
HP 3000 Computer Systems

MPE File System
reference manual

r//fl9 HEWLETT
a!~ PACKARD

Part No. 30000-90236
E0282

HP 3000 Computer s·ystems

MP E File System
Reference Manual

F/,0- HEWLETT
~~PACKARD

1944 7 PRUNERIDGE A VENUE, CUPERTINO, CA 95014

Printed in U.S.A. 2/82

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER­
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor­
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright ©1982 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition.
Within the manual, any page changed since the last edition is indicated by printing the date the changes were made
on the bottom of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when
an edition is reprinted, these bars are removed but the dates remain. No information is incorporated into a reprinting
unless it appears as a prior update.

First Edition Feb 1982

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain
additional and replacement pages to be merged into the manual by the customer. The date on the title page and back
cover of the manual changes only when a new edition is published. When an edition is reprinted, all the prior updates
to the edition are incorporated. No information is incorporated into a reprinting unless it appears as a prior update.
This edition does not change.

The software product part number printed alongside the date indicates the version and update level of the software
product at the time the manual edition or update was issued. Many product updates and fixes do not require manual
changes, and conversely, manual corrections may be done without accompanying product changes. Therefore, do
not expect a one to one correspondence between product updates and manual updates.

First Edition Feb 1982

iv

Section 1
INTRODUCTION

Page

Topics in this Manual 1-3

Section 2 Page
RECORD STRUCTURE AND BLOCKING
Data Representation 2-1

ASCII vs. Binary 2-1
Record Formats 2-2

Fixed-Length Records 2-2
Variable-Length Records 2-3
Undefined-Length Records 2-5

Record Size . 2-6
Physical Records and Blocking 2-8

Disc access considerations 2-9
Disc space considerations 2-9

Blocks Containing Fixed-Length Records 2-10
Blocks Containing Variable-Length Records 2-12
Blocks Containing Undefined-Length Records ... 2-13
Blocking Consideration: System File Label 2-13
Relative 1/0 Block Format 2-14
Improving Input/Output Efficiency 2-15

Section 3 Page
FILE STRUCTURE
Disc Files and Device Files 3-1
File Placement 3-2

Extents 3-3
Extent allocation . 3-4
Performance implications of extent allocation .. 3-6
Special considerations for program files 3-6

Defining File Characteristics 3-6
FOPEN 3-7
BUILD 3-8
FILE 3-8
Summary of General Rules - Overrides 3-12

File Identification 3-12
System File Label . 3-13
Non-Data Storage: User Labels 3-15

Writing a User Label on a Disc File 3-15
Reading a User File Label on a Disc File 3-16

File Codes 3-17
File Name . 3-19

Formal and actual file designators 3-19
Renaming your fiie ·. 3-20

Devices and Devicefiles . 3-21
Device-Dependent Characteristics 3-23

Headers and trailers 3-25
Special forms . 3-25

Foreign Disc Facility 3-25

Section 4
DOMAINS

Page

Types of Domains 4-1
NEW Files . 4-1
TEMP Files 4-1

v

CONTENTS

OLD Files 4-1
Changing Domains . 4-3
Directory Search . 4-4
Listing Files . 4-4

Section 5 Page
FILE OPERATION
Specifying File Designators 5-1

User-Defined Files 5-1
Lockwords . 5-3
Back Referencing Files 5-4
Generic Nam es . 5-5

System-Defined Files 5-6
Input/Output Sets 5-7
Determining Interactive and

Duplicative File Pairs 5-8
Passed Files . 5-9

Comparing $NEWP ASS and $0LDP ASS
to Other Disc Files . 5-12

Shared File Considerations 5-13
Simultaneous Access of Files 5-13

Exclusive Access . 5-14
Semi-Exclusive Access 5-15
Share Access . 5-15
Multi-Access 5-15
Global Multi-Access 5-16

Sharing the File . 5-16

Section 6 Page
DATA TRANSFER
Record Pointers 6-1

Pointer Initialization 6-2
Record Selection 6-2

Default Record Selection 6-2
Random Access . 6-2
Optimizing Direct-Access File Reading 6-7
Update Selection 6-7
Relative 1/0 6-11

Control Operations . 6~ 11
Spacing 6-11
Pointing 6-12
Rewinding . 6-12

Transferring Files . 6-13
Inter-Group Transfers 6-13
Inter-Account Transfers 6-13
Inter-System Transfers 6-14

Buffered Input/Output 6-15
Why Buffer Transfers? 6-17

Automatic blocking and deblocking 6-17
Anticipatory reading 6-17

Unbuffered 1/0 6-18
NOWAIT input/output 6-18

How Many Buffers? . 6-19
Multi-Record Mode . 6-20
Buffer Control Intrinsics 6-21

I CONTENTS (continued)

Section 7 Page
FILE SECURITY
Specifying and Restricting File Access

by Access Mode . 7-1
Specifying and Restricting File Access

by Type of User 7 -4
Account-Level Security 7-5
Group-Level Security 7 -6
File-Level Security . 7 -7
Changing Security Provisions of Disc Files 7 -9
Suspending and Restoring Security Provisions 7-10

Seciton 8 Page
INTERPROCESS COMMUNICATION
Operation 8-2

FOPEN 8-2
FREAD 8-2
FWRITE 8-2
FCLOSE 8-3
FCONTROL 8-3

Additional Features 8-3
Writer ID's 8-3
Time-outs 8-3
Copy access . 8-3
Nondestructive read 8-4
Global multiaccess 8-4
Appending to variable-length files 8-4
Software interrupts 8-4

Using IPC 8-4
Features of Intrinsics for Message Files 8-6

FOPEN 8-7
FCONTROL 8-10
FCHECK 8-12
FGETINFO 8-12
FFILEINFO 8-12

Examples Using Message Files 8-13
Software Interrupts . 8-24

Example Use of Software Interrupts 8-26
Circular Files . 8-28
Features of Intrinsics for Circular Files 8-29

FOPEN 8-29
FWRITE . 8-31
FCLOSE . 8-31

Section 9 Page
MAGNETIC TAPE CONSIDERATIONS

FWRITE 9-1
FREAD 9-2
FSPACE 9-2
FREADBACKWARD 9-2
FCONTROL (WRITE EOF) 9-2
FCONTROL(FORWARDSPACE
TO FILE MARK) 9-2

FCONTROL(BACKWARDSPACE
TO FILE MARK) 9-2

End-of-File Marks on Magnetic Tape 9-3

vi

Spacing File Marks . 9-3
Using the FCLOSE Intrinsic with Magnetic Tape 9-4
Updating Magnetic Tape Files 9-6
Reading and Writing an Unlabeled
Magnetic Tape File . 9-8

Labeled Tapes . 9-12
Writing a Tape Label 9-13
Opening a Labeled Magnetic Tape File 9-16
Reading a Labeled Magnetic Tape File 9-21
Writing to a Labeled Magnetic Tape File 9-21
Writing a User-Defined File Label

on a Labeled Tape File 9-22
Reading a User-Defined File Label

on a Labeled Tape File 9-23
Dumping Files Off-Line 9-24

Magnetic Tape Format 9-26
Listing Results of the : STORE Command 9-31

Examples of backing up files 9-33
Retrieving Dumped Files 9-34
Listing Results of the :RESTORE Command 9-35

Examples of restoring files 9-38

Appendix A Page
FILE SYSTEM REFERENCE
Record Formats A-1

Fixed A-1
Variable A-1
Undefined A-1

Buffering A-1
Parameters Common to the : FILE and

: BUILD Commands A-2
Referencing Disc File Domains A-3
: FILE Back-Reference A-3
Controlling Simultaneous Access to Disc Files A-4
Specifying Access A-4
Specialized Parameters of: FILE A-4
User Types . A-5
FOPTIONs for Use with FOPEN A-5
AOPTIONs for Use with FOPEN A-5
MPE Defaults and Device-Dependent Restrictions A-6
Relative 1/0 Block Format A-7

Appendix B Page
STATUS INFORMATION
Obtaining Status Information B-1

PRINT'FILE'INFO B-1
Data in a FILE INFORMATION DISPLAY B-4

FGETINFO and FCHECK B-8

Appendix C Page
TERMINAL CHARACTERISTICS

Allocating a Terminal C-3
Terminal Type Specification C-3

Speed and Parity Sensing C-6
Obtaining Terminal Output Speed C-6
Changing Terminal Speed C-7

Control of Parity Generation and Checking C=8
Setting Parity .. C-8
Enabling and Disabling Parity

Generation and Checking C-9
Setting a Time-Out Interval C-9

Read Duration Timer C-10
Reading the Terminal Input Timer C-10

"End-of-Record" Characters C-14
Break Functions C-15

Enabling and Disabling System Break Function .. C-15
Enabling and Disabling Subsystem

Break Function C-16
Operating in Normal Mode C-17

Enabling and Disabling User Block Transfers C-19
Changing Input Echo Facility C-20
Enabling and Disabling Tape-Mode Option C-21
Enabling and Disabling

Line Deletion Echo Suppression C-21
Reading Paper Tapes without X-OFF Control ... C-22

CONTENTS (continued)

Operating in Transparent (Unedited) Mode C-23
Operating in Binary Mode C-24

Appendix D D-1
ASCII CHARACTER SET

Appendix E E-1
DISC FILE LABELS

Appendix F F-1
END-OF-FILE INDICATION

Appendix G G-1
MAGNETIC TAPE LABELS

Index I-1

vii

ILLUSTRATIONS

Title Page

File System Interface 1-2
Fixed-Length Records 2-3
Variable-Length Records 2-4
Undefined-Length Records 2-5
Record Placement for ASCII Files 2-7
Records/Files Relationship 3-1
FWRITELABEL Intrinsic Example (Disc) 3-16
FREADLABEL Intrinsic Example (Disc) 3-17
Passing Files Between Program Runs 5-9
Record Pointers 6-1
FREADDIR and FREADSEEK Example 6-4
FWRITEDIR Example 6-6
FUPDATE Example 6-9
Data Transfers using Buffers 6-15
Buffer Operation 6-16
Data Paths Among Processes and Message Files 8-13
Data Paths Among Processes and Message Files 8-17

TABLES

Title Page

Comparison of Logical Record Formats 2-6
FOPEN Parameters and Their Defaults 3-7
: FILE vs. FOPEN Parameters 3-9
Disc File Label Contents 3-13
Reserved File Codes 3-18
Device Configurations . 3-21
Device-Dependent Restrictions 3-24
Features of NEW, TEMP, and OLD Files 4-2
File Domains Permitted 4-2
System-Defined File Designators 5-6
Input Set 5-7
Output Set 5-8
New Files vs. $NEWP ASS 5-12
Old Files vs. $0LDP ASS 5-12
File Sharing Restriction Options 5-13
Actions Resulting from Multi-Access of Files 5-14
Intrinsics for Data Transfer 6-10
Implications of Number of Buffers 6-19
File Access Mode Types 7-1
Effects of Access Modes . 7 -3
User Type Definitions 7 -4
Default Security Provisions 7 -8

viii

Title Page

Using the FCLOSE Intrinsic with Unlabeled
Magnetic Tape 9-4

Unlabeled Magnetic Tape Example 9-8
Writing to a Tape File . 9-13
Reading a Labeled Magnetic Tape File 9-16
Checks for File Dump Eligibility 9-25
: STORE Tape Formats . 9-27
List Output of :STORE Command 9-32
List Output of : RESTORE with SHOW and KEEP . . 9-36
File Information Display - Full B-2
File Information Display - Short B-3
Data in a FILE INFORMATION DISPLAY B-4
Information Available Through FGETINFO

and FCHECK B-8
Using the FCONTROL Intrinsic to Enable

and Read the Terminal Input Timer C-12
MPE Tape Labels (Conforming to ANSI-Standard) ... G-2

Title Page

Intrinsics that are not Permitted with Message Files . . 8-13
Intrinsics not Permitted with Circular Files 8-31
Format of Tape Labels Written by MPE

(ANSI Standard) 9-28
: STORE Tape Format . 9-29
:STORE Command Error Messages 9-33
: RESTORE Command Error Messages 9-36
Name and Options in a File Information Display B-5
Device and Data Structure in a

File Information Display B-6
Transfer Information in a

File Information Display B-6
Labels and Physical Status in a

File Information Display B-7
Error Information in a File Information Display B-7
Parameter/Field Relationships B-9
Codes for use with FCONTROL C-2
Point-to-Point Terminal Types C-4
Parity Sensing with the ATC, ADCC, and ATP C-6
Special Characters C-17
Format of Tape Labels Written by MPE

(ANSI Standard) G-3

I Hlll[.]H
~'-NT_R_o_o_uc_r_io_N~~~~~~~~~IITJ

Almost every kind of organization in our modern society is concerned in some way with
information. Corporations keep track of their business dealings, political groups keep lists of
potential voters, and families remember whose turn it is to do the dishes. When an organization
needs to deal with large amounts of information in an efficient, dependable manner, a computer
may be an indispensable aid. This manual describes the MPE File System, which is responsible for
handling information in your HP 3000 computer.

The File System is the part of the MPE operating system which manages information being
transferred or stored with peripheral devices. It handles various input/output operations, such as
the passing of information to and from user processes, compilers, and data management
subsystems. Conceptually, data transfers are very simple: information is arranged as data elements
within a record; this record is then input, processed, and output as a single unit.

Logically related records are grouped into sets known to the file system as files, which may be kept
in any storage medium or sent to any input-output peripheral. Since all input-output operations are
done through the mechanism of files, you may access very different devices in a standard,
consistent way: it will not make much difference to you whether you read your file from a disc, from
a magnetic tape, or from cards, because the file system permits you to treat all files in the same
way. This property of the file system is called device independence: the name and
characteristics assigned to a file when it is defined in a program do not restrict that file to residing
on the same device every time the program is run. You, the user, need only reference the file by the
file name assigned to it when it was created, and the file system will determine the device or disc
address where the file is stored and access the file for you. (Of course, you should be aware of the
properties of the device you're using. For example, not even the MPE File System will permit you to
read a file from a line printer.) You can use MPE :FILE commands to specify the device you want.

1-1

Introduction

Figure 1-1 shows the relationships among your program, the MPE File System, the MPE 1/0
System, and the actual hardware of the system. Notice that the MPE File System serves as the
interface between you and the rest of the system.

USER PROGRAM

MPE Fl LE SYSTEM

MPE 1/0 SYSTEM

PHYSICAL DEVICES

User high-level access.

Permits the user to deal
with all 1/0 at the file
level. (Device independent.)

Handles control of physical
devices.

System hardware.

Figure 1-1. File System Interface.

1-2

Introduction

TOPICS IN THIS MANUAL

In its simplest form, information is contained in data fields which are organized into logical records.
Section 2, Record Structure, discusses the- formats you may specify for your records and describes
the best approaches to efficient blocking.

Sets of logically related records are known to the file system as files. In Section 3, File Structure, we
discuss file size, the arrangement of files in extents, file identification, and the specification of file
characteristics.

Your file may be classified as a new, temporary or permanent file. Section 4, Domains, discusses
these classifications.

How do you define and use the files you create? Section 5, File Operation, covers the usage and
operation of your files.

One of the file system's principal concerns is the transfer of information to and from your files.
Section 6, Data Transfer, discusses the selection of records and the transfer of information,
including the use of buffers and considerations for shared files.

Associated with each account, group, and individual file, is a set of security provisions that
specifies any restrictions on access to the files in that account or group, or to that particular file.
These provisions are discussed in Section 7, File Security.

Interprocess communication (IPC) is a facility of the file system which permits multiple user
processes to communicate with one another in an easy and efficient manner. Section 8,
Interprocess Communication, describes this facility.

The most common medium for offline file storage is magnetic tape. Section 9, Magnetic Tape
Considerations, discusses the matters you should bear in mind as you work with your magnetic
tape files.

The appendices of this manual contain useful reference information. Appendix A, File System
Reference, summarizes much of this manual's information.

As you work with disc files, occasionally you will want to check their status. You can investigate
physical characteristics, current file information, and error information; Appendix B, Status
Information, describes how to do this.

Much of your work may involve the use of terminals. Appendix C, Terminal Characteristics,
contains much useful information about these devices.

The last few appendices contain brief summaries of information. Appendix D contains the ASCII
character set, Appendix E describes the contents of disc file labels, Appendix F discusses the end­
of-file indication, and Appendix G describes magnetic tape labels.

1-3

l

tid'MH
._____R_E_c_o_R_o_s_r_R_uc_r_u_R_E_A_N_o_s_L_o_c_K1_N_G_~. I 11 I

When logically related data elements are grouped together, they form a logical record. This is the
fundamental unit of information that is handled by the MPE File System: it is the smallest data
grouping that can be identified by the user to the File System.

Since a logical record is a group of various data elements, its structure will depend on the number,
content, and size of the data elements within it. Therefore, when you design your records, there are
several questions to consider:

• How will the data be represented?

• Will all the records be the same size?

• How long will the records be?

• Should logical records be grouped together for transfer?

In this section we will discuss these questions.

DATA REPRESENTATION

ASCII vs. Binary

Devices on the HP 3000 can transmit information in ASCII (American Standard Code for
Information Interchange) and/ or binary code, depending on the device. For example, a line printer
transmits ASCII formatted data, while a disc can transmit and store data in either format.

NOTE

It is even possible to transmit and store data in EBCDIC, as long as
the application program or subsystem (FCOPY, for example)
handles the decoding/encoding. EBCDIC is not handled
automatically by MPE.

With many devices, there is no restriction on the data actually transferred to or from the file: you
can write ASCII data to a binary file or binary data to an ASCII file. You can specify the type of
code you want, or accept the MPE default for the device you are using.

The distinctions made between ASCII and binary files do not affect the record size determination.
When the allocated record space is not filled by data, records are padded with blanks for ASCII
files and zeroes for binary files; this padding is the only real difference between ASCII and binary
files.

2-1

Record Structure and Blocking

Examples of ASCII files on the HP 3000 include program source files, general text and document
files, and MPE stream files containing MPE commands. Examples of binary files include USL (User
Subprogram Library) files containing compiled object code, program files containing prepared
object code, and application data files.

RECORD FORMATS

A file can contain records written in one of three formats: fixed-length, variable-length, and
undefined-length. You can specify the format you want for your records, either with the FOPEN
intrinsic or the MPE :BUILD or :FILE command. FOPEN, :BUILD, and :FILE are discussed in the
section on File Structure. For more detailed coverage of the FOP EN intrinsic, consult the M PE
Intrinsics Reference Manual, part number 30000-90010; for more detailed coverage of the :BUILD
and :FILE commands, consult the MPE Commands Reference Manual, part number 30000-90009.

Files residing on disc or magnetic tape may contain records in any of the three formats. For files on
other devices, the file system will override any specifications you supply, and will treat the records
as undefined-length records.

Fixed-Length Records

When you create a file and request fixed-length records, all the records in the file wjil be the same
size. The file system will know how much space has been allocated for each record, and that all of
the space is to be available for data.

2-2

Record Structure and Blocking

Figure 2-1 depicts a file with fixed-length records. A record size of n bytes has been specified. Note
that each record is the same size and contains the same amount of information.

DATA

n bytes

DATA

n bytes

DATA

n bytes

• • •

DATA

n bytes

Figure 2-1. Fixed-length records.

Variable-Length Records

RECORD 0

RECORD 1

RECORD 2

• • •

RECORDm

There may be a time when you want a disc file in which the logical records need not be the same
size. In this case, you can request that the format of the records be variable-length. The file
system will know the size of each logical reqord because each record is preceded by a one-word
(16-bit) counter giving the length of the record in bytes. Thus, the data for each record is

accompanied by an indication of its length. When you build a file containing variable-length
records, specify a record size at least large enough to accommodate your longest record.

2-3

Record Structure and Blocking

Figure 2-2 depicts a file with variable-length records. The byte count preceding the first word of
each record gives its record's length.

Byte
Cnt(n)

DATA

One n bytes
Word

Byte
Cnt(m)

One
Word

Byte
Cnt(o)

One
Word

Byte
Cnt(p)

One
Word

DATA

m bytes

DATA

o bytes

• • •

DATA

p bytes

Figure 2-2. Variable-length records.

2-4

RECORDO

RECORD 1

RECORD 2

• • •

RECORD x

Record Structure and Blocking

Undefined-Length Records

When your file contains undefined-length records, the file system does not know the amount of
good data in any given logical record. The data length is ''undefined''. Undefined-length records
are especially useful when you are reading tapes of unknown record length produced on other
operating systems.

The file system knows the maximum room available in each record of a disc file because the
same amount of space is allocated for each record; however, the data in the records may vary in
length, so some of the space may contain "filler" instead of good data. The file system (and, at
times, the 1/0 system) supplies this "filler" when the length of the data being written is less than
the maximum record length. You must know how much of the data in a record is valid, since the
file system cannot distinguish good data from filler.

Figure 2-3 depicts a disc file with undefined-length records. When data does not fill the space
allocated, filler occupies the unused space.

DATA

j words

DATA

k words

DATA

FILLER

FILLER

m words

• • •

FILLER

n words

Figure 2-3. Undefined-length records.

2-5

RECORDO

RECORD 1

RECORD 2

• • •

RECORD z

Record Structure and Blocking

NOTE

The last two bytes of the record will be repeated as filler only to the
end of the sector. Any remaining sectors of record space will be set
to blanks (for ASCII files) or zeroes (for binary files) .

The three record formats, fixed-length, variable-length, and undefined-length, are summarized in
Table 2-1.

Table 2-1. Comparison of Logical Record Formats.

Fixed-length Variable-length Undefined-length

Data length known to file Data length known to file Data length not known to
system. system. file system.

Same length for all records. Record length varies. Record length varies.

Record space contains Record space contains Record space contains
data only. data plus byte count. data plus filler.

Request actual size for Request maximum size for Request maximum size for

l records. records. records.

RECORD SIZE

You can specify the size of the records in your file by using the :BUILD (for disc files) or :FILE
commands, or the FOPEN intrinsic. The file system uses the convention that a negative record size
means the size is in bytes and a positive record size means it is in words. The record size may be
given in either words or bytes, regardless of whether the file is to be represented in ASCII or binary
code. However, the interpretation of the requested record size can be affected by the record
structure and data format chosen as well as the device for the file.

NOTE

Within MPE and in various subsystems, the record size for an ASCII
file is usually identified in terms of bytes and the record size for a
binary file is identified in terms of words. This convention is a matter
of convenience only, since most users think of ASCII files as being
character oriented.

2-6

Record Structure and Blocking

The HP 3000 is essentially a word-oriented machine, so records always begin on a word boundary.
This has a particularly important effect on disc and magnetic tape files: odd byte record lengths
are always rounded up so that logical records begin on word boundaries. When the file is a binary
file, the extra byte is available to be used for data. Similarly, for variable-length ASCII files, the odd
byte length is rounded up and is accessible for data. However, if the file is ASCII and has fixed- or
undefined-length records, the extra byte is not accessible for data. The odd byte length remains
the maximum size allowed for data. Figure 2-4 illustrates the placement of odd-byte records and
the disposition of the added byte.

Fixed-length and undefined-length records

...,.__ __ Odd number of bytes -----1 1----- Odd number of bytes ---

..,__ ___ Actual record ------+---- Actual record -------1

One byte; inaccessible

Variable-length records

1,1-----ACCESSIBLE ---..... j.-. 1 .. •---ACCESSIBLE ---'"l'"li ~~1
---Odd number of bytes -----1 --Odd number of bytes ---

-----Actual record ---------Actual record -----

Figure 2-4. Record placement for ASCII files.

2-7

Record Structure and Blocking

Rather than specify your own record size, you can accept tile default record size for the device you
are using. Default record sizes are listed in Table 2-2. Note that subsystem defaults may be
different from MPE defaults; for example, the Editor default may be 72 or 80 bytes (depending on
text format) while the MPE standard default is the record size configured for the device.

Table 2-2. Standard Default Record Sizes.

DEVICE RECORD SIZE (BYTES)

Disc 256

Magnetic Tape Unit 256

Terminals (most cases) 80

Card Reader 80

Line Printer 132

Paper Tape Reader 80

Paper Tape Punch
I 256

Plotter 510

Printing Reader I Punch No. of card columns,
usually 80

Programmable Controller 256

Synchronous Single-Line Controller 256

PHYSICAL RECORDS AND BLOCKING

The logical record is the smallest data grouping you may directly address. The physical record, or
block, is a grouping of one or more logical records, and is the unit of information moved in one
physical read or write of data to or from the device containing the file. The file system automatically
handles the blocking and deblocking of logical records when you are operating in buffered mode,
but you can block the records in your files on disc or tape when you are operating in unbuffered or
NOBUF mode. (Buffering is discussed in a later section.) For files on other devices, physical
records are determined by the characteristics of the devices: a physical record may be one card, or
one line of print.

2-8

Record Structure and Blocking

You may specify the blocking factor, or number of logical records in a block, for the records in
your files with the FOPEN intrinsic or the MPE :BUILD or :FILE command. The maximum blocking
factor is 255. The actual structure of your blocks will depend upon the format of your logical
records; for example, a block of fixed-length records will be structured differently from a block of
variable-length records. Efficient grouping of logical records into blocks results in:

•

•

Fewer disc accesses .

Better disc space utilization .

NOTE

Once the blocking factor is set, it cannot be overridden during the
life of the file.

Disc access considerations. Since one disc read or write will transfer one physical record, you can
minimize input/ output and file system overhead by grouping several logical records into each
block: one read or write will transfer as many records as you have in one block. In
multiprogramming environments, blocking helps to minimize device head contention on system
domain discs and shared private volumes: since one disc access will read or write as many records
as one block contains, you and other system users will need to gain control of the disc less often
than if you had to read each logical record individually.

NOTE

The blocksize of your file is determined by multiplying two pa­
rameters you supply when you create the file: the recsize and the
blockfactor. For buffered access, the maximum blocksize allowed
is 14K (14,336) words.

Disc space considerations. Discs on the HP 3000 are not word addressable: disc space is
organized into physical groups of 128 words called sectors. Because of this organization, all
physical transfers must begin on a sector boundary, and so all physical records (blocks) must
begin on a sector boundary. A physical record may span more than one sector, but it must begin
on a sector boundary. !f your blocks do not fit neatly into sectors, that is, if their size is not a
multiple of 128 words, some disc space will be wasted.

2-9

Record Structure and Blocking

Suppose your blocks are 300 words long. They will each cover two sectors and part of a third, as
shown:

300 words 84 words

~LOCK

128 128 128

Since each block starts on a sector boundary, the unused space following each block is wasted. If
the block size had been 384 words rather than 300, all of the space in three sectors could be used
for each block, and no space would be wasted.

Recommendation: To minimize wastage of file space, choose a blocking factor that is equal
to or slightly less than a multiple of 128 words.

Blocks Containing Fixed-Length Records.

When your file contains fixed-length records, all your blocks will contain the same amount of data
in the same number of records. The file system determines the size of your blocks by multiplying
two parameters you supply: the logical record size (rec size) times the blocking factor
(blockfactor). When written to disc, each block begins at the start of a sector and may occupy
one or more contiguous sectors. This occurs because the disc controller can only transfer data in
units equivalent to the length of a sector, 128 words or 256 bytes. Thus, on a disc file, a 240-byte
block containing three 80-byte fixed-length records would appear as follows:

Logical
Record 0

BLOCK

(blockfactor x recsize)

Logical
Record 1

Logical
Record 2

~-~~~--~-~~~--/'..._-~~~--...........--~~~--""""'--~~~-..._..--~~~--/
recsize = -80 recsize = -80

240 bytes

Disc Sector
(256 bytes)

2-10

recsize = -80

Record Structure and Blocking

The 16 bytes remaining at the end of the sector are wasted, since this block cannot use them and
the next block begins at the start of the next sector. Because of this fact, you can waste disc space
if you do not block your records carefully. For example, if you use a blocking factor of 1 when
writing a fixed-length record of 258 bytes, you will waste 254 bytes of disc space as shown below.

Block __________ _,,.....__ ________ _
r Sector ' Sector

Logical Record O I
........_ ___________ --------- '2tYteS

256 bytes 254 bytes unused

In a large file, this much waste (about 49.6 %) soon becomes devastating.

For optimum use of disc space, compute the block size so that:

recsize X b/ockfactor = a multiple of 256, for bytes

or

recsize X blockfactor = a multiple of 128, for words.

If you can't make the blocks fit into sectors exactly, it is better to have blocks that are a bit too
small than too large; less space is wasted. For example, if your records are 102 bytes long, there
will be little waste if you choose a blocking factor of 5: 102 x 5 = 510, so your block will occupy
two sectors with only two wasted bytes, as shown below.

Logical
Record 0

Sector

Logical
Record 1

Block

Logical
Record 2

510 bytes

512 bytes

2-11

Sector

Logical
Record 3

Logical
Record 4

2 bytes
unused

Record Structure and Blocking

Blocks Containing Variable-Length Records

When your file contains variable-length records, one block may contain a variable number of
records: the same amount of space will be available for each block, but since the logical records
will be of different sizes, one block may contain a few large logical records or many small ones.

The file system will change the recsize and blockfactor that you specify for your blocks. Your
recsize and blockfactor will be multiplied to yield a new recsize, and your blockfactor will be
changed to 1. For example, if you request a recsize of 20 words and a blockfactor of 6, your new
recsize will be 120 words and your blockfactor will be 1. In both cases, the available space in your
blocks is the same: 120 words. The recsize and blockfactor are manipulated this way simply to
maintain a consistent internal structure. The actual block size will be several words larger than the
available space: the file system adds one word for a byte count at the beginning of each record and
another word for a delimiter of "-1" at the end of each block. These words of overhead allow for a
minimum of one logical record per block.

Your blocksize, in words, will be determined by the formula

(recsize + 1) X blockfactor + 1

To avoid permanent waste of file space, make your blocksize equal to or slightly less than a
multiple of 128 words. This will make most of the space covered by your file available for data.
Even if your blocks fit neatly into sectors, however, disc space may be wasted if your logical
records fit into your blocks poorly. Here, two logical variable-length records fit into a block. A third
record is too large to fit into the block, so space is wasted.

REC 1 Record 1 REC2 Record 2 -1
COUNT COUNT

BLOCK

Other records of the same file may fit better:

REC3 Record 3 REC4 Record 4 RECS Record 5 -1
COUNT COUNT COUNT

BLOCK

2-12

Record Structure and Blocking

Blocks Containing Undefined-Length Records

When your file contains undefined-length records, it is impossible to take advantage of blocking:
since the file system does not know how much space the actual data will require, it cannot place
more than one record in a block; it does not know that more than one record will fit into each
block. For this reason, the file system will override any blocking factor you supply and change the
blocking factor to 1. Each block will contain one record. When you create your file, specify a logical
record size large enough to contain the largest record you expect; the file system will allocate this
much space for each block. In files containing undefined-length records, logical records and
physical records are identical.

To avoid permanent waste of sector space in your file, your block size (record size) should be a
multiple of 128 words (256 bytes). Records that are considerably shorter than the size allowed will
waste space, since the maximum record space is allocated and may contain only one record.
Consider the case below:

DATA

SECTOR

last word repeated
to fi 11 sector

SECTOR

BLOCK

uninitialized
(blanks or zeroes)

SECTOR

A block size of 384 words (768 bytes) has been specified; each block covers three sectors. The
record in this case is only 140 words long. It fills one sector, and ends in the next; the last word of
the record is repeated to fill the second sector. The third sector is not used at all, and is filled with
blanks (if this is an ASCII file) or zeroes (if the file is written in binary code).

Blocking Consideration: System File Label

Every disc file has a system file label, which identifies the file to the system and contains the
characteristics of the file; the contents of the system file label will be discussed in the section on
File Structure. The system file label is 128 words long, and occupies one block. An entire block is
allocated for the system file label for the sake of uniformity: all blocks in the file are treated the
same way. Because of this fact, a small amount of file space can be wasted even if your records fit
neatly into blocks: since the system file label requires only 128 words, any space beyond that in its
block is wasted. Consider the extreme case of a file with 11 records, each 55 words long. If a
blocking factor of 11 is chosen, one block will contain the 11 records. The block will cover five

2-13

Record Structure and Blocking

sectors for a total of 640 words, so only 35 words will seem to be unused. However, a block of the
same size is allocated for the system file label. Since it requires only 128 words, the additional 512
words in the block are unused. The wastage in this case includes the 35 words left over by the
records plus the 512 words lost on the system file label, for a total of 54 7 words wasted. This
situation is illustrated below:

BLOCK
' __ S_E_C_T_O_R _____ S_E_C_T_O_R ______ SE_CT_O_R ______ S_E-CT_O_R ______ S-EC_T_O_R __ '
r ___ _,..._ ___ , ~----_,,...._ ___ , r ___ ,......._ ___ ,, ___ _,..._ ___ , /' __ ..,......_ ___ ,

System
file label

SECTOR SECTOR SECTOR

UNUSED

SECTOR SECTOR r ___ ,,,....,_ ___ ,r---~---,r---,,....._---, r ___ ,.....__ ____ , r ___ _,....._. ___ ,

DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA

UNUSED

NOTE

The situation just described is rather extreme. Unless your file is very
small, it is best to choose your blocking factor in the way that seems
most efficient for the records; the space occupied by the system file
label is simply a consideration.

Relative 110 Block Format

"Relative 1/0 format" is a scheme (used principally by COBOL) for tagging each record with a
bit describing whether a record is "active." Records can be logically deleted from the file by
setting their activity bits to "inactive" status. The blocks used with relative 1/0 have a
characteristic format. This format is illustrated in Appendix A, File System Reference.

2-14

Record Structure and Blocking

Improving Input/Output Efficiency

When you run a program that transfers data to or from a different input or output device from time
to time, you can make the physical input or output more efficient by overriding the
programmatically-specified record size or blocking factor so that these values better suit the
device involved. For instance, suppose you are running a program originally written to read input
from cards specified as 20-character logical records. If, before the next run, the input file has been
copied to disc, you could provide faster access by reading these records in blocks of 240
characters. To do this, you would enter a :FILE command using a blocking factor of 12:

:FILE CARDS; DEV=DISC; REC=-20, 12
:RUN PROGX

NOTE

When you specify record size in bytes, you must precede this value
with a minus sign as shown above. When you express record size in
words, be sure to omit the minus sign.

2-15

FILE STRUCTURE --1111
•

I

e;u.u1
..____ __________ ~! m I

In the last section, we discussed the basic units of information available to us: logical records. In
this section, we will investigate files: sets of logically related records which reside on one or more
devices. Records are related to-files as illustrated in Figure 3-1, below.

I Record I

~ I BLOCK I ~

• FILE OR
• • --1 OTHER DEVICE

• • •

Figure 3-1. Records/Files Relationship.

When you design your files, there are several questions you should consider:

• Where should the file be kept?

• How large should the file be?

• How should a disc file be distributed on the disc?

• How should the file be identified?

• What characteristics should the file have?

DISC FILES AND DEVICEFILES

The File System recognizes two basic types of files, classified on the basis of the media on which
they reside when processed:

Disc files, which are files residing on disc, immediately accessible by the system and potentially
sharable by several sessions/ jobs at the same time.

File Structure

Devicefiles, which are files currently being input to or output from any peripheral device except a
disc. (Files on serial disc are considered devicefiles.) When information exists on such a device but
is not being processed, the File System cannot recognize it as a file. Thus, information on cards is
not identified as a file until the cards are loaded into the card reader and reading begins; data
being wr_itten to a line printer is no longer regarded as a file when output to the printer terminates.
A devicefile is accessed exclusively by the session or job that acquires it, and is owned by that
session I job until the session I job explicitly releases it or terminates.

NOTE

Spooled devicefiles, although temporarily residing on disc, are
considered devicefiles in the fullest sense because they are always
originated on or destined for devices other than disc, and because
you generally remain unaware or their storage on disc as an
intermediate step in the spooling process. Whether they deal with
spooled or unspooled devicefiles, you programs handle
input I output as if the files reside on non-disc devices. The Console
Operator, not the user, controls the spooling operation.

This section is chiefly concerned with disc files. Devices and devicefiles are discussed at the end of
the section.

FILE PLACEMENT

Free space on a disc is not contiguous; it exists as small chunks of space between occupied
spaces. Therefore, when you create a file and request a certain amount of space for it, the file
system breaks your file into individually placeable pieces called extents. These extents may be
placed wherever they can fit on the disc, or may even be scattered over several discs, and the file
system will recognize them as belonging to the same file. Space for each extent will be allocated
and initialized as it is required.

NOTE

When you create your file, make it as large or larger than you believe
it will ever need to be; later, you can make a file smaller, but you
cannot request more space for it unless you purge and re-create it. If
you use only a part of the file space you have requested, you can
access the file later and append to it, but you may only fill the file to
the limit you set when you create the file.

3-2

File Structure

Extents

Each extent is an integral number of blocks; it consists of a number of consecutively-located disc
sectors. You may specify the maximum number of extents your file may occupy, up to a maximum
of 32. The file system, however, may use fewer extents than you request. Each extent must contain
at least one physical record. So, if your file consists of one block of data and one block for the
system file label, and you request eight extents for your file, the file system will allot only two
extents.

Each extent is the same size, with the possible exception of the last: if the records cannot be
distributed evenly among the extents, the last extent will receive fewer records than the others. You
can determine the size of each extent by the following ·method:

Extent Size = Sectors/ Extent

Sectors/ Extent =
Number of blocks
Number of extents

S t I Bl k
_ Block size (in bytes)

ec ors oc -
256

X Sectors/ Block

Number of blocks = Nu~~erkoff r~cords + 1 (for file label)
oc ac or

In this algorithm, the constant 256 denotes the size of each sector in bytes.

To illustrate the use of the algorithm, the extent size is calculated below for a file containing 1024
logical records, organized as eight extents, with a blockfactor of 3. Each record is an 80-byte card
image. The extent size is:

1024
Number of blocks = -

3
- + 1 = 343

240
Sectors/ Block =

256
= 1

343
Sectors/Extent = 8 X 1 = 43 X 1 = 43

Extent Size = 43 Sectors/Extent

The first seven extents would each contain 43 sectors and the last extent would contain 41.

3-3

Fiie Structure

With a blockfactor of 16 applied in the above example, the extent size is:

1024
Number of blocks = 16 + 1 = 64

1280
Sectors/ Block =

256
= 5

64
Sectors/Extent = 8 X 5 = 8 X 5 = 40

Extent Size = 40 Sectors/ Extent

In this case, all extents contain 40 sectors.

NOTE

Spooled devicefiles (spoolfiles) are written in a special format and
managed entirely by the file system. They, like other files. may have
a maximum of 32 extents. The size. of these extents is determined by
the System Manager when he configures the system.

The extents that comprise your file will reside on discs in the device class that you specify when you
open the file. Normally, each extent is assigned arbitrarily to a device in the class. If you wish, you
may have all your extents on the same disc by requesting a specific logical device by its logical
device number (ldev #) rather than by device class. In either case, MPE maintains the integrity of
your extents: any extent resides entirely on one device, and is not shared over several.

If your system contains two or more discs with the class name DISC, and their speeds are different,
you may wish to consider the way your file will be used and choose one disc specifically because of
its speed. In this case, you would reference that disc by its logical device number (ldev #) when
you create the file.

Device class names and logical device numbers are discussed later in this section.

Extent Allocation. When you create your file and specify the number of extents you want, you may
not need all of those extents right away. Perhaps you will need only a small part of the file space at
first, and do not anticipate filling the space until later. In this case, when you build your file you can
specify how many extents are to be allocated at once; the file system default is one extent. As the
file grows to its full size and requires more space, the file system allocates the extents you have
reserved as they are needed. This ability to take only as much space as you need when you need it
enables you to optimize file access to save disc space.

3-4

File Structure

When you create your file, only the space that is actually allocated is subtracted from the total
available to you. The file system will allocate only as many extents as you request, but will
"remember" how many extents you will eventually want. If you create a file that will eventually
consume more disc space than you have in your group or account, extents will be allocated until
your available space is filled. After that, you may not allocate more extents until you increase the
disc space available to you.

Occasionally, you may wish to override programmatic specifications dealing with extents to
optimize the use of disc space. For instance, if your disc space is limited, the space available may
exist as isolated small groups of sectors (fragments) rather than as contiguous groups of many
sectors. You may then decide to break the file into more extents, each smali enough to fit into the
fragments available. If you fail to do this, perhaps attempting to open the file with one extent, you
may not be able to get the disc space you require. To illustrate, if your disc space is limited and you
run a program to create a new file for 1000 records of 80 bytes each, treated as 10 extents, you
could enhance your chances of acquiring the disc space needed by issuing a :FILE command
specifying 32 extents, all allocated immediately:

No. of extents allocated immediately

No. of extents in file~. \
File capacity~~

:FILE MYFILE;DEV=DISC;DISC= 1000,32,32

:RUN XPROG I
Requests search for space on any disc

In general, the rule is: if your disc space is limited and you know the total space your file will need,
divide the file into many extents and request immediate allocation of all of them.

When you create your file and allocate the initial extents, those extents are allocated in order.
Subsequent allocations of extents for that file need not be in order: for example, if you write a
record that maps into an unallocated extent, that extent will be allocated, but intervening extents
will not.

Extents are allocated as they are needed until your file has grown to its full size. When your file's
initially allocated extents have been filled, the next block you write to the file forces allocation of an
extent for that block. Similarly, if you try to read from an unallocated block, the extent containing
that block will be initialized and allocated.

The file system will not allow uninitialized space to be read. When an additional extent is allocated
for a file, it is initialized before it can be read; this is done for security reasons, to prevent a user
from reading information that he did not write, such as old "purged" files. The file system assumes
that any space which is beyond the end-of-file indicator or which has not yet been allocated is
uninitialized.

3-5

File Structure

NOTE

Since extents need not be allocated in order, the last extent of a file
may be allocated before the middle extents. For this reason, even if
the end-of-file indicator is set at the file limit, the file system will not
assume that the entire file space has been allocated and initialized.

Performance implications of extent allocation. You can take advantage of the ability of the file
system to allocate and initialize extents as they are needed. Instead of initializing your extents
when you open your file, distribute the file system overhead (that is, the wait time) by initializing
the minimum amount of space only when it is needed. When you write data to your file, you do not
need to initialize the file space; this is only done when you attempt to read a new extent. So, by
initializing only a minimum of space, you avoid the unnecessary initialization of file space that will
be written to, and save time.

Special considerations for program files. Program files must be contained in only one extent.
When the MPE Segmenter prepares a program file, the file is automatically created with one
extent, and so it fits this specification. If you are preparing a program onto an existing file in your
job/session domain, you can make sure the file is limited to one extent by using the :BUILD
command:

:BUILD PROGFL; DISC=,, 1; CODE=PROG

\ ·~· 1 spec111es extent

DEFINING FILE CHARACTERISTICS

When you create a file, you choose the attributes that file will have; your choices are made on the
basis of how the file will be used. A file's characteristics are determined by the parameters you
choose when you create the file with the FOPEN intrinsic or :BUILD command, or when you specify
the file with the :FILE command. Once a file has been created, its characteristics cannot be
changed. It can be renamed, purged, or made permanent, but the only way to change it is by
building a new file and copying the old one into it.

3-6

File Structure

FOPEN

The FOPEN intrinsic is your best tool for supplying the file system with information about your file.
Its syntax is:

filenum : = FOPEN (formaldesignator, foptions, aoptions,

recsize, device, formmsg, user/abets,

blockfactor, numbuffers, filesize,

numextents, initalloc, filecode);

The FOPEN intrinsic is used to define the structure of the file and its records, and the file's
identification, domain and usage. The characteristics that are affected are listed in Table 3-1, along
with the corresponding FOPEN parameters and their defaults.

Table 3-1. FOPEN Parameters and their Defaults.

Record Structure FOPTIONS Binary, Fixed
RECSIZE Recsize = 128 words

File Structure BLOCKFACTOR (128/ RECSIZE), rounded down
FILESIZE 1023 words
NUMEXTENTS 8 extents
INITALLOC 1 extent
DEVICE Disc
FOPTIONS

File Identification USERLABELS Userlabels = 0
FILE CODE Filecode = 0
FORMALDESIGNATOR Unnamed
FOPTIONS

File domain FOPTIONS New

File Usage A OPTIONS Read Only
Access = SHR (read only)

EXC (all others)
No FLOCK
Buffered
No multirec
No multiaccess
Wait for 1/0

NUMBUFFERS Numbuf = 2
FOPTIONS

3-7

File Structure

File domains are discussed in a later section. Settings for the AOPTIONS and FOPTIONS are
shown in Appendix A. For more details on using the FOPEN intrinsic, see the MPE Intrinsics
Reference Manual, part number 30000-90010.

BUILD

The BUILD command creates a file in much the same way as the FOPEN intrinsic, except that
FOPEN is used within a program and BUILD is entered as an MPE command. Its syntax is:

:BUILD filereference [;DEV = [[dsdevice] #] [device]]
[;DISC = [numrec] [, [numextents]

[,initalloc]]]
[;REC = [recsize] [, [blockfactor] [. m [:~~IRYJJJ]

l;CCTL l
L;NOCCTL_J
[;TEMP]
[;CODE = [filecode]]

[
·RIO J
;NORIO

[
;MSG]
;CIR

The parameters for BUILD have meanings and applications that are similar to the corresponding
parameters for FOPEN. For more information about how to use the BUILD command, see the MPE
Commands Reference Manual, part number 30000-90009.

FILE

The FILE command is used to determine how a file will be accessed. You may use FILE to describe
any of the characteristics available with FOPEN or BUILD, but you cannot actually create a file with
the FILE command. While FOPEN and BUILD will physically allocate space for a file and define its
characteristics, the FILE command may only define how a file will be accessed at run time. A
comparison of the parameters for FILE and FOPEN is given in Table 3-2.

3-8

File Structure

Table 3-2. :FILE vs. FOPEN Parameters.

:FILE FOP EN MPE
CHARACTERISTIC PARAMETER PARAMETER DEFAULT

Formal file formaldesignator formaldesignator Temporary nameless file.
designator.

f---- ·~

Actual file filereference Default file designator Same as formal file
designator. $NEW PASS foption (Bits 10:3) designator.

$0LDPASS
$NULL
$STDIN
$STDINX
$STD LIST

Domain NEW Domain foption New file.
OLD (Bits 14:2)
OLDTEMP

Logical record size me size rec size Configured default size of
device for unit-record de-
vices; 256 bytes for other
devices.

Block/butter size blockfactor blockfactor Configured block size of
device divided by recsize.

Record fromat F Record format foption Fixed-length records for disc
v (Bits 8:2) and magnetic tape files:
u undefined-length records for

all others.

ASCII/Binary Code ASCII ASCII/Binary foption Binary.
BINARY (Bits 13:1)

Carriage-control CCTL Carriage-control No carriage control char-
characters sup- NOCCTL toption (Bits 7: 1) acters supplied in FWRITE.
plied in FWRITE

Access mode IN Access-type aoption Read-only access for all
OUT (Bits 12:4) devices except output de-
OUTKEEP vices, which are assigned
APPEND output-only access.
INOUT
UPDATE

Number of buffers numbuffers numbuffers (Bits 11 :5) 2 buffers.
NOBUF

Exclusive/Share EXC Exclusive access For read-only access, SHA
access SEMI aoption (Bits 8:2) takes effect; for other modes.

SHR EXC.

3-9

File Structure

Table 3.2. :FILE vs. FOPEN Parameters (Continued).

:FILE FOPEN MPE
CHARACTERISTIC PARAMETER PARAMETER DEFAULT

Multi access MULTI Multi-access mode No multi access allowed.
NOMULTI aoption (Bits 5: 2) GMULTI

Multi-record mode MR Multi-record aoption No multi-record mode
NOMA (Bits 11: 1}

rile disposition DEL {None-defined pro- Same as when file was
SAVE grammatically by dis- opened.
TEMP position parameter of

FCLOSE)

·-
Device Class Name device device Class Name Dl$C.
or Logical Device
Number

Output priority outputpriority numbufters (Bits 0:4). 8

NOWAIT NOWAIT NOWAIT 1/0 aoption NOWAIT input/output
input output WAIT (Bits 4:1) prohibited.

Number of copies numcopies numbuffers (Bits 4:7) 1

File code filecode filecode 0

File capacity numrec file size 1023

Total number of numextents numextents 8
extents

Extents initially initalloc initalloc

I
1

allocated

:FILE command (None) Disallow :FILF: Allow :FILE command.
prohibition Equation foption

(B1ts5:1)

Dynamic file locking (None) Dynamic locking Disallow dynamic locking
aoptlon (Bits 10: 1)

Forms-alignment FORMS formmsg No forms message sent
message

User labels for disc (None) userlabels No user labels processed.
file

File labels for LABEL Labeled tape No label
magnetic tape NO LABEL foption (Bit 6: l)
files

File type STD File type foption Standard file.
MSG (Bits 2:3)
CIR

3-10

File Structure

To be effective, a FILE command must be issued before your file is accessed; it takes effect when
the file is accessed. A FILE command remains in effect until the job or session ends, until it is
cancelled with a RESET command, or until it is overridden by another command for the same file.
Thus, if you enter a FILE command equating the formal designator DATAFL to the actual
designator CARDS (indicating a card file) and then run three programs that reference DATAFL, all
three programs will access the file CARDS. If you wish to define other characteristics for the file,
simply issue another :FILE command; if you want to nullify the :FILE command completely so that
the formal designator has the characteristics originally specified by the program that is using it,
issue a :RESET command.

For example, suppose you run two programs, both referencing a new temporary file on disc named
DFILE. Before you run the first program, you want to redefine the file so that it is output to the
standard list device. To do this, you would issue a FILE command equating DFILE with the actual
designator $STDLIST. In the second program, the file is again to be a temporary file on disc. You
issue a RESET command so that the specifications supplied by the second program (rather than
those in the :FILE command) apply.

:JOB JNAME,UNAME.ANAME
•
•
•

:FILE DFILE=$STDLIST
:RUN PROG1
:RESET DFILE
:RUN PROG2

•
•
•

For more information about using the :FILE command, see the MPE Commands Reference Manual,
part number 30000-90009.

3-11

Fiie Structure

Summary of General Rules - Overrides

If a FILE command has been entered that contradicts some of the FOPEN parameters for a file,
which takes precedence? What happens if some parameters are left out? The file system maintains
a hierarchy of overrides for just such situations:

DISC Fl LE LABEL

overrides

FILE COMM.AND

overrides

FOPEN

overrides

FILE SYSTEM DEFAULTS

Since the physical characteristics of a file cannot be changed after it has been created, it makes
sense that the file label would take precedence over all commands. Other determinants are
effective only when a new file is being created.

NOTE

:FILE commands and FOPEN calls cannot alter physical
characteristics of an existing file, but they can alter the way the file is
to be used: access parameters, whether to use buffered mode or
whether to permit file locking are examples of the characteristics
:FILE and FOPEN can affect.

FILE IDENTIFICATION

You will probably want to identify your files in some way, to distinguish between them or to remind
yourself of their applications. When you consider how to identify your files, both to yourself and to
the system, there are several questions to bear in mind:

• Where will file identification information be stored?

• Is special non-data storage required?

3-12

File Structure

• Does the file need a special file code associated with it?

• Should the file have a name?

System File Label

The system file label contains all the information about your file that you specified when you
created it. Here, information about your file's structure, the format of its records, and details about
its intended use are permanently recorded; once a file has been created, the system file label
cannot be altered.

The contents of a standard disc file label are listed in Table 3-3.

Table 3-3. Disc File Label Contents.

WORDS CONTENTS

0-3 Local file name.

4-7 Group name.

8-11 Account name.

12-15 Identity of file creator.

16-19 File lockword.

20-21 File security matrix.

22 (Bits 0:15) Not used.
(Bit15:1) File secure bit:

If 1, file secured.
If O. file released.

23 File creation date.

24 Last access date.

25- Last modification date.

26 File code.

27 File control block vector.

28 (Bit 0:1) Store Bit. (If on, :STORE in progress.)
(Bit 1 :1) Restore Bit. (If on, : RESTORE in progress.)
(Bit 2:1) Load Bit. (If on, program file is loaded.)
(Bit 3:1) Exclusive Bit. (If on, file is opened with exclusive access.)

3-13

I

File Structure

Table 3-3. Disc File Label Contents (Continued).

WORDS CONTENTS

(Bits 4:4) Device sub-type.
(Bits 8:6) Device type.
(Bit 14:1) File is open for write.
(Bit 15:1) File is open for read.

29 (Bits 0:8) Number of user labels written.
(Bits 8:8) Number of user labels.

30-31 Maximum number of logical records.
32-33 Private volume information (while file is open).

34 Checksum.

35 Cold-load identity.

36 Foptions specifications.

I
37 Logical record size (in negative bytes).

38 Block size (in words).

39 (Bits 0:8) Sector offset to data.
(Bits 8:3) Disc flags.
(Bits 11: 5) Number of extents, minus 1.

I
40 Logical size of last biock.

I
41 Extent size. I

42-43 Number of logical records in file.

44-107 Two-word addresses of up to 32 disc extents beginning with
address of first extent (words 44-45).

108-109 Restore time.

110 Restore date.

112-113 Start of file block number.

114-115 Block number of End-of-File.

116-117 Number of open and close records.

124-127 Device class (in ASCII).

3-14

File Structure

Non-Data Storage: User Labels

If you want some special identifying feature for your file, you can record it in a user label. For
example, labels can be used on a files that are frequently updated in order to determine the time of
the last update. These special labels can be used for files on disc or tape. If you want a user label in
a tape file, the tape must be labeled with an ANSI-standard or IBM-standard label. (For
information about tape labels, see Section 9, Magnetic Tape Considerations.)

NOTE

Since labels cannot share a block with data, the first data record in a
file will begin in the block following the last user label; if your blocks
are large and your last user label occupies only a small part of a
block, file space might be wasted.

Writing a User Label on a Disc File. When a disc file is created, MPE automatically supplies the
system file label in the first sector of the first extent occupied by that file. User labels are stored just
after the system file label, and will begin in the system file label's block. The maximum number of
user-supplied labels for any file must be specified in the user/abets parameter of the FOPEN
intrinsic call that creates the file; you may have a maximum of 254 user labels, each 128 words
long.

In Figure 3-2 the FOPEN intrinsic call

DFILE2:=FOPEN (DATA2, %4, %4, 128,,, 1);

opens a new file and specifies 1 for the user/abets parameter (last parameter before parenthesis in
this example), meaning that one 128-word user label will be set aside. Any attempt to write a label
beyond this will result in a CCG condition code and the intrinsic request will be denied.

The statement

FWRITELABEL (DFILE2,LABL,9,0);

calls the intrinsic FWRITELABEL to write a user-supplied label. The parameters supplied in the
intrinsic call are

filenum

target

tcount

Supplied by DFILE2, which was assigned the file number when the FOPEN
intrinsic opened the file.

The array LABL, containing the string "EMPLOYEE DATA FILE", which will
be written as the user file label.

9 words, specifying the length of the string to be transferred from the .array
LABL.

3-15

Fiie Structure

label id 0, specifying the number of the label. (0 = first label, 1 = second label,
etc.)

If the label is written successfully, a CCE condition code results. Note that any subsequent
FWRITELABEL intrinsic calls will write over an existing label.

$CONTROL USLINIT
BEGIN

BYTE ARRAY DATA1 (0:7):="DATAONE ";
BYTE ARRAY DATA2 (0:7): = "DATATWO ";
ARRAY LABL (0:8): ="EMPLOYEE DATA FILE";
ARRAY BUFFER (0: 127);
INTEGER DFILE1,DFILE2,DUMMY;

•
•

DFILE2: =FOPEN (DATA2, %4, %4, 128,,, 1);
•
•

FWRITELABEL (DFILE2,LABL,9,0);
•
•

FCLOSE (DFILE2,2,0);
•
•

END.

Figure 3-2. FWRITELABEL Intrinsic Example (Disc).

Reading a User File Label on a Disc File. To read a user file label, you use the FREADLABEL
intrinsic.

In Figure 3-3, the FOPEN intrinsic call

DFILE2: =FOPEN (DATA2, %6, %4, 128);

contains the AOPTIONS parameter % 4, which specifies input/ output access. The statement

FREADLABEL (DFILE2,BUFFER, 128,0);

3-16

File Structure

reads a user file label from the file specified by DFILE2. The parameters specified in the intrinsic
call are

filenum

target

tcount

label id

Supplied by DFILE2, which was assigned the file number when the FOPEN
intrinsic opened the file.

BUFFER, the array in the stack to which the file label is transferred.

128, specifying the maximum number of words to be transferred.

0, specifying the number of the label to be read.

If the label is read, a CCE condition code results.

$CONTROL USLINIT
BEGIN

BYTE ARRAY DATA2 (0:7): = "DATATWO ";
ARRAY BUFFER (0: 127);

•
•

DFILE2:=FOPEN (DATA2, %6, %4, 128);
•
•

FREADLABEL (DFILE2,BUFFER, 128,0);
•
•

END.

Figure 3-3. FREADLABEL Intrinsic Example (Disc).

File Codes

MPE subsystems often create special-purpose files whose functions are identified by four-digit
integers called file codes, written in their system file labels. For instance, compilers create user
subprogram library (USL) files, written in a special format and identified by the code 1024, upon
which they compile object programs. User programs sometimes create files that must be identified
in some unique way, too. Such a program might produce a permanent disc file identified by the
integer 1. If you were to run this program several times and want to uniquely identify the file
produced on each run (or set of runs) by a special class, purpose, or function, you could use a
:FILE command to supply a unique file code for each run (or group of runs). For instance, on the
second run, you might wish to classify the file with the file code 2, as follows:

:FILE DESGX=DESGB;CODE=2 ---- File code
:RUN FILEPROD

3-17

File Structure

If you later wished to determine the classification to which this file belonged, you could use the
: LISTF command with an information level of 1, which prints the file name, file code, and other
information about the file. The :LISTF command is discussed in the MPE Commands Reference
Manual, part number 30000-90009. Alternatively, you could determine the file code by calling
the FGETINFO intrinsic, as discussed in the MPE Intrinsics Reference Manual, part number
30000-90010.

NOTE

For user files, you may use as file codes any number from 0 through
1023. Numbers ranging from 1024 through 1080 are reserved for
special system files. File codes can only be specified at the time the
file is created; if you do not specify a file code when you create a file,
the MPE default value of zero applies.

The file codes that have particular HP-defined meanings are listed in Table 3-4.

Mnemonic

USL
BASD
BASP
BASFP
RL
PROG
SL
VF ORM
VF AST
VREF
XLS AV
XLBIN
XLDSP
EOITQ
EDTCQ
EDT CT

RJEPN

Table 3-4. Reserved File Codes.

File Code

-400
-401
-402
1024
1025
1026
1027
1028
1029
1031
1035
1036
1037
1040
1041
1042
1050
1051
1052
1058
1060

l

IMAGE root file.
IMAGE root file.

Meaning

IMAGE file for OS information.
USL file.
BASIC data file.
BASIC program file.
BASIC fast program file.
RL file.
Program file.
SL file.
V /3000 formsfile.
V /3000 fast forms file.
V /3000 reformat file.
Cross Loader ASCII file (SAVE).
Cross Loader relocated binary file.
Cross Loader ASCII file (DISPLAY).
Edit KEEPQ file (non-COBOL).
Edit KEEPQ file (COBOL).
Edit TEXT file (COBOL).
TOP I 3000 workfile.
RJE punch file.

3-18

File Structure

Table 3-4. Reserved File Codes (Continued).

Mnemonic File Code Meaning

QPROC 1070 QUERY procedure file.
1071 QUERY work file.
1072 QUERY work file.

KSAMK 1080 KSAM key file.
GRAPH 1083 GRAPH specification file.
SD 1084 Self-Describing file.
LOG 1090 User Logging logfile.
PC ELL 1110 IDS/3000 character set file.
PF ORM 1111 IDS/3000 form file.
P2680 1112 IFS/3000 environment file.
OPTLF 1130 On-line performance tool.

File Name

The most obvious way to identify a file is to give it a name. A file may remain unnamed, but its
flexibility will be greatly limited: :FILE commands cannot be used on unnamed files, and a file
cannot be saved without a name. Your file's name may consist of up to eight alphanumeric
characters, beginning with an alphabetic character. It may be qualified with the name of your group
and account, and may have a lockword associated with it.

Formal and actual file designators. The name by which a program recognizes your file is its formal
file designator. This is the file name that is coded into the program, along with the program's
specifications for the file. The :FILE command will reference a file by its formal designator.

Suppose that you are about to run a COBOL program named MYPROG that, in its Data Division,
defines an input file on cards named CARDFILE. In this file, each logical record contains 80
characters and is equivalent to one block. The coded file specification in the program appears as
follows:

• • •
DATA D!V!S!ON.
FILE SECTION.
FD CARDFILE - File name

BLOCK CONTAINS 1 RECORDS
DATA RECORD IS MYDATA

Block size (1 record per block);
intended for card input

RECORDING MODE IS F - Record type (fixed length)
LABEL IS OMITTED
RECORD CONTAINS 80 CHARACTERS .

• • •
~------Logical record size (80 characters)

3-19

File Structure

Although this program was designed to accept its input from punched cards, there may be
occasions when you wish to read this input from a disc file. In such cases, you may also wish to
read these records in blocks of three logical records each. Rather than re-code and re-compile the
program, you could reference the file in a :FILE command to change the file specifications:

Changes file Formal Maintains same record

spec~ations ~desig~size (80 bytes)

:FILE CARDFILE; REC=80, 3; DEV= DISC

/:RUN MYPROG \

Runs COBOL program Requests block size of
3 logical records

Specifies
disc file

The formal file designator is the name by which your program recognizes the file, but there must
also be a means by which the file system can recognize it, allowing it to be referenced by various
commands and programs. For an old disc file, this is the file name contained in the file label and in
the system or job/session temporary file directory. For a devicefile, it is the name optionally
supplied in the :DATA command and copied into the device directory. For a new disc file, it is the
name you supply when you open the file; this name is then copied into the appropriate directory
and entered in the file label. Whether it applies to a disc or devicefile, this is the ''real'' name that
identifies the file to the file system. It is called the actual file designator.

Suppose you create a file and name it DISCFILE; this name is its actual file designator. Suppose,
further, that you would like to use DISCFILE in the program MYPROG described above. MYPROG
will only recognize a file whose formal designator is CARDFILE, so you use a :FILE command to
equate the formal designator to the actual designator:

: FILE CARDFILE = DISCFILE

\ ~
Formal Actual
designator designator

In this way, the :FILE command provides a linkage between the file system's name for a file and
your program's name for that file.

Renaming your file. A file's creator can change the file's name, so you can rename your files.
Renaming a file will change its actual file designator and its lockword, if it has one. Permanent
(OLD) and temporary (TEMP) files can be renamed; since NEW files do not yet exist under
another name, there is no need to rename them. Changing a file's name will not change its domain.
To rename your files, use the : RENAME command; it is discussed in detail in the M PE Commands
Reference Manual, part number 30000-90009.

3-20

File Structure

DEVICES AND DEVICEFILES

Devices required by files are allocated automatically by the file system. You can specify these
devices by class (such as any card reader or line printer) or by a logical device number related to a
particular device (such as a specific line printer). A unique logical device number is assigned to
each device when the system is configured. Regardless of what device a particular file resides on,
when your program requests to read that file, it references the file by its formal designator. The file
system then determines the device on which the file resides, and its disc address if applicable, and
accesses it for you. When your program writes information to a file destined for an output device
such as a line printer, again the program refers to the file by its formal designator. The file system
then automatically allocates the required device to that file. Throughout its life, every file remains
device-independent - that is, it is always referenced by the same formal designator regardless of
where it currently resides.

Both the device class name and the logical device number associated with a device are determined
by the System Supervisor or Console Operator when he adds the device to the system. The device
class name is an arbitrary name that can be allocated to more than one device. The logical device
number, however, is unique for each device; it may range from 1 to 255. As an example, devices
might be configured with the class names and logical device numbers shown in Table 3-5.

Table 3-5. Device Configurations.

LOGICAL DEVICE
DEVICE DEVICE NO. CLASSNAME

System Disc (Required) 1 SYS DISC
Disc File 2 DISC
Serial Disc 3 SDISC
Card Reader 5 CARD
Line Printer 6 LP, PRINTER
Magnetic Tape 7 TAPE, TAPEO
Magnetic Tape 8 TAPE, TAPE1
Magnetic Tape 9 TAPE, TAPE2
Magnetic Tape 10 JOBTAPE

(Job Accepting)
Line Printer 11 LP
Laser Printer 14 EPOC, PP, LPS
Console 20 CONSOLE
Terminal 21 TERM
Terminal 22 TERM

In this configuration, the card reader is assigned logical device number 5 and device class narpe
CARD. In this case, you could make a unique reference to this device by using either the logical
device number or the class name CARD (since no other device shares this class name) when you
open the file. In the case of a magnetic tape unit, you could make specific references to logical

3-21

File Structure

devices 7, 8, or 9, or to the device classes TAPEO, TAPE1, or TAPE2, respectively. But if you are
willing to use any magnetic tape unit, you could make a non-specific reference to the class name
TAPE, which would provide the first tape unit available for your file.

When an SPL program opens a file, it can specify any device for that file in the FOPEN intrinsic; if it
specifies no device, the class name DISC is assigned by default. Programs written in other
languages often restrict the devices you can use for certain files. For instance, a FORTRAN
program always equates the file named FTN05 to the standard input device, and the file named
FTN06 to the standard listing device. In many cases, if you do not or cannot specify a device for a
file in such programs, the program assumes the system default: the class name DISC.

You can, however, override the programmatic device specifications by using the :FILE command to
specify different devices. For example, suppose you plan to use the BASIC Interpreter from a
terminal and wish to direct your program listing to any line printer rather than the subsystem
default device (which is the standard listing device, your terminal). You first define the listing file,
arbitrarily named PRINTER, as a line printer (class name LP) in a :FILE command. After you issue
the :BASIC command to invoke the interpreter, you enter your BASIC program, which includes a
LIST command that directs output to the file named PRINTER, which is now recognized as a line.
printer.

Device class name

:FIL~ PRINTER;DEV~LP/ Defines PRINTER as a
:BASIC line printer file

•
• Invokes BASIC Interpreter
•

> 10 FOR I= 1 TO 10
•
•
•

>LIST, OUT= PRINTER Transmits output to PRINTER
•
•

The :BASIC command is discussed in the MPE Commands Reference Manual, part number
30000-90009.

3-22

File Structure

If a file is a spooled devicefile, you can assign an output priority to the file. The priority can range
from 1 (lowest) to 13 (highest). The Console Operator will establish the outfence to limit spooling
activity: spooled output files with priorities lower than or equal to the outfence are not printed or
punched until the outfence is lowered or the priorities are raised by the Console Operator. Suppose
you are running a program that will print an extensive output file at a time when the computer is left
unattended. To safeguard against problems arising from the printer jamming or running out of
paper while it prints the file, you could specify an output priority less than the current outfence (8),
and request the Operator to lower the outfence when he returns to the machine room. When this is
done, your file can be transmitted from disc to printer. You might specify the priority as follows:

/Output priority

:FILE LONGFILE;DEV=LP,6
:RUN PROGX

Device-Dependent Characteristics

Certain file characteristics for devicefiles are restricted by the devices on which the files reside. For
instance, the file system always assigns a blockfactor of 1 to any file read from a card reader
regardless of the blockfactor specified in your FOPEN call or :FILE command. For your
convenience, all such device-dependent restrictions are summarized in Table 3-6.

3-23

File Structure

Table 3-6. Device-Dependent Restrictions.

INPUT ONLY DEVICES (SERIAL)

Card Reader I Paper Tape Reader

No carriage control
Undefined-length records
If card reader, ASCII only (can only read ASCII cards using FCONTROL)
Blockfactor = 1
Domain = 1 (OLD permanent)
If not ASCII, then NOBUF
If access type = 1, 2, 3, then access violation results

INPUT /OUTPUT DEVICES (PARALLEL)

Terminals

ASCII
NOBUF
Undefined-length records
Blockfactor = 1

INPUT/OUTPUT DEVICES (SERIAL)

Magnetic Tape Drive
Serial Disc Drive

No restriction

OUTPUT ONLY (SERIAL)

Line Printer I Card Punch I Paper Tape Punch I Plotter

If Paper Tape Punch, ASCII only
Undefined-length records
Blockfactor = 1
Domain= NEW
Access Type = 1, write only (if read only specified, access violation results)

Laser Printer

Initially and always spooled
Write only access
All other restrictions same as for line printer

UNDEFINED (COMMON CHECKING)

If carriage control specified and not ASCII, access violation results

3-24

File Structure

Headers and trailers. A facility for printing header and trailer records can be enabled by the
Console Operator through the console command : HEADON. When this facility is enabled and an
output devicefile is directed to a card punch, the file system automatically punches a header card
and a trailer card identifying the job that produced the file; if an output devicefile is directed to a
line printer, the file system automatically prints header and trailer pages identifying the job that
produced the file. The Console Operator can disable the header facility by entering the : HEADOFF
command.

Special forms. When a program opens a new output devicefile, it may request special forms. This
request transmits a user forms message to the operator's console, along with a request to mount
the forms. The operator may respond as follows:

1. If the program specified a device class name for the file, the operator may allocate any
unowned device in the class.

2. If the program specified a particular logical device number for the file, the file system asks
the operator to mount the forms on the device requested if it is available.

When the operator allocates a line printer, the file system initiates a dialog with him to align the
forms. A standard record of the following form is output to the line printer:

• • •
. 1 2 3 ..

~Column 132

. .. 3 ..

This record is followed by a console message which asks the operator if the forms are properly
aligned. This transaction is repeated until the operator indicates proper alignment. Now the file can
be output.

When a program closes a devicefile with special forms, the file system notifies the operator that the
forms are no longer needed on the device.

If special forms are mounted on a device and a devicefile not requiring them is assigned to the
device, the file system automatically asks the operator to mount standard forms or paper.

Foreign Disc Facility

The Foreign Disc Facility (FDF) allows you to use the file system to access and alter disc packs
and flexible diskettes that do not have standard HP 3000 file system disc label formats. When
mounted, a disc volume with an unrecognizable disc label is assumed to be a foreign disc. Discs
and diskettes must be physically compatible with HP hardware. The IBM 37 41 format diskettes
(64 words per sector), for example, are compatible.

When using the FOPEN intrinsic to open a foreign disc file, the recsize is forced to 128 words (IBM
diskettes are forced to 64 words). The file system will treat disc sectors as file records, thereby
allowing you to manipulate the foreign file as if it were an MPE created file.

3-25

DOMAINS

One way to classify a file is on the basis of its domain. A file can be permanent or temporary, or it
may exist only to one particular process. The file system maintains separate directories to record
the location of temporary (or TEMP) files and permanent (or OLD) files. Of course, there is no file
system directory for files which exist only to their creating process (NEW files).

In this chapter, we will address the following questions:

• What do the various domains mean?

• Can a file's domain be changed?

• How can the files in various domains be listed?

TYPES OF DOMAINS

NEW Files. When you create a file, you can indicate to the file system that it is a NEW file; it has not
previously existed. Space for this file has not yet been allocated. As a new file, it is known only to
the program that creates it, and will exist only while the program is being executed; when the
program concludes, the file will simply vanish, unless you take actions to retain it.

TEMP Files. A TEMP file is one which already exists, but which is known only to the job or session
which created it. Some or all of the space for a TEMP file has already been allocated, and its
physical characteristics have already been defined. A file in this domain is considered a job
temporary file: it was created for some specific purpose by its job or session, and may not be
needed when the job or session concludes; like a NEW file, it will vanish when its creating job or
session is over.

OLD Files. An OLD file exists as a permanent file in the system. Its existence is not limited to the
duration of its creating job or session, and depending on security restrictions, it may be accessed
by jobs or sessions other than the one that created it. Some or all of the space for an OLD file has
already been allocated, and its physical characteristics have been defined.

4-1

Domains

The features of NEW, TEMP and OLD files are listed in Table 4-1:

Table 4-1. Features of NEW, TEMP, and OLD Files.

NEW Files TEMP Files OLD Files

Exists only to creating Exists as job temporary file Exists as permanent file in
process system

Space not allocated yet Space (some or all) already Space (some or all) already
allocated allocated

Physical characteristics not Physical characteristics Physical characteristics
previously defined defined defined

Known only to creating job or Known only to creating job or Known system-wide
session session

Exists only for duration of Exists only for duration of Permanent
program execution creating job/session

In some cases, the domain you can specify for a file may be restricted by the type of device on
which the file resides. The domains permitted are summarized in Table 4-2.

Table 4-2. File Domains Permitted.

DEVICE TYPE DOMAIN

Disc NEW, OLD, or TEMP

Card Reader OLD

Paper Tape Reader OLD

Terminal NEW or OLD

Printing Reader Punch NEW or OLD

Synchronous Single-Line Controller NEW or OLD

Programmable Controller NEW or OLD

Magnetic Tape Drive NEW or OLD

Line Printer NEW

I Paper Tape Punch NEW

I Plotter NEW
l

4-2

i
I
J

Domains

CHANGING DOMAINS

A file need not always stay in the same domain. Any file can be made permanent, or can be
deleted when it has served its purpose. The disposition parameter of the FCLOSE intrinsic can
specify a different domain for a file as it closes, or the :FILE command can be used to change the
domain of a file: the DEL, TEMP, and SAVE parameters determine what will happen to the file
when it is closed. For details about how the FCLOSE intrinsic handles file domain disposition, see
the MPE Intrinsics Reference Manual, part number 30000-90010.

A file in any domain may be deleted if the DEL parameter is used in a file equation. For example,
suppose you have an old file named OLDFL, and wish to purge it after its next use. Before
running the program that uses OLDFL, enter:

:FILE OLDFL; DEL

The file may now be opened in your program, and when the program closes the file, it will be
deleted. If OLDFL were a new or temporary file, it would be deleted in the same way.

New files may be made temporary if the TEMP parameter is used in a file equation. If you are about
to create a file named NEWFL, and wish it to remain as a temporary file after it is used, enter:

:FILE NEWFL, NEW; TEMP

After the file is created in your program and is closed, the file system will maintain it as a temporary
file.

If you wish to keep a new or temporary file as a permanent file after it is used, use the SAVE
parameter in a file equation. Suppose you have a temporary file named TEM PFL, and you want it
to be kept as an old file in the system. Enter:

:FILE TEMPFL, OLDTEMP; SAVE

The next time it is used, TEMPFL will be kept as a permanent file, so it will not be lost when your
job or session concludes.

File equations are useful for determining the disposition of files when the files have been
programmatically accessed and closed. By using the MPE SAVE command, you can keep a
temporary file as permanent without opening and closing the file. Suppose you want to keep a
temporary file named TEMPDATA, but do not need to use it in a program at this time. You can
enter:

:SAVE TEMPDATA

4-3

Domains

and the file system will immediately identify it as a permanent file. If there were a lockword
associated with TEMPDATA, you would be prompted for it. You can use the SAVE command to
keep $0LDPASS and assign it a name for future reference by entering:

:SAVE $0LDPASS, filename

where filename is any name you choose. ($0LDPASS and other system-defined files are discussed
in a later section.)

For more information about the FILE and SAVE commands, consult the MPE Commands
Reference Manual, part number 30000-90009.

DIRECTORY SEARCH

There are two directories with addresses of files: the Job Temporary File Directory for .the
addresses of temporary files and the System File Directory for the addresses of permanent files.
There is no directory for new files. When both directories are searched for a file address, the Job
Temporary File Directory is searched first.

LISTING FILES

To obtain a list of your permanent files, enter the :LISTF command. Use the LISTEQ2 utility to list
your temporary files and :FILE equations.The :LISTF command is discussed in detail in the MPE
Commands Reference Manual, part number 30000-90009; LISTEQ2 is described in the MPE
System Utilities Reference Manual, part number 30000-90044.

4-4

1m
~F-IL_E_o_P_E_R_A_Ti_o_N~~~~~~~~~IITJ

In previous sections, we have discussed the structure of files and the records that comprise them.
We have learned how to create files that will fill whatever requirements we have. In this section, we
will explore the operation and usage of our files. As you read this section, keep these
considerations in mind:

How will the file be referenced?

• How will the file be used?

• Will others be allowed concurrent access?

• Will the concurrent access need special management?

• Are there special features required to access the file?

SPECIFYING FILE DESIGNATORS

The file system recognizes two general classes of files:

User-Defined Files, which you or other users define, create, and make available for your own
purposes, and

System-Defined Files, which the file system defines and makes available to all users to indicate
standard input/ output devices.

These files are distinguished by the file names and other descriptors (such as group or account
names) that reference them, as discussed below. You may use both the file name and descriptors,
in combination, as either formal designators within your programs or as actual designators that
identify the file to the system. Generally, however, most programmers use only arbitrary names as
formal designators, and then equate them to appropriate actual file designators at run time. In such
cases, the formal designators (user file names) contain from 1 to 8 alphanumeric characters,
beginning with a letter; the actual designators include a user or system file name, optionally
followed by a group name, account name, and/ or security lockword, all separated by appropriate
delimiters. This technique facilitates maximum flexibility with respect to file references.

User-Defined Files

You can reference any user-defined file by writing its name and descriptors in the filereference
format, as follows:

filename [I lockword] [.groupname [.accountname]]

5-1

File Operation

In no case must any file designator written in the filereference format exceed 35 characters,
including delimiters.

When you reference a file that belongs to your log-on account and group, you need only use the
filereference format in its simplest form, which includes only a file name that may range from 1 to 8
alphanumeric characters, beginning with a letter. In the following examples, both formal and actual
designators appear in this format:

Formal Actual

/signa~designator

:FILE ALPHA=BETA
:FILE REPORT= OUTPUT
:FILE X=AL 126797
:FILE PAYROLL=SELFL

A file reference is always qualified, in the appropriate directory, by the names of the group and
account to which the file belongs, so you need ensure only that the file's name is unique within its
group. For instance, if you create a file named FILX under GROUPA and ACCOUNT 1, the system
will recognize your file as FILX.GROUPA.ACCOUNT1; a file with the same file name, created under
a different group, could be recognized as FILX.GROUPB.ACCOUNT1.

File groups serve as the bases for your local file references. Thus, when you log on, if the default file
system file security provisions are in effect, you have unlimited access to all files assigned to your
log-on group and your home group. Furthermore, you are permitted to read, and execute programs
residing in, the Public Group of your log-on account. This group, always named PUB, is created
under every account to serve as a common file base for all users of the account. In addition, you
may read and execute programs residing in the Public Group of the System Account. This is a
special account available to all users on every system, always named SYS.

When you reference a file that belongs to your log-on account but not to your log-on group, you
must specify the name of the file's group within your reference. In this form of the filereference
format, the group name appears after the file name, separated from it by a period. Embedded
blanks within the file or group names, or surrounding the period, are prohibited. As an example,
suppose your program references a file under the name LEDGER, which is recorded in the system
by the actual designator GENACCT. This file belongs to your home group, but you are logged on
under another group when you run the program. To access the file, you must specify the group
name as follows:

:FILE LEDGER=GENACCT.XGROUP ~Group name
: RUN MYPROG Program file (in log-on group)

As another example, suppose you are logged on under the group named XGROUP but wish to
reference a file named X3 that is assigned to the Public Group of your account. If your program

5-2

File Operation

refers to this file by the name FILLER, you would enter:

:FILE FILLER=X3.PUB

When you reference a file that does not belong to your log-on account, you must use an even more
extensive form of the filereference format. With this form, you include both group name and
account name. The account name foltows the group name, and is separated from it by a period.
Embedded blanks are not permitted. As an example, suppose you are logged on under the
account named MYACCT but wish to reference the file named GENINFO in the Public Group of the
System Account. Your program references this file under the formal designator GENFILE. You
would enter:

:FILE GENFILE=GENINFO.PUB.SYS

NOTE

You can create a new file only within your log-on account. Therefore,
if you wish to have a new file under a different account, you log on to
the other account and create the file in that account and group.

In summary, remember that if you do not supply a group name or account name in your
filereference, MPE will supply the defaults of the group and account in which you are currently
logged on.

Lockwords. When you create a disc file, you can assign to it a lockword that must thereafter be
supplied (as part of the filereference format) to access the file in any way. This lockword is
independent of, and serves in addition to, the other file system security provisions governing the
file.

You assign a lockword to a new file by specifying it in the filereference parameter of the :BUILD
command or the formaldesignator parameter of the FOPEN intrinsic used to create the file. For
example, to assign the lockword SESAME to a new file named FILEA, you could enter the following
:BUILD command:

:BUILD FILEA/SESAME ~ Lockword

From this point on, whenever you or another user reference the file in an MPE command or FOPEN
intrinsic, you must supply the lockword. It is important to remember that you need the lockword
even if you are the creator of the file. Lockwords, however, are required only for old files on disc.

When referencing a file protected by a lockword, supply the lockword in the following manner:

• In batch mode, supply the lockword as part of the file designator (filereference format)
specified in the :FILE command or FOPEN intrinsic call used to establish access to the file.
Enter the lockword after the file name, separated from it by a slash mark. Neither the file

5-3

File Operation

name nor the lock word should contain imbedded blanks. In addition, the slash mark (/)
that separates these names should not be preceded or followed by blanks. The lockword
may contain from 1 to 8 alphanumeric characters, beginning with a letter. If a file is protected
by a lockword and you fail to supply that lockword in your reference, you are denied access
to the file. In the following example, the old disc file XREF, protected by the iockword OKAY,
is referenced:

:FILE INPUT=XREF/OKAY ----- Lockword

• In session mode, you can supply the lockword as part of the file designator specified in the
:FILE command or FOPEN intrinsic call that establishes access to the file, using the same
syntax rules described above. If a file is protected by a lockword and you fail to supply it
when you open the file, the file system interactively requests you to supply the lockword as
shown in the example below:

LOCKWORD: YOURFILE. YOURGRP. YOURACCT?

Always bear in mind that the file lockword relates only to the ability to access files, and not to the
account and group passwords used to log on. Three examples of :FILE commands referencing
lockwords are shown below; the last command illustrates the complete, fully-qualified form of the
filereference format.

:FILE AFILE=GOFILE/Z22 ----- Lockword
:FILE BFILE=FILEM/LOCKB.GR07

~Lockwords
"' :FILE CFILE= PAYROLL/X229AD.GROUPN.ACCTO

A file may have only one lockword at a time. You can change the lockword by using the :RENAME
command or the FRENAME intrinsic; both are discussed later in this section. You can also initially
assign a lockword to an existing file with this command or intrinsic. To do either of these tasks, you
must be the creator of the file.

Back Referencing Files. Once you establish a set of specifications in a :FILE command, you can
apply those specifications to other file references in your job or session simply by using the file's
formal designator, preceded by an asterisk (*), in those references. For example, suppose you use
a :FILE command to establish the specifications shown below for the file FILEA, used by program
PROGA. You then run PROGA. Now, you wish to apply those same specifications to the file FILEB,
used by PROGB, and run that program. Rather than re-specify all those parameters in a second
:FILE command, you can simply use :FILE to equate the FILEA specifications to cover FILEB, as
follows:

5-4

File Operation

:FILE FILEA;DEV=TAPE;REC=-80,4,V;BUF=4 Establishes specifications.

:RUN PROGA Runs program A.

:FILE FILEB= *FILEA Back references specifications for FILEA.

:RUN PROGB Runs program B.

This technique is called back referencing files, and the files to which it applies are sometimes
known as user pre-defined files. Whenever you reference a pre-defined file in a file system
command, you must enter the asterisk before the formal designator if you want the pre-definition to
apply.

Generic Names. The commands :LISTF, :LISTVS, :REPORT, :RESTORE, and :STORE permit the
specification of sets of files, volume set definitions, or groups. For example, a fileset for the :STORE
command can be specified in the form:

filedesigna tor [. groupdesigna tor [. acctdesigna tor]]

The characters @, #, and ? can be used as ''wild card'' characters. These wild card characters
have the following meanings:

@ - specifies zero or more alphanumeric characters.
- specifies one numeric character.
? - specifies one alphanumeric character.

The characters can be used as in the following examples:

n@

@n

n@x

..... ++++ ++
I/ff ff ••• ff

?n@

n?

?n

Refers to all files starting with the character n.

Refers to all files ending with the character n.

Refers to all files starting with the character n and ending with the character x.

Refers to all files starting with the character n followed by up to seven digits .

Refers to all files whose second character is n.

Refers to all two-character files starting with n.

Refers to all two-character files ending with n.

5-5

I
I

File Operation

System-Defined Files

System-defined file designators indicate those files that the file system uniquely identifies as
standard input I output devices for jobs and sessions. These designators are described in Table 5-
1. When you reference them, you use only the file name; group or account names and lockwords
do not apply.

Table 5-1. System-Defined File Designators.

FILE
DESIGNATOR/NAME DEVICE/FILE REFERENCED

$STDIN The standard job or session input device from which your job/
session is initiated.For a session, this is always a terminal.For a
job, it may be a disc file, card reader.or other input device. Input
data images in this file should not contain a colon in column 1,
because this indicates the end-of-data. (When data is to be
delimited, use the :EOD command, which performs no other
function.)

$STDINX Same as $STDIN, except that MPE command images (those with
a colon in column 1) encountered in a data file are read without
indicating the end-of-data. However, the commands :EOD and
:EOF (and in batch jobs, the commands :JOB, :EOJ, and :DATA)
are exceptions that always indicate end-of-data but are otherwise
ignored in this context; they are never read as data. $STDI NX is
often used by interactive subsystems and programs to reference
the terminal as an input file.

$STDLIST The standard job or session listing device, nearly always a
terminal for a session and a printer for a batch job.

$NULL The name of a non-existent ghost file that is always treated as an
empty file. When referenced as an input by a program, that
program receives an end-of-data indication upon each access.
When referenced as an output file, the associated write request is
accepted by MPE but no physical output is actually done. Thus,
$NULL can be used to discard unneeded output from a running
program.

5-6

I

I

File Operation

As an example of how to use some of these designators, suppose you are running a program that
accepts input from a file programmatically defined as INPUT and directs output to a file
programmatically defined as OUTPUT. Your program specifies that these are disc files, but you
wish to re-specify these files so that INPUT is read from the standard input device and OUTPUT is
sent to the standard listing device. You could enter the following commands:

:FILE INPUT=$STDIN
:FILE OUTPUT=$STDLIST
:RUN MYPROG

Input/Output Sets. All file designators can be classified as those used for input files (Input Set)
and those used for output files (Output Set). For your convenience, these sets are summarized in
Tables 5-2 and 5-3.

Table 5-2. Input Set.

FILE DESIGNATOR FUNCTION/MEANING

$STDIN Job I session input device.

$STDINX Job/session input device with commands allowed.

$OLD PASS Last $NEWPASS file closed. Discussed in the following pages.

$NULL Constantly empty file that returns end-of-file indication when
read.

* formaldesignator Back reference to a previously-defined file.

filereference File name, and perhaps account and group names and lockword.
Indicates an old file. May be a job/session temporary file created
in this or a previous program in current job/session, or a
permanent file saved by any program or a :BUILD or :SAVE
command in any job/session.

5-7

File Operation

FILE DESIGNATOR

$STDLIST

$OLD PASS

$NEWPASS

$NULL

* formaldesignator

filereference

Table 5-3. Output Set.

FUNCTION/MEANING

Job/session list device.

Last file passed. Discussed in the following pages.

New temporary file to be passed. Discussed in the following
pages.

Constantly empty file that returns a successful indication
whenever information is written to it.

Back reference to a previously-defined file.

File name, and perhaps account and group names and lockword.
Unless you specify otherwise, this is a temporary file residing on
disc that is destroyed on termination of the creating program. If
closed as a job/session temporary file, it is purged at the end of
the job/session. if closed as a permanent file, it is saved until you 1

purge it. j

Determining Interactive and Duplicative File Pairs. An input file and a list file are said to be
interactive if a real-time dialog can be established between a program and a person using the list
file as a channel for programmatic requests, with appropriate responses from a person using the
input file. For example, an input file and a list file opened to the same teleprinting terminal (for a
session) would constitute an interactive pair. An input file and a list file are said to be duplicative
when input from the former is duplicated automatically on the latter. For example, input from a card
reader is printed on a line printer.

You can determine whether a pair of files is interactive or duplicative with the FRELATE intrinsic
call. (The interactive/ duplicative attributes of a file pair do not change between .the time the files
are opened and the time they are closed.)

The FRELATE intrinsic applies to files on all devices.

To determine if the input file INFILE and the list file LISTFILE are interactive or duplicative, you
could issue the following FRELATE intrinsic call:

ABLE:= FRELATE (INFILE,LISTFILE);

INFILE and LISTFILE are identifiers specifying the file numbers of the two files. The file numbers
1rvere assigned to INFILE and L!STFILE when the FOPEN intrinsic opened the files.

5-8

File Operation

A word is returned to ABLE showing whether the files are interactive or duplicative. The word
returned contains two significant bits, 0 and 15.

If bit 15 = 1, INFILE and LISTFILE form an interactive pair.
If bit 15 = 0, INFILE and LISTFILE do not form an interactive pair.
If bit 0 = 1, INFILE and LISTFILE form a duplicative pair.
If bit 0 = 0, INFILE and LISTFILE do not form a duplicative pair.

PASSED FILES

Programmers, particularly those writing compilers or other subsystems, sometimes create a
temporary disc file that can be automatically passed to succeeding MPE commands within a job or
session. This file is always created under the special name $NEWPASS. When your program closes
the file, MPE automatically changes its name to $0LDPASS and deletes any other file named
$0LDPASS in the job/session temporary file domain. From this point on, your commands and
programs reference the file as $0LDPASS. Only one file named $NEWPASS and/ or one file named
$0LDPASS can exist in the job/session domain at any one time.

The automatic passing of files between program runs is depicted in Figure 5-1.

:RUN P1

c:~J
1) User program P1 writes to

$NEWPASS.

2) $NEWPASS closed; name changed to
$0LDPASS.

:RUN P2
2 3) Program P2 reads from $0LDPASS

and writes to $0LDPASS.

P2 4) $0LDPASS closed; remains
4 $0LDPASS.

5
5) Program P3 reads from

:RUN P3 $0LDPASS.

6) $0LDPASS will remain until
P3 replaced, deleted, or saved

(renamed).
6

Figure 5-1. Passing Files between Program Runs

5-9

File Operation

To illustrate how file passing works, consider an example where two programs, PROG 1 and
PROG2, are executed. PROG 1 receives input from the actual disc file DSFILE (through the
programmatic name SOURCE 1) and writes output to an actual file $NEWPASS, to be passed to
PROG2. ($NEWPASS is referenced programmatically in PROG 1 by the name INTERFIL.) When
PROG2 is run, it receives $NEWPASS (now known by the actual designator $0LDPASS),
referencing that file programmatically as SOURCE2. Note that only one file can be designated for
passing.

•
•
•

:FILE SOURCE1 = DSFIL
:FILE INTERFIL = $NEWPASS >
:RUN PROG1 - Same file
:FILE SOURCE2 = $0LDPASS
:RUN PROG2

•
•
•

A program file must pass through several steps as it is executed; passed files are most frequently
used between these steps. A program file must be compiled and prepared before it is executed. By
default, the compiled form of a textfile is written to $NEWPASS. When the compiler closes
$NEWPASS, its name is changed to $0LDPASS; it is this file which is prepared for execution. The
prepared form of the program file is written to a new $NEWPASS, which is renamed $0LDPASS
when the file is closed; the old $0LDPASS is deleted. Now, this file is ready to be executed. This
$0LDPl\SS may be executed any number of times, until it is overwritten by another $0LDPASS
file.

5-10

File Operation

The steps that a program takes as it is run are depicted in Figure 5-2.

:SPLGO textfile

~I
1

~COMPILE!
2

3 USL

5
PREP P. $OLD PASS

• I

$NEWPASS
~-- 6 I

PROG
__________________ J

$0LDPASS

Q._____..,
7

~ Ru N I s

1) Text read: compiled.

2) Object code written to
$NEWPASS.

3) $NEWPASS closed: name changed
to $0LDPASS

4) Object code prep'd from
$0LDPASS.

5) Program written to new
$NEWPASS .

6) $NEWPASS closed: name
changed to $0LDPASS; old
$0LDPASS deleted.

7) Run $0LDPASS.

8) $0LDPASS (program file) not
changed or deleted after
run.

Figure 5-2. Passing Files within a Program Run

5-11

File Operation

Comparing $NEWPASS and $0LDPASS to Other Disc Files

$NEWPASS and $0LDPASS are specialized disc files with many similarities to other disc files.
Comparisons of $NEWPASS to new files, and $0LDPASS to old files, are given in Tables 5-4 and
5-5.

Table 5-4. New Files vs. $NEWPASS.

NEW

Disc space allocated

Disc address put into control block

Default close disposition:
Deallocate space
Delete control block entry

Disc address not saved
(Not in any directory)

$NEWPASS

Disc space allocated

Disc address put into control block

Default close disposition:
Rename to $0LDPASS
Save disc address in job/session table

(Job Information Table)
Delete control block entry

Disc address saved for future use in the
job I session

Table 5-5. Old Files vs. $0LDPASS.

OLD $OLD PASS

Directory (job temporary or system) Disc address obtained from Job Information
searched for disc address Table (JIT)

Disc address put into control block Disc address put into control block

Default close disposition: Default close disposition:
Delete control block Delete control block

Disc address still in directory for future use Disc address still in JIT for future use in
job/session

You can use the same commands and intrinsics with $NEWPASS and $0LDPASS as you would
with any other disc file.

5-12

File Operation

SHARED FILE CONSIDERATiONS

Accessing and controlling a file that is open only to you is a relatively simple matter; when your file
is being accessed by several users simultaneously, each user must be aware of special
considerations for this shared file ..

Simultaneous Access of Files

When an FOPEN request is issued for a file, that request is regarded as an individual accessor of
the file and a unique file number, set of buffers, and other file control information is established for
that file. Even when the same program issues several different FOPEN calls for the same file, each
call is treated as a separate accessor. Under the normal (default) security provisions of MPE,
when an accessor opens a file not presently in use, the access restrictions that apply to this file for
other accessors depend upon the access mode requested by this initial accessor:

• If the first accessor opens the file for read-only access, any other accessor can open it for
any other type of access (such as write-only or append), except that other accessors are
prohibited exclusive access.

• If the first accessor opens the file for any other access mode (such as write-only, append, or
update), this accessor maintains exclusive access to the file until it closes the file; no other
accessor can access the file in any mode.

Programs can override these defaults by specifying other options in FOPEN intrinsic calls. Users
running those programs can, in turn, override both the defaults and programmatic options through
the :FILE command. The options are listed in Table 5-6. The actions taken by MPE when these
options are in effect and simultaneous access is attempted by other FOPEN calls are summarized
in Table 5-7. The action taken depends upon the current use of the file versus the access
requested.

Table 5-6. File Sharing Restriction Options.

ACCESS :FILE
RESTRICTION PARAMETER DESCRIPTION

Exclusive EXC After file is opened, prohibits concurrent access
Access in any mode through another FOPEN request,

whether issued by this or another program until
this program issues FCLOSE or terminates.

Exclusive SEMI After file is opened, prohibits concurrent write
Write access through another FOPEN request, whether
Access issued by this or another program, until this

program issues FCLOSE or terminates.

Sharable SHR After file is opened, permits concurrent access
Access to file in any mode through another FOPEN

request issued by this or another program, in
this or any other session or job. Each accessor
uses copy of portion of file with in its own buffer.

5-13

File Operation

Table 5-7. Actions Resulting from Multi-Access of Files.

REQUESTED ACCESS GRANTED, UNLESS NOTED

Current FOPEN for FOPEN for FOPEN for
Use Input Output Input/Output

Requested

~ SHA/ SHA SHR/ Access
MULTI/ SEMI MULTI/ SEMI MULTI/
GMULTI GMULTI GMULTI

Requested Requested Requested Requested Requested
SHA Access Access Access Access Access

Granted Granted Granted Granted Granted
FOPEN for
Input Requested Requested

SEMI Access Access Error Error Error
Granted Granted Message Message Message

Requested Requested Requested
SHR Access Error Access Error Access

Granted Message Granted Message Granted
FOPEN for
Output Requested

SEMI Access Error Error Error Error
Granted Message Message Message Message

Requested Requested Requested
SHA Access Input Access Input Access

Granted Granted Granted Granted Granted
FOPEN for
Input/Output Requested

SEMI Access Input Error Error Error
Granted Granted Message Message Message

NOTE

In all cases, when the first accessor to a file opens it with Exclusive
(EXC) access, all other attempts to open the file will fail.

SEMI

Requested
Access
Granted

Error
Message

Error
Message

Error
Message

Input
Granted

Error
Message

Exclusive Access. This option is useful when you wish to update a file, and wish to prevent other
users or programs from reading or writing on the file while you are using it. Thus, no user can read
information that is about to be changed, nor can he alter that information. To override the
programmatic option under which the file would be opened and request exclusive access, you
could use the EXC keyword parameter in the :FILE command:

:FILE DATALIST;EXC ,,___Requests exclusive access
:RUN FLUPDATE

5-14

File Operation

Semi-Exclusive Access. This option allows other accessors to read the file but prevents them from
altering it. When appending new part numbers to a file containing a parts list, for instance, you
might use this option to allow other users to read the current part numbers at the same time you
are adding new ones to the end of the file. You could request this option as follows:

:FILE PARTSLST;SEMI ~Requests semi-exclusive access
:RUN FLAPPEND

Share Access. When opened with the share option, a file can be shared (in all access modes)
among several FOPEN requests, whether they are issued from the same program, different
programs within the same job I session, or programs running under different jobs/ sessions. Each
accessor transfers its input I output to and from the file via its own unique buffer, using its own set of
file control information and specifying its own buffer size and blocking factor. Effectively, each
accessor accesses its own copy of that portion of the file presently in its buffer. Thus, share access
is useful for allowing several users to read different parts of the same file. It can, however, present
problems when several users try to write to the file. For instance, if two users are updating a file
concurrently, one could easily overwrite the other's changes when the buffer content from the first
user's output is overwritten on the file by the buffer content from the second user's output. To use
write access most effectively with shared files, specify the multi-access option as discussed below.

To request share access for a file, use the SHR parameter in the :FILE command, as follows:

:FILE RDFILE;SHR ~Requests share access
:RUN RDPROG

Multi-Access. This option extends the features of the share-access option to allow a deeper level
of multiple access - it not only makes the file available simultaneously to other accessors (in the
same job/session), but permits them to use the same buffers, record pointer, and other file­
control information. The file must be buffered; multi-access may not be used on files that are
opened with the NOBUF option. Thus, transfers to and from the file occur in the order they are
requested, regardless of which program in your job/session does the requesting. When several
concurrently-running programs (processes) are writing to the file, the effect on the file is the same
as if one program were performing all output - truly sequential access by several concurrently­
running programs.

NOTE

Multi-access allows the file to be shared (in all access modes)
among several FOPEN requests from the same program, or from
different concurrently-running programs in the same job/session.
Unlike share access, however, multi-access does not permit the file
to be shared among different sessions and jobs.

5-15

File Operation

Global Multi-Access. This option extends the features of the multi-access option to permit
simultaneous access of a file by processes in different jobs/ sessions. As in multi-access,
accessors use the same buffers, blocking factor, and other file-control information. You can
request this option as follows:

:FILE GFILE;GMULTI - Requests global multi-access
:RUN GPROG

NOTE

To prohibit the use of MUL Tl or GMUL Tl access, use the NOMUL Tl
keyword in a :FILE command. When the NOMUL Tl keyword is used,
different processes may share the data in a file, but will maintain
separate buffers and pointers.

Note that it is the first accessor to a file that sets the allowable access to a file. For example, if the
first accessor specifies share access, that is the access that will be allowed to all future accessors.
However, if a subsequent accessor specifies an access option that is more restrictive than the first
opener's access option, it will remain in effect until the user that requested it closes the file.

The rule for file access restrictions is: the most restrictive access option used is the one that
applies.

Sharing the File

Sharing a file among two or more processes may be hazardous. When a file is being shared among
two or more processes and is being written to by one or more of them, care must be taken to
ensure that the processes are properly interlocked. For example, if Process A is trying to read a
particular record of the file, and at that time Process B should execute and try to write that record,
the results are not predictable. Process A may see the old record or the new record, and not know
whether it has read good data. If buffering is being done, please bear in mind that an output
request (FWRITE) will not cause physical 1/0 to occur until a block is filled, and a typical block will
contain several records. A process trying to read such a file could, for example, read past the
last record of the file which has been written on the disc because the end-of-file pointer is not
kept in the file but is kept in core where it can be updated quickly as writes occur.The necessary
interlocking is provided by the intrinsics FLOCK and FUNLOCK, which use a Resource
Identification Number (RIN) as a flag to interlock multiple accessors.

In the simple case of a file shared between a writer process and a reader process, where the writer
is merely adding records to the file, the writer calls FLOCK prior to writing each record and
FUNLOCK after writing. The reader calls FLOCK prior to reading each record, and FUNLOCK after
reading. If the writing process should execute while the reader is in the middle of a read, the writer
will be impeded on its call to FLOCK until the reader signals that it is done by calling FUNLOCK.

5-16

File Operation

Similarly, if the reader should execute while the writer is performing a write, the reader will be
impeded on its call to FLOCK until the writer calls FUNLOCK. FUN LOCK ensures that all buffers
are posted on the disc so that the reading processes can see all the data. More complicated
cases arise when a file has two or more writing processes, or when the writer may write more
than one record at a time. If, for example, it should be necessary to write pairs of records, with
read prohibited until both records of the pair are written, the writing process can call FLOCK
before writing the first record of the pair, and FUN LOCK after writing the second.This procedure
can also be used if the records are to be written in different files; one of the files is used as a
"sentinel" file and the processes lock and unlock this file as required.

For more information about the FLOCK and FUNLOCK intrinsics, consult the MPE Intrinsics
Reference Manual, part number 30000-90010.

5-17

DATA TRANSFER

The chief activities of the file system involve the transfer of data. In this section we will examine how
this is accomplished. As you read this section, keep these considerations in mind:

•

•
•

How are records selected for transfer?
What intrinsics are used for data transfer?
Will there be any file buffering?
If so, how many buffers will be used?

RECORD POINTERS

The file system uses record pointers to find specific records for your use. Physical record pointers
are used to locate specific blocks on disc; logical record pointers will block and deblock the logical
records in a physical record and indicate specific logical records within a file buffer. (NOBUF files
have physical record pointers only. Buffered files are discussed later in this section.)

Figure 6-1 shows how the physical and logical record pointers operate together to locate any
record in a file. For any record, the physical record pointer indicates the correct block and the
logical record pointer locates the logical record within the block .

LABEL

Logical
Record
Pointer

Physical
Record
Pointer

I
I
I

..........
..........

BLOCK

Logical
Records

..........
..........

..........
..........

Physical
Record: '-.....
One file buffer',

•••••

Physical Pointer: Used to locate physical record on disc.

Logical pointer: Used for blocking/deblocking logical records
in file buffer.

Figure 6-1. Record Pointers.

6-1

.....

Data Transfer

The file system uses both the physical and the logical record pointers to locate records. Future
references to "record pointer" in this manual will imply this combination.

Pointer Initialization
When you open a file, the FOPEN intrinsic sets the record pointer to record 0 (the first record in
your file) for all operations. If you have opened the file with APPEND access, however, the record
pointer will be moved to the end of the file prior to a write operation; this will ensure that any data
you write to the file will be added to the end of the file rather than written over existing data.
APPEND and other access types will be discussed later in this section.

Following initialization, the record pointer may remain in position at the head of your file, or it may
be moved by the intrinsics used in record selection.

RECORD SELECTION

How are records selected for transfer? Various file system intrinsics are designed to move records
to and from your file, but how do they choose the records they want? The record pointer indicates
the specific location where a file will be accessed; records can be transfered to or from this
iocation, or the pointer can be moved to another place in the file you wish to access.

There are three methods of record selection: the default method, in which you transfer data to or
from the place which the record pointer currently indicates; random access, in which you move the
record pointer before transferring data; and update selection, in which you choose a record and
write a new record over it.

Default Record Selection

When you use this method of record selection, you assume the record pointer is already where
you want it. You transfer your data using the FREAD or FWRITE intrinsic, and the record pointer is
automatically set to the next record; for this reason, this method is also called sequential record
selection. For fixed-length and undefined-length record files, the file system updates the record
pointer by adding the uniform record length to the pointer after you read or write a record; for
variable-length record files, the file system takes the byte count from the record being trans­
ferred and adds that to the record pointer.

You may use the default method of record selection with buffered files only.

Random Access

If the record pointer is not indicating the location you want, you can use this method to move the
pointer and begin your transfer wherever you like; for this reason, this method is also called
controiled record selection.

6-2

Data Transfer

It is possible to access specific records in a disc file with the FREADDIR and FWRITEDIR intrinsics.
The record number to be read or written is specified as one of the parameters in the FREADDIR or
FWRITEDIR intrinsic call. Following the read or write operation, the record pointer is set to the next
record, as in the default case. Note that FREADDIR and FWRITEDIR may be issued only for a disc
file composed of fixed-length or undefined-length records.

NOTE

The FREADDIR and FWRITEDIR intrinsics operate in the usual
manner to access foreign discs. However,on IBM diskettes
sectors are numbered starting with one rather than zero, and the
diskette driver adds one to all sector addresses for IBM dis­
kettes. Therefore,you specify record number zero to access
sector number one on an IBM diskette.

Figure 6-2 contains a program that reads every other record in a disc file using the FREADDIR
intrinsic. The FREADDIR intrinsic call

FREADDIR (DFILE2,BUFFER, 128,REC);

reads a record from the file designated by DFILE2 (the file number was assigned to DFILE2 when
the FOPEN intrinsic opened the file) and transfers this record to the array 8-UFFER in the stack. Up
to 128 words are read from the record. The parameter REC specifies which record is read. The
double integer value OD (double integers are indicated by the suffix D in SPL) was assigned to
REC in statement number 9, so the first time the LIST'LOOP is executed, the first record in the
file (logical record number 0) is read. REC is incremented by 2D each time the loop is executed, so
the third logical record (logical record number 2) is read the second time the loop is executed,
then the fifth, seventh, etc. The record pointer is advanced by one each time the FREADDIR
intrinsic is executed. Since the record number to be read is specified by REC, however, the
FREADDIR intrinsic does not necessarily read records in sequential order, as does the FREAD
intrinsic.

If the information is not read successfully by the FREADDIR intrinsic, a CCL condition is returned.
The statement

iF < THEN FiLERROR (DFiLE2,3);

checks the condition code and, if it is CCL, calls the error-check procedure FILERROR. The
FILERROR procedure prints a FILE INFORMATION DISPLAY on the standard list device, enabling
you to determine the error number returned by FREADDIR, then aborts the process.

A condition code of CCG signifies an end-of-file condition and the statement

IF > THEN GO END'OF'FILE;

transfers program control to the label END' OF' FILE when the end-of-file condition is encountered.

6-3

Data T"ansfer

PAGE 0001 HEWLETT·PACKARD 32100Ao05ol SPL/3000 TJEt OCT 7t 19751 10134 AM

SCONTROL USLINIT
BEGIN

BYTE ARRAY DATA2!017l l•"DATATWO "I
BYTE ARRAY LISTFILE!OIBll="LISTFILE 11 1
BYTE ARRAY ALTNAME(017)1:1tALTDATA "I
ARRAY BUFFER!Oll27ll

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00005 1
00005000 00006 1
00006000 00005 1
00007000 00005 l
00008000 00023 1
00009000 00023 1
00010000 00023 1
00011000 000?3 1
00012000 00023 l

ARRAY MESSAGE!Oll8ll•"DUPLICATE FILE NAME• FIX DURING BREAK 11 1
INTEGER DFILE2tLISTtERRORI
DOUBLE RECl•ODI

INTRINSIC FOPENtFREADLABELtFREADDIR,FWRITEtFCLOSE,FRENAMEt
FREADSEEKtCAUSERREAKtFCHECKtPRINT•FILE•INFO,QUITI

00013000 00023 1
00014000 00023 1
00015000 00000 l
00016000 00000 l
00017000 00000 l
00018000 00000 2
00019000 00002 2
00020000 00004 2
00021000 00000 l
00022000 00000 1
00023000 00000 l
00024000 00000 1
00025000 00011 ~
00026000 00015 1
00027000 00015 1
00028000 00025 l
00029000 00031 l
00030000 00031 1
00031000 00037 1
00032000 00043 l
00033000 00050 1
00034000 00054 1
00035000 00054 1
00036000 000~4 1
00037000 00061 l
00038000 00065 1
00039000 00066 1
00040000 00066 1
00041000 00072 I
00042000 00075 1
00043000 00101 1
00044000 00101 1
00045000 00106 1
00046000 00112 1
00047000 00112 1
00048000 00117 l
00049000 00117 1
ooo~oooo 00111 1
00051000 00123 l
0005?000 00124 1
00053000 00131 1
00054000 00134 l
00055000 00134 2

PROCEDURE FILERROR!FILEN010UIT~O>I
VALUE QUITNOI
INTEGER FILENO,QUITNOI
BEGIN

PRINT•FILE•INFO!QUITNOll
QUIT IQUJTNOl I

fNDI

<<END OF OECLARATtONS>>

DFILF21=FOPENIDATA2tl6tl4tl2811
IF< THEN FILERROR<nFILE2tlll

LIST1=FOPEN!LISTFILE1114t~l>•
IF < THEN FILERRORILlSTt21]

FREADLAREL<DFILF2tBUFFER1128tOll
IF<> THEN FILERROR!DFILE?.1311
FWRITEILISTtBUFFERt9tOll
IF<> THEN FILERROR<LISTt4ll

LIS ff LOOP:
FREADOtRCOfILf2,8UFfERtl28tREClt
IF< THEN FllERROACOfllEZtS>f
lF > THEN GO E~D•OFtfflfJ

RECl=REC+?OI
FA£AOS£FKC0FlLE?tREC>t
IF< THEN FllERPOR(DfllE?,~Jl

FWRTTFILISTt~UFFERt35t011

IF<> THEN FILERROR!LIST,7!1

GO LIST•LOOPI

END•OFIFILF:
FCLOSEIOFILE?tltOll
IF : THEN GO DONEi
FCHECKIDFILE2tERROR>I
IF ERROR=lOO THEN

BEGIN
FRENAMEIDFILE21ALTNAME>•

00056000 00137 2 CLOSEI
00057000 00137 2 FCLOSEIDFILE2tlt0)1
00058000 00143 2 JF • THEN GO DONEi
00059000 00144 2 PRINTIFILE•INFOIOFILE2ll
00060000 00146 2 FWRITEILIST1MESSAGEtl9t0ll
00061000 00153 2 CAUSEBREAKI
00062000 00154 2 GO CLOSEI
00063000 00155 2 ENDI
00064000 00155 1 DONE1END,

PRIMARY DR STORAGE=I0121 SECONDARY DB STORAGEc,00240
NO, FRRORS•OOOI NO. WARNINGS•OOO
PROCFSSOR TIMEzOl001041 ELAPSED TIME•0100158

<<OLD TEMP FILE>>
<<CHECK FOR ERROR>>

«SSTDLJST»
<<CHECK FOR FRROR>>

«FILE ID»
<<CHECK FOR ERROR>>
«OISPLAY ID>>
<<CHECK FOR fRROR>>

<<EVERY OTHER RECD>>
<<CHECK FOR £RROR>>
<<CHECK FOR EOF>>

<<EVERY OTHER RECD>>
<<FILL SYSTfM BUFFER>>
<<CHECK FOR ERROR>>

<<ALTERNATE RECORDS>>
<<CHECK FOR ERROR>>

<<CONTINUE LISTING>>

<<MAKE PERMANENT>>
«LISTING nONE»
«FCLOSE ERROR»
<<DUPLICATE FILf NAME>>

<<CHANGE FILE N~ME>>

«TRY AGAIN>>
«GOOD FCLOSE»
<<PRINT ERROR>>
«SEEK HELP»
<<SESSION RREAK>>
«LOOP BACK»

Figure 6-2. FREADDIR and FREADSEEK Example.

6-4

Data Transfer

Figure 6-3 contains a program that reads records from one file and writes these records, in inverse
order, into a second file using the FWRITEDIR intrinsic. The FGETINFO intrinsic (see Appendix B,
Status Information) is used to locate the end-of-file in the file to be read. This information is
returned to the variable REC.

The FREAD statement

DUMMY:= FREAD (DFILE1,BUFFER, 128);

reads up to 128 words from the first record of the file DATAONE (specified by the file number
assigned to DFILE 1 by the FOPEN intrinsic when the file was opened) and transfers this
information to the array BUFFER.

The statement

REC:= REC-1D;

decrements REC by the double integer value 1 D to arrive at the logical record number of the last
record in the file. Note that REC contains a current value of the last logical record + 1 Das a result
of the FGETINFO intrinsic call.

The FWRITEDIR statement

FWRITEDIR (DFILE2,BUFFER, 128,REC);

writes the record contained in the array BUFFER to the file specified by DFILE2. Up to 128 words
are written to the·record. The record is written to the location specified by REC, which contains the
logical record number of the last record in the file.

If the FWRITEDIR request is successful, a CCE condition is returned. The statement

IF <>THEN FILERROR (DFILE2,6);

checks for a "not equal" condition code and, if such a condition code is returned, the error-check
procedure FILERROR is called.

The FILERROR procedure prints a FILE INFORMATION DISPLAY on the standard list device,
enabling you to determine the error number returned by FWRITEDIR, then aborts the
process.

If a condition code of CCE is returned, the

IF <> THEN FILERROR (DFILE2,6);

statement is not executed and the

GO INVERT'LOOP;

statement transfers program control to the statement label INVERT' LOOP, causing the invert loop
to be repeated.

The second time the loop is executed, the FREAD intrinsic reads the second record from
DATAONE and the FWRITEDIR intrinsic writes this record into the next-to-last record in DATATWO
(REC has been decremented again by 1 D). The loop repeats until the last record is read from
DATAONE.

6-5

Data Tran sf er

PAGE 0001 HEWLETT-PACKARD 32l00Ao05ol SPL/3000 T~E, OCT 7, 19751 10133 AM

SCONTROL USLINIT
BEGIN

BYTE ARRAY OATA1(017)1•"0ATAONE "I
BYTE ARRAY OATA2COl7)1•"0ATATWO
ARRAY LABLl018ll•"EMPLOYEE DATA
ARRAY BUFFERC01127ll

.. ,
FILE 11 1

INTEGER DFILEl1DFILE21DUMMYI
DOUBLE RECI

00001000 00000 0
00002000 00000 0
00003000 00000 l
00004000 00005 l
00005000 00005 l
00006000 00011 l
00007000 00011 1
00008000 00011 l
00009000 00011 l
0001onoo 00011 1
00011000 00011 l
00012000 00011 1
00013000 00011 l
00014000 00000 l
00015000 00000 l
00016000 00000 1
00017000 00000 2
00018000 00002 2
00019000 00004 2
00020000 00000 1
00021000 ~0000 1
00022000 00000 1
00023000 00000 1
00024000 00010 1
00025000 00014 1
00026000 00014 1
00027000 00027 1
00028000 00033 1
00029000 00033 1
00030000 00041 l
00031000 00045 l
00032000 00045 l
00033000 00053 l

INTRINSIC FOPENtFWRITELABELtFGETINFOtFREAO,FWRITEOIReFCLOSEt
PRINT•FILE•INFO,QUITI

PROCEDURE FILERRORCFILENO,QUIT~O>I
VALUE QUITNOI
INTEGER FILEN01QUITNOI
EIEGIN

PRJNT•FILE•INFO!FILENOll
QUIT IQUJTNOI I

ENDI

<<END OF DECLARATIONS>>

DFILEll•FOPENCDATAl1151llOOll
IF< THEN FILERROH<DFILEltlll

DFILE2tsFOPENIDATA2tl4tl4tl28111lll
IF< THEN FILERRORCDFILE2t2ll

FWRITELABEL<DFILE2tLABLt9tOll
IF<> THEN FILERRORIOFILE2t311

FGETINFO<DFILElt•••••••••R~Cll
IF< THEN FILERROR<OFILElt4ll

00034000 00057 l
00035000 00057 l
00036000 00057 1
00037000 00065 l
00038000 00071 l
00039000 00072 1
00040000 00072 l
00041000 00076 l
00042000 00103 1
00043000 00107 1
00044000 00107 l

INVERT' LOOP I
0UMMYl•FREADIDFILEltBUFFERtl2All
IF< THEN FlLERRORIOFILEltS!I
IF > THEN GO ENO•OF•FILEI

REC••R[C•lDI
FWAIT£01A(0FtlE21BUFFERtl29tRECll
If' o THEN FILERROR EDFllE2•61 t

GO INVERTtLOOP I

ENO•OftFILEI
FCLOSEIDFILE2t2t0ll

00045000 00116 l
00046000 00116 l
00047000 00116 1
00048000 00122 1
00049000 00126 1
00050000 00126 1
00051000 00132 1
00052000 00136 1 END.

PRIMARY OB STORAGE•IOlll
NO. F'RRORS•OOOI
PROCF'SSOR TIME•OIOOl041

IF< THEN FILfRRORIDFILE2t711

FCLOSEIOFILE1,4t0ll
IF< THEN FILERROR<DFILElt811

SECONnARY DB STORAGE•,00221
NO. WARNINGS•OOO
ELAPSED TIME•OS00159

Figure 6-3. FWRITEDIR Example.

6-6

<<OLD FILE·OATAONE>>
<<CHECK FOR ERROR>>

<<NEW FILE•DATATWO>>
<<CHECK FOR ERROR>>

«FILE ID»
<<CHECK FOR ERROR>>

<<LOCATE EOF»
<<CHECK FOR ERROR>>

<<OLD FILE RECORD>>
<<CHECK FOR ERROR>>
<<CHECK FOR fOF>>

«LAST REDC NO>>
<<INVERT REC OROER>>
<<CMECk FOR ERROR>>

<<CONTINUE OPERATION>>

<<SAVE NEW AS TEMP>>
<<CHECK FOR ERROR>>

<<DELETE OLD FILE>>
<<CHECK FOR ERROR>>

Data Transfer

Optimizing Direct-Access File Reading

If you know in advance that a certain record is to be read from a file with the FREADDIR intrinsic,
you can speed up the 1/0 process by issuing an FREADSEEK intrinsic call.

The FREADSEEK intrinsic moves the record from the file to a file system buffer. Then, when the
FREADDIR intrinsic call is issued, the record is transferred from this buffer to the buffer in the stack
specified by FREADDIR. The use of FREADSEEK enhances the 1/0 process, because the buffer
already contains the record to be read before the FREADDIR call is issued.

The LIST' LOOP in Figure 6-2 performs the following functions:

1. Issues an FREADDIR intrinsic call to transfer a record (specified by REC) from a file
(specified by DFILE2) to an array (BUFFER) in the stack.

2. Increments REC by 20.

3. Issues an FREADSEEK intrinsic call to read the record specified by the new value of REC
and to transfer this record to a system buffer.

4. Lists the record in the stack array (BUFFER) on the standard list device.

5. Repeats the loop.

The next time LIST' LOOP is executed, the FREADDIR intrinsic reads the record from the file
system buffer to the stack array (BUFFER), eliminating the need for file access and thus reducing
the execution time of the loop.

Update Selection

To update a logical record of a disc file, you use the FUPDATE intrinsic. FUPDATE affects the last
logical record (or block for NOBUF files, to be discussed later) accessed by any intrinsic call for
the file named, and writes information from a buffer in the stack into this record.Following the
update operation, the record pointer is set to indicate the next record position. The record
number need not be supplied in the FUPDATE intrinsic call; FUPDATE automatically updates the
last record referenced in any intrinsic call. Note that the file system assumes the record to be
updated has just been accessed in some way.

The file containing the record to be updated must have been opened with the update aoption
specified in the FOPEN call and must not contain variable-length records. FUPDATE operates in
the usual manner to update a foreign disc file. Figure 6-4 contains a program that opens an old disc
file and updates records in the file. The update information (employee number) is entered from a
terminal (the program is run interactively) into a buffer in the stack, then the contents of the buffer
are used to update the record.

6-7

Data Transfer

The statement

LGTH : = FREAD (DFILE 1,BUFFER, 128);

reads an employee record from the file specified by DFILE 1 into the array BUFFER in the stack.
The statement

FWRITE (LIST,BUFFER,-20, % 320);

then displays this record on the terminal; $STDLIST has been opened with the FOPEN intrinsic and
the resulting file number has been assigned to LIST. The statement

DUMMY:= FREAD (IN, BUFFER (30),5);

reads an employee number, entered on the terminal ($STDIN has been opened with the FOPEN
intrinsic and the resulting file number has been assigned to IN), into the array BUFFER starting at
word 30. The statement

FUPDATE (DFILE1,BUFFER, 128);

then calls the FUPDATE intrinsic to update the last record accessed in the file specified by DFILE 1.
The contents of BUFFER (including the employee number entered from the terminal) are written
into this record. Up to 128 words are written.

If the FUPDATE request was granted, a CCE condition code results. The statement

IF <> THEN FILERROR (DFILE,9);

checks for a "not equal" condition 0ode and, if such is the case, calls the error-check procedure
FILERROR. The procedure FILERROR prints a FILE INFORMATION DISPLAY on the terminal,
enabling you to determine the error number returned by FUPDATE, then aborts the program's
process.

6-8

Data Transfer

PAGE nonl HEWLETT-PACKARD 32100Ao05.l SPL/3000 TJEt OCT 7, 197St 10132 AM

$CONTROL USLINIT
AEGIN

BYTE ARRAY DATA! C0:7l 1= 11 DATAONE: 11 1
ARRAY AUFFERI01127ll
INTEGER DfILEltLGTH,DUMMY,IN,LISTI

00001000 00000 0
00002000 00000 0
00003000 00000 l
00004000 00005 1
00005000 oono5 1
00006000 00005 1
00007000 00005 1
OOOOAOOO 00005 1

INTRINSIC FOPENtFREAOtFUPDATE,~LOCK,FUNLOCKoFCLOSEt
PRINT•FILF•INFO,QUITtFWRITE,FREADI

00009000 00005 l
00010000 00005 1
00011000 00000 l
00012000 00000 l
00013000 00000 l
00014000 00000 2
00015000 00002 2
00016000 00004 2
00017000 00000 l
OOOlAOOO 00000 1
00019000 00000 l
00020000 00000 l
00021000 00011 1
00022000 00015 1
00023000 00015 1
00024000 00024 l
00025000 00030 1
00026000 00010 l
00027000 00040 l
0002enoo 00044 1
00029000 00044 1
00030000 00044 l
00031000 00047 1
00032000 00053 1
00033000 00053 l
00034000 00061 l
00035000 00065 l
00036000 00070 l
00037000 00070 1
00038000 00075 l
00039000 00101 1
00040000 00101 1
00041000 00110 1
00042000 00114 1
00043000 00115 l
00044000 00115 1
00045000 00121 l
0004~000 00125 1
00047000 00125 l
00048000 00127 l
00049000 00133 l
00050000 00133 l
00051000 00140 1
ooos2000 00140 1
00053000 00140 l
00054000 00142 l
ooossooo 00146 1
00056000 00146 1
00057000 00151 l

PROCEDURE FILERROR(FILENO,QUIT~Oll

VALUE QUITNOI
INTEGER FJLENO,QUITNOf
BEG JN

PRINT•FILE'1NFO<FILEN0l I
QUIT <OUITNO> I

fNDI

<<END OF DECLARATIONS>>

DFILEl:=FOPEN(0ATAlt%5t%345tl2All
IF< THFN FILERPOR!DfILEltlll

IN:=FOPEN<,%?44)1
IF< THEN FlLERR0R(INt2ll

LIST1=FOPEN(,~6l4tllill I
IF< THEN FILERROR<LISTt3ll

UPOATE'LOOP:
FLOCKtDFILEltll I
IF< THEN FlLFRRORIDFILEl,~ll

LGTH:=FREAO(OFILEloRUFFER,12811
IF< THFN FILEPPORIDFILE1,5ll
IF > THfN GO END 1 0F•FILEI

fWRITF!LISTtBUFFERt-?0,~320ll

IF<> THEN FILERROR<LIST,~ll

OIJMMY I =F RF.:AO (IN, RUFFER (30 l • 5 l I
IF< THFN FILERROR!IN,711
IF > THEN GO ENO•OF•FILf 1

f!Jf'i?1:!£' tDfl~~J•*ll.JFF'~R¥ l~$J 4
If' <> .TMEN. FltE;ARQRlOFlt(lt8f t

FUNLOCK <DFILEl l I
IF <> THEN FILERROR!DFILElo9l I

GO UPDATE•LOOPI

END•OF'FILE:
FUNLOCK !DF ILEl l I
IF <> THEN FILERROR<DFILEltlOl I

FCLOSF.:!nFILll1010ll
If< THFN FILERRORCDFILElollll

ooo5aooo 00155 l END.
PRIMARY DR STORAGf•cr,0071
NO, FRRORS•OOOI
PROCFSSOR TIMF:O:OOl031

SECONDARY DB STORAGf=%0~204
NO, WARNINGS=OOO
ELAPSF.D TIME=Ol00:}7

Figure 6-4. FUPDATE Example.

6-9

<<OLD DISC FILE>>
<<CHECK FOR FRROR>>

<<SSTDIN>>
<<CHECK FOR ERROR>>

«SSTDLIST>>
<<CHECK FOR ERROR>>

<<LOCK FILE/SUSPEND>>
<<CHECK FOR ERROR>>

<<GFT EMPLOYFE PECO>>
<<CHECK FOR FRROR>>
<<CHECK FOR EOF>>

<<EMPLOYEE NAME>>
<<CHECK FOR ERROR>>

«EMPLOYFF ~HIMBER»
<<CHECK FOR FRROR>>

<:{~~pt;()YJ:!K .,EP:P:~~~~
<<i:::Cttf:CIC: F('.IR· £RROft>>

<<ALLOW OTHER ACCESS>>
<<CHECK FOR FRROR>>

<<CONTINUE UPDATE>>

<<ALLOW OTHE~ ACCESS>>
<<CHECK FOR ERROR>>

<<DISP-NO CHANGF>>
<<CHECK FOR F.:~ROR>>

Data Transfer

Table 6-1 summarizes the characteristics of the intrinsics used in data transfer.

FREAD

FWRITE

FREADDIR

FREADSEEK

FWRITEDIR

FUPDATE

Table 6-1. Intrinsics for Data Transfer.

Used for sequential read.
May be used with fixed, variable, or undefined-length record files.
File must be opened with read, read/write or update access.
Successful read returns CCE condition code and transfer length; file
error results in CCL condition code; end-of-file results in CCG condition
code and returns a transfer length of zero.

Used for sequential write.
May be used with fixed, variable, or undefined-length record files.
File must be opened with write, write/save, append, read/write, or
update access.
Successful write returns CCE condition code; file error results in CCL
condition code; end-of-file results in CCG condition code.

Used for random-access read.
Use only with fixed or undefined-length record files.
File must be opened with read, read/write, or update access.
Successful read returns a CCE condition code; file error results in CCL
condition code; end-of-file results in CCG condition code.
No transfer length is returned because you get the amount requested,
unless an error occurs.

Used for anticipatory random-access read into file system buffers.
Use only with buffered fixed and undefined-length record files.
File must be opened with read, read/write, or update access.
Successful read returns a CCE condition code; file error results in CCL
condition code; end-of-file results in CCG condition code.

Used for direct write.
Use only with fixed or undefined-length record files.
File must be opened with write, write I save, read I write or update
access; append not allowed.
Successful write returns a CCE condition code; file error results in CCL
condition code; end-of-file results in CCG condition code.

Used to update previous record (logical or physical).
Use only with fixed or undefined-length records.
File must be opened with update access. No multi-record update
allowed.
Successful update returns a CCE condition code; file error results in
CCL condition code; end-of-file results in CCG condition code.

6-10

NOTE

The access modes mentioned in Table 6-1 are discussed in the
section on File Security.

Relative 1/0

Data Transfer

In addition to the conventional random and serial access, MPE offers Relative 1/0 access.RIO is
intended for use primarily by COBOL II programs; however, you can access these files by
programs written in any language.

RIO is a random access method that permits individual file records to be deactivated. These
inactive records retain their relative position within the file.

RIO files may be accessed in two ways: RIO access and non-RIO access. RIO access ignores the
inactive records when the file is read serially using the FREAD intrinsic, and these records will be
transparent to you; however, they can be read by random access using FREADDIR. They may be
overwritten both serially and randomly using FWRITE, FWRITEDIR or FUPDATE. With RIO access
the internal structure of RIO blocks is transparent.

CONTROL OPERATIONS

There may be times when you want to move the record pointer to a particular place without
necessarily transferring any data. There are three general categories for this type of record
selection:

Spacing: Move the record pointer backward or forward.

Pointing: Set the record pointer to a particular value.

Rewinding: Reset the pointer to record 0.

Spacing

To space forward or backward in your file, use the FSPACE intrinsic. Its syntax is

FSPACE (filenum, displacement);

The displacement parameter gives the number of records to space from the current record pointer.
Use a positive number for spacing forward in the file, or a negative number for spacing backward.

6-11

Data Transfer

The FSPACE intrinsic may be used only with files that contain fixed-length or undefined-length
records; variable-length record files are not allowed. FSPACE may not be used when you have
opened your file with append access, and the file system will return a CCL condition if you attempt
to use it in that case. (Append and other access types are discussed later in this section.)
Attempting to space beyond the end-of-file results in a CCG condition, and the pointer will not be
changed.

Pointing

To request a specific location for the record pointer to indicate, use the FPOINT intrinsic. Its
syntax is

FPOINT (filenum,recnum);

Use the recnum parameter to specify the new location for the record pointer: recnum is the record
number relative to the start of the file (record 0).

The FPOINT intrinsic may be used only with files that contain fixed-length or undefined-length
records; variable-length record files are not allowed. FPOINT may not be used when you have
opened your file with append access, and the file system will return a CCL condition if you attempt
to use it in that case. (Append and other access types are discussed later in this section.)
Attempting to point beyond the end-of-file results in a CCG condition, and the pointer will not be
changed.

Rewinding

When you "rewind" your file, you set the record pointer to indicate record 0, the first record in
your file. Use the FCONTROL intrinsic with a control code of 5 to accomplish this. FCONTROL's
syntax in this case would be

FCONTROL (filenum, 5, dummy'param);

Issuing this intrinsic call will set the record pointer to record 0. You may use FCONTROL with fixed­
length, variable-length, or undefined-length record files, and you may use it with any access mode.
(Access modes will be discussed in the section on File Security.)

NOTE

FCONTROL 5 has a special meaning when used with append
access. The file system will set the record pointer to record 0, as
with other access modes, but at the time of the next write operation
to the file, the record pointer will be set to the end of the file so no
data will be overwritten.

6-12

Data Transfer

For more information about the FSPACE, FPOINT, and FCONTROL intrinsics, consult the MPE
Intrinsics Reference Manual, part number 30000-90010.

TRANSFERRING FILES

MPE provides facilities for transferring files between groups, accounts, and different systems.

Inter-Group Transfers

To transfer a file from one group to another within the same account, use the :RENAME command,
simply naming the new group in the second parameter. For example,

: RENAME MYFILE. GROUP 1, MYFILE. GROUP2

I ~
Old group New group

NOTE

To use :RENAME in this way, you must be the creator of the file and
have SAVE access to the group named in the second parameter
(GROUP2 in the previous example). In addition, both groups must
be in the system domain or must both reside on the same volume set
(renaming of files across volume sets is not allowed).

Inter-Account Transfers

To transfer a file from one account to another, proceed as follows:

1. Log on to the computer under the account presently containing the file.

2. Enter the : RELEASE command to temporarily suspend any file system security provisions
covering the file. For example:

:RELEASE FILEX ~ File name

You can enter this command only if you are the creator of the file.

3. Log off from this account and log on under the account to which the file is to be transferred.

4. Run the File Copier Subsystem (FCOPY) to copy the file from the old account into this account.
For example:

6-13

Data Transfer

Old account name

/ :RUN FCOPY.PUB.SYS
>FROM=FILEX.GROUPA.ACCT1;NEW;TO=FILEX.GROUPA.ACCT2

t
New account name

(optional entry)

NOTE

The renaming of files across volume sets is not allowed, since this
would require that the operation physically transfer the file between
different volume sets.

A copy of FILEX now exists under GROUPA of ACCT2; the original FILEX still exists under
GROUPA of ACCT1.

5. Log off from the present account and log on again under the account containing the original file.

6. Restore the security provisions to the original file by entering the :SECURE command:

:SECURE FILEX

Or, if you want only one copy of the file in the system, delete the original file by entering the : PURGE
command:

: PURGE FILEX

NOTE

To use the above commands, you must be the creator of the file.

Steps 1 through 3, and 5 through 6, can be avoided if the file
security for ACCT1 (the old account) allows read access from other
accounts.

Inter-System Transfers

You can transfer one or more files between systems by copying them from their present system
onto magnetic tape or serial disc in a special format, transporting that tape or disc pack to the new
system, and loading the tape contents into the new system. To permit you to do this, however, the
accounts, groups, and users to which the files belonged on the old system must also be defined on
the new system. The technique for accomplishing this transfer involves the :STORE command (to
write the files to tape) and the :RESTORE command (to copy the files from the tape into the new
system).

6-14

Data Transfer

For example, to store FILEZ on tape for transporting to another system, enter:

:FILE TP;DEV=TAPE
:STORE FILEZ; *TP <---- Back-references tape

Mount a tape and allow the file to be stored on it. Take the tape file to the new system, mount the
tape, and copy the file into the system by using the : RESTORE command:

:FILE FILEZ;DEV=TAPE
:RESTORE *FILEZ

You can also transfer files by copying them to magnetic tape or serial disc via FCOPY and
transporting that tape or disc pack to the new system and loading it. The method for doing this is
discussed in the FCOPY Reference Manual, part number 03000-90064.

BUFFERED INPUT/OUTPUT

A buffer is an area maintained by the file system outside of a user's stack. It serves as an
intermediate area for data transfer: the file system can move data from a file to a buffer, and from
there to your stack, or it can move the data from your stack to a buffer and from there to a file.

USER STACK

DATA AREA
FOR

LOGICAL
RECORDS

• •

• • •

FILE

LABEL Block • • • • Block • • • •

Figure 6-5. Data Transfers using Buffers.

6-15

Data Transfer

Your buffers will be the same size as the blocks for your file. Every read or write of data between the
file and a buffer will move one block of data from or to the buffer; data is moved between the buffer
and your stack in units of one logical record each. So, if your program is reading data from a file
into your stack, it will move a block of data from the file into a buffer, and then move thA data from
the buffer to your stack one logical record at a time. When it has moved the entire block, anotrer
block of data will be moved to the buffer, and will be moved record by record to your stack. On the
other hand, if your program is writing data from your stack to a file, it will write data to a buffer one
logical record at a time. When the buffer is filled, it will contain a block of data; this block will be
moved or ''posted'' to your file. When the buffer has been posted to the file, it is ready to receive
more records from your stack.

Figure 6-6 illustrates the transfer of data using two buffers. The blocking factor of the file is three,
so three logical records fit into each block. Each buffer is the size of one of the file's blocks. A
program is writing data from the user's stack to the file. The first three logical records are written to
the first buffer; now that it is filled, this buffer is posted to the file, and the fourth logical record is
written to the second buffer. When the fifth and sixth records have been written to this buffer, this
buffer is also posted to the file, and the seventh logical record is written to the first buffer.

STACK

• • •

• • •

FILE

_______________ _J

Figure 6-6. Buffer Operation.

You may specify the number of buffers you want to use with your file by issuing a :FILE command
or using the numbuffers parameter in the FOPEN intrinsic. If you do not specify the number of
buffers, the file system will assign the default of two buffers. You may have one or more buffers, to
a maximum of sixteen.

6-16

NOTE

Although you may specify a maximum of 16 buffers, any number
beyond 3 does not usually increase input I output efficiency and
needlessly occupies space in main memory. If you request 0 buffers,
the file system will override this and supply the standard default of 2.

For files input or output at interactive terminals, you need not specify
any buffer parameter; a system-managed buffering operation is
always used for terminals. If you do specify any buffers for a
terminal, the file system will override this specification and assign no
buffers.

Data Transfer

The maximum total buffer space for an individual file is 14K words (14,336 words). This means
that if a file has one buffer, that buffer may be up to 14K words in size; if a file has two buffers,
they may each be up to 7K words in size, and so on. If the total buffer size you request is too
large (that is, blocksize X numbuffers > 14K) an error, "out of virtual memory," will result.

NOTE

For magnetic tape files, the maximum size of a data transfer is BK
words (8, 192 words).

Why Buffer Transfers?

There are two major advantages to buffering data transfers: buffering results in automatic blocking
and deblocking of logical records and the ability to do anticipatory reading.

Automatic blocking and deblocking. Your program may try to locate a particular logical record.
All data transfers, however, occur in units of blocks. With buffering, the file system will handle the
details of locating the desired record in a particular block.

Anticipatory reading. This technique effectively permits the overlapping of input/ output requests,
often significantly reducing the time required to process a file. Anticipatory reading involves moving
data from a file into a buffer before it is needed, so it can be moved into the user's stack
immediately when it is needed. For instance, if your program is reading data from a sequential disc
file in blocks of four records each, upon the first read request, the file system automatically moves
the first four records from the file to the first buffer (Buffer 1) and the next four records into the
second buffer (Buffer 2). When your program has read all four records from Buffer 1 and accesses
the first record in Buffer 2, the file system automatically moves the next four unread records in the
file into Buffer 1 so that they will be immediately available for any upcoming read request; when
your program reads all records in Buffer 2, the file system moves another four records into Buffer 2,
continuing in this fashion until the program terminates access to the file. Anticipatory reading is
most effective in purely sequential-access operations, but it can also be used in conjunction with
the FREADSEEK intrinsic when you wish to access records non-sequentially.

6-17

Data Transfer

Unbuffered 1/0

On occasion, you may wish to avoid the use of buffers altogether. This may be the case, for
instance, when you are transferring records in large blocks: these can require excessive amounts of
memory for the data transferred and additional overhead for pointers and file-access information
required to maintain the buffers. Furthermore, certain file-access modes prohibit the use of buffers;
for example, multi-record (MR) access and NOWAIT input/ output, discussed later in this section,
are incompatible with buffering. If you request buffering in such cases, the file system will override
your request and allocate no buffers.

To expressly specify no buffering, enter the NOBUF keyword parameter in a :FILE command, as
follows:

:FILE BIGDATA;REC=-4096, 16,F;NOBUF --- Specifies no buffers

NOTE

During an unbuffered transfer, your stack will be frozen in memory
because the I I 0 Processor needs the absolute addresses of the
records it processes. Also, your process will suspend execution
during the transfer.

When you do not use buffering, you may transfer your data in blocks only; the file system will not
deblock logical records for you. For this reason, it is more efficient to use unbuffered transfers when
you are copying files containing variable-length records.

NOWAIT input/output. Normally, when a program issues a request for input I output, control does
not return to the program until that request has been satisfied. However, the file system allows
programs to bypass this con"vention by initiating input I output requests with control returning to
the program prior to the completion of the request. This feature is known as NOWAIT input/ output.

You may specify NOWAIT input/ output in your FOPEN call to your file, or you may request it in a
: Fl LE command that references the file:

File Jame ~Requests no buffering

:FILE QUICKFL; NOBUF; NOWAIT

Requests NOWA/T inpuU::tput

6-18

NOTE

To ultimately confirm input! output completion, your program must
call the IOWAIT intrinsic after the request. IOWAIT is discussed in
the MPE Intrinsics Reference Manual, part number 30000-90010.

To use the NOWAIT feature, your program must be running in
Privileged Mode. A NOWAIT request implies that no buffering is
used.

How Many Buffers?

Data Transfer

How do you choose the number of buffers for your file? The implications of the number you choose
are given in Table 6-2.

0 (NOBUF)

2

Table 6-2. Implications of Number of Buffers.

User program suspends execution during every transfer. User's stack
is frozen in memory during transfer. Can only transfer physical records.

User program suspends when necessary logical record is not in buffer.
User's stack is not frozen in memory.

User program may not suspend: allows parallel processing. Buffer
usage is alternated.

3 (or more) User program may not suspend even under heavy I I 0 load. Useful for
local set of frequently accessed records.

NOTE

Table 6-2 lists implications, not recommendations. The most
efficient number of buffers will depend upon your particular
application.

6-19

Data Transfer

Multi-Record Mode

In almost all applications, programs conduct input I output in normal recording mode, where each
read or write request transfers one logical record to or from the data stack. In certain cases,
however, you may want your program to read or write, in a single operation, data that exceeds the
logical record length defined for the input or output file. For instance, you may want to read four
128-byte logical records from a file to your stack in a single 512-byte data transfer. Such cases
usually arise in specialized applications. Suppose, for example, that your program must read data
from a disc file containing 256-byte records. This data, however, is organized as units of
information that may range up to 1024 bytes long; in other words, the data units are not confined
to record boundaries. Your program is to read these units and map them to an output file, also
containing 256-byte records. You can bypass the normal record-by-record input I output, instead
receiving data transfers of 1024 bytes each, by specifying the multi-record (MR) mode in your
FOPEN call or :FILE command. For example,

:FILE BIGCHUNK; REC=-256, 1,U; NOBUF; MR

~Specifies multi-record mode

The essential effect of multi-record mode is to make it possible to transfer more than one block in a
single read or write. This mode effectively ignores block and sector boundaries, and will permit
transfers of as much data as you wish; it will not, however, break up blocks or sectors; your
transfers must begin on block and sector boundaries. In order to take advantage of multi-record
mode, you should specify the NOBUF option in your :FILE command or FOPEN call.

When you read from a file in multi-record mode, you may not read beyond the end-of-file indicator.
When you write to a file in multi-record mode, you may write only up to the block containing the file
limit. If your transfer exceeds its limit, a condition code of CCG is returned, data is transferred only
up to the iimit, and the FREAD intrinsic returns a transfer iength of 0.

NOTE

To obtain the actual transfer length for your data, use the FCHECK
intrinsic, as described in the MPE Intrinsics Reference Manual, part
number 30000-90010. The transfer length will be returned in the
TLOG parameter of FCHECK.

6-20

Data Transfer

Buffer Controi intrinsics

Certain intrinsics permit you to exert a degree of control over the way the file system manages your
buffers. The FSETMODE and FCONTROL intrinsics can be used in this way.

If you issue a call to FSETMODE with a modeflag value of 2, you set the Critical Output Verification
bit. When you do this, every time a full buffer is posted to your file, your process suspends
execution while the transfer is made, and remains suspended until the posted buffer is verified as
complete. Use FSETMODE in this way only with buffered files; it is ineffective in the NOBUF case.

When you issue an FCONTROL intrinsic call with a controlcode of 2, you are requesting that the file
system "complete I I 0." This will force the posting of all buffers that have been changed since the
last time they were posted, and will mark the buffers as empty. Your process will suspend execution
until these operations are complete. Use FCONTROL in this way only with buffered files; it is
ineffective in the NOBUF case.

The FCONTROL intrinsic can also be used with a control code of 6, to specify ''write EOF.'' When
you issue this call for a buffered file, the file system will post all buffers that have been changed
since their last posting and your process will suspend execution until posting is complete. The
buffers will then be marked empty. For both buffered and unbuffered files, issuing FCONTROL 6
will update the end-of-file indicator in the file label; this will protect data from being lost in the
case of a system crash.

The FSETMODE and FCONTROL intrinsics are discussed in detail in the MPE Intrinsics Reference
Manual, part number 30000-90010.

6-21

FILE SECURITY

Associated with each account, group, and individual file, is a set of security provisions that
specifies any restrictions on access to the files in that account or group, or to that particular file.
These restrictions are based on three factors:

Modes of access (reading, writing, or saving, for example.)

Types of users (users with Account Librarian or Group Librarian capability, or creating users,
for example) to whom the access modes specified are permitted.

Use of private volumes. Allows users to access files residing on private disc volume sets.

The security provisions for any file describe what modes of access are permitted to which users of
that file.

SPECIFYING AND RESTRICTING
FILE ACCESS BY ACCESS MODE

When a program creates a file, it can define the way the file can be accessed by specifying a
particular access mode (such as read-only, write-only, update, and so forth) for the file. These
specifications apply to files on any device, and can be changed or overridden only by yourself, as
the creator of the file. They are discussed in the following paragraphs. In addition, for a file on
disc, a program can also restrict access so that only one access~attempt (FOPEN call) or
process (running program) can access it at one time, or can allow it to be shared among several
accessors.

The access types that can be specified by a program are listed in Table 7-1.

Table 7-1. File Access Mode Types.

ACCESS MODE :FILE DESCRIPTION
PARAMETER

Read Only IN Permits file to be read but not written on. Used
for devicefiles such as card reader and paper-
tape reader files, as well as magnetic tape,
disc, and terminal output files.

Write Only OUT Permits file to be written on but not read. Any
data already in the file is deleted when the file
is opened. Used for devicefiles such as card
punch, line printer, as well as tape, disc, and
terminal output files.

7-1

File Security

Table 7 -1. File Access Mode Types (Continued).

ACCESS MODE

Write (Save) Only

Append Only

Input I Output

Update

:FILE
PARAMETER

OUT KEEP

APPEND

INOUT

UPDATE

DESCRIPTION

Permits file to be written on but not read,
allowing you to add new records both before
and after current end-of-file indicator. Data
will not be deleted, but a normal write will
replace it.

Permits information to be appended to file,
but allows neither overwriting of current
information nor reading of file. Allows you to
add new records after current end-of-file
indicator only. Used when present contents of
file must be preserved.

Permits unrestricted input and output access
of file; information already on file is saved
when the file is opened. (In general, combines
features of IN and OUTKEEP.)

Permits use of FUPDATE intrinsic to alter
records in file. Record is read into your data
stack, altereq, and rewritten to file. All data
already in file is saved when file is opened.

When specifying the access mode for a file, it is important to realize where the current end-of-file is
before and after the file is opened, and where the logical record pointer indicates that the next
operation will begin. These factors depend upon the access mode you select. Because they are
best explained by example, the effects of each access mode upon these factors are summarized in
Table 7-2 for a sample file. This file contains ten logical records of data (numbered 0 through 9).
The table shows that the current end-of-file (EOF) lies at Record 10 before the file is opened,
indicating that if another record were appended to the file, it would be the eleventh record. When
you open the file in the write-only mode, however, all records presently in the file are deleted and
the logical record pointer and current EOF move to Record 0. Now when you write a record to the
file, this will be the first record in that file.

7-2

File Security

Table 7-2. Effects of Access Modes.

LOGICAL EOF
ACCESS CURRENT RECORD AFTER

MODE EOF POINTER OPEN

Read Only 10 0 10

Write Only 10 0 0

Write (Save) Only 10 0 10

Append 10 10 10

Input I Output 10 0 10

Update 10 0 10

Suppose you are running a program that opens a magnetic tape file for write-only access, but you
wish to append records to that file rather than delete existing records. You can override the
programmatic specifications by using the :FILE command to request append access to the file, as
follows:

:FILE TASK; DEV=TAPE; ACC=APPEND
:RUN PROGM

Requests append access

Suppose you run a program that opens a disc file for write-only access, copies records into it, and
closes it as a permanent file. Under the standard file system security provisions, the access mode is
automatically altered so that the file also permits the read, write, and append access modes.
Now, suppose you run the program a second time, but wish to correct some of the data in the file
rather than delete it. You could use the :FILE command to override the programmatic specifi­
cation, opening the file for update access:

:FILE REPFILE; ACC=UPDATE

:RUN PROGN \

Requests update access

7-3

File Security

Consider a program that reads input from a terminal (file name INDEV) and directs output to a line
printer (OUTDEV). You can re-direct the output so that it is instead transmitted to the terminal by
entering:

:FILE INDEV; DEV=TERM; ACC=INOUT Respecifies INDEV for
both input and output access.

:FILE OUTDEV= *INDEV Equates INDEV to OUTDEV.

:RUN PROGO - Runs program.

SPECIFYING AND RESTRICTING
FILE ACCESS BY TYPE OF USER

The capabilities of the user who accesses a file may determine the security restrictions that apply
to him. The types of users recognized by the MPE security system, the mnemonic codes used to
reference them, and their complete definitions are listed in Table 7-3.

USER TYPE

Any User

Account Librarian User

Group Librarian User

Creating User

Group User

Account Member

Table 7-3. User Type Definitions.

MNEMONIC
CODE MEANING

ANY Any user defined in the system; this
includes all categories defined below.

AL User with Account Librarian capability,
who can manage certain files within his
account that may or may not all belong to
one group.

GL

CR

GU

AC

7-4

User with Group Librarian capability, who
can manage certain files within his home
group.

The user who created this file.

Any user allowed to access this group as
his log-on or home group, including all GL
users applicable to this group.

Any user authorized access to the system
under this account; this includes all AL,
GU, GL, and CR users under this account.

File Security

Users with System or Account Manager capability bypass the standard security mechanism. A
System Manager has unlimited file access to any file in the system, but can save files only in his
own account; an Account Manager user has unlimited access to any file within the account. One
exception is that in order to access a file with a negative file code (a privileged file), the Account
Manager must also have the Privileged Mode (PM) capability.

The user-type categories that a user satisfies depend on the file he is trying to access. For example,
a user accessing a file that is not in his home group is not considered a group ~ibrarian for this
access even if he has the Group Librarian user attribute.

NOTE

In addition to the above restrictions in force at the account, group,
and file level, a file lockword can be specified for each file. Users
then must specify the lockword as part of the filename to access the
file.

The security provisions for the account and group levels are managed only by users with the
System Manager and the Account Manager capabilities respectively, and can only be changed by
those individuals.

ACCOUNT-LEVEL SECURITY

The security provisions that broadly apply to all files within an account are set by a System
Manager user when he creates the account. The initial provisions can be changed at any time, but
only by that user. At the account level, five access modes are recognized:

Reading (R)
Appending (A)
Writing (W)
Locking (L)
Executing (X)

Also at the account level·, two user types are recognized:

Any User (ANY)
Account Member (AC)

7-5

Fi!e Security

If no security provisions are explicitly specified for the account, the following provisions are
assigned by default:

• For the system account (named SYS), through which the System Manager user initially
accesses the system, reading and executing access are permitted to all users; appending,
writing, and locking access are limited to account members.

NOTE

Symbolically, these provisions are expressed as follows:

(R,X:ANY;A, W, L:AC)

In this format, colons are interpreted to mean, " ... is permitted only
to ... " or " ... is limited to . .. ". Commas are used to separate
access modes or user types from each other. Semicolons are used
to separate entire access mode/user type groups from each other.

• For all other accounts, the reading, appending, writing, locking, and executing access
modes are limited to account members (R, A, W, L, X: AC).

GROUP-LEVEL SECURITY

The security provisions that apply to all files within a group are initially set by an Account Manager
user when he creates the group. They can be equal to or more restrictive than the provisions
specified at the account level. (The group's security provisions also can be less restrictive than
those of the account - but this effectively results in equating the group restrictions with the
account restrictions. A user failing security checking at the account level is denied access at that
point, and is not checked at the group level.) The initial group provisions can be changed at any
time, but only by an account-managing user for that group's account.

At the group level, six access modes are recognized:

Reading (R)
Appending (A)
Writing (W)
Locking (L)
Executing (X)
Saving (S)

7-6

Also at the group level, five user types are recognized:

Any User (ANY)
Account Librarian User (AL)
Group Librarian User (GL)
Group User (GU)
Account Member (AC)

File Security

If no security provisions are explicitly specified, the following provisions apply by default:

• For a public group (named PUB) whose files are normally accessible in some way to all
users within the account, reading and executing access are permitted to all users;
appending, writing, saving, and locking access are limited to account librarian users and
group users (including group librarian users). (R, X: ANY; A, W, L, S: AL, GU).

• For all other groups in the account, reading, appending, writing, saving, locking, and
executing access are limited to group users. (R, A, W, L, X, S: GU).

FILE-LEVEL SECURITY

When a file is created, the security provisions that apply to it are the default provisions assigned by
MPE at the fi!e level, coupled with the user-specified or default provisions assigned to the account
and group to which the file belongs. At any time, however, the creator of the file (and only this
individual) can change the file-level security provisions, as described in the following pages. Thus,
the total security provisions for any file depend upon specifications made at all three levels: the
account, group, and file levels. A user must pass tests at all three levels - account, group, and file
security, in that order - to successfully access a file in the requested mode.

If no security provisions are explicitly specified by the user, the following provisions are assigned at
the file level by default:

" For all files, reading, appending, writing, locking, and executing access are permitted to all
users. (R, A, W, L, X: ANY).

Because the total security for a file always depends on security at all three levels, a file not explicitly
protected from a certain access mode at the file level may benefit from the default protection at
the group level. For example, the default provisions at the file level allow the file to be read by any
user - but the default provisions at the group level allow access only to group users. Thus, the file
can be read only by a group user.

7-7

File Security

In summary, the default security provisions at the account, group, and file levels combine to result
in overall default security provisions as listed in Table 7-4. Stated another way, when the default
security provisions are in force at all levels, the standard user (without any other user attributes)
has:

• Unlimited access (in all modes) to all files in his log-on group and home group.

• Reading and executing access (only) to all files in the public group of his account and the
public group of the System Account.

The important file security rules may be defined as follows:

• Users can create files in their own accounts.

• Only the creator can modify a file's security.

• If a lockword is present on a file, then it is required in order to access the file.

• Account Managers have unlimited access to the files within their accounts.

• System Managers have unlimited access to any file, but can save files only in their account.

Table 7 -4. Default Security Provisions.

SAVE ACCESS
FILE REFERENCE FILE ACCESS PERMITTED TO GROUP

filename.PUB.SYS Any file in Public Group of (R,X:ANY: W:AL,GU) AL.GU
System Account.

filename.group- Any file in any group in (R,W,X:GU) GU
name.SYS System Account.

filename.PUB.ac- Any file in Public Group of (R,X:AC; W:AL,GU) AL.GU
countname any account.

filename. group- Any file in any group in any (R,W,X:GU) GU
name.accountname account.

7-8

File Security

CHANGING SECURITY PROVISIONS OF DISC FILES

The security provisions for the account and group levels are managed only by users with the
System Manager or Account Manager capabilities respectively, but you can change the security
provisions for any disc file you have created. You do this by using the :ALTSEC command, which
permanently deletes all previous provisions specified for this file at the file level, and replaces them
with those defined as the command parameters. This command does not, however, affect any
account-level or group-level provisions that may cover the file. Furthermore, it does not affect the
security provided by the lockword (if one exists).

For example, suppose you want to alter the security provisions for the file FILEX to permit the
ability to read, execute, and append information to the file only to the creating user and the log-on
or home-group users. You can do this with the following :ALTSEC command.

:ALTSEC FILEX; (A,R,X:CR,GU)

Any parameters not included in the :ALTSEC command are cleared.

To restore the default security provisions to this file, you would enter:

:ALTSEC FILEX

Suppose you have created a file named FILEZ for which you have allowed yourself program­
execute access only. You now wish to change this file's security provisions so that any group user
can execute the program stored within it, but only the group librarian can read and write on it. Even
though you do not have read or write access to the file, you can still alter its security provisions by -
entering:

:ALTSEC FILEZ; (X:GU;R,W:GL)

You always retain the ability to change the security provisions of a file that you have created, even
when you are not allowed to access the file in any mode. Thus, you can change the provisions
to allow yourself access.

7-9

File Security

SUSPENDING AND RESTORING SECURITY PROVISIONS

You may temporarily suspend the security restrictions on any disc file you create. This allows the
file to be accessed in any mode by any user; in other words, it offers unlimited access to the file.
You suspend the security provisions by entering the : RELEASE command. (File lock word
protection, however, is not removed by this command.) The :RELEASE command does not modify
the file security settings recorded in the system; it mereiy bypasses them temporarily. The
:RELEASE command remains in effect until you enter the :SECURE command in this or a later
job/session.

To release the security provisions for the file named FILESEC in your log-on group, enter:

:RELEASE FILESEC

If the file has a lockword and you wish to remove that as well as all account, group, and file level
security provisions, you must use the : RENAME command as well as the : RELEASE command:

:RENAME FILESEC/LOCKSEC,FILESEC ~Removes lockword.
:RELEASE FILESEC Removes security provisions.

To restore the security provisions of a file, use the :SECURE command For example:

:SECURE FILESEC

Except for the lockword you removed, the original security restrictions for the file will be in effect.

7-10

HAl!.ld
...___'_N_rE_R_P_R_o_c_E_ss_c_o_M_M_u_N1_c_A_r1_o_N __ ____,l f vm I

Interprocess communication (IPC) is a facility of the file system which permits multiple user
processes to communicate with one another in an easy and efficient manner. To accomplish this,
IPC uses message files as the interface between user processes. These message files act as first-in­
first-out queues of records, with entries made by FWRITEs and deletions made by FREADs: one
process may submit records to the file with the FWRITE intrinsic while another process takes
records from the file using FREADs.

Occasionally a process may attempt to read a record from an empty message file, or write a record
to a message file that is full. In such situations, the file system will usually cause the process to wait
until its request can be serviced; that is, until another process either writes a record to the empty
file or reads enough records to take a block from the full file.

There is a unidirectional flow of information between a given process and a message file: a process
opening the file with read access, identified as a "reader", may only read from the file, and not
write; a process opening the file with write access, identified as a "writer", may only write to the
file, and not read. (If it is necessary for the same process to read and write, it may open the file
twice, once as a reader and once as a writer.) More than one message file may be associated with
a process, and the process may be configured as a reader to some of the files and as a writer to
others. A given message file typically has one reader, though more are allowed, and one or more
writers.

Applications for IPC exist wherever it is necessary for processes to communicate with one another.
In the case of a father process with several sons, message files may serve as interfaces between
the processes: through one file, the father may direct the activities of the sons; through another,
the sons may inform the father of their progress. Message files may also aid object managers
during data base operations: several writers may send information to a file which serves as the
single source from which the data base process actually receives the information.

8-1

Interprocess Communication

OPERATION

Message files are maintained and manipulated by several intrinsics. The FOPEN, FREAD, FWRITE,
FCONTROL, and FCLOSE intrinsics operate upon the files to yield a unidirectional, first-in-first-out
message queue.

FOP EN

FREAD

FWRITE

Establishes a connection to a message file. With FOPEN, a user process
identifies itself as either a reader or a writer; readers access the head of the
message file and writers access the tail. Incompatible parameters that are
specified with FOPEN are adjusted. For example, since messages are read or
written to the file one record at a time, a multirecord parameter is corrected. If
FOPEN is used to access a new file, a new message file is created.

NOTE

In bits 12:4 of FOPEN's AOPTIONS, you can specify several dif­
ferent types of writer processes. In one case, if a writer is the first
accessor to a message file, the file's contents are purged; in
another case, the writer simply appends records to the tail of the
file. These AOPTIONs are discussed later in this section.

Reads one record from the head of a message file. The record is copied to the
reader's TARGET area and is logically deleted from the message queue; the next
record is now at the head of the file. If a process tries to read from an empty
message file which writers are accessing, the file system causes it to wait until a
writer process enters a record to the file; if there are no writers associated with
the message file, an end-of-file indication, CCG, is returned.

NOTE

If the message file is empty and there are no writers, the process
will wait if there is an FCONTROL 45 in effect or if this is the first
FREAD after the reader's FOPEN.

Appends one record to the tail of a message file. If a process tries to write to a full
message file which readers are accessing, the file system causes it to wait until a
reader process has read a block of records from the file; if there are no readers
associated with the message file, an end-of-file indication, CCG, is returned.

NOTE

If the message file is full and there are no readers, the process will
wait if there is an FCONTROL 45 in effect, or if this is the first
FWRITE after the writer's FOPEN.

8-2

FCONTROL

FCLOSE

Interprocess Communication

Supplies various control functions during a process that is using a message file.
These control functions permit a process to take advantage of the additional
features of IPC, which are discussed in detail later in this section.

Breaks a process' connection with a message file. If the process reopens the
same file later, it may do so as either a reader or a writer, regardless of what it
was previously.

Additional Features

Besides the regular attributes of IPC and message files, several features are available for use with
these facilities. Writer ID's, nondestructive reads, and software interrupts are specifically intended
for use with IPC; copy access, the global multiaccess option and the ability to append to variable­
length record files are general enhancements to the file system. The time-out feature has been
expanded to apply to IPC.

Writer ID's. When a writer process opens a message file, the file system assigns a unique 16-bit ID
number to the writer. Each record the process writes to the message file is prefixed with this
number by FWRITE. When the writer closes the file, the ID number is no longer associated with the
process and may be reused. Whenever a writer opens or closes a message file, records are written
to the file indicating these actions. Record prefixes and open I close records are usually transparent
to the readers of the message filej but by issuing an FCONTROL 46, the reader process may see
them. A reader may use the writer ID's to determine the source of the records it is receiving.

Time-outs. A reader or a writer process may limit the length of time it will wait to be serviced. By
issuing an FCONTROL 4, a reader may specify the maximum number of seconds it will permit the
file system to keep it waiting for a record to be written to an empty message file; a writer may also
use FCONTROL 4 to specify the maximum number of seconds it will wait for a block of records to
be read from a full file.

Copy access. When records are read from a message file, FREAD logically deletes them as it
reads. In order to copy a message file without destroying it, the file must be opened with the file
copy option specified in the AOPTIONs of the FOPEN, or the COPY keyword must be specified in
a :FILE command. When this option is selected, the message file is treated as a standard
sequential file rather than as a message queue, and may be copied safely. The file may then be
read by logical record or by block, and information may be writen to it by block.

NOTE

In order to access a message file in copy mode, a process must
have exclusive access to the file.

8-3

Interprocess Communication

Nondestructive read. By issuing an FCONTROL 47, a reader may avoid deleting the next record it
reads; the record will remain at the head of the message queue. This feature differs from the copy
access feature in that it is a temporary condition: the second FREAD following the FCONTROL 47
will reread the record and delete it in the usual manner.

Global multiaccess. When the global multiaccess option is requested, processes located in
different jobs or sessions may open the same file. The global multiaccess option may be requested
in the AOPTIONs of the FOPEN to the file, or by using the GMULTI keyword in a :FILE command to
define the file.

NOTE

Global multiaccess is unavailable to message files when they have
been opened with exclusive access in copy mode.

Appending to variable-length files. Variable-length files may be opened with append access. It is
not necessary to have fixed-length records of the maximum possible size, so space is conserved.

Software interrupts. You may specify that your FREAD and FWRITE completion processing be
done with an "interrupt" procedure you supply in your program. An FREAD or FWRITE intrinsic
call is required to start the 1/0 request. As with NOWAIT 1/0, the FREAD/FWRITE intrinsics return
control to your program immediately after the request is initiated. When the request completes,
your program is "trapped" to your interrupt procedure to process the 1/0 completion. Software
interrupts are discussed in greater detail later in this chapter.

USING IPC

Message files can be created in several ways. When a user process opens a new file and indicates
in the FOPTIONs that it will be a message file, the FOPEN intrinsic creates the new message file. In
order to create a message file with the :BUILD command, use the MSG keyword; for example, to
build a message file named SARA, enter:

:BUILD SARA; MSG

A new message file may also be defined with a :FILE command. Use the MSG keyword for a new
file:

:FILE LISBETH, NEW; MSG

A message file named LISBETH is indicated.

8-4

Interprocess Communication

When you perform a :LISTF,2 command, message files will be identified by an "M" in the third
column of the TYP field; SARA is identified here:

FILENAME CODE ----LOGICAL RECORD---- --SPACE--
SIZE TYP EOF LIMIT RIB SECTORS #X MX

SARA 128W VBM 0 1031

Other types of files are similarly indicated by a token in the TYP field:

R - identifies a Relative I I 0 file
0 - identifies a Circular file

258 8

A blank in the third column indicates a standard MPE file. Circular files are discussed later in this
section.

Occasionally, you might create a message file and specify a certain number of records for the file to
contain, only to discover that the file system has allocated more records than you requE?sted. The
reason for this is that the file system is maintaining the necessary internal structure for the message
file. The file system has four basic rules for establishing this structure when the message file is
created:

Since records are written to the message file every time a writer process opens or closes the
file, the file system adds two records to the requested number to allow for a minimum of one
open and one close operation.

2 The requested number of records is rounded up to fill an even number of blocks.

3 The file system adds an ~xtra block to the message file for the file label to occupy. (This block
is transparent to you.)

4 Each extent is the same size; that is, the file system assigns the same number of blocks to each
extent.

For example, suppose you want to create a message file named ODDSIZE:

:BUILD ODDSIZE; MSG; REC=,3; DISC=51,8

You have specified a message file whh fifty-one records, three records per block, that occupies
eight extents. The file system will adjust the number of records to conform to the rules for message
file structure:

The file system adds two records to allow for one open and one close indication; the number of
records goes from 51 to 53.

8-5

Interprocess Communication

The number of records is rounded up to 54 to provide an even number of blocks. With three
records per block, 54 records will fill 18 blocks.

An additional block is added to the file to accommodate the file label. Now the file contains 19
blocks.

The eight extents must all be the same size, so the number of blocks is increased from 19 to 24.
Each extent now contains three blocks.

Of the 24 blocks in ODOSIZE, 23 are data blocks and one contains the file label, which is invisible
to you. With three records per block, 23 blocks contain a total of 69 data records.

NOTE

In addition to adjusting the number of blocks in a message file, the
file system adds a certain amount of space to each block for
"overhead:" six bytes will be added to each record, and four bytes
will be added for each block.

FEATURES OF INTRINSICS FOR MESSAGE FILES

There are a few features of several intrinsics which apply specifically to message files. Most of
these features are found in FOPEN and FCONTROL, but several other intrinsics are also affected.

Some of the parameters of the following intrinsics contain more than one piece of information
within each 16-bit word. When this is the case. data fields are described in the following format:
(n:m), where n is the first bit of the field and m is the number of consecutive bits in the field. For

example, the FOPTION field for File Type, described below, occupies bits (2:3), or bits 2, 3 and 4.

Parameters that are omitted in the following descriptions retain their normal range of values and
their normal default values.

8-6

Interprocess Communication

FOP EN

FOPTIONs: (2:3) - File type. Determines the type of the file to create for a new file. If the file is
old, this field is ignored.

000 - Ordinary file

001 - KSAM file

010 - Relative 1/0 file

100 - Circular tile; discussed later

110 - Message file

NOTE

The Default Designator FOPTION, bits 10 through 12, offers several
choices for default file designators. Any value used other than 0 for
"filename" will override the File Type field.

(8:2) - Record format. Message files are always internally formatted as variable­
length record files. However, a message file can appear as a fixed file to an
opener. There is no difference for a writer, but a reader will have the portion
of his target area which exceeds the record filled with blanks (for an ASCII
file) or zeroes (for a binary file).

00 - Fixed

01 - Variable

10 - Undefined; changed to variable

1\0PTIONs: (3: 1) -File copy. This feature permits a message file to be treated as a standard
sequential file, so it can be copied by logical record or physical block to
another file.

0 - The file will be accessed in its native mode; that is, a message file will be
treated as a message file.

1 - The file is to be treated as a standard, sequential file with variable-length
records. This allows nondestructive reading of an old message file at
either the logical record or physical block level. Only block level access is
permitted if the file is opened with write access. These blocks are
checked for proper message file format to prevent incorrectly formatted
data from being written to the message file while it is unprotected.

8-7

lnteipmcess Communication

NOTE

In order to access a message file in copy mode, a process must
have exclusive access to the file.

Setting this bit on causes all the remaining file parameters to have their normal defaults.

(5:2) - Multiaccess mode. This feature permits processes located in different jobs
or sessions to open the same file.

00 - No multiaccess. The file system changes this value to 2 to allow global
multiaccess.

01 - Only intra-job multi-access allowed; this is the same as specifying the
MULTI option in a :FILE command.

10 - Inter-job multi-access allowed; this is the same as specifying the
GMULTI option in a :FILE command.

11 - Undefined. If this is specified, the FOPEN will be rejected with an error
code of 40: ACCESS VIOLATION.

(7: 1) - Inhibit buffering. For message files, the file system sets this bit off.

NOTE

Readers may open a message file with NOBUF if they are in copy
mode; this determines whether they will be accessing the file record
by record or block by block:

0 - read by logical record

1 - read by physical block

Writers must open message files with NOBUF if they are in copy mode; they will
access the file block by block.

(8: 2) - Exclusive. The values for this field are the same as for any disc file, but they
have different meanings for the readers and writers of a message file:

8-8

Interprocess Communication

USER VALUE MEANING

EXCLUSIVE One reader, one writer

SEMI One reader, multiple writers

SHARE Multiple readers and writers

Default One reader, one writer

(11: 1) - Multirecord. For message files, the file system sets this bit to 0.

(12:4) - Access type. These bits specify whether the user will be a reader or" a writer
process.

0000 - READ access only. The FWRITE intrinsic cannot reference this file.
This access type requires both read and write access capability to
the file. A process that has opened a file with this access type is a
''reader.''

0001 - WRITE access only. If this is the first accessor to the file and the
process has write access capability, then the file's contents are
purged. If this is not the first accessor to the file, the file system sets
this access type to APPEND. The FREAD intrinsic cannot reference
this file. A process that has opened a file with this access type is a
''writer.''

0010 -WRITE SAVE access. The file system sets this to APPEND access.

0011 - APPEND access only. The FREAD intrinsic cannot reference this
file. This access type requires append capability to the file. A
process that has opened a file with this access type is a ''writer.''

8-9

lnterpmcess Communication

DEVICE:

NUMBUFFERS:

FILESIZE:

This field is relevant only if this is a new file. The DEVICE field must either be
omitted or specify a disc; specification of any device other than a disc
opens the device. When this occurs, the file is no longer a message file.

(0: 11) - Ignored.

(11 :5) - Value between 2 and 31; default is 2. This parameter must not
exceed the physical record capacity of the file.

The number of records is rounded up to completely fill the last block and to
make the last extent the same size as the other extents. Two additional
records are included for the open and close records.

FCONTROL

A few controlcodes deal specifically with IPC. Those not mentioned here are invalid when IPC is
being used.

CONTROLCODE PA RAM

2

3

4 integer

6

43

DESCRIPTION

Complete all I IO; ignored in the case of message files.

Read hardware status word.

Set time-out interval. This applies to both FREADs and
FWRITEs. The time-out will be armed at the beginning of
the I I 0 request and cleared when the I I 0 completes.
PARAM specifies the length of the time-out in seconds. A
value of zero disables time-outs on the file.

Write End-Of-File. Used only to verify the state of the file
by writing out the file label and buffer area to disc; this
ensures that the message file can survive system crashes.
No EOF is written.

Abort NOWAIT I I 0. A CCG condition code is returned if
an outstanding I I 0 operation has completed. An IOWAIT
must be issued to finish the request.

8-10

CONTROLCODE PA RAM

45 TRUE

FALSE

46 TRUE

FALSE

47 TRUE

FALSE

48

Interprocess Communication

DESCRIPTION

Enable extended wait. Permits a reader to wait on an
empty file that is not currently opened by any writer, or a
writer to wait on a full file that has no reader. This
FCONTROL will remain in effect until FCONTROL 45 is
issued with a PARAM value of FALSE.

Disable extended wait. Specifies that when an FREAD
encounters an empty file that has no writer, or an FWRITE
encounters a full file that has no reader, it will return an
end-of-file condition. (Default.)

Enable reading the writer's ID. Each record read will have
a two-word header. The first word will indicate the type of
record:

0 - data record
1 - open record
2 - close record

The second word will contain the writer's ID number. If the
record is a data record, the data will follow the header;
open and close records contain no more information.

Disable reading the writer's ID. Only data is read to the
reader's TARGET area. The open and close records are
skipped and deleted by the file system when they come to
the head of the message queue, and the two-word header
is transparent to the reader. (Default.)

Nondestructive read. The next FREAD by this reader will
not delete the record. Subsequent FREADs will be
unaffected. (Default.)

The next FREAD by this reader will delete the record.

Arm/disarm soft interrupts. Param contains the external­
type label (p/abe/) of your interrupt procedure. In SPL it is
passed as a parameter by placing an "at" sign@ before
the procedure name.

If the value of PARAM is 0, the interrupt mechanism is
disabled for this file.

8-11

Interprocess Communication

FCHECK

There is one message that is returned only when using IPC:

151 CURRENT RECORD WAS LAST RECORD WRITTEN BEFORE SYSTEM CRASHED.

This message is returned when this record is read following system startup.

FGETINFO

The value returned in RECSIZE will indicate the user's data record size, and the value returned in
EOF will indicate the number of data records, unless an FCONTROL 46 is in effect. When an
FCONTROL 46 is in effect, the value returned in RECSIZE will be the size of the user's data
records, including the two-word header; the number of records returned in EOF will include open,
close, and data records.

The value returned in BLKSIZE reflects the actual blocksize of the file. When the file is created, the
blocksize is computed by the following algorithm:

BLOCKSIZE: = ((RECORDSIZE + 3) *BLOCKING FACTOR) + 2

where RECORDSIZE and BLOCKSIZE are in words. For example, with a recordsize of 100 words
and a blocking factor of 10, the blocksize would be 1032 words.

FFILEINFO

Three values for ITEMVALUE are specifically for use with IPC:

Item# Type

34 integer

35 integer

49 logical

Description

The current number of writers.

The current number of readers.

plabel of the user's soft interrupt procedure. A value of zero implies
that soft interrupts are not being used.

Certain intrinsics are not allowed for message files. (The FSETMODE intrinsic is permitted, but
ignored.) The disallowed intrinsics are listed in Table 8-1:

8-12

Interprocess Communication

Tabie 8-1. Intrinsics that are not permitted with message files.

FPO INT

FREADSEEK

FUPDATE

FDELETE

FREADDIR

FSPACE

FWRITEDIR

EXAMPLES USING MESSAGE FILES

The following programs illustrate the use of IPC via message files. Intrinsics called within the
programs manipulate the message files to produce a unidirectional flow of information.

In these two programs, the first is sending information to the second through a message file: the
first program, PROC 1, reads data from a data file and writes it to MSGFILE2; the second program,
PROC2, can then read this data from MSGFILE2 and print it. When PROC2 finishes reading and
printing the data, it writes a message to MSG FILE 1 indicating this and terminates. PROC 1 reads
this message from MSGFILE 1 and also terminates. The messages travel among processes and
message files as illustrated in Figure 8-1:

DATA

PROC1

MSGF!LE1 MSGFILE2

PROC2

Figure 8-1. Data Paths among Processes and Message Files.

8-13

Interprocess Communication

$CONTROL USLINIT

<< Purpose: >>
<< Read data from a data file and send to another process. >>

BEGIN
LOGICAL EOF := FALSE;
INTEGER DATA'FILE, LEN, PIN, IN'FILE, OUT'FILE;
BYTE ARRAY IN'FILE'NAME (0:8) := "MSGFILEl ";
BYTE ARRAY OUT'FILE'NAME (0:8) := "MSGFILE2 ";
BYTE ARRAY DATA'FILE'NAME (0:8) := "DATA ";
BYTE ARRAY PRINTPROC (0:8) := "PRNTPROC ";
ARRAY MESSAGE (0:39);

INTRINSIC CREATEPROCESS, FCLOSE, FOPEN, FREAD, FWRITE,
QUITPROG, PRINT, READ;

<< Create entries for the message files in the directory: >>

<< Note that IN'FILE'NAME ("MSGFILEl") is opened with FOPTIONs >>
<< %30004: this indicates a new ASCII message file. >>

IN'FILE := FOPEN (IN'FILE'NAME, %30004);
IF< THEN QUITPROG (l);
FCLOSE (IN'FILE, 2, 0); <<Save file as session temporary. >>
IF< THEN QUITPROG (2);

<< Note that OUT'FILE'NAME ("MSGFILE2") is opened with FOPTIONs >>
<< %30004: this indicates a new ASCII message file. >>

OUT'FILE := FOPEN (OUT'FILE'NAME, %30004);
IF< THEN QUITPROG (3);
FCLOSE (OUT'FILE, 2, 0); <<Save file as session temporary. >>
IF< THEN QUITPROG (4);

<< Create and activate the print process: >>

CREATEPROCESS (, PIN, PRINT'PROC)
IF< THEN QUITPROG (5);

<< Open message file for traffic from print process: >>

<< Note that IN'FILE'NAME ("MSGFILEl") is opened with FOPTIONs >>
<< %106 and AOPTIONs %1100: %106 indicates an old temporary >>
<< ASCII file and %1100 indicates a reader process with >>
<< exclusive access and multiaccess capability. MSGFILEl >>
<< has already been designated as a message file. Since >>
<< only one reader and one writer process will be accessing >>
<< the message file, exclusive access mode is specified. >>

8-14

IN'FILE := FOPEN {IN'FILE'NAME, %106, %1100);
IF< THEN QUITPROG (7);

Interprocess Communication

<< Open message file for traffic to print process: >>

<< Note that OUT'FILE'NAME ("MSGFILE2") is opened with FOPTIONs >>
<< %106 and AOPTIONs %1101: %106 indicates an old temporary >>
<< ASCII file and %1101 indicates a writer process with >>
<< exclusive access and multiaccess capability. MSGFILE2 has >>
<< already been designated as a message file. Since only >>
<< one reader and one writer process will be accessing the >>
<< message file, exclusive access mode is specified. >>

OUT'FILE := FOPEN (OUT'FILE'NAME, %106, %1101);
IF< THEN QUITPROG (8);

<< Open data input file: >>

<< Note that DATA'FILE'NAME ("DATA") is opened with FOPTIONs %3 >>
<< and AOPTIONs 0: %3 indicates an old permanent or temporary >>
<< file and 0 indicates read only access. The file system >>
<< will change the FOPTIONs to specify an ASCII file. >>

DATA'FILE := FOPEN (DATA'FILE'NAME, %3, 0);
IF<> THEN QUITPROG (9);

WHILE NOT EOF DO BEGIN
LEN:= FREAD (DATA'FILE, MESSAGE, -80);
IF< THEN QUITPROG (10);
IF > THEN EOF := TRUE
ELSE BEGIN

FWRITE (OUT'FILE, MESSAGE, -LEN, 0);
IF<> THEN QUITPROG (11);

END;
END << WHILE >>;

FCLOSE (OUT'FILE, 4, 0);
IF< THEN QUITPROG (12);

FREAD (IN'FILE, MESSAGE, l);
IF<> THEN QUITPROG (13);

FCLOSE (IN'FILE, 4, 0);
IF< THEN QUITPROG (14);

END.

$CONTROL USLINIT

<< Purpose: >>

<< No more data to send: EOF >>

<< Wait for printing process >>
<< to finish. >>

<< Receive data from other process and print it. >>

8-15

Interprocess Communication

BEGIN
LOGICAL EOF := FALSE;
INTEGER LEN, IN'FILE, OUT'FILE;

BYTE ARRAY IN'FILE'NAME (0:8) := "MSGFILE2 ";
BYTE ARRAY OUT'FILE'NAME (0:8) := "MSGFILEl ";
ARRAY MESSAGE (0:39);

INTRINSIC FCLOSE, FOPEN, FREAD, FWRITE, QUITPROG, PRINT;

<< Open message file for traffic from other process: >>

<< Note that IN'FILE'NAME ("MSGFILE2") is opened with FOPTIONs >>
<< %106 and AOPTIONs %1100: %106 indicates an old temporary >>
<< ASCII file and %1100 indicates a reader process with >>
<< exclusive access and multiaccess capability. MSGFILE2 >>
<< has already been designated as a message file. Since >>
<< only one reader and one writer process will be accessing >>
<< the message file, exclusive access mode is specified. >>

IN'FILE := FOPEN (IN'FILE'NAME, %106, %1100);
IF< THEN QUITPROG (13);

<< Open message file for traffic to other process: >>

<< Note that OUT'FILE'NAME ("MSGFILEl") is opened with FOPTIONs >>
<< %106 and AOPTIONs %1101: %106 indicates an old temporary >>
<< ASCII file and %1101 indicates a writer process with >>
<< exclusive access and multiaccess capability. MSGFILEl >>
<< has already been designated as a message file. Since only >>
<< one reader and one writer process will be accessing the >>
<< message file, exclusive access mode is specified. >>

OUT'FILE := FOPEN (OUT'FILE'NAME, %106, %1101);
IF< THEN QUITPROG (14);

WHILE NOT EOF DO BEGIN
LEN := FREAD (IN'FILE, MESSAGE, -80);
IF< THEN QUITPROG (15);
IF > THEN EOF := TRUE
ELSE PRINT (MESSAGE, -LEN, 0);

END << WHILE >>;

<< Now signal other process; we are done. >>

FCLOSE (OUT'FILE, 4, 0);
IF< THEN QUITPROG (16);

FCLOSE (IN'FILE, 4, 0);
IF< THEN QUITPROG (17);

END.

8-16

Interprocess Communication

The following two COBOL programs perform the same tasks as the preceding SPL programs:
the first program, FATHERPROC, reads data from a data file and writes it to MSGFILE2; the
second program, SONPROC, can then read this data from MSGFILE2 and print it. When
SONPROC finishes reading and printing the data, it writes a message to MSGFILE1 indicating
this and terminates. FATHERPROC reads this message from MSGFILE1 and also terminates.
The messages travel among processes and message files as illustrated in Figure 8-2:

DATA

FATHERPROC

MSGFILE1 MSGFILE2

SONPROC

Figure 8-2. Data Paths among Processes and Message Files.

8-17

Interprocess Communication

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-ID. FATHERPROC.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
SPECIAL-NAMES.
CONDITION-CODE IS CC.
DATA DIVISION.
WORKING-STORAGE
01 DATA-FILE

SECTION.
PIC S9(4) COMP.
PIC S9(4) COMP.
PIC S9(4) COMP.
PIC S9(4) COMP.
PIC S9(4) COMP.

01 LEN
01 PIN
01 IN-FILE
01 OUT-FILE
01 IN-FILE-NAME
01 OUT-FILE-NAME
01 DATA-FILE-NAME
01 PRINTPROC
01 MESSAGE-BUF
01 EOF-VAR

88 EOF

PIC X(9) VALUE "MSGFILEl "
PIC X(9) VALUE "MSGFILE2 II

PIC X(5) VALUE "DATA ".
PIC X(9) VALUE "PRNTPROC II

PIC X{80).
PIC X.
VALUE "E".

* ERROR VARIABLES
01 ERROR-BUFFER.

05 FILLER PIC X OCCURS 1 TO 80 TIMES
DEPENDING ON LEN.

01 ERR-NUM PIC S9(4) COMP.
01 FILE-NUM PIC S9{4) COMP.
01 QUIT-PARM PIC S9(4) COMP.
PROCEDURE DIVISION.
MAIN PROCESSING SECTION.

$DEFINE %QUITPROG=

*

MOVE !l TO QUIT-PARM
MOVE !2 TO FILE-NUM
PERFORM PRINT-ERROR#

DRIVER-PARA.
PERFORM !NIT-PARA.
MOVE "F" TO EOF-VAR.
PERFORM LOAD-PARA UNTIL EOF.
PERFORM CLOSE-PARA.
STOP RUN.

* Create entries for the message files in the directory.
*

QUITPROG
QUITPROG
QUITPROG
QUITPROG

* Note that IN-FILE-NAME ("MSGFILEl") is opened with FOPTIONs
* %30004: this indicates a new ASCII message file.
*

8-18

IN IT-PARA.

*

CALL INTRINSIC "FOPEN"
USING IN-FILE-NAME %30004
GIVING IN-FILE.

IF CC NOT = 0
%QUITPROG{li,IN-FILEi).

CALL INTRINSIC "FCLOSE" USING IN-FILE %2 %0.
IF CC NOT = 0

%QUITPROG(2i,IN-FILEi).

Interprocess Communication

* Note that OUT-FILE-NAME ("MSGFILE2") is opened with FOPTIONs
* %30004: this indicates a new ASCII message file.
*

*

CALL INTRINSIC "FOPEN"
USING OUT-FILE-NAME %30004
GIVING OUT-FILE.

IF CC NOT = 0
%QUITPROG(3i,OUT-FILEi).

CALL INTRINSIC "FCLOSE" USING OUT-FILE %2 %0.
IF CC NOT = 0

%QUITPROG(4i,OUT-FILEi).

* Create and activate the print process.
*

*

CALL INTRINSIC "CREATEPROCESS" USING PIN PRINTPROC.
IF CC NOT = 0

%QUITPROG(5#,-l#).

* Open message file for traffic from print process.
* * Note that IN-FILE-NAME ("MSGFILEl") is opened with FOPTIONs
* %106 and AOPTIONs %1100: %106 indicates an old temporary
* ASCII file and %1100 indicates a reader process with exclu-
* sive access and multiaccess capability. MSGFILEl has already
* been designated as a message file. Since only one reader and
* one writer process will be accessing the message file,
* exclusive access mode is specified.
*

*

CALL INTRINSIC "FOPEN"
USING IN-FILE-NAME %106 %1100
GIVING IN-FILE.

IF CC NOT = 0
%QUITPROG (7#,IN-FILEi).

* Open message file for traffic to print process.
*
* Note that OUT-FILE-NAME ("MSGFILE2") is opened with FOPTIONs
* %106 and AOPTIONs %1101: %106 indicates an old temporary
* ASCII file and %1101 indicates a writer process with exclu-
* sive access and multiaccess capability. MSGFILE2 has already
* been designated as a message file. Since only one reader and

8-19

Interprocess Communication

* one writer process will be accessing the message file,
* exclusive access mode is specified~
*

*

CALL INTRINSIC "FOPEN"
USING OUT-FILE-NAME %106 %1101
GIVING OUT-FILE.

IF CC NOT = 0
%QUITPROG(8#,0UT-FILE#).

* Open data input file.

* * Note that DATA-FILE-NAME ("DATA") is opened with FOPTIONs %3
* and AOPTIONs 0: %3 indicates an old permanent or temporary
* file and 0 indicates read only access. The file system will
* change the FOPTIONs to specify an ASCII file.

*

*

CALL INTRINSIC "FOPEN"
USING DATA-FILE-NAME %3 %0
GIVING DATA-FILE.

IF CC NOT = 0
%QUITPROG(9#,DATA-FILEI).

* Load input to message file.
*

*

LOAD-PARA.
CALL INTRINSIC "FREAD"

USING DATA-FILE MESSAGE-BUF -80
GIVING LEN.

IF CC NOT = 0
IF CC LESS THAN 0 THEN

%QUITPROG(l0f,DATA-FILE#)
ELSE

MOVE "E" TO EOF-VAR
ELSE

COMPUTE LEN = - LEN
CALL INTRINSIC "FWRITE"

USING OUT-FILE MESSAGE-BUF LEN %0
IF CC NOT = 0

%QUITPROG(ll#,OUT-FILEi).
CLOSE-PARA.

CALL INTRINSIC "FCLOSE" USING OUT~FILE %4 %0.
IF CC NOT = 0

%QUITPROG(l2#,0UT-FILE#).

* Wait for print to finish.
*

CALL INTRINSIC "FREAD" USING IN-FILE MESSAGE-BUF %1.
IF CC < 0

%QUITPROG{l3#,IN-FILE#).

8-20

Interprocess Communication

CALL INTRINSIC "FCLOSE" USING IN-FILE %4 %0.
IF CC NOT = 0

%QUITPROG(l4#,IN-FILE#).

* ! General error routine.
*

PRINT-ERROR SECTION.
WHAT-TYPE.

IF FILE-NUM IS NOT NEGATIVE THEN
CALL INTRINSIC "FCHECK" USING FILE-NUM ERR-NUM
MOVE 80 TO LEN
CALL INTRINSIC 11 FERRMSG" USING ERR-NUM ERROR-BUFFER LEN
DISPLAY ERROR-BUFFER.

IF QUIT-PARM IS NOT NEGATIVE THEN
CALL INTRINSIC "QUITPROG 11 USING QUIT-PARM.

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-ID. SONPROC.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
SPECIAL-NAMES.
CONDITION-CODE IS CC.
DATA DIVISION.
WORKING=STORAGE SECTION.
01 LEN PIC S9(4) COMP.
01 IN-FILE PIC S9{4) COMP.
01 OUT-FILE PIC S9{4) COMP.
01 IN-FILE-NAME PIC X(9) VALUE 11 MSGFILE2 II

01 OUT-FILE-NAME PIC X(9) VALUE "MSGFILEl 11

01 MESSAGE-BUF PIC X(80).
01 EOF-VAR PIC X.

88 EOF VALUE "E 11
•

* Error variables.
01 ERROR-BUFFER.

05 FILLER PIC X OCCURS l TO 80 TIMES
DEPENDING ON LEN.

01 ERR-NUM PIC S9{4) COMP.
01 FILE-NUM PIC S9{4) COMP.
01 QUIT-PARM PIC S9{4) COMP.
PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.

8-21

! nterprocess Communication

$DEFINE %QUITPROG=

*

MOVE !l TO QUIT-PARM
MOVE !2 TO FILE-NUM
PERFORM PRINT-ERROR#

DRIVER-PARA.
PERFORM OPEN-PARA.
MOVE "F" TO EOF-VAR.
PERFORM READ-PARA UNTIL EOF.
PERFORM CLOSE-PARA.
STOP RUN.

* Open message file for traffic from other process.

*

QUITPROG
QUITPROG
QUITPROG
QUITPROG

* Note that IN-FILE-NAME {"MSGFILE2") is opened with FOPTIONs
* %106 and AOPTIONs %1100: %106 indicates an old temporary
* ASCII file and %1100 indicates a reader process with
*exclusive access· and multiaccess capability. MSGFILE2 has
* already been designated as a message file. Since only one
* reader and one writer process will be accessing the message
* file, exclusive access mode is specified.
*

*

OPEN-PARA.
CALL INTRINSIC "FOPEN"

USING IN-FILE-NAME %106 %1100
GIVING IN-FILE.

IF CC NOT = 0
%QUITPROG{l5#,IN-FILE#).

* Open message file for traffic to other process.

*
* Note that OUT-FILE-NAME ("MSGFILEl") is opened with FOPTIONs
* %106 and AOPTIONs %1101: %106 indicates an old temporary
* ASCII file and %1101 indicates a writer process with exclu-
* sive access and multiaccess capability. MSGFILEl has already
* been designated as a message file. Since only one reader and
* one writer process will be accessing the message file,
* exclusive access mode is specified.
*

*

CALL INTRINSIC "FOPEN"
USING OUT-FILE-NAME %106 %1101
GIVING OUT-FILE.

IF CC NOT = 0
%QUITPROG(l6#,0UT-FILE#).

* Read messages from message file.

8-22

Interprocess Communication

* READ-PARA.

*

CALL INTRINSIC "FREAD"
USING IN-FILE MESSAGE-BUF -80
GIVING LEN.

IF CC NOT = 0
IF CC LESS THAN 0 THEN

%QUITPROG(l7#,IN-FILE#)
ELSE

MOVE "E" TO EOF-VAR

* Print message out.
*

*

ELSE
COMPUTE LEN = - LEN
CALL INTRINSIC "PRINT"

USING MESSAGE-BUF LEN %0
IF CC NOT = 0

%QUITPROG(l8#,2#).

* Now signal the other process; we are done.
*

CLOSE-PARA.

*

CALL INTRINSIC "FCLOSE" USING OUT-FILE %4 %0.
IF CC NOT = 0

%QUITPROG(l9#,0UT-FILE#).
CALL INTRINSIC "FCLOSE" USING IN-FILE %4 %0.
IF CC NOT = 0

%QUiTPROG(20#,IN-FILE#).

* General error routine.
*

PRINT-ERROR SECTION.
WHAT-TYPE.

IF FILE-NUM IS NOT NEGATIVE THEN
CALL INTRINSIC "FCHECK" USING
MOVE 80 TO LEN
CALL INTRINSIC "FERRMSG" USING
DISPLAY ERROR-BUFFER.

IF QUIT-PARM IS NOT NEGATIVE THEN

FILE-NUM ERR-NUM

ERR-NUM ERROR-BUFFER

CALL INTRINSIC "QUITPROG" USING QUIT-PARM.

8-23

LEN

Interprocess Communication

SOFTWARE INTERRUPTS

The software interrupt facility enables you to perform FREAD and FWRITE completion process­
ing with your own interrupt procedures.

A call to FREAD or FWRITE is necessary to initiate the 1/0 request. Both of these intrinsics will
return control to your program as soon as the request has begun. When the operation completes,
your program is trapped (or interrupted) to a procedure of your choice; this procedure performs
whatever processing is necessary and then exits back to your mainline program.

Initially, software interrupts are disabled for your programs. To enable soft interrupts, use the
FINTST ATE intrinsic with a value of TRUE, as follows:

VALUE: =FINTSTATE(TRUE);

The FINTST ATE intrinsic with a value of FALSE will inhibit soft interrupts. MPE will inhibit soft
interrupts just before entering an interrupt procedure. This is done to prevent unwanted nesting
of the interrupt procedures. Use the FINTEXIT intrinsic to return from an interrupt procedure; it
will reenable soft interrupts just before it exits.

PROCEDURE INTERRUPTPROC(FILENUM);
VALUE FILENUM;
INTEGER FILENUM;

BEGIN

FINTEXIT;
END;

Software interrupts are automatically inhibited just before a CONTROL-Y trap procedure. The
trap procedure may elect to allow soft interrupts by calling the FINTSTATE intrinsic. If it does not
call FINTSTATE, the RESETCONTROL intrinsic will restore the process' interrupt state to its
pre-CONTROL-Y value.

When you have enabled software interrupts for your program, you "arm" them for a particular file
by specifying the interrupt procedure's plabel in an FCONTROL 48. Calling FCONTROL 48 with
a parameter of zero will disarm the software interrupt mechanism so the file can be accessed in
the normal manner.

8-24

NOTE

The FFILEINFO intrinsic may be used to return the
plabel of the interrupt handler. FF/LE INFO 49 will
return the plabel as an integfH value: if it returns a
value of zero, no interrupt handler has been armed.

Interprocess Communication

After an interrupt has been received, an IODONTWAIT must be issued against the file to
complete the request. Your interrupt handling procedure will usually issue the IODONTWAIT
before it handles the interrupt completion processing.

NOTE

Only message files allow soft interrupts.

No more than one uncompleted FREAD or FWRITE
may be outstanding for a particular file. Any addi­
tional FREADs or FWRITEs will be rejected.

The interrupt will not occur while you are executing
within MPE; that is, while you are processing an
MPE intrinsic or procedure. Exceptions: the PAUSE,
PAUSEX, and /OWAIT intrinsics will allow the
interrupt. When the interrupt procedure exits, it
reinvokes these intrinsics.

Software interrupts may not be used with remote
files.

An uncompleted FREAD or FWRITE request may be aborted by issuing an FCONTROL 43 (abort
nowait 1/0).

8-25

Interprocess Communication

Example Use of Software Interrupts

The two primary advantages of software interrupts are that they are handled transparently to the
process' mainline code and that they are given real time response by the target process. This
example uses both advantages in the control of a multiprocess transaction processing system.

There are three types of processes in the system:

Terminal processes. Each terminal has its own private terminal process. These processes
perform some pre-editing of each transaction and then send it to the proper function process.

Function processes. These are "expert" in some particular aspect of the system; for example,
one for payroll, one for accounts receivable, etc. They accept input from any of the terminal
processes, using message files.

Supervisor process. There is only one supervisor process. It accepts commands from its
terminal and then "forces" the appropriate terminal/function process to execute the
command. Examples of the commands would be:

Report process status and/or run-time statistics.

Set checkpoints, change files, etc.

Enter DEBUG.

Terminate gracefully.

To get the attention of the target process, the supervisor process need only send information
to the target process' "control" message file. The target process has already enabled soft
interrupts on the file, so the supervisor process' FWRITE will soft interrupt it.

This is a function/terminal process code fragment that enables soft interrupts:

CONTROLFILE:=FOPEN(...);
INT ADDRESS: =@INTHANDLER;
FCONTROL(CONTROLFILE,48, INT ADDRESS);
IF<> THEN ERROR(CONTROLFILE);

FREAD(CONTROLFILE,DUMMY,CMDLEN);
IF <> THEN ERROR(CONTROLFILE);
FINTSTATE(TRUE);

8-26

This is a function/terminal process interrupt handler:

PROCEDURE INTHANDLER(FILENUM);
VALUE FILENUM;
INTEGER FILENUM;

BEGIN
ARRAY CMD(O:CMDLEN),REPLY(O:REPL YLEN);
INTEGER REPL YSIZE;

IODONTWAIT(FILENUM,CMD);
IF <> THEN ERROR(FILENUM);
CASE CMD OF

Interprocess Communication

BEGIN <<PERFORM COMMAND, FORM REPLY>>

PROG

GSL
PSL

END;
FWRITE(REPL YFILE,REPLY,REPLYSIZE,O);
IF <> THEN ERROR(REPL YFILE);
FINTEXIT;
END; << INTHANDLER >>

NOTE
The validity of an interrupt procedure depends on
the code domain of your code and executing mode
(privileged or non-privileged) and on the code
domain of the plabel and the mode (privileged or
non-privileged). The code domains are:

(User Program)
(Group SL)
(Public SL)

SSL
MPESSL

(System SL, non-MPE segments)
(System SL, MPE segments)

When the code of the caller is: The plabel:

Non-privileged in PROG, GSL, Must be non-privileged in PROG, GSL, or PSL.
or PSL.

Privileged in PROG, GSL, or PSL. May be privileged or non-privileged in PROG,
GSL, or PSL.

Privileged or non-privileged in SSL. May be in any non-MPESSL segment.

,.., r'\""7
O-L/

Interprocess Communication

CIRCULAR FILES

Circular files are wrap-around structures which behave as standard sequential files until they are
full. As records are written to a circular file, they are appended to the tail of the file; when the file is
filleq, the next record added causes the block at the head of the file to be deleted and all other
blocks to be logically shifted toward the head of the file. Circular files may not be simultaneously
accessed by both readers and writers. When the file has been closed by all writers, it may be read;
a reader takes records from the circular file one at a time, starting at the head of the file.

Circular files are particularly useful as history files, when a user is interested in the information
recently written to the file and is less concerned about earlier material that has been deleted. These
history files are frequently used as debugging tools: diagnostic information may be written to the
file, and the most recent and relevant material can be saved and studied.

Creating a circular file is similar to creating a message file. When a user process opens a new file
and indicates in the AOPTIONs that it will be a circular file, the FOPEN intrinsic creates the new
circular file. In order to create a circular file with the :BUILD command, use the CIR keyword; for
example, to build a circular file named CIRCLE, enter:

:BUILD CIRCLE; CIR

A new circular file may also be specified with a :FILE command. Use the CIR keyword for a new file:

:FILE ROUND, NEW; CIR

A circular file named ROUND is indicated.

When you perform a :LISTF,2 command, circular files will be identified by an "O" in the TYP field;
CIRCLE is identified here:

FILENAME CODE ----LOGICAL RECORD---- --SPACE--
SIZE TYP EOF LIMIT A I B SECTORS #X MX

CIRCLE 128W FBO 0 1023 128 8

8-28

Interprocess Communication

FEATURES OF INTRINSICS FOR CIRCULAR FILES

Most intrinsics treat circular files the same way they treat regular disc files, but some have special
features which apply specifically to circular files. Most of these features are found in FOPEN, but a
few other intrinsics are also affected.

Parameters that are omitted in the following descriptions retain their normal range of values and
their normal default values.

FOPEN

FOPTIONS: (2:3) - File type. Determines the type of file to create. If the file is old, this field is
ignored.

000 - Ordinary file

001 - KSAM file

010 - Relative I I 0 file

100 - Circular file

110 - Message file

AOPTIONS: (5:2) - Multiaccess mode. This feature permits processes located in different jobs
or sessions to open the same file.

00 - No multiaccess. For a writer, the file system changes this value to a 2 for
global multiaccess.

01 - Only intra-job multiaccess allowed; this is the same as specifying the
MULTI option in a :FILE command.

10 - Inter-job multiaccess allowed; this is the same as specifying the GMULT!
option in a :FILE command.

11 - Undefined. If this is specified, the FOPEN will be rejected with an error
code of 40: ACCESS VIOLATION.

8-29

! nterprocess Communication

(7: 1) - Inhibit buffering. Reader processes may open circular files with either the
BUF or NOBUF option; for write access to circular files, the file system sets
this bit off.

Note: Readers may open a circular file with NOBUF if they are in copy
mode; this determines whether they will be reading the file record by record
or block by block:

0 - read by logical record

1 - read by physical block

(8:2) - Exclusive. The values for this field are the same as for any standard disc file,
but they have different meanings for the readers and writers of a circular
file:

USER
VALUE

EXCLUSIVE

SEMI

SHARE

Default

Changed to:
READER WRITER

EXCLUSIVE

SHARE

SHARE

SHARE

EXCLUSIVE

EXCLUSIVE

SHARE

EXCLUSIVE

For readers, SHARE means "allow other readers;" for writers, SHARE
means ''allow other writers.''

(11: 1) - Multirecord. When a reader specifies this option, the file will be accessed
NOBUF; for writers, this bit is set to zero.

(12: 4) - Access type. These bits specify whether the user will be a reader or a writer
process.

0000 - READ access only.

0001 - WRITE access only. If this is the first accessor to the file, then the
file's contents are purged. If this is not the first accessor to the file,
the access type is set to APPEND.

8-30

FILESIZE:

Interprocess Communication

0010 -WRITE SAVE access. Set to APPEND access.

0011 :- APPEND access only.

Note: Circular files allow variable-length records with append
access.

Any other access types are invalid.

The number of records is rounded up to completely fill the last block.

FWRITE

This intrinsic logically appends the user's record to the end of the file. If the file is full, the first block
is deleted, the remaining blocks are logically shifted to the file's head, and the new record is
appended to the end of the file.

FCLOSE

For circular files, deletion of disc space beyond the end-of-file is not allowed.

Certain intrinsics are not allowed when circular files are used. These intrinsics are listed in Table
8-2:

Table 8-2.

Not permitted
for READ access

FUPDATE
FDELETE
C::\A/DITCnlD
I VVllllLLlll\

FWRITE

Intrinsics not permitted with circular files.

8-31

Not permitted
for WRITE access

FUPDATE
FDELETE
FWRITED!R
FREAD
FREADDIR
FREADSEEK
FPO INT
FSPACE

I HAMH
,____M_A_G_N_E_r_1c_r_A_P_E_c_o_N_s_1o_E_RA_r_1o_N_s __ ___.l I ix I

The most common medium for storage of a device file is magnetic tape. This section describes the
matters you should keep in mind when you work with your magnetic tape files.

NOTE

Serial disc files are very similar to magnetic tape files. Unless
otherwise noted, information in this section applies to serial discs
as well as to magnetic tape.

Every standard reel of magnetic tape designed for digital computer use has two reflective markers
located on the back side of the tape (opposite the recording surface). One of these marks is
located behind the tape leader at the beginning of tape (BOT) position, and the other is located in
front of the tape trailer at the end· of tape (EQT) position. These markers are sensed by the tape
drive itself and their position on the tape (left or right side) determines whether they indicate the
start or end of tape positions:

LEADER BOT FILE SPACE EQT TRAILER

MAGNETIC
TAPE

As far as the magnetic tape hardware and software are concerned, the BOT marker is much more
significant than the EQT marker because BOT signals the start of recorded information, but EQT
simply indicates that the remaining tape supply is running low and the program writing the tape
should bring the operation to an orderly conclusion. The difference in treatment of these two
physical tape markers is reflected by the file system intrinsics when the file being read, written, or
controlled is a magnetic tape device file. The following paragraphs discuss the characteristics of
each appropriate intrinsic.

FWRITE. If the magnetic tape is unlabeled (as specified in the FOPEN intrinsic or :FILE command)
and a user program attempts to write over or beyond the physical EOT marker, the FWRITE
intrinsic returns an error condition code (CCL). The actual data is written to the tape, and a cal-~ to
FCHECK reveals a file error indicating END OF TAPE. All writes to the tape after the EQT tape
marker has been crossed transfer the data successfully but return a CCL condition code until the
tape crosses the EQT marker again in the reverse direction (rewind or backspace).

If the magnetic tape is labeled (as specified in the FOPEN intrinsic or :FILE command), a CCL
condition code is not returned when the tape passes the EQT marker. Attempts to write to the tape
after the EQT marker is encountered cause end of volume (EOV) labels to be written. A message
then is printed on the operator's console requesting another volume (reel of tape) to be mounted.

9-1

Magnetic Tape Considerations

FREAD. A user program can read data written over an EQT rllarker and beyond the marker into the
tape trailer. The intrinsic returns no error condition code (CCL or CCG) and does not initiate a file
system error code when the EQT marker is encountered.

FSPACE. A user program can space records over or beyond the EQT marker without receiving an
error condition code (CCL or CCG) or a file system error. The intrinsic does, however, return a
CCG condition code when a logical file mark is encountered. If the user program attempts to
backspace records over the BOT marker, the intrinsic returns a CCG condition code and remains
positioned on the BOT marker.

FREADBACKWARD. If the BOT marker is encountered, a CCG condition code is returned.
However, when reading a labeled magnetic tape file that spans more than one volume, CCG is not
returned when the BOT marker is encountered. Instead, CCG is returned at the actual beginning
of the file, with a transmission log of 0 if an attempt is made to read past the beginning of the file.

FCONTROL (WRITE EOF). If a user program writes a logical end-of-file (EOF) mark on a
magnetic tape over the reflective EQT marker, or in the tape trailer after the marker, hardware
status will be saved to return END OF TAPE on the next FWRITE. The file mark is actually written to
the tape.

FCONTROL (FORWARD SPACE TO FILE MARK). A user program which spaces forward to
logical tape marks (EOFs) with the FCONTROL intrinsic cannot detect passing the physical EQT
marker. No special condition code is returned.

FCONTROL (BACKWARD SPACE TO FILE MARK). The EQT reflective marker is not detected by
FCONTROL during backspace file (EOF) operations. If the intrinsic discoyers a BOT marker
before it finds a logical EOF, it returns a condition code of CCE and treats the BOT as if it were a
logical EOF. Subsequent backspace file operations requested when the file is at BOT are treated as
errors and return a CCL condition code and set a file system error to indicate INVALID
OPERATION.

In summary, except for FCONTROL, only those intrinsics which cause the magnetic tape to write
information are capable of sensing the physical EOT marker. If a program designed to read a
magnetic tape needed to detect the EQT marker, it could be done by using the FCONTROL
intrinsic to read the physical status of the tape drive itself. When the drive passes the EQT marker
and is moving in the forward direction, tape status bit 5 (% 2000) is set and remains on until the
drive detects the EQT marker during a rewind or backspace operation. Under normal
circumstances, however, it is not necessary to check for EQT during read operations. The
responsibility for detecting end of tape and concluding tape operations in an orderly manner
belongs to the program which originally created (wrote) the tape.

A program which needed to create a multi-volume (multiple reel) tape file would normally write
tape records until the status returned from FWRITE indicated an EQT condition. Writing could be
continued in a limited manner to reach a logical point at which to break the file. Then several file
marks and a trailing tape label would typically be added, the tape rewound, another reel mounted,
and the data transfer continued. The program designed to read such a multi-volume file must

9-2

Magnetic Tape Considerations

expect to find and check for the EOF and iabei sequence written by the tape's creator. Since the
logical end of the tape may be somewhat past the physical EO_T marker, the format and
conventions used to create the tape are of more importance than determining the location of the EQT.

END-OF-FILE MARKS ON MAGNETIC TAPE

An FWRITE to magnetic tape, followed by any tntrinsic call which reverses tape motion (for
example, backspace a record, backspace a file, or rewind), causes the file system to write an EOF
mark before initiating the reverse motion.

For example, if a user program has just written several data records to magnetic tape and writes a
file mark, rewinds the tape, and closes the file, the tape file will be terminated by two file marks
(EOF). The first of these was requested by the user by calling FCONTROL to write an EOF, and the

second was provided by the system because the direction of tape motion had been reversed after
a write (rewind):

~~RECOR_,__D 1 REC____..___,ORD 2 I ~ 11 RECORD n I ~ I ~ •
SPACING FILE MARKS

When you space forward to a tape mark (EOF), the tape recording heads have just read the EOF
and are positioned beyond it:

B
0
T

E
0
F

BEFORE ----- AFTER

E
0
T

When you space backward to a tape mark (EOF), the mark is recognized as the tape travels in the
reverse direction. The tape heads then are left positioned just in front of the EOF that was read:

B E E
0 0 0
T F T

<> <~

AFTER -- BEFORE ..__ --

When FREAD has found a logical file mark and returned a condition code of CCG, the EOF mark
has been read and the tape heads are positioned immediately following the mark (similar to space
forward to tape mark above).

9-3

Magnetic Tape Considerations

USING THE FCLOSE INTRINSIC WITH MAGNETIC TAPE

The operation of the FCLOSE intrinsic as used with unlabeled magnetic tape is outlined in the
flowchart of Figure 9-1.

0 (NO CHANGE)
1 (SAVE PERM)
2 (SAVE TEMP)
4 (DELETE)

NO

WRITE EOF MARK
ON TAPE.
REWIND TAPE

UN LOAD TAPE -
SET OFFLINE

NO

YES

NO

FCLOSE

3 (TEMP-NO REWIND)

NO

REWIND & UNLOAD
TAPE
(DRIVE GOES
OFFLINE)

DEALLOCATE THE
MAGNETIC TAPE
DEVICE

END

YES

Figure 9-1. Using the FCLOSE Intrinsic with Unlabeled Magnetic Tape.

9-4

Magnetic Tape Considerations

Note that a tape closed with the temporary no-rewind disposition will be rewound and unloaded if
certain additional conditions are not met. It is possible for a single process to FOPEN a magnetic
tape device using a device class and later FOPEN the same device again using its logical device
number. This may be done in such a manner that both magnetic tape files are open concurrently.
The second FOPEN does not require any operator intervention (for example, for device allocation).
When FOPEN I FCLOSE calls are arranged in a nested fashion, tape files may be closed without
deallocating the physical device, as follows:

FOPEN

[

FOPEN

FCLOSE

[

FOPEN

FCLOSE

FCLOSE

allocate tape

tape remains allocated

deallocate tape

Such nesting of FOPEN I FCLOSE pairs is required to keep an FCLOSED tape from rewinding. A
tape closed with the temporary, no-rewind disposition will be rewound and unloaded unless the
process closing it has another file currently open on the device.

Note that when a temporary no-wind tape is deallocated, the file system has not placed an end-of­
file mark at the end of the data file.

The FCLOSE intrinsic can be used to maintain position when creating or reading a labeled tape file
that is part of a volume set. If you close the file with a disposition code of 0 or 3, the tape does not
rewind, but remains positioned at the next file. If you close the file with a disposition code of 2, the
tape rewinds to the beginning of the file but is not unloaded. A subsequent request to open the file
does not reposition the tape if the sequence (seq) subparameter is NEXT, or default (1). A
disposition code of 1 (save permanent) implies the close of an entire volume set.

9-5

Magnetic Tape Considerations

UPDATING MAGNETIC TAPE FILES

As a physical data storage device, magnetic tape is not designed to enable the replacement of a
single record in an existing file. An attempt to perform this type of operation will cause problems in
maintaining the integrity of records on the tape. Magnetic tape files, therefore, should not be
maintained (updated) on an individual record basis but should be updated during copy operations
from one tape to another.

As an example of the type of problems that can occur, consider the results of attempting to read a
tape record, modify its data, backspace the tape, and overwrite the original record:

.__$ __ ~-R-EC_~_R_D __ _.__R_E_C_~_R_D __ '---J~---l--R_E_C~--RD--~l-5_F--K...~~~-0-~~1
FREAD FWRITE

\ BACKSPACE)
\ RECORD

FIX DATA

If the replacement differed at all in size from the original record, the result would not simply be an
update of the record. A replacement record of greater length than the original record would
overwrite (destroy) a portion of the next record on the tape, as shown below.

BEFORE

AFTER

RECORD
2

NEW
RECORD 2

IRG: INTER-RECORD GAP - THE
HARDWARE DEVICE CONTROLLER
PLACES A GAP (UNRECORDED

I
R
G

I
R
G

9-6

TAPE) BETWEEN ADJACENT
DATA FIELDS.

RECORD
3

REMAINS OF RECORD 3

Magnetic Tape Considerations

On the other hand, if the length of the replacement record is less than that of the original record, a
portion of the original record will still remain on the tape as shown below.

BEFORE~~~-"-'-'~R-E-C2_0_R_D~l.__G_~~1~R-E_Cf~RD~-~ --

AFTER
I
R
G

RECORD
3

REMAINS OF OLD RECORD 2

NEW RECORD 2

In either of the two cases shown, the partial records remaining would cause magnetic tape read
errors and would create problems in subsequent processing of the tape file.

Even with replacement records of the same size as the original records, errors can result.
Mechanical and timing variations from one magnetic tape drive to another can create substantial
differences in the actual length of tape records containing the same amount of data. Magnetic tape
standards, for example, permit the inter-record gap (IRG) to vary in length from 0.5 to 0. 7 inches.
Similar variations may occur to a lesser extent in the spacing of the actual data bytes recorded. In
short, the variation of a number of hardware factors which are beyond the user's control can affect
the physical length of the tape records written. For this reason, always update your tape files during
copy operations from one tape to another.

9-7

Magnetic Tape Considerations

READING AND WRITING AN UNLABELED MAGNETIC TAPE FILE

Figure 9-2 contains a program that copies an unlabeled magnetic tape file into another file on the
same reel of tape.

PAGE non1

000011'100
00002000
00003000
00004nOI)
oooosnoo
000061'100
00007000
ooooeooo
00009000
0001onoo
00011oon
00012000
00013000
000141'100
0001snoo
000161'100
00017000
00018000
00019001)
0002onoo
00021noo
00022000
000231l00
00024000
00025000
000261)00
00027000
00028000
000?8101)
00029000
000301'100
0003lfl00
00032000
00032100
00033000
000341'100
00035000
0003t-OOO
ooo Hnoo
0003AOOO
00039000
000401'100
00041000
00042000
000431'100
00044000
0004snon
000471)00
0004AOOO
00049noo
000150000
ooor;1000
00052000
00053001)
000541'101)
00055000

PRIMARY

HFWLFTT-PACKARD 32100A.05ol SPL/3000 MON, OCT 27, 1975• 10106 AM

noooo o
00000 0
00000 1
00000 ,
00005 1
00004 1
00004 1
00004 1
00004 l
00004 l
00004 l
00004 1
00000 1
00000 1
00000 l
00000 ?
00002 2
00004 ?
00000 l
00000 l
ooono 1
00000 l
00012 l
00016 l
1)0016 1
00016 l
1)0024 1
00030 1
00033 l
00033 1
000'.F 1
00043 1
00046 1
00052 1
00052 l
00057 1
000()3 l
00063 1
00067 1
00073 l
00077 l
00103 1
00103 1
00104 l
00104 1
00107 1
00113 l
00115 1
00115 1
00115 l
00121 1
00125 l
00125 1
00130 1
00134 l

$CONTROL USLINIT
BEGIN

INTEGfR MT,RECO•POSITION1=0tLGTHt
AYTE APRAY NAMEl017) ::11 MAGTAPE "I
RYTf. ARRAY CLASS(014l := 11 TAPE 11 1
ARRAY BUFFER(Q:65l I
LO\.ICAL DUMMYI

INTRINSIC FOPENtFREADtFCONTROLtFSPACEtFWRITEtFCLOSEt
PRINT•FILE•INFO,QUITI

PPOCEOUPE FTLERROR!FILENO,QUIT~Oll
VALUE FILENO,QUITNOI
INTEGER FJLENO,QUITNOI
REG IN

PRINT•FJLE•INFO<FILENO> I
QUIT (QUJTNO) I

ENDI

<<FND OF DECLARATIONS>>

MTl=FOPENCNAMEt%20lt~4t66tCLASSll

IF < THFN FILERROR<MTtll I

FCLOSE!MT,OtOl I
IF < THEN FllfRRQR(MT,101 I

<O!AG TAPE>>
<<CHECK FOR ERROR>>

<<MAG TAPE»
<<CHECK FOR ERROR>>

00134 l F.:ND 0

r>B STORAGE=~0071 SECONnARY DA STORAGE~'OOlll

Figure 9-2. Unlabeled Magnetic Tape Example.
9-8

Magnetic Tape Considerations

The FOPEN intrinsic call

MT:= FOPEN (NAME,% 201, % 4,66,CLASS);

opens the magnetic tape file. The parameters specified are:

formaldesigna tor

foptions

a options

recsize

device

MAGTAPE, which is contained in the byte array NAME.

% 201, for which the bit pattern is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bits

0000000010 0 0 0 0 0 Binary

2 0 Octal

The above bit pattern specifies the following file options:

Domain: Old permanent file. Bits (14:2) = 01.
ASCII/Binary: Binary. Bit (13: 1) = 0.
Default Designator: Same as formal file designator. Bits (10:3) = 000.
Record Format: Undefined length. Bits (8:2) = 10.

% 4, for which the bit pattern is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bits

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Binary

4 Octal

The above bit pattern specifies the following access option:

Access Type: Input/output access. Bits (12:4) = 0100.

66 words.

TAPE, contained in the byte array CLASS.

All other parameters are omitted from the FOPEN intrinsic call.

9-9

Magnetic Tape Considerations

Once the file is opened, the file number (used by other file system intrinsics when referencing this
file) is returned to the variable MT.

The statement

IF<THEN FILERROR (MT, 1);

checks the condition code and, if it is CCL, calls the error-check procedure FILERROR. The
FILERROR procedure prints a FILE INFORMATION DISPLAY on the standard list device, enabling
you to determine the error number returned by FOPEN, then aborts the program's process.

The tape format before the copy operation is started is:

B
0
T

RECORD
1

The statement

RECORD
2

LGTH: =FREAD (MT,BUFFER,66);

RECORD
n

E
0
F

E
0
T

reads a record from the file designated by MT and transfers this record to BUFFER. The statement
reads up to 66 words from the record, then returns a positive value to LGTH indicating the actual
length of the information transferred.

The statement

FCONTROL (MT,7,DUMMY);

spaces forward to the EOF tape mark (the end of the file). As you recall from paragraph
"SPACING FILE MARKS", the recording head actually is positioned slightly beyond the EOF file
mark. Now the statement

FSPACE (MT, RECD' POSITION);

spaces the tape to the point where the first record (RECD' POSITION = 0, see statement number
3 in the program) of the second file is to begin. The statement

FWRITE (MT,BUFFER,LGTH,O);

writes the record contained in the array BUFFER into this record.

9-10

Magnetic Tape Considerations

The statement

FCONTROL (MT,8,DUMMY);

spaces back to the end of file 1 (the EOF mark) and the statement

FCONTROL (MT,8,DUMMY);

then spaces back to the next tape mark (the start of file 1).

The record position is set to the next record in file 1 by incrementing RECD' POSITION with the
statement

RECD' POSITION:= RECD' POSITION+ 1;

and spaces ahead to that record with the statement

FSPACE (MT, RECD' POSITION);

and the copy loop is repeated. After the copy loop is repeated, the tape is as follows:

B
0
T

RECORD
1

FILE 1

RECORD g
n F

RECORD RECORD g
2 F

FILE2

E
0
T

Note that the reverse tape motion after a write creates an EOF mark (see end of FILE 2).

The copy loop is repeated until the end of FILE 1 is reached, at which point program control is
transferred to the statement label DONE. The tape then is rewound with the statement

FCONTROL (MT,5, DUMMY);

and closed with the same disposition (old permanent) as before.

The format of the tape at the end of the copy operation is:

g RECORD RECORD

T 1 2

RECORD g RECORD RECORD

n F 1 2

FILE 1 FILE 2·

9-11

RECORD g
n F

E
0
T

Magnetic Tape Considerations

LABELED TAPES

MPE provides a means whereby you can read and write labels on magnetic tape files. Labels on
tapes are intended to provide for:

A permanent identification for tape reels, or volumes;

Files which extend over more than one volume;

More than one file on a volume;

Retrieval of files by file name;

Additional security, to protect against invalid erasure or access to files.

When each tape volume is first written, it is assigned a unique identifier consisting of up to six
alphanumeric characters. This identifier is the volume name. It is often strictly numeric, and
volumes in an installation's library can be sorted by this number for storage.

A collection of volumes containing one or a related group of files is called a volume set. The volume
name of the first reel in the set is taken as the volume set name.

Each file on a labeled tape has a header label or labels which describe the name of the file, the
sequential position of the file on the volume, and the sequential number of the volume in the volume
set. Optionally, the header label may also contain the record and block size, a file lockword, and
whether the file is ASCII or binary.

When opening a labeled tape file to be read, you must specify the volume set name. This may
appear either in a file equation (;LABEL = parameter), or in the formsmsg parameter of FOPEN; it
it appears in neither place, the console operator will be prompted for the volume set name. You
may also specify whether to seek a particular file name within the volume set, or simply to access
the next sequential file. If the file name you specify does not exist, an End of Volume Set error
(FSERR 123) will be returned by FOPEN.

When opening a labeled tape file to write, you specify the volume set name as for reading. You
may declare that a specified named file, or the next sequential file, is to be written.or that a file is
to be added to the end of the volume set. An End of Volume Set error will be reported if a
specified file is not found. Of course, if there are other files following the file to be written, their
contents will be lost.

9-12

Magnetic Tape Considerations

You may close a file without closing the volume set containing it. This means a subsequent FOPEN
specifying the same volume set name will be able to access a file on the currently mounted volume
of the volume set without operator intervention. The volume thus accessed need not be the first one
in the volume set.

There are two standard formats for labels in common use: IBM and ANSI. Except that IBM labels
are written in EBCDIC, the differences between them are minor. The MPE Tape Labels system can
read and write labeled tapes that conform to the ANSI standard, and read tapes that conform to
the IBM standard. Only ANSI standard tapes support file lockwords.

Writing a Tape Label

The MPE :FILE command or FOPEN intrinsic is used to write ANSI-standard tape labels; MPE will
not write IBM-standard tape labels. See the MPE Commands Reference Manual, part number
30000-90009, for a discussion of writing tape labels with the :FILE command.

The program shown in Figure 9-3 opens a magnetic tape file and writes a label on the file.

$CONTROL USLINIT
BEGIN

BYTE ARRAY FILID1 (0:8):=" ";
BYTE ARRAY FILID2 (0:8): = "NEWTAPE1";
BYTE ARRAY LABELID (0:79):="FIL099,ANS, 12/31/81,NEXT;";
BYTE ARRAY DEV (0:4): ="TAPE";

ARRAY MSGBUF (0:35);
ARRAY INBUF (0:39);
ARRAY FIL'ID1 (*) =FILID1;
ARRAY USERLABL (0:79);

INTEGER FN01,FN02,LGTH;

INTRINSIC FOPEN,FCLOSE,PRINT'FILE'INFO,QUIT,PRINT,READ,
FWRITELABEL, FREAD, FWRITE;

PROCEDURE FILERROR (FILENO,QUITNO);
VALUE QUITNO;
INTEGER FILENO,QUITNO;
BEGIN

PRINT'FILE'INFO (FILENO);
QUIT (QUITNO);

END;

<<END OF DECLARATIONS>>

Figure 9-3. Writing to a Tape File.

9-13

Magnetic Tape Considerations

MOVE MSGBUF: ="NAME OF INPUT FILE?";
PRINT (MSGBUF,-19,0);
READ (FIL'ID1,-8); <<READ NAME OF INPUT FILE>>

FN01:=FOPEN (FILID1, 1,5); <<OPEN OLD DISC FILE>>
IF < THEN < < CHECK FOR ERROR > >

BEGIN
MOVE MSGBUF: ="CAN'T OPEN DISC FILE";
PRINT (MSGBUF,-20,0);
FILERROR (FN01, 1);

END;

FN02: =FOPEN (FILID2, % 1004,5,,DEV,LABELID, 1); <<OPEN NEW LABELED TAPE
FILE>>

IF < THEN < < CHECK FOR ERROR > >
BEGIN

MOVE MSGBUF: ="CAN'T OPEN TAPE FILE";
PRINT (MSGBUF,-20,0);
FILERROR (FN02,2);

END;

MOVE USERLABL: =" ";
MOVE USERLABL: = USERLABL (0), (40);
MOVE USERLABL: ="UHL 1 USER HEADER LABEL NO. 1";
FWRITELABEL (FN02, USERLABL.40.0): < < WRITE USER HEADER LABEL > >
IF<> THEN FILERROR (FN02,3); <<CHECK FOR ERROR>>

READ' WRITE' LOOP:

LGTH:=FREAD (FN01,INBUF,40); <<READ RECORD FROM DISC FILE>>
IF < THEN < < CHECK FOR ERROR > >

BEGIN
MOVE MSGBUF: ="CAN'T READ DISC FILE";
PRINT (MSGBUF,-20,0);
FILERROR (FN01,4);

END;
IF > THEN GO CLOSE;

<<CHECK FOR END-OF-FILE>>

Figure 9-3. Writing to a Tape File (Continued).

9-14

Magnetic Tape Considerations

FWRITE (FN02,INBUF,LGTH,O); <<WRITE RECORD TO LABELED TAPE FILE>>
IF<> THEN <<CHECK FOR ERROR>>

BEGIN
MOVE MSGBUF: ="CAN'T WRITE TO TAPE FILE";
PRINT (MSGBUF,-24,0);
FILERROR (FN02,5);

END;

CLOSE:

FCLOSE (FN01,0,0); <<CLOSE DISC FILE>>
IF < THEN < < CHECK FOR ERROR > >

BEGIN
MOVE MSGBUF: ="CAN'T CLOSE DISC FILE";
PRINT (MSGBUF,-21,0);
FILERROR (FNO 1,6);

END;

FCLOSE (FN02, 1,0); <<CLOSE, REWIND, AND UNLOAD TAPE FILE>>
IF< THEN

LEND.

<<CHECK FOR ERROR>>
BEGIN

MOVE MSGBUF: ="CAN'T CLOSE TAPE FILE";
PRINT (MSGBUF,-21,0);
FILERROR (FN02,7);

END;

Figure 9-3 Writing to a Tape File (Continued).

The statement

BYTE ARRAY LABELID (0:79):=".FIL001,ANS, 12/31/81,NEXT;";

declares a byte array of 80 bytes and initializes it to

FIL099,ANS, 12/31 /81,NEXT;

9-15

Magnetic Tape Considerations

which specifies that the tape is to have ANSI-standard labels. Note that the specification begins
with a period and ends with a semicolon. This is necessary to distinguish the specification from a
forms message (which is another use for the same FOPEN parameter). The LABELID byte array
will be used in the FOPEN intrinsic call to specify a file label as follows:

Volume Identification: FIL099

Label Type:

Expiration Date:

Sequence:

The statement

ANS (ANSI)

12 I 31I81. This is the date after which the file can be overwritten. If you
attempt to overwrite the file before this date, MPE will send a message to
the Console Operator asking for confirmation that such is really desired.
This affords an extra measure of protection against inadvertently
destroying a tape by overwriting when a WRITE RING is left on the tape by
mistake.

NEXT. Signifies that the file is to be positioned at the next file on the tape.

FN02: =FOPEN (FILI02, % 1004,5,,DEV,LABEL!D, 1);

opens a new tape file and writes the tape label as specified by LABELID.

Opening a Labeled Magnetic Tape File

Figure 9-4 shows a program that opens a labeled magnetic tape file and a disc file, reads the
contents of the tape file and writes the records to the disc file, closes the tape file, and finally closes
the disc file as a permanent file.

$CONTROL USLINIT
BEGIN

BYTE ARRAY FILID1 (0:8): = "TAPEFILE ";
BYTE ARRAY FILID2 (0:8): =" ";
BYTE ARRAY LABELID (0:79):=".FIL001,ANS, 12/31/81,,;";
BYTE ARRAY DEV (0:4): ="TAPE";

ARRAY MSGBUF (0:35);
ARRAY INBUF (0:39);
ARRAY FIL'ID2 (*) =FILID2;

INTEGER FN01,FN02,LGTH;

Figure 9-4. Reading a Labeled Magnetic Tape File.

9-16

Magnetic Tape Considerations

INTRINSIC FOPEN,FCLOSE,FREAD,FWRITE,READ,PRINT,PRINT'FILE'INFO,
QUIT, CA USES REAK, FREADLABEL;

PROCEDURE FILERROR (FILENO,QUITNO);
VALUE OUITNO;
INTEGER FILENO,QUITNO;
BEGIN

PRINT'FILE'INFO (FILENO);
QUIT (QUITNO);

END;

<<END OF DECLARATIONS>>

MOVE MSGBUF: ="NAME OF NEW DISC FILE TO BE CREATED?";
PRINT (MSGBUF,-8,0);
READ (FIL'ID2,4); < < READ NAME OF NEW DISC FILE > >

FN01: =FOPEN (FILID1, % 1005,5,,DEV,LABELID); <<OPEN LABELED TAPE FILE>>

IF< THEN <<CHECK FOR ERROR>>
BEGIN

MOVE MSGBUF: ="CAN'T OPEN TAPE FILE";
PRINT (MSGBUF,-20,0);
FILERROR (FNO 1, 1);

END;

FN02:=FOPEN (FILID2,4,5); <<OPEN NEW DISC FILE>>
IF < THEN < < CHECK FOR ERROR > >

BEGIN
MOVE MSGBUF: ="CAN'T OPEN DISC FILE";
PRINT (MSGBUF,-20,0);
FILERROR (FN02,2);

END;

FREADLABEL (FN01,INBUF,40); <<READ USER LABEL>>
IF < > THEN FILERROR (FNO 1,3); < < CHECK FOR ERROR > >

PRINT (INBUF,40,0);

READ' WRITE' LOOP;

Figure 9-4. Reading a Labeled Magnetic Tape File. (Continued)

9-17

Magnetic Tape Considerations

LGTH:=FREAD (FN01,INBUF,40); <<READ RECORD FROM TAPE FILE>>
IF < THEN < < CHECK FOR ERROR > >

BEGIN
MOVE MSGBUF: ="CAN'T READ TAPE FILE";
PRINT (MSGBUF,-20,0);
FILERROR (FN01,4);

END;
IF> THEN GO CLOSE1; <<CHECK FOR END-OF-FILE>>

FWRITE (FN02,INBUF,LGTH,O); <<WRITE RECORD TO DISC FILE>>
IF<> THEN <<CHECK FOR ERROR>>

BEGIN
MOVE MSGBUF: ="CAN'T WRITE TO DISC FILE";
PRINT (MSGBUF,-24,0);
FILERROR (FN02,5);

END;

GOTO READ'WRITE'LOOP;

CLOSE1:

FCLOSE (FN01, 1,0); <<CLOSE, REWIND, AND UNLOAD TAPE FILE>>
IF< THEN

< < CHECK FOR ERROR > >
BEGIN

MOVE MSGBUF: ="CAN'T CLOSE TAPE FILE";
PRINT (MSGBUF,-21,0);
FILERROR (FNO 1,6);

END;

CLOSE2:

FCLOSE (FN02, 1,0); < < CLOSE DISC FILE AS PERMANENT FILE > >
IF < THEN < < CHECK FOR ERROR > >

END.

BEGIN
MOVE MSGBUF: ="CAN'T CLOSE DISC FILE";
PRINT (MSGBUF,-21,0);
MOVE MSGBUF: ="CHECK FOR DUPLICATE NAME";
PRINT (MSGBUF,-24,0);
MOVE MSGBUF: ="FIX, THEN TYPE 'RESUME'";
PRINT (MSGBUF,-23,0);
GOTO CLOSE2; <<TRY AGAIN>>

END;

Figure 9-4. Reading a Labeled Magnetic Tape File. (Continued)

9-18

Magnetic Tape Considerations

The statement

FN01: =FOPEN (FILID1, % 1005,5,,DEV,LABELID);

calls FOPEN to open the labeled magnetic tape file. The parameters specified are

forma/designator

foptions

a options

TAPEFILE, stored in the byte array FILID1.

% 1005, for which the bit pattern is:

0123456789101112131415 Bits

0000001000 0 0 0 1 0 Binary

0 0 5 Octal

The above bit pattern specifies the following file options:

Domain: Old, permanent file, system file domain. Bits (14:2) =01.
ASCII I Binary: ASCII. Bit (13: 1) = 1.
File Designator: Actual file designator same as format file designator.
Bits (10:3) = 000. (Default)
Record Format: Fixed length. Bits (8:2) = 00. (Default)
Carriage Control: No carriage control. Bit (7: 1) = 0. (Default)
Labeled Tape: Labeled. Bit (6: 1) = 1.

5, for which the bit pattern is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bits

0000000000 0 0 0 1 0 Binary

5 Octal

The above bit pattern specifies the following access options:

Access Type: Update. Bits (12:4) = 0101.

9-19

Magnetic Tape Considerations

recsize

device

tape label

Default.

TAPE, contained in the byte array DEV.

Contained in the byte array LABELID (formmsg parameter). LABELID is
declared with the value

.FIL001,ANS, 12/31 /81,,;

(See statement number 5 in Figure 9-4). The label specification begins
with a period and ends with a semicolon. This is necessary to distinguish
the tape label from a forms message (another use for this parameter).

When the FOPEN intrinsic call executes, MPE sends a message to the system console, requesting
the Console Operator to mount the tape labeled FILOO 1, if it is not already mounted.

The statement

FN02: = FOPEN (FILID2,4,5);

opens a new disc file.

The program then reads records from the tape file with the statement

LGTH: =FREAD (FN01,INBUF,40);

and writes these records to the disc file with the statement

FWRITE (FN02,INBUF,LGTH,O);

When all records in the tape file have been read, both files are closed. The disc file is saved as a
permanent file.

9-20

Magnetic Tape Considerations

Reading a Labeled Magnetic Tape File

Once a labeled tape file has been opened, the FREAD intrinsic may be used in the same manner as
on an unlabeled tape file. The system defaults to the blocksize, recordsize and file format on the
tape label if these parameters are not specified. You can call FGETINFO or FFILEINFO to get these
values.

The program that was shown in Figure 9-4 reads a labeled magnetic tape file in sequential order.

The labeled tape file is opened with the statement

FN01: =FOPEN (FILID1, % 1005,5,,DEV,LABELID);

The file label is contained in the byte array LABELID.

The block of statements

READ'WRITE' LOOP:
•
•
•

GOTO READ'WRITE'LOOP;

forms a read/write loop. Records are read from the tape file in sequential order with the statement

LGTH: =FREAD (FN01,INBUF,40);

and written to a disc file with the statement

FWRITE (FN02,INBUF,LGTH,O);

Writing to a Labeled Magnetic Tape File

Writing records to a labeled tape file differs slightly from writing to an unlabeled tape file as follows:

if the magnetic tape is uniabeied and a user program attempts to write over or beyond the
physical EOT marker, the FWRITE intrinsic returns an error condition code (CCL). The actual
data has been written to the tape, and a call to FCHECK reveals a file error indicating END OF
TAPE. All writes to the tape after the EOT tape marker has been crossed transfer the data
successfully but return a CCL condition code until the tape crosses the EQT marker again in
the reverse direction (rewind or backward).

If the magnetic tape is labeled, a CCL condition code is not returned when the tape passes the
EQT marker. Attempts to write to the tape after the EOT marker is encountered cause end of
volume (EOV) labels to be written. A message then is printed on the operator's console
requesting another volume (reel of tape) to be mounted.

9-21

Magnetic Tape Considerations

The program that was shown in Figure 9-3 opens an existing disc file and a new labeled tape file,
reads records from the disc file and writes these records to the tape file. If an attempt is made to
write records on the tape beyond the EOT marker, MPE will write EOV1 and EOV2 labels on the
tape and request the Console Operator to mount another reel of tape.

The statement

FWRITE (FN02,INBUF,LGTH,O);

writes the contents of array INBUF onto the tape file signified by FN02. The LGTH parameter
specifies the number of words to be written.

Writing a User-Defined File Label on a Labeled Tape File

User-defined labels are used to further identify files and may be used in addition to the ANSI­
standard labels. Note that user-defined labels may not be written on unlabeled magnetic tape
files. User-defined labels are written on files with the FWRITELABEL intrinsic.

User-defined labels for labeied tape files differ siightiy from user-defined labels for disc files in that
user-defined labels for tape files must be 80 bytes (40 words) in length. The tape label information
m~ed not occupy all 80 bytes, however, and you can set unused portions of the space equal to
blanks. User header labels on tapes destined for foreign systems should have the characters
"UHL" and a digit as the first four characters of the label, but for MPE, they are arbitrary.

The program that was shown in Figure 9-3 opens a new tape file and writes an ANSI-standard
label on it, then writes a user-defined header label with the FWRITELABEL intrinsic.

The statement

FN02: = FOPEN (FILID2, % 1004,5,,DEV,LABELID, 1);

opens a new tape file named NEWTAPE1 (the name is contained in byte array FILID2) and writes
an ANSI-standard label (contained in byte array LABEL!D) to the file.

9-22

Magnetic Tape Considerations

The statements

MOVE USERLABL: =" ";
MOVE USERLABL: = USERLABL (0), (40);

fill the array USERLABL with 80 ASCII blanks (40 words), and the statement

MOVE USERLABL: ="UHL 1 USER HEADER LABEL NO. 1 ";

moves the desired user label into the first 35 bytes of the array, replacing the blanks.

The statement

FWRITELABEL (FN02, USERLABEL,40,0);

writes all 80 characters into the file as a user-defined header label.

Note that in order to write a user-defined header label, the FWRITELABEL intrinsic must be called
before the first FWRITE to the file. MPE will, however, write user-defined trailer labels if
FWRITELABEL is called after the first FWRITE.

Reading a User-Defined File Label on a Labeled Tape File

The FREADLABEL intrinsic is used to read a user-defined label on a labeled magnetic tape file. To
read a user-defined header label, the FREADLABEL intrinsic must be called before the first FREAD
is issued for the file. Execution of the first FREAD causes MPE to skip past any unread user-defined
header labels.

In Figure 9-4, the statement

FREADLABEL (FNO 1,INBUF,40);

reads a user-defined header label. The parameters specified are:

FN02 The file number as returned by the FOPEN intrinsic.

INBUF An array to which the label is transferred.

40 Specifies the number of words to be read.

9-23

Magnetic Tape Considerations

DUMPING FILES OFF-LINE

You can obtain a back-up copy of a particular user disc file or set of files by copying it offline onto
magnetic tape or serial disc via the :STORE command. If you have standard user capability only,
you can dump any file to which you have read-access. If the file has a negative file code, however,
you must also have the Privileged Mode Optional Capability t_o dump this file. If you have
Account Manager Capability, you can dump any file in your account, but cannot dump
those with negative file codes unless you also have the Privileged Mode Capability. If you have
the System Manager or System Supervisor Capability, you can dump any user file in the system.
The files are copied in a special format along with all· descriptive information (such as account
name, group name and lockword), permitting them to be read back into the system later by the
:RESTORE command.

The :STORE and :RESTORE commands are used primarily as a back-up for files. However, you can
also use them to interchange files between installations if the accounts, groups, and creators of the
files to be restored are defined in the destination system. Furthermore, if you specify no destination
device in the :RESTORE command, MPE does not guarantee which devices will actually receive the
files: if a device of the same type as the original device with sufficient storage space cannot be
found, the file is restored to any device that is a member of the device class DISC.

Files currently open for output, input I output, update, or append access cannot be acted upon by a
:STORE command. Files currently being stored or·restored cannot be acted upon by a :STORE
command. However, files loaded into memory (containing currently running programs), and files
open for input only, can be stored, since their contents cannot be altered.

While a file is being dumped, it is locked by MPE so that it cannot be altered or deleted until safely
copied to tape or serial disc. If a job/session running a :STORE/:RESTORE function is aborted by
yourself or the console operator, those files not yet stored or restored will be unlocked during the
processing of the abort.

The flow chart in Figure 9-5 shows the checks performed against a file to ensure its eligibility for
dumping.

9-24

NO

FILI CANNOT aE OUMPIO
CHlCICt"°G TlR!lllNATll
FOR THIS '•LE. AN UUllOR
MISSACOE IS PRINTED, AND
C~MA"ID IXICUTION
CON11NUH.

Figure 9-5.

ITO"l PILI
O .. ·LINI

Magnetic Tape Considerations

Checks for File Dump Eligibility.

9-25

Magnetic Tape Considerations

Magnetic Tape Format

Tapes produced by the :STORE command may be labeled or unlabeled. Unlabeled :STORE tapes
are compatible with those produced by the :SYSDUMP command used by System Supervisors for
general backup of the overall system. (:SYSDUMP tapes are read by the MPE Initiator program to
reload the system.) Tapes produced by either :STORE or :SYSDUMP are suitable as input to the
: RESTORE command.

NOTE

In general, standard users use :STOREl:RESTORE when they desire
to back-up only those files which belong to a particular set of groups
or accounts. System Supervisors use :SYSDUMP for daily back-up
of the overall system, since it provides a record of the latest
accounting information. However, System Supervisors may also use
:STORE!:RESTORE to save or load any or all files on the system
provided the appropriate account, group, and user structures
already exist. Tapes created with :SYSDUMP cannot be labeled.

The general formats of labeled and unlabeled magnetic tapes created by the :STORE command
are presented in Figure 9-6. These formats are defined in greater detail in Table 9-1 for labeled
tapes, and in Table 9-2 for unlabeled tapes. Both :STORE and :RESTORE support multifile and
multi-reel files.

The tape directory records are 12 word records with a default blocksize of 4096 words. There is
one entry for each file on the tape. The entries are ordered the same as the files on the tape (see
Table 9-2).

The recsize parameter of the :FILE command can be used to change record size. The default
record size of each file is 4096 words. The iast record may be shorter, but it wili be a multiple ot 256
words. The beginning of each fi!e contains the system file label known to the file system.

9-26

VOLUME
1 8

u OF 0
N T
L

2

A
8
E
L
E
D

T
A
p VOLUME 8 E 2 0 OF T

2

/

VOLUME v
1 0

OF L

L
2 1

A
8
E
L
E
D
T
A

" VOLUME
E 2

v
0

OF L
2 2

FflE A

/
I

TAPE
E F. E E HEAD£R TAPE DIRECTORY RECORD 0 0 LABEL 0 DIRECTORY LAST 0 1 F F F F RECORD

FllE 8

~ E HEADER TAPE 0 CONTINUATION OF
LABEL DIRECTORY F FILE B

SAME AS OR START OF

H H
D D
R R
1 2

H H
D D
R R
1 2

VOLUME 1

DIRECTORY FflE

I

u T TAPE H M DIRECTORY L

'\TAPE MARK

HEADER LABEL

u REMAINDER T H M OF FILE
L #2

T
M

T
M

NEW FILE

E E
0 0
F F
1 2

E E
0 0
F F
1 2

RLE #1

I

'
H H E E

T D D T FILE T 0 0
M R R M #1 M F F

1 2 1 2

H H E E
T D D T TAPE T 0 0
M R R M DIRECTORY M F F

1 2 1 2

'-,~~~~---~~~___../
I

NOT£: TAPE DIRECTORY FOLLOWS
COMPLETION OF CONTINUED FILE.

T
M

T
M

Magnetic Tape Considerations

RLEB

' /
I

'
LAST

RECORD E E E E TRAILER ON 0 LABEL 0 0 I)
THIS F F F F
REEL

LAST
RECORD E E I

ON 0 TRAILER 0 0
THIS F LABEL F F
REEL

FILE #2

H H E E
D D T FILE T 0 0 T T
R R M #2 M v v M M
1 2 1 2

NOT£: WHEN THE FILE 7
SPANS MORE THAN ONE

VOLUME, EOV IS WRITTEN
INSTEAD OF EOF.

H H FILE
D D T #3
R R M (COMPLETE}
1 2

Figure 9-6. :STORE Tape Formats.

9-27

Magnetic Tape Considerations

Table 9-1. Format of Tape Labels written by MPE (ANSI Standard).

File Header Label (80 bytes)

P.ition Contents Comments

Bytes 1-4 HDRl Indicates file header 1 label. Ap-
pears before each file on the reel.

Bytes 5-21 filename.groupname Uaed for file identifier in ANSI-
1tandard labels.

Bytes 22-27 uolume 1et id Six-character identifier of the
first volume in a set, as supplied
by :FILE command, FOPE~ in-
trinsic, or console operator.

Bytes 28-31 reel number A four-digit entry from 0001 to
9999, indicating the relative posi-
tion of a reel in a volume set.

Bytes 32-35 file sequence number A four-digit entry from 0001 to

j 9999, indicating the relative posi-
tion of a file on a reel.

Bytes 36-41 Blanks Not written by MPE. (Reserved

1 generating data groups in ANSI-
standard labels.) J

Bytes 42-47 file creation date Indicates date on which file ia
I written to magnetic tape.

Bytes 48-53 file expiration date Indicates date after which file can
be overwritten.

Byte 54 %230 Indicates that label was created
by MPE. I

I
Bytes 55-80 Blanks Reserved for future use. I

Volume Header Label (80 bytes)

Position Contents Comments

Bytes 1-4 VOLl Indicates volume label (1 specifies
volume number). Appears on each
label.

Bytes 5-10 volume id Six-character identifier as sup-
plied by :FILE command, I

I FOPEN intrinsic, or Console Op-
erator.

Bytes 11-37 Blanks Reserved for future use.

Bytes 38-51 Blanks Not written by MPE. (Used for
owner identification in ANSI-
standard labels.)

Bytes 52-79 Blanks Reserved for future use.

Byte 80 1 Indicates that label conforms to
ANSI-standard.

9-28

Magnetic Tape Considerations

Table 9-2. :STORE Tape Format.

ITEM NO. ITEM

2

3

4

5

6

7

End-of-File (EOF) Mark

EOF Mark

Header label (40 words). used as follows

Wo~s Con~nb
0-13 "STORE/RESTORE LABEL-HP/3000 ..

14-15

16

17

18

19-21

22

23

24

25

26

EOF Mark

MPE Ill Identification: (Identifies modified format of :STORE:
tape).
If true. indicates that first file on volume is continued from
previous volume.
Checksum for verifying validity of words 14 and 15.

Index into STORE directory of first file on volume (Could be
continuation of a file from previous volume).

Reserved by MPE.

Block size in words "O" means 1024 words.

Reel Number

Bits (0 7) = last 2 d191ts of year } Date of creation
(7 9) = Julian date

' Bits (0 8) = hours
(8 8) = minutes

f
Time of creation

Bits (0 8) = seconds
(8 8) = tenth-of-seconds

Tape directory-Consists of 12-word records blocked according to the tape block
size spec1f1ed. (The last block may be shorter) There is one entry for each file on the
tape. and the entries are ordered the same as the files The 12-word entry 1s

Word Contents
0-3 File name

4-7 Group name

8-11 Account name

EOF Mark

First file The data 1s blocked according to the block size specified 1n the store tapP
:FILE command (The last block may be shorter. but will always be a multiple of 256
words) For fixed-length and undefined-length record hies. only data up to the
end-of- file is dumped; intervening zero-length extents are not dumped For
variable-length record hies. only allocated extents are dumped

9-29

Magnetic Tape Considerations

Table 9-2 :STORE Tape Format (Continued).

ITEM NO. ITEM

8 EOF Mark

9 Second File

10 EOF Mark

11 Last File

12 EOF Mark

13 Trailer Label (40 words). Identical to header label (hem 3) except that Words 21 and
22 are used as follows

WORD USE

21 = 1 means that preceding file ended with preceding EOF mark
I

22 = 1 means that entire tape set ends with preceding EOF mark

14 EOF Mark

15 EOF Mark

I
16 EOF Mark

:STORE tapes may have multiple reels If end-of tape (EQT) 1s detected during a write data operation. a file

I mark is written followed by Items 13 to 16 above. with word 21 of the trailer label set to 1 if this was the last
record of the file and 0 otherwise If EQT is detected on a write file mark operation. Items 13 to 16 are written
with word 21 set to 1 and word 22 set to 1 if this 1s the last file on the tape, and O otherwise Reels subsequent
to Reel 1 have the following format

, Header label

2 EOF marl<

3 Remainder of preceding file or next file

4 EOF mark

5 Next file. the rest of the tape is written in the same format as the first reel

9-30

Magnetic Tape Considerations

Each file on the tape is written in blocks which you may specify in the related :FILE command to be
from 256 to 4096 (8192 for serial disc) words long, in increments of 256 words. The default value
is 4096 words for non-programmatic calls to :STORE and 1024 words for programmatic calls. The
last block may be shorter, but its length will be a multiple of 256 words. The first 128 words of the
first block of each file contains the system file label.

Listing Results of the :STORE Command

After the tape is written, MPE prints data showing the results of the :STORE command. By default,
this output is sent to the standard list device ($STDLIST). However, you can override this default
and transmit the output to another file by issuing a :FILE command equating SYSLIST, the formal
designator by which the :STORE command executor references this list file, to another file. For
example, if you are located at a terminal, you might transmit this output to a line printer by entering:

:FILE SYSLIST=MYFILE;DEV=LP

(Assume the device class LP indicates a line printer.)

If you omit the SHOW keyword from the :STORE command, only the total number of files actually
stored, a list of files not stored, and a count of files not stored, are printed. But if SHOW is included,
the listing of files appears in the format shown in Figure 9-7. A sample printout is shown in the lower
portion of the figure. In this format, xxx is a value denoting the total number of files dumped onto
tape; yyy denotes the number of files requested that were not dumped. The notations filename,
groupname, and acctname under the FILES STORED heading name the individual files dumped,
and their groups and accounts, respectively.

The notation ldn indicates the logical device number (in decimal) of the device on which the file
label and first extent resides, and addr is the absolute address (in octal) of the file label. The
notation volume indicates the volume number of the tape set onto which the file was stored. The
notations filename, groupname and acctname under the FILES NOT STORED heading, indicate
the individual files not dumped, and their groups and accounts. The notation fileset# shows the
number of the fileset to which the particular file belongs (relative to its position following the
:STORE command name). The notation msg is a message denoting the reason that the file was not
dumped. These errors do not abort the file storing operation, which continues. The messages and
their meanings are shown in Table 9-3.

9-31

Magnetic Tape Considerations

FILES STORED = xxx

FILE

filename 1
filename2

filenamen

.GROUP .ACCOUNT

.groupname 1 .acctname 1

.groupname2 .acctname2

. groupnamen .acctnamen

FILES NOT STORED= yyy

FILE .GROUP .ACCOUNT

filename 1 .groupname 1 .acctname1
filename2 . groupname2 .acctname2

filenamen . groupnamen .acctnamen

Example

FILES STORED = 6

FILE .GROUP .ACCOUNT LON

DATA .PUB .SUPPORT 1
FSMT .PUB .SUPPORT 1
FSMTS .PUB .SUPPORT 1
FTEST .PUB .SUPPORT 1
FTESTJX .PUB .SUPPORT 1
FTESTS .PUB .SUPPORT 1

FILES NOT STORED= 1

LON

ldn1
ldn2

ldnn

FILE SET

fileset
fileset

fileset

ADDRESS

%24324
% 111052
% 110775
% 111237
%41207
%23603

FILE .GROUP .ACCOUNT FILESET

K2861445 .PUB .SUPPORT

Figure 9-7. List Output of :STORE Command.

9-32

ADDRESS

addr1
addr2

addrn

REASON

msg
msg

msg

VOLUME

1
1
2
2

REASON

BUSY

Magnetic Tape Considerations

Table 9-3. :STORE Command Error Messages.

MESSAGE MEANING

ACCOUNT NOT IN DIRECTORY Specified account does not exist.

GROUP NOT IN DIRECTORY Specified group does not exist.

FILE NOT IN DIRECTORY Specified file does not exist.

BUSY File is open for output, or is currently being
stored or restored.

FILE CODE< 0 AND NO PRIVMODE You tried to store a file with a negative file code,
but do not have Privileged Mode Capability.

LOCKWORD WRONG The file lockword either was not provided or
was specified incorrectly.

READ ACCESS FAILURE You do not have read access to the specified
file.

FILE LABEL ERROR Due to a problem beyond your control, the file
label is not valid.

Examples of backing up files. The following examples illustrate how to make a back-up copy of
files. To copy all files in the group GP4M in your log-on account to a tape file named BACKUP,
enter the following commands. A listing of files copied and not copied appears on the standard
listing device.

:FILE BACKUP;DEV=TAPE
:STORE @.GP4M; *BACKUP; SHOW

The :STORE command references the formal designator SYSLIST when it lists the files copied and
not copied. The output is sent to the standard listing device by default, but by referencing SYSLIST
in a :FILE command, you can send the list of files copied and not copied to a file, or to the line
printer, as shown below:

:FILE SYSLIST;DEV=LP
:FILE BACKUP;DEV=TAPE
:STORE @.GP4M;*BACKUP;SHOW

To copy the same set of files to serial disc, enter:

:FILE BACKUP;DEV=SDISC
:STORE @.GP4M; *BACKUP; SHOW

9-33

Magnetic Tape Considerations

Explicit or implicit redundant references are permitted among the files you request, but once a file
has been locked down for dumping, any subsequent references to it result in the message BUSY
even though execution of the :STORE command continues. For instance, suppose the file identified
as FN.GN.AN is a member of the fileset referenced by@ in the following command:

:STORE @,FN.GN.AN; *DUMPTAPE;SHOW

The command is executed successfully, but the fileset# and msg notations under FILES NOT
STORED on the listing show:

filename groupname acctname fileset# msg

FN GN AN 2 BUSY

This same file is also noted under FILES STORED. The file is, in fact, actually stored.

Retrieving Dumped Files

A particular file or fileset that has been stored offline by :STORE (or :SYSDUMP) can be copied
back onto disc. If you have System Manager of System Supervisor Capability, you can restore
any file from a :STORE tape, assuming the account and group to which the file belongs and the
user who created the file exist in the system.If you have Account Manager Capability, you can
restore any file in your account (but cannot restore those with negative file codes unless you also
have Privileged Mode Capability). If you have standard user capability, you can restore any file in
your log-on account if you have SAVE access to the group to which the file belongs (but you
cannot restore those with negative file codes unless you also have Privileged Mode Capability). If
the file to be stored is protected by a lockword, you must supply the lockword in the :RESTORE
command; if you are logged on interactively, you will be prompted for the lockword if you fail to
supply it.

MPE attempts to restore the files to a device of the same class as the device on which they were
originally created. The files are attached to the appropriate groups and accounts with previous
account and group names and lockwords all reinstated. The :RESTORE command does not create
any new accounts or groups. Any file to be restored is restored only if the account name and group
name exist on disc (in the system directory).

If a copy of a file to be restored already exists on disc, you must have write access to the disc file
(since it will be purged by :RESTORE) unless you use the KEEP keyword. This keyword specifies

that if a file referenced in the :RESTORE command currently exists on disc, the file on disc is
retained and the corresponding tape file is not copied into the system.

Files currently open, loaded into memory, or being stored or restored, cannot be acted upon by a
: RESTORE command.

9-34

Magnetic Tape Considerations

The :RESTORE command performs the same checking done by the :STORE command to ensure a
file's eligibility for retrieval. If you include the SHOW keyword in the :RESTORE command, MPE
prints a listing showing which files were restored. Otherwise, a count of files restored, a list of files
not restored, and a count of files not restored, are supplied.

Files can be restored directly from the volume member onto which the file was stored. Thus, if the
file was stored on the mth member of a set consisting of n members, the restore operation can
start directly from the mth member.

If the location of a file is not known in relation to a specific volume of a multi-volume set, the
following strategy can be used to eliminate unnecessary sequential scanning of member volumes
for locating specific files:

Mount the last member of the set at the initiation of the restore operation. If this member
cannot satisfy the requirement of locating the file, the :RESTORE command will ask that the
immediately preceding member of the set be mounted. (The member's number will be
displayed in the request message on the console.) This operation of locating the appropriate
member will continue until the target member is recognized, at which time the actual restore of
the files will begin.

It is strongly recommended that the List Output of the :STORE command be used to precisely
determine the location of files stored on multi-volume :STORE sets.

Listing Results of the :RESTORE Command

As with the listing produced by :STORE, the listing output by :RESTORE is transmitted to a file
whose formal designator is SYSLIST; if you do not specify otherwise, this file is equated to the
standard list device, $STDLIST. An example of a typical :RESTORE operation with SHOW and
KEEP options appears in Figure 9-8. The format of the listing is the same as that for the :STORE
example shown in Figure 9-6. The notation msg is an error message denoting the reason that the
file was not restored. These errors do not abort the file-restoring operation. The messages and their
meanings are listed in Table 9-4.

NOTE

Tape and serial disc files created by the :SYSDUMP command and
the :STORE command are compatible. (:SYSOUMP is discussed in
the System Manager/System Supervisor Reference Manual, part
number 30000-90014.) Thus, a file dumped via :SYSDUMP can be
used as input for the :RESTORE command. However, a
:STOREl:RESTORE tape or serial disc pack cannot be used as the
first volume of a system initiation input medium during a reload,
because the operating system has not been copied to the medium.

9-35

Magnetic Tape Considerations

FILES RESTORED = 6

FILE .GROUP .ACCOUNT LON ADDRESS

DATA .PUB .SUPPORT 1 %23463
FT EST .PUB .SUPPORT 1 %24324
FTESTJ1 .PUB .SUPPORT 1 %23741
FTESTJOB .PUB .SUPPORT 1 %23753
FTESTS .PUB .SUPPORT 1 %23765
PEOF .PUB .SUPPORT 1 %24354

FILES NOT RESTORED = 7

FILE .GROUP .ACCOUNT FILESET REASON

FSMT .PUB .SUPPORT ALREADY EXISTS
FSMTS .PUB .SUPPORT ALREADY EXISTS
FTESTJ2 .PUB .SUPPORT 1 ALREADY EXISTS
FTESTJ3 .PUB .SUPPORT 1 ALREADY EXISTS
FTESTJX .PUB .SUPPORT 1 ALREADY EXISTS
JUNKJOB .PUB .SUPPORT ALREADY EXISTS
PEOFS .PUB .SUPPORT ALREADY EXISTS

Figure 9-8. List Output of :RESTORE with SHOW and KEEP.

Table 9-4. :RESTORE Command Error Messages.

MESSAGE

ACCOUNT DIFFERENT FROM LOGON

ACCOUNT DISC SPACE EXCEEDED

ALREADY EXISTS

BUSY

9-36

MEANING

The file's account name is different from
the name of your log-on account. Users
do not have save-access to groups
outside their log-on accounts.

The account's disc space limit would be
exceeded by restoring this file.

A copy of the file specified already exists I
on disc, and KEEP was also specified.
The file was not replaced. I
The disc file is open, loaded, or being
stored or restored at present.

Magnetic Tape Considerations

Table 9-4. :RESTORE Command Error Messages. (Continued)

MESSAGE MEANING

CATASTROPHIC ERROR A catastrophic error occurred while the
system was restoring either this file or
one previous to it on the tape, and the
: RESTORE command was aborted. This
message may result from one of the
following:

Command Syntax error.

Disc input/ output error (in system).

File directory error.

File system error on the tape file
(TAPE), list file (LIST), or any of the
three temporary files (GOOD, ERROR,
and CAN DI DAT) used by the
: RESTORE command executor.

Improper tape; the tape used for input
was not written in :STORE/:RESTORE
format.

No continuation reel; the computer
operator could not find a continuation
reel for a multi-reel tape set.

Device reference error; the specification
for the device parameter is illegal, or the
device requested is not available.

Tape read error in a sensitive part of the
tape, which makes it impossible to
continue. (Most tape errors are merely
skipped, omitting the affected file.)

CREATOR NOT iN DiRECTORY The creator of the file is not defined in
the system.

DISC FILE CODE < 0 AND NO PRIV MODE One of the files (on disc) to be replaced
has a negative file code, and you do not
have Privileged Mode Capability.

DISC FILE LOCKWORD WRONG The disc file has a lockword that does
not match the lockword for the file on
tape.

FILE LABEL ERROR Due to a problem beyond your control,
the file label is not valid.

9-37

Magnetic Tape Considerations

Table 9-4. :RESTORE Command Error Messages. (Continued)

MESSAGE

GROUP DISC SPACE EXCEEDED

GROUP NOT IN DIRECTORY

NOT ON TAPE

OUT OF DISC SPACE

SAVE ACCESS FAILURE

MEANING

The group's disc space limit would be
exceeded by restoring this file.

The group specified does not exist in the
system.

The file specified is not on the tape.

There is insufficient disc space to
restore this file.

You do not have save-access to the
group to which the file belongs.

I
1

TAPE FILE CODE < 0 AND NO PRIV MODE One of the files on tape to be restored
has a negative file code, and you do not I
have Privileged Mode Capability.

TAPE FILE LOCKWORD WRONG

TAPE READ ERROR

I WRITE ACCESS FAILURE

The tape file has a lockword that you did
not supply or did not specify correctly.

A tape read error has occurred on a
block other than that containing the file
label.

1

You do not have write-access to the
copy of the file on disc.

Examples of restoring files. The following examples show how to retrieve files using : RESTORE.
To retrieve from the file named BACKUP all files formerly belonging to your log-on group, enter:

:FILE BACKUP;DEV=TAPE
:RESTORE *BACKUP;@;KEEP;DEV=MHDISC;SHOW

To have the list of restored files printed on a line printer, enter:

:FILE SYSLIST;DEV=LP
:FILE BACKUP;DEV=TAPE
:RESTORE *BACKUP;@;KEEP;DEV=MHDISC;SHOW

If a file satisfying the "@" specification already exists in the system, it is not restored.

9-38

~IHllHI
._____F_1L_E_s_v_s_r_EM_R_EF_E_R_E_N_c_E _____ ___,J [TI

RECORDS - Always begin and end on word boundaries (odd byte length records padded out to a
word boundary).

Record Formats

Fixed

All records a fixed length; blocks contain a fixed number of records.

Record length and blocking factor known to file system.

Records consist of data only.

Variable

Record length varies; blocks contain a variable number of records.

File attribute defined to file system is Maximum Record Length = (Record Length + 1) X
Blocking Factor (this is the largest data record the file can accommodate).

Block length is Maximum Record Length plus 1 word.

Each record consists of data plus a field containing length of that record in bytes (field is 1
word long).

Each block contains an end-of-block indicator (1 word long).

Undefined

Block length set to record length defined to file system.

Blocking factor assumed to be 1.

Blocking and deblocking of records is the user's responsibility.

Records shorter than block length have their last word of data repeated to end of block.

Block length is buffer size.

Default is two buffers.

Buffering

:FILE ... [;BUF [= numbuffers]
[;NOBUF

May be overridden at run time with :FILE command.

NOBUF specifies no buffers allocated for this file. Blocks transferred directly onto user's stack.

File system performs no blocking/ deblocking.

A-1

FiLE SYSTEM REFERENCE

Parameters Common to the :FILE and :BUILD Commands

[F]
[;REC= [,recsize] [, [blockfactor] [, [U] [,BINARY]]]]

[V] [,ASCII]

recsize: + for words, - for bytes.
BINARY: pad longer records or new disc extents with binary zeroes (% 0).
ASCII: pad longer records or new disc extents with spaces (% 40).

[; DISC= [numrec] [, [numextents] [,initalloc]]]

numrec: maximum number of records to allow in file. Default = 1023.
numextents: 1 through 32; default is 8.
initalloc: number of extents initially allocated. Default = 1.

[;CODE]

User codes are 0 through 1023.
Negative codes accessible only in Privileged Mode.
1024 + or mnemonic are system defined:

-400 IMAGE root file.
-401 IMAGE data set.
-402 IMAGE file for DS information.
1024 USL USL file.
1025 BASD BASIC data file.
1026 BASP BASIC program file.
1027 BASFP BASIC fast program file.
1028 RL Relocatable Library.
1029 PROG Program file.
1031 SL Segmented Library.
1035 VF ORM VI 3000 forms file.
1036 VF AST VI 3000 fast forms file.
1037 VREF VI 3000 reformat file.
1040 XLS AV Cross Loader ASCII file (SAVE).
1041 XLBIN Cross Loader relocated binary file.
1042 XLDSP Cross Loader ASCII file (DISPLAY).
1050 EDITQ Edit KEEPQ file (non-COBOL).
1051 EDTCQ Edit KEEPQ file (COBOL).
1052 EDT CT Edit TEXT file (COBOL).
1058 TOP I 3000 work file.
1060 RJEPN RJE punch file.
1070 QPROC QUERY procedure file.
1071 QUERY work file.
1072 QUERY work file.

A-2

1080
1083
1084
1090
1110
1111
1112
1130

[;CCTL]
[;NOCCTL]

KSAMK
GRAPH
SD
LOG
PC ELL
PFORM
P2680
OPTLF

KSAM key file.
GRAPH specification file.
Self-describing file.
User Logging file.
IDS I 3000 character set file.
IDS/3000 form file.
IFS/3000 environment file.
On-line performance tool.

FILE SYSTEM REFERENCE

CCTL: an additional character is added to the beginning of each record containing carriage
control information, in addition to record length. Valid for ASCII files only.

NOCCTL: no additional character reserved for carriage control. (Default = NOCCTL.)

[;TEMP]

:BUILD command can only create a file in the Permanent or Temporary domain. Default is
Permanent.

Referencing Disc File Domains

[,NEW [;DEL]
:FILE ... [,OLD] [;SAVE]

[,OLDTEMP] [;TEMP]

NEW: create a disc file in the NEW domain.
OLD: find a disc file that already exists in the OLD (PERMANENT) domain.
OLDTEMP: find a disc file that already exists in the TEMPORARY domain.
Default: search TEMPORARY domain then PERMANENT domain.

DEL: delete file upon c!ose.
SAVE: move this file to PERMANENT domain upon close.
TEMP: make this NEW file TEMPORARY upon close.
Default: upon close file assumes same disposition as at open.

:FILE Back-Reference

:FILE formaldesignator1 = * formaldesignator2

Here formaldesignator 1 takes on all the same attributes as formaldesignator2 from a previous
or subsequent :FILE command.

A-3

F!LE SYSTEM REFERENCE

Controlling Simultaneous Access to Disc Files

[;EXC]
:FILE ... [;SEMI]

[;SHR]

EXC: Exclusive access; no other users will be allowed to access this file while you have it open.
You will not be allowed EXC access if someone is already using the file.

SEMI: Exclusive Allowing Read; other users may open file but only for read-only access
(ACC =IN). You will be granted this access only if no one else is using this file or it is opened

for read-only access.
SHR: Shared access. Allow concurrent use by other users. You will not be granted access to

the file if someone has it opened with EXC access.

Specifying Access

IN
OUT
INOUT

:F!LE ... [;ACC = OUTKEEP]
APPEND
UPDATE

IN: read only.
OUT: write only. Original contents of file overwritten. File cannot be read.
INOUT: any operation but update allowed. (You can still read then write the same record.)
OUTKEEP: write-only access. Original contents kept and you are allowed to write both before

and after end-of-file. File cannot be read.
APPEND: records may be written only beyond end-of-file. File cannot be read nor can you write

into original extent.
UPDATE: update access; all operations may be performed on file.
Default: IN access for devices that can perform input; otherwise OUT for output-only devices.

Specialized Parameters of :FILE

MULTI: requires Process Handling capability.
MR: allows multiple block access.
NOWAIT: requires Privileged Mode capability.

A-4

ANY

AL

GL

CR

GU

AC

MTS

FIELD

MEANING

BITS

FIELD

MEANING

FILE SYSTEM REFERENCE

User Types

Any User. This category covers any user defined in the system, and includes all
categories defined below.

Account Librarian User. User with Account Librarian capability, who can manage
certain files within his account that may or may not all belong to one group.

Group Librarian User. User with Group Librarian capability, who can manage
certain files within his home group.

Creating User. The user who created this file.

Group User. Any user allowed to access this group as his log-on or home group,
including all GL users applicable to this group.

Account Member. Any user authorized access to the system under this account;
this includes all AL, GU, GL, and CR users under this account.

FOPTIONs for Use with FOPEN

to:2t ~:)) 15:11 1&:11 (7:11 18:21 (tl:Jt 113:11 (14:21

Dileltow MPE Tape Carriage Recrinl Dmult AICll/ .., File Tyf" :FILE Labels Control For-' ~
.._.., o..M

(0:31

Reaerftd

00 <>=STD <>=Allow CF NON G=NOCCTL OO='Fixed OO()!!!fjlename ()::Binary ClO=New file
:FILE LABEL·

00 1='KSAM ED 1='CCTL 01=Variable OOl=SSTDLIST 1=ASCll 01=Dld
1=No TAPE Permanent

01 O::RIO :FILE 1G=Unde· 01G=$NEWPASS File
1= fined

10 CFCIR LABEL· 011=SOLDPASS 1o=Dld
ED Temporary

11 CF MSG TAPE 100=$STDIN File

101=SSTDINX 11 :Old Perm.
or Temp.

11Q=$NULL File

AOPTIONs for Use with FOPEN
(3:1) 14:1)

F1i. No·Woit
Copy 1/0

(5:2)

Multi
Accls1

(7:11

Inhibit
Buffering

18:2) 110:11

Exduoi•• 0y,..mic
Accesl Locking

(11:1)
"""Mijfo.

record
Acc:et1

(12:4)

Accfts
Type

Cl=access m file's 1=No Wait CXP-Non-multi- o=euF C>O=Default D=No O:No OOO=Read only
native mode access

2=Non No-Wait
1~ss ;is standard 01=0nly Intra-

sequential file job multi·

10:1nter-job
multi·access
allowed ·

A-5

FLOCK Multi·
1=NOBUF 01=Exclusive I ~~owed Record 001"'Write only

10=Exclusive FLOCK !=Multi O 010=Write (save)
Access Allowed record only
Read

01 l=Append only

11=shart 1C>O=Readlwrite

101"'Update

110:Execute

FILE SYSTEM REFERENCE

MPE Defaults and Device-Dependent Restrictions

INPUT ONLY DEVICES (SERIAL)

Card Reader I Paper Tape Reader

No carriage control
Undefined-length records If card reader, ASCII only (can only read ASCII cards using
FCONTROL)
Blockfactor = 1
Domain = 1 (OLD permanent)
If not ASCII, then NOBUF
If access type = 1, 2, 3, then access violation results

INPUT /OUTPUT DEVICES (PARALLEL)

Terminals

ASCII
NOBUF
Undefined-length records
Blockfactor = 1

INPUT /OUTPUT DEVICES (SERIAL)

Magnetic Tape Drive
Serial Disc Drive

No restriction
OUTPUT ONLY (SERIAL)

Line Printer /Card Punch/ Paper Tape Punch/ Plotter

If Paper Tape Punch, ASCII only
Undefined-length records
Blockfactor = 1
Domain= NEW
Access Type = 1, write only (if read only specified, access violation results)

Laser Printer

Initially and always spooled
Write only access
All other restrictions same as for line printer

L
I UNDEFINED (COMMON CHECKING)

If carriage control specified and not ASCII, access violation results

A-6

Relative 1/0 Block Format

Item
#23 Logical Record 0

Item
#24

Logical Record F-1

Active Record Table

FFILEINFO Item Numbers

Item 21 - Physical Block Size
22 - Data Block Size
23 - Offset to Data in Blocks

Item
#22

Item
#25

Item
#21

24 - Offset to Active Record Table within the block
25 - Size of Active Record Table

Active Record Table

FILE SYSTEM REFERENCE

record 0 (block-relative)
record 15

I I I I I I I I I I I I I I I word 0

I I I I I I I I I I I I I word A-1

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

A = active-record table size in words =+
F = blocking factor (number of records per b!ock)

R = index of desired record, modulo F

W = index of word for desired record = RI 16

P = index of bit for desired record = R mod 16

bit = 0: inactive record
= 1: active record

A-7

.__s_r_Ar_u_s_1N_F_o_R_M_A_r1_o_N~~~~~~~llH!H,

You can use certain file system intrinsics to obtain information on the status of your disc files.
Information is available about:

Actual file characteristics. These include the physical and operational features of your file. Such
characteristics are defined by a combination of FOPEN parameters, :FILE commands, file label
contents, and file system defaults.

Current file information. This includes details on the current status of your file, such as the
placement of the end-of-file indicator, the location of the record pointer, and the the logical and
physical record transfer count.

Error information. Here you may discover the last error for your file, and/ or the last FOPEN
error.

OBTAINING STATUS INFORMATION

The same status information may be obtained via different intrinsic calls. The FGETINFO intrinsic
will return actual file characteristics and current file information, the FCHECK intrinsic will return
error information, and the PRINT'FILE'INFO intrinsic will list details of all three categories.
PRINT' FILE' INFO will format information and output it to the list device for your job/session;
FGETINFO and FCHECK will return unformatted information directly to your calling program.

PRINT'FILE'INFO.

The PRINT' Fl LE' INFO intrinsic requires the file number returned by an FOPEN call; in the case of
an FOPEN failure, give zero as the file number. Output will be printed to your job/session list device
in one of two formats: a full file information display for open files or a short file information display
for files that are not open.

8-1

Status Information

NOTE

These formats are sometimes referred to as "tombstones." This may
give the impression that the executing process aborts, but this is not
so: a file information display is simply a listing of status.

+-F-I-L-E---I-N-F-O-R-M-A-T-I-O-N---D-I-S-P-L-A-Y-+
FILE NAME IS SPL.PUB.SYS
FOPTIONS: SYS,B,*FORMAL*,F,N,FEQ
AOPT IONS: IN/OUT, SREC, NOLOCK, DEF, BUFFER
DEVICE TYPE: 0 DEVICE SUBTYPE: 3
LDEV: 2 DRT: 5 UNIT: 0
RECORD SIZE: 128 BLOCK SIZE: 128 <WORDS>
EXTENT SIZE: 360 MAX EXTENTS: 1
RECPTR: 0 RECLIMIT: 359
LOGCOUNT: 0 PHYSCOUNT: 0
EDF AT: 359 LABEL ADDR: %00200262753
FILE CODE: 1029 ID IS MANAGER ULABELS: 0
PHYSICAL STATUS: 1111000000000000
ERROR NUMBER: 42 RESIDUE: 0
BLOCK NUMBER: 0 NUMREC: 1

FILE IS OPEN

• File number represents a currently open file.

• Error indicates last error on file.

• Full display condensed when file is not open.

Figure 8-1. FILE INFORMATION DISPLAY - Full.

8-2

Status Information

+-F-1-L-E---I-N-F-O-R-M-A-T-I-O-N---D-I-S-P-L-A-Y-+
FILE NUMBER -1 IS UNDEFINED.
ERROR NUMBER: 52 RESIDUE: 0
BLOCK NUMBER: 0 NUMREC: 0

+---+

Fl LE NOT OPEN

• File number is zero or invalid.

• FOPEN failure assumed if zero file number (first line
not printed) or invalid file number.

• Error is always last FOPEN error.

Figure 8-2. FILE INFORMATION DISPLAY - Short

B-3

Status Information

Data in a FILE INFORMATION DISPLAY. Sections of the full File Information Display yield different
types of information, as indicated in Figure B-3:

t-F-I-L-E---I-N-F-O-R-M-A-T-I-O-N---D-I-S-P-L-A-Y•
l I

FILE NAME IS SPL. PUB. SYS I
1 FOPT IONS: SYS, B,*FDRMAL*,F,N,FEQ I

I
AOPT IONS: IN/OUT,SREC,NOLOCK,DEF,BUFFER I

I l I
DEVICE TYPE: 0 DEVICE SUBTYPE: 3 I

I LDEV: 2 DRT: 5 UNIT: 0 2 I RECORD SIZE: 128 BLOCK SIZE: 128 <WORDS>
I EXTENT SIZE: 360 MAX EXTENTS: 1 I
l T

I
RECPTR: 0 RECLIMIT: 359 I

3 LOGCOUHT: 0 PHYSCOUNT: 0 I
I

EDF AT: 359 J l
T

J LABEL ADDR: I %00200262753
I FILE CODE: 1029 ID IS MANAGER ULABELS: 0 4
I PHYSICAL STATUS: 1111000000000000
I

l T
I

ERROR NUMBER: 42 RESIDUE: 0 I
5

BLOCK HUMBER: 0 NUMREC: 1 I
I

+-----------------------------~
1 Name and options 2 Device and data structure

3 Transfer information 4 Labels and physical status

5 Error information

Figure 8-3. Data in a FILE INFORMATION DISPLAY.

B-4

I

The fields in a file information display are described in Tables B-1 through B-5.

Table B-1. Name and Options in a File Information Display.

FILENAME ISSPL. PUB. SYS
FOPTIONS:SYS,B,*FDRMAL*,F,N,FEQ
ADPT IONS: IN/OUT, SREC, ND LOCK, DEF, BUFFER

• File Name: Fully qualified (name, group, account)

• FOPTIONS: Actual FOPTIONS in effect

• AOPTIONS: Current AOPTIONS in effect

FOPTIONS Keywords

ASCII/ Default Record
Domain Binary Designator Format

NEW A *FORMAL* F
SYS B $STD LIST v
JOB $NEWPASS u
ALL $0LDPASS ?

$STDIN
$STDINX
$NULL

AOPTIONS Keywords

Dynamic
Access Type Multi-Record Locking

INPUT SREC NO LOCK
OUTPUT MREC LOCK
OUTKEEP
APPEND
IN/OUT
UPDATE

Note: Multi-access, NOWAIT fields not represented.

*Semi-exclusive access (SEMI).

8-5

Carriage
Control

N
c

Exclusive
Access

DEF
EXC
SEA*
SHR

Status Information

Disallow
:FILE

FEQ
DEQ

Inhibit
Buffering

BUFFER
NOBUFF

Status Information

Table B-2. Device and Data Structure in a File Information Display.

DEVICE TYPE: 0 DEVICE SUBTYPE: 3
LDEV: 2 DRT:5 UNIT: 0
RECORD SIZE: 128 BLOCK SIZE: 128 CWORDS>
EXTENT SIZE: 360 MAX EXTENTS: 1

• Device Type, Subtype
LDEV, ORT, UNIT

Hardware Information
(Set at configuration)

• Record Size: Logical Record Size (Words/ Bytes). For variable-length records, does not
include 2 words added.

• Block Size: Physical Record Size (Words/ Bytes). Does not include words added for
variable-length records.

• Extent Size: Number of Sectors per extent.

• Max Extents: Maximum allowed for file.

Table B-3. Transfer Information in a File Information Display.

RECPTR: 0
LOGCOUHT: 0
EDF AT: 359

RECLIMIT: 359
PHYSCOUNT: 0

• RECPTR: Current record pointer (logical or physical). Points to next record to be
transferred.

• RECLIMIT: Maximum number of records in file.

• LOGCOUNT: Number of logical record transfers to/from user stack since FOPEN.

• PHYSCOUNT: Number of physical record transfers to/from file (disc) since FOPEN.

• EOF: Current EOF pointer (one plus largest logical record number ever used to write data
to the file).

Note: RECPTR, LOGCOUNT, PHYSCOUNT, EOF start at 0 for new file. If NOBUF, LOGCOUNT
= PHYSCOUNT. PHYSCOUNT updated only on completion of I I 0 transfer. J

B-6

Status Information

Table 8-4. Labels and Physical Status in a File Information Display.

LABEL ADDR: %00200262753
FILE CODE: 1029 ID IS MANAGER ULABELS: 0
PHYSICAL STATUS: 1111000000000000

• LABEL ADDR: Sector address and ldev number for file label. First three digits for ldev;
next 8 digits for sector address.

• FILE CODE: User or system defined (blank if zero).

• ID: User name of creator.

• ULABELS: Maximum number of user labels allowed.

• PHYSICAL STATUS: Status of disc at time of last interrupt. (Meaningless for disc in
multiprogramming environment.)

Table 8-5. Error Information in a File Information Display.

ERROR NUMBER: 42
BLOCK NUMBER: 0

RESIDUE: 0
NUMREC: 1

• ERROR NUMBER: Last error for file. 0 means EOF detected or no error occurred.

• RESIDUE: 1) Number of words/ bytes not transferred after error was detected. 2) In case
of EOF, number of words/ bytes transferred before EOF was detected.

• BLOCK NUMBER: Error detected in this block.

• NUMREC: Number of logical records in "error" block.

Note: Block number starts at 0.

B-7

Status Information

FGETINFO and FCHECK

Much of the status information obtainable through the PRINT'FILE'INFO intrinsic can be
discovered by using the FGETINFO and FCHECK intrinsics. While PRINT' FILE' INFO prints a file
information display, FGETINFO and FCHECK return status information directly to your program
through their parameters.

The information returned by FGETINFO and FCHECK that corresponds to PRINT'FILE'INFO
information is shown in Figure 8-4.

FGETINFO
+ -F-I-L-E---I-N-F-O-R-M-A-T-I-o-N~--0-1-s-P-L-A-Y- +

FILE NAME IS SPL.PUB.SYS
FOPTIONS: SYS,B,*FORMAL*,F,N,FEQ
AOPTIONS: IN/OUT,SREC,NOLOCK,DEF,BUFFER
DEVICE TYPE: 0 DEVICE SUBTYPE: 3
LDEV: 2 ORT: 5 UNIT: 0
RECORD SIZE: 128 BLOCK SIZE: 128 <WORDS>
EXTENT SIZE: 360 MAX EXTENTS: 1
RECPTR: 0 RECLIMIT: 359
LOGCOUNT: 0 PHYSCOUNT: 0
EDF AT: 359 LABEL ADDR: %00200262753
FILE CODE: 1029 ID IS MANAGER ULABELS: 0

PHYSICAL STATUS: 1111000000000000

Note: Physical status (not useful for disc) is obtained through FCONTROL.

Figure 8-4. Information Available Through FGETINFO and FCHECK.

Both FGETINFO and FCHECK require the file number returned by an FOPEN call. If you omit the
file number with FCHECK, or supply a file number of 0, FCHECK will assume an FOPEN failure.
Invalid file numbers result in error conditions for both FGETINFO and FCHECK.

Status information is returned through the parameters of FGETINFO and FCHECK. With
FCHECK, the errorcode returned is the error which occurred on the most recent intrinsic call or
the iast FOPEN error.

8-8

Status Information

The relationship between PRINT' FILE' INFO fields and FGETINFO and FCHECK parameters is
outlined in Table B-6.

Table B-6. Parameter I Field Relationships.

FGETINFO/PRINT'FILE'INFO

FGETINFO PRINT'FILE'INFO
Parameters Fields

FILENAME FILE NAME
FOPTIONS FOPTIONS
AOPTIONS AOPTIONS

RECSIZE RECORD SIZE
DEVTYPE DEVICE TYPE, SUBTYPE
LDNUM LDEV
HDADDR ORT, UNIT

FILECODE FILE CODE
RECPTR RECPTR
EOF EOFAT
FLIMIT RECLIMIT

FCHECK/PRINT'FILE'INFO

FCHECK
PARAMETERS

ERRORCODE
TLOG
BLKNUM
NUMRECS

PRINT'FILE'INFO
FIELDS

ERROR NUMBER
RESIDUE
BLOCK NUMBER
NUMREC

FGETINFO
Parameters

LOGCOUNT
PHYSCOUNT
BLKSIZE
EXT SIZE
NUMEXTENTS

USER LABELS
CREATORID
LABADDR

B-9

PRINT'FILE'INFO
Fields

LOGCOUNT
PHYSCOUNT
BLOCK SIZE
EXTENT SIZE
MAX EXTENTS

ULABELS
IDIS
LABEL ADDR

TERMINAL CHARACTERISTICS
1

1 •

~~~~~~~~~ 

Terminals and character printers, such as the HP 2631 B, are supported by MPE in two modes: 
point-to-point and multipoint. The point-to-point mode is operated through one of three 1/0 
controllers: the Asynchronous Terminal Controller (ATC) on the HP 3000 Series 11/111, the 
Asynchronous Data Communications Channel (ADCC) on the HP 3000 Series 30/33/40/44, and 
the Advanced Terminal Processor (ATP) on the HP 3000 Series 64. (See the corresponding data 
sheets for devices, terminal types and other features supported on each controller.) The 
multipoint mode is supported by the Multipoint Terminal Software (DSN/MTS). Character printers 
are not supported by MPE for DSN/MTS. A full description of the DSN/MTS facility is available in 
the DSN/MTS Reference Manual, part number 32193-90002. 

This section deals primarily with the operation of point-to-point terminals. Most of the facilities do 
not apply to multipoint devices. 

Terminals may be operated as session log-on devices or as "file system" devices. You can control 
certain aspects of terminal operation with the FSETMODE, FCONTROL, and PTAPE intrinsics. 
Before these intrinsics can be used in a program to alter terminal characteristics, the terminal/file 
must be opened with the FOPEN intrinsic. 

Terminals are operated in one of three modes: normal, or edited; tr-ansparent, or unedited; and 
binary. Normal mode is the default. In normal mode, the terminal driver provides extensive editing 
and control facilities to help the user make productive use of the terminal. These facilities use 
several keyboard-generated characters for special purposes, including one that is user-definable. 
These characters may not be entered into your input buffer, but are stripped from the input 
character stream and acted upon by the driver. Only one restriction applies to output: if the 
ENO I ACK pacing handshake is enabled by means of termtype, the ENO is considered a special 
character and output is suspended until the terminal replies with ACK. 

NOTE 

On the Series 30/33140144!64, user-embedded ENQ's are not 
supported and may not produce the desired effect. 

In transparent mode, almost all of the above facilities have been removed. Only six input special 
characters remain; three of these may be user-defined. These special characters are discussed 
later in this section. The ENO is still considered a special character for output, as stated above. 

In binary mode, all 256 eight-bit ASCII character patterns may be read or written. All pacing 
handshakes are disabled. 

Table C-1 summarizes the contra/codes used with the FCONTROL intrinsic to alter terminal 
characteristics. These contra/codes are discussed in more detail in the rest of this section. 

C-1 



Terminal Characteristics 

Table C-1. Codes for Use with FCONTROL. 

2 Complete input I output. 
3 Read hardware status word. 
4 Set time-out interval. 
10 Change terminal input speed. 
11 Change terminal output speed. 
12 Turn echo facility on. 
13 Turn echo facility off. 
14 Disable the system break function. 
15 Enable the system break function. 
16 Disable the subsystem break function. 
17 Enable the subsystem break function. 
18 Disable tape mode option. * 
19 Enable tape mode option. * 
20 Disable the terminal input timer. 
21 Enable the terminal input timer. 
22 Read the terminal input timer. 
23 Disable parity checking. 
24 Enable parity checking. 
25 Define line-termination characters for terminal input. 
26 Disable binary transfers. 
27 Enable binary transfers. 
28 Disable user block mode transfers. 
29 Enable user block mode transfers. 
34 Disable line deletion echo suppression. 
35 Enable line deletion echo suppression. 
36 Set parity. * * 
37 Allocate a terminal. 
38 Set terminal type. 
39 Obtain terminal type information. 
40 Obtain terminal output speed. 
4 1 Set unedited terminal mode. 
43 Abort pending NO-WAIT I I 0 request. 

* * 

Not supported on the Series 30/33/40/44/64 computers. 

On the Series 11/111, this enables parity generation, but not parity checking; you must 
issue an FCONTROL 23 or 24 to control parity checking.On the Series 30/33/40/44/ 
64, this returns the current parity, but enables neither parity generation nor parity 
checking; use FCONTROL 23 or 24 to control both. 

C-2 



Terminal Characteristics 

Allocating a Terminal 

A terminal can be removed from speed-sensing mode, initialized according to the type and speed 
specified by the FCONTROL intrinsic, and set on line. (The terminal cannot be configured as :JOB 
or :DATA accepting.) 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,param); 

The parameters are 

filenum 

controlcode 

par am 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 37. 

Logical (required). A logical word: 
Bits (0: 11) - speed in characters per second. 
Bits (11 :5) - terminal type (see Table C-2). 

If param is set to zero, the s,peed and terminal type specified when the 
system was configured will be used to initialize the device. 

For more information about the FCONTROL intrinsic, see the MPE Intrinsics Reference Manual, 

part number 30000-90010. 

Terminal Type Specification 

MPE has limited facilities to support the features of specific terminals or devices. Originally, these 
facilities supported specific terminal models; on more recent machines, they have been 
generalized to support devices of the terminal's class. For non-HP terminals, no guarantee of 
successful operation is made. The facilities are designed to allow operation of the most commonly 
used devices. 

The terminals and classes of terminals shown in Table C-2 are supported by MPE. Terminals 
equipped with the automatic linefeed feature (operator selectable) must be operated with this 
feature OFF. 

C-3 



0 
I 

..j::l. 

Table C-2 Point-to-Point Terr.1inal Types. 

Response to Pacing Mechanisms Available 

Device Class or Supported on Backspace (HC) Character 
Terminal Model Type II nil 30!33 44 (see note F) Width X-ON!X-OFF 

ASR 33 0 x \(%134) % x 
ASR 37 1 x LF % 
ASA 35 2 x \(>/o 134) % x 
Execuport 3 x LF % x 
Data Point 4 x x x ye % x 

Memorex 1240 5 x LF 'l's x 
General Non-HP 6 x x x LF 'l's x 

Hardcopy 
General Non-HP CRT 9 x x x none 'l's x 
General HP CRT 10 x x x none 'l's x 
Special HP d 11 x x none % x 

Special HP CRT 12 x x x none 8 x 
(HP 2645K) 

Packet Network 13 x x x none 'l's x 
Interface 

Special HP Hardcopy 15 x x x LF 8 x 
(HP 2635) 

General HP Hardcopy 16 x x x LF 'l's 
(HP 2635) 

General Non-HP 18 x x x none 'l's x 
HP 26318 19 x x x none 'l's x 

a Device does not respond to Form Feed f/o 14 ). MPE-inserted Form Feeds replaced by Line Feeds. 

b Originally intended for GE Terminets. 

Delay 
ENO/ACK Characters 

x 

x 

x 

x 
x 

x 
x 
x 

x 

x 

x 

Block 
Mode 

g Available 

x 
x 

x 

c Originally intended for Mini Bee; Series 11/111 strips the character pairs (ESC)A~(ESC)E, (ESC)H, (ESC)J, (ESC)K from input stream. 

d This type allows mixed character and "Block Line" mode. Its use is strongly discouraged. 

e No DCI Read Trigger. 

This special response is made only for the first backspace character following a data character. 

g Delay characters are output following the carriage return and Line Feed characters to allow the terminal to move the paper or print head. 

~ 
3 
::J 
o:i 

0 
::y 
o:i 

01 
() 

<D 
"""' 

Comments ~ 
() 

See Note a (/) 

See Note a 

See Note b 

See Note c 

8 data bits; no parity 

Echo initially off. 

8 data bits; no parity 

See Note e 
Output only 



Terminal Characteristics 

The terminal type can be changed with the FCONTROL intrinsic. The format for this application of 
FCONTROL is 

IV IV L 
FCONTROL (filenum,controlcode,param); 

The parameters are 

filenum 

controlcode 

pa ram 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 38. 

Logical (required). A logical word which specifies the desired terminal type 
(see Table C-2). 

To determine the current terminal type, use the FCONTROL intrinsic with a controlcode of 39. 

This application of FCONTROL may be used before a terminal is allocated to return the terminal 
type specified when the system was configured; a value of 31 is returned in param if no terminal 
type was specified at configuration time. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,param); 

The parameters are 

filenum 

controlcode 

pa ram 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 39. 

Logical (required). The identifier to which the terminal type is returned. 

C-5 



Terminal Characteristics 

SPEED AND PARITY SENSING 

When you establish a session from a terminal, MPE uses the carriage return character that you 
input during the log-on process to sense the line speed and parity setting of your terminal. 

The ATC (Series 11/111) will detect the line speed at all supported speeds. The ADCC (Series 
30133140144) and ATP (Series 64) are able to detect the line speed at speeds of 2400 bits per 
second or less; logging at higher speeds is possible only when you use the non-speed sense 
configuration option, subtype 4. 

Only a single parity bit is available for parity sensing. The ATC, ADCC and ATP make different 
assumptions based upon this bit, as shown in Table C-3. 

Table C-3. Parity Sensing with the ATC, ADCC and ATP. 

Parity Bit on Carriage Return ( % 15) Is: 

0 

ATC 7 -bit characters with odd parity are 
assumed; odd parity is generated on 
output; input checking is not done 
unless explicitly enabled. 

ADCC 8-bit characters are assumed; the 8th 
or bit is passed through in both input and 

ATP and output. 

7 -bit characters with even parity are 
assumed; even parity is generated on 
output; input checking 1s not done 
unless explicitly enabled. 

7-bit characters with even parity are 
assumed. Even parity is both generated 
and checked. 

Obtaining Terminal Output Speed 

The terminal output speed can be determined with the FCONTROL intrinsic. 

This application of FCONTROL may be used before a terminal is allocated to return the speed at 
which the device was last operated, or the speed specified when the system was configured. A 
value of zero is returned in param if the device has not been speed sensed. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenu.m,controlcode, param); 

The parameters are 

filenum 

controlccde 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value {required). The integer 40. 

C-6 



pa ram 

Terminal Characteristics 

Logical (required). A logical identifier to which the terminal output speed in 
characters per second is returned. 

Changing Terminal Speed 

The initial terminal speed is set either by speed sensing or by the configuration default. You can 
programmatically change this speed with the FCONTROL intrinsic. This capability allows a user 
running a mark sense card reader coupled to a terminal to operate the two devices at different 
speeds (for example, the card reader at 240 characters per second for input and the terminal at 1 O 
characters per second for output). 

NOTE 

The ATC allows the input line speed to differ from the output line 
speed. This facility is available only on the Series II/Ill. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,speed); 

The parameters are 

filenum 

controlcode 

speed 

Integer by value (required). A word identifier supplying the file number of 
the terminal for which the speed is to be changed. 

Integer by value (required). The decimal integer 10 to change the input 
speed or 11 to change the output speed. 

Logical (required). A word identifier that specifies the new speed desired: 
10, 14, 15, 30, 60, 120, 240, 480, or 960 characters per second. When the 
FCONTROL intrinsic is executed, the previous input or output speed is 
returned to the calling process through this parameter. 

As an example, consider the terminal identified by the file number stored in the word TERMFN. To 
change its input speed from 60 to 120 characters per second, the following call could be used. The 
word SPEED contains the value 120. 

FCONTROL (TERMFN, 10,SPEED); 

After the intrinsic is executed, the word SPEED contains the integer 60 (the previous speed). 

C-7 



Terminal Characteristics 

Control of Parity Generation and Checking 

All ATC controller ports are initially set with parity checking disabled. They may, however, be 
programmatically enabled for parity checking with the FCONTROL intrinsic. If a parity error is 
detected, an error code is made available through the FCHECK intrinsic. 

Setting Parity. Default output parity generation is determined by the parity sensing facility. If the 
device is opened as a File System device (not a log-on or session device), the default parity 
settings are used: odd for ATC, even for ADCC or ATP. 

You may programmatically change both the parity type and the generation and checking facility. 
Note that parity generation and checking is an option only with 7-bit terminal types. 

The FCONTROL intrinsic can be used to specify the parity, if any, to be used in transmitting data to 
a terminal. Parity is generated on the right seven bits of a character. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,param); 

The parameters are 

filenum Integer by value (required). A word identifier supplying the file number of 
the terminal. 

controlcode Integer by value (required). The integer 36. 

pa ram 

0 

2 

3 

I 
l 

Logical (required). A logical word, as follows: 

ATC (Series 11/111) 

Output: All 8 bits are transmitted. 
Input: No checking; bit 8 set to 0. 

Output: Bit 8 set to 1. 
Input: No checking; bit 8 set to 0. 

Output: Even parity is generated if bit 8 
of the output character is O; odd 
parity is generated if bit 8 of the 
output character is 1. 

Input: Even parity is checked, if enabled. 

Output: Odd parity is generated. 
Input: Odd parity is checked, if enabled. 

C-8 

ADCC (Series 30/33/40/44) 
or ATP (Series 64) 

Input and output: All 8 bits are 
transmitted. 

Input and output: All 8 bits transmitted. 

Output: Even parity is generated, if 
enabled. 

Input: Even parity is checked, if enabled. 

Output: Odd parity is generated, if 
enabled. 

Input: Odd parity is checked, if enabled. 



Terminal Characteristics 

Enabling and Disabling Parity Generation and Checking. This may be accomplished by using 
the FCONTROL intrinsic. 

The format for this application of FCONTROL is 
IV IV L 

FCONTROL (filenum,controlcode,anyinfo); 

The parameters are 

filenum 

controlcode 

anyinfo 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 24 to enable parity checking, or 23 
to disable parity checking. 

Logical (required). Any variable or word identifier. This parameter is 
needed by FCONTROL to satisfy the internal requirement of this intrinsic; 
however, it serves no other purpose and is not modified by the intrinsic. 

Setting a Time-Out Interval 

You can use the FCONTROL intrinsic to apply a time-out interval on input from a terminal. If input is 
requested from the terminal but is not received in the specified interval, the requesting FREAD 
terminates at the end of the time-out interval with condition code CCL. In this case, no data is 
transferred to your buffer. Note that this FCONTROL affects only the next read. For block mode 
operation, the timer is halted when the DC2 character (CONTROL-Fl) is received. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode, time); 

The parameters are 

filenum 

controlcode 

time 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 4. 

Logical (required). A word identifier specifying the time-out interval in 
seconds. If this interval is zero, any previously established interval is 
cancelled, and no time-out occurs. 

C-9 



Terminal Characteristics 

READ DURATION TIMER 

The terminal input timer records the time required to satisfy an input request on the terminal, from 
the time the input is requested until it is completed. This applies only to unbuffered, serial terminal 
input requests. 

You can programmatically enable or disable the terminal input timer with the FCONTROL intrinsic. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,anyinfo); 

The parameters are 

filenum 

controlcode 

anyinfo 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 21 to enable the timer, or 20 to 
disable the timer. 

Logical (required). Any variable or word identifier. This parameter is 
needed by FCONTROL to satisfy the internal requirements of this intrinsic; 
however, it serves no other purpose and is not modified by the intrinsic. 

Reading the Terminal Input Timer 

You can read the result from the terminal input timer with the FCONTROL intrinsic. The result will 
be valid only if the terminal input was preceded by a ca!! to enable the terminal input timer. If valid, 
the result is the time, in hundredths of seconds, required for the last direct, unbuffered serial input 
on the terminal. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,inputtime); 

The parameters are 

filenum 

controlcode 

inputtime 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 22. 

Logical (required). A word to which is returned the input time (in 
hundredths of seconds). 

C-10 



Terminal Characteristics 

Figure C-1 contains a program that generates an ASCII character, instructs the user to enter this 
character on the terminal, then measures and displays the reaction time of the user. 

At line 26, the statement 

FCONTROL (IN,21,DUMMY); 

enables the terminal input timer so that the reaction time of the user can be measured. The 
parameter IN supplies the file number of the terminal and was obtained through the FOPEN 
intrinsic call (see statement 19 in the program). 

At line 28, the statement 

FCONTROL (IN,4,TIMEOUT); 

is used to set a time-out interval of 10 seconds (see statement number 5 in the program). If there is 
no response to the FREAD intrinsic call (statement number 33) within 10 seconds, a CCL 
condition code is returned and the program displays the message 

YOU'RE TOO SLOW! 

At line 45, the statement 

FCONTROL (IN,22,TIME); 

reads the reaction time from the terminal input timer. This result is returned to the word TIME. 

At line 47, the statement 

ASCII (TIME* 10, 10,CRESP (15) ); 

multiplies the value of TIME by 10 and converts this result to an ASCII string so that the user's 
reaction time, in milliseconds, can be displayed. The resulting ASCII string is stored in the byte 
array CRESP, starting at the 16th position (CRESP ( 15) ). At line 48, the statement 

FWRITE (OUT, RESPONSE, 17,0); 

displays the reaction time. (Arrays CRESP and RESPONSE have been equivalenced; see 
statements 12 and 13.) 

C-11 



Terminal Characteristics 

PAGE 9901 HEWLETT-PACKARD 32100A.05.1 SPL/3000 TUE, NOY 25, 1975, 3:53 PM 

90001900 89800 0 
00002090 08000 0 
00003000 90000 1 
00004000 08904 1 
00005000 00005 1 
80096000 00005 1 
80007090 00004 1 
00098000 80004 1 
8000'9898 88011 1 
00010980 98843 1 
80011890 00020 1 
00012000 00031 1 
00013909 80021 1 
00014800 00921 1 
00015000 90021 1 
90016980 90021 1 
80017900 00021 1 
00018890 00021 1 
90019000 80021 1 
00028880 98007 1 
0002t000 00012 1 
00022888 09022 1 
80023900 90025 1 
80024880 88032 1 
90025890 09035 1 
80026000 00035 1 
00027089 90041 1 
90028080 88044 1 
80029999 88050 1 
98039880 88053 1 
99031800 80062 1 
80032880 80067 1 
00033980 89972 1 
00034009 88101 1 
08035090 80102 1 
89036889 88192 2 
9-1037¥80 89110 2 
89038890 80120 2 
80039999 80120 1 
90040000 00126 1 
88041890 89126 2 
80042888 88134 2 
9994399.g 89141 2 
80044880 ff141 1 
00043890 88153 1 
'90046980 89157 1 
80047999 88162 1 
8"0048009 88171 1 
'18049899 88177 1 
80030008 88202 1 
98951808 88202 1 
98952888 88207 1 
80833'988 88212 1 

SCONTROL USLIHIT 
BEGIN 

BYTE ARRAY IHHAl'IE<01S) :• 11 IHPIJT "J 
BYTE ARRAY OUTHAME<816):=•ouTPUT "; 
INTEGER IN.OUT; LGTH,OU"KY, TIME, TIMEOUT: =10.: 
ARRAY BUFR< 0 : 3 > ::•"TYPE X" , 0; 
9YT£ ARRAY CBIJf'(lft)aBUFR: 
ARRAY IHSTRUCTIONS<9:34)::i="REACTIOH TIMER: " .. =<6412, 

"T'J'PE THE REQUESTED CHARACTER AS QUICKL '\' AS YOU CAH. ".: 
ARRAY r1SG< 8: 24): •"TRY AGAIN? ( Y."H )•I "WRONG CHARACTER. II .. 

:'<6412,"YOU'RE TOO SLOW!"; 
ARRAY RESPONSE< 9116): •"REACTION TIME: MILLISECONDS"; 
BYTE ARRAY CRESP<•>•RESPONSE; 

IHTRIHSIC FOPEH,FREAO,FWRITE,FCOHTROL,ASCII.TIMER.QIJIT; 

<<EHD OF OECLARATIOHS>> 

LOOP: 

NEXT: 

IH:•FOPEN<IHHAME.~45); 
IF< THEN QUIT<t>; 
OUT:=FOPEH<OUTHAME,"414,"1 ); 
IF < THEN QUIT<2>; 
FWRITE<OUT, INSTRUCTIONS, 35 .. 0 ); 
IF < THEN QUIT(J)J 

FCOHTROL<IH,21,0UMMV>; 
IF < THEN QUIT<4>; 
FCONTROL<IN,4.TIMEOUT); 
IF < THEN QUIT<S>; 
CBUF< 5) 1 •INTEGER< TIMER).< 11 : 5 >+"73.: 
FWRITE<OUT,BUFR,3,"320>; 
IF < THEN QUIT(6); 
LGTH:•FREAO<IH,80FR<3>.-1 ); 
IF < THEN 

BEGIN 
FWRITE<OUT.MSG<16),9,9); 
IF < THEN QUIT<7> ELSE GO NEXT; 

END; 
IF CBUF<5><>CBUF<6> THEN 

BEGIN 
FWRITE<OUT,MSG<S>,8,0); 
IF < THEN QUIT< 9 ) ELSE GO NEXT.: 

END; 
MOYE RESPOHSE<7>:•• "; 
FCONTROL<IN,22,TIME>; 
IF <> THEN QUITC9); 
ASCII<TIME•19,19,CRESP<1S>>J 
FlJRI TE< our-, RESPONSE. 1 7, 0 ) ; 
IF< THEN QUIT<19); 

FWRITE<OUT,MSG,8,~328>; 
IF< THEN QUIT(11 )J 

FREAD<IN,BUFR<3>,-1)J 

«&STDUI>> 
«CHECK FOR ERROR>> 
«S.STOLIST» 
«CHECK FOR ERROR>> 
<<USER DIRECTIONS>> 
<<CHECK FOR ERROR>> 

<<ENABLE TIMER READ>> 
«CHECK FOR ERROR» 
<<ENABLE TIMEOUT>> 
<<CHECK FOR ERROR>> 
«GENERATE A CHARACTER>> 
<<REQUEST USER IHPUT>> 
<<CHECK FOR ERROR>> 
<<READ CHARACTER>> 
<<TIMEOUT OCCURRED>> 

<<TOO SLOW MESSAGE>> 
<<CHECK FOR ERROR>> 

«INCORRECT CHARACTER>> 

«WRONG CHARACTER MESSA(~E » 
<<CHECK FOR ERROR>> 

<<RESET RESPONSE TIME>> 
<<READ INPUT TIME>> 
<<CHECK FOR ERROR>> 
<<CONVERT TIME>> 
«REACTION TIME>;. 
<<CHECK FOR ERROR>> 

<<CONTINUE TEST?>> 
<<CHECK FOR ERROR>> 
<<GET V/H ANSWER>> 

89854888 88228 
988!53888 88224 
88956888 89232 1 END. 

IF< THEN QUIT<12>J 
IF CBUF<6>••v• THEN GO LOOP; 

<<CHECK FOR ERROR>> 
<<Y-COHTIHUE TEST>> 

PRIMARV OB STORAGE•~8f 6J 
HO. £RRORS-S88J 
PROCESSOR TIME•8t89r83J 

SECOHOARV DB STORAGE•~98138 
HO. .WARNINGS•888 
ELAPSEO TIME•8188118 

Figure C-1. Using the FCONTROL Intrinsic to Enable and Read the Terminal Input Timer 

C-12 



Terminal Characteristics 

A sample run of the program of Figure C-1 is shown below. User input is underlined in this example. 

:RUN TIME 

REACTION TIMER: 
TYPE THE REQUESTED CHARACTER AS QUICKLY AS YOU CAN. 
TYPE M 
YOU'RE TOO SLOW! 
TRY AGAIN? (YIN) y_ 
TYPE>> 
REACTION TIME: 9670 MILLISECONDS 
TRY AGAIN? (YIN) y_ 
TYPE UU 
REACTION TIME: 4090 MILLISECONDS 
TRY AGAIN? (YIN) y_ 
TYPE BB 
REACTION TIME: 1790 MILLISECONDS 
TRY AGAIN? (Y /N) y_ 
TYPEIO 
WRONG CHARACTER. 
TRY AGAIN? (YIN) N 

END OF PROGRAM 

C-13 



Terminal Characteristics 

"END OF RECORD" CHARACTERS 

Normally, when using a terminal, you indicate the end of a line by entering a carriage return (with 
the RETURN key on most terminals). With the FCONTROL intrinsic, however, you can specify that 
an additional character, such as an equal sign, a period, or an exclamation point, be recognized as 
a line terminator. On subsequent read operations to the filenum specified in your FCONTROL call, 
the input operation is terminated by the specified character: receipt of this character causes MPE 
to terminate an FREAD and return to your program. The character is returned to your buffer. No 
carriage return or line feed is generated. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,character); 

The parameters are 

filenum 

controlcode 

character 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 25. 

Logical (required). A word identifier supplying (in the right byte) the 
character to be used as a line terminator. The left byte of this word can 
contain any information - it is ignored by the intrinsic. If the character null 
( % 0) is specified in the character parameter, the terminal reverts to its 
normal line-control operation. 

The following characters are not recognized as line-terminating characters 
during normal reads: 

ASCII Character Octal Code 

Backspace (CONTROL-H) % 10 
Line Feed (CONTROL-J) % 12 
Carriage Return (CONTROL-M) % 15 
X-ON (CONTROL-0) %21 
DC2 (CONTROL-A) %22 
X-OFF (CONTROL-S) %23 
Line Delete (CONTROL-X) %30 
CONTROL-Y %31 
Escape (CONTROL- [) %33 
Del % 177 

In addition, when you are working at the console, CONTROL-A will not be 
recognized as a line terminator. 

As an example, to specify a period as an additional line terminator for a terminal, the following 
intrinsic call could be used: 

FCONTROL (TERMFN,25,CHAR); 

The word CHAR contains the octal value % 56 (indicating a period) in the right byte. The left byte 
can contain any vaiue. 

C-14 



Terminal Characteristics 

BREAK FUNCTIONS 

Enabling and Disabling System Break Function 

You can programmatically enable or disable a terminal's ability to generate a system break request 
with the FCONTROL intrinsic. (The default is for this ability to be enabled.) System break requests 
are initiated by pressing the BREAK key or by calling the CAUSEBREAK intrinsic. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,anyinfo); 

The parameters are 

filenum 

controlcode 

anyinfo 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 15 to enable the break function, or 
14 to disable the break function. 

Logical (required). Any variable or word identifier. This parameter is 
needed by FCONTROL to satisfy the internal requirements of the intrinsic; 
however, it serves no other purpose and is not modified by the intrinsic. 

As an example, to enable the break function, the following intrinsic call could be used. 

FCONTROL (TERMFN, 15,DUMMY); 

NOTE 

Using FCONTROL to disable break does not affect operation of the 
CA USEBREAK intrinsic. 

C-15 



Terminal Characteristics 

Enabling and Disabling Subsystem Break Function 

All terminals are initially set to disable (not accept) subsystem break requests, generated by 
entering CONTROL-Y during a session. You can, however, programmatically enable and again 
disable a terminal's ability to generate subsystem break requests with the FCONTROL intrinsic. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,anyinfo); 

The parameters are 

filenum 

controlcode 

anyinfo 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 17 to enable the subsystem break 
function, or 16 to disable the subsystem break function. 

Logical (required). Any variable or word identifier. This parameter is 
needed by FCONTROL to satisfy the internal requirements of the intrinsic; 
however, it serves no other purpose and is not modified by the intrinsic. 

As an example, to enable the subsystem break function, the following intrinsic call could be used: 

FCONTROL (TERMFN, 17,DUMMY); 

NOTE 

For more information about the CONTROL-Y trap, consult the 
XCONTRAP intrinsic in the MPE Intrinsics Reference Manual, part 
number 30000-90010. 

C-16 



Terminal Characteristics 

OPERATING IN NORMAL MODE 

During input (using FREAD, READ, or READX), a number of characters and character sequences 
have special meanings to MPE. These characters are listed in Table C~4. 

NOTE 

In Table C-4, the superscript c denotes a control character. Thus, 
"Xe" means "CONTROL-X." These descriptions may be used 
interchangeably. 

Character 

He (backspace) 

Jc (LF, linefeed) 

MC (CR, 
carriage return) 

Qc (DC 1, X-ON) 

Table C-4. Special Characters. 

Meaning 

When you are operating from the system console, AC initiates a 
console command. 

Deletes the previous character. (To delete n characters, enter n 
He's.) 

For any terminal with a linefeed entry, you may strike this key 
and a carriage return will be echoed. The linefeed character is 
not placed in the input buffer. 

This mechanism is primarily intended for devices which do not 
have an automatic line wraparound feature. For reads of length 
greater than the device's line width, LF's may be included so 
that the input will be displayed on several lines on the device, 
thus avoiding overstrike of characters in the last column 
position of the device. 

Normal end-of-record character. 

Places terminal in tape mode, allowing input from paper tape. 
This facility is supported only on the Series II/Ill.When ena­
bled, the tape-mode option inhibits the implicit linefeed 
normally issued by MPE each time a carriage return is en­
tered. The tape-mode option also inhibits responses to He and 
xc entries. Thus, when xc is received and tape mode is in effect, 
no exclamation points(!!!) are sent to the terminal. Tape 
mode is terminated by ye. 

If used after sc, Qc also resumes write operation during output 
(cancels sc). 

C-17 



Terminal Characteristics 

Character 

RC (DC2) 

sc (DC3, X-OFF) 

I ye 

BREAK 

(ESC): 

(ESC); 

Table C-4. Special Characters. (Continued) 

Meaning 

Indicates the beginning of a block mode read and starts a 
special block mode timer. If the read does not complete 
successfully within the timer period , the read is returned with 
an FSERR 27. Normal block mode transfers proceed as 
follows: the computer sends DC 1 to the terminal to initiate a 
read. If the user has pressed ENTER for a block mode read, the 
terminal then sends DC2 (Re) to the computer to indicate a 
block mode read; the computer sends another DC 1 to the 
terminal to initiate the transfer; the terminal then sends the 
data to the computer. 

NOTE: Re has special significance only for termtypes which 
support block mode. 

Suspends the write operation during output. Output may be 
resumed with oc. 
Deletes (ignores) all characters read on this line and restarts 
the read. The system responds with a triple exclamation point 
(!!!) followed by a carriage return and linefeed. 

If the terminal is not in tape mode, ye requests subsystem 
break. If the terminal is in tape mode, ye returns it to the 
keyboard mode. 

Requests a system break. 

Places the terminal in the echo-on mode so that characters 
input are echoed on the terminal by MPE. 

NOTE: (ESC) indicates the ESCAPE key on your terminal 
keyboard. 

Places the terminal in echo-off mode so that characters input 
are not echoed on the terminal by MPE. 

The defined control characters AC, He, oc, sc, xc, ye, CR, and LF are recognized even when 
following an (ESC) key entry. However, entry of (ESC) followed by any other character 
(other than one of these control characters, a colon. or a semicolon) is read as a 2-character 
string in your input stream. 

C-18 



Terminal Characteristics 

Enabling and Disabling User Block Transfers 

User mode block transfers (from block mode terminals such as the HP 2644/2645) can be 
enabled or disabled with the FCONTROL intrinsic. User mode block transfers are disabled in 
normal M PE operation. The DC2 (CONTROL-R), transmitted by the terminal when you press 
ENTER, is passed to your program for action. At this point you may write escape sequences to the 
terminal (i.e. to position the cursor) before reading the data from the terminal. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,anyinfo); 

The parameters are 

filenum 

controlcode 

anyinfo 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 28 to disable user mode block 
transfers, or 29 to enable user mode block transfers. 

Logical (required). Any variable or word identifier. This parameter is 
needed by FCONTROL to satisfy the internal requirements of this intrinsic; 
however, it serves no other purpose and is not modified by the intrinsic. 

NOTE 

Data overruns may occur during block mode transfers. Your 
applications programs must check for successful completion of 
each FREAD operation and retry as required. Use of timers on block 
mode reads is strongly encouraged, since a data overrun on the last 
character read will cause the port to hang on the ADCC (Series 
30133140144). The normal block read timer will not work for down" 
handshaking. 

C-19 



Terminal Characteristics 

Changing Input Echo Facility 

You can programmatically determine whether MPE transmits (echoes) input from the terminal 
keyboard back to the terminal display by calling the FCONTROL intrinsic to turn the echo facility 
on or off. 

When the echo facility is on, input read from the terminal is echoed to the terminal by the terminal 
controller hardware. If the terminal is operating in full-duplex mode, the echoed information 
appears as normal printed lines. If the terminal is in half-duplex mode on a full duplex line, however, 
the echoed printing may be illegible: as you enter input on such terminals, it is simultaneously 
printed by the terminal itself and subsequently overwritten by the echoed information. When you 
log on, all terminals are assumed to be in the full-duplex mode. 

When the echo facility is off, input read from the terminal is not echoed to the terminal screen. If the 
terminal is in half-duplex mode, the input is copied by the terminal itself, and appears as normal 
printed lines. Bear in mind that the only way printing can be suppressed is with the echo facility off 
and the terminal in full-duplex mode. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,last); 

The parameters are 

filenum 

controlcode 

last 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 12 to turn the echo facility on, or 13 
to turn it off. 

Logical (required). A word identifier to which the previous echo status is 
returned, where: 

0 =echo on. 
1 = echo off. 

As an example, to turn the echo facility off, the following intrinsic call could be used: 

FCONTROL (TERMFN, 13,LAST); 

After the intrinsic is executed, the word LAST contains the value 0 or 1 to reflect the previous echo 
facility status. 

NOTE 

In addition to the FCONTROL intrinsic, the echo facility can be 
switched on and off by entering the following two character 
sequences from your terminal: 

(E SC) (:) = to turn the echo facility on. 
(ESC) (;) = to tum the echo facility off. 

C-20 



Terminal Characteristics 

Enabling and Disabling Tape-Mode Option 

(Series II/Ill only.) You can programmatically enable or disable the tape-mode option for a 
terminal with the FCONTROL intrinsic. When enabled, the tape-mode option inhibits the implicit 
line feed normally issued by MPE each time a carriage return is entered. The tape mode option also 
inhibits responses to CONTROL-Hand CONTROL-X entries. Thus, when CONTROL-Xis received 
and tape mode is in effect, no exclamation points (!!!) are sent to the terminal. To inhibit carriage 
return and/ or linefeed for FREAD, use the FSETMODE intrinsic (see the MPE Intrinsics Reference 
Manual, part number 30000-90009). 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,anyinfo); 

The parameters are 

filenum 

controlcode 

anyinfo 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 19 to enable tape mode, or 18 to 
disable tape mode. 

Logical (required). Any variable or word identifier. This parameter is 
needed by FCONTROL to satisfy the internal requirements of this intrinsic; 
however, it serves no other purpose and is not modified by the intrinsic. 

As an example, the following intrinsic call could be used to enable tape mode: 

FCONTROL (TERMFN, 19,DUMMY); 

Enabling and Disabling Line Deletion Echo Suppression 

In r1ormal MPE operation, CONTROL-Xis interpreted as a line deletion character, and the 
character string "!!!" is printed on the terminal when it is used. You can suppress the line deletion 
echo, so that the character string is not displayed on the terminal, with the FCONTROL intrinsic. 

NOTE 

This application of FCONTROL only disables the "!!!"string; it does 
not disable the line deletion operation. 

C-21 



Terminal Characteristics 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,anyinfo); 

The parameters are 

filenum 

controlcode 

anyinfo 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 34 to disable the line deletion echo, 
or 35 to enable the line deletion echo. 

Logical (required). Any variable or word identifier. This parameter is 
needed by FCONTROL to satisfy the internal requirements of this intrinsic; 
however, it serves no other purpose and is not modified by the intrinsic. 

Reading Paper Tapes Without X-OFF Control 

The X-OFF control character, written by pressing the X-OFF key on a teletype terminal, is used to 
delimit data input on paper tape. When a teletype tape reader encounters this character while 
reading a tape, reading halts until the program requests more input data. 

You can programmatically read data from paper tapes not containing the X-OFF control character, 
or from tapes input through terminals not recognizing this character, with the PTAPE intrinsic. In 
the latter case, the X-OFF characters are stripped from the tape. Tape input terminates when 
CONTROL-Y is encountered, returning control to the terminal. Prior to calling the PTAPE intrinsic, 
you must be sure to position the end-of-file pointer in the disc file to the proper position. If you are 
reading more than one tape, you should specify, in the FOPEN intrinsic call that opens the disc file, 
the append-only access type and a variable-length record format before the first PT APE intrinsic 
call. In addition, you should set the disc file's end-of-file pointer to zero, if necessary, before issuing 
the first PTAPE intrinsic call. 

A PTAPE intrinsic call such as 

PTAPE (TERMFN,DISCFL); 

could be used to read a paper tape not containing the X-OFF control character, or to read a paper 
tape input through a terminal that does not recognize this character. The data would be stored in 
the disc file whose file number is specified by DISCFL. 

To inhibit carriage return and linefeed after FREAD, use the FSETMODE intrinsic (see the MPE 
Intrinsics Reference Manual, part number 30000-90010). 

C-22 



Terminal Characteristics 

OPERATING IN TRANSPARENT (UNEDITED) MODE 

Your terminal can be set in unedited mode with the FCONTROL intrinsic. In unedited mode, all 
characters, except those specified below, are passed to your input buffer: 

The end-of-record character terminates input from the terminal in unedited mode, as a carriage 
return does in normal mode. 

If enabled, the Attention character terminates input and causes a Subsystem Break in unedited 
mode, as a CONTROL-Y does in normal mode. 

For block-mode terminal types, input of a DC2 (CONTROL-Fl) as the first character, or 
embedding the character pair DC2 CR anywhere in the data stream, causes those characters 
to be stripped out and a DC 1 (CONTROL-0) to be written. 

For the logical system console, CONTROL-A (Start of Header) signals the beginning of a 
console command. 

The X-ON IX-OFF (DC 1 / DC3) handshake characters are assumed to be protocol characters 
and are stripped from the input stream. 

NOTE 

If a terminal is accessed with FOPEN multiple times, and 
FCONTROL is used to set unedited mode for any of the terminal 
files, unedited mode will be in effect on all of the terminal files. 

No automatic linefeed is output to the terminal when input terminates in unedited mode. 

In unedited mode, only the ENO character has special consequences on output. For terminals 
doing the ENO I ACK handshake, output is suspended following an ENO to wait for an ACK from 
the terminal; generally, the terminal strips the ENO from the data stream. 

The unedited mode is reset to normal when an FCLOSE intrinsic call is issued against the terminal, 
or when the chars parameter of FCONTROL equals zero. (See below.) 

The unedited mode is disab1ed while the terminal is in Break or Console mode. 

C-23 



Terminal Characteristics 

Use FCONTROL to set unedited terminal mode: 
IV IV L 

FCONTROL (filenum,controlcode,chars); 

The parameters are 

filenum 

controlcode 

chars 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 41. 

Logical (required). A logical word, as follows: 

Bits (0:8) - Attention character. 

Bits (8:8) - End-of-record character. 

If chars = 0, the unedited mode is reset to normal. 

OPERATING IN BINARY MODE 

Binary transfers can be enabled or disabled with the FCONTROL intrinsic. (By default, binary 
transfers are disabled in normal MPE operation.) Binary reads are terminated only by the Read 
Byte Count or by the Read Time Out. 

The format for this application of the FCONTROL intrinsic is 
IV IV L 

FCONTROL (filenum,controlcode,anyinfo); 

The parameters are 

filenum 

controlcode 

anyinfo 

Integer by value (required). A word identifier supplying the file number of 
the terminal. 

Integer by value (required). The integer 26 to disable binary transfers, or 27 
to enable binary transfers. 

Logical (required). Any variable or word identifier. This parameter is 
needed by FCONTROL to satisfy the internal requirements of this intrinsic; 
however, it serves no other purpose and is not modified by the intrinsic. 

C-24 



ASCII First Character Second Character ASCII First Character Second Character 
Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivalent 

A 040400 000101 ACK 003000 000006 
B 041000 000102 BEL 003400 000007 
c 041400 000103 BS 004000 000010 
D 042000 000104 HT 004400 000011 
E 042400 000105 LF 005000 000012 
F 043000 000106 VT 005400 000013 
G 043400 000107 FF 006000 000014 
H 044000 000110 CR 006400 000015 
I 044400 000111 so 007000 000016 
J 045000 000112 SI 007400 000017 
K 045400 000113 OLE 010000 000020 
L 046000 000114 DC1 010400 000021 
M 046400 000115 DC2 011000 000022 
N 047000 000116 DC3 011400 000023 
0 047400 000117 DC4 012000 000024 
p 050000 000120 NAK 012400 000025 
Q 050400 000121 SYN 013000 000026 
R 051000 000122 ETB 013400 000027 
s 051400 000123 CAN 014000 000030 
T 052000 000124 EM 014400 000031 
u 052400 000125 SUB 015000 000032 
v 053000 000126 ESC 015400 000033 
w 053400 000127 FS 016000 000034 
x 054000 000130 GS 016400 000035 
y 054400 000131 RS 017000 000036 
z 055000 000132 us 017400 000037 

SPACE 020000 000040 
a 060400 000141 ! 020400 000041 
b 061000 000142 .. 021000 000042 
c 061400 000143 # 021400 000043 
d 062000 000144 $ 022000 000044 
e 062400 000145 % 022400 000045 
f 063000 000146 & 023000 000046 
g 063400 000147 023400 000047 
h 064000 000150 ( 024000 000050 
i 064400 000151 ) 024400 000051 
j 065000 000152 * 025000 000052 
k 065400 000153 + 025400 000053 
I 066000 000154 026000 000054 

m 066400 000155 - 026400 000055 
n 067000 000156 027000 000056 
0 067400 000157 I 027400 000057 
p 070000 000160 : 035000 000072 
q 070400 000161 ; 035400 000073 
r 071000 000162 < 036000 000074 
s 071400 000163 = 036400 000075 
t 072000 000164 > 037000 000076 
u 072400 000165 ? 037400 000077 
v 073000 000166 @ 040000 000100 
w 073400 000167 [ 055400 000133 
x 074000 000170 \ 056000 000134 
y 074400 000171 l 056400 000135 
z 075000 000172 t:,. 057000 000136 

- 057400 000137 
0 030000 000060 I 060000 000140 
1 030400 000061 \ 075400 000173 
2 031000 000062 I 076000 000174 
3 031400 000063 } 076400 000175 
4 032000 000064 - 077000 000176 
5 032400 000065 DEL 077400 000177 
6 033000 000066 
7 033400 000067 
8 034000 000070 
9 034400 000071 

First Character Second Character 
NUL 000000 000000 
SOH 000400 000001 
STX 001000 000002 
ETX 001400 000003 
EOT 002000 000004 
ENO 002400 000005 

A A r-- Y --, 

; o I 1 I 21314151sI1; s i 9 l1ol 11\12l13H15; 
D-1 



DISC FILE [UMIMQ LABELS I E I 

Whenever a disc file is created, MPE automatically supplies a file label in the first sector of the 
first extent occupied by that file. Such labels always appear in the format described below. (User­
supplied labels, if present, are located in the sectors immediately following the MPE file label.) 
The contents of a label may be listed by using the :LISTF -1 command described in the MPE Com­
mands Reference Manual. 

Words 

0-3 

4-7 

8-11 

12-15 

16-19 

20-21 

22 

23 

24 

25 

26 

27 

28 

(Bits 0: 15) 

(Bit 15:1) 

(Bit 0:1) 

(Bitl:l) 

(Bit 2:1) 

(Bit 3:1) 

(Bits 4:4) 

(Bits8:6) 

(Bit 14: 1) 

(Bit 15: 1) 

Contents 

Local file name. 

Group name. 

Account name. 

User name of file creator. 

File lockword. 

File security matrix. 

Not used. 

File secure bit: 

If 1, file secured. 

If 0, file released. 

FUe creation date 

Last access date. 

Last modification date. 

File code. 

File control block vector. 

Store Bit. (If on, :STORE or :RESTORE in 
progress.) 

Restore Bit. (If on, :RESTORE in progress.) 

Load Bit. (If on, program file is loaded.) 

Exclusive Bit. (If on, file is opened with exclusive 
access.) 

Device sub-type. 

Device type. 

File is open for write. 

File is open for read. 

E-1 



Disc File Labels 

Words 

29 

30-31 

32-33 

34 

35 

36 

37 

38 

39 

40 

41 

42-43 

44-45 

46-107 

108-109 

110 

112-113 

114-115 

116-117 

120-123 

124-127 

(Bits 0:8) 

(Bits 8:8) 

(Bits 0:8) 

(Bits 8: 3) 

(Bits 11:5) 

Contents 

Number of user labels written. 

Number of user labels available. 

File limit in blocks. 

Private volume information (while file is open). 

File label check sum (used for error detection). 

Cold-load identity. 

Foptions specifications. 

Logical record size (in negative bytes). 

Block size (in words). 

Sector offset to data. 

Not used. 

Number of extents-1. 

Last extent size in sectors. 

Extent size in sectors. 

Number of logical records in file. 

First extent descriptor. 

Remaining extent descriptors (32 maximum). 

Restore time. 

Restore date. 

Start of file block number. 

Block number of End-of-file. 

Number of open and close records. 

Not used. 

Device class name. 

Note 

An extent descriptor (words 44 through 107 above) is a double 
word. The first byte contains the volume table index of the volume 
in which the extent resides; the remaining three bytes of the 
double word extent descriptor contain the first sector number of 
the extent. 

E-2 



END-OF-FILE 1~m11.11 
INDICATION I F I 

The end-of-file indication will be returned by the card reader and tape drivers under conditions 
specified by the initiators of read requests. The type of requests are as follows: 

Type 

A 

B 

E 

Class of end-of-file 

All records that begin with a colon (:). 

All records that contain, starting in the first byte, :EOD, 
:EOJ, :JOB and :DATA (See Note.) 

Hardware-sensed end-of-file. 

NOTE: If the word count is less than 3 or the byte count is less 
than 6, then Type Breads are converted to Type A reads. 

In utilizing the card/tape devices as files via the file system, the following types are assigned: 

File Specified 

$STD IN 

$STDINX 

Dev=CARD /TAPE 

Type 

Type A. 

Type B. 

Type B, if device job/data accepting. 
Type E, if device not job/data accepting. 

Any subsequent requests initiated by the driver following sensing of an end-of-file condition will be 
rejected with an end-of-file indication. 

When reading from an unlabeled tape file, the request encountering a tape mark will respond with 
an end-of-file indication but succeeding requests will be allowed to continue to read data past the 
tape mark. Under these conditions, it is the responsibility of the caller to protect against the 
occurrence of data beyond an end-of-file and to prevent reading off the end of the reei. 

F-1 



Labels conf<?rming to ANSI-standard can be read and written on magnetic tape files by MPE. IBM­
standard labels can be read, but cannot be written by MPE. 

The tape labels written by MPE consist of: 

Volume Header 
File Header 1 
File Header 2 
End-of-File 1 
End-of-File 2 
End-of-Volume 1 
End-of-Volume 2 

At the beginning of each reel of tape. 
.At the beginning of each file on the reel. 
Following File Header 1. 
At the end of each file on the reel. 
Following End-of-File 1. 
At the end of a reel if the tape spans more than one volume. 
Following End-of-Volume 1. 

The file labels (file headers, end-of-file, and end-of-volume labels) are written on tape using the 
:FILE command or the FOPEN intrinsic. Each label is 80 bytes long and is formatted as shown in 
Figure G-1 and Table G-1. 

User-supplied labels, if any, are located on the tape as shown in Figure G-1. User-supplied labels can 
only be written on tape labeled with MPE tape labels, and the user labels must be exactly 80 bytes, 
to conform to the MPE labels. 

G-1 



G) 
I 

N 

V H H 
0 D D 
L R R 

2 

VOLUME 1 OF 3 

v H H 

0 D D 

L R R 

1 1 2 

VOLUME 2 OF 3 

v H H 

0 D D 

L R R 

2 

VOLUME 3 OF 3 

v H H 

0 D D 

L R R 

2 

U T 
H 
L M 

u 
T 

H 
M 

L 

T 

M 

T 

M 

RECORD 

RECORD 

1 
(FILE A) 

FIRST 

RECORD 

ON THIS 

REEL 

(FILE B) 

FIRST 

RECORD 

ON THIS 

REEL 
(FILE B) 

FILE A 

r 

( 

FILE B 

r 

E E U H 
T 0 0 T T D 
M F F M R 

2 L 

H U 
D H T 
R M 
2 L 

MULTIPLE Fl LES ON A SINGLE VOLUME 

E E H H u u 
} RECORD T 0 0 T D D T 

M F F 
T 

M R R 
H 

M n 

1 2 
L 

1 2 
L 

FILE B 

CONTINUATION OF 

FILE B 

E E H H 
RECORD T 0 0 

u 
T D D 

u 
T 

M F F 
T 

M R R 
H 

M n 
L L 

2 2 

MULTIPLE FILES ON MULTIPLE VOLUMES 

RECORD 

RECORD 

1 

RECORD 

FILE B 

7 

E E 
RECORD T 0 0 ~ T T 

n MF F MM 
1 2 L 

Note: When the file spans 

more than one volume, EOV 

is written instead of EOF. 

-~ 

LAST E E J 
-..

...__R_E-CO __ R_D....._T_._O_,__O_._T_,_:T __ ON THIS M V V M 

REEL 1 2 

LAST E E 

RECORD T 0 0 T T 

ON THIS M v v M M 

REEL 1 2 

FILE C 

E E 

RECORD T 0 0 
u 

T T 
M F F 

T 
M M 11 

1 2 
L 

Figure G-1. MPE Tape Labels (Conforming to ANSI-Standard) 

() 

-I 
ru 
-0 
([) ,­
QJ 

CY" 
([) 

(/) 



POSITION 

Bytes 1-4 

Bytes 5-10 

Bytes 11-37 

Bytes 38-51 

Bytes 52-79 

Byte 80 

Bytes 1-4 

Bytes 5-21 

Bytes 22-27 

Bytes 28-31 

Bytes 32-35 

Bytes 36-41 

Bytes 42-4 7 

Bytes 48-53 

Byte 54 

Bytes 55-80 

Magnetic Tape Labels 

Table G-1. Format of Tape Labels Written by MPE. (ANSI Standard) 

VOLUME HEADER LABEL (80 BYTES) 

CONTENTS COMMENTS 

VOLn Indicates volume label (n specifies volume number). Appears on each 

label. 

volume id Six-character identifier as supplied by :FILE command, FOPEN 

intrinsic, or console operator. 

Blanks Reserved for future use. 

Blanks Not written by MPE. (Used for owner identification in ANSl-stan-

dard labels.) 

Blanks Reserved for future use. 

1 Indicates that label conforms to ANSI-standard. 

FILE HEADER LABEL (80 BYTES) 

HDR1 

filename.groupname 

volume set id 

reel number 

file sequence number 

Blanks 

file creation date 

file expiration date 

%230 

Blanks 

Indicates file header 1 label. Appears before each file on the reel. 

Used for file identifier in ANSI-standard labels. 

Six-character identifier of the first volume in a set, as supplied by 

: FI LE command, FOP EN intrinsic, or console operator. 

A four-digit entry from 0001 to 9999, indicating the relative posi­

tion of a reel in a volume set. 

A four-digit entry from 0001 to 9999, indicating the relative posi­

tion of a file on a reel. 

Not written by MPE. (Reserved for generating data groups in ANSI­

standard labels.) 

Indicates date on which file is written to magnetic tape. 

Indicates date after which file can be overwritten. 

Indicates that file was created by MPE and the file has a lockword. 

Reserved for future use. 

G-3 



A 

Access mode, 7-1, A-4 
append only, 7-2, A-4 
input/output, 7-2, A-4 
read only, 7-1, A-4 
update, 7-2, A-4 
write (save) only, 7-2, A-4 
write only, 7-1, A-4 

Access 
exclusive, 5-14, A-4 
global multi, 5-16 
multi, 5-15, A-4 
semi-exclusive, 5-15, A-4 
share, 5-15, A-4 

Account Librarian (AL), 7-4, A-5 
Account Member (AC), 7-4, A-5 
Account-level security, 7-5 
Actual file designator, 3-19 
ADCC, C-1, C-6, C-8, C-19 
Advanced Terminal Processor (ATP), 

C-1, C-6, C-8 
Altering security, 7-9 
AL TSEC command, 7-9 
Any User (ANY), 7-4, A-5 
APPEND access, 7-2, A-4 
Append only access, 7-2, A-4 
ASCII characters, D-1 
ASCII representation, 2-1 
Asynchronous Data Communication 

Channel (ADCC), C-1, C-6, 
C-8, C-19 

Asynchronous Terminal Controller (A TC), 
C-1, C-6, C-7, C-8 

A TC, C-1, C-6, C-7, C-8 
ATP, C-1, C-6, C-8 

B 

Back-referencing files, 5-4, A-3 
Backing up files, 9-24 

example, 9-33 
Beginning-of-tape mark, 9-1 
Binary mode, C-24 
Binary representation, 2-1 
Block, 2-8 
Blocking factor, 2-9 
Blocking fixed-length records. 2-10 
Blocking undefined-length records. 2-13 
Blocking variable-length rewrcls, 2-12 

H 

Blocking, 2-S 
RIO, 2-14, A-7 
system file label, 2-13 

BOT, Q-1 
Break functions, C-15 

subsystem, C-15 
system, C-15 

INDEX I 

Buffered input I output, 6-15 - 6-17 
Buffering, A-1 
Buffers, number of, 6-19 
BUILD command, 3-8, A-2 

c 

Circular files, S·-28 - 8-31 
intrinsics for use, 8-29 - 8-31 

Control characters, C-17 - C-18 
Controlled record select ion, 6-2 
Creating User (CR), 7-4, A-5 

D 

Data represent.a ti on, 2-1 
ASCH, 2-1 
binar:•/, 2-1 

Data transfer intrinsics, 6-10 
Default record selection, 6-2 
Default security provisions, 7-8 
Device Independence, 1-1 
Device,...dependent characteristics, 

3-23 - 3-24, A-6 
Devicef iles, 3-2, 3-21 

spooled, 3-2 
Devices, 3-21 
Director)' search, 4-4 
Disc files, 3-1 
Domains, 4-1 - 4-4, A-3 

changing, 4-3 
Du plica ti ve file pairs, 5-8 

E 

Echo, C-20 
End-of-file mark, Q-3, F-1 
End-of-record characters, C-14 
End-of-tape mark, 9-1 
End-of-volume, 9-1 
ENQ/ACK pacing handshake, C-1, C-23 
FOF, Q-3. F-1 
EOT, l1-l 



INDEX 

EOV, 9-1 
EXC access, 5-14, A-4 
Exclusive access, 5-14, A-4 
Extent allocation, 3-4 
Extent size, 3-3 
Extents, 3-2, 3-3 

allocation, 3-4 
performance considerations, 
size, 3-3 

F 

FCHECK intrinsic, 8-12, B-8 
FCONTROL intrinsic, 6-12, 6-21, 8-10, 

9-2, C-1 - C-24 
FCOPY, 6-13 
FDF, 3-25 
FFILEINFO intrinsic, 8-12 
FGETINFO intrinsic, 8-12, B-8 
FILE command, 3-8, A-2 
File Information Display, B-1 - B-7 

full, B-2 
short, B-3 

File System, 1-1 
File characteristics, defining, 3-6 

overrides, 3-12 
File codes, 3-17, A-2 
File designators, 3-19 

actual, 3-19 
formal, 3-19 

File domains, 4-1 - 4-4, A-3 
File identif ica ti on, 3-12 
File la be ls 

system, 2-13, 3-13 
user, 3-15 

File name, 3-19 
File pairs, 5-8 

duplicative, 5-8 
interactive, 5-8 

File-level security, 7-7 
Files, 1-1, 3-1 

back-referencing, 5-4, A-3 
codes, 3-17, A-2 
defining characteristics, 3-6 
designators, actual, 3-19 
designators, formal, 3-19 
device, 3-2, 3-21 
disc, 3-1 
domains, 4-1 - 4-4, A-3 
identification, 3-12 
listing, 4-4 
lockwords, 5-3 

1-2 

magnetic tape, 9-1 - 9-38 
name, 3-19 
new, 4-1, A-3 
old, 4-1, A-3 
passed, 5-9 - 5-12 
permanent, 4-1 
pre-defined, 5~5, A-3 
renaming, 3-20 
reserved codes, 3-18, A-2 
restoring, 9-34 
security, 7-1 - 7-10 
serial disc, 9-1 
shared, 5-13 - 5-17, A-4 
storing, 9-24 
system-defined, 5-1, 5-6 
temporary, 4-1, A-3 
transferring, 6-13 
user-defined, 5-1 

FINTEXIT intrinsic, 8-24 
FINTST A TE intrinsic, 8-24 
Fixed-length records, 2-2, A-1 

blocking, 2-10 
FLOCK intrinsic, 5-16 
FOPEN intrinsic, 3-7, 8-7, 8-29, A-5 

parameters and defaults, 3-7 
Foreign Disc Facility (FDF), 3-25 
Formal file designator, 3-19 
FPOINT intrinsic, 6-12 
FREAD intrinsic, 6-2, 8-2, 9-2 
FREADBACK\VARD intrinsic, 9-2 
FREADDIR intrinsic, 6-3 
FREADLABEL intrinsic, 3-16, 9-23 
FREADSEEK intrinsic, 6-7 
PRELATE intrinsic, 5-8 
FSETMODE intrinsic, 6-21, C-1, C-22 
FSPACE intrinsic, 6-11, 9-2 
FUNLOCK intrinsic, 5-16 
FUPDA TE intrinsic, 6-7 
F\VRITE intrinsic, 6-2, 8-2, 9-1 
FWRITEDIR intrinsic, 6-3 
FWRITELABEL intrinsic, 3-15, 9-22 

G 

Generic names, 5-5 
Global multiaccess, 5-16 

with message files, 8-4 
Gl\IUL TI access, 5-16 
Group Librarian (GL), 7-4, A-5 
Group User (GU), 7-4. A-5 
Group-level security, 7-6 



H 

Headers and trailers, 3-25 

I 

IN access, 7-L A-4 
INOUT access, 7-2, A-4 
Input echo facility, C-20 
Input/output access, 7-2, A-4 
Inter-record gap, 9-6 
Interactive file pairs, 5-8 
Interprocess Communication (IPC), 8-1 - 8-31 

copy access, 8-3 
global multiaccess, 8-4 
intrinsics for use, 8-2 - 8-3, 

8-6 - 8-13 
nondestructive read, 8-4 
reader process, 8-1 
time-outs, 8-3 
writer process, 8-1 
writer ID, 8-3 

Intrinsics for data transfer, 6-10 
IOWAIT intrinsic, 6-19 
IPC, 8-1 - 8-31 
IRG, 9-6 

L 

Line deletion echo suppression, C-21 
LISTEQ2, 4-4 
Listing files, 4-4 
LISTF command, 4-4 
Lock words, 5-3 
Logical device number, 3-21 
Logical record pointers, 6-1 
Logical record, 2-1, A-1 

M 

Magnetic tape files, 9-1 - 9-38 
beginning-of-tape mark, 9-1 
end-of-file mark, 9-3 
end-of-tape mark, 9-1 
end-of-volume, 9-1 
format, 9-26 
inter-record gap, 9-6 
labels, G-1 
no-rewind disposition, 9-5 

I-3 

Message files, S-1 
creating, 8-4 
examples, 8-13 

INDEX I 

maintaining internal structure, 8-5 
operation, S-2 - 8-3 

MPE File System, 1-1 
MR mode, 6-20 
MULTI access, 5-15, A-4 
Multi-Record mode (:MR), 6-20 
Multi-access, 5-15, A-4 
Multipoint terminals, C-1 

N 

NEW files, 4-1, A-3 
$NE WP ASS, 5-8, 5-9 
NOBUF, 6-18 
Normal mode, C-17 
NOWAIT input/output, b-18 
$NULL, 5-6, 5-8 

0 

OLD files, 4-1, A-3 
$0LDPASS, 5-7, 5-9 
OUT access, 7-1, A-4 
OUTKEEP access, 7-2, A-4 

p 

Paper tapes, reading, C-22 
Parity generation and checking, C-S, C-9 
Parity sensing, C-6, C-8 
Passed files, 5-9 - 5-12 

$NEWPASS, 5-7, 5-9 - 5-12 
$0LDPASS, 5-7, 5-9 - 5-12 

Permanent files, 4-1 
Physical record pointers,6-1 
Physical record, 2-8 
Point-to-point terminals, C-i 
PRINT'FILETNFO intrinsic, B-1 
PT APE intrinsic, C-1, C-22 
PURGE command, 6-14 

R 

Random access. 6-2 
Read duration timer, C-10 
Read only access, 7-1, A-4-



INDEX 

Reader process, 8-1 
Reading paper tapes, C-22 
Record pointers, 6-1 

initializing, 6-2 
logical, 6-1 
physical, 6-1 

Record selection, 6-2 
con trolled, 6-2 
de fa ult, 6-2 
pointing, 6-12 
rewinding, 6-12 
sequential, 6-2 
spacing, 6-11 
update, 6-7 

Record size, 2-6 
Record, 2-1, A-1 

fixed-length, 2-2, A-1 
logical, 2-1, A-1 
physical, 2-8 
undefined-length, 2-5, A-1 
variable-length, 2-3, A-1 

Relative input/output, 6-11 
RELEASE command, 6-13, 7-10 
RENAME command, 3-20, 6-13 
Renaming files, 3-20 
Reserved file codes, 3-18, A-2 
RESTORE command, 6-14, 9-24, 9-34 
Restoring files, 9-34 

example, 9-38 
RIO, 6-11 

s 

SA VE command, 4-3 
Sectors, 2-9 
SECURE command, 6-14, 7-10 
Security, 7-1 - 7-10 

account-level, 7-5 
altering, 7-9 
default provisions, 7-8 
file-level, 7-7 
group-level, 7-6 
suspending restrictions, 7-10 
symbolic specifications, 7-6 

SEMI access, 5-15, A-4 
Semi-exclusive access, 5-15, A-4 
Sequential record selection, 6-2 
Serial disc files, 9-1 
Share access, 5-15, A-4 
Shared files, 5-13 - 5-17, A-4 
SHR access, 5-15, A-4 

1-4 

Software interrupts, 8-4, 8-24 - 8-27 
enabling and disabling, 8-24 
example, 8-26 
restrictions, 8-25 

Special forms, 3-25 
Speed sensing, C-3, C-6 
Spooled devicefiles, 3-2 
Status, B-1 - B-9 
$STDIN, 5-6, 5-7 
$STDINX, 5-6, 5-7 
$STDLIST, 5-6, 5-8 
STORE command, 6-14, 9-24 
Storing files, 9-24 

example, 9-33 
Suspending security restrictions, 7-10 
Symbolic security specifications, 7-6 
System file label, 3-13, E-1 

blocking, 2-13 
System-defined files, 5-1, 5-6 

$NULL, 5-6, 5-8 
$STDIN, 5-6, 5-7 
$STD1NX, 5-6, 5-7 
$STDLIST, 5-6, 5-8 

T 

Tape directory records, 9-26 
Tape-mode option, C-21 
TEMP files, 4-1, A-3 
Terminal input timer, C-10 

reading, C-10 
Terminal speed 

changing, C-7 
determining, C-6 

Terminal type, C-3, C-4 
Terminal type, changing, C-5 
Terminal type, determining, C-5 
Terminals, C-1 - C-24 

multipoint, C-1 
point-to-point, C-1 

Tombstone, B-2 
Transferring files, 6-13 

between accounts, 6-13 
between groups, 6-13 
between systems, 6-13 

Transparent mode, C-23 



u 

Unbuffered input/output, 6-18 
Undefined-length records, 2-5, A-1 

blocking, 2-13 
Unedited mode, C-23 
UPDATE access, 7-'2, A-4 
Update access, 7-2, A-4 
Update record selection, 6-7 
User block transfers, enabling and 

disabling, C-19 
User labels, 3-15 

reading, 3-16 
writing, 3-15 

User pre-defined files, 5-5, A-3 
User type 

AC, 7-4, A-5 
AL, 7-4, A-5 
ANY, 7-4, A-5 
CR, 7-4, A-5 
GL, 7-4, A-5 
GU, 7-4, A-5 

User-defined files, 5-1 
User-defined tape la be ls, 9-2 2 

v 

Variable-length records, 2-3, A-1 
blocking, 2-12 

Volume name, 9-12 
Volume set name, 9-12 
Volume set, 9-12 

w 

Write (save) only access, 7-2, A-4 
\\trite only access, 7-1, A-4 
Writer ID, 8-3 
Writer process, 8-1 

INDEX I 

I-5 



READER COMMENT SHEET 

MPE File System 
Reference Manual 

30000-90236 Feb 1982 

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications. 
Please use additional pages if necessary. 

Is this manual technically accurate? 

Are the concepts and wording easy to understand? 

Is the format of this manual convenient in size, 
arrangement, and readability? 

Comments: 

FROM: 

Name 

Company 

Address 

Yes D No D (If no, explain under Comments, below.) 

Yes D No D (If no, explain under Comments, below.) 

Yes D No D (If no, explain or suggest improvements 
under Comments, below.) 

DATE:~----------------------------------------------~ 



FOLD 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 1070 CUPERTINO,CALIFORNIA 

POSTAGE WILL BE PAID BY ADDRESSEE 

Publications Manager 
Hewlett-Packard Company 
Computer Systems Division 
19447 Pruneridge Avenue 
Cupertino, California 95014 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

~-------------------------------------------------------------------------------------------------------------------------~ FOLD FOLD 



Part No. 30000-90236 
Printed in U.S.A. 2/82 
E0282 

rJ,ril HEWLETT 
~~PACKARD 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	9-34
	9-35
	9-36
	9-37
	9-38
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	D-01
	E-01
	E-02
	F-01
	G-01
	G-02
	G-03
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB
	xBack

