
HP 3000 Computer Systems

Native Language Support
Reference Manual

FJ/pw HEWLETT
~~ PACKARC

HP 3000 Computer Systems

NATIVE LANGUAGE SUPPORT

REFERENCE MANUAL

~il~::i:~~
19447 PR.UNERIDGE AVENUE, CUPERTINO, CA 95014

Part No. 32414-90001
E0984

Printed in U.S.A. 9/84

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for inciden­
tal or consequential damages in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced or trans­
lated to another language without the prior written consent of Hewlett-Packard
Company.

Copyright (c) 1984 by HEWLETT-PACKARD Company

11

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition, and lists the dates of all
changed pages. Unchanged pages are listed as "ORIGINAL". Within the manual, any
page changed since the last edition is indicated by printing the date the changes were made
on the bottom of the page. Changes are marked with a vertical bar in the margin. If an
update is incorporated when an edition is reprinted, these bars and dates remain. No in -
formation is incorporated into a reprinting unless it appears as a prior update.

First Edition •••••••.•• September 1984

Effective Pages Date

All •••.••• September 19 84

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued be­
tween editions, contain additional and replacement pages to be merged into the manual by
the customer. The date on the title page and back cover of the manual changes only when
a new edition is published. When an edition is reprinted, all the prior updates to the edi­
tion are incorporated. No information is incorporated into a reprinting unless it appears as
a prior update.

First Edition • • • • • • • • • • • • • • • • • • September 1984

iv

MPE V MANUAL PLAN

GENERAL
INFORMATION

Monuol
:S9l53-7'~'

MPE V COMMANDS
Reference

Manual
32033-90006

SEGMENTER
Refe,..,ce

M<Jnuol
30000-90011

INTRODUCTORY LEVEL:

'"
STANDARD USER LEVEL:

MPE V INTRINSICS
Reference

Manual
32033-90007

DEBUG/STACK DUMP
Reference

Manual
30000-90012

ADMINISTRATIVE LEVEL:

MPE V SYSTEM OPERATION
ac RESOURCE MANAGEMENT

Reference Manual
32033-9000~

SUMMARY LEVEL:

A~ ,.. -90049

QJIOE_,.6'.
1

N.lll~TOR

'" fl'T,53-9002 I

MPE V UTILITIES
Reference

Manual
32033-90008

FlLE SYSTEM
Refef'900e

Monuol
30000-90236

There are many more manuals applicable to the HP 3000. A complete list may be found in every
issue of the MPE V Communicator. Please contact your System Manager.

v

CONVENTIONS USED IN THIS MANUAL

NOTATION

COMMAND

KEYWORDS

pa.rameter

parameter

[1

{ }

user input

. c
superscript

** Comment **

DESCRIPTION

Commands are shown in CAPITAL LETTERS. The names must con­
tain no blanks and be delimited by a non-alphabetic character
(usually a blank).

Literal keywords, which are entered optionally but exactly as
specified, appear in CAPITAL LETTERS .

Required parameters, for which you must substitute a value, ap­
pear in bold italics.

Optional parameters, for which you may substitute a value, appear
in standard italics.

An element inside brackets is optional. Several elements stacked in­
side a pair of brackets means the user may select any one or none of
these elements.
Example: [A] 1 A B . h [8] user may se ect or or ne1t er.

When brackets are nested, parameters in inner brackets can only be
specified if parameters in outer brackets or comma place-holders
are specified.
Example: [parm1 [,parm2[,parm3]]] may be entered as:

parm1 ,parm2 ,parm3 or
parm1, ,parm3 or
, ,parm3 , etc.

When several elements are stacked within braces the user must
select one of these elements.
Example: { A }

{ B } user must select A or B.

An ellipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

In examples of interactive dialog, user input is underlined.
Example: NEW NAME? ALPHA1

Control characters are indicated by a superscriptc. Example: Ye .
(Press Y and the CNTL key simultaneously.)

._ __) indicates a terminal key. The legend appears inside.

Editor's comments appear in this form.

vi

Section
PREFACE.

Section I
INTRODUCTION TO NLS
Background Information. .
Scope Of Native Language Support
Supported Native Languages

8-Bit Character Sets
Language-Dependent Characteristics.

Native Language Support in MPE.
NLS System Utilities
Configuring Native Languages .
NLS Intrinsics.
Peripheral Support
Conversion Utilities
Application Message Facility .
File Naming Conventions.

NLS In The Subsystems
Accessing NLS Features ...

Intrinsics
Additional Parameter Values in Existing Intrinsics.
Native Language Attribute
Commands

Implicit Language Choice In Subsystems
The NLGETLANG Intrinsics . . .
User-Defined Commands (UDCs)

Application Programs
General Application Program. . .
Application Program Without NLS .
Single Language Application . .
Multilingual Application
HP Subsystem Utility Program .

Section II
APPLICATION MESSAGE FACILITY.
Accessing Application Catalogs
Source Catalogs .
Directives

$SET Records ..
Message Records
Message Records Special Characters
Comment Records. . .
Sample Source Catalog

Parameter Substitution
Positional Parameter Substitution
Numerical Parameter Substitution

Catalog Naming Convention.
Maintaining A Message Catalog ...

Merging Maintenance Files By Line Numbers

vii

CONTENTS I

Page
. . xv

Page
1-1
1-1
1-1
1-2
1-3
1-4
1-5
1-5
1-5
1-5
1-5
1-6
1-6
1-7
1-7
1-7
1-8
1-8

. 1-8

. 1-8

. 1-9

. 1-9

. 1-9
1-10
1-10
1-11
1-12
1-12
1-14

Page
2-1
2-1
2-2
2-2
2-2
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-7
2-8
2-9

CONTENTS (Continued)

APPLICATION MESSAGE FACILITY (Continued)
Modifying A Record .
Adding A Record
Deleting A Record

Merging Maintenance Files By $SET And Message Numbers.
Set Numbers
Message Numbers
Comment Records
The $DELSET Directive.

User Dialogue
Formatting A Source Catalog .
Expanding A Formatted Catalog
GENCAT JCWs
GENCA T In Batch Mode
GENCA T HELP Facility
Error Messages

Section III
NLS IN MPE SUBSYSTEMS
FCOPY

FCOPY Options
CHAR Option
Character Translate Options.
Upshift Option
FCOPY and KSAM Files . . .

Combined Use of Options.
Error Messages . .
Performance Issues .

IMAGE
Utility Programs

DBSCHEMA ..
DBUTIL
DBUNLOAD/DBLOAD .

Intrinsics . . .
DBOPEN.
DBPUT ..
DBINFO.
DBLOCK.

Changing The Language Attribute Of An Image Data Base
Error Messages

I<.SAM
Creating KSAM Files With KSAMUTIL
Error Messages
Addition&.1 Discussion
Creating KSAM Files Programmatically
Additional Discussion ..
Modifying KSAM Files
Generic Keys
Using FCOPY With KSAM Files

Copying From A KSAM File To Another KSAM File .
Changing The Language Attribute of a KSAM File.

Moving NLS KSAM Files To Pre-NLS MPE

viii

Page
. 2-9
. 2-9
. 2-9
. 2-9
. 2-9
. 2-9
2-10
2-10
2-10
2-12
2-14
2-15
2-15
2-16
2-17

Page
... 3-1
. .. 3-2
.. 3-2

. .. 3-2

. .. 3-2
. 3-3

. . 3-3

. . 3-3
. 3-4
. 3-4
. 3-5

. . 3-5

.. 3-5
. .. 3-5

. 3-5
... 3-6

3-6
3-6

. 3-6
3-6

. 3-7
3-7

3-11
3-11
3-13
3-13
3-14
3-14
3-14
3-15
3-18
3-18
3-18
3-18

CONTENTS (Continued)

NLS IN MPE SUBSYSTEMS (Continued)
QUERY

Command Summary . . .
Upshifting Data (Type U Items) ..
Range Selection
Date Format
Real Number Conversions .
Sorted Lists in REPORT . . .
Numeric Data Editing in Report.

Additional Discussion.
Error Messages

SORT-MERGE
Stand-Alone SORT-MERGE.
Programmatic SORT-MERGE ..

The SORTINIT Intrinsic ...
The MERGEINIT Intrinsic
Parameters
Additional Information .

Error Messages
Performance Considerations
COBOLII Sorting And Merging .

VPLUS
Language Attribute .. .

Unlocalized
Language-Dependent
International

Setting the Language ID Number. . .
Field Edits

Date Handling
Numeric Data
Native Language Characters . .

ENTRY and Language ID number .
Error Messages . . .
VPLUS Intrinsics ..

VGETLANG
VSETLANG .. .

Section IV
NATIVE LANGUAGE INTRINSICS .

NLS Date And Time Formatting Overview. . .
ALMANAC.
CATCLOSE.
CATOPEN .
CATREAD.
NLAPPEND
NLCOLLATE ..
NLCONVCLOCK.
NLCONVCUSTDA TE
NLFMTCALENDAR .

ix

Page
3-19
3-20
3-20
3-20
3-20
3-20
3-20
3-20
3-20
3-21
3-23
3-23
3-24
3-24
3-25
3-25
3-26
3-26
3-27
3-27
3-29
3-29
3-29
3-29
3-29
3-30
3-30
3-31
3-31
3-31
3-31
3-32
3-32
3-33
3-34

Page
.. 4-1
. . 4-2
. . 4-3
. . 4-S
. . 4-6
. . 4-7
. . 4-9

4-10
4-12
4-14
4-16

CONTENTS (Continued)

NATIVE LANGUAGE INTRINSICS (Continued)
NLFMTCLOCK. . .
NLFMTCUSTDA TE
NLFMTDATE
NLGETLANG .. .
NLINFO
NLKEYCOMPARE ..
NLREPCHAR ...
NLSCANMOVE .
NL TRANSLATE .

Appendix A
SYSTEM UTILITIES

NLUTIL Program .
NLS File Structure . .
Language Installation Utility (LANGINST)
Adding a Language
Deleting a Language
Modifying Local Formats . .
LANGINST User Dialogue . .

Choosing A Function. .
Adding A Language
Deleting A Language . . .
Modifying Local Language Formats .

Error Messages

Appendix B
SUPPORTED LANGUAGES & CHARACTER SETS

Character Set Definitions .
Language Definitions

Appendix C
COLLATING IN EUROPEAN LANGUAGES .

Collating Sequence
Language-Dependent Variations .

Spanish
Danish/Norwegian.
Swedish
Finnish

Appendix D
EBCDIC MAPPINGS

Background Data
ROMAN 8 to EBCDIC Mapping.

x

4-18
4-20
4-22
4-24
4-26
4-31
4-33
4-35
4-38

Page
. A-1
. A-1

. A-1
. A-1
.A-2
.A-2
.A-3
.A-3

....... A-3
.. A-4
.. A-4

. A-S

. A-6

Page
.. B-1
.. B-1

. B-2

Page
. C-1
. C-3
C-10
C-10
C-10
C-11

. C-11

Page
. D-1
. D-1

.. D-1

CONTENTS (Continued)

Appendix E
PERIPHERAL CONFIGURATION.

NLS Terminology
Peripheral Support Summary ..
Specifics of 7-Bit Support ...
NLS Peripheral Support Details.
HP 150 P .C. As A Terminal
HP 2382A Terminal
HP 2392A Terminal
HP 2563A Printer
HP 2608A/HP 2608S Printers
HP 2 6 2 lB Terminal
HP 2622A/HP 2623A Terminals.
HP 2622J/HP 2623J Terminals .
HP 262SA/HP 2628A Terminals.
HP 2626A/HP 2626W Terminals
HP 2627A Terminal
HP 263 lB Printer
HP 263SB Printer/Terminal
HP 264SJ Terminal .
HP 26 80A Printer
HP 2688A Printer .
HP 2700 Terminal .
HP 2932A/HP 2933A/HP 2934A Printers ..
Notes

Appendix F
CONVERTING 7-BIT TO 8-BIT DATA.

National Substitution Sets
Conversion Utilities ..
Conversion Algorithm
Conversion Procedure.
N7MF8CNV Utility
17DB 8CNV Utility . .
V7FF8CNV Utility ..
V7FF8CNV and Alternate Character Sets .
V7FF8CNV Operation

Appendix G
APPLICATION GUIDELINES

All Programming Languages
COBOLII (HP 32233A) ..
FORTRAN (HP 32102B).
SPL (HP 321 OOA) .
RPG (HP 32104A) .
BASIC (HP 321 OlB)
Pascal (HP 32106A)

xi

Page
. E-1
. E-1
. E-2
. E-4
. E-4
. E-5
. E-6
. E-7
. E-8
. E-9
E-10
E-11
E-12
E-13
E-14
E-15
E-16
E-17
E-18
E-19
E-20
E-21
E-22
E-23

Page
. F-1
. F-1
. F-2
. F-3

.. F-5
. F-7

.. F-8
F-10
F-10
F-11

Page
. G-1

.. G-1
.G-2
.G-2
.G-3
.G-3
. G-3
. G-3

CONTENTS (Continued)

Appendix H
EXAMPLE PROGRAMS

A. Using SORT In A COBO Lii Program
B. Using SORT In A Pascal Program ..
C. Using SORT In A FORTRAN Program

Page
. H-1
. H-1
.H-3
.H-5

D. Using DATE/TIME Formatting Intrinsics In A FORTRAN Program.
E. Using The DATE/TIME Formatting Intrinsics In An SPL Program ...
F. Using The NLSCANMOVE In A COBOLII Program.

. .. H-6
. H-10

.. H-15
G. Using The NLSCANMOVE Intrinsic In An SPL Program
H. Using NL TRANSLA TE/NLREPCHAR Intrinsics In A COBOLII Program .
I. Using The NLKEYCOMPARE Intrinsic In A COBOLII Program
J. Using The NLKEYCOMP ARE Intrinsic In An SPL Program
K. Obtaining Language Information In A COBO Lii Program
L. Using CATOPEN/CA TREAD/CATCLOSE Intrinsics In A Pascal Program .

xii

H-22
. H-29
. H-32
. H-36
. H-41
. H-45

Title
Application Program Format
~pplication Program Without NLS
Single Language Application ..
Multilingual Application . . .
HP Subsystem Utility Program
GENCA T Utility Program. .
GENCA T Functions
Sample Source Catalog
Positional Parameter Substitution .
Numerical Parameter Substitution
Collision Files
Dialogue For Modifying A Source File
Maintaining A GENCAT Source File ..
Source Catalog Formatting Dialogue ..
Expanding A Formatted Catalog . . .
Formatting/Expanding GENCA T Source Files
GENCAT HELP Facility Dialogue
KSAM File Test Program
Results Returned By The NLKEYCOMPARE Intrinsic .
Generic Key Searches
KSAM Recovery Procedure
Stand-Alone SORT-MERGE Dialogue
SORT Verb Syntax
NLS Date And Time Formatting Overview ..
ROMAN 8 Character Set.
KANAS Character Set
Collating Sequence.
Language Dependent Variations ..
ROMANS To EBCDIC Mapping.
Character Conversion Data
N7MF 8CNV Dialogue . .
17DB8CNV Dialogue ...

xiii

. . ·.

ILLUSTRATIONS I
Page
1-10
1-11
1-12
1-13
1-14
. 2-1

.. 2-3
. 2-5

. . 2-6
. 2-6

. . 2-8
2-10
2-12
2-13
2-14

..... 2-15
2-16

..... 3-12
3-15
3-17
3-18
3-24
3-28
. 4-2

. . B-3
. B-4
. C-3

. C-10
. .. D-2
.. F-4

...... F-5

...... F-9

I TABLES

Title
GENCA T Error Messages
MAKECAT/GENCAT Comparison .
FCOPY Error Messages
IMAGE Utility Program Conditional Messages
IMAGE Library Procedure Calling Errors
IMAGE Schema Syntax Errors ..
KSAMUTIL Error Messages
KSAM File System Error Messages
Commands For Language-Dependent Information
QUERY Error Messages
Programmatic SORT Error Messages . . .
Interactive SORT Program Error Messages
Programmatic MERGE Error Messages ..
Interactive MERGE Program Error Messages .
VPLUS/3000 Error Messages
LANGINST Error Messages
Examples of Collating Sequence Priority .. .
Peripherals Fully Supported in 8-Bit Operation-All Language Options
Peripherals With Limited Support in 8-Bit Operation
Peripherals Not Supported in 8-Bit Operation
Conversion Utilities by File Type : .. .

xiv

Page
2-17
2-22
. 3-4
. 3-8

.. 3-9
3-10
3-13
3-14
3-21
3-21
3-26
3-26
3-27
3-27
3-32
A-6
C-1

. ... E-2
.. E-3

. .. E-3
. F-2

PREFACE

Native Language Support (NLS) provides the HP 3000 with the features necessary to
produce localized application programs for end users without reprogramming for each
country or language.

Native Language Support consists of Multi-Programming Executive (MPE) intrinsics, ad­
ditional features in COBOLII, and the FCOPY, IMAGE, KSAM, QUERY,
SORT-MERGE, and VPLUS subsystems, the Application Message Facility, plus utilities to
install and implement native language capabilities.

xv/xvi

L---~~~~'N_T_R_o_ou_c_T_1o_N~TO~N-LS~~1~l1•11i
Hewlett-Packard Native Language Support (NLS) features enable the applications desig­
ner/programmer to create local language applications for the end user.

BACKGROUND INFORMATION

A well-written application program manipulates data and presents it appropriately for its use and
user. Users who are less technically sophisticated benefit from ar·plication programs which interact
with them in their native language, and which conform to tht;; local customs. Native language
refers to the user's first language (learned as a child), such as Finnish, Portuguese, or Japanese. Local
customs refer to conventions such as local date, time, and currency formats.

Programs written with the intention of providing a friendly user interface often make assumptions
about the local customs and language of the user. Program interface and processing requirements
vary from country to country, and sometimes within a country. Much existing software does not take
this into account, and is appropriate for use only in the country or locality in which it is written.

The solution to this problem is to design application programs that can be easily localized.
Localization is the adaptation of a software application or system for use in different countries or lo­
cal environments. In such an environment, the user's native language and/or data processing
requirements may differ from those in the environment of the software developer. Traditionally,
localization has been achieved by modifying a program for each specific country. Applications
designed with localization in mind provide a better solution. Localization can then be accomplished
with (ideally) no modification of code at all.

An applications designer must write the application program with built-in provisions for localization.
Functions which are local language or custom dependent cannot be hard-coded. For example, all
messages and prompts must be stored in an external file or catalog. Character comparisons and up­
shifting must be accomplished by external system-level routines or instructions. The external files
and catalogs can be translated, and the program localized without rewriting or recompiling the ap­
plication program.

Native Language Support (NLS) provides the tools for an applications designer/programmer to
produce localizable applications. These tools may include architecture and peripheral support, as well
as software facilities within the operating systems and subsystems. NLS addresses the internal func­
tions of a program (e.g., sorting) as well as its user interface (messages, formats, for example).

SCOPE OF NA T!VE LANGUAGE 3UPPORT

HP 3000 Native Language Support (NLS) consists of features within MPE, as well as in the FCOPY,
IMAGE, KSAM, QUERY, SORT-MERGE, VPLUS, and COBOLII subsystems. These facilities allow
application programs to be designed and written with a local language interface for the end user, and
locally correct internal processing. The end user can see localized programs produced by applications
designers/programmers who have used the available NLS tools.

1-1

Introduction to NLS

The MPE interface, the subsystems, programmer productivity tools, and compilers have not been
localized. The applications designer must still interact with MPE and the subsystems using American
English. For the designer/programmer, the interface has not changed. For example, it is possible to
write a complete local language application program using COBOLII and VPLUS, but the COBOLII
:;ompiler and the VPLUS FORMSPEC program retain their English-like characteristics.

Not all functions which vary from one language to another or one country to another are provided by
HP 3000 NLS. For example, tax calculation rules are usually country-specific (or even more local),
and rules for word hyphenation are related to individual languages. Functions such as these are con­
sidered to be application-specific, and are beyond the scope of NLS.

SUPPORTED NATIVE LANGUAGES

NLS is based on languages and character sets which have been pre-defined and built into the operat­
ing system. These are referred to as supported languages. Hewlett-Packard has assigned a unique
language name and language Ii> number to each language supported in NLS. Characteristics of sup­
ported native languages are documented in Appendix B, "SUPPORTED LANGUAGES AND
CHARACTER SETS." In some cases, Hewlett-Packard has introduced more than one supported lan­
guage corresponding to a single natural language. For example, NLS supports FRENCH (language
number 7) and CANADIAN-FRENCH (language number 2). Upshifting is handled differently in
FRENCH and CANADIAN-FRENCH. When language-dependent characteristics differ within the
same natural language, NLS can create separate native languages to represent these differences.

Each of the supported languages may also be considered a "language family" which is applicable in
several countries. GERMAN (language number 8), for example, may be used in Germany, Austria,
Switzerland, and any other place it is requested. The 8-bit character sets are ROMANS, character
set 1, and KANAB, character set 2.

In addition to the native languages supported, an artificial language, NATIVE-3000 (language num­
ber 0), represents the way the computer used to deal with language before the introduction of NLS.
The collating sequence (the sequence in which characters acceptable to the computer are ordered) for
NATIVE-3000, for example, is simply the order of characters in the USASCII code. The
NATIVE-3000 date format is that returned by the existing MPE intrinsic, FMTDATE. Whenever lan­
guage number 0 is used in a native language function, the result will be identical to that of the same
function performed before the introduction of NLS. NLS intrinsic calls with the language parameter
equal to 0 will always work correctly, even if no native languages have been configured on the sys­
tem. This list contains the language names and ID numbers (langnum values) available in each
character set.

1-2

Introduction to NLS

US ASCII (Set #0)

Language Number Language Name

00 NATIVE-3000

ROMANS (Set #1)

Language Number Language Name

00 NA TIVE-3000
01 AMERICAN
02 CANADIAN-FRENCH
03 DANISH
04 DUTCH
05 ENGLISH
06 FINNISH
07 FRENCH
08 GERMAN
09 ITALIAN
10 NORWEGIAN
11 PORTUGUESE
12 SPANISH
13 SWEDISH

KANAS (Set #2)

Language Number Language Name

00 NATIVE- 3000
41 KATAKANA

8-Blt Character Sets

Within NLS, each supported language is associated with an 8-bit character set (one character set may
support many languages). Like languages, character sets have Hewlett-Packard defined names and
ID numbers assigned, although these names and numbers are not widely used, except, in documenta­
tion. Before the introduction ... of NLS, the only widely-supported character set was USASCII, a
128-character set designed to support American English text. USASCII uses only seven bits of an
8-bit byte to encode a character. The eighth or high order bit is always zero. For this reason,
USASCII is referred to as a 11 7-bit" code.

An 8-bit byte has the capacity to contain 256 unique values, which means it is possible to build su­
persets of USASCII which permit encoding and manipulation of characters required by languages
other than American English. These supersets are referred to as 11 8-bit 11 or "extended 11 character
sets. New characters are added with code values in the range 161-254.

1-3

Introduction to ~LS

NLS supports three character sets:

CHARACTER SET #0, USASCII

CHARACTER SET #1, ROMANS

CHARACTERSET#2,KANA8

Appendix B, "SUPPORTED LANGUAGES AND CHARACTER SETS 11 contains a list of native lan­
guages supported by each character set.

Another method of providing foreign characters (not supported by NLS) in"olves replacing as many as
12 existing characters in USASCII with substitution characters. The 7 ... bit substitution set eliminates
some characters in favor of others needed by a particular local language. A different substitution set
is necessary for each language. NLS 8-bit character sets support all USASCII characters (with the ex­
ception of "\ 11 in KANAS) in addition to the characters needed to support several western
European - based languages and katakana .

The use of 8-bit character sets for NLS implies that in character data, all bits of every byte have sig­
nificance. Application software must take care to preserve the eighth (high order) bit, nowhere al­
lowing it to be modified or reused for any special purpose. Also, no differentiation should be made
between characters having the eighth bit turned off and those with it turned on, because all are
characters of equal status in the extended character set.

Language-Dependent Characteristics

For each native language which is supported by NLS, a number of characteristics are known. These
are lexical conventions (e.g., collating sequence and upshifting rules), country or local custom­
dependent formats (currency symbols, date and time formats), and data processing conversion tables:

• Lexical conventions vary from country to country. The collating sequence is affected by the local
alphabet and usage of each language. Upshifting tables maintained by NLS for each supported
language contain the appropriate result of upshifting any character in the corresponding character
set. This category of information is really language-related in the literal sense.

• Currency symbols, and date, time and number formats are country and local custom dependent.
Currency symbols and their position in relation to numbers depend on local custom. Date, time
and number formats also vary from country to country.

• Data processing tables for ASCII-to-EBCDIC and EBCDIC-to-ASCII conversion are affected by
language because the EBCDIC codes are different from country to country.

Within NLS, characteristics that are language related, custom dependent, and data processing orient­
ed are all considered to be language dependent. All information used by, or available from NLS is
based on the application's choice of language(s). For example, NLS maintains an ENGLISH collating
sequence and an ENGLISH time-of-day format. In this context, ENGLISH refers specifically to that
used in England rather than the English language. (AMERICAN refers to the language, formats and
tables used in the United States.)

Appendix B, "SUPPORTED LANGUAGES AND CHARACTER SETS," contains a complete list of
supported languages and language characteristics. The exact information on any particular installed
language is available programmatically via the NLI NFO intrinsic (see Section IV, 11 NA TIVE
LANGUAGE INTRINSICS") or, in report form from the NLUTIL program.

1-4

Introduction to NLS

NATIVE LANGUAGE SUPPORT IN MPE

The MPE components of NLS consist of the utility programs, LANGiNST and NLUTIL, and system
intrinsics, as well as an application message facility.

NLS System Utilities

LANGINST is used by system managers to select the native languages to be supported on their sys­
tem(s). NLUTIL is used to obtain the details of languages installed on a system. LANGINST and
NLUTIL are described in Appendix A, "SYSTEM UTILITIES. 11

Configuring Native Languages

Before any native languages (except NATIVE-3000) can be used on a system, they must be con­
figured by the System Manager using the LANGINST utility program. Refer to Appendix A,
"SYSTEM UTILITIES" for the LANGINST user dialogue. The System Manager can select which sup­
ported languages to configure , and can modify several formats associated with any language (s) being
configured. This feature is useful~ for example, to a System Manager in Austria who wants to install
GERMAN with a different currency symbol than the default for this language. Changes to a system's
language configuration are effective after the next system startup, at which time the configured lan -
guages are installed. After a language has been installed, language-specific inf or ma ti on available in
NLS may be used by any application program requesting it.

NLS Intrinsics

The NLS intrinsics may be called by application programs and Hewlett-Packard subsystems to provide
language-dependent functions and information for any language installed on a system. For example,
the NLfMTDATE intrinsic returns a locally formatted date, and the NLCOLLATE intrinsic compares two
character strings using a language-dependent collating sequence. The NLS intrinsics are documented
in Section IV, "NATIVE LANGUAGE INTRINSICS. 11 Major HP 3000 subsystems call NLS intrinsics
to perform certain functions. For example, configured native languages can affect the collating se­
quence used by SORT-MERGE, the numeric formatting done by VPLUS, and the EBCDIC conver­
sions performed by FCOPY. Section III, "NLS IN MPE SUBSYSTEMS 11 contains specific information.

NOTE

None of these changes are automatic. All existing ap­
plications and jobs will work the same way they did
previously when NLS is installed unless they are
modified to request NLS functions.

Peripheral Support

Peripherals configured for any of the 7-bit substitution sets are not supported by NLS.

Most Hewlett-Packard peripherals are designed for 8-bit operation. Most peripherals that have been
configured for 7-bit operation can be reconfigured for 8-bit operation. Refer to Appendix E,
"PERIPHERAL CONFIGURATION 11 for instructions. Limitations and notes are listed for each

1-5

Introduction to NLS

peripheral. All NLS features are available to users with 7-bit USASCII terminals and printers,
provided that the data used contains only USASCII characters. For example, a user in the United
States can use AMERICAN (the Hewlett-Packard name for English as it is used in the United States)
for sorting, date formatting, and message handling consistent with lexical conventions and local cus­
tom formats. This is possible because USASCII is a subset of ROMANS.

NLS has no direct control over what peripherals are configured on a system. It is, therefore, the
user's responsibility to configure peripherals which support the character set(s) necessary for the
desired languages.

Conversion Utilities

Data encoded according to any 7-bit substitution set is not supported by NLS. Users with data en­
coded in one or more of the European 7-bit substitution sets supported on the older HP terminals and
printers have the option to convert this data. A set of utilities is available to convert 7-bit data to
8-bit (ROMANS) data in KSAM files, IMAGE data bases, VPLUS forms files, and MPE files.
Appendix F, "CONVERTING 7-BIT TO 8-BIT DATA, 11 contains conversion instructions.

Application Message Facility

A localizable program contains no text (prompts, commands, messages) stored in the code itself. This
allows the text to be translated (part of the localization process) without modifying the source code of
a program or recompiling it. Therefore, a good text handling facility is essential to Native Language
Support.

The principal tool supplied within NLS for text handling is the Application Message Facility. The ap­
plication message catalog facility consists of the GENCAT utility program and the "CAT" intrinsics
(CATREAD, CATOPEN, and CATCLOSE). The application message catalog facility provides efficient
storage and retrieval of program messages, commands, and prompts. The GENCAT program is used
to convert an ASCII source file containing messages into a binary application catalog that can be ac­
cessed by the intrinsics. Application programs use the CAT intrinsics to retrieve messages from it.
An application message catalog consists of a file containing character strings (messages), each unique­
ly identifiable by a set number, and a message number within a set. Key features of the Application
Message Facility include:

• Each message in a catalog can allow up to five parameters which may be specified by position or
by number.

• An editor is used to create an MPE ASCII file which is the source catalog. The GENCAT program
is used to read the source catalog and to create a formatted catalog. The formatted catalog has an
internal directory for efficient access, and is compacted (by deleting trailing blanks, for instance)
to optimize storage space.

• GENCAT has a facility to merge two message source files; a master file and a maintenance file.
The maintenance file contains changes to be made in the master file. Updates of a localized ver­
sion of an application may be made by translating the maintenance file, then merging it with the
localized source file.

• Multiple localized versions of an application can be supported with translations of the original
source catalog. If a naming convention is established, the application program can determine
which localized catalog to open at run time (using the CATOPEN intrinsic). A suggested naming
convention is discussed in Section 11, "APPLICATION MESSAGE FACILITY. 11

1-6

Introduction to NLS

The application message facility is documented in Section 11, 11 APPLICATION MESSAGE
FACILITY."

FILE NAMING CONVENTIONS

An application which has been localized into several languages will have separate message catalogs,
VPLUS forms files, and/or various other language-dependent data files for each of these languages.
It is suggested that a naming convention be established for these files which follows the language
numbering used by NLS. To do this, a file name should be used which is up to five identifying
characters followed by a three digit language number, corresponding to the language of the file con -
tents. For example, the original, unlocalized data might be stored in a file whose name is FILEOOO;
the FILE008 would contain the same data modified for German, and FILEOl 2 would contain Spanish
data. It is the responsibility of the application program, then, to determine at run time which file to
open. (Once the language number is determined, the NLAPPEND intrinsic may be used to form the file
name if this convention is followed.)

NLS IN THE SUBSYSTEMS

In addition to the new utilities and MPE intrinsics, NLS provides features in COBOLII, FCOPY,
IMAGE, KSAM, QUERY, SORT-MERGE, and VPLUS. NLS features in these subsystems are in­
tended to provide applications designers and programmers with the tools to design local language ap­
plications. The subsystems themselves are not localized. The application end user, not the program­
mer or subsystem user, sees the localized interface.

MPE Native Language Support intrinsics provide the means to implement NLS features of the subsys­
tems. This means that native language definition is consistent in all the subsystems. Collating se­
quence is a good example of consistency within MPE and in the subsystems. The collating sequence
defined for a specific native language can be used in MPE by calling the NLCOLLATE and
NLKEYCOMPARE intrinsics. The same collating sequence is used by SORT-MERGE in ordering
records, by KSAM in ordering keys, and by IMAGE in ordering sorted chains when these subsystems
are dealing with sorted character strings that have been associated with the same native language.

The MPE operating system and its subsystems function independently of native language features con­
figured on the system. NLS features are optional, and must be requested to be invoked. This means
that existing application software and stream files will operate as they did before the introduction of
NLS.

ACCESSING NLS FEATURES

On HP 3000 systems using MPE and subsystems with NLS features, all NLS features are optional.
These features must be requested by the applications programmer through intrinsic calls or interac­
tively by the user of a subsystem program through a LANGUAGE command or keyword.

1-7

Introduction to NLS

Intrinsics

One way of getting (optional) NLS features from application programs is through calls to specific NLS
intrinsics, primarily in MPE. Thus, to get a local language date format, an application should call
the new NLFMTDATE intrinsic instead of the old FMTDATE intrinsic (which is unchanged).

Additional Parameter Values In Existing Intrinsics

Another way is by specifying values for extended or new parameters in existing intrinsics. For ex­
ample, SORTINIT in SORT-MERGE has been extended to allow the specification of a CHARACTER
key, and a native language ID number (langnum) which determines the collating sequence to be used.
These additional parameters must be used in an application to sort according to native language
values.

Native Language Attribute

Some subsystem structures, including IMAGE data bases, K'SAM files, and VPLUS forms files may be
assigned a language attribute by their creators. The language attribute will ensure that certain func­
tions will perform according to localized specifications at run time. VPLUS, for example, will per­
form its upshift function according to the language of the forms file.

Commands

Commands or keywords have been added to certain subsystems which make NLS features available on
request. For example, entering LANGUAGE=FRENCH within QUERY would cause sorted character data
of IMAGE types X and U to be sorted a(;(;Ording to the FRENCH collating sequence in its output
reports. If the language command is not entered, QUERY (or any other subsystem) will perform as it
did before the introduction of NLS. If these commands are not used, the default language(s) used by
subsystem utility programs can be influenced by the values of the two NLS Job Control Words,
NLUSERLANG and NLDATALANG.

Some general suggestions for designing applications incorporating NLS features, and specific strategies
for using major programming languages are included in Appendix G, "APPLICATION
GUIDELINES. II

Information on how and when the individual subsystems are influenced is included in Section III,
11 NLS IN MPE SUBSYSTEMS. II

1-8

Introduction to NLS

IMPLICIT LANGUAGE CHOICE IN SUBSYSTEMS

Two NLS Job Control Words (JCWs), NLUSERLANG and NLDATALANG, permit the subsystem
user to designate a default language other than NA TIVE-3000 for the subsystems. Each of the five
subsystem programs (SORT, MERGE, FCOPY, QUERY, ENTRY) looks at one of these JCWs, and its
value is used as a default language by the program. The default can be superseded by a specific com­
mand. Utility programs in the subsystems are often run within user-defined commands (UDCs).
UDCs are often created for the convenience of a less sophisticated computer user than the person who
designed them. To add to this convenience, NLS has established a convention for designating the na­
tive language choice for operation of the subsystem programs that does not require the user to enter a
language explicitly. This is accomplished through the use of two reserved Job Control Words (JCWs),
NLUSERLANG and NLDATALANG:

• NLUSERLANG designates the user interface (and report output) language for programs. If the
subsystems were localized (which they aren't), this would be the language of choice for prompts
and messages. If user input data is modified, (for example, upshifted by QUERY or VPLUS) this
language determines which language's attributes are used. NLUSERLANG designates the default
language for all language-dependent operations in QUERY and ENTRY.

• NLDATALANG designates the internal data manipulation language. One of the reasons that this
is distinct from NLUSERLANG is the possibility that multiple users with different interface lan­
guages may wish to share some common internal data which is, for example, sorted according to
one language. The data manipulation language is used in the SORT, MERGE, and FCOPY
programs to control their language-dependent functions, such as collating, upshifting, and con -
versions to and from EBCDIC. Note that if the user interface of one of these programs were
localized, which it isn't, it would use NLUSERLANG as its default for messages, prompts, etc.

NLUSERLANG and NLDA T ALA NG are independent JCWs, and are treated independently by
NLS. In many cases, of course, they will specify the same language, but examples already exist in
which they could have been used with distinct values. One example is the HPWord product,
which has the concepts of a user language and a document language.

The NLGETLANG Intrinsic

NLUSERLANG and NLDATALANG values are retrieved by the subsystems through calls to the
NLGETLANG intrinsic. Application programs may also wish to use this intrinsic. NLGETLANG retrieves
the value of the language attribute requested, and verifies that it is installed. If the value is that of
an unconfigured or undefined language, NLGETLANG will return a language ID number of 0
(NATIVE-3000) and an error. To use either JCW, set the integer value corresponding to the lan­
guage ID number desired, using : SET JCW. The MPE V Commands Reference Manual
(32033-90006), lists the : SET JCW command syntax.

User-Defined Commands (UDCs)

ENTRY, FCOPY, QUERY, SORT and MERGE are often run from within user-defined commands
(UDCs). The two NLS Job Control Words (JCWs) give the user the option of establishing a native
language within a UDC.

1-9

Introduction to NLS

APPLICATION PROGRAMS

The focus of HP 3000 NLS is the application program. Most NLS tools are accessed programmatically
from applications according to the requirements of the designer or programmer. Several common ap­
plication models are possible. These are illustrated in Figures 1-1 to 1- 5. NLS capabilities can be
used in single language applications, multilingual applications, in subsystem utility programs, or not
at all.

General Application Program

The functions language can influence in an application in terms of data manipulation (internals) and
user interaction (externals) is illustrated in Figure 1-1. The core application program is flanked by
functions that can differ according to language and local customs (local date, time, and currency
formats).

DATA MANIPULATION

~TA &\SE

INDEXED SEQUENTIAL

SORTING

CHAR. MANIPULATION

APPLICATION
PROGRAM

Figure 1-1. Application Program Format

1-10

USER INTERACTION

SCREENS

PROMPTS. MESSAGES

USER COMMANDS

FORMATS

Introduction to NLS

Application Program Without NLS

Figure 1-2 shows an application program which does not make use of NLS capabilities. This
NA TIVE-3000 application makes use of conventional programming techniques and standard MPE
and subsystem features to achieve the key language-dependent functions. It cannot be localized
without reprogramming and is unaffected by the introduction of NLS.

DATA MANIPULATION

DATA &\SE

IMAGE
dato bo•e(•)
and intrinsice

INDEXED SEQUENTIAL

l<SAM
file. ond
intrinea

SORT-MERGE
Intrinsics

CHAR. MANIPUtATION

Hord-coded function•
C•·t·• coml)4N8

upehlftt)

APPLICATION
PROGRAM

Cuatomer-wrltten
or third porty

appllcotlon

Figure 1-2. Application Program Without NLS

1-11

USER INTERACTION

SCREENS

VPLUS
forma ond
lntrlnalca

PROMPTS, MESSAGES

Hord-coded
and/ or message

cotok>cJ

USER COMMANDS

Hord-coded
and/or cornmond

fil~

FORMAn

lntrineic;•
(e.9., FMTDATE)

Introduction to NLS

Single Language Application

French is used as the single language application example in Figure 1-3. The applications designer
has determined that only French is required, and has hard-coded its language ID number (langnum)
7 into the program. The langnum is used as a parameter in calling various native language­
dependent intrinsics. In addition, the designer has created IMAGE data bases, KSAM files, and
VPLUS forms files with the French language attribute, and ha.s expressed all prompts and messages in
French. This use of NLS is for programs which will only be used in one country or location, or with
only one language.

DATA MANIPULATION

DATA BASE

IMAGE data
bose(s) wfth

"FRENCH" attribute

INDEXED SEQUENTIAL

KSAM file(1)
with "FRENCH"

attribute

SORTING

SORT-MERGE
intrinsics

CHAR. MANIPULATION

NL Intrinsics
(e.g., NLCOUATE

NLSCANMOVE)

APPLICATION
PROGRAM

A pro9rom written
for un In FRANCE.

Set LANGNUM
to 7 (FRENCH).

Figure 1-3. Single Language Application

Multilingual Application

USER INTERACTION

SCREENS

FRENCH VPLUS
formm
flt.(s)

PROMPTS, MESSAGES

Hord-coded
and/or opplicotion
messo9e cotolo9

USER COMMANDS

Hord-coded
and/ or command

ffle

FORMATS

Intrinsics
(e.g .. NLFMTOATE)

The program in Figure 1-4 shows a localizable or multilingual application. This application can be
used in several countries or in multiple languages by different users on the same system. The key at­
tribute of this progrnm is that it selects its language(s) at run time.

When installing an application on a system, the manager of the application may establish configura­
tion file(s) for that application. These files store information about various users or transactions and

1-12

Introduction to NLS

their native language requirements. At run time the application program can determine which
language (s) to use.

The program may call the N LGETLANG intrinsic to obtain the system default language, (which can be
set by the System Manager when native languages are configured) or it may prompt the user to enter
a language name or ID number (langnum).

The application may call NLGETLANG to obtain the user interface language and/or the data manipula­
tion language. The Job Control Words NLUSERLANG and NLDATALANG must be in place before
invoking this type of application. This method could be too restrictive if many users or transactions
are handled from one job or session.

Once the languages have been determined, the program opens the appropriate VPLUS forms files,
message catalogs, and/or command files, based on the user interface language choice. It also opens
any needed IMAGE data bases, KSAM files, or general data files; these may or may not depend upon
language choice. The appropriate language ID numbers are used in calling the various native lan­
guage intrinsics. Different users may concurrently run the same program with different languages.
The application can be designed to use more than one language within a single execution. For ex­
ample, one language may be used for data manipulation and a different one for user interactions.

DATA MANIPULATION

DATA ~E

IMAGE dota bose(s)
with oppropriote

language ottrlbute(a)

INDEXED SEQUENTIAL
KSAM flle(s)

with opproprfote
language attribute(•)

SORTING

SORT-MERGE
intrinlica

/;

-----------------AP PUCA TION
PROGRAM

A progrom written
for u .. in

multiple eountrie1.
Determine LANGNUM(s)

ot run time.•

I
I

I

t • From oppHcotion
c:onfi~urotion file,
sywtem d•foult, uaer
prompt, JCW1, etc. ---v~ CHAR. MANIPU~TION

NL intrinsics
(e.9., NLCOUATE

NLSCANMOVE)

Figure 1-4. Multilingual Application

1-13

USER INTERACTION

SCREENS
/I.~---------------~

/
.' VPLUS form& file(s)

w/oppropriole longuage
/ or 11 intemotionol11

PROMPTS, MESSAGES

In applfcotfon mesaa9e
cotal09(s) chosen

by LANGNUM

USER COMMANDS

Command file(s) or
n1e&109e cotolo9(1)
cho&en by LANGNUM

FORMATS

NL intrinsic&
(e.g., Nl.f'MTOATE)

Introduction to NLS

HP Subsystem Utility Program

Figure 1-5 shows a special category of multilingual application, the Hewlett-Packard subsystem
utility program. Many of these programs are not typically used by end users, but are used to manipu­
la~e user data in conjunction with application programs. They determine which language to use at
run time via a user-entered keyword or command, or via defaults.

The user interaction in these programs has not been made localizable since many of these programs are
not end user tools.

DATA MANIPULATION

DATA ~SE

IMAGE
doto bose(s)

INDEXED SEQUENTIAL

KSAM
fUe(a)

SORTING

SORT-MERCE
intrinsics

~~ ,
~

HP 3000
SUBSYSTEMS

FCOPY, SORT, MERGE,
QUERY, ENTRY

Determine l.ANCNUM
from u1er commond

or k ord. •

• Coll NLG~ to
e1toblish default(1).

----v~ CHAR. MANIPULATION

NL intrinsic:•
(e.9., NLCOUATE

NLSCANMOVE)

Figure 1-5. HP Subsystem Utility Program

1-14

USER INTERACTION

SCREENS

VPLUS forms file(s)
w/oppropriote lon9uo9e

or "intemotionol"

PROMPTS, MESSAGES

Hord-coded or in
mes109e catalog
(not localized)

USER COMMANDS

Hord-coded

FORMATS

NL intrinsics
(e.g., NLFMTOATE)

APPLICATION MESSAGE FACILITY -
.__~~~~--~~-----[JI]

The Application Message Facility is a Native Language Support (NLS) tool that provides a program­
mer with the flexibility needed to create application catalogs for localized applications. Text such as
prompts, commands, and messages intended for the user's interaction with an application can be
stored in separate ASCII editor files. This allows the programmer to maintain files and localize ap­
plications without changing the program code.

The NLS Application Message Facility contains the GENCAT utility program and the CAT intrinsics,
CATOPEN, CATREAD, and CATCLOSE, as shown in Figure 2-1.

APPLICATION
SOURCE
CATALOG

FORMATTED
APPLICATION

CATALOG

CATOPEN
<

CATREAD
>

CATCLOSE
<

Figure 2-1. GENCAT Utility Program

APPLICATION
PROGRAM

The GENCAT utility creates and maintains message catalogs which meet the NLS requirements for
efficient storage and retrieval of messages. For a comparison of GENCA T and MAKECAT, an MPE
utility which is also used to create and maintain message catalogs, refer to Table 2-2.

ACCESSING APPLICATION CATALOGS

Catalogs formatted with GENCAT can be accessed by applications via the CAT intrinsics:

CATOPEN - Opens a catalog for access by an application.

CATREAD - Retrieves text from a catalog.

CATCLOSE - Closes a catalog.

The NLAPPEND intrinsic can be called to concatenate the language ID number and the catalog file
name before the catalog is opened. Refer to "CATALOG NAMING CONVENTION" in this section
for more information.

The intrinsics are documented in Section IV, "NATIVE LANGUAGE INTRINSICS." Refer to
Program L in Appendix H for an example of their use.

2-1

Application Message Facility

SOURCE CATALOGS

First, the user creates an MPE ASCII file in an editor with an EDIT/3000 compatible format. The
catalog may contain 8-bit characters. The GENCAT program reads the source catalog and creates a
binary formatted catalog which can be accessed by application programs. Calls to the CAT intrinsics
access the formatted catalogs. An internal directory is created in the formatted catalog which ex­
pedites accessing the catalog. The text in the formatted catalog is compressed for efficient storage.
The source catalog,s record size may vary from 20 words to 128 words. Often, a message is split over
several records.

Figure 2-2 illustrates the three functions GENCAT performs on an application message catalog:
modifying, formatting and expanding.

DIRECTIVES

A source catalog contains directives which partition information in the message catalog. The three
types of directives include $to denote a comment line, $SET to mark the beginning of a new set of
messages, and message numbers to indicate messages.

$SET Records

A $SET record initiates a logical grouping of messages. Sets break the catalog into manageable seg­
ments containing logical groupings of messages (e.g., one set of messages for prompts, one set for in­
structions, one set for error messages).

The format of a $SET record, where XIX is a required number for that set of messages (ranging from
1 to 255) is:

$SET XIX [ootm1ent] $set XIX [oonment].

A $SET record can contain comment as an optional character string. If there is not at least one blank
between rrr and the comment, GENCA T will issue an error message and terminate the formatting.

Set records must begin in column 1. For example, to indicate that set number 1 is being defined:

$SET 1 Set one contains all prompts.

See Figure 2- 3 for an example of a $SET record.

2-2

I
ENTER NAME OF CATALOG

TO BE MODIFIED

!
ENTER NAME OF MAINlENANCE FILE

!
ENTER INDEX OF MERGE 1YPE

O. DO NOT MERGE.

1. HELP.

2. BY LINE NUMBER.

3. BY SET /MESSAGE NUMBER.

l
SAVE COLLISIONS?

ENTER "YES" OR "NO"

ENTER NAME OF

COLLISION FILE

ENTER NAME OF NEW

SOURCE CATALOG FILE

!
I MODIFYING SOURCE ...

GENCAT MENUS

ENTER INDEX OF DESIRED FUNCTION

O. EXIT.

1. HELP.
2. MODIFY SOURCE CATALOG.

Application Message Facility

3. FORMAT SOURCE INTO FORMAlTEO CATALOG.

4. EXPAND FORMAITEO CATALOG INTO SOURCE.

1
ENTER NAME OF SOURCE FILE

TO BE FORMATTED

l

I FORMATTING ... I
!

ENTER NAME FOR NEW FORMATTED FILE

l
TOTAL NUMBER OF
SETS FORMATIEO • __

TOTAL NUMBER OF MESSAGES
FORMATTED •

Figure 2-2. GENCAT Functions

2-3

1
ENTER NAME OF FORMATTED

CATALOG TO EXPAND

!
ENTER NAME OF NEW

SOURCE FILE

l
I EXPANDING... I

l
TOTAL NUMBER OF
SETS EXPANDED •

TOTAL NUMBER OF
MESSAGES EXPANDED = --

~---' - INDICATES
USER INFORMATION DISPLAYED

Application Message Facility

Message Records

Message records consist of a message number followed by the message text. This may be an error mes­
sage, prompt, or any text which may change with the language or country where the program will be
use9. Message records:

• Identify message locations within a set.

• Must be in ascending sequence and unique within the set that contains them.

• Do not need to be consecutive.

For example, within a set, one can have messages 1-25, 101, 300-332, and 32766. All of these
message numbers can be used again in another set. The format for a message record where XXIIX, an
integer, is the required message number is:

xxxxx [the text of the message].

Text is an optional character string which, if present, follows the message number. If the text is not
preceded by a blank, GEN CAT will replace the character immediately following the message number
with a blank. The user will be informed that a blank has replaced the character. An exception is
made if one of two special characters, "%" or "&,"follow the message number. These characters will
not be replaced by a blank. Their meaning is explained in the following section.

Message Record Special Characters

When CATREAD· is writing a message to a file, the percent (~) instructs CATREAD to post a carriage
return-line feed before writing the next record. For example, a message in set 4:

3 AN ERROR OCCURRED DURING THE LOADING %
OF THE DATA BASE.

The execution of CATREAD (cat index,4,3); results in a display of:

AN ERROR OCCURRED DURING THE LOADING
OF THE DATA BASE.

The ampersand (&)indicates that the statement is continued on the next line. Message 98 in set 67 is:

98 THE NUMBER OF FILES &
DOES NOT MATCli THE &
SYSTEM•s CALCULATIONS.

The execution of CATREAD (cat index, 67, 98, ...) ; results in a display of:

THE NUMBER OF FILES DOES NOT MATCH THE SYSTEM'S CALCULATIONS.

Note the use of blanks as separators preceding the ampersand. Message records must begin in column
1 and may have leading zeros. For example, the format of messag·~ number 3 in some set is:

0003 PLEASE ENTER YOUR NAME.

2-4

Application Message Facility

The tilde (-) is used as a literal character. It instructs CATREAD to treat the character which follows
it as a literal part of the message (even if it is a special character). For example, two tildes in a row
will put one tilde into the message.

The exclamation mark (!) is discussed in 11 P ARAMETER SUBSTITUTION 11 in this section.

Comment Records

Comments are used throughout the catalog to document sets and messages, and to make them easier to
read. The format of a comment record, where comment is an optional string of characters is:

$[conrnent].

A blank between$ and [conment] is necessary only when the comment is a $SET or $DELSET record.

Sample Source Catalog

Notice the directives$, ($SET numbers), message numbers, message comments, and the use of blanks
in the sample source catalog in Figure 2- 3.

$This catalog is for development only. Messages will be
$ added as needed.
$••
$SET 1 Prompts
1 ENTER FIRST NAME
2 ENTER LAST NAME
$
$**
$SET 2 Error messages
1 NAME NOT ON DATA BASE
2 ILLEGAL INPUT
95 OPERATION IS ~
INCONSISTENT WITH ACCESS TYPE
$

Figure 2-3. Sample Source Catalog

PARAMETER SUBSTITUTION

Parameter substitution can often be used with messages. An exclamation mark (!) is used within a
message to indicate where a parameter is to be inserted using CATREAD. The user must choose posi­
tional or numerical parameter substitution. Mixing these two types within a message is not allowed.

2-S

Application Message Facility

Positional Parameter Substitution

Positional parameter substitution simply means that each of the parameters in the CATREAD parameter
list is to be inserted into the message at each successive "! 11

• A maximum of 5 parameter substitutions
is allowed in one message. The example in Figure 2-4 will be used to illustrate the use of positional
parameter substitution.

SPL ST A TEMENT

CATREAD (catindex, 13, 400, error,,,user, term);

PARAMETERS

BYTE ARRAY usor (0:8):= 11 MARY.KSE 11
, O;

BYTE ARRAY term {0:5) :="THREE", O;

iiigure 2-4. Positional Parameter Substitution

Message 400 in set I 3 is:

400 ILLEGAL INPUT FROM USER ! ON TERMINAL NUMBER !

The execution of the SPL statement in Figure 2-4, with the parameters given, results in the following
message:

ILLEGAL INPUT FROM USER MARY.KSE ON TERMINAL THREE.

Numerical Parameter Substitution

Numerical parameters allow the user to decide where the parameters are to be placed within the mes­
sage. The exclamation mark (!)is immediately followed by a number in the range 1-5. The example
in Figure 2-5 will be used to illustrate the use of numerical parameter substitution.

SPL ST A TEMENT

CATREAD (catindex, 7, 4, error,,,fourstr, fivestr)

PARAMETERS

BYTE ARRAY fourstr (0:4):="FOUR", O;
BYTE ARRAY fivestr (0:4):="FIVE 11

, O;

Figure 2-5. Numerical Parameter Substitution

A message in set 7 is:

4 EOF DETECTED AFTER RECORD !1 IN FILE !2

2-6

Application Message Facility

The execution of the SPL statement in Figure 2-5, with the parameters given, results in the following
message:

EOF DETECTED AFTER RECORD FOUR IN FILE FIVE.

Message 5 in set 7 is:

5 EOF DETECTED AFTER RECORD !2 IN FILE !1

A change in the call results in a different message:

CATREAD (catindex, 7, 5, error,,,fourstr, fivestr)

Message:

EOF DETECTED AFTER RECORD FIVE IN FILE FOUR.

Mixing numerical and positional parameter substitution characters is not allowed and will be flagged
as an error:

EOF DETECTED AFTER RECORD! IN FILE !1.

Numeric parameter substitution can be used only with GENCAT and the CATREAD intrinsic.
CATREAD interprets the character tilde (-) as a literal character. If a character is preceded by a tilde
(-), that character is taken literally. For example, if set 7 also contains the following message:

6 ERROR ! IN INPUT-!

When the SPL statement, CATREAD (cat index, 7 ,6,error,, ,seventeen), is executed, the result­
ing output is:

ERROR 17 IN INPUT!

The second exclamation mark would not be used for parameter substitution because it is preceded by a
11-11

CATALOG NAMING CONVENTION

Catalogs are MPE files accessed by application programs via the CAT int:dnsics. An application that
has been localized into more than one language will typically have a separate message catalog for each
language. A naming convention facilitates using different localized versions of files required by an
application program.

A catalog file name can be identified with a maximum of five characters. Each native language sup­
ported by NLS has a language ID number (langnum). A three-digit language ID number can be ap­
pended to the catalog file name to identify each localized catalog.

For example, an original unlocalized message catalog is APCATOOO. The message catalog in German
would be APCAT008. A Spanish version would be APCATOl 2. Refer to Appendix B, 11SUPPORTED
LANGUAGES AND CHARACTER SETS," for a complete list of native languages and their cor­
responding language ID numbers. When the language ID number has been selected, the N LAP PEND
intrinsic may be used to form the catalog file name. At run time the application program is
responsible for determining which catalog to open with the CATOPEN intrinsic.

2-7

Application Message Facility

MAINTAINING A MESSAGE CATALOG

Maintenance functions can include addition, deletion, and modification of records in the source file.
The input for merging consists of two files, the source file and the maintenance file. The main­
tenance file is merged against the source file, either by line numbers or by $SET and message num­
bers. If the user does not know the line numbers, the $SET and message numbers can be used success­
fully. The context of the $SET and message records in the maintenance file determines the type of
maintenance performed on the source. Changes made to a source during a maintenance merge may be
kept in a collision file named by the user. Collision files are created at the option of the user. Figure
2-6 illustrates how the collision file may be merged against the modified source catalog to re-create
the original source.

RELATIONSHIP OF COLLISION FILE

TO SOURCE CATALOG FILE

~/o
I GENCAT I NEW SOURCE

~o
MAINTENANCE SOURCE COWSION FILE

g~
MQQ!E!.

/O~gRCE I GENCAT I
0/ ~o

COWSION FlLE MAINTENANCE FILE

Figure 2-6. Collision Files

2-8

Application Message Facility

Merging Maintenance Files by Line Numbers

Merging a maintenance file against a source catalog file by line numbers may include modifying,
adding or deleting records.

MODIFYING A RECORD. If the maintenance file's line number is common to the source file's, the
source's record is overwritten by the maintenance record.

ADDING A RECORD. If the line number in the maintenance file does not exist in the source, the
record represented by that line number from the maintenance file is added to the source at that line
number.

DELETING A RECORD. The directives $EDIT and $EDIT VOID=XXXXXXXX are used to delete
records from the source file. If $EDIT VOID is used, the records beginning with and including the
record number of the $EDIT VOID record to record XXXXXXXX are deleted. The line number
XXXXXXXX represents the line number XXXXX. XXX of the source file.

Merging Maintenance Files by $SET and Message Number

When GENCAT reads a $SET record from the maintenance file, all records following the $SET record
are considered to be message records or comment records within that set until GENCAT reads another
$SET record or exhausts the maintenance file. Set numbers must be in ascending order, and all mes­
sage numbers must be in ascending order within each set.

The first record GENCAT expects to read from the maintenance file is a $SET, $DELSET (Refer to
"THE $DELSET DIRECTIVE" discussion in this section.), or a comment record. GENCA T will con -
tinue to read and evaluate the maintenance file records until there is an error or the maintenance file
is exhausted. After GENCAT reads a maintenance file record, it is evaluated according to a set of
rules, and a copy of the source is modified as necessary. The following rules for evaluation apply to
set numbers and message numbers.

SET NUMBERS. New message numbers and set numbers are added to the source catalog file. All
message numbers and messages following this set record are assumed to be new, and will be added to
the source file.

Set numbers, if already present, signify changes to the set of messages currently in the source catalog.
All message numbers and messages following this set are to be evaluated according to the rules for
message numbers.

Set numbers in a $DELSET record mean that the entire set of messages in the source is to be deleted.

MESSAGE NUMBERS. New message numbers within a $SET are added to the new source. Message
numbers that are already present are deleted if no text follows the message number. If new text is
supplied, the existing message will be updated.

2-9

Application Message Facility

COMMENT RECORDS. Comment records are written to the new source file as they are
encountered, either in the source or the maintenance file.

THE $DELSET DIRECTIVE. The $DELSET directive is allowed only in the maintenance file. It in­
structs GENCAT to delete the entire set of messages denoted by xrr. Optional text may follow rxr,
providing it is preceded by at least one blank. The $DELSET directive is not written to the new file.

$DELSET records must begin in column 1. The format of a $DELSET record, where xrx is an existing
set number in the source catalog is:

$DELSET XIX [text].

The directives $SET and $DELSET may be either in uppercase or lowercase ($set and $de lset).
Mixed cases are not allowed (e.g., $Set or $deLseT).

User Dialogue

The user may modify a source file, format a source catalog, or expand a formatted catalog as shown
in Figure 2-7. The process of maintaining a GENCAT source file is shown in Figure 2-8.

To modify a source file, enter:

:RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

0. EXIT.
1. HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.

»2

ENTER NAME OF CATALOG SOURCE FILE TO BE MODIFIED

>>APCATOOO

ENTER NAME OF MAINTENANCE FILE

>>CATMANNT

Figure 2- 7. Dialogue For Modifying A Source File (1 of 2)

2-10

Application Message Facility

If the name of a nonexistent file is entered, an error message is displayed.

NONEXISTENT PERMANENT FILE (FSERR 52)

EXPECTED AN EXISTENT FILE AS INPUT (GCERR 15)

The prompt will then be repeated:

ENTER NAME OF· MAINTENANCE FILE

»CATMAINT

ENTER INDEX Of MERGE TYPE

0. DO NOT MERGE.
1. HELP.
2. BY LINE NUMBER.
3. BY SET/MESSAGE NUMBER.

»3

Entering an 11 0 11 or (RETURN) aborts the maintenance function and returns to the main menu.

The user has the option of saving- all the modifications resulting from the merge in a collision
file.

SAVE COLLISIONS? ENTER "YES" OR "NO"

»YES

ENTER NAME OF COLLISION FILE

>>COLCAT

If the name of an existing file is entered, the prompt is repeated. A (RETURN) continues the
merging without saving the collisions.

GENCAT merges the source and maintenance files into a temporary file, and will prompt for
the name of a permanent file:

ENTER NAME OF NEW SOURCE CATALOG FILE

>>NEWCAT

This prompt is repeated until a unique file name or a [RETURN) is entered. The temporary file
is copied to the new permanent file. If a (RETURN) is entered the merging is aborted.

Figure 2-7. Dialogue For Modifying A Source File (2 of 2)

2-11

Application Message Facility

!MAINTAINING I

0 0
SOURCE CATALOG FILE~ /EW SOURCE CATALOO FllE

FIXED ASCII. (MOOIFlED SOURCE CATALOG
RECORD SIZE • 408 -> 2568 W. MAIN'TINANCE FllE).

FlXEO ASCII.

I I SAME RECORD SIZE AS
GENCAT SOURCE CATALOG FILE.

MAINTENANCE FlLE.
FIXED ASCII.

SAME RECORD SIZE AS
SOURCE CATALOG FIL£

COWSION FlLE
(OPTlONAL FILE - ON
DEMAND FROM USER).

FIXED ASCH.
SAME RECORD SIZE AS
SOURCE CATALOG FIL£.

Figure 2-8. Maintaining A GENCAT Source File

FORMATTING A SOURCE CATALOG

It is necessary to format the source catalogs so the CAT intrinsics can access them. GENCAT format­
ted files are binary, and cannot be edited. Formatting compacts files and creates a directory, which
saves disc space and reduces access time.

During the formatting process, GENCAT verifies that:

• All directives are legal and used correctly.

• Set numbers are in ascending order.

• Set numbers are greater than 0 and less than or equal to 255.

e Message numbers are in ascending order within each set.

c Message numbers are greater than 0 and less than or equal to 31766.

• Continuation and concatenation characters are correct.

• Parameter substitution characters are used correctly.

2-12

Application Message Facility

The dialogue listed in Figure 2-9 is an example of formatting a source catalog.

:RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX Of DESIRED FUNCTION

0. EXIT.
1 • HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.

»3

ENTER NAME OF SOURCE FILE TO BE FORMATTED

>>NEWCAT

FORMATTING ...

ENTER NAME FOR NEW FORMATTED FILE

»FORMCAT

TOTAL NUMBER OF SET FORMATTED = 6
TOTAL NUMBER OF MESSAGES FORMATTED = 167

FORMATTING SUCCESSFUL

Figure 2-9. Source Catalog Formatting Dialogue

2-13

Application Message Facility

EXPANDING A FORMATTED CATALOG

GENCAT contains a function to re-create the original source catalog file by expanding the formatted
catalog. The result is a new source catalog that can be edited, then converted to a formatted catalog.
Figure 2-10 is an example of the user dialogue for expanding a formatted catalog. Figure 2-11 il­
lustrates the relationship of formatted files to expanded files.

:RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

0. EXIT.
1. HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.

»4

ENTER NAME OF FORMATTED CATALOG TO EXPAND

>>f"ORMCAT

ENTER NAME OF NEW SOURCE FILE

»NCATSOUR

EXPAND I NG ...

TOTAL NUMBER OF SETS EXPANDED = 6
TOTAL NUMBER OF MESSAGES EXPANDED = 167

EXPANSION SUCCESSFULLY COMPLETED

Figure 2-10. Expanding a Formatted Catalog

2-14

RELATIONSHIP OF" F"ORMAITEO FILES
TO EXPANDED FILES

I FORMATTING I

Application Message Facility

0~1GENCAT1~0
SOURCE CATALOG FILE

FIXED ASCII
RECORD SIZE • 408 -> 2568

I EXPANDINGf

FORMATTED CATALOG FILE
FIXED BINARY

RECORD SIZE • 128 W
FILECODE • 1 230

0~1GENCAT1~0
FORt.1AlTED CATALOG FILE FIXED ASCII

FIXED BINARY SOURCE CATALOG FlLE
RECORD SIZE • 128W SAME RECORD SIZE AS

FIL.ECOOE • 1230 ORIGINAL SOURCE

NOTE: THE EXPANDED SOURCE FILE IS NOT AN EXACT
DUPLICATE Of THE ORIGINAL SOURCE FILE.

CATALOG FILE

1. THE EXPANDED SOURCE WILL NOT CONTAIN ANY COMMENTS.
2. THE EXPANDED CATALOG IS AN UNNUMBERED FILE EVEN

IF THE ORIGINAL SOURCE IS A NUMBERED FILE.

Figure 2-11.. Formatting/Expanding GENCAT Source Files

GENCAT JCWs

GENCAT sets one of three specific Job Control Words (JCWs) at the conclusion of a maintenance,
formatting or expansion process: GCMAINT, GCFORMAT, or GCEXPAND. If the process com­
pletes successfully, the appropriate JCW is set to zero (e.g., GCFORMAT is set to FATAL if a format
failed). If the process terminates unsuccessfully, the JCW is set to FATAL.

GENCAT IN BATCH MODE

GENCAT can be invoked interactively or in batch mode. GEN CAT will abort a job in batch mode if
an error is encountered while formatting, expanding, or modifying.

2-lS

Application Message Facility

GENCAT HELP FACILITY

GENCA T has an online HELP facility. The user can enter the index number for HELP from the
menu or a "?" in response to any prompt that does not have a menu selection for HELP. See Figure
2-12 for an example of the GENCAT HELP Facility dialogue.

:RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

»1

0. EXIT.
1 • HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.

This is the driver menu for GENCAT.

Input consists of a numeric index, 0 through 4. Each index denotes
a function for GENCAT to perform.

0 - Wi 11 exit GENCAT and return you to MPE.
1 - Wi 11 display this message.
2 - Wi 11 direct GENCAT to begin the maintenance function.
3 - Wi 11 direct GEN CAT to begin the formatting function.
4 - Wi 11 direct GEN CAT to begin the ex pans ion function.

For each prompt, an input of an index for HELP or a 11 ? 11 (depending
upon the type of prompt) will display instruction for that prompt.

Briefly, formatting is the creat lng of an internal representation of a
source message catalog into a form used by the CATxxxx intrinsics.
Maintenance is modifying the source message catalog by merging a
maintenance file against it. The merge may be by line numbers
set and message numbers. Expansion is converting the formatted
file back into a source message catalog.

A carriage return exits GENCAT and returns to MPE.

Figure 2-12. GENCAT HELP Facility Dialogue

2-16

Application Message Facility

ERROR MESSAGES

GENCAT error messages are listed in Table 2-1.

Table 2-1. GENCAT Error Messages

MESSAGE MEANING ACTION

1 FREAD ERROR ON A failure by FREAD when Recreate the source mes-
SOURCE fl LE. reading a source message sage catalog.

catalog.

2 INPUT FILE MUST HAVE The file has an EOF of Place at least one record
AT LEAST ONE RECORD. zero (0). in the file.

3 INPUT FILE MUST File does not have a fixed Create the file with a
CONTAIN FIXED LENGTH record length. fixed record length.
RECORDS ONLY.

4 INPUT FILE MUST BE Source and maintenance Create the source and
USASCII FILE ONLY. files must have records maintenance files with

that are in USASCII USASCII format.
format.

5 INPUT FILE RECORD The record size of a source Create a source and main -
SIZE MUST BE BETWEEN or maintenance file is tenance file with a record
40 AND 256 BYTES. greater than 2 5 6 bytes size greater or equal to 40

(12 8 words) or less than bytes or less than or equal
40 bytes (20 words). to 256 bytes. (Note that

this record length includes
any line numbers in the
file.)

6 SET NUMBERS MUST BE A set number in a main - Change set number to a
BETWEEN 1 AND 255. tenance or source file is value between 1 and 2 5 5

not greater than or equal inclusive.
to 1 , or not less than or
equal to 255. The set
number may be negative
or it may not be numeric.

8 SET NUMBERS MUST BE A set number is less than Change numbers to strict
IN ASCENDING or equal to the previous ascending sequence.
SEQUENCE. set number in the source

file. Error can be detec-
ted at format time or
during a maintenance
function.

-·

2-17

Application Message Facility

Table 2-1. GENCAT Error Messages (Continued)

MESSAGE MEANING ACTION

9 MESSAGE NUMBERS MUST A message number value Change message number
BE BETWEEN 1 AND is not between 1 and value to a value that is
32766. 32 766 inclusive. between 1 and 32766

inclusive.

10 MESSAGES MUST EITHER During the scan of the Change the parameter
CONTAIN ALL NUMBERED message, GENCAT detec- substitution characters
OR ALL POSITIONAL ted a mix of parameter either to all numeric sub-
PARAMETER substitution characters. stitution or all positional
SUBSTITUTION For example, a message substitution characters.
CHARACTERS. MIXES contained numeric sub- (Note that this is for each
NOT ALLOWED. stitution characters as message only.)

well as positional substi-
tution characters.

11 MESSAGE NUMBERS MUST A message number was Arrange the messages
BE IN ASCENDING processed that is less than within the set so th~t
SEQUENCE. or equal to the previous their numbers are in strict

message number. The ascending order.
message numbers within a
set are not in ascending
sequence.

12 MESSAGE CONTAINS GENCAT detected a non- Insert a blank between the
NON-BLANK CHARACTER blank character im - message number and the
IMMEDIATELY mediately following the message text.
FOLLOWING MESSAGE message number in a mes-
NUMBER. NON-BLANK sage. GENCA T replaces
CHARACTER ASSUMED TO this character with a
BE A BLANK. blank.

13 EXPECTED ONE OF THE GENCA T detected an in - Respond only with 0, 1 ,
FOLLOWING INPUTS: 0, correct input in response 2 ' 3 ' 4' or a lRETURNI.
1, 2, 3, 4, OR A to the first menu (which
RETURN. prompts for a function).

14 EXPECTED ONE OF THE GENCA T detected an in - Respond only with 0, 1,
FOLLOWING INPUTS: 0, correct input in response 2, 3, or a WQ:flli).
1, 2, 3, OR A to the menu prompting
RETURN. for the type of merging it

is to perform.

15 EXPECTED AN EXISTENT The file does not exist on Either create the file or
FILE AS INPUT. the system. input the name of a file

that does exist on the
system.

2-18

Application Message Facility

Table 2-1. GENCAT Error Messages (Continued)

MESSAGE MEANING ACTION

16 EXPECTED A UNIQUE, The file already exists on Purge the file or input the
NON-EXISTENT FILE the system. The name of name of a file that does
NAME AS INPUT. the file should be one that not exist on the system.

does not exist on the
system.

17 EXPECTED A RESPONSE GENCAT requires a Respond with "YES, 11

OF "YES" OR "NO" AS response of either "YES, 11 "yes, 11 "NO," or "no."
INPUT. "yes, 11 "NO, 11 or "no" to

the prompt of "SAVE
COLLISIONS? Enter
11 YES 11 or "NO."

18 INPUT FILES MUST Source and maintenance Create a maintenance file
HAVE EQUAL RECORD files must have equal that has a record size
SIZES FOR THIS record sizes if the main - equal to the record size of
FUNCTION. tenance file is to modify the source file.

the source file.

20 THE CONSTRUCT OF The construct $DELSET, Remove $DELSET con-
$DELSET IS NOT which may be used in a struct from the source
ALLOWED IN THE maintenance file, was file.
SOURCE. detected in a source file

during a maintenance
function.

21 ONLY FIVE (5) GENCAT detected more Only five (5) or fewer
POSITIONAL PARAMETER than five (5) parameter parameter substitution
SUBSTITUTIONS substitution characters in characters per message.
ALLOWED PER MESSAGE. one message. Up to five

parameter substitution
characters are allowed per
message.

22 MAINTENANCE FILE The maintenance file is an Number the maintenance
MUST BE NUMBERED FOR unnumbered file. The file if the file is to be used
LINE-NUMBER MERGES. maintenance file must be in a line-number merge.

a numbered file if it is to
be used in a line-number
merge.

23 SOURCE FILE MUST BE The source file is an un - Number the source file if
NUMBERED FOR numbered file. The the file is to be used in a
LINE-NUMBER MERGES. source file must be a line-number merge.

numbered file if it is to be
used in a line-number
merge.

-

2-19

Application Message Facility

Table 2-1. GENCAT Error Message (Continued)

MESSAGE MEANING ACTION

24 SOURCE FILE CANNOT During a line-n urn ber Remove all occurrences of
CONTAIN FORMS Of merge, GENCA T ex- $EDIT and $EDIT VOID=
$EDIT. amines the source file for from the source file.

$EDIT and $EDIT VOi D=
constructs. These are not
allowed since if collision
files are to be used , an
ambiguity would exist if
the $EDIT and $EDIT
VO I D= were left in the
source file.

25 SEQUENCE NUMBER IN The value following the Reevaluate this value and
$EDIT VOID RECORD $EDIT VOID= may have a correct it, as it represents
CONTAINS TOO MANY maximum of eight place a line number.
DIGITS. EIGHT IS holders.
THE MAXIMUM.

26 FILE IS NOT A GENCAT can only ex- Format the file using
FORMATTED FILE. pand formatted catalogs GENCAT.

(i.e. , files forrna tted by
GENCAT).

27 SET RECORD IS A message was found Place the message in a set
REQUIRED BEFORE A before set number was or place a set number
MESSAGE RECORD IS defined. before the message.
FORMATTED.

28 VALUE IN RIGHT BYTE Your message contains For messages 28 through
Of KANJI CHARACTER special escape sequences 32, consult your HP rep-
IS INVALID. provided by HP that are resentative, or remove all

used for research and occurrences of the form
development activities. "esc$<terrninator>" or
These special escape se- "ESC(<terminator>" from
quences are not supported your message catalog.
by HP and HP assumes no Where ESC is the escape
responsibility for their character, <terminator> is
use. 11@11 or "A" through "Z".

29 SCAN COMPLETED WITH See Message Number 2 8. See Message Number 28.
NO CLOSING KANJI
ESCAPE SEQUENCE.
EXPECTS A CLOSING
KANJI ESCAPE
SEQUENCE TO
TERMINATE KANJI
CHARACTER SEQUENCE.

2-20

Application Message Facility

Table 2-1. GENCAT Error Messages (Continued)

MESSAGE MEANING ACTION

30 INCOMPLETE KANJI See Message Number 28. See Message Number 2 8.
CLOSING ESCAPE
SEQUENCE DETECTED.

31 VALUE IN LEFT-BYTE See Message Number 2 8. See Message Number 28.
OF KANJI CHARACTER
IS INVALID.

32 VALUE IN PARAMETER See Message Number 28. See Message Number 28.
SECTION OF KANJl
ESCAPE SEQUENCE IS
INVALID. EXPECTED A
STRING Of DIGITS.

33 BLANK RECORDS THAT GENCAT detected a Remove the record from
ARE NOT CONTINUATION blank record in the source the source file , or modify
RECORDS ARE NOT catalog and this record is the record immediately
ALLOWED. a continuation record for before it to end with a

the previous record. 11% 11 or a 11 & 11 character.

2-21

Application Message Facility

Table 2-2. MAKECAT/GENCAT Comparison

FEATURES MAKECAT GENCAT

Access Methods The fOPEN, GENMESSAGE, and CATOPEN, CATREAD, and
FCLOSE intrinsics are used to CATCLOSE intrinsics open, access
open, access, and close formatted and close formatted GENCA T
MAKECATcatalogs. catalogs.

Formatting Places an internal directory in the A source message file is formatted
file's user labels. The file is for- into another file, leaving the
matted in place without creating original source intact. The
a new file. application uses the formatted file.

The original source file can be
purged. The formatted file can be
expanded to restore the original
source file.

Function Converts or formats HELP and Formats application message
message files into catalogs. catalogs. Provides maintenance
Installs system message catalog, facility to modify existing source
using the BUI LO entry point. catalogs. Provides capability of ex-

panding a formatted file back into
the original source file.

Input The name of a file must be en - GENCAT prompts the user for the
tered in a file equation. :FILE name of a file.
INPUT=<your file>.

Literal Character Not supported. The tilde u-
11 serves as a literal

character, causing the character
which immediately follows it to be
treated as text.

Messages The message number range per set The message number range per set
is 1-255. is 1-32766.

Numerical Not supported. Up to 5 numerical parameters can
Parameters be contained in a message.

Output Saves the formatted file as a tem - GENCAT prompts the user for the
porary file with the name name of the formatted file. The
CATALOG. file is saved as a perm anent file.

Processing Formats more quickly than GENCAT verifies each message for
GENCAT. correct parameter substitution

characters. Manipulates two tern-
porary files while formatting the
source file.

2-22

Application Message Facility

Table 2-2. MAKECAT/GENCAT Comparison (Continued)

FEATURES MAKECAT GENCAT

Record Format Accepts source files of any size, but Accepts source catalog files with
the file it saves has a record size of record sizes from 40 to 256 bytes.
8 0 bytes. The system message The formatted file has a record size
catalog is fixed binary. An appli- of 12 8 words, and is fixed binary.
cation catalog is fixed ASCII. When a formatted catalog is ex-

panded into a source catalog, the
new source catalog is fixed ASCII
with a record size identical to the.
original source catalog.

When maintenance is being per-
formed, both the source file and
the maintenance file must be of
equal lengths in fixed ASCII. The
resulting source file, and collision
file , if specified will be fixed
ASCII, and their record sizes will
equal the record size of the original
source file.

Sets The set directive is $SET. The set The set directive can be $SET or
number range for a catalog is 1-63. $set. The set number range for a

source catalog is 1-2 5 5.

User Interface The user must know which entry GENCAT is menu-driven. The
points to use and when to use them. menus originate from a catalog.
Files are input via file equations. Each prompt has HELP text as-
Error messages require user sociated with it. Error messages are
interpretation. self-explanatory.

2-23/2-24

NLS IN MPE SUBSYSTEMS -
--~~~~~~~~~~[JI]

Native Language Support (NLS) supplies the applications designer with the tools to support native
language data and local custom formats. NLS provides support features in FCOPY, IMAGE, KSAM,
QUERY, SORT-MERGE and VPLUS. COBOLII access to native language collating sequences is in­
cluded in the SORT-MERGE subsection discussion.

The emphasis of NLS in the subsyst~ms is on providing the end-user, rather than the application
designer, with local language data and formats. User interfaces (prompts, commands and messages)
of the subsystem utility programs, e.g., FORMSPEC or DBUTIL, are not localized.

These notes on the subsystems are intended to be used as addenda to the subsystems manuals. Refer to
the SORT-MERGE, KSAM, FCOPY, QUERY, IMAGE and VPLUS manuals for complete documen­
tation on these subsystems. The format of each subsystems manual has been maintained as much as
possible in these updates.

3-1

NLS In MPE Subsystems

FCOPY

Native Language Support (NLS) features in FCOPY can be accessed by adding a LANG= parameter to
the existing options.

:FCOPY FROM=A; TO=B; LANG=GERMAN; UPSHIFT

If the LANG= parameter is omitted, FCOPY fetches the current data language with NLGETLANG (mode
2). If there is none, or if it is NA TIVE-3000, FCOPY functions as it did before the introduction of
NLS.

FCOPY Options

The FCOPY options affected by language dependency are character printing, translating, upshifting,
and updating KSAM files.

CHAR OPTION. Character codes not represented by symbols are displayed as periods. The TO= file
can be a line printer, a keyboard display terminal, or an intermediate disc file to be listed at a later·
time.

CHAR No LANG= The NATIVE-3000 processing scheme will be retained.

CHAR LANG= The character definition table associated with the language will be used.
Characters of type 3 (undefined graphic character) and S (control code) as
in N LI N FO item 12, are replaced by periods. Ref er to Section IV,
"NATIVE LANGUAGE INTRINSICS," for more information.

CHARACTER TRANSLATE OPTIONS. These options translate data for ASCII-to-EBCDIC and
EBCDIC-to-ASCII conversions.

EBCDIC IN/
EBCDICOUT

Input of the LANG= parameter will result in the translation table associated
with the language being used.

For example, using an EBCDIC-to-ASCII conversion table, FCOPY con­
verts data from German EBCDIC to ROMANS:

>FROM=MYGEBCFL; TO= MYROMBFL; LANG=GERMAN; EBCDICIN
EOF FOUND IN FROMFILE AFTER RECORD 29

30 RECORDS PROCESSED *** 0 ERRORS

3-2

NLS In MPE Subsystems

UPSHIFT OPTION. The UPSH I FT option converts lowercase alphabetic characters of supported
native languages to their corresponding uppercase characters as part of the copying operation.

UPSHIFT No LANG= Any character belonging to USASCII or to one of the extensions will be up­
shifted as it would have been before the introduction of NLS.

LANG= All characters will be upshifted according to the given language,s upshift
definition.

FCOPY AND KSAM FILES. To change the language of an existing file, a new KSAM file must be
built with the new language attribute, and the old file copied into the new. If FCOPY copies an ex -
isting KSAM file to a new KSAM file the same language attribute is assigned to the new file. The
LANG= option of FCOPY cannot be used to change the language of a KSAM file.

Combined Use Of Options

Using LANG= without another relevant option such as UPSHIFT or EBCDICIN usually results in a
warning message:

<<966>> WARNING: LANG OPTION NOT RELEVANT

The user can continue without affecting the outcome of the operation. The LANG= option is ignored.

The following combinations are flagged as an error:

BCDICIN;LANG=xxx
BCDICOUT;LANG=xxx
EBCDIKIN;LANG=:rxx
EBCDIKOUT;LANG=:rxx
KANA;LANG=xxx

For example:

>FROM=DEUTSCHj TO=DANSK; LANG=GERMAN; BCDICIN
•57•SYNTAX ERROR: ILLEGAL COMBINATION or OPTIONS

0 RECORDS PROCESSED *** 1 ERROR

3-3

NLS In MPE Subsystems

Error Messages

Table 3-1 lists the error messages for FCOPY.

Table 3-1. FCOPY Error Messages

ERROR# MESSAGE CAUSE ACTION

960 LANGUAGE NOT The language Verify spelling of Ian-
CONFIGURED. requested is not guage name. Ask the

configured on the System Manager to con -
system. figure the language on

the system.

961 NLS NOT CONFIGURED. No native languages Ask the System Manager
are configured on to configure the native
the system. language on the system.

966 WARNING: LANG OPTION The LANG option is Check command for
NOT RELEVANT. not relevant to correct options. You

command last are given the choice
entered. whether or not to con-

tinue the operation.

Pert ormance Issues

The implementation of CHAR, UPSHIFT, and EBCDICIN/EBCDICOUT using NLS intrinsics and lan­
guage definition tables requires additional time for the conversion process.

3-4

NLS In MPE Subsystems

IMAGE

Native Language Support (NLS) in IMAGE enables the user to assign a language attribute to a data
base. This language attribute determines the collating sequence used to insert an entry with a sort
item of type X or U in a sorted chain. It also determines the operation of comparisons for entry level
DBLOCK calls. In order to use NLS with IMAGE, this language attribute will have to be specified by
the user either at schema processing time or through the SET command in DBUTIL.

Utility Programs

NLS features in IMAGE can be requested in four utilities: DBSCHEMA, DBUTIL, DBUNLOAD,
and DBLOAD.

DBSCHEMA. The optional language attribute will be specified:

BEGIN DATA BASE databasename (,LANGUAGE: language] ;

The language name or ID number can be used for language. If no LANGUAGE is specified, the data
base will use NATIVE-3000 as a default.

The names of data items and data sets are restricted to certain USASCII characters. This allows
schemas to be valid internationally, for all Hewlett-Packard 8-bit character sets. It also allows the
sources of application programs which call IMAGE intrinsics to be entered from and displayed on all
8-bit and 7-bit (USASCII) terminals.

DBUTIL. DBUTIL includes the SET, HELP, and SHOW commands:

SET:

HELP:

SHOW:

SET LANGUAGE= language. This command can be issued only on a virgin
ROOT file or an empty data base (where <language> is the language name
or language ID number).

HELP SHOW and HELP SET will display the syntax for SHOW and SET
commands with the LANGUAGE option.

SHOW databasename [/rm i ntwrd] LANGUAGE. The language attribute
of the data base is displayed.

DBUNLOAD/DBLOAD. DBUNLOAD copies the data to specially formatted tapes or disc volumes.
The language ID number of the data base is stored along with the data.

DBLOAD warns the user who tries to load data when the language attribute of the data base on disc
and the data base on tape are incompatible:

WARNING: THE LANGUAGE OF THE DATA BASE IS DIFFERENT FROM THE LANGUAGE
FOUND ON THE DBLOAD MEDIA.

3-5

NLS In MPE Subsystems

If the user is running DBLOAD in a session, the user may choose to continue:

CONTINUE DBLOAD OPERATION ? (Y/N)

In case of a job execution of DBLOAD, or a negative answer ("N") to the previous question, the
DBLOAD operation is prematurely terminated.

Intrinsics

The language attribute of the IMAGE data base enables the IMAGE intrinsics to utilize native lan­
guage features.

D:BOPEN. DBOPEN checks the language attribute of the data base. When the language attribute of
the data base is not supported by the current configuration of the system, an error code of -200 is
returned:

DATA BASE LANGUAGE NOT SYSTEM SUPPORTED.

D:BPUT. The position of a new entry with a type X or U item in a sorted chain is determined accord­
ing to the collating sequence of the language attribute of the data base.

If the data base language attribute is NATIVE-3000, the insertion of a new entry in the sorted chain
is determined by the result of a BYTE COMP ARE between the key of the new record and the keys of
the en tries already in the chain.

If the data base has a language attribute other than NATIVE-3000, the collating sequence definition
of the native language is used via a system version of the NLCOLLATE intrinsic to determine where to
insert the new entry.

DBINFO. DBINFO provides additional information about the language attribute of the data base:

Mode: 901

Purpose: Obtain language attribute of the data base.

Qualifier: Ignored

Buffer Array Contents: Word 1 contains the language ID number.

DBLOCK. If a lock item is of type U or X, and a lock specifies an inequality (range), the collating
sequence for the language of the data base will be used.

3-6

NLS In MPE Subsystems

Changing The Language Attribute Of An IMAGE Data Base

This change cannot be done with a single command. Once data has been stored in an IMAGE data
base with a native language attribute, changing the language attribute requires reorganizing data
along any sorted chains according to the collating sequence of the new language.

The procedure is:

1. DBUNLOAD the data base.

2. Purge the data base using PURGE in DBUTIL.

3. Modify the schema with the language attribute set by the LANGUAGE: parameter and create a
new root file with the schema processor.

4. Create the data base using CREATE in DBUTIL.

5. Run DBLOAD in session mode. A warning message is issued because the language has been
changed. A prompt is displayed:

CONTINUE DBLOAD OPERATION? (Y/N)

Enter 11 Y11 to complete the change of the language attribute.

NOTE

All IMAGE data bases created before NLS are con -
sidered to have NATIVE-3000 as a language attribute.

Error Messages

The three types of error messages used in IMAGE are listed in the following tables. Table 3-2 lists
Utility Program Conditional Messages, Table 3-3 lists Library Procedure Calling Errors, and Table
3-4 lists Schema Syntax Errors.

3-7

NLS In MPE Subsystems

Table 3-2. IMAGE Utility Program Conditional Messages

MESSAGE MEANING ACTION

DATA BASE LANGUAGE Language of the data base is not Ask the System Manager
NOT SYSTEM currently configured on your to configure the native
SUPPORTED. system. language on your system,

or provide a valid
language.

ERROR READING ROOT DBUTIL is unable to read a root Contact your Hewlett-
FILE RECORD. file record. Packard support

representative.

ERROR WRITING ROOT DBUTIL has detected an error Contact your Hewlett-
FILE RECORD. while writing a root file record. Packard support

representative.

INVALID LANGUAGE. Language name or number contains Retype the correct lan -
invalid characters. guage name.

LANGUAGE MUST NOT BE Language name is too long and, Retype the correct Ian -
LONGER THAN 16 therefore, must be incorrect. guage name.
CHARACTERS.

LANGUAGE NOT The language specified is either not Contact the System
SUPPORTED. supported on your system or is not a Manager for configura -

valid language name or number. tion of that language, or
provide a valid language.

NLINFO FAILURE. An error was returned by MPE Contact your Hewlett-
NLS. Packard support

representative.

NLS RELATED ERROR. An error was returned by MPE NLS Contact your Hewlett-
·on a DBOPEN on the data base. Packard support

representative.

WARNING: THE User has changed the language at- After noting the inf orma -
LANGUAGE Of THE DATA tribute of the data base between tion returned by
BASE IS DIFFERENT DBUNLOAD and DBLOAD. DBLOAD, and the result
FROM THE LANGUAGE DBLOAD wants the user to be on eventual sorted chains
FOUND ON THE DBLOAD aware of potential differences in in the data base , proceed
MEDIA. sorted chains of the collating se- with the opera ti on by

quence of the two languages (the answering "YES. 11

language of the data base on disc
and on tape) are different. In ses-
sion mode the question "CONTINUE
DBLOAD OPERATION?" is asked.
In job mode, DBLOAD will ter-
minate execution.

3-8

NLS In MPE Subsystems

Table 3-3. IMAGE Library Procedure Calling Errors

CCL CONDITION MEANING ACTION

-200 DATA BASE LANGUAGE DBOPEN attempted to open Ask the System Manager
NOT SYSTEM the data base and found that to configure the Ian -
SUPPORTED. the language of the data base guage on your system.

is not currently configured.
The collating sequence of the
language is unavailable;
DBOPEN cannot open the data
base.

-201 NATI VE LANGUAGE NLS internal structures have Ask the System Manager
SUPPORT NOT not been built at system to install NLS.
INSTALLED. startup. The collating se-

quence table of the language
of the data base is unavail-
able; DBOPEN cannot open the
data base.

-202 MPE NATIVE LANGUAGE The error number given was Ask the System Manager
SUPPORT ERROR #1 returned by MPE NLS on a to install NLS.
RETURNED BY NLINfO. NL I NfO call in DBOPEN.

3-9

NLS In MPE Subsystems

Table 3-4. IMAGE Schema Syntax Errors

MESSAGE MEANING ACTION

BAD LANGUAGE. Language name contains invalid Examine schema to find
characters or language number is incorrect statement, edit,
not a valid integer. and run Schema Processor

again.

DATA BASE NAME TOO Data base name contains more than Examine schema to find
LONG. six characters. incorrect statement, edit,

and run Schema Processor
again.

LANGUAGE EXPECTED. Schema Processor expected at this Examine schema to find
point to find a LANGUAGE statement incorrect statement, edit,
after the comma following BEGIN and run Schema Processor
DATA BASE name statement. again.

LANGUAGE NOT Language specified is not currently Examine schema to find
SUPPORTED. supported on your system or is not a incorrect statement, edit,

valid language. and run Schema Processor
again.

NATIVE LANGUAGE An error was returned by MPE Contact your Hewlett-
SUPPORT ERROR. NLS. Packard support

representative.

3-10

NLS In MPE Subsystems

KSAM

The Keyed Sequential Access Method (KSAM) organizes records in a file according to the content of
key fields within each record.

Native Language Support (NLS) in KSAM provides the resources to create files whose keys of type
BYTE are sorted according to a native language collating sequence. All BYTE keys in the file will be
sorted using the collating sequence table of the specified language. Keys, as well as data in the
record, may contain 8-bit character data.

A file language attribute may be supplied when a KSAM file is created to provide a key file organized
according to the collating sequence of a native language. The language attribute is provided when the
file is created. All KSAM files created before NLS was introduced are considered to have
NATIVE-3000 as a language attribute.

A KSAM file can be built with KSAMUTIL, or programmatically using FOPEN.

Creating KSAM Files With KSAMUTIL

When using KSAMUTIL, the parameter LANG=langname or LANG=langnum may be supplied on the
BUI LO command, as shown in Figure 3-1. NATIVE--3000 is used as the default language attribute if
no language is specified.

The language specified in the LANG= parameter must be installed on the system at the time the com­
mand is issued for KSAMUTIL to build the file. If the language is not installed, an error message is
returned and the file is not built ..

Danish is specified as the language in the example. The language attribute of the KSAM file can be
checked by the VERIFY command (mode 3).

3-11

NLS In MPE Subsystems

:RUN KSAMUTIL.PUB.SYS

HP32208A.03.13 THU, FEB 16, 1984, 8:54 AM KSAMUTIL VERSION:A.03.13
>BUILD TEST;REC=-80,3,F,ASCil;KEY=B,1,4;KEYFILE=TESTK;LANG=DANISH
>VERIFY

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?~

TEST.LORO.NLS CREATOR=SLORO
FOPTIONS(004005)=KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM
AOPTIONS(000400)=DEFAULT, NOBUF, DEFAULT, NO FLOCK, NO MR, IN
RECSIZE:SUB:TYP:LDNUM:DRT:UN.: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

-80: 9: 0: 3: 89: 2: 0: 0: 0: 1023
LOG. COUNT:PHYS. COUNT:BLK SZ:EXT SZ:NR EXT: LABELS:LDN: DISCADDR:

0: 0: . -240: 43: 8: 0: 3: 00000234251 :

KEY FILE=TESTK KEY FILE DEVICE=4 SIZE= 114 KEYS=
FLAGWORD(000020)=RANDOM PRIMARY, FIRST RECORD=O, PERMANENT
KEY TY LENGTH LOC. D KEY BF LEVEL

1 B 4 1 N 168 1

DATA FILE= TEST VERSION= A.3.13
KEY CREATED= 47/'84 9: 0: 7.6
KEY CHANGED= 47/'84 9: 0: 8.5
DATA RECS = 0 DATA BLOCKS=
DATA BLK SZ= 120 DATA REC SZ=
FOPEN 1 FREAD
FREADDIR 0 FREADC
FREMOVE 0 FSPACE
FGETINFO 1 FGETKEYINFO
FWRITELABEL 0 FCHECK
FWRITE 0 FUPDATE
FLOCK 0 FUNLOCK
FSETMODE 0 FREE KEYBLK
KEYBLK READ 2 KEYBLK WRITTEN
KEY FILE EOF 10 FREE KEY HD
MIN PRIME 0 MAX PRIME

KEY ACCESS= 47/'84 9:
COUNT START= 47/'84 9:

0 END BLK WDS=
80 ACCESSORS=

0 FCLOSE
0 FREADBYKEY
0 FFI NDBYKEY
0 FREADLABEL
0 FFINDN
0 FPOINT
0 FCONTROL
0 FREE RECS
0 KEYBLK SPLIT
0 SYSTEM FAILURE
0 RESET DATE

0:19.2
0: 8.6

0
0
1
0
0
0
0
0
0
0
0
0

DATA FIXED TRUE DATA B/F
FIRST RECNUM 0 MIN RECSIZE

3 TOTAL KEYS
4 LANG

1
DANISH

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?

>E

END OF PROGRAM

Figure 3-1 . KSAM File Test Program

3-12

NLS In MPE Subsystems

Error Messages

KSAMUTIL error messages are listed in Table 3-5.

Table 3- 5. KSAMUTIL Error Messages

ERROR# MESSAGE CAUSE ACTION

1070 'LANG' NOT FOLLOWED Improper syntax was Enter language name
BY '=' OR HAS TOO used in specifying the using correct syntax.
MANY PARAMETERS. language name.

1071 'LANG' LANGUAGE Language name too Enter correct language
VALUE TOO LONG OR long , or missing as a name.
ABSENT. parameter.

1072 'LANG' LANGUAGE The language number Enter correct language
NUMBER VALUE con ta ins in valid number.
INVALID. characters.

1073 'LANG' LANGUAGE NOT Language specified is Ask the System Manager
SUPPORTED. not configured on to configure the Ian -

your system, or not a guage on your system.
valid language name
or number.

1074 NATIVE LANGUAGE NLS is not installed on Ask the System Manager
SUPPORT IS NOT your system. to configure the Ian -
INSTALLED. guage on your system.

1075 NATIVE LANGUAGE An NLS MPE error Ask the System Manager
SUPPORT LANGUAGE NOT occurred. No lan - to configure the lan -
SUPPORTED. guage table exists for guage on your system.

language specified.

1076 NATIVE LANGUAGE An NLS MPE error Ask the System Manager
SUPPORT RELATED occurred. to configure the lan -
ERROR. guage on your system; if

it is already configured,
contact your Hewlett-
Packard support
representative.

Additional Discussion

Refer to Appendix A of the KSAM Manual (30000-90079) for more information on error messages.

3-13

NLS In MPE Subsystems

Creating KSAM Files Programmatically

The user must provide the langnum when calling FOPEN to build a KSAM file. The langnum is
stored in word 10 of the KSAMPARAM array. The FOPEN intrinsic checks each time a KSAM file is
opened to determine whether the language used is configured on the system. For backward com­
patibility reasons bit 11 in the flagword (word 15) must be set to 1 if a language other than 0
(NATIVE- 3 0 0 0) is used , to denote that word 1 0 contains valid information.

If bit 11 of flagword is 0, the default language, NATIVE-3000, is used and the data in word 10 is
ignored. If the language is not configured, condition code CCL is returned by FOPEN.

The file system error messages listed in Table 3-6 have been included with NLS:

Table 3-6. KSAM File System Error Messages

·-
ERROR# MESSAGE CAUSE ACTION

196 LANGUAGE NOT The language name or Ask the System Manager
SUPPORTED. number specified for to configure the Ian -

FOPEN is not con- guage on your system.
figured on your sys-
tem, or is not a valid
language name or
number.

197 NATIVE LANGUAGE An NLS MPE error Contact your Hewlett-
SUPPORT RELATED occurred on a FOPEN Packard support
ERROR. call. representative.

Additional Discussion

Refer to Appendix A in the KSAM Manual (30000-90079) for a complete list of KSAM file system
errors.

Modifying KSAM Files

Every record added or updated in a KSAM file has its new keys of type BYTE inserted in the key file
according to the collating sequence of the language defined for that KSAM file. That function is
handled internally by a system version of the NLCOLLATE intrinsic when the language attribute of the
file is different from NA TIVE-3000. A new key in a file with a NATIVE-3000 language attribute
will be ordered according to the result of a BYTE COMP ARE between the key of the new record and
the keys of the records already in· the key file.

3-14

NLS In MPE Subsystems

Generic Keys

NLS collating sequences differ from the USASCII collating, and the differences must be considered
when performing generic key searches. Refer to Appendix C, "COLLATING IN EUROPEAN
LANGUAGES, 11 for more information.

The description of a generic key search in a KSAM file with a native language attribute is presented
from an application point of view.

Keys matching a certain generic key may not be in consecutive order in the key file because the keys
are sorted according to a native language collating sequence. The key sequence in Figure 3-3 il­
lustrates this with a French KSAM file; keylength is 4, the generic key length is 2. The partial key·
11aa 11 appears in non-consecutive keys (with a result of 0 in the last column of the figure). Records
containing partial keys (such as "AA" or 11 Aa 11

) are intermixed according to the French collating se­
quence. These keys have a result of 1 listed.

If a generic key search is performed in a KSAM file with a language attribute other than
NATIVE- 3000, the application program must determine whether the retrieved record matches the
generic key and, even if it does not, whether subsequent records might still match it.

The codes returned by NLKEYCOMPARE are shown in Figure 3-2.

Refer to Section IV, "NATIVE LANGUAGE INTRINSICS," for a complete discussion of the
NLKEYCOMPARE intrinsic.

RESULT

0

1

2

3

MEANING

The retrieved key matches the generic key exactly.

The retrieved key does not match the generic key.
Uppercase/lowercase priority or accent priority is different.

The retrieved key value is less than the generic key.
It precedes the designated key in the collating sequence.

The retrieved key is greater than the generic key.

Figure 3-2. Results Returned By The NLKEYCOMPARE Intrinsic

3-15

NLS In MPE Subsystems

The generic key search sequence is:

1. After FF I NDBYKEY has been called with > = as relational operator (relop), the logical record
pointer points to the data record indicated by the arrow labeled "Case 2".

2. The subsequent FREAD call will retrieve the data record. When the partial key "AA" is com­
pared to the generic key "aa 11 they are found to be different.

This comparison is done by calling the intrinsic N LKEYCOMPARE using the generic key and the
key found in the record. The result returned by NLKEYCOMPARE tells the application whether
the FREAD delivered a record:

a. Before the desired range (result 2) .

b. In the desired range with an uppercase/lowercase or accent priority difference
(result 1).

c. With an exact match (result 0).

d. After the desired range (result 3).

3. To get all records whose key match the generic key exactly, the FREAD calls and subsequent
N LKEYCOMPARE calls should continue until a result of 3 is returned.

When performing a generic key search in a KSAM file with a native language attribute other than
NATIVE-3000 use the NLKEYCOMPARE intrinsic to compare partial keys and generic keys.

Refer to programs I and J in Appendix H, "EXAMPLE PROGRAMS," for generic key searches in
KSAM files with native language attributes.

3-16

NLS In MPE Subsystems

Key length: 4

Language: FRENCH (only USASCII characters are used in the example).

Desired records are all records whose record key starts with "aa 11

(generic key= 11aa 11
, length= 2).

Pointer
Position

Key NLKEYCOMPARE Result
Value (

11 aa 11 Compared to Key)

Case 1 ---> A 2
a 2

Case 2 ---> AA 1
Aa 1
aA 1
aa 0
AAA 1
aaa 0
AAAA 1
AAAa 1
AAaa 1
AaAa 1
AaaA 1
Aaaa 1
aAAA 1
aAAa 1
aAaA 1
aaAA 0
aaaA 0
aaaa 0

Case 3 ---> Baaa 3
baaa 3

Case: 1. FREAD starting at the beginning of the file.

2. FFI NDBYKEY with relational operator• or>= and subsequent
FREAD calls. -

3. FFINDBYKEY with relational operator> and subsequent
FREAD calls.

Key Value: Key values in ascending sequence.

Figure 3- 3. Generic Key Searches

3-17

NLS In MPE Subsystems

Using FCOPY With KSAM Files

COPYING FROM A, KSAM FILE TO ANOTHER KSAM FILE. If the KSAM file already exists
(built via KSAMUTIL or progr~mmatically) the keys of type BYTE are put into the new file accord­
ing to the collating sequence belonging to the language of the "TO" file. If the file does not exist, a
new file is built with the same language attribute as the "FROM" file.

CHANGING THE LANGUAGE ATTRIBUTE OF A KSAM FILE. FCOPY cannot be used to
change the language attribute of an existing file. KSAMUTIL must be used to build a new KSAM file
with the new language attribute. Then the data can be copied to this file using FCOPY. Keys of type
BYTE in the destination key file will be ordered according to the collating sequence of the new
language.

Moving NLS KSAM Files To Pre-NLS MPE

Restoring a KSAM file with a native language attribute other than NATIVE- 3000 to a system
without NLS installed can result in an incorrect key sequence in the key file for type BYTE keys.
Systems without NLS installed do not recognize any collating sequence except NATIVE-3000.

If a file with a native language attribute other than NATIVE-3000 is restored, the first FOPEN on
the file will return the same error condition code as if a system failure occurred while the file was
opened. KSAMUTIL should be used to build a new KSAM file. The file with the native language at­
tribute is recovered, and FCOPY is used to copy the recovered file into the new KSAM file. See
Figure 3-4 for an example of this recovery procedure.

:RUN KSAMUTIL.PUB.SYS

HP32208A.03.10 SAT, SAT, MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10
_>BUILD NEWDATA;REC=-80,3,F,ASCII;KEY=B,1,4:KEYfILE=NEWKEY
>KEYINFO OLDOATA;RECOVER

>EXIT

:FCOPY FROM=OLDDATA;TO=NEWDATA;KEY=O

:RUN KSAMUTIL.PUB.SYS

HP32208A.03.10 SAT, SAT, MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10
>PURGE OLDDATA
>RENAME NEWDATA,OLDDATA
>RENAME NEWKEY,OLDKEY
>EXIT

Figure 3-4. KSAM Recovery Procedure

3-18

NLS In MPE Subsystems

QUERY

QUERY operations are performed by entering commands consisting of key words and parameters.

Native Language Support (NLS) features can be accessed in QUERY to retrieve data which meet
user-defined selection criteria, and to sort data according to native language collating sequences. The
user must know what the native language in QUERY is, how the language is specified, how the lan­
guage affects the output, and how to determine which language is being used.

IMAGE data bases have a language attribute that describes the collating sequence used in sorted
chains and locking. This language attribute does not affect QUERY operation.

Although QUERY commands are in English, the user can ·expect the output data to be sorted and
formatted according to the QUERY user's language. The language of the data base may determine
the data sequence while using QUERY passively for data retrieval (FIND). When data is being sorted
or formatted by QUERY, the user's language will determine the ordering and formatting of the data.

For example, in a French data base with a QUERY user's language of Danish, data items in a sorted
chain might be retrieved according to the French collating sequence; but the sorting or formatting is
done according to Danish criteria.

The user can specify the QUERY user's language by:

• Using a QUERY command:

>LANGUAGE• langnumor >LANGUAGE•langname. Default is NLUSERLANG.

• Using an MPE command:

:SETJCW NLUSERLANG • langnum. Default is NATIVE-3000.

For example, if the user's language is French, the QUERY command is:

>LANGUAGE = 7
or

>LANGUAGE = FRENCH

Or the MPE Job Control Word NLUSERLANG may be used: :SETJCW NLUSERLANG=7.

The >LANGUAGE= command always overrides NLUSERLANG. If neither option is used to specify the
user's language, QUERY assumes LANGUAGE=O (NATIVE-3000). NATIVE-3000 is the default,
which ensures backward compatibility. When the user's language is NATIVE-3000, QUERY per­
forms as it did before NLS features were available.

QUERY allows access to more than one data base at the same time. This means that more than one
data base language attribute may be active at the same time. In any case, upshifting, collating, range
selection, formatting, or sorting is dependent on the QUERY user's language specified by the user via
the JCW N! ... USERLANG or the LANGUAGE= command.

3-19

NLS In MPE Subsystems

Command Summary

NLS can affect QUERY in upshifting data, range selection, date format, real number conversions,
and sorted lists and numeric data editing in REPORT.

UPSHIFTING DATA (TYPE U ITEMS). QUERY upshifts commands and the data of type U items.
QUERY commands are upshifted according to NATIVE-3000. Data is upshifted according to the
user's language to UPDATE ADD (or ADD), UPDATE REPLACE (or REPLACE), FIND, LIST, MULTI FIND,
and SUBSET.

RANGE SELECTION. QUERY collates data according to the user's language in FI ND, LI ST,
MULTI FIND, or SUBSET. The MATCH feature (in FIND and MULTI FIND commands) is no longer valid
when LANGUAGE < > 0 (NATIVE-3000). QUERY will display an error message if MATCH is used in
an interactive mode, and will abort the session in a batch mode.

DATE FORMAT. DATE is a reserved word in the REPORT command which provides the system
date. It is formatted according to the user's language.

REAL NUMBER CONVERSIONS. In the commands REPORT and LIST the output is formatted ac­
cording to the user's language. For example, 123.45 in NATIVE-3000 becomes 123,45 in FRENCH.

SORTED LISTS IN REPORT. QUERY sorts type U or X items in a REPORT according to the col­
lating sequence of the user's language.

NUMERIC DATA EDITING IN REPORT. QUERY converts the data edited using the
NATIVE-3000 edit mask (using the period as a decimal point and a comma as thousands separator) to
the corresponding characters in the user's language.

Addltlonal Discussion

Refer to the QUERY Reference Manual (30000-90042) for a complete description of these
commands.

3-20

NLS In MPE Subsystems

The commands listed in Table 3-7 are used to obtain language-dependent information.

Table 3-7. Commands For Language-Dependent Information

COMMAND LANGUAGE-DEPENDENT INFORMATION

>HELP LANGUAGE Explains LANGUAGE command function, format and
parameters.

>SHOW LANGUAGE Displays the QUERY user's language.

>FORM Displays the data base language attribute.

Error Messages

QUERY error messages which support the NLS enhancement are listed in Table 3-8.

MESSAGE

DBINFO MODE 901
FAILED. CHECK DATA
BASE LANGUAGE
ATTRIBUTE AND IMAGE
VERSION.

EXPECTED A LANGUAGE
NUMBER OR NAME.

INTERNAL QUERY NLS
PROBLEM.

Table 3-8. QUERY Error Messages

MEANING

The version of IMAGE on
your system does not have
NLS features.

The LANGUAGE command only
accepts the name of a Ian -
guage or the number as­
sociated with that name.

The NLS subsystem encoun -
tered an error from which it
could not recover while at­
tempting to initialize
language-dependent
information.

3-21

ACTION

This is a warning. The user
may wish to update
IMAGE/3000 to the same
level as QUERY.

Enter HELP LANGUAGE for a
complete explanation of the
command and then re-enter
it.

Contact your Hewlett­
Packard support
representative.

NLS In MPE Subsystems

Table 3-8. QUERY Error Messages (Continued)

MESSAGE MEANING ACTION

LANGUAGE INVALID. Language specified not con - Run N LUT IL. PUB. SYS to list
NATIVE-3000 USED. figured. The default, the langui:l.ges and associated

NATIVE-3000 was used. numbers available on your
system.

LANGUAGE NOT Languages are configured on Run NLUTI L. PUB. SYS to list
CONFIGURED ON THIS each system. Language the languages and associated
SYSTEM. NATIVE-3000 specified is not available on numbers available on your
USED. your system. The default system.

language is NATIVE-3000.

MATCH NOT VALID WHEN QUERY can only allow the If possible, change the Ian-
LANGUAGE <> matching option for guage to NATIVE-3000 for
NATIVE-3000. NATIVE-3000. the match.

NLCOLLATE INTRINSIC An unexpected error condi- Contact your Hewlett-
INTERNAL ERROR. tion occurred while doing a Packard support

comparison of the data. representative.

NLUTIL INTRINSIC The NLS subsystem encoun- Contact your Hewlett-
INTERNAL ERROR. tered an error from which it Packard support

could not recover while at- representative.
tempting to initialize
language-dependent
inf orma ti on.

USER LANGUAGE INVALID. User language not available. Ask the System Manager to
Only NATIVE-3000 is avail- configure the desired Ian -
able on your system. guage on your system.

USER LANGUAGE NOT Languages are configured on Run NLUTI L. PUB. SYS to list
CONFIGURED ON THIS each computer system. the languages and associated
SYSTEM. NATIVE-3000 Language specified is not numbers available on your
USED. available on your system. system.

The default language is
NATIVE-3000.

3-22

NLS In MPE Subsystems

SORT-MERGE

SORT-MERGE organizes records in a file according to the collating sequence of the keys. The
default collating sequence for character data is based on the binary values of the characters. EBCDIC
and user-defined sequences can also be used. Native Language Support (NLS) in SORT-MERGE
provides the user with the option of collating according to a native language sequence.

SORT-MERGE can be used as a stand-alone program or programmatically.

Stand-Alone SORT-MERGE

The key type CHARACTER allows the user to access native language collating sequences. The
specific native language collating sequence is assigned by the LANGUAGE command.

C[HARACTER]

COMMAND

LANGUAGE

The collating sequence defined in the LANGUAGE command is used to sort
keys of type CHARACTER. Ref er to Figure 3- 5 for an example of the use
of the CHARACTER key type.

SYNTAX DESCRIPTION

Defines the native language
>L[ANGUAGE) [IS) {langnum } collating sequence to be

{langname} used to sort keys of type
CHARACTER.

The LANGUAGE command may specify a language ID number (langnu(l'I) or language name
(langname). The language specified must be configured on the system. If the LANGUAGE command is
not used, the language to be used for collating keys of type CHARACTER defaults to
NLDATALANG, the language returned by the NLGETLANG intrinsic (mode 2).

3-23

NLS In MPE Subsystems

In Figure 3-5 the LANGUAGE command designates Swedish. The VERIFY command will confirm
which language collating sequence will be used for the SORT or MERGE stand-alone program.

:RUN SORT.PUB.SYS
HP32214C.04.00 SORT/3000 MON, JAN 30, 1984, 1:52 PM
(C) HEWLETT-PACKARD CO. 1983

>INPUT MYFILE
>OUTPUT $STDLIST
>KEY 1,4, CHARACTER
>LANGUAGE IS SWEDISH
>VERIFY

INPUT FILE = MYFILE
RECORD LENGTH = SAME AS THAT OF THE
OUTPUT FILE = $STDLIST
KEY POSITION LENGTH TYPE

1 4 CHAR
LANGUAGE IS SWEDISH
>END

INPUT Fl LE

ASC/DESC
ASC (MAJOR KEY)

Figure 3-S. Stand-Alone SORT-MERGE Dialogue

Programmatic SORT-MERGE

To use SORT-MERGE programmatically with NLS features, the user must designate the collating se­
quence with the charseq parameter in the SORTINIT and MERGE I NIT intrinsics.

THE SORTINIT INTRINSIC. The syntax for a procedure call using SORTINIT is:

IA IA IV IV OV IV
SORTINIT (inputfiles,outputfiles,outputoption,reclen,numrecs,numkeys,

IA IA LP P IA L I
keys,altseq,keycompare,errorproc,statistics,failure,errorparm,

I IA. 0-V
spaoeallocation,charseq,parm2)

3-24

NLS In MPE Subsystems

THE MERGEINIT INTRINSIC. The MERGE I NIT syntax for a procedure call is:

IA P IA P LV
MERGEINIT (inputfiles,preprocessor,outputfiles,postprocessor,keysonly,

IV IA IA LP P IA L
numkeys,keys,altseq,keycompare,errorproc,statistics,failure,

I I IA 0-V
errorparm,spaceallocation,charseq,parm2)

PARAMETERS. The following parameters apply:

numkeys and keys The numkeys parameter is an integer. The keys parameter is an integer
array. These parameters describe the way records are sorted or merged.
One of these parameters cannot be specified without the other. The use of
numkeys and keys disallows the use of keycompare. The number of keys
used during the comparison of records is contained in numkeys, and the
way records are compared is specified by keys. For each key specified,
keys contains three words:

The first word gives the position of the first character of the key within the
record. The second word gives the number of characters in the key. The
third word (bits 0-7) gives the ordering sequence of the records (a value of
0 for ascending, 1 for descending). Bits 8-15 of the third word indicate
the type of data according to the fol1owing convention:

O=logical or byte (same as type BYTE in interactive mode)

1 =two's complement, including integer and double integer

2=floating point

3=packed decimal

4= Display-Trailing-Sign

S•packed decimal with even number of digits

6=Display-Leading-Sign

7= Display-Leading-Sign -Separate

8=Display-Trailing-Sign-Separate

9=character (collating sequence of charseq is used).

3-25

NLS In MPE Subsystems

charseq A two-word integer array. To utilize charseq:

• Set word· 0 to 1.

• Set word 1 to the langnum of the collating sequence to be used for
sorting keys of type 9 (CHARACTER). The language designated must be
configured on the system.

Whenever keys of type CHARACTER are compared, and charseq has been used to request a native
language collating sequence (e.g., Dutch, Spanish, Danish), SORT or MERGE will call the
NLCOLLATE intrinsic to do a native language comparison.

If NATIVE-3000 has been designated by the user or as a default, SORT-MERGE will do a direct
byte comparison on keys of type CHARACTER. NATIVE-3000 is an artificial language whose col-
lating sequence is based on the binary values of the characters. ·

ADDITIONAL INFORMATION. Refer to the SORT-MERGE/3000 Manual (32214-90002) for
other parameter descriptions.

Error Messages

NLS-specific error messages include those for Programmatic SORT (Table 3-9), Interactive SORT
(Table 3-10), Programmatic MERGE (Table 3-11) and Interactive MERGE (Table 3-12).

Table 3-9. Programmatic SORT Error Messages

29 LIB SORT LANGUAGE NOT SUPPORTED.
30 LIB NLINFO ERROR OBTAINING LENGTH OF COLLATING SEQUENCE TABLE.
31 LIB NLINFO ERROR LOADING COLLATING SEQUENCE TABLE.
32 LIB INVALID CHARSEQ PARAMETER.

Table 3-10. Interactive SORT Program Error Messages

40 INVALID LANGUAGE ID.
41 THE LANGUAGE SPECIFIED IS NOT SUPPORTED.

3-26

NLS In MPE Subsystems

Table 3-11. Programmatic MERGE Error Messages

21 LIB SORT LANGUAGE NOT SUPPORTED.
22 LIB NLINFO ERROR OBTAINING LENGTH OF COLLATING SEQUENCE TABLE.
23 LIB NLINFO ERROR LOADING COLLATING SEQUENCE TABLE.
24 LIB INVALID CHARSEQ PARAMETER.

Table 3-12. Interactive MERGE Program Error Messages

37 INVALID LANGUAGE ID.
38 THE LANGUAGE SPECIFIED IS NOT SUPPORTED.

Perf or ma nee Considerations

SORT-MERGE executes more slowly when keys of type CHARACTER and a native language collat­
ing sequence are requested. The complex collating algorithms required by some of the languages may
use additional CPU time. The speed of SORT-MERGE is unchanged when a native language collating
sequence is not requested, or when NATIVE-3000 is requested.

COBOLll Sorting And Merging

The syntax for the SORT and MERGE verbs has changed slightly for' NLS. It is now possible to
specify the native language whose collating sequence is to be used. The old syntax allowed only an al­
phabetic name:

[COLLATING SEQUENCE IS alphabet-name]

The syntax has been changed to:

{alphabetname }
[COLLATING SEQUENCE IS {languagename }

{langnum }

With the addition of NLS features, alphabetname retains the same meaning, languagename is an
alphanumeric data item containing the name of the language whose collating sequence is to be used,
and langnum is an integer data item containing the language identification number of the language to
be used.

3-27

NLS In MPE Subsystems

Figure 3-6 demonstrates the use of the SORT verb syntax:

002600 WORKING-STORAGE SECTION.
002700 01 AN-LANG-NAME PIC X(16) VALUE "FRENCH"
002800 01 NUM-LANG-ID PIC S9(4) COMP VALUE 7.

003300 SORT SORT-FILE
003400 ASCENDING KEY SORT-KEY
003500 COLLATING SEQUENCE IS AN-LANG-NAME
003600 USING IN-FILE
003700 GIVING OUT-FILE.

004000 SORT SORT-FILE
004100 ASCENDING KEY SORT-KEY
004200 COLLATING SEQUENCE IS NUM-LANG-ID
004300 USING IN-FILE
004400 GIVING OUT-FILE.

005000 SORT SORT-FILE
005100 ASCENDING KEY SORT-KEY
005300 USING IN-FILE
005400 GIVING OUT-FILE

Figure 3-6. SORT Verb Syntax

3-28

NLS In MPE Subsystems

VPLUS

The VPLUS/3000 product consists of five major parts: Intrinsics, FORMSPEC, ENTRY, REFSPEC,
and REFORMAT.

VPLUS/3000 Native Language Support (NLS) enables an applications designer to create interactive
end-user applications which reflect both the user's native language and the local custom for numeric
and date information in the supported languages. NLS provides these specific features in
VPLUS/3000:

• Native decimal and thousands indicators.

• Native language month names for dates.

• Alphabetic upshifting of native characters.

• Native characters in single value comparisons and table checks.

• Native collating sequence in range checks.

VPLUS/3000 does not support the application design process in native languages. Form names, field
identifiers, and field tags support only USASCII characters.

REFSPEC and REFORMAT do not use NLS features. These programs interact with users in
NATIVE-3000 only.

Language A ttrlbute

VPLUS/3000 contains an NLS language attribute option which allows the applications programmer to
design an international or language-dependent forms file. If a native language attribute is not
specified the forms file is unlocalized.

The forms file reflects the language characteristics of the application. Each forms file has a global
language ID number. The application may be unlocalized, language-dependent, or international.
For examples of these applications, see Figures 1-3, 1-4, and 1-5 in Section I, "INTRODUCTION
TONLS. 11

UNLOCALIZED. If no language ID number is assigned to a forms file, it will default to 0
(NATIVE-3000).

LANGUAGE-DEPENDENT. This application only operates in a single language context. The Ian -
guage ID number is assigned when the forms file is designed. If the text needs to be in the native lan­
guage, unique versions of a forms file are required for each language supported.

INTERNATIONAL. Multinational corporations may need to maintain a business language for
commands, titles, and menus in addition to accommodating the language of the end user for the ac­
tual data retrieved or displayed. For this application, select 11

- l" as the language ID number for the
forms file. The VPLUS/3000 intrinsic VSETLANG must be called at run time to assign the appropriate
language.

3-29

NLS In MPE Subsystems

Setting The Language ID Number

The components of a form which can be language-dependent are the text, the initial values of fields,
and the field edit rules. The language ID number determines the context for data editing, conver­
sion, and formatting. The FORMSPEC language controls the context when the forms file is designed.
The forms file language controls the context when the forms file is executed.

The forms designer sets language ID number values for the forms file via the FORMSPEC
Terminal/Language Selection Menu. The forms file language defaults to 0 (NATIVE-3000) if no
language ID number is specified for it. NATIVE-3000 is currently the only selection available for
the FORMSPEC language. This means that initial values and processing specifications must be
defined with the month names and numeric conventions of NATIVE-3000.

The designer can change the forms file language ID number at any time. The value must be a positive
number or a zero for a single language application. If the value is acceptable, but the language is not
configured, FORMSPEC will issue a warning message. The language ID number will not be rejected.
The designer is prompted to confirm the value or change it.

For multiple language applications, the forms designer selects a forms file language ID number value
of -1. The international language ID number indicates that the intrinsic VSETLANG will be called at
run time to select the language ID number for the forms file. If an application uses an international
forms file without calling VSETLANG, it will be executed in the default, NATIVE-3000. If
VS ET LANG is called for an unlocalized or language-dependent forms file, an error code will be
returned.

The designer has three options in designing an application to work effectively with multiple
languages:

• Develop several language-dependent forms files.

• Create one international forms file.

• Produce a combination of language-dependent files and an international forms file.

VGETLANG may be used to determine whether a language-dependent forms file or an international
forms file is being executed. If VGETLANG indicates an international forms file, VS ET LANG must be
called to select the actual language. Refer to the VGETLANG and VSETLANG intrinsics at the end of
this section.

Field Edits

NATIVE-3000 must be used to specify date and numeric fields within FORMSPEC. VPLUS/3000
will convert the value when the forms file is executed to be consistent with the native language selec­
ted. Single value comparisons (LT, LE, GT, GE, EQ, NE) table checks, and range checks (IN, NIN)
specified within FORMSPEC may contain any character in the 8-bit extended character set consistent
with the selected language ID number. When the form is executed at run time, the collating table for
the native language specified is used to check whether the field is within a range.

3-30

NLS In MPE Subsystems

DATE HANDLING. VPLUS supports several date formats and three date orders: MOY, OMV, YMD.
Any format is acceptable as input when the form is executed, provided that the field length can ac­
commodate the format. The forms designer specifies the order for each date-type field. With NLS,
the native month names are edited and converted to numeric destinations. The format and the date
order are not related to the language of the forms file.

NUMERIC DATA. Decimal and thousands indicators are language-dependent in the NUM[n] and
IMPn fields. When data is moved between fields and automatic formatting occurs for data entered in
any field, recognition, removal or insertion of these decimal and thousands indicators is language­
dependent. The optional decimal symbol in constants is also language-dependent.

NOTE

VPLUS/3000 edit processing specifications and terminal
edit processing statements are separate and are not
checked for compatibility. There will be no check that
the designer has specified a terminal local edit which is
consistent with the language-dependent symbol for the
decimal point (DEC TYPE EUR, DEC TYPE US) in the
configuration phase.- · - - -

NATIVE LANGUAGE CHARACTERS. If a native language ID number has been specified in the
forms file, the UPSH I FT formatting statement will use native language upshift tables.

Range checks and the single value comparisons LT, LE, GT and GE involve collating sequences.
When the form is executed, the .native language collating sequence table designated by the language
ID number is used to check whether the field passes the edit.

NLS features in VPLUS/3000 do not include support for pattern matching with native characters.
MATCH uses USASCII specifications.

Entry And Language ID Number

The forms file language determines the user language in ENTRY unless the file is international (-1).
The ENTRY program uses the intrinsic VG ET LANG to identify the language of the forms file selected
by the designer.

If the forms file is international, ENTRY calls the NLS intrinsic N LGETLANG (mode 1). If it returns a
value of UNKNOWN, the user is prompted for a language ID number. Once a valid language ID number
is determined, ENTRY calls the VSETLANG intrinsic to specify the corresponding language.

The batch file does not have a language indicator. Users with different native languages may collect
data in the same batch file if the associated forms file is international.

3-31

NLS In MPE Subsystems

Error Messages

VPLUS/3000 Error Messages are listed in Table 3-13.

Table 3-13. VPLUS/3000 Error Messages

NUMBER

9001

9002

9011

9014

9015

9500

9998

MESSAGE

NATIVE LANGUAGE SUPPORT
SOFTWARE NOT INSTALLED.

LANGUAGE SPECIFIED IS NOT
CONFIGURED ON THIS SYSTEM.

WARNING: LANGUAGE NOT
CONFIGURED. CHANGE OR HIT
"ENTER" TO PROCEED.

ATTEMPTED SETTING A LANGUAGE
DEPENDENT FORMS FILE TO
ANOTHER LANGUAGE.

NATIVE-3000 IS CURRENTLY THE
ONLY SELECTION AVAILABLE.

LANGUAGE OF FORMS FILE IS NOT
CONFIGURED ON THIS SYSTEM.

LANGUAGE ID MUST BE 0 TO 999
OR -1 FOR INTERNATIONAL FORMS
FILE.

VPLUS Intrinsics

ACTION

Ask the System Manager to install
NLS software.

Select another language or ask the
System Manager to configure the
desired language.

Language specified is not configured
on the system. Forms file produced
can only be executed on a system
configured with that language.

VS ET LANG can only be used with in -
ternational forms files.

FORMSPEC language can only be 0
in this version.

Ask the System Manager to configure
the language or use forms file on a
system with that language
configured.

Forms file language ID number must
be between -1 and 999.

The VGETLANG and VSETLANG intrinsics are used only with the VPLUS/3000 subsystem. Intrinsic
calls in VPLUS/3000 are usually in COBOL. Refer to the VGETLANG and VSETLANG sections for ex­
amples of calls in other programming languages.

3-32

NLS In MPE Subsystems

VGETLANG
The VGETLANG intrinsic returns the language ID number of the forms file.

SYNTAX

CALL 11 VGETLANG 11 USING COMAREA,LANGNUM

This intrinsic returns the language ID number of the forms file being executed. The forms file must
be opened before calling VGETLANG. Otherwise, CSTATUS returns a nonzero value.

PAR.AMETERS

COMAREA

LANGNUM

EXAMPLE

The following COMAREA fields must be set before calling VGETLANG if
not already set :

LANGUAGE

COMAREALEN

Set to code identifying the programming lan­
guage of the calling program.

Set to total number of words in COMAREA.

VGETLANG may set the following COMAREA fields:

CSTATUS Set to nonzero value if call is unsuccessful.

Integer variable to which the language ID number of the forms file is
returned.

The following examples illustrate a call to VGETLANG:

COBOL:

BASIC:

FORTRAN:

SPL:

CALL "VGETLANG 11 USING COMAREA,LANGNUM.

120 CALL VGETLANG(C(*) ,L)

CALL VGETLANG (COMAREA,LANGNUM)

VGETLANG (COMAREA,LANGNUM);

SPECIAL CONSIDERATIONS

This intrinsic is used only in the VPLUS/3000 subsystem.

3-33

NLS In MPE Subsystems

VSETLANG
The VSETLANG intrinsic specifies the native language to be used with an international forms file.

SYNTAX

CALL "VSETLANG" USING COMAREA,LANGNUM,ERROR

This intrinsic sets the language to be used by VPLUS/3000 at run time for an international forms
file. The forms file must be opened before calling VSETLANG. Otherwise, CSTATUS returns a
nonzero value.

If VSETLANG is called to set the language ID number for a language-dependent or unlocalized forms
file, an error code of -1 will be returned to ERROR. For international forms files, both CST A TUS
and ERROR return a value of zero and the forms file is processed with the native language ID num­
ber specified in LANG NUM.

PARAMETERS
COMAREA

LANGNUM

ERROR

The following COMAREA fields must be set before calling VSETLANG (if
not already set) :

LANGUAGE

COMAREALEN

Set to code identifying the programming lan -
guage of the calling language.

Set to total number of words in COMAREA.

VSETLANG may set the following COMAREA fields:

CSTATUS Set to nonzero value if call is unsuccessful.

An integer containing the ID number of the language to be used by
VPLUS/3000.

Integer to which the error code is returned. Zero means the call was suc­
cessfully completed. A value of -1 is returned if the call is unsuccessful.

3-34

NLS In MPE Subsystems

EXAMPLE

The following examples illustrate a call to VSETLANG:

COBOL:

BASIC:

FORTRAN:

SPL:

CALL 11 VSETLANG 11 USING COMAREA,LANGNUM,ERROR.

120 CALL VSETLANG(C(*),L,E)

CALL VSETLANG (COMAREA,LANGNUM,ERROR)

VSETLANG (COMAREA,LANGNUM,ERROR);

SPECIAL CONSIDERATIONS

This intrinsic is used only in the VPLUS/3000 subsystem.

3-35/3-36

NATIVE LANGUAGE INTRINSICS -

---~----------~--~OU
The following categories of intrinsics are used by Native Language Support (NLS).

Information Retrieving:

ALMANAC
NLGETLANG
NLINFO

Character Handling:

NLCOLLATE
NLKEYCOMPARE
NLREPCHAR
NLSCANMOVE
NL TRANSLATE

Time/Date Formatting:

NLCONVCLOCK
NLCONVCUSTDATE
NLFMTCALENDAR
NLFMTCLOCK
NLFMTCUSTDATE
NLFMTDATE

Application Message Catalog:

CATCLOSE
CATOPEN
CATREAD
NLAPPEND

Returns numeric date information.
Returns the current language.
Returns language-dependent information.

Compares two character strings.
Compares strings of different length.
Replaces nondisplayable characters.
Moves and scans character strings.
Translates strings from and to EBCDIC.

Converts the time format.
Converts the custom date format.
Formats the date.
Formats the time.
Formats the date into custom date format.
Formats date and time.

Closes a message catalog.
Opens a message catalog.
Reads information from a message catalog.
Concatenates a file name and a language number.

4-1

Native Language Intrinsics

NLS Date And Time Formatting Overview

Figure 4-1 shows the results of using NLS intrinsics when formatting date and time.

NATIVE LANGUAGE DATE AND TIME FORMATTING OVERVIEW

HP 3000
INTERNAL FORMATS

MPE INTRINSICS

\ll

CALENDAR Internal
----~>•• Colendor Dote

(Single Word)

CLOCK Internal
> Time Of Doy

(Double Word)

LANGUAGE-DEPENDENT
EXTERNAL FORMATS

NLFMTCALENDAR >

F ormotted Custom
(Short) Dote

(e.g., 9/24/84)

F' ormotted Dote
(e.g., Mon,

Sep 24, 1984)

Formatted Dote And
Time (e.g., Mon,

Sep 24, 1984,
12:17 PM)

Formatted Time
(e.g., 12: 17 PM)

Figure 4-1. Date And Time Formatting Overview

4-2

Native Language Intrinsics

ALMANAC
INTRINSIC NUMBER 406

Returns numeric date information.

SYNTAX

L V LA I I I I 0 -V
ALMANAC (date,error,yearnum,monthnum,daynum,weekdaynum);

This intrinsic returns the numeric date information for a date returned by the CALENDAR intrinsic.
The returned information is year of the century, month of the year, day of the month, and day of
the week.

PARAMETERS
date

error

yearn um

monthnum

logical by value (required)
A logical containing the date in the format:

Bits 0 6 7 15

I Year of Century Day of Year

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error#

1
2
3

Meaning

No parameters available for returning values.
Day of the year out of range.
Year of the century out of range.

integer by reference (optional)
An integer to which the year of the century is returned. For example,
00•1900, 84==1984.

integer by reference (optional)
An integer to which the month of the year is returned. For example,
l=January, l 2=December.

4-3

Native Language Intrinsics

daynum

week.daynum

integer by reference (optional)
An integer to which the day of the month is returned.

integer by reference (optional)
An integer to which the day of the week is returned. For example,
1 =Sunday, ?•Saturday.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic ref er to Programs D and E in Appendix H, "EXAMPLE
PROGRAMS."

4-4

Native Language Intrinsics

CATCLOSE
INTRINSIC NUMBER 41 7

Closes the specified application message catalog file.

SYNTAX

D LA
CATCLOSE (catindex,error)

The CATCLOSE intrinsic is for use with the application message facility.

PARAMETERS

cat index double by value (required)
The catalog index returned by the CATOPEN intrinsic.

error logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error#

1
100

Meaning

Close of catalog file failed.
Internal messaae facility error.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic ref er to Program L in Appendix H, "EXAMPLE PROGRAMS. "

4-5

Native Language Intrinsics

CATOPEN
INTRINSIC NUMBER 41 5

Opens the specified application message file.

SYNTAX

D BA LA
catindex:=CATOPEN (forrtrJ.ldesignator,error);

The CATOPEN intrinsic must be used with the application message facility.

FUNCT!ONAL RETURNS

A catalog index double is returned (an internal value recognized by the CATREAD and CATCLOSE in­
trinsics). This is not a file number.

PARAMETERS

fonmldesignator

error

byte array (required)
Contains a string of USASCII characters that identify the catalog file to the
system. This string must be terminated by any USASCII special character
except a slash or a period.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error#

1
2
3
100

Meaning

Open failed on catalog file.
Could not access catalog file.
File specified is not a GEN CAT formatted catalog.
Internal message facility error.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program Lin Appendix H, "EXAMPLE PROGRAMS. 11

4-6

Native Language Intrinsics

CATREAD
INTRINSIC NUMBER 416

Reads the specified catalog and returns (or sends) the text as specified.

SYNTAX

I D IV IV LA BA IV
msglen:=CATREAD (catindex,setnum,msgnum,error,buff,buffsize,

BA BA BA BA BA IV 0-V
parm1 ,parm2 ,parm3 ,parm4 ,parm5 ,msgdest);

The CATREAD intrinsic provides access to the application message facility. It only accesses catalogs
opened with the CATOPEN intrinsic. The NLS application message catalog facility is discussed in
Section II, "APPLICATION MESSAGE FACILITY."

FUNCTIONAL RETURNS

The length of the message is returned to msglen (in positive bytes).

PARAMETERS

cat index

setnum

msgnum

error

double by value (required)
An index returned by CATO PEN which specifies the catalog to be used.

integer by value (required)
A positive integer no gr~ater than 255 specifying the set number within the
catalog.

integer by value (required)
A positive integer no greater than 32766 specifying the message number
within the message set.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-7

Native Language Intrinsics

buff

buffsize

parm1 -parmS

msgdest

Error#

1
2
3
4
6
7
14
1 s
16
17
18
19
100

Meaning

Invalid cat index specified.
Read failed on catalog file.
Set not found.
Message not found.
User buff er overflow.
Write failed to msgdest file.
Set < • 0 specified.
Set > 25 5 specified.
Message number < 0 specified.
Message number > 3 2 7 66 specified.
Specifies buf l en < • 0.
Specifies msgdest < 0.
Internal message facility error.

byte array (optional)
A byte array to which the assembled message is returned.

integer by l)Q.lue (optional)
When specified, this is the buffer length in bytes. If buff is not specified,
this is the length (in bytes) of the records to be written to the destination
file. (Default• 72 bytes.)

byte arrays (optional)
Parameters to be inserted into message. These must always point to a
character string. The strings must be terminated by a binary zero.

integer by value (optional)
Integer value specifying the destination of the assembled message (0 •
$STDLIST, >2 •file number of destination file. Default• $STDLIST if
buff not specified and no file if specified).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program Lin Appendix H, "EXAMPLE PROGRAMS."

4-8

Native Language Intrinsics

NLAPPEND
INTRINSIC NUMBER 412

Appends the appropriate language ID number to a file name.

SYNTAX

BA IV LA
N LAPPE ND (f omrz.ldes i gnat or, langnum ,error) ;

The NLAPPEND intrinsic allows an application to designate which of several language-dependent files
(e.g., application message catalogs or VPLUS forms files) should be used by appending the language
ID number to the file name. (This assumes that the application uses this naming convention for its
language-dependent files.)

PARAMETERS

fomrz.ldesignator

langnum

error

byte array (required)
Contains a string of USASCII characters interpreted as part of a formal file
designator. The file name must end with three blanks.

integer by value (required)
An integer specifying the language ID number of the catalog to be opened.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error#

1 *
2*
3
4
S*
6*

Meaning

NLS is not installed.
Specified language is not configured.
In valid file name.
File name not terminated by three blanks.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000).

SPECIAL CONSIDERA T~ONS

Split-stack calls not permitted.

4-9

Native Language Intrinsics

NLCOLLATE
INTRINSIC NUMBER 402

Compares two character strings in a language-dependent manner.

SYNTAX

BA BA IV I IV LA LA 0-V
NLCOLLATE (string1,string2,length,result,langnum,error,collseq);

This intrinsic collates two character strings according to the collating sequence of the specified lan­
guage. Its purpose is to determine a lexical ordering. It is not intended to be used for searching or
matching. To determine whether two strings are equal, use the COMPARE BYTES machine
instruction.

PARAMETERS

string1

string2

length

result

langnum

error

byte array (required)
One of two character strings to be collated.

byte array (required)
The other character string to be collated.

integer by value (required)
The length (in bytes) of the string segments to be collated.

integer by reference (required)
The result of the character string collating:

0 If string1 collates equal to string2.
-1 If string1 collates before string2.

1 If string1 collates after string2.

Result will be 0 if a nonzero error is returned.

integer by value (required)
The language ID number indicating the collating sequence to be used.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-10

coll seq

OPERATION

Error#

1 *
2*
3
4
S*
6*

Native Language Intrinsics

Meaning

NLS is not installed.
Specified language is not configured.
Invalid collating table entry.
Invalid length parameter.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NA TIVE-3000).

logical array (optional)
An array containing the native language collating sequence table as return­
ed by NLINFO, item 11. This parameter is required for split-stack calls. If
this parameter is present, langnum will be ignored and this routine will be
much more efficient.

If the coll seq parameter is omitted, and langnum is specified as (or defaults to) a language which
collates by binary encoding, the COMPARE BYTES machine instruction will be used to compare the
two indicated strings. Otherwise, the col l seq array will be used to determine the string compare
operation (note that this may be a COMPARE BYTES). Refer to the NLINFO intrinsic items 11 and
27.

SPECIAL CONSIDERATIONS

Split-stack calls are permitted.

4-11

Native Language Intrinsics

NLCONVCLOCK
INTRINSIC NUMBER 409

Checks validity of the string by using the formatting template returned by NLINFO item 3, then con­
verts the time to the general time format returned by the CLOCK intrinsic. This intrinsic is the in­
verse of NlfMTCLOCK.

SYNTAX

D BA IV IV LA
time:=NLCONVCLOCK (string,stringlen,langnum,error);

FUNCTIONAL RETURNS

The intrinsic returns the time in the format:

PARAMETERS

string

stringlen

langnum

Bits 0 7 8 15

Hour of Day Minute of Hour

Seconds Tenths of Seconds

NOTE

Seconds and tenths of seconds will always be zero.

byte array (required)
A character string containing the time to be converted.

integer by value (required)
A positive integer specifying the length of the string (in bytes).

integer by value (required)
An integer which contains the language ID number specifying the custom
time format which has to be matched by the string.

4-12

error

Native Language Intrinsics

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error#

1 *
2*
3
4
S*
6*

Meaning

NLS is not installed.
Specified language is not configured.
Invalid time string.
Invalid length.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE-3000).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, "EXAMPLE
PROGRAMS. 11 See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

4-13

Native Language Intrinsics

NLCONVCUSTDATE
INTRINSIC NUMBER 408

Checks the validity of a string by using the formatting template returned by N LI NFO item 2, then
converts the date to the general date format as returned by the CALENDAR intrinsic. This intrinsic is
the inverse of NLFMTCUSTDATE.

SYNTAX

L BA IV IV LA
date:=NLCONVCUSTDATE (string,stringlen,langnum,error);

FUNCTIONAL RETURNS

The intrinsic returns the date in the format:

PARAMETERS

string

stringlen

langnum

error

Bits 0 6 7 15

Year of Century Day of Year

byte array (required)
A character string containing the date to be converted. Leading and trail­
ing blanks will be disregarded.

integer by value (required)
A positive integer specifying the length of the string (in bytes).

integer by value (required)
An integer which contains the language ID number specifying the custom
date format which has to be matched by the string.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-14

Error#

1 *
2*
3
4
5*
6*
7

8

Native Language Intrinsics

Meaning

NLS is not installed.
Specified language is not configured.
In valid date string.
In valid string length.
NLS internal error.
NLS internal error.
Separator character in string doesn't match separator
in the custom date template.
The length of the date string is more than 1 3 characters
(excluding leading and trailing blanks).

* These errors do not apply to calls with a langnum equal to O
(NATIVE- 3000).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, "EXAMPLE
PROGRAMS." See Figure 4-1 for an illustration of the relationship between the various date and
time handling in triAsics.

4-15

Na ti ve Language Intrinsics

NLFMTCALENDAR
INTRINSIC NUMBER 413

Formats the supplied date according to the language-dependent calendar template. The formatting is
done according to the template returned by NLINFO item 1.

SYNTAX

LV BA IV LA
NLFMTCALENDAR (date,string, langnum,error);

PARAMETERS
date

string

langnum

error

logical by value (required)
A logical value indicating the date in the format as returned by the
CALENDAR intrinsic:

Bits 0 6 7 15

I Vear of Century Day of Year

byte array (required)
A character string in which the formatted date is returned. This string will
be 18 characters long, padded with blanks if necessary.

integer by value (required)
An integer containing the language ID number indicating the calendar
template to be used. A langnum of 0 will return the date formatted as
though f'MTCALENDAR were used. (For example, FRI, OCT 1, 1982.)

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error#

1 *
2*
3
5*
6*

Meaning

NLS is not installed.
Specified language is not configured.
Invalid date value.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3 000).

4-16

Native Language Intrinsics

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, "EXAMPLE
PROGRAMS. 11 See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

4-17

Native Language Intrinsics

NLFMTCLOCK
INTRINSIC NUMBER 41 0

Formats the time of day obtained with the CLOCK intrinsic. The specified language will determine
the format. The template (clock format description) returned by NLI NFO item 3 will be used.

SYNTAX

DV BA IV LA
NLFMTCLOCK (time,string,langnum,error);

PARAMETERS

time

string

langnum

error

double by value (required)
A double word value containing the time in the format as returned by the
CLOCK intrinsic:

Bits 0 7 8 15

Hour of Day Minute of Hour

Seconds Tenths of Seconds

byte array (required)
An eight-character byte array in which the formatted time of day is
returned.

integer by value (required)
An ID number specifying which language-specific format is to be used. A
langnum of 0 will return the time formatted as though FMTCLOCK were
used.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error# Meaning

1 *
2*
3
4*
5*
6*

NLS is not installed.
Specified language is not configured.
Invalid.time format.
NLS internal error.
NLS internal error.
NLS internal error.

These errors do not apply to calls with a langnum equal to 0
(NATIVE-3000).

4-18

Native Language Intrinsics

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E of Appendix H, "EXAMPLE
PROGRAMS. 11 See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

4-19

Native Language Intrinsics

NLFMTCUSTDATE
INTRINSIC NUMBER 407

Formats the general date format returned by the CALENDAR intrinsic to the custom date format for a
native language. A custom date is an abbreviated format such as 11 10/1/82 11 or 11 82.10.1. 11 The
formatting is done according to the template returned by NLI NFO item 2.

SYNTAX

LV BA IV LA
NLFMTCUSTDATE (date,string,langnum,error);

PARAMETERS
date

string

langnum

error

logical by value (required)
A logical value containing the date in the format as returned by the
CALENDAR intrinsic:

Bits 0 6 7 15

I Year of Century Day of Year

byte array (required)
A 13-character byte array to which the formatted date is returned.

integer by value (required)
An ID number of the language whose custom date template is to be used for
the formatting. A langnum of 0 will return the time formatted as though
FMTCLOCK were used.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error#

1 *
2*
3
5*
6 *

Meaning

NLS is not installed.
Specified language is not configured.
In valid date value.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3 000).

4-20

Native Language Intrinsics

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to examples D and E in Appendix H, "EXAMPLE
PROGRAMS." See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

4-21

Native Language Intrinsics

NLFMTDATE
INTRINSIC NUMBER 414

Formats the specified date and time according to the concatenation of the templates returned by
NL I N.f"O items 1 and 3.

SYNTAX

LV DV BA IV LA
NLF"MTOATE (date, time,stri ng, langnum,error);

PARAMETERS

da:te

time

string

langnum

logical by l)Qlue (required)
A logical value indicating the date in the format as returned by the
CALENDAR intrinsic:

Bits 0 6 7 15

I Year of Century Day of Year

double by value (required)
A double word value indicating the time to be formatted. The double word
is in the format returned by the CLOCK intrinsic:

Bits 0 7 8 15

Hour of Day Minute of Hour

Seconds Tenths of Seconds

byte array (required)
A 28-character string in which the formatted date and time are returned.

integer by value (required)
A language ID number designating the formatting templates to be used. A
langnum of 0 will return the date/time string as though f"MTDATE were
used. (Forexample: MON, FEB 7, 1983 9:00 AM.)

4-22

error

Native Language Intrinsics

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error# Meaning

1 *
2*
3
4
5*
6*

*

NLS is not installed.
Specified language is not configured.
In valid date value.
In valid time value.
NLS internal error.
NLS internal ~rror.

These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program K in Appendix H, "EXAMPLE PROGRAMS. 11

See Figure 4-1 for an illustration of the relationship between the various date and time handling
intrinsics.

4-23

Na ti ve Language Intrinsics

NLGETLANG
INTRINSIC NUMBER 411

Returns current language information.

SYNTAX

I IV LA
langnum:=NLGETLANG (function,error);

This intrinsic returns a language ID number which characterizes the current user, data, or system. It
is intended for use by Hewlett-Packard subsystems (programs, not intrinsics) or by applications
programs so they can automatically configure themselves. Refer to "SPECIAL CONSIDERATIONS"
for a description of where NLGETLANG derives its information.

FUNCTIONAL RETURNS

The language ID number (langnum) of the current user, data, or system. In the event of an error,
an integer value of 0 (i.e., NATIVE-3000) is always returned to langnum.

PARAMETERS

function

error

integer by value (required)
An integer containing the function number indicating which type of lan­
guage ID number should be returned. The possible values are:

1 The user-interface language. This is used to specify the language to
be used for communication between the program and the user.

2 The data language. This is an attribute which determines how
various language-dependent data manipulation functions (e.g.,
sorting, upshifting) should be performed by the subsystem.

3 The system default language.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-24

Error#

1
2

3
4

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

Native Language Intrinsics

Meaning

NLS is not installed.
NLGETLANG found the language requested, but it was
not confiaured on the system.
Invalid function value.
No language specified for NLGETLANG to access.

The NLGETLANG intrinsic will locate the lan1ua1e ID numbers requested by function 1 and 2 by
referring to ·the Hewlett-Packard defined Job Control Words (JCWs) NLUSERLANG and
NLDATALANG respectively. If the required JCW does not exist, or has a value greater than or
equal to FATAL (32768), Error #4 is returned.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program K. in Appendix H, "EXAMPLE PROGRAMS. "

4-25

Native Language Intrinsics

NL INFO
INTRINSIC NUMBER 400

This intrinsic returns language-dependent information.

SYNTAX

IV LA I LA
NLINF"O (itemnumber, itB1111Ja.lue,langnum,error);

PARAMETERS
it.,,,umber

itena1al,,,.

inte911r by value (required)
Positive integer which specifies the i tetmJalue to return.

type of IJariable depends on itemnumber _(requirtld)
Return variable for information requested; or (if i temnumber is 12 or l•)
the language name or number about which information is requested.

The following is a list of the currently defined i temnumb11rs, and the data types and information
returned to i tetmJa l ue.

Item#

1

Type

LA

Description of i temoal ue

An 18-character array to which the calendar format is returned. The 18
characters of the string for this definition are interpreted u the format
description for that language.

The following descriptors are valid:

D One-character day abbreviation.
DD Two-character day abbreviation.
DOD Three-character day abbreviation.
M One-character month abbreviation.
MM Two-character month abbreviation.
MMM Three-character month abbreviation.
MMMM Four-character month abbreviation.
mm Numeric month of the year.
dd Numeric day of the month.
yy Numeric year of the century.
yyyy Numeric year.
Nyy National year.

Valid separators are any special character.

For example, a format may be: DOD, MMM dd, yyyy. Using this format
in NATIVE-3000 would result in: f"RI, MAY 25, 1984.

4-26

2 LA

3 LA

4 LA

Native Language Intrinsics

A 13-character array to which the custom date format is returned. The
13 characters of the string for this definition are interpreted as the custom
date format description.

The following descriptors are valid:

mm Numeric month of the year.
dd Numeric day of the month.
yy Numeric year of the century.
YYYY Numeric year.
Nyy National year.

Valid separators are any special character. For instance, a date format
might be: yy/mm/dd. An example of this format in NATIVE-3000:
81 /03/25.

An eight-character array to which the clock specification is returned. This
eight-character string provides the clock format description (template):

HHSXXYYZ with:

HH Clock hour specification, either "12" or 11 24 11
•

S Separator. Valid separators may be any special or alpha charac­
ter, or 11 0 11 if no separator between hours and minutes should
appear.

XX Symbol for AM.
VY Symbol for PM.
Z Suppresses leading zero (of hours) if blank; prints leading zero if

0.

In suppression of leading zero, " 11 (leading zero suppressed) or 11 0 11 (lead­
ing zero will be printed) are valid. For example, the format 11 12: AMPM "
would yield formatted clock information in the form: 9: 06 AM. The lead­
ing zero is suppressed.

If the clock specification were changed to 11 240 O", the formatted
clock information for the same time would be: 0906. Note the four
blanks used as place holders to ensure the correct placement of the leading­
zero suppression character.

A 48-character array to which the month abbreviation table is returned.
Each abbreviation is four characters long, using blank padding where
necessary to maintain uniform length in all native language abbreviations.
For example, the NATIVE-3000 abbreviations contain three characters
plus a blank. The first four characters of the array contain the abbrevia­
tion of January.

The month abbreviation table for NATIVE- 3000 would be:
"JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC "

4-27

Native Language Intrinsics

s LA

6 LA

7 LA

8 LA

9 LA

10 LA

11 LA

A 144-character array in which the month table is returned. Each
month's name can be up to 12 characters long. Unused space in each
month name is padded with blanks where necessary to equal 12 characters.
The table begins with the language-dependent equivalent in the native lan­
guage specified for January.

For example, the month name table for NATIVE-3000 would be:
"JANUARY FEBRUARY MARCH •.. DECEMBER II

A 21-character array in which the day abbreviation table is returned.
Each abbreviation is three characters long. The table begins with Sunday.

For example, the day abbreviation table for NATIVE-3000 would be:
"SUNMONTUEWEDTHUFRISAT" .

An 84-cha.racter array in which the table containing the day of the week is
returned. Each day is 12 characters. long (with blank padding as needed).
The table starts wit'h Sunday. ·

For example, the day name table for NATIVE-3000 would be:
"SUNDAY MONDAY TUESDAY SATURDAY II

A 12-chara.cter array to which the YES/NO responses are returned. The
fint six characters contain the (upshifted) "YES" resr-onse; the second six
the (upshifted) "NO" response.

A two-character array to which the symbols for decimal separator and
thousands indicator are returned. The first character contains the decimal
separator, the second contains the thousands indicator.

A six-character array to which the currency signs are returned. The first
character represents the short currency symbol (if any) used for business
formats; the second character is a flag that indicates whether the currency
symbol precedes or succeeds the number and also whether the currency
symbol is preceded or succeeded by blanks. The last four characters contain
the full currency symbol. The layout of the second character is as follows:

bits 0:4 0

1
2
3

bits 4:4 0
1
2

The currency symbol has no blanks preceding or succeed­
ing it.
The currency symbol has a blank preceding it.
The currency symbol has a blank succeeding it.
The currency symbol has blanks preceding and succeed­
ing it.

The currency symbol precedes the number.
The currency symbol succeeds the number.
The currency symbol replaces the decimal separator.

An array to which the collating sequence table is returned. A call to
NLINF'O item 27 determines the length of this array based on the length of
~ne table of the native language specified.

4-28

12 LA

13 LA

14 LA

1S LA

16 LA

17 LA

18 L

19 I

20 LA

21 LA

11 LA

23 L

24 LA

Native Language Intrinsics

A 256-character array to which the character set attribute table is return­
ed. Each character will contain the numeric identification of the character
type:

0 Numeric character.
1 Alphabetic lowercase character.
2 Alphabetic uppercase character.
3 Undefined graphic character.
4 Special character.
5 Control code.

A 256-character array to which the ASCII-to-EBCDIC translation table is
returned.

A 256-character array to which the EBCDIC-to-ASCII translation table is
returned.

A 256-character array to which the upshift table is returned.

A 256-character array to which the downshift table is returned.

A logical array to which the language numbers of all configured languages
are returned. The first word of this array contains the number of con­
figured languages. The second word contains the language number of the
first configured language. The third word contains the language number of
the second configured language, etc. (The langnum parameter is
disregarded.)

A logical to which true (-1) is returned if the specified language is support­
ed (configured) on the system. Otherwise, false (0) is returned.

An integer to which the character set ID number supporting the specified
language is returned.

A 16-character array to which the uppercase name of the character set
supporting the specified language is returned. If the name contains fewer
than 16 characters, it will be padded with blanks.

A 16-character array to which the uppercase name of the specified lan­
guage is returned. If the name contains fewer than 16 characters, it will
be padded with blanks.

The item1Jalue is a logical array containing a language name or number
(in ASCII digits) terminated by a blank. The array must be at least eight
words in length. The associated language ID number will be returned to
langnum.

A logical to which true (-1) is returned if the character set specified is sup­
ported (configured) on the system. Otherwise , false (0) is returned.

The i temlJalue is a logical array containing a character set name or num­
ber (in ASCII digits) terminated by a blank. The required length of this
array is eight words or more. The associated character set ID number will
be returned to langnum.

4-29

Native Language Intrinsics

25 LA

26 I

27 I

28 I

29 LA

langnum

error

A 16-character array to which the uppercase name of the specified charac­
ter set is returned. The langnum parameter must contain the ID number
of the character set. If the name contains fewer than 16 characters, it will
be padded with blanks.

An integer to which the class number of the specified language is returned.

An integer to which the length (in words) of the collating sequence table of
the specified language is returned.

An integer to which the length (in words) of the national-dependent in­
formation table is returned. If no national table exists for the specified
language, Error 114 is returned.

A logical array to which the national-dependent information tal>Ie is
returued. To determine the size of this array, the length must first be ob­
tained with a call to NLI NFO item 28.

integer by reference (required)
The language or character set identification number for the information
requested.

logical array (required)
This two-word array contains the error number in the first word. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error#

1 *
2*
3*
4
S*
6*
7-9
10

Meaning

NLS is not installed.
Specified language is not configured.
Specified character set is not configured.
No national table is present.
NLS internal error.
NLS internal error.
Reserved.
The i temnumber is out of range.

* These errors do not apply to calls with a l angnum equal to 0
(NATIVE-3000).

SPECIAL CONSIDERATIONS

Split-stack calls are permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D, E, F, G and H in Appendix H, 'EXAMPLE
PROGRAMS."

4-30

Na ti ve Language Intrinsics

NLKEYCOMPARE
INTRINSIC NUMBER 405

Compares two strings of different length. For use with KSAM generic key searching.

SYNTAX

BA IV BA IV I IV LA LA 0-V
NLKEYCOMPARE (genkey,length1,key,length2,result,langnum,error,collseq);

This intrinsic gives the KSAM user the ability to determine whether the key of a record matches the
generic key specified. It should be used when reading a KSAM file in key sequential order in com­
bination with FREAD, after a FFI NDBYKEY call.

The N LKEYCOMPARE intrinsic allows a program to determine whether a -generic key search found an
exact match (i.e., the generic key is exactly equal to the beginning of the key, and not almost equal
because of priority (e.g. ,uppercase versus lowercase or accent). It also allows the program to deter­
mine whether an exactly matching key could be farther along the key sequence.

PARAMETERS

gen key

length1

key

length2

result

byte array (required)
Contains the generic key to be compared to the keys contained in the
record read by FREAD.

integer by l)Qlue (required)
The length in bytes of genkey, which must be less than length2.

byte array (required)
This contains an entire key to which the user wants to compare genk.ey.

integer by l)Qlue (required)
The length in bytes of key, which must be greater than length 1.

integer by reference (required)
The result of the compare:

0 The retrieved key matches the generic key exactly for a length
of length1.

1 The retrieved key does not match the generic key: it is different
only because of priority (e.g. , uppercase versus lowercase
characters or accent). The FREAD key is still in range. This
means that records may follow whose key matches the generic
key exactly.

4-31

Native Language Intrinsics

langnum

error

coll seq

2 The retrieved key is less than the generic one (its collating order
precedes the key specified). It does not match genkey. This
means the FREAD call found a record which precedes the range
requested. Records which match genkey may follow.

3 The retrieved key is greater than the generic key (it collates af­
ter the specified key). This means that the FREAD call found a
record whose key follows the specified range. No records
matching gen key follow.

integer by ~alue (required)
The language ID number indicating the collating sequence to be used for
the compare.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error#

1 *
2*
3
4
5*
6*
7

Meaning

NLS is not installed.
Specified language is not configured.
Invalid collating table entry.
Invalid length parameter.
NLS internal error.
NLS internal error.
Value of length1 is not less than length2.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE-3000).

logical array (optional)
An array containing the collating sequence table as returned by NLI NFO
item 11. This parameter is required for split-stack calls. If this parameter
is present, langnum will be ignored and this routine will be much more
efficient.

SPECIAL CONSIDERATIONS

Split-stack calls are permitted. NLKEYCOMPARE is intended for use with the KSAM subsystem.

ADDITIONAL INFORMATION

For example calls of this intrinsic ref er to Programs I and J in Appendix H, "EXAMPLE
PROGRAMS."

4-32

Native Language Intrinsics

NLREPCHAR
INTRINSIC NUMBER 403

Replaces nondisplayable characters of a string.

SYNTAX

BA BA IV BV IV LA LA 0-V
NLREPCHAR (instr,outstr,stringlength,repcha.r,langnum,error,charset);

This intrinsic replaces all nondisplayable control characters in the string with the replacement charac­
ter. Nondisplayable characters are those with attribute 3 (undefined graphic character) or S (control
code), as returned by NLI NFO item 12.

PARAMETERS

instr

outstr

stringlength

repchar

langnum

error

byte array (required)
A byte array in which the nondisplayable characters have to be replaced.

byte array (required)
A byte array to which the replaced character string is returned.

integer by IJalue (required)
A positive integer specifying the length (in bytes) of instring.

byte value (required)
A byte specifying the replacement character to be used.

integer by value (required)
An integer value specifying the language ID number of the language that
determines the character set to be used.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-33

Native Language Intrinsics

char set

Error#

1 *
2*
3
4
5*
6*
7
8

Meaning

NLS is not installed.
Specified language is not configured.
Invalid replacement character.
Invalid length parameter.
NLS internal error.
NLS internal error.
Invalid charset table entry.
Overlapping strings, out string would overwrite
inst ring.

* These errors do not apply to calls with ·a langnum equal to 0
(NATIVE-3000).

logical array (optional)
Contains the character set definition for the language to be used, as return -
ed in NLINFO item 12. If this parameter is present, langnum will be ig­
nored and this intrinsic will be much more efficient.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program Hin Appendix H, "EXAMPLE PROGRAMS."

4-34

Native Language Intrinsics

NLSCANMOVE
INTRINSIC NUMBER 401

Moves and scans character strings according to character attributes.

SYNTAX

I BA BA LV IV
numchar:=NLSCANMOVE (instring,outstring,flags,length,

IV LA LA LA 0-V
langnum,error,aharset,shift);

The machine instructions (and the SPL constructs) for SCAN and MOVE used for upshifting or in
conjunction with the alphabetic, numeric or special characters will only work for NATIVE-3000.
This intrinsic will handle this function in a language-dependent manner.

FUNCTIONAL RETURNS

The number of characters acted upon in the SCAN or MOVE operation.

PARAMETERS

instring

outstring

flags

byte array (required)
A character string which will act as the source string of the SCAN/MOVE.

byte array (required)
A character string which will act as the target.

NOTE

If outstring and instring are the same string, this
intrinsic will act as SCAN. Otherwise, a MOVE will be
performed. (Refer to Error #3.)

logical by 1Jalue (required)
A flag defining the options for calling the intrinsic. 7his parameter always
defines the condition for terminating the SCAN/MOVE operation.

4-35

Native Language Intrinsics

length

langnum

error

bits 14:2

bits 13:1

bits 12:1

bits 11: 1

bits 9:2

bits 0:9

Alphabetic. NLINFO item 12, types 1 (alphabetic
lowercase character) and 2 (alphabetic uppercase
character).

1 Lowercase.
2 Uppercase.
3 Uppercase or lowercase.

Numeric. NLI NFO item 12, type 0.

Special. NLI NFO item 12, types 3 (undefined graphic
character), 4 (special character), or 5 (control code).

WHILE/UNTIL option. If this bit is zero, then
SCAN/MOVE is performed while the condition specified
by (flags (12:4)) is true. If this bit is one,
SCAN/MOVE is performed until the condition specified
by (flags (12: 4)) is true.

Shift.

1 Upshift.
2 Downshift.

Reserved. These bits of the flags parameter are reser­
ved and must be zero.

integer by value (required)
An integer indicating the maximum number of characters to be acted upon
during the indicated operation.

integer by IJalue (required)
An integer containing the language ID number which implies both the
character set definitions of character attributes and the language-specific
shift.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-36

char set

shift

Error#

1 *
2*
3

4
S*
6*
7
8
9

Native Language Intrinsics

Meaning

NLS is not installed.
Specified language is not configured.
Overlapping strings; instr i ng would have been over­
written by outstring.
Invalid length parameter.
NLS internal error.
NLS internal error.
Reserved portion of flags is not zero.
Both upshift and downshif t requested.
Invalid table element.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3 000).

logical array (optional)
An array containing the character set definition for the language to be
used, as returned in NLINFO item 12. If present, the langnum parameter
will be ignored, and this routine will be much more efficient. This param­
eter is required for split-stack calls in which flags (12:4) is not equal to 0
and flags (12:4) is not equal to 1 S.

logical array (optional)
An array containing shift information for a desired upshift or downshift
(e.g., as returned in NLI NFO items 1 Sor 16). This parameter will be util­
ized when bits (9:2) of/lags is not equal to 0. If present, the langnum
parameter will be ignored, and this routine will be much more efficient.
In split-stack calls this parameter is required if bi ts (9 : 2) off lags is not
equal to 0.

SPECIAL CONSIDERATIONS

Split-stack calls are permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs F and G, in Appendix H, "EXAMPLE
PROGRAMS."

4-37

Native Language Intrinsics

NL TRANSLATE
INTRINSIC NUMBER 404

The NL TRANSLATE intrinsic translates a string of characters from EBCDIC-to-ASCII or
ASCII-to-EBCDIC using the appropriate native language table. This intrinsic performs the same
function as CTRANSLATE using native language tables.

SYNTAX

IV BA BA IV IV LA LA 0-V
NLTRANSLATE (code,instring,outstring,stringlength,la.ngnum,error,table);

The instring parameter is translated into out string for length of stringlength using a transla­
tion table determined according to the first rule that applies from the following list:

I. If table is present, a translation will be made using table.

2.· If langnumequals NATIVE-3000 a standard ASCII-to-EBCDIC or EBCDIC-to-ASCII transla­
tion is made.

3. The ASCII-to-EBCDIC or EBCDIC-to-ASCII translation table for the language specified will
be used.

PARAMETERS

code

instring

outstring

stringlength

langnum

integer by value (required)

1 EBCDIC-to-ASCII
2 ASCII-to-EBCDIC

byte array (required)
The string of characters to be translated.

byte array (required)
A byte array to which the translated string is returned. The parameters
inst ring and out string may specify the same array.

integer by value (required)
A positive integer specifying the number of bytes of instring to be
translated.

integer by value (required)
An integer containing the language ID number of the language whose
translation tables are to be used.

4-38

error

table

Native Language Intrinsics

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error#

1 *
2*
3
4
s *
6*

Meaning

NLS is not installed.
Specified language is not configured.
Invalid code specified.
Invalid length parameter.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000).

logical array (optional)
A 256-byte array which holds a translation table. Each byte contains the
translation of the byte whose value is its index. This parameter corresponds
to N LI N f'O items 1 3 and 14. If present, l angnum parameter will be ig­
nored and this routine will be much more efficient.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic ref er to Program H in Appendix H, "EXAMPLE PROGRAMS."

4-39/4-40

SYSTEM UTILITIES -
~~~~~~~~~[I] 

NLUTIL Program 

The program allows the user to verify the language/character set configuration on the system. 

:RUN NLUTIL.PUB.SYS 

This displays a table of the configured languages and their character set. For example: 

Lang Lang 
_m Name 

3 DANISH 
5 ENGLISH 

12 SPANISH 

A prom pt asks whether the user wan ts a full listing : 

Char 
_m 

Char 
Name 

ROMANS 
ROMANS 
ROMANS 

Do you require a full listing of the current configuration? (Y/N) 

An 11 N11 response will terminate the program. A "Y" response will produce a complete formatted list­
ing of the currently configured languages written to file NLLIST on device class LP. 

NLS File Structure 

The file NLSDEF. PUB.SYS lists all character sets supported by Hewlett-Packard and it relates charac­
ter set names to character set ID numbers. It does the same for languages, and it indicates, for every 
language, what character set is required to support that language. 

A file CHRDEFxx (xx is the character set ID number) contains the data pertaining to the cl1aracter set 
with ID number xx, and all languages supported by that character set. There is more than one 
CHRDEFxx file. 

The NLSDEF and the CHRDEFxx files are used by the program LANGI NST. PUB. SYS to build or modify 
the file LANGDEF. PUB. SYS (see below for a description of this program). This file is used at system 
start up to build a number of system data segments holding the information required by NLS. The 
number of data segments built at start up is one plus one for every language configured. 

Language Installation Utility (LANGINST) 

The file LANGDEF. PUB. SYS contains all language-dependent information for every language to be 
configured on a system at the next startup. It is an MPE file that is built or modified by running the 
program LANGINST. It gathers data from NLSDEF. PUB.SYS and CHRDEFxx. PUB.SYS files into 
LANGDEF.PUB.SYS. 

A-1 



System Utilities 

Only a user logged into the PUB group of the SYS account as MANAGER. SYS can run LA_NGINST to: 

• Add a language to the configuration file. 

• Remove a language from the configuration file. 

• Display and modify local formats of a configured language. 

• Display the languages supported by Hewlett-Packard. 

• Display the languages currently configured. 

• Modify the system default language. 

Any changes to LANGDEF' will become effective when the system next comes up. 

Adding a Language 

LANG INST prompts the user MANAGER. SYS for the language to add to LANGDEF. The user may sup­
ply either the language ID number or name. If (RETURN) is entered, the operation is aborted. If the 
language is already installed the user is advised, and the addition is cancelled with an error message: 

SWEDISH ls already conf lgured. 

Similarly, for example, if the appropriate CHRDEFr.x file is not available, the add is cancelled with an 
error message: 

The CHRDEFr.x file ls missing. 
The Addition has been cancelled. 

Refer to Table A-1 for a complete list of LANGINST error messages. 

It is not possible to add NATIVE-3000. This language is hard-coded and is always conf ty red. Any. 
attempt to configure it will result in the error message: 

NATIVE-3000 is always configured. 

Deleting a Language 

LANGINST allows the user to delete any configured language with the exception of NATIVE-3000, 
which cannot be deleted. In add·:fr•n, a check is made to ensure that the language designated as the 
system default is not deleted. 

A-2 



System Utilities 

Modifying Local Formats 

The System Manager is allowed to modify the following local formats for any language configured in 
LANGDEF': 

• Date format (Dateline format) . 

• Custom date format (Short). 

• Time format . 

• Currency sign . 

• Decimal and thousands indicator . 

• Month names . 

• Abbreviated month names . 

• Weekday names . 

• Abbreviated weekday names . 

• Yes/No indicators . 

• National date table . 

If the language supports a special National Table containing date information (KAT AKANA), the last 
option is displayed to allow the user to modify this date information. 

Whenever any changes have been made, the new copy of the file is saved under the name LANGDEF'. 
In addition, the old, unchanged version of the file is saved under the name LANGD:rxx. The number 
XII increases by one every time a new copy of LANGDEF is saved. This allows the user to return to 
the configuration that existed before LANGDEF' was changed. To return to the previous configuration, 
: PURGE or : RENAME the current LANGDEF'. Then : RENAME the LANGO.xxx with the highest number 
LANGOEF'. The next system startup will delete the changes. 

LANGINST User Dialogue 

The following are user dialogues for choosing a function, adding a language, deleting a language, and 
modifying local language formats. 

CHOOSING A FUNCTION. The System Manager selects an item from the main menu: 

O. EXIT 
1. ADD LANGUAGE TO LANGDEF' 
2. DELETE LANGUAGE FROM LANGDEF 
3. MODIFY NATIVE FORMATS 
4. LIST HP SUPPORTED LANGUAGES 
5. MODIFY THE SYSTEM DEFAULT LANGUAGE 
6. LIST LANGUAGES CURRENTLY CONFIGURED 

A-3 



System Utilities 

To list languages which can be configured on the system, select Option 4: 

HP SUPPORTED LANGUAGES: 

0 NATIVE-3000 using USASCI I 
1 AMERICAN using ROMANS 
2 CANADIAN-FRENCH using ROMANS 
3 DANISH using ROMANS 
4 DUTCH using ROMANS 
5 ENGLISH using ROMANS 
6 FINNISH using ROMANS 
7 FRENCH using ROMANS 
8 GERMAN using ROMANS 
9 ITALIAN using ROMANS 

10 NORWEGIAN using ROMANS 
11 PORTUGUESE using ROMANS 
12 SPANISH using ROMANS 
13 SWEDISH using ROMANS 
41 KATAKANA using KANAB 

press any key to continue .•. 

ADDING A LANGUAGE. To add a language, select Option 1 : 

1. Use the language name or language ID number (langnum). 

2. The addition is aborted by entering a (RETURN), a language that is already configured, a language 
not supported by NLS, or NATIVE-3000. 

Enter language to be added: SPANISH 

SPANISH is already configured. 

If a language is requested that is supported but has not been previously configured, LANG INST 
configures it and displays the message: 

SPANISH has been successfully configured. 

3. When the addition is successfully completed, or else aborted, the main menu is displayed. 

DELETING A LANGUAGE. To delete a language, select Option 2: 

1. Use the language name or language ID number (langnum). 

2. The deletion is aborted by entering a [RETURN), a language that is not configured, or the system 
default language. · 

3. When the deletion is successfully completed, or else aborted, the main menu is displayed. 

A-4 



System Utilities 

MODIFYING LOCAL LANGUAGE FORMATS. To modify local language formats, select 
Option 3: 

1. Use the language name or language ID number (langnum). 

2. The process is aborted by entering a (RETURN), a language that is not configured, or 
NATIVE-3000. 

3. If the process is aborted, the main menu is displayed. 

4. If a configured language is entered, a menu is displayed: 

0. RETURN 
1. DATE FORMAT (Dateline format) 
2. CUSTOM DATE FORMAT (Short) 
3. TIME FORMAT 
4. CURRENCY SIGN 
5. DECIMAL AND THOUSANDS INDICATOR 
6. MONTH NAMES 
7. ABBREVIATED MONTH NAMES 
8. WEEKDAY NAMES 
9. ABBREVIATED WEEKDAY NAMES 
10. YES/NO INDICATORS 
11. PROCESS THE NATIONAL DATE TABLE 

Enter selection number :4 
Business Currency sign :f 
Enter the new value :<CR> 
fully qualified Currency sign :ff 
Enter the new value :<CR> 
The currency sign currently follows the number, e.g., 100DM. 

The following currency codes are available: 

<CR> to retain the existing value. 
0 - The currency symbol precedes the number, e.g., $100.00. 
1 - The currency symbol succeeds the number, ,~.g., 100.00DM. 
2 - The currency symbol replaces the decimal point, e.g., 100$00. 

Enter the required currency codes (0, 1, or 2) :<CR> 
There are to be no blanks before or after the currency symbol. 

The following blank-control codes are available: 

<CR> to retain the existing value. 
0 - No blanks before or after the currency symbol. 
1 - A blank is to precede the currency symbo 1. 
2 - A blank is to succeed the currency symbo 1. 
3 A blank is to precede and succeed the currency symbo 1. 

Ent~r the required code (0, 1, 2, or 3):<CR> 

After the selection is made, the current value is displayed. The user is prompted for a new 
value. If a new value is entered, it is validated and if valid it replaces the old value. If no new 
value is entered (only (RETURN)) or if an invalid value is entered, the old value is retained. 

A-5 



System Utilities 

Error Messages 

Table A-1 contains LANGINST error messages. 

Table A-1. LANGINST Error Messages 

MESSAGE 

A NONNUMERIC GRAPHIC 
CHARACTER IS 
EXPECTED ... 

ATTEMPTING TO ADD TOO 
MANY CHARACTER SETS. 

BUILDING AN EMPTY 
LANGDEF •.. 

DELETION TERMINATED 
... ATTEMPTING TO 
DELETE NATIVE-3000. 

ERRONEOUS STARTING 
YEAR NUMBER. EXPECTED 
A NUMBER BETWEEN 0 AND 
99. 

INPUT TOO LONG ... 
PLEASE REENTER: 

INTERNAL ERROR 
PLEASE REPORT. 

INVALID DATE FORMAT. 
EXPECTED MM/DD/YY. 

LANGNAME IS ALREADY 
CONFIGURED. 

LANGNAME IS AN ILLEGAL 
LANGUAGE NAME (OR 
NUMBER). 

MEANING 

An alphabetic or special 
character (but not numeric) is 
expected. 

Adding this language would 
exceed the maxim um con -
figurable character sets. 

There was no existing 
LANGDEF file, so a new, 
empty one is being built. 

The language NATIVE-3000 
may not be deleted from the 
list of configured languages. 

The year number entered in 
not valid. 

The program does not expect 
so much input in this context. 

Internal error. 

The entered date is not valid. 

The language selected has al­
ready been configured. 

The language name or num­
ber entered is not valid. 

A-6 

ACTION 

Enter a valid character. 

Don't configure languages 
from so many character sets. 

None. If you have already 
configured languages, find 
LANGDEF. PUB. SYS on a 
backup and restore it. Or 
else , reconfigure the Ian -
guages with this program. 

None. 

Enter the year number again. 
It must be a number between 
0 and 99. 

Reenter the data correctly. 

Contact your Hewlett­
Packard representative. 

Enter the date again in the 
form MM/DD/VY. 

None. 

Enter the language again , 
correctly. 



System Utilities 

Table A-1. LANGINST Error Messages (Continued) 

MESSAGE 

LANGNAME IS AN INVALID 
SYSTEM DEFAULT 
LANGUAGE. 

LANGNAME IS NOT A 
CONFIGURED LANGUAGE. 

LANGNAME IS NOT 
CONFIGURED. 

LANGNAME IS NOT IN THE 
CHRDEF FILE. 

NATIVE-3000 IS ALWAYS 
CONFIGURED. 

NATIVE-3000 MAY NOT BE 
MODIFIED. 

THE CHRDEFXX FILE IS 
MISSING. THE ADDITION 
HAS BEEN CANCELLED. 

THE DECIMAL SEPARATOR 
AND THOUSANDS 
SEPARATOR SHOULD BE 
DIFFERENT. 

THE EXPECTED NAME 
SHOULD CONTAIN 
ALPHABETIC CHARACTERS 
ONLY. 

THE FILECODE FOR 
CHRDEFXX.PUB.SYS IS 
INCORRECT. 

MEANING 

The language selected is not 
configured on the system. 

The language selected is not 
configured on your system. 

The language entered is not 
configured on your system. 

One of the CHRDEFrx files is 
not consistent with the NLSDEF 
file. 

NATIVE-3000 may not be 
added to the list of configured 
languages because it is always 
configured. 

The language definition of 
NATIVE-3000 may not be 
modified. 

The character definition file for 
the selected language is missing. 

The decimals and thousands 
separators have been defined to 
be the same. 

Only alphabetic characters are 
allowed in this context. 

The character definition file for 
the selected language has a bad 
file code. 

A-7 

ACTION 

Add the language to the list 
of currently configured 
languages with this 
program. 

Add the language to the list 
of currently configured 
languages with this 
program. 

Add the language to the list 
of currently configured 
languages with this 
program. 

Restore all CHRDEF.r.r files 
and NLSDEF from your 
master backup. 

None. 

None. 

Restore the missing file 
from your master backup. 

Change the decimal and/ or 
thousands indicator. 

Please re-enter the value, 
restricting the input to al­
phabetic characters. 

Restore the missing 
CHRDEfxx file from the 
master backup. 



System Utilities 

Table A-1. LANGINST Error Messages (Continued) 

MESSAGE MEANING ACTION 

THE FILECODE FOR The current language definition Restore LANGDEF. PUB. SYS 
LANGDEF.PUB.SYS IS file has a bad file code. from a backup copy. Or 
INCORRECT. purge it, and recreate it by 

reconfiguring the desired 
languages with this 
program. 

THE FILECODE FOR The master NLS definition file Restore NLSDEF. PUB. SYS 
NLSDEF.PUB.SYS IS has a bad file code. from the master backup. 
INCORRECT. 

THE LANGUAGE YOU ARE The system default language If you wish to delete this 
ATTEMPTING TO DELETE may not be deleted from the list language, you must first 
IS THE SYSTEM DEFAULT of configured languages. change the system default 
LANGUAGE. language to another 

language. 

THE USER SHOULD BE The user is not MANAGER. SYS Log on as MANAGER. SYS in 
MANAGER.SYS, RUNNING or is not logged on in the PUB the PUB group and run the 
IN THE PUB GROUP. group. program again. 

THERE IS NO MORE ROOM There is no room for additional Contact your Hewlett-
FOR ADDITIONAL DATE entries in the national date Packard representative. 
PERIODS. PLEASE table. 
REPORT. 

TOO MANY LANGUAGES Adding another language would Don't configure so many 
HAVE BEEN CONFIGURED. exceed the maximum configur- languages on one system. 

able languages. 

UNABLE TO RENAME The old LANGDEF file could not Purge some or all of the 
LANGDEF TO LANGDnnn. be renamed because all files files LANGDOOO to 
THE EXISTING LANGDEF LANGDOOO thru LANGD999 al- LANGD999 so the most 
WILL BE PURGED. ready existed. recent changes to LANGDEF 

can be saved in the future. 

UNKNOWN OPTION .•.. The option selected is not a Enter the number cor-
PLEASE REENTER. valid one. responding to one of the 

currently valid options . 

. •. 

A-8 



SUPPORTED LANGUAGES -
...__ ____ A_N_D_C_H_A_R_A_C_T_E_R_S_E_T_S__,[!J 

Character Set Definitions 

The character sets supported by NLS are: 

Set Name 

US ASCII 
ROMANS 
KANAS 

Set ID Number 

00 
01 
02 

Languages Supported 

NATIVE- 3000. 
Many European-based languages. 
Phonetic Japanese (katakana). 

All character sets are supersets of USASCII, and are occasionally ref erred to generically as "ASCII 11 

character sets, as in the term "ASCII-to-EBCDIC translation 11
• 

For every character set a character attribute table is defined. This table of 256 entries holds an at­
tribute (type) for every character. 

Type Identification: Example 

0: Numeric character. 2, 7, 9 
1: Alphabetic lowercase character. a, b, n, q, x 
2: Alphabetic uppercase character. A, B, R, Q, x 
3: Undefined graphic character. 
4: Special character. ,, ~, ? r. . , 
S: Control code. Linefeed, Escape 

B-1 



:supported Languages And Character Sets 

Language Definitions 

The following language names and language ID numbers are supported in NLS: 

US ASCII (Set #0) 

Language Number Language Name 

00 NATIVE-3000 

ROMANS (Set #1) 

Language Number Language Name 

00 NATIVE-3000 
01 AMERICAN 
02 CANADIAN-FRENCH 
03 DANISH 
04 DUTCH 
05 ENGLISH 
06 FINNISH 
07 FRENCH 
08 GERMAN 
09 ITALIAN 
10 NORWEGIAN 
11 PORTUGUESE 
12 SPANISH 
13 SWEDISH 

KANAS (Set #2) 

00 NATIVE-3000 
41 KATAKANA 

The following items are defined for every supported language: 

The upshift and downshift table. 
The collating sequence table. 
The ASCII-to-EBCDIC and EBCDIC-to-ASCII translate tables. 
The long date format (the DATELINE format). 
The short date format (the custom date format). 
The time format. 
The currency symbol (one character). 
The currency descriptor (up to four characters). 
The position and spacing of the currency sign. 
The decimal and thousands separators for numbers. 
The equivalents of YES and NO (both up to six characters). 
The full weekday names (up to twelve characters). 
The abbreviated weekday names (up to three characters). 
The full month names (up to twelve characters). 
The abbreviated month names (up to four characters). 
The National Date table (where applicable). 

Refer to the discussion on the NLI NFO intrinsic in Section IV for a complete description of these items. 

B-2 



be 0 0 

b1 0 0 

be 0 0 

bs 0 

b. b3 bz b, 0 1 

0 0 0 0 0 NUL OLE 

0 0 0 1 1 SOH DC1 

0 0 1 0 2 STX DC2 

0 0 1 1 3 ETX DC3 

0 1 0 0 4 EQT DC4 

0 1 0 1 5 ENQ NAK 

0 1 1 0 6 ACK SYN 

0 1 1 1 7 BEL ETB 

1 0 0 0 8 BS CAN 

1 0 0 1 9 HT EM 

1 0 1 0 10 LF SUB 

1 0 1 1 11 VT ESC 

1 1 0 0 12 FF FS 

1 1 0 1 13 CR GS 

1 1 1 0 14 so RS 

1 1 1 1 15 SI us 

Supported Language And Character Sets 

ROMANS CHARACTER SET 
(USASCll PLUS ROMAN EXTENSION) 

0 0 0 0 0 0 1 

0 0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 

2 3 4 5 6 7 8 9 10 

SP 0 @ p p 

1 A a a q 

" 2 B A b r 

# 3 c s c s 

$ 4 D T d t 

% 5 E u e u 
& 6 F v f v 

7 G w g w 
( 8 H x h x 

) 9 I y i y 

* J z j z 

+ K [ k { 

< L \ I 
- M ] m } 

> N A n l'W 

I ? 0 0 DE 

Figure B-1. ROMAN 8 Character Set 

B-3 

0 1 

0 0 1 

0 0 

11 12 13 14 15 
A A A I> a 
A r - p e A 
A 

0 
,.. 

0 a 
0 A 

If. £) u 

ct 
, 0 

d' a a 

" 
, , 

t e 1 

N , :t 0 0 

- , 
6 1 n u ~ 

4 

' A b 1 a 2 

' ' 6 .! l e 1 

n ' 0 0 0 2. 

£ ' 0 v « u s 
'¥ a E 

v • s 
§ e I u » 
f 0 fJ y ± 

e u 



Supported Language And Character Sets 

be 0 0 0 

b7 0 0 0 

b& 0 0 

b5 0 0 

0 1 2 

0 0 0 0 0 N u L D LE SP 

0 0 0 1 so H DC1 

0 0 1 0 2 STX DC2 " 
0 0 1 1 3 ETX DC3 # 

0 1 0 0 4 EOT DC4 $ 

0 1 0 1 5 ENQ NAK % 

0 1 1 0 6 ACK SYN & 

0 1 1 1 7 B EL ETB ' 
1 0 0 0 8 BS CAN 

1" 0 0 1 9 HT EM 

1 0 1 0 10 LF SUB * 

1 0 1 1 11 VT ESC + 
1 1 0 0 12 F F FS 

1 1 0 1 13 c R GS 

1 1 1 0 14 so AS 

1 1 1 1 15 SI us I 

KANAS CHARACTER SET 
{JISCll PLUS KATAKANA) 

0 0 0 0 0 

0 0 0 

0 0 0 0 

0 0 0 

3 4 5 6 7 8 9 

0 

0 

1 0 

0 @ p p 
jlll!l!l!lll!l!l!l!l! l!l!l!llll!l!!ll!llll il!lllllllill~ 

1 A Q a q 
!llilillilll!!I!! ill!llll!llll!l!ll 0 

2 B R b r 
.1111111111111r 1111111111111111111111 r 

3 c s c s ~1111111111111 ~lllllllllllll!lllll: J 
4 D T d t 

llll!l!llll!lll!!l!! illl!!ij!!!!!!!!l!ll!I! ' 

5 E u e u 
11111111!1!!111!\lf 111111~\ll!l\\\\\l\l\I . 

6 F v f v ~lllllllil~!llllt~ llllllllllll!llllllll: 
7 

7 G w g w 
llllllllllllllli ~llll!l!l!!lllllllll 7 

8 H x h x \lllllllllllllllll~ llllll\l!lllllllllll~ 1 

9 I y i y 
l!lll!l!llll!llll llll!l!lllllllllll!ll: ? 

J z j z 
lllllllllllllllllll :llll~!ll!lll!lll!lll .:x:. 

K k 
\llllll!lllllil!lllll 1111111111111~11111111 * 

< L ¥ llllllllli!lllllll!~ llllll!!llllll!llllllll ~ 

= M ] m 
:llllllllllllllilllil 11.lll!llill!lli!l!li 

.:lo 

> N " n - !lil!lllll!l!llll!I! .ill,1llll1lll\llllll 
3 

? 0 0 D EL lillllll!l!lii!!l~ l!l!li!llll~il!1lllll ~ 

Figure B-2. KANA8 Character Set 

B-4 

0 

0 0 

0 0 

1 1 1 2 1 3 1 4 1 5 

!IZ ~ 

' 
7 :t- A 

-1 '/ :J. 

? 7 .:c 

;r:. ~ ..y 

* j- ~ 

'iJ - 3 

~ :x 7 

? * 1) 

~ / Jv 

:::1 "'' v 

~ t: c 

-/ 7 ? 

A -"" ;/ 

-I! * 
\\ 

'./ ~ 
0 lil~l~ll~lj!ll~jll! 



COLLA TING IN EUROPEAN -
L--~~~~~~~L_A_N_G_U_A_G_ES__J[£J 

Collating is defined as arranging character strings into some (usually alphabetic) order. To do this a 
mechanism must be available that, given two character strings, decides which one comes first. In 
Native Language Support (NLS) this mechanism is the NLCOLLATE intrinsic. 

Look at the full ROMANS character set and consider that all these characters can appear in every 
European language. Even if a character does not exist in a language, it can still show up in names 
and/or addresses. It is quite useful to address a letter to Spain correctly, even if it originates in 
Germany. Therefore, the full ROMAN 8 character set is considered to be used in all languages, and a 
collating sequence has been defined for all characters in the ROMAN 8 character set for the languages 
it supports. Figure C-1 lists the collating sequence for: 

AMERICAN 
CANADIAN-FRENCH 
DANISH 
DUTCH 
ENGLISH 
FINNISH 
FRENCH 

GERMAN 
ITALIAN 
NORWEGIAN 
PORTUGUESE 
SPANISH 
SWEDISH 

All characters in a group, indicated by brackets (or, in a few footnotes, by underlining) collate the 
same. These characters usually differ only in uppercase versus lowercase priority, or accent priority. 
In sorting, they are initially considered the same. If the remaining characters in the two strings do 
not determine which string comes first, then the priorities of characters will be used to determine the 
order. Refer to Table C-1 for examples of collating sequence priority. 

Table C-1. Examples of Collating Sequence Priority 

Sorted Strings Explanation 

aeb, 
, 

The third character in each string is different. The aec 
11 b 11 precedes the "c 11 

• 

aeb, aeb The characters in the two strings are identical, so accent 
priority determines the order. The 11 e 11 precedes the II' II e . 

abc, Abd The last characters in the strings are different. The 11 c 11 

precedes the 11 d 11 
• 

aBc, abc The characters in the two strings are the same, so the 
uppercase priority determines the order. 11 B 11 precedes 
"b". 

-

C-1 



Collating In European Languages 

NOTE 

This Appendix deals with collating or lexical ordering, 
and does not include matching. For matching purposes, 
there is generally a difference between "A 11 and "a 11

• 

Figures C-1 and C-2 display the collating sequence in three ways: the graphic representation of the 
character, the decimal equivalent of the character's binary value, and a description of the character. 
Language-dependent variations to the collating sequence appear in Figure C-2. 

C-2 



Collating In European Languages 

Collating Sequence 

DECIMAL 
CHARACTER EQUIVALENT DESCRIPTION 

32 Space 

160 Do Not Use 

0 48 Zero 

1 49 One 

2 50 Two 

3 51 Three 

4 52 Four 

5 53 Five 

6 54 Six 

7 55 Seven 

8 56 Eight 

9 57 Nine 

A 65 Uppercase A 
a 97 Lowercase a 

A 224 Uppercase A Acute 

' 196 Lowercase a Acute 
A 161 Uppercase A Grave 

' 200 Low~rcase a Grave a 
A 162 Uppercase A Circumflex 

B 192 Lowercase a Circumflex 
x 216 Uppercase A Umlaut/Diaeresis 

5 204 Lowercase a Umlaut/Diaeresis 
A 208 Uppercase A Degree 

A 212 Lowercase a Degree 
~ 225 Uppercase A Tilde 

I 226 Lowercase a Tilde 

B [ 66 Uppercase B J b 98 Lowercase b 

Note that IE ligature (211) and ae (215) are expanded for collating purposes to AE or ae and col­
late as: ad AE Ae IE aE ae ae AF. 

Figure C-1. Collating Sequence (1 of 7) 

C-3 



Collating In European Languages 

DECIMAL 
CHARACTER EQUIVALENT DESCRIPTION 

c [ 67 Uppercase c l c 99 Lowercase c 
~ 180 Uppercase c Cedilla 

~ 181 Lowercase c Cedilla 

D [ 68 Uppercase D l d 100 Lowercase d 
f) 227 Uppercase D Stroke 

d 228 Lowercase d Stroke 

E 69 Uppercase E 
e 101 Lowercase e 

~ 220 Uppercase E Acute , 
197 Lowercase e Acute e 

~ 163 Uppercase E Grave 
" 201 e Lowercase e Grave 

~ 164 Uppercase E Circumflex 
A 193 e Lowercase e Circumflex 

I! 165 Uppercase E Umlaut/Diaeresis 
e 205 Lowercase e Umlaut/Diaeresis 

F [ 70 Uppercase F J f 102 Lowercase f 

G [ 71 Uppercase G J g 103 Lowercase g 

H [ 72 , Uppercase H J h 104 Lowercase h 

I 73 Uppercase I 
i 105 Lowercase i 

f 229 Uppercase I Acute , 
213 Lowercase i Acute l 

i 230 Uppercase I Grave 
l 217 Lowercase i Grave 

t 166 Uppercase I Circumflex ,. 
209 Lowercase i Circumflex l 

y 167 Uppercase I Umlaut/Diaeresis 
y 221 Lowercase Umlaut/Diaeresis 

J [ 74 Uppercase J J j 106 Lowercase j 

K [ 75 Uppercase K J k 107 Lowercase k 

Figure C-1. Collating Sequence (2 of 7) 

C-4 



Collating In European Languages 

CHARACTER DECIMAL DESCRIPTION 
EQUIVALENT 

L [ 76 Uppercase L J 1 108 Lowercase 1 

M [ 77 Uppercase M J m 109 Lowercase m 

N [ 78 Uppercase N 

l 
n 110 Lowercase n 

R 182 Uppercase N Tilde 
n 183 Lowercase n Tilde 

0 79 Uppercase 0 
0 111 Lowercase 0 

6 231 Uppercase 0 Acute , 
198 Lowercase 0 Acute 0 

0 232 Uppercase 0 Grave 
" 202 Lowercase 0 Grave 0 

0 223 Uppercase 0 Circumflex 
A 194 Lowercase 0 Circumflex 0 

() 218 Uppercase 0 Umlaut/Diaeresis 
0 206 Lowercase o Umlaut/Diaeresis 

e5 233 Uppercase 0 Tilde 
ES 234 Lowercase o Tilde 

flJ 210 Uppercase 0 Crossbar 
,s 214 Lowercase o Crossbar 

p [ 80 Uppercase p J p 112 Lowercase p 

Q [ 81 Uppercase Q J q , 13 Lowercase q 

R [ 82 Uppercase R J r 114 Lowercase r 

s 
[ 83 

Uppercase s 

l 
s 115 Lowercase s 

~ 235 Uppercase s Caron 
§ 236 Lowercase s Caron 

T [ 84 Uppercase T J t 116 Lowercase t 

Note that the a (222, sharp s) is expanded to ss and collates according to the German stan-
dard as: sr JL!! st. 

Figure C-1. Collating Sequence (3 of 7) 

C-5 



Collating In European Languages 

CHARACTER 

u 
u 

0 , 
u 

CJ 
' u 

0 
0 

0 
u 

v 
v 

w 
w 

x 
x 

y 
y 

y 
9 

z 
z 

p 
p 

DECIMAL 
EQUIVALENT 

85 
117 
237 
199 
173 
203 
174 
195 
219 
207 

[ 86 
118 

[ 87 
119 

[ 88 
120 

[ 89 121 
238 
239 

[ 90 
122 

[ 240 
241 

177 

178 

242 

243 

244 

245 

DESCRIPTION 

Uppercase u 
Lowercase u 
Uppercase u Acute 
Lowercase u Acute 
Uppercase u Grave 
Lowercase u Grave 
Uppercase u Circumflex 
Lowercase u Circumflex 
Uppercase u Umlaut/Diaeresis 
Lowercase u Umlaut/Diaeresis 

Uppercase v 
Lowercase v 

Uppercase w 
Lowercase w 

Uppercase x 
Lowercase x 

Uppercase y 
Lowercase y 
Uppercase y Umlaut/Diaeresis 
Lowercase y Umlaut/Diaeresis 

Uppercase z 
Lowercase z 

Uppercase Thorn 
Lowercase Thorn 

Currently Undefined 

Currently Undefined 

Currently Undefined 

Currently Undefined 

Currently Undefined 

Currently Undefined 

Figure C- 1 . Colla ting Sequence ( 4 of 7) 

C-6 

J 
J 
J 

l 
J 
J 



Collating In European Languages 

DECIMAL 
CHARACTER EQUIVALENT DESCRIPTION 

( 40 Left Pa rent hes is 

41 Right Parenthesis 

91 Left Bracket 

93 Right Bracket 

{ 123 Left Brace 

} 125 Right Brace 

< 251 Left Guillemets 

> 253 Right Gui llemets 

< 60 Less Than Sign 

> 62 Greater Than Sign 

= 61 Equal Sign 

+ 43 Plus 

45 Minus 

s 254 Plus/Minus 

* 247 One Quarter 

+ 248 One Half 

0 179 Degree (Ring) 

~ 37 Percent Sign 

• 42 Asterisk 

46 Period (Po int) 

44 Comma 

; 59 Semicolon 

58 Colon 

Figure C-1. Collating Sequence (5 of 7) 

C-7 



Collating ·In European Languages 

CHARACTER 

? 

I 

\ 

I 

§ 

$ 

¢ 

£ 

r. 

I 

II 

DECIMAL 
EQUIVALENT 

185 

63 

184 

33 

47 

92 

124 

64 

38 

35 

189 

36 

191 

187 

175 

188 

190 

186 

34 

96 

39 

94 

126 

DESCRIPTION 

Inverse Question Mark 

Question Mark 

Inverse Exclamation Point 

Exclamation Point 

Slant 

Reverse Slant 

Vertical Bar 

Commercial At 

Ampersand 

Number Sign (Hash) 

Section 

U. S. Dollar Sign 

U. S. Cent Sign 

British Pound Sign 

Italian Lira Sign 

Japanese Yen Sign 

Dutch Guilder Sign 

General Currency Sign 

Double Quote 

Opening Single Quote 

Closing Single Quote 

Caret 

Tilde 

Figure C-1. Collating Sequence (6 of 7) 

C-8 



Collating In European Languages 

DECIMAL 
CHARACTER EQUIVALENT DESCRIPTION 

., 
168 Accent Acute 

169 Accent Grave 

170 Accent Circumflex 

171 Umlaut/Diaeresis 

172 Tilde Accent 

95 Underscore 

246 Long Dash 

176 Overl ine 

A 249 Feminine Ordinal Indicator 

.Q 250 Masculine Ordinal Indicator 

• 252 Sol id 

0 \ 
\ 

Control Codes 
I 

31 I 

128 \ 
\ 

Currently Undefined 
I Control Codes 

159 I 

127 DEL 

255 r.o Not Use 

Figure C-1. Collating Sequence (7 of 7) 

C-9 



Collating In European Languages 

Language-Dependent Variations 

Listed below are language-dependent variations for Spanish, Danish/Norwegian, Swedish and 
Finnish. 

SPANISH. CH is considered a separate character, which collates between C and D. The same 
applies to LL, which collates after Land before M: 

[ 
C@ l@ 

l 
The @ symbol can equal anything. 

CH LL Therefore, CH comes after C followed by 
Ch Ll anything, and before D followed by 
cH lL anything. 
ch 11 
D@ M@ 

In Spanish N and FS are not considered the same in collating (this also applies to n and ii). 
They are different characters which follow one another in the collating sequence: 

DECIMAL 
CHARACTER EQUIVALENT DESCRIPTION 

N [ 78 Uppercase N J n 110 Lowercase n 

R [ 182 Uppercase N Tilde J ii 183 Lowercase n Tilde 

DANISH/NORWEGIAN. The Jt, fiJ, and A collate at the end of the alphabet: 

DECIMAL 
CHARACTER EQUIVALENT DESCRIPTION 

z [ 90 Uppercase z J z 122 Lowercase z 

}{ [ 211 Uppercase AE Ligature J • 215 Lowercase ae Ligature 

fiJ [ 210 Uppercase 0 Crossbar J - 214 Lowercase o Crossbar 

A [ 20B Uppercase A Degree J ' 212 Lowercase a Degree 

" [ 240 Uppercase Thorn J p 241 Lowercase Thorn 

Figure C-2. Language-Dependent Variations (1 of 3) 

C-10 



Collating In European Languages 

SWEDISH. The A, ~ and 0 are collated at the end of alphabet: 

CHARACTER 

z 
z 

A 

DECIMAL 
EQUIVALENT 

[ 
90 

122 

[ 
208 
212 

[ 
216 
204 

[ 
[ 

218 
206 

240 
241 

DESCRIPTION 

Uppercase Z J 
Lowercase z 

Uppercase A Degree J 
Lowercase a Degree 

Uppercase A Umlaut/Diaeresis J 
Lowercase a Umlaut/Diaeresis 

Uppercase 0 Umlaut/Diaeresis J 
Lowercase o Umlaut/Diaeresis 

Uppercase Thorn J 
Lowercase Thorn 

FINNISH. The A, X, and ~ are treated the same as in Swedish. The rlJ is considered to be the 
same as 0. V and W, and Y and 0 are regarded as the same in Finnish. 

CHARACTER 

u 

0 

v 

w 

x 

y 

9 

a 

u 

CJ 

0 

v 

w 

x 

y 

y 

0 

DECIMAL 
EQUIVALENT 

,.. 
85 

117 
237 
199 
173 
203 
174 

... 195 

[ 

86 
118 
87 

119 

[ 
88 

120 
,.. 

89 
121 
238 
239 
219 

... 207 

DESCRIPTION 

Uppercase U 
Lowercase u 
Uppercase U Acute 
Lowercase u Acute 
Uppercase U Grave 
Lowercase u Grave 
Uppercase U Circumflex 
Lowercase u Circumflex 

Uppercase V 
Lowercase v 
Uppercase W 
Lowercase w 

Uppercase X 
Lowercase x 

Uppercase Y 
Lowercase y 

-

l 
J 
-

Uppercase Y Umlaut/Diaeresis 
Lowercase y Umlaut/Diaeresis 
Uppercase U Umlaut/Diaeresis 
Lowercase u Umlaut/Diaeresis _ 

Figure C-2. Language-Dependent Variations (2 of 3) 

C-11 



Collating In European Languages 

DECIMAL 
CHARACTER EQUIVALENT DESCRIPTION 

z [ 90 Uppercase z J z 122 Lowercase z 

A [ 208 Uppercase A Degree J ~ 212 Lowercase a Degree 

x [ 216 Uppercase A Umlaut/Diaeresis J i 204 Lowercase a Umlaut/Diaeresis 

0 [ 218 
Uppercase 0 Umlaut/Diaeresis l 0 206 Lowercase o Umlaut/Diaeresis 

9J 210 Uppercase 0 Crossbar 
rd 214 Lowercase o Crossbar 

It [ 240 Uppercase Thorn J ~ 241 Lowercase Thorn 

Figure C-2. Language-Dependent Variations (3 of 3) 

C-12 



EBCDIC MAPPINGS -
~~~~~~~~--------~ 

NLS provides mappings, through NL TRANSLATE and NLINFO, from HP 3000 supported character sets
(ROMANS, KANAS) to the various national versions of the EBCDIC code. This applies to all native
languages supported on the HP 3000, and is done differently for each language.

Background Data

EBCDIC is an S-bit code which originally used only 128 of the 256 possible code values. These 128
characters have almost the same graphic representations as the traditional 7-bit, 128-character,
USASCII code. Three characters are different. USASCII has the left and right squjre brackets ([))
and the caret("), while EBCDIC includes the American cent (¢),the logical OR (), and the logi­
cal NOT (..,).

The EBCDIC code was modified to accommodate the extra characters required by European lan­
guages. For example, when the German EBCDIC was defined some less important characters were
traded for German national characters, and the vertical bar (I) became lowercase o. Similar things
happened to create EBCDIC codes for Norwegian/Danish, Swedish/Finnish, Spanish, Belgian,
Italian, Portuguese, French, and English in the UK.

The 12 8 unused positions in the various national language EBCDIC codes were later used to accom -
modate all national characters which appeared in any of the EBCDIC codes. Each resulting Country
Extended Code Page became a superset of each existing national EBCDIC. In the German table, for
instance, the empty space was used to accommodate characters from other languages, but the
traditional German characters (a , o and u , and B) retained their original position in the
German national EBCDIC. There are many Country Extended Code Pages now, all showing exactly
the same characters, but showing them in different locations. Consider, for example, the character
which has decimal code 161 (octal 241 , hexadecimal A 1). In original EBCDIC this is the - . This is
the sharp s (B) in German, the diaeresis accent (··) in French, the lowercase U in Swedish/Finnish
and Norwegian/Danish, the lowercase l in Italian, and the lowercase ~in Portuguese.

This situation makes it necessary to map the Hewlett-Packard ROMANS character set to the many
different EBCDIC Country Extended Code Pages.

ROMANS to EBCDIC Mapping

In mapping from ROMAN 8 to and from any EBCDIC, characters look the same, or as close as pos­
sible, before and after conversion. The majority of the symbols appearing in ROMANS also exist in
the EBCDIC Country Extended Code Pages. In ROMANS there are nine characters which have no
similar EBCDIC character, and six undefined characters. Since there are no undefined characters in
the EBCDIC Country Extended Code Pages, 15 characters in EBCDIC have no look-alike in
ROMANS. For these characters a one-to-one mapping has been defined as shown in Table D-1.

D-1

EBCDIC Mappings

dee. oct. hex. ROMANS EBCDIC

169 251 A9 ' Grave Accent I Logical OR
170 252 AA

,..
Circumflex Accent Logical NOT _,

172 254 AC ,., Tilde Accent 2 Superscript 2
175 257 AF r. Italian Lira Sign 3 Superscript 3
177 261 81 Presently Undefined 1J. MU Character
178 262 82 Presently Undefined - Double Underline
235 353 EB ~ Uppercase S Caron 1 Uppercase Y Acute
236 354 EC i Lowercase s Caron

,
Lowercase y Acute y

238 356 EE y Uppercase Y Umlaut 1 Lowercase i Without Dot
242 362 f 2 Presently Undefined

i.
Cedilla

243 363 F3 Presently Undefined • Paragraph Sign
244 364 F4 Presently Undefined ® "Registered" Sign
245 365 FS Presently Undefined .. Three Quarters
246 366 F6 - Long Dash SHY Syllable Hyphen
252 374 FC • Solid • Middle Dot

Figure D-1. ROMAN 8 to EBCDIC Mapping

For the Hewlett-Packard KANAS character set, which supports KATAKANA, the mapping to and
from EBCDIC is defined by Japanese Industrial Standards (JIS) and IBM.

In all languages, the character mappings defined and implemented on the HP 3 000 are such that any
character mapped from any Hewlett-Packard 8-bit character set to EBCDIC and then back again, or
vice versa, will result in the original character value. A complete listing of the Hewlett-Packard
8-bit character set to EBCDIC mappings and vice versa can be obtained by running the utility
NLUTI L. PUB. SYS.

The mappings can be made available to a program by the NLINFO intrinsic item 13 or 14. The map­
pings are used by the NL TRANSLATE intrinsic, which performs the Hewlett-Packard 8-bit to EBCDIC
translation or the reverse. The CTRANSLATE intrinsic maps USASCII to EBCDIC (and vice versa) and
maps JISCII to EBCDIK (and vice versa). For the languages NATIVE-3000 and KAT AKANA there
is no difference between the mappings produced by NL TRANSLATE and CTRANSLATE.

D-2

PERIPHERAL CONFIGURATION -

-------~----~--~[]]

Native Language Support (NLS) relies on the use of 8-bit character sets to encode alphabetic,
numeric and special characters required for the proper representation of native languages. Two
character sets are available, ROMAN 8 and KANAS. This Appendix explains how to configure
various printers and terminals supported on the HP 3000 for 8-bit operation, so that ROMANS or
KANAS characters may be entered and displayed.

Most Hewlett-Packard terminals and printers are designed for 8-bit operation. Some have limitations
which are listed as Notes at the end of this Appendix. A listing of relevant Notes is included with the
instructions for each peripheral, and the peripherals to which such notes apply are listed in Table
E-2.

NLS Terminology

The following are definitions of NLS terms:

JISCII

KANAS

ROMANS

Roman Extension

Old ROMANS

Processing Standard

Limited Support

The Japanese version of USASCII. It is a 7-bit character set identical to
USASCII with the exception that the Japanese yen symbol replaces the "\"
character.

The Hewlett-Packard supported 8-bit character set for the support of
phonetic Japanese (katakana). It includes all of JISCII plus the katakana
charac.ters. Refer to Appendix B for the table of KANAS characters.

The Hewlett-Packard supported 8-bit character set for Europe. It includes
all of USASCII plus those characters necessary to support the major western
European languages. Refer to Appendix B for the table of ROMAN 8
characters.

Part of the "old ROMAN 8 11 as implemented on a number of the older
Hewlett-Packard terminals and printers. It is not a character set in itself
but refers to an extension to USASCII. This extension is usually imple­
mented as an alternate character set. The characters in Roman Extension
form a subset of the non-USASCII characters in ROMANS and the same
internal codes are used in both cases.

USASCII plus Roman Extension. The manuals for terminals supporting old
ROMANS contain this table.

The internal Hewlett-Packard 8-bit processing standard for all
Hewlett-Packard products. This standard was developed in anticipation of
NLS and specifies standard character sets, escape sequences, character
designations and invocations and keyboard operation for peripherals and
systems.

Refer to the Notes for each specific peripheral.

E-1

Peripheral Configuration

NLS Peripheral Support Summary

Tables E-1, E-2, and E-3 contain information on which peripherals are fully supported, have
limited support, and those which are not supported.

Table E-1. Peripherals Fully Supported in 8-Bit Operation - All Language Options

Conforms To Supports Supports
Model/Type Processing Standard Full ROMANS Old ROMANS

HP 1 S 0 PC/ As Terminal YES YES YES

HP 2392A Terminal YES NO YES

HP 2563A Printer YES YES YES

HP 2621B Terminal YES NO YES

HP 26 22J Terminal YES YES* N/A*

HP 2623J Terminal YES YES* N/A*

HP 262SA Terminal YES YES YES

HP 2627A Terminal YES NO YES

HP 262SA Terminal YES YES YES

HP 2932A Printer YES YES YES

HP 2933A Printer YES YES YES

HP 2934A Printer YES YES YES

HP 2 7 00 Terminal YES NO YES

* Supports KANAS rather than ROMANS.

E-2

Peripheral Configuration

Table E-2. Peripherals With Limited Support in 8-.Bit Operation

Conforms To Supports Supports
Model/Type Processing Standard Full ROMANS Old ROMANS

HP 2382A Terminal NO NO YES

HP 2608A Printer NO NO YES

HP 2608S Printer NO NO YES

HP 26 22A Terminal NO NO YES

HP 2623A Terminal NO NO YES

HP 2626A Terminal NO NO YES

HP 2626W Terminal NO NO YES

HP 2631B Printer NO NO YES

HP 26358 Prntr/Term NO NO YES

HP 26 4 SJ Terminal NO YES* N/A*

HP 2680A Printer NO NO YES

HP 2688A Printer NO YES YES

* Supports KANAS rather than ROMANS.

Table E-3. Peripherals Not Supported in 8-Bit Operation

Conforms To Supports Supports
Model/Type Processing Standard Full ROMANS Old ROMANS

HP 26 24B Terminal NO NO NO

HP 2687A Printer YES NO NO**

** This printer functions correctly in 8-bit operation (it has no 7-bit operation). However, much
of the ROMANS character set is not implemented and KANAS is unavailable. Some of Roman
Extension is not implemented; but 8-bit characters with some of the Roman Extension values
print in a degraded fashion (i.e., accented vowels print as the corresponding vowel without ac­
cent, and the international currency symbol prints as 11 0 11

).

E-3

Peripheral Configuration

Specifics of 7-Bit Support

No peripherals are supported in 7-bit native language operation.

All peripherals are supported in 7-bit USASCII operation, though the non-USASCII characters are
then unavailable. This includes the devices not listed at all in the preceding tables, because they are
devices which have only 7-bit operation.

If 8-bit data is sent to a device configured for 7-bit USASCII operation, those characters with the
eighth bit on will be displayed as unrelated (but predictable) USASCII characters, or else as blanks,
depending on the device. For example, an "a" displays as "H" on a 2645A terminal.

This Appendix contains specific information on each device supported in 8-bit mode to help configure
these peripherals to utilize NLS capabilities.

NLS Peripheral Support Details

There are two ways to access ROMANS characters not on the keyboard.

From many of the terminal keyboard layouts (e.g., French and Spanish) you can access a few
ROMANS characters (certain accented vowels) from the standard keyboard by using mutes. Enter a
non-spacing diacritical character (such as an accent mark or circumflex), then the unaccented vowel.
The result on the screen is a single, merged character, and usually a single, merged character is
transmitted to the system. (See Notes 7 and 10 for some of the peripherals.)

Accessing ROMANS or KANA8 characters that do not appear on your keyboard can be accomplished
by using "Nc" /"Oc", ". c .. /", c .. , or the "Extend char" key, depending on the terminal. If your
terminal uses "Ne" (or "shifting out"), please consult Notes 1-4 at the end of this Appendix.

E-4

HP 150 P .C. as a Terminal

Requirements

None. ROMAN 8 character set is standard.

Character Set Supported

ROMANS

Configuring For 8-Bit Operation

Global Configuration

Port 1 or Port 2

Terminal Configuration

Language = Language of the keyboard.

Parity = None
DataBits = 8
Check Parity = No

ASCII 8-Bits =Yes

Peripheral Configuration

MPE 1/0 Configuration Terminal Type • 10 (12 if connection is ATC).

Typing ROMANS Characters Not On The Keyboard

Access the ROMAN 8 characters. not on the national keyboard by pressing the "Extend char 11 key,
holding it down while pressing one of the other keys. Most of the accented vowels, as well as the
Spanish R or n, are accessed from most of the national keyboards by means of mutes. The mute is a
diacritical mark such as an accent, circumflex, or diaeresis. Enter a non-spacing diacritical character
(if it is not on the keyboard layout, press the "Extend char" key), then the unaccented vowel (or N or
n). The screen displays a single, merged character, and a single, merged character is transmitted to
the system. The non -spacing diacritical character is not displayed on the screen until the second
character is typed.

Notes

None.

E-5

Peripheral Configuration

HP 2382A Terminal

Requirements

Option 001, 002, 003, 004, 005, 006 or 007 (National keyboard and ROM).

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Datacomm Configuration

Terminal Configuration

MPE 1/0 Configuration

Parity • None
Chk Parity = No

ASCII 8-Bits •Yes
Language• Language of the keyboard layout.

Terminal Type • l 0 (12 if connection is A TC).

To configure the terminal for 8-bit operation as the default, set switches AS•up, A6•down, A 7•up,
Bl-down.

Typing USASCll/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=fRANCAIS azM, fRANCAIS qwM, or
ESPANOL M, some Roman Extension characters (certain accented vowels) are accessible from the stan­
dard keyboard by using mutes. Enter a non-spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character. With a national keyboard, the USASCII
characters, which are replaced on the keyboard, cannot be entered, but they can be displayed when
received from the system.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter c c
"N " to do so. Enter 11 0 11 to return to the usual keyboard layout.

Notes

1,2,4,5,6,7,9.

E-6

Peripheral Configuration

HP 2392A Terminal

Requirements

None. A subset of the ROMAN 8 character set is standard.

Character Set Supported

A subset of ROMANS (the last two columns of the ROMANS table are missing).

Configuring For 8-Bit Operation

Datacomm Configuration

Terminal Configuration

MPE 1/0 Configuration

Parity /DataBits = None/ 8.

Keyboard= National layout of keyboard.
Language = Language in which terminal messages and labels are to
appear.

Terminal Type= 10 (12 if connection is ATC).

Typing ROMANS Characters Not On Keyboard

Some ROMANS characters (certain accented vowels) are accessible from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen dis­
plays a single, merged character~ and a single, merged character is transmitted to the system (in both
character and block mode).

ROMAN 8 characters not on the keyboard are accessible by pressing the "Extend char" key, holding it
down while pressing another key. Most accented vowels are accessed via mute character combina­
tions. The mute character itself is accessed via the "Extend char" key, and the vowel from the stan­
dard keyboard. The placement of extended characters is in Appendix B of the HP 2392A Display
Station Reference Manual (02392-90001).

Notes

None.

E-7

Peripheral Configuration

HP 2563A Printer

Requirements

None. ROMANS character set is standard.
(KANAS is available with Option #002.)

Character Set Supported

ROMANS, KANAS

Configuring For 8-Blt Operation

Printer

MPE 1/0 Configuration

Notes

None.

· Set primary character set • 20 (ROMANS) or = 21 (KANAS) via the
switches on the front panel. If the printer has a serial interface, set
DataBits = 8, Parity • None. These configurations can also be done
programmatically with escape sequences.

For serial interface, configure the printer on the HP 3000 as Term type
• 20 (8-bits of data). On a Multipoint line, use Termtype • 18 or 22.
For HP-IB interface, use Type • 32, Subtype • 9. This permits
programmatic reconfiguration via escape sequences.

E-S

HP 2608A/HP 26088 Printers

Requirements

Option 001 and 002 for KANAS.
Option 002 for Roman Extension.

Character Set Supported

KANAS
USASCII plus Roman Extension

Configuring For 8-Blt Operation

Set switches on front panel: USASCil+RomExt
Primary Language= 0000
Secondary Language = 1111

KANAS
Primary Language • 111 0
Secondary Language• 0011

Peripheral Configuration

On the HP 2608S only, a program can also set these values via escape sequences.

MPE 1/0 Configuration Termtype • 20 or 22.

Notes

9, 11.

E-9

Peripheral Configuration

HP 26218 Terminal

Requirements

Option 001,002,003,004,005,006 and/or 010 (National keyboard and/or extended character set
ROMs).

Option 101,102,103,104,105,106 and/or 110 (Extended national keyboard and/or ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Set switches PO,Pl ,P2:

Set switches LO,Ll ,L2:

MPE 1/0 Configuration

Set to 0, 1,0 (down,up,down).

Set to language of keyboard layout (see HP 2621B Manual
(02620-90062), for settings for keyboard layout), and switch 5 of the
left-hand group• 0 to activate the keyboard of that language.

Terminal Type = 10 (12 if connection is ATC).

Typing USASCll/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish a few Roman Extension characters (certain accented
vowels) are accessible from the standard keyboard by using mutes. Enter a non-spacing diacritical
character, then the unaccented vowel. The screen displays a single, merged character, and a single,
merged character is transmitted to the system.

Roman Extension characters (except those available via mutes) not available on the keyboard cannot
be entered. But they can be displayed when received from the system.

The USASCII characters which are replaced on the native keyboard are available after pressing
(I' 1 1 in the "modes" level (an asterisk will appear next to the "USASCII" label for this function
key). This causes the keyboard to become the standard USASCII layout. Press l 1'1 J again (the as­
terisk will disappear) to return to the native keyboard.

Notes

10.

E-10

Peripheral Configuration

HP 2622A/HP 2623A Terminals

Requirements

Option 001, 002, 003, 004, 005, 006 or 202 (National keyboard and/or extended character set
ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Da tacomm Configuration

Terminal Configuration

MPE 1/0 Configuration

Parity = None
Chk Parity= No

ASCII 8-Bits =Yes
Language = Language of the keyboard layout.

Terminal Type = 10 (12 if connection is A TC).

Typing USASCll/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=f'RANCAIS azM, f'RANCAIS qwM, or
ESPANOL M, a few Roman Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non-spacing diacritical character, then the unaccented
vowel. The screen displays a single , merged character. Access the USASCII characters replaced on a
national keyboard by pressing ls H 1 FT I and one of the numeric pad keys.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter c c 11 N 11 to do so. Enter 11 0 11 to return to the usualkeyboard layout.

Notes

1,2,4,5,6,7,9.

E-11

Peripheral Configuration

HP 2622J/HP 2623J Terminals

Requirements

None. Katakana is standard.

Character Set Supported

KANAS.

Configuring For 8-Bit Operation

Datacomm Configuration

Terminal Configuration

MPE 1/0 Configuration

Parity= None
Chk Parity = No

ASCII 8-Bits =Yes

Terminal Type = 1 0 (12 if connection is A TC).

Typing KANAS Characters Not On The Keyboard

Access the KANA 8 characters not in JISCII by pressing the "katakana 11 key to enter katakana mode.
Press the "CAPS" key to return to the JISCII keyboard.

Notes

None.

E-12

HP 2625A/HP 2628A Terminals

R~qulrements

None. ROMAN 8 character set is standard.

Character Set Supported

ROMANS

Configuring For 8-Bit Operation

Datacomm Configuration

Terminal Configuration

Parity= None
Chk Parity = No
DataBits = 8 (in Multipoint: Code= ASCl18).

ASCII 8-Bits =Yes

Peripheral Configuration

MPE 1/0 Configuration Terminal Type s 10 (12 if connection is A TC).

Typing ROMANS Characters Not On The Keyboard

If the keyboard layout is French or Spanish a few ROMAN 8 characters (certain accented vowels) can
be accessed from the standard keyboard by using mutes. Enter a non-spacing diacritical character,
then the unaccented vowel. The screen displays a single, merged character, and a single, merged
character is transmitted to the system (in both character and block mode).

Access the ROMAN 8 characters not on the keyboard by pressing 11
• c 11 to enter "extended characters

mode." When not using the USASCII keyboard, this may not actually be the key labelled period (.)
but the period key for the USASCII keyboard. A keyboard layout showing the placement of extended
characters is located in the User's Manual for the HP 262SA Dual-System Display Terminal and HP
2628A Word-Processing Terminal (02625-90001). Enter 11

, c .. to return to the usual keyboard
layout.

Notes

None.

E-13

Peripheral Configuration

HP 2626A/HP 2626W Terminals

Requirements

Option 001, 002, 003, 004, 005, 006 or 201 (National keyboard and/or extended character set
ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Global Configuration

Datacomm Configuration

Terminal Configuration

MPE 1/0 Configuration

Language = Language of keyboard layout.

Parity= None
Chk Parity= No
DataBits = 8 (In Multipoint: Code= ASCII8).

ASCII 8-Bits =Yes
ESC) A = RomanExt*
Alternate Set =A.

Terminal Type = 10 { 1 2 if connection is A TC).

*On some versions of· the 2626W the RomanExt and BOLD alternate sets are exchanged. Press
IDENTIFY ROMS; if CHARACTER ROMS show 1818-1916 and 1818-1917, Rev.A, set ESC) A=
BOLD to access ROMAN 8.

Typing USASCll/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRP.NCAIS qwM, or
ESPANOL M, a few Roman Extension characters {certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non-spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character. Access the USASCII characters replaced on a
national keyboard by pressing (SH I FT) and one of the numeric pad keys.

Acgess the Roman Exte1bsion characters not on the keyboard by shi(ting out the keyboard. Enter
"N 11 to do so. Enter "O "to return to the usual keyboard layout.

Notes

1,2,3,5,6,7,8,9.

E-14

HP 2627 A Terminal

Requirements

None. Roman Extension is standard.

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Datacomm Configuration

Terminal Configuration

Parity = None
Chk Parity = No

Language= Language of keyboard layout.
ASCII 8-Bits =Yes

Peripheral Configuration

MPE 1/0 Configuration Terminal Type = l 0 (12 if connection is A TC).

Typing USASCll/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=f'RANCAIS azM, f'RANCAIS qwM, or
ESPANOL M, a few Roman Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mut.es. Enter a non -spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character, and a single, merged character is transmitted
to the system (in both character and block mode).

Access the USASCII or Roman Extension characters not on the keyboard by putting the keyboard in
Foreign Characters mode. Enter 11

• c .. to do so. Find the keyboard location of a~ desired character
in the HP 2627A Display Station Reference Manual (02627-90002). Enter ", 11 to return to the
usual keyboard layout.

Notes

4.

E-15

Peripheral Configuration

HP 26318 Printer

Requirements

Roman Extension and katakana are now standard. Formerly option #008 (katakana) or #009
(Roman Extension) was required.

Character Set Supported

KANAS
USASCII plus Roman Extension

Configuring For 8-Blt Operation

Set the rocker switches on the Serial 1/0 Interface PCA (S2, inside the printer) as follows:

Switches 6 , 7 Set to 00 (both open).
(Received eighth bit passed).

Set the rocker switches on the Printer Logic PCA (inside the printer) as follows:

In 1st Group of 7

In 2nd Group of 10

Front Panel Switches

MPE 1/0 Configuration

Notes

9,11,14.

Set Switch 7 • 0 (Open) (8-bit Datacomm).

Set Switches 1-5 • 11111 (USASCII) ; 10110 (JISCII).
Set Switches 6-10 = 10001 (Roman Extension) ; 10101 (katakana).

Parity• 00 (None).

Subtype• 14 (not supported if connection is ATC).
Terminal Type• 20 or 22.

E-16

Peripheral Configuration

HP 26358 Printer /Terminal

Requirements

Roman extension is now standard. Formerly one of options #001 , 002, 003, 004, 005 or 006 (na­
tional keyboards) was required.

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Set the rocker switches on the Serial 1/0 Interface PCA (S2, inside the printer) as follows:

Switches 6, 7 Set 00 (both open).
(Received eighth bit passed).

Set the rocker switches on the Printer Logic PCA (inside the terminal) as follows:

In 1st Group of 7 Set Switch 7 • 0 (Open) (8-bit Datacomm).

In 2nd Group of 10 Set Switches 1-S • 11111 (USASCII).
Set Switches 6-10 • 10001 (Roman Extension).

Set the rocker switches on the keyboard PCA (inside the terminal) as follows:

Set Switches 4-8

Front Panel Switch

MPE 1/0 Configuration

Notes

1,2,5,7,9,11.

Set to language of terminal keyboard. Refer to the HP 2630B Family
Reference Manual (02631-90918) for a list of keyboard layouts and
the corresponding switch settings.

Parity •None.

Terminal Type • 1 S.

E-17

Peripheral Configuration

HP 2645J Terminal

Requirements

None. Katakana is standard.

Character Set Supported

KANAS

Configuring For 8-Bit Operation

Datacomm Configuration Parity = None

MPE 1/0 Configuration Terminal Type = 1 0 (12 if connection is A TC).

Typing KANAS Characters Not On Keyboard

Access the KANA 8 characters not in JISCII by pressing the "katakana 11 key to enter katakana mode.
Press the katakana key again to return the keyboard to its JISCII layout. Alternatively, press the
right [s HI FT) key (once by itself) to enter katakana mode, and the left [s HI FT 1 key to exit from it.

Notes

9 ,12.

E-18

HP 2680A Printer

Requirements

Environment files ending in "X" for USASCII plus Roman Extension.
Environment files ending in "K" for KANAS.

Character Set Supported

USASCII plus Roman Extension
KANAS

Configuring For 8-Blt Operation

Peripheral Configuratio~

Use the environment files ending in "X" (for USASCII plus Roman Extension) or those ending in "K"
(for KANAS).

Notes

9, 11.

E-19

Peripheral Configuration

HP 2688A Printer

Requirements

Environment files COUR.rA, GOTH.rA, LPBB, PICA.rA, PRESxA, ROMP.rA, SCRPRA.

Character Set Supported

ROMANS

Configuring For 8-Blt Operation

Use one of the environment files listed above for support of ROMAN 8.

Notes

9, 11.

E-20

HP 2700 Terminal

Requirements

None. Roman Extension is standard.

Character Set Supported

USASCII plus Roman Extension.

Configuring For 8-Bit Operation

Port 1 or Port 2
Configuration

Terminal Configuration

Parity /DataBits = None/ 8.
Chk Parity = No

Language = Language of keyboard layout.
ASCII 8-Bits =ON.

Peripheral Configuration

MPE 1/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCll/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS gwM, or
ESPANOL M, a few Roman Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non-spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character, and a single, merged character is transmitted
to the system (in both character and block mode).

Access the USASCII or Roman Extension characters not on the keyboard by putting the keyboard in
Foreign Characters mode. Enter 11

• c .. to do so. Find the keyboard location of any desired character
using the algorithm in the HP 2700 Family Alphanumeric Reference Manual (02703-90003). Enter

c 11
,

11 to return to the usual keyboard layout.

Notes

3, 13.

E-21

Peripheral Conf igura ti on

HP 2932A/HP 2933A/HP 2934A Printers

Requirements

None. ROMANS and KANA 8 character sets are standard.

Character Set Supported

ROMANS, KANAS

Configuring For 8-Blt Operation

Printer

MPE 1/0 Configuration

Notes

None.

From the front panel, in the Printer Print Settings, set Primary
Character Set• 1 (ROMANS) or• 2 (KANAS).

For serial interface, in the Interface Data Settings, set DataBits • 8,
Parity = None.

For Multipoint, set Parity• None, Code• ASCII8.

These can also be done programmatically with escape sequences.

For serial interface, configure the printer on your HP 3000 as
Termtype • 20 (S bits of data) (not supported via ATC connection or
ADCC with HIOTERMO.) On a Multipoint line, use Terminal Type•
18 or 22.

E-22

Peripheral Configuration

NOTES

The following Notes apply to the peripherals covered in this Appendix. Refer to the description of
each peripheral for a list of which Notes apply to it.

1. When 11 Nc 11 (shift out) and 11 0c 11 (shift in), are used to shift the keyboard out for Roman
Extension, they are transmitted to the system when the terminal is in character mode. This
results in superfluous data in the byte stream sent to the system.
(HP 2 3 8 2 , 26 2 2, 2 6 2 3 , 2 6 2 6 , 2 6 3 S)

2. When shift out and shift in are sent to the terminal they have no effect on the active character
set (as expected by some software), but they do affect subsequent keyboard operation, as if
they had been typed in.
(HP 2382, 2622, 2623, 2626, 26 35)

3. When the keyboard is shifted out, (in Foreign Characters mode for the HP 2.700 family), the
space bar sends %240 instead of %40, and the DEL key sends %377 instead of %177.
(HP 2626, 2700)

4. When the keyboard is shifted out (in Foreign Characters mode for the HP 2627), the space bar
sends %240 instead of %40, and the DEL key sends nothing. This has been fixed in the most
recent versions of the 2622 and 2623 terminals. These will show as ROMs 1818-3199/3203
with Date Code 2313 or later (2622), and 1818-3223/3228 with Date Code 2335 or later
(2623).
(HP 2382, 2622, 2~23, 2627)

5. If "(ESCAPE)) 811 or 11 (ESCAPEJ)C" is entered or transmitted to the terminal, the alternate charac­
ter set will be redefined (e.g., to line draw or math). This will cause all would be Roman
Extension characters, whether displayed on the terminal or entered via one of the methods list­
ed above, to appear as the corresponding line draw or math symbols (or blanks, if that alternate
set is not present in the terminal). To remedy this, enter "Oc(ESCAPEJ)A" (on the HP 2626A,
reset Alternate Set to A in the TERMINAL CONFIGURATION menu). Note that data entered
or displayed while the terminal has another alternate character set defined is correct internally
even though it may not display correctly on the terminal.
(HP 2382, 2622, 2623, 2626, 2635)

6. When the terminal is in block mode and one or more Roman Extension characters are entered ·
(e.g., 11 011

), then CENTER) is pressed, what is transmitted to the system, and written to the
buffer of the program reading from the terminal, is "(ESCAPE)) U". This is the terminal's way of
compensating for Note S. It means that when the data is sent back again from the computer,
"O" will always display this way, and not as the corresponding line draw or math symbol. It

also means that there may be more information in the program buffer than the user or the
programmer is expecting, or there is less room in that buffer for other information. Note that
if the terminal is controlled by VPLUS/3000, it strips out the escape sequence before passing
the data on to the calling program's buffer (and from there to the data file or data base).
(HP 2382, 2622, 2623, 2626)

E-23

Peripheral Configuration

7. For the languages FRANCAIS azM, FRANCAIS qwM, and ESPANOL M when mutes are used
and the terminal is in character mode, two characters are sent to to the system although a
single, merged character appears on the screen. This means that an incorrect two-byte
representation of the accented character will be received by the program or file. The next time
they are displayed the terminal will put them back together, provided the terminal is still con­
figured for FRANCAIS azM, FRANCAIS qwM, or ESPANOL M. In block mode a single
character (the correct ROMAN 8 code for the merged character) is sent to the system.
(HP 2 3 S 2, 2 6 2 2, 2 6 2 3 , 2 6 2 6 , 2 6 3 5)

8. When softkey labels which contain extended characters (in the range %200-%377) are received
from the system, the extended characters are lost and the inverse video is turned off on the
label.
(HP 2626)

9. This device does not actually support S-bit character sets, but simulates them by handling two
7-bit character sets, a primary and an alternate. Legitimate data from real alternate character
sets (line draw or math) cannot be used in a supported (standard) way together with general
ROMANS (KANAS) data because these devices treat Roman Extension (katakana) as an alter­
nate character set, in 8-bit mode. All alternate character sets are addressed by codes with the
eighth bit set to one; Roman Extension (katakana) must share this position with the other al­
ternate sets through the use of escape sequences (11 [ESCAPEJ).x 11

), and on the terminals shift­
in/shift-out are unsuitable for invoking alternate sets. The practical result of this is that NLS
will not support the use of alternate character sets together with ROMANS (KANAS) data on
these devices. Configure the device for 8-bit mode as documented, then limit the data to (old)
ROMANS (KANAS).
(HP 2382, 2608, 2622A, 2623A, 2626, 2631, 2635, 26451, 2680, 2688)

10. For the French and Spanish keyboards, when mutes are used and a mute diacritical is entered
followed by a space, the ROMANS codes for the diacritical and the space are both transmitted
to the system , not just the ROMAN 8 character for the diacritical.
(HP 26218)

11. When a shift-out character is sent to the printer, it causes subsequent data (until a shift-in is
sent) to be selected from the alternate character set, whether or not the eighth bit is on.
(HP 2 6 0 8 , 2 6 31 , 2 6 3 5 , 2 6 S 0, 2 6 8 8)

12. When the system sends an S-bit character the terminal shifts into katakana mode until a 7-bit
character is received. For example, switching terminal speed with the MPE : SPEED command
sometimes results in the receipt of an 8-bit character from the system. The user will need to
exit katakana mode before entering 11 MPE 11 to signal that the speed has been changed.
(HP 26451)

13. When the terminal is in Block Format mode (e.g., under control of VPLUS), an attempt to
read the character %254 (tilde-accent in ROMANS) from an input field causes the read to
hang.
(HP 2700)

14. Versions of the 263 lB with Printer Logic PCA #02631-60225 are not supported, because
switch 7 (8 bit datacomm) is ignored. It is possible to configure 8 bit datacomm on this PCA
programmatically via an escape sequence; but the program must do so before every data
transfer.
(HP 26318)

E-24

CONVERTING 7-BIT TO 8-BIT DATA -
-----~~~~~~~----[[]

Many Hewlett-Packard peripherals can be configured for 7-bit operation with one of the European
language national substitution character sets. These peripherals must be converted to 8-bit operation
to access Native Language Support (NLS) capability. NLS requires the use of 8-bit character sets
which include USASCII and native language characters.

NLS for western European languages is based on the ROMAN 8 character set in which the additional
characters required are assigned to unique values between 128 and 255. It requires eight bits to hold
the value of a ROMAN 8 character. All the special European characters are accessible in ROMAN 8
without losing any of the USASCII characters.

The 7-bit national substitution sets do not offer a full complement of characters. New characters
replace existing ones. In FRANCAIS, for example, the graphic symbol 11 # 11 is not available. In
Spanish and French, even the substitutions made are not sufficient to obtain all the necessary new
characters. The use of mute characters is required. Mute characters provide a single graphic on the
terminal screen or paper for two bytes of storage and two keystrokes. For example, an "e" in Spanish
or French would be produced with an accent mark plus an "e", whereas ROMANS contains the "e"
as a single character. In any one language, the graphic symbols for other European countries are not
available at all. For example, a French user does not have access to the necessary characters to
properly address a letter to someone in Germany. The ROMANS S-bit character set eliminates these
problems.

National Substitution Sets

Many Hewlett-Packard peripherals support the 7-bit national substitution sets for the following lan­
guages. (They are listed here as they appear on the terminal configuration menus of the terminals
which support them):

SVENSK/SUOMI
DANSK/NORSK
FRANCAIS M
FRANCA IS
DEUTSCH
UK
ESPANOL M
ESPANOL
ITALIANO (On a few devices only.)

These are 7-bit national substitution character sets or languages in which one or more of 12 USASCII
graphic symbols are replaced by other graphic symbols required for the national language being used.
The same 7-bit internal code is displayed as a different symbol than that assigned to it by USASCII.
For example, in USASCII the decimal value 35 is assigned to the graphic symbol "#"; but in the
FRANCAIS national substitution set, the same decimal value 3 5 is assigned to the graphic symbol
"t".

Users who have been using these (HP 262X) terminals in 7-bit operation for many years may have a
substantial investment in data which is encoded in one of these 7-bit national substitution character
sets. Hewlett-Packard is making several conversion utilities available to convert this data to
ROMANS.

F-1

Converting 7-Bit To 8-Bit Data

Conversion Utilities

Because NLS involves using full 8-bit character sets for all data, customers wanting to use the facility
will need to configure their peripherals for 8-bit operation. (This is not possible for the HP 264X
terminals.) The national substitution characters, if input on a terminal configured for 7-bit opera­
tion, will not display correctly on a terminal or printer configured for 8-bit operation.

Several utilities are available to convert existing data that has been input with an HP 262X terminal
configured for 7-bit operation. Refer to Table F-1 for a listing of these utilities. The premise of
these utilities is that users will run them once for each file which needs converting, and will configure
all their peripherals for 8-bit operation. Thereafter, peripherals will only be used in 8-bit operation.

Table F-1. Conversion Utilities by File Type

File Type Utility to be Used ior Conversion

EDITOR files. N7MF8CNV (text option).

Other MPE files which N7MF8CNV (text option).
are all text.

MPE files in which text N7MF8CNV (text option; data option if language is
data is organized in fields FRANCAIS Mor ESPANOL M).
which need to start in fixed
columns.

MPE files which include N7MF 8CNV (data option).
some non text data (e.g.,
integer or real).

IMAGE data bases. 17DB8CNV.

VPLUS forms files. V7FF8CNV.

HPWORD files. HPWORD internal files have always been based on a subset of
ROMAN 8. No conversion is necessary.

TDP files. Run N 7MF 8CNV and then change back whatever 11
\" is con -

verted to in the chosen language in case you need the 11
\

11 for
embedded TDP commands.

F-2

Converting 7-Bit To 8-Bit Data

Conversion Algorithm

The conversion utilities convert records or fields from files wllich are assumed to have been created at
an HP 262X terminal configured for 7-bit operation, and for a language other than USASCII. The
conversion is from the HP 262X implementation of a European 7-bit substitution character set to the
8-bit ROMANS character set. This involves converting the values with which certain characters are
stored in the file. Before conversion, the file should look correct on a HP 262X terminal configured
for 7-bit operation with the appropriate substitution set. After conversion the file will look correct
on any terminal configured for 8-bit operation.

Records and/or fields from files of all types are converted using the same algorithm which is expressed
in Figure F-1. The conversion affects only the 12 characters shown in the table. All other charac­
ters remain unchanged.

To use this table, find the desired national substitution set on the left. The uppermost row shows the
7-bit decimal values for which substitutions may have been made. There are two rows of informa­
tion opposite each national substitution set. The upper row shows the graphic assigned in 7-bit opera­
tion and the lower row the decimal value assigned the graphic in ROMAN 8 after using the conversion
algorithm.

When certain FRANCAIS Mand ESPANOL M characters are followed immediately by certain other
characters, the two-character combination is converted to a single ROMAN 8 character, and the field
or record being converted is padded at the end with a blank:

FRANCAISM

""(94) followed by a, e, i, o, or u is converted to a(192), e(193), 1(209), 8(194), or
Q (195).

•• (126) followed by a, e, i , o, or u is converted to a (204) , i (205) , Y (221), o (206) ,
a (201) .

.. (126) followed by A, 0, or U is converted to X(216), t)(218), or 0(219).

ESPANOLM

'(39) followed by a, e, i, o, or u is converted to a{196), e(197), 1(213), 6(198}, ~r
u (199).

If these characters are followed by any other character, they are converted to their ROMANS equiv­
alent as shown in Figure F-1.

F-3

Converting 7-Bit To 8-Bit Data

CHARACTER CONVERSION

Decimal Value of Character to be Converted

National
Subst.Set 35 39 64 91 92 93 94 96 123 124 125 126

USASCI I # @ \ { }

SVE/SUOMI # ~ x 0 A 0
, a a a u e

35 39 220 216 218 208 219 197 204 206 212 207

DANSK/NORSK # @ ,it fij A "" ae ,s a
35 39 64 211 210 208 94 96 215 214 212 126

fRANCAIS £ ' 0 § A ,
' ' a <; e u e

187 39 200 179 181 189 170 96 197 203 201 ' 171

fRANCAIS M £ ' 0 §
,.. ,

' ' a ~ e u e
187 39 200 179 181 189 170 96 197 203 201 171

DEUTSCH £ § x 0 0 "" a a a B
187 39 189 216 218 219 94 96 204 206 207 222

U K £ @ [\ 1 "" { I }
187 39 64 91 92 93 94 96 123 124 125 126

ESPANOL ii @ i R l 0 { n }
35 39 64 184 182 185 179 96 123 183 125 126

ESPANOL M II @ i R t 0 { n }
35 168 64 184 182 185 179 96 123 183 125 126

ITALIANO l @ 0
,

' ' ' ' ' <; e "' u a 0 e 1

187 39 64 179 181 197 94 203 200 202 201 217

Figure F-1. Character Conversion Data

F-4

Conversion Procedure
Converting 7-Bit To 8-Bit Data

To convert 7-bit substitution data to 8-bit ROMANS data:

1. Determine which files need to be converted. A file must be converted if the data was input
from an HP 262X terminal configured for 7-bit operation, or for a national substitution set
other than USASCII.

2. Determine the national substitution set ("language" on the terminal configuration menu) from
which the conversion should be done for each file. This is the language the HP 262X terminal
was configured for at the time the file data was input.

3. Refer to Table F-1 to determine which utility should be used to convert each file.

4. Back up all files to be converted (:STORE to tape or SYSDUMP).

5. Run each utility, supplying it with the language and file names as determined above.
Instructions for running each utility are found at the end of this Appendix.

6. Configure all terminals and printers for 8-bit operation. (At least one terminal must already be
configured for 8-bit operation when the V7FF8CNV utility is run.) Refer to Appendix E,
"PERIPHERAL CONFIGURATION. II

Figure F-2 is a sample dialogue from a session executing N7MF8CNV for both text and data files.

:RUN N7Mf8CNV.PUB.SYS

HP European 7-Bit character sets are:

1. SVENSK/SUOMI
2. DANSK/NORSK
3. FRANCAIS M
4. FRANCAIS
5. DEUTSCH
6. UK
7. ESPANOL M
8. ESPANOL
9. ITALIANO

From which character set should conversion be done: 5
File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted: 1

Name of text fllo to be converted: ABC

112 records converted in ABC

Name of text f 11 e to be converted : (RETURN)

Figure F-2. N7MF8CNV Dialogue (1 of 2)

F-S

Converting 7-Bit To 8-Bit Data

File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted: 2

Name of data file
Please supply one

Start, Length:

to be converted: XYZ

Start, Length:
Start, Length:
Start, Length:

at a time the fie~to be converted (first byte is 1).
1 '12

15,30
61, 6
(RETURN)

Data file XYZ: fields to be converted are:

1 ' 12
15, 30
61, 6
Correct ? l'='RE.,,......T...,...,U,.,....RN""'""')

287 records converted in XYZ

Name of data file to be converted: (RETURN]

File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted: (RETURN)

HP European 7-Bit character sets are:

1. SVENSK/SUOMI
2. DANSK/NORSK
3. FRANCA IS M
4. FRANCAIS
5. DEUTSCH
6. UK
7. ESPANOL M
8. ESPANOL
9. ITALIANO

From which character set should conversion be done: ~ETURNJ

END OF PROGRAM

Figure F-2. N7MF8CNV Dialogue (2 of 2)

F-6

Converting 7-Bit To 8-Bit Data

N7MF8CNV Utility

N7MF8CNV converts data in EDIT/3000 and other MPE text and data files from a Hewlett-Packard
7-bit national substitution character set to ROMANS. The user is prompted for language and file
type (text or data). For a data file, the user will be prompted on each file for the starting position
and length of each field (portion of a record) to be converted. For a text file, each record is convert­
ed as one field.

The user is prompted for the name of each file to be converted. Files are read one record at a time;
each record is converted (or certain fields of it are converted for data files), and the result is written
to a new temporary file. When all records have been read, converted and written to the new file, the
old (unconverted) copy is deleted, and the new one saved in its place. An exception to this is KSAM
files, which are converted in place, rather than written to a new temporary file. A count of the
number of records read and converted is displayed on $STD LI ST.

This utility will not convert files containing bytes with the eighth bit set. This situation probably in­
dicates a misunderstanding or error. The likely causes are:

e File is not a text or data file.

• File is a data file for which the fields have been inaccurately located.

• File was created on a terminal configured for 8-bit operation.

• File has already been converted.

The- maximum record length supported is 8192 bytes. The maximum number of fields supported in
the records of a data file is 256.

If the file being converted contains user labels, these are copied to the new file without conversion. If
a fatal error is encountered during the conversion (e.g., 8-bit data or file system error found) the
conversion stops, the old copy of the file is saved, and the new copy is purged. The data is unchang­
ed. An exception to this is KSAM files. Since these are converted in place, some records may already
have been modified. KSAM files (including key file) should be restored from the backup tape to en­
sure a consistent copy.

A Ye entered during conversion displays the number of records successfully converted and conversion
continues. On variable length data files, if a field or portion of a field is beyond the length of the
record just read, a warning is displayed and that field is not converted on that record. Other fields on
the same record are converted, and processing continues with subsequent records. After each file has
been converted, the user is prompted for another file name.

In addition to the text and data options, there is a test conversion option which shows how the conver­
sion algorithm operates. The test conversion option must be run from a terminal configured for 7-bit
operation with the chosen national substitution set. The user is instructed to enter a string, and the
result of the conversion is displayed. The user does not have to switch back and forth between 7-bit
and 8-bit operation to see the result. Each character converted is displayed as a decimal value in
parentheses rather than graphically. Other characters are displayed unchanged.

At any point in the program, a (RETURN} exits the current program level at which the user is located.
A (RETURN) in response to a request for the starting position and length of a field in a data file indi­
cates that the definition of fields is complete, and the program proceeds with the conversion of the
data file. A (RETURN) entered in response to a request for a text file name indicates the conversion of
text files is complete; the program goes back to the question: 11Type of file to be
converted?".

F-7

Con.verting 7-Bit To 8-Bit Data

I 7DB8CNV Utility

I7DB8CNV converts the character data in an IMAGE data base from an Hewlett-Packard 7-bit na­
tional substitution set to ROMAN 8. The program is a special version of the DBLOAD. PUB. SYS
program,. and the conversion is done as part of a data base load. The procedure for running
I 7DB 8CNV is:

1. Run DBUNLOAD. PUB.SYS to unload your data base to tape.

2. Run DBUTI L. PUB. SYS, ERASE to erase the data in your data base.

3. Run I 7DB8CNV to convert the data and load it back into your data base.

17DB8CNV will request the following:

1. The 7-bit national substitution set from which the conversion is to be made.

2. The data base name.

3. The utility prompts the user: Convert al 1 data fields of type X or U. "YES" or
(RETURN) means "YES". If a "NO" is entered, the user will be prompted in each data set for
each field of type U or X.

The single field in an automatic data set is not proposed for conversion. Whether or not its
values are converted depends on the response to the item(s) through which it is linked to detail
data set(s). At the end of each data set, the user is asked to confirm that the correct fields to·
be converted from that data set have been selected. Again, a (RETURN) is treated as a "YES"
answer. Enter 11 N11 or "n 11 to change the data fields in that data set to be converted.

I7DB8CNV then loads the data base from tape. As each record is read, those fields which were selec­
ted have their data converted according to the algorithm for the 7-bit national substitution set which
was selected at the beginning of the program.

17DB8CNV will not allow 8-bit data (bytes with the high-order bit set) in the data fields it is trying
to convert. The utility will not abort but the field in question will not be converted, and a warning
will be issued :

**WARNING: 8-bit data encountered in item [itemname in DS data set].

If the program should abort for any reason during the conversion, the user must log on again to clear
the temporary files used during the conversion process before running the program again.

Figure F- 3 shows the dialogue from a sample run of the I 7DB 8CNV program.

F-8

Converting 7-Bit To 8-Bit Data

:RUN I7DB8CNV.PUB.SYS

HP European 7-bit character sets are:

1. SVENSK/SUOMI
2. DANSK/NORSK
3. FRANCAIS
4. FRANCAIS M
5. DEUTSCH
6. U K
7. ESPANOL
8. ESPANOL M
9. ITALIANO

from which character set should conversion be done: 2

WHICH DATA BASE: QWERTZ

Convert all fields of type U,X in all data sets (Y/N)? ~

Data Set
ITEM1
ITEM2
ITEM3
ITEM4

SET1 fields to be converted:
(Y /N)? (RETURN)
(Y /N)? (RETURN)

(Y/N)? N
(y /N) ? ;;;:(R'=Er,,.,..u-=R~N)

Is Data Set SET1 correctly defined (Y/N)? (RETURN)

Data Set SET2 - Automa~ic Master

Data Set SET3
ITEM1

fields to be converted:
(Y /N)? (RETURN)

ITEMS (Y/N)? N
ITEMS (Y/N)? N
Is Data Set SET3 correctly defined (Y/N)? (RETURN)

DATA SET 1: 19 ENTRIES
DATA SET 2: 0 ENTRIES
DATA SET 3: 25 ENTRIES
END Of VOLUME 1, 0 READ ERRORS RECOVERED
DATA BASE LOADED

ENO Of PROGRAM

Figure F- 3. 17DB SCNV Dialogue

F-9

Converting 7-Bit To 8-Bit Data

V7FF8CNV Utility

V7FF8CNV converts text and literals in VPLUS/3000 forms files from a Hewlett-Packard 7-bit na­
tional substitution character set to ROMANS. V7FF8CNV is a special version of
FORMSPEC. PUB.SYS and is run the same way. Before running this utility back up the forms file
(:STORE to tape or SYSDUMP), then:

1. Configure your terminal for 8-bit operation. (Refer to Appendix E, "PERIPHERAL
CONFIGURATION," for information on specific terminal configuration.)

2. Run V7FF8CNV.PUB.SYS, stepping through each form, field definition, save field, function
key label. As each screen is presented on the terminal, 7-bit substitution characters have al­
ready been converted to their ROMAN 8 equivalent.

3. If the data is correct, press [ENTER) and proceed to the next screen. If not, correct the data,
then press [ENTER J to continue.

4. After all screens are converted, recompile the forms file as usual.

Conversion applies to substitution characters found in all source records in VPLUS/3000 forms files
with the following exception: substitution characters for " [" and "] " are not converted in screen
source records since these indicate start and stop of data fields. The following would be converted:

• Text in screens.

• ·Function key la be ls.

• Initial values in save field definitions.

• Initial values in field definitions.

• Literals in processing specifications.

V7FF8CNV and Alternate Character Sets

Hewlett-Packard block-mode terminals which have the capability to handle all or part of ROMANS
can be divided into two groups, based on how they handle alternate character sets when configured
for 8-bit operation.

GROUP ONE - HP 2392A, 2625A, 2627A, 2628A, 2700, and 150. Use shift-out and shift-in
characters to switch back and forth between an 8-bit base character set and an 8-bit alternate
character set. This is the standard for new Hewlett-Packard terminals and printers.

GROUP TWO - n? 2622A, 2623A, 2626A, and 23821.. (Do not use an HP 2624A or HP 2624B
as they are unable to handle 8-bit characters properly.) Group Two terminals use the eighth bit to
switch back and forth between a 7-bit base character set and a 7-bit alternate character set.
Therefore, it is not possible to get true 8-bit operation (ROMANS) and use an alternate character set
(e.g., line draw) at the same time because the base character set is not really 8-bit, but 7-bit with
the additional characters defined in the alternate character set. Using both 8-bit ROMANS charac­
ters and line draw in the same file is not recommended since the user must continually redefine the
alternate character set, switching back and forth between Roman Extension and the line drawing

F-10

Converting 7-Bit To 8-Bit Data

character set. Shift-out and shift-in are ignored by the terminal, which goes to the alternate
character set when the high order bit is on.

Files using alternate character sets on one group of terminals will not display correctly on the ter­
minals of the other group, even when terminals from both groups are configured for 8-bit operation.

Therefore, the use of characters from an alternate set affects the conversion procedure. If the forms
file does contain characters from an alternate character set, choose one of the following alternatives:

1. Eliminate the use of alternate character sets (either with FORMSPEC or while running
V7FF8CNV).

2. Define alternate character sets to appear correctly on Group One terminals. This happens au­
tomatically when V?FF 8CNV is run from a Group One terminal. Characters from these alter­
nate sets will appear as USASCII characters on a Group Two terminal.

V7FF8CNV Operation

V7FF8CNV must be run on a terminal supported by VPLUS/3000 which supports display of all
characters, enhancements and alternate characters sets used in the forms file. If alternate character
sets are used, the HP 2392, 2625, 2627, 2628, 2700, or 150 are recommended.

The V7FF8CNV procedure is:

1. Configure your terminal type properly for 8-bit operation by using the settings recommended
in Appendix E, "PERIPHERAL CONFIGURATION. 11

2. Run V7FF8CNV. PUB. SYS .. Respond to prompts for the terminal group and the national sub­
stitution set.

3. Press NEXT once to begin going through the forms file.

4. Press [ENTER) after each screen until the end of the forms file is reached. Two exceptions to
Step 4 are:

• Type 11 Y11 in "function key labels" on each FORM MENU and the GLOBALS
MENU to see and convert function key labels.

• On the field definition screen, if the processing specs have converted data which you
want to save, press the FIELD TOGGLE key, then [ENTER) to save that conversion.

NOTE

If you try to redisplay a screen which has already been
converted and this conversion has been saved by pressing
(ENTER), a message "Form contains 8 bit data"
will be displayed. Do not press (ENTER) again, but con­
tinue on through the forms file.

5. Compile your forms file as usual.

These conversion utilities are designed to be used once to update existing data to 8-bit compatibility.

F-1 l/F-12

APPLICATION GUIDELINES -
L--~~~~~~~------J~

Currently, the HP 3000 supports six conventional programming languages (SPL, FOR TRAN,
COBOLII, Pascal, RPG and BASIC). Some general guidelines and some specific to each of the sup­
ported programming languages are included in this Appendix to help the programmer select a lan -
guage to use for writing a local language or localizable application.

All Programming Languages

• Create and use message catalogs. Do not hard-code any text messages, including prompts. For
example, never require a hard-coded 11 Y11 or "N" in response to a question. The equivalents of
YES and NO for every language supported by NLS are available through a call to NLINFO item 8.

• Use the NLS date and time formatting intrinsics. Do not use the MPE intrinsics DATELINE,
FMTCLOCK, FMTDATE and FMTCALENDAR. They all result in American-style output.

• Check a character>s attribute, available through NLINFO item 12, to determine printability.
Alternatively, use the NLREPCHAR intrinsic to check whether the character gets replaced or not.
Do not use range checking on the binary value of a character to decide whether it is printable or
not.

• Use the N LCOLLATE intrinsic to compare character strings. Do not compare character strings (IF
abc > pqr ••. , where abc and pqr are both character strings). Since these comparisons are
based on binary values of characters as they appear in the USASCII sequence, they usually
produce incorrect results. Obviously, this is not applicable in case an exact match is tested (IF
abc = pqr • . •).

• Use N LSCANMOVE for upshifting and downshifting. Do not upshift or downshift based on the
character's binary value. For a ... z in USASCII, upshifting can be done by subtracting 32 from
the binary value. This does not work for all characters in all character sets.

• To determine whether a character is uppercase or lowercase use the character attributes table
available through NLINFO item 12. Do not use a character's binary value in range checks to
decide whether it is an uppercase or lowercase alphabetic character.

• Much Hewlett-Packard and user-written software assumes that numeric characters (O through 9)
are represented by code values 48 through 57 (decimal). In general, this is valid because standard
Hewlett-Packard 8-bit character sets are supersets of USASCII. However, some character sets
may have different or additional characters which should be treated as numeric. Therefore, if at
all possible, avoid doing range checks on code values to recognize or process numeric characters.
For recognition of numeric characters, interrogate the character attributes table, available
through a call to N !. INFO item 12.

• Use the NL TRANSLATE intrinsic, not CTRANSLATE, to translate to or from EBCDIC.

• Do your own formatting using the decimal separator, the thousands separator, and the currency
symbol available through NLI NFO items 9 and 10. Use the standard statements to output into a
character string type variable. Replace the decimal and thousands separators by those required in
the language being used. Do not use standard output statements (PRINT, WRITE) for real

G-1

Application Guidelines

numbers, since this formats them according to the definition of the programming language. This
usually results in American formats with a period used as the decimal separator.

• Input data into a character string, and preprocess the string to replace any decimal or thousands
separators used in the American formats. Then supply the string to the standard read statement.
Standard input statements for real numbers (READ, ACCEPT) should not be used as they accept the
period as the decimal separator. Many non -American users will input something else (a comma,
for example).

• Always store standard formats for date and time (like those returned by FMTCALENDAR and
FMTCLOCK) if dates or times have to be stored in files or data bases. Never store a date or a time
in a local format. Intrinsics are available to convert from the standard format to a local format,
but the reverse is not always possible.

• Do not use VPLUS/3000 terminal local edits. VPLUS/3000 edit processing specifications and
terminal edit processing statements are separate and are not checked for compatibility. There will
be no check that the designer has specified a terminal local edit which is consistent with the
language-dependent symbol for the decimal point (DEC TYPE EUR, DEC TYPE US) in the con-
figuration phase. - - - -

COBOLll (HP 32233A)

• Use the character attributes table of the character set being used to determine whether a charac­
ter is ALPHABETIC or NUMERIC. This table is available through a call to NLINFO item 12. Do
not use the COBOLII ALPHABETIC and NUMERIC class tests to determine this (e.g., If data­
it em IS ALPHABETIC).

• Do not use input-output translation by COBOLII from an EBCDIC character set by means of the
ALPHABET-NAME clause and the CODE SET clause. Use the NL TRANSLATE intrinsic.

• Use the NLS date and time formatting intrinsics for display purposes. Do not use TIME-OF-DAY
and CURRENT-DATE. These items are formatted in the conventional American way, and are
unsuitable for use in many other countries.

• Use the COLLATING SEQUENCE IS language-name or the COLLATING SEQUENCE IS
language-ID phrase in the enhanced SORT and MERGE statements to specify the language
name or number whose collating sequence is to be used. Do not use the COLLATING SEQUENCE
IS alphabet-name phrase for sorting and/or merging in COBOLII.

• In condition-name data descriptions (88-level items), avoid the THRU option in the VALUE
clause (e.g., 88 SELECTED-ITEMS VALUE "A" THRU "F").

FORTRAN (HP 321028)

• Format specifiers N and M will output in an American numerical format (with commas between
thousands and a decimal point) or an American monetary format (like N, with a "$" added).
Additional post processing will be required.

• Outputting logicals will result in a "T" (for true) or an "F" (for false). Similarly, "T" and "f"
are expected for logical input. A non-English speaking user may want to use another character.

G-2

Application Guidelines

• The intrinsic functions RNUM, DNUM and STR all assume an American format in the input and
produce an American formatted output.

• The EXTI N' and I NEXT' entry points of the compiler library assume American formats. Do not
use them.

SPL (HP 32100A)

• To determine whether or not the byte is alphabetic, numeric, or special, consult the character at­
tribute table of the character set used. This table is available through N LI NF 0 i tern 1 2. Do not
use the IF xyz = (or<>) ALPHA (or NUMERIC or SPECIAL) construct to determine this.

• Do not use the MOVE ••• WHILE construct or the MVBW machine instruction. It stops moving
bytes based on the USASCII binary value of bytes, by which it determines whether the byte is al­
phabetic or numeric. Use the NLSCANMOVE intrinsic.

RPG (HP 32104A)

The features of NLS are accessed primarily through intrinsic calls. Using MPE and subsystem intrin­
sics from RPG requires expertise. For this reason, the use of RPG as a vehicle to write localizable ap­
plications or to access native language structures is not recommended. Some RPG functions, such as
date and numeric formatting, provide some control for national custom differences, but the choices
are very limited and can only be made by recompiling.

BASIC (HP 321018)

The features of NLS are accessed primarily through intrinsic calls. Since most intrinsics are not call­
able from BASIC, the use of BASIC as a language to write localizable programs is not supported.

Pascal (HP 32106A)

A type of CHAR indicates an 8-bit entity, and thus allows processing of 8-bit characters without
problems.

G-3/G-4

EXAMPLE PROGRAMS -
---~~~~~~--~[[]

The example programs in this Appendix demonstrate calls to NLS-related intrinsics from several
programming langua~es. They are not intended to be used as application programs.

A. Using SORT In A COBOLll Program

This program shows how to sort an input file (formal designator ! N PTFI LE) to an output file (formal
designator OUTPFI LE) using a COBOLII SORT verb.

Lines 3. 5 and 4. 1 show how to specify the language to determine the collating sequence.

1
1.1
1.2
1.3
1.4
1.5
1.6
1. 7
1.8
1.9
2
2. 1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3. 1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
4. 1
4.2
4.3
4.4

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

* --
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INPTfILE ASSIGN TO "INPTfILE".
SELECT OUTPfl LE ASSIGN TO "OUTPFI LE".
SELECT SORTFILE ASSIGN TO 11 SORTfILE 11

•

* --
DATA DIVISION.
FI LE SE CTI ON .
SD SORTFILE.
01 SORTFILE-RECORD.

05 SORTfl LE-KEY
05 FILLER

FD I NPTFI LE.
01 INPTFILE-RECORD

FD OUTPFILE.
01 OUTPFILE-RECORD

WORKING-STORAGE SECTION.

PIC X(4).
PIC X(68).

PIC X(72).

PIC X(72).

01 LANGUAGE PIC S9(4) COMP VALUE 12.
* --

PROCEDURE DIVISION.
MAIN SECTION.

SORT SORTfILE
ASCENDING SORTFILE-KEY
SEQUENCE IS LANGUAGE
USING INPTFILE
GIVING OUTPFILE.

STOP RUN.

H-1

Example Programs

Line 3 . 5 could be written also as:

3.5 01 LANGUAGE PIC X(16) VALUE "SPANISH ".

In the example execution the input and output files are associated with the terminal ($STDIN and
$STOL I ST):

:FILE INPTFILE=$STDIN
:FILE OUTPFILE=$STDLIST
:RUN PROGRAM;MAXDATA=12000

character
credit
DEBIT
:EOD

credit
character
DEBIT

END Of' PROGRAM

H-2

Example Programs

B. Using SORT In A Pascal Program

This program shows how to sort an input file (formal designator IN PF) to an output file (formal
designator OUTF') using SORT I N IT intrinsic call.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22 .
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

$USLINIT$
$STANDARD_LEVEL 'HP3000'$

PROGRAM example (inpf,outf);

TYPE

VAR

smallint = -32768 •. 32767;

sort rec = RECORD
posit ion:
length:
seq type:

END; -

char_seq = RECORD

smal 1 int;
sma 11 int;
small int;

array code:smallint;
language: smallint;

END;

file arr = RECORD
num file: smallint;
num zero: smallint;

END;

file rec =PACKED ARRAY [1 •• 72] of CHAR;

file num = f'ILE of file_rec;

numkeys:
rec len:
keys:
cseq:
lnp:
out:
in pf:
outf:

sma 11 int;
smal 1 int;
sort_rec;
char seq;
file-arr;
file-arr;
file-num;
f ile:num;

PROCEDURE sortinit;
PROCEDURE sortend;

INTRINSIC;
INTRINSIC;

PROCEDURE main;
BEGIN

numkeys := 1;
reclen :=72;

WITH keys DO
BEGIN

pos it 1 on : = 1 ;
length := 4;

H-3

Example Programs

51 seq type := 9;
52 END; -
53
54 WITH cseq DO
55 BEGIN
56 array_code:=1;
57 language:= 12;
58 END;
59
60 WITH inp DO
61 BEGIN
62 RESET (inpf};
63 num file := FNUM (inpf};
64 num zero := O;
65 END;
66
67 WITH out DO
68 BEGIN
69 REWRITE (outf);
70 num file := FNUM (outf);
71 nu m zero : = 0 ;
72 END;
73
74 sortinit (inp,out,,reclen,,numkeys,keys,,,,,,,,cseq);
75 sortend;
76
77 END;
78
79 BEGIN
80 main;
81 END.

In the example execution the input and output files are associated with the terminal ($STDI N and
$STDLIST):

:FILE INPf=$STDIN
:FILE OUTF=$STDLIST
:RUN PROGRAM;MAXDATA=12000

character
credit
DEBIT --:EOD

credit
character
DEBIT

END Of PROGRAM

H-4

Example Programs

C. Using SORT In A FORTRAN Program

This program shows how to sort an input file (formal designator FTN21) to an output file (formal
designator FTN22) using SORT IN IT intrinsic call.

$CONTROL USLINIT,FILE=21-22
PROGRAM EXMP
INTEGER FNUM
INTEGER N(4)
INTEGER KEYS (3)
INTEGER CSEQ (2)

1
2
3
4
5
6
7
8
9

SYSTEM INTRINSIC SORTINIT, SORTEND
c
C KEY (3) = 9 character type key

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

C CSEQ(2) = 12 Spanish collating sequence
c

KEYS (1) = 1
KEYS (2) = 4
KEYS (3) = 9
CSEQ (1) = 1
CSEQ (2) = 12

c
C Sort file FTN21 into FTN22
c

N (1) = FNUM (21)
N (3) = FNUM (22)
N (2) = 0
N (4) = 0
CALL SORTINIT (N(1),N(3),,,,1,KEYS,,,,,,,,CSEQ)
CALL SORTEND
STOP
END

In the example execution the input and output files are associated with the terminal ($STDI N and
$STDLIST):

:FILE FTN21= STDIN
:FILE FTN22= STDLIST
:RUN PROGRAM;MAXDATA=12000

character
credit
DEBIT
:EOD

credit
character
DEBIT

END OF PROGRAM

H-5

Example Programs

D. Using DA TE/TIME Formatting Intrinsics In A FORTRAN Program

The user is asked to enter a language. All date and time formatting and conversion is done by using
the language entered by the user. The time and date used in the examples is the current system time
obtained by calling the HP 3000 system intrinsics CALENDAR and CLOCK.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

. 24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

$CONTROL USLINIT

c

c

c

c

c

c

PROGRAM EXAMPLE
LOGICAL LANGUAGE(8)
CHARACTER *16 BLANGUAGE

LOGICAL LERROR(2)
INTEGER IERROR(2)

CHARACTER *13 BCUSTOMDATE
CHARACTER *28 BDATE
CHARACTER *18 BCALENDAR
CHARACTER *8 BCLOCK

LOGICAL LWEEKDAYS(42)
CHARACTER •12 BWEEKDAYS(7)

LOGICAL LMONTHS(72)
CHARACTER •12 BMONTHS(12)

EQUIVALENCE (LANGUAGE, BLANGUAGE)
EQUIVALENCE (LWEEKDAYS,BWEEKDAYS)
EQUIVALENCE (LMONTHS, BMONTHS)
EQUIVALENCE (LERROR, !ERROR)
LOGICAL DATE
INTEGER *4 TIME
INTEGER LANGNUM, LGTH, WEEKDAY, MONTH
SYSTEM INTRINSIC CLOCK, CALENDAR, ALMANAC, NLINFO,

I NLFMTCLOCK, QUIT, NLCONVCLOCK, NLFMTDATE,
I NLFMTCALENDAR, NLFMTCUSTDATE, NLCONVCUSTDATE

1001 FORMAT (1X,A12)
1002 FORMAT (1X,A13)
1003 FORMAT (1X,A18)
1004 FORMAT (1X,A8)
1005 FORMAT (1X,A28)
2001 FORMAT (A16)
2002 FORMAT (A1)
c
1 WRITE (6,*)

#"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"
READ (5, 2001) BLANGUAGE

c
C NLINFO item 22 returns the corresponding
C lang number in integer format for this language.
c

c
c

CALL NLINFO (22, LANGUAGE, LANGNUM, LERROR)
IF (IERROR(1) .EQ. 0) GO TO 400

H-6

so 100
51 c
52
53
54 c
55 200
56 c
57
58
59 c
60 300
61 c
62 c
63 c
64 c
65 400
66
67 c
68 c
69 c
70 c
71 c
72
73
74 c
75 c
76 c
71 c
78
79
80 c
81
82 c
83
84
85 c
86
87 c
88 c
89 c
90 c
91 c
92
93
94 c
95
96
97 c
98 c
99 c

100 c
101
102
103 c
104 c
105 c

IF (IERROR(1) .NE. 1) GO TO 200

WRITE (6, *) 11 NLS IS NOT INSTALLED"
CALL QUIT (1001)

IF (IERROR(1) .NE. 2) GO TO 300

WRITE (6, *) "THIS LANGUAGE IS NOT CONFIGURED"
CALL QUIT (1 002)

CALL QUIT (1000 + IERROR(1))

Example Programs

This obtains the machine internal clock and calendar
formats, which are provided by the HP 3000 intrinsics.

TIME = CLOCK
DATE = CALENDAR

Call ALMANAC and convert the machine internal
date format into numeric values, which will be used
as indices into the name tables.

CALL ALMANAC(DATE, LERROR, , MONTH, ,WEEKDAY)
IF (IERROR(1) .NE. 0) CALL QUIT (2000 + IERROR(1))

Call the tables for month and weekday names and
display todays day name and the current month's name.

CALL NLINFO(S, LMONTHS, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (3000 + IERROR(1))

WRITE {6, 1001) BMONTHS (MONTH)

CALL NLINF0{7, LWEEKDAYS, LANGNUM, LERROR)
IF {IERROR(1) .NE. 0) CALL QUIT (4000 + IERROR(1))

WRITE (6, 1001) BWEEKDAYS {WEEKDAY)

Format the machine internal date format
into the custom date format {short version).
The result will be displayed.

CALL NLFMTCUSTDATE (DATE, BCUSTOMDATE, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (5000 + IERROR(1))

WRITE (6,*) "CUSTOM DATE:"
WRITE {6,1002) BCUSTOMDATE

Use the output of NLFMTCUSTDATE as input for
NLCONVCUSTDATE and convert back to the internal format.

DATE = NLCONVCUSTDATE(BCUSTOMDATE, 13, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (6000 + IERROR(1))

Format the machine internal date format into the
date format (long format) according to the language.

H-7

Example Programs

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

c
c

c

c
c
c
c
c

c

c
c
c
c

c
c
c
c
c

c

c
c

The result will be displayed.

CALL NLFMTCALENOAR(OATE, BCALENDAR, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (7000 + IERROR(1))

WRITE (6,*) "DATE f.ORMAT:"
WRITE (6,1003) BCALENDAR

Format the machine internal time format into the
language-dependent clock format.
The result will be displayed.

CALL NLFMTCLOCK(TIME, BCLOCK, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (8000 + IERROR(1))

WRITE (6 '*) "TIME FORMAT: II

WRITE (6,1004) BCLOCK

Use the output of NLFMTCLOCK as input for
NLCONVCLOCK and convert back to the internal format.

TIME = NLCONVCLOCK(BCLOCK, 8, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (9000 + IERROR(1))

Format the machine internal time and date format
into the language dependent format.
The result will be displayed.

CALL NLFMTDATE(DATE, TIME, BOATE, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (10000 + IERROR(1))

WRITE (6,*) "DATE AND TIME FORMAT: II

WRITE (6, 1005) BDATE

STOP
END

Executing the program gives the following result:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
NATIVE-3000
JANUARY
TUESDAY
CUSTOM DATE:
01/31/84
DATE FORMAT:
TUE, JAN 31, 1984
TIME FORMAT:
5: 15 PM
DATE AND TIME FORMAT:
TUE, JAN 31, 1984, 5:15 PM

H-8

END Of PROGRAM

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
8 .
Januar
Dienstag
CUSTOM DATE:
31.01.84
DATE FORMAT:
Di., 31. Jan. 1984
TIME FORMAT:
17: 15
DATE AND TIME FORMAT:
Di., 31. Jan. 1984, 17:15

END Of PROGRAM

H-9

Example Programs

Example Programs

E. Using The DATE/TIME Formatting Intrinsics In An SPL Program

The user is asked to enter a language. All date and time formatting and conversion is done by using
the language entered by the user. The time and date used in the examples is the current system time
obtained by calling the HP 3000 system intrinsics CALENDAR and CLOCK.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

$CONTROL USLINIT
BEGIN

LOGICAL ARRAY
L'ERROR
L'LANGUAGE
L'PRINT
L'CUSTOM'DATE
L'DATE
L'CALENDAR
L'MONTHS
L'WEEKDAYS
L'CLOCK

BYTE ARRAY

(0:1),
(0:7),
(0:39),
(0:6),
(0:13),
(0:8),
(0:71),
(0:41),
(0:3);

B'PRINT(*) = L'PRINT,
B'CUSTOM'DATE(*) = L'CUSTOM'DATE,
B'CALENDAR(*) = L'CALENDAR,
B'DATE(*) = L'DATE,
B'MONTHS(*) = L'MONTHS,
B'WEEKDAYS(*) = L'WEEKDAYS,
B'CLOCK(*) = L'CLOCK;

BYTE POINTER
BP'PRINT;

DOUBLE
TIME;

LOGICAL
DATE,
HOUR'MINUTE =TIME,
SECONDS =TIME+ 1;

INTEGER
YEAR,
MONTH,
DAY,
WEEKDAY,
LGTH,
LANGNUM;

DEFINE
WEEKDAY'NAME = B'WEEKDAYS((WEEKDAY - 1) * 12}#,

MONTH'NAME - B'MONTHS((MONTH - 1) * 12)#,

ERR'CHECK =If L'ERROR(O) <> 0 THEN.
QUIT #,

H-10

50
51
52
53
54.
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105

CCNE = IF <> THEN
QUIT I,

DISPLAY =MOVE B'PRINT := #,

ON'STDLIST = ,2;
@BP'PRINT := TOS;
LGTH := LOGICAL(@BP'PRINT) -

LOGICAL(@B'PRINT);
PRINT(L'PRINT, -LGTH, 0) #;

INTRINSIC
READ,
QUIT,
PRINT,
CLOCK,
CALENDAR,
ALMANAC,
NLINfO,
NLfMTCLOCK,
NLCONVCLOCK,
NLfMTDATE,
NLfMTCALENDAR,
NLfMTCUSTDATE,
NLCONVCUSTDATE;

<< Start of main code.
The user is asked to enter a language name or number.>>

DISPLAY
"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"

ON'STDLIST;

READ(L 'LANGUAGE, - ·: s);

<< NLINfO item 22 returns the corresponding
lang number in integer format for this language. »

NLINf0(22,L'LANGUAGE,LANGNUM,L'ERROR);
If L'ERRO~(O) <> 0 THEN

BEGIN
If L'ERROR(O) = 1 THEN

BEGIN
DISPLAY

END
ELSE

"NL/3000 IS NOT INSTALLED"
ON'STDLIST;
QUIT(1001);

If L'ERROR(O) = 2 THEN
BEGiN

DISPLAY
"THIS LANGUAGE IS NOT CONFIGURED"
ON'STDLIST;
QUIT(1002);

H-11

Example Programs

Example Programs

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

END;

END
ELSE

QUIT (1000 + L'ERROR(O}};

<< This obtains the machine internal clock and
calendar formats which is maintained by MPE.

TIME := CLOCK;

DATE := CALENDAR;

<< Call ALMANAC and convert the machine internal date

»

format into numeric values, which will be used as indices
into the name tables. »

ALMANAC(DATE, L'ERROR, , MONTH, , WEEKDAY};
ERR'CHECK (2000 + L'ERROR(O}};

<< Call the tables for month and weekday names and
display todays day name and the current month's name. >>

NLINFO(S, L'MONTHS, LANGNUM, L'ERROR);
ERR'CHECK (3000 + L'ERROR(O));

DISPLAY MONTH'NAME,(12) ON'STDLIST;

NLINF0(7, L'WEEKDAYS, LANGNUM, L'ERROR);
ERR'CHECK (4000 + L'ERROR(O));

DISPLAY WEEKDAY'NAME,(12) ON'STDLIST;

<< Format the machine internal date format
into the custom date format (short version).
The result will be displayed.

NLFMTCUSTDATE(DATE,L'CUSTOM'DATE,LANGNUM,L'ERROR);
ERR'CHECK (5000 + L'ERROR(O));

DISPLAY "CUSTOM DATE: II ON 'STDLIST;
DISPLAY B'CUSTOM'DATE,(13) ON'STDLIST;

»

<< Use the output of NLFMTCUSTDATE as input for
NLCONVCUSTDATE and convert back to the internal format.>>

DATE := NLCONVCUSTDATE(B'CUSTOM'DATE,13,LANGNUM,L'ERROR);
ERR'CHECK (6000 + L'ERROR(O));

<< Format the machine internal date format into the >>
<< date format (long format) according to the language. >>
<< The result will be displayed. >>

NLFMTCALENDAR(DATE,L'CALENDAR,LANGNUM,L'ERROR);
ERR'CHECK (7000 + L'ERROR(O));

DISPLAY "DATE FORMAT: II ON 'STDLIST;

H-12

DISPLAY B'CALENDAR,(18) ON'STDLIST;

<< Format the machine internal clock format
into the language-dependent clock format.
The result will be displayed.

NLFMTCLOCK(TIME,L'CLOCK,LANGNUM,L'ERROR);
ERR'CHECK (8000 + L'ERROR(O));

DISPLAY "TIME FORMAT: II ON 'STDLIST;
DISPLAY B'CLOCK,(8) ON'STDLIST;

<< Use the output of NLFMTCLOCK as input for

»

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

NLCONVCLOCK and convert back to the internal format. >>

TIME := NLCONVCLOCK(B'CLOCK,8,LANGNUM,L'ERROR);
ERR'CHECK (9000 + L'ERROR(O));

<< format the machine internal time and date
format into the language-dependent format.
The result will be displayed.

NLFMTDATE(DATE,TIME,L'DATE,LANGNUM,L'ERROR);
ERR'CHECK (10000 + L'ERROR(O));

DISPLAY "DATE AND TIME FORMAT: II ON 'STDLIST;
DISPLAY B'DATE,(28) ON'STDLIST;

END.

Executing the program results in the following:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
GERMAN
Januar
Dienstag
CUSTOM DATE:
31.01.84
DATE FORMAT:
Di., 31. Jan. 1984
TIME FORMAT:
.17: 12
DATE AND TIME FORMAT:
Di., 31. Jan. 1984, 17:12

END OF PROGRAM

: F<: .' N PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
0
JANUARY
TUESDAY

H-13

»

Example Programs

Example Programs

CUSTOM DATE:
01/31/84
DATE FORMAT:
TUE, JAN 31, 1984
TIME FORMAT:
5: 13 PM
DATE AND TIME FORMAT:
TUE, JAN 31, 1984, 5:13 PM

END OF PROGRAM

H-14

Example Programs

F. Using The NLSCANMOVE Intrinsic In A COBOLll Program

In this program there are six different calls to NLSCANMOVE. In every call all parameters are passed to
NLSCANMOVE. Since the upshift/downshift table and the character attributes table are optional
parameters, they may be omitted. For performance reasons (if NLSCANMOVE is called frequently)
they should be passed to the intrinsic after being read in by the appropriate calls to NLI NFO.

1
1. 1
1.2
1.3
1.4
1.5
1.6
1. 7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3. 1
3.2
3.3
3.4
3.5
3.6
3.1
3.8
3.9
4

$CONTROL USLINIT
IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.
AUTHOR. LORO.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

77 QUITPARM
77 LANGNUM
77 FLAGS
77 LEN
77 NUMCHAR

01
05
05
05

01
05

10
10

05
05

01
05
88
88
05

TABLES.
CHARSET-TABLE
UPSHIFT-TABLE
DOWNSHIFT-TABLE

STRINGS.
INSTRING.
INSTR1
INSTR2
OUTSTRING
LANGUAGE

ERRORS.
ERR1
NO-NLS
NOT-CONFIG
ERR2

PIC S9(4)
PIC S9(4)
PIC S9(4)
PIC S9(4)
PIC S9(4)

COMP VALUE O.
COMP VALUE 0.
COMP VALUE 0.
COMP VALUE 70.
COMP VALUE 0.

PIC X(256) VALUE SPACES.
PIC X(256) VALUE SPACES.
PIC X(256) VALUE SPACES.

PIC X(40) VALUE SPACES.
PIC X(30) VALUE SPACES.
PIC X(70) VALUE SPACES.
PIC X(16) VALUE SPACES.

PIC S9(4) COMP.
VALUE 1.
VALUE 2.

PIC S9(4) COMP VALUE 0.

4.1 PROCEDURE DIVISION.
4.2 START-PGM.
4.3 * Initializing the arrays.
4.4
4.5
4.6
4.7
4.8
4.9
5
5. 1
5.2
5.3
5.4
5.5

MOVE "abCDfg6ijkaA:XbfdcGjGf1f$E!SAuRdae~1a23,;&7"
TO INSTR1.
MOVE "a 123&i12f}t~gfdhklKLabCDASAuRi"
TO INSTR2.

* The user is asked to enter a language name or number.

DISPLAY
"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):".
ACCEPT LANGUAGE.

5.6 CONVERT-NAME-NUM.
5.7 * NLINFO item 22 returns the corresponding

H-15

Example Programs

5.8 * lang number iri integer format for this language.
5.9
6
6 .1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7
7. 1
7.2
7.3
7.4
7.5

CALL INTRINSIC 11 NLINF011 USING 22,
LANGUAGE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
IF NO-NLS

DISPLAY "NL/3000 IS NOT INSTALLED"
CALL INTRINSIC "QUIT" USING 1001

ELSE
IF NOT-CONFIG

DISPLAY "THIS LANGUAGE IS NOT CONFIGURED"
CALL INTRINSIC "QUIT" USING 1002

ELSE
COMPUTE QUITPARM = 1000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

7.6 GET-TABLES.
7.7 * Obtain the character attributes table
7.8 * using NLINFO item 12.
7.9
8
8. 1
8.2
8.3
8.4
8.5
8.6
8.7

CALL INTRINSIC 11 NLINF011 USING 12,
CHARSET-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 2000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

8.8 * Obtain the upshift table using NLINFO item 15.
8.9
9
9. 1
9.2
9.3
9.4
9.5
9.6
9.7

CALL INTRINSIC 11 NLINF0 11 USING 15,
UPSHIFT-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 3000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

9.8 * Obtain the downshift table using NLINFO item 16.
9.9

10
10. 1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
11
11. 1
11. 2
11.3

CALL INTRINSIC 11 NLINF0 11 USING 16
DOWNSHIFT-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUIT PARM = 4000 + ERR 1
CALL INTRINSIC 11 QUIT 11 USING QUITPARM.

DISPLAY "THE FOLLOWING STRING IS USED IN ALL EXAMPLES:"
DISPLAY INSTRING.

EXAMPLE-1-1.
* The string passed in the array instring should be moved
* and upshifted simultaneously to the array outstring.

H-16

Example Programs

11.4 * Set the until flag (bit 11 = 1) and the
11.5 * upshift flag (bit 10 = 1). All other flags remain 0.
11 .6 *

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 11. 7 *
11. 8 *
11. 9 *
12 *
12.1 •

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 = 60(octal) = 48(dec)

12.2 *
12.3 *
12.4 *
12.5
12.6
12.7
12.8
12.9
13
13. 1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14
14. 1
14.2

Note: The 'until flag' is set. Therefore, the operation
until one of the ending criteria will be true.
If no ending condition is set, the operation
continues for the number of characters contained in
length.

MOVE 48 TO FLAGS.

CALL INTRINSIC 11 NLSCANMOVE 11 USING INSTRING,
OUTSTRING,
FLAGS,

IF ERR1 NOT EQUAL 0

LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.

COMPUTE QUITPARM = 5000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY 11 UPSHIFTED: (EXAMPLE 1-1)".
DISPLAY OUTSTRING.

14.3 EXAMPLE-1-2.
14.4 *

continues

14.5 * The string passed in the array inst ring should .be moved
14.6 * and upshifted to the array outstring (same as EXAMPLE 1-1).
14.7 * Set the while flag (bit 11 = 0) and the upshift flag
14.8 * (bit 10 = 1). In addition all ending conditions will be
1 4. 9 * set (bits 1 2 - 1 5 a 11 1) •
15 *
15. 1 *
15.2 *
15.3 *

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

BITS
= 57(octal) = 47(dec.)

15.4 * Note:
15.5 *

The 'while flag' ls set. Therefore, the operation
continues while one of the end criteria is true.
Since all criteria are set, one of them will be
always true, and the operation continues for the
number of characters contained in length.

15.6 *
15.7 *
15.8 *
15.9
16
16. 1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

MOVE SPACES TO OUTSTRI i~G.
MOVE 0 TO FLAGS.
MOVE 47 TO FLAGS.

CALL INTRINSIC 11 NLSCANMOVE 11 USING

H-17

INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,

Example Programs

17
17 .1
17.2
17.3
17.4
17 .5
17.6
17.7
17.8
17.9

IF ERR1 NOT EQUAL 0

CHARSET-TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.

CALL INTRINSIC "QUIT" USING 6.

DISPLAY "UPSHIFTED: (EXAMPLE 1-2}".
DISPLAY OUTSTRING.

18 EXAMPLE-2-1.
18.1 * The string passed in the array instring should be
18.2 * scanned for the first occurrence of a special character.
18.3 * All characters Defore the first special character are
18.4 * moved to outstring.
18.5 * Set the until flag (bit 11 = 1} and the special
18.6 * character flag (bit 12 = 1). All other flags remain zero.
18.7 *
18.8 *
18.9 *
19 *

0 1 2 3 4 5 6 7 8 9 0
0 0 0 0 0 0 0 0 0 0 0

2 3 4 5
1 0 0 0

BITS
= 30(octal) = 24(dec.)

19.1 * Note: The 'until flag' is set and the ending condition is
set to 'special character'. Therefore, the operation
continues until the first special character is found
or until the number of characters contained in

19.2 *
19.3 *
19.4 *
19.5 *
19.6
19.7
19.8
19.9
20
20. 1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
21
21.1
21.2
21.3
21.4
21.5
21.6

length is processed.

MOVE SPACES TO OUTSTRING.

MOVE 24 TO·f'LAGS.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
OUTSTRING,
f'LP.GS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHif'T-TABLE

GIVING NUMCHAR.
IF ERR1 NOT EQUAL 0

COMPUTE QUITPARM = 7000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY 11 SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1}".
DISPLAY OUTSTRING.

21.7 EXAMPLE-2-2.
21.8 * The string passed in the array instring should
21.9 * be scanned for the first occurrence of a special
22 * character. All characters before the first special
22.1 * character are moved to outstring (same as EXAMPLE 2-1}.
22.2 * Set the while flag (bit 11 = O} and all condition
22.3 * flags except for special characters (bits 13 - 15 = 1).
22.4 *
22.5 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 BITS

H-18

22.6 *
22.7 *

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 =

Example Programs

7(octal) = 7(dec.)

22.8 * Note:
22.9 *

The 'while flag' is set and all ending criteria
except for special characters are set. Therefore, the
operation continues while an uppercase, a lowercase, or
a numeric character is found. When a special

23 *
23.1 *
23.2 *
23.3 *
23.4 *
23.5
23.6
23.7
23.8
23.9
24
24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
25
25. 1
25.2
25.3
25.4
25.5
25.6

character is found, or the number of characters
contained in length is processed, the operation will
terminate.

MOVE SPACES TO OUTSTRING.

MOVE 7 TO FLAGS.

CALL INTRINSIC 11 NLSCANMOVE 11 USING

GIVING

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 8000 + ERR1

INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE

NUMCHAR.

CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY "SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2) 11
•

DISPLAY OUTSTRING.

25.7 EXAMPLE-3-1.
25.8 * The string passed in the array instring should be
25.9 * scanned for the first occurrence of a special or numeric
26 * character. All characters before one of these characters
26.1 * are moved to outstring and downshifted simultaneously.
26.2 * Set the until flag (bit 11 = 1) and the ending condition
26.3 * flags for special and numeric characters (bits 12-13 = 1).
26.4 * To perform downshifting set bit 9 to 1.
26.5 *
26.6 *
26.7 *
26.8 *

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0

BITS
= 134(octal) = 92(dec.)

26.9 * Note: The 'until flag' is set and the ending condition is
set to 'special character' and to 'numeric character'.
Therefore, the operation continues until the first
special or numeric character is found, or

27 *
27.1 *
27.2 *
27.3 *
27.4 *
27.5 *
27.6
27.7
27.8
27.9
28
28.1

until the number of characters contained in length
is processed.

MOVE SPACES TO OUTSTRING.

MOVE 92 TO FLAGS.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

H-19

i:.Aa.mp.te rrograrns

28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
29
29. 1
29.2
29.3
29.4
29.5
29.6
29.7
29.8

OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
DOWNSH !FT-TABLE

GIVING NUMCHAR.

IF ERR1 NOT EQUAL TO 0
COMPUTE QUITPARM = 9000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY
"SCAN/MOVE/DOWNSH I FT UNTIL NUM. OR SPEC. : (EXAMPLE 3-1)".
DISPLAY OUTSTRING.

29.9 EXAMPLE-3-2.
30 * The string passed in the array instring should be
30.1 * scanned for the first occurrence of a special or numeric
30.2 * character. All characters before one of these characters
30.3 * are moved to outstring and downshifted simultaneously
30.4 * (same as EXAMPLE-3-2).
30.5 * Set the while flag (bit 11 = 0) and the condition
30.6 * flags for upper and lower case characters (bits 14-15 = 1).
30.7 * To perform downshifting set bit 9 to 1.
30.8 *
30.9 *
31 *
31. 1 *

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

BITS
= 103(octal) = 67(dec.)

31 .2 * Note:
31 .3 *

The 'while flag' is set and the ending criteria for
upppercase and lowercase characters are set.

31 .4 *
31 .5 *
31.6 *
31. 7 *
31 .8 *
31.9
32
32. 1
32.2
32.3
32.4
32.5
32.6
32.7
32.8
32.9
33
33.1
33.2
33.3
33.4
33.5
33.6
33.7

Therefore, the operation continues while an uppercase or
a lowercase character is found. When a special
or a numeric character is found, or the number of
characters contained in length is processed, the
operation will terminate.

MOVE SPACES TO OUTSTRING.

MOVE 67 TO FLAGS.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
DOWNSHIFT-TABLE

GIVING NUMCHAR.

If ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 10000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITPARM.

H-20

Example Programs

33.8 DISPLAY
33.9 "SCAN/MOVE/DOWNSHifT WHILE ALPHA: (EXAMPLE 3 ... 2) 11

•

34 DISPLAY OUTSTRING.
34. 1
34.2 STOP RUN.

Executing the program results in the following:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER {MAX. 16 CHARACTERS):
GERMAN
THE FOLLOWING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijka~Xb;cGjGf1f$E!SAuRdaeE1a23~&7a 123&112f~Xg;hklKLabCDASADli
UPSHIFTED: (EXAMPLE 1-1)
ABCDFG6IJKA..{AB~GJGf1F$E!SA0RDAEE1A233&7A 123&112F~X~HKLKLABCDASA01I
UPSHIFTED: (EXAMPLE 1-2)
ABCDFG6IJKA..{AB~CGJGf1F$E!SA0RDAEE1A233&7A 123&112F~X~HKLKLABCDASA01I
SCAN/MOVE UNTIL SPECIAL: {EXAMPLE 2-1)
abCDfg6ijka~Ab;cGjGf1f
SCAN/MOVE WHILE ALPHA OR NUM: {EXAMPLE 2-2)
abCDfg6ijka~Ab¢cGjGf1f
SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: {EXAMPLE 3-1)
abcdfg
SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)
abcdfg

END OF PROGRAM

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER {MAX. 16 CHARACTERS):
0
THE FOLLOWING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijka~Ab¢cGjGf1f$E!SAURdaee1a23~&7a 123&i12f~Ag-hklKLabCOASAuRi
UPSHIFTED: (EXAMPLE 1-1)
ABCDFG6IJKA..{AB¢CGJGF1F$E!SAURDaEf1A23~&7A 123&112F~AG;HKLKLABCDASAuRI
UPSHIFTED: (EXAMPLE 1-2)
ABCDFG6IJKA.4AB¢CGJGF1F$E!SAORDaEE1A23~&7A 123&112F~XG;HKLKLABCDASAuRI
SCAN/MOVE UNTIL SPECIAL: {EXAMPLE 2-1)
abCDfg6ijka
SCAN/MOVE WHILE ALPHA OR NUM: {EXAMPLE 2-2)
abCDfg6ijka
SCAN/MOVE/DOWNSHirT UNTIL NUM. OR SPEC.: {EXAMPLE 3-1)
abcdfg
SCAN/MOVE/DOWNSHIFT WHILE ALPHA: {EXAMPLE 3-2)
abcdfg

END OF PROGRAM

H-21

Example Programs

G. Using The NLSCANMOVE Intrinsic In An SPL Program

In this program there are six different calls to NLSCANMOVE. In every call, parameters are passed to
N LSCANMOVE. Since the upshift/downshift table and the character attributes table are optional
parameters, they may be omitted. For performance reasons (if NLSCANMOVE is called frequently)
they should be passed to the intrinsic after being read in by the appropriate calls to NLI NFO.

1 $CONTROL USLINIT
2 BEGIN
3 LOGICAL ARRAY
4 L 'UPSHIFT (0:127),
5 L'DOWNSHIFT (0:127),
6 L'CHARSET (0:127),
7 .L'ERROR (0:1),
8 L'INSTRING (0:34),
9 L'OUTSTRING (0:34),

10 L'PRINT (0:34),
11 L'LANGUAGE (0:7);
12
13 BYTE ARRAY
14 B'INSTRING(*) = L'INSTRING,
15 B'OUTSTRING(*) = L'OUTSTRING,
16 B'PRINT(*) = L'PRINT;
17
18 BYTE POINTER
19 BP'PRINT;
20
21 INTEGER
22 LANGNUM,
23 NUM'CHAR,
24 LGTH,
25 LENGTH;
26
27 LOGICAL
28 FLAGS;
29
30 DEFINE
31 LOWER'CASE = FLAGS . (1 5: 1) I ,
32 UPPER'CASE = FLAGS . (1 4: 1) I ,
33 NUMERIC'CHAR = FLAGS. (13: 1) I,
34 SPECIAL'CHAR = FLAGS. (12: 1)(/,
3'5
36 WHILE 'UNTIL = FLAGS.(11:1)#,
37
38 UPSHIFT'FLAG = FLAGS.(10:1)#,
39 DOWNSHIFT'FLAG = FLAGS . (9 : 1) I ,
40
41 ERROR'CHECK = IF L'ERROR(O) <> 0 THEN
42 QUIT #,
43
44 CCNE = IF <> THEN
45 QUIT #,
46
47 ·DISPLAY = MOVE B'PRINT ·-.- #,
48

H-22

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

ON'STDLIST = ,2;

INTRINSIC
READ,
QUIT,
PRINT,
NLINFO,
NLSCANMOVE;

@BP'PRINT := TOS;
LGTH := LOGICAL(@BP'PRINT) -

LOGICAL(@B'PRINT);
PRINT(L'PRINT, -LGTH, 0) #;

Example Programs

<< Start of main code.

«

Initializing the arrays.

MOVE B'INSTRING
: = 11 abCDfg6 ijka~~b9kGjGf1 f$E! SAuRdaeE1a233&7 11

, 2;
MOVE * := "a 123&i12f~~gfdhklKLabCDASAuAi";

MOVE L'OUTSTRING := II II

;
MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);

MOVE L'LANGUAGE := II II ;
MOVE L'LANGUAGE(1) := L'LANGUAGE,(7);

The user is asked to enter a language name or number.

DISPLAY

»

>>

"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"
ON'STDLIST;

READ(L'LANGUAGE,-16);

<< NLINFO item 22 returns the corresponding language
number in integer format for this language. >>

NLINF0(22,L'LANGUAGE,LANGNUM,L'ERROR);
IF L'ERROR(O) <> 0 THEN

BEGIN
IF L'ERROR(O) = 1 THEN

BEGIN
DISPLAY

END
ELSE

"NL/3000 IS NOT INSTALLED"
ON 'STDLIST;
QUIT (1001);

IF L'ERROR{O) = 2 THEN
BEGIN

DISPLAY
"THIS LANGUAGE IS NOT CONFIGURED"
ON 'STOLi ST;
QUIT (1002);

H-23

Example Programs

105 END
106 ELSE
107 QUIT (1000 + L'ERROR(O));
108 END;
109
110
111 <<-Obtain the character attributes table using
112 N LI NFO it em 12. »
113
114 NLINF0(12,L'CHARSET,LANGNUM,L'ERROR);
115 ERROR'CHECK (2000 + L'ERROR(O));
116
117 <<Obtain the upshift table using NLINFO item 15. >>
118
119 NLINF0(15,L'UPSHifT,LANGNUM,L'ERROR);
120 ERROR'CHECK (3000 + L'ERROR(O));
121
122 << Obtain the downshift table using NLINFO item 16. >>
123
124 NLINf0(16,L'DOWNSHIFT,LANGNUM,L'ERROR);
125 ERROR'CHECK (4000 + L'ERROR(O)};
126
127 << Print the character string used in all examples(instring). >>
128
129 DISPLAY
130 11 THE FOLLOWING STRING IS USED IN ALL EXAMPLES:"
131 ON'STDLIST;
132 DISPLAY B'INSTRING,(70) ON'STDLIST;
133
134 EXAMPLE'1 '1:
135 << The string passed in the array instring is moved and
136 UPSHIFTED to the array outstring.
137 Note: The 'until flag' is set. Therefore, the operation
138 continues until one of the ending criteria is true.
139 If no ending condition was set the
140 operation continues for the number of characters
141 contained in length. >>
142
143 LENGTH := 70;
144
145 FLAGS := O;
146
147 WHILE'UNTIL := 1 ;
148 UPSHIFT'FLAG ·-.- 1 ;
149
150 NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
151 LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);
152 ERROR'CHECK (5000 + L'ERROR(O));
153
154 DISPLAY "UPSHIFTED: (EXAMPLE 1-1)" ON'STDLIST;
155 DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;
156
157 EXAMPLE' 1 '2:
158 «Note: The 'while flag' is set. Therefore, the operation will
159 continue while one of the end criteria is true. Since
160 all conditions are set, one of them will be always

H-24

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

Example Programs

true and the operation continues for the number of
characters contained in length. This example performs
the same operation as EXAMPLE 1-1. >>

MOVE L'OUTSTRING ·- II II ; .-
MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);

FLAGS . -.- O;

LOWER'CASE := 1 ;
UPPER'CASE := 1 ;
SPECIAL'CHAR := 1 ;
NUMERIC'CHAR := 1 ;

WHILE 'UNTIL := O;
UPSHIFT'FLAG := 1 ;

NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHifT);

ERROR'CHECK (6000 + L'ERROR(O));

DISPLAY 11 UPSH I FTED: (EXAMPLE 1-2) II ON 'STDLIST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

EXAMPLE'2'1:
<< The string contained in instring should be scanned for the

first occurrence of a special character. All characters
before the first special are moved to outstring.
Note: The 'until.flag' is set and the ending condition is

set to 'special character'. Therefore, the operation
continues until the first special character is found or
until the number of characters contained in length
is processed.

MOVE L'OUTSTRING
MOVE L'OUTSTRING(1)

FLAGS ·-.- O;

SPECIAL'CHAR := 1 ;

WHILE 'UNTIL ·-.- 1 ;
UPSHifT'fLAG :·= O;

. -.- II II ;
:= L'OUTSTRING,(39);

NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTIHNG, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);

ERROR'CHECK (7000 + L'ERROR(O));

DISPLAY "SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1) 11

ON'STDLIST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

EXAMPLE'2'2:
<< Note: The 'while flag' is set and all ending criteria

except for special characters are set. Therefore, the

H-25

»

Example Programs

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

operation continues while an uppercase, a lowercase, or
a numeric character is found. When a special
character is found or the number of characters
contained in length is processed, the operation will
terminate.
This is the same operation as in EXAMPLE 2-1. >>

MOVE L'OUTSTRING := .
' MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);

FLAGS := O·
'

LOWER'CASE := 1 ;
UPPER'CASE := 1 ;
SPECIAL'CHAR := O·

' NUMERIC'CHAR := 1 ;

WHILE'UNTIL := O· ,
UPSHIFT'FLAG := O;

NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);

ERROR'CHECK (8000 + L'ERROR(O));

DISPLAY "SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)"
ON'STDLIST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

EXAMPLE'3'1:
<< The data contained in instring should be scanned for the

first occurrence of a numeric or a special character.
All characters preceding the first special or numeric character
are moved to outstring.
Note: The 'until flag' is set and the ending conditions are

set to 'special character' and to 'numeric character'.
Therefore, the operation runs until the first
special or numeric character is found, or
until the number of characters contained in length
is processed.

MOVE L'OUTSTRING
MOVE L'OUTSTRING(1)

FLAGS

SPECIAL'CHAR
NUMERIC'CHAR

:=

: =
:=

O;

1 ;
1 ;

WHILE'UNTIL := 1;
DOWNSH IFT 'FLAG : = 1;

II II : = ;
:= L'OUTSTRING,(39);

NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'DOWNSHIFT);

ERROR'CHECK (9000 + L'ERROR(O));

H-26

»

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

Example Programs

DISPLAY
11 SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)"
ON 'STD LI ST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

EXAMPLE'3'2:
<< Note: The 'while flag' is set and the ending criteria for

upppercase and lowercase characters are set.
Therefore, the operation continues while an uppercase or
a lowercase character is found. When a special
or numeric character is found or the number of
characters contained in length is processed, the
opera t ion w i 11 term i na t e .
This is the same operation as in EXAMPLE 3-1. >>

MOVE L'OUTSTRING
MOVE L'OUTSTRING(1)

FLAGS

LOWER'CASE
UPPER'CASE

:=

:=
·-.-

O;

1 ;
1 ;

WHILE'UNTIL := O;
DOWNSHIFT'FLAG := 1;

: = ;
:= L'OUTSTRING,(39);

NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'DOWNSHIFT);

ERROR'CHECK (1000 + L'ERROR(O));

DISPLAY
11 SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2) 11

ON 'STDLIST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

END.

Executing the program results in the following:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
GERMAN
THE FOLLOWING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijka~Ab¢cGjGf1f$E!SADRdae~1a23%&7a 123&i12f~Ag¢hklKLabCDASAuRi
UPSHIFTED: (EXAMPLE 1-1)
ABCDFG6IJKAJEAB¢CGJGF1F$E!SA0RDAE~1A23~&7A 123&I12F~AG¢HKLKLABCDASA0RI
UPSHIFTED: (EXAMPLE 1-2)
ABCDFG6IJKAJEAB¢CGJGF1F$E!SA0RDAE~1A23%&7A 123&I12F~AG¢HKLKLABCDASA0RI
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)
abCDfg6ijka~Ab¢cGjGf1f
SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)
abCDfg6ijka~Ab¢cGjGf1f
SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)
abcdfg

H-27

Example Programs

SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)
abcdfg

END OF PROGRAM

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
NATIVE-3000
THE FOLLOWING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijka~Xb¢cGjGf1f$E!SAuRdae~1a23%&7a 123&i12f~Ag¢hklKLabCDASAuRi
UPSHIFTED: (EXAMPLE 1-1)
ABCDFG6IJK~AB¢CGJGF1F$E!SAuRDaE~1A23%&7A 123&I12F~AG¢HKLKLABCDASAuRI
UPSHIFTED: (EXAMPLE 1-2)
ABCDFG6IJK~XB¢CGJGF1F$E!SAuRDaE~1A23%&7A 123&I12F~AG¢HKLKLABCDASAuRI
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)
abCDfg6ijka
SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)
abCDfg6 ijka
SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)
a~cdfg

SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)
abcdfg

END OF PROGRAM

H-28

Example Programs

H. Using The NL TRANSL A TE/NLREPCHAR Intrinsics In A COBOLll
Program

The string used in the example is 256 bytes in length and contains all possible byte values from 0 to
255. This string is converted from USASCII to EBCDIC. Then the converted string is taken and
translated back to USASCII. This is done according to the ASCII-to-EBCDIC and EBCDIC-to-ASCII
translation tables corresponding to the entered language.

Afterwards this twice-translated string is displayed. All characters which are non-printable (control
and undefined characters) in the character set supporting the given language are replaced by a period
before the string is displayed, by calling NLREPCHAR intrinsic.

1
1.1
1.2
1.3
1.4
1.5
1.6
1. 7
1.8
1.9
2
2 .1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3. 1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5
5.1

$CONTROL USLINIT
IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.
AUTHOR. LORO.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

77 QUITNUM
77 LANGNUM
77 IND

01
05
05
05

TABLES.
USASCII-EBC-TABLE
EBC-USASCII-TABLE
CHARSET-TABLE

01 BUFFER-FIELDS.

PIC S9(4) COMP VALUE 0.
PIC S9(4) COMP VALUE 0.
PIC S9(4) COMP VALUE O.

PIC X(256) VALUE SPACES.
PIC X(256) VALUE SPACES.

PIC X(256) VALUE SPACES.

05 INT-FIELD PIC S9(4) COMP VALUE -1.

01

05 BYTE-FIELD REDEFINES INT-FIELD.
10 FILLER PIC X.
10 CHAR PIC X.

05
05

10
05

10
10
10
10

STRINGS.
LANGUAGE
IN-STRING.
IN-BYTE
OUT-STRING.
OUT-STR1
OUT-STR2
OUT-STR3
OUT-STR4

PIC X(16) VALUE SPACES.

PIC X OCCURS 256.

PIC X(BO).
PIC X(SO).
PIC X(80).
PIC X(16).

01 REPLACE-WORD PIC S9(4) COMP VALUE 0.
01 REPLACE-BYTES REDEFINES REPLACE-WORD.

05 REPLACEMENT-CHAR PIC X.
05 FILLER PIC X.

01 ERRORS.
05 ERR1
05 ERR2

PROCEDURE DIVISION.
START-PGM.

PIC S9(4) COMP.
PIC S9(4) COMP.

5.2 * Initialize the instring array with all possible

H-29

Example Programs

5.3 *
5.4
5.5
5.6
5.7
5.8
5.9
6
6. 1
6.2
6.3

byte values starting from binary zero until 255.
MOVE -1 TO INT-FIELD.
PERFORM FILL-INSTRING VARYING IND FROM 1 BY 1

UNTIL IND > 256.
GO TO GET-LANGUAGE.

FI LL-I NSTRING.
ADD 1
MOVE CHAR

GET-LANGUAGE.

TO INT-FIELD.
TO I N - BYTE (I ND) .

6.4 •The language is hard-coded, set to 8 (GERMAN).
6.5
6.6
6.7

MOVE 8 TO LANGNUM.

6.8 GET-THE-TABLES.
6.9 * Call the USASCII-EBCDIC and EBCDIC-USASCII
7 * conversion tables and the character attribute table
7.1 * by using the appropriate NLINFO items.
7.2 * NOTE: NLTRANSLATE and NLREPCHAR may be called without
7.3 * passing the tables (last parameter). For performance
7.4 * reasons the tables should be passed, if these
7.5 * intrinsics are called very often.
7.6
7.7
7.8
7.9
8
8. 1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9
9. 1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

10
10. 1 *
10.2 *
10.3 *
10.4
10.5
10.6
10.7
10.8

CALL INTRINSIC 11 NLINF0 11 USING 13,
USASCII-EBC-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 1000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CALL INTRINSIC NLINFO ITEM 14,
EBC-USASCII-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 2000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CALL INTRINSIC 11 NLINF0 11 USING 12,
CHARSET-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 3000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CONVERT-ASC-EBC.
Convert IN-STRING from USASCII into EBCDIC by
using NLTRANSLATE code 2. The converted string will
be in OUT-STRING.

CALL INTRINSIC 11 NLTRANSLATE 11 USING 2,
IN-STRING,
OUT-STRING,
256,

H-30

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 4000 + ERR1,

LANGNUM,
ERRORS,
USASCII-EBC-TABLE.

10.9
11
11. 1
11. 2
11.3
11.4
11. 5

CALL INTRINSIC "QUIT" USING QUITNUM.

11.6 CONVERT-EBC-ASC.
11.7 *Convert OUT-STRING back from EBCDIC to USASCll by
11.8 *using NLTRANSLATE code 1. The retranslated string will
11.9 *be in IN-STRING again.
12
12. 1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
13
13. 1

CALL INTRINSIC 11 NLTRANSLATE 11 USING 1,

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 5000 + ERR1,

OUT-STRING,
IN-STRING,
256,
LANGNUM,
ERRORS,
EBC-USASCII-TABLE.

CALL INTRINSIC "QUIT" USING QUITNUM.

13.2 REPLACE-NON-PRINTABLES.
13.3 * Replace all non-printable characters
13.4 * in IN-STRING and display the string.

MOVE"." TO REPLACEMENT-CHAR.
CALL INTRINSIC 1

•
1 NLREPCHAR 11 USING

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 6000 + ERR1,

IN-STRING,
IN-STRING,
256,
REPLACE-WORD,
LANGNUM,
ERRORS.

13.5
13.6
13.7
13.8
13.9
14
14. 1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

CALL INTRINSIC 11 QUIT 11 USING QUITNUM.

DISPLAY "IN-STRING:"
DISPLAY IN-STRING.
STOP RUN.

H-31

Example Programs

Example Programs

I. Using The NLKEYCOMPARE Intrinsic In A COBOLll Program

The example shows a new KSAM file built programmatically. This new KSAM file is built with a
language attribute. This means the keys will be sorted according to the collating sequence of this lan­
guage. After building the file,the program writes 15 hard-coded data records into it.

Perform a generic FFINDBYKEY with a partial key of length1 containing "E". This should position
the KSAM file pointer to the first record whose key starts with any kind of 11 E11

(e, E, e, e,
etc.).

After locating this record, read all subsequent records in the file sequentially and call N LKEYCOMPARE
to check whether the key found is what was requested. If the result returned by NLKEYCOMPARE is 3,
the program is done. There are no more records whose key starts with any kind of "E".

1 $CONTROL USLINIT
1.1 IDENTIFICATION DIVISION.
1.2 PROGRAM-ID. EXAMPLE.
1.3 AUTHOR. LORO.
1.4 ENVIRONMENT DIVISION.
1.5 CONFIGURATION SECTION.
1.6 SOURCE-COMPUTER. HP3000.
1. 7 OBJECT-COMPUTER. HP3000.
1.8 SPECIAL-NAMES.
1.9 CONDITION-CODE IS CC.
2 DATA DIVISION.
2. 1 WORKING-STORAGE SECTION.
2.2 77 QUI TN UM PIC S9(4) COMP VALUE 0.
2.3 77 LANGNUM PIC S9(4) COMP VALUE 0.
2.4 77 LEGTH PIC S9(4) COMP VALUE 0.
2.5 77 FNUM PIC S9(4) COMP VALUE 0.
2.6 77 RESULT PIC S9(4) COMP VALUE 0.
2.7 77 FOPTIONS PIC S9(4) COMP.
2.8 77 AOPTIONS PIC S9(4) COMP.
2.9 77 IND PIC S9(4) COMP.
3
3. 1 01 TABLES.
3.2 05 COLL-TABLE PIC X(800).
3.3 05 KSAM-PARAM.
3.4 10 KEY-FILE PIC X(8) VALUE SPACES.
3.5 10 KEY-FILE-SIZ PIC S9(8) COMP.
3.6 10 FILLER PIC X(8) VALUE SPACES.
3.7 10 LANGUAGE-NUM PIC S9(4) COMP.
3.8 10 FILLER PIC X(8) VALUE SPACES.
3.9 10 FLAGWORD PIC S9(4) COMP.
4 10 NUM-OF-KEYS PIC S9(4) COMP.
4. 1 10 KEY-DESCR PIC S9(4) COMP.
4.2 10 KEY-LOCATION PIC S9(4) COMP.
4.3 10 DUPL-BLOCK PIC S9(4) COMP.
4.4 10 FILLER PIC X(20).
4.5
4.6 01 STRINGS.
4.7 05 GEN-KEY PIC X(4).
4.8 05 FILENAME PIC X(8) VALUE SPACES.
4.9
5 01 ERRORS.

H-32

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	G-01
	G-02
	G-03
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	H-27
	H-28
	H-29
	H-30
	H-31
	H-32

