data Set Internal Information 4-29
DBGET. 4-31
Data Set Internal Information 4-33
DBINFO i 4-34
DBLOCK. 4-38
Lock Descriptor Array Format. 4-38a
Validity Checking of Data Item Values 4-38d
DBOPEN. e 4-40
Opening a Data Base More Than Once. 441
DBPUT e 443
Master DataSets 4-44
Detail DataSets 4-46
Data Set Internal Information 4-46
DBUNLOCK i 447
DBUPDATE. e e e 4-48
Locking. e 4-49
Data Set Internal Information 4.50
Section V Page
LANGUAGE CONSIDERATIONS AND EXAMPLES
COBOLExamples. 5-2
OpenDataBase. 5-2
AddEntry 5-3
Read Entry (Serially). 5-4
Read Entry (Directly) 5-4

viii

Read Entry (Calculated). 5-5
Read Entry (Backward Chain) 5-6
UpdateEntry 5-7
Delete Entry. oL 5-8
Lock and Unlock (DataBase) 59
Request Data Item Information. 5-9
Rewind DataSet. 5-10
Close DataBase. 5-10
PrintError. 5-10
Move Errorto Buffer. 5-11
Sample COBOL Program. 5-11
FORTRAN Examples. 5-16
OpenDataBase. 5-16
AddEntry 5-17
Read Entry (Serially) 5-18
Read Entry (Directly) 5-19
Read Entry (Calculated). 5-20
Read Entry (Forward Chain). S...0-21
UpdateEntry, 5-23
Delete Entry. 5-24
Lock and Unlock (DataBase), 5-25
Lock (Data Entries). 5-25a
Request Data Set Information 5-26
Rewind DataSet. 5-27
Close DataBase. 5-27
PrintError. 5-28
Move Errorto Buffer 5-28
SPL Examples. 5-29
BASIC Examples. 5-40
String Variables. oL 5-42
Type-INTEGER Expressions as Parameters 5-42
The Readlist, Writelist and Descriptlist Parameters . .5-42
The Status Parameter. 5-43
OpenDataBase. 5-43
AddEntry 5-44
Read Entry (Serially). 5-45
Read Entry (Calculated). 5-46
Read Entry (Backward Chain) 5-47
Update Entry i 5-48
Delete Entry (With Locking and Unlocking). 5-49
Request Data Set Information 5-51
RewindDataSet..................... ... 5-52
Close DataBase. 5-52
PrintError. 5-53
Move Errorto Buffer. 5-53
RPGExamples oot 5-54
RPG Programs and IMAGE 5-54
Section VI Page

CREATING AND MAINTAINING THE DATA BASE
Using the Utilities to Restructure the Data Base 6-2
DesignChanges. 6-2
Backup and Recovery. 6-3
Method1........... e 6-3
Method 2. i 6-4
Method 3.t 6-4
SEP 1978

CONTENTS (continued)

Recovering Changes Made after Backup 6-4
Salvaging Data 6-4
Activating and Deactivating a Data-Base-Access File . 6-5
Utility Program Operation. 6-5
Backup Files. 6-5
Error Messages 6-5
DBUTIL e 6-6
DBUTIL ACTIVATE. 6-7
Unexpected Results. 6-7
DBUTIL CREATE. 6-8
DBUTIL DEACTIVATE. 6-10
DBUTILERASE. 6-11
DBUTILEXIT 6-12
DBUTILHELP. 6-13
DBUTILPURGE. 6-14
Unexpected Results. 6-14
DBUTILSET 6-16
DBUTILSHOW 6-16a
Format of Show Locks List. 6-16¢
DBUTIL VERIFY. 6-17
DBSTORE. 6-18
Operation 6-18
Console Messages. 6-18
DBRESTOR. 6-20
Operation 6-20
Console Messages. 6-20
DBUNLOAD, 6-22
Operation 6-22
Console Messages. 6-25
UsingControl Y 6-25
Writing Errors. 6-25
DBLOAD. 6-27
Operation 6-27
Console Messages. 6-29
UsingControl Y 6-29
Section VII Page
INTERNAL STRUCTURES AND TECHNIQUES
Structure Elements of Data Sets. 7-1
Pointers. 7-1
DataChains 7-1
MediaRecords 7-1
Media Records of Detail Data Sets 7-1
ChainHeads. 7-2
Primary Entries., ... 7-2
Secondary Entries. 7-2
Synonym Chains. 7-2
Media Records of Master Data Sets. 7-2

SEP 1978

Blocksand Bit Maps. 7-3
Run-Time IMAGE Control Blocks 7-3a
Local Data Base Access. 7-3a
Remote Data Base Access. 7-3a
Control Block Sizes 7-3b
Internal Techniques. 7-4
Primary Address Calculation 74
Migrating Secondaries. 7-5
Space Allocation for Master Data Sets. 7-5
Space Allocation for Detail Data Sets 7-5
Locking Internals 7-6
Section VIII Page
USING A REMOTE DATA BASE
Access through a Local Application Program 8-1
Method 1. 8-2
Method 2. 8-3
Method 3. 8-4
Filename, 8-8
User Identification. 8-8
Example 8-8
Activating a Data-Base-Access File. 8-9
Deactivating a Data~Base~Access File 8-9
Referencing the Data Base. 8-10
Example L 8-10
QUERY. 8-11
Appendix A Page
ERROR MESSAGES
Schema Processor Messages A-1
Library Procedure Error Messages. A-8
Utility Error Messages A-20
Appendix B Page
RESULTS OF MULTIPLE ACCESS B-1
Appendix C Page
SUMMARY OF DESIGN CONSIDERATIONS C-1
Appendix D Page
MULTIPLE RIN SPECIAL CAPABILITY D-1
Sort Sequence for Lock Descriptors D-2
Conditional Locks. D-2
Remote DataBases D-2

ILLUSTRATIONS

Title Page Title Page
IMAGE Overview 1-5 Inventory Update Program 5-12
CUSTOMER Duta Set Sample 2-1 Sample RECEIVE Execution. 5-15
Master and Detail Data Set Relations. 2-3 Supplier Modification Program. 5-30
Master and Detail Data Sets Example 24 Sample SUPPLMOD Execution 5-33
Adding an Entry to a Sorted Chain. 2-8 Purchase Transaction Display Program. 5-34
STORE Data Setsand Paths 2-9 Sample SHOWSALE Execution 5-38
Sample Entries for STORE Data Sets 29 Sample RPG Program. 5-55
Data Base Definition Process e e 3-1 DBUNLOAD Tape, Sequence of Entries 6-23
Sample Schema Creation Session 3-14 Media Record for Detail Entry. 7-1
Schema Processor Batch Job Stream 3-15 Media Record for Primary Entry 7-3
Data Set Summary Table 3-20 Media Record for Secondary Entry. 7-3
STORE Data Base Schema 3-23 Block with Blocking Factorof Four 7-3
Sample Data Entries from STORE Data Base 4.7 Using a Remote Program. 8-1
Reading Access Methods (DBGET Procedure). 49 UsingMethod 1. 8-2
Lock Descriptor List 4-13a UsingMethod 2. 8-3
Sample DBEXPLAIN Messages. 4-28 UsingMethod 3. 8-4
qualifier Array Format. 4-38b Preparing a Data-Base-Access File 8-10
Lock DescriptorFormat 4-38b Using a Data-Base-Access File. 8-11
TABLES

Title Page Title Page
Sample Read/Write Class Lists 2-12 Lock Descriptor Fields. 4-38¢
Granting Capability to UserClass 11. 2-13 DBLOCK Condition Word Values. 4-38d
Enabling a User Class to Perform a Task. 2-14 DPOPEN Condition Word Values 4-42
Sample Read and Write Class Lists 2-15 Special List Parameter Construets. 4-44
Additional Conventions 3-2 DBPUT Condition Word Values 4-45
Type Designators.c.c0... 3-5 DBUNLOCK Condition Word Values 4-47
IMAGE Type Designators and Programming Languages . 3-6 DBUPDATE Condition Word Values. 4-49
ExamplesofanItem Part 3-7 BIMAGE Procedure Calls 5-40
Schema Processor Files. 3-12 BIMAGE Procedure Parameters 5-41
RUN and FILE Commands, Examples. 3-13 Additional BIMAGE Condition Word Values 5-43
Data Set Summary Table Information. 3-21 Formulas for Approximating Control Block Sizes 7-4
IMAGE Procedurescuuuuo... 4-1 IMAGE Schema Processor File Errors A-2
Access Mode Summary. 4-3 IMAGE Schema Processor Command Errors. A-3
Locking in Shared-access Environments. 4-13f IMAGE Schema Syntax Errors. A4
Calling an IMAGE Procedure. 4-17 IMAGE Library Procedure File System and

DBCLOSE Condition Word Values 4-19 Memory Management Errors A-10
DBDELETE Condition Word Values. 4-21 IMAGE Library Procedure Calling Errors. A-11
DBERROR Messagesuuveinennnn.. 4-23 IMAGE Library Procedure Communication Errors. . . A-15
DBEXPLAIN Message Format 4-27 IMAGE Library Procedure Exceptional Conditions . . A-16
DBFIND Condition Word Values 4-30 IMAGE Library Procedure Abort Condition Messages. A-19
DBGET Condition Word Values. 4-33 IMAGE Utility Program Conditional Messages. A-20
mode and qualifier Values and Results. 4-35 IMAGE Utility Program Unconditional Messages. . . . A-25
DBINFO Condition Word Values 4-37 Actions Resulting from Multiple Access of Data Bases . . B-2

SEP 1978

INTRODUCTION

IMAGE is a set of programs and procedures which you can use to define, create, access, and maintain
a data base.

WHAT IS A DATA BASE AND WHY USE ONE?

A data base is a collection of logically-related files containing both data and structural information.
Pointers within the data base allow you to gain access to related data and to index data across files.

The primary benefit derived from use of the IMAGE data base management system is time savings.
These savings are typically manifested in the following areas:

File Consolidation

Most information processing systems that serve more than one application area contain
duplicate data. For example, a vendor’s name may appear in an Inventory File, an Accounts
Payable File, and an Address Label File.

The data stored in these three files probably varies slightly from file to file, resulting not only
in wasted file space but also inconsistent program output. Redundant and inconsistent infor-
mation severely dilutes any system’s capacity to deal with large amounts of data.

File consolidation into a data base eliminates most data redundancy. Through the use of
pointers, logically related items of information are chained together, even if they are physically
separated. In the example of vendor names and addresses, only one set of data would be

stored. Through the use of logical associations, the data could be used by any program needing
it. Since there is only one record to retrieve and modify, the work required for data mainte-
nance is greatly reduced. Finally all reports drawn from that item of information are consistent.

Program File Independence

Conventional file structures tend to be rigid and inflexible. The nature of conventional file
management systems require that the logic of application programs be intricately interwoven
with file design. When it becomes necessary to alter the structure of a file, a program must be
written to change the file, and programs that access the file must be changed to reflect the file
change. Since change is the rule rather than the exception in data processing, a large percent-
age of total time and manpower is spent reprogramming.

IMAGE allows the data structure to be independent of the application program. Data item
relationships are independently defined. Changes in the data base structure need only be
incorporated into those programs that manipulate the changed data. User programs need
view only that portion of the data base description that pertains to each program’s processing
requirements. Since all references to the data base are resolved at execution time, only those
programs affected by changes to the data base description need be changed.

11

Versatility

Conventional file organization techniques allow limited access to the data they contain. Most
structures allow single key access with additional relational access available only through the
implementation of extensive application level programming support.

IMAGE allows data to be accessed with multiple keys as well as through a variety of other
access methods.

Rapid Retrieval

Conventional file organization frequently requires the use of multiple file extracts, sorts and
report programs to produce meaningful output data across file boundaries. One-time informa-
tion requests frequently require weeks to implement, during which time the usefulness of the
requested data may have eroded considerably.

QUERY, HP’s Data Base Inquiry Facility, or user-written inquiry programs which use the
IMAGE procedures, allow instant interrogation of the data base by individuals with access to
the system.

Data Security

Conventional file management systems contain extremely limited data security provisions.
Access to computer readable data may be denied to individuals with system access only

by providing physical protection for the media upon which the file is stored; for example, the
use of a data vault for storage of sensitive data stored on magnetic tape or disc.

IMAGE provides security at the account, file group, and data element level. The implementa-
tion of security at the item level allows sensitive data to be stored on-line under the control of
IMAGE, a data base manager or designer, and system manager, with minimal regard for addi-
tional security provisions. IMAGE security provisions can limit even programmer or operator
access to extremely sensitive information.

While implementing a new application system, IMAGE can be expected to save time in the following
ways:

N

Program Development

The data base structure can be defined and built without the use of special purpose application
level programming. Since control of the linkage portion of the data base is under IMAGE soft-
ware control, the programmer need not be concerned with testing the structure and can concen-
trate on the functional programming task at hand. If available, QUERY can be used to build
test data as well as to interrogate the results of program and system tests. This feature elimi-
nates the requirement that file-related programs be completed before meaningful functional
programs can be written. It is no longer necessary to hold up functional program testing until
file building or file maintenance programs are completed. In this manner, more modules of a
given system can be tested in parallel.

A specific benefit in the COBOL environment is in the area of program coding time. The pro-
grammer need only define File Division entries for those files which exist outside the control
of IMAGE. Typically, such files are concerned with original entry into the processing cycle
(data entry files) and with report files. All data under the control of IMAGE is implicitly de-
fined in every program which accesses the data base. The programmer need not code the data
division entries associated with anything except the detail data used by a given program.

1-2

The time-savings generated in correct data definition the first time the program is coded, as well
as in the correct description of the physical location of the data to be processed, will reap signif-
icant benefits in the program test cycle.

Program Maintenance

Throughout the life of a system, processing requirements evolve as the usefulness of the data is
explored. As file organization concepts change with the needs of the application, some data re-
structuring can be done with little impact on existing programs. Changes to the structure of

an existing data base affects only those programs that process the changed data; no other pro-
grams in the system need be recompiled to reflect the new data base structure.

The evolution of the data base is not limited by the need to balance the cost of changing an
existing system against the benefits to be derived from the new structure. It is not necessary
to do a “where-used’’ evaluation on a data item carried in multiple files to assess the impact
of a data change on existing systems.

Finally, the accessibility of data need not be limited by design decisions made during initial
system design. The structure of a data base can evolve with the needs of the application user.
The application designer no longer has to attempt to anticipate the needs of the user across
the full life of the system.

Special Information Needs

The requirement for one-time information in a format that has never been requested before is
no longer the bane of data processing users. The user with a special data requirement can get
to any subset of information on the data base, frequently without the intervention of a
programmer.

Volatile analytical data requirements can be filled in a minimal amount of time by the people
who need the data. The time savings in programming overhead and report specification genera-
tion can be enormous.

In summary, effective use of IMAGE can remove a large portion of the overhead associated with
integrated system design from the shoulders of application analysts and programmers. It affords the
opportunity to channel system design talents into functional rather than structurally-supportive
design tasks.

1-3

HOW TO USE IMAGE

Figure 1-1 summarizes the use of IMAGE in the following steps:

(1) DESIGN OF THE DATA BASE

A data base designer (system analyst) or team of designers determine what data is required by
all the application projects that will share the data base. They determine which data should
be protected from unauthorized access and how the data will be used. These design consider-
ations and others described in Appendix C determine the data base content and structure.

(2) DESCRIPTION OF THE DATA BASE

Once the design is complete it is described using the IMAGE data base description language.
This external description is called a schema. The data base creator processes the schema
using the IMAGE Schema Processor which creates an internal description of the data base
called a root file. Section III contains the description language syntax and operating instruc-
tions for the Schema Processor.

(3) CREATION OF THE DATA BASE FILES

DBUTIL, an IMAGE utility program, builds the data base files according to requirements of
the data base structure specified in the root file. The files contain no data initially.

(4) STORAGE AND RETRIEVAL OF THE DATA

IMAGE provides a set of library procedures which can be called from COBOL, FORTRAN,
SPL, or BASIC language application programs. The data base can also be used with RPG
programs but the Report Program Generator issues the calls to IMAGE procedures. The
application project members can design and write programs in the programming language
which best suits their needs and call the IMAGE procedures to store, modify, retrieve, and
delete data. These procedures rapidly locate the data, maintain pointer information, manage
the allocated file space, and return status information about the activity requested. Each
procedure is described in detail in Section IV and examples of calling them from the different
languages are given in Section V.

(5) MAINTENANCE OF THE DATA BASE

The IMAGE utility programs may be used to maintain backup copies of the data base and per-
form other utility functions such as restructuring the data base. These programs are described
in Section VI. You may also use the IMAGE procedures to write your own maintenance

programs.

HOW TO USE THIS MANUAL

The information in this manual is presented in the order in which you will begin to use the various
IMAGE modules. A text discussion of the overall purpose of a module and definitions of terms used
to describe the module precede the reference specifications which are identified by large headings to

enable you to locate them easily.

1-4

(1) Data Base Design and (2) Definition

@Storage and Retrieval of Data

Data Base Designers Design
Schema i
BEGIN DATA BASE X;
PASSWORDS:

TS

Data Base

Application
Programmers

L¥ oy

Data Base Application
Users

Creat:/ END
Listing

/ of

Schema

SCHEMA
PROCESSOR

@ Data Base Creation

Data Base Creator

A

DBUTIL
Utility
(CREATE
Command)

Maintenance (Backup and Recovery) |

DBSTORE /
Utility
Backup DBRESTOR
Tape Utility

7N

Data Base Creator
or Other User with
Maintenance Word

7N

DATA BASE '

Application
Programs

IMAGE
Procedures

/7"

Maintenance (Restructuring)

"

e

DBUNLOAD
Utility

Data
Entries
Tape

DBLOAD
Utility

AR

Data Base Creator
or Other User with
Maintenance Word

Figure 1-1.

IMAGE Overview
1-5

Each section assumes a knowledge of the material presented in preceding sections. Therefore, it is
recommended that you read the manual the first time from beginning to end, possibly skipping the
discussion of topics which are already familiar to you.

The internal structure of IMAGE elements and methods used to perform certain functions are pre-
sented in the last section, Section VII. This section can be referenced at any time if you want to
know exactly how something is accomplished by IMAGE, but it is not necessary to understand the
material in this section to use IMAGE.

If your system has Distributed System (DS/3000) capability, refer to Section VIII for information
about accessing a data base residing on another HP 3000 system.

Appendix A contains a description of the error messages issued by the various IMAGE modules
and Appendix B provides additional information about sharing the data base. A summary of
important considerations when designing the data base is provided in Appendix C.

The conventions used in this manual are described on page vi.
DATA BASE PERSONNEL

The terms data base manager, data base creator, and data base designer may refer to one or more
persons. Designer refers to anyone who cooperates in the design of the data base. The creator is
defined by the MPE user name, account, and group used when executing the Schema Processor to
create the root file and when executing the DBUTIL program to create the data base files. The
data base manager is responsible for coordinating data base use. This person knows the passwords
and can authorize others to use the data base by making a password available if it is needed for a
particular application. The data base manager is also responsible for system backup and recovery.
The data base creator and manager may be the same person. If not, the manager will probably

have access to the user name and account in which the data base resides or to the maintenance word
which is defined in Section VI.

1-6

DATA BASE STRUCTURE
AND PROTECTION |[

An understanding of the data base structure is necessary before the data base can be designed. This
section describes the various data elements and their relationships

DATA ELEMENTS

A data base is a named collection of related data. It is defined in terms of data items and data sets.
Figure 2-1 contains a sample of one data set from a data base named STORE which will be used as
an example throughout this manual. The data set is named CUSTOMER. The information in this
data set pertains to the customers of a business. All the data about a particular customer is con-
tained in a data entry. Each piece of information such as account number or last name is a data

item.
DATA ITEMS

A data item is the smallest accessible data element in a data base. Each data item consists of a value
referenced by a data item name, typically selected to describe the data value. In general, many data
item values are referenced by the same data item name, each value existing in a different data entry.

For example, in figure 2-1, the data item FIRST-NAME has the value JAMES in one data entry and
ABIGAIL in another data entry.

Data Item Names
FIRST-INITIAL CREDIT-RATING

Data ACCOUNT LAST-NAME NAME j STREET-ADDRESS CITY STATE ZIP {
Item
Value\£12345678 MILLER JAMES L. |1645 MARSHALL AVENUE | GLENDALE AZ| 85301 | 3.4

95430301 | BRIGHTON | ABIGAIL | S. |72 E. HAMPTON DRIVE CARMEL CA [93921] 6.7
Data
Entries

54777833 |GRAZIANO | ISABEL | M. | 113 SHASTA LANE SANTA CLARA CA [95050 | 5.8

Figure 2-1. CUSTOMER Data Set Sample
2-1

COMPOUND DATA ITEMS. A compound data item is a named group of identically defined, adja-
cent items within the same data entry. Each occurrence of the data item is called a sub-item and each
sub-item may have a value. A compound item is similar to an array in programming languages such

as FORTRAN and BASIC. A data entry might contain a compound item named MONTHLY-SALES
with 12 sub-items in which the total sales for each month are recorded. (If you plan to use QUERY,
avoid using compound data items.)

DATA TYPES. The data base designer defines each data item as a particular type depending on
what kind of information is to be stored in the item. It may be one of several types of integers,
real or floating-point numbers, or ASCII character information. The data types are described in
detail in the next section and summarized in tables 3-2 and 3-3.

DATA ENTRIES

A data entry is an ordered set of related data items. You specify the order of data items in an entry
when you define the data base. Data entries may be defined with at most 127 data item names,
none of which is repeated. The length of the data entry is the combined length of the data items it
contains.

DATA SETS

A data set is.a collection of data entries where each entry contains values for the same data items.
For example, the CUSTOMER data set contains entries composed of the same nine data items:
ACCOUNT, LAST-NAME, FIRST-NAME, INITIAL, STREET-ADDRESS, CITY, STATE, ZIP,
and CREDIT-RATING. Normally, each data set is associated with some real world entity such as
orders, customers, employees, and so forth.

Each data set is referenced by a unique data set name. Each data set is stored in one disc file con-
sisting of storage locations called records. When you describe the data base with the data base
definition language, you specify the capacity, number of records, of each data set. Each record is
identified by a record number which can be used to retrieve the entry within it.

DATA SET TYPES AND RELATIONS

An IMAGE data set is either a master or a detail data set. Figure 2-2 illustrates the relations between
and types of six data sets in the STORE data base. Master data sets are identified by triangles and
detail data sets by trapezoids. This convention is useful when diagramming the data base design.

MASTER DATA SETS

Master data sets are characterized in the following ways:

® They are used to keep information relating to a uniquely identifiable entity; for example, infor-
mation describing a customer. The CUSTOMER data set in figure 2-3 illustrates this type of
information.

® They allow for rapid retrieval of a data entry since one of the data items in the entry, called
the search item, determines the location of the data entry. A search item may not be a com-

pound item. In figure 2-3, the CUSTOMER data set contains a search item named ACCOUNT.
The location of each entry is determined by the value of the customer’s account number.

2-2

SUP-MASTER
Master

PRODUCT
Master

CUSTOMER
Master

INVENTORY
Detail

SALES
Detail

Figure 2-2. Master and Detail Data Set Relations

° They can be related to detail data sets containing similar search items and thus serve as indexes
to the detail data set. The ACCOUNT search item in the CUSTOMER master data set is related
to the ACCOUNT search item in the SALES detail data set. The entry for a customer named
Abigail Brighton with account number 95430301 serves as an index to two entries in the SALES
data set which contain information about purchases she made.

Although there are unused storage locations in the CUSTOMER data set, IMAGE disallows any
attempt to add another data entry with account number 95430301. The search item value of each
entry must remain unique. The values of other data items in the master data set are not necessarily
unique. This is because they are not search items and are not used to determine the location of
the data entry.

DETAIL DATA SETS
Detail data sets are characterized in the following ways:

o They are used to record information about related events; for example, information about all
sales to the same account.

® They allow retrieval of all entries pertaining to a uniquely identifiable entity. For example,
account number 95430301 can be used to retrieve information about all sales made to Ms.
Brighton.

The storage location for a detail data set entry has no relation to its data content. When a new data
entry is added to a detail data set, it is placed in the first available location.

Unlike a master data set which contains at most one search item, a detail data set may be defined
with from zero to 16 search items. The values of a particular search item need not be unique.
Generally, a number of entries will contain the same value for a specific search item.

The SALES data set contains four search items: ACCOUNT, STOCK#, PURCH-DATE, and DELIV-

DATE. Two entries in the example in figure 2-3 have identical values for the ACCOUNT item ir the
SALES data set.

SEP 1978 2-3

MANUAL MASTER DATA SET: CUSTOMER

FIRST- CREDIT-
ACCOUNT LAST-NAME NAME INITIAL STREET-ADDRESS CITY STATE zIP RATING
12345678 | MILLER JAMES L.| 1645 MARSHALL AVENUE |GLENDALE AZ| 85301 |3.4
— 95430301 | BRIGHTON | ABIGAIL | S.| 72 E. HAMPTON DRIVE CARMEL cA| 93921 |67
54777833 | GRAZIANO | ISABEL | M.| 113 SHASTA LANE SANTA CLARA|CA| 95050 | 5.8
DETAIL DATA SET: SALES
ACCOUNT STOCK # QUANTITY PRICE TAX TOTAL PURCH-DATE DELIV-DATE
95430301 |35624AB3 1 450 | 27 477 90575 90575 -
A
95430301 | 35624AC5 3 1530 | 93 | 1623 11576 11676
12345678 | 35624AB3 2 900 | 54 954 92775 92875 s
A
DATE
92875
AUTOMATIC MASTER DATA SET: DATE-MASTER 90575
92775
Figure 2-3. Master and Detail Data Sets Example
2.4 SEP 1978

IMAGE stores pointer information with each detail data entry which links together all entries with
the same search item value. Entries linked together in this way form a chain. A search item is de-
fined for a detail data set if it is desired to retrieve together all entries with a common search item
value, in other words, all entries in a chain. The SALES entries with ACCOUNT equal to 95430301
form a two-entry chain. A single chain may consist of at most 65535 entries.

PATHS

A master data set search item can be related to a detail data set search item of the same type and
size. This relationship forms a path. A path contains a chain for each unique search item value.

In figure 2-3, the ACCOUNT search item in CUSTOMER and the ACCOUNT search item in SALES
link the CUSTOMER master to the SALES detail forming a path. One chain links all SALES
entries for account number 95430301. The chain for account number 12345678 consists of one
entry. Both chains belong to the same path.

Since a detail data set can contain as many as 16 search items, it can be related to at most 16
master data sets. Note that each master to detail relationship must be relative to a different detail
search item. The SALES data set is related to the CUSTOMER, PRODUCT, and DATE-MASTER
data sets.

A detail data set may be multiply indexed by a master data set. For example, SALES is indexed
twice by DATE-MASTER. The DATE search item forms one path with the PURCH-DATE search
item and one path with the DELIV-DATE search item.

Each master data set may serve as an index, singly or multiply, to one or more detail data sets. No
master data set may be involved in more than 16 such relationships. For each such relationship,
IMAGE keeps independent chain information with each master entry. This information consists
of pointers to the first and last entries of the chain whose search item value matches the master set
entry’s search item value and a count of the number of entries in the chain. This is called a chain
head. The format of chain heads is given in Section VII. For example, the DATE-MASTER data
entries each contain two sets of pointers, one for PURCH-DATE chains and one for DELIV-DATE
chains. Chain heads are maintained automatically by IMAGE.

AUTOMATIC AND MANUAL MASTERS

A master data set may be automatic or manual. These two types of masters have the following
characteristics:

MANUAL AUTOMATIC
May be stand-alone. Need not be related to any Must be related to one or more detail data sets.
detail data set.
May contain dala items in addition to the search Must contain only one data item, the search
item. item.
You must egplicitly add or delete all entries. A IMAGE automatically adds or deletes entries
related detail dapa entry cannot be added until when needed based on the addition or dele-
a master entry with matching search item value tion of related detail data set entries. When a
has been added. When the last detail entry re- detail entry is added with a search item value
lated to a master entry is deleted, the master different from all current search item values,
entry still remains in the data set. Before a a master entry with matching search item
master Qntry can be deleted, all related de- value is automatically added. Deletions of
tail entries must be deleted. detail entries trigger an automatic deletion of

the matching master entry if it is determined
that all related data chains are empty.

SEP 1978 2-5

MANUAL AUTOMATIC

The search item values of existing master
entries serve as a table of legitimate search item
values for all related detail data sets. Thus, a
non stand-alone manual master can be used to
prevent the entry of invalid data in the related
detail data sets.

EXAMPLE. In figure 2-3, CUSTOMER is a manual master data set and DATE-MASTER is an auto-
matic master. Before the SALES entry for account 12345678 is added to SALES, CUSTOMER
must contain an entry with the same account number. However, the DATE-MASTER entries for
DATE equal to 92775 and 92875 are automatically added by IMAGE when the detail entry is
added to SALES, unless they are already in the DATE-MASTER data set.

Note that DATE-MASTER contains only one data item, the search item DATE, while CUSTOMER,
which is a manual master, contains several data items in addition to the search item.

If the SALES entry with account number 95430301 and stock number 35624 AB3 are deleted and
no other SALES entry contains a PURCH-DATE or DELIV-DATE value of 90575, the DATE-
MASTER entry with that value is deleted automatically by IMAGE.

MANUAL VS. AUTOMATIC DATA SETS
Data base designers may use:
L manual masters to ensure that valid search item values are entered for related detail entries, or

° automatic masters to save time when the search item values are unpredictable or so numerous
that manual addition and deletion of master entries is undesirable.

Whenever a single data item is sufficient for a master data set, the data base designer must decide
between the control of data entry available through manual masters and the time-savings offered
by automatic masters. For example, since DATE-MASTER is an automatic data set, erroneous
dates such as 331299 may be entered accidentally.

PRIMARY PATHS

One of the paths of each detail data set may be designated by the data base designer as the primary
path. The main reason for designating a path primary is to maintain the entries of each chain of
the path in contiguous storage locations. You accomplish this by occasionally using the
DBUNLOAD utility program to copy the data base to tape, the DBUTIL utility program to erase
the data base, and the DBLOAD program to reload the data base from the tape. When the data
base is reloaded, contiguous storage locations are assigned to entries of each primary path chain.
Therefore, the data base designer should designate the path most frequently accessed in chained
order as the primary path. This type of access is discussed in Section IV.

A primary path also serves as the default path when accessing a detail data set if no path is specified
by the calling program. This characteristic of primary paths is described with the DBGET procedure
in Section IV,

SORT ITEMS

For any path, it is possible to designate some data item other than the search item as a sort item. If
a sort item is specified, each of the chains of the path are maintained in ascending sorted order,
based on the values of the sort item. Different paths may have different sort items, and one path’s
sort item may be another path’s search item. Only data items of type logical or character can be
designated as sort items.

For example, chains in the SALES data set composed of entires with identical ACCOUNT values are
maintained in sorted order by PURCH-DATE. When information about sales to a particular customer
is required, the SALES data entries for that customer’s account can be retrieved in sorted order ac-
cording to purchase date. (For PURCH-DATE to be a meaningful sort item, dates must be stored in
a properly collatable form such as year-month-day rather than the order shown in preceding figures.)

The sorted order of entries is maintained by logical pointers rather than physical placement of
entries in consecutive records. Figure 2-4 illustrates the way in which sorted paths are maintained
by IMAGE. When an entry is added to a detail data set it is added to or inserted in a chain. If the
path does not have a sort item defined, the entry follows all existing entries in the chain. If the
path has a sort item, the entry is inserted in the chain according to the value of that item.

If the entry’s sort item value matches the sort item values of other entries in the chain, the position
of the entry is determined by an extended sort field consisting of the sort item value and the values
of all items following the sort item in the entry. If the extended sort field matches another extended
sort field, the entry is inserted chronologically following the other entries with the same extended
sort field value. This also occurs if the sort item is the last item in the entry and its value matches
another entry’s sort item value.

When the data base content is copied to magnetic tape using the IMAGE utility program
DBUNLOAD, the pointers that define an entry’s position in a chain are not copied to the tape.
When the data is loaded back into the data base, the chains are recreated. Therefore, entries which
were previously ordered chronologically will not necessarily be in that same order. The new
chronological ordering is based on the order in which the entries are read from the tape. The
chains of a primary path are an exception; the order of these chains is preserved if the tape was
created with DBUNLOAD in the chained mode. (Section VI contains more information about
DBUNLOAD.)

NOTE

It is important to limit the use of sorted chains to paths consisting of relatively short
chains. It is not intended that sorted paths be used for multiple key sorts, or for sorting
entire data sets. These functions are handled more efficiently by user-written routines
or the MPE subsystem, Sort/3000.

THE STORE DATA BASE

Figures 2-5 and 2-6 illustrate the complete STORE data base. Figure 2-5 lists the data items that
define entries in each data set. The data type is in parentheses. (Data types are described in Sec-
tion III with the item part of the schema.) Paths are indicated by arrows. CUSTOMER, SUP-
MASTER, PRODUCT, and DATE-MASTER are master data sets and SALES and INVENTORY
are detail sets. Figure 2-6 shows a sample entry from each data set except DATE-MASTER for
which it shows two sample entries.

ADD ENTRY

o sort / \ sort item

item 1S
last item
sort item \
Add to end of fieﬂf Iastt Sort by item
chain. 'tem I entry only.
Sort by extended @ If matches other
field. sort item, add
chronologically.
If matches other
extended field,
add chronologically.
Data Entry: data item .. | sortitem data item A data item
N J
Y
extended field
Examples: Chains (Logical order)

@ 222 B

333 H & entries
11 2 7 in existing chain (no sort item)
444 B

2227 |<—————— newentry

@ 111 Z |«————— sort item and subsequent item in existing chain
222 A |<¢———— new entry
222 B \
333 H |«@—————— sortitem and subsequent item in existing chain
444 B /
@ 11 2 \
sort item and subsequent item in existing chain
22 A |l
222 A |«—— new entry (matches existing extended field)
333 H [e—u
sort item and subsequent item in existing chain
444 B |@—

sort item last in entry
222 |a—

222 |<—————— newentry

333 [e—

444

sort item last in entry

Figure 2-4. Adding an Entry to a Sorted Chain

2-8

MASTER SETS

CUSTOMER

ACCOUNT (J2)
LAST-NAME (X16)
FIRST-NAME (X10)

INITIAL (U2)
STREET-ADDRESS (X26)
CITY (X12)
: STATE (X2)
This l:wath ZIP (X6)
Sort item CREDIT-RATING (R2)
PURCH-DATE
SUP-MASTER
SUPPLIER (X16)
STREET-ADDRESS (X26) \ primary path
CITY (X12)
STATE (X2)
DETAIL SET 21P (X6) DETAIL SET
SALES
ACCOUNT W2) primary path PRODUCT INVENTORY
STOCK# (U8) <¢—————————— STOCK# (U8) > STOCK # (U8)
QUANTITY (1) DESCRIPTION (X20) ONHANDQTY (J2)
PRICE (J2) SUPPLIER (X16)
TAX (42) UNIT-COST (P8)
TOTAL (J2)

PURCH-DATE (X6)
DELIV-DATE (X6)

LASTSHIPDATE (X6)
DATE-MASTER/' BINNUM (Z2)
DATE (X6)

Figure 2-5. STORE Data Sets and Paths

MASTER SETS

CUSTOMER

89393899

CORCORAN

CLIFFORD

X.

6105 VALLEY GREEN DR.
CARMEL

CA

93921

6.732

SUP-MASTER

H & S SURPLUS
10111 SKYLINE BLVD)

PETALUMA
CA
DETAIL SET 94952 DETAIL SET
SALES PRODUCT INVENTORY
89393899 - 6650D228 > 6650D22S
66500228 BASEBALL BAT 29
12 H & S SURPLUS
2000 1500

AA

2 DATE-MASTER 120775
120 2
120575 120575 /

120775 120775

Note: DATE-MASTER contains
two entries in this example.

Figure 2-6. Sample Entries for STORE Data Sets
2-9

Chains of the path formed by CUSTOMER and SALES are maintained in sorted order according to
the value of PURCH-DATE. The primary path for INVENTORY is the one defined by SUP-
MASTER and the primary path for SALES is the one defined by PRODUCT.

DATA BASE FILES

Data base elements are stored in privileged MPE disc files. In addition to the root file which contains
the data base definition, other files called data files contain the data sets.

ROOT FILE

The root file is created for the data base creator when he or she executes the Schema Processor. It
is catalogued within the creator’s log-on group and account with a local file name identical to the
data base name. Thus, the name of the root file for the STORE data base is STORE. Refer to the
MPE Commands Reference Manual for more information about MPE accounts and log-on groups.

The root file is a single-extent MPE disc file: that is, the entire file occupies contiguous sectors on
the disc. It serves as a common point of entry to and source of information about the data base.

DATA FILES

There is one data file for each data set of a data base. The size of each record and number of
records in the file are determined by the contents of the root file. The data files are created and
initialized with the IMAGE utility program, DBUTIL.

Each data file is catalogued within the same group and account as the root file. Local file names are
created by appending two digits to the local name of the root file. These two digits are assigned to
the data sets according to the order in which they are defined in the schema. For example, the
STORE data base is defined with CUSTOMER and DATE-MASTER as the first two data sets.

These data sets are in data files STOREO1 and STOREOZ2.

Each data file is physically constructed from one to 32 extents of contiguous disc sectors, as needed
to meet the capacity requirements of the file, subject to the constraints of the MPE file system.
Each data file contains a user label in a disc sector maintained and used by the IMAGE library pro-
cedures. The label contains structural pointers and counters needed for dynamic storage allocation
and deallocation.

RECORD SIZE. Record sizes vary between data files but are constant within each file. Each
record is large enough to contain a data entry and the associated IMAGE pointer information. The
amount of pointer information depends on the way the data set is defined. Pointer information is
described in Section VII. The maximum number of records in a data set file depends on the record
size, the available disc space, and the MPE file system constraints.

BLOCKS. The records in a data file are physically transferred to and from the disc in groups. Each
group involved in a single disc transfer is called a block. The number of records in each block is
called the blocking factor. The Schema Processor determines the blocking factor during creation of
the root file. Section III contains more information about block size and blocking factors in the
discussion of the set part of the schema. The format of blocks is given in Section VII.

2-10

PROTECTION OF THE DATA BASE

IMAGE prevents unauthorized persons from gaining access to the data base. It provides external
protection through the MPE privileged file, account, and group structures and, in addition, pro-
vides the data base designer and data base manager with devices for further protection of the data
base.

PRIVILEGED FILE PROTECTION

All IMAGE data base files are privileged files. (See the MPE Intrinsics Reference Manual for a descrip-
tion of the MPE privileged file capability.) Access by unprivileged processes or through most MPE
file system commands is not allowed. Therefore, non-privileged users are prevented from accidental-
ly or deliberately gaining access to the data base.

The use of MPE commands that permit copying of IMAGE files to tape, represent a potential breach
of data base privacy, and their use should be controlled. In particular, anyone who uses the
SYSDUMP, STORE, or RESTORE commands should notify the data base manager. The SYSDUMP
and STORE commands permit system supervisors, system managers and other privileged users to
copy files not currently open for output to tape. The MPE RESTORE command may purge and
replace a data base file with a different file if it has the same name and is encountered on tape.

ACCOUNT AND GROUP PROTECTION

In order to gain access to an IMAGE data base, you must be able to access the files in the account
and group in which the data base resides. The system manager and account manager manage the
security levels for accounts and groups. The system manager is responsible for creating accounts
and the account manager for creating new groups and users. (The System Manager/System Super-
visor Reference Manual contains detailed information about the maintenance of MPE accounts and
groups.)

The system and account managers can prevent members of other accounts from accessing the data
base by specifying user type AC (Account Member) for the account and group containing the data
base. They can prevent users who are members of the account, but not of the group, containing
the data base from accessing it by specifying GU (Group User) for the group. On the other hand,
they can allow access from other accounts by specifying user type ANY at both the account and
group levels.

These MPE security provisions provide an account and group level of security controlled by the
system manager and account manager.

USER CLASSES AND PASSWORDS

IMAGE allows the data base designer to control access to specific data sets and data items by defin-
ing up to 63 user classes and then associating the user classes with data sets and data items in read
or write class lists. This association determines which user classes may access which data elements
and the type of access that is granted.

2-11

Each user class is identified by an integer from 1 to 63 and is associated with a password defined by
the data base designer. For example, the STORE data base is defined with these user classes and

passwords:

User Class Password
11 CREDIT
12 BUYER
13 SHIP-REC
14 CLERK
18 DO-ALL

The magnitude of the user class number has no relation to the capability it grants.

When you initiate access to the data base, you must supply a password to establish your user class.
If the password is null or does not match any password defined for the data base, the user class
assigned is zero. This does not apply if you are the data base creator and supply a semicolon in
which case you have full access to all data sets in the data base. IMAGE uses the number 64 to
identify the data base creator.

READ CLASS LISTS AND WRITE CLASS LISTS. When the data items and data sets are defined
in the schema, a read class list and a write class list can be specified for each item or set. Table 2-1
contains sample lists for the CUSTOMER data set and CREDIT-RATING data item in the STORE
data base.

Table 2-1. Sample Read/Write Class Lists

READ CLASS LIST WRITE CLASS LIST

CUSTOMER 11,14 11,18

CREDIT-RATING 14 14

User class numbers included in the write class list are, by implication, included in the read class list.
Since a write class list of 14 implies that user class 14 is in the read class list, the CREDIT-RATING
read class list is redundant. However, it may be included as a reminder in the schema of the total
capability granted to user class 14.

A distinction must be made between the absence of a read and write class list and a null list. When
you specify the lists in the schema, they are enclosed in parentheses and separated by a slash, for
example, (11,14/15). A null list may be one of the following:

) Both read and write class lists are null.

(11,14) The write class list is null.

Since the existence of a write class list implies a read class list, there is no situation where only the
read class list is null.

The absence of both a read and write class list, and the parentheses and slash, yields the same result
as a read class list containing all user classes and write class list which is null. For example:

0,1,2,3,...63/)

The effect of null and absent lists is illustrated later in this section.

2-12

ACCESS MODES AND DATA SET WRITE LISTS

Before you can gain access to a data base, you must open it specifying a password that establishes
your user class number and an access mode that defines the type of data base tasks you want to
perform. Access modes are described in Section IV with the instructions for opening a data base. At
this time it is necessary only to note that some of the eight available access modes nullify the data
set write list. If the data base is opened in access mode 2, 5, 6, 7, or 8, all data set write class lists
are effectively null and the user class numbers in the write class lists are in the data set read class

lists only. This effect should be considered when you are designing the security scheme for the data
base.

GRANTING A USER CLASS ACCESS TO A DATA ELEMENT

Tables 2-2 and 2-3 illustrate the use of read and write class lists from two different perspectives.
Table 2-2 shows what capability user class 11 has if it appears in the lists as shown. The same rules
apply to any user class. The access mode must be as indicated.

A null read and write class list can be used by the data base creator at the data set level to deny
access to the data set by all user classes; that is, only the data base creator will be able to use the data

set.
Table 2-2. Granting Capability to User Class 11

LIST CAPABILITY LIST CAPABILITY LIST CAPABILITY

Control at (/11) Total access (/) No access (11) Controlled
Data Set or to set if to set or at item
Level (11/11) access mode absent level

1,3,0r4 list
Control at (/11) Update and (/) No access (11) Read item
Data Item or read item to item or
Level (11/11) absent

list

Table 2-3 presents the same rules organized by the task which the user class is to perform. It lists
the required access modes and the security rules at both the data set and data item level. For sim-
plicity assume there are always read and write class lists even if they are the default lists (0,1, 2, . ..
63/) resulting when the lists are not actually specified in the schema (absent lists).

In summary, the data base designer can grant access to a data set in the following ways:
® Specify the user class number in the data set write class list.

If the data base is opened in access mode 1, 3, or 4, this grants the user class complete access
to the data set. Users in this class can add and delete entries, update the value of any data
item that is not a search or sort item, and read any item, regardless of the data item read and
write class lists. A user class number must be in the data set write list in order to add and
delete entries.

2-13

Table 2-3. Enabling a User Class to Perform a Task

TASK

READ DATA ITEM

UPDATE DATA ITEM

ADD OR DELETE
DATA ENTRIES

Access Modes

1-8

1-4

1,34

If access mode 1, 3, 4:
User class in write list

OR

User class in read list and

If access mode 1, 3, 4:
User class in write list

OR

User class in read list and

User class in data set
write list.

Data Set pass data item security. pass data item security.

Security

Rules If access mode 1, 5-8: If access mode 2:
User class in read or write User class in read or write
list and pass data item list and pass data item
security. security.

Data Item User class in read or write User class in write list.

Security list.

Rules

Note: There are other considerations in selecting the access mode. These are discussed in Section IV.

If the data base is opened in access mode 2, 5, 6, 7, or 8, this is the same as specifying the user
class number in the data set read class list only and the next rule applies.

L] Specify the user class number in the data set read class list (or omit both lists entirely).
This grants the user class a type of access to the data set that is controlled at the data item level
as described below. If both read and write class lists are omitted, the user class is granted this
type of access since the lists are (0, 1, 2, 63/) by default.

® Omit the user class number from both the specified read and write class lists.

This denies the user class any type of access to the data set.

Assuming the data base designer has established control at the data set level as summarized above,
control at the data item level is established in the following ways:

® Specify the user class number in the data item read class list (or omit both lists entirely).
This grants the user class read access to the data item.

® Specify the user class number in the data item write class list.
This grants the user class the ability to update or change the data item value, if it is not a
search or sort item. Since the user class is implied to be in the read class list, the user class

can also read the item. A user class number must be in the data item write list in order to
change the value.

2-14

o Omit the user class number from both the read and write class list.
This denies the user class any type of access to the data item.

The protection of data set and data item values is designed so that the data base designer must ex-
plicitly specify the user class number to allow that class to make any type of change to the data
base, but read access may be granted by default in some situations, for example, by omitting the
lists entirely. To deny read access to a data set or data item, the data base designer must specify

a list, possibly a null one, and deliberately omit the user class number.

EXAMPLES. In the STORE data base, only user classes 11 and 18 can add and delete CUSTOMER
data entries since these are the only user class numbers in the data set write list as shown in table
2-1. To do so, they must open the data base in access mode 1, 3, or 4.

User class 14 can update the CREDIT-RATING data item in the CUSTOMER data set because it
is in the data item write list and the data set read list.

Table 2-4 contains more illustrations of the effects of read and write class lists. The data base
creator and user class 9 (in access mode 1, 3, or 4) have complete access to data set 1 but only the
creator has complete access to data set 2. Complete access includes the ability to read and update
all items and add and delete entries.

Table 2-4. Sample Read and Write Class Lists

Data Set A (0,18,13/9) Item Read Access Item Update Access
Data Item A 0,13,18,9 9*
Data Item B (/13) 13, 9* 13, 9*
Data Item C (/) 9* 9"
Data Item D (/9) 9 9
Data Item E (18/13) 13, 18,97 13,97
Data Item F (/13,18) 13, 18,97 13,18, 9"
Data Item G (12/0) 0, 9" 0,9
Data Item H (13/) 13, 9* 9*

Data Set B
Data Item A 0,1,...,63
Data Item | (13/9) 13,9 ' 9

*Only if access mode is 1, 3, or 4.
None of these items are search or sort items.

2-15

USER CLASSES AND LOCKING

IMAGE does not consider user classes when locking a data base entity. Any data set or any data item can
be referenced in a lock request by any user of a data base regardless of his or her user class.

PROTECTION IN RELATION TO LIBRARY PROCEDURES

All access to a data base is achieved through a Data Base Control Block (DBCB) and one or more User
Local Control Blocks (ULCBs) which reside in privileged data segments not directly accessible to data base
users. Since no user process can read or modify these control blocks, IMAGE guarantees protection of the
data base from unauthorized programmatic access. See the description of the DBCB and ULCB in Section
VII. For more information about data segments and privileged mode, see the MPE Intrinsics Reference
Manual.

All IMAGE library procedures that structurally modify the data base execute in “critical mode.”” This
defers any requested process termination while modifications are in progress. If any file system failures
occur during such data base modification, IMAGE causes process termination since the data base integrity
is suspect.

The DBCB contains buffers which are used to transfer data. All buffers whose content has been changed to
reflect a modification of the data base are always written to disc before the library procedure exits to the
calling program. This guarantees data integrity despite any program termination that might occur between
successive procedure calls.

PROTECTION PROVIDED BY THE IMAGE UTILITIES
The IMAGE utilities perform various checks to ensure data base integrity.

° They acquire exclusive or semi-exclusive access to the data base being processed. (Section IV contains
more information about types of access in the discussion of opening a data base.)

(] Only the data base creator or a user supplying the correct maintenance word can execute the utilities.
The data base creator defines the maintenance word when the data base is created with the DBUTIL
utility program. (Refer to Section VI.) Anyone running the utility programs must be logged on to
the group in which the data base is catalogued.

° Unrecoverable disc or tape problems are treated as functional failures rather than limited successes
and result in program termination.

2-16 SEP 1978

DEFINING A DATA BASE

Once the data base has been designed, it must be described with the data base description language
and processed by the Schema Processor to create the root file. Figure 3-1 illustrates the steps in
defining the data base.

N SCHEMA
SCHEMA PROCESSOR
(EDITOR disc file
or cards)
v
DATA BASE DESIGN
ROOT
FILE

Figure 3-1. Data Base Definition Process

DATA BASE DESCRIPTION LANGUAGE

The data base description, called a schema, may exist in the MPE system as an ASCII file on cards,
magnetic tape, or as a catalogued disc file. Regardless of the actual physical record size of the file,
the Schema Processor reads, prints, and processes only the first 72 characters of each record. Any
remaining character positions in the record are available for your convenience, to be used for com-
ments or collating information. The data base description language is a free-format language; you

can insert blanks anywhere in the schema to improve its appearance except within symbolic names
and reserved words.

LANGUAGE CONVENTIONS

The conventions used in describing the data base language are the same as those described on the
conventions sheet at the beginning of this manual. In addition, the conventions in table 3-1 apply.

Table 3-1. Additional Conventions

Punctuation All punctuation appearing in format statements must appear exactly as shown.

Comments Comments take the form: <<comment > >

They may contain any characters and may appear anywhere in the schema
except embedded in another comment. They are included in the schema
listing but are otherwise ignored by the Schema Processor program.

Data Names Data names may consist of from 1 to 16 alphanumeric characters, the first of
which must be alphabetic. Characters after the first must be chosen from the
set:
letters A — Z, digits 0 — 9, or
+ -2 HE% & @

Upshifting All alphabetic input to the Schema Processor is upshifted (converted to upper
case), with the exception of passwords which may contain lowercase
characters.

SCHEMA STRUCTURE

The overall schema structure is:

BEGIN DATA BASE data base name;
PASSWORDS: password part
ITEMS: item part

SETS: set part

END.

The data base name is an alphanumeric string from 1 to 6 characters. The first character must be
alphabetic.

The pdssword part, item part, and set part are described on the following pages. Figure 3-5 contains
a complete schema for the STORE data base that is used in the examples in this manual.

3-2

PASSWORD PART

The password part defines user classes and passwords. Section Il contains a description of user
classes and how they are used to protect data elements from unauthorized access.

The form of the password part is

user class number [password];

user class number [password] ;

For example,

5 GLOWWORM;
61 REDHOT; ~ password

12 DOZEN;

user class number

where

user class number is an integer between 1 and 63 inclusive. User class numbers must be
unique within the password part.

password may consist of from 1 to 8 ASCII characters including lower case and

excluding carriage return, semicolon, and blank. Blanks are removed
by the Schema Processor.

If the same password is assigned to multiple user class numbers, the highest numbered class is used.

It is not an error to omit the password, but the Scherma Processor ignores lines containing only a
user class number.

3-3

ITEM PART

The item part defines data items including the data item name, length, and the user classes that have
access to the item. The data set in which the data item appears is defined in the set part definition.

The form of the item part is

item name, [sub-item count] type designator [sub-item length]
[(read class list/write class list)] ;

For example,

sub-item length
ELVIN, 3 12 (1,20/4'4);\ write class list

\ F read class list

item type designator
name
sub-item count

where

item name is the data item name. It must be a valid IMAGE data name as
described in table 3-1. It must be unique within the item part.

sub-item count is an integer from 1 to 255 that denotes the number of sub-items
within an item. If omitted, by default it equals one. A data item
whose sub-item count is 1 is a simple item. If the sub-item count is
greater than one, it is a compound item.

type designator defines the form in which a sub-item value is represented in the com-
puter. The type designators I, J, K, R, U, X, Z, P are described in
table 3-2.

sub-item length is an integer from 1 to 255. It is the number of words, characters, or
nibbles (depending on the type designator) in a sub-item. If omitted,
it is equal to 1 by default.

read class list is a group of user class numbers between 0 and 63, inclusive, separated
by commas. User class numbers are described in Section II.

write class list is a group of user class numbers between 0 and 63, inclusive, separated

by commas.

There can be no more than 255 data items in a data base. A data item name can appear in more
than one data set definition. For example, a data item named ACCOUNT appears in both the
CUSTOMER and SALES data sets of the STORE data base.

DATA ITEM LENGTH

Each data item value is allotted a storage location whose length is equal to the product of the item’s
sub-item length and its sub-item count. The unit of measure for the length depends upon the type
designator and may be a word, byte, or nibble. A word is a 16-bit computer word, a byte is eight
bits or a half-word, and a nibble is four bits or a half-byte. Table 3-2 defines the various type
designators and specifies the unit of measure used for each.

3-4

ITEM PART

Table 3-2. Type Designators

WORD DESIGNATORS

| A signed binary integer in 2's complement form.

J Same as | but QUERY allows only numpers conforming to
specifications for COBOL COMPUTATIONAL data to be
entered.

K An absolute binary quantity.

R A real (floating point) number.

CHARACTER DESIGNATORS

U An ASCII character string containing no lowercase alphabetic
characters.

X An unrestricted ASCII character string.

V4 A zoned decimal format number.

NIBBLE DESIGNATOR

p A packed decimal number.

A data item must be an integral number of words in length regardless of the type designator and its
unit of measure. In other words, data items of type U, X, or Z which are measured in bytes must
have a sub-item length and sub-item count such that their product is an even number. If a data item
is defined as U3, it cannot be a simple item and must have an even numbered sub-item count so that
the data item length is an integral number of words. Data items of type P which are measured in
nibbles must have a sub-item length and sub-item count such that their product is evenly divisible
by 4, since 4 nibbles equal 1 word.

A data item cannot exceed 2047 words in length. The entire item, whether simple or complex, is
always handled as a unit by IMAGE.

IMAGE DATA TYPES AND PROGRAM LANGUAGE DATA TYPES

The type designator, sub-item count, and sub-item length you specify for a data item defines its
length. IMAGE does not perform any conversions of data or examine the item to check its validity as
it is being added to the data base. The only data item values that IMAGE checks are those specified
as part of a lock descriptor in calls to the DBLOCK procedure. (Refer to the discussions of locking
in Section IV.) There are no rules that a specific type of data defined by a programming language
must be stored in a specific type of IMAGE data item.

Table 3-3 relates IMAGE type designators and sub-item lengths to the data types typically used to
process them in the available programming languages. Some BASIC language restrictions are noted.

SEP 1978 3-5

ITEM PART

Table 3-3. IMAGE Type Designators and Programming Languages

COBOL FORTRAN RPG SPL BASIC

| COMPUTATIONAL INTEGER Binary INTEGER INTEGER ™~

S9 to S9(4)
12 COMPUTATIONAL INTEGER™4 Binary DOUBLE INTEGER

S9(5) to S9(9)
14 COMPUTATIONAL Binary

S9(10) to S9(18)
J COMPUTATIONAL INTEGER Binary INTEGER INTEGER™”

S9 to S9(4)
J2 COMPUTATIONAL INTEGER™4 Binary DOUBLE INTEGER

S9(5) to S9(9)
Ja COMPUTATIONAL Binary

S9(10) to S9(18)
K1 LOGICAL LOGICAL wex
R2* REAL REAL REAL* ™™~
R4 DOUBLE PRECISION LONG LONG™*™*
] DISPLAY CHARACTER Character BYTE String

PICTURE A
X DISPLAY CHARACTER Character BYTE String

PICTURE X
V4 DISPLAY Character

PICTURE 9
P COMPUTATIONAL-3 Numeric

*Real numbers must have a length of 2 or more words; R and R1 cannot be used by IMAGE.
**BASIC integers cannot have the value ~32768.
***Type LOGICAL items >32767 which are accessed as type INTEGER in BASIC programs are treated as
negative integers.
****BASIC REAL and LONG data cannot have the value 10778

Note that the UNIT-COST item in the INVENTORY data set is easier to process with COBOL or RPG
programs than with the other languages since packed data is a standard data type in COBOL and RPG.

However, the CREDIT-RATING data item in the CUSTOMER data set is easier to process with
FORTRAN, SPL, or BASIC programs since real numbers can be arithmetically manipulated in these
languages. An actual data base may be designed so that some data sets are processed by programs
coded in one language and others by programs coded in another language. Another data set may be
conveniently processed by programs written in any of the languages.

3-6

SEP 1978

ITEM PART

DATA ITEMS OF TYPE P

The bits used to represent the sign of a packed decimal value may vary depending on whether the
value is entered using QUERY, a COBOL program, or an RPG program. Here is a summary of what
happens in each case:

. If a value is entered using QUERY, and no sign is specified, the sign is 11119,
If a value is entered using QUERY, and a plus sign is specified, the sign is 11009,
If a value is entered using QUERY, and a minus sign is specified, the sign is 11019,

o If a value is entered using a COBOL program, and the PICTURE clause does not specify a sign,
the sign is 11119.

If the PICTURE clause specifies a sign and the value is positive, the sign is 11009.
If the PICTURE clause specifies a sign and the value is negative, the sign is 11019,

° If a value is entered using an RPG program, a positive or unsigned value’s sign is 11009 and a
negative value’s sign is 11019.

When you use IMAGE to locate all packed data items with a particular value (as described later in
this manual), you must be aware that IMAGE differentiates between unsigned, positive, and negative

data items with the same absolute value. For example, if you search for all data items with the
value +2, IMAGE will not retrieve any items with the unsigned value 2.

In general, IMAGE treats any two values with different binary representations as unequal
regardless of their type.

SEP 1978 3-6a

ITEM PART

COMPLEX NUMBERS. Applications programmed in BASIC or FORTRAN can define and mani-
pulate complex numbers by using data type R2 with a sub-item count of 2, storing the real part in
the first sub-item and the imaginary part in the second sub-item.

QUERY AND DATA TYPES. QUERY supports only a subset of the available data item types. If
you intend to use QUERY you should consult the QUERY Reference Manual for specific informa-
tion about the way QUERY handles the various IMAGE data types, including compound data
items.

Table 3-4. Examples of an Item Part

ITEMS:

Al2; << 32 BIT SIGNED INTEGER >>

MELVIN,3I (1,20/44); << COMPOUND ITEM. THREE SINGLE WORD SIGNED INTEGERS.
READ CLASSES ARE 1 AND 20; WRITE CLASS IS 44#>>

BLEVET,J; << SINGLE-WORD SIGNED INTEGER BETWEEN -9999 AND 9999.>>

COSTS, 2X10; <<COMPOUND ITEM. TWO 10-CHARACTER ASCII STRINGS.>>

DATE, X6; << SIX-CHARACTER ASCII STRING. >>

VALUES, 20R2(1/8); << COMPOUND ITEM. 20 2-WORD REAL (FLOATING-POINT) NUM-
BERS. READ CLASS IS 1; WRITE CLASS IS 8*>>

PURCHASE-MONTH, US; <<EIGHT-CHARACTER ASCII STRING WITH NO LOWER CASE
ALPHABETICS.>>

MASK, K2; << 32 BIT ABSOLUTE BINARY QUANTITY.>>

TEMPERATURE, 17R4; << COMPOUND ITEM. 17 FOUR WORD REAL (FLOATING-POINT)
NUMBERS. >>

SNOW*¢#®@,Z4; <<FOUR-DIGIT ZONED DECIMAL (NUMERIC DISPLAY) NUMBER.>>

POPULATION,P12; << 11 DECIMAL DIGITS PLUS A SIGN IN THE LOW ORDER NIBBLE.
OCCUPIES THREE WORDS.>>

*WRITE CLASSES CAN ALSO READ.

DATA ITEM IDENTIFIERS

When you use the IMAGE procedures described in the next section, you can reference a data item by
name or number. The data item number is determined by the item’s position in the item part of the
schema. The first item defined is item one, the second is item 2, and so forth.

It is more flexible to use data item names since a change in the order of the item definitions or the
deletion of an item definition from the schema might require changes to all application programs
referencing the data items by number. Thus, to maintain program file independence it isrecom-
mended that you use data item names if possible.

3-7

SET PART(MASTERS)

The set part of the schema defines data sets. It indicates which data items listed in the item part
belong to which sets and links the master data sets to the detail data sets by specifying search items.

The form of the set part for Master Data Sets is

MANUAL
NAME: M
’ N: ‘ set name, AUTOMATIC [(read class list/write class list)] ;
A
{ENTRY:} item name [(path count)],
item name [(path count)];

lCAPACITY:} maximum entry count;

C:

For example,
set name read class list write class list

NAME: CUSTOMER,MANUAL (1,4/1,8);
ENTRY: ACCOUNT(1),

LAST-NAME,

FIRST-NAME,

INITIAL,

STREET-ADDRESS,

CITY,

STATE,

ZIP,

CREDIT-RATING;
CAPACITY:20003; 4~

item name

path count

maximum entry count

where

set name is the data set name. It must be a valid IMAGE data name as
described in table 3-1.

MANUAL (or M) denotes a manual master data set. Each entry within a manual master
must be created manually and may contain one or more data items.

AUTOMATIC (or A) denotes an automatic master data set. Each data entry within an auto-
matic master is created automatically by IMAGE and contains only one
data item.

read class list is a group of user class numbers between 0 and 63, inclusive, separated

by commas. User class numbers are described in Section II.

3-8

write class list

item name

path count

maximum entry count

SET PART(MASTERS)

is a group of user class numbers between 0 and 63, inclusive, separated
by commas.

is the name of a data item defined in the item part. A search item de-
fined by a path count must be a simple item.

is an integer between 0 and 16, inclusive, which is used with the search
item only. It indicates the number of paths which will be established
to various detail data sets. (See Section II for more information about
paths.) A path count must be specified for one, and only one, item in
the master set. A zero path count may be used with a manual master
data item to indicate the search item. A manual master defined in this
way is not linked to any detail data set. An automatic master has one
item that must have a path count greater than zero.

is the maximum number of entries the data set can contain, the data
set’s capacity. It must be less than 223 (8,388,608).

3-9

SET PART(DETAILS)

The form of the set part for Detail Data Sets is

{ SAME} set name, { gETAIL} [(read class list/write class list)] ;
lgNTRY:} item name [([!'] master set name [(sort item name)])],
item name [(['] master set name [(sort item name)])];
[ng‘PACITY:} maximum entry count;
For example
set name read class list \ write class list
NAME: SALES,DETAIL (1,4/4,8); . sort item name
ENTRY: ACCOUNT (CUSTOMER (PURCIiDATE)), master set name
~ — as s m
item name STOCK# (!PRODUCT) =
QUANTITY, (primary path indicator)
PRICE,
TAX,
TOTAL,

PURCH-DATE (DATE-MASTER),
DELIV-DATE (DATE-MASTER);

CAPACITY: 12000;
T~ maximum entry count

where

set name is the data set name. It must be a valid IMAGE data name as defined in
table 3-1.

DETAIL or D denotes a detail data set.

read class list is a group of user class numbers between 0 and 63, inclusive, separated
by commas. User class numbers are described in Section II.

write class list is a group of user class numbers between 0 and 63, inclusive, separated
by commas.

item name is the name of a data item defined in the item part. Each item defined

as a search item must be a simple item. Up to 16 items may be search
items. (See master set name for more information about search items.)

denotes a primary path. Only one path in each detail data set can be

designated as a primary path. If no path is designated as primary, the
first unsorted path is the primary path by default. If all of the paths

are sorted, the default primary path is the first sorted path.

3-10

SET PART(DETAILS)

master set name is the name of a previously defined master data set. When a master set
name follows an item name, it indicates that the data item is a search
item linking the detail set to the named master. Up to 16 search items
can be defined for a detail data set. If no data item has a master name
following it, the detail is not related to any master. In this case, the
combined length of all data items in the data set must equal or exceed
two words.

sort item name is the name of a detail data item of type U, K, or X which is part of the
data set being defined. A sort item defines a sorted path. Each entry
added to a chain of a sorted path will be linked logically in ascending
order of the sort item values. If sort item is omitted, the path order is
chronological, that is, new entries are linked to the end of chains. For
performance reasons, sorted chains should be kept short. (Refer to
page 2-17.)

maximum entry count is the maximum number of entries the data set can contain, the data
set’s capacity. It must be less than 223 (8,388,608).

MASTER AND DETAIL SEARCH ITEMS

The master and detail search items that define a path between two data sets must have identical type
designators and sub-item lengths when they are defined in the item part. Since the same data item
name may appear in more than one data set, you may use the same data item name and definition
for both the master and detail search items. For example, the data item ACCOUNT is used as the
search item in both the CUSTOMER master and SALES detail data sets.

If you want to make a distinction between the search items, however, they may be defined separately.
An example of this technique is found in the STORE data base. The search item DATE links the
DATE-MASTER data set to the SALES data set through two paths, and two search items,
PURCH-DATE and DELIV-DATE. These three data items look like this in the item part:

DATE, X6;
DELIV-DATE, X6 (/14);
PURCH-DATE, X6 (11/14);

Each data item has type designator X and sub-item length 6. The item names, read class lists, and
write class lists differ however.

Figure 3-5 at the end of this section contains the listing printed by the Schema Processor when the
STORE data base schema is processed. Refer to this figure for examples of the schema parts.

DATA SET IDENTIFIERS

Like data items, data sets may be referenced by name or number. The data set number is determined
by the set’s position in the set part of the schema. It is more flexible to use data set names, however,
in order to maintain program file independence.

3-11

OPERATING INSTRUCTIONS

SCHEMA PROCESSOR OPERATION

The Schema Processor is a program which accepts a textfile containing the schema as input, scans the
schema and if no errors are detected, optionally produces a root file. The Schema Processor prints a
heading, an optional list of the schema, and summary information on a listfile.

The Schema Processor executes in either MPE job or session mode. For further information about
sessions and jobs, refer to the MPE Commands Reference Manual. In either case, you must use the
MPE command:

:RUN DBSCHEMA.PUB.SYS
to initiate execution of the Schema Processor.
Table 3-5 lists the formal file designators and default actual file designators which the Schema
Processor uses for textfile and listfile. The input/output devices to which $STDINX and $STDLIST
refer depend upon the way your system is generated. However, $STDINX is the standard job or

session input device and $STDLIST is the standard job or session output device.

Table 3-5. Schema Processor Files

FORMAL FILE DEFAULT ACTUAL
FILE USE DESIGNATOR FILE DESIGNATOR
textfile Schema and Schema DBSTEXT $STDINX
Processor commands
listfile output listing DBSLIST $STDLIST

If you want to equate these files to some other actual file designator, you can use the MPE :FILE
command. If a :FILE command is included in the job stream, you must inform the Schema Proces-
sor of this in the :RUN command in the following way:

:RUN DBSCHEMA.PUB.SYS;PARM=n

where

n=1
if an actual file designator has been equated to DBSTEXT

n =2
if an actual file designator has been equated to DBSLIST

n=3
if actual file designators have been equated to both DBSTEXT and DBSLIST.

Table 3-6 shows sample combinations of RUN and FILE commands which can be used to initiate
DBSCHEMA execution.

3-12

Table 3-6. RUN and FILE Commands, Examples

:RUN DBSCHEMA .PUB.SYS Uses all default files. Prompts for lines of
schema in session mode.

:FILE DBSTEXT=GEORGE Processes schema from a user disc textfile

:RUN DBSCHEMA .PUB.SYS;PARM=1 named GEORGE.

:FILE DBSLIST;DEV=LP Outputs the listing to a line printer.

:RUN DBSCHEMA.PUB.SYS;PARM=2

:FILE DBSTEXT=GEORGE Processes schema from a user textfile named

:FILE DBSLIST;DEV=LP GEORGE; outputs the listing to a line

:RUNDBSCHEMA.PUB.SYS;PARM=3 printer.

Only the first 72 characters of each textfile record are processed.

If you request a root file, and the schema is error-free, it is created, given the same name as the one
specified for the data base in the schema, initialized, and saved as a catalogued disc file.

CREATING THE TEXTFILE

A convenient method for creating the input file is to use the text editor, EDIT/3000, to enter the
commands and schema in a disc file. Figure 3-2 illustrates this process in a sample session which also
executes the Schema Processor. User input is underlined. (Refer to EDIT/3000 Reference Manual
for information about the Editor.)

The steps followed in the sample in figure 3-2 are:

1. Initiate an MPE session by logging on with the appropriate user name and account.

2. Initiate text editor execution. Enter an Editor ADD command in response to the first prompt.
3. Enter Schema Processor commands and the schema itself into records of the Editor work file.

4. Save the work file in a disc file named SCHEMAB. Then terminate the Editor.

5. Use the :FILE command to equate the formal file designator DBSLIST to the line printer and
DBSTEXT to the disc file SCHEMAB.

6. Initiate execution of DBSCHEMA and indicate that the textfile and listfile have been defined
in :FILE commands. When the Schema Processor has finished processing the schema it prints
the number of error messages and verifies that the root file has been created.

Figure 3-3 illustrates the order of commands and other input required when executing the Schema
Processor in batch mode. The job can also be stored in a disc file and executed from a terminal.

THE DATA BASE CREATOR

The person who creates the root file is identified as the data base creator and can subsequently
create and initialize the data base. To do so, the data base creator must log on with the same
account, user name, and group that he or she used to create the root file and execute the IMAGE
utility program DBUTIL. This program is described in Section VI.

3-13

return

$HELLO USER,ACCOUNT < (1)
HP3000 / MPE IIT B,00.,00., MON, APR 17, 1978, 2:07 PM

$EDITOR o (2)

HP32201A,7,00 ENIT/3000 MUN, APR 17, 1978, 2:07 PM
(C) HEWLETT-PACKARD CO, 1976

/ADD
1 SPAGE "SCHEMA OF DATA BASE B"« (3)
2 §CONTROL ERRORS=5, BLOCKMAX=256
3 BEGIN DATA BASE B;
[
]
[
59 END,
60 77

/KEEP SCHEMAB =
/END

®

[]
tFILE DBSLIST;DEV=LP-=
$FILE DBSTEXT=SCHEMAB
$ RUN DBSCHEMA ,PUB,SYS; PARM= 3<—

©©

HP32215B,00
NUMBER OF ERROR MESSAGES: 0
ROOT FILE B CREATED

END OF PROGRAM
$BYE

Figure 3-2. Sample Schema Creation Session

3-14

(:EOJ
(:EOD

/ \ :EOJ COMMAND

(BEGIN DATA BASE B: \

i$CONTROL
ﬁTITLE

SCHEMA

/spAGE

‘RUN DBSCHEMA. PUB. SYS SCHEMA PROCESSOR COMMANDS
(OPTIONAL)

:EOD COMMAND

:JOB USER. ACCOUNT

\ ‘RUN COMMAND

\ :JOB COMMAND

Figure 3-3. Schema Processor Batch Job Stream

SCHEMA PROCESSOR COMMANDS

IMAGE provides several commands which you may use anywhere in the schema to specify options
available while processing the schema. The commands are: $PAGE, $TITLE, and $CONTROL.
The $ must always be the first character of the record, immediately followed by the command
name, which must be completely spelled out.

If a parameter list is included with the command, it must be separated from the command name
by at least one blank. Parameters are separated from each other by commas. Blanks may be freely
inserted between items in the parameter list.

Command records may not contain comments.

CONTINUATION RECORDS

To continue a command to the next record, use an ampersand (&) as the last non-blank character in
the current record. The following record must begin with a $. The records are combined and the $

and & are deleted and replaced by one blank character. A command name or parameter cannot be
broken by &. Characters beyond the 72nd character of each record are ignored.

3-15

$SPAGE

$PAGE COMMAND

The $PAGE command causes the listfile to eject to the top of the next page, print character-strings
which you may optionally specify, and skip two more lines before continuing the listing.

The form of the $PAGE command is

$PAGE [[“character-string”], ...]

For example,
$PAGE “STORE DATA BASE SCHEMA”, “ VERSION 3”
character-string
where
character-string is a list of characters enclosed in quotes. When the command is execut-
ed, the quotes are stripped and the character-strings are concatenated.
A quote mark within a character-string is specified by a pair of quotes.
The $PAGE command is effective only if the LIST option of the $CONTROL command is on. The
LIST option is on by default until a $CONTROL command sets NOLIST. The $PAGE command
itself is not listed.
The contents of the character-strings replace those specified by a previous $PAGE or $TITLE com-
mand. If no character-strings are specified, the character-strings specified in the preceding $PAGE
or $TITLE command, if any, are printed at the top of the next page.
EXAMPLES

$PAGE “MASTER DATA SETS”&
$,“ACCOUNTING APPLICATION”

$PAGE

3-16

STITLE

$TITLE COMMAND

The $TITLE command specifies a list of characters to be printed each time a heading is printed on a
new page. It does not cause a page eject.

The form of the $TITLE command is

$TITLE [[‘“‘character-string”], ...]

For example,
$TITLE “INVENTORY DATA BASE SCHEMA B. J. BRINDISI”
character-string
where
character-string is a list of characters enclosed in quotes. When the command is execut-
ed, the quotes are stripped and the character-strings are concatenated.
A quote mark within a character-string is specified by a pair of quotes.
The $TITLE command may be overridden by a subsequent $TITLE or $PAGE command. If no
character-string is specified, no title is printed after the command is encountered until another
$TITLE or $PAGE command specifies one.
EXAMPLE

$TITLE “ “ “QUICK” ” TEST DATA BASE”

3-17

SCONTROL

SCONTROL COMMAND

The $CONTROL command allows you to specify options in relation to processing the schema.

The form of the $CONTROL command is

$CONTROL [LIST }

NOLIS']

,ROOT
,NOROOT

[ERRORS,:nsz [LINES=nnnnn] l:

,NOTABL

[.BLOCKMAXWmmsz [’TABLE E:|

For example,

$CONTROL NOLIST, ERRORS= 5, LINES=62, NOROOT, BLOCKMAX=256,TABLE

nnn nnnnn nnnn

where

LIST causes each source record of the schema to be printed on the listfile.

NOLIST specifies that only source records with errors be printed on the listfile.
An error message is printed after these records.

ERRORS=nnn gets the maximum number of errors to nnn. If more than nnn errors
are detected, the Schema Processor terminates. nnn may have a value
between 0 and 999, inclusive. The default value is 100.

LINES=nnnnn sets the number of lines per page on the listfile to nnnnn which can be
between 4 and 32767, inclusive. The default value is 60 if listfile is a
line printer and 32767 if it is not one.

ROOT causes the Schema Processor to create a root file if no errors are
detected in the schema.

NOROOT prevents the Schema Processor from creating a root file.

BLOCKMAX=nnnn sets the maximum physical block length (in words) for any data set in
the data base. nnnn may have a value between 128 and 2048, inclusive.
The default value is 512. This is an important parameter and is dis-
cussed in greater detail below.

TABLE causes the Schema Processor to write a table of summary information
about the data sets to the listfile device if no errors are detected.

NOTABLE suppresses the TABLE option.

3-18 SEP 1978

$CONTROL

The default parameters are underlined. If no SCONTROL command is used the results are the same
as if the following SCOMMAND command is used:

$CONTROL LIST,ERRORS=100,LINES=60, ROOT,BLOCKMAX=512,TABLE
(or 32767)
The parameters may be placed in any order but must be separated by commas.
SELECTING THE BLOCK SIZE

The data set records are transferred from the disc to memory in blocks. (The block format is
described in Section VII.) When you specify a maximum block size with the $CONTROL command
you should consider:

® efficient disc space utilization
® minimum disc access

® program execution time which can be affected by the size of a privileged data segment in which
IMAGE maintains a Data Base Control Block. (Refer to Section IV for a definition of the
DBCB.) Buffers in the DBCB must be as large as the largest block of the data base, therefore,
the larger the block, the larger this data segment must be.

The Schema Processor determines the number of data records which fit in a block. Larger blocks
minimize disc access by enabling the transfer of more records at one time. In selecting a block size,
the following considerations may apply:

(] If the applications using the data base will be run as batch jobs at times when few other users
are competing for system resources, particularly memory space, you may choose to use large
blocks. This will reduce the frequency of disc access if an application is accessing data sets
serially, or along chains whose members are physically contiguous or close.

L] If the application programs are large and will be run while many users are operating in session
mode, large blocks and the resulting large DBCB data segment may cause the program to
execute more slowly since a larger area of memory is required to execute the program. In
this case, you may need to decrease the block size. If the application programs are small, this
may not be necessary.

Other factors may depend on the application requirements and a certain amount of tuning is some-

times necessary to determine the best block size. In general, the default block size of 512 words
yields reasonable performance and should be changed only with good reason.

3-19

SCHEMA PROCESSOR OUTPUT

The Schema Processor prints the following heading on the first page of the listing:

product identification product name

PAGE 1 HEWLETT=PACKARD 322158,00 IMAGE/3000 MON, APR 3, 1978, 4332 PM

If your standard output device ($STDLIST) is different from listfile, an abbreviated product identifi-
cation is also printed on $STDLIST. Subsequent pages of listfile are headed by a page number, the
data base name if it has been encountered, and the title most recently specified by a $TITLE or
$PAGE command.

If the LIST option is active, a copy of each record of the schema is sent to the listfile. However, if
the textfile and listfile are the same, as for example they are when you enter the schema source from
your terminal in session mode, the records are not listed. If you are entering the schema in this way,
the Schema Processor prompts for each line of input with a >.

SUMMARY INFORMATION

After the entire schema has been scanned, several types of summary information may be printed on
the listfile.

] If not all of the items defined in the item part are referenced in the set part, and if no errors are
encountered, the message:

UNREFERENCED ITEMS: list of items

is printed to the listfile. The list includes all items defined but not referenced in a data set.
Although they are not considered errors, these extraneous items should be removed to reduce
the size of the tables in the root file and the size of the extra data segment used by the library
procedures.

® If no errors are detected in the schema and if the TABLE option has been selected, the Schema
Processor prints a table of summary information about the data sets. Figure 3-4 contains a
sample printout of this information. Table 3-7 describes the information contained in the
summary. The NOTABLE parameter of the $CONTROL command suppresses printing of

this table.
DATA SET TYPE FLD PT ENTR MED CAPARCITY BLK BLK DISC
NAME CNT CYT LGTH REC FAC LGTH SPRCE
EMPLOYEE M 4 1 7 17 %00 30 512 72
PROJECT-MASTER n 2 1 10 20 73 19 382 15
LABOR D 4 2 10 18 10024 28 506 1436
TOTAL DISC SECTORS INCLUDING ROOT: 1532

Figure 3-4. Data Set Summary Table
3-20

Table 3-7. Data Set Summary Table Information

DATA SET The name of the data set. CAPACITY The maximum number of entries
NAME allowed in the data set. For detail
data sets, this number may differ
from the number of entries speci-
TYPE A for automatic, M for manual, or fied in the schema itself, because
D for detail the capacity of each detail is
adjusted to represent an even mul-
tiple of the blocking factor (see
FLD CNT The number of data items in each below).
entry of the data set.
BLK FAC The number of media records
PT CT Path count. For a master data set, which are blocked together for
this is the number of paths speci- transfer to and from the disc.
fied for the data set search item.
For a detail data set, it is the
number of search items defined for BLK LGTH The total length in words of the
each entry of the data set. physical block as defined in
BLK FAC. This includes the
media records and a bit map.
ENTR The length in words of the data Bit maps are discussed in Section
LGTH portion of the data entry (not in- VI
cluding any of the IMAGE /3000
pointers or other structure infor-
mation associated with a data DISC The amount of disc space (in 128-
entry). SPACE word sectors) occupied by the
’ MPE file containing the data set.
MED REC The total length in words of a
media record of the data set. This
length includes the entry length TOTAL DISC SECTORS
INCLUDING ROOT: nnnn
plus any of the IMAGE/3000 .
pointers associated with the The total n.umbe.r of 128-wor'd disc
. sectors which will be occupied by
data entry. Media records are .
discussed in Section VI the data base, when created using
’ the DBUTIL program.

® Two lines of summary totals are printed on the listfile. For example:

NUMBER OF ERROR MESSAGES: 0
ITEM NAME COUNT: 22 DATA SET COUNT: 6

The error count includes both errors in the schema and in the Schema Processor commands.
The error count is also sent to $STDLIST, if it is different from the listfile.

o If no schema syntax or logical errors are encountered, a third line is printed. The form of this
line is:

ROOT LENGTH: r BUFFER LENGTH: b TRAILER LENGTH: ¢
ROOT LENGTH is the length in words of the body of the root file. BUFFER LENGTH is the
length in words of each of the data buffers which IMAGE allocates in an extra data segmernt (the
DBCB) for use in transferring data set blocks to and from disc. TRAILER LENGTH is the length
in words of an area in the extra data segment used by IMAGE to transfer information to a:id from a
calling program’s stack.

SEP 1978 3-21

® If no errors are detected and the ROOT option is active, the following message is sent to the
listfile:

ROOT FILE data base name CREATED

data base name is the name given in the BEGIN DATA BASE statement in the schema.
SCHEMA ERRORS
When the Schema Processor detects an error it prints a message to the listfile. If the LIST option is
active, it is printed immediately after the offending statement. If NOLIST is active, the current line
of the schema is printed and then the error message.
Schema Processor error messages are explained in Appendix A. The root file is not created if any of
the listed errors are detected. However, the Schema Processor attempts to continue checking the
schema for logical and syntactical correctness.
One error may obscure detection of subsequent errors, particularly if it occurs early in a data set.
It may be necessary to process the schema again after the error is corrected to find subsequent
errors. Conversely, some errors early in the schema can generate subsequent apparent errors which

will disappear after the original error has been corrected.

If schema errors prohibit creation of the root file, the following message is sent to the listfile, and
to $STDLIST if it is not the same as the listfile:

PRECEDING ERRORS — NO ROOT FILE CREATED.
A few conditions, including the number of errors exceeding the total number allowed, cause imme-
diate termination of the Schema Processor without the normal summary lines. In this case, the

following message is printed:

SCHEMA PROCESSING TERMINATED.

SCHEMA PROCESSOR EXAMPLE

Figure 3-5 contains the listfile output printed when the schema of the sample STORE data base is
processed. The data base has 5 passwords and contains 23 data item definitions and 6 data set
definitions. The Schema Processor summary information is printed following the schema.

3-22 SEP 1978

PAGE 1 HEWLFTT=PACKAKD 322158.01,IMAGE/Z30002 DRSCHEMA THE, JUN 27

S8CONTROL LINES=56
BEGIN DATA BASE STORE;

PASSWORDS:
14 CLEPK}; << SALES CLERK >>
12 BUYER; << BUYER « RESPONSIBLE FOR PARTS INVENTORY >>

11 CREDIT; << CUSTOMER CREDIT OFFICE >>
13 SHIP-REC; << WAREHOUSE = SHIPPING AND RECEIVING >>
18 DO=-ALL; << FOR USE BY MR, OR Ms, BIG >>

ITEMS: << IN ALPHABETICAL ORDER FOR CONVENIENCE >>
ACCOUNT, J2 ¢ << CUSTOMER ACCOUNT NUMBER>>
BINNUM, 22 (/13 << STORAGE LOCATION OF PRODUCT >>
CITY, X12 (12,13,14/11); << CITY >>
CREDIT-RATING, R2 (/14); << CUSTOMER CREDIT RATING >>
DATE, X6 3 << DATE (YYMMDD) >>
DELIV=-DATE, X6 (/14); << DELIVERY DATE (YYMMDD) >>
DESCRIPTION, X203 << PRODUCT DESCRIPTION >>
FIRST=NAME, X10 (14711); << CUSTOMER GIVEN NAME >>
INITIAL, U2 (14/11); << CUSTOMER MIDDLE INITIAL >>
LAST=-NAME, X16 (14/11); << CUSTOMER SURNAME >>
LASTSHIPDATE, X6 (127)3 << DATE LAST RECEIVED (YYMMDD) >>
ONHANDQTY, J2 (14/12); << TOTAL PRODUCT INVENTORY >>
PRICE, J2 (147); << SELLING PRICE (PENNIES) >>
PURCH=DATE, X6 (11/14); << PURCHASE DATE (YYMMDD) >>
QUANTITY, I (/714); << SALES PURCHASE QUANTITY >>
STATE, X2 (12,13,14/711)3 << STATE == 2 LETTER ABBREVIATION >>
STOCK#, Uus << PRODUCT STOCK NUMBER >>
STREET-ADDRESS, X26 (12,13,14/11)3 << NUMBER AND STREET >>
SUPPLIER, X16 (12,13/7); << SUPPLYING COMPANY NAME >>
TAX, J2 (14/7): << SALES TAX (PENNIES) >>
TOTAL, J2 (11,14/); << TOTAL AMOUNT OF SALE (PENWIES) >>
UNIT=COST, P8 (/12); << UNIT COST OF PRODUCT (PENNIES) >>
Z1P, X6 (12,13,14/11); << Z1P CODE >>

SETS:

NAME CUSTOMER,MANUAL(14/711,18): << CUSTOMER MASTER INFO >>
ENTRY? ACCOUNT (Y1),

LAST=NAME,
FIRST=NAME,
INITIAL,
STREET=ADCRESS,
CITY,

STATE,

z1p,
CREDIT=RATING;

CAPACITY: 200;

NAME DATE=MASTER, AUTOMATIC; << HANDY-DANDY DATE INDEX »>
ENTRY: DATE(3);
CAPACITY: 211;

Figure 3-5. STORE Data Base Schema
SEP 1978 3-23

PAGE 2 STORE

NAME PRODUCT,MANUAL(14,13/12,18);3 << PRODUCT INDEX >>
ENTRY: STOCK#(2),
DESCRIPTION}

CAPACITY: 300;

NAME SALES,DETAIL(11/14,18) << CREDIT PURCHASE INFO >>
ENTRY: ACCOUNT(CUSTOMER(PURCH=DATE)}),

STOCK# (PRODUCT),

QUANTITY,

PRICE,

TAX,

TOTAL,

PURCH=DATE(DATE-MASTER),

DELIV-DATE(DATE=MASTER)
CAPACITY: 500;

NAME: SUP-MASTER,MANUAL(13/12,18)3 << SUPPLIER MASTER INFO >>
ENTRY: SUPPLIER(1),
STREET=ADDRESS,
CITY,
STATE,
Z1P;
CAPACITY: 200;
NAME INVENTORY,DETAIL(12,14/13,18); << PRODUCT SUPPLY INFO >>
ENTRY? STOCK# (PRUDUCT),
ONHANDGTY,
SUPPLIER(!SUP=MASTER), << PRIMARY PATH >>
UNIT=COST,
LASTSHIPDATE(DATE«MASTER),
BINNUM;
CAPACITY: 450;
END,
DATA SET TYPE FLD PT ENTR MED CAPACITY BLK BLK DISC
NAME CNT CT LGTH REC FAC LGTH SPACE
CUSTOMER M 9 1 41 S1 200 10 511 84
DATE-MASTER A 1 3 3 23 211 22 508 44
PRODUCT M 2 2 14 29 300 13 378 75
SALES D 8 4 19 35 504 14 491 148
SUP=-MASTER M S 1 3 41 200 12 493 72
INVENTORY D 6 3 20 32 450 15 481 124

TOTAL DISC SECTORS INCLUDING ROOT: 560

NUMBER OF ERROR MESSAGES: 0
ITEM NAME COUNT: 23 DATA SET COUNT: 6
ROOT LENGTH: 729 BUFFER LENGTH: 511 TRAILER LENGTH: 256

ROOT FILE STORE CREATED,

Figure 3-5. STORE Data Base Schema (Continued)
3-24

USING THE DATA BASE

After the data base is designed and the root file has been created, application programs can be
written that will be used to enter and use the data. Programs written in COBOL, FORTR AN, SPL,
or BASIC gain access to the data base through calls to IMAGE procedures. RPG programs contain
specifications used by the Report Program Generator to make calls to the IMAGE procedures for
you. Table 4-1 contains a list of the procedures with a general description of their function.
Specific information about procedure calls, parameters, and status information is given later in

this section.

Table 4-1. IMAGE Procedures

PROCEDURE FUNCTION

DBOPEN Initiates access to a data base. Sets up user’s access mode and user class
number for the duration of the process.

DBPUT Adds new entries to a data set.

DBFIND Locates the first and last entries of a data chain in preparation for access to
entries in the chain.

DBGET Reads the data items of a specified entry.

DBUPDATE Updates or modifies the values of data items that are not search or sort items.
DBDELETE Deletes existing entries from a data set.

DBLOCK Locks one or more data entries, a data set, or an entire data base (or any

combination of these) temporarily to allow the process calling the procedure
to have exclusive access to the locked entities.

DBUNLOCK Releases those locks obtained with previous calls to DBLOCK.

DBCLOSE Terminates access to a data base or a data set, or resets the pointers of a data
set to their original state.

DBINFO Provides information about the data base being accessed, such as the name
and description of a data item.

DBEXPLAIN Examines status information returned by an IMAGE procedure that has been
called and prints a multi-line message on the $STDLIST device.

DBERROR Supplies an English language message that interprets the status information
set by any callable IMAGE procedure. The message is returned to the calling
program in a buffer.

SEP 1978 4-1

NOTE

Before the application pregrams can be executed, the data base must be created using the
DBUTIL IMAGE utility program described in Section VI.

OPENING THE DATA BASE

Before you can gain access to the data, the process ycu are running must open the data base with a
call to the DBOPEN procedure. In opening a data base, DBOPEN establishes an access path between
the data base and your program by:

o verifying your right to use the data base under the security provisions provided by the MPE
file system and the IMAGE user class/password scheme

° determining that the access mode you have requested in opening the data base is compatible
with the access modes of other users currently using the data base

o opening the root file and constructing the control blocks to be used by all other IMAGE
procedures when they are executed. The root file remains open until the data base is closed.

DATA BASE CONTROL BLOCK

A Data Base Control Block (DBCB) is a table of data base relative information residing in a privileged
extra data segment. There is exactly one DBCB for each open data base regardless of the number of
concurrent access paths to the data base. The DBCB contains all the static and dynamic global
information; that is, it contains all information which is not unique to a particular access path.

IMAGE creates the DBCB for a particular data base when the first user’s process calls the DBOPEN
procedure to open the data base and establish an access path. The global information for access
paths to the same data base (established by subsequent calls to DBOPEN) will be maintained in the
same DBCB. The DBCB is destroyed (released) when the last concurrent user closes the data base.

The information in the DBCB is initially derived from the root file. In addition to tables describing
the various components of the data base, the DBCB contains all buffers and work areas used by the
IMAGE procedures. IMAGE may modify the size and contents of various areas within the DBCB to
reflect the addition of access paths as more users open the data base. All IMAGE procedures operat-
ing on a particular data base reference the same DBCB. (DBERROR and DBEXPLAIN are exceptions;
they do not reference the DBCB.)

USER LOCAL CONTROL BLOCK

A User Local Control Block (ULCB) is a table of information which is specific to a particular user’s
access to a particular data base. There is one ULCB for each access path established for each
IMAGE data base. In other words, a unique ULCB is created each time DBOPEN is successfully
called. A ULCB contains most of the static and dynamic data which is unique to a specific access
path. (Some of this data is in the DBCB.) For example, a user’s current record numbers, current
lists, and security information are kept in his or her ULCB. The privileged extra data segment con-
taining the ULCB is associated with the user’s process.

The initial contents of the ULCB come from the DBCB and the root file. IMAGE procedures
called after DBOPEN combine information in the user’s ULCB with information in the global DBCB
in order to process the user’s request.

The ULCB is released when the user’s process calls DBCLOSE to close the data base.
4-2 SEP 1978

PASSWORDS

When you open the data base you must provide a valid password to establish your user class number.
If you do not provide one, you will be granted user class number 0. If you are the data base creator
and supply a semicolon as a password, the number 64 is used to grant you unlimited data base access
privileges. Passwords and user classes are discussed in Section II.

ACCESS MODES

There are eight different access modes available, each mode determines the type of operation that
you can perform on the data base as well as the types of operations other users can perform simul-
taneously. To simplify the definition of the various access modes, the following terminology is
used:

® read access allows the user to locate and read data entries.

® update access allows read access and, in addition, allows the user to replace values in all data
items except search and sort items.

® modify access allows update access and, in addition, allows the user to add and delete entries.

4-2a

The procedures that can be used with each type of access are:

[read — DBFIND and DBGET

® update - DBFIND, DBGET, and DBUPDATE

® modify -- DBFIND, DBGET, DBUPDATE, DBPUT, and DBDELETE

Table 4-2 summarizes the type of access granted in each access mode, provided the MPE security

provisions and your password permit it. Access modes 3 and 7 provide exclusive access to the data
base; all other modes allow shared access.

Table 4-2. Access Mode Summary

ACCESS TYPE OFF ACCESS CONCURRENT ACCESS
MODE GRANTED ALLOWED SPECIAL REQUIREMENTS

1 modify modify Locking must be used for update
(with locking) or modify.

2 update update

3 modify none

1 modify read

5 read modify IMAGE does not require locking but
(with locking) it should be used to coordinate access

with users who are modifying.

6 read modify

7 read none

8 read read

CONCURRENT ACCESS MODES. A data base can only be shared in certain well-defined environ-
ments. The access mode specified when a process opens a data base must be acceptable for the
environment established by others who are already using the data base. Here is a summary of the
acceptable environments:

L multiple mode 1 and mode 5 users

o multiple mode 6 and mode 2 users

L multiple mode 6 users and one mode 4 user

L multiple mode 6 and mode 8 users

o one mode 3 user

° one mode 7 user.

SEP 1978 4-3

Subsets of these environments are also allowed. For example, there may be all mode 6 users or all
mode 8 users. There may be one mode 1 vser or all mode 5 users and so forth.

If a modr 3 or mode 7 user is currently accessing the data base, it cannot be opened until that
user closes the data base. This is true any time an attempt is made to open a data base in a mode
which is not compatible with the modes of others using the data base.

DATA BASE OPERATIONS. The descriptions below explain in detail exactly what occurs when

a data base is opened in a particular mode. Locking is available in all modes. In the discussion that
follows, brief suggestions are given as to when locking may be used. Refer to the discussion of the
locking facility for more information.

ACCESS MODE 1. The data base is opened for shared modify access. Opening in mode 1
succeeds only if all other current users of the data base have access modes 1 or 5.

All IMAGE procedures are available in this mode. However, a program must obtain temporary
exclusive control of the data entries before calling any procedure that changes them, such as
DBUPDATE, DBPUT, or DBDELETE. In this way, changes to the data base are synchronized
and carried out properly. This exclusive control must subsequently be relinquished to permit
other access mode 1 or mode 5 users to access these entries. Acquiring and relinquishing is
referred to as locking and unlocking, respectively. These functions are supplied by the IMAGE
library procedures, DBLOCK and DBUNLCCK. The locking requirements may be met by
locking the affected entries, the sets containing the entries, or the whole data base.

A mode 1 (and mode 5) user who has all or part of the data base locked is assured that no
concurrent user is modifying that part of the data base.

It is possible to read entries in the data base using calls to DBFIND and DBGET without lock-
ing but the calling program must provide for the possibility that another process may be
simultaneously modifying the data base. This can result in an entry being deleted from a
chain which the calling program is reading.

ACCESS MODE 2. The data base is opened for shared update access. The opening succeeds
only if all current users of the data base have access modes 2 and 6. All IMAGE procedures
are available to the mode 2 user except DBPUT and DBDELETE which are permanently
disabled in this mode. Therefore, the mode 2 user is able to read and update data entries but
is not permitted to add or delete data entries in any data set.

The programmer must be aware of the possibility that other mode 2 users are simultaneously
updating data entries. In many applications, it may be possible to arrange for each user
process to update unique data entries or data items so that the data base will correctly reflect
all changes, even data items in the same entry updated by different processes. On the other
hand, if two or more processes update the same data items of the same entry, the data base
will reflect only the latest values. Locking may be used, if desired, to coordinate update
sequences to an entry or to coordinate with mode 6 readers.

ACCESS MODE 3. The data base is opened for exclusive modify access. If any other users
are accessing the data base it cannot be opened in this mode. All IMAGE procedures are
available to the mode 3 user. No other concurrent process is permitted to gain any type of
access to the data base.

4-4 SEP 1978

ACCESS MODE 4. The data base is opened. for semi-exclusive modify access. Only one mode
4 user can access the data base and all other current users must be in mode 6 (read only). The
mode 4 user is permitted to call any IMAGE procedure and has complete control over data
base content. This mode differs from mode 3 only in that other read-only users are permitted
concurrent access to the data base. Locking may be used to coordinate with mode 6 readers.

ACCESS MODE 5. The data base is openec for shared read access. All other concurrent
users must be in mode 1 or mode 5. Mode 5 operates in exactly the same way as mode 1
except the procedures that alter the data base, DBUPDATE, DBPUT, and DBDELETE, are
disabled for the mode 5 user. Locking can be used, if desired, to ensure that data is not being
modified while you are reading it.

ACCESS MODE 6. The data base is opened for shared read access. Concurrent users must be
in mode 2, 4, 6, or 8, This mode can also be used while the data base is being stored with the
IMAGE utility program, DBSTORE. Some of these modes are incompatible with each other
as shown in the discussion of concurrent access modes above. All IMAGE procedures that
alter the data base are disabled. Locking can be used to synchronize with users who are
concurrently updating.

Mode 5 and 6 are appropriate for inquiry-type applications if they can tolerate the possibility
of data base modifications taking place simultaneously, since mode 1, 2, and 4 users can make
such changes.

ACCESS MODE 7. The data base is opened for exclusive read access. No other users may
access the data base concurrently. Mode 7 operates in exactly the same way as mode 3 except
the procedures that alter the data base are disabled for the mode 7 user.

ACCESS MODE 8. The data base is opened for shared read access. Concurrent users must be

in mode 6 or 8 or using the IMAGL utility DBSTORE. IMAGE procedures that alter the data

base are not permitted. Since mode 8 allows only concurrent readers, a user program with

this access mode can be assured that the data base values it reads are unchanging. [|

SELECTING AN ACCESS MODE. When deciding which access mode to use, two important con-
siderations are:

Use the least capability that will accomplish the task. For example, select a read only access
mode (5, 6, 7, or 8) if the program does not alter the data base in any way. In these modes,
the data base files are opened by IMAGE for input only. This type of access is more generally
available than input-output access because MPE security provisions on concurrent data base
use may prevent input-output access but allow input only access. Furthermore, files opened
only for input access are not included on incremental MPE SYSDUMP tapes and therefore sys-
tem back-up time may be reduced by opening the data base for read only access. (Refer to
the System Manager/System Supervisor Manual for more information about SYSDUMP.)

Allow concurrent users as much capability as is consistent with successful completion of the

task. If the task is merely browsing through the data base, producing a quick report, or

accessing an unchanging portion of the data base, choose a mode which allows concurrent

users to make data base modifications to other parts of the data base. Allowing concurrent
read-only access (modes 2, 4, and 8) may be appropriate in many situations. For programs

that must be assured there will be no concurrent structural changes but can tolerate
simultaneous updates to entries, mode 2 may be particularly suitable. Locking may I
be used to control simultaneous updates to a data entry. If it is absolutely

necessary to make structural changes to a data base from concurrent multiple

SEP 1978 4-5

processes, modes 1 and 5 must be used. Fully exclusive operation (modes 3 and 7) are avail-
able if needed.

The following mode selection guidelines are organized according to the task to be performed. For
some tasks, one of several modes may be selected depending on the concurrent activity allowed with
each mode.

® Programs that perform all data base operations, including adding and deleting entries, should
open with mode 1, 3, or 4. Choose mode:

1 if it is necessary to allow other processes to add and delete entries
simultaneously. In this case, the affected parts of the data base
must be locked while performing updates, additions, or deletions.

4 if exclusive ability to change the data base is required but it is possible
to allow mode 6 processes to read the data base while changes are
being made.

3 if the program must have exclusive access.

® Programs that locate, read and replace data in existing entries but do not need to add or delete
any entries, and do not want any other processes to do so, should open the data base in mode
2. Locking can be used to coordinate updates.

o Programs that only locate and read or report on information in the data base should open with
one of the read only modes. In this case, the mode selected depends upon either the type of
process running concurrently or the need for an unchanging data base while the program is
running. Choose mode:

5 if concurrent processes will operate in modes 1 or 5. Parts or all of
the data base may optionally be locked to prevent concurrent changes
during one or more read operations.

6 if it is not important what other processes are doing to the data base.
In this case, mode 2 processes can replace entries, one mode 4 user
can replace, add or delete entries, or mode 6 or mode 8 users can read
entries while the program is using the data base.

8 if the data base must not change while the program is accessing it.
7 if the program must have exclusive access to the data base.

DYNAMIC LOCKING. Refer to the discussion of locking and unlocking later in this section for
some special considerations.

ENTERING DATA IN THE DATA BASE

Data is added to the data base, one entry at a time, using the DBPUT procedure. You may add
data entries to nianual master and detail data sets. Entries are automatically added to automatic
master data sets when you add entries to the associated detail data sets.

To add an entry. you specify the data set name, a list of data items in the set, and the name of a
buffer containing values for these items. Values must be supplied for search and sort items but are
optional for other data items in the entry. If no value is supplied, the data item value is set to
binary zeroes.

4-6 SEP 1978

SEQUENCE FOR ADDING ENTRIES

Before you can add an entry to a detail data set indexed by a manual master data set, the manual
master must contain an entry with a search item value equal to the one you intend to put in the de-
tail. If more than one manual master is used to index the detail, entries which have a search item
value identical to the detail search item value for the same path must exist in each master. To
illustrate, consider the STORE data base again. Figure 4-1 contains sample data entries in four of
the STORE data sets.

Before the SALES data entry can be added to the data set, the CUSTOMER manual master data
set must contain an entry with ACCOUNT equal to 12345678 since ACCOUNT is the search item
used to index the SALES detail. Similarly, the SALES data set is indexed by the PRODUCT
manual master through the STOCK # search item, so the entry with STOCK# equal to 35624AB3
must be added to PRODUCT before a sales transaction for that STOCK # can be entered in SALES.

Once the entry for customer account 12345678 has been entered, the next sales transaction can be
entered in the SALES detail set without changing the CUSTOMER master. This entry will be
chained to the previous entry for the account. If a different customer buys a bicycle tire pump,
the PRODUCT data set will not require any additional entries, but if the customer’s account is
not yet in the CUSTOMER data set it must be added before entering the sales transaction in SALES.

When the entry for account 12345678 and stock number 35624 AB3 is added to SALES, IMAGE
automatically adds entries to the DATE-MASTER with a DATE item value of 92775 and 92875 if
such entries do not already exist. If the entries do exist, each chain head is modified to include the
entry added to the chain.

ACCESS MODE AND USER CLASS NUMBER

An entry cannot be added to a data set unless the user class number established when the data base
is opened grants this capability. The user class number must be in the data set write class list.

Manual Master CUSTOMER Data Entry

12345678 MILLER JAMES L. | 1645 MARSHALL AVENUE GLENDALE AZ 85301 3.4

Path defined by ACCOUNT Search Items Automatic Master

Path defined by PURCH-DATE DATE-MASTER Data Entries
and DATE Search Items
{y Detail SALES Data Entry { 92775

12345678 35624AB3 2 | 900 |54 | 954 | 92775 | 92875

‘ 92875
Path defined by DELIV-DATE
and DATE Search items

Path defined by STOCK = Search Items

Manual Master PRODUCT Data Entry

35624AB3 BICYCLE TIRE PUMP

Figure 4-1. Sample Data Entries from STORE Data Base
4-7

The data base must also be opened with an access mode allowing entries to be added. These access
modes are 1, 3, and 4. If it is opened with access mode 1, the DBLOCK procedure must be used
to establish a lock covering the entry to be inserted. For detail data sets, this may be a data entry,
data set, or data base lock. For manual master data sets, this must be a data set or data base lock.

Note that the locking mechanism will accept a request to lock a data entry that does not yet exist,
therefore, you may lock a data entry before you add it.

SEARCH ITEMS

IMAGE performs checks on the values of search items before adding an entry to a data set. If the
data set is a manual master, IMAGE verifies that the search item value is unique for the set, that no
entry currently contains a search item with the same value. If the data set is a detail, IMAGE veri-
fies that the value of each search item forming a path with a manual master has a matching value in
that master. It also checks that there is room to add an entry to any automatic master data sets
linked to the detail if a matching search item value does not exist.

READING THE DATA

When you read data from the data base you specify which data set and which entry in that data set
contains the information you want. If the user class number with which you opened the data base
grants you read access, you may read the entire entry or specific data items from the entry. You
specify the items to be read and the array where the values should be stored. You can read items
or entries in any access mode if your user class grants read access to the data element.

To understand the various ways in which you can select the data entry to be read, it is important
to know a little about the data set structure. Each data set consists of one disc file and each data
entry is a logical record in that file. Each entry is identified by the relative record number in which
it 1s stored. The first record in the data set is record number 1 and the last is record number n
where n is the capacity of the data set.

At any given time, a record may or may not contain an entry. IMAGE maintains internal informa-
tion indicating which records of a data set contain entries and which do not.

CURRENT PATH

IMAGE maintains a current path for each detail data set and each accessor (access path). The current
path is established by the DBFIND procedure, or if no call has been made to this procedure, it is the
primary path for the data set. Each time an entry is read, no matter what read method is used,

IMAGE saves the entry’s backward and forward chain pointers for the current path. For more infor-
mation about how the current path is used, refer to the discussion of chained access later in this section.

If an entry is read from a master data set, the chain pointers are synonym chain pointers and have no
relationship to a path.

READING METHODS

The methods for requesting a data entry are categorized as
® directed access

® serial access

® calculated access

) chained access

4-8 SEP 1978

All of these methods are available through the IMAGE library procedure DBGET. The chained
access method also requires the use of the DBFIND procedure. Figure 4-2 illustrates the access
methods using two data sets from the STORE data base.

1
~= 2
(
» -
/
! 4
\\
A5
(
\>6
/
/ 7
l\ 8
\
A9
10
,— 1
(
D e
/
/
3
|
\ 4
\\
/>5
/
(6
\
» -
8

INVENTORY Detail Data Set

STOCK = QNHANDQTY SUPPLIER
6650D22S 95 H&S SURPLUS

4397D13P 32 ACME WIDGET

6650022S 75 H&S SURPLUS ¢
3739A14F 8 JAKE'S JUNK

7391222F 12 H&S SURPLUS -

SUP-MASTER Master Data Set

SUPPLIER

STREET-ADDRESS

JAKE'S JUNK

ACME WIDGET

H&S SURPLUS

BAY PAPER CO.

Directed Access

Serial Access (Forward)

Calculated Access

Chained Access (of Details). See Section VI for illustration of synonym chains.

Contains pointers
to beginning

and ending

chain entries.

Figure 4-2. Reading Access Methods (DBGET Procedure)

4-9

DIRECTED ACCESS

One method of selecting the data entry to be read is to specify its record number. This method is
called directed access. If any entry exists at the record address specified by the calling program,
IMAGE returns the values for the data items requested in the calling program’s buffer. If no such
entry exists, the program is notified by an exceptional condition return.

This access method can be used with any type of data set and is useful in situations where the
calling program has already determined the record number of the entry to be read. For example,
if a program surveys several entries using another access method to determine which one it wants
to use in a report, it can save each record number and use the record number of the entry it selects
to read the entry again using the directed access method.

If a program performs a directed read of record 3 of the INVENTORY data set, the entry marked
with a solid black arrow in figure 4-2 is read. If a directed read of the SUP-MASTER data set
record 7 is performed, the entry in that set marked with the same type of arrow is read.

LOCKING. If concurrent users are allowed to add to or delete from this data set, locking should be
used during the search and report sequence to ensure the record numbers do not change before
they are used. In this type of application, a data set lock is usually the most appropriate.

NOTE

When using this type of access with master data sets, you should be aware of migrating
secondaries. These are described in Section VII.

SERIAL ACCESS

In this mode of retrieval, IMAGE starts at the most recently accessed storage location for the data
set, called the current record, and sequentially examines adjacent records until the next entry is
located. Data items from this entry are returned to the calling program, and its location becomes
the current record.

You may use both forward and backward serial access. Forward serial access consists of retrieving
the next greater-numbered entry and backward serial access consists of retrieving the previous lower-
numbered entry. If no entry is located, IMAGE returns an exceptional condition, an end-of-file if
the requested access is forward and a beginning-of-file if it is backwards.

Since there is no current record the first time a program requests an entry from a data set, a request
for forward serial access causes IMAGE to search from record 1. Similarly, a backward serial re-
trieval begins at the highest numbered record.

The entries connected by a broken line in figure 4-2 are read by a program using the serial access
method. If a forward serial read is performed on the INVENTORY data set before any other type
of read, the entry in record number 2 is read. If another forward serial read is performed on the
same data set, the entry in record 3 is read. On the other hand, if a serial read is performed and the
current record is 6, the entry in record 9 is read. The next forward serial read returns an excep-
tional condition, end-of-file.

The serial access method can be used with any type of data set and is very useful if most or all of the
data in the data set is to be retrieved, for example, to be used in a report. It is efficient to retrieve
all the data serially, copy it to a file, and sort it with routines external to IMAGE before printing
the report. The availability of serial access effectively allows you to use a data set in the same way
you would use an MPE file. Thus, you have the advantages of IMAGE data base organization and
the efficiency of serial access.

LOCKING. If concurrent users are allowed to modify the data set (access mode 1), you may wish to
lock the data set or data base before you begin the serial access sequence. Locking will prevent entries
from being added, modified, moved or removed by the other processes.

4-10 SEP 1978

CALCULATED ACCESS

The calculated access method allows you to retrieve an entry from a master data set by specifying a
particular search item value. For example, the SUP-MASTER data entry for the supplier Acme
Widget shown in figure 4-2, can be retrieved with this method since SUPPLIER is a search item in
the SUP-MASTER data set. IMAGE locates the entry in the data set whose search item value
matches the requested value., The exact technique used to perform calculated access is described

in Section VII.

Calculated access can be used only with master data sets. It is very useful for retrieving a single
entry for some special purpose. For example, a program used infrequently to get information
about a particular customer or supplier could use calculated access to quickly locate the informa-
tion in the STORE data base.

CHAINED ACCESS

The chained access method is used to retrieve the next entry in the current chain. To perform
chained access of detail data set entries, you must first locate the beginning of the chain you want
to retrieve, and thus initiate the current chain, by calling the DBFIND procedure. The calling
program specifies the name of the detail search item that defines the path to which the chain
belongs and a value for the item. IMAGE determines which master set forms a path with the
specified search item and locates the entry in that master data set whose search item value matches
the specified value. The entry it locates contains pointers to the first and last entries in the desired
chain and a count of the number of entries in the chain. This information is maintained internally
and defines the current path.

If a program uses chained access to read the INVENTORY data set entries pertaining to the sup-
plier H&S SURPLUS shown in figure 4-2, it must first call the DBFIND procedure to locate the
chain head in the SUP-MASTER data set. The program specifies the INVENTORY data set, the
SUPPLIER search item in the INVENTORY data set and the value H&S SURPLUS for that
item. IMAGE uses a calculated read to locate the SUP-MASTER entry with a search item value
of H&S SURPLUS. If the program then requests a forward chained read using the DBGET pro-
cedure, the entry in record 9 of INVENTORY, which is at the beginning of the chain, is read. If
a backward chained read is requested, the entry in record 5 is read.

If the last call to DBGET used chained access to read the entry in record 9, the next forward
chained read reads the entry in record 2 of the INVENTORY data set.

Once a current path, and chain, has been established for a data set, the calling program can use the
chained access method of retrieving data. You may use both forward and backward chained access.
In either case, if there are no more entries in the cha:n when you request the next one, DBGET
returns an exceptional condition, beginning-of-chain or end-of-chain for backward and forward
access, respectively.

Chained access to master data sets retrieves the next entry in the current synonym chain. The use
of synonym chains applies to only a limited number of special situations. They are discussed in
Secticen VII.

Chained access to detail data sets is particularly useful when you want to retrieve information about
related events such as all inventory records for the H&S Surplus supplier in the STORE data base.

LOCKING. If concurrent users are allowed to modify data entries in the chain you are currently
accessing, you may use locking to ensure data consistency. For example, suppose a chain consists
of several data entries, each containing a line item from a particular order. If user A is performing a
series of chained reads while user B is cancelling the order by deleting data entries one by one, user
A may retrieve an incomplete order. To prevent this from happening, a lock may be established
covering the group of data entries to be retrieved (the chain, in this case). This can usually be done
with a single DBLOCK call. (Refer to the discussion of the locking facility later in this section.}

SEP 1978 4-11

RE-READING THE CURRENT RECORD

The DBGET library procedure allows you to read the entry from the most recently accessed record
again. You may want to do this in a program that has unlocked the data entry and locked it again
and needs to check if the contents of the currer:t entry have been changed.

Note that if a DBFIND procedure call has been made, the current record is zero and a request to
re-read the entry causes DBGET to return a flag indicating that the current record contains no
entry. See the DBGET procedure table 4-8 for more information.

UPDATING DATA

IMAGE allows you to change the values of data items that are not search or sort items if the user
class number with which you opened the data base grants this capability to you. Before you call
the DBUPDATE library procedure to change the item values, you must call DBGET to locate the
entry you intend to update. This sets the current record address for the data set. The DBUPDATE
library procedure uses the current record address to locate the data items whose values are to be
changed.

A lock may be established before the call to DBGET to guard against accidental modification of the
record by another user. This is recommended in any shared access mode (as discussed below).

When the program calls DBUPDATE it specifies the data set name, a list of data items to be changed,
and the name of a buffer containing values for the items. For example, if a program changes the
street address of a customer in the CUSTOMER data set of the STORE data base, the program can
first locate the entry to be changed by calling DBGET in calculated access mode with the customer’s
account number and then calling the DBUPDATE procedure to change the value of the STREET-
ADDRESS data item in that entry.

ACCESS MODES AND USER CLASS NUMBER

To update data items, the data base must be opened in access mode 1, 2, 3, or 4. If it is open in
access mode 1, the data entry, data set, or data base must be locked while the update is happening.

IMAGE guarantees that all updates to a data entry will be carried out even if they are requested by
different users simultaneously and locking is not used. To ensure this, IMAGE always completes

the processing of one DBUPDATE request before it begins processing another. However, data con-
sistency programs may still occur if an update is based on data values that are not current. For
example, while withdrawing 10 items from the stock, two users may read the same data entry from
the INVENTORY data set. If the current value of ONHANDQTY is 30 and they each subtract 10
from it and then update the entry, both updates will operate successfully but the new value will be
20 rather than 10. To prevent errors such as this, a lock covering the data entry can be put in effect
before it is read and released after it is updated.

IMAGE attempts to enforce this locking technique for users in mode 1 by checking to see if an appro-
priate lock is in effect before executing an update. However, to have its proper effect, the lock should
be made before the call to DBGET.

SEP 1978
4-11a

The password you use to open the data base must grant update capability to the data items you
intend to change, The user class number associated with the password must either be in the write
class list of the data set containing the items to be updated or in the read class list of the data set
and in the write class list of the data item.

DELETING DATA ENTRIES

To delete an entry from a data set, you must first locate the entry to be deleted by reading it with
the DBGET library procedure, or the DBFIND and DBGET procedures if it is advantageous to use
chained access to locate the entry. You then call the DBDELETE procedure specifying the data
set name. IMAGE verifies that your password and associated user class number allow you to
delete the current entry of the specified data set.

If the detail data entry deleted is the only member of a detail chain linked to an automatic master,
and all other chains linked to the same automatic master entry are empty, IMAGE automatically
deletes the master entry.

If the data entry is a manual master data set, IMAGE verifies that the detail chains associated with
the entry’s search item, if any, are empty. If not, it returns an error condition to the calling pro-
gram. For example, if a program attempts to delete the SUP-MASTER entry in figure 4-2 that
contains a SUPPLIER value of H&S SURPLUS, an error condition is returned since a three-entry
chain still exists in the INVENTORY detail data set.

To delete the CUSTOMER data set entry with ACCOUNT equal to 75757575, the program can
call DBGET in calculated access mode specifying the CUSTOMER data set and the search item
value 75757575. If the procedure executes successfully, the program then can call DBDELETE
specifying the CUSTOMER data set to delete the current entry provided no chains in the related
SALES detail data set contain search item values of 75757575.

ACCESS MODES AND USER CLASS NUMBERS

The data base must be opened with access mode 1, 3, or 4. If it is opened with access mode 1, the
DBLOCK procedure must be used to lock the detail data entry, data set, or data base before an
entry can be deleted and DBUNLOCK should be called after one or all desired entries have been
deleted. As a general rule, the lock should be established before the whole delete sequence, in
other words, before the call to DBGET that establishes which record is to be deleted. This will
ensure that another user does not delete the data entry between the call to DBGET and the call

to DBDELETE.

An entry cannot be deleted from a data set unless the user class number established when the
data base is opened is in the data set write class list.

4-12 SEP 1978

USING THE LOCKING FACILITY

The DBLOCK procedure applies a logical lock to a data base or one or more data sets or data
entries. The DBUNLOCK procedure releases these locks.

Locking can be viewed as a means of communication and control to be used by mutually cooperat-
ing users. The locking facility provides a method for protecting the logical integrity of the data
shared in a data base. With the DBLOCK procedure, application programs may isolate temporarily
a subsection of the data base in order to perform a transaction against the isolated data. Locking
is not required to protect the structure of the data base. IMAGE has internal mechanisms that do
this.

If a program opens the data base in access mode 1 and locks a part of the data base, it can perform
the transaction with the certain knowl!edge that no other user will modify the data until the appli-
cation program issues a DBUNLOCK call. This is because IMAGE does not allow changes in access
mode 1 unless a lock covers the data to be changed. If one process has the data base cpened in
access mode 1, IMAGE requires that all other processes that modify the data base must also operate
in access mode 1.

The DBLOCK procedure operates in one of six modes. Modes 1 and 2 may be used for locking
the data base and modes 3 and 4 for locking a data set. In modes 5 and 6, you describe the data
base entity or entities to be locked using a lock descriptor.

At the data entry level, locking is performed on the basis of data item values. For example,
suppose a customer requests a change in an order he has placed. The data entries for his account
that are in the SALES data set may be locked while his order is changed and other data base
activity may continue concurrently.

LOCK DESCRIPTORS

A lock descriptor is used to specify a group of data entries that are to be locked. It consists of a
data set name or number, a data item name or number, a relational operator, and an associated
value. For purposes of this discussion, the notation dset : ditem relop value is used. For example,
the lock descriptor SALES: ACCOUNT = 89393899 requests locking of all the data entries in the
SALES data set with an ACCOUNT data item equal to 89393899. Note that the result of specify-
ing a single lock descriptor may be that none, one or many entries are locked depending on how
many entries qualify.

The following relational operators may be used:

® less than or equal (< =)

® greater than or equal (> =)

® equal (= A or A =). A indicates a space character.

The value must be specified exactly as it is stored in the data base. A lock will succeed even if no
data item with the specified value exists in the data set; no check is made to determine the existence

of a particular data item value.

This allows you to use techniques such as issuing a lock to cover a data entry before you actually
add it to the data set.

SEP 1978 4-13

With the exception of compound items, any data item may be used in a lock descriptor. It need not
be a search item.

IMAGE does not require that you have read or write access to a data set or data item in order to
specify it in a lock request.

A process may specify any number of lock descriptors with a single DBLOCK call. For example,
the following lock descriptors may be specified in one DBLOCK call:

CUSTOMER: ACCOUNT = 89393899
SALES: ACCOUNT = 89393899
SUP-MASTER: STATE = AZ
INVENTORY: ONHANDQTY <=100
INVENTORY: ONHANDQTY > = 1500

Multiple calls to DBLOCK without intervening calls to DBUNLOCK are not allowed unless the pro-
gram has Multiple RIN (MR) capability. (Refer to the discussion of multiple DBLOCK calls later in
this section.)

HOW LOCKING WORKS

The internal implementation of locking does not involve reading or writing to the data base element
to be locked. IMAGE keeps a table of everything that is locked by all processes that have the data
base opened. One table is associated with each data base. This table serves as a global list of lock
descriptors. In locking mode 5 or 6, a data base lock is specified with the descriptor @: @ and a
data set lock with dset: @, If you call DBLOCK in locking mode 1, 2, 3, or 4, IMAGE sets up the
appropriate lock descriptor and puts it in the lock descriptor table.

Figure 4-2.1 illustrates the contents of this list in a situation where one process has locked all
SALES data entries with ACCOUNT equal to 12121212 or equal to 33334444. Another process
has locked all INVENTORY data entries with STOCK# equal to 5650D22S. A third process has
locked the whole SUP-MASTER data set.

(Note that the figure illustrates what the table represents, not the actual internal format.)

When a lock request is made, IMAGE compares the newly specified lock descriptors with those that
are currently in the list. If a conflict exists, IMAGE notifies the calling process that the entity cannot
be locked or, if the process has requested unconditional locking, it is placed in a waiting state until
the entity can be locked. If there are no conflicts, IMAGE adds the new lock descriptors to the list.

SALES: ACCOUNT =12121212
SALES: ACCOUNT = 33334444
INVENTORY: STOCK# = 6650D22S

SUP-MASTER: @ «—— @ indicates entire data set is locked.

Figure 4-2.1. Lock Descriptor List
SEP 1978 4-13a

CONDITIONAL AND UNCONDITIONAL LOCKING

You may request conditional or unconditional locking. If you request unconditional locking,
IMAGE returns control to your calling program only after the specified entity has been locked.

If you request conditional locking, IMAGE returns immediately. In this case, the condition code
must be examined to determine whether or not the requested locks have been applied. If multiple
lock descriptors are specified, the status area indicates the number that have been applied. The
calling program should call DBUNLOCK if only a subset of the requested locks succeeded.

ACCESS MODES AND LOCKING

It is anticipated that access mode 1 will typically be used by applications implementing a locking
scheme. In this mode, IMAGE enforces the following rules:

L] To modify (DBPUT, DBDELETE, or DBUPDATE) a data entry, you must first issue a success-
ful lock covering the affected data entry. It may be a data entry, data set, or data base lock.

° To add to or delete from (DBPUT or DBDELETE) a master data set, you must first successfully
lock the data set or data base. To update (DBUPDATE) a master data set, data entry level
locks are sufficient.

If your application opens the data base in access mode 2, it is recommended that you use locking to
coordinate updates with other users.

IMAGE does not prevent any process from reading data even though another process holds a lock on
it. If you want to ensure that no modifications are in progress while you are reading from the data
base, you should place an appropriate lock on the data before starting. Therefore, you may want to
use locking in access modes 2, 4, 5, and 6 to coordinate the reading and modifying sequences and
ensure that they do not occur concurrently.

Since access mode 3 and 7 users have exclusive control of the data base and access mode 8 users
allow concurrent reading only, locking need not be used in these modes.

AUTOMATIC MASTERS

When adding or deleting entries from a detail data set, you need not have locks covering the implicit
additions or deletions that occur in any associated automatic masters.

LOCKING LEVELS

Locking can be viewed as operating on three levels: the whole data base, whole data sets, or data
entries. IMAGE allows mixed levels of locking; for example, one user may be locking data entries
and another locking the data set. In this situation, a request to lock the data set cannot succeed
until all the currently locked data entries have been released. Subsequent requests to lock data
entries, those that are made while the data set lock is pending, are placed in a queue behind the
data set lock.

This principle is followed for data base locks also. If data set or data entry locks are in effect at the
time a data base lock is requested, the data base lock must wait until they are released and all

suhsequent locking requests must wait behind the pending data base lock.

In either case, if the request is for a conditional lock, an exceptional condition is generated. (Refer
to the DBLOCK condition word values, table 4-12.)

4-13b SEP 1978

DECIDING ON A LOCKING STRATEGY

It is important, especially for on-line interactive applications, to establish a locking strategy at system
design time. In general, locking is related to the transaction, the basic unit of work performed
against a data base. Typically a transaction consists of several calls to IMAGE intrinsics to locate

and modify data. For example, a transaction to add a new order with three line items may require
several reads to locate customer information and several DBPUT calls to add the order detail

records.

One characteristic of a transaction is that the data in the data base is consistent both before and
after the transaction, but not while it is in progress. For example, a user reading the detail data

set being modified by the above order transaction may only see some of the line items and may get
no indication that the transaction is incomplete. This type of problem is referred to as ‘“logical
inconsistency” of data and can be prevented by using the locking facilities.

The general principle that should be applied for any transaction in a shared-access environment is:

° At the start of any transaction, establish locks that cover all data entries that you intend to
modify (DBPUT, DBDELETE, or DBUPDATE) and/or all data entries which must not change
during the transaction.

CHOOSING A LOCKING LEVEL

Because IMAGE needs more information to lock data entries than to lock the whole data base, pro-
gram complexity tends to increase the lower the level of locks employed. Locking the whole data
base or a single data set is the simplest operation, followed in increasing order of complexity by
locking multiple data sets and locking data entries. At system design time, a compromise must be
made between the benefits of low-level locking and the extra programming effort required.

Data entry locking should always give the best performance, however, there are situations in which
the extra programming effort for data entry locking is not worthwhile. Some other considerations
that may affect your choice of locking level are discussed below.

LOCKING AT THE SAME LEVEL. All programs concurrently accessing a data base should lock
at the same level most of the time. For example, one process locking a data set will hold up all
other processes that are attempting to lock entries in that set. Therefore, the attempt by the
process locking at the data entry level to allow other processes to share the data base is nullified
by the process locking at the data set level and the effect is as if all processes were locking at the
data set level.

The rule of locking at the same level may be violated for infrequent operations such as exception
handling or rare transactions,

LENGTH OF TRANSACTION. Generally, the longer the lock is to be held, the lower level it
should be. In other words, if you are performing lengthy transactions (more than about 8 IMAGE
calls), you should probably lock at the entry level. For transactions shorter than this, data base or
data set locks will give approximately the same results.

An extreme case of a long transaction is one in which user dialog takes place while a lock is held.
For example, a program may read some data entries, interact with a terminal operator, and modify
some or all of the entries. A lock to cover this transaction may last several minutes which is an
unacceptable amount of time to stop all data base or data set activity. In this situation, data

entry level locking should be used.

Since the length of different transactions varies, the longest transaction (that is also frequently used)
should guide the choice of locking level.

SEP 1978 4-13c

LOCKING DURING USER DIAT.OG. In the situation described above where a lock is held during
interactive dialog with a terminal operator, the terminal timeout feature of MPE may be used to
avoid having the locked entity inaccessible when the terminal operator is interrupted in the middle of
the dialeg. The timeout feature may be used to cause the terminal read to terminate automatically

if no response is received within a certain time period. Refer to the discussion of FCONTROL in

the MPE Intrinsics Manual,

CHOOSING A DATA ITEM FOR LOCKING

An important convention to follow in designing a locking scheme is that all programs sharing the
data base concurrently use the same data item to lock data entries in a particular data set. At any
point in time, IMAGE allows no more than one data item per data set to be used for locking pur-
poses. However, several values of the data item may be locked at the same time. For example, if
one process has successfully locked SALES: ACCOUNT = 54321000, another process may lock
SALES: ACCOUNT =11111111. If a request is made to unconditionally lock SALES: STOCK# =
8888X22R, the requesting process will be made to wait until all entries locked by ACCOUNT
number are unlocked. Furthermore, any new requests for locking other SALES: ACCOUNT values
will wait until SALES: STOCK# = 8888X22R is successfully locked and unlocked again.

With this in mind, it is apparent that it is more efficient if all processes locking data entries in the
SALES data set use the same data item since it is much less likely that one process will have to wait
until another process finishes using the data. Therefore, at system design time, decide which item
will be used in each data set for lock specification purposes. (It may be useful to add comments in
the schema indicating which item is the locking item for each set.)
EXAMPLES OF USING THE LOCKING FACILITY
The following examples list the order in which IMAGE intrinsics may be called when using the
locking facility while performing various transactions. The examples refer to the STORE data base
described in figures 2-5 and 2-6.
® Adda new customer

1. DBLOCK the CUSTOMER data set or the whole data base.

2. DBPUT new data entry in CUSTOMER data set.

3. DBUNLOCK.

The data set is locked because IMAGE requires a data set or data base lock to cover addition
of an entry to a master data set.

® Update an INVENTORY data entry to increase UNIT-COST for part 6650D228S by 12 percent

1. DBLOCK INVENTORY: STOCK# = 6650D22S. (Alternatively, the INVENTORY set
or the whole data base can be locked.)

2. DBFIND and DBGET the data entry that is locked in step 1.
3. Compute new UNIT-COST = UNIT-COST + .12 * UNIT-COST.
4. DBUPDATE the data entry that is locked.

5. DBUNLOCK.

4-13d SEP 1978

® [nsert a new product with a new supplier

1.

2.

8.

9.

DBLOCK the PRODUCT master data set.

DBPUT new product data entry in PRODUCT master data set.
(For example: 4444A33B CALIPER)

DBUNLOCK.

DBLOCK the SUP-MASTER data set.

DBPUT new supplier data entry in SUP-MASTER data set.

DBUNLOCK.

DBLOCK INVENTORY: STOCK# = 4444A33B.

DBPUT new data entry in INVENTORY data set for STOCK# = 4444A33B.

DBUNLOCK.

Note that this has been done as three transactions. If you did not want other users to see the
data base with the supplier record present but with no inventory shown, you could perform
one transaction with all the locks requested in one call to DBLOCK with mode 5 or 6.

® [nteractively modify an order for customer account 89393899

1.

2.

3.

4,

5.

DBLOCK SALES: ACCOUNT = 89393899.

DBFIND the CUSTOMER master data set entry with ACCOUNT = 89393899 in order to
prepare to read the chain of SALES data entries with the same ACCOUNT value.

DBGET each entry in the chain and display it to user until the correct order is located.
Modify the contents of the data entry according to the users request.

DBUNLOCK.

All data entries for ACCOUNT 89393899 in the SALES data set are locked. Note that these
locks are held while a dialog takes place with the terminal operator, therefore, the lock may
be held for several minutes. For this type of transaction, it may be best to first perform a
conditional lock to determine if the records are accessible. For example:

1.

2.

DBLOCK SALES: ACCOUNT = 89393899 with mode 6.

If the lock does not succeed, display a message such as:
RECORDS BEING MODIFIED. WANT TO WAIT?

If the response is NO then go to other processing.

If the response is YES, call DBLOCK again with mode 5.

Table 4-2.1 contains guidelines that may be helpful in designing locking schemes for shared-access
environments which include users who might modify the data base. Although data entry level locks
are recommended in this table and illustrated in the examples above, data set or data base locks may
be more appropriate for similar tasks depending upon other application requirements.

SEP 1978

4-13e

Table 4-2.1. Locking in Shared-access Environments

ACTION RECOMMENDED LOCKS

Chained DBGET calls Lock all data entries in the chain. This usually requires one lock
descriptor.

Serial DBGET calls Lock the data set.
Update a data entry Lock the data entry before calling DBGET to read the data entry. Unlock
(DBUPDATE) after the update.
Directed reads These are not recommended in a shared environment. Lock the data set
(DBGET calls) before determining which data entry is needed.
Add a data entry to a detail Any lock which covers this data entry, but preferably use the data item
data set (DBPUT) that was decided on as the ‘lock item’ for the data set.
Add to or delete from a Lock the data set or data base. This is mandatory if the data base is open
master data set in access mode 1.
(DBPUT and DBDELETE)

ISSUING MULTIPLE CALLS TO DBLOCK

In order to guarantee that two processes cannot deadlock, once a call to DBLOCK is made by any
process in a session or job, IMAGE does not allow a second call to be made unless the locks are can-
celled with a call to DBUNLOCK first. There are two exceptions to this rule:

® A redundant call may be made to lock the whole data base with DBLOCK mode 1 or 2 provided
the call relates to the same access path. The redundant call will have no effect. (This is allowed
in order to maintain compatibility with earlier versions of IMAGE.)

® More than one DBLOCK call may be made if the program from which multiple DBLOCK
calls are issued has Multiple RIN (MR) capability. (A user cannot prepare such a program
unless he also has this capability. Refer to the System Manager/System Supervisor Reference
Manual for more information.)

The DBLOCK procedure is similar to MPE global RIN locks* in that it may put a process into a
waiting state and thus, may cause a deadlock to occur. For example, a deadlock may occur if
process A is waiting for a global RIN to be freed by process B, and process B is waiting for a data
base entity to be unlocked by process A. Therefore, issuing a DBLOCK in conjunction with a
lock applied by MPE intrinsics such as LOCKGLORIN or FLOCK or by the COBOLLOCK pro-

cedure requires MR capability. (The use of MR capability is not recommended unless absolutely
necessary.)

Users whose programs have MR capability and issue multiple DBLOCK calls are responsible for
dead}ock prevention. This type of locking must be done very carefully. Recovery from a deadlock
requires a restart of the operating system.

#No RINs are actually involved. Refer to Appendix D for more information about MR capability.
4-13f SEP 1978

No matter how many descriptors are listed in a single DBLOCK call, IMAGE guarantees that
deadlocks will never occur provided that no executing program that accesses the data base has MR
capability.

(Refer to appendix D for more information on the MR capability.)

RELEASING LOCKS

The locks held by a process for a particular access path of a data base are relinquished when the
process calls DBUNLOCK, or automatically when the process closes the data base, terminates,
aborts, or is aborted by an operator.

Failure of a program to release locks will result in other programs waiting indefinitely for any con-
flicting locks. These programs, while in a waiting state, cannot be aborted by the operating system.
An attempt to abort such a waiting process will result in the abort taking effect as soon as the
process obtains the lock for which it was waiting.

SEP 1978 4-13g

OBTAINING INFORMATION ABOUT THE DATA BASE STRUCTURE

The DBINFO library procedure allows you to acquire information programmatically about the data
base. It provides information about data items, data sets, or data paths. The information returned
is restricted by the user class number and access mode established when the data base is opened.

Any data items, data sets, or paths of the data base inaccessible to that user class or in that access
mode are considered to be non-existent. For example, if the access mode grants only read access,
this procedure will indicate that no data sets may have entries added.

The information that can be obtained through separate calls to DBINFO is summarized below.
In relation to data items, DBINFO can be used:

® to determine whether the user class number established when the data base is opened allows a
specified data item value to be changed in at least one data set, or allows a data entry contain-
ing the item to be added or deleted.

° to get a description of a data item including the data item name, type, sub-item length, and sub-
item count. This information corresponds to that which is specified in the item part of the
schema.

o to determine the number of items in the data base available to the current user and to get a list
of numbers identifying those items. The numbers indicate the position of each data item in the
item part of the schema. The type of access, for example read-only, can also be determined.

® to determine the number of items in a particular data set available to the current user and get
a list of those item numbers and the type of access available for each one.

In relation to data sets, DBINFO can be used:
® to determine whether the current user can add or delete entries to a particular data set.

® to get a data set description including the data set name, type, length in words and blocking
factor for data entries in the set, number of entries in the set, and the capacity.

® to determine the number of data sets the current user can access and get a list of the data set
numbers indicating the position of the data set definition in the set part of the schema. The
type of access to each set is also indicated.

o to determine in which data sets a particular data item is available to the current user. The
number of data sets, a list of data set numbers, and the type of access available for each set is
returned.

In relation to paths, DBINFO can be used:

° to get information about the paths associated with a particular data set including the number
of paths. If the data set is a master set, the information includes the data set number, search
item number, and sort item number for each related detail. If the data set is a detail set, the
information includes the master data set number of the related master data set, the detail
search item number and sort item number for each path.

® to determine the search item number of a master data set or the search item number for the

primary path of the detail and the data set number of the related master. In either case, if
the search item is inaccessible to the current user, no information is returned.

4-14 SEP 1978

SPECIAL USES OF DBINFO

If the application program uses data item and data set numbers when calling the other IMAGE pro-
cedures, it is good practice to determine these numbers by calling DBINFO at the beginning of the
of the program to set up the numbers. It is not practical to code the numbers into the program

since a change to the data base structure might require extensive changes to the application programs.
Likewise it is inefficient and time consuming to call DBINFO throughout the program to determine
these numbers. Many application programmers prefer the convenience and flexibility of using the
data item and data set names in procedure calls.

DBINFO is useful when writing general inquiry applications similar to the QUERY data base inquiry
facility.

CLOSING THE DATA BASE OR A DATA SET

After you have completed all the tasks you want to perform with the data base, you use the
DBCLOSE library procedure to terminate access to it. When DBCLOSE is used for this purpose,
all data set files and the root file are closed and the data segment containing the ULCB is released
to the MPE system. If there are no other concurrent users of the data base, the extra data segment
containing the DBCB is also released. All locks that you still have on the data base through the
closed access path are automatically released.

The DBCLOSE procedure can also be used to terminate, temporarily or permanently, access to a
data set. A data set can be closed or rewound. Rewinding consists of resetting the dynamic status
informatiocn kept by IMAGE to its initial state. If a detail data set is closed or rewound, the current
path does not change when the status information is initialized.

The purpose of closing a data set completely is to return the resources required by that data set to
the MPE system without terminating access to the data base. A typical reason for rewinding a data
set is to start at the first, or last, entry again when doing a forward or backward serial read.

It is important to close the data base before terminating a program to ensure that the files are closed
in an orderly manner. This is particularly true when using IMAGE with programs operating under
control of the BASIC Interpreter since termination of your BASIC program does not coincide with
termination of the BASIC Interpreter process.

CHECKING THE STATUS OF A PROCEDURE

Each time a procedure is called, IMAGE returns status information in a buffer specified by the
calling program and sets the condition code maintained by MPE in the status register. The condition
code, or the condition word described later, should be checked immediately after IMAGE returns
from the procedure to the calling program.

A condition code is always one of the following and has the general meaning shown:
Condition Code General Meaning

CCE The procedure performed successfully. No exceptional
conditions were encountered.

CCG An exceptional condition, other than an error, was
encountered.
CCL The procedure failed due to an invalid parameter or a

system error.

SEP 1978 4-15

The first word of the status information returned in the calling program’s buffer is a condition word
whose value corresponds to the condition code as follows:

Condition Code Condition Word Value
CCE 0
CCG >0
CCL <0

The calling program must check either the condition code or the condition word to determine the
success or failure of the procedure. The condition word is also used to indicate various exceptional
conditions and errors. These are summarized in Appendix A.

The other words of status information vary with the outcome of the call and from one procedure
to another. The content of these words is described in detail with each procedure definition later in
this section and in Appendix A, which describes error conditions.

INTERPRETING ERRORS

IMAGE provides two library procedures, DBEXPLAIN and DBERROR, which you can use to
interpret status information programmatically. DBEXPLAIN prints on the $STDLIST device an
English language error message which includes the name of the data base and the name of the pro-
cedure that returned the status information. DBERROR performs a similar function but returns
the information in a buffer specified by the calling program.

These procedures are intended primarily for use in debugging application programs rather than in

interpreting errors in the production environment where more specific application messages are
necessary.

ABNORMAL TERMINATION

Under certain conditions, the calling process may be terminated by IMAGE. Conditions giving rise
to process termination and a description of the accompanying error messages are presented in
Appendix A.

4-16 SEP 1978

USING THE IMAGE LIBRARY PROCEDURES

The following pages contain the reference specifications for the IMAGE procedures, arranged
alphabetically. The calling parameters for each procedure are defined in the order in which
they appear in the call statement. Each parameter must be included when a call is made since
their meaning is determined by their position.

Table 4-3 illustrates the forms of the call statements for the four languages that can be used to call
the procedures. Section V contains examples of using the IMAGE procedures with these languages.
It also provides a sample RPG program for those who want to use IMAGE with RPG.

Table 4-3. Calling an IMAGE Procedure

COBOL CALL “name’ USING parameter,parameter , . .., parameter
FORTRAN CALL name (parameter,parameter , . .., parameter)

SPL name (parameter,parameter , . .., parameter)

BASIC linenumber CALL name (parameter,parameter , . .., parameter)

All procedures may be called directly from programs in any of the four host languages since they
are not TYPE procedures, they do not use the SPL. OPTION VARIABLE capability, and all
parameters are call-by-reference word pointers.

INTRINSIC NUMBERS

The intrinsic number is provided for each procedure except DBEXPLAIN and DBERROR. This

number which uniquely identifies the procedure within IMAGE and the MPE operating system, is
returned with other status information when an error occurs. You can use it to identify the pro-
cedure that caused the error.

DATA BASE PROTECTION

When each procedure is called, IMAGE verifies that the requested operation is compatible with the
user class number and access mode established when the data base is opened.

UNUSED PARAMETERS

When calling some procedures for a specific purpose, one of the parameters may be ignored, however,
it must be listed in the call statement. An application program may find it useful to set up a variable
named DUMMY to be listed as the unused parameter in these situations, as a reminder that the value
of the parameter does not affect the procedure call.

THE STATUS ARRAY
When the status array is described in the following discussion, the contents reflect a successful execu-

tion of the procedure. If the procedure does not execute successfully, standard error information is
returned in the status array. This information is described in Appendix A.

SEP 1978 4-17

DBCLOSE
INTRINSIC NUMBER 403

Terminates access to a data base or terminates, temporarily or permanently, access to a data set, or
rewinds a data set.

PARAMETERS

base is the name of an array used as the base parameter when opening the
data base. The firsti word of the array must contain the base id re-
turned by DBOPEN. (Refer to the DBOPEN intrinsic reference
specification later in this section for more information about the
base id.)

dset is the name of an array containing the left-justified name of the data
set to be closed or is an integer referencing the data set by number if
mode equals 2 or 3. If mode equals 1, this parameter is ignored.

The data set name may be 16 characters long or, if shorter, terminated
by a semicolon or blank.

mode is an integer indicating the type of termination desired.
If mode equals 1, access to the data base is terminated. Any locks
through the closed access path are released.
If mode equals 2, the data set referenced by the dset array is closed,
but locks held in the data set are not released.
If mode equals 3, the data set referenced by the deset array is rewound
but not closed.

status is the name of a ten-word array in which IMAGE returns status infor-
mation about the procedure. The status array contents are:

Word Contents

1 Condition word (see table 4-4)

2-4 Unchanged from previous procedure call using
this array.

5-10 Procedure call information. Refer to Appendix

A for a description of this information.

REWINDING AND CLOSING DATA SETS

Although a program should close the data base when it has finished using the data, it may never need
to close or rewind a data set. This capability is provided to reset the dynamic status information for
a user’s access to a particular data set to its initial state, and to return system resources without ter-
minating access to the data base. When a detail data set is rewound, the current path does not change.

Since mode 3 does not close and re-open the data set, it is more efficient than mode 2 if the data set
is to be accessed immediately after it is rewound.

In either case, the first subsequent access to the data set is treated as if it were the first access since
the data base was opened, except that setting of chain pointers is relative to the current path num-
ber at the time the call to DBCLOSE was made.

If a process has the same data base open multiple times, only the access path specified in base is
closed.

If a process aborts either by itself due to, for example, a system violation or due to the console opera-
tor aborting it, a mode 1 DBCLOSE is automatically issued for all data bases opened by that process.

4-18 SEP 1978

Table 4-4. DBCLOSE Condition Word Values

DBCLOSE

FILE SYSTEM AND MEMORY MANAGEMENT FAILURES:

-2 FCLOSE failure.
CALLING ERRORS:

-1 Bad base parameter.

=21 Bad data set reference.

~31 Bad mode.
COMMUNICATIONS ERRORS:

-101 DSCLOSE failure.

-102 DSWRITE failure.

-106 Remote data inconsistent.

-107 DS procedure call error.
EXCEPTIONAL CONDITIONS:

63 Bad DBCB.

Consult Appendix A for more information about these condition codes.

TEXT DISCUSSION:

Page 4-15

SEP 1978

4-19

DBDELETE

INTRINSIC NUMBER 408

Deletes the current entry from a data set. The data base must be open in access mode 1, 3, or 4.

PARAMETERS

base

dset

mode

status

MASTER DATA SETS

is the name of the array used as the base parameter when opening the
data base. The first word of the array must contain the base id returned
by DBOPEN.

is the name of an array containing the left-justified name of the data set
from which the entry is to be deleted or is an integer referencing the
data set by number. The data set name may be 16 characters long or, if
shorter, terminated by a semicolon or a blank

must be an integer equal to 1.
is the name of a ten-word array in which IMAGE returns status informa-

tion about the procedure. If the procedure executes successfully, the
status array contents are:

Word Contents

1 Condition word (see table 4-5)

2 Zero

3-4 Unchanged current record address
5-6 Number of entries in chain.

If master data set, the number is zero unless the
deleted entry was a primary entry with synonyms.
In this case, the number is one less than its pre-
vious value.

If detail data set, the number is unchanged from
the preceding procedure call.

7-10 Unchanged preceding and succeeding record num-
bers of a chain. If master data set and the new
synonym chain count is greater than zero, the
numbers reference the last and first synonym chain
entries respectively.

B When deleting entries from master data sets, the following rules apply:

L] All pointer information for chains indexed by the entry must indicate that the chains are empty.
In other words, there must not be any detail entries on the paths defined by the master which
have the same search item value as the master entry to be deleted.

I ® If the data base is open in access mode 1, a lock must be in effect on the data set or the whole

data base.

4-20 SEP 1978

Table 4-5. DBDELETE Condition Word Values

DBDELETE

FILE SYSTEM AND MEMORY MANAGEMENT FAILURES:

-1 FOPEN intrinsic failure.
-3 FREADDIR failure.
-4 FREADLABEL failure.

CALLING ERRORS:

-1 Bad base parameter.

-12- No lock covers the data entry to be deleted.
(Occurs only if open in access mode 1.)

-14 Illegal intrinsic in current access mode.

-21 Bad data set reference.

-23 Data set not writable.

=31 Bad mode.

COMMUNICATIONS ERRORS:
-102 DSWRITE failure.
-106 Remote data inconsistent.

-107 DS procedure call error.

EXCEPT!ONAL CONDITIONS:
17 No entry.
44 Chain head.
63 Bad DBCB.

Consult Appendix A for more information about these codes.

DETAIL DATA SETS

IMAGE performs the required changes to chain linkages and other chain information, including the
chain heads in related master data sets. If the last member of each detail chain linked to the same
automatic master entry has been deleted, DBDELETE also deletes the master entry containing the

chain heads.*

If the data base is open in access mode 1, you must establish a lock covering the data entry to be
deleted before calling DBDELETE.

DATA SET INTERNAL INFORMATION

The current record number is unchanged. If a primary data entry with synonyms is deleted from a

master data set and a secondary migrates, the backward and foward pointers reflect the new primary.
In all other cases, the backward and forward pointers are unchanged when an entry is deleted. (Refer
to Section VII for an explanation of migrating secondaries.)

TEXT DISCUSSION:

Page 4-12

*Note: In this case, the synonym chain information for the automatic master is set to zero. (See Section VII).

SEP 1978

4-21

DBERROR

Moves an English language message, as an ASCII character string, to a buffer specified by the calling
program. The message interprets the contents of the status array as set by a call to an IMAGE
procedure.

PARAMETERS

status is the name of the array used as the status parameter in the IMAGE
procedure call about which information is requested.

buffer is the name of an array in the calling program’s data area, at least 36
words long, to which the message is returned.

length is an integer variable which is set by DBERROR to the positive byte

length of the message placed in the buffer array. The length will never
exceed 72 characters.

USING THE DBERROR MESSAGES

Like DBEXPLAIN, DBERROR messages are intended and appropriate for use while debugging
application programs. The errors they describe are, for the most part, errors that do not occur in a
debugged and running program.

Some errors or exceptional conditions are expected to occur, even in a production environment. For
example, the MPE intrinsic DBOPEN may fail due to concurrent data base access. In this case, print-
ing the DBERROR message:
DATA BASE OPEN EXCLUSIVELY
may be perfectly acceptable, even to the person using the application program. However, in many
cases a specific message produced by the application program is preferable to the one produced by
DBERROR. A DBFIND error generated by the application program, such as:
THERE ARE NO ORDERS FOR THAT PART NUMBER
would be more meaningful to a user entering data at a terminal than the DBERROR message:
THERE IS NO CHAIN FOR THE SPECIFIED SEARCH ITEM VALUE
Table 4-6 lists all messages that can be returned by DBERROR with their corresponding condition
word values. Several messages may correspond to one condition word and the interpretation of the

code depends on the context in which it is returned. Variable information is represented by a
lowercase word or phrase.

4-22

DBERROR

Table 4-6. DBERROR Messages

CONDITION DBERROR MESSAGE
WORD
0 SUCCESSFUL EXECUTION — NO ERROR
-1 NO SUCH DATA BASE
DATA BASE OPEN IN AN INCOMPATIBLE MODE
BAD ACCOUNT REFERENCE
BAD GROUP REFERENCE
BAD ROOT FILE REFERENCE
VIRTUAL MEMORY NOT SUFFICIENT TO OPEN ROOT FILE
DATA BASE ALREADY OPEN FOR MORE THAN READ
DATA BASE IN USE
DATA BASE OPEN EXCLUSIVELY
MPE SECURITY VIOLATION
MPE FILE ERROR decimal integer RETURNED BY FOPEN
on JROOT FILE {
IDATA SET # decimal integer |
-2 MPE FILE ERROR decimal integer RETURNED BY FCLOSE
on ' ROOT FILE |
I DATA SET # decimal integer
-3 MPE FILE ERROR decimal integer RETURNED BY FREADDIR
on ROOT FILE |
IDATA SET # decimal integer |
-4 MPE FILE ERROR decimal integer RETURNED BY FREADLABEL
on) ROOT FILE I
I DATA SET # decimal integer |
-9 MPE ERROR “octal integer RETURNED BY GETDSEG OF decimal integer WORDS
-11 BAD DATA BASE NAME OR PRECEDING BLANKS MISSING
BAD DATA BASE REFERENCE (FIRST 2 CHARACTERS)
-12 IMAGE procedure name CALLED WITHOUT COVERING LOCK IN EFFECT
-14 CALLS TO IMAGE procedure name NOT ALLOWED IN ACCESS MODE decimal integer
-21 BAD PASSWORD — GRANTS ACCESS TO NOTHING
DATA ITEM NONEXISTENT OR INACCESSIBLE
SPECIFIED SET IS NOT AN ACCESSIBLE DETAIL DATA SET
DATA SET NONEXISTENT OR INACCESSIBLE
-23 USER (CLASS) LACKS WRITE ACCESS TO DATA SET
-24 DBPUT NOT ALLOWED ON AUTOMATIC MASTER DATA SET

SEP 1978 4-23

DBERROR

Table 4-6. DBERROR Messages (Continued)

CONDITION

WORD DBERROR MESSAGE
-31 DBGET MODE decimal integer ILLEGAL FOR DETAIL DATA SET
DBGET MODE decimal integer BAD — SPECIFIED DATA SET LACKS CHAINS
BAD (UNRECOGNIZED) IMAGE procedure name MODE: decimal integer
-32 UNOBTAINABLE ACCESS MODE: AOPTIONS REQUESTED: %octal integer,
GRANTED: %octal integer
-51 LIST TOO LONG OR NOT PROPERLY TERMINATED
-52 ITEM SPECIFIED IS NOT AN ACCESSIBLE SEARCH ITEM IN THE SPECIFIED SET
BAD LIST — CONTAINS ILLEGAL OR DUPLICATED DATA ITEM REFERENCE
-53 DBPUT LIST IS MISSING A SEARCH OR SORT ITEM
-60 ILLEGAL FILE EQUATION ON ROOT FILE
-9 ROOT FILE (DATA BASE) NOT COMPATIBLE WITH CURRENT IMAGE INTRINSICS
-92 DATA BASE REQUIRES CREATION (VIRGIN ROOT FILE)
-94 DATA BASE BAD — MAY NOT BE ACCESSED IN MODE decimal integer
-100 MPE ERROR decimal integer RETURNED BY DSOPEN
-101 MPE ERROR decimal integer RETURNED BY DSCLOSE
-102 MPE ERROR decimal integer RETURNED BY DSWRITE
-103 REMOTE 3000 STACK SPACE INSUFFICIENT
-104 REMOTE 3000 DOES NOT SUPPORT IMAGE
-105 REMOTE 3000 MPE ERROR %octal integer RETURNED BY GETDSEG OF
decimal integer WORDS
-106 REMOTE 3000 DATA INCONSISTENT
-107 DS/3000 SYSTEM ERROR
-120 INSUFFICIENT STACK SPACE FOR DBLOCK
-121 ILLEGAL LOCK DESCRIPTOR COUNT
-122 BOUNDS VIOLATION ON DESCRIPTOR LIST
-123 ILLEGAL RELATIONAL OPERATOR
-124 DESCRIPTOR LENGTH ERROR; MUST BE 9 OR MORE
-125 ILLEGAL SET NAME OR NUMBER IN DESCRIPTOR
-126 ILLEGAL ITEM NAME OR NUMBER IN DESCRIPTOR
-127 ILLEGAL ATTEMPT TO LOCK ON A COMPOUND ITEM
-128 VALUE FIELD TOO SHORT FOR THE ITEM SPECIFIED
-129 P28 IS LONGEST P-TYPE ITEM THAT CAN BE LOCKED
-130 ILLEGAL DECIMAL DIGIT IN TYPE ‘P DATA VALUE
-131 LOWERCASE CHARACTER IN TYPE ‘U’ DATA VALUE
-132 ILLEGAL DIGIT IN TYPE ‘Z’ DATA VALUE
-133 ILLEGAL SIGN CHARACTER IN TYPE ‘Z’ DATA VALUE
-134 TWO LOCK DESCRIPTORS CONFLICT IN SAME REQUEST
-135 DBLOCK CALLED WITH LOCKS ALREADY IN EFFECT IN THIS JOB/SESSION
-136 DESCRIPTOR LIST LENGTH EXCEEDS 2047 WORDS
10 BEGINNING OF FILE
11 END OF FILE
12 DIRECTED BEGINNING OF FILE

4-24 SEP 1978

DBERROR

Table 4-6. DBERROR Messages (Continued)

Coggg[I)ON DBERROR MESSAGE

13 DIRECTED END OF FILE

14 BEGINNING OF CHAIN

15 END OF CHAIN

16 THE DATA SET IS FULL

17 THERE IS NO CHAIN FOR THE SPECIFIED SEARCH ITEM VALUE
THERE IS NO ENTRY WITH THE SPECIFIED KEY VALUE
THERE IS NO PRIMARY SYNONYM FOR THE SPECIFIED KEY VALUE
NO CURRENT RECORD OR THE CURRENT RECORD IS EMPTY (CONTAINS NO ENTRY)
THE SELECTED RECORD IS EMPTY (CONTAINS NO ENTRY)

18 BROKEN CHAIN — FORWARD AND BACKWARD POINTERS NOT CONSISTENT

20 DATA BASE CURRENTLY LOCKED BY ANOTHER USER
SETS OR ENTRIES LOCKED WITHIN DATA BASE

22 DATA SET ALREADY LOCKED

23 CANNOT LOCK SET DUE TO LOCKED ENTRIES WITHIN IT Conditional

24 ENTRIES CURRENTLY LOCKED USING DIFFERENT ITEM Locks Only

25 CONFLICTING ENTRY LOCK ALREADY IN EFFECT

41 DBUPDATE WILL NOT ALTER A SEARCH OR SORT ITEM

42 DBUPDATE WILL NOT ALTER A READ-ONLY DATA ITEM

43 DUPLICATE KEY VALUE IN MASTER

44 CAN’'T DELETE A MASTER ENTRY WITH NON-EMPTY DETAIL CHAINS

50 USER’S BUFFER IS TOO SMALL FOR REQUESTED DATA

61 PROCESS HAS THE DATA BASE OPEN 63 TIMES; NO MORE ALLOWED

62 IMAGE DATA BASE CONTROL BLOCK FULL

63 DATA BASE CONTROL BLOCK DISABLED; POTENTIAL DAMAGE; ONLY DBCLOSE
ALLOWED

64 NO ROOM FOR DBCB ENTRY IN PCBX (MPE PORTION OF STACK)

66 DBCB POINTED TO BY ROOT FILE DOES NOT MATCH

1xx THERE IS NO CHAIN HEAD (MASTER ENTRY) FOR PATH decimal integer: xx

2xx THE CHAIN FOR PATH decimal integer: xx IS FULL (CONTAINS 65535 ENTRIES)

3xx THE AUTOMATIC MASTER FOR PATH decimal integer: xx IS FULL

Others UNRECOGNIZED CONDITION WORD: decimal integer
TEXT DISCUSSION:
Page 4-16

SEP 1978 4-25

DBEXPLAIN

Prints a multi-line message on the $STDLIST device which describes an IMAGE procedure call and
explains the call’s results as recorded in the calling program’s status array.

PARAMETERS

status is the name of the array used as the status parameter in the IMAGE pro-
cedure call about which information is requested.

NOTE

The base, qualifier, dset, and password parameters, if required for the procedure which
put the results in the status area, must be unchanged when the call is made to DBEXPLAIN
since information is taken from them as well.

MESSAGE FORMAT

Table 4-7 contains the general format for lines 2 through 6 of the message which is sent to
$STDLIST. Elements surrounded by brackets are sometimes omitted. Braces indicate that only
one of the choices shown will be printed. Lines 5 and 6 are printed only if, during the preparation
of lines 2, 3, and 4, IMAGE detects that the status array contents are invalid, unrecognizable or
incomplete, or if a message must be truncated to fit on a single line.

If the status array contents appear to be the result of something other than an IMAGE procedure
call or if the array is used by the called procedure for information other than that discussed here,
the second choice for line 3 is printed. This would be the case for a successful call to DBGET which
uses all ten stotus words to return a condition word, lengths, and record numbers.

If the status array contains an unrecognized error code, the second line 4 choice is printed.

If the condition word is greater than or equal to zero, the word “ERROR” in line 2 is replaced
by “RESULT” because non-negative condition words indicate success or exceptional conditions
such as end-of-chain. Condition word values are explained in Appendix A.

You can use the offset information to locate the specific call statement that generated the status
array contents if the call is made with a programming language which enables you to determine
displacements of program statements or labels within the code. The identity of the code segment
is not printed because it cannot be determined by DBEXPLAIN. Therefore, you need to be
familiar with the program’s functioning in order to locate the correct call. The offset portion of
line 2 is printed only if the status array appears to be set by an IMAGE library procedure call and
contains valid offset information.

4-26

DBEXPLAIN

Table 4-7. DBEXPLAIN Message Format

LINE FORMAT
1 (a blank line)
2 ll\/]A(}E{IE;légl(})lljl,} | AT offset | : CONDITION WORD = conword
3 { intrinsicname, MODE x, ON|setname OF |basename | ;PASSWORD=password |}
\ IMAGE CALL INFORMATION NOT AVAILABLE
4 { message }
UNRECOGNIZED CONDITION WORD: conword
5 |OCTAL DUMP OF STATUS ARRAY FOLLOWS|
6 | octal display |
7 (a blank line)
where:
offset is the octal PB-relative offset within the user’s code segment of the IMAGE procedure call. See the MPE
Intrinsics Reference Manual for a discussion of PB (program base) relative addresses.
conword is the condition word (from the first word of status) printed as a decimal integer and corresponding

to the condition words described in Appendix A.

intrinsicname is the name of the IMAGE library procedure (intrinsic) which was called and which set the contents
of the status array.

X is the value of the mode parameter printed as a decimal integer.

setname is the value of the second parameter, usually a data set name or number, as passed to the procedure
which set the stalus array contents. The second parameter can be a data item name or number if
the procedure in question is DBINFO. 1f the procedure is DBOPEN, DBLOCK, DBUNLOCK, or
certain modes of DBINFO or DBCLOSE, sethame is omitted.

password is printed at the end of line 3 only if the error relates to the password parameter of DBOPEN.

basename is the data base name specified in the procedure which was called and set the status array
contents.

message is an English language description of the result based on the condition word and other status

array information. The message is generated by the DBERROR procedure which is also
described in this section. See Table 4-17 for all possible line 4 messages.

octal display is a listing of each word of status printed as a string of 6 octal digits. Adjacent status words
are separated by a blank and the entire line is 69 characters long.

4-27

DBEXPLAIN

EXAMPLE

Figure 4-3 contains four examples of messages generated by DBEXPLAIN.

offset

IMAGE RESULT AT %001103: CONDITION WORD = 0

intrinsic DBLOCK, MODE 1, ON COMPNY basename
name SUCCESSFUL EXECUTION — NO ERROR\
message
IMAGE ERROR AT %001057: CONDITION WORD =-12
DBPUT, MODE 1, ON PROJECT-MASTER OF COMPNY basename
DBPUT CALLED WITH DATA BASE NOT LOCKED
setname (data set name)
IMAGE RESULT AT %001057: CONDITION WORD = 16
DBPUT, MODE 1, ON #1 OF COMPNY
THE DATA SET IS FULL setname (data set number)
IMAGE RESULT: CONDITION WORD = 5349
IMAGE CALL INFORMATION NOT AVAILABLE
UNRECOGNIZED CONDITION WORD: 5349
OCTAL DUMP OF STATUS ARRAY FOLLOWS:
012345 054321 011111 022222 033333 044444 055555 066666 077777 000000
octal
display
Figure 4-3. Sample DBEXPLAIN Messages
TEXT DISCUSSION:
Page 4-16

4-28

DBFIND

INTRINSIC NUMBER 404

Locates master set entry that matches the specified search item value and sets up pointers to the first
and last entries of a detail data set chain in preparation for chained access to the data entries which
are members of the chain. The path is determined and the chain pointers located on the basis of a
specified search item and its value.

PARAMETERS

base is the name of the array used as the base parameter when opening the
data base. The first word of the array must contain the base id returned I
by DBOPEN.

dset 1s the name of an array containing the left-justified name of the detail
data set to be accessed or is an integer referencing the data set by
number. The data set name may be 16 characters long or, if shorter,
terminated by a semicolon or blank.

mode must be an integer equal to 1.

status is the name of a ten-word array in which IMAGE returns status informa-
tion about the procedure. If the procedure executes successfully, the
status array contents are:

Word Contents

1 Condition word (see table 4-8)

2 Zero

3-4 Doubleword current record number set to zero
5-6 Doubleword count of number of entries in chain
7-8 Doubleword record number of last entry in chain
9-10 Doubleword record number of first entry in chain

item is the name of an array containing a left-justified name of the detail
data set search item or is an integer referencing the search item number
that defines the path containing the desired chain. The name may be
16 characters long or, if shorter, terminated by a semicolon or blank.
The specified search item defines the path to which the chain belongs.

argument contains a value for the search item to be used in calculated access to
locate the desired chain head in the master data set.

DATA SET INTERNAL INFORMATION

The current values of chain count, backward pointer, and forward pointer for the detail data set
referenced in dset are replaced by the corresponding value from the chain head. A current path
number, which is maintained internally, is set to the new path number and the current record
number for the data set is set to zero. Refer to Section VII for further information about chain
heads and internally maintained data set information.

Note that although a master set entry exists with the specified search item value, the data set chain
may be empty.
SEP 1978 4-29

DBFIND

Table 4-8. DBFIND Condition Word Values

FILE SYSTEM AND MEMORY MANAGEMENT FAILURES:

-1 FOPEN intrinsic failure.
-3 FREADDIR failure.
-4 FREADLABEL failure.

CALLING ERRORS:

-1 Bad base parameter.
=21 Bad data set reference.
=31 Bad mode.

-52 Bad item.

COMMUNICATIONS ERRORS:
-102 DSWRITE failure.
-106 Remote data inconsistent.

-107 DS procedure call error.

EXCEPTIONAL CONDITIONS:
17 No master entry
63 Bad DBCB.

Consult Appendix A for more information on these conditions.

TEXT DISCUSSION:
Page 4-8, 4-11

4-30 SEP 1978

DBGET

INTRINSIC NUMBER 405

Provides eight different methods for reading the data items of a specified entry.

PARAMETERS

base

dset

mode

SEP 1978

is the name of the array used as the base parameter when opening the
data base. The first word of the array must contain the base id returned

by DBOPEN.

is the name of an array containing the left-justified name of the data
set to be read or is an integer referencing the data set by number. The
data set name may be 16 characters long or, if shorter, terminated by
a semicolon or blank.

contains an integer between 1 and 8, inclusive, which indicates the
reading method. The methods are:

Mode

1 (Re-read)

2 (Serial Read)

3 (Backward
Serial Read)

4 (Directed
Read)

5 (Chained
Read)

6 (Backward
Chained Read)

7 (Calculated
Read)

8 (Primary
Calculated
Read)

Method

Read the entry at the internally maintained current
record address. argument parameter is ignored.

Read the first entry whose record address is greater
than the internally maintained current address.
argument parameter is ignored.

Read the first entry whose record address is less
than the internally maintained current address.
argument parameter is ignored.

Read the entry, if it exists, at the record address
specified in the argument parameter. argument is
treated as a doubleword record number.

Read the next entry in the current chain, the entry
referenced by the internally maintained forward
pointer. argument parameter is ignored.

Read the previous entry in the current chain, the
entry referenced by the internally maintained
backward pointer. argument is ignored.

Read the entry with a search item value that
matches the value specified in argument. The entry
is in the master data set specified by dset.

Read the entry occupying the primary address of a
synonym chain using the search item value specified
in argument to locate the entry. If the entry is not
a primary entry in a master data set specified by
dset, it is not read. (See Section VII for synonym
chain description.)

4-31

DBGET

status

list

is the name of a ten-word array in which IMAGE returns status infor-
mation about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

1 Condition word (see table 4-9)

2 Integer word length of the logical entry read into
the buffer array.

3-4 Doubleword record number of the data entry read.

5-6 Doubleword zero, unless the entry read is a pri-

mary entry in which case it is the number of
entries in the synonym chain.

7-8 Doubleword record number of the preceding entry
in the chain of the current path.

9-10 Doubleword record number of the next entry in
the chain of the current path.

is the name of an array containing an ordered set of data item identi-
fiers, either names or numbers. The values for these data items are
placed in the array specified by the buffer parameter in the same order
as they appear in the list array.

The list array may contain a left-justified set of data item names,
separated by commas and terminated by a semicolon or blank. No
embedded blanks are allowed and no name may appear more than
once.

When referencing by number, the first word of the list array is an inte-
ger n which is followed by n unique data item numbers (one-word
integers).

The list not only specifies the data items to be retrieved immediately
but is saved internally by IMAGE as the current list for this data set.
The current list is unchanged until a different list is specified in a sub-
sequent call to DBGET, DBPUT, or DBUPDATE for the same access
path and data set.

Some special list constructs are allowed. These are described in table
4-14 with the DBPUT procedure. List processing is a relatively high
overhead operation which may be shortened in subsequent calls by
using the asterisk construct to specify that the current list is to be
used. Use of this construct can save considerable processing time.

4-32 SEP 1978

buffer

argument

DBGET

is the name of the array to which the values of data items specified in
the list array are moved. The values are placed in the same order as
specified in the list array. The number of words occupied by each
value corresponds to the number required for each data type multi-
plied by the sub-item count.

is ignored except when mode equals 4, 7, or 8.

If mode is 4, argument contains a doubleword record number of the
entry to be read.

If mode is 7 or 8, argument contains a search item value for the
master data set referenced by dset.

4-32a

DBGET

Table 4-9. DBGET Condition Word Values

FILE SYSTEM AND MEMORY MANAGEMENT FAILURES:

-1 FOPEN intrinsic failure.
-3 FREADDIR failure.
-4 FREADLABEL failure.

CALLING ERRORS:
-1 Bad base parameter.
-21 Bad data set reference.
-31 Bad mode.
-51 Bad /ist length.
-52 Bad /ist or bad item.

COMMUNICATIONS ERRORS:

-102 DSWRITE Failure.
-106 Remote data inconsistent.

-107 DS procedure call error.

EXCEPTIONAL CONDITIONS:
10 Beginning of file. (mode 3)
1 End of file. (mode 2)
12 Directed beginning of file. (mode 4)
13 Directed end of file (mode 4)
14 Beginning of chain. (mode 6)
15 End of chain. (mode 5)
17 No entry. (modes 1, 4, 7, 8)
18 Broken chain. (modes 5 or 6)
50 Buffer too small.

62 DBCB full.
63 Bad DBCB.

Consult Appendix A for more information about these conditions.

DATA SET INTERNAL INFORMATION

The internal backward and forward pointers for the data set are replaced by the current path’s
chain pointers from the entry just read. If the data set is a master, they are synonym chain pointers
(see Section VII). If it is a detail with at least one path, the current path is the one established by
the last successful call to DBFIND, or if no call has been made it is the primary path. If there are
no paths defined, the internal pointers are set to zeroes.

The location of the entry just read becomes the current record for the data set.

TEXT DISCUSSION:
Page 4-10

SEP 1978 4-33

DBINFO

INTRINSIC NUMBER 402

Provides information about the data base being accessed. The information returned is restricted by
the user class number established when the data base is opened; any data items, data sets, or paths
of the data base which are inaccessible to that user class are considered to be non-existent.

PARAMETERS

base

qualifier

mode

status

buffer

is the name of the array used as the base parameter when opening the
data base. The first word of the array must contain the base id is returned
by DBOPEN.

is the name of an array containing a data set or data item name or is an
integer referencing a data item or data set depending on the value of the
mode parameter. The relationship of mode and qualifier is explained in
table 4-10. The form of this parameter is identical to the dset and item
parameters described with the DBPUT and DBFIND procedures.

is an integer indicating which type of information is desired. The avail-
able modes and information supplied with each are described in table

4-10. (data item modes 1nn,data set modes 2nn, path modes 3nn)

is the name of a ten-word array in which IMAGE returns status informa-
tion about the procedure. The status array contents are:

Word Contents

1 Condition word (see table 4-11)

2 Word length of information in buffer array

3-4 Unchanged from previous procedure call using
this array

5-10 Information about the procedure call and its

results. Refer to Appendix A for a description
of this information.

is the name of an array in which the requested information is returned.

The contents of the buffer array vary according to the mode parameter
used. They are also described in table 4-10.

4-34 SEP 1978

Table 4-10. mode and qualifier Values and Results

DBINFO

mode PURPOSE qualifier buffer ARRAY CONTENTS COMMENTS
101 Defines type of data item word If negative, data item
access available name or 1 * data item numberJ can be updated or entry
for specific item. number containing it can be
added or deleted in at
least one data set
word
102 Describes specific data item 1
data item. name or Left-justified and padded
number . | dataitem name with blanks, if necessary.
8
(1,J,K,R,U,X,2,P)
9 | data type A } A indicates blank
10 | sub-item length ?
11 | sub-item count s .
12 i) S integers
13 0
word
103 ldentifies all data (ignored) 1 n } n = number of data
items available in items available
data base and type 2 | * data item number Arranged in data item
of access allowed. number order.
If positive, read-only
access. |If negative, up-
date or modify access
n+1 | * data item number in at least one data set.
104 Identifies all data data set (Same as mode 103) (Same as mode 103 ex-
items available in name or cept arranged in order
specific data set number of occurrence in data
and type of access entry.)
allowed.
201 Defines type of data set word
access available name or
for specific data number 1 * data set number J If negative, entries can
set. be added or deleted.
word
202 Describes specific data set
data set name or 1 Left-justified and
number © | data set name padded with blanks,
8 if necessary.
9 | set type A \ (M,A,D) A indicates

10 | entry word-length

11 | blocking factor

12 0

13 0

14 | number of entries
15 | inset

16

17 capacity of set

blank

integers

doubleword integers

4-35

DBINFO

Table 4-10. mode and qualifier Values and Results (Continued)

mode PURPOSE qualifier buffer ARRAY CONTENTS COMMENTS
203 Identifies all data (ignored) word
sets available in : - n = number of data sets
data base and type available
of access allowed. 2 | * data set number Arranged in data set
number order.
If positive, read and
possibly data item up-
date access.
f ive, modif
n+1 + data set number If negative, modify
access allowed.
204 Identifies all data data item (Same as mode 203) (Same as mode 203)
sets available name or
which contain number
specified data
item and type
of access allowed.
301 Identifies paths data set word
defined for name or
specified data number 1 n n = number of paths
set. 2 | data set number (
3 | search item number > Repeat for each path.
4 | sort item number s If qualifier refers to
master, set number is
for detail. If qualifier
refers to detail, set num-
ber is for master. Item
numbers identify items
in detail.
3n-1 | data set number Path designators pre-
3n | search item number sented in order of their
3n+1 | sort item number appearance in schema.
Note: If sort item is zero, none exists or it is inaccessible.
A path designator is not included if user does not
have access to search item.
word
302 Identifies search master data 1 search item number In master set, zero if
item for specified set name 2 0 inaccessible
data set. or number
OR
word
B In detail set.
1 | search item number { .
detail data For primary path.
set name 2 | data set number } Of related master.
Both are zero if search
item is inaccessible.

4-36

Table 4-11. DBINFO Condition Word Values

DBINFO

FILE SYSTEM AND MEMORY MANAGEMENT FAILURES:

-1 FOPEN intrinsic failure.

-4 FREADLABEL failure.
CALLING ERRORS:

-1 Bad base parameter.

~-21 Bad data item reference.

-31 Bad mode.
COMMUNICATIONS ERRORS:

-102 DSWRITE failure.

-106 Remote data inconsistent.

-107 DS procedure call error.
EXCEPTIONAL CONDITIONS:

50 Buffer too small.

63 Bad DBCB.

Appendix A contains more information about these conditions.

TEXT DISCUSSION:

Page 4-14

SEP 1978

4-37

DBLOCK

INTRINSIC NUMBER 409

I Appliesa logical.' lock to a data base, data set, or one or more data entries.

PARAMETERS

base is the name of the array used for the base parameter when opening the
data base. The first word of the array must contain the base id returned
by DBOPEN.

qualifier is the name of an integer referencing the data set number or an array
containing a data set name or the set of lock descriptors. The format
for lock descriptors is given below.

mode contains an integer indicating the type of locking desired.

Locking Mode

1 (Data base,
unconditional)

2 (Data base,
conditional)

3 (Data set,
unconditional)

4 (Data set,
conditional)

5 (Data entries,
unconditional)

Type of Locking

DBLOCK applies an unconditional lock to the
whole data base, returning to the calling program
only after the lock is successful (or if an error
occurs). The qualifier parameter is ignored.

DBLOCK applies a conditional lock to the data
base and returns immediately. A condition word
of zero indicates success. A non-zero condition
word indicates the reason for failure. (Refer to
table 4-12.)

DBLOCK applies an unconditional lock to a data
set. The qualifier parameter must specify the
name of an array containing the left-justified name
of the data set or the name of an integer referenc-
ing the data set number. The data set name may
be 16 characters long or, if shorter, terminated

by a semicolon or blank.

The data set need not be accessible for read or
write access to the user requesting the lock.

DBLOCK applies a conditional lock of the same
type as mode 3. It always returns to the calling
program immediately. A condition word of zero
indicates success and a non-zero condition word
indicates the reason for failure. (Refer to table
4-12))

DBLOCK applies unconditional locks to the

data entries specified by lock descriptors. The
qualifier parameter must specify the name of an
array containing the lock descriptors. The format
of the array is shown in figure 4-4. It returns
only when all the locks have been acquired.

4-38 SEP 1978

DBLOCK

Locking Mode Type of Locking
6 (Data entries, DBLOCK applies conditional locks of the same
conditional) type as mode 5. If multiple lock descriptors are

specified, a return is made when DBLOCK en-
counters a lock descriptor that it cannot apply.
All locks that have been applied until that point
are retained.

Since the locks are not executed in the order
supplied by the user, it is not predictable which
locks are held and which are not after an un-
successful mode 6 DBLOCK. Status word 2
indicates how many lock descriptors were actually
successful. It is recommended that a DBUNLOCK
be issued after any unsuccessful mode 6 DBLOCK.

status is the name of a ten-word array in which IMAGE returns status informa-
tion about the procedure. The status array contents are:

Word Contents
1 Condition word (see table 4-12)
2 The number of lock descriptors that were success-

fully applied in the DBLOCK request. For
successful locks in modes 1 through 4 this will
be 1.

3 If condition word = 20, this word contains 0 if
data base locked, 1 if data set or entries locked.

4 Eeserved: Contents undefined.

5-10 Information about the procedure call and its
results. Refer to Appendix A for a complete
description.

LOCK DESCRIPTOR ARRAY FORMAT

The format of the array containing a list of lock descriptors is illustrated in figure 4-4. The number
of lock descriptors (n) is a one-word binary integer. Only the first n lock descriptors are processed

If n is zero, DBLOCK returns without taking any action. The format of a lock descriptor is illustrated
in figure 4-5, and the lock descriptor fields are described in table 4-11.1.

SEP 1978 4-38a

DBLOCK

array word
1 n = number of lock descriptors
L . A Length of lock descriptors
2 : lock d tor 1)
T ock descriptor T } varies. Refer to figure 4-5.
ﬁjt: lock descriptor 2 ',Zl;.
~ lock descriptor n ~
T P T

Figure 4-4. qualifier Array Format

lock descriptor word EXAMPLE
1 7 = length 1 22
2 S A
2 L E
dset
S
. A A
o A A
10 A A
A A
ditem A A
17 10 S T
0 C
18 relop K 2
19 ; A
A A
value A A
A A
1 A A
18 A =
19 6 6
5 0
D 2
22 2 S

Figure 4-5. Lock Descriptor Format
4-38b SEP 1978

DBLOCK

Table 4-11.1. Lock Descriptor Fields

FIELD NAME DESCRIPTION

length is a one-word binary integer specifying the physical length in words of the lock
descriptor, including the /ength field itself.

dset is always 8 words long and describes the data set in which locks are placed. It may
be one of the following:

® A data set name, left-justified, 16 characters long or, if shorter, terminated with
a blank or semicolon. For example: SALES;

® A data set number, a binary integer in the range of 1 to 99 stored in the first
word.

® An at-sign (@) stored in the first byte indicating that the whole data base is to be
locked. All unused bytes are ignored. In this case, the ditem, relop, and value
fields are ignored and may be omitted if desired.

® A blank or semicolon (first byte) or binary zero (first word) indicating that the
whole lock descriptor is to be ignored. (It is counted as one of the n descriptors.)

The data set, if specified, need not be accessible for read or write access to the user
requesting the lock.

ditem is always 8 words long. It may be one of the following:

® A data item name, left-justified, 16 characters long or, if shorter, terminated with
a blank or semicolon.

® A data item number stored as a binary integer in the first word. It may be in the
range of 1 to 255.

® An at-sign (@) stored in the first byte indicating that the whole data set specified
in dset is to be locked. All unused bytes are ignored and may be omitted if
desired.

The data item need not be a search item, nor does it have to be accessible to the user
requesting the lock. However, it cannot be a compound item or a P-type item longer
than P28.

relop is one word long and contains one of the three relational operators represented as two
ASCII characters:

® <= |ess than or equal
® > = greater than or equal

® = A or A= equal (A indicates space character)

value is the value of the data item to be locked. It must be stored in exactly the same way
as it is stored in the data base. IMAGE extracts as many words as required by the
corresponding data item definition (in the schema). The rest (if any) are ignored.

SEP 1978 4-38c

DBLOCK

Note that the shortest possible descriptor is 9 words long consisting of the length field and a dset
field containing @. Although the dset field only contains an at-sign, it must still be 8 words long. The
length of the entire descriptor array may not exceed 2047 words.

VALIDITY CHECKING OF DATA ITEM VALUES

If you specify a data item of type P, U, or Z in a lock descriptor, IMAGE checks that the value is
valid for that data item type. The following checks are made:

If the data item is type P, the right half of the rightmost byte must contain a sign and all pre-
ceding nibbles must contain decimal digits represented in Binary Coded Decimal (BCD) format.
For example, if a data item is defined as type P with a length of 20, the format must be:

1 2 10 -——byte
1 2 3 18 19 20-<«—nibble

(P[D]D | | D|D]s |

D = digit S =sign

This would be declared in COBOL as 19 digits plus a sign or 20 nibbles (P20 in the schema):
S9(19) COMP-3

Type P data item used in a lock descriptor may not exceed 28 nibbles (7 words) in length. The
locking system treats all sign digits other than 11019 asidentical. 11014 is assumed to be a
negative sign.

If the data item is type U, the value must not contain any lowercase alphabetic characters in
the range of a through z.

If the data item is type Z, each byte preceding the last one must contain an 8-bit digit repre-
sented in ASCII format and the last byte must contain a value representing a digit and a sign.
(Refer to the description of packed decimal numbers in Section III of the Machine Instruction
Set Manual.)

Table 4-12. DBLOCK Condition Word Values

FILE SYSTEM AND MEMORY MANAGEMENT FAILURES:
-7 FLOCK failure.
CALLING ERRORS:
-1 Bad base parameter.
=31 Bad mode value
-120 Not enough stack to perform DBLOCK.
-121 Descriptor count error.
-122 Descriptor list bad. Is not entirely within stack.

-123 lllegal relop in a descriptor.

4-38d SEP 1978

DBLOCK

Table 4-12. DBLOCK Condition Word Values (Continued)

-124 Descriptor too short. Must be greater than or equal to 9.

-125 Bad set name/number.

-126 Bad item name/number.

-127 Attempt to lock using a compound item.

-128 Value field too short in a descriptor.

-129 P-type item longer than P28 specified.

-130 lllegal digit in a P-type value.

-131 Lowercase character in type U value.

-132 Illegal digit in type Z value.

-133 Ilegal sign in type Z value.

-134 Two descriptors conflict.

-135 Second lock without CAP=MR.

-136 Descriptor list exceeds 2047 words.
COMMUNICATIONS ERRORS:

-102 DSWRITE failure.

-103 Remote stack too small.

-106 Remote data inconsistent.

-107 DS procedure call error.
EXCEPTIONAL CONDITIONS Applicable Modes

20 Data base locked or contains locks (2)
(Status word 3: 0 = data base locked
1 = data set or entries locked)

22 Data set locked by another process (4, 6)
23 Entries locked within set (4)
24 Item conflicts with current locks (6)
25 Entry or entries already locked (6)
62 DBCB full” (3, 4, 5, 6)

63 Bad DBCB.

Appendix A contains more information about these conditions.

TEXT DISCUSSION:
Page 4-13

* . . . e .
Note: If error 62 occurs when multiple lock descriptors are specified, some of the descriptors may have been success-
fully applied. If so, they are not unlocked by IMAGE before returning the error. It is recommended that a
DBUNLOCK be issued after any positive-numbered error unless you have reason to do otherwise.

SEP 1978 4-39

DBOPEN

INTRINSIC NUMBER 401

Initiates access to the data base and establishes the user class number and access mode for all sub-
sequent data base access.

PARAMETERS

base is the name of a word array containing a string of ASCII characters.
The string must consist of a pair of blanks followed by a left-justified
data base name and terminated by a semicolon or blank (A), for
example, AASTORE;. If the data base is successfully opened, IMAGE
replaces the pair of blanks with a value called the base id. The base id
uniquely identifies this access path between the data base and the process
calling DBOPEN. In all subsequent accesses to the data base the first
word of base must be this base id; therefore, the array should not be
modified.

To access a data base catalogued in a group other than the user’s
log-on group, the data base name must be followed by a period

and the group name; for example, STORE.GROUPX. If the data
base is in an account other than the user’s account, the group name
must be followed by a period and the account name; for example,
STORE.GROUPX.ACCOUNT1.

You may use a :FILE command before executing the application
program to equate the data base name or the data-base-access file
name to another data base or data-base-access file name. Only the
format file designator, actual file designator, and the DEV= parameter
may be used.

password is the name of a word array containing a left-justified string of ASCII
characters, either eight characters long or, if shorter, terminated by a
semicolon or blank, for example, DO-ALLA. The password establishes
a user class number as described in Section II.

mode is an integer between 1 and 8, inclusive, corresponding to the valid
IMAGE access modes described earlier in this section. Here is a brief
summary:

Access . . Concurrent Modes
Mode Associated Capabilities Allowed

1 modify with enforced locking. 1,5
Allow concurrent modify

update, allow concurrent update 2,6
modify exclusive none
modify, allow concurrent read 6

read, allow concurrent modify 1,5

(o2 I B S VR \V)

read, allow concurrent modify 6 and either 2,
one 4, or 8.
read, exclusive none

3

8 read, allow concurrent read 6,8

4-40 SEP 1978

DBOPEN

The table in Appendix B summarizes the results of multiple access to
the same data base. If a data base cannot be opened successfully in a
particular mode, this table can be used to determine the problem and
to select an alternate mode.

status is the name of a ten-word array in which IMAGE returns status infor-
mation about the procedure. The status array contents are:

Word Contents

1 Condition word (see table 4-13)

2 User class number, 0 to 63 (or a 64 if data base
designer with *‘;”’ password)

3 Current word size of the DBCB

4 Word size of the ULCB

5-10 Information about the current procedure call and

its results. This same information is returned for
all IMAGE procedures if an error occurs. It is
described in Appendix A with the summary of
condition words.

OPENING A DATA BASE MORE THAN ONCE

A process may concurrently use the data base through independent, unique access paths by issuing
as many as 63 calls to DBOPEN and specifying different base arrays in each call. Subsequent calls
to other IMAGE procedures must use the appropriate base array so that the correct base id is used.

The data base activity controlled on one access path relates to that controlled on other access paths
in the same way the data base activity of one process relates to that of another. The access modes
established by each DBOPEN call must be compatible but otherwise the activity controlled by each
access path and the pointers maintained by it are completely independent. The only exception to
this access path independence relates to locking. If a process makes a lock request on one access
path it cannot issue a lock on another access path unless the program has multiple RIN capability
(CAP=MR) or first calls DBUNLOCK to release the locks on the first access path.

SEP 1978 4-41

DBOPEN

Table 4-13. DBOPEN Condition Word Values

FILE SYSTEM AND MEMORY MANAGEMENT FAILURES:

-1
-2
-3
-4
-9

FOPEN intrinsic failure.
FCLOSE failure.
FREADDIR failure.
FREADLABEL failure.
GETDSEG failure.

CALLING ERRORS:

-11
-21
-31
-32
-91
~-92
-94

Bad base parameter.

Bad password.

Bad mode.

Unobtainable mode.

Bad root modification level.
Data base not created.

Data base bad

COMMUNICATIONS ERRORS:

-60

-100
-101
-102
-103
-104
~105
-106
-107

Illegal file equation on root file.

DSOPEN failure.

DSCLOSE failure.

DSWRITE failure.

Remote stack too small.

Remote system does not support IMAGE.

MPE intrinsic GETDSEG failure on remote HP 3000.
Remote data inconsistent.

DS procedure call error.

EXCEPTIONAL CONDITIONS:

61
62
63
64
66

This data base opened more than 63 times by the same process.
DBCB full.

Bad DBCB.

PCBX data segment area full.

The current DBCB for the data base does not appear correct
(IMAGE internal error).

Consult Appendix A for more information about these conditions and Appendix B
for results of multiple access.

TEXT DISCUSSION:

Page 4-2

4-42

SEP 1978

DBPUT

INTRINSIC NUMBER 407

Adds new entries to a manual master or detail data set. The data base must be open in access mode

1, 3, or 4.
PARAMETERS

base

dset

mode

status

list

SEP 1978

is the name of the array used as the base parameter when opening the
data base. The first word of the array must contain the base id returned
by DBOPEN.

is the name of an array containing the left-justified name of the data set
to which the entry is to be added or is an integer referencing the data
set by number. The data set name may be 16 characters long or, if
shorter, terminated by a semicolon or a blank (A), for example,
CUSTOMER; or SALESA.

must be an integer equal to 1.
is the name of a ten-word array in which IMAGE returns status infor-

mation about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

1 Condition word (see table 4-15)

2 Word length of logical entry in buffer array

3-4 Doubleword record number of new entry

5-6 Doubleword count of number of entries in chain.

If master data set, chain is synonym chain. If
detail data set, chain is current chain of new entry.

7-8 If master, doubleword record address of predeces-
sor on synonym chain. If detail, doubleword
record number of predecessor on current detail
chain.

9-10 If detail, doubleword record number of successor
on current chain. If master, doubleword zero.

is the name of an array containing an ordered set of data item identi-
fiers, either names or numbers. The new entry contains values supplied
in the buffer array for the data items in the list array. Any search or
sort items defined for the entry must be included in the list array.
Fields of unreferenced items are filled with binary zeroes.

The list array may contain a left-justified set of data item names,
separated by commas and terminated by a semicolon or blank. No
embedded blanks are allowed and no name may appear more than once.
Example: ACCOUNT,LAST-NAME,CITY,STATE;.

4-43

DBPUT

When referencing by number, the first word of the list array is an inte-
ger n which is followed by n single integers identifying unique data item
numbers. Example: 4 1 10 3 16 lists the four data item numbers 1,
10, 3, and 16.

The list specifies the data items for which values are supplied in the
buffer array and is saved internally by IMAGE as the current list for the
data set. The current list is unchanged until a different list is specified
in a subsequent call to DBGET, DBPUT, or DBUPDATE for the same
access path and data set.

Some special list constructs are allowed. These are described in table
4-14 and illustrated in the SPL programs in Section V. List processing
is a relatively high overhead operation which may be shortened in sub-
sequent calls by using the asterisk construct to specify that the current
list is to be used.

buffer is the name of an array containing the data item values to be added. The

values are concatenated in the same order as their data item identifiers
in the list array. The number of words for each value must correspond
to the number required by its type, for example, 12 values must be 2
words long.

Table 4-14. Special list Parameter Constructs

CONSTRUCT /ist ARRAY CONTENTS PURPOSE
Empty 0;0or0A or;or A Request no data transfer.
(Note: Zero must be ASCII)
Empty 0 (n, length of data item identifier Request no data transfer.
Numeric list, is zero)
Asterisk *ror *A Requests procedure to use previous /ist

and apply it to same data set. This
construct saves IMAGE processing time,
especially if more than one or two items
are being dealt with.

Commercial @; or @A Requests procedure to use all data items
At-Sign of the data set in the order of their occur-
rence in the entry.

A indicates blank.

MASTER DATA SETS
When adding entries to master data sets the following rules apply:

The data set must be a manual master.

The search item must be referenced in the list array and its value in the buffer array must be
unique in relation to other entries in the master.

There must be space in the master set to add an entry.

The order of data item values in the new entry is determined by the set definition in the
schema and not by the order of the items’ occurrence in the list and buffer arrays.

Unreferenced data items are filled with binary zeroes.

The caller must have a lock on the data set or the data base if the data base is opened in access
mode 1.

4-44 SEP 1978

Table 4-15. DBPUT Condition Word Values

DBPUT

FILE SYSTEM AND MEMORY MANAGEMENT FAILURES:

-1 FOPEN intrinsic failure.
-3 FREADDIR failure.
-4 FREADLABEL failure.

CALLING ERRORS:

-1 Bad base parameter.

-12 No lock covering entry to be added. (DBOPEN mode 1 only.)

-14 Illegal intrinsic in current access mode.
-21 Bad data set reference.

-23 Data set not writable.

-24 Data set is an automatic master.

-31 Bad mode.
-51 Bad /ist length.
-52 Bad /ist or bad item.

-53 Missing search or sort item.

COMMUNICATIONS ERRORS:
-102 DSWRITE failure.
-106 Remote data inconsistent.
-107 DS procedure call error.

EXCEPTIONAL CONDITIONS:

16 Data set full.
43 Duplicate search item.
62 DBCB full.

63 Bad DBCB.

Txx Missing chain head for path number xx.
2xx Full chain for path number xx.
3xx Full master for path number xx.

Refer to Appendix A for more information about these conditions.

SEP 1978

4-45

DBPUT

DETAIL DATA SETS

When adding entries to detail data sets the following rules apply:

The data set must have free space for the entry.

If the data base is opened in access mode 1, the caller must have a lock covering the entry to be
added.

All search and sort items defined for the entry must be referenced in the list array.

Each related manual master data set must contain a matching entry for the corresponding
search item value. If any automatic master does not have a matching entry, it must have space
to add one. This addition occurs automatically.*

The order of data item values in the new entry is determined by the set definition in the schema
and not by the order of the items’ occurrence in the list and buffer arrays.

Unreferenced data items are filled with binary zeroes.

The new entry is linked into one chain for each search item, or path, defined according to the
search item value. It is linked to the end of chains having no sort items and into its sorted
position according to the collating sequence of the sort item values in the chain. If two or more
entries have the same sort item value, their position in the chain is determined by the values of
the items following the sort item in the entry.

The position of an entry on a sorted chain is determined by a backward search of the chain
beginning at the last entry. The position is maintained by logical pointers rather than physical
placement in the file.

DATA SET INTERNAL INFORMATION

The record in which the new data entry is placed becomes the current record for the data set. The
forward and backward pointers reflect the new entry’s position. Refer to the description of status
words 7 through 10.

*Note: The internally maintained synonym chain pointers for the automatic master are set to zero. (See Section VII).

TEXT DISCUSSION:
Page 4-6

4-46 SEP 1978

DBUNLOCK

INTRINSIC NUMBER 410

the calling process has the same data base open multiple times, only those locks put into effect for

Relinquishes the locks acquired by a previous call to DBLOCK. Redundant calls are ignored. If I

the specified access path are unlocked.

PARAMETERS

base

dset

mode

status

is the name of the array used for the base parameter when opening the
data base. The first word of the array must contain the base id returned I

by DBOPEN.

is currently unused. Use the DUMMY variable as recommended at the
beginning of this section or any dset array used for other procedures.

must be an integer equal to 1.

is the name of a ten-word array in which IMAGE returns status infor-
mation about the procedure. The status array contents are:

Word Contents

1 Condition word (see table 4-16)

2 Number of lock descriptors released by this call.
Each data set lock or data base lock is counted as

one descriptor.

3-4 Unchanged from previous call using this array.

5-10 Information about the procedure call and its
results. Refer to Appendix A for a description of

this information.

Table 4-16. DBUNLOCK Condition Word Values

CALLING ERRORS:

-1 Bad base parameter.

-31 Bad mode.

COMMUNICATIONS ERRORS:
-102 DSWRITE failure.
-106 Remote data inconsistent.

-107 DS procedure call error.

EXCEPTIONAL CONDITIONS:

63 Bad DBCB.

Appendix A contains more information about these conditions.

TEXT DISCUSSION:

Page 4-13
SEP 1978

4-47

DBUPDATE

INTRINSIC NUMBER 406

Modifies values of data items in the entry residing at the current record address of a specified data
set. Search and sort item values cannot be modified. The data base must be open in access mode 1,
2, 3, or 4. The update will always be carried out correctly against the latest version of the data,
regardless of modifications that may be made by other users.

PARAMETERS

base is the name of the array used as the base parameter when opening the data base.
The first word of the array must contain the base id returned by DBOPEN.

dset is the name of an array containing the left-justified name of the data set to be
read or is an integer referencing the data set by number. The data set name may
be 16 characters long or, if shorter, terminated by a semicolon or blank.

mode must be an integer equal to 1.

status is the name of a ten-word array in which IMAGE returns status information
about the procedure. If the procedure operates successfully, the status array
contents are:

Word Contents

1 Condition word (see table 4-17)

2 Word length of the values in buffer

3-10 Same doubleword values set by preceding procedure call which

positioned the data set at the current entry.

list is the name of an array containing an ordered set of data item identifiers, either
names or numbers. Values supplied in the buffer array replace the values of data
items occupying the same relative position in the list array. The user class
established when the data base is opened must allow at least read access to all
the items included in the list array. If the corresponding buffer array values are
the same as the carrent data item values, the list array can include data items
the user can read but is not permitted to alter. This feature permits reading
and updating with the same list array contents.

The list array may contain a left-justified set of data item names, separated by
commas and terminated by a semicolon or blank. No embedded blanks are
allowed and no name may appear more than once.

When referencing by number, the first word of the list array is an integer n
followed by n unique data item numbers (one-word integers).

The list not only specifies the data items to be updated immediately but is
saved internally by IMAGE as the current list for this data set. The current
list is unchanged until a different list is specified in a subsequent call to
DBGET, DBPUT, or DBUPDATE for the same access path and data set.

Some special list constructs are allowed. These are described in table 4-14
with the DBPUT procedure. List processing is a relatively high overhead
operation which may be shortened substantially in subsequent calls by
using the asterisk construct to specify that the current list is to be used.

4-48 SEP 1978

DBUPDATE

Table 4-17. DBUPDATE Condition Word Values

FILE SYSTEM AND MEMORY MANAGEMENT FAILURES:

-1 FOPEN intrinsic failure.
-3 FREADDIR failure.

-4 FREADLABEL failure.
CALLING ERRORS:

-11 Bad base parameter.

~-12 No locks cover entry to be updated. (DBOPEN mode 1 only.)
-14 Illegal intrinsic in current access mode.

-21 Bad data set reference.

-31 Bad mode

-51 Bad /ist length.

-52 Bad /ist or bad item.
COMMUNICATIONS ERRORS:

-102 DSWRITE failure.
-106 Remote data inconsistent.

~107 DS procedure call error.
EXCEPTIONAL CONDITIONS:

17 No entry.

41 Critical item.
42 Read only item.
62 DBCB full.

63 Bad DBCB.

Appendix A contains more information about these conditions.

buffer is the name of an array containing concatenated values to replace the values of
data items occupying the same relative position in the list array. The number
of words for each value must correspond to the number of words required by
its type multiplied by the sub-item count.

LOCKING

Before performing an update for a data base opened in access mode 1, IMAGE verifies that locks are
in effect to cover the data entry both before and after it is modified.

SEP 1978 4-49

DBUPDATE

DATA SET INTERNAL INFORMATION

The current record number, forward and backward pointers are unchanged. (Refer to the description
of status words 3 through 10.)

TEXT DISCUSSION:

Page 4-12

4-50 SEP 1978

LANGUAGE CONSIDERATIONS
AND EXAMPLES || v

This section is divided into five separate discussions, each covering the use of IMAGE with a specific
programming language: COBOL, FORTRAN, SPL, BASIC, and RPG.

The examples in-each language are designed to illustrate simply and directly the way IMAGE proce-
dures are cailed. They are not intended as models of the best way to code the task which is illus-
trated since this will vary with the application requirements and an individual programmer’s coding
methods.

A knowledge of the programming language is assumed. If you have questions about the language
itself, consult the appropriate language manual:

COBOL/3000 Reference Manual

FORTRAN Reference Manual

System Programming Language Reference Manual
BASIC Interpreter Reference Manual

BASIC/3000 Compiler Reference Manual

RPG/3000 Compiler Reference and Application Manual

All examples presented in this section perform operations on the STORE data base. Figures 2-5
and 2-6 in Section II and figure 3-5 in Section III should be consulted if questions about the data
base structure arise in relation to the examples.

COBOL

COBOL EXAMPLES

To illustrate the use of IMAGE procedures through COBOL programs, sample lines of code that
perform a specific task are given. The IMAGE procedure calling parameters are described by the
way they are defined in the data division and their value when the procedure is called or, in some
cases, after it is executed.

The BASE-NAME record is described only in the first two examples. Once the data base has
been opened and the data segment number has been moved to the first word as shown in the
ADD ENTRY example, it remains the same for all subsequent calls illustrated.

The STATUSS record is defined in the same way for all examples but its content varies depending
upon which procedure is called and the results of that procedure. The STATUSS record is de-
fined as:

01 STATUSS.
05 CONDTN-WORD PIC 9999 COMP.
05 STAT1 PIC 9999 COMP.
05 STAT2-3 PIC 9(9) COMP.
05 STAT4-5 PIC 9(9) COMP.
05 STAT6-7 PIC 9(9) COMP.
05 STATS8-9 PIC 9(9) COMP.

The DUMMY parameter appears as a reminder when a parameter is not used by a procedure
performing the task being illustrated. DUMMY can be defined as PIC 9999 COMP.

When the code GOTO ASK-FOR-IP appears, it indicates that the program continues and prompts
the user for further instructions, for example, it may request the type of data base operation the
user wants to perform.

OPEN DATA BASE

PROCEDURE DIVISION,
FIRST=PARAGRAPH=NAME,
CALL "DBOPEN" USING BASE=NAME, PASSWORD, MODE2, STATUSS,
IF CONDTN=WORD NOT = 0 DISPLAY "DBOPEN=FAIL "
CALL "DBEXPLAIN" USING STATUSS STOP RUN,

Parameter Definition Value
BASE-NAME PIC X(8) “AASTORE;”
PASSWORD PIC X(8) “DO-ALL;A” or “DO-ALLAA”
MODE3 PIC 9999 COMP 3

In this example, the STORE data base is opened in access mode 3 with the password DO-ALL that
establishes user class number 18. The value of PASSWORD may be specified in the data division or
it may be requested from the application program user and moved into PASSWORD. If the pass-
word is fewer than 8 characters it must be followed by a blank or semi-colon. In this program, the
first word of the STATUSS array, CONDTN-WORD, is tested and if it is not zero a failure message
is printed and the DBEXPLAIN procedure is executed.

5-2

COBOL

ADD ENTRY

CALL "DBPUT" USING BASE~-NAME, DATA~SET-P, MODE1,
STATUSS, ALL-ITEMS, PR=BUFFER,
IF CONDTN-WORD = 43 DISPLAY "DUPLICATE STOCK NUMBER"
GO TO ASK=FOR=1P,
IF CONDTN=WORD = {16 DISPLAY "DATA SET FULL"
GO TO ASK=FOR~IP,
IF CONDTN=WORD = =23 DISPLAY "CANNOT ADD WITH CURRENT PASSWORD®"
GO TO ASK=FOR~IP,
IF CONDTN=WORD NOT = 0 GO TO DISPLAY-STATUS,

Parameter Definition Value
BASE-NAME PIC X(8) « ‘ STORE;” (data segment number in
‘ first word)
DATA-SET-P PIC X(8) “PRODUCT;”
MODE1 PIC 9999 COMP 1
ALL-ITEMS PIC X(2) “@;”
PR-BUFFER
STOCK-NO PIC X(8) “T4747747”
DESCRIPTN PIC X(20) “ORANGE CRATEAAAAAAAA”

This sample code adds a data entry to the PRODUCT manual master data set. Note that the first
word of BASE-NAME now contains the number of the privileged data segment of the Data Base
Control Block. ALL-ITEMS contains an at-sign indicating that PR-BUFFER contains a value for
all items in the data entry. The values for the STOCK# and DESCRIPTION data items are
concatenated in PR-BUFFER.

A program may be designed to prompt for both the data set name and the data item values that
are moved into PR-BUFFER and added to the data set. In the example, the condition word of
the status array is tested for a value of 43, indicating that an entry with the search item value
74747747 already exists in the data set, or 16, indicating that the data set is full. If the user
class is not in the data set write class list, a condition word of —-23 is returned.

If an entry is to be added to a detail set, the program may first check to see if the required
entries exist in the manual masters linked to the detail set. Values must be provided for all
search items and the sort item, if one is defined, of a detail data set entry.

COBOL

READ ENTRY (SERIALLY)

READ=NEXT,
CALL "DBGET" USING BASE-NAME, DATA-SET-C, MODE2, STATUSS,
LIST=OF-ITEMS, CU~BUFFER, DUMMY,
IF CONDTN=WORD = 11 PERFORM REWIND
GO TO READ-NEXT,
IF CONDTN=WORD = =21 DISPLAY "NO READ ACCESS TO DATA"
GO TO ASK=FOR=IP,

IF CONDTN=WORD NOT = 0 GO TO DISPLAY=STATUS,

[]
(process entry and decide whether or not to continue)

Parameter Definition Value
DATA-SET-C PIC X(10) “CUSTOMER; ”
MODE2 PIC 9999 COMP 2
LIST-OF-ITEMS PIC X(80) “ACCOUNT,FIRST-NAME,LAST-NAME; . .”
CU-BUFFER
ACCT PIC 9(9) COMP 12345678
F-NAME PIC X(10) “GEORGE” Values which are read.
L-NAME PIC X(16) “PADERSON”

To read the next entry of the CUSTOMER data set, a mode of 2 is used. This directs the
DBGET procedure to perform a forward serial read. In the example, LIST-OF-ITEMS contains
the names of three data items. After DBGET returns to the calling program, CU-BUFFER contains
the values shown. If an end-of-file is encountered the condition word is set to 11. In this case, the
routine rewinds the data set and tries the read again. A rewind routine is shown later in the
examples of the DBCLOSE procedure. The rewind reinitializes the current record pointer so that
the next request for a forward serial read will read the first entry in the data set.

If the condition word -21 is returned, the user’s password does not grant read access to data.

The DUMMY variable merely signifies that the argument parameter is not used with mode 2.

READ ENTRY (DIRECTLY)

CALL "DBGET" USING BASE~-NAME, DATA-SET-I, MODE4, STATUSS,
ALL=ITEMS, IN-BUFFER, RECORD=NUMBER,

IF CONDTN=WORD = 12 OR = 13 DISPLAY "INCORRECT RECORD NUMBER"
GO TO DISPLAY=STATUS,

IF CONDTN=WORD = 17 DISPLAY "RECORD CONTAINS NO DATA ENTRY"
GO TO DISPLAY=STATUS,

IF CONDTN=WORD NOT = 0 DISPLAY "DBGET FAILURE"
GO TO DISPLAY~STATUS,

COBOL

Parameter Definition Value
DATA-SET-I PIC X(10) “INVENTORY;”
4
MODE4 PIC 9999 COMP
ALL-ITEMS PIC X(2) “@;”
RECORD-NUMBER PIC 9(9) COMP 33
IN-BUFFER
STOCK-NO-I PIC X(8) “3333A33A”
QTY PIC 9(9) COMP 452
SUPPLIER PIC X(16) “H & S SURPLUS
UNIT-COST PIC S9(7) COMP-3 0000349E (3495 in 8 nibbles)
LASTSHIPDATE PIC X(6) “760824”
BINNUM PIC X(2) “03”

The code in this example reads all data items of the entry in record number 33 of the INVENTORY
data set using a directed read, mode 4. The program may have saved the record number while read-
ing down the chain of all data entries with STOCK# equal to 3333A33A looking for the latest
LASTSHIPDATE. It then reads all data items of the entry which has the desired last shipping date.
It is more efficient to read it directly than to search down the chain again.

If the record number is less than 1, the condition word is set to 12. If it is greater than the highest
numbered record in the data set, the condition word is set to 13. The condition word is 17 if the
record contains no data entry.

READ ENTRY (CALCULATED)

CALL "DBGET" USING BASE~NAME, DATA=SET-P, MODE?7, STATUSS,
LIST=0F=1TEMS, DESCRIPTN, STOCK=SEARCH,

IF CONDTN-WORD = 17 DISPLAY "NO SUCH STOCK NUMBER"
GO TO ASK=~FOReIP,

IF CONDTN=WORD = =21 DISPLAY "NO READ ACCESS TO DATA"
GO TO ASK=FOR~IP,

IF CONDTN=WORD NOT = 0 GO TO DISPLAY=STATUS,

Parameter Definition Value

DATA-SET-P PIC X(8) “PRODUCT;”
MODE7 PIC 9999 COMP 7
LIST-OF-ITEMS PIC X(80) “DESCRIPTION;”
PR-BUFFER

STOCK-NO PIC X(8) -

DESCRIPTN PIC X(20) “CLIPBOARD 7
STOCK-SEARCH PIC X(8) “2222B22B”

5-5

COBOL

To locate the PRODUCT data set entry which has STOCK # search item value of 2222B22B, a
calculated read is used. The mode is 7 and the item to be read is DESCRIPTION. After DBGET
returns control to the calling program, the description of stock number 2222B22B is in DESCRIPTN.
If no entry exists with STOCK# equal to 2222B22B, the condition word is 17. If the user does not
have read access to the DESCRIPTION data item, condition word —21 is returned.

READ ENTRY (BACKWARD CHAIN)

CALL "DBFIND"™ USING BASE=NAME, DATA-SET=-S, MODEi, STATUSS,
ITEM=NAME, ITEM=VALUE,

IF CONDTN=WORD = 17 DISPLAY "NO PURCHASES ON THAT DATE"
GO TO ASK=FOR~IP,

IF CONDTN~WORD = =21 OR =52
DISPLAY "PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS"
GO TO ASK«FOR~IP,

IF CONDTN=WORD NOT = 0 DISPLAY "DBFIND FAILURE"
GO TO DISPLAY~STATUS,

NEXT=IN=CHAIN,

CALL "DBGET" USING BASE=NAME, DATA-SET=S, MODE6, STATUSS,
ALL-ITEMS, SA=-BUFFER, DUMMY,

IF CONDTN«WORD = 14 DISPLAY "NO MORE PURCHASES ON THIS DATE"
GO TO NEXT~ACCOUNT

IF CONDTN-WORD = 0 GO TO REPORTeSALES,

REPORT=SALES.,
(routine to print sales information)

GO TO NEXT-IN=CHAIN,

Parameter Definition Value
DATA-SET-S PIC X(6) “SALES;”
MODE1 PIC 9999 COMP 1
ITEM-NAME PIC X(12) “PURCH-DATE; ”’
ITEM-VALUE PIC X(6) “760314”
MODES6 PIC 9999 COMP 6
ALL-ITEMS PIC X(2) “@;”
SA-BUFFER
ACCOUNT-S PIC (9) COMP 12345678)
STOCK-NO-S PIC X(8) “292929B22B”
QUANTITY PIC 9999 COMP 3 Sample values
PRICE PIC 9(9) COMP 425 [‘"ZP eva .
TAX PIC 9(9) COMP 25 rea f rom one
TOTAL PIC 9(9) COMP 450 eniry in chain.
PURCH-DATE PIC X(6) “760314”
DELIV-DATE PIC X(6) “760320”)

COBOL

First the DBFIND procedure is called to determine the location of the first and last entries in the
chain. The call parameters include the detail data set name, the name of the detail search item
used to define a path with the DATE-MASTER data set, and the search item value 760314 of both
the master entry containing the chain head and the detail entries making up the chain. If no entry
in the DATE-MASTER has a search item value of 760314, the condition word will be 17. If the
user’s password or access mode does not allow read access to the data, condition word -21 or -52
is returned.

If the DBFIND procedure executes successfully, a call to the DBGET procedure with a mode
parameter of 6 reads the last entry in the chain. Successive calls to DBGET with the same mode
read the next-to-last entry and so forth until the first entry in the chain has been read. A subse-
quent call to DBGET returns condition word 14, indicating the beginning of the chain has been
reached and no more entries are available. If an entry has been successfully read, the program
executes the REPORT-SALES routine and prints the information. It then goes to the NEXT-IN-
CHAIN routine and reads another entry.

If no entries exist in the chain, the condition word is also 14.

UPDATE ENTRY

CALL "DBGET" USING BASE=-NAME, DATA-SET-C, MODE7, STATUSS,
ITEM=NAME, ADDRESS=VALUE, ACCT=SEARCH,

(Determine if entry successfully read, print current
address, and prompt for new address,)

CALL "DBUPDATE" USING BASE=NAME, DATA-SET-C, MODE1, STATUSS,
ITEM=NAME, ADDRESS=VALUE,

IF CONDTN-WORD = 42 DISPLAY "NOT ALLOWED TO ALTER THIS ITEM"
GO TO ASKe=FOR=IP,

IF CONDTN-WORD NOT = 0 GO TO DISPLAY-STATUS,

Parameter Definition Value
DATA-SET-C PIC X(10) “CUSTOMER;
MODE7 PIC 9999 COMP 7
MODE1 PIC 9999 COMP 1
ACCT-SEARCH PIC 9(9) COMP 12345678
ITEM-NAME PIC X(16)) “STREET-ADDRESS; ”
ADDRESS-VALUE PIC X(26) “12 SUTTON PLACE ”

In order to update an entry it must first be located. In this example, the entry is located by using a
calculated DBGET to read the STREET-ADDRESS item in the CUSTOMER data set. The entry is
located by using the ACCOUNT search item with a value of 12345678. If the read is successful,
the current address is printed and the application program user is prompted for the new address

5-7

COBOL

which is moved into ADDRESS-VALUE. The DBUPDATE routine is then called to alter the
STREET-ADDRESS data item in the entry.

If the current user class number does not allow this item to be altered or the access mode does not
allow updates to take place, the condition word 42 is returned.

A null list can be used when calling DBGET to locate an entry to be updated.

DELETE ENTRY

(Locate appropriate entry as with DBGET,)

CALL "DBDELETE"™ USING BASE~NAME, DATA-SET-C, MODEi, STATUSS,
IF CONDTN=WORD = 44
DISPLAY "SALES ENTRIES EXIST, CANNOT DELETE CUSTOMER"
GO TO ASK~FOR~IP,
IF CONDTN-WORD = =23 DISPLAY "PASSWORD DOES NOT ALLOW DELETE"
GO TO ASK=FOR~IP,
IF CONDTN=WORD NOT = 0 GO TO DISPLAY-STATUS,

Parameter Definition Value

DATA-SET-C PIC X(10) “CUSTOMER; ”

Before an entry can be deleted, the current record of the data set must be that of the entry to be
deleted. This record may be located by calling DBGET. In this example, the program may have
requested the account number of the customer to be deleted and then used a calculated DBGET to
locate the appropriate entry. If entries in the SALES data set exist which have the same account
number as the entry to be deleted, the condition word is set to 44 and the entry is not deleted.
Condition word -23 indicates that the user does not have the capability of deleting an entry from
the CUSTOMER data set.

A null list can be used when calling DBGET to locate an entry to be deleted.

COBOL

LOCK AND UNLOCK (DATA BASE)

CALL "DBLOCK"™ USING BASE=NAME, DUMMY, MODE2, STATUSS,
IF CONDTN=WORD = 20 DISPLAY "DATA BASE IS BUSY, TRY AGAIN LATER,"
GO TO CLOSE,
IF CONDTN=WORD = 0 GO TO USE=BASE,
DISPLAY "DBLOCK FAILURE" GO TO DISPLAY=STATUS,
USE~-BASE,

[]
CALL "DBUNLOCK" USING BASE<NAME, DUMMY, MODE1, STATUSS,
IF CONDTN=WORD NOT = 0 DISPLAY "DBUNLOCK FAILURE"®
GO TO DISPLAY=-STATUS,

Parameter Definition Value
MODE2 PIC 9999 COMP 2
MODE1 PIC 9999 COMP 1

In this example the program calls DBLOCK to lock the data base. Since mode 2 is used, the pro-
gram must check the condition word when DBLOCK returns control to verify that the data base is
locked. If it is locked the condition word is O; if it is busy the condition word is 20.

If the data base is successfully locked, the program goes to the USE-BASE routine. After the data

base operations have been completed, the program unlocks the data base by calling the DBUNLOCK
procedure.

An example of data entry locking appears in the sample COBOL program, figure 5-1.

REQUEST DATA ITEM INFORMATION

CALL “DBINFO® USING BASE~-NAME, ITEM<NAME, MODE, STATUSS,
INFO-BUFFER,

IF CONDTN=WORD NOT = 0 DISPLAY "DBINFO FAILURE"
GO TO DISPLAY~STATUS,

Parameter Definition Value
ITEM-NAME PIC X(12) “PURCH-DATE; ™
MODE PIC 9999 COMP 102
INFO-BUFFER

NAM-TYP PIC X(18) “PURCH-DATE A

SUB-LENG PIC 9999 COMP 6

SUB-COUNT PIC 9999 COMP 1

The procedure call in this example obtains information about the PURCH-DATE data item by
specifying mode 102. The item name and type are returned in the first 9 words of INFO-BUFFER
and the sub-item length and sub-item count in words 10 and 11.

SEP 1978 5.9

COBOL

REWIND DATA SET

REWIND,
CALL "DBCLOSE" USING BASE=NAME, DATA-SET-C, MODE3, STATUSS,
IF CONDTN=WORD NOT = 0 DISPLAY "DBCLOSE FAILURE"
GO TO DISPLAY=STATUS,

Parameter Definition Value
DATA-SET-C PIC X(10) “CUSTOMER;”
MODE3 PIC 9999 COMP 3

To rewind the CUSTOMER data set, a call to DBCLOSE is made with mode equal to 3. The
dynamic status information in the Data Set Control Block for CUSTOMER is reset, including the
current record number. If a serial read request encounters an end-of-file, this call resets the current

record to the beginning of the data set and another serial read request will read the first entry in the
data set.

CLOSE DATA BASE

CLOSE,

CALL "DBCLOSE" USING BASE=-NAME, DUMMY, MODE1, STATUSS,
IF CONDTN«WORD NOT = 0 CALL "DBEXPLAIN" USING STATUSS,

STOP RUN,
Parameter Definition Value
MODE1 PIC 9999 COMP 1

This call closes the data base. It is issued after the program has completed all data base activity
and before program termination.

PRINT ERROR

DISPLAY~STATUS,

CALL "DBEXPLAIN" USING STATUSS,
GO TO CLOSE,

The call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents

of the STATUSS array. This routine may be used while debugging the application if a procedure
call fails.

5-10

MOVE ERROR TO BUFFER

COBOL

CALL "DBERROR" USING STATUSS, ERR-BUFFER, LENGTH,
Parameter Definition Value
ERR-BUFFER PIC X(36) “DATA BASE IN USE ”

LENGTH

PIC 9999 COMP

16

In this example, a call to DBERROR has returned one of the messages appropriate when the condi-
tion word is equal to —1. The length of the message is 16 bytes as indicated by the value of LENGTH

returned by DBERROR.

SAMPLE COBOL PROGRAM

Figure 5-1 contains a sample data base application, a program to update the inventory records,
which is coded in COBOL. The program is called RECEIVE and updates on-hand quantities and
adjusts unit costs in the INVENTORY data set of the STORE data base. The data base is opened

in mode 2. Sample output from RECEIVE is illustrated in figure 5-2.

Locking is performed at the data entry level to ensure that two users do not attempt to modify

the same data entry simultaneously.

SEP 1978

5-11

COBOL

LK B B R R R R R B N R A B N RN

1D
PR
Da

EN
DA
WO
77
77
77
77
77
77
717
01

01

* x x X x x * x x X
THIS PROGRAM JILLUSTRATES THE USE OF COBOL CALLS TO IMAGE,
IT USES THE DATA BASE "STORE", ACCFSSING THE DETATIL DATA SET
"INVENTORY"™ TO UPDATE THE GN-HAND QUANTITY AND UNYT COST TN
REFLECT THE RECEIPT NF A NEW SHIPMENT, NOTICFE THAT THE PASS=-
WORD USED WAS "BUYFR"™ SINCE THE TWO FIELDS BEING CHANGED HAVE
12 AS A WRITF CLASS. NOTICE ALSO THAT THE DATA BASE IS NOPENED
IN MODE ?, WHICH IS ADFQUATE FOR READING AND UPDATING THF TwN
FIELDS INVOLVED, WHILE ALLOWING OTHERS TO ACCESS THF DATA
BRASE CURRENTLY, THE USER CaN NNLY MODIFY ENTRIES wWHOSE
STNCK# AND SUPPLIER HAVE ALREADY REEN ESTABLISHED 1IN THE
PRODUCT MANUAL MASTER AND SUP=MASTER MAN{AL MASTFR RESPECTIVELY
TO KEFP THIS FEXAMPLE SIMPLE THE "ACCEPT" VFERR HAS BREEN USED
FOR FNTERING TRANSACTIONS, ONE CONSEQUENCE OF THIS 1S THAT
THF 1JSFR MUST PRFSS CARRTAGE RETURN TWICE IF HIS RESPONSK
IS LESS THAN 8 CHARACTERS LONG,
ENTRY LOCKS ARF USED TO ENSURE THAT TWAO IISFRS DO NOT ATTEMPT
TO MODIFY SIMULTANEONSLY AN EXISTING ENTRY RASED ON ITS OLD

CONTENTS,
* x * ¥ * X x X * *
ENTIFICATION DIVISION,

OGRAM=ID, RECEIVE,
TE«COMPILED,
WED, MAY 17, 1978, 4:30 PM,

VIRONMENT DIVISION,

TA DIVISTON,

RKING=STORAGE SECTTON,
EDITED=-COST PIC §%$,8588,858$,$88,99,
EDITED=-VALUE PIC 8$,$%$,$88,$85,99,
SS1 PIC 9999 COMP SYNC,
582 PIC 9999 COMP SYNC,
EDTTED=-QTY PIC 2(8)9,
STATUS=EDIT PIC =me-eec===9,
STOCK=VALUF PIC 9(18) COMP,

TP=-BUFFER,
05 ON«HAND=QTY PIC 9(9).COMP,
05 UNIT=COST PIC S9(7) CNMpP=-3,
IMAGE=-FIELDS,
05 BASE=NAME PIC X(8) VALUE " STORE:",
05 LIST=OF=1ITEMS PIC X(20) VALUE "ONHANDQTY,UNIT=COST;".
05 PREVIOUS-LIST PIC XX VALUE "x;",
05 PASSHWORD PIC X(6) VALUE “BUYER;".
05 MODE1 PIC 9999 COMP VALUE 1,
05 ™ODE?2 PIC 9999 COMP VALUE 2,
0% MODES PIC 9999 COMP VALUE 5,
05 SEARCH=-ITEM PIC X(B) VALUE "STOCK#; ",
05 DATA=-SET PIC X(10) VALUE “INVENTORY:;",

05 STATUSS.
10 CONDTN-WORD PIC 9999 COMP,
10 STAT1 PIC 9999 COMP,
10 STAT2=-3 PIC 9(9) CoOwmP,

Ffigure 5-1. Inventory Update Program
5-12 SEP 1978

COBOL

10 STAT4=S PIC 9(9) coup,
10 STAT6=7 PIC 9(9) CcOmpP,
10 STAT8&=9 PIC 9(9) cowmp,
01 ACCEPT=FTENLD,
05 STOCK=NO PIC X(8),
05 QTY=0OR=COST REDEFINES STOCK=NO OCCURS 8 PIC X,
0% FILLFR PIC X VALUE ";",

01 FILLER,
05 NEW-QUANTITY PIC 9(8).
05 NQ FREDFFINES NEW=QUANTITY PIC X OCCURS B8,

05 NFEW=COST PIC 9(R).
05 NC REDEFINES NEwW=COST PIC X OCCURS 8,
01 DESCRIPT,
05 NUM PIC S9(4) COMP VALUE 1,

05 TLOCK=STOCK=ENTRY,
10 LENGTHWD PIC S9(4) COMP VALUE 22,

10 SETNAME PIC X(16) VALUE "INVENTORY; ",
10 ITEMNAME PIC X(16) VALUE "STOCK#; "
10 RFLOP PIC X(2) VALUE "= *,

10 LOCK-VAL PIC X(®8),

PROCEDURE DIVISION,
FIRST=PARAGRAPH~NAME,
CALL "DBOPEN" USING BASE=NAME, PASSWORD, MODE2, STATUSS,
IF CONDTN=WORD NOT = 0 DISPLAY "DROPKN=FATL "
PERFARM DISPLAY-STATUS STOP RUN,
ASK=FOR=TP,
MOVE SPACES TO STOCK=nO,
DISPLAY "ENTER B CHARACTER STOCK NUMBER OR TYPE SAYONARA®,
ACCEPT STOCK=NO,
TF STOCK=NQ = "SAYONARA"™ GO TN FINISH,
PERFORM FIND=STNCK=RFECORD,
IF CONDTN=WORD = 17 DR = 15
DISPLAY "NO SUCH STOCK NUMBER"
PERFORM [INLOCK
GN TO ASK-FOR=-IP,
MOVE SPACES TO STNCK=NO,
DISPLAY "NOW ENTER QUANTITY RECEIVED - ",
ACCEPT STOCK=NO,
PERFORM MOVE=QTY,
MOVE SPACES TGO STOCK=NO,
DISPLAY "NOW FNTER UNIT COST IN CENTS = ",
ACCEPT STNCK=NO,
PERFORM MQOVE-COST.
PERFORM UPDATF=STOCK,
PERFORM DISPLAY=NEW=-STOCK,
DISPLAY " " DISPLAY " *
GO T(O ASK=FOR=IP,
FIND=STOCK=RECORD,
MOVE STNCK=-NO TO LOCK=VAL,
CALL "DBLOCK" USING BASE~NAME, DESCRIPT, MODES, STATUSS,
IF CONDTN=WORD NOT = 0 DISPLAY "LOCK FAILED"
PERFORM DISPLAY-STATUS GO TO FINISH.

Figure 5-1. Inventory Update Program (Continued)

SEP 1978 5-13

COBOL

CALL "DRFIND" USING BASF=-NAME, DATA-SFT, MODE1, STATISS
SEARCH-ITEM, STOCK=-NO,

IF CONDTN=WORD = Q0 PERFORM GET=STOCK=-RECORD ELSE
IF CONDTN=WORD NOT = 17 DISPLAY "FIND FAIL"

PERFORM DISPLAY=-STATUS GO TO FINISH.
GET=STOCK=RECORD,

CALL "DBGET" USING BASE=NAME, DATA~-SET, MODES, STATUSS,
LIST=-0F-ITEMS, IP=-BUFFER, ACCEPT=-FIELD,

IF CONDTN=WORD NOT = 0 AND NOT = 15 DISPLAY "GET FATL"

PERFORM DISPLAY=STATUS GO TO FINISH,

MOVE=QTY,

MOVE ZERO TO NEW-QUANTITY. MOVE 8 TO SS2,

PERFORM MOVE~Q VAPYING SS1 FROM 8 BY =1 UNTIL SS1 = O,
MOVE=Q,

IF QTY=-OR=COST (SS1) NOT = " " MOVE QTY-OR~COST (SS1) TO

NQ (S5S8?) SURTRACT 1 FROM SS2,
MOVE~-COST.,

MOVF. ZERO TO NEW=-COST, MOVE 8 TO SS2,

PERFORM MOVE=C VARYING SS1 FROM 8 RY =1 UNTIL SS1 = 0,
MOVE=C,

IF QTY=0OR=COST (SS1) NOT = " " MOVE QTY-OR-COST (SS1) TO

NC (8S2) SURTRACT 1 FROM SS2,
DISPLAY=NFW=STOCK,

MOVE ON-HAND=-QTY TO EDITED~-QTY,

COMPUTE EDTTED=COST = UNIT=-COST / 100,

COMPUTE FEDITED=VALUE = NN=-HAND=QTY * UNIT-COST / 100,

DISPLAY "NEW ON HAND QUANTITY = ", EDITED=-QTY.

DISPLAY “NFW UNIT COST = ", EDITED=COST,

DISPLAY "NEW STOCK VALUE = ", EDITED-VALUE,
UPDATE-STOCK,

COMPUTE UNIT=COST = (UNIT=COST * ON=-HAND=QTY + NEW=QUANTITY

¥ NEW=COST) / (ON=HAND=QTY + NEW-QUANTITY),
COMPUTE ON=HAND=QTY = ON=HAND=QTY + NEW=QUANTITY.

CALL “DBUPDATE"™ USING PASE~NAME, DATA-SET, MODE1l, STATUSS,

PREVIOUS~LIST, IP-BUFFER,
IF CONDTN=WORD NOT = 0 NDISPLAY "UPDATE FAIL"
PERFORM DISPLAY-STATUS GO TO FINTSH,
PERFQORM UNLOCK.
UNLQCK,

CALL "DBUNLOCK"™ USING BASE~NAME, DATA=SET, MODE1, STATUSS.

IF CONDTN=WORD NOT = O DISPLAY "UNLOCK FAIL"
PERFORM DISPLAY-STATUS GO TO FINISH,
DISPLAY=STATUS,
CALL "DBEXPLAIN" USING STATUSS.
FINISH,
CALL "DBCLOSE" USING BASE=NAME, DATA-SET, MODE1, STATUSS.
IF CONDTN=WORD NOT = 0 DISPLAY
"DATA BASE CLOSE FAILED" PERFORM DISPLAY=STATUS,
STOP RUN,

Figure 5-1. Inventory Update Program (Continued)

5-14 SEP 1978

COBOL

tRUN RECEIVE

ENTER 8 CHARACTFR STOCK WUMRER OR TYPE SAYONARA
430701 3P

NO STICH STOCK NU#BER

SNTER 8 CHARAZTER STOCK NUM3ER OR TYPR SAYONARA
12345678

NO SUCH ST)2X NUMBER

ENTER 8 CHARACTFR STOCK NURBER (G2 TYPE SAYONARA
6650DD2S

NO SUCH STOCK NUA4RER

ENTER 8 CHARACTER STOCK WNU'RER OR TYPE SAYOJARA
66500225

NON ENTER NUANTITY RECEIVED -

100

NOW ENTER UNIT COST IN C=NTS -
150

NEW ON HAND NUANTITY = 3n¢

NEN UNIT COST = $2.14
HEW STOCK VALIJE = $746.63

ENTER 3 CHARACTER STOCK “U¥srER GR TYPk SAYOHARA

66500225

NMOW EMTER QUANTITY RECEIVED -

5000

NOwW ENTER UNIT COST IN CENTS -

1500

NEN ON HAND NUANTITY = 5306
NEN UNIT CO5T = $14.27
NEN STOCK VALUE = $75,71¢.62

ENTER 8 CHARACTER STOCK 1UMBER OR TYPE SAYONARA

2457A11C

NOW ENTER QUANTITY RECEIVED -
10000000

NOWA ENTER UNIT COST IN C:NTS -

4000

NEN ON HAND NUANTITY = 11001345
NEWN UNIT COST = $50. 31
NEN STOCK VALUE = $553,477,666.95

ENTER 8 CHARACTFR STOCK NUMBER OR TYPE SAYONARA
SAYONARA

END OF PROGRAY

Figure 5-2. Sample RECEIVE Execution
5-15

FORTRAN

FORTRAN EXAMPLES

In the FORTRAN examples which follow, all variables are integer unless declared otherwise. The
DUMMY parameter is an integer and appears when a parameter is not used by the procedure for
the task which is being performed.

The code at statement 9900 closes the data base. It is not included in each example but is implied
to be there.

Since IMAGE requires that the parameters be at word addresses, they must be integer arrays
equivalenced to character strings if necessary. For example, the BASE integer array is 4 words long
and is equivalenced to the CS1 character string which is 8 bytes long. This array contains the name
of the STORE data base preceded by one word of blanks to which the data segment number of the
DSCB is moved when the data base is opened.

OPEN DATA BASE

PROGRAM FTIM{

IMPLICIT INTEGER (A=Z)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)
CHARACTER#8 (CS1,CS2 ,
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
CS1 = " STORE;"

cs2 = " "
DISPLAY "ENTER PASSWORD "
ACCEPT Cs2

DISPLAY "ENTER ACCESS MODE (i1-8) "
ACCEPT MODE
CALL DBOPEN (BASE,PASSWORD,MODE,STATUS)
IF (STATUS(1) ,NE,0) GOTO 9300
DISPLAY "DATA BASE OPENED"
GOTO 9900

9300 DISPLAY "DBOPEN FAILURE"

9310 CALL DBEXPLAIN (STATUS)

In this example the STORE data base is opened in the access mode entered by the application user
and with the user class number corresponding to the password entered. For example, the access
mode may be 3 and the password DO-ALL. Since IMAGE parameters must have word addresses,
the character string must be equivalenced to an integer array before being passed to the IMAGE

procedure.

If the procedure fails, the first word of STATUS is an integer other than zero. In this case, the
sample program prints a message and executes DBEXPLAIN to display status information.

If the password is less tﬁan 8 characters long, it must be followed by a semicolon or blank. There-
fore, the character string CS2 is initialized to 8 blanks.

5-16

FORTRAN

ADD ENTRY

PROGRAM FTIM2

IMPLICIT INTEGER (A=2)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)
DIMENSION DSETP(4),PRBUFF(14)

CHARACTER#8 STOCKNO,CS3,DESCRIPN#20,ALLITEMS#2
CHARACTER#8 (CS3,CS2

EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
EQUIVALENCE (DSETP(1),CS3), (PRBUFF(1),STOCKNO),
C (PRBUFF(5),DESCRIPN), (AI,ALLITEMS)

Cst = " STORE;"

cs2 = " "

Cs3 = "PRODUCT;"

MODE1=1

ALLITEMS = "@3"

(code to open data base in access mode 1, 3, or 4 and prompt for data item values)

[X X}

CALL DBPUT (BASE,DSETP,MODE1,STATUS,Al,PRBUFF)
IF (STATUS(1).,NE,43) GOTO 120
DISPLAY "DUPLICATE STOCK NUMBER"
GOTO 110
120 IF (STATUS(1),NE,16) GOTO 130
DISPLAY "DATA SET FULL"
GOTO 9900
130 IF (STATUS(1),NE,=23) GOTO 140
DISPLAY "PASSWORD DOUES NOT ALLOW ADDING ENTRIES"
GOTO 9900
140 IF (STATUS(1),NE,0) GOTO 160
DISPLAY "NEW PRODUCT HAS BEEN ENTERED"
GOTO 9900
160 DISPLAY "DBPUT FAILURE"
GOTO 9310
9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)
L]

This sample code adds a data entry to the PRODUCT manual master data set. The first word of the
BASE array now contains the number of the privileged data segment of the Data Base Control
Block. ALLITEMS contains an at-sign indicating that PRBUFF contains a value for all items in the
data entry. The values for the STOCK# and DESCRIPTION data items are concatenated in
PRBUFF, for example, 7474Z7T4ZORANGE CRATEAAAAAAAA.

A typical application will prompt for the data item values which are moved into PRBUFF and added
to the data set. In this example, the condition word of the STATUS array is tested for a value of
43, indicating that an entry with search item value 747472747 already exists in the data set, or 16,
indicating that the data set is full. If the user’s password does not allow entries to be added, condi-
tion word —-23 is returned.

5-17

FORTRAN

If an entry is to be added to a detail set, a value must be provided for all search items and the sort
item if one is defined. The program may first check to see if the required entries exist in the manual

mastler

s linked to the detail data set, or it can check for condition word 1xx after attempting to

add the detail entry.

If the access mode is 1, the data base must be locked before an entry can be added.

READ ENTRY (SERIALLY)

C

(code

200

(code

210

220

230

9300
9310

PROGRAM FTIM3

IMPLICIT INTEGER (A~2)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)

DIMENSION DSETC(5),LIST(15),CBUFF(15)

CHARACTER CS54#10,CS5#30,FNAME#10,LNAME#14

CHARACTER#8 CS1,CS2

EQUIVALENCE (DSETC(1),CS4), (LIST(1),CS5), (CBUFF(3),FNAME),
(CBUFF (8) ,LNAME)

EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)

€St = " STORE;"

cs2 = " "

CS4 = "CUSTOMER; "

CS5 = "ACCOUNT,FIRST=NAME,LAST=NAME; "

DUMMY = 1

MODE2 = 2

to open data base)

CALL DBGET (BASE,DSETC,MODE2,STATUS,LIST,CBUFF,DUMMY)
IF (STATUS(1).NE,11) GOTO 210

DISPLAY "CONTINUE"

ACCEPT 1

IF (I,EQ,0) GOTO 9900

to determine whether to continue, if so, rewind data set)

IF (STATUS(1),NE,=21 ,AND,STATUS(1),NE,=52) GOTO 220
DISPLAY "YOU DO NOT HAVE ACCESS TO DATA"

GOTO 9900

IF (STATUS(1).EQ,0) GOTO 230

DISPLAY "DBGET FAILURE"

GOTO 9310

WRITE (6,%) FNAME,LNAME,CBUFF(1)

GOTO 200

DISPLAY "DBOPEN FAILURE"

CALL DBEXPLAIN (STATUS)

5-18

FORTRAN

To read the next entry of the CUSTOMER data set, a mode of 2 is used. This directs the DBGET
procedure to perform a forward serial read. In the example, the LIST array contains the names of
three data items. After DBGET returns to the calling program, CBUFF contains values such as:

CBUFF(1) — CBUFF(2) 12345678 (double integer)
CBUFF(3) — CBUFF(7) GEORGEAAAA
CBUFF(8) — CBUFF(14) PADERSONAAAAAA

If an end-of-file is encountered the condition word is set to 11. In this case, the routine rewinds
the data set and tries the read again. A rewind routine is shown later in the examples of the
DBCLOSE procedure: The rewind reinitializes the current record pointer so that the next request
for a forward serial read reads the first entry in the data set. If the user does not have read access
to the data items, condition word —21 is returned.

The DUMMY variable signifies that the argument parameter is not used with mode 2.

READ ENTRY (DIRECTLY)

PROGRAM FTIM11

IMPLICIT INTEGER (A=Z)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)
DIMENSION DSETP(4), PRBUFF(14)

CHARACTER#8 CS1,CS2

CHARACTER#8 CS3, STOCKNO, DESCRIPN#20, ALLITEMS#2
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
EQUIVALENCE (DSETP(1),CS3), (PRBUFF(1),STOCKNO),
o (PRBUFF(S5),DESCRIPN), (AI,ALLITEMS)
INTEGER#4 RECNO

¢St = " STOREs"

cs2 = " "

Cs3 = "PRODUCT:"

ALLITEMS = "@3"

MODE4 f 4

(code to open data base)

210 DISPLAY "REC"
ACCEPT RECNO
IF (RECNO,EQ,0) GOTO 9900
CALL DBGET (BASE, DSETP, MODE4, STATUS, AI, PRBUFF, RECNO)
IF (STATUS(1),EQ,12,0R,STATUS(1),EQ,13) GOTO 280
IF (STATUS(1).,NE,17) GOTO 270
DISPLAY "RECORD CONTAINS NO DATA ENTRY"
GOTO 210
270 IF (STATUS(1),.,EQ,0) GOTO 290
DISPLAY "DBGET FAILURE"
GOTO 9310
280 DISPLAY "INCORRECT RECORD NUMBER"
GOTO 210
290 DISPLAY DESCRIPN
GOTO 210
9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATyS)

5-19

FORTRAN

The code in this example reads all data items of the entry in the specified record number of the
PRODUCT data set using a directed read, mode 4. If the condition word is equal to 12 or 13, the
record number is not within the range of records in the file. If the condition word is 17 the record
contains no entry.

NOTE

This is not the normal method for using directed reads but is used to simplify the example.

READ ENTRY (CALCULATED)

PROGRAM FTIM4

IMPLICIT INTEGER (A=Z)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)
DIMENSION DSETP(4),LISTA(6),PRBUFF(10),STOCKSRCH((4)
CHARACTER#8 CS1,CS2

CHARACTER#8 CS3, DESCRIPN#20, CS6#12, CS7
EQUIVALENCE (DSETP(1),CS3),(PRBUFF(1),DESCRIPN),
(o (LISTA(1),CS6), (STOCKSRCH(1),CS7)
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)

CS1 = " STORE:"

cs2 = " "

CS3 = "PRODUCT;"

CS6 = "DESCRIPTION;"

MODE? = 7

(code to open data base)

20 DISPLAY "STOCK NUMBER"
ACCEPT CS7
CALL DBGET (BASE,DSETP,MODE7,STATUS,LISTA,PRBUFF(1),STOCKSRCH)

IF (STATUS(1),NE,17) GOTO 300
DISPLAY "NO SUCH STOCK NUMBER"
GOTO 20
300 IF (STATUS(i) NE,=21) GOTO 310
DISPLAY "PASSWORD DOES NOT GRANT ACCESS TO DATA"
GOTO 9900
310 IF (STATUS(1),.,EQ,0) GOTO 320
DISPLAY "DBGET FAILURE"
GOYT0 9310
320 (code to use data from entry just read)

$310 CALL DBEXPLAIN (STATUS)

5-20

FORTRAN

A calculated read is used to locate the PRODUCT data set entry which has the STOCK # search
item value entered in CS7. The mode is 7 and the item to be read is DESCRIPTION. After DBGET
returns control to the calling program, the description for the specified stock number is in
DESCRIPN. If no entry exists with STOCK# equal to the specified value, the condition word is
17. If the user does not have read access to the DESCRIPTION data item, the condition word is
-21.

READ ENTRY (FORWARD CHAIN)

PROGRAM FTIMS
IMPLICIT INTEGER (A=2)
DIMENSION STATUS(10),PASSWORD(4),BASE(4)
DIMENSION DSETS(3), INAME(6), IVAL(3), SABUFF(19)
CHARACTER Cs8#6, CS9%#12, CS10#6, SASTOCK#8, PURCHDT#8,
C DELIVDT#8, ALLITEMS#2
CHARACTER#8 CS1,CS2
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
EQUIVALENCE (DSETS(1),CS8), (INAME(1),CS9), (IVAL(1),CS10),
(SABUFF(1),ACCTS), (SABUFF(3),SASTOCK),
(SABUFF(7),0TY), (SABUFF(8),PRICE),
(SABUFF(10),TAX), (SABUFF(12),TOTAL),

e XoRaKe!

INTEGER#4 ACCTS, PRICE, TAX, TOTAL

Cst = " STORE;"

cs2 = " "

CS8 = "SALES;"

€S9 = "PURCH=DATE; "

CS10 = "760314" Program would normally prompt for this value.
ALL ITEMS = "“@3"

MODE1 = 1

MODES = 5

[]
(code to open data base)
[)

CALL DBFIND (BASE, DSETS, MODE1, STATUS, INAME, IVAL)
IF (STATUS(1),NE.17) GOTO 345
DISPLAY "NO PURCHASES ON THAT DATE,"
GOTO 9900

345 IF (STATUS(1),NE,=21 ,AND,STATUS(1) ,NE,«52) GOTO 355
DISPLAY "PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS"
GOTO 9900

355 IF (STATUS(1).EQ,0) GOTO 360
DISPLAY "DBFIND FAILURE"
GOTO 9310

360 CALL DBGET (BASE, DSETS, MODES, STATUS, AI, SABUFF, DUMMY)
IF (STATUS(1).NE,15) GOTO 365 -
DISPLAY "NO MORE PURCHASES ON THIS DATE"
GOTO 9900

365 IF (STATUS(1).NE,0) GOTO 380

(code to use sales information from entry, for example, in a report)

GOTO 360
380 DISPLAY "DBGET FAILURE"
GOTO 9310
9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

5-21

(SABUFF(14),PURCHDT), (SABUFF(17),DELIVDT),(AI,ALLITEMS)

FORTRAN

First the DBFIND procedure is called to determine the location of the first and last entries in the
chain. The call parameters include the detail data set name, the name of the detail search item
used to define a path with the DATE-MASTER data set, and the search item value 760314 of both
the master entry containing the chain head and the detail entries making up the chain. If no entry
in the DATE-MASTER has a search item value of 760314, the condition word will be 17. If the
user’s password or access mode does not grant read access to the data set or data items, condition
word -21 or —52 is returned.

If the DBFIND procedure executes successfully, a call to the DBGET procedure with a mode
parameter of 5 reads the first entry in the chain if one exists. Subsequent calls to DBGET with the
same mode read the succeeding entries to the chain until the last entry in the chain has been read.
If the condition word is 15, the end of the chain has been reached and no more entries are avail-
able, or no entries exist in the chain.

If an entry is successfully read the program uses the information and then returns to statement 360
to read another entry in the chain.

After an entry has been read the SABUFF array contains information like this:

SABUFF (1) — SABUFF(2) ACCTS 12345678 (doubleword integer)
SABUFF(3) — SABUFF(6) SASTOCK 2222B22B (character string)
SABUFF(7) QTY 3 (integer)
SABUFF(8) — SABUFF(9) PRICE 425 (doubleword integer)
SABUFF(10) — SABUFF(11) TAX 25 (doubleword integer)
SABUFF(12) — SABUFF(13) TOTAL 450 (doubleword integer)
SABUFF(14) — SABUFF(16) PURCHDT 760314 (character string)
SABUFF(17) — SABUFF(19) DELIVDT 760320 (character string)

5-22

FORTRAN

UPDATE ENTRY

PROGRAM FTIM6

IMPLICIT INTEGER (A«2)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)
DIMENSION DSETC(5), INAME2(8), ADDVAL(13)
INTEGER#4 ACCTSRCH

CHARACTER CS4#10, CS11#16, ADDSTRING#26
CHARACTER#8 CS1,CS2

EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
EQUIVALENCE (DSETC(1),C34), (INAME2(1),CS11),

C (ADDVAL(1),ADDSTRING)

Cst = " STORE;"
cs2 = " "
CS4 = "CUSTOMER; "
CS11 = "STREET-ADDRESS; "
MODEL = 1
MODE? = 7
ACCTSRCH = 12345678
L

(code to open data base in access mode 1, 2, 3, or 4)

CALL DBGET (BASE,DSETC,MODE7,STATUS,INAME2,ADDVAL,ACCTSRCH)
L]

(code to determine if read is successful and print current address)

420

440

9300
9310

DISPLAY "NEW ADDRESS"

ACCEPT ADDSTRING _

CALL DBUPDATE (BASE, DSETC, MODE1, STATUS, INAME2, ADDVAL)
IF (STATUS(1),.NE,42) GOTO 420

DISPLAY "YOU ARE NOT ALLOWED TO ALTER THIS ITEM"
GOTO 9900

IF (STATUS(1),.,EQ,0) GOTO 440

DISPLAY "DBUPDATE FAILURE"

GOTO 9310

DISPLAY "ADDRESS CHANGED"

GOTO 9900

DISPLAY "DBOPEN FAILURE"

CALL DBEXPLAIN (STATUS)

Before an entry can be updated it must be located. In this example, the entry is located by using a
calculated DBGET to read the STREET-ADDRESS item in the CUSTOMER data set. The entry is
located by using the ACCOUNT search item with a value of 12345678. If the read is successful,
the current address is printed and the application program user is prompted for the new address
which is moved into ADDRESS-VALUE. The DBUPDATE routine is then called to alter the
STREET-ADDRESS data item in the entry.

If the current user class number does not allow this item to be altered or the access moce does not
allow updates to take place, the condition word 42 is returned.

A null list can be used with DBGET to locate an entry tc be updated.

5-23

FORTRAN

DELETE ENTRY

PROGRAM FTIM?

IMPLICIT INTEGER (A«Z)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)

DIMENSION DSETC(S), INAME2(8), ADDVAL(13)

INTEGER#4 ACCTSRCH

CHARACTER CS4#10, CS11#16, ADDSTRING#26

CHARACTER#8 CS1,CS2

EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)

EQUIVALENCE (DSETC(1),CS4), (INAME2(1),CS11),
(ADDVAL(1),ADDSTRING)

Csy = " STORE;"

cs2 =" "

CS4 = "CUSTOMER; "

csi1 = "3 "

MUDE) = 1

MODE? = 7

(code to open data base in access mode 1, 3, or 4)

20

530

540

560

9300
9310

DISPLAY "ACCOUNT OR ZERO TO TERMINATE"

ACCEPT ACCTSRCH

IF (ACCTSRCH,EQ,0) GOTO 9900

CALL DBGET (BASE,DSETC,MODE?7,STATUS,INAME2,DUMMY,ACCTSRCH)
IF (STATUS(1),NE,0) GOTO 9310

CALL DBDELETE (BASE, DSETC, MODE1, STATUS)

IF (STATUS(1),.,NE,.44) GOTO 530

DISPLAY "SALES ENTRIES EXIST, CUSTOMER CANNOT BE DELETED"
GOTO 20

IF (STATUS(1).NE,=23) GOTO 540

DISPLAY "PASSWORD DOES NOT GRANT ACCESS TO DATA SET"

GOTO 9900

IF (STATUS(1),EQ,0) GOTO 560

DISPLAY "DBDELETE FAILURE"

GOTo 9310

DISPLAY "CUSTOMER ENTRY DELETED"

GOTO 20

DISPLAY "DBOPEN FAILURE"

CALL DBEXPLAIN (STATUS)

Before an entry can be deleted, the current record of the data set must be that of the entry to be
deleted. This record may be located by calling DBGET. In this example, the program may have
requested the account number of the customer to be deleted and then used a calculated DBGET to
locate the appropriate entry. If entries in the SALES data set exist which have the same account
number as the entry to be deleted, the condition word is set to 44 and the entry is not deleted.

A null list can be used with DBGET to locate an entry to be deleted.

If the access mode is 1, the data base must be locked before the entry is deleted.

5-24

FORTRAN

LOCK AND UNLOCK (DATA BASE)

PROGRAM FTIMR

IMPLICIT INTEGER (A-Z)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)
CHARACTER%#8 CS51,CS2

EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),C52)
€Sy = ® STORE:"

€s2 = " "

(code to open data base in access mode 1 or 5)

MODE1L 1
MODE?2 2
CALL DBLOCK (BASE, DUMMY, MODE2, STATUS)
IF (STATUS(1) NE,20) GOTO 640
DISPLAY "DATA BASE IS BUSY, TRY AGAIN LATER,”
GOTO 9900
640 IF (STATUS(1),.EQ,0) GOTOD 680
DISPLAY "DBLOCK FAILURE"
GOTO 9310

680 (code to use data base)

CALL DBUNLOCK (BASE, DUMMY, MODEl, STATUS)
IF (STATUS(1),EQ,0) GOTO 9900
DISPLAY "DBUNLOCK FAILURE"
GOTO 9310
9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

In this example, the program calls DBLOCK to lock the data base. Since mode 2 is used, the pro-
gram must check the condition word when DBLOCK returns control to verify that the data base
is locked and the calling program has exclusive access. If this is so, the condition word is 0: if it
is busy the condition word is 20.

If the data base is successfully locked, the program performs the necessary data base operations
and then unlocks the data base by calling the DBUNLOCK procedure. In the example the pro-
grams terminates after unlocking the data base.

SEP 1978 5-25

FORTRAN
LOCK (DATA ENTRIES)

PROGRAM FTIMS8A

IMPLICIT INTEGER (A=2)

DIMENSION STATUS(10),PASSWORD(4),BASE(4),IP(40)

CHARACTER*8 CS1,CS2,VAL

CHARACTER*2 RELOP

CHARACTER*16 SETNAME,ITEMNAME

EQUIVALENCE (BRASE(1),CS1),(PASSWORD(1),CS2),
(NUM,IP(1)),
(LENGTH,IP(2)),
(SETNAME,IP(3)),
(ITEMNAME,IP(11)),
(RELOP,IP(19)),
(VAL,IP(20))

" STORE:;"

+ 4+ ++++

Cst
CS2
MODE1=1

(code to open data base)

NUM=1
LENGTH=22
SETNAME="INVENTORY -
ITEMNAME="STOCK# "
RELOP="= "
VAL="6650D22S"
CALL DBLOCK (RASE,IP,5,STATUS)
640 IF (STATUS(1).EQ.0) GOTO 680
DISPLAY "DBLOCK FAILURE"
GOTD 9310
680 (code to modify the locked data entry or entries)

9310 CALL DBREXPLAIN (STATUS)

This example illustrates locking at the data entry level. All data entries in the INVENTORY data set with
a STOCK# value of 6650D22S are locked unconditionally (mode 5). If the lock request succeeds, the
condition word is 0. If the DBLOCK procedure detects a calling error or an exceptional condition such as
DBCB full, the DBLOCK failure message is displayed and DBEXPLAIN is called.

SEP 1978 5-2ba

FORTRAN

REQUEST DATA SET INFORMATION

PROGRAM FTIMS

IMPLICIT INTEGER (A-2)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)
DIMENSION INFOBUF(8)

CHARACTER#8 CS1,CS2

EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
Cst = " STORE:"

cs2 = " "

(code to open data base)

MODE=203
CALL DBINFO (BASE, DUMMY, MODE, STATUS, INFOBUF)
IF (STATUS(1).EQ,0) GOTO 700
DISPLAY "DBINFO FAILURE"
GOTO 9310
700 (code to use data set numbers returned in INFOBUF)

GOTO 9900
9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

The procedure call in this example obtains the numbers of the data sets available to the current user
class by specifying mode 203. If the user class number is 12, after the call has been successfully
executed the INFOBUF array contains:

INFOBUF(1) 4 Access to 4 data sets.

INF‘OBUF(2) 2 Read access to data set 2.

INFOBUF(3) -3 Modify access to data set 3

INFOBUF(4) -5 and data set 5.

INFOBUF(5) 6 Read and possibly update access to data set 6.

If the user class number is 8 it contains:

INFOBUF(1) 6 Access to 6 data sets.

INFOBUF(2) -1 Modify access to data set 1.

INFOBUF(3) 2 Read access to data set 2, an automatic master.
INFOBUF(4) -3 Modify access to all the other data sets.
INFOBUF(5) -4

INFOBUF(6) -5

INFOBUF(7) -6

Refer to the schema in figure 3-5 to help you interpret this procedure call in relation to the STORE
data base.

5-26

FORTRAN

REWIND DATA SET

PROGRAM FTIM3

IMPLICIT INTEGER (A=2)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)

DIMENSION DSETC(5),LIST(15),CBUFF(15)

CHARACTER CS4#10,CS5#30,FNAME#10,LNAME#14

CHARACTER#8 CS1,CS2

EQUIVALENCE (DSETC(1),Cs4), (LISsT(1),CS5), (CBUFF(3),FNAME),

C (CBUFF (8),LNAME)
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
Cst = " STORE;"
Cs2 " "

CS4 = "CUSTOMER; "

MODE3 = 3

CALL DBCLOSE (BASE,DSETC,MODE3,STATUS)
IF (STATUS(1),.,EQ,0) GOTO 200

DISPLAY "DBCLOSE FAILURE"

GOTO 9310

To rewind the CUSTOMER data set, a call to DBCLOSE is made with mode equal to 3. The dynamic
status information in the Data Set Control Block for CUSTOMER is reset, including the current
record number. If a serial read request encounters an end-of-file, this call resets the current record to
the beginning of the data set and another serial read request will read the first entry in the data set.

CLOSE DATA BASE

9900 MODE1=1
CALL DBCLOSE (BASE,DUMMY,MODE1,STATUS)
IF (STATUS(1),EQ,0) GOTO 9980
DISPLAY "DBCLOSE FAILURE"
CALL DBEXPLAIN (STATUS)
9980 STOP
END

This call closes the data base. It is issued after the program has completed all data base operations
and before program termination.

5-27

FORTRAN

PRINT ERROR

L]
°
L]

CALL DBEXPLAIN (STATUS)

9980 STOP

A call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of

END

the STATUS array.

MOVE ERROR TO BUFFER

9300
9310

In this example, a call to DBERROR returns one of the messages appropriate to the condition word
returned by the DBOPEN procedure if it fails. For example, the message in ERSTRING may be
DATA BASE OPEN IN AN INCOMPATIBLE MODE if the condition word is —1. The value of

PROGRAM FTIM10

IMPLICIT INTEGER (A=2)

DIMENSION STATUS(10),PASSWORD(4),BASE(4)
DIMENSION ERBUFF(36)

CHARACTER ERSTRING#%72

CHARACTER#8 CS1,CS2

FQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)
EQUIVALENCE (ERBUFF(1),ERSTRING)

CSst = " STORE;"

cs2 = " »

DISPLAY "ENTER PASSWORD *

ACCEPT CS2

DISPLAY "ENTER ACCESS MODE (i1-8) "
ACCEPT MODE

CALL DBOPEN (BASE,PASSWORD,MODE,STATUS)
IF (STATUS(1),NE,0) GOTO 9300

DISPLAY "DBOPEN FAILURE"
CALL DBERROR (STATUS,ERBUFF,LENG)
DISPLAY ERSTRING (1:LENG]

LENG in this case is 38.

5-28

SPL

SPL EXAMPLES

Figures 5-3 and 5-5 illustrate the use of IMAGE procedures with SPL programs. The program in
figure 5-3 is called SUPPLMOD. It opens the data base in access mode 1 and allows the user to up-
date, add, and delete entries of the master data set containing information on suppliers. Sample
output from SUPPLMOD is illustrated in figure 5-4.

Figure 5-5 contains a program called SHOWSALE, which displays credit card purchase transactions
from the detail data set containing these entries. SHOWSALE opens the data base in access mode 6
thereby avoiding the necessity of locking and unlocking the data base. Figure 5-6 shows the output
from SHOWSALE.

IMAGE procedures must be named in an INTRINSIC statement or, alternatively, declared as
EXTERNAL procedures.

(2) OPEN DATA BASE

The STORE data base is opened with access mode 1 and BUYER password. If the condition
code is not zero, an error message is printed and the program terminates. (See @ for
another example of opening a data base.)

MOVE ERROR TO BUFFER

A message explaining the condition word returned by DBOPEN is mcved to OUTBUF and 1
is set equal to the number of characters or length of the message.

REQUEST DATA SET INFORMATION

A call to DBINFO with mode 201 and data set name SUP-MASTER returns the data set
number in DSET. For efficiency, this is done only once at the beginning of the program.
(See and for other DBINFO examples.)

LOCK DATA SET

If the condition code is not CCE, the status information is printed indicating that the lock could
not be obtained.

READ ENTRY (CALCULATED)

This call locates an entry in the SUP-MASTER data set based on the search item value in
SUPBUF. The entry need not be read since it is to be updated or deleted, therefore, the list
is null and no data is actually transferred. SUPBUTF is also used as the buffer parameter since
no data is moved into it. If the condition word is 17, there is no search item with the speci-
fied value. Since the BUYER password allows access to the data, it is not necessary to check
for condition word -21.

DELETE ENTRY

The entry located with DBGET is deleted. If the condition word is 44, the detail data sets
linked to SUP-MASTER contain entries with the specified search item value, therefore, the
master entry cannot be deleted. Since the BUYER password and access mode 1 allow the
user to delete SUP-MASTER entries, it is not necessary to check for condition word -23.

SEP 1978 5-29

SPL

BEGIN
<< * * * * * * * * * * * * * * * * * #*) * #* * >>
<< THIS PROGRAM (OPENS THE "STORE" DATA BASE 1w >>
<< MODE 1 AND ALLOWS THE USER INTERACTIVELY TO APD, DLELrTE, OK >>
<< UPDATE (CHANGE ADDRESSES COF) SUPPLIERS TN THE SUP=MASTHER DATA >>
<< SET, THE USER IS PROMPTED FOR THE DESIRED FUNCTIOW AND THEN FUR >>
<< THE NECESSARY FIELD VALUES, >>
<< THE PROGRAM CAN BE RUN FROM MULTIPLE TERMINALS (SESSI0uUS) >>
<< SIMULTANEOUSLY, AND CAN ACCESS THE DATA BASE CONCURRENTLY wITH >>
<< OTHER PROGRAMS WHICH HAVE MODE 1 OR MODE 5 ACCgSS TO 171, >>
€< ®* ® * * * * * *# * * * # #* * * ® # * 3* >>
INTEGER MODE1 = 1, << MODES FOR >>

MODE4 = 4, << USE 1IN >>

MODE? HE P << IMAGE CALLS >>

MODE201 1= 201,

DSET, << NUMBRER OF SUP=MASTEk DATA SEI1 >>

I;
LUGICAL NULL’LIST HEA A << SPECIAL "NO DATA" LIST >>
LOGICAL FULLREC $= "@;"; << SPECIAL "COMPLETE ENTRY" L1ST >>

ARRAY SBASE(0:3) ¢= " STORE;": << DATA BASE >>

ARRAY PASSWORD(0:2) := "BUYER;"; << QUALIFI1ER == PASSNORD >>
ARRAY DSETNAME(0:5) := "SUP=-MASTEkK;"; << QUALIFIE&R =< DATA ST NAME >>
ARRAY STATUS(0:9); << STATUS AKEA >>

ARRAY SUPBUF(0:30); << BUFFER >>

AKRAY INBUF(0:4); <<, INPUT BUFFER; FOR USEF TO >>
BYTE ARRAY FUNCTION(#)=INBUF; << INPUT DESIRED FUNCTIOR >>
ARRAY OUTBUF(0:39); << (QUTPUT BUEFER; FOR >>

BYTE ARRAY BOUTBUF(#)=0UTBUF; << MESSAGES TO USER >>

"FUNCTION? ";

"SUPPLIER? STREET? CITY? STATE? ZIP? ";

"NO SUCH SUPPLIER";

"CAN’T DELETE: PRODUCT(S) STILL IH INVENTOKRY";
"CAN’T ADD: SUPPLIER DATA SET 1S FULL";

"CANZ? ADD: DUPLICATE SUPPLIER NAME";

ARRAY FPROMPT(0:4)
ARRAY PROMPT(0:18)
ARRAY NOSUCH(0:7)
ARRAY CHAINS(0:21)
ARRAY SETFULL(0:17)
ARRAY DUPE(0:16)

oo se e oo oo oo
LU U LI T [1}

INTRINSIC DBOPEN,DBINFO,DBLOCK,DBGET,DBUPDATE,DBPUT, = 44<E>
DBDELETE, DBUNLOCK,DBCLOSE,DBEXPLAIN,DBERRUR;
INTRINSIG READ,PRINT,QUIT, TERMINATE;

<< BEGINNING OF MAIN PROGRAM >>

DBOPEN(SBASE, PASSWORD,MODE1,STATUS) ; - :(2)
<< OPEN STORE DATA BASE IN MUDE 1, >>
IF <> THEN
BEGIN
(:)—-*——*’DBERROR(STATUS;OUTBUF,I); << GET ERRQOR MESSAGE, >>
IF <> THEN GO TO DBFAIL; << EVEN DBERROR FAILED, >>
PRINT(OUTBUF,=I1,0);
TERMINATE;
END;
<:>———>DBINFO(SBASE'DSETNAME,MODEZO!,STATUS,DSET): << GET NUMBER >>
IF <> THEN GO TO DBFAIL; << OF SUP=MASTER,>>
DSET := \DSET\; << MAKE SURE DSET# IS POSITIVE>>

Figure 5-3. Supplier Modification Program

5-30 SEP 1978

SPL

ASK: PRINT(FPROMPT,0,0); << SKIP A LIHE, >>
PRINT(FPROMPT,5,%320); << ASK FOR FUNCTIUN >>
I := READ (INBUF,=10); << READ DESIRED FUNCTION >>
IF > THEN GO TO OUT; << EOF == MIGHT AS WELL LEAVE >>
IF 1T = 0 THEN GO TO ASK; << NO INPUT OR I/0 ERROK >>

IF FUNCTION = "/E" THEN GO TO OUT; << SPECIAL "END" SIGNAL >>
IF FUNCTION <> "A" AND FUNCTION <> "D"
AND FUNCTION <> "C" THEN GO TO ASK;
<< FUNCTION MUST BE "ADD" OR "DELETE" OR "CHANGE", >>

SUPBUF = " "o << BLANK SUP=MASTER >>
MOVE. SUPBUF (1) := SUPBUF,(30); << BUFFER, >>
FRINT(PROMPT,5,%320); << REQUEST AND READ >>
READ(SUPBUF,=16); << SUPPLIER NAME, >>

IF FUNCTION = "D" THEN GO TO LOCKIT; << DELETE: GO DO IT, >>
PRINT(PROMPT(5),4,%320); << REQUEST AND READ >>
READ(SUPBUF(8),=26); << STREET ADLRESS, >>
PRINT(PROMPT(9),3,%320);

READ(SUPBUF(21),=12); << cIrty, >>
PRINT(PROMPT(12),-7,%320);

READ(SUPBUF (27),=2); << STATE, >>
PRINT(PROMPT(16),-5,%320);

READ(SUPBUF (28),=5); << AND ZIP CODE, >>

LOCKIT: DBLOCK(SBASE,DSET,MODE4,STATUS); << LOCK DATA SET, >>
IF <> THEN GO TO DBFAIL:;
IF FUNCTION = "A" THEN GO TO NEWSUP; << ADD: GG TO DRBPUT, >>

@<

DBGET (SBASE,DSET,MODE7, STATUS,NULL*LIST, SUPBUF, SUPBUF);
<< PRIOR TO UPDATING OR DELETIMNG, MUST GET, >>
<< ASSOCIATIVE READ; SEARCH ITEM VALUE IN >>

%

<< SUPBUF; TRANSFER NO DATA, >>
IF <> THEN
IF STATUS = 17 THEN
BEGIN

PRINT(NOSUCH,8,0); << NO SUCH SUPPLIER IN SUP=MASTER >>
GO TO UNLOCKIT;
END

ELSE GO TO DBFAIL;

IF FUNCTION = "D"
THEN DBDELETE(SBASE,DSET,MODE1,STATUS)
ELSE DBUPDATE(SBASE,DSET,MODE1,STATUS,FULLREC, SUPBUF);
<< DELETE OR CHANGE (UPDATE), DEPENDING ON REQUEST., >>
IF <> THEN
IF STATUS = 44 THEN PRINT(CHAINS,=43,0) << CAN’T DELETE >>
ELSE GO TO DBFAIL;
GO TO UNLOCKIT;
NEWSUP? DBPUT(SBASE,DSET,MODE1,STATUS,FULLREC, SUPBUF);
IF <> THEN
IF STATUS = 16 THEN PRINT(SETFULL,18,0) << NO ROGOM >>
ELSE IF STATUS-= 43 THEN PRINT(DUPE,17,0) << DUPLICATE >>
ELSE GO TO DBFAIL;

AV

@K

UNLOCKIT: DBUNLOCK(SBASE,DSET,MODE1,STATUS): (IE)
IF = THEN GO TO ASK:

Figure 5-3. Supplier Modification Program (Continued)
SEP 1978 5-31

SPL

DBFAIL: << COME HERE ON UNEXPECTED OR IRRECOVERABLE ERROR >>

: << ABLE TINFORMATION ON THE ERROR BEFORE QUITTING, >>

ouUT: DBCLOSE(SBASE,DSET,MODE1,STATUS) ;

<< RETURNED BY ANY IMAGE PROCEDUEKE. 1HIS IS >>
<< APPARENTLY A PROGRAM BUG, S0 PRINT ALL AVALL= >>

DBEXPLAIN(STATUS):
QUIT(1); << JRRECOVERABLE: GET QUT. >>

IF <> THEN GO TO DRFAIL:;
END,

Figure 5-3. Supplier Modification Program (Continued)

UPDATE ENTRY

The entry located with DBGET is updated with the data in SUPBUF. The user is prompted for
this data prior to the call to DBGET. FULLREC contains @; which indicates the entire entry
is to be updated. In this case, the search item value must equal the value that is already in the
entry. Since the BUYER password and access mode 1 allow updates to this data set, it is not
necessary to check for condition word 42.

ADD ENTRY

This call adds an entry to the SUP-MASTER data set using the data in SUPBUF. The list
parameter in FULLREC is @; specifying that values are provided for all data items in the
entry. If the condition word is 16, the data set is full and, if it is 43, there is already an entry
with the specified search item value. Since the BUYER password and access mode 1 allow
adding entries to the data set, it is not necessary to check for condition word -23.

UNLOCK DATA SET

This call unlocks the data set. The DSET parameter is ignored. If the call is successful, the
condition code is CCE and the program branches to ASK.

1) PRINT ERROR

A call to DBEXPLAIN prints a message interpreting the STATUS array contents.

@2 CLOSE DATA BASE

This call closes the STORE data base. The DSET parameter is ignored in mode 1.
5-32 SEP 1978

SPL

tRUN SUPPLMOD

FUNCTION? ADD
SUPPLIER? ACME WIDGET

STREET? 2587 BIRD ST.
CITY? INDIANOLA
STATE? IA

Z1P? 50125

FUNCTION? ADD
SUPPLIER? ACME WIDGET

STREET? 140 CORYDON AVE.

CITY? BROOKLYN

STATE? NY

ZIP? 11208

CAN/T "ADDt DUPLICATE SUPPLIER NAME

FUNCTION? CHA
SUPPLIER? ACME WIDGET
STREET? 140 CORYDON AVE.
CITY? BROOKLYN

STATE? NY

71P? 11208

FUNCTION? DELETE
SUPPLIER? ACM= WIDGET

FUNCTION? DEL
SUPPLIER? ACHE WIDGET
NO SUCH SUPPLIER

FUNCTION? /F
END OF PROGRAM

Figure 5-4. Sample SUPPLMOD Execution

5-33

SPL

BEGIN

(< =

<<

<<
<
<<
<<

[¢¢

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

<< TRANSACTION,
<< ARE DISPLAYED ARE ACCOUNT,

<« FOR (1) ABOVE,
<< ENCOUNTERED BEING PRINTED.
< A SPECIFIC YALUE FOR A CERTAIN ITEM WITHIN THE ENTRY. SINCE ALL
<< OF THE ITEMS IN QUESTION ARE SEARCH ITEMS MITHIN THE SALES DATA
THE PROGRAM MERELY CALLS DBFIND FOR THE PARTICULAR ITEM AND
AND THEN DOES CHAINED DBGETS TO RETRIEYE THE DESIRED

< SET,
[Q¢ YALUE,
<« ENTRIES. BEFORE D
<< USER FOR THE ITEM NAME AND ITS VALUE.

{< THE PROGRAM CAN BE RUN FROM MULTIPLE TERMINALS (SESSIONS>

AND CAN ACCESS THE DATA BASE CONCURRENTLY WITH
<< OTHER PROGRAMS WHICH OPEN IT IN MODE 2, 4, 6, OR 8.

<< SIMULTANEGUSLY.,

* * * ® ® L]

{< THIS PROGRAM OPENS THE
< MODE 6 AND ALLOWS THE USER INTERACTIVELY TO REQUEST DISPLAYS

[OGF SALES TRANSACTIONS FROM THE SALES DATA SET. FOR EACH

THE ITEMS FROM WITHIN THE CORRESPONDING ENTRY WHICH

IN PENNIES)., PURCH

2) ALL s
3) aLL §
4> ALL S
S) ALL S

* * * * *® *

INTEGER MODE.

MODE 1 1=
MODE2 i =
MODE3 i =
MODE4 t=
MODES HE]
MODE? i =
MODE201 1=
SALES,
PRODUCT.,
ARGLGTH,

I

LOGICAL SAMELIST :=

DOUBLE GRANDTOTAL:

SBASE(0:3) 1=
PASSUORD(0:2) =
SALENAME(D:2) :=
PRODNAME(D:3) :=
STATUS(0:9);
SALESLIST(O0:25) :

* * =%
"STORE"™ DATA BASE IN

* - * * * * ® * * * *® »

QUANTITY, STOCKS®., TOTAL (TOTAL PRICE

-DATE, AND DELIV-DATE. ALSO., THE DESCRIPTION

AFTER

ALES TRAN

ALES TO R
ALES OF A
RLES WITH
ALES WITH
THE DATA SET

OING SO,

* * *
i, <<
2, <<
3, <<
4, <<
S, <<
7, <<
201,

<<

<«

<<

B A B 4
* STORE:
"CLERK: "
*SALES:";
"PRODUCT:;

<< OF THE PRODUCT IS OBTAINED FROM THE PRODUCT DATA SET AND PRINTED
(< NEXT TO THE STOCK#
< LINE IS PRINTED.

<< THERE ARE FIVYE
<< THEY ARE:!: 1) ALL S

THE SALES LINES, A GRAND TOTAL PRICE

WAYS OF SELECTING SALES ENTRIES TO BE PRINTED.

SACTIONS IN THE DATA SET

PARTICULAR ACCOUNT (CUSTOMER>
PARTICULAR STOCK# (PRODUCT)

A PARTICULAR PURCHASE DATE

A PARTICULAR DELIVERY DRTE

1S READ SERIALLY, WITH EACH ENTRY
THE OTHER SELECTION METHODS REQUIRE

OF COURSE THE PROGRAM PROMPTS THE

®] * L] * * * * * * *]
MODES >
FOR >»>
USE >
IN b
IMAGE >
CALLS >>
DATA SET NUMBER -- SALES >>
DATA SET NUMBER -- PRODUCT >
HANDY-DANDY VARIABLE >>

SPECIAL “SAME AS LAST TIME" LIST >>

"3 << DATA BARSE »>

H << QUALIFIER -- PRSSWORD >>
<< QUALIFIER -- DATA SET NAME

3 << QUALIFIER -- DATAR SET NAME

<< STATUS AREA >>

= "ACCOUNT, QUANTITY,.STOCK®,TOTAL, ",

>
>>
>>
>>
>
>
>>
>>
>>
7>
>>
>>
>>
»
»
>
7>
>>
>>
>>
>
>>
>>
>>
>>
>>
>>

>>
>

Figure 5-5. Purchase Transaction Display Program

5-34

SPL

"PURCH-DATE, DELIV-DATE;";
ARRAY PRODLIST(O0:5)> := "DESCRIPTION; *;
ARRAY ITEM(0:8); << ITEM NAME FOR DBFIND >>
ARRAY SALESBUF(0:14); {<¢ BUFFER -- SALES DATA SET >>
DOUBLE ARRAY ACCOUNT(*)=SALESBUF;
DOUBLE ARRAY TOTALCOST(*)=SALESBUF(?7);
BYTE ARRAY BSALESBUF(*)=SALESBUF;
ARRAY ARG(OD:4); <{C ARGUMENT FOR DBFIND >>
DOUBLE ARRAY DARG(=)=ARG:
BYTE ARRAY BARG(*)=ARG:

ARRAY INBUF(O0:7); << INPUT BUFFER: FOR USER TO >
BYTE ARRAY SELECT(*)=INBUF; < ENTER SALES SELECT TYPE >>
ARRAY OUTBUF(0:39); <{¢ OUTPUT BUFFER; FOR >>
BYTE ARRAY BOUTBUF(*>=QUTBUF; (84 MESSAGES T0 USER >

BYTE ARRAY WORKBUF{(O0:10);
ARRAY SPROMPT(O:7)> = “ALL SALES FOR? *;
ARRAY WPROMPT(0:5) := “WYHICH ONE? "

INTRINSIC DBOPEN.,DBINFO,DBCLOSE.,DBFIND,DBGET.DBEXPLAIN,DBERROR:
INTRINSIC READ,PRINT,ARSCII.QUIT,DASCII,DBINARY, TERMINATE;

{< BEGINNING OF MAIN PROGRAM >>

MODE := 6
@——» DBOPEN(SBRSE.PASSWORD ., MODE.,STATUS):

{{ OPEN STORE DATA BARSE IN MODE 6. >>

IF <> THEN
BEGIN
DBERROR(STATUS,OUTBUF., 1) ¢{ GET OPEN ERROR MESS. >>
IF (> THEN GO TO DBFAIL; <{ DBERROR FAILED. >>
PRINTCOUTBUF,-1,0);
TERMINATE:
END:

(14— DBINFO(SBASE.SALENANE., MODE201,STATUS, SALES);
<< FOR EFFICIENCY, GET NUMBER OF SALES DATA SET. >>
IF <> THEN GO TO DBFAIL:

SALES = \SALES\: {< MRKE SURE DSET# IS POSITIVE. >»>
DARG := 0D
(:)—————"DBGET(SBQSE:SQLES:HODE4.STRTUS;SQLESL!ST'OUTBUF,DQRG):
<< SET UP LIST FOR FUTURE DBGET CALLS ON SALES DATA >»>
<« SET. THIS DIRECTED READ OF ENTRY #0 SHOULD FRIL., >>
< BUT ONLY AFTER INTERMALLY RECORDING SPECIFIED >
<< LIST. NO DATA WILL BE TRANSFERRED. >

IF STATUS (> 12 << DIRECTED BOF >> THEN GO TO DBFAIL;

db'————”DBINFO(SBQSE,PRDDNQHE.HODEZOI;STQTUS.PRODUCT);
IF <> THEN GO TO DBFAIL:
PRODUCT := \PRODUCT\;
(:)-——-—"DBGET(SBGSE;PRODUCT:HODE‘:STQTUS.PRODLIST;OUTBUF,DRRG):
IF STATUS <> 12 THEN GO TO DBFAIL:
<< ALSO SET UP FOR DBGETS FROM PRODUCT DATA SET. >>

NEXT: GRANDTOTAL := OD;

Figure 5-5. Purchase Transaction Display Program (Continued)
5-35

SPL

PRINT(SPROMPT, -15,%320); {< ASK FOR SALES SELECT TYPE. >>
I := READ(INBUF,-15); << READ IT. >>

IF > THEN GO TO0 OUT; (< EOF -- MIGHT AS WELL STOP. >>
IF I = 0 THEN GO TO NEXT: << NO INPUT OR I/0 ERROR >>

IF SELECT = "/E" THEN GO TO OUT: << SPECIAL STOP INPUT »>>
IF SELECT = "/C" THEN GO TO ALL; {(< SPECIAL ALL SALES RQST>)>

IF SELECT = ®"A" THEN
BEGIN
MOVE ITEM := ®ACCOUNT:*;
ARGLGTH = -10:
END
ELSE IF SELECT = "S*" THEN
BEGIN
MOVE ITEM := °“STOCK#S;":
ARGLGTH := -8;
END
ELSE IF SELECT = *“P" THEN
BEGIN
MOVE ITEM := °"PURCH-DATE:":;
ARGLGTH := -6;
END
ELSE IF SELECT = "D" THEN
BEGIN
MOVE ITEM := "DELIVY-DATE:":
ARGLGTH := -6;

END
ELSE GO TO NEXT; ¢({ UNRECOGNIZED SELECT TYPE >>
< AT THIS POINT, THE SELECT TYPE (SEARCH ITEM)> HRS BEEN >
<< SPECIFIED. THAT IS, THE USER HAS REQUESTED TO SEE ALL >>
< SALES TRANSACTIONS FOR AN ACCOUNT OR A STOCK NUMBER >
<< OR R PURCHASE DATE OR A DELIYERY DATE. NOW, ASK FOR >
<< THE VYALUE OF THE SEARCH ITEM. >

SIVALUE: ARG := * *;
MOYE ARG(1)> :!= ARG, (4);

PRINT(WPROMPT, -11,%320):; {<{ REQUEST AND REARD >>
I := READCARG,ARGLGTH); £ SEARCH ITEM VaLUE. >>
IF > THEN GO TO OUT: << EOF -- MIGHT AS WELL STOP. >>
IF ¢ THEN GO TO SIVALUE: <C I/0 ERROR -- ASK AGRIN. >>
IF SELECT = "A" THEN
BEGIN (¢ ACCOUNT NUMBER: TRANSLATE >>

DARG := DBINARY(BARG.,I): <<« TO INTERNAL BINARY FORM. >>
IF (> THEN GO TO SIVALUE;

END;
<< SEARCH ITEM NAME IS NOM IN ITEM AND SEARCH »
<< ITEM YALUE IS IN ARG. »

——-»DBFIND(SBRSE,SALES,MODEL,STATUS, ITEM, ARG
<< GET TO HEARD OF CHAIN OF INTEREST.)>>
IF <> THEN
IF STATUS = 17 THEN GO TO WRAPUP <(<KNO CHAIN FOR THIS VALUE>>

Figure 5-5. Purchase Transaction Display Program (Continued)
5-36

SPL

ALL:

—>DBCLOSE(SBASE, SALES,MODE3, STATUS)}

GETNEXT:

<:>——————>°BGET(SBQSE'PRODUCT.HODE?;STQTUS.SQHELXST,OUTBUF(13).

WRAPUP:

DBFAIL:

ouT:

ELSE GO TO DBFAIL:

MODE := MODES: << PREPARE FOR CHARINED DBGETS.)>)>
GO TO GETNEXT: {<{ GO RETRIEVE AND REPORT. >>

<< COME HERE TO REPORT ALL SALES TRANSACTIONS, RATHER)>)>

<« THAN A SELECTED SUBSET. >>

MODE := MODE2:; << PREPARE FOR SERIAL DBGETS. >>

¢({ REWIND SALES DATA SET. >>
IF <> THEN GO T0 DBFAIL:

DBGET(SBASE, SALES,MODE,STATUS,SAMELIST, SALESBUF.ARG);
<< GET NEXT SALES TRANSACTION. THIS IS EITHER A >»

<< SERIAL (MODE 2) OR CHAINED (MODE S5) DBGET. >
<« IN EITHER CASE. ARG IS IGNORED. >
IF (> THEN

IF STATUS = 11 OR STATUS = 13 THEN GO TO WRAPUP << NO MORE>>
ELSE GO TO DBFARIL:

(< WE HAYE A SALES TRANSACTION:; FORMAT IT FOR PRINTING. >>

CUTBUF = = =3 << BLANK OUTPUT >>

MOYE OUTBUF(1) := QUTBUF.,(33); <« BUFFER. »
DASCIICACCOUNT.10,BOUTBUF): << ACCOUNT NUMBER >>
ASCITC(SALESBUF(2),-10,BOUTBUF(13)); << QUANTITY >>

MOYE OUTBUF(8) := SALESBUF(3),(4); << STOCK® >>

SALESBUF(3));3 << GET DESCRIPTION FROM PRGDUCT)>>

IF <> THEN GO TO DBFAIL: << DATA SET. >»
I = DASCIIC(TOTALCOST, 10,WORKBUF); {< TOTAL COST >>
MOYE BOUTBUF(S33-1) := WORKBUF.(I1); << RIGHT JUSTIFY. >>

MOVE BOUTBUF(37) := BSALESBUF(18),(6>} << PURCHASE DATE)>>
MOYE BOUTBUF(65)> := BSALESBUF(24),(6>; << DELIVERY DATE >>

PRINTC(OUTBUF,-71.,0); << OUTPUT SALES TRANSACTION. >>
GRANDTOTAL := GRANDTOTAL + TOTALCOST: <¢ ACCUMULATE TOTAL.>>
GO TO GETNEXT: << GO GET NEXT SALE. >>

OUTBUF = * *;
MOYE OUTBUF(1) := QUTBUF.C(15):

MOVE OUTBUF(16) := " GRAND TOTAL: "

I 1= DASCIICGRANDTOTAL.10,80RKBUF); << GRAND TOTAL >>
MOVE BOUTBUF(S3-1) := WORKBUF.,(I); << RIGHT JUSTIFY. >»>
PRINTCOUTBUF,~55,%202>; << OUTPUT GRAND TOTAL AND SKIP LINE>>
GO TO NEXT; {< GO ASK FOR NEXT REQUEST. >>
{{ COME HERE ON UNEXPECTED OR IRRECOVERABLE ERROR »

<< RETURNED BY ANY IMAGE PROCEDURE. THERE IS >

<< NOTHING TO DO BUT TERMINATE, SO PRINT ALL >»

<< INFORMATION ABOUT THE ERROR ON $STDLIST. »
DBEXPLAINCSTATUS);

QUITCL):; {{ TRRECOYERABLE: GET 0OUT. >>

DBCLOSE(SBASE, SALES,MODE1,STATUS);
IF (> THEN GO TO DBFAIL:
END.

Figure 5-5. Purchase Transaction Display Program (Continued)
5-37

SPL

tRUN SHOWSAL®

ALL SALES FOR? /C

24536173 4 T 5405T14F
24536173 1 3586T14Y
24536173 2 4397DI3P
24536173 I T7391222F
54283545 27 6650D225
10293847 1 3739A14F
54283545 I 4397D13P
82463761 1 3586T14Y
82463761 1 2457A11C
102938247 I 4397D13pP
90542176 1 6650D225
44556671 2 5405T14F

ALL SALES FORr? ACCOUNT
WHICH ONE? 10293347
10293347 I 3739A14F
10203847 1 4397D13p

ALL SALES F)OR? STOCK#
NHICHY ONE? 4397D13P

245356173 2 4397D13F
54283545 1 4397D13°
10293847 I 4397D13FP

ALL SALE=S =9)R? PYJR
NHICH ON=? 743320

0N542175 T 6650D225
ALL SALES FOR? D
A4ICH ONE? 740320
10203847 T 3739A14F
24536173 4 5405T|4F
44556677 2 5405T14F

ALL SALES =922 ST
WHICH 0:E? 9990FGOF

ALL SALES F922 /%

=D 0F PRIOSRAY

BAR STOOL
3IRDYOUSE
DRAIN OPENER
PORTABLE WATERBED KT
BASEBALL BAT
CONVERTIBLE SOFA
DRAIN OPENER
3IRDHOUSE
NEHRU JACKET
DRAIN OPENER
BASE3ALL SAT
3AR STOOL

GRAND TOTAL:

CONVEKTISLE SOrA
JRAIN OPENER
GRAND TOTAL:

DRAIN OPENER
DRAIN OPENZR
ORAIN OPENER
GRAND TOTAL:

3ASESALL uwAT
GRAND TOTAL:

CONVERTIZLE SOFA
3AR STOOL
3AR S1I0L

GRAH) TOTAL:

GRAND 1TUTAL:

10300
630
189

24273

12567

41722

90
630
217

517
5150
96375

41722
90
41312

139
90
90

309

517
517

41722
12300

5150
571172

740313
740319
740321

740321

740321

740319
740322
740319
740319
740322
740320
740319

740319
740322

740321
749322
740322

740320

740319
740313
740319

740329
CARRY
CARRY
740322
740322
740320
CARRY
CARRY
740322
CARRY
CARRY
740320

740320
CARRY

CA=RRY
CARRY
CARrKY

CARRY

7140320
7140320
7140320

Figure 5-6

5-38

. Sample SHOWSALE Execution

@

SPL

OPEN DATA BASE
The STORE data base is opened in mode 6 with password CLERK.
REQUEST DATA SET INFORMATION

The data set number for SALES is requested. Note that SALENAME is an array containing
“SALES;” and the data set number is stored in the SALES variable.

READ ENTRY (DIRECTLY)

This call requests a directed read of the entry in record 0. Although this read fails and returns
condition word 12, the internal list of items is set up to include ACCOUNT, QUANTITY,
STOCK#, and TOTAL. No data is transferred. Subsequent calls to read an entry from the
SALES data set can use the special list construct *; indicating the list is the same as the one
used in this call. This technique saves processing time since the list is set up only once during
program execution.

REQUEST DATA SET INFORMATION
The data set number for PRODUCT is requested.
READ ENTRY (DIRECTLY)

This call is the same as @ except the data set name is PRODUCT and the list includes only
the DESCRIPTION item.

READ ENTRY (CHAINED)

A call to DBFIND locates the pointers for a chain in the SALES data set. In the preceding
code, the user is prompted for the search item (ACCOUNT, STOCK#, PURCH-DATE, or
DELIV-DATE) and its value. ITEM contains the search item name and ARG contains the
search item value. If the condition word is 17, there is no chain with the requested value.
The read is performed with the call described below in .

REWIND DATA SET

A call to DBCLOSE with mode 3 rewinds the SALES data set to prepare for serial reads of all
entries in the set. If the rewind fails, the condition code is CCL or CCG.

READ ENTRY (SERIAL OR CHAINED)

This call is coded so that it performs either a forward chained (mode 5) or forward serial
(mode 2) read of the SALES data set. The data is read into SALESBUF and the list is *;
indicating it is the same list that was set up in calls @ and . ARG is ignored in both
modes 2 and 5. If the end of the data set is reached while doing a serial read, the condition
word is 11. If the end of chain is reached while doing a chained read, the condition word is
15. Since access mode 6 and password CLERK allow the user to read all items in the SALES
and PRODUCT data sets, it is not necessary to check for condition word -21.

READ ENTRY (CALCULATED)
A calculated read (mode 7) is performed using the search item value for STOCK # that isin

SALESBUF(3) and (4). The data set is PRODUCT and the list parameter is *;. The descrip-
tion is read into OUTBUF(13) through OUTBUF(22).

5-39

BASIC

BASIC EXAMPLES

To simplify your access to an IMAGE data base through BASIC language programs, it is recom-
mended that you use the BIMAGE interface procedures provided with the IMAGE software. These
routines convert all parameter byte addresses to word addresses as required by IMAGE. In addition
to calling the necessary IMAGE procedure, the BIMAGE procedures perform the following functions

for your convenience:

® automatically pack into a buffer a list of expressions before calling the DBPUT or DBUPDATE

procedures

® automatically unpack from a buffer to a list of BASIC variables the values of items returned by

DBGET or the values returned by DBINFO

® automatically update the logical length of string variables to which data is transferred from

the data base to reflect the length of the string actually transferred.

Table 5-1 lists the BIMAGE interface procedures with the IMAGE procedures to which they corre-
spond. The parameters are described in table 5-2. The corresponding IMAGE procedure parameter

is listed next to the BIMAGE parameter.

Table 5-1. BIMAGE Procedure Calls

BIMAGE

CORRESPONDS TO:

XDBOPEN (B$, W$, mode, status(™))

D$
d

XDBFIND (8S, { ?} , mode, status(*),{ll,$}, {f})

XDBGET (B$, { 3$} , mode, status(*),{/l'$}, readlist, {:$ })

XDBPUT (B$,{ } , mode, status(*),{/L$}, writelist)

D$

o {5 i
d [mode, status(*), VK writelist

XDBUPDATE (B$,{
D$

d } mode, status(*))

XDBDELETE (88, {

XDBLOCK (8$, { descrip/ist} , mode, status(*))

D$

XDBUNLOCK (B$, {d

}, mode, status(*))

D$

XDBCLOSE (B8$, { d

},mode, status(*))
Q3% * .
XDBINFO (8BS, g , mode, status(™), readlist)

XDBEXPLAIN (status(*))

XDBERROR (status(*), M$ [,length])

DBOPEN

DBPUT

DBFIND

DBGET

DBUPDATE

DBDELETE

DBLOCK

DBUNLOCK

DBCLOSE

DBINFO

DBEXPLAIN
DBERROR

5-40

SEP 1978

BASIC

Table 5-2. BIMAGE Procedure Parameters

BIMAGE**
AS

a

BS$

D$
d

descriplist

$

LS

length

M$

mode
o$

q

status
ws

readlist

writelist

IMAGE
argument
argument

base

dset
dset

qualifier

item
item

list

list

length

buffer

mode
qualifier
qualifier
status
password

buffer

buffer

May be any string expression.
May be a numeric expression or numeric array of any data-type.

Must be a simple string variable. Value should not be altered between calls to
XDBOPEN and XDBCLOSE.

May be any string expression.
May be a type-INTEGER expression.™
Has same form as writelist. You should ensure that once BASIC has concatenated the

component variables, the result is a valid lock descriptor list (or set name) as defined
for DBLOCK. (Parameter ignored for DBLOCK modes 1 and 2)

May be any string expression.
May be a type-INTEGER expression.™

May be any string expression or a string array. If it is a string array, all of the string
elements are concatenated to form one string whose length may not exceed 255
characters. The concatenated string must form a syntactically correct /ist parameter.
Commas must be placed appropriately.

May be an array of type INTEGER.

Must be a simple or subscripted type-INTEGER variable (if not, parameter is ignored.)
Parameter is optional but if present, total length of IMAGE message is returned.
Value may exceed length of message by BIMAGE procedure if M$ is too small and
message is truncated. Not needed when M$ is a string variable.

Should be a simple or subscripted string variable without substring designators.
If message is larger than M$, message is truncated on the right. Logical length
of M$ is set to length of message returned by BIMAGE and may not be equal to
length if message is truncated.

Must be type-INTEGER expression. *

May be any string expression.

May be a type-INTEGER expression.™

Must be a type-INTEGER array containing at least ten active elements.
May be any string expression.

Has form similar to item /ist of BASIC READ or MAT READ statement. May
consist of one or more string or numeric simple or subscripted variables or arrays
separated by commas. String variables with substring designators and the “FOR-
loop’’ construct are not permitted.

Has form similar to item list of BASIC PRINT or MAT PRINT statement. May
consist of one or more string or numeric expressions or arrays separated by
commas. 'FOR-loop’’ not permitted. Substring designators are permitted.

* See discussion of type-INTEGER expressions as parameters.

** Note that if you specify an array as a parameter you must obey BASIC syntax rules and append parentheses and
asterisks, for example, L$(™,*) or A(*).

SEP 1978

5-41

BASIC

Refer to the IMAGE procedure descriptions in Section IV for details regarding the purpose of a pro-
cedure and its parameters as well as available options.

BIMAGE provides some extensions to the IMAGE procedure calling sequences to simplify your
access to the data base:

L] BIMAGE allows you to enter a list of expressions in place of the buffer parameter. The
list is automatically packed into or unpacked from a temporary buffer constructed by
the BIMAGE procedures. This facility is also available to construct lock descriptor lists.

L String or numeric expressions are accepted for many parameters. For example, the dset
parameter may be a string expression when specifying the data set by name or a numeric
expression when specifying the data set by number.

STRING VARIABLES

The physical length of a string variable determines the number of characters (bytes) read by the
XDBGET procedure and the logical length of a string variable determines the number of characters
written by the XDBPUT and XDBUPDATE procedures. Thus, you should ensure that the physical
length of a string variable specified in a DIM or COM statement exactly matches the size of the
item to be read by a call to XDBGET.

On the other hand, the same string variable can be used to write items of varying sizes. Substring
designators should be used to ensure that the actual string passed to XDBPUT or XDBUPDATE
fills the item to be written. For example, if the item is 8 characters long, and substring S$(3) is

2 characters long, S$(3,10) or S$(3;8) fills the item with the S$(3) substring and appends 6 blanks.

If the string variable is an array, the length of each string element or of the concatenated string
elements should correspond to the length of the item or sub-item to be written. You can ensure
this by specifying substring designators when assigning values to elements of the string array in
your BASIC program.

TYPE-INTEGER EXPRESSIONS AS PARAMETERS

Since BASIC treats integral numeric constants as type-REAL, expressions involving constants can-
not be passed directly to a type-INTEGER parameter of a BIMAGE procedure. You can define a
function such as the following to ensure that a type-INTEGER expression is passed:

10 DEF INTEGER FNI(X)=X
When a procedure call is made, the function is used in this way:

50 CALL XDBLOCK(BS$, D$, FNI(expression),S(*))
The function FNI converts expression to type-INTEGER.
THE READLIST, WRITELIST, AND DESCRIPLIST PARAMETERS
When specifying string expressions in a readlist, writelist, or descriplist, each string expression should
correspond to a data item or sub-item, or groups of items or sub-items in the case of string arrays.
You should not specify several string expressions as the source or destination of one item or
sub-item. The transfer of strings to or from the data base always begins on a word boundary of

the buffer. Therefore, writing from or reading into two odd-length strings is not the same as
writing or reading into one even-length string.

5-42 SEP 1978

BASIC

THE STATUS PARAMETER

If the status parameter is a type-INTEGER variable, a condition word is returned in the first word
and the second word is set to zero if status is at least a two-element array. The condition word will
have a value equal to those listed for the corresponding IMAGE procedure and, in addition, may
contain one of the conditions listed in table 5-3.

If the status parameter is not type-INTEGER, the BIMAGE procedures cannot return a condition
word for the common error: failure to declare the status variable type-INTEGER. This error will
usually result in the BASIC message UNDEFINED VALUE the first time the status array contents
are examined.

Table 5-3. Additional BIMAGE Condition Word Values

EXCEPTIONAL CONDITIONS: PROCEDURES:

51 Insufficient stack for temporary buffer. XDBGET,XDBPUT,
XDBINFO,XDBUPDATE

52 Invalid number of parameters.
. All procedures except
53 Invalid parameter. XDBERROR and XDBEXPLAIN
54 status array has less than 10 elements.
OPEN DATA BASE

10 DIM Bs(8),Ps(8]

20 INTEGER S(10]),M

30 Bs=" STORE;"

40 INPUT "ENTER PASSWORD: ",Ps$[1;:8])

50 INPUT "ENTER ACCESS MODE (1-8): ",M
60 CALL XDBOPEN(BS,P$S,M,S(%))

70 IF S[(11<>0 THEN 9300

(code to use data base)

9300 PRINT "DBROPEN FAILURE"
9310 CALL XDBEXPLAIN(SI([#])
9320 STOP

In this example, the STORE data base is opened in the access mode entered by the user and with a
user class number corresponding to the password entered by the user and stored in the P$ string. If
the password is less'than 8 characters the P$ string is padded with blanks. The first word of the
status array, S, is tested to determine whether the procedure executed successfully. If not, an error
message is printed.

5-43

BASIC

ADD ENTRY

10 DIM Bs(8),Ps(8],As(8],Cs(20]

20 INTEGER S[10),M,Mi After data base opened, first word of B$
30 Bs=" STORE;" contains data segment number.

40 INPUT "ENTER PASSWORD: ",Ps(1;8]

50 INPUT "ENTER ACCESS MODE (3,4): ",M

60 GOTO M OF 70,70,90,90

70 PRINT "CANNOT ADD ENTRIES IN THIS ACCESS MODE"

80 GOTO 50

90 CALL XDBOPEN(BS,P$,M,S(%])

100 IF S[{11<>0 THEN 9300

110 INPUT "ENTER STOCK4 OR / T0O TERMINATE: ",As(1;81]

120 IF As(1,1)="/" THFEN GOTO 9900
130 INPUT "ENTER DESCRIPTION: ",C$(1;20]

140 Mi=t
150 CALL XDBPUT(Bs,"PRODUCT;",Mi,S(#]),"@;",As(1;38),Cs(1520]))
160 IF S[1)<>43 THEN 190

170 PRINT "DUPLICATE STOCK NUMBER"

180 GOTO 110

190 IF S({1)<>16 THEN 220
200 PRINT "DATA SET FULL"
210 GOTO 9900
220 IF S[{1)<>0 THEN 250
230 PRINT "NEW PRODUCT HAS BEEN ENTERED"
240 GOTO 110
250 IF S(1)==23 THEN 290
260 PRINT "DBPUT FAILURE"
270 CALL XDBEXPLAIN(S([#])
280 GOTO 9900
290 PRINT "YDUR PASSWORD DOES NOT ALLOW YOU TO ADD ENTRIES"
300 GOTO 9900 -

9300 (code same as example above)

9900 (close data base)

This sample code adds an entry to the PRODUCT manual master data set. Note that the B$ string
used to open the data base is the base parameter in this call. It should not be changed after the
call to XDBOPEN since this call saves a data segment number in the first word of B$. The list of
items to be added is specified as @; which indicates that values are specified for all items in the
entry. The values for the STOCK # and DESCRIPTION data items are stored in A$ and C$.
Sample values are “7474Z74Z” and “ORANGE CRATEAAAAAAAA™.

In the example, the condition word of the status array is tested for a value of 43, indicating that an
entry with the specified STOCK # search item value already exists in the data set, or 16, indicating
that the data set is full, or —23, indicating that the user’s password does not grant write access to the
data set.

If an entry is to be added to a detail set, the program may first check to see if the required entries
exist in the manual masters linked to the detail set. Values must be provided for all search items and
the sort item, if one is defined, of a detail data set entry.

5-44

BASIC

READ ENTRY (SERIALLY)

10 DIM Bs(8],Ps(8],D1s(14],L1$(20],51s8(16),82s(2)
20 INTEGER S[10],M,M1,M2

30 Bs=" STORE"

40 Mi=1

S0 INPUT "ENTEPRP PASSWORD: ",Ps(138]

60 INPUT "ENTER ACCESS MODE (1~8): ",M

70 CALL XDBOPEN(BS,P$,M,S(#%])

80 IF S[1])<>0 THEN 9300
200 M2=2
210 Dis="SUP=MASTER;"
220 L18="SUPPLIER,STATE}" = readlist
230 CALL XDBGET(BS,D186,M2,S5([#]),L15,518,828,"")
240 IF S([1)<>11 THEN 270
250 GOSUB 900
260 GOTO 230
270 IF S[1]<>0 THEN 320
280 PRINT "SUPPLIER= ",S1$,"STATE= ",S52$
290 INPUT "CONTINUE (Y OR N)? ",XS$
300 IF Xs(1,1]="Y" THEN GOTO 230
310 GOTO 9900

320 IF S[1]==21 THEN 360

330 PRINT "DBGET FAILURE"

340 CALL XDBEXPLAIN(S[#%])

350 GOTO 9900

360 PRINT "YOU DO NOT HAVE ACCESS TO THIS DATA"
370 GOTO 9900

900 (routine to rewind data set)

9300 (same as XDBOPEN example)

9900 (close data base)

To read the next entry of the SUP-MASTER data set, a mode of 2 is used. This directs the XDBGET
(and DBGET) procedure to perform a forward serial read. In the example, the list in the L1$ string
specifies two data items to be read. After returning to the calling program, the S1$ string contains
the STOCK # data item value and S2$ contains the DESCRIPTION data item value. The argument
parameter is ignored if mode equals 2, therefore, a null string may be used for this parameter.

If an end-of-file is encountered the condition word is set to 11. In this case, if the user wants to
continue, the routine rewinds the data set and tries the read again. A rewind routine is shown later
in the examples of the XDBCLOSE procedure. The rewind reinitializes the current record pointer
so that the next request for a forward serial read will read the first entry in the data set.

If the user’s password does not allow read access to the data, a condition word of —21 is returned.

5-45

BASIC

READ ENTRY (CALCULATED)

10 DIM Bs(8),P$([B),C8([20),508(8])

20 INTEGER S[10],M1,M

30 Bs=" STORE"

40 Mial

S0 DEF INTEGER FNI(X)=X

60 INPUT "ENTER PASSWORDS: ",Ps(1:18]

70 INPUT "ENTER ACCESS MODE (1=8): ",M

80 CALL XDBOPEN(B6,P$,M,S[#])

90 IF S[1)<>0 THEN 9300
300 INPUT "YENTER STOCK# OR / TO TERMINATE: ",S08(138]
310 IF S0s(1,1)="/" THEN GGTO 9900
320 CALL XDBGET(BS$,"PRODUCT ",FNI(7),S[(#),"DESCRIPTION;",Cs,808)
330 IF S[1)<>17 THEN GOTO 360
340 PRINT "NO SUCH STOCK NUMBER"
3%0 GOTO 300

360 IF S[(1]1=0 THEN GOTO 410
370 IF S[1)==21 THEN 430

380 PRINT "DBGET FAILURE"

390 CALL XDBEXPLAIN(S([#])
400 GOTO 9900
410 PRINT S0s$,Cs
420 GOTO 300
430 PRINT "YOUR PASSWORD DOES NOT GRANT ACCESS TO DATA REQUESTED"
440 GOTO 9900

9300 (same code as XDBOPEN example)

9900 (close data base)

To locate the PRODUCT data set entry which has a STOCK # search item value equal to the one
entered in SO$ by user, a calculated read is used. The mode is 7 and the item to be read is
DESCRIPTION. After XDBGET returns control to the calling program, the description is in C$.
If no entry exists with the specified STOCK# value, the condition word is 17. If the user does
not have read access to the requested data, a condition word of —21 is returned.

5-46

BASIC

READ ENTRY (BACKWARD CHAIN)

BITSTS

460
470
480
490
500
510

DIM BS(8),P$(8),118(6],A8(8),A18(16]

INTEGER S[10],M1,M,M6

Bs=" STORE:"

Mi=1

M6=6

INPUT "ENTER PASSWORD: ",Ps(1318)

INPUT "ENTER ACCESS MODE (1=8)3 ",M

CALL XDBOPEN(BS$,P$,M,S(#])

IF S(11<>0 THEN 9300

INPUT "ENTER LASTSHIPDATE (YYMMDD) OR E TO EXIT: ",I18(136])
IF I16{3,1)="E" THEN GOTO 9900

CALL XDBFIND(B$,"INVENTORY ",M1,S(#),"LASTSHIPDATE;",I18)
IF S{1)<>17 THEN GOTO 360

PRINT "NO SHIPMENTS ON THAT DATE"

GOTO 300

IF S(1)=0 THEN GOTO 410

IF S(1)==21 OR S[1)==-52 THEN 480

PRINT "DBFIND FAILURE'

CALL XDBEXPLAIN(S(#])

GOTO0 9900

CALL XDBGET(BS$,"INVENTORYy",M6,S([#),"STOCK#,SUPPLIERy",A8,A15,"")
IF S[1)<>14 THEN GOTO 450

PRINT "NO MORE SHIPMENTS ON THIS DATE"

GOTO 300

IF S{1)<>0 THEN GOTO 500

PRINT AS,Als

GOTO 410

PRINT "YOUR PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS TO DATA"
GOTO 9900

PRINT "DBGET FAILURE"

GOTO 390

9300 (same as XDBOPEN example)

00

9900 (close data base)

First the XDBFIND procedure is called to determine the location of the first and last entries in the
chain. The call parameters include the detail data set name, the name of the detail search item used
to define a path with the DATE-MASTER data set, and the search item value of both the master
entry containing the chain head and the detail entries making up the chain. The search item value
is requested from the user and stored in I1$, for example, the user may enter 760314.

If no entry in the DATE-MASTER has a search item value entered, the condition word will be 17.
If the user does not have read access to the data, a condition word of -21 or -52 is returned.

5-47

BASIC

If the XDBFIND procedure executes successfully, a call to the XDBGET procedure with a mode
parameter of 6 reads the last entry in the chain. Subsequent calls to XDBGET with the same mode
read backward through the chain until the first entry has been read. If the condition word is 14,

the beginning of the chain has been reached and no more entries are available, or there are no entries
in the chain.

If an entry is successfully read, the program uses the STOCK # value stored in AS and the SUPPLIER
value stored in A1$ and then returns Lo statement 350 to read another entry in the chain.

UPDATE ENTRY

10 DIM Bs(8),Ps(8),D1s(12),128(16),A58(26]1,59s(16]
20 INTEGER S([10],M

30 Bs=" STORE;"

40 DEF INTEGER FNI(X)=X

50 D1$="SUP-MASTER "

60 I28="STREET=-ADDRESS;"

70 INPUT "ENTER PASSWORD: ",Ps(1:8]

80 M=3

90 CALL XDBOPEN(BS$,P$,M,S(#])

100 IF S(11<>0 THEN 9300
200 INPUT "ENTER SUPPLIER OR / TO TERMINATE: ",S9s8([1;16]
210 IF S9s(1,1)="/" THEN GOTO 9900
220 CALL XDBGET(B$,D1$,FNI(7),S[%#]),I12$,A58,59$)
230 IF S[1)==21 THEN GOTO 290
240 IF S(11=0 THEN GOTO 310
250 IF S(1)=17 THEN GOTO 430
260 PRINT "DBGET FAILURE"
270 CALL XDBEXPLAIN(S(#%]))

280 GOTO 9900
290 PRINT &
"YOUR PASSWORD OR ACCEss MODE DOES NOT ALLOW ACCESS TO THIS DATA"

300 GOTO 9900 _

310 PRINT "CURRENT ADDRESS: ",ASS

320 INPUT "ENTER NEW ADDRESS: ",A58[1126)

330 CALL XDBUPDATE(BS,D1$,FNI(C1),S[#},I28,A58)

340 IF S[{1)<>42 THEN GOTO 370
350 PRINT "YOU ARE NOT ALLOWED TO ALTER THIS ITEM"
360 GOTO 200

370 IF S(1]=0 THEN 410

380 PRINT "DBUPDATE FAILURE"

390 CALL XDBEXPLAIN(S(#])

400 GOTO 9900
410 PRINT "ADDRESS CHANGED"
420 GOTO 200

430 PRINT "NO SUCH SUPPLIER"

440 GOTO 200

9310 (same as XDBOPEN example)

9900 (close data base)

5-48

BASIC

Before an entry can be updated it must be located. In this example, the entry is located with a
calculated XDBGET that reads the STREET-ADDRESS item in the SUP-MASTER data set. The
entry is located by using the SUPPLIER search item with a value supplied by the user. If the read
is successful, the current address is printed and the application program user is prompted for the

new address which is moved into A5$. The XDBUPDATE procedure is then called to alter the
STREET-ADDRESS data item in the entry.

If the current user class number does not allow this item to be altered or the access mode does not

allow updates to take place, the condition word 42 is returned.

A null list can be used with DBGET to locate an entry to be updated.

DELETE ENTRY (WITH LOCKING AND UNLOCKING)

10 DIM Bs([(8]1,Ps[8],D1s$([12],89s(16]),A580(16]

20 INTEGER S([10],M2,M1,44

30 Bs=" STORE; "

40 DEF INTEGER FRI(X)=X

50 D1$="SUP~-MASTER "

60 INPUT "ENTER PASSWORD: ",Ps(1:8]

70 M1=1

80 M2=2

85 M4=4

90 CALL XDBOPEN(BS,P$,M1,S5[%*))

100 IF S[11<>0 THEN 9300

110 INPUT "ENTER SUPPLIER OP / TO TERMINATE: ",S598[1716]
120 IF S89s([1,1)1="/" THEN GOTC 99090

130 CALL XDBLOCK(BS,D1$,M4,S5[%])

140 IF S[11<=0 THEN 170

150 PRINT "DATA SET IS 8USY. TRY AGRIN LATER."
160 GOTO 9900

170 IF S({1)=0 THEN 210

180 PRINT "DBLOCK FAILURE"

190 CALL XDBEXPLAJIN(S(*])
200 GOTO 9900
210 CALL XDBGET(B$,D1s,FNT(7),S[(*]1,"SUPPLIYIER;",A5%,59%)
220 IF S[1]=0 THEN 330

230 IF S[1)=-~21 THEN 280

240 IF S[1]=17 THEN 310
250 PRINT "DBGET FAILURE"

260 CALL XDBEXPLAIN(S([*])
270 GOTO 2990

280 PRINT "YOUR PASSWORD DOES NOT GRANT ACCESS TG DATA 3ET"
290 GOSUB 9000

300 GOTOD 9900

310 PRINT "NO SUCH SUPPLIER"

320 GOTO 430

330 CALL XDBDELETE(BS$,D1S,FNI(1),S[*])

340 IF S[11<>44 THEN GOTG 370

SEP 1978 5-49

BASIC

350 PRINI "INVENTORY ENTRIES EXIST,SUPPLIER CANNOT BE DELETED"
360 GOTO 430
370 IF S{i1]=0 THEN GOTO 420
380 IF S[1)==23 THEN 280
390 PRINT "DBDELETE FAILURE"
400 CALL XDBEXPLAIN(S([#%])
410 GOTO 9900
420 PRINT "SUPPLIER DELETED"
430 GOsSUB 9000
440 GOTO 110
9000 CALL XDBUNLOCK(BS,"",M1,S5(#])
9010 IF S(11=0 THEN RETURN
9020 PRINT "DBUNLOCK FAILURE"
9030 CALL XDBEXPLAIN(SI[#])
9040 GOTO 9900
9300 PRINT "DBOPEN FAILURE"
9310 CALL XDBEXPLAIN(S([#*])
9320 STOP
9900 CALL XDBCLOSE(BS,"",FNI(1),S([#])
9910 1F S({1)=0 THEN STOP
9920 PRINT "DBCLOSE FAILURE"
9930 GOTO 9310
9999 END

In the example above, the program calls XDBLOCK to lock the SUP-MASTER data set.
Since mode 4 is used, the program must check the condition word when DBLOCK returns
control to verify that the data base is locked and the calling program has exclusive access. If
this is so, the condition word is 0.

If the data is successfully locked, the program performs the necessary data base operations.

In this case, it deletes an entry. Before the entry can be deleted, the current record of the data
set must be that of the entry to be deleted. This record may be located by calling XDBGET.
The program may request the name of the supplier whose record is to be deleted and use
XDBGET in calculated mode to locate the appropriate entry. If entries in the INVENTORY
data set exist that have the same SUPPLIER value as the entry to be deleted, the condition
word is set to 44 and the entry is not deleted.

After the entry is deleted the data set is unlocked by XDBUNLOCK.

A null list can be used with DBGET to locate an entry to be deleted.

5-60 SEP 1978

REQUEST DATA SET INFORMATION

10
20
30
40
50
60
70
300
310
320
330
340
350
360
370
3go0
390

DIM BsS(B],P$s(8)

INTEGER S[10]},D2[7],M

Bs=" STORE"

INPUT "ENTER PASSWORD; ",Ps(1:8])
INPUT "ENTER ACCESS MODE (1=8): ",M
IF S[1]<>0 THEN 9300

M=203

CALL XDBINFO(BS,"",M,S(#],D2(%])
IF S{1)=0 THEN 350

CALL DBEXPLAIN(SI[#])

GOTO 9900

BASIC

PRINT "YOU HAVE ACCESS TO";D2([1];"DATA SETS AS FOLLOWS:"

FOR I=2 TO D2(1]+1
PRINT D2I[1I]

NEXT I

GOTO 9900

9300 (same as XDBOPEN example)
9900 (close data base)

The procedure call in this example obtains the numbers of data sets that are available to the current
user class by specifying mode 203. If the user class number is 12 and the procedure executes
successfully, the D2 array contains:

D2(1) 4 Access to 3 data sets.

D2(2) 2 Read access to data set 2.

D2(3) -3 Modify access to data set 3

D2(4) -5 and data set 5.

D2(5) 6 Read and possibly update access to data set 6.

5-51

BASIC

REWIND DATA SET

10 DIM Bs(B),Ps(8B),D1s[14],L15(20),518(16),82s(2)
20 INTEGER S[{101,M,M1,M2

30 BS=" STOREp"

40 M1s=1

(open data base)

210 D1S="SUP=MASTER;"

(read data set serially)

900 INTEGER M3

910 M3=3

920 CALL XDBCLOSE(BS,D1s,M3,5([#]))
930 IF S(1)=0 THEN RETURN

940 PRINT "DBCLOSE FAILURE"

950 CALL XDBEXPLAIN(S(#])

960 GOTO 9900

9900 (close data base)

To rewind the SUP-MASTER data set, a call to DBCLOSE is made with mode equal to 3. The
dynamic status information in the Data Set Control Block for SUP-MASTER is reset, including
the current record number. If a serial read request encounters an end-of-file, this call resets the
current record to the beginning of the data set and another serial read request reads the first entry
in the data set.

CLOSE DATA BASE

10 DIM Bs(8),Ps[8)

20 INTEGER S[10],M

30 Bs=" STOREs"

40 DEF INTEGER FNI(X)=X

9900 CALL XDBCLOSE(bBS,"",FNI(1),S(#])
9910 IF S(1)=0 THEN STOP

9920 PRINT "DBCLOSE FAILURE"

9930 GOTO 9310

9999 END

This call closes the data base. It is issued after the program has completed all data base operations
and before program termination.

5-52

BASIC

PRINT ERROR

10 DIM Bs (8]
20 INTEGER S[10]

9310 CALL XDBEXPLAIN(S(#*))
9320 STOP

A call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of
the status array, S. This is the routine which is called to display the status in the preceding examples.

MOVE ERROR TO BUFFER

10 DIM Bs[B],PS[{B],M8([72]
20 INTEGER S[10],M,M1
30 Bs=" STORE;"
40 M1=1
S0 INPUT "ENTER PASSWORD: ",Ps(1:8)
60 INPUT "ENTER ACCESS MODE (1=8): ",M
70 CALL XDBOPEN(Rs,P8,M,S([(%])
80 IF S([(1]1<>»0 THEN 9300
90 PRINT "DATA BASE OPENED"
100 GOTO 9900
9300 PRINT "DBOPEN FAILURE™"
9310 CALL XDBERROR(S[#],M$)
9320 PRINT Mg
9330 STOP

In this example, a call to DBERROR returns one of the messages appropriate to the current condi-
tion word. For example, if the condition word is equal to 16, the message returned in M$ is THE
DATA SET IS FULL. Note that the length parameter need not be included since the logical length
of M$ is set by XDBERROR.

5-53

RPG

RPG EXAMPLES

The following restrictions apply to IMAGE data bases used with RPG:

1. Data is added and retrieved as complete entries, in other words, you cannot read or modify
single items through RPG. Therefore, if the RPG program is to read an entry from a data
set, the specified password must correspond to a user class number allowing read access to all
data items in the entry. If the RPG program is to write an entry to a data set, the password
must correspond to a user class number allowing write access to all data items in the entry.

Since entries are handled in this way, data sets to be used with RPG programs are sometimes
"defined with one-item entries. However, if you intend to use QUERY with the data set you
may need to define more items.

2. Only one search item can be used to reference a data set in a program unless the data set is
defined as more than one file, or you are doing an ISAM simulation and processing between
limits. (Consult the RPG/3000 Compiler Reference and Application Manual for more
information.)

3. RPG supports all the DBGET procedure input modes except reread. It provides two additional
modes:

® simulated indexed sequential read, forward and backward

® read down chain until key changes.

RPG PROGRAMS AND IMAGE

To use an IMAGE data base through RPG application programs you must describe the data base
with file description specifications. A data set may be described by more than one file description
specification to allow you to access it in more than one way, for example, performing both serial
and chained reads or using two different search items (keys). The file description specification
and its continuation records specify:

® an IMAGE file by naming both the data base and a data set within it

® a search item name

® an access mode (1 through 8)

® 3 password

® an input/output mode for the file.

In addition, you can add and delete entries with special RPG output specifications.

Complete instructions for using an IMAGE data base through RPG programs are given in the RPG/
3000 Compiler Reference and Application Manual. The RPG program must be executed from the
account and group which contains the data base.

Note that RPG programs automatically lock the whole data base when it is opened with

access mode 1. Locking and unlocking are part of the RPG program cycle described in
the RPG manual.

5-54 SEP 1978

RPG

Figure 5-7 contains a sample RPG program which reads the SALES entries associated with a
particular stock number and prints the contents in a report. The file description specifications
include:

line 0003 — a description of the SALES data set as a chained input file with fixed length
records 38 bytes long. The processing mode used for the data set is random. The key field
is 8 bytes long and contains alphanumeric data. The file organization code M signifies an
IMAGE file. The file name is a logical data set name, in other words, it can be a reminder
of the actual data set name (see discussion of line 0007 below.)

line 0004 — a data base name record specifying the STORE data base, an access (open) mode
of 3, and input/output mode C (chained sequential read),

line 0005 — an item name record specifying the STOCK # search item as the key,
line 0006 — a level identification record specifying the DO-ALL password,

line 0007 — a data set name record specifying the SALES data set. This is the actual data set
name and overrides the file name, which may be a logical name identifying the data set. Since
RPG file names cannot exceed 8 characters and can contain no special characters, a file specifi-
cation for the SUP-MASTER data set or DATE-MASTER data set should have file names such
as SUP and DATE with the full names given in a data set name record.

line 0008 — a description of the INPUT file as a demand file with fixed length records 8 bytes
long.

line 0009 — a description of the PRINT file as an output file of variable length records which
are at most 80 characters long.

The input specifications describe:

line 0010 through 0018 —a SALES data entry with five binary and three character (ASCII)
data items,

lines 0019 through 0020 — an INPUT record of 8 bytes with a field named ISTOCK.

0001 SCONTROL USLINIT

0002 H X

0003 FSALES IC F 38R 8AM

0004 F KIMAGE STORE 3C
000S F KITEM STOCK#
0006 F KLEVEL DO=ALL
0007 F KDSNAMESALES
0008 FINPUT ID F 8

0009 FPRINT 0 v 80

Figure 5-7. Sample RPG Program
5-55

RPG

0040
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020

0021
0022
0023
0024
002S
0026
0027
0028
0029
0030
0031
0032

0033
0034
0038
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0081
0052
0053
0054

ISALES AA
1

I

b ¢

I

I

1

1

I

IINPUT 8B
I

c

c

C

C

c

C

C NLR

C

C

C NLR ISTOCK
C NI1INLR

C NIIN12NLR
OPRINT E 2

CO0C0O00D00ODO0O0OCOOC0O0O0O00O00CO0OO0

LOQP

E 22
E 21

16

01

12
15

SETOF
SETON
EXCPT

READ INPUT
SETOF
SETON
EXCPT
SETOF

TAG
CHAINSALES
EXCPT

GOTO LOoOP

ACCT Z
STOCK#
TOTAL J
TAX J
PRICE J
QTY J
PDATE
DDATE

v o]

v e e

1 40ACCT

5 12 STOCKs
13 140QTY
15 182PRICE
19 222TAX
23 262TOTAL
27 32 PDATE
33 38 DDATE

1 8 ISTOCK

12
15

LR
18
16

16
12114

"ACCOUNT"
"STOCK#"
"QUANTITY"
"PRICE"
"TAX"
"TOTAL"
"PURCHASED"
"DELIVERED"

"NO SUCH STOCK#"

"ENTER STOCK# OR

tEQD"

Figure 5-7. Sample RPG Program (Continued)

5-56

RPG

The calculation specifications, lines 0021 through 0032 request input to the INPUT file which can
be equated to $STDIN by using the MPE :FILE command before executing the program. They also
read the SALES entries with values equal to the stock number entered, print the information, and,
when the end of chain is encountered, request another stock number.

The output specifications, lines 0033 through 0050 describe a report with column headings for
each item and one line records for each entry. The ACCT item is edited with a Z edit specification
and the QTY, PRICE, TAX, and TOTAL items with a J edit specification.

The last output specifications, lines 0051 through 0054, describe the message to be printed if there
is no entry with the requested stock number value and the message which prompts for the stock
number.

5-57

CREATING AND MAINTAINING

THE DATA BASE || wi

The IMAGE utility programs create and initialize the data base files and perform various maintenance
functions. The programs are DBUTIL, DBSTORE, DBRESTOR, DBLOAD, and DBUNLOAD. Here
is a brief summary of the utility routines and their functions:

DBUTIL. The DBUTIL program performs several different functions corresponding to the
following commands:

HELP —
CREATE —

ERASE —

PURGE —

ACTIVATE —

DEACTIVATE —

VERIFY —

SET —

SHOW —

EXIT —

This command provides a description of all other DBUTIL commands.

Before data can be entered in and retrieved from the data base, this
command must be used to create and initialize a data base file for each
data set.

This command erases existing data entries from all data sets and returns
the data base to the state it was in after DBUTIL CREATE was
executed. It should be used before loading data entries that have been
stored using the DBUNLOAD utility program back into the data base.

With this command, you can purge the entire data base including the root
file and all data set files. This routine should be used before restoring the
data base when performing recovery operations and before creating a
new version of the data base while restructuring it.

This command prepares a data-base-access file to be used when you are
accessing a data base that resides on a remote HP 3000 computer.

To deactivate a data-base-access file before making changes to it, use
this command.

To determine whether or not a particular data-base-access file is activated
or deactivated, use this command. If deactivated, the content is checked
to see if the file is a data-base-access file.

This command may be used to change or remove the maintenance word,
or to specify the number of buffers to be used on the basis of the number
of users accessing the data base.

With this command, information about the data base may be displayed
on the terminal or line printer. It is intended for use by the data base
manager in performing data base maintenance functions.

This command terminates DBUTIL program execution.

To maintain compatibility with earlier versions of DBUTIL, the CREATE, ERASE, and PURGE
commands may also be executed by specifying them as DBUTIL entry points.

SEP 1978

6-1

® DBSTORE. It is important to keep a backup copy of the data base in order to restore it
should some hardware or operating system failure occur. This program copies the entire
data base including the root file and all data sets to magnetic tape or serial disc volumes in
a format compatible with the output created by the MPE :STORE and :SYSDUMP commands.
Backup procedures should be established to execute this program on a regular basis.

° DBRESTOR. If the data base must be restored, you can use this program to copy to disc
the data base from magnetic tape or serial disc volumes created by the DBSTORE program
or the MPE :STORE or :SYSDUMP commands. Prior to executing this routine you should
use the DBUTIL PURGE command to remove the existing data base files from the group
and account.

® DBUNLOAD. This program copies all the data entries of each data set to specially formatted
magnetic tape or serial disc volumes. It is particularly useful if you want to modify the data
base structure slightly, for example, increase the capacity of a data set. In this case, you
purge the data base, change the schema and create a new root file, execute DBUTIL CREATE,
and then reload the data entries from the volumes created by DBUNLOAD.

DBUNLOAD arranges the data entries in each set placing the chained entries of the primary
path in contiguous order. After the data base is reloaded, chained access along the primary
path is more efficient.

o DBLOAD. With this program you can load the data entries copied by DBUNLOAD back into
the data sets. If the data base has not been recreated, the DBUTIL ERASE ¢ommand should
be executed prior to using DBLOAD.

SEP 1978 6-1a

USING THE UTILITIES TO RESTRUCTURE THE DATA BASE

It is possible to make certain changes to the design of an existing data base without having to write
special programs to transfer data from the old data base to the new one. The general sequence of
operations which you use to do this is:

1.

2.

Run DBUNLOAD on the old data base, copying all the data entries to tape or serial disc.
Purge the old data base using DBUTIL,PURGE.

Redefine the data base using the same data base name and create a new root file with the
Schema Processor.

Use the DBUTIL CREATE command to create and initialize the data sets of the new data base.

Run DBLOAD on the new data base using the tape or serial disc created in step 1 to put the
old data into the new base.

DESIGN CHANGES

The data base design changes for which the above procedure functions correctly are limited. Schema
changes that yield correctly transformed data bases fall into two general categories: those which
always result in a good transformation and those which are legitimate only in some circumstances.

Any of the following schema changes, alone or combined, which are acceptable to the Schema
Processor will always result in a successfully transformed data base:

Adding, changing, or deleting passwords and user class numbers
Changing a data item or data set name and all references to it
Changing data item or data set read and write class lists

Adding new data item definitions

Removing or changing definitions of unreferenced data items
Increasing data set capacities

Adding deleting, or changing sort item designators

6-2 SEP 1978

® Changing primary paths

® Adding new data items to the original end of a data entry definition
° Removing data items from the original end of a data entry definition
° Changing an automatic master to a manual master or vice versa.

Other schema changes may or may not be legitimate. A potential change must be judged in light of
the particular data base and the functioning of DBUNLOAD and DBLOAD, described later in this
section. Basically, all entries from an old data set are put into the new data set with the same num-
ber, except that no entries are directly put into automatic masters. The entries are truncated or
padded with zeroes as necessary to fit the new data set’s entry length. DBUNLOAD and DBLOAD
always handle full entries, without regard to item positions or lengths. If the new data set’s entry
is defined with the items in a different order than the old data set, DBLOAD will not fail but the
data set content may nevertheless be invalid. For example, data of type real may now occupy the
position of a character type item.

In some circumstances, DBLOAD will fail. For example, if a data set’s capacity has been reduced in
the new data base to a number less than the number of that data set’s entries on the tape or serial disc. |

BACKUP AND RECOVERY

The IMAGE software is designed to maintain and ensure the integrity of IMAGE data bases. There
is the possibility, however, of losing data or data base structure information due to hardware failure,
operating system crash, or some other external cause. It is, therefore, prudent to adopt backup
procedures of one type or another in anticipation of possible trouble. The data base manager must

be aware also of the system manager backup and recovery activity since the data base files may be
affected by it.

NOTE

If an operating system crash occurs, you must do a complete recovery for any data base
that was open at the time the crash occurred. A COOLSTART is not sufficient since

damage to chain information is not detected and the count of chain entries may not be
accurate in the files.

Three different approaches to data base backup and recovery are summarized below. Each approach
requires the absolute cooperation of all operations personnel.

METHOD 1

One approach is to depend on a daily system dump and system reload, if needed, by operations
personnel. This solution is a viable one if all the following conditions are true:

® You are able to recover from a midday system failure by rerunning all jobs that modified the
data base.

L Yqu are immediately informed of all system reloads so that you will not run additional jobs
prior to bringing the reloaded data base up-to-date.

°

You have access to the system dump output, so that you may restore the data base if needed
after a system crash which is not followed by a system reload.

SEP 1978 6-3

METHOD 2

A second approach is for you to maintain your data base independently. At regular intervals you
must copy the data base using DBSTORE. After a system crash, you must restore the data base
using DBRESTOR. You may want to use this method for the following reasons:

® System crashes are not always followed by reloads, therefore, this method ensures the
integrity of your data base.

® It may be desirable to maintain more recent copies of the data base than can be provided by
the system backup procedures in order to minimize the number of transactions lost after a
crash.

METHOD 3

A third approach, where multiple data bases and files are involved, is to have them all within one
group or account and, having the account manager capability, utilize the STORE command to copy
them collectively to tape or serial disc and, if necessary, to restore them collectively with the
RESTORE command.

RECOVERING CHANGES MADE AFTER BACKUP

Each of the three methods described above merely restores the data base to its state at backup
time. No automatic recovery is provided to redo changes made between the time the backup
copy of the data base is created and the crash occurs. This problem can be minimized by a
combination of scheduling and sensible restrictions on the concurrent updating of common data
bases by more than one batch or session application.

Transactions logged by an application which is changing the data base can then be used to rein-
state the data base to its exact state at the time of a crash. A difficult situation for which to
provide backup is one in which many applications can concurrently modify a single data base. In
such cases it may be acceptable to store the data base more frequently and not to attempt dy-
namic recovery. In any case, your installation must design backup and recovery procedures to meet
your particular needs.

SALVAGING DATA

If a data base structure is damaged, and no backup copies are available, it may be possible to salvage
most or all of the data by serially reading the data entries, writing them to a tape or disc file,
recreating the data base, and reloading the data. If structure damage is detected by an abnormal
termination of the DBUNLOAD program running in CHAINED mode, or by a discrepancy between
the number of entries unloaded and the number expected from one or more data sets, it may be
possible to unload the data base by running DBUNLOAD in SERIAL mode, which does not
depend on internal linkages. These DBUNLOAD modes are discussed later in this section.

If all necessary existing manual master data entries are written to tape or serial disc, reloading the

data base using the DBLOAD program, after erasing the data base using DBUTIL, results in a
structurally intact approximation of the original data base.

6-4 SEP 1978

ACTIVATING AND DEACTIVATING A DATA-BASE-ACCESS FILE

The DBUTIL program provides two commands, ACTIVATE and DEACTIVATE, for use in relation
to remote data base access. The various methods for accessing a data base on a remote HP 3000

are described in Section VIII and you should read that section before using the DBUTIL ACTIVATE
and DEACTIVATE commands. These commands allow you to activate and deactivate a data-base-
access file to be used with the third remote-data-base access method described in Section VIII.

UTILITY PROGRAM OPERATION

The utility programs may be run in either job or session mode, but you must log on with the account
and group that contains the root file. Therefore, you can not use the utility programs with a remote
data base unless you initiate a remote session and run the utility program as part of that session. The
IMAGE utility programs do not allow you to use the :FILE command to equate a data base or
data-base-access file name to a different file.

To execute the DBUTIL CREATE command or to change or remove the maintenance word with the
DBUTIL SET command, you must also log on with the same user name that was used when the
Schema Processor created the root file; this verifies to IMAGE that you are the data base creator. To
operate the other utility routines and enter other DBUTIL commands, you need not be the data
base creator. However, in order to perform some utility functions you must know the maintenance
word if the data base creator has defined one. If no maintenance word is defined, only the data

base creator can execute the other utility programs and the DBUTIL commands that require a
maintenance word.

BACKUP FILES
The backup files created by DBSTORE and DBUNLOAD may be written to magnetic tape or serial

disc volumes. In the discussion of the utility programs that follows, the term volume refers to either
a magnetic reel or a serial disc pack.

ERROR MESSAGES

Some of the error messages are described with the operating instructions for the utility programs.
Appendix A contains a complete summary of the error messages issued by these programs.

SEP 1978 6-5

DBUTIL

The DBUTIL program performs several different functions according to the command you enter.
Each DBUTIL command is described separately on the {ollowing pages.

OPERATION

(1) :RUN DBUTIL.PUB.SYS
@ >> command
1. Initiates execution of the DBUTIL program which is in the PUB group and SYS account.

2. Prompts for a DBUTIL command. Enter one of the following:

HELP
CREATE
ERASE
PURGE
DEACTIVATE
ACTIVATE
VERIFY

SET

SHOW

EXIT

DBUTIL commands may be abbreviated to the first three characters. For example, CREATE
may be abbreviated to CRE.

When using the CREATE, PURGE, or ERASE commands, you can bypass the command prompt by
specifying the full command as an entry point with the :RUN command; for example, :RUN DBUTIL.
PUB.SYS,CREATE. If you use an entry point, IMAGE prompts you for the data base name and,
optionally, for the maintenance word.

Data base name: data base name [/maintenance word]

data base name is the name of an IMAGE data base root file catalogued in the current
session or job’s account and log on group.

maintenance word is an optional ASCII string, one to eight characters long with no commas
or semicolons, which defines a password to be used by anyone other
than the data base creator to enable them to execute certain DBUTIL
commands, and operate the other utility programs.**

In job mode, the data base name and maintenance word, if any, must be in the record immediately

following the :RUN command.

Note that to perform any DBUTIL command except SHOW, HELP, or EXIT, you must have
exclusive access to the data base or data-base-access file.

**The data base creator may also define or change the maintenance word by using the SET command.

6-6 SEP 1978

DBUTIL

ACTIVATE

Activates the data-base-access file for use with DBOPEN. Before using this command, read the des-
cription of remote data base access in Section VIII.

This command should be used to prepare a data-base-access file before accessing a remote data base
residing on another HP 3000. IMAGE checks the content of the file to assure that the FILE equation
includes the DEV= parameter, the DSLINE command contains the same dsdevice referenced in the
FILE equation, and that record 3 and all subsequent records include =HELLO and do not contain a
DSLINE parameter.

The form of the ACTIVATE command is

ACT[IVATE] data-base-access file name

For example,
ACTIVATE XXXI?\BA
data-base-access file name

where

data-base-access file name is the name of the data~base-access file that you created with the Editor.

The data-base-access file may have the same name as the data base or it may have another name, but
the name must conform to the rules for data base names.

If DBUTIL successfully activates the file, it prints a confirmation message on the listfile device.

UNEXPECTED RESULTS

The following message is displayed if the specified file is not the correct structure or format:
Message Meaning

Invalid contents of Record 1 does not contain FILE command with DEV=dsdevice parameter,
ascii access file Record 2 does not contain DSLINE command with same dsdevice as
Record 1, or one of remaining records does not contain =HELLO, or
does contain a DSLINE parameter.

Refer to Appendix A for other error messages.

EXAMPLE (Session Mode)

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.
>>ACT XXXDBA Enter abbreviated form of ACTIVATE
Data-base-access file command and data-base-access file name.

XXXDBA is ACTIVATED
>

DBUTI.L checks the structure of the file named XXXDBA for correct format and activates the file.
You will not be able to edit the file unless you deactivate it using the DBUTIL DEACTIVATE command.

6-7

DBUTIL

CREATE

Creates and initializes a file for each data set in the data base.

DBUTIL initializes each data set to zeroes and saves it as a catalogued MPE file in the same log on

~group as the root file. The data set file names are created by appending two digits to the root file
name. If the root file is named XXXX, then the first data set defined in the schema is in a file named
XXXX01, the second data set file is named XXXX02, and so forth.

To execute the DBUTIL program to create and initialize the data base you must be the data base
creator; that is, you must log on with the same user name, account and group that was used to run
the Schema Processor and create the root file.

The form of the CREATE command is

CRE[ATE] data base name[/maintenance word]

For example,

CREATE STORE/XYZED

data base name maintenance word

where

data base name is the name of an IMAGE data base root file catalogued in the current
session or job’s account and log on group.

maintenance word is an optional ASCII string, one to eight characters long with no commas
or semicolons, which defines a password to be used by anyone other
than the data base creator to enable them to execute certain DBUTIL
commands and operate the other utility programs.

After DBUTIL has created and initialized the data base files, it prints a confirmation message on the
listfile device and prompts for another command.**

EXAMPLE (Session Mode)

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.

>>CREATE STORE/XYZED Respond to DBUTIL prompt with CREATE
Data base STORE has been CREATED command, data base name, and maintenance

» word.

DBUTIL creates, initializes, and saves files named STOREO1, STORE02, and so forth, one file for
each data set. These constitute the empty data base.

I **The data base creator may also define or change the maintenance word by using the SET command.

6-8 SEP 1978

DBUTIL

Job mode:

(: EOJ <——— Terminate job.

(EXIT <————— Terminate DBUTIL.

(CREATE STORE/XYZED <——— Enter CREATE command and parameters.

(:RUN DBUTIL.PUB.SYS <———— Initiate DBUTIL execution.

(.JOB MGR.ACCOUNTA Initiate job.

After the data files are created and initialized, DBUTIL prints the message:
DATA BASE STORE HAS BEEN CREATED

on the listfile device.

DBUTIL

DEACTIVATE

Deactivates the data-base-access file to disallow access or to allow modification to be made to the file.

This command should be used before you change the contents of the data-base-access file. (Refer to
Section VIII for more information about accessing remote data bases.)

The form of the DEACTIVATE command is

DEA[CTIVATE] data-base-access file name

For example,
DEACTIVATE XXXDBA
data-base-access file name
where
data-base-access file name is the name of the data-base-access file to be deactivated.

If DBUTIL successfully deactivates the file, it prints a confirmation message on the listfile device.

EXAMPLE (Session Mode)
:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution
>>DEA XXXDBA Enter an abbreviated DEACTIVATE
Data-base-access file command and the data-base-access file
XXXDBA is DEACTIVATED name.
>>

6-10

DBUTIL

ERASE

Reinitializes the data sets to their empty condition.

The data sets remain as catalogued MPE files. To execute DBUTIL to reinitialize the data sets you
must be the data base creator or supply the correct maintenance word. This utility function should
be performed before data saved by DBLOAD is loaded back into the data base unless it was recreated.

The form of the ERASE command is

ERA[SE] data base name [/maintenance word]

For example,

ERASE STORE/XYZED
data base name maintenance word
where
data base name is the name of an IMAGE data base root file catalogued in the current
session or job’s account and log on group.
maintenance word is the maintenance word defined by the data base creator when the

data base is created with DBUTIL. This word must be supplied by any-
one other than the data base creator.

After DBUTIL has completely reinitialized the data sets, it prints a confirmation message on the
listfile device.

EXAMPLE (Session Mode)

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.

>>ERASE STORE/XYZED Enter ERASE command, data base name,
Data base STORE has been ERASED and maintenance word.
>

DBUTIL reinitializes the data set files STOREO1, STORE0Z2, and so forth to their original empty,
zeroed condition.

6-11

DBUTIL

EXIT

Terminates DBUTIL execution.

The form of the EXIT command is

EXI[T]
EXAMPLE (Session Mode)
>>CREATE STORE Create a data base.
Data base STORE has been CREATED
P2EXIT If no other DBUTIL functions are to be
- performed, terminate DBUTIL with EXIT
END OF PROGRAM command.

6-12

DBUTIL

HELP

Displays all DBUTIL commands.

The form of the HELP command is

HEL[P] [commandname]

For example,
HELP ERASE
commandname
where

commandname is the name of a specific DBUTIL command whose format you want to
display. The name may be abbreviated to the first three letters.

If you do not specify a commandname, the HELP command lists the names of all valid DBUTIL
commands.

If you specify a commandname, the correct syntax for that command is displayed.

EXAMPLES
>>HELP
HELP CREATE ERASE PURGE DEACTIVATE
ACTIVATE VERIFY SET SHOW EXIT

>>HELP CREATE

CRELATE] data base namel/maintenance wordl

>2

6-13

DBUTIL

PURGE

Purges the root file and all the data sets of the referenced data base.

Purging removes the files from the catalog and returns the disc space to the system. As with ERASE,
you must be the data base creator or must provide the maintenance word to use DBUTIL with the
PURGE entry. Before running the DBRESTOR program to restore a data base, you should use this
utility function to purge the data base.

The form of the PURGE command is

PUR[GE] data base name [/maintenance word|

For example,

PURGE STORE/XYZED

data base name maintenance word
where
data base name is the name of an IMAGE data base root file catalogued in the current

session or job’s account and log on group.

maintenance word is the maintenance word defined by the data base creator when the data
base is created with DBUTIL. This word must be supplied by anyone other
than the data base creator.

If DBUTIL successfully purges the data base, it prints a confirmation message on the listfile device.
UNEXPECTED RESULTS
The following messages are printed if an unexpected situation occurs:

Message Meaning

No root file, PURGE DBUTIL was unable to locate the root file, but will attempt to purge
operation proceeding any data set files.

Data set XXXFk has DBUTIL successfully purged the root file and the n data sets of the data

been purged base. However, DBUTIL also discovered and purged an unexpected data
set named XXXXFk where % is a number greater than the number of data
sets defined for the data base (n).

Data set XXXXFE is DBUTIL successfully purged the root file and all existing data sets but data
missing set XX XXk is unexpectedly missing. In this case k& is less than the number
of data sets defined for the data base.

Data base PURGE is A fatal error occurred while DBUTIL was attempting to purge the data
not complete base. The fatal error message is printed above this one. Some of the data
sets have been purged.

Refer to Appendix A for other error messages.

6-14 SEP 1978

DBUTIL

EXAMPLE (Session Mode)

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.

>>PURGE STORE Enter PURGE command and data base name
Data base STORE has been PURGED (assuming there is no maintenance word).

DBUTIL confirms that the user is logged on with the same user name, account, and group which were
used to create the data base. It then determines whether the root file exists and if so, purges the root
file and any files named STOREO1, STOREO02, and so forth. Even if the root file does not exist, any
data set files with names based on the root file name are purged.

6-15

DBUTIL

SET

Changes or removes the maintenance word or specifies the number of input/output buffers to be
allocated by IMAGE in the DBCB depending on the number of users concurrently accessing the data
base. Only the data creator can change or remove the maintenance word.

The form of the SET command is

SET data base name [/maint word] BUFFSPECS = num buffers (from-users/to-users)

{MAINT = maintenance word
[,num buffers (from-users/to-users)] . ..

For example,
SET DBINVEN MAINT=ZZ777Z
data base name maintenance word
from-users

or

SET STORE/XYZED BUFFSPECS = 4(1/5),7(6/10),9(11/15),10(16/20)

data base name num buffers to-users

maint word

where

data base name is the name of an IMAGE data base root file catalogued in the current session
or job’s account and log on group.

maint word is the current maintenance word for the data base, and must be supplied by
anyone other than the data base creator.

maintenance word is the new maintenance word for the data base. If omitted, the currently
defined maintenance word is removed and the data base has no maintenance
word. Only the data base creator can change or remove the maintenance word.

num buffers is the number of buffers to be allocated by IMAGE in the DBCB for the range
of users specified between the parentheses that follow. The minimum number
of buffers allowed is 4 and the maximum is 255.

from-users is the minimum number of concurrent users (access paths) for which the
preceding num buffers should be allocated. The minimum from-users value
allowed is 1 and the maximum is 120. The value must be greater than the
immediately preceding to-users value.

to-users is the maximum number of concurrent users for which the preceding num

buffers should be allocated. The minimum to-users value allowed is 1 and
the maximum 120. The value must be greater than the immediately
preceding from-users value.

6-16 SEP 1978

DBUTIL

The from-users/to-users ranges must be specified in increasing order. The ranges may not overlap but
they need not be consecutive. If num buffers is not specified for a particular number of users, the
default number of buffers is used. These are the default settings assigned by IMAGE:

b(1/2) b+4(9/10) b+7(15/16)
b+1(3/4) b+5(11/12) b+8(17/18)
b+2(5/6) b+6(13/14) b+9(19/20)
b+3(7/8)

The value of b is equal to

(] the largest number of search items in any detail data set in the data base plus 3,

o or 8,

whichever is larger. If p is the maximuin number of search items (the path count), the value of b
can be represented as b = max (p+3,8).

For example, the largest path count for a detail data set in the store data base is 4. (This is the path
count for the SALES data set.) Therefore, the value of b for the STORE data base is:

b = max (4+3,8) =8

The default buffer specifications in this case are:
8(1/2),9(3/4),10(5/6),11(7/8),12(9/10),13(11/12),14(13/14),15(15/16),16(17/18),17(19/120).

EXAMPLES (Session Mode)

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.
[)
[]
>>SET XYZDB MAINT= Remove current maintenance word.
Maintenance word changed
>>

:RUN DBUTIL.PUB.SYS

L]
>>SET STORE BUFFSPECS=4(1/120) Specify 4 buffers to be allocated for
For data base STORE from 1 to 120 users (access paths).
BUFFER SPECIFICATIONS: DBUTIL confirms the specifications by
4(1/120) listing them.
>>

SEP 1978 6-16a

DBUTIL

SHOW

Displays information about the data base on a terminal or line printer. The information may include
a list of processes that have the data base open, the status of locks in the data base, and the current

buffer specifications. This command should be used with care for data base maintenance functions
since it obtains exclusive control of the data base for several seconds preventing all other access.

.The form of the SHOW command is

SHO[W] data base name [/maint word] { BUFFSPECS [OFFLINE]

MAINT
ALL

LOCKS
USERS

For example,

SHOW STCRE/XYZED ALL OFFLINE

data base name

where

data base name

maint word

is the name of an IMAGE data base root file catalogued in the current session or
job’s account and log on group.

maint word is the current maintenance word for the data base. It must be supplied by anyone
other than the data base creator.

MAINT displays the maintenance word, if any.

ALL displays all the information provided with MAINT, BUFFSPECS, LOCKS, and
USERS.

BUFFSPECS displays the current buffer specifications which may either be the IMAGE default
settings or the values specified with the DBUTIL SET command.

LOCKS displays the status of locks currently obtained (or requested). (Refer to examples
below.)

USERS displays a list of the processes that have the data base open with the program file
name and other information. (Refer to examples below.)

OFFLINE requests that the information be listed on the line printer. The formal file designator

for the list file is DBUTLIST.

The SHCW commands may be executed at any time except when another process has the data base opened
in an exclusive access mode (mode 3 or 7).

6-16b SEP 1978

DBUTIL

EXAMPLE (List Users, Session Mode)
N IL.P Y

[]
>>SHOW STORE USERS
For data base STNKE

PIN PATH EXECUTING PROGRAM JOBRNUM MODE
21 1 INVENTRY IMAGE ,DATAMGT #5116 1
2?2 1 BROWSE , IMAGE . DATAMGT #5118 5
VA 1 KROWSE , TMAGFE ,DATAMGT #5112 5
29 1 TRNVENTRY (JMAGE ,DATARGT #5115 1
31 1 ORDEMNTRY IMAGE DATANMGT #5117 1

0 O ©

The columns of information are as follows:

1. The Process Identification Number (PIN). This is a number assigned to a process by the operating
system when the process is created. In this list it indicates that the process has the STORE data
base open.

2. The access path number. The access paths for each process are numbered consecutively beginning
with 1. (Refer to the discussion of access paths in Section IV.)

3. The name of the program file, its group and account.
4. The number of the job or session in which the process is running.
5. The access mode in which the data base is open.

Note that DBUTIL does not call DBOPEN and therefore it is not listed as an executing program.
EXAMPLE (List Buffer Specifications, Session Mode)
[]

[
>>SHQ STORE BUFFSPECS List buffer specifications for STORE data
For data base STORE base.
BUFFER SPECIFICATIONS:
4(1/120)
>>

The listing above indicates that the current buffer specifications provide for 4 buffers to be allocated when
there are between 1 and 120 concurrent users of the data base.

SEP 1978 6-16¢

DBUTIL

FORMAT OF SHOW LOCKS LIST

DBUTIL lists the locking information sequentially by locking level: data base locks followed by data set
locks, followed by data entry locks. The names of locked entities (for example, the data base, data set,
or lock descriptor for data entries) appear in upper case followed by a list of other processes waiting

at that locking level. DBUTIL indicates in lower case the reason each process is waiting.*

If the term (PENDING) appears after a locked entity, it indicates that the lock has been obtained but

control cannot be returned to the caller until other locks have been released. The same process
identification will appear elsewhere in the list together with an explanation of why it is waiting.

Infrequently, the term (TEMP) may appear. This indicates that IMAGE has placed a temporary lock
while processing a lock request. These locks are held very briefly and only under rare circumstances.

The Process Identification Numbers (PINs) and job/session numbers listed are the same as those shown
by the MPE commands such as :SHOWJOB and :SHOWQ.

EXAMPLES (List Locks, Session Mode)

[]

[]
>>SHOW STORE LOCKS OFFLINE List the status of locks requested and
held in the STORE data base on the line printer.

The line printer listing looks like this:

HP32215B8.X1,00 [¥AGE/3000: DPRUTIL MON, MAY 22, 1978, 5:06 PM

For data base STUKE

PIN/ PROGRAM
@\ LOCKFED ENTITY — (= waiting process) PATH NAME JOBNUM
NATA SET SALES 30/1 BROWSE #5126

=Wwajting for data set UNJOCK: o o o o o o o o o o o o o 17 INVENTRY #S128
=waitina for Aata Set UNJOCK: o o o o o o o o o o o o o 32 ORDENTRY #5129
=wajitina for JdAata set UNIOCK: o 4 4 o o o o o o o o o 21 ORDFNTRY #5118

DATA SET CUSTOMER | § & & o o o o o o o o o o o o o o o 30/1 BROWSE #5126
@/VOATA SET INVENTORY 4 0 o o o o o o o o o o o o o o o o 30/1 BROWSE #5126

1. Indicates process 30 (program BROWSE executing in session 126) has the SALES data set locked
through access path 1.

2. Shows a queue of processes waiting for the SALES data set to unlock. For example, in the first
line, process 17 (program INVENTRY executing in session 128) is waiting. Since it is listed
first in the queue, it will be the next process to resume execution after the SALES data set is
unlocked. It may be waiting to place a lock on the data set or entries in the set.

3. Indicates process 30 (program BROWSE, session 126, access path 1) has the CUSTOMER data
set locked. No processes are waiting for the lock to be released.

*This message is preceded by a hyphen so that it can be identified on terminals or listings from a line
printer without lower case.

6-16d SEP 1978

DBUTIL

Here is another example of a locking list that might appear when the SHOW LOCKS command is

entered.

HP32215R,X1,00 IMAGE/3000: DRUTIL MON, MAY

tFor data bhase STORFE

LOCKED ENTTTY / (= waitina process

DATABASFE (PENDING) 4 4 o o o o o s o o o o
-wajtina for zero locks within datapbase: .

DATA SET INVENTORY

e e @ o o ° e e o & o o

SALES: QUANTITY<= S0 . ¢ 4 o o o o o o &
CUSTOMER: LAST=NAME = BORG’S MERCANTILE .

97

22,

1978,

4:20 PM

. — w E S e W e P R G R e W W

PROGRAM
NAME JOBNUM

BROWSE #5118
BROWSE #5118

INVENTRY #5115

BROWSE #5112
ORDENTRY #5117

1. Indicates process 22 (program BROWSE, session 118) kas obtained a lock on the data base and yet
it cannot continue until existing locks held in the data base are released. Ir. this example, the

reason for the pending lock is listed on the line below.

2. Indicates process 29 (program INVENTRY, session 115, access path 1) has the INVENTORY data

set locked.

3. Indicates that process 28 (program BROWSE, session 112, access path 1) has all entries in the
SALES data set with QUANTITY less than or equal to 50 locked.

4. Indicates process 31 (program BROWSE, session 117, access path 1) has all entries in the
CUSTOMER data set with LAST-NAME equal to BOBO’S MERCANTILE locked.

Note that all future requests for locks would be made to wait until process 22 releases its data base lock.

SEP 1978 6-16e

DBUTIL

VERIFY
Reports whether a data-base-access file is activated or deactivated.
The form of the VERIFY command is

VER[IFY] data-base-access file name
For example,

VERIFY XXXDBA

data-base-access file name
where
data-base—-access file name is the name of a data-base-access file.
EXAMPLE (Session Mode)
:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.
>>VERIFY XYZDBA Enter VERIFY command and data-base-
Data-base-access file access file name.

XYZDBA is ACTIVATED
>

6-17

DBSTORE

Stores the data base root file and all data set files to a tape or serial disc in a format compatible with
back-up files created by the MPE :STORE and :SYSDUMP commands. DBSTORE differs from these
commands in that it handles only IMAGE data bases.

Before copying the files, DBSTORE gains semi-exclusive access to the referenced data base; that is,
DBSTORE determines that the only other data base activity consists of other users executing DBSTORE
or application programs which open the data base in mode 6 or 8. If DBSTORE cannot gain
semi-exclusive access, it terminates and prints the message DATA BASE IN USE.

You must be the data base creator or must provide the maintenance word to use DBSTORE.

OPERATION

(1) [:FILE DBSTORE; DEV=device]
(2) :RUN DBSTORE. PUB.SYS

@) WHICH DATA BASE? data base name [/ maintenance word]
(4) DATA BASE STORED

END OF PROGRAM

where

device is the device class name of the device on which the data is to be stored.**

data base name is the name of an IMAGE data base root file catalogued in the current
session or job’s account and log on group.

maintenance word is the maintenance word defined by the data base creator. This word must

be supplied by anyone other than the data base creator.

1. Is an optional file equation which specifies the device class name for the device on which the
data base is to be stored. The default is device class TAPE.

2. Initiates execution of the DBSTORE program which is in the PUB group and SYS account.
3. In session mode, DBSTORE prompts for the data base name and maintenance word. In job mode,

the data base name and maintenance word, if any, must be in the record immediately following
the :RUN command.

4. After DBSTORE has copied the root file and all data set files, it prints a message to signal
completion.

CONSOLE MESSAGES

After you have supplied the data base name and DBSTORE opens the output file, a message is
displayed on the system console. A tape or serial disc must be mounted on the appropriate unit

and identified through an operator reply. Refer to the Console Operator’s Guide for instructions about
console interaction.

**Serial disc packs must be initialized by the console operator using the VINIT subsystem. Refer to
the Console Operator’s Guide.

6-18 SEP 1978

DBSTORE

next one. The next tape or disc must be mounted and the unit readied.** The volume which has

If more than one volume is required to store the data base, a request is displayed on the console for the I
been removed should be properly labeled with the data base name and volume number.

EXAMPLE (Job Mode)

(:EOJ - Terminate job.

(STORE/XYZED -<«—— Supply data base name and maintenance word.

(:RUN DBSTORE.PUB.SYS <«———— Initiate DBSTORE program.

(:JOB MGR.ACCOUNTA <«——— Initiate job.
After copying the STORE root file and all data sets, DBSTORE prints the following message on |
$STDLIST.

DATA BASE STORED

if a new volume has not been mounted. For example, this may occur if you restart the DBSTORE

** The serial disc unit must be switched from “RUN"’ to “STOP” to “RUN” prior to entering a reply I
program.

SEP 1978 6-19

DBRESTOR

Copies a data base from the backup volume(s) created by the DBSTORE program, or the MPE :STORE
or :SYSDUMP commands, to disc.

If a catalogued disc file exists with the same name as the data base or the data base with two digits
appended to it, DBRESTOR terminates and prints the message DUPLICATE FILE NAME. Therefore,
it is recommended that you use the PURGE command of DBUTIL before executing DBRESTOR
unless you know that the files do not exist in the account and group you are using for the data base.

To use DBRESTOR, you must either be the data base creator or supply the maintenance word. The
DBRESTOR utility requires exclusive access to the data base.

OPERATION

(1) [:FILE DBRESTOR; DEV=device |
(2) :RUN DBRESTOR.PUB.SYS
[]

.
@ WHICH DATA BASE? data base name [/maintenance word]
(4) DATA BASE RESTORED

END OF PROGRAM

where

device is the device class name of the device from which the data base is to be
restored.

data base name is the name of an IMAGE data base root file catalogued in the current session
or job’s account and log on group.

maintenance word is the maintenance word defined by the data base creator. This word must be

supplied by anyone other than the data base creator.

1. Is an optional file equation which specifies the device class name for the device from which the
data base is to be restored. The default device class is TAPE.

2. Initiates execution of the DBRESTOR program which is in the PUB group and SYS account.

3. In session mode, DBRESTOR prompts for the data base name and maintenance word. In job
mode, the data base name and maintenance word, if any, must be in the record immediately
following the :RUN command.

4., After DBRESTOR has created the root file and data set files and restored the data to these
files, it prints a confirmation message.

CONSOLE MESSAGES
After you have supplied the data base name and DBRESTOR opens the input file, a message is displayed
on the system console. A tape or serial disc must be mounted on the appropriate unit and identified

through an operator reply. Refer to the Console Operator’s Guide for instructions about console
interaction.

6-20 SEP 1978

DBRESTOR

If the data base is on more than one volume, another message is displayed on the system console. The
operator must mount the next volume in the sequence and ready the unit. If the volume which is
mounted is not the correct format, the operator is notified through a conscle message. If the correct
volume is available, the current one should be removed and the correct one mounted. The operator
must then enter a reply on the console.

EXAMPLE (Job Mode)

(:EOJ

(STORE/XYZED <«—— Specify data base name and maintenance word.

A

Terminate job.

(:RUN DBRESTOR.PUB.SYS <«——— Initiate DBRESTOR.

KJOB MGR.ACCOUNTA -«———— Initiate job.

After creating the files and restoring the file contents, DBRESTOR prints the following message on I
$STDLIST:

DATA BASE RESTORED

SEP 1978 6-21

DBUNLOAD

Copies the data entries from each data set to specially formatted tape or serial disc volumes.

The root file is not copied to the backup volume(s). Only data entries from non-empty records are copied.
None of the pointer or structure information associated with the data entry is transferred.

The data sets are unloaded in the order that they were defined in the original schema. No data set
names are recorded on the backup volume(s) ; entries are merely associated with the number of the
data set from which they are read. DBUNLOAD calls the DBGET procedure to read each entry from
each set of the data base using a list parameter of @; to read the complete entry. Values for data
items appear in each entry in the same order as the items were mentioned in the data set definition in
the schema.

DBUNLOAD requires exclusive access to the data base. If the data base is already open by any other
process, DBUNLOAD prints the message: DATA BASE IN USE and prompts again for a data base
name.

DBUNLOAD operates in either chained or serial mode. The mode is determined by the entry point
specified with the :RUN command. The default entry, if none is specified, is CHAINED.

® In serial mode, DBUNLOAD copies the data entries serially in record number order. ““Stand-
alone” detail data sets, those which are not tied to any master data sets through specified search
item paths, are always unloaded serially.

o In chained mode, DBUNLOAD copies all of the detail entries with the same primary path
search item value to contiguous locations on the backup file. The ordering of the search item
values from the primary path is based on the physical order of the matching value in the

associated master data set. Figure 6-1 illustrates the method for unloading a data set in
chained mode.

OPERATION

(1) [:FILE DBUNLOAD; DEV=device]

@ :RUN DBUNLOAD.PUB.SYS

@ WHICH DATA BASE? data base name [/maintenance word]

(4) DATA SET n: x ENTRIES
(5) END OF VOLUME m, y, WRITE ERRORS RECOVERED
(6) DATA BASE UNLOADED

[,CHAINED
,SERIAL

END OF PROGRAM

where

device is the device class name of the device to which the data entries are to be copied.**

data base name s the name of an IMAGE data base root file catalogued in the current session or job’s
account and log on group.

*##*Serial disc packs must be initialized by the console operator with the VINIT subsystem. Refer to the
Console Operator’s Guide.

6-22 SEP 1978

DBUNLOAD

Primary Path
Master Set

SERIAL UNLOADING OF n DATA SETS FROM A DATA BASE

CHAINED UNLOADING OF A DETAIL DATA SET

Detail
Data Set

Data Set 1 File Contents
entry 1
entry 1 entry 2
entry 3
entry 4
entry 2
entry 3
entry 4
Data set n entry 1
entry 2
entry 1
entry 2 / entry m
entry m

Chain pointers entry 1

entry 11

Chain pointers entry 2

Chain pointers entry 3

DBUNLOAD copies no pointer information.
Chains of detail data sets are created by
DBLOAD when the file is reloaded. There-
fore, the order of entries in the chains is

often changed.

Note: Chained unioading of data sets from a data base varies from serial loading in the order of detail entries only. The data
sets themselves are placed in the same order, that is, the order in which they are defined in the schema.

File Format for
Detail Set Entries

entry 20

entry 44

entry 28

entry 17

entry 20

»- entry 36

entry 28

entry 33

entry 33

X

entry 36

entry 44

1st chain primary path

2nd chain primary path

3rd chain primary path

When data base is reloaded,

the order of these chains will
be preserved.

SEP 1978

Figure 6-1. DBUNLOAD File, Sequence of Entries

6-23

DBUNLOAD

maintenance word

is the maintenance word defined by the data base creator. This word must be
supplied by anyone other than the data base creator.

is the number of data sets in the data base.
is the number of entries copied from the specified data set.
is the number of the volume.

is the number of write errors from which DBUNLOAD has successfully recovered.

1. Isan optional file equation which specifies the device class name for the device on which the
data entries are to be copied. The default is device class TAPE.

2. Initiates execution of the DBUNLOAD program which is in the PUB group and SYS account.

3. In session mode, DBUNLOAD prompts for the data base name and maintenance word. In job
mode, the data base name and maintenance word, if any, must be in the record immediately
following the :RUN command.

4. After each data set is copied, DBUNLOAD prints a message which includes the data set number
and the number of entries copied.

If the number of entries copied differs from the expected number of entries, DBUNLOAD sends
the additional message:

*****NUMBER OF ENTRIES EXPECTED y

where y is the number of entries the data set contains according to the root file.

5. When the end of a volume is encountered, DBUNLOAD prints this message:

END OF VOLUME q, b, WRITE ERRORS RECOVERED

where a is the number of the volume and b is the number of write errors from which DBUNLOAD
successfully recovered. DBUNLOAD also instructs the operator to save the current volume and
mount a new one by printing the following two messages on the system console:

SAVE VOLUME ON LOGICAL DEVICE n AS XXXXX y
MOUNT NEXT VOLUME ON LOGICAL DEVICE n

where n is the logical device number of the tape or disc drive, XXXX is the data base name, and
y is the volume number. '

6. After the data sets have been successfully copied, DBUNLOAD issues a completion message.

6-24 SEP 1978

DBUNLOAD

CONSOLE MESSAGES

After you have supplied the data base name and DBUNLOAD opens the output file, a message is
displayed on the system console. A tape or serial disc must be mounted on the appropriate unit and
identified through an operator reply. Refer to the Console Operator’s Guide for instructions about
console interaction.

USING CONTROL Y

When executing DBUNLOAD in session mode, you can press Control Y to request the approximate I
number of entries in the current data set which have already been written. DBUNLOAD then prints:

<CONTROL Y> DATA SET n: x ENTRIES HAVE BEEN PROCESSED

on $STDLIST.

WRITING ERRORS

If an unrecoverable write error occurs, DBUNLOAD prints the message:
UNRECOVERABLE WRITE ERROR, RESTARTING AT BEGINNING OF VOLUME

and attempts to recover by starting the current volume again. It also sends this message to the system
operator:

WRITE PROBLEMS TRY ANOTHER VOLUME ON LOGICAL DEVICE n
where n is the logical device number of the unit.

If an excessive number of non-fatal write errors occur, DBUNLOAD again attempts to recover from
the beginning of the volume after printing the following message on the $STDLIST.

EXCESSIVE WRITE ERROR RECOVERIES, RESTARTING AT BEGINNING OF VOLUME
and sends the same message to the system operator as described for unrecoverable errors above.
EXAMPLE (Job Mode)

The job input appears as follows:

KEOJ - Indicate end of job.

(STORE -<«—— Specify data base name.

(:RUN DBUNLOAD.PUB.SYS <——— Initiate execution of DBUNLOAD.

(:JOB MGR.ACCOUNTA -«——— Initiate job.

SEP 1978 6-25

DBUNLOAD

Since the user in this example is the data base creator, a maintenance word is not provided. The
DBUNLOAD program is executed in CHAINed mode by default because no entry point is specified.

] As the job executes, the following information is printed on the $STDLIST:

DATA SET 1: 9 ENTRIES
DATA SET 2: 50 ENTRIES
DATA SET 3: 24 ENTRIES
DATA SET 4: 12 ENTRIES
DATA SET 5: 5 ENTRIES
DATA SET 6: 10 ENTRIES

END OF VOLUME 1, 0 WRITE ERRORS RECOVERED

DATA BASE UNLOADED

END OF PROGRAM

6-26

SEP 1978

DBLOAD

Loads data entries from the backup volume(s) created by the DBUNLOAD program into data sets of
the data base.

The volume(s) must have been produced by the DBUNLOAD program, and the data base name on
the volume must be exactly the same as the data base name, or root file name, in the current session
or job’s group and account. To reload the identical data into the data base, the DBUTIL
ERASE command must be used prior to DBLOAD unless the data base has been purged and re-
created. Executing DBUTIL in this way reinitializes the data sets to an empty state while keeping
the root file and data sets as catalogued MPE files on the disc.

DBLOAD reads each entry from the backup volume and puts it into the same numbered data set
from which it was read by DBUNLOAD. If a data set in the receiving data base is an automatic
master, no entries are directly put into it by DBLOAD, even though there are entries on the volume
associated with the data set’s number. Automatic master entries are created as needed in the
normal fashion when entries are put into the detail data sets related to the automatic master.

DBLOAD calls the DBPUT procedure to put the entries read from the backup volume into the
appropriate data sets. In every case, the DBPUT dset parameter is a data set number and the list
parameter is @;, Prior to calling DBPUT, DBLOAD moves each entry from the backup volume into
a buffer. The length of the entry is determined by the definition of entries in the target data set.
When DBLOAD is calling DBPUT, this length is less than, equal to, or greater than the length of an
entry on the backup volume. If the data set entry is larger than the backup entry, the data is left-
justified and is padded out to the maximum entry length with binary zeroes. If the data entry is
smaller than the backup entry, the backup volume record is truncated on the right and the trun-
cated data is lost.

The location of master set entries is based on their search item value. The detail data set entries are
put into consecutive data set records with the appropriate new chain pointer information.

DBLOAD requires exclusive access to the data base. If the data base is already open to any other
process, DBLOAD terminates and prints the message: DATA BASE IN USE.

OPERATION

(D [:FILE DBLOAD; DEV=device]

(2) :RUN DBLOAD.PUB.SYS

[]
@ WHICH DATA BASE? data base name [/maintenance word]
@ DATA SET 1: x ENTRIES

L]
(58) END OF VOLUME m,y READ ERRORS RECOVERED
(6) DATA BASE LOADED
END OF PROGRAM

SEP 1978 6-27

DBLOAD

where
I device is the device class name of the device from which the data entries are to
be loaded.

data base name is the name of an IMAGE data base root file catalogued in the current
session or job’s account and log on group.

maintenance word is the maintenance word defined by the data base creator. This word
must be supplied by anyone other than the data base creator.

[| n is the number of the last data set loaded from the backup volume.

x is the number of entries loaded into the specified data set. x is zero if
the data set is an automatic master. Note: this number may not repre-
sent the total number of records in the data set if entries existed prior
to DBLOAD execution.

m is the volume number.

y is the number of read errors from which DBLOAD recovered.

1. Is an optional file equation which specifies the device class name for the device from which
the data entries are to be loaded. The default is device class TAPE.

2. Initiates execution of the DBLOAD program which is in the PUB group and SYS account.
3. In session mode, DBLOAD prompts for the data base name and maintenance word. In job
mode, the data base name and maintenance word, if any, must be in the record immediately

following the :RUN command.

'] 4. After each data set is copied, DBLOAD prints a message on the listfile device which includes
the data set number and the number of entries copied.

5. When the end of a volume is encountered, DBLOAD prints this message. DBLOAD also
instructs the operator to mount a new one with the following message on the system console:

MOUNT DBLOAD VOLUME XXXXy ON LOGICAL DEVICE n

where n is the logical device number of the unit, XX XX is the data base name, and y is the
volume number.

If the operator mounts the wrong volume, DBLOAD informs the operator with the message:
WRONG VOLUME MOUNTED ON LOGICAL DEVICE n
where n is the logical device number.

DBLOAD then terminates and you must begin loading the data base again. This may require
I running DBUTIL,ERASE again if you have already loaded any volumes.
6

After the data entries have been successfully loaded, DBLOAD prints a completion message.

6-28 SEP 1978

DBLOAD

CONSOLE MESSAGES

After you have supplied the data base name and DBLOAD opens the input file, a message is displayed
on the system console. A tape or serial disc must be mounted on the appropriate unit and identified

through an operator reply. Refer to the Console Operator’s Guide for instructions about console
interaction.

USING CONTROL Y

When executing DBLOAD in session mode, you can press Control Y to request the approximate
number of entries in the current data set that have already been copied. DBLOAD prints:

<CONTROL Y> DATA SET n:x ENTRIES HAVE BEEN PROCESSED
on $STDLIST.

EXAMPLE (Session Mode)

:RUN DBLOAD.PUB.SYS Initiate execution of DBLOAD.

Supply data base name and

WHICH DATA BASE? STORE/XYZED maintenance word. DBLOAD

DATA SET 1: 19 ENTRIES indicates number of entries

DATA SET 2: 0 ENTRIES copied. Data set 2 is an auto-

DATA SET 3: 25 ENTRIES matic master so 0 entries are

DATA SET 4: 12 ENTRIES copied; the entries are created

DATA SET 5: 32 ENTRIES as related detail entries are copied

DATA SET 6: 258 ENTRIES to the data base.

END OF VOLUME 1, 0 READ ERRORS RECOVERED

DATA BASE LOADED One volume was copied with no
read errors.

END OF PROGRAM

NOTE: For optimum performance, DBLOAD uses a special ‘“output deferred” mode of operation
when it adds entries to a data base. In this mode, data and structural information may not be
written back to disc each time DBPUT returns to the DBLOAD program. As a result, the data base
is not considered to be logically or structurally complete on disc until the DBLOAD is complete.
During DBLOAD the data base being loaded is marked ‘“bad’’, and only at the completion of a
DBLOAD run is the data base marked ‘“good’ again.

If, during a load, an MPE or hardware crash occurs, the data base is definitely not structurally
intact, and it returns its ‘‘bad”” flag. After the system is brought back up, IMAGE does not allow
the data base to be opened for normal access. If you get a ‘“‘bad data base” error in such a situation,
you should erase the data base with DBUTIL and then perform the load again. Alternatively, you
may purge the data base with DBUTIL and then restore it from a backup copy. A ‘bad’’ data base
may also be stored, restored, or unloaded (in serial mode only).

SEP 1978 6-29

INTERNAL STRUCTURES
AND TECHNIQUES |[wi

In addition to the data elements discussed in Section II, data bases consist of a number of structure
elements. IMAGE creates and uses these, along with various internal techniques, to provide rapid
and efficient access to the data base content. This section describes these structures and techniques
to give you a complete understanding of the way IMAGE works. A summary of design considera-
tions is included at the end of this section.

STRUCTURE ELEMENTS OF DATA SETS

The following internal structures are used by IMAGE to manage the information in data sets.
POINTERS

IMAGE uses pointers to link one data set record to another. A pointer is a two word entity (double-
word) containing the relative address of a record within a data set.

DATA CHAINS

A data chain is a set of detail data set entries that are bidirectionally linked together by pairs of
pointers. All entries having a common search item value are placed in the same chain. Each chain
has a first and a last member. The pointer pairs constitute backward and forward pointers to the
entry’s predecessor and successor within the chain. The first member of a chain contains a zero
backward pointer and the last member of a chain contains a zero forward pointer. A single chain
may consist of at most 65535 entries.

MEDIA RECORDS

IMAGE transfers information to and from a storage location on disc in the form of a media record.
A media record consists of both an entry and its pointers or a null record if no data entry is present.

MEDIA RECORDS OF DETAIL DATA SETS

For each detail entry, the media record consists of the entry itself preceded by all of its related data
chain pointer pairs. The number of pointer pairs corresponds to the number of paths specified for
the data set within the schema. Figure 7-1 illustrates a media record for a detail data set defined
with two paths. The first set of pointers corresponds to the first path defined in the set part of the
schema and the second set corresponds to the second path.

backward forward backward forward
pointer pointer pointer pointer entry
path 1 path 1 path 2 path 2

Figure 7-1. Media Record for Detail Entry

7-1

CHAIN HEADS

IMAGE locates the first or last member of a chain within a detail data set by using a chain head.
The chain head for a particular chain is stored with the entry in the corresponding master data set
whose search item value is the same as the detail search item value defining the chain. Each chain
head is five words long. The first word is an integer count of the number of member entries in the
referenced chain. The count is zero if the chain is empty. The remaining four words contain two
doubleword pointers. One points to the last chain entry, the other to the first chain entry. If the
count is zero, these pointers are both zero. If the count is 1, these pointers have the same value.

PRIMARY ENTRIES

Selection of record addresses for master entries begins with a calculated address determined by an
algorithm applied to the value of each entry’s search item. The algorithm is described later in this
section. Each such calculated address is known as a primary address and each entry residing at its
primary address is called a primary entry.

SECONDARY ENTRIES

Occasionally a new entry with a unique search item value is assigned the same primary address as an
existing primary entry since the search item values of both entries generate the same calculated
address. When this occurs, the entries are called synonyms. IMAGE assigns the new entry a second-
ary address obtained from unused records in the vicinity of the primary entry. All entries residing
at secondary addresses are called secondary entries.

SYNONYM CHAINS

A primary entry may have multiple synonyms. A synonym chain consists of the primary entry and
all of its synonyms. Each synonym chain is maintained by a five-word chain head in the media
record of the primary entry and five-word links in the media records of the secondary entries. Note
that a master data set entry may contain both a synonym chain head and multiple detail chain
heads. These are two distinct types of chain heads.

If no secondary entries are present the synonym chain count is 1 and the pointers to the first and
last secondary entries are zeroes. If N secondaries are present, the chain count is N+1 and the
pointers reference the first and last secondary entries.

The first word of the five-word link in the media record of each secondary entry is always zero. The
remaining four words consist of two doubleword pointers bi-directionally linking the secondary
entries of the synonym chain to each other. As with detail chains, the first member of the synonym
chain contains a zero backward pointer and the last member of the chain contains a zero forward
pointer.

MEDIA RECORDS OF MASTER DATA SETS
Media records of master data entries are composed of the following:

® A five-word field serving as a synonym chain head for primary entries or a synonym chain
link for secondary entries.

® A5 times n word field in which the chain heads of all related detail chains are maintained.
n is the number of relationships defined for the master data set. There may be between 0
and 16 relationships.

® The entry itself.

7-2

Figure 7-2 illustrates the media record for a primary entry of a master data set with two paths
defined.

synonym chain head path 1 detail chain head path 2 detail chain head
synonym last first detail last first detail last first
chain entry entry chain entry entry chain entry entry entry ...
count pointer pointer count pointer pointer count pointer pointer

Figure 7-2. Media Record for Primary Entry

Figure 7-3 illustrates a media record for a secondary entry of a master data set with two paths
defined.

synonym chain link path 1 detail chain head path 2 detail chain head
backward | forward detail last first detail last first
zero synonym | synonym chain entry entry chain entry entry entry . ..
pointer pointer count pointer pointer count pointer pointer

Figure 7-3. Media Record for Secondary Entry

When more than one detail chain head is present, they are physically ordered left-to-right in the
order that the associated paths are specified in the schema.

BLOCKS AND BIT MAPS

Each group of media records involved in a single disc transfer is a block. The first word or words of
each block contain a bit map employed by IMAGE to indicate whether a particular media record of
the block contains a data set entry or is empty. There is one bit for each record in the block. The
bits occur in the bit map in the same order that the records occur in the block. The bit map occupies
as many integral words as are required to contain one bit for each record in the block. If a bit is

zero, the corresponding record is empty. If a bit is one, the record contains a data entry preceded
by the associated structure information.

The format of a block is illustrated in figure 7-4. The sample block contains four records and the
third record contains no entry.

bit map j

110100...0 media entry media entry empty record media entry

Figure 7-4. Block with Blocking Factor of Four
7-3

RUN-TIME IMAGE CONTROL BLOCKS

As mentioned in Section IV, IMAGE uses dynamically-constructed control blocks resident in
privileged extra data segments to provide and control user access to a data base through the IMAGE
procedures. The contents of these control blocks are maintained by IMAGE, and it is not

necessary to know the details in order to use the IMAGE procedures. However, the following
descriptions are provided for those who prefer to understand the control blocks and their
functions.

LOCAL DATA BASE ACCESS

Two structures are involved in local data base access:
L] The global Data Base Control Block (DBCB), and
L] the User Control Block (ULCB).

For any open IMAGE data base, there is exactly one DBCB, regardless of the number of users.
The DBCB is created by IMAGE when the first user opens a data base. It is shared by all
ccncurrent users and is released when the last user closes the data base.

The DBCB is derived from the root file and contains all information (static and dynamic) about
the data base which is common to all users. In addition, the DBCB contains a group of input/
output (I/O) buffers and a communications area used by the IMAGE procedures. The 1/O
buffers vary in number with the number of concurrent users and can be controlled by the data
base administrator. (Refer to the DBUTIL program description in Section VI1.) These buffers
are shared by all data sets and by all concurrent users; each is as large as the largest block of the
data base.

One ULCB exists for each user of each open data base. A ULCB is created each time a user opens
a data base and is released when the user closes the data base. A ULCB is typically less than ten
percent the size of the corresponding DBCB and contains information (static and dynamic) which
is unique to a particular user’s access to a data base. Examples of this type of information are

the user’s access mode, security data, current position in each data set, and current list for each
data set.

When accessing a local data base, the IMAGE procedures usually make use of and modify
information in both the global DBCB and the specific user’s ULCB for this data base. Specifically,
during the processing of a single IMAGE call, the necessary information is moved from the
appropriate ULCB into a reserved area in the DBCB where it is used. Information that has changed
is moved back to the ULCB at the conclusion of the call.

REMOTE DATA BASE ACCESS

IMAGE provides the capability of accessing a data base on a remote HP 3000 from a user program
running on the local HP 3000, as described in Section VIII. This capability is provided in
conjunction with DS/3000 and is accomplished by transmitting IMAGE data base access requests
(DBGET, DBPUT, and so forth) to the remote computer where they are executed and the

results returned to the local calling program. The control block structures used by IMAGE on

the remote computer which contains the data base are those described in the preceding
paragraphs.

SEP 1978 7-3a

On the local computer which is running the user application program, a structure called the Remote
Data Base Control Block (RDBCB) is constructed and used by IMAGE. One RDBCB exists for each
user accessing a remote IMAGE data base (each access path to a remote data base). The RDBCB

is created when the user opens the data base and is released when the user closes the data base. It
resides in a privileged extra data segment associated with the user application process on the local
computer. The RDBCB contains data base, set, and item information plus the work areas necessary
to process IMAGE procedure calls and pass them efficiently over the DS/3000 line for execution
on the remote computer. Returned data and status information is also processed in the RDBCB
and is transferred to the appropriate user stack areas before IMAGE returns to the local

calling program.

CONTROL BLOCK SIZES
It is impossible to predict the exact length of the control blocks used by IMAGE to manage user
access to data bases. However, table 7-1 contains formulas that provide a way of approximating

their sizes.

The exact length of the ULCB and the exact current length of the DBCB are returned in the
status array by DBOPEN. (These lengths do not include the few words of overhead used by MPE.)

7-3b SEP 1978

Table 7-1. Formulas for Approximating Control Block Sizes

CONTROL BLOCK APPROXIMATE LENGTH (IN WORDS)
DBCB r+its+(n(b+9))+(12u) +t+ 150
ULCB i+ (156s) + (f/2) + 10
RDBCB (12i) + (13s) + 160 + max(256,129+e)
in which
r is the ROOT LENGTH as reported by the Schema Processor.
b is the BUFFER LENGTH as reported by the Schema Processor.
t is the initial TRAILER LENGTH as reported by the Schema Processor. (The

trailer area may expand.)

n is the number of 1/0 buffers in the DBCB. This number normally varies with the
number of concurrent users of a data base. DBUTIL can be used to display and
change the values which IMAGE will use.

i is the number of data items in the data base.
s is the number of data sets in the data base.

f is the number of ““fields’’ in the data base. Count each data item once for each
data set in which it appears in the schema.

u is the number of concurrent users of the data base.

e is the largest entry length of any data set in the data base. Derive this from the
ENTR LGTH column of the summary table printed by the Schema Processor.

INTERNAL TECHNIQUES

Although it is not necessary to know the following techniques to use IMAGE, an understanding of them
may help you design a more efficient data base.

PRIMARY ADDRESS CALCULATION

IMAGE employs two distinct methods of calculating primary addresses in master data sets. The first
method applies to master data sets with search items of type I, J, K, or R. The low order (rightmost)
31 bits of the search item value, or the 16 bits of a one-word search item value, are used to form a
32-bit doubleword value. This doubleword value is then decremented by one, reduced modulo the
data set capacity and incremented by one to form a primary address. For example, if an integer
search item has a value of 529 and the data set capacity is 200, the primary address is 129. The
calculation is as follows:

529 -1= 528
~400 (200 x 2)

128

+1

129

-4 SEP 1978

The second method of primary address calculation applies to master data sets with search items of
type U, X, Z, or P. In this case, the entire search item value regardless of its length is used to obtain
a positive doubleword value. This value is reduced modulo the data set capacity and then incre-
mented by one to form a primary address. The algorithm used to obtain the doubleword inter-
mediate value attempts to approximate a uniform distribution of primary addresses in the master
data set, regardless of the bias of the master data set search item values.

The intent of the two primary address algorithms is to spread master entries as uniformly as possible
throughout the record space of the data file. This uniform spread reduces the number of synonyms
occurring in the master data set.

NOTE

Generally, a master data set with a capacity equal to a prime number or to the product of
two or three primes yields fewer synonyms than master data sets with capacities consisting
of many prime factors.

MIGRATING SECONDARIES

In some cases, secondary entries of master data sets are automatically moved to storage locations
other than the one originally assigned. This most often occurs when a new master data entry is
assigned a primary address occupied by a secondary entry. By definition, the secondary entry is a
synonym to some other primary entry resident at their common primary address. Thus, the new
entry represents the beginning of a new synonym chain. To accommodate this new chain the
secondary entry is moved to an alternate secondary address and the new entry is added to the data
set as a new primary entry. This move and the necessary linkage and chain head maintenance is
done automatically.

A move can also occur when the primary entry of a synonym chain having one or more secondary
entries is deleted. Since retrieval of each entry occurs through a synonym chain, each synonym
chain must have a primary entry. To maintain the integrity of a synonym chain, IMAGE always
moves the first secondary entry to the primary address of the deleted primary entry. The former
first secondary entry is now the primary entry for the chain and the record formerly containing
the secondary entry is now empty.

SPACE ALLOCATION FOR MASTER DATA SETS

Space allocation for each master data set is controlled by a doubleword free space counter resident
in the user label of the data set, and by all the bit maps, one in each block of the data set.

When a new entry is added, IMAGE decrements the free space counter and sets the bit correspond-
ing to the newly assigned record address to a 1. If the bit is a zero before the record is added, the
assigned record address is the primary address. If the bit is a one before the record is added, it
indicates that a primary entry already exists. In this case, a secondary address is determined by a

cyclical search of the bit maps for a 0 indicating an unused record and this address is assigned to
the entry being added.

SPACE ALLOCATION FOR DETAIL DATA SETS

Space allocation for each detail data set is controlled by a doubleword free space counter, a double-
word end-of-file pointer and a doubleword pointer to a delete chain. The end-of-file pointer con-
tains the record address of the highest-numbered entry which has existed so far in the data set. The
deletfe chain pointer locates the record from which an entry was most recently deleted. When each
detail data set is first created, the end-of-file pointer and delete chain pointer are both zero.

7-5

When a new entry is added to a detail data set, IMAGE assigns to it the record address referenced
by the delete chain pointer, unless the pointer is zero. If the chain pointer is zero, the end-of-file
pointer is incremented and then used as the assigned record address. The free space counter is
decremented in either case.

When an existing entry is deleted, its media record is zeroed, the first two words are replaced with
the current delete chain pointer, and the block is written to disc. The delete chain pointer is set to
the address of the newly deleted entry and the free space counter is incremented.

The delete chain is, in effect, a push down stack of reusable media record space. Reusable space
is always allocated in preference to the unused space represented by the record addresses beyond
the end-of-file pointer. '

Addition and deletion of data entries also requires data chain maintenance and the turning on or
turning off the corresponding bit of the appropriate bit map. Both of these are necessary for
retrieval integrity but neither play a role in space allocation for detail data sets.

LOCKING INTERNALS

Within the DBCB is a ‘“lock area” which is initially 128 words long and may be expanded to 4096
words in length subject to system availability of the necessary resources. It contains a fixed area
of 64 words. The remaining area is managed dynamically and provides space for the following
entries:

® Accessor Entries Each of these is 8 words long. One is created for each successful
call to DBOPEN (each access path). Although located in the lock
area, this is the master entry with which IMAGE controls access
to the data base. It disappears when DBCLOSE is called for the
access path and the space is reused.

® Set Entries Each of these is 16 words long. One is created for every data set
that is specified in a lock request. Therefore, the maximum number
of set entries is equal to the number of data sets in the data base.
These are never deleted.

® Descriptor Entries These entries contain the internal form of the lock descriptors
specified in locking mode 5 or 6. Each entry is 8 + V words
long rounded up to the next multiple of 8. V is the number of
words required to hold the value of the data item used for
locking. These entries disappear when the locks are released (when
DBUNLOCK is called) and the space is reused.

7-6 SEP 1978

USING A REMOTE DATA BASE

If you want to access a data base that resides on one HP 3000 computer system while operating a
session on another HP 3000 computer system, you may do so provided both systems are configured
with Distributed Systems (DS/3000) capability. If you are not familiar with DS/3000 you should
read the DS/3000 Reference Manual before you begin accessing a remote data base.

DS/3000 refers to the computer to which your terminal is directly connected as the local HP 3000
and the computer with which you establish a communications link as the remote HP 3000. The session
that you initiate on the local HP 3000 is a local session and a session on a remote HP 3000 is a remote
session.

You may use a data base on a remote HP 3000 either from a program that is running on the remote
system or from a program running on your local HP 3000. There are various ways to open a communi-
cations line and initiate a remote session. For example, you can establish a communications link and
remote session and then run a remote program accessing a data base on the remote machine as illus-
trated in figure 8-1.

Local Terminal

‘HELLO . ..

:DSLINE ...

:REMOTE HELLO ...
:REMOTE RUN PROGX . ..

Local HP 3000 Remote HP 3000

Program PROGX

Data Base DBX

Figure 8-1. Using a Remote Program

Refer to Sections I through III of the DS/3000 Reference Manual for a detailed description of this
method.

ACCESS THROUGH A LOCAL APPLICATION PROGRAM

If you want to access a remote data base using a local application program, there are three methods
you may choose from. In all cases, a local program accesses a remote data base and the data is passed
across the communication line.

METHOD 1: ESTABLISHING COMMUNICATIONS LINK AND REMOTE SESSION

INTERACTIVELY

To use the first method, you interactively establish a communications link and a remote session
and enter a FILE equation for each remote data base. The FILE equation specifies which data
base is to be accessed on which remote system and device. A local application program can now
access a remotely located data base, as shown in figure 8-2.

Local Terminal

:HELLO ...

:DSLINE ...

:REMOTE HELLO. ..

:FILE DBX;DEV=SYSX#DISCA
:FILE DBY;DEV=SYSX#DISCA
:RUN PROGX

Local HP 3000

Program PROGX: -

Remote HP 3000

Calls DBOPEN
for DBX data
base and DBY
data base.

SYSX

Data Base DBX
and

Data Base DBY

reside on DISCA

Figure 8-2. Using Method 1

For details about using this method refer to the DS/3000 Reference Manual.

METHOD 2: USING THE COMMAND INTRINSIC

The second method is very similar to the first, but you use the MPE COMMAND intrinsic within
your application program to establish the communications link, remote session and remote data base
access. In order to use this method in an application program which is coded in COBOL, RPG, or
BASIC you must write a procedure in SPL or FORTRAN and call the procedure.

To use this method you must issue a REMOTE HELLO command (either with the DSLINE para-
meter or issue the DSLINE as a separate command) and a FILE equation by calling the COMMAND
intrinsic for each of these commands. Use of the COMMAND intrinsic is explained in the MPE
Intrinsics Reference Manual, and information about accessing remote files is given in the DS/3000
Reference Manual. Figure 8-3 contains a diagram of Method 2.

Local Terminal

:HELLO ...
:RUN PROGX

Local HP 3000 / Remote 3000

Program PROGX:

Contains calls to
COMMAND “DSLINE ..."”" - > Data Base DBX
COMMAND “REMOTE HELLO..."”
COMMAND ““FILE DBX;..."”

[]

€

(program code)

[J
COMMAND ““REMOTE dsline#BYE . ."”
COMMAND ““DSLINE dsline#;CLOSE . .”

Figure 8-3. Using Method 2

If you want to access more than one remotely located data base with an application program, you
must enter one FILE equation for each remote data base. It is important to remember that a RE-
MOTE HELLO to the same remote computer should not be repeated within a process since the
second request for a remote session would log off the first one.

NOTE: When the application program calls the DBCLOSE procedure or is ready to terminate
execution, it must programmatically issue a REMOTE BYE and DSLINE;CLOSE on the DSLINE
specified with the foregoing COMMAND intrinsic.

If you use this method, any change in the data base name, account or password information
requires modification of the application program.

METHOD 3: USING A DATA-BASE-ACCESS FILE

The third method involves creating a special file which we shall call the data~-base-access file (DBA
file). This file provides IMAGE with the necessary information to establish a communications link
and a remote session. It also specifies the remote data base or data-base-access file name so that
the necessary IMAGE intrinsics can be executed on the remote computer.

Local Terminal

:HELLO USERA.ACCTA;GROUPA

:RUN PROGX
Local HP 3000 / Remote 3000
SYSX

Program PROGX:
Calls
DBOPEN with BASE array
containing DBAFY.
Data-Base-Access file Data Base DBY
named DBAFY contains: resides on DISCA
Rec 1: FILE DBY; DEV=SYSX#DISCA in account ACCTB
Rec 2: DSLINE SYSX;...
Rec 3: USERA.ACCTA,GROUPA=HELLO

USERB.ACCTB ...
.
.

Figure 8-4. Using Method 3

NOTE

It should be noted that with Method 3, which uses the data-base-access file, only one data
base can be accessed using each data-base-access file per DSLINE. For example, if two
computers are linked through two DSLINESs you can open one data base on each line. A
second REMOTE HELLO on one DSLINE terminates the previous REMOTE HELLO. For
multiple remote data base access, Method 1 or Method 2 is recommended. If the data-base-
access file is used, an automatic REMOTE BYE and DSLINE;CLOSE is issued on the
DSLINE specified in the data-base-access file when the application program terminates
execution.

8-4

By using this approach, the data base administrator can set up a user-table which provides more
control over the data base users, and thus, enhances data base security. To create the data-base-
access file, you use the Editor (EDIT/3000). The content of this file should be created in the for-

mat shown below.

FORMAT

Record1l FILE dbnamel[=dbnameZ2]; DEV = dsdevice#device

Record 2 DSLINE dsdevice [;LINEBUF=buffer-size] [;LOCID=local-id-sequence]
[;REMID=remote-id-sequence] [;PHNUM=telephone-number] [;EXCLUSIVE]
[;QUIET]

Record 83 lusername.lacctname [,lgroupname]=HELLO rusername [/rupasw] .
racctname| [rapasw] [ygroupname] [/rgpasw] [;TIME=cpusecs]
[;PRI=priority] [;HIPRI

Records 4 Same format as record 3. Specifies other “user.account,group” identification.

; INPRI=inputpriority

through n
PARAMETERS

dbnamel is the name of the data base or the data-base-access file on the remote
system you want to access, or is the formal file designator used in the
program if dbname?2 is specified. (Required parameter)

dbname?2 is the name of the data base or the data-base-access file on the remote
system you want to access. (Optional parameter)

dsdevice is the device class name or logical device number assigned to the
DS/3000 communications driver IODSO during system configuration.
(Required parameter)

device is the device class name or logical device number of the remote device

buffer-size

local-id-sequence

on which the data base resides. (Required parameter)

is a decimal integer specifying the size (in words) of the DS/3000 line
buffer to be used in conjunction with the communications line. The
integer must be within the range 304 < buffer-size < 4096. The default
value is the buffer size entered in response to the PREFERRED BUFFER
SIZE prompt during system configuration. (Optional parameter)

is a string of ASCII characters contained within quotation marks or a string
of octal numbers separated by commas and contained within parentheses. If
you wish to use a quotation mark within an ASCII string, use two succes-
sive quotation marks. In the case of an octal sequence, each octal number
represents one byte and must be within the range 0-377. The maximum
number of ASCII characters or octal numbers allowed in the string is 16.

The supplied string of ASCII characters or octal numbers define the ID
sequence that will be sent from your HP 3000 to the remote HP 3000

remote-id-sequence

telephone-number

EXCLUSIVE

QUIET

lusername

lacctname

when you attempt to establish the telephone connection. If the remote

HP 3000 does not recognize the supplied ID sequence as a valid one, the
telephone connection is terminated. The default value is the ASCII or octal
string entered in response to the LOCAL ID SEQUENCE prompt during
system configuration. (Optional parameter)

Same format as local-id-sequence.

The supplied string of ASCII characters or octal numbers define those remote
HP 3000 ID sequences that will be considered valid when you attempt to
establish the telephone connection. If the remote HP 3000 does not send a
valid ID sequence, the telephone connection is terminated. The default set

of remote ID sequences consists of the ASCII and octal strings entered in
response to the REMOTE ID SEQUENCE prompt during system configura-
tion. (Optional parameter)

is a telephone number consisting of digits and dashes. The maximum length
permitted (including both digits and dashes) is 20 characters. If YES was
entered in response to the DIAL FACILITY prompt during system configu-
ration, this telephone number will be displayed at the operator’s console

of your HP 3000 and the operator will then establish the telephone connec-
tion by dialing that number at the MODEM. The default telephone number
is the first one entered in response to the PHONE NUMBER prompt during
system configuration.(Optional parameter)

This parameter, if present, specifies that you want exclusive use of the
particular communications line. If the specified SSLC is already open and
you have specified the exclusive option, DS/3000 will deny you access to
the line (you cannot open it). Opening an EXCLUSIVE line requires the
user to have CS capability. This capability may be granted by a system
manager or account manager. (Optional parameter)

This parameter, if present, specifies that the message identifying the DS
line number will be suppressed. The messages associated with subsequent
REMOTE HELLO and REMOTE BYE commands will also be suppressed.
The terminal operator is totally unaware that remote processing is taking
place.

is a user name on the local HP 3000, established by an account manager,
that allows you to log-on under this account. This name is unique within
the account. It contains from 1 to 8 alphanumeric characters, beginning
with a letter. An at-sign (@) may be used to indicate the log-on user name.
(Required parameter)

is the name of your account on the local HP 3000, as established by a
system manager. It contains 1 to 8 alphanumeric characters, beginning with
a letter. An at-sign (@) may be used to indicate the log-on account. (Re-
quired parameter)

NOTE: Must be preceded by period as delimiter.

lgroupname

rusername

racctname

rgroupname

rupasw
rapasw

rgpasw

TIME=cpusecs

PRI=BS
CS
DS
ES

INPRI=inputpriority

HIPRI

is the name of a file group to be used for the local file domain and central-
processor time charges, as established by an account manager. It contains
from 1 to 8 alphanumeric characters, beginning with a letter. Default: Your
home group if you are assigned one by an account manager. An at-sign (@)
may be used to indicate the log-on group. (Optional if you have a home
group; required if you do not.)

is a user name on the remote HP 3000 that allows you to access the account
containing the remote data base. It follows the same rules as lusername. An
at-sign (@) may be used to indicate rusername is same as lusername. (Re-
quired parameter)

is the name of the account on the remote HP 3000 that contains the data
base. It follows the same rules as lacctname. An at-sign (@) may be used
to indicate racctname is same as lacctname. (Required parameter)

is the name of the group on the remote HP 3000 to which the data base
belongs. It follows the same rules as lgroupname. An at-sign (@) may be
used to indicate rgroupname is same as lgroupname. (Optional parameter

if home group for rusername is same as group containing data base; required
if not.)

is the password assigned to rusername. (Required if assigned)
is the password assigned to racctname. (Required if assigned)

is the password assigned to rgroupname. (Not needed if rusername’s home
group contains data base. Otherwise, required if assigned.)

is the maximum central processor time that your remote session can use,
entered in seconds. When this limit is reached, the remote session is aborted.
It must be a value from 1 to 32767. To specify no limit, enter a question
mark or omit this parameter. Default: No limit. (Optional parameter)

is the execution priority class that the Command Interpreter uses for your
remote session, and also the default priority for all programs executed
within the remote session. BS is highest priority; ES is lowest. If you specify
a priority that exceeds the highest that the system permits for racctname

or rusername, MPE assigns the highest priority possible below BS. Default:
CS.

NOTE: DS and ES are intended primarily for batch jobs; their use for
sessions is generally discouraged.

is the relative input priority used in checking against access restrictions
imposed by the job fence, if one exists. It takes effect at log-on time.

It must be a value from 1 (lowest priority) to 13 (highest priority). If you
supply a value less than or equal to the current job fence set by the console
operator the session is denied access. Default: 8 if logging of session/job
initiation is enabled, 13 otherwise. (Optional parameter)

is a request for maximum session-selection input priority, causing the remote
session to be scheduled regardless of the current job fence or execution

limit for sessions.

NOTE: You can specify this only if you have system manager or super-
visor capability. (Optional parameter)

8-7

The following syntax should be noted:

. No spaces are allowed preceding the equal sign and between the equal sign and the HELLO
command (=HELLO).

° Passwords are not allowed with the local user, account, and group names. They are not
necessary since the local user passes the security password checks when logging on to the
local session.

e The DSLINE parameter is not allowed in the HELLO command records since it is listed
in Record 2.

FILENAME. After you have created the file with the Editor, you should KEEP it UNNumbered.
The file name must follow the same rules as a data base name. It may be an alphanumeric string
from 1 to 6 characters, the first character must be alphabetic.

USER IDENTIFICATION. Records 3 through n define a table that tells IMAGE which user,
account, and group names on the local computer may access which user, account, and group
names on the remote computer. You may specify remote user identification for more than one
local user by creating a record for each local “user.account,group” in the format of Record 3
shown above. An at-sign symbol (@) may be substituted for any user, account, or group name in
the record. If an at-sign is substituted for lusername, lacctname, or lgroupname, the name is re-
placed with the corresponding name specified at log-on time.

IMAGE searches for a match between the local user, account, and group names in the user table
and the names used to log on to the local session. When a match has been found, and the local
user, account, and group names are fully established, IMAGE looks for an at-sign to the right of
=HELLO. If an at-sign is found, it is replaced with the corresponding name to the left of =HELLO.
For example, if the record contains USERA.ACCTA,GROUPA=HELLO @.ACCTB,@, IMAGE
replaces the first at-sign with USERA and the second with GROUPA. If an at-sign is not found,
no substitutions are made. In either case, the information to the right of =HELLO is used as the
remote log-on identification.

EXAMPLE. Suppose the following set of commands are stored in a data-base-access file:

Record 1 FILE STORE;DEV=DSL1#DISC

Record 2 DSLINE DSL1

Record 3 USERA.ACCTA,GROUPA=HELLO USERB.ACCTA,GROUPB
Record 4 @ .ACCTA,GROUPA=HELLO USERA.ACCTA,GROUPA
Record 5 USERB.ACCTB,@=HELLO USERB.ACCTX,@

End of file

If a user logs on with the log-on identification indicated in the first column below, IMAGE will
use the corresponding ‘“‘user.account,group’’ identification in the second column to establish
communication with the remote system.

Log-on Identification Remote Identification Used
Userl USERA.ACCTA,GROUPA — USERB.ACCTA,GROUPB
User 2 USERB.ACCTA,GROUPA — USERA.ACCTA,GROUPA
User3 USERB.ACCTB,GROUPB USERB.ACCTX,GROUPB
User 4 USERA.ACCTB,GROUPB > None, no match found.

The first user’s log-on identification matches the local user, account, and group names «pecified
in Record 3, so the remote names specified in that record are used. The second user’s account
matches Record 3 but the user name does not, so IMAGE looks for another table entry with
account ACCTA. Since the entry in Record 4 specifies any user (¢€') of ACCTA if their group is
GROUPA, the second user’s remote identification will be that specified in Record 4.

The third user logs on to ACCTB and a match is found in Record 5 since it specifies the same
user name and accepts any group in the account.

The fourth user’s account matches Record 5 but the user name does not match. Therefore, the
fourth user cannot access the remote data base with this application program.

ACTIVATING A DATA-BASE-ACCESS FILE. After you have constructed a data-base-access
file, you must use the DBUTIL utility program to activate the file. DBUTIL changes the file code
to the IMAGE reserved code -402. Complete instructions for running the utility program are
given in Section VI. Here is a summary of the operating instructions:

:RUN DBUTIL.PUB.SYS

>> ACTIV ATE data-base-access file name
Data-base-access file
data-base—-access file name is ACTIVATED

>>EXIT

The utility program checks that Record 1 contains a FILE command with the DEV=dsdevice
parameter, Record 2 contains a DSLINE command with the same dsdevice value as the FILE
command, and that all subsequent records contain =HELLO and no DSLINE parameter. If the
file structure is inaccurate, the following message is displayed:

Invalid contents of ascii access file

The utility program does not verify the accuracy of each command and its parameters. This is
done at DBOPEN time and if, for example, the user.account identification is invalid, an error
code for an unsuccessful DBOPEN is returned to the user’s process.

DEACTIVATING A DATA-BASE-ACCESS FILE. In order to deactivate the data-base-access
file, you use the DEACTIVATE command of the DBUTIL utility program. Complete instructions
for this program are given in Section VI. Here is a summary of the operating instructions:

:RUN DBUTIL.PUB.SYS

>>DEACTIVATE data-base-access file name
Data-base-access file
data-base-access file name is DEACTIVATED

>>EXIT

You may want to do this in order to edit the content of the data-base-access file or prevent
access through this file to the remote data base.

REFERENCING THE DATA BASE. To reference the data base from your local application pro-
gram, use the data-base-access file name instead of the root file name when calling the IMAGE
procedure. The word array specified as the base parameter must contain a pair of blanks followed
by the left-justified data-base-access file name and terminated by a semicolon or blank (A). IMAGE
recognizes the -402 file code and establishes a communications link to the remote HP 3000. If the
data base is successfully opened, IMAGE replaces the pair of blanks with the extra data segment
number of the assigned Remote Data Base Control Block. The base parameter must remain
unchanged for the remainder of the process. When the application program calls the DBCLOSE
procedure or terminates execution, an automatic REMOTE dsline#BYE and DSLINE;CLOSE

is issued on the open DSLINE for that particular session.

EXAMPLE. The example in figure 8-5 illustrates how to create and activate a data-base-access

file. In this case, the file named DBASTR is to be used to gain access to the STORE data base
residing on a remote system in the PAY ACCT account. The remote system is referenced by dsdevice
name MY.

After the data-base-access file is created using the Editor, it is enabled by using the DBUTIL prc-
gram.

tHELLO MEMEERT.PAYACCT Log on to the local
system.

EDITOR
EDITOR Run the Editor.

HP22201A.7.00 EDIT/3000 MON, APR 17, 1978, 1:36 PM
(C) HEMWLETT-PACKARD CO. 1876

/A Create records in data-
1 FILE STORE;DEV=MY# base-access file.
2 DSLINE MY
3 MEMBER1.PAYACCT=HELLO MEMBER1.PAYACCT
4 MEMBER2.PAYACCT=HELLD &.PAYACCT
5 //

trs R Keep the file.
/¥._DBASTR, UNN

/E

END OF SUBSYSTEM

:RUN DBUTIL.PUB.SYS Run DBUTIL to enable
file.

>>ACTIVATE DBASTR
Data-base-access file
DBASTR 1s ACTIVATED
PYEXIT

Figure 8-5. Preparing a Data~-Base-Access File

8-10 SEP 1978

Figure 8-6 illustrates use of the data-base-access filethrough a program named APPLICAN.

After logging on to the local system, the user runs the program named APPLICAN from the local
session. The base array in this program contains: AA DBASTR. When a call to DBOPEN is executed,
IMAGE establishes a communications line and remote session. When the program closes the data
base, IMAGE closes the line and terminates the remote session.

:HELLO MEMBERZ2.PAYACCT Log on to local system.

:RUN APPLICAN Execute application program.

DS LINE NUMBER = #L4 IMAGE establishes a coarrr::in;ritﬁcéosr;:sligl;

HP2000 IIB. MDOH, APR 17, 1978, 1:56 PM)

WELCDME TO SYSTEM B. When the data base is closed, IMAGE closes
communications line and terminates remote

CPU=2. CONNECT=1. MON, APR 17, 1978, 1:539 PM session.

1 DS LINE WAS CLDSED.

:BYE Log off local system.

Figure 8-6. Using a Data-base-access File

QUERY

When you use QUERY to retrieve information from a data base, you must specify a data base name,
password and access mode before you can actually access the data base. The “DATA BASE="" prompt
can be answered with a remote data base name or the data-base-access file name. A detailed description
of QUERY/DS is provided in the QUERY Reference Manual.

811

APPENDIX

ERROR MESSAGES

>l

IMAGE issues three different types of error messages:

® Schema Processor Error Messages listed in tables A-1 through A-3
® Library Procedure Error Messages listed in tables A-4 through A-7
® Utility Error Messages listed in tables A-8 and A-9.

Schema Processor messages result from errors detected during processing of the data base schema.
The library procedure messages consist of condition words returned to the calling program from the
library procedures. The utility messages are caused by errors in execution of the data base utility
programs.

SCHEMA PROCESSOR MESSAGES
The Schema Processor accesses three files:

® the textfile (DBSTEXT) containing the schema records and Schema Processor commands for
processing.

® the listfile (DBSLIST) containing the schema listing, if requested, and error messages, if any.
® the root file, if requested, created as the result of an error-free schema.

Any file error which occurs while accessing any of these files causes the Schema Processor to
terminate execution. A message indicating the nature of the error is sent to $STDLIST (and to the
listfile, if listfile is different from $STDLIST).

Table A-1 lists the various file error messages. Each such message is preceded by the character
string:

% %% % F]LE ERROR%* %%

Additionally, the Schema Processor prints a standard MPE file information display on the
$STDLIST file. Refer to the MPE Intrinsics Reference Manual or Error Messages and Recovery
Manual for the meaning of MPE file information displays.

Schema Processor command errors may occur. They neither cause termination nor do they prohibit
the creation of a root file. In some cases, however, the resultant root file will differ from what
might have occurred had the commands been error free. Command errors are added to an error
count which, if it exceeds a limit (see Section III), will cause the Schema Processor to terminate
execution.

Table A-2 lists the various Schema Processor command error messages. Each such message is pre-
ceded by the character string:

Data base definition syntax errors may be detected by the Schema Processor. Their existence does
not cause termination but does prohibit root file creation. Discovery of one may trigger others

A-l

which disappear after the first is corrected. Also, detection of one may preclude detection of others
which appear after the first is corrected. Syntax errors are also added to an error count which, if
excessive, will cause Schema Processor termination.

Table A-3 lists the various syntax error messages. As with command errors, each syntax error is

preceded by the character string:

If the LIST option is active (see Section I1I), error messages for command errors and syntax errors
appear in the listfile following the offending statement. If the NOLIST option is active, only the
offending statement, followed by the error message, is listed.

Table A-1. IMAGE Schema Processor File Errors

MESSAGE

'MEANING

ACTION

READ ERROR ON file name

UNABLE TO CLOSE file name

UNABLE TO USE file name

UNABLE TO WRITE LABEL OF
file name

UNEXPECTED END-OF-FILE
ON file name

WRITE ERROR ON file name

FREAD error occurred on the specified file.

FCLOSE error occurred on specified file.

May be caused by duplicate file in group
with same name as root file.

Specified file cannot be FOPENed or its
characteristics make it unsuitable for its
intended use.

FWRITELABEL error occurred on speci-

fied file.

Call to FREAD or FWRITE on specified
file has yielded unexpected end of file
condition

FWRITE error occurred on the specified
file.

Check textfile or :FILE
command.

Change data base name or
purge file of same name.

or

Be sure correct file and
- file name used. Check
:FILE commands used.

If other cause, consult
MPE Intrinsics Refer-
ence Manual for
similar message.

Table A-2.

IMAGE Schema Processor Command Errors

MESSAGE

MEANING

ACTION

COMMAND CONTINUATION
NOT FOUND

COUNT HAS BAD FORMAT

ILLEGAL COMMAND

IMPROPER COMMAND
PARAMETER

MISSING QUOTATION MARK

SPECIFIED TITLE TOO LONG

If schema processor command is continued
to next record, the last non-blank character
of preceding line must be an ampersand (&),
and continuation record must start with
dollar sign ($).

Numbers appearing in ERRORS, LINES,
BLOCKMAX parameters of the $CONTROL
command are not properly formatted inte-
ger values.

Schema processor does not recognize the
command. Valid commands are $PAGE,
$TITLE, and $CONTROL.

One of the parameters in a command is not
valid.

Character string specified in $PAGE or
$TITLE command must be bracketed by
quotation marks ("').

Character string appearing in $TITLE or
$PAGE command exceeds 104 characters.

Examine schema
textfile to find incor-
- rect command, edit,
run Schema Processor
again.

Table A-3. IMAGE Schema Syntax Errors

MESSAGE

MEANING

ACTION

AUTOMATIC MASTER MUST
HAVE SEARCH ITEM ONLY

BAD CAPACITY OR
TERMINATOR

BAD PATH COUNT OR
TERMINATOR

BAD CHARACTER IN USER
CLASS NUMBER

BAD DATA BASE NAME
OR TERMINATOR

BAD DATA SET TYPE

BAD PATH CONTROL PART
DELIMITER

BAD PATH SPECIFICATION
DELIMITER

BAD READ CLASS OR
TERMINATOR

BAD SET NAME OR

TERMINATOR

BAD SUBITEM COUNT OR
TERMINATOR

AUTOMATIC master data sets must contain
entries with only one data item which must
be a search item.

Either the number in CAPACITY : state-
ment is not an integer between 1 and
223 _1 or a semicolon is missing.

Path count in master data set definition
is not an integer 1 to 16.(for an auto-
matic) or 0 to 16 (for a manual). This
message may also indicate path count is
not followed by *“)"'.

User class number in password part is not
integer from 1 to 63.

Data base name in BEGIN DATA BASE
statement is not valid data base name of
from 1 to 6 alphanumeric characters
beginning with an alphabetic, or is not
followed by semicolon.

Data set type designator is not AUTO-
MATIC (or A), MANUAL (or M), or
DETAIL (or D).

Data item defined as sort item in detail
data set is not properly delimited with
parentheses.

Name of master data set following search
item name in a detail data set definition
is not followed by a *’)”’ or by a sort item
name enclosed in parentheses.

Read user class number defined for either
a data set or data item is not an integer
from O to 63 or is not terminated by a
comma or slash.

Data set name does not conform to rules
for data set names (1 to 16 alphanumeric
characters beginning with alphabetic,
chosen from the set: A-Z,0-9,or + - *
/?'#%& @), or is not terminated by
correct character for context in which it
appears.

Subitem count for a data item defined in
schema item part is not an integer from 1
to 255.

Examine schema to
find incorrect state-
— ment, edit, and run
Schema Processor
again.

A4

Table A-3. IMAGE Schema Syntax Errors (Continued)

MESSAGE

MEANING

ACTION

BAD SUBITEM LENGTH OR
TERMINATOR

BAD TERMINATOR —*;’
OR‘,” EXPECTED

BAD TERMINATOR —*;’
EXPECTED

BAD TYPE DESIGNATOR

BAD WRITE CLASS OR
TERMINATOR

‘CAPACITY:" EXPECTED

DATA BASE HAS NO DATA
SETS

DUPLICATE ITEM

SPECIFIED

DUPLICATE ITEM NAME

DUPLICATE SET NAME

‘ENTRY:" EXPECTED

ENTRY TOO BIG

ENTRY TOO SMALL

Subitem length for data item defined in
schema item part is not an integer from
1 to 255.

Items within an entry definition must be
separated from each other by commas
and terminated by a semicolon.

Password or capacity was not followed
by a semicolon.

Data item defined in schema item part
is not defined as type |, J, K, R, U, X,
Z,orP.

Write user class number indicated for
either data set or data item is not an
integer from 0 to 63 or is not terminated
by right parentheses or a comma.

CAPACITY statement must follow entry
definition in definition of data set in set
part of schema.

No data sets were defined in set part of
schema. Data base must contain at least
one data set.

Same data item name used more than
once in entry definition of data set.

Data item name appears more than once
in item part of schema.

Same name has been used to define more
than one data set in schema set part.

Each data set defined in schema set part
must contain ENTRY:: statement followed
by data item names of data items in entry.

Number and size of data items defined for
an entry of a data set yields entry which
is too large for maximum block size (as
either specified by $CONTROL
BLOCKMAX= command or by default).

Detail data set that is not linked to any
master data set must have data entry length
equal to or greater than two words. This
length is determined by adding size in words
of each data item defined in data entry.

Examine schema to
find incorrect state-
— ment, edit, and run
Schema Processor
again.

A-5

Table A-3. IMAGE Schema Syntax Errors (Continued)

MESSAGE

MEANING

ACTION

ILLEGAL USER CLASS
NUMBER

ILLEGAL ITEM NAME OR
TERMINATOR

ITEM LENGTH NOT INTEGRAL

WORDS

ITEM TOO LONG

MASTER DATA SET LACKS
EXPECTED DETAILS

MASTER DATA SET LACKS
SEARCH ITEM

MORE THAN ONE KEY ITEM

MORE THAN ONE PRIMARY

MASTER

‘NAME:" or ‘END.""

EXPECTED

‘PASSWORDS:" NOT FOUND

PASSWORD TOO LONG

REFERENCED SET NOT A
MASTER

User class number defined in schema pass-
word part is not an integer between 1 and
63 inclusive.

Data item name does not conform to naming
rules. (1 to 16 alphanumeric characters begin-
ning with alphabetic, chosen from the set:
AZ,09,0r+-"/?2"#%&®@),orif in the
item part, is not followed by a comma.

Data item, simple or compound, must occupy
an integral number of words.

Single data item cannot exceed 2047 words
in length.

Master data set was defined with a non-zero
path count, but the number of detail search
items which back-referenced master is less
than value of path count.

Master data set was defined without defining
one of the data items in the set as a search
item.

Master data set cannot be defined with more
than one search item.

User has defined more than one primary
path for a detail data set.

Schema processor expected at this point to
encounter the beginning of another data
set definition or end of schema.

‘PASSWORDS:' statement must immediately
follow the BEGIN DATA BASE statement
in schema. If it does not, DBSCHEMA
terminates execution.

Any password defined in data schema can-
not exceed eight characters

Data set referenced by detail data set search
item is another detail data set rather than a
master.

Examine schema to
find incorrect state-
I~ ment, edit, and run
Schema Processor
again.

Table A-3

. IMAGE Schema Syntax Error (Continued)

MESSAGE

MEANING

ACTION

SCHEMA PROCESSOR LACKS
NEEDED TABLE SPACE

SEARCH ITEM NOT SIMPLE

SEARCH ITEMS NOT OF SAME
LENGTH

SEARCH ITEMS NOT OF SAME
TYPE

SET HAS NO PATHS
AVAILABLE

SORT ITEM NOT IN DATA SET

SORT ITEM OF BAD TYPE

SORT ITEM SAME AS
SEARCH ITEM

TOO MANY DATA ITEMS

TOO MANY DATA SETS

TOO MANY ERRORS

TOO MANY ITEMS
SPECIFIED

TOO MANY PATHS IN DATA
SET

UNDEFINED ITEM
REFERENCED

UNDEFINED SET
REFERENCED

Schema processor is unable to expand its
data stack to accommodate all of the trans-
lated information which will make up the
root file. It continues to scan the schema
for proper form, but will not perform all
of the checks for correctness nor create a
root file. To process schema correctly,
operating system must be configured with
a larger maximum stack size.

All data items defined in data schema as
search items must be simple items

Master search item must be same type as
any related detail data set search item.

Master search item must be same type as
any related detail data set search items.

More detail data set search items have
specified a relationship with a master data
set than the number specified in master
data set’s path count.

Detail data set’s entry definition does not
inctude an item which is specified as sort
item for another item in entry.

Data item defined as sort item must be of
type U, K, or X.

Same item cannot be both search and sort
item for same path.

Item part of schema may contain no more
than 255 data item names.

Data base can contain no more than 99
data sets.

Specified or default maximum number of
errors has been exceeded. Processing
terminates.

Data set entry can contain no more than
127 data items

Detail data set entry can contain no more
than 16 search items.

Data item appearing in data set definition
was not previously defined in item part of
data schema.

Master data set referenced by detail search
item was not previously defined in set part
of data schema.

Ask system manager to

inc

rease maximum

stack size.

/

Examine schema to
find incorrect state-
— ment, edit, and run
Schema Processor
again.

Check schema, edit, run

aga

in.

Correct errors and/or
increase ERROR param-
eter value.

N\

Examine schema to
find incorrect state-
- ment, edit, and run
Schema Processor
again.

LIBRARY PROCEDURE ERROR MESSAGES

The success of each call to an IMAGE library procedure is reflected upon return to the user by the
hardware condition code and the value of a condition word returned in the first word of the status
area.

If the procedure fails to execute properly, the hardware condition code is set to CCL (Condition
Code Less) and the procedure returns a negative integer in the condition word. Table A-4 describes
the negative condition words resulting from file system and memory management failures, while
Tables A-5 and A-5a describe the negative condition words resulting from calling errors and com-
munications errors respectively.

If the procedure operates properly but encounters an exceptional condition, such as end-of-file, the
hardware condition code is set to CCG (Condition Code Greater) and the procedure returns a posi-
tive integer in the condition word. Table A-6 describes the positive condition words resulting from
exceptional conditions.

If the procedure operates properly and normally, the hardware condition code is set to CCE (Con-
dition Code Equal) and the procedure returns zero in the condition word.

In addition to returning a condition word, all IMAGE library procedures put information about
the procedure call into the fifth through tenth words of the status area. This information may be
useful in debugging your programs, because it describes the conditions in which the particular
results are obtained. This information is used by DBEXPLAIN and DBERROR when they are
interpreting the results of IMAGE calls.

In a few cases this information is not returned by the IMAGE procedure because it uses the same
words in the status area for returning other data. Specifically, successful execution of DBFIND,
DBGET, DBUPDATE, DBPUT, or DBDELETE puts the other information here as described in
Section IV of this manual.

For any other return, error or non-error, from a library procedure, the specified words of the
status area have the following contents:

Word Contents

5 The PB-relative offset within the calling program’s code segment of the current proce-
dure call to the IMAGE library procedure (the location of the PCAL instruction in the
SPL code.)

6 Bits 7-15: The intrinsic number of the called IMAGE library procedure.
Bits 0-3: Zero or the access mode in which the data base is opened.

7 The DB-relative word address of the base parameter.

8 The DB-relative word address of the password, qualifier, or dset parameter.

9 The value of the mode parameter.

10 The PB-relative offset within the library procedure code segment at which return to

the calling program was initiated (for HP use only).

Consult the MPE Commands Reference Manual for a discussion of PB and DB registers, and the
Systems Programming Language Reference Manual for more information about the PCAL
instruction.

ABORT CONDITIONS

In general, four types of error conditions can catse IMAGE to abort the calling process:

1. A call from a user process with the hardware DB register not pointing to the process stack.
2. A faulty calling sequence.

3. An internal error in an MPE file intrinsic which the calling procedure cannot correct.

4. An internal inconsistency in the data base or Data Base Control Block discovered by a library
procedure.

In case 1, the procedure prints the standard MPE run-time abort message described in Section II, of
the Error Messages and Recovery Manual. In cases 2, 3, and 4, IMAGE prints additional information
on the standard list device about the error prior to printing the standard MPE abort message. The
first line of this information is:

ABORT: procedure name ON DATA BASE name;

where procedure name is the name of the library procedure which caused the abort and name is
the name of the data base being accessed at the time of the abort. Table A-7 describes additional
lines of information which may appear prior to the standard MPE abort message.

Some of the abort conditions are due to an error in one of the MPE file intrinsics FOPEN,
FREADLABEL, FREADDIR, FWRITELABEL, FWRITEDIR, or FCLOSE. Aborts of

this type generally occur after the procedure has possibly altered the data base so that the data
base structure has been damaged in some way. Each of the messages in table A-7 which refer to
an IMAGE data file is followed by an MPE file information display which lists all of the char-
acteristics of the MPE data set or root file where the error occurred, along with an MPE error
number. For more information about file error codes consult Section II of the Error Messages
and Recovery Manual and for the file information display, consult appendix A of that manual.

SEP 1978 A-9

Table A-4. IMAGE Library Procedure File System and Memory Management Errors

CCL PROCEDURE MEANING ACTION
-1 | MPE intrinsic FOPEN failure For DBOPEN, error may indicate that Determine which of
data base could not be opened. Possible probable causes ap-

reasons: plies and either

modify application
program or see sys-
tem manager about
file system error.

® Data base name string not terminated
with semicolon or blank

® Data base does not exist or is secured
against access by its group or account
security

® Data base is already opened exclusive
or in mode incompatible with
requested mode

® MPE file system error occurred.

| For DBOPEN, DBINFO, DBFIND, DBGET,

DBUPDATE, DBPUT, and DBDELETE,
error may occur if:

® The process has too many files open
external to the data base

® Data set does not exist or is secured
against access

® Some other MPE file system error has

occurred.
-2 | MPE intrinsic FCLOSE This is an exceptional error (should never N\
FAILURE happen) and is returned only by DBOPEN

or DBCLOSE. Indicates a hardware or
system software failure.

-3 | MPE intrinsic FREADDIR This is an exceptional error (as =2 above) Notify system
failure and is returned by DBOPEN, DBFIND, B nager of
" DBGET, DBUPDATE, DBPUT, DBDELETE ::forg
-4 | MPE intrinsic FREAD- This is an exceptional error (as -2 above)
LABEL failure and is returned by DBOPEN, DBINFO,
DBFIND, DBGET, DBUPDATE, DBPUT,
DBDELETE.

[NOTE: For condition words -1 through -4, second word of calling program’s status area is the data set
number for which file error occurred (zero indicates root file). Third word is MPE failure code re-
turned by FCHECK intrinsic. Refer to Error Messages and Recovery Manual, Section |1, for meaning
of this code.

A-10 SEP 1978

Table A-4. IMAGE Library Procedure File System and Memory Management Errors (Continued)

CCL PROCEDURE MEANING ACTION
-9 | MPE intrinsic GETDSEG This is an exceptional error and is returned Notify system mana-
failure. by DBOPEN when it cannot obtain extra ger of problem or
data segment for use as Data Base Control wait until system is
Block. This occurs if required virtual less busy.
memory space is unavailable or if required
DST entry is unavailable.
Second word of user’s status area is size (in
words) of data segment which memory
management was unable to supply. Third
word is MPE failure code returned by
GETDSEG intrinsic.
Table A-5. IMAGE Library Procedure Calling Errors
CCL CONDITION MEANING ACTION
-1 Bad base parameter For DBOPEN, the first two characters in Check application pro-
base are not blank, or data base name con- gram’s procedure call.
tains special characters other than period. Correct error in call.
For all other procedures, either first two
characters in base do not contain the value
assigned by DBOPEN, or exceptionally,
the parameters passed to procedure are
incorrect in type, sequence or quantity.
-12 | No covering lock For DBUPDATE, DBPUT, and DBDELETE, | Modify program to
data base has been opened in DBOPEN Mode | apply proper lock or
1 but there is no lock to cover entry in ques- | change mode.
tion. DBPUT or DBDELETE to master re-
quires data set or data base be locked. In
all other cases, entry, set, or data base can
be locked.
-14 | Hllegal intrinsic in current For DBPUT and DBDELETE data base Modify program.
access mode has been opened in DBOPEN Mode 2, 5, Alter either mode
6, 7, or 8. These procedures may not be or procedure call
used with these access modes. For or notify current
DBUPDATE, data base has been opened user that opera-
in DBOPEN Mode 5, 6, 7, or 8. tion cannot be
DBUPDATE may not be used with these performed.
modes.
-21 Bad password For DBOPEN, user class granted does not Supply correct
permit aceess to any data in data base. password.
This is usually due to incorrect or null
password.
SEP 1978 A-11

Table A-5. IMAGE Library Procedure Calling Errors (Continued)

CCL CONDITION MEANING ACTION

-21 | Bad data set reference For DBINFO (modes 104, 201, 202, 301, Check application
and 302), DBCLOSE, DBFIND, DBGET, program’s procedure
DBUPDATE, DBPUT, DBDELETE, call. Correct error
when data set reference is: in call.
® Numeric but out of range of the num-

ber of data sets in data base
® An erroneous data set name
® A reference to data set which is in-
accessible to user class established
when data base opened.
For DBFIND, this error is also returned
if referenced data set is a master.
Erroneous data set name may arise when
a terminating semicolon or blank is
omitted.

-21 | Bad data item reference For DBINFO (modes 101, 102, and 204), Check application
data item reference is: program’s procedure
® Numeric but out of range of the num- call. Correct error

ber of data items in data base in call.
® An erroneous data item name
® A reference to data item which is in-
accessible to user class established
when data base opened.
An erroneous data item name may arise
when a terminating semicolon or blank is
omitted.

-23 | Data set not writable For DBPLT and DBDELETE, data base Modify access mode
has been opened in DBOPEN Mode 1, 3, set in procedure call
or 4 and user has read but not write access or notify current
to the referenced data set. user operation can-

not be performed.

-24 | Data set is an automatic For DBPUT, the referenced data set is Modify data set name

master an automatic master. in call or in data set
type in schema.

-31 Bad mode This error occurs in all procedures when Correct mode in
the mode parameter is invalid. For procedure call.
DBGET, mode is 7 or 8 and referenced
data set is a detail, or mode is 5 or 6
and referenced data set is a detail with-
out search items.

-32 | Unobtainable mode For DBOPEN, root file cannot be See the MPE Intrinsics

FOPENed with access options
(AOPTIONS) required for the speci-
fied mode: Second word of calling
program’s status area is required

Reference Manual for
meaning of AOPTIONS
words.

A-12

SEP 1978

Table A-5. IMAGE Library Procedure Calling Errors (Continued)

CCL CONDITION MEANING ACTION

-32 | (continued) AOPTIONS, and third word is the
AOPTIONS granted to DBOPEN by
MPE file system.

This error usually occurs either due to Action depends on
concurrent data base access by other program’s design.
users or due to MPE account or group Normally notify user
security provisions. that requested access
mode is not available.

—5/1 Bad /ist length For DBGET, DBUPDATE, and DBPUT, Shorten /ist array con-
the list is too long. This may occur if list tents. If necessary,
is not terminated with a semicolon or change to numeric
blank. It may also occur for otherwise list.
legitimate lists which are too long for
IMAGE's work area.

It will never occur for numeric lists.
-52 | Bad /ist or bad item For DBGET, DBUPDATE, or DBPUT, the Check procedure call.
list parameter is invalid. /ist either has a Correct error in call
bad format or contains a data item refer- or parameter.
ence which:
® |s out of range of the number of data
items in the data base.

® Reference an inaccessible data item.

® Duplicates another reference in the list.

For DBFIND, the /tem parameter contains

data item reference which either:

® |s out of range of the number of data
items in the data base.

® |s not a search item for referenced data
set.

-53 | Missing search or sort item For DBPUT, a search or sort item of refer- Check procedure call.
enced data set is not included in /ist Correct error in call
parameter. or parameter.

-91 Bad root modification level For DBOPEN, the software version of Check with system

the DBOPEN procedure is incompatible
with version of schema processor which
created root file.

manager that you
have correct IMAGE
software. If neces-
sary ask HP support
personnel ahout
conversion.

A-13

Table A-5. IMAGE Library Procedure Calling Errors (Continued)

CCL

CONDITION

MEANING

ACTION

-94

-120

=121

-122

-123

-124

-125

-126

-127

-128

Data base not created

Data base bad

Not enough stack to per-
form DBLOCK

Descriptor count error

Descriptor list bad. Is
not entirely within
stack.

llegal relop in a
descriptor.

Descriptor too short.
Must be greater than
or equal to 9.

Bad set name/number.

Bad item name/number.

Attempt to lock using a
compound item.

Value field too short in a
descriptor.

For DBOPEN, the referenced data base
has not yet been created and initialized by

the DBUTIL program (in CREATE mode).

For DBOPEN, the referenced data base is
flagged ‘’bad’’, and cannot be opened by
programmatic calls to DBOPEN. A ‘‘bad"’
data base is structurally damaged, prob-
ably as a result of a system crash dur-

ing DBLOAD or some other “‘output
deferred’’ operation.

DBLOCK cannot obtain enough stack
space.

DBLOCK detected an error in the
descriptor count (first word of qualifier
array) in locking mode 5 or 6.

DBLOCK checked the list and found
that it did not lie between DL and the
top of stack. May be caused by a bad
length field.

DBLOCK encountered a relop field
containing characters other than
>=,<==Aor A=,

DBLOCK encountered a lock descriptor
less than 9 words long.

DBLOCK qualifier array contains an
invalid data set name or number. (Refer
to error -21 for rules.)

DBLOCK qualifier array contains an
invalid data item name or number.
(Refer to error =21 for rules.)

DBLOCK does not allow compound
items in lock descriptors.

A value field in a DBLOCK lock descrip-
tor must be at least as long as the data
item for which it is specified.

Run DBUTIL to
create data base. Try
application program
again.

Purge the data base

and restore a backup
copy, or erase the data
base and reload it. You
may be able to salvage
the current contents

by first performing a
serial DBUNLOAD.

:RUN or :PREP with
STACK= or
MAXDATA= to get
more stack space.

Count must be a
positive integer.

Check length of each
descriptor, and
descriptor count.

Check contents of
qualifier array.

Check contents of
qualifier array. Be
sure names delimited
by semicolon or
space if less than 16
bytes long.

Modify locking strategy
to lock on a non-
compound item.

Perhaps the length
word is too small in the
descriptor.

A-14

SEP 1978

Table A-5. IMAGE Library Procedure Calling Errors (Continued)

2047 words.

long lock descriptor lists (qualifier
array).

CCL CONDITION MEANING ACTION
-129 | P-type item longer than DBLOCK does not allow P-type data Modify locking strat-
P28 specified. items longer than 28 in lock descrip- egy to lock on a
tors. (27 digits plus sign.) different item.
-130 | Illegal digit in a P-type DBLQCK has encoumered é P-type Check qualifier array
value. value in a lock descriptor with an .
. . . . contents to determine
invalid packed decimal digit. . .
why data is invalid.
-131 | Lowercase character in DBLOCK has encountered a lower- Co.rrect data rep!'esen-
) tations are described
type-U value. case character in a type-U value . .
specified in a lock descriptor in the Machine In-
P ptor. struction Set Manual
- . . ion (11,
-132 | Hlegal digit in type Z Lock descriptor value specified to Section
value. DBLOCK contains an invalid zoned
decimal digit.
-133 | lllegal signin type Z Lock descriptor value specified to
value. DBLOCK contains an invalid zoned
decimal sign.

-134 | Two descriptors conflict. DBLOCK has detected two lock Check qualifier array
descriptors in the same call that lock contents for conflicting
the same or part of the same data base lock descriptors.
entity. (For example, lock on set and
data base in same request.

-135 | Second lock without A second call to DBLOCK has been Read discussion of

CAP=MR made without an intervening multiple calls to
DBUNLOCK call and program does DBLOCK in Section
not have MR capability. IV of this manual if

you plan to use
CAP=MR.
-136 | Descriptor list exceeds DBLOCK allows at most 2047 word Change qualifier array

contents so lock
descriptor list is
shorter.

SEP 1978

A-14a

Table A-ba. IMAGE Library Procedure Communications Errors

CCL CONDITION MEANING ACTION

-60 Illegal file equation When using a :FILE command with the Re-enter :FILE com-

on root file data base name or a data-base-access mand without illegal
file name, only the file designators and parameters.
DEV= parameters are allowed.

-100 {DSOPEN failure While executing a DBOPEN, IMAGE has Try opening the data base
encountered a hardware failure trying to again. If error persists
obtain a communications line. contact your HP Customer

Engineer.
-101 | DSCLOSE failure This is an exceptional error returned by Notify system maiiager

~-102 |DSWRITE failure

-103 | Remote stack too small

-104 | Remote system does not
support IMAGE

-105 [MPE intrinsic GETDSEG
failure on remote HP 3000

~-106 | Remote data inconsistent

-107 | DS procedure call error

DBOPEN or DBCLOSE. It indicates a
hardware or system software failure.

A line failure has occurred while attempt-

ing an operation on a remote data base.

May be returned by DBOPEN, DBFIND,
DBGET, DBPUT, DBUPDATE, DBDE-

LETE, DBLOCK, DBUNLOCK, DBIN-

FO, or DBCLOSE.

Command Interpreter on remote HP
3000 cannot obtain stack space neces-
sary to execute a DBOPEN or DBLOCK.

Remote HP 3000 does not contain
IMAGE software. May be returned
by DBOPEN.

This is an exceptional error and is
returned by DBOPEN on the remote
system when it cannot obtain an extra
data segment for the DBCB. Second
word of status array is size of data
segment.

This is an exceptional error returned
by same intrinsics as ~102 (see above).
It indicates a hardware or system soft-
ware failure.

This is an exceptional error returned
by same intrinsics as -102 (see above).
It indicates a hardware or system
software failure.

of problem.

Try calling the procedure
again. If error persists
notify system manager.

Ask system manager of
remote system to in-
crease available stack
size.

Ask system manager of
remote system to obtain
and load IMAGE
software.

Notify system manager
of problem.

Notify system manager
of problem,

Notify system manager
of problem.

NOTE: For condition codes -100 through -102, third word of calling program’s status area is MPE failure code

returned by DSCHECK intrinsic.

SEP 1978

A-15

Table A-6. IMAGE Library Procedure Exceptional Conditions

CCG

CONDITION

MEANING

ACTION

10

12

13

14

15

16

17

17

18

Beginning of file

End of file

Directed beginning of file

Directed end of file

Beginning of chain

End of chain

Data set full

No master entry

No entry

Broken chain

DBGET has encountered beginning of file
during a backward serial read. (There are
no entries before the one previously
accessed.)

DBGET has encountered the end of file
during a forward serial read. (There are
no entries beyond the most recently
accessed one.)

DBGET has been called for a directed read
with a record number less than 1.

DBGET has been called for a directed read
with a record number greater than the
capacity of data set.

DBGET has encountered beginning of
chain during a backward chained read.

DBGET has encountered end of chain
during a forward chained read.

DBPUT has discovered that data set is
full.

DBFIND is unable to locate master data
set entry (chain head) for specified detail
data set’s search item value.

DBGET has been called to reread an entry,
but no “current record’ has been estab-
lished or a call to DBFIND has set the
current record to 0. DBGET is unable to
locate master data set entry with specified
search item value.

DBGET has discovered that selected
record is empty (does not contain an
entry).

DBUPDATE or DBDELETE was called
when the ““current record’” was not estab-
lished or was empty.

For DBGET with mode parameter equal
to 5 (forward chained read), the “next
entry’’ on current chain (as designated by
internally maintained forward pointer for
data set) contains backward pointer which
does not point to most recently accessed

entry (or zero for first member of a chain).

/

Appropriate
action depends
on program
design.

Restructure data
base with larger
capacity for this
data set. See Sec-
tion VI.

\

/

Appropriate
action depends
on program
design.

Begin reading chain
again from first or
last entry.

A-16

Table A-6. IMAGE Library Procedure Exceptional Conditions (Continued)

CCG

CONDITION

MEANING

ACTION

18

20

22

23

24

25

(continued)

Data base locked or
contains locks.

Data set locked by
another process.

Entries locked within
set.

Item conflicts with
current locks.

Entries already locked.

For DBGET with mode parameter equal to
6 (backward chained read), the “‘next entry’’
on current chain in a backward direction

(as designated by internally maintained
backward pointer for data set) contains a
forward pointer which does not point to
most recently accessed entry (or zero for
last entry in a chain).

This error can arise in DBOPEN access
modes 1, 5, and 6 because another user can
make data base modifications concurrent
with this user’s accesses. When this error
occurs, no data is moved to user's stack,
although internal pointers maintained by
IMAGE in the DSCB are changed to new
“offending’’ entry. (It becomes the cur-
rent entry.) Note that this error check
does not detect all structural changes.
DBGET makes check only when preceding
call on data set was successful DBFIND or
DBGET.

DBLOCK (in conditional mode) has dis-
covered that whole data base cannot be
locked. Status word 3 explains why. It
equals 0 if data base locked, equals 1 if
data base contains locked data sets or en-
tries. Returned in DBLOCK mode 2 only.

DBLOCK has detected that the data set
is locked by another process or this proc-
ess through a different access path. Re-
turned in DBLOCK modes 4 and 6 only.

DBLOCK has detected that data entries
within requested data set are locked by
another process or this process through
a different access path. Returnedin
DBLOCK mode 4 only.

Lock descriptors passed to DBLOCK
specify a data item that is different than
one used to set existing locks. IMAGE
allows no more than one data item per
data set to be used at one time for lock-
ing purposes. Returned in DBLOCK
mode 6 only.

DBLOCK has detected that data entries
requested to be locked are already
locked by another process or this process
through a different access path. Re-
turned in DBLOCK mode 6 only.

Appropriate action
depends on program
design.

SEP 1978

A-17

Table A-6. IMAGE Library Procedure Exceptional Conditions (Continued)

CCG

CONDITION

MEANING

ACTION

41

42

43

44

50

51

52

53

54

61

62

Critical item

Read only item

Duplicate search item
value.

Chain head

Buffer too small

Insufficient stack for
BIMAGE temporary
buffer

Invalid number of parameters

Invalid parameter

Status array too small

This data base opened
more than 63 times by
same process

DBCB full

DBUPDATE has been asked to change
value of search or sort item.

DBUPDATE has been asked to change
value of a data item for which the user
does not have write access.

DBPUT has been asked to insert data
entry into a master data set with a
search item value which already exists
in data set.

DBDELETE has been asked to delete
master data set entry which still has one
or more non-empty chains.

Calling program'’s buffer (identified by
buffer parameter) is too small for amount
of information that DBGET or DBINFO
wishes to return.

The stack size is not large enough for the
temporary buffer used by the BASIC
IMAGE interface routines: XDBGET,
SDBPUT, XDBUPDATE, and XDBINFO.

Call to BIMAGE interface procedure has
either too many or too few parameters.

Call to BIMAGE interface procedure has
an invalid parameter, for example, a
parameter of wrong type.

The status array specified in call to
BIMAGE interface procedure has less
than 10 elements

DBOPEN has been called when the speci-
fied data base has already been opened 63
times by the same process.

IMAGE is unable to expand the trailer
area in the DBCB by enough to process a
DBGET, DBPUT, or DBUPDATE /ist.

Or, if DBLOCK returned condition:

Lock area within DBCB is full or system
would not allow IMAGE to expand DBCB,
or trailer could not be expanded to hold
descriptor list.

Correct call or notify
user cannot update
item.

Notify user, cannot
update item. Or
change password in
program.

N
Appropriate
action depends
[~ on program
design.
7

Correct procedure
call, or change buffer
name or size.

Ask system manager
to increase maximum
stack size.

Correct procedure
call.

Correct parameter
name in call or
parameter itself.

Dimension status
array with 10
elements.

A-18

SEP 1978

Table A-6. IMAGE Library Procedure Exceptional Conditions (Continued)

CCG CONDITION MEANING ACTION

63 Bad DBCB Another process sharing data base has
aborted because of logical inconsistency
or internal error in iIMAGE, leaving DBCB
in potentially inconsistent state. All user
accesses through existing DBCB are dis-
abled (except for DBCLOSE, mode 1).

Returned by all intrinsics.

64 PCBX data segment area DBOPEN is unable to open data base

full because there is no room for DBCB
entry in PCBX area (MPE portion of
data stack).

66 The current DBCB for

the data base does not
appear correct (IMAGE
internal error)

Txx Missing chain head User has attempted to add detail data Notify user cannot
entry with a search item value that does add entry or add
not match any existing search item value manual master
in corresponding manual master data set. entry and try again.
The digits xx identify the offending path
number established by order in which
their search items occur in set part of
schema.

2X X Full chain User has attempted to add detail data Consult with data
entry to a chain which already contains base manager. May
the maximum allowable (65535) entries. need to delete some
The digits xx identify the offending entries from chain or
path number (as described in 1xx). restructure data

base.

3xx Full master User has attempted to add detail data Restructure data
entry with a search item value in corre- base, increasing
sponding automatic master data set and capacity of auto-
new master entry cannot be created be- matic master. (See
cause automatic master data set is full. Section VI).

xx is offending path number, (as
described in 1xx).

SEP 1978

A-18a

Table A-7.

IMAGE Library Procedure Abort Condition Messages

MESSAGE

MEANING

ACTION

BUFFER SUPPLY CRISIS

CRITICAL LABEL READ
ERROR ON data set

CRITICAL READ ERROR ON
data set

LABEL WRITE ERROR ON
data set

LOST FREE SPACE IN
data set

NEGATIVE MOVE ATTEMPT: n

UNABLE TO CLOSE data set

UNABLE TO OPEN data set

WRITE ERROR ON data set

WRONG NUMBER OF PARAM-
ETERS OR BAD ADDRESS FOR
PARAM #n

Internal software inconsistency has caused
IMAGE to improperly manage its buffer
space.

Procedure was unable to read label of data
base file.

Procedure encountered MPE file read error
while reading data base file.

Procedure was unable to complete the
writing of user label of data base file.

Internal software inconsistency has caused
unused record locations in data set to be-
come lost or unavailable. IMAGE prints out
a file information display for the data set
file.

Internal software inconsistency has been
detected by IMAGE while attempting to
move data to or from user’s stack.

Procedure was unable to close a data base file.

Procedure was unable to open a data base file.

Procedure encountered an MPE file write
error while writing into data base file.

Address referenced by one of the parameters
is not within user’s stack area in memory
(roughly between the DL and Q registers).

n is positional number of the parameter in
procedure’s calling sequence. First param-
eter is number 1, second is number 2, etc.

Notify system mana-
ger and possibly HP
- support personnel of
error. Save FID in-
formation if printed.

It may be necessary
to perform data base
recovery procedures.
(See Section VI).

SEP 1978

A-19

UTILITY ERROR MESSAGES

Two types of error messages are generated by the Utility programs. The first type consists of con-
ditional errors associated with accessing the desired data base. For all utility programs except
DBUTIL, errors generating these messages can be corrected without terminating the run if you

are in session mode. DBUTIL errors of this type may terminate the program. After printing the
error message the DBUTIL program reprompts with two greater than symbols (>>). Other utilities
reprompt with the message: “WHICH DATA BASE?”, allowing you to re-enter the data base
reference. If you wish to terminate the utility program at this point you may type a carriage return
with or without leading blanks. If you are in job mode, conditional errors always cause program
termination. Conditional error messages and their meanings are described in table A-8.

Unconditional errors occur in utility programs after successful execution has already begun. These
errors usually cause program termination. The accompanying messages and their meanings are

described in table A-9.

Certain errors, external to the utilities, can result in utility program termination. Those caused by
the operating system or initiated by the console operator are explained in Section II or Section VII
of the Error Messages and Recovery Manual. Errors initiated by the library procedures called by
the utilities are described in tables A-4 through A-7 of this manual.

Table A-8. IMAGE Utility Program Conditional Messages

MESSAGE

MEANING

ACTION

BAD DATA BASE REFERENCE

BAD MAINTENANCE WORD

Cannot open data base

Data-base-access file does not
exist

Data-base-access file
name too long

DATA BASE ALREADY
CREATED

DATA BASE IN USE

Data base reference following the utiiity pro-
gram :RUN command contains syntax error.

User invoking utility is not the creator of the
referenced data base and has supplied incor-
rect maintenance word.

Data base cannot be opened at this time. It may
already be open in a mode that does not allow
concurrent access.

No such file exists in log-on group or account.

File name contains more than six characters.

User has invoked DBUTIL utility in CREATE
mode and has specified the name of a data
base which already exists.

Utility program cannot gain exclusive access
to the referenced data base because of other
current users.

In session mode,
correct error or
press return to
terminate pro-
gram.

Try DBUTIL
command again
later.

Check files in
group to deter-
mine correct
file name.

Rename file.
Try DBUTIL
command again.

In session mode,
correct error or
press return to
terminate pro-
gram.

A-20

SEP 1978

Table A-8. IMAGE Utility Program Conditional Messages (Continued)

MESSAGE

MEANING

ACTION

Data base is remote

Data base name too long

Data base or access file does
not exist.

Data base or access file name
required

Data base or access file name
too long.

DATA BASE REQUIRES
CREATION

DUPLICATE FILE NAME

Error reading root file label

Error writing root file label

EXCEEDS ACCOUNT DISC
SPACE

EXCEEDS GROUP DISC
SPACE

To use DBUTIL, you must be logged on to
the same group and account containing the
root file.

Data base name specified contains more
than six characters.

No such file exists in log-on group and
account.

Specified command must include data base
or access file name.

File name contains more than six characters.

Data base creator must run the DBUTIL pro-
gram in CREATE mode prior to executing
DBUNLOAD, DBLOAD, or DBUTIL in
ERASE mode.

Required file name is already assigned to
some other file. For example, if data base
STORE requires six data sets (STOREOQO1 —
STOREQG6), then a previously defined file
STOREO3 would trigger this message. It
can occur if data base is not purged before
executing DBRESTOR.

DBUTIL is unable to read the root file

DBUTIL has detected an error while
writing the root file label.

Amount of disc space required by data base
plus that already assigned to other files of
this account exceeds the amount of disc
space available to the account.

Amount of disc space required by data base
plus that already assigned to other files of
this group exceeds the amount of disc space
available to the account.

Do a remote logon
and run DBUTIL
from your remote
session.

Try command
again with
correct name.

Check files in
group to deter-
mine correct
file name.

Reenter command.

Reenter command
with correct name.

N
In session mode,
correct error or
— press return to
terminate pro-
gram.
/

Contact your HP
Systems Engineer

Contact your HP
Systems Engineer.

Request system man-
ager to increase
account’s disc space.

Request system
manager to increase
group’s disc space.

SEP 1978

A-21

Table A-8. IMAGE Utility Program Conditional Messages (Continued)

MESSAGE

MEANING

ACTION

FCHECK failure
FCLOSE faiture
FCONTROL failure
FENTRY failure
FGETINFO failure

File equates are illegal
for data base and data-base-
access files

FREAD error on ASCIHI
access file

FREADDIR failure

INSUFFICIENT DISC SPACE

INSUFFICIENT VIRTUAL
MEMORY

Invalid contents of ASCI|
access file

Invalid Data Base
Control Block

Invalid data-base-access
file name

Invalid data base name

Invalid data base name or
access file name

Invalid delimiter

Exceptional errors indicating a
hardware or software failure.

DBUTIL does not allow you to equate the
name of the data base or data-base-access
file to another file name using the :FILE
command.

Exceptional errors indicating a hardware
o software failure.

Amount of disc space required for data base
is not available from the system.

Amount of virtual memory available is in-
sufficient to open and access data base.

Specified data-base-access file does not
conform to required record formats.

IMAGE has encountered an inconsistency
in the DBCB.

File name or data base name must be 1 to
6 alphanumeric characters beginning with
an alphabetic.

Comma or space incorrectly positioned.

Notify system
manager of error

Use the :RESET
command to cancel
the :FILE command.
(Either break and
resume execution or
exit DBUTIL and
run it again.)

Notify system
manager of error

Consult with system
manager about disc
space requirements.

Try running utility
later when system
is not so busy.

Use the Editor
to check file
contents.

Contact your HP
Systems Engineer.

Reenter command
with correct name.

Use HELP to
check command
syntax and reenter
command.

A-22

SEP 1978

Table A-8.

IMAGE Utility Program Conditional Messages (Continued)

MESSAGE

MEANING

ACTION

Invalid maintenance word

Invalid number of buffers
specified

Invalid number of users
specified

Invalid parameter

Maintenance word required

The number of buffers must be
> =4 and <= 255.

The minimum number of users allowed
is 1 and the maximum is 120. The
ranges must be strictly increasing in
order.

User invoking utility is not the creator
of referenced data base and has failed to
supply a maintenance word.

An incorrect parameter has been specified.

Check maintenance
word specified,
reenter command.

Enter the SET
command again.

Enter the SET
command again.

Use HELP to
check command
format and
reenter command.

If DBUTIL, reenter
command with
maintenance word.
Otherwise, correct
error or press
return to terminate
program.

SEP 1978

A-22a

Table A-8. IMAGE Utility Program Conditional Messages (Continued)

Maintenance word too long

Non-creator access not
permitted

NO SUCH DATA BASE

Not a data-base-access file

Not a data base or data-base-
access file

Not a data base root file

Not a privileged data-base-
access file

NOT ALLOWED; MUST BE
CREATOR

Not an unprivileged data-base-
access file

OUTMODED ROOT

Maintenance word specified contains more
than 8 characters.

You must be the data base creator to perform
this function.

Specified data base does not exist in user’s
log on group.

Specified file is not a data-base-access file.

Data-base-access file has not been activated.

User invoking utility is not the creator of
the data base and data base has no mainte-
nance word.

Data-base-access file is already activated.

Root file of specified data base corresponds
to different version of IMAGE software and
is not compatible with utility program cur-
rently executing.

Reenter command
with correct main-
tenance word.

Check base name and
log on account and
group. Press return if
want to terminate.

Check file name
and try command
again.

Check data base
or file name and
try command
again.

Chieck specified
data base name.
Try command
again.

Check command
and reenter cor-
rectly.

Log on with correct
user name, account
and group.

Check command
and reenter com-
mand if desired.

Consult with system
manager to verify
correct version of
software. If necessary
ask HP support per-
sonnel about conver-
sion process.

A-23

Table A-8. IMAGE Utility Program Conditional Messages (Continued)

MESSAGE

MEANING

ACTION

Parameter expected

Parameter must be a command
Parameter specified twice
Premature EOF on ascii

access file

Root file does not exist

Too many parameters

Unknown command, try HELP

Specified command requires another
parameter.

Only command names may be specified
with HELP command.

DBUTIL encountered an end-of-file mark
before at least one =HELLO record in the
data-base-access file.

A root file with the name of the specified
data base does not exist in the log-on group
and account.

DBUTIL does not recognize specified
command.

Use HELP to
determine cor-
rect command
syntax.

Reenter command.

Reenter command.

Alter the file con-
tent using the
Editor.

Check data base
name specified and
reenter command.

Reenter command
with correct num-
ber of parameters.

Enter HELP com-
mand to get list
of all DBUTIL
commands.

A-24

Table A-9. IMAGE Utility Program Unconditional Messages

MESSAGE

MEANING

ACTION

AUTOMATIC MASTER IS FULL

ON PATH NUMBER n

***BAD DATA BASE™**

Cannot open terminal,
terminating

CHAIN IS FULL ON PATH

NUMBER n

DATA BASE UTILITY ERROR:

P1/p2/P3/P4/P5

DATA SET FULL

DBLOAD isunable to load a detail entry
because automatic master data set asso-
ciated with path n of detail data set is full.

This message is issued by DBSTORE,
DBRESTOR, and DBUNLOAD. [t means
the data base is flagged ‘‘bad’’ because of

a known structural error probably due to
an abnormal termination or to a system
crash during DBLOAD or some other “‘out-

put deferred’’ operation. The current oper-

ation (DBSTORE, DBRESTOR, or
DBUNLOAD) continues to function nor-
mally. DBLOAD additionally prints the
message “SERIAL UNLOAD FOLLOWS"”,
and automatically operates in serial mode.
The data base on disc retains its “‘bad’’ flag,
and cannot be accessed through DBOPEN.

DBUTIL is unable to access the terminal.

DBLOAD is unable to load a detail entry
because the chain count for path number
n of detail data set exceeds 216 -1 (or
65535 entries).

This message occurs when an unusual error
condition is returned by an IMAGE library
procedure. pq, pp, p3 are usually the first
three words of status area returned by
library procedure. Values of parameters
depend upon procedure and specific error
condition. pg is the PCODE of library
procedure, a number uniquely assigned to
the procedure to identify it. pg is an octal
PB-relative return address within code
segment of utility which initiated error
message. (pq through pg are decimal while
ps is octal.)

Data set currently being loaded is full.

Recreate root file
with larger capacity
for automatic master.
Rerun necessary
utilities.

The data base is not
usable in its current
state. Purge it and
restore a backup
copy, or erase it and
then load it from a
tape or serial disc
written by
DBUNLOAD or
from some other ex-
ternal copy of the
data.

Call HP Systems
Engineer.

Either delete some
entries from the chain
and reload or change
data base design if
necessary.

For more information
about the meaning of
the parameters, see
description of status
array following table
A-3. Also see Section
1V for a description
of library procedures.

Recreate root file,
increase data set’s
capacity. Run
utilities again.

SEP 1978

A-25

Table A-9. IMAGE Utility Program Unconditional Messages (Continued)

MESSAGE

MEANING

ACTION

***DBSTORE FAILED —
NO DATA BASE STORED*™*

Device must be TAPE or
SERIAL DISC

EQF seen, program terminating
File equate for

DBSTORE
DBRESTOR
DBLOAD
DBUNLOAD

may only use DEV

Hard terminal read error,
terminating

¥*INVALID SET COUNT*
NO MANUAL ENTRY FOR

DETAIL ON PATH NUMBER n

UNABLE TO CONTINUE

A file error or other system message
follows explaining the problem.

The output device for the DBSTORE file
must be a magnetic tape or serial disc.

A :EOD has been entered.

If you specify an input/output file with a
:FILE command for any of these utility
programs, only the file designators and
DEV= parameter are allowed.

DBUTIL cannot read input from terminal.

IMAGE has detected an inconsistency in
the data set count.

DBLOAD is attempting to load a detail data
set entry. n is the number of the detail data
set path referencing the manual master in
question.

DBUTIL program {operating in PURGE
mode) cannot continue execution due to
exceptional error in file system. This
information is followed by MPE file infor-
mation display. See Appendix A.

Contact your HP
Systems Engineer,

Run DBSTORE again
and change :FILE
command if neces-
sary.

Run DBUTIL again.

Enter :FILE com-
mand again and
rerun utility
program.

Notify HP Systems
Engineer.

Contact yoru HP
Systems Engineer.

Add entry to manual
master with applica-
tion program or
QUERY. RUN
DBLOAD again.

Save file information.
Consult with system
manager and HP
support personnel

if necessary.

A-26

SEP 1978

APPENDIX

RESULTS OF MULTIPLE ACCESS

When opening a data base with DBOPEN, IMAGE returns information in the status array describ-
ing the results of the procedure call. Table B-1 can be used to interpret these results when multiple
processes are using the data base.

Each box in Table B-1 is associated with a requested mode or IMAGE utility routine identified at
the far left of the row in which the box appears. It is also associated with a “‘possible’’ current
access mode or utility routine identified at the top of the column in which the box appears. The
contents of the boxes can be used to determine the results of a DBOPEN call.

If access is granted, condition code CCE is returned and the first word of the status array contains
a zero. The boxes containing ‘““G”’ represent this situation.

If access is not granted, and the reason relates to current data base activity, the results are like
those shown in the other boxes. There are two types of situations:

L] If the first two words of status contain -1 and O respectively, the third word of status will
contain a single number.* If that number is 48, 90, or 91, the failure occurred because
current access to the data base does not permit it to be opened in the requested mode. Find
the boxes in the ‘“‘requested mode” row which contain a number equal to the third status
word. The possible modes and utility routines which other processes may be using are the
ones which label the columns containing these boxes. For example, if the third status word
contains 48 and the requested mode is 2, the possible current modes are 1 and 5.

To find an alternate mode for accomplishing the task, look down the columns containing
these boxes for one containing a “G”’. If the requested mode labeling the row in which the
“G” resides can be used, try opening the data base with that mode. In the example above,
alternate modes would be 1 or 5 since these rows contain “G’’ in columns 1 and 5.

If the box with contents matching the third status word is in a column associated with a
utility, usually the only choice is to wait until execution terminates. When DBSTORE is
being run, it is possible to open the data base with mode 6 or 8.

® If the first word in the status array contains —32, the failure occurred because the root file
could be opened but not with the necessary AOPTIONS.** Use the same technique
described above to determine the possible current modes or other activity and to select a
course of action. For example, if the requested mode is 2 and the first word of status
equals —-32, possible current modes are 4 and 8, and the DBSTORE utility may be executing.

Messages enclosed in quotes are printed when the situation represented by the row and column
headings cccurs.

*This number is the MPE failure code returned from the FCHECK intrinsic. See the MPE Intrinsics Reference
Manual for MPE failure code meanings.

**This value can also be returned in situations not related to multiple access. See Appendix A in this manual
and the description of the AOPTIONS parameter of the FOPEN intrinsic in the MPE Intrinsics Reference
Manual.

B-1

Table B-1. Actions resulting from Multiple Access of Data Bases

CURRENT DBOPEN MODE

BEING
BEING BEING DBUNLOADed
T2 3 4 5 6 7 8 DBSTOREd DBRESTORed OR
DBLOADed
1| G|48|91 | 48| G |48 91 48 48 91 91
2 |48| G |91 |-32]48 |G 91 -32 -32 91 91
w
8 3 /90|90 |91 | 90|90 |90 | a1 90 90 91 91
s
2
w
& 4 9090|911 | 90|48 |G 91 -32 -32 91 91
[a4]
[a]
2 5 | G|48191 | 48| G |48 91 48 48 91 91
7
w
o]
o 6 |48 G |91 |G |48]G 91 G G 91 91
o
7 (90]90 |91 | 90|90 |90 91 90 90 91 91
8 |90|90 |91 | 90|48 |G 91 G G 91 91
. “"DATA
:RUN DBSTORE DATA-B,A,SE G | BASE G G “DATA BASE IN USE"
IN USE .
IN USE
‘RUN “DUPLICATE FILE NAME”
DBRESTOR
:RUN
DBUNLOAD “DATA BASE IN USE"”
OR
:RUN DBLOAD

Note: 48, 90, and 91 are values returned in the third status word and -32 is a value returned in the first
status word. G indicates access is granted.

SUMMARY OF DESIGN
CONSIDERATIONS || ¢

10.

11.

12.

13.

Keep one-of-a-kind information in master data sets, such as, unique identifiers. Keep duplicate
information in detail data sets, such as, records of events (sales, purchases, shipments).

Define a search item in a detail data set if you want to retrieve all entries with a common value
for that data item.

Use manual master data sets to prevent entry of invalid data in the detail search item linked
to the master through a path. Use automatic master data sets to save time if the detail search
items are unpredictable or too numerous to enter manually.

Limit the use of sort items to paths with relatively short chains in order to reduce the time
required to add and delete entries.

Select the path most frequently accessed in chained order as the primary path.
Remember that data items must be an integral number of words in length.

When selecting the maximum block size, consider the environment in which the data base will
be used. (Refer to Section I1I, $CONTROL command for more information.)

If you intend to use QUERY with your data base, use data types that QUERY accepts and
avoid using compound items, if possible.

In application programs either reference data items and data sets by name or use DBINFO at
the beginning of the program to initialize the data item and data set numbers in order to main-
tain data independence of the programs.

Refer to the discussion in Section IV to decide on appropriate access modes to use for your
application programs.

Analyze the time required to maintain the data base, for example, the time required to unload
and load the data base. The HP 3000 Contributed Library package IDEA* can assist you in
performing this analysis. It can also assist you in measuring the type of performance you will
get with the application based on the number of sessions running concurrently and the amount
of activity against the data base.

The capacity of each data set should be defined as realistically as possible since a capacity
that is too large wastes disc space. The capacity can be increased when necessary by restruc-
turing the data base as described in Section VI.

A master data set capacity equal to a prime number or to the product of two or three primes
generally yields fewer synonyms than a master data set capacity of many prime factors.

The account and group in which the data base resides must have enough file space available
to contain all the data base files.

*This package is offered by HP General Systems Division. Contact your local HP Sales Office for more information.

C-1

14.

15.

16.

If your application uses sorted paths, plan to add or delete entries (DBPUT,DBDELETE) to
sorted chains when the system is not very busy. If it is very busy, limit the data base activity
on sorted chains to reading and updating (DBUPDATE).

Do most of your locking at one level (data base, data set, or data entry).

If locking at the data entry level, do most of the locking using one item in each data set.
Otherwise, performance will be the same as if you were locking at the data set level.

C-2 SEP 1978

MULTIPLE RIN SPECIAL CAPABILITY

For the purpose of deadlock prevention, the system views any call to DBLOCK in which something
is actually locked as a lock on a single resource, even though the call may have specified multiple
lock descriptors. Any program which does not have the Multiple RIN capability (CAP=MR) can
only have one resource locked at a time, and thus can only call DBLOCK once without an
intervening call to DBUNLOCK.

It may be necessary for some applications to violate this rule. The purpose of this appendix is to
tell you how to avoid problems that may arise if you prepare your application programs with MR
capability (CAP=MR).

Some typical situations in which CAP=MR may be required are the following:

L] A program has two or more data bases open and wishes to lock part or all of each data
base simultaneously. (One or more of the data bases may be on a remote HP 3000.)

° A program wishes to lock an MPE file and a data base simultaneously.

o A program wishes to lock data entries in a data base and, after reading their contents, to apply
further locks. This is very dangerous and is not recommended, since deadlocks can occur very
easily.

The danger in all cases is that a deadlock may occur. For example, suppose process A has data set 1
locked and is trying to lock data set 9, and process B has data set 9 locked and is waiting for data
set 1. In this case, a deadlock has occurred and the only way to break it is to restart the operating
system.

IMAGE avoids deadlocks within single calls to DBLOCK by first sorting the lock descriptors into
an internally-defined sequence. It then applies the locks in ascending sorted order. You can use
the same strategy in avoiding deadlocks. First define an order in which entities should be locked
and then impose a rule on all programmers that this order be adhered to. The sequence of
unlocking is not important. The rule that you establish should apply to all lockable entities:

L data bases, data sets, and data entries
L] remote data bases, data sets, and data entries

® MPE files (FLOCK), global RINs (LOCKGLORIN), KSAM files (FLOCK), and files locked
with the COBOLLOCK procedure.

When applying multiple DBLOCK calls to the same data base, extreme caution should be
exercised since the deadlock situations can be very subtle. For example, if a process locks a data

set and then attempts to lock the data base, the process will wait for itself forever.

If it is absolutely necessary to make multiple DBLOCK calls, the following information about
how IMAGE performs locking may be useful.

SEP 1978 D-1

SORT SEQUENCE FOR LOCK DESCRIPTORS

IMAGE internally sorts the lock descriptors in ascending order as follows:
© Major key — data set number

® Minor key — lower bound of data item value

If a lock descriptor’s relop field contains << =, it collates before any other lock descriptors for the
data set since it has the lowest possible lower bound for it’s value. For example, a lock descriptor
of SALES:QUANTITY < = 10 collates before a lock descriptor of SALES:QUANTITY = 5,

since the lower bound of the former is the lowest possible integer value for an I-type data item.

CONDITIONAL LOCKS

During a DBLOCK, if IMAGE discovers a lock descriptor that is identical to one previously put
into effect by the same user through the same access path, it ignores the latest lock descriptor.

For example, the lock descriptor SALES: ACCOUNT = 89393899 is ignored if SALES: ACCOUNT
= 89393899 was locked earlier on the same access path. However, it will not be ignored if a

lock descriptor such as SALES: @ has been specified earlier.

If multiple lock descriptors are specified with mode 6 (conditional data entry locking), IMAGE
indicates how many locks have been applied when it returns to the calling process. It does not
release the successful locks even though all the requested locks have not been applied. Since
IMAGE ignores identical lock descriptors specified a second time, it is possible to call DBLOCK
again with the same descriptor list (if the program has MR capability). Those lock descriptors
that are already in effect will be ignored and the others will be tried again. The second word of
the status array contains the number of descriptors successfully locked in each call. This
technique will not cause deadlocks provided the lock descriptor list is not altered.

It is not recommeded that this technique be used in a tight program loop since system performance
will degarde markedly. However, it can be used to retry the locks in a situation where the

program prompts the user to determine whether the locks should be tried again, and the user
indicates that they should. (If the user does not want to continue trying to lock all the entities,

be sure to unlock the ones that succeeded.)

REMOTE DATA BASES

Locking remote data base entities is the same as locking local data base entities with the
following exception. If the local system has a user-created process structure, and each process is
locking a remote data base independently, the programs must have Multiple RIN capability since
they are in the same job/session. The only effect using MR capability has on the local system

is that the rule prohibiting multiple DBLOCK calls is not enforced. However, to access remote
data bases each local process must issue a separate REMOTE HELLO to ensure that it has a
corresponding (sister) process in the remote system.

The system does not force you to establish corresponding remote processes, but failure to do
so can result in the remote session permanently suspending and requires a remote system
restart to recover.

Hewlett-Packard does not accept responsibility for system lockouts and deadlocks
when Multiple RIN capability is in use with IMAGE/3000.

The DBUTIL command SHOW data-base-name LOCKS may be useful in tracing deadlocks that occur
when CAP=MR is used.

D-2

INDEX

A

abnormal termination of procedure, A-8
abort conditions, A-9, A-19
access
calculated, 4-11
chained, 4-11a
directed, 4-10
serial, 4-10
access modes
and data base operations, 4-4
and locking, 4-4, 4-13b
and read/write class lists, 2-13
concurrent, 4-3
definition of, 4-2a
selection of, 4-5
summary, 4-3
access paths, 4-2a
access remote data base, 8-1
access to data, granting, 2-13
account protection, 2-11
ACTIVATE, DBUTIL command, 6-7
activate DBA file, 6-5
actual file designators, 3-12
adding data, see DBPUT and XDBPUT
address primary, 7-2
algorithms for primary address calculation, 7-4
at-sign in DBA file, 8-8
automatic master, 2-5

B

backup, data base, 6-3

BASIC examples, 5-40

BIMAGE interface procedures, 5-40
bit map, 7-3

block size selection, 3-19

blocking factor, 2-10

BLOCKMAX option, 3-18

blocks, 2-10, 7-3

buffer length, 3-21

byte, 3-4

C

calculated access, 4-11
call statements, procedure, 4-17
calling errors, A-11
calls to BIMAGE procedures, 5-40
capacity
data set, 2-2
maximum data set, 3-9
CCE, 4-15, A-8
CCG, 4-15, A-8
meaning of, A-16
CCL, 4-15, A-8
meaning of, A-10

SEP 1978

I-1

chain, 2-5

empty, 4-29

head, 2-5,4-5, 7-2

synonym, 4-11, 7-2
chained access, 4-11

and current path, 4-8

and locking, 4-11
chains, data, 7-1
closing data base or data set, see DBCLOSE or XDBCLOSE
COBOL

examples, 5-2

sample program, 5-12
codes, condition, see condition codes
COMMAND intrinsic and DS, 8-3
commands, Schema Processor, 3-15

errors, A-3
comments in schema, 3-2
communication area of DBCB, 7-4
communications errors, A-15
complex numbers, 3-7
compound data items, 2-2
concurrent access modes, 4-3
condition codes, 4-15, A-8
condition word, 4-15

meaning of, A-10

values, additional for BIMAGE, 5-43
conditional errors, utility, A-20
continuation records, Schema Processor commands, 3-15
CONTROL command, 3-18
control blocks, 7-3a

size of, 7-3b
conventions, language, 3-1
copying data entries

to serial device, 6-23

from serial device, 6-27
copying entire data base

to serial device, 6-18

from serial device, 6-20
CREATE, DBUTIL command, 6-8
creating data base, 6-8
creator, data base, 1-6, 3-13
current path

and DBGET, 4-33

definition, 4-8

number and DBCLOSE, 4-18

number and DBFIND, 4-29
current record, 4-10

number and DBFIND, 4-29

rereading, 4-11a

D

data base
definition of, 2-1
description language, conventions, 3-1
designer, 1-6

locking, 4-13, 4-13¢
manager, 1-6
name, syntax, 3-2
operations and access modes, 4-4
structure, 2-1
data-base-access (DBA) file, 4-40
activate, 6-5, 6-10
change, 8-9
content, 8-5
deactivate, 6-5, 6-11
file code, 8-9
file name, 8-8
syntax rules, 8-8
using, 8-4
data base control block (DBCB), 2-16, 4-2
contents, 7-4
use of, 7-3a
data base creator, 1-6
data chains, 7-1
data elements, 2-1
data entry, 2-2
locking, 4-13, 4-13d
numbers, 4-8
data files, 2-10
data item, 2-1
compound, 2-2
identifiers, 3-7
length, 3-4, 3-5
locking, 4-13,4-13d
numbers, 3-7
packed, 3-6a
validity checking, 4-38d
data names, 3-8
data recovery, 6-3
data segment number, DBCD, 4-40
data set
capacity, 2-2
maximum, 3-9
control block (DBCB), 7-4
definition of, 2-2
detail, 2-3
locking, 4-13, 4-13d
names, 3-8
pointers, 4-33
rewinding, 4-15, 4-18
space allocation for, 7-5
summary table, 3-21
data types
use of, 3-5
DBCLOSE
BASIC example, see XDBCLOSE
calling sequence, 4-18
COBOL example, 5-10
description, 4-15
FORTRAN example, 5-27
SPL example, 5-32, 5-37
DBDELETE
BASIC example, see XDBDELETE
calling sequence, 4-20
COBOL example, 5-8

description, 4-12
FORTRAN example, 5-24
SPL example, 5-31
DBERROR
BASIC example, see XDBERROR
calling sequence, 4-22
COBOL example, 5-11
description, 4-16
FORTRAN example, 5-28
SPL example, 5-30
DBEXPLAIN
BASIC example, see XDBEXPLAIN
calling sequence, 4-26
COBOL example, 5-10
description, 4-16
FORTRAN example, 5-28
SPL example, 5-32
DBFIND
calling sequence, 4-29
description, 4-11
examples, see DBGET and XDBGET chained
DBGET
calculated
BASIC example, see XDBGET
COBOL example, 5-5
description, 4-11
FORTRAN example, 5-20
SPL example, 5-31, 5-37
calling sequence, 4-31
chained
BASIC example, see XDBGET
COBOL example, 5-6
description, 4-11
FORTRAN example, 5-21
SPL example, 5-36, 5-37
description, 4-8
direct
COBOL example, 5-4
description, 4-10
FORTRAN example, 5-19
SPL example, 5-35
rereading, description, 4-11a
serial
BASIC example, see XDBGET
COBOL example, 5-4
description, 4-11
FORTRAN example, 5-18
SPL example, 5-37
DBINFO
BASIC example, see XDBINFO
calling sequence, 4-34
COBOL example, 5-9
description, 4-13
FORTRAN example, 5-26
SPL example, 5-31, 5-35
DBLOAD utility, 6-27
DBLOCK
BASIC example, see XDBLOCK
calling sequence, 4-38
COBOL example, 5-9

I-2 SEP 1978

description, 4-13
FORTRAN example, 5-25
multiple calls to, 4-13f
SPL example, 5-31, 5-32
DBOPEN
BASIC example, see XDBOPEN
calling sequence, 4-40
COBOL example, 5-2
description, 4-2
FORTRAN example, 5-16
SPL example, 5-30, 5-35
DBPUT
BASIC example, see XDBPUT
calling sequence, 4-43
COBOL example, 5-3
description, 4-6
FORTRAN example, 5-17
sequence of entries, 4-7
SPL example, 5-32
DBRESTOR utility, 6-20
DBSTORE utility, 6-18
DBUNLOAD utility, 6-22
DBUNLOCK
BASIC example, see XDBUNLOCK
calling sequence, 4-47
COBOL example, 5-9
description, 4-13, 4-13g
FORTRAN example, 5-25
SPL example, 5-31, 5-32
DBUPDATE
BASIC example, see XDBUPDATE
calling sequence, 4-48
COBOL example, 5-7
description, 4-11a
FORTRAN example, 5-22
SPL example, 5-31
DBUTIL
ACTIVATE, 6-7
CREATE, 6-8
DEACTIVATE, 6-10
ERASE, 6-11
EXIT, 6-12
HELP, 6-13
PURGE, 6-14
SET, 6-16
SHOW, 6-16b
VERIFY, 6-17
DEACTIVATE, DBUTIL command, 6-10
deactivate DBA file, 6-5
defaults, SCONTROL command, 3-19
delete chain, 7-5
deleting data, see DBDELETE and XDBDELETE
description language conventions, 3-1
design
changes allowed when restructuring, 6-2
considerations, C-1
designer data base, 1-6
detail data set, 2-3
media records, 7-1
rules to add entries, 4-46

SEP 1978

I-3

rules to delete entries, 4-21
directed access, 4-10

and locking, 4-6
display DBUTIL commands, 6-13
Distributed Systems (DS/3000), 8-1
DS

messages, suppress, 8-6

user identification, 8-8
DSLINE command, 8-5
dynamic locking, 4-6

E

entering data, see DBPUT and XDBPUT

entries

migrating secondary, 7-5

primary, 7-2

secondary, 7-2
ERASE, DBUTIL command, 6-11
erasing data base, 6-11
error messages, A-1

library procedures, A-8

Schema Processor, A-1
errors

calling, A-11

communications, A-15

file system and memory management, A-10

interpreting, 4-16

procedure, 4-15, A-10

schema, 3-22

utility messages, A-20
ERRORS= option, 3-18
examples

BASIC, 5-40

COBOL, 5-2

FORTRAN, 5-16

RPG, 5-54

Schema Processor, 3-23

SPL, 5-29
exceptional conditions, errors, A-16
EXIT, DBUTIL command, 6-12
expressions, BASIC type-INTEGER, 5-42
extended sort field, 2-7
extents, file, 2-10

F

failures, system, 2-16
file, DBA, see data-base-access
FILE command, MPE, 3-12, 4-40
in DBA file, 8-5
file designators
actual, 3-12
formal, 3-12
file errors, Schema Processor, A-2
file name, 2-10
file system and memory management errors, A-10
files, data, 2-10
formal file designators, 3-12
FORTRAN examples, 5-16

G defining a, 6-8

delete, 6-16
group protection, 2-11 manager, data base, 1-6
manual master, 2-5
H master data set, 2-2
media records, 7-2
hardware condition code, A-8 rules to add entries, 4-44
HELP, DBUTIL command, 6-13 rules to delete entries, 4-20
maximum
I data items, 3-4
data set capacity, 3-9
identifiers, data item, 3-7 records in data set, 2-10
information about data base structure, obtaining, 4-14 media records, 7-1
interactive locking, 4-13d message
interactively establish communications, 8-2 ABORT, A-9
intrinsic numbers, 4-17 DBERROR, 4-23
item part, 3-4 format, DBEXPLAIN, 4-26
methods, remote data-base-access, 8-2, 8-4
L migrating secondary entries, 7-5
MPE :FILE command, 3-12
label, user file, 2-10 multiple access, B-1
language conventions, 3-1
languages, examples of, 5-1
levels of locking, 4-13b N
library procedure protection, 2-16
library procedures names
errors, A-8 data, 3-8
protection of, 2-16 data base, syntax, 3-2
summary of, 4-1 data set, 3-8
LINES= option, 3-18 nibble, 3-4
list constructs, special, 4-44 NOLIST option, 3-18
LIST option, 3-18, 3-20 NOROOT option, 3-18
and $PAGE command, 3-16 NOTABLE option, 3-18
listfile null password, 2-12

Schema Processor, 3-12 null read/write class lists, 2-12

utilities, 6-5 numbers
lock descriptors, 4-13 and DBGET record, 4-8
array format, 4-38a data item, 3-7
sort sequence, D-2
locking, see BDLOCK and XDBLOCK 0
locking/unlocking
and access modes, 4-4, 4-13b Opening data base, see DBOPEN and XDBOPEN
and chained access, 4-11 more than once, 4-41

and directed access, 4-6 operating instructions
and serial access, 4-10 Schema Processor, 3-12

and user classes, 2-16 utility programs, 6-5, 6-6
conditional, 4-13b, D-2 output, Schema Processor, 3-20
description of, 4-13 overview, IMAGE, 1-5
dynamic, 4-6
interactive, 4-13d P
levels, 4-13b
release of, 4-13g PAGE command, 3-16
remote data base, D-2 parameters
strategy, 4-13c¢ BIMAGE, 5-41
unconditional, 4-13b procedure, 4-17
unused, 4-17
M password part, 3-3
passwords, 2-12, 4-2a
maintenance word, 2-16 syntax, 3-3

change, 6-16 paths, 2-5

i 14 SEP 1978

pointers, 7-1 restructuring the data base, 6-2

data set, 4-33 retrieving data, see DBGET and XDBGET
primary address, 7-2 rewinding data set, 4-15, 4-18
calculation, 7-4 root file, 1-4, 2-10
primary entries, 7-2 length of, 3-21
primary path, 2-6 ROOT option, 3-18
and DBGET, 4-33 RPG
privileged file protection, 2-11 example, 5-55
procedure relation to IMAGE, 5-54
call statements, 4-17
calls, BASIC-IMAGE (BIMAGE), 5-40 S
errors, 4-15, A-10
abort condition, A-19 salvaging data, 6-4
exceptional conditions, A-16 Schema Processor, 3-1
messages, A-8 commands, 3-15
parameters, 4-17 errors, A-3
status information, 4-15 error messages, A-1
summary of, 4-1 example, 3-23
protection operating instructions, 3-12
account, 2-11 output, 3-20
data base, 2-11 summary of information, 3-20
group, 2-11 syntax errors, A-4
library procedure, 2-16 schema
privileged file, 2-11 comments, 3-2
utilities, 2-16 definition of, 1-4, 3-1
PURGE, DBUTIL command, 6-14 structure, 3-2
purging data base, 6-14 search items, 3-11
and DBPUT, 4-8
Q definition, 2-2
number per detail, 2-3
QUERY secondary address, 7-2
data types, 3-7 secondary entries, 7-2
definition of, 1-2 selecting a block size, 3-19
special considerations, 2-2 selection of access modes, 4-5
sequence of entries, DBUNLOAD, 6-23
R serial access, 4-10
and locking, 4-10
read class list, 2-12 SET, DBUTIL command, 6-16
reading data, see DBGET and XDBGET set part
reading methods, 4-8 details, 3-10
records, 2-2 masters, 3-8

sharing data base, B-1

current, 4-10
SHOW DBUTIL command, 6-16b

in data set, maximum, 2-10

media, 7-1 show locks, 6-16d

numbers and DBGET, 4-8 sort items, 2-7, 3-11

sizes, 2-10 sorted entries, maintenance of, 2-7
recovery of data base, 6-3 space allocation for data sets, 7-5
reinitializing data sets, 6-11 special list constructs, 4-44
release locks, 4-13¢g SPL examples, 5-29
remote data base status

access, 8-1 area contents, A-8

local application, 8-1 array, 4-17

locking, D-2 information and multiple access, B-1

referencing, 8-10 information, procedure, 4-15
remote log-on identification, 8-8 parameter, BASIC, special considerations, 5-43
rereading current record, 4-11 STORE command, MPE, 2-11
resource identification number, RIN, D-1 STORE data base, 2-9
RESTORE command, MPE, 2-11 storing entire data base, 6-18
restoring entire data base, 6-20 string variables, BASIC, 5-42
restrictions, RPG, 5-54 sub-items, 2-2

SEP 1978 I-5

count, 3-4
length, 3-4
summary
information, Schema Processor, 3-20
of access modes, 4-3
of library procedures, 4-1
of utilities, 6-1
table, data set, 3-21
suppress DS messages, 8-6
synonym chains, 4-11, 7-2
synonyms, 7-2
syntax errors, Schema Processor, A-4
syntax, Schema Processor commands, 3-15
SYSDUMP command, 211
system failures, 2-16

T

TABLE option, 3-18
textfile. Schema Processor, 3-12
TITLE command, 3-17
type designators, 3-4
and programming languages, 3-6
table of, 3-5
type-INTEGER expressions, BASIC, 5-42
type-INTEGER variable, BASIC, 5-43
types, data, 2-2
uses of, 3-5, 3-6a

U

unconditional errors, utility, A-25

unlocking the data base, see DBUNLOCK and XDBUNLOCK

unused parameters, 4-17
updating data, see DBUPDATE and XDBUPDATE
user class numbers, 2-11, 3-3
user file label, 2-10
user identification table, DS, 8-8
user local control block (ULCB), 2-16, 4-2
use of, 7-3a
user type AC or GU, 2-11
utilities
conditional messages, A-20
error messages, A-20
program operation, 6-5, 6-6
protection, 2-16
summary of, 6-1

\

VERIFY, DBUTIL command, 6-17

w

word, 3-4
write class list, 2-12

X

XDBCLOSE

calling sequence, 5-40

example, 5-52
XDBDELETE

calling sequence, 5-40

example, 5-49
XDBERROR

calling sequence, 5-40

example, 5-53
XDBEXPLAIN

calling sequence, 5-40

example, 5-53
XDBFIND

calling sequence, 5-40

example, 547
XDBGET

calculated, example, 5-46

calling sequence, 5-40

chained, example, 5-47

serial, example, 5-45
XDBINFO

calling sequence, 5-40

example, 5-51
XDBLOCK

calling sequence, 5-40

example, 5-49
XDBOPEN

calling sequence, 5-40

example, 5-43
XDBPUT

calling sequence, 5-40

example, 5-44
XDBUNLOCK

calling sequence, 5-40

example, 5-49
XDBUPDATE

calling sequence, 5-40

example, 548

Special Characters
$CONTROL command, 3-18
$PAGE command, 3-16

$TITLE command, 3-17
:FILE command, MPE, see FILE command

SEP 1978

READER COMMENT SHEET

HP 3000 Computer System
IMAGE
Reference Manual

32215-90003 Sep 1978

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate? Yes [No [] (If no, explain under Comments, below.)
Are the concepts and wording easy to understand? Yes [] No [] (If no, explain under Comments, below.)
Is the format of this manual convenient in size, Yes [J No [(If no, explain or suggest improvements
arrangement, and readability? under Comments, below.)
Comments:
FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO. 1020
SANTA CLARA
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States. Postage will be paid by

Publications Manager

Hewlett-Packard Company

General Systems Division =

5303 Stevens Creek Boulevard

Santa Clara, California 95050

p

HEWLETT T PACKARD

SALES & SERVICE OFFICES

AFRICA, ASIA, AUSTRALIA

ANGOLA
Telectra
Empresa Técnica de
quipamentos
Eléctricos, S.AR.L.
R. Barbosa Rodrigues, 42-1°DT.°
Calxa s?tal 6487

Tel: 35515/6
Cable: TELECTRA Luanda

AUSTRALIA
Newlett-Lchkam Australia
L

31-41 Joseph Street
Blackburn, Victoria 3130

P.0. Box 36

Doncnm East, Victoria 3109
Tel: 89-6351

Telex: 31-024

Cable: HEWPARD Melbourne

HewlellLchkard Australia
. Ltd.
31 Bridge Street
mbh

New South Wales, 2073
Tel: 449-6566
Telex: 21561
Cable HEWPARD Sydney
Hewlett-| P:ckard Australia
153 Greenhil Road
Parkside, S.A., 5063
Tel: 272-5911

Telex: 82536
Cable: HEWPARD Adelaide

Hewlett-Packard Australia
141 Stirling Highway
Nedlands, W.A. 6009
Tel: 86-5455
Telex: 93859
Cable: HEWPARD Perth
HewlenLP:ckard Australia
121 wmongon Street
Fyshwick, A. 609
Tel 95-2733

Telex: 62650
Cable HEWPARD Canberra
Hewlen Psckard Australia
5th Fvoov)
Teachers Union Bunlqu
495-499 Boundary Street
Spri2||2 Hgll 4000 Queensland
Cahle' HEWPARD Brisbane

GUA

Medxcal/PersonaI Calculalovs Only

Guam Medical Supply,
%Ease Bullqu, Room 210

T.mugln gssn
Cable: EARMED Guam

HONG K

KONG
Schmidt & Co (Hong Kong) Ltd.
P.0. Box 9

Connaugm Cemre,
39th Floor
Connaugm Road, Central

Kol
Tel: l?-ZSS;?!-S
Telex: 74766 SCHMC HX
Cable: SCHMIDTCO Hong Kong

INDIA

Blue Star Ltd.
Kasturi Buildings
Jamshedn Tata Rd
Bom 400 02

Tel: 29 21
Telex: 011-2156
Cable: BLUEFROST
Blue Star Lid.

Sah:
414/2 Vir Savarkar Marg
Prabhadevi
Bombay 400 025
Tel: 45 78 87
Telex: 011-4093
Cable: FROSTBLUE
Blue Star Ltd.
Band Box House
Prabhadevi
Bombay 400 025
el: 45 73 01
Telex: 011-3751
Cable: BLUESTAR
Blue Star Ltd.
7 Hare Street
P.0. Box 506

Calcutta 700 001

Tel: 23-0131

Telex: 021-7655

Cable: BLUESTAR

Blue Star Ltd.

Bhandari House

7th & 8th Floor

91 Nehru Place

New Delhi 110 024

Tel: 634770 & 635166

Telex: 031-2463

Cable: BLUESTAR

Blue Star Ltd.

Blue Star House

11/11A Magarath Road

Ban?alon 560 025
5668

Telex: 043-430

Cable: BLUESTAR

Blue Star Ltd.

Meeakshi Mandiram

xxx/lsn Manatma Gandhi Rd.
Cochi

Tel: 32069 32161 32282
Telex: 0885-

Cable: BLUESTAR

Blue Star Ltd.

1-1-11711

Sarojini Devi Road
Secunderabad 500 003
Tel. 70126, 70127

Telex: 015-459

Cable BLUEFROST

Blue Star Ltd

2/34 Kodambakkam High Road
Madras 600 034

Tel: 82056

Telex: 041-379

Cable: BLUESTAR

INDONESIA

BERCA Indonesia P.T.
P.0. Box 496/Jkt.
Jin.Abdul Muis 62

Jakarta
TeQ: 0369 49886 49255,356038

Cama BERCACON
BERCA lndonesna P.T.
P.0. Box 174/Sby.
23 Jin. Jnmerto
Sural

Tel: 420! 7

Cable: BErcacon

ISRAEL
Electronics Engineering Div.
of Motorola Israel Ltd.
16, Kremenetski Street
P.0.Box 25016
el-Aviv
Tel: 38973
Telex: 3
Cahle BASTEL Tel-Aviv

APAN
Yokauawa-Hewlen~Packard Ltd.
Chuo Bld% 4th Flool
4-20, Nishinakajima 5-cnoma
Yodugawa-ku saka-shi
Osaka,532
Tel: 06-304-6021
Telex: 523-3624
Yokogawa-Hewlett-Packard Ltd.
29-21, Takaido-Higashi 3-chome
Suomaml-ku Toky
Tel: 03-331-6
Telex: 232-: 2& YMP Tokyo
Cable: YHPMARKET TOK 23 724
Yokogawa-Hewlett-Packard Ltd.
Nakamo Building
54 kl;amn S:sa]lﬂ:-gcho
akamura-ku, oya,

Tel: 052 571-5171
Yokogawa-Hewlett-Packard Ltd.
Tanigawa Building
2-24-1 Tsuruya-cho
Kanauaw:-ku

kohama, 221
Tel 045-312 1252
Telex: 382-3204 YHP YOK

Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Building

105, 1-chome, San-no-mary
Mito, Ibaragi 310

Tel: 0292-25-7470
Yokogawa-Hewlett-Packard Ltd.
Inoue Buildin

1348-3, Asahi-cho, 1-chome
Amagl Kanaqawa 243

Yokogawa-! Hewlm Packard Ltd.
Kumagaya Asahi
Hachijuni Building
th Floor
3-4, Tsuki

Kumagaya, Saitama 360
Tel: 0485.}24 6563

KENYA

Technical Engineering
Services(E.A.)Ltd.

P.0. Box 18311

Nairobi

Tel: 55679/556680/557726
Telex: 22629

Cable: PROTON

Medical Dnl{

lntemallona Auadco(E A)Ltd.
P.0. Box

Nairobi Alrpon

Nairobi

Tel: 336055/56

Telex: 22201/22301

Cable: INTAERIO Nairobi

Samsung Electronics Cn Ltd.
;glh Flocr, Daeyongak B dg

1-KA
Choong Moo-Ro, Chung-Ku,
Seoul
Tel: (23) 6811, 778-3401/2/3/4

Telex: 22
Cable ELEKSTAR Seoul

MALAYSIA
Tekmk Mutu Sdn. Bhd.
2 Lorong 13/6A

Pe!almgg:}ya ,Selangor

Telex: MA 37605
Pr%lsl Enqmeenna

X
Lot 259, Samk Road
Kuchm Sarawak

: 53
Cable PROTELENG

MOZAMBIQUE

AN. Goncalves, Ltd.

162, 1° Apt. 14 Av. D. Luis
Caixa Postal 107

Maputo

Tel: 27091, 27114

Telex: 6-203 NEGON Mo
Cable: NEGON

NEW ZEALAND

Hewlett-Packard (N.Z.) Ltd.
4-12 Cruickshank Street
Kilbirnie, Wellington 3
P.0. Box 9443

Tel: 877-198

Cable: HEWPACK Wellington
Hewlett-Packard (N.Z.) Ltd.
Pakuranga Professional Centre
267 Pakuranga Highway

Box 51092

Pakuran

Tel: 569-651

Cable: HEWPACK Auckland
Analytical/Medical Only

Medical Supplies N.Z. Ltd
Scientific Division

79 Carlton Gore Road, Newmarket
P.0. Box 1234

Auckland

Tel: 75-289

Cable: DENTAL Auckland
Analytical/Medical Only
Medical Supplies N.Z. Ltd.
Private Bag

Norrie and Parumoana Streets
Porirua

Tel: 75-098

Telex: 3858
Analytical/Medical Only
yeodical Sgpplles N.Z. Ltd.

239 Stanmore Road
Chrlnehurch
892-019

Cablo DENTAL Christchurch
Analytical/Medical Only
Medical Supplies N.Z. Ltd.
303 Great King Street
P.0. Box 233
Dunodln
Tel: 88-
Cable: DENTAL Dunedin
NIGERIA
The Electronics

Instrumentations Ltd.
N6B/770 Oyo Road
Oluseun House
P.M.B. 5402
lbad‘n

Tel: 615
Telex: 31231 TEIL Nigeria
Cable: THETEIL Ibadan

The Electronics Instrumenta-
144 Aaeoe Motor Road, Mushi
4 Agege Motor Road, Mushin
.0,‘301 6645

o8
Cable: THETEIL Lagos

PAKISTA|

Mushko & Company Ltd.
Oosman Chambe

Abdullah raroon Roau

i-3
Tel: 511027, 512927
894

Telex: 2

Cable: COOPERATOR Karachi
Mushko & Company, Ltd.
388, Satellite Town

Fhwu indi

Tel: 41924
Cable: FEMUS Rawalpindi

PHILIPPINES
The Online Advanced
Systems Corporation
Rico House
tmarsol?’ ﬁor. H&nﬂa Str.
egaspi Village, Makati
o8 Bor 515

Me!r Mani
Tel: 85-35- 81 85-34-91,85-32-21
Telex: 3274 ONLINE

RHODESIA

Field Technical Sales
45 Kelvin Road North
P.0. Box 3458
Salisbu

Tel: 7052?1 (5 lines)
Telex: RH 4|

SINGAPORE

Hewlett-Packard Singapore
(Pte.) Ltd.

1150 Depot Road

Alexandra P.0. Box 58

Singapore 4

Tel: 270-2355

Telex: HPSG RS 21486

Cable: HEWPACK, Singapore

SOUTH AFRICA
Hewlett-Packard South Africa
(Pty.), Ltd

Private Ba Wendywood

Sandton, Transvaal, 2144

Hewlett-Packard Centre

Daphne Slree:l,‘ Wendywood,
o

ndton,
Tel: 802-1040/8

Teiex: 8-4782

Cable: HEWPACK Johannesburg

Hewlett-Packard South Africa

S

Howard Pla:e Cape Province, 7450
Pine Park Centre, Forest Drive,
Pinelands, Cape Province, 7405
Tel: 53-7955 thu 9

Telex: 57-0006

TAIWAN

Hewlett-Packard Far East Ltd.
Taiwan Branch

39 Chung Hsiao West Road
Sectlon + Tth Floor

Tel p3‘819160 4,3141010,3715121
0-279

Ext. 271
Cable: HEWPACK TAIPE|
Hewlett-Packard Far East Ltd.
Taiwan Branch
68-2, Chuno Cheng 3rd. Road
Kaoh:
Tel: (07) 245318 -Kaohsiung
Analytical Only
San Kwang Instruments Co., Ltd.
20 Yunu Sui Road

Taipel
Tel: 3715/71-4 (5 Imes)
Telex: 22894 SANKW)
Cable: SANKWANG Talpel

TANZANIA
Medical O J
lpmgmsahon Aeradio (E.A.), Ltd.

Dar es Sllnm

Tel: 21251 Ext. 265
Telex: 41030
THAILAND

UNIMESA Co. Ltd.

Elcom Research Budqu
2538 Sukumvit Ave.
Bangchak,Bangkok
Tel: 3932387, 3930338
Cable: UNIMESA Bangkok

UGANDA

Medical Only

International Aeradio(E.A.), Ltd.
P.0. Box 2577

Kampala

Tel: 54388

Cable: INTAERIO Kampala

ZAMBIA
R.J. Tilbury (Zambia) Ltd.
P.0. Box 2792

Lusaka
Tel: 73793
Cable: ARJAYTEE, Lusaka

OTHER AREAS NOT LISTE?. CONTACT:

ge;gm Packan! Intercontinental
21
Palo Alto Calﬂorma 94304
Tel: (415) 856-1

TWX: 910-373- 1267
Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

CANADA

ALBERTA
Hewlett-Packard Canada) Ltd.
11620A - 168th
Edmorgon T5M 379
Tel: (40 452-3670

TWX: 610-831-2431
Hewlett-Packard (Canada) Ltd.
210,7220 Flsher St. S.E.

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way

MANITOBA
Hewlett-Packard (Canada) Ltd.
380-550 Century St.

NOVA SCOTIA
HMetl-Packam (Canada) Ltd.
800 Wmd oad

ONTARIO
Hewlett-Packard (canaua) Ld.
1020 Morrison D
Ottawa K2H 8K7
Tel: (613&'8206483

Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive

QUEBEC
Hewlett-| Packard (Canada) Ltd.
275 Hymu

Pointe clalu H9R 167

Iga Richmond Vi Winnipeg R3H OY1 Missisanuga L4V 1M el (8141 97423 FOR CANADIAN AREAS NOT LISTED:
Lo 745!) 2532713 Tel: (604) 270-2277 Tel: (204) 786-6701 % (902) P T (416) 6785430 4223022 Contact Hewlett-Packard (Canada)
Twx: 610-821-614l TWX: 610-925-5059 TWX: 610-671-3531 TWX: 610-271-4482 HFX TLX: 05-821521 HPCL Ld. in Mississauga.

ECUADOR nz)lucg M
ARGENTINA . Hewilett-Packard Mexicana,

% " Computadoras y Equipos S.A. di
rslexller! Packard Argentina Ego g iCO! 08 53 Cal ?v Penm;zcomsur'No 6501
LA, e ‘epepan, Xochimilco

fuyrcandro N. Mem 822 - 12 Eloy Alvaro No. 1824,3°Piso Mexico 23,
Jo senesass R 4 1o SR o0
Telex: 122443 AR CIGY *
Cable: HEWPACKARG Hewlett Packard do Brasil coLomeiA Teloe 3548 CYEDE ED

Biotron S.A.C.Ly M.

Bolivar 177

1066 Buenos Aires

Tel: 30-4846, 34-9356, 34-0460,
Telex: 17595

BOLIVIA

Casa Kaviin S.A.
Calle Potosi’ 1130
P.0. Box 5

La an
Tel: 41530,5322

Telex CWC BX 5298 ITT 3560082
Cable: KAVLIN

BRAZIL
:mnen -Packard do Brasil

Ahmeda Rlo Negro, 750

0&00 Barueri SP

Tel: 429-3222
Cable: HEWPACK Sao Paulo

Rua Padre Chagas, 32
90000-Pérto Alegre-RS

Tel: (0512) 22-2998, 22-5621
Cable: HEWPACK Potto Alegre
Hewlett-Packard do Brasil
l.e.C. Ltda

Rua Slqbuelra Campos, 53

Copacaba
-Rio mlr&RJ
Tel: 257- BO 94 000 (02
Telex: 391-212-1905 HEW -BR
Cable: HEWPACK
Rio de Janeiro

CHILE

Calcagni y Metcalfe Ltda.
Alameda 580-0f. 807
Casilla 2118

Santlago, 1

Tel: 398613

Telex: 3520001 CALMET
Cable: CALMET Santiago

Henrik A. Langebaek & Kier S.A.

Carrera 7 No. 48-75

Apartado Aereo 6287

Bogotsd, | D.E.

Tsl 59-8&-77

Telex: 044-400

Cable: AARIS Bogotd

Instrumentacion

H.A. Langebaek & Kier S.A.

ﬂ)arlado Aereo 54098
ledellin

Tel: 304475

COSTA RICA

Cientifica Costarricense S.A.
Avenida 2, Calle 5

San Pedro de Montes de Oca
Apartado 10159

San J

n Jose

Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
Cable: GALGUR

Cable: Sagita-Quito
Medical Only
Hospitalar S.A.
Casilla 3590
Robles 625

Quito

Tel: 545-250
Cable: Hospitalar-Quito

EL SALVADOR

Instrumentacion y Procesamiento
Electronico de el Salvador

Bulevar de los Heroes 11-48

San Salvador

Tel: 252787

GUATEMALA

IPESA

Avenida Reforma 3-48,
ona 9

Guatemala cny
Tel: 316627,314786,66471-5,6xt.9
Telex: 4192 Teletro Gu

Hewilett- lEackaro Mexicana,

Ave. Constltucnon No 2184
Monterre 5 N.L

Tel: 48-71-32, 48-71- 84
Telex: 038-410
NICARAGUA

Roberto Terdn G.

Apartado Postal 689
Edificio Terdn

n?ua
Tel: 25114, 23412,23454,22400
Cable: ROTERAN Managua

PANAMA

Electrdnico Balboa, S.A.

P.0. Box 4929

Calle Samuel Lewis

Culdad de Panama

Tel: 64-2700

Telex: 3485126 Curundu,
anal Zone

Cable: ELECTRON Panama

PERU
Compadla Electro Médica S.A.
Los Flamencos 145

San lsudro Casilla 1030

Tel 4 4325
Telex: Pub. Booth 25424 SISIDRO
Cable: ELMED Lima

URUGUAY

Pablo Ferrando S.A.

Comercial e Industrial

Avenida ltalia 2877

Casilla de Correo 370
Montevideo

Tel: 40-3102

Telex: 702 PUBLIC BOOTH PARA

02
Cable: RADIUM Monievideo

VENEZU
gswlen Packard de Venezuela

P.0. Box 50933

Caracas 105

Los Ruices Norte

3a Transversal

Edificio Segre

Caracas 107

Tel: 35-00-11 (20 lines)
Telex: 25146 HEWPACK
Cable: HEWPACK Caracas

FOR AREAS NOT LISTED, CONTACT:

Hewlett-Packa
Inter- Amencas

3200 Hillview Ave.
Palo Alto, California 94304
56-1501

Tel:
0 FERRANDO TELEFONO
Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

EUROPE, NORTH AFRICA AND MIDDLE EAST

AUSTRIA
Hewlett-| Packard Ges.m.b.H.
Hande ska

P.0. Box
A-1205 Vlenna
Tel: 351620-29
Cable: HEWPAK Vienna
Telex: 75923 hewpak a

BELGIUM
Hewlett-Packard Benelux

SAMNV.
Avenue du Col-Vert, 1,
Groenkraaglaan)
1170 Brussels
rer (02) 660 0047,672-2240
le: PALOBEN Brussels
Tctcx 23-494 paloben bru

CYPRUS

K;pronics

19 Gregorios Xenopoulos Street
P.0. Box 1152

Nicosia

Tel: 45628/29

Canla szromcs Pandehis

CZECHOSLOVAKIA
Vyvojova a Provoznr Zak!adna
Vyzkumnych Ustavu i

FRANCE
Hewlett-Packard France
Quartier de Courtaboeut
Boite Postale No. 6
F-91401 Ofuy Cedex
Tel: (1) 90,

Cable: HEWPACK Orsay
Telex: 600048

Hewlett-Packard France
Bureau de vente de Lyon

e
Chemm des Mouilles

162
F-69130 Ecully Ccdex
Tel: (78) 33
Cable: HEWPACK EcuIy
Telex: 3106 17
Hewlett-Packard France
Bureau de vente de Toulouse
Péricentre de la Cépiére
Chemin de la Cépiére, 20
F-31300 Toulouto-Lo Mirail
Tel: 1612‘
Cabl EWPACK 51957
Telex: 5109!
Hewlett- Packard France
Le Ligoures
Bureau de vente de Marseilles
Pla:;;eogouée de Villenueve

Hewlett-Packard GmbH
Technisches Biro Hamburg
Wendenstrasse 23
D0-2000 Hamburg
Tel: (040) 24 13 93
Cable: HEWPACKSA Hamburg
Telex: 21 63 032 hphh d
Hewlett-Packard GmbH
Technisches Biiro Hannover
Am Grossmarkl 6

nnover 91
Tel 10511) 46 60 01
Telex: 092 3259
Hewlett-Packard GmbH
Technisches Buro Nurnberg
Neumeyerstrasse 90

D-85001
Tel (0911) 56 30‘83
elex:

Hewletl Packard GmbH
Technisches Buro Munchen
Eschenstrasse 5

-8021 Tautkirchen
Tel: (089) 6117-1
Hewlett-Packard GmbH
Buro Berlin

CSSR-25097 Bu:hovlco u Prahy
Tel: 89 93 41

Telex: 121333

Institute of Medical Bionics
Vyskumnsy Ustav Lekarskej Bioniky
Jedlova

CS-88346

Bratisiava-Kramare

Tel: 4251
Telex: 93229

DDR
Entwicklungslabor der TU Dresden
Borschungsinsti(nl Meinsberg

ﬂ-ldholm/mlnlbcvg
Tel: 37 667

Telex: 518741

Export Contact AG Zuerich
Guenther Forgber
Schlegelstrasse 15

1 Berlin

Tel: 42-74-12

Telox' 111389

DEN
wmm ggckard NS
K 3460 Blrkorod
I: (02
Cahle: EWPACK AS
Telex: 37409 hpas dk
Hewlcn Packard NS
avervej
DK 8606 Silkeborg
Tel: (06;82 71 66
Telex:

409 hpas dk
Cable: HEWPACK AS

EGVPT

E.A.
Inlematronal Enolneerlnu Associates
24 Hussein Hegazi Street
Kasr-el-Aini

iro

Tel: 23 829
Telex: 2067
Cable: INTENGASSO
Mohamed Sami Amin
Sami Amin Trading Office
18 Abdel Aziz Gawish

bdine-Cairo

Tel: 24932
Cable: SAMITRO CAIRO

FINLAND
Hewilett-Packard OY
Nahkahousunti §

P.0. Box 6

SF-00211 Mclllnkl 21

Tel: (90) 69.

Cable: HEWPACKOV Helsinki
Telex: 12-1563 HEWPA SF

Tel (4J

Cable: EWPACK MARGN
Telex: 410770
Hewlett-Packard France
Bureau de vente de Rennes
2, Allee de la Bourgnette

B.P. 1124

F-35100 Rennu Cédex
Tel: (99) 51

Cable: HEWPACK 74912
Telex: 740912

Hewilett-Packard France
Bureau de vente de Strassbourg
18, rue du Canal de Ia Marne
F-67300 19

Tel: (88) 83 OB 0/83.11.53
Telex: 89014

Cable: HEWPACK STRBG
Hewlett-Packard France
Bureau de vente de Lille
Immeuble Péricentre

Rue van G ?

F-59650 Vil omuvn d Ascq
Tel: (20) 91.41.2

Telex: 18.01.24F
Hewlett-Packard France
Bureau de Vente

Centre d' affaires Paris-Nord
Batiment Ampére

Rue de la Commune de Paris
B.P. 300

F-93153 Le Blanc Mesnil Cédex
Tel: (01) 931 88 50
Hewlett-Packard France

Bureau de vente de Bordeau

Tel (56) 97 22 69

GERMAN FEDERAL REPUBLIC
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt

Berner Strasse 117

Posttach 560 140

04-1
Cable HEWPACKSA Franldurl
Telex: 04 13249 hpffm
Hewlett-Packard GmbH
Technisches Buro Boblingen
Herrenberger Strasse 11

D-7030 Béblingen, Wirttemberg
Tel: (0703) 667-1

Cable: HEWPACK Boblingen

Telex: 07265739 bbn

Hewlett- Packard GmbH

Kaithstrasse 2-4
D-1000 Berlin 30

Tel: (030) 24 90 86
Telex:018 3405 hpbin d
GREECE

Kostas Karayannis
6 Omrrou Street

133
Tel: 32 30 303/32/37 731
Telex: 21 59 62 RKAR GR
Cable: RAKAR ATHENS
Analytical On|
INT?‘CO Y
G. Papathanassiou & Co.
17 Marni Street
Athens 103
Tel: 5522 915/5221 989
Telex: 21 5329 INTE GR

ITALY

Hewlett-Packard Italiana S.p.A.

Via Amerigo Vespucci 2
Casella postale 3645
1-20124 Milano

Tel: (02) 6251 (10 lines)
Cable: HEWPACKIT Milano
Telex: 32046

Hewlett-Packard Italiana S.p.A.

Via Pellizzo 9

1-35100 Padova

Tel: (049) 66 48 88
Telex: 41612 Hewpacki

Hewlett-Packard Italiana S.p.A.

Via G Armellim 0
1-00143
Tel (osr 54 69 61

x: 615
Cable HEWPACKIT Roma

Hewlett-Packard Italiana S.p.A.

Corso Grovanm Lanza 94
1-10133 T
Tel:(011) 682245/559308

Medical/Calculators Only

Hewlett-Packard Italiana S.p.A.

Via Principe Nicola 43 G/C
1-95126 Catania
Tel:(095) 37 05 04

Hewlett-Packard Italiana S.p.A.

Via Amerigo Vespucci, 9
1-80142 Napoli

Tel: (081) 33 71
Telex: 61.51.4 Via Rome

Hewlett-Packard Italiana S.p.A.
Masi 9 B

Via E.

1-40137 Bologna

Tel: (51) 30 78 87

JORDA|

Mouasher Cousins Co.

P.0. Box 1387
mmun

Tel: 2

4907/39907
Telex: SABCO JO 1456
Cable: MOUASHERCO
KUWAIT
Al- Khal'drya Trading &

Cable: INTEKNIKA P.0. Box ox 838 saft
Medical Only Kuwi
Technomed Hellas Ltd. Tel: 42 4910/41 1726
52 Skoufa Street Telex: 2481 Areeg kt
Athens 135 Cable: VISCOUN
el:
3 LUXEMBURG
felex: 21 4633 HewittPacard Beneiux
HUNGARY Avenue du Col-Vert, 1
MTA ¢ &G;oenkraaalaan)
s
Szolgalata Tel: (02) 672 22 40
Hewlett-Packard Service Cable: PALOBEN Brussels
l‘.gginsl(s, 67, P.0.Box 241 Telex: 23 494
1Budapest VI
Tel: 42 03 38 MoRoceo
Telex: 22 51 14 81 rue Karatchi
ICELAND Casablanca
Medical Only Tel: 22 41 82/87
Elding Trading Company Inc. Telex: 23051/22833
Hatnarnvoli - Tryggvay Cable: MATERIO
.0.Box 895 Gere,
1S-Reykjavik 190 Brva Bramm Roudani
Tel: 158 20/1 63 03
Cable: ELDING Reykjavik Tel 25 15 75/25 90 99
IRAN 23 739
Cable GEREP-CASA

Hewlett-Packard Iran Ltd.
No. 13, Fourteenth St.
Mir Emad Avenue

P.0. Box 41/2419
Tehran

Tel: 851082-5
Telex: 213405 hewp ir
IRELAND

NI
Hewlett-Packard Ltd.
llgi;lq Street Lane

Emanuel-| Leuru Str 1(Seestern)
: ﬂdofl

l’e (0211) 5¢
Telex: 085/86 533 hpdd d

Berks, RG11 5AR
Tel: (0734) 784774
Telex: 847178

Cable: Hewpie London

Cog

2 Rue d' Agadir, B.P. 156
Casablanca

Tel: 27 65 40

Telex: 21 737

Cable: COGEDIR

NETHERLANDS
Hewilett-Packard Benelux N.V.
Van Heuven Goedhartlaan 121
P.0. Box 667
NL- Amstelveen 1134
Tel: (020) 47 20 21

Cable: PALOBEN Amsterdam
Telex: 13 216 hepa ni

NORWAY

Hewlett-| Packard AIS
Osterdales

P.0. Box

N-1345 Osteraas

Tel: (02) 1711 80
Telex: 16621 hpnas n
POLAND

Hewmt Packard Espahala S.A.
v Ramdn y C:
Edrlrcro Sevrlla plama 9°

e 5
Tel 54 44 54/58
Hewlett-Packard Es
Edrficro Alba (kS

Tel 23 83 06/23 82 06

Hewlett-| Packard Espanora S.A.
C/Ramon Gordil
€ (Entio.)

fiola S.A.

Biuro ji

Hewilett-Packard

Ul Stawki 2, 6P

-950 Warszawa

Tel: 33.25.88/39.67.43

Telex: 81 24 53 hepa pl

UNIPAN

Bruru Obsluor Techmczner
01-447 War.

ul Nowelsn 6

Poland

Zaklaedjy Naprawcze Sprzetu
Medycznego

Plac Komuny Paryskiej 6
90-007

Tel: 334-41, 337-83

Telex: 886981
PORTUGAL
Telectra-Empresa Técnica de

Equipamentos Eléctricos S.a.r.l.
Rua Rodrigo da Fonseca 103

P-Lisbon 1

Tel: (19) 68 60 72
Cable: TELECTRA Lisbon
Telex: 12598
Medical only
Mundinter
gnerclambio Mundial de Comércio
arl
P.0. Box 2761
Avenida Antonio Augusto
de Aguiar 138
- Lisbon
Tel: (19) 53 21 31/7
Telex: 16691 munter p
Cable: INTERCAMBIO Lisbon

RUMANIA
Hewlett- Packard Reprezentanta
Bd n Ba 16

Tel I5 80 23/13 88 85
Telex: 1044
11R.U.C.
Inrrcormderea Pentru

Intretinerea
Si Repararea Utilajelor de Calcul
B-dul Prof. Drmrme Pomper 6
Bucuresti-Secto
Tel: 88-20-70, 68 24 40 88-67-95
Telex: 118

SAUDI ARABIA

Modern Electronic

Establishment (Head Office)

P.0. Box 1228, Baghdadiah Street
Jeddah

Tel: 27 798

Telex: 40035

Cable: ELECTA JEDDAH
Modern Electronic
Establishment (Branch)
P.0. Box 2728

Iradh

Tel: 62596/66232
Cable: RAOUFCO
Modem Electronic
Establishment (Branch)
P.0. Box 193

OTESTA
Cable: ELECTA AL-KHOBAR

SPAIN
Hewlett-Packard Espafiola, S.A.
Calle Je 3

E-M:

Tal (!) 458 26 00 (10 lines)
Telex: 235

Hewlett-| Packard Espafiola, S.A.
Mrlanssado 21 23

E-Barcelo

Tek: (3) 203 6200 (5 lines)
Telex: 52603 hpbe e

1
Tel: 96-361.13.54/361.13.58

SWEDEN
Hewlett-Packard Sverige AB
Enighetsvagen 3, Fack
$-161 Bromma 20
Tel: (OB) 730 05 50
Telex:
Cable: MEASUREMENTS
Stockholm
Hewlett-Packard Sverige AB
Frotallsgatan 30
- 2 Véstra Frélunda
Tet: (031) 49 09 50
Telex: 10721 via Bromma office
SWITZERLAND
Hewlett-Packard (Schweiz) AG
Ziircherstrasse 20
P.0. Box 307
CH-8952 Schiieren-Zurich
Tel: (01) 7305240
Telex: 53933 hﬂag ch
Cable: HPAG
Hewlett-| Packard (Schweiz) AG
Chateau Bloc 1
CH-1219 Le LI non-Geneva
Tel: (022) 96
Telex: 27333 8 Kx
Cable: HEWPACKAG Geneva
SYRIA
General Electronic Inc

Nuri Basha-Ahnaf Ebn Kays Street

P.0. Box 5781
Domncus

Tel: 33 24 8,
Telex: 112

5
Cable: ELECTROBOR DAMASCUS

Medical/Personal Calculator only
Sawah & Co.

Place Azmé

B.P. 2308

Damascus

Tel: 16 367-19 697-14 268

Telex: 11304 SATACO SY

Cable: SAWAH, DAMASCUS

Suleiman Hilal £l Mlawi
P.0. Box 2528

Mamoun Bitar Street, 56-58

1I_)amncusTel 11 46 63
elex: 11

Cable: HILAL DAMASCUS

TUNISIA
Tunisie Electronique
31 Avenue de la Liberte

Tunis

Tel: 280 144

Corema

‘1|' ter. Av. de Carthage

Tel: 2!
Telex 12319 CABAM TN

URKEY
TEKNIM Company Ltd.
Riza Sah Pehlevi
Caddesi No. 7
Kavaklidere, Ankara

el: 2758
Telex: 42155 TKNM TR
Medical only

Munendlslrk Kollekm Slrke(r
Mediha Eidem Sokak 41/6
Yiksel Caddesi

Anklra

Tel: 17 5¢

Cable: EMATRADE/Ankara
Analytical only

lemm Ozy!

Mill Mudafaa Cad 16/6
Kizilay

Ankara

Tel: 25 03 09 - 17 80 26
Telex: 42576 OZEK TR
Cable: 0ZYUREK ANKARA

UNITED ARAB EMIRATES
Emitac Ltd.
P.0. Box 1641

harjah
Tel: 24121-3
Telex: 8136 EMITAC SH
Cable: EMITAC SHARJAH
UNITED KINGDOM
Hewlett-Packard Ltd.
King Street Lane
GB-Winnersh, Wokingham
Berks. RG11 5AR
Tel: (0734) 78 47 74
Cable: Hewpie London
Telex:847178/9
Hewlett-Packard Ltd
Trafalgar House
Navigation Road
Altrincham
Cheshire WA14 INU
Tel: (061) 928 6422
Telex: 668068
Hewlen Packard Ltd.

Lygon

ereward Rrse
Dudley Road
Halesowen,
West Midlands B62 8SD
Tel: (021) 550 9911
Telex: 339105
Hewlett-Packard Ltd.
Wedge House
799, London Road
GB-Thornton Heath
Surrey CR4 6XL
Tel: 1) 684 0103/8
Telex:
Hewlen Packard Ld

10, Wesley St.

Tel: (0977) 550016
Telex: 557.

Hewlett-| Packard Ltd

1, Wallace Way

GB-Hitchin

Hertfordshire, SG4 OSE

Tel: (0462) 31111

Telex: 82.59.81
Hewlet-Packard Ltd

2C, Avonbeg Industrral Estate
Long Mile Roa

Dublin 12

Tel: Dublin 514322/514224
Telex: 30439

USSR

Hewlett-Packard

Representative Office USSR
Pokrovsky Boulevard 4/17-kw 12
Moscow 101000

Tel: 207 5

Telex: 7825 hewpak su

YUGOSLAVIA
Iskra-Standard/Hewlett-Packard
Mrklosrceva 38N

61000 5‘5‘

Tel: 31 58 7 /32 1674

Telex: 31583

SOCIALIST COUNTRIES
NOT SHOWN PLEASE

Hewien Packard Ges.m.b.H
Hande skar 52

P.0. Box 7

A-1205 Vienna, Austria
Tel: (0222) 35 16 21 to 27
Cable: HEWPAK Vien
MEDITERRANEAN AND
MIDDLE EAST COUN

NOT SHOWN PLEASE CONTACT
Hewlett-Packard S.A.
Mediterranean and Middle
East Operations

35, Kolokotroni Street
Platia Kefallariou
GR-Kifissia-Athens, Greece
Tel: 8080337/359/429
Cable: HEWPACKSA Amens
FOR OTHER AR

NOT LISTED CONTACT
Hewlett-Packard S.A.

7, rue du Bois-du-Lan

.0. Box
CH-1217 Meyrin 2 - Geneva
Switzerland

Tel: 10222 82 70 00

Cable: HEWPACKSA Geneva

UNITED STATES

ALABAMA

P.0. Box 4207

8290 Whitesburg Dr.
Huntsville 35802
Tel: (205) 881-4591
8933 E. Roebuck Blvd.
Blrmlngham 35206
Tel: (205) 836-2203/2

ARIZONA

2336 E Ma nolia St.
Phoenix 85034

Tei: (602) 244-1361
2424 East Aragon Rd.

Tucson 85706

Tel: (602) 889-4661
"ARKANSAS
Medical Service Only
P.0. Box 5646

Brady Station

Little Rock 72215

Tel: (501) 376-1844

CALIFORNIA

1430 East Orangethorpe Ave.

Fullerton 92631

Tel: (714) 870-1000

3939 Lankershim Boulevard
lorth Hollywood 91604

Te! (213) 877-1282

TWX: 910-499-2671

5400 West Rosecrans Bivd.

P.0. Box 92105

World Way Postal Center

Los Angeles 90009

Tel: (213;970—7500

TWX: 910-325-6608

‘Los Angeies

Tel:- (213) 776-7500

3003 Scott Boulevard

Santa Clara 95050

Tel: (400 249-7000

rw 338 0518

(’14) 446-6165
640 w. Nom Market Bivd
lo 95834

Sacra
Tel: (91 6) 92&7222

9606 Aero Drive

San Diego 92123
Tel: (714) 279-3200

“Tarzana

Tel: (213) 705-3344
COLORADO
5600 DTC Parkway

80110
Te| (303) 771 3455

CONNECTICUT

12 Lunar Drive

New Haven 06525
Tel: (203) 389-6551
TWX: 710-465-2029
FLORIDA

P.0. Box 24210

2727 N.W. 62nd Street
Ft. Lauderdale 33309
Tel: (305) 973-2600
4428 Emerson Street
Unit 103
Jacksonville 32207
Tel: (904) 725-6333

P.0. Box 13910
6177 Lake Ellenor Dr.
Orlando 32809

Tel: (305) 859-2900
P.0. Box 12826
Suite 5, Bldg. 1
Office Park North

Pensacola 32575

Tel: (904) 476-8422
GEORGIA

P.0. Box 105005

450 Interstate North Parkway
Atlanta 30348

Tel: (404) 955-1500
TWX:810-766-4890

Medical Service Only

'Au

?404) 736-0592
P 0. Box
172N, oavrs Drive
Wari

'ner Robins 31
Tel: 191 2) 922-0449

HAWAII
2875 So. Kiny
Honolulu
Tel: (808) 955-4455

ILLINOIS

5201 Tollview Dr.

Rolling Meadows 60008
Tel: (312) 255-9800

TWX: 910-667-2260

Street

INDIANA

7301 North Shadeland Ave.
Indianapolis46250

Tel: (317)842-1000

TWX: 810-260-1797
IOWA

2415 Heinz Road

lowa City 52240

Tel: (319) 338-9466

KENTUCKY

n Dr.
Suite 407 Atkinson Square
Louisville 40218

Tel: (502) 456-1573

LOUISIANA

P.0. Box 1449

3229-39 er!rams Boulevard
Kenner 70063

Tel: (504) 443-6201

MARYLAND

6707 Whitestone Road

Baltimore 21207

Tel: (301) 944-5400

TWX: 710-862-9157
Choke Cherry Road

Rockville 20850

Tel: (301) 948-6370

TWX: 710-828-9684

MASSACHUSETTS
2 Hartwell Ave.
Loxln?ton 02173

861-8960
TWX 710-326-6904

MICHIGAN

23855 Research Drive
Farmington Hills 48024
Tel: (313) 476-6400

724 West Centre Ave.
Kalamazoo 49002

Tel: (606) 323-8362
MINNESOTA

2400 N. Prior Ave.

St. Paul 55113
Tel: (612) 636-0700

MISSISSIPPI

322 N. Mart Plaza
Jackson 39206
Tel: (601) 982-9363
MISSOURI

11131 Colorado Ave.
Kansas City 64137
Tel: (816) 763-8000
TWX: 910-771-2087
1024 Executive Parkway
St. Louis 63141
Tel: (314) 878-0200

NEBRASKA
Medical Onl
7|7| Mercy

Omlhl 68106
Tel: (402) 392-0948

NEVADA

‘Las Vegas

Tel: (702) 736-6610
NEW JERSEY
W 120 Cen(ury Rd

Te| (201 265 5000
TWX: 710-990-4951
Crystal Brook Professional
Building, Route 35
Eatontown 07724
Tel:(201) 542-1384

NEW MEXICO

P.0. Box 11634

Station £

11300 Lomas Blvd., N.E.
Alhu u m87123

TWX 91 9-1‘85

156 Wyalt Drlve

88001
Tel 1505 52&2434
TWX: 910-9983-0550
NEW YORK
6 Automation Lane
Computer Park
Alb!nfy 12205
Tel: (518) 458-1550
TWX: 710-444-4961
650 Perrnmn Hrll Office Park

TeI rﬂG) 223 9950
5§10-253-0092

5858 East Molloy Road

Syracuse 13211

Tel: (315) 455-2486

1 Crossways Park WOS(

Tel (51 &?21 0300
TWX: 510-221-2183

NORTH CAROLINA
5605 Roanne Way
Greensboro 27405
Tel' (919) 852-1800

HIO
Modrcal/Compurer Only
Bidg. 300

dy
13103 E. Kemper Rd.
Cincinnati 45426
Tel: (513) 671-7400
16500 Sprague Road
Cleveland 44130
Tel: (216) 243-7300
TWX: 810-423-9430
330 Progress Rd.
Dayton 45449
Tet: (513) 859-8202
1041 Kingsmill Parkway
Columbus 432
Tel: (614) 436-1041
OKLAHOMA
P.0. Box 32008
6301 N. Meridan Avenue
Oklahoma City 73112
Tel: (405) 721-0200
4110 S. 100th E. Avenue
Grant Bldg.
Tulsa 74145

OREGON
17890 SW Lower Boones
Road

er
Tualatin 97062

Tel: (503) 620-3350
PENNSYLVANIA

111 Zeta Drive

Pittsburgh 15238

Tel: (412) 782-0400

1021 8th Avenue

King of Prussia Industrial Park
King of Prussia 19406

Tel: (215) 265-7000

TWX: 510-660-2670
PUERTO RICO
Hewiett-Packard Inter-Americas
Puerto Rico Branch Office
Calle 272,

Edif. 203 Urg. Country Club
Carolina 00924

Tel: (809) 762-7255

Telex: 345 0514

SOUTH CAROLINA

P. 0. Box 6442

6941-0N. Trenholm Road
Columbia 29260

Tel: (803) 782-6493

TENNESSEE
8914 Kingston Pike
Knoxville 37922
Tel: (615) 523-0522

3027 Vanguard Dr.
Drreclor s Plaza

Tel (&)1) 346 8370

"Nashville
Medical Service onlg
Tel: (615) 244-544

TEXAS

4171 North Mesa
Suite C110

El Paso 79902

Tel: (915) 533-3555
P.0. Box 1270

201 E. Arapaho Rd.
Richardson 75080
Tel: (214) 231-6101

P.0. Box 42816
10535 Harwin Dr
Houston 77036

Tel: (713) 776-6400
“Lubbock

Medical Service only
Tel: (806) 799-4472
205 Billy Mitchell Road
San Antonio 78226
Tel: (512) 434-8241

2160 South 3270 Wesl Street
Salt Lake City 84119
Tet: (801) 972-4711

VIRGINA

P.0. Box 12778

No. 7 Koger Exec. Center
Suite 212

Norfolk 23502

Tel: (804) 461-4025/6

P.0. Box 9669

2914 Hunuary Springs Road
Richmond 23228

Tel: (804) 285-3431

WASHINGTON
Bellefield Office Pk.
1203-114th Ave. S.E.
Bellevue 98004

Tel: (206) 454-3971
TWX: 910-443-2446

"WEST VIRGINIA
Medical/Analytical Only

harleston
Tel: (304) 345-1640
WISCONSIN
9004 West Lincoln Ave.

West Allis 53227
Tel: (414) 541-0550

FOR U.S. AREAS NOT LISTED:
Contact the regional office

nearest you: Atlanta, Georgia..

North Hollywood, California. ..

Rockville, Maryland...Rolling Meadows
Illinois. Their complete

addresses are listed above.

*Service Only 8/78

Part No. 32215-90003
Printed in U.S.A. 4/78
3IMAGEA.320.32215-90003

HEWLETT @ PACKARD

Sales and service from 172 offices in 65 countries.
5303 Stevens Creek Bivd., Santa Clara, California 95050

	Front
	cover/inside

	Contents
	title
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	x

	Section 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6

	Section 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16

	Section 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-6a
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24

	Section 4
	4-1
	4-2
	4-2a
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-11a
	4-12
	4-13
	4-13a
	4-13b
	4-13c
	4-13d
	4-13e
	4-13f
	4-13g
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-32a
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-38a
	4-38b
	4-38c
	4-38d
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50

	Section 5
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-25a
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57/5-58

	Section 6
	6-1
	6-1a
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-16a
	6-16b
	6-16c
	6-16d
	6-16e
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29/6-30

	Section 7
	7-1
	7-2
	7-3
	7-3a
	7-3b
	7-4
	7-5
	7-6

	Section 8
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11/8-12

	Appendix A
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-14a
	A-15
	A-16
	A-17
	A-18
	A-18a
	A-19
	A-20
	A-21
	A-22
	A-22a
	A-23
	A-24
	A-25
	A-26

	Appendix B
	B-1
	B-2

	Appendix C
	C-1
	C-2

	Appendix D
	D-1
	D-2

	Index
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6

	Comment Sheet
	comment-1
	comment-2

	Sales Offices
	sales-1
	sales-2

	Back
	cover

