
HP 3000 Computer Systems

MPE V INTRINSICS

Temporary Supplement

fiJ~:~K~~~
19447 PRUNERIDGE AVENUE, CUPERTINO, CA 95014

Part No. 32033-90007
E0784

Printed in U.S.A. 07/84

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for inciden­
tal or consequential damages in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced or trans­
lated to another language without the prior written consent of Hewlett-Packard
Company.

Copyright (c) 1984 by HEWLETT-PACKARD Company

11

PREFACE I

This is a temporary supplement to the MPE V Intrinsics Reference Manual. It is designed
to cover all the intrinsics that are new or have been enhanced for MPE V releases
E/F.00.00 and G.00.00.

While not designed as an update package, this temporary supplement should be used along
with the MPE IV Intrinsics Reference Manual (30000-9001 O) to provide you a com­
prehensive reference source for MPE V intrinsics.

Currently the MPE V Intrinsics Reference Manual is undergoing a complete rewrite. In
order to better serve you, we are trying to incorporate many of the comments and sugges­
tions we have received via our Reader Comment Sheets and Service Requests.
Unfortunately, the new Intrinsics Reference Manual is not ready for printing at the time
of this software release. To meet your needs in the interim, we have compiled this tem­
porary supplement to the MPE IV Intrinsics Reference Manual.

We hope that this temporary supplement does not inconvenience you. Rest assured that
the new MPE V Intrinsics Reference Manual (32033-90007) will soon be on its way to
your office. It will be distributed via normal distribution channels.

iii

CONVENTIONS USED IN THIS MANUAL I

NOTATION

COM'1AND

KEYWORDS

parameter

[1

{ }

user input

. c
superscript

<<COl"t1ENT>>

** Comment **

DESCRIPTION

Commands are shown in CAPITAL LETTERS . The names mus
contain no blanks and be delimited by a non-alphabetic character
(usually a blank).

Literal keywords, which are entered optionally but exactly as
specified, appear in CAP ITAL LETTERS .

Required parameters, for which you must substitute a value, ap­
pear in bold italics.

Optional parameters, for which you may substitute a value, appear
in standard italics.

An element inside brackets is optional. Several elements stacked in­
side a pair of brackets means the user may select any one or none of
these elements.
Example: C A] .

[B] user may select A or B or neither.

When brackets are nested, parameters in inner brackets can only be
specified if parameters in outer brackets or comma place-holders
are specified.
Example: Cparml [,parm2C ,parm3]]] may be entered as:

parm1,pa.rm2,parm3 or
pa.rml, ,parm3 or
, ,parm3 , etc.

When several elements are stacked within braces the user 11&lSt
select one of these elements.
Example: { A }

{ B } user must select A or B.

An ellipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

In examples of interactive dialog, user input is underlined.
Example: NEW NAME? ST I CK2

Control characters are indicated by a superscriptc. Example: Ye .
(Press Y and the CNTL key simultaneously.)

___ I indicates a terminal key. The legend appears inside.

Programmer's comments in listings appear within « » .

Editor's comments appear in this form.

iv

FCLOSE
INTRINSIC NUMBER 8

Closes a file.

SYNTAX

IV IV IV
FCLOSE<filenum,disposition,seccode);

The FCLOSE intrinsic terminates access to a file. This intrinsic applies to files on all devices. FCLOSE
deletes buffers and control blocks through which the user process accessed the file. It also deallocates
the device on which the file resides and it may change the disposition of the file. If you do not issue
FCLOSE calls for all files opened by your process, such calls are issued automatically by MPE when the
process terminates. All magnetic tape files are left off line after such FCLOSE calls, to indicate to the
System Operator that they may be removed.

The FCLOSE intrinsic can be used to maintain position when creating or reading a labeled tape file
that is part of a volume set. If you close the file with a disposition code of 3, the tape does not
rewind, but remains positioned at the next file, If you close the file with a disposition code of 2, the
tape rewinds to the beginning of the file but is not unloaded. A subsequent request to open the file
does not reposition if the sequence (seq) subparameter of formmsg in FOPEN specifies NEXT or
default (1). A disposition code of 1 (rewind and unload) implies the close of an entire volume set.

If an unlabelled magnetic tape is closed with a disposition code of 0, 1 , or 4, and the tape was written
to while open, FCLOSE writes three EOFs at the end of the tape before performing a rewind or
rewind/unload. This ensures that all tapes have an acceptable number of EOF marks at the end. The
three EOFs are written only after the last FCLOSE to occur before the rewind, and only if the tape
was written on.

For circular files, deletion of disc space beyond the end-of-file is not allowed.

PARAMETERS
7ilenum I---------

disposition

integer by value (required)
A word identifier supplying the file number of the file to be closed.

integer by value (required)
Indicates the disposition of the file, significant only for files on disc and
magnetic tape (disposition is ignored by the Foreign Disc Facility). This

. disposition can be overridden by a corresponding parameter in a : FI LE
command entered prior to program execution. The disposition options are
defined by the bit fields (1 3 : 3) and (12 : 1) as follows:

(1 3: 3) Domain Disposition

=000 No change. The disposition code remains as it was before the file
was opened. Thus, if the file is new, it is deleted by FCLOSE ;
otherwise, the file is assigned to the domain to which it belonged
previously. An unlabeled tape file is rewound. If the file resides on
a labeled tape, the tape is rewound and unloaded.

=001 Permanent file. If the file is a disc file, it is saved in the system
file domain. A new or old temporary file on disc will have an entry
created for it in the system file directory. Should a file of the same
name already exist in the directory, an error code is returned and
the file remains open. If the file is an old permanent file on disc,
this domain disposition has no effect. Also, if the file is stored on
magnetic tape, that tape is rewound and unloaded.

=010 Temporary job file (rewound). The file is retained in the user's
temporary (job/session) file domain and can be requested by any
process within the job/session. If the file is a disc file, the unique­
ness of the file name is checked. Should a file of the same name al -
ready exist in the temporary file domain, an error code is returned
and the file remains open. When a file resides on unlabeled mag­
netic tape, the tape is rewound. However, if the file resides on
labeled magnetic tape, the tape is backspaced to the beginning of
the presently opened file.

=O 11 Temporary job file (not rewound). This option has the same effect
as domain disposition 0 I 0, except that tape files are not rewound.
In the case of unlabeled magnetic tape, if this FCLOSE is the last
done on the device (with no other FOPEN calls outstanding) the tape
is rewound and unloaded. If the file resides on a la be led magnetic
tape, the tape is positioned to the beginning of the next file on the
tape.

• l 00 Released file. The file is deleted from the system.

(12: I) Disc Space Disposition (for fixed, undefined, and variable format
files.

=O Does not return any disc space allocated beyond the end-of-file
indicator.

= 1 Returns to the system any disc space allocated beyond the end-of -file
indicator. The EOF becomes the file limit. No records may be added
to the file beyond this new limit.

Bit (0: I 2) are reserved for MPE and should be set to zero.

When a file is opened by the FOPEN intrinsic, a file count (maintained by
MPE for each file) is incremented by one. When the file is closed, the file
count is decremented by one. If more than one FOPEN is in effect for a
particular file, its disposition is saved but not affected by the FCLOSE call
until the file count is decremented to zero. Then the effective (saved)
disposition is the smallest nonzero disposition parameter specified among all

2

seccode

FCLOSE calls issued against the file. For example, the file XYZ is opened
three successive times by a process. The first FCLOSE disposition is 1, the
second FCLOSE disposition is %14, and the third (and last) FCLOSE disposi­
tion is % 12. The final disposition on the file XYZ will be disposition 1
(permanent file and no return of disc space).

integer by value (required)
Denotes the type of security initially applied to the file, this is significant
only for new permanent files (secode is ignored by the Foreign Disc
Facility). The options are:

0 Unrestricted access : the file can be accessed by any user , unless
prohibited by current MPE provisions.

Private file creator security: the file can be accessed only by its
creator.

CONDITION CODES

CCG

CCL

The file was closed successfully.

Not returned by this intrinsic.

The file was not closed, perhaps because an incorrect filenum was specified
or because another file with the same name and disposition exists in the sys­
tem. Any outstanding write I/O's which failed will also cause the FCLOSE
to fail (such I/O's as buffered writes which are done in background).
Additionally, an illegal dis position (5, 6, or 7) may have been specified.
This can be detected by FCHECK returning an error of 49.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

Communicator 3000 Volume 2 Issue 1 (5955-1770)

For further information on magnetic tape files and associated functions, refer to the MPE File System
Reference Manual (30000-90236).

3

FFILEINFO

Provides access to file information.

SYNTAX

0-V IV
FFILEINFOCfilenum

IV BA
C,itemnwn1,iteml1alue1l
C,itemnwn2,iteml1alue2l
[,itemnum3,itemvalue3l
C,itemnum4,iteml1alue4l
C,itemnwn5,iteml1alue5l);

ltemnum/itemvalue parameters must appear in pairs. Up to five items of information can be
retrieved by specifying one or more itemnum/ itemvalue pairs. FF I LE INFO is designed to allow for fu­
ture changes so that new file information can be defined and accessed.

PARAMETERS

f ilenum

itemnum

itermJalue

integer by value (required)
MPE file number returned by FOPEN .

integer by value (optional)
Cardinal number of the item desired; this specifies which item value is to
be returned. (Ref er to 11 ITEM # 11

, Table 1.)

byte array (optional)
Returns the value of the item specified by the corresponding itemnum ; the
data type of the item value depends on the item itself. (Refer to "ITEM",
Table 1.)

CONDITION CODES

CCE No error.

CCG Not used.

CCL Access or calling sequence error.

ADDITIONAL DISCUSSION

Communicator 3000 Volume 2 Issue 1 (5955-1770)

MPE File System Reference Manual (30000-90236)

4

Table 1. Item Values Returned by FFILEINFO

I IT~M• ITEM TYPE UNITS
Filename BA (see FGETINFO)

2 Foptions L (see FGETINFO)
3 Aoptions L (see FGETINFO)
4 Record I (see FGETINFO) words/bytes
5 Device type I (see FGETINFO)
6 Logical device number L (see FGETINFO)
7 Hdaddr L (see FGETINFO)
8 File code I (see FGETINFO)
9 Record pointer D (see FGETINFO)

10 EOF D (see FGETINFO)
11 File limit D (see FGETINFO) records
12 Log count D (see FGETINFO) records
13 Physcount 0 (see FGETINFO) records
14 Block size I (see FGETINFO) records/bytes
15 Extent size L (see FGETINFO) sectors
16 Number of extents I (see FGETINFO)
17 User labels I (see FGETINFO)
18 Creator ID BA (see FGETINFO)
19 Label address D (see FGETINFO)
20 Blocking factor I (see FOPEN)
21 Physical block size I words
22 Data block size I words
23 Offset to data in blocks I words
24 Offset of Active Record Table I (RIO files) words
25 Size of Active Record Table I words

within the block
26 Vol. ID(label tape) BA (see Label Tapes)
27 Vol. set ID(label tape) BA (see Label Tapes)
28 Expiration date(Julian) I (see Label Tapes)
29 File sequence number I (see Label Tapes)
30 Reel number I (see Label Tapes)
31 Sequence type I (see Label Tapes)
32 Creation date(Julian) I (see Label Tapes)

5

7v /E ~

Table 1. Item Values Returned by FFILEINFO (Continued)

ITEM# ITEM
33 Label type
34 Current# of writers
35 Current# of readers

TYPE
I
I
I

UNITS
(see labeled tapes)
(see IPC)
(see IPC)

36 File Allocation Date L (CALENDER format)
37 File Allocation D (CLOCK format)
38 SPOOLFILE Device file

(#0 or #1 number. If
number L (see File Code)

39
40
41
42
43
44
45
46
47
48

A.9_

50
51
52
53
54
55
56
57
58
59
60

device is not spooled,
intrinsic returns zero)
RESERVED
Disc or diskette device status
Device type
Device subtype

D
I
I

Environment file name BA
Last disc extent allocated I
Filename from labeled tape HOR! record BA
Tape density I
ORT number I
UNIT number I
Software interrupt PLABEL I
Real device number of the file I
Virtual device number I
Last modification time (CLOCK format) D
Last modification date (CALENDAR format) L
File creation date (CALENDAR format) L
Last access date (CALENDAR format) L
I data blocks in a variable length file I
of the user label written to the file I
Number of opens for output I
Number of opens for input I
Terminal type, defined as: I

0-f ile's associated device is not a terminal
!-standard hardwire or multi-point terminal
2-the terminal is connected via a phone-modem
3-DS psuedo terminal
4-X.25 Packet Switching Network PAD

(Packet Assembler Disassembler) terminal

6

FINTEXIT
INTRINSIC NUMBER 23

Returns from the user's interrupt procedure.

SYNTAX

0-V LV

FINTEXITCintstate);

The FINTEX IT intrinsic returns from the user's interrupt procedure. Software interrupts are set ac­
cording to intstate. If intstate is omitted, FINTEXIT.defaults to software interrupts enabled.

PARAMETERS

int state logical by value (optional)
A logical value indicating the state of software interrupts through bit
(1 S : 1) as follows:
=:Q Leave software interrupts disabled.

= 1 Enable software interrupts.
Default: (1S:1)=1.

CONDITION CODES

The condition code remains unchanged.

7

FINTSTATE
INTRINSIC NUMBER 24

Enables/disables all software interrupts against the calling process.

SYNTAX

L LV
oldstate:=FINTSTATECintstate);

The software interrupt facility enables users to perform FREAD/FWRITE completion processing with
their own interrupt procedure. An FREAD/FWRITE call is necessary to initiate the 1/0 request. Both
of these intrinsics return to the user,s process as soon as the request has been started. When the opera­
tion completes, the user's program is trapped (or "interrupted 11

) and goes to a user chosen interrupt
procedure. This performs whatever processing is necessary and then resumes the user's original
program.

Soft interrupts are "armed 11 for a particular file by specifying the interrupt procedure's plabel in an
FCONTROL call with a controlcode of 48. Calling 11 FCONTROL 48" with a parameter of 0 will disarm
the software interrupt mecha.nism. The file is then accessed in the previous manner.

NOTE

MPE inhibits software interrupts just before entering an
interrupt procedure. This is done to stop unwanted nest­
ing of the interrupt procedures. Each interrupt proce­
dure should call F INTEX IT (Ref er to F INTEX IT in this
section) to re-enable other interrupts just before it exits.

Software interrupts are normally automatically in­
hibited before a ye trap procedure. The trap procedure
may elect to allow software interrupts, however, by
calling the FINTSTATE intrinsic. The RESETCONTRDL
intrinsic will restore the process's interrupt state to its
pre-YC value (unless the trap procedure issues an
F INTSTATE call, in which case RESETCONTROL makes
no change).

When the software interrupt is executed, Q-4 will contain the file number of the file that caused the
interrupt.

It is necessary to issue a call to the IODONTWA IT intrinsic against the file in order to complete the
request. When reading the target parameter is ignored in the FREAD call. The data is moved to the
array specified by the target parameter of IODONTWA IT.

FUNCTIONAL RETURN

oldstate logical
The old state (enabled or disabled) of software interrupts is returned by this
procedure.

8

PARAMETERS

intstate logical by value (required)
A logical value enabling/disabling software interrupts as through bit (15: 1)
as follows:
=0 Disable software interrupts.

= 1 Enable software interrupts.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

An uncompleted FREAD/FWRITE request may be aborted by issuing an FCONTROL call with a control­
code of 43 (abort NOWAIT 1/0).

Limitations:

• Only message files allow soft interrupts.

• No more than one uncompleted FREAD/FWRITE may be outstanding for a particular file.

• The interrupt is held off while the user is executing within MPE, with the following ex­
ceptions: PAUSE and IOWA IT will allow the interrupt. The interrupt handler's return
stack marker in this case will be set to reinvoke the intrinsic.

• May not be used with remote files.

9

GETDSEG
INTRINSIC NUMBER I 30

Creates an extra data segment.

SYNTAX

L I LV
GETDSEGCinde.c,length,id>;

The GETDSEG intrinsic creates or acquires an extra data segment. The number of extra data segments
that can be requested, and the maximum size allowed these segments, are limited by parameters
specified when the system is configured. When an extra data segment is created, the GETDSEG in­
trinsic returns a logical index number to the calling process. This index number is assigned by MPE
and allows this process to reference the segment in later intrinsic calls. The GETDSEG intrinsic also is
used to assign the segment the identity that either allows other processes in the job or session to share
the segment, or that declares it private to the calling process. If the segment is sharable, other
processes can obtain its logical index (through GETDSEG) and use this index to reference the segment.
Thus, the logical index is a local name that identifies the segment throughout any process that ob­
tained the index with the GETDSEG call. The logical index need not be the same value in all processes
sharing the data segment. The identity, on the other hand, is a job-wide or session-wide name that
permits any process to determine the logical index of the segment. If the intrinsic is called in user
mode, then the data segment is initially filled with zeros. When GETDSEG is called in User Mode, all
subsequent calls to intrinsics that use index must now be in User Mode. Likewise, when GETDSEG is
called in Privileged Mode, all subsequent calls to intrinsics that use index must now be in Privileged
Mode.

PARAMETERS

length

id

logical (required)
A word to which the logical index of the data segment, assigned by MPE, is
returned. When GETDSEG is called in User Mode, index is a logical index of
the assigned data segment; if an error is found, index will be set to
%2000-%2003. When GETDSEG is called in Privileged Mode, index is the
actual entry segment entry number for the data segment that was assigned.

integer (required)
The maximum size of the data segment requested, if the segment is not yet
created, or the word to which the maximum size of the segment is return­
ed, if the segment already exists.

logical by value (required)
A word containing the identity that declares the data segment sharable be­
tween other processes in the job/session, or private to the calling process.
For a sharable segment, id is specified as a nonzero value. If a data seg­
ment with the same id exists already, it is made available to the calling
process. Otherwise, a new data segment, sharable within the job/session, is
created with this id. For a private data segment, an id of zero must be
specified.

10

CONDITION CODES

CCE

CCG

CCL

Request granted. A new segment was created.

Request granted. An extra data segment with this identity exists already.

Request denied. An illegal length was specified (index is set to %2000), or
the process requested more than the maximum allowable number of data
segments (index is set to %2001), sufficient storage was not available for

·the data segment (index is set to %2002) or a stack expansion necessary to
satisfy the request could not be done because the stack was frozen (index set
to %2003). (Note that a stack expansion is usually not necessary to get an
extra data segment), or not enough room in job definition table to make an
entry for the extra data segment (index set to %2004).

SPECIAL CONSIDERATIONS

Data Segment Management (OS) capability required.

ADDITIONAL DISCUSSION

Commuicator 3000 Volume 2 Issue 1 (59 55-1770)

11

JOBINFO
INTRINSIC NUMBER 180

Provides aci.;ess to job/session related information.

SYNTAX

IV D LA IV LA I
JOBINFO<jsind,JS#nnn,status [,itemnuml,iteml,errornuml]

C,itemnum2,item2,errornum2]
[,itemnum3,item3,errornum3]
[,itemnum4,item4,errornum4]
[,itemnum5,item5,errornum5J);

JOBINFO provides access to information related to any job/session that is current to the system. This
intrinsic is expandable, and is written so that the addition of further functionality will be straight
forward.

PARAMETERS

jsind

JS#nnn

status

itemnum

integer by value (required)
One of the following integers indicating whether the JS#nnn denotes a ses­
sion or job:

1 JS#nnn is a job.
2 J S#nnn is a session.

double (required)
A double value, 32 bits, identifying a job or session for which information
will be retrieved.

logical array (required)
A two word logical array to report the overall success/failure of the call.
Only the first word contains significant information. The success/failure
of the call is indicated by the following returns:

0 Successful call. All errornums equal zero.

Semi-successful call. One or more errornum (s) were returned with
nonzero values.

2 Unsuccessful call. All errornums were returned with nonzero values.

3 Unsuccessful call. Syntax error in calling sequence.

4 Unsuccessful call. Unable to retrieve JS#nnn.

5 Process terminated. The process terminated during the start of
retrieval.

integer by value (optional)
Cardinal number of the item desired. This specifies which item value is to
be returned (Refer to 11 ITEM#" in Table 2).

12

item

erromum

logical array (optional)
Name of a reference parameter lWnose aata type corresponas to the aata
type for the desired information) to which the desired information is
returned (Refer to 11 ITEM 11 in Tabie 2).

Ali of possible itemnum and item parameters are output parameters with
one exception. Item number 1 can be used for an input and output param -
eter. Item number 1 is an input parameter only if the user is identifying a
job or session by parsing a character string containing the logon id,
[jsname ,] username . acct name. Otherwise , it is an output parameter. The
maximum number of characters returned is twenty-six. The returned
string will be left justified and padded with blanks.

integer (optional)
A returned integer specifying the success or failure of the retrieval of each
item. The returned values are:

0 Successful information retrieval.

Invalid itemnum (item number).

2 Desired information not pertinent to the given JS#nnn (e.g., user
specifies a session number and wishes to know if a job had RESTART
option).

3 User has insufficient capability to access this information.

4 The desired information is no longer available (e.g., returned when
spoolfiles disappear).

SPECIAL CONSIDERATIONS

A user without System Manager (SM) or Account Manager (AM) capability can only retrieve infor­
mation about the jobs/sessions logged on under the user name and account. A user with AM
capability, but not SM capability will be restricted to access information concerning account sessions
and jobs; a user with SM capability will be able to retrieve information concerning all sessions and
jobs. The exception to the above security will be access to items which are normally available to the
user, through MPE commands, who does not have any special capabilities.

CONDiTiON CODES

There are no condition codes on the traditional sense, but the status parameter can be thought of as a
condition code.

ADDITIONAL DISCUSSION

Communicator 3000 Volume 2 Issue I (5955-1770)

JOBINFO provides the user with three options to identify a job or session which is on the system. The
three options are the following:

13

• Taking the caller's job/session as default.

• Specifying a specific job/session number.

• Specifying a logon id.

To retrieve information about the job/session executing JOBINFO, the user must specify the ap­
propriate jsind (1 for session, 2 for job) and a jsnnn of OD (double-word zero). Further, the itemnum
of the first optional triple must not be a one (1) as this invokes option number three (described
below). For example, to retrieve the logon id for the caller, from a session, a JOBI NFO call might
look like this:

Where:

JOBINFOC 1, jsnnn, STATUS,,,,1,jsname,ERROR1);

• Jsnnn must be OD.

• Jsind is 1 since JOBINFO is executed from a session, and default to the caller's session
for the logon id.

• Jsname must be a logical array of 13 words.

• The session's session number will be returned through jsnnn.

• The second triple contains the itemnum of 1 . When using the default job or session, the
first triple can not contain an itemnum equaling 1.

It is not possible to attempt a default call with jsind equaling 2 if JOBINFO is executed from a session.
Likewise, it is not possible to call JOB INFO, attempting a default call, with jsind equaling 1 when
JOBINFO is executed from a job.

The user may identify a job or session by specifying the appriopriate job/session number through
jsnnn, along with the appropriate jsind. By supplying a non-zero jsnnn, the other two job/session
identification options are over-ridden. Their is no restriction the use of any of the optional triples, or
itemnums. An example of specifying a specific job/session number is a follows:

JOBINFOC 2, jsnnn, STATUS, 1, jsname, ERROR1);

Where:

• Jsind equals 2 and specifies that jsnnn is a job number.

• Jsnnn is a job number.

• Itemnum equals 1 denoting that the logon id of job number jsnnn is to be retrieved.

The user may identify a job or session by specifying the appropriate job/session by supplying the ap­
propriate logon id through the first optional triple. The user must supply the appropriate jsind and
jsnnn. must be OD. The logon id is specified through the first triple with itemnum equal to 1, and item
being a logical array containing the logon id (a character string). The logon id must be terminated by
a binary zero (0). The maximum length of the logon id is twenty-six (26) characters, plus one (1) for
the binary zero terminator. An example of this is as follows:

JOE!NFOC 2, jsnnn, STATUS, 1, LOGON'ID, ERROR1);

14

Where:

• J sind equals 2, denoting the logon'id supplied is that of a job.

• Jsnnn equals OD.

• The job number of the job denoted by LOGON' ID will be returned through jsnnn.

• The first triple is specified with an itemnum equal to 1 , a logical array LOGON' ID con­
taining the logon id of a job (terminated by a binary 0), and an integer error return for
the item.

An example of initializing LOGON' ID might be as follows:

MOVE LOGON' ID CO) : = "TEST JOB, LARRY • DSE11
., 0 ;

15

ITEM#
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Table 2. Item Descriptions

ITEM (information returned) DATA TYPE
[JSNAME,]user.account (See note 1) LA
session/job name (See note 2) LA
user name (See note 2) LA
user logon group (See note 2) LA
user account (See note 2) LA
user home group (See note 2) LA
session/job introduction time (See note 3) LA
session/job introduction date (See note 4) LA
input ldev/class name (See note 2) LA
output ldev/class name (See note 2) LA
current job step (See note 5) LA
current number of active jobs I
current number of active sessions I
job input priority I
job/session number D
jobfence I
job output priority I
number of copies I
job limit (system) I
session limit (system) I
job deferred (See note 6) I
main PIN - CI PIN for job/session L
original job-spooled (See note 6) L
RESTART option (See note 6) L
sequenced - job (See note 6) L
term code (See note 7) L
CPU limit L

28 session/job state (See note 8) L
29 user's local attributes L
30 $STDIN spoolf ile number (See notes 9 & 10) D
31 $STDIN spoolf ile status (See notes 9 & 11) I
32 SSTDLIST spoolfile number (See notes 9 & 10) I
33 SSTDLIST spoolf ile status (See notes 9 & 11) I
34 length of current job step of item number 11 I
35 :SET SSTDLIST=DELETE invoked (See note 12) L
36 Job Information Table data segment number L

16

1.

Table 2. Item Descriptions (Notes)

Can be used as an input or output parameter. If used as an input param- I
eter, a maximum of 26 ASCII characters, plus one for a binary 0 ter-
minator is allowed. The input string must be
[jsname,]user.account. The wildcard character@ is
used as an output parameter, the logical array must
Output is left-justified and padded with blanks.

in the form of
not allowed. If

be 13 words long.

2. A ASCII output parameter. Logical arrays must be 4 words long output is
left justified and padded with blanks.

3. Returns a 32-bit double word in a form to be used by the FMTCLOCK
intrinsic.

4. Returns a 16-bit logical word in a form to be used by the FMTCALENDAR
intrinsic.

5. Returns a maximum of 283 ASCII characters, and is the image of the com-
mand currently executing. The logical array must be long enough to ac- I
comodate the expected command image.

6. Returns the values: 0 - No
1 - Yes

7. Returns the values: 0 - Regular terminal
1 - Regular terminal with special log on.
2 - APL terminal
3 - APL terminal

8. Returns the values: 2 - Executing
4 - Suspending
32 - Wait
48 - Initialization

9, Returns data for current jobs and sessions. $STDIN/$STDLIST files only.

10. Returns the spool file number as an integer.

11. Returns the values: 0 - Active
1 - Ready
2 - Open
3 - Reserved

12. Returns the values: 0 - SSTDLIST will be saved.
1 - :SET SSTDLIST=DELETE is invoked.

17

PROCINFO
INTRINSIC NUMBER 111

Provides access to process information.

SYNTAX

0-V I I IV
PRDCINFOCerarorl,error2,pin

I BA
C,itemnum1,item1l
C,itemnum2,item2l
[,itemnum3,item3l
C,itemnum4,item4l
C,itemnum5,item5l
C,itemnum6,item6J);

PARAMETERS

eft"Orl

pin

itemnum

item

integer (required)
An integer indicating the success or failure of the intrinsic call as described
in Figure 1.

integer (required)
An integer which supplies additional information concerning an error
reported in error I. It is also defined in Figure 1.

integer by value (required)
An integer specifying the process identification number for which informa­
tion is to be returned. A pin value of zero will return information about
the calling process. Note that it is not compatible with the pin parameter
of the GETPROC INFO intrinsic.

integer (optional)
An integer containing the item number (in any order) of an information
option as defined in Figure 2. The user may request up to 6 options to be
returned.

byte array (optional)
Arrays (in the same order as the itemnums) of returned information as
specified in Figure 2.

The parameters error I , error 2, pin are required. The itemnum and item
parameters are optional. The actual number included depends upon the in -
formation desired. The itemnums and the items are paired such that the
nth itemnum corresponds to the nth item. An itemnum contains the option
number of the desired information. The information is returned in the
corresponding item or is stored using the item element as a pointer, depend­
ing on the inf orma ti on desired.

1 8

CONDITION CODES

CCE

CCG

CCL

Successful call. All error codes set to zero.

Not used.

Unsuccessful call with errorcodes set accordingly.

error 1 # Meaning error2

0 successful execution - no error

1 insufficient capability to return
request information

0

index of offending itemnum

3 required parameter address (other not used

4

5

6

7

8

than "error1 ") out of bounds

address bounds violation while index of offending itemnum
processing on option

invalid item number

invalid pin number no informotion
returned

unossi9ned pin number

unpaired itemnum/item parameters I
l

index of offending itemnum

-1

-1

index of offending itemnum/item j
poir

Note 1: The process will abort if error1 parameter address is illegal or if the
intrinsic is called in split stack mode.

Note 2: If an error condition is detected while processing on information request,
the index of the itemnum where the offending option was locoted is
stored in error2.

Figure 1 . Error Codes Returned Form PROCINFO

19

item#

0

2

3

4

5

6

7

8

9

10

information returned

ignored

process identification number of calling process

process identification number of the father of the

specified process

number of sons of the specified process

(direct descendants)

number of descendants (both direct and indirect)

of the specified process

number of generations (number of levels in the

process tree substructure) the specified process

has including itself

process identification numbers of all sons

(direct descendants)

process identification numbers of all descendants

(both direct and indirect)

priority number in the master queue of specified

process

state and activation information of the specified

process

program name where the specified process is cur -

rently executing

item

ignored

integer where PIN will be returned

integer where PIN will be returned

integer where the number of sons will be returned

integer where the number of descendants will be

returned

integer where number of generations will be

returned

integer array where son PINs will be returned (see

note 1)

integer array where descendent PINs will be

returned (see note 1)

integer where the priority will be returned (same

as word 1 of the GETPROCINFO intrinsic)

logical where the information will be returned

(same as word 2 of the GETPROCINFO intrinsic)

byte array where the fully qualified program name

will be stored (see note 2)

Note 1: Some options return a variable number of PINs. In these cases item should be set by the calling process to

point to an integer where the PINs will be returned. The first word of the array should be set by the calling

process to indicate the array size in words. PINs will be stored into the array, one PIN per word, starting with

the second word and continuing until the array is filled or all PINs have been returned. If the array is not filled,

the remaining unused locations will be zeroed.

Note 2: The byte array for the program name must be a minimum of 28 bytes long. The name will be returned in the

form of "f.g.a" where "f" will be the local file name, "g" will be the group name, and "a" will be the account

name of the file containing the program that the specified process is currently executing. The name will be

returned left -justified with the unused locations filled with blanks.

Note 3: If the calling process is executing in privileged mode, requests for information will be honored for any process.

Otherwise, requests will be honored as follows:

1. Complete information will be returned for sons of the calling process itself.

2. Item ten will be returned only if the calling process has read access to the program file.

3. Information returned for indirect descendants and processes directly above the calling process will be

limited to items two through seven and ten only.

Process handling capability will also be required for any user mode call unless the calling process is requesting

information about itself.

Figure 2. lnforma ti on Options for PROC INFO

20

Part No. 32033-90007
Printed in U .S .A. 7 /84
E0784

Fj3HEWLETT
~!.PACKARD

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	xBack

