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In this Issue:

il FiF ; The electronic bench is the universal development system that a designer or a team of
' s e designers uses to develop hardware and software for any kind of electronic product at all. At
.= each designer's command are all of the computer-aided design tools and analyzers that
i might conceivably be needed in the development effort. All of these subsystems are linked

so that their combined power far exceeds that of individual tools used by isolated designers.

~ As you've probably guessed, this single do-everything system doesn't exist. However, the
subject of this month's issue is a system that aspires to become the electronic bench for

/ designers of products based on commercial microprocessors, those little computers on a chip

that are turning up in everything from scales to automobiles these days. First featured in our October 1980 issue,

the HP 64000 Logic Development System is much closer to its goal today than it was then.

How close is it? Let's look at what it takes to develop a microprocessor-based product. First, the hardware
must be designed and a prototype built. Perhaps it's a microwave oven, and somewhere inside is a printed circuit
board and on it a microprocessor in a socket. Concurrent with the hardware development is the software
development effort. Someone must write the program the microprocessor will execute. In the final product this
program will be stored permanently in a read-only memory chip (a ROM), at which point it's no longer software
but firmware. With prototype hardware and software available, the testing and debugging begin. Hardware and
software are tested separately, then together until the entire system is working properly.

The 64000 today is a pretty complete system for software development and for testing and debugging
software and the digital portion of the hardware. It can't design printed circuit boards or tell you if the oven does
justice to a casserole. The 64000 plugs into the socket on a prototype board that's normally occupied by the
microprocessor, and it emulates or pretends to be the microprocessor. The product doesn't know the difference,
but the designer can now control and observe everything that happens. Today's 64000 System can emulate and
produce software for a long list of widely used microprocessors, including the newer, more powerful 16-bit
models. For testing and analysis, the system offers a new software state analyzer and a new hardware timing
analyzer. A new portable development station and flexible disc drives make the system useful for servicing
complex equipment and for development at remote sites (cover photo). A development station, portable or
benchtop, can be a laboratory's total development system, performing all functions, or it can be dedicated to a
single function such gs software development. Up to six stations can be linked in a cluster, so several designers
can share a common data base. It's a formidable array of capabilities, even if it doesn't add up to the ultimate
electronic bench.

-R. P. Dolan
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Extensive Logic Development and Support
Capability in One Convenient System
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by Michael W. Davis, John A. Scharrer, and Robert G. Wickliff, Jr.

URING THE DESIGN of a microprocessor-based sys-
tem, a large percentage of the time, typically 30%, is
spent on debugging, integrating, and optimizing
hardware and software. This phase often generates design
changes that must be implemented quickly for maximum
productivity. Not infrequently, software development must
proceed with a prototype hardware system, or the hardware
design must proceed with only skeleton software. The sy
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tem integration phase is the first time that parts of the

microprocessor system are brought together. This ongoing
process of refinement and change can be further compli-
cated by the use of multiple processars within the same

+h

these Processors may

system,
vendor.
The development tools used by designers must offer flex-

ibility, power, and ease of use. They must be appropriate for

and be from more than one

Fig. 1. The HP 64100A Development Station (right) includes a keyboard, display, host proces-

sor, space for 10 option cards, dual flexible disc drives, and power supply. The optional emulator

for the 68000 microprocessor is shown on top of the 64100A. The HP 64110A Development

Station (left) is the transportable version of the 64100A and has the same features except that the

number of option cards is limited to five. Somme of the cables and a pod for the HP 646205 Logic
State/Software Analyzer option are shown with the 64110A
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projects ranging from a single-person task to a large-team
software task with a huge data base. The HP 64000 Logic
Development System provides a comprehensive solution
for these varying design requirements. Facilities for
hardware timing analysis, state/software analysis, and
software performance overview provide debugging and in-
tegrating tools that improve the designers’ efficiency. These
analysis tools can be used independently or in conjunction
with the 64000's emulation and software development fea-
tures. As a result of recent architectural enhancements, the
64000 System can be used in different development envi-
ronments where the user may work independently, with a
team, or at a station connected to a larger CPU. Offering all
of these features and settings while retaining a common
human interface, the 64000 is a highly integrated logic
development system with many of the attributes of the
“electronic bench.™!

System Configurations

An HP 64000 Logic Development System may be a single
station configured as an HP 64100 Development Station
with an HP 64941A Dual Flexible Disc Drive installed, or as
an HP 64110A Development Station. Either station (Fig. 1)
can edit, assemble, compile, link, and store program mod-
ules. A compatible HP printer can be added for hard copy,
and a compatible HP hard disc memory can be added for
greater storage capacity and higher performance. The sys-
tem can be expanded to a cluster of as many as six develop-
ment stations, each with its own host processor, sharing a
hard disc and line printer. The stand-alone mode can be
used for smaller software projects or analysis and emula-
tion, The multistation cluster has the advantage of a shared
data base and shared peripherals for a team of designers. A
station having the flexible disc drives can be disconnected
and used independently atany time. Software is compatible
between the hard disc and the dual flexible disc drives.

In the stand-alone configuration, a development station
can be connected to an HP-IB (IEEE 488) controller and used
as a typical controlled instrument. In either the stand-alone
or cluster configuration (Fig. 2), any development station
can be connected by an RS-232-C/V.24 interface to a host
CPU such as an HP 3000 Computer. A communications
protocol and terminal emulation software permit upload-
ing and downloading of both source and absolute files
between the 64000 and a host computer (see box on page 6).
This gives the 64000 the flexibility to use software tools
available on the host computer, or to use its own built-in
software tools, reserving the host for archiving and man-
agement control. Also, the host computer can send a com-
mand file to a 64000 Station and cause it to execute those
commands,

Each 64100A and 64110A Development Station can be
configured in many different ways. Adding an HP 64032A
Memory Expander with 32K words of RAM provides addi-
tional symbol space for compilers. Both Pascal and C
cross-compilers are available for a number of micro-
processors, and a host Pascal compiler is available to exe-
cute on the 64000 System. The addition of emulator options
with up to one megabyte of independent memory in 32K,
64K, or 128K-byte increments gives the user an executing
and debugging environment and a tool for integrating
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Fig. 2. The 64000 Logic Development System can be config-
ured with any 64100A or 64110A Development Station in a
stand-alone mode with or without a listen-only line printer, and
can be connected to an HP-IB controller, if desired. The cius-
ter configuration can be expanded to as many as six stations
connected to a hard disc memory. Any station, either in a
cluster or a stand-alone system, can be connected to a host
CPU via an RS-232-C/V.24 interface. Stand-alone stations can
alsointeract with each other or a cluster configuration by using
optional data links.

hardware and software in the early phases of development.
As software modules are completed, they can be mapped
into the target system’s RAM or stored in programmable
read-only memories (PROMs) using the HP 64500A PROM
Programming System. The HP 64302A Logic Analyzer is a
single-option-card state analyzer which can beadded toany
emulator to monitor address, data, and status of the target
microprocessor system, For complex debugging and inte-
gration, a user can add an HP 64620S Logic State/Software
Analyzer (see article on page 16) with external or internal
probes. The 646208 is expandable from 20 to 120 channels
and has a real-time overview of state events for software
performance evaluation. It also has access to the 64000 data
base for symbolic debugging. For hardware debugging and
integration, an HP 646008 Logic Timing Analyzer (see arti-
cle on page 23) can be used for the monitoring of control,
status, and logic levels. It is available with 8 or 16 channels.
Both the 646208 and the 646008S can be installed as separate
subsystems or in conjunction with other HP analyzers and
emulators.
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Development Stations

Both the 64100A and 64110A Development Stations have
an integral keyboard and display (Fig. 1) to provide the
interface between the operator and the logic development
system. Both have the same host processor system, al-
though because of available space, it is partitioned differ-
ently in the two stations. The host processor is a custom
16-bit microprocessor manufactured by HP. The smaller
station, the 64110A, is rack mountable and transportable,
easily moved about the laboratory or used for production
and service applications. The larger station, the 641004, is
better suited for fixed benchtop applications.

Each station has an option card cage (Fig. 3) to house
circuitry for the various system options. The 64110A has
five option card slots and a 250W power supply and the
64100A has ten option slots and a 400W power supply. The
development station bus is the interface between the host
processor and the option cards. Each option card is iden-
tified by the host processor when the station is turned on,
communicating through 16K words of memory-mapped /O
so that the option software and directed-syntax softkeys are
self-configuring. Station setup and the HP-IB are controlled
by rear-panel switches.

All option cards use the same directed-syntax human
interface used for the system monitor, editor, and software
tools.? This results in ease of use, quick learning, and better
user productivity. The emulation system uses a separate
emulation bus to communicate between emulation control,
emulation memory, and analysis cards. The analysis cards
also share an intermodule bus for measurement control and
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interaction. The measurement system software can support
any four emulator or analyzer subsystems within a single
development station. This software treats the HP 64302A
Logic Analyzer as an integral part of an emulator. The
number of subsystems a station can hold is dependent on
the number of option cards involved since some subsystems
require more than one card.

Flexible Disc Drives

Dual 5%-inch flexible disc drives, another development
station option, make it possible to operate the 64000 System
without a hard disc memory. Since the software runs on
either a hard-disc-based cluster or flexible-disc-based sta-
tions without change, these new stations are not simply an
add-on to the 64000 product family. They can be used in a
cluster system, and when a problem arises in a field applica-
tion, the software needed to check out the remote system
can be recorded on flexible discs directly from the shared
cluster disc. This includes user-developed programs as
well as HP system software. Thus, the station and the flexi-
ble discs can be taken to the problem. These new station
options also lower the entry cost of a 64000 System. The
minimum configuration is reduced from a station and a
hard disc to just a station, with the assurance that upgrading
to a hard disc memory will not cause any disruptions.
Operation of a flexible-disc-based station is identical to the
operation of a station within a cluster. All files transport
from one environment to the other without change. The file
manager is the same in both environments; only the disc
driver code is different. Flexible disc interfaces to the file
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Fig. 3. The host system and the emulated microprocessors have independent buses and can

run simultaneously. Emulation and analysis can be controlled for coordinated measurements,

allowing software development concurrent with emulation and analysis. The assortment of nine

option cards shown above is possible only in the 64100A Station since the 64110A Station is
limited to no more than five cards.
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'HP 64000 Terminal Software

by Paul D. Bame

The need for rudimentary communication between the HP
64000 Logic Development System and other devices was recog-
nized at the inception of the system. To handle this need, an
RS-232-C/V.24 port was designed into the development station,
and a simple copy command was implemented in the system
monitor. When used with the RS-232-C/V.24 port, the copy com-
mand allows the user to transfer files between the 64000 System
and a remote device. All 64000 file types can be transferred.
During transfers of text files (source and listing), the upper bit of
each byte is stripped. For other file types, all eight bits of each
byte are transferred. The maximum transfer rate is 9600 baud,
with pacing required for rates greater than 1200 baud, To achieve
this pacing, an XON/XOFF protocol is used. Errar detection is
provided on nontext files; however, no error correction or retrans-
mission capabilities exist.

Recently, terminal software has been added to the system
manitor. It allows a development station to be used as a conversa-
tional terminal with file transfer capabilities. The requirement was
for the development station to be able to replace, but not to
emulate many common terminals on popular mainframes. The
development station should be able to plug into a normal terminal
port, allowing the simplest interface between a user's mainframe
and the 64000 System.

Because of system considerations, it was desirable to imple-
ment only asynchronous communication capabilities, With this
decision made, the next step was to determine the most general
way to perform the data pacing. This pacing, or flow control, is
very important for reading data rates above 1200 baud reliably.
Many mainframes cannot support a sustained input data rate of
even 300 baud, especially when supporting a heavy timesharing
load. The two most frequently used protocols were determined to
be XON/XOFF and ENQ/ACK, and so these two were implemented.

Protocols

The XON/XOFF protocol is a start-stop protocol. When a device
receives an XON character, transmission starts, and when a de-
vice receives an XOFF character, transmission halts. ENQ/ACK, on
the other hand, is an interrogative protocol. When a device wishes
to transmit, it sends an ENQ character. If the receiving device is
ready to accept input, it responds with an ACK character.

Because in the past most terminals could never send data fast
enough to cause problems, terminal drivers were not always
written symmetrically. When a mainframe computer sends afile to
a 64000 Station, the protocol running on the terminal driver pre-
vents the 64000 Station from being overrun. However, some driv-
ers do not respond correctly to protocol when the mainframeis the
receiver. For example, many terminal drivers do not send XON or
XOFF, or do not respond properly when they receive an ENG.
Although HP computers’ ENQ/ACK protocol is not sufficient to
control fast terminals like the 64000, this issue has been ad-
dressed. HP terminals often include tape cartridge units, which, if
left uncontrolled, could cause the mainframe to be overrun. An
additional level of protocol was added to control the tape units. A
special character is sent to the terminal (tape unit) whenever the
mainframe is able to accept the next record. This protocol was
adopted in the 84000's terminal software to prevent a 64000
Station from overrunning a remote device or mainframe.

Data Transfer
Because of the internal characteristics of a 64000 Station, addi-

tional requirements are placed upon the protocols that are espe-
cially important when operating at the higher baud rates. The
major challenge was coordinating the disc I/O with the RS-232-
C/IV.24 /0 during file transfers. During disc data transfers, the
interrupt system may be unavailable for up to 6 ms. The universal
asynchronous receiver-transmitter (UART), which is also interrupt
driven, can buffer up to two characters internally before being
serviced. This creates a situation where, if more than two charac-
ters are received during the time that interrupts are disabled,
some data may be lost. Allowing for other factors that also may
affect this, and leaving a comfortable safety margin, the 64000's
terminal mode can run at up to 1200 baud with no protocol. Using
a protocol, the terminal software can run at up to 9600 baud.

The protocol must ensure that no more than two characters are
received during a disc transfer. This is not a problem while using
the ENQ/ACK protocol, It is sufficient to ensure that all disc trans-
fers oceur after receiving an ENQ character and before replying
with an ACK. With the XON/XOFF protocol, this is not so easy. In
theory, when a XOFF character is sent, the disc transfer can be
made and then a XON can be sent. In practice, there is no guaran-
tee that the remote device will send no more than two characters
after the 64000 Station sends the XOFF character. Many main-
frames simply cannot stop transmission that quickly.

There are two solutions to this problem. First, a simple program
described in the 64000's terminal software manual can be run on
the mainframe, solving the problem at the mainframe. Second, a
recent enhancement to the terminal software provides a configur-
able delay, forcing the 64000 to wait from 0 to 32,767 ms after
sending an XOFF character before going to the disc.

The protocols available in the 64000's terminal software system
are general enough so that even if a terminal driver is not compat-
ible with either protocol, fairly simple mainframe programs can be
written to bypass the terminal driver and interface with the 64000
System directly. To avoid interference with the mainframe terminal
driver protocol characters, the controlling characters (XON, XOFF,
ENQ, and ACK) are user-configurable to any seven-bit ASCII
characters. This allows programs to be written without knowledge
of how the terminal drivers work. The 64000's terminal software
supports transfers of source (text) files and absolute (object code)
files. Absolute files are transferred in one of three hexadecimal
formats: Motorola S$1/39 format, Intel format, and Tektronix format.
Most mainframe-based cross software produces one of these
formats, so object code can be transferred to a 64000 System
where the 64000's emulation tools can be used.

The 64000's terminal software has two major limitations. In
addition to not supporting synchronous communication, it only
permits transfer of source files and absolute files.

Paul D. Bame

Paul Bame is a software develop-
ment engineer at HP's Colorado
Springs facility. He received a BEE
degree in 1981 from the University
of Delaware and is a member of the
|IEEE. He lives in Colorado Springs,
Colorado and his hobbies include
photography and camping.
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manager are exactly the same as for the hard disc. The only
assets a user of a flexible disc system gives up are data
access speed and storage space.

In cluster operation, the flexible discs are used only for
storing and retrieving user files. New system software as-
sociated with the new hardware retains the commands
familiar to users of the earlier version of the 64000 System.
Commands used to store and retrieve files have the same
syntax as those used for these functions on stations contain-
ing DC-100 cartridge tape drives, Since there are two flexi-
ble disc drives in a station, but only one tape drive in an
older tape-equipped station, the new software uses the first
available flexible disc drive and continues on the second
drive if necessary. In this way, older software can take full
advantage of the new hardware without requiring com-
mand syntax changes or requiring the user to keep track of
drive numbers,

Since flexible discs must be formatted before use, a
software module was created to perform this function.
(System modules consist of segments that are overlayed in
64K bytes of RAM within each station. Only one segment
may be executing at a given time.?) Commands for testing
media and duplicating and comparing entire discs are also
in this software module, which is placed in a separate
segment with its own command interface so that once this
module is loaded, many operations can be performed with-
out further reference to a system disc.

For a user to take advantage of the fact that all system
software runs in both cluster and stand-alone modes, some
means of moving system files has to be provided. Further,
because of space limitations on flexible discs, only the
software needed for a particular application is placed on
flexible discs, leaving more disc space for user files on-line.

Single applications, such as the state analyzer, require
many files for segment overlays, Keeping track of these files
is a complex task. To free the user of this burden, a special
file was created to group files under a single application
name. The flexible disc system generator module refer-
ences this file, showing the user which system modules are
on each hard disc or flexible disc. Moving modules from
disc to disc does not require knowledge of the module file
structure.

HP-IB Available in Stand-Alone Mode

In a cluster, the rear-panel HP-IB port is used for system
operation, but when a station is operating in the stand-alone
mode, the HP-IB port is available for remote operation of the
system. The 64000 Stations are not controllers; they func-

tion within an HP-IB system much like other instruments.
The difference is that the 64000 is a system rather than a
single instrument. Remote operation is therefore handled
by passing across the HP-IB commands that would be typed
under normal syvstem operation. This effectively separates
the HP-IB module from the measurement and control func-
tions within the system. Command interpretation and error
checking are handled by the receiving module just as if the
command came from the keyboard. This also makes pro-
gramming easy, since the same commands are used for
HP-IB and manual operation. In addition, commands en-
tered manually with the aid of the softkeys? can be logged to
a file, and this file can then be used as a command file
activated by a bus command, or the file can be sent over the
bus for retransmission later.

The HP-IB interface can be programmed to request ser-
vice from a controller on the occurrence of any of three
conditions: awaiting command, error in last command, and
measurement complete. This allows a controller to proceed
with other tasks and detect errors until the 64000 Station is
ready. A status byte can be requested to determine which
condition caused the service request. Reading this byte also
clears the interface to request service on the next occurrence
of a programmed condition.

Two special commands give the HP-IB controller direct
access to the display and the station beep signal. This al-
lows remately processed data to be displayed, as well as
messages to an operator in a programmed system. Thus, the
64000 Station can be used within a complex automated test
system in a manufacturing area or, with adapters, con-
trolled at a remote site over a phone line,

Logic Analysis Subsystem

The problem of realizing a logic analysis and software
development system that meets all of the various needs of
the digital hardware/software design scenario can best be
appreciated by looking at a model of the design process. As
shown in Fig. 4, the design process spans a range of ac-
tivities from developing analog and timing characteristics
of devices (in a system environment) to high-level and
abstract observations of system performance.

At the bottom and middle of the funnel shown in Fig. 4,
designers are most concerned with ““does it work?"" At the
top, the concern is “can it be made to work more efficiently
(less time, less code)?”" Some of the measurements applied
to these issues are indicated along the right side of the
funnel. As one might expect, there are significant differ-
ences in the instruments that address these various applica-

A
Processes ¥ =
Overview - — Increasing
Procedures L e Complexity
Variables Software/ A
State Analysis Trace Lists
Instructions
Bus Signals Timing Analysis L L
Clock Cycles
Logic Anal Increasing
na o
Devices T“ﬂ':g Speed Fig. 4. The digital measurement

Measurement Displays

spectrum for microprocessor-
based systems.
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The HP 64000 Measurement System

by Kipper K. Fulghum

One of the major contributions introduced by the HP 64000
Logic Development System is the friendly integration of software
and hardware development tools with software and hardware
analysis tools. Specifically, microprocessor emulation allows the
designer to exercise software and hardware in the target system,
while internal analysis provides unobtrusive testing and debug
facilities. With the introduction of the 646205 Logic State Analyzer
and the 64600S Logic Timing Analyzer, the 64000 System now
has extensive external analysis capabilities as well. By them-
selves, the state, timing, and existing emulation subsystems are
powerful development and analysis tools. Intermodule communi-
cation between these subsystems provides the user with a state-
of-the-art digital measurement system.

Intermodule Bus

Intermodule communication is accomplished via a high-speed,
ECL low-true intermodule bus (IMB) consisting of five signal lines:
master enable, delay clock, trigger enable, storage enable, and
trigger (high-true). All signal lines use one driver, except the
trigger line, which allows multiple drivers. Any number of receiv-
ers are allowed on all five lines. With this set of signals, complete
intermodule control, sequencing, triggering, and store qualifying
are provided. The capabilities of each analyzer are enhanced by
the other subsystems on the IMB, and multibus and multiproces-
sor analysis and emulation can be done with one system.

Measurement System

Management of this multiple module analysis/emulation system
is achieved with a software package labeled meas_sys on the
64000's softkeys. This measurement system is responsible for
initiating, controlling, monitoring, and concluding any measure-
ment session in the 64000 environment. It allows multiple
analysis/emulation modules (up to four) to coexist in a single
station and communicate with one another over the IMB,

The measurement system functions as the resource manager of
the IMB. It enforces the global rules of the bus, coordinates its use,
and prevents competition for the bus resources. The specific
functions any single module can perform on the bus are deter-
mined by the nature of the module. Each module (state, timing, or
emulation subsystem) defines what signals it will drive with what
internal resources, as well as what it will receive,

The only evidence of the measurement system software visible
to the user, once analysis/emulation has been requested, is the
multiple module monitor. This monitor is entered only if there is
more than one analysis/emulation module in the station, In all
cases, the configuration and resident portions of the measure-
ment system software are loaded from disc. If there s only one
module present, that module is loaded and entered immediately
by the measurement system software. But if multiple modules are
identified during configuration, the measurement system monitor
is entered instead. This monitor provides the means of loading
software for any of the multiple modules. It displays all of the
modules in the box, the card-cage slot number of each module's
control board, each module's current status, and a description of
each module. If any IMB specifications have been made, the
current IMB configuration, including drivers/receivers of every
IMB line, isdisplayed. Lines with possible competition, controllers
of the rear-panel BNC ports, and emulators on the emulation
ghost start line (a software-supported line for initiating multiple
emulation) are also reported. The softkey labels, determined

dynamically at configuration time, include one for each module in
the box, with two or more identical modules differentiated by their
control board's slot number. Depending on the current run status
and the current IMB specification, an execute or halt softkey label
may also be displayed. A softkey allowing cutput of the display to
a printer is also shown. Once a module has been selected, en-
tered, configured, and exited, the measurement system monitor is
reentered, allowing selection of the next module to be configured.
At each reentry, the display is updated with the modified IMB
configuration, and the softkeys are labeled appropriately.

Slot Array Utilities

The measurement system maintains three major data struc-
tures. Each data structure has its own set of utilities for creating
and interrogating the structure for pertinent information. The first
structure, created by a card-cage poll during initial configuration
of the measurement system, is called the slot array, an array of
records indexed by slot number. Each record contains informa-
tion about the board in a particular slot, The slot array utilities allow
all analysis/femulation modules and the measurement system to
access this information, which includes the board's select code,
type, and module name. If the board is a control board, two other
items are also maintained: an assigned module number and the
RAM address of that module’s relocated baby module.

A baby module is a small (maximum of 512 bytes), relocatable
hardware-dependent module capable of basic identification, ini-
tialization, and control of its respective hardware set. This baby
module, one per analyzer/emulator, is loaded by the measure-
ment system and relocated to a more convenient RAM location
during configuration. It is used by the measurement system and
its parent module to start, monitor, and halt related hardware. The
combined capabilities of all relocated baby modules allow the
measurement system to control all the hardware sets in the station
without having any of the parent analysis/emulation software
packages resident in memory. This is a necessary condition since
only one parent module can remain in memory at any one time,
and none is available when the measurement system monitor is
loaded.

Function Array Utilities

The second major data structure supported by the measure-
ment system software is the function array. It maintains the current
configuration of the IMB (all drivers and receivers of every IMB
line), the rear-panel BNC ports, and the multiple emulation ghost
line. When a module requests permission to drive or receive a
particular signal through the function array utilities, this structure
is updated to reflect the request and the caller is informed of any
possible conflict with another module the request may have
created. Only minimal data is kept in this structure. If more infor-
mation about a certain module is required, the slot array utilities
can be accessed to provide the necessary data. Given this
cross-referencing of structures, each module can not only find out
what bus conflicts there are. but also who is contending for the
bus. This is important since a measurement cannct be allowed
until all conflicts are resolved.

Run-Time Stack

The final crucial data structure used by the measurement sys-
tem software is the run-time stack. This stack is a typical LIFO
stack: last-in, first-out. It keeps track of the required starting order

8 HEWLETT-PACKARD JOUBNAL MARCH 1983

© Copr. 1949-1998 Hewlett-Packard Co.




of the modules for a multiple moduie execution. A distinct starting
order of the modules is imperative because drivers and receivers
of certain lower-ievel signals should be delayed until the module
that sets the context of the measurement, that is; the driver of
master enable, is up and running. Also, emulation moedules should
start after analysis modules; otherwise, the analyzers may miss
possible sequence or trigger conditions. Therefore, tems. are
pushed onto the siack as follows: all emulators on the emulation
ghost line. the driver of master enable, all drivers of the other
signals, and finally all receivers. Thus, when the items are popped
oif the stack, the last analysis module popped is the driver of
master enable, then all emulators, ensuring that the correct mea-
surement context is set before the measurement begins.

Upon exiting the measurement system, all data structures and
current baby modules are saved in one configuration file on the
cluster disc or local flexible disc, depending on which is being
used as the system disc. This file, unique to each station in-a
multistation system, contains all necessary information reguired
by the measurement system software to reinitiate a measurement

| session. Thus, if all individual modules are exited cleanly, thatis, if
| individual configurations are completed, the user can end a mea-
| surement session and return to the 64000's main system monitor

to edit, compile, or periorm other functions. Later, a return to the
previbus measurement session can be made via a continue re-
guest, and all measurement configurations and run status will be
unchanged. This provides the user with an extremely friendly path
from analysis to development tools and back again without having

to reconfigure the instrument
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tion areas. For a microprocessor-based system, the stimulus
for these measurements is the emulation capability of the
logic development system. Despite these different needs,
only one system is designed, and sometimes a single de-
signer must use most, or all of the disciplines shown,

Performance and State Analysis

The performance portion of the 64620S Logic State/
Software Analyzer subsystem is optimized to accumulate
range data on address events and time events, in real time,
in a large storage memory for postmeasurement processing,
This gives the analyzer an overview capability that mea-
sures the performance of the system software by indicating
the relative time spent doing tasks or the times spent doing
a specific task. The data is displayed in histogram, graph, or
list form. The input circuitry for the performance analyzer
is identical to that of the state analyzer system. The perfor-
mance analyzer has its own 4K-byte storage memory. A
large memory is necessary since large amounts of data are
required to give a meaningful overview picture. The per-
formance analyzer and state analyzer share the same board
set, but act as independent analyzers interrelated by data
qualification and trigger mechanisms.

The state analyzer is optimized for qualifying measure-
ments (trigger) and data (store qualify). Its multiple se-
quence detectors are invaluable in untangling the complex
algorithms characteristic of software design. To achieve
these capabilities, the state analyzer has many decision
points within every clock period of the system under test.
This decision-making time limits the maximum incoming
clock rate that the analyzer can accept, but through the use
of emitter-coupled logic and custom bipolar logic chips, the
maximum clock speed of the 646208 Analyzer exceeds the
needs of most processors, In a state analyzer, and in particu-
lar the 646208, incoming data is highly qualified, and there-
fore having a large memory for storing states is not critical.
Also, in state analysis, sampling is done by the clock of the
system under test and the important parameters are the

setup and hold times of data in relation to that clock. In
general, if the system is to be sampled reliably, the setup
time should be a minor portion of a clock cycle and the hold
time should be zero or negative. This is accomplished in the
64635A Data Probes or the 64650A Preprocessor by a cus-
tom bipolar delay generator.

Timing Analyzer

Timing analysis has quite a different set of requirements.
Incoming data is sampled by an internal asynchronous
clock and all incoming data is sampled. Therefore, a large
storage memory and an effective postmeasurement display
system are important. Also, in timing, data is observed for
timing relationships and race conditions, and therefore the
timing resolution should exceed the minimum timing mar-
gins required by the system under test. The resulting con-
straint is that sample rate and input line skew are the impor-
tant parameters for timing analyzer inputs. Setup time and
hold time are not relevant in the timing analyzer, other than
that their sum is usually an indicator of channel time skew.
The delay lines present in a state analyzer would actually
increase skew and deteriorate resolution if identical inputs
were used for both state and timing.

Parametric voltage information is more important at this
end of the design continuum, and the 64600S Timing
Analyzer can capture and display three levels of voltage
information., In this dual-threshold mode, a low, middle, or
high logic level can be displayed. The two thresholds are
usually set to a particular logic family’s low and high input
specifications (see Fig. 3 on page 26).

Effective triggering is also important in a timing analyzer.
The 646008 can do parametric triggering such as on event
times, event transitions, and glitches. Transitions are the
dynamic entry to or departure from a specified pattern. A
glitch on a data line is two or more transitions that occur
between internal sample clocks. Using the dual-threshold
measurement capability of the 646008 Timing Analyzer as
an example, atypical trigger specification might read trigger
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on greater than 50 usec of CLOCK=Middle. Since the timing
analyzer does not capture data synchronously with the
clock of the system under test, it cannot do an effective job
of triggering on synchronous data. It must rely on a state
analvzer for this type of trigger capability.

State, Timing, and Software Development Together

As we have seen, the requirements for hardware and
instrument characteristics differ quite a bit between state
and timing analyzers. Thus, trying to make the same mod-
ule do both tasks is not practical. The 64000 approach is to
design independent modules, each optimized for a specific
set of instrumentation tasks, However, because the state,
timing, and emulation modules are controlling and measur-
ing the same system, connections and synergism must exist
among these modules.

There are three primary areas of interaction. The first is
the real-time interaction of emulation, state analysis, and
timing analysis. Since, in general, any analyzer takes only a
relatively small snapshot of a system’s performance, defin-
ing windows (specified events in time or address space) and
indexing across module boundaries is a necessity.? In the
64000 System, this is done by the high-speed intermodule
bus (IMB) which allows interaction of triggering, trigger
arming, storing, store arming, system starting, and win-
dowing of the functions of one module by another module.

The second area of module interaction is data base shar-
ing between the software development system and the state
analyzer. The symbols generated by the linker, assembler,
and compiler are available to the state analyzer for the
purpose of displaying symbols for addresses and also as
addresses in operands. They are also used in setting up
format and trigger specifications by appearing as softkey
labels when appropriate.

The third area of interaction is related to the operator and
is concerned with the commonality of instrument setup and
syntax. The directed-syntax softkeys and grammar conven-
tions of the 64000 System provided an excellent opportun-
ity to achieve a setup and display synergism between the
state and timing analyzers and emulation modules that
allows commonality in operating all three types of instru-
ments. A new software module has been added to the
operating system to coordinate the interaction and start-up
of the individual modules. This module also indicates the
status of the modules during execution (see box on page 8).
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Mainframe Design for an Integrated
Engineering Workstation

by Jeffrey H. Smith, Carlton E. Glitzke, and Alan J. DeVilbiss

HE NEW HP 64110A and upgraded HP 64100A De-

velopment Stations are the second-generation main-

frames for Hewlett-Packard's 64000 Logic Develop-
ment System. They allow the system to be used in many dif-
ferent ways, ranging from cluster to stand-alone applications.
Rather than creating completely new stations, the task was
to design a smaller, portable mainframe, the 64110A, while
retaining absolute compatibility with the existing 64100A
mainframe. At the same time, the 64100A was upgraded
with a new power supply to handle new option cards. Both
mainframes also received a dual flexible disc drive system
that is compatible with the existing base of 64000 System

hardware and software.
The larger of the two new mainframes, the 64100A (see

Fig. 1 on page 3), is an evolutionary upgrade of the 64000
System introduced in 1979.! It has room for installation of
the new dual flexible disc system. A more powerful, stan-
dard 400-watt power supply provides regulated power for
its host system and for up to ten 64000 Series option cards
and associated probes.

The smaller of the new stations is the transportable
64110A Development Station (see cover and Fig. 1). The
mechanical design goals of the 64110A were to provide a
transportable and self-contained mainframe compatible
with the 64000 option cards. For an instrument to be trans-
portable it must be compact, durable and easy to carry and
move around. Some features of the 64110A are:

A 8-inch-diagonal CRT, a full ASCII keyboard with

softkeys and cursor control keys, and two flexible disc

drives contained in the front of a 7-inch-high, standard

HP System II frame

A new thicker, softer, more comfortable, side handle

(compatible with any 20-inch-long HP System Il cabinet)

A pivoting, locking keyboard for front-panel protection

and compactness

Injected-molded exterior parts of polycarbonate (strong,

durable, UV stable and do not require painting)

Adaptability to existing HP carts and folding airline lug-

gage dollies

Exposed edges and corners contoured where they might

come in contact with the person carrying the instrument

Feet on both sides, rear and bottom so the instrument can

be set down or stored in any logical position

Accepts any of the 64000 System options except the

PROM programmer, which drops only into an opening

on the right side of the larger 64100A Station’s keyboard,

and the earlier tape cartridge drive, which is not needed
because dual flexible disc drives are standard for the
64110A

Space for five option cards and a 250W power supply to

power the mainframe and the cards.

The 64110A Development Station is operable in a

number of environments. Normally the 64110A isseton a
bench onits bottom feet or tilted on the front tilt bail. Tilting
on the bail positions the kevboard for typing. If no table or
bench is conveniently available, the 64110A has legs which
pull out for stable floor standing operation. The 64110A
also may be rack mounted using standard rack hardware.

The 64110A’s keyboard adjusts to any angle and locks
with the flip of a lever. Should the instrument fall or exces-
sive force be applied to the locking mechanism while the
keyboard is latched, the keyboard will slip and pivot with-
out breaking.

An optional top-mounted pouch accommodates all ca-
bles, probes, emulators, and other accessories, making the
64110A completely self-contained. All probe cables come
from the option cards directly into the pouch and then to the

Fig. 1. The 64110A Development Station is designed for easy
transportability and can be hand carried or moved on a typical
luggage dolly. The 64110A can be set on a bench, rack
mounted, or set on the floor steadied by its rear feet as shown
The keyboard can be adjusted to a convenient work position
and anoptional pouch can be mounted on top of the 64110Ato
carry cables, connectors, and pods

MARCH 1883 HEWLETT-PACKARD JOURNAL 11

© Copr. 1949-1998 Hewlett-Packard Co.



Lst
r Controller .
(1791)

State
Processor Mact F R
lu!lﬂ'f.m) e | .

Control
ister
I Status =
Monitor & = —
system under test. Therefore, the probes may be discon-

nected from the system under test and stored in the pouch
without disconnecting them from the 64110A.

Flexible Disc Drives

Both stations use the new 5%-inch dual flexible disc
drive system for backup and local mass storage. Compared
to the earlier DC-100 tape cartridge system, this system
reduces the average time required to back up a 20K-byte file
from 51 seconds to 24 seconds. A 20K-byte file can be
overlayed in RAM in 2.6 seconds. The use of two drives
increases the on-line local mass storage to 540K bytes and
makes it easier to duplicate discs for backup. Each flexible
disc allocates 1% tracks for a directory, 62% tracks for data,
4 tracks for operating system storage, and 2 tracks as spares,
which are used in case any bad tracks are found during
formatting. The block diagram of the flexible disc system is
shown in Fig. 2.

Control of seek, read and write operations, and the con-
version between an 8-bit parallel format and the serial data
stream used to store data on the flexible disc are handled by
a 1791 integrated circuit. Two additional registers are used
to control the drive motors, select the active drive and side,
and monitor drive status,

Each drive is connected by its own bus to the controller,
keeping each drive selected at all times. This permits the
controller to monitor its status continuously. As an example
of a status check, the controller is signaled whenever the
user changes the disc in a drive; otherwise, it would be
necessary to read the directory to determine if the proper
disc is in place before each disc access. Because each drive
contains a write-protect switch that rides against the jacket
of the disc as it is inserted or removed from the drive, the
status monitor can detect a closed-to-open transition of this
switch and set an internal MEDIA-CHANGE bit. The MEDIA-
CHANGE bit is also used to recover from some error condi-
tions. A READY status signal is generated by retriggering a
monostable multivibrator from the disc drive’s index pulse
detector output. This allows the controller to detect that the
drive contains a disc and that the disc is rotating before
attempting a read or a write. Separate buses also allow both
drive motors to run simultaneously. This improves the
speed of disc copy operations since discs can be copied
track by track without waiting for the drive motors to re-
start each time.

DMA (direct memory access) is used to transfer all data
directly between the disc drives and the station’s RAM.
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Fig. 2. Simplified block diagram of
the flexible disc drive system.

This is a lower-cost solution than using a sector buffer
within the controller, and permits higher throughput be-
cause no processor intervention is required during the
transfer of up to one entire track of data. Formatting of a new
disc becomes particularly easy since an image of the track,
including interrecord gaps, is merely placed in RAM and
then transferred directly to the disc.

A ROM-driven state machine handles all communication
between the host processor, RAM, and the 1791 disc con-
troller. This state machine is a necessary link because the
host processor and RAM use 16-bit words while the 1791
processes data in 8-bit bytes. All commands are passed
between the host processor and the 1791 without delay.

The soft error rate of the disc system is reduced by using a
phase-locked loop (PLL) data separator to recover the clock
from the serial data stream stored-on the disc. The natural
frequency of the feedback loop is much lower than the
250-kHz bit rate of the serial data stream. This provides a
“memory’ that minimizes the effect of a bit whose position
is slightly misplaced. The natural frequency used is 15.9
kHz, which was determined empirically. If the frequency is
too high, the PLL will have insufficient memory; if the
frequency is too low, the loop will have an excessively long
lockup time,

Power Supplies

The new subsystem options for the 64000 System are
faster and more complex than the emulation systems and
logicanalyzer modules available earlier. These new options
require a correspondingly larger amount of power from the
mainframe. The greater number of option choices also in-
creases the power requirements, since a mainframe can
have several hardware subsystems in place at one time. To
handle this power demand and further increases expected
in the future, the new 64100A mainframe power supply is
designed to deliver 5V at 45A (primarily for TTL and CMOS
circuits), —5.2V at 25A (primarily for ECL circuits) and
—3.25V at 30A (for HP-designed bipolar LSI circuits). The
power supply in the transportable 64110A mainframe de-
livers 5V at 30A, —5.2V at 20A, and —3.25V at 20A. It was
necessary to modify the fans and internal ducting of the
mainframes to ensure that the air temperature rise is no
greater than 15°C above ambient at any point on the option
boards.

Both mainframes are powered by switching-mode power
supplies operating directly from the ac line. The design is
conventional except that two LC filter sections are used in
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each secondary circuit of the three high-current sources
rather than the usual single LC filter section. A two-section
filter needs less total inductance, and therefore occupies
less volume than a single-section filter providing the same
attenuation. The output ripple voltage of each high-current
supply is about 20 mV, peak-to-peak. The supplies are
cooled by fans located between the power supply and the
card cage. These fans draw outside air through the card cage
and exhaust it through the power supply. This arrangement
ensures that the card-cage cards are cooled before the more
heat-tolerant components in the power supplies. High-
dissipation components within the supplies, such as high-
current rectifier diodes. are located on finned heat dis-
sipators placed in the high-velocity airstream exiting from
the fans. The dissipators also help mask some of the acous-
tic noise generated by the fan blades. Both supplies contain
thermal shutdown switches to help protect them from the
effects of excessively high temperatures should the air
openings become blocked or the fans fail.

The 64100A’s supply is partitioned into four modules.
Three of the modules can be changed without removing the
power supply from the 64100A Station. The fourth module
is isolated behind a 1.6-mm-thick aluminum deck in the
bottom of the supply. This subassembly has the power line
input circuit, line rectifiers, storage capacitors, control
power transformer, and EMI attenuating elements. The
connector from this board to the remainder of the supply
passes through the isolating deck and handles only the dc
rail (rectified power line) to the switching supplies and the
12V control power supply. The metal deck prevents the
intense high-frequency electric and magnetic fields gener-
ated by the switching circuitry from radiating around the
EMI attenuating elements and reducing their effectiveness.

The high-current (greater than 5A) circuitry is contained
on one printed circuit board te reduce the number of high-
current interconnections. This board is made with extra
heavy copper lamination to minimize power losses. Effi-
ciency of the supply is good (73% at full power). To deliver
400 watts to the host system and option cards, about 550
watts of power is drawn from the power mains, including
35 watts for the system cooling fans,

Safety is a very important issue in power supply design,
especially in one of this current and power capability. Insu-
lation and spacings are designed to IEC 380 standards and
flame-retardant materials are used throughout. Voltage
sources are equipped with individual internal load-
impedance-sensing circuits to minimize the current and
power delivered under fault conditions. Thus, the short-
circuit current is much less than the rated current for the
supply.

Monitor circuits independent of the regulator loops make
sure that supply voltages stay within safe limits and follow
a proper power-up sequence. These circuits prevent dam-
age to the modules in the system card cage if the power
supply malfunctions. Independent shutdown loops and
crowbar circuits activated by these monitors will burn open
the main fuse in the power supply to prevent overvoltage
conditions. In addition, shutdown can be initiated by either
an overtemperature sensor, an interlock (to detect a missing
or unplugged power supply printed circuit card) or a pri-
mary overcurrent detector. Six LEDs indicate which of the

monitors caused the shutdown. Cycling the power switch
resets all monitors. To aid in system fault diagnosis, five
more LEDs are separately powered by the 5V, —5.2V,
—3.25V, 12V, and —12V supplies. If one of these voltages is
low or missing, the corresponding LED will glow dimly or
be off.

Compatibility of Subsystems

The CRT display, high-power switching power supply,
and two flexible disc drives in each mainframe are not the
most hospitable of neighbors, particularly when placed in
very close proximity as in the case of the 64110A Station.
One major problem was magnetic interference from the
display deflection yoke and flyback transformer, which
coupled into the adjacent disc drives and caused soft read
errors. Another problem was magnetic interference from
the transformers and inductors within the power supply
coupling into the display and causing a beat with the scan
rate of the display. This beat would appear as a swimming
motion of the displayed characters.

In both cases, direct measurement of the interference was
extremely difficult. The design goal for the disc drive sys-
tem was that installation in the station not seriously de-
grade the drive’s specified soft error rate of no more than
one error in every 10° bits read. Because the drive takes
over 100 minutes to read 10° bits, it was very time consum-
ing to verify the effectiveness of prototype changes. The
CRT display presented different problems. When the dis-
play is operating, its yoke generates large magnetic fields in
the vicinity of the CRT, making it difficult to measure any
small interfering fields created by the power supply. Yet, a
very small amount of display movement (less than 14 dot
width) caused by these small fields is visually apparent to a
user.

To solve these problems, a directional magnetic probe
was constructed by mounting a small, electrostatically
shielded, multiturn coil at the end of a plastic rod. This
probe was used to determine the sources of magnetic fields
and to measure their relative intensities, A low-frequency
spectrum analyzer was used to monitor places where the
effects of the interference appeared in the form of electrical
signals such as the output of the magnetic probe, power
supply voltages, and signals in the disc drive read
amplifiers. This made it possible to separate different
sources of interference (by frequency) and to make quantita-
tive measurements of their levels quickly so that the effects
of any design changes could be measured. A technique that
worked particularly well in the case of the disc drives was to
reduce their timing margin artifically by skewing the read
clock relative to the raw read data. This increased their
sensitivity to interference so that any small changes in
interference levels produced quickly recognizable changes
in the error rate.

As aresultof this testing, some of the internal sheet-metal
pieces were redesigned to improve their shielding effec-
tiveness. At the frequencies involved (20 kHz for the
switching supply and 24.3 kHz for the display), the 1.6-
mm-thick aluminum used for the internal sheet metal has a
thickness of several electromagnetic skin depths and can be
an effective magnetic shield. This avoids the cost or weight
penalties associated with using high-permeability shield-
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ing materials.

Safety and Electromagnetic Interference

Another aspect of compatibility is the interaction of an
instrument with its surroundings. Considerations of safety
and electromagnetic interference revolve around a number
of standards, which have been written both within the
UU.S.A. and abroad. These regulations are also covered by
Hewlett-Packard design standards and required some rede-
sign and retesting. Compliance was made more difficult by
the increased power supply capability within the main-
frames, which increased their noise-generating potential.
The addition of state and timing analysis modules to the
mainframes also made compliance more difficult because
of their internal high-speed circuitry and because their
probe cables can act as transmitting antennas, thus increas-
ing radiated interference. To cover this situation, com-
pliance testing was performed for a typical user setup, with
the cables hanging over the edge of a table.

Both of the new mainframes comply with the following
regulations: IEC 348, ANSI C39.5, CSA Bulletin 556B, VDE
0871 and VDE 0875 Level B, and FCC part 15, subpart J,
Level A. FTZ RFI licensing is in process. The option cards
are designed to meet VDE Level A except when probing
open circuitry. In that situation, emissions will be a func-
tion of the target system.

Self-Test

To give the user confidence in the operation of the in-
strument and aid in fault diagnosis, approximately one-half
of the 30K-byte internal ROM is devoted to the storage of
self-test routines. When the instrument is first powered on,
it computes and verifies a checksum for each ROM. The
checksum for each ROM is unique. Thus, the routine can
detect ROMs in the wrong socket as well as defective ROMs,
RAM is tested by writing the value of a software counter to
each location in sequence, then verifying that the stored
valueis correct. If so, the program waits one second to check
the refresh circuitry and verifies the value again. If this test
is passed, the program complements the count and repeats
the sequence. If an error is found, the name of the failed
component is displayed on the CRT. If the failure is so
serious that the display cannot function, the CPU automati-
cally enters a software loop that provides the proper
stimulus for signature analysis.

Extensive self-test routines can be selected by means of a
switch on the rear panel or by pressing the CNTL and RESET
keys. The menu for these routines is shown in Fig. 3. The
flexible disc self-test routine verifies the ability of each
drive to perform seek, read, and write operations, The write
test is performed on the spare track so that no user-entered
data is destroved. If the spare track is in use, a message is
displayed and the write test is not performed. A separate
menu allows access to a disc diagnostic program. This
program enables service personnel to test the ability of the
drive to read or write any track. It also allows them to
perform extended error rate tests,

Serviceability
Two serviceability goals for the new mainframes were to
reduce the mean time to repair (MTTR) to less than two
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Fig. 3. Display on 64100A Development Station showing per-
formance verification (self-test) menu. Flexible disc test line is
shown in inverse video

hours and to troubleshoot and repair all boards to the com-
ponent level, thus avoiding the inventory cost of stocking
replacement boards in service centers. It is anticipated by
our service group that component-level service should re-
duce repair costs to customers by 42% and decrease the time
a failed instrument is out of service, The primary means
used to achieve these goals is signature analysis (SA).2 To
implement SA, latches are designed into the mainframe
circuitry to provide the start and stop pulses that define the
SA window. Jumpers placed in several positions on the
printed circuit boards allow hardware and software feed-
back loops to be broken so that signatures can be obtained
regardless of the possible malfunctioning of other parts of
the instrument. SA tables in the service manuals for each
instrument contain over 500 individual signatures which,
in most cases, permit troubleshooting to the component
level.

Because of its compactness, it was anticipated that access
for service could be difficult with the smaller transportable
64110A mainframe, so particular attention was given to this
potential problem during its design. Its power supply mod-
ule can be unplugged after removing only nine screws.
Almost all of its circuitry is contained on three plug-in
printed circuit boards, The boards in the card cage can be
placed on extender boards for service, All of the remaining
boards that contain active circuitry are designed to swing
out to permit access to their components,

Reliability Testing

Another, more effective way to reduce the service re-
quirements of an instrument is to reduce the probability
that it will fail. Toward this end, both mainframes under-
went extensive reliability testing during their pilot runs
and first production runs. The goal of this early testing was
to find failures and to make changes in the design, the
production process, or the vendor parts to eliminate their
causes. A lack of failures, although supportive to the egos of
the design team, produces no useful data, so attempts were
made to increase the amount of data gathered per unit hour
of testing. Table I shows the results of an experiment con-
ducted during the 64110A pilot run where the instruments
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Table |

Test % of Total % of Total Test
Test Time Failures Hours
Heat Box 43% 10% 13.357
Shake Table 249, 399% 7.247
Thermal Cycle 5% 39% 1,510
Drive Test 28% 129% 8,786
Total: 100% 1009% 30,900

were subjected to three different types of reliability tests.
Heat box is a classical heat run at 35°C to 40°C, to simulate
accelerated usage. Shake table is a heat run during which
the instruments are also subjected to vibration at 0.8g, 20
Hz, for 10 minutes every hour. Thermal cycle is a strife test?
that cycles the instruments between —20°C and 65°C at a
rate of 1°C/minute with a 30-minute dwell at the extremes.
The power is cycled on and off three times at each extreme.
Drive test is a separate disc drive test conducted at room
temperature. The thermal cycle test was, by far, the most
effective since it produced 39% of the total failures while
consuming only 5% of the total test time. The failures gen-
erated during the thermal cycle test correlate with failures
seen in field failure histories of similar instruments. This
indicates that temperature cycling accelerates failures that
would have occurred normally rather than generating new
failures caused by excessive thermal stress.
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A Modular Analyzer for Software
Analysis in the 64000 System

by Richard A. Nygaard, Jr., Fredrick J. Palmer, Bryce S. Goodwin, Jr., Stan W. Bowlin,

and Steven R. Williams

HE LAST TEN YEARS have produced a revolution
in microprocessor technology. In 1972, the first-
generation 8008 microprocessor was a novel element
in product design. Program sizes were in the hundreds or
perhaps thousands of bytes. Machine-code programming
was not uncommon and assembly language was used for
larger programs. In 1982, the third-generation 68000 and
similar processors entered into their second upgrade and
program lengths reached a megabyte and beyond. High-
level languages and advanced data structure techniques are
used extensively. Most programmers are no longer
hardware designers, but rather are software engineers and
computer scientists. The expense of software development
is exceeding that of the hardware. This adds up to a neces-
sary revolution in the techniques used to design
microprocessor-based products.
Each generation of processors has been supplied with its
own generation of development and analysis tools. These
have progressed from HP's 1601A Logic State Analyzer

Fig. 1. HP Model 64620S Logic State/Software Analyzer adds
real-time, transparent software analysis to the HP 64000 Logic
Development Systemn. The analyzer can be configured with 20
to 120 input channels. General-purpose and dedicated inter-
faces simplify connection to target systems. The 646208 can
be incorporated in a 64000 System cluster station, or in a
64100A or 64110A Development Station with a flexible disc
drive as a stand-alone software analyzer

plug-in for an oscilloscope, through the HP 1611A and
1610A Logic State Analyzers, to the current HP 646208
Logic State/Software Analyzer (Fig. 1). The change in em-
phasis from hardware to software design can be seen in
these products, as well as in their capabilities. The 1601A
was controlled by toggle switches, contained a comparative
handful of ICs, and displayed its measurements in binary
notation. It served random logic and discrete state machine
design. The 1611A and the 1610A are microprocessor-
based designs with menu control and display in
mnemonics and selectable number bases, respectively.
Their measurements are aimed at the needs of assembly
language debugging. The 646208 is a microprocessor-
based design with directed-syntax softkey commands. Its
displays include program symbols as well as mnemonics
and numerical data. It assists programmers in high-level
languages with a full feature set that includes software
performance measurements and extensive program tracing.
The wide variety of measurement situations to which the
646208 is directed requires a high degree of adaptability.
The many types of target systems to be monitored require a
probing system that can interface to the mechanical, elec-
trical and functional characteristics of these systems. Also,
the user interface to the analyzer needs to be configurable to
the different ways in which information is represented. For
these reasons, it was considered very important to make the
646208 as user-definable and configurable as possible.
Additional design constraints for the 646208 Logic
State/Software Analyzer were generated by requiring that it
be a module in the 64000 System. The software design had
similar constraints, because it also has to operate within the
environment provided by the 64000's operating system.

Modular Feature Set for Tracing Modular Software

An extensive feature set can be both a blessing and a
curse, a blessing in that almost any measurement problem
can be attacked, and a curse in that the choices are so many
as to obscure the necessary ones. Today's software analysis
problems require a very capable analyzer. Problems intro-
duced by modular, high-level software are at a higher level
than many of those encountered in assembly language pro-
gramming. Traces of variables, tasks, and data structures
are required.

A high-level language allows the designer to attack the
problem in pieces, producing modular building blocks to
construct the program and complete the task at hand. Each
block performs a separate function, which is relatively in-
dependent of the way other blocks behave. The 646208 at-
tacks software analysis problems in the same way. The three
functions required to do a useful software trace are trigger
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(WHEN is program activity significant), storage (WHAT ac-
tivity is important), and count (HOW MUCH activity oc-
curred between important activities). The 646208 provides
symmetrical capabilities for each of these functions.

In the 646208 State Analyzer, trigger, store, and count are
equal functions. Earlier analyzers emphasized the trigger
(breakpoint) function to the near exclusion of the storage
and count functions. This approach is usually sufficient to
trace assembly language programs where each bus cycle
may be equally significant. However, the bus cycles exe-
cuted by a high-level program are rarely of interest because
most reflect code automatically generated by the compiler.
Instead. the relatively infrequent accesses to variables and
procedure calls are of primary interest to the programmer.
In this environment, storage qualification takes on a role at
least as great as the trigger function. And, since most bus
cycles are now ignored by the analyzer, the importance of
counting the time between the few that are stored also
increases. A time count immediately shows the overhead
involved in modifying data structures and the delays as-
sociated with each procedure or task. By providing equal
capability for each function, the user can emphasize the
functions(s) most needed for the measurement at hand.

Another key aspect of the building block approach to
software analysis is a windowing capability. A window
function is a repetitive search for an event to enable the
function (open the window) followed by a search for
another event to disable the function (close the window).
Programs contain varying levels of control, from the main
program to the utility or driver functions. The context in
which a variable is changed is just as important as the fact
that it was changed. Windowing is the way a user can tell
the analyzer when the program reaches a context of interest.

Windowing can be applied to trigger, store, or count. The
same window can control all three or a different window
can be defined for each. Each window enables and disables
one or more trace functions. In the 646208, up to three
different windows can be defined simultaneously. Thus,
the trigger context can be defined by a trigger enable win-
dow, storage by a storage enable window, and count by a
count enable window. Few measurements require such ex-
tensive control, but it is available when required.

The highest level of control in the analyzer corresponds
to the highest level of control ever a program—the
scheduler. In a multitasking environment, programs are
rarely run to completion. Instead, each task may be active
for only a few milliseconds before deferring to another. The
programmer often is not concerned with these details, pre-
ferring to view the program as executing continuously. The
analyzer should also support this view. The 646208 can be
told to suspend its operations whenever the program is
suspended by the scheduler and to resume them when the
program is resumed. This capability is called the master
enable function; it freezes the rest of the analyzer including
the trigger, store, and count functions. Program swapping is
transparent to the analyzer and the program when the mas-
ter enable function is in use.

Thus, the 646208 State Analyzer can extensively analyze
software execution in real time without disturbing program
execution in any way. The measurement specification
complexity has been reduced by modularizing the mea-

surement functions. Fig. 2 shows the hierarchy of these
functional building blocks within the 64620S. Measure-
ments can be built from any combination of blocks to solve
particular needs. Furthermore, measurements can be re-
fined easily by adding or modifying blocks to control the
capture of data better, since each is displayed individually
within the trace specification. Blocks not defined by the
user are defaulted to an “‘always” condition. Therefore, if no
blocks are specified, the analyzer captures the bus cycles
seen after execution is begun. Specifving only the trigger
condition is equivalent to using a breakpoint-only analyzer,
A “'trace triggers”’ analyzer is produced if only storage qual-
ification is used. Running both simultaneously produces a
powerful measurement, but one that still does not take full
advantage of the analyzer's capabilities.

Overview for Performance Measurement

Tracing program execution is a traditional task for logic
analyzers. A newer task, and one growing in significance, is
monitoring program activity to provide data about the pro-
gram’s performance. Some of the features of the 646208,
particularly the time count, provide performance informa-
tion. However, these features are optimized for tracing, not
for overview. The 64620S Logic State/Software Analyzer
addresses the need for performance measurements with a
second overview analyzer that is separate from the tradi-
tional trace analyzer and capable of operating simultane-
ously with it.

The overview analyzer provides an overview of system
activity. This analyzer captures events, not the bus cycles
captured by the trace analyzer. This means system activity
is analyzed at the level of procedures and tasks, not at the
instruction level. Then too, the information is displayed
most often in histograms and graphs, not in a list.

Three different overview measurements are provided,
each with a different type of event definition. The simplest
and most often used is overview on address. This mode
monitors activity on the system address bus, allowing
global views of program flow, data accesses, /O activity,
and other operations. Events are defined as ranges of ad-
dress values. Each event can correspond to the program area
containing a specific routine or collection of utilities. Or, an
event can represent the entry point to a procedure or the
area occupied by a data structure. Once the events of in-
terest are defined, the overview analyzer monitors the sys-

Data from system under test

: \ 4
HOW MUCH
activity occurred
The Software Trace Measurement

Performance
Measurement

Fig. 2. Diagram showing the hierarchy of the measurement
function modules in the 64620S.
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Range Detection in the 64620S State Analyzer

The comparison between an input value and a range of pre-
defined values is a recurring need in logic analysis. The range of
values may represent the address locations of the contents of an
array, or it may be the boundaries of a program module. Such a
range specifies the areas of address space of interest to a user
Earlier analyzers have provided only a single range, if any at all,
because of the expense of range detection compared to simple
pattern comparison. The user, on the other hand, would like many
ranges since programs contain many arrays, modules, and other
blocks. Ranges are the most general way of describing the
boundaries of these regions in address space. Furthermore,
overview measurements containing up to fifteen events place
heavy demands upon range comparators because each event
represents a different range of values.

Previous comparator designs relied upon RAM comparators
followed by gating to detect the range. Such schemes required at
least two RAM outputs and a gate for each range. In contrast, a
simple pattern comparison can be accomplished with a single
RAM output feeding a wired-AND circuit with no other gating.’ The
approach taken in the 64620S Analyzer replaces the gating with
another RAM. This RAM is used as a programmable logic element
to allow greater freedom in encoding the outputs of the range
detector RAMs. The result is that two 1024-by-4-bit RAMs and one
256-by-4-bit RAM can detect four independent ranges on twenty
bits. The same three RAMs can also be used to detect up tofifteen
nonoverlapping ranges for use as overview events. Using the
earlier method, four independent ranges would have required
four 1024-by-4-bit RAMs plus four gates, while fifteen ranges
would have required fifteen RAMs and gates.

Fig. 1 shows a block diagram of the range detector. The
twenty-bit input value may represent either an address from the
user's system or the output of a time interval counter. This value is
split into an upper ten-bit portion and a lower ten-bit portion, each
feeding a separate RAM, just as an older method would. The
difference is that the output of these RAMSs is not fixed in meaning,
but reflects the specifications of all ranges to be detected. There
is not a direct correspondence between each output and each
range. Instead, the lower RAM decodes the outputs and restores
the correspondence. lts four output bits represent either four
independent ranges for trigger, store, or count qualificationor one
of fifteen events for overview measurements.

The value applied to the range decoder can be thought of as
one point on a line containing 22 hexadecimal values (00000
through FFFFF). The ranges specified by the user divide this line
into segments bounded by the range endpoints. When a value is
sampled from the user's system address bus, it falls at one point
on the line. This point may be contained within none, one, or more
of the originally specified ranges. The range decoder determines
which case it represents as follows:

1. Values on the line are described by a base-1024 number
system. Any value can be described with just two digits, call
them J and K. The ranges specified by the user are redefined
interms of JK pairs and the line is segmented by the endpoints
of the ranges. Because the ranges can overlap or not cover the
entire line, each segment may represent none, one, or more
ranges satisfied.

2. Theline, divided into segments by the user specified ranges, is
an ordered list of JK values. When an input value is received, it
is placed on the line to determine which segment it is within,

3. Consider the J digit of the input value. It specifies a coarse
position on the line. This may or may not be enough to decide
which segment the input value is within. If it is, then the K digit is
ignored. If not, then the K digit is consulted to complete the

determination. In effect, a given J value asks a question about
which segment the input value is in. The guestion may some-
times be answered immediately if the K value does not matter
(point located in the middle of a long segment), but it may
require knowledge of the K value as well (point located in a
very short segment). The result is that a translation can be
made from the large list of different J values to a much shorter
list of J types. Each J type may represent a directive (if the K
value does not matter) or a question (if the K value does
matter), Each segment on the line may reguire one, two, or
three different J types to decode it properly. One is required if
the endpoints of the segment have the same J value, two are
required if the J values differ by one, and three are required if
the J values differ by two or more. The J-RAM in Fig. 1 trans-
lates from the ten-bit J value to the four-bit J type.

4. Now consider the K digitof the input value. It represents the ten
least-significant bits of the value and, in conjunction with the J
digit, completely specifies where the input value lies on the
line, But the J value has already been replaced by the J type,
and each J type represents a different question about the K
value. Each K value will produce an answer to each of the
J-type questions—either yes or no. Therefore, a given K value
produces a given setof answers, one for each question. Again,
many K values may produce the same set of answers. These
may be grouped together into a single K type. The K RAM in the
block diagram translates from the ten-bit K value to the four-bit
K type.

5. The input value has now been replaced by a J type, which
represents one of a list of questions, and a K type, which
represents one set of answers. All that remains is to match
question with answer. This is performed by the |D RAM in the
block diagram. The combination of a particular J type with a
particular K type produces a single answer, indicating which, if
any, of the originally specified ranges are true. This answer is
output from the ID RAM for use in trace gqualification or in
overview.

Sixteen J types and sixteen K types are sufficient to decode up
to four arbitrary doubly bounded ranges. These ranges may over-
lap and may be inclusive (true within the bounds) or exclusive
{true outside the bounds). This mode is used for trigger, store, and
count qualification. Qverview events, on the other hand, are de-
fined to be nonoverlapping. This ensures that each input value
produces only one overview event. With this restriction, five
ranges can always be decoded correctly. However, in many

10, 10,
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Range or Event Number

Fig. 1. Block diagram of the range detector used in the
6462085 Logic State/Software Analyzer,
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abservation of program flow, data flow, process timing, or
system performance.

A block diagram of the 646208 is shown in Fig. 4. Physi-
cally, the analyzer consists of two or more circuit cards. A
control card is combined with one or more acquisition cards
to provide from 20 to 120 analysis channels, expandable in
20-channel increments. The control card contains circuitry
independent of the number of data channels, while the 20-
and 40-channel acquisition cards contain circuitry as-
sociated with additional channels. This architecture
minimizes the cost per channel by including the analysis
overhead circuitry only once. Also, connections between
cards are few, which increases the reliability of the system.
A synchronous expansion bus between the cards need
carry only timing and pattern information, and it is not
necessary to distribute the many data channels throughout
the system.

Two Memories Are Better than One

Two separate memories are included in the acquisition
system of the 646208. A trace memory stores data from the
input channels, as well as count information and sequencer
status. This memory can store up to 256 states and can be
displayed either in trace list format with inverse assembly
orina graphic format. An overview event memory is used to
capture information that allows the relative occurrence and
order of occurrence of defined events to be measured. This
memory can store up to 4096 events and can produce a
histogram, a graph, or a list output for display. This dual
memory architecture offers simultaneous monitoring of
program activity at both a detailed level and an overview
level. This allows correlation of real-time information,

Since the trace memory stores information received on
the input data channels, each acquisition card contains a
section of that memory. The control card contains the sec-
tion that does not change in size with increasing channel
width, namely the state/time counter and sequencer status
values. This distribution of the trace memory offers advan-

P Clock | 8, Clock Clock  IECEIN o 20, Data <
Probe PSS Recognition Sample Channels Probe
v -—

tages over a centralized architecture, in particular that of
expanding easily with an increasing number of channels.
However, coordinating the activities of the memory be-
comes more complicated when it is distributed, especially
when the storage control features are as extensive as those
incorporated into the 646208, Reading the trace memory
during a trace with limited clock rate allows displaying
acquired data before a measurement is completed. This
technique, called interactive read, is important when the
stored data is highly qualified, which means that only in-
frequently selected pieces of data are written into the mem-
ory. In this case, a measurement could take seconds, min-
utes, or even hours, and it is not desirable to stop the trace to
see the data because some data might be missed.

The overview memory has the task of capturing decoded
information called events. These events are decoded by the
range decoder circuit (see box on page 18) and consist of
simple four-bit values. The small size of the event number
allows this memory to store more values, The overview
memory also incorporates an interactive read feature, al-
lowing histogram data to be updated as new events are
detected by the overview analyzer.

The dual-memory architecture allows simultaneous, cor-
related measurements. In particular, a trigger from the
overview memory to the trace memory allows tracing of
detailed data relating to an overview event occurrence. For
example, an overview event of time ranges can trigger the
trace memory to trace the parameters passed to a routine
that takes longer or shorter than a specified period of time.

Custom ICs Are the Key

Using custom integrated circuits in many functional
areas allows the extensive set of real-time analysis
capabilities in the 64620S. The interface to the 63000's
high-speed intermodule bus (IMB) is closely associated
with the analysis functions of the 646208S. Because of the
bidirectional nature of the IMB and the number of con-
trolled functions, the interface circuits were incorporated
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Fig. 4. Block diagram of the 646205 Logic State/Software Analyzer. This configuration is
a 20-channel analyzer with overview.
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Inverse Assembly for a General-Purpose Logic Analyzer
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construct adds considerably to the high-level programming
capability of the Inverse Assembly Language
Several predefined variables pass address, data, and status
formation from the analyzer trace memory to the inverse assem-

characiers

firectly

all CPLs

1 Nstruct

ss labels rat
bler can obtain or calcu-

If. Using the address

with the capability to read additional captured
trace memory. The inverse assembler uses the

ates from the mapping function pravided by £
OUTPUT instruc- sponding symbol within the analyzer address
Ine same symi

¢ aad

bolic t 1g clarifies and simg
iy e e e e e e
OPERAND_COLUMN  CONSTANT & Display position for operand relie r of having to remember often meaning
STRING _IMP ASCII JMP String used several times less
REGISTER_NUMBER VARIABLE 0 ;Save register #, initially 0
DECODE_ASR_LSR_JMP :Decode ASH, LSR, JMP
LOAD INITIAL _DATA :Reload initial opcode
CASE_OF 21 Accumulator bit 2-1
OUTPUT "ASR" Bit 2-1 = 008 1 ADDRESS B985 Mnemonic STATUS  time count
QUTPUT "LSR Bit2-1 =018 : hex g e
GOTO ILLEGAL__INSTRUCTION Bit2-1 = 108 Hapi ey s —— i
QUTPUT STRING__JMP ; Bit2-1 =11B MON_TABLE+0001 LXI H,@BFO Opcode
CASE_END -002 HON_TABLE+@002  F@ memory read Mem_read
POSITION ABS,OPEFAAND__COLUMN ‘Move to operand column ) MON_TABLE+@03 @B memory read Mem_read
CASE_OF 2.2 JAccumulator bit 2 ¢ . MON_TABLE+@9@4 JMP DISPLAY+BOED
CALL ASA_LSA__OPERAND :Decode ASR and LSR 5 MOW_TABLE+0085 35 memory read
CALL DISPLAY _DESTINATION :Show JMP address : AON.TABLEYOMG 02 memory.read
CASE_END DISPLAY+806D MVI B,06
DISPLAY+BG6E 96 memory read
RETURN ;Return to analtyzer DISPLAY+OO6F LDAX D
ASR__LSA_OPERAND ASR, LSR, subroutine 3 SERUOKESM06T 99 memory reid
INCREMENT INPUT __ADDR :Point to next opcode DISPLAY+0078 MOV M,A
INPUT ABS.INPUT_ADDRBESS,QUALIFIED Tn,n to read next opcode abs OBF@ @9 memory write
IF INPUT_ERROR () 0 THEN GOTO ERROR ‘Leave il eror g DISPLAY+OO71 INR L
LOAD INPUT _DATA :Get new opcode value
IF 7.7 = 1 THEN AND 000011008 Mask I necessary STATUS: Awaiting state command - userid
ROTATE RIGHT,2 :Maove to lower 2 bits
STORE BEGISTER_NUMBER Save register # lor later
CALL SHOW__REGISTER :Display ragistar name
RETURN Subroutine returm
Fig. 1. Example code from an inverse assembler written in Fig. 2. Analyzer trace list showing inverse assembler display
IAL with user-defined symbols
into a custom integrated circuit. This circuit, called the  possible. An example of this coupling is the pervasive mas-

analysis controller, provides the necessary control for the  ter enable function. Essentially, all control functions of the
trigger, store, count, sequence, and overview functions. By 646205 must monitor the IMB master enable function, sus-
including the IMB interface on the analysis controller, tight pending and resuming analysis activities in response to its
coupling between these functions and the IMB functions is  changes.
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Besides the analysis controller, a floating-point Gray-
code counter was developed, as well as a clock detection
circuit and comparators for the clock and data probes. The
custom counter generates the time or state count stored in
the trace memory and acts as the interval counter for over-
view event time or state counts. The clock detection cir-
cuitry and probe comparators are responsible for capturing
data on the input channels of the analyzer.

User Interface Design

The 646208 software provides a means for entering mea-
surements and displayving the acquired data in useful for-
mats. To handle the wide range of features that are available
for effective state and software analysis, the user interface to
the 646208 divides the various activities of setting up the
analvzer into sections. Measurements are specified, for
example, in the trace specification, while input channel
formatting is done in the format specification. This division
of tasks makes each section easier to understand and oper-
ate, and a wider variety of capabilities can be incorporated
to improve the efficiency of performing each task.

In addition to separating the interface tasks, only a subset
of the complete capabilities is normally available within
each interface. This is most apparent in the trace specifica-
tion where the measurement resources are controlled. If a
default condition exists for a particular function (such as
SEQUENCE or OVERVIEW), this condition is detected and
that function does not appear in the interface display. The
result is that the total capability of the analyzer need not be
considered during the setup of most common measurement
situations, For more demanding measurements, an exten-
sive set of resources is activated. In this way, the user
interface grows in a degree equal to the task at hand.

Symbolic Operation

In all input specifications and output displays, the
646208 software provides symbolic operation. Labels, such
as the channel grouping Address, and symbols, such as
STACK to represent the range of address values of the stack
area, are user-definable. These labels and symbols are
stored in a separate data structure in the analyzer. Also, the
directed-syntax technique used in the 64000 System is ex-
tended to provide these labels and symbols on softkeys at
the appropriate point in a command line. The association is
made by grouping symbols together into a data structure
referred to as a symbol map, and then defining a default
map for each label. Thus, entering commands such as trigger
on Address = range STACK can be done using only the
softkeys.

Not only are the labels and symbols available on softkeys
for entry of commands, but they are also used in the trace
list to display acquired data in easily recognized forms. For
each column label displayed in relative mode, a dynamic
lookup in a symbol map is performed. Normally the default
map is used, but any named symbol map can be specified. If
a symbol corresponds to the data value, this symbol is
placed in the list and an offset is added if the symbol
represents a range of values. This eliminates the tedious
task of mentally translating the data into a meaningful form.

The symbolic entry and output capabilities of the 646208
eliminates much of the detail work, very much like a

22 HEWLETT-PACKARD JOURNAL MARCH 1083

high-level language in programming. It is not necessary to
enter and interpret ones and zeros. This was deemed very
important to an analyzer aimed at software analysis, and
even in hardware analysis these techniques are useful.

Configurability of a General-Purpose Analyzer
An instrument is considered friendly if the user is com-
fortable working with it. With such instruments, users re-
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quire relatively short learning periods before the instru-
ment can be used. Instruments designed for very specific
applications generally belong to this category. However,
unless user configurability becomes a principal design
goal, as in the case of the 646208 Analyzer, general-purpose
instruments may fall short of these requirements.

Through an automatic configuration process, the
general-purpose 646208 Analyzer appears to be specially
designed for the process under test. In addition, the
analyzer can be further configured to appear tailor-made for
the program environment being monitored. This additional
configuration process can occur as part of the automatic
configuration or can be done later by the user.

If a CPU-specific interface module is used. automatic
instrument configuration occurs upon entry to the 64620S.
The interface probe module supplies an identification code
totheanalyzer, indicating the type of CPU being monitored.
This identification code selects the proper configuration
file. The subsequent automatic configuration process then
adapts the analyzer’s operation to the characteristics of the
monitored CPU, creating the perception that the 646208
was designed specifically for that CPU.

Automatic instrument configuration is also provided
through the general-purpose interface module. This device
allows the user to design an interface module meeting the
requirements of a specified CPU. A 16-position rotary
switch, located on the general-purpese interface module,
provides the 646208 with an identification code so that it
can locate and automatically load the applicable, user-
defined configuration file. Thus, the analyzer can be au-
tomatically configured for proprietary machines or other
processors not supported by Hewlett-Packard,

Associated with the general-purpose interface module,
the inverse assembly language (see box on page 21) pro-
vides for user-generated inverse assemblers. Inverse as-
semblers are specified by the automatically loaded config-
uration file, so that inverse assembly, as well as instrument

configuration, may appear to be tailor-made.
General-purpose probes provide an alternative to the use
of the general-purpose interface module or other HP stan-
dard interface modules. Although an identification code is
not available to inform the analyzer of the type of CPU being
monitored, modification of the default configuration file
can still result in automatic instrument configuration.
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A Modular Logic Timing Analyzer for the

64000 System

by Joel A. Zellmer, John E. Hanna, and David L. Neuder

ples data flow in the system under test and is

primarily used to troubleshoot hardware-related
problems in digital circuitry. It is optimized for showing
time relationships between digital signals, an area where
oscilloscopes are often used. Timing analyzers, however,
offer features not found in most oscilloscopes, making them
especially useful in testing digital circuitry. The following

A LOGIC TIMING ANALY ZER asynchronously sam-

characteristics of timing analyzers differentiate them from
oscilloscopes:

= Two-level vertical resolution

Single-shot recording of multichannel data
Simultaneous display of up to 16 channels

Display of data flow occurring before a trigger condition
Triggering capabilities tuned to the multichannel digital
environment.

- R A B
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Other important features of timing analyzers include:

Fine timing resolution

Multiple modes of data acquisition, including high-reso-

lution, missed data or glitch detection, and dual-

threshold measurements

. Powerful and flexible triggering, including triggering
from other digital analysis systems such as a synchron-
ous state or software analyzer, or from an emulator

Large memaory

Large number of input channels

High-quality probing

Ease of use (setting up and executing measurements and

formatting of output).

The data acquisition modes of the new 646008 Timing
Analyzer (Fig. 1) allow the user flexibility in troubleshoot-
ing. The high-resolution mode allows sampling at 400
MHz, giving excellent timing resolution often needed in
examining timing margins, even on low-speed data buses,
The memory depth of 8140 samples per channel gives a
timing window 20 us wide with 2.5-ns sample resolution.
The dual-threshold mode, which displays three-level
waveforms, simplifies troubleshooting such problems as
bus conflicts, improper loading, slow rise times, and noise
on signal lines. A glitch detection mode is useful when it is
necessary to select slower sample rates to cover a long time
window in a particular measurement, while not missing
any short-duration activity occurring between samples.
Glitches lasting only 3 ns can be displayed.

The triggering capabilities of the 646008 are designed to
solve timing-related problems in multichannel logic envi-
ronments. In addition, the analyzer uses a very easy and

Fig. 1. HP Model 64600S Logic Timing Analyzer adds power-
ful, high-resolution, asynchronous analysis to the 64000 Logic
Development System. It has eight input channels and can be
expanded to sixteen input channels. The 64600S can be
addedto either the 64100A or 64110A Development Station as
part of a hard-disc-based cluster system or as a stand-alone
analyzer in a flexible-disc-based stafion
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convenient operating interface to aid the new or occasional
user in setting up measurements.

There are many applications for the 64600S Timing
Analyzer. It is a valuable tool for checking out new digital
hardware and for troubleshooting faulty circuitry. To
examine problems quickly, the 646008 can:

Capture and display nonperiodic waveforms and single

shot events

Examine the time relationships between signals, setup

and hold times, and other events.

Detect unwanted transitions on signals (glitches)

Detect fan-out problems, bad logic levels, and slow rise

and fall times

Detect conditions that last longer or shorter than some

specified duration.

The timing system is modular, consisting of a control
board and an acquisition board with accompanying
8-channel probe. One control board can drive one or two
acquisition boards so that a single module can have 8 or 16
channels, Multiple timing or other modules can be con-
nected through the 64000 System IMB (intermodule bus),
allowing intermodule interaction. The timing system de-
sign allows the user to mix control and acquisition boards
and probes without the need for hardware adjustments.

As part of the 64000 System, the 646008 provides other
advantages. For example, because the 646008 is disc based,
new postprocessing features can be added easily. Data files
can be processed using a station's Pascal/64000 capability.
Data measurements can be stored on flexible discs and
brought to other systems for analysis. Detailed setups for
particular measurements can be stored in configuration
files, and then quickly reentered into the timing analyzer to
be executed. The 64000's intermodule bus allows complex
interaction with other modules such as emulators, state
analyzers, or other timing analyzers. Using the terminal
mode software, measurements can be performed at remote
sites and the data transferred via RS-232-C/V.24 and modem
interfaces to another unit at a central location.

Operator Interface

Before delving further into the measurement features of
the analyzer, a discussion of the operator interface is impor-
tant since this often determines the utility of an instru-
ment. Any instrument that is easy to understand and use
will be of more use and provide more data to the user. The
64600S’s operator interface is designed to be a friendly
interface by extensive use of directed-syntax and sentence-
like commands, and display of only pertinent information.
A directed-syntax structure prompts and directs the user
through a command tree—freeing the user from having
to remember keywords and key sequences. With directed
syntax, the next level of valid keywords to complete a com-
mand is always displayed on the softkey labels. The softkeys
eliminate the frustration of keying in an illegal key sequence,
because they track only valid commands. A simple default
execution of the 646008 allows the user to examine all sig-
nals input to its probes by specifying only two commands:

timing
execute

Brings in the timing analysis software
Display automatically changes to the timing
diagram display
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display SYNC Sets up the timing diagram

the signal labeled

to displa:
SYNC

The 646008 displays only pertinent information about
the specifications that the user enters. As the user requests
more complex measurements, the display specifications
list the additional complexity.

The user interface is partitioned into four displays: for-

mat specification, trace specification, timing diagram, and
trace list, In each of these displays the user can specify
commands specific to that display. For example, in the
format specification the user can specify labels for the probe
inputs and enter threshold levels, while in the trace specifi-
cation the trigger conditions and sample rate can be
selected. In the timing diagram and trace list displays,

commands specific to the measurement data display format
are found. Also, in each of these displays the user can
specify common operation commands to execute and halt a
measurement. There is no need to go to a special display to
run the 64600S Timing Analyzer. The user interface also
allows measurement setups to be stored in and reloaded
from files. Therefore, there is no need to remember an old
configuration; instead, it can simply be brought back
through the file handler of the 64000 System.

Acquisition Modes
The 646008 Timing Analyzer samples data on its probe

ing
FTATUS « $115 and
4D = ®

position_is sester_sf_trace

Peaiting fiming command - wwerid

SIMIS: Meniting timing commaed - uerid

compa

chann t the

8 L user (
. and TTL circuits simul

for

neously with

example, probe EC
one probe pod. Examples of a typical format specification,
trace specification, and timing diagram for an 8-channel

rer are shown in Fig, 2

analy

For a typical measurement, the user begins by defining
labels to be associated with the probe pod inputs. These

labels should be relevant to the names of the points probed.

The labels shown on the left in Fig. Za are mapped via the
asterisks to a particular input or group of inputs. Thus, LWR
is a label associated with pod 1, input 4, while STATUS is a
multibit label associated with pod 1, inputs 5 through 7
Note that the multibit label STATUS is composed of three
separate single-bit labels: IOM, S0, and S1. The user then has
the choice of two ways of representing the input signals to
be tested. For example, triggering on STATUS = 011 is the
same as triggering on IOM =0, S0 =1, and 81 =1. The
comparison thresholds default to TTL levels as shown on

the threshold line with a positive-true logic sense. These
can be redefined by the user to positive- or negative-true
logic values between +10V and —10V, respectively. The
labels transfer automatically to all other specifications in
the analyzer so that the user can define trigger conditions,
display formats, and other parameters by using labels rather
than, for example, pod_1_bit 0. This makes using the
646005 easier
works in terms associated with the user’s system rather than

faster and more accurate since the user
in terms of the analyzer connected to it.

Dual-Threshold Mode

By pressing the mode softkey, the user is given a choice of

Trace memsrys
STTUS: it ing
-magnify  indicater oV

(C)lm-hu. -Eurnns  ssgeily. —find  _meck . shau  _ssssuts ==<{If==

Fig. 2. Typical (a) format specification, (b) trace specification, and {c) timing diagram displays
for an eight-channel 646005 Analyzer in the wide sample mode
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the remaining three modes, Selecting the dual-threshold
mode provides more voltage resolution than is available
with just a simple timing analyzer measurement (Fig. 3b).
On a TTL bus, for example, conflicts or excessive loading
can cause a line to cross the nominal threshold (Vi yyp=
1.4V) and be detected as a transition by a simple analyzer,
but may not produce a valid logic high (>2.0 volts) or low
(<0.8 volts). Fig. 3a illustrates some of these conditions.
Similarly with ECL circuits, weak pulldowns can cause a
poor logic low.

These conditions can be found using the dual-threshold
mode in which each input is compared to two thresholds,
Vih min 80d V] ax. at sample rates from 2 Hz to 200 MHz. A
three-level display (Fig. 3c) shows the time spent between
thresholds and any incomplete transitions, Fig. 4 shows the

Vour (Vde)
1
5——
) (2)
4+ / Slow Rise Time ¥~
v ! S
oh typ =~ 7 e ———
X Fanout Too High
Vinmin 24— - - s L
Vi MNoise Pu!se—% I_,{ ) _[
14 — - i
v -
il max o 7 .
Vawp 0—FF—F—F—F—F—F— 33—
5 10 15 20 25
Time (ns)
(a)
1
|
M !
(2) |
(3)- Bl il 1 : e 1AL
(b)
(¢ I —f
(2)

(3) [ ]

(c)

Fig. 3. Use of dual-threshold mode to analyze LSTTL
waveforms (a) which are degraded by high fanout (curve 1),
slow rise time (curve 2), or noise (curve 3). (b) Detection of
curves 1, 2, and 3 by a simple timing analyzer with a single
threshold set to Vy, ... (c) By using the 646008 Analyzer's
dual-threshold mode, curves 1, 2, and 3 can be detected as
shown.
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specifications and displays of a typical dual-threshold mea-
surement.

In the dual-threshold mode, only four inputs are active on
each pod because twice the information must be stored in
memory for each input channel. The format specification
shown in Fig. 4 illustrates the use of dual-threshold mode
within the previous measurement setup.

Fast Sample Mode

Should more time resolution be required than available
using the 5-ns sample period in the wide sample mode, the
fast sample mode using a 2.5-ns sample period (400 MHz
sample rate) can be selected. This is accomplished by al-
locating two samplers to each input with a 2.5-ns time
separation between the samplers, and results in an 8K
memory, This restricts the number of inputs that can be
sampled to those in the lower half of the probe, but this
sample rate is typically needed to compare data on a small
number of channels.

Glitch Capture Mode

Despite the 4K memory of the 64600S, which provides 20
us of storage at 200 MHz, there are instances when very long
time spans must be observed and the user still wants to be
aware of the occurrence of even brief events. The glitch
capture mode monitors edges on the incoming data as well
as sampling the data from 2 Hz to 100 MHz. If more than one
edge occurs between two adjacent sample times, it records
this event in a separate memory as a glitch. The presence of
this glitch can alert the user to examine the data in this
region more closely by using one of the other modes. Since
separate circuitry and memory are used for glitch detection
and recording, glitches do not distort normal edge loca-
tions, and glitches occurring close to or on edges are cap-
tured and displayed.

Triggering
The user can choose any of five types of triggering:
» Triggering upon entering a pattern
» Triggering upon leaving a pattern
» Triggering on greater than a specified duration of a pattern
(including a middle level in the dual-threshold mode)
« Triggering on less than a specified duration of a pattern
(including a middle level in the dual-threshold mode)
« Triggering on combinations of patterns and glitches.
In this discussion, “pattern” indicates the value of an
ANDed group of inputs, or the complement of that value.
The five types of triggering qualify the trigger in ways not
possible with a simple occurrence trigger. Triggering only
on entering or leaving a pattern means that the analyzer will
not trigger if the pattern is present when the analyzer is
started. On the other hand, triggering on greater than or less
than some time duration of the pattern produces a trigger
whenever the qualified duration is reached. The duration
trigger types are especially useful because they allow the
user to set the duration to a value larger or smaller than any
duration expected, and trigger on that event if it occurs. To
illustrate this capability, refer to Fig. 5. Here it is possible to
trigger the analyzer when the duration from REQuest to
ACKnowledge is either too long or too short. An example
trigger command might be trigger on greater__than 1 usec__of
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REQ = 1 and ACK = 0.

Additional cross-pod triggering in a 16-channel 64600S

oL
Timing Analyzer allows conditional OR triggering, condi-

tional duration triggering, and sequential triggering. An
example of conditional duration triggering can be shown by
again referring to Fig. 5. It is desirable to trigger on the
occurrence of the acknowledge signal going high without a
request signal. Note that triggering on ACK =1and REQ =0
happens at the trailing edge of a normal handshake. How-
ever, triggering on ACK going high while REQ is low exactly

might be trigger on entering ACK = 1 when__greater__than 1
usec_of REQ = 0.

A programmable time delay is also available. This allows
delaying trigger events (as described above) up to 32 mil-
lion clock cycles. The delayed trigger point can be
positioned anywhere in the acquisition memory: start,
middle, end, or a definable percentage of the memory before
the delayed trigger point.

Intermodule Bus Interaction

The 646008 Timing Analyzer, through the 64000 Sys-
tem’s intermodule bus (IMB), can arm or trigger other mod-
ules, or can be armed, triggered, or delayed from other
modules in a 64000 Development Station.

As an example of intermodule triggering, a state analyzer
in the 64000 Station could be tracing a long sequence of
events, and when this sequence is satisfied, arm the 6460085
Timing Analyzer. The timing analyzer then triggers when it
satisfies its own internal trigger conditions.

An additional autorestart function is also available when
using the 646008 with the IMB. This is useful in correlating
timing phenomena with subsequent faulty state flow. The
timing analyzer can look for a pattern, trigger, complete its
trace, and then wait for a state analyzer to tell it what to do

REQuest for Transfer

ACKnowledge

Time
Interval
|- -

Fig.5. The different triggering modes of the 6460085 Analyzer
can be used to examine the relationships between a system's
REQ and ACK handshake waveforms

via the IMB. If the state analyzer observes normal state flow,
it can tell the timing analyzer toreset and start over again. If
after the next timing measurement the state analyzer ob-
serves faulty state flow, further restarts would be inhibited
and the timing trace containing the data that produced the
faulty state flow can be observed.

Displaying Data

The 64600S Timing Analyzer can display measurement
data in the form of either a timing diagram or a trace list. The
timing diagram presents up to sixteen channels of mea-
surement data. The channel ordering and spacing can be set
up using labels that the user enters or default channel num-
bers. By selecting appropriate labels, the user can present
the measurement data in a form that gives a clear descrip-
tion of what has been measured (see Fig. 2c and Fig. 4c).

Magnification, time cursors, and memory indicators are
important features for study of the timing diagram. Mag-
nification along the time axis allows the fine detail of a
portion of the timing diagram to be expanded. Three pow-
ers of magnification are allowed: x1, x10,and x100.In %1,
the measurement data (4060 samples) is compressed into
203 display characters by a 20:1 compression routine. Mul-
tiple transitions in each 20-sample group are indicated with
a multiple transition character (glitch symbol). Thus, the
user can use the x1 magnification to find regions of activity
and use the other magnifications (%10, X100) to see more
detail of each region of activity. This is significantly differ-
ent from many analyzers, which compress multiple transi-
tions into a single transition and make it difficult to distin-
guish regions of activity from simple transitions.

Multiple time cursors (x, o in Fig. 2¢ and Fig. 4c) are
available in the 646008 to measure durations of events or
intervals between events. Graticules and time-per-division
information provide the user with another reference to the
amount of time that is shown. Also, the position of the
indicator (/\/\/\) under the timing diagram shows the por-
tion of the trace that is currently being observed.

Hard copy of the timing diagram and the trace list are
available to record the measurement data when needed.

Probing

The 64604A Timing Probe consists of a cable connected
to the acquisition board in a 64000 mainframe, a detachable
pod housing a hybrid circuit containing the active com-
parator, and eight detachable coaxial probe inputs similar

to oscilloscope probes. As a result, all the accessories for
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HP’s 10017A Series Oscilloscope Probes (e.g., grabbers and
clips) can be used with the 64604A. A new 20-pin dual-in-
line package clip, the 10211A, has also been developed.
This accessory allows easy connection to most 0.3, 0.4, 0.6,
and 0.9-inch-wide dual-in-line IC packages. The 10211A is
also stackable, end to end, to allow probing all the pins of
40-lead or 60-lead packages.

The probe inputs are compensated to provide the com-
parator in the pod a high fidelity reproduction of the signal
at the probe tip, avoiding the ringing and resulting uncer-
tainty associated with open-wire probes and fast edges. The
input impedance at the tip is 100 k) in parallel with 6 pF.

The probe has two comparison thresholds, one for chan-
nels 0 through 3 and one for channels 4 through 7. The
thresholds are set by software from —10V to 10V in 0.1V
steps. The dvnamic range of the probe is specified as =10V,
Exceeding this value, as might happen with CMOS circuits
using 15V supplies, causes less than 1 ns of additional skew
as the input clamps are activated, and essentially no change
in loading.

Hardware Organization

The data acquisition path of the 64600S uses three cus-
tom, bipolar EFL integrated circuits: an input comparator
chip, a glitch chip, and an array of encoder chips. Fig. 6 is
a block diagram of the data acquisition path showing how
these chips are used and the effect that changing the
acquisition mode has on data flow and memory allocation.

The custom 8-channel comparator chip receives the
input data through the passive RCdividers. Having all eight
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Channel #4 0-5ns

7
#8 Channel #4 2.5-7.5ns

Fig. 6. Data flow for the 64600S's
four acquisition modes. (a) Wide
sample. (b) Dual-threshold. (c)
Glitch capture. (d) Fast sample.

comparators on the same chip keeps the interchannel skew
low without requiring delay adjustments. In the dual-
threshold mode, the same input signal is sent to upper-
threshold and lower-threshold comparators. An output
data stream is generated for each threshold level. The com-
parator outputs drive complementary ECL signals down
twisted-pair transmission lines to the glitch chip.

In the glitch chip, input data and glitches are sampled
and basic trigger comparisons are made. The maximum
samplerate of this chip is 200 MHz. In the fast sample mode,
the data outputs consist of two 200-MHz data streams per
channel, one delayed by 2.5 ns with respect to the other.
Again, because the data from all eight input channels is
sampled on one chip, the delays are inherently well
matched. Special care was still required to adjust the input
aperture for both positive and negative data transitions to be
at the same point with respect to the sample clock.

Each of the eight outputs of the glitch chip is fed to an
encoder chip to do a serial-to-parallel data conversion. This
chip slows down the data rate to the TTL memaries by a
factor of sixteen. In other words, it effectively changes a
12.5-MHz memory to a 200-MHz memory. A block diagram
of this encoder chip is shown in Fig. 7. The TTL data
outputs of this chip are fully buffered, the data remaining
constant at the memory inputs for a full write cycle time.

The above acquisition functions reside on the data ac-
quisition board. The control board generates the sample
clocks, processes the raw pattern trigger information for
time duration specifications, and controls the measurement
by starting and stopping the data acquisition eycle in ac-
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cordance with the amount or pretrigger information de-
sired. This board also generates the timing diagram,

The time-duration triggering organization is shown in
Fig. 8. The three basic duration modes are transition (enter-
ing, leaving, glitch), time duration for greater than a preset
value, and time duration for less than a preset value. These
modes are generated by an edge detector coupled to cir-
cuitry that tests to see if the input pattern lasts longer than
the preset value. The edge detector, together with the
selectable inversion, generates triggers when the specified
input pattern enters or leaves. The width-greater-than cir-
cuitry generates triggers when the duration for a pattern or
the complement of that pattern is wider than a specified
time. Outputs of both of these detectors are used to generate
triggers for a less-than-time duration. Here the presence of
an edge denoting that the trigger condition is going false is
ANDed with the status of the width-greater-than detector, If
the width signal is false, this implies that the pattern was
narrower than the width specification.

Resolution

It is important to understand what determines the timing
resolution of a timing analyzer to properly interpret the data
it shows the user. Fig. 9a shows an example of input data
and the corresponding sampled data information. Note here
that different input data can result in the same displayed
information, because the data sampler only looks at the
incoming data at sample times. The resolution between
edges on the timing diagram is limited to one sample
period. Another problem, that of skew, or differences in
delay between edges on the same or different channels, also

Edge Detector
(Detects trigger
going false)

Raw Pattern
Trigger Information

Width-Greater-Than
Detector

EFL40-TTL
Three-State
BuHlers

Lower x ;
Write Fig. 7. Encoder chip block dia-
Buffer Strobe gram.

strongly affects the available resolution. For example, if the
timing analyzer internally delays the data from channel 1 of
Fig. 9b by 1 ns longer than the data from channel 2, the edge
resolution now becomes =(sample period + 1ns). Skew can
also occur on a single data channel if the delay to the
sampling aperture is different for a positive data transition
and a negative data transition. This type of skew can stretch
or compress pulse width,

In production, skew is measured using a routine present
in the 646008 self-test software. This procedure uses a sta-
tistical beat-frequency approach to measure the skew of the
acquisition circuitry. Consider the following conditions: the
sample clock is operating at 200 MHz (5-ns sample period),
the input data rate is 10.01 MHz (99.9-ns period), and the mem-
ory of the analyzer can store 4060 samples. This means that
every time a new data edge appears at the data sampler, its
time location with respect to the sample clock has been
shifted by 100 ps, or for every 50 data edges, one complete
sweep of edges will occur through the sample period (one
beat). In this example, 4000 bits of memory would then hald
approximately four beats as shown below:

(4000 x 5 ns)/(50 x 99.9 ns) = 4.004 beats
To calculate the skew between a reference edge of particular
polarity on one channel to an edge of either polarity on

another channel, the following formula is used.

(number of misaligned edges)
(number of edges compared)

% sample period= skew

Qualified
Trigger
to
Delay
Circuits

Fig. 8. Organization of time-
duration triggering circuitry.
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Software Solutions to Displaying Data

Displaying sixteen channels of data with 4060 samples
per channel in a short amount of time can be a difficult task.
A minor hardware change and a special software algorithm
were developed to reduce this time.

The display memory consists of 240 characters per chan-
nel. Each character is composed of a two-bit pattern, GD,
where G indicates if the multiple transition symbol (glitch)
istobe displayed and D indicates if data is high or low, Each
two-bit pattern is separately addressable. The acquisition
memory consists of 4096 samples of data per channel with
sixteen samples from each channel packed into an address-
able 16-bit word. Originally, the data was packed in the
form DO, D1, D2...., D15, but trying to convert this into a
format (GODO, G1D1, G2D2,...) acceptable for the display
memory was a problem. The solution is to modify the out-
put of the acquisition memory so the packed word is in the
form D8, DO, D9, D1, D10, D2, ..., D15, D7. Now, by simply
masking the pattern with a hexadecimal 5555 mask, and
shifting and masking again, the two words 0, D0, 0, D1,...,0,
D7 and 0, D8, 0, D9,..., 0, D15 are produced. The glitch
information is processed the same way and merged with the
data providing the proper format for the display memory
(Go, DO, G1, D1, G2, D2,...).
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Emulators for 16-Bit Microprocessors

by David B. Richey and John P. Romano

HE ADVANTAGES OFFERED by microprocessors
have resulted in their use in a large portion of today's
electronic designs. Because of their versatility and
complexity, microprocessors frequently create problems
for the designer. Microprocessors reside in their systems,
veiled behind their protective plastic or ceramic packages,
so that their inner activities are invisible. Their control
mechanisms are untouchable. The task of working with
these components, therefore, is often greatly aided by re-
moving the microprocessor from its socket and inserting an
emulator in its place. An emulator provides a window into
the inner operation of a microprocessor and simulates its
activity, giving designers the feedback and control neces-
sary for development work. The feature set of a typical
emulator includes:
» Loading, displaying, and modifying memory
« Displaying or modifying I/O space as appropriate
» Displaying or modifying processor resources such as
working registers, DMA registers, and counters
» Starting or stopping execution
« Various documentation-related capabilities, like listing
the above information to disc files or a printer
= Display and use of symbols.

With such features, the use of in-circuit emulation to
design, test, and service microprocessor-based products
has become accepted as a productive technique, and has
contributed to the widespread use of such products.

As the use of microprocessors became more com-
monplace, the desire for more capability led to 16-bit mi-
croprocessor designs. In addition to having wider data and
sometimes wider address buses, 16-bit microprocessors
have much greater complexity than their 8-bit predeces-
sors. These changes in processor technology have required
corresponding changes in emulation philosophy and
hardware.

The 64000 Logic Development System's first-generation
emulators! were designed to aid the development of an 8-bit
microprocessor-based system. These software and
hardware tools gave designers the power to complete a
complex new product design efficiently, handling all
phases of the design cycle from the early breadboard to the
final system software/hardware integration and test.

HP’s second-generation emulators provide support for a
variety of new 16-bit microprocessors. The difference in
complexity between the 8-bit and 16-bit microprocessors
demanded that we design new hardware and software to
support our earlier 8-bit implementation. This approach
gave us the opportunity to expand the previous feature set,
implementing new features and adding breadth and flexi-
bility to existing ones.

Emulator Hardware Design
The 16-bit processors increase the need for an emulator to
work symbolically with compilers, to be flexible enough to

accommodate the diverse systems in which 16-bit proces-
sors are used, and to be included in cross-coupled mea-
surements with other emulators or other instruments.
Naturally, the new 64000 16-bit emulators use the 64000’s
directed-syntax user interface, which includes the capabil-
ity to create command macros using command files.

The hardware design was simplified by basing it on the
expandable emulation bus architecture originally used for
HP's earlier 8-bit 8080/8085, 6800, and Z80 emulators. The
emulation bus connects a set of standard cards that include
emulation control boards, memory control boards, emula-
tion memory board(s), and a state analyzer board. The emu-
lation control board controls execution. The memory con-
trol board contains an address mapper to partition the ad-
dress range between user memory and emulation memory
and to apply tvpe and protection attributes. Emulation
memory boards are used for prototyping. The emulation
bus is entirely separate from the 64000 host processor bus.
This avoids interference with an emulator when the host
processor is conducting 64000 System activity. Multiple
emulators in one 64100A or 64110A Development Station
can operate independently since each emulator uses a sep-
arate emulation bus. Separating the buses also makes it pos-
sible for the host processor to set up an emulator in a watch-
dog measurement, which continues while the host moves on
to operate, for example, another emulator, an external
analyzer, or an edit session.

Wider Addresses

The emulation bus is universal and expandable, but mi-
croprocessor and memory technology has gone beyond the
original planning for several of the standard boards. The
first emulation bus specified 24 address and 16 data lines,
without extensions. During the original emulation design it
was assumed that a microprocessor system requiring even
that many address lines would be several years away. The
original 64300A internal analyzer monitored only 16 ad-
dress lines, and the original 64151A memory controller
handled only 20 address lines. Emulation memory sup-
ported 128K bytes with 1K-byte resolution. Then the 68000
microprocessor with a 16-megabyte addressing range and
the Z8001 microprocessor with an 8-megabyte segmented
range appeared. A second-generation analyzer and memory
controller are now necessary.

Internal Analysis

A new internal analyzer, the 643024, is designed to cover
all 24 address lines. In addition to extended address, the
analyzer has an expanded number of IMB (intermodule bus)
functions. This enhances the cross-coupled measurement
capability that is so important when designing complex
16-bit systems with memory management or multiprocess-
ing. A problem was encountered when tracing the data flow
of 16-bit microprocessors. These processors can transfer
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data eitheras a byte oras a word. When transferring a byte, it
is not usually known whether the byte will appear as an
upper or lower byte on the bus, The emulation bus provides
word, lower-byte, and upper-byte status to the analyzer, but
that does not help the situation. To solve this problem, the
64302A’'s data inputs can function as tweo independent
bytes. Measurements can be made by specifying the data
redundantly in both bytes and specifying a byte transfer to
set the trigger condition.

Memory Control

A new memory controller, the 64155A, works with the
full 24-bit address bus. It supports up to one megabyte of
emulation memory, and has two mapping resolutions: 256
bytes and 4K bytes. It is used with the new memory boards
that provide up to 128K bytes of static RAM on a single
board. The 64155A is also compatible with existing
641528, 641538, and 641548 static RAM boards. A sig-
nificant portion of a user's investment in emulation is in the
emulation memory subsystem. Expanding for the 16-bit
emulators introduced a new problem—implementing a
dual-port memory scheme. New microprocessors use a very
high percentage of their available bus bandwidth. There-
fore, we implemented a new mechanism for the memory
controller which pauses the emulation processor's memaory
activity whenever the 64000 host processor accesses emula-
tion memory. The new memory controller has a transparent
dual-port mode, but the 8086/88, Z8000, and 68000
emulators need a level of performance that requires the
pause mode. Of course, a user can select a real-time running
option to ensure that these pauses do not disrupt the opera-
tion of the target system,

Emulator Transparency

An important issue for emulator designers is transpar-
ency—the ability of an emulator to perform in a target
system exactly like a microprocessor. Transparency has
four aspects: electrical, timing, resource, and functional.
Electrical transparency encompasses factors such as input
and output loading and propagation delays. Typically, an
emulator uses a higher-speed microprocessor and LSTTL
buffering. This combination closely approximates the mi-
croprocessor manufacturer’s propagation specifications.
For emulators of NMOS microprocessors, exact reproduc-
tion of a processor's loading characteristics was given a
lower design priority, Our goal has been to use one LSTTL
load per signal unless this becomes excessive. This strategy
has seemed appropriate since most NMOS microprocessor
systems use TTL circuitry.

Timing transparency is commonly a measure of an
emulator's ability to run at the maximum rated speed of the
microprocessor. Therefore, the designer of an emulator
must anticipate a processor’s fastest mature speed and de-
sign to that performance. A second consideration is
whether or not an emulator imposes wait states. Since real-
time execution is important to users, the imposition of wait
states or other timing aberrations is strongly avoided.

Resource transparency refers to restrictions on micro-
processor resources or features imposed by an emulator
design tradeoff. For example, a given emulator may restrict
the use of a certain address range or an interrupt. These are
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restrictions a user would not have to make if the actual
microprocessor were plugged into the user’s system.

Functional transparency reflects the ability of an
emulator to execute instructions, perform bus activity, and
respond to asvnchronous inputs in precisely the same
manner as the microprocessor. This area is HP’s first design
priority and is usually the most difficult to achieve because
microprocessors are largely undefined devices. Micro-
processor vendors specify instruction sets, bus timing, and
pin definitions, but rarely declare functional interactions.
Knowledge of these interactions may not be necessary for a
system designer, but an understanding of these functions
can be the deciding factor as to whether an emulator does or
does not work in the target system.

The high level of complexity in these 16-bit processors
caused us to rethink the approach we had been using for the
8-bit emulators. We had been maximizing resource
transparency and keeping the user's required level of
knowledge about the details of the emulated processor to a
minimum. To accomplish this, the 8-bit emulators have an
alternate address space containing memory called
background. User programs are executed from foreground
memory until a breakpoint is encountered, then the
emulator moves into the background memory where it exe-
cutes the background monitor. This monitor dumps the
processor's registers into memory and performs other
duties. This monitor is totally resource transparent because
itdoesn't occupy any of the user'saddressrange. Emulation
software loads the background monitor into background
memory and maintains proper operation.

This approach is not as satisfactory for 16-bit micro-
processors because functional transparency would be
threatened by the increased complexity of such devices. For
example, the 8086/88 and 68000 processors prefetch in-
structions, Multimode interaction occurs between asyn-
chronous inputs such as HALT and BERR on the 68000
microprocessor and STOP and BUSREQ on the Z8000 mi-
croprocessor. The transition from foreground to
background memory becomes more difficult. It was clear
that the misplacement or rearrangement of one bus cycle
while transitioning to background would invite trouble,
Consequently, for 16-bit processors, the emulation monitor
is placed in memory along with the user's programs.

This approach would be unacceptable for an 8-bit
emulator because it would affect resource transparency.
That is, using 1K bytes of address space for an emulation
monitor would be a major intrusion for an 8-bit 8049
emulator because the 8049 microprocessor has a program
space of only 2K bytes. The same emulation monitor does
not intrude so overwhelmingly on the one-megabyte range
of a 16-bit 8086 microprocessor and thus does not adversely
affect resource transparency. This is particularly true in the
64000 System, given that the monitor can be placed any-
where in the user's program space.

For the new 16-bit emulators, the emulation monitor can
be placed anywhere in the microprocessor’s address range.
Exact placement is determined automatically by the
emulator. As part of the integrated 64000 System, the emu-
lation software accesses the linked symbol table to deter-
mine the emulation monitor's location.
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Flexibility

Flexibility is another key issue. It is anticipated that the
16-bit emulators will have to operate in conjunction with
memory management ICs, operating systems, and other
complex environments. This dictated a design approach
that allows a user to customize the emulator to whatever
hardware is used. One possibility was to use a background
monitor that could be modified by users. This was dis-
carded because the background monitor is usually a com-
plex program. The complexity is caused by the peculiar
boundary conditions that can occur during the transition
from foreground to background. A pending software or
hardware interrupt could require the background monitor
to do gymnastics to preserve the pretransition environment
and to unravel whatever activity occurred,

The foreground emulation monitor avoids that complex
interaction. It is distributed in source form along with the
other emulation software. Users are encouraged to modify
this program to accommodate specific requirements of the
target system, even to pare it down in size when necessary.
Numerous error checks and status messages can be trans-
ferred to the 64000 System's status line. These features
make the monitor as friendly as possible for first-time users,
but can be deleted to create a smaller monitor for experi-
enced users. The foreground monitor also comes to the
rescue when an emulator is used in a multitasking system
where the focus is not on controlling the microprocessor,
but on controlling the processes. Via the emulation
monitor, the emulator can be linked to an operating system,
allowing the emulator’s run and breakpoint features to acti-
vate and deactivate tasks.

As another example, consider the need for performing
both word and byte transfers. Since the fundamental ad-
dressing mode is a byte address for these processors, the
emulation monitor performs all memory transfers as byte
transfers. However, it is common for emulator users to de-
sign hardware that accepts only word accesses. Once again,
by simply modifying the emulation monitor, address
ranges can be specified for word transfers, and elsewhere,
byte transfers can be used.

Once the design decision to go with the foreground ap-
proach was made, it became clear that a common emulation
control board could accommodate all of the 64000's 16-bit
emulators. As a result, the 64271A board was designed. It
contains interface circuitry to make the emulation pod sig-
nals compatible with the emulation bus, creates a port
through which the 64000 Station can program pod config-
uration registers, provides a fast address mapper for buffer
control, and transfers various control and status signals
between the station and the pod.

Special Considerations for Coprocessors

Coprocessor support required some special hardware
considerations for the emulator pods. The 8087, coproces-
sor to the 8086, monitors instruction fetching and execu-
tion. Usually, when accessing emulation memory re-
sources, the emulator places the data bus into a high-
impedance state. To allow coprocessors to monitor emula-
tion memory activity, a special mode is required for the
8086 emulator. As needed, the emulation memory cycles
can be driven out on the microprocessor data pins. To avoid

bus contention problems, short plug-in leads are added to
bring out mapper and emulation memory ready signals for
use in the target system. Another problem arose from the
common practice of using special blocks of memory for
pointers or interrupt vectors for the microprocessor and its
coprocessor. Vectors can reside very close together in
memory, which can restrict the use of emulation memory.
To overcome this problem, all of the 64000’s 16-bit
emulators can be set up to become “memory emulators”
during coprocessor or other DMA-type cycles. During such
times, the emulator generates emulation memory strobes
from signals applied to the memory strobe pins of the inac-
tive processor.

One of the more subtle changes made in response to field
inputs from users happened when redesigning the 64151A
to become the 64155A memory control board. A standard
feature of the memory controllers detects write cycles to
address ranges designated to be ROM. Such ranges are
write-protected when they are mapped to emulation mem-
ory. But, regardless of whether emulation or user memory is
specified, a breakpoint is generated when a write is per-
formed to ROM. Many 8-bit emulator users like to use these
ROM areas for other purposes, such as a write-only /O
space. The new 64155A memory controller allows this; it
can be configured to generate or not generate write-to-ROM
breakpoints.

Emulator Software Design

The following discussion is restricted to a description of
the software features that are additions to or changes
from the first-generation emulators,! Unaffected features
are not discussed. Emulation features changed or added to
handle 16-bit microprocessors include emulation session
entry, configuration, general control, symbolic interface,
command file execution and control, memory interface, /O
interface, software breakpoint, and analysis.

Emulation Session Entry

Thereare two possible entry points to emulation, depend-
ing upon what hardware modules are present in the devel-
opment station’s card cage. If there is only one emulation
card set (one emulator control board with pod, a memery
controller board, and an optional 300 or 302 analysis
board), then entry is directly from the development station
via the emulate softkey. At this point the user has the
following options:

» Begin a new emulation session and build a new emula-
tion configuration command file

= Enteremulation configuration with a previous emulation
command file name to edit the options contained therein

» Enterrun-time emulation directly (option continue) with a
valid emulation command file specified

» Specify a user program absolute file to be loaded after
entering run-time emulation (this can be done with any
of the above options).

If there are multiple module sets present in the station's
card cage (emulator sets, state analyzer sets, timing ana-
lyzer sets), then entry is via the measurement system moni-
tor which itself is entered from the development station with
the command meas_sys. The measurement system is de-
scribed in the box on page 8. Softkey labels appear in the

MARCH 1983 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.




measurement system display identifying the module and
slot number of the control card or that module (e.g.,
em8086__4 or state__8 for an 8086 microprocessor emulator
control board in slot 4 and a state analyzer control board in
slot 8). Selection of an emulator with an optienal emulation
command file name transfers control directly to run-time
emulation if the file matches the current hardware config-
uration. Otherwise, if the command file needs editing, or if
none is specified and there is not a previous emulation
session, the user is guided through configuration under the
current session.

Configuration

The configuration session is a guided series of question

and answer entries, except for the memory-mapping por-

tion, which has a directed-syntax command entry format.

Configuration consists of the following:

1. Validate and display the card selection (see Fig. 1a).

2. Clock source (internal or external).

3. Real-time option selection.

Memory blocking factor (256 or 4096 bytes).

5. Number of significant address bits (dependent upon

block size and processor address size).

6. Break on processor writes to ROM option selection.

7. Memory-mapping session,

8. Simulated I/O address assignment, if desired, for dis-
play, printer, keyboard, RS-232-C/V.24, and/or disc
file(s).

9. Emulator pod hardware settings (microprocessor
specific).

10. Selection of alternate inverse assemblers for coproces-
sors or special operating modes (e.g., 8089 coprocessor
or Z8001 n{mh‘egmenlﬁd mode).

Configuration analysis hardware interaction.

12, Naming the emulation command file to store the con-
figuration information and subsequent run-time in-
formation on disc for repeated use.

See Fig. 1b for an example of a memory-map display. The

memory control board provides the basis for wide flexibil-

ity in hardware control of the microprocessor address bus.

The address space of the emulated processor can be par-

titioned into 32 segments (possibly disjoint and of variable

size) using block sizes of 4K or 256 bytes. Each segment can
be specified as emulation memory, user RAM, ROM, or

guarded. With the forthcoming 128K-byte RAM board, a

user will have the ability to use up to one megabyte of 64000

emulation memory, mapped anywhere in the user’s mi-

i
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croprocessor’s address space. All the map data is stored in
the emulation command file so that it does not have to be
reentered each time, and a previously entered map can be
easily modified when editing an existing command file.

As an optional feature for microprocessors with the abil-
ity to separate address space, two methods exist for overlay-
ing memory address space (where two or more address
inputs will map to the same physical blocks of memory
controlled by the memory-mapping hardware). The first is
to specify explicitly in the memory-map command entry
that segments of equal size map to the same physical mem-
ory, The other is to “don’t care” upper address bits by
entering a reduced value in response to the configuration
question “Number of significant address bits?”

After completing configuration, the user initializes the
necessary software and hardware and enters the run-time
emulation monitor. If the user has specified a load file, it is
automatically loaded at this time.

General Control (Monitor Functions)

The emulation moniter program, which is linked with
the user's application program, provides the control
mechanism for the emulation system. As the user completes
the development cycle of a software/hardware project, this
program can be left out to provide the final phase of system
integration and test.

The emulated microprocessor has three basic states: re-
set, running in monitor (executing the emulation monitor
program within emulation memory), and running (execut-
ing, but not in the emulation monitor program). Normally
under either of the running states the emulation system
software polls the target microprocessor with an “are you
there?" protocol. This is accomplished through declaration
of a global control word, MONITOR_CONTROL, in the emu-
lation monitor program. If the target processor is executing
in the monitor loop, the loop responds to the are-you-there?
query and performs the requested action. Using this com-
munication mechanism, the emulation software makes
specific coded requests requiring the target processor’s ac-
tion such as dumping register values, accessing user mem-
ory or /O ports, or checking for software breakpoint entry,

Under special circumstances the user can specify that
runs be restricted to real-time (see configuration step 3). In
this case, the emulation software does not poll the target
processor and there are no breaks in the user’s execution
unless the user has issued an explicit break command. This
command forces the microprocessor into the emulation

sappeds S sizes S bytes

Fig. 1. A configuration session
begins with (a) validation and dis-
play of the card selection. (b) A
typical memory-map display
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with the first keyword of each command on three levels
softkeys. The user can cycle through these levels by press-

ing the softkey labeled ---ETC-—-.

Symbolic Interface

The addition of rolling and g functions for the dis-

play mode makes the displ: 1] and local symbols

more flexible. Also, the symbolic m relerences are

rated into prog, data or comm types. There are three
|

, denoting a Pascal

now sep
new symbol types available: #(NUMBER
@:(NAME),
address of the named module, and the addition of lower-

source line number which gives the starting
case identifiers to support HP's C compilers

In the B086/88 microprocessor family, the user can now
enter addresses in two formats. The logical address format
is the segment-offset format followed by Intel Corporation
This takes the form of a 16-bit seement followed by a colon,

is the

followed by a 16-bit offset. The other form, physical,
folded logical address from which a 20-bit address is de-
rived. To enter a physical address, simply enter a single

number of up to 20 bits

Command File Execution and Control

A command file can be invoked within emulation by

typing in the desired file name. Any valid emulation com-

mand can be followed by a semicolon, which will act as an

end-of-line character. This becomes the comment-field de-
limiter, a very useful feature for command files used in

testing situations. A command file for use in emulation is

of the run-time use of the 64000 svstem

Fig. 2. Arough outlin

Table |
64000 Emulation Wait Commands
Command Waiting Condition Before
Processing Next Command

remote

ondifion is not en
 reset key once

condition and

logged (created) by the user’s completing the following steps:

1. From the system monitor level, issuing the command
log_commands to (new command file name)

2. Entering emulation

3. Going through all the commands desired in the com-
mand file

4, Ending emulation, returning to the syster

1 monitor level

and i.\'“’-lll}ll:', the command log__commands off
5. Editing the command file just created and removing the
commands that led to the entry and exit of emulation
6. Evoking the new command file from the emulation
monitor,
Command delays now allow the user more flexible use of
command files (although these commands are also avail-
able outside of command files). They allow the user to give
the emulation system and target processor time to complete
some condition or reach a given state before bringing in the
next command. The user may issue these wait commands
(see TableI) during a session to create a new command file.

Memory Interface
Memory-related functions include loading and storing

2B81 1481 91EF 4

D998 94CE S16F @
0009 1322-30 48 ES&C 753D
e0ed 1332-3 5

STATUS: 17:45

repetitively blocked

~display memory Abort thru Abort+1@
word

© Copr. 1949-1998 Hewlett-Packard Co.



ory in human readable format (see Fig. 3), and modifying
memory. The load memory command accepts one named
absolute file which was produced by the 64000 linker or
equivalent, The load file may contain an optional transfer
address and can have any number of contiguous or discon-
tiguous segments. The name of the last file loaded is re-
corded so the symbolic interface software can access the
global and local symbols associated with it. The presence of
the emulation monitor program symbols is checked and
addresses recorded if symbols are present. All target system
memory (mapped to emulation or user resources) is ac-
cessed by the emulation system software in variable block
sizes from one to 250 bytes. This feature speeds up the load
memory command, allowing it to handle large files quickly.
The display/list interface now allows complex list re-
quests and remembers the last display format and list en-
tered. The user can enter up to 16 memory list entries, each
consisting of a single memory location or a memory range,
when displaying or listing memory in either blocked or
absolute format and in either bytes or words. This lets the
user view or list an arbitrary set of locations or ranges
anywhere in memory. If the list specifies more than one
screenful of data, the roll or page keys can be pressed to
scroll the desired segments of the list specification into
view. The repetitive display option periodically updates
the memory locations currently shown on the screen,
The mnemonic memory display/list format accepts either
starting address or address range. Also, rolling and paging
are more sophisticated. The ROLL UP and NEXT PAGE keys
add to the current display starting at the next available
address at the bottom of the display. An internal stack keeps
track of several pages so that the ROLL DOWN and PREVious
PAGE keys respond quickly and logically. When a ROLL
DOWN or PREV PAGE key is pressed and the data is available,
an algorithm is used to build back from the first address
displayed. There are cases where ambiguous results occur,
so the T and | keys rebuild the screen by adjusting the
current first display address up or down by one byte and
then doing the inverse assembly beginning at that new
address. Inverse assembly for memory, register, and trace
display/list is handled by a table-driven inverse assembler,
The modify memory command accepts byte or word mode,
a single target location or a target range of locations, and a
single hexadecimal value or a list of hexadecimal values.
The modification value(s) are interpreted as specified,
either as bytes or words (actual memory accesses are on a
byte basis). For example,
modify memory 1000 to 05
modify memory word 2000 thru 3FFF to OFFFF
modify memory byte START to OEA, 0EB, 0EC
modify memory 12F0 thru 18FF to 0, 1, 2, 3, 4
A new capability of the display/modify memory feature is
the use of real numbers. Both short (32-bit) and long (64-bit)
real numbers are supported using the IEEE standard
floating-point format. These formats are also used by the
64000's compilers and assemblers. Short real numbers are
displaved with six significant digits, and long real numbers
are displayed with fifteen significant digits. All memory
display options, such as multiple addresses or address
ranges, are available in real mode, as are all such options for
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the modify memory command. The display format is (address)
sd.dddddEsdd for short numbers and
sd.ddddddddddddddddEsddd for long real numbers where s is
the sign of the number or its exponent (displayed only if
negative) and d is a digit of the number or its exponent.
Three special symbols may appear in the real number
display: NaN=not a number, +INF=positive infinity, and
—INF=negative infinity.

real (address)

I/O Interface

A new facility offered in the latest emulation release is the
ability to interrogate /O address space for those micro-
processors with that feature. The /O interface handles up to
16 bits of 1/O address.

The display/list io__port command works like its display/list
memory counterpart except that when the word or bytes
mode is specified, accesses are made only in that mode.
This lets the user control the accesses made to /O port
addresses. The display/list interface accepts a display list of
up to 16 entries, each entry being a single address or an
address range. A continuous option does a repetitive up-
date of all locations on the display, Rolling and paging
work in the same manner as with the display memory
interface. Format options include abselute (one entry per
display line) or blocked (eight entries per display line).

The modify io__port command is like its counterpart, mod-
ify memory, but again the mode (word or byte) forces all
accesses to be done by whichever mode is specified.

Software Breakpoint

The emulation system can perform an effective break on
execution by using the modify software__breakpoint set (AD-
DR)[(ADDR),..] command where (ADDR) is the beginning of
any valid instruction. A valid address may take the form of a
number, an expression, or a symbol. The display and/or list
of the software breakpoints (Fig. 4) allows the user to view
the entered breakpoints and their current status. As many as
16 breakpoints are maintained in a table stored in the emu-
lation command file, which is kept intact at the emulation
session and is available when the session is resumed.

Setting breakpoints, combined with a trace before
SWBK__ENTRY command, provides a convenient tool for

Software breakpoint table

seqt status
Pending
Inactivated
Pending
Pending

STATUS: 1B@BE--Running In monitor Software break 0@80:2806H

—run from Rdd32

£un irace step display modif break end —fC—

Fig. 4. Software breakpoint table display
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Interactive Measuresent Specification: Internal Analysis.

Boc Ports:

port 1: dr ix h trigger
port 2 with seasuresent complete
active sdge: falling

Intermodule Bus

trigger enable
external tr
internal tri
delay clock:

STATUS: Configuring 18086

External trigger? ceceive

Trace: absolute

address ta stat o r

2183E 200011100

R20EC 0100010180

B2eEE e1eda18108

R2oFe 5006 eledaielee

B2eET @110910118

Q2eE8 e 2l1e010102

@20ER 3 d1eea1o108

8103 V200211108

29EC @1eea10100

B28EE 7 2100010168

+218 ocZere dlee@19100
11 B28ET e11ee18118
+012 R20E8 2110210108
+013 B20ER dled01010e
+a14 8183E 2000211102
+915 @20EC aieee1a10d

STATUS: 18986—Running in monitor Trace complete

-display trace absolute status binary
-

(bj—us— —trace  _step  _display .modify _ bresk . end

02260 = MoV BP,SP

21037 5 read memory word

B2262 S MOV AL,SS5:BYTE PTR no operand, pref
aiais 5 read memory word

e1e1A read memory word

e191c read memory word

28C6 PUSH BP & MOV BP,SP

@2ece 2 PUSH Ax

P28CA & MOV AX,55:WORD PTR no operand, pref
e1e1c £ write memory word

20008 : read memory word

L] e 5 read memory word

2101A write memory word

#1018 ¢ write memory word

02028 S Q CS PUSH BP

00 U1 b G0 e i b b b A0 D0

18086—Step complete Trace complete

8086 showing

Nic
LS

1 register display
software analysis, SWBK__ENTRY is a global symbol defined
in the monitor program. The data found at the breakpoint
address is saved in the breakpoint table. A special code
(byte or word, depending on the microprocessor) replaces
the data in a program, and when the program execution
reaches the special code, a break into the emulation monitor
program occurs, The processor is then running in the
monitor program, and a message is displayed showing the
current program counter address. Any displayed break-
points reflecta change in status from pending to inactivated

-Ilu

a the measurement

portiora 48-channel <t:"|i‘,|_‘."-}.‘*~ board, claser

between real-time hardware capal and

tions, and extended ability to save

dinate

1ing, state

The most significant change is the ability to
measurements with other analysis modules (t
or other emulation analysis). T i
initiation of the participating modules, including start
of
surements can be specified that use emulation analysis not
only to enable its internal trigger via an external signal, but

here is now synchronous

g

analysis and running of target microprocessors. M

alsoto trigger another module orreceive an external trigger.

This allows tracing of communication between coproces-

sequential trigge

» of the

sors. It also provides greater depth vi

and simultaneous timing and state analysis or the us

David B. Richey
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enable function for complex triggering, using the resources
of two or more analyzers.

These functions are selected within emulation configura-
tion during the interactive measurement specification seg-
ment (Fig. 5a). Then the specified function occurs
whenever a measurement is executed, until the interaction
specification is modified. Two new commands allow
specification of traces or runs without execution and sub-
sequent execution without repeated specification.

The new 64302A 48-channel Emulation Analysis Board
and the earlier 40-channel board are supported by the new
software. The eight additional channels can be allocated as
needed by the particular microprocessor to either address
(up toa maximum of 24 bits) or data (up to a maximum of 16
bits), or both (Fig. 5b). A related feature is the ability to
specify the number of significant address bits and have the
emulation analysis automatically ignore higher address
bits. New display options include binary (Fig. 5b) and
mnemonic status displays.

Other changes include an improved trace command syn-
tax that corresponds exactly to the hardware's real-time
triggering and storage capability. The combined resources
of emulation analysis, software breakpoints, and command
files allow application-specific nonreal-time analysis and
enhance the system's general flexibility. Trace specifica-
tions and trace data can be stored in a trace file and loaded
again later to reexamine the data or to reuse the specifica-
tion. Also, entire traces can be listed to a file with a single
command, rather than a series of partial listings.

The step and run until commands are implemented using
emulation analysis to break into the monitor. As a result,
when using these features, a trace can be displayed (Fig. 5¢)
that shows the bus activity occurring during the current
instruction for the step command and up to and including
the final instruction for the run until command.

In trace specifications there is now a set of symbolic key-
words to be used in place of the normal hexadecimal or bi-
nary “don’t care specification for naming status values, and
a capability to build status expressions using the operator
and with status keywords (or “don’t care’’ numbers).
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High-Level Language Compilers for
Developing Microprocessor Systems

by Martin W. Smith and Joel D. Tesler

processor development system, should apply to the
software provided with the system as well as to the
hardware. That is, if a compiler for high-level language X is
supported by the development system, and if the system
provides hardware support for microprocessors A, B and C,
then the compiler for language X should be able to generate
code for microprocessors A, B and C. Conversely, if the
development system provides hardware support for micro-
processor A, then any high-level language compiler sup-
ported by the system should be able to generate code for A,
These requirements suggest a structure for the high-level
language compilers supported by the 64000 Logic De-
velopment System. This structure, shown in Fig. 1, is simi-
lar to a restaurant menu. It shows that compilers for lan-
guages X and Y (Pascal and C in the diagram), are really just
different entry points into a high-level language system.

THE TERM “UNIVERSAL,"” when applied to a micro-
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The parts of the system are represented by the items on the
menu. Thus, just as a customer desiring a good meal can pick
from the menu ‘“‘one appetizer, one main course, and one
dessert,” so can a user of a 64000 Logic Development Sys-
tem select a language from column A and a microprocessor
from columns B and C to get relocatable code for that pro-
cessor in column D,

Using this type of structure has some important benefits
for the user. First, if a new microprocessor begins to win
acceptance in the marketplace, Pascal and C compilers for
that processor can be created by providing one code
generator and one set of tables (columns B and C) to the
compiler system. This reduces the labor normally needed to
build an entire compiler by a factor of three to six. Second, if
a new language begins to see wide use in the micro-
processor environment, a compiler for that language can be
brought up on the 64000 System by providing a pass 1 for
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Fig. 1. The compiler structure in the 64000 Logic Development System.

the language (column A). Again this takes much less labor
compared to that needed to produce an entire compiler.
Third, the user can look forward to better service for detect-
ing and correcting compiler bugs. When a user of the 8086
Pascal compiler reports a software bug, and that bug turns
out to be caused by a problem in Pascal pass 1, then when
the bug is corrected in the Pascal pass 1, it is corrected for all
the supported microprocessors in column B. And if the bug
turns out to be located in 8086 pass 2, then once corrected, it
is corrected for all of the supported high-level languages.

Compiler Languages

At first glance, the languages C and Pascal may appear
similar. Both are structured languages and contain similar
looping constructs. Both have similar data types containing
integers, reals, pointers, arrays, records or structures, and
with the addition of the enum data type to C, scalars. Given
the similarities between the two languages, the question
may arise as to thereasons for supporting both languages on
the 64000 System.

There is a basic difference in philosophy between C and
Pascal. C is generally more concise (and therefore at first
glance more cryptic) than Pascal. C gives the programmer
as much freedom as possible, and imposes few restrictions
on the user. By contrast, Pascal protects the programmer
from certain types of errors, resulting in limited freedom.

An example of this difference is illustrated by procedure
calls. In Pascal procedures, the number and types of
parameters must be declared explicitly. At every call, the
arguments are checked, and if there is any incompatibility
in either type or number, an error message is given. In C, no
check is made. Note that in C it is much easier to make an
error in parameter passing. However, variable numbers and
types of parameters can be passed in C, which is impossible
to do in Pascal. Of course, both the sending and receiving
routines must conform to the same parameter passing con-
vention, since there is no way of verifying the number and
type of parameters that were passed to it. Failure to do this
results in unpredictable behavior by the program.

Another example of this difference in philosophy is ap-
parent in the use of pointers and addresses. In Pascal, all
pointers point into the heap, an area of memory specifically
allocated for dynamic memory (i.e., NEW, DISPOSE, etc...).
This tends to prevent writing over random memory not
intended for that purpose. In C, there is a specific operator
for taking an address. Additionally, pointers and integers
are assignment compatible. Therefore a C pointer may con-
tain anything, a potentially dangerous but powerful tool.

In Pascal, an integer and a set are two different constructs.
A set can contain any number of elements (subject to the
limitations of the compiler) and the representation is not
specified (at least not in a manner that is transportable
between one compiler and another), In C, logical operations
can be done on any integer. This is useful for doing bit
masking on integers.

Pascal/64000 has certain extensions that allow the user
accesses to certain types of functions possible in C. For
example, type changing enables the user to bypass some of
the type checking normally done by Pascal. It can also be
used to convert between integers and sets, thus allowing
masking of integers. Another extension is the ADDR func-
tion, which gives the ability to take addresses. This allows
Pascal/64000 pointers to point anywhere in memory, not
just the heap. Other features of C, such as variable parameter
passing, are not available as extensions to Pascal/64000.

The following example illustrates the difference between
the two languages. The C statement:

¢ +=a[ sw++ = getch( )]

first calls a function getch, which returns a character. This
character is then assigned to the location pointed at by w,
after which w is then set to point to the next character
(presumably w points into a buffer). The character is then
looked up in an array a, and its value is added to c. To write
the same statement in Pascal, the following would be neces-
sary:
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huffer[w] := getch;
w = w+1;

gir=10 4 a[ buffer[w] ];

The only difference is that here w is an integer instead of a
pointer, and the buffer must be specified explicitly.

The C statement is more concise, but sacrifices readabil-
ity for the person who is not well versed in C. Note however,
that the program could have been written in C to look
exactly like the Pascal program (except for minor syntax
changes, i,e., = instead of := and () after getch).

Table | summarizes some of the major differences be-
tween Pascal and C. Those items available as extensions in
Pascal/64000 are indicated.

The complicated arithmetic expressions referred to in
Table I for C include such things as autoincrement and
decrement, conditional assignment, exclusive OR, and log-
ical shift (logical shift is also available in Pascal/64000). On
the other hand, Pascal/64000 has the nonstandard feature

Table |
C and Pascal Differences

c

Weak type checking
Variable parameters

Logical operations on
integers

Boolean operations on
integers

No nested procedures
Address function

Type casting
Different-sized integers
Unsigned arithmetic
Complex poinler operations

Complicated arithmetic
expressions (see text)

Pascal

Strong type checking
Fixed parameters
Sets

Boolean variables

Nested procedures

Available in Pascal/84000
Type changing in Pascal/64000
Available in Pascal/64000
Available in Pascal/64000
None

Simpler arithmetic expressions
(see text)

Little programmer protection Strong programmer protection

rotate.

Although parameter passing differs between Pascal and
C, and thus may not be automatically compatible between
the two languages (depending on the specific target proces-
sor compiled for), a special compiler directive is available
in the C compiler to guarantee compatibility with Pascal for
a given procedure. While the use of this option places
certain restrictions on the user, such as the inability to have
a variable number of parameters, it does allow both lan-
guages to be linked together. Since assembly language can
also be linked in, it is not at all difficult for a developed
system to be made up of modules in all three languages. For
example, assembly language can be used to access specific
microprocessor [/O instructions and for other code not pos-
sible in a high-level language. C might be used to write
device drivers, and Pascal can be used for applications of
those drivers.
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