HP 3000 Computer Systems | (D et

MPE Intrinsics
reference manual

HP 3000 Computer Systems

MPE Intrinsics

Reference Manual

(A crdkaro

19447 PRUNERIDGE AVENUE, CUPERTINO, CA 95014

Part No. 30000-90010
Product No. 32002C.00.00 Printed in U.S.A. 1/81

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1981 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the curent edition and of any pages changed in updates to that edition.
Within the manual, any page changed since the last edition is indicated by printing the date the changes were made
on the bottom of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when
an edition is reprinted, these bars are removed but the dates remain. No information is incorporated into a reprinting

uniess it appears as a prior update.

Page Date

I e et e i e e e e e DEC 1981
1 SO O JUL 1981
IV s e s e e e e e e DEC 1981
L 22 JUL 1981
A RO JUL 1981
A ¥ A JUL 1981
R 11 1RO DEC 1981
B et e e e e et DEC 1981
-SRI JUL 1981
b« S A RO JUL 1981
<} SRR JUL 1981
-« 1 AR DEC 1981
<\ 2O DEC 1981
00 T JUL 1981
2 JUL 1981
2o e e e e e JUL 1981
b/ 2NN DEC 1981
b T R JUL 1981
2-26through 2-27, JUL 1981
2408 . e e e e JUL 1981
DA DEC 1981
D S JUL 1981
- SO DEC 1981
249 through 253 JUL 1981
2.55through 256 JUL 1981
2-59through 260 JUL 1981
2.6lathrough 261i JUL 1981
3 Y S O JUL 1981
DeBAA e e e e DEC 1981
by N DEC 1981
278 e e e e DEC 1981
2 (Y N JUL 1981

jii

Page Date

2-88through 2-89 JUL 1981
b JUL 1981
294 L e e e DEC 1981
b2 L JUL 1981
2146 e e e JUL 1981
21508 .. e e JUL 1981
b5 11 J A JUL 1981
2-167a through 2-167¢ DEC 1981
TR JUL 1981
e JUL 1981
43through4-3a.........00c00vuiunn. JUL 1981
. 1 YA DEC 1981
52 JUL 1981
B3 . i e e e e e JUL 19081
10-32 . ot DEC 1981
10440 . .. v e e e JUL 1981
10-T1 L e e e JUL 1981
10-74 through 10-75a JUL 1981
10-82 . o i e e e e e JUL 1981
10-84 . . . e e s JUL 1981
10-89 through 10-8%b JUL 1981
1091 L L e e JUL 1981
10-96 through 10-97 DEC 1981
D3throughD-4cvvinnn DEC 1981
B8 e e e DEC 1981
S U JUL 1981
0 JUL 1981
B2 . ittt i e e e JUL 1981
ItthroughI-7 it JUL 1981
0 G DEC 1981
I9throughI-10 JUL 1981

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

The software product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and
conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one
correspondence between product updates and manual updates.

FirstEdition Junl976, 32002A
Update Package #1 Octl1976 32002A
Update Package #20cuuunvnu... Jan 1977 i 32002A
Update Package #2 Incorporated Feb 1977 32002A
Update Package #3 Apr1977 32002A
Second Edition Apr1978 32002B
Update Package #1ccovviunn. Jul1979 32002B
Update Package #2 Jan1980..................... 32002B
Update Package #3 Mar1980 32002B,32033B
ThirdEdition. Jan1981............... 32002C,32033C
Update Package #1¢c.... Jul1981, 32002C,32033C

Update Package #2ccovvn.un.. Dec1981 32002C,32033C

PREFACE

This manual is one of the set of manuals that document the Multiprogramming Executive Operating
System (MPE-IV). The manual plan on the next page indicates the position of this manual (shaded
block) in the overall set.

This manual describes the set of intrinsics available with the MPE Operating System and tells you how
to communicate with MPE programmatically. In addition, capabilities available to users with special
capability-class attributes are described.

An introduction to MPE intrinsics is presented in Section I. The specifications for all intrinsics, in
alphabetical order, are contained in Section II. Functional descriptions of the intrinsics, including
those intrinsics for which special capabilities are required, are presented in the remaining sections,
as follows:

Section ITI Interprocess Communication and Circular Files
Section IV Utility Functions of MPE Intrinsics.

Section V Device Characteristics.

Section VI Resource Management.

Section VII Process-Handling Capability.

Section VIII Data Segment Management Capability.
Section IX Privileged Mode Capability.
Section X Accessing and Altering Files

MANUAL

PLAN

ELEMENTARY ELEMENTARY
CONCEPTS USAGE USAGE
General Using .
INTRODUGTORY | information the Haing
LEVEL Manual HP 3000
30000-90008 03000-90121 30000-90102
COMMAND
USAGE UTILITY UTILITY INDEX
Commands Segmenter System Index to MPE
Reference Reference Utilities Reference
Manual Manual Manual Documents
30000-90009 30000-90011 30000-90044 30000-90045
STANDARD USER
LEVEL
y y
Debug/Stack Dump Error
Reference Messages and
Manual Recovery Manual
30000-90012 30000-90015
PROGRAMMATIC UTILITY DIAGNOSTIC
USAGE y + AID
SYSTEM 1 l SYSTEM MODIFICATION
MONITORING ACCOUNT MANAGING
Series 111 Series 30/33 Series 44 System
ADMINISTRATIVE Console Console Console Manager/Supervisor
LEVEL Operator’s Operator’s Operator’s Manual
Guide Guide Guide
30000-90013 30070-90025 30090-90013 30000-30014

SUMMARY LEVEL

'

Software
Pocket
Guide

30000-90049

SYNTAX AND ERROR MESSAGES

CONVENTIONS USED IN THIS MANUAL

The normal conventions (braces, brackets, etc.) used for MPE Commands do not apply to MPE

intrinsic calls.

See page 2-1 for a description of the conventions used in this manual.

JUL 1981

vii

viii

CONTENTS

Section I Page
INTRODUCTION TO MPE INTRINSICS
Purposes and Uses of MPE Intrinsies 11
Intrinsic Calls . . v oo i ittt i 1-2
Calling Intrinsies from SPL 1-2
Calling Intrinsics from Other Languages. 1-11
Intrinsic Call Brrors oo v v v i m e e e an e 111
Optional Capabilitiescvoveevnn 1-13
Section II Page
INTRINSIC DESCRIPTIONS
ACCEPT . . .ttt ittt 2-4
ACTIVATE . . . ottt et it aac e 2-b
ADJUSTUSLE . . ottt et it iiiea i eeaemnaees 2-7
ALTDSEG. . . it i v ettt i i ie et aes 2-9
ARITRAP . . ittt ittt ii s ieenn e 2-11
ASCIL. . it it ittt 2-12
BEGINLOGt iii i iieeiceseanaan 2-13a
BINARY . . ittt ittt i 2-14
CALENDAR it it i e 2-15
CAUSEBREAK. it es 2-16
CLEANUSL. . .t ittt ittt ittt ieaeeaa s 2-17
(03 770 107 < 2-18
CLOSELOG.ttt i it iieeeeeencnenns 2-19
COMMANDttt i i it ea s 2-20
CREATE. . . it it it it it e e e 2-21
CREATEPROCESS. it iin e 2-26
CTRANSLATE.t ii it ie e ie e aees 2-28
13 7:X<16] | S 2-30
DATELINE it it i it i e ceeee s 2-32
DBINARY . . ittt it 2-33
DEBUG. .. ittt aiiinianaasaeennn 2-34
DLSIZE. .ttt i e et i i i i 2-35
DMOVIN. . it ittt it it iieennneseeannns 2-37
DMOVOUT . . ittt i ee it i nnsan e 2-39
ENDLOG. . o e ettt e eeeeitaiienaeaee e 2-40a
EXPANDUSLE.ttt ieeeiaecaans 2-41
FATHER. . .. ittt it it i i caeneanns 2-43
FCARD.ttt it iien i e can e 2-44
FCHECK. . ..ttt it eiiainanseaennns 2-48
FCLOSE . . .ot i et i i iei it enenas 2-54
FCONTROL. . ..ot it et ieiiiiaecaaeeanan 2-57
FDELETE . . ottt iineaeananeeo... 261
FDEVICECONTROL. ccvt it 2-61a
FERRMSG. . .ottt iie i inataanaanansos 2-62
FFILEINFO. . ..o ittt e e iiinieaeeas 2-63
FGETINFO ittt it ieeneaeaan e 2-65
FINDICW . . ittt ettt iienae e e 2-74
FLOCK. . . ittt it iiaaa s 2-75
FLUSHLOG. . .. ittt e it ieeiinaene o 2-76a
FMTCALENDARttt iiienaas e 2-77
FMTCLOCK. . ot i ieeeeecneneees.. 218
FMTDATE. . o ittt ittt tasaaarenassaas 2-79
J206) 4 01\ [2-80
FPOINT .. ittt et iiine e aes o 2-94
FREAD. ..t i ittt ee et nanns 2-95

DEC 1981 ix

FREADBACKWARD. ittt 2-97
FREADDIR. ... i ittt eseeansascasssnon 2-99
FREADLABEL. it ittt vecaneannn 2-101
FREADSEEK. ittt ittt tniiaeananenn 2-102
FREEDSEGttt nnnnnnnnnanns 2-103
FREELOCRIN ittt ittt inaneeannnnn 2-104
FRELATE. ittt ittt etnaaasoannnns 2-105
FRENAMEttt ieinionasonansonns 2-107
FSETMODE.ottt it e ettt e it e ataoon 2-109
FSPACE ... o it it it it s tn s aaesanans 2-111
FUNLOCK. . .o ittt ettt is s e nsansoneoons 2-113
FUPDATE. . .. ittt ie i et tieenanassanae 2-114
FWRITEttt ie ittt tennaneeasssans 2-115
FWRITEDIR i it ittt et tieneacsonans 2-120
FWRITELABEL0t ieeannonnn 2-122
GENMESSAGE.t ittt ittt v e ea s st 2-123
(€ 0 A 2-126
GETDSEG. . . .t i it ittt ie i e taasn e 2-127
GETICW . .t it i e ittt ianas s saeans 2-129
GETLOCRINt ittt it it iiieesa e s e 2-130
GETORIGIN ittt ittt iinneeneeean 2-131
GETPRICRITY . ittt it it ittt s e aas e 2-132
GETPRIVMODE. ittt it aseans e 2-134
GETPROCID ittt e et iiieca et anenn 2-135
GETPROCINFOottt i i ittt eeeae e aan 2-136
GETUSERMODE iiiii ittt 2-138
INITUSLE . . . i i it ittt ettt ttanenaaeans e 2-139
IODONTWAIT i it ittt i eeee s e 2-140
IOWAIT ... ittt e ittt ss e 2-142
KILL ittt it s iiiiac o eann 2-144
LOADPROC. . . ittt i i et titne e o 2-145
LOCKGLORIN. . . .ot i e i ittt i anensaaseaan 2-146
LOCKLOCRIN . . . ittt i i it teannonasonns 2-148
LOCKRINOWNER it tniinnnens 2-160
LOGSTATUS. . o i it it i i i et tamaaaenee 2-150a
1Y 7N 1 DA 2-151
MYCOMMAND. . .ttt ettt eemaeaesonanns 2-153
OPENLOG. . . o it ittt ie i iiaaaenaanaanns 2-156
PAUSE ittt ittt 2-157
PCHECK . .o sttt i e ittt tneeannaasnonn 2-158
PCLOSE ...ttt it it it itiiaaas e 2-159
PCONTROL. . . . i e ittt ieeeae s oaasanes 2-160
1276 2 01 S L 2-161
PREAD . . ot ittt it iei s s saaansssasaanes 2-162
32323 1. 4 A 2-163
PRINTFILEINFO ot it i ie et aeeees 2-164
PRINTOP ...ttt e e iienneeeneenanns 2-165
PRINTOPREPLY it iiiiiiieaanaan 2-166
PROCTIMEttt e ittt eaeaan e 2-168
PTAPE it it 2-169
PUTICWttt e e e et e i et aeeanes 2-170
PWRITE ittt isiianene s 2-171
QUIT . e e e 2-172
QUITPROG ottt i i e e 2-173
READ .. . i e e e e 2-174
READX ... ittt ittt e 2-175
RECEIVEMAIL i iiiieeannas 2-176

CONTENTS (continued)

REJECT e 2-178
RESETCONTROL.ciiin e, 2-179
RESETDUMP. 2-180
SEARCH. i, 2-181
SENDMAIL. 2-182
SETDUMP. i, 2-184
SETICW . .. e 2-185
STACKDUMP. 2-186
SUSPEND ittt ie e 2-188
SWITCHDB0 ittt 2-189
TERMINATE. 2-190
TIMER e 2-191
UNLOADPROC 2-192
UNLOCKGLORINcciniiinunnn.. 2-193
UNLOCKLOCRIN.o0veenennnnn 2-194
WHO. 2-195
WRITELOG. ittt i i 2-198
XARITRAP. i 2-199
XCONTRAP. . .. e, 2-201
XLIBTRAP 2-202
XSYSTRAP. i 2-203
ZSIZE. e 2-204
Section III Page
INTERPROCESS COMMUNICATION AND
CIRCULAR FILES
Introduction. 3-1
Operation0 0iuinennna... 3-1
FOPEN., 3-1
FREAD. i, 3-2
FWRITE 3-2
FCONTROL.ci .. 3-2
FCLOSE i e 3-2
Additional Features. 3-2
UsingIPC. 3-3
Features of Intrinsics for Message Files 3-5
FOPEN........ ..., 3-5
FCONTROL. 3-8
FCHECK. i 3-8
FGETINFO 3-9
FFILEINFO. it ie i 3-9
CircularFilesuuuuu... 3-9
Features of Intrinsics for Circular Files 310
FOPEN........ 3-10
FWRITE 3-12
FCLOSE i, 3-12
Examples. ivun... 3-12
Section IV Page

UTILITY FUNCTIONS OF MPE INTRINSICS
Dynamic Loading and Unloading of Library Procedures 4-2

DynamicLoading 4-2
Dynamic Unloading. 4-3
Searching Arrays. 4-3
Formatting Command Parameters. 4-4
Executing MPE Commands Programmatically. 4-9

Determining the User’s Access Mode and Attribures. . 4-10
Converting Numbers from Binary Code to

ASCIIStrings 4-12
Converting Numbers from an ASCII Numeric String to

a Binary Coded Value. 4-12
Translating Characters with the CTRANSLATE

Intrinsie. 4-14
Transmitting Program Input/Output from Job/Session

Input/Output Devices. 4-16

Reading Input from the Job/Session List Device . . 4-17
Writing Output to the Job/Session List Device . .. 4-17

Writing Output to the Operator’s Console 4-17
Writing Output to the Operator’s Console and
RequestingaReply 4-19
Suspending the Calling Process. 4-19
Requesting a Process Break 4-19
Terminatinga Process. 4-20
Abortinga Process. 4-20
AbortingaProgram 4-22
Changing Stack Sizes 4-22
Changing the DL to DB AreaSize. 4-23
Changing the Z to DB Area Size............. 4-29
Enabling and Disabling Traps. 4-29
Arithmetic Traps. 4-30
Standard Trapscvuu.... 4-31
Extended Precision Floating-Point Traps 4-31
Commercial Instruction Traps 4-32
Library Trap.u..... 4-34
SystemTrap.ccoviiunu.... 4-35
Control-YTrapsovivinenn.. 4-38
Time and Date Intrinsies. 4-42
Obtaining System Timer Information 4-42
Obtaining the Current Time. 4-44
Obtaining the Calendar Date 4-44
Obtaining Process Run Time (Use of the Central
Processor)ccuiiviunnnn.. 4-44
Formatting Calendar Date and Time Information . 4-45
Interprocess Communication. 4-46
User-Defined Job Control Words 4-47
MPE Message Systemc0u.... 4-48
MessageCatalog 448
MAKECAT Program 4-49
Using the GENMESSAGE Intrinsic. 4-50
Section V Page
DEVICE CHARACTERISTICS
Device Characteristics. 5-1
Paper Tape Reader. 5-1
BinaryMode. 5-1
ASCIIMode. i 5-1
Paper TapePunch 5-3
BinaryMode. 5-3
ASCITMode. vuu... 5-3
CardReader. 5-3
LinePrinter 5-3
MagneticTape 5-4
Printing Reader/Punch 6-5
Line Printer and Terminal Carriage-Control Codes. . 5-7
End-of-File Indication. 5-7
Terminals.c..0iiuune. ... 5-9

JUL 1981

CONTENTS (continued)

Terminal TYPes. . « v v v v v e vie v e ann 5-9
Special Keys. . .o oo e i i 5-10
Changing Terminal Characteristics 5-12
Changing Terminal Speed 5-12
Changing Input Echo Facility 5-13
Enabling and Disabling System Break
Functionc.eovueveencnnnnns 5-15
Enabling and Disabling Subsystem Break
Functioncovvevenennnn 5-16

Enabling and Disabling Parity Checking. . . . 5-16
Enabling and Disabling Tape-Mode Option. . 5-17
Enabling and Disabling the Terminal Input

THNEY + v e et e e en s ieannaessenn 5-18
Reading the Terminal Input Timer 5-21
Defining Line-Termination Characters for

Terminal Input 5-22

Enabling and Disabling Binary Transfers . .. 5-23
Enabling and Disabling User Block ’I‘ransfers 5-24
Enabling and Disabling Line Deletion Echo

Suppressiono 5-25
SettingParityo oviven i 5-25
Allocatinga Terminal. 5-26
Setting Terminal Type ce ... D227
Obtaining Terminal Type Information. 5-27
Obtaining Terminal Output Speed 5-28
Setting Unedited Terminal Mode 5-28

Reading Paper Tapes without X-OFF Control.5-29
Using the FCARD Intrinsic to Operate the

HP 7260A Optical Mark Reader 5-30

ASCII and Column Image Reading Formats . 5-31

Section VI Page
RESOURCE MANAGEMENT
Inter-Job Level (Global) RIN*s., 6-2
Acquiring Global RIN’sot 6-2
Releasing Global RIN’s.t 6-3
Locking and Unlocking Global RIN’>s 6-3
Inter-Process (Local) Level RIN’s. 6-6
Acquiring Local RIN’s v 6-8
Locking and Unlocking Local RINs 6-8
Identifying Local RINOwners. 6-9
Freeing Local RIN’s.oovennnn 6-10
Section VII Page
PROCESS-HANDING CAPABILITY
PrOCESSES - o v v vt ve e 7-1
Organization of User Processes. 7-2
Process Substates.o 7-2
Process to Process Communication 7-2
Creating and Activating Processes. 7-3
Suspending Processest 7-8
Deleting Processes . . .« o vveviiie i 7-8
Interprocess Communication. 7-10
Testing Mailbox Status. 7-10
SendingMail. 7-11
Receiving (Collecting) Mail 7-12
Avoiding Deadlocks. oot 7-13
Rescheduling Processes.coovinnnnnn 7-13
Determining Source of Activation. 7-14

JUL 1981 xi

Determining Father Process. 7-14
Determining Son Processesot 7-15
Determining Process Priority and State 7-15
Section VIII Page
DATA SEGMENT CAPABILITY
Creating an Extra Data Segment. 8-2
Deleting an Extra Data Segment. 8-15
Transferring Data from an Extra Data Segment
totheStack 8-15
Transferring Data from the Stack to an Extra Data
Segment. v it e 8-15
Changing the Size of an Extra Data Segment. 8-15
Section IX Page
PRIVILEGED MODE CAPABILITY
Permanently Privileged Programs 9-1
Temporarily Priveleged Programs 9-2
Entering Privileged Mode 9-3
Entering Non-Privileged Mode 9-5
Moving the DBPointer.ot 9-5
Scheduling Processes« oo viien et 9-5
Section X Page
ACCESSING AND ALTERING FILES
File Management System 10-1
File Characteristicso, 10-2
RecordFormatsccvvveenenna.n 10-3
Relative /O Bloek Format 10-6
File Device Relationships 10-7
Non-Sharable Device Access vv e v vt 10-7
FileDomains vouiinunnnennnns 10-7
FileLabelt 10-8
File Aceessing.o v v it v i inieneecnnean 10-8
Relative I/O oo i i o i e i i i e 10-8
System-Defined Files. 10-9
User Pre-Defined (Back Referenced) Files 10-10
NewFiles.o iv it 10-10
OldFiles . . oo v e i e et i it it ii e e 10-11
Input/Output Sets. 10-11
Accessing Files Alreadyin Use. 10-12
Files on Non-Sharable Devices. 10-15
Special Considerations for Shared Files 10-16
Private Volumes Subsystem. 10-17
HowtoUseFiles. v vviiie i, 10-17
Internal Operations for File Accessing. 10-17
Opening Files. i 10-27
Openinga New DiscFile. 10-27
Openingan Old DiscFile 10-30
Foreign Disc Facility 10-32
Opening a File on a Device other than Disc. 10-33
Issuing FREAD and FWRITE Intrinsics Calls for
$STDIN and $STDLIST oo et 10-35
Closing Files.« oo it ii it 10-39
Closing a New File as a Temporary File. 10-39
Closing a New File as a Permanent File 10-40
RenamingaFile, 10-43
Writing a File System Error-Check Procedure 10-45
Reading a File in Sequential Order 1047

CONTENTS (continued)

Obtaining File Access Information 10-66
Using FFILEINFO. 10-68
Obtaining File-Error Information. 10-68
Using FERRMSGc.... 10-69
Magnetic Tape Considerations 10-69
FWRITE. 10-71
FREAD., 10-71
FSPACE 10-71
FCONTROL (Write EOF). 10-71
FCONTROL (Forward Space to File Mark) 10-71
FCONTROL (Backward Spare to File Mark). 10-71
End-of-File Mark on Magnetic Tape 10-72
Spacing FileMarks. 10-72
Using the FCLOSE Intrinsic with Magnetic Tape . .10-73
MPE Tape Labels. 10-75
Updating Magnetic Tape Files 10-75
Reading and Writing an Unlabeled Magnetic
TapeFile........................... 10-77
Opening a Labeled Magnetic Tape File. 10-81
Writinga Tape Label 10-84
Reading a Labeled Magnetic Tape File. 10-87
Writing to a Labeled Magnetic Tape File 10-88
Writing a User-Defined File Label on a
Labeled Tape File 10-88
Reading a User-Defined File Label on a
Labeled Tape File 10-89
Density Selection on Labeled and
Unlabeled Tapes 10-89
Labeled Tapes. 10-89a

xii

Unlabeled Tapes 10-89a
Determining Tape Density. 10-89%
Spacing on Disc or Tape Files 10-89
Directing File Control Operations. 10-90
Resetting the Logical Record Pointer 10-91
Declaring Access-Mode Options 10-91
Determining Interactive and Duplicative File Pairs. . .10-92
UserLogging 10-93
How User LoggingWorks 10-93
Effective Use of User Logging 10-96
Suggested Log File Uses 10-98
Appendix A
ASCII Character Set
Appendix B
Disc File Labels
Appendix C
End-of-File
Appendix D
Magnetic Tape Labels
Appendix E
MPE Diagnostic Messages
JUL 1981

ILLUSTRATIONS

Title Page
Calling the PRINTOP Intrinsic from SPL. 1-10
Using Numeric Values as Parameters in an

IntrinsicCall. 0. 1-10
Condition Code Checks 1-12
Item Numbers and Corresponding Items 2-27
Foptions Bit Summary. 2-66
Aoptions Bit Summary.o 2-69
Carriage-Control Directives 2-117
Carriage-Control Summary 2-119
Error Codes Returned From PROCINFO 2-167b
Information Options For PROCINFO 2-167¢

Data Paths Among Processes and Message Files (1). .. 3-12
Data Paths Among Processes and Message Files (2). . . 3-16

Using the MYCOMMAND Intrinsic. 4-5
Using the WHO Intrinsic. 4-11
Using the ASCII Intrinsic 4-12
Using the DASCII Intrinsic 4-14
Using the BINARY Intrinsic 4-15
Using the PRINT and READ Intrinsics 4-17
Using the QUIT Infrinsie. 4-21
Expanding and Contracting the DL to DB Area. 4-23
Using the DLSIZE Intrinsie. 4-25
Changing the DL to DB AreaSize.............. 4-28
Using the XARITRAP Intrinsic 4-33
Using the XCONTRAP Intrinsie. 4-41
Using the TIMER Intrinsic 4-43
FMTCALENDAR, FMTCLOCK, and FMTDATE

Intrinsics Exampie. 0. 4-45
GENMESSAGE Infrinsic Example 4-51
Carriage Control Directives 5-8
Echo Facility vs DuplexMode 5-12
Using the FCONTROL Intrinsic to Enable and Read

the Terminal Input Timer 5-18
FCARD Intrinsic Example 5-30
Using the LOCKGLORIN and UNLOCKGLORIN

Intrinsies oviv it e 6-4
Using the CREATE and ACTIVATE Intrinsics 7-4
Process Deletion 7-9
DEC 1981

xiii

Title Page
Using the GETDSEG and DMOVOUT Intrinsics

(Program DSINIT).oi it iiiiiinnnn.n 8-3
Creating and Activating Two Son Processes (Program

DSBOSS) . o v it it et i e e 8-4
Using the GETDSEG and DMOVIN Intrinsics

(Program DSACCS) it 8-5
Array CALENDAR ittt 8-8
Using the GETPRIVMODE and GETUSERMODE

INtrinsics . .« v v v vt it i s 94
MPE Queue Structure.o v it 9-6
Actions Resulting from Multiple Access of Files10-13
File Access Interface for New Disc Files. 10-18
File Name and Sector Address Storage. 10-21
File Access Interface for Old Disc File. 10-22
Device Allocation Flowchart 10-26
OpeningaNew DiscFile. 10-28
OpeningaOld Disc File 10-31
Opening a File on a Device Other Than Disc. 10-34
Opening $STDIN and $STDLIST 10-36
Closing a New File as a Temporary File. 10-39a
Closing a New File as a Permanent File 10-41
FRENAME Intrinsic Example 10-44
Error-Check Procedure Example 10-46
FREAD and FWRITE Intrinsics Example. 10-48
FREADDIR and FREADSEEK Intrinsics Example . .10-562
FWRITEDIR Intrinsic Example 10-53
FLOCK and FUNLOCK Intrinsics Example 10-56
FUPDATE IntrinsicExample. 10-58
Using the IOWAIT Intrinsic. 10-60
FWRITELABEL Intrinsic Example (Disc File) 10-64
FREADLABEL Inirinsic Example 10-65
FGETINFO Intrinsic Example. 10-67
FCHECK Intrinsic Example. 10-70

Using the FCLOSE Intrinsic with Unlabeled Magnetic

AP « v v ettt et et i e 10-74
Unlabeled Magnetic Tape Example. 10-78
Opening a Labeled Magnetic Tape File. 10-82
Writinga Tape Label 10-85
User Logging Facility.covon.. 10-94

MPE Tape Labels (Conforming to ANSI-StandardD-2

TABLES

Title Page
Summary of MPE Intrinsics. 1-3
Intrinsics That are Not Permitted with

Message Files 3-5
Intrinsics That are Not Permitted with

Circular Files 3-10
Line Printer Differences 5-4
Carriage-Control Directives 5-7
Terminals Supported by MPE 5-9
Device Dependent Restrictions. 10-24
Classificationof Devices 10-25
Format of Tape Labels Written by MPE (ANSI

Standard). e e D-3
ProgramErrors.c.iuunnn.. E-5

Xiv

Title Page
IntrinsicErrors. E-6
Run-Time Errors. E-7
FileSystem Errors. E-8
Loader Errors. vt E-12
CREATE IntrinsicErrors E-13
ACTIVATE IntrinsicErrors. E-13
SUSPEND IntrinsicError E-13
MYCOMMAND IntrinsicError. E-13
LOCKGLORIN IntrinsicErrors E-13
Private Volumes Messages E-14
User-Logging Error Messages E15
CLEANUSL Error Messages. cuvvvnnn.. E-16
CREATEPROCESS Error Messages. E-17

DEC 1981

" SECTION -

INTRODUCTION TO MPE INTRINSICS

In the MPE Operating System, individual programming operations are handled by sets of code
known as procedures. These procedures are coded in SPL (Systems Programming Language for the
MPE Operating System) and are defined by a procedure declaration consisting of

® A procedure head, containing the procedure name and type, parameter definitions, and
other information about the procedure.

® A procedure body, containing executable statements and data declarations local to this
procedure.

As part of their function, several procedures also return values to the processes that invoke them.
NOTE

A process is the basic executable entity in MPE. A process is
not a program itself, but the unique execution of a program
by a particular user at a particular time.

Each procedure is invoked by a corresponding procedure call. When a procedure call is encountered
in a program, control is transferred to the procedure. The procedure runs until an exit is
encountered, at which time control returns to the statement following the procedure call.

In addition to the procedures provided by the operating system, MPE allows the user to write
special-purpose procedures in SPL. To distinguish MPE system procedures (which are always
available to the user, either directly or indirectly) from any other procedures, the term intrinsic is
applied to MPE system procedures. Similarly, the term intrinsic call is used to denote the procedure
call that references an MPE system procedure.

PURPOSES AND USES OF MPE INTRINSICS
With MPE intrinsics, it is possible to

® Access and alter files. Files can be opened, read, written on, updated, and otherwise
manipulated using intrinsics.

® Request various utility operations, such as:

Listing date, time, and accounting information.
Determining job status.

Determining device status.

Obtaining devicefile information.

Transmitting messages.

JUL 1981 11

Inserting comments in command stream.

Requesting ASCII/binary number conversion.

Reading input from job/session input device.

Writing output to job/session list device.

Obtaining system timer information.

Determining the user’s access mode and attributes.

Searching arrays and formatting parameters.

Executing MPE commands programmatically.

Enabling and disabling error traps.

Requesting program break, termination, or abort.

Changing the lengths of the user-managed area (DL to DB) and stack area (Z to DL) and
altering DL to DB and Z to DL register offsets.

Managing interprocess communication through the job control word.
Changing terminal speed and echo mode.

® Access and manage a system resource such as an input/output device, file, program,
subroutine, procedure, code segment, or the data stack such that no other program may
use the resource simultaneously.

® In addition, users with certain optional capabilities (see OPTIONAL CAPABILITIES,
page 1-12) may use intrinsics to

Create and delete processes.

Activate and suspend processes.

Send information (mail) between processes.
Change the scheduling of processes.

Obtain information about existing processes.
Create and access extra data segments.

Lock as many resources as desired simultaneously.

To help you determine what you can accomplish with MPE intrinsics, a summary is presented in
table 1-1. Table 1-1 lists each intrinsic, and the capability necessary to use it.

INTRINSIC CALLS

Intrinsic calls invoke MPE system procedures which are requested programmatically (that is, from
within a user program). In SPL programs (see CALLING INTRINSINCS FROM SPL, below), you
write the intrinsic calls explicitly. In FORTRAN, COBOL, BASIC, and RPG programs, for most
general applications, the compiler for that language generates any necessary intrinsic calls
automatically — they are invisible to you. It is possible, however, to call intrinsics directly from
these languages (see CALLING INTRINSICS FROM OTHER LANGUAGES, page 1-10).

All MPE intrinsics are treated as external procedures by user programs. External linkages from user
programs to intrinsics are satisfied when the user programs are segmented (at PREPARATION time)
and allocated residence in virtual memory (at RUN time). See the MPE Segmenter Reference
Manual for a discussion of segments, segmentation, and allocation.

CALLING INTRINSICS FROM SPL

Before an intrinsic can be called from an SPL program, it must be declared at the beginning of the
program, following all data declarations, like any other SPL procedure. This could be done by

1-2

Table 1-1. Summary of MPE Intrinsics

!N;l::\:l:lc PURPOSE CAPABILITY REQUIRED
ACCEPT Accepts (and completes) a request received by the Standard
preceding GET intrinsic call. (Used only with DS/3000.)
ACTIVATE Activates a process. Process Handling
ADJUSTUSLF Adjusts directory space in a USL file. Standard
ALTDSEG Alters the size of an extra data segment. Data Segment Management
ARITRAP Enables or disables internal interrupt signals from all Standard
hardware arithmetic traps.
ASCII Converts a number from binary to ASCli code. Standard
BINARY Converts a number from ASCII to binary code. Standard
CALENDAR Returns the calendar date. Standard
CAUSEBREAK Reguests a session break. Standard
CLEANUSL Deletes inactive entries from USL file. Standard
CLOCK Returns the actual time. Standard
CLOSELOG Closes access to the logging facility. LG Capability
COMMAND Executes an MPE command programmatically. Standard
CREATE Creates a process. Process Handling
CREATEPROCESS Provides ability to assign $STDIN and $STDLIST Process Handling
to any file
CTRANSLATE Converts a string of characters from EBCDIC to ASCI| Standard
or from ASCI!I to EBCDIC.
DASCII Converts a value from double-word binary to ASCII code. Standard
DATELINE Returns date and time information. Standard
DBINARY) Convertsra number from ASCII code to a double-word Standard
binary value.
DEBUG Calls the DEBUG facility. Standard
DLSIZE Changes size of DL to DB area. Standard
DMOVIN Copies block from data segment to stack. Data Segment Management
DMOVOUT Copies blocék from stack to data segment. Data Segment Management
EXPANDUSLF Changes length of a USL file. Standard

1-3

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC PURPOSE
NAME CAPABILITY REQUIRED

FATHER Requests Process |dentification Number (PIN) of Process Handling

father process.
FCARD Drives the HP 7260A Optical Mark Reader. Standard
FCHECK Requests details about file input/output errors. Standard
FCLOSE Closes a file. Standard
FCONTROL Performs control operations on a file or terminal device. Standard
FDELETE Deactivates a R10 record. Standard
FDEVICECONTROL | Adds control directives to a spooled device file. Standard
FERRMSG Returns message corresponding to FCHECK error Standard

number.
FFILEINFO Provides access to file information. Standard
FGETINFO Requests access and status information about a file. Standard
FINDJCW Searches Job Control Word (JCW) table for specified Standard

JCW.
FLOCK Dynamically locks a file. Standard
FMTCALENDAR Formats calendar date. Standard
FMTCLOCK Formats time of day. Standard
FMTDATE Formats calendar date and time of day. Standard
FOPEN Opens a file. Standard
FPOINT Resets the logical record pointer for a sequential disc Standard

file.
FREAD Reads a logical record from a sequential file (on any Standard

device) to the user’s data stack.
FREADBACKWARD | Reads a logical record beginning at a point prior to Standard

the current record printer
FREADDIR Reads a logical record from a direct access file to the Standard

user’s data stack.
FREADLABEL Reads a user file label. Standard
FREADSEEK Prepares, in advance, for reading from a direct-access Standard

file.
FREEDSEG Releases an extra data segment. Data Segment Management

14 JUL 1981

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC

NAME PURPOSE CAPABILITY REQUIRED

FREELOCRIN Frees all local Resource Identification Numbers {RiN's) Standard

from allocation to a job.
FRELATE Determines if a file pair is interactive or duplicative. Standard
FRENAME Renames a disc file. Standard
FSETMODE Activates or de-activates file-access modes. Standard
FéPACE Spaces forward or backward on a file. Standard
FUNLOCK Dynamically unlocks a file. Standard
FUPDATE Updates a logical record residing in a disc file. Standard
FWRITE Writes a logical record from the user’s stack to a sequen- Standard

tial file (on any device).
FWRITEDIR Writes a logical record from the user’s stack to a direct- Standard

access disc file.
FWRITELABEL Writes a user file label. Standard
GENMESSAGE Accesses MPE message system. Standard
GET Receives the next request from a remote master program. Standard

{Used only with DS/3000.)
GETDSEG Creates an extra data segment. Data Segment Management
GETJCW Fetches contents of system job control word (JCW). Standard
GETLOCRIN Acquires local RIN's. Standard
GETORIGIN Determines source of process activation call. Process Handling
GETPRIORITY Changes the priority of a process. Process Handling

GETPRIVMODE

Dynamically enters privileged mode.

Privileged Mode

GETPROCID

Requests PIN of a son process.

Process Handling

GETPROCINFO

Requests status information about a father or son
process.

Process Handling

GETUSERMODE Dynamically returns to non-privileged mode. Privileged Mode
INITUSLF Initializes a USL file to the empty state. Standard
IODONTWAIT initiates completion operations for an /O request. Privileged Mode

1-5

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC

X-OFF control characters.

NAME PURPOSE CAPABILITY REQUIRED
IOWAIT Initiates completion operations for an 1/O request. Privileged Mode
KILL Deletes a process. Pocess Handling
LOADPROC Dynamically loads a library procedure. Standard
LOCKGLORIN Locks a global RIN. Standard
LOCKLOCRIN Locks a local RIN. Standard
LOCRINOWNER Identifies process locking a local RIN. Standard
MAIL Tests maiibox status. Process Handling
MYCOMMAND Parses (delineates and defines parameters) for user- Standard
supplied command image.

OPENLOG Provides access to a logging facility. LG Capability

PAUSE Suspends calling process for a specified number of Standard
seconds.

PCHECK Returns an integer code specifying the completion status Standard
of the most recently executed DS/3000. (Used only with
DS/3000.)

PCLOSE Terminates program-to-program communication with a Standard
remote slave program. (Used only with DS/3000.)

PCONTROL Exchanges tag fields with a remote slave program. {Used Standard
only with DS/3000.)

POPEN Initiates program-to-program communication with a Standard
remote slave program. (Used only with DS/3000.)

PREAD Requests a block of data from a remote slave program. Standard
(Used only with DS/3000.)

PRINT Prints character string on job/session list device. Standard

PRINTFILEINFO Prints file information display. Standard

PRINTOP Prints a character string on the Operator’s Console. Standard

PRINTOPREPLY Prints a character string on the Operator’s Console and Standard
solicits a reply.

PROCTIME Returns a process’ accumulated central processor time. Standard

PTAPE Accepts input from paper tapes which do not contain Standard

1-6

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC

NAME PURPOSE CAPABILITY REQUIRED
PUTJCW Puts value of a given JCW in JCW table. Standard
PWRITE Sends a block of data to a remote slave program. Standard
QUIT Aborts a process. Standard
QUITPROG Aborts the user process structure. Standard
READ Reads an ASCI! string from the job/session input device Standard

($STDIN).
READX Reads an ASCIi string from the job/session input device Standard
($STDINX]).
RECEIVEMAIL Receives mail from another process. Process Handling
REJECT Rejects the request received by the preceding GET Standard
intrinsic call. (Used only with DS/3000.)
RESETCONTROL Resets terminal to accept CONTROL Y signal. Standard
RESETDUMP Disables the abort stack analysis facility. Standard
SEARCH Searches an array for a specified entry or name. Standard
SENDMAIL Sends mail to another process. Process Handling
SETDUMP Enables the abort stack analysis facility. Standard
SETJCW Sets the value of the system job control word (JCW). Standara
STACKDUMP Dumps selected parts of stack to file. Standard
SUSPEND Suspends a process. Process Handling
SWITCHDB Switches DB register pointer. Privileged Mode
TERMINATE Terminates a process. Standard
TIMER Returns job or session timer bit count. Standard
UNLOADPROC bynémically unloads a library procedure.
UNLOADGLORIN Unlocks a global RIN. Standard
UNLOCKLOCRIN Unlocks a local RIN. Standard
WHO Returns user attributes. Standard
WRITELOG Writes a record to a logging file. LG Capability
XARITRAP Arms or disarms the software arithmetic trap. Standard
XCONTRAP Arms or disarms the CONTROL-Y trap. Standard
XLIBTRAP Arms or disarms the library trap. Standard

1-7

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC
P
NAME PURPOSE CAPABILITY REQUIRED
XSYSTRAP Arms or disarms the system trap. Standard
ZSIZE Changes size of Z to DB area. Standard

writing the entire intrinsic declaration but, because some intrinsic declarations are rather long, you
can save time by declaring intrinsics with the INTRINSIC declaration statement.

The format of the INTRINSIC declaration statement is
INTRINSIC intrinsicname, intrinsicname, . . . ,intrinsicname;

In the intrinsicname list, you name all intrinsics that you intend to call within your program. When
more than one intrinsic is named, the names must be separated by commas. For example, to use the
INTRINSIC declaration statement to declare the FOPEN, FREAD, FWRITE, and FCLOSE
intrinsics, you could write

INTRINSIC FOPEN,FREAD,FWRITE,FCLOSE;

Regardless of whether you declare an intrinsic as a procedure or in an INTRINSIC declaration
statement, you must know the number and type of parameters which the intrinsic uses in order to
call it correctly. Parameters can be passed to a procedure (intrinsic) either by value or by reference.
When a parameter is passed by reference (the default case), its address in the caller’s data area is
made available to the called procedure. If the variable is changed by the called procedure, the
storage in the caller’s data area is updated. When a parameter is passed by value, the called
procedure receives a local (private) copy of the actual data value. If the called procedure changes
this private copy, the corresponding variable in the calling routine remains unchanged.

You call an intrinsic in your program exactly as you would any SPL procedure: that is, you write
the intrinsic name, followed by a parameter list enclosed in parentheses. These parameters must
follow the positional format shown in each intrinsic description (Section II). Parameters must be
separated from each other by commas. For example, a call to the FREAD intrinsic could be written
as

FREAD(FN,TAR,TC);

where the filenum, target, and tcount parameters (see Section I1, page 2-82) are represented by FN,
TAR, and TC, respectively. If numeric values are to be specified for the filenum and tcount
parameters (which are VALUE parameters), the following call could be used:

FREAD(3,TAR,-80);

If the OPTION VARIABLE notation appears in the intrinsic description shown in Section II, some
of the intrinsic parameters are optional. Since all intrinsic parameters are positional, however, you
must indicate a missing parameter within a parameter list by omitting the parameter itself but
retaining the preceding and following commas. For example, if the second parameter is missing

FOPEN(FILENAME,,3);

If the first parameter is omitted from a list, this is indicated by following the left parenthesis with a
comma. If one or more parameters are omitted from the end of a list, however, this is indicated by
simply writing the terminating right parenthesis after the last parameter included.

1-8

NOTE

In some intrinsic calls, input parameters are passed to the
intrinsic as words whose individual bits or fields of bits
signify certain functions or options. In cases where some of
the bits within a word are described in this manual as
“reserved for MPE”, you are advised to set such bits to zero.
This will help insure the compatibility of your current
program with future releases of MPE.

In cases where output parameters are passed by an intrinsic
to words referenced by a calling program, bits within such
words that are described as “reserved for MPE” are set to
zero unless otherwise noted in the discussion of the particular
parameter.

To call an intrinsic from an SPL program, follow the steps listed below:

1. Refer to the intrinsic description in Section 11 to determine the parameter types and their
positions in the parameter list.

9. Declare the variables or array names to be passed as parameters by type at the beginning
of the program.

3. Include the name of the intrinsic in an INTRINSIC declaration statement.
4 Issue the intrinsic call at the appropriate place in your program.

For example, refer to Section i, page 2.147 for a description of the PRINTOP intrinsic. This
intrinsic is shown as

A v v
PRINTOP(message,length,control);

The bold face italics shown for message, length, and control signify that these are required
parameters. (Optional parameters are signified by regular italics.)

The superscripts A, IV, and IV over message, length, and control denote logical array, integer by
value, and integer by value, respectively.

The array name to be used as the message parameter must be declared as an array at the beginning
of the program. If variable names are used for the length and conirol parameters, they must be
declared as type integer at the beginning of the program.

Figure 1-1 shows the intrinsic PRINTOP being called from an SPL program after being declared
with the INTRINSIC declaration statement. Note that MESSAGE is declared as an array and the
variables LENGTH and CONTROL are declared as type integer.

Figure 1-2 shows the same intrinsic being called with numeric values, instead of symbolic identifiers,
being specified for the parameters length and conirol.

PAGE 0001 HP32100A.06.8 (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1976

20001006 20000 $CONTROL USLINIT
00002000 00000
220030008 00000
00004000 00000
20005000 00000
20066000 0E000
Q00070068 ©08012
20008008 00012
000090008 00012
20010006 OGO12
20011000 @P0Q2
20012000 00AAG4
28013000 d0010
03014008 00010

<< USING THE INTRINSIC DECLARATION STATEMENT >>

BEGIN
ARRAY MESSAGE(@:9):="MESSAGE TO OPERATOR ";
INTEGER LENGTH, CONTROL;

LENGTH:=1@;
CONTROL:=%2683

END.

PRIMARY DB STORAGE=2003; SECONDARY DB STORAGE=%60612
NO. ERRORS=000: NG. WARNINGS=000

PROCESSOR TIME=0:00:008; ELAPSED TIME=0:01:23

Figure 1-1. Calling the PRINTOP Intrinsic from SPL

PAGE 0001 HP3210PA.086.6 (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1976

20001000 00000 @ $CONTROL USLINIT
20002000 00000 O
20033000 00000 0 << USING NUMERIC VALUES AS PARAMETERS >>
00004000 @PGR0 O

e BEGIN

1

1

1

1

1

ARRAY MESSAG

20005000 00RG00
00006000 0COG0
20007088 @012
00008000 @8a12
220890800 68012
0010008 ©GB3G4

E TO OPERATOR ;

20011000 00004 1 END.

PRIMARY DB STORAGE=2001; SECONDARY DB STORAGE=288@12
NO. ERRORS=0¢0; NO. WARNINGS=00@

PROCESSOR TIME=0:00:00; ELAPSED TIME=0:08:53

Figure 1-2. Using Numeric Values as Parameters in an Intrinsic Call
1-10

CALLING INTRINSICS FROM OTHER LANGUAGES

For most applications in FORTRAN, COBOL, BASIC, and RPG programs, the compiler for the
specific language generates any necessary intrinsic calls automatically. It is possible, however, to call
intrinsics, or other library procedures, from these languages. The procedures for calling intrinsics
from these languages are described in the applicable language reference manuals.

INTRINSIC CALL ERRORS

Some intrinsics alter the condition code returned to FORTRAN and SPL programs through two
bits (6 and 7) in the Status register. These two bits have four states which are defined as follows:

00 Defined as CCG, or condition code greater than.
01 Defined as CCL, or condition code less than.

10 Defined as CCE, or condition code equal.

11 Undefined.

Since bits 6 and 7 of the Status register are affected by many instructions, you should check for
condition codes immediately upon return from an intrinsic (see figure 1-3). A condition code is
always CCG, CCL, or CCE, and has the general meaning indicated below. The specific meaning, of
course, depends upon the intrinsic called and these meanings are described in Section II.

Condition Code State General Meaning
CCE Condition code equal. This generally indicates that the request
was granted.
CCG Condition code greater. A special condition occurred but may

not have affected the execution of the request. (For example,
the request was executed, but default values were assumed as
intrinsic call parameters.)

CCL Condition code less. The request was not granted, but the error
condition may be recoverable. Beyond this condition code,
some intrinsics return further error information in the program
through their return values.

Two types of errors may occur when an intrinsic is executed. The first, denoted by the CCG or CCL
condition codes, is generally recoverable (control returns to the calling program) and is known as a
condition code error. The second type is an abort error, which occurs when a calling program passes
illegal parameters to an intrinsic, or does not have the capability demanded by the intrinsic.
Intrinsic (system) traps are handled by a special procedure designed for that purpose. Normally, if
an intrinsic causes the trap to be invoked, the system trap handler aborts the user program. You
may, however, specify a procedure to be used instead of the default system trap handler and try to
recover from such errors. If the program is aborted in a batch job, MPE removes the job from the
system (unless a :CONTINUE command, defined in the MPE Commands Reference Manual,
precedes the error). If the program is aborted in an interactive session, MPE returns control to the
terminal. Abort-error messages are described in Section X.

1-11

PAGE 000! HP32180A.06.8 (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1976

00001008 00089
00022000 CA000
P0P03000 00G00
0eBB4000 OC2060
Go0B5000 00060
02006000 00000
00076008 00012
0008000 0O0012
200090060 00011
00010006 0OO11
oop11060 @0011
00012000 0OFO04
22013000 00004
229140028 00085
02015000 40006
0016008 0GA006
02017066 GQ0006
20018008 00012
08219000 @G0013
20020008 000813
00021000 00013
20022000 066817
20023000 @6017 STOP:

PBe24000 06217 END.

PRIMARY DB STORAGE=2003; SECONDARY DB STORAGE=2806035
NO. ERRORS=@00; NO. WARNINGS=000

PROCESSCR TIME=0¢:00:01; ELAPSED TIME=0:01:55

$CONTROL USLINIT
<< CONDITION CODE CHECKS »>>

BEGIN
ARRAY MESSAGE(@:9):="MESSAGE TO OPERATOR "
ARRAY OKBUF(@:9):="MESSAGF TRANSMITTED '
ARRAY ERRBUF(@:8):="1/0 ERROR OCCURRED";
INTRINSIC PRINTOP,PRINT:

PRINTOP(MESSAGE, 18, 2608)

OK:
PRINT(OKBUF, 10, 260);
GOTO STOP;

ERR:
PRINTC(ERRBUF, 9, %60);

s et et s e e b bt e bt bt s b e s s e e S @D @D

Figure 1-3. Condition Code Checks

NOTE

Whenever an intrinsic is invoked by a process and the DB
register is pointing to the DB area in the user’s stack, a
bounds check takes place to insure that all parameters in the
intrinsic call reference addresses that lie between the DL and
S addresses in the stack (prior to the intrinsic call). If an
address outside of these boundaries is referenced, an abort
error occurs.

When an intrinsic is invoked by a process running in the
privileged mode, and the DB register points to a data segment
other than the user’s stack segment (split stack), the results
depend on the particular intrinsic. Most intrinsics abort
immediately in this case. Others, indicated in Section II, are

1-12

allowed to execute following a bounds check that insures
that ail parameters in the intrinsic call reference addresses
that lie within the data segment. Any boundary violation
results in an abort error. Any additional special actions taken
by a particular intrinsic are described in the discussion of that
intrinsic in Section II.

Figure 1-3 illustrates the use of condition code checks in a program. If the condition code is CCE
(meaning that the request was granted), the program displays “MESSAGE TRANSMITTED”. Fora
CCL condition code, the message ‘“I/O ERROR OCCURRED?” is displayed and the program
terminates normally.

OPTIONAL CAPABILITIES

Users with the Standard MPE Capability can perform most functions available through the
operating system. There are some functions, however, which can only be performed by users with
certain optional capabilities assigned to them when the Accounts, Groups, and Users are created by
the System Manager.

The Process-Handling Optional Capability allows you to programmatically
Create and delete processes.

Activate and suspend processes.

Send mail between processes.

Change the scheduling of processes.

Obtain information about existing processes.

The Process-Handling Optional Capability is described in Section VIL

The Data-Segment Management Optional Capability allows you to create and access extra data
segments from processes during a job or session. This capability is described in Section VIIL.

Multiple Resource Identification Number Optional Capability. Users having standard MPE
capability can lock only one global or local Resource Identification Number (RIN) at a time. The
Multiple Resource Identification Number Optional Capability, however, allows you to lock as many
RIN’s as desired simultaneously, without checking by the operating system. The Multiple RIN

The Privileged Mode Optional Capability allows you to access all areas of the system and use all
features of the hardware. This capability allows you to access all system tables and invoke all system
instructions, including those in the privileged central processor unit instruction set. In short, this
capability allows you to use the computer on the same terms as the operating system itself. The
Privileged Mode Optional Capability is described in Section IX.

1-13

IMPORTANT NOTE

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible
for a privileged mode program to destroy file integrity, includ-
ing the MPE operating system software itself. Hewlett-Packard
will investigate and attempt to resolve problems resulting
from the use of privileged mode code. This service, which is
not provided under the standard Service Contract, is available
on a time and materials billing basis. However, Hewlett-
Packard will not support, correct, or attend to any modifica-
tion of the MPE operating system software.

The User Logging Optional Capability provides a flexible transaction logging capability which
enables you to journalize additions and modifications to your data bases and subsystem files. User
logging permits you to journalize on two mediums: tape and disc. If the data base is lost, the logging
tape or disc file can be used to recover the lost transactions.

1-14

INTRINSIC DESCRIPTIONS

This section contains descriptions of all intrinsics, arranged alphabetically. Each intrinsic description
includes the folicwing information:

e The intrinsic name, a brief summary of its function, and the number of the intrinsic. (The
number is only significant for error diagnosis. See the Error Messages and Recovery
Manual.)

e The complete intrinsic call description highlighted by being enclosed in a shaded box. The
intrinsic call descriptions are in the format shown below for the ACTIVATE intrinsic:

Required parameters, such as pin, are shown in bold face italics; optional parameters
(susp) are shown in regular italics. Superscripts are used to describe the types of
parameters and whether they must be passed by value, instead of by reference (the
default case). See Section I, page 1-8 for a discussion of passing parameters by value and
by reference. The superscripts have the following meanings:

BA Byte array
BP Byte pointer
D Double

DA Double array
DV Double by value
I Integer

IA Integer array

IV Integer by value
L Logical

LA Logical array
LV Logical by value
O-P Option privileged
O-V Option variable
R Real

In addition to the superscripts shown over the parameters, the superscript O-V is shown
for some intrinsics to denote option variable. Option variable means that the intrinsic
contains optional parameters. Additionally, O-P is shown for those intrinsics which can be
called only when running in privileged mode. The ACTIVATE intrinsic shown, for ex-
ample, contains two parameters: pin, which is a required integer parameter that must be
passed by value; and susp, an optional logical parameter that, if included in the intrinsic
call, must be passed by value. Additionally, the intrinsic is option variable, meaning that
some parameters are optional.

2-1

2-2

FUNCTIONAL RETURN: For those intrinsics which return a value to the calling
program (type procedures), the return is described. If the intrinsic is not a type
procedure, this portion of the description is omitted. The intrinsic call description format
for type intrinsics is as shown below for the READ intrinsic:

The READ intrinsic returns the positive length of the input actually read. This value is
returned to an integer variable. In the intrinsic call description, a word, representing what
is returned, is shown in italics (as is length, above) to denote that the intrinsic is a type
procedure. The type (integer, double, etc.) is signified by a superscript above the
descriptive word. Thus,

is an integer procedure, message is a required logical array, and expectedl is a required
integer parameter which must be passed by value.

NOTE
:= means ‘“is assigned” or “is replaced by.”

PARAMETERS: All parameters are described. In the intrinsic call description, required
parameters are shown in bold face italics and optional parameters are shown in regular
italics. Elsewhere in this manual, this distinction is not shown for required and optional
parameters and all parameters are shown in regular italics.

CONDITION CODES: Condition codes are included for each intrinsic.

SPECIAL CONSIDERATION:

Required Capability. When you run a program file, the program file’s capability
(established at PREPARATION time) is checked against the capability of the group
in which the file resides. If the file’s capability does not exceed the capability of the
group, the program executes. Additional capability checking, however, is done if the
program calls an intrinsic. Some intrinsics require that the program file have
sufficient capability to call them. If an intrinsic requires a special capability, it will
be noted in the discussion of that intrinsic.

NOTE

The optional capabilities are discussed in Section I, page 1-13.

Split Stack Operations. During normal operation, the DB register points to the user
process’ stack. Some operations with extra data segments require that DB be set to
the base of the extra data segment while DL and all other data registers remain
associated with the stack. When a process is operating in this mode it is said to have
a split stack. Several of the MPE intrinsics deal with DB in this manner and you
need not be concerned with the mechanics of the operation because while the stack
is “split” only system code is executing. It is possible, however, if you are a privileged
user, to force your process to operate in split-stack mode explicitly by calling the
SWITCHDB intrinsic.

IMPORTANT NOTE

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible
for a privileged mode program to destroy file integrity, includ-
ing the MPE operating system software itself. Hewlett-Packard
will investigate and attempt to resolve problems resulting
from the use of privileged mode code. This service, which is
not provided under the standard Service Contract, is available
on a time and materials billing basis. However, Hewlett-
Packard will not support, cotrect, or attend to any maodifica-
tion of the MPE operating system software.

If you do this, you must recognize that some of the normal callable intrinsics may
not be called when DB does not point to the stack. Such intrinsics, if called by a
privileged process in split stack mode, can result in system failures. If you are a
normal user, you need not concern yourself with this restriction and you may assume
in all the intrinsics described in this section that unless it is otherwise stated, an
intrinsic will not operate in split stack mode.

The SPECIAL CONSIDERATIONS portion of the description is omitted unless the
intrinsic operates in split stack mode, a special optional capability is required, or the
intrinsic requires a privileged call. Therefore, unless otherwise stated:

The intrinsic does not operate in split stack mode.
The intrinsic requires only standard capabilities.
The intrinsic does not require a privileged call.

TEXT DISCUSSION: This references the page in this manual where usage of the intrinsic
is discussed.

ACCEPT

Accepts (and completes) a request received by
the preceding GET intrinsic call and returns
an optional tag field back to a remote master

program.

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

24

ACTIVATE

Activates a process. INTRINSIC NUMBER 104

After a process has been created, it must be activated in order to run. Once activated, the process
runs until it is suspended or deleted. A newly-created process can only be activated by its father. A
process that has been suspended (with the SUSPEND intrinsic, see page 2-172) can be reactivated by
its father or any of its sons, as specified in the susp parameter of the ACTIVATE and SUSPEND
intrinsics.

The operating system guarantees that there will be no process switching (to some other process)
between activation of the called process and suspension of the calling process.

The ACTIV ATE intrinsic aborts the calling process (and possibly the entire job/session) if:

1. The group in which the program file resides does not have the Process-Handling Capa-
bility, and the program was not prepared with Process-Handling Capability.
2. The required parameter pin is omitted.

3. Arequest to activate the father would result in activation of a job or session main process
or a system process.

PARAMETERS

pin integer by value (required)
Process Identification Number (PIN). An integer specifying the PIN for
the son or father process to be activated. The PIN number to activate a
father process is always zero. The called process must always be
expecting an activation from the caller as noted in the discussion of the
SUSPEND (see page 2-172) and CREATE (see page 2-19) intrinsics.

susp logical by value (optional)
A word that specifies:
The calling process is to be suspended while the called process is
activated and commences execution.

or

The called process is activated by the operating system but does not
commence execution immediately. Instead, control is returned to the
calling process which will continue execution.

When susp is omitted or is zero, the calling process remains active.
When susp is specified, the calling process is suspended. The 14th and
15th bits of susp specify the anticipated source of the call that later will
reactivate the calling process.

Bit (15:1) — If on, the process expects to be activated by its father.
Bit (14:1) — If on, the process expects to be activated by one of its
sons.

If both bits are on, the suspended process can be activated by either the
father or sons.

JUL 1981 2-5

ACTIVATE

Bits (0:14) — Reserved for MPE. Should be set to zero.

Default: Calling process remains active.

CONDITION CODES

CCE Request granted. Called process is activated. The calling process is
suspended if susp was specified.

CCG The called process already is active. The calling process is suspended if
susp was specified.

CCL Request denied, because the called process was not expecting activation

by this calling process; an illegal pin parameter was specified; or the
susp parameter was specified improperly.

SPECIAL CONSIDERATIONS

Split stack calls permitted.
Process-Handling Capability required.

TEXT DISCUSSION

Page 8-10

2-6

ADJUSTUSLF

Adjusts directory space in a USL file. INTRINSIC NUMBER 83

The ADJUSTUSLF intrinsic moves the start of the information block forward or backward on a
user subprogram library (USL) file, thereby increasing or decreasing, respectively, the space
available for the file directory block. Note that this does not change the overall length of the file.
This intrinsic is intended for programmers writing compilers. See the MPE Segmenter Reference
Manual for a discussion of USL’s, the ADJUSTUSLF intrinsic, information blocks, and directory
blocks.

FUNCTIONAL RETURN
This intrinsic returns an error number if an error occurs. If no error occurs, no value is returned.

PARAMETERS

uslfnum integer by value (required)
A word supplying the file number of the USL file (as returned by
FOPEN).

records integer by value (required)

A word supplying a signed record count. If records is greater than zero,
the information block is moved toward the end-of-file in the USL file,
increasing the space available for the directory block and decreasing the
space available for the information block. If records is less than zero,
the information block is moved toward the start of the USL file,
decreasing the directory-block space and increasing the information-
block space.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied. One of the following error numbers is returned.
Error Number Meaning
0 The file specified by usifnum was empty,

or an unexpected end-of-file was encoun-
tered when reading the old uslfnum, or an
" o1 LAquJ

unexpecied end-of-file was encounterea
when writing on the new uslfrnum.

2-7

ADJUSTUSLF

Error Number

TEXT DISCUSSION

MPE Segmenter Reference Manual.

Meaning

Unexpected input/output error occurred.
This can occur on the old usifnum or the
new uslfnum to which the intrinsic is
copying the information.

Your request attempted to exceed the
maximum file directory size (32,768
words).

Insufficient space was available in the USL
file information block.

ALTDSEG

INTRINSIC NUMBER 134

The ALTDSEG intrinsic alters the current size of an extra data segment. ALTDSEG can be used to
reduce the storage required by the segment when it is moved into main memory, then used again to
expand storage as required, thus allowing more efficient use of memory.

Expansion and contraction is accomplished in even multiples of 4, which are rounded up. For

example,

Present Segment Size (Words) Change Value (Words) New Segment Size (Words)

128
128
128
128
128

-3
-4
+1
+3
+4

NOTE

Sufficient virtual space is allocated by the system when a
data segment is created through GETDSEG to accommodate
the original length of the data segment. This virtual space is
allocated in increments of pages where the number of words
per page is set when the system is configured (typically 512
words/page). For example, creation of a data segment with a
length of 600 words would result in two virtual pages being
allocated for the data segment (space for 1024 words).

In no case may ALTDSEG increase the size of a data segment

to exceed the virtual space originally allocated through
GETDSEG.

PARAMETERS

index

inc

size

logical by value (required)

128
124
132
132

132

A word containing the logical index of the extra data segment, obtained

from the GETDSEG call.

integer by value (required)

The value, in words, by which the data segment is to be changed. A
positive integer value requests an increase, and a negative integer value

requests a decrease.

integer (required)
A word to which is returned the new size of the
incrementing or decrementing occurs.

data segment after

29

ALTDSEG

CONDITION CODES

CCE

CCG

CCL

Request granted.

Request not fully granted. An illegal decrement, requesting a new total
segment size of zero or less, or an illegal increment, requesting a new
size greater than the virtual space originally assigned by GETDSEG,
was attempted. In the first case, the current size remains in effect. In
the second case, the size of the virtual space is granted and this size is
returned through the size parameter.

Request denied because an illegal index parameter was specified.

SPECIAL CONSIDERATIONS

Data-Segment Management Capability required.

TEXT DISCUSSION

Page 8-16

2-10

ARITRAP

nables or disables all hardware arithmetic traps. INTRINSIC NUMBER 51

The interrupts listed below are collectively called the arithmetic user traps.

When a user process begins execution, all internal arithmetic user traps are enabled. That is, if an
arithmetic error occurs in the user process, it is aborted in the trap mechanism. The various
interrupts which can occur are:

Integer overflow.

Floating point overflow.
Floating point underflow.
Integer divide by zero.

Floating point divide by zero.
Double precision overflow.
Double precision underflow.
Double precision divide by zero.
Decimal overflow.

Invalid ASCII digit.

Invalid decimal digit.

Invalid source word count.
Invalid decimal operand length.
Decimal divide by zero.

The traps may be collectively enabled/disabled with the ARITRAP intrinsic call.

The ARITRAP intrinsic always clears the overflow indicator located in the caller’s status word.

PARAMETERS

state logical by value (required)
A word specifying whether all traps are to be enabled or disabled.
If state is TRUE (bit 15 = 1), all traps are enabled.
If state is FALSE (bit 15 = 0), all traps are disabled.
Bits 0 through 14 are reserved for MPE and should be set to zero.

CONDITION CODES

CCE Request granted. The arithmetic traps were originally disabled.
CCG Request granted. The arithmetic traps were originally enabled.
CCL Not returned by this intrinsic.

TEXT DISCUSSION

Page 4-30.

2-11

ASCII

INTRINSIC NUMBER 63

Converts a one-word binary number to a numeric ASCII string.

Any 16-bit binary number can be converted to a different base and represented as a numeric
character ASCII string by using the ASCII intrinsic call.

FUNCTIONAL RETURN

This intrinsic returns the number of characters in the resulting string.

PARAMETERS

word

base

string

2-12

logical by value (required)
The number to be converted to an ASCII string.

integer by value (required)

An integer indicating octal or decimal conversion.

8 = octal

10 = decimal (left justified)

-10 = decimal (right justified)

If any other number is entered in this parameter, the intrinsic causes
the user process to abort.

byte array (required)

A byte array into which the converted value is placed. This array must
be long enough to contain the result. No result, however, exceeds six
characters. For octal conversion (base =8), six characters, including
leading zeros, are always returned in string, showing the octal
representation of word. In octal conversions, the length returned by
ASCII is the number of significant (right-justified) characters in string
(excluding leading zeros). If word = 0, the length (numchar) returned
by ASCII is 1.

For decimal conversions, word is considered as a 16-bit, 2’s comple-
ment integer ranging from -32768 to +32767. If the value of word is
negative, the first byte of string contains a minus sign. If word = 0, only
one zero character is returned in string. The length (numchar) returned
by ASCII is the total number of characters in string (including the
sign). If word = 0, the length returned by ASCII is 1.

For decimal left-justified conversions (base = 10), leading zeros are
removed and the numeric ASCII result is left justified in string.

For decimal right-justified conversions (base = —10), the result is right
justified in string.

DEC 1981

BEGINLOG

INTRINSIC NUMBER 211 Marks the beginning of user logging transaction.

The BEGINLOG instrinsic posts a special record to the user logging file to mark the beginning of a
logical transaction in the log file. When BEGINLOG is used, the logging memory buffer is flushed
to ensure that the record gets to the logging file. BEGINLOG can be used also to post data to the
logging file by using the data parameter. This function of BEGINLOG performs the same procedure
as the WRITELOG intrinsic.

PARAMETERS

data array (required)
An array in which the actual information to be logged is passed. A log
record contains 128 words of which 119 words are available to the user.
Because of this, the most efficient use of log file space is a multiple of
119 words.

len integer (required)
The length of the data in data. A positive count indicates words, and a
negative count indicates bytes. If the length is greater than 119 words,
the information in data will be divided into two or more physical
log records.

index double (required)
The parameter returned from OPENLOG that identifies the users
access to the logging system.

status integer (required)
An integer that the logging system uses to return error information to
the user. Zero indicates OK status.

mode integer (required)

An integer which specifies whether you want your process impeded
by the logging process if the logging buffer is full. If it is not possible
to log the transaction and the mode is set to nowait, the BEGINLOG
intrinsic will return an indication in the status word that the request
was not compieted. Mode zero indicates wait; mode one indicates
nowait.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

None.

I 2.13a JUL 1981

BINARY

INTRINSIC NUMBER 62

Converts a number from an ASCII string to a binary word.

FUNCTIONAL RETURN

This intrinsic returns the binary equivalent of the numeric string.

PARAMETERS

string

length

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-13.

2-14

byte array (required)

Contains the octal or signed decimal number (ASCII characters) to be
converted. If the character string in this array begins with a percent sign
(%), it is treated as an octal value. If the string begins with a plus sign,
minus sign, or a number, it is treated as a decimal value.

NOTE

String cannot contain blanks.

integer by value (required)

An integer representing the length (number of bytes) in the byte array
containing the ASCII-coded value. If the value of length is 0, the
intrinsic returns 0 to the calling process. If the value of length is less
than 0, the intrinsic causes the user process to abort.

Successful conversion. A one-word binary value is returned to the user’s
process.

A word overflow, possibly resulting from too many characters (string
number too large), occurred in the word (binequ) returned.

An illegal character was encountered in the byte array specified by
string. For example, the digits 8 or 9 specified in an octal value.

Returns the calendar date.

FUNCTIONAL RETURN

This intrinsic returns the calendar date in the format

Bits

0

15

Year of Century

Day of Year

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 4-44.

CALENDAR

INTRINSIC NUMBER 43

2-15

CAUSEBREAK

INTRINSIC NUMBER 56 Places a session in break mode.

Using the CAUSEBREAK intrinsic is the programmatic equivalent to using the BREAK key in a
session. Execution of the process can be resumed where the interruption occurred by entering the
command

:RESUME
CONDITION CODES
CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because the intrinsic was not called from an interactive

session.
SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

2-16

CLEANUSL

Deletes inactive entries from USL file

FUNCTIONAL RETURN

CLEANUSL deletes all inactive entries from currently managed USL files and returns the new file
number. If an error occurs, the error number is returned instead of the new file number. (See Table
10-13, CLEANUSL Error Messages) The condition code, therefore, must be tested immediately on
return from the intrinsic. Unpredictable results occur if an error number is used as a file number.

NOTE

CLEANUSL requires at least 3000 words of available stack
space to execute.

PARAMETERS
uslfnum integer by value (required)

A word identifier which supplies the file number of the file.
filename byte array (required)

The name to be given to the cleaned file. The array must end with a
blank, but it can be all blanks. If it’s all blanks it purges the inactive
entries.

CONDITION CODES

CCE Request granted. The new file number is returned.
CCG Not returned by this intrinsic.
CCL Request denied. (See Table 10-13, CLEANUSL Error Messages)

TEXT DISCUSSION

None

2-17

CLOCK

INTRINSIC NUMBER 44 Returns the time of day.

FUNCTIONAL RETURN

This intrinsic returns the actual time (wall time), as monitored by the system timer, as a double
word. The first word contains the hour of the day and the minute of the hour, the second word
contains seconds and tenths of seconds as follows:

Bits 0 7 8 15
Hour of Day Minute of Hour Word 1

Seconds Tenths of Seconds Word 2

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION
Page 4-44.

2-18

Closes access to the logging facility. INTRINSIC NUMBER 212

The CLOSELOG intrinsic closes access to the logging facility.

PARAMETERS

index double (required)
The parameter returned from OPENLOG that identifies your access to
the logging facility.

mode integer (required)
An integer which you use to indicate whether or not your process
should be suspended if your request for service cannot be completed
immediately. Enter a zero if you want to wait for service; enter a one if
you do not want to wait.

status integer (required)

An integer which indicates logging system errors to you. (See table
E-12, User Logging Error Messages.)

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 10-93

DEC 1981 2-19

COMMAND

INTRINSIC NUMBER 68 Executes an MPE command programmatically.

NOTE

User-defined commands may not be used.

PARAMETERS

comimage byte array (required)

Contains an ASCII string consisting of a command and parameters ter-
minated by a carriage return. The carriage return character must be the
last character of the command string. No prompt character, however,
should be included in this string. The comimage array may be altered
by the COMMAND intrinsic (for example, characters in it may be shift-
ed from lowercase to uppercase), but will be returned in a form that
can be resubmitted to this intrinsic without adjustment.

error integer (required)
A word to which any error code set by the command is returned. This
is the same error code that would appear on a job/session list device if
the command was part of an input stream, i.e., command interpreter
error code not file system error code. If no error occurs, error returns
zero.

parm integer (required)
A word to which the number (index) of the erroneous parameter is
returned. If no parameters are in error, parm returns zero. If there are
errors, parm may be zero or some positive integer. In the case where an
error refers to a file system problem, parm is the file system error code.

CONDITION CODES

CCE Request granted.

CCG An executor-dependent error, such as an erroneous parameter, pre-
vented execution of the command. The error parameter contains the

numeric error code.

CCL Request denied. The command was an undefined command.

TEXT DISCUSSION

Page 4-9

2-20

CREATE

Creates a process. INTRINSIC NUMBER 100

Any running

process, if it has the Process-Handling Capability, can request the creation of a son

process by issuing the CREATE intrinsic call. The CREATE intrinsic loads the program to be run by
the new process into virtual memory, creates the new process as the son of the calling process,
initializes its data stack, schedules the process, and returns the new Process Identification Number
(PIN) to the requesting process.

The creating process is aborted if:

1.

Request was rejected because of illegal parameters; a PIN of zero is returned. Specifically,

this occurs:

® If progname is illegal.

® If entryname is illegal.

® If stacksize is less than 512 (decimal) and is not -1. (Note that if -1 is specified, the
default value is taken.)

e If disize is less than 0 and is not -1.

® If maxdata is less than or equal to 0, and is not ~1.

e If (disize + globsize + stacksize + 128) exceeds maxdata. Note that disize may have
been modified to satisfy condition 2 under CCG. The globsize value is the sum of
the primary DB plus the secondary DB values (the total DB given at program
preparation time by the program map (PMAP)).

® If (disize + globsize + stacksize + 128) exceeds the maximum stacksize defined
during system configuration. Note that disize may have been modified to satisfy
condition 2 under CCG.

e If (maxdata + 90) exceeds 32768, where maxdata is either the value passed as a

parameter or a value re-computed by the Loader under condition 1 of CCG.

The program file does not have the Process-Handling Optional Capability.

An illegal value (a non-existent subqueue) was specified for the priorityclass parameter.

A required parameter (progname or pin) is omitted.

A reference parameter was not within the required range.

2-21

CREATE

PARAMETERS

progname

entryname

pin

param

flags

2-22

byte array (required)

Contains a string, terminated by a blank, specifying the name, and
optionally, the account and group (filereference format, see Section III,
page 3-8) of the file containing the program to be run.

byte array (optional)

Contains a string, terminated by a blank, specifying the entry point
(label) in the program where execution is to begin when the process is
activated. The primary entry point in the program can be specified by
setting the array equal to a blank character alone.

Default: The primary entry point is used.

integer (required)

A word in which the PIN of the new process is returned to the
requesting process. This PIN is used in other intrinsics to reference the
new process. The PIN can range from 1 to 255. If an error is detected, a
PIN of zero is returned to the requesting process.

integer by value (optional)

A word used to transfer control information to the new process. Any
instruction in the outer block of code in the new process can access this
information in location Q-4.

Default: Word is filled with zeros.

logical by value (optional)
A word whose bits, if on, specify the loading options:

NOTE

Bit groups are denoted using the standard SPL notation. Thus
bit (15:1) indicates bit 15, bits (10:3) indicates bits 10, 11,
and 12.

Bit (15:1) —ACTIVE bit. If on, MPE reactivates the calling process
(father) when the new process terminates. If off, the

calling process is not activated at that time.
Default: Off.

Bit (14:1) —LOADMAP bit. If on, a listing of the allocated (loaded)
program is produced on the job/session list device. This
map shows the Code Segment Table (CST) entries used by
the new process. If off, no map is produced.

Default: Off.

Bit (13:1) —DEBUG bit. If on, a call to DEBUG is made at the first
executable instruction of the new process. If off, the
breakpoint is not set. This bit is ignored if the user is
non-privileged and the new process requires privileged

CREATE

mode. It also is ignored if the user does not have read/write
access to the program file of the new process.
Default: Off.

Bit (12:1) —NOPRIV bit. If on, the program is loaded in non-privileged
mode. If this bit is off, the program is loaded in the mode
specified when the program file was prepared.

Default: Off.

Bits (10:2) —LIBSEARCH bits. These bits denote the order in which
libraries are to be searched for the program:

9 00 — System Library.
¢ 01 — Account Public Library, followed by System Library.
G 10 — Group Library, followed by Account Public Library,
followed by System Library.
Default: 00.

Bit (9:1) —NOCB bit. If on, file system control blocks are established
in an extra data segment. If off, control blocks may be
established in the Process Control Block Extension (PCBX)
area.

Default: Off.

NOTE
This bit should be set on if you are using a large stack.

Bits (7:2) — Reserved for MPE. Should be set to zero.

Bits (5:2) — STACKDUMP bits. These bits control the enabling/
disabling of the mechanism by which the stack is dumped
in the event of an abort:

00 — Enables only if enabled at father level.
01 — Enables unconditionally.
10 — Same as 00.
11 — Disables unconditionally for new process.
Default: 00.
Bit (4:1) — Reserved for MPE. Should be set to zero.
NOTE

The following bits (0:4) are used only when the bit pair (5:2)
is 01. Otherwise, these bits are ignored.

Bit (3:1) — DL to QI bit. If on, the portion of the stack from DL to
QI is dumped. If off, this portion of the stack is not
dumped.

Default: Off.

2-23

CREATE

stacksize

disize

maxdata

priorityclass

rank

2-24

Bit (2:1) — QI to S bit. If on, the portion of the stack from QI to S is
dumped. If off, this portion of the stack is not dumped.
Default: Off.

Bit (1:1) —Q-63 to S bit. If on, the portion of the stack from Q-63 to
S is dumped. If off, this portion of the stack is not
dumped.

Default: Off.

Bit (0:1) — ASCII DUMP bit. If on, the dump is interpreted in ASCII,
in addition to the octal dump. If off, ASCII interpreting is
not given.

Default: Off.
Default: Default values as noted are taken.

integer by value (optional)

An integer (Z — Q) denoting the number of words assigned to the local
stack area bounded by the initial Q and Z registers.

Default: The same as that specified in the program file.

integer by value (optional)

An integer (DB — DL) denoting the number of words in the
user-managed stack area bounded by the DL and DB registers.

Default: The same as that specified in the program file.

integer by value (optional)

The maximum size allowed for the process’ stack (Z — DL) area in
words. When specified, this value overrides the one established at
program-preparation time.

Default: If not specified, and not specified in program file either, MPE
assumes stack will remain same size.

logical by value (optional)

A string of two ASCII characters describing the priority class in which
the new process is scheduled. This may be all, as discussed under
Rescheduling Processes (see Section VII, page 7-13) for users with
Process-Handling Capability, or CS, DS, and ES for users without the
Process-Handling Capability.

Default: The same as the priority of the calling process.

integer by value (optional)
This parameter is used only for compatibility with previous versions of
the MPE Operating system. It is ignored for all users.

NOTE
For the stacksize, disize, and maxdata parameters, a value of

-1 indicates that the MPE Segmenter is to assign default
values. Specifying -1 is equivalent to omitting the parameter.

CREATE

CONDITION CODES

CCE Request granted. The new process is created.

CCG Request granted. The maxdata and/or dlsize parameters given were
illegal, but other values were used, as follows:

1. If the maxdata specified exceeds that maximum Z — DL allowed by
the configuration, the configuration maximum value is assigned.

2. If (disize + 100) modulo 128 is not zero, then disize is rounded
upward so that (dlsize + 100) modulo 128 = 0.

CCL Request denied because the progname or entryname specified does not
exist.

SPECIAL CONSIDERATIONS

Process-Handling Capability required.

TEXT DISCUSSION
Page 7-3.

2-25

CREATEPROCESS

INTRINSIC NUMBER 101 Provides the ability to assign
$STDLIST and $STDIN to any file.

The CREATERPROCESS Intrinsic allows you to assign the system defined files, $STDIN and
$STDLIST, to any file at process creation time. You are not limited to system defined defaults.
Note that Process-Handling capability is required to call this intrinsic, and that it may not be
called in split stack mode. If the intrinsic is called with the error parameter omitted, an invalid
address for parameter error is returned. In split stack mode, the calling process will be aborted.

PARAMETERS

error integer (required) c - \P)
An integer indicating success or failure type. (See Table E-14.) (,) —
pin integer (required)
An integer in which the PIN of the newly created process is returned.
If there is an error in creating the new process, i.e., parameter error > 0
a zero is returned.

progname byte array (required)
A byte array containing a string terminated by any non-alphanvmeric
character other than a period or a slash which specifies the name of the
program file to be run by the new process.

itemnums integer array (optional)
An array containing the item numbers (in any order) of the options you
want to use in creating a new process. This array must contain a zero as
its last element to indicate the end of the option list. (See Figure 2-0).

items logical array (optional)
An array containing the items (in the same order as the item numbers
in itemnums), to be used in creating the new process. (See Figure 2-0.)

CONDITION CODES

CCE No error.

CCL Unsuccessful.

CCG Successful. Error numbers preceded by a minus sign (-) indicate a
warning only. (See Table E-14.)

SPECIAL CONSIDERATIONS Spage E 17

Process-Handling capability required.

TEXT DISCUSSION

None.

2-26 JUL 1981

The item numbers in the array itemnums indicate the options to be applied in creating the new process. The
corresponding items in the array items give the information necessary for each option to be used.

Itemnumber Item
1 A pointer to a byte array containing the name of the entry point in the program where the
new process is to begin execution. The name is specified as a string of characters terminated
by a blank.
2 An integer containing a parameter to be passed to the new process (accessed through Q-4

of the outer block).

3 A logical value containing the load option flags to be used in loading the program file for the
new process. This parameter has the same definition as the flags parameter of the CREATE
intrinsic.

4 An integer specifying the initial stack size (Q - Z).

5 An integer specifying the initial DLsize (DL-DB) for the new process.

6 An integer specifying the maximum stack size (DL-2) for the new process (i.e. MAXDATA).

7 A string of 2 ASCII characters specifying the priority class in which the new process is to be

scheduled. (“CS”, “DS", or “ES".)

8 A pointer to a byte array containing the definition of a file to be used as $STDIN for the
new process. {See description below).

9 A pointer to a byte array containing the definition of a file to be used as $STDLIST for the
new process (see description below).

10 A logical value indicating suspension and anticipated source of re-activation. Specification
of this parameter causes the newly created process to be ACTIVATEd automatically upon
creation completion. The meanings of the individual bit fields of this parameter are the same
as those of the susp parameter of the ACTIVATE intrinsic.

11 A pointer to a byte array containing a string of information to be passed to the new process.
The length of the string is specified with item number 12.

12 An integer specifying the length in bytes of the string specified with item number 11.

NOTES

if item numbers 8 or 9 are not specified, the default $STDIN and $STDLIST will be used in creating the new
process. These defaults are the current $STDIN and $STDLIST files for the creating (father) process.

Item number 8 indicates that the corresponding item in the item array is the address of a byte array which
containe the definition of the file to be used as $STDIN for the new process. This byte array must contain an
ASCI! string (terminated by a carriage return) which is the right hand side of a file equation specifying the file
to be used as $STDIN (i.e. everything after the “:FILE formaldesignator="" portion of the file equation).

item number 9 indicates that the corresponding item in the item array is the address of a byte array which
contains the definition of the file to be used as $STDLIST for the new process. This array is defined as above
for $STDIN.

ftem numbers 11 and 12 indicate that a string is to be passed to the new process. The string will be placed just
after the global area of the new process’s stack. A DB relative byte pointer to the string in the new process’s
stack will be placed at Q-5 of the stack {where Q is the initial value of the QO-register at activation time)}, and
the length of the string in bytes will be placed at Q-6. If no string is specified to be passed to the new process,
Q-5 and O-6 will both contain 0. :

Figure 2-0. Item Number and Corresponding Items
JUL 1981 2-27

CTRANSLATE

INTRINSIC NUMBER 61

Converts a string of characters from EBCDIC to
ASCII, ASCII to EBCDIC, EBCDIK to JIS (katakana),
or JIS to EBCDIK.

The CTRANSLATE intrinsic is used for character code translating, whether between the standard
computer character codes or with a user defined code. It permits you to obtain character code con-
versions within programs of your own design. In the code parameter of CTRANSLATE, the follow-
ing values specify the translation table to be used:

PARAMETERS

code

instring

outstring

stringlength

table

2-28

integer by value (required)
An integer identifying a specific translation to be used as follows:

0 = The user supplied table specified in the parameter, table.
1 = EBCDIC to ASCII.

2 = ASCII to EBCDIC.

3 = Reserved for future use.

4 = Reserved for future use.

5 = EBCDIK to JIS (katakana data).

6 = JIS to EBCDIK.

byte array (required)
The string of characters to be translated.

byte array (optional)

A byte array to which is returned the translated character string. If
outstring is not specified, all translation will occur within instring.
The parameters instring and outstring may specify the same array.

integer by value (required)
A positive integer specifying the length (in bytes) of instring.

byte array (required when code = 0)

A byte array to be used as the translation table. The contents of table,
and the order of these contents, define the translation process. The
length of table may be as large as 256 bytes, but it needs to be only as
large as the largest numeric value of any source byte in instring. The
table is constructed such that each byte in the table corresponds to a
byte value in the source string to be translated; for example, the fifth
byte in the table gives the code to be substituted for source bytes
whose value is 4.

CTRANSLATE

CONDITION CODES

CCE Request granted. Translation performed successfully.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

TEXT DISCUSSION

Page 4-13

2-29

DASCII

INTRINSIC NUMBER 75

Converts a two-word binary number (double word)
to a numeric ASCII string.

A 32-bit double-word binary number can be converted to a different base and represented as a
numeric character ASCII string by issuing the DASCII intrinsic call.

FUNCTIONAL RETURN

This intrinsic returns the number of characters in the resulting string.

PARAMETERS

dword

base

string

2-30

double by value (required)
A double-word value indicating the number to be converted to ASCII
code.

integer by value (required)

An integer indicating octal or decimal conversion.

8 = octal

10 = decimal (left justified)

If any other number is entered in this parameter, the intrinsic causes
the user process to abort.

byte array (required)

The byte array into which the converted value is placed. This array
must be long enough to contain the result. No result, however, exceeds
11 characters.

For octal conversion (base = 8), 11 characters, including leading zeros,
are always returned in string, showing the octal representation of
dword. The length (numchar) returned by DASCII is the number of
significant (right justified) characters in string, excluding leading zeros.
If dword = 0, the length returned by DASCII is 1.

For decimal conversions (base = 10), dword is considered as a 32-bit,
2’s complement integer ranging from -2,147,483,648 to
+2,147,483,647. Leading zeros are removed and the numeric DASCII
result is left justified in string. If the value of dword is negative, the
first byte of the string returned contains a minus sign. If dword = 0,
only one zero character is returned to string. String can contain up to
11 characters, including the sign. If dword = 0, the length returmed by
DASCII is 1.

DASCII

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-13.

2-31

DATELINE

Returns date and time information.

PARAMETERS

datebuf byte array (required)
A byte array reference, (minimum 27 characters), to which the date
and time information is returned.

25, 1979, 12:06 PM

ay
67 8 9101112131415161718192021 222324 2526
[N N T TN Y N T TS N N O O Y I Y I T

byte string Fr i ,
byteindex 01 2 3 4
L1 11 1

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

None

2-32

DBINARY

Converts a number from an ASCII string to a double-word binary value. INTRINSIC NUMBER 74

The DBINARY intrinsic performs double-integer ASCII to binary conversion.

FUNCTIONAL RETURN

This intrinsic returns the converted double-word binary value to dval.

PARAMETERS

string byte array (required)
Contains the octal or signed decimal number (in ASCII characters) to
be converted. If the character string in this array begins with a percent
sign (%), it is treated as an octal representation. If the string begins with
a plus sign, minus sign, or number, it is treated as a decimal
representation.

length integer by value (required)

An integer representing the length (number of bytes) in the string
containing the ASCII-coded value. If the value of length is 0, the
intrinsic returns O to the calling process. If the value of length is less
than 0, the intrinsic causes the user process to abort.

CONDITION CODES

CCE Successful conversion. A double-word binary value is returned to the
program.
CCG A word overflow, possibly resulting from too many characters (string

number too large), occurred in the word returned.

CCL An illegal character was encountered in string. For example, the digits 8
or 9 specified in an octal value.

TEXT DISCUSSION

Page 4-13.

2-33

DEBUG

INTRINSIC NUMBER 99 Invokes the DEBUG facility.

DEBUG;

PARAMETERS

None.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

MPE DEBUG/Stack Dump Reference Manual.

2-34

DLSIZE

Expands or contracts the area between DL and DB INTRINSIC NUMBER 135
in multiples of 128 words.

This intrinsic causes the area between DL and DB to be expanded or contracted within the stack
segment. All current information within the area is saved on expansion. If contracting, data in the
area which is to be contracted is lost. A request for contraction less than the initial DL size of the
area causes the initial DL size to be granted and an error condition (CCL) to be returned. If the size
requested causes the stack to exceed the maximum size permitted by the stack area (Z — DL), only
this maximum is granted.

All addressing within the DL to DB area is DB relative negative indexing. Therefore, SPL is the only
language, at present, which can access this area for you. If you wish to access this area in SPL,
please note that the original data is not moved relative to DB on expansion or contraction of the
area. For example, if a variable is located at DB — 10 before an expansion, it will be at DB - 10 after
the expansion.

FUNCTIONAL RETURN

This intrinsic returns the size actually granted. This value is a negative quantity except on error
condition CCL when it is possible to have a positive value returned.

PARAMETERS

size integer by value (required)
A negative integer representing the new size of the DL to DB area. A
size of 0 is permitted and resets the DL to DB area to the original value
assigned when the process was created (initial DL). (This is the only
way to contract the DL to DB area.) The size granted will be an absolute
value which is rounded up so that the distance between the beginning
of the segment to DB is a multiple of 128 words.

CONDITION CODES

CCE Request granted. The value returned is at least as large as the value
requested.
CCG Requested size exceeded maximum limit allowed. The maximum limit

allowable is granted and its size is returned.

CCL 1. An illegal size parameter was specified. The size parameter was a
positive integer or the negative size requested was smaller than the
original DL to DB area. The original area size assigned when the
stack segment was created is granted and this size is returned as a
negative value.

2-35

DLSIZE

2. The data segment is a FROZEN stack segment which cannot be
changed until the system UNFREEZES it. The area remains
unchanged. The value returned is a positive integer size of the area
and denotes this special error conditions.

TEXT DISCUSSION

Page 4-22.

2-36

DMOVIN

Copies data from data segment to stack. INTRINSIC NUMBER 132

A process can copy data from an extra data segment into the stack by issuing the DMOVIN intrinsic
call. A bounds check is performed by the intrinsic on both the extra data segment and the stack to
insure that the data is taken from within the data segment boundaries and moved to an area within
the stack boundaries. For example, in the diagram shown below, if you wish to move 4 words from
locations 422 through 425 of the data segment whose index is 21 to DB + 40 through DB + 43 of
your stack, the intrinsic call would be

The index is 21 (from GETDSEG, see page 2-111); displacement (disp) within the data segment is
422; the number of words to move into the stack is 4; and the DB relative location to begin
transferring the data is the address of ARA(10). If ARA(10) is at DB + 40, the end result will be the
4 words moved to DB + 40 through DB + 43 within the stack, as shown below.

STACK

DATA SEGMENT
DL {(GETDSEG INDEX = 21}
]
DB
ARA(0)
ARA(1)
: 422 042503
ARA(10)DB+40 042503 423 045501
41 045501 424 047113
42 047113 425 040522
43 040522
12000
S
4

2-37

DMOVIN

PARAMETERS

index

disp

number

location

CONDITION CODES
CCE
CCG

CCL

logical by value (required)
A word containing the logical index of the extra data segment, obtained
from a GETDSEG intrinsic call.

integer by value (required)
The displacement of the first word in the string to be transferred, from

the first word in the data segment. This must be an integer value greater
than or equal to zero.

integer by value (required)
The size of the data string to be transferred, in words. This must be an

integer value greater than or equal to zero.

logical array (required)
The array (buffer) in the stack where the data string is to be moved.

Request granted.

Request denied because of bounds-check failure.

Request denied because of illegal index or number parameter.

SPECIAL CONSIDERATIONS

Data-Segment Management Capability required.

TEXT DISCUSSION

Page 8-15.

2-38

DMOVOUT

T el TT TN

Copies data from stack to extra data segment. INTRINSIC NUMBER 133

The DMOVOUT intrinsic copies data from the stack to an extra data segment. A bounds check is
initiated to insure that the data is taken from an area within the stack boundaries and moved to an
area with the extra data segment boundaries.

In the example shown below,-if you wish to move 4 words from DB + 20 within your stack to the
data segment whose index is 2 (from a GETDSEG call, see page 2-111), starting at location 201
within the segment, the intrinsic call could be

The index is 2; the displacement (disp) within the data segment is 201; the number of words to be
moved to the data segment is 4; and the location of the data within the stack is the address of
ARA(10). Iif ARA(10) is at DB + 20, the end result is that the 4 words within the stack will be
moved to words 201 through 204 of the data segment, as shown below.

STACK DATA SEGMENT
(GETDSEG INDEX = 2)
DL
0
DB
ARAI(0)
ARA(1)
ARA (10) DB+20 054517
21 052522 201 054517
22 047101 202 052522
23 046505 203 047101
204 046505
o}
S 4096
z

2-39

ENDLOG

INTRINSIC NUMBER 211 Marks the end of a user logging transaction.

The ENDLOG intrinsic posts a special record to the logging file to mark the end of a logical
transaction in the logging file. When the record is posted, ENDLOG flushes the user logging memory
buffer to ensure that the record gets to the logging file.

The data parameter of the intrinsic can be used to post user data to the log file. This function of
the procedure is identical to the WRITELOG intrinsic.

PARAMETERS

data array (required)
An array in which the actual information to be logged is passed. A log
record contains 128 words of which 119 words are available to the user.
Because of this, the most efficient use of log file space is a multiple of
119 words.

len integer (required)
The length of the data in data. A positive count indicates words and a
negative count indicates bytes. If the length is greater than 119 words,
the information in data will be divided into two or more physical log
records.

index double (required)
The parameter returned from OPENLOG that identifies the user’s
access to the logging file.

mode integer (required)
An integer which specifies whether you want your process impeded by
the logging process if the logging buffer is full. If it is not possible to
log the transaction and the mode is set to nowait, the ENDLOG intrin-
sic will return an indication in the status word that the request was not
completed. Mode zero indicates wait; mode one indicates nowait.

status integer (required)

A 1t +1a 3 i 3
An integer that the logging system uses to return error information to

the user. Zero indicates no errors.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

None.

JUL 1981 2-40a

DMOVOUT

PARAMETERS

index logical by value (required)
A word containing the logical index of the extra data segment, obtained
through a GETDSEG call.

disp integer by value (required)
The displacement, in the extra data segment, of the first word of the
receiving buffer from the first word in the data segment. This value
must be an integer greater than or equal to zero.

number integer by value (required)
The size of the data string to be transferred, in words. This must be an
integer value greater than or equal to zero.

location logical array (required)

The array (buffer) in the stack containing the data to be moved.

CONDITION CODES

CCE Request granted.
CCG Request denied because of bounds-check failure.
CCL Request denied because of illegal index or number parameter.

SPECIAL CONSIDERATIONS

Data-Segment Management Capability required.

TEXT DISCUSSION

Page 8-15.

2-40

EXPANDUSLF

Changes length of a USL file. INTRINSIC NUMBER 84

You can increase or decrease the length of a USL file by calling the EXPANDUSLF intrinsic.

When this intrinsic is executed, a new USL file is created whose length is records longer or shorter
than the USL file specified by uslfnum. The old USL file is copied to the new file with the same file
name, and the old USL file then is deleted.

FUNCTIONAL RETURN

This intrinsic returns the new file number. If an error occurs, the error number is returned instead
of the new file number. The condition code therefore must be tested immediately on return from
this intrinsic. If an error number were to be used as a file number, unpredictable results would
occur.

PARAMETERS
uslfnum integer by value (required)

A word identifier supplying the file number of the file.
records integer by value (required)

A signed integer specifying the number of records by which the length
of the USL file is to be changed. If records is positive, the new USL file
is longer than the old USL. If records is negative, the new USL file is
shorter than the old USL.

CONDITION CODES

CCE Request granted. The new file number is returned.
CCG Not returned by this intrinsic.
CCL Request denied. One of the following error numbers is returned.
Error Number Meaning
0 The file specified by uslfnum was empty,

or an unexpected end-of-file was encoun-
tered when reading the old uslfnum, or an
unexpected end-of-file was encountered
when writing on the new uslfnum.

it

Unexpected input/output error occurred.
This can occur on the old uslfnum or the
new uslfnum to which the intrinsic is
copying the information.

2-41

EXPANDUSLF

Error Number

10

11

TEXT DISCUSSION

MPE Segmenter Reference Manual.

2-42

Meaning

The intrinsic was unable to open the new
USL file.

The intrinsic was unable to close (purge)
the old USL file.

The intrinsic was unable to close (save) the
new USL file.

The intrinsic was unable to close
$NEWPASS.

The intrinsic was unable to open
SOLDPASS.

FATHER

Requests PIN of father process. INTRINSIC NUMBER 109

A process can determine the Process Identification Number (PIN) of its father by issuing the
FATHER intrinsic call.

FUNCTIONAL RETURN
This intrinsic returns the PIN of the process’ father.

CONDITION CODES

CCE Request granted. The father is a user process.
CCG Request granted. The father is a job or session main process.
CCL Request granted. The father is a system process.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 7-14.

2-43

FCARD

Drives the HP 7260A Optical Mark Reader (OMR)

The FCARD intrinsic allows you to control the operation of the 7260A OMR. programmatically.
This is achieved through passing a parameter (recode), corresponding to the function of FCARD
desired, from your program to FCARD. FCARD returns to the program parameter values which
indicate the success or the cause of failure of execution, the status of the 7260A, the file number
of the 7260A /terminal file for which the function has been performed and the number of columns
read at the completion of a read request.

PARAMETERS

recode

2-44

integer (required)

A positive integer represented as an input or output parameter. As an
input parameter, recode requests one of the following twelve options
(functions):

0 = Open the reader and the terminal as a file and return to the ‘

program the filenum through SPL/3000 conventions.

1 = Read a single card whether in ASCII or in column image format.

See Section V for descriptions of ASCII and column image read-
ing formats.

2 = Select the previously read card by routing the card into the select

output hopper (providing option 002 of the 7260A is installed).

3 = Retransmit data from the previously read card. This transmission

may be performed in ASCII or column image reading formats,
depending on latest issued FCARD call specifying recode equal to
11 or 12.

4 = Temporarily suspend the program awaiting an operator action

(depress the 7260A “READY” switch). This particular call to
FCARD will maintain control and will not be completed until the
operator presses the 7260A “READY” switch.

10 = Cause the 7260A motor to come to a stop and de-activate MUTE

for the associated terminal, if muted. When MUTE is activated and
the 7260A is in its “READY” state, data transmission from the
computer and from the 7260A to the terminal is disabled.

11 = Cause the output format of the subsequent read (recode=1) and

retransmit (recode=3) requests to be performed in the image read-
ing format.

In image mode reading, count is returned to the program with the
number of columns which have been transmitted.

FCARD

19 = Cause the output format of the subsequent read (recode=1) and
retransmit (recode=3) requests to be performed in the ASCII read-
ing format.

In ASCII mode reading, count is returned to the program with the
number of characters (columns) transmitted.

138 = Cause the 7260A optional bell to ring (providing option 004 is
installed).

17 = Enable the “echo-on” function of the computer.
18 = Disable the “echo-on’” function of the computer.

20 = Close the reader/terminal file opened with recode=0. This effec-
tively completes the program.

As an output parameter, recode indicates to the program whether a
call to FCARD has been properly executed. The indication given by
the value of recode is as described below:

0 = Indicates that the request, i.e., the call to FCARD, has been suc-
cessfully performed. For the following conditions, when output
recode=0, the specified parameters are significant to the program:

a. If the request was to open a file (recode=0), then filenum is
significant.

b. If the request was either to read (recode=1) or to retransmit
{recode=3), then bufadr (the first byte may contain status infor-
mation identical to that contained in the parameter status),
count, filenum and status are significant.

c. If the request was to select the previously read card (recode=2),
then status is significant.

d. If the request was to perform a temporary suspension of the
program (recode=4), then status is significant.

e. For all other requests (recode=10,11,12,17,18 and 20), none of
the other parameters are significant.
1 = Indicates that recode specified in the request was not one of the
following legal values: 0,1,2,3,4,10,11,12,13,17,18 or 20.

O = T Ainntaa +lha i
9 = Indicates that FCARD was unable to open the 7260A/terminal

pair as a file. This error is not recoverable, thus the program
should indicate an error and terminate itself.

4 = Indicates that FCARD has encountered a file read or write error
while accessing the 7260A. This error is not recoverable, thus the
program should indicate an error and terminate itself.

5 = Indicates that FCARD was unable to close the 7260A/terminal
file. This error is not recoverable, thus the program should indi-
cate an error and proceed to a normal termination.

2-45

FCARD

filenum

bufadr

count

status

2-46

6 = Indicates that a logical end-of-data (:JOB, :EQJ, :EOD and
:DATA) was encountered while reading data in response to either
a read or retransmit request.

7 = Indicates that FCARD has encountered a file error on requests for
either enabling or disabling the echo function.

8 = Indicates that FCARD has detected a data dropout condition
while the 7260A was transmitting. You should request a retrans-
mission of the data or status (see recode=3).

integer (required)

A word identifier supplying the file number of the file associated with
the reader/terminal file. This file number is returned to the program
from FCARD with output recode=0. It must be provided to FCARD
on all requests.

integer array (required)
The array to which the record is to be transferred. This parameter
should be set to 120 words.

integer (required)

A positive integer which is returned to the program upon completion of
aread (recode=1) or a retransmit (recode=3) request indicating the num-
ber of columns which have been transferred from the 7260A OMR.

integer (required)

An integer indicating whether the OMR has successfully performed or
responded to the read, select, retransmit, or temporary suspend request.
If status is equal to zero, then the request has been successfully
performed. If status is not equal to zero, then it contains an octal value
specifying the OMR condition. The options are:

OCTAL 22 READY status. Indicates that the OMR READY
push button has been pressed (recode=4). Would
also indicate that the OMR is ready but there is no
data to be retransmitted (recode=3).

OCTAL 07 Input hopper empty or hopper full status. Can
either be returned upon a read request (recode=1)
or upon a retransmit request, if there is no data to
retransmit (recode=3).

OCTAL 11 Pick fail status. Can either be returned upon a read
request (recode=1) or upon a retransmit request, if
there is no data to retransmit (recode=3).

FCARD

OCTAL 37 Not ready status. Can either be returned upon a
read request (recode=1) or upon a retransmit re-
quest (recode=3). This status is provided by the
OMR if the operator has pushed the OMR STOP
push button or if a lamp has burned out in the
OMR read head.

OCTAL 14 Select successful status. Indicates that the OMR
has successfully selected the card upon the select
request (recode=2).

OCTAL 13 Select hopper full status. Indicates that the OMR’s
select hopper was full when the select request
(recode=2) was issued.
FCARD derives the parameter status by assigning the contents of the
first byte of bufadr to stalus, if this byte equals one of the values of
status given above after a read (recode=1), select (recode=2) or retrans-
mit (recode=3) request, or if this byte equals octal 22 after a request

for a temporary suspension of the program (recode=4).

For more details on the OMR status, refer to the HP 7260A Operating
and Service Manual (HP Part No. 07260-90001).

CONDITION CODE

The condition code remains unchanged.

TEXT DISCUSSION

Page 5-28.

2-47

FCHECK

INTRINSIC NUMBER 10 Requests details about file input/output errors.

When a file intrinsic returns a condition code indicating a physical input/output error, additional
details may be obtained by using the FCHECK intrinsic call. This intrinsic applies to files on any
device.

FCHECK accepts zero as a legal filenum parameter value. When zero is specified, the information
returned in errorcode reflects the status of the last call to FOPEN. When an FOPEN fails, there is
obviously no file number which can be referenced in filenum. Therefore, when an FOPEN fails, a
filenum of zero can be used in the FCHECK intrinsic call to obtain the errorcode only. If the tlog,
blknum, or numrecs parameters are specified, a zero value will be returned to these parameters. If a
filenum of zero is used for a file which has been previously FOPENed, but not yet FCLOSEd, the
returned errorcode will be meaningless.

PARAMETERS

filenum integer by value (optional)
A word identifier supplying the file number of the file for which error
information is to be returned. If omitted, FCHECK assumes you want
the last FOPEN error.

errorcode integer (optional)
A word to which isreturned an 8-bit code (16 bits for KSAM) specifying
the type of error that occurred. If the previous operation was successful
or an EOF is encountered, all 16 bits are set to zero.
Default: The error code is not returned.

tlog integer (optional)
A word to which is returend the transmission log value recorded on the
last data transfer. This word specifies the number of words actually
read or written if an input/output error occurred.
Default: The transmission log value is not returend.

blknum double (optional)
The physical record count, if the file is not a spool file; the logical
record count if it is a spool file. The physical count is the number of
physical records transferred to or from the file since a) FOPEN, for
fixed and undefined length record files; b) the last rewind, rewind/
unload space forward or backward to tape mark, for variable length

record files.
numrecs

numrecs integer (optional)
A word to which is returned the number of logical records in the bad
block (blocking factory).
Default: The number of logical records is not returned.

2-48

FCHECK

In the 16 bits returned to the word specified by the errorcode parameter, the low-order eight bits
contain the error-type code that shows what kind of error occurred. (Non KSAM access.)

The following codes are returned in errorcode by FCHECK:

Code
{Decimal) Meaning

0 End of file.

1 Illegal DB register setting (typically, a request in split-stack mode
when it is illegal).

2 Illegal capability.

3 Parameter omitted in IOWAIT.

5 DRT number > 255.

8 Illegal parameter value.

9 Undefined file type.

10 Invalid record size.

11 Invalid block size.

12 Record number out of range.

16 More than 255 FOPENSs applied against one file.

17 Magnetic tape runaway (tape is blank}.

18 Device did a power -up reset.

19 Line printer did a VFC reset.

20 Invalid operation.

21 Data parity error.

22 Software time-out.

23 End of tape.

24 Unit not ready.

25 No write ring on tape.

o 26 Transmission error (No defective track table entry is made on foreign
) discs).
27 Input/output time-out.
28 Timing error or data overrun.
« 29 Start input/output (SIO) failure.

30 Unit failure.

31 End of line (special character terminator).

32 Software abort of inputjoutput operation.

33 Data lost.

34 Unit not on-line.

35 Data set not ready.

36 Invalid disc address.

37 Invalid memory address.

38 Tape parity error.

39 Recovered tape error.

40 Operation inconsistent with access type.

41 Operation inconsistent with record type.

42 Operation inconsistent with device type.

43 The tcount parameter value exceeded the recsize, but the multirecord
access aoption was not specified when the file was opened.

44 The FUPDATE intrinsic was called, but the file was positioned at
record zero. (FUPDATE must reference the last record read, but no
previous record was read.)

45 Privileged file violation.

DEC 1981 2-49

FCHECK

Code
(Decimal) Meaning

46 File space on all discs in the device class specified is insufficient to
satisfy this request.

47 Input/output error on a file label.

48 Invalid operation due to multiple file access.

49 Unimplemented function.

50 The account referenced does not exist.

51 The group referenced does not exist.

52 The referenced file does not exist in the system (permanent) file
domain.

53 The referenced file does not exist in the job temporary file domain.

54 The file reference is invalid.

55 The referenced device is not available.

56 The device specification is invalid or undefined.

57 Virtual memory is not sufficient for the file specified.

58 The file was not passed (typically, a request for SOLDPASS when there
is no $OLDPASS).

~ 59 Standard label violation.

60 Global RIN not available.

61 Group disc file space exceeded.

62 Account disc file space exceeded.

63 Non-sharable device (ND) capability required, but not assigned.

64 Multiple RIN (MR) capability required, but not assigned.

66 Plotter limit switch reached.

67 Paper tape error.

68 System internal error.

69 Miscellaneous (ATTACHIO) input/output error.

70 Header or trailer I/O error.

71 Process file access information area exhausted. (Try preparing with
NOCB.)

72 Invalid file number.

73 Bounds check violation.

76 Input buffer absent in IOWAIT.

77 NO-WAIT input/output operation is pending.

78 There is no NO-WAIT input/output for any file.

79 There is no NO-WAIT input/output for file specified.

80 Configured maximum number of spoolfile sectors would be exceeded
by this output request.

81 No SPOOL class defined in system.

82 Insufficient space in SPOOL class to honor this input/output request.

83 Extent size exceeds maximum allowable.

84 The next extent in this spoolfile resides on a device which is unavail-
able to the system (i.e., the device is : DOWN).

85 Operation inconsistent with spooling, e.g., attempt to read hardware
status.

86 Spool process internal error.

87 Offset to data is greater than 255 sectors.

88 Spooling error.

89 Power failure.

2-50 JUL 1981

JUL 1981

Code
{Becimal)

90
91

92
93
94
95
96

97
98
99

100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
121
122
123
124
126
127
128
129
130
131
132
139
148

FCHECK

Meaning

The calling process requested exclusive access to a file to which another
process has access.

The calling process requested access to a file to which another process
has exclusive access.

Lockword violation.

Security violation.

Creator conflict in use of FRENAME intrinsic (user is not the creator).
“BROKEN?” terminal read.

Miscellaneous disc input/output error (device may require HP Customer
Engineer attention).

CONTROL Y processing requested, but no CONTROL Y pin exists.
Input/output read time has overflowed.

Magnetic tape error. Beginning of tape (BOT) found while requesting
a backspace record (BSR) or a backspace file (BSF).

Duplicate file name in the system file directory.

Duplicate file name in the job temporary file directory.

Directory input/output error.

System directory overfiow.

Job temporary directory overflow.

Illegal variable block structure.

Extent size exceeds maximum allowable.

Offset to data greater than 255 sectors.

Inaccessible file due to a bad file label.

Illegal carriage -control option.

The intrinsic attempted to save a system file in the job temporary file
directory.

User lacks save files (SF) capability.

User lacks private volumes (UV) capability.

Volume set not mounted — mount problem.

Volume set not dismounted — dismount problem.

Attempted rename across volume sets.

Invalid tape label FOPEN parameters.

Attempted to write on an unexpired tape file.

Invalid header or trailer tape label.

Input/output error positioning tape for tape labels.

Tape label lockword violation.

Tape label table overflow.

End of tape volume set.

Append request to labelled tape.

Character set number must be between 0 and 31.

Form number must be between 0 and 31.

Logical page number must be between 0 and 31.

Vertical format number must be between 0 and 31.

Number of copies must be between 1 and 32767.

Number of overlays must be between 1 and 8.

Page length parm must be between 12 (=3”’) and 68 (=177).

Deleted sectors on IBM diskette.

Inactive RIO record accessed.

2-51

FCHECK

Code
(Decimal) Meaning

149 Missing item number or return variable.

150 Invalid item number.

151 Undefined file type (invalid file type in FOPTION of FOPEN).

152 Unrecognized key word in FOPEN device parameter.

153 Expecting “;” or ‘“‘cr’” in FOPEN device parameter.

154 Environment file open error.

155 File not environment file. Check file code or record size.

156 Header record incorrect.

157 Uncompiled environment file.

158 Error reading environment file.

159 Error closing environment file.

160 Error doing FDEVICECONTROL from environment file.

161 Too many parameters in device string—overflow.

162 Expecting ‘“="’ after keyword in device parameter..

163 “ENV” back reference in file equation incorrect.

164 Device parameter too large or missing carriage return.

165 Invalid density specification.

166 FFILEINFO failed in accessing remote spoolfile.

167 Spoolfile label error, can’t insert ENV file name.

170 The record is marked deleted. FPOINT positioned pointer to a record
that was marked for deletion.

171 Duplicate key value (KSAM error).

172 No such key (KSAM error).

173 Tcount parameter larger than record size (KSAM error).

174 Cannot get extra data segment (KSAM error).

175 Internal KSAM error.

176 Illegal extra data segment (KSAM error).

177 Too many extra data segments for this process (KSAM error).

178 Not enough virtual memory for extra data segment (KSAM error).

179 File must be locked before issuing this intrinsic (KSAM error).

180 The KSAM file must be rebuilt because this version of KSAM does not
handle the file built by previous version.

181 Invalid key starting position (KSAM error).

182 File is empty (KSAM error).

183 Record does not contain all keys (KSAM error).

184 Invalid record number (KSAM FFINDN intrinsic error).

185 Sequence error in primary key (KSAM error).

186 Invalid key length (KSAM error).

187 Invalid key specification (KSAM error).

188 Invalid device specification (KSAM error).

189 Invalid record format (KSAM error).

190 Invalid key blocking factor value (KSAM error).

191 Record does not contain search key for deletion. Specified key value
points to record which does not contain that value.

192 System failure occurred while KSAM file was opened.

201 Invalid ID sequence (CS error).

202 Invalid telephone number (CS error).

203 No telephone list specified (CS error).

2-52 JUL 1981

FCHECK

Meaning

File number returned from IOWAIT is not a DS line number.
The requested DS line has not been opened with a user :DSLINE

Local communication line not opened by operator (DS error).
Communications interface error. Remote computer reset the line.
Communications interface error. Remote computer has disconnected.

Communications interface error. Remote computer rejected connection.

Communications interface error. The local data set for the DS line went

Communications interface error. Negative response to the dial request

Communications interface error. Invalid input/output configuration.

Code
(Decimal)

204 Unable to allocate an extra data segment for DS/3000.
205 Unable to expand the DS/3000 extra data segment.
212
214

command.
216 Message rejected by remote computer (DS error).
217 Insufficient amount of user stack available (DS error).
221 Invalid DS message format. (Internal DS error.)
240
241 DS line in use exclusively or by another subsystem.
242 Internal DS software malfunction.
243 Remote computer not responding (DS error).
244
245 Communications interface error. Receive timeout.
246
247 Communications interface error. Local timeout.
248 Communications interface error. Connect timeout.
249
250 Communications interface error. Carrier lost.
251

not ready.
252 Communications interface error. Hardware failure.
253

by the operator.
254
255

Communications interface error. Unanticipated error condition.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because filenum was invalid or a bounds violation

occurred while processing this request and errorcode is 73.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-68

JUL 1981

2-53

FCLOSE

INTRINSIC NUMBER 9 Closes a file.

The FCLOSE intrinsic terminates access to a file. This intrinsic applies to files on all devices.
FCLOSE deletes the buffers and control blocks through which the user process accessed the file. It
also deallocates the device on which the file resides and it may change the disposition of the file. If
you do not issue FCLOSE calls for all files opened by your process, such calls are issued automati-
cally by MPE when the process terminates. All magnetic tape files are left offline after an FCLOSE
to indicate to the console operator that they may be removed.

The FCLOSE intrinsic can be used to maintain position when creating or reading a labeled tape file
that is part of a volume set. If you close the file with a disposition code of 3, the tape does not
rewind, but remains positioned at the next file. If you close the file with a disposition code of 2, the
tape rewinds to the beginning of the file but is not unloaded. A subsequent request to cpen the file
does not reposition the tape if the sequence (seq) subparameter is NEXT, or default (1). A
disposition code of 1 (rewind and unload) implies the close of an entire volume set.

When the logical end-of-data is encountered during reading, the CCG condition code is returned to
the user process. On magnetic tape, the end-of-data can be denoted by a physical indicator such as a
tape mark. When a file is read that spans more than one volume of labeled magnetic tape, the user
program is suspended until the operator has completed mounting the next tape. CCG is not returned
when end-of-tape is encountered. On disc, the end-of-data occurs when the last logical record of the
file is passed. In this case, the CCG condition code is returned and no record is read. If the file is
embedded in an input source containing MPE commands, the end-of-data is indicated when an
:EOD command is encountered, but the :EOD command itself is not returned to the user. The
end-of-data is indicated by a hardware end-of-file , including :EOF:, or on $STDIN by any record
beginning with a colon, or on $STDINX by :EOD. In addition, on the standard input device for a
job, as opposed to a session, :JOB, :EOJ, or :DATA indicate end-of-data.

PARAMETERS
filenum integer by value (required)

A word identifier supplying the file number of the file to be closed.
disposition integer by value (required)

Indicates the disposition of the file, significant only for files on disc and
magnetic tape (ignored by Foreign Disc Facility). This disposition can
be overridden by a corresponding parameter in a :FILE command
entered prior to program execution. The disposition options are defined
by two-bit fields, as follows:

(13:3) Domain Disposition
NOTE

Bit groups are denoted using the standard SPL notation.
Thus, bits (13:3) indicates bits 13, 14, and 15.

2-54

JUL 1981

FCLOSE

0 - No change. The disposition code remains as it was before the file
was opened. Thus, if the file is new, it is deleted by FCLOSE; other-
wise, the file is assigned to the domain to which it belonged previously.
An unlabeled tape file is rewound. If the file resides on a labeled tape,
the tape is rewound and unloaded.

1 - Permanent file. If a disc file, it is saved in the system file domain. If
the file is a new or old temporary file on disc, an entry is created for it
in the system file directory. An error code is returned, and the file
remains open, if a file of the same name already exists in the directory.
If the file is an old permanent file on disc, this disposition value has no
effect. If the file is stored on magnetic tape, that tape is rewound and
unloaded.

2 - Temporary job file (rewound). The file is retained in the user’s
temporary (job/session) file domain and can thus be requested by any
process within the job/session. If the file is a disc file, the uniqueness
of the file name is checked. If a file of the same name in the temporary
file domain exists already, an error code is returned and the file remains
open. If the file resides on unlabeled magnetic tape, the tape is re-
wound. If the file resides on labeled magnetic tape, the tape is back-
spaced to the beginning of the presently opened file.

3 = Temporary job file (not rewound). This option has the same effect
as disposition code 2, except that tape files are not rewound. In the
case of unlabeled magnetic tape, if this FCLOSE is the last done on the
device (no other OPENs outstanding) the tape is rewound. If the
file resides on a labeled magnetic tape, the tape is positioned to the
beginning of the next file on the tape. Note that this disposition does
not apply to disc files.

4 = Released file. The file is deleted from the system.
NOTE

Although the basic functions covering magnetic tape files are
covered above in dispositions 0 through 4, it is recom-
mended that you read the discussion of magnetic tape files
in Section X for special considerations not here.

(12:1) Disc Space Disposition (for fixed length and undefined format
files only).

1 = Returns to the system any disc space allocated beyond the end-
of-file indicator. The EOF becomes the file limit. No records may be
added to the file beyond this new limit.

Note: No space will be returned to the system if used with variable
length files. “

0 = Does not return any disc space allocated beyond the end-of-file
indicator.

2-55

FCLOSE

seccode

CONDITION CODES

CCE
CCG

CCL

When a file is opened by the FOPEN intrinsic, a file count (maintained
by the system) is incremented by one. When the file is FCLOSEd, the
file count is decremented by one. If more than one FOPEN is in effect
for a particular file, its disposition is saved but not affected by the
FCLOSE call until the file count is decremented to zero. Then the
effective (saved) disposition is the smallest non-zero disposition
parameter specified among all FCLOSE calls issued against the file. For
example, a file XYZ is opened three successive times by a process. The
first FCLOSE disposition is 1, the second FCLOSE disposition is %14,
and the third (and last) FCLOSE disposition is %12. The final
disposition on the file XYZ will be disposition 1 (permanent file and no
return of disc space).

Bits (0:12) are reserved for MPE and should be set to zero.

integer by value (required)

Denotes the type of security initially applied to the file, significant only
for new permanent files (ignored by Foreign Disc Facility). The options
are:

0 — Unrestricted access — the file can be accessed by any user, unless
prohibited by current MPE provisions.

1 — Private file creator security — the file can be accessed only by its
creator.

The file was closed successfully.
Not returned by this intrinsic.

The file was not closed, perhaps because an incorrect filenum was
specified, or because another file with the same name and disposition
exists in the system. Additionally, an illegal disposition, 5, 6, or 7, was
specified. This can be detected by FCHECK returning an error 49.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-39

2-56

JUL 1981

FCONTROL

Performs control operations on a file or device. INTRINSIC NUMBER 13

The FCONTROL intrinsic performs various control operations on a file or on the device on which
the file resides.

These operations include:

® Supplying a printer or terminal carriage-control directive.

® Verifying input/output.

® Reading the hardware status word pertaining to the device on which the file resides.
® Setting a terminal’s time-out interval.

e Rewinding a file.

® Writing an end-of-file indicator.

® Skipping forward or backward to a tape mark.

The FCONTROL intrinsic applies to files on disc, tape, terminal, or line printer. Note the special
conditions that exist when FCONTROL is used with files on labeled magnetic tape. Some FCON-
TROL functions cannot be used with labeled tapes, and other functions may produce unexpected
results. (Refer to controlcodes 5, 6, 7, 8, and 9.)

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file for which the
control operation is to be performed.

controlcode integer by value (required)

An integer specifying the operation to be performed:

0 - General Device Control. The param parameter is transmitted to the
appropriate device driver, and the value returned is transmitted to the
user through the param parameter.

1 - Line Control. A request to send the value specified in the param
parameter to the terminal or line printer driver as a carriage-control
directive. Use line controls provided by FWRITE when directing to a
disc or a spooled file.

2 - Complete Input/Output. This insures that requested input/output
has been physically completed. Valid only for buffered files. Posts the
block being written whether full or not.

2-57

FCONTROL

2-58

3 - Read Hardware Status Word. This operation will return in param
the status word from the device on which the file resides. The returned
value is the status of the device from the previous input/output opera-
tion, including FOPEN of the file.

4 - Set Time-Out Interval. This code indicates that a time-out interval is
to be applied to input from the terminal. If input is requested from the
terminal but is not received in this interval, the FREAD request termi-
nates prematurely with condition code CCL. The interval itself is speci-
fied, in seconds, in a word on the user’s stack, indicated by param. If
this interval is zero, any previously established interval is cancelled, and
no time out occurs. Controlcode 4 is ignored if the addressed file is not
being read from the terminal. Note that this only affects the next read.

5 -~ Rewind File. This repositions the file at its beginning, so that the
next record read or written is the first record in the file. This code is
not valid for files accessed with append-only. Note that on a labeled
magnetic tape file, the tape is positioned to the beginning of the opened
file, and not necessarily to the beginning of the volume.

6 - Write End-of-File. This operation is used to denote the end of a file
on disc or magnetic tape, and is effective only for those devices. If
applied to a disc file, the operation writes a logical end-of-data indicator
at the point where the file was last accessed. The disc file label also is
updated and written to disc. If the file is an unlabeled magnetic tape
file, a tape mark is written at the current position of the tape. This
controlcode is not allowed for labeled magnetic tape files.

7 - Space Forward to Tape Mark. This moves a magnetic tape forward
until a tape mark is enountered. If used on labeled magnetic tapes, the
tape is positioned to the beginning of user trailer labels, if any.

8 - Space Backward to Tape Mark. On unlabeled tapes, this moves a
magnetic tape backward until a tape mark is encountered. If used on
labeled tapes, the tape is positioned to the beginning of user header
labels, if any.

9 - Rewind and Unload Tape. This repositions a magnetic tape file at
its beginning and places the tape offline. Not allowed for labeled tapes.

NOTE

Control codes 0 and 3 will be rejected for spooled devicefiles.
Control codes 5 through 9 (magnetic tape control) will be
rejected for spooled :DATA tapes. Control codes 6 and 9 will
be rejected for labeled magnetic tape files.

Although the basic functions covering magnetic tape files are
covered above, it is recommended that you read the discus-
sion of magnetic tape files in Section III for special considera-
tions not covered here.

DEC 1981

FCONTROL

The following values for controlcode are used for changing terminal characteristics. See Section V.

10 = Change terminal input speed.

11 = Change terminal output speed.

12 = Turn echo facility on.

13 = Turn echo facility off.

14 = Disable the system break function.
15 = Enable the system break function.

16 = Disable the subsystem break function.
17 = Enable the subsystem break function.
18 = Disable tape mode option.

19 = Enable tape mode option.

20 = Disable the terminal input timer.

21 = Enable the terminal input timer.

22 = Read the terminal input timer.

23 = Disable parity checking.*

24 Enable parity checking.*

25 = Define line-termination characters for terminal input.
26 = Disable binary transfers.

27 = Enable binary transfers.

28 = Disable user block mode transfers.

29 = Enable user block mode transfers.

34 = Disable line deletion echo suppression.

35 = Enable line deletion echo suppression.

36 = Set parity.* 1
37 = Allocate a terminal.

38 = Set terminal type.

39 = Obtain terminal type information.

40 = Obtain terminal output speed.

41 = Set unedited terminal mode.

borts pending NC-WAIT I/O request.

45 = Enable/Disable extended wait.

46 = Enable/Disable reading writer’s ID.

47 = Nondestructive read.

V)
Il
E»

A
G

*In Series 30/33 environment, FCONTROL code 36 only sets parity sense. You must additionally I
use control code 23/24 to disable/enable parity checking.

JUL 1981 2-59

FCONTROL

param logical (required)
If controlcode is 1, param denotes a word containing the value to be
transmitted to the terminal or line printer driver as a carriage control or
mode control directive. The carriage control directive is selected from
figure 2-3, following FWRITE.

The mode control determines whether any carriage control directive
transmitted through the FWRITE intrinsic takes effect before printing
(pre-space movement) or after printing (post-space movement). The
mode control directive is selected from the octal codes %400 or %401
in figure 2-3.

If param contains a mode control directive, then a value is returned to
param that shows the mode setting of the device as it was before the
call to FCONTROL, as follows:

Value Meaning
0 Post-spacing
1 Pre-spacing

If controlcode is 4, param denotes a word in the user’s stack that
contains the time-out interval, in seconds, to be applied to input from
the terminal.

If controlcode is 2, 5, 6, 7, 8, or 9, param is any variable or word
identifier. This parameter is needed by FCONTROL to satisfy the

internal requirements of the intrinsic. It serves no other purpose,
however, and is not modified by the intrinsic.

See Section V for param requirements when controlcode is 10 or greater.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Pages 5-1 and 10-79

2-60 JUL 1981

FDEVICECONTROL

INTRINSIC NUMBER 53 Adds a variety of control directives to a spooled device file,
currently only device files of the 2680 page printer.

FDEVICECONTROL may be used to download character sets, forms and internal or control tables
used in printing. It may also be used to control the page size, pen positioning, use of character sets
and forms, and the number of copies of each page to be printed, along with other characteristics of
the printing environment. The IFS/3000 intrinsics (which perform the same functions as FDEVICE-
CONTROL), together with the layout of character set and form set load records and the Logical
Page Table, are discussed in the IFS/3000 manual, part number 36580-90001.

PARAMETERS
filenum integer by value (required)
A word identifier supplying the file number of the spoolfile. This value
is obtained from FOPEN.
target logical array (required)
This array contains data to be passed to the 2680 printer. In general,
it contains character sets, forms, or VFC information.
tcourni integer by value (required)
The length of target in words or, if the value is negative, in bytes.
controlcode integer by value (required)
The code number of the operation to be performed.
paraml, param2 logical by value (required)
For each value of controlcode, there may be several possible values for
param1 and param2, which define the operation in more detail.
errnum integer (required)
The File System error code returned if an error occurs. Otherwise set
to zero.

2-61a JUL 1981

FDEVICECONTROL

The following is a summary of the controlcodes described below:

Controlcode Meaning
128 Character Set Selection
129 Logical Page Activation/Deactivation Request
130 Relative Pen Displacement
131 Absolute Pen Move
132 Define Job Characteristics
133 Define the Physical Page
134 Download/Delete Character Set
135 Download/Delete Form
136 Download Logical Page Table
137 Download Multi-copy Form Overlay Table
138 Download/Delete Vertical Format Control
140 Page Control
141 Clear Environment
142 Reserved
143 Load the Default Environment
Controlcode = 128 Character Set Selection

param1 (8:8) primary character set identification
param?2 (8:8) secondary character set identification

The 2680 can contain up to 32 character sets, thus allowing the use of a
variety of fonts, styles, print rotations, and languages. Use controlcode
134 to download character sets to the printer. Use this controlcode to
select any two downloaded character sets to be the current primary and
secondary character sets.

To change the secondary character set a character at a time, set the
eighth bit of the byte coding for the desired ASCII character. The 2680
will strip out this bit and print, in the secondary character set, the
character represented by the remaining 7 bit value. To change to the
secondary character set for a number of characters and over several
lines, insert a shift-out control character (control N) in the data. Insert
a shift-in control character (control O) where you again wish to use the
primary character set,

JUL 1981 2-61b

FDEVICECONTROL

Controlcode = 129 Logical Page Activation/Deactivation Request

paream1 (0:1) deactivates the Logical Page Table entry identified in
the left byte of param2.

(1:1) activates the Logical Page Table entry identified in
the right byte of param2.

param?2 (0:8) Logical Page Table entry (from O to 31) to be de-
activated.

(0:8) Logical Page Table entry (from 0 to 31) to be acti-
vated.

Every physical page is composed of one or more logical pages. When the
2680 begins to print each physical page, it scans the Logical Page Table
for the first logical page labeled as active. The printer then continues
searching the table sequentially for active pages and printing them
until it has printed the last active page. At this point the 2680 performs
a physical page eject and starts the sequence again. There must be at
least one active LPT entry while the 2680 is printing.

This controlcode allows you to cancel or enable the printing of logical
pages during a job through the activation or deactivation of those pages.

Controlcode = 130 Relative Pen Displacement

paraml is a 16 bit signed integer containing the desired X displace-
ment of the pen from its current position.

param2 is a 16 bit signed integer containing the desired Y displace-
ment of the pen from its current position.

No pen movement will result from requests to move the pen off of the
logical page. As the coordinate system is based upon the current logical
page itself and not upon the page’s orientation with respect to the
printer, you need not consider how the page has been rotated when
assigning displacement values to param1 and param2.

I 2-.61c JUL 1981

JUL 1981

FDEVICECONTROL

Controlcode = 131 Absolute Pen Move

paraml is an integer containing the X coordinate of the point to
which you wish to move the pen.

param2 is an integer containing the Y coordinate of the point to
which you wish to move the pen.

The values in param1 and param2 are measured from the upper left
corner of the logical page. As with controlcode 130, you need not take
page rotation into account when assigning coordinates, and the printer
will not move the pen if the location you specify is off the logical page.

Controlcode = 132 Define Job Characteristics

paraml (0:1) 1 — the printer will print no job separation marks until
the next job is open.

1 :i) 1 — param?2 contains the maximum allowable number
of copies of each page.

param2 is significant only if param1 (1:1) is set, and is the maximum
number of copies the printer will make of any one page for
the current job. The default maximum is 32,767.

The Spooler calls FDEVICECONTROL with this value of controlcode
to set the maximum allowable number of copies per page. You may

request any number less than or equal to this number by using control-
code 133.

2-61d

FDEVICECONTROL

Controlcode = 133 Define the Physical Page
Paraml (0:1) 1— turn ON Multi Copy Form Overlay feature.
(1:1) 1— turn OFF Multi Copy Form Overlay feature.
(2:1) 1— reserved
{8:1) 1— redefine the physical page length.

(4:1) 1— redefine the number of copies of each page de-
sired.

(5:1) 1— reserved
(6:1) 1— reserved
(7:1) 1— reserved

(8:8) New physical page length in units of .25 inches. The

length may not be less than 3.0 inches (a value of
12) or greater than 17.0 inches (a value of 68).

param2 contains the number of copies of each page you want to print.
If this number exceeds the maximum defined in param2 of
controlcode 132, only the maximum number of copies is
printed.

Although FDEVICECONTROL will accept page length values that are
multiples of .25 inches, the 2680 printer is able to produce only pages
that are multiples of .5 inches. For this reason, only use even number
values in param1 (8:8). In other words, bit 15 must always be zero.

B 2-6le JUL 1981

JUL 1981

FDEVICECONTROL

Controlcode = 134 Download/Delete Character Set
Param1 (0:1 0— Download of character set into the 2680.

1— Purge the character set identified in the right
hand byte of param?2 from the 2680.

Param2 (0:1) 0— This is the first record of a load.

1— This record is a continuation of the previous
record.

(8:8) Character set identifier (0-31)

If you attempt to download a character set having the same identifier
as one already present in the printer, then the 2680 will purge the
already present character set and repack the user area before loading
the new font. However, before the modification of the user area, the
2680 prints all data currently in its buffer, as it does whenever you
load, overlay, or delete a character set, form, or Vertical Format Con-
trol set.

Controlcode = 135 Download/Delete Form

Paraml (0:1) O0— Load the form set identified in the right hand
byte of param2.

1— Purge the identified form set from the 2680
printer’s memory.

Param2 (0:1) O— This is the first record of a load.

1— Thisrecord is logically a continuation of the pre-
vious record.

(8:8) Form set identifier (0:31).
FDEVICECONTROL will treat form sets with the same identifying

integer in a way analogous to its treatment of character sets with the
same identifiers. See controlcode 134.

2-61f

FDEVICECONTROL

Controlcode = 136 Download Logical Page Table
Param1 is not used.
Param2 (0:1) 0— This is the first record of a load.

1— This record is logically a continuation of the
previous record.

A logical page is a page of data that may or may not take up an entire
sheet of paper. It is possible to print up to 8 logical pages on one
physical page. The Logical Page Table, 513 words long, contains some
of the information needed to print up to 32 logical pages, so that the
set of up to 8 logical pages printed on any one physical page may be
varied.

Controlcode = 137 Download Multi-copy Form Overlay Table
Param1 is not used.

Param2 is not used.

This operation allows you to emulate a multi-part carbon by print-
ing up to 8 copies of a page, each on one or two different forms.
FDEVICECONTROL downloads into the printer’s memory a table
containing one word of information for each of the 8 possible copies
to be overlayed with a form. The format of each word of the table is:

Bit (0:1) — Forml is to be overlayed on the physical page.
(1:1) — Form?2 is to be overlayed on the physical page.
(2:4) — Reserved
(6:5) — Forml identifier —an integer from 0 to 31.

(11:5) — Form2 identifier — an integer from 0 to 31.

B 2-61g JUL 1981

FDEVICECONTROL

Controlcode = 138 Download/Delete Vertical Format Control

Param1 (0:1) 00— Loada VFC
1— Delete a VFC

Param2 (0:1) 0— This is the first record of a load.

1— This record is logically a continuation of the
previous record.

(8:8) VFC set identifier (0-31).

The Vertical Format Control table is an ASCII file downloaded to the
2680 printer in order to give specific instructions as to the print density,
location of top and bottom of page, and other specifications of the
printed page. This table is further described and illustrated in chapter 4
of the Console Operator’s Guide (part number 32002-90004).

The 2680 expresses the height of a printed line in dots, and the system
uses this value to compute line positions on the page. Because these
space measurements are relative to the top of the logical page, as
opposed to the physical page, you may use the same or different Veri-
cal Format Control tables for logical pages of different rotations.

Controlcode = 140 Page Control

Param1 (15:1) 1— Do a physical page eject before going to the
specified logical page. This bit has no effect if
this is the first record since an environment load,
FOPEN or FCLOSE.

(13:2) Auto eject mode.
0— Use auto eject flag of last data record (default at
start of job is auto eject enabled).

1— Enable auto eject (select VFC channel 1 on new
page).

2— Disable auto eject (position pen at top of page.)
Param2 (8:8) Logical page number (0 to 31).
The logical page identified in param2 becomes the current logical page
even if other logical pages have entries which precede it in the Logical
Page Table. FDEVICECONTROL activates the specified page if it is

inactive, and the 2680 performs a physical page eject if bit (15:1) of
param] is set.

JUL 1981 2-61h

FDEVICECONTROL

Controlcode = 141 Ciear Environment
paraml (0:1) 1 — clear all character sets
{(1:1) 1 —clear all forms

(2:1) 1 — clear all Vertical Format Controls (VFCs)

param?2 is not used.

The printer will flush all data currently in its buffers, and then perform
the indicated clears, if any.

Controlcode = 142 Reserved

Controlcode = 143 Load the Default Environment
paraml is not used.

param?2 is not used.

The 2680 printer flushes all data, erases the user area, and loads the
default character set, the Vertical Format Control (VFC), and the
Logical Page Table (LPT).

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL _ Request denied because an error occurred.

TEXT DISCUSSION

None.

I 2.61i JUL 1981

FDELETE

Deactivates a RIO record

FDELETE deactivates a specified logical record. If no record is specified (or the recnum is
negative), the next random access logical record becomes inactive. If the selected record has already
been deactivated a CCE condition code is returned. The condition can be detected by calling the
FCHECK intrinsic. The “inactive record” error indicates that the record selected for this FDELETE

was already inactive.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file to be de-
activated.

recnum double by value (optional)
A positive double integer representing the relative logical record to be
modified.

CONDITION CODES

CCE Request granted. No error (although inactive record may have been
encountered).

CCG Request denied. End of file.

CCL Request denied. Access error.

2-61

FERRMSG

INTRINSIC NUMBER 307 Returns message corresponding to FCHECK error number.

The FERRMSG intrinsic causes a message to be returned to msgbuf that corresponds to an
FCHECK error number. This makes it possible to display an error message from your program. The
message describes the error associated with the error number provided in the errorcode parameter.

PARAMETERS

errorcode integer (required)
A word identifier containing the error code for which a message is to be
returned. It should contain an error number returned by FCHECK.

msgbuf logical array (required)
A logical array to which the message associated with errorcode is
returned by FERRMSG. In order to contain the message string, msgbuf
must be a maximum of 72 characters long.

msglgth integer (required)

A word identifier to which is returned the length of the msgbuf string.
The length is returned as a positive byte count.

CONDITION CODES

CCE Request granted.

CCL Request not granted because no error message exists for this errorcode
or because of a message system error.

cCcG Request not granted. msgbuf address may be out of bounds, msgbuf
may not be large enough, or msglgth address is out of bounds.

TEXT DISCUSSION

Page 10-69

2-62

FFILEINFO

Provides access to file information.

NOTE

Itemnum/itemvalue parameters must appear in pairs. Up to five
items of information can be retrieved by specifying one or more
itemnum/itemvalue pairs.

FFILEINFO provides access to file information. It is designed to be extensible so that new file
information can be defined and accessed.

PARAMETERS
filenum integer by value (required)
MPE file number returned by FOPEN
itemnum integer by value (optional)
Cardinal number of the item desired; this specifies which item value is
tc be returned.
(See item #, Figure 2-1a)
itemvalue byte array (optional)

Value of the item specified by the corresponding itemnum; the data
type of the item value depends on the item itself.
(See item, Figure 2-1a)

CONDITION CODES

CCE No error
CCG Not used
CCL Access or calling sequence error

TEXT DISCUSSION

Page 10-68

2-63

FFILEINFO

ITEM# TYPE ITEM UNITS
33 | label type (see Labe! Tapes)
34 ! current number of writers (see IPC)
35 | current number of readers (see IPC)
36 L File Allocation Date {CALENDAR format)
37 D File Allocation (CLOCK format)
38 L SPOOFLE Device file number (#0 or #| (see File Code)
number)
39 RESERVED
40 D disc or diskette device status
41 | device type
42 | device subtype
43 BA environment file name
44 | last disc extent allocated
45 BA file name from labeled tape HDR1 record
46 | tape density BPI
47 i DRT number
48 | UNIT number
49 | software interrupt PLABEL

Figure 2-1a. Item Values Returned by FFILEINFO (Continued)

DEC 1981 2-64a

FFILEINFO

ITEM# TYPE

© o N D WN =
- - rrrw
>

W W AN N NN NN NNNN = = @ @ e) omd el -
- 0O O 0 ~NO U A WN = O O 00N OE WN -0
- -"-"-—"-" L w- - - - - - O0OwWwW~- " "TQ0OUOOOOO“-—-rr
> > >

w
N

ITEM

filename
foptions
aoptions
recsize
devtype

Idnum

hdaddr
filecode

recpt

eof

flimit

logcount
physcount
blksize

extsize
numextents
userlabels
creatorid
labaddr
blocking factor
physical block size
data block size
offset to data in blocks

offset to Active Record Table within the block

size of Active Record Table
vol. ID (label tape)
vol. set ID (label tape)

expiration date (Julian format)

file sequence number
reel number
sequence type

creation date (Julian format)

{(see FGETINFO)
(see FGETINFO)
(see FGETINFO)
(see FGETINFOQ)
(see FGETINFO)
(see FGETINFO)
(see FGETINFO)
(see FGETINFO)
(see FGETINFO)
(see FGETINFO)
(see FGETINFO)
{see FGETINFOQ)
(see FGETINFO)
{see FGETINFO)
(see FGETINFO)
{see FGETINFO)
{see FGETINFO)
(see FGETINFO)
{see FGETINFO)
{see FOPEN)

(RIO files)

(see Label Tapes)
(see Label Tapes)
(see Label Tapes)
(see Label Tapes)
(see Label Tapes)
(see Label Tapes)
(see Label Tapes)

UNITS

words/bytes

records
records
records
words/bytes
sectors

words
words
words
words
words

2-64

Figure 2-1a. Item Values Returned by FFILEINFO

JUL 1981

FGETINFO

Requests access and status information about a file. INTRINSIC NUMBER 11

Once a file is opened on any device, the FGETINFO intrinsic can be used to request access and
status information about that file.

PARAMETERS

filenum

filename

foptions

integer by value (required)
A word identifier supplying the file number of the file about which
information is requested.

byte array (optional)

A byte array to which is returned the actual designator of the file being
referenced, in this format:

f.ga

where

f = the local file name.

g = the group name (supplied or implicit).

a = the account name (supplied or implicit).

The byte array must be 28 bytes long. When the actual designator is
returned, unused bytes in the array are filled with blanks on the right.
A nameless file will return an empty string.

Default: The actual designator is not returned.

logical (optionai)

The foptions parameter returns seven different file characteristics by
setting corresponding bit groupings in a 16-bit word. Correspondence is
from right to left. The file characteristics returned are as follows. The
bit settings are summarized in figure 2-1.

NOTE

Bit groups are denoted using the standard SPL notation. Thus
bits (14:2) indicates bits 14 and 15; bits (10:3) indicates bits
10,11, and 12.

Bits (14:2) — Domain Foption.

The file domain that was searched by MPE to locate the file, indicated
by these bit settings:

00 - The file is a new file.

2-65

99-¢

BITS (0:3) (3:1) (4:1) (5:1) (6:1) (7:1) (8:2) (10:3) (13:1) (14:2)

RELATIVE KSAM DISALLOW MPE TAPE CARRIAGE RECORD DEFAULT ASCII/

FIELD (RESERVED) 1/0 FILE :FILE LABELS CONTROL FORMAT DESIGNATOR BINARY DOMAIN
MEANING 0 = Non- 0 = Not a new 1=No:FILE | 1=LABELED || 0=NOCCTL 00 = Fixed 000 = filename 0 =Binary | 00 = New file
RIO file KSAM file TAPE
(default)

1 = RIO file 1=New KSAM | 0 =:FILE 0 = NON- 1=CCTL 01 = Variable 001 = $STDLIST 1=ASCIl | 01=0Id System
file or LABELED File
existing TAPE
KSAM file
opened as
an MPE
file

10 = Undefined 010 = SNEWPASS 10 = Temporary

File

011 = $OLDPASS 11 = Old User
File

100 = $STDIN

101 = $STDINX

110 =$NULL

Figure 2-1. Foptions Bit Summary
NOTE: Double lines indicate octal digit boundaries.

O4NI139d

FGETINFO

01 = The file is an old permanent file.
10 = The file is an old temporary file.
11 = The file is an old file.

Bit (13:1) — ASCII/Binary Foption.
For ASCII this bit is 1. For binary, it is O.

Bits (10:3) — Default File Designator Foption.

The bit settings are: ,

000 = The actual file designator is the same as the formal file
designator.

001 = The actual file designator is $STDLIST.

010 = The actual file designator is SNEWPASS.

011 = The actual file designator is $OLDPASS.

100 = The actual file designator is $STDIN.

101 = The actual file designator is $STDINX.

110 = The actual file designator is SNULL.

Bits (8:2) — Record Format Foption.

The format in which the records in the file are recorded, indicated by
these bit settings:

00 = Fixed-length records.

01 = Variable-length records.

10 = Undefined-length records.

Bit (7:1) — Carriage Control Foption.
0 = No carriage-control character expected.
1 = Carriage-control character expected.

Bit (6:1) — MPE Tape Label Foption.
0 = Non-labeled tape.
1 = Labeled tape.

Bit (5:1) — Disallow File Equation Foption.

This option ignores any corresponding :FILE command, so that the
specifications in the FOPEN call take effect (unless overridden by those
in the file label). For disallowing :FILE, this bit is set to 1; for allowing
:FILE, the bit is 0.

Bits (4:1) — KSAM file Foption
0 = Not a new KSAM file (default)
1 = New KSAM file or existing file opened as an MPE file.

Bits (3:1) — Relative I/O Foption

0 = Non-RIO file will be created. (default)
1 = RIO file will be created.

2-67

FGETINFO

aoptions

2-68

Default: Foptions are not returned.

logical (optional)
The aoptions parameter returns up to seven different access options

represented by bit groupings in a 16-bit word, as described below. The
bit settings are summarized in figure 2-2.

Bits (12:4) — Access Type Aoptions.
The type of access allowed users of this file, as follows:
0000 = Read access only.

0001 = Write access only.
0010 = Write access only, but previous data in the file is not deleted.

692

BITS (0:3) (3:1) (4:1) (5:1) (6:1) (7:1) (8:2) (10:1) (11:1) (12:4)
MULTI-
KSAM NO WAIT MULTI INHIBIT EXCLUSIVE DYNAMIC RECORD ACCESS
ey (RESERVED) ACCESS 1/0 IRESERVED) ACCESS BUFFERING ACCESS LOCKING ACCESS TYPE
MEANING 0= KSAM 1 = No-Wait 1 = Multi 1 = NOBUF 01 = Exclusive || 0 = No Dynamic 1 = Multi- 000 = Read
access access Lock record only
expect-
ed
1 = Non- 0= Non 0 = Non-Multi 0=BUF 10 = Semi- 1 = Dynamic 0 = No multi- 001 = Write
KSAM No-Wait access exclusive Lock record only
access
expect-
ed
11 = Share 010 = Write
(save)
only
00 = Default 011 = Append
only
100 = Read/
write
101 = Update
110 = Execute
Figure 2-2. Aoptions Bit Summary
NOTE: Double lines indicate octal digit boundaries.

O4NI1394

FGETINFO

2-70

0011 = Append access only.
0100 = Input/output access.
0101 = Update access.

0110 = Execute access.

Bit (11:1) — Multirecord Aoption.
For multirecord mode, this bit is set to 1; for non-multirecord mode, it
is 0.

Bit (10:1) — Dynamic Locking Aoption.
The bit settings are:

1 = Allow dynamic locking/unlocking.

0 = Disallow dynamic locking/unlocking.

Bits (8:2) — Exclusive Aoption.

This aoption specifies whether a user has continuous exclusive access to
this file, from the time it is opened to the time it is closed. The bit
settings are:

01 = Exclusive access.

10 = Semi-exclusive access.

11 = Share access.

Bit (7:1) — Inhibit Buffering Aoption.

This option inhibits automatic buffering by MPE and allows input/
output to take place directly between the user’s stack or extra data
segment and the applicable hardware device.

1 = Inhibit buffering.

0 = Normal buffering

Bit (6:1) — Multi-Access Mode Aoption.

This field provides the accessor with a means of sharing access to the
file.

1 = Multi access.

0 = Non-multi access.

Bit (5:1) — Reserved for MPE.

Bit (4:1) — No-Wait I/O Aoption.

This bit allows the accessor to initiate an I/O request and to have
control returned before the completion of the I/O.

1 = No-wait I/O in effect.

0 = No-wait I/O not in effect.

Bits (3:1) — KSAM Access Aoption

0 = KSAM access

1 = Non-KSAM access expected; KSAM key file or data file is treated as
standard MPE file. For this setting to be meaningful, file must be a
KSAM file (foptions 4:1 = 1).

Bits (0:3) — Reserved for MPE.

Default: Aoptions are not returned.

recsize

devtype

ldnum

hdaddr

filecode

recpt

DEC 1981

FGETINFO

integer (optional)

A word to which is returned the logical record size associated with the
file. If the file was created as a binary type, this value is positive and
expresses the size in words. If the file was created as an ASCII type, this
value is negative and expresses the size in bytes.

default: The logical record size is not returned.

integer (optional)

A word to which is returned the type and subtype of device being used

for the file, where

bits (0:8) = device subtype, and

bits (8:8) = device type.

If the file is not spooled, which can be determined from hdaddr (0:8),

and returned devtype is actual. The same is true 'if the file is spooled

and was opened via logical device number. However, if an output file is

spooled and was opened by device class name, devtype contains the

type and subtype of the first device in its class, which may be different

from the device actually used. (See the System Manager/System Super-

visor Manual.) If you have opened a serial disc tape and type returned

in bits (8:8) is 31 (%37) even though the real device type is as specified
Mable@massiﬁcation of Devices. Device type %07 is returned by

FGETINFO for foreign discs.

default: The device type and subtype are not returned.

logical (optional)
A word to which is returned the logical device number associated with
the device on which the file resides.

If the file is a disc file, then the logical device number will be that of
the first extent. If the file is spooled, then Idnum will be a virtual device
number which does not correspond to the system configuration I/O
device list. If the file is located on a remote computer, the left eight bits
are the logical device number of the DS device and the right eight bits
are the logical device number on the remote computer.

default: The logical device number is not returned.

logical (optional)

A word to which the hardware address of the device is returned, where
bits (0:8) = the Device Reference Table (DRT) number, and

bits (8:8) = the unit number. (See limitation under special consider-
ations).

If the device is spooled, the DRT number will be zero and the unit
number is undefined.

Default: The hardware address is not returned.

integer (optional)

A word to which is returned the value recorded with the file as its file
code (for disc files only).

default: The file code is not returned.

double (optional)

A double word to which is returned a double integer representing the
current logical record pointer setting. This is the displacement in logical
records from record number O in the file. It identifies the record that
would next be accessed by an FREAD or FWRITE call.
Default: The logical record pointer setting is not returned.

2-71

FGETINFO

eof

flimit

logcount

physcount

blksize

extsize

numextent

userlabels

2-72

double (optional)

A double word to which is returned a double positive integer equal to
the number of logical records currently in the file. If the file does not
reside on disc, this value will be zero.

Default: The number of logical records in the file is not returned.

double (optional)

A double word to which is returned a double positive integer
representing the number of the last logical record that could ever exist
in the file, because of the physical limits of the file. If the file does not
reside on disc, this value will be zero.

Default: The file limit information is not returned.

double (optional)

A double word to which is returned a double positive integer
representing the total number of logical records passed to and from the
user during the current access of the file.

Default: The logical record count is not returned.

double (optional)

A double word to which is returned a double positive integer
representing the total number of physical input/output operations
performed within this process against the file since the last FOPEN call.
Default: The number of I/0O operations is not returned.

integer (optional)

A word to which is returned the block size associated with the file. If
the file was created as a binary type, this value is positive and expresses
the size in words. If the file was created as an ASCII type, this value is
negative and shows the size in bytes.

Default: The block size is not returned.

logical (optional)

A word to which is returned the disc extent size associated with the file
(in sectors).

Default: The disc extent size is not returned.

integer (optional)

A word to which is returned the maximum number of disc extents
allowable for the file.

Default: The maximum allowable number of extents is not returned.,

integer (optional)

A word to which is returned the number of user header labels defined
for the file when it was created. If the file is not a disc file, this number
is zero. When an old file is opened for overwrite output, the value of
userlabels is not reset and old user labels are not destroyed.

Default: The number of user labels is not returned.

FGETINFO

creatorid byte array {(optional)
A byte array to which is returned the eight-byte name of the user who
created the file. If the file is not a disc file, blanks are returned.
Default: The user name is not returned.

labaddr double (optional)
A double word to which is returned the sector address of the label of

the file. The high-order eight bits show the logical device number. The
remaining 24 bits show the absolute disc address. If the file is not a
disc, zero is returned.

Default: The sector address is not returned.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS
HDADDR Error Code 5 as obtained by FCHECK:

For large system configurations such as Series 64, if a DRT larger than 255 was requested by
FGETINFO the request will be denied with a CCL condition code 5. To obtain a proper value for
DRT and/or UNIT number, refer to the table of parameters in FFILEINFO.

TEXT DISCUSSION

Page 10-66

DEC 1981 2-73

FINDJCW

Searches the Job Control Word table for
a specified Job Control Word.

PARAMETERS

jewname

jewvalue

Status

byte array (required)

A byte array containing the name of the Job Control Word (JCW) to
be found. May contain up to 255 alphanumeric characters, starting
with a letter and ending with a non-alphanumeric character such as a
blank.

logical (required)
A word identifier to which is returned the value of jcwname, if
Jewname is found. If jewname is not found, jewvalue is unchanged.

integer (required)
A word identifier to which is returned a value denoting the execution
status of the intrinsic, as follows:

0 - Successful execution, jcwname found.
1 - Error, jewname greater than 255 characters long.
2 - Error, jewname does not start with a letter.

3 - Error, jcwname not found in JCW table.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-47

2-74

FLOCK

Dynamically locks a file. INTRINSIC NUMBER 15

The FLOCK intrinsic provides a means of signaling that the caller wants temporary exclusive use of
a file.

PARAMETERS
filenum integer by value (required)

A word supplying the file number of the file to be locked.
lockcond logical by value (required)

A word specifying conditional or unconditional locking:

TRUE — Locking will take place unconditionally. If the file cannot be
locked immediately, the calling process suspends until the file

can be locked.
Bit15=1

FALSE — Locking will take place only if the file’s RIN is not currently
locked. If the RIN is locked, control returns immediately to
the calling process, with condition code CCG.

Bit 15=0.
CONDITION CODES

The condition codes possible when lockcond = TRUE are

CCE Request granted.
CCG Not returned when lockcond = TRUE.
CCL Request denied because this file was not opened with the dynamic

locking aoption specified in the FOPEN intrinsic, or the request was to
lock more than one file and the calling process does not possess the

Multiple RIN Capability.

The condition codes possible if lockcond = FALSE are

CCE Request granted.
CcCG Request denied because the file was locked by another process.
CCL Request denied because this file was not opened with the dynamic

locking aoption specified in the FOPEN intrinsic, or the request was to
lock more than one file and the calling process does not possess the
Multiple RIN Capability.

2-75

FLUSHLOG

INTRINSIC NUMBER 213 Obtains information about the opened logging file.

The FLUSHLOG intrinsic is used to write the contents of the user logging memory buffer to the
disc destination file. This helps to preserve the contents of the memory buffer in the event of a
system failure. This intrinsic writes no special records.

PARAMETERS

index double (required)
The parameter returned from OPENLOG that identifies the user’s
access to the logging system.

status integer (required)

An integer in which error information is returned to the caller. Zero
indicates OK status.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

None.

JUL 1981 2-76a

FLOCK

SPECIAL CONSIDERATIONS
Split stack calls permitted.

Standard Capability sufficient if only one file is to be locked dynamically.
If more than one file is to be locked dynamically, the Multiple RIN Capability is required.

TEXT DISCUSSION

Page 10-55

2-76

FMTCALENDAR

Converts any calendar date with the same format as
the CALENDAR intrinsic into a format as follows:

FRI, AUG 5,1977

PARAMETERS

date logical by value (required)
A logical value representing any calendar date with the same format as
the CALENDAR intrinsic.

string byte array (required)
A 17-character byte array in which the formatted calendar date is
returned.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-45

2-71

FMTCLOCK

Converts the time of day with the same
format as the CLOCK intrinsic into a format
as follows:

7:39 AM

PARAMETERS

time double by value (required)
A doubleword value representing the time of day with the same format
as the CLOCK intrinsic.

string byte array (required)
An 8-character byte array in which the formatted time of day is
returned.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-45

2-78

FMTDATE

Converts calendar date and time of day
with the same format as the CALENDAR
and CLOCK intrinsics to a format, as follows:

FRI, AUG 5, 1979 7:39 AM

PARAMETERS
date logical by value (required)
A logical value with the same format as the CALENDAR infrinsic.
time double by value (required)
A doubleword value with the same format as the CLOCK intrinsic.
string byte array (required)
A 27-character byte array in which the formatied date and time are
returned.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-45

2-79

FOPEN

INTRINSIC NUMBER 1

Used to establish access to a file and optionally
define the physical characteristics of the file
prior to setting up access to it.

The FOPEN intrinsic makes it possible to access a file. In the FOPEN intrinsic call, a p