(é HEWLETT
PACKARD

Description

Model 64310A Software Performance
Analyzer provides nonintrusive
performance analysis of executing
software. A subsystem of the 64000
Logic Development System, the Software
Performance Analyzer is installed with a
64000 Emulation Subsystem for either
8bit or 16-bit microprocessors. An
innovative software development tool,
the 64310A is used for software
characterization, testing, debugging, and
optimization.

Six measurement modes offer a variety
of perspectives on program execution.
All modes monitor emulator-generated
bus activity, allowing performance
analysis to be conducted at any point in
design, development, maintenance, and
upgrading of processor-based systems,
even when no target system hardware
exists. Activity, Duration, and Linkage
measurements are displayed as
histograms or in tabular form. Displays
and related sampling statistics are
continuously updated during the
measurement. The display may be halted
for inspection while the analyzer
continues the current measurement.

Data collection parameters are entered
quickly and easily with directed-syntax
softkeys. Symbols and labels generated
in program assembly or compilation can
be used directly in defining
measurements. Measurement
configurations are flexible, meeting a
variety of application requirements. The
analyzer can be specified to provide, for
example, a global view of the entire
memory space divided into 12 address
ranges, or more detailed analysis, as in
showing how frequently a subroutine is
called by another subroutine.
Measurements may be initiated and
terminated manually, or automatically by
setting enable/disable conditions.
Alternatively, windows can be defined for
repetitive data collection in a defined
code segment for situations requiring
context recognition.

Software
Performance Analyzer

MODEL
64310A

TECHNICAL DATA 1 MAY 83

IO BN BN Confidence Level:

Error Tolerance:
! COUNT IPONT: & 2

STATUS: Termination condition found - measurement complete

Features

B Six measurement modes for activity,
duration, and linkage analysis.

B Simple connection to 64000 Emulation
Subsystems for 8-bit and 16-bit processors.

B Interactive measurements with 64620S
Logic State/Software Analyzer, 64600S
Logic Timing/Hardware Analyzer, and
64300A/64302A Emulation Bus Analyzers.

B Uses symbols, module names, and
labels from programs written in Pascal, C,
or assembly language.

B Global and detailed views of software
operating in real time.

B Cumulative statistics for standard
deviation, mean, confidence level, and
error tolerance.

B Windowing capability for context
recognition.

B Automatic instruction prefetch
correction where possible.

B Analyzer specifications may be stored,
then recalled for immediate return to a
previous analyzer setup.

N

5

The Software Performance Analyzer becomes an integral
part of a powerful set of design and development aids
for processor-based systems. Model 64310A may be used
interactively with other 64000 analysis and emulation
subsystems. Compilers, assemblers and linkers contribute
to fast, efficient and productive software development.

The modularity and configurability of the entire 64000
System provides for rapid acceleration of the design
cycle. Convenience and ease-of-use combined .with the
measurement power of the 64000 System enhances
design productivity, resulting in superior products and
significant competitive advantages.

Memory Activity Measurement

The Memory Activity measurement mode provides
software engineers with an indication of memory activity
intensity in user-defined areas of memory. Activity is
displayed either as a percentage relative to overall
system memory activity, or as a percentage of activity
relative only to monitored memory segments. Information
may be displayed as a 12-bar histogram, or in a tabular
data list with statistics such as standard deviation and
mean.

Up to 12 memory areas may be defined using address
ranges, single address values, module names, or program
symbols. Data collection may be qualified further by
including only specified bus activity. This qualification
may include, singly or in combination, memory reads,
memory writes, stack operations, opcode fetches, 1/0O or
DMA activities, or other bus activity, depending upon
status indications available from the processor being
monitored.

Memory activity measurements can be displayed in a
variety of formats. The measurement can be displayed in
terms of activity count, or elapsed time and may be
displayed in tabular as well as histogram form.
Additionally, displays may indicate activity percentages
relative to the events being monitored, or as a
percentage relative to total system memory activity.
Information from Memory Activity measurements gives
the software designer a basis for allocating available
memory more efficiently. As shown in figure 1, such a
measurement can point to areas where memory
allocation may be too large, or too small. The Memory
Activity mode is also extremely valuable in evaluating
code space requirements, or code space vs algorithm
optimizations.

STATUS: Termination

STATUS: Termination condition found

. _measure . copy configure _ show _execute _ end

Figure 1. Memory Activity histogram (top) and the corresponding tabular
form (bottom) showing file buffer usage during program execution.

Program Activity Measurement

The Program Activity measurement mode monitors
opcode/instruction fetch activity. In contrast to the
Memory Activity measurement, it also records [/O, stack,
memory, and other activities initiated by these
instructions (figure 2).

In the Program Activity mode, an instruction fetch cycle
is recorded when it falls within one of the modules or
address ranges being monitored. Other bus cycles (e.g.
memory reads/writes, [/O operations, stack pushes/pops,
etc.) are included in Program Activity measurements if
they occur after the starting address for the specified
module is encountered, and before the opcode at the
ending address for that module is executed.

Up to 12 modules, or address ranges may be monitored
during a Program Activity measurement. Both
accumulated time and program-initiated bus cycle counts
are measured and displayed as histograms or tables.

The Memory Activity measurement, discussed previously,
is primarily directed to providing utilization analysis of
nonprogram memory segments. Application of this
measurement to program segments can, however,
provide meaningful results, especially in the pursuit of
module code size or algorithmic optimizations.
Information gained from the Memory Activity
measurement, as it may be specified to encompass time
and bus cycle count information for instruction fetch
cycles only, is often used in conjunction with the
Program Activity measurement to determine the
nonprogram memory reference intensity of a given
module. This often results in algorithmic improvements
reducing or eliminating possible memory reference
bottlenecks.

The difference between Memory Activity and Program
Activity measurements is sharply delineated in analyzing
a procedure dedicated to memory-swapping functions.
Such procedures are often implemented on processors
having single instructions capable of performing block
memory transfers. Thus, a single module may contain
only a few instructions, resulting in a relatively low
instruction count or time representation when viewed
with a Memory Activity measurement. The same module
when viewed with a Program Activity measurement may
be seen to account for a major portion of the total
program activity.

—display <LINE #> _disasmb __ _ _ show _execute ==-ETC---

Trace Lis State 6,120
Label: ADDRESS 8085 Mnemonic
Bas

STATUS: Awaiting state command - userid TEST1

— display <LINE #> _disasmb . . show _execute =---BTC---

Figure 2. The highlighted area in the logic analyzer trace (top) is the
information recorded in a Memory Activity measurement of module TEST,
with status qualification set to record only opcode fetch cycles. The
highlighted area of the trace (bottom) represents information acquired in a
Program Activity measurement of module TEST.

Since the Program Activity measurement monitors all
activity generated by a module, the designer can quickly
isolate modules that cause large amounts of activity
within a program (figure 3). These modules, then, are
principal targets for the most beneficial optimization
efforts.

Module Duration Measurement

The Module Duration measurement mode generates time
distribution histograms representing execution times of a
specified module or block of code. Time distribution
measurements allow characterization and verification of
best-case and worst-case execution times. By highlighting
modules consuming inordinate amounts of processing
time, sources of overall system degradation are identified.
Spurious execution times, as a result of passing faulty
parameters or improper algorithms for example, become
highly visible in this measurement.

Up to 12 time events may be specified in Module
Duration measurements. These events may represent
time ranges with minimum lower limits of 1 us
(depending upon the bus cycle speed of the processor
being monitored) to maximum upper limits of over 11
minutes. Initial Module Duration measurements often
span a relatively large total time interval. As the

the investigation proceeds, it is possible to focus on
specific time events, by using smaller time ranges defined
more closely around pertinent time values. The resulting
magnification of data provides better measurement
resolution.

In interrupt-driven systems, for example, module timing
measurements are often difficult to interpret depending
on the regularity and frequency of interrupts and their
associated service routines. Under these conditions, it
is useful to employ the option of either including or
excluding activity external to the module of interest.
This feature allows the designer to consider the time
spent in subroutines or functions referenced by the
module, as well as time spent in the execution of
interrupt-activated code. Subsequent measurements of
module duration excluding, then including such activity,
allows the engineer to gain a more complete
understanding of external procedures, functions,
interrupts, etc., and their effect on system activity at
the module level.

PROGRAM ACTIVITY OCCURRENCE

3083
| 1140911
s

70%

5S | 143175] 7%
NUMBER I
RT_ERROR

TOTAL COU | 21 E 5(100% 0%

STATUS: Termination condition found - meas ement complete _ _

_define = setup _measure _ copy configure _ show _ _execute __end

Figure 3. Program Activity measurement indicating that module TEST
represents 70% of the overall system activity.

Another application is the extrapolation of hardware
performance information from software performance
data. For example, assume that a single module is
responsible for correctly reading a data block from a
disc after the head has been positioned. If this
assumption is the case, the principal factor responsible
for a variance in the module execution time is the
number of read retries necessary to correctly transfer
the requested information. Module Duration
measurements can easily bring such information to the
attention of the engineer via histogram or data list
displays. Implications so derived can result in the
discovery of faulty media or improper hardware
communication, not only in the lab, but in production
and testing environments as well.

Module Usage Measurement

The Module Usage measurement mode provides a
distribution of the time available for execution of other
tasks after a specific module executes. It indicates the
intensity of demand for the services of a module. This
results in an extremely useful measurement for
identifying program areas where optimization efforts
can be most effective.

The Module Usage measurement is the complement of
the Module Duration measurement, in that it measures
the time from a module completion to the time that
same module is used again. Figure 4 contrasts the two
measurements.

In a typical application, the Module Usage measurement
may reflect low demand for a specific module, allowing
other scheduled tasks to occur normally. A small
percentage of the time, the measurement may indicate
heavy module usage, preventing other system tasks from
being performed at all. This usage measurement is a
valuable pointer to task scheduling problems, indicating
the need for operating system level modificatons and
task optimization. Program modifications can then
produce more effective and efficient task scheduling,
resulting in greater overall system throughput.

Up to 12 time ranges from 1 us (depending on the
processor being monitored) to 11.18 minutes may be
specified.

Intermodule Duration Measurement

The Intermodule Duration measurement produces a
distribution of the time intervals between successive
executions of two specified modules. The time duration
is measured between execution of the last instruction of
the “from” module, and the first instruction of the “to”
module (figure 5).

Here, as in other Duration modes, up to 12 time range
events may be specified ranging from 1 us to 11.18
minutes. The lower limit of 1 us, is dependent upon the
bus cycle rate of the processor being monitored.

Consider, for example, a program whose execution
eventually requires a new software overlay. In this
scenario, the main program might call a subroutine used
to set up an external hardware transfer mechanism
(module XFER). Module XFER will then transfer the
overlay code from a relatively slow mass storage device
into a high-speed memory buffer, while the main program
continues its task. As the main program completes the
task in progress, another module is called to load the
overlay from the high-speed memory buffer into program
memory (module LOAD_NEW). After these steps, the
main program can then jump into the newly overlayed
code and continue execution.

Module Duration
Measurement

Module Usage
Measurement

timer startsﬁ btimer stops
Module
TEST

timer stopsﬁ C:timer starts

Figure 4. The Module Usage measurement is the complement of the
Module Duration measurement.

ﬁ
@ XFER b timer starts
Intermodule

Module Duration

Measurement

GET_OVLY

timer stops
Module <b
LOAD_NEW

Figure 5. Diagram of an Intermodule Duration measurement from Module
XFER to Module LOAD_NEW.

High-speed, parallel-activity, memory-swapping
mechanisms are used in situations where program
execution cannot remain idle for the time necessary to
transfer directly between disc and program memory. But,
by executing the slow portion of the transfer in parallel
to essential program activity (in effect, transparently) the
total impact on system performance is relatively minor.

For overall system performance considerations, the time
interval between the start of the transfer from disc, and
the request for the high-speed load into program
memory is often critical. If the interval is too small, the
main program must idle; if the interval is too long, the
main program may require optimization. From another
standpoint though, if optimization is not possible,
hardware cost reductions and associated software
simplification may be realized by reducing the speed at
which the transfer mechanism must operate, possibly
eliminating the need for such a capability at all.

This type of analysis provides a strong basis for resolving
module interaction problems. Transfer timing between
modules is often critical, especially when software is
interacting with other software or external hardware.
Overall system performance can be markedly improved
by first identifying worst-case program paths, and then
optimizing the interaction involved.

Intermodule Linkage Measurement

The Intermodule Linkage measurement mode provides
direct visibility of module-to-module transfers for the
analysis of program flow paths versus path usage
intensity. Intermodule Linkage measurements monitor
program control flow between a base module and its
subordinate modules.

Up to six module pairs may be specified for
measurement in a “from module/to module” form. The
Linkage measurement indicates the number of direct
program transfers from a specified module to another
selected module as a percentage of all transfers from the
“from module(s)” specified or as a percentage of
transfers between the module pairs specified.

The Intermodule Linkage measurement shown in figure
6, displays A to B transfers and A to C transfers as a
percentage of only those transfers from A to B or A to
C. Alternatively, the measurement could show A to B
and A to C transfers as a percentage of all transfers
from A. This is especially helpful in spotting unexpected
transfer conditions that should not be occurring.

brouti]
subroutine Module
:D B Ato B and
Ato C

were specified
in a Linkage

int t
interrup! Module measurement.
C
. 1 A to D transfer
function Module was not specified
D in the Linkage
— measurement.

Figure 6. An Intermodule Linkage measurement specifying that transfers
from module A to B and A to C are to be analyzed.

Module
A

Intermodule Linkage measurements show which program
flow paths are used most extensively. Modules interacting
with subroutines too often may be targets for program
restructuring to avoid such heavy interaction. When the
interaction is valid however, the measurement points to
areas for possible code optimization — in the
subroutines for example — to enhance overall system
performance.

Data Acquisition Operation

The 64310A Software Performance Analyzer employs a
scanning method for data acquisition. During program
execution, the analyzer first monitors a randomly
selected event from the list of events for that
measurement. The time spent monitoring this event, the
“event period”, may be defined in terms of time (40 us
to 671 s) or in terms of an event occurrence count (4 to
over 4 billion). After monitoring the first event, the
analyzer then cycles through remaining events,
monitoring each for the specified event period. A scan is
complete when all events have been monitored, at which
time the analyzer randomly selects another starting
event, and the next scan is begun.

This scanning algorithm, while statistically accurate,
imposes large amounts of analyzer “dead time” with
respect to individual events. Depending on the
measurement mode, and analyzer setup, a particular
event may be monitored only every 4 ms. Some
measurements require continuous monitoring, and cannot
tolerate large amounts of analyzer dead time. In
analyzing stack usage, for example, some portions of the
stack are used infrequently. The normal scanning
method, by virtue of its imposed dead time, may not
capture such sporadic behavior. In cases such as this,
the alternate “real-time” acquisition mode may be applied.
Allowing nearly continuous monitoring of two program or
memory events, data acquisition is interrupted in this
mode for only 40 us every second. This short
interruption, accounting for only 0.004% of total
acquisition time, allows capture of statistically insignificant,
yet, perhaps, extremely important information.

Measurements Involving Multiple Analyzers
Interactive measurements involving two or more 64000
analysis modules are extremely useful in tracking
hardware/software, software/software, and
hardware/hardware interaction problems. Supervised and
controlled on a global level by the 64000 Measurement
System, these measurements are conducted via the high-
speed Intermodule Bus (IMB). The IMB carries signals
between analysis subsystems, providing extensive and
advanced measurement capability. Subsystems that may
operate interactively include:

64310A Software Performance Analyzer
64620S Logic State/Software Analyzer
64600S Logic Timing/Hardware Analyzer
64300A Emulation Bus Logic Analyzer
64302A Emulation Bus Logic Analyzer
64XXXS Emulation Subsystems

Model 64310A Software Performance Analyzer interacts
with other analysis subsystems with two IMB signals.
The “master enable” signal coordinates measurement
starts with other analyzers and emulators. Furthermore,
if this signal is false, the analyzer will not capture
measurement information until the signal again becomes
true. By this means, interactive measurements with the
64620S Logic State/Software Analyzer, for example, can
provide complex windowing capability to software
performance measurements.

The “trigger enable” signal is received to accomplish
much the same goal. This signal may also be driven by
the Software Performance Analyzer on measurement
start, or measurement complete conditions, allowing the
64310A to control other analysis subsystems. As long as
the trigger enable signal is specified to be received by
the Software Performance Analyzer, it must be true
before data is acquired. The 64310A analyzer cannot
start nor continue a measurement until both trigger
enable and master enable signals are true.

An application illustrates the analysis power derived from
interactive measurements. In many systems, power failure
detection circuits are responsible for quickly switching
the system from normal power to battery backup in the
event of main power failure. In large systems though,
battery backup may be impractical. Power failure
detection in these cases provides an early warning that
line power has been interrupted. This allows the CPU to
immediately take appropriate measures to assure that no
data is lost and that the CPU can automatically restart
where it left off when power is eventually restored.

The power failure detector may be responsible for
asserting an appropriate CPU interrupt. The associated
interrupt service routine may then copy vital areas of the
volatile memory to disc by evoking disc transfer routines.
If these transfer conditions are too slow, the memory to
disc transfer will be incomplete when CPU power is
interrupted, causing a loss of system integrity. Providing
further complication are transfer routines that function
well for normal operations, but are deficient under power
failure conditions. This necessitates performance analysis
under power failure conditions only.

There are several analysis approaches to isolate
performance deficiencies resulting from this class of
problem. It may be possible to isolate the power failure
software by program flow alone. In this case, the two-
level measurement enable sequence of the Software
Performance Analyzer may be sufficient. In more
complex program flow environments, the 15-level
sequencer of the 64620S Logic State/Software Analyzer
is useful. Program flow satisfying the sequencer
specification can then be directed to start the Software
Performance Analyzer. Program tracing, and performance
analysis features of the Logic State/Software Analyzer
expand the measurement with instruction flow
information before, during, or after program events. This
is of great benefit in the analysis of conditions
surrounding performance degradation. If, however, the
value of a parameter is required to isolate the power
failure software, it is necessary to perform a multiple
analysis measurement using one of the 64000 Logic
Analyzers. Here, the Software Performance Analyzer is
disabled until the Logic Analyzer “sees” the correct
parameter value, at which time the Software
Performance Analyzer is enabled, allowing it to capture
performance data for the power failure operation alone.

If power failure service routines are dual function, it may
not be possible to isolate the power failure condition by
program or data flow. For example, the information
saved by the power failure mechanism may be the same
information periodically updated on disc for another
purpose. An external timer circuit can periodically
interrupt the CPU, and may use the same power failure
software. Here, the 64600S Logic Timing/Hardware
Analyzer can be used to detect the power failure
interrupt by monitoring hardware interrupt signals. The
trigger enable signal from the 64600S can then be used
to control the Software Performance Analyzer.

Measurements of this type are extremely advantageous
in relating software performance to various other
software and hardware events. Multiple subsystem
measurements extend the capabilities of analysis
modules, and when performed with the 64310A Software
Performance Analyzer, provide alternative, enhanced
views as to the hardware or software conditions
responsible for performance degradation. This information
is beneficial in carrying out accurate and rapid
characterization of such problems and directs engineers
to efficient and correct solutions.

Measurement Enable/Disable

In many cases, software performance measurements are
meaningful only after specific events have occurred. A
“measurement enable” condition may be specified, to
define the point at which data acquisition should begn.
These enabling conditions may be specified in a number
of ways as outlined below:

address PORT_1A

address 762DH

address range STACK_1 thru STACK_2
address range OEFFH thru OFFFH

module READ _PORT
module range TEST_1A thru TEST_1B

line_number 13 in_file IO_UTIL
line_number range 45 thru 77 in_file PORT

Note: A file name identifier is optional on all but line number
specifications.

It is possible to enable a measurement based on the
number of times an event occurred. For instance, the
measurement could be initiated after location
PORT_1A is written to 12 times.

Further measurement starting point qualification is
available through use of the two-term measurement
enable sequence. Suppose system performance is
normal as long as module A is never followed by
module C. With the use of the two-term measurement
enable sequence, the 64310A can remain idle until
module C is entered immediately after module A is
executed.

Of similar importance is the ability to specify a
measurement disable condition, after which the
analyzer will no longer collect data. The conditions
listed previously may also be used in this specification.
For example, a system may exhibit poor performance
characteristics until a specific program module is
executed. As degraded performance may exist only for
a short period of time, the associated performance
information may become statistically insignificant when
viewed in relationship to overall system activity.
Judicious selection of the measurement disable
condition in this situation causes the analyzer to stop
acquiring data and presents the user with performance
information relative to the specific problem being
tracked.

Measurement enable and disable conditions, used
separately or together, focus measurements on specific
areas of concern, and prevent data from being lost in
a much larger, overall measurement.

Measurement Windowing

The windowing function is used primarily in situations
requiring context recognition. In systems using overlay
structures for example, it may be desirable to carry
out performance analysis only when a specific overlay
is in use. In other applications, general purpose
routines may fail to satisfy performance criteria when
evoked in a specific sequence. The windowing
capability of the 64310A allows engineers to isolate,
quickly analyze, and resolve problems in such
situations.

Conceptually similar to the measurement enable/disable
function, windowing provides performance
measurements relative to a particular program area.
Specified by enable and disable conditions, this feature
also allows isolation of code segments important to a
specific measurement.

When the window disable condition is met, the
analyzer is only temporarily disabled and resumes data
collection as soon as the enable condition is once
again encountered. The window may transition from
enable to disable and back many times during a
measurement, providing, in a sense, a filter for the
information acquired by the analyzer. Figure 7
illustrates the windowing concept.

Window enable satisfied
B each time the end of
module B is encountered.
Module
C
Module a specific context.
D b Window disable satisfied
Module
C

Figure 7. Execution of modules B and D can window data collection
concerning module C. Note that module C executed again, but since the
context requirements defined by the window specification were not met, no
information was collected by the anlayzer.

Window enabled to
Module
A

Characteristics

ACQUISITION
Clock Rate 5MHz max.

Width 24 bits of Address, 8 bits of Status.
MEASUREMENT MODES

Memory Displays the intensity of activity in user-defined
Activity areas of system memory.
Program Indicates instruction and related activity generated
Activity by specific program modules.
Module Shows the execution time distribution of a selected
Duration module, or program segment.
Module Provides a time distribution measurement from
Usage when a module is exited to when it is subsequently
reentered.
Intermodule Indicates a transfer time distribution from the exit
Duration point of a procedure to the entry point of another
procedure.
Intermodule Monitors direct program transfers from a selected
Linkage module to another module.

acquire information for
module C executing in

each time the end of
module D is encountered.

10

TERMINATION CONDITIONS INTERMODULE BUS (IMB) FUNCTIONS

Time Duration 1 us to 671 s. Trigger Enable can be received or driven on measurement
Occurrence Count 1 to 232-1. start or measurement complete.

Scan Count 1 to 232-1. Master Enable received always.

Confidence Level 51 to 99 percent. SUPPORT

Error Tolerance 1 to 99 percent. Languages Pascal, C, and Assembly.

MEASUREMENT QUALIFICATION

Measurement Enable (can use a 2-term sequence). Processors All 8-bit and 16-bit processors supported

Window. by HP 64000 Emulation Subsystems.

Measurement Disable. ENVIRONMENTAL

IMB Trigger Enable (can be received). Temperature operating 0° to +40° C (+32° to +104° F).
IMB Master Enable (always received). nonoperating -40° to +75° C (-40° to +167° F).
MEASURED EVENTS operating survival —20° to +50° C (-4° to +122° F).
Activity and Duration Measurements 12 (max).

Intermodule Linkage Measurement 6 (max). Altitude operating up to 4600 m (15 000 ft).
Real Time Activity Measurements 2 (max). nonoperating up to 15 300 m (50 000 ft).
Maximum Occurrence Count 232-1.) e o .)

DEFINITIONS Relative Humidity 5% to 80%, noncondensing.

Maximum Number of Event Definitions 99. POWER REQUIREMENTS

Maximum Number of Group Definitions 16. +5.0V 5.80 A (max).

Allowable Time Event Range 1 us to 671 s. -5.2V 0.12 A (max).

Ordering Information - a

COMPONENTS
Model 64310A Software Performance Analyzer Card _ $3400
Model 64310AF Software Performance Analyzer

Operating Software on Flexible Disc $100
Model 64310AT Software Performance Analyzer

Operating Software on Tape Cartridge $100
Model 64960A Emulation Bus cable, 2-position $70

(2 cables required)
Option 001: replaces 2-position cable with

3-position cable no charge
Option 002: replaces 2-position cable with
4-position cable no charge
Option 003: replaces 2-position cable with
5-position cable no charge
Model 64964A Intermodule Bus cable, 2-position $80

(One cable is required only for performing interactive measurements
with other 64000 analysis subsystems.)
Option 001: replaces 2-position cable with

4-position cable no charge
Option 002: replaces 2-position cable with

6-position cable no charge
Option 003: replaces 2-position cable with

8-position cable no charge

Note: The 64310A Analyzer must be used with a 64000 Logic
Development System and a 64000 Emulation Subsystem.

Your HP Field Representative can help you determine the best
configuration to meet your needs.

U.S.A. list prices only.

5953-9210 (D) Data subject to change. PRINTED IN U.S.A.

For more information, call your local HP Sales Office or nearest Regional Office: Eastern (301) 258-2000; Midwestern (312) 255-9800; Southern (404) 955-1500; Western (213) 877-1282; Canadian

(416) 678-9430. Ask the operator for Instrument Sales. Or, Write: Hewlett-Packard, 1501 Page Mill Road, Palo Alto, CA 94304. In Europe: Hewlett-Packard S.A., 7, rue du Bois-du-Lan, P.O. Box
CH-1217 Meyrin 2, Geneva, Switzerland. In Japan: Yokogawa-Hewlett-Packard Ltd., 29-21, Takaido-Higashi 3-chome, Suginami-ku, Tokyo, 168.

