High-level Software Analyzers

Model 64330
Model 64340

Technical Data May 1986

HEWLETT
PACKARD

(D

Description

Hewlett-Packard High-level Software Analyzers offer HP 64000
system users an advanced, yet easy-to-use, feature set for
analysis of programs written in Pascal or C. The analyzers

are processor specific, for troubleshooting and debugging
software written for the target microprocessor. Measurements
are specified and displayed in the high-level context used in
generating the software. This simplifies correlations between
executing software and written programs, making the analyzers
powerful tools for testing and revising software written in
high-level languages. Two series of high-level software analyzers
are available: HP 64330 High-level Software Analyzers and

HP 64340 Real-time High-level Software Analyzers. The

HP 64330 requires an HP 64000 emulator and the HP 64302A
Emulation Bus Analyzer; the HP 64340 analyzer requires only
an HP 64000 emulator.

Both series of analyzers trace program and data flow in
executing code. The HP 64330 High-level Software Analyzer
adds no extra code to the software under test, but it does stop
program execution periodically by inserting software traps to
accommodate the analyzer. By contrast, in real-time mode, the
HP 64340 Real-time High-level Software Analyzer is fully
transparent to the system under test; it meets all criteria
for real-time analysis: the processor is not halted, program
execution is not stopped, and additional code and traps are not
added to the target software.

Hierarchical measurement modes provide a spectrum of
perspectives on software operation. First, problems are isolated
at a general level. Then specific errors related to statements
and variables are pinpointed. Additionally, the HP 64340
analyzer measures the absolute time used by an executing
module and counts the number of times specified source
statements are executed.

Measurements may be specified in terms of static and dynamic
variables; files, programs, procedures, and function names;
as well as source code line numbers. A close link to the
HP 64000 emulation subsystem adds the further advantages of
displaying/modifying variables and controlling execution of
a program under test. Directed-syntax softkeys simplify
transitions from software analysis to software synthesis, and
back again. After identifying a programming error, it takes
only a few keystrokes to correct, recompile, relink, run the
modified program, and then return to the software analyzer to
verify the modification.

Features

w Measurements for global and detailed views of high-level
software execution of both C and Pascal programs

m Variable values are displayed in their native data type
(Boolean, integer, real, scalar, structured types, etc.)

m Measurements may be specified using static and dynamic
variable names; file, procedure, and function names; as well as
high-level source line numbers

u HP 64000 emulation subsystems may be controlled from the
high-level software analyzers

m Command files speed measurement set-up and execution,
facilitating automatic measurements

In addition, the HP 64340 real-time high-level software

analyzers also offer

u Tracing of high-level functions, procedures, statements, and
variables without breaking —true real-time trace

» Module timing to detect anomalies and analyze performance

m Counts of specified statements to verify software coverage

m Additional measurement parameters to define trigger
sequences and a measurement window

u Display any source files without exiting the analyzer

m Time tagging of modules or statements as an elementary
performance check

u Interactive operation with other HP 64000 analysis and
emulation subsystems

Designlenter

Measurement Hierarchy

High-level analysis measurements are frequently applied
hierarchically. The top-down sequence of measurements is
particularly useful when there is little initial information about
the cause of a software failure. At a “coarse” or global level,
the Trace Modules measurement verifies that procedures and
functions are executed in the proper sequence and at the
appropriate nesting level. If an incorrect sequence or nesting
level is found, the Trace Statements measurement can determine
the precise location of a software fault. But, if the modules
occur in the correct sequence and level, the Trace Data Flow
measurement can point out improper parameter values and
global variables passed to and from selected modules.

Assuming module execution sequences and parameter values
are correct, the Trace Statements measurement displays
program flow in more detail. This measurement, showing
executed source lines and values of global and local variables
referenced, allows designers to distinguish between errors
caused by programming flaws and those due to unexpected
variable values. Then, a Trace Variables measurement can be
applied to isolate the causes of improper variable assignments.

Once the software is executing properly, the Count
Statements and Time Module measurements on the HP 64340
analyzer allow coverage testing and performance analysis of the
software modules. Invaluable for quality testing of software,
the Count Statements measurement shows the number of times
a source statement or range of source statements are executed.
The Time Module measurement measures up to four modules
for real-time execution speed, pinpointing bottlenecks that
may require recoding.

The flowchart in figure 1 represents a typical scenario for
the application of this hierarchical measurement structure.

IDENTIFICATION OF
SOFTWARE FAILURE

TRACE MODULES
TIME MODULES

CORRECT THE
SOURCE CODE

ARE ALL
MODULES EXECUTED
IN THE PROPER
SEQUENCE
2

USE
TRACE STATEMENTS
TO FIND CAUSE

CORRECT THE

TRACE DATA FLOW SOURCE CODE

ARE
THE PASSED
PARAMETER VALUES

CORRECT
?

USE
NO TRACE STATEMENTS
AND

TRACE VARIABLES
TO FIND CAUSE

TRACE STATEMENTS
COUNT STATEMENTS

CORRECT THE
SOURCE CODE

STATEMENTS
WRITTEN CORRECTLY
AND EXECUTED IN
THE PROPER
ORDER

ARE

VARIABLE

VALUES BEFORE

AND AFTER EXECUTION

OF THE SOURCE

LINE CORRECT
2

USE
TRACE VARIABLES
TO FIND

CAUSE

DIFFICULTY IS RESOLVED
OR LIES IN A DIFFERENT
AREA OF SOFTWARE

Figure 1. A logical and well-ordered debugging process is possible due
to the hierarchical arrangement of the measurements of the high-level
software analyzers.

Trace Modules

Trace Modules measurement monitors program execution at the
procedure level. It provides an overview of total system activity,
capturing the sequence in which software modules are executed.
By rapidly isolating software failures, this capability can quickly
verify that procedures are called in the proper sequence, before
undertaking the more time-consuming task of debugging at the
statement level. For instance, a subroutine multiplying two
floating-point numbers located on a stack fails unless the
operands have been pushed onto the stack. What might appear
to be a failure of the multiply subroutine itself may actually
result from improperly calling the multiply routine before calling
the subroutine that transfers the operands from CPU registers
onto the stack. A procedural-level view greatly reduces the time
necessary to identify and correct these kinds of problems.

Indentation (figure 2) represents the nesting level of the
monitored procedures. Adding further information, the source
statement causing a procedure to be executed is displayed, as
well as the procedure end point. A designer can determine
immediately which procedures are functioning as subroutines
to main procedures, and can verify the order and nesting levels
of execution. The number of calls to a subroutine by the main
program may also be determined quickly. Recursive procedures
and functions are traced.

The Trace Modules measurement is performed in real time
using the HP 64340 analyzer, tracing up to 288 modules. The
HP 64330 analyzer can trace a maximum of 128 modules using
software breakpoints to detect entry and exit points.

Figure 2. A Trace Modules measurement indicates that the MULTIPLY
subroutine was called before the operands were placed on the stack
by procedure PLACE.

Trace Data Flow

Trace Data Flow measurement monitors the flow of data to and
from program subroutines and functions. The measurement
allows the designer to determine the values of parameters

and variables on entry to and/or exit from selected procedures.
Verifying proper parameter and variable values is extremely
important in isolating software failures.

A procedure that reads a file from disc may require several
parameters: the starting sector number, load address, and
number of disc sectors to be read. If any parameter is incorrect,
the file cannot be read correctly, even if the file-reading
subroutine is functioning properly. The Trace Data Flow
measurement provides a means to quickly verify the values of
the parameters.

Parameter variable values on entry and values of data
elements on exit from a procedure are equally important in
trouble-shooting. A “search” procedure that accepts an input
value, then outputs the number of the first table containing that
value, is one such case. Here, the correct input value is necessary
to the proper functioning of the search procedure itself. A correct
table value is necessary to the continued operation of the
remainder of the program.

If, as in figure 3, the data flow measurement indicates the
input value to be incorrect, it can be concluded that something
is wrong prior to evoking the search routine. If the input value is
correct, but the table number is wrong, the search routine itself
may be at fault. The search routine is likely to be operating as
intended if the input value and table number are correct,
suggesting that the problem occurred after the execution of the
search routine. Several data flow measurements, with similar
conclusions drawn from each, greatly enhance engineering
productivity by rapidly eliminating false leads in tracking
down software malfunctions.

Both the HP 64330 and 64340 analyzers perform the Trace
Data Flow measurements using breakpoints. The HP 64330
analyzer uses software breakpoints, and the HP 64340 analyzer
uses hardware (emulator) breaks.

enbEOd Emulator: Siot

Figure 3. The Trace Data Flow measurement monitors the input value
(VALUE) on entry to the SEARCH routine.

Trace Statements

As software debugging focuses on particular areas of difficulty,
a Trace Statements measurement displays program execution in
the same high-level language in which it was written. A
measurement may be set up to trace the execution of a range
of high-level source lines, or all statements within a procedure,
function, or main program. High-level statement tracing

(figure 4) is a very important feature for efficiently analyzing
programs written in high-level languages. These capabilities
sharply reduce software debugging time by eliminating the need
to translate from assembly-level listings of high-level programs.

Displays include not only the sequence of executed high-level
statements, but also the values of all variables referenced by
these statements. As with the Data Flow measurement, the
Trace Statements measurement helps to determine whether
incorrect variable values are causing erroneous software
activity. Alternatively, the conclusion may be that a
programming or conceptual error within a statement is
responsible. A designer can trace a complex section of code,
view the executed statements, and watch variable values as they
are changed from statement to statement. In this way, a software
error can be located at the statement level. It is also possible
to determine that a malfunction is not a result of the code as
written. If input and output variables are valid, it is a basis
for selecting the next code segment to be examined.

Trace Statements measurement also determines whether a
statement actually does what was intended by the programmer.
In many cases, a statement may assign a value to a variable,
based on the values of many other variables and mathematical
or logical operations. To verify that such statements perform
the correct operation, the High-level Software Analyzers display
the values of all variables read from and written to by each
executed source line.

The Trace Statements measurement in the HP 64340 analyzer
is executed in nonreal time when both local and global variables
are captured. If a real-time mode is used, only the global
variables are displayed. The HP 64330 does not have a real-time
mode for Trace Statements; both local and global variables
are displayed. An unlimited number of recursive calls may be
traced with the HP 64340 analyzer, while the HP 64330 analyzer
traces a maximum of 128 recursive calls.

Figure 4. The Trace Statements measurement shows executed source
lines along with the values of all variables referenced.

Trace Variables

Incorrect variable values are responsible for many software
malfunctions. Knowing that a variable is incorrect is useful, but
knowing how and where the variable was improperly set further
simplifies error isolation. The Trace Variables measurement
provides these capabilities in the high-level software analyzers.

With a Trace Data Flow measurement, it is possible to
determine that a subroutine failure is due to an incorrect
parameter value being passed to that routine. A follow-up Trace
Variables measurement would then identify the source line
assigning the spurious value. Subsequently, it may also be
determined that the parameter was set incorrectly, not due to
the logic of a particular statement, but rather, as a result of
faulty variable values upon which the parameter depends.

Trace Variables measurement traces both static and dynamic
variables. Analysis may be defined to trace variables only when
read, written, or both. When a selected data element is accessed,
results are displayed with file and procedure names, along with
the line number and the high-level source statement responsible
for the access (figure 5). The variable name, file and procedure
names, and type of access (read or write) are indicated. Values
are displayed in the appropriate type (i.e., Boolean, integer, real,
etc.). With the HP 64340 analyzer, this measurement can be
made in real time.

Count Statements (HP 64340 only)

Software coverage testing is an integral part of an overall
software testing environment. Knowing the number of times
particular source statements are executed, or whether a
conditional branch is taken, yields valuable information
regarding how extensively a software module has been tested.
The Count Statements measurement is an additional real-time
capability of the HP 64340 Real-time High-level Software
Analyzer.

With the Count Statements measurement, it is possible to
determine the number of times, if any, that a selected line of
source code is executed. Using this data, a designer can evaluate
the degree of testing done on a software module, and whether
a different test approach is needed for greater testing coverage.

The software engineer may specify a range of up to 255
source statements to be counted within a single software
module. The Count Statements measurement is made on
software executing at standard operational speeds. Displays
show the source lines specified along with the number of times
each source line was executed (figure 6).

kb o A2%MR. . dbocheck _displag. .modify.. .ADRW. .

Figure 5. This Trace Variables measurement, showing both variable
assignments and reads, points out source statements responsible for
the variable assignments.

fun . sgtup dbocheck .diselay. .modify . show . .gxecute zzzBEllzac

Figure 6. A quick method of checking software coverage is using the
Count Statements measurement (HP 64340) to see how many times,
if any, selected lines of source code are executed.

Time Modules (HP 64340 only)

Logical and functional software debugging does not always
insure bug-free, operational code. Many times, software that is
otherwise satisfactory fails to perform properly under real-time,
full-load conditions. The Time Modules measurement shows
the time required for software modules to execute in real time, at
full speed.

Using the Time Modules measurement aids software
engineers in finding software bottlenecks and bugs that are due
to slow execution. Another application is checking a software
module that generates a programmable time delay. If the delay
needs adjustment, a “modify variable” command can be used
to change the delay variable.

The Time Modules measurement times up to four modules
simultaneously. Both single and multiple measurements may be
made. If a module occurs more than once during a measurement,
the statistics (minimum, maximum, mean, and number of
occurrences) are displayed automatically (figure 7).

Hardware Break (HP 64340 only)

A hardware break can be set in the executing program, in either
ROM or RAM. The break can be controlled by the enable/
disable sequence, assuring that the break occurs in the proper
context. Once the break occurs, you can specify the next
measurement. Unlike the software breakpoints used in the

HP 64330 analyzer, the hardware break causes a full break to
the monitor, and the preceding measurement will not be executed
again. In addition, the break vector can be directed to branch
the program to a user routine and continue real-time execution,
without returning control to the emulator.

Trace Qualification (HP 64340 only)

The HP 64340 Real-time High-level Software Analyzer provides
software engineers with powerful trace qualification resources.
Sequencing, windowing, and measurement enable/disable
features are used to restrict analysis to the specific software
area of interest.

Tracing a global variable within a very small section of code
is a difficult task, under typical conditions. But, the
measurement enable/disable qualifiers can define a context for
initiating a measurement; enable/disable conditions are
implemented in hardware. Windows create a repetitive enable/
disable function, and the analyzer only captures data when the
window conditions are true. Up to six levels of sequencing can
be defined to establish a series of events that must be found in
the specified order before beginning a measurement or defining
an enable or disable condition.

B o BEL MG, Gephesk displag. Bodify.. . SDOK.... -BERLUIR. I

Figure 7. When monitoring software performance under real-time
full-load conditions, the Time Modules measurement (HP 64340)
shows the execution time of up to four modules, with minimum,
maximum, and mean times and the number of module occurrences.

Emulation Control Functions

Analyzer functions are available for controlling program
execution in the emulation subsystem (figure 8). The load
function loads programs into the emulator for execution. This
is particularly convenient when analyzing two versions of the
same software. For example, measurements may be made on
software version A, then version B may be loaded and executed,
and the same set of measurements made. Comparisons can be
made quickly, to verify functional equivalence, point out critical
differences, and identify any advantages of one version over
the other.

The emulator can be set up to stop execution of the user
program when a breakpoint occurs. Breakpoints are established
using executable addresses (HP 64330), source line numbers, or
module entry/exit points. In some applications, errant software
execution might destroy data that is difficult or impossible to
recreate, such as a disc directory. In this case, a breakpoint set
at the beginning of the disc write routine could stop program
execution before valuable information is lost.

After a breakpoint is encountered, it is often necessary to
determine values of selected variables to decide whether it is
“safe” to continue program execution. For example, incorrect
variable values in a disc write routine could overwrite an
important area of the disc. The high-level software analyzers
allow the user to display variables, and a modify function can
be used to change any improper variables, without returning to
the editor to change source code, and then recompile and relink.

Another control function, run, initiates program execution in
the emulator from the starting point, a specified address, a
selected line number, a module entry point, or from the current
value of the processor’s program counter. Sections of code (that
may require a long time to execute) may be bypassed or started
at a point other than the normal starting point. In conjunction
with breakpoints, the run function allows the software engineer
to simulate interrupts or a task switch occurring virtually
anywhere within a program. The run control can also be used
to synchronize the analyzer with the initial program start-up or
a restart after a breakpoint.

Figure 8. Both high-level software analyzers are operated with an
appropriate emulator. A major advantage of this configuration is that
program execution can be controlled from the analyzers through the
emulator controls.

Comparison Chart

High-level Software Analyzers
Feature HP 64330 HP 64340
Trace Modules sw breakpoint real time

Trace Data Flow
Trace Statements

sw breakpoint hw breakpoint
sw breakpoint real time and

hw breakpoint*
Trace Variable sw breakpoint real time
Count Statements no real time
Time Modules no real time
Time/Count Tagging no yes
Emulator Control yes yes
Trace Qualification no yes
Display of Source File no yes
Display/Modify Variables yes yes
IMB Cross-triggering/Arming no yes
Change Variable Base no yes
Development Station Slots Used 0 3
Breakpoints 16 sw 9 hw

*Measurement made in real time for static data, and with hardware breakpoints when
static and local data are included.

Characteristics, HP 64330

Measurement Modes

Trace Modules: displays the sequence of procedure calls and
execution nesting levels; max of modules traced, 128.

Trace Data Flow: displays values of selected parameters into or
out of specified modules; max of 10 module and variable names.
Trace Statements: displays high-level source lines with comment
fields and values of variables referenced; may include all
statements from a single module or range of source lines.

Trace Variables: displays source lines that assign and/or read
specified variables; max of variable names, 10.

A single variable name will include many variables if the name
represents an array, structure, or record.

Tracing

Trace depth: from 1 to 8 kbytes.
Breakpoints: max, 16 software breakpoints.
Language: Pascal and C.

Accessories Supplied

Model 64330 High-level Software Analyzer: Each high-level
software analyzer consists of operating software on flexible
disc and an operating manual.

Accessories Required

Model 64302A 48-channel Emulation Bus Analyzer: (required
with HP 64330 analyzers; ordered separately) Each 48-channel
emulation bus analyzer consists of a control card. Service
manual is included. For operating characteristics, refer to
emulator operating manual supplied with emulation subsystem.
An HP 64032A Memory Extender Board must be added when
the analyzer is installed in an HP 64100A Development Station
with serial number prefix below 2309A.

Characteristics, HP 64340

Measurement Modes
Trace Modules: displays the sequence of procedure calls and
execution nesting levels; max of modules traced, 288 in a single
file; guaranteed minimum of 128 modules using up to 10 symbols
(procedures, functions, or files) that lie within four contiguous
ranges, with the enable/disable sequence off.
Trace Data Flow: displays values of selected parameters into or
out of specified modules; max of 10 symbols (procedures,
functions, variable names) for up to 3 modules.
Trace Statements: displays high-level source lines with comment
fields and values of variables referenced; may include all
statements from a single module or range of source lines within
a module. Real-time measurement traces only static variables.
Trace Variables: displays source lines that write and/or read
specified variables; in real-time mode, up to 10 dynamic
variables in a single module, up to 9 nonadjacent static
variables, or up to 10 static variables in a single module.

Static variables have a fixed location in memory.

Dynamic variables are stack-based variables.
Count Statements: displays a range of source statements along
with the number of times each statement was executed; real-time
measurement; up to 255 statements residing within a 4k address
range and within a single module.
Time Modules: displays time a module uses in a complete
execution; up to 4 modules may be timed simultaneously; max
number of executed nesting levels, 255.

A single variable name will include many variables if the name
represents an array, structure, or record. A C variable whose
declaration is between statements will not be traced; variable
declaration must be at the beginning of the function.

Tracing

Memory Size: 4k deep by 96 bits wide.

Sequences: up to six levels.

Windowing: one window with recursive activation; not a
real-time measurement.

Enable/Disable: initiates/terminates analyzer execution; either
or both conditions may be set by defining single events, or one
of the conditions may be qualified with up to 9 ORed terms.
Using enable/disable condition reduces the number of ranges
available for tracing variables and modules.

Breakpoints: max, 9 hardware breakpoints.

Language: Pascal and C.

10

Electrical
Power consumption: typical, 12.4 A at +5 Vdc and 1.2 A at
—5.2 Vdc; power supplied by development station.

Intermodule Bus

HP 64340 both drives and receives the trigger-enable signal
across the Intermodule Bus (IMB).

Accessories Supplied

Model 64340 Real-time High-level Software Analyzer: Each
real-time high-level software analyzer consists of three circuit
cards, microprocessor-specific operating software on flexible
disc (HP 64341XA), and an operators manual. An HP 64032A
Memory Extender Board must be added when the analyzer is
installed in an HP 64100A with serial number prefix below
2309A.

Ordering Information
HP 64330 High-level Software Analyzers

Model
64331A

64331B

64332A

643328

64333A

643338

64334A

64334B

64335A

64336A

64337A

64338A

Description
High-level Software Analyzer for 68000

microprocessors
(use with HP 64242S 68000 Emulator)

High-level Software Analyzer for 68000
microprocessors
(use with HP 64243AA/AB 68000 Emulators)

High-level Software Analyzer for 8086
microprocessors
(use with HP 64222S 8086 Emulator)

High-level Software Analyzer for 8086 and 80C86
microprocessors

(use with HP 64220S 8086/8087 Emulator or

HP 64220S Opt 001 80C86 Emulator)

High-level Software Analyzer for 8088
microprocessors
(use with HP 642265 8088 Emulator)

High-level Software Analyzer for 8088 and 80C88
microprocessors

(use with HP 64221S 8088/8087 Emulator or

HP 64221S Opt 001 80C88 Emulator)

High-level Software Analyzer for 68010
microprocessors
(use with HP 64249S 68010 Emulator)

High-level Software Analyzer for 68010
microprocessors
(use with HP 64245AA/AB 68010 Emulators)

High-level Software Analyzer for 80186
microprocessors
(use with HP 64224S 80186 Emulator)

High-level Software Analyzer for 80188
microprocessors
(use with HP 64225S 80188 Emulator)

High-level Software Analyzer for 68008
microprocessors
(use with HP 64244AA 68008 Emulator)

High-level Software Analyzer for NEC 70116
microprocessors
(use with HP 64294S 70116 Emulator)

11

64339A

High-level Software Analyzer for NEC 70108
microprocessors
(use with HP 64295S 70108 Emulator)

HP 64340 Real-time High-level Software Analyzers

Model
64340A

64341AA

64341BA

64341CA

64341DA

64341EA

64341FA

64341GA

643411A

64342AA

64342BA

Description
Real-time High-level Software Analyzer
(required software is ordered separately)

Real-time High-level Software Analyzer software
for 8086 and 80C86 microprocessors

(use with HP 64220S 8086/8087 Emulator or

HP 64220S Opt 001 80C86 Emulator)

Real-time High-level Software Analyzer software
for 68000 microprocessors
(use with HP 64242S 68000 Emulator)

Real-time High-level Software Analyzer software
for 8088 and 80C88 microprocessors

(use with HP 64221S 8088/8087 Emulator or

HP 64221S Opt 001 80C88 Emulator)

Real-time High-level Software Analyzer software
for 68010 microprocessors
(use with HP 64249S 68010 Emulator)

Real-time High-level Software Analyzer software
for 80186 microprocessors
(use with HP 64224S 80186 Emulator)

Real-time High-level Software Analyzer software
for 80188 microprocessors
(use with HP 64225S 80188 Emulator)

Real-time High-level Software Analyzer software
for 68000 microprocessors
(use with HP 64243AA/AB 68000 Emulators)

Real-time High-level Software Analyzer software
for 68010 microprocessors
(use with HP 64245AA/AB 68010 Emulators)

Real-time High-level Software Analyzer software
for NEC 70116 microprocessors
(use with HP 64294S 70116 Emulator)

Real-time High-level Software Analyzer software
for NEC 70108 microprocessors
(use with HP 64295S 70108 Emulator)

Accessories

64032A Memory Expansion Module
(Required for HP 64100A Development Station with
serial number prefix below 2309A; occupies one slot.)

64960A 2-position Emulation Bus Cable (two required)

Opt 010 through Opt 017 cables are special cables
for installing the HP 64340A Real-time High-level
Software Analyzer. Refer to the HP 64000
Configuration Guide to select the correct option for
the combination of installed subsystems.

Opt 010 Emulation Bus Cable (1 plus 1)

Opt 011 Emulation Bus Cable (2 plus 1)

Opt 012 Emulation Bus Cable (3 plus 1)

Opt 013 Emulation Bus Cable (1 plus 2)

Opt 014 Emulation Bus Cable (2 plus 2)

Opt 015 Emulation Bus Cable (2 plus 3)

Opt 016 Emulation Bus Cable (1 plus 3)

Opt 017 Emulation Bus Cable (2 plus 3)

HP 6433XA High-level Software Analyzer must be used with
an HP 64100A or 64110A Development Station with an

HP 64000 Emulation subsystem that includes an HP 64302A
Emulation Bus Analyzer. HP 64340A Real-time High-level
Software Analyzer must be used with an HP 64100 or 64110A
Development Station with an HP 64000 Emulation subsystem
and the appropriate HP 64341XA software package. Both
high-level software analyzers require an appropriate HP 64000
compiler.

Note: A linear address space is assumed by both High-level
Software Analyzer series. Limited analysis of memory swapping
systems can be accomplished using the sequencer capabilities
of the HP 64340A.

Printed in U.S.A.

HEWLETT

5953-9297 Data subject to change.

PACKARD

For more information, call your local HP Sales Office or nearest Regional Office: Eastern (301) 258-2000; Midwestern (312) 255-9800; Southern (404) 955-1550;
Western (818) 509-2319; Canadian (416) 678-9430. Ask the operator for Instrument Sales. Or, write: Hewlett-Packard, 1501 Page Mill Road, Palo Alto, CA 94304.
In Europe: Hewlett-Packard S.A., 7, rue du Bois-du-Lan, PO. Box CH-1217 Meyrin 2, Geneva, Switzerland. In Japan: Yokogawa-Hewlett-Packard Ltd., 29-21,

Takaido-Higashi 3-chome, Suginami-ku, Tokyo, 168.

